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Editorial

Welcome to the New Book Series Structures and Infrastructures.
Our knowledge to model, analyze, design, maintain, manage and predict the life-

cycle performance of structures and infrastructures is continually growing. However,
the complexity of these systems continues to increase and an integrated approach
is necessary to understand the effect of technological, environmental, economical,
social and political interactions on the life-cycle performance of engineering structures
and infrastructures. In order to accomplish this, methods have to be developed to
systematically analyze structure and infrastructure systems, and models have to be
formulated for evaluating and comparing the risks and benefits associated with various
alternatives. We must maximize the life-cycle benefits of these systems to serve the needs
of our society by selecting the best balance of the safety, economy and sustainability
requirements despite imperfect information and knowledge.

In recognition of the need for such methods and models, the aim of this Book Series
is to present research, developments, and applications written by experts on the most
advanced technologies for analyzing, predicting and optimizing the performance of
structures and infrastructures such as buildings, bridges, dams, underground con-
struction, offshore platforms, pipelines, naval vessels, ocean structures, nuclear power
plants, and also airplanes, aerospace and automotive structures.

The scope of this Book Series covers the entire spectrum of structures and infrastruc-
tures. Thus it includes, but is not restricted to, mathematical modeling, computer and
experimental methods, practical applications in the areas of assessment and evalua-
tion, construction and design for durability, decision making, deterioration modeling
and aging, failure analysis, field testing, structural health monitoring, financial plan-
ning, inspection and diagnostics, life-cycle analysis and prediction, loads, maintenance
strategies, management systems, nondestructive testing, optimization of maintenance
and management, specifications and codes, structural safety and reliability, system
analysis, time-dependent performance, rehabilitation, repair, replacement, reliability
and risk management, service life prediction, strengthening and whole life costing.

This Book Series is intended for an audience of researchers, practitioners, and
students world-wide with a background in civil, aerospace, mechanical, marine and
automotive engineering, as well as people working in infrastructure maintenance,
monitoring, management and cost analysis of structures and infrastructures. Some vol-
umes are monographs defining the current state of the art and/or practice in the field,
and some are textbooks to be used in undergraduate (mostly seniors), graduate and
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postgraduate courses. This Book Series is affiliated to Structure and Infrastructure
Engineering (http://www.informaworld.com/sie), an international peer-reviewed jour-
nal which is included in the Science Citation Index.

If you like to contribute to this Book Series as an author or editor, please
contact the Book Series Editor (dan.frangopol@lehigh.edu) or the Publisher (pub.NL@
taylorandfrancis.com). A book proposal form can be downloaded at www.balkema.nl.

It is now up to you, authors, editors, and readers, to make Structures and
Infrastructures a success.

Dan M. Frangopol
Book Series Editor
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Foreword

The purpose of this book is to present recent research findings in the fields of compu-
tational structural dynamics and earthquake engineering. The first part (Chapters 1 to
14) is devoted to computational structural dynamics, and the second part (Chapters 15
to 35) deals with computational earthquake engineering. To provide the reader with a
good overview of pertinent literature, all cited references and additional references on
the topics presented are collected in a comprehensive list of references.

The Book Series Editor would like to express his appreciation to the Editors and all
Authors who contributed to this book. It is his hope that this second volume in the
Structures and Infrastructures Book Series will generate a lot of interest in the Compu-
tational Mechanics, Structural Dynamics, and Earthquake Engineering Communities.

Dan M. Frangopol
Book Series Editor

Bethlehem, Pennsylvania
August 30, 2008





Preface

The increasing necessity to solve complex problems in Structural Dynamics and
Earthquake Engineering requires the development of new ideas, innovative methods
and numerical tools for providing accurate numerical solutions in affordable com-
puting times. The purpose of this book is to present the latest research developments
in the scientific fields of Computational Dynamics, Stochastic Dynamics, Structural
Dynamics and Earthquake Engineering. This volume consists of state-of-the-art con-
tributions. The selected chapters are revised and extended versions of the papers which
were presented as plenary, semi-plenary and keynote lectures at the recent thematic
Compdyn 2007 Conference.

The book is addressed to people working in universities, engineering practice and
industry. It will be useful for academic staff, researchers, post-graduate and research
students active in areas of civil, mechanical, naval, aerospace engineering. Further-
more, the book is addressed to professional engineers confronted with complicated
problems that need cost-effective designs. The potential readers will extend their
knowledge in the aforementioned research fields. They will find this book very helpful
in order to enhance their knowledge, to provide a foundation for further study, to
indicate novel research areas, or areas where further developments are necessary and
to deal with applications of advanced complexity.

This volume is a “multi-collective’’ book of thirty-five, high-quality and self-
contained chapters, which present state-of-the-art theoretical advances and appli-
cations in various fields of Computational Structural Dynamics and Earthquake
Engineering. The chapters in the first part of the book are focused on Computational
Structural Dynamics theory and applications, while the chapters in the second part deal
with advances in Earthquake Engineering theory and applications. The communities
of Structural Dynamics and Earthquake Engineering will benefit from this publication,
since they will be acquainted with advanced computational methods and software tools
which can highly assist them in tackling complex problems in dynamic/seismic analysis
and design. In addition, the book will also give the Computational Mechanics commu-
nity the opportunity to become more familiar with very important application areas of
great social impact. In the sequence, short descriptions of the chapters are presented.

The aim of the introductory chapter by Schuëller (Chapter 1) is to review some of the
most relevant lessons learned for solving reliability problems in structural dynamics.
The emphasis is given on studying the effects of dimensionality of a reliability problem
as well as the effects of structural nonlinearities when applying different reliability
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methods. In particular, a critical appraisal on the role of the design point in estimating
failure probabilities is carried out. The range of applicability of approximate methods
is examined, as these methods rely to a large extent on the design point for producing
reliability estimates. The discussion is based on the observations generated through
the resolution of a series of numerical examples rather than from a theoretical point
of view, given the inherent complex nature of structural reliability problems involving
nonlinearities. The examples addressed show that the design point and its vicinity
contribute significantly to the failure probability integral (PF) for low dimensional
problems. In contrast, when the number of random variables is large the design point
and its vicinity do not play an important role in estimating PF. In addition, the examples
examined indicate that the shape of the failure region in reliability problems involving
structural nonlinearities can be rather involved, thus preventing its approximation by
means of the so-called First Order Reliability Method (FORM). In view of the evidence
presented in this chapter, the use of techniques such as FORM seems advisable only
for problems with few uncertain parameters, involving weak nonlinearities. For high
dimensional problems involving weak or strong nonlinearities, simulation techniques
like direct Monte Carlo simulation, Subset simulation or Line Sampling should be
applied.

Conte, Barbato and Gu (Chapter 2) present the recent developments in finite element
(FE) response sensitivity analysis based on the Direct Differentiation Method (DDM)
for displacement-based, force-based, and three-field mixed finite elements. First-Order
Second-Moment (FOSM) approximations of the first- and second-order statistics of
the response of structural systems with random/uncertain parameters and subjected
to deterministic quasi-static and/or dynamic loads are obtained using DDM-based FE
response sensitivities and compared to Monte Carlo simulation results. The probability
of a structural response quantity exceeding a specified threshold level is evaluated using
the First-Order Reliability Method (FORM) combined with DDM-based FE response
sensitivities in the search for the “design point(s)’’ (DPs). Both time-invariant and
time-variant problems are considered. The geometry of limit-state surfaces near the
DP(s) is explored in subspaces defined by planes of major principal curvatures. This
geometry explains the lack of accuracy of FORM-based solutions in some cases and
suggests the development of new improved solution strategies, e.g., the Design Point –
Response Surface – Simulation (DP-RS-Sim) method. The examples presented in this
study include both structural systems and soil-foundation-structure interaction systems
and are based on two types of analyses which are used extensively in earthquake
engineering, namely pushover analysis and time history analysis.

Armero (Chapter 3) describes a new strain finite element formulation (or B-bar
method) for the locking-free simulation of nearly incompressible elastic and inelastic
solids in the finite deformation dynamic range that also preserves the conserva-
tion/dissipation properties of the so-called energy-dissipative momentum-conserving
(EDMC) time-stepping algorithms. The general setting of finite strain plasticity is con-
sidered, including hyperelastic models as a particular case. The main motivation of this
work is to avoid the nonlinear numerical instabilities observed in classical numerical
schemes with unbounded growth of the energy (even in the plastic case) by introducing
the exact dissipation/conservation of the energy in the discrete system by design. The
incorporation of the conservation laws of linear and angular momenta, and the preser-
vation of the associated relative equilibria, is also obtained. The chapter identifies
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the conditions that the linearized strain operator has to satisfy for the preservation of
these properties in time. These conditions require the definition of the assumed strain
operator, originally developed with spatial considerations only, accounting for the tem-
poral discretization in the definition of the associated strain variations. As a result, a
fully discrete system in space and time is defined that shows exactly all these conser-
vation/dissipation laws of the underlying physical system, including the exact plastic
dissipation of the energy, with exact energy conservation for elastic steps. Numerical
simulations are presented to illustrate the performance of the new formulation.

Momentum and energy conserving time integration procedures are receiving
increased interest due to the central role of conservation properties in relation to the
problems under investigation. However, most problems in structural dynamics are
based on models that are first discretized in space, and this often leads to a fairly large
number of high-frequency modes, that are not represented well by the model. It is
desirable to cure this problem by devising algorithms that include the possibility of
introducing algorithmic energy dissipation of the high-frequency modes. The problem
is well known from classic collocation based algorithms - notably various forms of the
Newmark algorithm where the equation of motion is supplemented by approximate
relations between displacement, velocity and acceleration. In the chapter by Krenk
(Chapter 4) an efficient adjustment of the algorithmic parameters is used to introduce
the so-called damping, and an improved form leading only to high-frequency damping
that can be obtained by suitable averaging of the equilibrium equation at consecutive
time steps. Conservative time integration algorithms are obtained by use of an inte-
gral of the equation of motion and the acceleration therefore does not appear as an
independent parameter of these algorithms. Typically they do not contain algorithmic
parameters either. Algorithmic damping can then be introduced in two ways: either by
introducing artificial damping in terms of the displacement and velocity vectors, or by
introducing additional variables to represent damping.

The chapter by Soize, Chen, Durand, Duhamel and Gagliardini (Chapter 5) deals
with the robustness of uncertain computational elastoacoustic models in low- and
medium-frequency ranges. The elastoacoustic system is made up of a heterogeneous
viscoelastic structure coupled with an internal acoustic cavity filled with a dissipative
acoustic fluid. A reduced mean elastoacoustic model is deduced from the mean finite
element model by using the modal approach with the structural modes of the structure
and the acoustic modes of the acoustic cavity. Data uncertainties and model uncertain-
ties are taken into account by using a nonparametric probabilistic approach for the
structure, for the acoustic cavity and for the vibroacoustic coupling interface. The main
objectives of this paper are (i) to present experimental validation of the nonparametric
probabilistic approach of model uncertainties and to propose methods to perform the
experimental identification of the probabilistic model parameters, (ii) to analyze the
robustness of computational elastoacoustic models with respect to model and data
uncertainties, (iii) to study uncertainty propagation through complex elastoacoustic
systems. To illustrate the efficiency of their computational stochastic elastoacoustic
model the authors analyze various experimental configurations.

The theme of the contribution by Moens, Vandepitte, DeGersem, DeMunck and
Desmet (Chapter 6) is structural dynamics design validation and optimization with
imprecise parameters using the fuzzy finite element method. After initial research in the
field of fuzzy finite elements has started in the middle of the nineties, different aspects
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of the problem have been considered, and continuous development has improved not
only the capabilities but also the performance of the procedures. The improvement of
the performance of fuzzy finite element analysis is still a big challenge. Vertex analysis
with n uncertain parameters requires 2n deterministic analysis runs for each α-level
that is considered. Another approach is optimization, which is capable of predicting
absolute maxima and minima. Unlike vertex analysis, the performance of optimiza-
tion procedures is unpredictable. Structural dynamics is a specific type of problem
that can also be tackled with interval or fuzzy finite elements and there is currently
no generally applicable consistent approach to take into account the effect of param-
eter uncertainties on Component Mode Synthesis (CMS) reduction schemes. Several
approximation procedures have been proposed, but they are sensitive to the particular
case that is considered. This chapter presents two recent enhancements to the hybrid
optimization and interval arithmetic procedure for fuzzy envelope FRF calculation: a
Response Surface Modeling (RSM) method and a new CMS procedure. The result is
a highly efficient procedure for interval and especially fuzzy finite element analysis.

De Wilde and Steirteghem (Chapter 7) deal with a number of dimensionless morpho-
logical indicators that represent a property of a structure and depend only on a small
number of variables. These indicators allow for optimization at the stage of concep-
tual design. The most important indicators are the indicator of volume, related to the
strength of the structure, and the indicator of displacement, related to the stiffness of
the structure. These indicators, in their most simple appearance, are functions only of
the geometrical slenderness of the structure, under the assumption that the structure
is not subjected to second order effects and that shear effects are not predominant.
The indicator of volume allows choosing the structural typology with a minimum of
volume of material. When using the indicator of volume at the stage of conceptual
design, important areas of slenderness appear to bring about problems of resonance.
This is particularly the case for structures which have predominant co-vibrating loads,
have large spans and are using a material with a small stiffness/strength ratio. To fur-
ther illustrate this situation, a real-world example is discussed and some general design
guidelines are proposed.

In the work by Sapountzakis and Mokos (Chapter 8) a general solution for
the dynamic analysis of plates stiffened by arbitrarily placed parallel beams with
deformable connection is presented. According to the proposed model, the stiffening
beams are isolated from the plate by sections in the lower outer surface of the plate, tak-
ing into account the arising tractions in all directions at the fictitious interfaces. These
tractions are integrated with respect to each half of the interface width resulting two
interface lines. Their unknown distribution is established by applying continuity con-
ditions in all directions taking into account their relation with the interface slip through
the shear connector stiffness. Any distribution of connectors in each direction can be
efficiently handled. The proposed model permits the evaluation of the shear forces at
the interfaces in both directions. Three finite element models using beam, shell or solid
finite elements are presented for the verification of the accuracy of the results.

Schiehlen and Seifried (Chapter 9) elaborately describe the impact on beams that
results in large rigid body motions and small structural waves. Such mechanical systems
are often modeled as multibody systems to describe the large nonlinear motion where
the impacts are treated by the coefficient of restitution. The coefficient of restitution
is considered as deterministic number depending on the material, the shape and the
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velocity of the colliding bodies. However, in experiments and computations it was
observed that for a sphere striking a beam the coefficient of restitution is uncertain due
to multiple impacts resulting in chaotic behavior. For the evaluation of the numerical
and experimental data a statistical approach is proposed providing mean value and
dispersion of the coefficient of restitution depending on four classes of the velocity.
It is shown that these parameters allow characterizing the uncertainty. The statistical
range is increasing with the relative velocity of the impact. However, the mean value
or midrange point, respectively, may be used to solve the structural dynamics beam
problem.

A rational approach is proposed by Paraskevopoulos, Panagiotopoulos and
Talaslidis (Chapter 10) for the time integration of the dynamic equations arising in
nonlinear structural problems, which employs a series of innovative concepts, e.g.:
independent assumptions for the velocities and momentum type variables, use of dif-
ferent approximations for the test functions and the variables itself, and abandonment
of the convention concerning the vanishing of the test functions at the time boundaries.
The presented methodology offers a systematic and mathematically consistent proce-
dure for time integration, ensures consistency and stability, and avoids flaws of existing
techniques. Conservation properties are examined employing a form of Noether’s The-
orem. Furthermore, existing integration schemes may be theoretically justified by the
present approach. The methodology is applied to the analysis of systems under moving
loads and masses. Since this class of problems contains Dirac’s delta function and its
time derivatives, the effective numerical treatment of the governing equations offers a
challenging problem.

Tairidis, Stavroulakis, Marinova and Zacharenakis (Chapter 11) describe how smart
structures are incorporated into control schemes that allow them to react against distur-
bances. In mechanics, suppression of mechanical vibrations with possible applications
on noise and vibration isolation is a very important field. Smart structures that include
sensors and actuators are able to react to the environment due to coupling with some
active control mechanism. The intelligence is introduced by a structural control scheme.
A model problem of a smart beam with embedded piezoelectric sensors and actuators
is used in this study. Vibration suppression is realized by using active control. Clas-
sical mathematical control usually gives good results for linear feedback laws under
given assumptions. The design of nonlinear controllers based on fuzzy inference rules is
proposed and tested. From the numerical results it can be observed that further vibra-
tion reduction can be accomplished. Nevertheless, the problems concerning velocities
and accelerations remain. The performance of the fuzzy control system can be fur-
ther reduced by fine-tuning the parameters of the fuzzy system (membership functions,
rules, etc) by using neural networks or a global optimization scheme such as the Particle
Swarm Optimization (PSO) method.

The essence of railway dynamics is the transfer of forces at the wheel rail interface.
The energy from the motion of the train is taken up as elastic deformation in the track
structure consisting of the rail, sleepers, dry crust, ballast and soil. Spatial changes in
the material properties of the track and subground may lead to variations in the contact
forces at the wheel-rail interface. A shift from one material to another can potentially
induce transition radiation vibration modes. The phenomenon has been observed in
situations where the train goes onto a bridge. In the chapter by Lane, Kettil and Wiberg
(Chapter 12) an advanced numerical model of the entire train-track-subgrade dynamic
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system with moving finite elements has been used to study the influence of material
stiffness transitions in the subground. While the properties of the ballast and the rail
were kept constant, the Young’s moduli of the two layers of clay representing the soil
underwent a linear change over a short distance. Both transitions from soft to stiff and
from stiff to soft soil were considered. The results indicate that the main effect of the
transition is a temporary variation followed by a transient low-frequent vibration.

High speed rail transportation is quickly becoming a popular form of mass transit
through-out the world. High Speed Trains (HST) pertain to passenger trains traveling
in excess of 160 km/h, and as fast as 500 km/h. Potential problems arise when high
speed trains travel over soft soils having relatively low wave velocities. In the chapter
by Rizos, O’Brien and Leon (Chapter 13) an efficient methodology for the analysis
of vibrations in a railroad track system, induced by the passage of conventional and
high speed trains, is presented. The methodology is based on an efficient coupling of
the Boundary Element method (BEM) with the Finite Element Method (FEM) in the
direct time domain. BEM is based on the 4th order B-Spline fundamental solutions for
3-D elastodynamics and the concept of B-Spline impulse response functions. The BEM
is used for the modeling of the soil-tie system and the FEM for the modeling of the
flexible rail system. Soil-Structure Interaction and traveling wave effects are inherently
accounted for and normalizations and scaling procedures are adopted. The proposed
methodology allows for selection of different time steps in order to fulfil stability
requirements of each solver. Numerical applications demonstrate the accuracy and
versatility of the method.

The chapter by De Roeck and Reynders (Chapter 14) gives an overview of the
necessary conditions for a successful structural condition assessment by vibration mea-
surements and concentrates on finite element (FE) updating, a versatile method for
damage identification. First a critical overview is given about the advantages and dis-
advantages of the different excitation sources: forced, ambient and impact excitation.
At the expense of building an elaborate FE-model of the structure, all acquired data can
be used: natural frequencies, scaled or unscaled mode shapes and modal strains. Poten-
tial damage is simulated in the finite element model using a parametric representation
and a constrained optimization problem is solved with the objective function defined
as a sum of squared differences. Two bridge examples illustrate the use of finite element
updating for damage assessment. Finally, a detailed set of conclusions are highlighted
which can be considered as guidelines for engineering practice in vibration monitoring.

There is a dearth of accurate, efficient and reliable analytical approaches for the
inelastic static and dynamic analyses of complex reinforced concrete and composite
high-rise buildings under extreme loads taking into account shear-flexure-axial interac-
tion, crack propagation and other detailed features of concrete response. In the work of
Ji, Kwon, Elnashai and Kuchma (Chapter 15), a new approach termed Multi-resolution
Distributed Finite Element Analysis (MDFEA) is proposed and used to analyze a refer-
ence RC high-rise building with a dual core wall-frame system. The features of the new
framework are demonstrated through the analysis of a complex 54-story reinforced
concrete building. In this distributed analysis framework, the capabilities of a frame
analysis tool and a continuum analysis tool are combined using a suitable simulation
coordinator software. The static and dynamic responses of the building are predicted
using MDFEA and compared with those predicted by conventional frame analysis.
The comparisons from both pushover and response history analysis highlight that due
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to the influence of shear, the use of the multi-resolution approach is able to capture
critical aspects of the behavior more sufficiently than some traditional methodologies
performing pure frame analysis. The integrated MDFEA framework is generic, thus
it enables the use of the best features of any computational tools so as to accurately
and efficiently predict the inelastic static and dynamic response of complex structures
subjected to extreme loads.

A simplified method for the probabilistic seismic performance assessment of build-
ing structures is presented by Dolšek and Fajfar (Chapter 16). The method is basically
the SAC-FEMA approach, in which the most demanding part, i.e. the Incremental
Dynamic Analysis (IDA), is replaced by the incremental N2 method, which is based
on nonlinear pushover analysis and the response spectrum approach and has been
implemented in Eurocode 8. In this work the method is applied to a bare and an
infilled reinforced concrete frame, for which pseudo-dynamical laboratory test results
are available. The most common analytical modeling technique, which employs com-
pressive diagonal struts for modeling of masonry infill, and one-component lumped
plasticity elements for modeling the flexural behavior of beams and columns, was
applied. The mathematical models developed are validated by comparing the results
of nonlinear dynamic analyses with the test results. The probabilities of exceedance
of the near collapse limit state are estimated and discussed. The results of analyses
indicate that the infills can completely change the distribution of damage throughout
the structure. The probability of failure of the infilled frame is smaller than that of
the bare frame, however for both structures the probability of failure is larger than
acceptable.

Barbat, Oller, Mata and Vielma (Chapter 17) study the nonlinear dynamic response
of reinforced concrete (RC) buildings with energy dissipating devices using advanced
computational techniques. A fully geometric and constitutive nonlinear model is used
for describing the dynamic behavior of structures. The equations of motion are
expressed in terms of cross sectional forces and strains and its weak form is solved
using the displacement based finite element method. A suitable version of Newmark’s
scheme is used in updating the kinematics variables in a classical Newton type iterative
scheme. Material points of the cross section are assumed to be composed of several
simple materials with their own constitutive laws. The mixing theory is used to treat
the resulting composite. A specific finite element based on the beam theory is proposed
for the dissipators including constitutive relations. In addition, several numerical tests
are carried out to validate the proposed model.

In the contribution by Sibilio, Ciampoli and Beck (Chapter 18), a complete procedure
for structural health monitoring, that is, for both damage detection and reliability
assessment of a structure subject to seismic excitation, is briefly illustrated and applied
to an example case. The problem of damage detection is dealt with by an identification
technique with unknown input. A Bayesian model updating procedure is adopted
to quantify the damage to the structure based on data from monitoring. Bayesian
updating is based on an adaptive Markov Chain Monte Carlo method: the knowledge
of the modal quantities of the undamaged and damaged structure is used to update the
stiffness parameters that are chosen as the damage indicators. An advanced simulation
technique, the so-called Subset Simulation, is then used to assess the probability of
exceeding any structural response level, that is, the risk for the damaged structure. The
procedure is formulated in a unified probabilistic framework that takes into account
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any kind of uncertainty involved in the various phases of the analysis. It is observed
that the Bayesian approach is really efficient in characterizing the structural damage
and its effects in probabilistic terms. The main reason is that this approach gives as final
result the probability density functions of the identified parameters, which in turn can
be used in any structural reliability assessment. Moreover, Subset Simulation requires
a much smaller number of samples than Monte Carlo simulation; this advantage is
essential, especially for structures which exhibit a strongly nonlinear behaviour when
subjected to seismic excitation.

A multiphase model including a hypoplastic formulation of the solid phase is
presented and its application to earthquake engineering problems is discussed by
Meskouris, Holler, Butenweg and Meiners (Chapter 19). This advanced soil model,
which is based on the theory of porous media, comprises three distinct phases namely:
solid, fluid and gas phase. For each of these phases the compressibility of the respec-
tive medium is taken into account in the mathematical formulation of the model. Due
to the hypoplastic formulation including intergranular strain, the model is capable
of predicting soil behaviour even under cyclic loading and therefore offers a possibil-
ity to further investigate complex dynamical phenomena such as ground liquefaction.
The presented mutliphase model is capable of simulating consolidation, saturation
and drainage processes and can realistically predict permanent ground displacements.
Although the compressibilities of fluid and gas phases do not have a strong impact
on the flow characteristics and the load bearing capacity of soils, they were still taken
into account to provide further application possibilities for the model. Additionally,
the model allows the implementation of arbitrary constitutive equations for the solid
phase and also allows coupling to existing solid elements. The accuracy of the numeri-
cal approximation has been shown by comparison to experimental data. The model is
numerically realized by means of the finite element method, it is implemented into the
finite element code ANSYS and also allows the simulation of soil-structure interaction
problems.

In the chapter by Reinhorn, Sivaselvan, Dargush and Lavan (Chapter 20) a
Lagrangian approach is developed for analysis of frame structures near-collapse, which
is a mixed method, where in addition to the displacements, the stress-resultants and
other variables of state are primary unknowns. This formulation consists of two sets
of equations: equilibrium and compatibility of displacement rates (velocities), while
its primary unknowns are forces and velocities. For numerical solution, a discrete
variational integrator is derived. This integrator inherits the energy and momentum
conservation characteristics. The integration of each step is a constrained minimization
problem and it is solved using an Augmented Lagrangian algorithm. The presented
examples show that this method can provide as good or better information than a
widely used displacement based inelastic analysis solution. The results also show that
the method is stable and efficient for large structures. However, the power of the
method presented herein is in evaluating structures where various elements collapse,
and forces and momentum have to be redistributed in the remaining system.

Spacone, Camata and Faggella (Chapter 21) underline the potential of nonlinear
models and nonlinear procedures for seismic analysis of reinforced concrete frame
structures. Nonlinear methods of analysis for seismic vulnerability assessment of exist-
ing structures are attracting increasing attention due to their capacity to predict the
actual seismic behavior better than linear methods. Their inclusion in modern design
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codes such as Eurocode 8 is a major boost for their use in practical applications. Recent
years have also seen steady advances in the modeling capabilities of reinforced con-
crete frames, particularly in the field of beam and column behavior. Advanced frame
modeling tools are included in both research and commercial codes. As research and
practicing engineers start applying nonlinear methods to real problems, questions arise
regarding the application of the design code-provided procedures and the selection of
the appropriate structural model given the objective limitations of the frame model-
ing capabilities today available. The scope of this chapter is to discuss some of the
issues still open regarding the applications of the nonlinear methods of analysis to
reinforced concrete structures, with the firm belief that an open discussion on these
methods, their advantages and limitations will open the way to a more widespread use
of advanced and more accurate methods of analysis. This way, the above issues will
become clearer and any major deficiencies will be solved, especially through a strong
interaction between practicing engineers and researchers.

Past earthquakes have shown that a common failure mode of reinforced concrete
(RC) members is buckling of the longitudinal reinforcement. In order to obtain an
accurate prediction of strength and ductility, this effect should be taken into account
during analysis. Buckling of the reinforcement is in essence a stability problem and
therefore depends both on the geometry of the bar and on the material properties. To
deal with this issue, Fragiadakis, Pinho and Antoniou (Chapter 22) propose a uniaxial
material model for steel reinforcing bars subjected to a generalized loading history.
The model of Monti and Nuti which is based on a set of experimental observations in
order to account for buckling of the steel bars is examined. It has been noticed that in
the case of partial unloading and then reloading, a common situation when a structure
is subjected to seismic actions, the model might greatly overestimate the corresponding
stress. An additional memory rule is thus proposed to eliminate this observed short-
coming. With the aid of the proposed modification, the Monti-Nuti model is proved
to be capable of simulating accurately the capacity of reinforced concrete members.
The rules presented are easy to implement and applicable to any model in the litera-
ture where a similar situation is identified. Two case studies are examined where the
enhanced model was proven capable to produce realistic numerical results.

Pantelides, Adan and Reaveley (Chapter 23) analyze steel moment-resisting con-
nections using finite element modelling. They stress that in seismic structural design
and rehabilitation deviations from the common practice require testing. The AISC
seismic provisions for structural steel buildings recommend that usage and sizing of
beam flange continuity plates across the column web shall be based on tests. FEMA
350 recommended seismic design criteria state that unless project-specific testing is
performed to demonstrate that continuity plates are not required, moment-resisting
connections should be provided with continuity plates when the thickness of the col-
umn flange is below a minimum value. Similarly, in order to qualify any new connection
type for inclusion in the AISC prequalified connections for special and intermediate
steel moment frames for seismic applications, testing has to be carried out to vali-
date the design concept and to satisfy minimum performance criteria on strength and
interstory drift angle capacity. In this study, nonlinear finite element analyses are per-
formed to establish a correlation between measured and computed responses of two
steel connections: (i) the reduced beam section (RBS) moment connection without con-
tinuity plates, and (ii) the bolted bracket (BB) moment connection. The connections
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were tested using cyclic quasi-static displacements applied at the beam tip and the
comparison of measured and computed responses showed good correlation.

Ansal, Kurtulus and Tönük (Chapter 24) present a specialized software to perform
earthquake scenarios for estimating structural damage and human casualties. The first
stage involves generation of microzonation maps for separately calculated regional
seismic hazard. The seismic hazard can be probabilistic or deterministic where PGA and
spectral accelerations or acceleration time histories are specified respectively for each
cell on the engineering bedrock outcrop. In the second stage, representative soil profiles
are defined for each cell and 1D site response analyses are conducted to calculate
average PGAs and elastic acceleration response spectra on the ground surface. An
envelope NEHRP spectrum is calculated for each cell based on site specific average
acceleration spectrum to estimate short (T= 0.2 s) and long (T= 1 s) period spectral
accelerations. In the third stage, vulnerability of the building stock is estimated with
respect to number of buildings in each cell. A characteristic case study is discussed to
demonstrate the applicability of the software.

In the chapter by Aydınoğlu and Önem (Chapter 25) the Incremental Response Spec-
trum Analysis (IRSA) procedure is introduced as an advanced multi-mode pushover
analysis tool for the performance-based seismic assessment and design of buildings and
bridges. The practical version of the procedure works directly with smoothed elastic
response spectrum and makes use of the well-known equal displacement rule to scale
modal displacement increments at each piecewise linear step, in which the traditional
linear Response Spectrum Analysis (RSA) is implemented. Being a general analysis tool,
IRSA is completely independent of the type of structure, as in its linear counterpart
RSA. In this respect, IRSA is readily applicable to any type of bridge. In the present
contribution, IRSA is applied to few types of highway bridges and its performance is
checked against the results of the corresponding nonlinear response history analysis
(NRHA) performed. It is shown that IRSA is capable of estimating bridge nonlinear
demands with an acceptable accuracy for practical purposes.

In the work of Papagiannopoulos and Beskos (Chapter 26) an efficient method is
presented for the determination of the maximum structural response through a linear
elastic spectrum analysis using equivalent modal damping values instead of the crude
strength reduction factor. Geometrical and material non – linear structural effects are
converted into equivalent time – invariant modal damping values. These equivalent
damping values for the first few modes of the structure are numerically computed by
first iteratively forming a frequency response transfer function until certain smoothness
criteria are satisfied and then by solving a set of non – linear algebraic equations. A
design – oriented scheme is developed in order to apply the equivalent modal damping
concept to the seismic response analysis of multi-degree-of-freedom (MDOF) building
structures. This scheme involves: a) the quantification of equivalent modal damping of
a structure for predefined deformation limits and b) the use of spectrum analysis and
modal synthesis for the calculation of the design base shear of the structure. For illus-
tration purposes, curves providing equivalent damping as function of period for the
first few modes as well as design acceleration versus period for given equivalent damp-
ing are constructed using a large number of steel moment resisting frames excited by
various seismic motions. It is concluded that the proposed design scheme can be viewed
as an alternative to the force based method of current seismic codes with equivalent
modal damping values playing the role of the strength reduction factor.
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Beck and Muto (Chapter 27) explain how identification of structural models from
measured earthquake response can play a key role in structural health monitoring,
structural control and improving performance-based design. System identification
using data from strong seismic shaking is complicated by the nonlinear hysteretic
response of structures where the restoring forces depend on the previous time history
of the structural response rather than on an instantaneous finite-dimensional state.
Furthermore, this inverse problem is ill-conditioned because even if some components
in the structure show substantial yielding, others will exhibit nearly elastic response,
producing no information about their yielding behavior. Classical least-squares or
maximum likelihood estimation will not work with a realistic class of hysteretic mod-
els because it will be unidentifiable based on the data. In contrast, the combination
of Bayesian updating and model class selection provides a powerful and rigorous
approach to tackle this problem, especially when implemented using Markov Chain
Monte Carlo simulation methods. The emergence of these methods in recent years has
led to a renaissance in Bayesian methods across all disciplines in science and engineer-
ing because the high-dimensional integrations that are involved can now be readily
evaluated. The power of these methods to handle ill-conditioned or unidentifiable sys-
tem identification problems is demonstrated by using a recently-developed stochastic
simulation algorithm, Transitional Markov Chain Monte Carlo, to perform Bayesian
updating and model class selection on a class of Masing hysteretic structural models
that are relatively simple yet can give realistic responses to seismic loading. Exam-
ples are given using deteriorating hysteretic building models with simulated seismic
response data.

The chapter by Jeremic and Jie (Chapter 28) focuses on two main topics. Firstly,
it describes (in some detail) a parallel finite element computational method that is
particularly well suited for elastic-plastic models. The method, named Plastic Domain
Decomposition (PDD), dynamically balances computational loads for elastic-plastic
finite element computations on distributed memory parallel computers. The PDD
method uses the original algorithm with weighted graph partitioning that minimizes
wall clock time for parallel, elastic-plastic computations. Excellent scalability of the
method is shown on a variety of distributed memory parallel computers (from in house
developed clusters to large national supercomputers). Secondly, the developed PDD
method is applied to a problem of seismic soil-foundation-structure (SFS) interaction.
Detailed 3D models of a prototype bridge (with up to 1.6 million DOFs) were devel-
oped and used for scalability studies. In addition to that, those detailed models were
used to investigate seismic SFS interaction behavior of a conrete bridge founded on
piles in soft and/or stiff soils. Results indicate that the interaction of a triad of dynamic
characteristics of earthquake, soil and structure all have very important influence on
overall seismic behavior of a soil-structure system. For example, it is shown that a long
period earthquake motion has a detrimental effect on a stiff structure founded on soft
soil. In contrast a short period earthquake motion has an even more detrimental effect
on a stiff structure founded on stiff soil.

Retaining systems, such as cantilever walls, are widely used worldwide for serv-
ing various purposes in structures and infrastructures (embankments, bridges, ports,
etc). In the chapter by Tsompanakis (Chapter 29) the dynamic interaction of the
retaining walls with the retained soil and the retained structures is investigated. This
so-called phenomenon of dynamic wall–soil–structure interaction (DWSSI) is a rather
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complicated issue that includes: (a) the dynamic interaction between a wall and a
retained single soil layer (DWSI), and (b) the “standard’’ dynamic soil–structure inter-
action (DSSI) of a structure with its underlying soil. The aforementioned dynamic
interaction issues are not properly considered in the modern seismic codes, thus, in the
present work, using numerical two-dimensional simulations, the influence of the wall
flexibility on the free-field ground shaking behind the wall is investigated. Emphasis
is given on the impact of the wall’s presence on the amplification of the base accel-
eration on the retained soil layer, an amplification generally ignored by the seismic
design norms. Consequently, a structure founded on the retained soil is included in the
numerical models. Numerical results provide a clear indication of the direct interaction
between a retaining wall and its retained structures. That fact justifies the necessity for
a more elaborate consideration of this interrelated phenomenon on the seismic design,
not only of the retaining walls but of the nearby structures as well.

In the chapter by Kim and Lee (Chapter 30) a 3-D transmitting boundary in a cylin-
drical coordinate system is applied to obtain the earthquake response of a cylindrical
liquid storage tank installed in the water-saturated transversely isotropic ground. The
effects of the far-field region are represented by the transmitting boundary. Using finite
elements, models are developed for the flexible tank wall and the near-field region of
the ground. The motion of the contained liquid is modeled using boundary elements.
Hybrid time domain-frequency domain analysis is used to obtain direct time-domain
representation of the earthquake response of the system. Numerical results are given
to illustrate this method of analysis. The results from the numerical analysis show that
complex soil-structure interactions in water-saturated transversely isotropic ground
can be modeled successfully. A rigorous two-phase transversely isotropic medium
model has to be employed to accurately represent the dynamic behavior of a structure
on the water-saturated transversely isotropic strata.

In the work by Mitropoulou, Bakas, Lagaros and Papadrakakis (Chapter 31) a
number of design approaches for 3D reinforced concrete (RC) buildings are formulated
in the framework of structural optimization and they are assessed in terms of structural
performance under earthquake loading. This chapter consists of two distinctive parts.
In the first part the European seismic design code is evaluated with reference to the
behavioral factor q. For each optimum design achieved for the various values of the
behavioral factor, fragility curves are developed for four characteristic damage states.
The optimum designs are compared based on limit-state probabilities of exceedance
encountered for the design earthquake. In the second part, three design approaches
for RC buildings are considered aiming at improving the torsional response of RC
buildings. It is shown that the optimized designs obtained according to the minimum
eccentricity of the rigidity centre behave better in frequent (50/50 hazard level) and
occasional (10/50 hazard level) earthquakes, while the designs obtained according to
the minimum eccentricity of the strength centre formulation was found better in rare
(2/50 hazard level) events.

Hurtado and Aguirre (Chapter 32) focus on the randomness of earthquake ground
motions which constitutes one of the main problems in seismic design, as it increases
the uncertainty and the effectiveness of design decisions. In advanced earthquake-
resistant design an alternative to incorporate ground motion uncertainty is to perform
a reliability-based optimization, consisting in minimizing the cost subject to keeping the
failure probability less than a certain threshold. The use of structural passive or active
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control necessarily implies a severe reduction of the allowable failure probabilities, thus
making more expensive the application of reliability-based optimization. In addition,
a major problem in applying Linear Quadratic Regulator (LQR) control is that it is
subject to arbitrary selection of the relative weights of the story displacements and
control forces. For these reasons it is convenient to apply a different strategy than the
reliability-based design to overcome these difficulties and drawbacks. The concept of
robust optimal design is used, which consists of minimizing the structural cost in such a
way that the standard deviations of the responses are less than certain thresholds, thus
yielding the optimal values of the weights with due regard to the uncertainties present
in the system. The computation of the response standard deviations in view of the large
uncertainties of the ground motion parameters is also discussed and the application of
a practical procedure is suggested and illustrated for a passive control case.

Marano, Sgobba and Greco (Chapter 33) propose a robust optimization criterion of
mechanical parameters in the design of linear Tuned Mass Dampers (TMD) located at
the top of a main structural system subject to random base accelerations. The dynamic
input is modelled as a stationary filtered white noise random process. The aim is to
properly consider non-uniform spectral contents that happen in many real physical
vibration phenomena. The main structural system is described as a single linear degree
of freedom, and it is assumed that uncertainty affects the system model. The problem
parameters treated are described as random uncorrelated variables known only by
the estimation of their means and variances. Robustness is formulated as a multi-
objective optimization problem in which both the mean and variance of a conventional
objective function are minimized simultaneously. Optimal Pareto fronts are obtained
and results show a significant improvement in performance stability compared to a
standard conventional solution.

Möller, Quiroz, Rubinstein and Foschi (Chapter 34) present an efficient methodol-
ogy for performing performance-based design in earthquake engineering. They take
into account various structural and ground motion uncertainties in optimizing design
parameters, satisfying multiple performance criteria with target reliabilities and min-
imizing an objective. This implies performing nonlinear structural dynamic analyses
for earthquakes likely to occur at the site, in order to obtain the demand responses
of interest. The responses are represented here via neural networks and used in the
performance criteria for estimation of achieved reliabilities by Monte Carlo simula-
tion. An optimization technique is implemented to obtain optimal parameters, using a
gradient-free algorithm. A numerical application is presented for a reinforced, multi-
story concrete frame. The demand is simulated using artificially generated ground
motions, with the peak ground acceleration corresponding to the city of Mendoza,
Argentina. Performance requirements (operational, life safety or collapse) are speci-
fied in terms of damage severity, using maximum displacements, inter-story drifts, local
and global damage indices while optimization objectives are minimum cost, minimum
dimensions and/or minimum steel reinforcement.

In the last contribution, Jensen and Valdebenito (Chapter 35) deal with an efficient
computational procedure for the reliability-based optimization of uncertain stochastic
linear dynamical systems. The reliability-based optimization problem is formulated
as the minimization of an objective function for a specified failure probability. The
probability that design conditions are satisfied within a given time interval is used
as a measure of the system reliability. Approximation concepts are used to construct
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high quality approximations of dynamic responses in terms of the design variables
and uncertain structural parameters during the optimal design process. The approx-
imations are combined with an efficient simulation technique to generate explicit
approximations of reliability measures with respect to the design variables. In par-
ticular, an efficient importance sampling technique is used to estimate the failure
probability. The effectiveness and feasibility of the suggested approach is demon-
strated by a characteristic example problem. Concurrently, the effect of uncertainty
in the system parameters on the performance and reliability of the final design is also
investigated. Numerical results show that uncertainty in the structural parameters may
cause significant changes in the performance and reliability of linear systems subject to
stochastic loading. The proposed procedure dramatically reduces the number of exact
dynamic analyses as well as reliability estimations required during the design process.
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Chapter 1

Computational stochastic dynamics –
some lessons learned

Gerhart I. Schuëller
University of Innsbruck, Innsbruck, Austria

ABSTRACT: This contribution discusses some of the lessons learned in computational
stochastic dynamics. Among them is the role of the design point for calculating failure proba-
bilities of systems involving a large number of random variables and structural non linearities.
Several selected numerical examples are carried out. The results obtained allow to identify
the range of applicability of the reliability techniques based on the design point. Finally, the
properties of the failure domains for non linear systems are discussed.

1 Introduction

It is a well known fact that problems in structural dynamics are considerably more
involved that in statics. This is – among other things – due to the fact that the correlation
in time must be considered. Moreover, when dealing with reliability problems there
are in general several extremes of which only the highest within a particular time span
must be counted, etc. In this context, it should be noted that no exact solution for
the excursion probability (PF) is known. Analytical approximations are available for
limiting cases. Efficient numerical simulation procedures are available for estimating
PF. While linear, but uncertain systems are still not well explored w.r.t. reliability
aspects, even dynamical systems with deterministic geometrical and material properties
still need to be explored, particularly when they are high dimensional. This applies even
more to the effects of non linearities. This is underlined by a recent benchmark study
(Schuëller et al. 2004a).

The aim of structural reliability is to produce rational metrics of the safety of a
system with respect to a certain failure criterion (or criteria) by taking into account
all possible sources of uncertainty, either in loading or in structural parameters (or in
both). To generate such rational metrics, it is necessary to:

• Characterize the aforementioned uncertain parameters by means of a suitable
model. For this purpose, a vector of random variables (θ) and its corresponding
joint probability density function (h(θ)) are considered.

• Define the failure criterion (criteria), i.e. the structural response(s) and the respec-
tive threshold level(s) to be controlled. This is achieved by defining appropriate
performance function(s) (g(θ)), which is (are) equal or smaller than zero if a given
realization of θ causes failure.
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Then, the safety of a structure can be expressed in terms of a failure probability (PF),
which is the complement of the reliability.

PF =
∫

g(θ)≤0

h(θ) dθ (1)

To evaluate Equation 1, it is necessary to compute an integral of d dimensions, where
d is the length of the vector of uncertain parameters. In cases of practical interest,
the number d is large, i.e. thousands, in order to appropriately account for all the
uncertain parameters present in the structural model. Hence, the solution of Equation
1 by means of numerical integration is unfeasible for problems of engineering interest
(Schuëller and Stix 1987). On the other hand, closed-form solutions of the aforemen-
tioned integral exist only for a few cases. Thus, several alternative methods (other than
numerical integration and closed-form solutions) have been developed in order to solve
realistic structural reliability problems. These methods can be broadly classified in two
categories (Schuëller et al. 2004b):

• Approximate Methods: First and Second Order Reliability Methods (FORM and
SORM).

• Simulation Methods: Two subcategories can be distinguished.
– General Simulation Methods: Monte Carlo Simulation (MCS) and Subset

Simulation (SS).
– Variance Reduction Techniques: Importance Sampling (IS), Line Sampling

(LS), etc.

General simulation methods can be regarded as black box techniques, given that they
do not require any previous information or assumption about the problem under study
and their numerical efficiency does not depend on the number of uncertain parameters
or the nature of the structural model (static or dynamic, linear or non linear). On
the other side, approximate methods and variance reduction techniques rely on the
so-called design point to estimate PF, where the design point is the realization of the
uncertain parameters with highest probability density in the failure region (projected
in the standard normal space). Methods which rely on the design point have been
successfully used in a number of applications such as in the estimation of the first
excursion probability of linear dynamical systems subject to stochastic load (see, e.g.
(Au and Beck 2001b; Katafygiotis and Cheung 2006)), in code calibration (see, e.g.
(Ditlevsen and Madsen 1996)) or in reliability-based optimization (RBO) problems
(see, e.g. (Youn et al. 2005)). In all of the aforementioned applications, either:

• The limit state function(s) (LSF), defined as g(θ) = 0, is(are) linear with respect to
the random variables (and these variables are Gaussian distributed).

• The limit state function does not deviate significantly from a hyperplane, i.e. a
weakly non linear behavior of g(·) with respect to θ is expected, and the number
of random variables involved in the problem is low, e.g. less than 20.

In structural reliability problems where any of the two conditions above are ful-
filled, the information provided by the design point is meaningful for estimating PF.
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Lately, many researchers have tried to extend the range of application of methods
based on the design point to highly non linear problems involving a large number
of random variables (see, e.g. (Fujimura and Der Kiureghian 2007)), paying much
attention in how to determine the design point (see, e.g. (Koo et al. 2005)), which
is a challenging task that involves a constrained optimization problem. Nonetheless,
the key issue of verifying whether or not the design point provides the appropriate
information to estimate PF for these types of problems has been overlooked in most
of the publications in the field of structural reliability (being the exception a recent
study carried out by (Au et al. 2007)). Then, the aim of this contribution is to make
a critical appraisal of the role of the design point in estimating failure probabilities in
structural reliability problems involving a large number of uncertain parameters and
non linear behavior, i.e. it is sought to assess the relevance of the design point in view
of the non linearities of structural systems. It is expected that such critical appraisal
will establish a precedent concerning the range of applicability of reliability methods
which rely on the design point. The discussion is carried out based on the observations
generated through the resolution of a series of numerical examples rather than from
a theoretical point of view, given the inherent complex nature of structural reliability
problems involving non linearities. The examples addressed throughout this contribu-
tion are rather simple, involving a single failure criterion. Nonetheless, it is seen that
even such (apparently) trivial examples may be tremendously challenging in context
with structural reliability estimation.

The outline of this contribution is the following: firstly, a brief look on the defini-
tion of the design point and some of the aforementioned reliability methods is given.
Secondly, the issue of dimensionality in reliability problems is addressed. Thirdly, the
issue of structural non linearities in the context of small failure probability estimation
is studied. Finally, in the conclusions, the range of applicability of the reliability tech-
niques based on the design point is identified in view of the results obtained in the
respective sections.

2 Theoretical background

2.1 The design point

To define the design point, it is necessary to transform the problem posed in Equation
1 from the original random variable space θ ∈�d (also known as the physical space) to
the standard normal space x∈�d. This is, to use a mapping θ ↔ x in order to establish
a suitable transformation:

x = Tθx(θ) (2)

θ = Txθ(x) (3)

A common means to perform such mapping is to use an approximate method like the
Nataf’s model (Liu and Der Kiureghian 1986). Once the random variables involved
in Equation 1 have been expressed into the standard normal space, it is possible to
define the design point (x∗) using a geometrical or probabilistic interpretation (see,
e.g. (Freudenthal 1956)). In the geometrical interpretation, the design point is defined
as the realization in the standard normal space which lies on the limit state function
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(g(Txθ(x))= 0) with the minimum Euclidean norm (ρ or β) with respect to the origin.
According to the probabilistic interpretation, the design point is the point with highest
probability density in the failure region. This means, it is the point that maximizes p(x)
subject to g(Txθ(x))≤ 0, where p(·) is the standard normal probability density function
in �d.

The task of finding the design point involves the solution of the following constrained
optimization problem:

min
√

x2
1 + x2

2 + · · · + x2
d

subject to g(Txθ(x)) ≤ 0, x ∈ �d (4)

The value of the objective function in the optimum is the so-called reliability index (β).
Closed form solutions for identifying the design point exist only for a few cases, e.g.
in the context of non linear stochastic dynamics:

• For certain types of non linear dynamical systems subject to stochastic loading, a
method has been proposed based on the free-vibration response of the structure
(Koo et al. 2005). In several cases, the output of this method will be a rough
approximation of the design point which can be used as a starting point (a so-called
warm solution) for a specific optimization algorithm.

• For a single degree of freedom (SDOF) elastoplastic system subject to stochastic
loading, an efficient method has been formulated based on the parametrization of
the design point (see, e.g. (Au 2006a)).

Although the aforementioned approaches can produce estimates of the design point
with reduced numerical costs, the range of applicability of these approaches is quite
narrow. Hence, when dealing with more general structural reliability problems, it is
necessary to apply an optimization algorithm to estimate the design point; nonetheless,
such strategy is quite involved numerically, i.e. it is necessary to evaluate repeatedly
the performance function and in realistic structural reliability problems this can imply
the solution of large FE models.

2.2 First order rel iabi l i ty method

The first order reliability method (FORM) is an approximate method for assessing the
reliability of a structural system. Its basic assumption is to approximate the limit state
function (g(Txθ(x))= 0) of the structural reliability problem by means of a hyperplane
which is orthogonal to the design point vector; note that this approximation is con-
structed in the standard normal space. Thus, the failure probability can be estimated
using the Euclidean norm of x∗, i.e.

PF ≈ P̂F = �(−|x∗|) = �(−β) (5)

In equation 5, �(·) is the standard normal cumulative density function. The schematic
representation of the FORM method is shown in Figure 1.1.
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g(Txθ(x))�0
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g(Txθ(x))�0
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x*

0

�

Design Point

Figure 1 FORM approximation in the standard normal space.

Equation 5 provides an exact estimate of the failure probability provided that the
limit state function is linear with respect to the Gaussian distributed vector of uncer-
tain parameters. Under more general conditions, Equation 5 yields only approximate
results. Moreover, it should be noted that FORM does not produce any measure of
the error introduced by the linearization assumption.

2.3 Monte Carlo simulation

The Monte Carlo simulation method (MCS) is a general simulation technique, i.e. it
is applicable to linear and non linear problems indifferently. Moreover, its efficiency
is independent of the number of random variables involved in the problem under
analysis. The basic idea behind MCS is to generate N samples of θ which are distributed
according to h(θ). Then, the failure probability can be estimated as:

PF ≈ P̂F = 1
N

N∑
i=1

IF(θ(i)), θ(i) i.i.d. ∼ h(θ) (6)

In Equation 6, IF(·) is the indicator function, which is equal to 1 if g(θ)≤ 0 and 0
otherwise. Moreover, it is possible to estimate the convergence rate of the estimator in
Equation 6 by means of the coefficient of variation, i.e.

δMCS =
√

1 − P̂F

NP̂F

(7)

Despite MCS is the most general simulation technique, it has one major drawback: for
calculating low failure probabilities, a large number of samples (proportional to 1/PF)
is required to generate a reliable estimator, i.e. with sufficient accuracy. Hence, the
numerical costs involved in estimating probabilities of occurrence of rare events may
be extremely high and even prohibitive, especially when a structural system is modeled
using a large FE model.
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2.4 Line sampling

As method of solution, the application of advanced simulation techniques is most
instrumental. Line sampling (LS) for example serves this purpose. It is a variance
reduction technique which, basically, reduces a high dimensional problem in the stan-
dard normal space to a one dimensional problem (see, e.g. (Schuëller et al. 2004b)).
The key issue in performing such transformation is to identify a so-called important
direction (α), which is a unit vector pointing towards the failure region; candidates for
such direction are (a) the direction of the design point vector and (b) the opposite of
the direction of the gradient of the limit state function evaluated at the origin of the
standard normal space.

Once α has been identified, information about the performance function is collected
along lines which are parallel to the important direction. Such information allows to
estimate the failure probability. More details about the LS procedure can be found in
Appendix A.

3 The issue of dimensionality

By definition, the design point is the realization of the uncertain parameters with
highest probability density in the failure domain (according to the probabilistic inter-
pretation). Hence, in low dimensional spaces, it is expected that the vicinity of x∗
(inside the failure domain) will contribute significantly to PF. This intuitive concept is
based on the interpretation of Equation 1 as a volume integral: the region adjacent to
x∗ contains most of the total volume (i.e. PF) because the probability density function
reaches its maximum. This argument is valid and it justifies the use of approximate
methods like FORM or SORM in a number of applications. In such methods, an
approximation of the limit state function is constructed precisely in the region which
contributes the most to the probability integral. Nonetheless, the intuitive concepts
derived in low dimensional spaces may not be applicable when dealing with reliability
problems involving a large number of dimensions. For a better understanding of the
last point, the following performance function is considered:

g(x) = 4 − x1 + 1
2
κ

d∑
i=2

x2
i (8)

In Equation 8, κ denotes curvature and xi ∼N(0, 1), i= 1, . . . , d.
The design point and reliability index associated with the performance function in

Equation 8 can be calculated analytically, i.e.

x∗ = 〈4 0 . . . 0〉T (9)

β = |x∗| = 4 (10)

Note that the reliability index is constant, independent of the number of dimensions
(d) and the curvature (κ). This implies that if an approximate method like FORM is
used, i.e. a linear approximation of g(·) is constructed around the design point, the
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Figure 2 Failure probability as a function of the number of dimensions and curvature.

probability that the performance function is smaller than zero is constant for any given
values of κ and d, i.e.:

PF = P

[
4 − x1 + 1

2
κ

d∑
i=2

x2
i < 0

]
≈ P̂F = �(−4) = 3.2 × 10−5 (11)

In order to verify the accuracy of the FORM approximation, the failure probability
described in Equation 11 is calculated exactly over a suitable grid of the parameters κ
and d; the results obtained are shown as contour levels of PF in Figure 1.2.

The results in Figure 1.2 indicate that the estimate of PF generated using FORM is
valid for a certain range of the curvature κ when the number of dimensions is low,
i.e. less than 10. Hence, to approximate the limit state function (LSF) by a hyperplane
orthogonal to the design point vector is quite reasonable. But when the number of
dimensions involved is large, e.g. 100, even the slightest deviation of κ from 0 causes the
FORM approximation to be erroneous by several orders of magnitude. Thus, taking
into account that the reliability index remains constant independent of the number of
dimensions, it is clear that the approximation of the LSF around the design point vector
may be useful only in low dimensions. For high dimensions, the design point and its
vicinity lose their relevance in estimating the failure probability. Naturally, it could
be argued that for the specific performance function described in Equation 8, FORM
is not the most appropriate method for estimating the failure probability. Although
SORM (see, e.g. (Breitung 1994)) could certainly produce better results for this specific
example, in more general cases where the LSF is neither linear nor quadratic (nor
the random variables are Gaussian distributed), none of the approximate reliability
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methods would produce accurate results when the number of uncertain parameters
involved is large.

Even though the results presented in Figure 1.2 may be surprising at first glance,
the reason why the design point and its vicinity lose relevance in estimating the failure
probabilities has been acknowledged a number of times in the literature (see, e.g.
(Katafygiotis et al. 2007)). In order to study such reason, consider the following
definition:

R2 = x2
1 + x2

2 + · · · + x2
d (12)

In Equation 12, R represents the Euclidean norm (with respect to the origin) of a point
in the standard normal space. Given that xi ∼N(0, 1), i= 1, . . . , d, then R2 follows a
chi-square distribution of d degrees of freedom. This implies that the expected radius
will be equal to the square root of the number of dimensions, i.e.:

E[R] =
√

d (13)

Hence, the probability density mass of the radius of x will shift away from the origin of
the standard normal space as the number of dimensions (uncertain variables) involved
in the reliability problem increases. Moreover, if d is large, the design point and its
vicinity may be located in the tail of the probability density function of R and, thus,
the contribution of this region to the total failure probability becomes negligible. To
clarify the latter point, the following experiment is carried out: it is calculated which
is the probability of drawing a sample of x inside a hypersphere of radius β+�,
where β represents the reliability index, which is taken equal to 4. The results of such
experiment are shown in Figure 1.3 as a function of both d and �.

The results shown in Figure 1.3 demonstrate that even though the design point
is the realization of the uncertain parameters with highest probability density in the
failure domain, its vicinity is not important for estimating failure probabilities in high
dimensions, i.e. if the dimension d= 100, then the region around x∗ is irrelevant in
estimating the failure probability. Hence, it is concluded that the information provided

10 20 30 40 50 60 70 80 90 100
10�15

10�10

10�5

100

d�Dimensions

P[
|x

|≤
β+

∆]

∆�0

∆�1

∆�2

Figure 3 Probability of drawing a sample of x inside a hypersphere of radius β+�.
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by the design point (and the Hessian of the LSF at x∗ in case SORM is used) is not
helpful in calculating PF unless the limit state function fulfills some specific conditions,
i.e. the performance function is linear or quadratic (without interaction terms) with
respect to the Gaussian distributed random variables.

4 The role of the design point in evaluating the failure
probability in view of structural non linearities

4.1 Definit ion of the rel iabi l i ty problem

In the previous section, it was shown that the intuitive ideas which are applicable in low
dimensional spaces cannot be always extended to problems involving a large number
of dimensions. Specifically, it was demonstrated by two examples that the vicinity of
the design point in large dimensions may not be as meaningful as in problems that
involve a few random variables only. Thus, the next step is to assess how the structural
non linearities may affect the solution of reliability problems in dynamics, focusing
on the role of the design point for estimating failure probabilities. For such purpose,
an example taken from (Schuëller et al. 2004a) is studied. The system consists of a 5
DOF non linear shear beam model, which is shown in Figure 1.4. The model has 25
structural parameters characterized as Gaussian independent random variables. The
structure is excited by a stochastic ground acceleration of 20 s of duration, modeled by
200 independent Gaussian random variables, i.e. the total number of random variables
associated to the model is 225. Moreover, the restoring force of the structure is modeled
as bilinear hysteretic. The specific details about the model as well as the uncertainty
quantification can be found in the aforementioned reference.

Ground Acceleration

m5

m4

m3

m2

m1

Figure 4 Non linear shear beam model.
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The failure event to be analyzed is defined as the relative displacement of the 5th
DOF with respect to the 4th exceeding a prescribed threshold level b at 10 s, i.e.

F = {x ∈ �225 : g(x) = b − r5−4(x, t = 10 s) ≤ 0}, xi ∼ N(0, 1) (14)

i = 1, . . . , 225

4.2 Design point search

To the knowledge of the author, no analytical solution (neither exact nor approximate)
exists for finding the design point of the problem posed in Equation 14. Hence, it is
necessary to use an optimization technique for determining x∗. Numerical validation
has shown that a technique which is convenient fur such purpose is the so-called
Cross Entropy (CE) optimization method (see, e.g. (Rubinstein 1999)). This method
is a gradient-free algorithm and, hence, is suitable for dealing with structural non
linearities. It has been applied to a number of optimization problems in different fields
and it can be used for rare event simulation as well. For specific details about its
theoretical basis and its features, it is referred to the literature (see, e.g. (de Boer et al.
2005) for a comprehensive tutorial).

The CE method is directed towards the solution of unconstrained optimization prob-
lems. Thus, in order to find x∗, it is necessary to pose the problem in Equation 4
(constrained optimization problem) in an alternative way. This is done by incorporating
the constraint as a penalty term in the objective function, i.e.:

min
√

x2
1 + x2

2 + · · · + x2
225 + C max(0, g(Txθ(x)))2, x ∈ �225 (15)

The formulation presented in Equation 15 is a common method for handling con-
straints within the context of unconstrained optimization algorithms. The main
drawback of such formulation is that there is no general rule for establishing the
penalty term C and, hence, it must be calibrated for each specific problem (Coello
2002). Being aware of this particular drawback and the possibility of getting trapped
in local minima, the optimization runs used for the design point search are repeated
several times in an effort to find the global solution of the problem posed in
Equation 15. Such an approach certainly implies enormous numerical costs but, given
that the objective of this contribution is to assess the role of the design point in struc-
tural reliability and not to propose efficient numerical techniques for finding x∗, the
chosen scheme for the design point search is considered to be adequate.

The design point search was performed for four different threshold levels, i.e.
b={1.2, 1.7, 2.2, 2.7}×10−2 m. The results of such search are presented in Table 1.1,
where the reliability index (β) associated to each threshold level is shown.

It is most interesting to observe that besides the design points shown in Table 1.1,
different runs of the optimization algorithm produced a number of realizations in the
standard normal space that belong to the failure domain which are similar to the design
points found, i.e. for a given threshold level, it is possible to find samples x ∈F with
an Euclidean norm slightly larger than x∗, however with different directions. Thus,
although there is a realization of the uncertain parameters that can be identified as
the design point (global minimum), there are other realizations that closely resemble
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Table 1 Reliability index for different
threshold levels

b β

0.012 m 2.847
0.017 m 3.454
0.022 m 3.932
0.027 m 4.437

0 1 2 3 4 5

0

1

2

3

4

xpar

x o
rt

h

x*

Suboptimal solutions

Figure 5 Design Point (x∗) and Suboptimal Solutions for b= 2.7× 10−2 [m].

the design point (local minima). The existence of such suboptimal solutions has been
already acknowledged and studied for an elastoplastic oscillator in (Au 2006a; Au
2006b). Hence, the results obtained for the problem under study concerning the design
point search are consistent with those published in the literature.

To provide some insight into the design point and the suboptimal solutions found,
the specific results obtained for b= 0.027 m are presented in the following figures. In
Figure 1.5, the design point and 7 suboptimal solutions are shown in a 2 dimensional
plot that involves the parallel (xpar) and orthogonal (xorth) directions to the design
point; note that although the orthogonal component of the suboptimal solutions is
similar, they actually point towards different directions.

In Figure 1.6, the components of the design point and of one suboptimal solution are
depicted. It is important to note that the design point and the suboptimal solutions are
quite different concerning the components related to the excitation, but rather similar
regarding the structural components. This phenomenon has a physical interpretation:
while several different excitations can cause the structure to reach a determined level of
displacement, the effect of the uncertainty in the structural parameters is well defined,
e.g. clearly, a smaller stiffness will induce larger displacements.
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Figure 6 Component-by-component comparison between design point (x∗) and suboptimal
solution for b= 2.7× 10−2 [m].
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Figure 7 Failure probability of non linear shear beam model.

4.3 Reliabi l i ty est imates

The estimates of P[r5−4(x, t = 10 [s])≥ b] for several threshold levels are presented in
Figure 1.7. The reliability techniques used for estimating PF are MCS (reference),
FORM and LS. Line Sampling is applied using 50 and 1000 lines and the important
direction is chosen equal to the direction of the design point.

The details about the results obtained are discussed below.

• FORM: The results obtained by FORM are off between one and two orders of
magnitude when compared to MCS for the different values of the threshold level.
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Figure 8 Line sampling: 10 random lines.

• Line Sampling: For a low number of lines, the estimates of PF produced by LS are
rather poor; when the number of lines is increased, the quality of these estimates
improve (at the expense of higher numerical costs). To gain insight about the shape
of the failure region, 10 random lines of LS are shown in Figure 1.8. The lines
present a considerable scatter and they do not have a monotic behavior, which
indicates that the failure region associated to the non linear shear beam model is
far from being bounded by a hyperplane.

4.4 The shape of the fai lure region

The lack of accuracy in the reliability estimates produced by FORM and the shape
of the samples lines of LS suggest that the shape of the failure region may be rather
complex. To widen the study of this issue, the following numerical experiment is carried
out: it is estimated which is the proportion of failure samples generated by MCS that
simultaneously belong to the failure region defined by the FORM hypothesis. The
details involved in such experiment are the following:

• The failure event FFORM is defined as:

FFORM = {x ∈ �d : x∗Tx ≥ β}, xi ∼ N(0, 1), i = 1, . . . , d (16)

Note that FFORM corresponds to the failure event associated to the FORM
hypothesis.

• The sought proportion is calculated using the following formula:

P[FFORM/F] =
∑N

j=1 IF(x(j)) × IFFORM (x(j))∑N
j=1 IF(x(j))

(17)
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Figure 9 Schematic representation of possible failure region.

where IFFORM (·) is the indicator function associated to the failure event FFORM, IF(·)
is the indicator function associated to the failure event F (see Equation 14) and x(j)

are samples drawn following a 225-dimensional standard normal distribution.
• The parameter N is chosen large enough so that the estimate of Equation 17 is

accurate; specifically, N = 800× 106.

The results of the numerical simulation indicate that the sought proportion
(P[FFORM/F]) is for all the threshold levels under study within the range [0.3, 0.4].
Such proportion is consistent with the results from Figures 7 and 8, i.e. the failure
region may not be appropriately represented by the FORM hypothesis.

Even though the results discussed so far indicate that the failure region of the reliabil-
ity problem posed in Equation 14 is rather complex, it is difficult to express these results
quantitatively. Nonetheless, further numerical experiments carried out in (Valdebenito
et al. 2008) suggest that the failure region for strongly non linear systems is by far
more complicated than any of the traditional hypotheses proposed in the literature.
Thus, the failure region may be composed even by disconnected regions (‘islands’) or
‘valleys’ connected by low probability paths, as shown in Figure 1.9. Of course, the
representation of the failure region in Figure 1.9 is no more than a guess. But the point
of suggesting such representation is to emphasize that the LSF can not be approximated
by a hyperplane (FORM) or a paraboloid (SORM).

5 Conclusions

In the first part of this contribution, the relevance of the design point in view of dimen-
sionality was addressed. The examples discussed show that the design point and its
vicinity contribute significantly to the failure probability integral for low dimensional
problems, i.e. 10 to 20 random variables. But when the number of dimensions involved
in the reliability problem is large, the design point and its vicinity do not play an impor-
tant role in estimating PF. The design point might be still useful in high dimensions but
only when the limit state function has a particular structure, e.g. is linear with respect
to the Gaussian distributed random variables.
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When dealing with reliability problems involving strong structural non linearities,
the knowledge of the design point seems to be of little advantage. The estimates of the
failure probabilities calculated using FORM can be off by orders of magnitude and,
furthermore, the basic hypothesis of this reliability technique is not representative of
the actual failure domain. On the other hand, LS does not benefit from the direction
defined by the design point due to the variability of the sampled lines.

In view of the results obtained, it is possible to identify the range of applicability of
the reliability techniques based on the design point:

• For low dimensional problems, the design point is certainly relevant in estimating
PF. Techniques like FORM or SORM may produce estimates of the reliability with
sufficient accuracy.

• For high dimensional problems involving weak non linearities, the design point
might be still relevant but in combination with a simulation technique, e.g. if the
design point is readily available, it can be used for determining the important
direction required in Line Sampling. The design point (and the Hessian of the LSF
at the design point) are of relevance only in very special cases.

• For high dimensional problems involving strong non linearities, none of the reli-
ability methods available seem to benefit from the knowledge of the design point
(Au et al. 2007; Valdebenito et al. 2008). In such cases, general simulation tech-
niques like Monte Carlo simulation or Subset simulation (Au and Beck 2001a;
Beck and Au 2005; Katafygiotis and Cheung 2007) should be preferred.

In spite of the arguments discussed above, the concept of design point in reliabil-
ity analysis should not be discarded. Recent advances in the development of variance
reduction techniques (Au 2008) have shown that the design point (associated with
uncertainty in excitation) can be rather useful when interpreted as the excitation with
minimum energy capable of driving the structural reponse towards a prescribed thresh-
old level. But how to estimate the design point efficiently still remains an open issue,
except for a small class of reliability problems, where exact or approximate solutions
have been proposed.
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A Line sampling

The algorithm to implement LS can be summarized in the following steps.

1. Identify an important direction (α) in the standard normal space; α can be chosen
based in the information provided by the design point or by the gradient of the
performance function, evaluated at the origin of the standard normal space.

2. Generate N random samples (x⊥(j), j=1, …, N) in the standard normal space
orthogonal to α.
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3. For each of the random samples previously generated, compute g(Txθ(x⊥(j) + c(j)
i α))

where i = 1, … , n and c(j)
i is a factor conveniently chosen such that it is possible to

find via interpolation a scalar c(j) that complies

g(Txθ(x⊥(j) + c(j)α)) = 0, c(j)
1 ≤ c(j) ≤ c(j)

n (18)

As it can be seen from Figure 10, the scalar c(j) resembles a local reliability index
if compared with FORM. Thus, the failure probability associated to the jth sample
is

p(j)
F,α = �(−c(j)) (19)

4. Estimate the failure probability and its variance using

PF = 1
N

N∑
j=1

p(j)
F,α (20)

σ2
PF

= 1
N(N − 1)

N∑
j=1

(
p(j)

F,α − PF

)2
(21)

The schematic representation of the LS procedure is shown in Figure 10.
One of the advantages of LS over other reliability techniques is that it allows to

estimate qualitatively how much does the LSF deviates from a hyperplane. This infor-
mation is provided by the aspect of the sampled lines: if the lines are almost straight
and highly concentrated, then the LSF is close to a hyperplane; if the lines present
considerable scatter and are irregular, then the LSF is non linear.

In structural reliability problems where an important direction can be identified, LS
provides accurate estimates of the failure probability with high numerical efficiency.
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If such direction cannot be identified (or if the direction does not exist at all), LS still
provides correct estimates but at higher numerical costs (comparable to MCS). This is
the case for structural reliability problems involving strong non linearities (Pradlwarter
et al. 2007).
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ABSTRACT: Efficient and accurate analytical tools are needed in earthquake engineering to
propagate uncertainties from the seismic input and finite element (FE) model parameters to a
probabilistic estimate of the seismic performance through advanced large-scale nonlinear simu-
lations based on the same FE models as those used in deterministic analysis. Sensitivities of the FE
response with respect to both model and loading parameters represent an essential ingredient
in studying this complex propagation of uncertainties. This chapter presents recent develop-
ments in FE response sensitivity analysis based on the Direct Differentiation Method (DDM)
for displacement-based, force-based, and three-field mixed finite elements. First-Order Second-
Moment (FOSM) approximations of the first- and second-order statistics of the response of
structural systems with random/uncertain parameters and subjected to deterministic quasi-static
and/or dynamic loads are obtained using DDM-based FE response sensitivities and compared
to Monte Carlo simulation results. The probability of a structural response quantity exceeding
a specified threshold level is evaluated using the First-Order Reliability Method (FORM) com-
bined with DDM-based FE response sensitivities in the search for the “design point(s)’’ (DPs).
Both time-invariant and time-variant problems are considered. The geometry of limit-state sur-
faces near the DP(s) is explored in subspaces defined by planes of major principal curvatures.
This geometry explains the lack of accuracy of FORM-based solutions in some cases and sug-
gests the development of new improved solution strategies, e.g., the Design Point – Response
Surface – Simulation (DP-RS-Sim) method. The examples presented in this study include both
structural systems and soil-foundation-structure interaction systems and are based on two types
of analysis which are used extensively in earthquake engineering, namely pushover analysis and
time history analysis.

1 Introduction

Providing a structure with the capability of achieving a target performance over its
design life-time is a challenging task for structural engineers. In order to complete this
task successfully, the engineer must account correctly during the design process for the
existing aleatory and epistemic uncertainties. Thus, proper methods are required for
propagating uncertainties from model parameters describing the geometry, the material
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behaviours and the applied loadings to structural response quantities used in defining
performance limit-states. These methods need also to be integrated with methodologies
already well-known to practicing engineers, such as the finite element (FE) method.

This study presents recent developments in response sensitivity, probabilistic
response and reliability analyses of structural and geotechnical systems in a general-
purpose framework for nonlinear FE response analysis. Current advances are high-
lighted which cover relevant gaps between response sensitivity computation using the
Direct Differentiation Method (DDM) and state-of-the-art FE response-only analysis.
This work shows extensions of the DDM which were required for efficient computa-
tion of FE response sensitivities of structural and Soil-Foundation-Structure-Interaction
(SFSI) systems. Response sensitivity analyses are performed and used in application
examples to gain insight into the relative importance of model parameters with regard
to system response. Response sensitivities are essential tools in studying the propaga-
tion of uncertainties in nonlinear dynamic analysis of structural and SFSI systems.

Examples of probabilistic response analysis using the mean-centred First-Order
Second-Moment (FOSM) approximation, time-invariant (First- and Second-Order
Reliability Methods, FORM and SORM) and time-variant (mean outcrossing rate
computation) reliability analyses are provided to illustrate the methodology presented
and its current capabilities and limitations.

A new multidimensional visualization technique is introduced to study the topology
of limit-state surfaces near their design point(s) (DPs). A hybrid reliability analy-
sis method, developed using the insight gained from this visualization technique, is
introduced and illustrated through an application example.

The response sensitivity, probabilistic response and reliability analysis methods pre-
sented are based on nonlinear FE quasi-static pushover and time-history analyses,
which are used extensively in earthquake engineering and referred to by structural
design codes.

2 Finite element response sensitivity analysis

FE response sensitivities represent an essential ingredient for gradient-based optimiza-
tion methods needed in various subfields of structural engineering such as structural
optimization, structural reliability analysis, structural identification, and FE model
updating (Ditlevsen & Madsen 1996, Kleiber et al. 1997). Furthermore, FE response
sensitivities are extremely useful for gaining deeper insight into the effect and rela-
tive importance of system and loading parameters with regard to structural response.
The computation of FE response sensitivities to geometric, material and loading
parameters requires extension of the FE algorithms for response-only computation.
If r denotes a generic scalar response quantity, the sensitivity of r with respect to the
geometric, material or loading parameter θ is defined mathematically as the partial
derivative of r with respect to parameter θ, considering both explicit and implicit
dependencies, evaluated at θ= θ0, with θ0 = nominal value taken by the sensitivity
parameter θ for the FE response analysis.

Response sensitivity computation can be performed using different methods, such as
the forward/backward/central Finite Difference Method (FDM) (Kleiber et al. 1997,
Conte et al. 2003, 2004), the Adjoint Method (AM) (Kleiber et al. 1997), the Pertur-
bation Method (PM) (Kleiber & Hien 1992), and the Direct Differentiation Method
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(DDM) (Kleiber et al. 1997, Conte 2001, Conte et al. 2003, 2004, Gu & Conte 2003,
Barbato & Conte 2005, 2006, Zona et al. 2005, 2006, Barbato et al. 2006, 2007,
Gu et al. 2007a). The FDM is the simplest method for response sensitivity computa-
tion, but is also computationally expensive and can be negatively affected by numerical
noise (Haftka & Gurdal 1993, Gu & Conte 2003). The AM is extremely efficient for
linear and nonlinear elastic structural systems/models, but is not as efficient compu-
tationally as other methods when nonlinear hysteretic material constitutive models
are employed (Kleiber et al. 1997). The PM is computationally efficient but generally
not very accurate. The DDM, on the other hand, is very general, efficient and accu-
rate and is applicable to any material constitutive model. These advantages can be
obtained at the one-time cost of differentiating analytically the space- (finite element)
and time- (finite difference) discrete equations governing the structural response and
implementing these algorithms for “exact’’ derivative computation in a FE code.

According to the DDM, the consistent FE response sensitivities are computed at
each time step, after convergence is achieved for response computation. Response
sensitivity calculation algorithms impact the various hierarchical layers of FE response
calculation, namely: (1) the structure level, (2) the element level, (3) the integration
point (section for frame/truss elements) level, and (4) the material level. Details on the
derivation of the DDM sensitivity equation at the structure level and at the element
level for classical displacement-based finite elements, specific software implementation
issues, and properties of the DDM in terms of efficiency and accuracy can be found
elsewhere (Kleiber et al. 1997, Conte 2001, Conte et al. 2003, Gu & Conte 2003). In
this study, some newly developed algorithms and recent extensions are presented which
cover relevant gaps between state-of-the-art FE response-only analysis and response
sensitivity computation using the DDM.

2.1 Response sensit iv ity algorithm for force-based
frame elements

Recent years have seen great advances in nonlinear analysis of frame structures. These
advances were led by the development and implementation of force-based elements
(Spacone et al. 1996), which are superior to classical displacement-based elements in
tracing material nonlinearities such as those encountered in reinforced concrete beams
and columns. In the classical displacement-based frame element, the cubic and linear
Hermitian polynomials used to interpolate the transverse and axial displacement fields,
respectively, are only approximations of the actual displacement fields in the presence
of non-uniform beam cross-section and/or nonlinear material behaviour. On the other
hand, force-based frame element formulations stem from equilibrium between section
and nodal forces, which can be enforced exactly in the case of a frame element. The
exact flexibility matrix can be computed for an arbitrary (geometric) variation of the
cross-section and for any section/material constitutive law. Thus, force-based elements
enable, at no significant additional computational costs, a drastic reduction in the
number of elements required for a given level of accuracy in the simulated response of
a FE model of a frame structure.

The established superiority of force-based over classical displacement-based frame
elements for response-only computation motivated the extension of the DDM to
force-based frame elements. The problem is conceptually more complicated for the
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Figure 1 Applied horizontal force versus horizontal roof displacement of different FE meshes:
(a) using force-based frame elements and (b) using displacement-based frame elements.

force-based than for the displacement-based element, since in the former no simple
direct relation exists between section deformations and the element end deformations.
In fact, while equilibrium is enforced in strong form, compatibility is enforced only in
weak form over the element. The solution to this problem has been derived and pre-
sented elsewhere (Conte et al. 2004). This solution requires solving, at the element level
and at each load/time step, a system of linear equations (the size of which depends on
the number of integration points for the element) having as unknown the sensitivities
of section deformations and element nodal forces. These quantities are necessary for
the solution of the sensitivity equation at the structure level. An alternative solution,
which does not require solving a system of linear equations at the element level, has
been developed and presented in Scott et al. (2004).

The benefit of using force-based instead of displacement-based frame elements has
been found even more conspicuous when accurate and efficient computation of struc-
tural response sensitivities to material and loading parameters is required in addition
to response-only computations (Barbato & Conte 2005). This benefit in terms of
improved accuracy and efficiency increases with the complexity of the structural system
being analyzed. As application example, a statically indeterminate two-dimensional
single-story single-bay steel frame (shown in the inset of Figure 1(a)) with distributed
plasticity (modelled by using a Von Mises J2 plasticity section constitutive law, see
Conte et al. 2003) subjected to a horizontal force P at roof level is presented in this
work. Details on the mechanical and geometric properties of the structure and on
its modelling can be found in Barbato & Conte (2005). For this simple structure,
closed-form solutions are available for horizontal roof displacement and its sensitivities
to material parameters as functions of P. Figures 1(a) and (b) compare the force-
displacement results in the horizontal direction obtained from FE analyses employing
different meshes of force-based and displacement-based frame elements, respectively.
Similarly, Figures 2(a) and (b) compare the sensitivity to the kinematic hardening
modulus of the horizontal displacement obtained from FE analyses employing dif-
ferent meshes of force-based and displacement-based frame elements, respectively. It is
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Figure 2 Sensitivities of roof displacement to kinematic hardening modulus for different FE
meshes: (a) using force-based frame elements and (b) using displacement-based frame
elements.

found that convergence of the FE response to the exact solutions is much faster when
force-based elements are employed and this trend is more pronounced for FE response
sensitivities.

2.2 Response sensit iv ity algorithm for three-f ield
mixed formulation elements

A large body of research has been devoted to mixed FE formulations in the last 30
years. Several finite elements based on different variational principles have been devel-
oped (Washizu 1975, Belytschko et al. 2000) and relationships among them have been
established. Accuracy and performance have been thoroughly analyzed and improved
and important properties have been recognized and explained, such as equivalence
between various stress recovery techniques and ability to eliminate shear-locking effects
for specific applications (Belytschko et al. 2000). After more than three decades of
research, mixed finite elements are now well established and largely adopted tools in
a wide range of structural mechanics applications. Therefore, the advantage of
extending the DDM to finite elements based on a mixed formulation is evident.

The DDM algorithm for a three-field mixed formulation based on the Hu-Washizu
functional (Washizu 1975) has been derived and presented elsewhere (Barbato et al.
2007). This formulation stems from the differentiation of basic principles (equilib-
rium, compatibility and material constitutive equations), applies to both material and
geometric nonlinearities, is valid for both quasi-static and dynamic FE analysis and con-
siders material, geometric and loading sensitivity parameters. This general formulation
has also been specialized to frame elements and linear geometry (small displacements
and small strains).

2.3 Extension of the DDM to steel-concrete
composite frame structures

The last decade has seen a growing interest in FE modelling and analysis of steel-
concrete composite structures, with applications to seismic resistant frames and bridges
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Figure 3 Application example of steel-concrete composite structure: (a) geometry and loading,
(b) FE degrees of freedom and (c) comparison of experimental and numerical results.

(Spacone & El-Tawil 2004). The behaviour of composite beams (made of two com-
ponents connected through shear connectors to form an interacting unit) is significantly
influenced by the type of connection between the steel beam and the concrete slab.
Flexible shear connectors allow the development of partial composite action. Thus,
for accurate analytical response prediction, structural models of composite structures
must account for the interlayer slip between the steel and concrete components. A
composite beam finite element able to capture the interface slip is therefore an essential
tool for model-based response simulation of steel-concrete composite structures.

Compared to common monolithic beams, composite beams with deformable shear
connection present additional difficulties. Even in very simple structural systems (e.g.,
simply supported beams), complex distributions of the interface slip and force can
develop. Different finite elements of composite beams with deformable shear connec-
tion have been developed and presented in the literature (Spacone & El-Tawil 2004,
Dall’Asta & Zona 2004). These elements include suitable models describing section
deformations in order to compute the section force resultants of steel-concrete com-
posite members. This requires the use of realistic material constitutive models for beam
steel, reinforcement steel, concrete, and shear-slip behaviour of the studs connecting
the two structural components (Zona et al. 2005, 2006, Barbato et al. 2007).

The DDM has recently been extended for response sensitivity computation of
steel-concrete composite frame structures (Zona et al. 2005, 2006, Barbato et al.
2007). Thus, advanced finite elements incorporating the deformable shear-connection
between the two structural components of steel-concrete composite structures can be
used for efficient computation of both the response and response sensitivity. Figure 3(a)
depicts the configuration and loading condition of a two-span asymmetric continuous
steel-concrete composite beam for which experimental data are available. Figure 3(b)
shows the degrees of freedom of the frame element (with deformable shear connection)
used in modelling this beam structure. Experimental and numerical simulation results
are compared in Figure 3(c). It is seen that their agreement is very good.

Figure 4(a) plots the normalized sensitivities (i.e., multiplied by the nominal value of
the sensitivity parameter and divided by the current value of the response quantity) of
the vertical uplift ν3 at midpoint of the non-loaded span to several material parameters
as function of the normalized vertical uplift (i.e., the ratio between the current vertical
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Figure 4 Normalized response sensitivities for steel-concrete composite structure: (a) sensitiv-
ities of vertical uplift at midpoint of non-loaded span to several material constitutive
parameters and (b) sensitivities of several response quantities to yield strength of the
steel of the beam component.

uplift and the maximum uplift which is reached at failure of the beam). The normalized
sensitivities can be used directly as importance measures of the sensitivity parameters
for the considered response quantity, since they represent the percent change in the
response per percent change in the parameter. In the case presented here, the yield
strength of the steel of the beam, fy, is the parameter affecting the most the vertical
uplift ν3. Figure 4(b) plots the normalized sensitivities of several response quantities to
parameter fy as functions of the normalized vertical uplift. The effects of parameter fy

are pronounced for ν3, but much less so for the rotations of the beam at the left and
central supports (ϕ1 and ϕ2, respectively).

2.4 Extension of the DDM to Soil-Foundation-Structure-
Interaction (SFSI) systems

The seismic excitation experienced by structures (buildings, bridges, etc.) is a func-
tion of the earthquake source (fault rupture mechanism), travel path effects, local site
effects, and SFSI effects. Irrespective of the presence of a structure, the local soil con-
ditions (stratification of subsurface materials) may change significantly, through their
dynamic filtering effects, the earthquake motion (seismic waves) from the bedrock level
to the ground surface. The complex and still poorly understood interactions between
subsurface materials, foundations, and the structure during the passage of seismic
waves is further significantly complicated by clouds of uncertainties associated with
the various components of a SFSI system as well as the seismic excitation.

The DDM has been extended to the analysis of SFSI systems. This extension required
development and implementation of response sensitivity algorithms for 2-dimensional
(quadrilateral) and 3-dimensional (brick) isoparametric finite elements, soil mater-
ials (such as the pressure-independent multi-yield surface plasticity model, see Prevost
1977, Gu et al. 2008b, c) and handling of multipoint constraints (Gu et al. 2008a)
required for properly connecting finite elements used in modelling the soil domain with
the ones used for the superstructure model (such as frame elements). A benchmark
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Figure 6 Benchmark SFSI system: (a) time histories of the soil interlayer drifts and (b) sensitivities
of the first interstory drift to the shear strengths of the soil layers.

SFSI system is presented in Figure 5. A detailed description of the superstructure can
be found in Barbato et al. (2006).

Figure 6(a) plots the time histories of the soil interlayer drifts in the x-direction,
while Figure 6(b) shows the first interstory drift in the x-direction, �1x, sensitivities
(multiplied by the nominal value of the sensitivity parameter) to the shear strength
parameter of each of the four soil layers. In this case, the parameters affecting the
most �1x are the shear strengths of the two deeper soil layers, since they govern the
energy transferred into the structure by the soil from the earthquake input at bedrock
level.
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2.5 Other computational issues in FE response
sensit iv ity analysis

The analytical derivation of FE response sensitivities requires a detailed knowledge of
the FE algorithms used for response-only computation, while the efficient computation
and reliable use of these sensitivities demand a clear understanding of the analytical
properties of the computed response and response sensitivities. These properties for
response sensitivities have been investigated in the context of specific applications such
as design point search in FE reliability analysis. Some of these properties are discussed
below.

A first important issue is the equivalence between two methods for computing FE
response sensitivities according to the DDM. Response sensitivities can be computed
(1) by differentiating analytically with respect to the sensitivity parameters the time-
and space-discrete equations of motion of the structural system considered or (2) by
obtaining the time-continuous, space-discrete differential equations governing the
response sensitivities and discretizing them in time to numerically compute the response
gradient. The conditions of equivalence of these two methods are given in Conte et al.
(2003). It is emphasized that consistent (or algorithmic) tangent moduli (leading to
consistent tangent stiffness matrices) are to be used in the first method instead of contin-
uum tangent moduli. For uniaxial material constitutive laws, consistent and continuum
tangent moduli coincide, which is not the case for multidimensional constitutive mod-
els. The consistent tangent moduli have been derived and successfully implemented in
FE codes for several multidimensional material constitutive models such as the cap-
plasticity model (Conte et al. 2003) (for concrete and geological materials) and the
multi-yield-surface plasticity model (Gu et al. 2008b) (for soil).

Continuity/smoothness of FE response sensitivities is another issue needing careful
examination, particularly when sensitivities are used in gradient-based optimization
algorithms. Gradient discontinuities are detrimental to the rate of convergence or can
even impair the convergence to a local minimum of gradient-based optimization algo-
rithms (Gill et al. 1981). It has been recognized that non-smooth material constitutive
models exhibit discontinuous response sensitivities corresponding to elastic-to-plastic
material state transitions (Conte et al. 2003, Haukaas & Der Kiureghian 2004) while
linear elastic unloading events do not produce response sensitivity discontinuities
(Haukaas & Der Kiureghian 2004). Recent work established a sufficient condition
on the smoothness properties of material constitutive models and loading functions
to ensure FE response sensitivity continuity (for both loading and unloading) along
the time and parameter axes in the case of quasi-static analysis (Barbato & Conte
2006). The same study also recognized that in the case of dynamic analysis, in add-
ition to smoothness conditions on the material constitutive models employed and the
loading functions, a sufficiently fine time-discretization (generally finer than the one
required for convergence of response-only computations) is required to avoid response
sensitivity discontinuities along the parameter axes.

Finally, the properties of FE response sensitivities have been studied in terms of
convergence to the response sensitivities corresponding to the (analytically unknown)
solution of the time- and space-continuous equations of motions (Gu & Conte, 2003).
The results of these studies indicate that convergence in response sensitivities requires
stricter conditions (i.e., finer spatial discretization and, to a lower degree, smaller
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load or time step size) than the ones required for convergence of response-only
calculations. It is noteworthy that gradient-based optimization algorithms require con-
sistent (and not necessarily converged) gradients in order to preserve the asymptotic
rate of superlinear convergence of quasi-Newton methods.

3 Simplif ied finite element probabilistic
response analysis

Probabilistic response analysis consists of computing the probabilistic characterization
of the response of a specific structure, given as input the probabilistic characterization
of material, geometric and loading parameters. An approximate method of probabilis-
tic response analysis is the mean-centred First-Order Second-Moment (FOSM) method,
in which mean values (first-order statistical moments), variances and covariances
(second-order statistical moments) of the response quantities of interest are estimated
by using a mean-centred, first-order Taylor series expansion of the response quantities
in terms of the random/uncertain model parameters. Thus, this method requires only
the knowledge of the first- and second-order statistical moments of the random param-
eters. It is noteworthy that often statistical information about the random parameters
is limited to first and second moments and therefore probabilistic response analysis
methods more advanced than FOSM analysis cannot be fully exploited.

Given the vector of n random parameters θ, the corresponding covariance matrix
�θ is defined as

�θ = [ρijσiσj]; i, j = 1, 2, . . . , n (1)

where ρij = correlation coefficient of random parameters θi and θj (ρii = 1;
i= 1, 2, . . . , n), and σi = standard deviation of random parameter θi. The vector r
of m response quantities of interest is approximated by a first-order truncation of its
Taylor series expansion in the random parameters θ about their mean values µθ as

r(θ) ≈ rlin(θ) = r(µθ) + ∇θr|θ=µθ
· (θ− µθ) (2)

The first- and second-order statistical moments of the response quantities r are
approximated by the corresponding moments of the above linearized response
quantities, i.e.,

µr ≈ µrlin = E[rlin(θ)] = r(µθ) + ∇θr|θ=µθ
· E[θ− µθ] = r(µθ) (3)

�r ≈ �rlin = E
[(

rlin(θ) − µrlin

) · (rlin(θ) − µrlin

)T] = ∇θr|θ=µθ
·�θ ·

(∇θr|θ=µθ

)T (4)

in which E[. . .]=mathematical expectation operator.
The approximate response statistics computed through Eqs. (3) and (4) are extremely

important in evaluating the variability of the response quantities of interest due to
the intrinsic uncertainty of the model parameters and provide information on the
statistical correlation between the different response quantities. It is noteworthy that
these approximate first- and second-order response statistics can be readily obtained
when response sensitivities evaluated at the mean values of the random parameters are
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available. Only a single FE analysis is needed in order to perform a FOSM probabilistic
response analysis, when the FE response sensitivities are computed using the DDM.
Probabilistic response analysis can also be performed using Monte Carlo simulation
(MCS). In this study, MCS is used to assess the accuracy of the FOSM approximations
in Eqs. (3) and (4) when applied to nonlinear FE response analysis of R/C building
structures characterized with random/uncertain material parameters and subjected to
quasi-static pushover. The MCS procedure requires:

1. Generation of N realizations of the n-dimensional random parameter vector θ

according to a given n-dimensional joint probability density function (PDF).
2. Computation by FE analysis of N response curves for each component of the

response vector r, corresponding to the N realizations of the random parameter
vector θ.

3. Statistical estimation of specified marginal and joint moments of the components
of response vector r at each load step of the FE response analysis.

MCS is a general and robust method for probabilistic response analysis, but it suffers
two significant limitations: (1) it requires knowledge of the full joint PDF of random
parameters θ, which, in general, is only partially known, and (2) it requires perform-
ing a usually large number of FE response analyses, which could be computationally
prohibitive.

In this study, the Nataf model (Ditlevsen & Madsen 1996) was used to generate
realizations of the random parameters θ. It requires specification of the marginal PDFs
of the random parameters θ and their correlation coefficients. It is therefore able to
reproduce the given first- and second-order statistical moments of random parame-
ters θ. The same three-dimensional three-story reinforced concrete building presented
in Section 2.4, but on rigid supports, is considered as application example. Table 1
provides the marginal distributions and their statistical parameters for the material
parameters modelled as correlated random variables. Other details on the modelling
of the structure and the statistical correlation of the random parameters can be found
in Barbato et al. (2006).

Table 1 Marginal PDFs of material parameters (statistical parameters for lognormal distribution:
(1) λ=µLn(X), (2) ζ= σLn(X); for beta distribution: (1) xmin, (2) xmax, (3) α1, (4) α2).

RV Distribution Par. #1 Par. #2 Par. #3 Par. #4 Mean c.o.v. [%]

fc,core [MPa] Lognormal 3.4412 0.1980 – – 34.47 20
εc,core [−] Lognormal −5.3973 0.1980 – – 0.005 20
fcu,core [MPa] Lognormal 3.0845 0.1980 – – 24.13 20
εcu,core [−] Lognormal −4.0110 0.1980 – – 0.02 20
fc,cover [MPa] Lognormal 3.2180 0.1980 – – 27.58 20
εc,cover [−] Lognormal −6.3136 0.1980 – – 0.002 20
εcu,cover [−] Lognormal −5.2150 0.1980 – – 0.006 20
fy [MPa] Beta 227.53 427.48 3.21 4.28 307.46 10.6
E [MPa] Lognormal 12.1946 0.0330 – – 201000 3.3
b [−] Lognormal −4.0110 0.1980 – – 0.02 20



32 Computat iona l s tructura l dynamics and earthquake eng ineer ing

0 0.1 0.2 0.3
0

100

200

300

400

500

600

MCS
�1 st.dev.
1 st.dev.
FOSM
�1 st.dev.
1 st.dev.

ux3 [m]

P t
ot

 [
kN

]

0

100

200

300

400

500

600

P t
ot

 [
kN

]

0 0.05 0.1 0.15

BFD
DDM
FFD
Average
MCS

σux3
[m](a) (b)

Figure 7 Comparison of probabilistic response analysis results for u3x obtained from FOSM and
MCS: (a) mean value ± one standard deviation and (b) standard deviation estimates.

Figure 7(a) compares the estimates of the mean value and mean value± one standard
deviation of the roof displacement in the x-direction, ux3, for a quasi-static pushover
analysis with an upper-triangular pattern of applied horizontal forces obtained using
FOSM and MCS. Figure 7(b) provides the estimates of the standard deviation of ux3

obtained from MCS and FOSM with sensitivities computed through DDM, back-
ward/forward finite differences (BFD and FFD, respectively, using a small perturbation
of each parameter), and the average of BFD and FFD. It is found that a DDM-based
FOSM analysis can provide, at low computational cost, estimates of the first- and
second-order response statistics which are in good agreement with significantly more
expensive MCS estimates when the frame structure experiences low-to-moderate mate-
rial nonlinearities. Further discussions of these results can be found elsewhere (Barbato
et al. 2006).

4 Finite element reliabil ity analysis

In general, the structural reliability problem consists of computing the probability
of failure Pf of a given structure, which is defined as the probability of exceeding
some limit-state (or damage-state) function(s) when the loading(s) and/or structural
properties and/or limit-state function parameters are uncertain quantities modelled
as random variables. This study focuses on component reliability problems, i.e., sin-
gle limit-state function (LSF) g= g(r, θ) where r= vector of response quantities of
interest and θ= vector of random variables considered. The LSF g is chosen such that
g≤ 0 defines the failure domain/region. Thus, the time-invariant component reliability
problem can be expressed mathematically as

Pf = P[g(r, θ) ≤ 0] =
∫

g(r,θ)≤0

p�(θ) dθ (5)



FE response sens i t i v i ty, probab i l i s t i c response and re l i ab i l i t y 33

where p�(θ)= joint PDF of random variables θ. For time-variant reliability problems,
an upper bound of the probability of failure, Pf(T), over the time interval [0, T], can
be obtained as

Pf(T) ≤
T∫

0

νg(t) dt (6)

where νg(t)=mean down-crossing rate of level zero of the LSF g and t= time. An
estimate of νg(t) can be obtained numerically from the limit form relation (Hagen &
Tvedt 1991)

νg(t) = lim
δt→0

P[{g(r(θ, t),θ) > 0} ∩ {g(r(θ, t + δt), θ) ≤ 0}]
δt

(7)

Numerical evaluation of the numerator of Eq. (7) reduces to a time-invariant two-
component parallel system reliability analysis. It is clear that the first part of Eq. (5)
represents the building block for the solution of both time-invariant and time-variant
reliability problems (Der Kiureghian 1996). Using Eq. (7), Poisson approximation
to the failure probability, Pf,Poisson(T), is obtained as (under the hypothesis that
P[g(r(θ, t= 0), θ)> 0]= 1)

Pf,Poisson(T) = 1 − exp

− T∫
0

νg(t) dt

 (8)

The problem posed in Eq. (5) is extremely challenging for real-world structures and
can be solved only in approximate ways. A well established methodology consists
of introducing a one-to-one mapping/transformation between the physical space of
variables θ and the standard normal space of variables y (Ditlevsen & Madsen 1996)
and then computing the probability of failure Pf as

Pf = P[G(y) ≤ 0] =
∫

G(y)≤0

ϕY(y) dy (9)

where ϕY (y)= standard normal joint PDF and G(y)= g(r(θ(y)),θ(y)) is the LSF in the
standard normal space. Solving the integral in Eq. (9) remains a formidable task, but
this new form of Pf is suitable for approximate solutions taking advantage of the
rotational symmetry of the standard normal joint PDF and its exponential decay in
both the radial and tangential directions. An optimum point at which to approximate
the limit-state surface (LSS) G(y)= 0 is the “design point’’ (DP), which is defined as the
most likely failure point in the standard normal space, i.e., the point on the LSS that
is closest to the origin. Finding the DP is a crucial step for approximate methods to
evaluate the integral in Eq. (9), such as FORM and SORM and importance sampling
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(IS) (Breitung 1984, Der Kiureghian 1996, Au et al. 1999). The DP, y∗, is found as
solution of the following constrained optimization problem:

y∗ = arg {min (0.5yTy)|G(y) = 0} (10)

The most effective techniques for solving the above constrained optimization prob-
lem are gradient-based optimization algorithms (Gill et al. 1981, Liu & Der Kiureghian
1991) coupled with algorithms for accurate and efficient computation of the gradient
of the constraint function G(y), requiring computation of the sensitivities of response
quantities r to parameters θ. Using the implicit function theorem together with the
chain rule of differentiation for multi-variable functions, ∇yG can be obtained as

∇yG = (∇rg|θ · ∇θr + ∇θg|r) · ∇yθ (11)

where ∇rg|θ and ∇θg|r = gradients of LSF g with respect to its explicit depen-
dency on quantities r and θ, respectively, and usually can be computed analytically;
∇θr= sensitivities of response variables r to parameters θ, and ∇yθ= gradient of physi-
cal space parameters with respect to standard normal space parameters. For probability
distribution models defined analytically (with monotonically increasing joint CDF), the
gradient ∇yθ can also be derived analytically (Ditlevsen & Madsen 1996).

For real-world problems, the response simulation (computation of r for given θ) is
typically performed using advanced mechanics-based nonlinear computational models
developed based on the FE method. FE reliability analysis requires augmenting existing
FE formulations for response-only calculation to compute the response sensitivities,
∇θr, to parameters θ. As already seen in Section 2, an accurate and efficient way to
perform FE response sensitivity analysis is through the DDM.

4.1 Time-invariant rel iabi l i ty analysis

A time-invariant reliability analysis is performed on the same three-story reinforced
concrete building as in Sections 2.4 and 3, with the same probabilistic characterization
of the material constitutive parameters as well. In addition, the value of the maxi-
mum applied horizontal force (equal to the total base shear) is modelled as lognormal
random variable (see Figure 8(d)). A roof displacement ux3 = 0.3 m (corresponding
to a roof drift ratio of 3.1%) is considered as failure condition. First, a DP search is
performed (see Figure 8(a)) and a FORM approximation of the probability of failure
is obtained. Then, using the DP found in the FORM analysis, a SORM estimate is
obtained by computing the first principal curvature at the DP of the LSS and correct-
ing the FORM approximation with Breitung’s formula (Breitung 1984). Finally, an
IS analysis is performed using as sampling distribution a joint standard normal PDF
centred at the DP. It is found that the SORM approximation is distinctly more accurate
than the FORM approximation and close to the IS analysis result, which is used here
as reference result (Figures 8(b) and (c)).

4.2 Time-variant rel iabi l i ty analysis

The methodology presented in Section 4 for time-variant reliability analysis has been
tested on simple structures. Mean up-crossing rates are estimated by FORM (Eq. (7)).
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Figure 9 Mean out-crossing computation for linear elastic structures subjected to white noise
from at rest initial conditions: (a) SDOF system (T= 0.31 s, ζ= 0.10), and (b) 3-DOF steel
building model (T1 = 0.38 s,T2 = 0.13 s,T3 = 0.09 s, ζ1 = ζ3 = 0.02, Rayleigh damping).

First, linear elastic SDOF and MDOF structures with at rest initial conditions are sub-
jected to white noise excitation. It is found that the mean up-crossing rates obtained
using FORM are in very good agreement with available closed-form solutions (Lutes &
Sarkani 1997) as shown in Figures 9(a) and (b) for SDOF and MDOF systems, respec-
tively, when a sufficiently small time-interval, dt, is used in discretizing the white noise
excitation process.

The same methodology is used for SDOF systems with a force-deformation rela-
tion modelled using a Menegotto-Pinto (MP) constitutive law (Menegotto & Pinto
1973). This constitutive law is calibrated to a shear-type single-story steel frame
with height H= 3.20 m, bay length L= 6.00 m and made of European HE340A steel
columns. The system is defined by the following parameters (taken as determinis-
tic): mass M= 28800 kg, damping ratio ζ= 0.02, initial stiffness K= 40.56 kN/mm,
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Figure 10 Time-variant reliability analysis results for nonlinear hysteretic SDOF systems: (a) quasi-
linear behaviour and (b) significantly nonlinear behaviour.

initial yield force Fy0 = 734 kN and post-yield to initial stiffness ratio b= 0.05. This
SDOF system is subjected to two different input ground motions modelled as white
noises with power spectral density φ0 = 0.035 m2/s3 and φ0 = 0.25 m2/s3, respectively.
The expected cumulative number of up-crossings and time-variant failure probabil-
ity relative to the roof displacement exceeding the threshold ξ= 0.016 m (roof drift
ratio= 0.5%) and ξ= 0.048 m (roof drift ratio= 1.5%), respectively, are computed
using FORM and MCS. Figure 10(a) compares the estimates of the expected number of
up-crossings obtained using FORM and MCS (with ± one standard deviation interval
as well) for the case φ0 = 0.035 m2/s3 and ξ= 0.016 m, for which the structure behaves
quasi-linearly. Figure 10(a) also compares the time-variant failure probability estimates
obtained through the FORM-based Poisson approximation and MCS. Figure 10(b)
compares the same estimates as in Figure 10(a), but for the case φ0 = 0.25 m2/s3 and
ξ= 0.048 m, for which the structure yields significantly. The insets of Figures 10(a)
and (b) provide the DP force-displacement responses for 5.0 s of excitation.

For quasi-linear structural behaviour, the results in terms of expected cumulative
number of up-crossings obtained using FORM are in good agreement with the MCS
results. In this case, the difference between the FORM-based Poisson approxima-
tion and MCS estimate of the time-variant failure probability is mainly due to the
relatively high value of Pf, for which the Poisson assumption of statistically indepen-
dent up-crossing events is not valid. On the other hand, a FORM approximation
of the LSS for significantly nonlinear structural behaviour provides a very inaccu-
rate estimate of the expected cumulative number of up-crossings and therefore of
the time-variant failure probability. Thus, computationally efficient methodologies are
needed to take into account the nonlinear nature of the LSS for mean out-crossing rate
computation.
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4.3 Limit-state surface topology and
mult idimensional visual ization

Knowledge about the topology (in both the physical and standard normal spaces)
of the LSSs corresponding to a given reliability problem is extremely valuable in
(1) gaining physical and geometrical insight into the structural reliability problem
at hand, (2) analyzing the inaccuracies of the FORM/SORM approximations for
time-invariant probability of failure and mean out-crossing rate computation, and
(3) pointing to more efficient and accurate computational reliability methods for eval-
uating the probability content of typical failure domains. The study of the topology
of LSSs is a challenging task and requires visualization of nonlinear hyper-surfaces in
high-dimensional spaces (i.e., physical or standard normal space defined by random
parameters representing loading, geometric and material properties).

A new methodology, herein referred to as Multidimensional Visualization in the
Principal Planes (MVPP), is proposed for visualizing the shape of LSSs in FE reliability
analysis in the neighbourhood of the DP(s). The MVPP requires finding the trace of
the LSS in the planes of principal curvatures at the DP(s) (Principal Planes: PPs) in
decreasing order of magnitude of the principal curvatures. Each PP is defined by the
DP vector y∗ and one of the eigenvectors (Principal Direction: PD) of the following
Hessian matrix A (Der Kiureghian & De Stefano 1991)

A = Hred∥∥∥∇yG|y∗
∥∥∥ (12)

in which [Hred]i,j = [R ·H ·RT]i,j is the reduced Hessian, with i, j= 1, 2, . . . , N− 1 and
N= number of random parameters, H= (N×N) Hessian matrix of the LSF at the DP,
R=matrix of coordinate transformation so that the new reference system has the N-th

axis oriented as the DP vector y∗, and
∥∥∥∇yG|y∗

∥∥∥=Euclidean norm of the gradient

of the LSF at the DP. The PDs are sorted in decreasing order of magnitude of the
corresponding eigenvalues.

In this study, the Hessian matrix is obtained by forward finite difference calculations
applied to the DDM-based response sensitivities. For accurate FE models of realistic
structural systems with a large number of uncertain model parameters, this approach
for computing the Hessian matrix, which is then used to compute the major eigenval-
ues/eigenvectors, could be computationally prohibitive. Methods are under study for
obtaining computationally affordable approximations of the Hessian matrix able to
produce sufficiently accurate major eigenvalues/eigenvectors. In addition, the use of
an existing algorithm (Der Kiureghian & De Stefano 1991) for computing eigenvalues
(and corresponding eigenvectors) in order of decreasing magnitude without having to
compute the Hessian matrix is also being considered.

The MVPP methodology provides important information about the topology of the
LSS identifying a small number of dimensions which are of interest and thus requiring
a limited number of FE simulations to visualize the LSS.

4.4 New hybrid method for f inite element rel iabi l i ty analysis

As shown in Sections 4.1 and 4.2, FORM approximation of the LSS(s) can provide
a very crude estimate of the time-invariant and time-variant (using mean out-crossing
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rate computation) failure probability of a structural system exhibiting a strongly non-
linear material behaviour. Information about the topology of the LSS(s) near the DP(s)
can be used effectively in order to improve on the FORM approximation accounting
for nonlinearities in the LSF.

A currently under development hybrid time-invariant reliability method, referred
to herein as DP-RS-Sim method and able to enhance the FORM/SORM estimates of
time-invariant and time-variant failure probabilities for structural and/or geotechnical
systems, is briefly presented and illustrated below. The DP-RS-Sim method combines
(1) the DP search (used in FORM and SORM), (2) the Response Surface (RS) method to
approximate in analytical (polynomial) form the LSF near the DP, and (3) a simulation
technique (Sim), to be applied on the response surface representation of the actual LSF.

The proposed method is suitable, with minor variations, for both component and
system time-invariant reliability problems and for component mean out-crossing rate
computations. The main steps of the DP-RS-Sim method for time-invariant component
reliability analysis involving a LSS with a single DP are:

1. Search for the DP (step common to FORM, SORM and the MVPP method).
2. Computation of (few) PDs (step common to SORM with curvature fitting and the

MVPP method).
3. Use of RS method to approximate analytically the LSF near the DP as the sum of

a nonlinear part (in the few transformed variables defined by the DP vector and
the computed PDs) and a linear part (in the remaining transformed variables and
defined by the gradient at the DP). This step is unique to the proposed DP-RS-Sim
method.

4. Estimate of the time-invariant failure probability using crude MCS or any other
more advanced simulation technique (e.g., IS) applied on the analytical response
surface approximation of the actual LSF.

In time-invariant system reliability analysis, the DP-RS-Sim method requires repeat-
ing the first three steps defined above for each of the components (LSFs) and applying
the fourth step after forming a Boolean indicator which provides correspondence
between failures of the single components and failure of the system. Time-invariant
component reliability analysis with a LSS characterized by multiple DPs can be inter-
preted as a special case of a time-invariant system reliability problem, with the failure
domain given by the union of the failure domains defined by the response surfaces
approximating the original LSF in the neighbourhood of each of the DPs. Time-variant
component reliability analysis is treated using the DP-RS-Sim method to compute
the mean out-crossing rate with the limit relation in Eq. (7), in which the two LSSs
{g(r(θ, t),θ)= 0} and {g(r(θ, t+ δt), θ)= 0} are approximated at their DPs with the RS
method.

The use of the DP-RS-Sim method in the case of a time-variant reliability problem
is illustrated using the same MP SDOF system defined in Section 4.2 (with determin-
istic parameters) when subjected to white noise base excitation with power spectral
density φ0 = 0.25 m2/s3 and displacement threshold ξ= 0.048 m (corresponding to the
significantly nonlinear behaviour case in Section 4.2). Figures 11(a) and (b) provide
visualization of the LSSs at times t= 1.0 s and t+ δt= 1.001 s using the MVPP method
in the first and second PPs, respectively. The traces of these two LSSs (obtained as the
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Figure 11 Visualization of LSS by the MVPP method and different response surface approximations
for mean up-crossing rate computation at time t= 1.0 s for nonlinear hysteretic MP
SDOF system: (a) 1st PP and (b) 2nd PP.

zero level contour lines of the LSF simulated over a fine grid of points in each PP)
are compared with different response surface approximations, namely a 1st order
(FORM), 2nd order and 8th order polynomial approximation. It is seen that the
8th order response surface approximates the actual LSSs fairly well in the first PP
(Figure 11(a)) and very well in the second PP (Figure 11(b)).

The DP-RS-Sim method is applied to compute the time-variant failure probability
(for T= 5.0 s) of the inelastic SDOF system defined above. The probability of fail-
ure is estimated by integrating numerically the mean out-crossing rate computed at
given instants of time (t= 0.25 s, 0.5 s, 0.75 s, 1.0 s, 1.5 s, 2.0 s, 3.0 s, 4.0 s and 5.0 s).
The Gaussian white noise excitation is discretized with dt= 0.01 s into 25, 50, 75,
100, 150, 200, 300, 400, and 500 random variables for these instants of time. Each
of the LSFs is approximated with a response surface obtained as the sum of an 8th
order polynomial in the four transformed variables defined by the DP vector and
the first three principal directions and a 1st order polynomial in the remaining vari-
ables (i.e., hyperplane tangent to the LSS at the DP). The probability content of the
hyper-wedge defined by the intersection of the two component failure domains, see
Eq. (7), is estimated via IS with sampling distribution centred at the DP. Figure 12 com-
pares the results obtained through crude MCS for the expected cumulative number of
up-crossings, E[N], and the failure probability, Pf, with the upper bound approxima-
tion of the failure probability obtained through FORM and DP-RS-Sim. The results
obtained show that the error due to the use of the analytical upper-bound to the prob-
ability of failure Pf is small, while the error due to the use of a FORM approximation
to E[N] is very high (error= 266% at time t= 5.0 s). The DP-RS-Sim method reduces
significantly the error by FORM, providing very good estimates of E[N] (error= 16%
at time t= 5.0 s) with a reasonable additional computational cost compared to FORM.
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Figure 12 Time-variant reliability analysis of nonlinear hysteretic MP SDOF system: comparison
of FORM and DP-RS-Sim (hybrid) method results with Monte Carlo (MC) simulation
results.

5 Conclusions

This study presents recent advances in finite element (FE) response sensitivity, simpli-
fied probabilistic response and reliability analyses of structural and/or geotechnical
systems. These developments are integrated into general-purpose frameworks for
nonlinear FE response analysis. The objective is to extend the analytical tools used
extensively by practicing engineers in order to propagate uncertainties through non-
linear static and dynamic analyses of actual structural and/or geotechnical systems to
obtain probabilistic estimates of their predicted performance. Extensions of the Direct
Differentiation Method (DDM) to nonlinear material FE models of structural and/or
geotechnical systems are presented.

The mean-centred First-Order Second-Moment (FOSM) method is presented as sim-
plified FE probabilistic response analysis method. The FOSM method is applied to
probabilistic nonlinear pushover analysis of a structural system. It is found that a
DDM-based FOSM analysis can provide, at low computational cost, estimates of
first- and second-order FE response statistics which are in good agreement with sig-
nificantly more expensive Monte Carlo simulation estimates when the frame structure
considered in this study experiences low-to-moderate material nonlinearities.

Time-invariant and time-variant reliability analysis capabilities are also illustrated.
The geometry of limit-state surfaces near the design point(s) (DPs) is explored in
reduced-dimension spaces defined by planes of major principal curvatures at the
DP, following a newly developed technique called Multidimensional Visualization in
the Principal Planes. This new geometrical insight explains the lack of accuracy of
FORM-based solutions in some cases and suggests the use of existing and development
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of new improved solution strategies. In particular, a new hybrid reliability method
referred to as the DP-RS-Sim method is presented and illustrated through an example
of mean out-crossing rate computation for a nonlinear hysteretic single-degree-of-
freedom system. The methodology presented in this work allows, in general, obtaining
at reasonable computational cost FE reliability analysis results that are sufficiently
accurate for engineering purposes.

Extension of the DP-RS-Sim method to nonlinear hysteretic multi-degree-of-freedom
FE models of actual structural and/or geotechnical systems is currently under study by
the authors.
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Chapter 3

Energy-momentum algorithms for
nonlinear solid dynamics and
their assumed strain finite
element formulation

Francisco Armero
University of California, Berkeley, USA

ABSTRACT: We present in this paper a new assumed strain finite element formulation
(or B-bar method) for the locking-free simulation of nearly incompressible elastic and inelastic
solids in the finite deformation dynamic range that also preserves the conservation/dissipation
properties of the so-called energy-dissipative momentum-conserving (EDMC) time-stepping
algorithms. The general setting of finite strain plasticity is considered, including hyperelastic
models as a particular case. The main motivation of this work is to avoid the nonlinear numer-
ical instabilities observed in classical numerical schemes with unbounded growth of the energy
(even in the plastic case) by introducing the exact dissipation/conservation of the energy in the
discrete system by design. The incorporation of the conservation laws of linear and angular
momenta, and the preservation of the associated relative equilibria, is also obtained. The paper
identifies the conditions that the linearized strain operator (or, simply, the B-bar operator as it is
usually known) has to satisfy for the preservation of these properties in time. These conditions
require the definition of the assumed strain operator, originally developed by with spatial consid-
erations only, accounting for the temporal discretization in the definition of the associated strain
variations. As a result, we arrive to a fully discrete system in space and time that shows exactly
all these conservation/dissipation laws of the underlying physical system, including the exact
plastic dissipation of the energy, with exact energy conservation for elastic steps. Numerical
simulations are presented to illustrate the performance of the new formulation.

1 Introduction

Classical time-stepping algorithms, like the Newmark or HHT schemes, developed
originally in the context of linear elastodynamics, are known to lead to severe numer-
ical instabilities in the nonlinear finite deformation range, even for schemes that are
unconditionally stable in the linear range; see e.g. Simo & Tarnow (1992); Armero &
Romero (2001a), among others, or the results presented here. These instabilities are
characterized by an unbounded growth of the energy, and have been observed even
in the context of elastoplastic models (Meng & Laursen, 2002; Armero, 2006). This
situation, and the lack of the conservation law of angular momentum in many of these
classical schemes, has motivated a large amount of recent literature on the formulation
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of the so-called energy-momentum schemes. These schemes inherit the conservation
laws of energy and momenta of the underlying physical system by design.

We refer to Simo & Tarnow, (1992); Crisfield & Shi (1994); González (2000) for
an illustration of energy-momentum methods in nonlinear elastic problems, and to
Meng & Laursen (2002); Noels et al. (2004); Armero (2006); Armero & Zambrana-
Rojas (2007) for formulations considering the elastoplastic range where the goal is to
capture the exact plastic dissipation (with exact conservation for elastic steps) while still
preserving the momentum conservation laws. Extensions of these methods to incor-
porate an additional controllable numerical energy dissipation in the high-frequency
range in order to handle the characteristic numerical stiffness of typical mechanical and
structural system of interest have been proposed in Armero & Romero (2001a, b); for
nonlinear continuum elastodynamics and in Romero & Armero (2002); Armero &
Romero (2003) in the context of rod and shell Cosserat models of nonlinear structural
dynamics. We refer to these time-stepping algorithms as EDMC schemes (for Energy-
Dissipative Momentum-Conserving). They include, as a particular case, some of the
aforementioned energy-momentum schemes.

All these references consider the finite element method for the spatial discretization.
The consideration of a nearly incompressible material response, like the one observed in
plastically deforming metals and captured by classical elastoplastic models of J2-flow
theory, requires the consideration of finite element formulations more sophisticated
than the basic displacement model to avoid the characteristic volumetric locking of this
basic formulation. To this end, the so-called assumed strain approach, as developed
originally by Nagtegaal et al. (1974); Hughes (1980) in the infinitesimal range and
Simo et al. (1988); Armero (2000) in the finite deformation range (both for static
problems), becomes very convenient as it only requires the proper definition of the
numerical approximation of the strains and their variations regardless of the material
model under consideration. In the continuum nearly incompressible context of interest
here, these formulations are also known as “B-bar’’ methods.

B-bar methods that lead to locking-free finite elements in general configurations
are well-known by now, including general linear and quadratic quadrilateral and tri-
angular elements for two dimensional problems, and similarly in 3D. Unfortunately,
their direct consideration in the dynamic range of interest here destroys completely
the conservation/dissipation properties outlined above when used in combination
of the aforementioned energy-momentum or EDMC schemes. These time-stepping
algorithms rely on specific incremental properties of the linearized strain operator
appearing in the equation of motion for a typical time step, properties that a straight-
forward evaluation of the B-bar operator, say at the mid-point, does not have. This
situation can be traced back to the nonlinear definition of the assumed deformation
gradient defining the assumed strain. For the incompressible limit of interest here, the
assumed deformation gradient involves a nonlinear scaling with its determinant or
Jacobian (another nonlinear operation) and the assumed Jacobian defined through a
weighted average over the element.

All these considerations lead to the need of a new B-bar operator if the fundamental
conservation laws of energy and momentum are to be preserved. The new operator
needs to account not only for the discrete finite element interpolations in space, but
also the discrete structure in time of the EDMC time-stepping algorithms, as presented
in this paper.
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2 The governing equations and their conservation laws

We consider a solid B ⊂ Rndim (ndim = 1, 2 or 3) and its motions ϕ(X, t) in time t for
the material particles X ∈ B, which satisfy the weak equation∫

B
ρoϕ̈ · δϕ dV +

∫
B

S : (FTGRAD[δϕ])s︸ ︷︷ ︸
=: 1

2 δC(ϕ,δϕ)

dV =
∫

B
ρob · δϕ dV +

∫
B

T · δϕ dA, (1)

for all admissible variations δϕ, that is, δϕ= 0 on the part of boundary ∂ϕB with
imposed deformation ϕ=ϕ, complementary to the part of the boundary ∂tB in (1)
where the tractions T are imposed. We have introduced in (1) the reference density
of the solid ρo, the acceleration ϕ̈= ∂2ϕ/∂t2, the specific body force b and the second
Piola-Kirchhoff stress tensor S, a symmetric tensor in the reference configuration B
of the solid. We observe the appearance of the conjugate variations δC/2 of the right
Cauchy-Green tensor C=FTF for the deformation gradient F =GRAD[ϕ].

The particular form of the governing equation (1) leads to a number of physical
conservation laws, very characteristic of the motions of solids and structures. In par-
ticular, denoting the velocity field by V = ϕ̇, we easily obtain for the case of a free solid
for brevity (i.e. for b= 0, T = 0 and ∂ϕB=∅) the conservation laws

l :=
∫

B
ρoV dV = constant and j :=

∫
B

ϕ× ρoV dV = constant, (2)

corresponding to the linear and angular momentum, respectively, after using the crucial
properties

δC(ϕ, c) = 0 and δC(ϕ, c × ϕ) = 0, (3)

for all constant vector fields c ∈Rndim . The relations (3) correspond to the infinitesimal
generators of the action of the Euclidean group Rndim × SO(ndim) associated with the
symmetry of the governing equations (1) under translations and rotations, respectively;
see e.g. Marsden (1992). This leads to the existence of special (dynamic) equilibrium
solutions given by the group motion

ϕet(X , t) = EXP[t SPIN[Ωe]] ϕe(X ) +
(∫ t

O
EXP[η SPIN[Ωe]] dη

)
V e, (4)

in terms of two fixed vectors Ωe and V e, the angular and translational velocities,
respectively, and the relative equilibrium configuration ϕe(X ) satisfying the equilibrium
equation∫

B
ρoΩe × [Ωe × ϕe + V e] · δϕ dV +

∫
B

S(ϕe) : FT
e GRAD[δϕ] dV = 0, (5)

again for all admissible variations δϕ; see Simo et al. (1991). The existence of these
relative equilibria relies again on the critical property of the strain variations

δC(ϕet, δϕ) = δC(ϕe, EXP[−t SPIN[Ωe]] δϕ), (6)
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along the group motion ϕet(X , t) in (4). Here, SPIN[Ωe] denotes the skew tensor with
axial vector Ωe, and EXP[SPIN[Ωe]] the rotation defined by the exponential map between
skew and rotation tensors.

Finally, we note that we always have the relation

d
dt

[∫
B

[
1
2
ρo‖V‖2 + W

]
dV
]

︸ ︷︷ ︸
=:H

= −
∫

B
D dV for D = S :

1
2

Ċ − Ẇ , (7)

for a general function W . Crucial again for obtaining the stress power in (7) is the
relation

δC(ϕ, ϕ̇) = Ċ, (8)

for the strain variations. The interest here is the consideration of material models with
W corresponding to the (internal) stored energy (H being the total energy with the
kinetic energy) and D the energy dissipation, a non-negative quantity by the second
law of thermodynamics.

In particular, we are interested in the case of finite strain plasticity characterized by
the multiplicative decomposition F =FeFp of the deformation gradient in an elastic
and plastic part; see Armero (2006) and references therein. The stresses are then given
in terms of an elastic potential We(Ce) for Ce =FeT

Fe as

S̃ = FpSFpT = 2
∂We

∂Ce , (9)

with the plastic part Fp defined by the plastic evolution equations (Lp = Ḟ
p
Fp−1

)

Dp: = sym
[
CeLp] = Fp−T

ĊFp−1− Ċ
e = γNφ (̃S, q), (10)

W p: = skew
[
CeLp] = γMWp (̃S, q), (11)

α̇ = γnφ (̃S, q), (12)

φ(̃S, q) ≤ 0, γ ≥ 0, γφ = 0 and γφ̇ = 0, (13)

for the yield surface φ(̃S, q) characterizing the elastic domain in stress space. We have
considered isotropic hardening, modeled by the equivalent plastic strain α and the con-
jugate stress-like variable q:=−∂H/∂α for a hardening potential H(α). In this setting,
the internal energy W =We +H with the plastic dissipation given by D= S̃ : Dp + qα̇.
The hyperelastic case is recovered for a fixed Fp, which is the case assumed for the
relative equilibria (5) (i.e. vanishing of the plastic evolution or γ = 0 in (10)–(13)).

3 EDMC time-stepping algorithms

The numerical solution of the governing equations (1) proceeds with the consideration
of their spatial and temporal discretizations. The spatial discretization of interest here
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starts with the finite element discretizations of the deformation and velocity fields

ϕ(X , tn+i) ≈ ϕh
n+i(X ) =

nnode∑
A=1

NA(X )
(
XA + dA

n+i

)
︸ ︷︷ ︸

=:xA
n+i

,

(14)

and

V (X , tn+i) ≈ V h
n+i(X ) =

nnode∑
A=1

NA(X )vA
n+i, (15)

with i= 0, or 1, and for the shape functions NA(X ) associated to the nnode nodes with
nodal (reference) coordinates XA, displacements dn+i and velocities vn+i in a typical
time step [tn, tn+1] with �t = tn+1 − tn, not necessarily constant.

Using standard procedures, together with a one-step mid-point interpolation in time(
vn+ 1

2
:= (vn + vn+1)/2

)
, we obtain the discrete algebraic system of equations

1
�t

M(vn+1 − vn)+
∫

Bh
B

T
∗ S∗ dV = f ext, (16)

dn+1 − dn = �tvn+ 1
2
, (17)

for a (symmetric) stress approximation S∗ to be defined. Here, we have introduced
the standard nodal external force f ext and the mass matrix M defined as usual by the
assembly of element contributions M =Anelem

e=1 MAB
e 1 with

MAB
e =

∫
Bh

e

ρoNANB dV , or MAB =
∫

Bh
e

ρoNA dV δAB (no sum), (18)

for the consistent or lump forms of the mass. We have also considered an assumed
linearized strain operator B∗ (or, simply, the B-bar operator) defined by the relations

1
2
δC ≈ 1

2
δC ≈ B∗δd, (19)

for the nodal variations δd. Note the approximate signs in this equation, indicat-
ing numerically consistent approximations (in fact, second order approximations of
the mid-point values). In particular, the stresses are assumed to be given in terms of

the assumed strains C=F
T

F for an assumed deformation gradient F ≈GRAD[ϕh] as
considered in the following section.

