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PREFACE

BACKGROUND

Fluid mechanics is an exciting and fascinating subject with unlimited practi-
cal applications ranging from microscopic biological systems to automobiles,
airplanes, and spacecraft propulsion. Yet fluid mechanics has historically been
one of the most challenging subjects for undergraduate students. Unlike ear-
lier freshman- and sophomore-level subjects such as physics, chemistry, and
engineering mechanics, where students often learn equations and then “plug
and chug” on their calculators, proper analysis of a problem in fluid mechan-
ics requires much more. Oftentimes, students must first assess the problem,
make and justify assumptions and/or approximations, apply the relevant phys-
ical laws in their proper forms, and solve the resulting equations before ever
plugging any numbersinto their calculators. Many problemsin fluid mechan-
ics require more than just knowledge of the subject, but also physical intuition
and experience. Our hopeisthat this book, through its careful explanations of
concepts and its use of numerous practical examples, sketches, figures, and
photographs, bridges the gap between knowledge and proper application of
that knowledge.

Fluid mechanics is a mature subject; the basic equations and approxima-
tions are well established and can be found in numerous introductory fluid
mechanics books. The books are distinguished from one another in the way
the material is presented. An accessible fluid mechanics book should present
the material in a progressive order from simple to more difficult, building each
chapter upon foundations laid down in previous chapters. In this way, even the
traditionally challenging aspects of fluid mechanics can be learned effectively.
Fluid mechanics is by its very nature a highly visual subject, and students
learn more readily by visual stimulation. It is therefore imperative that a good
fluid mechanics book also provide quality figures, photographs, and visual
aids that help to explain the significance and meaning of the mathematical
expressions.

OBJECTIVES

This book isintended for use as atextbook in the first fluid mechanics course
for undergraduate engineering studentsin their junior or senior year. Students
are assumed to have an adequate background in calculus, physics, engineering
mechanics, and thermodynamics. The objectives of thistext are

» To cover the basic principles and equations of fluid mechanics

* To present numerous and diverse real-world engineering examples to
give students a feel for how fluid mechanics is applied in engineering
practice

» To develop an intuitive understanding of fluid mechanics by emphasiz-
ing the physics, and by supplying attractive figures and visual aids to
reinforce the physics
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The text contains sufficient material to give instructors flexibility as to
which topics to emphasize. For example, aeronautics and aerospace engineer-
ing instructors may emphasize potential flow, drag and lift, compressible flow,
turbomachinery, and CFD, while mechanical and civil engineering instructors
may choose to emphasize pipe flows and open-channel flows, respectively.
The book has been written with enough breadth of coverage that it can be used
for atwo-course sequence in fluid mechanicsif desired.

PHILOSOPHY AND GOAL

We have adopted the same philosophy as that of the texts Thermodynamics:
An Engineering Approach by Y. A. Cengel and M. A. Boles, Heat Transfer: A
Practical Approach by Y. A. Cengel, and Fundamentals of Thermal-Fluid Sci-
ences by Y. A. Cengel and R. H. Turner, al published by McGraw-Hill.
Namely, our goal isto offer an engineering textbook that

» Communicates directly to the minds of tomorrow’s engineersin a sim-
ple yet precise manner

 Leads students toward a clear understanding and firm grasp of the basic
principles of fluid mechanics

» Encourages creative thinking and development of a deeper understand-
ing and intuitive feel for fluid mechanics

* |Isread by students with interest and enthusiasm rather than merely asan
aid to solve problems

Itisour philosophy that the best way to learn is by practice. Therefore, spe-
cial effort is made throughout the book to reinforce material that was pre-
sented earlier (both earlier in the chapter and in previous chapters). For
example, many of the illustrated example problems and end-of-chapter prob-
lems are comprehensive, forcing the student to review concepts learned in pre-
vious chapters.

Throughout the book, we show examples generated by computational fluid
dynamics (CFD), and we provide an introductory chapter on CFD. Our godl is
not to teach details about numerical algorithms associated with CFD—thisis
more properly presented in a separate course, typically at the graduate level.
Rather, it is our intent to introduce undergraduate students to the capabilities
and limitations of CFD as an engineering tool. We use CFD solutionsin much
the same way as we use experimental results from a wind tunnel test, i.e., to
reinforce understanding of the physics of fluid flows and to provide quality
flow visualizations that help to explain fluid behavior.

CONTENT AND ORGANIZATION

This book is organized into 15 chapters beginning with fundamental concepts
of fluids and fluid flows and ending with an introduction to computational
fluid dynamics, the application of which is rapidly becoming more common-
place, even at the undergraduate level.

» Chapter 1 provides a basic introduction to fluids, classifications of fluid
flow, control volume versus system formulations, dimensions, units, sig-
nificant digits, and problem-solving techniques.



Chapter 2 is devoted to fluid properties such as density, vapor pressure,
specific heats, viscosity, and surface tension.

Chapter 3 deals with fluid statics and pressure, including manometers
and barometers, hydrostatic forces on submerged surfaces, buoyancy
and stability, and fluidsin rigid-body motion.

Chapter 4 covers topics related to fluid kinematics, such as the differ-
ences between Lagrangian and Eulerian descriptions of fluid flows, flow
patterns, flow visualization, vorticity and rotationality, and the Reynolds
transport theorem.

Chapter 5 introduces the fundamental conservation laws of mass,
momentum, and energy, with emphasis on the proper use of the mass,
Bernoulli, and energy equations and the engineering applications of
these equations.

Chapter 6 applies the Reynolds transport theorem to linear momentum
and angular momentum and emphasizes practical engineering applica
tions of the finite control volume momentum analysis.

Chapter 7 reinforces the concept of dimensional homogeneity and intro-
duces the Buckingham Pi theorem of dimensional analysis, dynamic
similarity, and the method of repeating variables—material that is useful
throughout the rest of the book and in many disciplines in science and
engineering.

Chapter 8 is devoted to flow in pipes and ducts. We discuss the differ-
ences between laminar and turbulent flow, friction losses in pipes and
ducts, and minor losses in piping networks. We also explain how to
properly select apump or fan to match a piping network. Finally, we dis-
cuss various experimental devicesthat are used to measure flow rate and
velocity.

Chapter 9 deals with differential analysis of fluid flow and includes
derivation and application of the continuity equation, the Cauchy equa-
tion, and the Navier—Stokes equation. We also introduce the stream
function and describe its usefulness in analysis of fluid flows.

Chapter 10 discusses severa approximations of the Navier—Stokes equa
tions and provides example solutions for each approximation, including
creeping flow, inviscid flow, irrotational (potential) flow, and boundary
layers.

Chapter 11 covers forces on bodies (drag and lift), explaining the dis-
tinction between friction and pressure drag, and providing drag coeffi-
cients for many common geometries. This chapter emphasizes the
practical application of wind tunnel measurements coupled with
dynamic similarity and dimensional analysis conceptsintroduced earlier
in Chapter 7.

Chapter 12 extends fluid flow analysis to compressible flow, where the
behavior of gasesis greatly affected by the Mach number, and the con-
cepts of expansion waves, normal and oblique shock waves, and choked
flow are introduced.

Chapter 13 deals with open-channel flow and some of the unique fea-
tures associated with the flow of liquids with afree surface, such as sur-
face waves and hydraulic jJumps.
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* Chapter 14 examines turbomachinery in more detail, including pumps,
fans, and turbines. An emphasis is placed on how pumps and turbines
work, rather than on their detailed design. We also discuss overall pump
and turbine design, based on dynamic similarity laws and simplified
velocity vector analyses.

» Chapter 15 describes the fundamental concepts of computational fluid
dynamics (CFD) and shows students how to use commercial CFD codes
as atool to solve complex fluid mechanics problems. We emphasi ze the
application of CFD rather than the algorithms used in CFD codes.

Each chapter contains a large number of end-of-chapter homework prob-
lems suitable for use by instructors. Most of the problems that involve calcu-
lations are in Sl units, but approximately 20 percent are written in English
units. Finally, a comprehensive set of appendicesis provided, giving the ther-
modynamic and fluid properties of several materials, not just air and water as
in most introductory fluids texts. Many of the end-of-chapter problems require
use of the properties found in these appendices.

LEARNING TOOLS

EMPHASIS ON PHYSICS

A distinctive feature of thisbook isits emphasis on the physical aspects of the
subject matter in addition to mathematical representations and manipulations.
The authors believe that the emphasis in undergraduate education should
remain on developing a sense of underlying physical mechanisms and a mas-
tery of solving practical problems that an engineer islikely to face in the real
world. Developing an intuitive understanding should also make the course a
more motivating and worthwhile experience for the students.

EFFECTIVE USE OF ASSOCIATION

An observant mind should have no difficulty understanding engineering sci-
ences. After all, the principles of engineering sciences are based on our every-
day experiences and experimental observations. Therefore, a physical,
intuitive approach is used throughout thistext. Frequently, parallels are drawn
between the subject matter and students' everyday experiences so that they
can relate the subject matter to what they already know.

SELF-INSTRUCTING

The material inthetext isintroduced at alevel that an average student can fol-
low comfortably. It speaks to students, not over students. In fact, it is self-
instructive. Noting that the principles of science are based on experimental
observations, most of the derivationsin thistext are largely based on physical
arguments, and thus they are easy to follow and understand.

EXTENSIVE USE OF ARTWORK

Figures are important learning tools that help the students “get the picture,”
and the text makes effective use of graphics. It contains more figuresand illus-
trations than any other book in this category. Figures attract attention and
stimulate curiosity and interest. Most of the figuresin thistext are intended to
serve as a means of emphasizing some key concepts that would otherwise go
unnoticed; some serve as page summaries.



CHAPTER OPENERS AND SUMMARIES

Each chapter begins with an overview of the materia to be covered. A summary
isincluded at the end of each chapter, providing a quick review of basic con-
cepts and important relations, and pointing out the relevance of the material.

NUMEROUS WORKED-OUT EXAMPLES

WITH A SYSTEMATIC SOLUTIONS PROCEDURE

Each chapter contains several worked-out examples that clarify the material
and illustrate the use of the basic principles. An intuitive and systematic
approach is used in the solution of the example problems, while maintaining
aninformal conversational style. The problemisfirst stated, and the objectives
are identified. The assumptions are then stated, together with their justifica-
tions. The properties needed to solve the problem are listed separately.
Numerical values are used together with their units to emphasize that numbers
without units are meaningless, and unit manipulations are as important as
mani pulating the numerical values with a calculator. The significance of the
findings is discussed following the solutions. This approach is aso used con-
sistently in the solutions presented in the instructor’s solutions manual .

A WEALTH OF REALISTIC END-OF-CHAPTER PROBLEMS

The end-of-chapter problems are grouped under specific topics to make prob-
lem selection easier for both instructors and students. Within each group of
problems are Concept Questions, indicated by “C,” to check the students’ level
of understanding of basic concepts. The problems under Review Problems are
more comprehensive in nature and are not directly tied to any specific section
of a chapter —in some cases they require review of material learned in previ-
ous chapters. Problems designated as Design and Essay are intended to
encourage students to make engineering judgments, to conduct independent
exploration of topics of interest, and to communicate their findings in a pro-
fessional manner. Problems designated by an “E” are in English units, and S|
users can ignore them. Problems with the @ are solved using EES, and com-
plete solutions together with parametric studies are included on the enclosed
DVD. Problems with the E are comprehensive in nature and are intended to
be solved with a computer, preferably using the EES software that accompa-
nies this text. Several economics- and safety-related problems are incorpo-
rated throughout to enhance cost and safety awareness among engineering
students. Answers to selected problems are listed immediately following the
problem for convenience to students.

USE OF COMMON NOTATION

The use of different notation for the same quantities in different engineering
courses has long been a source of discontent and confusion. A student taking
both fluid mechanics and heat transfer, for example, has to use the notation Q
for volume flow rate in one course, and for heat transfer in the other. The need
to unify notation in engineering education has often been raised, even in some
reports of conferences sponsored by the National Science Foundation through
Foundation Coalitions, but little effort has been made to date in this regard.
For example, refer to thefinal report of the “Mini-Conference on Energy Stem
Innovations, May 28 and 29, 2003, University of Wisconsin.” In this text we
made a conscious effort to minimize this conflict by adopting the familiar
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thermodynamic notation V for volume flow rate, thus reserving the notation Q
for heat transfer. Also, we consistently use an overdot to denote time rate. We
think that both students and instructors will appreciate this effort to promote a
common notation.

A CHOICE OF SI ALONE OR SI/ENGLISH UNITS

In recognition of the fact that English units are still widely used in some
industries, both Sl and English units are used in thistext, with an emphasison
Sl. The materia in this text can be covered using combined SI/English units
or Sl units alone, depending on the preference of the instructor. The property
tables and charts in the appendices are presented in both units, except the ones
that involve dimensionless quantities. Problems, tables, and chartsin English
units are designated by “E” after the number for easy recognition, and they
can be ignored easily by the Sl users.

COMBINED COVERAGE OF BERNOULLI AND ENERGY EQUATIONS
The Bernoulli equation is one of the most frequently used equationsin fluid
mechanics, but it is also one of the most misused. Therefore, it isimportant to
emphasize the limitations on the use of this idealized equation and to show
how to properly account for imperfections and irreversible losses. In Chapter
5, we do this by introducing the energy equation right after the Bernoulli
equation and demonstrating how the solutions of many practical engineering
problems differ from those obtained using the Bernoulli equation. This helps
students develop aredlistic view of the Bernoulli equation.

A SEPARATE CHAPTER ON CFD

Commercia Computational Fluid Dynamics (CFD) codes are widely used in
engineering practice in the design and analysis of flow systems, and it has
become exceedingly important for engineers to have a solid understanding of
the fundamental aspects, capabilities, and limitations of CFD. Recognizing
that most undergraduate engineering curriculums do not have room for afull
course on CFD, a separate chapter is included here to make up for this defi-
ciency and to equip students with an adequate background on the strengths
and weaknesses of CFD.

APPLICATION SPOTLIGHTS

Throughout the book are highlighted examples called Application Spotlights
where a real-world application of fluid mechanicsis shown. A unique feature
of these specia examplesisthat they are written by guest authors. The Appli-
cation Spotlights are designed to show students how fluid mechanics has
diverse applicationsin awide variety of fields. They also include eye-catching
photographs from the guest authors’ research.

GLOSSARY OF FLUID MECHANICS TERMS

Throughout the chapters, when an important key term or concept isintroduced
and defined, it appears in black boldface type. Fundamental fluid mechanics
terms and concepts appear in blue boldface type, and these fundamental terms
also appear in a comprehensive end-of-book glossary devel oped by Professor
James Brasseur of The Pennsylvania State University. Thisunique glossary is
an excellent learning and review tool for students as they move forward in



their study of fluid mechanics. In addition, students can test their knowledge
of these fundamental terms by using the interactive flash cards and other
resources located on our accompanying website (www.mhhe.com/cengel).

CONVERSION FACTORS

Frequently used conversion factors, physical constants, and frequently used
properties of air and water at 20°C and atmospheric pressure are listed on the
front inner cover pages of the text for easy reference.

NOMENCLATURE
A list of the magjor symbols, subscripts, and superscripts used in the text are
listed on the inside back cover pages of the text for easy reference.

SUPPLEMENTS

These supplements are available to adopters of the book:

STUDENT RESOURCES DVD

Packaged free with every new copy of thetext, thisDVD provides awealth of
resources for students including Fluid Mechanics Videos, a CFD Animations
Library, and EES Software.

ONLINE LEARNING CENTER

Web support is provided for the book on our Online Learning Center at
www.mhhe.com/cengel. Visit this robust site for book and supplement infor-
mation, errata, author information, and further resources for instructors and
students.

ENGINEERING EQUATION SOLVER (EES)

Developed by Sanford Klein and William Beckman from the University of
Wisconsin—Madison, this software combines equation-solving capability and
engineering property data. EES can do optimization, parametric analysis, and
linear and nonlinear regression, and provides publication-quality plotting
capabilities. Thermodynamics and transport properties for air, water, and
many other fluids are built-in and EES allows the user to enter property data
or functional relationships.

FLUENT FLOWLAB® SOFTWARE AND TEMPLATES

Asanintegra part of Chapter 15, “Introduction to Computational Fluid Dynam-
ics,” we provide access to a student-friendly CFD software package developed
by Fluent Inc. In addition, we provide over 40 FLUENT FLOWLAB templates
to complement the end-of-chapter problemsin Chapter 15. These problems and
templates are unique in that they are designed with both afluid mechanicslearn-
ing objective and a CFD learning objective in mind.

INSTRUCTOR’S RESOURCE CD-ROM

(AVAILABLE TO INSTRUCTORS ONLY)

ThisCD, available to instructors only, offers awide range of classroom prepa
ration and presentation resources including an electronic solutions manual
with PDF files by chapter, al text chapters and appendices as downloadable
PDF files, and all text figuresin JPEG format.
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COSMOS CD-ROM

(AVAILABLE TO INSTRUCTORS ONLY)

This CD, available to instructors only, provides electronic solutions delivered
via our database management tool. McGraw-Hill’s COSMOS allows instruc-
torsto streamline the creation of assignments, quizzes, and tests by using prob-
lems and solutions from the textbook—as well as their own custom material.
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INTRODUCTION AND
BASIC CONCEPTS

used in the analysis of fluid flow. We start this chapter with a discussion

of the phases of matter and the numerous ways of classification of fluid
flow, such as viscous versus inviscid regions of flow, internal versus external
flow, compressible versus incompressible flow, laminar versus turbulent
flow, natural versus forced flow, and steady versus unsteady flow. We aso
discuss the no-dlip condition at solid—fluid interfaces and present a brief his-
tory of the development of fluid mechanics.

After presenting the concepts of system and control volume, we review
the unit systems that will be used. We then discuss how mathematical mod-
els for engineering problems are prepared and how to interpret the results
obtained from the analysis of such models. This is followed by a presenta-
tion of an intuitive systematic problem-solving technique that can be used as
amodel in solving engineering problems. Finally, we discuss accuracy, pre-
cision, and significant digits in engineering measurements and calculations.

In this introductory chapter, we present the basic concepts commonly

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

Understand the basic concepts
of fluid mechanics and recognize
the various types of fluid flow
problems encountered in
practice

Model engineering problems and
solve them in a systematic
manner

Have a working knowledge of
accuracy, precision, and
significant digits, and recognize
the importance of dimensional
homogeneity in engineering

calculations
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FIGURE 1-1

Fluid mechanics deals with liquids and
gases in motion or at rest.
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FIGURE 1-2

Deformation of a rubber eraser placed
between two parallel plates under the
influence of a shear force.

1-1 = INTRODUCTION

M echanics is the oldest physical science that deals with both stationary and
moving bodies under the influence of forces. The branch of mechanics that
deals with bodies at rest is called statics, while the branch that deals with
bodies in motion is called dynamics. The subcategory fluid mechanics is
defined as the science that deals with the behavior of fluids at rest (fluid sta-
tics) or in motion (fluid dynamics), and the interaction of fluids with solids
or other fluids at the boundaries. Fluid mechanics is also referred to as fluid
dynamics by considering fluids at rest as a special case of motion with zero
velocity (Fig. 1-1).

Fluid mechanics itself is also divided into several categories. The study of
the motion of fluids that are practically incompressible (such as liquids,
especially water, and gases at low speeds) is usually referred to as hydrody-
namics. A subcategory of hydrodynamics is hydraulics, which deals with lig-
uid flows in pipes and open channels. Gas dynamics deals with the flow of
fluids that undergo significant density changes, such as the flow of gases
through nozzles at high speeds. The category aerodynamics deals with the
flow of gases (especially air) over bodies such as aircraft, rockets, and automo-
biles at high or low speeds. Some other specialized categories such as meteo-
rology, oceanography, and hydrology deal with naturally occurring flows.

What Is a Fluid?

You will recall from physics that a substance exists in three primary phases:
solid, liquid, and gas. (At very high temperatures, it also exists as plasma.)
A substance in the liquid or gas phase is referred to as a fluid. Distinction
between a solid and a fluid is made on the basis of the substance’s ability to
resist an applied shear (or tangential) stress that tends to change its shape. A
solid can resist an applied shear stress by deforming, whereas a fluid
deforms continuously under the influence of shear stress, no matter how
small. In solids stress is proportional to strain, but in fluids stress is propor-
tional to strain rate. When a constant shear force is applied, a solid eventu-
ally stops deforming, at some fixed strain angle, whereas a fluid never stops
deforming and approaches a certain rate of strain.

Consider a rectangular rubber block tightly placed between two plates. As
the upper plate is pulled with a force F while the lower plate is held fixed,
the rubber block deforms, as shown in Fig. 1-2. The angle of deformation «
(called the shear strain or angular displacement) increases in proportion to
the applied force F. Assuming there is no slip between the rubber and the
plates, the upper surface of the rubber is displaced by an amount equal to
the displacement of the upper plate while the lower surface remains station-
ary. In equilibrium, the net force acting on the plate in the horizontal direc-
tion must be zero, and thus a force equal and opposite to F must be acting
on the plate. This opposing force that develops at the plate—rubber interface
due to friction is expressed as F = 7A, where 7 is the shear stress and A is
the contact area between the upper plate and the rubber. When the force is
removed, the rubber returns to its original position. This phenomenon would
also be observed with other solids such as a steel block provided that the
applied force does not exceed the elastic range. If this experiment were
repeated with a fluid (with two large parallel plates placed in a large body
of water, for example), the fluid layer in contact with the upper plate would



move with the plate continuously at the velocity of the plate no matter how
small the force F is. The fluid velocity decreases with depth because of fric-
tion between fluid layers, reaching zero at the lower plate.

You will recall from statics that stress is defined as force per unit area
and is determined by dividing the force by the area upon which it acts. The
normal component of the force acting on a surface per unit areais called the
normal stress, and the tangential component of a force acting on a surface
per unit area is called shear stress (Fig. 1-3). In afluid at rest, the normal
stress is called pressure. The supporting walls of a fluid eliminate shear
stress, and thus a fluid at rest is at a state of zero shear stress. When the
walls are removed or a liquid container is tilted, a shear develops and the
liquid splashes or moves to attain a horizontal free surface.

In aliquid, chunks of molecules can move relative to each other, but the
volume remains relatively constant because of the strong cohesive forces
between the molecules. As a result, a liquid takes the shape of the container
it isin, and it forms a free surface in a larger container in a gravitationa
field. A gas, on the other hand, expands until it encounters the walls of the
container and fills the entire available space. This is because the gas mole-
cules are widely spaced, and the cohesive forces between them are very
small. Unlike liquids, gases cannot form a free surface (Fig. 1-4).

Although solids and fluids are easily distinguished in most cases, this dis-
tinction is not so clear in some borderline cases. For example, asphalt appears
and behaves as a solid since it resists shear stress for short periods of time.
But it deforms slowly and behaves like a fluid when these forces are exerted
for extended periods of time. Some plastics, lead, and slurry mixtures exhibit
similar behavior. Such borderline cases are beyond the scope of this text. The
fluids we will deal with in this text will be clearly recognizable as fluids.

Intermolecular bonds are strongest in solids and weakest in gases. One
reason is that molecules in solids are closely packed together, whereas in
gases they are separated by relatively large distances (Fig. 1-5).

The molecules in a solid are arranged in a pattern that is repeated through-
out. Because of the small distances between molecules in a solid, the attrac-
tive forces of molecules on each other are large and keep the molecules at
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The normal stress and shear stress at
the surface of afluid element. For
fluids at rest, the shear stressis zero
and pressure is the only normal stress.
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Unlike aliquid, a gas does not form a
free surface, and it expandsto fill the
entire available space.

FIGURE 1-5

The arrangement of atoms in different phases: (a) molecules are at relatively fixed positions
inasolid, (b) groups of molecules move about each other in the liquid phase, and
(c) molecules move about at random in the gas phase.
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FIGURE 1-6

On amicroscopic scale, pressureis
determined by the interaction of
individual gas molecules. However,
we can measure the pressure on a
macroscopic scale with a pressure

gage.

fixed positions. The molecular spacing in the liquid phase is not much differ-
ent from that of the solid phase, except the molecules are no longer at fixed
positions relative to each other and they can rotate and trandlate freely. In a
liquid, the intermolecular forces are weaker relative to solids, but still strong
compared with gases. The distances between molecules generally increase
slightly as a solid turns liquid, with water being a notable exception.

In the gas phase, the molecules are far apart from each other, and a mole-
cular order is nonexistent. Gas molecules move about a random, continu-
aly colliding with each other and the walls of the container in which they
are contained. Particularly at low densities, the intermolecular forces are
very small, and collisions are the only mode of interaction between the mol-
ecules. Molecules in the gas phase are at a considerably higher energy level
than they are in the liquid or solid phase. Therefore, the gas must release a
large amount of its energy before it can condense or freeze.

Gas and vapor are often used as synonymous words. The vapor phase of a
substance is customarily called a gas when it is above the critical tempera-
ture. Vapor usually implies a gas that is not far from a state of condensation.

Any practical fluid system consists of a large number of molecules, and
the properties of the system naturally depend on the behavior of these mole-
cules. For example, the pressure of a gas in a container is the result of
momentum transfer between the molecules and the walls of the container.
However, one does not need to know the behavior of the gas molecules to
determine the pressure in the container. It would be sufficient to attach a
pressure gage to the container (Fig. 1-6). This macroscopic or classical
approach does not require a knowledge of the behavior of individual mole-
cules and provides a direct and easy way to the solution of engineering
problems. The more elaborate microscopic or statistical approach, based on
the average behavior of large groups of individual molecules, is rather
involved and is used in this text only in the supporting role.

Application Areas of Fluid Mechanics

Fluid mechanics is widely used both in everyday activities and in the design
of modern engineering systems from vacuum cleaners to supersonic aircraft.
Therefore, it isimportant to develop a good understanding of the basic prin-
ciples of fluid mechanics.

To begin with, fluid mechanics plays a vita role in the human body. The
heart is constantly pumping blood to all parts of the human body through
the arteries and veins, and the lungs are the sites of airflow in alternating
directions. Needless to say, al artificial hearts, breathing machines, and
dialysis systems are designed using fluid dynamics.

An ordinary house is, in some respects, an exhibition hall filled with appli-
cations of fluid mechanics. The piping systems for cold water, natural gas,
and sewage for an individua house and the entire city are designed primarily
on the basis of fluid mechanics. The same is aso true for the piping and duct-
ing network of heating and air-conditioning systems. A refrigerator involves
tubes through which the refrigerant flows, a compressor that pressurizes the
refrigerant, and two heat exchangers where the refrigerant absorbs and rejects
heat. Fluid mechanics plays a mgjor role in the design of al these compo-
nents. Even the operation of ordinary faucets is based on fluid mechanics.

We can also see numerous applications of fluid mechanics in an automo-
bile. All components associated with the transportation of the fuel from the



fuel tank to the cylinders—the fuel line, fuel pump, fuel injectors, or carbu-
retors—as well as the mixing of the fuel and the air in the cylinders and the
purging of combustion gases in exhaust pipes are analyzed using fluid
mechanics. Fluid mechanics is also used in the design of the heating and
air-conditioning system, the hydraulic brakes, the power steering, automatic
transmission, and lubrication systems, the cooling system of the engine
block including the radiator and the water pump, and even the tires. The
sleek streamlined shape of recent model cars is the result of efforts to mini-
mize drag by using extensive analysis of flow over surfaces.

On a broader scale, fluid mechanics plays a major part in the design and
analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines,
biomedical devices, the cooling of electronic components, and the trans-
portation of water, crude oil, and natural gas. It is also considered in the
design of buildings, bridges, and even billboards to make sure that the struc-
tures can withstand wind loading. Numerous natural phenomena such as the
rain cycle, weather patterns, the rise of ground water to the top of trees,
winds, ocean waves, and currents in large water bodies are also governed by
the principles of fluid mechanics (Fig. 1-7).
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FIGURE 1-7

Some application areas of fluid mechanics.
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FIGURE 1-8

The development of a velocity profile
due to the no-dlip condition as afluid
flows over a blunt nose.

“Hunter Rouse: Laminar and Turbulent Flow Film”
Copyright IIHR-Hydroscience & Engineering,
The University of lowa. Used by permission.
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FIGURE 1-9

A fluid flowing over a stationary
surface comes to a complete stop at
the surface because of the no-slip
condition.

1-2 = THE NO-SLIP CONDITION

Fluid flow is often confined by solid surfaces, and it is important to under-
stand how the presence of solid surfaces affects fluid flow. We know that
water in a river cannot flow through large rocks, and goes around them.
That is, the water velocity normal to the rock surface must be zero, and
water approaching the surface normally comes to a complete stop at the sur-
face. What is not so obvious is that water approaching the rock at any angle
also comes to a complete stop at the rock surface, and thus the tangential
velocity of water at the surface is also zero.

Consider the flow of a fluid in a stationary pipe or over a solid surface
that is nonporous (i.e., impermeable to the fluid). All experimental observa-
tions indicate that a fluid in motion comes to a complete stop at the surface
and assumes a zero velocity relative to the surface. That is, a fluid in direct
contact with a solid “sticks’ to the surface due to viscous effects, and there
is no dlip. This is known as the no-slip condition.

The photo in Fig. 1-8 obtained from a video clip clearly shows the evolu-
tion of a velocity gradient as a result of the fluid sticking to the surface of a
blunt nose. The layer that sticks to the surface slows the adjacent fluid layer
because of viscous forces between the fluid layers, which slows the next
layer, and so on. Therefore, the no-dlip condition is responsible for the
development of the velocity profile. The flow region adjacent to the wall in
which the viscous effects (and thus the velocity gradients) are significant is
caled the boundary layer. The fluid property responsible for the no-dlip
condition and the development of the boundary layer is viscosity and is dis-
cussed in Chap. 2.

A fluid layer adjacent to a moving surface has the same velocity as the
surface. A consequence of the no-slip condition is that al velocity profiles
must have zero values with respect to the surface at the points of contact
between a fluid and a solid surface (Fig. 1-9). Another consegquence of the
no-dlip condition is the surface drag, which is the force a fluid exerts on a
surface in the flow direction.

When a fluid is forced to flow over a curved surface, such as the back
side of a cylinder at sufficiently high velocity, the boundary layer can no
longer remain attached to the surface, and at some point it separates from
the surface—a process called flow separation (Fig. 1-10). We emphasize
that the no-dlip condition applies everywhere along the surface, even down-
stream of the separation point. Flow separation is discussed in greater detail
in Chap. 10.

FIGURE 1-10
Flow separation during flow over a curved surface.

From G. M. Homsy et al, “ Multi-Media Fluid Mechanics Cambridge Univ.
Press (2001). |SBN 0-521-78748-3. Reprinted by permission.



A similar phenomenon occurs for temperature. When two bodies at differ-
ent temperatures are brought into contact, heat transfer occurs until both
bodies assume the same temperature at the points of contact. Therefore, a
fluid and a solid surface have the same temperature at the points of contact.
This is known as no-temperature-jump condition.

1-3 = A BRIEF HISTORY OF FLUID MECHANICS'

One of the first engineering problems humankind faced as cities were devel-
oped was the supply of water for domestic use and irrigation of crops. Our
urban lifestyles can be retained only with abundant water, and it is clear
from archeology that every successful civilization of prehistory invested in
the construction and maintenance of water systems. The Roman aqueducts,
some of which are still in use, are the best known examples. However, per-
haps the most impressive engineering from a technical viewpoint was done
at the Hellenistic city of Pergamon in present-day Turkey. There, from 283
to 133 Bc, they built a series of pressurized lead and clay pipelines (Fig.
1-11), up to 45 km long that operated at pressures exceeding 1.7 MPa (180
m of head). Unfortunately, the names of amost all these early builders are
lost to history. The earliest recognized contribution to fluid mechanics the-
ory was made by the Greek mathematician Archimedes (285-212 Bc). He
formulated and applied the buoyancy principle in history’s first nondestruc-
tive test to determine the gold content of the crown of King Hiero I. The
Romans built great aqueducts and educated many conquered people on the
benefits of clean water, but overall had a poor understanding of fluids the-
ory. (Perhaps they shouldn’'t have killed Archimedes when they sacked
Syracuse.)

During the Middle Ages the application of fluid machinery slowly but
steadily expanded. Elegant piston pumps were developed for dewatering
mines, and the watermill and windmill were perfected to grind grain, forge
metal, and for other tasks. For the first time in recorded human history sig-
nificant work was being done without the power of a muscle supplied by a
person or animal, and these inventions are generally credited with enabling
the later industria revolution. Again the creators of most of the progress are
unknown, but the devices themselves were well documented by severa
technical writers such as Georgius Agricola (Fig. 1-12).

The Renaissance brought continued development of fluid systems and
machines, but more importantly, the scientific method was perfected and
adopted throughout Europe. Simon Stevin (1548-1617), Galileo Gdlilei
(1564-1642), Edme Mariotte (1620-1684), and Evangelista Torricelli
(1608-1647) were among the first to apply the method to fluids as they
investigated hydrostatic pressure distributions and vacuums. That work was
integrated and refined by the brilliant mathematician, Blaise Pascal (1623—
1662). The Italian monk, Benedetto Castelli (1577-1644) was the first per-
son to publish a statement of the continuity principle for fluids. Besides for-
mulating his equations of motion for solids, Sir Isaac Newton (1643-1727)
applied his laws to fluids and explored fluid inertia and resistance, free jets,
and viscosity. That effort was built upon by the Swiss Daniel Bernoulli

1 This section is contributed by Professor Glenn Brown of Oklahoma State University.
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FIGURE 1-11

Segment of Pergamon pipeline.
Each clay pipe section was
13to 18 cm in diameter.

Courtesy Gunther Garbrecht.
Used by permission.

FIGURE 1-12

A mine hoist powered

by areversible water wheel.

G. Agricola, De Re Metalica, Basel, 1556.
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(1700-1782) and his associate Leonard Euler (1707-1783). Together, their
work defined the energy and momentum eguations. Bernoulli’s 1738 classic
treatise Hydrodynamica may be considered the first fluid mechanics text.
Finally, Jean d'Alembert (1717-1789) developed the idea of velocity and
acceleration components, a differential expression of continuity, and his
“paradox” of zero resistance to steady uniform motion.

The development of fluid mechanics theory up through the end of the
eighteenth century had little impact on engineering since fluid properties
and parameters were poorly quantified, and most theories were abstractions
that could not be quantified for design purposes. That was to change with
the development of the French school of engineering led by Riche de Prony
(1755-1839). Prony (still known for his brake to measure power) and his
associates in Paris at the Ecole Polytechnic and the Ecole Ponts et Chaussees
were the first to integrate calculus and scientific theory into the engineering
curriculum, which became the model for the rest of the world. (So now
you know whom to blame for your painful freshman year.) Antonie Chezy
(1718-1798), Louis Navier (1785-1836), Gaspard Coriolis (1792-1843),
Henry Darcy (1803-1858), and many other contributors to fluid engineering
and theory were students and/or instructors at the schools.

By the mid nineteenth century fundamental advances were coming on
several fronts. The physician Jean Poiseuille (1799-1869) had accurately
measured flow in capillary tubes for multiple fluids, while in Germany
Gotthilf Hagen (1797-1884) had differentiated between laminar and turbu-
lent flow in pipes. In England, Lord Osborn Reynolds (1842—1912) contin-
ued that work and developed the dimensionless number that bears his name.
Similarly, in paralel to the early work of Navier, George Stokes (1819—
1903) completed the general equations of fluid motion with friction that
take their names. William Froude (1810-1879) amost single-handedly
developed the procedures and proved the value of physical model testing.
American expertise had become equal to the Europeans as demonstrated by
James Francis's (1815-1892) and Lester Pelton’s (1829-1908) pioneering
work in turbines and Clemens Herschel’s (1842—1930) invention of the Ven-
turi meter.

The late nineteenth century was notable for the expansion of fluid theory
by Irish and English scientists and engineers, including in addition to
Reynolds and Stokes, William Thomson, Lord Kelvin (1824-1907), William
Strutt, Lord Rayleigh (1842-1919), and Sir Horace Lamb (1849-1934).
These individuals investigated a large number of problems including dimen-
sional analysis, irrotational flow, vortex motion, cavitation, and waves. In a
broader sense their work also explored the links between fluid mechanics,
thermodynamics, and heat transfer.

The dawn of the twentieth century brought two monumental develop-
ments. First in 1903, the self-taught Wright brothers (Wilbur, 1867-1912;
Orville, 1871-1948) through application of theory and determined experi-
mentation perfected the airplane. Their primitive invention was complete
and contained al the major aspects of modern craft (Fig. 1-13). The

FIGURE 1-13 Navier—Stokes equations were of little use up to this time because they were
The Wright brothers take too difficult to solve. In a pioneering paper in 1904, the German Ludwig
flight at Kitty Hawk. Prandtl (1875-1953) showed that fluid flows can be divided into a layer
National Air and Space Museuny near the walls, the boundary layer, where the friction effects are significant

Smithsonian Institution. and an outer layer where such effects are negligible and the simplified Euler



and Bernoulli equations are applicable. His students, Theodore von Karman
(1881-1963), Paul Blasius (1883-1970), Johann Nikuradse (1894-1979),
and others, built on that theory in both hydraulic and aerodynamic applica-
tions. (During World War 11, both sides benefited from the theory as Prandtl
remained in Germany while his best student, the Hungarian born Theodore
von Karman, worked in America.)

The mid twentieth century could be considered a golden age of fluid
mechanics applications. Existing theories were adequate for the tasks at
hand, and fluid properties and parameters were well defined. These sup-
ported a huge expansion of the aeronautical, chemical, industrial, and water
resources sectors; each of which pushed fluid mechanics in new directions.
Fluid mechanics research and work in the late twentieth century were domi-
nated by the development of the digital computer in America. The ability to
solve large complex problems, such as global climate modeling or to opti-
mize the design of a turbine blade, has provided a benefit to our society that
the eighteenth-century developers of fluid mechanics could never have
imagined (Fig. 1-14). The principles presented in the following pages have
been applied to flows ranging from a moment at the microscopic scale to 50
years of simulation for an entire river basin. It is truly mind-boggling.

Where will fluid mechanics go in the twenty-first century? Frankly, even
a limited extrapolation beyond the present would be sheer folly. However, if
history tells us anything, it is that engineers will be applying what they
know to benefit society, researching what they don’t know, and having a
great time in the process.

1-4 = CLASSIFICATION OF FLUID FLOWS

Earlier we defined fluid mechanics as the science that deals with the behav-
ior of fluids at rest or in motion, and the interaction of fluids with solids or
other fluids at the boundaries. There is a wide variety of fluid flow problems
encountered in practice, and it is usually convenient to classify them on the
basis of some common characteristics to make it feasible to study them in
groups. There are many ways to classify fluid flow problems, and here we
present some general categories.

Viscous versus Inviscid Regions of Flow
When two fluid layers move relative to each other, a friction force develops
between them and the slower layer tries to slow down the faster layer. This
internal resistance to flow is quantified by the fluid property viscosity,
which is a measure of internal stickiness of the fluid. Viscosity is caused by
cohesive forces between the molecules in liquids and by molecular colli-
sions in gases. There is no fluid with zero viscosity, and thus all fluid flows
involve viscous effects to some degree. Flows in which the frictional effects
are significant are called viscous flows. However, in many flows of practical
interest, there are regions (typically regions not close to solid surfaces)
where viscous forces are negligibly small compared to inertial or pressure
forces. Neglecting the viscous terms in such inviscid flow regions greatly
simplifies the analysis without much loss in accuracy.

The development of viscous and inviscid regions of flow as a result of
inserting a flat plate parallel into a fluid stream of uniform velocity is
shown in Fig. 1-15. The fluid sticks to the plate on both sides because of
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FIGURE 1-14

The Oklahoma Wind Power Center
near Woodward consists of 68
turbines, 1.5 MW each.

Courtesy Steve Stadler, Oklahoma
Wind Power Initiative. Used by permission.

FIGURE 1-15

The flow of an originally uniform
fluid stream over a flat plate, and
the regions of viscous flow (next to
the plate on both sides) and inviscid
flow (away from the plate).

Fundamentals of Boundary Layers,
National Committee from Fluid Mechanics Films,
© Education Development Center.
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FIGURE 1-16

External flow over atennis ball, and
the turbulent wake region behind.
Courtesy NASA and Cislunar Aerospace, Inc.

the no-dlip condition, and the thin boundary layer in which the viscous
effects are significant near the plate surface is the viscous flow region. The
region of flow on both sides away from the plate and unaffected by the
presence of the plate is the inviscid flow region.

Internal versus External Flow
A fluid flow is classified as being internal or external, depending on
whether the fluid is forced to flow in a confined channel or over a surface.
The flow of an unbounded fluid over a surface such as a plate, a wire, or a
pipe is external flow. The flow in a pipe or duct is internal flow if the fluid
is completely bounded by solid surfaces. Water flow in a pipe, for example,
is internal flow, and airflow over a ball or over an exposed pipe during a
windy day is externa flow (Fig. 1-16). The flow of liquids in a duct is
called open-channel flow if the duct is only partialy filled with the liquid
and there is a free surface. The flows of water in rivers and irrigation
ditches are examples of such flows.

Internal flows are dominated by the influence of viscosity throughout the
flow field. In external flows the viscous effects are limited to boundary lay-
ers near solid surfaces and to wake regions downstream of bodies.

Compressible versus Incompressible Flow

A flow is classified as being compressible or incompressible, depending on
the level of variation of density during flow. Incompressibility is an approx-
imation, and a flow is said to be incompressible if the density remains
nearly constant throughout. Therefore, the volume of every portion of fluid
remains unchanged over the course of its motion when the flow (or the
fluid) is incompressible.

The densities of liquids are essentialy constant, and thus the flow of lig-
uids is typically incompressible. Therefore, liquids are usualy referred to as
incompressible substances. A pressure of 210 atm, for example, causes the
density of liquid water at 1 atm to change by just 1 percent. Gases, on the
other hand, are highly compressible. A pressure change of just 0.01 atm, for
example, causes a change of 1 percent in the density of atmospheric air.

When analyzing rockets, spacecraft, and other systems that involve high-
speed gas flows, the flow speed is often expressed in terms of the dimen-
sionless Mach number defined as

V  Speed of flow
Ma=—=——"—+
C  Speed of sound
where c is the speed of sound whose value is 346 m/s in air at room tem-
perature at sea level. A flow is called sonic when Ma = 1, subsonic when
Ma < 1, supersonic when Ma > 1, and hypersonic when Ma>> 1.

Liquid flows are incompressible to a high level of accuracy, but the level
of variation in density in gas flows and the consequent level of approxima-
tion made when modeling gas flows as incompressible depends on the
Mach number. Gas flows can often be approximated as incompressible if
the density changes are under about 5 percent, which is usualy the case
when Ma< 0.3. Therefore, the compressibility effects of air can be
neglected at speeds under about 100 m/s. Note that the flow of a gas is not
necessarily a compressible flow.



Small density changes of liquids corresponding to large pressure changes
can still have important consequences. The irritating “water hammer” in a
water pipe, for example, is caused by the vibrations of the pipe generated by
the reflection of pressure waves following the sudden closing of the valves.

Laminar versus Turbulent Flow

Some flows are smooth and orderly while others are rather chaotic. The
highly ordered fluid motion characterized by smooth layers of fluid is called
laminar. The word laminar comes from the movement of adjacent fluid
particles together in “laminates.” The flow of high-viscosity fluids such as
oils a low velocities is typicaly laminar. The highly disordered fluid
motion that typically occurs at high velocities and is characterized by veloc-
ity fluctuations is called turbulent (Fig. 1-17). The flow of low-viscosity
fluids such as air at high velocities is typicaly turbulent. The flow regime
greatly influences the required power for pumping. A flow that alternates
between being laminar and turbulent is called transitional. The experiments
conducted by Osborn Reynolds in the 1880s resulted in the establishment of
the dimensionless Reynolds number, Re, as the key parameter for the
determination of the flow regime in pipes (Chap. 8).