The goal is the development of numerical approximations that preserve the conser-
vation/dissipation laws of energy and momenta identified in the previous section for
the problem at hand, the so-called EDMC schemes. The conservation laws of linear
and angular momenta, defined in this discrete setting

lh
n+i =

nnode∑
A,B=1

MABvB
n+i and jh

n+i =
nnode∑

A,B=1

MABxA
n+i × vB

n+i, (20)
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(i.e. lh
n+1 = lh

n and jh
n+1 = jh

n for f ext = 0), follow easily from the considered mid-point
approximation (17), as long as the B-bar operator satisfies the relations

B∗̂c = 0 and B∗
̂(

c × xn+ 1
2

)
= 0, (21)

for a constant vector c ∈ Rndim (here, (̂·) denotes the global vector of nodal values
given by (·)). We observe that the conditions (21) are the discrete counterparts of the
relations (3) for the continuum problem.

The group motion associated to the relative equilibria of the discrete equations
(16)–(17) were obtained in Armero & Romero (2001a) and are given by

xA
en = Λnϕ

hA
e + un and vA

en = Λn[Ωe × ϕhA
e + V e], (22)

for fixed vectors Ωe and V e, and a sequence of rotations {Λn} and displacements {un}
defined recursively by the relations

Λn+1 = ΛnCAY[�t SPIN[Ωe]] and un+1 = un +�t Λn+ 1
2
V e, (23)

for Λn+ 1
2
:= (Λn +Λn+1)/2 (not a rotation in general) and the Cayley transform

CAY[�t SPIN[Ωe]]: =
[
1 + �t

2
SPIN[Ωe]

] [
1 − �t

2
SPIN[Ωe]

]−1

∈ SO(ndim), (24)

for the discrete relative equilibrium configuration ϕh
e given by the equation

M
(
Ωe × (Ω̂e × ϕh

e + ve)
)
+
∫

Bh
B

T
e S(ϕh

e ) dV = 0, (25)

as long as the condition

B∗e = BeΛ
T
n+ 1

2
, (26)

is satisfied along the group motion (22). We observe that equation (25) is the discrete
counterpart of the equilibrium equation (5). Thus the algorithm preserves the relative
equilibria of the system as long as the B-bar operator satisfies condition (26), the
counterpart of relation (6).

Finally, the counterpart of the energy conservation/dissipation equation (7) is
obtained as

Hn+1 − Hn = −
∫

B
�D dV for �D = S:

1
2
�C −�W , (27)

and

Hn+i = 1
2

vn+i · Mvn+i +
∫

Bh
e

Wn+i dV i = 0 or 1, (28)
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for the discrete system (16)–(17), as long as we have the relation

B∗(dn+1 − dn) = 1
2
�C, (29)

for the B-bar operator B∗ and the increment of the assumed strain �C/2.
Clearly, the interest here lies in the discrete dissipation (27) reproducing exactly

the dissipation of the continuum system. For the elastoplastic model (10)–(13), this
can be accomplished by considering the elastoplastic decomposition of the assumed
deformation gradient F= FeFp (see Section 4.1 below) and the discrete equations

1
2

(
[Fp]−T

n+ 1
2
�C[Fp]−1

n+ 1
2
−�Ce

)
= �γ Nφ (̃S∗, q∗), (30)

skew
[
[Ce]n+ 1

2
(Fp

n+1 − Fp
n)[Fp]−T

n+ 1
2

]
= �γ MWp (̃S∗, q∗), (31)

φ∗: = φ(̃S∗, q∗) ≤ 0, �γ ≥ 0, �γφ∗ = 0, (32)

as proposed in Armero (2006), with q∗ =−�H/�α and the stresses given by

S∗ = Fp
n+ 1

2
S̃∗F

pT

n+ 1
2

with

S∗ = 2
∂W
∂Ce

(
[Ce]n+ 1

2

)

+ 2
W(Ce

n+1) − W(Cn) − 2
∂W
∂Ce

(
[Ce]n+ 1

2

)
: �Ce

[Ce]−1
n+ 1

2
�Ce: �C

e
[Ce]−1

n+ 1
2

[Ce]−1
n+ 1

2
�Ce[Ce]−1

n+ 1
2
. (33)

Here we have introduced the notation [(·)]n+ 1
2
= ((·)n + (·)n+1)/2. The formula (33)

corresponds to a conserving approximation of the gradient formula (9) such that
S̃: 1

2�Ce =�We. It is a modification of the the original conserving formula proposed
in González (2000) by including the elastic metric [Ce]−1

n+ 1
2
, as it will become crucial

in the construction of the assumed B-bar operator in the following section. Again,
the exact plastic dissipation (including exact energy conservation for an elastic step) is
obtained by the return mapping algorithm (30)–(32) and the stress formula (33). This
situation adds the desired numerical stability to the algorithms as illustrated with the
numerical simulation presented in Section (5).

A variation of the return mapping algorithm (30)–(32) that also imposes exactly the
isochoric plastic response in isochoric plastic models, like the classical J2-flow theory
of metals, can be found in Armero & Zambrana-Rojas, (2007). Similarly, we refer to
Armero & Romero (2001a, b) for variations of the stress formula (33) that incorporate
a controllable high-frequency numerical energy dissipation to handle the usual high
numerical stiffness in the systems of interest.



50 Computat iona l s tructura l dynamics and earthquake eng ineer ing

4 Conserving assumed strain finite element methods

4.1 The assumed deformation gradient and its variat ions

The interest here is the development of assumed strain finite element methods for the
locking-free approximation of nearly incompressible material models, like the plastic-
ity models outlined above combined with a Mises-type deviatoric yield surface, while
exhibiting the conservation/dissipation laws obtained in the previous section. This can
be accomplished with the now standard scaled deformation gradient (see e.g. Armero
2000; Simo et al., 1988)

Fn+i =
(
�n+i

Jn+i

)1
3

Grad [ϕh
n+i] for Jn+i: = det

[
Grad [ϕh

n+i]
]

, (34)

(for i= 0, or 1) and the assumed Jacobian�= det [F] defined by the weighted average
at the element level

�n+i(X): = ΓT (X)H−1
∫

Bh
e

Γ(Y)Jn+i(Y) dV , (35)

for a set of nθ element interpolation functions Γ(X) and the corresponding matrix

H: =
∫

Bh
e

Γ(Y)ΓT (Y) dV ∈ Rnθ×nθ , (36)

over a generic element Bh
e . Typical choices are nθ = 1 and Γ= 1 in combination with a

bilinear quadrilateral or trilinear brick element (Q1/A0), and nθ = 3 with Γ= [1 ξ η]T

for the isoparametric coordinates (ξ, η) in plane problems (and similarly for 3D) in
combination with quadratic quadrilateral or triangular elements (Q2/A1 or P2/A1).

The consideration of the assumed right Cauchy-Green tensor Cn+i =F
T
n+iFn+i leads

to the variations δCn+i/2=Bn+iδdn+i for

B
A
n+i =

(
�n+i

Jn+i

)2
3
[
BA

n+i +
1
3

C(ϕh
n+i) ⊗ (gA

n+i − gA
n+i)

]
, (37)

defining the classical B-bar operator Bn+i in terms of the standard (displacement)
linearized strain operator

BA
n+i: =


(ϕh

n+i)
T
,1 NA

,1

(ϕh
n+i)

T
,2 NA

,2

(ϕh
n+i)

T
,1 NA

,2 + (ϕh
n+i)

T
,2 NA

,1

 for A = 1, nnode, (38)

for plane problems (similarly for 3D), and the spatial gradients

gA
n+i: = F−T

n+iG
A and gA

n+i: = ΓTH−1
∫

Bh
e

Γ gA
n+i dV , (39)
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for the material gradients GA :=GRAD[NA]= [NA
,1 NA

,2]T (A= 1, nnode) as used in (38).
Here we consider i= 0, 1/2 or 1, with i= 1/2 corresponding to the evaluation of the
different quantities above in the mid-point configuration ϕh

n+ 1
2
= (ϕh

n + ϕh
n+1)/2.

The standard choice Bn+ 1
2

in the governing equation (16) does not lead, however, to
a conserving approximation. The conditions (21) can be easily seen to be satisfied, but
the conditions (26) and (29) for the conservation of the relative equilibria and energy
are not. This situation is to be traced to the spatial gradients gA

n+ 1
2

in (39). First, we

observe that during the group motion (22) we have Fn =ΛnFe and Fn+1 =Λn+1Fe for
the equilibrium deformation gradient Fe, but

gA
n+ 1

2
= Λ−T

n+ 1
2

F−T
e GA︸ ︷︷ ︸
=:gA

e

= Λ−T
n+ 1

2
gA

e �= Λn+ 1
2
gA

e , (40)

as required for (26), since Λn+ 1
2
= (Λn +Λn+1)/2 is not a rotation in general. Similarly,

the condition (29) is not satisfied, in part because

nnode∑
A=1

gA
n+ 1

2
· (dA

n+1 − dA
n ) �= (Jn+1 − Jn)

[J]n+ 1
2

, (41)

for [J]n+ 1
2
= (Jn + Jn+1)/2, as it would be expected from its continuum counterpart

(J̇ = J ∇v : 1 for the spatial velocity gradient ∇v).

4.2 A new conserving B-bar operator

Faced with the difficulties observed in the previous section, we introduce the new
modified spatial gradients

ĝA
n+ 1

2
: = Fn+ 1

2
[C]−1

n+ 1
2
GA + 2

Jn+1 − Jn

[J]n+ 1
2

− 1
2 [C]−1

n+ 1
2
: �C

[C]−1
n+ 1

2
�C: �C[C]−1

n+ 1
2

Fn+ 1
2
[C]−1

n+ 1
2
�C[C]−1

n+ 1
2
GA,

(42)

for A= 1, nnode, and their assumed counterparts

ĝ
A
n+ 1

2
= 1

[�]n+ 1
2

ΓTH−1
∫

Bh
e

Γ [J]n+ 1
2
ĝA

n+ 1
2

dV , (43)

where we note the use of the average Jacobian [J]n+ 1
2
= (Jn + Jn+1)/2. We observe that

these modified spatial gradients do satisfy, by construction, the relations

nnode∑
A=1

ĝA
n+ 1

2
·(dA

n+1−dA
n ) = Jn+1 − Jn

[J]n+ 1
2

and
nnode∑
A=1

ĝ
A
n+ 1

2
·(dA

n+1−dA
n ) = �n+1 −�n

[�]n+ 1
2

, (44)
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and

ĝA
n+ 1

2
= Λn+ 1

2
gA

e and ĝ
A
n+ 1

2
= Λn+ 1

2
gA

e , (45)

along the group motion (22), all for A= 1, nnode. We can observe the similarities with
the stress formula (33) and, in particular, the use of the reference (convected) met-
ric [C]n+ 1

2
to arrive at the proper transformation properties for the modified spatial

gradients.
With these definitions at hand, we introduce the following new B-bar operator

B
A
∗ =

[
�

2
3

]
n+ 1

2

[
J−

2
3

]
n+ 1

2

BA
n+ 1

2
+ 1

2

[
�

2
3

]
n+ 1

2

D

(
− 2

3

)
J [C]n+ 1

2
⊗ ĝA

n+ 1
2

+ 1
2 D

(
2
3

)
θ

[
J−

2
3 C
]

n+ 1
2

⊗ ĝ
A
n+ 1

2
,

(46)

for A= 1, nnode where

D(a)
(·) :=


[(·)]n+ 1

2

((·)n+1)a − ((·)n)a

(·)n+1 − (·)n
for (·)n+1 �= (·)n,

a
(
[(·)]n+ 1

2

)a
for (·)n+1 = (·)n,

(47)

for a generic quantity (·) and exponent a. By the way, we note that the formulas (33) and
(42) are well-defined, with the quotients vanishing when Ce

n+1 =Ce
n and Cn+1 =Cn,

respectively. No singularity occurs.
The different terms in the expression (46) can be seen to be second-order approxi-

mation of the variations of the assumed C. Some long algebraic manipulations show
that this new B-bar operator satisfies the desired conditions (21), (26) and (29). In
particular, the relation (26) for the relative equilibria is satisfied for the assumed B-bar
operator

B
A
e =

(
�e

Je

) 2
3
[
BA

e + 1
3

Ce ⊗
(
gA

e − gA
e

)]
for A = 1, nnode, (48)

at the equilibrium configuration ϕh
e . Hence, the new B-bar operator (46) leads to a

fully energy-momentum assumed strain finite element formulation when combined
with the EDMC time-stepping algorithms considered in Section 3, obtaining in this
way a (energy) stable formulation that avoids volumetric locking.

5 Representative numerical simulations

To illustrate the performance of the algorithms developed in this paper, we present
the results obtained in the simulation of a three-dimensional solid in free flight.
Figure 1 depicts the initial configuration of the solid. It consists of a rigid cylin-
drical core of diameter 20.00 and height 16.66, and two arms with dimensions
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Figure 1 Three-dimensional elastoplastic solid in free flight. Sequence of deformed configurations
in the early stages of the motion with the distribution of the equivalent plastic strain α,
obtained with the EDMC scheme.

40.00× 7.25× 3.33 each. The rigid core is modeled through a very stiff elastic
response, while the arms are elastoplastic.

We consider J2-flow theory of elastoplasticity, defined by the plastic evolution
equations (10)–(13) and the classical von Mises yield surface

φ = ‖τ‖ −
√

2
3

(σo + Hα) ≤ 0, (49)

in the Kirchhoff stresses τ =FSFT =FeS̃FeT
, with a uniaxial yield limit σo and lin-

ear hardening with modulus H. The elastic response is governed by the hyperelastic
relation (9) with Hencky’s stored energy function

We(Ce) = 1
2
κ( log (Je))2 + 1

4
µ‖ log (Ce)‖2, (50)
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Figure 2 Three-dimensional elastoplastic solid in free flight. Evolution of the three components
of the angular momentum j (left) and the total energy (right) obtained with the EDMC
scheme, with the latter plot including the evolution of the energy obtained with the
classical trapezoidal rule.

for elastic constants κ and µ. The values κ= 58.333, µ= 26.923, σo = 40, H = 80
and reference density ρo = 0.5 are assumed for the arms, and κ= 17.500 · 102,
µ= 8.0769 · 102 and ρo = 8.93 for the central cylindrical core.

A velocity field corresponding to a rotation around the center of mass (see the asso-
ciated angular momentum in Figure 2) is imposed at t = 0 leading to the motion shown
in Figure 1 for the early stages. This figure shows the solution obtained with the new
B-bar method developed in this work combined with the EDMC return mapping
scheme (30)–(32). The motion clearly involves large displacements and strains, for both
finite elastic and plastic strains. Figure 1 also shows the distribution of the equivalent
plastic strain α superposed to the deformed configuration of the solid.

Figure 2 shows the evolution in time of the three components of the angular momen-
tum j and the total energy H obtained with the EDMC scheme for a constant time step
of �t = 0.5. The Cartesian reference system is aligned with the axes of the cylindrical
core and arms. The exact conservation of the angular momentum for this scheme,
including the new B-bar method developed here, is confirmed as it is the non-negative
energy dissipation during the solution. Exact energy conservation is observed for elastic
steps.

This situation is to be contrasted with the solution obtained with the classical trape-
zoidal rule (Newmark γ = 1/2, β= 1/4) in combination with the standard exponential
return map for the evaluation of the stresses. This scheme involves the evaluation of
the equation of motion, the stress divergence term in particular, at the end of the time
step tn+1. The standard B-bar operator (37) is considered in this case at that time,
which leads to the lack of angular momentum conservation. The computed solution is
also depicted in the energy plot in Figure 2. A nonlinear instability is observed with an
unbounded (non-physical) growth of the energy even though plasticity is occurring.
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6 Conclucions

We have presented a new assumed strain finite element method (or B-bar method)
that leads to exact energy and momentum conserving formulations when combined
with EDMC time stepping schemes for the temporal integration of the equations of
motion. The general setting of finite strain plasticity has been considered, requiring
the consideration of these assumed formulations to avoid the well-known volumetric
locking of basic displacement finite element methods. The new numerical algorithms
have shown to avoid, by design, the numerical instabilities that affect standard methods
in the nonlinear range of interest.
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Chapter 4

Energy conservation and
high-frequency damping in
numerical time integration

Steen Krenk
Technical University of Denmark, Lyngby, Denmark

ABSTRACT: Momentum and energy conserving time integration procedures are receiving
increased interest due to the central role of conservation properties in relation to the problems
under investigation. However, most problems in structural dynamics are based on models that
are first discretized in space, en this often leads to a fairly large number of high-frequency
modes, that are not represented well – and occasionally directly erroneously – by the model.
It is desirable to cure this problem by devising algorithms that include the possibility of intro-
ducing algorithmic energy dissipation of the high-frequency modes. The problem is well known
from classic collocation based algorithms – notably various forms of the Newmark algorithm –
where the equation of motion is supplemented by approximate relations between displace-
ment, velocity and acceleration. Here adjustment of the algorithmic parameters can be used
to introduce so-called α-damping, and an improved form leading only to high-frequency damp-
ing can be obtained by suitable averaging of the equilibrium equation at consecutive time steps.
Conservative time integration algorithms are obtained by use of an integral of the equation of
motion and the acceleration therefore does not appear as an independent parameter of these
algorithms. Typically they do not contain algorithmic parameters either. Algorithmic damping
can then be introduced in two ways: either by introducing artificial damping in terms of the
displacement and velocity vectors, or by introducing additional variables to represent damp-
ing. In the present paper it is demonstrated, how damping equivalent to the α-damping of the
Newmark algorithm can be introduced directly via displacement and velocity dependent terms.
It is furthermore shown, how this damping can be improved by introduction of a new set of
variables related to the displacement and velocity vectors by a suitable first order filter with
scalar coefficients. By this device an algorithmic damping can be obtained that is of third order
in the low-frequency regime. It is an important feature of both algorithms that they can be
arranged to require in each time step only the solution of a system of equations of the same size
of the corresponding quasi-static problem, followed by one or three vector updates with scalar
coefficients – the so-called ‘single step – single solve’ property.

1 Introduction

Time integration in dynamics of structures and solids has been a very active research
area for several decades. The first algorithm to find widespread use was the New-
mark family (Newmark 1959), in which approximate relations are used to express
the displacement and velocity vectors un+1 and vn+1 at the new time tn+1 in terms
of the new acceleration vector and current values of displacements, velocities and



58 Computat iona l s tructura l dynamics and earthquake eng ineer ing

accelerations. These relations permit elimination of un+1 and vn+1 from the equation
of motion at time tn+1, resulting in a system of equations for the acceleration vec-
tor at tn+1. The advantage of this scheme is its simplicity and its similarity with the
corresponding static problem. However, the Newmark algorithm family has several
shortcomings relating to high frequency components, algebraic constraints, and lack
of exact conservation properties.

Many models used in structural dynamics involve a spatial discretization, in which
the high frequency components do not represent the actual behavior in the original
problem. A well known effect is the dispersion introduced in elastic wave propagation
by spatial discretization. The limitation of the discretized model to low-frequency com-
ponents introduces a need for artificial damping of the high-frequency components,
so-called algorithmic damping. Ideally, the algorithmic damping shall have filter-like
characteristics, leaving the low-frequency response without damping, while imposing
a prescribed level of damping on the high frequency response. In the Newmark algo-
rithm family algorithmic damping can be introduced via a slight forward weighting
of the acceleration terms used in the representation of the velocity increment, i.e. by
increasing the value of the parameter γ slightly beyond the stability limit 1

2 . While
this introduces high-frequency damping as desired, it does not leave the low-frequency
response unaffected. In fact the algorithmic damping ratio increases linearly with the
non-dimensional frequency-timestep parameter �=ωh. This has prompted the devel-
opment of the so-called α-algorithms, where the equation of motion is satisfied in a
weighted average sense, with the weight factor α between present time tn and forward
time tn+1, e.g. Chung & Hulbert (1993) where stiffness and inertia forces are given
separate weights. It has recently been demonstrated that the various α-modifications
of the Newmark algorithm can all be obtained by introducing additional damping via
a first order filter on the response Krenk & Høgsberg (2005).

In many cases, e.g. wave propagation or kinematically non-linear problems, it is
preferable to use conservative integration methods, obtained from an integral of the
equation of motion, or directly as a finite increment of the momentum, Simo & Tarnow
(1992). These algorithms have the advantage that they conserve momentum, and may
also conserve total energy. Algorithmic damping can be introduced in these methods
by using an unequal weighting of current and forward values of velocity and internal
force, Armero & Romero (2001). This leads to damping with frequency dependence
like direct α-damping of the Newmark method. In the present paper it is demonstrated,
how the idea of representing the damping terms via a special set of variables, intro-
duced by a first order filter, can be used to remove the low frequency damping, while
retaining the desired high-frequency damping properties. The proper balance of the
terms is obtained by spectral analysis, and the paper therefore concentrates on linear
systems. However, the procedure can be extended to non-linear problems in a fairly
straightforward manner.

2 Basic equations and the state-space format

The following analysis is concerned with linear systems described by a discretized
model in terms of the nodal displacement vector u(t). The equation of motion is of
the form

Mü(t) + Cu̇(t) + Ku(t) = f(t) (1)
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where the system is described by the mass matrix M, the viscous damping matrix C
and the stiffness matrix K, while the external load vector is f(t). Time differentiation
is denoted by a dot, e.g. the velocity u̇= du/dt.

The energy balance equation corresponding to the equation of motion (1) is obtained
by multiplication with u̇T , followed by integration,

d
dt

(
1
2

u̇TMu̇ + 1
2

uTKu
)
= u̇T f − u̇TCu̇ (2)

The left side is the rate of change of the mechanical energy, consisting of the sum of
kinetic and elastic energy, and the right side contains the rate of work of the external
load and an energy disssipation term expressed by the viscous damping matrix. In
the development of discrete time integration algorithms it is desirable that they satisfy
a similar energy balance equation in discretized form, and that the damping term(s)
remain representative over the full frequency range in spite of the time discretization.

It is advantageous to recast the second order differential equation of motion into an
augmented set of first order differential equations by introduction of a new independent
variable representing the velocity, v= u̇. When this definition is multiplied by the
mass matrix M the augmented system for the state space variables [uT , vT ] takes the
symmetric form,[

C M
M 0

] [
u̇
v̇

]
+
[
K 0
0 −M

] [
u
v

]
=
[
f(t)
0

]
(3)

While traditional collocation based algorithms like the Newmark family with its
various modifications introduce an approximate relation between the displacement,
velocity and acceleration, the more recent momentum conserving approach to time
integration algorithms is based on an integrated form of the state-space equations. For
constant system matrices the first term in the state-space equation integrates exactly,
while the second term contains integrals of the displacement and velocity over the time
interval [tn, tn+1]= [t, t + h]. If the time mean value over the time interval is denoted
by an overbar, e.g. f = h−1

∫
h f dτ, the integrated state-space equations take the form

[
C M
M 0

] [
�u
�v

]
+ h

[
K 0
0 −M

] [
u
v

]
=
[
hf
0

]
(4)

where �u and �v are the finite increments over the time internal. The time integrals
of the displacement and velocity vectors are generally unknown, and thus u and v
must be represented by an approximation. For linear problems it is suitable to use the
arithmetic mean values

u = 1
2

(un+1 + un), v = 1
2

(vn+1 + vn) (5)

While the load can in principle be introduced by its time integral, in practice it is
convenient to use the arithmetic mean also for the load vector.
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The energy equation corresponding to the discretized equations (4) is obtained by
pre-multiplication of this equation with [�uT ,−�vT ].[

1
2

vTMv + 1
2

uTKu
]n+1

n
= �uT f −�uTC�u (6)

This discretized energy relation has a format that reproduces that of its continuous
counterpart (2). However, in spite of the similar formats the discretization leads to
a non-monotonic dependence of energy dissipation on the frequency of the response.
This implies that damping represented via a viscous damping matrix C will not lead
to the desired damping of high-frequency modes outside the range represented by the
time increment h.

3 Balanced dissipation

It is easily seen that damping can be obtained by introducing terms in the diagonal
of first matrix of the integrated state space equations (4). For a linear system without
structural damping introduction of terms of order O(h) this leads to the following
form,[

α1hK M
M −α2hM

] [
�u
�v

]
+
[
K 0
0 −M

] [
hu
hv

]
=
[

hf
0

]
(7)

The extra diagonal terms are determined by the fact that only the system matrices K
and M are available, and the extra terms must be of order O(h). The energy balance
equation is obtained by pre-multiplication with [�uT ,−�vT ].[

1
2

vTMv + 1
2

uTK u
]n+1

n
= �uT f − α1�uTK�u − α2�vTM�v (8)

It is seen that both coefficients α1 and α2 contribute an energy dissipation term, when
they are positive. The optimal balance between these two terms is determined by a
spectral analysis.

3.1 Spectral analysis

The spectral analysis is performed on the free vibrations associated with the discretized
state-space equations (7), which for convenience are written in the generic form

B�w + Aw = 0 (9)

In this equation the matrices B and A represent the block matrices of (7), while the
vector wn contains all state-space variables at time tn. In practice the spectral analysis is
carried out using the mode shapes of the undamped equation of motion together with
the non-dimensional modal amplitude vector w= [u, hv]T . The time step h and the
angular modal frequency ω are combined into the non-dimensional frequency param-
eter �= hω. When the first equation in (7) is multiplied by h the matrices B and A can
be represented in non-dimensional form as

B =
[
α1�

2 1
1 −α2

]
, A =

[
�2 0
0 −1

]
(10)
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The free vibrations satisfy the evolution equation

wn+1 = λwn (11)

in terms of the amplification factor λ. Substitution of the free vibration solution (11)
into the generic equation of motion (9) leads to the generalized eigenvalue problem

(A + 2zB)wn = 0 (12)

where the eigenvalue z is related to the amplification factor λ by the Möbius
transformation

z = λ− 1
λ+ 1

, λ = 1 + z
1 − z

(13)

Stable solutions require the amplification factor to be on or within the unit circle in the
complex plane. The Möbius transformation maps the unit circle on the left complex
half-plane, and thus in general stability can be analyzed in terms of the variable z by
the Routh-Hurwitz criterion.

In the present case the spectral analysis of the algorithm can be carried out explicitly.
In order for the solutions z to be separate complex conjugate or at most isolated double
roots on the real axis it is necessary that the two damping parameters are equal, and
it is convenient to use the common value

α1 = α2 = 1
2
α (14)

It can be shown that the characteristic equation for the amplification factor λ with
damping parameters given by (14) is identical to that of the Newmark algorithm with
‘alpha damping’ characterized by the parameters γ = 1

2 +α and β= 1
4 (1+α)2, see e.g.

(10) in Krenk & Høgsberg, (2005). While this leads to identical frequency depen-
dence of the amplification factor λ for the method of balanced damping and the alpha
damped Newmark method, the spectral analysis of the Newmark method makes use
of a non-orthogonal transformation in setting up the eigenvalue problem for λ, and
thereby introduces an undesirable bias into the energy balance equation as discovered
in Hughes, (1979) and analyzed in detail in Krenk, (2006a). The balanced damping
algorithm retains the original energy function, and therefore is not prone to energy
oscillations and potential overshoot in connection with rapid transients, as the various
forms of damped Newmark algorithms are.

The solution to the characteristic equation with damping parameters given
by (14) is

λ = 1 ± 1
2 (1 − α)i�

1 ∓ 1
2 (1 + α)i�

(15)

The two branches of the locus of the complex amplification factor λ are shown in Fig. 1a
for |λ∞|=0.6. They connect the low-frequency limit λ0 = 1 with the high-frequency
limit

λ∞ = −1 − α
1 + α (16)
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Figure 1 Balanced damping with λ∞ = 0.6. a) Amplification factor λ, b) Spectral radius |λ|max.

for �→∞. For α= 0 there is no damping, and the amplification factor λ traces the
unit circle.

The spectral radius |λ| is shown as function of the non-dimensional frequency�=ωh
in Fig. 1b for |λ∞|=0.6. Different values of |λ∞| lead to similar curves. It is characteris-
tic for all the curves that damping sets in well below�= 1. The detailed low-frequency
behavior follows from the asymptotic analysis below.

3.2 Low-frequency asymptotics

The information to be gained from a discrete numerical time integration is limited by
the sampling rate represented by the non-dimensional frequency �=ωh. The Nyquist
frequency corresponds to two sampling points per period, and thereby to �=π.
A practical upper frequency limit for representation of a harmonic signal is �� 1, cor-
responding to about 6 points per period. It is of interest to obtain explicit asymptotic
expressions for the ‘quality’ of the time integration algorithm for the low-frequency
range. The quality is typically characterized by the amount of damping and the error
of the period of an ideal harmonic oscillation.

The damping of the algorithm is characterized by the spectral radius |λ|. It follows
from the solution (15) for the amplification factor that

|λ| = 1 − 1
2
α�2[1 + O(�2)] (17)

It is convenient to express this result in terms of the algorithmic damping ratio ζ,
defined by the attenuation of a damped vibration per increase in phase angle, i.e. by
|λ| = exp(−ζϕ). The low-frequency algorithmic damping ratio then follows from the
asymptotic expression (17) as

ζ = 1
2
α�[1 + O(�2)] (18)
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Figure 2 Response parameters for |λ∞|= 0.8. a) Damping ratio, b) Period error.

Thus, the introduction of balanced dissipation into the conservative time integra-
tion algorithm introduces a low-frequency damping that increases linearly with the
non-dimensional frequency �. The behavior of the Newmark algorithm with alpha
damping is identical Krenk & Høgsberg (2005). The damping ratio is shown in Fig. 2a
by the dashed curve for |λ∞|=0.8. The linear increase with � for low frequencies is
clearly seen.

The phase angle ϕ of the algorithm is determined from damped harmonic response
by λ= |λ| exp(±iϕ). The low-frequency asymptotic expression can be calculated from
(15) as

ϕ = �− 1
12

(1 + 3α2)�3 + O(�5) (19)

From this expression the relative error of the period T = 2π/ω follows as

�T
T

= �

ϕ
− 1 = 1

12
(1 + 3α2)�2 + O(�4) (20)

It is seen that the period error is positive and that algorithmic damping increases
the period error further. Thus, it is desirable to introduce only modest algorithmic
damping. The full behavior is shown in Fig. 2b by the dashed curve for |λ∞|=0.8.
The relative period error is seen to take on a very substantial value of around 0.5 before
the frequency reaches the Nyquist value �=π.

3.3 Balanced diss ipation algorithm

The algorithm with consistent energy dissipation can now be expressed for linear
systems including structural damping C. The state space form follows from substitution
of the value αj = 1

2α into the state-space equations (7). The formulation takes on a
particularly compact form when introducing the parameter

κ = 1 + α (21)



64 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Table 1 Algorithm with balanced energy dissipation.

1. System matrices K, C, M,

K∗ = κ
[

K+ 2
κh

C+
(

2
κh

)2

M

]
2. Initial conditions: u0, v0.
3. Increments n= n+ 1:

�u=K−1
∗

{
fn+1 + fn − 2Kun + 4

κh
Mvn

}
�v= 2�u/κh− 2vn/κ

4. Vector updates:
un+1 =un +�u, vn+1 = vn +�v

5. Return to 3 for new time step, or stop.

The last equation then gives the forward velocity vn+1 by the simple vector relation

�v = 2�u
κh

− 2vn

κ
(22)

while elimination of vn+1 from the first equation leads to

κ

[
K + 2

κh
C + 4

(κh)2
M
]
�u = (fn+1 + fn) − 2Kun + 4

κh
Mvn (23)

In this equation the displacement increment �u is determined by the effective stiffness
matrix

K∗ = κ

[
K + 2

κh
C + 4

(κh)2
M
]

(24)

It is seen that the terms are scaled as if extending the time increment from h to κh,
whereby the dynamic terms get less weight. A similar feature is found in the high-
frequency algorithm to be developed below, but now with a different definition of the
scaling parameter κ. The balanced dissipation algorithm is summarized in Table 1.

4 High-frequency dissipation

In this section it is demonstrated, how the algorithmic dissipation can be removed
from the low-frequency regime by a filter procedure similar to that introduced for
the Newmark algorithm in Krenk & Høgsberg (2005). In the balanced dissipation
algorithm the energy dissipation is introduced via the diagonal terms containing �u
and �v. In the low and mid-frequency regime these terms are equivalent to hu̇ and hv̇.
The idea is to replace these terms expressed by the state-space variables with similar
terms using a new set of variables s(t) and t(t) defined via first order filters.

νhṡ + s = hu̇, νhṫ + t = hv̇ (25)



Energy conservat ion and h igh- f requency damping 65

where the non-dimensional parameter ν determines the common time scale of the two
filters. At low frequencies the second term in the filter equation will dominate the first,
and thus the terms hṡ and hṫ used to represent damping will be nearly out of phase with
the state space derivatives u̇ and v̇, and thereby only produce a very reduced damping
effect.

When the increments�u and�v in the damping terms of the balanced algorithm (7)
are replaced by the increments 1

2ν�s and 1
2ν�t of the corresponding filtered variables,

it takes the form of the state-space equations[
C M
M 0

] [
�u
�v

]
+ h

[
K 0
0 −M

] [
u
v

]
+ 1

4
ναh

[
K 0
0 −M

] [
�s
�t

]
= h

[
f
0

]
(26)

supplemented by the discretized filter equations

ν

[
�s
�t

]
+
[
s
t

]
=
[
�u
�v

]
(27)

Substitution of the damping terms with the factor 1
2ν leads to an interpretation of

the damping parameter α similar to that of the balanced dissipation algorithm of the
present paper and the use in the Newmark method and its generalized alpha form. The
properties of the present algorithm are characterized by an energy balance equation
and a spectral analysis to be described next. The viscous damping matrix C is indicated
in the algorithm to identify its position and weighting but is not included in the energy
balance and spectral analysis.

4.1 Energy balance of extended state-space system

The energy balance equation of the filter algorithm follows from multiplication of the
state-space equations with [�uT ,−�vT ].[

1
2

vTMv + 1
2

uTKu
]n+1

n
= �uT f − 1

4
αν
(
�uTK�s +�vTM�t

)
(28)

In this form of the energy equation the dissipation is represented as the work of the
filtered variables through the corresponding displacement and velocity increments.
In order to obtain an energy equation in terms of positive definite quadratic terms,
the increments �u and �v are eliminated in the damping terms by use of the filter
equations (27). These two relations are now used to eliminate the coupled damping
terms from the energy balance equation (28) that then takes the form[

1
2

vTMv + 1
2

uTKu + 1
8
αν(tTMt + sTKs)

]n+1

n

= �uT f − 1
4
αν2(�sTK�s +�tTM�t) (29)

This is the energy balance equation of the total system consisting of the original state-
space variables u and v together with the corresponding filter variables s and t. Forα= 0
the energy conservation equation is recovered, and for α>0 and ν>0 the extended
energy defined in terms of all variables is positive definite and decreases as determined
by a positive definite quadratic form of the increments of the filter variables s and t.
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This secures unconditional stability of the filter algorithm given by (26) and (27) for
α>0 and ν>0.

4.2 Spectral analysis of the fi l ter algorithm

The spectral analysis of the extended state-space algorithm is based on the free vibration
response of a single mode of the equations (26) and (27). In the non-dimensional generic
format (9) this corresponds to the extended modal amplitude vector wT = [u, hv, s, ht]
and the matrices

A =


�2 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , B =


0 1 1

4αν�
2 0

1 0 0 − 1
4αν−1 0 ν 0

0 −1 0 ν

 (30)

The optimal value of the parameter ν results in equal damping of all the four modes in
the high-frequency limit�→∞, see e.g. the discussion in (26) and (27). In the present
case this implies that ν=α, corresponding to the quadruple root at infinity z∞=−1/α.
The corresponding high-frequency limit of the amplification factor λ∞ follows from
the Möbius transformation. It turns out that λ∞ is given by (16) as for the balanced
dissipation algorithm, thus retaining the interpretation of the damping parameter α.
In the low-frequency limit �= 0 there are two double roots, z0 = 0 and zf =−1/2α,
corresponding to the amplification factors

λ0 = 1, λf = −1 − 2α
1 + 2α

(31)

where the subscript f indicates branches introduced by the filters.
For the particular parameter choice ν=α the characteristic equation can be

solved for z and the amplification factor is obtained by use of the Möbius
transformation, Krenk (2008),

λ = 1 ± i(1 − α)�(±)
√

1 ± 2iα�

1 ∓ i(1 + α)�(±)
√

1 ± 2iα�
(32)

The sign (+) corresponds to the two branches with origin in λ0 = 1, whereas the sign (−)
corresponds to the two additional branches with origin at λf introduced by the filters.
The trace of the locus of the amplification factor in the complex plane is illustrated
in Fig. 3a for |λ∞|=0.6. The corresponding result for the balanced alpha-damping is
shown as dashed curves. It is seen that the filter damping stays much closer to the unit
circle to the left of the imaginary axis. This is in close correspondence with the effect
of ‘generalized alpha damping’ for the Newmark algorithm, illustrated in Krenk &
Høgsberg, (2005). The corresponding spectral radius max |λ| is shown in Fig. 3b. It is
seen that the spectral radius remains close to unity right up to �� 1 before decreasing
towards its value |λ∞|. The branches forming the small loop connecting λf and λ∞ are
generated by the filter variables. These branches are equivalent to the extra real-valued
root appearing in the generalized alpha method (Chung & Hulbert, 1993; Krenk
& Høgsberg, 2005). Within the extended state-space formulation they represent the
passive response of the filter variables.
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Figure 3 Filter damping with |λ∞|= 0.6. a) Amplification factor λ, b) Spectral radius |λ|max.

4.3 Asymptotic propert ies

A more detailed description of the low-frequency behavior of the algorithm is obtained
by an asymptotic analysis. In spite of the explicit expression (32) it is probably simpler
to obtain a power series representation of z directly from the characteristic equation,
see Krenk, (2008). This leads to the asymptotic algorithmic damping ratio

ζ = 1
4
α3�3[1 + O(�2)] (33)

It is seen that the introduction of the filter variables have changed the leading term of
the low-frequency damping from 1

2 (α�) to 1
4 (α�)3, i.e. from a linear to a cubic term in

α�. The full damping behavior is illustrated by the fully drawn curve in Fig. 2a, where
the reduction of the damping ratio to order three is clearly seen.

The low-frequency period error remains nearly unaffected unaffected by the
extended state-space formulation of the damping as illustrated by the fully drawn
curve in Fig. 2b. In fact, the asymptotic behavior is given by (20) also in this case.

4.4 Extended state-space algorithm

The high-frequency damping algorithm is given by the system equations (26) and the
filter equations (27) with ν=α. It is an important feature of this set of equations that
the solution can be advanced one time step by solving only a single set of equations
of the sized of the original system matrices K and M, followed by three simple vector
updates without matrix operations. The equation system is obtained by first elimi-
nating the forward values of the filter variables sn+1 and tn+1 from the state-space
equations, and then eliminating the forward value of the velocity vn+1. This results in
an equation for the incremental displacement vector �u, and the eliminated variables
are subsequently recovered by simple vector relations with scalar coefficients.

First the filter equations with ν=α are written in the form(
1
2
+ α

)
�s = �u − sn,

(
1
2
+ α

)
�t = �v − tn (34)
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Table 2 Extended state-space algorithm.

1. System matrices K, C, M,

K∗ = κ
[

K+ 2
κh

C+
(

2
κh

)2

M

]

2. Initial conditions: u0, v0,
s0 = 0, t0 = 0

3. Increments n= n+ 1:

�u=K−1
∗

{
fn+1 + fn −K[2un − (κ− 1)sn]+ 2

κh
M[2vn − (κ− 1)tn]

}
�v= 2�u/κh− [2vn − (κ− 1)tn]/κ

�s= (�u− sn)/
(

1
2 +α

)
, �t= (�v− tn)/

(
1
2 +α

)
4. Vector updates:

un+1 =un +�u, vn+1 = vn +�v
sn+1 = sn +�s, tn+1 = tn +�t

5. Return to 3 for new time step, or stop.

The increments �s and �t are now eliminated from the system equations (26). Here
it is convenient to introduce the parameter

κ = (1 + α)2

1 + 2α
= 1 + α2

1 + 2α
(35)

The last equation contains the mass matrix M as common factor. When this factor is
omitted this equation takes the form of a simple vector relation that is used to express
�v in the form

κ�v =
[

2
h
�u − 2vn

]
+ (κ − 1)tn (36)

The variables �v and sn are now eliminated from the first equation by use of
the relations (34a) and (36), giving the resulting equation for the displacement
increment �u,

κ

[
K + 2

κh
C +

(
2
κh

)2

M

]
�u

= fn+1 + fn − K[2un − (κ − 1)sn] + 2
κh

M[2vn − (κ − 1)tn] (37)

It is observed that in this relation the time increment h only appears in the scaled
form κh. The form of the two equations (36) and (37) in terms of the parameter κ
are identical to (22) and (23) of the balanced dissipation algorithm apart from the
contributions from the two variables sn and tn. However, in the filter algorithm the
numerical value of κ is typically much smaller. The balanced dissipation algorithm is
summarized in Table 2.
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Figure 4 Response from u0 = 1, v0 = 0 for h= 10T. a) Conservative (present), b) Newmark based.

4.5 Transient high-frequency response

One of the problems associated with introducing algorithmic damping into the New-
mark family of algorithms is, that the known techniques lead to a reinterpretation
of the energy as registered by the algorithm, (Hughes, 1979; Krenk, 2006a). Both
of the present algorithms keep the basic properties of the energy of the system. As a
consequence even very high frequency components leads to monotonically decreasing
response when started from unit displacement, zero velocity initial conditions. This is
illustrated in Fig. 4, showing the free response to unit displacement initial conditions
of a high-frequency component with period T = h/10 for |λ∞|=0.8. Figure 4a shows
the performance of the present algorithms. The lower curve is the energy by the bal-
anced dissipation algorithm, the middle curve is the energy by the extended state-space
algorithm, while the top curve shows the total energy of the system (29), including the
filter variables. Figure 4b shows similar results for the α-damped Newmark method,
and the generalized-α method, respectively. It is seen that the algorithms based on
integrals of the equation of motion lead to monotonic dissipation of energy, while the
Newmark-based collocation algorithms lead to overshoot of the response of the very
high frequency components illustrated here.
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ABSTRACT: The paper deals with the robustness of uncertain computational elastoacous-
tic models in low- and medium-frequency ranges. The elastoacoustic system is made up of a
heterogeneous viscoelastic structure coupled with an internal acoustic cavity filled with a dis-
sipative acoustic fluid. A reduced mean elastoacoustic model is deduced from the mean finite
element model by using the modal approach with the structural modes of the structure and
the acoustic modes of the acoustic cavity. Data uncertainties and model uncertainties are taken
into account by using a nonparametric probabilistic approach for the structure, for the acoustic
cavity and for the vibroacoustic coupling interface. The main objectives of this paper are (1) to
present experimental validation of the nonparametric probabilistic approach of model uncer-
tainties and to propose methods to perform the experimental identification of the probabilistic
model parameters, (2) to analyze the robustness of computational elastoacoustic models with
respect to model and data uncertainties, (3) to study uncertainty propagation through complex
elastoacoustic systems. Two experimental configurations are analyzed with the stochastic com-
putational elastoacoustic model. The first experimental configuration is made up of a composite
sandwich panel coupled with an acoustic cavity constituted of a simple rigid box. Experimental
measurements have been performed for 8 manufactured composite panels. The second exper-
imental configuration is a car made up of a complex heterogeneous structure coupled with a
complex acoustic cavity. Experimental measurements have been performed for 22 manufactured
cars of the same type with optional extra.

1 Introduction

This chapter is devoted to computational elastoacoustics in low- and medium-
frequency ranges of uncertain complex systems made up of a viscoelastic heterogeneous
structure coupled with an internal acoustic cavity filled with a dissipative acoustic
fluid. Usually, data uncertainties are taken into account by using a parametric prob-
abilistic approach allowing uncertain parameters of the computational model to be
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modeled by random variables. The mathematical-mechanical modeling process of the
designed elastoacoustic system used to construct the computational model introduces
model uncertainties which cannot be taken into account by the parametric proba-
bilistic approach. Consequently, we propose to use the nonparametric probabilistic
approach of data and model uncertainties recently introduced (see Soize (2001, 2005).
The main objectives of this paper are (1) to present experimental validation of the
nonparametric probabilistic approach of model uncertainties and to propose meth-
ods to perform the experimental identification of the probabilistic model parameters,
(2) to analyze the robustness of computational elastoacoustic models with respect to
model and data uncertainties, (3) to study uncertainty propagation through complex
elastoacoustic systems. Two experimental configurations are presented and analyzed.
The first experimental configuration is made up of a composite sandwich panel (the
structure) coupled with an acoustic cavity constituted of a simple rigid box. We are
interested in the internal noise produced by the vibration of the structure induced
by a point force applied to the structure. Experimental measurements have been per-
formed for 8 manufactured composite panels (see Chen (2006); Chen et al. (2006)).
The second experimental configuration is a car made up of a very complex viscoelastic
heterogeneous structure coupled with a complex acoustic cavity. We are interested in
the booming noise which is the internal noise produced by the vibration of the struc-
ture induced by engine vibrations. Experimental measurements have been performed
for 22 manufactured cars of the same type with optional extra (see Durand (2007);
Durand et al. (2008)).

2 Uncertainties in the predictive model of a real
elastoacoustic system

The designed elastoacoustic system is the system conceived by the designers and ana-
lysts. A designed elastoacoustic system, made up of a structure coupled with an internal
acoustic cavity, is defined by geometrical parameters, by the choice of materials and by
many other parameters. A designed elastoacoustic system such as a car is a very com-
plex elastoacoustic system. The real elastoacoustic system is a manufactured version
of the system realized from the designed elastoacoustic system. Consequently, the real
elastoacoustic system is a man-made-physical system which is never exactly known
due to the variability induced for instance by the process. The objective of a predictive
model is to predict the output (vexp, pexp) of the real elastoacoustic system to a given
input fexp, in which vexp is the response in displacement of the structure and where
pexp is the acoustic pressure inside the acoustic cavity. Such predictive models are con-
structed by developing mathematical-mechanical model of the designed elastoacoustic
system for a given input (see Figure 5.1). Consequently, the mean model has an input
f modeling fexp, an output (v, p) modeling (vexp, pexp) and exhibits a vector-valued
parameter s for which data has to be given. The errors are related to the construction
of an approximation (vn, pn) of the output (v, p) of the mean model for given input f
and parameter s and have to be reduced and controlled using adapted methods devel-
oped in applied mathematics and in numerical analysis. The mathematical-mechanical
modeling process of the designed elastoacoustic system introduces two fundamental
types of uncertainties: data uncertainties and model uncertainties. Data uncertainties
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Mathematical—mechanical
modeling process

Manufacturing
process
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Designed
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model of the real

elastoacoustic
system

Real elastoacoustic
system

as the manufactured
system

Figure 5.1 Designed elastoacoustic system, real elastoacoustic system and mean model as the
predictive model of the real elastoacoustic system.

are input f and parameter s of the mean model. The best approach to take into account
data uncertainties is the parametric probabilistic approach consisting in modeling the
data of the mean model by random quantities. The mathematical-mechanical modeling
process induces model uncertainties with respect to the designed elastoacoustic system.
This type of uncertainties is mainly due to the introduction of simplifications in order
to decrease the complexity of the mean model which is constructed. For instance, a
slender cylindrical elastic structural element will be modeled by using the beam theory,
a thick rectangular plate elastic structural element will be modeled by a thick plate
theory, a sound proofing scheme between the structure and the acoustic cavity will
be modeled by a wall acoustic impedance, the geometry of the acoustic cavity will be
simplified, etc. It is clear that the introduction of such simplifications yields a mean
model for which all the possible variations of its parameter s do not allow the model
uncertainties to be reduced. Model uncertainties have then to be taken into account
to improve the predictability of the mean model. As explained above, the parametric
probabilistic approach cannot be used. This is the reason why a nonparametric prob-
abilistic approach is proposed. The error between prediction (vn, pn) calculated with
the mean model and the response (vexp, pexp) of the real elastoacoustic system can be
measured by (‖vexp −vn‖2 +‖pexp −pn‖2)1/2 in which ‖ . ‖ denotes appropriate norms.
Clearly, the mean model can be considered as a predictive model if this error is suffi-
ciently small. In general, due to data uncertainties and model uncertainties, this error
is not sufficiently small and has to be reduced by taking into account data uncertainties
and model uncertainties.

3 Nonparametric probabilistic approach of
model uncertainties

The concept of the nonparametric probabilistic approach of model uncertainties intro-
duced in Soize (2001) is the following (see (Soize (2005)). Let s �→A(s) be a linear
mapping from a space S into a space A of linear operators. The space S represents the



74 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Aexper

s

A(s) � Apar

Anonpar

Rpar
Rnonpar

∈

Figure 5.2 Parametric and nonparametric probabilistic approaches of random uncertainties.

set of all possible values of the vector-valued parameter s of the boundary value prob-
lem (for instance, geometric parameters, elastic properties, boundary conditions, etc).
For s fixed in S, operator A(s) represents one operator of the boundary value problem
(for instance, the stiffness operator of the structure which is assumed to be symmetric
and positive, and in this case, any operator in A will be symmetric and positive). Let
Rpar ⊂A be the range of the mapping s �→ A(s), i.e. the subset of A spanned by A(s)
when s runs through S. The corresponding operator of the real elastoacoustic system
system is Aexp belonging to A. If s= s is the nominal value, then A=A(s)∈Rpar is the
operator of the mean model.

Parametric probabilistic model of the operator. The parametric probabilistic
approach for the operator consists in modeling the parameter s by a vector-valued
random variable S whose probability distribution PS(ds) has a support which is S.
Then the operator A of the mean model is replaced in the the BVP by the random
operator Apar such that Apar =A(S). The probability distribution PApar of the random
operator Apar is PApar =A(PS) and its support is the set Rpar ⊂A (see Figure 5.2). Clearly,
the probability PApar on Rpar allows data uncertainties to be taken into account, but
Aexp may not be in Rpar due to model uncertainties.

Nonparametric probabilistic model of the operator. The nonparametric probabilistic
approach for the operator consists in replacing the operator A of the mean model by
a random operator Anonpar whose probability distribution PAnonpar has a support which
is Rnonpar =A. Since Aexp belongs to A and since the support of PAnonpar is also A,
model uncertainties can be taken into account by the nonparametric approach (see
Figure 5.2). Of course, PAnonpar cannot be arbitrary chosen with support Rnonpar, but
has to be constructed using the available information. Such a methodology has been
developed in Soize (2001, 2005) using the information theory.

Methodology. The methodology of the nonparametric probabilistic approach of
uncertainties is as follows. (1) Developement of a finite element model of the designed
elastoacoustic system. Such a model will be called the mean model (or the nom-
inal model). (2) Construction of a reduced mean model from the mean model.
(3) Construction of a stochastic reduced model from the reduced mean model using
the nonparametric probabilistic approach which allows the probability distribution of
each random generalized matrix to be constructed. (4) Construction and convergence
analysis of the stochastic solution.
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Experimental identification. The level of uncertainties is controlled by the disper-
sion parameter of each random matrix introduced in the nonparametric probabilistic
approach. In this paper, we present methods for an experimental identification of the
dispersions parameters.

4 Stochastic model of uncertain elastoacoustic systems

4.1 Reduced mean model of the elastoacoustic system

The elastoacoustic system is made up of a viscoelastic structure coupled with an inter-
nal acoustic cavity filled with a dissipative acoustic fluid. The usual formulation in
“structural displacement’’ – “acoustic pressure’’ is used to construct the mean finite
element method of the elastoacoustic system (see for instance Ohayon & Soize (1998)).
Let u(ω) be the Cns -vector of the ns DOF of the structure and let p(ω) be the Cnf -vector
corresponding to the the nf DOF of the acoustic cavity. Let {ϕ

1
, . . . , ϕNs } be the Ns first

structural modes of the structure in vacuo and calculated at zero frequency (not includ-
ing rigid body modes if there exist). Let {ψ

1
, . . . , ψNf } be the Nf first acoustic modes of

the acoustic cavity with rigid fluid-structure coupling interface (including the constant
pressure mode if the acoustic cavity is closed). The reduced mean model is obtained by
projection of the mean finite element model on the subspace VNs ×VNf of Rns ×Rnf

in which VNs is spanned by {ϕ
1
, . . . , ϕNs } and VNf is spanned by {ψ

1
, . . . , ψNf }. The

reduced mean model can then be written as

u(ω) =
Ns∑
α=1

qs
α
(ω)ϕ

α
, p(ω) =

Nf∑
β=1

qf
β
(ω)ψ

β
. (1)

The CNs -vector qs(ω)= (qs
1(ω), . . . , qs

Ns
(ω)) and the CNf -vector qf (ω)= (qf

1(ω), . . . ,

qf
Nf

(ω)) are the solution of the following matrix equation

[−ω2[Ms] + iω[Ds(ω)] + [Ks(ω)] [C]
ω2[C]T −ω2[Mf ] + iω[Df ] + [Kf ]

] [
qs(ω)
qf (ω)

]
=
[

fs(ω)
ff (ω)

]
, (2)

in which the (Ns ×Ns) real matrices [Ms], [Ds(ω)] and [Ks(ω)] are the generalized
mass, damping and stiffness matrices of the structure, where the (Nf ×Nf ) real matri-
ces [Mf ], [Df ] and [Kf ] are the generalized mass, damping and stiffness matrices of
the acoustic and where the rectangular (Ns ×Nf ) real matrix [C] is the generalized

vibroacoustic coupling matrix. In Eq. (2) the CNs -vector fs(ω) and the CNf -vector ff (ω)
are the generalized force vector of the structure and the generalized acoustic source
vector of the acoustic cavity respectively.

4.2 Stochastic reduced model using the nonparametric
probabi l ist ic approach

The principle of construction of the nonparametric probabilistic approach (see Soize
(2001, 2005)) of model uncertainties and data uncertainties in the structure, in the
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acoustic cavity and for the vibroacoustic coupling consists (1) in modeling the gener-
alized mass [Ms], damping [Ds(ω)] and stiffness [Ks(ω)] matrices of the structure by
random matrices [Ms], [Ds(ω)] and [Ks(ω)] whose dispersion parameters are δMs , δDs

and δKs respectively; (2) in modeling the generalized mass [Mf ], damping [Df ] and
stiffness [Kf ] matrices of the acoustic cavity by random matrices [Mf ], [Df ] and [Kf ]
whose dispersion parameters are δMf , δDf and δKf respectively; (3) in modeling the gen-
eralized vibroacoustic coupling matrix [C] by a random matrix [C] whose dispersion
parameter is δC. The explicit construction of the probability distribution of these ran-
dom matrices were performed by using the maximum entropy principle and is given
in Soize (2001) for random matrices [Ms], [Ds(ω)], [Ks(ω)], [Mf ], [Df ] and [Kf ], and
is given in Soize (2005) for random matrix [C]. Let [A] be anyone of these random
matrices. In this theory, the probability distribution of such a random matrix [A]
depends only on its mean value [A]=E{[A]} in which E is the mathematical expecta-
tion and on its dispersion parameter δA which is independent of the matrix dimension.
In addition, an algebraic representation of random matrix [A] has been developed
and allows independent realizations to be constructed for a stochastic solver based
on the Monte Carlo numerical simulation. It should be noted that when [A(ω)] is a
symmetric positive real-valued matrix depending on ω, then random matrix [A(ω)] is
written as [A(ω)]= [LA(ω)]T [G] [LA(ω)] in which [A(ω)]= [LA(ω)]T [LA(ω)] and where
the random matrix germ [G] is independent of ω and dispersion parameter δA must
be taken independent of ω. Using such an approach, the stochastic reduced model of
the uncertain elastoacoustic system for which the reduced mean model is defined by
Eq. (2) is written, for all ω fixed in the frequency band of analysis B= [ω0,ω1] with
0<ω0<ω1, as

U(ω) =
Ns∑
α=1

Qs
α
(ω)ϕ

α
, P(ω) =

Nf∑
β=1

Qf
β
(ω) ψ

β
, (3)

in which, forω fixed in B, the CNs -valued random variable Qs(ω)= (Qs
1(ω), . . . , Qs

Ns
(ω))

and the CNf -valued random variable Qf (ω)= (Qf
1(ω), . . . , Qf

Nf
(ω)) are the solution of

the following random matrix equation[−ω2[Ms] + iω[Ds(ω)] + [Ks(ω)] [C]
ω2[C]T −ω2[Mf ] + iω[Df ] + [Kf ]

] [
Qs(ω)
Qf (ω)

]
=
[

fs(ω)
ff (ω)

]
.

(4)

4.3 Construction and convergence of the stochastic solution

For all ω fixed in B, it can be proven that the probability model constructed
for the random matrices is such that Eq. (4) has a unique second-order solution
(see the methodology presented in Soize (2001)), i.e., E{‖Qs(ω)‖2}≤ c1<+∞ and
E{‖Qf (ω)‖2}≤ c2<+∞. Concerning the stochastic solver, for all ω fixed in B, the
stochastic solution of Eq. (4) is constructed by using the Monte Carlo numerical sim-
ulation with m independent realizations. Using the usual statistical estimator of the
mathematical expectation E, the convergence of the stochastic solution with respect
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to Ns, Nf and m, is studied in constructing the functions (Ns, m) �→ convs(Ns, m) and
(Nf , m) �→ convf (Nf , m) such that

convs(Ns, m) =
{

1
m

m∑
k=1

∫
B
‖U(ω, θk)‖2 dω

}1/2

, (5)

convf (Nf , m) =
{

1
m

m∑
k=1

∫
B
‖P(ω, θk)‖2 dω

}1/2

, (6)

in which U(ω, θ1), . . . , U(ω, θm) and P(ω, θ1), . . . , P(ω, θm) are m independent realiza-
tions of U(ω) and P(ω) respectively.

5 Identification of the probabilistic model parameters
from experiments

The problem to be solved is related to the experimental identification of the
vector-valued dispersion parameter δ= (δMs , δDs , δKs , δMf , . . . ) introduced in the non-
parametric probabilistic approach of data and model uncertainties. Let Y(ω, δ)=
(Y1(ω, δ), . . . , Yµ(ω, δ)) be the Rµ-valued random variable corresponding to µ observa-
tions of the stochastic reduced model which will be measured for all ω belonging
to frequency band B. This vector-valued random variable depends on the vector-
valued dispersion parameter δ which has to be identified using measurements. Since
the manufactured systems have a variability induced by the manufacturing process,
the corresponding observations of the real system must be modeled by a Rµ-valued
random variable Yexp(ω)= (Yexp

1 (ω), . . . , Yexp
µ (ω)). It is assumed that the measurements

are performed for νmanufactured real systems. Let yexp,k(ω)= (yexp,k
1 (ω), . . . , yexp,k

µ (ω))
be the Rµ-vector of the µ measured observations for manufactured system number k.
The mean value Y(ω, δ) of random vector Y(ω, δ) and the mean value E{Yexp(ω)} of
random vector Yexp(ω) are such that

Y(ω, δ) = E{Y(ω, δ)}, E{Yexp(ω)} = yexp(ω), yexp(ω) = 1
ν

ν∑
k=1

yexp,k(ω), (7)

in which yexp(ω) is the experimental mean value. Note that random vector Yexp(ω)
is constructed such that its mean value is equal to yexp(ω). Below, we present two
methods which can be used to identify the vector-valued dispersion parameter δ from
experiments. The first one will be called the mean-square identification method and
can be used for a vector-valued random variable without any difficulties. This method
consists in minimizing, in the mean-square sense, the distance between the computed
random response and the experimental response. The second one consists in using the
maximum likelihood method and can also be used for a vector-valued random variable.
Nevertheless, the computational time required by such a method is prohibitive if the
vector-valued random variable has a high dimension. Consequently, we will present
this method for a real-valued random variable.
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5.1 Mean-square identif ication method

Let ω �→X(ω)= (X1(ω), . . . , Xµ(ω)) be a Rµ-valued second-order stochastic process
indexed by frequency band B. We introduce the norm |||X||| of X such that

|||X|||2 = E{||X||2B}, ||X||2B =
∫

B
||X(ω)||2 dω, (8)

in which ||X(ω)||2 =X1(ω)2 + · · ·+Xµ(ω)2. The mean square identification of
parameter δ consists in minimizing the cost function J0(δ)= |||Y(., δ)−Yexp|||2
with respect to δ. In order to compute this cost function, we can write
|||Y(., δ)−Yexp|||2 = |||Y(., δ)−Y(., δ)− (Yexp − yexp)+Y(., δ)− yexp|||2. Since Y(., δ)−
yexp is a deterministic vector and since Y(., δ)−Y(., δ) and Yexp − yexp are independent
and centered vector-valued random variables, we can write

J0(δ) = |||Y(., δ) − Y(., δ)|||2 + |||Yexp − yexp|||2 + ||Y(., δ) − yexp||2B. (9)

In the right-hand side of Eq. (9), the first, the second and the third terms represent
the variance of the random response of the stochastic model, the variance of the real
system induced by its variability and the bias between the model and the real system,
respectively. It should be noted that the second term is independent of δ. Consequently,
the cost function J0(δ) can be replaced by a cost function J1(δ) obtained by removing
this second term. Consequently, the mean square identification of parameter δ consists
in solving the following optimization problem

δopt = arg min
δ

J1(δ), (10)

in which the cost function J1(δ) is written as

J1(δ) = |||Y(., δ) − Y(., δ)|||2 + ||Y(., δ) − yexp||2B. (11)

5.2 Maximum likel ihood method

For the maximum likelihood method, we introduce the real-valued random variable
Z(δ) for which the ν independent realizations zexp,1, . . . , zexp,ν correspond to the ν
manufactured real systems. Let pZ(z, δ) dz be the probability distribution on R of Z(δ)
represented by a probability density function pZ(z, δ) which depends on dispersion
parameter δ. This random variable is defined by

Z(δ) =
∫

B
dB(ω, δ) dω, dB(ω, δ) = 10 log10

w2
ref

1
µ

µ∑
j=1

|Yj(ω, δ)|2
 , (12)

in which wref is a constant of normalization. It should be noted that, for all z fixed
in R, probability density function pZ(z, δ) can easily be estimated with Eqs. (3) and
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(4) using the Monte Carlo method and mathematical statistics. For k= 1, . . . , ν, the
corresponding realization zexp,k is written as

zexp,k =
∫

B
dBexp,k(ω) dω, dBexp,k(ω) = 10 log10

w2
ref

1
µ

µ∑
j=1

|yexp,k
j (ω)|2

 . (13)

The use of the maximum likelihood method (see Serfling (1980)) leads us to the
following optimization problem

δopt = arg max
δ

L(δ), (14)

in which L(δ) is written as

L(δ) =
ν∑

k=1

log10 (pZ(zexp,k, δ)). (15)

6 Analyzing experimental configurations

6.1 First experimental configuration: composite sandwich panel
coupled with an acoustic cavity (Chen, 2006; Chen
et al . , 2006)

The experimental configuration of the elastoacoustic system is defined in Figure 5.3.
The system is made up of a composite sandwich panel coupled with a closed acoustic
cavity constituted of an acoustic box with 5 rigid walls. The designed sandwich panel
is constituted of five layers made of four thin carbon-resin unidirectional plies and
one high stiffness closed-cell foam core. The geometrical and mechanical parameters
for the composite sandwich panel and the acoustic box can be found in Chen (2006);
Chen et al. (2006). Eight sandwich panels have been manufactured from the designed
sandwich panel using an identical process and the same materials. All the sandwich
panels have been baked in the same batch for suppressing the influences of the different
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Figure 5.3 Definition of the composite sandwich panel (left figure). Vibroacoustic system made
up of the composite sandwich panel and an acoustic cavity (right figure).
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baking conditions concerning time and temperature. In addition one acoustic box with
5 rigid walls in the frequency band of analysis has been manufactured. The frequency
band of analysis considered is the band B= [10, 4500] Hz corresponding to the model
validity of the mean finite element model of the vibroacoustic system. The input z-
force is a point load applied to the point of coordinates (0.187, 0.103, 0) m. The
output z-acceleration at the observation point on the panel is the point of coordinates
(0.337, 0.272, 0) m. The mean finite element model of the composite sandwich panel
is constituted of 62 × 46 four-nodes finite elements for laminated plate bending with
orthotropic materials. The finite element model of the acoustic cavity is made up
of 60× 40× 30 eight-nodes solid acoustic finite elements. Consequently, there are
ns = 8556 structural DOF and nf = 72000 acoustic DOF. The objective is to analyze
the effects of structural uncertainties on the noise produced inside the acoustic cavity
by the vibrations of the panel. Consequently, it is assumed that there are uncertainties
in the panel but that there are no uncertainties neither in the acoustic cavity nor for the
vibroacoustic coupling (this means that δMf = δDf = δKf = δC = 0). Convergence of the
stochastic reduced model over frequency band B is obtained for Ns = 117 structural
modes, for Nf = 630 acoustic modes and for m= 1300 realizations. The experimental
estimation of the dispersion parameters δMs , δDs and δKs for the composite panels
is performed in Chen (2006); Chen et al. (2006) using the method proposed in Soize
(2005) and yields δMs = 0.23, δDs = 0.43 and δKs = 0.25. Figures 5.4 and 5.5 are related
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Figure 5.4 Experimental validation of the confidence region prediction for the random cross FRF
between the input force applied to the panel and the transversal acceleration at the
observation point on the panel for the vibroacoustic system. Horizontal axis: frequency
in Hertz.Vertical axis: log10 of the modulus of the transverse acceleration of the panel.
Experimental cross FRF corresponding to the 8 panels (8 thin solid lines). Numerical
cross FRF calculated with the mean reduced matrix model (thick solid line). Mean
value of the random cross FRF calculated with the non parametric probabilistic model
(thin solid line). Confidence region of the random cross FRF calculated with the non
parametric probabilistic model (grey region).
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to the experimental validation of the confidence region prediction for the random cross
frequency response functions (FRF) relative to the panel acceleration and to the acoustic
pressure, and corresponding to a probability level of 0.96 (grey region). Figure 5.4
shows a good experimental comparison for the confidence region calculated with the
stochastic reduced model. It should be noted that the confidence region is relatively
narrow in the low-frequency (LF) band [10, 1200] Hz and is broad in the medium-
frequency (MF) band [1200, 4500] Hz. These results show that the mean model is
robust with respect to data and model uncertainties of the structure in the LF band
but is less robust in the MF band. Such a result can also be viewed in comparing the
response of the reduced mean model with the mean value of the random response of
the stochastic reduced model. In the LF band the mean value of the random response
is closed to the response of the mean model while large differences can occur in the MF
band. Similarly, Figure 5.5 shows a good experimental comparison for the confidence
region of the internal noise. It can be seen that the mean model is robust with respect to
data and model uncertainties of the structure not only in the LF band [10, 1200] Hz but
also in the low part [1200, 3000] Hz of the MF band while the robustness decreases in
the high part [3000, 4500] Hz of the MF band. It can be conclude that the propagation
of uncertainties from the structure into the acoustic cavity is weak in the frequency band
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Figure 5.5 Experimental validation of the confidence region prediction for the random cross
FRF between the input force applied to the panel and the acoustic pressure at the
observation point in the acoustic cavity for the vibroacoustic system. Horizontal axis:
frequency in Hertz. Vertical axis: log10 of the modulus of the acoustic pressure inside
the acoustic cavity. Experimental cross FRF corresponding to the 8 panels (8 thin
solid lines). Numerical cross FRF calculated with the updated mean reduced matrix
model (thick solid line). Mean value of the random cross FRF calculated with the non
parametric probabilistic model (thin solid line). Confidence region of the random cross
FRF calculated with the non parametric probabilistic model (grey region).
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Figure 5.6 Finite element mesh of the structure: 978,733 DOF of displacement (left figure). Finite
element mesh of the acoustic cavity: 8,139 DOF of pressure (right figure).

[10, 3000] Hz (LF band and low part of the MF band) and increases in the frequency
band [3000, 4500] Hz (high part of the MF band).

6.2 Second experimental val idation: vibroacoustics of cars
(Durand, 2007; Durand et al . , 2008)

We present an experimental validation of the numerical prediction of internal noise
in a car due to engine excitation applied to the engine supports (booming noise).
The mean finite element model is shown in Figure 5.6. The structure is modeled
with ns = 978, 733 DOF of displacement and the acoustic cavity with nf = 8, 139
DOF of pressure. The frequency band of analysis B= [33, 200] Hz corresponding to
[1000, 6000] rpm (engine rotation per minute). Convergence of the stochastic reduced
model over frequency band B is obtained for Ns = 1722 structural modes, for Nf = 57
acoustic modes and for m = 600 realizations. The experimental identification of the
dispersion parameters are performed in three steps as follows (see Durand (2007);
Durand et al. (2008)). For the first step, acoustic pressure measurements have been
performed inside the acoustic cavity for a given acoustic source inside the cavity.
Then the maximum likelihood method described in Section 5.2 has been used taking
δMf = δDf = δKf , where Yj(ω, δ)=P�j (ω) in which P�1 (ω), . . . , P�µ (ω) are the observed
acoustic pressures which are measured inside the cavity, with wref = 1/Pref in which
Pref is a reference pressure. For the second step, structural acceleration measurements
have been performed in the structure for driven forces applied to the engine sup-
ports. Then the mean-square identification method described in Section 5.1 has been
used with Yj(ω, δ)= log10(wj |U�j (ω)|) in which U�1 (ω), . . . , U�µ (ω) are the observed
displacements which are measured and where w1, . . . , wµ are normalization constants
such that 0<wj ≤ 1. In a third step, dispersion parameter δC of the vibroacoustic
coupling operator has been fixed at a given value. Figure 5.7 displays the experimen-
tal validation of the numerical prediction of internal noise due to engine excitation
with structure, vibroacoustic coupling and acoustic cavity uncertainties. Taking into
account the complexity of the vibroacoustic system, there is a good experimental
validation of the stochastic elastoacoustic model with model and data uncertainties.
The variability of the manufactured real systems is due to the process and to the



Computat iona l e l as toacoust ics o f uncerta in complex systems 83

1500 2000 2500 3000 3500 4000 4500 5000

Rpm [tr/min]

B
oo

m
in

g 
no

is
e 

[d
B

(A
)]

10 dB(A)

Figure 5.7 Experimental validation of the confidence region prediction for the random cross
FRF between the input force applied to engine supports and the acoustic pressure at
an observation point in the acoustic cavity for the vibroacoustic system. Horizontal
axis: tr/min. Vertical axis: modulus of the acoustic pressure in dBA. 22 experimental
measurements for 22 cars of the same type (22 thin solid lines). Numerical prediction
of the mean reduced matrix model (thick solid line). Confidence region of the internal
noise predicted with the non parametric probabilistic model and for probability level
0.95. (grey region).

extra options. The propagation of uncertainties is significant in the frequency band of
analysis.

7 Conclusions

Data and model uncertainties can be taken into account in computational elastoacous-
tics by using the nonparametric probabilistic approach. Methodologies are proposed
to perform an experimental identification of the dispersion parameters controlling the
level of uncertainties. This approach has been validated for a simple and for a complex
elastoacoustic system.
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Chapter 6

Structural dynamics design validation
and optimisation of structures with
imprecise parameters using the fuzzy
finite element method
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K.U. Leuven, Leuven, Belgium

ABSTRACT: After initial research in the field of fuzzy finite elements has started in the middle
of the nineties, different aspects of the problem have been considered, and continuous develop-
ment has improved not only the capabilities but also the performance of the procedures. The
improvement of the performance of fuzzy finite element analysis is still a big challenge. Vertex
analysis with n uncertain parameters requires 2n deterministic analysis runs for each α-level
that is considered. Another approach is optimisation, which is capable of predicting absolute
maxima and minima. Unlike vertex analysis, the performance of optimisation procedures is
unpredictable. There is a strong demand to reduce the computation time.

Structural dynamics is a specific type of problem that can also be tackled with interval or
fuzzy finite elements. There is currently no generally applicable consistent approach to take into
account the effect of parameter uncertainties on CMS reduction schemes. Some approximation
procedures have been proposed, but they are sensitive to the particular case that is considered.

Two recent developments in fuzzy dynamic analysis are presented: a Response Surface
Modelling method (RSM) and a new Component Mode Synthesis procedure (CMS).

1 Introduction

The fuzzy finite element method (FFEM) has become a most valuable tool for the analy-
sis of structural dynamics problems with imprecise parameters. The present paper gives
an overview of the status of development of the FFEM. The paper focuses specifically
on the capabilities of the method, especially in early stages of design analysis. The
formulation of design criteria in the presence of parameter uncertainties is reviewed
and options for early design optimisation are discussed.

The first section presents the terms of reference with respect to the definition of
the types of uncertainty and variability. The definitions by Oberkampf are extended
with the concepts of intra-variability and inter-variability. The FFEM is most appro-
priate in early design stages when several problem parameters are only approximately
known. In this respect, the FFEM is presented as a complementary alternative to the



86 Computat iona l s tructura l dynamics and earthquake eng ineer ing

well-known and well established probabilistic methods that are very appropriate to
handle problems of variability.

The second section deals with the analysis methods that are used in fuzzy finite
element analysis. An overview of different approaches is presented first: the transfor-
mation method, affine analysis, and global optimisation. The application to dynamic
analysis is considered. The core of this section is the presentation of a consistent
analysis approach to predict the effect of parameter uncertainties on different char-
acteristics of dynamic behaviour of structures, resonance frequencies and dynamic
response levels. A hybrid approach is developed, based on modal superposition and
optimisation.

The paper then focusses on 2 recent developments, namely response surface methods
(RSM) and component mode synthesis (CMS). The former is a strategy to approximate
the real structural behaviour as modelled by repeated finite element calculations by a
response surface model that interpolates for structural response between well-chosen
settings of uncertain parameters. The latter is an established theory for modelling
structural dynamics using superelements. The paper extends the deterministic CMS to
models with fuzzy uncertain parameters in the superelements.

A few case studies illustrate the concepts and methods that are discussed.

2 Engineering analysis in early design stages

Engineering design is the activity of design and development of technical products.
A technical product is built to fulfil a well specified function under more or less well
prescribed conditions of utilisation. The complexity of modern technical products
tends to increase systematically, increasing the need for thorough design analysis. This
process consists of a number of analysis verifications on a virtual product. A common
procedure for design verification is finite element analysis, a numerical method for
the simulation of the effect of mechanical or thermal loads on a product. As most
product parameters are undetermined in the initial phases of design, a range of uncer-
tainties have to be taken into account. This paper presents a fuzzy finite element
approach (FFE) for the analysis of product performance in an early stage of conceptual
design.

A number of non-probabilistic approaches for non-deterministic analysis have been
developed:

• the Interval FE (IFE) analysis is based on the interval concept for the description
of non-deterministic model properties: a finite element model parameter may be
represented by an interval number

• the Fuzzy FE (FFE) analysis is basically an extension of the IFE analysis: a finite
element model parameter may be represented by a fuzzy number, which consists
of an interval and a membership function

2.1 Definit ions

In literature, the use of the terminology uncertainty and variability is not unambiguous.
Different researchers apply the same terminology but the meaning attached to these
is rather inconsistent. This necessitates a profound clarification of the terminology
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for each publication which treats uncertainties. The definitions by Oberkampf et al.
(1999) are found to be most consistent:

certain variability covers the variation which is inherent to the modelled physical sys-
tem or the environment under consideration. Generally, this is described by a
distributed quantity defined over a range of possible values. The exact value is
known to be within this range, but it will vary from unit to unit or from time to
time. Ideally, objective information on both the range and the likelihood of the
quantity within this range is available.

In addition to the definitions by OBERKAMPF, variability may further be subdi-
vided in two categories:
intra- variability refers to one product that is considered in different environmental
conditions or in different phases of its life cycle
inter- variability refers to different realisations of one nominally identical product

invariable uncertainty is a potential deficiency in any phase or activity of the modelling
process that is due to lack of knowledge. The word potential stresses that the defi-
ciency may or may not occur. This definition basically states that uncertainty is
caused by incomplete information resulting from either vagueness, nonspecificity
or dissonance. Vagueness characterises information which is imprecisely defined,
unclear or indistinct. It is typically the result of human opinion on unknown
quantities.

incertain variability is an intermediate category in which model parameters may exhibit
scatter within relatively well-known bounds, yet with unknown frequency of
occurrence

Figure 1 conceptually compares these categories in the context of the FE methodol-
ogy. In engineering analysis and design, the interpretation of these categories depends
on the stage of development of a product. There generally is an evolution of the type
of non-determinism encountered during a typical design process, as formulated by

variability

uncertainty
error

?

?

irreducible variation of
property that ranges
over time or population

reducible non-determinism
in property due to
lack of knowledge

limited validity of
the applied numerical
methodology

deterministic input

Finite Element Analysis deterministic output

Figure 1 Occurrence of variabilities, uncertainties and errors in the FE procedure.
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Figure 2 Typical occurrence of non-determinism in the product quality predictions during a design
process.

ROSS: as more information about a problem becomes available, the mathematical
description of non-determinism can transform from one theory to the next in the
characterization of the uncertainty as the uncertainty diminishes or, alternatively, as
the information granularity increases and becomes specific.

2.2 Interval and fuzzy methods in the evolution of the
design process

Usually more information on a product becomes available as design decisions are taken.
The evolution of non-determinism in a typical design process as described above is illus-
trated in figure 2. The numerical prediction of the actual design quality improves over
the design process. In the early stages, the non-determinism in the numerically pre-
dicted design quality is mainly driven by invariable model uncertainties, which may in
later stages turn into uncertain variability. As the product final design is completed, cer-
tain variability may be the appropriate concept for data representation. This figure also
indicates the evolution of the numerical concepts that are most appropriate for the dom-
inant class of the occurring non-determinism. Individual model properties are modelled
with fuzzy numbers in the initial design stages. This allows the analyst to start the ana-
lyst with a subjective interpretation of available data. The interpretation of results
inevitably requires reference to the subjective data set. After some design decisions are
taken, the property is described by an interval with objective, fixed bounds.

3 Non-probabilistic FE analysis for design purposes

Several strategies have been developed for FE analysis in early stages of engineering
design.

3.1 The interval FE analysis

The goal of the IFE analysis is to obtain the maximal meaningful information on the
possible outcome of the FE analysis when each model parameter is expressed either by
an interval or by a crisp number. Numerically, this is equivalent to finding the minimal
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and maximal deterministic analysis results taking into account all possible models that
lie within the interval uncertainty description. In this section, FE analysis is considered
in a black-box form, i.e. a mapping of input properties contained in the FE model to
output quantities derived from the FE solution.

3.1.1 Vertex ana lys i s

Dong & Shah (1987) first introduced the vertex method. This method approximates
the range of the result of a numerical procedure by introducing all possible combi-
nations of the boundary values of the input intervals into the analysis. For n input
intervals, there are 2n vertices for which the analysis has to be performed.

Despite its simplicity, this method have some important disadvantages. The com-
putational cost increases exponentially with the number of input intervals. The main
disadvantage of this method, however, is that it cannot identify local optima of the
analysis function which are not on the vertex of the input space. It only results in
the smallest hypercube if the analysis function is monotonic over the considered input
range. This is a strong condition that is difficult to verify for FE analysis because of the
complicated relation of analysis output to physical input uncertainties. The approxi-
mation obtained when monotonicity is not guaranteed is not necessarily conservative.
This fact reduces the validity of this method for design validation purposes.

A more advanced formulation of vertex analysis is the transformation method which
was developed by Hanss (2003). The fuzzy problem is converted into a series of
deterministic calculations, which are taken to be all possible combinations of bounds
on different parameters. The analyst has the option to include additional parameter
combinations with intermediate values. This option may be useful when dealing with
non-monotonic problems.

Both vertex analysis and the transformation analysis require a large number of deter-
ministic analysis runs. Donders (2005) have derived the so-called short transformation
from the original version by HANSS. The method reduces the number of calculations
significantly with respect to the basic transformation method, but it suffer seven more
from non-monotonicity. In preliminary design analysis however, results may be most
valuable.

3.1.2 The g loba l opt imisat ion s t rategy

In essence, calculating the smallest hypercube around the solution set is equivalent to
performing a global optimisation, aimed at the minimisation and maximisation of the
components of the deterministic analysis results. The deterministic FE analysis is the
goal function of the optimisation and the uncertain parameters are the design variables.

An efficient and robust optimisation algorithm is primordial for this solution strat-
egy. Rao & Sawyer (1995) applied POWELL’s method to tackle the optimisation.
Köylüoǧlu et al. (1995) defined a linear programming solution for this purpose. The
input interval vector defines the number of constraints and, therefore, strongly influ-
ences the performance of the procedure. Also, because of the required execution of the
deterministic FE analysis in each goal function evaluation, the optimisation approach is
numerically expensive. Therefore, this approach is best suited for rather small FE mod-
els with a limited number of input uncertainties, unless approximate methods can be
used that avoid the expensive iterative calculation of the entire FE system of equations.
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3.1.3 The interva l ar i thmet ic s t rategy

The interval arithmetic approach consists of translating the complete deterministic
numerical FE procedure to an interval procedure using the arithmetic operations for
addition, subtraction, multiplication and division of interval scalars. The outline of
the interval procedure corresponds completely to the deterministic FE analysis.

This method suffers severely from over conservatism, as repeated numerical opera-
tions on interval quantities artificially increase the width of the interval. While nearly
all literature on IFE is based on the solution phase, the interval matrix assembly phase
was shown to have a very important contribution to the conservatism in the final
analysis results (Moens & Vandepitte 2005).

3.1.4 Aff ine ana lys i s

The basic formulation of interval arithmetic analysis does not allow to keep track of
the relationships between uncertain parameters. The result of this inability is a degree
of conservatism that is prohibitively high to be useful in practical applications. Manson
(2003) proposes a strategy using affine analysis. The basic idea of affine arithmetic is to
keep track of dependency between operands and sub-formulae whilst retaining much
of the simplicity of interval arithmetic. As a result, tighter bounds are predicted than
with interval arithmetic, especially when multiple iterations are necessary. MANSON

has applied this approach on systems with two degrees of freedom where all equations
can be written explicitly. For more complicated and less explicit operations like FE
analysis, the affine analysis approach is still in development.

3.2 The fuzzy FE analysis

The principal goal of the FFE analysis is to obtain the membership function of the
output quantities given the membership functions of all input quantities. It basically
requires a concept to handle the combination of the fuzzy input sets. The usual practical
procedure is by doing IFE analysis runs at each α-sublevel, as shown in figure 3.

mx~1 (x1)

mx~2 (x2)

my~ (y)
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fuzzy input

fuzzy output

deterministic
analysis at the
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interval analysis at
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interval analysis at
the a1-level

interval analysis at
the a3-level

Figure 3 Scheme of the numerical procedure to perform a fuzzy FE analysis using 4 α-sublevels.
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4 Deterministic and fuzzy modal superposition

Moens (2002) has developed a hybrid approach for fuzzy frequency response functions
(FRF) FE analysis. The approach uses the classical concept of modal superposition.
This section briefly presents the modal superposition principle, first in a deterministic
formulation and then in a fuzzy formulation.

4.1 Determinist ic modal superposit ion FRF procedure

For undamped structures, the FRF between degree of freedom (DOF) j and DOF k
of an FE model is obtained taking the jth component of the displacement vector U
satisfying the dynamic equilibrium equation

(K − ω2M)U = Fk (1)

with K and M the FE system matrices, ω the pulsation and Fk the force vector defined as

Fk
i =

{
1 if i = k
0 if i �= k

(2)

The deterministic modal superposition concept states that, considering the first n
modes, this FRF equals:

FRFjk =
n∑

i=1

1

k̂i − ω2m̂i

(3)

with k̂i and m̂i the normalised modal stiffness and the normalised modal mass:

k̂i = φT
i Kφi

φijφik

and m̂i = φT
i Mφi

φijφik

(4)

with φi the ith eigenvector of the system described by (1) and φij the jth component of
this eigenvector.

Figure 4(a) gives a graphical overview of this deterministic modal superposition
procedure. It introduces the function D(ω)= (k̂i−ω2m̂i) to express the modal response
denominator as a function of the frequency.

4.2 Interval modal superposit ion FRF procedure

For undamped structures with one or more interval inputs, the total envelope FRF
can be calculated using a step by step interval translation of the deterministic modal
superposition procedure, as shown in figure 4(b).The full mathematical description of
this method, developed by Moens, can be found in Moens & Vandepitte (2004). It
consists of three major steps:

1. Calculation of the range of modal parameters: The first step in the procedure con-
sists of the calculation of the range of modal parameters for each mode, taking into
account the ranges of the input uncertainties. Theoretically, the modal parameters
are coupled through the global system. The exact range of the modal parameters
of mode i equals
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Figure 4 Deterministic and interval modal superposition algorithm.

Figure 5 A〈k̂i, m̂i〉-domain and its MR and MRE approximations.

〈{p̂i}〉 = 〈k̂i, m̂i〉 = {(k̂i, m̂i)|({x} ∈ {x})} (5)

This can be represented in the modal parameter space of mode i, as illustrated
by figure 5. The grey area represents a physically possible locus of 〈k̂i, m̂i〉 com-
binations. There is no general analytical description of the exact contour of this
domain, but there area number of (conservative) numerical approximations:

• The Modal Rectangle method (MR) neglects the coupling between the modal
stiff-ness and the modal mass. The bounds on the ranges are calculated by
minimising and maximising the modal parameters k̂i and m̂i over the domain
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defined by the input uncertainties. Graphically, this means that the 〈k̂i, m̂i〉-
domain is approximated by a conservative rectangle.

• The Modal Rectangle method with Eigenvalue interval correction (MRE)
aims at a less conservative approximation of the 〈k̂i, m̂i〉-domain through the
introduction of the exact eigenvalue intervals [λi, λi] in the procedure. These
eigenvalue intervals can be obtained using a global optimisation approach
similar to the modal parameter optimisation used in the MR method. Graph-
ically, the MR 〈k̂i, m̂i〉-domain is constrained by two additional lines through
the origin.

2. Modal envelope FRF calculation: This step translates the range of the modal
parameters into the modal envelope FRF, expressed as the range of the modal
frequency response function FRFi

jk:

FRFi
jk =

1

k̂i − ω2m̂i

(6)

3. Total envelope FRF calculation: The final step for the computation of the total
envelope FRF consists of the summation of all modal envelope FRFs resulting
from the previous step:

FRFjk =
n∑

i=1

FRFi
jk (7)

Thus, the three step algorithm results in a hybrid procedure: in the first step, the
〈k̂i, m̂i〉-domain is approximated using a global optimisation approach; in the sec-
ond and third step, the modal and total envelope FRFs are calculated using interval
arithmetic.

5 Fuzzy FRF prediction using response surface methods

5.1 Optimization algorithms for fuzzy envelope FRF calculation

As explained in section 3.1.2 an interval FE analysis can be formulated as a numerical
optimisation problem, with all uncertain parameters as design variables and the desired
output quantity as the objective function. The optimisation procedures then has to be
repeated for each individual output quantity of interest. This section presents an effi-
cient approximate approach to reduce the calculation time, while keeping acceptable
accuracy.

An MRE analysis requires six optimisations for each mode and – for fuzzy analy-
ses – for each α-level of interest: the minimum and maximum modal stiffness (k̂i and

k̂i), modal mass (m̂i and m̂i) and eigenvalue (λi and λi). There are 3 objective func-
tions that have to be evaluated: modal mass, modal stiffness and eigenfrequency. A
fuzzy MRE analysis on 5 α-levels, taking into account 10 modes, requires already 300
optimisations. The objective function of these optimisation problems is an modal FE
analysis, which can be computationally expensive itself. Thus to analyse anything but
very simple models, an efficient optimisation algorithm is absolutely necessary.
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Generic non-linear optimisers can solve all optimisation problems independent of
each other. Theoretically, the optimisation problems can be non-convex, requiring
global optimisation software, but analysis on different industrial sized applications
(De Gersem et al., 2005) showed that in practical applications almost all the objective
functions are convex or even monotonic, even with large uncertainty intervals. For
these problems, local optimisation software gives accurate results, although theoreti-
cally there is no guarantee that the results are even close to the exact results. Because
local optimisation problems are computationally far less expensive to solve, an efficient
local optimiser is the best overall choice, but the results should be examined carefully.

Since an FE solver can calculate all modal parameters for all modes of interest at once,
the computational cost to calculate one objective function is equal to the computational
cost to calculate all objective functions. Generic non-linear optimisers use only one of
these objective functions. Other results however can be useful for other optimisations,
for instance to select a suitable start vector. In most cases some optima – especially these
located on a vertex – can even be found without performing additional FE analyses.
Especially for larger FE models, storing all FE analysis results can cut the computational
cost significantly.

By using response surfaces – approximations of the objective functions based on
function evaluations in some well chosen points in the input parameter space – it is
possible to cut the computational cost even further (Montgomery, 1997; Schuëller
et al., 1991a; Schuëller et al., 1991b). Response surface based optimisation techniques
prove to be extremely useful in the context of fuzzy analysis. A fuzzy analysis requires
the same objective functions to be minimised and maximised on different α-levels or,
in optimisation terms, with different bound constraints. Figure 6 shows this for two
fuzzy uncertain parameters. The shaded rectangle shows the bound constraints for the
optimisation at α-level 0.0. Response surfaces valid at this α-level should approximate
the objective functions inside these bounds. The rectangles inside this shaded rectangle

uncertainty 2

uncertainty 1

1

0

01degree of m
em

bership

Figure 6 Optimisation bound constraints for an analysis with fuzzy uncertain parameters.
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show the bound constraints for the optimisations at higher α-levels. It is clear that the
same response surfaces approximate the objective functions at these α-levels too. Since
the construction of the response surfaces is by far the computationally most expensive
part of the algorithm, the computational cost of a fuzzy analysis is only slightly higher
than the computational cost of an interval analysis when using a response surface based
optimisation technique.

Also, when using a standard FE solver, the computational cost to evaluate all three
objective functions for all modes is equal to the computational cost to evaluate one
objective function for one mode. Because of the very low computational cost of a single
evaluation of the response surface approximation function, the computational cost of
a global optimisation on the response surface is feasible for most practical applications.
These properties can be used to develop a very efficient optimisation algorithm for the
full fuzzy FE algorithm (Munck et al., 2006).

5.2 Application: st i f fened conical shel l structure

The procedure and the generic implementation are applied on an stiffened conical shell.
Figure 7 shows the finite element model (left) and a schematic view on the cross sec-
tion of the shell (right). The structure consists of five conical shell rings, connected and
stiffened by stiffening rings. The finite element model consists of about 38000 nodes
(228000 DOFs) and about 28000 elements (quadrilateral plate elements for the skin
and five- and six-sided solid elements for the reinforcements). The model is subject
to five uncertainties: the thicknesses of the shell structures between the reinforcement
rings. These uncertainties are described using fuzzy numbers: (3/4/5) mm, (3/4/6) mm,
(3/4/8) mm, (3/4/8) mm and (3/4/10) mm from the lower to the upper side of the struc-
ture. (a/c/b) denotes a triangular fuzzy number with support [a, b] and top c. These
uncertain parameters and uncertain parameter ranges are specified by the designer of
this conical shell structure.

skin: (3/4/10) mm

skin: (3/4/8) mm

skin: (3/4/6) mm

skin: (3/4/5) mm

skin: (3/4/8) mm

ringframe

ringframe

ringframe

bottom ring

top ring

separation ring

Figure 7 Finite element model (left) and schematic description (right) of the stiffened conical shell
structure.
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This conical structure serves as a connection between two relatively rigid structures,
one rigidly bolted to the bottom ring and the other rigidly bolted to the top ring. Since
at this design stage, the exact properties of these structures are unknown, they are
modelled as rigid body elements. One is connected to all nodes on the bottom ring,
the other one is connected to all nodes on the top ring. The acceleration transmittance
FRF between the centres of these rigid body elements in the longitudinal direction is
calculated.

The procedure described in sections 4.1 and 4.2 gives the ratio between the displace-
ment in DOF j and the force applied in DOF k as a function of the frequency. If a very
large mass m0, several orders of magnitude larger than the mass of the entire structure,
is connected to a DOF, the acceleration caused by a (harmonic) excitation in this DOF
is approximately equal to:

f = m0 · a (8)

MSC Software Corporation (2002) recommends that the value of m0 is approxi-
mately 106 times the mass of the structure for translational DOFs and 106 times the
moment of inertia for rotational DOFs. For a harmonic excitation x= sin(ωt), the
relation between the displacement and the acceleration is:

a = −ω2 · x (9)

Thus, the relation between the acceleration transmittance FRF (FRFA/A)and the
receptance FRF(FRFX/F)is:

FRFA/A = aj

ak
= −ω2xj

1
m0

fk
= −ω2m0

xj

fk
= −ω2m0 · FRFX/F (10)

The model is subjected to an MRE analysis using the response surface based optimi-
sation developed by the authors Munck et al. (2006) and a vertex (also called two level
full factorial design of experiments or transformation method) analysis. Each analysis
is done at 6 α-levels(0.0, 0.2, . . . ,1.0).

Based on the magnitude of the modal mass mi and modal stiffness ki, only three
modes (number 1,2 and 13) contribute to the FRF. Because the contributions of the
other modes are negligible compared to the contributions of these three modes, only
these three modes are taken into account. Because the order of the modes can change
when the uncertain parameters take different values, the modes are tracked using a
modal assurance criterion (MAC). The MAC gives the correlation factor between two
eigenvectors:

MACXY = |X∗TWY|2
(Y∗TWY)(X∗TWX)

(11)

where W is the weighting matrix which is the unity matrix in this case.
The MRE analysis requires 6 optimisations for each mode at each α-level taken

into account. Since three modes are considered at five α-levels (the analysis at level
1.0 is a deterministic analysis), 90 optimisations are required. Using the automated
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response surface based optimisation procedure, 41 deterministic analyses are required
to construct response surfaces for all objective functions. The computational cost of the
optimisation using the response surfaces is negligible compared to the computational
cost to construct these response surfaces.

The vertex analysis solves the deterministic model for all combinations of minima
and maxima of the uncertain parameters. For this model with 5 uncertainties, 32 (25)
deterministic analysis are required at each α-level, except for α-level 1.0, where only 1
deterministic analysis is required. In total, 161 deterministic analyses are required.

The top graph of Fig. 8 shows the upper bound on the FRF at α-level 0.0, calculated
using the MRE and vertex method. Additionally, all vertex samples are plotted. Using
the vertex method, 32 deterministic analyses were needed to calculate this upper bound;
using the MRE method and the response surface based optimisation technique, 41
deterministic analyses were needed. The bottom graph shows the relative difference
between the MRE and vertex results. These results prove that the MRE method using
the response surface based optimisation method is able to calculate the bounds on the
FRF accurately.

Fig. 9 shows the fuzzy FRF assembled from the interval FRFs at α-levels
0.0,0.2, . . . ,1.0. This FRF shows that the uncertain parameters influence all modes
more or less equally, so the uncertainty on the FRF is about equal over the full frequency
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Figure 9 Fuzzy upper bound of the FRF between the upper and lower ring of the structure.

range of interest. 41 deterministic analyses are required to calculate this FRF using the
MRE method and the response surface based optimisation technique. Using the vertex
method, 161 (25 · 5+ 1) analyses are required to calculate a similar FRF.

In this case, the RSM approach is 4 times more efficient than the vertex analysis.

6 Component mode synthesis with uncertain sub
structures

The aim of the well-known Component Mode Synthesis (CMS) method is to reduce
the computational cost of large models and to enable a solution strategy in which
individual components can be optimised without the need for the recalculation of the
total structure. The CMS technique consists of three global steps. First the structure
is divided into a residual structure and a number of components, also referred to as
substructures or superelements. For each component, a confined set of component
modes is calculated, which represent its static and dynamic behaviour. In the second
step, these component modes are used to reduce the component stiffness and mass
matrices. In the third step, all reduced superelement models are combined with the
non-reduced part of the structure to form the global reduced system, that is further
used for global FE analyses.

This section first describes the main steps of the standard CMS approach. Uncer-
tainty is then introduced afterwards.

6.1 Determinist ic CMS

6.1.1 Calcu lat ion of component modes

For each component, all unconstrained degrees of freedom (dofs) are assigned to one
of two specific sets. The set of boundary degrees of freedom (subscript t) contains all
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dofs that connect the considered component to the residual structure or to another
component. The remaining dofs are assigned to the set of internal dofs (subscript o,
also referred to as “omitted’’ dofs). The stiffness and mass matrices of each component
are assembled, and subsequently partitioned according to these sets (Craig & Bampton,
1968):

[K] =
[

Ktt Kto

Kot Koo

]
[M] =

[
Mtt Mto

Mot Moo

]
(12)

For each component, a set of component modes is calculated. In literature, several
approaches using different types of component modes for static and dynamic reduction
are described. The Craig-Bampton method (Craig & Bampton, 1968) has been widely
used and implemented in many finite element codes because the procedure for formu-
lating the component modes is very straightforward, and because the method produces
highly accurate results. The basic and most commonly applied version of the Craig-
Bampton method uses constraint modes and fixed-interface normal modes to describe
the static, respectively the dynamic behaviour of a component. Each constraint mode
describes the static deformation of the component when a unit displacement (or rota-
tion) is applied to one boundary degree of freedom, while the other dofs of the t-set
are restrained. The static transformation matrix [Got] with all constraint modes {φC

i }
as columns, has the following mathematical description:

[Got] = [{φC
1 }{φC

2 } . . . {φC
t }] = −[Koo]−1[Kot] (13)

The fixed-interface normal modes, which form the columns of the dynamic trans-
formation matrix [Goq], are calculated from the eigenvalue analysis of the component
with all boundary dofs fixed:

[Koo]{φi} = λi[Moo]{φi} (14)

[Goq] = [{φ1}{φ2} · · · {φq}] (15)

Each of these modes is assigned to a generalized degree of freedom (q-set). The accu-
racy of the dynamic reduction step is determined by the number of retained normal
modes nq. As the number of generalized degrees of freedom nq needed for an accu-
rate description of the dynamic behaviour of the component is usually several orders
smaller than the number of internal dofs, the size of the component model is drastically
reduced.

6.1.2 Component reduct ion

In the second step, the set of component modes is used for the transformation [�] of
the FE model from the set of physical dofs into the set of reduced dofs:{

xt

xo

}
= [�]

{
xt

xq

}
=
[

[I] [0]
[Got] [Goq]

]{
xt

xq

}
(16)



100 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Using this transformation, the component stiffness and mass matrix are reduced
to form the reduced superelement matrices (Craig & Bampton, 1968; MSC Software
Corporation, 2001):

[K]reduced = [�]T [K][�] =
[
Ktt 0
0 Kqq

]
[M]reduced = [�]T [M][�] =

[
Mtt Mtq

Mqt Mqq

]
(17)

with:

[Ktt] = [Ktt] + [Kto][Got] (18)

[Kqq] = [Goq]T [Koo][Goq] (19)

[Mtt] = [Mtt] + [Mto][Got] + [Got]T [Mot] + [Got]T [Moo][Got] (20)

[Mtq] = [Mto][Goq] + [Got]T [Moo][Goq] (21)

[Mqt] = [Mtq]T (22)

[Mqq] = [Goq]T [Moo][Goq] (23)

These reduced matrices represent the properties of the superelement as seen at its
interface with adjacent structures. In case of mass normalised normal modes, the matri-
ces [Kqq] and [Mqq] simplify to respectively a diagonal matrix with the eigenvalues and
a unity matrix:

[Kqq] = [�qq][Mqq] = [Iqq] (24)

6.1.3 Assembly of the reduced st ructura l sys tem

In a last step, the reduced stiffness and mass matrices of all components are assembled
with the non-reduced residual structure, to form the reduced stiffness and reduced
mass matrix of the complete structural system. These can then be used to perform finite
element analyses (e.g. an eigenfrequency or frequency response function analysis) on
the global structure. Data recovery for each superelement is performed by expanding
the solution at the attachment points, using the same transformation matrices that
were used to perform the original reduction on the superelement.

6.2 CMS with uncertain components

For the calculation of the eigenvalue intervals of an uncertain structure with the global
optimisation strategy, multiple eigenvalue problems have to be solved. Hence, the inter-
val finite element method for dynamic analysis becomes very time-consuming for large
systems. In this paper, the interval finite element method is combined with the com-
ponent mode synthesis method, in order to reduce the calculation time. Uncertainties
in a superelement of a reduced model affect each step of the reduction procedure: the
uncertainties generally affect the constraint modes, the normal modes and correspond-
ing eigenfrequencies, the static and dynamic transformation matrices, and the reduced
stiffness and mass matrices. The following paragraphs describe several approaches
for the implementation of this reduction step influenced by uncertainties: repeated
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component reduction, approximative component reduction based on component
eigenvalue ranges, non-reduced component matrices updating, and approximative
component reduction with the use of deviatoric component modes.

6.2.1 Repeated component reduct ion

A first possible approach to handle uncertainties on the super-element level during
an interval eigenfrequency analysis, is to recalculate the component modes, static and
dynamic transformation matrices, and reduced matrices of each superelement affected
by uncertain parameters, during each evaluation of the goal function of the global opti-
misation procedure. As in each iteration step all superelements are correctly reduced,
this approach does not introduce any approximation, and its results can hence be used
as reference. Although the implementation of this approach is straightforward, it lim-
its the efficiency of the substructuring technique as for each eigenvalue analysis of the
global structure, one or more superelement reduction steps have to be repeated.

6.2.2 Approx imat i ve component reduct ion based on component
e igenva lue ranges

Another approach to handle uncertainties on the superelement level, is to approximate
the description of an uncertain superelement, such that it can represent the effect of
the uncertain parameters on the static and dynamic behaviour adequately, and no
component recalculation has to be performed during a global interval or fuzzy analysis
of the total reduced structural system.

In literature, the approximation of uncertain superelements is most often carried out
by assuming that only the eigenvalues of the superelements are affected by the uncer-
tain parameters, and that the component modes remain unaffected (Lallemand et al.,
1999; Mace & Shorter, 2001; Van den Nieuwenhof, 2003). For the Craig-Bampton
method with mass normalized modes, this means that only the reduced matrix [Kqq]
is affected, while all other reduced matrices remain constant, as can be seen in equa-
tions (18)–(24). Therefore, in the reduction step of the algorithm, a separate interval
eigenfrequency analysis is performed on the superelement in order to calculate the
superelement eigenvalue ranges. After this preliminary interval eigenvalue analysis
on the uncertain superelement, the reduced component matrix [Kqq({s})], containing
the uncertainties through the calculated eigenvalue ranges, is included in the global
reduced FE model. Hence, the uncertainty originally defined on the superelement is
translated towards uncertainty affecting directly the reduced structure, and no further
superelement calculations are required during all global interval analyses performed on
the total reduced structure, resulting in a decrease of calculation time for these global
uncertainty analyses.

6.2.3 Non-reduced component matr i ces updat ing

The assumption that uncertainties in a superelement only affect its eigenvalue ranges
while the component modes and the other reduced matrices remain constant, might be
too severe for general cases, e.g. when local geometrical uncertainties affect the compo-
nent modes, or large stiffness and/or mass changes are present. Therefore, the method
using only the eigenvalue ranges of the uncertain superelement might underestimate the
real scatter on the output quantities calculated with the approximated reduced model.
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Another approach for approximate component reduction is to update the non-
reduced substructure matrices and recalculate the reduced matrices, in each iteration
step of a global optimisation procedure on the reduced model, while the static and
dynamic superelement transformation matrices are kept constant. This leads to a large
reduction in calculation time, as on the superelement level only the system matrix
assembly has to be performed, and no time-consuming matrix inversions or sub-
structure eigenvalue analyses has to be performed. Mathematically, the approximative
method comes down to the recalculation of the matrices in equations (17)–(23). How-
ever, care should be taken when calculating the reduced stiffness matrix, as coupling
terms [Ktq] similar to the mass coupling terms [Mtq] arise due to the fact that the
deterministic static transformation matrix [Got] does not necessarily equal the term
−[Koo]−1[Kot] with updated system matrices.

6.2.4 Approx imat i ve component reduct ion us ing dev ia tor i c
component modes

In case of large influence of the uncertain parameters on the component mode shapes,
an expansion of the previous method with an approximation of the static and/or
dynamic transformation matrices may be required. This paper proposes new strategy
in which the component modes of a substructure are approximated with a summation
of the deterministic component modes and some deviatoric mode shapes.

The CMS coordinate transformation is rewritten for explicit inclusion of uncertain-
ties contained in the vector s:

{x(s)} = ([�det] + [�dev(s)]){p(s)} (25)

In this equation, {x(s)} represents the vector containing the physical coordinates
of the component, {p(s)} is the vector with component generalized coordinates, [�det]
contains the deterministic component modes in its columns, and [�dev(s)] represents the
matrix with deviatoric component modes. Hence, each (constraint/normal) component
mode is augmented with a parameter-dependent deviatoric mode shape.

Consider first the case with only one uncertain parameter s, its associated uncertainty
interval [smin − smax] and deterministic value sdet. The evaluation of all component
modes in the deterministic point and the two interval vertices, allows to calculate a
second order polynomial approximation of each of the component modes, for brevity
of notation here written as {�(s)}:

{�(s)} = {�(sdet)} + {ϒ}�s + {�}(�s)2 (26)

with {ϒ} and {�} the linear, respectively the quadratic contribution of the compo-
nent mode and �s the relative difference between the specific value for the uncertain
parameter s and its deterministic value:

�s = s−sdet

sdet
(27)

In the case with multiple uncertain parameters contained in the column vector s, a
similar procedure can be performed. For each uncertain parameter si, two additional
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analyses are performed, one in each vertex of the parameter interval with all other
uncertain parameters kept at their respective deterministic value. Hence, for each
uncertain parameter, the procedure for the one-parameter case is applied, and two
deviatoric component mode contributions {ϒi} and {�i} are determined. With the
contributions for all uncertain parameters, the approximation of the component mode
{�(s)} becomes:

{�(s)} = {�(sdet)} + {ϒ1}�s1 + {�1}(�s1)2 + {ϒ2}�s2 + {�2}(�s2)2

+ · · · + {ϒns}�sns + {�ns}(�sns )
2 (28)

= {�(sdet)} +
ns∑
i

({ϒi}�si + {�i}(�si)2) (29)

with �si = (si − si,det/si,det). The proposed procedure can be interpreted as a quadratic
response surface approximation with 1+ 2ns response points, however of a vector
function instead of a scalar function. Here, the mutual influence between the uncer-
tain parameters has been ignored, and only two response points per parameter are
considered (besides the deterministic case). For some applications, this simple response
surface approximation yields good results. However, for other applications, a more
sophisticated response surface may be required, with more response points per param-
eter and/or cross terms to cover part of the coupled parameter influence (De Munck
et al., 2006).

6.3 Uncertainty in substructure matrices and component modes

Uncertainties in a component of a CMS substructured FE model generally affect the
non-reduced component matrices as well as the component modes which are used in
the reduction step. Hence, in each iteration step of a global optimisation procedure,
performed for the determination of the modal parameter ranges (see section 4.2),
component modes and reduced matrices should be recalculated for each uncertain
substructure. However, this limits the efficiency of the substructuring technique, as the
computationally demanding component mode calculation (constraint modes, normal
modes, . . .) has to be repeated. Therefore, research has been performed that focusses
on the development of approximative methods which enable an adequate uncertainty
representation of component modes and/or reduced matrices, such that a large number
of recalculations on the substructure level during global FE analyses on the reduced
assembly model is avoided.

In literature, the approximation of an uncertain substructure is most often carried
out by in the assumption that only the eigenvalues of the substructures are affected
by the uncertain parameters, while the component modes remain unaffected (Mace
& Shorter, 2001). A separate interval eigenvalue analysis is performed on each uncer-
tain component in order to calculate the component eigenvalue ranges. Hence, the
uncertainty originally defined on the substructure is translated towards uncertainty
affecting directly the reduced structure, and no further component calculations are
required during all global interval analyses performed on the reduced assembly.

The assumption that uncertainties in a substructure only affect its eigenvalue ranges
while the component modes remain constant, might be too severe for general cases,
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Figure 10 Cantilevered plate partitioned into two components.

e.g. when local geometrical uncertainties affect the component modes, or large stiff-
ness and/or mass changes are present. In this context, the authors developed several
approximative techniques that take into account uncertainties on component modes
and non-reduced matrices (De Gersem et al., 2007a). Recently a novel approach has
been developed, in which the component modes of a substructure are approximated
with a summation of the deterministic component modes and some deviatoric mode
shapes. The accuracy of the results and the computational efficiency are promising (De
Gersem et al., 2007b).

6.4 Numerical example

A benchmark cantilevered plate model is considered, 609.6 by 304.8 mm (24
by 12 inches), with thickness t= 3.175 mm (0.125in.), divided into two unequal
substructures, as shown in fig. 10(a). The material of the plate is 2024-T3 alu-
minium, with Young’s modulus E= 72 GPa, Poisson’s ratio ν= 0.33, and mass density
ρ= 2800 kg/m3. A finite element mesh of 48× 24 square plate elements is used (1 in by
1 in each). The leftmost row of elements of the second substructure (SE2) represents a
small steel strip, cf. fig. 10(b). The material properties of the steel are: Young’s modulus
of 210 GPa, Poisson’s ratio of 0.3 and mass density of 7800 kg/m3. A Craig-Bampton
CMS model of the plate was created based on the lowest 5 eigenfrequencies, covering
a frequency range of 200 Hz. For the construction of the substructured model, fixed-
interface normal modes up to 700 Hz were retained for both substructures: 9 modes
for the left hand part (SE1), and 5 for the right hand part (SE2). In addition, there
are 150 constraint modes (25 nodes× 6 dofs), yielding a CMS model with 164 dofs.
For reference, it is verified that the first 5 eigenfrequencies of this CMS model are all
within 0.1% of the corresponding FEM eigenfrequencies.

The influence of an interval uncertainty on the Poisson’s ratio of the aluminium on
the eigenfrequencies of the reduced structural system is considered. 4 different methods
are used to quantify the effect of the Poisson parameter. The results of the analyses on
the 4 lower resonance frequencies are shown in fig. 11:

• vertex analysis (marked with red “+’’)
• Monte Carlo simulation, with 50 randomly distributed samples in the uncertainty

interval [0.25, 0.35]; this analysis is taken as a reference the solid (green) line
represents the results of a reference Monte Carlo Simulation
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Figure 11 Influence of the Poisson coefficient on the first four eigenfrequencies.

• approximation A (marked with magenta “◦’’), based on component eigenvalue
ranges only

• approximation B (marked with grey “ ♦’’), using deviatoric component modes

The deterministic analysis (ν= 0.33) is marked at the intersection of the curves.
These figures clearly show that the approximative method using only the eigenvalues
of the uncertain superelement is not sufficiently accurate for the prediction of the
influence of the chosen uncertainty. This can be explained by the fact that the uncertain
parameter mainly influences the stiffness of the substructure and the many constraint
modes, while the variation of the sub-structure eigenvalues is limited. For the third and
fourth eigenfrequencies of the assembly, the general trend is even wrongly predicted by
this approximative method. The results of the approach based on the use of deviatoric
component modes almost coincide with the reference results.

7 Conclusions

This paper gives an overview of the current state of development of the fuzzy finite
element method for dynamic analysis. After a review of definitions and generic analysis
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approaches, a hybrid method for FRF prediction is discussed. The paper then presents
2 recent enhancements to the hybrid – optimisation and interval arithmetic – procedure
for fuzzy envelope FRF calculation.

The first improvement uses a Response Surface Methodology to reduce the calcu-
lation time. It takes advantage of the special properties of the optimisation problems.
The result is a highly efficient procedure for interval and especially fuzzy finite element
analysis.

The other improvement is in the field of Component Mode Synthesis. A new scheme
is developed to take into account the effect of uncertain parameters in the trans-
formation matrices in the component mode reduction phase. It is shown that static
and dynamic component modes may change with parameter uncertainties. In order
to improve the accuracy of the analysis, it is required that these component mode
sensitivities are explicitly taken into account.
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Morphological indicators and the
prediction of the first natural frequency
of a lightweight structure
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ABSTRACT: Morphological indicators are dimensionless numbers that represent a property
of a structure (e.g. volume, stiffness . . .) and depend only on a small number of variables (Samyn,
1999). These indicators allow for optimization at the stage of conceptual design. The most
important indicators are the indicator of volume, related to the strength of the structure, and
the indicator of displacement, related to the stiffness of the structure. These indicators, in their
most simple appearance, are function only of the geometrical slenderness of the structure, under
the assumption that the structure is not subjected to second order effects and that shear effects
are not predominant. The indicator of volume allows choosing the structural typology with a
minimum of volume of material. When using the indicator of volume at the stage of conceptual
design, important areas of slenderness appear to bring about problems of resonance. This is
particularly the case for structures which have predominant co-vibrating loads, have large spans
and are using a material with a small stiffness/strength ratio. A practical example is discussed
and some general design guidelines are proposed.

1 Introduction: morphological indicators

The so-called morphological indicators (MI) were introduced by Samyn (1999). As
different papers, both within this conference and in other journals and books (see e.g.
a more recent book of Samyn (2004)), have already or will underline the potentials
of these dimensionless numbers, we will restrict ourselves to a very short introduc-
tion. Samyn (1999, 2000, 2004) essentially introduced two indicators, one related to
the minimum volume of material required for a structural typology achieving a fully
stressed design, the other related to the maximum displacement in the same structure.
The combination of those two indexes, being the volume indicator W and the dis-
placement indicator σ allow the designer to select not only a (sub)optimal typology
but also its optimal aspect ratio (defined hereunder as the slenderness). The indicators
are dimensionless numbers, function of very few parameters, the most important being
the so-called slenderness of the structure L/H, in which L is the larger and H the lesser
dimension of a window, framing the structure.



110 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Samyn (1999) defined them as:

a) W = (σV/FL), in which σ is the admissible stress (in practice we consider the
allowable stress in the serviceability limit state (SLS), V the volume of material, F
the resultant of (static) forces, loading the structure, and L its span.

b) �= (Eδ/σL), in which E is the elastic modulus and δ the maximum displacement.

He also shows that they can be expressed as a function of L/H: W=W(L/H) and
�=�(L/H). This allows to draw, either analytically or numerically, diagrams showing
the values of the indicators in function of the slenderness, for different typologies of
structures. The recent book of Samyn (2004), although not exhaustive, contains an
impressive amount of typologies, which can be compared: see Fig. 1 as an example of
a comparison of different Warren trusses through the volume indicator: this diagram
is taken from Samyn et al. (1998). Similar graphs were developed for the displacement
indicator �.

It is clear that Samyn (1999) hereby provided the architect with “a tool allowing to
reach a suboptimal design at the stage of the conceptual design’’. The fact that he is
still using it today, and undoubtedly producing designs of outstanding quality, proves
the robustness and the reliability of the tools he introduced.

However, two major objections could be foreseen and they were very soon subject of
controversy. Indeed, the two indicators allow for a preliminary design, achieving the
required performances of strength and stiffness with a minimum volume of material
(a fully stressed design of statically determinate structures, subject to classical load
cases) . . . but what about other phenomena like e.g. (in)stability and possible reso-
nance? Let us state here that we are convinced that conceptual design should take into
account the totality of the performance criteria to be satisfied by any structure:

• the strength of its structural parts is controlled through the indicator of volume:
W = (σV/FL), as it starts from a fully stressed design (at a stress level σ). In the
conceptual design stage, a minimal value of this indicator is aimed at, thus trying
to achieve a minimal consumption of material. But, as we shall experience very
quickly, a mere choice of the slenderness L/H, corresponding to a minimum of
the curve for the chosen typology (see e.g. fig. 1) does not solve the problem! The
reason is simple: this simple minimisation does not take into account the stiffness,
stability . . . and dynamic requirements of the design. In this sense we could say
that each of the three other criteria additionally introduce kinds of “forbidden
zones’’ in the W=W(L/H) diagrams: a forbidden zone for the excessively flexible
structures, one for the unstable structures and eventually one – if relevant – for
the unacceptable vibrations.

• the stiffness of the structure is evaluated through the indicator of displacement:
�= (Eδ/σL). As one can see, it is proportional to the ratio�/L, which is generally
limited by design codes (see e.g. Eurocodes). As we will show later this indica-
tor, originally introduced by P. Samyn will be of primordial importance when
evaluating the risk for resonance of a structure.

• through the buckling indicator�= (µσL/
√

qEF), introduced by Latteur (2000) in
his thesis work under the author’s supervision, in which σ is the length reduction
factor (due to end conditions of the elements), and q= (I/�2) in which I is the
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Figure 1 Comparison of different Warren trusses.

(minimal) inertia moment of the section and σ its sectional area, one can evaluate
the sensitivity of the structure to (local) buckling: the higher �, the higher the
risk. We are convinced that this instrument should be used in conjunction with
the other (W ,�,�), as it gives an excellent estimate of the penalty in material in
order to avoid buckling. To be mentioned is that Van Steirteghem (2006) shows
in his thesis work that one can also evaluate the risk for global instability, starting
from this indicator.

Eventually one also has to consider an indicator describing the dynamic behaviour of
the structure. This is achieved through the use of the indicator of the first natural fre-
quency �= (1/

√
�)= f ((L/H),�), extensively discussed by Van Steirteghem (2006).

As one sees, there is a direct link with the indicator of displacement σ. This indicator
� is also directly linked with the buckling indicator, which is not surprising: both
resonance and buckling phenomena in elastic systems are related with transformation
of energy (compression into bending or torsion for buckling, potential into kinetic for
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resonance). An important observation can be made here: if one accepts all the sim-
plifications introduced by the concept of morphological indicators and if one has a
closer look at the indicator �, one will notice that it is independent on the volume
indicator and thus on the mass of the system. This could bring one to the conclusion
that – at least, at the stage of conceptual design – there is little hope that one can
improve the dynamic behaviour of the structure through simple addition of mass. This
has been confirmed when designing e.g. slender footbridges: one quickly comes to the
conclusion that the penalty in mass, in order to achieve an acceptable spectrum of res-
onance frequencies is (very) much higher than the one necessary to control its buckling
behaviour.

2 Classif ication of dynamic loads

When a dynamical analysis of a structure is performed, it is custom to convert the
static loads into additional masses. We consider a structure spanning a length L and
subjected to a total resultant of static loads F. F includes:

• External live loads Fl, which can further be subdivided in non co-vibrating live
loads Fl1 = (1− c)Fm and non co-vibrating live loads Fl2 = cFl,

• External permanent loads Fp,
• Self weight of the structure F0.

The following combinations can be defined:

• the sum of all permanent loads, i.e. FP = F0 + Fp,
• the sum of all external loads, i.e. FE = Fl + Fp

• the resultant of all static force, i.e. F= F0 + FE or F= FP + Fl

Finally, we define the total co-vibrating load, FD, combining self weight, external
permanent loads and the co-vibrating part of live loads: FD = FP + cFl

Herein, c is defined as the share of the live loads that are co-vibrating.
Up to now we considered loads with respect to the ULS. However, the Eurocode

[EN1995, EN1992, EN1990] stipulates that the dynamic analysis should be carried
out in SLS. Therefore, we convert the loads in order to use them in a SLS–analysis.
All quantities with respect to a SLS–analysis are marked with an *. In ULS the partial
safety coefficients are 1,35 and 1,5 for the permanent and live loads respectively, in
SLS both are equal to 1. Therefore:

F∗
D = FE

1,35
+ c

Fl

1,5

Next, m∗
D is defined as the vibrating mass, in SLS, with respect to the dynamic analysis:

m∗
D = F∗

D

g

Finally m is defined as the mass of all the loads: m= F/g
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3 Indicator of natural frequency

We are now able to establish the expression of the indicator of first natural frequency.
We start with the general expression for the eigenfrequency of a single degree of free-
dom (SDOF) system and show that it is possible to use the indicator of displacement,�,
to establish the expression of an indicator of first natural frequency. By reducing con-
tinuous systems to a SDOF system some approximations are made that influence the
accuracy of the results. However we show that these approximations are largely accept-
able, certainly at the level of conceptual design. Moreover we introduce a correction
factor to obtain “exact’’ results if they are available.

Afterwards we comment on the indicator of first natural frequency by pointing out
and discussing the parameters that influence the design decisively and indicate when
the dynamic behaviour of structures becomes the dimensioning criterion. We finish by
providing some examples that illustrate the use and the scope of the indicator of first
natural frequency.

We consider m∗
D as the vibrating mass (m∗

D must not be confused with the partici-
pating mass: mp = k/(2πf )2), in SLS, with respect to the dynamic analysis and k as the
static stiffness of the structure. By approximating the structure by an undamped SDOF
system. In most textbooks the expressions used for a SDOF system is f = (1/2π)

√
k/m.

Herein m is the total static mass, this comprises the self weight and added mass as a
consequence of the co–vibrating loads in SLS and corresponds therefore with m∗

D as
defined previously. The natural frequency associated with mode i can be expressed as:
fi = (ω/2π)= (ccor,i/2π)

√
(k/m∗

D) We add the constant ccor to provide exact analytical
solutions if they are available (e.g. beams).

Next, we define z∗ as the ratio of the co-vibrating load F∗
D to the total load FT

with respect to SLS or the ratio of the vibrating mass m∗
D to the total mass m:

z∗ = (F∗
D/FT )= (m∗

D/m) and thus:

fi = ω

2π
= ccor,i

2π

√
k

z∗m
= ccor,i

2π

√
g

k
2∗F

.

Since δ= F/k, one finds:

fi = ccor,i

2π

√
g

1
z∗δ

or as a function of the indicator of displacement:

fi = ccor,i

2π

√
gβ

E
z∗�σL

The indicator of displacement is always determined for the fully stressed design. The
parameter β is used to allow a reduced stress level. It is now possible to define an
indicator of natural frequency:

� = 1√
�

= 2πfi

ccor,i

√
g

z∗σL
βE

= f
(

L
H

,�
)
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F � pL [kN]

Figure 2 Simple beam example.

The indicator of first natural frequency is thus defined as: The natural frequency
of a structure with a unit length (L= 1 m) composed of members working at a unit
stress (σ= 1 Pa) and with a unit elastic modulus (E= 1 Pa) for which the ratio of the
co-vibrating loads to the total load is equal to z∗ in Serviceability Limit State.

3.1 Example: Determining the natural frequency of beams

This example shows how the indicator of natural frequency can be used to determine
the natural frequencies of beams. One considers that all live loads are not co-vibrating
and that 60% of the loads arise from self weight and permanent loads.

3.1.1 Ind icator of d i sp lacement

[2] provides the expression of � for a fully stressed design:

� = 16
5.2
Z

H
L

+ 5
24

L
H

3.1.2 Calcu lat ion of z∗

Since all live loads are not co vibrating:

Fl = Fl1

And 60% of the loads arise from self weight and permanent loads, one obtains FD

in SLS:

FP = 0,6F = FD

In ULS this becomes:

F∗
D = 0,6F

1,35

Therefore:

z∗ = F∗
D

F
= m∗

D

m
≈ 0,44
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3.1.3 Calcu lat ion of ccor,1

When establishing the natural frequency of the beams, using fi = (ccor,i/2π)
√

g(1/z∗δ),
we suppose a SDOF system. In reality, however, the beam is a continuous system and
therefore the SDOF results are an approximation. For the SDOF system the result
becomes:

f1 = 1
2π

√
384

5
EI

m∗
DL3

≈ 1,39

√
EI

m∗
DL3

The exact solution can be obtained from [6]:

f1 = 9,87
2π

√
EI

m∗
DL3

≈ 1,57

√
EI

m∗
DL3

Therefore:

ccor,1 = 1,57
1,39

≈ 1,13

3.1.4 Ind icator of natura l f requency

We can now draw graphs that allow the determination of the first natural frequency
of uniformly loaded beams with z∗ = 0,44.

One considers e.g. a concrete beam (E= 23 Gpa, σ= 14,17) with a span of 10 m (L)
and a height of 0,70 m (H) and obtain an overall slenderness of 14,3 (L/H). A concrete
beam with a rectangular section has a form factor Z= 1, but Figure 3 shows that at
L/H = 14,3, the value of � is equal for all values of Z. The first natural frequency
of this beam is 6 Hz and the associated mode is a half-sinusoidal bending mode. We
observe that the natural frequency for the same beam in timber: 4,1 Hz; S-235 Steel:
4,4 Hz and S-355 Steel: 3,6 Hz.

3.1.5 Discuss ion

The proposed indicator allows an accurate determination of the natural frequency
of structures at the stage of conceptual design. Furthermore it allows comparing the
behaviour of different materials, the span and the form factor of the section used. We
discuss the importance and the scope of the different parameters in the next paragraph.

3.2 Parameter study

The example shows convincingly that the natural frequency of structures can be deter-
mined at the stage of conceptual design. In this paragraph we study the different
parameters that influence the dynamic behaviour of structures. We discuss the influence
of loads through z∗, materials, stress level, connections, typology and the correction
factor ccor,1.
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Figure 3 Simple beam example: parametric study results.

3.2.1 Dif ferent va lues of z∗

It is not straightforward to determine the value of z∗ at the stage of conceptual design.
Therefore we determine the limit values of z∗. The upper bound on F∗

D and z∗ occurs
when all loads are permanent and as a consequence considered as co-vibrating loads.
For that reason:

Fl = 0 and F = FP = F0 + Fp.

Hence:

F∗
D = FP

1,35
= F

1,35

or in terms of vibrating mass:

m∗
D = m

1,35
= F

1,35 g

and therefore:

z∗ = F∗
D

F
= m∗

D

m
= 0,74



Morpholog ica l ind ica tors and frequency pred ic t ions 117

We note that this is a theoretical situation since we assume that all loads are permanent:
none will thus induce vibrations of the structure. Nevertheless this situation determines
the upper bound on z∗.

The lower bound on F∗
D and z∗ occurs when all external loads are live loads and

cannot be considered as co – vibrating. For that reason:

Fp = 0, FE = Fl, Fl = Fl1 ⇒ c= 0.

Therefore only self weight should be accounted for the determination of F∗
D and

m∗
D. These quantities are not easy to determine. However, the indicator of self weight

�= ρL/σ, introduced by Latteur (2000), provides a tool to determine the percentage
of the load originating from self weight:

F0

F
= ρV

F
= σV

FL
ρL
σ

= W�

One now expresses F∗
D and M∗

D:

F∗
D = F0

1,35
= W�F

1,35
⇒ M∗

D = W�F
1,35g

and z∗:

z∗ = F∗
D

F
= m∗

D

m
= W�

1,35

Since one considers the natural frequency to be a control calculation W and � are
already computed and therefore z∗ can be determined. In this paper two values are
considered to draw the graphs: W�= 0,2 for lightweight structures (e.g. footbridge)
and W�= 0,6 for structures in which the self weight is important (e.g. railway bridge)
resulting in the following values of F∗

D and m∗
D for �= 0,2 and �= 0,6 respectively:

F∗
D = F0

1,35
= 0,2F

1,35
⇒ m∗

D = 0,2 m
1,35

F∗
D = F0

1,35
= 0,6F

1,35
⇒ m∗

D = 0,6 m
1, 35

and z∗ becomes for �= 0,2 and �= 0,6:

z∗ = F∗
D

F
= m∗

D

m
= 0,2

1,35
= 0,15

z∗ = F∗
D

F
= m∗

D

m
= 0,6

1,35
= 0,44

We consider three values for z∗: z∗ = 0,74; z∗ = 0,44 and z∗ = 0,15.

3.3 Discussion

The relation: fi = (ccor,i/2π)
√

gβ(E/z∗�σL) indicates that z∗ influences the natural fre-
quency of a structure significantly. The designer should therefore carefully assess the
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Figure 4 Millenium Bridge.

contribution of the loads in the dynamic analysis of the structure. A very conservative
and safe approach would be to consider all loads as co-vibrating (z∗ = 0,74). However,
this can lead to an over-conservative design. On the other hand an underestimation of
the co-vibrating load may cause unacceptable vibrations of structures. The problem
that arose at the opening of the Millenium Bridge in London on June 10th, 2000, illus-
trates this situation (Figure 4). It is estimated that between 80.000 and 100.000 people
crossed the bridge on the first day. Analysis of the video footage showed a maximum
of 2.000 people on the deck at the same time, with a maximum of 1,3 to 1,5 people
per square metre.

Unexpected movement occurred. The movements were observed to be predomi-
nantly lateral and took place mainly on the South span, at a frequency of around
0,8 Hz – the first South lateral mode, and on the central span, at a frequencies just
under 0,5 Hz and 0,9 Hz, the first and second lateral modes respectively. More rarely,
the movement occurred on the North span at a frequency of just over 1 Hz, the first
North lateral mode.

These movements were not continuous; they occurred when a large number of pedes-
trians were on the bridge and died down if the number of people on the bridge reduced,
or if the people stopped walking. From the observation of the amplitude of the move-
ments on the south and central span, the maximum lateral acceleration experienced on
the bridge was between 200 and 250 10−3 g. At this level of acceleration a significant
number of pedestrians have a difficulty in walking and held onto the balustrades for
support.

The same phenomenon was not observed with any vertical modes. The bridge
behaved vertically as predicted in the design. The vertical movements that took place
were within the limits defined by British Standards.

The number of pedestrian allowed onto the bridge was reduced on 11th June, and
the movements occurred far more rarely. In the 12th June it was decided to close
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Figure 5 Damping devices to limit the lateral deflections of the bridge.

the bridge in order to fully investigate the cause of movements. Similar phenomena
occurred with Auckland Harbour Bridge, Solferino Bridge in Paris and a bridge in
Japan but no scientific literature about the phenomenon was then widely available.
Moreover, the specific dynamic loads generated by pedestrians when reacting to lat-
eral displacements are difficult to describe mathematically. The authorities (London
Port Authority) and the designers (Lord Norman Foster, Arup and Sir Anthony Caro)
decided to add damping devices to limit the lateral deflections of the bridge (Figure 5). It
is estimated that the original erection cost of the Millenium amounted to 18,6 million £
(27,6 million a). The cost of the adaptation amounted to 5 million £ (7,4 million a)
or about 27% of the initial cost. This example shows that it is important to consider
all possible vibration modes and dynamic solicitations at every stage of the design.

3.4 Addit ional examples and lessons to be drawn

Van Steirteghem (2006) discussed the dynamic behaviour of trusses and beams.
He showed that beams, with standard spans (5 m≤L≤ 10 m), have a first natural
frequency outside the 0–5 Hz interval and are therefore not subjected to dynamic sol-
licitations. This result is not surprising but indicates that the theory yields reliable
results.

Trusses with important spans, L≥ 20 m, are very sensitive to vibrations. For almost
all circumstances one must reduce the stress level in the structure to obtain an accept-
able first natural frequency. He showed that this stress reduction is most pronounced
if: (i) the co-vibrating load is large, (ii) the span is important and (iii) the stiffness to
strength ratio of the material is low.

He showed that Warren trusses are less sensitive to dynamic effects than both Howe
and Pratt trusses. Nevertheless, (even) Warren trusses need an important stress reduc-
tion to obtain natural frequencies outside the 0–5 Hz interval. Next, he proposed a
flow chart that one can use to design structures at the stage of conceptual design. He
showed that, even if one considers dynamics, the number of parameters to take into
account at the stage of conceptual design is small.

He proposed an example that uses this flow chart to design a 70 m footbridge.
He found that dynamics was the dimensioning criterion. If one wants a first natural
frequency larger than 5 Hz, one needs to reduce the stress level to an unacceptable
level. Therefore one can use a Tuned Mass Damper to attenuate the accelerations in



120 Computat iona l s tructura l dynamics and earthquake eng ineer ing

the structure. Furthermore, one can study the influence of the slenderness and the ratio
of the mass of the TMD to the mass of the structure. One can compare the structure
in which one does not use a TMD with the damped structure and show that a very
important gain in volume can be achieved if one uses a TMD. This example shows
clearly that one needs to consider a ‘design for stiffness’ approach when dynamic loads
are important.

4 Conclusions

• This chapter has shown that it is possible to include reasonable estimates of
the vibrational behaviour of a structure at the stage of conceptual design. This
is achieved by the introduction of an additional morphological indicator: the
indicator of the first natural frequency

� = 1√
�

= 2πfi

ccor,i

√
g

z∗σL
βE

= f
(

L
H

,�
)

,

which is depending on the slenderness L/H and the buckling indicator �.
• Trusses with important spans, L≥ 20 m, are very sensitive to vibrations. For almost

all circumstances one must reduce the stress level in the structure to obtain an
acceptable first natural frequency. He showed that this stress reduction is most
pronounced if: (i) the co-vibrating load is large, (ii) the span is important and
(iii) the stiffness to strength ratio of the material is low.

• A very important gain in volume can be achieved if one uses tuned mass dampers.
An example, with parametric analysis, shows clearly that one needs to consider a
‘design for stiffness’ approach when dynamic loads are important.

• In a subsequent paper, presented in the same conference by T. Vandenbergh
et al.[7], one can see that the outlined procedure can be applied to more complex
structures, like e.g. trusses.

List of symbols

b=width of cross section [m]
c= constant to indicate the part of the live loads that are co-vibrating [ ]

ccor,i = correction factor to provide exact results if they are available for mode i [ ]
fi = natural frequency related with mode i [Hz]
Fi = horizontal equivalent load induced by horizontal acceleration in a

structure [N]
F= total resultant of the static loads [N]

F0 = self weight of the structure [N]
FD = F0 + Fp + Fl2 = resultant of all co-vibrating loads [N]
F∗

D = resultant of all co-vibrating in loads in SLS [N]
FE = resultant of all external loads [N]
Fl = external live loads [N]

Fl1 = external live loads that are co-vibrating [N]
Fl2 = external live loads that are non co-vibrating [N]
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Fp = external permanent loads [N]
FP = F0 + Fp = resultant of all permanent loads [N]
F1 = total resultant of static loads [kN]
F2 = total resultant of static loads [kN]
g= 9,81 m/s2 = gravitational constant [m/s2]

H1 = height of structure [m]
H2 = height of structure [m]

k= stiffness of the structure [N/m]
mtot = total mass of the structure in analysis of structures subjected to vibration [kg]

mi =mass associated with mode i of the structure [kg]
m= F/g= total mass of all static loads [kg]

mD = FD/g= total mass of all co-vibrating loads [kg]
m∗

D = total mass of all co-vibrating loads in SLS [kg]
mp = k/(2πfi)2 = participating mass associated with a natural frequency [kg]
ui = eigenmode i of the structure [ ]
uj = eigenmode j of the structure [ ]
x= constant to indicate the part of the permanent loads that are external [ ]
z= FD/F= ratio of the co-vibrating load to the total load [ ]

z∗ = F∗
D/F= ratio of co-vibrating load to total load in SLS [ ]

α= constant, with respect to response to earthquake, specified by soil [ ]
β= constant providing stress level with respect to allowable stress [ ]
δ=maximum displacement of a structure loaded with F [m]
�=Eδ/σL= indicator of displacement [ ]
�= ρL/σ= indicator of self weight [ ]
ω= first natural pulsation of the structure [rad/s]
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Chapter 8

Dynamic analysis of plates stiffened by
parallel beams with deformable
connection

Evangelos J. Sapountzakis &Vasilios G. Mokos
National Technical University of Athens,Athens, Greece

ABSTRACT: A general solution for the dynamic analysis of plates stiffened by arbitrarily
placed parallel beams with deformable connection is presented. According to the proposed
model, the stiffening beams are isolated from the plate by sections in the lower outer surface of
the plate, taking into account the arising tractions in all directions at the fictitious interfaces.
These tractions are integrated with respect to each half of the interface width resulting two
interface lines. Their unknown distribution is established by applying continuity conditions in
all directions taking into account their relation with the interface slip through the shear con-
nector stiffness. Any distribution of connectors in each direction can be handled. The proposed
model permits the evaluation of the shear forces at the interfaces in both directions. Three addi-
tional finite element models using beam, shell or solid finite elements are also employed for the
verification of the accuracy of the results.

1 Introduction

Structural plate structures stiffened by beams are widely used in buildings, bridges,
ships, aircrafts and machines. However, these structures are prone to failure of the
bond between the beams and the plate. It is the behavior of this bond that gives com-
posite construction its unique peculiarities, while interface slip can cause significant
redistribution of strain and stress.

Although there is an extensive literature on static analysis of these systems to the
authors’ knowledge a rather limited amount is available on the dynamic one. In all
the research efforts the solution of the bending problem of stiffened plates is not gen-
eral. Only Sapountzakis and Mokos (2007) refining the structural model proposed by
Sapountzakis and Katsikadelis (1999) presented a general solution for the static anal-
ysis of plates stiffened by parallel beams taking into account tractions in all directions
at the fictitious plate – beams interfaces enabling in this way the analysis to include
eccentric beams, but in this latter analysis the distribution of the interface transverse
shear force is assumed to be constant along the width of the beam flange.

In this paper a general solution for the dynamic analysis of plates stiffened by arbi-
trarily placed parallel beams of arbitrary doubly symmetric cross section subjected to
an arbitrary dynamic loading is presented by improving the employed structural model
of Sapountzakis and Mokos (2007) so that a nonuniform distribution of the interface
transverse shear force and the nonuniform torsional response of the beams are taken
into account. According to the improved model, the stiffening beams are isolated again
from the plate by sections in the lower outer surface of the plate, taking into account
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the arising tractions in all directions at the fictitious interfaces. These tractions are
integrated with respect to each half of the interface width resulting two interface lines,
along which the loading of the beams as well as the additional loading of the plate is
defined. The utilization of two interface lines for each beam enables the nonuniform
torsional response of the beams to be taken into account as the angle of twist is indi-
rectly equated with the corresponding plate slope. The unknown distribution of the
aforementioned integrated tractions is established by applying continuity conditions
in all directions at the two interface lines taking into account their relation with the
interface slip through the shear connector stiffness. Any distribution of connectors in
each direction of the interfaces can be handled. The analysis of both the plate and
the beams is accomplished on their deformed shape taking into account second-order
effects. The method of analysis is based on the capability to establish a flexibility matrix
with respect to a set of nodal mass points, while a lumped mass matrix is constructed
from the tributary mass areas to these mass points. Six boundary value problems are
formulated and solved using the Analog Equation Method (AEM) (Katsikadelis, 2002),
a Boundary Element Method (BEM) based method. Both free and forced damped or
undamped transverse vibrations are considered and numerical examples with great
practical interest are presented. The adopted model permits the evaluation of the shear
forces at the interfaces in both directions, the knowledge of which is very important in
the design of prefabricated ribbed plates. Three additional finite element models using
Bernoulli beam finite elements, 8-noded quadrilateral shell finite elements (parabolic
elements) or 8-noded hexahedral solid finite elements (parabolic elements) are also
employed for the verification of the accuracy of the results and the validity of the
proposed model. The discrepancy in the obtained response of the stiffened plate using
the presented analysis and the corresponding one either employing one interface line
or ignoring the inplane forces and deformations justifies the analysis based on the
proposed model.

2 Statement of the problem

Consider a thin plate of homogeneous, isotropic and linearly elastic material with mod-
ulus of elasticity E and Poisson ratio ν, having constant thickness hp and occupying
the two dimensional multiply connected region � of the x, y plane bounded by the
piecewise smooth K+ 1 curves �0,�1, . . . ,�K−1,�K, as shown in Fig. 1. The plate is
stiffened by a set of i= 1, 2, . . . , I arbitrarily placed parallel beams of arbitrary dou-
bly symmetric cross section of homogeneous, isotropic and linearly elastic material
with modulus of elasticity Ei

b and Poisson ratio νi
b, which may have either internal or

boundary point supports. For the sake of convenience the x axis is taken parallel to the
beams. The stiffened plate is subjected to the lateral load g= g(x, t), x : {x, y}, t ≥ 0.
For the analysis of the aforementioned problem a global coordinate system Oxy for
the analysis of the plate and local coordinate ones Oixiyi corresponding to the centroid
axes of each beam are employed as shown in Fig. 1.

The solution of the problem at hand is approached by an improved model of that
proposed by Sapountzakis and Mokos (2007). According to this model, the stiffening
beams are isolated again from the plate by sections in its lower outer surface, taking
into account the arising tractions at the fictitious interfaces (Fig. 2). Integration of
these tractions along each half of the width of the i-th beam results in line forces
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Figure 1 Two dimensional region � occupied by the plate.

per unit length in all directions in two interface lines, which are denoted by qi
xj, qi

yj

and qi
zj(j= 1, 2) encountering in this way the nonuniform distribution of the interface

transverse shear forces qi
y, which in the aforementioned model in Sapountzakis and

Mokos (2007) was ignored. The aforementioned integrated tractions result in the
loading of the i-th beam as well as the additional loading of the plate. Their distribution
is unknown and can be established by imposing displacement continuity conditions
in all directions along the two interface lines, enabling in this way the nonuniform
torsional response of the beams to be taken into account, which in the aforementioned
model in Sapountzakis and Mokos (2007) was also ignored.

The arising additional loading at the middle surface of the plate and the loading
along the centroid and the shear center axes of each beam can be summarized as
follows

a. In the plate (at the traces of the two interface lines j = 1,2 of the i-th plate-
beam interface)

(i) A lateral line load qi
zj.

(ii) A lateral line load ∂mi
pyj/∂x due to the eccentricity of the component qi

xj from
the middle surface of the plate. mi

pyj = qi
xjhp/2 is the bending moment.

(iii) A lateral line load ∂mi
pxj/∂x due to the eccentricity of the component qi

yj from
the middle surface of the plate. mi

pxj = qi
yjhp/2 is the bending moment.

(iv) An inplane line body force qi
xj at the middle surface of the plate.

(v) An inplane line body force qi
yj at the middle surface of the plate.
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Figure 2 Thin elastic plate stiffened by beams (a) and isolation of the beams from the plate (b).

b. In each (i-th) beam (Oixiyizi system of axes)

(i) A perpendicularly distributed line load qi
zj along the beam centroid axis Oixi.

(ii) A transversely distributed line load qi
yj along the beam centroid axis Oixi.

(iii) An axially distributed line load qi
xj along the beam centroid axis Oixi.

(iv) A distributed bending moment mi
byj = qi

xje
i
zj along Oiyi local beam centroid axis

due to the eccentricities ei
zj of the components qi

xj from the beam centroid axis.
ei

z1 = ei
z2 =−hi

b/2 are the eccentricities.
(v) A distributed bending moment mi

bzj =−qi
xje

i
yj along Oizi local beam centroid

axis due to the eccentricities ei
yj of the components qi

xj from the beam centroid
axis. ei

y1 =−bi
f /4, ei

y2 = bi
f /4 are the eccentricities.

(vi) A distributed twisting moment mi
bxj = qi

zje
i
yj − qi

yje
i
zj along Oixi local beam shear

center axis due to the eccentricities ei
zj, ei

yj of the components qi
yj, qi

zj from
the beam shear center axis, respectively. ei

z1 = ei
z1 =−hi

b/2 and ei
y1 =−bi

f /4,

ei
y2 = bi

f /4 are the eccentricities.

The structural models and the aforementioned additional loading of the plate and the
beams are shown in Fig. 3. On the base of the above considerations the response of
the plate and of the beams may be described by the following initial boundary value
problems.
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a. For the plate.

The plate undergoes transverse deflection and inplane deformation. Thus, for the
transverse deflection the equation of motion employing the linearized second order
theory can be written as

D∇4wp + ρpẅp + cpẇp −
(

Nx
∂2wp

∂x2
+ 2Nxy

∂2wp

∂x∂y
+ Ny

∂2wp

∂y2

)
in � (1)

= g −
I∑

i=1

 2∑
j=1

(
qi

zj −
∂mi

pxj

∂y
+ ∂mi

pyj

∂x
− qi

xj

∂wi
pj

∂x
− qi

yj

∂wi
pj

∂y

)
δi

j(y − yj)


the corresponding boundary conditions as

αp1wp + αp2Rpn = αp3 βp1
∂wp

∂n
+ βp2Mpn = βp3 on � (2a,b)

and the initial conditions as

wp(x, 0) = wp0(x) ẇp(x, 0) = wp0(x) (3a,b)

where wp(x, t), x : {x, y}, t ≥ 0= time dependent transverse deflection of the plate;
D=Eh3

p/12(1− v2)= flexural rigidity; Nx(x, t), Ny(x, t), Nxy(x, t)= the membrane
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forces per unit length of the plate cross section; ρp = ρhp = surface mass density of
the plate with ρ being the volume mass density; cp = plate flexural damping constant;
wp0(x), wp0(x)= initial deflection and the initial velocity of the points of the mid-
dle surface of the plate; δ(y− yi)=Dirac’s delta function in the y direction; Mpn and
Rpn = bending moment normal to the boundary and the effective reaction along it,
respectively, which using intrinsic coordinates n, s are given as

Mpn = −D
[
∇2wp + (v − 1)

(
∂2wp

∂s2
+ κ∂wp

∂n

)]
(4)

Rpn = −D
[
∂

∂n
∇2wp − (v − 1)

∂

∂s

(
∂2wp

∂s∂n
− κ∂wp

∂s

)]
+ Nn

∂wp

∂n
+ Nnt

∂wp

∂s
(5)

in which κ(s)= curvature of the boundary; ∂/∂s and ∂/∂n denote differentiation with
respect to the arc length s of the boundary and the outward normal n to it, respectively.
Finally, apl, βpl(l = 1, 2, 3) are functions specified on the boundary �. In this investiga-
tion these functions do not depend on time. In the case that they are time dependent
support excitations may be considered.

Since linearized plate bending theory is considered, the components of the membrane
forces Nx, Ny, Nxy are given as

Nx = C
(
∂up

∂x
+ ν∂vp

∂y

)
Ny = C

(
ν
∂up

∂x
+ ∂vp

∂y

)
Nxy = C

1 − ν
2

(
∂up

∂y
+ ∂vp

∂x

)
(6a,b,c)

where C=Ehp/(1− ν2); up(x, t), vp(x, t)= displacement components of the middle
surface of the plate arising from the line body forces qi

xj, qi
yj (i= 1, 2, . . . I), (j= 1, 2).

These displacement components are established by solving independently the plane
stress problem, which is described by the following quasi-static (inplane inertia forces
are ignored) boundary value problem (Navier’s equations of equilibrium)

∇2up + 1 + v
1 − v

∂

∂x

[
∂up

∂x
+ ∂vp

∂y

]
− 1

Ghp

I∑
i=1

qi
xδ(y − yi) = 0 (7a)

∇2vp + 1 + v
1 − v

∂

∂y

[
∂up

∂x
+ ∂vp

∂y

]
− 1

Ghp

I∑
i=1

qi
yδ(y − yi) = 0 in � (7b)

γp1upn + γp2Nn = γp3 δp1upt + δp2Nt = δp3 on � (8a,b)

in which G=E/2(1+ ν) is the shear modulus of the plate; Nn, Nt and upn, upt are
the boundary membrane forces and displacements in the normal and tangential direc-
tions to the boundary, respectively; γpl, δpl(l = 1, 2, 3) are functions specified on the
boundary �.
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b. For each (i-th) beam.

Each beam undergoes transverse deflection with respect to zi and yi axes, axial
deformation along xi axis and nonuniform angle of twist along xi axis. Thus, for
the transverse deflection with respect to zi axis the equation of motion employing the
linearized second order theory can be written as

Ei
bIi

by

∂4wi
b

∂xi4
+ ρbẅi

b + ci
bẇi

b =
2∑

j=1

(
qi

zj − qi
xj

∂wi
b

∂xi
+ Ni

bj

∂2wi
b

∂xi2
−
∂mi

byj

∂xi

)

in Li, i = 1, 2, . . . , I (9)

the corresponding boundary conditions as

azi
1 wi

b + azi
2 Ri

bz = azi
3 βzi

1 θ
i
by + βzi

2 Mi
by = βzi

3 at the beam ends xi = 0, Li (10a,b)

and the initial conditions as

wi
b(xi, 0) = wi

b0(xi) ẇi
b(xi, 0) = wi

b0(xi) (11a,b)

where wi
b(xi, t)= time dependent transverse deflection of the i-th beam with respect to

zi axis; Ii
by =moment of inertia with respect to yi axis; Ni

bj =Ni
bj(x

i)= axial forces at the

xi centroid axis arising from the line body forces qi
xj; ρb = surface mass density of the

beams; ci
b = i-th beam flexural damping constant; wi

b0(xi), wi
b0(xi)= initial deflection

and the initial velocity of the points of the neutral axis of the i-th beam with respect
to zi axis; azi

l , βzi
l (l = 1, 2, 3)= coefficients specified at the boundary of the i-th beam;

θi
by, Ri

bz, Mi
by = slope, reaction and bending moment at the i-th beam ends, respectively

given as

θi
by = −∂w

i
b

∂xi
(12)

Ri
bz = −Ei

bIi
by

∂3wi
b

∂xi3
+

2∑
j=1

Ni
bj

∂wi
b

∂xi
(13)

Mi
by = −Ei

bIi
by

∂2wi
b

∂xi2
(14)

The vi
b = vi

b(xi) transverse deflection with respect to yi axis must satisfy the following
quasi-static (transverse inertia forces with respect to yi axis are ignored) boundary
value problem

Ei
bIi

bz

∂4vi
b

∂xi4
=

2∑
j=1

(
qi

yj − qi
xj

∂vi
b

∂xi
+ Ni

bj

∂2vi
b

∂xi2
− ∂mi

bzj

∂xi

)
in Li, i = 1, 2, . . . , I (15)

ayi
1 ν

i
b + ayi

2 Ri
by = ayi

3 β
yi
1 θ

i
bz + βyi

2 Mi
bz = β

yi
3 at the beam ends xi = 0, Li (16a,b)
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where Ii
bz =moment of inertia of the i-th beam with respect to yi axis; ayi

l ,

β
yi
l (l = 1, 2, 3)= coefficients specified at its boundary; θi

bz, Ri
by, Mi

bz = slope, reaction
and bending moment at the i-th beam ends, respectively given as

θi
bz =

∂vi
b

∂xi
(17)

Ri
by = −Ei

bIi
bz

∂3vi
b

∂xi3
−

2∑
j=1

Ni
bj

∂vi
b

∂xi
(18)

Mi
bz = Ei

bIi
bz

∂2vi
b

∂xi2
(19)

Since linearized beam bending theory is considered the axial deformation ui
b of the

beam arising from the arbitrarily distributed axial forces qi
xj (i= 1, 2, . . . I), (j= 1, 2) is

described by solving independently the following quasi-static (axial inertia forces are
neglected) boundary value problem

Ei
bAi

b

∂2ui
b

∂xi2
= −

2∑
j=1

qi
xj in Li, i = 1, 2, . . . , I (20)

γxi
1 ui

b + γxi
2 Ni

b = γxi
3 at the beam ends xi = 0, Li (21)

where Ni
b = axial reaction at the i-th beam ends given as

Ni
b =

2∑
j=1

Ni
bj = Ei

bAi
b

∂ui
b

∂xi
(22)

Finally, the nonuniform angle of twist with respect to xi shear center axis has to
satisfy the following quasi-static (torsional and warping inertia moments are ignored)
boundary value problem (Sapountzakis and Mokos, 2003)

Ei
bIi

bw

∂4θi
bx

∂xi4
− Gi

bIi
bx

∂2θi
bx

∂xi2
=

2∑
j=1

mi
bxj in Li, i = 1, 2, . . . , I (23)

axi
1 θ

i
bx + axi

2 Mi
bx = axi

3 βxi
1

∂θi
bx

∂xi
+ βxi

2 Mi
bw = βxi

3

at the beam ends xi = 0, Li (24a,b)

where θi
bx = θi

bx(xi)= variable angle of twist of the i-th beam along the xi shear center
axis; Gi

b =Ei
b/2(1+ νi

b)= shear modulus; Ii
bw, Ii

bx =warping and torsion constants of
the i-th beam cross section, respectively given as

Ii
bw =

∫
Ai

(ϕP
S )2dAi Ii

bx =
∫

Ai

(
(yi)2 + (zi)2 + yi ∂ϕ

P
S

∂zi
− zi ∂ϕ

P
S

∂yi

)
dAi (25a,b)
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with ϕP
S (yi, zi)= primary warping function with respect to the shear center S of the Ai

beam cross section; axi
l , βxi

l (l = 1, 2, 3)= coefficients specified at the boundary of the

i-th beam;
∂θi

bx

∂xi
denotes the rate of change of the angle of twist and it can be regarded

as the torsional curvature; Mi
bx = twisting moment and Mi

bw =warping moment due
to the torsional curvature at the boundary of the i-th beam given as (Sapountzakis and
Mokos, 2003)

Mi
bx = MiP

bx + MiS
bx = Gi

bIi
bx

∂θi
bx

∂xi
− Ei

bIi
bw

∂3θi
bx

∂xi3
Mi

bw = −Ei
bIi

xw

∂2θi
bx

∂xi2
(26a,b)

Eqns. (1), (7a), (7b), (9), (15), (20), (23) constitute a set of seven coupled partial
differential equations including thirteen unknowns, namely wp, up, vp, wi

b, vi
b, ui

b, θi
bx,

qi
x1, qi

y1, qi
z1, qi

x2, qi
y2, qi

z2. Six additional equations are required, which result from the
displacement continuity conditions in the directions of zi, xi and yi local axes along
the two interface lines of each (i-th) plate – beam interface. These conditions can be
expressed as

In the direction of zi local axis:

wi
p1 − wi

b = −bi
f

4
θi

bx along interface line 1(f i
j=1) (27a)

wi
p2 − wi

b =
bi

f

4
θi

bx along interface line 2 (f i
j=1) (27b)

In the direction of xi local axis:

ui
p1 − ui

b =
hp

2

∂wi
p1

∂x
+ hi

b

2

∂wi
b

∂xi
+ bi

f

4

∂vi
b

∂xi
+ (φiP

S )f 1
∂θi

bx

∂xi
+ qi

x1

ki
x1

along interface line 1(f i
j=1) (28a)

ui
p2 − ui

b =
hp

2

∂wi
p2

∂x
+ hi

b

2

∂wi
b

∂xi
− bi

f

4

∂vi
b

∂xi
+ (φiP

S )f 2
∂θi

bx

∂xi
+ qi

x2

ki
x2

along interface line 2 (f i
j=2) (28b)

In the direction of yi local axis:

vi
p1 − vi

b =
hp

2

∂wi
p1

∂y
+ hi

b

2
θi

bx +
qi

y1

ki
y1

along interface line 1 (f i
j=1) (29a)

vi
p2 − vi

b =
hp

2

∂wi
p2

∂y
+ hi

b

2
θi

bx +
qi

y2

ki
y2

along interface line 2 (f i
j=1) (29b)

where (φiP
S )fj = value of the primary warping function with respect to the shear center

S of the beam cross section at the point of the j-th interface line of the i-th plate – beam
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Figure 4 Plan view, section a-a and loading of the stiffened plate of Example 1.

interface f . It is worth here noting that the coupling of the aforementioned equations
is nonlinear due to the terms including the unknown qi

xj and qi
yj interface forces.

3 Solution procedure

The numerical solution of the aforementioned problem is achieved employing the
method presented by Katsikadelis and Kandilas (1990). According to this method
the domain � occupied by the plate is discretized by establishing a system of M nodal
points on it, corresponding to M mass cells, to which masses are assigned according to
the lumped mass assumption. Subsequently, the stiffness matrix, the damping matrix
as well as the load vector with respect to these nodal points are established employ-
ing the Analog Equation Method (Katsikadelis, 2002), a BEM based method. This
procedure leads to the typical equation of motion for the stiffened plate

[m]{ẅ} + [c]{ẇ} + [k]{w} = {g} (30)

4 Numerical examples

In all the examples treated E=Ei
b = 3.00E7, µ=µi

b = 0.20 and ρ= ρi
b = 2500 kg/m3.

4.1 Example 1

A rectangular plate with dimensions lpx × lpy = 18.0× 9.0 m stiffened by a rectangular
beam of 1.0 m width eccentrically placed with respect to the center line of the plate
(Fig. 4) has been studied (damping ratio ξ= ξi

b = 0). In Table 1 the torsion I1
bx and

warping I1
bw constants of the beam cross section and the values of the primary warping

function (φP
S )fj (j= 1, 2) at the nodes of the two interface lines for various beam heights

are presented. In Table 2 the computed first five eigenfrequencies, in Fig. 5 the funda-
mental modeshape and in Fig. 6 the deflection time history at point C (Fig. 4) of the
stiffened plate for the cases of a partial in both directions and a full shear connection
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Table 1 Torsion, warping constants and primary warping function for various beam heights.

hb (m) I1bx (m4) I1bw(m6) (φP
S)f1 (m2) (φP

S)f2 (m2)

0.50 2.8584E−02 3.1760E−04 −4.9366E−02 4.9366E−02
1.00 1.4057E−01 1.3441E−04 −3.5037E−02 3.5037E−02
2.00 4.5733E−01 2.0326E−02 7.5813E−02 −7.5813E−02

Table 2 Dimensionless eigenfrequencies �n =ωn
√
ρ of the stiffened plate of Example 1.

�n Full Connection Partial Conn.

AEM FEM AEM
Present study Present study

Shell–Beam Shell–Shell Solid

No beam
1 22.1346 22.1434 22.1092 22.1159 22.1346
2 37.6083 37.1742 37.0602 37.1034 37.6083
3 61.3999 61.0651 60.9110 60.9295 61.3999
4 85.2349 84.1991 83.9974 84.0378 85.2349
5 112.986 109.262 109.5881 109.4903 112.986
hb = 100 cm
1 46.9839 48.2654 48.3007 52.6324 42.0545
2 80.8478 86.4500 86.0006 94.2175 58.5281
3 90.9201 89.4149 89.2065 98.2054 89.4929
4 130.2501 135.5596 135.2461 151.5446 111.3646
5 140.2601 146.8720 143.5870 154.1401 130.1845
hb = 200 cm
1 51.8608 51.1244 50.9369 56.1035 51.1854
2 92.6791 90.3146 90.0342 95.4062 92.5348
3 102.2650 99.4490 98.6612 118.3639 95.6831
4 148.6789 139.5643 139.0592 153.1325 145.4936
5 152.0960 148.3283 147.8934 162.1458 147.8595

are presented as compared wherever possible with those obtained from FEM solutions
using Bernoulli beam finite elements (SAP2000, 2004), 8-noded quadrilateral shell
finite elements (parabolic elements) (MSC/NASTRAN, 1999) or 8-noded hexahedral
solid finite elements (parabolic elements) (MSC/NASTRAN, 1999). The influence of
the shear connectors’ stiffness is remarkable while the accuracy of the results and the
validity of the proposed model are noteworthy.

4.2 Example 2

A rectangular plate with dimensions lpx × lpy = 18.0× 9.0 m subjected to an eccentric
uniformly distributed dynamic load g(t) and stiffened by three identical I-section beams
(Ii

bx = 9.14894E-3m4, Ii
bw = 6.39132E-3m6, Ii

by = 1.09333E-1m4, Ii
bz = 3.06667E-

2m4, (φP
S )f 1 = 8.8945E-2m2, (φP

S )f 2 =−8.8945E-2m2, as shown in Fig. 7 has been
studied (damping ratio ξ= ξi

b = 7%). In Table 3 the first five eigenfrequencies and in
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Figure 5 Fundamental mode shape of the stiffened plate of Example 1 for the beam height
hb = 50 cm.
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Figure 6 Deflection time history at C of the stiffened plate of Example 1, for the beam height
hb = 2.0 m.

Fig. 8 the deflection time history at point C (Fig. 7) of the stiffened plate subjected to
the accelerogram of Athens Earthquake at September 7, 1999 for the cases of a partial
in both directions and a full shear connection are presented as compared with those
obtained from FEM solutions.
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Figure 7 Plan view and section a-a of the stiffened plate of Example 2.

Table 3 EigenperiodsTi(s) of the stiffened plate of Example 2.

Ti(s) Full Connection Partial Connection

AEM FEM AEM
Present study Shell–Beam Present study

1 0.1110 0.1075 0.2564
2 0.1109 0.1068 0.2238
3 0.0694 0.0706 0.1171
4 0.0661 0.0705 0.0787
5 0.0660 0.0637 0.0782
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Figure 8 Time history of the deflection at point C for full and partial connection.
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5 Concluding remarks

The influence of the interface slip to the behavior of the stiffened plate and the accuracy
of the obtained results compared with those obtained from FEM solutions are verified.
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Chapter 9

Impacts on beams: Uncertainty in
experiments and numerical simulation

Werner Schiehlen & Robert Seifried
University of Stuttgart, Stuttgart, Germany

ABSTRACT: Impacts on beams result in large rigid body motions and small structural waves.
Such mechanical systems are often modeled as multibody systems to describe the large nonlin-
ear motion where the impacts are treated by the coefficient of restitution. The coefficient of
restitution is considered as deterministic number depending on the material, the shape and the
velocity of the colliding bodies. However, in experiments and computations it was observed that
for a sphere striking a beam the coefficient of restitution is uncertain due to multiple impacts
resulting in chaotic behavior. For the evaluation of the numerical and experimental data a statis-
tical approach is proposed providing mean value and dispersion of the coefficient of restitution
depending on four classes of the velocity. It is shown that these parameters allow characterizing
the uncertainty.

1 Introduction

Beam systems with impacts may be modeled as multibody systems to describe large
nonlinear motions while the impacts are treated by the coefficient of restitution, see e.g.
(Pfeiffer & Glocker 1996) and (Stronge 2000). Generally, the coefficient of restitution
is considered as deterministic number depending on the material, the shape and the
velocity of the colliding bodies see e.g. (Goldsmith 1960). However, experiments and
simulations show that for a sphere striking a beam the coefficient of restitution is uncer-
tain due to multiple impacts resulting in random behavior, requiring a probabilistic
approach as shown in (Schiehlen & Seifried 2006).

2 Impacts in multibody systems

The method of multibody systems allows the dynamical analysis of machines and
structures, see e.g. (Schiehlen & Eberhard 2004) and (Schiehlen, Guse & Seifried
2006). More recently contact and impact problems featuring unilateral constraints
were considered too, see (Pfeiffer & Glocker 1996). A multibody system is represented
by its equations of motion as

M(y) ÿ + k(y, ẏ) = q(y, ẏ), (1)
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where y(t) is the global position vector featuring f generalized coordinates, M the
inertia matrix, k the vector of Coriolis and gyroscopic forces and q the vector of the
applied forces. The continuous motion of the multibody system might be interrupted
by collision. Collisions with non-zero relative velocity result in impacts and impact
modeling is required. Using the instantaneous impact modeling the motion of the
multibody system is divided into two periods with different initial conditions, see e.g.
(Glocker 2001), (Pfeiffer & Glocker 1996) or (Eberhard 2000). During impact the
equations of motion (1) have to be extended by the impact force F which is assumed
to act in normal direction to the impact points,

M ÿ + k = q + w F. (2)

The vector w projects the impact force from the normal direction of the impact on the
direction of the generalized coordinates. Due to the assumption of infinitesimal impact
duration, the velocity changes in a jump, whereas the position remains unchanged. The
equation of motion during impact is then formulated on velocity level,

lim
te→ts

te∫
ts

(M ÿ + k − q − w F)dt = M (ẏe − ẏs) − w�P = 0, (3)

where the indices s and e mark the start and end of the impact, respectively. In the
limit case the quantities M and w are constant and all but the impact forces vanish due
to their limited amplitudes. However, the infinitely large impact force F yields a finite
force impulse �P which results in the jump of the generalized velocities and the non-
smooth behavior. The impact force F and, therefore, the impulse�P are still unknown.
The coefficient of restitution e provides additional information for the assessment of
the impulse. Using the kinetic coefficient of restitution due to Poisson, the impact
duration is divided into a compression and a restitution phase. The compression phase
starts at time ts and ends with time tc, which is marked by the vanishing relative normal
velocity. The restitution phase starts at time tc and ends at te. The kinetic coefficient of
restitution is defined as the ratio of the impulses� Pc and� Pr during the compression
and restitution of the impact, respectively. An impact with e= 1 is called elastic and
indicates no energy loss, whereas an impact with e= 0 is called plastic or inelastic and
indicates maximal energy loss, resulting in a permanent contact. However, it should
be noted, that the terms ‘elastic’ and ‘plastic’ describe here only the impact behavior
and have little to do with the material behavior. As shown in (Schiehlen, Seifried &
Eberhard 2006) and (Seifried 2005) the impulse during the compression phase reads as

�Pc = −ġs

wTM−1 w
, (4)

where ġs is the relative normal velocity of the contact points before impact. The total
impulse during impact follows as

�P = �Pc +�Pr = (1 + e)�Pc (5)
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and using Eq. (3) the generalized velocities after impact can be computed. In the case of
more than one impact occurring simultaneously or a permanent contact opening due
to impact, respectively, the corresponding equations have to be solved simultaneously
resulting in linear complementarity problems (LCPs), see (Pfeiffer & Glocker 1996).
The impact modeling using Poisson’s coefficient of restitution is a very efficient method
for treating impacts in multibody systems if the coefficient of restitution is known. The
coefficient of restitution is usually found by experiments or it is known from experience.
However, the coefficient of restitution may be evaluated numerically by additional
simulations on a fast time scale, too, see (Schiehlen & Seifried 2004), (Schiehlen &
Seifried 2005) and (Schiehlen, Seifried & Eberhard 2006). This results in a multiscale
simulation approach. The simulation on the slow time scale is interrupted by an impact.
Then, for the impact, a detailed simulation with deformable bodies is performed on a
fast time scale including elastodynamic wave propagation and elastic-plastic material
phenomena. The generalized coordinates and velocities before impact are used as initial
conditions for the simulations on the fast time scale. These simulations are limited to
the impact duration and from the time-continuous impact force F the resulting impulse
�P is computed and the kinetic coefficient of restitution follows as

e = �Pr

�Pc
= �P −�Pc

�Pc
= −wTM−1w�P

ġs
− 1. (6)

See (Schiehlen, Seifried & Eberhard 2006) and (Seifried 2005) for more details. The
coefficient of restitution is now fed back to the slow time scale. Then, the generalized
velocities after impact are computed using Eq. (3)–(5).

3 Numerical models

The computation on the fast time scale requires numerical models which include wave
propagation within the bodies, and elastic or elastic-plastic deformation of the contact
region. First of all, a complete Finite Element (FE) model of the impacting bodies is
used. Detailed information and the theoretical background of FE contact is available
in the literature e.g. (Bathe 1996), (Kikuchi & Oden 1989), (Papadopoulos & Taylor
1992), (Wriggers 2002) and (Zhong 1993). For modeling impacts, a small overall
element length is required to comprise the wave propagation in the bodies and an
additional refinement is necessary for the modeling of the contact region, see Reference
(Seifried, Hu & Eberhard 2003). Thus, FE-models for impact analysis are excessively
time consuming and not suitable for larger impact systems as found in engineering.

Therefore, in a more time efficient numerical approach, impact processes are divided
into two parts, a small contact region and the remaining body featuring wave propa-
gation, (Schiehlen, Seifried & Eberhard 2006) and (Seifried 2005). This procedure is
also called boundary approach. The contact is a nonlinear problem which is limited to
a small region, while the wave propagation is a linear problem encompassing the entire
body. Thus, combined models are developed in which the elastodynamic behavior of
the impacting bodies is represented by a modally reduced model and the deformation
of the contact region is presented by a local contact model based on FE-models of
the contact region. The local contact model is than either concurrently computed or
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Table 1 Comparison of numerical models for sphere to rod impact.

model coeff. of restitution computation time [s]

elastic plastic elastic plastic

A. complete nonlinear 0.633 0.481 462 937
FE-model

B. modal model + concurrently-computed 0.631 0.477 285 354
FE contact

C. modal model + pr-computed FE contact 0.632 0.477 0.04 0.05

pre-computed and then coupled with the reduced elastodynamic model of the impact-
ing bodies, see (Schiehlen, Seifried & Eberhard 2006), (Seifried, Schiehlen & Eberhard
2005) and (Seifried & Eberhard 2005). The efficiency and consistency of the com-
bined models is demonstrated for the impact of a steel sphere (radius= 15 mm) on
aluminum rods (radius= 10 mm, length= 1000 mm) with initial velocity of 0.3 m/s.
The rods have elastic and elastic-plastic material behavior, respectively. The computed
coefficients of restitution and computation times are summarized in Table 1. For the
FE computations the commercial FE code (ANSYS) is used. It turns out clearly that the
simulation results obtained from the different models agree very well. It is also obvious
that the completely nonlinear FE model is very time consuming, especially when includ-
ing elastic-plastic material behavior. Using a modal model with concurrently computed
FE-contact the computation time is reduced by 40–60%. A tremendous decrease in
the computation time is achieved using the modal model with pre-computed FE con-
tact. However, it should be noted that the pre-computation of the force-deformation
diagram is time consuming, too, especially for elasto-plastic material behavior. The
computation time corresponds to about 15 impact simulations with the nonlinear FE
model. Therefore, the benefit of the modal model with pre-computed FE-contact takes
place especially when many impacts are investigated.

4 Essential parameters for the coefficient of restitution

The coefficient of restitution depends not only on the material parameters but also
strongly on the contact geometry, the body geometry and the initial velocity. Early
experimental results for the evaluation of the coefficient of restitution are summarized
in (Goldsmith 1960), more recent numerical and experimental results are presented
in (Minamoto 2005), (Sondergaard, Chaney & Brennen 1990), (Wu, Li & Thornton
2003), (Zhang & Vu-Quoc 2002) and (Schiehlen & Seifried 2004, 2005, 2006). In
Figure 1 the influence of the material properties and the initial velocity on the coefficient
of restitution is presented for the impact of a steel sphere (radius= 15 mm) on two
different aluminum rods (radius= 10 mm, length= 1000 mm). Rod 1 has a low yield
stress of 205 MPa and rod 2 has a high yield stress of 575MPa. The sphere has an
initial velocity in the range of 0.05–0.50 m / s, the rods are initially in rest. For the
experimental evaluation a test bench with two Laser-Doppler-Vibrometer is used, see
(Hu & Eberhard & Schiehlen 2003).



Impacts on beams : Uncerta in ty in exper iments and numer ica l s imu la t ion 141

1

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5
0

C
oe

ff
ic

ie
nt

 o
f 

re
st

itu
tio

n

Velocity [m/s]

1

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5
0

C
oe

ff
ic

ie
nt

 o
f 

re
st

itu
tio

n
Velocity [m/s]

Sim.elastic
Sim.plastic
Measurement

Figure 1 Impact of a hard steel sphere on two aluminum rods (left: rod 1 with low yield stress
205 MPa, right: rod 2 with high yield stress 575 MPa).

It is clearly seen from simulations and experiments that for both impact systems the
coefficient of restitution decreases with increasing initial velocity. For rod 1 the mea-
sured coefficients and the ones obtained from simulations with elastic-plastic material
behavior agree very well. However they are significantly lower than coefficients
obtained from simulations with purely elastic material behavior. For rod 2, this has
a high yield stress; simulations with elastic and elastic-plastic material behavior show
for the investigated velocity range nearly identical behavior and agree well with exper-
imental results. In (Schiehlen, Seifried & Eberhard 2006) and (Seifried, Schiehlen
& Eberhard 2005) the influence of plastification on the coefficient of restitution for
repeated impacts is investigated for both rods.

The influence of the shape of the bodies on the coefficient of restitution is investi-
gated in (Schiehlen & Seifried 2004) for the impact of a steel sphere on four elastic
aluminum bodies with equal mass but different shape. These are a compact cylinder, a
half-circular plate, a long rod and a slender beam. Figure 2 shows the computed coef-
ficients of restitution of these impact systems for the velocity range 0.025–0.50 m/s.
The computed coefficient of restitution for the cylinder is close to e= 1 for the investi-
gated velocity range. For the impact on the cylinder the transformation of initial kinetic
energy into waves and vibrations can be neglected. From the simulations for the rod
and half-circular plate it is seen that the coefficient of restitution decreases steadily
with increasing initial velocity. This indicates an increase of energy transformation
from the initial rigid body motion into waves and vibrations with increasing velocity.
The transverse impact on the beam excited very strong vibration phenomena in the
beam resulting in multiple successive impacts within a very short time period. In sharp
contrast to the previous impact systems the beam impact shows no clear pattern but
a strong uncertainty, see also (Seifried2005). This phenomenon is discussed in more
detail in the next chapter.
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Figure 2 Impact of a hard steel sphere on differently shaped aluminum bodies (� compact cylinder,
♦ half circular plate, ◦ rod,+ beam).

5 Uncertainty of the coefficient of restitution

The impact on a beam features multiple impacts which are caused by the strong bend-
ing vibrations of the beam, resulting from the first impact. The multiple impacts are
the source of the uncertainty of the coefficient of restitution. Since more than one suc-
cessive impact occur within a short time period efficient numerical methods for impact
simulation on the fast time are even more important than for single impacts.

5.1 Comparison of numerical models

A comparison of the simulation results using the different numerical models is discussed
now. Table 2 summarizes the coefficients of restitution and computation times of the
simulations for the impact of a steel sphere (radius= 15 mm) on an elastic aluminum
rod (radius= 10 mm, length= 1000 mm) with initial velocity 0.2 m / s. This shows
again the good agreement of the modal models with FE-contact and the complete
FE-model. It turns out that the complete FE-model is very time consuming. By using
modal models the computation times can be reduced significantly. Using the modal
model with concurrently computed FE-contact the computation time can be reduced by
97%. Using the modal model with pre-computed FE-contact the computation time can
be reduced further, however the computation time for the force-displacement diagram
has to be considered, which takes in this case about 1000 s. This shows clearly, that
for a larger and complex impact system, such as the transverse impact on a beam, the
modal model with pre-computed FE-contact is the most efficient approach.

5.2 Experimental val idation

For the experimental validation of the simulation results an experimental setup, origi-
nally developed by (Hu et al. 2003) and (Hu & Eberhard 1999), was adapted to beam
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Table 2 Comparison of numerical models for sphere to beam impact.

coeff. of restitution computation time [s]

A. complete nonlinear FE-model 0.707 80564
B. modal model + concurrently-computed FE contact 0.700 2422
C. modal model + pr-computed FE contact 0.717 16

Kevlar wires

Magnet

Sphere Beam

Figure 3 Experimental setup for sphere to beam impact.

impacts, see Figure 3. The sphere and beam are suspended with thin Kevlar wires in
a frame as pendula. The sphere is released by a magnet from a predefine height and
it impacts on the beam along its symmetry line. Two Laser-Doppler-Vibrometers are
used for displacement and velocity measurement of sphere and beam in the central line
of impact.

Figure 4 shows for the initial velocity 0.276 m/s the measured and simulated dis-
placement of sphere and beam, as well as the velocity of the sphere. It is obvious from
measurement and simulation, that within a few milliseconds several impacts occur.

Figure 4 shows a very good agreement for the first impact as well as consistently a
second impact after 4 ms. However, for the successive impacts significant differences
may occur resulting in an overall uncertainty. For the impact with an initial velocity
0.276 m/s the second impact yield only to a small velocity change. Therefore, after
5.2 ms a third impact occurs, which results in a large velocity change of the sphere.
In this case experiment and simulation agree very well. This is also reflected by the
good agreement of the measured and simulated coefficients of restitution which are
em = 0.664 and es = 0.687, respectively.

However an impact with the initial velocity 0.287 m / s shows in the simulation a
much stronger second impact than in the experiment, see Figure 5. This results in a very
different behavior of the following motion. Consequently the coefficient of restitution
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Figure 5 Impact on beam with initial velocity 0.287 m/s.

computed from measurement and simulations differ strongly and are em = 0.620 and
es = 0.334.

For an impact with initial velocity 0.303 m/s the experiment proves that sphere is
in rest after the second impact and a third impact occurs after 5.7 ms. In the simula-
tion the second impact is stronger as the one in the experiment. Thereby the sphere
rebounds and no further impact occurs in the simulation. Measurement and simulation
yield hereby nearly identical coefficients of restitution of em = 0.230 and es = 0.243.
The impact on a beam with elastic-plastic material behavior is presented in (Seifried
2007). Thereby a similar behavior with multiple impacts within a short time period is
observed.
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Figure 6 Multiple impacts on an elastic aluminum beam.

5.3 Analysis of the coeff ic ient of rest itution

In Figure 6 simulated and measured coefficients of restitution are presented for 53
different initial velocities of the sphere. Due to the multiple impacts the coefficient of
restitution depends strongly on the initial velocity, however, without showing a clear
pattern but strong uncertainty. The coefficients of restitution are in the range e= 0.07–
0.73. Small differences of the simulated and measured motion of beam and sphere after
the first impact result in very different behavior of the successive impacts. As a result,
the investigated impacts show significant differences of the measured and simulated
coefficients of restitution, for different initial velocities.

In the right plot of Figure 6 the numbers of multiple impacts are indicated for sim-
ulation and measurements. It turns out that only for very low velocities one impact
occur. For higher velocities 2, 3 or 4 successive impacts occur, however no relationship
between the coefficient of restitution and the number of multiple impacts is obvious.

For the discussion of the chaotic behavior statistical methods will be used. The rel-
ative cumulative frequency or the probability, respectively, is shown in Figure 7 for
four velocity classes, see Table 3. From these data the relative frequency or probability
density, respectively, is obtained, see Figure 8. It turns out that the frequency distribu-
tion is completely non-Gaussian, and the range characterizing the statistical dispersion
is increasing with the relative velocity of the impact, while midrange point and mean
value coincide fairly well, see Table 4.

In class 1 one or two impacts occur where the one impact regime results in very
strong structural waves corresponding to a very low coefficient of restitution. If a
second impact occurs then some of the wave energy is regained and the coefficient of
restitution is higher. In class 2 mainly two impacts occur with medium coefficients of
restitution. In class 3 three and more impacts take place with a larger range of the
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Table 3 Classification of velocities.

velocity

class 1 0.05 m/s≤ v< 0.14 m/s
class 2 0.14 m/s≤ v< 0.23 m/s
class 3 0.23 m/s≤ v< 0.32 m/s
4lass 4 0.32 m/s≤ v< 0.41 m/s

Table 4 Statistical evaluation of data of coefficient of restitution.

velocity class 1 2 3 4

mean value 0.229 0.543 0.392 0.342
midrange point 0.244 0.522 0.422 0.392
range 0.383 0.417 0.550 0.650

coefficient of restitution. In class 4 the higher velocities result in two impacts, both of
them producing very strong structural waves.

The interaction between the rigid sphere and the flexible beam is a mechanical
phenomenon characterized by the microscale of the contact and the phase shift of the
waves traveling in the beam resulting in an overall chaotic behavior on the macroscale
of the impacting bodies.

6 Conclusions

Measurements and simulations for the transverse impact of a steel sphere on an
aluminum beam show multiple successive impacts within a very short time period,
resulting in a uncertain behavior of the coefficient of restitution. For the evaluation
of the numerical and experimental data, a statistical approach using mean value and
dispersion of the coefficient of restitution underlines the chaotic behavior of the beam’s
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Figure 8 Relative frequency or probability distribution, respectively. (- - mean value, — midrange
point).

structural vibrations. The statistical range is increasing with the relative velocity of the
impact. However, the mean value or midrange point, respectively, may be used to solve
the structural dynamics beam problem.
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Chapter 10

Rational derivation of conserving
time integration schemes: The
moving-mass case

Elias Paraskevopoulos, Christos Panagiotopoulos &
DemosthenesTalaslidis
Aristotle University Thessaloniki, Thessaloniki, Greece

ABSTRACT: A rational approach is proposed for the time integration of the dynamic equa-
tions arising in nonlinear structural problems, which employs a series of innovative concepts,
e.g.: independent assumptions for the velocities and momentum type variables, use of different
approximations for the test functions and the variables itself, and abandonment of the con-
vention concerning the vanishing of the test functions at the time boundaries. The presented
methodology offers a systematic and mathematically consistent procedure for time integration,
ensures consistency and stability, and avoids flaws of existing techniques. Conservation prop-
erties are examined employing a form of Noether’s Theorem. Furthermore, existing integration
schemes may be theoretically justified by the present approach. The methodology is applied to
the analysis of systems under moving loads and masses. Since this class of problems contains
Dirac’s delta function and its time derivatives, the effective numerical treatment of the governing
equations offers a challenging problem.

1 Introduction

In developing time integration techniques for engineering applications, efficiency and
accuracy are key features of the algorithm. Moreover, in nonlinear dynamical sys-
tems, numerical stability of time integration methods is of profound interest, since
unconditional stable algorithms for linear dynamics often lose their stability in the
nonlinear case. In other words, unconditional stability in the nonlinear range is man-
ifested through conservation of energy. In this context, representation of the time
parameter plays an important role: With regard to the three-dimensional space, the
tensorial formulation of the equations of motion ensures frame-invariance under arbi-
trary transformations. However, with regard to time, invariance is assured only for
Galilean transformations. Furthermore, if time is considered as independent variable,
a complete description of the dynamic problem requires-additionally to the usual field
equations-a condition of conserving the state of energy. Finally, a consistent, covariant
formulation can be achieved if space and time are combined into a single entity, known
as “spacetime.’’

Attempts to take into account the aforementioned condition have in common that
conservation of properties is considered either explicitly, by including the neces-
sary conditions as constraints, or modifying the algorithms by employing specific
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coefficients, or evaluating field variables at specific points according to a posteriori
considerations. To be more specific, research efforts followed various paths that led to
alternative methods for preserving stability by satisfying appropriate stability criteria:
Integration algorithms employing numerical dissipation of energy such as the “gener-
alized alpha-method’’ (Chung & Hulbert 1993), methods enforcing conservation of
energy via Lagrange multipliers, so-called “constraint energy methods’’ (Hughes et al.
1978), or techniques applying algorithmic preservation of energy (“energy-momentum
method’’ proposed by Simo & Tarnow 1992). Additional approaches are known
as “Variational time integrators’’ (Lew et al. 2004) or “Time discretized operators’’
(Tamma et al. 2003a, b). For further contributions and alternative schemes, the reader
is referred to Kuhl & Ramm (1999). Many of the aforementioned methods are based
on intuition or ad hoc techniques, may lead to failure during incremental iterations of
equilibrium, or do not guarantee conservation/dissipation of energy for all time inte-
gration parameters. The later is a key issue for unconditional stability in the nonlinear
range.

In the present paper, a rational approach is proposed for the time integration of the
dynamic equations. The development rests upon a series of concepts, e.g.: The velocities
and the corresponding momentum type quantities are treated as independent variables
and the relationships between weak velocities and derivatives of displacements are
introduced in a weak form. Departing from the usual procedure, different approxi-
mations are employed for the test functions and the variables itself. Contrary to many
existing approaches, the convention concerning vanishing of the test functions at the
time boundaries-widely used in the Hamilton’s principle family-is not followed in the
present approach. Furthermore, the weak formulation of the governing equations is
given and the temporal discretization scheme is presented. Conservation properties
of total linear and angular momentum as well as of energy are examined employing
a form of Noether’s Theorem.

The proposed methodology ensures consistency and stability and avoids the flaws
of previously proposed schemes. The approach offers a systematic and mathe-
matically consistent procedure for time integration of nonlinear problems. Many
existing integration schemes may be theoretically justified by the proposed approach
and can be derived as special cases of the presented method (e.g., Simo’s discrete
energy-momentum method for nonlinear elastodynamics, Simo & Tarnow 1992).
Furthermore, the methodology is valid for a large variety of nonlinear dynamic
problems.

The presented approach is applied to the dynamic analysis of structural systems
(e.g., bridges) under moving vehicles. The vibrations caused by the passage of vehicles
and the interaction problem between the moving vehicle and the bridge have attracted
much attention and are of importance in civil engineering. The relationships describing
such problems differ from the usual equations of motion in structural dynamics due
to the presence of the Dirac’s delta function and its time derivatives. Therefore, the
effective numerical treatment of the equations governing this type of problems and
their reliable time integration offer a challenging problem. The weak statement for
the moving load/mass problem on an Euler-Bernoulli beam is presented and numerical
results for a simple example are shown, which serve to demonstrate characteristic
properties of the proposed methodology.
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2 Governing equations

The following hyperbolic, initial boundary-value problem serves as a starting point for
the subsequent developments:

ρü −
(√

gsijgj
)

,i√
g

= f(x, t), (x, t) ∈ �× (0, T] (1)

u(x, t) = ũ(x, t), (x, t) ∈ �u × (0, T] (2)

sijgjni = t̃(x, t), (x, t) ∈ �t × (0, T] (3)

u(x, 0) = ũ0(x), x ∈ � (4)

u̇(x, 0) = ṽ0(x), x ∈ � (5)

In Eqs. (1–5), the vector x and the scalar t denote spatial coordinates (xi) and time,
respectively. The vector u signifies the displacement vector with contravariant compo-
nents ui, the components sij denote the contavariant components of the stress tensor,
and the vectors f, ũ0, and v0 are prescribed functions. The vectors ũ(x, t) and t̃(x, t)
represent time dependent prescribed boundary conditions on the parts �u and �t of the
boundary �, respectively, and ρ denotes mass density. Finally, ni signify the compo-
nents of the outward unit normal to �t. It should be noted that this set of equations is
supplemented by the equilibrium of angular momentum (a generalized symmetry con-
dition on the stress tensor), the material law, and the kinematic relationships between
strains/rigid rotations and the spatial derivatives of displacements.

3 Variational formulation

Multiplying Equation 1 by the arbitrary function

δu ∈ W , W = {w ∈ H1(�) : w = 0 on�u} (6)
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performing the spatial integration, applying Green’s theorem, and employing the
natural boundary conditions (Eq. 3), we obtain

∫∫
�

ρü · δu d�+
∫∫

�

sijgj · δu,i d�−
∫
�t

t̃ · δu d�t −
∫∫

�

f · δu d� = 0 (7)

By integrating Equation 7 over the time interval I ∈ (0, T] and by performing an
integration by parts to the first term of the left hand side, yields the following weak
formulation of Equation 1: Find

u ∈ U U = {u ∈ L2(I, H1(�)) : u̇ ∈ L2(I, H1(�))} (8)

satisfying the relationship

∫ T

0

(∫∫
�

−ρu̇ · δu̇ d�+
∫∫

�

sijgj · δu,i d�−
∫
�t

t̃ · δu d�t

−
∫∫

�

f · δu d�
)

dt +
[∫∫

�

ρu̇ · δu d�
]t=T

t=0
= 0

∀ δu ∈ W , W = {w ∈ L2(I, H1(�)) : ẇ ∈ L2(I, H1(�)), w = 0 on �u} (9)

as well as the essential boundary conditions 2, and the initial condition 4. Moreover,
in the presence of material nonlinearities, the above system of equations is augmented
by the constitutive equations, i.e., the state equations and the flow rule.

4 Introducing weak velocities

A variety of alternative variational formulations may serve as a starting point for the
formulation and the subsequent numerical treatment of dynamic problems see, e.g.,
the monographs by Pars (1965), Lanczos (1974), and Hughes (1976). In the present
paper, the relationships between the weak velocities and the strong time derivatives
of displacements are introduced via Lagrange multipliers (momentum type variables)
in the variational formulation. Thus, velocities and momentum type variables are
treated as independent variables. The proposed methodology offers a series of distinct
advantages over conventional approaches and has been successfully employed for the
development of useful approximating schemes, e.g., for the consistent derivation of
diagonal mass matrices (Paraskevopoulos & Talaslidis 2004). As a result, the weak
formulation 9 assumes the following form: Find

{u, v, p} ∈ U × V × V ,

U = {u ∈ L2(I, H1(�)) : u̇ ∈ L2(I, H1(�))}, V = {v ∈ L2(I, L2(�))}
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satisfying the relationship

∫ T

0

(∫∫
�

−ρv · δv d�+
∫∫

�

sijgj · δu,i d�−
∫
�t

t̃ · δu d�t −
∫∫

�

f · δu d�
)

dt

+
∫ T

0

(∫∫
�

(p · (δv − δu̇) + δp · (v − u̇))d�
)

dt +
[∫∫

�

ρv · δu d�
]t=T

t=0
= 0

∀{δu, δv, δp} ∈ W × V × V ,

W = {w ∈ L2(I, H1(�)) : ẇ ∈ L2(I, H1(�)), w = 0 on �u} (10)

The displacement vector u should satisfy the essential boundary conditions 2 and the
initial conditions 4. Moreover, the aforementioned system of equations is augmented
by the set of constitutive equations. It is mentioned that the constraint between time
derivatives of displacements and the weak velocities is enforced in L2(�) (with respect
to space) and that the essential boundary conditions 2 are referred to the displacement
variables and their strong time derivatives.

5 Conserved properties of the system

Any dynamical system described by a set of equations possesses some intrinsic prop-
erties such as conserved currents. A derived weak statement of the problem should
inherit those properties in order to be able to describe the same dynamics. Moreover,
its discretized form should reflect the same properties as the initial dynamical system.
The celebrated theorem of Emmy Noether provides the basis for the systematic exam-
ination of the conserved properties of the weak formulation (Abraham & Marsden
1978, Marsden & Hughes 1983, Arnold 1989). Noether’s theorem states that: “If the
Lagrangian function of the system is invariant under a continuous transformation, then
there exists an integral of the motion’’, i.e., there exist conserved quantities. Invari-
ance of the Lagrangian of the system with respect to a group of transformations means,
equivalently, that the basic equations of the system are also form invariant. Recall that
in structural mechanics, problems are formulated primarily using the set of Newton’s
equations, assuming that the space is Euclidian, E, time is one-dimensional, R, and
the spacetime is their product, E×R. As a consequence, they are form invariant with
respect to the group of Galilean transformations, i.e., this group of transformations is
the only admissible one.

5.1 Conservation of energy

According to Noether’s Theorem, for a mechanical system the statement of conserva-
tion or dissipation of energy corresponds to invariance under a translation on the time
axis. To prove this for the present case, we proceed as follows:

Let us assume that {us, vs, ps, sij
s } constitute the weak solution of the problem sat-

isfying relationship 10 and the homogeneous essential boundary conditions, and let
(xi, t) denote a selected coordinate system. Furthermore, we assume that the external
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loading (traction and body forces) vanish. Consider a second coordinate system (xi, t)
that is related to the former according to the following relations

xi = xi, t = t + ετ(xi, t)

where ε is a real continuous parameter and τ(xi, t) denotes the generator of the
transformation. Therefore, in the coordinate system (xi, t):∫

t

(∫∫
�

−ρvs · δv d�+
∫∫

�

sij
s gj · δu,i d�−

∫
�t

t̃ · δu d�t −
∫∫

�

f · δu d�
)

dt

+
∫

t

(∫∫
�

(
ps ·

(
δv − ∂δu

∂t

)
+ δp ·

(
vs − ∂us

∂t

))
d�
)

dt

+
[∫∫

�

ρvs · δu d�
]t=tT

t=0
= 0

∀{δu, δv, δp} ∈ W × V × V

Performing the change of coordinates and taking into account that {us,vs, ps} is the
weak solution of the problem, we obtain,∫

t

(∫∫
�

(−ρvs · δv)ετ̇ d�
)

dt +
∫

t

(∫∫
�

(sij
s gj · δu,i)ετ̇ d�

)
dt

+
∫

t

(∫∫
�

(ps · δv)ετ̇ d�
)

dt +
∫

t

(∫∫
�

(δp · vs)ετ̇ d�
)

dt = 0 (11)

Realizing that the first and third integral have the opposite sign and are equal in the
weak sense, it remains:∫

t

(∫∫
�

(sij
s gj · δu,i)ετ̇ d�

)
dt +

∫
t

(∫∫
�

(δp · vs)ετ̇ d�
)

dt = 0 (12)

Choosing∫
t

(∫∫
�

(δp · f) d�
)

dt =
∫

t

(∫∫
�

(ρvs · f) d�
)

dt∫
t

(∫∫
�

(f · δu) d�
)

dt =
∫

t

(∫∫
�

(f · us,i) d�
)

dt (13)

where f denotes an arbitrary vector function and taking into account the integral form
of the equilibrium equations, we obtain[∫∫

�

(ρvs · vs + sij
s gj · us.i)τ(xi, t) d�

]t=T

t=0
= 0 (14)

Note that in case of the essential inhomogeneous boundary conditions 2, relation-
ships 13 remain valid, if the aforementioned boundary conditions are enforced as
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constraints. Setting τ(xi, t)= constant, Equation 14 represents the statement of con-
servation of energy of the system assuming homogeneous boundary conditions, under
the assumption of elastic behavior. In case of inhomogeneous boundary conditions,
Equation 14 would be augmented by the contribution of the reaction forces. More-
over, in the presence of damping or inelasticity, the same procedure would lead to
a statement for the change of the energy of the system, i.e., Equation 14 would
be augmented by terms, which represent the energy associated with damping or
inelasticity.

5.2 Conservation of l inear and angular momentum

It is well known that for a continuous mechanical system the statement of the conserva-
tion/evolution of linear and angular momentum corresponds, according to Noether’s
Theorem, to invariance under special changes of the primary variables. More spe-
cific, let us assume that the set {us, vs, ps, sij

s } denotes the weak solution of the problem
satisfying (Eq. 10). Furthermore, we assume that the external loading (traction and
body forces) vanishes. Consider a change of the primary variables that is related to the
former according to the following general transformations:

u = u + επ(xi, t)

v = v

p = p (15)

where ε is a real continuous parameter and π(xi, t) denotes the generator of the trans-
formation. Note that the set {us, vs, ps, sij

s } is the weak solution with respect to the new
representation of the primary variables according to relationships 15. Moreover, the
test functions experience no transformation, since this change does not modify the
functional spaces of the weak formulation. Therefore, the weak form with respect to
{us, vs, ps, sij

s } assumes the following form:

∫ T

0

(∫∫
�

−ρvs · δv d�+
∫∫

�

sij
s gj · δu,i d�−

∫
�t

t̃ · δu d�t −
∫∫

�

f · δu d�
)

dt

+
∫ T

0

(∫∫
�

(ps · (δv − δu̇)+ δp · (vs − us)) d�
)

dt

+
[∫∫

�

ρvs · δu d�
]t=T

t=0
= 0

∀{δu, δv, δp
} ∈ W × V × V

Setting w= επ(xi, t) and all the other test variables equal to zero, we obtain

∫ T

0

(∫∫
�

−ρvs · επ̇ d�+
∫∫

�

sij
s gj · επ̇ d�

)
dt +

[∫∫
�

ρvs · επ d�
]t=T

t=0
= 0 (16)
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Setting the generator π(xi, t) constant in space and time, the first and second term of
the integral in (Eq. 16) vanish and the last term becomes equal to the rate of linear
momentum. Moreover, setting π(xi, t) constant in time and equal to ω× r with respect
to space, where ω denotes the rotation vector and r signifies the position vector, the
first two terms in (Eq. 16) vanish again and the last term represents the rate of change
of the angular momentum. Note that relationship 16 is valid in the absence of essential
boundary conditions. In the opposite case, those conditions are enforced as constraints,
thus augmenting (Eq. 16) by an additional term.

5.3 Some remarks on the implementation of Noether’s theorem

In Subsections 5.1, 5.2, a form of Noether’s Theorem has been applied in order to
derive the associated weak statements of the conserved currents. This implementation
led to Equations 14, 16, which correspond to the conservation of energy and momen-
tum, respectively. These equations express in a clear manner the participation of each
primary variable in the statements of conserved currents, a task that proves to be not
trivial. To be more specific, in the case of linear and angular momentum-conservation
statement 16, only the weak velocities and not, as someone may expect, the momen-
tum type variables enter. Moreover, in the case of energy conservation, it is shown in
(Eq. 14) that the weak velocities and not the strong time derivatives of displacement
determine the kinetic energy.

6 Temporal discretization scheme

By discretizing in space and time the primary variables
{
u, v, p

}
and their variations{

δu, δv, δp
}
, a discrete form of Equation 10 is obtained. Note that for each variable and

its variation an arbitrary interpolation scheme may be selected with the restriction that
the interpolation is compatible with the functional space to which the variable belongs.
Inclusion of the temporal boundary term in the weak form removes the requirement for
vanishing of the variation δu at the time boundaries, as it is the case in the class of weak
forms based on the classical Hamilton’s principle. Moreover, different approximations
for the displacements and the weak velocities may be employed that are consistently
constrained by the momentum type Lagrange multipliers p. Therefore, by selecting
appropriate time approximations, a variety of algorithms can be derived. For example,
introducing the simple approximations 17, 18 given below, the integration scheme
proposed by Simo & Tarnow (1992) is obtained. Each variable is assumed to vary
linearly with respect to time, whereas the variations (test functions) are assumed to be
constant. Thus, the basic assumptions for the primary variables and for their variations
take the form:

u = t
T

un+1 + T − t
T

un

v = t
T

vn+1 + T − t
T

vn (17)

p = t
T

pn+1 + T − t
T

pn
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and

δu = δu

δv = δv (18)

δp = δp

For the spatial discretization, the Finite Element Method is employed. To be more
specific, the same spatial interpolation basis has been selected for the whole set of
primary variables as well as for their variations, albeit this is not required. In case of
linearly elastic constitutive equations, and since variations of the primary variables are
independent, the following discrete system of equations is obtained:

δ
�uT
(

M
(
�vn+1 − �vn

)
+ T

2

(
�

Fn+1
int + �

Fn
int

)
− T

2

(
�

Fn+1
ext + �

Fn
ext

))
+ δ�vT

(
T
2

MT
(
�pn+1 + �pn

)
− T

2
M̃
(
�vn+1 + �vn

))
(19)

+ δ�pT
(

T
2

M
(
�vn+1 + �vn

)
− M

(
un+1 − un)) = 0

i.e.,

2
T

M
(
�vn+1 − �vn

)
+
(
�

Fn+1
int + �

Fn
int

)
=
(
�

Fn+1
ext + �

Fn
ext

)
(20)

T
2

M
T
(
�pn+1 + �pn

)
− T

2
M̃
(
�vn+1 + �vn

)
= 0 (21)

T
2

M
(
�vn+1 + �vn

)
− M

(
un+1 − un) = 0 (22)

The symbol (�•) denotes parameters of the spatial discretization. Moreover, matrices

{M, M, M̃, M } contain the space integral of products of the selected spatial interpo-
lation functions. It is worth noting that (Eqs. 20, 22) coincide with those presented in
Simo & Tarnow (1992), if we adopt the same spatial interpolation for the whole set of
variables and their variations. However, in the present paper, they have been explicitly
derived in a rational manner. Furthermore, (Eq. 21), which provides the basis for the
consistent computation of the linear momentum of the discrete system, does not appear
in the aforementioned publication. Note also that examination of the conserved cur-
rents is consistent with the weak form of Noether’s Theorem as proposed in Section 5
and justifies the procedures employed by Simo & Tarnow (1992). Moreover, in case of

nonlinear constitutive equations, the combination of
(
�

Fn+1
int ,

�

Fn
int

)
in the discrete system

of equations is explicitly derived by evaluating the integral, thus avoiding the solution
of a nonlinear system as proposed by Simo & Tarnow (1992).
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Figure 2 Moving mass problem.

7 Moving mass problem

The framework developed in the previous sections is applied to the problem of a
moving mass on an Euler-Bernoulli beam (Fryba 1996, Au et al. 2001). In order to
demonstrate the presented methodology, the weak statement of the problem is derived.

7.1 Strong and weak formulation

The problem is described by the following set of equations:

mü + ∂2M
∂x2

− δ

(
x − x0 −

∫ t

0
c(τ) dτ

)
(P − µü) = 0 (x, t) ∈ �× (0, T] (23)

u(x, t) = 0 (x, t) ∈ �× (0, T] (24)

M(x, t) = 0 (x, t) ∈ �× (0, T] (25)

u(x, 0) = ũ(x) x ∈ � (26)

u̇(x, 0) = ṽ(x) x ∈ � (27)

In (Eqs 23–27), the scalars x and t denote spatial coordinate and time, respectively. The
symbols u, M and P signify the transverse displacement, the moment, and the moving
load, respectively. Furthermore, m represents the distributed mass of the beam, µ the
moving mass, and c(t) its prescribed velocity in time. It has been assumed that the
motion of the discrete moving mass begins at a zero initial time and from an initial
location x0 on the beam. Finally, δ denotes the spatial Dirac’s delta function. In order
to deal with inelastic behavior, the set of equations 23–27 is supplemented by the state
equations and the flow rule.

Multiplying Equation 23 by the arbitrary function δu

δu ∈ V , V = {
δu ∈ H1(�) : δu = 0 on �u

}
(28)
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integrating with respect to space, applying twice Green’s theorem, and employing the
natural boundary conditions 25, we obtain

∫
�

m ü δu d�+
∫
�

M
∂2δu
∂x2

d�−
∫
�

δ

(
x − x0 −

∫ t

0
c(τ) dτ

)
(P − µü) δu d� = 0

(29)

Integrating (Eq. 29) over the time interval I ∈ (0, T], performing an integration by
parts to the first and the last term of the left hand side, and introducing weak velocities,
the following weak form is derived: Find

{u, v, p} ∈ U × V × V ,

U = {u ∈ L2(I, H1(�)) : u̇ ∈ L2(I, H1(�))}, V = {v ∈ L2(I, L2(�))}

satisfying the relationship

∫ T

0

(∫
�

−m v δv d�+
∫
�

M
∂2δu
∂x2

d�−
∫
�

δ

(
x − x0 −

∫ t

0
c(τ) dτ

)
P δu d�

−
∫
�

µδ

(
x − x0 −

∫ t

0
c(τ) dτ

)
v δv + µ

∂δ
(
x − x0 −

∫ t
0 c(τ) dτ

)
∂t

v δu︸ ︷︷ ︸
 d�

+
∫
�

(p(δv − δu̇) + δp(v − u̇)) d�
)

dt +
[∫

�

µδ

(
x − x0 −

∫ t

0
c(τ) dτ

)
v δu d�

]t=T

t=0

+
[∫

�

m v δu d�
]t=T

t=0
= 0

∀{δu, δv, δp} ∈ W × V × V ,

W = {w ∈ L2(I, H1(�)) : ẇ ∈ L2(I, H1(�)), w = 0 on �u} (30)

the essential boundary conditions 24, and the initial condition 26. The underbraced
term of (Eq. 30) is further examined by employing the concept of weak time derivatives
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of abstract Bochner functions (Zenisek 1990):

∫ T

0

∫
�

µ
∂δ
(
x − x0 −

∫ t
0 c(τ) dτ

)
∂t

v δu d� dt

=
∫ T

0
lim
�t→0

∫
�

δ
(
x − x0 −

∫ t+�t
0 c(τ) dτ

)
− δ

(
x − x0 −

∫ t
0 c(τ) dτ

)
�t

µv δu d� dt

=
∫ T

0
µ lim
�t→0

(v δu)
∣∣
x=x0+

∫ t+�t
0 c(τ)dτ − (v δu)

∣∣
x=x0+

∫ t
0 c(τ)dτ

�t
dt

=
∫ T

0
µ c(t)

∂(v δu)
∂t

∣∣∣∣
x=x0+c(t)

dt (31)

By utilizing relationship 31 and the properties of δ function, the weak form becomes:
Find

{u, v, p} ∈ U × V × V ,

U = {u ∈ L2(I, H1(�)) : u̇ ∈ L2(I, H1(�))}, V = {v ∈ L2(I, L2(�))}

satisfying the relationship∫ T

0

(∫
�

−m v δv d�+
∫
�

M
∂2δu
∂x2

d�− (P δu)∣∣x=x0+
∫ t

0 c(τ)dτ − (µ v δv)
∣∣
x=x0+

∫ t
0 c(τ)dτ

−µ c
∂(v δu)
∂x

∣∣∣∣
x=x0+c(τ)

+
∫
�

(p(δv − δu̇)+ δp(v − u̇)) d�
)

dt

+
[
µ(v δu)

∣∣
x=x0+

∫ t
0 c(τ)d

]t=T

t=0
+
[∫

�

m v δu d�
]t=T

t=0
= 0

∀{δu, δv, δp} ∈ W × V × V ,

W = {w ∈ L2(I, H1(�)) : ẇ ∈ L2(I, H1(�)), w = 0 on �u} (32)

Introducing the approximations presented in Section 6 and taken into consideration
the arbitrariness of the functions, yields the fully discretized problem:

2
T
(MFEM)

(
�vn+1 − �vn

)
+ 2

T
M1mov

�v
n+1 − 2

T
M0mov

�vn + 2
T

�

Fmov +
(
�

Fn+1
int + �

Fn
int

)
= �

Fn+1
ext + �

Fn
ext (33)

T
2

M
(
�pn+1 − �pn

)
= T

2

(
MFEM

) (
�vn+1 + �vn

)
+ Mmov (34)

T
2

C
(
�vn+1 + �vn

)
= D

(
�un+1 − �u

n)
(35)
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The symbol (�•) denotes the parameters of the spatial discretization. Moreover the
matrices in (Eqs 33–35) are defined by the following relationships:

MFEM =
∫∫

�

mNT
δuNv d� (36)

M1mov = µNT
δu

∣∣
x=x0+

∫ T
0 c(τ)dτ Nv|x=x0+

∫ T
0 c(τ)dτ

M0mov = µNT
δu

∣∣
x=x0

Nv|x=x0
(37)

�

Fmov = −
∫ T

0
µc
(
∂NT

δu

∂x
Nv

�v + NT
δu
∂Nv

∂x
�v
)∣∣∣∣

x=x0+
∫ t

0 c(τ)dτ

M =
∫∫

�

NT
δvNp d� (38)

MFEM =
∫∫

�

mNT
δvNv d� (39)

Mmov =
∫ T

0
µc(NT

δvNv
�v)|x=x0+

∫ t
0 c(τ)dτ (40)

C =
∫∫

�

NT
δpNv d� (41)

D =
∫∫

�

NT
δpNδu d� (42)

In (Eqs 36–42), the symbol N(·) signifies the generalized spatial interpolation function
of the variable (·), respectively. The selection of a common interpolation basis for
the variables and their variation leads to a symmetric formulation and to significant
simplifications. Nevertheless, the general formulation serves as a powerful tool for
tackling nontrivial problems.

7.2 Numerical examples

A simply supported beam with elasticity modulus E= 3.2 107 kN/m2, moment of iner-
tia I = 10 m4, mass density m= 16 t/m and total length L= 45 m has been analyzed
assuming a moving mass that travels with constant velocity c= 90 km/h. The weight
of moving mass was taken successively equal to 10, 20, 30, and 40 percent of the
total mass of the beam. The corresponding time histories of the vertical displacement
at the midpoint of the beam are shown in Figure 3. Also, the same simply supported
beam has been analyzed assuming a moving mass of µ= 72 t for various velocities,
i.e., c={45, 60, 75, 90} km/h. The time histories of the vertical displacement at the
midpoint of the beam are shown in Figure 4.

8 Conclusions

In the present paper, a general concept for the time integration of the dynamic equations
has been proposed. The development rests upon a series of concepts, e.g.: the velocities
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are assumed to be independent and the constraint between the velocities and the time
derivatives of displacements are enforced in a weak form. Departing from the usual
procedure, different approximations are employed for the test functions (variations)
and the variables itself. Moreover, we do not impose fixed end conditions at the time
boundaries.

The approach provides a systematic and mathematically consistent procedure for
the approximation of nonlinear evolution problems and can be easily extended to
a variety of nonlinear dynamical problems since it offers an effective strategy for the
incorporation of unconventional terms into the weak form. Furthermore, the proposed
methodology allows the theoretical justification of existing integration schemes, which
can be derived as special cases of the present method.

It is generally accepted that the derived weak statement of the problem and also its
discretized form should possess the same conserved properties as the initial dynamical
system. The celebrated theorem of Emmy Noether provides the basis for the systematic
examination of the conserved properties of the weak formulation as well as of the
discrete system. In the present paper we utilize this theorem in a weak sense, as it is
more consistent with the whole setting.

The presented approach is applied to the dynamic analysis of structural systems (e.g.,
bridges) under moving vehicles. The relationships describing such problems differ from
the usual equations of motion in structural dynamics due to presence of the Dirac’s
delta function in terms containing the acceleration of the moving mass. Those terms
require special treatment by employing the concept of weak time derivative of abstract
Bochner functions.
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ABSTRACT: Smart structures usually incorporate some control schemes that allow them to
react against disturbances. In mechanics we have in mind suppression of mechanical vibrations
with possible applications on noise and vibration isolation. A model problem of a smart beam
with embedded piezoelectric sensors and actuators is used in this paper. Vibration suppression
is realized by using active control. Classical mathematical control usually gives good results for
linear feedback laws under given assumptions. The design of nonlinear controllers based on
fuzzy inference rules is proposed and tested in this chapter.

1 Introduction

Smart structures include sensors and actuators and are able to react to the environment
due to coupling with some active control mechanism. The intelligence is introduced
by a structural control scheme. Linear feedback, for which a number of theoretical
results are available, is usually applied. Lack of knowledge of the structure due to
restricted number of measurements or uncertainty about the structural model itself
due, say, to damage or general structural degradation, plastification or other sources
of nonlinearities, reduce the performance of the classical control scheme. Moreover
for nonlinear feedback controllers the theoretical analysis is usually complicated or
not available. Soft computing may be used for the design of the controller algorithm
in this case. One of the available tools, tested in this paper, is the fuzzy controller.

Using composite mechanical structures, like beams and plates in bending, with
piezoelectric layers that can be used as sensors and actuators we have investigated the
performance of robust control algorithms for vibration suppression. Classical robust
control based on the H2 and H∞ control theories has been considered in previous
publications of our group. The considered robust control design methodologies lead
to linear time invariant feedback controllers having similarities with the linear feed-
back laws resulting from the classical Linear Quadratic Regulator (LQR) scheme.
The controllers are designed to achieve optimal performance for a nominal model and
maintain robust stability and robust performance for a given class of uncertainties.
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Figure 1 Laminated beam with piezoelectric sensors, actuators and the schematic control system.

This is achieved by the solution of two algebraic Ricatti equations, while in classical
structural control one such equation arises.

The design of nonlinear feedback control laws using classical methods is a difficult
task. Even the choice of appropriate numerical parameters for the design of an efficient
classical robust control, say of the control weights in H∞ control, is a challenging task.
For all these reasons the usage of soft computing techniques, including fuzzy, neural
and hybrid control, has been proposed. In this paper the use of control mechanisms
based on fuzzy inference control is investigated.

The investigation presented in this paper is relevant for the design of structural
control systems for linear and nonlinear structures and can be used, for instance, to
solve active control schemes for aseismic design.

2 Models of smart beams and structures

In the smart beam of Figure 1, the control actuators and the sensors are piezoelectric
patches symmetrically bonded on the top and the bottom surfaces of the host beam.
Both piezoelectric layers are positioned with identical poling directions and can be
used as sensors or actuators.

The linear theory of piezoelectricity is employed. Furthermore, quasi-static motion
is assumed, which means that the mechanical and electrical forces are balanced at
any given instant. It should be emphasized that the fuzzy controller proposed here
can be used with more general nonlinear structural models, which may be relevant to
other technologies of smart materials and structures (general nonlinear ferroelectric
materials etc).

The linear constitutive equations of the two coupled fields read:

{σ} = [Q]({ε} − [d]T{E}) (1)

{D} = [d][Q]{ε} + [ξ]{E} (2)

where {σ}6×1 is the stress vector, {ε}6×1 is the strain vector, {D}3×1 is the electric dis-
placement, {E}3×1 is the strength of applied electric field acting on the surface of the
piezoelectric layer, [Q]6×6 is the elastic stiffness matrix, [d]3×6 is the piezoelectric
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matrix and [ξ]3×3 is the permittivity matrix. Eq. (1) describes the inverse piezoelectric
effect (which is exploited for the design of the actuator). Eq. (2) describes the direct
piezoelectric effect (which is used for the sensor). Additional assumptions are used for
the construction of the simplified model: (a) Sensor and actuator (S/A) layers are thin
compared with the beam thickness. (b) The polarization direction of the S/A is the
thickness direction (z axis). (c) The electric field loading of the S/A is uniform uni-axial
in the x-direction. (d) Piezoelectric material is homogeneous, transverse isotropic and
elastic. Therefore, the set of equations (1) and (2) is reduced as follows:{

σx

τxz

}
=
[
Q11 0
0 Q55

]({
εx

γxz

}
−
[
d31

0

]
Ez

)
(3)

Dz = Q11d31εx + ξ33Ez (4)

The electric field intensity Ez can be expressed as:

Ez = V
hA

(5)

where V is the applied voltage across the thickness direction of the actuator and hA is
the thickness of the actuator layer.

Only strains produced by the host beam, act on the sensor layer and no electric field
is applied to it. Thus the output charge from the sensor can be calculated using eq. (4)
and is given by:

q(t) = 1
2


∫

Sef

Dz dS


z= h

2

+
∫

Sef

Dz dS


z= h

2+hS

 (6)

where Sef is the effective surface of the electrode placed on the sensor layer.
The current on the surface of the sensor is given by:

i(t) = dq(t)
dt

(7)

The current is converted into open-circuit sensor voltage output by:

VS = GSi(t) (8)

where GS is the gain of the current amplifier.
Furthermore, we suppose that the bending-torsion coupling and the axial vibration

of the beam centerline are negligible and that the components of the displacement field
{u} of the beam are based on the Timoshenko beam theory which, in turn, means that
the axial displacement is proportional to z and to the rotation ψ(x, t) of the beam
cross section about the positive y-axis and that the transverse displacement is equal to
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the transverse displacement w(x, t) of the point of the centroidal axis (y= z= 0). The
strain-displacement relationships read:

εx = z
∂ψ

∂x
, εxz = ψ + ∂w

∂x
(9)

The simpler Euler-Bernoulli theory which considers zero transverse shear deforma-
tion γxz has also been tested. Using Hamilton’s principle the equations of motion of the
beam are derived. This model has been used in various investigations of our group (see,
among others, Stavroulakis et al. 2005, 2007). Further applications of piezoelectric
layers in control can be found in the review article (Irschik 2002).

For the finite element discretization beam finite elements are used, with two degrees
of freedom at each node: the transversal deflection wi and the rotation ψi. They are
gathered to form the degrees of freedom vector Xi = [wi ψi]. After assembling the mass
and stiffness matrices for all elements, we obtain the equation of motion in the form:

MẌ +�Ẋ + KX = Fm + Fe (10)

where M and K are the generalized mass and stiffness matrices, Fe is the generalized
control force vector produced by electromechanical coupling effects, � is the viscous
damping matrix and Fm is the external loading vector. It should be mentioned here
that bending theories for plates can be constructed analogously.

The main objective is to design robust control laws for the smart beam bonded
with piezoelectric S/A subjected to external induced vibrations. For this purpose the
following state space representation will be used:

ẋ = Ax + B1w + B2u (11)

as it is common in control problems for general dynamical systems. Here

x = [X Ẋ]T , A =
[
0 I
−M−1K −M−1�

]
(12)

where x is the state vector, A is the state matrix, B1 and B2 are allocation matrices for
the disturbances w (corresponding to external forces Fm) and control u (corresponding
to Fe). The initial conditions are assumed to be zero. The identity matrix is denoted
by I.

3 Classical active control

Let us consider that the measurements have the following form:

y = Cx + Du (13)

The control law usually accepted in classical theory is a linear feedback of the form

u = Ky (14)

where K is the unknown controller gain.
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The objective in this study is to determine the vector of active control forces u(t)
subjected to some performance criteria and satisfying the dynamical equations of the
structure, such that to reduce in an optimal way the external excitations and to meet
the above mentioned requirements. The investigations may be implemented in the time
domain as well as in the frequency domain. The problem for vibration suppression is
solved by both LQR and H2, Hinf optimal performance criteria. These methods actually
design the controlled system and do not take into account the external influence (e.g.
the loading). The LQR method is only outlined in this paper. Technical details and
results of the other control methods can be found in previous publications (Marinova
et al. 2005, Stavroulakis et al. 2005, 2007).

3.1 Linear Quadratic Resulator (LQR)

In this section the £2 performance problem in the time domain is studied. The following
quadratic cost function is minimized

J = 1
2

∞∫
0

(xTQx + uTRu)dt → min (15)

The free parameters Q and R represent weights on the different states and control.
They are the main design parameters. J represents the weighted sum of energy of the
state and control. This is clearly a compromise between reducing the state vector and
the cost of the control effort. We require that Q be symmetric semi-positive definite
and R be symmetric positive definite for a meaningful optimization problem. The
values of the two weights define the relative importance of effectiveness and cost in
the compromise cost function. The arising problem is known as LQR problem and
belongs to the powerful machinery of the optimal control.

Assuming full state feedback, the control law is given by

U = −KLQRx (16)

with constant control gain

KLQR = R−1BTP (17)

The constant matrix P is a solution of the Riccati Equation

ATP + PA + Q − PBR−1BTP = 0 (18)

Under technical assumptions existence and uniqueness of the above controller is
guaranteed. The closed loop system is the actively controlled structure and is given by

ẋ = (A − BKLQR)x + Fm (19)

An advantage of the linear quadratic formulation of the problem is the linearity of
the control law, which leads to easy analysis and practical implementation. Another
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advantage is good disturbance rejection and good tracking. The gain and phase margins
imply good stability.

All these preferences are met when a complete knowledge of the whole state for
each time instance is available. If a limited number of measurements are available
and they are supposed to be corrupted by some measurement errors the effectiveness
of LQR deteriorates. In this case, first the system is reconstructed from the available
measurements with the usage of some filter technique (e.g. Kalman filter), and then
the optimal control problem is solved based on this reconstructed (estimated) system.

4 Soft computing and control

4.1 Fuzzy, neural and hybrid techniques in control

The advantage of classical control theories is the availability of mathematical tools
for the design of the controller and the study of it’s properties, like stability, robust-
ness etc. Nevertheless, one should mention that most beneficial properties are based
on the knowledge of the whole dynamical system. If this is not the case an estima-
tor, like a Kalman-filter, is introduced. The quality and reliability of this estimator
defines the effectiveness of the whole control system. Furthermore, a serious disadvan-
tage of classical control is the adoption of a linear feedback. Nonlinear control laws
are certainly more flexible. They are also more suitable for nonlinear systems. The
tools provided by the classical control for the design of nonlinear controllers are less
developed and demand more deep theoretical investigation from the design engineer.
Therefore nonlinear controllers are mainly based on intelligent and soft computing
tools. In order to fix ideas, we mention several possibilities of using intelligent control
in smart structures:

1. Neural networks can be trained to approximate every nonlinear mapping. There-
fore, they can be used for the approximation of the inverse dynamical mapping
of a system. Subsequently the trained network is used to realize a feedback on the
system. The arising closed loop system has the ability of vibration suppression.
For this application a large number of representative measurements, or data from
modeling, is required for the training and testing of the neural network system.

2. Fuzzy inference rules systematize existing experience, available in terms of linguis-
tic rules, and can be used for the realization of nonlinear controllers. The feedback
is based on fuzzy inference and may be nonlinear and complicated. Knowledge or
experience on the controlled system is required for the application of this tech-
nique. Since the linguistic rules are difficult to be explained and formulated for
multi-input, multi-output systems, most applications are based on multi-input,
single-output controllers.

3. Hybrid and adaptive techniques that combine elements from both above methods
have also been proposed. For example the required details of a fuzzy inference
system can be tuned by means of examples and the usage of neural networks or
by using some, usually global, optimization.

Further details on fuzzy control can be found in classical monographs like (Driankov
et al. 1996). In the area of smart systems the application of neuro-fuzzy control has
been adopted by many authors. In particular, it seems to be suitable for the control of
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structures with complicated or nonlinear characteristics, like the tuned mass damper
systems for aseismic design (Pourzeynali et al. 2007, Wang & Lin 2007) or the
semi-active control using active friction devices or electrorheological fluid dampers
(Reigles & Symans 2006).

A two-input, single-output fuzzy inference controller is tested in this paper. This
configuration is suitable for a feedback control force based on the displacement and
velocity at a given point (collocated configuration of the local controller). If needed,
several independent and decentralized (local) fuzzy controllers, in general with different
characteristics, can be installed on a larger structure. The overall setting of each fuzzy
controller (i.e. the fuzzification of the input and output variables, the rules and other
variables involved in the fuzzy inference system) are defined from the beginning by the
user in this study. Obviously some trial-and-error iterations are required in order to
achieve efficient performance of the system. The usage of global optimization tools,
like genetic algorithms or evolutionary optimization, can be proposed as an alternative
for the optimal tunning of the involved parameters (see, among others, the usage of
Particle Swarm Optimization in Marinakis et al. 2008).

4.2 Fuzzy inference system

In order to reduce the displacement field of the cantilever beam system discussed in
this paper, a non-linear fuzzy controller was constructed by using the Fuzzy Toolbox
of Matlab.

More specifically, a Mamdani-type Fuzzy Inference System, consisted of two inputs
and one output, was developed. The system receives as inputs the displacement (u) and
the velocity (u̇), while gives as output the increment of the control force (z). Triangular
membership functions (trimf) were chosen both for inputs and output. These are shown
in the following figures.

In order to describe the present system-controller 15 rules were used. All rules have
weights equal to 1 and use the AND-type logical operator. These rules are presented
in the Table 1.

The implication method was set to minimum (min), while the aggregation method
was set to maximum (max).
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Figure 2 Displacement Membership Function (input 1).
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Table 1 Fuzzy Inference System Rules.

Velocity Far Up Close Up Equilibrium Close Down Far Down
Displacement

Up Max∗ Med+ Low+ Null Med−
Null Med+ Low+ Null Low− High−
Down High+ Null Low− Med− Min

∗ If displacement is far up and velocity is up then control force is max.

The defuzzified output value has been created by using the MOM (Mean of
Maximum) defuzzification method.

The whole implementation has been programmed within MATLAB, using func-
tions from the fuzzy inference toolbox. Different types of membership functions and
defuzzification methods has been tested, with minor changes of the results.

A surface is generated to demonstrate the relation between the inputs (displacement
and velocity) and the output (control force) of a fuzzy inference system. The surface
arose from the fuzzy controller presented above is shown in the following Figure 5.



Class ica l and so f t robust act i ve contro l o f smart beams 173

0.5

�0.5

0

5

0

�5
�4

�2
0

2
4

Displacement
Velocity

FIS Surface

C
on

tr
ol

 F
or

ce

�10�4

�10�3

Figure 5 Fuzzy inference system surface.

4.3 Structural dynamics and fuzzy control

The Houbolt numerical integration method was chosen in order to integrate the
equations of motion:

MẌ +�Ẋ + KX = Fm + Fe (20)

According to this method, when acceleration is constant, Houbolt factors are set to:

β = 0.25, γ = 0.5 (21)

The total integration time was chosen equal to 3 sec, while the time step (�t) equal to
0.001 sec.

Integration constants are given as:

c1 = 1
β(�t)2

, c2 = 1
β�t

, c3 = 1
2β

, c4 = γ

β�t
, c5 = γ

β
, c6 = �t

(
γ

2β
− 1

)
(22)

In each step (t) of the numerical integration, the fuzzy controller provides a control
force (z), according to the given input values (displacement u and velocity u̇). Both
the control force and the external loads provide the next step’s (t + �t) values of
displacement and velocity.

5 Numerical examples

The problem of a cantilever beam was studied in the present paper. The beam has a total
length equal to 0.8 m and a square cross-section with dimensions 0.02× 0.02 m. The
elasticity modulus is equal to 73× 109 N/m2. The mass density is equal to 2700 Kg/m3.
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Figure 8 Displacement (LQR).
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Figure 9 Displacement (fuzzy).

Sinusoidal external excitation concentrated at the free end of the cantilever was chosen.
The structure has been discretized with four finite elements resulting in a model with
eight degrees of freedom. The purpose of the fuzzy controller is to reduce the oscillation.

First we consider a controller that takes as input the displacement and the velocity
of the free end and gives back the control force to be applied at the same point. The
results are compared with these that arose from classical control (LQR). In this latter
case the whole state of the dynamical system is assumed to be known. Therefore
a linear feedback of the sixteen input variables to the one control force has been
calculated. Finally the weights Q and R have been taken to be diagonal matrices with
appropriate dimensions and values of each element on the diagonal equal to 1 and
1× 10−5 respectively.

The results are given in Figures 6–11. We observe that displacements can be easily
reduced, while velocity and acceleration results of the fuzzy-controlled system are not
very satisfactory, due to the nonlinear, impact-like nature of the control force.
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Figure 10 Velocity (LQR).
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Figure 11 Velocity (fuzzy).
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Figure 12 Excitation and control force (1st).
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Figure 13 Excitation and control force
(2nd).

The second fuzzy controller has two independent fuzzy mechanisms placed at the
middle and at the free end of the cantilever beam. Each one of the two controllers can
be tunned separately. The results of the two sub-systems are shown in Figures 12–17.

As a matter of fact, from the numerical results one observes that further vibra-
tion reduction was accomplished. This is reasonable, as the new system uses four
measurements, instead of the previous one that was using only two. Nevertheless the
problems concerning velocities and accelerations remain.

The performance of the fuzzy control system can be further enhanced by fine-tunning
the parameters of the fuzzy system (membership functions, rules, etc) by using a neural
network or a global optimization scheme. First results in this direction, using the
Particle Swarm Optimization method, have been presented in Marinakis et al. 2008.
Furthermore, from the practical point of view a big deficiency of fuzzy controllers are
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Figure 17 Velocity (2nd).

the discontinuous effect of the induced controlled motion. This effect, which leads to
material damage problems, is known in the community and is demonstrated in our
results by the bad performance in the velocity and acceleration variables. Optimal
tunning of the fuzzy controller in order to reduce this effect is highly desirable. The
authors work in this direction and will present their results in the future.
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Chapter 12

Rail vibrations caused by ground
stiffness transitions

Håkan Lane, Per Kettil & Nils-ErikWiberg
Chalmers University of Technology, Gothenburg, Sweden

ABSTRACT: Spatial changes in the material properties of the track and subground may
lead to variations in the contact forces at the wheel-rail interface. A shift from one material to
another can potentially induce transition radiation vibration modes. The phenomenon has been
observed in situations where the train goes onto a bridge. An advanced numerical model of the
entire train-track-subgrade dynamic system with moving finite elements has been used to study
the influence of material stiffness transitions in the subground. While the properties of the ballast
and the rail were kept constant, the Young moduli of the two layers of clay representing the soil
underwent a linear change over a short distance. Both transitions from soft to stiff and from
stiff to soft soil were considered. The results indicate that the main effect of the transition is a
temporary variation followed by a transient low-frequent vibration. The magnitude is relatively
small and does not threat the stability of the system. The shielding track structure with ballast,
sleepers and pads evens out the disturbance.

1 Introduction

The essence of railway dynamics is the transfer of forces at the wheel rail interface.
The energy from the motion of the train is taken up as elastic deformation in the
track structure consisting of the rail, sleepers, dry crust, ballast and soil. The elastic
response in the ground depends both in magnitude and characteristics on a number of
parameters, e.g. train mass, suspension parameters, train geometry, rail irregularities
and soil material characteristics (Ching, 2004).

An advanced numerical application allows for three dimensional analysis of the
dynamics of the entire train-track-subgrade system with a high level of detail in the
time domain (Lane, 2007). Moving mesh calculations makes computations for a train
traveling over longer distances possible (Lane et al., 2007c). By eliminating artificial
reflections from the boundaries with a viscoelastic layer technique (Lane et al., 2007b),
the finite element computational domain could be reduced to a mesh of 15–25 m in
front of and behind the train (Lane, 2007). This paper will use the model to simulate
train passage over a domain where the material parameters change. Section 2 presents
the moving mesh model integrating rigid body dynamics and finite elements and section
3 the results of some simulations. Section 4 provides the conclusions of the study.

2 Train-track-subgrade system model

We have developed and successively refined an integrated three-dimensional model
with an advanced level of detail of all subsystems. The representation of the train is
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based on multibody dynamics, incorporating the interplay between the various parts
of the train and the suspension system (Lane et al., 2007a). For the soil, there is a full
scale finite element grid based on solid eight-node bricks (Ekevid and Wiberg, 2002).
Virtual finite elements of viscoelastic materials (Lane et al., 2007b) are added to reduce
reflections from the boundaries.

2.1 Assembling the system

The solution process and time integration algorithm is based on identifying a com-
mon framework for the parts (finite elements, spring/damper connectors, rigid body
motion, constraint equations and boundary conditions). The internal force vector Fe

is seeked as:

Fe = Meüe + Ceu̇e + Keue + λe
∂	e

∂u
(1)

based on local matrices for mass (Me), damping (Ce) and stiffness (Ke), a local coordi-
nate vector ue and, for constraints and boundary conditions with the expression 	e,
the local Lagrange multiplier λe. Analysis is based on Lagrangian dynamics (Griffiths,
1985).

2.1.1 So i l

For the soil with density ρ, an elastic stress-strain consitutive matrix D (Samuelsson and
Wiberg, 1998) and an analogous stress-strain rate visco-elastic matrix Cη, standard
FE procedures based on form functions N and their spatial derivatives B= ∇̃ N and a
volume integration over the element domain � lead to the local matrices as defined in
equation (4):

Me =
∫
�

NTρN dV (2)

Ce =
∫
�

BTCηB dV (3)

Ke =
∫
�

BTDB dV (4)

It should be noted that the dissipating (Ceu̇e) and elastic (Keue) part of the internal
forces are calculated by evaluating form function derivatives, material parameters and
statefields in the Gauss points, while the inertial contribution is computed through a
volume scalar product.

2.1.2 Rig id body

The theory for the application of rigid body equations in a system based on Lagrangian
mechanics was presented by Lane et al. (2007a). The only points that are included in
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the analysis are the reference points for each body and the connected points in contact
with a connector. For the reference points, the inertia matrix equals (Lane et al., 2007a)

Me =
[
mI3

J

]
(5)

Here, m equals the body mass, I3 is the 3× 3 unity matrix and J is the 3× 3 rotary
inertia tensor.

2.1.3 Connector

The characteristics of a Kelvin type connector are assigned as 3× 3 matrices for stiffness
K and damping C. While there is no mass contribution, one sets explicitly Ke = K and
Ce = C

2.1.4 Const ra in t equat ion

Each constraint equation 	i is assigned a Lagrange multiplier λi. For a holonomic
linear sum

Aue = 0 (6)

application of equation (7) leads to the internal force contributions

λe = λi (7)

∂	e

∂u
= A (8)

2.1.5 Boundary cond i t ion

A locked boundary condition for a specific degree of freedom is a special type of the
general expression for a constraint equation with the expression

uk = 0 (9)

for a specific degree of freedom k. Again, a Lagrange multiplier λj is assigned and the
terms in equation (7) are identified as

λe = λj (10)

∂	e

∂u
= 1 (11)

The terms from equations (10)–(21) are merged into a tangent left-hand-side matrix[
M∗ ∂	

∂u

∂	
∂u 0

]
(12)
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where the Newmark time integration parameters α and β have been used in a Taylor
expansion to generate the dynamic mass matrix

M∗ = M + α�t C + β (�t)2

2
K (13)

The tangent matrix is then used to find increments to the accelerations (δü) and
Lagrange multipliers (δλ) in a Newmark predictor-corrector scheme.

2.2 Material parameter transit ions

To achieve transitions with a moving mesh, the Young’s moduli will now be a function
of the location occupied by the nodes as they are moved forward. The controlling
variable is shown in Figure 1.

The simulations will update the elastic properties of some materials during mesh
motion, i.e.

E = E(x), x = X − xf (14)

2.3 Dimensions

The train consists of the X2 power unit, modeled with rigid bodies for the carbody,
two bogies and four wheelpairs. The parts are connected through the primary (wheel-
pair/bogie) and secondary (bogie/carbody) suspensions.The values have been set based
on information from the operator SJ or from values used in the GENSYS package
(2006). The carbody can move in all directions and rotate around the yaw and roll
angles, but is locked in the pitch angle. The bogies and wheels are free to translate, but
not to rotate. These settings have been empirically proven to lead to better numerical
stability.

The model of the track and subgrade is constructed from solid threedimensional
eight-node elements. The diversity of materials in a track structure calls for the creation
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Table 1 Locomotive component parameters.

Name Mass/kg

Car body 53600
Bogies 3060
Wheels 1830

Table 2 Suspension spring constants/(N/m).

Level Horizontal Lateral Vertical

Secondary 600 · 103 600 · 103 1000 · 103

Primary 20 · 106 20 · 106 1200 · 106

Table 3 Suspension damper constants/(Ns/m).

Level Horizontal Lateral Vertical

Secondary 40 · 103 40 · 103 40 · 103

Primary 2 · 103 2 · 103 30 · 103

DC – Dry Crust

7.4

Ballast
Sub ballast

VDC
VC1

VC2

VDC
VC1

VC2

[m]28.75

Clay2

Clay1

4.4

Vz

Figure 2 Track-soil-subgrade model dimensions.

of a multi-layer model with different material values. The dimensions are shown in
Figure 2. In the horizontal direction, it goes from 13 m behind the rear wheelset to 18
m in front of the front wheels for a total of 43 m. The material characteristics for the
two setups are shown in Table 4–6.

The parameters of the visco-elastic absorbing layers in Table 7–9 are found from
formulae for non-reflecting boundary conditions (Krenk and Kirkegaard, 2001). As is
shown in Figure 3, there are absorbing layers at the boundary at the back of the mesh
(and also in the front) as well.

As is apparent from (Lane, 2007), the virtual contact point on the rail is connected
to a point on the wheel surface through a special connector. The stiffness of the spring
k was chosen based on a linearisation of equation (1) around a force corresponding to
equidistribution of normal forces. We found that it was advantageous with a damping
value close to critical damping in order to maintain numerical stability. The values for a
wheel mass of mw = 1830 kg (Table 1) are k= 1.7321 ·108 N/m and c= 9.8 ·105 Ns/m.
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Table 4 Elastic domain parameters.

Region Young’s Poisson Density Viscous Rayleigh Height
modulus ratio ν ρ/(kg/m3) Damping Damping of layer
E/pa η/pas Parameter h/m

Rail 206.8 ·106 0.29 7820 – 0.001 0.19
Pads 69 ·106 0.4995 1185 0.001 0.01
Sleepers 30 ·109 0.2 2500 – 0.001 0.22∗
Ballast 250 ·106 0.3 1800 132 ·103 – 0.3
Sub ballast 300 ·106 0.3 1800 132 ·103 – 0.5
Dry Crust 30 ·106 0.45 2000 – 0.001 0.8

∗ The sleepers are laid out with a length of 0.2 m and a spacing of 0.7 m.

Table 5 Soft clay parameters.

Region Young’s Poisson Density Viscous Rayleigh Height of
modulus ratio ν ρ/(kg/m3) Damping Damping layer h/m
E/pa η/pas Parameter

Clay1 8 ·106 0.45 1500 – 0.001 1.5
Clay2 13 ·106 0.45 1600 – 0.001 2.5

Table 6 Stiff clay parameters.

Region Young’s Poisson Density Viscous Rayleigh Height of
modulus ratio ν ρ/(kg/m3) Damping Damping layer h/m
E/pa η/pas Parameter

Clay1 9000 ·106 0.45 1500 – 0.001 1.5
Clay2 14000 ·106 0.45 1600 – 0.001 2.5

Table 7 Parameters of lateral viscoelastic zones.

Region Young’s modulus E/pa Poisson Density Viscous Damping η/Pas
ratio ν ρ/(kg/m3)

Soft Stiff Soft Stiff

VDC 6.2609 ·105 6.2609 ·105 0.45 1 3.7731 ·104 3.7731 ·104

VC1 1.6696 ·105 1.8365 ·106 0.45 1 1.7427 ·104 5.7800 ·104

VC2 2.7130 ·105 2.9843 ·106 0.45 1 2.2899 ·104 7.5948 ·104

Vz 7.2354 ·105 4.3351 ·106 0.45 1 2.2899 ·104 7.5948 ·104

Table 8 Back Absorbing Layers.

Region Young’s modulus E/pa Poisson Density Viscous Damping η/Pas
ratio ν ρ/(kg/m3)

Soft Stiff Soft Stiff

VBCR 4.7219 ·105 4.7219 ·105 0.45 1 3.7731 ·104 3.7731 ·104

VBC1 1.2592 ·105 1.3851 ·106 0.45 1 1.7427 ·104 5.7800 ·104

VBC2 2.0462 ·105 2.2508 ·106 0.45 1 2.2899 ·104 7.5948 ·104
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Table 9 Front Absorbing Layers.

Region Young’s modulus E/pa Poisson Density Viscous Damping η/Pas
ratio ν ρ/(kg/m3)

Soft Stiff Soft Stiff

VFCR 3.7799·105 3.7799·105 0.45 1 3.7731·104 3.7731·104

VFC1 1.0080·105 1.1088·106 0.45 1 1.7427·104 5.7800·104

VFC2 1.6380·105 1.8018·106 0.45 1 2.2899·104 7.5948·104

VBCR

VBC1

VBC2

Figure 3 Back Absorbing Layers.

3 Simulations

3.1 Transit ion

The train starts at rest and then travels for a distance of 270 m before it encounters a
change in the characteristics of the clay in the subsoil. The Young moduli are shifted
from the values in Table 5 to those in Table 6 over a distance of 1.5 m. The transition
is illustrated in Figure 4.

3.2 Results

The moving mesh method implies that the entire domain is translated as the train
moves. This means that all results are presented for locations with constant relative
distances from the train, but in a moving frame of reference. The results are presented
below.

3.2.1 Disp lacements in ba l las t , s leepers and ra i l

Figure 5a–c shows the displacements for respective nodes located:

a. In the lateral mid-plane (between the wheelsets) at the bottom of the ballast
region;

b. At the bottom of a sleeper to the left in the running direction;
c. On top of the rail.
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Figure 5c Displacements in rail.
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3.2.2 Wheel ra i l fo rces

Figure 6 shows the wheel rail contact forces at for the right front wheels. The transition
zone is shown with the circle. The steady state value corresponds to one eighth of the
weight of the train.

3.2.3 Ride d iscomfor t ind icator

Figure 7 shows the vertical velocity of the carbody. A high absolute value can be seen
as an indicator of motion discomfort for the passengers. The point of the transition as
well as levels for annoyment at 2.5 mm/s have been added to the graph.

3.3 Comments

Figure 5a–c shows that there is a small but well-defined effect in the ground and
track. The move into a more rigid zone leads to a “bump’’ followed by a period with
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some transient vibrations. The structure settles to a less displaced state after a while.
Meanwhile, Figure 6 shows that the vibrations are well shielded from the wheel – rail
interface. The two levels of suspension serves to further isolate the coach, as shown in
Figure 7.

4 Conclusions

The effect of ground stiffness transitions was simulated with an integrated rigid body –
finite element model. By changing material parameters as nodes are moved in a mov-
ing mesh scheme, a transition from loose to stiff ground was studied. The model was
excited by the passage of an X2 locomotive running at 250 km/h. The effect of transi-
tion vibrations were clearly detectable in the ballast, sleepers and rail. The impact at
the contact forces and in the train were very modest.
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Chapter 13

Development and applications of a
staggered FEM-BEM methodology for
ground vibrations due to moving
train loads

Dimitris C. Rizos & John O’Brien
University of South Carolina, Columbia, USA

Evangelia Leon
Geomech Group Inc., Columbia, USA

ABSTRACT: This work presents an efficient methodology for the analysis of vibrations in
a railroad track system, induced by the passage of conventional and high speed trains. The
methodology is based on an efficient coupling of the Boundary Element (BEM) with the Finite
Element Method (FEM) in the direct time domain. The BEM is used for the modeling of the soil-
tie system and the FEM for the modeling of the flexible rail system. Soil-Structure Interaction
and traveling wave effects are inherently accounted for. The proposed methodology allows for
selection of different time steps in order to fulfill stability requirements of each solver.

1 Introduction

High speed rail transportation is quickly becoming a popular form of mass transit
through-out the world. High Speed Trains (HST) pertain to passenger trains traveling in
excess of 160 km/h (100 mph), and as fast as 300 km/h (186 mph). Potential problems
arise when high speed trains travel over soft soils having relatively low wave velocities.
In such cases excessive vibrations in the track systems, train suspension, and nearby
structures may occur contributing to the passenger discomfort and causing serious
damage to the track and train. Additionally, nearby structures experience the effects
of the vibrations causing discomfort and a sense of an unsafe environment to the
occupants. These potential problems are attributed to a phenomenon equivalent to
the “sonic boom’’ where the wave propagation in the soil is equal or lower than the
speed of the moving source. Accurate assessment of vibrations depends on appropriate
representation of the wave propagation problem and the dynamic interaction between
the soil, track system, and moving train. Tools for vibration prediction in such cases
will contribute to the proper design of new and retrofit of existing systems.

Numerical models for Soil-Structure Interaction effects are based on Finite Element
Methods (FEM), Boundary Element Methods (BEM) or hybrid techniques. Although
FEM are well established procedures, e.g., Bathe (1996) and Cook et al. (2002),
they are not free of shortcomings especially when modeling of infinite domains is in
order. In such cases special developments are required to satisfy the radiation condition
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preventing, thus, spurious vibration modes due to boundary reflections. Alternatively,
the infinite soil region can be modeled using BEM methods for wave propagation
which are based on Boundary Integral Formulations that implicitly satisfy the radia-
tion. Comprehensive literature reviews on BEM formulations have been reported by
Beskos (1997) and Mackerle ((1996),(1998)). BEM models have been coupled to FEM
models of structural systems. Such studies have been reported in the literature for
problems in dynamic and seismic analysis of coupled soil-structure systems involving
stationary loads, Rizos and Wang (2002), von Estorff and Firuziaan (2000), Yazdchi
et al. (1999). Coupling the BEM and FEM methods retains the advantages of each
method and eliminates their shortcomings.

Availability of experimental data and in-situ measurements on high speed train
induced vibrations is limited. Degrande and Shillemans (2001), Kaynia, et al. (2000),
Madshus and Kaynia (2000), Hall (2003), and Sheng et al. (2003) have presented
in-situ measurements recorded from track sites in Europe. Much of the available
research reported in the literature on this topic is based on analytic and numerical
techniques, such as in the work of Bode et al. (2002), Hall (2003), Ekevid and Wiberg
(2002), Yang et al. (2003), and Ekevid et al. (2001), and recently by the authors (2005),
among others.

This work presents an efficient direct time domain solution approach to study the
transient response of a soil-track system due to passage of HSTs through computer
simulations. To this end, the well established Boundary Element Method and Finite
Element Method are coupled in the direct time domain in an efficient manner since it
uses impulse response techniques, normalization and scaling procedures, O’Brien and
Rizos (2005). Numerical applications demonstrate the accuracy and versatility of the
method.

2 Constituent models

2.1 General

The physical system under consideration consists of a straight steel track supported
on concrete ties, which in turn, rest on the foundation soil. The vehicle dynamics of
the HST are ignored in the present study. The present work uses a coupled BEM FEM
methodology for the analysis of moving train loads in the direct time domain. The BEM
is applied on the soil region and considers the kinematic interaction with the ties, in
order to account for the traveling wave effects, and the through the soil interaction of
adjacent ties. The FEM method is used for the modeling of the rails. The two solution
domains are coupled at their interface, i.e., the tie-rail contact points. A diagram of
the system is shown in Figure 1, and the constituent models are discussed next.

2.2 Soi l-Tie model

The soil region is modeled as homogeneous linear elastic half space with a horizontal
free surface. The ballast and subbase are not considered in this model; however, they
can be accommodated in the proposed method in a straightforward manner. Hence,
ties are assumed to rest directly on the free surface of the halfspace with which they
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remain always in contact. The ties are considered to be rigid and only kinematic inter-
action effects are accounted for in the soil-tie model. Inertia interaction effects due to
the tie’s mass are accounted for in the track-rail model and the FEM solution. The
tie’s dimensions are 2.5 m long× 0.285 m wide with center to center spacing of 0.955
meters. The proposed method allows for any number of ties to be accounted for in the
soil tie model.

2.3 Track-Rai l model

The type of rails of the track system considered in this work is the UIC-60 commonly
used in European high speed rail applications. Rails are assumed to remain linear elastic
and are coupled to the ties in the vertical direction only. Loads applied on the track
structure are assumed to be applied equally on each of the two rails. Consequently, the
rail model is simplified by using a single rail passing over the center of the ties. The
cross sectional area, and the moment of inertia about the x axis of the single rail are
both doubled to account for the equivalent stiffness of a two rail track.

2.4 Train loads

The train loads applied to the FE model in this work are based on the X-2000 HST
consisting of one locomotive and four passenger cars, Kaynia et al. (2000) and Ekevid
and Wiberg (2002). Only the vertical bogie loads are used for modeling; this accounts
only for the weight of the train and does not include any train dynamics. The super-
critical, critical and subcritical train speeds pertain to HST traveling at speeds above,
at, or below the shear wave velocity of the soil.
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3 Proposed methodology and solution procedure

3.1 Boundary element solver

A detailed formulation of the employed 3-D BEM is too extensive and beyond the scope
of this paper and can be found in O’Brien and Rizos (2005), Rizos (1993), Rizos (2000),
Rizos and Karabalis (1994) and Rizos and Loya (2002). The BEM uses the time domain
4th order B-Spline fundamental solutions of the 3-D full space along with higher order
spatial discretization of the boundary. The Boundary Integral Equation associated
to the Navier-Cauchy governing equations of motion is expressed in a discrete form
yielding a system of algebraic equations at step N relating displacements u to forces f
at discrete boundary nodes in the BEM model and at discrete time instants tj and τ j, as

cu(tN) =
N+1∑
n=1

U(tn) f(τN−n+2) − T(tn) u(τN−n+2) N = 1, 2, . . . , Nend (1)

where c is a discontinuity term, and U and T are the BEM coefficient matrices associ-
ated with the fundamental solutions. Equations (1) can be solved in a time marching
scheme for Nend time steps yielding the B-Spline Impulse Response (BIRF) of the system.
In order to derive equivalent, time-dependant flexibility matrices associated with the
“loaded part’’ of the BE model (e.g. points of application of external excitation), a unit
B-Spline impulse force δj = f, perturbs each “active’’ degree of freedom, j= 1, . . ., NN,
at a time and successive solutions of Equation (1) yield the B-Spline impulse response
vectors, bN

j = u(tN). These BIRFs can be collected in matrix form as

BN = [bN
1 , bN

2 , . . . , bN
j , . . .bN

NN] (2)

Matrix B represents the BIRF associated to the displacements of the BEM nodes
due to concentrated unit forces applied in the directions of the degrees of freedom
that vary in time according to a B-Spline function, and captures the traveling wave
characteristics. Subsequently, the response, uN , of the elastodynamic system subjected
to arbitrary external forces f = P applied at the nodes are computed at time step N as:

uN =
N+1∑
n=1

BnPN−n+2 (3)

By separating known from unknown quantities at time step N, and assuming that
P̈N

BEM = 0, Equation (3) can be expressed as:

uN
BEM = (

B1PN+1
BEM + B2PN

BEM

)+ N+1∑
n=3

BnPN−n+2
BEM = FPN

BEM + HN (4)

where

F = 2B1 + B2
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HN =
N+1∑
n=3

BnPN−n+2
BEM − B1PN−1

BEM

Matrix F represents the flexibility matrix of the loaded BEM region and vector
HNrepresents the influence of the response history on the current step. Equation (4) is
used for the evaluation of the response at the monitoring points on the ground surface.
The flexibility matrix is independent of time, however, vector HN needs to be evaluated
at every time step. The proposed method is implemented in two major phases. The first
phase calculates the BIRF matrices of the boundary of the domain. The evaluation of
the BIRF matrices, BN , is computationally intensive, however, they are independent of
the external excitation and need to be evaluated only once for a given model geometry.
The second phase calculates the response of the boundary of the domain given a known
excitation force time history. The evaluation of Equation (4) for the system response
to arbitrary excitation is extremely efficient and can be performed in near real time.

In the presence of rigid bodies in contact with the free surface, such as the case of
the railroad ties, the same method can be used along with the Rigid Surface Boundary
Element developed by Rizos (2000) to compute the BIRF functions of the soil-tie
interface. To this end, the surface of the soil region is discretized with 8-node surface
elements and the 4-node rigid surface boundary elements reported in Rizos (2000) are
placed at soil-tie interface to represent the ties. The response of each tie is described by
three translations and three rotations of the center of the tie. In order to compute the
BIRF of the soil-tie system, each of the six degrees of freedom (dof) of the loaded tie is
excited by a B-Spline impulse force and the response of all ties in the system is computed
following the procedures introduced in O’Brien and Rizos (2005). The computed BIRF
are characteristic responses of the system and are expressed symbolically in matrix
form as

BN = [bN
1 , bN

2 , . . .bN
m . . . , bN

M] M = total number of ties (5)

Superscript N indicates that quantities are evaluated at time tN . Each submatrix bm

in matrix BN is of size 6M× 6 and pertains to the case where a B-Spline impulse
excitation is applied on tie m. Elements in each column, j = 1, 6 of bm represents the
response of all degrees of freedom of all ties at time tN due to the excitation applied
in the direction of degree of freedom j of tie m. Such BIRFs are shown in Figure 2 for
a three tie configuration resting on a flat surface elastic halfspace at selected times for
the case where the middle tie is loaded by a stationary B-spline impulse in the vertical
direction (Figure 2a) and horizontal direction (Figure 2b). With the BIRF matrix, B,
known, the response, uN , of a system to an excitation force P due to the passage of
a train transmitted to the ties through the rail is computed by Equation 3. In this
case, u is the vector with the time histories of the translations and rotations of the
center of all ties in the system. It should be noted that the complete effects of the free
field, as well as cross interaction effects between ties, are implicitly accounted for in
the response vector u. This expression as evaluated for the response of the ties does
not monitor the response of the free filed. However, once the response vector u is
computed, the response of the free field can be computed by the procedures reported
in O’Brien and Rizos (2005) in a straightforward manner. Once the displacements are
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Figure 2 Deformed configurations of BIRF of ground-tie system at selected time steps: (a) vertical
excitation, (b) horizontal excitation.

computed, velocities and accelerations are determined in this work through a finite
difference approximation, as

u̇N = uN+1 − uN

�t
üN = u̇N+1 − u̇N

�t
(6)

Equations (3)–(6) represent the BEM solver that is adopted in the proposed
methodology for moving loads.

3.2 Tie superposit ion

For the analysis of a real system consisting of a large number of ties where all ties are
loaded in an asynchronous pattern due to the moving load, the calculation of the BIRF
matrix, Equation (5), is a computationally expensive task if all ties are to be considered
simultaneously. In such a complete approach, every tie in the system needs to be loaded
by a B-Spline impulse and the response of all ties needs to be computed. Although this
approach is an accurate representation of the rail-tie system, it may be simplified by
observing that repetitive responses of the ties are expected when a single representative
tie is loaded due to the assumption of a straight track. In view of the wave attenuation
and the HST speed, only a relatively small number of adjacent ties are expected to have
a significant contribution to the response at any given time. Furthermore, depending on
the geometry and spacing of ties, cross interaction effects are expected to be important
for only the immediate adjacent ties. Therefore, it is feasible to generate BIRF matrices
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of a large system based on the analysis of much smaller systems consisting of only a
few ties. The details of this technique are too extensive; however they are presented in
the work of O’Brien and Rizos (2005). As an example, if a stretch of railroad track
contains 5,000 ties, the BIRF matrix of Equation (5) will be of size 30,000× 30,000
and fully populated. If the proposed technique is adopted and assuming that only 7 ties
on each side of the loaded tie contribute significantly to the response, the BIRF matrix
of the 15-tie system is of size 90× 90 and the BIRF matrix of the 5000-tie system is
now a banded matrix of bandwidth 48. As a result increased computational efficiency
and optimized storage requirements are achieved without sacrificing accuracy.