Natural (or Unforced) versus Forced Flow

A fluid flow is said to be natural or forced, depending on how the fluid
motion isinitiated. In forced flow, afluid is forced to flow over a surface or
in a pipe by external means such as a pump or afan. In natural flows, any
fluid motion is due to natural means such as the buoyancy effect, which
manifests itself as the rise of the warmer (and thus lighter) fluid and the fall
of cooler (and thus denser) fluid (Fig. 1-18). In solar hot-water systems, for
example, the thermosiphoning effect is commonly used to replace pumps by
placing the water tank sufficiently above the solar collectors.

Steady versus Unsteady Flow

The terms steady and uniform are used frequently in engineering, and thus it
is important to have a clear understanding of their meanings. The term
steady implies no change at a point with time. The opposite of steady is
unsteady. The term uniform implies no change with location over a speci-
fied region. These meanings are consistent with their everyday use (steady
girlfriend, uniform distribution, etc.).

The terms unsteady and transient are often used interchangeably, but
these terms are not synonyms. In fluid mechanics, unsteady is the most gen-
eral term that applies to any flow that is not steady, but transient is typi-
cally used for developing flows. When arocket engineis fired up, for exam-
ple, there are transient effects (the pressure builds up inside the rocket
engine, the flow accelerates, etc.) until the engine settles down and operates
steadily. The term periodic refers to the kind of unsteady flow in which the
flow oscillates about a steady mean.

Many devices such as turbines, compressors, boilers, condensers, and heat
exchangers operate for long periods of time under the same conditions, and
they are classified as steady-flow devices. (Note that the flow field near the
rotating blades of a turbomachine is of course unsteady, but we consider the
overal flow field rather than the details at some localities when we classify
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FIGURE 1-17

Laminar, transitional, and turbulent
flows.

Courtesy ONERA, photograph by Werlé.

FIGURE 1-18

In this schlieren image of agirl ina
swimming suit, the rise of lighter,
warmer air adjacent to her body
indicates that humans and warm-
blooded animals are surrounded by
thermal plumes of rising warm air.

G. S Settles, Gas Dynamics Lab,
Penn State University. Used by permission.
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@)

(b)

FIGURE 1-19

Oscillating wake of a blunt-based
airfoil at Mach number 0.6. Photo (a)
is an instantaneous image, while
photo (b) is along-exposure
(time-averaged) image.

(a) Dyment, A., Flodrops, J. P. & Gryson, P. 1982
in Flow Visualization |1, W. Merzkirch, ed.,

331-336. Washington: Hemisphere. Used by
permission of Arthur Dyment.

(b) Dyment, A. & Gryson, P. 1978 in Inst. Mec.
Fluides Lille, No. 78-5. Used by permission of
Arthur Dyment.

devices.) During steady flow, the fluid properties can change from point to
point within a device, but at any fixed point they remain constant. There-
fore, the volume, the mass, and the total energy content of a steady-flow
device or flow section remain constant in steady operation.

Steady-flow conditions can be closely approximated by devices that are
intended for continuous operation such as turbines, pumps, boilers, con-
densers, and heat exchangers of power plants or refrigeration systems. Some
cyclic devices, such as reciprocating engines or compressors, do not satisfy
the steady-flow conditions since the flow at the inlets and the exits is pul sat-
ing and not steady. However, the fluid properties vary with time in a peri-
odic manner, and the flow through these devices can still be analyzed as a
steady-flow process by using time-averaged values for the properties.

Some fascinating visualizations of fluid flow are provided in the book An
Album of Fluid Motion by Milton Van Dyke (1982). A nice illustration of an
unsteady-flow field is shown in Fig. 1-19, taken from Van Dyke's book.
Figure 1-19a is an instantaneous snapshot from a high-speed motion pic-
ture; it reveals large, alternating, swirling, turbulent eddies that are shed into
the periodically oscillating wake from the blunt base of the object. The
eddies produce shock waves that move upstream alternately over the top and
bottom surfaces of the airfoil in an unsteady fashion. Figure 1-19b shows
the same flow field, but the film is exposed for a longer time so that the
image is time averaged over 12 cycles. The resulting time-averaged flow
field appears “steady” since the detals of the unsteady oscillations have
been lost in the long exposure.

One of the most important jobs of an engineer is to determine whether it
is sufficient to study only the time-averaged “steady” flow features of a
problem, or whether a more detailed study of the unsteady features is
required. If the engineer were interested only in the overall properties of the
flow field, (such as the time-averaged drag coefficient, the mean velocity,
and pressure fields) a time-averaged description like that of Fig. 1-19b,
time-averaged experimental measurements, or an analytical or numerical
calculation of the time-averaged flow field would be sufficient. However, if
the engineer were interested in details about the unsteady-flow field, such as
flow-induced vibrations, unsteady pressure fluctuations, or the sound waves
emitted from the turbulent eddies or the shock waves, a time-averaged
description of the flow field would be insufficient.

Most of the analytical and computational examples provided in this text-
book deal with steady or time-averaged flows, athough we occasionally
point out some relevant unsteady-flow features as well when appropriate.

One-, Two-, and Three-Dimensional Flows

A flow field is best characterized by the velocity distribution, and thus a
flow is said to be one-, two-, or three-dimensiona if the flow velocity varies
in one, two, or three primary dimensions, respectively. A typical fluid flow
involves a three-dimensional geometry, and the velocity may vary in all
three dimensions, rendering the flow three-dimensiona [V (x, y, 2) in rec-
tangular or V (r, 0, 2) in cylindrical coordinates]. However, the variation of
velocity in certain directions can be small relative to the variation in other
directions and can be ignored with negligible error. In such cases, the flow
can be modeled conveniently as being one- or two-dimensional, which is
easier to analyze.
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Consider steady flow of a fluid through a circular pipe attached to a large
tank. The fluid velocity everywhere on the pipe surface is zero because of
the no-slip condition, and the flow is two-dimensional in the entrance region
of the pipe since the velocity changes in both the r- and zdirections. The
velocity profile develops fully and remains unchanged after some distance
from the inlet (about 10 pipe diameters in turbulent flow, and less in laminar
pipe flow, as in Fig. 1-20), and the flow in this region is said to be fully
developed. The fully developed flow in a circular pipe is one-dimensional
since the velocity varies in the radia r-direction but not in the angular 6- or
axial z-directions, as shown in Fig. 1-20. That is, the velocity profile is the
same at any axial z-location, and it is symmetric about the axis of the pipe.

Note that the dimensionality of the flow also depends on the choice of
coordinate system and its orientation. The pipe flow discussed, for example,
is one-dimensional in cylindrical coordinates, but two-dimensional in Carte-
sian coordinates—illustrating the importance of choosing the most appropri-
ate coordinate system. Also note that even in this simple flow, the velocity
cannot be uniform across the cross section of the pipe because of the no-dlip
condition. However, at a well-rounded entrance to the pipe, the velocity pro-
file may be approximated as being nearly uniform across the pipe, since the
velocity is nearly constant at al radii except very close to the pipe wall.

A flow may be approximated as two-dimensional when the aspect ratio is
large and the flow does not change appreciably along the longer dimension.
For example, the flow of air over a car antenna can be considered two-dimen-
sional except near its ends since the antenna’s length is much greater than its
diameter, and the airflow hitting the antennais fairly uniform (Fig. 1-21).

= EXAMPLE 11 Axisymmetric Flow over a Bullet

® Consider a bullet piercing through calm air. Determine if the time-averaged
airflow over the bullet during its flight is one-, two-, or three-dimensional (Fig.
1-22).

or three-dimensional.

Assumptions There are no significant winds and the bullet is not spinning.
Analysis The bullet possesses an axis of symmetry and is therefore an
axisymmetric body. The airflow upstream of the bullet is parallel to this axis,

| |

| |

|

|
SOLUTION It is to be determined whether airflow over a bullet is one-, two-,
and we expect the time-averaged airflow to be rotationally symmetric about
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FIGURE 1-20

The development of the velocity
profilein acircular pipe. V = V(r, 2)
and thus the flow is two-dimensional
in the entrance region, and becomes
one-dimensional downstream when
the velocity profile fully develops and
remains unchanged in the flow
direction, V = V(r).

—

FIGURE 1-21

Flow over acar antennais
approximately two-dimensional
except near the top and bottom
of the antenna.

Axis of
symmetry
r />
Z
—
—&
FIGURE 1-22

Axisymmetric flow over abullet.
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the axis—such flows are said to be axisymmetric. The velocity in this case
varies with axial distance z and radial distance r, but not with angle 6.
Therefore, the time-averaged airflow over the bullet is two-dimensional.
Discussion While the time-averaged airflow is axisymmetric, the instanta-
neous airflow is not, as illustrated in Fig. 1-19.

1-5 = SYSTEM AND CONTROL VOLUME

SURROUNDINGS A system is defined as a quantity of matter or a region in space chosen for
study. The mass or region outside the system is called the surroundings.
The real or imaginary surface that separates the system from its surround-
ings is called the boundary (Fig. 1-23). The boundary of a system can be
fixed or movable. Note that the boundary is the contact surface shared by
both the system and the surroundings. Mathematically speaking, the bound-

BOUNDARY ary has zero thickness, and thus it can neither contain any mass nor occupy
any volume in space.
FIGURE 1-23 Systems may be considered to be closed or open, depending on whether a

System, surroundings, and boundary.  fixed mass or a volume in space is chosen for study. A closed system (also
known as a control mass) consists of a fixed amount of mass, and no mass
can cross its boundary. But energy, in the form of heat or work, can cross

l:.: the boundary, and the volume of a closed system does not have to be fixed.

Moving If, as a special case, even energy is not allowed to cross the boundary, that
boundary system is called an isolated system.

GAS Consider the piston—cylinder device shown in Fig. 1-24. Let us say that

2kg we would like to find out what happens to the enclosed gas when it is

o 15m3 heated. Since we are focusing our attention on the gas, it is our system. The

f:]gs inner surfaces of the piston and the cylinder form the boundary, and since

~ no mass is crossing this boundary, it is a closed system. Notice that energy

/‘,;( \ may cross the boundary, and part of the boundary (the inner surface of the

2\ Fixed piston, in this case) may move. Everything outside the gas, including the

boundary piston and the cylinder, is the surroundings.

An open system, or a control volume, as it is often called, is a properly

FIGURE 1-24 selected region in space. It usually encloses a device that involves mass flow

A closed system with amoving such as a compressor, turbine, or nozzle. Flow through these devices is best

boundary. studied by selecting the region within the device as the control volume.

Both mass and energy can cross the boundary of a control volume.

A large number of engineering problems involve mass flow in and out of
a system and, therefore, are modeled as control volumes. A water heater, a
car radiator, a turbine, and a compressor all involve mass flow and should
be analyzed as control volumes (open systems) instead of as control masses
(closed systems). In general, any arbitrary region in space can be selected
as a control volume. There are no concrete rules for the selection of control
volumes, but the proper choice certainly makes the analysis much easier. If
we were to analyze the flow of air through a nozzle, for example, a good
choice for the control volume would be the region within the nozzle.

A control volume can be fixed in size and shape, as in the case of a noz-
zle, or it may involve a moving boundary, as shown in Fig. 1-25. Most con-
trol volumes, however, have fixed boundaries and thus do not involve any
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(a) A control volume (CV) with real and
imaginary boundaries

(b) A control volume (CV) with fixed and
moving boundaries

moving boundaries. A control volume may also involve heat and work inter-
actions just as a closed system, in addition to mass interaction.

1-6 = IMPORTANCE OF DIMENSIONS AND UNITS

Any physical quantity can be characterized by dimensions. The magnitudes
assigned to the dimensions are called units. Some basic dimensions such as
mass m, length L, time t, and temperature T are selected as primary or fun-
damental dimensions, while others such as velocity V, energy E, and vol-
ume V are expressed in terms of the primary dimensions and are called sec-
ondary dimensions, or derived dimensions.

A number of unit systems have been developed over the years. Despite
strong efforts in the scientific and engineering community to unify the
world with a single unit system, two sets of units are still in common use
today: the English system, which is a'so known as the United Sates Cus-
tomary System (USCS), and the metric SI (from Le Systéme International
d’ Unités), which is also known as the International System. The Sl isasim-
ple and logical system based on a decimal relationship between the various
units, and it is being used for scientific and engineering work in most of the
industrialized nations, including England. The English system, however, has
no apparent systematic numerical base, and various units in this system are
related to each other rather arbitrarily (12 in = 1 ft, 1 mile = 5280 ft, 4 qt
= 1 gd, etc.), which makes it confusing and difficult to learn. The United
States is the only industrialized country that has not yet fully converted to
the metric system.

The systematic efforts to develop a universally acceptable system of units
dates back to 1790 when the French National Assembly charged the French
Academy of Sciences to come up with such a unit system. An early version
of the metric system was soon developed in France, but it did not find uni-
versal acceptance until 1875 when The Metric Convention Treaty was pre-
pared and signed by 17 nations, including the United States. In this interna-
tional treaty, meter and gram were established as the metric units for length
and mass, respectively, and a General Conference of Weights and Measures
(CGPM) was established that was to meet every six years. In 1960, the
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FIGURE 1-25

A control volume may involve fixed,
moving, real, and imaginary
boundaries.
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TABLE 1-1 CGPM produced the SI, which was based on six fundamental quantities,
and their units were adopted in 1954 at the Tenth General Conference of
Weights and Measures; meter (m) for length, kilogram (kg) for mass, sec-
ond (s) for time, ampere (A) for electric current, degree Kelvin (°K) for

The seven fundamental (or primary)
dimensions and their units in SI

Dimension Unit temperature, and candela (cd) for luminous intensity (amount of light). In
Length meter (m) 1971, the CGPM added a seventh fundamental quantity and unit: mole
Mass kilogram (kg) ~ (mol) for the amount of matter.

Time second (s) Based on the notational scheme introduced in 1967, the degree symbol
Temperature kelvin (K) was officially dropped from the absolute temperature unit, and all unit
Electric current ampere (A) names were to be written without capitalization even if they were derived
Amount of light candela (cd)  from proper names (Table 1-1). However, the abbreviation of a unit was to
Amount of matter mole (mol)

be capitalized if the unit was derived from a proper name. For example, the
Sl unit of force, which is named after Sir Isaac Newton (1647-1723), is
newton (not Newton), and it is abbreviated as N. Also, the full name of a
unit may be pluralized, but its abbreviation cannot. For example, the length
of an object can be 5 m or 5 meters, not 5 ms or 5 meter. Finally, no period
is to be used in unit abbreviations unless they appear at the end of a sen-
tence. For example, the proper abbreviation of meter is m (not m.).

The recent move toward the metric system in the United States seems to
have started in 1968 when Congress, in response to what was happening in
the rest of the world, passed a Metric Study Act. Congress continued to pro-
mote a voluntary switch to the metric system by passing the Metric Conver-
sion Act in 1975. A trade bill passed by Congress in 1988 set a September
1992 deadline for all federal agencies to convert to the metric system. How-
ever, the deadlines were relaxed later with no clear plans for the future.

The industries that are heavily involved in international trade (such as the
automotive, soft drink, and liquor industries) have been quick in converting
to the metric system for economic reasons (having a single worldwide
design, fewer sizes, smaller inventories, etc.). Today, nearly al the cars
manufactured in the United States are metric. Most car owners probably do
not realize this until they try an English socket wrench on a metric bolt.
Most industries, however, resisted the change, thus slowing down the con-
Version process.

Presently the United States is a dual-system society, and it will stay that

TABLE 1-2 way until the transition to the metric system is completed. This puts an extra
o . burden on today’s engineering students, since they are expected to retain
Standard prefixes in S| units their understanding of the English system while learning, thinking, and
Multiple Prefix working in terms of the SI. Given the position of the engineers in the transi-
1012 tera, T tion period, both unit systems are used in this text, with particular emphasis
109 giga, G on Sl units.
106 mega, M As pointed out, the Sl is based on a decimal relationship between units.
103 kilo, k The prefixes used to express the multiples of the various units are listed in
102 hecto, h Table 1-2. They are standard for al units, and the student is encouraged to
1011 deka, da memorize them because of their widespread use (Fig. 1-26).
10~ deci, d
102 centi, ¢
e mill, m Some SI and English Units
10-9 gﬁ;o’n“ In Sl, the units of mass, length, and time are the kilogram (kg), meter (m),

and second (), respectively. The respective units in the English system are

10712 pico, p i
the pound-mass (Ibm), foot (ft), and second (s). The pound symbol Ib is




actually the abbreviation of libra, which was the ancient Roman unit of
weight. The English retained this symbol even after the end of the Roman
occupation of Britain in 410. The mass and length units in the two systems
are related to each other by

1 1bm = 0.45359 kg
1ft=0.3048m

In the English system, force is usually considered to be one of the pri-
mary dimensions and is assigned a nonderived unit. This is a source of con-
fusion and error that necessitates the use of a dimensional constant (g.) in
many formulas. To avoid this nuisance, we consider force to be a secondary
dimension whose unit is derived from Newton’s second law, i.e.,

Force = (Mass) (Acceleration)
or F=ma -1

In Sl, the force unit is the newton (N), and it is defined as the force required
to accelerate a mass of 1 kg at a rate of 1 m/s?. In the English system, the
force unit is the pound-force (Ibf) and is defined as the force required to
accelerate a mass of 32.174 Ibm (1 slug) at a rate of 1 ft/s? (Fig. 1-27).
That is,

1N = 1kg - m/s?
1 Ibf = 32.174 lbm - ft/s?

A force of 1 N is roughly equivalent to the weight of a small apple (m
= 102 g), whereas a force of 1 Ibf is roughly equivalent to the weight of
four medium apples (M, = 454 @), as shown in Fig. 1-28. Another force
unit in common use in many European countries is the kilogram-force (kgf),
which is the weight of 1 kg mass at sea level (1 kgf = 9.807 N).

The term weight is often incorrectly used to express mass, particularly by
the “weight watchers.” Unlike mass, weight W is a force. It is the gravita-
tional force applied to a body, and its magnitude is determined from New-
ton’s second law,

W=mg (N) (1-2)

where m is the mass of the body, and g is the local gravitational acceleration
(g is 9.807 m/s? or 32.174 ft/s? at sea level and 45° latitude). An ordinary
bathroom scale measures the gravitational force acting on a body. The
weight of a unit volume of a substance is called the specific weight y and is
determined from y = pg, where p is density.

The mass of a body remains the same regardless of its location in the uni-
verse. Its weight, however, changes with a change in gravitational accelera-
tion. A body weighs less on top of a mountain since g decreases with altitude.
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FIGURE 1-26
The Sl unit prefixes are used in all
branches of engineering.

a=1m/s?
m=1ky f——F=1N

a=1fts?
m =32.174 Ibm |- - = 1 |pf

FIGURE 1-27
The definition of the force units.

1 kgf

FIGURE 1-28
The relative magnitudes of the force

units newton (N), kilogram-force
(kgf), and pound-force (Ibf).
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FIGURE 1-29
A body weighing 150 Ibf on earth will
weigh only 25 Ibf on the moon.

D
kg (&)
g =9.807 m/s g=32.174 ft/s?

W=9.807kg - m/s® W=32.174Ibm - ft/s®
=9.807N =11bf
=1kgf

FIGURE 1-30

The weight of aunit mass at sealevel.

SALAMI + LETTUCE +
OLIVES + MAYONNAISE
+ CHEESE + P\CKLES. ..

FIGURE 1-31

To be dimensionally homogeneous, al
the termsin an equation must have the
same unit.

© Reprinted with special permission of King
Features Syndicate.

On the surface of the moon, an astronaut weighs about one-sixth of what
she or he normally weighs on earth (Fig. 1-29).

At sealevel amass of 1 kg weighs 9.807 N, asillustrated in Fig. 1-30. A
mass of 1 Ibm, however, weighs 1 Ibf, which misleads people to believe that
pound-mass and pound-force can be used interchangeably as pound (Ib),
which is a major source of error in the English system.

It should be noted that the gravity force acting on a mass is due to the
attraction between the masses, and thus it is proportional to the magnitudes
of the masses and inversely proportional to the square of the distance
between them. Therefore, the gravitational acceleration g at a location
depends on the local density of the earth’s crust, the distance to the center
of the earth, and to a lesser extent, the positions of the moon and the sun.
The value of g varies with location from 9.8295 m/s? at 4500 m below sea
level to 7.3218 m/s? at 100,000 m above sea level. However, at altitudes up
to 30,000 m, the variation of g from the sea-level value of 9.807 m/s* is less
than 1 percent. Therefore, for most practical purposes, the gravitational
acceleration can be assumed to be constant at 9.81 m/s?. It is interesting to
note that at locations below sea level, the value of g increases with distance
from the sea level, reaches a maximum at about 4500 m, and then starts
decreasing. (What do you think the value of g is at the center of the earth?)

The primary cause of confusion between mass and weight is that mass is
usually measured indirectly by measuring the gravity force it exerts. This
approach also assumes that the forces exerted by other effects such as air
buoyancy and fluid motion are negligible. This is like measuring the dis-
tance to a star by measuring its red shift, or measuring the altitude of an air-
plane by measuring barometric pressure. Both of these are also indirect
measurements. The correct direct way of measuring mass is to compare it to
a known mass. This is cumbersome, however, and it is mostly used for cali-
bration and measuring precious metals.

Work, which is aform of energy, can simply be defined as force times dis-
tance; therefore, it has the unit “newton-meter (N - m),” which is called a
joule (J). That is,

1J=1N'm (1-3)

A more common unit for energy in Sl is the kilojoule (1 kJ = 10° J). In the
English system, the energy unit is the Btu (British thermal unit), which is
defined as the energy required to raise the temperature of 1 Ibm of water at
68°F by 1°F. In the metric system, the amount of energy needed to raise the
temperature of 1 g of water at 14.5°C by 1°C is defined as 1 calorie (ca),
and 1 cal = 4.1868 J. The magnitudes of the kilojoule and Btu are almost
identical (1 Btu = 1.0551 kJ).

Dimensional Homogeneity

We all know from grade school that apples and oranges do not add. But we
somehow manage to do it (by mistake, of course). In engineering, all equa-
tions must be dimensionally homogeneous. That is, every term in an equa
tion must have the same unit (Fig. 1-31). If, at some stage of an analysis,
we find ourselves in a position to add two quantities that have different
units, it is a clear indication that we have made an error at an earlier stage.
So checking dimensions can serve as a valuable tool to spot errors.
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: EXAMPLE 1-2 Spotting Errors from Unit Inconsistencies

While solving a problem, a person ended up with the following equation at
some stage:

E = 25kJ + 7 kJkg

where E is the total energy and has the unit of kilojoules. Determine how to
correct the error and discuss what may have caused it.

A correction is to be found, and the probable cause of the error is to be
determined.

Analysis The two terms on the right-hand side do not have the same units,
and therefore they cannot be added to obtain the total energy. Multiplying
the last term by mass will eliminate the kilograms in the denominator, and
the whole equation will become dimensionally homogeneous; that is, every
term in the equation will have the same unit.

Discussion Obviously this error was caused by forgetting to multiply the last

|
|

|

|

|

|

|

|

SOLUTION During an analysis, a relation with inconsistent units is obtained.
term by mass at an earlier stage.

We all know from experience that units can give terrible headaches if they
are not used carefully in solving a problem. However, with some attention
and skill, units can be used to our advantage. They can be used to check for-
mulas; they can even be used to derive formulas, as explained in the follow-
ing example.

: EXAMPLE 1-3 Obtaining Formulas from Unit Considerations

® A tank is filled with oil whose density is p = 850 kg/m3. If the volume of the
g fank is V=2 m3, determine the amount of mass m in the tank.

|
SOLUTION The volume of an oil tank is given. The mass of oil is to be
determined. oIL
Assumptions Qil is an incompressible substance and thus its density is
constant. v=2md
Analysis A sketch of the system just described is given in Fig. 1-32. Sup- p = 850 kg/m3
pose we forgot the formula that relates mass to density and volume. However, m=?
we know that mass has the unit of kilograms. That is, whatever calculations
we do, we should end up with the unit of kilograms. Putting the given infor-
mation into perspective, we have FIGURE 1-32

p= 850 kg/mS and V=2m? Schematic for Example 1-3.

It is obvious that we can eliminate m3 and end up with kg by multiplying
these two quantities. Therefore, the formula we are looking for should be

m= pV
Thus,
m = (850 kg/m®)(2 m®) = 1700 kg

Discussion Note that this approach may not work for more complicated
formulas.
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=

Ibm

FIGURE 1-33
A mass of 1 1bm weighs 1 Ibf on earth.

The student should keep in mind that a formula that is not dimensionally
homogeneous is definitely wrong, but a dimensionally homogeneous for-
mulais not necessarily right.

Unity Conversion Ratios

Just as al nonprimary dimensions can be formed by suitable combinations
of primary dimensions, all nonprimary units (secondary units) can be
formed by combinations of primary units. Force units, for example, can be
expressed as

N = kgg and Ibf = 32.174Ibmg

They can aso be expressed more conveniently as unity conversion ratios as

N Ibf
S —— d ——=1
kg - m/< N 32 1741bm - fUs

Unity conversion ratios are identically equal to 1 and are unitless, and thus
such ratios (or their inverses) can be inserted conveniently into any calcula
tion to properly convert units. Students are encouraged to always use unity
conversion ratios such as those given here when converting units. Some text-
books insert the archaic gravitational constant g, defined as g. = 32.174 Ibm
ft/lbf - > =kg-m/N -> =1 into equations in order to force units to
match. This practice leads to unnecessary confusion and is strongly discour-
aged by the present authors. We recommend that students instead use unity
conversion ratios.

EXAMPLE 1-4 The Weight of One Pound-Mass

Using unity conversion ratios, show that 1.00 Ibm weighs 1.00 Ibf on earth
(Fig. 1-33).

weight in Ibf is to be determined.

Assumptions Standard sea-level conditions are assumed.

Properties The gravitational constant is g = 32.174 ft/s?.

Analysis We apply Newton’s second law to calculate the weight (force) that
corresponds to the known mass and acceleration. The weight of any object is
equal to its mass times the local value of gravitational acceleration. Thus,

11bf
W=md= (100 2.174 f 2174 bm -t - 00 lbf
mg = (1.00 lbm)(3 t/SZ)<32.174 |bm-ft/s2> o

Discussion Mass is the same regardless of its location. However, on some

other planet with a different value of gravitational acceleration, the weight of

|
[
[
|
|
) |
Solution A mass of 1.00 Ibm is subjected to standard earth gravity. Its
1 Ibm would differ from that calculated here. ‘

When you buy a box of breakfast cereal, the printing may say “Net
weight: One pound (454 grams).” (See Fig. 1-34.) Technically, this means
that the cereal inside the box weighs 1.00 Ibf on earth and has a mass of
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453.6 gm (0.4536 kg). Using Newton's second law, the actual weight on
earth of the cereal in the metric system is

Weight?
T thought gram
was a unit of mass!

sssssssssss

1k
W = mg = (453.6 g)(9.81 m/sz)(l kgl'Nm . 32> ( 100 Ogg) = 449N

Net weight:
One poung

1-7 = MATHEMATICAL MODELING
OF ENGINEERING PROBLEMS

An engineering device or process can be studied either experimentally (test-
ing and taking measurements) or analytically (by analysis or calculations).
The experimental approach has the advantage that we deal with the actual
physical system, and the desired quantity is determined by measurement,
within the limits of experimental error. However, this approach is expensive, cﬂ

time-consuming, and often impractical. Besides, the system we are studying
may not even exist. For example, the entire heating and plumbing systems
of a building must usually be sized before the building is actualy built on
the basis of the specifications given. The analytical approach (including the
numerical approach) has the advantage that it is fast and inexpensive, but
the results obtained are subject to the accuracy of the assumptions, approxi-
mations, and idealizations made in the analysis. In engineering studies,
often a good compromise is reached by reducing the choices to just a few FIGURE 1-34
by analysis, and then verifying the findings experimentally. A quirk in the metric system of units.

Modeling in Engineering

The descriptions of most scientific problems involve equations that relate
the changes in some key variables to each other. Usually the smaller the
increment chosen in the changing variables, the more general and accurate
the description. In the limiting case of infinitesimal or differential changes Physical problem
in variables, we obtain differential equations that provide precise mathemat-

ical formulations for the physical principles and laws by representing the i,'ﬁggﬁ;gt

rates of change as derivatives. Therefore, differential equations are used to variables Make
investigate a wide variety of problems in sciences and engineering (Fig. reasonable
1-35). However, many problems encountered in practice can be solved mggmgjg']‘g
without resorting to differential equations and the complications associated rgg% s

with them. physical laws

The study of physica phenomena involves two important steps. In the
first step, al the variables that affect the phenomena are identified, reason-
able assumptions and approximations are made, and the interdependence of

A differential equation

these variables is studied. The relevant physical laws and principles are Apply
invoked, and the problem is formulated mathematically. The equation itself applicable Apply
is very instructive as it shows the degree of dependence of some varibles  omicue boundary
on others, and the relative importance of various terms. In the second step, s
the problem is solved using an appropriate approach, and the results are
interpreted. Solution of the problem
Many processes that seem to occur in nature randomly and without any
order are, in fact, being governed by some visible or not-so-visible physical FIGURE 1-35
laws. Whether we notice them or not, these laws are there, governing con- Mathematical modeling of physical

sistently and predictably over what seem to be ordinary events. Most of problems.
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FIGURE 1-36

A step-by-step approach can greatly
simplify problem solving.

these laws are well defined and well understood by scientists. This makes it
possible to predict the course of an event before it actually occurs or to
study various aspects of an event mathematically without actually running
expensive and time-consuming experiments. This is where the power of
analysis lies. Very accurate results to meaningful practical problems can be
obtained with relatively little effort by using a suitable and realistic mathe-
matical model. The preparation of such models requires an adequate knowl-
edge of the natural phenomena involved and the relevant laws, as well as
sound judgment. An unrealistic model will obviously give inaccurate and
thus unacceptable results.

An analyst working on an engineering problem often finds himself or her-
self in a position to make a choice between a very accurate but complex
model, and a simple but not-so-accurate model. The right choice depends on
the situation at hand. The right choice is usually the simplest model that
yields satisfactory results. Also, it isimportant to consider the actual operat-
ing conditions when selecting equipment.

Preparing very accurate but complex models is usually not so difficult.
But such models are not much use to an analyst if they are very difficult and
time-consuming to solve. At the minimum, the model should reflect the
essential features of the physical problem it represents. There are many sig-
nificant real-world problems that can be analyzed with a simple model. But
it should always be kept in mind that the results obtained from an analysis
are at best as accurate as the assumptions made in simplifying the problem.
Therefore, the solution obtained should not be applied to situations for
which the origina assumptions do not hold.

A solution that is not quite consistent with the observed nature of the prob-
lem indicates that the mathematical model used is too crude. In that case, a
more realistic model should be prepared by eliminating one or more of the
guestionable assumptions. This will result in a more complex problem that,
of course, is more difficult to solve. Thus any solution to a problem should
be interpreted within the context of its formulation.

1-8 = PROBLEM-SOLVING TECHNIQUE

Thefirst step in learning any science is to grasp the fundamentals and to gain
a sound knowledge of it. The next step is to master the fundamentals by test-
ing this knowledge. This is done by solving significant real-world problems.
Solving such problems, especially complicated ones, requires a systematic
approach. By using a step-by-step approach, an engineer can reduce the solu-
tion of a complicated problem into the solution of a series of ssimple prob-
lems (Fig. 1-36). When you are solving a problem, we recommend that you
use the following steps zealously as applicable. This will help you avoid
some of the common pitfalls associated with problem solving.

Step 1: Problem Statement

In your own words, briefly state the problem, the key information given,
and the quantities to be found. This is to make sure that you understand the
problem and the objectives before you attempt to solve the problem.



Step 2: Schematic

Draw arealistic sketch of the physical system involved, and list the relevant
information on the figure. The sketch does not have to be something elabo-
rate, but it should resemble the actual system and show the key features.
Indicate any energy and mass interactions with the surroundings. Listing the
given information on the sketch helps one to see the entire problem at once.
Also, check for properties that remain constant during a process (such as
temperature during an isothermal process), and indicate them on the sketch.

Step 3: Assumptions and Approximations

State any appropriate assumptions and approximations made to simplify the
problem to make it possible to obtain a solution. Justify the questionable
assumptions. Assume reasonable values for missing quantities that are nec-
essary. For example, in the absence of specific data for atmospheric pres-
sure, it can be taken to be 1 atm. However, it should be noted in the analysis
that the atmospheric pressure decreases with increasing elevation. For exam-
ple, it drops to 0.83 atm in Denver (elevation 1610 m) (Fig. 1-37).

Step 4: Physical Laws

Apply al the relevant basic physical laws and principles (such as the con-
servation of mass), and reduce them to their simplest form by utilizing the
assumptions made. However, the region to which a physical law is applied
must be clearly identified first. For example, the increase in speed of water
flowing through a nozzle is analyzed by applying conservation of mass
between the inlet and outlet of the nozzle.

Step 5: Properties

Determine the unknown properties at known states necessary to solve the
problem from property relations or tables. List the properties separately, and
indicate their source, if applicable.

Step 6: Calculations

Substitute the known quantities into the simplified relations and perform the
calculations to determine the unknowns. Pay particular attention to the units
and unit cancellations, and remember that a dimensional quantity without a
unit is meaningless. Also, don’t give afalse implication of high precision by
copying al the digits from the screen of the calculator—round the results to
an appropriate number of significant digits (Section 1-10).

Step 7: Reasoning, Verification, and Discussion
Check to make sure that the results obtained are reasonable and intuitive,
and verify the validity of the questionable assumptions. Repeat the calcula-
tions that resulted in unreasonable values. For example, under the same test
conditions the aerodynamic drag acting on a car should not increase after
streamlining the shape of the car (Fig. 1-38).

Also, point out the significance of the results, and discuss their implica-
tions. State the conclusions that can be drawn from the results, and any rec-
ommendations that can be made from them. Emphasize the limitations
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Given: Air temperature in Denver
To be found: Density of air

Missing information: Atmospheric
pressure

Assumption #1: Take P = 1 atm
(Inappropriate. Ignores effect of
atitude. Will cause more than
15% error.)

Assumption #2: Take P = 0.83 atm
(Appropriate. Ignores only minor
effects such as weather.)

FIGURE 1-37

The assumptions made while solving

Unreasonable!

—

an engineering problem must be
reasonable and justifiable.

Before streamlining

After streamlining

Fo

FIGURE 1-38
The results obtained from an

engineering analysis must be checked

for reasonableness.
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under which the results are applicable, and caution against any possible mis-
understandings and using the results in situations where the underlying
assumptions do not apply. For example, if you determined that using a
larger-diameter pipe in a proposed pipeline will cost an additional $5000 in
materials, but it will reduce the annual pumping costs by $3000, indicate
that the larger-diameter pipeline will pay for its cost differential from the
electricity it savesin less than two years. However, also state that only addi-
tional material costs associated with the larger-diameter pipeline are consid-
ered in the analysis.

Keep in mind that the solutions you present to your instructors, and any
engineering analysis presented to others, is a form of communication.
Therefore neatness, organization, completeness, and visual appearance are
of utmost importance for maximum effectiveness. Besides, neatness also
serves as a great checking tool since it is very easy to spot errors and incon-
sistencies in neat work. Carelessness and skipping steps to save time often
end up costing more time and unnecessary anxiety.

The approach described here is used in the solved example problems with-
out explicitly stating each step, as well as in the Solutions Manual of this
text. For some problems, some of the steps may not be applicable or neces-
sary. For example, often it is not practical to list the properties separately.
However, we cannot overemphasize the importance of a logical and orderly
approach to problem solving. Most difficulties encountered while solving a
problem are not due to a lack of knowledge; rather, they are due to a lack of
organization. You are strongly encouraged to follow these steps in problem
solving until you develop your own approach that works best for you.

1-9 = ENGINEERING SOFTWARE PACKAGES

You may be wondering why we are about to undertake an in-depth study of
the fundamentals of another engineering science. After all, amost al such
problems we are likely to encounter in practice can be solved using one of
several sophisticated software packages readily available in the market
today. These software packages not only give the desired numerical results,
but also supply the outputs in colorful graphical form for impressive presen-
tations. It is unthinkable to practice engineering today without using some
of these packages. This tremendous computing power available to us at the
touch of a button is both a blessing and a curse. It certainly enables engi-
neers to solve problems easily and quickly, but it aso opens the door for
abuses and misinformation. In the hands of poorly educated people, these
software packages are as dangerous as sophisticated powerful weapons in
the hands of poorly trained soldiers.

Thinking that a person who can use the engineering software packages
without proper training on fundamentals can practice engineering is like
thinking that a person who can use a wrench can work as a car mechanic. If
it were true that the engineering students do not need al these fundamental
courses they are taking because practically everything can be done by com-
puters quickly and easily, then it would aso be true that the employers would
no longer need high-salaried engineers since any person who knows how to
use a word-processing program can also learn how to use those software
packages. However, the statistics show that the need for engineers is on the
rise, not on the decline, despite the availability of these powerful packages.



We should always remember that al the computing power and the engi-
neering software packages available today are just tools, and tools have
meaning only in the hands of masters. Having the best word-processing pro-
gram does not make a person a good writer, but it certainly makes the job of
a good writer much easier and makes the writer more productive (Fig.
1-39). Hand calculators did not eliminate the need to teach our children
how to add or subtract, and the sophisticated medical software packages did
not take the place of medical school training. Neither will engineering soft-
ware packages replace the traditional engineering education. They will sim-
ply cause a shift in emphasis in the courses from mathematics to physics.
That is, more time will be spent in the classroom discussing the physical
aspects of the problems in greater detail, and less time on the mechanics of
solution procedures.

All these marvelous and powerful tools available today put an extra bur-
den on today’s engineers. They must still have a thorough understanding of
the fundamentals, develop a “feel” of the physical phenomena, be able to
put the data into proper perspective, and make sound engineering judg-
ments, just like their predecessors. However, they must do it much better,
and much faster, using more realistic models because of the powerful tools
available today. The engineers in the past had to rely on hand calculations,
dlide rules, and later hand calculators and computers. Today they rely on
software packages. The easy access to such power and the possibility of a
simple misunderstanding or misinterpretation causing great damage make it
more important today than ever to have solid training in the fundamentals of
engineering. In this text we make an extra effort to put the emphasis on
developing an intuitive and physical understanding of natural phenomena
instead of on the mathematical details of solution procedures.

Engineering Equation Solver (EES)

EES is a program that solves systems of linear or nonlinear algebraic or dif-
ferential equations numerically. It has a large library of built-in thermody-
namic property functions as well as mathematical functions, and alows the
user to supply additional property data. Unlike some software packages,
EES does not solve engineering problems; it only solves the equations sup-
plied by the user. Therefore, the user must understand the problem and for-
mulate it by applying any relevant physical laws and relations. EES saves
the user considerable time and effort by simply solving the resulting mathe-
matical equations. This makes it possible to attempt significant engineering
problems not suitable for hand calculations and to conduct parametric stud-
ies quickly and conveniently. EES is a very powerful yet intuitive program
that is very easy to use, as shown in Example 1-5. The use and capabilities
of EES are explained in Appendix 3 on the enclosed DVD.

: EXAMPLE 1-5 Solving a System of Equations with EES

® The difference of two numbers is 4, and the sum of the squares of these two
@ numbers is equal to the sum of the numbers plus 20. Determine these two
m numbers.

|
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FIGURE 1-39

An excellent word-processing
program does not make a person
agood writer; it Ssimply makes a

good writer a more efficient writer.
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SOLUTION Relations are given for the difference and the sum of the
squares of two numbers. They are to be determined.

Analysis We start the EES program by double-clicking on its icon, open a
new file, and type the following on the blank screen that appears:

X-y=4
X2+y2=x+y+20

which is an exact mathematical expression of the problem statement with x
and y denoting the unknown numbers. The solution to this system of two
nonlinear equations with two unknowns is obtained by a single click on the
“calculator” icon on the taskbar. It gives

x=5 and y=1

Discussion Note that all we did is formulate the problem as we would on
paper; EES took care of all the mathematical details of solution. Also note
that equations can be linear or nonlinear, and they can be entered in any
order with unknowns on either side. Friendly equation solvers such as EES
allow the user to concentrate on the physics of the problem without worrying
about the mathematical complexities associated with the solution of the
resulting system of equations.

FLUENT

FLUENT is a computational fluid dynamics (CFD) code widely used for
flow-modeling applications. The first step in analysis is preprocessing,
which involves building a model or importing one from a CAD package,
applying afinite-volume-based mesh, and entering data. Once the numerical
model is prepared, FLUENT performs the necessary calculations and pro-
duces the desired results. The final step in analysis is postprocessing, which
involves organization and interpretation of the data and images. Packages
tailored for specific applications such as electronics cooling, ventilating sys-
tems, and mixing are also available. FLUENT can handle subsonic or super-
sonic flows, steady or transient flows, laminar or turbulent flows, Newton-
ian or non-Newtonian flows, single or multiphase flows, chemical reactions
including combustion, flow through porous media, heat transfer, and flow-
induced vibrations. Most numerical solutions presented in this text are
obtained using FLUENT, and CFD is discussed in more detail in Chap. 15.

1-10 = ACCURACY, PRECISION,
AND SIGNIFICANT DIGITS

In engineering calculations, the supplied information is not known to more
than a certain number of significant digits, usually three digits. Conse-
guently, the results obtained cannot possibly be precise to more significant
digits. Reporting results in more significant digits implies greater precision
than exists, and it should be avoided.

Regardless of the system of units employed, engineers must be aware of
three principles that govern the proper use of numbers: accuracy, precision,



and significant digits. For engineering measurements, they are defined as
follows:

» Accuracy error (inaccuracy) is the value of one reading minus the true
value. In general, accuracy of a set of measurements refers to the
closeness of the average reading to the true value. Accuracy is generally
associated with repeatable, fixed errors.

* Precision error isthe value of one reading minus the average of readings. In
general, precision of a set of measurements refers to the fineness of the
resolution and the repeatability of the instrument. Precision is generally
associated with unrepeatable, random errors.

« Significant digits are digits that are relevant and meaningful.

A measurement or calculation can be very precise without being very
accurate, and vice versa. For example, suppose the true value of wind speed
is 25.00 m/s. Two anemometers A and B take five wind speed readings each:

Anemometer A: 25.50, 25.69, 25.52, 25.58, and 25.61 m/s. Average of all
readings = 25.58 m/s.

Anemometer B: 26.3, 24.5, 23.9, 26.8, and 23.6 m/s. Average of all readings
= 25.02 m/s.

Clearly, anemometer A is more precise, since none of the readings differs
by more than 0.11 m/s from the average. However, the average is 25.58 m/s,
0.58 m/s greater than the true wind speed; this indicates significant bias
error, aso caled constant error or systematic error. On the other hand,
anemometer B is not very precise, since its readings swing wildly from the
average; but its overall average is much closer to the true value. Hence,
anemometer B is more accurate than anemometer A, at least for this set of
readings, even though it is less precise. The difference between accuracy
and precision can be illustrated effectively by analogy to shooting agun at a
target, as sketched in Fig. 1-40. Shooter A is very precise, but not very
accurate, while shooter B has better overall accuracy, but less precision.

Many engineers do not pay proper attention to the number of significant
digits in their calculations. The least significant numeral in a number
implies the precision of the measurement or calculation. For example, a
result written as 1.23 (three significant digits) implies that the result is pre-
cise to within one digit in the second decimal place; i.e., the number is
somewhere between 1.22 and 1.24. Expressing this number with any more
digits would be misleading. The number of significant digits is most easily
evaluated when the number is written in exponential notation; the number of
significant digits can then simply be counted, including zeroes. Some exam-
ples are shown in Table 1-3.