3.3 FEM solver

As described previously, FE models will be used for the development of the track and
train structures. The tracks will be modeled using Timoshenko beams and the trains
will be modeled as system with rigid cars and springs and dampers connecting them
to the bogies. The behavior of these structures can be modeled using the second order
differential equation

Msü(t) + Csu̇(t) + Ksu(t) = PFEM(t) (7)

where Ms, Cs and Ks are the mass, damping and stiffness matrix of the system, u(t) is
the vector of nodal displacements, PFEM(t) is the vector of applied loads with respect to
the time t. Following well established procedures using Newmark’s method for direct
time integration, Equations (7) can be rearranged in a system of algebraic equations as,

DuN = PN + HN (8)

where D is the dynamic matrix and HN is a modification to the nodal force vector,
PN , at step N. In order to develop the FEM solver suitable for the proposed coupled
FEM-BEM scheme, Equation (8) is rearranged so a solution can be reached in a single
step. To this end, and in view of the free, f , and supported, s, degrees of freedom
the system of Equation (8) is partitioned and known from unknown quantities are
separated leading to[

Dff 0
Dsf −I

]{
uf

Rs

}
=
{

Pf

0

}
+
{

Peq
f

Peq
s

}
+
{

Hf

Hs

}
−
[
Dfs

Dss

]
{us} (9)

Peq are the nodal equivalent forces applied on all degrees of freedom, and Rs is the vec-
tor of unknown support reactions. This equation can now be solved for the unknown
displacements and support reactions at step N. Equation (9) represents the FEM solver
that is adopted in the proposed coupled BEM-FEM methodology for moving loads,
discussed in Section 3.5.

3.4 Moving loads

As with any finite element model, loads applied on beam elements must be represented
by nodal equivalent forces and moments. For a moving load analysis, the nodal equiv-
alent load vector applied to the structure becomes a function of velocity and time. At
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any time step, n, for a single wheel load moving with speed, V , the position of the load
on the system is known from

x = Vn�t (10)

where �t is the analysis time step. Once the global position of the load is determined,
the element on which it is located can be found. The nodal equivalent loads for the
particular element are then determined based on the position of the load on the element,
while the loads on all other elements are zero. At the next time step, the load moves
to a new position, the loaded element is determined, and the new equivalent loads
are computed. Multiple loads are accounted for by superimposing the time dependant
load vectors for each individual load, at every time step.

3.5 BEM-FEM coupling

The BEM model of the soil region is coupled to the FEM models of the train, truck
and ties at the soil-tie interface and a time marching solution is obtained in a staggered
approach. It is assumed that the train is always in contact with the rails, the rail
structure is always in contact with the ties and the ties must remain always in contact
with the soil. As a result of these contact conditions, forces and displacements at
the rails resulting from the traveling train must be introduced to the ties which, in
turn, are transmitted to the soil. As the soil is loaded, waves are generated and the
resulting displacements due to wave propagation must be applied to the ties which in
turn are transmitted to the rails and the train, completing, thus, a single interaction
cycle. Coupling of the BEM and FEM models is achieved by considering compatibility
of displacements and force equilibrium at the BEM-FEM interface. Therefore, the
following relationships must be satisfied at every time step of the solution

uBEM = uFEM
s (11a)

PBEM + RFEM
s = 0 (11b)

where subscript s pertains to the supported degrees of freedom of the FEM model
which, in general, are the tie-rail contact degrees of freedom. The coupling scheme
introduced in Rizos and Wang (2002), and adopted in O’Brien and Rizos (2005) and
is briefly discussed herein to solve the 3-D Soil Structure Interaction problem for mov-
ing loads. A schematic representation of the staggered solution scheme is shown in
Figure 3. At each time step of the solution known the moving loads are applied to the
structure in the Finite Element portion of the model. Initial velocity and acceleration
can also be specified in addition to forces and displacements. The displacements of the
interface nodes, uFEM

s , are prescribed as initial conditions at time t = 0 or as provided
by the Boundary Element solutions along with the compatibility Equation (11a). The
interface degrees of freedom are fixed at the new location and the Finite Element Solver,
Equations (8), computes the response of the structure as well as the forces, RFEM

s , at the
interface nodes. Subsequently, Equation (11b) computes the corresponding forces at
the interface nodes in the BE region. Based on these forces, the BEM solver, Equations
(4), evaluates the displacements at the interface nodes, which, in view of Equation
(11a), become the new initial conditions for the FEM Solver and the solution moves to
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Figure 3 Schematic Representation of the Coupling Scheme.

the next time step. The proposed staggered solution scheme accommodates indepen-
dent selection of the time step in the FEM and BEM solvers to satisfy any convergence
requirements, as discussed in O’Brien and Rizos (2005).

4 Applications

4.1 Val idation study

This section presents a validation example considering the soil-tie-rail systems along
with the full train load moving at speeds V= 19 m/s and V= 51 m/s. Details on the
soil and the train loads are listed in O’Brien and Rizos (2005). The BIRF matrices are
generated for a 240-tie system in order to accommodate the full length of the train. The
results from the proposed method are compared to the field measurements reported by
Madshus and Kaynia (2000) and shown in Figures 4 a and b. It should be noted that:
(i) only the wheel loads are applied to the rails, (ii) vehicle dynamics are ignored, (iii)
train-rail interaction is not considered, (iv) rail imperfections are not accounted for and
(v) the assumed soil profile does not account for the ballast and subbase layers found
on site. Nevertheless, as evidenced in Figure 4, there is a general agreement between
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Figure 4 Vertical response of a tie due to a moving train load compared to in-situ measurements
for train velocities of (a)V = 19 m/s and (b)V = 51 m/s. (O’Brien and Rizos 2005).
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Figure 5 Effects of the number of significant ties in comparison to in-situ measurements. (O’Brien
and Rizos 2005).

the computer simulations and the reported in-situ measurements. For the subcritical
case, Figure 4a, the observed peak vertical deflections tend to fall between the peak
deflections obtained using soils corresponding, respectively, to the ballast material and
the free field present in the in-situ conditions. For the supercritical case, Figure 4b, the
downward displacements found from this work are once again in a general agreement
with the reported values. However, the train is now moving at supercritical speed, and
the calculated track uplift is somewhat less than the recorded values. Results of an
investigation on the effect of number of significant ties considered in the model are
shown in Figure 5. It is observed that increasing the number of significant ties has an
effect on the response by increasing both the uplift and peak downward displacements
of the ties. Therefore, the number of significant ties becomes a model parameter and
depends on the train speed.
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Step 1 Step 16

Step 26 Step 40

Figure 6 BIRF of a three tie system on an embankment due to a vertical excitation at selected
time steps.

4.2 Effects of embankment

This section presents a study on the effects of the embankment on the vibration caused
by the passage of a moving load at subcritical, critical and supercritical speeds. To this
end, it is assumed that the soil medium is a homogeneous semi-infinite medium and
the geometry of its free surface considers a typical embankment, Haldankar (2007). A
20-tie system is considered and the geometry and spacing is as described in section 2.2.
First the BIRF system response of a three tie system due to a vertical excitation applied
at the middle tie is computed. Snapshots of the BIRF response of all nodes at selected
times when a vertical excitation is applied at the middle tie is shown in Figure 6.

Subsequently, the BIRF of a 20-tie system is generated as discussed in section 3.2 and
the system is subjected to a single concentrated load that moves at speeds v= 20 m/sec,
131.6 m/sec and 197.4 m/sec, corresponding to subcritical, critical and supercritical
speeds. The horizontal and vertical response of the tenth tie is monitored and plotted
in Figure 7 as a function of the dimensionless time defined in O’Brien and Rizos (2005).
Figure 7 also shows the response of a system that lies on a flat surface for comparison.
It is observed in both cases that the response is prolonged for travel speeds at the
critical and supercritical speeds and it lasts long after the passage of the load from the
observation point. The effects of travel at critical and supercritical speeds are more
pronounced in the horizontal vibration mode that, in addition to higher amplitudes,
shows a change in the frequency content. The vertical vibration mode shows a slight
amplitude reduction for travel at supercritical speeds, however, uplift starts appearing
for travel at critical and supercritical speeds. It is observed that the presence of the
embankment affects minimally the vertical response of the system for all three travel
speeds. The horizontal mode, however, is considerably affected. In the presence of the



200 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Embankment

Flat

Embankment

Flat

Embankment

Flat

Embankment

Flat

Embankment

Flat

Embankment

Flat

Normalized time Normalized time

Horizontal Vertical

�1.5E�09

�1.0E�09

�5.0E�10

0.0E�00

5.0E�10

1.0E�09

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

pl
ac

em
en

t

v�20 m/sec

�1.5E�09

�1.0E�09

�5.0E�10

0.0E�00

5.0E�10

1.0E�09

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

pl
ac

em
en

t

v�131.6 m/sec

�1.5E�09

�1.0E�09

�5.0E�10

0.0E�00

5.0E�10

1.0E�09

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

pl
ac

em
en

t

v�197.4 m/sec

�8.0E�09

�6.0E�09

�4.0E�09

�2.0E�09

0.0E�00

2.0E�09

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

pl
ac

em
en

t

v�20 m/sec

�8.0E�09

�6.0E�09

�4.0E�09

�2.0E�09

0.0E�00

2.0E�09

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

pl
ac

em
en

t

v�131.6 m/sec 

�8.0E�09

�6.0E�09

�4.0E�09

�2.0E�09

0.0E�00

2.0E�09

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

pl
ac

em
en

t

v�197.4 m/sec

Figure 7 Horizontal and vertical response of the tenth tie in a 20 tie system due to passage of a
single concentrated load at speeds v= 20, 131.6 and 197.4 m/sec.

embankment, the amplitude of the vibration is reduced compared to the case of a half-
space with flat surface and it appears that the higher frequency components, although
present, are dampened out. However, the amplitude still increases with increase of
travel speeds to supercritical levels.

5 Conclusions

The present work presents a coupled BEM-FEM procedure suitable for vibration anal-
ysis of railroad track systems due to the passage of conventional and high speed trains.
The proposed method couples the BEM with the FEM in a staggered approach in the
direct time domain. The BEM is used for the modeling of the soil-tie system within the
framework of impulse response techniques. The FEM is used to model the rail system.
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The two methods are coupled at the tie-rail interface. In view of the discussion in the
preceding sections the following conclusions have been reached:

1. The derivation of the B-Spline impulse response matrix of a large soil-tie system
can be greatly simplified by observing that: (i) a relatively small number of ties
contribute significantly to the response of the system, (ii) cross interaction effects
between ties is significant only for a few adjacent ties, (iii) the B-Spline impulse
response of the system due to a load applied at an arbitrary tie can be represented
by appropriately shifting in space the B-Spline impulse response due to a load
applied at a reference tie.

2. The nondimensional B-Spline Impulse Response Function for the soil-tie system is
independent of the actual soil conditions and the moving loads. This leads to an
efficient implementation of the BEM solver of the proposed methodology.

3. The coupled BEM-FEM scheme allows for selection of different time steps in order
to fulfill stability requirements of each solver. In general, it has been observed that
the FEM requires smaller time step than the BEM for solution convergence.

4. The number of ties that contribute significantly to the system response depends
on the train speed. The number of significant ties should be chosen to balance
accuracy and computational efficiency.

5. Dynamic cross interaction effects between adjacent ties need only be considered
between immediate adjacent ties regardless of train speed.

6. The horizontal vibration mode is affected more by the passage of high speed trains
than the vertical, although the vertical mode shows tie uplift for travel at crit-
ical and supercritical speeds. The horizontal vibration mode also shows higher
frequency content at critical and supercritical speeds.

7. The effects of an embankment are more pronounced in the horizontal vibration
mode.
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Chapter 14

Vibration monitoring as a diagnosis
tool for structural condition
assessment

Guido De Roeck & Edwin Reynders
K.U. Leuven, Leuven, Belgium

ABSTRACT: The paper gives an overview of the necessary conditions for a successful struc-
tural condition assessment by vibration measurements. First a critical overview is given about
the advantages and disadvantages of the different excitation sources: forced, ambient and impact
excitation. For damage level 1, the advantage of ARX-models, simulating the relation between
the histories of eigenfrequencies and the histories of temperatures, over classical regression tech-
niques is enlightened Other new methods like the one based on features extracted from spatial
filtering will be presented as well. Many methods have been proposed for damage identification,
levels 2 and 3. The paper concentrates on the most versatile of them: finite element updating.
At the expense of building a FE-model of the structure, all acquired data can be used: natural
frequencies, scaled or unscaled mode shapes and modal strains. Potential damage is simulated
in a FE-model of the structure by adopting a parametric representation of this damage. Math-
ematically, a constrained optimization problem is solved. The objective function is defined as a
sum of squared differences. The residual vector contains the differences in the identified modal
data (and possibly some derived quantities), such as the natural frequencies, the mode shapes,
the modal curvatures, etc. If the objective function contains multiple local minima, a global
optimization algorithm should be used, like the Coupled Local Minimisers (CLM) method.
Two examples illustrate the use of FE-updating for damage assessment. The first application
concerns the well known Z24 bridge in Switzerland. The second example is the Tilff bridge.
New in this project was the use of very accurate optical fibers for strain measurements. Finally,
a series of conclusions are highlighted which can be considered as guidelines for good practice
of vibration monitoring.

1 Introduction

Service loads, environmental and accidental actions may cause damage to structures.
Regular inspection and condition assessment of engineering structures are necessary
so that early detection of any defect can be made and the structures’ updated safety
and reliability can be determined. Early damage detection and location allows main-
tenance and repair works to be properly programmed. This minimizes not only the
annual costs of repair (e.g. for bridges estimated at 1.5% of their value) but also avoids
a long out of use time which can represent an even higher economic cost (e.g. traf-
fic delay due to major bridge repair). Many civil engineering structures (e.g. bridges,
offshore platforms . . .) are 20–30 years old. When just considering the bridge infras-
tructure of many developed countries, the number of deteriorating bridges is increasing



204 Computat iona l s tructura l dynamics and earthquake eng ineer ing

dramatically, and greatly exceeds the number of new bridges being constructed. Costs
for maintenance, repair and rehabilitation are prohibitive and will bear heavily on
future national economies.

To avoid high costs of repair, an evaluation method must accurately reveal the present
load carrying capacity of the bridge. Vibration monitoring provides a valuable tool to
complement other non destructive methods. It directly addresses the performance of the
primary load path under service loading. It is a step towards an “intelligent structure
(bridge)’’ – i.e. a structure which knows something of its own life history. Vibration
monitoring has distinct advantages over other inspection methods, like e.g. periodic
visual check: the state of the structure can be continuously, even remotely, tracked.
Moreover, internal damage, otherwise invisible, can be assessed. Nevertheless it is
considered to be mainly a global method, which has to be complemented with local
non-destructive assessment techniques, like e.g. ultrasonic inspection.

Vibration monitoring of civil engineering structures (e.g. bridges, buildings, dams,
wind turbines) has gained a lot of interest over the past decade, due to the relative ease
of instrumentation and the development of new powerful system identification tech-
niques, able to extract modal properties from measured accelerations, displacements
and/or strains. Special attention is being paid to techniques making use of operational
data (service loading testing).

Sometimes it is doubted whether the measured deviations of modal properties are
significant enough to be a good indicator of damage or deterioration. The comparison
of original and new dynamic properties can also be obscured by natural changes caused
by environmental influences (e.g. temperature changes). Also operational conditions
can alter the dynamic characteristics. However, by statistical treatment of the vibration
data, real damage can be distinguished from environmental and operational effects.

Vibration monitoring can contribute to an extended lifetime, meaning also reduction
of waste materials, less consumption of resources like energy for recycling activities. It
fits in this way in the idea of promoting durable constructions, sustainable technology.
In a number of cases, vibration monitoring can prevent unexpected structural collapses.

Many different schemes/methods for damage detection have been proposed during
the last twenty to thirty years. However, the words “damage detection’’ have been used
at random. For clarity the following four levels will be used:

• LEVEL 1: Qualitative indication of the damage (detection or alarm level)
• LEVEL 2: Information about the probable location of the damage (localization)
• LEVEL 3: Information about the size of the damage (assessment)
• LEVEL 4: Information about the actual safety of the structure given a certain

damage state (consequence)

Each of the four levels is meaningful to explore. Current research concentrates on
levels 1, 2 and 3.

2 Ambient versus forced excitation

The acquisition of high-quality vibration data is essential for a successful damage
assessment afterwards. For mechanical engineering applications, exciter-driven forced
vibration testing was and still is the most popular testing method for extracting modal
properties. Many commercially available systems offer a complete package from sensor
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Figure 1 Reaction mass shaker (EMPA).

to analysis software. Systems with several hundred channels have been used suc-
cessfully with the help of highly automated procedures. However, for heavy civil
engineering structures, having often natural frequencies below 1 to 2 Hz, artificial
excitation is difficult and costly, if not impossible. Only a few research institutes (e.g.
EMPA in Switzerland and ARSENAL in Austria) have developed powerful reaction
mass type, hydraulic driven exciters which can be used also in the lower frequency
range (Figure 1).

Nevertheless, forced vibration testing requires very costly equipment and much
energy, while being logistically complex.

Forced vibration is a test method which can only be applied for periodic inspection.
Ambient vibration testing can be used also for continuous monitoring, assuming the
availability of robust sensors, cabling and data acquisition equipment. Ambient Vibra-
tion Testing (AVT): AVT makes use of the natural vibrations of a structure when in
service or due to wind loads, microtremors etc. One of the big advantages is the fact
that the excitation is unmeasured. On a bridge, traffic has not to be interrupted, so
reducing not only the cost of the test itself, but also the economic impact of closing the
bridge. While the structure often remains in service, not all the vibration modes may
be sufficiently excited throughout the test by the ambient influences. Essential is the
use of sensors with a high sensitivity and a high resolution (a very low internal noise
level). A high A/D conversion rate (24 bits) is also recommended to cope with quite
different vibration levels during the ambient test. The unfeasibility of measuring accu-
rately the higher modes and the lack of absolute scaling of the mode shapes can reduce
the level of detail of the subsequent damage identification. The scaling insufficiency of
the mode shapes can be resolved by repeating the test with adding extra masses to the
bridge (Parloo et al. 2005).

Drop Weight or Impact Vibration Testing (IVT): IVT is a special form of forced
vibration testing in which only a short force impulse acts on the structure. Figure 2
shows the system developed at the K.U. Leuven. Traffic on the bridge has only to be
closed for a short time. IVT is a good compromise between AVT and FVT.
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Figure 2 Drop Weight (KUL).

Table 1 Characteristics of excitation sources.
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Table 1 gives an overview of the advantages and the disadvantages of different
excitation sources.

3 System identification

For FVT, well established methods exist, either in frequency or time domain (Maia
et al. 1997).
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In case of AVT, picking of peaks (PP) observed in frequency spectra was for a long
time current practice, at least in civil engineering. Rather recently, more powerful sys-
tem identification methods are being used, like the enhanced frequency decomposition
(EFDD) method (Brincker et al. 2001), stochastic subspace identification (SSI) method
(Peeters et al. 2001) and the polymax method (Peeters & De Roeck 2001), offering
a good comprise between processing speed and accuracy. With these methods, better
results are obtained for the true mode shapes (and not operational deflection shapes as
in the case of PP). Besides, closely spaced modes can be more easily separated. A handy
tool for finding the correct physical poles of the structure is the so called stabilization
diagram, showing the ‘stability’ of poles at increasing model orders.

4 Damage identification

A vibration monitoring system can be used for periodic or permanent condition assess-
ment. Whatever the case may be, spontaneous changes of modal properties due to
variable environmental conditions (e.g. temperature) have to be taken into account!

4.1 Level 1 damage detection

For level 1 damage detection – the ‘alarm’ level – several statistical methods have
been proposed. Measurements of the understood environmental disturbances (e.g.
temperature) may or may not be included in these methods.

A straightforward method is based on fitting models to the observed time histories
of natural frequencies and temperatures. The advantage of this method is that it can be
considered a filter for the natural frequencies which can be used in a succeeding step
for levels 2 and 3 (damage localization and quantification). For the Swiss Z24-bridge,
sophisticated ARX models (Peeters & De Roeck, 2001) have been fitted to the data,
acquired over about one year:

yk + a1yk−1 + · · · anayk−na = b1uk−nk
+ b2uk−nk−1 + · · · + bnbuk−nk−nb+1 + ek (1)

where yk is the Auto-Regressive output (in casu an eigenfrequency) at time instant k; uk

is the eXogeneous input (in casu a temperature) and ek is a noise term indicating that
the input-output relation is not perfect. It is assumed that ek is white noise, with zero
mean E[ekek−i]= λδi, where δi is the Kronecker symbol (i= 0 ⇒ δi = 1, i �= 0⇒ δi = 0).
In order to be able to establish confidence intervals, it also assumed that ek is Gaussian
distributed. The ARX model (1) is characterized by 3 numbers: na, the auto-regressive
order; nb, the exogeneous order and nk, the pure time delay between input and output.
A regression model is an ARX010 model (with [na, nb, nk]= [0,1,0]).

The advantage of using general ARX models over static regression models is that
they include some dynamics: the current output and input are related to outputs and
inputs at previous time instants. With a lot of input candidates and the possible choices
for na, nb, nk there are many different ARX models that can be fitted to the data. Hence
criteria are needed to assess and compare the quality of the models. The least squares
method minimizes the sum of squares of the equation errors ek.
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Table 2 Comparison between SISO models: temperature versus eigenfrequency.

Mode ARX model Static regression model

na, nb, nk λ̂ FPE na, nb, nk λ̂ FPE

1 2 1 4 0.145 0.145 0 1 0 0.212 0.213
2 3 2 0 0.533 0.536 0 1 0 0.896 0.897
3 2 1 0 0.507 0.509 0 1 0 0.548 0.549
4 2 2 0 0.569 0.572 0 1 0 0.612 0.613

A first quality criterion is the value of the loss function, defined as:

λ̂ = 1
N

N∑
k=1

ε2
k(θ̂) (2)

with the estimated equation errors defined as:

εk(θ̂) = â(q)yk − b̂(q)uk (3)

The loss function is also an estimate of the noise covariance 8, what explains the
notation. Other criteria include penalties for model complexity like Akaike’s final
prediction error (FPE) criterion or Rissanen’s minimum description length criterion.

After a preliminary selection procedure it turned out that a (SISO) ARX model,
based on a temperature at the bridge deck, performed best.

The results are represented in Table 2. The input and output data were normalized
before the models were identified. The model for the first mode seems to be much
better than the models for the other 3 modes. The static regression results are also
represented. Especially for the first 2 modes, the improvements of an ARX model over
a static model are spectacular.

An interesting alternative statistical method has recently been proposed (Zhang
2007). It tries to cope with environmental and operational disturbances in a single
procedure. It doesn’t presume simultaneous measurement of temperatures or traffic
density. The assessment procedure involves a 4-step process consisting of data segmen-
tation, data normalization, damage feature extraction as well as statistical diagnosis.
A damage index, named damage possibility, is proposed. In the first step, the response
time histories are segmented into data samples with a same data length. For the healthy
structure, in order to estimate the statistical variability of the extracted damage fea-
tures, the data are arbitrarily divided into two sets, U and N. For the data recorded
on the damaged structure (or better: the structure with unknown status) only one set
D is considered. In the second normalisation step, data samples from U and N or
U and D are paired. The underlying idea is to search for data samples corresponding
to similar environmental and operational conditions. In the practical implementation,
AR-models are fitted to the two different samples. Then similarity principles are applied
to the AR coefficients and the variance of the error terms, characterizing the samples,
to find the best corresponding samples. As a result of step 2, it is assumed that the
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paired samples only differ by inherent statistical scatter (case U and N) or occurred
damage (case U and D). A third step exists in extracting a damage feature from the
previously paired samples. An ARX (na, nb, nk)-model is first fitted to sample U, tak-
ing the error terms of the preceding AR-model as eXogenous inputs. A residual ex is
found. Then this ARX-model is applied to the pairing sample (N or D), resulting in a
residual ey. A damage feature DF expresses the likeness of the two samples (σx is the
standard deviation of ex and σy of ey):

DF = σy − σx

σx
(4)

DF equals or is close to zero if the structural conditions are very much alike. If not,
e.g. due to occurred damage, DF will be much greater than zero.

However, in practice, even if the structural condition is not changed, the damage
feature DF can differ from zero due to the nonlinear and time-variant behavior of a
bridge, the measurement noise as well as the errors introduced by the AR and ARX
processes. Therefore, damage diagnosis is performed in a statistical way on the basis of
a large number of data samples. The criterion to evaluate the probability distribution of
DF for the pairs U and D is the comparison with the distribution function for U and N.

However, in practice, even if the structural condition is not changed, the damage
feature DF can differ from zero due to the nonlinear and time-variant behavior of a
bridge, the measurement noise as well as the errors introduced by the AR and ARX
processes. Therefore, damage diagnosis is performed in a statistical way on the basis of
a large number of data samples. The criterion to evaluate the probability distribution of
DF for the pairs U and D is the comparison with the distribution function for U and N.

Another very appealing procedure has recently been presented (Deraemaeker et al.
2008). Two types of features, directly extracted from the measurements, are consid-
ered as damage indicators. First, following a traditional approach, eigen properties
of the structure are considered, using an automated stochastic subspace identifica-
tion procedure. To automate the identification, a new process is developed which is
based on a new selection criterion of the physical poles, called modal transfer norm
(Reynders & Roeck 2008). Starting point is the positive output power spectral density
matrix, defined as the Fourier transform of the positive lags of the cross correlations
between the measured outputs. Then, modal decomposition is applied to this power
spectral density matrix. For each mode i the maximum singular value of the derived
modal power spectral density matrix is considered as a measure of the error made
when this i-th mode is removed from the full model. A stabilization diagram, showing
only the modes with the highest modal transfer norms, is very clear!

A second approach for feature extraction is based on the concept of spatial filtering
and peak indicators (Deraemaeker et al. 2006). Spatial filtering consists in combin-
ing linearly the outputs of a network of sensors into one single output according to
y=�αiyi. Upon proper selection of αi, various meaningful outputs may be constructed,
as, for example, modal filters. The idea behind modal filtering is to configure the linear
combiner such that it is orthogonal to all N modes of a structure in a frequency band
of interest except mode j. The modal filter is then said to be tuned to mode j and all the
contributions from the other modes are removed from the signal. Because of spatial
aliasing, there are some restrictions on the frequency band where modal filters can be
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built, for a given size of the sensor network. When the structure is excited with a white
noise input spectrum, the power spectral density of y, tuned to mode j, will reveal only
a peak at eigenfrequency ωj. It has been shown that a local damage produces spurious
peaks in the frequency domain output of modal filters, whereas for global changes to
the structure (i.e. due to environment), the peak of the modal filter is shifted but the
shape remains unchanged. The appearance of new peaks was therefore proposed as a
feature for damage detection.

The effects of environment are treated using factor analysis and damage is detected
using statistical process control with the multivariate Shewhart-T control charts.

In (Deraemaeker et al. 2008), a numerical example of a three span bridge with
temperature dependent material stiffness is presented. Noise is added to the simulated
accelerometer responses. Four different damage scenarios are considered. Each set of
data studied is made of the undamaged state and one of the damaged states. The noise
level is the same for the undamaged and the damaged state. The set is made of 480 sam-
ples of output-only time responses on the 29 accelerometers situated at the nodes of the
finite element model that have a nonzero displacement. Two kinds of feature extrac-
tion are performed: automatic output-only modal analysis using stochastic subspace
identification (10 eigenfrequencies and mode shapes for each case) and extraction of
peak indicators from the output of the first 9 modal filters.

The following features are considered:

• the first 10 eigenfrequencies;
• mode shapes 1 through 5 extracted using automatic stochastic subspace identi-

fication. The mode shapes are normalized with respect to the output of the first
accelerometer, which results in 28 features per mode;

• mode shapes 6 through 10, again normalized to the output of the first
accelerometer;

• peak indicators extracted from the output of modal filters: 61 features.

The results are summarized in the Table 3 (−− very low, − low, + high, ++ very
high):

The numerical results show that if nothing is done in order to remove the effects
of environment, eigenfrequencies cannot be used in order to detect damage, whereas
mode shapes and peaks from modal filters could be used. On the other hand, if fac-
tor analysis is used to remove the effects of environment, all the features considered
are able to differentiate between the damaged and the undamaged case. When no
noise is present in the measurement, the features can be ranked in terms of increasing

Table 3 Sensitivity of the features to environment, noise, damage, and computation time.

Sensitivity to Freq Modes 1–5 Modes 6–10 Modal filters

Environment ++ −− −− −−
Noise −− + + ++
Damage − + ++ ++
Comp time − − − −−
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sensitivity: the least sensitive features are the eigenfrequencies, followed by the low
frequency mode shapes, the higher frequency mode shapes and the features extracted
from modal filters (most sensitive). When noise is added however, the ranking is dif-
ferent. Frequencies have a very low sensitivity to noise while modeshapes have a much
higher sensitivity. The present procedure to compute peak indicators is extremely sen-
sitive to noise, so that even for a relatively low level of noise, the damage detection is
strongly affected, and these features are the least sensitive to damage. In the example
studied, all the features can be extracted in real time and in an automated way (the
time to extract the features is smaller than the length of the acquired signals), which
makes them suitable for an automated real-time SHM system. For average levels of
noise, it seems that modeshapes are the ideal candidate for output-only SHM under
changing environmental conditions. However, for real structures with very large arrays
of sensors, it may be that the time needed for the identification becomes prohibitively
high. Data reduction is therefore necessary in order to perform the identification in
real time. Spatial filters could be used for this purpose.

4.2 Level 2/3 damage identif ication

Many methods have been proposed for damage identification, levels 2 and 3.
One of the most versatile is based on finite element updating: at the expense of

building a FE-model of the structure, all acquired data can be used: natural fre-
quencies, scaled or unscaled mode shapes and modal strains. Moreover, unlike other
methods, FE-updating doesn’t require a dense mesh of sensors. Potential damage is
simulated in a FE-model of the structure by adopting a parametric representation of
this damage. A limited number of unknown updating parameters θ are appearing in
this description, which should resemble as close as possible physical damage. Best val-
ues of the θ-parameters can be found by minimizing the differences between measured
and calculated modal properties.

Mathematically, a constrained optimization problem is solved. The objective func-
tion is defined as a sum of squared differences. The residual vector contains the
differences in the identified modal data (and possibly some derived quantities), such as
the natural frequencies, the mode shapes, the modal curvatures, etc. In order to obtain
a unique solution, the number m of residuals should be greater than the number n of
unknowns θ.

The relative weighting between the different residual types can be controlled by the
definition of the residual functions and by an additional weighting matrix in order to
account for the measurement and identification errors.

If the objective function contains multiple local minima, the result of this optimiza-
tion process might be dependent of the initial choice of θ-parameters. In this case,
a global optimization algorithm should be used, like the recently proposed Coupled
Local Minimisers (CLM) method (Teughels et al. 2003).

5 Examples

5.1 The Z24 bridge

The Swiss Z24 bridge was an intact bridge, slightly skew, with three spans connecting
Koppigen to Utzenstorf (Figure 3). The bridge was a highway overpass of the A1,
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Figure 3 Damage scenario: settlement of pier.

linking Bern and Zurich. It was built in 1963 when the highway A1 was not yet
completed. The posttensioned two box cell girder of 14, 30 and 14 meters span rested
on four piers. The two central piers were stiffly connected to the girder, while the
two triplets of columns at both ends were connected via concrete hinges to the girder.
The bridge had to be demolished in 1998 because a new railway, adjacent to the
highway, required a new bridge with a larger side-span. To study the influence of
varying environmental conditions on the modal properties, a so called environmental
monitoring system (EMS) was established. After this continuous monitoring period,
several damage scenarios were applied to the bridge. The progressive damage tests
(PDT) consisted of lowering one of the two central piers (simulating a settlement) in
different stages, tilting the same pier, spalling of concrete (simulating vehicle impact
or carbonization), landslide at one of the abutments, failure of anchor heads and
rupture of tendons. Before and after applying new damage, a FVT and a AVT test
was performed, enabling also a comparison between the two techniques (Peeters et al.
2000).

More details about these tests can be found in (Maeck & De Roeck 2003a,b).
A complete description and all data are stored in and available from the Samco database
(http://samco.jrc.it/show.gx?_app.page=/research/show_project.htm&object.object_
id=SAMCO—0000000000002402).

In what follows, one PDT damage scenario will be investigated in more detail:
settlement of one of the central piers (Figure 3).
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soil springs

xy

z 82 beam elements in the bridge girder

Figure 4 FE model of the bridge Z24. The thickness of the beam elements is displayed. The soil
springs at the supports are indicated (circles).

The challenge is to identify damage from observed changes in natural frequencies
and mode shapes by FE-updating (Teughels & De Roeck 2004).

The modal data are identified from ambient vibrations, before and after applying the
damage. Accelerometers are placed on the bridge deck along 3 parallel measurement
lines: at the centreline and along both sidelines. In total 9 measurement setups are
used to measure the mode shapes. The first 5 identified mode shapes are used for
the updating. The first and the fifth are pure bending modes, the third and fourth are
coupled bending and torsional modes – due to the skewness of the bridge – and the
second is a transversal mode.

The bridge is modelled with a beam model (6 DOFs in each node, three-dimensional)
in Ansys (Figure 4). The bridge girder has higher stiffness values above the supporting
piers because of an increased thickness of bottom and top slab. 82 beam elements are
used to model the girder. The piers and the columns at the abutments are modeled
by 44 beam elements. Mass elements are used for the cross girders and foundations.
Concentrated translational mass as well as rotary inertial components are considered.
In order to account for the influence of the soil, springs are included at the pier and
column foundations, at the end abutments and around the columns.

Two updating processes are performed, in order to model the reference and the
damaged state of the bridge, respectively.

The bending as well as the torsional stiffness of the beam elements of the girder are
updated since the identified modes contain besides pure bending also coupled bending-
torsion modes. They are adjusted by correcting the Young’s and the shear modulus,
E and G, respectively:

ae
E = −Ee − Ee

ref

Ee
ref

⇒ Ee = Ee
ref (1 − ae

E);

ae
G = −Ge − Ge

ref

Ge
ref

⇒ Ge = Ge
ref (1 − ae

G) (5)

For the first updating process, the reference values are equal to the initial FE values;
in the second updating process, the reference values are substituted with the identified
values from the first updating process. In the first updating process, also the vertical soil



214 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Ni

pX,1

0 14 44 58side-span mid-span side-span

Distance along bridge girder [m]

pX,2 pX,3 pX,4 pX,5 pX,6 pX,7

D
am

ag
e 

fu
nc

tio
n

Figure 5 Piecewise linear damage function N(x, p) used for the distribution of both correction
factors, aE and aG. The mesh of finite elements is also plotted.

stiffness under the supporting piers and the horizontal soil stiffness under the abutments
are updated. Since the soil springs are not altered by the damage application, they are
not updated in the second updating process.

The major problem in FE model updating is the relatively low information content
of the measured data, which results in an ill-conditioned problem if a large number of
parameters has to be updated. Therefore, the number of variables is reduced through
an additional parameterization by means of damage functions (Teughels et al. 2002).
In this approach, the values of the correction factors ae over the FE model – which
define on their turn the updated physical parameters – are determined with prescribed
damage functions, instead of determining them independently in all elements, which
would result in a large number of updating variables. In particular, the correction
factors of a physical parameter are assumed to vary continuously over the model and
this continuous function is approximated with a prescribed damage function N(x, θ).

The bridge girder is subdivided into 8 damage elements: 4 damage elements in the
mid-span and 2 damage elements in each side-span (Figure 5).

Two (identical) piecewise linear damage functions are used for identifying the bend-
ing and the torsional stiffness distribution, respectively. In the first updating process
the optimization problem contains 16 (= 2× 7+ 2) design variables, corresponding to
the multiplication factors of both damage functions, pE,i and pG,i, (2× 7) and the two
correction factors for the soil springs. In the second process only 14 (=2× 7) variables
have to be identified.

The four vertical modes (bending and bending-torsion) and the transversal mode
of the undamaged bridge are used to update the initial FE model to the reference
undamaged state of the bridge. The latter mode is included in the process in order to
identify the stiffness of the soil springs. The residual vector in the reference updating
process contains 5 frequency residuals and 492 mode shape residuals. The vertical
displacements along the three measurement lines (3× 39 points) and the horizontal
displacements along the centreline (31 points) are used for the vertical and transversal
modes, respectively. Only the modal displacements which are measured accurately, are
selected.

For the identification of the damaged zone only the 4 bending modes are used,
measured on the bridge after the pier settlement. The transversal mode is not used
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Figure 6 Identified parameters: bending and torsional stiffness distribution, EI and GIt.

since the soil springs are not updated in this process. The residual vector in the second
updating process contains 4 frequency residuals and 451 mode shape residuals. In both
processes a weighting factor 1/10 is applied to the mode shape residu.

In the damaged state, a decrease in the girder stiffness above the pier at 44 m is clearly
visible. This decrease is due to the lowering of the pier, which induced cracks in the
beam girder at that location. The corresponding identified damage pattern, is plotted
in figure 6. The bending and the torsional stiffness are reduced with a maximum of
35% and 24%, respectively, located in the expected cracked zone.

5.2 The Tilff br idge

This bridge crossing the Ourthe river was built in 1952. It is a three-cell box-girder
bridge with variable height (Figure 7). Mid span is 24.75 m, side spans 20.25 m. Exter-
nal posttensioning is applied within the box hollow spaces. The curved path of the
strands was realized through the interposition of a number of transverse beams, which
create in longitudinal direction 24 partitions. Severe corrosion of prestressing steel
occurred due to water accumulation in the cells. Challenge is damage localization
(level 2) and quantification (level 3), having only vibration data of the damaged struc-
ture. New in this project was also the use of optical fibers of the company Smartec
(http://www.smartec.ch/, SOFO Dynamic Reading Unit) for strain measurements in
the critical sections.

The measurements were performed by ‘Le Ministère wallon de l’Equipement et
des Transports’ (MET), possessing an acquisition system with 4 channels. One setup
consisted of an acceleration measurement in a reference point, a second acceleration
measurement by a roving sensor and two axial strain measurements (Figure 8). In total
36 setups were considered, sampling frequency was 200 Hz and measurement time for
each setup 5 minutes.

Natural frequencies, mode shapes, modal strains (and derived from them: modal
curvatures) were obtained by applying the stochastic subspace method.
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Figure 7 The Tilff bridge.
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Figure 8 Positions of accelerometers and strain sensors (sections I, II, III, IV,V).

For the damage identification a FE-model was built: the box-girders were modeled
with shell elements, the massive bridge ends with volumetric elements and the asphalt
layer and non-structural parts with added masses. With regard to the supports: at one
of the intermediate pillars, there is a hinge; the other supports are of the pendulum
type. At these pendulum supports, the horizontal movement is somewhat restricted
due to the reinforcement bars that cross the contact areas.

As updating parameters are selected: the decrease of Young’s modulus in 9 dis-
tinct zones and the spring stiffness at the pendulum supports. The objective function
comprises residuals of 4 natural frequencies and residuals of modal amplitudes and
curvatures of the first and second bending modes.

Figures 9 and 10 present the comparison of calculated and measured mode shapes
and modal curvatures before and after updating. The apparent lack of anti-symmetry
of the second bending mode is well predicted by the updated model. The in-situ use of
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Figure 11 Identified stiffness reduction.

optical fiber strain sensors makes it possible to identify the modal curvatures directly,
without an approximate, numerical differentiation procedure.

Figure 11 shows the identified stiffness reduction which resembles well the fraction
of broken or strongly corroded cables observed by visual inspection in the box cells.

6 Conclusions

• Reliable modal information can be obtained by output-only dynamic measure-
ments, i.e. accelerations are due to ambient influences. In the case of bridges,
traffic under or on top of the bridge, besides wind pressures can be the cause of
the induced vibrations. So closing bridges to apply controlled force excitation is
not necessary. This makes ambient vibration monitoring suitable for continuous
condition assessment.

• Mode shapes, although less accurately determined as eigenfrequencies, can provide
useful information about local changes, e.g. of joint or support stiffnesses.

• The variations between eigenfrequencies obtained by different system identifica-
tion algorithms are rather small. For the mode shapes more substantial differences
occur. Because many damage identication methods rely on the accuracy of the
experimental mode shapes, the use of state-of-the-art algorithms is important!

• Peak picking on (averaged normalized) Power Spectral Density functions is a quick
way to look to eigenfrequencies and mode shapes and can be recommended for
an on side quality check of the measurements.

• The most accurate results are obtained with the stochastic subspace identification
and the polymax method. With these methods also closely spaced modes can be
separated.
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• Changes in environmental conditions, mainly temperature, lead to changes in
eigenfrequencies. The order of magnitude being similar to that of structural dam-
age, it is important to filter (eliminate) this environmental influence beforehand. It
is advisable that the monitoring system includes temperature measurements. The
relation between eigenfrequencies and temperatures can be obtained by the mea-
surements of the intact bridge over a period of at least one year. For bridge Z24 the
decrease of the first eigenfrequency for a temperature increase from 0◦ to 30◦C is
about 3%. When this correction is taken into account, the uncertainty interval is
± 0.7% corresponding to the ± 95% confidence limits. Depending on its location,
damage has a selective influence on eigenfrequencies and mode shapes. Especially
those mode shapes will be affected where damage occurs at zones with high modal
curvatures. The effect of temperature on these modal properties will be different.
This explains why damage detection is possible by statistical treatment of pure
vibration measurements without simultaneous temperature measurements.

• Only damage that produce stiffness reductions can be identified. For instance, a
loss of prestress will only result in a measurable change in eigenfrequencies if it is
accompanied by initiated cracks.

• Mode shapes, although less accurately determined as eigenfrequencies, can provide
useful information about local changes, e.g. of support stiffnesses.

• For damage detection (level 1) very promising damage features, based on a
statistical treatment of the data, have been recently proposed.

• When FE-updating is used for damage identification, at least eigenfrequencies
should be used in the objective function to be minimized: they are crucial, represent
absolute quantities, provide global information and can be measured accurately.
Mode shapes provide spatial information, are necessary in case of a symmetrical
structure, make the global minimum more pronounced but, are difficult to measure
accurately. Most often, fewer mode shapes are available than eigenfrequencies. In
case of ambient vibrations, mode shapes are not scaled absolutely. Very attractive
is the addition of modal strains or curvatures to the objective function. Their
advantage is that they are sensitive to damage occurring at the strain gage position.
It remains however a challenge to measure accurately the small strains according
to the small amplitude dynamic excitation.

• In FE-updating, the choice of updating parameters is crucial. They should represent
the physical uncertainties, including the potential damage pattern. The applica-
tion of regularisation techniques can improve the conditioning of the optimisation
problem. Damage functions fulfil the same purpose, while providing at the same
time a physical sound solution.

• FE-updating can be categorized as a non-linear least-squares problem which is in
turn a special case of general optimisation. It proved to be that the Trust Region
Gauss-Newton method is a very robust and reliable algorithm for local optimi-
sation: it uses only first-order derivatives and has fast convergence due to the
approximated Hessian. For updating problems with many local minima, making
the solution dependent on the chosen start point, a new algorithm (Coupled Local
Minimisers) has been developed. Randomly distributed start points are generated.
The objective function is enriched with Lagrange and penalty terms, enforcing all
the points to come together in the one global minimum.

• If all the previous conditions are met, stiffness reducing damage, that produces
shifts of eigenfrequencies more than 1 to 2%, can be detected if the environmental
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influences are properly taken into account. For damage detection (level 1), but
even more for the localization and quantification of the damage (levels and 3), the
choice of sensor type, location and density is crucial, together with the extension
of the frequency band in which the modal properties are measured.
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ABSTRACT: A recently developed analysis framework referred to as multi-resolution dis-
tributed finite element analysis, MDFEA, is presented in this chapter. The features of the new
framework are demonstrated through the analysis of a complex 54-story reinforced concrete
building. In this distributed analysis framework, the capabilities of a frame analysis tool, ZEUS-
NL, and a continuum analysis tool, VecTor2, are combined using the ‘simulation coordinator’
program UI-SIMCOR. The static and dynamic responses of the building are predicted using
MDFEA and compared with those predicted by conventional frame analysis. The results of this
comparison illustrate that frame analysis of high-rise building alone is inadequate to detect the
effects of shear-flexure-axial interaction of reinforced concrete continuum members. The inte-
grated MDFEA framework is generic, thus it enables the use of the best features of any number
of computational tools so as to accurately and efficiently predict the inelastic static and dynamic
response of complex structures subjected to extreme loads.

1 Introduction

The response of low-rise structures to earthquake loading has been extensively stud-
ied by employing advanced finite element analyses (FEA), quasi-static experiments,
pseudo-dynamic (PSD) simulation of structural components and structural systems.
It has also been investigated through shake table tests on models at different scales.
On the contrary, reliable estimation of the structural capacity of complex high-rise
reinforced concrete (RC) or composite systems under extreme loads has been hindered
by the lack of suitable analysis software, computational capacity for refined model
analysis, and the impracticality of experimental testing.

The response of complex high-rise buildings has principally been studied using sim-
plified models. Usually wall systems are modeled using frame elements that do not
fully account for the effects of shear on deformations and capacity, and the interaction
between shear and flexure, as discussed by Ghobarah & Youssef (1999). The latter
approach is inadequate since the failure mode of structural walls in high-rise buildings is
frequently influenced and controlled by the effects of shear (Paulay & Priestley, 1992).
In some instances, the critical components of structural systems have been analyzed
using detailed continuum finite element models. However, in doing so, the boundary
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and loading conditions imposed on these models are typically idealized or estimated
from separate coarse structural models. This non-interacting load and boundary con-
ditions approach is also inadequate since the propagation of failure and redistribution
of force demands between components cannot be accurately accounted for. While it
may be possible to analyze an entire high-rise structure using detailed FEA, the com-
putational demands of executing this analysis are enormous and render it impractical
to conduct adequate parametric studies to account for the uncertainty on loading,
modeling and inherent randomness in materials. Furthermore, such a detailed model
is a non-starter for probabilistic assessment, where statistically-viable populations of
response parameters are sought.

One effective and computationally efficient method to analyze large and complex
structures would be to combine different modeling approaches, such as to model the
most critical non-slender regions using continuum analysis and to model frames using
fiber-based beam elements. Unfortunately, computation platforms seldom provide the
most advanced modeling capabilities for all possible elements that would be best to use
in the modeling of a complex structural system. The natural solution to this dilemma
is to create an analysis framework in which different analysis programs could be com-
bined in one integrated analysis where each program would be selected to make the
best use of its merits. Such a framework is developed in this chapter.

The framework for multi-resolution distributed finite element analysis (MDFEA)
proposed in this chapter is used to analyze a complex high-rise RC building. The
structural walls of this building are modeled with concrete continuum elements while
the frames are modeled with fiber-based beam-column elements. The two distinct
applications are combined using the MDFEA framework in a step-by-step fashion in
the time domain.

The chapter includes brief descriptions of the analysis modules, ZEUS-NL and Vec-
Tor2, as well as the simulation coordinator program UI-SIMCOR (Kwon et al., 2005),
that was used to combine these analysis tools. The modeling details for the 54-story
dual-system high-rise structure used as the reference implementation are presented
including the techniques used to model the interface between the two structural models.
The influence of different interface assumptions on predicted response is also exam-
ined. Using the selected interface boundary conditions, comprehensive comparisons
between and discussions of the predicted static and dynamic responses by the MDFEA
and by a conventional finite element analysis are presented.

2 Structural analysis software platforms

2.1 ZEUS-NL: 3D frame FEM analysis software

Fiber-based frame analysis is one of the most advanced methodologies to model the
nonlinear behavior of beams and columns under combined axial and bending loads.
The Mid-America Earthquake Center analysis environment ZEUS-NL (Elnashai et al.,
2002), is a computational tool for the analysis of two and three dimensional frames.
In ZEUS-NL, elements capable of modeling material and geometric nonlinearity are
available. The forces and moments at a section are obtained by integrating the inelastic
responses of individual fibers. The Eularian approach towards geometric nonlinear-
ity is employed at the element level. Therefore, full account is taken of the spread of
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inelasticity along the member length and across the section depth as well as the effect of
large member deformations. Since the sectional response is calculated at each loading
step from inelastic material models that account for stiffness and strength degradation,
there is no need to make assumptions on the moment-curvature response as com-
monly required by other analysis tools. In ZEUS-NL, conventional pushover, adaptive
pushover, Eigen analysis, and dynamic analyses are available and they have been eval-
uated to be effective and accurately predicting the response of members and structural
frames. ZEUS-NL was used to steer a full-scale 3D RC frame testing campaign, and the
a priori predictions were shown to be accurate and representative of the subsequently
undertaken pseudo-dynamic tests (Jeong & Elnashai, 2004a and 2004b). There have
been many other verification examples. Due to scope of this paper, a reference is made
to Elnashai et al. (2002) for further information.

2.2 VecTor2: RC continuum FEM analysis software

A concrete wall can be modeled as an orthotropic nonlinear inelastic continuum
according to Modified Compression Field Theory (MCFT) (Vecchio & Collins, 1986).
The MCFT is a rotating angle smeared cracking model that combines equilibrium,
compatibility and constitutive relationships. It accounts for the effects of compression
softening and tension stiffening. The method includes an evaluation of equilibrium at
crack faces that is used to limit field stress levels. The MCFT assumes that the direction
of principal stress coincides with that of principal strain. Vecchio (1990) proposed the
algorithm for application of MCFT to concrete continuums subjected to plane stress
conditions.

In this study, the nonlinear 2D continuum analysis tool VecTor2, Wong & Vecchio
(2002), developed at the University of Toronto, is employed for modeling the bottom
10 stories of the structural walls. VecTor2 employs a rotating-angle smeared crack
modeling approach and can implement either the Modified Compression Field The-
ory (MCFT) and Disturbed Stress Field Model (DSFM) by Vecchio (2000). VecTor2
utilizes an iterative secant stiffness algorithm to produce an efficient and robust nonlin-
ear solution technique. The application has been validated by extensive experimental
testing to corroborate its ability to predict the load-deformation response of a variety
of reinforced concrete structures (Palermo & Vecchio, 2004). VecTor2 is also able to
model concrete expansion and confinement, cyclic loading and hysteretic response,
construction and loading chronology for repair applications, bond slip, crack shear
slip deformations, reinforcement dowel action, reinforcement buckling, and crack
allocation processes.

2.3 UI-SIMCOR: mult i-platform distr ibuted analysis framework

Different state-of-the-art analysis software packages have unique features that other
competing packages do not have. The main advantage of multi-platform simulation is
the use of the unique features of analytical tools in an integrated fashion. The concept
of multi-platform simulation is implemented using the pseudo-dynamic (PSD) simu-
lation approach combined with sub-structuring. In the latter simulation, a structure
is subdivided into several modules that can be either physically tested or computa-
tionally simulated. UI-SIMCOR (Kwon et al., 2005) was developed for this purpose.
The Operator Splitting method in conjunction with the α-modified Newmark scheme
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(α-OS method, Combescure & Pegon, 1997) is implemented as a time-stepping anal-
ysis scheme. The main feature of UI-SIMCOR is that it is capable of coordinating any
number of analysis tools. Interface applications are currently available for ZEUS-NL,
FedeasLab (Filippou & Constantinides, 2004), VecTor2, and ABAQUS (Hibbit et al.,
2001). Any number of testing sites, or a mixture of analysis tools and testing sites
can be incorporated into a pseudo-dynamic multi-platform simulation. It employs
software or hardware supporting NEESgrid Teleoperation Control Protocol, NTCP
(Pearlman et al., 2004) as well as TCP-IP connections outside of the NEES system. It
is also capable of using the same analysis platform while modeling different parts of
the system on different processors, thus minimizing computational run time. In this
study, UI-SIMCOR is used to combine VecTor2 and ZEUS-NL to model shear-walls
and frame elements.

3 Application to reference building

3.1 Configuration of structure

A newly constructed high-rise building, Tower C03 of the Jumeirah Beach development
in Dubai, United Arab Emirates, was chosen as a reference structure for MDFEA. It
has a complex RC dual-core wall system and RC outer frames, as shown in Figure 1,
which make it an ideal candidate for MDFEA. Static pushover analyses and dynamic
response history analyses were performed for Frame F4 along its strong direction. The
main features of this building are as shown in Table 1.

3.2 Sub-structural model ing

The selected 2D frame F4 of reference building, Figure 1, is divided into two main
structural components, a box-shaped core wall which is Core 1 in Figure 1b and
a perimeter moment resisting frame. The core walls from the 1st through 10th sto-
ries, which are likely to fail in shear, are modeled using 2D RC continuum elements
in VecTor2. Such continuum elements have different thickness values reflecting wall
boundary and web geometric characteristics. The core walls from the 11th story and
above are approximated with fiber based section elements in ZEUS-NL. The entire
structure is subdivided into three modules.

– Module 1: 1st∼ 10th story left wall modeled in VecTor2. This region is modeled in
VecTor2. The first 10-stories of the wall is modeled using 2D rectangular elements
whose behavior can be captured using the MCFT (Vecchio & Collins, 1986). The
mesh size is around 200 mm which is within 10∼20 times of aggregate size as
recommended (Wong & Vecchio, 2002). Concrete constitutive models are based
on Modified Popovics curve by Collins & Porasz (1989), which considers both
pre-peak and post-peak concrete behavior. The confinement effects are considered
according to Kupfer et al. (1969). The reversed cyclic loading curves of concrete
proposed by Palermo & Vecchio (2003) is employed in the analysis.

– Module 2: 1st∼10th story right wall in VecTor2. Module 2 is identical to Module 1.
– Module 3: Remaining structural components including all frame members and the

core walls from the 11th to the top story.
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Figure 1 Reference building structure and half plane view.

Table 1 Main features of reference building.

Features Description

Height (m) 184
Total Stories 54
Regular Storey Height (m) 3.400
Irregular Storey Height (m) 4.488
Core Walls (m) 9.43× 3.25 (8.48× 2.55) (1st∼5th Stories)
(Exterior and Interior Size) 9.33× 3.15 (8.48× 2.55) (6th∼20th Stories)

9.18× 3.05 (8.48× 2.55) (21st∼54th Stories)
Concrete f ′c (MPa) 60 (wall); 40 (slab)
Reinforcing Bars fy (MPa) 421 (Grade 60)

As described earlier, the lower 10 stories of the wall are modeled using 2D continuum
elements in VecTor2, while the walls above this level are modeled using beam-column
elements in ZEUS-NL. In this approach, there are two types of interfaces: 1) frame
elements interfacing with continuum elements at the side of wall, Figure 2; 2) upper-
wall modeled with frame elements and lower-wall modeled with continuum elements,
Figure 3. The boundary conditions of these two types of interfaces are described in the
following.
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3.2.1 In ter face mode l ing between beam and wal l e lements

UI-SIMCOR (Kwon et al., 2005) uses control points in the sub-structure models. The
control points are nodes with lumped masses or nodes which are shared by two or
more substructures. These control points need to be defined in order to form the global
mass and stiffness matrices necessary in pseudo-dynamic (PSD) algorithm employed
in UI-SIMCOR, and to serve as the common interfaces between sub-structures.

There are two ways to simulate the interface between frame elements modeled with
Zeus-NL and between continuum elements modeled with Vector2. One method is to
use membrane elements for the wall with drilling (out-of-plane rotational) DOFs, but
this is not available in VecTor2. The second method and the one used in this study is to
simulate displacement and rotational compatibility between nodes of frame elements
having three DOFs per node and nodes of 4-noded plane-stress element having two
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DOFs per node. To illustrate this approach, consider node n1 in Figure 2 that are
common to the beam element and plane-stress elements e1 and e2. In order to satisfy
compatibility, constraint equations are added between the nodes of the two models to
satisfy compatibility of rotation at these common (control) points.

In UI-SIMCOR, displacements are always imposed at control points and reaction
forces are obtained as feedback at the same DOFs. Thus, combining the models requires
the calculation of equivalent nodal displacement of continuum elements at the interface
connected to control point. The constraint equations for beam-continuum coupling are
derived for the interface region shown in Figure 2b, which is formed by elements e1
and e2, and nodes n1 to n4. It is assumed that the left edges of elements e1 and e2
remain straight during deformation.

Hence, the rigid body motion geometric relationships are applied to calculate nodal
displacements at left edges as described by Equation (1).

{
u′

1

v′1

}
=
{

u
v

}
;
{

u′2
v′2

}
=
{

u − dy1 sin θ
v − dy1(1 − cos θ)

}
;
{

u′3
v′3

}
=
{

u + dy2 sin θ
v + dy2 (1 − cos θ)

}
(1)

where, [u, v, θ] are the displacements at control point. For the nodes along the beam
centerline, not all nodes will be considered as being on an interface. Only those within
the influential length (on account of usual anchorage requirements for rebar) are con-
sidered and here the middle node n4 in Figure 2 is such a node. For the middle node n4,
it is assumed that the horizontal and vertical movements are generated by the control
point displacement based on beam shape functions following Equation (2).

{
u′4
v′4

}
=
[
(1 − ξ) 0 0 ξ 0 0
0 (1 − 3ξ2 + 2ξ3) (ξ − 2ξ2 + ξ3)le 0 (3ξ2 − 2ξ3) (ξ3 − ξ2)le

]


u
v
θ

0
0
0


(2)

where ξ= x/le, here the element length le = dx1 + dx2. The feedback control point
reactions are computed from the nodal forces at these four nodes through equilibrium
conditions described by Equation (3).

Fx =
4∑

i=1

fxi; Fy =
4∑

i=1

fyi; Mz =
4∑

i=1

(fxiyi + fyixi) (3)

The VecTor2 post-processor can compute and output reaction forces corresponding to
the nodes imposed with displacement. MATLAB codes were written as UI-SIMCOR
plug-ins to implement functionalities such as receiving commands from UI-SIMCOR
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Figure 4 Wall interface interpolation approaches and DOFs.

through network, calculating interface nodal displacements for VecTor2 model,
running VecTor2, and extracting reaction forces.

3.2.2 In ter face mode l ing between upper wal l beam and wal l e lements

Wall on 11th story and above can be represented in two ways. The first method is
modeling the wall on each floor as a single frame element with large section, Figure 3(a).
In this approach, a rigid beam can be placed at the interface of upper wall modeled with
frame elements and lower wall with continuum elements to transfer rotational DOF
at the interface. The other approach is to model upper wall with multiple elements,
Figure 3(b). For instance, the upper-wall frame element can be divided into three
components including two boundary regions and a middle web area, all modeled using
fiber section elements in ZEUS-NL. The floor slab may strengthen the adjacent region
of the wall and at the same time affect wall deformations. Due to the flexibility of the
slab-beam and the large attached mass, very significant external loads can be induced
in the dynamic analyses. To avoid over-restraining the continuum elements, the floor
is considered to have some flexibility as opposed to the full rigidity used in the first
method.

The rigid or very stiff beam elements at the interface of upper and lower walls
can be represented by constraint equation which constrains relative displacements of
DOFs. The shapes of constraint equations for each approach are illustrated in Figure 4.
Mathematical expression of the constraint equation is as follows.

One-control-point approach: In this approach, the rigid body motion assumption
is made for the floor slab system as shown in Figure 4(a). The rotational DOF at
this control point will generate a linear variation in vertical displacement at all nodes
along the ith floor. The constraint equations for both upper wall to lower wall and
inter-storey lower wall interfaces are derived using Equation (4). The control point
reaction forces are computed from the stress resultants at all of the nodes through
equilibrium conditions as evaluated by Equation (5).

{
u′

j

v′j

}
=


ui +

(
B
2
− xj

)
(1 − cos θi)

vi −
(

B
2
− xj

)
sin θi

 (4)
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Fxi

Fyi

Mzi

 =



∑Ni
j=1 fxj∑Ni
j=1 fyj∑Ni
j=1 fyj

(
B
2
− xj

)
 (5)

where, i – Control point number, i= 1, 2, . . . , Ni, and Ni is the total number of nodes
along ith floor in VecTor2 model.

Three-control-point approach: As discussed previously, instead of employing a rigid
body motion assumption, beam shape functions are used for the calculation of the
equivalent nodal displacements in the VecTor2 model. In the above approach, the
interface floor system is divided into two beams connected by three control points.
In Figure 4(b), control points N1, N2, and N3 form two beam members with lengths
equal to half of the wall width. Cubic shape functions are used for the interpolation
of continuum model nodal displacement loads [u′

j, v′j] from [u, v, θ]i
1∼3 at these three

control points as follows. The shape functions for the two beam members are defined
as follows:

[N] =
[
(1 − ξ) 0 0 ξ 0 0
0 (1 − 3ξ2 + 2ξ3) (ξ − 2ξ2 + ξ3)le 0 (3ξ2 − 2ξ3) (ξ3 − ξ2)le

]
(6)

where, ξ =


x
le

, if x ≤ B
2

(x − B/2)
le

, if x >
B
2

, the element length le = B
2

The nodal displacements at all the nodes along ith floor can then be computed as:

{
u′

j

v′j

}
=


[N] [ui

1 vi
1 θ

i
1 ui

2 vi
2 θ

i
2]T , for 0 ≤ xj ≤ B

2
[N] [ui

2 vi
2 θ

i
2 ui

3 vi
3 θ

i
3]T , for

B
2
≤ xj ≤ B

(7)

where, j= 1, 2, . . . , Ni, Ni are the total number of nodes along ith floor in VecTor2
model, and B represents the wall width. The feedback control point reactions are
computed from nodal force results from the VecTor2 output using an equivalent nodal
force concept for beam elements as expressed in Equations (8)∼(10).

[Fx1 Fy1 Mz1 F1
x2 F1

y2 M1
z2]

i =
 m1∑

j=1

(
[N]T

{
fxj

fyj

})T

, for 0 ≤ xj ≤ B
2

(8)

[F2
x2 F2

y2 M2
z2 Fx3 Fy3 Mz3]

i =
 m2∑
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(
[N]T

{
fxj

fyj

})T

, for
B
2
≤ xj ≤ B (9)

[Fx2 Fy2 Mz2]i = [F1
x2 F1

y2 M1
z2]

i + [F2
x2 F2

y2 M2
z2]

i
(10)
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Figure 5 Multi-resolution distributed simulation for reference building combining ZEUS-NL and
VecTor2 within UI-SIMCOR.

where, m1, m2 are the number of nodes at middle and right end of the floor, [fxj, fyj]
are the forces at jth node in VecTor2.

Both of these approaches have been investigated and compared on the basis of
accuracy, runtime and stability. The three-control-point approach proved to be more
realistic by introducing flexibility of the floor as was expected in the real structure.
The rigid slab assumptions put severe restraints on the floor nodes and thereby overes-
timated the stiffness of the lower 10-stories of the walls, which led to smaller flexural
deformations of the wall and underestimated the effects on lateral drift. The use of
the rigid body motion assumption restricted the development of cracking. The run-
time required by one control point approach was somewhat shorter than that with
the use of three control points. Based on this evaluation, the accuracy of the results was
considered to be more important than runtime and therefore the three-control-point
approach was employed for the MDFEA conducted in this study.

3.2.3 In tegrated MDFEA structura l mode l ing

The MDFEA framework and sub-structuring methodology used for the 54-story case
study building is shown in Figure 5. Dynamic response history as well as static pushover
analyses are conducted using the distributed simulation approach. The characteristics
of the model and control DOFs are described in Table 2.

3.3 Static pushover analysis

Static pushover analyses are conducted for the reference building in order to estimate
its ultimate strength and ductility capacity. Gravity loads are applied to the building
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Table 2 MDFEA model size and control DOFs.

Module No. Node Element Control Effective
Number Number Node DOF

1 – Left WallVecTor2 Model 3640 3502 30 90
2 – Right WallVecTor2 Model 3640 3502 30 90
3 – Whole Frame ZEUS Model 1160 1672 306 426
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Figure 6 Pushover comparisons between results from MDFEA and complete ZEUS-NL.

prior to conducting the static pushover analysis. Two analyses are conducted, one
using the MDFEA framework and the other in which the structure is entirely modeled
with frame elements in ZEUS-NL. A comparison of the results from these analyses is
presented in Figure 6.

This comparison illustrates that the lateral drift in the lower part of the wall has
more flexibility and ductility in MDFEA than in the ZEUS-NL analysis. This is mainly
due to the much larger shear deformation contributions that are captured in the con-
tinuum model of the MDFEA. At higher load levels, the ZEUS-NL model exhibits
lower stiffness and ultimately less strength than the MDFEA model. This is mainly
because, the plane section assumption in the fiber approach leads to concrete crushing
at wall’s base earlier than the concrete compressive capacity is reached in the continuum
model.

In the MDFEA approach, load redistribution is repeatedly performed at each load
step and a confined concrete strength model is applied in the regions of highest com-
pressive stress that follows the Kupfer-Richart Model, Wong & Vecchio (2002), as
expressed in Equation (11). This latter feature leads to increased wall capacity and
ductility under high load levels even after extensive cracking has been calculated to
occur.

βl =
[

1 + 0.92
(

fcn

f ′c

)
− 0.76

(
fcn

f ′c

)2
]
+ 4.1

(
fcl

f ′c

)
(11)

where, fcn =−(fc2 − fc1)> 0, fcl =−fc1> 0, fc2< fc1< 0
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Figure 7 Results from MDFEA pushover analysis

Table 3 Selected ground motion records for MDFEA.

Earthquake Record M Station Data Source Distance Site Soil PGA (g)
(km) Condition

Chi-Chi,Taiwan Chi-Chi_close_stiff 7.6 CHY028-N, (CWB) 7.31 Stiff 0.821
1999/09/20

Kocaeli,Turkey Kocaeli_close_stiff 7.4 SKR090, Sakarya 3.1 Stiff 0.376
1999/08/17 (ERD)

Kobe, Japan, Kobe_close_stiff 6.9 TAZ090 Takarazuka, 1.2 Stiff 0.694
1/16/1995 (CUE)

Kobe, Japan, Kobe_close_soft 6.9 SHI000, Shin-Osaka, 15.5 Soft 0.243
1/16/1995 (CUE)

Loma Prieta, USA Loma_dist_soft 6.9 SFO090 58223, 64.4 Soft 0.329
1989/10/18 (CDMG)

Figure 7 shows the extent of cracking, the deformed wall shape and vertical strain
distribution along the base section at load step 50. It is observed from Figure 7a
that the wall deforms and is damaged in flexural-shear mode under the incremental
pushover loads. The curved vertical strain distribution over the horizontal cross section
also illustrated that plane section assumptions are not really happening inside the wall.

3.4 Dynamic response history analysis

Inelastic dynamic response history analyses are conducted using the MDFEA frame-
work for the reference building using selected representative ground motion records.
Ground motions were selected to encompass different magnitudes, distance to source,
and site soil conditions. The variation of input ground motion shown in Table 3 is
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Figure 9 Deformed shapes of three modules from THA using the MDFEA framework.

intended to evaluate the robustness of the MDFEA algorithm for complex structural
systems under different types of seismic excitations. The elastic spectrum acceleration
diagrams (damping ratio 5%) of the selected GMs are shown in Figure 8.

Figure 9 presents the deformed sub-structure shapes for the reference building during
a response time history analysis (THA). The shapes illustrate the synchronized seismic
responses of two core walls and the frame as well as the flexibility of the floor and
shear deformations in the wall.

In Figure 10, two sets of response history analysis results using both MDFEA
framework and the pure frame model using ZEUS-NL are presented. The left wall
displacement responses at different height levels are compared between these two mod-
els, including total drifts at 1st storey, 10th storey (top of the wall VecTor2 models in
modules 1 and 2) and the roof.
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Figure 11 Quantitative definitions for limit states 1 and 2 using MDFEA results.

The results presented in Figure 11 illustrate that the drift computed from MDFEA
at the lower levels is much larger than that from ZEUS-NL pure frame model, while
the roof drifts from the two models are relatively close.

The comparisons presented above indicate that pure-frame analyses may not be able
to sufficiently predict some important shear deformation features of the response of
the 54-story high-rise building.



Mult i - reso lut ion d i s tr ibuted FEA s imula t ion of a 54-s tory RC bui ld ing 237

3.5 Signif icance of the MDFEA framework

With the use of the MDFEA framework proposed herein, it becomes feasible to accu-
rately and efficiently predict the static and dynamic response of complex structures.
This framework will help researchers tackle important problems, such as develop-
ing performance limit states definitions for seismic risk analysis. The framework is
also ideally suited to fragility assessment studies. For RC structures, all the informa-
tion available from MDFEA, including concrete stress and strain distributions, steel
stresses and crack patterns throughout the structural walls, are available for assessing
a structures performance. For example, it is now possible to define new limit states
for serviceability that consider the state of cracking in the core wall or new limit states
for damage control that more accurately consider the yielding of the longitudinal rein-
forcement. Based on previous pushover analyses, maximum concrete crack width and
steel stress can be correlated to global deformation measures including inter-storey
drift ratio (ISD) during the loading history, as shown in Figure 11.

3.6 Computational errors and stabi l i ty

With the use of this MDFEA framework, nonlinearities are accounted for in the individ-
ual computational modules, such as in ZEUS-NL and VecTor2. The different features of
these modules, including finite element model resolutions, theoretical algorithms and
numerical techniques, will lead to different accuracy levels and different deviations of
strain and stress resultants. Hence, the actual movements and reaction feedbacks at
control points will contain errors combined from multiple modules that are difficult
to eliminate. Another error source originates from the interface modeling, such as in
this case study example in which either rigid or flexible slab assumptions were used.

These errors can be transferred to the next step while the new displacement com-
mands are sent to all modules by UI-SIMCOR based on the calculations from the
previous step. Thus, the errors are accumulated along the load history and may lead to
numerical divergence. In this study, error monitoring was applied for each step by com-
paring the imposed displacements and actual movements. This enables an evaluation
of the stability of the model and the reliability of the results.

Another computational instability may be caused by numerical divergence within
any of the analytical tools being combined. ZEUS-NL will stop the analysis automati-
cally if convergence is not achieved after the predefined multi-level step size reduction
technique is used. While for VecTor2, the analysis will be terminated if the convergence
limit cannot be satisfied for two consecutive steps. These instabilities are more straight-
forward to assess since the consecutive divergences are not due to random numerical
errors but indicate the occurrence of either global or local structural failures.

4 Conclusions

There is a dearth of accurate, efficient and reliable analytical approaches for the inelas-
tic static and dynamic analyses of complex reinforced concrete and composite high-rise
buildings under extreme loads taking into account shear-flexure-axial interaction,
crack propagation and other detailed features of concrete response. In this study, a
new approach termed multi-resolution distributed finite element analysis (MDFEA)
is proposed and used to analyze a reference RC high-rise building with a dual core
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wall-frame system. Below, a summary of the features of the study and highlights of its
conclusions are given:

• Two advanced analytical platforms ZEUS-NL and VecTor2 were used to effec-
tively model the frame and wall separately, based on the unique algorithms and
functionalities of the two programs.

• A ‘simulation coordinator’ – UI-SIMCOR (Kwon et al., 2005), was used to com-
bine the best features of different FEA software for modeling different components
within one system. Through sub-structuring, global integration and network data
flow, a distributed FEA simulation was completed.

• A real 54-story high-rise building with a dual core wall-frame structural system
was selected as the case study example. By using the MDFEA framework, both
static pushover and dynamic response history analyses were conducted. Multiple
modules corresponding to frame and wall components were built in UI-SIMCOR
and analyzed with frame-wall interaction effects fully considered in a step-by-step
manner.

• The comparisons from both pushover and response history analysis highlight
that due to the influence of shear, the use of the multi-resolution approach
is illustrated to be able to capture critical aspects of the behavior more suf-
ficiently than some traditional methodologies performing pure frame analysis.
The use of a MDFEA approach can account for response limit states including
shear-flexure-axial interaction.

With the completed and verified functionality of the proposed MDFEA framework, it
is practical to extend the application to other high-rise buildings and to other complex
structures. This framework is not restricted to combining ZEUS-NL and VecTor2, but
rather can be used to integrate the necessary features of any number of FE packages.
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Chapter 16

Simplified probabilistic seismic
performance assessment of buildings

Matjaž Dolšek & Peter Fajfar
University of Ljubljana, Ljubljana, Slovenia

ABSTRACT: A relatively simple approach for the probabilistic seismic performance assess-
ment of building structures has been proposed. It combines the SAC-FEMA method, which is a
part of the broader PEER probabilistic framework and enables probability assessment in closed
form, with the N2 method. The N2 method, which has been implemented in Eurocode 8, is based
on nonlinear pushover analysis and inelastic response spectra. The most demanding part of the
PEER probabilistic framework, i.e. the Incremental Dynamic Analysis (IDA), is replaced by the
much simpler Incremental N2 (IN2) analysis. Predetermined default values for dispersion mea-
sures are needed for the practical implementation of this approach. In the paper, this simplified
approach is summarized and applied to two variants of a four storey reinforced concrete frame:
a bare frame and the frame with masonry infill with openings. Both structures, representing old
building not designed for earthquake resistance, were pseudo-dynamically tested in full-scale in
the ELSA laboratory in ISPRA. The most common analytical modeling technique, which employs
compressive diagonal struts for modeling of masonry infill, and one-component lumped plas-
ticity elements for modeling the flexural behavior of beams and columns, was applied. The
mathematical models were validated by comparing the results of nonlinear dynamic analyses
with test results. The probabilities of exceedance of the near collapse limit state are estimated
and discussed. The results of analyses indicate that the infills can completely change the distri-
bution of damage throughout the structure. The probability of failure of the infilled frame is
smaller than that of the bare frame. As expected, it is larger than acceptable for both structures.

1 Introduction

One of the methods developed for the seismic risk evaluation of structures is the SAC-
FEMA method, which enables probability assessment in closed form (Cornell et al.
2002), and represents a part of a broader PEER probabilistic framework (Deierlein
2004). Within the framework of SAC-FEMA method, the relationship between the
seismic intensity measure and the engineering demand parameter is usually determined
by Incremental Dynamic Analysis (IDA) developed by Vamvatsikos & Cornell (2002).
IDA is a powerful tool for estimation of seismic demand and capacity for multiple levels
of intensity. However, it requires a large number of inelastic time-history analyses (and
corresponding detailed data on ground motion time-histories and hysteretic behavior
of structural elements) and is thus very time-consuming. Often it is possible to create
summarized IDA curves with less input data, with less effort, but with still acceptable
accuracy. One possible approach is to determine seismic demand for multiple levels
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of seismic intensity using the N2 method (Fajfar 2000) which is one of the simplified
nonlinear methods based on pushover analysis and inelastic response spectrum. Such
an approach yields the Incremental N2 (IN2) curve (Dolšek & Fajfar 2004a, 2007)
which is intended to approximate a summarized IDA curve.

In this paper, a simplified approach for probabilistic seismic performance assessment
is summarized and applied to the example of a four storey reinforced concrete (RC)
frame with and without masonry infills. For the determination of an IN2 curve for an
infilled frame, the extended N2 method, which is applicable to infilled RC frames, is
employed (Dolšek & Fajfar 2004b, 2005).

2 Simplif ied probabilistic performance assessment

The simplified probabilistic performance assessment analysis combines two proce-
dures, i.e. the N2 method (Fajfar 2000), which is usually employed for deterministic
seismic performance assessment, and the probabilistic assessment in closed form, which
represents the basis of the SAC-FEMA steel moment frame guidelines (Cornell et al.
2002). In this Section the method for the simplified probabilistic assessment is briefly
explained. More detailed explanation can be found elsewhere, e.g. in Dolšek & Fajfar
(2007).

The SAC-FEMA method is based on some simplifying assumptions, which allow the
formulation of the probabilistic assessment in closed form (Cornell et al. 2002). An
additional simplification is introduced by employing the N2 method instead of the IDA
analysis for the determination of the relation between the seismic intensity measure and
the engineering demand parameter. The curve, which represents this relationship, is
usually called an IDA curve (Vamvatsikos & Cornell 2002). In the simplified procedure
it is substituted by an IN2 curve (Dolšek & Fajfar 2004a, 2007). An IN2 curve is
intended to approximate a summarized IDA curve, and is not calculated for a single
ground motion. The term “summarized’’, when related to IN2 curves, applies only to
mean or median curves, since the proposed simplified approach is not intended for the
determination of dispersion. Therefore default values for the dispersion measures for
randomness and uncertainty in displacement demand and capacity have to be used in
order to determine the probabilities of exceedance of a given limit state.

The N2 method (N stands for non-linear analysis, and 2 for two mathematical mod-
els) is a relatively simple nonlinear analysis method for deterministic seismic assessment
of buildings and bridges, which combines pushover analysis of a multi degree-
of-freedom (MDOF) model with the response spectrum analysis of an equivalent
single-degree-of-freedom model (SDOF). Although the N2 method has its limita-
tions (Fajfar 2000), it usually provides reasonably accurate predictions of the seismic
response of structures, unless vibration in higher modes is important. The N2 method
has been mainly used for the seismic assessment of structures where the seismic demand
(engineering demand parameter) for a given seismic intensity is compared with the
capacity corresponding to a given limit state. (Note that the expression “performance
level’’ used in FEMA 350 (2000) has basically the same meaning as “limit state’’
according to the Eurocode terminology.) In probabilistic performance assessment the
relationship between the seismic demand and the seismic intensity has to be determined
for different values of the seismic intensity measure.
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Figure 1 A typical IN2 curve of an infilled RC frame building. Y and NC indicate yield and near
collapse points.

The IN2 curve represents the relation between an engineering demand parameter and
a seismic intensity measure. Usually, the top displacement is used as the engineering
demand parameter and the spectral acceleration, i.e. the value in the elastic accelera-
tion spectrum at the period of the idealized system, represents the intensity measure.
Sometimes, it is convenient to use the peak ground acceleration as the seismic intensity
measure, especially when IN2 curves for different structures are compared. This was
the case in the example presented in this paper. The engineering demand parameter and
the corresponding seismic intensity measure will be denoted as C̃ and sC̃

a , respectively.
The whole IN2 curve can be determined by repeating the N2 approach for increasing
ground motion intensity until the “failure’’ occurs. In the simplest but very common
case the “equal displacement rule’’ applies, i.e. the inelastic displacement is assumed
to be equal to the elastic displacement of the system with the same stiffness and mass,
but with unlimited strength. In such a case the IN2 curve is a straight line (with its
origin at the point (0,0)) until “failure’’ occurs. It is necessary to determine only the
point corresponding to “failure’’. In general, the shape of the IN2 curve depends on
the relation between the reduction factor, ductility and period (R-µ-T relation), which
defines the inelastic spectra to be used in the N2 method for the determination of seis-
mic demand. For example, in the case of infilled RC frames, the IN2 curve consists
of straight lines, as presented in Figure 1, for which three points have to be evaluated
with the N2 method (Dolšek & Fajfar 2004b, 2005) (Figure 1, points at the top dis-
placements a, b and c). The idealized capacity diagram with indicated yield and near
collapse points is also shown. It is conservatively assumed that the structure fails after
the NC limit state is attained. Thus the IN2 line after the NC limit state is horizontal.
Knowing the IN2 curve, the engineering demand parameter, can be easily linked to the
corresponding seismic intensity measures.

Once the seismic intensity sC̃
a , which causes a selected limit state, is determined from

the IN2 curve, the x confidence level estimate of the annual probability (mean annual
frequency) of exceedance of a given limit state PPL,x can be determined as (Cornell
et al. 2002)

PPL,x = H̃(sC̃
a )CHCf Cx (1)
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H̃(sC̃
a ) is the median value of the hazard function at the seismic intensity sC̃

a . It provides
the median estimate of the annual probability that the seismic intensity will be equal to
or exceed the level sC̃

a , i.e. the seismic intensity “corresponding’’ to the median displace-
ment capacity C̃. k is a parameter of the hazard function, whereas b is a parameter of
the function relating the engineering demand parameter to the intensity measure, i.e.
of the so-called IDA curve, or in the case of the simplified method the IN2 curve. Kx is
the standardized normal variate associated with probability x of not being exceeded.
For example, Kx = 0, 1 and 1.28 are associated with 50%, 84 % and 90 % confidence
levels, respectively. βH is the dispersion measure for hazard. The product H̃(sC̃

a )CH rep-
resents the mean value of the hazard function H̃(sC̃

a ). Other β parameters represent the
dispersion of the engineering demand parameter (i.e. top displacement) due to ground
motion variability (randomness) and due to variability related to structural modeling
and analysis (uncertainty). βDR and βCR are the dispersion measures for randomness in
top displacement demand and capacity, and βDU and βCU are the dispersion measures
for uncertainty in top displacement demand and capacity. For practical applications,
predetermined default values for dispersion measures, based on statistical studies of
typical structural systems, will be needed. In the example, shown in this paper, some
rough preliminary estimates were used.

3 Example: A bare and an infil led reinforced
concrete frame

3.1 Description of the example structures and the
mathematical model ing

A bare and an infilled four-storey plane RC frame have been studied. The buildings
had been designed to reproduce the design practice in European and Mediterranean
countries about forty to fifty years ago (Carvalho & Coelho 2001). The elevation, the
plan and the typical reinforcement in columns are presented in Figure 2. The structure
was tested in full scale at ELSA Laboratory in the JRC in Ispra. Detailed description
of buildings and results of the experiments can be found in ECOEST2-ICONS Report
No.2 (Carvalho & Coelho 2001).

The OpenSees program was employed for all analyses PEER (1999). The elements of
the RC frame were modelled by one-component lumped plasticity elements, composed
of an elastic beam and two inelastic rotational hinges (defined by the moment-rotation
relationship). The moment-rotation relationship of inelastic rotational hinges is bilin-
ear until the maximum moment is attained and has a degrading slope after the
maximum moment (Figure 3). The characteristic moments were calculated considering
the axial forces which result from the vertical loading on the frame. The characteris-
tic rotations, which describe the moment-rotation envelope of a plastic hinge, were
determined according to procedure described in (Fajfar et al. 2006). The zero moment



S impl i f i ed probab i l i s t i c se i smic per formance assessment o f bu i ld ings 245

Bare frame

2.
7 

m
2.

7
2.

7
2.

7
4.

0 
m

Infilled frame with openings

A

A B C D

6φ12 
20/30

6φ12 
20/30

8φ12 
20/40 cm

8φ16 � 2φ12
60/25 cm

4φ16 � 2φ12
50/25 cm

B

Reinforcement in columns:Plan of bare frame:

2.5 5.0 m

� Disp.

5.0 m

DC
(1., 2. storey)

C
(3., 4. storey)

Figure 2 The view, the plan and the typical reinforcement in the columns of the test building.

Θy Θmax Θu Rotation

Moment

Y

M
NC

M
om

en
t-

ro
ta

tio
n

re
la

tio
ns

hi
p

fo
r 

hi
ng

es

Mmax
My 0.8Mmax

Dc Dmax

Force M

C

DisplacementFo
rc

e-
di

sp
la

ce
m

en
t

re
la

tio
ns

hi
p

fo
r 

di
ag

on
al

s Fmax

Fc

Figure 3 The moment-rotation relationship for a plastic hinge, and the force-displacement
relationship of a diagonal representing masonry infill. C represents the cracking of
masonry infill,Y the yielding of reinforcement, M the maximum force or moment, and
NC the near collapse limit state.

point was assumed at the mid-span of columns and beams. A low value of confinement
effectiveness factor α= 0.1 and the ratio of transverse reinforcement ρsx = 0.02 were
adopted. The rotation�u in columns at the NC limit state, which corresponds to 20%
reduction of the maximum moment in the post-capping range (“ultimate’’ rotation),
was estimated with the CAE method (Peruš et al. 2006). For beams, the EC8-3 (CEN
2005) formulas were used, whereas the parameter γel was taken equal to 1.0 and, due
to the absence of seismic detailing, the ultimate rotations were multiplied with factor
0.85. The calculated ultimate rotations vary from 31 mrad to 34 mrad for all columns
with exception of the column C for which the ultimate rotation varies from 42 mrad in
the first storey to 57 mrad in the top storey. The sign of the moment (tension at the top
or tension at the bottom) influences the ultimate rotation in the beams. In general, the
ultimate rotation is lower if the tension is at the bottom of the beam. The calculated
ultimate rotations in the beams vary from 27 mrad to 43 mrad.
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In the case of the infilled frame, the infills were modelled by the diagonal strut
elements, which carry loads only in compression and are capable of simulation of the
material softening. The diagonals were placed between the beam-column joints. Such a
modelling in general underestimates column shear forces, which were not considered in
the seismic assessment at this stage of the study. The main problem, which is subject to
large uncertainties, is how to determine the characteristics of these diagonals, i.e. their
force-displacement envelopes and their hysteretic behaviour. Additional problems arise
because of the openings in the infills (Figure 2). In our study, simple empirical formulas
were employed for the determination of initial stiffness, the maximum strength of the
masonry infill, and the influence of the opening on these quantities. They are described
in (Dolšek & Fajfar 2007). A typical force-displacement relationship for a diagonal
strut element is presented in Figure 3.

Although rather simple models were used for determination of seismic response,
a very good correlation between the calculated and experimental results, which were
obtained by pseudo-dynamic tests, were observed. The comparison between calculated
and experimental results as well as details of the models are presented and discussed
in (Dolšek & Fajfar 2007).

3.2 Definit ions of the NC limit state and acceptable probabi l i ty

The European standard EC8-3 (CEN 2005) defines three limit states, i.e. limit states
of damage limitation (DL), of significant damage (SD), and of near collapse (NC). The
limit states are defined at the element level by the rotations in the moment – rotation
relationship of the plastic hinge. In test examples presented in this paper only the
probability of the exceedance of the NC limit state was evaluated. The NC limit state
at the element level is reached when the rotation in plastic hinge exceeds the ultimate
rotation, which corresponds to a 20% drop in strength. At the structure level, there is
a lack of definitions of the limit states in codes. In this study, it has been conservatively
assumed that the most critical column controls the state of the structure. Consequently,
the structure is assumed to attain the NC limit state when the first column attains the
NC limit state. Furthermore, it has been conservatively assumed that the NC limit state
corresponds to the “failure’’ of the structure. The collapse of masonry infills does not
influence the NC limit state.

In general, in addition to the damage due to flexure, the damage in the joints and
the damage due to shear also contribute to the damage and may cause a failure of the
reinforced concrete frames. In the example, these sources of potential damage were
not considered since the tests and analyses performed on the test structures indicated
that the structural behavior was dominated by flexure in the columns.

When performing a probabilistic performance assessment, data on the acceptable
probabilities of the exceedance of a given limit state are needed. There are differ-
ent approaches to define acceptable probabilities of exceedance of a given limit state
(Melchers 1999). However, in the earthquake engineering community there are no
generally accepted values for acceptable probabilities of exceedance of a given limit
state. In the example, the acceptable probability was defined as follows: the probability
of exceedance of the NC limit state should not exceed 2% in 50 years (0.0004) with
the 90% confidence level. Basically the same definition was used by Yun et al. (2002).
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3.3 Pushover analyses

The capacities of the structures are determined by pushover analyses. The same masses
as in pseudo-dynamic tests (Carvalho & Coelho 2001) were used. They amount to 46
t in the bottom stories and to 40 t in the top storey for both bare and infilled frame.
Lateral loads for pushover analysis of the bare and infilled frame were determined
based on the first mode shape. For both structures, the effective mass for this mode
amounts to more than 80% of the total mass. The pushover curves are presented in
Figure 4. It can be seen that the presence of masonry infills substantially increases
the stiffness and the strength of the frame. The maximum strength to weight ratio of
the infilled frame (0.43) is much larger than that for the bare frame (0.13). However, the
maximum strength in infilled frame is reached at a relatively small top displacement,
which is equal to 1.5 cm. With a further increase of displacement the masonry infills
start to degrade. A substantial reduction of strength occurs after the infills completely
collapse in the first storey (Figure 4). The reduction amounts to 57% of the maximum
strength.
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The top displacements (capacities) corresponding to the NC limit state and some
intermediate damage states are also presented in Figure 4. In general, it can be seen that
the top displacement capacity at the NC limit state of the infilled frame is much smaller
than that determined for the bare frame. Due to an extreme concentration of damage
in the first storey of the infilled frame, the global drift ratio (i.e. the ratio between the
top displacement and the height) at the NC limit state amounts to 8.1 cm (0.76%) and
it is much smaller than the corresponding value for the bare frame (12.1 cm, 1.14%).
The storey drifts at the NC limit state of the infilled frame amount to 3.05%, 0.20%,
0.10% and 0.05% for the bottom to top storey, respectively (Figure 4). At this stage all
infills have completely collapsed in the first storey, some of them began to degrade in
the second storey, while in the top two stories the infills remain in the elastic range or
exceed the cracking point. A similar plastic mechanism had been observed also in the
pseudo-dynamic test (Carvalho & Coelho 2001). The distribution of the storey drifts
and the damage in the bare frame at the NC limit state is very different from that in
the infilled frame. The storey mechanism formed in the third storey is not as explicit
as the soft first storey formed in the infilled frame (Figure 4). The maximum drift is
observed in the third storey (3.09%). Drifts in the first and second storey amount to
0.52% and 0.72%, respectively.

For further analyses idealized pushover curves will be needed. They are shown in
Figure 4. The elastic stiffnesses are determined based on the equal energy concept for
the part of the curve before the capping point.

3.4 Earthquake motion and hazard

One of the advantages of the N2 method, which will be used for the determination of
the IN2 curve of the bare and infilled frame, is the presentation of earthquake motion
by an elastic acceleration response spectrum and not by a set of ground motion records,
which is required in the IDA analysis. In our example, the EC 8 spectrum for ground
type A was used (Figure 5a). For the sake of simplicity it was assumed that the shape
of the spectrum does not change with the level of peak ground acceleration. Note,
however, that the IN2 curve can be determined also by using the uniform hazard
spectra by assuming different shapes for different levels of seismic intensity.
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In addition to the elastic response spectrum, the hazard curves for the intensity
measures are needed for a probabilistic performance assessment. The hazard curve
for the peak ground acceleration (Figure 5b) used in the example for both structures
corresponds to the city of Reggio Calabria in Southern Italy (in LESSLOSS Subproject
9, 2006). The peak ground accelerations amount to 0.30, 0.40 and 0.67 g for 225 year
(20% probability of exceedance in 50 years), 475 year (10%/50 years), and 2475 year
(2%/50 years) return periods, respectively, indicating quite a high hazard.

3.5 IN2 curves

The top displacement and the peak ground acceleration were selected as the engi-
neering demand parameter and seismic intensity measure, respectively. As explained
in Section 2, only a few points of the IN2 curve have to be determined by the N2
method in order to construct the IN2 curve. Idealized systems, as shown in Figure 4,
will be used. For the bare frame, only the point at the NC limit state has to be deter-
mined, since the period of the idealized system T = 0.83 s exceeds the corner period
TC (Figure 5a) and therefore the “equal displacement rule’’ can be applied for this
particular example. The top displacement capacity at the NC limit state was already
determined as DNC = 12.1 cm (Section 3.3). The corresponding displacement of the
equivalent SDOF system, which represents also the spectral displacement, is calculated
as Sd,NC =DNC/�= 12.1/1.29= 9.4 cm, where � is the transformation factor from the
MDOF to the equivalent SDOF system and vice versa. Considering the equal displace-
ment rule, the elastic displacement is equal the inelastic one and the corresponding
elastic spectral acceleration Sae,NC is obtained as Sae,NC = 4π2Sd,NC/T2 = 0.54 g. Finally,
the peak ground acceleration, which causes the NC limit state, is determined as
ag,NC = 0.54 g/1.2= 0.45 g, where 1.2 is the ratio between the spectral acceleration
Sae(T = 0.83 s) and peak ground acceleration ag (Figure 5a). The IN2 curve for the
bare frame is then constructed as a straight line from the origin to the point at the
NC limit state defined by Sd,NC and ag,NC. After this point it is assumed that the IN2
curve is horizontal (Section 2). A graphic representation of all relevant quantities of
the SDOF system is shown in Figure 6. The IN2 curve for the bare frame is presented
in Figure 7a. In addition to the NC point, the point which corresponds to the yielding
of the first column at the base is also indicated. For this point the top displacement is
already known from pushover analysis and the IN2 curve can be used for the deter-
mination of the corresponding ag or spectral acceleration Sae(T = 0.83 s) (see the scale
on the right hand side of Figure 7a). This is the usual way of using the IN2 curve
in probabilistic seismic assessment. In a deterministic assessment, the IN2 curve can
be used in an opposite way, i.e. for the determination of the top displacement for
a given seismic hazard. The points corresponding to peak ground accelerations with
return periods od 225, 475 and 2475 years are also presented in Figure 7a. The figure
suggests that for the 2475 year return period the demand exceeds the capacity at the
NC limit state, therefore also the probability of exceedance of the NC limit state will
exceed the acceptable probability.

In the case of the infilled frame the equal displacement rule is not applicable and
only the NC point is not sufficient to construct the IN2 curve. In addition to this point,
two other points are needed (Section 2). In this example only the determination of the
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NC point by using the N2 method applicable to infiled frames (Dolšek & Fajfar 2005)
is briefly explained (a graphic presentation is shown in Figure 6).

The pushover curve of the infilled frame was idealized with a four-linear force-
displacement relationship as shown in Figure 4. Four parameters defining the idealized
pushover curve are needed for further analysis (Dolšek & Fajfar 2005). These are the
yield displacement Dy = 0.81 cm and the yield force Fy = 745.4 kN, the ductility at the
beginning of the softening of infills µs = 1.82 (i.e. the ratio between the displacement
when infills start to degrade and the displacement Dy, and the ratio between the force
at which infills completely collapse and the yielding force ru = 0.39. The effective
mass m*, the transformation factor � and the period of the equivalent SDOF system
were determined according to Fajfar (2000) and amount to 112 t, 1.32 and 0.22 s,
respectively.

The reduction factor (the ratio between the accelerations in elastic spectrum and
the acceleration at the yielding of the idealized system) can be, taking into account
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the four parameters of the idealized pushover curve, determined by using formu-
lae for specific inelastic spectra for infilled frames (Dolšek & Fajfar 2004b). For
example, the reduction factor RNC, which corresponds to the ductility demand
at the NC limit state µNC =DNC/Dy = 8.1 cm/0.81 cm= 10, amounts to 2.68. The
elastic spectral acceleration Sae,NC = 1.37 g corresponding to the NC limit state is
then obtained from the definition of the reduction factor by multiplying the reduc-
tion factor RNC = 2.68 and the acceleration at the yielding of the equivalent SDOF
system Say = (Fy/�)/m∗ = (745.4 kN/1.32)/(112 t)= 5.04 m/s2 = 0.51 g. Finally, the
peak ground acceleration ag,NC = Sae,NC/2.5= 1.37 g/2.5= 0.55 g is determined from
Sae,NC = Sae(T = 0.22 s) considering the spectral shape (Figure 5a). The NC point of
the IN2 curve is indicated in Figure 7a. After this point a horizontal line is assumed
(Section 2). The same procedure, as explained for the determination of the NC point,
is used for determination of the point, which corresponds to the displacement of the
idealized system at the beginning of the degradation of infills (i.e. point b presented
in Figure 1). The last point, which is required for the construction of the IN2 curve
corresponds to the yielding of the idealized system. It is defined by Dy and ag,y =
Say/2.5= 0.2 g.

The IN2 curve of the infilled frame is presented in Figure 7b. Some intermediate
damage states are also indicated. For example, the first infill starts to degrade at the
ground motion with the peak ground acceleration ag = 0.14 g. At ag = 0.27 g all infills
in the first storey are in the degrading stage and at ag = 0.34 g all infills in the first
storey collapse.

The NC limit state in the bare frame is attained at smaller peak ground acceleration
than in the case of the infilled frame (0.45g versus 0.55 g). Nevertheless, the demand
based on the seismic hazard for a 2475 year return period still exceeds the capacity at
the NC limit state, like in the case of the bare frame.

3.6 Probabi l ist ic performance assessment

For a probabilistic assessment the values of dispersion measures have to be known.
The dispersion measure βDR was assumed to amount to 0.4 for the bare frame and to
0.7 for the infilled frame. These values may be typical for buildings with moderate to
long period and for buildings with short predominant period, respectively (Dolšek &
Fajfar 2004b). For βCR, βDU and βCU the value of 0.25 was adopted. Note that the
adopted values of dispersion measures for uncertainty are in agreement with the total
uncertainty dispersion measure βUT = (β2

DU +β2
CU)0.5 = 0.35 used in the SAC-FEMA

seismic performance evaluation (FEMA 2000). The dispersion measure for the hazard
βH was arbitrarily assumed to be 0.3.

For the determination of the parameters of the IN2 curve and of the hazard curve
b and k (Eq. (2)) (Cornell et al. 2002) the intervals have to be selected, in which a
close agreement between the actual and approximates curves is required . Based on a
previous study we choose the interval from 0.25 ag,NC to ag,NC for the approximation
of the IN2 curve, and the interval from 0.25 ag,NC to 1.25 ag,NC for the approximation
of the hazard curve. Therefore, the values of the parameter k are different for the bare
and the infilled frame (2.59 versus 2.76) although the same hazard curve is used for
both structures. It is obvious that the parameter b of the bare frame is equal to 1.0,
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since the IN2 curve is a straight line. In the case of the infilled frame the parameter b
amounts to 2.14.

The median value of the hazard function H̃(sC̃
a ) at the peak ground acceleration,

which causes the NC limit state, was determined directly from the hazard curve
(Figure 5b) and amounts to 1.447E-3 and 7.861E-4 for the bare and infilled frame,
respectively. The parameter CH is equal to 1.05 and Cf amounts to 2.11 and to 1.59
for the bare and infilled frame, respectively. The PPL,x for 50% confidence level was
then calculated according to Eq. (1) by taking into account that Cx = 1 for x= 0.5. The
probability of exceedance of the NC limit state for the bare frame amounts to 3.19E-3
(14.7% in 50 years). It is higher than that estimated for the infilled frame (1.30E-3,
6.3% in 50 years). In the case when only 10% chance is accepted that the probability of
exceedance of the NC limit state is larger than the estimated probability PPL,x= 0.9 (i.e.
a 90% confidence is required (Section 3.2)), the following values are obtained from
Eqs. (2) and (1): Cx = 3.23 and PPL,x= 0.9 = 1.03E-2 (40% in 50 years) for the bare
frame, and Cx = 1.79 and PPL,x= 0.9 = 2.33E-3 (11% in 50 years) for the infilled frame.
The estimated PPL,x= 0.9 for the bare and infilled frame exceeds the acceptable (based
on the conservative definition presented in Section 3.2) probability of exceedance of
the NC limit state (4.04E-4, 2% in 50 years) for a factor of about 25 and 6 for the
bare and infilled frame, respectively.

4 Conclusions

A simplified method for the probabilistic seismic assessment of buildings has been
summarized. The method is basically the SAC-FEMA approach, in which the most
demanding part, i.e. the Incremental Dynamic Analysis (IDA), is replaced by the
incremental N2 method, which is based on pushover analysis and response spectrum
approach. Default values for dispersion measures are needed for practical applica-
tions. The method was applied for a bare and an infilled reinforced concrete frame.
The results of analyses indicate that the infills can completely change the distribution
of damage throughout the structure. The estimated probability of exceedance of the
NC limit state was substantially lower for the infilled frame than for the bare frame.
For both structures, however, the estimated probabilities of failure are much larger
that the acceptable ones. Such a result was expected because both structures represent
old structures not designed for seismic resistance. The large difference between the
estimated and acceptable probabilities of failure can be attributed also to conserva-
tive assumptions used in the test examples, especially those related to the definition of
failure and to the definition of the acceptable probability of failure.

The proposed method has like any other simplified method its limitations which are
basically the same as those which apply to the basic N2 method (Fajfar 2000) and to
the SAC-FEMA method (Cornell et al. 2002). Additional studies are needed especially
for the determination of dispersion measures for randomness and uncertainty.
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ABSTRACT: In this work, the nonlinear dynamic response of RC buildings with energy
dissipating devices is studied using advanced computational techniques. A fully geometric and
constitutive nonlinear model is used for describing the dynamic behavior of structures. The
equations of motion are expressed in terms of cross sectional forces and strains and its weak form
is solved using the displacement based finite element method. A suitable version of Newmark’s
scheme is used in updating the kinematics variables in a classical Newton type iterative scheme.
Material points of the cross section are assumed to be composed of several simple materials with
their own constitutive laws. The mixing theory is used to treat the resulting composite. A specific
finite element based on the beam theory is proposed for the dissipators including constitutive
relations. Finally, several numerical tests are carried out to validate the proposed model.

1 Introduction

Conventional seismic design practice permits designing reinforced concrete (RC) struc-
tures for forces lower than those expected from the elastic response on the premise that
the structural design assures significant structural ductility Hanson et al. (1993). Fre-
quently, the dissipative zones are located near the beam-column joints and, due to cyclic
inelastic incursions during earthquakes, several structural members can suffer a great
amount of damage. This situation is generally considered economically acceptable if
life safety and collapse prevention are achieved.

In the last decades, new techniques based on adding devices to the buildings with the
main objective of dissipating the energy exerted by the earthquake and alleviating the
ductility demand on primary structural elements have improved the seismic behavior of
the structures Soong & Dargush (1997). The purpose is to control the seismic response
of the buildings by means of a set of dissipating devices which constitutes the control
system, adequately located in the structure. In the case of passive energy dissipating
devices (EDD), an important part of the energy input is absorbed and dissipated;
therefore, concentrating the nonlinear phenomenon in the devices without the need of
an external energy supply.

Several works showing the ability of EDDs in controlling the seismic response of
structures are available; for example, in reference Fu & Kasai (2002) the response of
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framed structures equipped with viscoelastic and viscous devices is compared; in ref-
erence Kasai et al. (1998) an approximated method is used to carry out a comparative
study considering metallic and viscous devices. Aiken (1996) presents the contribu-
tion of the extra energy dissipation due to EDDs as an equivalent damping added to
the linear bare structure and gives displacement reduction factors as a function of the
added damping ratio. A critical review of reduction factors and design force levels can
be consulted in reference Lin & Chang (2003). A method for the preliminary design
of passively controlled buildings is presented in reference Connor et al. (1997). Lin &
Chopra (2003) study the accuracy of estimating the dynamic response of asymmetric
buildings equipped with EDDs, when they are replaced by their energetic equivalent
viscous dampers. Other procedures for the analysis and design of structures with EDDs
can be consulted in reference Clark et al. (1999).

Today, only a few countries have codes to design RC buildings with EDDs. Particu-
larly, in United States the US Federal Emergency Management Agency (FEMA) gives
code provisions and standards for the design of EDDs devices to be used in buildings.
In Europe, the efforts have been focused on developing codes for base isolation but
not for the use of EDDs.

The design methods proposed for RC structures are mainly based on supposing that
the behavior of the bare structure remains elastic, while the energy dissipation relies
on the control system. However, experimental and theoretical evidence show that
inelastic behavior can also occur in the structural elements during severe earthquakes
(Shen & Soong 2005). In order to perform a precise dynamic nonlinear analysis of
passively controlled buildings sophisticated numerical tools became are necessary for
both academics and practitioners, Mata et al. (2006).

There is agreement that fully three-dimensional numerical techniques constitute the
most precise tools for the simulation of the the seismic behavior of RC buildings.
However, the computing time usually required for real structures makes many appli-
cations unpractical. Considering that most of the elements in RC buildings are columns
and beams, one dimensional formulation for structural elements appear as a solution
combining both numerical precision and reasonable computational costs Mata et al.
(2007b). Experimental evidence shows that inelasticity in beam elements can be for-
mulated in terms of cross sectional quantities, Bayrak et al. (2001). Some formulations
of this type have been extended for considering geometric nonlinearities, Simo et al.
(1984). An additional refinement is obtained considering inhomogeneous distributions
of materials on arbitrarily shaped beam cross sections, Kumar et al. (2004). In this
case, the constitutive relationship at cross sectional level is deduced by integration and,
therefore, the mechanical behavior of beams with complex combinations of materials
can be simulated.

Formulations for beams considering both constitutive and geometric nonlinearity
are rather scarce; most of the geometrically nonlinear models are limited to the elastic
case, Ibrahimbegovic (1995) and the inelastic behavior has been mainly restricted to
plasticity, Simo et al. (1984). Recently, Mata et al. (2007b, 2008a) have extended the
geometrically exact formulation for beams due to Reissner-Simo (Reissner 1973, Simo
1985, Simo & Vu-Quoc 1988) to an arbitrary distribution of composite materials on
the cross sections for the static and dynamic cases.

From the numerical point of view, EDDs usually have been described in a global sense
by means of force–displacement or moment–curvature relationships, Soong & Dargush
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(1997), which attempt to capture appropriately the energy dissipating capacity of
the devices (see Mata et al. 2007a and 2008b). The inclusion of EDDs in software
packages for the seismic analysis of RC structures is frequently done by means of
linking elements equipped with the mentioned nonlinear relationships. The relative
displacement and/or rotation between the anchorage points activate the dissipative
mechanisms of the device.

In this work, a fully geometric and constitutive nonlinear formulation for beam
elements is developed. A fiber–like approach is used for representing arbitrary distribu-
tions of composite materials on the plane beam cross sections. EDDs are considered as
beam elements without rotational degrees of freedom. Thermodynamically consistent
constitutive laws are used for concrete, longitudinal and transversal steel reinforce-
ments and EDDs. The mixing rule is employed for the treatment of the resulting com-
posite. A brief description of the damage indices capable of estimate the remaining load
carrying capacity of the buildings is also given. Finally, the results obtained from numer-
ical simulations showing the ability of the proposed formulation in simulating the static
and dynamic inelastic response of RC buildings with and without EDDs are provided.

2 Finite deformation formulation for structural
elements

2.1 Beam model

The original geometrically exact formulation for beams due to Simo & Vu Quoc
(1986) is expanded here for considering an intermediate curved reference configu-
ration according to Ibrahimbegovic (1995). The geometry and the kinematics of the
beams are developed in the nonlinear differential manifold1 R3 × SO(3). Let {Êi} and
{êi} be the spatially fixed material and spatial frames2, respectively. The straight refer-
ence beam is defined by the curve ϕ̂00 = SÊ1, with S∈ [0, L] its arc–length coordinate.
Beam cross sections are described by means of the coordinates ξβ directed along {Êβ}
and the position vector of any material point is X̂= SÊ1 +�β ξβ Êβ.

The curved reference beam is defined by means of the spatially fixed curve given
by ϕ̂0 =�iϕ̂0i(S)êi ∈R3. Additionally, each point on this curve has rigidly attached an
orthogonal local frame t̂0i(S)=Λ0Êi ∈R3, where Λ0 ∈ SO(3) is the orientation tensor.
The beam cross section A(S) is defined considering the local coordinate system ξβ but
directed along t̂0β. The planes of the cross sections are normal to the vector tangent
to the reference curve3, i.e. ϕ̂0,s = t̂01(S). The position vector of a material point on the
curved reference beam is x̂0 = ϕ̂0i +�β Λ0ξβ Ê0β. The motion deforms points on the
curved reference beam from ϕ̂0,S to ϕ̂S,t (at time t) adding a translational displacement
û(S) and the local orientation frame is simultaneously rotated together with the beam
cross section, from Λ0(S) to Λ(S, t) by means of the incremental rotation tensor as
Λ=ΛnΛ0 ≡�i t̂i ⊗Êi ∈ SO(3) (see Figure 1).

1 The symbol SO(3) is used to denote the finite rotation manifold
2 The indices i and β range over and {1,2,3} and {2,3}, respectively.
3 The symbol (•)x is used to denote partial differentiation of (•) with respect to x.
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Figure 1 Configurational description of the beam.

In general, the normal vector t̂1 does not coincide with ϕ̂, S because of the shearing,
Simo (1985). The position vector of a material point on the current beam is

x̂(S, ξβ, t) = ϕ̂S,t +
∑
β

ξβ t̂β(S, t) = ϕ̂ +
∑
β

ΛξβÊβ (1)

Equation (1) implies that the current beam configuration is completely determined by
the pairs (ϕ̂, Λ)∈R3 × SO(3). The deformation gradient is defined as the gradient of
the deformation mapping of Equation (1) and determines the strain measures at any
material point of the beam cross section Simo & Vu-Quoc (1986). The deformation
gradients of the curved reference beam and of the current beam referred to the straight
reference configuration are denoted by F0 and F, respectively. The deformation gradi-
ent Fn:= FF−1

0 is responsible for the development of strains and can be expressed as,
Kapania (2003) and Mata et al. (2007).

Fn = FF−1
0 = 1

|F0|

ϕ̂,S − t̂1 + ω̃n

∑
β

ξβ t̂β

⊗ t̂01 +Λn (2)

where |F0| is the determinant of F0 and ω̃n =Λn,SΛ
T
n is the curvature tensor relative to

the curved reference beam. In Equation (2) the term defined as γ̃n = ϕ̂,S − t̂1 corresponds
to the reduced strain measure of shearing and elongation, Kapania (2003) and Simo
(1985), with material description given by �̂=ΛT γ̃.The material representation of Fn

is obtained as Fm
n =ΛTFnΛ0.

Removing the rigid body component from Fn, it is possible to construct the strain
tensor εn = Fn −Λn, which conjugated to the asymmetric First Piola Kirchhoff (FPK)
stress tensor P= P̂i ⊗ t̂0i referred to the curved reference beam, Simo (1985). P̂i is the
FPK stress vector acting on the deformed face in the current beam corresponding to
the normal t̂0i in the curved reference configuration. The spatial strain vector acting
on the current beam cross section is obtained as ε̂n = εnt̂01.
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By other hand, the spatial form of the stress resultant n̂ and the stress couple m̂
vectors can be estimated from the stress vector P̂1 according to

n̂(S) =
∫

A
P̂1 dA; m̂(S) =

∫
A

(x̂ − ϕ̂)P̂1 dA; (3)

The material form of P̂j and εn are obtained by means of the pull-back operation as
ε̂n =ΛTεn, P̂m

j =ΛTP̂j, n̂n =ΛTn̂ and m̂n =ΛTm̂ respectively.
An objective measure of the strain rate vector sn acting on any material point on the

current beam cross section can be deduced following the results presented by Mata et al.

(2008a) and using the definition of the Lie derivative operator
∇

[ • ] given in Mata et al.
(2007b) as follows:

sn =
�

[ ˙̂εn] =
�

[˙̂γn]+
�

[ ˙̃ωn]
∑
β

ξβ t̂β = ϕ̂,S − υ̂nϕ̃,S + υ̂n,S

∑
β

ξβ t̂β (4)

where υ̃n = Λ̇nΛ
T
n is the current spin or angular velocity of the beam cross section with

respect to the curved reference beam. The material form of Equation (4) is Ŝn = ΛT
ŝn .

According to the developments given by Antman (1991), the classical form of the
equations of motion of the Cosserat beam for the static case are

n̂,S + n̂p = Aρ0
¨̂ϕ + α̃nŜρ0 + υ̃nυ̃nŜρ0︸ ︷︷ ︸

D1

(5a)

m̂,S + ϕ̂,S × n̂ + m̂p = Iρ0α̂n + υ̃nIρ0υ̂n + Ŝρ0 × ¨̂ϕ︸ ︷︷ ︸
D2

(5b)

where n̂p and m̂p are the external body force and body moment per unit of reference
length at time t, Aρ0, Ŝρ0 and Iρ0 are the cross sectional mass density, the first mass
moment density and the second mass moment density per unit of length of the curved
reference beam, respectively; their explicit expressions can be consulted in Kapania
(2003) and Simo & Vu-Quoc (1986). α̃n ≡ Λ̈nΛ

T
n − υ̃2

n is the angular acceleration of
the beam cross section and υ̂n and α̂n are the axial vectors of υ̃n and α̃n, respectively.
For most of the practical cases, the terms D1 and D2 can be neglected or added to the
external forces and moments.

Considering a kinematically admissible variation4 ĥ≡ (δϕ̂, δθ̂) of the pair (ϕ̂, Λ), tak-
ing the dot product with Eqs. (5a) and (5b), integrating over the length of the curved
reference beam and integrating by parts, we obtain the nonlinear functional G(ϕ̂, Λ, h)
corresponding to the weak form of the balance equations, Ibrahimbegovic (1995) and

4 Supposing that Λ is parameterized in terms of the spatial rotation vector and following the results of
reference it is possible to show that δΛ= δθ̂×Λ with δθ̂ an admissible variation of the rotation vector.
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Simo & Vu-Quoc (1986), which is another way of writing the virtual work principle,

G(ϕ̂, Λ, h) =
∫

L
[(δϕ̂,S − δθ̂ × ϕ̂,S) · n̂ + δθ̂,S · m̂]dS

+
∫

L
[δϕ̂Aρ0

¨̂ϕ + δθ̂ · (Iρ0α̂n + υ̃nIρ0υ̂n)]dS

−
∫

L
[δϕ̂ · n̂p + δθ̂ · m̂p]dS − (δϕ̂ · n̂ + δθ̂ · m̂)|L0 = 0 (6)

The terms (δϕ̂,S − δθ̂× ϕ̂,S) and δθ̂,S appearing in Equation (6) correspond to the
co–rotated variations of the reduced strain measures γ̂n and ω̂n in spatial description.

2.2 Energy diss ipating devices

The finite deformation model for EDDs is obtained from the beam model releasing the
rotational degrees of freedom and supposing that all the mechanical behavior of the
device is described in terms of the evolution of a unique material point in the middle
of the resulting bar.

The current position of a point in the EDD bar is obtained from Equation (1) and
considering that ξβ= 0 as x̂(S, t)= ϕ̂(S, t). Supposing that the current orientation of the
EDD bar of initial length L∗ is given by the tensor Λ∗(t), (Λ∗

,S = 0, Λ̇∗ = 0), the spatial
position of the dissipative point in the EDD is obtained as ϕ̂(L∗/2, t) where L∗/2 is the
arch–length coordinate of the middle point in the bar element and the axial strain and
the axial strain rate in the dissipative point are obtained from Eqs. (2) and (4) as

Γ̂1(t) = {(Λ∗T ϕ̂,S) · Ê1}|(L∗/2,t) − 1 (7a)

˙̂
Γ1(t) = {(Λ∗T (ϕ̂,S − υ̃nϕ̂,S)) · Ê1}|(L∗/2,t) ≈ d

dt
Γ̂1(t)

∣∣∣∣
(L∗/2,t)

(7b)

Finally, the contribution of the EDD bar to the functional of Equation (6), written in
the material description, is given by

GEDD =
∫

L∗
nm

1 δΓ̂1 dS + {(Λ∗Tδϕ̂)T [M]d(Λ∗T ¨̂ϕ)}|(L∗/2,t) (8)

where it was assumed that Iρ0 ≈ 0, i.e. the contribution of the EDDs to the rotational
mass of the system is negligible and [M]d is the EDD’s translational inertia matrix,
i.e. the mass of the control system is supposed to be concentrated on the central point
of the bar. The term δΓ̂1 = (Λ∗T (ϕ̂,S − υ̃nϕ̂,S)) · Ê1 corresponds to the material form of
the variation of the axial strain in the EDD.

3 Constitutive models

In this work, material points on the cross sections are considered as formed by a
composite material corresponding to a homogeneous mixture of different simple com-
ponents, each of them with its own constitutive law (see Figure 2). The resulting
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Figure 2 Cross section showing the composite associated to a material point.

behavior is obtained by means of the mixing theory. Two kinds of nonlinear consti-
tutive models for simple materials are used: the damage and plasticity models. The
constitutive models are formulated in terms of the material form of the FPK stress and
strain vectors, P̂m

1 and ε̂n, respectively, Mata et al. (2007b and 2008a).

3.1 Degrading materials : damage model

The damage theory employed in this work is based on a special damage yielding
function which differentiates the mechanical response for tension or compression com-
ponents of the stress vector. The progress of the damage is based on the evolution of
a scalar damage parameter Oliver et al. (1990). Starting from an adequate form of
the free energy density and considering the fulfillment of the Clasius–Plank inequality
and applying the Coleman’s principle (see Mata et al. 2007b and 2008c) the following
constitutive relation in material form is obtained:

P̂m
1 = (1 − d)Cmeε̂n = Cmsε̂n = (1 − d)P̂m

01 (9)

where Cme and Cms = (1− d)Cme is the secant constitutive tensor. Equation (9) shows
that the FPK stress vector is obtained from its elastic counterpart by multiplying it by
the factor (1− d).

The damage yield criterion F , Hanganu et al. (2003) and Barbat et al. (1997), is
defined as a function of the undamaged elastic free energy density and written in terms
of the components of the material form of the undamaged principal stresses, P̂m

01, as

F = P − fc = [1 + r(n − 1)]

√√√√ 3∑
i=1

(Pm
ρ0i)

2 − fc ≤ 0 (10a)

where P is the equivalent stress, r and n are given in function of the tension and
compression strengths fc and ft and the parts of the free energy density developed
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when the tension, (Ψ0
t )L, or compression, (Ψ0

t )c, limits are reached; these quantities
are defined as

(Ψ0
t,c)L =

3∑
i=1

〈pm
p0i〉εni

2ρ0
, Ψ0

t = (Ψ0
t )L + (Ψ0

c )L (10b)

ft = (2ρΨ0
t E0)

1
2
L , fc = (2ρΨ0

c E0)
1
2
L , n = fc

ft
, r =

∑3
i=1〈Pm

p0i〉∑3
i=1 |Pm

p0i|
(10c)

A more general expression equivalent to that given in Equation (10a), Barbat et al.
(1997), is given by

F = G(P) − G(fc) (11)

The function G(P) has the following general expression Oliver et al. (1990):

G(χ) = 1 − G(χ)
χ

= 1 − χ∗

χ
eκ
(
1− χ∗

χ

)
(12)

where the term G(χ) gives the initial yield stress for certain value of the scalar parameter
χ=χ∗ and for χ→∞ the final strength is zero. The parameter κ of Equation (12)
is calibrated to obtain an amount of dissipated energy equal to the specific fracture
energy of the material g d

f =Gd
f /lc; where Gd

f is the tensile fracture energy and lc is the
characteristic length of the fractured domain.

The evolution law for the internal damage variable d is given by

ḋ = µ̇
∂F
∂P = µ̇

∂G
∂P (13)

where µ̇ = Ṗ ≥ 0 is the damage consistency parameter Mata et al. (2007b). Finally, the
Kuhn-Tucker relations: (a) µ̇≥ 0, (b) F ≤ 0, (c) µ̇F = 0, have to be employed to derive
the unloading–reloading conditions i.e. if F < 0 the condition (c) imposes µ̇= 0; on
the contrary, if µ̇>0 then F = 0.

3.1.1 Viscos i t y

The rate dependent behavior is considered by using the Maxwell model. The FPK stress
vector P̂mt

1 is obtained as the sum of a rate independent part P̂m
1 , Equation (9), and a

viscous component P̂mv
1 as

P̂mt
1 = P̂m

1 + P̂mv
1 = Cmvε̂n + ηsmŜn = (1 − d)Cme

(
ε̂n + η

E0
Ŝn

)
(14)

where ηsm = η/E0Cms is the secant viscous constitutive tensor, Cmv = (1− d)Cme, and
the parameter η is the viscosity. For the case of a completely damaged material (d= 1),
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the corresponding stresses are zero. The linearized increment of the FPK stress vector
(material and co-rotated forms) are calculated as

�P̂mt
1 = Cmv �ε̂n + ηsm�Ŝn, �[

�
P̂t

1 ] = Csv �[
�
ε̂n ] + ηss�[

�
ŝn ] (15)

where Csv =ΛCmvΛT and Csv =ΛηssΛT . The explicit form of the terms �Ŝn and [Ŝn]
can be consulted in reference Mata et al. (2008a). Finally, the material description of
the tangent constitutive tensor Cmv considering the viscous effect is given by Barbat
et al. (1997)

Cmv = (I − Dme)Cme = I −
[

I + dG
dPm

(P̂m
01 + P̂mv0

1 ) ⊗ ∂Pm

∂P̂m
01

]
(16)

3.2 Plast ic materials

In the case of materials which can undergo non-reversible deformations the plasticity
model formulated in the material configuration is used for predicting their mechanical
response. Assuming small elastic, finite plastic deformations, an adequate form of the
free energy density and analogous procedures as those for the damage model we have

P̂m
1 = ρ0

∂Ψ (ε̂e
n, kp)
∂ε̂e

n
= Cms(ε̂n − ε̂P

n) = Cmeε̂e
n (17)

where the ε̂e
n is the elastic strain calculated subtracting the plastic strain ε̂P

n from the
total strain ε̂n and ρ0 is the density in the material configuration.

Both, the yield function, Fp, and plastic potential function, Gp are formulated in
terms of the FPK stress vector P̂m

1 and the plastic damage internal variable kp as

Fp(P̂m
1 , kp) = Pp(P̂m

1 ) − fp(P̂m
1 , kp) = 0, Gp(P̂m

1 , kp) = K (18)

where Fp(P̂m
1 , kp) is the equivalent stress, which is compared with the hardening func-

tion fp(P̂m
1 , kp) and K is a constant value, Oller et al. (1996a). In this work, kp

constitutes a measure of the energy dissipated during the plastic process and, therefore,
it is well suited for materials with softening and is defined by Oller et al. (1996b) as

gP
f =

GP
f

lc
=
∫ ∞

t=0
P̂m

1 · ε̇P
n dt, 0 ≤

[
kp = 1

g P
f

∫ t

t=0
P̂m

1 · ε̇P
n dt

]
≤ 1 (19)

where GP
f is the specific plastic fracture energy of the material in tension and lc is the

length of the fractured domain defined in analogous manner as for the damage model.
The integral term in Equation (19) corresponds to the energy dissipated by means of
plastic work.

The flow rules for the internal variables ε̂P
n and kp are defined as

˙̂εP
n = λ̇

∂Gp

∂P̂m
1

, kp = λ̇%̂(P̂m
1 , kp, GP

f ) · ∂Gp

∂P̂m
1

= %̂(P̂m
1 , kp, GP

f ) · ˙̂εP
n (20)
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where λ̇ is the plastic consistency parameter and %̂ is the hardening vector, Oller et al.
(1996a). Regarding the hardening function of Equation (18), the following evolution
equation has been proposed:

fp(P̂m
1 , kp) = rσt(kp) + (1 − r)σc(kp) (21)

where r has been defined in Equation (10c) and the scalar functions σt(kp) and σc(kp)
describe the evolution of the yielding threshold in uniaxial tension and compression
tests, respectively.

As it is a standard practice in plasticity, the loading/unloading conditions are derived
in the standard form from the Kuhn-Tucker relations formulated for problems with
unilateral restrictions, i.e. (a) λ̇≥ 0, (b) Fp ≤ 0 and (c) λ̇Fp = 0. Starting from the plastic
consistency condition Ḟp = 0 and considering the flow rules it is possible to deduce the
explicit form of λ̇, as Oller et al. (1996a)

λ̇ = −

∂Fp

∂P̂m
1

· (Cme ˙̂εn){
∂Fp

∂P̂m
1

(
Cme ∂Gp

∂P̂m
1

)
− ∂fp

∂kp
%̂ · ∂Gp

∂P̂m
1

} (22)

The material form of the tangent constitutive tensor is calculated taking the time
derivative of Equation (17), considering the flow rule of Equation (20) and the plastic
consistency parameter of Equation (22) as Oller et al. (1996b)

δP̂m
1 =


(

Cme ∂Gp

∂P̂m
1

)
⊗
(

Cme ∂Fp

∂P̂m
1

)
∂Fp

∂P̂m
1

·
(

Cme ∂Gp

∂P̂m
1

)
− ∂Fp

∂kp
%̂ ·
(
∂Gp

∂P̂m
1

)
 δε̂n = Cmtδε̂n (23)

3.3 Mixing theory for composites

Each material point on the beam cross section is treated as a composite material
according to the mixing theory, Oller et al. (1996a). The interaction between all
the components defines the overall mechanical behavior of the composite at mate-
rial point level. Supposing N different components coexisting in a generic material
point subjected to the same material strain ε̂n, we have the following closing equation:
ε̂n ≡ (ε̂n)1 = · · · = (ε̂n)q = · · ·= (ε̂n)N , which imposes the strain compatibility between
components. The free energy density of the composite, �, is obtained as the weighted
sum of the free energy densities of the N components. The weighting factors corre-
spond to the quotient between the volume of the qth component, Vq and the total
volume, V, such that �q kq = 1.

The material form of the FPK stress vector P̂m
1 for the composite, including the

participation of rate dependent effects, is obtained in analogous way as for simple
materials i.e.

P̂mt
1 =

∑
q

kq(P̂m
1 + P̂mv

1 )q =
∑

q

kq

[
(1 − d)Cme

(
ε̂n + η

E0
Ŝn

)]
q

(24)
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where (P̂m
1 )q and (P̂mv

1 )q correspond the strain and rate dependent stresses of each one
of the N components. The material form of the secant and tangent constitutive tensors
for the composite, C ms

and C mt
, are obtained as, Oller et al. (1996a)

Cms =
N∑

q=1

kq(Cms)q, Cmt =
N∑

q=1

kq(Cmt)q δε̂n (25)

where (Cms)q and (Cmt)q are the material form of the secant and tangent constitutive
tensors of the qth component.

3.4 Constitutive relations for EDDs

The constitutive law proposed for EDDs is based on a previous work of Mata et al.
(2007a) which provides a versatile strain–stress relationship with the following general
form:

P
m

(ε1, ε̇1, t) = P
m
1 (ε1, t) = P

m
2 (ε̇1, t) (26)

where P
m

is the average stress in the EDD, ε1 the strain level, t the time, ε̇1 the
strain rate, P

m
1 and P

m
2 are the strain dependent and rate dependent parts of the stress,

respectively. The model uncouples the total stress in viscous and non-viscous compo-
nents, which correspond to a viscous dashpot device acting in parallel with a nonlinear
hysteretic spring. The purely viscous component does not requires to be a linear func-
tion of the strain rate. Additionally, hardening, and variable elastic modulus can be
reproduced. The response of the nonlinear hysteretic spring is obtained solving sys-
tem of nonlinear differential equations depending on a set of parameters calibrated
from experimental data. Details about the determination of the parameters and the
integration algorithm can be reviewed in Mata et al. (2007a).