When performing calculations or manipulations of several parameters,
the final result is generally only as precise as the least precise parameter in
the problem. For example, suppose A and B are multiplied to obtain C. If
A = 2.3601 (five significant digits), and B = 0.34 (two significant digits),
then C = 0.80 (only two digits are significant in the final result). Note that
most students are tempted to write C = 0.802434, with six significant dig-
its, since that is what is displayed on a calculator after multiplying these
two numbers.
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FIGURE 1-40

[lustration of accuracy versus
precision. Shooter A is more precise,
but less accurate, while shooter B is
more accurate, but less precise.

TABLE 1-3
Significant digits

Number of
Exponential Significant
Notation Digits

1.23 x 10! 3
1.23 x 10° 3
0.00123 1.23x 1073 3
40,300 4.03 x 104 3
40,300. 4.0300 x 104 5
4

2

1

Number

12.3
123,000

0.005600 5.600 x 1073
0.0056 5.6 x 1073
0.006 6.x 1073
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Given: Volume: V=3.75L
® Density: p =0.845 kg/L

(3 significant digits)
Also, 3.75x 0.845 = 3.16875

Find: Mass: m= pV = 3.16875 kg

O Rounding to 3 significant digits:
m=3.17kg

FIGURE 1-41

A result with more significant digits
than that of given data falsely implies
more precision.

Let’'s analyze this simple example carefully. Suppose the exact value of B
is 0.33501, which is read by the instrument as 0.34. Also suppose A is
exactly 2.3601, as measured by a more accurate and precise instrument. In
this case, C = A X B = 0.79066 to five significant digits. Note that our first
answer, C = 0.80 is off by one digit in the second decimal place. Likewise,
if Bis0.34499, and is read by the instrument as 0.34, the product of A and
B would be 0.81421 to five significant digits. Our origina answer of 0.80 is
again off by one digit in the second decimal place. The main point here is
that 0.80 (to two significant digits) is the best one can expect from this mul-
tiplication since, to begin with, one of the values had only two significant
digits. Another way of looking at thisis to say that beyond the first two dig-
its in the answer, the rest of the digits are meaningless or not significant.
For example, if one reports what the calculator displays, 2.3601 times 0.34
equals 0.802434, the last four digits are meaningless. As shown, the final
result may lie between 0.79 and 0.81—any digits beyond the two significant
digits are not only meaningless, but misleading, since they imply to the
reader more precision than is really there.

As another example, consider a 3.75-L container filled with gasoline
whose density is 0.845 kg/L, and determine its mass. Probably the first
thought that comes to your mind is to multiply the volume and density to
obtain 3.16875 kg for the mass, which falsely implies that the mass so
determined is precise to six significant digits. In reality, however, the mass
cannot be more precise than three significant digits since both the volume
and the density are precise to three significant digits only. Therefore, the
result should be rounded to three significant digits, and the mass should be
reported to be 3.17 kg instead of what the calculator displays (Fig. 1-41).
The result 3.16875 kg would be correct only if the volume and density were
given to be 3.75000 L and 0.845000 kg/L, respectively. The value 3.75 L
implies that we are fairly confident that the volume is precise within
+0.01 L, and it cannot be 3.74 or 3.76 L. However, the volume can be
3.746, 3.750, 3.753, etc., since they all round to 3.75 L.

You should also be aware that sometimes we knowingly introduce small
errors in order to avoid the trouble of searching for more accurate data.
For example, when dealing with liquid water, we often use the value of
1000 kg/m? for density, which is the density value of pure water at 0°C.
Using this value at 75°C will result in an error of 2.5 percent since the den-
sity at this temperature is 975 kg/m3. The minerals and impurities in the
water will introduce additional error. This being the case, you should have
no reservation in rounding the final results to a reasonable number of signif-
icant digits. Besides, having a few percent uncertainty in the results of engi-
neering analysis is usually the norm, not the exception.

When writing intermediate results in a computation, it is advisable to
keep severa “extra’ digits to avoid round-off errors; however, the find
result should be written with the number of significant digits taken into con-
sideration. The reader must also keep in mind that a certain number of sig-
nificant digits of precision in the result does not necessarily imply the same
number of digits of overall accuracy. Bias error in one of the readings may,
for example, significantly reduce the overall accuracy of the result, perhaps
even rendering the last significant digit meaningless, and reducing the over-
all number of reliable digits by one. Experimentally determined values are



subject to measurement errors, and such errors are reflected in the results
obtained. For example, if the density of a substance has an uncertainty of 2
percent, then the mass determined using this density value will also have an

uncertainty of 2 percent.

Finally, when the number of significant digits is unknown, the accepted
engineering standard is three significant digits. Therefore, if the length of a
pipe is given to be 40 m, we will assume it to be 40.0 m in order to justify

using three significant digits in the fina results.

\olume flow rate: v

EXAMPLE 1-6 Significant Digits and Volume Flow Rate

Jennifer is conducting an experiment that uses cooling water from a garden
hose. In order to calculate the volume flow rate of water through the hose,
she times how long it takes to fill a container (Fig. 1-42). The volume of
water collected is V = 1.1 gal in time period At= 45.62 s, as measured
with a stopwatch. Calculate the volume flow rate of water through the hose
in units of cubic meters per minute.

SOLUTION Volume flow rate is to be determined from measurements of vol-
ume and time period.

Assumptions 1 Jennifer recorded her measurements properly, such that the
volume measurement is precise to two significant digits while the time
period is precise to four significant digits. 2 No water is lost due to splash-
ing out of the container.

Analysis Volume flow rate V is volume displaced per unit time and is
expressed as

,_Av
At
Substituting the measured values, the volume flow rate is determined to be

. 1llga <3.785 X 1073 m3> (605
 4562s 1gd 1 min

) =55 x 10~ m¥min

Discussion The final result is listed to two significant digits since we can-
not be confident of any more precision than that. If this were an intermedi-
ate step in subsequent calculations, a few extra digits would be carried along
to avoid accumulated round-off error. In such a case, the volume flow rate
would be written as V = 5.4759 X 10-3 m3/min. Based on the given infor-
mation, we cannot say anything about the accuracy of our result, since we
have no information about systematic errors in either the volume measure-
ment or the time measurement.

Also keep in mind that good precision does not guarantee good accuracy.
For example, if the batteries in the stopwatch were weak, its accuracy could
be quite poor, yet the readout would still be displayed to four significant dig-
its of precision.

In common practice, precision is often associated with resolution, which is
a measure of how finely the instrument can report the measurement. For
example, a digital voltmeter with five digits on its display is said to be more
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Container

FIGURE 142
Schematic for Example 1-6 for the
measurement of volume flow rate.
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FIGURE 143

An instrument with many digits of
resolution (stopwatch ¢) may be less
accurate than an instrument with few
digits of resolution (stopwatch a).
What can you say about stopwatches b
and d?

Exact time span=45.623451 ... s

precise than a digital voltmeter with only three digits. However, the number
of displayed digits has nothing to do with the overall accuracy of the mea-
surement. An instrument can be very precise without being very accurate
when there are significant bias errors. Likewise, an instrument with very few
displayed digits can be more accurate than one with many digits (Fig.

1-43).

SUMMARY

In this chapter some basic concepts of fluid mechanics are
introduced and discussed. A substance in the liquid or gas
phase is referred to as a fluid. Fluid mechanics is the science
that deals with the behavior of fluids at rest or in motion and
the interaction of fluids with solids or other fluids at the
boundaries.

The flow of an unbounded fluid over a surface is external
flow, and the flow in a pipe or duct is internal flow if the
fluid is completely bounded by solid surfaces. A fluid flow is
classified as being compressible or incompressible, depend-
ing on the density variation of the fluid during flow. The den-
sities of liquids are essentially constant, and thus the flow of
liquids is typically incompressible. The term steady implies
no change with time. The opposite of steady is unsteady, or
transient. The term uniform implies no change with location
over a specified region. A flow is said to be one-dimensional
when the velocity changes in one dimension only. A fluid in
direct contact with a solid surface sticks to the surface and

there is no dlip. Thisis known as the no-slip condition, which
leads to the formation of boundary layers along solid sur-
faces.

A system of fixed mass is called a closed system, and a
system that involves mass transfer across its boundaries is
called an open system or control volume. A large number of
engineering problems involve mass flow in and out of a sys-
tem and are therefore modeled as control volumes.

In engineering calculations, it is important to pay particular
attention to the units of the quantities to avoid errors caused
by inconsistent units, and to follow a systematic approach. It
is aso important to recognize that the information given is
not known to more than a certain number of significant dig-
its, and the results obtained cannot possibly be accurate to
more significant digits. The information given on dimensions
and units; problem-solving technique; and accuracy, preci-
sion, and significant digits will be used throughout the entire
text.
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Why do the two images in Fig. 1-44 look aike? Figure 1-44b shows an
above-ground nuclear test performed by the U.S. Department of Energy in
1957. An atomic blast created a fireball on the order of 100 m in diameter.
Expansion is so quick that a compressible flow feature occurs: an expanding
spherical shock wave. The image shown in Fig. 1-44a is an everyday
innocuous event: an inverted image of a dye-stained water drop after it has
fallen into a pool of water, looking from below the pool surface. It could
have fallen from your spoon into a cup of coffee, or been a secondary splash
after a raindrop hit a lake. Why is there such a strong similarity between
these two vastly different events? The application of fundamental principles
of fluid mechanics learned in this book will help you understand much of the
answer, although one can go much deeper.

The water has higher density (Chap. 2) than air, so the drop has experi-
enced negative buoyancy (Chap. 3) as it has fallen through the air before
impact. The fireball of hot gas is less dense than the cool air surrounding it,
so it has positive buoyancy and rises. The shock wave (Chap. 12) reflecting
from the ground also imparts a positive upward force to the fireball. The pri-
mary structure at the top of each image is called a vortex ring. Thisring is a
mini-tornado of concentrated vorticity (Chap. 4) with the ends of the tornado
looping around to close on itself. The laws of kinematics (Chap. 4) tell us
that this vortex ring will carry the fluid in a direction toward the top of the
page. This is expected in both cases from the forces applied and the law of
conservation of momentum applied through a control volume analysis (Chap.
5). One could also analyze this problem with differential analysis (Chaps. 9
and 10) or with computational fluid dynamics (Chap. 15). But why does the
shape of the tracer material look so similar? This occurs if there is approxi-
mate geometric and kinematic similarity (Chap. 7), and if the flow visualiza-
tion (Chap. 4) technique is similar. The passive tracers of heat and dust for
the bomb, and fluorescent dye for the drop, were introduced in a similar
manner as noted in the figure caption.

Further knowledge of kinematics and vortex dynamics can help explain the
similarity of the vortex structure in the images to much greater detail, as dis-
cussed by Sigurdson (1997) and Peck and Sigurdson (1994). Look at the
lobes dangling beneath the primary vortex ring, the striations in the “stalk,”
and the ring at the base of each structure. There is also topological similarity
of this structure to other vortex structures occurring in turbulence. Compari-
son of the drop and bomb has given us a better understanding of how turbu-
lent structures are created and evolve. What other secrets of fluid mechanics
are left to be revealed in explaining the similarity between these two flows?
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P APPLICATION SPOTLIGHT m What Nuclear Blasts and Raindrops Have in Common

@ (b)

FIGURE 1-44

Comparison of the vortex structure
created by: (a) awater drop after
impacting a pool of water (inverted,
from Peck and Sigurdson, 1994), and
(b) an above-ground nuclear test in
Nevadain 1957 (U.S. Department of
Energy). The 2.6 mm drop was dyed
with fluorescent tracer and illuminated
by a strobe flash 50 ms after it had
fallen 35 mm and impacted the clear
pool. The drop was approximately
spherical at the time of impact with
the clear pool of water. Interruption of
alaser beam by the falling drop was
used to trigger atimer that controlled
the time of the strobe flash after
impact of the drop. Details of the
careful experimental procedure
necessary to create the drop
photograph are given by Peck and
Sigurdson (1994) and Peck et al.
(1995). The tracers added to the flow
in the bomb case were primarily heat
and dust. The heat is from the original
fireball which for this particular test
(the“Priscilla’ event of Operation
Plumbob) was large enough to reach
the ground from where the bomb was
initially suspended. Therefore, the
tracer’sinitial geometric condition
was a sphere intersecting the ground.

(a) From Peck, B., and Sgurdson, L. W,
Phys. Fluids, 6(2)(Part 1), 564, 1994.
Used by permission of the author.

(b) United Sates Department of Energy.
Photo from Lorenz Sigurdson.
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PROBLEMS®

Introduction, Classification, and System
1-1C Defineinternal, external, and open-channel flows.

1-2C  Define incompressible flow and incompressible fluid.
Must the flow of a compressible fluid necessarily be treated
as compressible?

1-3C  What is the no-slip condition? What causes it?

1-4C  What is forced flow? How does it differ from natural
flow? Is flow caused by winds forced or natural flow?

1-5C  What is a boundary layer? What causes a boundary
layer to develop?

1-6C  What is the difference between the classical and the
statistical approaches?

1-7C What is a steady-flow process?

1-8C Define stress, normal stress, shear stress, and pressure.
1-9C What are system, surroundings, and boundary?

1-10C When is a system a closed system, and when is it a
control volume?

Mass, Force, and Units

1-11C What is the difference between pound-mass and
pound-force?

1-12C What is the difference between kg-mass and kg-
force?

1-13C  What is the net force acting on a car cruising a a
constant velocity of 70 km/h (a) on alevel road and (b) on an
uphill road?

1-14 A 3-kg plastic tank that has a volume of 0.2 md is
filled with liquid water. Assuming the density of water is
1000 kg/m?3, determine the weight of the combined system.

1-15  Determine the mass and the weight of the air con-
tained in a room whose dimensions are 6 m X 6 m X 8 m.
Assume the density of the air is 1.16 kg/m®.  Answers: 334.1
kg, 3277 N

1-16 At 45° latitude, the gravitational acceleration as a
function of elevation z above sea level isgiven by g = a — bz,

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the & icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.

where a = 9.807 m/s* and b = 3.32 X 107 s72. Determine
the height above sea level where the weight of an object will
decrease by 1 percent. Answer: 29,539 m

1-17E A 150-lbm astronaut took his bathroom scale (a
spring scale) and a beam scale (compares masses) to the
moon where the local gravity is g = 5.48 ft/s>. Determine
how much he will weigh (a) on the spring scale and (b) on
the beam scale.  Answers: (a) 25.5 Ibf; (b) 150 Ibf

1-18 The acceleration of high-speed aircraft is sometimes
expressed in g's (in multiples of the standard acceleration of
gravity). Determine the net upward force, in N, that a 90-kg
man would experience in an aircraft whose acceleration is6 g's.

1-19 %9 A 5-kg rock is thrown upward with a force of

150 N at alocation where the local gravitational
acceleration is 9.79 m/s”. Determine the acceleration of the
rock, in m/s%,

1-20 Solve Prob. 1-19 using EES (or other) software.
Print out the entire solution, including the
numerical results with proper units.

1-21 The value of the gravitational acceleration g decreases
with elevation from 9.807 m/s? at sea level to 9.767 m/s? at
an altitude of 13,000 m, where large passenger planes cruise.
Determine the percent reduction in the weight of an airplane
cruising at 13,000 m relative to its weight at sea level.

Modeling and Solving Engineering Problems

1-22C What is the difference between precision and accu-
racy? Can a measurement be very precise but inaccurate?
Explain.

1-23C  What is the difference between the analytical and
experimental approach to engineering problems? Discuss the
advantages and disadvantages of each approach.

1-24C  What is the importance of modeling in engineering?
How are the mathematical models for engineering processes
prepared?

1-25C  When modeling an engineering process, how is the
right choice made between a simple but crude and a complex
but accurate model? Is the complex model necessarily a bet-
ter choice since it is more accurate?

1-26C How do the differential equations in the study of a
physical problem arise?

1-27C What is the value of the engineering software pack-
ages in (a) engineering education and (b) engineering prac-
tice?
1-28 Determine a positive rea root of this equation
using EES:

2x% — 10x%% — 3x = -3



1-29 Solve this system of two equations with two

unknowns using EES:
x3—y?=775
3xy+y=35

1-30 Solve this system of three equations with three

unknowns using EES:
2X—y+z=5
X2+2y=2z+2
Xy +2z=18

1-31 Solve this system of three equations with three

unknowns using EES:
xy—z=1
X—3y®® +xz=-2
X+y—z=2

Review Problems

1-32  The weight of bodies may change somewhat from one
location to another as a result of the variation of the gravita-

CHAPTER 1

tional acceleration g with elevation. Accounting for this vari-
ation using the relation in Prob. 1-16, determine the weight
of an 80-kg person at sea level (z= 0), in Denver (z= 1610
m), and on the top of Mount Everest (z = 8848 m).

1-33 A man goes to a traditional market to buy a steak for
dinner. He finds a 12-0z steak (1 Ibm = 16 o0z) for $3.15. He
then goes to the adjacent international market and finds a
320-g steak of identical quality for $2.80. Which steak is the
better buy?

1-34 The reactive force developed by a jet engine to push
an airplane forward is called thrust, and the thrust developed
by the engine of a Boeing 777 is about 85,000 Ibf. Express
this thrust in N and kgf.

Design and Essay Problem

1-35 Write an essay on the various mass- and volume-mea-
surement devices used throughout history. Also, explain the
development of the modern units for mass and volume.






PROPERTIES OF FLUIDS

of fluid flow. First we discuss intensive and extensive properties and

define density and specific gravity. This is followed by a discussion of
the properties vapor pressure, energy and its various forms, the specific
heats of ideal gases and incompressible substances, and the coefficient of
compressibility. Then we discuss the property viscosity, which plays a dom-
inant role in most aspects of fluid flow. Finally, we present the property sur-
face tension and determine the capillary rise from static equilibrium condi-
tions. The property pressure is discussed in Chap. 3 together with fluid statics.

I n this chapter, we discuss properties that are encountered in the analysis

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

Have a working knowledge of the
basic properties of fluids and
understand the continuum
approximation

Have a working knowledge of
viscosity and the consequences
of the frictional effects it causes
in fluid flow

Calculate the capillary rises and
drops due to the surface tension
effect
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Criteria to differentiate intensive and
extensive properties.

2-1 = INTRODUCTION

Any characteristic of a system is called a property. Some familiar proper-
ties are pressure P, temperature T, volume V, and mass m. The list can be
extended to include less familiar ones such as viscosity, thermal conductiv-
ity, modulus of elasticity, thermal expansion coefficient, electric resistivity,
and even velocity and elevation.

Properties are considered to be either intensive or extensive. Intensive
properties are those that are independent of the mass of a system, such as
temperature, pressure, and density. Extensive properties are those whose
values depend on the size—or extent—of the system. Total mass, total vol-
ume V, and total momentum are some examples of extensive properties. An
easy way to determine whether a property is intensive or extensive is to
divide the system into two equal parts with an imaginary partition, as shown
in Fig. 2-1. Each part will have the same value of intensive properties as the
original system, but half the value of the extensive properties.

Generally, uppercase letters are used to denote extensive properties (with
mass m being a major exception), and lowercase letters are used for intensive
properties (with pressure P and temperature T being the obvious exceptions).

Extensive properties per unit mass are called specific properties. Some
examples of specific properties are specific volume (v = V/m) and specific
total energy (e = E/m).

The state of a system is described by its properties. But we know from
experience that we do not need to specify all the properties in order to fix a
state. Once the values of a sufficient number of properties are specified, the
rest of the properties assume certain values. That is, specifying a certain
number of properties is sufficient to fix a state. The number of properties
required to fix the state of a system is given by the state postulate: The
state of a simple compressible system is completely specified by two inde-
pendent, intensive properties.

Two properties are independent if one property can be varied while the
other one is held constant. Not all properties are independent, and some are
defined in terms of others, as explained in Section 2-2.

Continuum

Matter is made up of atoms that are widely spaced in the gas phase. Yet it is
very convenient to disregard the atomic nature of a substance and view it as
a continuous, homogeneous matter with no holes, that is, a continuum. The
continuum idealization allows us to treat properties as point functions and to
assume that the properties vary continually in space with no jump disconti-
nuities. This idealization is valid as long as the size of the system we deal
with is large relative to the space between the molecules. This is the case in
practically all problems, except some specialized ones. The continuum ide-
alization is implicit in many statements we make, such as “the density of
water in a glass is the same at any point.”

To have a sense of the distances involved at the molecular level, consider a
container filled with oxygen at atmospheric conditions. The diameter of the
oxygen molecule is about 3 X 1071 m and its mass is 5.3 X 10726 kg. Also,
the mean free path of oxygen at 1 atm pressure and 20°C is 6.3 X 1078 m.
That is, an oxygen molecule travels, on average, a distance of 6.3 X 1078 m
(about 200 times its diameter) before it collides with another molecule.



Also, there are about 2.5 X 10'® molecules of oxygen in the tiny volume
of 1 mm3 at 1 atm pressure and 20°C (Fig. 2-2). The continuum model is
applicable as long as the characteristic length of the system (such as its
diameter) is much larger than the mean free path of the molecules. At very
high vacuums or very high elevations, the mean free path may become large
(for example, it is about 0.1 m for atmospheric air at an elevation of 100
km). For such cases the rarefied gas flow theory should be used, and the
impact of individual molecules should be considered. In this text we limit
our consideration to substances that can be modeled as a continuum.

2-2 = DENSITY AND SPECIFIC GRAVITY

Density is defined as mass per unit volume (Fig. 2-3). That is,

Density: p= % (kg/m?®) (2-1)
The reciprocal of density is the specific volume v, which is defined as vol-
ume per unit mass. That is, v = UIm = 1/p. For a differential volume ele-
ment of mass ém and volume 6V, density can be expressed as p = ém/6V.

The density of a substance, in general, depends on temperature and pres-
sure. The density of most gases is proportional to pressure and inversely
proportional to temperature. Liquids and solids, on the other hand, are
essentially incompressible substances, and the variation of their density with
pressure is usually negligible. At 20°C, for example, the density of water
changes from 998 kg/m? at 1 atm to 1003 kg/m? at 100 atm, a change of
just 0.5 percent. The density of liquids and solids depends more strongly on
temperature than it does on pressure. At 1 atm, for example, the density of
water changes from 998 kg/m? at 20°C to 975 kg/m? at 75°C, a change of
2.3 percent, which can still be neglected in many engineering analyses.

Sometimes the density of a substance is given relative to the density of a
well-known substance. Then it is called specific gravity, or relative den-
sity, and is defined as the ratio of the density of a substance to the density of
some standard substance at a specified temperature (usually water at 4°C,
for which p,, o = 1000 kg/m®). That is,

sG = -

PH,0
Note that the specific gravity of a substance is a dimensionless quantity.
However, in Sl units, the numerical value of the specific gravity of a sub-
stance is exactly equal to its density in g/cm® or kg/L (or 0.001 times the
density in kg/m?) since the density of water at 4°C is 1 g/cm® = 1 kg/L =
1000 kg/md. The specific gravity of mercury at 0°C, for example, is 13.6.
Therefore, its density at 0°C is 13.6 g/cm® = 13.6 kg/L = 13,600 kg/m?.
The specific gravities of some substances at 0°C are given in Table 2-1.
Note that substances with specific gravities less than 1 are lighter than
water, and thus they would float on water.
The weight of a unit volume of a substance is called specific weight and
is expressed as

Specific gravity: (2-2)

Specific weight: vs = pg (N/m?) (2-3)

where g is the gravitational acceleration.
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FIGURE 2-2

Despite the large gaps between
molecules, a substance can be treated
as a continuum because of the very
large number of molecules even in an
extremely small volume.

FIGURE 2-3
Density is mass per unit volume;
specific volume is volume per

unit mass.
TABLE 2-1
Specific gravities of some
substances at 0°C
Substance SG
Water 1.0
Blood 1.05
Seawater 1.025
Gasoline 0.7
Ethyl alcohol 0.79
Mercury 13.6
Wood 0.3-0.9
Gold 19.2
Bones 1.7-2.0
Ice 0.92
Air (at 1 atm) 0.0013
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Recall from Chap. 1 that the densities of liquids are essentially constant,
and thus they can often be approximated as being incompressible substances
during most processes without sacrificing much in accuracy.

Density of ldeal Gases

Property tables provide very accurate and precise information about the
properties, but sometimes it is convenient to have some simple relations
among the properties that are sufficiently general and accurate. Any equa-
tion that relates the pressure, temperature, and density (or specific volume)
of a substance is called an equation of state. The simplest and best-known
equation of state for substances in the gas phase is the ideal-gas equation of
state, expressed as

Pv = RT or P = pRT (2-4)

where P is the absolute pressure, v is the specific volume, T is the thermody-
namic (absolute) temperature, p is the density, and R is the gas constant. The
gas constant R is different for each gas and is determined from R = R, /M,
where R, is the universal gas constant whose value is R, = 8.314 kJ/kmol - K
= 1.986 Btu/lbmol - R, and M is the molar mass (also called molecular
weight) of the gas. The values of R and M for several substances are given
in Table A-1.

The thermodynamic temperature scale in the Sl is the Kelvin scale, and
the temperature unit on this scale is the kelvin, designated by K. In the Eng-
lish system, it is the Rankine scale, and the temperature unit on this scale is
the rankine, R. Various temperature scales are related to each other by

T(K) = T(°C) + 273.15 (2-5)
T(R) = T(°F) + 459.67 (2-6)

It is common practice to round the constants 273.15 and 459.67 to 273 and
460, respectively.

Equation 2—4 is called the ideal-gas equation of state, or simply the
ideal-gas relation, and a gas that obeys this relation is called an ideal gas.
For an ideal gas of volume V, mass m, and number of moles N = m/M, the
ideal-gas equation of state can also be written as PV = mRT or PV = NR,T.
For a fixed mass m, writing the ideal-gas relation twice and simplifying, the
properties of an ideal gas at two different states are related to each other by
P, VIT, = P,WUIT,.

An ideal gas is a hypothetical substance that obeys the relation Pv = RT.
It has been experimentally observed that the ideal-gas relation closely
approximates the P-v-T behavior of real gases at low densities. At low pres-
sures and high temperatures, the density of a gas decreases and the gas
behaves like an ideal gas. In the range of practical interest, many familiar
gases such as air, nitrogen, oxygen, hydrogen, helium, argon, neon, and
krypton and even heavier gases such as carbon dioxide can be treated as
ideal gases with negligible error (often less than 1 percent). Dense gases
such as water vapor in steam power plants and refrigerant vapor in refriger-
ators, however, should not be treated as ideal gases since they usually exist
at a state near saturation.



: EXAMPLE 2-1 Density, Specific Gravity, and Mass of Air in a Room

: Determine the density, specific gravity, and mass of the air in a room whose
m dimensions are 4 m X 5 m X 6 m at 100 kPa and 25°C (Fig. 2-4).

Solution The density, specific gravity, and mass of the air in a room are to
be determined.

Assumptions At specified conditions, air can be treated as an ideal gas.
Properties The gas constant of air is R = 0.287 kPa - m3/kg - K.

Analysis The density of air is determined from the ideal-gas relation P = pRT
to be

P 100 kPa
RT  (0.287 kPa - m®/kg - K)(25 + 273) K
Then the specific gravity of air becomes
s P _ 1.17 kg/m?®
Puo 1000 kg/m?
Finally, the volume and the mass of air in the room are
V= (4m)(5m)6m) =120 m?
m = pV = (1.17 kg/m®)(120 m®) = 140 kg

Discussion Note that we converted the temperature to the unit K from °C
before using it in the ideal-gas relation.

p= = 1.17 kg/m®

= 0.00117

2-3 = VAPOR PRESSURE AND CAVITATION

It is well-established that temperature and pressure are dependent properties
for pure substances during phase-change processes, and there is one-to-one
correspondence between temperatures and pressures. At a given pressure, the
temperature at which a pure substance changes phase is called the satura-
tion temperature T, Likewise, at a given temperature, the pressure at
which a pure substance changes phase is called the saturation pressure Pg.
At an absolute pressure of 1 standard atmosphere (1 atm or 101.325 kPa),
for example, the saturation temperature of water is 100°C. Conversely, at a
temperature of 100°C, the saturation pressure of water is 1 atm.

The vapor pressure P, of a pure substance is defined as the pressure
exerted by its vapor in phase equilibrium with its liquid at a given tempera-
ture. P, is a property of the pure substance, and turns out to be identical to
the saturation pressure P, of the liquid (P, = P,). We must be careful not
to confuse vapor pressure with partial pressure. Partial pressure is defined
as the pressure of a gas or vapor in a mixture with other gases. For example,
atmospheric air is a mixture of dry air and water vapor, and atmospheric
pressure is the sum of the partial pressure of dry air and the partial pressure
of water vapor. The partial pressure of water vapor constitutes a small frac-
tion (usually under 3 percent) of the atmospheric pressure since air is mostly
nitrogen and oxygen. The partial pressure of a vapor must be less than or
equal to the vapor pressure if there is no liquid present. However, when both
vapor and liquid are present and the system is in phase equilibrium, the par-
tial pressure of the vapor must equal the vapor pressure, and the system is
said to be saturated. The rate of evaporation from open water bodies such as
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P =100 kPa
T =25°C
FIGURE 24

Schematic for Example 2-1.
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TABLE 2-2

Saturation (or vapor) pressure of
water at various temperatures

Saturation
Temperature Pressure
T,°C P..i, kPa
-10 0.260
-5 0.403
0 0.611
5 0.872
10 1.23
15 1.71
20 2.34
25 3.17
30 4.25
40 7.38
50 12.35
100 101.3 (1 atm)
150 475.8
200 1554
250 3973
300 8581
FIGURE 2-5

Cavitation damage on a 16-mm by
23-mm aluminum sample tested at
60 m/s for 2.5 h. The sample was
located at the cavity collapse region
downstream of a cavity generator
specifically designed to produce high
damage potential.

Photograph by David Stinebring,
ARL/Pennsylvania State University.
Used by permission.

lakes is controlled by the difference between the vapor pressure and the partial
pressure. For example, the vapor pressure of water at 20°C is 2.34 kPa. There-
fore, a bucket of water at 20°C left in a room with dry air at 1 atm will con-
tinue evaporating until one of two things happens: the water evaporates
away (there is not enough water to establish phase equilibrium in the room),
or the evaporation stops when the partial pressure of the water vapor in the
room rises to 2.34 kPa at which point phase equilibrium is established.

For phase-change processes between the liquid and vapor phases of a pure
substance, the saturation pressure and the vapor pressure are equivalent
since the vapor is pure. Note that the pressure value would be the same
whether it is measured in the vapor or liquid phase (provided that it is mea-
sured at a location close to the liquid—vapor interface to avoid the hydrosta-
tic effects). Vapor pressure increases with temperature. Thus, a substance at
higher temperatures boils at higher pressures. For example, water boils at
134°C in a pressure cooker operating at 3 atm absolute pressure, but it boils
at 93°C in an ordinary pan at a 2000-m elevation, where the atmospheric
pressure is 0.8 atm. The saturation (or vapor) pressures are given in Appen-
dices 1 and 2 for various substances. A mini table for water is given in
Table 2-2 for easy reference.

The reason for our interest in vapor pressure is the possibility of the liquid
pressure in liquid-flow systems dropping below the vapor pressure at some
locations, and the resulting unplanned vaporization. For example, water at
10°C will flash into vapor and form bubbles at locations (such as the tip
regions of impellers or suction sides of pumps) where the pressure drops
below 1.23 kPa. The vapor bubbles (called cavitation bubbles since they
form “cavities” in the liquid) collapse as they are swept away from the low-
pressure regions, generating highly destructive, extremely high-pressure waves.
This phenomenon, which is a common cause for drop in performance and
even the erosion of impeller blades, is called cavitation, and it is an impor-
tant consideration in the design of hydraulic turbines and pumps (Fig. 2-5).

Cavitation must be avoided (or at least minimized) in flow systems since
it reduces performance, generates annoying vibrations and noise, and causes
damage to equipment. The pressure spikes resulting from the large number
of bubbles collapsing near a solid surface over a long period of time may
cause erosion, surface pitting, fatigue failure, and the eventual destruction of
the components or machinery. The presence of cavitation in a flow system
can be sensed by its characteristic tumbling sound.

EXAMPLE 2-2 Minimum Pressure to Avoid Cavitation

In a water distribution system, the temperature of water is observed to be as
high as 30°C. Determine the minimum pressure allowed in the system to
avoid cavitation.

SOLUTION The minimum pressure in a water distribution system to avoid
cavitation is to be determined.

Properties The vapor pressure of water at 30°C is 4.25 kPa.

Analysis To avoid cavitation, the pressure anywhere in the flow should not
be allowed to drop below the vapor (or saturation) pressure at the given tem-
perature. That is,

Pmin = Psa@src = 4.25 kPa
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Therefore, the pressure should be maintained above 4.25 kPa everywhere in
the flow.

Discussion Note that the vapor pressure increases with increasing tempera-
ture, and thus the risk of cavitation is greater at higher fluid temperatures.

2-4 - ENERGY AND SPECIFIC HEATS

Energy can exist in numerous forms such as thermal, mechanical, Kinetic,
potential, electrical, magnetic, chemical, and nuclear, and their sum consti-
tutes the total energy E (or e on a unit mass basis) of a system. The forms
of energy related to the molecular structure of a system and the degree of
the molecular activity are referred to as the microscopic energy. The sum of
all microscopic forms of energy is called the internal energy of a system,
and is denoted by U (or u on a unit mass basis).

The macroscopic energy of a system is related to motion and the influ-
ence of some external effects such as gravity, magnetism, electricity, and
surface tension. The energy that a system possesses as a result of its motion
relative to some reference frame is called kinetic energy. When all parts of
a system move with the same velocity, the kinetic energy per unit mass is
expressed as ke = V2/2 where V denotes the velocity of the system relative
to some fixed reference frame. The energy that a system possesses as a
result of its elevation in a gravitational field is called potential energy and
is expressed on a per-unit mass basis as pe = gz where g is the gravitational
acceleration and z is the elevation of the center of gravity of a system rela-
tive to some arbitrarily selected reference plane.

In daily life, we frequently refer to the sensible and latent forms of inter-
nal energy as heat, and we talk about the heat content of bodies. In engi-
neering, however, those forms of energy are usually referred to as thermal
energy to prevent any confusion with heat transfer.

The international unit of energy is the joule (J) or kilojoule (1 kJ = 1000 J).
In the English system, the unit of energy is the British thermal unit (Btu),
which is defined as the energy needed to raise the temperature of 1 lbm of
water at 68°F by 1°F. The magnitudes of kJ and Btu are almost identical
(1 Btu = 1.0551 kJ). Another well-known unit of energy is the calorie
(1 cal = 4.1868 J), which is defined as the energy needed to raise the tem-
perature of 1 g of water at 14.5°C by 1°C.

In the analysis of systems that involve fluid flow, we frequently encounter —> Flowing —> Energy =h
the combination of properties u and Pv. For convenience, this combination fluid
is called enthalpy h. That is,

P
Enthalpy: h=u+Pv=u+— 2-7

P Stationary Energy = u
where P/p is the flow energy, also called the flow work, which is the energy fluid
per unit mass needed to move the fluid and maintain flow. In the energy
analysis of flowing fluids, it is convenient to treat the flow energy as part of FIGURE 2-6
the energy of the fluid and to represent the microscopic energy of a fluid The internal energy u represents the
stream by enthalpy h (Fig. 2-6). Note that enthalpy is a quantity per unit microscopic energy of a nonflowing
mass, and thus it is a specific property. fluid per unit mass, whereas enthalpy

In the absence of such effects as magnetic, electric, and surface tension, a  h represents the microscopic energy of
system is called a simple compressible system. The total energy of a simple a flowing fluid per unit mass.
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FIGURE 2-7

Fluids, like solids, compress when
the applied pressure is increased
from P, to P,.

compressible system consists of three parts: internal, kinetic, and potential
energies. On a unit-mass basis, it is expressed as e = u + ke + pe. The
fluid entering or leaving a control volume possesses an additional form of
energy—the flow energy P/p. Then the total energy of a flowing fluid on a
unit-mass basis becomes

V2
€fowing = P/p &€ =h + ke + pe =h + E} + 9z (kJ/kg) (2-8)

where h = P/p + u is the enthalpy, V is the velocity, and z is the elevation
of the system relative to some external reference point.

By using the enthalpy instead of the internal energy to represent the energy
of a flowing fluid, one does not need to be concerned about the flow work.
The energy associated with pushing the fluid is automatically taken care of by
enthalpy. In fact, this is the main reason for defining the property enthalpy.

The differential and finite changes in the internal energy and enthalpy of
an ideal gas can be expressed in terms of the specific heats as

du=c¢,dT and dh=c,dT (2-9)

where ¢, and c, are the constant-volume and constant-pressure specific heats of
the ideal gas. Using specific heat values at the average temperature, the finite
changes in internal energy and enthalpy can be expressed approximately as

AU = C e AT and Ah = Cpae AT (2-10)

For incompressible substances, the constant-volume and constant-pressure
specific heats are identical. Therefore, ¢, = ¢, = c¢ for liquids, and the
change in the internal energy of liquids can be expressed as Au = ¢, AT.

Noting that p = constant for incompressible substances, the differentia-
tion of enthalpy h = u + P/p gives dh = du + dP/p. Integrating, the

enthalpy change becomes
Ah = Au + AP/p = ¢, AT + AP/p (2-11)

Therefore, Ah = Au = c,,, AT for constant-pressure processes, and Ah =
AP/p for constant-temperature processes of liquids.

2-5 = COEFFICIENT OF COMPRESSIBILITY

We know from experience that the volume (or density) of a fluid changes
with a change in its temperature or pressure. Fluids usually expand as they
are heated or depressurized and contract as they are cooled or pressurized.
But the amount of volume change is different for different fluids, and we
need to define properties that relate volume changes to the changes in pres-
sure and temperature. Two such properties are the bulk modulus of elasticity
k and the coefficient of volume expansion .

It is a common observation that a fluid contracts when more pressure is
applied on it and expands when the pressure acting on it is reduced (Fig.
2-T7). That is, fluids act like elastic solids with respect to pressure. Therefore,
in an analogous manner to Young’s modulus of elasticity for solids, it is
appropriate to define a coefficient of compressibility « (also called the bulk
modulus of compressibility or bulk modulus of elasticity) for fluids as

B oB) oo
: av/¢ g aip/t



It can also be expressed approximately in terms of finite changes as
_AP _ AP
Aviv Aplp

(T = constant) (2-13)

Noting that Av/v or Aplp is dimensionless, « must have the dimension of
pressure (Pa or psi). Also, the coefficient of compressibility represents the
change in pressure corresponding to a fractional change in volume or density
of the fluid while the temperature remains constant. Then it follows that the
coefficient of compressibility of a truly incompressible substance (v = con-
stant) is infinity.

A large value of k indicates that a large change in pressure is needed to
cause a small fractional change in volume, and thus a fluid with a large « is
essentially incompressible. This is typical for liquids, and explains why lig-
uids are usually considered to be incompressible. For example, the pressure
of water at normal atmospheric conditions must be raised to 210 atm to
compress it 1 percent, corresponding to a coefficient of compressibility
value of k = 21,000 atm.

Small density changes in liquids can still cause interesting phenomena in
piping systems such as the water hammer—characterized by a sound that
resembles the sound produced when a pipe is “hammered.” This occurs
when a liquid in a piping network encounters an abrupt flow restriction
(such as a closing valve) and is locally compressed. The acoustic waves pro-
duced strike the pipe surfaces, bends, and valves as they propagate and
reflect along the pipe, causing the pipe to vibrate and produce the familiar
sound.

Note that volume and pressure are inversely proportional (volume
decreases as pressure is increased and thus dP/dv is a negative quantity),
and the negative sign in the definition (Eq. 2-12) ensures that « is a positive
quantity. Also, differentiating p = 1/v gives dp = —duv/v?, which can be
rearranged as

B _ v (2-14)
p v
That is, the fractional changes in the specific volume and the density of a
fluid are equal in magnitude but opposite in sign.
For an ideal gas, P = pRT and (dP/dp); = RT = Plp, and thus

Kideal gas — P (Pa) (2-15)

Therefore, the coefficient of compressibility of an ideal gas is equal to its
absolute pressure, and the coefficient of compressibility of the gas increases
with increasing pressure. Substituting k = P into the definition of the coef-
ficient of compressibility and rearranging gives

4p _ AP

Ideal gas:
g P P

(T = constant) (2-16)
Therefore, the percent increase of density of an ideal gas during isothermal
compression is equal to the percent increase in pressure.

For air at 1 atm pressure, k = P = 1 atm and a decrease of 1 percent in
volume (AV/V = —0.01) corresponds to an increase of AP = 0.01 atm in
pressure. But for air at 1000 atm, k = 1000 atm and a decrease of 1 percent
in volume corresponds to an increase of AP = 10 atm in pressure. Therefore,
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a small fractional change in the volume of a gas can cause a large change in
pressure at very high pressures.

The inverse of the coefficient of compressibility is called the isothermal
compressibility « and is expressed as

1 1/0 1/0
gt 1 (l) - (i) (UPa) @-17)
K v \oP T 14 JoP T

The isothermal compressibility of a fluid represents the fractional change in
volume or density corresponding to a unit change in pressure.

Coefficient of Volume Expansion

The density of a fluid, in general, depends more strongly on temperature
than it does on pressure, and the variation of density with temperature is
responsible for numerous natural phenomena such as winds, currents in

FIGURE 2—-8 oceans, rise of plumes in chimneys, the operation of hot-air balloons, heat
Natural convection over a woman’s transfer by natural convection, and even the rise of hot air and thus the
hand. phrase “heat rises” (Fig. 2-8). To quantify these effects, we need a property
G. s. Settles, Gas Dynamics Lab, that represents the variation of the density of a fluid with temperature at
Penn State University. Used by permission. constant pressure.

The property that provides that information is the coefficient of volume
expansion (or volume expansivity) B, defined as (Fig. 2-9)

1/ov 1 c?p)
=>(Z) =—=(= 1/K 2-18
P V<8T)p p(an (9 @19
Z ! It can also be expressed approximately in terms of finite changes as
(Bl/) \ p pp y g
L (2v
| T |
ffffffff Avl Apl
20°C 21°C B= %/ = —% (at constant P) (2-19)
100 kPa 100 kPa T T
Lkg Lkg A large value of B for a fluid means a large change in density with temper-
(a) A substance with a large B ature, and the product B8 AT represents the fraction of volume change of a
(Q) fluid that corresponds to a temperature change of AT at constant pressure.
aTJe It can be shown easily that the volume expansion coefficient of an ideal
( gas (P = pRT) at a temperature T is equivalent to the inverse of the tem-
\ perature:
N )
20°C 21°C ) == —
100 kPa 100 kPa Bldeal gas T (l/K) (2-20)
1kg 1kg

_ where T is the absolute temperature.
(b) A substance with a small 8 In the study of natural convection currents, the condition of the main fluid
body that surrounds the finite hot or cold regions is indicated by the sub-

FIGURE 2-9 R . - .

L . script “infinity” to serve as a reminder that this is the value at a distance
The coefficient of volume expansion where the presence of the hot or cold region is not felt. In such cases, the
is a measure of the change in volume | prese fficient b g d - tel '
of a substance with temperature at volume expansion coefficient can be expressed approximately as

constant pressure. (p. — p)lp

- or L —p=pBT-T. 2-21
B T -1 p= = p = pB( ) (2-21)

where p,, is the density and T, is the temperature of the quiescent fluid
away from the confined hot or cold fluid pocket.



We will see in Chap. 3 that natural convection currents are initiated by the
buoyancy force, which is proportional to the density difference, which is
proportional to the temperature difference at constant pressure. Therefore,
the larger the temperature difference between the hot or cold fluid pocket
and the surrounding main fluid body, the larger the buoyancy force and thus
the stronger the natural convection currents.

The combined effects of pressure and temperature changes on the volume
change of a fluid can be determined by taking the specific volume to be a
function of T and P. Differentiating v = v(T, P) and using the definitions of
the compression and expansion coefficients « and 8 give

v v
= | — + | — = — —,
dv <8T)p dT (aP)TdP (B dT — a dP)v (2-22)
Then the fractional change in volume (or density) due to changes in pres-
sure and temperature can be expressed approximately as
Av_  Ap

=—— = BAT — a AP (2-23)
v p

: EXAMPLE 2-3 Variation of Density with Temperature and Pressure

: Consider water initially at 20°C and 1 atm. Determine the final density of
m Water (a) if it is heated to 50°C at a constant pressure of 1 atm, and (b) if it
m is compressed to 100-atm pressure at a constant temperature of 20°C. Take
B the isothermal compressibility of water to be & = 4.80 X 107> atm~!.
|
SOLUTION Water at a given temperature and pressure is considered. The
densities of water after it is heated and after it is compressed are to be
determined.
Assumptions 1 The coefficient of volume expansion and the isothermal
compressibility of water are constant in the given temperature range. 2 An
approximate analysis is performed by replacing differential changes in quan-
tities by finite changes.
Properties The density of water at 20°C and 1 atm pressure is p; =
998.0 kg/m3. The coefficient of volume expansion at the average tempera-
ture of (20 + 50)/2 = 35°C is B = 0.337 X 1073 K~1. The isothermal com-
pressibility of water is given to be & = 4.80 X 105 atm~1.
Analysis When differential quantities are replaced by differences and the
properties « and B are assumed to be constant, the change in density in
terms of the changes in pressure and temperature is expressed approxi-
mately as (Eq. 2-23)

Ap = ap AP — Bp AT

(a) The change in density due to the change of temperature from 20°C to
50°C at constant pressure is

Ap = —Bp AT = —(0.337 X 103 K~1)(998 kg/m®)(50 — 20) K
= —10.0 kg/m®
Noting that Ap = p, — p;, the density of water at 50°C and 1 atm is
p, = p1 + Ap = 998.0 + (—10.0) = 988.0 kg/m®
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FIGURE 2-10

The variation of the coefficient of

volume expansion of water 8 with

temperature in the range of 20°C

to 50°C.

Data were generated and plotted using EES.

Drag
force

FIGURE 2-11

A fluid moving relative to a body
exerts a drag force on the body, partly
because of friction caused by viscosity.

which is almost identical to the listed value of 988.1 kg/m3 at 50°C in Table
A-3. This is mostly due to B varying with temperature almost linearly, as
shown in Fig. 2-10.

(b) The change in density due to a change of pressure from 1 atm to 100
atm at constant temperature is

Ap = ap AP = (4.80 X 10 ° atm1)(998 kg/m®)(100 — 1) atm = 4.7 kg/m®
Then the density of water at 100 atm and 20°C becomes
pr=py + Ap =998.0 + 4.7 = 1002.7 kg/m®

Discussion Note that the density of water decreases while being heated and
increases while being compressed, as expected. This problem can be solved
more accurately using differential analysis when functional forms of proper-
ties are available.

2-6 = VISCOSITY

When two solid bodies in contact move relative to each other, a friction
force develops at the contact surface in the direction opposite to motion. To
move a table on the floor, for example, we have to apply a force to the table
in the horizontal direction large enough to overcome the friction force. The
magnitude of the force needed to move the table depends on the friction
coefficient between the table and the floor.

The situation is similar when a fluid moves relative to a solid or when two
fluids move relative to each other. We move with relative ease in air, but not
so in water. Moving in oil would be even more difficult, as can be observed
by the slower downward motion of a glass ball dropped in a tube filled with
oil. It appears that there is a property that represents the internal resistance
of a fluid to motion or the “fluidity,” and that property is the viscosity. The
force a flowing fluid exerts on a body in the flow direction is called the
drag force, and the magnitude of this force depends, in part, on viscosity
(Fig. 2-11).

To obtain a relation for viscosity, consider a fluid layer between two very
large parallel plates (or equivalently, two parallel plates immersed in a large
body of a fluid) separated by a distance ¢ (Fig. 2-12). Now a constant par-
allel force F is applied to the upper plate while the lower plate is held fixed.
After the initial transients, it is observed that the upper plate moves continu-
ously under the influence of this force at a constant velocity V. The fluid in
contact with the upper plate sticks to the plate surface and moves with it at
the same velocity, and the shear stress 7 acting on this fluid layer is

_F 2-2
T= A (2-24)
where A is the contact area between the plate and the fluid. Note that the
fluid layer deforms continuously under the influence of shear stress.

The fluid in contact with the lower plate assumes the velocity of that plate,

which is zero (again because of the no-slip condition). In steady laminar



flow, the fluid velocity between the plates varies linearly between 0 and V,
and thus the velocity profile and the velocity gradient are
du V

_Y a_Vv —
ufy) = €V and dy ¢ (2-25)
where y is the vertical distance from the lower plate.

During a differential time interval dt, the sides of fluid particles along a
vertical line MN rotate through a differential angle dB while the upper plate
moves a differential distance da = V dt. The angular displacement or defor-
mation (or shear strain) can be expressed as
da _Vdt du

detan,B=? ¢ ?ydt

(2-26)

Rearranging, the rate of deformation under the influence of shear stress 7
becomes
dg  du
—=— 2-27
dt  dy @-2D
Thus we conclude that the rate of deformation of a fluid element is equiva-
lent to the velocity gradient du/dy. Further, it can be verified experimentally
that for most fluids the rate of deformation (and thus the velocity gradient)
is directly proportional to the shear stress T,
aB du

or T ox -

dt dy

T (2-28)
Fluids for which the rate of deformation is proportional to the shear stress
are called Newtonian fluids after Sir Isaac Newton, who expressed it first in
1687. Most common fluids such as water, air, gasoline, and oils are Newton-
ian fluids. Blood and liquid plastics are examples of non-Newtonian fluids.

In one-dimensional shear flow of Newtonian fluids, shear stress can be
expressed by the linear relationship

Shear stress: T = Mj—; (N/m?) (2-29)
where the constant of proportionality w is called the coefficient of viscosity
or the dynamic (or absolute) viscosity of the fluid, whose unit is kg/m - s,
or equivalently, N - s/m? (or Pa - s where Pa is the pressure unit pascal). A
common viscosity unit is poise, which is equivalent to 0.1 Pa - s (or cen-
tipoise, which is one-hundredth of a poise). The viscosity of water at 20°C
is 1 centipoise, and thus the unit centipoise serves as a useful reference. A
plot of shear stress versus the rate of deformation (velocity gradient) for a
Newtonian fluid is a straight line whose slope is the viscosity of the fluid, as
shown in Fig. 2-13. Note that viscosity is independent of the rate of defor-
mation.

The shear force acting on a Newtonian fluid layer (or, by Newton’s third

law, the force acting on the plate) is

du
F=7A=uA—

Shear force:
dy

(N) (2-30)
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The behavior of a fluid in laminar
flow between two parallel plates
when the upper plate moves with
a constant velocity.
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FIGURE 2-13

The rate of deformation (velocity
gradient) of a Newtonian fluid is
proportional to shear stress, and
the constant of proportionality

is the viscosity.
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Variation of shear stress with the rate
of deformation for Newtonian and
non-Newtonian fluids (the slope of a
curve at a point is the apparent
viscosity of the fluid at that point).
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FIGURE 2-15

Dynamic viscosity, in general, does
not depend on pressure, but kinematic
viscosity does.

where again A is the contact area between the plate and the fluid. Then the
force F required to move the upper plate in Fig. 2-12 at a constant velocity
of V while the lower plate remains stationary is

Vv
F=pAy (N (2-31)

This relation can alternately be used to calculate w when the force F is mea-
sured. Therefore, the experimental setup just described can be used to mea-
sure the viscosity of fluids. Note that under identical conditions, the force F
will be very different for different fluids.

For non-Newtonian fluids, the relationship between shear stress and rate
of deformation is not linear, as shown in Fig. 2-14. The slope of the curve
on the 7 versus du/dy chart is referred to as the apparent viscosity of the
fluid. Fluids for which the apparent viscosity increases with the rate of
deformation (such as solutions with suspended starch or sand) are referred
to as dilatant or shear thickening fluids, and those that exhibit the opposite
behavior (the fluid becoming less viscous as it is sheared harder, such as
some paints, polymer solutions, and fluids with suspended particles) are
referred to as pseudoplastic or shear thinning fluids. Some materials such as
toothpaste can resist a finite shear stress and thus behave as a solid, but
deform continuously when the shear stress exceeds the yield stress and thus
behave as a fluid. Such materials are referred to as Bingham plastics after
E. C. Bingham, who did pioneering work on fluid viscosity for the U.S.
National Bureau of Standards in the early twentieth century.

In fluid mechanics and heat transfer, the ratio of dynamic viscosity to
density appears frequently. For convenience, this ratio is given the name
kinematic viscosity v and is expressed as v = u/p. Two common units of
kinematic viscosity are m?/s and stoke (1 stoke = 1 cm?/s = 0.0001 m?/s).

In general, the viscosity of a fluid depends on both temperature and pres-
sure, although the dependence on pressure is rather weak. For liquids, both
the dynamic and kinematic viscosities are practically independent of pres-
sure, and any small variation with pressure is usually disregarded, except at
extremely high pressures. For gases, this is also the case for dynamic vis-
cosity (at low to moderate pressures), but not for kinematic viscosity since
the density of a gas is proportional to its pressure (Fig. 2-15).

The viscosity of a fluid is a measure of its “resistance to deformation.”
Viscosity is due to the internal frictional force that develops between differ-
ent layers of fluids as they are forced to move relative to each other. Viscos-
ity is caused by the cohesive forces between the molecules in liquids and by
the molecular collisions in gases, and it varies greatly with temperature. The
viscosity of liquids decreases with temperature, whereas the viscosity of
gases increases with temperature (Fig. 2-16). This is because in a liquid the
molecules possess more energy at higher temperatures, and they can oppose
the large cohesive intermolecular forces more strongly. As a result, the ener-
gized liquid molecules can move more freely.

In a gas, on the other hand, the intermolecular forces are negligible, and
the gas molecules at high temperatures move randomly at higher velocities.
This results in more molecular collisions per unit volume per unit time and
therefore in greater resistance to flow. The viscosity of a fluid is directly



related to the pumping power needed to transport a fluid in a pipe or to
move a body (such as a car in air or a submarine in the sea) through a fluid.

The kinetic theory of gases predicts the viscosity of gases to be propor-
tional to the square root of temperature. That is, uq,s  V'T. This prediction
is confirmed by practical observations, but deviations for different gases
need to be accounted for by incorporating some correction factors. The vis-
cosity of gases is expressed as a function of temperature by the Sutherland
correlation (from The U.S. Standard Atmosphere) as

aTl/Z
1+ b7

Gases: " (2-32)
where T is absolute temperature and a and b are experimentally determined
constants. Note that measuring viscosities at two different temperatures is
sufficient to determine these constants. For air, the values of these constants
are a = 1.458 X 1078 kg/(m - s - K?) and b = 110.4 K at atmospheric
conditions. The viscosity of gases is independent of pressure at low to mod-
erate pressures (from a few percent of 1 atm to several atm). But viscosity
increases at high pressures due to the increase in density.
For liquids, the viscosity is approximated as

Liquids: w = al0-o (2-33)

where again T is absolute temperature and a, b, and ¢ are experimentally
determined constants. For water, using the values a = 2.414 X 1075 N - s/m?,
b = 247.8 K, and ¢ = 140 K results in less than 2.5 percent error in viscosity
in the temperature range of 0°C to 370°C (Touloukian et al., 1975).

Consider a fluid layer of thickness € within a small gap between two con-
centric cylinders, such as the thin layer of oil in a journal bearing. The gap
between the cylinders can be modeled as two parallel flat plates separated by
a fluid. Noting that torque is T = FR (force times the moment arm, which is
the radius R of the inner cylinder in this case), the tangential velocity is V =
R (angular velocity times the radius), and taking the wetted surface area of
the inner cylinder to be A = 277RL by disregarding the shear stress acting on
the two ends of the inner cylinder, torque can be expressed as

2mRP0L 47 ’R%L
e F

T=FR=pu (2-34)
where L is the length of the cylinder and n is the number of revolutions per
unit time, which is usually expressed in rpm (revolutions per minute). Note
that the angular distance traveled during one rotation is 27 rad, and thus the
relation between the angular velocity in rad/min and the rpm is @ = 27m.
Equation 2—34 can be used to calculate the viscosity of a fluid by measuring
torque at a specified angular velocity. Therefore, two concentric cylinders
can be used as a viscometer, a device that measures viscosity.

The viscosities of some fluids at room temperature are listed in Table 2-3.
They are plotted against temperature in Fig. 2-17. Note that the viscosities
of different fluids differ by several orders of magnitude. Also note that it is
more difficult to move an object in a higher-viscosity fluid such as engine oil
than it is in a lower-viscosity fluid such as water. Liquids, in general, are
much more viscous than gases.

Liquids
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Viscosity

Gases

Temperature

FIGURE 2-16

The viscosity of liquids decreases
and the viscosity of gases increases

TABLE 2-3

with temperature.

Dynamic viscosities of some fluids
at 1 atm and 20°C (unless

otherwise stated)

Dynamic Viscosity

Fluid u, kg/m - s
Glycerin:
-20°C 134.0
0°C 10.5
20°C 1.52
40°C 0.31
Engine oil:
SAE 10W 0.10
SAE 10W30 0.17
SAE 30 0.29
SAE 50 0.86
Mercury 0.0015
Ethyl alcohol 0.0012
Water:
0°C 0.0018
20°C 0.0010
100°C (liquid) 0.00028
100°C (vapor) 0.000012
Blood, 37°C 0.00040
Gasoline 0.00029
Ammonia 0.00015
Air 0.000018
Hydrogen, 0°C 0.0000088
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FIGURE 2-17

The variation of dynamic (absolute)
viscosities of common fluids with
temperature at 1 atm (L N - s/m? =
1 kg/m + s = 0.020886 Ibf - s/ft?).

F. M. White, Fluid Mechanics 4e.

Copyright © 1999 The McGraw-Hill Companies,

Inc. Used by permission.
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FIGURE 2-18
Schematic for Example 2—4.
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EXAMPLE 2—4 Determining the Viscosity of a Fluid

The viscosity of a fluid is to be measured by a viscometer constructed of two
40-cm-long concentric cylinders (Fig. 2-18). The outer diameter of the inner
cylinder is 12 cm, and the gap between the two cylinders is 0.15 cm. The
inner cylinder is rotated at 300 rpm, and the torque is measured to be
1.8 N - m. Determine the viscosity of the fluid.

SOLUTION The torque and the rpm of a double cylinder viscometer are
given. The viscosity of the fluid is to be determined.

Assumptions 1 The inner cylinder is completely submerged in oil. 2 The
viscous effects on the two ends of the inner cylinder are negligible.

Analysis The velocity profile is linear only when the curvature effects are
negligible, and the profile can be approximated as being linear in this case
since ¢/R << 1. Solving Eq. 2-34 for viscosity and substituting the given
values, the viscosity of the fluid is determined to be

TC (1.8 N - m)(0.0015 m)

= e = 0.158 N - s/m?
47?RL  472(0.06 m)¥(300/60 1/s)(0.4 m) S/

i
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Discussion Viscosity is a strong function of temperature, and a viscosity
value without a corresponding temperature is of little value. Therefore, the
temperature of the fluid should have also been measured during this experi-
ment, and reported with this calculation.

2-7 = SURFACE TENSION AND CAPILLARY EFFECT

It is often observed that a drop of blood forms a hump on a horizontal glass;
a drop of mercury forms a near-perfect sphere and can be rolled just like a
steel ball over a smooth surface; water droplets from rain or dew hang from
branches or leaves of trees; a liquid fuel injected into an engine forms a @
mist of spherical droplets; water dripping from a leaky faucet falls as spher-
ical droplets; a soap bubble released into the air forms a spherical shape;
and water beads up into small drops on flower petals (Fig. 2-19).

In these and other observances, liquid droplets behave like small spherical
balloons filled with the liquid, and the surface of the liquid acts like a
stretched elastic membrane under tension. The pulling force that causes this
tension acts parallel to the surface and is due to the attractive forces
between the molecules of the liquid. The magnitude of this force per unit

length is called surface tension o and is usually expressed in the unit N/m (b)

(or Ibf/ft in English units). This effect is also called surface energy and is

expressed in the equivalent unit of N - m/m?2 or J/m2. In this case, o repre- FIGURE 2-19

sents the stretching work that needs to be done to increase the surface area Some consequences

of the liquid by a unit amount. of surface tension.
To visualize how surface tension arises, we present a microscopic view in (2) © Pegasus/Visuals Unlimited.

. . . L b) © Dennis Drenner/Visuals Unlimited.
Fig. 2-20 by considering two liquid molecules, one at the surface and one ©

deep within the liquid body. The attractive forces applied on the interior
molecule by the surrounding molecules balance each other because of sym-
metry. But the attractive forces acting on the surface molecule are not sym-
metric, and the attractive forces applied by the gas molecules above are usu-
ally very small. Therefore, there is a net attractive force acting on the
molecule at the surface of the liquid, which tends to pull the molecules on
the surface toward the interior of the liquid. This force is balanced by the
repulsive forces from the molecules below the surface that are being com-

pressed. The resulting compression effect causes the liquid to minimize its - A molecule
surface area. This is the reason for the tendency of the liquid droplets to on the surface
attain a spherical shape, which has the minimum surface area for a given

volume.

You also may have observed, With_ amusement, that some insects can land | A molecule
on water or even walk on water (Fig. 2-19b) and that small steel needles / inside the
can float on water. These phenomena are again made possible by surface liquid
tension that balances the weights of these objects.

To understand the surface tension effect better, consider a liquid film

(such as the film of a soap bubble) suspended on a U-shaped wire frame

with a movable side (Fig. 2-21). Normally, the liquid film tends to pull the FIGURE 2-20
movable wire inward in order to minimize its surface area. A force F needs to Attractive forces acting on a liquid
be applied on the movable wire in the opposite direction to balance this pull- molecule at the surface and deep

ing effect. The thin film in the device has two surfaces (the top and bottom inside the liquid.
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Rigid wire frame

Liquid film % wire
FIGURE 2-21

Stretching a liquid film with a
U-shaped wire, and the forces acting
on the movable wire of length b.

TABLE 2-4

Surface tension of some fluids in
air at 1 atm and 20°C (unless
otherwise stated)

Surface Tension

Fluid o, N/m*
Water:

0°C 0.076
20°C 0.073
100°C 0.059
300°C 0.014
Glycerin 0.063
SAE 30 oil 0.035
Mercury 0.440
Ethyl alcohol 0.023
Blood, 37°C 0.058
Gasoline 0.022
Ammonia 0.021
Soap solution 0.025
Kerosene 0.028

* Multiply by 0.06852 to convert to Ibf/ft.

surfaces) exposed to air, and thus the length along which the tension acts in
this case is 2b. Then a force balance on the movable wire gives F = 2bo,
and thus the surface tension can be expressed as

=

= 2-35
2b ( )

Os

Note that for b = 0.5 m, the force F measured (in N) is simply the surface
tension in N/m. An apparatus of this kind with sufficient precision can be
used to measure the surface tension of various fluids.

In the U-shaped wire, the force F remains constant as the movable wire is
pulled to stretch the film and increase its surface area. When the movable
wire is pulled a distance Ax, the surface area increases by AA = 2b Ax, and
the work done W during this stretching process is

W = Force X Distance = F Ax = 2bo, AXx = o, AA

since the force remains constant in this case. This result can also be inter-
preted as the surface energy of the film is increased by an amount o, AA
during this stretching process, which is consistent with the alternative inter-
pretation of o as surface energy. This is similar to a rubber band having
more potential (elastic) energy after it is stretched further. In the case of lig-
uid film, the work is used to move liquid molecules from the interior parts
to the surface against the attraction forces of other molecules. Therefore,
surface tension also can be defined as the work done per unit increase in the
surface area of the liquid.

The surface tension varies greatly from substance to substance, and with
temperature for a given substance, as shown in Table 2-4. At 20°C, for
example, the surface tension is 0.073 N/m for water and 0.440 N/m for mer-
cury surrounded by atmospheric air. Mercury droplets form spherical balls
that can be rolled like a solid ball on a surface without wetting the surface.
The surface tension of a liquid, in general, decreases with temperature and
becomes zero at the critical point (and thus there is no distinct liquid—vapor
interface at temperatures above the critical point). The effect of pressure on
surface tension is usually negligible.

The surface tension of a substance can be changed considerably by impu-
rities. Therefore, certain chemicals, called surfactants, can be added to a
liquid to decrease its surface tension. For example, soaps and detergents
lower the surface tension of water and enable it to penetrate through the
small openings between fibers for more effective washing. But this also
means that devices whose operation depends on surface tension (such as
heat pipes) can be destroyed by the presence of impurities due to poor
workmanship.

We speak of surface tension for liquids only at liquid-liquid or liquid—gas
interfaces. Therefore, it is important to specify the adjacent liquid or gas
when specifying surface tension. Also, surface tension determines the size
of the liquid droplets that form. A droplet that keeps growing by the addi-
tion of more mass will break down when the surface tension can no longer
hold it together. This is like a balloon that will burst while being inflated
when the pressure inside rises above the strength of the balloon material.

A curved interface indicates a pressure difference (or “pressure jump”)
across the interface with pressure being higher on the concave side. The



excess pressure AP inside a droplet or bubble above the atmospheric pres-
sure, for example, can be determined by considering the free-body diagram
of half a droplet or bubble (Fig. 2-22). Noting that surface tension acts
along the circumference and the pressure acts on the area, horizontal force
balances for the droplet and the bubble give

20

Droplet: QmR)o = (TR?)APyopiet = APyropier = Pi — Po = ?S (2-36)
5 4o,

Bubble 2(27TR)(TS - (7TR )Apbubble — Apbubble = Pi - PO = R (2—37)

where P; and P, are the pressures inside and outside the droplet or bubble,
respectively. When the droplet or bubble is in the atmosphere, P, is simply
atmospheric pressure. The factor 2 in the force balance for the bubble is due
to the bubble consisting of a film with two surfaces (inner and outer sur-
faces) and thus two circumferences in the cross section.

The excess pressure in a droplet (or bubble) also can be determined by
considering a differential increase in the radius of the droplet due to the
addition of a differential amount of mass and interpreting the surface ten-
sion as the increase in the surface energy per unit area. Then the increase in
the surface energy of the droplet during this differential expansion process
becomes

OWiirtace = Os dA = g d(47TR 2) = 8mRo, drR

The expansion work done during this differential process is determined by
multiplying the force by distance to obtain

8Weypansion = Force X Distance = F dR = (APA) dR = 47R? AP dR

Equating the two expressions above gives APy ..c = 20/R, which is the
same relation obtained before and given in Eq. 2-36. Note that the excess
pressure in a droplet or bubble is inversely proportional to the radius.

Capillary Effect

Another interesting consequence of surface tension is the capillary effect,
which is the rise or fall of a liquid in a small-diameter tube inserted into the
liquid. Such narrow tubes or confined flow channels are called capillaries.
The rise of kerosene through a cotton wick inserted into the reservoir of a
kerosene lamp is due to this effect. The capillary effect is also partially
responsible for the rise of water to the top of tall trees. The curved free sur-
face of a liquid in a capillary tube is called the meniscus.

It is commonly observed that water in a glass container curves up slightly
at the edges where it touches the glass surface; but the opposite occurs for
mercury: it curves down at the edges (Fig. 2-23). This effect is usually
expressed by saying that water wets the glass (by sticking to it) while mer-
cury does not. The strength of the capillary effect is quantified by the con-
tact (or wetting) angle ¢, defined as the angle that the tangent to the liquid
surface makes with the solid surface at the point of contact. The surface ten-
sion force acts along this tangent line toward the solid surface. A liquid is
said to wet the surface when ¢ < 90° and not to wet the surface when ¢ >
90°. In atmospheric air, the contact angle of water (and most other organic
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(b) Half a bubble

FIGURE 2-22
The free-body diagram of half a
droplet and half a bubble.
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(a) Wetting (b) Nonwetting
fluid fluid

FIGURE 2-23
The contact angle for wetting and
nonwetting fluids.
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FIGURE 2-24

The meniscus of colored water in a
4-mm-inner-diameter glass tube. Note
that the edge of the meniscus meets
the wall of the capillary tube at a very
small contact angle.

Photo by Gabrielle Trembley, Pennsylvania State
University. Used by permission.

Meniscus

Mercury

FIGURE 2-25

The capillary rise of water and
the capillary fall of mercury in a
small-diameter glass tube.
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FIGURE 2-26

The forces acting on a liquid column
that has risen in a tube due to the
capillary effect.

liquids) with glass is nearly zero, ¢ = 0° (Fig. 2-24). Therefore, the surface
tension force acts upward on water in a glass tube along the circumference,
tending to pull the water up. As a result, water rises in the tube until the
weight of the liquid in the tube above the liquid level of the reservoir bal-
ances the surface tension force. The contact angle is 130° for mercury—glass
and 26° for kerosene—glass in air. Note that the contact angle, in general, is
different in different environments (such as another gas or liquid in place of
air).

The phenomenon of capillary effect can be explained microscopically by
considering cohesive forces (the forces between like molecules, such as
water and water) and adhesive forces (the forces between unlike molecules,
such as water and glass). The liquid molecules at the solid-liquid interface
are subjected to both cohesive forces by other liquid molecules and adhesive
forces by the molecules of the solid. The relative magnitudes of these forces
determine whether a liquid wets a solid surface or not. Obviously, the water
molecules are more strongly attracted to the glass molecules than they are to
other water molecules, and thus water tends to rise along the glass surface.
The opposite occurs for mercury, which causes the liquid surface near the
glass wall to be suppressed (Fig. 2-25).

The magnitude of the capillary rise in a circular tube can be determined
from a force balance on the cylindrical liquid column of height h in the tube
(Fig. 2-26). The bottom of the liquid column is at the same level as the free
surface of the reservoir, and thus the pressure there must be atmospheric
pressure. This balances the atmospheric pressure acting at the top surface,
and thus these two effects cancel each other. The weight of the liquid col-
umn is approximately

W =mg = plg = pg(mR*h)

Equating the vertical component of the surface tension force to the weight
gives

W = Foyface — pg(Wth) = 27Ro cos ¢
Solving for h gives the capillary rise to be

20

Capillary rise: h =
pilfary poR

cos ¢ (R = constant) (2-38)
This relation is also valid for nonwetting liquids (such as mercury in glass)
and gives the capillary drop. In this case ¢ > 90° and thus cos ¢ < 0,
which makes h negative. Therefore, a negative value of capillary rise corre-
sponds to a capillary drop (Fig. 2-25).

Note that the capillary rise is inversely proportional to the radius of the
tube. Therefore, the thinner the tube is, the greater the rise (or fall) of the
liquid in the tube. In practice, the capillary effect is usually negligible in
tubes whose diameter is greater than 1 cm. When pressure measurements
are made using manometers and barometers, it is important to use suffi-
ciently large tubes to minimize the capillary effect. The capillary rise is also
inversely proportional to the density of the liquid, as expected. Therefore,
lighter liquids experience greater capillary rises. Finally, it should be kept in
mind that Eq. 2-38 is derived for constant-diameter tubes and should not be
used for tubes of variable cross section.
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: EXAMPLE 2-5 The Capillary Rise of Water in a Tube

® A 0.6-mm-diameter glass tube is inserted into water at 20°C in a cup. Deter-

m Mmine the capillary rise of water in the tube (Fig. 2-27). A h27Rocos ¢
SOLUTION The rise of water in a slender tube as a result of the capillary \_
effect is to be determined. LT
Assumptions 1 There are no impurities in the water and no contamination Air : : h
on the surfaces of the glass tube. 2 The experiment is conducted in atmos- AN
pheric air. Water W
Properties The surface tension of water at 20°C is 0.073 N/m (Table 2-3).
The contact angle of water with glass is 0° (from preceding text). We take
the density of liquid water to be 1000 kg/m3.
Analysis The capillary rise is determined directly from Eq. 2-15 by substi FIGURE 2-27

tuting the given values, yielding ]
P Schematic for Example 2-5.
ag

5 2(0.073 N/m)
Cos ¢ = 3 5 =
PR (1000 kg/m*®)(9.81 m/s9)(0.3 X 10 °m)

= 0.050m = 5.0cm

1kg - m/s?
h— L)

(cos O°)< N

Therefore, water rises in the tube 5 cm above the liquid level in the cup.
Discussion Note that if the tube diameter were 1 cm, the capillary rise
would be 0.3 mm, which is hardly noticeable to the eye. Actually, the capil-
lary rise in a large-diameter tube occurs only at the rim. The center does not
rise at all. Therefore, the capillary effect can be ignored for large-diameter
tubes.

SUMMARY

In this chapter various properties commonly used in fluid
mechanics are discussed. The mass-dependent properties of a
system are called extensive properties and the others, inten-
sive properties. Density is mass per unit volume, and specific
volume is volume per unit mass. The specific gravity is
defined as the ratio of the density of a substance to the den-
sity of water at 4°C,

sg = -

PH,0
The ideal-gas equation of state is expressed as
P = pRT

where P is the absolute pressure, T is the thermodynamic
temperature, p is the density, and R is the gas constant.

At a given temperature, the pressure at which a pure sub-
stance changes phase is called the saturation pressure. For
phase-change processes between the liquid and vapor phases
of a pure substance, the saturation pressure is commonly
called the vapor pressure P,. Vapor bubbles that form in the

low-pressure regions in a liquid (a phenomenon called cavita-
tion) collapse as they are swept away from the low-pressure
regions, generating highly destructive, extremely high-pressure
waves.

Energy can exist in numerous forms, and their sum consti-
tutes the total energy E (or e on a unit-mass basis) of a sys-
tem. The sum of all microscopic forms of energy is called the
internal energy U of a system. The energy that a system pos-
sesses as a result of its motion relative to some reference
frame is called kinetic energy expressed per unit mass as
ke = V?/2, and the energy that a system possesses as a result
of its elevation in a gravitational field is called potential
energy expressed per unit mass as pe = gz.

The compressibility effects in a fluid are represented by the
coefficient of compressibility « (also called bulk modulus
of elasticity) defined as

) ()
K avaapT_ Avlv
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The property that represents the variation of the density of
a fluid with temperature at constant pressure is the volume
expansion coefficient (or volume expansivity) B, defined as

poL(2) ~ i) o e
v\aT/p p\oT/p AT

The viscosity of a fluid is a measure of its resistance to
deformation. The tangential force per unit area is called shear

stress and is expressed for simple shear flow between plates
(one-dimensional flow) as

Tzﬂ?y

where w is the coefficient of viscosity or the dynamic (or
absolute) viscosity of the fluid, u is the velocity component in
the flow direction, and y is the direction normal to the flow
direction. The fluids that obey this linear relationship are called
Newtonian fluids. The ratio of dynamic viscosity to density is
called the kinematic viscosity v.

The pulling effect on the liquid molecules at an interface
caused by the attractive forces of molecules per unit length is
called surface tension o. The excess pressure AP inside a
spherical droplet or bubble is given by

4o

20
APgropiet = Pi — P = R and APy = Pi — Py = R
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Cavitation is the rupture of a liquid, or of a fluid—solid interface, caused by a
reduction of the local static pressure produced by the dynamic action of the
fluid in the interior and/or boundaries of a liquid system. The rupture is the
formation of a visible bubble. Liquids, such as water, contain many micro-
scopic voids that act as cavitation nuclei. Cavitation occurs when these
nuclei grow to a significant, visible size. Although boiling is also the forma-
tion of voids in a liquid, we usually separate this phenomenon from cavita-
tion because it is caused by an increase in temperature, rather than by a
reduction in pressure. Cavitation can be used in beneficial ways, such as in
ultrasonic cleaners, etchers, and cutters. But more often than not, cavitation
is to be avoided in fluid flow applications because it spoils hydrodynamic
performance, it causes extremely loud noise and high vibration levels, and it
damages (erodes) the surfaces that support it. When cavitation bubbles enter
regions of high pressure and collapse, the underwater shock waves some-
times create minute amounts of light. This phenomenon is called sonolumi-
nescence.

Body cavitation is illustrated in Fig. 2-28. The body is a model of the under-
water bulbulous bow region of a surface ship. It is shaped this way because
located within it is a sound navigation and ranging (sonar) system that is
spherical in shape. This part of the surface ship is thus called a sonar dome. As
ship speeds get faster and faster some of these domes start to cavitate and the
noise created by the cavitation renders the sonar system useless. Naval archi-
tects and fluid dynamicists attempt to design these domes so that they will not
cavitate. Model-scale testing allows the engineer to see first hand whether a
given design provides improved cavitation performance. Because such tests are
conducted in water tunnels, the conditions of the test water should have suffi-
cient nuclei to model those conditions in which the prototype operates. This
assures that the effect of liquid tension (nuclei distribution) is minimized.
Important variables are the gas content level (huclei distribution) of the water,
the temperature, and the hydrostatic pressure at which the body operates. Cavi-
tation first appears—as either the speed V is increased, or as the submergence
depth h is decreased—at the minimum pressure point C, of the body. Thus,
good hydrodynamic design requires 2(P,, — P,)/pV? > C , Where p is den-
sity, P., = pgh is the reference to static pressure, C, is the pressure coefficient
(Chap. 7), and P, is the vapor pressure of water.
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APPLICATION SPOTLIGHT m Cavitation

@

(b)

FIGURE 2-28

(a) Vaporous cavitation occurs in
water that has very little entrained
gas, such as that found very deep in

a body of water. Cavitation bubbles
are formed when the speed of the
body—in this case the bulbulous bow
region of a surface ship sonar dome—
increases to the point where the local
static pressure falls below the vapor
pressure of the water. The cavitation
bubbles are filled essentially with
water vapor. This type of cavitation
is very violent and noisy. (b) On the
other hand, in shallow water, there is
much more entrained gas in the water
to act as cavitation nuclei. That’s
because of the proximity of the dome
to the atmosphere at the free surface.
The cavitation bubbles first appear at
a slower speed, and hence at a higher
local static pressure. They are
predominantly filled with the gases
that are entrained in the water, so this
is known as gaseous cavitation.

Reprinted by permission of G. C. Lauchle
and M. L. Billet, Penn State University.
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PROBLEMS*

Density and Specific Gravity

2-1C What is the difference between intensive and exten-
sive properties?

2-2C What is specific gravity? How is it related to density?

2-3C Under what conditions is the ideal-gas assumption
suitable for real gases?

2-4C What is the difference between R and R,? How are
these two related?

2-5 A spherical balloon with a diameter of 6 m is filled
with helium at 20°C and 200 kPa. Determine the mole num-
ber and the mass of the helium in the balloon. Answers: 9.28
kmol, 37.2 kg

2-6 Reconsider Prob. 2-5. Using EES (or other) soft-

ware, investigate the effect of the balloon diame-
ter on the mass of helium contained in the balloon for the
pressures of (a) 100 kPa and (b) 200 kPa. Let the diameter
vary from 5 m to 15 m. Plot the mass of helium against the
diameter for both cases.

2—7 The pressure in an automobile tire depends on the tem-
perature of the air in the tire. When the air temperature is
25°C, the pressure gage reads 210 kPa. If the volume of the
tire is 0.025 mS, determine the pressure rise in the tire when
the air temperature in the tire rises to 50°C. Also, determine
the amount of air that must be bled off to restore pressure to
its original value at this temperature. Assume the atmospheric
pressure to be 100 kPa.

V=0.025m®
T=25°C
P, =210kPa

AR

FIGURE P2-7

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the @ icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.

2-8E The air in an automobile tire with a volume of 0.53
ft® is at 90°F and 20 psig. Determine the amount of air that
must be added to raise the pressure to the recommended
value of 30 psig. Assume the atmospheric pressure to be 14.6
psia and the temperature and the volume to remain constant.
Answer: 0.0260 Ibm

2-9E A rigid tank contains 20 Ibm of air at 20 psia and
70°F. More air is added to the tank until the pressure and
temperature rise to 35 psia and 90°F, respectively. Determine
the amount of air added to the tank. Answer: 13.7 Ibm

2-10 The density of atmospheric air varies with eleva-
tion, decreasing with increasing altitude. (a)
Using the data given in the table, obtain a relation for the
variation of density with elevation, and calculate the density
at an elevation of 7000 m. (b) Calculate the mass of the
atmosphere using the correlation you obtained. Assume the
earth to be a perfect sphere with a radius of 6377 km, and

take the thickness of the atmosphere to be 25 km.

z, km p, kg/m3
6377 1.225
6378 1.112
6379 1.007
6380 0.9093
6381 0.8194
6382 0.7364
6383 0.6601
6385 0.5258
6387 0.4135
6392 0.1948
6397 0.08891
6402 0.04008

Vapor Pressure and Cavitation

2-11C What is vapor pressure? How is it related to satura-
tion pressure?

2-12C Does water boil at higher temperatures at higher
pressures? Explain.

2-13C If the pressure of a substance is increased during a
boiling process, will the temperature also increase or will it
remain constant? Why?

2-14C What is cavitation? What causes it?

2-15 In a piping system, the water temperature remains
under 40°C. Determine the minimum pressure allowed in the
system to avoid cavitation.

2-16 The analysis of a propeller that operates in water at
20°C shows that the pressure at the tips of the propeller drops
to 2 kPa at high speeds. Determine if there is a danger of cav-
itation for this propeller.



2-17E The analysis of a propeller that operates in water at
70°F shows that the pressure at the tips of the propeller drops
to 0.1 psia at high speeds. Determine if there is a danger of
cavitation for this propeller.

2-18 A pump is used to transport water to a higher reser-
voir. If the water temperature is 25°C, determine the lowest
pressure that can exist in the pump without cavitation.

Energy and Specific Heats

2-19C What is the difference between the macroscopic and
microscopic forms of energy?

2-20C What is total energy? Identify the different forms of
energy that constitute the total energy.

2-21C List the forms of energy that contribute to the inter-
nal energy of a system.

2-22C How are heat, internal energy, and thermal energy
related to each other?

2-23C  What is flow energy? Do fluids at rest possess any
flow energy?

2-24C  How do the energies of a flowing fluid and a fluid
at rest compare? Name the specific forms of energy associ-
ated with each case.

2-25C Using average specific heats, explain how internal
energy changes of ideal gases and incompressible substances
can be determined.

2-26C Using average specific heats, explain how enthalpy
changes of ideal gases and incompressible substances can be
determined.

Coefficient of Compressibility

2-27C What does the coefficient of compressibility of a
fluid represent? How does it differ from isothermal com-
pressibility?

2-28C What does the coefficient of volume expansion of a
fluid represent? How does it differ from the coefficient of
compressibility?

2-29C Can the coefficient of compressibility of a fluid be
negative? How about the coefficient of volume expansion?

2-30 It is observed that the density of an ideal gas decreases
by 10 percent when compressed isothermally from 10 atm to
11 atm. Determine the percent decrease in density of the gas
if it is compressed isothermally from 100 atm to 101 atm.

2-31 Using the definition of the coefficient of volume
expansion and the expression Biges gos = 1/T, show that the
percent increase in the specific volume of an ideal gas during
isobaric expansion is equal to the percent increase in absolute
temperature.

2-32 Water at 1 atm pressure is compressed to 800 atm
pressure isothermally. Determine the increase in the density
of water. Take the isothermal compressibility of water to be
4.80 X 1075 atm™1,

CHAPTER 2

2-33 Water at 15°C and 1 atm pressure is heated to 100°C
at constant pressure. Using coefficient of volume expansion
data, determine the change in the density of water.

Answer: —38.7 kg/m3

2-34  Saturated refrigerant-134a liquid at 10°C is cooled to
0°C at constant pressure. Using coefficient of volume expan-
sion data, determine the change in the density of the refriger-
ant.

2-35 A water tank is completely filled with liquid water at
20°C. The tank material is such that it can withstand tension
caused by a volume expansion of 2 percent. Determine the
maximum temperature rise allowed without jeopardizing
safety.

2-36 Repeat Prob. 2-35 for a volume expansion of 1 per-
cent for water.

2-37 The density of seawater at a free surface where the
pressure is 98 kPa is approximately 1030 kg/m®. Taking the
bulk modulus of elasticity of seawater to be 2.34 X 10° N/m?
and expressing variation of pressure with depth z as dP =
pg dz determine the density and pressure at a depth of
2500 m. Disregard the effect of temperature.

Viscosity

2-38C  What is viscosity? What is the cause of it in liquids
and in gases? Do liquids or gases have higher dynamic vis-
cosities?

2-39C What is a Newtonian fluid? Is water a Newtonian
fluid?

2-40C Consider two identical small glass balls dropped
into two identical containers, one filled with water and the
other with oil. Which ball will reach the bottom of the con-
tainer first? Why?

2-41C How does the dynamic viscosity of (a) liquids and
(b) gases vary with temperature?

2-42C How does the kinematic viscosity of (a) liquids and
(b) gases vary with temperature?

2-43 A 50-cm X 30-cm X 20-cm block weighing 150 N is
to be moved at a constant velocity of 0.8 m/s on an inclined
surface with a friction coefficient of 0.27. (a) Determine the
force F that needs to be applied in the horizontal direction.
(b) If a 0.4-mm-thick oil film with a dynamic viscosity of
0.012 Pa - s is applied between the block and inclined sur-
face, determine the percent reduction in the required force.

\ . V=0.8m/s

50 cm

150N ‘

FIGURE P2-43
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2-44  Consider the flow of a fluid with viscosity w through a
circular pipe. The velocity profile in the pipe is given as u(r)
= Upax(1 — r"/R"), where uy,,, is the maximum flow velocity,
which occurs at the centerline; r is the radial distance from
the centerline; and u(r) is the flow velocity at any position .
Develop a relation for the drag force exerted on the pipe wall
by the fluid in the flow direction per unit length of the pipe.

U(r) = Upax (L = rn/RM)

— er

umax

FIGURE P2-44

2-45 A thin 20-cm X 20-cm flat plate is pulled at 1 m/s
horizontally through a 3.6-mm-thick oil layer sandwiched
between two plates, one stationary and the other moving at a
constant velocity of 0.3 m/s, as shown in Fig. P2-45. The
dynamic viscosity of oil is 0.027 Pa - s. Assuming the veloc-
ity in each oil layer to vary linearly, (a) plot the velocity pro-
file and find the location where the oil velocity is zero and
(b) determine the force that needs to be applied on the plate
to maintain this motion.

Fixed wall
— 1
Ihlzlmm V=1m/s F
hp = 2.6 mm \j, = 0.3 mis
[ |
Moving wall
FIGURE P2-45

2-46 A frustum-shaped body is rotating at a constant angu-
lar speed of 200 rad/s in a container filled with SAE 10W oil

| | / Case

e ) H
SAE 10W oil
\ D=12cm [ o
L=12cm 2
d=}4cm
-~ r

FIGURE P2-46

at 20°C (u = 0.1 Pa - s), as shown in Fig. P2—-46. If the
thickness of the oil film on all sides is 1.2 mm, determine the
power required to maintain this motion. Also determine the
reduction in the required power input when the oil tempera-
ture rises to 80°C (u = 0.0078 Pa - s).

2-47 The clutch system shown in Fig. P2-47 is used to
transmit torque through a 3-mm-thick oil film with u =
0.38 N - s/m? between two identical 30-cm-diameter disks.
When the driving shaft rotates at a speed of 1450 rpm, the
driven shaft is observed to rotate at 1398 rpm. Assuming a
linear velocity profile for the oil film, determine the transmit-
ted torque.

R\
Driving Driven
wuyy shaft shaft
V. 30 om 3mm vz
- %W%\ SAE 30W oil
FIGURE P2—47

2-48 Reconsider Prob. 2-47. Using EES (or other)
software, investigate the effect of oil film thick-
ness on the torque transmitted. Let the film thickness vary
from 0.1 mm to 10 mm. Plot your results, and state your con-

clusions.