4 Numerical implementation

In order to obtain a Newton type numerical solution, the linearized form of the weak
form of Equation (6) is required, which can be written as

L[G(ϕ̂∗, Λ∗, ĥ)] = G(ϕ̂∗, Λ∗, ĥ) = DG(ϕ̂∗, Λ∗, ĥ) · p̂ (27)

where L[G(ϕ̂∗, Λ∗, ĥ)] is the linear part of the functional G(ϕ̂, Λ, ĥ) at the configuration
defined by (ϕ̂, Λ)= (ϕ̂∗, Λ∗) and p̂ ≡ (�ϕ̂,�θ̂) is an admissible variation. The term
G(ϕ̂∗, Λ∗, ĥ) supplies the unbalanced force and it is composed by the contributions of
the inertial, external and internal terms; the differential DG(ϕ̂∗, Λ∗, ĥ) · p̂, gives the
tangential stiffness, Simo & Vu-Quoc (1986).

The linearization of the inertial and external components, DGint · p̂ and DGext · p̂
gives the inertial and load dependent parts of the tangential stiffness, K1∗ and KP∗,
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respectively, and they can be consulted in Simo & Vu-Quoc (1986). The linearization
of the internal term is calculated as, Mata et al. (2007b and 2008a)

DGint(ϕ̂∗, Λ∗, ĥ) · p̂ =
∫ L

0

ĥT

[
0 0

−ñ∗
[

d
dS

]
0

]
︸ ︷︷ ︸

[ns∗]

p̂ + ĥT [B∗]T
[
�n̂∗
�m̂∗

] dS (28)

where the skew–symmetric tensor ñ∗ is obtained from n̂∗, [d/dS]v̂= [I]v̂,S ∀ v̂∈R3, the
operator [nS∗] contributes to the geometric part of the tangent stiffness and the operator
[B∗] relates the admissible variation h and the co-rotated variation of the strain vectors.
The explicit expression for [B∗] can be found in Kapania (2003) and Simo & Vu-Quoc
(1986).

The estimation of the linearized form of the sectional force and moment vectors
appearing in Equation (28) requires taking into account the linearized relation existing
between P̂m

1 , obtained using the mixing rule, and ε̂n. After integrating over the beam
cross section, the following result is obtained for the linearized relation between cross
sectional forces and the reduced strain measures Mata et al. (2007b and 2008a)

{
�n̂
�m̂

}
=
[

CSV
11 CSV

12

CSV
21 CSV

22

]
︸ ︷︷ ︸

[CSV ]

�[
�
γ̂n ]

�[
�
ω̂n ]

+
[
ϒSS

11 ϒSS
12

ϒSS
21 ϒSS

22

]
︸ ︷︷ ︸

[ϒSS]

�[
�˙̂γn ]

�[
�˙̂ωn ]

−
[
o ñ
o m̃

]
︸ ︷︷ ︸

[F̃]

{
�ϕ̂

�θ̂

}
(29)

where m̃ is the skew-symmetric tensor obtained from m̂, CSV
ij and ϒSS

ij , (i, j= 1, 2) are
the spatial forms of the reduced tangential and viscous tangential constitutive tensors,
which are rate dependent and can be consulted in Mata et al. (2008a). Finally, Equation
(29) allows to rewrite Equation (28) as

DGint · p̂ =
∫ L

0
ĥT [B∗]T [Cst

∗ ][B∗]p̂ dS︸ ︷︷ ︸
KG∗

+
∫ L

0
ĥT [B∗]T [ϒst

∗ ][v∗]p̂ dS︸ ︷︷ ︸
KM∗

+
∫ L

0
ĥT ([̃nS∗] − [B∗]T [̃F∗])p̂ dS︸ ︷︷ ︸

KV∗

(30)

where KG∗, KM∗ and Kv∗, evaluated at the configuration (ϕ̂∗, Λ∗), give the geometric,
material and viscous parts of the tangent stiffness, which allows to rewrite Equation
(27) as

L[G∗] = G∗ + K1∗ + KM∗ + KV∗ + KG∗ + KP∗ (31)

The solution of the discrete form of Equation (30) by using the FE method follows
identical procedures as those described by Simo & Vu-Quoc (1986) for an iterative
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Newton-Rapson integration scheme and it will not be included here. Newmark’s
implicit time stepping algorithm has been chosen as integration method following
the development originally proposed by Simo & Vu-Quoc (1986). For the rotation
part the time-stepping procedure takes place in SO(3) and the basic steps, as well as
the iterative update algorithm for the strain and strain rate vectors are given in Mata
et al. (2007b and 2008a).

4.1 Cross sectional analysis

The cross section analysis is carried out expanding each integration point on the beam
axis in a set of integration points located on each fiber on the cross section. The
cross section is meshed into a grid of quadrilaterals, each of them corresponding to a
fiber oriented along the beam axis. The geometry of each quadrilateral is described by
means of normalized bi-dimensional shape functions and several integration points can
be specified according to a selected integration rule. The average value of a quantity,
[•], for example, the components of FPK stress vector or the tangential tensor existing
on a quadrilateral, are

[•] = 1
Ac

∫
Ac

[•]dAc = 1
Ac

Np∑
p=1

Nq∑
q=1

[•](yp, zp)JpqWpq (32)

where Ac is the area of the quadrilateral, Np and Nq are the number of integration
points in the two directions of the normalized geometry, [•](yp, zq) is the value of the
quantity [•] existing on a integration point with coordinates (yp, zq) with respect to
the reference beam axis, Jpq is the Jacobian of the transformation between normalized
coordinates and cross sectional coordinates and Wpq are the weighting factors. Two
additional integration loops are required. The first one runs over the quadrilaterals
and the second loop runs over each simple material associated to the composite of the
quadrilateral. More details can be consulted in Mata et al. (2007).

5 Damage indices

A measure of the damage level of a material point can be obtained as the ratio of the
existing stress level to its elastic counterpart. Following this idea, it is possible to define
the fictitious damage variable

̂

D as, Barbat et al. (1997)

3∑
i=1

|Pm
1i| = (1 −

̂

D)
3∑

i=1

|Pm
1i0| →

̂

D = 1 −
∑3

i=1 |Pm
1i|∑3

i=1 |Pm
1i0|

(33)

where |Pm
1i| and |Pm

1i0| are the absolute values of the components of the existing and
elastic stress vectors, respectively. Initially, the material remains elastic and

̂

D= 0,
but when all the energy of the material has been dissipated |Pm

1i|→0 and

̂

D→ 1.
Equation (33) can be extended to consider elements or even the whole structure by
means of integrating over a finite volume as follows:̂

D = 1 −
∫

Vp
(�i|Pm

1i|)dVp∫
Vp

(�i|Pm
1i0|)dVp

(34)
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where Vp is the volume of the part of the structure. Equation (34) is easily implemented
in a standard FEM code without requiring large extra memory storage.

6 Numerical examples

6.1 Experimental–numerical comparative study of a scaled
RC building model

The first example corresponds to the comparison between the numerical simulation
obtained by means of the proposed formulation and the experimental data obtained
by Lu (2002) for the seismic analysis of a scaled model (1:5.5) of a benchmark regular
bare frame (BFR). The structure was designed for a ductility class medium in accor-
dance with the Eurocode 8 (2001) with a peak ground acceleration of 0,3 g and a soil
profile A. Details about loads, geometry, material properties and distribution of steel
reinforcements can be consulted in the same publication. In the experimental program,
the structure was subjected to several scaled versions of the N–S component of the El
Centro 1940 earthquake record. Four quadratic elements with two Gauss integration
points were used for each beam and column. Cross sections were meshed into a grid
of 20 equally spaced layers. Longitudinal steel reinforcements were included in the
external layers as part of a composite material. The fracture energy of the damage
model used for concrete was modified to take into account the confining effect of
transversal stirrups, Mata et al. (2007b). A tension to compression ratio of 10 was
used for concrete and 1 for steel. In the numerical simulations, the model is subjected
to a push–over analysis. Static forces derived from the inertial contribution of the
masses are applied at the floor levels considering an inverted triangular distribution.
A relationship between the measured base shear and the top lateral displacement is
given by Lu (2002) for each seismic record. This curve is compared in Figure 3 with
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Figure 3 Capacity curves:Comparison between results from numerical pushover and experimen-
tal tests.
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the capacity curve obtained by using the numerical push–over analysis. It is possible to
see that the push– over analysis gives a good approximation for the global maximum
response and, therefore, it constitutes a suitable numerical procedure for estimating
the expected nonlinear properties of structures subjected lo seismic actions. In the same
figure, it is possible to appreciate that in both, the numerical simulation and the exper-
imental cases, the characteristic values of the structure; that is, global ductility level,
elastic limit and overstrength, are similar. Figure 4 shows a comparison between the
distribution of cross sectional damage predicted numerically and the map of fissures
obtained after the application of several shaking table tests.

In this case, the proposed damage index along with the geometric and constitutive
formulation used for beams is able to reproduce the general failure mechanism of the
structure where dissipation is mainly concentrated in the beam elements.

6.2 Seismic response of a precast RC building with EDDs

The nonlinear seismic response of a typical precast RC industrial building shown in
Figure 5 is studied. The building has a bay width of 24 m and 12 m of inter–axes
length. The story height is 10 m. The concrete of the structure is H-35, (35 MPa,
ultimate compression), with an elastic modulus of 29.000 MPa. It has been assumed
a Poisson coefficient of 0.2. The ultimate tensile stress for the steel is 510 MPa. This
figure also shows some details of the steel reinforcement of the cross sections. The
dimensions of the columns are 60× 60 cm2. The beam has an initial high of 60 cm on
the supports and 160 cm in the middle of the span. The permanent loads considered
are 1050 N/m2 and the weight of upper half of the closing walls with 432,000 N. The
input acceleration is the same as in example 6.1.

The half part of the building is meshed using 4 quadratic elements with two Gauss
integration points for the resulting beam and column. The cross sectional grid of fibers
is shown in Figure 6. One integration point is used for each quadrilateral.
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Figure 4 Damage. (a) Experimental:Map of fissures. (b) Numerical:Cross sectional damage index.
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incorporated (diagonal elements). 3: Numerical model of column and beam cross
sections.

The EED was simulated by means of employing the previously described model
reproducing a plastic dissipative mechanism. The properties of the device were designed
for yielding with an axial force of 150.000 N and for a relative displacement between
the two ending nodes of 1.5 mm. The length of the devices was of 2.0 m. The results
of the numerical simulations allow seeing that the employment of plastic EDDs con-
tributes to improve the seismic behavior of the structure for the case of the employed
acceleration record. Figure 7a shows the hysteretic cycles obtained from the lateral
displacement of the upper beam–column joint and the horizontal reaction (base shear)
in the columns for the structure with and without devices. It is possible to appreciate
that the non-controlled structure (bare frame) presents greater lateral displacements
and more structural damage, (greater hysteretic area than for the controlled case). Fig-
ure 7b shows the hysteretic cycles obtained in the EDD, evidencing that part of the
dissipated energy is concentrated in the controlling devices, as expected.
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Figure 8 shows the time history response of the horizontal displacement of the upper
beam–column joint. A reduction of approximately 40% is obtained for the maximum
lateral displacement when compared with the bare frame. Acceleration and velocity
are controlled in the same way, but only 10 and 5% of reduction is obtained. A possible
explanation for the limited effectiveness of the EDD is that the devices only contribute
to increase the ductility of the beam–column joint without alleviating the base shear
demand on the columns due to the dimensions of the device and its location in the
structure. By other hand, joints are critical points in precast structures and therefore,
the employment of EDDs combined with a careful design of the columns can help to
improve their seismic behavior.

7 Conclusions

In this work, a geometrically exact formulation for initially curved beams has been
extended to consider arbitrary distributions of composite materials on the cross
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sections in the seismic case. The consistent linearization of the weak form of the
momentum balance equations considers the constitutive nonlinearity with rate depen-
dent effects. The resulting model is implemented in a displacement based FEM code.
An iterative Newton-Rapson scheme is used for the solution of the discrete version of
the linearized problem. A specific element for EDD is developed, based on the beam
model but releasing the rotational degrees of freedom.

Each material point of the cross section is assumed to be composed of several simple
materials with their own constitutive laws. The mixing rule is used to describe the
resulting composite. Viscosity is included at constitutive level by means of a Maxwell
model. Beam cross sections are meshed into a grid of quadrilaterals corresponding to
fibers directed along the beam axis. Two additional integration loops are required at
cross sectional level in each integration point to obtain the reduced quantities. Local
and global damage indices have been developed based on the ratio between the visco-
elastic and the nonlinear stresses.

The present formulation is validated by means of two numerical examples, which
include the comparison with existing experimental data and the study of the seismic
response of a precast reinforced concrete structure with EDDs.
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ABSTRACT: The problems of structural damage detection and reliability assessment are
closely related, and should be dealt with in a unified approach. In fact, the health monitoring
of a damaged construction requires both damage detection and the assessment of the effects of
damages on the life-cycle reliability. In this paper, a complete procedure for structural health
monitoring is briefly illustrated and applied. The problem of damage detection is dealt with by an
identification technique with unknown input; a Bayesian model updating procedure, based on an
adaptive Markov Chain Monte Carlo method, is adopted to quantify, in probabilistic terms, the
structural damage based on data from monitoring. An advanced simulation technique, Subset
Simulation, is then used to assess the probability of exceeding any structural response level
taking into account the various sources of uncertainty. It is observed that the Bayesian approach
is really efficient in characterizing the structural damage and its effects.

1 Introduction

For any structure the problems of life-cycle reliability assessment and damage detection
are closely related, and should be dealt with in a unified approach, aimed at struc-
tural health monitoring. In fact, according to (Doebling et al. 1996), any structural
health monitoring procedure should be articulated in two steps: damage identification
that consists of detection, quantification and localization of any damage; and then
assessment of the effects of the structural damage on the life-cycle reliability.

The problem of damage detection is often solved by a system identification technique;
past research has aimed primarily at implementing efficient solutions for each relevant
inverse problem, where the efficiency is usually related to the computational aspects.

The reliability assessment is carried out by using advanced reliability theory; most
research in this field has dealt with the issues of the probabilistic characterization of the
uncertain quantities, the computational efficiency in case of large dimension problems,
and the lack of analytical solutions that occurs, for example, in case of structures that
exhibit a strongly nonlinear dynamic behaviour.
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However, a global approach to structural health monitoring that consistently takes
into account the various sources of uncertainty has been applied only in a few cases.
From these studies, it has been concluded that the Bayesian approach is really effi-
cient in characterizing the structural damage and its effects in probabilistic terms; for
example, to calculate the probability of damage in various structural elements. The
main reason is that this approach gives as final result the probability density functions
of the identified parameters, which in turn can be used in any structural reliability
assessment.

In this work, the procedure implemented by the authors for the health monitoring of
a structure damaged by an earthquake (Sibilio & Ciampoli 2006, Sibilio et al. 2006) is
briefly illustrated and applied to an example case. An advanced Markov Chain Monte
Carlo simulation technique, known as Subset Simulation (Au & Beck 2001, Au &
Beck 2003, Ching et al. 2005a, Ching et al. 2005b), is used to assess the probability
of exceeding any response level, that is, to assess the structural risk, for a structure
damaged by an earthquake.

2 A procedure for structural health monitoring

The procedure, which is described in detail in (Sibilio & Ciampoli 2006, Sibilio et al.
2006), requires the identification of the structural parameters and the assessment of
the seismic reliability of the damaged structure.

2.1 Structural identif ication with unknown input

Consider a structure excited by a seismic ground acceleration ag(t) which is modeled
as a linear dynamic system with Nd degrees of freedom:

Mẍ(t) + Cẋ(t) + Kx(t) = −τMag(t) (1)

where: M, C and K are the mass, damping and stiffness matrices; x(t), ẋ(t) and ẍ(t) are
the vectors of displacements, relative velocities and relative accelerations; and τ is the
influence vector which accounts for the degrees of freedom excited by the earthquake.

Consider as a response parameter the absolute acceleration of the j-th degree of free-
dom yj(t). Its Fourier transform Yj(iω) is given by the product of the Fourier transform
of the ground acceleration Ag(iω) and the frequency response function Hj(iω):

Yj(iω) = Ag(iω)Hj(iω) (2)

The frequency response function Hj(iω) depends on the mass, damping and stiffness
matrices; it is a function of the natural frequencies ω̃l, the modal damping ratios ξ̃l,
and the normalized mode shapes Φ, given by:

Hj(iω) = τj − ω2
Nd∑
l=1

ψjl

ω2 − 2iω̃l ξ̃lω− ω̃2
l

(3)

where ψjl is an element of: Ψ= diag(p)Φ, and: p=ΦTMτ is the vector of the modal
participation factors.
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The ratio Rjk(iω) between the Fourier transforms of the absolute accelerations of the
j-th and k-th degree of freedoms, is given by:

Rjk(iω) = Ag(iω)Hk(iω)
Ag(iω)Hj(iω)

=
τk − ω2∑Nd

l=1

ψkl

ω2 − 2iω̃kξ̃kω− ω̃2
k

τj − ω2
∑Nd

l=1

ψjl

ω2 − 2iω̃l ξ̃lω− ω̃2
l

(4)

This ratio does not depend on the input, but is only a function of the structural charac-
teristics; therefore, when the input is unknown, it is possible to exploit the information
given by any Rjk(iω) to identify the structural parameters (Capecchi et al. 2004, Sepe
et al. 2005).

The Bayesian model updating approach, applied to structural identification in
(Beck & Katafygiotis 1998), is used to update the probability density function (PDF)
of each model parameter according to measured data. Let Ds be a set of measured
data, Ms the model class, that is, the system of differential equations (Eq. 1), and θs the
vector of structural parameters for the chosen model class. Bayes’ theorem states that
the posterior PDF p(θs|Ds, Ms) of θs is proportional to the product of the likelihood
function p(Ds|θs, Ms) and the prior PDF p(θs|Ms); the proportionality constant c is
given by the inverse of the so-called evidence p(Ds|Ms).

The structural response is known in terms of the absolute accelerations of some
degrees of freedom. According to (Yuen & Katafygiotis 2005, Yuen & Katafygiotis
2006), the vector of structural responses, y(t), can be divided in two groups, yA(t) and
yB(t). Each vector yA(t) and yB(t) can be expressed as the sum of the correct structural
response, q(t), and a prediction error, η(t), that accounts for the model uncertainty
and noise in the signal, and is typically modelled as a Gaussian white noise, as:

yA(t) = qA(t) + ηA(t) yB(t) = qB(t) + ηB(t) (5)

The same partition can be applied to the measured data Ds. The data collected in DsA

are those that do not add any information on the posterior PDF of the model parameter
θs (Yuen & Katafygiotis 2005, Yuen & Katafygiotis 2006). As a consequence of this
assumption, the posterior PDF can be written as follows:

p(θs|Ds, Ms) = c p(DsB|θs, DsA, Ms)p(θs|Ms) (6)

The Fourier transform YB(iω) of yB(t) can be expressed as the function of the Fourier
transform YA(iω) of yA(t), the ratios RAB(iω, θs) and the Fourier transforms of the
white noises NA(iω) and NB(iω) given by the following Equation 7:

YB(iω) = HB(iω, θs)
HA(iω, θs)

YA(iω) − HB(iω, θs)
HA(iω, θs)

NA(iω) + NB(iω)

= RAB(iω, θs) YA(iω) + H(iω, θs)N(iω) (7)

Assuming DsA =YA(iω) and DsB =YB(iω) and considering that the values of the
transforms at different frequencies are statistically independent, it is possible to
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evaluate the likelihood function p(DsB|θs, DsA, Ms), and, with the chosen prior PDF
p(θs|Ms), to assess the posterior probability up to the constant c.

To identify the posterior PDF of θs by exploiting the information contained in YA(iω)
and YB(iω), samples can be drawn from it. In the implemented procedure (Sibilio &
Ciampoli 2006, Sibilio et al. 2006), Markov Chain Monte Carlo simulation is applied:
an adaptive Metropolis-Hasting algorithm that is known as the Transitional Markov
Chain Monte Carlo (TMCMC) algorithm (Ching & Chen 2007). The results of the
TMCMC algorithm are a chain of samples of the model parameters θs asymptoti-
cally distributed as the posterior PDF p(θs|Ds, Ms), obtained from the prior PDF using
the information given by the available data. The procedure can successfully identify,
quantify and locate the structural damage along with its associated level of uncertainty.

2.2 Seismic rel iabi l i ty assessment

Let us consider the seismic reliability assessment of a structure and assume that the site
seismic hazard is described by the earthquake magnitude M and the source-to-site dis-
tance R. The probability of structural failure P(F), that is, the probability of exceeding
a threshold response level, can be expressed by the Theorem of Total Probability as:

P(F) =
∫
M

∫
R

P(F|M, R)p(M)p(R) dM dR (8)

or, in a more general framework, as:

P(F) =
∫

g(θ)≤0

q(θ) dθ =
∫
Rd

IF(θ) q(θ) dθ (9)

where: θ∈Rd is the vector of the d uncertain parameters; g(θ) is a performance function
such that: g(θ)≤ 0 defines the failure domain F⊂Rd; g(θ)> 0 defines the safe domain.
The function IF(θ) is the indicator function, that assumes the values 1 or 0, that is:
IF(θ)= 1 if θ∈ F; IF(θ)= 0 if θ /∈ F.

In what follows, a robust reliability procedure is applied, and the terms of the
reliability integral are characterized by means of a Bayesian structural identification
approach (Papadimitriou et al. 2001).

Let θs be the vector of structural parameters, Ds the data gathered by the analysis
of the structural response (in the considered case, the measured accelerations), and Ms

the class of models representing the structure. By using the Bayesian Model Updating
approach, the posterior PDF p(θs|Ds, Ms) can be estimated and the probability of failure
P(F|M, R) evaluated as:

P(F|M, R) =
∫
θs

P(F|θs, M, R) p(θs|Ds, Ms) dθs (10)
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Substituting Equation 10 into Equation 8 and considering the uncertainty of
the excitation to be completely defined by the PDFs of the magnitude p(M) and the
source-to-site distance p(R), the probability of failure becomes:

P(F) =
∫
M

∫
R

∫
θs

P(F|θs, M, R) p(θs|Ds, Ms) p(R) p(M) dθs dR dM (11)

Comparing Equation 9 and Equation 11, the distribution q(θ)= p(θs|Ds, Ms)
p(M) p(R), is the product of the PDFs of three independent sets of parameter, that
is, θs, M and R.

The structural response is evaluated in the time domain and the excitation is given
in terms of a stochastic model of the input ground acceleration time history. In what
follows, the model by (Atkinson & Silva 2003) is implemented. The site seismic hazard
is expressed as a function of M and R for given local soil conditions; a further PDF
p(Z) is introduced, to model the uncertainty in the ground motion time history for a
given M and R. Therefore q(θ) is given by q(θ)= p(θs|Ds, Ms) p(M) p(R)p(Z) and the
integral in Equation 11 can be written as:

P(F) =
∫
M

∫
R

∫
Z

∫
θs

P(F|θs, M, R, Z) p(θs|Ds, Ms) p(R) p(M) p(Z) dθs dR dM dZ (12)

In order to solve the reliability integral (Eq. 12), Monte Carlo simulation involves
selecting N samples θk from q(θ); the indicator function IF(θk) is then evaluated for
each sample by structural analysis, and the probability of failure approximated by the
estimator:

P(F) ≈ 1
N

N∑
k=1

IF

(
θ(k)
)

(13)

The assessment of P(F) by Eq. (13) is inefficient in case of low probability events.
Therefore, Subset Simulation (Au & Beck 2001, Au & Beck 2003, Ching et al. 2005a,
Ching et al. 2005b) has been applied to assess P(F) by Equation 13.

The basic idea of Subset Simulation is to express the failure probability as the product
of the conditional probabilities of some intermediate failure events Fi. Each event must
have a larger probability of occurrence P(Fi) than P(F), so that it can be efficiently
evaluated. Au & Beck (2001) have proposed to define a decreasing sequence of failure
events: F1 ⊃ F2 ⊃ · · · ⊃Fm = F, such that:

Fk =
k⋂

i=1

Fi k = 1, . . . , m (14)

According to the definition of conditional probability, the probability of failure
P(F) can be evaluated as the product of the conditional probabilities {P(Fi+ 1|Fi):
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i= 1, . . . , m− 1} and of P(F1). The probability P(F1) can be obtained by Monte Carlo
simulation:

P(F1) ≈ P̂i = 1
N

N∑
k=1

IF1 (θ(k)) (15)

where {θ(k) : k= 1, . . . , N} are independent and identically distributed samples derived
from the PDF of the uncertain parameters q(θ). In order to evaluate P(Fi+ 1|Fi) an
estimator similar to (15) can be applied: samples are obtained from the conditional
distribution q(θ|Fi), assuring that any θ(k) lies in the failure region Fi, by implementing
a Metropolis-Hastings algorithm (Au & Beck 2001, Au & Beck 2003). Finally, P(F) is
estimated by:

P̂(F) ≈
m∏

i=1

P̂i (16)

Details about the statistical properties of the estimator in Equation 16 can be found in
(Au & Beck 2001).

3 A case example

A shear-type planar frame (Fig. 1a) is considered to illustrate the procedure
for structural health monitoring. The elements of the stiffness and mass matri-
ces are set equal to: k1 = k2 = k3 = 100 kN/m; k4 = k5 = k6 = 80 kN/m; m1 =m2 =
m3 =m4 =m5 =m6 = 100 kg. The natural frequencies are equal to: f1 = 1.18 Hz;
f2 = 3.32 Hz; f3 = 5.39 Hz; f4 = 7.07 Hz; f5 = 8.28 Hz; f6 = 9.39 Hz. The modal damp-
ing ratios are set equal to: ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = ξ6 = 0.02. The vector of modal
participation factors is equal to: p= [22.61 −7.81 −4.00 2.81 1.45 −1.27]T , and
the percentage of the total mass excited for each mode is given by: m% = [85.22%,
10.17%, 2.67%, 1.32%, 0.35%, 0.27%]T . A sampling time step: �t = 0.005 s is
taken, for a total simulation time of T = 100 s; so Nt = 20000 data points are obtained
for each response time history.

The stiffness matrix K is decomposed according to the FE approach into storey
substructure matrices K1, . . . , K6 and scaling factors θ1, . . . , θ6 are introduced as
follows:

K =
Nd=6∑
i=1

θiKi (17)

Let us consider the absolute acceleration of the first, third and sixth floor, y1(t), y3(t)
and y6(t) (Fig. 1b) as the available recorded data Ds; the data set DsA is represented by
the Fourier transform Y1(iω) of y1(t), and the data set DsB by the Fourier transforms
Y3(iω) and Y6(iω) of y3(t) and y6(t). The noise level is set equal to 5% of the rms of
each noise-free response over the interval [0, T], where T= 100 s; the noise is modeled
as Gaussian white noise. The parameters to be identified are the stiffness parameters,
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Figure 1 (a) Shear-type frame; (b) absolute accelerations y1, y3 and y6 considered in the
identification procedure.

the damping ratios and the standard deviation of the prediction errors η(t), and are
gathered in the vector θs = [θ1 θ2 θ3 θ4 θ5 θ6 ξ1 ξ2ξ3 ξ4 ξ5 ξ6 ση1 ση3 ση6]T .

The identification of the parameters for the cases of undamaged structure and five
cases of damaged structure are carried out by a pseudo-experimental procedure, that
is, by simulating the response for the actual cases, adding the noise and performing
the structural identification.

The ground acceleration record of the 1940 El-Centro earthquake is used as input.
For the undamaged structure, UD, the vector of stiffness parameters is set equal to:
[θ1 θ2 θ3 θ4 θ5 θ6]T = [1 1 1 1 1 1]T ; the five damaged cases (DM1, DM2, DM3,
DM4, DM5) correspond to a reduction of 10% of the first, second, third, fourth and
fifth floor stiffness, respectively.

To apply the Bayesian model updating procedure, prior distributions with large
standard deviations are selected for the model parameters. Lognormal (LN) distribu-
tions with mean 1 and standard deviation of the logarithm equal to 1 are adopted for
the stiffness parameters; LN distributions with mean 0.02 and standard deviation of
the logarithm equal to 1 are adopted for the damping ratios; LN distributions with
mean −1.651 and standard deviation of the logarithm equal to 1 are adopted for the
prediction-error variances for the structural accelerations.

The results of the structural identification are reported in Table 1 for the case of
the undamaged (UD) structure and one case (DM1) of a damaged structure. It is
evident that the procedure can accomplish all phases of damage detection, that is,
damage identification, localization and quantification. The uncertainty of the identified
parameters is sufficiently low in most cases; the model parameters are thus identifiable
on the basis of the available data.
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Table 1 Actual and identified (optimal) values of parameter θs for the undamaged (UD) and damaged
(DM1) structure; coefficient of variation (COV) of the optimal values.

Parameter UD DM1

Actual Optimal COV Actual Optimal COV
value value value value

θ1 1.0 1.0510 0.094 0.9 0.9074 0.141
θ2 1.0 1.0005 0.006 1.0 1.0015 0.006
θ3 1.0 0.9989 0.006 1.0 0.9978 0.007
θ4 1.0 1.0019 0.056 1.0 1.0016 0.008
θ5 1.0 0.9989 0.006 1.0 1.0036 0.007
θ6 1.0 1.0001 0.007 1.0 0.9914 0.009
ξ1 0.02 0.0199 0.028 0.02 0.0201 0.034
ξ2 0.02 0.0203 0.045 0.02 0.0197 0.049
ξ3 0.02 0.0221 0.129 0.02 0.0217 0.143
ξ4 0.02 0.0193 0.318 0.02 0.0209 0.288
ξ5 0.02 0.0234 0.228 0.02 0.0202 0.205
ξ6 0.02 0.0193 0.175 0.02 0.0219 0.191
ση1 0.0034 0.0051 0.245 0.0037 0.0050 0.298
ση3 0.0071 0.0187 0.068 0.0079 0.0193 0.052
ση6 0.0114 0.0082 0.207 0.0124 0.0112 0.177

However, the precision of the identification is not the same for all parameters. In
fact, the stiffness parameter θ1 is identified with a coefficient of variation (COV) that
is significantly greater than the other stiffness parameters, whereas the first two damp-
ing ratios ξ1 and ξ2 are identified with a lower uncertainty than the others. These
differences, which occur also when the other damage scenarios are considered, can be
explained by a sensitivity analysis.

A first estimate of the importance of a model parameter can be obtained by vary-
ing its value and introducing a measure of the error between the values of the ratios
RAB(iωr, θs) corresponding to the actual and the varied model parameters. The error
εl can be defined as:

εl =
r2∑

r=r1

(|RAB(iωr, θ∗s )| − |RAB(iωr, θ∗sl)|)2 (18)

Here θ∗s is the vector of the actual model parameters and θ∗sl is the vector with the varied
l–th parameter.

In order to measure the sensitivity of each parameter, a variation of ±20% has been
considered for both stiffness parameters and modal damping ratios. In Table 2 the
values of the error εl are listed. It is seen that a variation of the parameter θ1 implies
the lowest values of εl among the stiffness parameters; this is also the case for ξ3, ξ4,
ξ5, and ξ6 among the damping ratios. Therefore, a larger uncertainty is to be expected
when these parameters are identified.

A probabilistic sensitivity analysis confirms this conclusion. For the ratios RAB(iω)
that are considered in the identification, the complex quantity hAB:

hAB = �RAB (iωr, θs) = |RAB(iωr, θs)| − |RAB(iωr)| (19)
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Table 2 Error εl for the stiffness θl and damping ratios ξl parameters.

Error R13(20%) R16(20%) R13(−20%) R16(−20%)

ε1(θ1) 0.659E00 1.764E00 1.369E00 4.152E00
ε2(θ2) 1.248E03 2.541E03 1.887E03 4.160E03
ε3(θ3) 6.389E02 1.480E03 9.375E02 2.664E03
ε4(θ4) 6.129 E02 1.415E03 9.923 E02 2.583E03
ε5(θ5) 1.055E03 1.001E03 1.597E03 1.812E03
ε6(θ6) 5.237 E02 5.363E02 1.061E03 1.111E03
ε7(ξ1) 3.300E01 1.422 E02 5.878E01 2.525E02
ε8(ξ2) 3.767 E01 3.092E01 6.430 E01 5.265E01
ε9(ξ3) 2.156 E00 6.032 E00 3.219 E00 8.930E00
ε10(ξ4) 0.628 E00 1.298 E00 0.785 E00 1.597E00
ε11(ξ5) 0.579 E00 0.847 E00 0.798 E00 1.259E00
ε12(ξ6) 3.745 E00 0.107 E00 6.013 E00 0.155E00

can be evaluated, which accounts for the difference between the theoretical and the
measured ratios, for all frequencies involved in the simulation.

A probabilistic measure of the sensitivity is represented by the variance of the error
hAB due to the variation of a model parameter θsl. This quantity may be seen as the total
effect of θsl, which measures the uncertainty in hAB that is unexplained after having
learnt everything except θsl. The variances σ2

0 and σ2
1 of the error, corresponding to

prior and posterior samples, are evaluated for each ratio RAB(iωr, θs), by replacing the
vector θs with θsl, and then are used to assess the relative influence of each parameter.
As indicated in (Sibilio & Ciampoli 2006, Sibilio et al. 2006), σ2

0 can be interpreted as
a global sensitivity index and the total effect of the considered parameter; σ2

1 can be
interpreted as a local sensitivity index.

In Figures 2–5, the global σ2
0 and the local σ2

1 sensitivity indices of the error, evaluated
for the stiffness parameters θ1, θ2, θ3, θ4, θ5, and θ6, by sampling respectively from the
prior distribution p(θs|Ms) and the posterior distribution p(θs|Ds, Ms), are reported. It
is clear that, for any stiffness parameter, the value of σ2

0 is larger than σ2
1. It can also

be observed that both σ2
0 and σ2

1 assume very low values for the parameter θ1 over the
whole interval of frequencies; therefore, the parameter θ1 has a scarce influence on the
ratio R13. An analogous result can be obtained for the ratio R16. It can be argued that
θ1 will be identified with higher uncertainty. Similar considerations can be done with
regard to the low sensitivities of the parameters ξ3, ξ4, ξ5, and ξ6 according to the
results in Table 2.

The effects of damage on the structural reliability are examined by using Subset
Simulation. In order to solve the reliability integral, a time history of the ground
acceleration is generated for each sample θ for a given pair of values of M and R.

The PDF for magnitude M is modeled based on the Gutenberg-Richter law, with
a minimum value Mmin = 5 and a maximum value Mmax = 8. This also provides the
mean annual rate of a seismic event with magnitude between Mmin and Mmax at a
specific site (Kramer 1996). The PDF for the source-to-site distance R is based on an
earthquake being equally likely to occur anywhere in a circular area of radius equal to
50 km. Sampling from these distributions has been carried out by the inverse transform
method (Robert & Casella 2004).
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Figure 2 Sensitivity measures σ2
0 of the error �R13, for the stiffness parameters θ1, θ2 and θ3,

evaluated by sampling from the prior distribution p(θs|Ms).
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The considered uncertain parameters are: M; R; the parameters of the white noise in
the ground motion record, grouped in the vector Z; the stiffness parameters [θ1 θ2 θ3

θ4 θ5 θ6]T; and the modal damping ratios [ξ1 ξ2 ξ3 ξ4 ξ5 ξ6]T. The selected struc-
tural response parameter is the maximum inter-storey drift b; Subset Simulation thus
gives the exceedance probability of b computed for the whole time history and for all
the stories of the structure.

Three simulation levels are implemented for Subset Simulation, in addition to the
first level, using Monte Carlo simulation. For each level, 500 samples of the uncertain
parameters θ are considered. The value of the probability p0 for each intermediate
failure domain is taken equal to 0.1 (Au & Beck 2003). This means that the threshold
value of the maximum inter-storey drift di (i= 1, … , m− 1) defining the intermediate
failure domain Fi is the 450-th value of the ranked values of the drift corresponding to
each of the 500 samples. There are 50 samples corresponding to the next failure level;
so only 450 additional samples are obtained for that level. The total number of sam-
ples required for the simulation is: NT = 500+ 450+ 450+ 450= 1850. With these
choices, it is possible to assess a probability of failure greater than or equal to 10−4.

A major advantage of Subset Simulation is that it provides the probability of exceed-
ing any response level over a specified range using only a single run. It is thus possible
to evaluate the probability PLS of exceeding any specified limit state LS by choosing the
corresponding value of the structural capacity bc. The capacity bc may be described in
probabilistic terms through its PDF p(bc). The probability PLS and its approximation
are thus given by:

PLS = P(b > bc) =
∫

P(b > bc|bc)p(bc) dbc ≈ 1
Nc

Nc∑
i=1

P(b > bci |bci ) (20)

The probability P(b> bc|bc) is directly estimated by Subset Simulation; the samples bci

are obtained by sampling from the distribution p(bc).
In this example, three limit states have been considered: LS1, LS2 and LS3,

corresponding to three different values of the capacity: b(1)
c = 0.3%, b(2)

c = 0.7% and
b(3)

c = 1.3%. The uncertainty in the limit state has been taken into account by introduc-
ing three distributions p(b(1)

c ), p(b(2)
c ) and p(b(3)

c ). Three Lognormal distributions have
been taken, with mean value and standard deviation of the logarithm equal, respec-
tively, to −1.20 and 0.1 for LS1, −0.36 and 0.05 for LS2, and 0.26 and 0.03 for LS3.
For any group of uncertain parameters, the acceptance rate in the Subset Simulation
algorithm has been taken in the range 20% to 50%.

In Figure 6 the probabilities PLS for the cases of undamaged and damaged structure
with deterministic capacity parameters (UDa, DM1a, DM2a, DM3a, DM4a, and
DM5a) are plotted. For the cases DM1a and DM5a, the response level b for a given
value of PLS is higher than that for the case UDa, for each PLS lower than 10−1, while
for cases DM2a, DM3a and DM4a, the response level is lower than that for case UDa,
for each PLS lower than 0.005.

In Figure 7 the probabilities PLS for the cases of undamaged and damaged structure
with uncertain capacity parameters (UDb, DM1b, DM2b, DM3b, DM4b, and DM5b),
are plotted. The maximum inter-storey drift b for the damaged structure is higher than
that for the undamaged case UDb, for any PLS lower than 10−1.
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Figure 6 Probability of failure PLS for the structure with deterministic capacity parameters for
different damage scenarios.
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Figure 7 Probability of failure PLS for the structure with uncertain capacity parameters for different
damage scenarios.
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Figure 8 Probability of failure PLS for (a) the undamaged structure with deterministic (UDa) and
uncertain capacity parameters (UDb).

Table 3 Probability PLS of exceeding the considered limit states for different damage scenarios and
deterministic capacity parameters.

Limite state Model Model Model Model Model Model
UDa DM1a DM2a DM3a DM4a DM5a

LS1a 0.02560 0.03580 0.02400 0.03000 0.03240 0.04760
LS2a 0.00580 0.00778 0.00254 0.00442 0.00528 0.00918
LS3a 0.00086 0.00114 0.00028 0.00034 0.00033 0.00114
LS1b 0.02550 0.03651 0.02556 0.02867 0.03261 0.04999
LS2b 0.00580 0.00787 0.00255 0.00428 0.00535 0.00941
LS3b 0.00088 0.00110 0.00027 0.00036 0.00035 0.00114

The comparison of the probabilities of failure between the deterministic and the
uncertain models is illustrated in Figures 8–9 for the cases UD and DM1, respectively.
For the undamaged structure (UDa, UDb), the uncertainty in the model parameters
yields a decreasing level of the structural response b, at least for a probability of failure
lower than 10−2. This is probably due to the identified mean value of the parameter
θ1 which is slightly higher than the actual value. For cases DM1a, DM1b, there is no
evidence of differences between the deterministic and uncertain models, at least for
values of PLS greater than 0.005, whereas for lower probability values the uncertainty
plays a more significant role.

The probability of exceeding the limit states LS1, LS2 and LS3 are listed in
Tables 3–4; LS1a, LS2a and LS3a and LS1b, LS2b and LS3b refer to deterministic
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Figure 9 Probability of failure PLS for one case of damaged structure with deterministic (DM1a)
and uncertain capacity parameters (DM1b).

Table 4 Probability PLS of exceeding the considered limit states for different damage scenarios and
probabilistic capacity parameters.

Limite state Model Model Model Model Model Model
UDb DM1b DM2b DM3b DM4b DM5b

LS1a 0.02820 0.03920 0.03220 0.02900 0.03540 0.03020
LS2a 0.00314 0.00784 0.00522 0.00452 0.00512 0.00476
LS3a 0.00040 0.00168 0.00046 0.00067 0.00060 0.00058
LS1b 0.02819 0.03905 0.03207 0.02996 0.03746 0.02949
LS2b 0.00323 0.00805 0.00531 0.00446 0.00518 0.00472
LS3b 0.00040 0.00169 0.00047 0.00062 0.00060 0.00058

and probabilistic structural capacities, respectively. By reading along the rows, one
can see the case that corresponds to the highest probability PLS for the corresponding
limit state. In each column, as expected, the probability of failure decreases for the
limit states associated with higher response levels.

In general, the uncertainty in the definition of the limit state does not produce a
large difference in the failure probability PLS. Comparing the values of the probability
PLS for deterministic and uncertain capacity parameters, it can be observed that the
uncertainty of the parameters plays a significant role for the damage scenarios UD,
DM2 and DM5.
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4 Conclusions

A general procedure for structural health monitoring that includes both damage detec-
tion and reliability assessment of a structure subject to seismic excitation is briefly
illustrated and applied to an example case. The procedure is formulated in a unified
probabilistic framework that can take into account any kind of uncertainty involved
in the various phases of the analysis.

A Bayesian model updating approach is used to identify the structural parameters
and their associated uncertainty. An advanced stochastic simulation method, Subset
Simulation, is then applied to assess the seismic reliability of the damaged structure.
This method can include the effect of the uncertainties identified through the Bayesian
model updating in the assessment of the failure probability. Furthermore, the uncer-
tainty of the structural capacity can be considered. Although the approach is applied
here to a linear dynamic model, the Bayesian model updating and the seismic reli-
ability assessment can be extended to nonlinear models [see, for example, Beck &
Muto (2007) and Au & Beck (2003)]. It is concluded that the proposed probabilistic
framework is a powerful one for handling all the uncertainties in any structural health
monitoring procedure.
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ABSTRACT: In the present paper a multiphase model including a hypoplastic formulation of
the solid phase is presented and its application to earthquake engineering problems discussed.
The macroscopic soil model, which is based on the theory of porous media, comprises three
distinct phases namely, solid, fluid and gas phase. For each of these the compressibility of
the respective medium is taken into account in the mathematical formulation of the model.
The solid phase is modelled using the hypoplastic constitutive equation including intergranu-
lar strain to allow for a realistic description of material behaviour of cohesionless soils even
under cyclic loading. The model was implemented into the finite element package ANSYS via
the user interface and also allows the simulation of soil-structure interaction problems.

1 Introduction

Numerical simulation of heterogeneous materials is of major interest for a wide range
of engineering applications. In biomechanical engineering, for instance, multiphase
models provide a valuable approach for modelling tissues, cartilage and bones. In
civil engineering, they can be used in material research, e.g. for determining moisture
penetration in reinforced concrete and therefore estimating the risk of corrosion of
the reinforcement. In geotechnical engineering, multiphase modelling is of paramount
importance in order to obtain realistic predictions for the soil’s behaviour under loading
and unloading, since the load bearing capacity of soil is significantly dependent on
the degree of water saturation, i.e. on the composition of its distinct phases. Typical
applications encompass seepage problems for dams, installation of sheet pile walls by
vibration or hydraulic hammer and slope stability problems.

In extension to that, experiences from past earthquakes have shown that ground
liquefaction poses a serious hazard to all kinds of structures. During the Loma Prieta
earthquake 1989 in San Francisco bay and the 1999 earthquake in Izmit, Turkey,
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earthquake-induced loss of shear strength for partially or fully saturated cohensionless
soils, i.e. liquefaction, caused major damage to numerous structures. These expe-
riences revealed the deficiencies of existing models with regard to cyclic loading
conditions and have manifested the need for accurate numerical models to describe
and predict dynamical soil behaviour.

To overcome these problems, a multiphase model considering a hypoplastic
approach including intergranular strain for the solid phase has been developed in this
work. Due to its implementation into the finite element program ANSYS it also allows
for soil-structure-interaction analyses within the existing finite element framework. In
Holler & Meskouris (2006), presented the application of the model to a soil-structure
interaction analysis of silos under dynamic excitation.

2 Numerical model

2.1 Multiphase media

One of the main difficulties in many geotechnical problems is the mathematical repre-
sentation of the materials involved. Soil and rock are highly complex, inhomogeneous
materials whose behaviour is strongly influenced by their distinct phases. Thus, factors
such as water saturation and pore pressure have a strong impact on the distribution
of loads among these phases. The theory of porous media, which extends the classical
approach of continuum mechanics to multiphase media, offers a convenient way to
describe materials consisting of several distinct phases by means of two entirely differ-
ent concepts, namely the microscopic and the macroscopic approach. The microscopic
description is based on the movement and deformation of each discrete particle and
requires the equilibrium equations to be formulated for all particles separately in order
to account for particle interaction, i.e. contact and frictional forces. Due to the irregular
particle shape and pore distribution commonly encountered in soils, however, predic-
tion of the behaviour of distinct particles is almost impossible, i.e. the microscopic
approach is not suitable for most geotechnical applications. Rather, a macroscopic
approach is followed which results in a smeared description of the soil behaviour and
basically consists of a homogenization process over a representative volume element.
The concept of volume fractions is utilised to formulate the equilibrium equations
for each phase separately and to account for phase interaction. The presented model
comprises a porous solid skeleton as well as a fluid and a gas phase and takes com-
pressibility for each of those into account. Following the concept of volume fractions,
the entire volume of the representative volume element consists of the solid fraction
Vs and the pore volume Vp which again is composed of the water saturated and air
saturated pore volume, Vw and Vg respectively, as stated in equation 1.

V = Vs + Vp = Vs + Vw + Vg (1)

Defining the porosity n, the void ratio e and the degree of water and air saturation Sw

and Sg respectively as

n = Vp

V
(2)
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e = Vp

Vs
(3)

Sw = Vw

Vp
(4)

Sg = Vg

Vp
(5)

the volume fractions of each component can be defined. Upon loading, stress develops
not only within the solid skeleton of the multiphase medium but also in the water and
gas phases. The total stress results from the difference of the effective stress σ ′, i.e. stress
causing deformations of the solid skeleton, and the averaged pressure surrounding the
particles (equation 6).

σ = σ′ − mT (Swpw + Sgpg) (6)

Here mT is

mT = [1 1 1 0 0 0]T . (7)

If volumetric deformation of the soil particles due to stationary water and air pres-
sures is also taken into account, equation 6 must be modified with Biot’s constant
(Biot 1957) as follows.

σ = σ′ − αmT (Swpw + Sgpg) (8)

Here Biot’s constant α is

α = 1 − KT

KS
≤ 1 (9)

In most geotechnical applications, however, the correction introduced by α is negligible
since the bulk modulus of the solid skeleton KT is significantly smaller than the bulk
modulus of a single particle KS.

Flow through a porous medium is described by Darcy’s law, which, in its basic form,
is only valid for a single fluid flow and was extended to a second fluid by Wyckoff &
Botset (1936). This yields equation 10 for the flow velocity of the fluid and gas phase,
respectively.

vxs = kkrx

nSxηx
(−∇px + ρx(g − üs)); x = w, g (10)

The temporal variation of density for the solid, fluid, and gas phases is taken into
account through equations 11 and 12, respectively.

1
ρs

∂ρs

∂t
= 1

1 − n

[
(α− n)

1
KS

∂ps

∂t
− (1 − α)∇vs

]
(11)
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1
ρx0

∂ρx

∂t
= 1

Kx

∂px

∂t
; x = w, g (12)

Finally, the balance of mass for the three distinct phases yields a system of equations
in terms of the unknown variables displacement, pore water-, and pore air pressure.
The continuity equations for the solid, fluid, and gas phases are given in equations 13,
14 and 15, respectively.

−∂n
∂t

+ (1 − n)
ρs

∂ρs

∂t
+ (1 − n)∇vs = 0 (13)

[
nSw

Kw
+ (α− n)

Sw

Ks

(
Sw + pc

∂Sw

∂pc

)
− n

∂Sw

∂pc

]
∂pw

∂t

+
[

Sw

Ks
(α− n)

(
Sg − pc

∂Sw

∂pc

)
+ n

∂Sw

∂pc

]
∂pg

∂t

+ αSw∇vs + 1
ρw

∇
[
ρw

kkrw

ηw
(−∇pw + ρw(g − üs))

]
= 0 (14)

[
nSg

Kg
+ (α− n)

Sg

Ks

(
Sg − pc

∂Sw

∂c

)
− n

∂Sw

∂pc

]
∂pg

∂t

+
[

Sg

Ks
(α− n)

(
Sw + pc

∂Sw

∂pc

)
+ n

∂Sw

∂pc

]
∂pw

∂t

+ αSg∇vs + 1
ρg
∇
[
ρg

kkrg

ηg
(−∇g + ρg(g − üs))

]
= 0 (15)

Equations 14 and 15 describe the development of pore water and pore air pressure in
a de-formable solid skeleton. The deformation of the solid phase, in turn, depends on
the effective stress σ ′ and will be described in section 2.2 on hypoplasticity. For a more
detailed derivation of the multiphase model see Holler (2006).

2.2 Hypoplast ic ity

The hypoplastic material law describes the stress rate as a function of stress, strain
rate and void ratio and is well-suited for cohensionless, granular materials. It reliably
predicts the non-linear and inelastic behaviour of soil due to its rate-type formulation
which ensures a realistic modelling of loading and unloading paths. Also, by virtue of
the rate-type formulation, numerical implementation of the hypoplastic material law
is significantly simplified. The hypoplastic constitutive equation by von Wolffersdorff
(1996) is given in equation 16.

�σ ′ij = Lijkl �εij + Nij

√
�εkl �εkl (16)
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Here Lijkl is a fourth order tensor describing the linear relation between strain rate and
stress rate and Nij represents the nonlinear part.

Lijkl = fs
1

σ̂mnσ̂mn
(F2Iijkl + a2σ̂ijσ̂kl) (17)

Nij = fsfd
Fa
σ̂kl σ̂kl

(σ̂ij + σ̂∗ij) (18)

With

σ̂ij =
σ ′ij

σmnδmn
(19)

σ̂∗ij = σ̂ ′ij −
1
3
δij (20)

Iijkl = δikδjl (21)

a =
√

3(3 − sin ϕc)

2
√

2 sin ϕc
(22)

F =
√

1
8

tan2ψ + 2 − tan2ψ

2 +√
2 tanψ cos 3�

− 1

2
√

2
tanψ (23)

tanψ = √
3
√
σ̂∗kl σ̂

∗
kl (24)

cos 3� = −√6
σ̂∗ij σ̂

∗
jkσ̂

∗
ki

(σ̂∗mnσ̂
∗
mn)

3
2

(25)

and

fs = hs

n

(ei

e

)β 1 + ei

ei

(
−σijδij

hs

)1−n

×
[
3 + a2 −√

3
(

ei0 − ed0

ec0 − ed0

)α]−1

(26)

fd =
(

e − ed

ec − ed

)α
(27)

The actual void ratios ex are obtained with the initial void ratios ex0, the stress state
σ ′ij and the parameters hs and n from equation 28.

ei

ei0
= ec

ec0
= ed

ed0
= e

e0
= exp

[
−
(
−σ

′
ij δij

hs

)n]
(28)

The parameters of the hypoplastic constitutive equation ϕc, hs, n, ed0, ec0, ei0, α, and
β can be determined from soil mechanics standard tests Herle (1997).
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Although von Wolffersdorff’s hypoplastic constitutive equation reliably predicts the
nonlinear inelastic behaviour of soil, there are some drawbacks with respect to its
application to cyclic stress conditions. The most severe shortcoming is an excessive
accumulation of deformations for small stress cycles, a phenomenon called ratcheting.

To overcome these drawbacks, Niemunis & Herle (1997) presented an extension
of the hypoplastic constitutive equation by introducing the concept of intergranular
strain. In addition to the deformations of the granular structure by grain rearrangement
they also take the deformations of the contact area between the distinct grains into
account. This results in the introduction of an initial resistance for small strains before
deformation of the granular structure takes place and it effectively avoids ratcheting,
i.e. the build-up of excessive strains for small amplitude cyclic loading. The modified
version of equation 16 is then transformed to the form of equation 29.

�σ ′ij = Mijkl �εkl (29)

with

Mijkl = [ρκmT + (1 − ρκ)mR]Lijkl

+
{
ρκ(1 − mT )LijmnŜmnŜkl + ρκNijŜkl for Ŝij �εij > 0

ρκ(mR − mT )LijmnŜmnŜkl for Ŝij �εij ≤ 0
(30)

Here Sij is an additional variable representing the intergranular strain. Its rate of change
is determined from equation 31.

�Sij =
{

(Iijkl − ρβR ŜijŜkl)�εkl for Ŝij �εij > 0
�εij for Ŝij �εij ≤ 0

(31)

Ŝij is the direction of the intergranular strain and equals

Ŝij =
{ Sij√

SklSkl
for Sij �= 0

�εij for Sij = 0.
(32)

The mechanism of intergranular strain can best be explained with the brick analogy
by Simpson (1992). Consider a man walking about with a brick attached to his legs by
a string of the length R. In case the brick is dragged along the ground, this represents
the plastic strain rate. If on the other hand the brick remains in place, the relative
movement between man and brick represents the intergranular strain.

2.3 Finite element implementation

In the present work Gallerkin’s method of weighted residuals is used to derive the
weak form of the equilibrium equations. Hence, the first step towards finite ele-
ment discretisation of the governing equations is the definition of shape functions
for the domain variables, i.e. displacement, pore water pressure and pore air pressure.
Introducing these shape functions into equations 13, 14 and 15 the governing equa-
tions are approximated with a certain accuracy. The approximation errors, termed
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residuals, are multiplied with weighting functions and then minimized over the entire
problem domain. Gallerkin’s method of weighted residuals implies taking the element
shape functions, used to interpolate the domain variables throughout the element, as
weighting funtions for the residuals, thereby ensuring satisfaction of all boundary con-
ditions. Obviously, the choice of appropriate shape functions is crucial with regard to
the quality of the finite element approximation.

From the resulting system of equations (equation 33) the mass, damping and stiffness
matrices for the finite element can be obtained.

M 0 0
Mw 0 0
Mg 0 0

ü
0
0

+
 C 0 0

Cws Pws Cwg

Cgs Cgw Pgg


u̇

ṗw

ṗg

+
0 −CT

ws −CT
gs

0 Hww 0
0 0 Hgg

u
pw
pg



+
∫

σ′ d�

1
0
0

 =
f�u

f�pw

f�pag

+
f�u

f�pw

f�pg

 (33)

with the mass matrices M, Mw and Mg,

M =
∫

Nu[ρs(1 − n) + nSwρw + nSgρg]Nu d� (34)

Mx =
∫

∇NT
p

kkrx

ηx
ρxNu d�; x = w, g (35)

coupling matrices Cws, Csw, Cgs, Csg, Cwg and Cgw,

Cws = CT
sw =

∫
NT

p αSwmTLNu d� (36)

Cgs = CT
sg =

∫
NT

p αSgmTLNu d� (37)

Cwg =
∫

NT
p

[
Sw

Ks
(α− n)

(
Sg − pc

∂Sw

∂pc

)
+ n

∂Sw

∂pc

]
Np d� (38)

Cgw =
∫

NT
p

[
Sg

Ks
(α− n)

(
Sw + pc

∂Sw

∂pc

)
+ n

∂Sw

∂pc

]
Np d� (39)

compressibilty matrices Pww and Pgg,

Pww =
∫

NT
p

[
nSw

Kw
+ (α− n)

Sw

Ks

(
Sw + pc

∂Sw

∂pc

)
− n

∂Sw

∂pc

]
Np d� (40)

Pgg =
∫

NT
p

[
nSg

Kg
+ (α− n)

Sg

Ks

(
Sg − pc

∂Sw

∂pc

)
− n

∂Sw

∂pc

]
Np d� (41)
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permeability matrices Hww and Hgg,

Hxx =
∫

∇NT
p

kkrx

ηx
∇Np d�; x = w, g (42)

and domain forces f�u , f�pw and f�pg.

f�u =
∫

Nu[ρs(1 − n) + nSwρw + nSgρg]g d� (43)

f�px =
∫

NT
p

kkrx

ηx
ρxg d�; x = w, g (44)

The boundary conditions are directly imposed via the boundary forces f�u , f�pw and f�pg

of equations 45 and 46.

f�u =
∫

Nuσ d� (45)

f�px = −
∫

NT
p

[
kkrx

ηx
(−∇Nppx + ρxg)

]
d�; x = w, g (46)

The generic formulation of the integral of the effective stress over the domain � in
equation 33 allows the use of arbitrary nonlinear constitutive equations through the
term ∫

σ ′ d�

1
0
0

 .
The actual implementation of the element in ANSYS was carried out as a plane

rectangular element via the user element interface. The element allows the simulation
of partially saturated soils under plane strain as well as under rotationally symmetric
stress states.

Integration in the time domain was carried out using Newmark’s integration method
for the solid phase and the generalized trapezoidal method for the fluid and gas phases.
The solution in the spatial domain was obtained utilising Gaussian quadrature as
integration method. Generally, 3× 3 integration points were used to compute the
element solution. In the transition phase between unsaturated and fully saturated soils,
however, 7× 7 integration points were used to improve the accuracy of the solution.

3 Model verification/validation

Various tests, that are documented in detail in Holler (2006), have been performed
to validate and verify the presented model. Among these were a simulation of air
flow through dry sand, a drainage test after Liakopoulos, and a simulation of soil
layer consolidation. In this section, the consolidation problem will be discussed.
A fully-saturated soil layer of thickness h= 1 m was subjected to a surface load of
q0= 10 kN/m2 and width 2a= 2 m at time t = 0 s. The solution of the given example
was carried out analytically and by means of numerical simulation. Figure 1 shows
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q0

q0 Pw � 0

ux � uy � 0

ux � 0ux � 0
y

x

Figure 1 Model setup and finite element mesh.

Table 1 Parameters of consolidation test.

Parameter Symbol Unit Value

Young’s modulus E kPa 5000
Poisson’s ratio µ – 0.25
Permeability k m2 1.31 · 10−10

Water density ρw t/m3 1.0
Degree of water saturation Sw t/m3 1.2 · 10−3

Bulk modulus solid particle Ks kPa 1.0 · 109

Bulk modulus water phase Kw kPa 2.0 · 106

Dynamic viscosity water ηw kNs/m2 1.31 · 10−6

the initial conditions as well as the finite element model and the imposed boundary
conditions.

The material parameters are given in Table 1. Young’s modulus of elasticity E as
well as the permeability k were chosen arbitrarily. Density ρw, bulk modulus Kw

and dynamic viscosity ηw of water are constants which were chosen for a refer-
ence temperature of T = 10◦C. The bulk modulus of a solid particle Ks for sand is
almost infinite when compared to the compressibility of water and is therefore set to
Ks = 1.0 · 109 kPa.

The analytical solution was obtained following Booker (1974). Taking advantage of
symmetry, the numerical solution was performed on one half of the original system.
The width of the considered soil layer is set to b= 6.0 m.

On both the left and right hand side of the model the displacements are restricted in
the x-direction. At the bottom displacements are fully constrained. On the free surface
at the top the water pressure is set to pw = 0. The simulation is conducted with 60 time
steps between 10−4 s and 2 s.

For the displacements, biquadratic shape functions have been used. Bilinear and
bi-quadratic shape functions have been used for the pore water pressure in Simulation
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Figure 2 Comparison of analytical and numerical solutions of consolidation problem.

A and B, respectively. Figure 2 shows a comparison of the numerical results to the
analytical solution.

For simulation A, i.e. linear approximation of pore water pressure, the normalized
settlement is slightly overestimated in the central time period. In the case of biquadratic
shape functions for the pore water pressure (Simulation B), however, a very good
approximation of the analytical solution can be achieved with the chosen discretization.
Of course, better results can be obtained for linear shape functions by simply decreasing
the element size to obtain a finer mesh.

4 Example: dam under seismic loading

The phenomenon of ground liquefaction aroused increasing interest during the last
decade due to its devastating impact on structures under seismic loading. Numerical
models that can predict soil behaviour under cyclic conditions are, however, still rare.
Also, laboratory tests are rather complex and difficult to conduct. Some model exper-
iments to investigate ground liquefaction have been reported in C-Core Earthquake
Induced Damage Mitigation (2004). Therein, a scaled model (factor 70) of a dam was
subjected to an artificial earthquake which was generated by means of a centrifuge.

In the present work, these experiments have been simulated numerically. The sim-
ulation was performed with the finite element model of Figure 6. Zero displacements
in x-directions were imposed on both the right and left hand side of the model. The
bottom layer of the model is fully constrained. The water pressure is applied to the
model via equivalent boundary forces. A comparison of the experimental results and
those obtained from numerical simulation is given in Figure 4.

The results are generally in good agreement with the experimental data. The increase
in pore water pressure at the beginning of the seismic loading is correctly mirrored by
the numerical simulation. The maximum change in pore water pressure, however, is
overestimated in the time period 15 s< t< 25 s. With progress in time and decrease
of loading the pore pressure approaches the initial static state. The decrease of pore
pressure is in good agreement at some measuring points but differs significantly in
points P1, P5 and P6.
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Figure 3 Model of test specimen (scale factor 70) (C-Core Earthquake Induced Damage
Mitigation, 2004).

This is a result of the chosen initial boundary conditions, since the sand layers are
considered as homogeneous with constant initial conditions. Hence, neither the com-
paction of the sand due to the increase in vertical acceleration of the centrifuge nor the
increase of compaction due to the linear increase of self-weight with depth are taken
into account in the numerical simulation.

Also, the void ratio decreases with depth due to the increase in self-weight and
the resulting increase of compaction. The change in void ratio in turn influences the
permeability which was considered constant during the numerical simulation.

In a second simulation (B) some modification have been applied to the boundary
conditions. To realistically mirror the initial conditions of the experiments, the initial
void ratio is linearly decreased over the depth in the numerical model and the perme-
ability is defined as a function of the void ratio (equation 47). This way, compaction
of the sand layers due to self-weight is accounted for.

k = −4.2 · 10−11 + e · 1.22 · 10−10 (47)

The results of the simulation B are given in Figure 5. In comparison to simulation
A they show a better approximation of the experimental data due to the improved
description of the boundary conditions. Still, pore water pressures in time period
15 s< t< 25 s are slightly overestimated when compared to the measured data.

The time evolution of water pressure and displacements is shown in Figure 7. At
time t = 0, i.e. when the dam is subjected only to self-weight, the pressure distribution
varies linearly over depth. The increase of pore water pressure within the entire domain
yields a decrease of the effective stress acting upon the solid skeleton and an increase
of the void ratio e. When reloading the solid skeleton, plastic deformations, which are
shown on the right hand side of Figure 7, develop. The simulated deformations were
in good agreement with the experimental data.
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Figure 4 Comparison of results (A) (C-Core Earthquake Induced Damage Mitigation, 2004).

5 Summary and conclusions

In the present work, a dynamic multiphase model including a hypoplastic formulation
of the solid phase was developed and realised numerically by means of the finite element
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Figure 5 Comparison of results (B) (C-Core Earthquake Induced Damage Mitigation, 2004).

method. The model was implemented into the finite element code ANSYS and verified
on the basis of several examples.

Due to the hypoplastic formulation including intergranular strain, the model is
capable of predicting soil behaviour even under cyclic loading and therefore offers
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a possibility to further investigate dynamical phenomena such as ground liquefac-
tion. The accuracy of the numerical approximation has been shown by comparison to
experimental data.

The presented mutliphase model is capable of simulating consolidation, saturation
and drainage processes and can realistically predict permanent ground displacements.
Although the compressibilty of fluid and gas phase do not have a strong impact on
the flow characteristics and the load bearing capacity of soils, they were still taken
into account to provide further application possibilities for the model. Additionally,
the model allows the implementation of arbitrary constitutive equations for the solid
phase and also allows coupling to existing solid elements.
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ABSTRACT: A Lagrangian approach was developed, which is a mixed method, where in
addition to the displacements, the stress-resultants and other variables of state are primary
unknowns. This formulation consists of two sets of equations: equilibrium and compatibility
of displacement rates (velocities), while its primary unknowns are forces and velocities. For
numerical solution, a discrete variational integrator is derived starting from the weak formu-
lation. This integrator inherits the energy and momentum conservation characteristics. The
integration of each step is a constrained minimization problem and it is solved using an Aug-
mented Lagrangian algorithm. In this chapter, details of the formulation and computational
algorithms are presented, as well as the examples of a simple structure and a sixteen-story
building emphasizing on convergence and computational efficiency issues.

1 Introduction

Nonlinear analyses of structural response to hazardous loads such as earthquake
and blast forces should include (i) the effects of significant material and geometric
nonlinearities (ii) the phenomenological models describing the behavior of struc-
tural components and (iii) the energy and momentum transfer to different parts of
the structure when structural components fracture. Computer analysis of structures
has traditionally been carried out using the displacement method, combined with an
incremental iterative scheme for nonlinear problems wherein the displacements in the
structure are treated as the primary unknowns. In this paper, an alternative method is
proposed for the analysis of structures considering both material and geometric nonlin-
earities. The formulation attempts to solve problems using a force-based approach in
which momentum appears explicitly and can be potentially used to deal with structures
where deterioration and fracture occur before collapse. In conventional formulations,
the response of the structure is considered as the solution of a set of differential equa-
tions in time. Since the differential equations hold at a particular instant of time, they
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provide a temporally local description of the response and are referred to as the strong
form. In contrast, in this chapter, a time integral of functions of the response over
the duration of the response is considered. Such an approach presents a temporally
global picture of the response and is referred to as the weak form. The kernel of the
integral mentioned above consists of two functions – the Lagrangian and the dissi-
pation functions – of the response variables that describe the configuration of the
structure and their rates. The integral is called the action integral. In elastic systems,
the configuration variables are typically displacements. It is shown here, however, that
in considering elastic-plastic systems it is natural to also include the time integrals of
internal forces in the structure as configuration variables. The Lagrangian function is
energy-like and describes the conservative characteristics of the system, while the dis-
sipation function similar to a flow potential describes the dissipative characteristics. In
a conservative system, the action integral is rendered stationary (maximum, minimum
or saddle point) by the response. In analytical mechanics, this is called Hamilton’s
principle or more generally the principle of least action. For non-conservative systems
such as elastic-plastic systems, such a variational statement is not possible, and only a
weak form which is not a total integral is possible. It is shown moreover that the form
of the Lagrangian is invariant under finite deformations. Such a weak formulation
enables the construction of numerical integration schemes.

2 Simple phenomenological models of reciprocal
structures

A complex structural system, such as frame structures representing buildings, bridges
or mechanical systems, can be assembled from components which are formulated
as reciprocal structures. Reciprocal structures are those structures characterized by
convex potential and dissipation functions (Stern, 1965). In this section, the concept
of reciprocal structures is explained using simple spring-mass-damper-slider models
shown in Figure 1. Mixed Lagrangian and Dissipation functions of such systems are
derived for various structural components.
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(a) Mass with Kelvin type resisting
system and force input

(d) Combined Kelvin-Maxwell system

(b) Mass with Maxwell type resisting
system and velocity input

(e) Elastic-viscoplastic system (f) Elastic-ideal plastic system

(c) Dual of (b)

Figure 1 Simple phenomenological models.
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(a) Mass with Kelvin type Resisting System: Consider a spring-mass-damper system
with the spring and the damper in parallel (Kelvin Model shown in Figure 1(a))
subjected to a time-varying force input P(t). The equation of motion is given by:

mü + cu̇ + ku = P (1)

where m is the mass, k is the modulus of the spring, c is the damping constant, u is
the displacement of the mass and a superscripted “.’’ denotes derivative with respect
to time. The well known approach in Analytical Mechanics is to multiply equation (1)
by a virtual displacement function δu, integrate over the time interval [0,T] by parts to
obtain the action integral, I, in terms of the Lagrangian function, L and the dissipation
function, ϕ, as shown below (see for example, José and Saletan (1998)):

δI = −δ
T∫

0

L(u, u̇) dt +
T∫

0

∂ϕ(u̇)
∂u̇

δu dt −
T∫

0

Pδu dt = 0 (2)

where δ denotes the variational operator, and the Lagrangian function, L, and the
dissipation function, ϕ, of this system are given by:

L(u, u̇) = 1
2

mu̇2 − 1
2

ku2 and ϕ(u̇) = 1
2

cu̇2 (3)

Notice that due to the presence of the dissipation function and because the force P(t)
can in general be non-conservative, equation (2) defines δI and not I itself.

(b) Mass with Maxwell type Resisting System: Consider on the other hand, a spring-
mass-damper system with the spring and the damper in series (Maxwell Model – shown
in Figure 1(b)) subjected to a time varying base-velocity input, νin(t). The formulation
requires obtaining a Lagrangian function and a dissipation function for this system
that determine the equations of motion as above. Formulation of compatibility of
deformations results in:

vin + Ḟ
k
+ F

c
= u̇ (4)

where F is the force in the spring and damper. Writing the equation of equilibrium
of the mass, mü+ F= 0, solving for the velocity and substituting in equation (4), we
have:

1
k

Ḟ + 1
c

F + 1
m

t∫
0

F dτ = −vin − v0 (5)

where v0 is the initial velocity of the mass. Defining J = ∫ t
0 F dτ (as suggested by El-

Sayed et al. 1991), the impulse of the force in the spring and damper, equation (5) can
be written as:

1
k

J̈ + 1
c

J̇ + 1
m

J = −vin − v0 (6)
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From the correspondence between equations (6) and (1), we conclude that the
Lagrangian function, L, the dissipation function, φ and the action integral, δI of
this system are given by:

L(J, J̇) = 1
2

1
k

J̇2 − 1
2

1
m

J2 ϕ(J̇) = 1
2

1
c

J̇2

and δI = −δ
T∫

0

L(J, J̇) dt +
T∫

0

∂ϕ(J̇)

∂J̇
δJ dt +

T∫
0

[vin(t) + v0]δJ dt (7)

(c) Mass with Combined Kelvin and Maxwell Resisting Systems: Consider now the
combined Kelvin-Maxwell system shown in Figure 1(d) subject to a Force Input. (Note
that the velocity input has been excluded for the sake of simplicity). The forces in the
springs are denoted by F1 and F2 respectively and their impulses by J1 and J2. If we
define the flexibilities of the springs as a1 = 1/k1 and a2 = 1/k2, then the Lagrangian
function can be given by

L(J1, J2, u̇, J̇1, J̇2) = 1
2

mu̇2 + 1
2

a1J̇2
1 +

1
2

a2J̇2
2 + (J1 + J2)u̇ (8)

or in matrix notation:

L(J, u̇, J̇) = 1
2

mu̇2 + 1
2

J̇
T

AJ̇ + JTBTu̇ (9)

where J= [J1 J2]T, A= diag(a1,a2), the flexibility matrix and B= [1 1], the equilibrium
matrix. The equilibrium matrix operates on the vector of internal forces to produce the
vector of nodal forces. The compatibility matrix, BT, operates on the velocity vector
to produce the rate of change of deformation. As a consequence of the Principle of
Virtual Work, the transpose of the compatibility matrix is the equilibrium matrix, B.
The dissipation function is given by:

ϕ(u̇, J̇2) = 1
2

c1u̇2 + 1
2

1
c2

J̇2
2 (10)

The Euler-Lagrange equations are:

d
dt

(
∂L
∂u̇

)
−
(
∂L
∂u

)
+ ∂ϕ̄

∂u̇
= P ⇒ mü + cu̇ + BJ̇ = P

d
dt

(
∂L
∂J̇

)
−
(
∂L
∂J

)
+ ∂ϕ

∂J̇
= 0 ⇒ AJ̈ + ∂ϕ

∂J̇
− BTu̇ = 0

(11)

The mixed Lagrangian of equation (9) and the Dissipation function of equation (10)
form the basis of further developments in this chapter. It should be noted that the
Lagrangian does not contain the displacement, u explicitly; therefore the momentum,
∂L/∂u, is conserved (see for example Scheck, 1994), which leads to the idea of the
generalized momentum, pu = ∂L/∂u = mu̇ + J1 + J2.
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(d) Elastic-viscoplastic Dynamic System: Consider the elastic-viscoplastic dynamic
system of Figure 1(e). This is in fact a viscoplastic representation of the elastic-ideal-
plastic system of Figure 1(f). Let the yield force of the slider be Fy, so that that force
Fslider in the slider is such that |Fslider| =Fy. If the force in the spring is F and its impulse J,
then the rate of deformation of the slider-dashpot combination is:

u̇1 = 1
η

〈|F| − Fy
〉
sgn(F) = 1

η

〈∣∣J̇∣∣− Fy
〉
sgn( J̇) (12)

where <x> is the Macaulay Bracket, equal to the value of x for positive quantities
and equal to zero for negative values of x. and sgn(x), the signum function. The above
constitutive equation can be obtained from the following:

L(u̇, J̇) = 1
2

mu̇2 + 1
2

aJ̇2; ϕ( J̇) = 1
2η

〈∣∣J̇∣∣− Fy
〉2

;

and δI = −δ
T∫

0

L(J, u̇, J̇) dt +
T∫

0

∂ϕ(J̇)

∂J̇
δJ dt −

T∫
0

P δu dt (13)

(e) Elastic-Ideal Plastic Dynamic System: Figure 1(f) shows an elastic-ideal plastic
dynamic system. As noted above, this system is obtained from the viscoplastic one in
the limit of the representative viscous coefficient, η, in Equation 18 going to zero. The
dissipation function ϕ of equation (13) then becomes:

ϕ( J̇) =
{

0 if
∣∣J̇∣∣ ≤ Fy

∞ if
∣∣J̇∣∣ > Fy

(14)

i.e., ϕ( J̇)= ∪C ( J̇) where ∪C is an indicator function of the set C which is the elastic
domain, C= {x : |x| < Fy

}
. The Lagrangian formulation of the elastic-ideal plastic

system is then the same as that of the elastic viscoplastic system, i.e. Equations (13),
with the dissipation function suitably interpreted using Equations (21).

3 Governing equations of skeletal structures

The governing equations of the structure consist of the equilibrium equations, the
compatibility equations and the constitutive equations. The equilibrium equations
including momentum effects are:

Mü + Cu̇ + BJ̇ − F = 0 (15)

where M, C and B are the mass, damping and equilibrium matrices respectively F is the
vector of element internal forces and J, its impulse. Let A be the block diagonal assembly
of the element elastic flexibility matrices. The compatibility equation is similar to
Equation (24):

AJ̈+ ∂ϕ(J̇)

∂J̇
−BTu̇ = 0 (16)
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Internal imposed displacements within elements, such as resulting from pre-stressing
or thermal loads have been neglected here for the sake of simplicity. However, the
forcing term in equations (25) and (16) can be adjusted to include such effects. The
action integral for the entire structure is obtained as:

δI = −δ
T∫

0

L(J, u̇, J̇) dt+
T∫

0

δuTCu̇ dt +
T∫

0

δJT ∂ϕ(J̇)

∂J̇
dt −

T∫
0

δuTP= 0 (17)

with the Lagrangian and the dissipation function given by:

L(J, u̇, J̇) = 1
2

u̇TMu̇ + 1
2

J̇
T

AJ̇ + JTBTu̇ and ϕ(u̇, J̇) = 1
2

u̇TCu̇ + ϕ(J̇) (18)

4 Effect of geometric nonlinearity on the Lagrangian
function

Having examined the structural dynamic problem under small deformations, it is now
desired to consider equilibrium in the deformed configuration with large deforma-
tions. The effect of large structural displacements is considered, while that of large
deformations within the corotational frames of elements is ignored. This seems to be
justified for elastic-plastic frame elements where significant displacements occur after
yielding when hinges form, thus not accompanied by large deformations within the
element corotational frame. The effect of the change of length on the flexibility coef-
ficients of beam-column members is neglected since this is a higher order effect. Large
deformations may be included by proceeding from the Lagrangian of an infinitesimal
element and performing spatial discretization such as by Finite Element Method. Some
remarks on this formulation are presented in the next section. The difference in for-
mulation of the large displacement case from the previous case is only the fact that the
equilibrium matrix, B, is a function of displacement, B(u). However, the equilibrium
equations (15) being in global coordinates and the compatibility equations (16) being
incremental (compatibility of deformation and displacement rates) must both remain
unchanged by this additional consideration. It is demonstrated (see Sivaselvan and
Reinhorn, 2004) that the spatially pre-discretized Lagrangian of equation (18) holds
in the deformed configuration as well:

L(u, J, u̇, J̇) = 1
2

u̇TMu̇ + 1
2

J̇
T

AJ̇ + JT[B (u)]Tu̇ (19)

Since all other terms of the Euler-Lagrange equations remain unaffected, it is sufficient
to examine the resulting generalized equilibrium equations obtained from the above
Lagrangian:

d
dt

(
∂L
∂u̇

)
−
(
∂L
∂u

)
= Mü + d

dt

(
BTJ

)
− ∂

∂u

(
u̇TBTJ

)
= Mü + BTJ̇ +

[(
dBT

dt

)
− ∂

∂u

(
u̇TBT

)]
J (20)
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It can be shown (Sivaselvan and Reinhorn, 2006) that
(
dB/dt

)−∂u
(
u̇TB

) = 0. Having
recognized the symmetry in B, the above result may also be proved using index notation
as follows:(

dB
dt

)
− ∂u

(
u̇TB

)
= Ḃij − Bij,pu̇p = Bij,pu̇p − Bij,pu̇i = Bpj,iu̇p − Bij,pu̇i = 0 (21)

Thus the formulation remains unchanged when geometric nonlinearity is included.

5 Extension to continuum formulation

Sivaselvan and Reinhorn (2004) have shown that weak formulations analogous to
equations (17) through (18) can be obtained for continua. The final formulation
derived elsewhere (Sivaselvan and Reinhorn, 2004) is presented below. For a three
dimensional continuum, the Lagrangian formulation is given by:

L = 1
2

u̇ku̇k + 1
2

Aijkl J̇ij J̇kl + 1
ρ0

JijB∗
ijku̇k; ϕ(J̇, u̇) = ∪C(J̇) + 1

2
ciju̇iu̇j

δI = −δ
T∫

0

∫
�

ρ0L d� dt +
T∫

0

∫
�

ρ0
∂ϕ

∂u̇k
δuk d� dt

+
T∫

0

∫
�

ρ0
∂ϕ

∂J̇ij
δJij d� dt −

T∫
0

∫
�

ρ0fk δuk d� dt −
T∫

0

∫
�

τk δuk d� dt (22)

The analogy with equations (17) and (18) is seen easily.

6 Time discretization – discrete calculus of variations

The numerical integration of the Lagrangian equations by discrete variational integra-
tors is developed next for the time integration of the governing equations (15) and
(16) of the structure. This development consists of two stages: (1) The action integral
of equation (17) is discretized in time to obtain an action sum. Using discrete calcu-
lus of variations (Cadzow, 1970), finite difference equations are obtained, which are
the discrete counterparts of the Euler-Lagrange equations. (2) The task in each time
step is shown to be the solution of a constrained minimization problem for which an
Augmented Lagrangian algorithm is developed. The action integral of equation (17)
is discretized using the midpoint rule and a time step h, using central differences. It is
assumed in this process, that the J and u are twice continuously differentiable functions
and P is a once continuously differentiable function of time, and that the dissipation
function is continuously differentiable with respect to J̇. It is shown in Simo and Govin-
djee (1991) using geometric arguments, that the O(h2) accuracy holds in the limiting
case of rate-independent plasticity when the viscous coefficient η→ 0. Starting from
action sum, and performing a series of summation by parts (Marsden and West, 2001),
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we obtain (Sivaselvan and Reinhorn, 2006):

M
(

uk+1 − 2uk + uk−1

h2

)
+ C

(
uk+1 − uk−1

2h

)
+ B

(
Jk+1 − Jk

2h

)
=
P

k+ 1
2
+ P

k− 1
2

2


A
(

Jk+1 − 2Jk + Jk−1

h2

)
+ 1

2

 ∂ϕ
∂J̇

∣∣∣∣
k+ 1

2

+ ∂ϕ

∂J̇

∣∣∣∣
k− 1

2

− BT
(

uk+1 − uk−1

2h

)
= 0 (23)

Using Discrete Variational Calculus results in an integrator with vastly better perfor-
mance. It is also seen in the following that this results in a form similar to the classical
Newmark family of integration schemes. Such variational integrators are symplectic
and momentum preserving and often have excellent global energy behavior (Kane et al.
2000).

7 Time-step solution

Introducing the notation, vn and Fn as the Central Difference approximations of the
velocity and the internal force respectively, Eq. (23) then becomes:

M
(

vn+1 − vn

h

)
+ C

(
vn+1 + vn

2

)
+ B

(
Fn+1 + Fn

2

)
=
(

Pn+1 + Pn

2

)
(24)

A
(

Fn+1 − Fn

h

)
+ 1

2

(
∂ϕ

∂F

∣∣∣∣
n+1

+ ∂ϕ

∂F

∣∣∣∣
n

)
− BT

(
vn+1 + vn

2

)
= 0 (25)

where n= k− 1/2, vn = (
un+(1/2) − un−(1/2)

)
/h and Fn = (

Jn+(1/2) − Jn−(1/2)
)
/h. It is

common in modeling frame structures for dynamic analyses to use a lumped mass
matrix and to ignore rotational inertia. Hence the mass matrix could in general be
singular. Similarly, the damping matrix could also be singular, for example when using
mass proportional damping. Thus, consistent with the convexity assumptions and
without loss of generality, equation (24) can be rearranged and partitioned as follows:

2
h


M 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 +


C11 C12 0 0
CT

12 C22 0 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 +


BT

1

BT
2

BT
3

BT
4


T

F =


P1

P2

P3

P4

+ 2
h


Mv1,n
0
0
0


(26)

where the partitions 1 through 4 represent respectively (i) degrees of freedom with mass,
(ii) those with damping but no mass, (iii) those with prescribed forces and (iv) those
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with prescribed displacements (or velocities). Following some algebraic manipulations,
we obtain:

Minimize &(Fn+1) = 1
2

FT
n+1AFn+1 − FT

n+1b

Subject to (i) B3Fn+1 = P3

and (ii) h
2φi (Fn+1) ≤ 0 i = 1, 2, . . . , Ny

(27)

where

A = A + h
2

BT
2 C−1

22 B2 + h2

4
B

T
1 M

−1
B1 (28)

b =
[(

A − h
2

BT
2 C−1

22 B2 − h2

4
B

T
1 M

−1
B1

)
Fn + h2

2
B

T
1 M

−1
P1

+ hBT
2 C−1

22 P2 + hB
T
1 M

−1
Mv1,n +

h
2
∂ϕ

∂F

∣∣∣∣
n

]
M = M + h

2
C11, C11 = C11 − C12C−1

22 CT
12,

B1 = B1 − C12C−1
22 B2 and P1 = P1 − C12C−1

22 P2 (29)

This is the Principle of Minimum Incremental Complementary Potential Energy which
can be stated as: Of all the forces at step n+1, Fn+1, satisfying equilibrium with pre-
scribed external forces at the un-damped quasi-static degrees of freedom and satisfying
the yield conditions, the one that minimizes the incremental complementary potential
energy & is the one that satisfies equilibrium and compatibility in the other degrees of
freedom.

An Augmented Lagrangian algorithm is used for the solution of the minimization
problem (27). For a detailed treatment of the Augmented Lagrangian formulation,
the reader is referred to Glowinski and Tallec (1989). The problem (27) is reduced
to a sequence of linearly constrained sub-problems using the Augmented Lagrangian
regularization:

Minimize
Fn+1

&AL (Fn+1, λ) = 1
2

FT
n+1AFn+1 − FT

n+1b + h
2

Ny∑
i=1

[
λiφi (Fn+1)+ ν

2
〈φi (Fn+1)〉2

]
Subject to B3Fn+1 = P3

(30)

where {λ= λ1,λ2, . . . , λNy}T is the vector of plastic multipliers, ν is a penalty parameter
and < > denotes the Macaulay Bracket. The Augmented Lagrangian regularization
is a combination of the usual Lagrangian term, λiφi(Fn+1) and the penalty function
ν/2<φi(Fn+1)> 2. The latter helps accelerate convergence while the former elim-
inates the need for the penalty parameter to be large, which leads to numerical
ill-conditioning. Both terms vanish at a feasible point. The solution is obtained in



318 Computat iona l s tructura l dynamics and earthquake eng ineer ing

two nested stages. In the inner stage or primal stage, the dual variables, i.e. the
plastic multipliers λ are held fixed and the primal variables, i.e. the forces Fn+1 are
obtained by solving the above equality constrained problem. In the outer, or dual
stage, the forces are held fixed and the plastic multipliers are updated using the
formula:

λnew
i =

〈
λold

i + νφ (Fn+1)
〉

(31)

The superscripts new and old have been used, rather that iteration indices, to
denote values at the beginning and at the end of an iteration, to avoid the prolif-
eration of subscripts and superscripts. Due to the Central Difference approximation,
(h/2)λi(∂φi(Fn+1)/∂Fn+1) is the plastic strain increment. In physical terms, therefore, the
Augmented Lagrangian process is equivalent to relaxing the regularizing dashpot and
allowing the frictional slider to incrementally develop plastic strain in each iteration.
A dense matrix algorithm for the solution of equation (30) is presented in Sivaselvan
and Reinhorn (2001). When considering large displacements, as stated above when
describing the effect of geometric nonlinearity, the equilibrium matrix B depends on
displacement. It is therefore updated at every step using the newly computed displace-
ments. Strictly, this requires an iterative procedure because the matrix B has to be
evaluated at time n+ 1/2.

8 Numerical example

The example structure is shown in Figure 2. It is a portal frame consisting of three
elements. The connections are assumed rigid. The stress-strain curve of the mate-
rial is assumed bilinear with the following properties: E= 199955 kN/mm2 and
σy = 248.2 kN/mm2. In order to show the feasibility of this formulation as an alter-
native to existing programs, the results are compared with the program DRAIN-2DX
(Allahabadi and Powell, 1988). The example although very simple, is used to illustrate
the method and its applicability to collapse simulations.
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Figure 2 Portal frame Example
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Figure 3 Results with external axial force.

A dynamic analysis is performed with an axial force of 731.05 kN on each column,
corresponding 50% of the yield force. In this case there is significant geometric nonlin-
earity. Figure 3(a) and Figure 3(b) show that the horizontal and vertical displacements
continue to grow. Figure 3(c) shows the joint rotation. The point marked “collapse’’
in Figure 3(d) is the point beyond which an external horizontal force is required to
pull the structure back to keep displacements from growing autonomously under the
vertical loads acting on it. During a dynamic analysis, when this point is crossed,
displacements continue to grow without reversal even when the input reverses; the
analysis is terminated at this point. It is also noticed that under load reversal, the yield
force in the opposite direction is higher than the original yield force.

Dynamic analyses were made on large frame structures exceeding 2,500 degrees of
freedom (see Figure 4a) and up to 30,000 DOF subjected to ElCentro 1940 accelero-
gram. The results in Figure 4b show stable response under large deformations in
presence of material and geometric nonlinearities.

9 Concluding remarks

The evolution of the elastic-plastic structural state in time is provided a weak formu-
lation using Hamilton’s principle. It is shown that a certain class of structures called
reciprocal structures has a mixed weak formulation in time involving Lagrangian and
dissipation functions. The new form of the Lagrangian developed in this work involves
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Figure 4 Application of the Lagrangian formulation to a large-scale structure.

not only displacements and velocities but also internal forces and their impulses leading
to the concept of the generalized momentum for framed structures. The derivative of
the compatibility operator with respect to displacements possesses a symmetry that
renders the Lagrangian invariant under finite displacements. The formulation can
therefore be used in geometric nonlinear analysis. A discrete time integrator has been
derived starting from a weak formulation. The integration of each step has been shown
to be a constrained minimization problem – the principle of incremental minimum com-
plementary potential energy. An Augmented Lagrangian algorithm and a dense matrix
implementation have been derived for the solution of this problem. Since the matrix
of the minimization problem of Eq. 27 is positive definite, the solution is globally con-
vergent, allowing for larger time steps for computation. The examples show that this
method can provide as good or better information than a widely used displacement
based inelastic analysis solutions. The examples also show that the method is stable
and efficient for large structures. However, the power of the method presented herein
is in evaluating structures where various elements collapse, and forces and momentum
have to be redistributed in the remaining system.
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ABSTRACT: Nonlinear methods of analysis for seismic vulnerability assessment of existing
structures are attracting increasing attention for their capacity to predict the actual seismic
behavior better than linear methods. Their inclusion in modern design codes such as Euro-code
8 is a major boost for their use in practical applications. Recent years have also seen steady
advances in the modeling capabilities of reinforced concrete frames, particularly in the field of
beam and column behavior. Advanced frame modeling tools are included in both research and
commercial codes. As research and practicing engineers start applying nonlinear methods to
real problems, questions arise regarding the application of the design code-provided procedures
and the selection of the appropriate structural model given the objective limitations of the frame
modeling capabilities today available. The scope of this paper is to discuss some of the issues
still open regarding the applications of the nonlinear methods of analysis to reinforced concrete
structures, with the firm belief that an open discussion on these methods, their advantages and
limitations will open the way to a more widespread use of advanced and more accurate methods
of analysis.

1 Introduction

Modern seismic design codes allow engineers to use nonlinear methods of analysis to
compute design forces and design displacements. In particular, two nonlinear methods
are considered: simplified nonlinear pushover analysis and full nonlinear time-history
analysis. These methods refer to the design and analysis of frame structures, mainly
buildings and bridges. Nonlinear methods are of particular interest for the seismic
vulnerability assessment of existing structures, where the modern concepts of capacity
design have not been used, and therefore the application of linear methods of analyses
cannot be easily justified.

There is no doubt that nonlinear analyses are more accurate than linear analyses
in reproducing the actual structural behavior up to the Ultimate and Collapse Limit
States, but there still lacks the necessary experience to make nonlinear methods of
analyses routine methods for existing structures. The two nonlinear methods require
advanced models and advanced nonlinear procedures in order to be fully applicable
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by design engineers. Furthermore, reinforced concrete (RC) structures show a highly
nonlinear behavior that is not easily modeled with frame elements. Concrete and steel
nonlinear response, concrete cracking, bond-slip, re-bar debonding, rebar buckling,
shear failure, joint deformations, joint failure, progressive damage are some of the
main sources of nonlinearities during a moderate or strong seismic event. Due to the
relatively recent introduction of the nonlinear methods, the nonlinear procedures are
not yet fully applicable and not many nonlinear programs are available to run them.
This paper intends to summarize the two nonlinear procedures contained in Eurocode
8 (2003) (EC8), to highlight some of the open issues related to their applications, and
to discuss them with the aid of two applications, one to a RC building, the other to a
RC bridge.

2 Overview of nonlinear methods of analysis

This brief overview deals mainly with the nonlinear procedures in EC8. Other seismic
codes contain similar approaches (ATC 40, 1996; FEMA 356, 2000). Two nonlinear
methods of analysis are considered in EC8: the nonlinear pushover analysis (NPO)
and the nonlinear time history analysis (NTH).

The initial steps of both nonlinear procedures are identical: construction of the
nonlinear frame model and application of the gravity loads. The gravity loads remain
constant during the nonlinear analysis. This initial step is quite important because it
changes the initial state of the structure. In a RC building the gravity loads typically
induce cracking in the beams and apply high axial forces to the columns.

2.1 Nonlinear Pushover Analysis

The NPO consists of applying monotonically increasing constant-shape lateral load
distributions to the structure under consideration. The model can be planar or
three-dimensional, depending on the plan irregularity of the structure. For buildings
conforming with the regularity criteria of EC8 the analysis NPO may be performed
using two planar models, one for each principal horizontal direction. For plan-irregular
buildings, two independent analyses with lateral loads applied in one direction only
are performed, and the results are then combined. Plan irregularity is typical of older
structures.

The NPO procedure in EC8 follows the N2 method developed by Prof. Fajfar (2002).
The N2 method was based on rigid frames, where the floor beams are rigid. The N2
method consists of applying two load distributions P=M	 (where M is the mass
matrix and 	 the load shape array):

a. a “modal’’ (or “triangular’’) pattern with 	=	1, that is P1 =M	1, where 	1 is
the first mode shape in the load direction considered;

b. a “uniform’’ or “mass proportional’’ pattern with 	=R, that is P2 =MR, where
R is the influence vector.

In the N2 method 	1 is normalized so that the top floor (n) displacement is 1, i.e.
	1,n = 1.
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The two load distributions are schematically shown in Figure 1. The applied lateral
load distributions are increased and the response is plotted in terms of base shear Vb

vs. top floor displacement D (for example center of mass of the top floor). This is the
so-called pushover curve or capacity curve (also shown schematically in Figure 1). The
above load patterns are supposed to reproduce static loads equivalent to the seismic
action. The two load patterns correspond to a first-mode dominated behavior and to
a bottom soft-story response. Other distributions can be used but are typically non
considered.

The N2 procedure transforms the response of the MDOF system into the response of
an equivalent SDOF system, with force-displacement curve F∗ −D∗, with F∗ =Vb/�,
D∗ =D/� and �= (	TMR)/(	TM	). This is necessary in order to compare the build-
ing capacity curve of Figure 1 with the demand, expressed in the design codes by the
design spectra, which refer to SDOF systems Fajfar (1999, 2002).

In order to compare elastic design spectrum (demand) and capacity curve, first the
capacity curve is transformed into an energy equivalent elastic-perfectly plastic system,
then the ADRS (Acceleration Displacement Response Spectrum) representation is used,
as shown in Figure 2.

Approximate nonlinear demand spectra are obtained using simplified formulas
(Eurocode 8, 2003). The design point is given by the intersection between the capacity



326 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Py

Px

y

x

Dty

Fby

Dy

Fbx

Dx
Dtx

EEdy

EEdx

2 2
Ed Edx EdyE E E= �

SRSS

Combination rule 1

Combination rule 2
0,3

0,3
Ed Edy Edx

Ed Edx Edy

E E E

E E E

= �

= � 

Figure 3 EC8 Combination rules for horizontal seismic forces.

curve and the inelastic response spectrum of equal ductility. Once the target displace-
ment D∗

t for the SDOF system is determined, the target displacement for the MDOF
is computed as Dt =�D∗

t . All the design verifications for the given Limit State are
performed at the top floor displacement D=Dt.

For non symmetric buildings, two different pushover analysis should be performed
for each seismic input direction, in the positive and negative directions. For struc-
tures that are torsionally flexible, EC8 suggests to account for the torsional effects by
following a simplified procedure where the frame displacements are increases based
on a modal response spectrum analysis. This approach is based on the modified N2
procedure (Fajfar et al., 2005).

The pushover procedure described so far refers to the application of the ground
motion in a single direction. When the ground motion is applied in the two horizontal
directions x and y, (this is the case of plan irregular buildings, i.e. the great majority of
existing buildings in southern Europe) EC8 gives two alternatives for the combination,
the SRSS method or the 100/30 Combination rule (Figure 3).

In nonlinear analysis, the action effects (as they are called in EC8) may be either
forces or deformations. For ductile mechanisms (such as flexure in beams) the action
effects are the deformations (for flexure, plastic hinge rotations or curvatures), while
for brittle mechanisms (such as shear) the action effects are forces (shear forces in
the structural elements). EC8 gives some indications on how to check the seismic
performance of a building based on nonlinear analysis results, but studies are still
under way and a clear checking procedure is still missing.

The above combination appears as an extension of the directional combination rules
in linear procedures. It remains to be proven that they can be extended to the nonlinear
case. It seems more logical to apply the two load patterns at the same time, but this
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topic is still to be studied. The N2 method was originally developed for plane frame. Its
extension to space, plan-irregular buildings with mixed translational-torsional modes,
modeled with advanced modeling tools (see later) is a challenge.

Another important issue with the N2 methods stems from the fact that the applied
load shapes remain constant during the load history, thus the progressive damage of
the structure does not affect the applied seismic loads.

One alternative pushover method is the so called adaptive pushover. One example
is the method developed by Elnashai (2002); Antoniou & Pinho (2004). The method
adapts the form of the applied load to the inelastic evolution of the structure, given
by the instantaneous stiffness matrix of the structure. In other words, at given points
along the pushover curve, the applied load shape is updated based on the instantaneous
mode shapes. This is typically done using either total or incremental updating. In total
updating, the total load vector is changed based on the new mode shapes. In the
incremental updating form, only the increment of lateral loads includes the change
in stiffness and thus the instantaneous mode shapes. This method is an improvement
on the N2 method, but the changes in loading function cannot fully reflect the cyclic
damage state the structure can have in the actual dynamic motion.

Another method is the so-called modal pushover developed by Chopra & Goel
(2002). The idea is to extend the modal analysis from the elastic to the inelastic range.
It is assumed that the response of the system can still be expressed in terms of n
uncoupled nonlinear equations of motion. If the excitation is proportional to the i
mode, it is assumed that the response is still dominated by the same mode. That
is, if the load is proportional to 	i, the displacement response is dominated (and thus
proportional) to 	i. This allows modal decomposition. The global response is obtained
combining the modal responses. The pushover procedure is repeated for each mode,
and the resulting target displacements are found for each mode. The maximum seismic
effects are found using the SRSS or the CQC modal combination rules. The procedure
is obviously approximate, but the results published so far show improved results when
compared with the N2 method of EC8. The main criticism to this method is that it
combines responses of totally independent structures (the single bilinear SDOF systems)
and thus lacks a sound physical interpretation. Another problem, common to other
nonlinear pushover procedures, is the modal combination based on SRSS or CQC,
where the sign of the action is lost.

An alternative nonlinear static procedure was proposed by Aydinoglu (2003). The
procedure, called Incremental Response Spectrum Analysis (IRSA) does not properly
belong to the pushover methods. The procedure is displacement-based, it uses the
equal displacement rule and the structure nonlinear behavior is modeled as piece-
wise linear. The initial modes are computed and the elastic response spectrum for
the initial structure is carried out. In the first stop the spectral ordinates are scaled
to the formation of the first plastic hinge, which corresponds in the piece-wise lin-
ear capacity curve, to the first change of stiffness. The updated modal quantities are
computed and additional spectral ordinates are computed up to the formation of the
second plastic hinge. The procedure continues until the entire spectral ordinates are
applied. The method does not require any transformation to an equivalent SDOF
system.

Other pushover procedures have been proposed in the published literature, but no
general consensus has been reached on the best possible procedure. It appears that
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at this stage the N2 method represents a good compromise between simplicity and
precision. A number of studies are however under way in this field.

2.2 Nonlinear Time History (NTH) analysis

The nonlinear time-history analysis is the most general nonlinear method of analysis.
It is deemed unpractical by some because of the computational length of the analysis,
but as computer speeds increase, NTH becomes increasingly feasible. Time-history
analysis is a general dynamic method of analysis and there are no computational pecu-
liarities related to earthquake engineering analysis. The input force is the input ground
motion, expressed in the form of one or more accelerograms. The dynamic equations
of motion are:

MÜ + CU̇ + F(U) = −MRüg (1)

where C is the damping matrix, üg is a vector containing accelerograms and depends
on time, i.e. üg(t). In the most general case, üg = {üg,x üg,y üg,z}, that is the input ground
motion, consists of three simultaneously acting accelerograms in three orthogonal
directions. For buildings, the z component of the ground motion is typically neglected.
Thus, for a 3D structural model, only the horizontal components are considered and
üg = {üg,x üg,y}.

There are still a few unresolved issues related to NTH analysis: the selection of the
appropriate structural model (this problem applies to NPO analyses too), the selec-
tion of the ground motions, the selection of a correct damping matrix, the heavy
computational effort, the large volume of output quantities to be analyzed.

As for the selection of the ground motions for the NTH analyses, EC8 states that:

a. a minimum of 3 different pairs of accelerograms üg = {üg,x üg,y} should be used.
If 3 to 6 ground motions are used, then the maximum of the response quantities
from all the analyses should be used as the design value of the action effect Ed in
the relevant verifications;

b. if 7 or more different ground motions are used, i.e. if 7 different pairs of accelero-
grams üg ={üg,x üg,y} are used, then the average of the response quantities from
all the analyses should be used as the design value of the action effect Ed in the
relevant verifications.

Depending on the nature of the application and on the information actually available,
the description of the seismic motion may be made by using artificial, recorded or
simulated accelerograms [Eurocode 8, 2003]. EC8 establishes rules with regard to
obtaining spectrum-compatible accelerograms.

Though no extensive study is yet available and discussions are under way in those
countries that have started employing nonlinear methods of analysis, it is generally
recognized that recorded accelerograms, if well selected, are less demanding on the
structure, because each single accelerogram does not match well the elastic response
spectrum, and the frequency content of each single accelerogram is limited with respect
to the elastic response spectrum. On the other hand, generated accelerograms are more
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demanding, because each single accelerogram has a response spectrum close to the elas-
tic response spectrum. Some claim that generated or simulated accelerograms should
be used at the research level for the refinement of the nonlinear methods of analysis,
while recorded accelerograms should be used for the actual design of structures. No
general consensus has yet been reached, though. A few computer programs are freely
available on the internet for generated and simulated accelerograms.

As for recorded accelerograms, there are databases available (such as the Euro-
pean Strong Motion Database (http://www.isesd.cv.ic.ac.uk), the PEER Strong Motion
Database (http://peer.berkeley.edu/smcat/index.html), the Strong Motion Database
of SeismoLinks (http://www.seismolinks.com/Strong_Motion_Databases/) to mention
just a few. The elaboration of these databases of recorded ground motions and the
selection of the appropriate accelerograms that satisfy the EC8 requirements is not triv-
ial. An effort to extract and filter the accelerograms of the European Strong Motion
Database is underway in the Italian project Re-luis (Iervolino et al., 2006). Groups
of accelerograms compatible (according to EC8 criteria) with the elastic response
spectra for different ag and soil type are available at http://www.reluis.unina.it/ (in
Italian).

EC8 does not contain any specific procedure for the estimation of the torsional
effects. In principle, the general procedure for accidental torsional effects should
be applied. However, this would imply applying the ground motions at 4 differ-
ent locations, with a considerable increase in computational costs. At this stage it
appears reasonable to neglect the torsional effects when performing nonlinear dynamic
analyses.

Another important issue related to NTH analyses is the selection of the damping
matrix C in Eq. (1). The commonly used rule of employing Rayleigh damping with
5% damping in the principal modes cannot be applied here. First of all, the stiffness
matrix changes at every instant. Some programs allow for updating of the Rayleigh
damping C matrix as K changes. But the biggest issue concerns which modal damping
ratio values to use. Several analyses have shown that 5% is too high a damping for an
inelastic structure, as is easily understood since viscous damping CU̇ accounts already
for some nonlinearity in the structure. If the material nonlinearities are accounted for
in the nonlinear static term F(U), then the damping ratio should be reduced. The more
accurate the nonlinear structural model is, the lower the damping ratios should be
(Panagiotou et al., 2007). It appears that a damping coefficient between 2% and 3%
is suggested by most analysts. The issue is however very important (and difficult to
solve) because for very low damping, small changes in damping imply large variations
in the results.

NTH analyses typically produce large amounts of output data. This problem is
related to the fact that there is no consensus yet on the verification procedures. Once
the verification procedures are well established, it will be a lot easier for commercial
and research software to contain automatic design checks.

3 Overview of current nonlinear models

There are two main sources of nonlinearities; material and geometric. Material nonlin-
earities have received more attention in earthquake engineering analyses, but geometric
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nonlinearities may be quite important when dealing with the ultimate and collapse limit
states.

EC8 does not have any specific guidelines on how to model material nonlinear-
ities, except for general considerations on the concrete and steel constitutive laws
(Eurocode 8, 2003). Material properties should be based on mean values of the
mechanic characteristics for existing structures.

EC8 provides some guidelines on geometric nonlinearities, but only on when and
how to account for them in an approximate way. Second-order, or P-� effects, need
not be taken into account if the following condition is satisfied:

θ = Ptot dr

vtot h
≤ 0, 10 (2)

where θ is the interstorey drift sensitivity coefficient, Ptot is the total gravity load at and
above the storey considered in the seismic design situation, dr is the design interstorey
drift, Vtot is the total seismic storey shear, h is the interstorey height. If 0,1< θ≤ 0,2,
then nonlinear geometric effects may approximately be taken into account by mul-
tiplying the relevant seismic action effects by a factor equal to 1/(1− θ), θ> 0, 30 is
not accepted. This is obviously an approximate, code-oriented approach to geometric
nonlinearities, while inclusions of the second-order effects typically depends on the
capabilities of the nonlinear program used.

Material nonlinearities are typically modeled with either lumped or spread plasticity
models. Lumped plasticity models model beams and columns as linear elastic, except
in given points where plastic hinges can form. Plastic hinges can be specified in many
different forms, using ad hoc plastic laws or more advanced fiber-based section models.
In order to model the plastic hinge behavior, it is necessary to assess the length of the
plastic hinge Lpl, though no general formula or procedure exists. The plastic hinge
length is important to transform plastic rotations into plastic curvatures, and vice-
versa. In some programs it is also possible to include plastic hinges that describe shear
failure (plastic hinge is not probably the right label in this case!). This is important
for shear deficient structures. Most commercial software includes lumped plasticity
models. For inexperienced analysts, plastic hinges are probably easier to handle than
spread plasticity models. The main shortcoming is that structures are assumed mostly
elastic, thus approximations are needed for capturing the member elastic stiffness.

Spread-plasticity models are classical finite elements where material nonlinearities
are modeled at each integration point. Besides the classical two-node displacement-
based beam elements, force-based two-node force-based elements have seen a
widespread use both in research and commercial software (McKenna, 1997; MIDAS,
2006; Zimmermann, 1985–2007). The assumed force fields in a two-mode force-based
element are exact within classical beam theories, such as the Euler-Bernoulli and Tim-
oshenko theories (Marini & Spacone, 2006; Spacone et al., 1996). This implies that
only one element per structural member is used. The element implementation is not
trivial and it implies element iterations, but these steps are transparent to the user. The
section constitutive law is the source of material nonlinearities.

In principle, the same section constitutive laws can be used for either spread-plasticity
elements (at the integration point level) o in lumped models (at the plastic hinges). Fiber
section models are considered state-of-the-art at present, because they automatically
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account for the interaction between axial and bending forces and can thus effectively
describe biaxial bending in RC columns. Shear effects are also easily modeled in two-
node force-based elements. The formulation of a force-based Timoshenko beam is very
similar to that of an Euler-Bernoulli beam. At the section level, different approaches
can be used. The most general one is to couple axial, bending and shear deformations
at the section level, but this requires sophisticated cyclic material laws. Petrangeli et al.
[OPCM 3431, 2005] have proposed a fiber element with shear deformations for the
uniaxial bending case. An alternate formulation decouples the section shear force from
the bending and axial forces in the section constitutive law (that is an independent,
uncoupled shear V-γ law is assigned to the section), and equilibrium at the section
level couples bending and shear responses. In other words, when the shear strength
is reached, bending cannot increase to equilibrium between shear forces and bending
moments (Marini & Spacone, 2006). It can however be stated that a section model
that accounts for full nonlinear coupling between axial, biaxial bending, shear and
torque is not yet available for beam elements.

Different uniaxial constitutive laws are available for concrete and steel. For concrete,
different properties can be assigned for confined and unconfined concrete. Modifica-
tions of the steel bar laws can also account for buckling and for slip, but calibration is
a key issue in this case.

At present, no readily available models are yet available for the beam-column joints,
which are commonly neglected or assumed rigid in current practice. Another impor-
tant issue is modeling the effects of the frame infills. It is well known that masonry
infills influence the behavior of RC frames, but modeling the interaction is not easy.
Strut elements have been proposed, but the selection of the material properties is not
straightforward.

As for nonlinear geometric models, there is little experience on their use in nonlinear
frame analysis, even though many think it is important as the damage induced by
the ground motions leads to larger lateral drifts. For displacement-based elements,
treatment of the P-� effects or even of the large-displacements and moderate rotations
is a well established field. For force-based elements, the problem has been recently
solved (Neuenhofer, 1998; Scott & Filippou, 2007) within the general co-rotational
framework.

Spread plasticity models are no doubt more precise and accurate than lumped-
plasticity models, However, they are somehow more delicate to use. For section
behaviors that exhibit softening (reinforced concrete columns, local buckling etc.)
spread plasticity elements localize the deformations in the extreme sections and the
solution loses objectivity (Coleman & Spacone, 2001). Several solutions have been
proposed, all based on the knowledge of the actual plastic hinge length Lpl. This is
however a central point to the entire nonlinear procedure. The analyses are based (for
both lumped and spread plasticity models) on the notion of a plastic hinge length.
Yet, there does not yet exist a unified definition of this characteristic length, because
the problem is not totally understood or described from a mechanical viewpoint. In
other words, nonlinear analyses describe a process, the formation and evolution of
the plastic hinge, that is not fully understood. It is therefore difficult to give reliable
formulas for Lpl. Though EC8 provides some indications on how to compute the plas-
tic hinge lengths, these definitions seem to apply for new buildings where the rebar
splicing is placed away from the member ends and the end regions are well confined
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by the transverse reinforcement. For existing buildings, the plastic hinge length may be
lower.

The application of more advanced methods of analysis such as the fiber elements is
sometimes incompatible with the nonlinear procedures specified by the design codes.
This is precisely the case of the N2 method in EC8. In this case, for plan-irregular
buildings, one has to perform two different pushover curves in the principal x and y
directions of the building. The results are then combined using the combination rules
of Figure 3. When using the fiber element, though, a problem arises. Both pushover
analyses are performed after application of the gravity loads. But the gravity loads
cannot be accounted for twice, thus the procedure of Figure 3 can only be rationally
applied with section laws that consider axial and bending forces uncoupled. The prob-
lem is more general. The combination rules developed for linear methods do not readily
extend to nonlinear methods, because the principle of superposition no longer applies.
The main problem here is that the N2 method was developed for 2d models, and its
extension to 3D models is quite difficult and is becoming unrealistic.

Another problem that arises when using fiber element has to do with the selection
of the control point. The original N2 method was developed for shear frames and
can be easily applied to frames with floor diaphragms which are rigid in their plane.
When the beams are modeled with fiber elements, floor diaphragms cannot be used,
because they introduce artificial compression due to the fact that the beams cannot
freely extend. Because the beams are normally axially stiffer, almost any point can
be selected. However, in older buildings with few beams and thin slabs the floor can
become quite flexible in its plane and thus some differences can be expected in the
horizontal displacements over a floor. Also, slabs have to be modeled with either shell
elements or with equivalent bar elements (which ignore the flexural stiffness of the
slabs).

NTH analyses appear to be more reliable than NPO analyses, but some problems
exist in their case too. Slowness of the analysis was already mentioned. Another issue
that is sometimes neglected is the direction along which the ground motion is applied.
Design codes typically apply the ground motions (either in the form of design spectra
or of input accelerograms) along the structure principal directions. Such directions
may be difficult to identify for older, plan irregular buildings or for skewed bridges.
The problem does not exist for linear analysis, where the directional combination rules
(CQC3, SRSS, 100/30 etc.) cover the possibility of different ground motion direction.
No thorough studies have been completed for nonlinear analyses of plan-irregular
structures.

4 Examples

Some of the previously highlighted issues are now discussed through the nonlinear
analyses of a RC building and a RC bridge. The RC building is a 3-story structure that
was damaged during the 2002 Molise earthquake in Italy. It is a typical residential
building with a semi-open ground level. The scope of the study, conducted jointly
between the University of Chieti-Pescara, Italy and the University of California, San
Diego, USA, is to assess the effects of different modeling details on the structural
response of the building model.
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The building is analyzed using OpenSEES (McKenna, 1997; Fenves et al., 2004).
The basic frame is modeled with force-based, fiber-section distributed plasticity beam
elements (schematically shown in Figure 5. The general section model uses the section
aggregator in OpenSEES, where shear is coupled with bending only at the element
level. In the applications described in this paper, only linear shear and linear torque
were used. One element per structural element is used, unless there is a change in
section reinforcement. The bare frame response is shown in Figure 7. The bare frame
is in this case loaded in the global Y direction only. The structure is particularly flexible
in the Y direction because the central frames have no beams. A 1.18sec fundamental
period of the frame structure in the Y direction is found from a modal analysis after
the application of the gravity loads.

As previously noted, it is not clear how the N2 Pushover procedure can be applied
in this case where a fiber section model is used. The application of the procedure of
Figure 3 implies two pushovers in the X and Y plan principal directions. Does that
imply that the gravity loads are applied twice? If they are applied twice, then the
resulting axial loads will be overestimated, if the gravity loads are applied only once,
before say the pushover in the X direction, then the N-M interaction in the pushover
in the Y direction is not very meaningful. It appears that in the current format the



334 Computat iona l s tructura l dynamics and earthquake eng ineer ing

(h � b)
Gc2hb3GJ

KT
L L

� �

e e

s s

b

h

P, M,V, T

P, M

Mt

Mt

g

g

V

GAs

b

h

Shear 
L or NL V-f

�

Fiber 
NL fibre r-d

V

V

q

q

T

q

Kt

b

h

Torque 
L or NL T-p

�

� ��

Figure 6 Extended section model (section aggregator in OpenSEES (McKenna, 1997).

N2 procedure cannot be applied to irregular buildings where the structure has to be
loaded in two orthogonal directions.

The bare frame of Figure 7 was studies using both modal and uniform pushover
according to EC8, modal pushover and nonlinear time history analysis using seven
generated accelerograms. The green curves in Figure 7 indicate the responses to the
seven accelerograms, while TH indicates the average value of the maximum response
quantity, as prescribed by EC8. The results of the pushover analyses are in good agree-
ment with the average time history displacement response, while some inaccuracy
appears in the upper floors drift response. The MPA analysis results show that the
higher modes have some participation, but their contributions remain essentially elas-
tic. The SRSS combination rule used in this case leads to a total MPA response slightly
greater than the mode 1 only PO response. It is noteworthy that all three methods
agree in finding a floor mechanism at the second story. Due to the long fundamental
period of the structure, the total response has a large elastic component. The plastic
hinge inelastic demand varies from column to column depending on the presence of
adjacent beams and on the height of the beams.

The floor is typically modeled as a diaphragms rigid in its plane. This may not be
a good choice in the present example because: a) the absence of beams in the central
frames makes the floor flexible; b) the rigid diaphragms impose artificial prestressing
in the fiber-section beams by blocking their extension. A 2x2 mesh of 40 mm-thick
elastic 4-node concrete shell elements is used for each slab field (Figure 11).

Similarly to the previous case, the average TH response and the first mode PO
analysis match quite well in terms of absolute displacements, while the PO drift demand
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Figure 7 Results of NPO on Bonefro building (bare frame).

is still lower. There is also some increased scatter among drift responses obtained with
different ground motions at the floor where the maximum drift occurs. As far as the
structural behavior is concerned, the presence of the floor slabs unloads the beams
with respect to the previous case. The additional floor bending stiffness produces
lower elastic deformations in the columns. The elastic configuration of the floor slab
somehow bounds the slab behavior since slabs are expected to crack.

The next element to be added are the infills. The infill panels are modeled as double
inelastic no-tension struts, with thickness tw = 200 mm, equivalent width dw = d/10,
using a uniaxial elastic, softening law similar to that of concrete. Two cases are consid-
ered. In the first, the struts connect the structural joints, in the second, at the ground
level the struts are connected to the columns at a distance of approximately 500 mm
from the beam-column joint (Figure 9).

The first effect is to increase the stiffness of the building and the base shear in the
building, but to decrease the total displacement demand. The pushover response is in
good agreement with the time history average results in terms of maximum top dis-
placements. Some differences are found in the maximum drift response at the upper
floors. For the case of the eccentric struts, the base column shear behavior was mod-
eled with a nonlinear shear law. The overall response does not change significantly,
but the central column of the lateral frames fail in shear. The shear failure is consid-
ered using the model of Figure 6 with a nonlinear shear behavior. The central base
column response is shown in Figure 10. When the shear strength is reached (upper
right plot), by equilibrium the bending moment (still mostly elastic, lower right plot)
cannot increase.
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Figure 8 Results of NPO on Bonefro building (bare frame plus flexible floors).

Finally, the bare frame was studied using two accelerograms applied in the X and
Y directions. Figure 11 shows the bending moment response at the base section of
the highlighted columns for one accelerogram applied in the Y direction only, while
Figure 12 shows the same response due to simultaneous accelerograms in the X and
Y directions. The section responses change, mainly due to the change in axial load
due to the application of the accelerogram in the orthogonal direction. In general, the
change in axial load significantly affects the bending response. The outer column is
more loaded because there are no beams in the Y direction.

The second example is a RC bridge located in Vasto Marina (south of Pescara,
Abruzzo, Italy) along the major north-south Adriatic Highway 16. It is a two-lane
bridge built in the 1960s. The bridge, shown in Figure 13, has a sharp bent about
1/3 from the south end. The supporting piers are multi-column bents. The bridge is
located near the Adriatic seacoast and some of the steel reinforcement is badly rusted.
The bridge is irregular in plan and height.

The superstructure is partly continuous, with Gerber beams connecting the con-
tinuous sections of the bridge. The bridge has an irregular geometry. Its complex
dynamic response cannot be captured by analyzing separate subsystem. Furthermore,
the Gerber supports are rollers in the longitudinal direction only, while they block the
transversal displacements. For these reasons, a global model of the entire bridge was
created placing particular care in the definition of joints and the nodes. The pier bents
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Figure 9 Results of NPO on Bonefro building (bare frame plus infills).
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Figure 11 Results of NTH on Bonefro building (bending moment Mx due to accelerogram ay
only).

are modeled with beam elements, whereas the deck is modeled with shell elements as
shown in Figure 14.

The Gerber support joints are modeled with two overlapping nodes connected with
equal displacement constrains in the x, y and z direction (equal constraints). The roller
joints are modeled in a similar manner but the x direction is not constrained. To
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Figure 12 Results of NPO on Bonefro building bending moment Mx due to accelerograms ax
and ay).
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simulate correctly the flexural behavior of the piers in the longitudinal and transversal
direction, constrains are inserted in the nodes as shown in Figure 14.

The bridge is studied with linear and nonlinear dynamic analyses, using the Italian
draft guidelines for the seismic vulnerability assessment of existing bridges, prepared
in the framework of the Reluis project, funded by the Italian Civil Protection Depart-
ment in support of the new seismic design guidelines [OPCM 3431, 2005]. The linear
analysis is the classical response spectrum analysis (RSA) according to EC8. The non-
linear static analysis is performed with lumped plastic hinges and the response time
histories (RTH) are performed with fiber force based elements. The results of the RTH
performed with the program Midas Civil Fenves et al. (2004) are reported here. To
perform the analysis, 2 accelerograms are selected. The accelerograms are part of a
suite of ground motions that comply with the requirements of the new Italian seis-
mic codes, OPCM 3431 [OPCM 3431, 2005], They can be found at the website:
http://reluis.rdm-web.com/pagine/Accelerogrammi_europei.htm.

The structure sits on type C soil (OPCM 3431 [OPCM 3431, 2005]). The mate-
rial properties used in the analysis are the following: concrete cylinder strength,
fc = 20 MPa, steel yielding strength fy = 315 MPa. The concrete is modeled using the
Kent and Park model, whereas the steel is modeled using the Menegotto-Pinto model.

The sections are subdivided into 10x10 fibers. Because program Midas does not
included tapered elements, the tapered piers are idealized with two elements and
every element is integrated with 3 Gauss-Lobatto points. In the longitudinal direc-
tion, the pier height varies between 3 (Bent 1) and 10 (Bent 14) meters, therefore
the length of the first Gauss-Lobatto point varies between 250 mm and 837 mm. The
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base section dimensions of bent 1 are h= 700 mm and b= 350 mm, whereas the base
section dimensions of bent 14 are h= 880 mm and b= 350 mm.

The design base acceleration for the site is ag = 0.15 g. Five incremental dynamic
analysis are performed with ag = 0.15 g, 0.12 g, 0.09 g, 0.06 g and 0.03 g. The shear
strength is checked using the Eurocode 2 (2005), which uses the modified field theory.
The results are represented in Figure 15. The bent are numbered from the left to the
right from 1 to 14.

In Figure 15 Vx indicates shear failure in the longitudinal direction and Vy shear
failure in the transversal direction. For ag = 0.03 g the piers do not collapse. The
first column to collapse in the longitudinal direction is in bent 1 for an acceleration
ag = 0.06 g. The base shear of the first column that collapses is depicted in Figure 16
for different levels of the PGA.

For an acceleration of 0.15 g nearly all the elements fail in shear. The members fail
in flexure when the ultimate concrete strain is reached. Figure 17 shows the deformed
shape when the first column collapse in flexure.

In the Figure 17 F stands for flexural failure and Y indicates yielding of the rebars.
The picture clearly indicates that the high torsion of the first bent causes failure of the
outmost external column. The base section at failure is shown in Figure 18. There is
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a high biaxial bending which causes the neutral axis to rotate. The moment-curvature
behavior in the two orthogonal directions is shown in Figure 19.

It is worth noting that in several codes the ultimate capacity is estimated on the basis
of the ultimate chord rotation. For example Eurocode 8 uses the following formula:

θp,u = (	u −	y)Lpl

(
1 − Lpl

2L

)
(3)

where 	u is the ultimate curvature, 	y is the yielding curvature, Lpl is the plastic
hinge length and L is the distance from the end section of the plastic hinge to the point
of zero moment in the pier (shear span length). The plastic hinge length Lp can be
found as:

Lpl = 0, 10LV + 0, 015fykdbL (4)
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The formula was calibrated on the basis of simple bending tests. Is it reliable for
biaxial bending? Moreover, how can LV be defined in the case of biaxial bending?
It appears that the literature published and the guidelines available at present do not
investigate in depth this problem. Also Eq. (4) is applicable to well confined sections
only, thus it may not be readily extended to unconfined sections, as is the case of the
given example.

5 Conclusions

It is recognized that nonlinear methods of analyses are the rational procedures for
predicting the response of structures under moderate and strong earthquakes. Much
work and progress have been achieved in recent years, in terms of both model and
nonlinear procedure developments, but nonlinear methods of analyses, as proposed
by EC8, are not yet routinely used in either research or practice. The following is a
partial list of issues that still need clarification:

• The nonlinear pushover procedure is not readily applicable to plan irregular build-
ings or structures. This simplified and quick method of analyses was originally
developed for plane frame and its extension to space frame is not straightforward
and may not be achievable;

• The selection of the ground motions for nonlinear dynamic analyses is key to these
analyses but no clear procedure is yet in place. Another issue that needs further
investigation is the amount of viscous damping that can be assigned. Finally, the
directions along which the ground motions are applied to plan-irregular buildings
is easily identified;
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• The differences found with different modeling assumptions need to be fully under-
stood by the analysts. Floor flexibility, infill effects, shear response are some of
the effects that the analyst may want to consider;

• Not all nonlinear phenomena (such as joint failures, frame-infill interaction and
shear–bending interaction) are modeled correctly by present nonlinear computer
codes, either research or commercial;

• The amount of output produced by nonlinear computer codes is very large. Though
graphic post-processing tools are available (mainly in commercial codes) the design
checks required by EC8 need further testing before they are fully applicable. Once
clear procedures are identified, then post-processing of the results will be easily
implemented in the nonlinear codes.

As more and more structures are analyzed with nonlinear procedures, the above issues
will become clearer and the problems will be solved, especially through a strong
interaction between practicing engineers and researchers.
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ABSTRACT: This study focuses on the modelling of steel reinforcing bars subjected to a gener-
alized loading history. The model of Monti and Nuti which is based on a set of experimental
observations in order to account for buckling of the steel bars is examined. It has been noticed
that in the case of partial unloading and then reloading, a common situation when a structure is
subjected to seismic actions, the model might greatly overestimate the corresponding stress. An
additional memory rule is thus proposed to eliminate this observed shortcoming. With the aid of
the proposed modification, the Monti-Nuti model proved to be capable of simulating accurately
the capacity of reinforced concrete members. The rules presented are easy to implement and
applicable to any model in the literature where a similar situation is identified. Two case studies
are examined where the enhanced model was proven capable to produce realistic numerical
results.

1 Introduction

Past earthquakes have shown that a common failure mode of reinforced concrete (RC)
members is buckling of the longitudinal reinforcement. In order to obtain an accurate
prediction of strength and ductility, this effect should thus be taken into account during
analysis. Buckling of the reinforcement is in essence a stability problem and therefore
depends both on the geometry of the bar and on the material properties. However,
treating the problem as a second-order problem would require a detailed FE modelling
approach. In practice, in order to allow for an easier modelling of RC structures, phe-
nomenological constitutive laws where buckling is taken into consideration through
the material properties are commonly adopted.

The interest of this study is on uniaxial stress-strain relationships, which can be used
in the framework of a fiber beam-column element and also can capture accurately the
response of a linear element with minor bending stiffness such as a reinforcing bar. In
particular, special attention is paid on the model proposed by Monti and Nuti (1992).
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This model incorporates a set of experimental observations regarding the response of
steel reinforcement into the widely-used stress-strain relationship of Menegotto and
Pinto (1973).