2-49 The viscosity of some fluids changes when a strong
electric field is applied on them. This phenomenon is known
as the electrorheological (ER) effect, and fluids that exhibit
such behavior are known as ER fluids. The Bingham plastic
model for shear stress, which is expressed as = = 7, +
p(du/dy) is widely used to describe ER fluid behavior
because of its simplicity. One of the most promising applica-
tions of ER fluids is the ER clutch. A typical multidisk ER
clutch consists of several equally spaced steel disks of inner
radius R; and outer radius R,, N of them attached to the
input shaft. The gap h between the parallel disks is filled
with a viscous fluid. (a) Find a relationship for the torque
generated by the clutch when the output shaft is stationary

l I I U Output shaft

Input shaft

Plates mounted
on input shaft
Variable magnetic field

FIGURE P2-49

Plates mounted on shell




and (b) calculate the torque for an ER clutch with N = 11 for
R, = 50 mm, R, = 200 mm, and n = 2400 rpm if the fluid is
SAE 10 withu = 0.1 Pa - s, T, = 2.5 kPa, and h = 1.2 mm.
Answer: (b) 2060 N * m

2-50 The viscosity of some fluids, called magnetorheologi-
cal (MR) fluids, changes when a magnetic field is applied.
Such fluids involve micron-sized magnetizable particles sus-
pended in an appropriate carrier liquid, and are suitable for use
in controllable hydraulic clutches. See Fig. P2—49. The MR
fluids can have much higher viscosities than the ER fluids, and
they often exhibit shear-thinning behavior in which the viscos-
ity of the fluid decreases as the applied shear force increases.
This behavior is also known as pseudoplastic behavior, and can
be successfully represented by Herschel-Bulkley constitutive
model expressed as = = 7, + K(du/dy)™. Here 7 is the shear
stress applied, 7, is the yield stress, K is the consistency index,
and m is the power index. For a Herschel-Bulkley fluid with 7,
= 900 Pa, K = 58 Pa - s™, and m = 0.82, (a) find a relation-
ship for the torque transmitted by an MR clutch for N plates
attached to the input shaft when the input shaft is rotating at
an angular speed of w while the output shaft is stationary and
(b) calculate the torque transmitted by such a clutch with N
= 11 plates for R, = 50 mm, R, = 200 mm, n" = 2400 rpm,
and h = 1.2 mm.

2-51 The viscosity of a fluid is to be measured by a vis-
cometer constructed of two 75-cm-long concentric cylinders.
The outer diameter of the inner cylinder is 15 cm, and the
gap between the two cylinders is 0.12 cm. The inner cylinder
is rotated at 200 rpm, and the torque is measured to be 0.8 N
- m. Determine the viscosity of the fluid.

200 rpm
0.12cm
\ MFluid
\_/
Stationary
cylinder

v
FIGURE P2-51

2-52E The viscosity of a fluid is to be measured by a vis-
cometer constructed of two 3-ft-long concentric cylinders. The
inner diameter of the outer cylinder is 6 in, and the gap between
the two cylinders is 0.05 in. The outer cylinder is rotated at 250
rpm, and the torque is measured to be 1.2 Ibf - ft. Determine the
viscosity of the fluid.  Answer: 0.000648 Ib - s/ft?

2-53 In regions far from the entrance, fluid flow through a
circular pipe is one-dimensional, and the velocity profile for
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laminar flow is given by u(r) = Uy (1 — r?/R?), where R is
the radius of the pipe, r is the radial distance from the center of
the pipe, and uy,,, is the maximum flow velocity, which occurs
at the center. Obtain (a) a relation for the drag force applied by
the fluid on a section of the pipe of length L and (b) the value
of the drag force for water flow at 20°C with R = 0.08 m, L
=15m, u,, = 3 m/s,and u = 0.0010 kg/m - s.

et
rl R %umax
=4

FIGURE P2-53

2-54 Repeat Prob. 2-53 for u,,, = 5 m/s.
0.942 N

Answer: (b)

Surface Tension and Capillary Effect

2-55C What is surface tension? What is it caused by? Why
is the surface tension also called surface energy?

2-56C Consider a soap bubble. Is the pressure inside the
bubble higher or lower than the pressure outside?

2-57C What is the capillary effect? What is it caused by?
How is it affected by the contact angle?

2-58C A small-diameter tube is inserted into a liquid
whose contact angle is 110°. Will the level of liquid in the
tube rise or drop? Explain.

2-59C
tubes?

2-60E A 0.03-in-diameter glass tube is inserted into
kerosene at 68°F. The contact angle of kerosene with a glass
surface is 26°. Determine the capillary rise of kerosene in the
tube. Answer: 0.65 in

Is the capillary rise greater in small- or large-diameter

— <«~—0.03 in
g
h
_ Nt
Kerosene

FIGURE P2-60E

2-61 A 1.9-mm-diameter tube is inserted into an unknown
liquid whose density is 960 kg/m3, and it is observed that the
liquid rises 5 mm in the tube, making a contact angle of 15°.
Determine the surface tension of the liquid.
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2-62 Determine the gage pressure inside a soap bub-
ble of diameter (a) 0.2 cm and (b) 5 cm at 20°C.

2-63 Nutrients dissolved in water are carried to upper parts
of plants by tiny tubes partly because of the capillary effect.
Determine how high the water solution will rise in a tree in a
0.005-mm-diameter tube as a result of the capillary effect.
Treat the solution as water at 20°C with a contact angle of
15°.  Answer: 5.75 m

Water—__ .l 0,005 mm
solution
FIGURE P2-63

2-64  The surface tension of a liquid is to be measured using
a liquid film suspended on a U-shaped wire frame with an
8-cm-long movable side. If the force needed to move the wire
is 0.012 N, determine the surface tension of this liquid in air.

2-65 Contrary to what you might expect, a solid steel ball
can float on water due to the surface tension effect. Deter-
mine the maximum diameter of a steel ball that would float
on water at 20°C. What would your answer be for an alu-
minum ball? Take the densities of steel and aluminum balls
to be 7800 kg/m? and 2700 kg/m?3, respectively.

Review Problems

2-66 The absolute pressure of an automobile tire is mea-
sured to be 290 kPa before a trip and 310 kPa after the trip.
Assuming the volume of the tire remains constant at 0.022 m?,
determine the percent increase in the absolute temperature of
the air in the tire.

2-67 A 20-m? tank contains nitrogen at 25°C and 800 kPa.
Some nitrogen is allowed to escape until the pressure in the
tank drops to 600 kPa. If the temperature at this point is
20°C, determine the amount of nitrogen that has escaped.
Answer: 42.9 kg

2-68 The composition of a liquid with suspended solid par-
ticles is generally characterized by the fraction of solid parti-

cles either by weight or mass C; ., = Mm¢/m,, or by volume,
Cs voi = V%!V, where m is mass and V is volume. The sub-
scripts s and m indicate solid and mixture, respectively.
Develop an expression for the specific gravity of a water-
based suspension in terms of C; ... and Cg .

2-69 The specific gravities of solids and carrier fluids of a
slurry are usually known, but the specific gravity of the slurry
depends on the concentration of the solid particles. Show that
the specific gravity of a water-based slurry can be expressed
in terms of the specific gravity of the solid SG, and the mass
concentration of the suspended solid particles C S

1
1+ Cy mass(1/SG, — 1)

S, mass a

SG,,

2—70E The pressure on the suction side of pumps is typi-
cally low, and the surfaces on that side of the pump are sus-
ceptible to cavitation, especially at high fluid temperatures. If
the minimum pressure on the suction side of a water pump is
0.95 psia absolute, determine the maximum water tempera-
ture to avoid the danger of cavitation.

2-71 A closed tank is partially filled with water at 60°C. If
the air above the water is completely evacuated, determine
the absolute pressure in the evacuated space. Assume the

temperature to remain constant.
2-72 The variation of the dynamic viscosity of water

with absolute temperature is given as

T, K m, Pa-s
273.15 1.787 x 1073
278.15 1.519 x 1073
283.15 1.307 x 1073
293.15 1.002 x 1073
303.15 7.975 x 1074
313.15 6.529 x 1074
333.15 4.665 x 1074
353.15 3.547 x 10~*
373.15 2.828 x 1074

Using tabulated data, develop a relation for viscosity in the
form of w = w(T) = A+ BT + CT?2 + DT® + ET* Using
the relation developed, predict the dynamic viscosity of water
at 50°C at which the reported value is 5.468 X 107* Pa - s.
Compare your result with the results of Andrade’s equation,
which is given in the form of w = D - e®T, where D and B
are constants whose values are to be determined using the
viscosity data given.

2-73 Consider laminar flow of a Newtonian fluid of viscos-
ity u between two parallel plates. The flow is one-dimen-
sional, and the velocity profile is given as u(y) = 4U.x
[y/h — (y/h)?], where y is the vertical coordinate from the
bottom surface, h is the distance between the two plates, and
Umax 1S the maximum flow velocity that occurs at midplane.



Develop a relation for the drag force exerted on both plates
by the fluid in the flow direction per unit area of the plates.

u(y) = 4Upax[y/h - (y/h)2]
[

——__
— |

umax

1

0

FIGURE P2-73

2-74 Some non-Newtonian fluids behave as a Bingham
plastic for which shear stress can be expressed as 7 = 7, +
wm(du/dr). For laminar flow of a Bingham plastic in a horizon-
tal pipe of radius R, the velocity profile is given as u(r) =
(AP/4uL)(r* — R?) + (7, /u)(r — R), where AP/L is the con-
stant pressure drop along the pipe per unit length, w is the
dynamic viscosity, r is the radial distance from the centerline,
and 7, is the yield stress of Bingham plastic. Determine (a)
the shear stress at the pipe wall and (b) the drag force acting
on a pipe section of length L.

2-75 In some damping systems, a circular disk immersed
in oil is used as a damper, as shown in Fig. P2-75. Show

Disk  Damping oil

f
i
|
|
|
|
|
|
|
[ i - ]
b i
i
|
|
i
+
|

FIGURE P2-75
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that the damping torque is proportional to angular speed
in accordance with the relation Tg,yoing = Cow Where C =
0.57u(1/a +1/b)R*. Assume linear velocity profiles on both
sides of the disk and neglect the tip effects.

2-76E A 0.9-in-diameter glass tube is inserted into mer-
cury, which makes a contact angle of 1408 with glass. Deter-
mine the capillary drop of mercury in the tube at 68°F.
Answer: 0.0175 in

2—77 Derive a relation for the capillary rise of a liquid
between two large parallel plates a distance t apart inserted
into the liquid vertically. Take the contact angle to be ¢.

2—-78 Consider a 30-cm-long journal bearing that is lubri-
cated with oil whose viscosity is 0.1 kg/m - s at 20°C at the
beginning of operation and 0.008 kg/m - s at the anticipated
steady operating temperature of 80°C. The diameter of the
shaft is 8 cm, and the average gap between the shaft and the
journal is 0.08 cm. Determine the torque needed to overcome
the bearing friction initially and during steady operation
when the shaft is rotated at 500 rpm.

Design and Essay Problems

2-79 Design an experiment to measure the viscosity of lig-
uids using a vertical funnel with a cylindrical reservoir of
height h and a narrow flow section of diameter D and length
L. Making appropriate assumptions, obtain a relation for vis-
cosity in terms of easily measurable quantities such as den-
sity and volume flow rate.

2-80 Write an essay on the rise of the fluid to the top of the
trees by capillary and other effects.

2-81 Write an essay on the oils used in car engines in dif-
ferent seasons and their viscosities.






PRESSURE AND
FLUID STATICS

motion. The fluid property responsible for those forces is pressure,

which is a normal force exerted by a fluid per unit area. We start this
chapter with a detailed discussion of pressure, including absolute and gage
pressures, the pressure at a point, the variation of pressure with depth in a
gravitational field, the manometer, the barometer, and pressure measure-
ment devices. This is followed by a discussion of the hydrostatic forces
applied on submerged bodies with plane or curved surfaces. We then con-
sider the buoyant force applied by fluids on submerged or floating bodies,
and discuss the stability of such bodies. Finally, we apply Newton’s second
law of motion to a body of fluid in motion that acts as a rigid body and ana-
lyze the variation of pressure in fluids that undergo linear acceleration and
in rotating containers. This chapter makes extensive use of force balances
for bodies in static equilibrium, and it will be helpful if the relevant topics
from statics are first reviewed.

This chapter deals with forces applied by fluids at rest or in rigid-body

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

Determine the variation of
pressure in a fluid at rest

Calculate the forces exerted by a
fluid at rest on plane or curved
submerged surfaces

Analyze the rigid-body motion of
fluids in containers during linear
acceleration or rotation
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300 pounds

ft ft

P =3 psi P =6 psi
W 150 Ibf -
P=zg,= —— = =——5 =3 psi
o Aew  50W2 P
FIGURE 3-1

The normal stress (or “pressure”)
on the feet of a chubby person is
much greater than on the feet of
a slim person.

FIGURE 3-2
Some basic pressure gages.

Dresser Instruments, Dresser, Inc. Used by
permission.

3-1 = PRESSURE

Pressure is defined as a normal force exerted by a fluid per unit area. We
speak of pressure only when we deal with a gas or a liquid. The counterpart
of pressure in solids is normal stress. Since pressure is defined as force per
unit area, it has the unit of newtons per square meter (N/m?), which is called
a pascal (Pa). That is,

1Pa=1N/m?

The pressure unit pascal is too small for pressures encountered in prac-
tice. Therefore, its multiples kilopascal (1 kPa = 10% Pa) and megapascal
(1 MPa = 108 Pa) are commonly used. Three other pressure units com-
monly used in practice, especially in Europe, are bar, standard atmosphere,
and kilogram-force per square centimeter:

1 bar = 10° Pa = 0.1 MPa = 100 kPa
1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars
1 kgf/cm? = 9.807 N/cm? = 9.807 X 10* N/m? = 9.807 X 10* Pa
= 0.9807 bar
= 0.9679 atm

Note the pressure units bar, atm, and kgf/cm? are almost equivalent to each
other. In the English system, the pressure unit is pound-force per square
inch (Ibf/in?, or psi), and 1 atm = 14.696 psi. The pressure units kgf/cm?
and Ibf/in? are also denoted by kg/cm? and Ib/in?, respectively, and they are
commonly used in tire gages. It can be shown that 1 kgf/cm? = 14.223 psi.

Pressure is also used for solids as synonymous to normal stress, which is
force acting perpendicular to the surface per unit area. For example, a 150-
pound person with a total foot imprint area of 50 in? exerts a pressure of
150 Ibf/50 in? = 3.0 psi on the floor (Fig. 3-1). If the person stands on one
foot, the pressure doubles. If the person gains excessive weight, he or she is
likely to encounter foot discomfort because of the increased pressure on the
foot (the size of the foot does not change with weight gain). This also
explains how a person can walk on fresh snow without sinking by wearing
large snowshoes, and how a person cuts with little effort when using a sharp
knife.

The actual pressure at a given position is called the absolute pressure,
and it is measured relative to absolute vacuum (i.e., absolute zero pressure).
Most pressure-measuring devices, however, are calibrated to read zero in the
atmosphere (Fig. 3-2), and so they indicate the difference between the
absolute pressure and the local atmospheric pressure. This difference is
called the gage pressure. Pressures below atmospheric pressure are called
vacuum pressures and are measured by vacuum gages that indicate the dif-
ference between the atmospheric pressure and the absolute pressure.
Absolute, gage, and vacuum pressures are all positive quantities and are
related to each other by

Pgage = Pabs - I:)atm (3-1)
I:)vac = Palm - Pabs (3-2)
This is illustrated in Fig. 3-3.



vac P abs

abs

Absolute Absolute
vacuum abs vacuum

Like other pressure gages, the gage used to measure the air pressure in an
automobile tire reads the gage pressure. Therefore, the common reading of
32 psi (2.25 kgficm?) indicates a pressure of 32 psi above the atmospheric
pressure. At a location where the atmospheric pressure is 14.3 psi, for exam-
ple, the absolute pressure in the tire is 32 + 14.3 = 46.3 psi.

In thermodynamic relations and tables, absolute pressure is almost always
used. Throughout this text, the pressure P will denote absolute pressure
unless specified otherwise. Often the letters “a” (for absolute pressure) and
“g” (for gage pressure) are added to pressure units (such as psia and psig) to
clarify what is meant.

: EXAMPLE 3—-1 Absolute Pressure of a Vacuum Chamber

: A vacuum gage connected to a chamber reads 5.8 psi at a location where
m the atmospheric pressure is 14.5 psi. Determine the absolute pressure in the
m Chamber.
|
SOLUTION The gage pressure of a vacuum chamber is given. The absolute
pressure in the chamber is to be determined.
Analysis The absolute pressure is easily determined from Eq. 3-2 to be

Pabs = Patm — Pvac = 145 — 5.8 = 8.7 psi

Discussion Note that the /ocal value of the atmospheric pressure is used
when determining the absolute pressure.

Pressure at a Point

Pressure is the compressive force per unit area, and it gives the impression
of being a vector. However, pressure at any point in a fluid is the same in all
directions. That is, it has magnitude but not a specific direction, and thus it
is a scalar quantity. This can be demonstrated by considering a small
wedge-shaped fluid element of unit length (into the page) in equilibrium, as
shown in Fig. 3—4. The mean pressures at the three surfaces are P, P,, and
P5, and the force acting on a surface is the product of mean pressure and the
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FIGURE 3-3
Absolute, gage, and vacuum pressures.
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FIGURE 34
Forces acting on a wedge-shaped fluid
element in equilibrium.

Psl
Pl Az (‘]
|
Az
0
AX T
P, Ax
(ay =1)
X

surface area. From Newton’s second law, a force balance in the x- and z-
directions gives

> F, =ma, = 0: P, Az — P,lsing =0 (3-3a)

1
> F,=ma,=0: P, Ax — P4l cos@—EpgAxAz=0 (3-3b)

where p is the density and W = mg = pg Ax Az/2 is the weight of the fluid
element. Noting that the wedge is a right triangle, we have Ax = | cos 6 and
Az = | sin 6. Substituting these geometric relations and dividing Eq. 3-3a
by Az and Eq. 3-3b by Ax gives

P~ P,=0 (3-4a)
1

The last term in Eq. 3—4b drops out as Az — 0 and the wedge becomes
infinitesimal, and thus the fluid element shrinks to a point. Then combining
the results of these two relations gives

P,=P,=P,=P (3-5)

regardless of the angle 6. We can repeat the analysis for an element in the
xz-plane and obtain a similar result. Thus we conclude that the pressure at a
point in a fluid has the same magnitude in all directions. It can be shown in
the absence of shear forces that this result is applicable to fluids in motion
as well as fluids at rest.

Variation of Pressure with Depth

It will come as no surprise to you that pressure in a fluid at rest does not
change in the horizontal direction. This can be shown easily by considering
a thin horizontal layer of fluid and doing a force balance in any horizontal
direction. However, this is not the case in the vertical direction in a gravity
field. Pressure in a fluid increases with depth because more fluid rests on
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deeper layers, and the effect of this “extra weight” on a deeper layer is bal-

anced by an increase in pressure (Fig. 3-5). e
To obtain a relation for the variation of pressure with depth, consider a
rectangular fluid element of height Az, length Ax, and unit depth (into the
page) in equilibrium, as shown in Fig. 3-6. Assuming the density of the
P

fluid p to be constant, a force balance in the vertical z-direction gives

> F,=ma,=0: P,AX — P, AXx — pg AxAz =0 (3-6)

where W = mg = pg Ax Az is the weight of the fluid element. Dividing by
Ax and rearranging gives

AP =P, — Py = pg Az = vy, Az @-7 FIGURE 3-5
where y, = pg is the specific weight of the fluid. Thus, we conclude that the _ The pressure of a fluid at rest
pressure difference between two points in a constant density fluid is propor- increases with depth (as a result
tional to the vertical distance Az between the points and the density p of the of added weight).
fluid. In other words, pressure in a fluid increases linearly with depth. This
is what a diver experiences when diving deeper in a lake. For a given fluid,
the vertical distance Az is sometimes used as a measure of pressure, and it is
called the pressure head. P,

We also conclude from Eq. 3-7 that for small to moderate distances, the l l l l l l l l l l l l
variation of pressure with height is negligible for gases because of their low =
density. The pressure in a tank containing a gas, for example, can be consid- i -
ered to be uniform since the weight of the gas is too small to make a signif- —| Az —
icant difference. Also, the pressure in a room filled with air can be assumed R lw —
to be constant (Fig. 3-7).

If we take point 1 to be at the free surface of a liquid open to the atmo- { ‘ ‘ { ‘ { { { { ‘
sphere (Fig. 3-8), where the pressure is the atmospheric pressure P, then o
the pressure at a depth h from the free surface becomes 2

P=Pun+pgh O  Pgg=pgh 3-8 O X

Liquids are essentially incompressible substances, and thus the variation FIGURE 3-6
of density with depth is negligible. This is also the case for gases when the Free-body diagram of a rectangular
elevation change is not very large. The variation of density of liquids or fluid element in equilibrium.

gases with temperature can be significant, however, and may need to be
considered when high accuracy is desired. Also, at great depths such as
those encountered in oceans, the change in the density of a liquid can be
significant because of the compression by the tremendous amount of liquid
weight above.

The gravitational acceleration g varies from 9.807 m/s? at sea level to Piop = L atm
9.764 m/s? at an elevation of 14,000 m where large passenger planes cruise.
This is a change of just 0.4 percent in this extreme case. Therefore, g can be
assumed to be constant with negligible error.

For fluids whose density changes significantly with elevation, a relation
for the variation of pressure with elevation can be obtained by dividing Eq.

AIR
(A 5-m-high room)

3-6 by Ax Az, and taking the limit as Az — 0. It gives Pbotom =006 2tm
dP
m = —pg (3-9)
FIGURE 3-7
The negative sign is due to our taking the positive z direction to be upward In a room filled with a gas, the
so that dP is negative when dz is positive since pressure decreases in an variation of pressure with height

upward direction. When the variation of density with elevation is known, is negligible.
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the pressure difference between points 1 and 2 can be determined by inte-
gration to be
Py = Pam

ONNE; AP

2
‘ :PZ—Plz—Jpgdz (3-10)

1
h For constant density and constant gravitational acceleration, this relation
reduces to Eq. 3—-7, as expected.
b =P +ooh Pressure in a fluid at rest is independent of the shape or cross section of
@ P2=Pam * 4 the container. It changes with the vertical distance, but remains constant in
other directions. Therefore, the pressure is the same at all points on a hori-
zontal plane in a given fluid. The Dutch mathematician Simon Stevin
(1548-1620) published in 1586 the principle illustrated in Fig. 3-9. Note
that the pressures at points A, B, C, D, E, F, and G are the same since they
are at the same depth, and they are interconnected by the same static fluid.
However, the pressures at points H and | are not the same since these two
points cannot be interconnected by the same fluid (i.e., we cannot draw a
curve from point | to point H while remaining in the same fluid at all
times), although they are at the same depth. (Can you tell at which point the
pressure is higher?) Also, the pressure force exerted by the fluid is always
normal to the surface at the specified points.

A consequence of the pressure in a fluid remaining constant in the hori-
zontal direction is that the pressure applied to a confined fluid increases the
pressure throughout by the same amount. This is called Pascal’s law, after
Blaise Pascal (1623-1662). Pascal also knew that the force applied by a
fluid is proportional to the surface area. He realized that two hydraulic
cylinders of different areas could be connected, and the larger could be used
to exert a proportionally greater force than that applied to the smaller. “Pas-
cal’s machine” has been the source of many inventions that are a part of our
daily lives such as hydraulic brakes and lifts. This is what enables us to lift

FIGURE 3-8

Pressure in a liquid at rest increases
linearly with distance from the free
surface.

F’altm

N

Water

Pa=Pg=Pc=Pp=Pg=Pr=Pg=Pyn+pgh
Py#P,

FIGURE 3-9
The pressure is the same at all points on a horizontal plane in a given fluid regardless of geometry, provided that the
points are interconnected by the same fluid.



a car easily by one arm, as shown in Fig. 3-10. Noting that P, = P, since
both pistons are at the same level (the effect of small height differences is
negligible, especially at high pressures), the ratio of output force to input
force is determined to be

FR R

P.=P Lt
1 2 - A, A,

B_ A
- F = A, (3-11)
The area ratio A,/A, is called the ideal mechanical advantage of the hydraulic
lift. Using a hydraulic car jack with a piston area ratio of A,/A; = 10, for
example, a person can lift a 1000-kg car by applying a force of just 100 kgf
(= 908 N).

3-2 = THE MANOMETER

We notice from Eq. 3-7 that an elevation change of Az in a fluid at rest cor-
responds to AP/pg, which suggests that a fluid column can be used to mea-
sure pressure differences. A device based on this principle is called a
manometer, and it is commonly used to measure small and moderate pres-
sure differences. A manometer mainly consists of a glass or plastic U-tube
containing one or more fluids such as mercury, water, alcohol, or oil. To
keep the size of the manometer to a manageable level, heavy fluids such as
mercury are used if large pressure differences are anticipated.

Consider the manometer shown in Fig. 3-11 that is used to measure the
pressure in the tank. Since the gravitational effects of gases are negligible,
the pressure anywhere in the tank and at position 1 has the same value. Fur-
thermore, since pressure in a fluid does not vary in the horizontal direction
within a fluid, the pressure at point 2 is the same as the pressure at point 1,
P, = P,.

The differential fluid column of height h is in static equilibrium, and it is
open to the atmosphere. Then the pressure at point 2 is determined directly
from Eq. 3-8 to be

P, = Pam + pgh (3-12)

where p is the density of the fluid in the tube. Note that the cross-sectional
area of the tube has no effect on the differential height h, and thus the pres-
sure exerted by the fluid. However, the diameter of the tube should be large
enough (more than a few millimeters) to ensure that the surface tension
effect and thus the capillary rise is negligible.

: EXAMPLE 3-2 Measuring Pressure with a Manometer

® A manometer is used to measure the pressure in a tank. The fluid used has
a specific gravity of 0.85, and the manometer column height is 55 cm, as
m shown in Fig. 3-12. If the local atmospheric pressure is 96 kPa, determine
m the absolute pressure within the tank.
|
SOLUTION The reading of a manometer attached to a tank and the
atmospheric pressure are given. The absolute pressure in the tank is to be
determined.
Assumptions The fluid in the tank is a gas whose density is much lower
than the density of manometer fluid.
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Fi=PiA;

O N O

FIGURE 3-10

Lifting of a large weight by

a small force by the application
of Pascal’s law.

FIGURE 3-11
The basic manometer.

P = 96 kPa

FIGURE 3-12
Schematic for Example 3-2.
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Fluid 1

Fluid 2

Fluid 3

Patm

FIGURE 3-13

In stacked-up fluid layers, the pressure
change across a fluid layer of density
p and height h is pgh.

A flow section
or flow device

FIGURE 3-14

Measuring the pressure drop across a
flow section or a flow device by a
differential manometer.

Properties The specific gravity of the manometer fluid is given to be 0.85.
We take the standard density of water to be 1000 kg/m3.

Analysis The density of the fluid is obtained by multiplying its specific
gravity by the density of water, which is taken to be 1000 kg/m3:

p = SG (py,0) = (0.85)(1000 kg/m®) = 850 kg/m®
Then from Eq. 3-12,
P = Pym + pgh

1N 1kPa
— 96 kPa + (850 kg/m®)(9.81 m/s?)(0.55 ( >< >
8+ (850 kg/m)(.81 s (0.55 M\ 1 ez )\ 1000 ym?

= 100.6 kPa

Discussion Note that the gage pressure in the tank is 4.6 kPa.

Many engineering problems and some manometers involve multiple
immiscible fluids of different densities stacked on top of each other. Such
systems can be analyzed easily by remembering that (1) the pressure change
across a fluid column of height h is AP = pgh, (2) pressure increases down-
ward in a given fluid and decreases upward (i.€., Ppoyom > Pygp), and (3) two
points at the same elevation in a continuous fluid at rest are at the same
pressure.

The last principle, which is a result of Pascal’s law, allows us to “jump”
from one fluid column to the next in manometers without worrying about
pressure change as long as we don’t jump over a different fluid, and the
fluid is at rest. Then the pressure at any point can be determined by starting
with a point of known pressure and adding or subtracting pgh terms as we
advance toward the point of interest. For example, the pressure at the bot-
tom of the tank in Fig. 3-13 can be determined by starting at the free sur-
face where the pressure is P,,,,, moving downward until we reach point 1 at
the bottom, and setting the result equal to P;. It gives

Pam + p10hy + pogh, + paghs = Py

In the special case of all fluids having the same density, this relation reduces
to Eq. 3-12, as expected.

Manometers are particularly well-suited to measure pressure drops across
a horizontal flow section between two specified points due to the presence
of a device such as a valve or heat exchanger or any resistance to flow. This
is done by connecting the two legs of the manometer to these two points, as
shown in Fig. 3-14. The working fluid can be either a gas or a liquid whose
density is p,. The density of the manometer fluid is p,, and the differential
fluid height is h.

A relation for the pressure difference P, — P, can be obtained by starting
at point 1 with P,, moving along the tube by adding or subtracting the pgh
terms until we reach point 2, and setting the result equal to P,:

P, + pig(a + h) — p,gh — p,ga = P, (3-13)

Note that we jumped from point A horizontally to point B and ignored the
part underneath since the pressure at both points is the same. Simplifying,

Py — P, = (p, — pygh (3-14)
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Note that the distance a has no effect on the result, but must be included in
the analysis. Also, when the fluid flowing in the pipe is a gas, then p, = p,
and the relation in Eq. 3-14 simplifies to P, — P, p,gh.

s EXAMPLE 3-3  Measuring Pressure with a Multifluid Manometer /_\ K-{O”
AR

® The water in a tank is pressurized by air, and the pressure is measured by a
@ Multifluid manometer as shown in Fig. 3-15. The tank is located on a moun- 1
m fain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. T
m Determine the air pressure in the tank if i, = 0.1 m, h, = 0.2 m, and h; = WATER h
B 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3, f
B 850 kg/m3, and 13,600 kg/m3, respectively. R | -

[ |
SOLUTION The pressure in a pressurized water tank is measured by a multi- h,
fluid manometer. The air pressure in the tank is to be determined. l

Assumption The air pressure in the tank is uniform (i.e., its variation with
elevation is negligible due to its low density), and thus we can determine the

pressure at the air-water interface. —
Mercury

Properties The densities of water, oil, and mercury are given to be
1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.

Analysis Starting with the pressure at point 1 at the air-water interface,
moving along the tube by adding or subtracting the pgh terms until we reach

FIGURE 3-15

point 2, and setting the result equal to P, since the tube is open to the Schematic for Example 3-3; drawing
atmosphere gives not to scale.

P1 + puaer@Ni + poighy — PmercuryghS = Pim
Solving for P, and substituting,
P1 = Pam — Puwaterds — poighy + pmercurygh3
= Patm + g(pmercuryhs - pwaterhl - poilhz)
= 85.6 kPa + (9.81 m/s?)[(13,600 kg/m®)(0.35 m) — (1000 kg/m3)(0.1 m)

— (850 kg/m?)(0.2 m)]< LN >< L kPa )

1kg - m/s?/\1000 N/m?

= 130 kPa

Discussion Note that jumping horizontally from one tube to the next and
realizing that pressure remains the same in the same fluid simplifies the
analysis considerably. Also note that mercury is a toxic fluid, and mercury
manometers and thermometers are being replaced by ones with safer fluids
because of the risk of exposure to mercury vapor during an accident.

EXAMPLE 3—4 Analyzing a Multifluid Manometer with EES

Reconsider the multifluid manometer discussed in Example 3-3. Determine
the air pressure in the tank using EES. Also determine what the differential
fluid height h; would be for the same air pressure if the mercury in the last
column were replaced by seawater with a density of 1030 kg/m3.

SOLUTION The pressure in a water tank is measured by a multifluid
manometer. The air pressure in the tank and the differential fluid height hg
if mercury is replaced by seawater are to be determined using EES.
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T
-

Twisted tube

Tube cross section

FIGURE 3-16
Various types of Bourdon tubes used
to measure pressure.

Analysis We start the EES program by double-clicking on its icon, open a
new file, and type the following on the blank screen that appears (we express
the atmospheric pressure in Pa for unit consistency):

g=9.81
Patm=85600
h1=0.1; h2=0.2; h3=0.35
rw=1000; roil=850; rm=13600
P1+rw*g*hl+roil*g*h2—rm*g*h3=Patm
Here P1 is the only unknown, and it is determined by EES to be
P, = 129647 Pa = 130 kPa

which is identical to the result obtained in Example 3-3. The height of the
fluid column h; when mercury is replaced by seawater is determined easily by
replacing “h3=0.35" by “P1=129647" and “rm=13600" by “rm=1030,”
and clicking on the calculator symbol. It gives

Discussion Note that we used the screen like a paper pad and wrote down
the relevant information together with the applicable relations in an orga-
nized manner. EES did the rest. Equations can be written on separate lines
or on the same line by separating them by semicolons, and blank or com-
ment lines can be inserted for readability. EES makes it very easy to ask
“what if” questions and to perform parametric studies, as explained in
Appendix 3 on the DVD.

Other Pressure Measurement Devices

Another type of commonly used mechanical pressure measurement device
is the Bourdon tube, named after the French engineer and inventor Eugene
Bourdon (1808-1884), which consists of a hollow metal tube bent like a
hook whose end is closed and connected to a dial indicator needle (Fig.
3-16). When the tube is open to the atmosphere, the tube is undeflected,
and the needle on the dial at this state is calibrated to read zero (gage pres-
sure). When the fluid inside the tube is pressurized, the tube stretches and
moves the needle in proportion to the pressure applied.

Electronics have made their way into every aspect of life, including pres-
sure measurement devices. Modern pressure sensors, called pressure trans-
ducers, use various techniques to convert the pressure effect to an electrical
effect such as a change in voltage, resistance, or capacitance. Pressure trans-
ducers are smaller and faster, and they can be more sensitive, reliable, and
precise than their mechanical counterparts. They can measure pressures
from less than a millionth of 1 atm to several thousands of atm.

A wide variety of pressure transducers is available to measure gage,
absolute, and differential pressures in a wide range of applications. Gage
pressure transducers use the atmospheric pressure as a reference by venting
the back side of the pressure-sensing diaphragm to the atmosphere, and they
give a zero signal output at atmospheric pressure regardless of altitude. The
absolute pressure transducers are calibrated to have a zero signal output at
full vacuum. Differential pressure transducers measure the pressure difference



between two locations directly instead of using two pressure transducers
and taking their difference.

Strain-gage pressure transducers work by having a diaphragm deflect
between two chambers open to the pressure inputs. As the diaphragm
stretches in response to a change in pressure difference across it, the strain
gage stretches and a Wheatstone bridge circuit amplifies the output. A
capacitance transducer works similarly, but capacitance change is measured
instead of resistance change as the diaphragm stretches.

Piezoelectric transducers, also called solid-state pressure transducers,
work on the principle that an electric potential is generated in a crystalline
substance when it is subjected to mechanical pressure. This phenomenon,
first discovered by brothers Pierre and Jacques Curie in 1880, is called the
piezoelectric (or press-electric) effect. Piezoelectric pressure transducers
have a much faster frequency response compared to the diaphragm units and
are very suitable for high-pressure applications, but they are generally not as
sensitive as the diaphragm-type transducers.

3-3 = THE BAROMETER AND
ATMOSPHERIC PRESSURE

Atmospheric pressure is measured by a device called a barometer; thus, the
atmospheric pressure is often referred to as the barometric pressure.

The Italian Evangelista Torricelli (1608-1647) was the first to conclu-
sively prove that the atmospheric pressure can be measured by inverting a
mercury-filled tube into a mercury container that is open to the atmosphere,
as shown in Fig. 3-17. The pressure at point B is equal to the atmospheric
pressure, and the pressure at C can be taken to be zero since there is only
mercury vapor above point C and the pressure is very low relative to P,
and can be neglected to an excellent approximation. Writing a force balance
in the vertical direction gives

Pam = pgh (3-15)

where p is the density of mercury, g is the local gravitational acceleration,
and h is the height of the mercury column above the free surface. Note that
the length and the cross-sectional area of the tube have no effect on the
height of the fluid column of a barometer (Fig. 3—-18).

A frequently used pressure unit is the standard atmosphere, which is
defined as the pressure produced by a column of mercury 760 mm in height
at 0°C (pyq = 13,595 kg/m3) under standard gravitational acceleration
(g = 9.807 m/s?). If water instead of mercury were used to measure the
standard atmospheric pressure, a water column of about 10.3 m would be
needed. Pressure is sometimes expressed (especially by weather forecasters)
in terms of the height of the mercury column. The standard atmospheric
pressure, for example, is 760 mmHg (29.92 inHg) at 0°C. The unit mmHg
is also called the torr in honor of Torricelli. Therefore, 1 atm = 760 torr
and 1 torr = 133.3 Pa.

The standard atmospheric pressure P, changes from 101.325 kPa at sea
level to 89.88, 79.50, 54.05, 26.5, and 5.53 kPa at altitudes of 1000, 2000,
5000, 10,000, and 20,000 meters, respectively. The standard atmospheric
pressure in Denver (elevation = 1610 m), for example, is 83.4 kPa.
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FIGURE 3-17
The basic barometer.

FIGURE 3-18

The length or the cross-sectional area
of the tube has no effect on the height
of the fluid column of a barometer,
provided that the tube diameter is
large enough to avoid surface tension
(capillary) effects.
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FIGURE 3-19

At high altitudes, a car engine
generates less power and a person
gets less oxygen because of the
lower density of air.

Remember that the atmospheric pressure at a location is simply the
weight of the air above that location per unit surface area. Therefore, it
changes not only with elevation but also with weather conditions.

The decline of atmospheric pressure with elevation has far-reaching rami-
fications in daily life. For example, cooking takes longer at high altitudes
since water boils at a lower temperature at lower atmospheric pressures.
Nose bleeding is a common experience at high altitudes since the difference
between the blood pressure and the atmospheric pressure is larger in this
case, and the delicate walls of veins in the nose are often unable to with-
stand this extra stress.

For a given temperature, the density of air is lower at high altitudes, and
thus a given volume contains less air and less oxygen. So it is no surprise
that we tire more easily and experience breathing problems at high altitudes.
To compensate for this effect, people living at higher altitudes develop more
efficient lungs. Similarly, a 2.0-L car engine will act like a 1.7-L car engine
at 1500 m altitude (unless it is turbocharged) because of the 15 percent drop
in pressure and thus 15 percent drop in the density of air (Fig. 3-19). A fan
or compressor will displace 15 percent less air at that altitude for the same
volume displacement rate. Therefore, larger cooling fans may need to be
selected for operation at high altitudes to ensure the specified mass flow
rate. The lower pressure and thus lower density also affects lift and drag:
airplanes need a longer runway at high altitudes to develop the required lift,
and they climb to very high altitudes for cruising for reduced drag and thus
better fuel efficiency.

EXAMPLE 3-5 Measuring Atmospheric Pressure with a
Barometer

Determine the atmospheric pressure at a location where the barometric read-
ing is 740 mm Hg and the gravitational acceleration is g = 9.81 m/s2.
Assume the temperature of mercury to be 10°C, at which its density is
13,570 kg/m3.

SOLUTION The barometric reading at a location in height of mercury col-
umn is given. The atmospheric pressure is to be determined.

Assumptions The temperature of mercury is assumed to be 10°C.

Properties The density of mercury is given to be 13,570 kg/m3.

Analysis From Eq. 3-15, the atmospheric pressure is determined to be

Pam = pgh

1N 1 kPa
= (13,570 kg/m®)(9.81 m/s?)(0.74 m ( )( )
( g X ) 1 kg - m/s?/\1000 N/m?

= 98.5 kPa

Discussion Note that density changes with temperature, and thus this effect
should be considered in calculations.

EXAMPLE 3-6 Effect of Piston Weight on Pressure in a Cylinder

The piston of a vertical piston—cylinder device containing a gas has a mass
of 60 kg and a cross-sectional area of 0.04 m2, as shown in Fig. 3-20. The
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® ocal atmospheric pressure is 0.97 bar, and the gravitational acceleration is
P =0.97 bar p

m 9.81 m/s?. (a) Determine the pressure inside the cylinder. (b) If some heat is a”r?] - 60 kg

m transferred to the gas and its volume is doubled, do you expect the pressure

m inside the cylinder to change?

|
SOLUTION A gas is contained in a vertical cylinder with a heavy piston. The
pressure inside the cylinder and the effect of volume change on pressure are
to be determined.
Assumptions Friction between the piston and the cylinder is negligible.
Analysis (a) The gas pressure in the piston—cylinder device depends on the
atmospheric pressure and the weight of the piston. Drawing the free-body FIGURE 3-20
diagram of the piston as shown in Fig. 3-20 and balancing the vertical Schematic for Example 3-6, and the
forces yield free-body diagram of the piston.

PA =P, A+ W

W =mg

Solving for P and substituting,

mg
P = Py F K

60 kg)(9.81 m/s?
_ 0.97 bar + 20K g ) ( LN 2)( L bar 2)
0.04m 1 kg - m/s/\10°> N/m

= 1.12 bars

(b) The volume change will have no effect on the free-body diagram drawn in
part (a), and therefore the pressure inside the cylinder will remain the same.
Discussion If the gas behaves as an ideal gas, the absolute temperature
doubles when the volume is doubled at constant pressure.

EXAMPLE 3-7 Hydrostatic Pressure in a Solar Pond
with Variable Density

|
|

|

: Solar ponds are small artificial lakes of a few meters deep that are used to
m store solar energy. The rise of heated (and thus less dense) water to the sur-
m face is prevented by adding salt at the pond bottom. In a typical salt gradi-
B ent solar pond, the density of water increases in the gradient zone, as shown
: in Fig. 3-21, and the density can be expressed as
|
|
|
|
|
|

T Z
= pp[1 + tan?( - =
o <4 H)

where p, is the density on the water surface, z is the vertical distance mea-
sured downward from the top of the gradient zone, and H is the thickness of

Sun
Increasing salinity
ﬁ and density

po = 104|0 kg/m® v

\\ Surface zone

g
H=4m &adient zone \%

FIGURE 3-21
Schematic for Example 3-7.
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32_ the gradient zone. For H = 4 m, p, = 1040 kg/m3, and a thickness of 0.8
' m for the surface zone, calculate the gage pressure at the bottom of the gra-
3 dient zone.
2.5
E 5] SOLUTION The variation of density of saline water in the gradient zone of a
~ 15— solar pond with depth is given. The gage pressure at the bottom of the gradi-
ent zone is to be determined.
19 Assumptions The density in the surface zone of the pond is constant.
0.5 Properties The density of brine on the surface is given to be 1040 kg/m3.
0 Analysis We label the top and the bottom of the gradient zone as 1 and 2,
0 10 20 30 40 50 60 respectively. Noting that the density of the surface zone is constant, the gage
P, kPa pressure at the bottom of the surface zone (which is the top of the gradient
zone) is
FIGURE 3-22 1 kN
The variation of gage pressure with P, = pgh, = (1040 kg/m®)(9.81 m/s)(0.8 m)(72> = 8.16 kPa
depth in the gradient zone of the 1000 kg - mvs
solar pond. since 1 kN/m? = 1 kPa. The differential change in hydrostatic pressure
across a vertical distance of dz is given by
dP = pg dz

Integrating from the top of the gradient zone (point 1 where z = 0) to any
location z in the gradient zone (no subscript) gives

z z
P—P1=Jpgdz N P:P1+me/1+tan2<35>gdz
] | 4 H

Performing the integration gives the variation of gage pressure in the gradi-
ent zone to be

4H . z
P =P+ pg— S|nh‘1<tan 2 —)

4 H
Then the pressure at the bottom of the gradient zone (z = H = 4 m)
becomes
4(4m) . w4 1kN
P, = 8.16 kPa + (1040 kg/m°®)(9.81 m/s?) ——s nh’l(tan—f><7>
2 (1040 kg/m)( ) S 4 4)\1000 kg - m/s?

= 54.0 kPa (gage)

Discussion The variation of gage pressure in the gradient zone with depth is
plotted in Fig. 3-22. The dashed line indicates the hydrostatic pressure for
the case of constant density at 1040 kg/m3 and is given for reference. Note
that the variation of pressure with depth is not linear when density varies
with depth.

3-4 - INTRODUCTION TO FLUID STATICS

Fluid statics deals with problems associated with fluids at rest. The fluid
can be either gaseous or liquid. Fluid statics is generally referred to as
hydrostatics when the fluid is a liquid and as aerostatics when the fluid is a
gas. In fluid statics, there is no relative motion between adjacent fluid lay-
ers, and thus there are no shear (tangential) stresses in the fluid trying to
deform it. The only stress we deal with in fluid statics is the normal stress,
which is the pressure, and the variation of pressure is due only to the weight
of the fluid. Therefore, the topic of fluid statics has significance only in



gravity fields, and the force relations developed naturally involve the gravi-
tational acceleration g. The force exerted on a surface by a fluid at rest is
normal to the surface at the point of contact since there is no relative motion
between the fluid and the solid surface, and thus no shear forces can act par-
allel to the surface.

Fluid statics is used to determine the forces acting on floating or sub-
merged bodies and the forces developed by devices like hydraulic presses
and car jacks. The design of many engineering systems such as water dams
and liquid storage tanks requires the determination of the forces acting on
the surfaces using fluid statics. The complete description of the resultant
hydrostatic force acting on a submerged surface requires the determination
of the magnitude, the direction, and the line of action of the force. In Sec-
tions 3-5 and 3-6, we consider the forces acting on both plane and curved
surfaces of submerged bodies due to pressure.

3-5 = HYDROSTATIC FORCES ON
SUBMERGED PLANE SURFACES

A plate exposed to a liquid, such as a gate valve in a dam, the wall of a lig-
uid storage tank, or the hull of a ship at rest, is subjected to fluid pressure
distributed over its surface (Fig. 3-23). On a plane surface, the hydrostatic
forces form a system of parallel forces, and we often need to determine the
magnitude of the force and its point of application, which is called the cen-
ter of pressure. In most cases, the other side of the plate is open to the
atmosphere (such as the dry side of a gate), and thus atmospheric pressure
acts on both sides of the plate, yielding a zero resultant. In such cases, it is
convenient to subtract atmospheric pressure and work with the gage pres-
sure only (Fig. 3-24). For example, Py, = pgh at the bottom of the lake.
Consider the top surface of a flat plate of arbitrary shape completely sub-
merged in a liquid, as shown in Fig. 3-25 together with its top view. The
plane of this surface (normal to the page) intersects the horizontal free sur-
face with an angle 0, and we take the line of intersection to be the x-axis.
The absolute pressure above the liquid is Py, which is the local atmospheric
pressure P, if the liquid is open to the atmosphere (but P, may be different

/Patm
LA
E L E
I T
|
I ‘*
h : :: =
[
I T
I -
Pam * pGh pgh
(@) P,y considered (b) Py, subtracted
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FIGURE 3-23
Hoover Dam.

Courtesy United States Department of the Interior,
Bureau of Reclamation-Lower Colorado Region.

FIGURE 3-24

When analyzing hydrostatic forces on
submerged surfaces, the atmospheric
pressure can be subtracted for
simplicity when it acts on both

sides of the structure.
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=Py + pgysin @

[0)

Centroid

Plane surface
of area A

FIGURE 3-25

Center of pressure

Pressure
dlstrlbutlon

Pressure prism
\\ of volume V
+ pgh
K\ Plane surface

=[dv=[Pda=r

Hydrostatic force on an inclined plane surface completely submerged in a liquid.

atm / Free surface

ave = PC = Patm W pghc
Centroid
of surface

FIGURE 3-26

The pressure at the centroid of a
surface is equivalent to the average
pressure on the surface.

than P, if the space above the liquid is evacuated or pressurized). Then the
absolute pressure at any point on the plate is

P = Py + pgh = Py + pgy sin 6

where h is the vertical distance of the point from the free surface and y is
the distance of the point from the x-axis (from point O in Fig. 3-25). The
resultant hydrostatic force Fg acting on the surface is determined by inte-
grating the force P dA acting on a differential area dA over the entire sur-
face area,

(3-16)

Fr = J PdA = J (Py + pgy sin 6) dA = PyA + pgsin @ J ydA  (3-17)
A A A
But the first moment of area J y dA is related to the y-coordinate of the
A
centroid (or center) of the surface by

Ye (3-18)

JydA
A

= (PO + pghC)A = PC A= Pave A

)>\l—‘

Substituting,

Fr = (Po + pgyc sin H)A (3-19)

where P = P, + pghc is the pressure at the centroid of the surface, which
is equivalent to the average pressure on the surface, and he = y. sin 6 is the
vertical distance of the centroid from the free surface of the liquid (Fig.
3-26). Thus we conclude that:

The magnitude of the resultant force acting on a plane surface of a
completely submerged plate in a homogeneous (constant density) fluid
is equal to the product of the pressure P, at the centroid of the surface
and the area A of the surface (Fig. 3-27).

The pressure Py is usually atmospheric pressure, which can be ignored in
most cases since it acts on both sides of the plate. When this is not the case,
a practical way of accounting for the contribution of P, to the resultant



force is simply to add an equivalent depth hy,;, = Po/pg to h; that is, to
assume the presence of an additional liquid layer of thickness hg;, on top
of the liquid with absolute vacuum above.

Next we need to determine the line of action of the resultant force Fg.
Two parallel force systems are equivalent if they have the same magnitude
and the same moment about any point. The line of action of the resultant
hydrostatic force, in general, does not pass through the centroid of the sur-
face—it lies underneath where the pressure is higher. The point of intersec-
tion of the line of action of the resultant force and the surface is the center
of pressure. The vertical location of the line of action is determined by
equating the moment of the resultant force to the moment of the distributed
pressure force about the x-axis. It gives

YpFg = JdeA: Jy(POergysine)dA: Py J ydA+pgsin6Jy2dA
A A A A

or
YpFr =PoYc A + pgsin b 1y, o (3-20)

where y;, is the distance of the center of pressure from the x-axis (point O in

Fig. 3-27) and |, o = J y2 dA is the second moment of area (also called
A

the area moment of inertia) about the x-axis. The second moments of area

are widely available for common shapes in engineering handbooks, but they

are usually given about the axes passing through the centroid of the area.

Fortunately, the second moments of area about two parallel axes are related

to each other by the parallel axis theorem, which in this case is expressed as

Iy o = lyc T YEA (3-21)

where |, . is the second moment of area about the x-axis passing through
the centroid of the area and y. (the y-coordinate of the centroid) is the dis-
tance between the two parallel axes. Substituting the F; relation from Eq.
3-19 and the I,, , relation from Eq. 3-21 into Eq. 3-20 and solving for y,
gives
Ixx,C

ct -

[yc + Po/(pg sin 6)]A

Yp =Y (3-22a)
For P, = 0, which is usually the case when the atmospheric pressure is
ignored, it simplifies to
—ye + e (3-22h)
Yr=Yc VA
Knowing yp, the vertical distance of the center of pressure from the free sur-
face is determined from h, =y sin 6.

The 1, ¢ values for some common areas are given in Fig. 3-28. For these
and other areas that possess symmetry about the y-axis, the center of pres-
sure lies on the y-axis directly below the centroid. The location of the center
of pressure in such cases is simply the point on the surface of the vertical
plane of symmetry at a distance h, from the free surface.

Pressure acts normal to the surface, and the hydrostatic forces acting on a
flat plate of any shape form a volume whose base is the plate area and
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K Line of action
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Center of
pressure

Centroid
of area

FIGURE 3-27

The resultant force acting on a plane
surface is equal to the product of the
pressure at the centroid of the surface
and the surface area, and its line of
action passes through the center of
pressure.
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The centroid and the centroidal moments of inertia for some common geometries.

whose height is the linearly varying pressure, as shown in Fig. 3-29. This
virtual pressure prism has an interesting physical interpretation: its volume
is equal to the magnitude of the resultant hydrostatic force acting on the
plate since V = [ P dA, and the line of action of this force passes through
the centroid of this homogeneous prism. The projection of the centroid on
the plate is the pressure center. Therefore, with the concept of pressure
prism, the problem of describing the resultant hydrostatic force on a plane
surface reduces to finding the volume and the two coordinates of the cen-
troid of this pressure prism.

Special Case: Submerged Rectangular Plate

Consider a completely submerged rectangular flat plate of height b and
width a tilted at an angle 6 from the horizontal and whose top edge is hori-
zontal and is at a distance s from the free surface along the plane of the
plate, as shown in Fig. 3-30a. The resultant hydrostatic force on the upper
surface is equal to the average pressure, which is the pressure at the mid-
point of the surface, times the surface area A. That is,

Tilted rectangular plate: Fr = Pc A =[P, + pg(s + b/2) sin #]ab (3-23)
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The force acts at a vertical distance of h, = y, sin 6 from the free surface
directly beneath the centroid of the plate where, from Eq. 3-223,
b ab%12
+ -+ .
2 [s+ b/2 + Py/(pgsin 6)]ab
b
+-+
2

Yp =S
bZ
12[s + b/2 + Py /(pg sin 6)]

When the upper edge of the plate is at the free surface and thus s = 0, Eqg.
3-23 reduces to

=5 (3-24)

Tilted rectangular plate (s = 0): Fr = [Py + pg(b sin 6)/2]ab (3-25)
Pressure
prism
|
|
|
|
|
:
|
Surface L
a ’
N
£ e FIGURE 3-29
————————— The hydrostatic forces acting on a
plane surface form a volume whose

TR base (left face) is the surface and
P whose height is the pressure.

0 Po 0 Py Py
< 6 T
S Yo

\ I

| ¥,
h
Fr = (Py + pgh)ab
b b

¥

Fr =[Py + pg(s + b/2) sin f]ab Fr = [Py + po(s + b/2)]ab

(a) Tilted plate (b) Vertical plate (c) Horizontal plate

FIGURE 3-30
Hydrostatic force acting on the top surface of a submerged rectangular plate for tilted, vertical, and horizontal cases.
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FIGURE 3-31
Schematic for Example 3-8.

For a completely submerged vertical plate (¢ = 90°) whose top edge is hori-
zontal, the hydrostatic force can be obtained by setting sin # = 1 (Fig. 3-30b)

Vertical rectangular plate: Fr = [Py + pg(s + b/2)]ab (3-26)
Vertical rectangular plate (s = 0): Fr = (P, + pgb/2)ab (3-27)

When the effect of P, is ignored since it acts on both sides of the plate, the
hydrostatic force on a vertical rectangular surface of height b whose top
edge is horizontal and at the free surface is F; = pgab?/2 acting at a dis-
tance of 2b/3 from the free surface directly beneath the centroid of the plate.

The pressure distribution on a submerged horizontal surface is uniform,
and its magnitude is P = P, + pgh, where h is the distance of the surface
from the free surface. Therefore, the hydrostatic force acting on a horizontal
rectangular surface is

Horizontal rectangular plate:  Fgz = (P, + pgh)ab (3-28)
and it acts through the midpoint of the plate (Fig. 3-30c).

EXAMPLE 3-8 Hydrostatic Force Acting on the Door
of a Submerged Car

A heavy car plunges into a lake during an accident and lands at the bottom
of the lake on its wheels (Fig. 3-31). The door is 1.2 m high and 1 m wide,
and the top edge of the door is 8 m below the free surface of the water.
Determine the hydrostatic force on the door and the location of the pressure
center, and discuss if the driver can open the door.

SOLUTION A car is submerged in water. The hydrostatic force on the door
is to be determined, and the likelihood of the driver opening the door is to
be assessed.

Assumptions 1 The bottom surface of the lake is horizontal. 2 The passen-
ger cabin is well-sealed so that no water leaks inside. 3 The door can be
approximated as a vertical rectangular plate. 4 The pressure in the passenger
cabin remains at atmospheric value since there is no water leaking in, and
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thus no compression of the air inside. Therefore, atmospheric pressure can-
cels out in the calculations since it acts on both sides of the door. 5 The
weight of the car is larger than the buoyant force acting on it.

Properties We take the density of lake water to be 1000 kg/m? throughout.
Analysis The average pressure on the door is the pressure value at the cen-
troid (midpoint) of the door and is determined to be

Pae = Pc = pghc = pg(s + b/2)

1 kN
= (1000 kg/m®)(9.81 m/s?)(8 + 1.2/2 (7>
( gm7)(O.81 ms)( m) 1000 kg - my/s?

= 84.4 KN/m?
Then the resultant hydrostatic force on the door becomes
Fr = PyeA = (844 kN/m?) (1 m X 1.2 m) = 101.3 kN

The pressure center is directly under the midpoint of the door, and its dis-
tance from the surface of the lake is determined from Eq. 3-24 by setting
Py = 0 to be

b b2 1.2 1.22

Yo =St ot st T 2 T2 122 20T
Discussion A strong person can lift 100 kg, whose weight is 981 N or about
1 kN. Also, the person can apply the force at a point farthest from the
hinges (1 m farther) for maximum effect and generate a moment of 1 kN - m.
The resultant hydrostatic force acts under the midpoint of the door, and thus a
distance of 0.5 m from the hinges. This generates a moment of 50.6 kN - m,
which is about 50 times the moment the driver can possibly generate. There-
fore, it is impossible for the driver to open the door of the car. The driver's
best bet is to let some water in (by rolling the window down a little, for
example) and to keep his or her head close to the ceiling. The driver should
be able to open the door shortly before the car is filled with water since at
that point the pressures on both sides of the door are nearly the same and
opening the door in water is almost as easy as opening it in air.

3-6 = HYDROSTATIC FORCES ON
SUBMERGED CURVED SURFACES

For a submerged curved surface, the determination of the resultant hydrosta-
tic force is more involved since it typically requires the integration of the
pressure forces that change direction along the curved surface. The concept
of the pressure prism in this case is not much help either because of the
complicated shapes involved.

The easiest way to determine the resultant hydrostatic force Fg acting on
a two-dimensional curved surface is to determine the horizontal and vertical
components F,, and F,, separately. This is done by considering the free-body
diagram of the liquid block enclosed by the curved surface and the two
plane surfaces (one horizontal and one vertical) passing through the two
ends of the curved surface, as shown in Fig. 3-32. Note that the vertical sur-
face of the liquid block considered is simply the projection of the curved
surface on a vertical plane, and the horizontal surface is the projection of
the curved surface on a horizontal plane. The resultant force acting on the
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liquid block

Determination of the hydrostatic force acting on a submerged curved surface.

Curved
surface

FIGURE 3-33

When a curved surface is above the
liquid, the weight of the liquid and the
vertical component of the hydrostatic
force act in the opposite directions.

curved solid surface is then equal and opposite to the force acting on the
curved liquid surface (Newton’s third law).

The force acting on the imaginary horizontal or vertical plane surface and
its line of action can be determined as discussed in Section 3-5. The weight
of the enclosed liquid block of volume V is simply W = pgV, and it acts
downward through the centroid of this volume. Noting that the fluid block
is in static equilibrium, the force balances in the horizontal and vertical
directions give

Horizontal force component on curved surface: F, = F (3-29)

Vertical force component on curved surface: Fp=F+W (3-30)

where the summation F, + W is a vector addition (i.e., add magnitudes if
both act in the same direction and subtract if they act in opposite directions).
Thus, we conclude that

1. The horizontal component of the hydrostatic force acting on a curved
surface is equal (in both magnitude and the line of action) to the
hydrostatic force acting on the vertical projection of the curved surface.

2. The vertical component of the hydrostatic force acting on a curved
surface is equal to the hydrostatic force acting on the horizontal
projection of the curved surface, plus (minus, if acting in the opposite
direction) the weight of the fluid block.

The magnitude of the resultant hydrostatic force acting on the curved sur-
face is F, = VF3 + F%, and the tangent of the angle it makes with the hori-
zontal is tan a = F,,/F. The exact location of the line of action of the resul-
tant force (e.g., its distance from one of the end points of the curved surface)
can be determined by taking a moment about an appropriate point. These
discussions are valid for all curved surfaces regardless of whether they are
above or below the liquid. Note that in the case of a curved surface above a
liquid, the weight of the liquid is subtracted from the vertical component of
the hydrostatic force since they act in opposite directions (Fig. 3-33).



When the curved surface is a circular arc (full circle or any part of it), the
resultant hydrostatic force acting on the surface always passes through
the center of the circle. This is because the pressure forces are normal to the
surface, and all lines normal to the surface of a circle pass through the cen-
ter of the circle. Thus, the pressure forces form a concurrent force system at
the center, which can be reduced to a single equivalent force at that point
(Fig. 3-34).

Finally, hydrostatic forces acting on a plane or curved surface submerged
in a multilayered fluid of different densities can be determined by consid-
ering different parts of surfaces in different fluids as different surfaces, find-
ing the force on each part, and then adding them using vector addition. For
a plane surface, it can be expressed as (Fig. 3-35)

Fr= EFR,i: EPC,iA

where P. ; = Py + pighc ; is the pressure at the centroid of the portion of
the surface in ﬂUId i and A is the area of the plate in that fluid. The line of
action of this equivalent force can be determined from the requirement that
the moment of the equivalent force about any point is equal to the sum of
the moments of the individual forces about the same point.

Plane surface in a multilayered fluid: (3-31)

: EXAMPLE 3-9 A Gravity-Controlled Cylindrical Gate

: A long solid cylinder of radius 0.8 m hinged at point A is used as an auto-
m matic gate, as shown in Fig. 3-36. When the water level reaches 5 m, the
m gate opens by turning about the hinge at point A. Determine (a) the hydro-
B static force acting on the cylinder and its line of action when the gate opens
: and (b) the weight of the cylinder per m length of the cylinder.

SOLUTION The height of a water reservoir is controlled by a cylindrical gate
hinged to the reservoir. The hydrostatic force on the cylinder and the weight
of the cylinder per m length are to be determined.

Assumptions 1 Friction at the hinge is negligible. 2 Atmospheric pressure
acts on both sides of the gate, and thus it cancels out.

Properties We take the density of water to be 1000 kg/m? throughout.
Analysis (a) We consider the free-body diagram of the liquid block enclosed
by the circular surface of the cylinder and its vertical and horizontal projec-
tions. The hydrostatic forces acting on the vertical and horizontal plane sur-
faces as well as the weight of the liquid block are determined as

Horizontal force on vertical surface:

Py = 5 = PrpA= PghcA: pg(S ar R/Z)A
1kN

. m/32>

= (1000 kg/m3)(9.81 m/s?)(4.2 + 0.8/2m)(0.8 m X 1 (
(1000 ky/m)(9.81 ms?)( 8 m X 1m){ 7o

= 36.1 kN

Vertical force on horizontal surface (upward):

Fy = F’alveA: pghCA: pghbottomA

1 kN
= (1000 kg/m?)(9.81 m/s?)(5 m)(0.8 m X 1 (*)
(1000 ky/m)(9.81 mis?)E m)(0.8 m X Lm){ 1o T

= 39.2 kN
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The hydrostatic force acting on a
circular surface always passes
through the center of the circle since
the pressure forces are normal to the
surface and they all pass through
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FIGURE 3-36

Schematic for Example 3-9 and
the free-body diagram of the fluid
underneath the cylinder.

I

| —s=4.2m

Weight of fluid block per m length (downward):
W = mg = pgV = pg(R? — wR¥4)(1 m)

1 kN
= (1000 kg/m®)(9.81 m/s?)(0.8 m)?(1 — =/4)(1 <7>
( g/m?)( m/s)(0.8 m)“(1 — zr/4)(1 m) 1000 kg - m/&?

= 1.3kN
Therefore, the net upward vertical force is
Fv=F —W=39.2—-13=379kN

Then the magnitude and direction of the hydrostatic force acting on the
cylindrical surface become

Fe = VFi+ Fé = V36 + 37.9? = 52.3 kN
tan = F/F, = 37.9/36.1 = 1.05 — 6 = 46.4°

Therefore, the magnitude of the hydrostatic force acting on the cylinder is
52.3 kN per m length of the cylinder, and its line of action passes through
the center of the cylinder making an angle 46.4° with the horizontal.

(b) When the water level is 5 m high, the gate is about to open and thus the
reaction force at the bottom of the cylinder is zero. Then the forces other
than those at the hinge acting on the cylinder are its weight, acting through
the center, and the hydrostatic force exerted by water. Taking a moment
about point A at the location of the hinge and equating it to zero gives

FrRSiN 6 — We R =0 — W,y = Fgsin 6 = (52.3 kN) sin 46.4° = 37.9 kN

Discussion The weight of the cylinder per m length is determined to be
37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m
length and to a density of 1921 kg/m3 for the material of the cylinder.

yl



3-7 = BUOYANCY AND STABILITY

It is a common experience that an object feels lighter and weighs less in a
liquid than it does in air. This can be demonstrated easily by weighing a
heavy object in water by a waterproof spring scale. Also, objects made of
wood or other light materials float on water. These and other observations
suggest that a fluid exerts an upward force on a body immersed in it. This
force that tends to lift the body is called the buoyant force and is denoted
by Fg.

The buoyant force is caused by the increase of pressure in a fluid with
depth. Consider, for example, a flat plate of thickness h submerged in a lig-
uid of density p; parallel to the free surface, as shown in Fig. 3-37. The area
of the top (and also bottom) surface of the plate is A, and its distance to the
free surface is s. The pressures at the top and bottom surfaces of the plate
are p¢gs and p¢g(s + h), respectively. Then the hydrostatic force F,, = p;gsA
acts downward on the top surface, and the larger force Fyuom = p:9(S + N)A
acts upward on the bottom surface of the plate. The difference between
these two forces is a net upward force, which is the buoyant force,

Fs = Foottom — Ftop = pg(s + h)A — p¢gsA = p;ghA = p;gV (3-32)

where V = hA is the volume of the plate. But the relation p;gV is simply the
weight of the liquid whose volume is equal to the volume of the plate. Thus,
we conclude that the buoyant force acting on the plate is equal to the weight
of the liquid displaced by the plate. Note that the buoyant force is indepen-
dent of the distance of the body from the free surface. It is also independent
of the density of the solid body.

The relation in Eq. 3-32 is developed for a simple geometry, but it is valid
for any body regardless of its shape. This can be shown mathematically by a
force balance, or simply by this argument: Consider an arbitrarily shaped
solid body submerged in a fluid at rest and compare it to a body of fluid of
the same shape indicated by dotted lines at the same distance from the free
surface (Fig. 3-38). The buoyant forces acting on these two bodies are the
same since the pressure distributions, which depend only on depth, are the
same at the boundaries of both. The imaginary fluid body is in static equilib-
rium, and thus the net force and net moment acting on it are zero. Therefore,
the upward buoyant force must be equal to the weight of the imaginary fluid
body whose volume is equal to the volume of the solid body. Further, the
weight and the buoyant force must have the same line of action to have a
zero moment. This is known as Archimedes’ principle, after the Greek
mathematician Archimedes (287-212 Bc), and is expressed as

The buoyant force acting on a body immersed in a fluid is equal to the weight
of the fluid displaced by the body, and it acts upward through the centroid of
the displaced volume.

For floating bodies, the weight of the entire body must be equal to the
buoyant force, which is the weight of the fluid whose volume is equal to the
volume of the submerged portion of the floating body. That is,

Vsub _ Pave, body

(3-33)
Viotal P

Fo =W = pigVyy = Pave, bodyd Viotal =
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A flat plate of uniform thickness h
submerged in a liquid parallel to the
free surface.

FIGURE 3-38

The buoyant forces acting on a solid
body submerged in a fluid and on a
fluid body of the same shape at the
same depth are identical. The buoyant
force Fg acts upward through the
centroid C of the displaced volume
and is equal in magnitude to the
weight W of the displaced fluid, but
is opposite in direction. For a solid
of uniform density, its weight W,
also acts through the centroid, but its
magnitude is not necessarily equal
to that of the fluid it displaces. (Here
W, > W and thus W, > Fg; this solid
body would sink.)
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FIGURE 3-39

A solid body dropped into a fluid will
sink, float, or remain at rest at any point
in the fluid, depending on its density
relative to the density of the fluid.
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Therefore, the submerged volume fraction of a floating body is equal to the
ratio of the average density of the body to the density of the fluid. Note that
when the density ratio is equal to or greater than one, the floating body
becomes completely submerged.

It follows from these discussions that a body immersed in a fluid (1) remains
at rest at any point in the fluid when its density is equal to the density of the
fluid, (2) sinks to the bottom when its density is greater than the density of
the fluid, and (3) rises to the surface of the fluid and floats when the density
of the body is less than the density of the fluid (Fig. 3—-39).

The buoyant force is proportional to the density of the fluid, and thus we
might think that the buoyant force exerted by gases such as air is negligible.
This is certainly the case in general, but there are significant exceptions. For
example, the volume of a person is about 0.1 m?, and taking the density of
air to be 1.2 kg/m?, the buoyant force exerted by air on the person is

Fs = p:gV = (1.2 kg/m®)(9.81 m/s?)(0.1 m®) = 1.2 N

The weight of an 80-kg person is 80 X 9.81 = 788 N. Therefore, ignoring
the buoyancy in this case results in an error in weight of just 0.15 percent,
which is negligible. But the buoyancy effects in gases dominate some impor-
tant natural phenomena such as the rise of warm air in a cooler environment
and thus the onset of natural convection currents, the rise of hot-air or helium
balloons, and air movements in the atmosphere. A helium balloon, for exam-
ple, rises as a result of the buoyancy effect until it reaches an altitude where
the density of air (which decreases with altitude) equals the density of
helium in the balloon—assuming the balloon does not burst by then, and
ignoring the weight of the balloon’s skin.

Archimedes’ principle is also used in modern geology by considering the
continents to be floating on a sea of magma.

EXAMPLE 3-10 Measuring Specific Gravity by a Hydrometer

If you have a seawater aquarium, you have probably used a small cylindrical
glass tube with some lead-weight at its bottom to measure the salinity of the
water by simply watching how deep the tube sinks. Such a device that floats
in a vertical position and is used to measure the specific gravity of a liquid
is called a hydrometer (Fig. 3-40). The top part of the hydrometer extends



above the liquid surface, and the divisions on it allow one to read the spe-
cific gravity directly. The hydrometer is calibrated such that in pure water it
reads exactly 1.0 at the air—water interface. (a) Obtain a relation for the spe-
cific gravity of a liquid as a function of distance Az from the mark corre-
sponding to pure water and (b) determine the mass of lead that must be
poured into a 1-cm-diameter, 20-cm-long hydrometer if it is to float halfway
(the 10-cm mark) in pure water.

SOLUTION The specific gravity of a liquid is to be measured by a hydrome-
ter. A relation between specific gravity and the vertical distance from the ref-
erence level is to be obtained, and the amount of lead that needs to be
added into the tube for a certain hydrometer is to be determined.
Assumptions 1 The weight of the glass tube is negligible relative to the
weight of the lead added. 2 The curvature of the tube bottom is disregarded.
Properties We take the density of pure water to be 1000 kg/m3.

Analysis (a) Noting that the hydrometer is in static equilibrium, the buoyant
force Fg exerted by the liquid must always be equal to the weight W of the
hydrometer. In pure water, let the vertical distance between the bottom of
the hydrometer and the free surface of water be z,. Setting Fz = W in this
case gives

Whydro = l:B,w = pwIVsup = pwIAZg (1)

where A is the cross-sectional area of the tube, and p, is the density of pure
water.

In a fluid lighter than water (p; < p,), the hydrometer will sink deeper, and
the liquid level will be a distance of Az above z,. Again setting Fz = W gives

Whyaro = Fa, 1 = pr9Vew = pr9A(Zo + AZ) (2)

This relation is also valid for fluids heavier than water by taking the Az below

7, to be a negative quantity. Setting Egs. (1) and (2) here equal to each

other since the weight of the hydrometer is constant and rearranging gives
Pt Zg

Azy = pgA(Ze + A ==
pPw9AZy = prgA(Zo ) - SG; pu 2o+ Az

which is the relation between the specific gravity of the fluid and Az Note
that z, is constant for a given hydrometer and Az is negative for fluids heav-
ier than pure water.

(b) Disregarding the weight of the glass tube, the amount of lead that needs
to be added to the tube is determined from the requirement that the weight
of the lead be equal to the buoyant force. When the hydrometer is floating
with half of it submerged in water, the buoyant force acting on it is
Fg = pwdVeuws

Equating Fz to the weight of lead gives

W= mg = pwngub
Solving for m and substituting, the mass of lead is determined to be
M = py,Vap = pulRNg) = (1000 kg/m®)[7(0.005 m)?(0.1 m)] = 0.00785 kg

Discussion Note that if the hydrometer were required to sink only 5 cm in
water, the required mass of lead would be one-half of this amount. Also, the
assumption that the weight of the glass tube is negligible needs to be
checked since the mass of lead is only 7.85 g.

91
CHAPTER 3

Hydrometer

Az

<1

=
\\\\\\\\\\\?\\\\\\\\\\\\\\ 0

;W
Lead(T/ -
Fs

FIGURE 3-40
Schematic for Example 3-10.
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FIGURE 3-41
Schematic for Example 3-11.

EXAMPLE 3-11 Weight Loss of an Object in Seawater

A crane is used to lower weights into the sea (density = 1025 kg/m3) for an
underwater construction project (Fig. 3-41). Determine the tension in the
rope of the crane due to a rectangular 0.4-m X 0.4-m X 3-m concrete block
(density = 2300 kg/m3) when it is (a) suspended in the air and (b) com-
pletely immersed in water.

SOLUTION A concrete block is lowered into the sea. The tension in the
rope is to be determined before and after the block is in water.

Assumptions 1 The buoyancy of air is negligible. 2 The weight of the ropes
is negligible.

Properties The densities are given to be 1025 kg/m3 for seawater and
2300 kg/m?3 for concrete.

Analysis (a) Consider the free-body diagram of the concrete block. The
forces acting on the concrete block in air are its weight and the upward pull
action (tension) by the rope. These two forces must balance each other, and
thus the tension in the rope must be equal to the weight of the block:

V= (0.4 m)(0.4 m)(3m) = 0.48 m®
FT, air = W = Peoncree JV

1 kN
= (2300 kg/m®)(9.81 m/s?)(0.48 m® <7> = 10.8 kN
( g/m7)(9-81 m/s)(0.48 ") 1000 kg - m/s?

(b) When the block is immersed in water, there is the additional force of
buoyancy acting upward. The force balance in this case gives

1 kN
Fs = p; gV = (1025 kg/m?)(9.81 m/s?)(0.48 m? (7>=4.8 kN
o = 19V = (1025 kym)(9.81 M (048 1) 1o n T

I:T, water = W — Fg = 10.8 — 4.8 = 6.0 kN

Discussion Note that the weight of the concrete block, and thus the tension
of the rope, decreases by (10.8 — 6.0)/10.8 = 55 percent in water.

Stabhility of Immersed and Floating Bodies

An important application of the buoyancy concept is the assessment of the
stability of immersed and floating bodies with no external attachments. This
topic is of great importance in the design of ships and submarines (Fig.
3-42). Here we provide some general qualitative discussions on vertical and
rotational stability.

We use the “ball on the floor” analogy to explain the fundamental concepts
of stability and instability. Shown in Fig. 3-43 are three balls at rest on the
floor. Case (a) is stable since any small disturbance (someone moves the ball
to the right or left) generates a restoring force (due to gravity) that returns it
to its initial position. Case (b) is neutrally stable because if someone moves
the ball to the right or left, it would stay put at its new location. It has no ten-
dency to move back to its original location, nor does it continue to move



away. Case (c) is a situation in which the ball may be at rest at the moment,
but any disturbance, even an infinitesimal one, causes the ball to roll off the
hill—it does not return to its original position; rather it diverges from it. This
situation is unstable. What about a case where the ball is on an inclined
floor? It is not really appropriate to discuss stability for this case since the
ball is not in a state of equilibrium. In other words, it cannot be at rest and
would roll down the hill even without any disturbance.

For an immersed or floating body in static equilibrium, the weight and the
buoyant force acting on the body balance each other, and such bodies are
inherently stable in the vertical direction. If an immersed neutrally buoyant
body is raised or lowered to a different depth, the body will remain in equi-
librium at that location. If a floating body is raised or lowered somewhat by
a vertical force, the body will return to its original position as soon as the
external effect is removed. Therefore, a floating body possesses vertical sta-
bility, while an immersed neutrally buoyant body is neutrally stable since it
does not return to its original position after a disturbance.

The rotational stability of an immersed body depends on the relative loca-
tions of the center of gravity G of the body and the center of buoyancy B,
which is the centroid of the displaced volume. An immersed body is stable
if the body is bottom-heavy and thus point G is directly below point B (Fig.
3-44). A rotational disturbance of the body in such cases produces a restor-
ing moment to return the body to its original stable position. Thus, a stable
design for a submarine calls for the engines and the cabins for the crew to
be located at the lower half in order to shift the weight to the bottom as
much as possible. Hot-air or helium balloons (which can be viewed as being
immersed in air) are also stable since the cage that carries the load is at the
bottom. An immersed body whose center of gravity G is directly above
point B is unstable, and any disturbance will cause this body to turn upside
down. A body for which G and B coincide is neutrally stable. This is the
case for bodies whose density is constant throughout. For such bodies, there
is no tendency to overturn or right themselves.

What about a case where the center of gravity is not vertically aligned
with the center of buoyancy (Fig. 3-45)? It is not really appropriate to dis-
cuss stability for this case since the body is not in a state of equilibrium. In
other words, it cannot be at rest and would rotate toward its stable state even
without any disturbance. The restoring moment in the case shown in Fig.
3-45 is counterclockwise and causes the body to rotate counterclockwise so
as to align point G vertically with point B. Note that there may be some
oscillation, but eventually the body settles down at its stable equilibrium
state [case (a) of Fig. 3—44]. The stability of the body of Fig. 3-45 is analo-
gous to that of the ball on an inclined floor. Can you predict what would
happen if the weight in the body of Fig. 3-45 were on the opposite side of
the body?

The rotational stability criteria are similar for floating bodies. Again, if the
floating body is bottom-heavy and thus the center of gravity G is directly
below the center of buoyancy B, the body is always stable. But unlike
immersed bodies, a floating body may still be stable when G is directly
above B (Fig. 3-46). This is because the centroid of the displaced volume
shifts to the side to a point B” during a rotational disturbance while the center
of gravity G of the body remains unchanged. If point B’ is sufficiently far,
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For floating bodies such as ships,
stability is an important
consideration for safety.
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FIGURE 3-43
Stability is easily understood by
analyzing a ball on the floor.
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FIGURE 3-44

An immersed neutrally buoyant body
is (a) stable if the center of gravity

G is directly below the center of
buoyancy B of the body, (b) neutrally
stable if G and B are coincident, and
(c) unstable if G is directly above B.
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FIGURE 3-45

When the center of gravity G of an
immersed neutrally buoyant body is
not vertically aligned with the center
of buoyancy B of the body, it is not in
an equilibrium state and would rotate
to its stable state, even without any
disturbance.

FIGURE 3-46

A floating body is stable if the body is
bottom-heavy and thus the center of
gravity G is below the centroid B of
the body, or if the metacenter M is
above point G. However, the body is
unstable if point M is below point G.
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these two forces create a restoring moment and return the body to the origi-
nal position. A measure of stability for floating bodies is the metacentric
height GM, which is the distance between the center of gravity G and the
metacenter M—the intersection point of the lines of action of the buoyant
force through the body before and after rotation. The metacenter may be
considered to be a fixed point for most hull shapes for small rolling angles
up to about 20°. A floating body is stable if point M is above point G, and
thus GM is positive, and unstable if point M is below point G, and thus GM
is negative. In the latter case, the weight and the buoyant force acting on the
tilted body generate an overturning moment instead of a restoring moment,
causing the body to capsize. The length of the metacentric height GM above
G is a measure of the stability: the larger it is, the more stable is the floating
body.

As already discussed, a boat can tilt to some maximum angle without cap-
sizing, but beyond that angle it overturns (and sinks). We make a final anal-
ogy between the stability of floating objects and the stability of a ball
rolling along the floor. Namely, imagine the ball in a trough between two
hills (Fig. 3-47). The ball returns to its stable equilibrium position after
being perturbed—up to a limit. If the perturbation amplitude is too great,
the ball rolls down the opposite side of the hill and does not return to its
equilibrium position. This situation is described as stable up to some limit-
ing level of disturbance, but unstable beyond.

Metacenter

Overturning

Restoring / e

‘ / moment

(a) Stable (b) Stable (c) Unstable



3-8 = FLUIDS IN RIGID-BODY MOTION

We showed in Section 3-1 that pressure at a given point has the same mag-
nitude in all directions, and thus it is a scalar function. In this section we
obtain relations for the variation of pressure in fluids moving like a solid
body with or without acceleration in the absence of any shear stresses (i.e.,
no motion between fluid layers relative to each other).

Many fluids such as milk and gasoline are transported in tankers. In an
accelerating tanker, the fluid rushes to the back, and some initial splashing
occurs. But then a new free surface (usually nonhorizontal) is formed, each
fluid particle assumes the same acceleration, and the entire fluid moves like
a rigid body. No shear stresses develop within the fluid body since there is
no deformation and thus no change in shape. Rigid-body motion of a fluid
also occurs when the fluid is contained in a tank that rotates about an axis.

Consider a differential rectangular fluid element of side lengths dx, dy,
and dz in the x-, y-, and z-directions, respectively, with the z-axis being
upward in the vertical direction (Fig. 3-48). Noting that the differential fluid
element behaves like a rigid body, Newton’s second law of motion for this
element can be expressed as

SF=6m - a (3-34)

where dm = p dV = p dx dy dz is the mass of the fluid element, a is the
acceleration, and SF is the net force acting on the element.

The forces acting on the fluid element consist of body forces such as
gravity that act throughout the entire body of the element and are propor-
tional to the volume of the body (and also electrical and magnetic forces,
which will not be considered in this text), and surface forces such as the
pressure forces that act on the surface of the element and are proportional to
the surface area (shear stresses are also surface forces, but they do not apply
in this case since the relative positions of fluid elements remain unchanged).
The surface forces appear as the fluid element is isolated from its surround-
ings for analysis, and the effect of the detached body is replaced by a force
at that location. Note that pressure represents the compressive force applied
on the fluid element by the surrounding fluid and is always directed to the
surface.

Taking the pressure at the center of the element to be P, the pressures at
the top and bottom surfaces of the element can be expressed as P + (dP/9z)
dz/2 and P — (9P/9z) dz/2, respectively. Noting that the pressure force act-
ing on a surface is equal to the average pressure multiplied by the surface
area, the net surface force acting on the element in the z-direction is the dif-
ference between the pressure forces acting on the bottom and top faces,

oP dz oP dz
= -—= — +—— = —— —
oFs,, (P P 2)dx dy <P P 2>d X dy = dx dy dz (3-35)

Similarly, the net surface forces in the x- and y-directions are

P P
OFs = T dx dy dz and oFg = —a—y dx dy dz (3-36)
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FIGURE 3-47

A ball in a trough between two hills
is stable for small disturbances, but
unstable for large disturbances.
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The surface and body forces acting
on a differential fluid element

in the vertical direction.
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Then the surface force (which is simply the pressure force) acting on the
entire element can be expressed in vector form as
8Fs = OFg i + 8Fg ] + OFs K
P> P> 9P =
=—<—i +— +—k>dxdydz=—Vdedydz (3-37)

axX ay 9z
where i, jﬁ, and K are the unit vectors in the x-, y-, and z-directions, respec-
tively, and

oP-> oP- JP-
P="1+%7+k (3-38)
oX ay Jz

<!

is the pressure gradient. Note that the V or “del” is a vector operator that is
used to express the gradients of a scalar function compactly in vector form.
Also, the gradient of a scalar function is expressed in a given direction and
thus it is a vector quantity.

The only body force acting on the fluid element is the weight of the ele-
ment acting in the negative z-direction, and it is expressed as 6F; , = —gém
= —pg dx dy dz or in vector form as

SIEB,Z = —gémE = —pg dx dy dzk (3-39)
Then the total force acting on the element becomes
8F = 8F + 0F5 = —(VP + pgk) dx dy dz (3-40)

Substituting into Newton’s second law of motion SF =om- & = p dx dy dz
- a and canceling dx dy dz, the general equation of motion for a fluid that
acts as a rigid body (no shear stresses) is determined to be

Rigid-body motion of fluids: VP + pgk = —pa (3-41)
Resolving the vectors into their components, this relation can be expressed
more explicitly as

aP - 9P

- ape — - - —
i +—j+-—-k+pgk=—pai+a,j+ak 3-42
ax ayJ 9z 4] p(ay v] .K) ( )

or, in scalar form in the three orthogonal directions, as
P
ay
where a,, a,, and a, are accelerations in the x-, y-, and z-directions, respec-
tively.

. . il aP
Accelerating fluids: P —pa,, —pa,, and _— —p(g +a,) (3-43)
[e

Special Case 1: Fluids at Rest

For fluids at rest or moving on a straight path at constant velocity, all com-

ponents of acceleration are zero, and the relations in Eqs. 3—43 reduce to
aP P _ 0. and dP

Fluids at rest: — =0, — =
ay dz

- 3-44
X P9 ( )

which confirm that, in fluids at rest, the pressure remains constant in any
horizontal direction (P is independent of x and y) and varies only in the ver-
tical direction as a result of gravity [and thus P = P(z)]. These relations are
applicable for both compressible and incompressible fluids.



Special Case 2: Free Fall of a Fluid Body

A freely falling body accelerates under the influence of gravity. When the
air resistance is negligible, the acceleration of the body equals the gravita-
tional acceleration, and acceleration in any horizontal direction is zero.
Therefore, a, = a, = 0 and a, = —g. Then the equations of motion for
accelerating fluids (Egs. 3-43) reduce to

P _oP _oP _

Free-falling fluids: —=—= 0 — P =constant (3-45)
ax 9oy oz

Therefore, in a frame of reference moving with the fluid, it behaves like it is
in an environment with zero gravity. Also, the gage pressure in a drop of
liquid in free fall is zero throughout. (Actually, the gage pressure is slightly
above zero due to surface tension, which holds the drop intact.)

When the direction of motion is reversed and the fluid is forced to accel-
erate vertically with a, = +g by placing the fluid container in an elevator or
a space vehicle propelled upward by a rocket engine, the pressure gradient
in the z-direction is dP/9z = —2pg. Therefore, the pressure difference across
a fluid layer now doubles relative to the stationary fluid case (Fig. 3—-49).

Acceleration on a Straight Path
Consider a container partially filled with a liquid. The container is moving
on a straight path with a constant acceleration. We take the projection of the
path of motion on the horizontal plane to be the x-axis, and the projection
on the vertical plane to be the z-axis, as shown in Fig. 3-50. The x- and z-
components of acceleration are a, and a,. There is no movement in the y-
direction, and thus the acceleration in that direction is zero, a, = 0. Then
the equations of motion for accelerating fluids (Egs. 3-43) reduce to

P P aP

Pole pay, oy 0, and Pl p(g + a,) (3-46)
Therefore, pressure is independent of y. Then the total differential of P
= P(x, z), which is (dP/ax) dx + (9P/9z) dz, becomes

dP = —pa, dx — p(g + a,) dz (3-47)

For p = constant, the pressure difference between two points 1 and 2 in the
fluid is determined by integration to be

P, — Py = —pa,(x, — X)) — p(g + a,)(z, — 21) (3-48)

Taking point 1 to be the origin (x = 0, z = 0) where the pressure is P, and
point 2 to be any point in the fluid (no subscript), the pressure distribution
can be expressed as

Pressure variation: P=P,— pax—p(g+a,)z (3-49)

The vertical rise (or drop) of the free surface at point 2 relative to point 1
can be determined by choosing both 1 and 2 on the free surface (so that P,
= P,), and solving Eq. 3-48 for z, — z, (Fig. 3-51),

ax

g+a

Vertical rise of surface: Az,=25—74=— (%o — X41) (3-50)

97
CHAPTER 3

z z
P P
h Liquid, p h Liquid, p
(] L}
1 P2 = Pl P2 = P1+ 2pgh
a;=-g =9
(a) Free fall of a (b) Upward acceleration
liquid of a liquid with a, = +g
FIGURE 349

The effect of acceleration on the
pressure of a liquid during free
fall and upward acceleration.
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FIGURE 3-50
Rigid-body motion of a liquid in a
linearly accelerating tank.
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/ surface

Constant
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FIGURE 3-51

Lines of constant pressure (which
are the projections of the surfaces of
constant pressure on the xz-plane) in
a linearly accelerating liquid, and the
vertical rise.