Experience has shown that a stress-strain relationship may fail to predict correctly
the response when small reversals in the strain history occur; this is the case when the
structural model is subjected to a ground motion record. Initially this problem was
identified in the model of Menegotto and Pinto (1973) by Filippou et al. (1983), who
pointed out that, in order to avoid such an undesirable behaviour, the memory of the
analytical model should extent over all previous branches of the stress-strain history.
In terms of implementation this would be impractical and thus Filippou et al. (1983)
proposed to limit the memory of the model to four controlling curves, which warrant
that, at least at the structural level, this numerical problem is almost fully eliminated.

The aforementioned numerical difficulty strongly manifests itself when the Monti-
Nuti buckling rules (1992) are implemented on the model of Menegotto and Pinto
(1973), even if the Filippou et al. (1983) modifications are adopted; the response may
be heavily distorted, thus limiting the applicability of the model to non-earthquake
engineering applications. In this work, an additional memory rule that enables more
accurate handling of a generalized load history is proposed. The methodology proposed
is general in scope since it can be applied almost to any constitutive law of a σ= f (ε)
type, including the Menegotto-Pinto and the Monti-Nuti models. Emphasis is placed
on the Monti-Nuti relationship, where the problem is more critical and also because
the Menegoto-Pinto model does not feature modelling of re-bar buckling.

2 General specifications

2.1 Description of the physical problem

During load reversals, concrete in compression zone prevents the development of high
compressive strain in the compressive steel. Only when concrete loses its resistance, as
in the case of concrete spalling, the development of high compressive strain in reinforc-
ing steel is likely. After spalling of the concrete cover the longitudinal bars are exposed
and if the amplitude of the cyclic loading is significant the bars will buckle outwards.
The only factor contributing against buckling is the existence of stirrups, that should
be sufficiently spaced and detailed, particularly in those parts of the member where
heavy inelasticity excursion is likely to take place.

Several parameters are involved in the phenomenon of buckling such as the slender-
ness of the rebar, the stiffness and the rigidity of the hoops and the strain hardening
of steel. The most important is probably the slenderness of the rebars. A measure of
slenderness is given by the ratio between the length of the stirrups over the diameter
of the bar, L/D. The failure modes usually observed are, primarily, buckling between
two consecutive stirrups and, less commonly, along a larger length when fracture of
more than one stirrup occurs.

Only the monotonic behaviour has been thoroughly investigated when it comes to
buckling, while the cyclic behaviour is still under investigation. According to Mander
et al. (1984) buckling takes place at or near the yielding load, which is also verified
by the recent study of Bae et al. (2005). The monotonic post-buckling path varies
for different slenderness ratios of the bar. Mau and El-Mabsout (1989) presented
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monotonic curves for different, L/D ratios, where it is concluded that the higher the
values of the ratio L/D, the lower the post-buckling peak stress. They have also verified
numerically that the transition point between elements that are subjected to buckling
phenomena and those that are not, is for L/D values close to five. For ratio values
smaller than this threshold, the stress-strain relationship remains similar to that in
tension. Monti and Nuti (1992) and Cosenza and Prota (2006) both presented results
where the above threshold was justified experimentally, while Bae et al. (2005) con-
cluded, on the basis of extended experiments, that this threshold value may vary also
according to the yield strength of the bar. Moreover, Cosenza and Prota (2006) showed
that for L/D ratio values greater than 20, elastic buckling is more likely to occur.

2.2 State-of-the-art in model l ing of steel bars

Few attempts to capture buckling of the longitudinal bars can be found in the literature.
Among them, the proposals of Gomes and Appleton (1997) and Monti and Nuti
(1992) are based on modifications of the Menegotto-Pinto model (1973). Monti and
Nuti (1992) proposed a set of rules based on experimental observations of buckling
of reinforcement bars. The stress-strain relationship adopted was that of Menegotto-
Pinto, though any given constitutive law may be used, if expressed accordingly. The
parameters of the Monti-Nuti model are updated after each load reversal, with such
updating being performed by means of the two classical (i) isotropic and (ii) kinematic
hardening rules, (iii) a memory rule to account for the material’s memory of the plastic
path followed and (iv) a saturation rule to account for the asymptotic character of
the hardening phenomena. These four rules are defined both in the absence and in the
presence of buckling. A detailed description of the model is provided by Monti and
Nuti (1992), where experiment-based values are used in order to calibrate the model;
different values can be easily adopted on the basis of alternative experiments (e.g. Bae
et al. (2005), Gomes and Appleton (1997)). A brief description of the Monti-Nuti
model is given in the following paragraphs.

The backbone of the Monti-Nuti model is that of the Menegotto-Pinto relationship:

σ∗ = bε∗ + (1 − b)ε∗

(1 + ε∗R)
1
R

(1)

where the normalised strain and stress are obtained by:

ε∗ = ε− εr

ε0 − εr
and σ∗ = σ − σr

σ0 − σr
(2)

Equation (1) represents a curved transition from a straight-line asymptote with slope
E0 to another asymptote with slope bE0 (Figure 1 lines (α) and (β) respectively).
σ0 and ε0 are the stress and the strain at the point where two asymptotes of the branch
under consideration meet (Figure 1, point A), while σr and εr denote the stress and the
strain at the point where the last strain reversal with stress of equal sign took place
(Figure 1, point B). The shape of the transition curve allows a good representation of
the Baushinger effect. This is a function of the curvature parameter R and depends on
the strain difference between the current asymptote intersection point and the previous
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Figure 1 Stress-strain relationship of the Menegotto-Pinto model.

load reversal point with maximum or minimum strain depending on the corresponding
steel stress (Filippou et al. (1983)).

The expression for R takes the form: Rn =R0 − (a1ξ
n
p/(a2 + ξn

p)), where ξn
p is the plas-

tic excursion at the current semicycle, defined as: ξn
p = εn

r − εn
y . Also, R0 is the value

of the parameter R during the first loading and a1, a2 are experimentally determined
parameters to be defined together with R0. The hardening rules are functions of four
independent parameters: yield stress σy, elastic modulus E0, hardening ratio b0p and a
weighting coefficient P. In absence of buckling, experimental tests have shown that no
isotropic hardening is developed in half-cycles with plastic excursion equal to or lower
than the maximum previous one. In the presence of buckling a complementary phe-
nomenon occurs, in this case no kinematic hardening is developed in half-cycles with
plastic excursion equal to or lower than the maximum previous one. These phenomena
are modelled through a memory rule based on the additional plastic excursion γn

p :

γn
p = 〈|ξn

p| − ξmax
p 〉 · sign {ξn

p} (3)

where 〈a〉= a if a> 0 and 〈a〉=0 if a≤ 0 and ξmax
p =max(|ξn

p|) is the maximum plastic
excursion. The half-cycle plastic work is defined as:

Φn
p =

1
2

(σn
r − σn

y )ξn
p (4)
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Φn
p in absence of buckling is positive both in tension and in compression, while in

the presence of buckling it is positive in tension and negative in compression. The
hardening ratio b0p for post-yield hardening branches in tension is defined as the ratio
between the post-yield modulus in tension and the initial elastic modulus. The cur-
vature of the branch is defined as in the Menegotto-Pinto model. Some additional
parameters are determined in order to account for buckling. The hardening ratio for
post-yield softening branches in compression is defined as:

b0n = 0.003((L/D)∗ − L/D) (5)

which decreases with increasing L/D and is not related to the positive hardening ratio
b0p. In Equation (5), (L/D)∗ denotes the threshold ratio beyond which inelastic buck-
ling is expected to occur, usually taken equal to five. The curvature of the post-yield
loading branches in compression follows the rule:

Rb = R0b +
a1b · ξmax

p

a2b + ξmax
p

< R1b (6)

where R0b = 0.2(L/D− (L/D)∗), a1b = a1 + 1, a2b = 1000a2, and R1b =R0 −
2(L/D − (L/D)∗). The elastic modulus after reversal from compression varies accord-
ing to:

E = E0(a5 + (1 − a5) · exp(−a6ξ
2
p)) (7)

where a5 = 1+ ((L/D)∗ −L/D)/7.5, and a6 = 1000. The modulus decreases with
increasing cycle amplitude, due to the bar axial stiffness degradation that takes place
after buckling.

The total hardening is obtained by means of a mixed rule consisting of both a
kinematic and an isotropic component. A linear combination of two of the hardening
types is assumed using a weighing coefficient P, which is calibrated experimentally:

�σn
KI = P ·�σn

K + (1 − P) ·�σn
I · sign(−ξn

p) (8)

A value of P= 0.9 is suggested for common mild steel. The two hardening compo-
nents are developed based on a memory rule. In the absence of buckling this rule is
applied to the isotropic hardening, while in the presence of buckling it is applied to
the kinematic hardening instead. In the absence of buckling the stress variation is due
to the plastic excursion and the additional plastic excursion is given as follows:

Kinematic hardening : �σn
K =

n∑
i=1

b0n · E0 · ξn
p (9)

Isotropic hardening : �σn
I =

n∑
i=1

∣∣b0n · E0 · γn
p

∣∣ · sign(�n
p) (10)
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On the contrary, in the presence of buckling the stress variation is due to the
additional plastic excursion which is defined as:

Kinematic hardening : �σn
K =

n∑
i=1

b0n · E0 · γn
p (11)

Isotropic hardening : �σn
I =

n∑
i=1

∣∣b0n · E0 · ξn
p

∣∣ · sign(�n
p) (12)

The updated stress σn
0 (or σn+ 1

y ) of Equation (1) becomes:

σn+1
y = σ0

y · sign(−ξn
p) +�σn

KI (13)

3 Response under a generalized load history

When a ground motion is used to perform timehistory analysis, relatively small loading-
unloading excursions of the material strains are frequent. Reinforcing bar numerical
models, however, tend to be verified only under loading conditions such as that of
Figure 2(a) where the loading scheme consists of large stable symmetric cycles. As a
result, spurious numerical behaviour such as that illustrated in Figure 2(b), that arise
from random unsymmetrical loading cycles, might be overlooked.

The severity of the problem depends on the formulation of the material model used.
In particular, the Monti-Nuti model was found to be very sensitive to this situation,
since a tiny notch in the stress-strain path may lead to a very large overestimation of
the corresponding stress (Fig. 2(b)). This is due to the fact that the bilinear envelope,
defined by the Menegotto-Pinto model adopted by Monti and Nuti, becomes too
narrow and the curves are not capable of “fitting’’ within it. Therefore, this spurious
behaviour is generated because the same algebraic expression used for the skeleton
curve is also used when a small unloading and loading back takes place. Consequently,
the spurious branches of Figure 2(b) are developed, with a shape that depends on the
ratio between tie spacing and bar diameter L/D. As shown in sections to follow, such
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Figure 2 (a) Response under stable cyclic strain history; (b) Spurious branches on the σ-ε level
produced by the M–N model when the member is subjected to earthquake loading.
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overestimations may affect the accuracy of the overall analysis, for which reason it
was deemed necessary to address them accordingly, as discussed subsequently.

4 Proposed modifications

In order to tackle difficulties such as those discussed in the previous section, Dodd
and Restrepo-Posada (1995) introduced the idea of major, minor and simple reversals,
whilst Balan et al. (1998) distinguished reversals into complete and incomplete, with
a value of 2fy being adopted as a threshold parameter. For the Monti-Nuti model,
Attolico et al. (2000) proposed that whenever small strain variations take place, the
model should follow the backbone curve before the last strain reversal.

In the current work, an alternative corrective measure is proposed for the Monti-Nuti
model, where the stress-strain curve is forced to join tangentially the branch defined
during the previous strain reversal. In order to determine whether an unloading branch
is small or not, a strain interval denoted as ε̂ is introduced. The latter is defined as a
proportion of the strain value of the point of the last strain reversal εr. Typical efficient
values vary between 2.5 or 5 percent of εr, though larger values may be used if higher
“filtering’’ is deemed necessary (Fragiadakis (2001)).

All loading and reloading that take place inside the interval ε̂ are assumed to be
linear elastic. Figure 3(a) shows that when reloading beyond this interval (from point
4 to 5), the skeleton curve of the last loading branch is followed instead of updating the
model parameters that would define a new loading branch. Otherwise, if unloading
does not go beyond ε̂, point 5 is obtained elastically (Fig. 3(b)). Loading in the opposite
direction, beyond point 4, will follow the previously defined branch 3–4 (Fig. 3(b)).
Figure 4 shows two cases where reloading starts from points that have been previously
obtained elastically. A strain step that results in a strain value outside the ε̂ interval will
follow the previously defined skeleton branch curve (Fig. 4(a)). Figure 4(b) shows that
all load reversals inside ε̂ are considered linear elastic. In Figure 5, the uncorrected and
the corrected stress-strain histories for different L/D ratios are shown. Figures 6 and 7,
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Figure 5 Corrected and uncorrected stress-strain paths; (a) L/D= 12, (b) L/D= 6.
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Figure 6 Comparison at the stress-strain level under seismic excitation; (a) without the proposed
modifications, (b) with the proposed modifications.
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Figure 7 Comparison at the structural level under seismic excitation; (a) without the proposed
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Table 1 Material model parameters – Range of values.

R0 A1 a2 a3 a4 P

Men.- Pinto 20 18.5 0.05–0.15 0.01–0.025 2–7 –
Monti-Nuti 20 18.5 0.05–0.15 – – 0.50–0.90

on the other hand, demonstrate the effectiveness of the algorithm at the stress-strain
and the structural level, respectively, when the structure is subjected to a ground motion
record.

5 Calibration of the model

The applicability of a material model depends largely on the values that the
user/engineer will choose for the parameters of the model. In most cases in order
to select appropriate values, calibration of the model and hence experimental results
are required. Usually this sort of information is not available and therefore default
values have to be used. When the law employed is sensitive to its parameters, lack of
experimental results may narrow considerably its applicability. For both the Monti-
Nuti and the Menegotto-Pinto models, suggested values can be obtained from various
publications. A typical range for the model parameters are listed in Table 1. Bold letters
denote the values that have been found appropriate for a wide range of applications
by the authors.

All the parameters of Table1 have a clear physical meaning as described in the
original publications. The curvature parameters R0, a1 and a2 affect the shape of the
hysteretic curve and hence the representation of the Bauschinger effect and the pinching
of the hysteretic loops. Parameters a3 and a4 quantify isotropic hardening. Usually the
contribution of isotropic hardening is significantly smaller than that of kinematic and
hence the set of values adopted would not affect considerably the response. In Figure (8)
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the parameter P is varied thus demonstrating the influence of isotropic over kinematic
hardening. A simple calibration procedure for this parameter that consists of single
cycle tests is suggested in the original paper of Monti and Nuti.

6 Numerical studies

6.1 Column under Cycl ic Loading Condit ions

The first case study consists of a cantilever column subjected to a displacement of
constantly increasing amplitude on its top. The loading program for the specimen
consisted of a displacement-controlled cyclic loading scheme, where two cycles of
displacement are applied at each deformation level with 2 mm/step increments. The
displacement of the tip of the column, the FE model and the properties of the column
are shown in Figure 9.

The response obtained using three different reinforcing steel models is shown in
Figure 10. The widely used bilinear model with kinematic hardening and the model



Model l ing ine las t i c buck l ing o f re in forc ing bars 357

�40000

�20000

0

20000

40000

�10 �5 0 5 10

Displacement (mm)

(a) (b)

Fo
rc

e 
(N

)

�40000

�20000

0

20000

40000

�10 �5 0 5 10

Displacement (mm)

(c)

Fo
rc

e 
(N

)

�40000

�20000

0

20000

40000

�10 �5 0 5 10

Displacement (mm)

Fo
rc

e 
(N

)

Figure 10 Response of a cantilever beam; (a) bilinear kinematic hardening (b) M–P and (c) M–N.

of Menegotto and Pinto do not show degradation in the capacity of the column as
opposed to the Monti-Nuti model where the envelope of the hysteretic loops shows
clearly the reduction in the capacity of the column. It is also observed that, dissipation
of energy and pinching of the hysteretic loops is not fully captured by the first two
models.

6.2 Wall under Dynamic Loading Condit ions

The second case study is part of a series of shaking table tests carried out at the
Centre for Earthquake Studies and Equipment at LNEC (Lisbon, Portugal). Details
concerning the project and the actual test set up are reported by Pinho et al. (2000).
Ductility class ‘L’ was adopted to determine section size and longitudinal reinforcement
requirements. The wall element with thickness of 200 mm and its height and width are
indicated in Figure 11. Both the longitudinal and shear reinforcement are also shown
in Figure 11. A combination of two artificial (AR) and two natural records (NR) was
applied to generate the input ground motion shown in Figure 12 (Pinho et al. (2000)).
The resulting ground motion guarantees that the wall will be damaged progressively.
The record was split into four stages, using scaled up and scaled down accelerograms in
succession, without pause, mixing both natural and artificial records. The records, in
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order applied, were AR(0.14), NR(0.25), NR(0.33) and AR(0.18). The second portion
of the nomenclature indicates the peak ground acceleration of each record.

The transverse reinforcement used consists of ∅6/60 for the lower half and ∅6/120 for
the upper half, while ∅8 bars were used for the longitudinal reinforcement. Therefore,
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the L/D ratios of the wall are 7.5 and 15, respectively. Thus, buckling of the longitudi-
nal reinforcement is expected to take place and therefore considerable improvement of
the results is expected when the Monti and Nuti rules are taken into consideration dur-
ing analysis. The default model parameters are used (see Table 1), while the corrective
algorithm was adopted with 2.5% filtering of εr.

The data acquired during the test had to be filtered so that high-frequency con-
tent, associated to parasitic vibrations in the table and electromagnetic interference,
could be removed. The smooth shape of the experimental curve is therefore associated
to the filtering of the records. For succinctness, stage one (time= 0÷ 10) and three
(time= 20÷ 30) of the loading phase are presented in Fig. 13, see previous page.

Three models, the bilinear kinematic hardening, the Menegotto-Pinto and the Monti-
Nuti were used for comparison. Clearly, the first fails to produce realistic hysteretic
plots although the capacity and the displacements are in some cases sufficiently esti-
mated. The Menegotto-Pinto model although it provides hysteretic curves closer to
the experimental, still does not fully reproduce the experimental results. This can be
attributed to some extent to the buckling of the longitudinal bars. Substantial improve-
ment is achieved with the Monti-Nuti model. A better overall agreement is reached
despite the lack of proper calibration of the model and to some particularities present
during the test set up that the FE model adopted was not able to capture.

7 Concluding remarks

Buckling of the longitudinal reinforcement may affect considerably the response of RC
members, especially when they are subjected to large displacements. This behaviour
can be captured if the constitutive model of the reinforcement is enhanced with the
experimental observations of Monti and Nuti (1992). Monti and Nuti introduced into
the Menegotto-Pinto model a set of rules for buckling of the longitudinal reinforcement.
Their model, although conceptually correct, features a not necessarily unconditioned
accuracy when predicting stress-strain response under a generalized load history. An
additional memory rule is presented in order to tackle this shortcoming. The rule
proposed is based on a relatively simple concept, and thus can also be applied in
models other than that of Monti and Nuti. In the case-studies examined, improved
representation of the response was obtained, though the results could still be bettered
if ad-hoc model calibrations would be carried out (the latter was however outside of
the scope of this work).
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Analyzing steel moment-resisting
connections using finite element
modeling

Chris P. Pantelides & Lawrence D. Reaveley
University of Utah, Salt Lake City, USA

Scott M. Adan
Simpson Gumpertz & Heger Inc., San Francisco, USA

ABSTRACT: In seismic structural design and rehabilitation deviations from the common
practice require testing. The AISC Seismic Provisions for Structural Steel Buildings (American
Institute of Steel Construction 2005) recommend that usage and sizing of beam flange continuity
plates across the column web shall be based on tests. The FEMA 350 Recommended Seismic
Design Criteria (Federal Emergency Management Agency 2000) state that unless project-specific
testing is performed to demonstrate that continuity plates are not required, moment-resisting
connections should be provided with continuity plates when the thickness of the column flange
is below a minimum value. Similarly, in order to qualify any new connection type for inclusion
in the AISC Prequalified Connections for Special and Intermediate Steel Moment Frames for
Seismic Applications (American Institute of Steel Construction 2006), testing has to be carried
out to validate the design concept and to satisfy minimum performance criteria on strength and
interstory drift angle capacity. In this paper, nonlinear finite element analyses are performed to
establish a correlation between measured and computed responses of two steel connections:
(1) the reduced beam section (RBS) moment connection without continuity plates, and (2)
the bolted bracket (BB) moment connection. The connections were tested using cyclic quasi-
static displacements applied at the beam tip. Comparisons of measured and computed responses
showed good correlation. Further nonlinear finite element analyses resolved the issue of when
continuity plates are necessary for RBS connections, and whether the bottom-only BB connection
is an efficient retrofit scheme.

1 Introduction

In seismic structural design and rehabilitation deviations from the common practice
require testing. For example, Post-Northridge studies have shown that when continuity
plates of substantial thickness are used in reduced beam section (RBS) moment connec-
tions, inelastic strains across the weld of the connected beam flange are considerably
higher opposite the column web than they are at the flange tips. The disproportion-
ate strains can cause the weld stress at the center of the flange to exceed the tensile
strength prematurely based on a uniform average stress distribution through the entire
weld (American Institute of Steel Construction 2005).

When considering the elimination of continuity plates, AISC Seismic Provisions for
Structural Steel Buildings (American Institute of Steel Construction 2005) recommends
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that usage and sizing of continuity plates be based on tests. In addition, FEMA 350 Rec-
ommended Seismic Design Criteria (Federal Emergency Management Agency 2000)
states that unless project-specific testing is performed to demonstrate that continuity
plates are not required, RBS moment connections should be provided with continu-
ity plates when the column flange thickness is below a minimum value. The required
minimum thickness is based primarily on the beam flange width and thickness.

Similarly, in order to qualify any new connection type for inclusion in the AISC
Prequalified Connections for Special and Intermediate Steel Moment Frames for Seis-
mic Application (American Institute of Steel Construction 2006), testing is required to
validate the design concept and to satisfy minimum performance criteria on strength
and interstory drift angle capacity. Qualifying tests performed on the bolted bracket
(BB) moment connection have demonstrated that a BB retrofit can restore capacity to
a damaged pre-Northridge connection with high reliability and low installation cost
(Kasai & Bleiman 1996).

In an effort to gain additional insight into the behavior of both RBS and BB con-
nections, a study was performed using nonlinear finite element modeling. The study
utilized a general-purpose finite element modeling program, ANSYS/Multiphysics
(2005), to perform a series of nonlinear finite element analyses. The models were
able to correlate both nonlinear behavior and lateral-torsional buckling as observed
during testing of specimens in the laboratory.

2 RBS moment Connection

2.1 Experimental invest igation of RBS moment connections

Four full-scale tests were performed at the University of Utah (Pantelides et al. 2004)
using the RBS moment connection, following the protocols established for stepwise
increasing cyclic tests published by the SAC Steel Project (Clark et al. 1997). The beam-
column connections were tested using cyclic quasi-static displacements applied at the
beam tip. All tests were performed with a beam size of W30× 132. Two of the con-
nections used W14× 283 columns (SP1 and SP2) and the other two used W18× 211
columns (SP3 and SP4). Details of the connections and the RBS section are shown in
Fig. 1. The RBS cutouts reduced the beam flanges to 48 percent of the initial width. The
beam web and flanges were connected to the column flange with qualified complete
joint penetration groove welds. No continuity plates were installed. To simulate floor
slab bracing, the top flanges of the beams were braced by two sets of bracing columns.

The failure modes were different between the specimens with the W14× 283 and
W18× 211 columns. The failure sequence for specimens with the W18× 211 columns
was as follows: (1) localized buckling of the beam web at the column side of beam
plastic hinge; (2) torsional buckling of the bottom beam flange in the RBS section cou-
pled with twisting of the column flange; (3) kinking of the beam bottom flange in the
RBS section; and (4) fracture of the beam bottom flange where previous kinking had
occurred, during the next cycle of loading. The failure sequence for the W14× 283
columns differed from that of the W18× 211 columns in two respects: (1) column
flange twisting was insignificant and (2) additional buckling of the beam top flange
was observed near the end of the test. No evidence of weld failure was observed in any
of the tests.
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Figure 1 Details of connection and RBS section.

Figure 2 shows the observed localized beam web buckling and the beam bottom
flange lateral movement that occurred at higher cycles of inelastic drift. The hystere-
sis curves of moment versus interstory drift in Fig. 3 show stable performance with
no degradation in strength. All specimens reached a total interstory drift angle of
0.05 radians, which satisfies the AISC (American Institute of Steel Construction 2005)
requirements for a special moment frame of a total interstory drift angle of 0.04 radi-
ans, without significant strength degradation. The pinched responses of specimens SP3
and SP4 indicate local instability at high levels of interstory drift; that was attributed
to lateral-torsional buckling of the beam bottom flange coupled with local twisting of
the connected column flange.

The column web thickness-to-depth ratio, tcw/Tc influences the column flange rota-
tion. The column web stiffness, when an idealization of the column cross section is
made, as shown in Fig. 4, is proportional to the ratio, (tcw)3/Tc. The greater the col-
umn web stiffness, the greater the torsional resistance provided to restrain column
flange rotation, θc, and beam lateral-torsional buckling. In the case of the W14× 283
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Figure 2 Beam web buckling and beam bottom flange lateral movement of RBS connection.
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Figure 3 Column centerline moment versus total interstory drift angle for RBS connections.

column, the column web stiffness was equal to 0.191, and for the W18× 211 column
it was equal to 0.077, which is only 40 percent of the W14× 283 column. The tests
demonstrated that column web stiffness influences the requirement for the continu-
ity plate. However, additional full-scale experiments would have been necessary to
determine the critical column web stiffness beyond which continuity plates would not
be required for satisfactory performance. Experimental evidence of the idealization
of Fig. 4 is shown in Fig. 5 for specimens SP1/SP2 and SP3/SP4. Figure 5 shows the
displacement measured at the tip of the column flange divided by half the column



Ana lyz ing s tee l moment-res i s t ing connect ions 367

Tc

Column Section

RBS Beam�

t c
w

0c

Figure 4 Idealization of RBS column web stiffness and flange rotation.

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

0 5000 10000 15000 20000

Time

Fl
an

ge
 R

ot
at

io
n 

(r
ad

)

�0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 5000 10000 15000 20000

Time

Fl
an

ge
 R

ot
at

io
n 

(r
ad

)

SP1

SP2

SP3

SP4

Figure 5 Measured RBS column flange rotation.

flange width in each case. It is clear that specimens SP1 and SP2 have a more stable
and symmetric performance compared to specimens SP3 and SP4, which indicate that
the column flange has rotated.

2.2 Finite element invest igation of RBS moment connections

In lieu of performing additional full-scale experiments to determine the critical column
web stiffness beyond which continuity plates are not required, finite element analyses
were conducted. Finite element models of the connections were constructed from a
quadrilateral mesh of four node nonlinear shell finite elements. The shell elements have
plasticity, creep, stress stiffening, large deflection, and large strain capabilities (ANSYS
2005). The modeling considers beam web buckling which was shown to trigger lateral
movement of the beam bottom flange (Fig. 2). Boundary conditions were applied
to the finite element models to match that of the tested connections. The beam top
flange was laterally restrained at two locations where lateral bracing was used. Vertical
displacement was applied at the end of the beam to simulate the actuator attachment.
The computer model was subjected to the same incremental loading history as the
tested connections, although the number of cycles in each load step was limited to one.
The computer analysis accounts for material nonlinearities through classical metal
plasticity theory based on linear isotropic elasticity, the von Mises yield function and
the associated flow rule. Geometric nonlinearities are accounted for through a small
strain, large displacement formulation.
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(a) W14 � 283 column and W30 � 132 beam (b) W18 � 211 column and W30 � 132 beam

659 17400
9030 25771 42512 59254 7599: 8576 25175 41775 58374 7497:

34142 50883 67624 591276 16876 33475 50074 66673

Figure 7 Computed RBS connection deformed von Mises stress contours at 0.05 radians of
interstory drift (psi).

The finite element model was verified by comparing the measured cyclic responses
of the tested specimens with the computed response. Figure 6 shows that the com-
puted response correlated with the measured response envelope of the specimens.
Figures 6(a) and 6(b) show comparisons of the beam moment versus interstory drift
for the W14× 283 and W18× 211 column specimens, respectively. Figures 7(a) and
7(b) show the bottom view of the computed deformed shape with von Mises stress
contours at 0.05 radians of interstory drift for the W14× 283 and W18× 211 column
respectively. As is indicated in Fig. 2, the deformations shown in Fig. 7 are similar to
those observed in the tested specimens. During higher cycles of inelastic drift, the beams
experienced local buckling in the web and then lateral movement in the RBS bottom
flange (Pantelides et al. 2004). As indicated in Fig. 7, the mode of the beam buckled
shape is influenced by the restraining boundary condition of the column flange. In
Fig. 7(a) this condition appears fully fixed, while in Fig. 7(b) the condition appears
hinged. The von Mises contours shown in Fig. 7 indicate the highest regions of stress
occur in the web and flanges of the RBS, which would be likely to facilitate fracture if
a flaw or other irregularity were introduced. The tested specimens ultimately fractured
in these same high stress regions.

By reanalyzing the computer models with continuity plates, the study determined
that continuity plates did not improve connection performance for the W14× 283
column. Therefore, column sections lighter than a W14× 283 were investigated
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to determine which sections would require continuity plates when paired with
a W30× 132 beam. The same modeling technique determined continuity plates
improved the connection performance for the W18× 211 column. Therefore, col-
umn sections larger than a W18× 211 were investigated to determine which sections
would not need continuity plates when paired with a W30× 132 beam. Overall, the
study determined that continuity plates improved performance in connections with
inadequate column web stiffness.

All seismically compact W14 and W18 column sections were subsequently stud-
ied parametrically; Fig. 8 illustrates the relationship developed between column web
stiffness and seismic demand for W14 and W18 column sections. An equation for
determining the need for continuity plates was formulated by applying a regression
analysis to the column data and solving for the web thickness, tcw (Adan 2006). Con-
tinuity plates are required in W14 columns if the web thickness is less than the value
given by:

tcw <

{
0.0026(Fyf tf bf )1.69

Fyc

} 1
3

(1)

where, tcw is the minimum column web thickness when no continuity plates are pro-
vided (in.), tf is the beam flange thickness (in.), bf is the beam flange width (in.), and
Fyf /Fyc are the minimum specified yield stress of the beam flange/column web (ksi).
The study concluded that Eq. (1) safely limits local web yielding and column flange
twist even at higher levels of inelastic drift. A similar equation was developed for W18
column sections.

3 Bolted bracket moment connection

3.1 Experimental invest igation of BB moment connections

An experimental program was undertaken at Wyle Laboratories to investigate the per-
formance of the bolted bracket connection using high strength steel castings in lieu
of fabricated steel plates. The brackets were cast in a variety of sizes and configu-
rations to suit a number of potential connection applications. The bracket sizes were
proportioned to develop the full moment capacity of the connected beam and were con-
figured to be either welded or bolted to the beam flange. The testing was performed
to qualify both configurations of bracket for use insteel moment frames. The bolted
configurations were primarily intended for the retrofit of connections damaged in the
1994 Northridge California earthquake. The welded configurations were intended for
new construction. Fig. 9 shows the welded bracket configuration used in specimen
HH-8 of the experimental program. The N2.1 bracket was fillet welded to the beam
flange and bolted to the column flange with four high strength bolts. The bracket pro-
portions were as follows: a= 18.0 in., a′ = 4 in., b= 8.75 in., b′ = 2.5 in., c= 9.5 in.,
c′ = 3.0 in., r= 16.0 in., tv = 2.5 in., th = 1.0 in., ts = 2.0 in., se = 2.25 in., s= 3.5 in.,
and gc = 6.5 in.

The connection was comprised of a W14× 233 column, a W30× 108 beam,
and a pair of N2.1 brackets. The connection was tested using cyclic quasi-static
displacements applied at the beam tip as shown in Fig. 10. The columns were
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Figure 9 Bolted bracket N2.1 configuration.

held in place with pivots, top and bottom; the pivots were positioned 7.0 ft.
above and below the beam centerline. The beams were loaded with a hydraulic
actuator 15.0 ft. from the column centerline. To provide lateral stability, brac-
ing was provided at each column pivot and at each beam 3 ft. from the actuator.
A total of seven connections were tested (Adan & Gibb 2006). Fillet welding
of the bracket to the beam was performed in strict conformance with weld pro-
cedure specifications required in the Structural Welding Code (American Welding
Society 2006). To attach the bracket to the beam, the beam and brackets are clamped
together, preheated, and fillet-welded under controlled conditions.
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Figure 10 Test subassemblage elevation for BB connection specimen HH-8.
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Figure 11 Beam moment vs. interstory drift for BB specimen HH-8.
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(a) (b)

Figure 12 BB specimen HH-8: (a) local flange and web buckling; (b) beam plastic hinge formation
at end of the bracket.

Each beam and bracket assembly was then erected and connected to the column shear
tab. The connection to the shear tab was made with high strength bolts. The bracket-to-
column holes were over-sized to provide adequate tolerance for the bracket installation.
The bolts were tightened using the AISC calibrated torque wrench procedure (American
Institute of Steel Construction 2005). The test specimens were subjected to the cyclic
loading sequence specified by ATC (Applied Technology Council 1992). Figure 11
shows a plot of the beam moment versus interstory drift, computed with respect to
the centerline of the column, for specimen HH-8. At approximately 0.025 radians
of interstory drift, localized buckling of the beam flange and web was observed as a
plastic hinge formed near the end of the bracket. As shown in Fig. 12(a), the hinge was
approximately 18 in. from the face of the column. At 0.055 radians of interstory drift,
extreme localized buckling of the beam flange and web was observed in the plastic
hinge. As shown in Fig. 12(b), plastic hinge formation was the controlling failure
mode of the connection. As with specimen HH-8, all the tested specimens were able to
exceed the AISC moment connection prequalification requirements (American Institute
of Steel Construction 2005). The study concluded that when adequately proportioned,
the bolted bracket can satisfy prescribed requirements for use in special moment frame
(SMF) and intermediate moment frame (IMF) systems.

3.2 Finite element invest igation of BB moment connections

The testing described in Section 3.1 and elsewhere (Adan & Gibb 2006) for bolted
bracket connections was intended to investigate whether the connection would sat-
isfy the AISC prequalification requirements (American Institute of Steel Construction
2005). The question arises as to the suitability of the connection for seismic rehabilita-
tion; in this case, it is desirable to retrofit an existing pre-Northridge beam-to-column
connection with a bottom-only bracket. In lieu of performing more experiments to
determine the suitability of a bottom-only bracket retrofit, finite element analyses
were conducted. As a first step, finite element analysis of the bolted bracket speci-
men HH-8 described in Section 3.1 was conducted using the ANSYS Multi-Physics
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Figure 13 Measured and computed response for BB specimen HH-8.

platform (2005). For simplicity, bracket-to-column connections were modeled as rigid
(no bolting). Other applied boundary conditions matched those applied to the tested
specimen HH-8. An idealized multi-linear stress-strain relationship with strain hard-
ening was utilized for all the materials in the model including the bracket. The model
for specimen HH-8 was subjected to the same incremental loading history as that of
the tested specimen, although the number of cycles in each load step was limited to
one. When compared with a single monotonic load, the incremental loading history
has a significant impact on behavior and performance. The finite element model was
verified by comparing the computed response with that of the measured response. Fig-
ure 13 indicates that the computed response correlates reasonably well with that of the
tested specimen. There are some noticeable discrepancies in the unloading and reload-
ing regions, particularly at higher inelastic deformation levels. The apparent softening
of the measured response can be attributed to the controlled actuator motion in the
unloading and reloading phases of the test.

The computed von Mises stress contours shown in Fig. 14, indicate the highest
regions of stress occur in the web and flanges of the beam. The finite element modeling
indicates initial yielding at 0.02 radians of interstory drift, which was similar to that
of the tested specimen. In Fig. 14, the computed response indicates beam local flange
and web buckling at 0.04 radians of interstory drift. Fig. 14(a) shows the response for
downward loading and Fig. 14(b) shows the response for upward loading. The issue
of whether the bottom-only bracket connection configuration is an effective retrofit
scheme was further investigated using finite element analyses. The computed deformed
shape for the upward response of the bottom-only connection at 0.04 radians of inter-
story drift is shown in Fig. 15; yielding and plastic hinge formation remain within the
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Figure 14 Computed response showing local flange and web buckling with von Mises stress
contours (psi) at 0.04 radians of interstory drift: (a) downward loading, (b) upward
loading.
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Figure 15 Retrofit bottom-only bracket upward response showing local flange and web buckling
with von Mises stress contours (psi) at 0.04 radians of interstory drift.

beam and away from the column interface. Figure 16 shows the computed response
for the bottom-only bracket configuration. The computed response predicts that the
revised configuration would exceed the AISC prequalified connection requirements
(American Institute of Steel Construction 2005). However, in full-scale experimen-
tal testing where the bottom flange was modified with a bracket, and the top flange
pre-Northridge weld was not modified, the connection performed poorly (American
Institute of Steel Construction 1999). The pre-Northridge test specimens developed
early fractures in the top flange weld. Unfortunately, the finite element models do not
address the issue of fracture propagation. The models can only address the potential
for cracking through the development of stress and strain states that would facilitate
fracture if a flaw or other irregularity were introduced. Considering the possibility
of such flaws to exist, the computed stresses in the top flange indicate that the weld
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Figure 16 Computed response for retrofit bottom-only bracket.

could be susceptible to premature fracture. Hence, the bottom-only bracket configu-
ration was deemed an ineffective retrofit alternative when combined with a top flange
pre-Northridge weld.

4 Conclusions

A limited number of experiments have shown that for reduced beam section moment
connections with strong panel zones and columns with sufficiently thick flanges, con-
nections without continuity plates behave as well as those with continuity plates. Finite
element analyses verified the experimental results and established a design equation for
determining the need for continuity plates by applying a regression analysis and solv-
ing for the minimum column web thickness. Another experimental study concluded
that when adequately proportioned, the bolted bracket moment connection can sat-
isfy prescribed requirements for use in special moment frame and intermediate moment
frame systems. This was verified using finite element analyses. The question arises as
to the suitability of the bolted bracket connection for seismic rehabilitation; in this
case, it is desirable to retrofit an existing pre-Northridge beam-to-column connection
with a bottom-only bracket. In lieu of performing more experiments to determine the
suitability of a bottom-only bracket retrofit, finite element analyses were conducted.
The predicted von Mises stresses in the top flange of the connection indicated that the
weld could be susceptible to premature fracture. Therefore, the bottom-only bracket
configuration was deemed an ineffective retrofit alternative when combined with a top
flange pre-Northridge weld.
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Chapter 24

Earthquake damage scenario software
for urban areas

Atilla Ansal,Aslı Kurtuluş & GökçeTönük
Bogaziçi University, Istanbul,Turkey

ABSTRACT: A software package is developed to perform earthquake scenarios for estimating
structural damage and human casualties. The first stage involves generation of microzonation
maps for separately calculated regional seismic hazard. The seismic hazard can be probabilistic
or deterministic where PGA and spectral accelerations or acceleration time histories are specified
respectively for each cell on the engineering bedrock outcrop. In the second stage, representative
soil profiles are defined for each cell and 1D site response analyses are conducted to calculate
average PGAs and elastic acceleration response spectra on the ground surface. An envelope
NEHRP spectrum is calculated for each cell based on site specific average acceleration spectrum
to estimate short (T= 0.2 s) and long (T= 1 s) period spectral accelerations. In the third stage,
vulnerability of the building stock is estimated with respect to number of buildings in each cell.
A case study for Zeytinburnu, a district in Istanbul, Turkey is conducted to demonstrate the
applicability of the software package.

1 Introduction

Estimation of losses in urban areas from future earthquakes is essential for disaster
preparedness and decision making at the local, regional and national levels of govern-
ment. The process of loss estimation due to earthquakes involves different analyses,
such as seismic hazard assessment, estimation of earthquake characteristics on the
ground surface, vulnerability and fragility analyses of structures and human casual-
ties. Various numerical and empirical methods have been developed over the past years
to perform each of these analyses; yet, few attempts have been made to combine the
whole process into a single computer code.

The European project SERGISAI developed a software tool where seismic risk assess-
ments at regional, sub regional and local scales are implemented using a combination
of Geographical Information Systems (GIS) and Artificial Intelligence (AI) techniques
(Zonno et al., 2003). At the local scale of the application, a simplified 3D geotechnical
model of the study area is generated in the GIS environment and used together with
regional probabilistic or deterministic seismic hazard information to perform 1D site
response analyses with Shake91 (Idriss & Sun, 1992). The horizontal peak acceleration
obtained at ground level is combined with the vulnerability index map of the study
area through available acceleration-vulnerability-damage empirical relationships, to
obtain damage scenarios in terms of economical losses.
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National Laboratory for Civil Engineering in Portugal (LNEC) developed a proce-
dure (LNECLoss) where human and economic losses due to a deterministic scenario
earthquake are computed through a series of software modules (Sousa et al., 2004).
Local site effects are taken into account using soil amplification factors evaluated for
specific soil profiles estimated for the region. The so-called ‘capacity-spectrum method’
ATC-40 (1996) and Hazus (1999) is used as reference for evaluating structural damage.

NORSAR (Norway) and the University of Alicante (Spain) have developed a Matlab
based tool named SELENA (Seismic Loss Estimation using a Logic Tree Approach)
(Molina-Palacios & Lindholm, 2006). SELENA, uses probabilistic or deterministic
seismic hazard information and estimates the ground motion at a specific site using
1997 NEHRP provisions. The software computes building damages based on capacity-
spectrum method of Hazus (1999).

The software package KoeriLoss2 described in this work provides an alternative
loss estimation tool, where local site effects are taken into account by performing 1D
site-specific ground response analyses, Shake91 (Idriss & Sun, 1992) and capacity-
spectrum methodology developed based on Hazus (1999) is used to perform damage
estimations.

2 Methodology for developing earthquake damage
scenarios

The methodology developed is composed of two main stages: The first stage involves
generation of microzonation maps with respect to earthquake ground shaking param-
eters for the selected regional earthquake hazard scenario. In the second stage,
the vulnerability of the building stock is estimated based on the calculated earth-
quake ground shaking parameters and the expected casualties are estimated based
on the calculated building damage.

The regional earthquake hazard scenario can be probabilistic or deterministic. The
variation of earthquake ground shaking parameters (peak ground accelerations, PGA
and spectral accelerations, SA at T= 0.2 s and 1 s at the engineering bedrock out-
crop) are determined independently within the investigated area for a specified level
of exceedance probability or based on deterministic simulations.

The study area is divided into cells by a grid system. Site characterization is per-
formed based on available borings and other relevant information by defining one
representative soil profile for each cell with shear wave velocities extending down
to the engineering bedrock (Vs≥ 750 m/s). Earthquake characteristics on the ground
surface are calculated using one-dimensional site response analyses, Shake91 (Idriss &
Sun, 1992) for each representative soil profile. Hazard compatible acceleration time
histories (in terms of expected fault type, fault distance, and earthquake magnitude)
are selected from appropriate real earthquake acceleration records or by simulation
of spectra compatible synthetic acceleration time histories (Papageorgiou et al., 2000;
Deodatis, 1996). In case of using real acceleration time histories PGA scaling is adopted
(Durukal et al., 2006, Ansal et al., 2006a) and site response analyses are performed at
least for three selected acceleration time histories.

Variations of PGA and acceleration response spectra at the ground surface are deter-
mined. The average acceleration response spectrum for each cell is calculated in order
to determine the spectral accelerations for the short period (Ss) corresponding to 0.2 s
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and for the long period (S1) corresponding to 1 s. An optimization algorithm is utilised
to determine the NEHRP (BSSC, 2001) envelope spectrum that mathematically fits best
to the calculated average acceleration response spectra (Ansal et al., 2005, 2006b). The
two independent variables in the optimization algorithm are (Ss) and (S1). The NEHRP
design spectrum is preferred because of its flexibility in defining short period spectral
accelerations and for vulnerability assessment of the building stock (Erdik & Fah-
jan, 2005). The short and long period spectral accelerations estimated based on these
NEHRP envelopes are used to generate microzonation maps for the investigated area.

In the second stage, building stock inventory determined with respect to Bijk matrix
and site specific spectral accelerations (short and long period) are used to assess the
vulnerability of each building. The “i’’ in the Bijk matrix shows the construction type as:
(1) Reinforced concrete frame building, (2) Masonry building, (3) Reinforced concrete
shear wall building, (4) Precast building. The number of stories (“j’’ dimension of the
matrix) is defined as: (1) Low rise (1–4 stories, including basement), (2) Mid rise (5–8
stories, including basement), (3) High-rise (more than 8 stories, including basement).
The construction date (“k’’ dimension of the matrix) is defined as: (1) Construction
year: Pre-1979 (included) and (2) Construction year: Post-1980 (included). Capacity
and vulnerability curves in terms of spectral accelerations are used to estimate the build-
ing response due to the earthquake ground shaking. A displacement-based approach is
adopted to evaluate the building damage level. Damage levels are defined with respect
to five levels (none, slight, moderate, extensive damage and collapsed). Human casu-
alties are estimated based on the damage level, building type and estimated occupancy
(Erdik et al., 2002).

3 Earthquake damage scenario software

The methodology described above is automated into a Visual Basic application where
loss estimation for an urban area is computed and displayed in maps. The application
utilises Excel and Fortran codes for calculations and uses GIS based software – MapInfo
to map the estimated ground shaking and the damage distribution for the investigated
area. The flow chart composed of several steps involved in the software procedure
(KoeriLoss2) is schematically illustrated in Figure 1. Explanation for each step is given
in the following paragraphs.

3.1 Site response analyses

Given the seismic hazard on the engineering bedrock outcrop (in terms of PGA and
a suite of hazard compatible acceleration time histories) and local soil conditions (in
terms of shear wave velocity profile down to engineering bedrock, soil stratification,
groundwater level and dynamic soil properties), acceleration time histories and elas-
tic acceleration response spectra are calculated on the ground surface for each cell
using Shake91 (a Fortran program for equivalent linear one dimensional site response
analysis).

3.2 Optimization for the best f it NEHRP envelope

Using the elastic acceleration response spectra calculated as output of site response
analyses for each cell, the module calculates the average acceleration response spectrum
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Figure 1 Schematic illustration of KoeriLoss2 software procedures for loss estimation in urban
areas.

(average of all spectra calculated by site response analysis with different input motions
for each cell) and finds the best fit NEHRP envelope spectra for each cell. At the end of
this step, microzonation maps in terms of short period (Ss) and long period (Sl) spectral
accelerations can be generated using MapInfo (a GIS based program for mapping and
geographic analysis).

3.3 Vulnerabi l i ty analyses

Using the ground shaking parameters (in terms of spectral accelerations Ss and Sl
obtained from best-fit NEHRP envelopes) and building inventory in the investigated
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area (in terms of building type, number of stories and construction year), the vulnera-
bility of all buildings in each cell is computed based on the fragility curves with respect
to building damage levels. At the end of this step, maps showing the distribution of
damage for all building types are generated using MapInfo.

3.4 Casualty est imations

Given the building type and estimated occupancy, expected human casualties are
calculated for each building.

The information that should be provided by the user for operation of the software
involves the following data files:

1. Text files for input motions (acceleration time histories) including header lines
describing the necessary format information to read acceleration values in the file.

2. A text file that includes PGA values at engineering bedrock outcrop determined
from seismic hazard analyses.

3. An excel spreadsheet that requires user to enter information about geotechnical
site conditions at each cell in the grid system. The information that should be
provided by the user includes soil type, soil layer thickness, ground water level
and shear wave velocity profile down to the engineering bedrock (Vs ≥ 750 m/s)
for each cell.

4. A text file that includes dynamic soil properties (shear modulus reduction and
material damping ratio curves) for each soil type.

5. An excel spreadsheet that requires user to enter information about building inven-
tory in terms of Bijk building matrix. Number of human occupancy (population)
per building type should also be included in this spreadsheet.

The software operates as a single executable file within Excel using Visual Basic
(VBA) environment. Given the data files described above, the software procedure
calculates the loss estimations for building stock and human casualties and utilizes
MapInfo to display the results in maps. Microzonation maps with respect to ground
shaking parameters, damage distribution maps for all building types and maps for
distribution of human casualty are produced as outputs of the software package.

4 Zeytinburnu case study in Istanbul, Turkey

The demonstration of the methodology was performed for the Zeytinburnu Munici-
pality in Istanbul, Turkey as a part of a European Project – LessLoss (Spence et al.,
2005, 2006a, 2006b). Zeytinburnu is one of the older towns established outside the
walls of the historic city centre. The area is approximately 14 km2 and is relatively
densely populated (approximately 200,000) with mostly low to middle income resi-
dential buildings and some small industrial buildings. Most of the buildings in the area
are expected to be lacking the sufficient earthquake resistance and therefore, in the case
of a near field strong earthquake, most likely it will be one of the areas with high degree
of damage. The base geological units in the Marmara region are Palaeozoic aged for-
mations. These formations are mostly composed of sandstone, siltstone and claystone.
The detailed geology of the Zeytinburnu region was determined based on the local geo-
logical and geotechnical site investigations and available soil borings conducted in the
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Figure 2 Variation of spectral accelerations at T= 0.2 s and 1 s obtained from probabilistic
earthquake hazard assessment for NEHRP B/C boundary.

Table 1 Hazard compatible acceleration time histories selected for site response analyses in
Zeytinburnu.

Earthquake Station Magnitude Component PGA (g)

Duzce 11/12/99 Lamont Station 1062 7.1 1062EW 0.26
Kocaeli 08/17/99 Gebze 7.4 GBZ000 0.24
Duzce 11/12/99 Lamont Station 375 7.1 375EW 0.51

region by different agencies. The findings indicate that Neocene aged young sediments
are surfacing in the area. The thickness of these (Gürpınar and Bakırköy) formations
that can be considered as soil layers over the engineering bedrock are between 40–60 m
in the north and increase in the south-southwest direction, reaching the thickness of
200 m along the coastline (Ozaydin et al., 2004).

4.1 Seismic hazard and site response analyses

A grid system with cells of 250 m× 250 m was adopted for the damage scenario compu-
tations. The regional seismic hazard was evaluated based on a time dependent Poisson
model for the return period of 475 years that corresponds approximately to 10%
probability of exceedance in 50 years (Erdik et al., 2004, 2005). PGAs and spectral
accelerations at T= 0.2 s and T= 1 s were calculated for each cell on the engineering
bedrock outcrop (Figure 2).

Three real acceleration time histories compatible with the regional seismic hazard
were selected as input motion as summarised in Table 1. These records were scaled
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Figure 3 Acceleration time histories scaled with respect to PGA and their respective acceleration
response spectra used as input motion in the site response analysis.

with respect to PGAs estimated from the seismic hazard analyses for each cell and were
used as outcrop motions in site response analyses.

In order to evaluate the spectrum compatibility, the acceleration response spectra
of the selected acceleration time histories scaled to average PGA for the area were
calculated and compared with the lowest and highest NEHRP spectra obtained from
the earthquake hazard study conducted for the area as shown in Figure 3.

The local site characteristics and soil stratifications were determined based on the
available soil borings and insitu seismic wave measurements conducted in the area
(Kılıc et al., 2006). The shear wave velocities with depth were estimated using in-hole
PS-Logging and surface seismic wave measurements when available and/or using the
empirical relationship proposed by Iyisan (1996) in terms of standard penetration blow
counts. Shear wave velocity profiles were established down to the engineering bedrock
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Figure 4 Typical shear wave velocity profiles for the top 50 m of soil in Zeytinburnu.

(Vs≥ 750 m/sec). Typical soil profiles from the study area are shown in Figure 4.
Empirical shear modulus and material damping ratio curves that are available in the
literature were used to define dynamic soil properties of soil types.

The software was executed using probabilistic seismic hazard parameters to per-
form site response analyses. The software utilizes Shake91 (Idriss & Sun, 1992) to
calculate elastic response spectra (as many as the number of input motions) on the
ground surface at each cell location and computes the average of all ground response
spectra for that cell. Best-fit NEHRP envelope curve for each average response spec-
trum was determined using the optimization algorithm. Examples of the best fitting
envelope curves obtained in this procedure are shown in Figure 5. Short and long
period spectral acceleration values determined from the envelope curves were used to
generate microzonation maps. Microzonation maps of the area with respect to short
and long period spectral accelerations, based on probabilistic seismic hazard approach
are presented in Figure 6.

4.2 Damage and human loss est imations

The building inventory of the area was composed of 15738 independent buildings
compiled based on street surveys (Aydınoglu et al., 2004; Aydınoglu & Polat, 2004).
The inventory was classified with respect to twelve groups based on three parameters:
construction type, number of stories and construction date. Results of inventory study
indicated that almost all of the buildings in Zeytinburnu are reinforced concrete frame
buildings and most of the buildings fall into the mid rise building group. Many build-
ings have important deficiencies concerning seismic response such as soft stories and
short columns.

Five descriptive damage states were defined to grade the damage in buildings: none,
slight, moderate, extensive damage and collapsed. Region-specific vulnerability rela-
tionships (Erdik et al., 2002) that relate the ground shaking parameters to building
damage for each damage state were determined from analytical computations by fol-
lowing a simplified method. The displacement-based methodology described in Hazus
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Figure 5 Examples of best-fit NEHRP spectra for the average elastic acceleration response
spectra.

Spectral accelerations
by site response analysis

PROBABILISTIC SEISMIC HAZARD SCENARIO
(T�475 years)

SA � 2.5 g
2.25 g � SA � � 2.5 g
2.0 g � SA � � 2.25 g
1.75 g � SA � � 2.0 g
1.5 g � SA � � 1.75 g
1.25 g � SA � � 1.5 g
1.0 g � SA � � 1.25 g
0.75 g � SA � � 1.0 g
0.50 g � SA � � 0.75 g

T � 0.2 s T � 1 s

Figure 6 Variation of short and long period (T= 0.2 s and T= 1 s) spectral accelerations on the
ground surface in Zeytinburnu determined from site response analysis.
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0 � NCB �� 1

Probabilistic earthquake scenario
for return period of 475 years

Number of collapsed reinforced
concrete frame buildings

1 � NCB �� 5

5 � NCB �� 10

10 � NCB �� 20

20 � NCB �� 30

30 � NCB �� 50

50 � NCB �� 75

Figure 7 Damage distribution in Zeytinburnu based on PGA scaled real acceleration time histories
in accordance with probabilistic seismic hazard analyses.

(1999) was used as reference in developing the so-called ‘spectrum demand’ and ‘spec-
tral capacity curves’. Spectrum demand curve estimates the spectral displacement of
the building when subjected to a certain level of spectral acceleration. Spectral capac-
ity curve defines the spectral displacement that the building can sustain for a given
spectral acceleration. In the simplified method, the intersection of spectrum demand
curve with capacity curve gives the expected median response of the building.

The distribution of number of buildings at each damage state for all building types in
Zeytinburnu were computed for probabilistic earthquake scenario. Damage distribu-
tion map for this scenario that was obtained as output from the software is presented
in Figure 7.

One of the major inputs necessary for earthquake casualty estimation is a correlation
between the number and severity of injuries and the damage level of the structures.
This is not easily attainable due to the limited quality and lack of information in
earthquake casualty data. Several studies that proposed casualty rates with respect to
various building types and damage levels are available in the literature (e.g. Coburn
and Spence 1992). However, casualty rates derived for other regions of the world
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Table 2 Casualty rates for Reinforced Concrete Structures used in this study.

Injury severity Casualty rates for RC structures (%)

Slight Moderate Extensive Collapsed
damage damage damage

Partial Total

Severity 1 0.05 0.2 1 10 50
Severity 2 0.005 0.02 0.5 8 15
Severity 3 0 0 0.01 4 10
Severity 4 0 0 0.01 4 10

(e.g. those available in HAZUS99 for US) are not directly applicable to Turkey as
observed by past experience. Erdik et al., (2002) proposed an earthquake casualty
model by applying the existing methodologies and by revising the casualty rates with
the help of existing data on Turkish earthquakes. According to this approach casualty
for any given structure type, building damage level and injury severity level can be
calculated as:

K = Population per Building ∗Number of Damaged Building ∗Casualty Rate (1)

The casualties are computed for four injury severity levels as defined in HAZUS 99.
Severity 1 is for injuries requiring basic medical aid without requiring hospitalization.
Severity 2 is for injuries requiring a greater degree of medical care and hospitaliza-
tion, but not expected to progress into a life threatening status. Severity 3 is for
injuries that pose an immediate life threatening condition if not treated adequately and
expeditiously. The majority of these injuries result because of structural collapse and
subsequent collapse or impairment of the occupants. Severity 4 is for instantaneously
killed or mortally injured.

Casualty data in urbanized areas from Turkish earthquakes indicate higher fatalities
in very heavily damaged (partial and total collapse) multi-storey RC buildings. The
resulting casualty rates proposed by Erdik et al. (2002) for Turkey are given in Table 2.

The casualties were calculated based on the number of damaged buildings deter-
mined from the damage scenarios. The same damage classification was used for both
the damage assessment of the buildings and to calculate the casualties. However, based
on the damage data and casualty rates from the previous earthquakes in Turkey, it was
observed that the fatality is much higher for total collapse (pancake type). Thus, col-
lapse category was divided in to two sub categories as “partial collapse’’ and “total
collapse’’. It was assumed that total collapse would be encountered in the 10% of the
buildings that are calculated as collapsed while 90% were classified as partial collapse
with significantly different casualty rates as observed in 1999 in Turkey (Petal 2003).

Average population numbers were adopted for calculating the casualties for different
building types. The average population per unit (3 persons) was calculated as the ratio
of district populations and number of units in the districts (Erdik et al., 2002). It
would have been difficult and not very reliable to make estimates based on a more
detailed configuration. The population distribution in the Census is given with respect
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Table 3 Population for different building types.

Building Number of Number of Population
type floors units (flats)

LOW RISE: 1–4 3 9
MID RISE: 5–8 12 36
HIGH RISE: >=9 32 96

0 � Deaths �� 5

Probabilistic earthquake scenario
for return perioid of 475 years

Total number of casualties

5 � Deaths �� 10

10 � Deaths �� 25

25 � Deaths �� 50

50 � Deaths �� 100

100 � Deaths �� 200

200 � Deaths �� 300

Figure 8 Causality distribution in Zeytinburnu based on PGA scaled real acceleration time
histories in accordance with probabilistic seismic hazard analyses.

to districts (“mahalle’’) as the smallest unit. The damage distributions are based on
the number of buildings in each cell. It was assumed that the causality rates can be
estimated based on average numbers as given in Table 3. The results are calibrated
for the population density determined based on the Census results, thus it could be
assumed as casualty estimates for night time population distribution. It would be
necessary to conduct a more comprehensive evaluation as proposed in Erdik et al.,
(2002) to estimate the difference in casualties for daytime population distribution.
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5 Conclusions

A software package (KoeriLoss2) is developed to perform detailed urban earthquake
scenarios for estimating structural damage and human casualties during an earthquake.
The first stage of the procedure involves generation of microzonation maps for the
investigated area and for the selected grid system using separately calculated regional
seismic hazard data. In the second stage, the effects of local geological and geotechnical
site conditions are taken into account based on the representative soil profiles selected
for each cell. 1D site specific ground response analyses are conducted using Shake91 to
calculate an average site specific PGA and elastic acceleration response spectrum on the
ground surface. In the third stage of the procedure, vulnerability of the buildings are
estimated based on detailed building inventory and based on the short and long period
spectral accelerations obtained from the best fit NEHRP envelopes. A case study for
Zeytinburnu Municipality is conducted to demonstrate the application of KoeriLoss2.
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Chapter 25

Nonlinear performance assessment of
bridges with Incremental Response
Spectrum Analysis (IRSA) procedure

M. Nuray Aydınoğlu & Göktürk Önem
Boğaziçi University, İstanbul,Turkey

ABSTRACT: The Incremental Response Spectrum Analysis (IRSA) procedure is introduced as
an advanced multi-mode pushover analysis tool for the performance-based seismic assessment
and design of buildings and bridges (Aydınoğlu 2003). The practical version of the procedure
(Aydınoglu 2004) works directly with smoothed elastic response spectrum and makes use of the
well-known equal displacement rule to scale modal displacement increments at each piecewise
linear step, in which the traditional linear Response Spectrum Analysis (RSA) is implemented.
Being a general analysis tool, IRSA is completely independent of the type of structure, as in its
linear counterpart RSA. In this respect, IRSA is readily applicable to any type of bridge. In the
present contribution, IRSA is applied to few types of highway bridges and its performance is
checked against the results of the corresponding nonlinear response history analysis (NRHA)
performed. It is shown that IRSA is capable of estimating bridge nonlinear demands with an
acceptable accuracy for practical purposes.

1 Introduction

Nonlinear static procedure (NSP) has been widely recognized and used in engineering
practice as an inelastic analysis tool in the framework of performance based seismic
evaluation (ATC 1996, FEMA 2000). NSP, which is essentially based on single-mode
pushover analysis, has the main advantage of utilizing elastic response spectrum in
estimating the inelastic demand as compared to rather time consuming nonlinear
response history analyses with an ensemble of acceleration records. However, single-
mode pushover analysis can be reliably applied to only two-dimensional response of
low-rise building structures regular in plan or simple regular bridges, where the seismic
response is essentially governed by the fundamental mode. Application of single-mode
pushover to high-rise buildings or any building irregular in plan as well as to irreg-
ular bridges involving three-dimensional response would lead to incorrect, unreliable
results. Therefore, a number of improved pushover analysis procedures have been
offered in recent years in an attempt to take higher mode effects into account. Yet, it is
rather surprising that among those only two procedures, i.e., Modal Pushover Analy-
sis (MPA) introduced by Chopra & Goel (2002) and Incremental Response Spectrum
Analysis (IRSA) developed by Aydınoğlu (2003, 2004), are able estimate the seismic
demand under a given earthquake input. Others actually dealt with structural capacity
estimation only, i.e., they cannot estimate the seismic demand, although this important
limitation has been generally overlooked (Aydınoğlu 2007).
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It is worth noting that Modal Pushover Analysis (MPA) method (Chopra & Goel
2002) ignores the contributions of different modes to the section forces in the formation
of plastic hinges. Development of nonlinear response is estimated independently for
each mode with a single-mode pushover analysis based on an invariant load pattern
proportional to initial linear elastic mode shape. Since modal coupling is ignored, peak
response quantities are obtained independently for each mode from a SDOF system
analysis (or from a given inelastic response spectrum) and then combined (exactly as
in the linear response spectrum analysis) with an appropriate modal combination rule.
MPA procedure has been generally applied to multi-story buildings, however recently
applications to bridges have emerged in the literature (Isakovic & Fischinger 2006,
Paraskeva et al. 2006).

Multi-mode pushover analysis procedure IRSA (Incremental Response Spectrum
Analysis) has been introduced by the first author to enable the two and three dimen-
sional nonlinear analyses of buildings and bridges (Aydınoğlu 2003). The practical
version of the procedure (Aydınoğlu 2004, 2007) works directly with smoothed elastic
response spectrum and makes use of the well-known equal displacement rule to scale
modal displacement increments at each piecewise linear step of an incremental appli-
cation of linear Response Spectrum Analysis (RSA). In this paper, main steps of IRSA
are summarized and its performance is evaluated on two example bridges under three
different ground motions.

2 Summary of Incremental Response Spectrum Analysis
(IRSA) for multi-mode pushover analysis

Incremental Response Spectrum Analysis (IRSA) is a multi-mode pushover procedure,
in which the incremental response is assumed piecewise linear at each pushover step
in between the formation of two consecutive plastic hinges. The key point in IRSA is
modal scaling, which is applied at each step to modal displacement increments, �d(i)

n ,
to identify their proportions in different modes (Aydınoğlu 2003, 2007).

�d(i)
n = �F̃(i)S(1)

den (1)

where (n) refers to mode number and �F̃(i) is an incremental scale factor, which is
applicable to all modes at the (i)’th pushover step. S(1)

den represents n’th mode ini-
tial elastic spectral displacement defined at the first step (see Fig. 1). According to
the well-known equal displacement rule, it is assumed equal to the inelastic spectral
displacement associated with the instantaneous configuration of the structure at any
pushover step. Cumulative modal displacement at the end of the same pushover step
can then be written as

d(i)
n = d(i−1)

n +�d(i)
n ; d(i)

n = F̃(i)S(1)
den (2)

in which F̃(i) represents the cumulative scale factor with a maximum value of unity:

F̃(i) = F̃(i−1) +�F̃(i) ≤ 1 (3)
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Figure 1 Scaling of modal displacements through monotonic scaling of response spectrum.

Note that modal scaling expressions given above correspond to a monotonic increase
of the elastic response spectrum progressively at each step with a cumulative scale
factor starting from zero until unity. Physically speaking, the structure is being pushed
such that at every pushover step modal displacements of all modes are increased by
increasing elastic spectral displacements defined at the first step (i= 1) in the same
proportion according to equal displacement rule until they simultaneously reach the
target spectral displacements on the response spectrum. Shown in Fig. 1 are the scaled
spectra corresponding to the first yield, to an intermediate pushover step (F̃(i)< 1)
and to the final step (F̃(i) = 1), which are plotted in ADRS (Acceleration-Displacement
Response Spectrum) format and superimposed onto modal capacity diagrams.

Main stages of IRSA can now be described as follows:

1. A standard linear response spectrum analysis (RSA) is performed at each (i)’th
incremental pushover step for the unit value of the unknown incremental scale
factor (�F̃(i) = 1) by considering instantaneous mode shapes that are compatible
with the current distribution of plastic hinges and the initial elastic spectral dis-
placements S(1)

den taken as seismic input. Such a linear response spectrum analysis
(RSA) effectively corresponds to adaptive pushover analyses, which are simulta-
neously performed in each mode followed by the application of an appropriate
modal combination rule. Thus, any response quantity of interest, which is rep-
resented by a generic response quantity, r̃(i), is obtained for the unit value of the
unknown incremental scale factor. Now, the increment of the generic response
quantity, �r(i), is expressed as

�r(i) = r̃(i)�F̃(i) (4)
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and the generic response quantity at the end of the (i)’th pushover step can be
written as

r(i) = r(i−1) +�r(i) = r(i−1) + r̃(i)�F̃(i) (5)

in which r(i) and r(i−1) are the generic response quantities to develop at the end of
current and previous pushover steps, respectively. In the first pushover step (i= 1),
response quantities due to gravity loading are considered as r(0).

2. Eq. (5) is specialized for the internal force components defining the yield surfaces
of potential plastic hinges to develop in the structural system. The minimum �F̃(i)

identifies the location of the new hinge developed at the end of (i)’th pushover
step.

3. Cumulative scale factor F̃(i) is calculated from Eq. (3) and checked if it exceeded
unity. If unity is not exceeded, the remainder of this stage can be skipped and the
analysis proceeds with the next stage. If exceeded, incremental scale factor in the
last step, �F̃(p), is re-calculated as

�F̃(p) = 1 − F̃(p−1) (6)

and in the last pushover step modal displacement increment is redefined as

�d(p)
n = CRn S(1)

den�F̃(p) (7)

where CRn represents n’th mode spectral displacement amplification factor, which
may be greater or smaller than unity in higher modes depending on the initial
period and secondary slopes of the modal capacity diagrams. For detailed infor-
mation on this particular point, the reader is referred to Aydınoğlu (2007). In the
following applications CRn is assumed to be unity in all cases.

4. All response quantities of interest developed at the end of the pushover step are
calculated from the generic expression of Eq. 5. If the final pushover step has been
reached, the analysis is terminated. If not, it is continued with the next stage.

5. The current stiffness matrix is modified by considering the last yielded hinge iden-
tified at Stage (2) and it is returned to Stage (1) for the next pushover step. Note
that second-order (P-Delta) effects can be readily considered in IRSA by adding
the so-called geometric stiffness matrix to the first order stiffness matrix at each
pushover step.

3 Performance of IRSA on seismic assessment of bridges

In order to test the performance of IRSA on bridges structures, two bridge models
were selected. The first model represents an existing long viaduct with a moderately
irregular configuration located on Trans-European Motorway in Istanbul, which was
constructed by Incremental Launching Method in mid 1980’s. The second model is
artificially generated from the first one to put IRSA on a severe test with a highly
irregular configuration. Longitudinal profiles of the two selected models as well as the
cross-section of the deck and a typical single-pier are illustrated in Figure 2. All piers
are single column bents with varying heights between 8.6 m and 47.0 m in Model 1
and between 17.5 m and 47 m in Model 2.
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Figure 2 Configuration of selected bridge models and typical cross section.

Table 1 Characteristics of earthquake records.

No. Earthquake Magnitude Station No Distance Site Cond. PGA PGV PGD
km g cm/s cm

1 ChalfantValley 6.2 54429 18.7 D 0.4 44.5 8.56
2 Mammoth Lakes 6 54214 19.7 A 0.48 14.2 1.77
3 Whittier Narrows 6 24461 13.2 B 0.33 22 2.42
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Figure 3 Acceleration response spectra of scaled records and code spectrum.

For nonlinear response history analyses (NRHA), three different earthquake records
are employed with characteristics listed in Table 1. These records are appropriately
scaled to match a smoothed elastic response spectrum as shown in Figure 3. In the
analysis PERFORM-3D structural analysis program (CSI 2006) has been utilized.
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Figure 4 Pier top displacements and plastic rotations at the base of piers calculated from IRSA
(five mode), IRSA (single mode) and NRHA of Bridge Model 1 for three ground motion
records.
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records.
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Plastic hinges are modeled at the bases of piers with an elasto-plastic force-deformation
behavior.

Both models are also analyzed with IRSA by an in-house analysis software by taking
into account five modes and a single mode. The latter has been intended to identify
the significance of higher mode contributions and hence the effectiveness of IRSA in
capturing the multi-mode response behavior.

4 Results and conclusions

Pier top displacements and plastic rotations at the base of piers calculated from five-
mode IRSA, single-mode IRSA and NRHA are presented in Figure 4 and Figure 5 for
Model 1 and Model 2, respectively, under three selected earthquake ground motions.
A remarkable agreement between five-mode IRSA and NRHA is observed for both
bridge models. It is clear that IRSA results are closer to NRHA results in moderately
regular Model 1, however agreement is also very satisfactory for Model 2 under ground
motions Record 1 and Record 3. Results divert in Model 2 only for Records 2. Poor
performance of single-mode IRSA in both models indicates that the use of traditional
pushover analysis for such type of bridges is prohibitive.

Based on limited observations made above, it appears that approximate Incremental
Response Spectrum Analysis (IRSA) procedure, which is the natural extension of the
traditional Response Spectrum Analysis (RSA), proves to be a reliable analysis tool for
deformation-based seismic assessment and design of bridges in the general framework
of performance-based design.
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Chapter 26

The equivalent modal damping concept
and its use in seismic design of steel
structures

George A. Papagiannopoulos & Dimitri E. Beskos
University of Patras, Rio, Greece

ABSTRACT: A method is presented for the determination of the maximum structural response
through a linear elastic spectrum analysis using equivalent modal damping values instead of the
crude strength reduction factor. Geometrical and material non – linear structural effects are
converted into equivalent time – invariant modal damping values. These equivalent damping
values for the first few modes of the structure are numerically computed by first iteratively
forming a frequency response transfer function until certain smoothness criteria are satisfied
and then by solving a set of non – linear algebraic equations. A design – oriented scheme is
developed in order to apply the equivalent modal damping concept to the seismic response
analysis of multi-degree-of-freedom (MDOF) building structures. This scheme involves a) the
quantification of equivalent modal damping of a structure for predefined deformation limits and
b) the use of spectrum analysis and modal synthesis for the calculation of the design base shear
of the structure. For illustration purposes, curves providing equivalent damping as functions of
period for the first few modes as well as design acceleration versus period for given equivalent
damping are constructed using a large number of steel moment resisting frames excited by
various seismic motions. The whole design procedure is illustrated by means of a steel moment
resisting framed structure. It is concluded that the proposed design scheme can be viewed as an
improvement to the force based method of current seismic codes with equivalent modal damping
values playing the role of the strength reduction factor.

1 Introduction

Dynamic non – linear (with respect to geometry and material) analysis of structures by
the finite element method in conjunction with a stepwise time integration of the equa-
tions of motion is the only direct and reliable way for obtaining their response to seismic
excitations (Chopra, 2001). However, when a structure is to be seismically designed,
this approach is usually not practical since the structure has to be modeled very care-
fully and excited by a number of seismic excitations. To avoid the need of performing
several non – linear dynamic analyses, earthquake engineering has been focused over
the past 40 years or so on the computation of seismic demands by various indirect
(simplified) procedures of varying degrees of simplicity and accuracy. Most of these
procedures at the end make use of the most versatile tool in earthquake engineering,
the elastic response spectrum. In general, these simplified approaches can be separated
in four major categories: a) those based on equivalent linearization, b) those based
on inelastic response spectra – reduction factor, c) those based on non – linear modal
superposition and d) those based on transform techniques. A brief review of the most
important methods of each category is given in (Papagiannopoulos & Beskos, 2008a).
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In this work, an equivalent linear, with respect to geometry and material, multi-
degree-of-freedom (MDOF) structure that can substitute the original geometrically
and materially non – linear MDOF structure for seismic response applications is con-
structed. The goal is the determination of the maximum structural response through a
linear elastic modal analysis using the equivalent modal damping values instead of the
crude strength reduction factor used by modern codes. The proposed equivalent linear
structure: a) retains the mass and initial stiffness of the original non – linear structure
and takes into account non – linearities in the form of equivalent time – invariant modal
damping values; b) is obtained through an iterative formation of a frequency response
transfer function until this function satisfies certain smoothness criteria. Equivalent
damping values for the first few modes are then numerically computed by solving a
set of non – linear algebraic equations. Thus, the proposed method for seismically
analyzing non – linear MDOF structures by simplified linear methods belongs to the
category of equivalent linearization methods. However, the equivalent linear structure
remains here a MDOF structure and it is not reduced to a single-degree-of-freedom
(SDOF) one, as it is usually the case in the literature, with obvious gains in modeling
accuracy. Furthermore, this equivalent structure here is characterized only by equiv-
alent damping ratios and not by equivalent stiffness and damping as it is usually the
case in the literature.

A design – oriented scheme is developed based on the application of the equivalent
structure with modal damping to the seismic response calculation of MDOF building
structures. This scheme involves a) the quantification of equivalent modal damping
of a structure for predefined deformation limits and b) the use of spectrum analysis
and modal synthesis for the calculation of the design base shear of the structure. For
illustration purposes, curves providing equivalent damping as function of period for
the first few significant modes as well as design acceleration versus period for given
equivalent damping are constructed using a number of steel moment resisting frames
excited by various seismic motions (Papagiannopoulos & Beskos, 2008b). The whole
design procedure is illustrated by means of a steel moment resisting framed structure.
It is concluded that the proposed design scheme can be viewed as an improvement to
the force based method of current seismic codes with equivalent modal damping values
playing the role of the strength reduction factor.

2 The equivalent structure with damping

In order to reproduce the seismic response of a non – linear structure, the aim is to
construct a MDOF linear structure with the effects of non – linearities (both geometric
and material) being taken care of by appropriately quantified modal damping ratios.
Since damping is the only parameter that controls the proposed linearization procedure
it is very important to realize that if a structure with such a value of viscous damping
is to remain in the linear region, non – linear work should not be produced. Therefore,
viscous damping is fed into the original non – linear MDOF structure in order to pre-
vent members from being stressed in the non – linear region. Consequently, a critical
condition will be reached at which the non – linear MDOF structure will start behav-
ing as linear. This means that the non – linear MDOF structure can be theoretically
substituted by an equivalent linear MDOF structure with the same mass and initial
stiffness properties as the original non – linear one. Thus, only one parameter of the
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equivalent structure needs to be defined, that of the equivalent modal damping with
such values so as to maintain the behavior of the structure linear.

The abovementioned thoughts can be interpreted as an effort to balance the work
done by non – linearities and viscous damping. This balance is practically realized
as follows. It is assumed that the original non – linear MDOF structure possesses
well separated classical normal modes and zero initial viscous damping. Damping is
added to the structure, by assigning it to each of its normal modes following Rayleigh
formula (Chopra, 2001; Papagiannopoulos & Beskos, 2008a), and its non – linear
seismic response is then computed via direct stepwise time integration of the equations
of motion. The roof to basement frequency response transfer function Rr(ω) of a linear
MDOF plane structure subjected to a horizontal seismic excitation is defined in the
frequency domain as the ratio of the absolute roof acceleration response ÿr of the
structure over the seismic excitation üg (Papagiannopoulos & Beskos, 2008a)

Rr(ω) = ÿr(ω)

üg(ω)
= 1 +

N∑
k=1

[
ω2 · φrk · �rk

(ω2
k − ω2) + i(2 · ξk · ωk · ω)

]
(1)

where φrk denotes the roof component of mode k, while ξk, �rk, ωk are the damping
ratio, the participation factor and the modal frequency in mode k, respectively and N
is the total number of modes of the structure. If it is assumed that both participation
factors and mode shapes of the structure are a priori known, then the calculation of
modal damping can be obtained on the basis of the modulus of the transfer function
|Rr(ω)|, which reads as

|Rr(ω)|2 = 1 + 2 ·
N∑

k=1

Re(zk) +
N∑

k=1

|zk|2 + 2 ·
N∑

k�=j,j>k

Re(zk · z∗j ) (2)

where

zk =
[φrk · �rk · ω2 · (ω2

k − ω2) − 2 · ξk · ωk · ω · i]

[(ω2
k − ω2)2 + (2 · ξk · ωk · ω)2]

(3)

with the asterisk (*) denoting the conjugate of the corresponding complex number.
Equation (2) for known |Rr(ω)|, φrk, �rk and ωk, represents a set of non – linear alge-
braic equations, the solution of which leads to the calculation of modal damping ratios
of all modes that appear in the transfer function. On the basis of the results presented
in (Papagiannopoulos & Beskos, 2006), a linear structure exhibits a smooth transfer
function modulus with well defined visible peaks. These peaks correspond to the res-
onant frequencies of the structure. Modal damping ratios can then be calculated from
Eq. (2) by using the modulus of the transfer function as well as the resonant frequencies
and the participation factors of the structure as obtained by modal analysis. When the
structure ceases to behave linearly, non – linearities begin to take place and the above-
mentioned transfer function modulus looses its smoothness. This lack of smoothness
in the transfer function is depicted by multiple peaks or a jagged (distorted) shape.

The distortion (jaggedness) of the transfer function modulus is exhibited as spurious
peaks to the right or left side of the resonant peaks. The number and the position of the
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spurious peaks as well as the visibility of the resonant ones depend on the magnitude
of non – linear deformation of the structure. Since the goal here is to construct a linear
structure equivalent to the original non – linear one, it is important to realize that when
the shape of the transfer modulus of the equivalent linear structure follows a smooth
(undistorted) pattern, the corresponding calculated equivalent modal damping ratios
will reflect the work done due to geometrical and material non – linearities.

Assuming that the non – linear absolute acceleration time history of a structure under
a known seismic excitation can be obtained, the construction of its transfer function
modulus using Eq.(2) is straightforward. This transfer function modulus can be very
jagged (unsmoothed) or it can depict only light jaggedness. The existence or lack of
jaggedness depends on the inherent damping of the structure. In case that inherent
damping of the structure balances or surpasses the work done due to non – linearities,
the transfer function modulus will be smooth. On the other hand, if the inherent
damping of the structure cannot balance this work, the transfer function modulus
will be jagged. By adjusting (increasing) the inherent damping of the structure until it
balances exactly the non – linear work done, one obtains a linear structure that exhibits
a smooth transfer function modulus and possesses such modal damping values that
take care of all non – linear effects. These are the equivalent modal damping values.

On the basis of the developments in (Papagiannopoulos & Beskos, 2008a), the
smooth pattern of the transfer function modulus of a MDOF structure is ensured
when certain monotonicity criteria between all its peaks (maximum points) are estab-
lished. This is the case depicted in Fig. 1. To obtain the increasing and the decreasing
branches of a transfer function modulus initial damping is assigned to all modes of the
structure according to Rayleigh damping formula. The transfer function modulus of a
MDOF structure has more than one resonant peaks corresponding to those structural
modes excited by the seismic input used. The satisfaction of the smoothness (mono-
tonicity) criteria does not occur simultaneously for all modes, except in some cases.

ω

maximum values

point of change
of monotonicy

Rr(ω)

Figure 1 Transfer function modulus for a MDOF structure and its peaks at resonant frequencies
(↑ strictly increasing;↓ strictly decreasing).
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Consequently, when the satisfaction of the monotonicity criteria is accomplished for
one or more modes, the values of the function |Rr(ω)| and the corresponding frequen-
cies at its peaks (modes) are not allowed to alter. If additional damping is assigned
to the modes that had already satisfied the criteria, their participation in the total
response will be overestimated. Therefore, using Rayleigh’s formula, initial damping
is increased as long as the rest of the modes manage to satisfy the criteria. The damping
increase for the mode(s) that have already satisfied the criteria is taken to be zero as
long as the iterative procedure continues towards its final goal, i.e., the satisfaction of
the monotonicity criteria of for all modes. In other words, these monotonicity criteria
for various parts of the transfer function modulus can be satisfied in different cycles
of its iterative formation. However, there are cases where one should also check the
derivative of |Rr(ω)| to ensure accurate calculation of the equivalent modal damping
values (Papagiannopoulos & Beskos, 2008a).

When all modes manage to satisfy the criteria, the transfer function modulus will
attain a very smooth shape corresponding to a linear elastic MDOF structure. Then,
Eq. (2) is numerically solved in order to obtain the modal damping values of the equiva-
lent linear elastic MDOF structure. For the calculation of the modal damping ratios one
uses: a) the modulus of the transfer function at the peaks, b) the frequencies that cor-
respond to these peaks and c) the participation factors as calculated from the classical
eigenvalue problem involving the mass and initial stiffness of the given structure.

3 Application of equivalent damping to seismic design

The proposed technique by means of the iterative formation of the frequency response
transfer function modulus leads to equivalent modal damping values that take into
account geometrical non – linearities, cyclic inelastic deformations, number of yield
excursions and yield reversals because the non – linear seismic response of the structure
is successively used till it becomes linear. Therefore, the equivalent modal damping
values keep all deformations as well as the base shear of the structure to values that
correspond to those just before its first time yielding. Consequently, equivalent modal
damping ratios can be viewed as playing the role of the strength reduction factor in
seismic design because the non – linear seismic demands posed by a given seismic
motion against a given structure are quantified. In contrast to the strength reduction
factor, the determination of equivalent modal damping values is more rational. Thus,
by using the equivalent modal damping ratios in conjunction with spectrum analysis
and modal synthesis, one can easily compute the maximum base shear of a building
structure. However, there are two important things that demand further investigation.
The first is related to the determination of deformation dependent equivalent modal
damping ratios and the second concerns the effect of higher modes.

According to the developments of the previous section, the equivalent modal damp-
ing values are derived numerically but no reference is made regarding loss of stability of
the structure. Thus, the equivalent modal damping values obtained by using Eq. (2),
are found under no restriction concerning the deformability state of the structure.
Therefore, it should be checked if these damping values are realistic by posing a limit
to the deformation of the structure under consideration.

Deformation limits are expressed herein in terms of interstorey drift ratios that
should not surpass predefined limit values, even though other deformation measures
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could have been used as well. The calculation of the equivalent modal damping values
follows the procedure described in (Papagiannopoulos & Beskos, 2008a) but this time
the roof response and the earthquake excitation time signals used in the formation
of the roof to base transfer function are modified. More specifically, the structure is
assumed to have very light damping, e.g., 0.1% and the earthquake time signal is
considered just up to the time step that the violation of the predefined interstorey drift
limit occurs. A band of zeros then replaces the values of the rest of the earthquake
signal that follows (Papagiannopoulos & Beskos, 2008a). The non – linear response
of the roof is obtained by using the part of the earthquake time signal up to the time
where violation of the interstorey drift occurs with the rest of the signal having zero
values. Therefore, equivalent modal damping values calculated by using part of the
earthquake time signal will be different from the ones found by considering the whole
earthquake time signal. This procedure enables the calculation of deformation depen-
dent equivalent modal damping ratios and is justified by current efforts in earthquake
engineering to control the displacements of the structure.

On the other hand, equivalent modal damping value can be assigned only to these
modes that appear in the transfer function. Modes that do not appear in the transfer
function cannot be considered in the solution of Eq. (2) used for the quantification
of the equivalent modal ratios but as it has been proven in (Papagiannopoulos &
Beskos, 2006) they have to be taken into account for accurate response purposes. These
higher modes that essentially correspond to high frequencies are not excited, behave
statically and thus, a high damping value (100%) has to be taken into account for them
(Papagiannopoulos & Beskos, 2008a, 2006). Regarding the proposed design scheme,
a simple yet accurate solution is adopted for treating this issue of modal truncation.
The number of modes taken into account in order to apply the modal combination rule
is derived by considering the first modes that ensure 95% of modal mass participation
in the response. Equivalent damping is considered for the modes that appear in the
transfer function, while for the rest of the modes needed to satisfy the aforementioned
modal mass participation requirement a very high value of damping (100%) is used.

4 Design curves

The proposed method to evaluate equivalent damping is applied to twenty MDOF steel
moment resisting framed structures with periods varying between 0.5 and 3.0 sec. The
time domain non – linear response of the MDOF structures for the long duration
seismic excitations of Table 1 (Papagiannopoulos & Beskos, 2008b) was obtained by
means of the computer program DRAIN – 2DX (Prakash, Powell & Campbell, 1993).

Table 1 Long duration seismic excitations.

Earthquake, Country Station Date

Tokachi Oki, Japan HAC1, HAC2 16/05/1968
Valparaiso, Chile LLO, LLA, ISI,VDM 03/03/1985
Michoachan, Mexico SCT 19/09/1985
Manjil, Iran AT2 20/06/1990
El Salvador, El Salvador OB, ST 13/01/2001
Tokachi Oki, Japan HKD 092, HKD 100 25/09/2003
Ica Pisca, Peru ICA2 15/08/2007



The equ iva lent moda l damping concept in se i smic des ign 407

Both geometrical and material non – linearities have been taken into account while
the limit of allowable interstorey drift ratio (IDR) for the structures under study has
been considered not to exceed the values of 0.6, 1.5 and 2.0% of their storey height
for the limit states of fully operational, operational and life safety, respectively and the
damage of structural elements cannot exceed acceptable values of plastic hinge rota-
tions (Papagiannopoulos & Beskos, 2008b). Initial assumed damping was computed
by Rayleigh’s formula (Chopra, 2001), using the first mode and the last mode needed
to obtain participation of modal mass greater than 95%.

Figures 2–4 illustrate the variation of equivalent damping with period for the case
of 1.5% (IDR) and damage θp = θy, where θy stands for the yield rotation, and the first
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Figure 2 Design values for equivalent damping for 1.5% IDR and damage θp = θy (1st mode).
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Figure 3 Design values for equivalent damping for 1.5% IDR and damage θp = θy (2nd mode).
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Figure 4 Design values for equivalent damping for 1.5% IDR and damage θp = θy (3rd mode).

Table 2 Modal damping ξ as function of periodT, IDR and damage.

Mode IDR= 1.5% and θp = θy IDR= 2.0% and θp = 3.5θy

1 ξ= 0.025 · (T− 0.5)+ 0.1 ξ= 0.47 for 0.5≤T≤ 2.5 sec
for 0.5≤T≤ 2.5 sec

2 ξ= 0.055 for 0.15≤T≤ 0.85 sec ξ= 0.11 for 0.15≤T≤ 0.85 sec

3 ξ= 0.035 for 0.11≤T≤ 0.48 sec ξ= 0.10 for 0.32≤T≤ 0.48 sec

4 ξ= 0.035 for 0.11≤T≤ 0.27 sec –
& ξ= 0.8 · (T− 0.27)+ 0.035

for 0.27≤T≤ 0.32 sec

5 ξ= 0.929 · (T− 0.17)+ 0.035 –
for 0.17≤T≤ 0.24 sec

three modes, respectively. The dashed lines in these figures indicate the design values for
IDR= 1.5% and damage θp = θy. Design equations for equivalent modal damping for
the cases of IDR= 1.5% and damage θp = θy and IDR= 2.0% and damage θp = 3.5θy

are tabulated in Table 2 for the first five modes. In this table a dash is used for the modes
that do not appear in the transfer function and implies that an equivalent damping of
100% has to be considered for them.

5 Numerical example

A moment resting framed structure having twelve stories and four bays is used to
illustrate how Figs. 2–4 or Table 2 can be used for seismic design. HEB profiles are
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Figure 5 Elastic design spectrum for several damping values.

used for columns and IPE for beams. Each bay of the steel frame has 4.0 m span and
each storey 3.0 m height. The dead plus live load on beams is equal to 27.5 KN/m.
Interstorey drift is not allowed to surpass 1.5% of storey height and damage is limited
to θp = θy. The structure has been designed according to EC3 (1992) and seismic hazard
is defined by means of the mean plus one standard deviation damped elastic design
spectrum of Fig. 5, which has been constructed using the seismic motions of Table 1
for several damping ratios (Papagiannopoulos & Beskos, 2008b).

Performing eigenvalue analysis one first obtains the mode shapes and the natural
periods of the given structure. To ensure modal participation mass of 95%, five modes
need to be taken into account. Equivalent damping for modes 1 to 5 comes from
Table 2, while design acceleration from Fig. 5. The initial value for viscous modal
damping of 2% in the elastic region was subtracted from the equivalent modal damp-
ing values for reasons of consistency (Papagiannopoulos & Beskos, 2008b). Equivalent
modal damping ratios read as: ξ1 = 0.133, ξ2 = 0.055, ξ3 = 0.035, ξ4 = 0.035 and
ξ5 = 0.05. One finally has the following sections: 340/340/340/340/340-360 (1-5)
& 320/320/320/320/320-360 (6-9) & 320/320/320/320/320-330 (10-12). The above
notation, e.g., for the first set of numbers means that for the first five stories the col-
umn sections in each bay of the same storey are the same, i.e., sections HEB340, and
all beams have IPE360 section.

Non – linear dynamic analyses are executed using the accelerograms of Table 1,
in order to check if the designed frame satisfies the target performance criteria. The
results from non – linear dynamic analyses (assuming an initial value for viscous modal
damping of 2%) regarding median and maximum value for interstorey drift and plastic
hinge rotation have as follows: IDRmed = 1.45%, IDRmax = 1.49%, θpl,med = 1.01θy

and θpl,max = 1.08θy. On the basis of these results, it is concluded that the proposed
method of employing modal damping ratios results in good accuracy regarding values
of seismic deformation and damage levels for the case examined.
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The frame is now designed according to EC3 (1992) by employing the 2% damped
acceleration spectrum of Fig. 5 and a common value for all modes for the reduc-
tion factor, i.e., q= 4. On the basis of the equal displacement rule for target
IDR= 1.5% one finally finds the sections to be: 400/400/400/400/400-360 (1-5) &
360/360/360/360/320-330 (6-9) & 320/320/320/320/320-330 (10-12). Non – linear
dynamic analyses are executed using the accelerograms of Table 1 in order to check
if the designed frame satisfies the target performance criteria. The results from non –
linear dynamic analyses (assuming an initial value for viscous modal damping of 2%)
regarding median and maximum value for interstorey drift lead to IDRmed = 1.27%,
IDRmax = 1.32%. It is concluded that the conventional seismic design approach using
a common value for all modes for the strength reduction factor results in overestimated
values of seismic deformation for the considered seismic motions.

On the basis of the above results and similar results provided elsewhere (Papa-
giannopoulos & Beskos, 2008b), it can be said that the conventional method of
employing a single modal value for the strength reduction factor leads to overestimation
or underestimation of seismic deformation and damage levels, depending on the frame
and the seismic motion expected, because it does not recognize the fact that each mode
contributes in a different way to the final seismic response and design results. The
proposed approach of using equivalent modal damping ratios leads to more accurate
seismic response and design results in a more rational way.

6 Conclusions

On the basis of the preceding developments, the following conclusions can be stated:

• An equivalent linear MDOF structure has been proposed in order to determine
the earthquake response of the original non – linear MDOF structure in an
approximate yet of satisfactory accuracy way.

• This equivalent linear MDOF structure is constructed by retaining the mass and
initial stiffness of the original non – linear MDOF structure and expressing material
and geometrical non – linearities in the form of time – invariant modal damping
values. These values can be viewed as playing the role of the strength reduction
factor in code – based seismic design.

• Curves providing equivalent damping versus period for the first few modes as well
as design acceleration for given equivalent damping are constructed. Thus, one can
establish a seismic design method on the basis of modal synthesis and spectrum
analysis.

• The proposed seismic design scheme can be viewed as an improvement to the force
based method of current codes with equivalent modal damping values playing the
role of the strength reduction factor.
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Chapter 27

Bayesian updating and model class
selection of deteriorating hysteretic
structural models using recorded
seismic response

James L. Beck & Matthew M. Muto
California Institute of Technology, Pasadena, USA

ABSTRACT: Identification of structural models from measured earthquake response can
play a key role in structural health monitoring, structural control and improving performance-
based design. System identification using data from strong seismic shaking is complicated by the
nonlinear hysteretic response of structures where the restoring forces depend on the previous
time history of the structural response rather than on an instantaneous finite-dimensional state.
Furthermore, this inverse problem is ill-conditioned because even if some components in the
structure show substantial yielding, others will exhibit nearly elastic response, producing no
information about their yielding behavior. Classical least-squares or maximum likelihood esti-
mation will not work with a realistic class of hysteretic models because it will be unidentifiable
based on the data. On the other hand, the combination of Bayesian updating and model class
selection provides a powerful and rigorous approach to tackle this problem, especially when
implemented using Markov Chain Monte Carlo simulation methods such as the Metropolis-
Hastings, Gibbs Sampler and Hybrid Monte Carlo algorithms. The emergence of these stochastic
simulation methods in recent years has led to a renaissance in Bayesian methods across all dis-
ciplines in science and engineering because the high-dimensional integrations that are involved
can now be readily evaluated. The power of these methods to handle ill-conditioned or uniden-
tifiable system identification problems is demonstrated by using a recently-developed stochastic
simulation algorithm, Transitional Markov Chain Monte Carlo, to perform Bayesian updating
and model class selection on a class of Masing hysteretic structural models that are relatively
simple yet can give realistic responses to seismic loading. Examples are given using deteriorating
hysteretic building models with simulated seismic response data.

1 Introduction

Current methods for developing finite-element models can produce structural
responses that are consistent qualitatively with behavior observed during strong
earthquake shaking, but there has long been an interest in using system identifica-
tion methods for quantitative assessment of structural models using recorded seismic
response. The objective may be to improve the predictive capabilities of structural mod-
els for dynamic design or for the design of structural control systems, or to implement
structural health monitoring. System identification based on updating of finite-element
models using measured seismic response is challenging, however, because the large



414 Computat iona l s tructura l dynamics and earthquake eng ineer ing

number of uncertain parameters associated with realistic structural models makes the
inverse problem extremely ill-conditioned.

Simplified models can be used in the identification procedure but the selection of
an appropriate class of models to employ is complicated by the nonlinear response of
structures under strong seismic loading; in particular, the structural restoring forces are
hysteretic, depending on the previous time history of the structural response rather than
on an instantaneous finite-dimensional state. Although some research into the identifi-
cation of hysteretic systems has been carried out (Jayakumar 1987, Jayakumar & Beck
1988, Cifuentes & Iwan 1989, Thyagarajan 1989, Benedettini et al. 1995, Smyth et al.
1999, Yang & Lin 2004, Ashrafi et al. 2005, Ashrafi & Smyth 2007), this previous
work did not quantify the modeling uncertainties and did not properly deal with the
ill-conditioning inherent in this inverse problem. However, the uncertainty associated
with structural model predictions can have a significant impact on the decision-making
process in structural design, control and health monitoring. Furthermore, classical
estimation techniques such as least-squares and maximum likelihood do not usually
work properly when applied to hysteretic model classes because they are nearly always
unidentifiable based on the available data.

The Bayesian updating approach treats the probability of all models within a set of
candidate models for a system, and consequently has the advantage of being able to
quantify all of the uncertainties associated with modeling of a system and to handle
ill-conditioned identification problems. Note that the probability of a model will not
make sense if one interprets probability as a long-run frequency of an event, but it does
when probability is interpreted as a multi-valued logic that expresses the degree of plau-
sibility of a proposition conditioned on the given information (Jaynes 2003). Although
Bayesian methods are widely used in many fields, their application to identification of
dynamic hysteretic dynamic models seems to be very limited.

Many applications of Bayesian methods to model updating and model class selection
for systems using dynamic response measurements have primarily used the Laplace
asymptotic approximation (Beck & Katafygiotis 1991, 1998, Papadimitriou et al.
2001, Katafygiotis & Lam 2002, Beck & Yuen 2004). However, this approximation
is most useful when there is a large amount of data and the model class is globally
identifiable (described later); furthermore, in high-dimensional systems, optimization
to find the required most probable parameter vectors can be computationally chal-
lenging. To avoid these difficult optimizations and to more readily treat cases where
the model class is not globally identifiable, in recent years attention has been focused
on stochastic simulation methods for Bayesian updating and prediction, especially
Markov Chain Monte Carlo methods, such as the Metropolis-Hastings (e.g. Hastings
1970, Beck & Au 2002, Ching & Chen 2007), Gibbs Sampler (e.g. Ching et al.
2005, 2006) and Hybrid Monte Carlo algorithms (e.g. Robert & Casella 1999). The
emergence of these stochastic simulation methods has led to a renaissance in Bayesian
methods across all disciplines in science and engineering because the high-dimensional
integrations involved can now be readily evaluated.

2 Bayesian model updating

A Bayesian statistical framework for model updating and predictions for linear or
nonlinear dynamic systems that explicitly treats prediction-error and other model
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uncertainties has been presented (Beck 1989, Beck & Katafygiotis 1991, 1998). A basic
concept in this framework is that any set of possible deterministic dynamic models for
a system can be embedded in a set of predictive probability models for the system
by specifying a probability distribution for the uncertain prediction error, which is
the difference between the actual system output and the deterministic model output;
in particular, modeling the prediction error as a zero-mean, stationary, white-noise
Gaussian stochastic process is supported by the Principle of Maximum Differential
Entropy (Jaynes 2003). Each predictive probability model is assumed to be uniquely
specified by assigning a value to a model parameter vector. Therefore, a probability
distribution over the set of possible predictive models that specifies the plausibility of
each such model is equivalent to a probability distribution over a corresponding set of
possible values for the model parameter vector. When dynamic data is available from
the system, a chosen initial (prior) probability distribution over the parameters can be
updated using Bayes’ Theorem to give a posterior probability distribution, as follows.

Consider a Bayesian model class M, which is characterized by: (i) a set of pre-
dictive PDFs (probability density functions), p(D | θ, M), for system response D that
is parameterized by Np model parameters θ ∈�⊂RNp ; and (ii) a chosen prior PDF
p(θ |M) that can incorporate additional knowledge of the system. The prior PDF is
chosen to express the initial plausibility of each model in the class M defined by the
value of the parameter vector θ.

Now suppose a set of data D from the system is available. The goal of Bayesian
updating is to use D to update the probability distribution over the parameters to give
the posterior PDF p(θ|D, M) based on Bayes’ Theorem:

p(θ|D, M) ∝ p(D|θ, M) p(θ|M) (1)

Here, p(D| θ, M) as a function of θ is called the likelihood function. The constant of
the proportionality is the reciprocal of p(D|M), the evidence for model class M, and
it is discussed later. The posterior PDF gives the updated plausibility of each model in
M when the information in the data D is incorporated.

For a given model class M and data D, it is useful to characterize the topology
of the posterior PDF as a function of the model parameter vector by whether it has
a global maximum at a single most probable parameter value, at a finite number of
them, or at a continuum of most probable parameter values lying on some manifold in
the parameter vector space. These three cases may be described as globally identifiable,
locally identifiable, and unidentifiable model classes based on given dynamic data from
the system.

3 Bayesian model class selection

Bayesian model class selection (or model comparison) is essentially Bayesian updating
at the model class level to make comparisons between alternative candidate model
classes for predicting the response of a system. It has long been recognized that com-
parisons between model classes should factor in not only the quality of the data fit,
but also the complexity of the model. Jeffreys referred to the need for a “simplicity
postulate,’’ that is, simpler models that are consistent with the data should be preferred
over more complex models which offer only slight improvements in the fit to the data
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(Jeffreys 1939). Early quantitative forms for a Principle of Model Parsimony utilized
a penalty term against using a larger number of uncertain (adjustable) parameters in
combination with a quantification of the model data-fit based on the log likelihood of
the optimal model in the model class (Akaike 1974); however, the form of this penalty
term did not have a very rigorous basis. Subsequent work made it clear that Bayes’
Theorem at the model class level automatically enforces model parsimony without
ad-hoc penalty terms (Gull 1989, Mackay 1991, Beck & Yuen 2004).

Consider a set M≡{Mj: j= 1, . . . , NM} of NM candidate model classes for represent-
ing a system. Given data D, the posterior probability of each model class P(Mj |D,M),
j= 1, . . . , NM, is:

P(Mj|D, M) = p(D|Mj)P(Mj|M)∑NM
i=1 p(D|Mi)P(Mi|M)

(2)

If all model classes are treated as equally plausible a priori, then the probability of
model class Mj is proportional to its evidence,

p(D|Mj) =
∫

p(D|θj, Mj)p(θj|Mj) dθj (3)

3.1 Information-theoretic interpretation

Further insight into the form of this penalty against complexity can be obtained by
considering the evidence from an information-theoretic point of view (Ching et al.
2005). Consider the log of the evidence:

ln[p(D|Mj)] =
∫

ln

[
p(D|θj, Mj) p (θj|D, Mj)

p(θj|D, Mj)

]
p(θj|D, Mj) dθj

=
∫

ln[p(D|θj, Mj)]p(θj|D, Mj) dθj

−
∫

ln
[

p(θj|D, Mj)

p(θj|Mj)

]
p(θj|D, Mj) dθj (4)

This formulation for the log evidence for model class Mj shows that it is the difference
between two terms: the first term is the posterior mean of the log-likelihood func-
tion, which is a measure of the average data fit for model class Mj, while the second
term is the relative entropy between the prior and posterior distributions, which is a
measure of the information gained about the parameters θj from the data D. There-
fore, the log evidence is comprised of a data-fit term and a term which provides a
penalty against more “complex’’ models that extract more information from the data.
This gives an intuitive understanding of why the application of Bayes’ Theorem at the
model class level automatically enforces Ockham’s razor: “Pluralitas non est ponenda
sine neccesitate’’ (“entities should not be multiplied unnecessarily’’). Although this
information-theoretic interpretation was initially presented in Beck & Yuen (2004),
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it was derived there using a large-sample Laplace asymptotic approximation that
depended on global identifiability of the model classes.

4 Applying Bayesian methods using stochastic simulation

The goal of the stochastic simulation methods is to generate samples which are dis-
tributed according to the posterior probability density function (PDF) described in
Equation 1. In this work, we focus specifically on Markov Chain Monte Carlo
(MCMC) methods that are most useful for Bayesian updating. One advantage of these
methods is that non-normalized PDFs can be sampled, so that samples may be drawn
from the posterior PDF without evaluating the normalizing constant (the evidence)
that usually requires evaluating a high-dimensional integral over the parameter space.
A remaining challenge associated with model updating by stochastic simulation is the
fact that, unless the data is very sparse, the posterior PDF occupies a much smaller
volume in the parameter space than the prior PDF over the parameters. This fact makes
it difficult to draw samples from the posterior PDF.

Commonly-implemented MCMC methods, such as the Metropolis-Hastings (M-H)
algorithm, are difficulty to apply in higher-dimensional parameter spaces since it is
often difficult to draw samples that cover all regions of high-probability content. An
alternative sampling algorithm (Beck & Au 2002) proposed gradual updating of the
model, using the M-H algorithm to sample from a sequence of target PDFs, each target
PDF being the posterior PDF based on an increasing fraction of the available data. In
this manner, the target PDF gradually converges from the broad prior PDF to the final
concentrated posterior PDF. The Transitional Markov Chain Monte Carlo (TMCMC)
method used in this study is a modified version of this approach (Ching & Chen 2007).
This technique also uses a sequence of intermediate PDFs. The novel feature of this
algorithm is that, rather than applying updating with part of the available data, the
entire data set is used but its full effect is diluted by taking the target PDF for the mth
level of the sampler to be proportional to p(D|θ, M)βm p(θ|M), where 0 ≤ βm ≤ 1;
here, β0 = 0 gives the initial target distribution proportional to the prior PDF and
βM = 1 for the final level of the sampler gives a target distribution proportional to the
posterior PDF. The TMCMC algorithm can also be used to estimate the evidence for
a model class (Ching & Chen 2007).

5 Masing hysteretic models

Modeling hysteretic force-deformation relations for structural members and assem-
blages of members from constitutive equations (“plasticity models’’) is a difficult task,
due to factors such as complex stress distributions, material inhomogeneities and the
large number of structural elements. An alternative approach is to develop simplified
models that capture the essential features of the hysteretic force-deformation rela-
tionship but then, lacking a fundamental theoretical basis, these models should be
validated against the observed behavior of structures. An example of this type of model
is the well-known Bouc-Wen model (Wen 1976). While these models are mathemati-
cally convenient, especially for random vibration studies using equivalent linearization,
when subjected to asymmetric cyclic loading, they can exhibit an unphysical “drifting’’
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Figure 1 Conceptual sketch for the Distributed Element Model (DEM) (taken from Chiang 1992).

behavior (Jayakumar 1987). This makes them unsuitable as a class of identification
models for strong seismic response where this type of irregular loading occurs.

A simplified hysteretic model with a physical basis was presented by Masing (1926),
based on the hypothesis that a one-dimensional hysteretic system may be viewed as a
collection of ideal elasto-plastic elements (a linear spring in series with a Coulomb
damper) with the same elastic stiffness but with a distribution of different yield
strengths. This idea was used in structural dynamics by Iwan (1966) to form the
Distributed Element Model (DEM), which consists of a collection of N ideal elasto-
plastic elements connected in parallel with a common stiffness k/N for the springs but
different yield strengths r∗i /N, i= 1, . . . , N, as shown in Figure 1. The restoring force r
of a single-degree of freedom DEM subjected to a displacement x under initial loading
is given by:

r =
n∑

i=1

r∗i
N

+ kx
N − n

N
(5)

where n is the number of yielded elements. Infinite collections of elasto-plastic elements
can be considered by introducing a yield strength distribution function ϕ(r∗) such that
the restoring force r(x) is given by:

r(x) =
kx∫

0

r∗φ(r∗) dr∗ + kx

∞∫
kx

φ(r∗) dr∗ (6)

Because there is an underlying physical basis for the model, DEMs with a finite number
of elements have been shown to give good representations of the hysteretic behav-
ior of some structures, and do not exhibit the previously-discussed drifting behavior.
However, DEMs with an infinite number of elements are difficult to implement directly,
in contrast to the finite case where the state of each element is tracked, although
there have been recent advances in this area (Ashrafi et al. 2005, Ashrafi & Smyth
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2007). Fortunately, the class of Masing hysteretic models exactly describes the behav-
ior of DEMs without needing to keep track of the internal behavior of the elements.
Jayakumar showed that the hysteretic behavior under arbitrary loading is completely
described by the initial loading curve, described by the function f (x, r) and a relatively
simple set of rules (Jayakumar 1987). Chiang (1992) later demonstrated the inverse
relationship, that is, given an initial loading curve for a Masing model, one can find
the yield strength distribution, ϕ(r∗) in Equation 6, for the equivalent DEM.

5.1 Masing shear bui lding model

Jayakumar and Beck (1988) modeled an n-story shear building in 2-D by applying the
Masing model to the relationship between story shear forces and the inter-story drifts.
Consider a structural model where the vector of relative floor displacements x(t) is
related to the ground acceleration ÿ(t) as follows:

Mẍ + Cẋ + R = −Mbÿ(t) (7)

where M is the mass matrix, C is the viscous damping matrix, and R is the vector of
restoring forces. The inter-story shear force at the ith story is given by:

Ri = ri − ri+1 (8)

In this work, the initial loading curve relating story shear forces and inter-story drifts is
specified by choosing a generalized Rayleigh distribution for the yield strength distri-
bution function (Chiang 1992). The resulting backbone curve is defined by following
differential equation:

ṙi = Ki(ẋi − ẋi−1) exp
[
−
(
�

(
1 + ηi + 1

ηi

)
Ki (xi − xi−1)

ru,i

)ηi
]

(9)

where Ki is the small-amplitude inter-story stiffness, ru,i is the story ultimate strength, ηi

controls the smoothness of the transition from elastic to plastic and �(.) is the Gamma
function. Figure 2 shows how the shape of the initial loading curve is influenced by ηi.
Note that for i= n in Equation 8, rn+ 1 = 0, and for i= 1 in Equation 9, x0 = 0.

A potentially important advantage of the Masing shear building model is that all
model parameters, except ηi, correspond to actual physical properties (initial stiffness,
ultimate strength) and initial estimates can be calculated from material properties and
structural drawings.

5.2 Deteriorating Masing model

A modified version of the DEM was developed for modeling deteriorating systems
(Cifuentes & Iwan 1989). The model again consists of a collection of linear springs
and slip elements, however, in this case an element is allowed to “break’’ if a certain
maximum displacement is exceeded, defined as µxy,i, where xy,i is the yield displace-
ment of the ith element and µ is the breaking ductility ratio, which for simplicity is
assumed to be the same for all elements.

The deteriorating DEM was successfully applied to system identification and damage
detection of real structures using earthquake data (Cifuentes & Iwan 1989). However,
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Figure 2 Initial loading curves for different values of the elastic-to-plastic transition parameter η.

as in the case of non-deteriorating DEMs, there are restrictions in terms of the number
of parameters that limit the applicability of the model. Chiang (1992) developed a gen-
eral formulation for deteriorating Masing models, determined the specific form for a
Masing model equivalent to the displacement-controlled DEM, and developed expres-
sions for the initial loading, unloading and reloading curves given a backbone curve
f (x, r) and the breaking ductility ratio µ. Figure 3 shows how the monotonic loading
curve for a deteriorating Masing model, whose non-deteriorating form is shown in
Figure 2 for η= 4, is influenced by µ.

6 Example

To illustrate the application of Bayesian methods to ill-conditioned systems, we con-
sider a three-story deteriorating Masing shear building model with parameters as given
in Table 1. The system is subjected to two different ground motion excitations, both
recorded during the 1994 Northridge, California earthquake (Mw = 6.7). The first
record was obtained at the Coldwater Canyon School in North Hollywood, 12.5 km
from the fault, with a peak acceleration of 3.13 m/s2. The second was recorded at Olive
View Hospital in Sylmar, 9.9 km from the fault, with a peak acceleration of 5.92 m/s2.
The first ten seconds of each record are used to generate acceleration responses for the
system. The data sets generated from the Coldwater Canyon and Olive View records
will be referred to as DCC and DOV , respectively. The viscous damping matrix C in
Equation 7 is omitted, as this study is primarily concerned with identifying properties
associated with large structural deformations, while viscous damping is generally used
to model small-amplitude energy dissipation.

For each ground-motion record, 500 time-steps of simulated acceleration are “mea-
sured’’ at each floor. To provide a realistic level of prediction error, Gaussian discrete
white noise with a standard deviation of 1 m/s2, corresponding to approximately 40%
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Figure 3 Monotonic loading curves for a deteriorating Masing hysteretic model for different values
of the breaking ductility ratio µ.

Table 1 Parameters for Masing shear building system used to generate data.

Story Mass K ru η µ
(kg) (N/m) (N)

1st 1.25× 105 2.50× 108 1.75× 106 2 6.5
2nd 1.25× 105 2.50× 108 1.75× 106 2 6.5
3rd 1.25× 105 2.00× 108 1.40× 106 2 6.5

of the RMS value of the acceleration data, is added to each channel of data. Two
identification model classes are considered, both of which are Masing hysteretic shear-
building models as defined by Equations 7-9. These model classes are used to generate
vectors of predicted floor accelerations a(i)

t , i= 1, 2, 3, t = 1, . . . , 500. The prediction-
error for the system output is modeled as Gaussian with a variance of σ2 for each
measurement, so the likelihood function is given by:

p(D|θ, M) = 1

(2πσ2)
1500

2

exp

[
− 1

2σ2

3∑
i=1

500∑
t=1

(a(i)
t (θ) − â(i)

t )2

]
(10)

where â(i)
t is the measurement for channel i at time-point t and θ is the vector of

parameters to be updated. Model class M1 is a non-deteriorating model with ten free
parameters, the small-amplitude stiffness Ki, ultimate strength ru,i and elastic-to-plastic
transition parameter ηi for each story, i= 1,2,3, and the prediction-error variance σ2.
Model class M2 is a deteriorating model with the same ten free parameters included in
M1 and one additional parameter, the breaking ductility ratio µ, which is constrained
such that µi =µ, i= 1,2,3. For both model classes, the mass matrix M is assumed to be
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Table 2 Sample means for posterior samples generated by updating with DCC (standard deviations in
parentheses) compared to values obtained by optimization of posterior PDF.

Model K1 K2 K3 ru,1 ru,2 ru,3 η1 η2 η3 µ σ

(108 N/m) (108 N/m) (108 N/m) (106 N) (106 N) (106 N) (m/s2)

Sim M1 2.54 2.45 2.00 1.78 2.00 1.60 1.90 1.81 2.15 – 1.00
(0.03) (0.04) (0.02) (0.04) (0.22) (0.51) (0.10) (0.21) (0.59) – (0.02)

Opt M1 2.53 2.46 2.00 1.75 1.87 1.64 1.96 1.87 1.86 – 1.00
Sim M2 2.58 2.47 1.98 1.80 2.04 1.79 1.79 1.69 2.18 8.04 1.00

(0.04) (0.05) (0.02) (0.04) (0.20) (0.81) (0.10) (0.19) (0.66) (1.68) (0.02)
Opt M2 2.57 2.48 1.99 1.80 1.97 1.47 1.81 1.71 2.03 7.53 1.00

Table 3 Sample means for posterior samples generated by updating with DOV (standard deviations in
parentheses) compared to values obtained by optimization of posterior PDF.

Model K1 K2 K3 ru,1 ru,2 ru,3 η1 η2 η3 µ σ

(108 N/m) (108 N/m) (108 N/m) (106 N) (106 N) (106 N) (m/s2)

Sim M1 2.24 2.77 2.07 1.75 2.51 2.45 2.22 1.00 1.32 – 1.08
(0.02) (0.07) (0.02) (0.02) (0.23) (0.62) (0.10) (0.01) (0.21) – (0.02)

Opt M1 2.23 2.79 2.08 1.75 2.47 2.72 2.20 0.98 1.20 – 1.08
Sim M2 2.46 2.54 2.01 1.76 1.81 1.60 2.01 1.79 1.98 6.56 0.98

(0.03) (0.04) (0.03) (0.02) (0.05) (0.37) (0.07) (0.12) (0.67) (0.13) (0.02)
Opt M2 2.46 2.53 2.01 1.74 1.75 1.67 2.08 1.88 1.72 6.53 0.97

known, which is a reasonable assumption since the masses can be accurately computed
from structural drawings.

Prior PDFs for the inter-story stiffness, strength, and breaking ductility ratios,
were taken to be independent lognormal distributions with logarithmic means of
ln(2.50× 108), ln(1.75× 108) and ln(8), respectively, and a lognormal standard devia-
tion of 0.5. The prior PDFs for each of the elastic-to-plastic transition parameters were
also lognormal, with a logarithmic mean of ln(2) and a logarithmic standard devia-
tion of 1. The prior PDF for the prediction-error variance was taken to be a uniform
distribution between 0 and 3.

Samples from the posterior PDF were generated using the TMCMC algorithm. Three
runs were performed for updating with each data set, with 600 samples generated per
run. Tables 2 and 3 show the sample means for each parameter for updating with
data sets DCC and DOV , respectively, compared with the parameter values obtained by
direct numerical optimization of the posterior PDF. Convergence of the optimization
algorithm was slow and only achieved when the initial parameter estimates were based
on the stochastic simulation results.

For updating with the smaller-amplitude data set, DCC, estimates of inter-story stiff-
nesses are fairly well-constrained, and close to the actual values. However, since there
is relatively little non-linear behavior, there are larger uncertainties associated with
the strength and elastic-to-plastic transition parameters, and especially the breaking
ductility ratio in model class M2, since there is very little deterioration in the actual
system. Figure 4 shows the posterior samples obtained by updating model class M2
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Figure 4 Samples generated by updating the deteriorating model class M2 with DCC, projected
onto the {ru,i, ηi} sub-spaces. Dashed lines indicate results of numerical optimization of
the posterior and solid indicate the actual values used to generate the data.
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Figure 5 Samples generated by updating the deteriorating model class M2 with DOV, projected

onto the {ru,i, ηi} sub-spaces. Dashed lines indicate results of numerical optimization of
the posterior and solid indicate the actual values used to generate the data.

with data set DCC, projected onto the {ru,i, ηi} sub-space for each story. Note that the
parameters for the first story, where the greatest inter-story shear forces and displace-
ments occur, are fairly well-constrained, despite the 40% RMS noise. However, for the
parameters for the second and third stories, where there is much less inelastic response,
the samples are distributed over a broad region of the parameter space.

For updating model class M1 with the large-amplitude data set, DOV , estimates
of many of the parameters, including some inter-story stiffnesses, are substantially
different from the actual values, because there is significant deterioration involved in
the response of the structure, which cannot be accounted for in M1. As expected, the
identified parameter values for model class M2, which contains the system used to
generate the data, are much closer to the actual values. However, there is still some
uncertainty associated with the third-story yielding parameters, as shown in Figure 4,
which shows the posterior samples obtained by updating model class M2 with data
set DOV , projected onto the {ru,i, ηi} sub-space for each story. Note that the samples
are distributed in a more concentrated region than those obtained by updating with
DCC (shown in Figure 4).

Table 4 summarizes the results for Bayesian model class selection. The log-evidence
and average log-likelihood for each model class are estimated using the samples gen-
erated from stochastic simulation. The information gain is then calculated from these
quantities using Equation 4. For data set DCC, the deteriorating model class M2 is
preferred, but there is significant probability for the non-deteriorating model class
M1. However, for data set DOV , model class M2 is overwhelmingly preferred. The
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Table 4 Bayesian model class selection results.

Data Model Class Log Evidence Log Likelihood Information Gain P(M|D)

DCC M1 −2158.8 −2132.7 26.1 0.162
DCC M2 −2157.2 −2130.9 26.3 0.838
DOV M1 −2272.2 −2242.7 29.5 0.000
DOV M2 −2137.9 −2098.9 39.0 1.000
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Figure 6 Prior PDFs for the breaking ductility ratio plotted against normalized histograms of
posterior samples for updating model class M2 with (a) data set DCC and (b) data
set DOV.

difference in the accuracy of the two model classes, as expressed by the average
log-likelihood, is large enough to more than compensate for the extra information
extracted by model class M2.

The difference in the information gained for the two data sets is illustrated by
Figure 6, which shows normalized histograms of the posterior samples for the breaking
ductility ratio µ in model class M2, plotted with the prior PDF. Updating with data
set DCC, which features little deterioration, results in a broad posterior PDF that is
fairly similar to the prior PDF. However, updating with DOV results in a very peaked
posterior PDF for µ that indicates more information has been extracted from the data.

7 Concluding remarks

Bayesian methods for model updating and model class selection can be used to
study systems which are essentially unidentifiable using classical system identification
approaches. Additionally, viewing the problem of model class selection in a Bayesian
context allows for a quantitative form for a Principle of Model Parsimony with an
information-theoretic interpretation of model complexity (it relates to the amount of
information extracted from the data by the model class).

Stochastic simulation is an effective tool for the application of Bayesian methods. In
the presented example of a deteriorating hysteretic system, it is used to generate samples
for a posterior PDF with a complex geometry in the parameter space that is based on
very noisy data. These samples may be used for understanding the topology of the
posterior PDF and estimating its moments, as well as estimating the evidence for each
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model class in a set of proposed candidates for representing the system behavior, which
can then be used to compute the posterior probability of each candidate model class.
The samples from the posterior PDF may also be used to make robust probabilistic
predictions of the system’s response based on each model class or the whole set of
candidate model classes (Muto & Beck 2008).
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ABSTRACT: In this work the Plastic Domain Decomposition (PDD) Method is implemented
for parallel elastic-plastic finite element computations related to Soil–Foundation–Structure
Interaction (SFSI) problems. The PDD provides for efficient parallel elastic-plastic finite element
computations steered by an adaptable, run-time repartitioning of the finite element domain. The
adaptable repartitioning aims at balancing computational load among processing nodes (CPUs),
while minimizing inter–processor communications and data redistribution during elasto-plastic
computations. The PDD method is applied to large scale SFSI problem. Presented examples
show scalability and performance of the PDD computations. A set of illustrative example is
used to show efficiency of PDD computations and also to emphasize the importance of coupling
of the dynamic characteristics of earthquake, soil and structural (ESS) on overall performance of
the SFS system. The aformentioned ESS coupling can only be investigated using detailed models,
which dictates the use of parallel simulations.

1 Introduction

Parallel finite element computations have been developed for a number of years mostly
for elastic solids and structures. The static domain decomposition (DD) methodology is
currently used almost exclusively for decomposing such elastic finite element domains
in subdomains. This subdivision has two main purposes, namely (a) to distribute
element computations to CPUs in an even manner and (b) to distribute system of
equations evenly to CPUs for maximum efficiency in solution process.

However, in the case of inelastic (elastic–plastic) computations. The static DD is
not the most efficient method since some subdomains become computationally slow
as the elastic–plastic zone propagates through the domain. This propagation of the
elastic–plastic zone (extent of which is not know a–priori) will in turn slow down
element level computations (constitutive level iterations) significantly, depending on
the complexity of the material model used. Propagation of elastic–plastic zone will
eventually result in some subdomains becoming significantly computationally slow
while others, that are still mostly elastic, will be more computationally efficient. This
discrepancy in computational efficiency between different subdomains will result in
inefficient parallel performance. In other words, subdomains (and their respective
CPUs) with mostly elastic elements will be finishing their local iterations much faster
(and idle afterward) than subdomains (and their respective CPUs) that have many
elastic–plastic elements.
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This computational imbalance motivated development of the Plastic Domain
Decomposition (PDD) method described in this paper. Developed PDD is applied to
a large scale seismic soil–foundation–structure (SFS) interaction problem for bridge
systems. It is important to note that the detailed analysis of seismic SFSI described in
this paper is made possible with the development of PDD as the modeling require-
ments (finite element mesh size) were such that sequential simulations were out of
questions.

1.1 Soi l–structure interaction motivation

The main motivation for the development of PDD is the need for detailed analysis
of realistic, large scale SFSI models. This motivation is emphasized by noting that
currently, for a vast majority of numerical simulations of seismic response of bridge
structures, the input excitations are defined either from a family of damped response
spectra or as one or more time histories of ground acceleration. These input excitations
are applied simultaneously along the base of a structural system, usually without taking
into account its dimensions and dynamic characteristics, the properties of the soil mate-
rial in foundations, or the nature of the ground motions themselves. Ground motions
applied in such a way neglect the soil–structure interaction (SSI) effects, that can signif-
icantly change used free field ground motions. A number of papers in recent years have
investigated the influence of the SSI on behavior of bridges. McCallen and Romstadt
performed a remarkable full scale analysis of the soil–foundation–bridge system. The
soil material (cohesionless soil, sand) was modeled using equivalent elastic approach
(using Ramberg–Osgood material model through standard modulus reduction and
damping curves developed by Seed et al., 1984). The two studies by Chen and Pen-
zien (1977) and by Dendrou et al. (1985) analyzed the bridge system including the soil,
however using coarse finite element meshes which might filter out certainly, significant
higher frequencies. Jeremic et al. attempted a detailed, complete bridge system analysis.
However, due to computational limitations, the large scale pile group had to be mod-
eled separately and its stiffness used with the bridge structural model. In present work,
with the development of PDD (described in some details), such computational limi-
tations are removed and high fidelity, detailed models of Earthquake–Soil–Structure
systems can be performed. It is very important to note that proper modeling of seismic
wave propagation in elastic–plastic soils dictates the size of finite element mesh. This
requirement for proper seismic wave propagation will in turn results in a large number
of finite elements that need to be used.

1.2 Paral lel computing background

The idea of domain decomposition method can be found in an original paper from 1870
by H.A. Schwarz (Rixena and Magoulès, 2007). Current state of the art in distributed
computing in computational mechanics can be followed to early works on parallel sim-
ulation technology. For example, early endeavors using inelastic finite elements focused
on structural problems within tightly coupled, shared memory parallel architectures.
We mention work by Noor et al. (1978), Utku et al. (1982) and Storaasil and Bergan
(1987) in which they used substructuring to achieve distributed parallelism. Fulton
and Su (1992) developed techniques to account for different types of elements used in
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the same computer model but used substructures made of same element types which
resulted in non–efficient use of compute resources. Hajjar and Abel (1988) developed
techniques for dynamic analysis of framed structures with the objective of minimiz-
ing communications for a high speed, local grid of computer resource. Klaas et al.
(1994) developed parallel computational techniques for elastic–plastic problems but
tied the algorithm to the specific multiprocessor computers used (and specific network
connectivity architecture) thus rendering it less general and non-useful for other types
of grid arrangements. Farhat (1987, 1991) developed the so–called Greedy domain
partitioning algorithm, which proved to be quite efficient on a number of parallel
computer architectures available. However, most of the above approaches develop
loss of efficiency when used on a heterogeneous computational grid, which constitu-
tive currently predominant parallel computer architecture. More recently Farhat and
Roux (1991) proposed FETI (Finite Element Tearing and Interconnecting) method for
domain decomposition analysis. In FETI method, Lagrange multipliers are introduced
to enforce compatibility at the interface nodes.

Although much work has been presented on domain decomposition methods, the
most popular methods such as FETI-type are based on subdomain interface constraints
handling. It is also interesting to note promising efforts on merging of iterative solving
with domain decomposition-type preconditioning (Pavarino, 2007; Li and Widlund,
2007). From the implementation point of view, for mesh-based scientific computations,
domain decomposition corresponds to the problem of mapping a mesh onto a set of
processors, which is well defined as a graph partitioning problem (Schlegel et al.).
Graph based approach for initial partitioning and subsequent repartitioning forms a
basis for PDD method.

1.3 Simulation platform

Developed parallel simulation program is developed using a a number of numer-
ical libraries. Graph partitioning and repartitioning is achieved using parts of
the ParMETIS libraries (Karypis et al., 1998). Parts of the OpenSees framework
(McKenna, 1997) were used to connect the finite element domain. In particular, Finite
Element Model Classes from OpenSees (namely, class abstractions Node, Element,
Constraint, Load and Domain) where used to describe the finite element model and to
store the results of the analysis performed on the model. In addition to that, an existing
Analysis Classes were used as basis for development of parallel PDD framework which
is then used to drive the global level finite element analysis, i.e., to form and solve the
global system of equations in parallel. Actor model (Agha, 1984; Hewitt et al., 1973)
was used and with addition of a Shadow, Chanel, MovableObject, ObjectBroker,
MachineBroker classes within the OpenSees framework (McKenna, 1997) provided
an excellent basis for our development. On a lower level, a set of Template3Dep numer-
ical libraries (Jeremic and Yang, 2002) were used for constitutive level integrations,
nDarray numerical libraries (Jeremi and Sture, 1997; 1998) were used to handle vec-
tor, matrix and tensor manipulations, while FEMtools element libraries from the UCD
CompGeoMech toolset (Jeremic, 2004) were used to supply other necessary compo-
nents. Parallel solution of the system of equations has been provided by PETSc set of
numerical libraries (Balay et al., 2001; 2004).
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Most of the simulations were carried out on our local parallel computer GeoWulf.
Only the largest models (too big to fit in GeoWulf system) were simulated on TeraGrid
machine (at SDSC and TACC). It should be noted that program sources described here
are available through Author’s web site.

2 Plastic domain decomposition method

Domain Decomposition (DD) approach is one of the most popular methods that is used
to implement and perform parallel finite element simulations. The underlying idea is
to divide the problem domain into subdomains so that finite element calculations will
be performed on each individual subdomain in parallel. The DD can be overlapping
or non-overlapping. The overlapping domain decomposition method divides the prob-
lem domain into several slightly overlapping subdomains. Non-overlapping domain
decomposition is extensively used in continuum finite element modeling due to the
relative ease to program and organize computations and is the one that will be exam-
ined in this work. In general, a good non-overlapping decomposition algorithm should
be able to (a) handle irregular mesh of arbitrarily shaped domain, and (b) minimize
the interface problem size by delivering minimum boundary conductivities, which will
help reducing the communication overheads. Elastic–plastic computations introduce
a number of additional requirements for parallel computing. Those requirements are
described below.

2.1 The elast ic–plast ic paral lel f inite element
computational problem

The distinct feature of elastic-plastic finite element computations is the presence of
two iteration levels. In a standard displacement based finite element implementation,
constitutive driver at each integration (Gauss) point iterates in stress and internal vari-
able space, computes the updated stress state, constitutive stiffness tensor and delivers
them to the finite element functions. Finite element functions then use the updated
stresses and stiffness tensors to integrate new (internal) nodal forces and element stiff-
ness matrix. Then, on global level, nonlinear equations are iterated on until equilibrium
between internal and external forces is satisfied within some tolerance.

2.1.1 Elas t i c computat ions

In the case of elastic computations, constitutive driver has a simple task of computing
increment in stresses (�σij) for a given deformation increment (�εkl), through a closed
form equation (�σij =Eijkl �εkl). It is important to note that in this case the amount
of work per Gauss point is known in advance and is the same for every integration
point. If we assume the same number of integration points per element, it follows that
the amount of computational work is the same for each element and it is known in
advance.

2.1.2 Elas t i c-p las t i c computat ions

For elastic-plastic problems, for a given incremental deformation the constitutive driver
iterate in stress and internal variable space until consistency condition is satisfied. Num-
ber of implicit constitutive iterations is not known in advance. Similarly, if explicit
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constitutive computations are done, the amount of work at each Gauss point is much
higher that it was for elastic step. Initially, all Gauss points are in elastic state, but as
the incremental loads are applied, the elastic–plastic zones develops. For integration
points still in elastic range, computational load is light. However, for Gauss points that
are elastic–plastic, the computational load increases significantly (more so for implicit
computations than for explicit ones). This computational load increase depends on the
complexity of material model. For example, constitutive level integration algorithms
for soils, concrete, rocks, foams and other granular materials can be very computa-
tionally demanding. More than 70% of wall clock time during an elastic-plastic finite
element analysis might be spent in constitutive level iterations. This is in sharp contrast
with elastic computations where the dominant part is solving the system of equations
which consumes about 90% of run time. The extent of additional, constitutive level
computations is not known before the actual computations are over. In other words,
the extent of elastic-plastic domain is not known ahead of time.

The traditional pre–processing type of Domain Decomposition method (also known
as topological DD) splits domain based on the initial geometry and mesh connectivity
and assigns roughly the same number of elements to every computational node while
minimizing the size of subdomain boundaries. This approach might result in serious
computational load imbalance for elastic–plastic problems. For example, one subdo-
main might be assigned all of the elastic–plastic elements and spend large amount of
time in constitutive level computations. The other subdomain might have elements in
elastic state and thus spend far less computational time in computing stress increments.
This results in program having to wait for the slowest subdomain (the one with large
number of elastic-plastic finite elements) to complete constitutive level iterations and
only proceed with global system iterations after that.

The two main challenges with computational load balancing for elastic–plastic
computations are that they need to be:

• Adaptive, dynamically load balancing computations, as the extent of elastic and
elastic-plastic domains changes dynamically and unpredictably during the course
of the computation.

• Multiphase computations, as elastic-plastic computations follow up the elastic
computations and there is a synchronization phase between those two. The exis-
tence of the synchronization step between the two phases of the computation
requires that each phase be individually load balanced.

2.2 PDD algorithm

The Plastic Domain Decomposition algorithm (PDD) provides for computational load
balanced subdomains, minimizes subdomain boundaries and minimizes the cost of
data redistribution during dynamic load balancing. The PDD optimization algorithm
is based on dynamically monitoring both data redistribution and analysis model regen-
eration costs during program execution in addition to collecting information about the
cost of constitutive level iterations within each finite element. A static domain decom-
position is used to create initial partitioning, which is used for the first load increment.
Computational load (re–)balancing will (might) be triggered if, during elastic–plastic
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computations in parallel, one computations on one of compute nodes (one of subdo-
mains) becomes slower than the others compute nodes (other subdomains). Algorithm
for computational load balancing (CLB) is triggered if the performance gain resulting
from CLB offsets the extra cost associated with the repartitioning. The decision on
whether to trigger repartitioning or not is based on an algorithm described in some
details below.

We define the global overhead associated with load balancing operation to consist
of two parts, data communication cost Tcomm and finite element model regeneration
cost Tregen,

Toverhead := Tcomm + Tregen (1)

Performance counters are setup within the program to follow both. Data communica-
tion patterns characterizing the network configuration can be readily measured (Tcomm)
as the program runs the initial partitioning. Initial (static) domain decomposition is
performed for the first load step. The cost of networking is inherently changing as the
network condition might vary as simulation progresses, so whenever data redistribu-
tion happens, the metric is automatically updated to reflect the most current network
conditions. Model regeneration cost (Tregen) is a result of a need to regenerate the anal-
ysis model whenever elements (and nodes) are moved between computational nodes
(CPUs). It is important to note that model (re-) generation also happens initially when
the fist data distribution is done (from the static DD). Such initial DD phase provides
excellent initial estimate of the model regeneration cost on any specific hardware con-
figurations. This ability to measure realistic compute costs allows developed algorithm
(PDD) to be used on multiple generation parallel computers.

For the load balancing operations to be effective, the Toverhead has to be offset by the
performance gain. Tgain. Finite element mesh for the given model is represented by a
graph, where each finite element is represented by a graph vertex. The computational
load imposed by each finite element (FE) is represented by the associated vertex weight.
vwgt[i]. If the summation SUM operation is applied on every single processing node,
the exact computational distribution among processors can be obtained as total wall
clock time for each CPU

Tj :=
n∑

i=1

vwgt[i], j = 1, 2, . . . , np (2)

where n is the number of elements on each processing domain and np is the number
of CPUs. The wall clock time is controlled by Tmax, defined as

Tsum : = sum(Tj), Tmax := max(Tj), and Tmin := min(Tj),

j = 1, 2, . . . , np (3)

Minimizing Tmax becomes here the main objective. Computational load balancing oper-
ations comprises delivering evenly distributed computational loads among processors.
Theoretically, the best execution time is,

Tbest := Tsum/np, and Tj ≡ Tbest, j = 1, 2, . . . , np (4)



Para l le l so i l–foundat ion–structure interact ion computat ions 433

if the perfect load balance is to be achieved.
Based on definitions above, the best performance gain Tgain that can be obtained

from computational load balancing operation as,

Tgain := Tmax − Tbest (5)

Finally, the load balancing operation will be beneficial if

Tgain ≥ Toverhead = Tcomm + Tregen (6)

Previous equation is used in deciding if the re–partitioning is triggered in current incre-
mental step. It is important to note that PDD will always outperform static DD as
static DD represents the first decomposition of the computational domain. If such
decomposition becomes computationally unbalanced and efficiency can be gained by
repartitioning, PDD be triggered and the Tmax will be minimized.

2.3 Solution of the system of equations

A number of different algorithms and implementations exists for solving unsymmetric
systems of equations in parallel. Non-associated elasto–plasticity results in a non-
symmetric stiffness tensors, which result in non–symmetric system of finite element
equations. Non–symmetry can also result from the use of consistent stiffness operators
as described by Jeremic and Sture (1997, 1998). In presented work, use was made of
both iterative and direct solvers as available through the PETSc interface (Balay et al.
2001; 2004). Direct solvers, including MUMPS, SPOOLES, SuperLU, PLAPACK have
been tested and used for performance assessment. In addition to that, iterative solvers,
including GMRES, as well as preconditioning techniques (Jacobi, inconsistency LU
decomposition and approximate inverse preconditioners) for Krylov methods have
been also used and their performance assessed.

Some of the conclusions drawn are that, for our specific finite element models (non–
symmetric, using penalty method for some connections, possible softening behavior),
direct solvers outperform the iterative solver significantly. As expected direct solver
were not as scalable as iterative solvers, however, specifics of our finite element models
(dealing with soil–structure interaction) resulted in poor initial performance of iterative
solvers, that, even with excellent performance scaling, could not catch up with the
efficiency of direct solvers. IT is also important to note that parallel direct solvers, such
as MUMPS and SPOOLES provided the best performance and would be recommended
for use with finite element models that, as ours did, feature non–symmetry, are poorly
conditioned (they are ill–posed due to use of penalty method) and can be negative
definite (for softening materials).

2.4 PDD scalabi l i ty study

The developed PDD method was tested on a number of static and dynamic examples.
Presented here are scalability (speed–up) results for a series of soil–foundation–
structure model runs. A hierarchy of models, described later in section 3, was used in
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scaling study for dynamic runs. Finite element models were subjected to recorded earth-
quakes (two of them, described in section 4), using DRM for seismic load application
(Bielak et al. and Yoshimura et al.).

Total wall clock time has been recorded and used to analyze the parallel scalability
of PDD, presented in Figure 1. There is a number of interesting observations about the
performance scaling results:

• the scalability is quite linear for small number of DOFs (elements),
• there is a link, relation between number of DOFs (elements) and number of CPUs

which governs the parallel efficiency. In other words, there exists certain ratio of
the number of DOFs to number of CPUs after which the communication overhead
starts to be significant. For example for a models with 484,104 DOFs in Figure 1,
the computations with 256 CPUs are more efficient that those with 512 CPUs.
This means that for the same number of DOFs (elements) doubling the number of
CPUs does not help, rather it is detrimental as there is far more communication
between CPUs which destroys the efficiency of the parallel computation. Similar
trend is observable for the large model with 1,655,559 DOFs, where 1024 CPUs
will still help (barely) increase the parallel efficiency.

• Another interesting observation has to do with the relative computational balance
of local, element level computations (local equilibrium iterations) and the system
of equations solver. PDD scales very nicely as its main efficiency objective is to
have equal computational load for element level computations. However, the effi-
ciency of the system of equations solver becomes more prominent when element
level computations are less prominent (if they have been significantly optimized
with a large efficiency gain). For example, for the model with 56,481 DOFs it
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is observed that for sequential case (1 CPU), elemental computation amount for
approx. 70% of wall clock time. For the same model, in parallel with 8 CPUs,
element level computation accounts for approx. 40% of wall clock time, while for
32 CPUs the element level computation account for only 10% of total wall clock
time. In other words, as the number of CPUs increase, the element level compu-
tations are becoming very efficient and the main efficiency gain can then be made
with the system of equations solver. However, it is important to note that parallel
direct solver are not scalable up to large number of CPUs (Demmel et al., 1999)
while parallel iterative solver are much more scalable but difficult to guarantee
convergence. This observation can be used in fine tuning of parallel computing
efficiency, even if it clearly points to a number of possible problems.

3 Finite element SFSI model development

The finite element models used in this study have combined both elastic–plastic solid
elements, used for soils, and elastic and elastic–plastic structural elements, used for
concrete piles, piers, beams and superstructure. In this section described are material
and finite element models used for both soil and structural components. In addition
to that, described is the methodology used for seismic force application and staged
construction of the model.

3.1 Soi l and structural model

3.1.1 So i l mode ls

Two types of soil were used in modeling. First type of soil was based on stiff, sandy
soil, with limited calibration data (Kurtulus et al., 2005) available from capitol Aggre-
gates site (south–east of Austin, Texas). Based on the stress-strain curve obtained from
a triaxial test, a nonlinear elastic–plastic soil model has been developed using Tem-
plate Elastic plastic framework (Jeremic and Yang, 2002). Developed model consists
of a Drucker-Prager yield surface, Drucker–Prager plastic flow directions (potential
surface) and a nonlinear Armstrong-Frederick (AF) (rotational) kinematic hardening
rule (Armstrong & Frederick, 1966). Initial opening of a Drucker–Prager cone was
set at 5◦ only while the actual deviatoric hardening is produced using AF nonlinear
kinematic hardening with hardening constants a= 116.0 and b= 80.0.

Second type of soil used in modeling was soft clay (Bay Mud). This type of soil was
modeled using a total stress approach with an elastic perfectly plastic von Mises yield
surface and plastic potential function. The shear strength for such Bay Mud material
was set at Cu = 5.0 kPa. Since this soil is treated as fully saturated and there is not
enough time during shaking for any dissipation to occur, the elastic–perfectly plastic
model provides enough modeling accuracy.

3.1.2 So i l e lement s ize determinat ion

The accuracy of a numerical simulation of seismic wave propagation in a dynamic SFSI
problem is mainly controlled the spacing of the nodes of the finite element model. In
order to represent a traveling wave of a given frequency accurately, about 10 nodes
per wavelength are required. In order to determine the appropriate maximum grid
spacing the highest relevant frequency fmax that is to be simulated in the model needs
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Table 1 Variation in model size (number of elements and element size) as function
of frequency, stiffness and shear deformation.

model size (# of elements) element size f cutoff min. G/Gmax shear def. γ

12 K 1.0 m 10 Hz 1.0 <0.5%
15 K 0.9 m 3 Hz 0.08 1.0%
150 K 0.3 m 10 Hz 0.08 1.0%
500 K 0.15 m 10 Hz 0.02 5.0%

to be decided upon. Typically, for seismic analysis one can assume fmax = 10 Hz. By
choosing the wavelength λmin = v/fmax, where v is the (shear) wave velocity, to be
represented by 10 nodes the smallest wavelength that can still be captured with any
confidence is λ= 2�h, corresponding to a frequency of 5fmax. The maximum grid
spacing �h should therefore not be larger than

�h ≤ λmin

10
= v

10fmax
(7)

where v is the smallest wave velocity that is of interest in the simulation (usually the
wave velocity of the softest soil layer). In addition to that, mechanical properties of
soil will change with (cyclic) loadings as plastification develops. Moduli reduction
curve (G/Gmax) can then used to determine soil element size while taking into account
soil stiffness degradation (plastification). Using shear wave velocity relation to shear
modulus

vshear =
√

G
ρ

(8)

one can readily obtain the dynamic degradation of wave velocities. This leads to smaller
element size required for detailed simulation of wave propagation in soils which have
stiffness degradation (plastification). Table 1 presents an overview of model size (num-
ber of elements and element size) as function of cutoff frequencies represented in the
model, material (soil) stiffness (given as G/Gmax) and amount of shear deformation
for given stiffness reduction.

It is important to note that 3D nonlinear elastic–plastic finite element simulations
were performed, while stiffness reduction curves were used for calibration of the
material model and for determining (minimal) finite element size. It should also be
noted that the largest FEM model had over 0.5 million elements and over 1.6 mil-
lion DOFs. However, most of simulations were performed with smaller model (with
150 K elements) as it represented mechanics of the problem with appropriate level of
accuracy. Working FEM model mesh is shown in Figure 2. The model used, features
484,104 DOFs, 151,264 soil and beam–column elements, and is intended to model
appropriately seismic waves of up to 10 Hz, for minimal stiffness degradation of.
G/Gmax = 0.08, maximum shear strain of γ = 1% and with the maximal element size
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Figure 2 Detailed Three Bent Prototype SFSI Finite Element Model, 484,104 DOFs, 151,264
Elements used for most simulation in this study.

�h= 0.3 m. The largest model (1.6 million DOFs) was able to capture 10 Hz motions,
for G/Gmax = 0.02, and maximum shear strain of γ = 5% (see Table 1).

3.1.3 Structura l mode ls

The nonlinear structure model (the piers and the superstructure) used in this study were
initially developed by Fenves and Dryden. This original structural (only) model was
subsequently updated to include piles and surrounding soil, and zero length elements
(modeling concentrated plastic hinges) were removed from the bottom of piers at the
connection to piles. Concrete material was modeled using Concrete01 uniaxial material
as available in OpenSees framework (Fenves and Dryden). Material model parameters
used for unconfined concrete in the simulation models were f ′co = 5.9 ksi, εco = 0.002,
f ′cu = 0.0 ksi, and εcu = 0.006. Material parameters for confined concrete used were
f ′co = 7.5 ksi, εco = 0.0048, f ′cu = 4.8 ksi, and εcu = 0.022.

Hysteretic uniaxial material model available within OpenSees framework was
selected to model the response of the steel reinforcement. The parameters included
in this model are F1 = 67 ksi, ε1 = 0.0023, F2 = 92 ksi, ε2 = 0.028, F3 = 97 ksi, and
ε3 = 0.12. No allowance for pinching or damage under cyclic loading has been made
(pinchX= pinchY = 1.0, damage1= damage2= 0.0, beta= 0).

The finite element model for piers and piles features a nonlinear fiber beam–column
element (Spacone et al. 1996). In addition to that, a zero-length elements is introduced
at the top of the piers in order to capture the effect of the rigid body rotation at the
joints due to elongation of the anchored reinforcement. Cross section of both piers
and piles was discretized using 4× 16 subdivisions of core and 2× 16 subdivisions
of cover for radial and tangential direction respectively. Additional deformation that
can develop at the upper pier end results from elongation of the steel reinforcement
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Pile

Beam

Solids

Figure 3 Schematic description of coupling of structural elements (piles) with solid elements
(soil).

at beam–column joint with the superstructure and is modeled using a simplified hinge
model (Mazzoni). Parameters used for steel–concrete bond stress distribution were
ue = 12

√
f ′c and ue = 6

√
f ′c (Lehman & Moehle, 1998).

The bent cap beams were modeled as linear elastic beam-column elements with
geometric properties developed using effective width of the cap beam and reduction
of its stiffness due to cracking. The superstructure consists of prismatic prestressed
concrete members and was also modeled as linear elastic beam–column element.

3.1.4 Coupl ing of s t ructura l and so i l mode ls

In order to create a model of a complete soil–structure system, it was necessary to
couple structural and soil (solid) finite elements. Figure 3 shows schematics of coupling
between structural (piles) and solid (soil) finite elements.

The volume that would be physically occupied by the pile is left open within the solid
mesh that models the foundation soil. This opening (hole) is excavated during a staged
construction process (described later). Beam–column elements (representing piles) are
then placed in the middle of this opening. Beam–column elements representing pile are
connected to the surrounding solid (soil) elements be means of stiff short elastic beam–
column elements. These short “connection’’ beam–column elements extend from each
pile beam–column node to surrounding nodes of solids (soil) elements. The connectivity
of short, connection beam–column element nodes to nodes of soil (solids) is done
only for translational degrees of freedom (three of them for each node), while the
rotational degrees of freedom (three of them) from the beam–column element are left
unconnected.

3.2 Application of earthquake motions

Seismic ground motions were applied to the SSI finite element model using Domain
Reduction Method (DRM, Bielak et al., 2003; Yoshimura et al., 2003). The DRM
is an excellent method that can consistently apply ground motions to the finite ele-
ment model. The method features a two-stage strategy for complex, realistic three
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dimensional earthquake engineering simulations. The first is an auxiliary problem
that simulates the earthquake source and propagation path effects with a model that
encompasses the source and a free field (from which the soil–structure system has been
removed). The second problem models local, soil-structure effects. Its input is a set
of effective forces, that are derived from the first step. These forces act only within a
single layer of elements adjacent to the interface between the exterior region and the
geological feature of interest. While the DRM allows for application of arbitrary, 3D
wave fields to the finite element model, in this study a vertically propagating wave
field was used. Using given surface, free field ground motions, de-convolution was
done for this motions to a depth of 100 m. Then, a vertically propagating wave field
was (re–) created and used to create the effective forces for DRM. Deconvolution and
(back) propagation of vertically propagating wave field was performed using closed
form, 1D solution as implemented in Shake program (Idriss & Sun, 1992).

3.3 Staged simulations

Application of loads in stages is essential for elastic–plastic models. This is especially
true for models of soil and concrete. Staged loading ensures appropriate initial condi-
tions for each loading stage. Modeling starts from a zero stress and deformation state.
Three loading stages, described below, then follow.

3.3.1 So i l se l f–we ight s tage

During this stage the finite element model for soil (only, no structure) is loaded with soil
self–weight. The finite element model for this stage excludes any structural elements,
the opening (hole) where the pile will be placed is full of soil. Displacement boundary
conditions on the sides of the three soil blocks are such that they allow vertical move-
ments, and allow horizontal in boundary plane movement, while they prohibit out of
boundary plane movement of soils. All the displacements are suppressed at the bottom
of all three soil blocks. The soil self weight is applied in 10 incremental steps.

3.3.2 P i les, co lumns and supers t ructure se l f–we ight s tage

In this, second stage, number of changes to the model happen. First, soil elements
where piles will be placed are removed (excavated), then concrete piles (beam–column
elements) are placed in the holes (while appropriately connecting structural and solids
degrees of freedom, as described above), columns are placed on top of piles and finally
the superstructure is placed on top of columns. All of this construction is done at
once. With all the components in place, the self weight analysis of the piles–columns–
superstructure system is performed.

3.3.3 Se ismic shak ing s tage

The last stage in our analysis consists of applying seismic shaking, by means of effective
forces using DRM. It is important to note that seismic shaking is applied to the already
deformed model, with all the stresses, internal variables and deformation that resulted
from first two stages of loading.
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4 Simulation results

Bridge model described above was used to analyze a number of cases of different foun-
dation soils and earthquake excitations. Two sets of ground motions were used for
the same bridge structure. Variation of foundation soil, namely (a) all stiff sand and
(b) all soft clay. One of the main goals was to investigate if free field motions can
be directly used for structural model input (as is almost exclusively done nowadays),
that is, to investigate how significant are the SFSI effects. In addition to that, investi-
gated were differences in structural response that result from varying soil conditions.
Ground motions for Northridge and Kocaeli earthquakes (free field measurement, see
Figures 4a,b) were used in determining appropriate wave field (using DRM). Since the
main aim of the exercise was to investigate SFS system a set of short period motions
were chosen among Northridge motions records, while long period motions from
Kocaeli earthquakes were used for long period example.

Acceleration Time Series – Input Motion (Northridge earthquake, 1994)
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Figure 4a Input motions: short period (Northridge).

Acceleration Time Series – Input Motion (Turkey kocaeli earthquake, 1999)
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Figure 4b Input motions: long period (Kocaeli).
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A number of very interesting results were obtained and are discussed below.

4.1 Free field vs. SSI motions

A very important aspect of SFSI is the difference between free field motions and the
motions that are changed (affected) but the presence of the structure. Figure 5 shows
comparison of free field short period motions (obtained by vertical propagation of
earthquake motions through the model without the presence of bridge structure and
piles) and the ones recorded at the base of column of the left bent in stiff and soft soils.

It is immediately obvious that the free field motions in this case do not correspond
to motions observed in bridge SFS system with stiff or soft soils. In fact, both the
amplitude and period are significantly altered for both soft and stiff soil and the bridge
structure. This quite different behavior can be explained by taking into account the
fact that the short period motions excite natural periods of stiff soil and can produce
(significant) amplifications. In addition to that, for soft soils, significant elongation of
period is observed.

On the other hand, as shown in Figure 6 the same SFS system (same structure with
stiff or soft soil beneath) responds quite a bit different to long period motions.

The difference between free field motions and the motions measured (simulated) in
stiff soils is smaller in this case. This is understandable as the stiff soil virtually gets
carried away as (almost) rigid block on such long period motions. For the soft soil
one of the predominant natural periods of the SFS system is excited briefly (at 12–17
seconds) but other than that excursion, both stiff and soft soil show fair matching with
free field motions. In this case the SFS effects are not that pronounced, except during
the above mentioned period between 12 and 17 seconds.

4.2 Bending moments response

Influence of variable soil conditions and of dynamic characteristic of earthquake
motions on structural response is followed by observing bending moment response.
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Figure 5 Comparison of free field versus measured (prototype model) motions at the base of left
bent for the short period motions (Northridge) for all clay (CCC) and all sand (SSS)
soils.
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Figure 6 Comparison of free field versus measured (prototype model) motions at the base of left
bent for the long period motions (Kocaeli) for all clay (CCC) and all sand (SSS) soils.
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Figure 7 Simulated bending moment time series (top of left pier) for short period motion
(Northridge), for all clay (CCC) and all sand (SSS) soils.

For this particular purpose, a time history of bending moment at the top of one of the
piers of bent # 1 (left most in Figure 2) is chosen to illustrate differences in behavior.

Figure 7 shows time history of the bending moment at top of left most pier of bent
# 1 for all sand (SSS) and all clay (CCC) cases for short period motion (Northridge).

Similarly, Figure 8 shows time history of the bending moment for same pier, for
same soil conditions, but for long period motion (Kocaeli).

Time histories of bending moments are quite different for both types of soil condi-
tions (SSS and CCC) and for two earthquake motions. For example, it can be seen from
Figure 7 that short period motion earthquake, in stiff soil (SSS) produces (much) larger
plastic deformation, which can be observed by noting flat plateaus on moment – time
diagrams, representing plastic hinge development. Those plastic hinge development
regions are developing symmetrically, meaning that both sides of the pier have yielded
and full plastic hinge has formed. On the other hand, the short period earthquake in
soft soil (CCC) produces very little damage, one side of a plastic hinge is (might be)
forming between 14 and 15 seconds.
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Figure 8 Simulated bending moment time series (top of left pier) for long period motion (Kocaeli),
for all clay (CCC) and all sand (SSS) soils.

Contrasting those observation is time history of bending moments in Figure 8, where,
for a long period motion, stiff soil (SSS) induces small amount of plastic yielding
(hinges) on top of piers. However, soft soil (CCC) induces a (very) large plastic defor-
mations. Development of plastic hinges for a structure in soft soil also last very long
(more than two seconds, see lower plateau for CCC case in Figure 8) resulting in sig-
nificant damage development in thus formed plastic hinges. Observed behavior also
somewhat contradicts common assumption that soft soils are much more detrimen-
tal to structural behavior. It is actually the interaction of the dynamic characteristic
of earthquake, soil and structure (ESS) that seem to control the ultimate structural
response and the potential damage that might develop.

5 Conclusions

In this paper, an algorithm, named the Plastic Domain Decomposition (PDD), for
parallel elastic–plastic finite element computations was presented. Presented was also
a parallel scalability study, that shows how PDD scales quite well with increase in
a number of compute nodes. More importantly, presented details of PDD reveal
that scalability is assured for inhomogeneous, multiple generation parallel computer
architecture, which represents majority of currently available parallel computers.

Presented also was an application of PDD to soil–foundation–structure interaction
problem for a bridge system and Earthquake–Soil–Structure (ESS) interaction effects
were emphasized. The importance of the (miss–) matching of the ESS characteristics
to the dynamic behavior of the bridge soil–structure system was shown on an example
using same structure, two different earthquakes (one with short and one with long
predominant periods) and two different subgrade soils (stiff sand and soft clay).

The main goal of this paper is to show that high fidelity, detailed modeling and
simulations of geotechnical and structural systems are available and quite effective.
Results from such high fidelity modeling and simulation shed light on new types of
behavior that cannot be discovered using simplified models. These high fidelity models
tend to reduce modeling uncertainty, which (might) allow practicing engineers to use
simulations tools for effective design of soil–structure systems.
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Dynamic interaction of retaining walls
and retained soil and structures

Yiannis Tsompanakis
Technical University of Crete, Chania, Greece

ABSTRACT: In engineering practice retaining walls are very frequently used to support,
apart from soil layers, structures founded on the retained soil layers. Thus, it is evident that
the dynamic response of each component of this complex system (wall, soil, and structure)
may affect substantially the response of the rest, and vice versa, during a seismic event. This
phenomenon, which could be adequately described as “dynamic wall–soil–structure interaction’’
(DWSSI), is a rather complicated issue that combines: (a) the dynamic interaction between the
wall and the retained soil layers, and (b) the “standard’’ dynamic interaction of a structure with
its underlying soil layers. In the present study the influence of the wall flexibility on the free-
field ground shaking behind the wall is investigated using finite element numerical simulations.
Subsequently, a simple structure founded on the retained soil is included in the numerical models.
A parametric study is being performed in order to examine at what extend the presence of the
wall may affect the inertial accelerations imposed on the structure (with respect to its position
and its fundamental eigen-period). In addition, it is investigated how the location and/or the
characteristics of the structure may affect the dynamic earth pressures induced on the retaining
wall. Despite the fact that there exist many “open issues’’ in DWSSI, the numerical results of the
current study provide a clear indication of the direct dynamic interaction between a retaining
wall and its retained soil layers and structures.

1 Introduction

Retaining systems are extensively used worldwide for serving various purposes in struc-
tures and infrastructures. Deep excavations, bridge abutments, or harbor quay-walls
are some of the cases where a rigid gravity or a flexible cantilever retaining wall is con-
structed. Despite their structural simplicity, the seismic response of a wall (that retains
even a single soil layer) is a rather complicated problem. What makes that response so
complicated is the dynamic interaction between the wall and the retained soil, espe-
cially when material and/or geometry nonlinearities are present (Kramer 1996; Iai
1998; Wu & Finn 1999). Consequently, the performance of retaining walls during
earthquakes is a subject being still examined by many researchers, experimentally,
analytically, or numerically (Veletsos & Younan 1997; PIANC 2001; Psarropoulos et
al. 2005). Depending on the expected material behavior of the retained soil and the
possible mode of the wall displacement, there exist two main categories of analytical
methods used in the design of retaining walls against earthquakes: (a) the pseudo-static
limiting-equilibrium Mononobe–Okabe type solutions which assume yielding walls
resulting to plastic behavior of the retained soil (Okabe 1926; Mononobe & Matsuo
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1929; Seed & Whitman 1970), and (b) the elasticity-based solutions that regard the
retained soil as a visco-elastic continuum (Scott 1973; Wood 1975; Veletsos & Younan
1997).

However, in many real cases retaining walls are used to support, apart from soil
layers, structures founded on the retained soil. It is evident that during a seismic
event the dynamic response of each component of this complex system (wall, soil
layer, structure) may affect substantially the response of the rest. In other words, the
presence of a retaining wall will affect not only the ground surface shaking of the
retained soil, but the dynamic response of any type of retained structure as well. In
addition, the existence of a structure behind the wall is expected to alter the dynamic
earth pressures developed on the wall. Therefore, the phenomenon of dynamic wall–
soil–structure interaction (DWSSI) is a rather complicated issue that includes: (a) the
dynamic interaction between a wall and a retained soil layers, and (b) the “standard’’
dynamic soil–structure interaction of a structure with its underlying soil (Tsompanakis
et al. 2006). The aforementioned dynamic interaction issues are not considered with
the proper realism in the current seismic norms used in modern engineering practice,
like the Eurocode 8 (EC8 2004) or the Greek Seismic Code (EAK 2000). Regarding
the design of retaining structures, the dynamic interaction between a retaining wall
and the retained soil is ignored; while on the other hand, the issue of dynamic soil–
structure interaction taken into consideration in a simplistic way is considered a-priori
to be beneficial for a structure, which seems not to be always the case (Mylonakis &
Gazetas 2000).

The objective of the present study is to examine more thoroughly the phenomenon of
dynamic wall–soil–structure interaction. For this purpose, two-dimensional numerical
simulations are performed, utilizing the finite-element method, in order to investigate
some of the most important aspects of this complex phenomenon. Firstly, the influ-
ence of the wall flexibility on the ground surface shaking behind the wall is investigated
(Figure 1(a)), while emphasis is given on the amplification of the base acceleration, a
fact generally ignored by the seismic norms. Subsequently, a simple structure founded
on the retained soil is included in the numerical models (Figure 1(b)). A parametric
study has been performed in order to examine how the location of the structure may
affect the earth pressures induced on the retaining wall. In addition, the parametric
study investigates at what extent the presence of the wall may affect the inertial forces
imposed on the structure with respect to its position. In all cases, the wall is charac-
terized by its height H, its relative flexibility dw, and its relative compliance of the
foundation dθ, while the soil material is considered as visco-elastic with shear-wave
velocity VS, density ρ, and critical damping ratio ξ.

In general, dynamic response of any system depends on the seismic excitation char-
acteristics (both in the time and in the frequency domain). In a recent preliminary
investigation of DWSSI by Tsompanakis et al. (2006), both real earthquake records
and pulses were used. In the present numerical study, in order to understand more
clearly various aspects of the complex phenomena incorporated in the DWSSI, the
excitations were limited to harmonic and simple pulses. Results provide a clear indi-
cation of the direct dynamic interaction between a retaining wall and its retained
structures. That fact justifies the necessity for a more elaborate consideration of this
interrelated phenomenon on the seismic design, not only of the retaining walls, but of
the nearby structures as well.
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Figure 1 The retaining systems examined in this study: (a) a wall retaining a single soil layer, (b) a
wall retaining a soil layer on which a simple structure is founded at distance L.

2 Numerical modelling

In order to examine more efficiently the DWSSI phenomenon, numerical analyses were
based on the study of Veletsos & Younan (1997) who developed an analytical approach
for evaluating the magnitude and distribution of the dynamic displacements, pressures,
and forces induced by horizontal ground shaking on walls that are both flexible and
elastically constrained against rotation at their base. Their analytical methodology per-
mitted the assessment of the effects and the relative importance of the factors involved.
In their model the soil was considered to act as a uniform, infinitely extended visco-
elastic stratum of height H. The properties of the soil were regarded constant, defined
by the density ρ, the shear modulus G, and Poisson’s ratio ν. The material damping
was presumed to be of the constant hysteretic type and was defined by the critical
damping ratio ξ. The layer was retained by a vertical, flexible wall, elastically con-
strained against rotation at its base; it was free at its upper surface and it was fixed on
a rigid base (thus no radiation damping was expected). The properties of the wall were
described by its thickness tw, mass per unit of surface area µw, modulus of elasticity
Ew, Poisson’s ratio ν, and critical damping ratio ξw. The base of both the wall and
the soil stratum were considered to be excited by a space-invariant horizontal motion,
assuming an equivalent force-excited system.

In the present study, in order to examine the effects of DWSSI on both retaining
wall and retained structures, two-dimensional (2-D) numerical simulations of the two
retaining systems depicted in Figure 1 were conducted. The simulations were performed
utilizing the ABAQUS (Version 6.4, 2003) finite-element code, which is capable of per-
forming dynamic linear analyses using Rayleigh type of material damping (resulting to
a critical damping ratio of ξ for the frequencies of interest). Although soil nonlinearities
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are expected to have a significant impact on the DWSSI, it was not examined in this
preliminary investigation of this complex phenomenon. An introductory study on this
important issue was performed in a recent work by Tsompanakis et al. (2007). The
structure was modelled as a lumped mass m on top of a weightless column discretized
with beam elements of flexural stiffness k. The wall was discretized also using beam
elements of unit longitudinal dimension and thickness equal to tw = 0.20 m. The main
parameters that affect the response of the system are: (a) the relative (with respect to
the retained soil) flexibility of the wall, defined by:

dw = GH3

Dw
(1)

and (b) the relative (with respect to the retained soil) flexibility of the rotational base
constraint, defined by:

dθ = GH2

Rθ

(2)

where Dw in Equation (1) denotes the flexural rigidity per unit of length of the wall:

Dw = Ewt3
w

12(1 − v2
w)

(3)

while Rθ in Equation (2) is the stiffness of the rotational base constraint.
Three cases were examined in this study: (a) a rigid fixed-base wall (dw = 0, dθ = 0),

(b) a flexible fixed-base wall (dw = 5, dθ = 0), and (c) a flexible wall with rotational
compliance (dw = 5, dθ = 5). Given the value of dw, the modulus of elasticity of the
wall Ew is evaluated using Equations (1) and (2), while the Poisson’s ratio νw is taken as
0.2. The wall mass per unit of surface area is presumed to be 2.5 t/m2. The simplifying
assumptions that no de-bonding or relative slip is allowed to occur at the wall-soil and
the structure-soil interfaces were used.

In general, the soil material properties (G, γ) and the wall height alone do not affect
the dynamic pressures on the wall, as the wall flexibility is examined in relation to soil
stiffness and the earth pressures are normalized with γ and H (see Veletsos and Younan
1997; Psarropoulos et al. 2005). Taking that point into account, all the analyses were
performed considering an 8m-high wall. The retained soil layer is characterized by a
relatively low shear-wave velocity VS equal to 100 m/s and a unit weight γ of 18 kN/m3.
The retained soil was discretized using four-node quadrilateral plain-strain elements.
Horizontal and vertical viscous dashpots were used at the right-hand side of the model
in order to simulate the radiation of energy from P and S waves, respectively. We
have to mention that although the efficiency of the viscous dashpots is in general
quite acceptable, it depends strongly on the angle of incidence of the impinging wave.
Therefore, the dashpots were placed far away from the wall in order to simulate the
semi-infinite stratum more accurately.

As mentioned before, apart from harmonic excitations, simple pulses have also been
used. A simple Ricker pulse with central frequency fo = 4 Hz has been selected as pulse
excitation (Ricker 1960). Despite the simplicity of its waveform, this wavelet covers a
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Figure 2 Acceleration time-history (a), response spectrum (b), and Fourier spectrum (c) of the
Ricker pulse excitation.

broad range of frequencies up to nearly 3fo. The acceleration time-history (scaled to
0.10 g) and the corresponding response and Fourier spectra of the pulse are shown in
Figure 2.

3 Effects of the wall on the retained-soil response

The dynamic response of a single soil layer under 1-D conditions has been studied
by many researchers and analytical solutions for harmonic excitation can be found
in the literature (Roesset 1977; Kramer 1996). In the case of the harmonic excitation
the response is controlled by the ratio T/TSOIL, where T is the dominant period of
the excitation, and TSOIL the fundamental period of the soil layer. For the case of
one-dimensional (1–D) conditions TSOIL is given by Kramer (1996):

TSOIL = 4H
VS

(4)

in which H is the height of the soil layer, and VS its shear-wave velocity. In this case the
fundamental period of the soil layer is TSOIL = 0.32s (or equivalently, the fundamental
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Figure 3 Distribution of the soil amplification factor (AFSOIL) along the surface of the backfill in
the case of the harmonic excitation at resonance (T =TSOIL) for the two extreme cases
of wall flexibility (dw = dθ = 0, and dw = dθ = 5). Note that vertical axis is in logarithmic
scale.

frequency of the soil layer is fSOIL ≈ 3.1 Hz). The duration of the sinusoidal pulse
was such that steady state conditions were reached. In that case the maximum soil
amplification factor (AFSOIL) is given by:

AFSOIL = 2
πξ

1
2n + 1

(5)

where ξ is the critical damping ratio and n is the mode number. For the 1st mode
(n= 0) and ξ= 5%, thus, AFSOIL ≈ 12.5.

The presence of a retaining wall essentially imposes a vertical boundary condition,
leading thus to a two-dimensional (2-D) dynamic response. In this study the response
of the soil layer under 1-D conditions is compared with the corresponding 2-D due to
the existence of the wall (see Figure 1a). The distribution of the amplification factor
(AFSOIL) on the surface of the backfill in the case of the harmonic excitation at res-
onance (T =TSOIL) is plotted in Figure 3. It is evident that, for the rigid fixed-base
wall case (dw = dθ = 0), the motion in the vicinity of the wall is practically induced
by the wall itself, and therefore no amplification is observed (AFSOIL ≈ 1). The ampli-
fication factor converges to its maximum value (AFSOIL ≈ 12.5) at a distance longer
than 4H from the wall, since at that distance 1-D conditions are present (free-field
motion). In contrast the flexible wall system (dw = dθ = 5) permits shear deformations
and consequently, higher levels of acceleration are developed behind the wall. Thus,
the response of the retained soil layer resembles the 1-D conditions. Figure 4 depicts
the acceleration time-histories on the surface of the retained soil layer for the rigid and
the flexible wall excited with the Ricker pulse. It is obvious that the increased wall
flexibility permits the soil layer to behave similarly to 1-D conditions, as in the case
of the harmonic excitation, while on the other hand In contrast, in the vicinity of the
rigid wall the amplification remains low. Moreover, as shown in Figure 5, the trends of
AFSOIL distribution along the surface in the case of Ricker pulse excitation are similar,
despite the substantial decrease in amplification levels.
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Figure 5 Distribution of the soil amplification factor (AFSOIL) along the surface of the backfill in
the case of the high-frequency Ricker pulse excitation.

Figure 6 depicts the Transfer Functions (TF) calculated for the response of point B
which is located just behind the wall. Each TF is defined as:

TF = FFTB

FFTA
(6)

where FFTB is the Fourier spectrum of the acceleration time history calculated at
point B and FFTA is the Fourier spectrum of the acceleration time history of the Ricker
pulse excitation that is applied at the base of the model (point A). The Fourier spectrum
of the acceleration time history of the Ricker pulse excitation has been given in Figure
2(b) and it is evident that it covers smoothly the frequency range between 2 and 10Hz.
Therefore it is clear that TF actually comprises the soil amplification AFSOIL at a specific
point in the frequency domain. This observation is justified in Figure 6, where the soil
amplification factors are depicted for a series of harmonic excitations of the model. As
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Figure 6 Transfer Functions (TF) calculated for the response of point B, which is just behind
the wall, for a series of harmonic excitations. All three cases of wall flexibility are
presented.

it was expected, for frequencies close to the fundamental frequency of the soil layer
fSOIL, resonance phenomena take place, and TF converges to its maximum possible
value. This value is close to 12 in the case of the flexible wall (dw = dθ = 5), whereas it
is close to 1 for the case of rigid fixed-base wall (dw = dθ = 0). Note that these values
of AFSOIL can also be observed in Figure 3, at the point located just behind the wall.

In addition, in order to investigate the effect of the angle of incidence θ of the imposed
seismic motion, two additional dynamic loading cases were examined: Ricker pulse
excitation was imposed under an angle of 30◦ and 45◦, respectively. As the flexible
wall resembles almost the 1-D conditions, only the rigid wall case was considered.
The distribution of the amplification of the acceleration levels on the backfill surface
is shown in Figure 7, both in horizontal and vertical directions. It is evident that as the
angle θ increases the amplification of the horizontal acceleration is decreased, while
the opposite occurs for the vertical acceleration. In Figure 7b the maximum vertical
accelerations are normalized with the maximum horizontal base acceleration for θ= 0◦,
so that the comparison of the acceleration levels in the two directions is meaningful. It
has to be noted that for θ= 0◦ parasitic vertical accelerations are developed in a certain
distance (approximately from 2H to 6H) behind the wall.

4 Effects on the response of the structure

As it was previously mentioned, prescriptive seismic norms are not capable of taking
realistically into consideration the main “components’’ of the dynamic wall-soil-
structure interaction: (a) the dynamic interaction between a retaining wall and the
retained soil layer, and (b) the “standard’’ 1-D dynamic soil-structure interaction,
e.g. the foundation of a structure on a soil layer and the related kinematic or iner-
tial interaction with it. The first is coped with in a very simplistic way, while the latter
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is usually considered to be either neutral or even beneficial. However, this is not always
the case, since dynamic soil-structure interaction may also be detrimental, depending
on the circumstances (see Mylonakis & Gazetas 2000). Therefore, in a case of a com-
plex wall-soil-structure system, elaborate numerical modelling of the whole problem
is unavoidable, as it is not realistic to study the wall-soil system and the soil-structure
system independently.

In this study the impact of a potential simple structure has been also examined.
The simplified model of the structure is shown in Figure 1(b) and it consists of a
concentrated mass m located on the top of a single column that provides the stiffness
k of the structure. Since the structure can be realized as a fixed-base single-degree-of-
freedom (SDOF) system, its eigen-period TSTR. could be easily calculated by:

TSTR. = 2π

√
m
k

(7)

Figure 8 shows the horizontal acceleration time-histories calculated on the top of the
SDOF structure normalized with the base acceleration (AHnorm). The response refers
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distances L behind the wall are examined in the case of (a) rigid wall, and (b) flexible wall.
Note that for comparison purposes the response of the SDOF under 1-D conditions
(“no wall’’ case) is also included in the graphs.

to the Ricker excitation in the two extreme cases examined (rigid wall and very flexible
wall). The distance L behind the wall was considered to be equal to 1 m or 9 m. Note
that for comparison purposes the response under 1-D conditions (no wall) is included
in the graphs as well. It is obvious that in the case of the rigid wall the response of the
structure depends substantially on its distance from the wall, and differs considerably
from the corresponding response under 1-D when there is no wall. Conversely, for the
case of the flexible wall the location of the structure does not alter its response and the
SDOF behaviour is very similar to the 1-D conditions.

In addition, as the relation between TSOIL and TSTR. was expected to play a signifi-
cant role on the overall response, two cases of this ratio were compared. For the first
case, TSOIL coincides with TSTR. (implying a kind of resonance), while in the second
case TSOIL is three times higher than TSTR. (representing a relatively stiff structure).
In Figure 9 the soil amplification factors AFSOIL (without the structure) and AF’SOIL

(with the structure) are compared for three surface points Bi behind the wall:
L/H = 0.2, 0.7, 1.2, or L= 1.6, 5.6, 9.6m, respectively. It is obvious that in the case
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of the rigid fixed-base wall (dw = dθ = 0) the difference between AFSOIL and AF’SOIL

decreases, while moving away from the wall. In contrast, for the case of the flexible
wall (dw = dθ = 5) that difference between AFSOIL and AF’SOIL seems to increase.

As it was expected, in the case of the rigid wall the response of the structure depends
substantially on its distance from the wall, and differs considerably from the corre-
sponding response of the structure under 1-D conditions (i.e., when there is no wall).
On the other hand, for the case of the flexible wall the location of the structure does
not alter the response and the behaviour of the structure is affected only by the 1-D
conditions. In the same figure the amplification of the structure alone, AFSTR., is
also included for comparison. This factor represents the amplification of acceleration
between the top of the structure and its base. It is evident that the wall flexibility and
the distance of the structure from the wall L have no substantial effect on its response.

Finally, in order to examine the effect of the absolute value of the mass of the structure
on the amplification factor of the structure AFSTR., a structure with five times more
mass was incorporated in the models. However, since TSTR. should be kept constant in
order to make the comparison feasible, the ratio between m and k was kept unchanged,
thus the second structure was also five times more stiff. According to Figure 10, this
substantial increase of mass seems to have certain influence on the response of the
structure that follows the same trend for both cases of wall’s flexibility.
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5 Effect of the structure on the wall distress

Numerical results have proven that the existence of a structure may increase or reduce
the dynamic earth pressures developed on the wall. For that purpose, Figure 11 shows
the height-wise distribution of the normalized induced earth pressures for systems with
different wall flexibilities and base excitations. It can be observed that the existence of
a structure may reduce the dynamic earth pressures developed on the wall, especially
when the structure is close to the wall. This phenomenon may be attributed to the
impact of the structure on the eigen-frequencies of the whole system. It is evident that
the phenomenon is more intense in the case of the flexible wall.

Moreover, Figure 12 presents the height-wise distribution of the normalized induced
dynamic earth pressures for the two ratios of soil and structure periods previously men-
tioned, when the structure is located close to the wall. The observed height-wise stress
distributions may be attributed to the impact of the structure on the eigen-frequencies
of the whole system, and can be explained by the results plotted in Figure 13, which
shows the Pressure Amplification Factor (PAF) as a function of frequency which can
be defined using the following expression:

PAF = FFT[P(t)]
FFTA

(8)

where FFT[P(t)] is the Fourier spectrum of the normalized induced dynamic earth force
time history P(t), and FFTA is the Fourier spectrum of the acceleration time history
of the Ricker pulse excitation that is applied at the base of the model (point A). It is
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evident that in the case of low-frequency excitations the values of PAF converge to
the values proposed by Veletsos & Younan (1997) and Psarropoulos et al. (2005).
However, the presence of the structure behind the wall has an impact not only on the
amplitude of the developed dynamic earth but on its frequency content. This impact
however seems to depend strongly on the characteristics of the structure.

6 Conclusions

The scope of the present study was to investigate the dynamic interaction between
retaining walls, retained soil and retained structures. In all cases examined it was
proven that the characteristics of the wall as well as the seismic excitation affect
substantially the dynamic behaviour of the whole system. The rigid wall imposes a
boundary that clearly alters the 1-D conditions of the backfill, while the flexible wall
does not transform the model into 2-D. Furthermore, it has been shown that the ampli-
fication of the acceleration levels on the retained soil and structure depends also on the
seismic motion. In addition, it has been presented that the existence of a retaining wall
may alter considerably the dynamic response of a structure founded on the retained
soil. Moreover, the distress of the wall may be affected significantly by the presence of
retained structures.
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The results of the present investigation provide a clear indication of the direct
dynamic interaction between the wall, the retained soil, and the retained structures.
That fact justifies the necessity for a more elaborate consideration, both in seismic
codes and engineering practice, of this interrelated phenomenon during the seismic
design, not only of the retaining walls but of the nearby structures as well.
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Chapter 30

Earthquake response of liquid tanks
installed in saturated transversely
isotropic soil

Jae Kwan Kim & Jin Ho Lee
Seoul National University, Seoul, Korea

ABSTRACT: A 3-D transmitting boundary in a cylindrical coordinate system is applied
to obtain the earthquake response of a cylindrical liquid storage tank installed in the water-
saturated transversely isotropic ground. The effects of the far-field region are represented by
the transmitting boundary. Using finite elements, models are developed for the flexible tank
wall and the near-field region of the ground. The motion of the contained liquid is modeled
using boundary elements. Hybrid time domain-frequency domain analysis is used to obtain
direct time-domain representation of the earthquake response of the system. Numerical results
are given to illustrate the results of this method of analysis. A rigorous two-phase transversely
isotropic medium model has to be employed to accurately represent the dynamic behaviors of a
structure on the water-saturated transversely isotropic strata.

1 Introduction

The effects of soil-structure interaction can be evident in the dynamic response of
massive structures installed in relatively flexible ground. In past studies on dynamic
soil-structure interactions, the ground was assumed to be either a layered half-space
or layered strata over a rigid bedrock. The far-field region of the ground, where elastic
waves radiate out to an infinite boundary, was modeled as a homogeneous medium
either in the radial or the horizontal direction. The behavior of rigid foundations in the
layered strata over a rigid bedrock has been widely studied, partly due to the relative
ease of the mathematical modeling and analysis.

A 3-D transmitting boundary in a cylindrical coordinate system is used for modeling
the elastic waves radiating out to an infinite boundary in water-saturated transversely
isotropic soil strata overlaying rigid bedrock. The saturated soil strata is assumed to
consist of a porous material and modeled as a transversely isotropic two-phase medium,
based on the u−U formulation of the hybrid mixture theory (Lewis & Schrefler 1998).
The transmitting boundary is combined with the finite-elements model of the near-field
region, using the same u−U formulation.

The transmitting boundary is applied to obtain the earthquake response, as a direct
time-domain representation, of a cylindrical liquid storage tank installed in the ground
saturated with water. The soil strata are modeled as a transversely isotropic satu-
rated media. The flexible tank wall is modeled using axisymmetric shell finite elements
and the tank is assumed to be anchored to a rigid circular footing. The contained
liquid is assumed to be inviscid incompressible ideal fluid, whose motion is modeled
using boundary elements to obtain the added mass and sloshing stiffness matrices.
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The direct time-domain solution of the system’s earthquake response is obtained using
hybrid time domain-frequency domain analysis.

2 3-D transmitting boundary in a cylindrical
coordinate system

2.1 Governing equations for a water-saturated transversely
isotropic medium

Using the hybrid mixture theory (Lewis & Schrefler 1998), governing equations for
a water-saturated transversely isotropic porous medium can be derived based on the
u−U formulation.

∇ · (D :∇u) + Q[(α− nI)∇][(α− nI)∇] · u + Q(n∇)[(α− nI)∇] · U

−(1 − n)ρsü − n2f(u̇ − U̇) = 0

Q(n∇)[(α− nI)∇] · u + Q(n∇)(n∇) · U − nρwÜ − n2f(U̇ − u̇) = 0 (1)

where u and U denote the displacement of the solid and fluid phases, respectively; ρs

and ρw the density of the solid and fluid phases, respectively; D the elastic constitutive
tensor for a transversely isotropic medium (Chen & Saleeb 1994); n the porosity;
f = κ−1, in which κ is the permeability tensor; and I represents the second order identity
tensor. The generalized Biot’s constant α and the bulk modulus Q of the mixture are
defined as follows:

α = I − D : I
1

3Ks
= I − I : D

1
3Ks

(2)

α = 1
3

I : α = 1
3

α : I = 1 − KT

Ks

1
Q

= α− n
Ks

+ n
Kw

(3)

where Ks, Kw and KT are the bulk modulus of solid grain, water, and solid skele-
ton, respectively. These equations can be derived from the generalized Biot’s theory
(Zienkiewicz et al. 1999).

On the boundary ∂�=� of the medium �, the boundary conditions for the solid
phase can be expressed as follows:

σν = σ̃n on � = �t

u = ũ on � = �u (4)

where ν denotes the outward unit normal vector on the boundary � and �=�t ∪�u.
The boundary conditions for the fluid phase can be written on the boundary � as
follows:

p = p̃ on � = �p

ν · ẇ = w̃n on � = �w (5)
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where w= n(U− u) denotes the ‘pseudo-displacement’ of the fluid phase with respect
to the solid phase so defined that ẇ is the average relative velocity of seepage and
�=�p ∪�w.

2.2 Eigenvalue problems for the Rayleigh and Love wave modes

The governing equations can be decoupled into equations of the Rayleigh and Love
wave modes (Kim et al. 2000, Lee 2007, Lee & Kim 2008) and the eigenvalue problems
for each mode can be defined in the layered strata overlaying a rigid bedrock. In
the layered strata shown in Figure 1, there is no traction on the ground surface, no
pore pressure on the ground water surface, and no soil displacements at the bedrock.
Furthermore, ground water cannot flow perpendicular to the bedrock. With these
conditions, the decoupled equations constitute eigenvalue problems for the Rayleigh
and Love wave modes, respectively. The finite-element technique (Waas 1972, Kausel
1974, Tassoulas 1981) is employed to calculate eigenvalues and eigenfunctions. The
following algebraic equations can be obtained for the Rayleigh and Love wave modes.

[k2AR + ikBR + GR − ω2MR + iωCR]�R = 0 for Rayliegh wave mode

[k2AL + GL − ω2ML + iωCL]�L = 0 for Love wave mode (6)

where k are eigenvalues and �R and �L the corresponding eigenvectors. The matrices
AR, BR, GR, MR, CR, AL, GL, ML, and CL are defined in Lee (2007) and Lee & Kim
(2008).

Traction free

Rigid
bedrock

FEM

r0

Rigid foundation

Structure

Transmitting
boundary

No displacements of soil skeleton
& no perpendicular flow of
ground water   

Zero pore pressure

Transmitting
boundary

Figure 1 Layered strata overlaying a rigid bedrock.
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2.3 3-D transmitt ing boundary in a cyl indrical coordinate system

The modes of vibration in a cylindrical coordinate system can be obtained through the
method of separation of variables (Kausel 1974; Tassoulas 1981). Using the modes
of vibration, equivalent nodal loads and nodal displacements can be evaluated at the
cylindrical boundary r= r0 of the region r≥ r0 and the dynamic stiffness of the trans-
mitting boundary in the water-saturated transversely isotropic layered strata can be
obtained. The amplitudes of the equivalent nodal loads are given as follows:

F = r0

{
ATB�K2 + (DTB − ETB + mNTB)	K −

[
m(m + 1)

2
LTB + mQTB

]
�

}
� (7)

where � and 	 are the modal matrices for the Fourier number m (Lee 2007, Lee & Kim
2008), K the diagonal matrix of the eigenvalues of the Rayleigh and Love wave modes,
and � the modal participation factor vector. The matrices ATB, DTB, ETB, NTB, LTB,
and QTB are defined in Lee (2007) and Lee & Kim (2008). The nodal amplitudes of the
displacements can be expressed as the linear combination of the modes of vibration.

� = Y� (8)

where Y is the modal matrix for the Fourier number m (Lee 2007, Lee & Kim 2008).
By eliminating � from Equations 7 and 8, the dynamic stiffness R of the transmitting
boundary in the water-saturated transversely isotropic layered strata can be obtained.

F = R∆

R = r0

{
ATB�K2 + (DTB − ETB + mNTB)	K −

[
m(m + 1)

2
LTB + mQTB

]
�

}
Y−1 (9)

The far-field region of the water-saturated transversely isotropic ground in a cylindrical
coordinate system can be represented by this transmitting boundary.

2.4 Finite elements for the near-f ield region

The near-field region is modeled by conventional finite elements (Zienkiewicz et al.
1999). Discretized equations of motion can be obtained using the Galerkin method.[

Mss

Mww

]{
ü
Ü

}
+
[

Css −Csw

−Cws Cww

]{
u̇
U̇

}
+
[
K + Kss Ksw

Kws Kww

]{
u
U

}
=
{

fs

fw

}
(10)

where subscript s refers to the degrees of freedom of the solid phase and subscript w
to those of the fluid phase, respectively.

3 Numerical model of the cylindrical l iquid storage tank

3.1 Finite-elements model for the flexible wall of a
cyl indrical tank

The cylindrical tank wall is modeled using axisymmetric shell finite elements (Fig. 2).
Shape functions of the 2nd order polynomials are used for the axial and circumferential
displacements uz(ξ) and uθ(ξ). However, those of the 4th order Hermitian polynomials



Earthquake response of l iqu id tanks 467

Ring element 

Node 

2
ru

2
θu

3
ru

1
ru

3
θu

1
θu

2
zu

2β

3β

1β

3
zu

1
zu

� � 1

� � 0

� � �1

Figure 2 Finite-elements modeling of the flexible wall of a cylindrical tank.
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Figure 3 Boundary-elements modeling of the stored liquid.

are used for the radial displacement ur(ξ) to assure the continuity of slope at the nodes.
Following the standard finite-element procedures, the mass and stiffness matrices of
the cylindrical tank wall can be obtained. The damping matrix is constructed based on
the Rayleigh damping after combining the added mass and sloshing stiffness matrices
of the liquid stored in the tank.

3.2 Boundary-elements model for the stored l iquid

An equation of motion for the sloshing height of the liquid surface and the hydrody-
namic pressure of the liquid on the wall of the cylindrical tank are obtained using the
boundary-elements. The boundary integral equation for the inviscid incompressible
liquid (Fig. 3) can be expressed using the velocity potential function φ.

φ(ξ, t) = −
∫
φ(x, t)

∂G(x, ξ)
∂n

ds +
∫
∂φ(x, t)
∂n

G(x, ξ) ds in � (11)
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where ξ is the position vector of the source point, x the position vector of the field point,
n the outward normal vector, and G(x, ξ) the fundamental solution. The hydrodynamic
pressure p can be expressed as follows:

p = −ρl
∂φ(x, t)
∂t

in � (12)

The conditions of the boundary on the free surface of the liquid and of the boundary
in contact with the structure can be expressed, respectively, as follows:

∂φ(x, t)
∂t

+ gη(x, t) = 0 on Sf

∂φ(x, t)
∂z

= ∂η(x, t)
∂t

on Sf

∂φ(x, t)
∂n

= u̇n on Sw and Sb (13)

where g is the gravitational acceleration, η the sloshing height of the free surface, and
u̇n the outward normal velocity.

Using 3D boundary elements and applying Equations 12 and 13, discretized
algebraic equations can be obtained from Equation 11 as follows:

1
ρl

Hff | Hf w Hf b−−−|−−−−−−−
Hwf | Hww Hwb
Hbf | Hbw Hbb



−ρlgη

−pw

−pb

−
Gff | Gfw Gfb−−−|−−−−−−−

Gwf | Gww Gwb

Gbf | Gbw Gbb




η̈

üwn

übn

 =


0
0
0

 (14)

It should be noted that the corner boundary Sc is included in the surface boundary
Sf . The hydrodynamic pressure can be obtained from the second and third equations
of Equation 14 and eliminated from the first equation of Equation 14.

The equation of motion for the sloshing height can be obtained.

[Mηη]{η̈} + [Mηw Mηb]
{

üwn

übn

}
+ [Kηη]{η} = {0} (15)

where

[Mηη] = −[Gff ] + [Hf w Hf b]
[
Hww Hwb
Hbw Hbb

]−1 [Gwf

Gbf

]

[Mηw Mηb] = −[Gfw Gfb] + [Hf w Hf b]
[
Hww Hwb
Hbw Hbb

]−1 [Gww Gwb

Gbw Gbb

]
[Kηη] = −ρlg[Hff ] + ρlg[Hf w Hf b]

[
Hww Hwb
Hbw Hbb

]−1 [Hwf

Hbf

]
The liquid-structure interaction effects in a liquid storage tank can be analyzed

using the equation of motion for the sloshing height of Equation 15 and the hydro-
dynamic pressure which can be obtained from Equation 14. However, the effects of
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the hydrodynamic pressure on boundary Sc can not be taken into account explicitly in
this formulation. In this study, a new approach is developed to consider these effects.

A new partition of Equation 14 is adopted by the inclusion of the corner boundary
Sc into the wall boundary Sw as follows:

1
ρl


Hff | Hf w Hfb−−−|−−−−−−−
Hwf | Hww Hwb
Hb f | Hbw Hb b



−ρlgη

−pw

−pb

−


Gf f | Gf w Gf b−−−|−−−−−−−
Gwf | Gww Gwb

Gbf | Gbw Gbb




η̈

üwn

übn

 =


0
0
0

 (16)

The hydrodynamic pressure can be obtained from the second and third equations of
Equation 16.{−pw

−pb

}
=
[

G̃wf

G̃bf

]
{η̈} +

[
G̃ww G̃wb

G̃bw G̃bb

]{
üwn

übn

}
+
[

H̃wf

H̃bf

]
{η} (17)

where [
G̃wf

G̃bf

]
= ρl

[
Hww Hwb
Hbw Hbb

]−1[Gwf

Gbf

]
[
G̃ww G̃wb

G̃bw G̃bb

]
= ρl

[
Hww Hwb
Hbw Hbb

]−1[Gww Gwb

Gbw Gbb

]
[

H̃wf

H̃bf

]
= ρlg

[
Hww Hwb
Hbw Hbb

]−1
[

Hwf | 0
Hbf | 0

]

The effects of the hydrodynamic pressure on the boundary Sc can now be incorpo-
rated explicitly into Equation 17. Using the equation of motion for the sloshing height
of Equation 15 and the hydrodynamic pressure of Equation 17, the liquid-structure
interaction effects in a liquid storage tank can be analyzed.

The equivalent nodal forces from the hydrodynamic pressure can be evaluated from
Equation 17 as follows:{

Fhyd
w

Fhyd
b

}
= [L]

{
pw

pb

}
= −

[
Mwη

Mbη

]
{η̈} −

[
Mww Mwb

Mbw Mbb

]{
üwn

übn

}
−
[
Kwη

Kbη

]
{η} (18)

where [
Mwη

Mbη

]
= [L]

[
G̃wf

G̃bf

]
[
Mww Mwb

Mbw Mbb

]
= [L]

[
G̃ww G̃wb

G̃bw G̃bb

]
[
Kwη

Kbη

]
= [L]

[
H̃wf

H̃bf

]
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where L is the transformation matrix converting the surface tractions into the equiva-
lent nodal forces. After the equivalent nodal forces in the Cartesian coordinate system
are transformed to those in the cylindrical coordinate system, the forces are applied to
the axisymmetric finite-elements model of the cylindrical tank wall as external forces.

3.3 Coupling of the stored l iquid with the flexible tank wall

Equations of motion for the flexible tank wall can be obtained from the finite-elements
model as follows:[

Ms
11 Ms

12
Ms

21 Ms
22

]{
üt

1(t)
üt

2(t)

}
+
[
Ks

11 Ks
12

Ks
21 Ks

22

]{
u1(t)
u2(t)

}
=
{

0
Fhyd

2 (t)

}
(19)

where subscript 1 refers to the degrees of freedom of the tank wall not in contact with
the stored liquid and subscript 2 to those in contact with the stored liquid. Superscript
t refers to the total displacement. Fhyd

2 denotes the hydrodynamic force applied to
the tank wall by the stored liquid, which can be constructed from Equation 18. By
incorporating Equation 18 into Equation 19, equations of motion can be rewritten as
follows:[

Ms
11 Ms

12 0
Ms

21 Ms
22 + Ml

22 Ml
2η

]
üt

1(t)
üt

2(t)
η̈(t)

+
[
Ks

11 Ks
12 0

Ks
21 Ks

22 Kl
2η

]
u1(t)
u2(t)
η(t)

 =
{

0
0

}
(20)

The equations of motion for the whole liquid-structure interaction system can be
obtained by combining the equation of motion for the sloshing height (Equation 15)
with Equation 20.Ms

11 Ms
12 0

Ms
21 Ms

22 + Ml
22 Ml

2η

0 Ml
η2 Ml

ηη


üt

1(t)
üt

2(t)
η̈(t)

+
Ks

11 Ks
12 0

Ks
21 Ks

22 Kl
2η

0 0 Kl
ηη


u1(t)
u2(t)
η(t)

 =


0
0
0

 (21)

The damping effects can be represented using the Rayleigh damping and the final
equations of motion can be obtained in terms of relative displacements.Ms

11 Ms
12 0

Ms
21 Ms

22 + Ml
22 Ml

2η

0 Ml
η2 Ml

ηη


ü1(t)
ü2(t)
η̈(t)

+
Cs

11 Cs
12 0

Cs
21 Cs

22 0
0 0 Cl

ηη


u̇1(t)
u2(t)
η̇(t)


+
Ks

11 Ks
12 0

Ks
21 Ks

22 Kl
2η

0 0 Kl
ηη


u1(t)
u2(t)
η(t)

 = −
Ms

11 Ms
12 0

Ms
21 Ms

22 + Ml
22 Ml

2η

0 Ml
η2 Ml

ηη

{r}üg(t) (22)

where[
Cs

11 Cs
12

Cs
21 Cs

22

]
= αi

[
Ms

11 Ms
12

Ms
21 Ms

22 + Ml
22

]
+ βi

[
Ks

11 Ks
12

Ks
21 Ks

22

]
[Cl

ηη] = αs[Ml
ηη] + βs[Kl

ηη] (23)
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in which αi and βi are the Rayleigh damping factors for the interaction mode and αs

and βs for the sloshing mode. r denotes the influence vector.

4 Hybrid time domain-frequency domain analysis
of soil-structure interaction

The earthquake response, as a direct time-domain representation, of the cylindrical
liquid storage tank installed in the water-saturated transversely isotropic soil strata
can be obtained by employing the numerical models of the cylindrical tank structure,
the stored liquid, the near-field region of the ground, and the transmitting boundary.
The equations of motion for the tank structure, the stored liquid, and the near-field
region of the ground can be written in the time domain as follows:[

Mss Msg

Mgs Mgg

]{
üs(t)
üg(t)

}
+
[

Css Csg

Cgs Cgg

]{
u̇s(t)
u̇g(t)

}
+
[

Kss Ksg

Kgs Kgg

]{
us(t)
ug(t)

}
=
{

Rs(t)
Rg(t)

}
+
{

0
Ri

g(t)

}
(24)

where Rs(t) and Rg(t) denote the load vectors including the seismic force and Ri
g(t)

the interaction force between the near-field and the far-field regions. Subscript s refers
to the nodes for the tank structure, the sloshing surface, and the near-field region;
subscript g refers to those on the boundary between the near-field and far-field regions.
The equations of motion for the far-field region of the ground can be obtained in the
frequency domain using the developed 3-D transmitting boundary.

[Sf
gg(ω)]{ug(ω)} = {Rf

g(ω)} − {Ri
g(ω)} (25)

where Rf
g(ω) denotes the effective seismic force generated by the motion of the bedrock.

Using the convolution integral, ug(t) can be obtained from Equation 25.

{ug(ω)} = [Sf
gg(ω)]−1{Rf

g(ω)} − [Sf
gg(ω)]−1{Ri

g(ω)} = {uf
g(ω)} − [Ff

gg(ω)]{Ri
g(ω)}

{ug(t)} = {uf
g(t)} −

∫ t

0
[Ff

gg(t − τ)]{Ri
g(τ)} dτ (26)

By subdividing the interval of integration 0≤ τ≤ t into N subintervals of equal size
�t, and assuming constant physical quantities in each of the subintervals, Ri

g(tN) can
be expressed as follows:

{Ri
g(tN)} = − 4

�t
[̃Ff

gg(t1/2)]−1({ug(tN)} − {uf
g(tN)}) − {Ri

g(tN−1)}

−
N−1∑
i=1

[̃Ff
gg(t1/2)]−1[̃Ff

gg(tN−i+1/2)]{Ri
g(ti−1)}

−
N−1∑
i=1

[̃Ff
gg(t1/2)]−1[̃Ff

gg(tN−i+1/2)]{Ri
g(ti)} (27)



472 Computat iona l s tructura l dynamics and earthquake eng ineer ing

Tank 
Radius 7.32 m  
Height 25.62 m 
Thickness 2.54 cm 
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9 node quadrilateral & 
6 node triangular boundary elements

Ground soil 
Depth 7.32 m 
Density 1800 kg/m3

Shear wave velocity 304 m/sec
Poisson ratio 0.333 
Hysteretic damping ratio 0.05 
Permeability in horizontal direction 1.02�10�6 m3sec/kg
Porosity 0.3 
Biot’s constant 0.999 

Ground pore water 
Depth 7.32 m 
Density 1000 kg/m3

Dilatational wave velocity 1439 m/sec 
4 node axisymmetric finite elements & 
2 node axisymmetric transmitting boundary

Input free field motion on the surface
El Centro Earthquake
(NS Component, PGA � 0.348 g)

Figure 4 Tall tank on water-saturated transversely isotropic ground.

where F̃f
gg(tN−i+1/2)= Ff

gg(tN−i)+ Ff
gg(tN−i+1). From Equations 24 and 27, earthquake

responses of the total system can be obtained as a direct time-domain representation
using an appropriate integration algorithm such as the Newmark method.

5 Numerical example

A tall tank bonded to a water-saturated transversely isotropic ground is examined to
illustrate the results of this method of analysis. The tank has a height to radius ratio
of 3:1. The ratios of Young’s modulus Ev/Eh and the permeability κv/κh of the ground
are 1.5:1 and 0.01:1, respectively. The mesh and material properties are as shown in
Figure 4. The input motion is the El Centro earthquake ground motion (Figure 4 inset).

The dynamic stiffness of the foundation for horizontal and rocking motions is
obtained using the developed transmitting boundary. The dynamic stiffness for the
rocking motion is compared in Figure 5 with the results from a model in which the
water-saturated ground is assumed to be an equivalent single-phase medium (Mei &
Foda 1981). It is observed that the approximate equivalent single-phase medium model
cannot represent the damping effects of the water-saturated ground accurately. The
damping coefficients of the foundation on the water-saturated layered strata are no
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Figure 5 Dynamic stiffness for rocking motion.

Table 1 Natural frequencies of tall tank (Hz).

Interaction mode Sloshing mode

Rigid tank – 0.250
Flexible tank (no SSI) 5.217 0.250
SSI (dry ground) 3.748 0.244
SSI (equivalent single-phase model) 3.931 0.244
SSI (2-phase isotropic ground) 3.796 0.244
SSI (2-phase transversely isotropic ground) 3.967 0.244

longer zero at zero frequency due to the effects of the seepage force. Consequently,
more energy can be dissipated in low frequency through the internal friction between
the solid and fluid phases of a water-saturated medium.

The natural frequencies of the interaction mode and the sloshing mode are obtained
for various soil conditions and compared in Table 1. For the interaction mode, the
effects of soil-structure interaction are obvious. However, the effects on the sloshing
mode are not significant because the stored liquid can be treated as a very flexible
system compared to the tank structure or the soil. Therefore, earthquake response of
the sloshing height can be obtained with the assumption of a rigid tank on rigid base.

The effects of the modeling of water-saturated ground as a rigorous two-phase
medium can be observed in this study. In the equivalent single-phase medium, the
assumption of the equal displacements in the solid and fluid phases functions as a
constraint. As a result, when the water-saturated ground is modeled as a single phase
medium, the resulting numerical model becomes stiffer. Therefore, the natural fre-
quency of the interaction mode from the equivalent single-phase model is larger when
compared with that of the two-phase isotropic model.

The effects of the transversely isotropy of the ground can also be identified. Since the
behavior of a structure on flexible ground is influenced mainly by rocking motion, the
effects of the transversely isotropy of the ground is distinctly noticeable for such a
structure. In this numerical example, the ratio of Young’s modulus Ev/Eh is 1.5:1. The
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Figure 7 Profiles of maximum responses.

natural frequency of the interaction mode for the tank on the transversely isotropic
ground is larger than that of the tank on the isotropic ground.

The time histories of the hydrodynamic pressure at the height of 14.64 m from the
tank base, the base overturning moment, the sloshing height at the point in contact
with the wall, and the dynamic pore pressure at the outermost point just under the tank
base are shown in Figure 6. The profiles of the hydrodynamic pressure and the sloshing
height at the moment when maximum value occurs are presented in Figure 7. The
maximum values of the base overturning moment and the sloshing height are compared



Earthquake response of l iqu id tanks 475

Table 2 Maximum responses of tall tank.

Base overturning Sloshing height
moment (MN·m) (cm)

Rigid tank 106.0 at 2.14 sec 54.1 at 28.26 sec
Flexible tank (no SSI) 246.1 at 3.22 sec 54.3 at 28.30 sec
SSI (dry ground) 226.0 at 2.62 sec 56.5 at 28.24 sec
SSI (equivalent single-phase model) 236.9 at 2.60 sec 56.8 at 28.22 sec
SSI (2-phase isotropic ground) 197.1 at 2.62 sec 56.4 at 28.24 sec
SSI (2-phase transversely isotropic ground) 214.7 at 2.60 sec 56.3 at 28.22 sec

in Table 2 for various soil conditions. When additional damping effects of the water-
saturated ground are introduced into the system by the rigorous two-phase medium
model, the responses of the tank on the two-phase ground are lower than the responses
in the equivalent single-phase model. However, it can be observed that there is little
effect on the response of the sloshing height irrespective of the models of the system.

6 Conclusions

A 3-D transmitting boundary in a cylindrical coordinate system is applied to obtain the
earthquake response of a cylindrical liquid storage tank installed in the water-saturated
transversely isotropic ground. The effects of the far-field region are represented by
the transmitting boundary in the frequency domain. Using standard finite-element
procedures in the time domain, models are developed for the flexible tank wall and the
near-field region of the ground. The motion of the contained liquid is modeled using
the boundary elements in the time domain. The direct time-domain representation
of earthquake response of the total system is obtained using hybrid time domain-
frequency domain analysis.

The results from the numerical analysis show that complex soil-structure interac-
tions in water-saturated transversely isotropic ground can be modeled successfully. The
rigorous model using the two-phase transversely isotropic medium has to be employed
to accurately represent the dynamic behaviors of a structure on water-saturated
transversely isotropic strata
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Advances in design optimization of
reinforced concrete structural systems
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ABSTRACT: In this work a number of design approaches for 3D reinforced concrete (RC)
buildings are formulated in the framework of structural optimization problems and they are
assessed in terms of structural performance under earthquake loading. In particular, this Chapter
consists of two distinctive parts. In the first part the European seismic design code is assessed
with reference to the behavioral factor q. For each optimum design, achieved for the various
values of the behavioral factor, fragility curves are developed in four damage states. The optimum
designs are compared based on limit-state probabilities of exceedance encountered for the design
earthquake. In the second part three design approaches for RC buildings are considered aiming
at improving the torsional response of RC buildings. It is shown that the optimized designs
obtained according to the minimum eccentricity of the rigidity centre behave better in frequent
(50/50 hazard level) and occasional (10/50 hazard level) earthquakes, while the designs obtained
according to the minimum eccentricity of the strength centre formulation was found better in
rare (2/50 hazard level) events.

1 Introduction

In the past the requirements and provisions of the seismic design codes for buildings
have been based on experience and limited experimental data and they were period-
ically revised after disastrous earthquakes. Most of the current seismic design codes
define a single design earthquake that is used for assessing the structural performance
against earthquake hazard. These codes have many inherent assumptions built in the
design procedure regarding the behaviour of the structure against earthquake loading.
Severe damages caused by recent earthquakes made the engineering community ques-
tioning the effectiveness of the current seismic design codes (Xue, 2000; Browning,
2002; Panagiotakos and Fardis, 2004). Given that the primary goal of contemporary
seismic design is the protection of human life, it is evident that additional performance
targets and earthquake intensities should be considered in order to assess the structural
performance in many hazard levels. Most of the current seismic design codes belong to
the category of the limit state design procedures, where if a number of checks, expressed
in terms of forces, are satisfied the structure is considered safe and not collapse is likely
to occur. A typical limit state based design can be viewed as one (i.e. ultimate strength)
or two limit state approach (i.e. serviceability and ultimate strength). All modern seis-
mic design procedures are based on the principal that a structure will avoid collapse
if it is designed to absorb and dissipate the kinetic energy that is imparted in it dur-
ing the seismic excitation. Most of the modern seismic codes express the ability of
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the structure to absorb energy through inelastic deformation using the reduction or
behaviour factor q. The capacity of a structure to resist seismic actions in the nonlinear
range generally permits lower seismic loads for its design than those corresponding to
a linear elastic response. The seismic loads are reduced using the behaviour factor q.
The numerical verification of the behaviour factor became a subject of research work
during the past decade (Mazzolani and Piluso, 1996; Fajfar, 1998) in order to check
the validity of design theory assumptions and to make structural performance more
predictable from engineering point of view.

Designing earthquake resistant structures has been the subject of intensive research
among engineers and scientists. Two schools of thought have prevailed in this area:
(i) isolate the structure from any excitation propagated through the soil (Naeim and
Kelly, 1999; Goel, 2005) and (ii) design the structure in such a way that would accept-
ably resist the seismic excitation (Duan and Chandler, 1997; Guerra, 2005; Lagaros et
al., 2006b). In a number of studies (Paulay, 1998; Tso and Myslimaj, 2003) it has been
shown that the rigidity centre is meaningful only when the system behaves elastically.
Once the system response enters the inelastic domain the elements stiffness becomes
insignificant and it is the strength centre that is important in this deformation stage.

The main objectives of this study are twofold: (i) In the first objective, the behaviour
factor q that the Eurocode 8 (2003) suggests for the design of RC building structures
is studied and critically assessed. This is achieved in the framework of the optimum
design of RC buildings. The optimum designs obtained for the seven values of the
behaviour factor considered are compared with respect to the limit-state probabilities
of exceedance calculated for the design earthquake in four damage states. (ii) In the
second objective, optimized structures obtained through the three design approaches
are assessed with respect to the minimum seismic torsional effect and their perfor-
mance against three earthquake hazard levels. According to the first design concept
the initial construction cost is considered as the main objective. In the second design
approach, performance criteria are implemented, where the eccentricity of the rigidity
and the strength centres with respect to the mass centre is minimized. In the third
design approach, both cost minimization and performance criteria are applied. All
three design concepts are formulated as a combined topology-sizing optimization prob-
lem. The location and the size of the columns and the shear walls of the structure at
each storey, constitute the design variables. Apart from the constraints imposed by the
design codes on the seismic loading and structural performance, architectural restric-
tions are also taken into account in all formulations of the optimization problems. The
optimum designs obtained through the three approaches are compared with respect to
the total life-cycle cost, which is the sum of the initial and the limit state cost. The limit
state cost, as considered in this study, represents monetary-equivalent losses due to
seismic events that are expected to occur during the design life of the structure.

2 Progress on structural design optimization of
RC structures

A number of studies have been published in the past dealing with structural opti-
mization of RC structures. One of the earliest studies on this subject is the work
by Frangopol (1986) where the general formulation of the deterministic optimization
problem is reviewed and some of the main features of two general purpose deterministic
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optimization programs are presented in developing the reliability-based optimization
approach for the design of both steel and RC framed structures. In Kanagasundaram
and Karihaloo (1991) it is demonstrated how the design process can be simulated
mathematically to achieve designs of RC structures which conform to the require-
ments of the Australian Standard AS3600-1988 by minimizing the construction cost.
In the work by Moharrami and Grierson (1993), a computer-based method for the
optimal design of RC buildings is presented, where the width, depth and longitudinal
reinforcement of member sections are considered as design variables.

The optimization of 3D RC frames is discussed by Balling and Yao (1997), where the
validity of the assumption that optimum concrete-section dimensions are insensitive to
the number, diameter, and longitudinal topology of reinforcing bars is investigated. In a
work by Koskisto and Ellingwood (1997) a decision model is presented for minimizing
the life-cycle cost of prefabricated concrete elements and structures. The decision model
utilizes principles of engineering economic analysis under uncertainty in considering
costs and benefits of construction, maintenance, repair, and consequences of failure.
A review of papers on cost optimization of concrete structures can be found in the work
by Sarma and Adeli (1998), where it was concluded that there is a need to perform
research on cost optimization of realistic three-dimensional structures, especially large
structures with hundreds of members where optimization can result in substantial
savings.

Performance-based optimum design of reinforced concrete buildings is a relatively
new field of research. The performance criteria are imposed as constraints that affect
the initial construction cost that has to be minimized. Based on this approach Ganzerli
et al. (2000) proposed an optimization methodology for seismic design considering
performance-based constraints. Lagaros et al. (2006) proposed an automated proce-
dure for the minimization of the eccentricity between the mass center and the rigidity
center. Furthermore, in the work by Li and Cheng (2001), the optimal decision model
of the target value of performance-based structural system reliability of RC frames is
established according to the cost-effectiveness criterion.

Chan and Wang (2006) presented a numerical approach based on a nonlinear
cracking analysis methods in the framework of an optimization algorithm for the
stiffness-based optimum design of tall RC buildings. A general approach to the multi-
objective reliability-based optimum designs of prestressed concrete beams is presented
in the work by Barakat et. al (2004), where all behavior and side constraints specified
by the American Concrete Institute code for prestressed concrete are incorporated.
In the work by Chan and Zou (2004) an optimization technique is presented for
the elastic and inelastic drift performance-based design of reinforced concrete build-
ings. While Lagaros and Papadrakakis (2007) assessed the design of 3D reinforced
concrete buildings obtained according to the European seismic design code, ver-
sus a performance-based design procedure, in the framework of a multi-objective
optimization problem.

3 Designing against the seismic hazard

The majority of the seismic design codes belong to the category of the prescriptive
building design codes, which include: site selection and development of conceptual,
preliminary and final design stages. According to a prescriptive design code the strength
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of the structure is evaluated at one limit state between life-safety and near collapse,
using a response spectrum corresponding to one design earthquake (Eurocode 8, 2003).
In addition, serviceability limit state is usually checked in order to ensure that the
structure will not deflect or vibrate excessively during its functioning. On the other
hand, Performance-Based Design (PBD) is a different seismic design approach which
includes, apart from the site selection and the development of the design stages, the
construction and maintenance of the building in order to ensure reliable and predictable
seismic performance over its life.

According to the Eurocodes a number of checks must be considered in order to
ensure that the structure will meet the design requirements. Each candidate design is
assessed using these constraints. All Eurocode 2 (2002) checks must be satisfied for
the gravity loads using the following load combination

Sd = 1.35
∑

j
Gkj"+"1.50

∑
i
Qki (1)

where “+’’ implies “to be combined with’’, the summation symbol “�’’ implies “the
combined effect of’’, Gkj denotes the characteristic value “k’’ of the permanent action
j and Qki refers to the characteristic value “k’’ of the variable action i. If the above con-
straints are satisfied, multi-modal response spectrum analysis is performed, according
to Eurocode 8 (2003), and earthquake loading is considered using the following load
combination

Sd =
∑

j
Gkj"+"Ed"+"

∑
i
ψ2iQki (2)

where Ed is the design value of the seismic action for the two components (longi-
tudinal and transverse) respectively and ψ2i is the combination coefficient for the
quasi-permanent action i, here taken equal to 0.30.

The main philosophy of Eurocode 8, is to design structural systems based on energy
dissipation and on ductility in order to control the inelastic seismic response. Design-
ing a multistory RC building for energy dissipation comprises the following features:
(i) fulfillment of the strong column/weak beam rule, (ii) member verification in terms
of forces and resistances for the ultimate strength limit state under the design earth-
quake (with return period of 475 years, probability of exceedance 10% in 50 years),
with the elastic spectrum reduced by the q-factor equal to 3.0, (iii) damage limitation
for the serviceability limit state and (iv) capacity design of beams and columns against
shear failure.

4 Structural optimization

At the heart of a PBD procedure is the formulation of a structural optimization
problem, which constitutes the basis for the vulnerability as well as the performance
evaluation of different designs.

4.1 Formulation

In the design procedures that will be implemented in this chapter the design variables
are divided in two categories: (i) Topology design variables, corresponding to the topol-
ogy or layout of the columns and shear walls of the building. (ii) Sizing design variables,
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corresponding to the dimensions of their cross sections. The mathematical formulation
of the optimization problem for the initial construction cost of RC buildings can be
stated as follows:

min CIN(s) = Cb(s) + Csl(s) + Ccl(s)

subject to gk(s) ≤ 0, k = 1,2, . . . ,m (behavioral)

ti
lb,j ≤ ri

j ≤ ti
ub,j, j = 1,2, . . . ,ncolumns

si
lb,j ≤ hi

j ≤ si
ub,j, j = 1,2, . . . ,ncolumns

}
(architectural)

i = 1,2,…,n_gstoreys

(3)

where s represents the design vector corresponding to the dimensions of the columns’
cross-sections, F is the feasible region where all the constraint functions (behavioural
and/or architectural) are satisfied. The objective function considered is the initial con-
struction cost CIN(s) that refers to the total initial construction cost of the structure,
while Cb(s), Csl(s), Ccl(s) and Cns(s) refer to the total initial construction cost of beams,
slabs, columns and non structural elements, respectively. The term “initial cost’’ of a
new structure refers to the final cost just after construction. The initial cost is related
to both material cost, which includes concrete, steel reinforcement, infills, as well as
labour cost for the construction of the building.

The behavioural constraints gk(s) are imposed by the design codes, ri
j is the dis-

tance of the j-th column/shear wall mass centre in the i-th group of storeys from its
corresponding AC2 point (see Figure 1b, where for simplicity the superscript i and
subscript j are omitted). n_gstoreys is the total number of groups of storeys having the
same layout in plan. ti

lb,j, ti
ub,j are the lower and upper bounds of the topology design

variables imposed by the architectural constraints, while hi
j is the largest edge of the

j-th column/shear wall in the i-th group of storeys, corresponding to the sizing design
variables (Figure 1a). si

lb,j, si
ub,j are the lower and upper bounds of the sizing design

variables imposed by the architectural constraints. As it will be seen in the following
subsection, there is a relation between the two kinds of design variables in topology
and sizing optimization, as well as in their corresponding bounds.

4.2 Solving the optimization problem

Evolutionary Algorithms (EA) are population based, probabilistic, direct search opti-
mization algorithms gleaned from principles of Darwinian evolution. Starting with an
initial population of µ candidate designs, an offspring population of λ designs is cre-
ated from the parents using variation operators. Depending on the manner in which
the variation and selection operators are designed and the spaces in which they act,
different classes of EA have been proposed. In the EA algorithm employed in this
study (Papadrakakis et al., 1998 and 2001; Lagaros et al., 2002), each member of the
population is equipped with a set of parameters:

a = [(sd, γ), (sc,σ,α)] ∈ (Id,Ic)

Id = Dnd × R
nγ
+ (4)

Ic = Rnc × Rnσ+ × [−π, π]na
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Figure 1 (a) Sample column Type I with its architectural constraints AC1 and AC2, (b): Sample
column Type II with its architectural constraints AC1 and AC2.

where sd and sc are the vectors of discrete and continuous design variables defined in
the discrete and continuous design sets Dnd and Rnc , respectively. Vectors γ, σ and α

are the distribution parameter vectors taking values in R
nγ
+ , Rnσ+ and [−π, π]na , respec-

tively. Vector γ corresponds to the variances of the Poisson distribution. Vector σ∈Rnσ+
corresponds to the standard deviations (1≤ nσ ≤ nc) of the normal distribution. Vec-
tor α∈ [−π, π]na is related to the inclination angles (nα = (nc − nσ/2)(nσ−1)) defining
linearly correlated mutations of the continuous design variables sc, where n= nd + nc

is the total number of design variables.
Let P(t)= {a1, . . . ,aµ} denotes a population of individuals at the t-th generation. The

genetic operators used in the EA method are denoted by the following mappings:

rec : (Id,Ic)
µ → (Id,Ic)

λ (recombination)
mut : (Id,Ic)

λ → (Id,Ic)
λ (mutation)

selkµ : (Id,Ic)
k → (Id,Ic)

µ (selection, k ∈ {λ, µ+ λ})
(5)

A single iteration of the EA, which is a step from the population P(t)p to the next

parent population P(t+1)
p is modelled by the mapping

optEA : (Id,Ic)
µ
t → (Id,Ic)

µ

t+1 (6)
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Figure 2 Pseudo-code of the Evolutionary Algorithm (EA) optimization procedure.

In Figure 2 a pseudo-code of the EA algorithm is depicted. At the beginning of the
procedure in generation t= 0 the initial parent population P(t)

p , composed by µ design
vectors, is generated randomly (step 3 of the pseudo-code). Steps 5 to 12 correspond
to the main part of the EA algorithm, where in every generation λ offspring vectors are
generated by means of recombination and mutation. Dl is a sub-population with two
members selected from the parent population of the current generation P(t)

p (Step 6)
which is used by the recombination operator. Recombination and mutation operators,
described in steps 7 to 10, act on both design variable vectors sl and distribution
parameter vectors (distribution parameter vectors are denoted as yl in the pseudo-
code). In step 11 the objective and constraint functions are calculated in order to
assess the design vectors in terms of the objective function value and feasibility.

5 Conceptual topology design optimization of
RC structures

The main objective in the seismic resistant design of structural systems, like reinforced
concrete buildings, is the proper conceptual design of the seismically resistant struc-
tural components and the appropriate arrangement in plan of the vertical structural
elements. It is obvious that the architectural layout of the structure imposes the prin-
cipal restrictions related to the position of the structural elements of the building. The
cooperation between the designer and the architect at the structural conceptual level
might be crucial in the subsequent design stages. There are two general guidelines for
the design engineer to take into account at the early stages of the design of a concrete
building: (i) Guidelines related to the mass and stiffness distribution among the storeys
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of the structure and (ii) guidelines related to the plan arrangement of the vertical struc-
tural elements of the building where a rule of a minimum distance between the mass
and the elastic centers for each storey (mass eccentricity) should be followed.

Eccentric structures, which are characterized by the non coincidence of the mass cen-
tre with the rigidity centre, develop a coupled lateral-torsional response when subjected
to dynamic excitation. A high percentage of building damages, or even collapses, has
been attributed to the wrong plan arrangement of the columns and the shear walls, due
to the activation of the combined torsional-translational vibration of the structural sys-
tem (Bachmann, 2002; Bertero, 1995; Wong and Tso, 1995; Rosenblueth and Meli,
1986). For this reason a number of studies have been published in the past where
the seismic response of the structure is examined under the framework of coupling
the lateral-torsional response (Kan and Chopra, 1977; Tso, 1990; Rutenberg, 2002;
De-la-Colina, 2003; Fajfar et al., 2005; Pettinga et al., 2007; Jeong and Elnashai,
2006).

According to the Federal Emergency Management Agency (FEMA-310, 1998) it is
suggested that, in order to minimize the influence of the torsion, the distance between
the story centre of mass and the story centre of rigidity must be less than 20% of the
building width in either plan dimension for Life Safety (LS) and Immediate Occupancy
(IO) design states of the building. In most cases of building layouts it is not easy, even
through a trial and error procedure, to define the plan arrangement of the columns and
shear walls so that the distance of the rigidity center to be within an acceptable distance
from the mass center. This is because the possible values of the topology and size
variables are extremely large which make their combination very complicated. What
is needed is an automatic optimization procedure specially tailored for the solution of
such a problem.

The optimum design of steel reinforced concrete 3D frames is formulated in this
study on the basis of the FEMA-310 (1998) recommendation where the torsional
response demands is to be reduced during a seismic event and thus implicitly enhance
the seismic resistance of the structure. In this study, based on the work of Bertero
(1995), response demands are reduced by minimizing the mass eccentricity, which is
defined as the distance between the mass and the rigidity centers in each storey.

5.1 Definit ions

There are some definitions that have to be provided in order to facilitate the description
of the problem and its handling by the adopted optimization algorithm.

Torsionally balanced: A structural system is defined as torsionally balanced when
the mass centre coincides or almost coincides with the rigidity centre at any storey of
the structure.

Centre of rigidity (CR): Only in a special class of multi-storey structures can the
centres of rigidity be defined in the strict sense (Garcia et al., 2007). The inability
in defining the centres of rigidity has led to the following approximate approaches:
(i) Decomposition of the multi-storey structural system into single independent storey
systems. (ii) Using only the centre of gravity of the shear walls. (iii) Replacing the elastic
axis with an axis defined by the geometrical locus of the rigidity centres of the storeys
(Garcia et al., 2007). In the present study, approach (iii) is considered, which has been
adopted by the Eurocode 8 (2003) and the National Building Code of Canada (1995).
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Centre of resistance or strength (CV): This centre can be defined as follows

xCV =
∑

i xiVn,i∑
i Vn,i

(7)

where xCV is the x-coordinate of the CV, Vn,i is the nominal strength of the i-th vertical
structural element and xi is the distance of the i-th element from the centre of mass.

For every column and shear wall, two architectural constraints are defined: Architec-
tural constraint 1: The first architectural constraint (AC1) is related to the boundaries
in plan where a column or shear wall should be located. It is implemented as a rect-
angle with dimensions AC1x ×AC1y. A design is considered feasible, with respect to
AC1 constraint, when the cross sections of the columns and shear walls are contained
in the corresponding rectangles. In Figures 1a and 1b two AC1 rectangles are shown
for a typical plan view of a concrete building. Architectural constraint 2: The sec-
ond architectural constraint (AC2) is related to the topological position of the beams
in conjunction with their supporting columns and/or shear walls. This constraint is
implemented through a point located within the rectangle AC1. The AC2 constraint,
shown in Figures 1a and 1b, is essential in assisting the optimization procedure to
reach layouts where the beams and their cross points are supported by columns or
shear walls. In any feasible design the AC2 point should correspond to a joint of hor-
izontal (beam) and vertical (column/shear wall) elements. Column type: Two types of
columns/shear walls are considered. Type I is defined as the column/shear wall where
the AC2 point corresponds to one of the corners of the rectangle AC1 labeled as F
(see Figure 1a); Type II is defined as the column/shear wall where the AC2 point is
located inside the rectangle AC1 (see Figure 1b).

5.2 Minimum torsional response optimization problem

In the minimum torsional response optimization problem the basic goal is to formulate
an optimization procedure that could lead to designs with improved earthquake resis-
tance and in particular to create designs having minimum torsional response. In this
work two separate formulations of this problem have been considered. The first one
is formulated as a minimization problem of the eccentricity eCM−CR between the mass
centre and the rigidity centre of each storey, while the second formulation is stated
as a minimization problem of the eccentricity eCM−CV between the mass centre and
the centre of strength. Both formulations are subjected to the behavioural constraints
imposed by the design codes as well as to the architectural constraints.

The two optimization formulations can be stated as follows:

(i) min eCM−CR =
√

(xi
CM − xi

CR)2 + (yi
CM − yi

CR)2, i= 1,2, . . . ,n_gstoreys

subject to gk(s) ≤ 0, k = 1,2, . . . ,m (behavioral)

ti
lb,j ≤ ri

j ≤ ti
ub,j, j = 1,2, . . . ,ncolumns

si
lb,j ≤ hi

j ≤ si
ub,j, j = 1,2, . . . ,ncolumns

}
(architectural)

(8a)
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(ii) min eCM – CV =
√

(xi
CM − xi

CV)2 + (yi
CM − yi

CV)2, i= 1,2, . . . ,nstoreys

subject to gk(s) ≤ 0, k = 1,2, . . . ,m (behavioral)

ti
lb,j ≤ ri

j ≤ ti
ub,j, j = 1,2, . . . ,ncolumns

si
lb,j ≤ hi

j ≤ si
ub,j, j = 1,2, . . . ,ncolumns

}
(architectural)

(8b)

where (xi
CM,yi

CM), (xi
CR,yi

CR) and (xi
CV,yi

CV) are the coordinates of the mass centre, the
rigidity centre and the centre of strength, respectively. It has to be noted that both
centres CR and CV are defined for each storey.

5.3 The combined optimization problem

In the third optimization formulation both objectives considered previously are com-
bined through a weighted sum. The mathematical formulation for the combined
optimization problem can be stated as follows:

min F(s) = w · C∗
IN + (1 − w) · max(e∗CM−CR, e∗CM−CV)

subject to gk(s) ≤ 0, k = 1,2, . . . ,m (behavioral)

ti
lb,j ≤ ri

j ≤ ti
ub,j, j = 1,2, . . . ,ncolumns

si
lb,j ≤ hi

j ≤ si
ub,j, j = 1,2, . . . ,ncolumns

}
(architectural)

(9)

where C∗
IN, e∗CM−CR and e∗CM−CV are the normalized values of the three objectives,

i.e. the initial construction cost and the two eccentricities, respectively, while w is the
weight coefficient.

5.4 Type of design variables

In this study the columns/shear walls are of rectangular shape with dimensions h× b,
where h≥ b, while the smallest column that is permitted to be allocated is 30× 30 cm2.
The sizing design variables of the columns and shear walls depend on the topology
design variables which are defined first.

5.4.1 Topo logy des ign var iab les

As mentioned above (see Figure 1) the columns are divided in two categories. For Type
I column/shear wall: if AC1x>AC1y the final position of the individual element centre
of the column/shear wall will be allocated along the edge AC1x, otherwise along the
edge AC1y. In the case of a square architectural constraint with AC1x =AC1y, the
selection of the edge is random. For Type I column/shear wall the lower bound of the
topology design variable depends on the indicative minimum column size

ti
lb,j =

hmin

2
(10)

where hmin is the minimum column size of 30 cm as imposed by the design codes.
The above mentioned lower bound constraint is imposed in order to avoid obtaining
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columns with dimensions less than hmin. The upper bound is equal to half the size of
the corresponding architectural constraint edge (AC1x or AC1y)

ti
ub,j =

1
2

√
(xS − xF)2 + (yS − yF)2 (11)

In Figure 1a the largest edge of AC1 architectural constraint is AC1y which will be
selected as the edge to which the individual element centre of the column/shear wall
will be allocated. Furthermore, S (xS, yS) is the starting point and F (xF, yF) is the
finishing point of the AC1y edge, where the AC2 point coincides with the finishing
point F.

In Type II column/shear wall the edge of the AC1 architectural rectangle, to which
the individual element centre of the column will be allocated, has either already been
selected or it will be selected by the smallest distance of the projection of the AC2 point
to the four edges of the AC1 rectangle. The four projections points PPi, i= 1, . . . , 4 are
shown in Figure 1b. It can be seen that the distance between the points AC2 and PP1
is the smallest one, so the edge AC1x of the corresponding architectural constraint is
selected for the allocation of the individual element centre of the column/shear wall
and the PP1 projection point is renamed to AC2. Point S (xS,yS) is the starting point
and F (xF,yF) is the finishing point of this edge. The allocation of the mass centre of the
column/shear wall is either on the left or on the right side of the renamed projection
point PP1.

Irrespectively to the side to which the individual element centre will be allocated,
the lower bound is defined to be equal to zero

ti
lb,j = 0 (12)

The definition of the upper bound depends on which side of the projected AC2 point
the column mass centre will be allocated:

ti
ub,j =

a
2

(if on the left side)

ti
ub,j =

b
2

(if on the right side) (13)

where “a’’ is the distance of the new position of AC2 point from the point S and “b’’
is the distance of the new position of AC2 point from the point F (see Figure 1b).

5.4.2 S iz ing des ign var iab les

As mentioned previously, topology design variables are satisfied first followed by the
sizing design variables which are related to the topology design variables. In the case
of Type I columns/shear walls there is a direct relation between topology and sizing
design variables for each column/shear wall. This sizing design variable is defined as
inactive:

hi
j = 2ri

j (14)
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In the case of Type II column/shear wall there is an indirect relation between the two
types of design variables defined by

si
lb,j = 2ri

j

si
ub,j = 2min(a’,b’)

(15)

where a’ and b’ refer to the distance of the individual element centre of the column/shear
wall from points S and F, respectively (see Figure 1b). This sizing design variable is
defined as active. In this case the sizing design variable is active, since their dimensions
have to be defined by the optimizer and not by the topology design variables as in the
case of Type I column/shear wall. The bounds of the size of the column/shear wall are
dependant on the topological design variable ri

j.

6 Life cycle cost analysis

The total cost CTOT of a structure, may refer either to the design life period of a new
structure or to the remaining life period of a retrofitted structure. This cost can be
expressed as a function of the time and the design vector as follows (Wen and Kang
2001a):

CTOT (t, s) = CIN(s) + CLS(t, s) (16)

where CIN is the initial cost of a new or retrofitted structure, CLS is the limit state
cost; s is the design vector corresponding to the design loads, resistance and material
properties, while t is the time period. The term “initial cost of a new structure’’ refers to
the cost just after construction. The initial cost is related to the material and the labor
cost for the construction of the building which includes concrete, steel reinforcement,
labor cost for placement as well as the nonstructural components cost. The term “limit
state cost’’ refers to the potential damage cost from earthquakes that may occur during
the life of the structure. It accounts for the cost of the repairs after an earthquake, the
cost of loss of contents, the cost of injury recovery or human fatality and other direct
or indirect economic losses. The quantification of losses in economical terms depends
on several socio-economic parameters.

The limit state cost (CLS), for the i−th limit state, can thus be formulated as follows:

Ci
LS = Ci

dam + Ci
con + Ci

ren + Ci
inc + Ci

inj + Ci
fat (17)

where Ci
dam is the damage repair cost, Ci

con is the loss of contents cost, Ci
ren is the loss

of rental cost and Ci
inc is the income loss cost, Ci

inj is the cost of injuries and Ci
fat is

the cost of human fatality. Details about the calculation formula for each limit state
cost along with the values of the basic cost for each category can be found in Table 1
(Wen and Kang 2001b). The values of the mean damage index, loss of function, down
time, expected minor injury rate, expected serious injury rate and expected death rate
used in this study are based on (Wen and Kang, 2001b; Ellingwood and Wen, 2005;
ATC-13, 1985; FEMA-227, 1992).

It is generally accepted that interstorey drift can be used to determine the expected
damage. The relation between the drift limit ratios with the damage state, employed
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Table 1 Limit state costs – calculation formula (Ellingwood and Wen, 2005).

Cost Category Calculation Formula Basic Cost

Damage/repair (Cdam) Replacement cost× floor area×mean damage index 640 a/m2

Loss of contents (Ccon) Unit contents cost× floor area×mean damage index 215 a/m2

Rental (Cren) Rental rate× gross leasable area× loss of function 4.40 a/month/m2

Income (Cinc) Rental rate× gross leasable area× down time 700 a/year/m2

Minor Injury (Cinj ,m) Minor injury cost per person× floor area× 700 a/person
occupancy rate× expected minor injury rate

Serious Injury (Cinj,s) Serious injury cost per person× floor area× 7× 103
a/person

occupancy rate× expected serious injury rate
Human fatality (Cfat) Death cost per person× floor area× 7×105

a/person
occupancy rate× expected death rate

* Occupancy rate 2 persons/100 m2

Table 2 Damage state drift ratio limits and cost based on HAZUS (2003).

Performance level Damage State Interstorey Drift (%)

1 None θ< 0.5
2 Slight 0.5< θ< 1.0
3 Moderate 1.0< θ< 3.0
4 Major 3.0< θ< 8.0
5 Destroyed 8.0< θ

Table 3 Damage state drift ratio limits and cost based on the work of Ghobarah (2004).

Performance level Damage State Interstorey Drift (%)

1 None θ< 0.1
2 Slight 0.1< θ< 0.2
3 Light 0.2< θ< 0.4
4 Moderate 0.4< θ< 1.0
5 Heavy 1.0< θ< 1.8
6 Major 1.8< θ< 3.0
7 Destroyed 3.0< θ

in this study (Tables 2 and 3), is based on the HAZUS (2003) project for low-rise
RC moment resisting frames for moderate-code design, and on the work of Ghobarah
(2004) for ductile moment resisting frames. Based on analytical and experimental
data Ghobarah (2004) examined the correlation between drift and damage of various
structural elements and systems and determined the relation between the interstorey
drift and various damage levels of different reinforced concrete elements and structural
systems, as given in Table 3.

Based on a Poisson process model of earthquake occurrences and an assumption
that damaged buildings are immediately retrofitted to their original intact conditions
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after each major damage-inducing seismic attack, Wen and Kang (2001a) proposed
the following formula for the limit state cost function considering N damage states:

CLS(t, s) = ν

λ
(1 − e−λt)

N∑
i=1

Ci
LSPi (18)

where

Pi = Pi(θ > θi) − Pi+1(θ > θi+1) (19)

and

Pi(θ > θi) = (−1/t) · ln[1 − Pi(θ − θi)] (20)

Pi is the probability of the ith damage state being violated given the earthquake occur-
rence and Ci

LS is the corresponding limit state cost; Pi(θ− θi) is the annual exceedance
probability of the maximum interstorey drift value θi; ν is the annual occurrence rate
of significant earthquakes modeled by a Poisson process and t is the service life of a
new structure or the remaining life of a retrofitted structure. The first component of
Eq. (18), with the exponential term, is used in order to express CLS in present value,
where λ is the annual monentary discount rate. The calculation of the limit state cost
CLS is based on the assumption that after the occurrence of an earthquake the structure
is fully restored to its initial state. In this work the annual monentary discount rate λ is
taken to be constant, since considering a continuous discount rate is accurate enough
for all practical purposes (Rackwitz 2006, Rackwitz et al. 2005). Various approaches
yield values of the discount rate λ in the range of 3 to 6% (Wen and Kang 2001b), in
this study it was taken equal to 5%.

Each damage state is defined by drift ratio limits, listed in Tables 2 and 3. When
one of those drift values is exceeded the corresponding limit state is assumed to be
reached. The annual exceedance probability P(θ > θi) is obtained from a relationship
of the form:

Pi(θ > θi) = γ(θi)−k (21)

The above expression is obtained by best fit of known Pi(θ > θi) pairs. These pairs
correspond to 2, 10 and 50 percent in 50 years earthquakes that have known prob-
abilities of exceedance Pi. The corresponding maximum interstorey drift limit values
θi, for these three earthquakes, are obtained using the pushover analysis. According to
Poisson’s law the annual probability of exceedance of an earthquake with a probability
of exceedance p in t years is given by the formula:

P < θ < P = (−1/t) · ln(1 − p) (22)

which means that the 2/50 earthquake has a probability of exceedance equal to
P2% =−ln(1− 0.02)/50= 4.04× 10−4 (4.04× 10−2%).
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7 Fragility analysis

Earthquake risk assessment of building structures requires the calculation of limit-state
probabilities for a series of limit-states of monotonically increasing severity. The target
is to obtain the limit-state probabilities of exceedance that serve as a hazard curve
for structural damage. The mean annual frequency of maximum interstory drift θmax

exceeding a value y is obtained as:

λθ>y =
∫

P(θmax ≥ y
/

IM = x)
∣∣dλIM (x)

∣∣ (23)

where λθ>y is the rate of θmax, exceeding the value y and λIM(x) is the mean annual
frequency of the chosen intensity measure exceeding x or, in other words is the hazard
curve and dλIM(x) is its slope. The absolute value is used in eq. (23) because the slope
has a negative value.

Fragilities were introduced in the probabilistic analysis of nuclear power plants,
with the purpose of distinguishing the task of the structural engineer from that of
the seismologist. According to equation (23) the seismic fragility FR is defined as the
limit-state probability, conditioned on a measure of seismic intensity IM, which may
be expressed as peak ground acceleration, spectral acceleration, spectral velocity, or
any other control variable that is consistent with the specification of seismic hazard.
Thus the seismic fragility is defined as:

FR = P(θmax ≥ y/IM = x) (24)

Assuming that seismic data are lognormally distributed (Benjamin and Cornell 1970),
FR(x) can be calculated analytically.

8 Numerical results

In this chapter two test cases have been considered. In the first one structural optimiza-
tion is used for performing a critical assessment of the behaviour factor, while in the
second one a design procedure is proposed for defining torsionally balanced layouts.

8.1 A crit ical assessment of the behaviour factor q

A two-storey 3D RC building, regular in elevation and plan has been examined for the
assessment of the European seismic design code with respect to the behaviour factor q.
The plan and the elevation of the two storey 3D RC building are depicted in Figure 3
and Figure 4, respectively. The structure consists of eight columns and eighteen beams
while the effect of the infill walls is not considered.

In the framework of this study, the RC building has been optimally designed to meet
the Eurocode (EC2 and EC8) or the PBD requirements. According to EC8 the lateral
forces were derived from the design response spectrum (5%-damped elastic spectrum
divided by the behaviour factor q) at the fundamental period of the building. Concrete
of class C20/25 (nominal cylindrical strength of 20 MPa) and class S500 steel (nominal
yield stress of 500 MPa) are assumed. The base shear is obtained from the response
spectrum for soil type A (stiff soil θ= 1.0, with characteristic periods T1= 0.10 sec
and T2= 0.40 sec) and a PGA of 0.31 g. Moreover, the importance factor γI was taken
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Figure 4 2-storey 3D RC building: (a) Front view and (b) side view.

equal to 1.0, while damping correction factor is equal to 1.0, since a damping ratio of
5% has been assumed.

The slab thickness is equal to 15 cm and is considered to contribute to the moment
of inertia of the beams with an effective flange width. In addition to the self weight of
the beams and the slab, a distributed dead load of 2 kN/m2, due to floor finishing and
partitions and imposed live load with nominal value of 1.5 kN/m2, is considered, in the
combination with gravity loads (“persistent design situation’’). Nominal dead and live
loads are multiplied by load factors of 1.35 and 1.5, respectively (Eq. 1). Following
EC8, in the seismic design combination, dead loads are taken with their nominal value,
while live loads with 30% of their nominal value (Eq. 2).
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Table 4 Optimum designs obtained with six behavioral factors q.

Design

Dq=1.0 Dq=1.5 Dq=2.0 Dq=2.5 Dq=3.0 Dq=3.5

h1× b1 (m2) 0.45× 0.55 0.35× 0.40 0.35× 0.40 0.35× 0.40 0.40× 0.40 0.40× 0.35
h2× b2 (m2) 0.45× 0.60 0.45× 0.55 0.45× 0.50 0.45× 0.45 0.45× 0.40 0.45× 0.40
h3× b3 (m2) 0.55× 0.75 0.50× 0.65 0.50× 0.60 0.50× 0.55 0.45× 0.45 0.45× 0.40
h4× b4 (m2) 0.55× 0.30 0.60× 0.25 0.60× 0.25 0.60× 0.25 0.50× 0.30 0.50× 0.30
h5× b5 (m2) 0.55× 0.35 0.50× 0.25 0.50× 0.25 0.45× 0.25 0.45× 0.25 0.45× 0.25

Table 5 The initial cost for the six optimum designs in a.

Design Steel Concrete Initial Cost

Dq=1.0 6750 10588 35881
Dq=1.5 5535 9825 32671
Dq=2.0 4752 9760 31205
Dq=2.5 4329 9643 30339
Dq=3.0 3834 9565 29488
Dq=3.5 3834 9483 29399

The main objective of this study is to assess the design obtained with the behaviour
factor q that the Eurocode 8 (2003) suggests for the design of RC building structures.
This is achieved in the framework of the optimum design of RC buildings where the
optimum designs obtained for different values of the behaviour factor are compared.
The optimum designs (Dq) obtained for six values of the behaviour factor considered
are compared with respect to the initial cost, and limit-state probabilities of exceedance.
The optimization problem considered is defined as follows:

CIN = Ccon

ne∑
i=1

Vi
con + Csteel

ne∑
i=1

Wi
steel (25)

where Vcon is the volume of the concrete, Wsteel is the mass of the steel reinforcement,
Ccon = 120 a/m3, Csteel = 0.9 a/kgr are the unit costs for concrete and steel, respectively
and ne refers to the number of elements. The initial cost is related to material and the
construction of the building which includes concrete, steel reinforcement, placement
and the non-structural components cost. The dimensions of the cross section of the
beam and the columns have been considered as the design variables of the optimization
problem.

Six optimum designs are obtained solving the optimization problem of Eq. (25)
where the initial cost is the objective function to be minimized and the cross sections
of the columns and beams are the design variables considered. The provisions of the
Eurocode 2 and Eurocode 8 are imposed as constraints to the formulation of the
optimization problem. The six designs and the respective dimensions are presented in
Table 4.

The objective function values (CIN) of the six optimum designs are shown in Table 5
along with the cost of the concrete and steel reinforcement. As it can be seen from
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Figure 5 Fragility curves (a) Slight, (b) Moderate, (c) Extensive and (d) Complete structural damage
states.

Table 5, the optimum design obtained for q= 1.0 by 20% more expensive compared
to the q= 3.0 design. This confirms previous works where it was proved that designing
a structure with q= 1.0 is not prohibited by the construction cost (Lagaros et al.,
2006a).
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Figure 5 (Continued)

In the second part of this test case the performance of the six optimum designs is
demonstrated in terms of limit state fragilities. Figures 5a to 5d depict the limit state
fragility curves for low-rise RC buildings for the High Code Design Level of the earth-
quake loss estimation methodology (Table 2, HAZUS, 2003) for the Slight, Moderate,
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Table 6 Limit state Probabilities of exceedance (%).

Limit state Dq=1.0 Dq=1.5 Dq=2.0 Dq=2.5 Dq=3.0 Dq=3.5

PGA= 0.6 m/sec2

Slight 1.53E−03 1.38E−01 3.24E−01 1.08E+00 2.48E+00 3.50E+00
Moderate 7.06E−06 1.59E−03 5.22E−03 2.41E−02 7.26E−02 1.14E−01
Extensive 6.21E−07 3.00E−05 3.44E−04 5.08E−04 2.64E−03 2.92E−03
Complete 1.62E−07 1.17E−05 1.20E−04 1.82E−04 9.65E−04 1.13E−03
PGA= 1.1 m/sec2

Slight 7.99E−02 2.38E+00 4.37E+00 9.91E+00 1.71E+01 2.12E+01
Moderate 1.06E−03 8.22E−02 2.07E−01 6.60E−01 1.49E+00 2.08E+00
Extensive 1.42E−04 3.46E−03 2.46E−02 3.35E−02 1.22E−01 1.32E−01
Complete 4.63E−05 1.61E−03 1.06E−02 1.48E−02 5.56E−02 6.28E−02
PGA= 3.1 m/sec2

Slight 7.70E+00 4.01E+01 5.08E+01 6.71E+01 7.82E+01 8.24E+01
Moderate 5.85E−01 7.82E+00 1.28E+01 2.27E+01 3.29E+01 3.79E+01
Extensive 1.58E−01 1.23E+00 3.96E+00 4.73E+00 9.67E+00 1.01E+01
Complete 7.45E−02 7.60E−01 2.42E+00 2.95E+00 6.30E+00 6.74E+00
PGA= 7.8 m/sec2

Slight 5.46E+01 9.02E+01 9.41E+01 9.76E+01 9.90E+01 9.93E+01
Moderate 1.63E+01 5.49E+01 6.57E+01 7.86E+01 8.64E+01 8.91E+01
Extensive 7.92E+00 2.40E+01 4.15E+01 4.48E+01 5.95E+01 6.04E+01
Complete 5.10E+00 1.88E+01 3.33E+01 3.64E+01 5.04E+01 5.18E+01

Extensive and Complete structural damage states. The damage states, defined with
respect to the drift limits according to HAZUS for this type of structure, are equal to
0.5%, 1.0%, 3.0% and 8.0% for Slight, Moderate, Extensive and Complete struc-
tural damage states, respectively. In these Figures, the PGA value for the frequent
(PGA= 0.6 m/sec2), occasional (PGA= 1.1 m/sec2), rare (PGA= 3.1 m/sec2) and the
very rare (PGA= 7.8 m/sec2) earthquake hazard levels design which are defined based
on the work by Papazachos et al. (1993) are denoted with a bold vertical lines and
the corresponding probabilities of exceedance of the four damage states are given in
Table 6.

It can be seen from Table 6 that the limit state probabilities of exceedance for the
design Dq=1.0 is one to four orders of magnitude less compared to the Eurocode 8 design
Dq=3.0. Worth mentioning the observation for the rare hazard level (PGA= 3.1 m/sec2)
which is the design earthquake for the structure that, although, the probability of
exceedance of the Dq=1.0 for the Slight damage state is one order of magnitude less
than the corresponding probability for the Dq=3.0 design, the probability of exceedance
for the Complete damage state of the Dq=1.0 design is two orders of magnitude
less than the corresponding probability of the Dq=3.0 design. Consequently, Dq=1.0

obtained by slightly increasing the construction cost (20%) compared to the design
obtained according to the EC8 provisions (Dq=3.0), results in much better the structural
performance with reference to the limit-state probabilities of exceedance.

8.2 Improving the tors ional response of RC buildings

A two storey 3D RC building has been considered as benchmark test for assessing
the design approaches discussed. The material properties are the same with those of
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Table 7 Natural records (Somerville and Collins, 2002).

Earthquake Station Distance Site

Records in 50/50 hazard level
Honeydew (PT) Cape Mendocino 20 rock
17 August 1991 Petrolia 17 soil
Cape Mendocino (CM) Rio Dell 13 soil
25 April 1992 ButlerValley 37 rock
Cape Mendocino (C2) Fortuna 43 soil
aftershock, 4/26/92 Centerville 28 soil
Records in 10/50 hazard level
Tabas (TB) Dayhook 14 rock
16 September 1978 Tabas 1.1 rock
Cape Mendocino (CM) Cape Mendocino 6.9 rock
25 April 1992 Petrolia 8.1 soil
Chi-Chi (CC),Taiwan TCU101 4.9 soil
20 September 1999 TCU102 3.8 soil
Records in 2/50 hazard level
Valparaiso (VL), Chile Vina del Mar 30 soil
3 May 1985 Zapaller 30 rock
Michoacan (MI), Caleta de Campos 12 rock
Mexico La Union 22 rock
19 September 1985 LaVillita 18 rock

Zihuatenejo 21 rock

the previous test example. The design spectrum that has been used has the following
characteristics: A=0.16g, ground type B and behaviour factor q= 3.0 according to
EC8 (2003). The cross section of the beams is 25× 60 cm2. The columns have been
considered as fully fixed and no uncertainties in the foundation conditions have been
taken into account.

The following four formulations of the optimization problem have been considered
in the numerical study: (i) Minimum initial construction cost; (ii) minimum CM-CR
eccentricity; (iii) minimum CM-CV eccentricity; and (iv) five combined formulations
where two values of the weight coefficient of Eq. (5) have been examined (0.1 and
0.9). The five combined formulations can be described as follows:

Min{0.1 · C∗
IN + 0.9 · e∗CM−CR} Comb(1)

Min{0.1 · C∗
IN + 0.9 · e∗CM−CV} Comb(2)

Min{0.1 · C∗
IN + 0.9 · max(e∗CM−CR, e∗CM−CV)} Comb(3)

Min{0.9 · C∗
IN + 0.1 · e∗CM−CR} Comb(4)

Min{0.9 · C∗
IN + 0.1 · e∗CM−CV} Comb(5)

(26)

Three different criteria have been used in order to assess the optimum designs
achieved through the above mentioned formulations: The initial construction cost;
the total life-cycle cost; and the torsional response criterion. For the second and third
assessment criteria, ground motions chosen from the Somerville and Collins (2002)
database, belonging to 50/50, 10/50 and 2/50 hazard levels (see Table 7), were used.
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Figure 6 Architectural constraints of a typical storey.

In the test example considered there is one group of storeys since the plan layout of
the columns/shear walls is the same for both storeys.

In Figure 6 both architectural constraints (AC1 rectangles and AC2 points) are pre-
sented for all columns/shear walls. It has to be noted that all designs obtained from the
different formulations fulfil the requirements of EC2 and EC8 design codes. In Table 8
the optimum designs, obtained through the various formulations examined are shown
with respect to the cross-sectional dimensions and the two types of eccentricities.

The dimensions of the columns/shear walls are denoted as dimx and dimy cor-
responding to x and y axis, respectively. The formulation of the minimum initial
construction cost leads to designs with eccentricities (eCM−CR, eCM−CV) larger than
one meter. The two formulations implemented for minimizing the torsional response
improve only the associated eccentricity defines the objective function of the prob-
lem: When the eCM−CR is minimized, eCM−CV is increased, and vice versa. In Table 8
the cross-sections of the columns/shear walls for all optimum solutions are given. It is
clear that the sizes of the cross-sections for those formulations that CIN is the dominant
criterion are smaller the smallest ones.
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(c) 2/50.
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Table 9 Mean values of the torsional response in three hazard levels.

Design philosophy Hazard Level

50/50 10/50 2/50

max min max min max min
(10−3 rad) (10−3 rad) (10−3 rad) (10−3 rad) (10−3 rad) (10−3 rad)

Min{0.1CIN+ 0.9eCM – CR} 0.509 −0.543 1.87 −1.84 9.14 −9.02
Min{0.1CIN+ 0.9eCM – CV} 0.569 −0.533 3.20 −3.64 3.77 −3.71
Min{0.1CIN+ 0.9max 0.505 −0.351 1.43 −1.20 4.46 −4.42
(eCM – CR, eCM – CV)}
Min{0.9CIN+ 0.1eCM – CR} 2.29 −1.83 9.72 −9.92 23.10 −15.00
Min{0.9CIN+ 0.1eCM – CV} 3.47 −2.94 6.39 −6.53 9.31 −9.45
Min{eCM – CR} 0.254 −0.293 0.953 −1.28 5.26 −5.05
Min{eCM – CV} 1.51 −1.40 2.46 −2.33 3.50 −5.05
Min{CIN} 1.69 −1.34 7.90 −7.91 13.90 −13.40

In order to assess the structural performance of the optimum designs, nonlinear
timehistory analyses are performed for the seismic records considered. The results of
this investigation performed are shown in Figures 7(a) to 7(c) where the torsional
response of the diaphragm of the second storey of the structure for the first record of
each hazard level of Table 7 are compared. Table 9 depicts the maximum and minimum
values of the diaphragm rotation, for each hazard level among the records of Table 7.
It can be seen that the maximum rotation of the diaphragm is encountered when CIN
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was the dominant criterion for all three hazard levels. On the other hand, in frequent
(50/50) and occasional (10/50) hazard levels, the Min{eCM−CR} formulation behaves
better, while in rare (2/50) hazard levels the formulations where the eCM−CV is the
dominant criterion gives better designs. This observation is in accordance with the
findings of Paulay (1998 and 2001) and Tso and Myslimaj (2003).

In Table 10, the optimum designs are compared with respect to the initial, limit state
and total life-cycle costs. Through this comparison it can be seen that minimizing CIN

does not lead to the best design in terms of the life-cycle cost. The best design in terms
of the total life-cycle cost depends on the drift limits used for calculating the limit
state cost. When HAZUS (2003) drift limits are employed the formulation defined
with the minimization of eCM−CR and/or eCM−CV leads to the best design. On the other
hand, when the drift limits given by Ghobarah (2004) are used, the minimization of the
eccentricity eCM−CR leads to the best design. For both groups of drift limits employed it
can be seen that although the design formulations, where CIN is the dominant criterion
(i.e. Cases (4), (5) and Min{CIN}), lead to the minimum initial construction cost, the
corresponding total life-cycle cost is the maximum one. For the HAZUS drift limits,
Comb(3) leads to the best design with respect to the total life-cycle cost, while for the
drift limits given by Ghobarah, Comb(1) leads to the best design.