Water 80 cm
tank

FIGURE 3-52
Schematic for Example 3-12.

where z, is the z-coordinate of the liquid’s free surface. The equation for
surfaces of constant pressure, called isobars, is obtained from Eq. 3-47 by
setting dP = 0 and replacing z by z;,,,,» Which is the z-coordinate (the ver-
tical distance) of the surface as a function of x. It gives

dzisobar ay

Surfaces of constant pressure: = - = constant (3-51)
dx g+a,

Thus we conclude that the isobars (including the free surface) in an incom-
pressible fluid with constant acceleration in linear motion are parallel sur-
faces whose slope in the xz-plane is

dzisobar ay

I fi : lope = ——"=— = —t -52
Slope of isobars Slope dx g+a an 6 (3-52)

Obviously, the free surface of such a fluid is a plane surface, and it is
inclined unless a, = 0 (the acceleration is in the vertical direction only).
Also, the conservation of mass together with the assumption of incompress-
ibility (p = constant) requires that the volume of the fluid remain constant
before and during acceleration. Therefore, the rise of fluid level on one side
must be balanced by a drop of fluid level on the other side.

EXAMPLE 3-12 Overflow from a Water Tank During Acceleration

An 80-cm-high fish tank of cross section 2 m X 0.6 m that is initially filled
with water is to be transported on the back of a truck (Fig. 3-52). The truck
accelerates from O to 90 km/h in 10 s. If it is desired that no water spills
during acceleration, determine the allowable initial water height in the tank.
Would you recommend the tank to be aligned with the long or short side par-
allel to the direction of motion?

SOLUTION A fish tank is to be transported on a truck. The allowable water
height to avoid spill of water during acceleration and the proper orientation
are to be determined.

Assumptions 1 The road is horizontal during acceleration so that accelera-
tion has no vertical component (a, = 0). 2 Effects of splashing, braking, dri-
ving over bumps, and climbing hills are assumed to be secondary and are
not considered. 3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the zaxis to be
the upward vertical direction, and the origin to be the lower left corner of the
tank. Noting that the truck goes from O to 90 km/h in 10 s, the acceleration
of the truck is

4 AV _ (90 — 0) kmh/ 1 s
XAt 10s  \3.6 km/h

) = 2.5 m/s?

The tangent of the angle the free surface makes with the horizontal is

a 25
g+ta, 981+0

tan 6 = = 0.255 (and thus 6 = 14.3°)



The maximum vertical rise of the free surface occurs at the back of the tank,
and the vertical midplane experiences no rise or drop during acceleration
since it is a plane of symmetry. Then the vertical rise at the back of the tank
relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:

Az, = (by/2) tan 0 = [(2 m)/2] X 0.255 = 0.255 m = 25.5cm

Case 2: The short side is parallel to the direction of motion:

Az, = (b,/2) tan # = [(0.6 m)/2] X 0.255 = 0.076 m = 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be
oriented such that its short side is parallel to the direction of motion. Empty-
ing the tank such that its free surface level drops just 7.6 cm in this case
will be adequate to avoid spilling during acceleration.

Discussion Note that the orientation of the tank is important in controlling
the vertical rise. Also, the analysis is valid for any fluid with constant den-
sity, not just water, since we used no information that pertains to water in
the solution.

Rotation in a Cylindrical Container
We know from experience that when a glass filled with water is rotated
about its axis, the fluid is forced outward as a result of the so-called cen-
trifugal force, and the free surface of the liquid becomes concave. This is
known as the forced vortex motion.

Consider a vertical cylindrical container partially filled with a liquid. The
container is now rotated about its axis at a constant angular velocity of w, as
shown in Fig. 3-53. After initial transients, the liquid will move as a rigid
body together with the container. There is no deformation, and thus there
can be no shear stress, and every fluid particle in the container moves with
the same angular velocity.

This problem is best analyzed in cylindrical coordinates (r, 8, z), with z
taken along the centerline of the container directed from the bottom toward
the free surface, since the shape of the container is a cylinder, and the fluid
particles undergo a circular motion. The centripetal acceleration of a fluid
particle rotating with a constant angular velocity of w at a distance r from the
axis of rotation is rw? and is directed radially toward the axis of rotation
(negative r-direction). That is, a, = —rw? There is symmetry about the z-
axis, which is the axis of rotation, and thus there is no 6 dependence. Then P
= P(r, z) and a, = 0. Also, a, = 0 since there is no motion in the z-direction.

Then the equations of motion for rotating fluids (Egs. 3-43) reduce to

aP , 0P aP

— = plrw®, — =0, and =
pre Py

- - - 3-53
ar 96 P9 (3-33)

Then the total differential of P = P(r, z), which is dP = (dP/or)dr
+ (0P/9z)dz, becomes

dP = prew?dr — pg dz (3-54)
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Rigid-body motion of a liquid in a
rotating vertical cylindrical container.
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Surfaces of constant pressure in a

rotating liquid.

The equation for surfaces of constant pressure is obtained by setting dP = 0
and replacing z by z;,,,..» Which is the z-value (the vertical distance) of the
surface as a function of r. It gives
dzisobar _ riz (3-55)
dr g
Integrating, the equation for the surfaces of constant pressure is determined
to be

2
w
Surfaces of constant pressure: Ziopar = — I° + C4 (3-56)

29
which is the equation of a parabola. Thus we conclude that the surfaces of
constant pressure, including the free surface, are paraboloids of revolution
(Fig. 3-54).

The value of the integration constant C, is different for different parabo-
loids of constant pressure (i.e., for different isobars). For the free surface,
setting r = 0 in Eq. 3-56 gives z;,,,,(0) = C, = h,, where h_ is the distance
of the free surface from the bottom of the container along the axis of rota-
tion (Fig. 3-53). Then the equation for the free surface becomes

2
zZ, = ;)—g r2 + h, (3-57)
where z, is the distance of the free surface from the bottom of the container
at radius r. The underlying assumption in this analysis is that there is suffi-
cient liquid in the container so that the entire bottom surface remains cov-
ered with liquid.
The volume of a cylindrical shell element of radius r, height z,, and thick-
ness dr is dV = 2arrzg dr. Then the volume of the paraboloid formed by the
free surface is

R R 2 2p2
w wR
V= J 2wz dr = 277 j (2g rz+ hc>r dr = wRZ( 4 + hc) (3-58)

r=0 r=0

Since mass is conserved and density is constant, this volume must be equal
to the original volume of the fluid in the container, which is

V = 7R%h, (3-59)

where h, is the original height of the fluid in the container with no rotation.
Setting these two volumes equal to each other, the height of the fluid along
the centerline of the cylindrical container becomes

w’R?

hC = ho - 4g (3-60)

Then the equation of the free surface becomes

2

Y (R? - 2r?) (3-61)

Free surface: Zs=hy —
S 0 4g

The maximum vertical height occurs at the edge where r = R, and the max-
imum height difference between the edge and the center of the free surface



is determined by evaluating z, at r = R and also at r = 0, and taking their
difference,

2
Maximum height difference: Az nax = Zs(R) — 24(0) = %g R? (3-62)
When p = constant, the pressure difference between two points 1 and 2 in
the fluid is determined by integrating dP = prw? dr — pg dz. This yields

pw’

Py = Pr="-(r2 = 1) — pg(z, ~ 22) (3-63)
Taking point 1 to be the origin (r = 0, z = 0) where the pressure is P, and
point 2 to be any point in the fluid (no subscript), the pressure distribution
can be expressed as

2

910)]
Pressure variation: P=P,+ 17 r2 — pgz (3-64)

Note that at a fixed radius, the pressure varies hydrostatically in the vertical
direction, as in a fluid at rest. For a fixed vertical distance z, the pressure
varies with the square of the radial distance r, increasing from the centerline
toward the outer edge. In any horizontal plane, the pressure difference
between the center and edge of the container of radius R is AP = pw?R?/2.

: EXAMPLE 3-13 Rising of a Liquid During Rotation

B A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig.
® 3-55, is partially filled with 50-cm-high liquid whose density is 850 kg/m3.
Now the cylinder is rotated at a constant speed. Determine the rotational
m speed at which the liquid will start spilling from the edges of the container.
|
SOLUTION A vertical cylindrical container partially filled with a liquid is
rotated. The angular speed at which the liquid will start spilling is to be
determined.
Assumptions 1 The increase in the rotational speed is very slow so that the
liquid in the container always acts as a rigid body. 2 The bottom surface of
the container remains covered with liquid during rotation (no dry spots).
Analysis Taking the center of the bottom surface of the rotating vertical
cylinder as the origin (r = 0, z = 0), the equation for the free surface of the
liquid is given as

2
2, = h, —‘Z—g(re2 )

Then the vertical height of the liquid at the edge of the container where r =

R becomes
®°R?
ZS(R) = hO + E

where hy = 0.5 m is the original height of the liquid before rotation. Just
before the liquid starts spilling, the height of the liquid at the edge of the con-
tainer equals the height of the container, and thus z, (k) = 0.6 m. Solving the
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last equation for w and substituting, the maximum rotational speed of the
container is determined to be

B \/4g[zs(R) —hgl \/4(9.81 m/s?)[(0.6 — 0.5) m]
@ R 0.1 m)?

Noting that one complete revolution corresponds to 27 rad, the rotational
speed of the container can also be expressed in terms of revolutions per

minute (rpm) as
® 19.8 rad/s [ 60 s
T 2w rad/rev<1 min) = 189 rpm

= 19.8 rad/s

Therefore, the rotational speed of this container should be limited to 189
rpm to avoid any spill of liquid as a result of the centrifugal effect.

Discussion Note that the analysis is valid for any liquid since the result is
independent of density or any other fluid property. We should also verify that

our assumption of no dry spots is valid. The liquid height at the center is

»’R?
z,0) =hy — ——

=04
4 0.4m

Since z(0) is positive, our assumption is validated.

SUMMARY

The normal force exerted by a fluid per unit area is called
pressure, and its unit is the pascal, 1 Pa = 1 N/m2. The pres-
sure relative to absolute vacuum is called the absolute pres-
sure, and the difference between the absolute pressure and
the local atmospheric pressure is called the gage pressure.
Pressures below atmospheric pressure are called vacuum
pressures. The absolute, gage, and vacuum pressures are
related by

Pgage = Pas = Pam
Piac = Pam — Pas

The pressure at a point in a fluid has the same magnitude in
all directions. The variation of pressure with elevation in a
fluid at rest is given by

aP
where the positive z-direction is taken to be upward. When
the density of the fluid is constant, the pressure difference
across a fluid layer of thickness Az is

The absolute and gage pressures in a static liquid open to the
atmosphere at a depth h from the free surface are

P =P,m + pgh and Pgage = pgh

The pressure in a fluid at rest remains constant in the hori-
zontal direction. Pascal’s law states that the pressure applied
to a confined fluid increases the pressure throughout by the
same amount. The atmospheric pressure is measured by a
barometer and is given by

Pam = pgh
where h is the height of the liquid column.

Fluid statics deals with problems associated with fluids at
rest, and it is called hydrostatics when the fluid is a liquid.
The magnitude of the resultant force acting on a plane sur-
face of a completely submerged plate in a homogeneous fluid
is equal to the product of the pressure P at the centroid of
the surface and the area A of the surface and is expressed as

Fr = (Po + pghc)A = PcA = P, A

where he =y, sin 6 is the vertical distance of the centroid
from the free surface of the liquid. The pressure Py is usually
the atmospheric pressure, which cancels out in most cases
since it acts on both sides of the plate. The point of intersec-
tion of the line of action of the resultant force and the surface
is the center of pressure. The vertical location of the line of
action of the resultant force is given by

Ixx, C
+
Ve Iy + Py /(pg sin )]A

Yp =



where 1, ¢ is the second moment of area about the x-axis
passing through the centroid of the area.

A fluid exerts an upward force on a body immersed in it.
This force is called the buoyant force and is expressed as

Fg = p;gV

where V is the volume of the body. This is known as
Archimedes’ principle and is expressed as: the buoyant force
acting on a body immersed in a fluid is equal to the weight of
the fluid displaced by the body; it acts upward through the
centroid of the displaced volume. With constant density, the
buoyant force is independent of the distance of the body from
the free surface. For floating bodies, the submerged volume
fraction of the body is equal to the ratio of the average den-
sity of the body to the density of the fluid.

The general equation of motion for a fluid that acts as a
rigid body is

= - N
VP + pgk = —pa

When gravity is aligned in the —z-direction, it is expressed in

scalar form as

P

Pl 2

oP
— — = —p(g +
o ay and p(g +a,)

= —pa,,
Py 0z

where a,, a, and a, are accelerations in the x-, y-, and z-
directions, respectively. During linearly accelerating motion
in the xz-plane, the pressure distribution is expressed as

P =Po— pax —p(g + a,z

CHAPTER 3

The surfaces of constant pressure (including the free surface)
in a liquid with constant acceleration in linear motion are
parallel surfaces whose slope in a xz-plane is

Zisobar ay

d
SR =T T Ty a,

= —tan6

During rigid-body motion of a liquid in a rotating cylinder,
the surfaces of constant pressure are paraboloids of revolu-
tion. The equation for the free surface is

2
2,=h, — Z)—g(Rz — 2r?)

where z, is the distance of the free surface from the bottom of
the container at radius r and h, is the original height of the
fluid in the container with no rotation. The variation of pres-
sure in the liquid is expressed as
2
w
P=P0+p7r2—pgz

where P, is the pressure at the origin (r = 0, z = 0).

Pressure is a fundamental property, and it is hard to imag-
ine a significant fluid flow problem that does not involve
pressure. Therefore, you will see this property in all chapters
in the rest of this book. The consideration of hydrostatic
forces acting on plane or curved surfaces, however, is mostly
limited to this chapter.
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PROBLEMS*

Pressure, Manometer, and Barometer

3-1C What is the difference between gage pressure and
absolute pressure?

3-2C Explain why some people experience nose bleeding
and some others experience shortness of breath at high ele-
vations.

3-3C Someone claims that the absolute pressure in a liquid
of constant density doubles when the depth is doubled. Do
you agree? Explain.

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the S| users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the & icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.
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3-4C A tiny steel cube is suspended in water by a string. If
the lengths of the sides of the cube are very small, how
would you compare the magnitudes of the pressures on the
top, bottom, and side surfaces of the cube?

3-5C Express Pascal’s law, and give a real-world example
of it.

3-6C Consider two identical fans, one at sea level and the
other on top of a high mountain, running at identical speeds.
How would you compare (a) the volume flow rates and (b)
the mass flow rates of these two fans?

3-7 A vacuum gage connected to a chamber reads 24 kPa
at a location where the atmospheric pressure is 92 kPa.
Determine the absolute pressure in the chamber.

3-8E A manometer is used to measure the air pressure in a
tank. The fluid used has a specific gravity of 1.25, and the
differential height between the two arms of the manometer is
28 in. If the local atmospheric pressure is 12.7 psia, deter-
mine the absolute pressure in the tank for the cases of the
manometer arm with the (a) higher and (b) lower fluid level
being attached to the tank.

3-9 The water in a tank is pressurized by air, and the pres-
sure is measured by a multifluid manometer as shown in Fig.
P3-9. Determine the gage pressure of air in the tank if h,
= 0.2m, h, = 0.3 m, and h; = 0.46 m. Take the densities of
water, oil, and mercury to be 1000 kg/m?, 850 kg/m?, and
13,600 kg/md, respectively.

L -
WATER Jl
i B 2
(I
2
|
—
Mercury
FIGURE P3-9

3-10 Determine the atmospheric pressure at a location
where the barometric reading is 750 mmHg. Take the density
of mercury to be 13,600 kg/m?.

3-11 The gage pressure in a liquid at a depth of 3 m is read
to be 28 kPa. Determine the gage pressure in the same liquid
at a depth of 12 m.

3-12 The absolute pressure in water at a depth of 5 m is
read to be 145 kPa. Determine (a) the local atmospheric pres-
sure, and (b) the absolute pressure at a depth of 5 m in a lig-
uid whose specific gravity is 0.85 at the same location.

3-13E Show that 1 kgf/cm? = 14.223 psi.

3-14E A 200-Ib man has a total foot imprint area of 72 in%
Determine the pressure this man exerts on the ground if (a)
he stands on both feet and (b) he stands on one foot.

3-15 Consider a 70-kg woman who has a total foot imprint
area of 400 cm?. She wishes to walk on the snow, but the
snow cannot withstand pressures greater than 0.5 kPa. Deter-
mine the minimum size of the snowshoes needed (imprint
area per shoe) to enable her to walk on the snow without
sinking.

3-16 A vacuum gage connected to a tank reads 30 kPa at a
location where the barometric reading is 755 mmHg. Determine
the absolute pressure in the tank. Take py, = 13,590 kg/md.
Answer: 70.6 kPa

3-17E A pressure gage connected to a tank reads 50 psi at a
location where the barometric reading is 29.1 inHg. Determine
the absolute pressure in the tank. Take p,, = 848.4 Ibm/fte,
Answer: 64.29 psia

3-18 A pressure gage connected to a tank reads 500 kPa at
a location where the atmospheric pressure is 94 kPa. Deter-
mine the absolute pressure in the tank.

3-19 The barometer of a mountain hiker reads 930 mbars
at the beginning of a hiking trip and 780 mbars at the end.
Neglecting the effect of altitude on local gravitational accel-
eration, determine the vertical distance climbed. Assume an
average air density of 1.20 kg/m®.  Answer: 1274 m

3-20 The basic barometer can be used to measure the
height of a building. If the barometric readings at the top and
at the bottom of a building are 730 and 755 mmHg, respec-
tively, determine the height of the building. Assume an aver-
age air density of 1.18 kg/m?.

—
2 Piop = 730 mmHg
%
e
—
—_—
== h=2
—
[——]
P ot = 755 mmHg
FIGURE P3-20

3-21 Solve Prob. 3-20 using EES (or other) software.

Print out the entire solution, including the



numerical results with proper units, and take the density of
mercury to be 13,600 kg/mq.

3-22 Determine the pressure exerted on a diver at 30 m
below the free surface of the sea. Assume a barometric pres-
sure of 101 kPa and a specific gravity of 1.03 for seawater.
Answer: 404.0 kPa

3-23E Determine the pressure exerted on the surface of a
submarine cruising 300 ft below the free surface of the sea.
Assume that the barometric pressure is 14.7 psia and the spe-
cific gravity of seawater is 1.03.

3-24 A gas is contained in a vertical, frictionless piston—
cylinder device. The piston has a mass of 4 kg and a cross-
sectional area of 35 cm?. A compressed spring above the pis-
ton exerts a force of 60 N on the piston. If the atmospheric
pressure is 95 kPa, determine the pressure inside the cylinder.
Answer: 123.4 kPa

Pym = 95 kPa
mp =4 Kkg

FIGURE P3-24
3-25 Reconsider Prob. 3-24. Using EES (or other)
software, investigate the effect of the spring
force in the range of 0 to 500 N on the pressure inside the
cylinder. Plot the pressure against the spring force, and dis-
cuss the results.

3-26 Both a gage and a manometer are attached to a
gas tank to measure its pressure. If the reading on

P, =80 kPa

FIGURE P3-26
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the pressure gage is 80 kPa, determine the distance between
the two fluid levels of the manometer if the fluid is (a) mer-
cury (p = 13,600 kg/m?®) or (b) water (p = 1000 kg/m?3).

3-27 Reconsider Prob. 3-26. Using EES (or other)

software, investigate the effect of the manometer
fluid density in the range of 800 to 13,000 kg/m?® on the dif-
ferential fluid height of the manometer. Plot the differential
fluid height against the density, and discuss the results.

3-28 A manometer containing oil (p = 850 kg/m?®) is
attached to a tank filled with air. If the oil-level difference
between the two columns is 45 cm and the atmospheric pres-
sure is 98 kPa, determine the absolute pressure of the air in
the tank.  Answer: 101.75 kPa

3-29 A mercury manometer (p = 13,600 kg/m®) is con-
nected to an air duct to measure the pressure inside. The dif-
ference in the manometer levels is 15 mm, and the atmos-
pheric pressure is 100 kPa. (a) Judging from Fig. P3-29,
determine if the pressure in the duct is above or below the
atmospheric pressure. (b) Determine the absolute pressure in
the duct.

AIR -

h=15mm

FIGURE P3-29

3-30 Repeat Prob. 3-29 for a differential mercury height of
30 mm.

3-31 Blood pressure is usually measured by wrapping a
closed air-filled jacket equipped with a pressure gage around
the upper arm of a person at the level of the heart. Using a
mercury manometer and a stethoscope, the systolic pressure
(the maximum pressure when the heart is pumping) and the
diastolic pressure (the minimum pressure when the heart is
resting) are measured in mmHg. The systolic and diastolic
pressures of a healthy person are about 120 mmHg and 80
mmHg, respectively, and are indicated as 120/80. Express
both of these gage pressures in kPa, psi, and meter water
column.

3-32  The maximum blood pressure in the upper arm of a
healthy person is about 120 mmHg. If a vertical tube open to
the atmosphere is connected to the vein in the arm of the per-
son, determine how high the blood will rise in the tube. Take
the density of the blood to be 1050 kg/m?.
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FIGURE P3-32

3-33 Consider a 1.8-m-tall man standing vertically in water
and completely submerged in a pool. Determine the differ-
ence between the pressures acting at the head and at the toes
of this man, in kPa.

3-34 Consider a U-tube whose arms are open to the atmo-
sphere. Now water is poured into the U-tube from one arm,
and light oil (p = 790 kg/m®) from the other. One arm con-
tains 70-cm-high water, while the other arm contains both
fluids with an oil-to-water height ratio of 6. Determine the
height of each fluid in that arm.

Qil
70 cm
Water

FIGURE P3-34

3-35 The hydraulic lift in a car repair shop has an output
diameter of 30 cm and is to lift cars up to 2000 kg. Deter-
mine the fluid gage pressure that must be maintained in the
reservoir.

3-36 Freshwater and seawater flowing in parallel horizontal
pipelines are connected to each other by a double U-tube

L— Air
Fresh- 40 cm
water
70cm L Sea-
water
L — Mercury

FIGURE P3-36

manometer, as shown in Fig. P3-36. Determine the pressure
difference between the two pipelines. Take the density of sea-
water at that location to be p = 1035 kg/mq. Can the air col-
umn be ignored in the analysis?

3-37 Repeat Prob. 3-36 by replacing the air with oil whose
specific gravity is 0.72.

3-38E The pressure in a natural gas pipeline is measured by
the manometer shown in Fig. P3-38E with one of the arms
open to the atmosphere where the local atmospheric pressure
is 14.2 psia. Determine the absolute pressure in the pipeline.

*
Air 2in

25in

SG=13.
6 Water

FIGURE P3-38E

3-39E Repeat Prob. 3-38E by replacing air by oil with a
specific gravity of 0.69.

3-40 The gage pressure of the air in the tank shown in Fig.
P3-40 is measured to be 65 kPa. Determine the differential
height h of the mercury column.

L —Oil

65 kPa SG=0.72

L — Mercury
SG=13.6

FIGURE P3-40
3-41 Repeat Prob. 3-40 for a gage pressure of 45 kPa.

3-42 The top part of a water tank is divided into two com-
partments, as shown in Fig. P3-42. Now a fluid with an
unknown density is poured into one side, and the water level
rises a certain amount on the other side to compensate for
this effect. Based on the final fluid heights shown on the fig-
ure, determine the density of the fluid added. Assume the lig-
uid does not mix with water.



5T
Unknown - —
liquid
80 cm
i S
95 cm
WATER
50 cm
FIGURE P3-42

3-43 The 500-kg load on the hydraulic lift shown in Fig.
P3-43 is to be raised by pouring oil (p = 780 kg/m?) into a
thin tube. Determine how high h should be in order to begin
to raise the weight.

h
LOAD
500 kg
1.2m lem— [«—
FIGURE P3-43

3-44E Two oil tanks are connected to each other through a
manometer. If the difference between the mercury levels in

Oil Oil
Py P,
—
10in
32in
Mercury

FIGURE P3-44E
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the two arms is 32 in, determine the pressure difference
between the two tanks. The densities of oil and mercury are
45 lbm/ft® and 848 Ibm/ft3, respectively.

3-45 Pressure is often given in terms of a liquid column
and is expressed as “pressure head.” Express the standard
atmospheric pressure in terms of (a) mercury (SG = 13.6),
(b) water (SG = 1.0), and (c) glycerin (SG = 1.26) columns.
Explain why we usually use mercury in manometers.

3-46 A simple experiment has long been used to demon-
strate how negative pressure prevents water from being
spilled out of an inverted glass. A glass that is fully filled by
water and covered with a thin paper is inverted, as shown in
Fig. P3-46. Determine the pressure at the bottom of the
glass, and explain why water does not fall out.

T Glass
10cm
Water
A piece
of paper
FIGURE P3-46

3-47 Two chambers with the same fluid at their base are
separated by a piston whose weight is 25 N, as shown in Fig.
P3-47. Calculate the gage pressures in chambers A and B.

Piston
A B
Air Air o |
50 cm
c | - "f
30cm 25 cm
E L T { A
Water
- 90 cm =
FIGURE P3—47
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3-48 Consider a double-fluid manometer attached to an air
pipe shown in Fig. P3-48. If the specific gravity of one fluid
is 13.55, determine the specific gravity of the other fluid for
the indicated absolute pressure of air. Take the atmospheric
Answer: 5.0

pressure to be 100 kPa.

SG,

SG, = 1355

FIGURE P3-48

3-49 The pressure difference between an oil pipe and water
pipe is measured by a double-fluid manometer, as shown in
Fig. P3-49. For the given fluid heights and specific gravities,
calculate the pressure difference AP = Py — P,.

A
Glycerin
Water SG=1.26
SG=1.0
60 cm
15cm
20 cm
Mercury —_—
SG=135
FIGURE P3-49

3-50 Consider the system shown in Fig. P3-50. If a change
of 0.7 kPa in the pressure of air causes the brine-mercury
interface in the right column to drop by 5 mm in the brine
level in the right column while the pressure in the brine pipe
remains constant, determine the ratio of A,/A;.

Air

Water

Area, A;

Area, A,

FIGURE P3-50

3-51 Two water tanks are connected to each other through
a mercury manometer with inclined tubes, as shown in Fig.
P3-51. If the pressure difference between the two tanks is
20 kPa, calculate a and 6.

Mercury
SG=13.6

FIGURE P3-51

3-52 A multifluid container is connected to a U-tube, as
shown in Fig. P3-52. For the given specific gravities and
fluid column heights, determine the gage pressure at A. Also
determine the height of a mercury column that would create
the same pressure at A.  Answers: 0.471 kPa, 0.353 cm



70 cm

30 cm
90 cm

Glycerin
SG =1.26

FIGURE P3-52

Fluid Statics: Hydrostatic Forces on Plane
and Curved Surfaces

3-53C Define the resultant hydrostatic force acting on a
submerged surface, and the center of pressure.

3-54C  Someone claims that she can determine the magni-
tude of the hydrostatic force acting on a plane surface sub-
merged in water regardless of its shape and orientation if she
knew the vertical distance of the centroid of the surface from
the free surface and the area of the surface. Is this a valid
claim? Explain.

3-55C A submerged horizontal flat plate is suspended in
water by a string attached at the centroid of its upper surface.
Now the plate is rotated 45° about an axis that passes through
its centroid. Discuss the change on the hydrostatic force act-
ing on the top surface of this plate as a result of this rotation.
Assume the plate remains submerged at all times.

3-56C You may have noticed that dams are much thicker at
the bottom. Explain why dams are built that way.

3-57C Consider a submerged curved surface. Explain how
you would determine the horizontal component of the hydro-
static force acting on this surface.

3-58C Consider a submerged curved surface. Explain how
you would determine the vertical component of the hydrosta-
tic force acting on this surface.

3-59C Consider a circular surface subjected to hydrostatic
forces by a constant density liquid. If the magnitudes of the
horizontal and vertical components of the resultant hydrosta-
tic force are determined, explain how you would find the line
of action of this force.

3-60 Consider a heavy car submerged in water in a lake
with a flat bottom. The driver’s side door of the car is 1.1 m
high and 0.9 m wide, and the top edge of the door is 8 m
below the water surface. Determine the net force acting on
the door (normal to its surface) and the location of the pres-
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sure center if (a) the car is well-sealed and it contains air at
atmospheric pressure and (b) the car is filled with water.

3-61E A long, solid cylinder of radius 2 ft hinged at point
A is used as an automatic gate, as shown in Fig. P3-61E.
When the water level reaches 15 ft, the cylindrical gate opens
by turning about the hinge at point A. Determine (a) the
hydrostatic force acting on the cylinder and its line of action
when the gate opens and (b) the weight of the cylinder per ft
length of the cylinder.

<

15 ft

2 ft

FIGURE P3-61E

3-62 Consider a 4-m-long, 4-m-wide, and 1.5-m-high
aboveground swimming pool that is filled with water to the
rim. (a) Determine the hydrostatic force on each wall and the
distance of the line of action of this force from the ground.
(b) If the height of the walls of the pool is doubled and the
pool is filled, will the hydrostatic force on each wall double
or quadruple? Why?  Answer: (a) 44.1 kN

3-63E Consider a 200-ft-high, 1200-ft-wide dam filled to
capacity. Determine (a) the hydrostatic force on the dam and
(b) the force per unit area of the dam near the top and near
the bottom.

3-64 A room in the lower level of a cruise ship has a
30-cm-diameter circular window. If the midpoint of the win-
dow is 5 m below the water surface, determine the hydro-
static force acting on the window, and the pressure center.
Take the specific gravity of seawater to be 1.025. Answers:
3554 N, 5.001 m

J 4 J J J I J J J I
T V2
= Sea
- 30 c{n4
i

FIGURE P3-64
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3-65 The water side of the wall of a 100-m-long dam is a
quarter circle with a radius of 10 m. Determine the hydro-
static force on the dam and its line of action when the dam is
filled to the rim.

3-66 A 4-m-high, 5-m-wide rectangular plate blocks the
end of a 4-m-deep freshwater channel, as shown in Fig.
P3-66. The plate is hinged about a horizontal axis along its
upper edge through a point A and is restrained from opening
by a fixed ridge at point B. Determine the force exerted on
the plate by the ridge.

i
77 @
im
v R
4m
B
FIGURE P3-66

3-67 Reconsider Prob. 3-66. Using EES (or other)
software, investigate the effect of water depth on
the force exerted on the plate by the ridge. Let the water
depth vary from 0 m to 5 m in increments of 0.5 m. Tabulate

and plot your results.

3-68E The flow of water from a reservoir is controlled by a
5-ft-wide L-shaped gate hinged at point A, as shown in Fig.
P3-68E. If it is desired that the gate open when the water
height is 12 ft, determine the mass of the required weight W.
Answer: 30,900 Ibm

5 ft—

B
A -

T —Gae g5

12 ft

_

FIGURE P3-68E

N

3-69E Repeat Prob. 3-68E for a water height of 8 ft.

3-70 A water trough of semicircular cross section of radius
0.5 m consists of two symmetric parts hinged to each other at
the bottom, as shown in Fig. P3-70. The two parts are held

together by a cable and turnbuckle placed every 3 m along
the length of the trough. Calculate the tension in each cable
when the trough is filled to the rim.

‘ 1m |
‘ . Cable

Hinge
FIGURE P3-70

3-71 The two sides of a V-shaped water trough are hinged
to each other at the bottom where they meet, as shown in Fig.
P3-71, making an angle of 45° with the ground from both
sides. Each side is 0.75 m wide, and the two parts are held
together by a cable and turnbuckle placed every 6 m along
the length of the trough. Calculate the tension in each cable
when the trough is filled to the rim.  Answer: 5510 N

Cable

0.75m
45° A 45°
\/ \Hinge
FIGURE P3-71

3-72 Repeat Prob. 3-71 for the case of a partially filled
trough with a water height of 0.4 m directly above the hinge.

3-73 A retaining wall against a mud slide is to be con-
structed by placing 0.8-m-high and 0.2-m-wide rectangular
concrete blocks (p = 2700 kg/m3) side by side, as shown in
Fig. P3-73. The friction coefficient between the ground and
the concrete blocks is f = 0.3, and the density of the mud is
about 1800 kg/m®. There is concern that the concrete blocks
may slide or tip over the lower left edge as the mud level
rises. Determine the mud height at which (a) the blocks will

0.2m
—
0.8m Mud T
P T
FIGURE P3-73



overcome friction and start sliding and (b) the blocks will tip
over.

3-74 Repeat Prob. 3-73 for 0.4-m-wide concrete blocks.

3-75 Q@@j& A 4-m-long quarter-circular gate of radius 3 m

and of negligible weight is hinged about its
upper edge A, as shown in Fig. P3-75. The gate controls the
flow of water over the ledge at B, where the gate is pressed
by a spring. Determine the minimum spring force required to
keep the gate closed when the water level rises to A at the
upper edge of the gate.

FIGURE P3-75

3-76 Repeat Prob. 3-75 for a radius of 4 m for the gate.
Answer: 314 kN

Buoyancy

3-77C What is buoyant force? What causes it? What is the
magnitude of the buoyant force acting on a submerged body
whose volume is ? What are the direction and the line of
action of the buoyant force?

3-78C Consider two identical spherical balls submerged in
water at different depths. Will the buoyant forces acting on
these two balls be the same or different? Explain.

3-79C Consider two 5-cm-diameter spherical balls—one
made of aluminum, the other of iron—submerged in water.
Will the buoyant forces acting on these two balls be the same
or different? Explain.

3-80C Consider a 3-kg copper cube and a 3-kg copper ball
submerged in a liquid. Will the buoyant forces acting on
these two bodies be the same or different? Explain.

3-81C Discuss the stability of (a) a submerged and (b) a
floating body whose center of gravity is above the center of
buoyancy.

3-82 The density of a liquid is to be determined by an old
1-cm-diameter cylindrical hydrometer whose division marks
are completely wiped out. The hydrometer is first dropped in
water, and the water level is marked. The hydrometer is then
dropped into the other liquid, and it is observed that the mark
for water has risen 0.5 cm above the liquid—air interface. If
the height of the water mark is 10 cm, determine the density
of the liquid.

CHAPTER 3

—

Mark for
water

./
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liquid 10cm

N
FIGURE P3-82

3-83E A crane is used to lower weights into a lake for an
underwater construction project. Determine the tension in the
rope of the crane due to a 3-ft-diameter spherical steel block
(density = 494 Ibm/ft®) when it is (a) suspended in the air
and (b) completely immersed in water.

3-84 The volume and the average density of an irregularly
shaped body are to be determined by using a spring scale.
The body weighs 7200 N in air and 4790 N in water. Deter-
mine the volume and the density of the body. State your
assumptions.

3-85 Consider a large cubic ice block floating in seawater.
The specific gravities of ice and seawater are 0.92 and 1.025,
respectively. If a 10-cm-high portion of the ice block extends
above the surface of the water, determine the height of the ice
block below the surface. Answer: 87.6 cm

::10 cm
Sea Cubic
ice block h
FIGURE P3-85

3-86 A 170-kg granite rock (p = 2700 kg/m?) is dropped
into a lake. A man dives in and tries to lift the rock. Deter-
mine how much force the man needs to apply to lift it from
the bottom of the lake. Do you think he can do it?

3-87 It is said that Archimedes discovered his principle
during a bath while thinking about how he could determine if
King Hiero’s crown was actually made of pure gold. While in
the bathtub, he conceived the idea that he could determine
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the average density of an irregularly shaped object by weigh-
ing it in air and also in water. If the crown weighed 3.20 kgf
(= 31.4 N) in air and 2.95 kgf (= 28.9 N) in water, deter-
mine if the crown is made of pure gold. The density of gold
is 19,300 kg/mé. Discuss how you can solve this problem
without weighing the crown in water but by using an ordi-
nary bucket with no calibration for volume. You may weigh
anything in air.

3-88 One of the common procedures in fitness programs is
to determine the fat-to-muscle ratio of the body. This is based
on the principle that the muscle tissue is denser than the fat
tissue, and, thus, the higher the average density of the bodly,
the higher is the fraction of muscle tissue. The average density
of the body can be determined by weighing the person in air
and also while submerged in water in a tank. Treating all tis-
sues and bones (other than fat) as muscle with an equivalent
density of pu.e Obtain a relation for the volume fraction of
bOdy fat Xfat' Answer: Xeat = (.nmuscle - pave)/(.nmusc\e - pfat)'

Submerged
person

Spring
scale

FIGURE P3-88E

3-89 The hull of a boat has a volume of 150 m3, and the
total mass of the boat when empty is 8560 kg. Determine
how much load this boat can carry without sinking (a) in a
lake and (b) in seawater with a specific gravity of 1.03.

Fluids in Rigid-Body Motion

3-90C Under what conditions can a moving body of fluid
be treated as a rigid body?

3-91C Consider a glass of water. Compare the water pres-
sures at the bottom surface for the following cases: the glass
is (a) stationary, (b) moving up at constant velocity, (c) mov-
ing down at constant velocity, and (d) moving horizontally at
constant velocity.

3-92C Consider two identical glasses of water, one station-
ary and the other moving on a horizontal plane with constant
acceleration. Assuming no splashing or spilling occurs, which
glass will have a higher pressure at the (a) front, (b) mid-
point, and (c) back of the bottom surface?

3-93C Consider a vertical cylindrical container partially
filled with water. Now the cylinder is rotated about its axis at
a specified angular velocity, and rigid-body motion is estab-
lished. Discuss how the pressure will be affected at the mid-
point and at the edges of the bottom surface due to rotation.

3-94 A water tank is being towed by a truck on a level
road, and the angle the free surface makes with the horizontal
is measured to be 15°. Determine the acceleration of the
truck.

3-95 Consider two water tanks filled with water. The first
tank is 8 m high and is stationary, while the second tank is 2
m high and is moving upward with an acceleration of 5 m/s2.
Which tank will have a higher pressure at the bottom?

3-96 A water tank is being towed on an uphill road that
makes 20° with the horizontal with a constant acceleration of
5 m/s? in the direction of motion. Determine the angle the
free surface of water makes with the horizontal. What would
your answer be if the direction of motion were downward on
the same road with the same acceleration?

3-97E A 2-ft-diameter vertical cylindrical tank open to the
atmosphere contains 1-ft-high water. The tank is now rotated
about the centerline, and the water level drops at the center
while it rises at the edges. Determine the angular velocity at
which the bottom of the tank will first be exposed. Also
determine the maximum water height at this moment.

21t

FIGURE P3-97E

3-98 A 60-cm-high, 40-cm-diameter cylindrical water tank
is being transported on a level road. The highest acceleration
anticipated is 4 m/s?. Determine the allowable initial water
height in the tank if no water is to spill out during accelera-
tion. Answer: 51.8 cm

3-99 A 40-cm-diameter, 90-cm-high vertical cylindrical
container is partially filled with 60-cm-high water. Now the
cylinder is rotated at a constant angular speed of 120 rpm.
Determine how much the liquid level at the center of the
cylinder will drop as a result of this rotational motion.

3-100 A fish tank that contains 40-cm-high water is moved
in the cabin of an elevator. Determine the pressure at the bot-



tom of the tank when the elevator is (a) stationary, (b) mov-
ing up with an upward acceleration of 3 m/s?, and (c) moving
down with a downward acceleration of 3 m/s2,

3-101 A 3-m-diameter vertical cylindrical milk tank rotates
at a constant rate of 12 rpm. If the pressure at the center of
the bottom surface is 130 kPa, determine the pressure at the
edge of the bottom surface of the tank. Take the density of
the milk to be 1030 kg/m.

3-102 Milk with a density of 1020 kg/m?® is transported on
a level road in a 7-m-long, 3-m-diameter cylindrical tanker.
The tanker is completely filled with milk (no air space), and
it accelerates at 2.5 m/s?. If the minimum pressure in the
tanker is 100 kPa, determine the maximum pressure and its
location.  Answer: 47.9 kPa

FIGURE P3-102

3-103 Repeat Proh. 3-102 for a deceleration of 2.5 m/s?.

3-104 The distance between the centers of the two arms of
a U-tube open to the atmosphere is 25 c¢cm, and the U-tube
contains 20-cm-high alcohol in both arms. Now the U-tube is
rotated about the left arm at 4.2 rad/s. Determine the eleva-
tion difference between the fluid surfaces in the two arms.

QP

20 cm

25cm

FIGURE P3-104

3-105 A 1.2-m-diameter, 3-m-high sealed vertical cylinder
is completely filled with gasoline whose density is 740 kg/m?.
The tank is now rotated about its vertical axis at a rate of
70 rpm. Determine (a) the difference between the pressures
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at the centers of the bottom and top surfaces and (b) the dif-
ference between the pressures at the center and the edge of
the bottom surface.

C

1.20 m 3m

i

FIGURE P3-105
3-106 Reconsider Prob. 3-105. Using EES (or other)
software, investigate the effect of rotational
speed on the pressure difference between the center and the
edge of the bottom surface of the cylinder. Let the rotational
speed vary from 0 rpm to 500 rpm in increments of 50 rpm.
Tabulate and plot your results.

3-107E A 20-ft-long, 8-ft-high rectangular tank open to the
atmosphere is towed by a truck on a level road. The tank is
filled with water to a depth of 6 ft. Determine the maximum
acceleration or deceleration allowed if no water is to spill
during towing.

3-108E An 8-ft-long tank open to the atmosphere initially
contains 3-ft-high water. It is being towed by a truck on a
level road. The truck driver applies the brakes and the water
level at the front rises 0.5 ft above the initial level. Determine
the deceleration of the truck. Answer: 4.08 ft/s?

Water

3ft

8 ft

FIGURE P3-108E
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3-109 A 3-m-diameter, 7-m-long cylindrical tank is com-
pletely filled with water. The tank is pulled by a truck on a
level road with the 7-m-long axis being horizontal. Deter-
mine the pressure difference between the front and back ends
of the tank along a horizontal line when the truck (a) acceler-
ates at 3 m/s? and (b) decelerates at 4 m/s?.

Review Problems

3-110 An air-conditioning system requires a 20-m-long
section of 15-cm-diameter ductwork to be laid underwater.
Determine the upward force the water will exert on the duct.
Take the densities of air and water to be 1.3 kg/m® and 1000
kg/m?, respectively.

3-111 Balloons are often filled with helium gas because it
weighs only about one-seventh of what air weighs under
identical conditions. The buoyancy force, which can be
expressed as Fy = p.i:9Voanoons Will push the balloon upward.
If the balloon has a diameter of 10 m and carries two people,
70 kg each, determine the acceleration of the balloon when it
is first released. Assume the density of air is p = 1.16 kg/m?,
and neglect the weight of the ropes and the cage. Answer:
16.5 m/s?

HELIUM
D=10m
PHe :%pair

m = 140 kg

FIGURE P3-111

3-112 Reconsider Prob. 3-111. Using EES (or other)
software, investigate the effect of the number
of people carried in the balloon on acceleration. Plot the
acceleration against the number of people, and discuss the

results.

3-113 Determine the maximum amount of load, in kg, the
balloon described in Prob. 3-111 can carry. Answer:
520.6 kg

3-114E The pressure in a steam boiler is given to be 75
kgflcm?. Express this pressure in psi, kPa, atm, and bars.