9 Conclusions

In this chapter, structural optimization is considered for the assessment of (i) the
behaviour factor q with respect to limit state fragilities and (ii) the minimum torsional
response of RC buildings under different design considerations in three hazard levels
(frequent, occasional and rare). The designs were assessed with respect to the initial
as well as to the total life-cycle cost. From the present study the following conclusions
can be drawn:

i. The probability of exceedance of the slight damage state for the Dq=1 design is
up to three orders of magnitude less than that of the Dq=3 design, while for the
complete damage state the probability of exceedance for the Dq=1 design is one
and four orders of magnitude less than the corresponding probability for Dq=3

design. Consequently, Dq=1.0 obtained by slightly increasing the construction cost
(20%) compared to the design obtained according to the EC8 provisions (Dq=3.0)
resulted in much better structural performance with reference to the limit-state
probabilities of exceedance.

ii. The rigidity centre eccentricity plays an important role mainly when the struc-
tural system behaves linearly. When the structure starts to behave nonlinearly
the strength centre eccentricity becomes more important. These observations are
verified in a more rigorous and generalized framework provided by structural
optimization procedures where a number of recommendations for designing RC
buildings are incorporated and critically assessed.
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Chapter 32

Robust stochastic optimal control of
seismically excited buildings

Jorge E. Hurtado & Naile Aguirre
Universidad Nacional de Colombia, Manizales, Colombia

ABSTRACT: The large randomness of earthquake ground motions is one of the main prob-
lems for aseismic design, as it makes uncertain the effectiveness of design decisions. In advanced
earthquake-resistant design an alternative to incorporate ground motion uncertainty is to per-
form a reliability-based optimization, consisting in minimizing the cost subject to keeping the
failure probability less than a certain threshold. The use of structural passive or active control
necessarily implies a severe reduction of the allowable failure probabilities, thus making rather
more expensive the application of reliability-based optimization. In addition, a major problem
in applying LQR control is that it is subject to arbitrary selection of the relative weights of the
story displacements and control forces. For these reasons it is convenient to apply a different
strategy than the reliability-based design to overcome these difficulties and drawbacks. In this
chapter, the concept of robust optimal design is used. It consists in minimizing the structural
cost in such a way that the standard deviations of the responses are less than certain thresholds,
thus yielding the optimal values of the weights with due regard to the uncertainties present in
the system. The adequate computation of the response standard deviations in view of the large
uncertainties of the ground motion parameters is also discussed and the application of a practical
procedure is suggested and illustrated for a passive control case.

1 Introduction

In structural engineering one can distinguish two main trends for incorporating uncer-
tainties into design. They are the reliability-based design optimization (RBDO) and the
robust design optimization (RDO). The former consists in minimizing the structural
cost C(y), considered as a function of design parameters y, while keeping the probabil-
ities of exceeding critical values lower than certain thresholds. This can be expressed
as follows (Rosenblueth and Mendoza 1971; Gasser and Schuëller 1997; Frangopol
1995; Royset et al. 2001; Royset and Polak 2004):

find : y

minimizing : C(y)
(1)

subject to: P[fi(x, y) > Fi] ≤ Pi, i = 1, 2, . . .

y− ≤ y ≤ y+

where x is a set of random variables, P[A] the probability of the random event A and Pi

its upper bound. The function gi(x, y)= Fi − fi(x, y) is the limit state function defining
any reliability problem (Melchers 1999; Hurtado 2004).
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On the other hand, RDO is aimed at a reduction of the uncertainty of the response
as represented by the low order statistical moments, in order to make it as insensitive
to large variations of the input as possible. This problem can be expressed as (Doltsinis
and Kang 2004; Doltsinis et al. 2005; Zang et al. 2005; Beyer and Sendhoff 2007)

find : y

minimizing : C(y) = (1 − α)E[f (y)]/µ∗ + α√Var[f (y)]/σ∗

subject to: E[gi(y)] + βi
√

Var[gi(y)] ≤ 0, i = 1, 2, . . . (2)√
Var[hj(y)] ≤ σ+j , j = 1, 2, . . .

y− ≤ y ≤ y+

where f (y) is a performance function, 0<α<1 is a factor weighting the minimization
of its mean and standard deviation, βi > 0 is a factor defining the control of the response
gi(y) in the tail of its distribution, σ+j an upper bound to the standard deviation of
response hj(y) and µ∗, σ∗ are normalizing factors. Other formulations are, however,
possible.

The choice between these two approaches depends on many factors, such as the risk
consequences of the failure, the availability of statistical information, the feasibility of
computing probabilities with sufficient accuracy, the computational cost, etc.

The present chapter deals with the consideration of uncertainties in passive and
active control design of linear and nonlinear structures subject to earthquake forces.
In this case there are some specific issues that should be considered.

The application of passive and active structural control to reduce the displacements
and stresses caused by earthquake forces in buildings is a topic of increasing interest
among the engineering community. In fact, structural control opens up the possibility
of overcoming the disastrous effects of earthquakes, either by adding external forces
intended to maintain the structural vibration within reduced bounds (active control)
or by introducing devices that increase the period or the damping of the structure
(passive control). However, a mayor risk in using active structural control is that the
safety of the structure entirely depends control system, because no significant ductility
capacity is given (or is expected to be given) to the structural members. Therefore, the
design of the control strategy must be decided judiciously upon consideration of the
uncertainties present in the system.

The application of reliability-based design in earthquake engineering imply the com-
putation of first passage probabilities under dynamic loads. Using established random
vibration theories, this is accurate only in case of Gaussian loads and responses, because
there are explicit formulas for the first passage solution almost exclusively in this case.
Despite the seismic action can be reasonably well modeled as a Gaussian stochastic
process, as it is the result of a large accumulation of random factors, the nonlinearity
of the response makes it decidedly non-Gaussian, thus leading as the only alternative
the use of Monte Carlo simulation. This reports the advantage of being a method
of absolute generality and accuracy. However, in structural dynamics applications it
demands a large computational effort. In addition, when using active control the fail-
ure probabilities are expected to be much smaller than in conventional aseismic design,
rendering the use of Monte Carlo methods extremely expensive in that case.
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For structural systems of significant size, the only, non Monte Carlo method that
yields good estimates of the second order statistical responses is the stochastic equiv-
alent linearization technique (Roberts and Spanos 1990; Casciati and Faravelli 1991;
Schenk and Schuëller 2005). Upon this basis it is possible obtain very rough esti-
mates of the failure probability using the theory of first-passage and level crossing
by stochastic processes. However, it would be very risky to base the selection of the
parameters of a structural control upon such estimates. This suggests that the consider-
ation of the large uncertainties posed by earthquake forces in structural control can be
most practically carried out using a robust control strategy, based upon second-order,
equivalent linearization methods of random vibration. Upon the availability of such
second order estimates, an optimization strategy can be applied in order to assure the
accomplishment of certain second-order constraints or minima, as shown in the sequel.

Considering the difficulty in estimating with accuracy the failure probability of non-
linear structures subject to seismic actions, the research reported herein concerns a
methodology for robust design, requiring estimation of low order statistical moments,
which are henceforth used in an optimization programme aimed at the constrained min-
imization of the cost in the manner explained above. Accordingly, the methodology
comprises the following components:

• A method for accurately estimating the second-order statistical responses
required for robust design optimization in case of nonlinear response. This is
accomplished by a modified method of stochastic equivalent linearization, espe-
cially purported to take into account the actual non Gaussian behavior of hysteretic
oscillators proposed by the author in (Hurtado and Barbat 1996; Hurtado and
Barbat 2000).

m3

k3 
c3 

(1 � �)k3

k2
c2 

(1 � �)k2

k1 
c1

(1 � �)k1

m2

m1

Figure 1 Nonlinear shear beam model.
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• An active control strategy. In this case the classical linear-quadratic control (Soong
1990) has been selected.

• A method for optimizing the control parameters, which are normally decided with-
out regard to the uncertainties implied in the system. In present research use was
made of the method of particle swarm optimization (Kennedy and Eberhart 2001).

• A method for considering the randomness of the parameters defining the stochastic
model of the seismic action used in the preceding steps.

The components of the methodology are described in detail in the next sections.

2 Stochastic linearization

Consider a building modeled as a nonlinear shear beam in the following form:

mi

 i∑
j=1

ẍj + p(t)

+ ciẋi(t) − ci+1ẋi+1(t) + gi − gi+1 = 0 (3)

where xi, xi+1: are the relative displacements, or drifts, between stories i, i+ 1.
i= 1 . . . s; mi, ci and gi are respectively the mass, damping coefficient and restoring
force of story i and p(t) is the external exciting force. For each story, the nonlinear
restoring force corresponds to the Bouc-Wen model (Wen 1976)

g(ẋ, x, t) = αkx + (1 − α)kz (4)

in which k is the stiffness, α is a value that controls the nonlinearity of the system and
z is a nonlinear function having displacement units, given by

ż = h(ẋ, z) = Aẋ − β|ẋ||z|n−1z − γẋ|z|n (5)

where A, β, γ and n are parameters controlling the width of hysteretic cycles, the level
of energy dissipation, the hardening or softening of the system and the transition from
the linear to the nonlinear phases, respectively. The system of equations can be written
in state-space form as

Ẋ1 = X2

Ẋ2 = −M−1CX2 − M−1αKX1 − M−1GX3 + M−1p(t) (6)

Ẋ3 = AX2 − β|X2||X3|n−1X3 − γX2|X3|n

with

M =


m1

m2

m3
. . .

mn


n×n

C =


c1

c2

c3
. . .

cn


n×n

(7)
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αK =


α1k1 −α2k2

α2k2 −α3k3
. . .

αn−1kn−1 −αnkn

αnkn


n×n

(8)

G =


(1 − α1)k1 −(1 − α2)k2

(1 − α2)k2 −(1 − α3)k3
. . .

(1 − αn−1)kn−1 −(1 − αn)kn

(1 − αn)kn


n×n

(9)

p(t) = Md · r · a (10)

Md =


m1

m2 m2

m3 m3 m3
...

...
...

. . .

mn mn mn · · · mn


n×n

r =


1
1
...

1


n×1

(11)

where n is the number of degrees of freedom.
In conventional building systems, the structural damping is a result of friction among

the particles of the structural members. In the present case it is increased by adding
viscous dampers in each story having a damping coefficient cd to the diagonal elements.

The main principle of stochastic linearization is the minimization of the expected
value of the difference between the original nonlinear Bouc-Wen (Eq. 5) and its linear
surrogate

ˆ̇z = ceẋ + kez (12)

where ce and ke are coefficients determined by minimizing the expected value of the
squared error given by

ε = h(ẋ, z) − (ceẊ + keX) (13)

Upon the assumption that the responses x, ẋ and z are Gaussian, closed form
expressions for the coefficients ce and ke are obtained. They are (Wen 1976)

ce = E
[
∂h

∂Ẋ

]
= E

[
A − β∂|Ẋ|

∂Ẋ
|Z|n−1

Z − γ|Z|n
]

(14)

ke = E
[
∂h
∂Z

]
= E

[
−β|Ẋ| ∂

∂Z
|Z|n−1

Z − γẊ
∂

∂Z
|Z|n

]
(15)
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which, after calculating the expectations with the Normal density function yield

ce = A − βF1 − γF2 (16)

ke = A − βF3 − γF4 (17)

with

F1 = σn
z

π
�

(
n + 2

2

)
2n/2Is (18)

F2 = σn
z√
π
�

(
n + 1

2

)
2n/2 (19)

F3 = nσẋσ
n−1
z

π
�

(
n + 2

2

)
2n/2

(
2
(
1 − ρ2

ẋz

)n+1/2 + ρẋzIs

)
(20)

F4 = nρẋzσẋσ
n−1
z√

π
�

(
n + 1

2

)
2n/2 (21)

Is = 2

π/2∫
l

sinnθ dθ �(n) =
∞∫

0

xn−1e(−x)dx (22)

σx = √
covxx ρxy = covxy

σxσy
(23)

l = tan−1


√

1 − ρ2
ẋz

ρẋz

 (24)

Eq. (6) can be expressed in state-space form as

ẏ(t) = Ae(t)y(t) + f (t) (25)

where y(t) is the state vector including the degrees of freedom of the Kanai-Tajimi filter
Ug y U̇g used for modeling the earthquake ground motion:

y(t) = [
X Ẋ Z Ug U̇g

]T
(3n+2)×1 (26)

On the other hand Ae is the system matrix obtained after linearization:

Ae(t) =



0 I 0 0 0

−M−1αK −M−1C −M−1G −M−1Mdrω2
g −M−1Mdr2νgωg

0 Ce(t) Ke(t) 0 0

0 0 0 0 1

0 0 0 −ω2
g −2νgωg


(3n+2)×(3n+2)

(27)
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where the underlines represent matrices for clarity. Here ωg and νg are the parameters
of the Kanai-Tajimi filter and Ce y Ke are the matrices containing the linearization
coefficients:

Ce =


ce1

ce2

ce3

. . .

cen


n×n

Ke =


ke1

ke2

ke3

. . .

ken


n×n

(28)

Finally f (t) is the external force vector, whose only non-zero entry is the white noise
exciting the Kanai-Tajimi filter:

f (t) = W(t)ξ(t)


0
0
0
0
−1


(3n+2)×1

(29)

The linear equation 12 can then be easily included in the state-space formulation.
After operating upon the state-space equation of the extended system, i.e. that including
the linearized equation, and assuming Gaussian behavior of all the responses, one
obtains the following differential equation for the evolution of the covariance matrix
of the responses:

�̇(t) = A(t)�(t) +�(t)AT (t) + 2πSf (t) (30)

where

�(t) = E
[
y(t) · yT (t)

]
(31)

Sf (t) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

 ξ(t)2G0 (32)

In this equation G0 is the spectral power of the white noise W(t) and ξ(t) is a modulating
function used for given a non-stationary shape to the seismic model. The solution of
equation (30) affords the second-order moments of the responses needed to calculate
the linearization coefficients in each time step. However, in case of hysteretic oscillators
such as the Bouc Wen model, it has been observed that the Gaussian hypothesis is not
satisfactory, because the internal forces are bound in the negative an positive sides
by the respective strengths. This imposes the use of a non Gaussian approach, as the
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t

Figure 2 Comparison of Gaussian (dashed line) and non-Gaussian stochastic equivalent lineariza-
tion (solid line) for an hysteretic oscillator using Monte Carlo results (dotted line).

following proposed by the author (Hurtado and Barbat 1996; Hurtado and Barbat
2000). It consists in using the modified set of coefficients

[̃ce k̃e] = ((1 − 2p)[ce ke] + 2p[cd kd]S−1 (33)

where p is a parameter that weights the relative importance of Gaussian and Dirac-delta
densities in the internal force variable, S is the 3× 3 matrix of covariance responses
for each hysteretic degree of freedom and cd, kd are respectively the damping and
stiffness linearization coefficients corresponding to Dirac pulses located at the strength
bounds of the restoring forces. The details can be found in the quoted references.
As an illustration, figure (2) shows a comparison of the standard deviation of the
displacement of an hysteretic Bouc-Wen oscillator subject to a seismic excitation using
the Gaussian and non Gaussian approaches. It can be observed that the accuracy of
the non Gaussian method is much higher.

3 Active control strategy

One of the classical strategies developed in control science and technology that has
deserved attention in the field of structural control is the Linear Quadratic Regulator
strategy (LQR), in which the external control force u(t) is expressed by

u(t) = −1
2

R−1BTP(t) y(t) (34)

where B is a matrix whose non-zero entries indicate the location of the control forces,
y(t) is the state vector in the state space formulation of the structural dynamics problem.
In Eq. (34) R is a matrix of coefficients denoting the relative weight of the control force
with respect to the structural displacements. On the other hand, P(t) is the solution of
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ATP + PA − 0.5PBR−1BTP + 2Q = 0 (35)

known as the Ricatti matrix equation. Similarly to R, Q denotes the relative weight of
the displacements with respect to the control force. In fact, Eq. (34) is the solution of
minimizing the compound cost function

J =
tf∫

0

{yT (t)Qy(t) + uT (t)Ru(t)} (36)

where tf is the total duration of the earthquake motion. See (Soong 1990) for the
details.

For applying the LQR control to the problem at hand an approximation is applied,
consisting in linearizing the system about the equilibrium point y= 0. Thus, taking
into account that ż= 0 when ẋ= 0, one obtains the system

ẏ(t) = �0y(t) + BU(t) + f (t) (37)

with

�0 = ∂Aey(t)
∂y(t)

∣∣∣∣
y=0

(38)

�0 =



0 I 0 0

−M−1αK −M−1C −rω2
g r2νgωg

0 0 0 1

0 0 −ω2
g −2νgωg


(2n+2)×(2n+2)

(39)

y(t) = [
X Ẋ Ug U̇g

]T
(2n+2)×1 (40)

B =


0

n×r

M−1H

0
2×r


(2n+2)×r

(41)

H =
[
Ir×r
0

]
n×r

(42)

f (t) = W(t)ξ(t)


0

0

0

−1


(2n+2)×1

(43)
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The control force vector is therefore

U(t)r×1 = −1
2

R−1B
T

P(t) y(t) (44)

where P(t) is a Riccati matrix satisfying

�T
0 P + P�0 − 0.5PBR−1B

T
P + 2Q = 0 (45)

P =
[

P112n×2n
P122n×2

P212×2n
P222×2

]
(2n+2)×(2n+2)

(46)

Q = q
[
In×n 0

0 0

]
(2n+2)×(2n+2)

(47)

R = k Ir×r (48)

According to Eq. (44), U(t) can be expressed as a linear function of y(t):

U(t) = Dy(t) (49)

where

D = [
G1 G2

]
r×(2n+2)

(50)

[G1]r×2n = −1
2

R−1B
T

P11 (51)

[G2]r×2 = −1
2

R−1B
T

P12 (52)

With the aim of deriving a compact formulation of the controlled system, equation
(49) can be written as

U(t) = Dy(t) (53)

with

D = [
G1 0 G2

]
r×(3n+2)

(54)

so that upon replacement we have

ẏ(t) = [Ae(t) + BD]y(t) + f (t) (55)

Thus, the linearization matrix for the controlled case, Aec, is defined as

Aec(t) = Ae(t) + BD (56)
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Finally, Eq. (55) becomes

ẏ(t) = Aec(t)y(t) + f (t) (57)

and the covariance evolution of the controlled system is

�̇(t) = Aec(t)�(t) +�(t)AT
ec(t) + 2πSf (t) (58)

A drawback of the LQR control strategy is the arbitrariness of the selection of matrices
Q and R. Taking into consideration the high randomness of earthquake forces and the
high cost of active structural control, such an arbitrariness is obviously a matter of
concern. this suggest applying an optimization approach to select values. A method
for performing this step is summarized in the next section.

4 Artificial l i fe optimization

In recent years several optimization techniques inspired in biological processes have
been proposed. This comprises genetic algorithms, evolution strategies, ant-colony
optimization, particle swarm optimization and others. In the research reported herein
the last method has been adopted, as limited research indicates it presents advantages
over other methods.

Particle swarm optimization (PSO) (Kennedy and Eberhart 2001) is based on the
observation that flocks of birds, schools of fishes and other population swarms
are capable of finding optimum locations upon relying on their distributed intelligence.
Accordingly, the optimization algorithm is not based on the Darwinian ideas on evolu-
tion, as in genetic or evolution strategies, but on the social behavior of the species. Some
applications of this technique in structural engineering have been reported (Elegbede
2005; Hurtado 2006; Fourie and Groenwold 2002).

The essential idea of the algorithm is as follows: Given a population of individuals
randomly distributed, the population displaces over the search space keeping in mind
the best situation ever found by the population and the best current position found by
any member of it. Each individual i moves from the current position in step k to that
in step k+ 1, in the dimension d of the search space, according to

X(i, d, k + 1) = X(i, d, k) + V(i, d, k) (59)

where V(i, d, k) is the so-called velocity, which changes as follows:

V(i, d, k + 1) = χ[wV(i, d, k) + c1U1(B(i, d) − X(i, d, k))

+ c2U2(G(d) − X(i, d, k))] (60)

where B(i, d) is the best position of particle i, along dimension d, in the entire history
of the search; G(d) is the best historical position of the group in dimension d; c1 and
c2 are the so-called social and cognitive parameters, U1 and U2 are random variables
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uniformly distributed in [0, 1], χ is a parameter controlling the velocity for assuring
convergence and w is a parameter of inertia, controlling the effect of previous over
updated velocities. Figure 3 illustrate the vectorial composition of the iteration for each
particle. The algorithm for unconstrained optimization is as follows:

Initialization:

Set k = 0;
for i = 1 : N

Set C̄(i, k) ⇒∞
for d = 1 : M

Generate random position X(i, d, k)
end

end
while k ≤ K

for i = 1 : N
Calculate particle’s cost C(i, k)
C̄(i, k) ⇐ min (C̄(i, k), C(i, k))

end

Find best particle’s position and best current global position:

l(i) = arg min
∀j: j=1:k

[
C̄(i, k)

]
g = arg min

i

[
C̄(i, k)

]
for d = 1 : M

B(i, d) = X(l(i), d, k)
G(d) = X(g, d, k)

end

Calculate new positions:

for i = 1 : N
for d = 1 : M

V(i, d, k + 1) ⇐ χ
[
wV(i, d, k) + c1U1(B(i, d) − X(i, d, k))

+ c2U2(G(d) − X(i, d, k))
]

X(i, d, k + 1) ⇐ X(i, d, k) + V(i, d, k)
end

end
end

Select best solution from end iteration:

b = arg min
i

[
C̄(i, K)

]
Return X(b, d, K), d = 1 : M



Robust s tochast i c opt ima l contro l o f se i smica l l y exc i ted bu i ld ings 519

G

B(i)

New X(i)

Current  X(i)

Impulse V

Group history G – X(i)

Part
icl

e h
ist

or
y B

(i)
 – 

X(i)

Figure 3 Elements of Particle Swarm step.

60

40

20

0

f(
x)

3

2

1

0

�1

�2

�3
�3 �3

�3

�2

�1

0

1

2

3

�2 �1 0 1 2 3
�2

�1
0

1
2

3

x1

x 2

x1

x2

Optimo global

Optimo por PSO
Major position de particulars

Figure 4 Minimization of eggcrate function using PSO.

The algorithm can be modified to include penalizations for excessive velocities and
other effects (Parsopoulos and Vrahatis 2001). As an illustration of the application of
the PSO algorithm figure 4 shows the so-called eggcrate function, given by

f (x1, x2) = x2
1 + x2

2 + 25(sin2x1 + sin2x2) (61)
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Notice that the function exhibits many local minima besides the global minimum
located at (0,0). The PSO parameters are as follows: c1 = c2 = 1.5 and χ= 0.7. The
inertia parameter w was linearly adjusted from 1.5 to 0.5 along K= 25 steps. To do
this use was made of N = 10 particles. The right panel of the figure shows that the
global minimum was successfully found by the algorithm without being trapped in
local minima.

4.1 Application example

The above methods have been combined to solve the following robust optimization
problem of a one-story building:

Find the weighting matrices for the control force and displacement such that the
standard deviation of the control force is a minimum subject to the standard deviation
of the displacement of the first floor in the controlled case (CC) be less than 80% of
the same value in the non-controlled case (NCC). Formally,

Find Q and R such that σu ⇒minimum subject to σxCC ≤ 0.8σxNCC

The search space has been defined as (800, 1,500) and (0.001, 0.009) for Q and R,
respectively. The parameters used are as follows:

• Particle swarm algorithm parameters: c1 = 2.0 c2 = 2.0.
• Bouc-Wen model parameters: α= 0 β= 0.5 γ = 0.5 A= 1 n= 1.
• Structural parameters: m= 5 Ton k= 250 KN/m c= 2 KNs/m cd = 3 KNs/m.
• The evolutionary power spectral density function was modeled as a Kanai-Tajimi

filter with a Shinozuka-Sato (Shinozuka and Sato 1967) modulating function.

The trial population was composed by 20 individuals and the number of steps of
the PSO algorithm was set to 50. The best solution obtained is:

0.0083 ≤ R ≤ 0.0085

830 ≤ Q ≤ 840

5 S tochas tic model uncer tain ties

5.1 Discussion

In order to assure the robustness of the structural system under the action of earth-
quake loads it is not sufficient to use a stochastic model of the ground motion as done
in the preceding. This is due to the fact that some of the parameters defining the model
are highly random. Therefore, in order to correctly estimate the statistical moments of
the response it is necessary to incorporate such a randomness in a satisfactory manner.
The relevance of this consideration is illustrated in Figure 5. In this section a discussion
on the practical ways of performing this extension for assuring structural robustness
under random dynamic loads by means of the methods exposed in the preceding is
presented.

Table 1 shows the stochastic definition of the parameters ωg and νg defining the
Kanai-Tajimi random model used in the preceding, after the survey reported in
(Vanmarcke and Lai 1980; Lai 1982). On the other hand the table also includes a
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pz(z)

z

Figure 5 On the consideration of stochastic model uncertainties. The solid and dashed lines
respectively represent the probability density function of the response of the system
with and without them.

Table 1 Probabilistic definition of independent spectral random
variables.

Parameter Distribution Mean c.o.v.

ωg Gamma 20.3 rad/s 0.448
νg Lognormal 0.32 0.421
Ag Lognormal — 0.6

probabilistic model for the peak ground acceleration Ag having a 10% probability of
being exceeded in 50 years, which is modeled as a Lognormal variable with a coeffi-
cient of variation of 0.6, according to (Ahmed et al. 1996). Note, however, that there is
a proposal suggesting that the parameter has an even larger spread, i.e. in the range
from 0.56 to 1.38 (Bertero and Bertero 2002). (The mean value of Ag depends on the
seismicity of the region under consideration).

Upon this basis it is possible to derive the probabilistic model for the white noise
intensity G0 needed in Eq. (32), by means of the expression (Moayyad and Mohraz
1982; Sues et al. 1985)

G0 = 2
(

Ag

28.4

)2

(62)

According to the information given in (Lai 1982), the correlation among all these
variables is close to zero, so that the covariance matrix can be taken as diagonal.
Notice that the three variables have very large spread. This imposes a discussion on
the methods for incorporating this information into the evaluation of the robustness,
as follows:

• Perturbation methods In first place one could apply perturbation approaches
which are based on the Taylor expansion of the response vector y(t). Considering
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it a function of the vector of parameters θ={ωg, νg, Ag}, the first order expansion
for the covariance response yields (Socha 1986; Sues et al. 1985)

∂�̇(t)
∂θ

= ∂A(t)
∂θ

�(t) + A(t)
∂�(t)
∂θ

+ ∂�(t)
∂θ

AT (t) + �(t)
∂AT (t)
∂θ

+ 2π
∂Sf (t)
∂θ

(63)

The matrix ∂�(t)/∂θ contains the sensitivities of the second order responses
with respect to the seismic parameters, with which the increase of the statistical
moments due to the parameters’ spread can be estimated. However, perturbation
methods in general are accurate only for parameters having a coefficient of varia-
tion of, say, less than 0.1. Since all the seismic parameters considered herein have
a much larger spread, this technique should be discarded.

• Monte Carlo simulation. Considering the difficulties in applying the perturbation
method when the vector of parameters has large spreads as in the present case,
it seems necessary to consider the possibility of using Monte Carlo simulation by
solving repeatedly Eq. (30) using a random realization of vector θ in each analysis
and then computing the average of the variances and covariances of the structural
responses. To this end the use of techniques oriented to lower moment estimation
with a small number of samples, such as the Latin Hypercube sampling (Florian
1992), seems to be only amenable Monte Carlo solution to the problem in hand.

• Point estimate method. This method was originally proposed in (Rosenblueth
1975) and has been applied in several areas of structural engineering research
(Zhao et al. 1999; Hurtado 2007). Its main difference with respect to the pertur-
bation approach is that it is intended to cancel the higher order terms in the Taylor
expansion instead of disregarding them. There are several proposals for applying
this concept (Rosenblueth 1975; Ordaz 1988; Christian and Baecher 1998; Harr
1989; Hong 1998). In this section the simplest variant proposed in (Hong 1998)
will be evaluated.

For uncorrelated parameters, which is the case considered herein, the method pos-
tulates a linear equation for the moments of the system response g(θ), regarded as a
function of each parameter θ, in the form

E[gj(θ)] =
n∑

k=1

m∑
i=1

wk,ig(θk,i)j j = 1, 2, . . . (64)

in which n is the number of variables and m is the number of concentration points.
The function g(·) is evaluated at points θk,i =µθ + ξk,iσθ, i = 1, 2, where µθ and σθ
are respectively the mean and standard deviation of the random parameters. For each
variable k the values of the weights wi and the normalized evaluation coordinates ξi

are (Hong 1998)

ξi = γ3

2
+ (−1)3−i

√
n +

(γ3

2

)2

wi = 1
n

(−1)i ξ3−i

ζ
(65)
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Table 2 Values for the application of the Point Estimate method with stochastic Kanai-Tajimi spectrum.

Parameter θ1 w1 θ2 w2

ωg 8.1852 0.2079 40.2275 0.1254
νg 0.1601 0.2266 0.6596 0.1067
Ag 0.1006 g 0.2505 0.7018 g 0.0828

with ζ= 2
√

n+ γ2
3/4. Here γl is a normalized central moment defined as

γl = 1
σ l

∫ ∞

−∞
(x − µ)l p(θ) dθ (66)

where p(θ), µ and σ are respectively the probability density function, the mean and
the standard deviation of the variable.

In order to evaluate the accuracy of this approach, the method has been applied to
a simple random vibration problem, namely the estimation of the spectrum standard
deviation of the displacement of a SDOF linear system with damping ratio ξ= 0.05.
To this end use is made of the total probability theorem, applied to estimate the uncon-
ditional variance of the structural displacement d(θ), considered as a function of the
ground motion parameters θ={ωg, νg, Ag}, as follows:

Var(d) =
∫ ∫

Var(d(θ)|θ) p(θ) dθ (67)

where Var(d(θ)|θ) is obtained by means of the theory of random vibration as (Clough
and Penzien 1993)

Var(d(θ)|θ) =
∫

1
(ω2 −�2)2 + 4ξ2�2ω2

· G(�, θ) d� (68)

where G(�, θ) is the power spectral density of the Kanai-Tajimi seismic model:

G(�, θ) = ω4
g + 4ν2

gω
2
g�

2

(ω2
g −�2)2 + 4ν2

gω
2
g�

2
G0 (69)

Taking into account that the mean of the random displacement is zero, the uncondi-
tional variance of the response, given by Eq. (67), is estimated with the point estimate
technique as

Var(d) =
n∑

k=1

m∑
i=1

wk,iVard(θk,i) (70)

using the probabilistic definition of the parameters θ displayed in Table 1. For the
parameter Ag a mean value equal to 0.25 g has been employed. The concentration
points and weights are as shown in Table 2.
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Figure 6 On the accuracy of the Point Estimate technique for calculating the spectrum of the
unconditional standard deviation of SDOF displacement. Solid line: Point Estimate
method. Dashed line: Monte Carlo simulation (1,000 samples). The dotted line cor-
responds to the standard deviation without considering uncertainties in the Kanai-Tajimi
model and using the mean values of the parameters.
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Figure 7 Spectrum of the increment of the standard deviation of the SDOF displacement when
considering the uncertainties of the Kanai-Tajimi model parameters.

The results are shown in Fig. 6. Notice that with only six calculation of the SDOF
system per period, the results are in excellent agreement with the estimation yielded
by Monte Carlo simulation obtained as the average of 1,000 calls of Eq. (68) for
each period. The figure also displays the spectrum of the standard deviation without
considering the uncertainties of the model parameters. The effect of such a consider-
ation can be better appreciated in Fig. 7, which corresponds to the increment of the
standard deviation using the uncertain stochastic model with respect to its use with
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Figure 8 Base isolated building model.

mean values. It can be observed that the impact of the uncertainties is more impor-
tant at lower periods than at larger ones, for which the increment stabilizes at about
17%. This result points out the relevance of using a full stochastic model for structural
robustness computations under earthquake loads.

The above discussion suggests that the Point Estimate method in the version reported
in (Hong 1998) constitutes an excellent means to evaluate the unconditional structural
robustness in Earthquake Engineering, with or without active control.

5.2 Application to passive vibration control

The method presented above is now applied to a passive control of seismic vibra-
tions using base isolation with steel-rubber bearings. Consider the two-floor base
isolated building depicted in Figure 8. For the ground, base and structure absolute
displacements illustrated in the figure, the relative displacements are

vs = u − ub

vb = ub − ug (71)

Using these degrees of freedom, the equations of motion are (Kelly 1993)

Mv̈ + Cv̇ + Kv = −Mrüg (72)

with

M =
(

m + mb m
m m

)
, C =

(
cb 0
0 c

)
, K =

(
kb 0
0 k

)
, v =

(
vb

vb

)
r =

(
1
0

)
(73)

Here m is the floor mass, mb, cb, kb the base mass, damping and stiffness constants
and üg the horizontal ground acceleration. The damping coefficients and frequencies
for base and structural subsystems are given by

ω2
s =

k
m

, ω2
b =

kb

m + mb
, νs = c

2mωs
, νb = c

2(m + mb)ωb
(74)
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The first order approximation for the mode shapes is (Kelly 1993)

φ1 =
(

1

ε

)
, φ2 =

(
1

− 1
γ
(1 − ε(1 − γ))

)
(75)

where

ε = ω2
b

ω2
s

, γ = m
m + mb

(76)

Finally the SRSS estimates of standard deviation of the base and structure relative
displacements are

σvs =
√
φ2

1,sσ
2
1 + φ2

2,sσ
2
2

σvb =
√
φ2

1,bσ
2
1 + φ2

2,bσ
2
2 (77)

where σ1, σ2 are respectively the standard deviations of the displacements of the SDOF
systems associated to the first and second eigenfrequencies, given by

σ1 = L1 σ(ω′
b, ν′b)

σ2 = L2 σ(ω′
s, ν

′
s), (78)

in which the Li, i= 1, 2 are the modal participation factors. Their expressions, together
with those of the rest of parameters are as follows.

L1 = 1 − γε, L2 = γε

ω′
b = ωb

√
1 − γε, ω′

s = ωs

√
1 + γε
1 − γ (79)

ν′b = νb (1 − 1.5γε) , ν′s =
(

νs√
1 − γ + γνb

√
ε√

1 − γ

)
(1 − 1.5γε) (80)

Finally, σ(·, ·) in Eq. (78) is a generic function for the standard deviation of the
displacement of a SDOF linear system given (Vanmarcke 1976)

σ(ω, ν) =
 1
ω4

ωG(ω)
(
π

4νs
− 1

)
+

ω∫
0

G(�) d�


1
2

(81)

where the parameter νs is a fictitious time dependent damping introduced to consider
the transient nature of the response into the stationary random vibration equations for
the moments of the response, such as that given by Eq. (68). Its expression is

νs = ν

1 − exp(−2νωs)
(82)
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where s is the duration of the strong motion phase of the earthquake, for which the
following regression will be applied (Vanmarcke and Lai 1980; Lai 1982):

s = 30 exp(−3.254A0.35
g ) (83)

This problem was solved using the Point Estimate technique with the following
set of values (after (Kelly 1993)): m= 100 t, mb = 66 t, ωs = 5π rad/s, ωb =π rad/s,
νs = 0.02, νb = 0.1. For the peak ground acceleration Ag a mean value equal to 0.25g
was employed. The results for the standard deviation of the base and structural dis-
placements are σvb = 0.0676 m and σvb = 0.0135 m. The solution required only six
deterministic calculations of the displacement responses. Finally, the standard devia-
tions of these displacements without regard to parameter uncertainties and using their
mean values were found to be 0.0614 m and 0.0123 m, respectively. For both cases the
error in omitting the uncertainties in model parameters is 10.2%.

6 Conclusions

• The large uncertainties present in earthquake engineering and the nonlinear behav-
ior imposed by the high intensity of seismic motions demand efforts to develop
practical methods that allow reducing the uncertainty about random responses,
while keeping them computationally feasible.

• The difficulty in obtaining accurate values of the failure probabilities complicates
the application of the reliability-based optimization approaches. A convenient
alternative is the robust optimization approach, based on second order statistical
information.

• The second-order quantities needed by robust optimization can be obtained with
the method of stochastic equivalent linearization, which is the only nonlinear
random vibration technique useful for large structures. To this end it is necessary
to apply non Gaussian approaches due to the saturation of the restoring forces
about the strength values of hysteretic oscillators.

• The application proposed herein is useful for selecting the otherwise arbitrary
parameters in designing an active structural control strategy.

• In order to cope with the large uncertainty of the parameters involved in the
stochastic description of the seismic ground motion, it is necessary to evaluate the
unconditional statistical moments. To this end the method of Point Estimates is a
very good alternative. Its use has been demonstrated in a passive control case.
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Chapter 33

A multi-objective robust criterion for
tuned mass dampers optimal design

Giuseppe Carlo Marano, Rita Greco & Sara Sgobba
Technical University of Bari,Taranto, Italy

ABSTRACT: This work proposes a robust optimization criterion of mechanical parameters in
the design of linear Tuned Mass Dampers (TMD) located at the top of a main structural system
subject to random base accelerations. The dynamic input is modelled as a stationary filtered
white noise random process. The aim is to properly consider non-uniform spectral contents that
happen in many real physical vibration phenomena. The main structural system is described as
a single linear degree of freedom, and it is assumed that uncertainty affects the system model.
The problem parameters treated are described as random uncorrelated variables known only
by the estimation of their means and variances. Robustness is formulated as a multi-objective
optimization problem in which both the mean and variance of a conventional objective function
(OF) are minimized simultaneously. Optimal Pareto fronts are obtained and results show a
significant improvement in performance stability compared to a standard conventional solution.

1 Introduction

Engineers, physicists and, in general, scientists dealing with real phenomena usually
have to deal with uncertainty which often raises serious theoretical and computational
difficulties. With the aim of reducing these complications that frequently make many
problems irresolvable, standard methods have been developed in structural analysis
assuming implicitly that all involved parameters are deterministically known. This
remains is an oversimplification of real conditions because parameters are only par-
tially known. Due to economical and technical reasons, only few problem parameter
measurements are available if not simply intrinsically uncertain. The uncertainty of
structural problems may afflict many involved factors, such as dynamic loads inten-
sity, material mechanical parameters and geometrical configurations, all commonly
considered as deterministic in standard analysis.

In some structural dynamics problems, a widely used simplified approach consists
in the assumption that loads are considered to be the only source of uncertainty. For
example, earthquake or wind actions are modelled as stochastic processes and the
standard random vibration theory is used assuming that all other parameters are deter-
ministically defined. Structural response is a stochastic process whose parameters are
deterministic (Lutes & Sarkani, 2002). In such a case it is possible to define the “con-
ventional’’ (with reference to deterministic optimization) OF and restraints concerning
the structural response processes or related quantities. This structural design approach
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can be defined as “Single Objective Conventional Optimization’’ (SOCO) and its solu-
tion can be obtained by standard numerical methods. Assuming that uncertainties in
structural systems have negligible effects on response may prove an unrealistic over-
simplification in many real problems. On the contrary, it is reported that structural
system parameters uncertainty may have equal or greater influence on response than
uncertainty would in case of excitations (Igusa & Der Kiurghian, 1988). This could be
particularly significant where the solution is strongly influenced by system parameters
variation as in the case of structural optimization. Thus, system parameters must
be treated with a suitable description of uncertainty which affects nominal values to
obtain a more realistic analysis in optimization problems. Real structures in aeronau-
tics, mechanical or civil engineering are often described by the random variable theory
owing to various uncertain factors concerning materials, measurement, manufactur-
ing and installation. For this reason, safe domain and input process parameters, which
are parts of a power density spectrum, have to be treated as uncertainty quantities.
This means that SOCO may not be achieved or may simply become unfeasible due to
the scatter of structural behaviour. Therefore, it is reasonable to explore the effects of
uncertainty on the design of structures subject to random vibrations.

In the last twenty years, various non-deterministic methods have been developed to
deal with optimum design under environmental uncertainties. These methods can be
classified into two main branches, namely reliability-based methods and robust-based
methods. The reliability methods, based on the known probability distribution of the
random parameters, estimate the probability distribution of the system’s response, and
are predominantly used for risk analysis by computing the probability of system failure.
However, variation is not minimized in reliability approaches (Siddall, 1984) because
they concentrate on rare events at the tail of the probability distribution (Doltsinis
and Kang, 2004). The robust design methods are commonly based on multiobjective
minimization problems. The are commonly indicated as “Multiple Objective Robust
Optimization’’ (MORO) and find a set of optimal solutions that optimise a perfor-
mance index in terms of mean value and, at the same time, minimize its resulting
dispersion due to input parameters uncertainty. The final solution is less sensitive to
the parameters variation but eventually maintains feasibility with regards probabilistic
constraints. This is achieved by the optimization of the design vector in order to make
the performance minimally sensitive to the various causes of variation.

Hence, robust design concentrates on the probability distribution near the mean
values. A Structural Robust Design (SRD) solution cannot offer the best possible
performance but a low sensitivity to uncertainty. Recently, a robust design of a
vibration absorber, with mass and stiffness uncertainty included in the main system,
was used to demonstrate the robust design approach in dynamics as proposed by
Zang et al. (2005). The design is based on a frequency approach with the assump-
tion that input is a band-limited white noise. Uncertainty is defined by mean and
covariance, and concerns main system mass and damping. The maximum over a
limited frequency band of the dimensionless displacement transfer function is used
as a local performance index. The robust optimisation is obtained by minimizing
deviation in mean and variance, through a direct first-order perturbation method
based on a Taylor series expansion. A different reliability-robust optimization has
also been proposed by Papadimitriou et al. (1997) where the failure probabil-
ity, related to excessive main system displacement, is adopted as conventional OF.
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A multi-objective optimization is performed by using the mean and variance of the
main system frequency in order to produce robust optimal Pareto fronts. The mean and
variance are evaluated by approximate asymptotic evaluation, and recently different
applications were proposed in seismic engineering (Lagaros et al. 2006; Papadrakakis
et al. 2004).

In this paper, a stochastic MORO is applied to a TMD, assuming that some struc-
tural parameters present an uncertain nature. Parameters are described in a random
way, but assuming that they are known only by means and variances. The main struc-
ture, described by a single degree of freedom system, is protected by a linear single
TMD against base accelerations that are modelled by a general second-order linear
filtered white noise stationary process. The design vector collects the two parameters,
TMD frequency and damping. The ratio between protected and unprotected standard
deviation of the main system displacements is the dimensionless “conventional’’ OF.
The robust optimum solution is obtained by using a multi-objective OF instead of a
single conventional one. The mean and standard deviation of conventional OF are
estimated by the direct perturbation method with the aim of defining an OF vector.
The robust Pareto front in the mean-standard deviation space is obtained by using the
NSGAII method (Srinivas & Deb, 1994). Finally, a comparison between SOCO and
MORO optimal solutions is analysed for different uncertainty input configurations
with some of the following conclusions.

2 Conventional TMD optimum design

A Tuned Mass Damper (TMD) is one of the simplest and the most reliable passive
device for vibration control in a wide range of applications, and for this reason many
optimization criteria have been proposed for this specific device. Essentially, a TMD
consists in an additional mass connected to a main system by a spring and a damper.
The main system, excited by a base acceleration, is modelled as a stochastic stationary
coloured noise and introducing the global space state vector:

Z = (yT yS yf ẏT ẏS ẏf )T (1)

the space state covariance matrix RZZ becomes the solution of the Lyapunov equation

ARZZ + RZZAT + B = 0 (2)

where A is the 6× 6 system matrix, and the 6× 6 matrix B has all null elements
except the last on the main diagonal that is [B]6,6 = 2πS0 (more details can be found
in (Marano et al, 2007).

The system mechanical parameters involved are ωT =
√

(kT/mT ), ωS =
√

(kS/mS),
ξT = (cT/2

√
mTkT ), ξS = (cS/2

√
mSkS), µ= mT

mS
, and S0 is the Gaussian zero mean white

noise process whose intensities, ωf and ξg, are the base filter frequency and damping.
In a similar way, it is possible to obtain the unprotected main structural response

covariance matrix RZ0Z0 where the space state vector is:

Z0 = {yS yf ẏS ẏf }T (3)
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Moreover, previous formulation deals with the assumption that all structural param-
eters have a deterministic nature, but this is usually an unrealistic assumption if referred
to many real cases. The optimization problem for a structure subject to random vibra-
tions can be formulated as the search of a suitable set of variables (design parameters
characterizing structural configurations), collected in the so-called Design Vector (DV)
b, over a possible admissible domain �. The optimal DV must be able to reduce the
induced vibration below an acceptable level, minimizing a given OF (defined by using
deterministic or statistic entities) and also satisfying particular constraints expressed
in terms of structural reliability. Both reliability constraints and OF must be defined
over a given time interval, as the problem regards dynamic structural response.

The conventional optimization problem so defined and first stated for systems sub-
ject to random vibrations (Nigam, 1972) can be transformed into a standard nonlinear
programming one that is stated as:

Find b ∈ �b (4)

Minimize OF(b, t) (5)

Eventually subject to gi(b, t) ≤ 0 (i = 1, 2, . . . , k) (6)

where the OF can be defined in a standard deterministic manner (total structural weight
or elements volume) or stochastically. In the latter case, statistic entities can be used
as covariance or spectral moments of the problem variables (for example, displace-
ment, acceleration or structural stress in relevant elements). The optimal mechanical
parameters of a TMD are represented by the two-dimensional design vector b:

b = (ωT , ξT )T (7)

having assigned a fixed mass ratio µ and the main system frequency ωs.
The OF is thus defined in a dimensionless way as being the ratio between the stan-

dard deviation of the maximum displacement in the protected structure σXS and the
unprotected one σ0

XS
:

OF = σXS

σ0
XS

(8)

This function represents a direct stochastic index of vibration protection efficiency
that shows protection effectiveness when its value is smaller than one. At the same
time, a value of the OF close to the unit indicates practically negligible effects in vibra-
tion control (greater values are for negative TMD effects, increasing main structure
displacements). The conventional optimum solution is performed assuming that all
parameters involved in the problem are deterministic, and the unrestricted approaches
of (6) and (7) are for this specific case:

Find the design vector b = (ωTMD, ξTMD) ∈ �2
+ (9)

Minimize
σXS (b)

σ0
XS

(10)
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This approach is able to furnish a global minimum value of OF in the DV space
(Marano et al. 2007)

2.1 Probabi l ist ic characterization of uncertain system parameters

There are many different ways to treat mathematically uncertainly, but the most
common approach used is the probability analysis. It consists in assuming that each
uncertain parameter is treated as a random variable characterised by standard proba-
bility distribution. This means that structural problems must be solved by knowing the
multi-dimensional Joint Probability Density Function of all involved parameters. Nev-
ertheless, this approach may offer serious analytical and numerical difficulties. It must
also be noticed that it presents some conceptual limitations: the complete uncertainty
parameters stochastic characterization presents a fundamental limitation related to the
difficulty/impossibility of a complete statistical analysis. The approach cannot be con-
sidered economical or practical in many real situations, characterized by the absence
of sufficient statistical data. In such cases, a commonly used simplification is assuming
that all variables have independent normal or lognormal probability distributions, as
an application of the limit central theorem which anyway does not overcome the previ-
ous problem. On the other hand the approach is quite usual in real situations where it is
only possible to estimate the mean and variance of each uncertainty parameter it being
not possible to have more information about their real probabilistic distribution. The
case is treated assuming that all uncertainty parameters, collected in the vector d, are
characterised by a nominal mean value µdi and a correlation γdi =

σdi
µdi

. In this specific

case, the structural parameters assumed as uncertain are the main system frequency
ωS and damping ξS and the mass ratio η. Moreover, the two filter parameters ωf and
ξf are also assumed to be potentially afflicted by scatter, so that both are characterised
by a variance greater than the nominal value. The uncertainty parameters vector d is
composed by the following elements:

d = (ωS, ξS, η,ωf , ξf )

Further in this paper, the mean value of each uncertainty element will be indicated by
its nominal symbol µdi = di for simplicity.

3 The multi-objective optimization problem

Assuming that some system parameters concern the mechanical problem stated before,
a robust approach is more appropriate than a conventional one for TMD optimization.
This means that the solution requires the minimization of two indices, performance
efficiency and dispersion, instead of a single OF as applied in (10). This is a general
topic of structural engineering, where often several objective functions (OFs) are in
conflict and it is not possible to define a universally approved criterion of “optimum’’
as in the case of a single objective optimization problem. Therefore, in MOOP the aim
is to produce a set of well compromised solutions from which the decision-maker selects
one (Zang et all. 2005). Given that there situations are in contrast with each other, it
is not possible to define a universally approved criteria of “optimum’’ as happens in
standard single objective optimization. In fact, a definition is obtained by assuming that
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optimization can be obtained when only one “efficiency’’ index is minimised and the
others are considered as problem constraints. Moreover, the definition of the best index
to be minimised and that of the indices to be transformed in constraints have no single
criterion. The matter depends strongly on designer opinion and experience. On the
contrary, the multi-objective optimization approach gives the designer the opportunity
to evaluate a set of possible solutions, defined as those able to satisfy best and with
different performances all the required efficiency indices defined by designers. The
definitions of these solutions are usually known as the Pareto dominance and Pareto
optimality criteria and are a fundamental point in the MOOPs. With reference to the
Pareto optimality definition, it is assumed that a design vector b∗ is Pareto optimal
if no feasible vector b exists which could decrease some criterion without causing
a simultaneous increase in at least one other criterion. Unfortunately, this concept
almost always fails to give a single solution, but rather a set of solutions called the
Pareto optimal set. The vectors b∗ corresponding to the solutions included in the Pareto
optimal set are called non-dominated. Generally, Pareto concepts (“Pareto dominance’’
and “Pareto optimality’’) constitute very important notions in MOOPs.

Without loss in generalities, a typical minimization-based MOOP is conduced. Given
two candidate solution {dj, dk}, if:

∀i ∈ {1, . . . , M}, OFi(dj) ≤ OFi(dk) ∧ ∃i ∈ {1, . . . , M}:OFi(dj) < OFi(dk) (11)

the two objective vectors are defined

v(dj) = {OF1(dj), . . . , OFM(dj)} (12)

v(dk) = {OF1(dk), . . . , OFM(dk)} (13)

vector v(dj) is said to dominate vector v(dk) (denoted by v(dj) ≺ v(dk)).
Moreover, if no feasible solution (v(dk)) exists that dominates solution v(dj), then

v(dj) is classified as a non-dominated or Pareto optimal solution. More simply, bj ∈ �b

is a Pareto optimal solution if there exists no feasible vector bk ∈�b which could
decrease some criterion without causing a simultaneous increase in at least one other
criterion [26].The collection of all Pareto optimal solution are know as the Pareto
optimal set or Pareto efficient set. Instead, the corresponding objective vectors are
described as the Pareto front or Trade-off surface.

Normally, the decision about the “best solution’’ to be adopted is formulated by the
so-called (human) decision maker (DM). Extremely rare is the case in which the DM
doesn’t have any role and a generic Pareto optimal solution is considered acceptable
(no–preference based methods). On the other hand, several preference–based meth-
ods exist in literature, although this particular aspect of research tends to have been
somewhat overlooked. A more general version of the preference–based method con-
siders the preference information used to influence the search (Coello 2000). Thus,
in a priori methods, the DM’s preferences are incorporated before the search begins.
Therefore, based on the DM’s preferences, it is possible to avoid producing the whole
Pareto optimal set. In progressive methods, the DM’s preferences are incorporated
during the search. This scheme offers the sure advantage of driving the search process,
but the DM may be unsure of his/her preferences at the beginning of the procedure
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and may be informed and influenced by information that becomes available during
the search. A last class of method is a posteriori. In this case, the optimiser carries out
the Pareto optimal set and the DM selects a solution (“search first and decide later’’).
Many researchers view this approach as standard so that, in many cases, a MOOP is
considered resolved once all Pareto optimal solutions are individualized. For instance,
an extremely diffused a posteriori approach is denominated as Aggregating functions
in which multiple objectives are combined into a single one. A commonly adopted
method is the Weighetd Sum Method. It consists in a single linear combination of
individual objectives and a scalar parameter (so-called weighting coefficient) is used
with different values in order to define the Pareto front. This method, as well as other
Aggregating function techniques, are not efficient for MOOPs because they are not
able to find multiple solutions in a single run and multiple runs do not guarantee
the definition of the true Pareto front (Kicinger, 2005). Moreover, in the category
of a posteriori approaches, Evolutionary Multi-Objective Optimization is commonly
used. In Luh & Chuen (2004), an algorithm for finding constrained Pareto-optimal
solutions based on the characteristics of a biological immune system (Constrained
Multi-Objective Immune Algorithm, CMOIA) is proposed. In the field of EMOO, the
most adopted algorithms are the Multiple Objective Genetic Algorithm (MOGA, Fon-
seca & Fleming, 1993), and the Nondominated Sorting in Genetic Algorithm (NSGA,
Srinivas & Deb, 1994). This work adopts the NSGA-II, which is a new and modified
version of the original NSGA method. In the next section, a multi-objective approach
is developed for TMD optimal design instead of the conventional method presented in
(10).

4 Robust TMD design optimization

The fundamental point developing a MOOP is that of evaluating the mean and variance
of a conventional objective function. A widely used solution for this problem, referred
to the generic stochastic structural response R(d) which depends on the uncertainty
parameter vector d, is the linear approximation of the DPM that furnishes the mean
value and variance:

µ[R]lin = R(µd) (14)

σRlin =
nd∑
i=1

nd∑
j=1

(βiβj)cov[didj] (15)

where nd is the dimension of the uncertainty element vector and βi =
(
∂R
∂di

)
d=µD

presents

the sensitivity coefficients evaluated for the mean value of vector d.
This formulation makes considerable simplifications if vector d components are

assumed as statistically independent (and therefore uncorrelated). Equation (15)
becomes:

σRlin =
√√√√ nd∑

i=1

β2
i
σ2

di
(16)
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The application of this method to the OF defined in (10) gives:

µOF(d, b) = OF(µd,µb) (17)

σOF(b, d) =
√√√√ nd∑

i=1

{(
∂

∂di
OF(b, d)

)2

µd

σ2
di

}
(18)

where σdi is a problem data, and

(
∂

∂di
OF(b, d)

)∣∣∣∣
µd

=
(σXS ),diσX0

S
− σXS (σ

0
XS

),di

σ2
X0

S

(19)

where (•),di = d•
d(di)

.
The two terms that appear in equation (19), the main system standard deviation of

displacement and velocity, are directly obtainable from (2):

σXS =
√

[RZZ]2,2 (20)

σX0
S
= √

[RZ0Z0 ]1,1 (21)

and the other two, which are their first derivative, are obtainable as

(σXs ),di =
(

dσXs (d, b)
d(di)

)
= 1

2
([RZZ]22),di√

[RZZ]22
(22)

(σX0
s
),di =

(
dσX0

S
(d, b)

d(di)

)
= 1

2
([RZ0Z0 ]22),di√

[RZ0Z0 ]22
(23)

Both are obtained by deriving the original (2), so that R,di is presented as:

ARZZ,di + RZZ,di A
T + Ci = 0 (24)

where

Ci = A,di RZZ + RZZAT
,di
+ B,di (25)

and A,di is the derivative of state matrix A with respect to each uncertainty parameter.
Moreover, B,di is a null matrix for all the vector d elements, and so equation (25) can
be simplified. This way, all quantities in the equation relative to the generic structural
response are known, and it is possible to obtain the linear approximation of the OF
mean value and variance in case of system parameters and frequency input content
uncertainty. In this last case, a possible way pf getting on with the task of obtaining
a robust optimal structural design is to minimize the dispersion of the OF through
multi-criteria measures of the goal performance. By adopting this formulation, the
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Table 1 Mean µ(di) and variation coeffiecient γ(di) of system and filter
uncertain parameters.

Input Data Value

Main System period Ts 0.45 s
Filter period Tf 0.35 s
Power Spectral Density S0 1000 cm2/s3

Uncertainty Parameters di µ(di) γ(di)

Main System Parameters ωS 13.95 0.15
ξS 0.05 0.20
η 0.05 0.15

Filter Parameters ωf 18.62 0.10
ξf 0.40 0.15

proposed problem becomes a vectorial minimization one in which the two conflicting
criteria are the mean value and the variance/standard deviation of the OF, that is:

find b ∈ �b (26)

that minimize {µOF(b), σOF(b)} (27)

5 Numerical application of a robust example

In order to solve the multi-objectives optimization problem proposed, several numer-
ical applications have been carried out for specific levels of the main system and
filter characteristics. These parameters, stochastically expressed by the mean and the
variation coefficient, are considered deterministically known. The principle aim is to
incorporate uncertainties in both the load and the structural model parameters. All
data with certain and uncertain parameters are listed in Table 1, as above:

Introducing the dimensionless parameter ρTMD = (ωTMD/ωs), a first analysis con-
cerns the application of the conventional deterministic optimization method to obtain
the Objective Function surface. Assuming a given design vector space �b, in Figure 1
the conventional OF mean and variance are shown. It can be noted that both the mean
and standard deviation of the conventional OF present extreme points. The points are
a single global minimum for the mean and maximum points for the variance. In detail
the variance shows not a unique but multiple peaks. Besides, it can also be noted that
there is quite perfect agreement between the peak points observed. For example, the
global minimum of the mean seems to correspond to the region where maximum points
take place in the variance surface. More generally, it can be stated that when the mean
of the OF increases, rising from the minimum observed, the standard deviation tends
to decrease in relation to the increasing mean. This consideration confirms the impos-
sibility of achieving OF minimization in an absolute sense, both in terms of mean and
variance. This is due to the point that when it is possible to reduce the first term, the
second one increases, having both counteracting effects with respect to the objective
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Figure 1 Objective function mean value (a) and variance (b) for different values of ρTMD and ξTMD.

function optimization. In fact, a more robust optimal solution can be characterized
by a general improvement in structural performance expressed both by the reduction
of the OF mean value and by a more stable and less sensitive response to uncertainty
sources (i.e. reduction in OF standard deviation).

The above result shows that the optimal solution, obtained by minimizing the
expected value of the OF (the mean), is quite sensitive to the fluctuation of the
uncertainty parameters, as demonstrated by the corresponding high values of variance.

For this reason, a multi-objective robust design concept must be adopted to over-
come this limitation and to provide more pieces of information about the structural
optimization problem solution. The previous example demonstrates that the satisfac-
tion of the optimization problem regards two main aspects: the first one concerns the
necessity of satisfying critical performance requirements (minimizing the mean of the
OF) whereas, the second one involves maximizing the robustness required to deal with
uncertainty (minimizing the standard deviation of the OF). Nevertheless, each aspect is
in conflict with the other and it is not possible to define a universally approved criterion
of “optimum’’ as in the case of a single objective optimization problem. Therefore, in
MOOP the aim is to produce a set of good compromised solutions from which the
decision-maker can make a choice. With this aim, a Pareto optimal set for uncer-
tain configurations has been plotted in Figure 2 in a bi-dimensional Pareto domain
(in mean µOF and standard deviation σOF) for different values of the frequency ratio
�ω= (ωs/ωf ). In detail, the filter frequency has been changed assuming the same value
for the variation coefficient. In Figure 2, it can be noted that Pareto fronts show two
main tendencies in function of the frequency ratio.

The first one is for �ω ≤ 1 and represents the situation in which the main system
has a frequency lower than the tuned mass. In this case, Pareto fronts appear very
close, so there is not much difference between them. In particular, this kind of point
distribution is optimal with respect to the other fronts. In fact, the set is characterized
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Figure 2 Pareto optimal fronts for different frequency ratios.

by lower values in variance for a fixed mean value if compared with the other ones.
The maximum uncertainty achieved, is approximately 50%. The second tendency is for
�ω > 1. This represents the situation in which the main system has a frequency higher
than the tuned mass (i.e. condition that departs from the resonance). The performance,
expressed in terms of multi-objective structural problem optimization, gets worse.
Pareto’s fronts are characterized by larger values of variance at a fixed mean value. It
can also be noted that all different solutions lie very far from each other because of the
more accented sensitivity of optimal points with respect to the uncertainty parameters.

Another consideration concerns the shape of the fronts. They appear convex, and
would not be determinable with conventional multi-objective optimization methods
like, for example, the Weighted Sum Method. This last method is a linear combina-
tion of the objectives, and the application of an Evolutionary optimization problem
approach in Pareto’s fronts definition would be more appropriate.

Optimal DV distribution referred to OF mean and variance is shown in Figures 3
and 4. Both graphs shows the presence of two very different tendencies depending
the frequency ratio, thus confirming the above mentioned trends. For �ω less then
the unit (red, green and blue points), the distribution assumes a characteristic well-
located “handle’’ shape with a limited scatter and quite insensible to being smaller than
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the unit. This is evident given that the starting and ending points which represent the
extremes of Pareto fronts, are nearly the same, as in the case of the intermediate points.
On the contrary, a completely different trend from Pareto optimal solutions is shown
regarding cases of �ω > 1. The starting points are quite different in the OF mean value
(Fig. 3), and an appreciable scatter affects the solutions, tending to converge them at a
common final volume. Scatter in variance (Fig. 4) is more sensible, and extreme final
solutions are sensibly dispersed.

To demonstrate more clearly the alone considerations, Pareto optimal solutions are
plotted in Figure 5, where optimal DV solutions of Pareto front in the bi-dimensional
design vector domain (i.e. in terms of ρTMD and ξTMD) for two different frequency
ratios are reported. The first frequency ratio adopted is �ω ≤ 1 and optimal solutions
of the Pareto front are reported with green points. The second case is with �ω > 1 and
optimal solutions are reported with red points. In the same figure, the optimal points
are plotted together with OF mean (left) and variance (right). This is done with the aim
of clearly observing the location of Pareto optimal solutions for two different values
of frequency ratio. In the case of mean value distribution (Figure 5, left column), the
optimal points start from the global minimum of the OF mean surface whenever �ω is
adopted. On the other hand, in the variance graph (right column), it can be observed
that solutions rise from the middle region between the two peaks. The different trend
is even more evident in this representation.

Starting from a conventional solution, represented with the minimum of OF mean
on the left, the two trends for DV solutions can be observed increasing the variance
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control in the optimization criteria, that is moving from the right to the left along
the Pareto fronts in Figure 2. For �ω ≤ 1, the optimal solutions (green points) follow
a well defined trajectory. The optimization strategy consists in decreasing the tuning
effects (decreasing of ρTMD) with a small reduction of TMD damping. Completely
different is the robust optimization strategy obtained for �ω > 1. Starting from the
same conventional point stated before, the optimal solutions in this case move towards
the right in the DV space state. This means that for more robust solutions a greater
damping is required without variation in the tuning level. These considerations are
important in the design choice with regards TMD frequency ratio and damping because
the robust optimal solution can be sensitive to these parameter variations, as shown.

6 Conclusions

A robust optimal design criterion for a single TMD device in case of random vibra-
tions is here proposed. This vibration control problem refers to the case of systems
subjected to dynamic actions having a stochastic nature that can be modelled by a
stochastic process. Robustness is obtained by finding solutions that take into account
not only the absolute performance but also consider its sensitivity to system para-
meters variation due to uncertainty. The dynamic input is represented by a random
base acceleration, modelled by a stationary filtered white noise process, to take into
account load–structure resonant effects. The main system is described by a single degree
of freedom system. It is assumed that main structure stiffness and damping, tuned
mass ratio, filter main frequency and damping are affected by uncertainty. They are
described by a mean value and a variance, assuming that they are all mutually statis-
tically independent. No other information is considered to assume a given probability
densities function. The Objective Function definition is here assumed as main structure
covariance displacement.

To perform the robust optimum design, the OF mean and standard deviation are
numerically evaluated with a new procedure based on a Lyapunov type equation.
Robustness is formulated as a multiobjective optimization problem, in which both the
mean and the standard deviation of the deterministic OF are minimized. The results
show a significant improvement in performance control and OF real values dispersion
limitation if compared with standard conventional solutions. Some interesting conclu-
sions can be reached with reference to the results obtained for the adopted examples.
With reference to TMD efficiency in vibration reduction, the real structural perfor-
mance obtained by using conventional optimization has a reduced efficiency compared
to those obtained when system uncertainty parameters is properly considered. With ref-
erence to the obtained robust solutions, it can be noted that they can control and limit
final OF dispersion by limiting its standard deviation. Moreover, this goal is achieved
by finding optimal solutions in terms of DV that induce an increase in OF mean value.

The application of the Pareto concept, in search of the solution of the multi-
objective optimization problem, allows to evaluate the optimal choice of the DV
that represents a compromise solution which guarantees an acceptable level of rel-
ative displacement. An Evolutionary approach by means of a Genetic Algorithm
has been used to solve the MOOP and search the population of non-inferior
parallel solutions. Illustrated numerical examples show that all assessments and
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information drawn by means of this kind of computational model cannot be obtained
by the use of a simple conventional optimization technique. In conclusion, the analysis
carried out in the present work shows that the optimal design for robust optimization
is strongly influenced by environmental parameters, in this case by the frequency ratio
�ω. By changing its value, the optimization strategy may change completely. In the
analysed case, the robust TMD optimal solutions are obtained by varying the damp-
ing ratio using a conventional deterministic optimization method. The result depends
on the input frequency content. At the same time, robust TMD optimal solutions
are also obtained by varying the tuned frequency. With reference to this parameter,
the required variation is a function of the input frequency content. For frequency ratio
ψ<1 greater than one, the tuned frequency has to decrease, meanwhile it must remain
almost constant if ψ≥ 1.
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Chapter 34

Performance-based seismic
optimization implementing neural
networks
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ABSTRACT: Performance-Based Design in earthquake engineering accounts for structural
and ground motion uncertainties in optimizing design parameters, satisfying multiple perfor-
mance criteria with target reliabilities and minimizing an objective. This implies a nonlinear
structural dynamic analysis for earthquakes likely to occur at the site, to obtain the demand
responses of interest. The responses are represented here via neural networks and used in the
performance criteria for estimation of achieved reliabilities by Monte Carlo simulation. An opti-
mization is finally implemented to obtain optimal parameters, using a gradient-free algorithm.
An application is shown for a reinforced, multi-story concrete frame. The demand is simulated
using artificially generated ground motions, with the peak ground acceleration corresponding to
the city of Mendoza, Argentina. Performance requirements (operational, life safety or collapse)
are specified in terms of damage severity, using maximum displacements, inter-story drifts, local
and global damage indices. Optimization objectives are minimum cost, minimum dimensions
and/or minimum steel reinforcement.

1 Introduction

Performance-Based Design in earthquake engineering (SEAOC Vision 2000 1995,
FEMA 273 1997) implies taking into account structural and ground motion uncertain-
ties in order to obtain structural design parameters, satisfying multiple performance
criteria with associated minimum reliability levels and (as an option) at a minimum
total cost.

The treatment of uncertainties requires the use of probabilistic methods, estimating
the probability of exceeding response targets for the different performance require-
ments, for example, on an annual basis. The dynamic structural responses are highly
nonlinear, and their time history must be found by numerical (e.g., finite elements)
analysis for the duration of the earthquake. In a thorough analysis, the nonlinear-
ity of the response is further increased when the interactions between the structure
and the foundations are included. It is not possible to establish an explicit relation-
ship between the intervening variables and the dynamic responses, and results can
only be obtained in a discrete manner, given specific values of the structural variables
and a particular earthquake record. Reliability calculations depend on simulations
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(e.g., Monte Carlo simulation (MCS) technique), which in turn may require a large
number of discrete response evaluations, at great computational cost. The efficiency
of the process is greatly improved, however, if the discrete results are represented
by a function (“response surface’’) which would then be used as a substitute (Hur-
tado 2004) for the actual responses, and which would allow interpolation of the
responses for inputs not considered in the original database. Simulation or other reli-
ability estimation technique, using the response surface substitute, requires a much
smaller computational effort. Different types of response output substitutes have been
used, ranging from analytical functions (Möller 2001, Möller & Foschi 2003), local
interpolation of the databases (Foschi et al. 2002), and neural networks (Zhang 2003,
Zhang & Foschi 2004, Möller et al. 2006 a, b). It is normally difficult to represent the
range of structural response characteristics for different inputs by a simple, global, ana-
lytical function. The use of local interpolation of the discrete databases permits a more
refined representation. In this regard, however, the use of artificial neural networks,
trained with the discrete databases, leads to a superior, more flexible and efficient
representation. The computational effort is now shifted from the reliability estimation
via simulation to the deterministic calculation of the databases for a strategic choice
of the input combinations.

The optimization process involves finding design parameters which lead to a min-
imum structural volume, or minimum amount of steel, or total construction cost,
satisfying also minimum target reliability indices for the different performance require-
ments. The optimization algorithm implemented in this work does not make use of
gradients, thus avoiding numerical problems of convergence or the finding of local
minima.

As an illustration, this work presents an application of neural networks to the opti-
mal design of a two-dimensional reinforced concrete frame under seismic excitation.
The optimization considers three performance requirements: operational, life safety
and collapse. Each, in turn, has an associated minimum target reliability. Three objec-
tives are considered for the optimization: 1) optimum beam and columns dimensions
for minimum total structural volume; 2) optimum steel reinforcement ratio for min-
imum total steel weight; and 3) optimum beam and column dimensions, and steel
reinforcement ratio, for minimum total structural construction cost.

2 Nonlinear dynamic response and representation by
neural networks

2.1 Model for nonl inear dynamic analysis

The structural model used here considers the frame as a set of one-dimensional beam
elements (Möller 2001). In order to represent the hysteretic behavior of reinforced
concrete members, each contains three sub-elements connected in series: (i) an elasto-
plastic sub-element to represent the elastic behavior of the member itself, and including
non-linear elements at its extremes, of varying length depending on the load history;
(ii) a connection sub-element to characterize the localized relative rotation at the ends
of the member as a result of degradation of steel anchorage; (iii) a shear sub-element
to describe the distortion at critical regions of the member and the shear slip at the
end of the member. The extremes of each member consider nodes of non-negligible
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Figure 1 Elasto-plastic sub-element – Moment-curvature relationship.

dimensions. In this work the analysis has considered only the effect of the elasto-plastic
sub-elements, as shown in Figure 1.

The plastic behavior during loading and unloading is assumed concentrated at the
extremes of the member. Further, the stiffness of these plastic zones is represented
by an effective average stiffness pEI, which depends on the extreme section. These
assumptions imply that the moment-curvature history needs to be traced only at the
extremities of the member.

The moment-curvature relationship M-φ for a given reinforced concrete cross-
section is constructed, for a constant axial force, using the following hypotheses:
(a) plane sections remain plane during deformation, and normal to the deformed axis
of the member; (b) Mander’s models (1984) are utilized as the constitutive relations
for concrete and steel. The cross-section is subdivided in strips parallel to the neutral
axis and, for each increment in curvature, the position of the deformed (rotated) cross-
section is adjusted iteratively until equilibrium is achieved between the internal and
external actions, when the corresponding moment is then finally calculated.

The ultimate curvature φu is determined when, at the end of a pre-determined num-
ber of complete cycles to ±φu, one of the following limit states is reached: (a) a 20%
reduction in the moment capacity; (b) the transverse steel reinforcement reaches its
capacity to absorb energy From the energy balance of the cross-section, the con-
crete ultimate compression deformation is calculated; (c) the maximum tensile or
compression deformation of the longitudinal reinforcement is reached.

In the hysteresis model shown in Figure 1, the factors pi, pj have the following
values: (a) p= 1, for elastic behavior, (b) p= h for strain hardening , (c) p= s for strain
softening, with zi = lp (a characteristic length ∼= 0.75 d, d being the cross-sectional
depth), (d) p= 1 for unloading, (e) p= 2/(1/r+ 1) for re-loading, a value obtained
from the average of the stiffness corresponding to the extreme section, rEI , and that
corresponding to the elastic section EI, at the end of the plastic section. The parameters
My, Mm, EI, h, s, for the positive and negative directions, are calculated by linearization
of the relationship M−φ obtained in a pre-processing of the cross-section.

The analysis included a consistent mass matrix and viscous damping proportional to
mass and stiffness. The system of nonlinear equations is solved by time-stepping direct
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integration using Newmark’s method, with a Newton-Raphson iteration scheme within
each step to achieve equilibrium within each element. The analysis output contains the
parameters included in the definitions of the limit states for each of the performance
levels considered.

2.2 Response approximation using neural networks

Artificial neural networks (Hurtado 2004) are computational devices which permit
the approximate calculation of outputs given an input set. The input is organized as a
layer of neurons, each corresponding to one of the input variables, and the output is
contained in an output layer. Intermediate, hidden layers, contain a number of neurons
which receive information from the input layer and pass it on to subsequent layers.
Each link in the network is associated with a weight w. The total information received
by a neuron is processed by a transfer function h before being sent forward to the
neurons in the next layer. For a network with a single hidden layer, the computational
process can be expressed as

R(X) ∼= F(X) = h

 J∑
k=0

wkjh

(
N∑

i=0

wjiXi

) (1)

where R(X) is the true value in the relationship being represented by the neural network;
F(X) is the neural network output; h(t) is the transfer function associated with the
neurons (usually a sigmoid function); w are the weights; Xi are the input variables
plus one bias term, making up N neurons in the input layer; and J is the number
of neurons in the single intermediate hidden layer plus one additional bias neuron.
Figure 2 shows a schematic architecture for a multilayer neural network. In this work
only one hidden layer is considered.
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Figure 2 Multilayer neural network.
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The transfer of information between neurons in adjacent layers is implemented
through the weights w associated with each link and a transfer function h(t). In Fig-
ure 2, let the number of neurons in the input, hidden and output layers be, respectively,
I + 1, J + 1 y K; let Xp

i be the pth datum for the ith neuron in the input layer, Ip
j the pth

datum for the jth neuron in the hidden layer; Hp
j the pth output from the jth neuron in

the hidden layer; Ip
k the pth datum for the kth neuron of the output layer; and Yp

k the
pth output from the kth neuron in the output layer. Thus, the following relationships
correspond to the transfer of information between the input and the output layers:

Ip
j =

I∑
i

wjiX
p
i + wj0 Hp

j = h(Ip
j ) (2)

Ip
k =

J∑
j

wkjH
p
j + wk0 Yp

k = h(Ip
k) (3)

in which wji is the weight connecting the ith neuron in the input layer with the jth
neuron in the hidden layer; and wkj is the weight between the jth neuron and the kth
in the output layer. The transfer function h(.) used here is the sigmoid

h(x) = 1.0
(1 + exp(−x))

(4)

The number of neurons in the hidden layer must be sufficiently large to permit a
good representation of the input-output relationship, but not so large that the network
may produce inaccurate values for input combinations not in the training set.

The network can be used to represent the relationship R(X) after the weights have
been determined by training, that is, by adjusting their values so that the differences
between the true values of a training set and the network predictions for that same set
are minimized.

The number of neurons in the hidden layer must be related to the number of available
input data NDAT. Normally, a fraction of the available data is used for training (e.g.,
80%), while the rest are used for validation of the neural network predictions. The
maximum number of neurons in the hidden layer is thus given by

NEUMAX = 0.8 NDAT − 1
NINT + 2

(5)

in which NINT is the number of input variables. The optimum number of neurons
is found by evaluating the total error (training+ validation) achieved with a varying
number of neurons, from 1 to NEUMAX, adopting the number corresponding to the
least total error. In each case, this error is obtained here by minimization using the
back-propagation algorithm (Zhang 2003). Thus, for each choice of the number of
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neurons in the hidden layer, the total error corresponds to the minimization, with
respect to the weights w, of the expression E:

E = 1
2

∑
p

∑
k

(Yp
k (w) − Tp

k )2 (6)

where Tp
k is the true or target value for kth-output neuron corresponding to the pth-

datum.
Training of the network implies minimizing E and thus obtaining the optimum

weights wji, wkj. A common minimization algorithm is called back propagation, based
on an updating of the weights, �wji, along the direction of steepest descent:

wji(g + 1) = wji(g) +�wji(g) with �w(g) = −η ∇E(g) + α �w(g − 1) (7)

in which g is the iteration number, η is called the learning rate and α the momentum. In
this algorithm, the value used for the learning rate controls the convergence: if chosen
too large convergence may not occur, if chosen too small the convergence may be slow.
In the applications shown here, the values η= 0.01 and α= 0.05 were utilized.

2.3 Portal frames

Figure 3 shows a generic reinforced concrete portal frame, for which the interven-
ing variables considered, with their corresponding bounds, were: number of stories
NS= 3 to 10; number of bays NB= 1 to 4; bay span XL= 300 to 600 cm (all equal);
mass per unit length for each story m= 2.15× 10−4 to 4× 10−4 KNs2 /cm2; character-
istic concrete compressive strength f ′c = 20 to 40 MPa; beam width bb = 15 to 30 cm;
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beam depth hb = 40 to 70 cm; column width bc = 20 to 40 cm; column depth hc = 40
to100 cm.

The beam and column dimensions, bb , hb ,bc and hc correspond to the lower stories.
Upper stories have reduced dimensions according to the ratios specified in Table 1.

The bounds for the reinforcement ratios are controlled by Norms. Here, the ratio for
beams at midspan was from ρsspan =

√
f ′c / (4 fy) to (f ′c + 10)/(6fy); for beams over their

supports, from ρ′send
=√f ′c / (4 fy) to (f ′c + 10)/(6fy); and for columns, from ρst = 0.008

to 0.04286. The bounds for normalized confinement pressure were taken as fr/f ′c0 = 0.0
to 0.15. Furthermore, the reinforcement ratios for beams must supply an adequate
bending strength for gravitational loads,

φ (Mspan + Mend) ≥ qu XL2

8
(8)

where Mspan = bb hb ρs span fy 0.9 hb, Mend = bb hb ρ
′
s end fy 0.9 hb, with fy = 420 MPa,

qu = 1.2 D+ 1.6 L∼= 1.33 (D+L)∼= 1.40 mg, and a strength reduction factor φ= 0.9.
The seismic excitation corresponded to the city of Mendoza, Argentina. The vari-

ables associated with the ground motion, and their corresponding bounds, were: the
peak ground acceleration, ag = 25 to 1200 cm/s2, and the central frequency for the soil
filter, fg = 2.0 to 3.0 Hz. Other variables required for the generation of accelerograms
were taken either as functions of ag and fg, or as constants.

Individual accelerograms were simulated using the method proposed by Shinozuka
and Sato (1967):

a(t) = I(t)
NFR∑
n=1

{4 SXX(n�f )[1 + δS RN]�f }1/2 sin(2πn�ft + θn) (9)

in which SXX is the power spectral density function for the process, NFR is the number
of sine functions or frequencies included, between 0 y fmax , such that NFR ≥ fmaxT0,
T0 being the duration of the simulated record. The ordinates of the function SXX are
taken to be random, with δS being the coefficient of variation and RN a Standard

Table 1 Number of stories and beam/column dimensions.

NS Type G1 Type G2 Type G3

3 2 1
4 2 2
5 3 2
6 3 3
7 3 2 2
8 3 3 2
9 3 3 3

10 4 3 3

Dimensions for different stories:
Type G1: bb, hb bc, hc
Type G2: bb, 0.8hb bc, 0.8hc
Type G3: bb, 0.6hb bc, 0.6hc
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Normal variable. �f is a frequency step, and θn are random phase angles with a
uniform distribution between 0 y 2π. The process thus generated is stationary, but
non-stationarity is introduced with the modulation function I(t) defined as follows:

I(t) = (t/T1)d for 0 ≤ t ≤ T1

I(t) = 1 for T1 ≤ t ≤ T2 (10)

I(t) = e−c (t−T2) for T2 ≤ t ≤ T

in which t is time, T1 and T2 specific times and d and c are constants.
This work used the power spectral density function SXX introduced by Clough and

Penzien (1975),

SXX(f ) = S0
1 + 4 ξ2

g (f /fg)2

[1 − (f /fg)2]2 + 4 ξ2
g (f /fg)2

(f /ff )4

[1 − (f /ff )2]2 + 4 ξ2
f (f /ff )2

(11)

in which S0 is a constant or the power spectral density corresponding to white noise; fg,
ξg are respectively, the characteristic ground frequency and the ground damping ratio;
and ff , ξf are parameters for a high-pass filter to attenuate low frequency components.

The baseline of the accelerogram thus generated is further corrected to minimize the
mean square value of the corresponding velocities. The record is finally scaled to have
a peak acceleration aG, a random peak value that could occur at the site in case of an
earthquake.

A total of 900 combinations of the variables were developed, following techniques
of experimental design (Zhang 2003). For each combination, 5 sub-combinations
were developed, each corresponding to a different accelerogram and specific param-
eters in the moment-curvature relationship for the members. Each accelerogram was
derived considering a different sequence of random phase angles. A dynamic analy-
sis, as described in 2.1, was carried out for each combination, obtaining the following
outputs: maximum total displacement at the top of the frame, umax; the maximum inter-
story drift, DSIM; the maximum local Park & Ang (1985) damage index, DILOM;
and the maximum global damage index DIG.

For each of these outputs Ri, and for each of the 900 combinations, the corre-
sponding mean value and standard deviation of Ri were calculated over the N = 5
sub-combinations,

Ri = 1
N

N∑
k=1

Rki σRi =
√√√√ 1

N − 1

N∑
k=1

(Rki − Ri)2 (12)

Thus, for each output parameter, two databases of 900 data each were assembled,
representing an estimate of the mean and the standard deviation of the particular
response over the set of ground motions used. These two databases were used to train
corresponding neural networks for each of the outputs.
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2.4 Training of the neural networks

Following the procedures described in 2.2, neural networks were trained to represent
the mean value and the standard deviation of the response parameters. Figure 4 shows
the result of the training corresponding to the maximum inter-story drift DSIM. As
shown in this figure, a good representation was achieved.

If the agreement were perfect, all points would lie on the 45◦ line. A scattering of
points around this line is shown, more for the standard deviation than for the mean
values. This dispersion can be approximately quantified with the standard deviation
of the relative error

σεr =
√√√√ 1

NE − 1

NE∑
k=1

(
Tk − Yk

Yk

)2

(13)

in which Yk is the output from the neural network, Tk is the value obtained with the
dynamic analysis and NE = 900 is the number of combinations of the network input
parameters.

Adopting a Normal distribution for the training error, the mean response Ri and the
Standard deviation of the response σRi can be expressed as

Ri = Yi (1.+ σεrXN) σRi = σYi (1.+ σεrXN) (14)

in which Yi, σYi are the mean value and the Standard deviation for the ith response
parameter, calculated with the corresponding neural network, σεr is the standard
deviation of the relative error from Eq. (13), y XN is a Standard normal random
variable.
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3 Evaluating reliabil ity

3.1 Random variables and performance functions:

One portal type was considered in the examples. This frame had 6 stories and 3 bays.
The reliability levels corresponding to three performance requirements (operational,
life safety and collapse) were obtained for seismic conditions corresponding to the city
of Mendoza, Argentina. Characteristics of all the intervening random variables are
shown in Table 2 and the mean value of those marked with the symbol ? are the design
parameters considered in the optimization.

The generic expression for the performance or limit state function G(X) is

G(X) = RLIM − R(X) (15)

in which RLIM is the limiting value for the response parameter R(X) which, in turn,
is a function of the set of intervening random variables Xi, (i= 1, N). The value RLIM
is also considered a random variable, so that

RLIM = RLIM (1.+ COVRL X(N − 1)) (16)

in which the mean values and standard deviation Ri, σRi are obtained from Eq. (14).
Assuming a lognormal distribution for the response, this can be expressed as

R(X) = R(X)√
1.+

(
σR(X)

R(X)

)2
exp

X(N)

√√√√ln

(
1.+

(
σR(X)

R(X)

)2
) (17)

Table 2 RandomVariables.

Variable X σX Type Variable X σX Type

X(1)=NS 6 0 Normal X(12)= ρs ? 0.10 X Log-
Normal

X(2)=NB 3 0 Normal X(13)= f r/f ′c0 0.10 0.01 Normal
X(3)=XL 450 cm 22.5 cm Normal X(14)= aG X(14)=X(16)[1.0+X(17)]
X(4)=m 3× 10−4 3× 10−5 Normal X(15)= f g 2.50 Hz 0.375 Hz Normal
X(5)= f ′c 30 MPa 3 MPa Log- X(16)= aG 94 cm/s2 130 cm/s2 Log-

Normal Normal
X(6)= bb 20 cm 1 cm Normal X(17)= σaG 0 0.25 Normal
X(7)= hb ? cm 0.05 X Normal X(18)=X(N− 3) 0 1 Normal
X(8)= bc 30 cm 1.5 cm Normal X(19)=X(N− 2) 0 1 Normal
X(9)= hc ? cm 0.05 X Normal X(20)=X(N− 1) 0 1 Normal

X(10)= ρs, span ? 0.10 X Log- X(21)=X(N) 0 1 Normal
Normal

X(11)= ρ′s, end ? 0.10 X Log-
Normal
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and

R(X)= Y(X) (1.+ σεR X(N − 3))
σR(X)= σY (X) (1.+ σεσ X(N − 2))

The performance functions considered in the analysis were:

Operational:
– Elastic behavior G11(X) = uy(1.+ 0.10 X(N − 1)) − umax(X) (18)
– Inter-story drift G12(X) = 0.005(1.+ 0.10 X(N − 1)) − DSIM(X) (19)

Life safety:
– Inter-story drift G21(X) = 0.015(1.+ 0.10 X(N − 1)) − DSIM(X) (20)
– Max. local G22(X) = 0.60(1.+ 0.10 X(N − 1)) − DILOM(X) (21)

damage index
– Global damage G23(X) = 0.40(1.+ 0.10 X(N − 1)) − DIG(X) (22)

index

Collapse:
– Inter-story drift G31(X) = 0.025(1.+ 0.10 X(N − 1)) − DSIM(X) (23)
– Max. local G32(X) = 1.00(1.+ 0.10 X(N − 1)) − DILOM(X) (24)

damage index
– Global damage G33(X) = 0.80(1.+ 0.10 X(N − 1)) − DIG(X) (25)

index

In Eq. (18), uy is the displacement, estimated according to Priestley (1998), below
which the structure remains fully elastic.

3.2 Fai lure probabi l i ty

The failure probability associated with each performance function is calculated as that
of the event G(X)< 0,

Pf = Prob [G(X)≤ 0] (26)

using a Monte Carlo simulation with 106 to 107 replications, and working will all
performance functions simultaneously. This task is facilitated by the introduction of
the neural networks trained for each of the responses R(X).

Considering the arrival of the earthquakes as a Poisson process, with a mean arrival
rate of ν= 0.20 for the city of Mendoza for magnitudes M≥ 5, the annual probability
of failure can be calculated as

Pfannual = 1.− exp [−ν PfE] → βannual
∼= −�−1(Pfannual) (27)

in which Pf E is the failure probability given that a seismic event has occurred. Pf E

and Pf annual can be expressed in terms of their corresponding reliability indices β, as
shown in Eq. (27).
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4 Optimization algorithm

4.1 The problem

The optimization problem may be described as follows:

a. Given a system with N random variables, Xi (i= 1, N), each of M perfor-
mance requirements or limit states Gj(Xi), (j= 1, M), must satisfy minimum target
reliability indices, βj.

b. A set of design parameters dk (k= 1, L) must be found such that, satisfying the
reliability requirements, also lead to a minimum of an objective function F(dk),
for example the structural weight or the construction cost.

The design parameters can be defined as the mean value and/or the standard
deviation of some of the intervening random variables Xi.

4.2 The solution approach

A variety of solution approaches can be used for the optimization problem. This work
uses an algorithm that does not require the calculation of gradients of the objective
function. The steps in this algorithm are described as follows:

a. A set of random combinations of the design parameters is chosen within specified
bounds;

b. The reliability implied by each combination is found via Monte Carlo simulation
and the application of the neural networks;

c. For those combinations which satisfy the reliability targets, the objective function
is evaluated. The combination associated with a minimum objective is chosen as
an “initial anchor point’’.

d. A new set of combinations is then randomly chosen within a circular neigh-
borhood around the anchor point. Again, for those combinations which sat-
isfy the reliability targets, the objective function is evaluated and compared
with the value of the function at the anchor point. Should one of the com-
binations lead to lower objective that combination becomes the new anchor
point.

e. The process is repeated until all combinations within the circular neighborhood
show objective functions greater or equal than that corresponding to the anchor
point.

f. The entire process is repeated from step a), or from a different initial anchor. The
final result corresponds to the minimum among the minima obtained for each of
the repetitions.

This process does not require the calculation of gradients, avoiding numerical prob-
lems. The calculation of the implied reliabilities, for each combination of the design
parameters, is made efficient by the use of the neural networks, as previously described.
The optimization process is illustrated in Figure 5.
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Figure 5 Optimization Process.

5 Applications

5.1 Optimizing beam and column depths, with the objective of
minimum volume

In this first application, the design parameters are the mean depths of the beams, hb

and the columns hc, for the frame considered and remaining statistics as shown in
Table 2. The design parameters are then as shown in Table 3.

The objective function F to be minimized is the mean volume of the frame,
according to:

Vol = Vbeams + Vcolumns

F(Xi) = [X(1) X(2) X(3) X(6) X(7) 0.9

+ (150 + 270 X(1))(1 + X(2)) X(8) X(9)] 10−6 m3

F(dk) = [145800 · X(7) + 212400 · X(9)] 10−6 m3 (28)

The target minimum annual exceedence probabilities Pf annual, for each perfor-
mance level, is shown in Table 4. This table also shows the corresponding exceedence
probabilities and reliability indices for the seismic event, Pf E and βE.

The results of the optimization are shown in Table 5. This table includes the results
from three optimization cycles, with final results taken as those of the third cycle. The
reliability indices were deemed to satisfy the requirements if they were not less than
0.97 of the targets.
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Table 3 Application 1, design parameters.

X σX Type

X(7)= hb = d1 ? cm 0.05 X Normal
X(9)= hc = d2 ? cm 0.05 X Normal
X(10)= ρs, span 0.008 0.0008 Lognormal
X(11)= ρ′s, end 0.012 0.0012 Lognormal
X(12)= ρs 0020 0.0020 Lognormal

Table 4 Target minimum reliability levels.

Performance Level Pf annual βannual Pf E βE

Operational 2× 10−2 2.054 0.10101 1.276
Life safety 2× 10−3 2.878 0.10010× 10−1 2.326
Collapse 7× 10−4 3.195 0.35012× 10−2 2.697

Table 5 Application 1, optimum design parameters.

Cycle hb (cm) hc (cm) Vol (m3) β1 β2 β3

1 55.1 51.8 19.109 1.310 2.259 2.658
2 56.5 50.7 19.054 1.315 2.257 2.649
3 56.4 50.9 19.030 1.315 2.258 2.651

Each cycle correspond to a different initial random selection. The results from Table 5
show that the three cycles gave very similar optimum dimensions, and, therefore, very
similar total volume. This is interpreted as showing that the problem has a single
minimum within the prescribed bounds for the design parameters.

5.2 Optimizing the steel reinforcement, with the objective of
minimum steel weight

In this second application, the objective is to obtain an optimum longitudinal steel
reinforcement ratio in order to achieve a minimum steel weight. The design parameters
are as shown in Table 6. The frame is the same as in Application 1, with the remaining
intervening variables as per Table 2.

The objective function F is the longitudinal steel reinforcement weight, according to:

P = [Vbeams(ρs,span + 0.6 ρ′s,end) + Vcolumns ρs] 7.85 · 10−5 KN

F(Xi) = [X(1) X(2) X(3) X(6) X(7) 0.9 (X(10) + 0.6 X(11))

+ (150 + 270 X(1))(1 + X(2)) X(8) X(9) X(12)] 10−6 7.85 · 10−5 KN

F(dk) = [8.019(X(10) + 0.6 X(11)) + 12.744 X(12)] 7.85 · 10−5 KN (29)
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Table 6 Application 2, design parameters.

Variable X σX Type

X(7)= hb 55 cm 2.75 Normal
X(9)= hc 60 cm 3.00 Normal
X(10)= ρs, span = d1 ? 0.10 X Lognormal
X(11)= ρ′s,end = d2 ? 0.10 X Lognormal
X(12)= ρs = d3 ? 0.10 X Lognormal

Table 7 Application 2, optimum design parameters.

Cycle ρs, span ρ′s, end ρs P(KN) β1 β2 β3

1 0.005765 0.01132 0.01100 18.91 1.328 2.258 2.628
2 0.006630 0.01053 0.01098 19.13 1.323 2.256 2.636
3 0.006190 0.01079 0.01079 19.14 1.326 2.258 2.634

The minimum target reliabilities are as shown in Table 4. The design parameters
must satisfy in this case, additional constraints. The steel reinforcement ratios must
provide adequate resistance to gravitational loads, as per Eq. (8), and also provide a
minimum ductility for the beam cross-sections, according to

0.5 ρ′s,end ≤ ρs,span ≤ 2 ρ′s,end

0.5 X(11) ≤ X(10) ≤ 2 X(11) (30)

The results from three cycles are shown in Table 7, choosing those from the first
cycle as the final output. Again, the reliability indices were deemed to satisfy the
requirements if they were not less than 0.97 of the targets.

Again, the three cycles used in this example produce very similar results, indicating
again the presence of a single minimum. The reinforcement ratios for the columns are
almost identical, while cycle 1 and cycle 2 show slight differences between the ratios
for the beam at mid-span and over the supports. These differences, however, translate
into minor differences in the weight of the steel reinforcement, while the prescribed
reliability levels are always satisfied.

5.3 Optimizing the beam and column depths, and the steel
reinforcement, with the objective of minimizing
construction cost

The design parameters are now as shown in Table 8, while the details for the remain-
der variables are shown in Table 2. The objective is now to minimize the total
construction cost.

The objective function F is the direct cost of construction, using UCC= 288.5 US$/m3

as the unit cost of concrete and USC= 0.80 US$/Kg as the unit cost of steel
reinforcement.
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Table 8 Application 3, design parameters.

Variable X σX Type

X(7)= hb = d1 ? cm 0.05 X Normal
X(9)= hc = d2 ? cm 0.05 X Normal
X(10)= ρs, span = d3 ? 0.10 X Lognormal
X(11)= ρ′s, end = d4 ? 0.10 X Lognormal
X(12)= ρs = d5 ? 0.10 X Lognormal

Table 9 Application 3, optimum design parameters.

Cycle hb (cm) hc (cm) ρs, span ρ′s, end ρs C (US$) β1 β2 β3

1 56.79 51.36 0.00614 0.00943 0.0188 7445 1.312 2.257 2.655
2 54.84 47.62 0.00733 0.01170 0.0264 7625 1.302 2.259 2.669
3 59.05 53.74 0.00924 0.01310 0.0165 7898 1.328 2.257 2.620

Thus, the total cost is expressed as

C = [Vbeams + Vcolumns] UCC + ,Pbeams reinfor + Pcolumns reinfor- USC

F(dk) = [0.1458 X(7) + 0.2124 X(9)] UCC (31)

+ [0.1458 X(7) (X(10) + 0.6 X(11)) + 0.2124 X(9) X(12)] 7850 USC

The target reliabilities are the same as for the previous applications, and the steel rein-
forcement ratios must also satisfy the same constraints as described by Eq. (8) and (30).

The results, for three cycles, are shown in Table 9. The results for the different cycles
are again quite close to each other, and the reliability levels are not less than 0.97 of
the targets. The final result is given as that corresponding to the first iteration.

This application, with 5 design parameters, shows clearly that small differences in
the design parameters do not result in large cost changes. That is, satisfying all the
reliability requirements, the cost function is relatively flat near the optimum values. In
this case, the design engineer could opt for one solution or another, considering other
construction or architectural issues.

6 Conclusions

• The application of performance-based design within earthquake engineering
requires the consideration of all the uncertainties associated with the structure
and the ground motion, and that each of the performance requirements be met
with specified minimum reliabilities.

• The evaluation of reliability under seismic excitation requires the application of
nonlinear dynamic analyses. Thus, the structural response cannot be given an
explicit form, and the calculations are made feasible through response surfaces
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representation. Of these, neural networks offer an excellent alternative in terms
of accuracy and flexibility.

• The major computational effort is transferred to the development of a deterministic
response database for neural network training. The networks, acting as a substitute
for the nonlinear dynamic analysis, make feasible the reliability estimation through
direct Monte Carlo simulation, at a small computational cost.

• Neural networks can be trained for the mean and for the standard deviation of a
structural response over a set of ground motions. The input to the networks will
then be the remaining random intervening variables.

• The optimization aims at finding a set of design parameters, so that each perfor-
mance level is met with minimum target reliability, while minimizing an associated
objective function. The optimization algorithm used here is a search and does not
depend on gradients, and has been shown to be both efficient and robust.

• Three application examples have been shown, all for a 6-story portal frame located
in the city of Mendoza, Argentina. The optimization involves the determination of
design parameters considering three performance levels and different limit states
at each level. Each example involves different design parameters and optimization
objectives: depth of beam and columns for a minimum volume, steel reinforcement
ratio for a minimum steel weight, and depth of beams and columns, plus steel
reinforcement ratio, for a minimum total construction cost.

• This work has shown that the optimization process can be efficiently imple-
mented when the nonlinear dynamic responses are represented by neural networks,
which are then used in a direct simulation for the calculation of reliability
levels. The work has also used a simple, robust and gradient-free, optimization
algorithm.
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ABSTRACT: A very efficient methodology to carry out reliability-based optimization of linear
systems with random structural parameters and random excitation is presented. The reliability-
based optimization problem is formulated as the minimization of an objective function for a
specified failure probability. The probability that design conditions are satisfied within a given
time interval is used as a measure of the system reliability. Approximation concepts are used
to construct high quality approximations of dynamic responses in terms of the design variables
and uncertain structural parameters during the optimal design process. The approximations
are combined with an efficient simulation technique to generate explicit approximations of
reliability measures with respect to the design variables. In particular, an efficient importance
sampling technique is used to estimate the failure probability. The effectiveness and feasibility
of the suggested approach is demonstrated by an example problem. At the same time the effect
of uncertainty in the system parameters on the performance and reliability of the final design is
investigated.

1 Introduction

When a structure is being designed the environmental loads that the built structure
will experience in its lifetime are highly uncertain. The load time history needed in the
dynamic analysis of a structure subject to environmental loads is an uncertain value
function, and it is best modeled by a stochastic process (Lin (1995)). Likewise, response
predictions are made during design based on structural models whose parameters are
uncertain because the properties that will be exhibited by the structure when completed
are not known precisely. Probabilistic methods provide the means for incorporating
system uncertainties as random variables with a prescribed joint probability density
function. Uncertainties in both loading and structural properties can adversely affect
the reliability and performance of the structural system. Therefore, it is necessary to
consider their effects explicitly during the optimization process to achieve a balance
between cost and safety for the optimal design.

In reliability-based structural optimization the constrains are usually reliability
requirements with respect to possible failure modes of the structure. Probability that
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design conditions are satisfied within a given time period is commonly used as a mea-
sure of system reliability. Then, the first excursion probability that any one of the sys-
tem response functions of interest exceeds in magnitude some specified threshold level
within a given time duration need to be estimated. If the structural characteristics are
known, conditional first excursion probabilities can be calculated by efficient simula-
tion techniques (Au (2001)). On the other hand, system reliabilities that account for the
uncertainty in the system parameters are given by the total probability theorem as par-
ticular multidimensional integrals over the space of uncertain parameters. An efficient
technique based on the importance sampling technique has been developed recently for
the solution of first excursion problems of uncertain linear dynamical systems (Jensen
(2007)). From an optimization point of view, reliability-based optimization problems
can be characterized as two-level optimization problems. Level one is the overall opti-
mization in the design variables, and level two is the failure estimates. For realistic
systems, these estimates completely dominate the total calculation cost. Therefore,
the reliability estimates should be evaluated in an efficient manner and the number of
response calculations must be as few as possible during the optimization process. It
is the purpose of this paper to develop an efficient computational procedure for the
reliability-based optimization of uncertain linear stochastic dynamical systems (SDS).

2 Problem formulation

Let the vectors {y}, yi, i= 1, . . . , nd, {θ}, θi, i= 1, . . . , ns and {z}, zi, i= 1, . . . , nT

represent the vector of design variables, uncertain structural parameters, and ran-
dom variables that specify the stochastic excitation, respectively. The uncertain system
parameters {θ} and the random variables {z} are modeled using prescribed probability
density functions q({θ}) and p({z}), respectively. These functions indicate the relative
plausibility of the possible values of the uncertain parameters {θ} ∈�θ ⊂Rns and ran-
dom variables {z} ∈�z ⊂RnT , respectively. The structural synthesis problem considered
in the present formulation is written as

Min C({y}) (1)

subject to

PF({y}) ≤ Paccept
F , {y} ∈ Y (2)

where Y ⊂ Rnd is the set that contains the side constraints for the design variables,
C({y}) is an objective function which is assumed to be an explicit function of the design
variables, PF({y}) is the failure probability, and Paccept

F is the target system reliability.
Then, the problem consists in the determination of a set of design variables that mini-
mizes an objective function for a specified reliability. The failure probability function
PF({y}) accounts for the uncertainties in the system parameters as well as the uncer-
tainties in the excitation. The failure probability is given in terms of the probability
that some stochastic dynamic responses exceed in magnitude within a specified time
interval [0, T] certain critical threshold levels, that is

PF({y}) = P[{maxi=1,...,nr maxt∈[0,T]|ri(t)| ≥ r∗i ] (3)
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where P[] is the probability that the expression in parenthesis is true, ri(t), i= 1, . . . , nr

are the response functions of interest, and r∗i , i= 1, . . . , nr are the threshold levels. It is
clear that the response functions depend on the design {y}, the particular set of values
{θ} of the uncertain system parameters in �θ, and the particular set of values {z} of the
random variables in �z that may assume, i.e. ri(t)= ri(t, {y}, {θ}, {z}).

3 Mechanical modeling

The general matrix equation of motion for a damped linear structure is given by

[M]{ẍ(t)} + {R({x(t)}, {ẋ(t)})} = [G]{f (t)} (4)

where {x(t)} is the displacement response vector of dimension n, {R({x(t)}, {ẋ(t)})}=
[C]{ẋ(t)}+ [K]{x(t)} is the linear restoring force, [M], [C] and [K] are the mass, damp-
ing and stiffness matrices of dimension n× n, {f (t)} is the excitation vector of dimension
nf , and [G] is a n× nf dimensional matrix that couples the excitation components of
the vector {f (t)} to the degrees of freedom of the structure. The dynamic response is
represented by a linear combination of mode shapes

{x(t)} =
n∑

r=1

{φ}rηr(t) (5)

where ηr(t), r= 1, . . . , n are the modal responses, and {φ}r, r= 1, . . . , n are the eigen-
vectors associated with the eigenproblem of the undamped equation of motion. If the
system is classically damped, the response xi(t) (ith component of the displacement
vector) can be written as

xi(t) =
nf∑

j=1

t∫
0

hij(t − τ)fj(τ) dτ, hij(t) =
n∑

r=1

φir{φ}Tr {gj}
{φ}Tr [M]{φ}r

1
ωdr

e−ξrωrt sin(ωdrt) (6)

where ωr, r= 1, . . . , n are the natural frequencies of the system, ξr, r= 1, . . . , n are
the corresponding damping ratios, hij(t) is the unit impulse response function for the
response function xi(t) at time t due to a unit impulse applied at the jth input at time 0,
{gj} is the jth column of the [G] matrix, andωdr =ωr(1− ξ2

r )1/2 is the damped frequency.
It is noted that Equation 6 can be interpreted as the modal superposition formula for
the impulse response functions. Similar expressions can be derived if other response
functions are considered. For example, the structural response ri(t) is written as

ri(t) =
nf∑

j=1

t∫
0

hij(t − τ)fj(τ) dτ (7)

where hij(t) is the corresponding impulse response function for the response function
ri(t) at time t due to a unit impulse applied at the jth input at time 0.
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4 Stochastic excitation

The components of the excitation vector {f (t)} are modeled as statistically independent
stochastic processes defined as filtered white noise. Each component fj(t) is defined
asfj(t)={β}Tj {u(t)}, where {β}j is a constant vector, and {u(t)} denotes the state-vector
of the filter which satisfies a first-order differential equation of the form

{u̇(t)} = [B]j{u(t)} + {b}jej(t)ωj(t) (8)

where [B]j denotes the system matrix of dimension nF × nF, {b}j is the distribution
vector of the filter of dimension nF, ej(t) is a deterministic modulating time function,
and ωj(t) is a zero mean Gaussian white noise excitation. Then, the process fj(t) can
be represented as

fj(t) =
t∫

0

hF
j (t − τ)ej(τ)ωj(τ) dτ, hF

j (t) =
nF∑

s=1

{β}Tj {ψ}sj{χ}Tsj{b}j
{χ}Tsj{ψ}sj

eλsj t (9)

where hF
j (t) is the unit impulse response function for the process fj(t) at time t due to

a unit impulse applied at time t = 0. The vectors {ψ}sj and {χ}sj, s= 1, . . . , nF are the
complex right and left eigenvectors associated with the right and left eigenproblems
of Equation 8, and λsj, s= 1, . . . , nF are the corresponding eigenvalues. Using the
representation of the process fj(t) given by Equation 9, the response function ri(t) in
Equation 7 can be written as (Jensen (2005))

ri(t) =
nf∑

j=1

t∫
0

h∗
ij(t, τ)ej(τ)ωj(τ) dτ, h∗ij(t, τ) =

t∫
τ

hij(t − z)hF
j (z − τ) dz (10)

where h∗
ij(t, τ) is the impulse response function for the system response function ri(t)

at time t due to a unit impulse applied at the jth filter at time τ. Integration of
Equation 10 provides an explicit expression for the impulse response functions h∗

ij,
j= 1, . . ., nf .These functions are given in terms of the spectral properties of the struc-
tural system and the eigenvalues and eigenvectors of the filters’ state equation. In
practical applications, the input-output relationship given by Equation 10 is often writ-
ten in a discrete manner. Let the sampling be uniform at time spacing �t =T/(nT − 1)
where T is the duration of the excitation, and nT the number of time points so that the
sampling times are tk = (k− 1)�t, k= 1, . . . , nT . If ωj(t) is modeled as a band-limited
Gaussian white noise process with spectral density Sj, that is, ωj(tk)= (2πSj/�t)1/2zj

k,

where zj
k, k= 1, . . . , nT are independent, identically distributed standard Gaussian ran-

dom variables, the discrete-time analog of the input-output relationship in Equation
10 can be written as

ri(tk) =
nf∑

j=1

k∑
l=1

εlh
∗
ij(tk − tl)ej(tl)

√
2πSj �t zj

l (11)
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where εl is a coefficient that depends on the particular numerical integration scheme
used in the evaluation of the convolution integral.

5 Reliabil ity estimation

From the discrete representation of the response functions given in Equation 11, the
first excursion problem 3 can be formulated as

PF({y}) = P

(
nr⋃

i=1

nT⋃
k=1

|ri(tk)| ≥ r∗i

)
= P

(
nr⋃

i=1

nT⋃
k=1

Fik

)
(12)

where Fik is the conditional elementary failure event that the response ri(t) at time tk

exceeds in magnitude the threshold level r∗i . This equation indicates that the probability
of failure is given as the probability of the union of a number of elementary failure ele-
ments. Then, it is seen that the evaluation of the probability of failure corresponds to a
reliability problem of a series system of nr × nT conditional failure elements. Using the
linear relations between input and response in terms of the Gaussian random variables
{zj}, zj

i , i= 1, . . . , nT , the nearest points to the origin in the standard normal space can
be established in a straightforward manner which define uniquely the elementary fail-
ure regions Fik, i= 1, . . . , nr, k= 1, . . . , nT . The interaction of the elementary failure
events Fik in forming the first excursion failure event is considered by an importance
sampling technique (Ang (1992)). In particular, a methodology based on the techniques
proposed in references (Au (2001), Jensen (2007)) is adopted in the present formula-
tion. In the reference (Au (2001)) a very efficient importance sampling technique was
developed for estimating first excursion probabilities of linear dynamical systems with
deterministic structural parameters. The technique was then extended for the case of
linear dynamical systems with uncertain structural parameters in reference (Jensen
(2007)). The details of the procedures as well as the evaluation of their efficiencies can
be found in such references.

6 Approximation concepts

The computation of the failure probability function PF({y}) has to be carried out repeat-
edly during the optimization process. From the previous formulation it is clear that the
estimator of the failure probability is completely determined by the impulse response
functions h∗ij, i= 1, . . . , nr, j= 1, . . . , nf . At the same time, the impulse response
functions depend on the mode shapes {φ}r, r= 1, . . . , n, and the natural frequencies
ωr, r= 1, . . . , n. These quantities are implicit functions of the vector of design variables
{y} and the vector of uncertain structural parameters {θ}, and they are available only
in a numerical way. For systems of practical interest the repeated evaluation of these
quantities can be very costly in terms of computational resources. Hence, in order to
increase the efficiency of the implementation an approximation strategy is introduced
here.

6.1 Approximate system responses

The system responses ri(t), i= 1, . . . , nr are characterized in terms of the spectral
properties of the structural system. These quantities are approximated with respect
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to the design variables and uncertain structural parameters. For example the fre-
quency ωr is approximated about a particular set of values {y∗}, y∗i , i= 1, . . . , nd, and
{θ∗}, θ∗i , i= 1, . . . , ns of the set of design variables and uncertain structural parameters,
respectively, as

ω̃r({y}, {θ}) = ωr({y∗}, {θ∗}) +
nd∑
i=1

∂ωr({y∗}, {θ∗})
∂yi

Bi
ωr

(yi, y∗i )

+
ns∑

i=1

∂ωr({y∗}, {θ∗})
∂θi

Bi
ωr

(θi, θ∗i ) (13)

where Bi
ωr

(yi, y∗i ) and Bi
ωr

(θi, θ∗i ) are operators that define the type of approxima-
tion for the components yi and θi, respectively. For instance, if Bi

ω(yi, y∗i )= yi − y∗i
the quantity is approximated as a linear function of the design variable yi. A similar
approximation is used for the other quantities. It is noted that the evaluation of the par-
tial derivatives used in the approximations requires a classical eigenvalue-eigenvector
sensitivity analysis at the point ({y∗}, {θ∗}). An efficient procedure for determining
eigenvector derivatives is used in this implementation (Nelson (1976)). Using the ear-
lier approximations of the spectral quantities in the expression of the unit impulse
response functions h∗

ij, i= 1, . . . , nr, j= 1, . . . , nf , equation 11 can be written as

r̃i(tk) =
nf∑

j=1

k∑
l=1

εl h̃
∗
ij(tk − tl)ej(tl)

√
2πSj �t zj

l (14)

where h̃∗ij represents the approximation of h∗
ij. Equation 14 provides an explicit approx-

imation of the response process ri in terms of the design variables {y} and uncertain
structural parameters {θ}. Note that the characterization of the approximate response
functions r̃i, i= 1, . . . , nr requires only one dynamic analysis at the point ({y∗}, {θ∗})
(eigenvalue-eigenvector sensitivity analysis).

6.2 Approximate fai lure probabi l i t ies

The computational efficiency of the design process is further increased by approxi-
mating the failure probability function locally. The probability of failure PF({y}) is
approximated locally about a point {y∗} as

P̃F({y}) = exp(H({y}, {y∗})) (15)

where H({y}, {y∗}) is a multivariable polynomial function, and {y∗} is a point in
the design space (Gasser (1997), Jensen (2005)). A simple linear expansion for the
multivariable polynomial function is used in the present implementation, that is
H({y}, {y∗})= λ0 +{λ}T ({y}− {y∗}). The polynomial coefficients are obtained by con-
sidering an augmented reliability problem where the design variables yii= 1, . . . , nd

are artificially considered as uncertain with independent components uniformly dis-
tributed. Let κ({y})= ∏nd

i=1 κi(yi) be the uniform joint probability density function of
the design variables and κi(yi) the one dimensional uniform density function of yi. The
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probability density function κ({y}) is defined in the vicinity of the design point {y∗}, that
is, �{y∗}. The coefficients of the expansion are determined by solving a set of non-linear
equations which is defined by considering some statistics of the augmented reliability
problem. In particular, the average failure probability Paverage

F and the first moments of
area mi

PF
, i= 1, . . . , nd of the failure probability function PF({y}) over the space �{y∗}

are given by

Paverage
F =

∫
�{y∗}

PF({y})κ({y})d({y})

mi
PF

=
∫
�{y∗}

yiPF({y})κ({y})d({y}), i = 1, . . . , nd (16)

Substituting the expression of the approximate failure probability function P̃F({y})
yields a set of algebraic non-linear equations for the polynomial coefficients (Valdeben-
ito (2007)). The estimates of Paverage

F and mi
PF

, i= 1, . . . , nd are carried out by the
simulation strategy proposed in (Jensen (2007)).

7 Design process

The solution of the stochastic optimization problem proceeds by transforming it into a
sequence of explicit approximate subproblems having a simple explicit algebraic struc-
ture. Using the characterization of the failure probability function given en Equation
15 the following approximate reliability-based optimization problem is generated

Min C({y}) (17)

subject to

P̃k
F({y}) ≤ Paccept

F , {y} ∈ Yk (18)

where Yk is a domain in the vicinity of the current design where the approximation
of the failure probability function is expected to yield reasonable results. The set Yk

is changed at each design cycle in order to protect the quality of the approximations.
The actual optimization procedure applied to the sub-problems is executed without
any dynamic response calculation and reliability analysis, respectively. Therefore, the
solution of the sub-problems can be obtained in an efficient manner by applying any
nonlinear optimization algorithm. As previously pointed out, the approximate failure
probability function P̃k

F({y}) is obtained by solving a set of non-linear equations which
in turns implies the estimation of Paverage

F and mi
PF

, i= 1, . . . , nd. These estimates are
computed using the local approximations of the system responses about the current
design {y}k and a particular set of values {θ}ref of the set of uncertain structural parame-
ters. Then, the characterization of the approximate failure probability function P̃k

F({y})
requires just one dynamic analysis (eigenvalue-eigenvector sensitivity analysis at the
point ({y}k, {θ}ref )). The specification of {θ}ref , which is called the reference point, is
discussed in the following section. The new design, obtained by the solution of the
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approximate optimization problem given in equations 17 and 18, is used as the cur-
rent design for the next design cycle. The process is continued until some convergence
criterion is satisfied.

8 Implementation issues

For a given design {y} the reference point is selected as the most probable value of the
uncertain structural parameters given that failure has occurred, that is,

{θ}ref = Eq|F({θ}) =
∫
�θ

{θ}q({θ}/F) d{θ} (19)

where q({θ}/F) denotes the distribution of the uncertain structural parameters given
that failure has occurred. By using the Bayes’ Theorem it can be shown that the ref-
erence point corresponds to the centroid of the integrand function PF({θ})q({θ}) of the
failure probability integral∫

�θ

PF({θ})q({θ} d{θ} (20)

where PF({θ}) is the conditional failure probability function for a given value of the
set of uncertain system parameters {θ}. Then, it is expected that the main contribution
to the failure probability, in terms of the uncertain structural parameters, comes from
a domain in the neighborhood of {θ}ref . Based on this observation, it is reasonable to
approximate the response functions about this point since the approximations are very
accurate in the vicinity of the point where the approximations are constructed. For an
efficient estimation of the reference point during the optimization process the design
variables are, as before, artificially considered as uncertain. At the kth design cycle the
reference point is estimated as

{θ}kref ≈
1

Paverage
F

2
Ns

Ns∑
r=1

{θ}r q({θ}r)
ϕ({θ}r)

∑nr
i=1

∑nT
k=1�(−βik({y}r, {θ}r))∑nr

i=1

∑nT
k=1

∏
Fik ({y}r, {θ}r, {z}r) (21)

where Ns is the number of samples, �( · ) is the cumulative distribution function of
the standard Gaussian distribution, βik({y}, {θ}) is the reliability index evaluated at the
design {y} and a particular set of values {θ}, and

∏
(·, ·, ·) is the indicator function.

The {y}r and {z}r samples are simulated according to the probability density function
κ and the importance sampling density proposed in (Au (2001)), respectively. On the
other hand, the {θ}r samples are obtained from the importance sampling density ϕ
which is defined as the original probability density function of the uncertain structural
parameters q with most probable value equal to the reference point from the previ-
ous design cycle, i.e. {θ}k−1

ref . It is noted that the same samples used to estimate the

average failure probabilityPaverage
F and the first moments of area mi

PF
, i= 1, . . . , ndof

the failure probability function can be used to estimate the reference point in Equa-
tion 21. Therefore, the estimation of such point is carried out in an efficient manner
with a minimum additional computational cost. In summary, each design cycle of
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the optimization process involves the approximation of the failure probability func-
tion in terms of the design variables (Equation 15), the estimation of the reference
point (Equation 21), and the solution of the corresponding approximate optimization
problem (Equations 17 and 18). The approximation of the failure probability function
requires the estimation of the average failure probability Paverage

F , and the first moments
of area mi

PF
, i= 1 , . . . , nd of the failure probability function. Such estimations are

computed using local approximations of the system responses which in turns imply
one eigenvalue-eigenvector sensitivity analysis at the current design and at a partic-
ular set of values of the set of uncertain structural parameters (reference point from
the previous design cycle). On the other hand, the estimation of the reference point
for the current design cycle (to be used in the next iteration) is immediate since the
same information used for the estimation of the average and first moments of area
of the failure probability function can be used in Equation 21. In this manner, each
design cycle requires only one dynamic analysis and the information gathered during
the optimization process is utilized in a cumulative manner.

9 Example

A six story reinforced concrete building under stochastic earthquake excitation is con-
sidered as an example problem. A top view of the building is shown in Figure 1. Each
of the six floors is supported by 64 columns of square cross-section. All floors have a
constant height and equal to 3.5 m leading a total height of 21.0 m. It is assumed that
each floor may be represented sufficiently accurate as rigid within the x− y plane when
compared with the flexibility of the columns. Hence, each floor can be represented by
just three degrees of freedom, i.e. two translatory displacements and a rotational dis-
placement. The total mass of the first five floors is given by 1.3× 106 kg and the mass
of the sixth floor is equal to 0.72× 106 kg. A Young’s modulus E= 3.0× 1010 N/m2 is
considered in this case. A classical damping is assumed in the model so that the modes
have 5% of critical damping (ξ= 0.05). The Young’s modulus E and the damping
ratio ξ are assumed to be uncertain and they are modeled by independent Gaussian
random variables with coefficient of variation equal to 25% and 40%, respectively.
The building is excited horizontally by earthquake excitation a(t) in the y direction.

x

y

ϑ 

3@6 [m]

9@6 [m]

3@6 [m]

9@6 [m]

Figure 1 Six-story building. Floor plan.
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The acceleration is modeled as stochastic process defined as filtered white noise. With
respect to Equation 8,

{β}T =< ω2
1g 2ξ1gω1g − ω2

2g − 2ξ2gω2g >, {b}T =< 0 1 0 0 > (22)

[B] =


0 1 0 0

−ω2
1g −2ξ1gω1g 0 0

0 0 0 1
ω2

1g 2ξ1gω1g −ω2
2g −2ξ2gω2g

 (23)

with envelope function

e(t) =
 (t/4)2 if t ≤ 4s

1 if 4 ≤ t ≤ 10s
exp (−0.2(t − 10) if 10 ≤ t ≤ 15s

(24)

The values ω1g = 15.6 rad/s, ξ1g = 0.6, ω2g = 1.0, rad/s, ξ2g = 0.9, and white noise
spectral intensity S= 0.001 m2/s3 are used in this application. The sampling interval
is assumed to be �t = 0.05 s and the duration of the excitation is T = 15 s. The total
number of time points, and hence the number of input random variables {z} in the
discrete representation of the excitation is thus nT = 301.

A deterministic objective function is chosen for the optimization problem, and it
corresponds to the total volume of the column elements. To control serviceability and
minor damage, the design criterion considered in this example problem is defined in
terms of the interstory drift ratio in the x and y direction over all stories of the building,
and the relative rotation between consecutive floors. Therefore, the number of response
functions involved in the problem is 18 and the system failure event F is defined as

F =
18⋃
i=1

301⋃
k=1

{|ri(t)| > r∗i } =
18⋃
i=1

301⋃
k=1

Fik (25)

where the upper bound values are chosen to be 0.2% of the story height for the inter-
story drift ratio, and 0.0029% of the story high for the relative rotation. These levels of
response are related to low level vibration where the structural response is expected to
be dominated by linear elastic behavior. Therefore, the use of the linear model consid-
ered in this work is adequate for the current example problem. The design constraint
for the optimization problem is written as PF ≤ 10−3. The design variables are the
dimensions of the square cross section of the column elements. Over the height of the
building, the columns have six different cross-sections with initial design y1 = 0.90 m,
i= 1, . . . , 6 and side constraints 0.50≤ yi ≤ 1.60 m. The final design of the structure
using deterministic and uncertain structural parameters is given in Table 1. The prob-
abilities of failure have been estimated with a coefficient of variation of 15% in this
case. The corresponding iteration history of the design process in terms of the volume
of the column elements is shown in Figure 2. A variable move limit strategy in which
all design variables are initially assigned the same move limit value is adopted in this
application. As the design process progresses and the optimum is approached the initial
move limit value of 30% (percentage of the current design point) is continually reduced
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Figure 2 Iteration history in terms of the volume of the column elements.

as the approximations become more critical for convergence. The last iterations are
performed with a move limit of 5%. The convergence criterion is defined in terms of
the relative change of the objective function between two consecutive iterations (1% in
this implementation). The optimization process converges in about 10 design cycles for
the case of deterministic structural parameters and in 12 iterations when the parame-
ters are uncertain. The fast convergence leads to a small number of dynamic analyses
to be performed during the optimization process. For example, in the case of uncertain
structural parameters, only 12 system dynamic analyses are required to obtain the final
design by the proposed approach whereas 167000 analyses are required in the direct
case. This number is less than 0.02% of the total number of analyses to be performed
in the exact case. In this context the exact case solution corresponds to the final design
obtained when the system dynamic analyses are evaluated directly for every change
of the design variables during the optimization process. The main difference between
the approximate and direct solution is in the number of dynamic analyses required for
convergence since it was found that both solutions are almost identical.

From Table 1 it is observed that the dimensions of the column elements at the final
design of the system with uncertain structural parameters are greater than the corre-
sponding components of the model with deterministic parameters. The volume of the
uncertain model increases in about 67% with respect to the volume of the deterministic
system. Then, the effect of the uncertainty in the system parameters on the final design
is significant. The importance of considering the effects of uncertainty in the structural
parameters during the design process can also be illustrated from a constraint violation
point of view. The probability of failure of the deterministic model at the initial design
is given by 9.90× 10−7, and therefore this design is feasible. On the contrary, the initial
design of the uncertain system is infeasible since it has a probability of failure equal to
1.45× 10−2. The effect of the uncertain system parameters is also evident during the
optimization process. For example, the failure probability of the final design obtained
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Table 1 Final designs.

Final design

Design variables Initial design Deterministic model Uncertain model

y1 (m) 0.90 0.83 1.06
y2 (m) 0.90 0.79 1.03
y3 (m) 0.90 0.77 1.03
y4 (m) 0.90 0.73 0.95
y5 (m) 0.90 0.67 0.86
y6 (m) 0.90 0.57 0.70

Objective function (m3) 1089 723 1211
Normalized
Probability of
Failure PF/P

accept
F 50.0* 0.90*

Number of
Dynamic analyses 10 12

∗considering uncertainties in structural parameters
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Figure 3 Evolution of reference points.

with deterministic structural properties is 50 times the value of the target failure prob-
ability when the uncertainty in the system parameters is considered. Therefore, this
design is not even feasible. These results indicate the importance of considering the
effect of system parameter uncertainty explicitly during the design process.

As previously pointed out the efficiency of the proposed method depends, among
other things, on the selection of the reference point. It is found that the values of the
reference points corresponding to the uncertain system parameters ξ (modal damping)
and E (Young’s modulus) show an important change during the design process. Fig-
ure 3 shows the evolution of the values of the reference points during the optimization
process.
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The values are normalized by their most probable values, i.e. ξ̄= 0.05 and
Ē= 3.0× 1010 N/m2. It is seen that the values of the reference points change signifi-
cantly during the optimization process. At each design cycle, the most probable value
of the system parameters ξ and E, given that failure has occurred, is determined by
the proposed approach. At the final design the value of the reference point is equal to
(0.3ξ̄, 0.5Ē). This result indicates that the most probable value of the system param-
eters ξ and E, given that failure has occurred with probability 10−3, is substantially
different from their most probable values. Then, the main contribution to the proba-
bility of failure, in terms of the uncertainty of the damping ratio and Young’s modulus,
comes from a domain in the vicinity of (0.3ξ̄, 0.5Ē). From these results it is clear that
the approximations of the response functions in terms of the uncertain system parame-
ters should be expanded about the reference points and not about their most probable
values.

10 Conclusions

A methodology based on approximation concepts for efficient solution of reliability-
based optimization problems of uncertain linear systems subject to stochastic loading
has been presented. The reduction of the computational effort required for reliabil-
ity estimation and reliability sensitivity during the optimization procedure is crucial.
This is achieved by application of approximation concepts which are used to approxi-
mate the system responses and failure probability functions. The system responses are
approximated in terms of the design variables and uncertain system parameters while
the failure probability functions are approximated with respect to the design variables.
The proposed procedure dramatically reduces the number of exact dynamic analyses
as well as reliability estimations required during the design process. This is essential
especially for large complex systems since the computational efforts are reduced con-
siderably in those cases. Thus, the proposed implementation is expected to be useful
in the reliability-based optimal design of real structural systems. Numerical results
show that uncertainty in the structural parameters may cause significant changes in
the performance and reliability of linear systems subject to stochastic loading. In these
situations the uncertainty in the specification of the structural properties should be
properly accounted for during the design process.
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