3-115 The basic barometer can be used as an altitude-
measuring device in airplanes. The ground control reports a
barometric reading of 753 mmHg while the pilot’s reading is
690 mmHg. Estimate the altitude of the plane from ground
level if the average air density is 1.20 kg/m®.  Answer: 714 m

3-116 The lower half of a 10-m-high cylindrical container
is filled with water (p = 1000 kg/m?®) and the upper half with
oil that has a specific gravity of 0.85. Determine the pressure
difference between the top and bottom of the cylinder.
Answer: 90.7 kPa

E = h=10m
WATER

FIGURE P3-116

3-117 A vertical, frictionless piston—cylinder device con-
tains a gas at 500 kPa. The atmospheric pressure outside is
100 kPa, and the piston area is 30 cm?. Determine the mass
of the piston.

3-118 A pressure cooker cooks a lot faster than an ordinary
pan by maintaining a higher pressure and temperature inside.
The lid of a pressure cooker is well sealed, and steam can
escape only through an opening in the middle of the lid. A
separate metal piece, the petcock, sits on top of this opening

Pyim = 101 kPa

Petcock

A=4mm?
/

PRESSURE
COOKER

FIGURE P3-118



and prevents steam from escaping until the pressure force
overcomes the weight of the petcock. The periodic escape of
the steam in this manner prevents any potentially dangerous
pressure buildup and keeps the pressure inside at a constant
value. Determine the mass of the petcock of a pressure
cooker whose operation pressure is 100 kPa gage and has an
opening cross-sectional area of 4 mm?2. Assume an atmos-
pheric pressure of 101 kPa, and draw the free-body diagram
of the petcock. Answer: 40.8 g

3-119 A glass tube is attached to a water pipe, as shown in
Fig. P3-119. If the water pressure at the bottom of the tube is
115 kPa and the local atmospheric pressure is 92 kPa, deter-
mine how high the water will rise in the tube, in m. Assume
g = 9.8 m/s? at that location and take the density of water to
be 1000 kg/m?®,

Pyim = 92 kPa

Water

FIGURE P3-119

3-120 The average atmospheric pressure on earth is
approximated as a function of altitude by the relation P,
= 101.325 (1 — 0.022562)>2%, where P, is the atmospheric
pressure in kPa and z is the altitude in km with z = 0 at sea
level. Determine the approximate atmospheric pressures at
Atlanta (z = 306 m), Denver (z = 1610 m), Mexico City (z
= 2309 m), and the top of Mount Everest (z = 8848 m).

3-121 When measuring small pressure differences with a
manometer, often one arm of the manometer is inclined to
improve the accuracy of reading. (The pressure difference is
still proportional to the vertical distance and not the actual
length of the fluid along the tube.) The air pressure in a cir-

FIGURE P3-121
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cular duct is to be measured using a manometer whose open
arm is inclined 35° from the horizontal, as shown in Fig.
P3-121. The density of the liquid in the manometer is 0.81
kg/L, and the vertical distance between the fluid levels in the
two arms of the manometer is 8 cm. Determine the gage
pressure of air in the duct and the length of the fluid column
in the inclined arm above the fluid level in the vertical arm.

3-122E Consider a U-tube whose arms are open to the
atmosphere. Now equal volumes of water and light oil (p
= 49.3 lom/ft%) are poured from different arms. A person
blows from the oil side of the U-tube until the contact surface
of the two fluids moves to the bottom of the U-tube, and thus

FIGURE P3-122E

the liquid levels in the two arms are the same. If the fluid
height in each arm is 30 in, determine the gage pressure the
person exerts on the oil by blowing.

3-123 Intravenous infusions are usually driven by gravity
by hanging the fluid bottle at sufficient height to counteract
the blood pressure in the vein and to force the fluid into the
body. The higher the bottle is raised, the higher the flow rate
of the fluid will be. (a) If it is observed that the fluid and the
blood pressures balance each other when the bottle is 1.2 m
above the arm level, determine the gage pressure of the
blood. (b) If the gage pressure of the fluid at the arm level
needs to be 20 kPa for sufficient flow rate, determine how
high the bottle must be placed. Take the density of the fluid
to be 1020 kg/m®.

Patm

FIGURE P3-123
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3-124 A gasoline line is connected to a pressure gage
through a double-U manometer, as shown in Fig. P3-124. If
the reading of the pressure gage is 370 kPa, determine the
gage pressure of the gasoline line.

Oil SG=10.79

Gasoline SG=0.70

Air

Water

FIGURE P3-124

3-125 Repeat Prob. 3-124 for a pressure gage reading of
240 kPa.

3-126E A water pipe is connected to a double-U manome-
ter as shown in Fig. P3-1026E at a location where the local
atmospheric pressure is 14.2 psia. Determine the absolute
pressure at the center of the pipe.

0il SG=0.80
/Oil SG=0.80
74 N
35in T
Water 60 in 401n
pipe | | i
I 15in
QMercury
SG=13.6

FIGURE P3-126E

3-127 The pressure of water flowing through a pipe is mea-
sured by the arrangement shown in Fig. P3-127. For the val-
ues given, calculate the pressure in the pipe.

P, = 30 kPa

Gage fluid
SG=24

FIGURE P3-127

3-128 Consider a U-tube filled with mercury except the
18-cm-high portion at the top, as shown in Fig. P3-128. The
diameter of the right arm of the U-tube is D = 2 cm, and the
diameter of the left arm is twice that. Oil with a specific
gravity of 2.72 is poured into the left arm, forcing some mer-
cury from the left arm into the right one. Determine the max-
imum amount of oil that can be added into the left arm.
Answer: 0.256 L

Oil
SG= 2.72\
18 cm
2D D=2cm
4\_|
Mercury
SG =136

FIGURE P3-128



3-129 A teapot with a brewer at the top is used to brew tea,
as shown in Fig. P3-129. The brewer may partially block the
vapor from escaping, causing the pressure in the teapot to
rise and an overflow from the service tube to occur. Disre-
garding thermal expansion and the variation in the amount of
water in the service tube to be negligible relative to the
amount of water in the teapot, determine the maximum cold-
water height that would not cause an overflow at gage pres-
sures of up to 0.32 kPa for the vapor.

P, < 0.32 kPa (gage) .
Vapor
40° 12cm
H
4cm

A A A A A A 4
ity g v

FIGURE P3-129

3-130 Repeat Prob. 3-129 by taking the thermal expansion
of water into consideration as it is heated from 20°C to the
boiling temperature of 100°C.

3-131 It is well known that the temperature of the atmo-
sphere varies with altitude. In the troposphere, which extends
to an altitude of 11 km, for example, the variation of temper-
ature can be approximated by T = T, — Bz, where T, is the
temperature at sea level, which can be taken to be 288.15 K,
and B = 0.0065 K/m. The gravitational acceleration also
changes with altitude as g(z) = go/(1 + 2/6,370,320)? where
g, = 9.807 m/s? and z is the elevation from sea level in m.
Obtain a relation for the variation of pressure in the tropo-
sphere (a) by ignoring and (b) by considering the variation of
g with altitude.

3-132 The variation of pressure with density in a thick gas
layer is given by P = Cp", where C and n are constants. Not-
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ing that the pressure change across a differential fluid layer
of thickness dz in the vertical z-direction is given as dP
= —pg dz, obtain a relation for pressure as a function of ele-
vation z. Take the pressure and density at z = 0 to be P, and
Po, respectively.

3-133 Pressure transducers are commonly used to measure
pressure by generating analog signals usually in the range of
4 mA to 20 mA or 0 V-dc to 10 V-dc in response to applied
pressure. The system whose schematic is shown in Fig.
P3-133 can be used to calibrate pressure transducers. A rigid
container is filled with pressurized air, and pressure is mea-
sured by the manometer attached. A valve is used to regulate
the pressure in the container. Both the pressure and the elec-
tric signal are measured simultaneously for various settings,
and the results are tabulated. For the given set of measure-
ments, obtain the calibration curve in the form of P = al
+ b, where a and b are constants, and calculate the pressure
that corresponds to a signal of 10 mA.

Ah, mm 28.0 181.5 297.8 413.1 765.9
I, mA 4.21 5.78 6.97 8.15 11.76
Ah, mm 1027 1149 1362 1458 1536
I, mA 14.43 15.68 17.86 18.84 19.64
Multimeter
Pressure
transducer
Valve
| Pressurized —
air, P
Rigid container Alh
— —Manometer
Mercury
SG = 13.56

FIGURE P3-133
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3-134 A system is equipped with two pressure gages and a
manometer, as shown in Fig. P3-134. For Ah = 8 cm, deter-
mine the pressure difference AP = P, — P,.

Air

Manometer \
fluid
SG =2.67

FIGURE P3-134

3-135 An oil pipeline and a 1.3-m? rigid air tank are con-
nected to each other by a manometer, as shown in Fig.
P3-135. If the tank contains 15 kg of air at 80°C, determine
(a) the absolute pressure in the pipeline and (b) the change in
Ah when the temperature in the tank drops to 20°C. Assume
the pressure in the oil pipeline to remain constant, and the air
volume in the manometer to be negligible relative to the vol-
ume of the tank.

1.3md
Air, 80°C

FIGURE P3-135

3-136 The density of a floating body can be determined by
tying weights to the body until both the body and the weights
are completely submerged, and then weighing them sepa-

rately in air. Consider a wood log that weighs 1540 N in air.
If it takes 34 kg of lead (p = 11,300 kg/m®) to completely
sink the log and the lead in water, determine the average den-
sity of the log.  Answer: 835 kg/m3

3-137 g;’ The 200-kg, 5-m-wide rectangular gate shown

in Fig. P3-137 is hinged at B and leans against
the floor at A making an angle of 45° with the horizontal.
The gate is to be opened from its lower edge by applying a
normal force at its center. Determine the minimum force F
required to open the water gate. Answer: 520 kN

N

Water

45°
A

FIGURE P3-137

3-138 Repeat Prob. 3-137 for a water height of 1.2 m
above the hinge at B.

3-139 A 3-m-high, 6-m-wide rectangular gate is hinged at
the top edge at A and is restrained by a fixed ridge at B.
Determine the hydrostatic force exerted on the gate by the
5-m-high water and the location of the pressure center.

YA _
T
2m
|
Water T A
3m Gate

B

FIGURE P3-139

3-140 Repeat Prob. 3—-139 for a total water height of 2 m.

3-141E A semicircular 30-ft-diameter tunnel is to be built
under a 150-ft-deep, 800-ft-long lake, as shown in Fig.
P3-141E. Determine the total hydrostatic force acting on the
roof of the tunnel.
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Y 3-144 A U-tube contains water in the right arm, and
another liquid in the left arm. It is observed that when the U-
tube rotates at 30 rpm about an axis that is 15 cm from the
150 ft right arm and 5 cm from the left arm, the liquid levels in both

arms become the same. Determine the density of the fluid in
Tunnel the left arm.

| 30 ft | Q
|

FIGURE P3-141E

I

Water

3-142 A 50-ton, 6-m-diameter hemispherical dome on a
level surface is filled with water, as shown in Fig. P3-142.
Someone claims that he can lift this dome by making use of

Pascal’s law by attaching a long tube to the top and filling it 10 cm
with water. Determine the required height of water in the
tube to lift the dome. Disregard the weight of the tube and
the water in it.  Answer: 0.77 m T
5cm | 15¢cm
T FIGURE P3-144
h 3-145 A 1-m-diameter, 2-m-high vertical cylinder is com-
pletely filled with gasoline whose density is 740 kg/m®. The
tank is now rotated about its vertical axis at a rate of 90 rpm,
while being accelerated upward at 5 m/s?. Determine (a) the
50 ton difference between the pressures at the centers of the bottom
Water J/ and top surfaces and (b) the difference between the pressures

at the center and the edge of the bottom surface.

| 6m |

FIGURE P3-142

- - - - - 5 m/SZ
3-143 The water in a 25-m-deep reservoir is kept inside by R
a 150-m-wide wall whose cross section is an equilateral tri- ‘

angle, as shown in Fig. P3-143. Determine (a) the total force
(hydrostatic + atmospheric) acting on the inner surface of
the wall and its line of action and (b) the magnitude of the
horizontal component of this force. Take P, = 100 kPa. im 2m

Water

25m
FIGURE P3-145

60° 60°

3-146 A 5-m-long, 4-m-high tank contains 2.5-m-deep
water when not in motion and is open to the atmosphere
FIGURE P3-143 through a vent in the middle. The tank is now accelerated to
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the right on a level surface at 2 m/s?. Determine the maxi-
mum pressure in the tank relative to the atmospheric pres-
sure. Answer: 29.5 kPa

Vent
15m
N Wi
ater 2 m/s?
25m tank
5m

FIGURE P3-146

3-147 Reconsider Prob. 3-146. Using EES (or other)
software, investigate the effect of acceleration
on the slope of the free surface of water in the tank. Let the
acceleration vary from 0 m/s? to 5 m/s? in increments of 0.5

m/s2. Tabulate and plot your results.

3-148 An elastic air balloon having a diameter of 30 cm is
attached to the base of a container partially filled with water
at +4°C, as shown in Fig. P3-148. If the pressure of air
above water is gradually increased from 100 kPa to 1.6 MPa,
will the force on the cable change? If so, what is the percent
change in the force? Assume the pressure on the free surface
and the diameter of the balloon are related by P = CD",
where C is a constant and n = —2. The weight of the balloon
and the air in it is negligible.  Answer: 98.4 percent

P, = 100 kPa 20 em

50 cm

Water

50 cm

FIGURE P3-148

3-149 Reconsider Prob. 3-148. Using EES (or other)
software, investigate the effect of air pressure
above water on the cable force. Let this pressure vary from 0.1

MPa to 10 MPa. Plot the cable force versus the air pressure.

3-150 The average density of icebergs is about 917 kg/m?.
(a) Determine the percentage of the total volume of an ice-
berg submerged in seawater of density 1042 kg/m3. (b)
Although icebergs are mostly submerged, they are observed
to turn over. Explain how this can happen. (Hint: Consider
the temperatures of icebergs and seawater.)

3-151 A cylindrical container whose weight is 79 N is
inverted and pressed into the water, as shown in Fig. P3-151.
Determine the differential height h of the manometer and the
force F needed to hold the container at the position shown.

F
e
h l
. < Manometer fluid
Air 1 SG=21
D=30cm
v
20 cm Water

FIGURE P3-151

Design and Essay Problems

3-152 Shoes are to be designed to enable people of up to
80 kg to walk on freshwater or seawater. The shoes are to be
made of blown plastic in the shape of a sphere, a (American)
football, or a loaf of French bread. Determine the equivalent
diameter of each shoe and comment on the proposed shapes
from the stability point of view. What is your assessment of
the marketability of these shoes?

3-153 The volume of a rock is to be determined without
using any volume measurement devices. Explain how you
would do this with a waterproof spring scale.
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essarily considering the forces and moments that cause the motion. In

this chapter, we introduce several kinematic concepts related to flow-
ing fluids. We discuss the material derivative and its role in transforming
the conservation equations from the Lagrangian description of fluid flow
(following a fluid particle) to the Eulerian description of fluid flow (pertain-
ing to a flow field). We then discuss various ways to visualize flow fields—
streamlines, streaklines, pathlines, timelines, and optical methods schlieren
and shadowgraph—and we describe three ways to plot flow data—profile
plots, vector plots, and contour plots. We explain the four fundamental kine-
matic properties of fluid motion and deformation—rate of translation, rate
of rotation, linear strain rate, and shear strain rate. The concepts of vortic-
ity, rotationality, and irrotationality in fluid flows are also discussed.
Finally, we discuss the Reynolds transport theorem (RTT), emphasizing its
role in transforming the equations of motion from those following a system
to those pertaining to fluid flow into and out of a control volume. The anal-
ogy between material derivative for infinitesimal fluid elements and RTT for
finite control volumes is explained.

Fluid kinematics deals with describing the motion of fluids without nec-

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

Understand the role of the
material derivative in
transforming between
Lagrangian and Eulerian
descriptions

Distinguish between various
types of flow visualizations
and methods of plotting the
characteristics of a fluid flow

Have an appreciation for the
many ways that fluids move
and deform

Distinguish between rotational

and irrotational regions of flow
based on the flow property
vorticity

Understand the usefulness of
the Reynolds transport theorem
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FIGURE 4-1

With a small number of objects, such
as billiard balls on a pool table,
individual objects can be tracked.

VA
Vs
Ve
Xa
Xs .
FIGURE 4-2

In the Lagrangian description, one
must keep track of the position and
velocity of individual particles.

4-1 = LAGRANGIAN AND EULERIAN DESCRIPTIONS

The subject called kinematics concerns the study of motion. In fluid
dynamics, fluid kinematics is the study of how fluids flow and how to
describe fluid motion. From a fundamental point of view, there are two dis-
tinct ways to describe motion. The first and most familiar method is the one
you learned in high school physics class—to follow the path of individual
objects. For example, we have all seen physics experiments in which a ball
on a pool table or a puck on an air hockey table collides with another ball or
puck or with the wall (Fig. 4-1). Newton’s laws are used to describe the
motion of such objects, and we can accurately predict where they go and
how momentum and Kinetic energy are exchanged from one object to another.
The kinematics of such experiments involves keeping track of the position
vector of each object, X s >?B, ..., and the velocity vector of each object,
Va, Vg, . . ., as functions of time (Fig. 4-2). When this method is applied to
a flowing fluid, we call it the Lagrangian description of fluid motion after
the Italian mathematician Joseph Louis Lagrange (1736-1813). Lagrangian
analysis is analogous to the system analysis that you learned in your ther-
modynamics class; namely, we follow a mass of fixed identity

As you can imagine, this method of describing motion is much more dif-
ficult for fluids than for billiard balls! First of all we cannot easily define
and identify particles of fluid as they move around. Secondly, a fluid is a
continuum (from a macroscopic point of view), so interactions between
parcels of fluid are not as easy to describe as are interactions between dis-
tinct objects like billiard balls or air hockey pucks. Furthermore, the fluid
parcels continually deform as they move in the flow.

From a microscopic point of view, a fluid is composed of billions of mol-
ecules that are continuously banging into one another, somewhat like bil-
liard balls; but the task of following even a subset of these molecules is
quite difficult, even for our fastest and largest computers. Nevertheless,
there are many practical applications of the Lagrangian description, such as
the tracking of passive scalars in a flow, rarefied gas dynamics calculations
concerning reentry of a spaceship into the earth’s atmosphere, and the
development of flow measurement systems based on particle imaging (as
discussed in Section 4-2).

A more common method of describing fluid flow is the Eulerian
description of fluid motion, named after the Swiss mathematician Leonhard
Euler (1707-1783). In the Eulerian description of fluid flow, a finite volume
called a flow domain or control volume is defined, through which fluid
flows in and out. We do not need to keep track of the position and velocity
of a mass of fluid particles of fixed identity. Instead, we define field vari-
ables, functions of space and time, within the control volume. For example,
the pressure field is a scalar field variable; for general unsteady three-
dimensional fluid flow in Cartesian coordinates,

Pressure field: P=P(Yy,zt) 4-1)
We define the velocity field as a vector field variable in similar fashion,
Velocity field: V=VXxy 21 (4-2)
Likewise, the acceleration field is also a vector field variable,

Acceleration field: a=4axy, zt) (4-3)



Collectively, these (and other) field variables define the flow field. The
velocity field of Eq. 4-2 can be expanded in Cartesian coordinates (x, Y, z),
(i,],k)as

V= (u, v, w) = u(x,y, z, t)f +v(x Y,z t)f + w(x, Y, z, t)E (4-4)

A similar expansion can be performed for the acceleration field of Eq. 4-3.
In the Eulerian description, all such field variables are defined at any loca-
tion (x, y, z) in the control volume and at any instant in time t (Fig. 4-3). In
the Eulerian description we don’t really care what happens to individual
fluid particles; rather we are concerned with the pressure, velocity, accelera-
tion, etc., of whichever fluid particle happens to be at the location of interest
at the time of interest.

The difference between these two descriptions is made clearer by imagin-
ing a person standing beside a river, measuring its properties. In the
Lagrangian approach, he throws in a probe that moves downstream with the
water. In the Eulerian approach, he anchors the probe at a fixed location in
the water.

While there are many occasions in which the Lagrangian description is
useful, the Eulerian description is often more convenient for fluid mechanics
applications. Furthermore, experimental measurements are generally more
suited to the Eulerian description. In a wind tunnel, for example, velocity or
pressure probes are usually placed at a fixed location in the flow, measuring
V(x,y, z, t) or P(x, Y, z, t). However, whereas the equations of motion in the
Lagrangian description following individual fluid particles are well known
(e.g., Newton’s second law), the equations of motion of fluid flow are not so
readily apparent in the Eulerian description and must be carefully derived.

: EXAMPLE 4-1 A Steady Two-Dimensional Velocity Field
A steady, incompressible, two-dimensional velocity field is given by
V =(uv)=(05+08%)i + (L5—08y)] M

where the x- and y-coordinates are in meters and the magnitude of velocity
is in m/s. A stagnation point is defined as a point in the flow field where the
velocity is identically zero. (a) Determine if there are any stagnation points in
this flow field and, if so, where? (b) Sketch velocity vectors at several loca-
@ tions in the domain between x = =2 m to 2 m and y = O m to 5 m; quali-
m tatively describe the flow field.

|

SOLUTION For the given velocity field, the location(s) of stagnation point(s)
are to be determined. Several velocity vectors are to be sketched and the
velocity field is to be described.

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no zcomponent of velocity and no variation of v or v
with z

Analysis _ga) Since V is a vector, all its components must equal zero in
order for V itself to be zero. Using Eq. 4-4 and setting Eq. 1 equal to zero,

u=05+08x=0 — x = —0.625m
v=15-08y=0 - y=1.875m

Yes. There is one stagnation point located at x = —0.625 m, y = 1.875 m.

Stagnation point:

123
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Control volume

FIGURE 4-3

In the Eulerian description, one
defines field variables, such as the
pressure field and the velocity field, at
any location and instant in time.
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Scale: 10 m/s
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FIGURE 44

Velocity vectors for the velocity field
of Example 4-1. The scale is shown
by the top arrow, and the solid black
curves represent the approximate
shapes of some streamlines, based on
the calculated velocity vectors. The
stagnation point is indicated by the
blue circle. The shaded region
represents a portion of the flow field
that can approximate flow into an inlet
(Fig. 4-5).

Region in which the
velocity field is modeled

Streamlines

FIGURE 4-5

Flow field near the bell mouth inlet of
a hydroelectric dam; a portion of the
velocity field of Example 4-1 may be
used as a first-order approximation of
this physical flow field. The shaded
region corresponds to that of Fig. 4-4.

(b) The x- and y-components of velocity are calculated from Eq. 1 for several
(x, y) locations in the specified range. For example, at the point (x = 2 m, y
=3m), u=2.10m/s and v = —0.900 m/s. The magnitude of velocity (the
speed) at that point is 2.28 m/s. At this and at an array of other locations,
the velocity vector is constructed from its two components, the results of
which are shown in Fig. 4-4. The flow can be described as stagnation point
flow in which flow enters from the top and bottom and spreads out to the
right and left about a horizontal line of symmetry at y = 1.875 m. The stag-
nation point of part (a) is indicated by the blue circle in Fig. 4-4.

If we look only at the shaded portion of Fig. 4-4, this flow field models a
converging, accelerating flow from the left to the right. Such a flow might be
encountered, for example, near the submerged bell mouth inlet of a hydro-
electric dam (Fig. 4-5). The useful portion of the given velocity field may be
thought of as a first-order approximation of the shaded portion of the physi-
cal flow field of Fig. 4-5.

Discussion 1t can be verified from the material in Chap. 9 that this flow
field is physically valid because it satisfies the differential equation for con-
servation of mass.

Acceleration Field
As you should recall from your study of thermodynamics, the fundamental
conservation laws (such as conservation of mass and the first law of thermo-
dynamics) are expressed for a system of fixed identity (also called a closed
system). In cases where analysis of a control volume (also called an open
system) is more convenient than system analysis, it is necessary to rewrite
these fundamental laws into forms applicable to the control volume. The
same principle applies here. In fact, there is a direct analogy between sys-
tems versus control volumes in thermodynamics and Lagrangian versus
Eulerian descriptions in fluid dynamics. The equations of motion for fluid
flow (such as Newton’s second law) are written for an object of fixed iden-
tity, taken here as a small fluid parcel, which we call a fluid particle or
material particle. If we were to follow a particular fluid particle as it
moves around in the flow, we would be employing the Lagrangian descrip-
tion, and the equations of motion would be directly applicable. For example,
we would define the particle’s location in space in terms of a material posi-
tion vector (Xaricie(t): Yparticle(Ds Zparticie(t)). However, some mathematical
manipulation is then necessary to convert the equations of motion into
forms applicable to the Eulerian description.

Consider, for example, Newton’s second law applied to our fluid particle,

-

Newton’s second law: (4-5)

_ -
Fparticle - mparticleaparticle

where I?particle is the net force acting on the fluid particle, mg,qiq IS its mass,
and ap,icre 1S its acceleration (Fig. 4-6). By definition, the acceleration of
the fluid particle is the time derivative of the particle’s velocity,

N
dvparticle
dt

However, at any instant in time t, the velocity of the particle is the same
as the local value of the velocity field at the location (Xaricie(t) Yparticte(t):

Acceleration of a fluid particle: aparticle = (4-6)



partlcle(t)) of the particle, since the fluid particle moves with the fluid by def-
inition. In other WOI’dS Vpartlcle(t) - V(Xpartlcle(t) ypartlcle(t) Zpartlcle(t) t) To
take the time derivative in Eq. 4-6, we must therefore use the chain rule,
since the dependent variable (V) is a function of four independent variables

(Xpartlcle’ ypartlcle' Zpartlclel and t)

— N —
- dearticIe _ dv _ dV(XparticIe: yparticlev Zparticle7 t)

aparticle - dt - dt - dt

6V dt " 5\7 prarticIe n 8\7 dyparticle n 3\7 dZparticle
at dt aXparticle dt ayparticle dt azparticle dt

4-7

In Eq. 4-7, 9 is the partial derivative operator and d is the total deriva-
tive operator. Consider the second term on the right-hand side of Eq. 4-7.
Since the acceleration is defined as that following a fluid particle
(Lagrangian description), the rate of change of the particle’s x-position with
respect to time is dX,piq/dt = U (Fig. 4-7), where u is the x-component of the
velocity vector defined by Eq. 4-4. Similarly, dy,,qiee/dt = v and dz, e /dt
= w. Furthermore, at any instant in time under consideration, the material
pOsition Vector (Xyurictes Yparticter Zparticte) OF the fluid particle in the Lagrangian
frame is equal to the position vector (x, y, z) in the Eulerian frame. Equation
4-7 thus becomes

. AV vV vV

aparticle(xl Y, Z, t) - a - E +u & +v ay —tw 9z (4-8)
where we have also used the (obvious) fact that dt/dt = 1. Finally, at any
instant in time t, the acceleration field of Eq. 4-3 must equal the accelera-
tion of the fluid particle that happens to occupy the location (x, y, z) at that
time t, since the fluid particle is by definition accelerating with the fluid
flow. Hence, we may replace &, With a(x, y, z, t) in Egs. 4-7 and 4-8 to
transform from the Lagrangian to the Eulerian frame of reference. In vector
form, Eq. 4-8 can be written as

Acceleration of a fluid particle expressed as a field variable:

R v oV
ax Y.z =" = th + (V- V)V 4-9)

where V is the gradient operator or del operator, a vector operator that is
defined in Cartesian coordinates as

. > Jd ad 9 - d L7 > 0
Gradient or del operator: V= (———) = +j—+k— (4-10)
X, dy, 9z 'ox ay 0z

In Cartesian coordinates then, the components of the acceleration vector are

du  au  du du
Q= —FU—+v—+W
at  Cox ay oz

. . Jv Jv v v
Cartesian coordinates: ay =" U v ay two @-11)

W AW oW ow
a,=—+Uu—+v—+w—
ot ax ay 9z
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Fluid particle at time t

Fluid particle at time t + dt

-

N
Vparticle =V

l

aparticle

mparticle

—

X, ioles ioler Z .
( particle Ypartlcle pamcle) Fparticle

FIGURE 4-6

Newton’s second law applied to a fluid
particle; the acceleration vector (gray
arrow) is in the same direction as the
force vector (black arrow), but the
velocity vector (blue arrow) may act
in a different direction.

(Xparticle + dxparticle1 yparticle + dypanicle)

7

{ Y Fluid particle
T ‘oo attimet+dt
deanicIe | .I

l

(Xparticlev yparticle)

dxparticle |

Fluid particle at time t

FIGURE 4-7

When following a fluid particle, the
X-component of velocity, u, is defined
as dXprigie/dt. Similarly, v = dyaqige/dt
and w = dz,,i¢e/dt. Movement is
shown here only in two dimensions
for simplicity.
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FIGURE 4-8

Flow of water through the nozzle of

a garden hose illustrates that fluid
particles may accelerate, even in a
steady flow. In this example, the exit
speed of the water is much higher than
the water speed in the hose, implying
that fluid particles have accelerated
even though the flow is steady.

FIGURE 4-9

Flow of water through the nozzle of
Example 4-2.

The first term on the right-hand side of Eq. 4-9, av/at, is called the local
acceleration and is nonzero only for unsteady flows. The second term,
(V - V)V, is called the advective acceleration (sometimes the convective
acceleration); this term can be nonzero even for steady flows. It accounts
for the effect of the fluid particle moving (advecting or convecting) to a new
location in the flow, where the velocity field is different. For example, con-
sider steady flow of water through a garden hose nozzle (Fig. 4-8). We
define steady in the Eulerian frame of reference to be when properties at
any point in the flow field do not change with respect to time. Since the
velocity at the exit of the nozzle is larger than that at the nozzle entrance,
fluid particles clearly accelerate, even though the flow is steady. The accel-
eration is nonzero because of the advective acceleration terms in Eq. 4-9.
Note that while the flow is steady from the point of view of a fixed observer
in the Eulerian reference frame, it is not steady from the Lagrangian refer-
ence frame moving with a fluid particle that enters the nozzle and acceler-
ates as it passes through the nozzle.

EXAMPLE 4-2 Acceleration of a Fluid Particle through a Nozzle :
Nadeen is washing her car, using a nozzle similar to the one sketched in Fig. ™
4-8. The nozzle is 3.90 in (0.325 ft) long, with an inlet diameter of .
0.420 in (0.0350 ft) and an outlet diameter of 0.182 in (see Fig. 4-9). The g
volume flow rate through the garden hose (and through the nozzle) is V m
= 0.841 gal/min (0.00187 ft3/s), and the flow is steady. Estimate the mag-
nitude of the acceleration of a fluid particle moving down the centerline of ®
the nozzle. |

SOLUTION The acceleration following a fluid particle down the center of a
nozzle is to be estimated.

Assumptions 1 The flow is steady and incompressible. 2 The x-direction is
taken along the centerline of the nozzle. 3 By symmetry, v = w = O along
the centerline, but u increases through the nozzle.

Analysis The flow is steady, so you may be tempted to say that the acceler-
ation is zero. However, even though the local acceleration aV/_Qt is_identically
zero for this steady flow field, the advective acceleration (V - V)V is not
zero. We first calculate the average x-component of velocity at the inlet and
outlet of the nozzle by dividing volume flow rate by cross-sectional area:

Inlet speed:

L L 3 4\ _ 4(0.00187 ft3/s)
inlet = At 7TDi2n|et 7r(0.0350 ft)z

Similarly, the average outlet speed is u, = 10.4 ft/s. We now calculate
the acceleration two ways, with equivalent results. First, a simple average
value of acceleration in the x-direction is calculated based on the change in
speed divided by an estimate of the residence time of a fluid particle in the
nozzle, At = Ax/u,, (Fig. 4-10). By the fundamental definition of accelera-
tion as the rate of change of velocity,

= 1.95 ft/s

— — 2 Y
__ Au _ Uoutlet Uinlet _ Uoutlet Uinlet _ Uoutlet Uinlet

Method A: =-—= = =
etho A At AX/Uan 2 AX/(uoutlet + uinlet) 2 Ax




The second method uses the equation for acceleration field components in

Cartesian coordinates, Eq. 4-11,
au au d d Au
Method B: a, = g/+ U= 4F 1‘72 4 W/Z = Uavg o
0 t aX ay 0z Ax
——

=, () N——
Steady v = 0 along centerline w = 0 along centerline
Here we see that only one advective term is nonzero. We approximate the
average speed through the nozzle as the average of the inlet and outlet
speeds, and we use a first-order finite difference approximation (Fig. 4-11) for
the average value of derivative au/ox through the centerline of the nozzle:

_ 2 Y
—~ Uoutlet + Uinlet Uoutlet Uinlet _ Uoutlet Uinlet

X 2 AX 2 AX

The result of method B is identical to that of method A. Substitution of the
given values yields

Axial acceleration:

__ Yguter = Ufnier _ (104 ft/s)? — (1.95 ft/s)?
T 2Ax 2(0.325 ft)

Discussion Fluid particles are accelerated through the nozzle at nearly five
times the acceleration of gravity (almost five g's)! This simple example
clearly illustrates that the acceleration of a fluid particle can be nonzero,
even in steady flow. Note that the acceleration is actually a point function,
whereas we have estimated a simple average acceleration through the entire
nozzle.

= 160 ft/s?

Material Derivative

The total derivative operator d/dt in Eq. 4-9 is given a special name, the
material derivative; some authors also assign to it a special notation, D/Dt,
in order to emphasize that it is formed by following a fluid particle as it
moves through the flow field (Fig. 4-12). Other names for the material
derivative include total, particle, Lagrangian, Eulerian, and substantial
derivative.

D d o - =
=4+ (V-V) 4-12)

Material derivative: — ==
Dt dt ot

When we apply the material derivative of Eq. 4-12 to the velocity field, the
result is the acceleration field as expressed by Eq. 4-9, which is thus some-
times called the material acceleration.
. DV dvV &V - o

Material leration: f=—=—=—+(V-V)VV 4-13

aterial acceleration alx, y, z,t) Dt dt ot v-V) ( )
Equation 4-12 can also be applied to other fluid properties besides velocity,
both scalars and vectors. For example, the material derivative of pressure
can be written as

DP dP P

=
Material derivative of pressure: —=—=—+ (V- V)P 4-14
P Dt dt Jat ( ) ¢ )
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Fluid particle
attimet + At

Fluid particle
attimet

AX

FIGURE 4-10

Residence time At is defined as the
time it takes for a fluid particle to
travel through the nozzle from inlet
to outlet (distance AXx).

FIGURE 4-11

A first-order finite difference
approximation for derivative dg/dx
is simply the change in dependent
variable (q) divided by the change
in independent variable (x).

t+3dt

oS

FIGURE 4-12

The material derivative D/Dt is
defined by following a fluid particle
as it moves throughout the flow field.
In this illustration, the fluid particle is
accelerating to the right as it moves
up and to the right.
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FIGURE 4-13

The material derivative D/Dt is
composed of a local or unsteady part
and a convective or advective part.

Scale: 10 m/s?
TN 7
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FIGURE 4-14

Acceleration vectors for the velocity
field of Examples 4-1 and 4-3. The
scale is shown by the top arrow,

and the solid black curves represent
the approximate shapes of some
streamlines, based on the calculated
velocity vectors (see Fig. 4-4). The
stagnation point is indicated by the
blue circle.

Equation 4-14 represents the time rate of change of pressure following a
fluid particle as it moves through the flow and contains both local
(unsteady) and advective components (Fig. 4-13).

EXAMPLE 4-3 Material Acceleration of a Steady Velocity Field

Consider the steady, incompressible, two-dimensional velocity field of Example
4-1. (a) Calculate the material acceleration at the point (x = 2 m, y = 3 m).
(b) Sketch the material acceleration vectors at the same array of x- and y-
values as in Example 4-1.

|
|
|
|
|
|
|
|
SOLUTION For the given velocity field, the material acceleration vector is to
be calculated at a particular point and plotted at an array of locations in the
flow field.
Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no z-component of velocity and no variation of v or v
with z
Analysis (a) Using the velocity field of Eq. 1 of Example 4-1 and the equa-
tion for material acceleration components in Cartesian coordinates (Eg.
4-11), we write expressions for the two nonzero components of the accelera-
tion vector:

au au au au
a=— + Uu— trv—  +w
at ax ay 0z

R —_—
= 0+ (0.5 + 0.8(0.8) + (15 — 0.8y)(0) + 0 = (0.4 + 0.64x) m/s?

and

v Jv Jv v

a, = u w
ot X ay 0z

= 0+ (0.5 + 0.8%)(0) + (1.5 — 0.8y)(—0.8) + 0 = (—1.2 + 0.64y) m/s?

At the point (x =2 m, y = 3 m), a, = 1.68 m/s? and a, = 0.720 m/s.

(b) The equations in part (a) are applied to an array of x- and y-values in the
flow domain within the given limits, and the acceleration vectors are plotted
in Fig. 4-14.

Discussion The acceleration field is nonzero, even though the flow is
steady. Above the stagnation point (above y = 1.875 m), the acceleration
vectors plotted in Fig. 4-14 point upward, increasing in magnitude away
from the stagnation point. To the right of the stagnation point (to the right of
x = —0.625 m), the acceleration vectors point to the right, again increasing
in magnitude away from the stagnation point. This agrees qualitatively with
the velocity vectors of Fig. 4-4 and the streamlines sketched in Fig. 4-14;
namely, in the upper-right portion of the flow field, fluid particles are accel-
erated in the upper-right direction and therefore veer in the counterclockwise
direction due to centripetal acceleration toward the upper right. The flow
below y = 1.875 m is a mirror image of the flow above this symmetry line,
and flow to the left of x = —0.625 m is a mirror image of the flow to the
right of this symmetry line.



4-2 - FUNDAMENTALS OF FLOW VISUALIZATION

While quantitative study of fluid dynamics requires advanced mathematics,
much can be learned from flow visualization—the visual examination of
flow field features. Flow visualization is useful not only in physical experi-
ments (Fig. 4-15), but in numerical solutions as well [computational fluid
dynamics (CFD)]. In fact, the very first thing an engineer using CFD does
after obtaining a numerical solution is simulate some form of flow visual-
ization, so that he or she can see the “whole picture” rather than merely a
list of numbers and quantitative data. Why? Because the human mind is
designed to rapidly process an incredible amount of visual information; as
they say, a picture is worth a thousand words. There are many types of flow
patterns that can be visualized, both physically (experimentally) and/or
computationally.

Streamlines and Streamtubes

A streamline is a curve that is everywhere tangent to the instantaneous local
velocity vector.

Streamlines are useful as indicators of the instantaneous direction of fluid
motion throughout the flow field. For example, regions of recirculating flow
and separation of a fluid off of a solid wall are easily identified by the
streamline pattern. Streamlines cannot be directly observed experimentally
except in steady flow fields, in which they are coincident with pathlines and
streaklines, to be discussed next. Mathematically, however, we can write a
simple expression for a streamline based on its definition.

Consider an infinitesimal arc length dF” = dxi" + dyj + dzK along a
streamline; di” must be parallel to the local velocity vector V = ui’ + vj + wk
by definition of the streamline. By simple geometric arguments using simi-
lar triangles, we know that the components of dr’ must be proportional to
those of V (Fig. 4-16). Hence,

. . dr dx dy dz
Equation for a streamline: — ===
\ u v w

(4-15)

where dr is the magnitude of dr and V is the speed, the magnitude of V.
Equation 4-15 is illustrated in two dimensions for simplicity in Fig. 4-16.
For a known velocity field, we can integrate Eg. 4-15 to obtain equations
for the streamlines. In two dimensions, (x, y), (u, v), the following differen-
tial equation is obtained:

. d v
Streamline in the xy-plane: (—y) =- (4-16)
dx along a streamline u

In some simple cases, Eq. 4-16 may be solvable analytically; in the general
case, it must be solved numerically. In either case, an arbitrary constant of
integration appears, and the family of curves that satisfy Eq. 4-16 represents
streamlines of the flow field.

129
CHAPTER 4

FIGURE 4-15

Spinning baseball.

The late F. N. M. Brown devoted
many years to developing and using
smoke visualization in wind tunnels at
the University of Notre Dame. Here
the flow speed is about 77 ft/s and the
ball is rotated at 630 rpm.

Photograph courtesy of T. J. Mueller.

Point (x + dx,y +dy) V

Streamline dr’
dy - v
dx u -
ly Point (x, y)
FIGURE 4-16

For two-dimensional flow in the xy-
plane, arc length dr’ = (dx, dy) along
a streamline is everywhere tangent to

the local instantaneous velocity vector
V = (u,v).
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FIGURE 4-17

Streamlines (solid black curves) for
the velocity field of Example 4-4;
velocity vectors of Fig. 4-4 (blue
arrows) are superimposed for
comparison.

Streamlines

Streamtube

FIGURE 4-18
A streamtube consists of a bundle of
individual streamlines.

EXAMPLE 44 Streamlines in the xy-Plane—An Analytical

Solution

For the steady, incompressible, two-dimensional velocity field of Example
4-1, plot several streamlines in the right half of the flow (x > 0) and com-
pare to the velocity vectors plotted in Fig. 4-4.

[ |
[ |
[ |
[
[
[ |
[ |
|

SOLUTION An analytical expression for streamlines is to be generated and

plotted in the upper-right quadrant. ‘

Assumptions 1 The flow is steady and incompressible. 2 The flow is two-
dimensional, implying no zcomponent of velocity and no variation of v or v
with z

Analysis Equation 4-16 is applicable here; thus, along a streamline,

dy 1.5-0.8y

dx 05+ 0.8x

We solve this differential equation by separation of variables:

dy dx J dy J dx

15—-08y 05 + 0.8 15-08y 05+ 0.8«

After some algebra (which we leave to the reader), we solve for y as a func-
tion of x along a streamline,

~ c
0.8(0.5 + 0.8x)

where C is a constant of integration that can be set to various values in order
to plot the streamlines. Several streamlines of the given flow field are shown
in Fig. 4-17.

Discussion The velocity vectors of Fig. 4-4 are superimposed on the
streamlines of Fig. 4-17; the agreement is excellent in the sense that the
velocity vectors point everywhere tangent to the streamlines. Note that speed
cannot be determined directly from the streamlines alone.

y + 1.875

A streamtube consists of a bundle of streamlines (Fig. 4-18), much like
a communications cable consists of a bundle of fiber-optic cables. Since
streamlines are everywhere parallel to the local velocity, fluid cannot cross a
streamline by definition. By extension, fluid within a streamtube must
remain there and cannot cross the boundary of the streamtube. You must
keep in mind that both streamlines and streamtubes are instantaneous quan-
tities, defined at a particular instant in time according to the velocity field at
that instant. In an unsteady flow, the streamline pattern may change signifi-
cantly with time. Nevertheless, at any instant in time, the mass flow rate
passing through any cross-sectional slice of a given streamtube must remain
the same. For example, in a converging portion of an incompressible flow
field, the diameter of the streamtube must decrease as the velocity increases
S0 as to conserve mass (Fig. 4-19a). Likewise, the streamtube diameter
increases in diverging portions of the incompressible flow (Fig. 4-19b).

Pathlines

A pathline is the actual path traveled by an individual fluid particle over some
time period.



(b)

Pathlines are the easiest of the flow patterns to understand. A pathline is a
Lagrangian concept in that we simply follow the path of an individual fluid
particle as it moves around in the flow field (Fig. 4-20). Thus, a pathline is
the same as the fluid particle’s material position vector (Xpsricie(t), Yparticie(t):
Zparticie(t)), discussed in Section 4-1, traced out over some finite time inter-
val. In a physical experiment, you can imagine a tracer fluid particle that is
marked somehow—either by color or brightness—such that it is easily dis-
tinguishable from surrounding fluid particles. Now imagine a camera with
the shutter open for a certain time period, ty,; <t < t,. in which the parti-
cle’s path is recorded; the resulting curve is called a pathline. An intriguing
example is shown in Fig. 4-21 for the case of waves moving along the sur-
face of water in a tank. Neutrally buoyant white tracer particles are sus-
pended in the water, and a time-exposure photograph is taken for one com-
plete wave period. The result is pathlines that are elliptical in shape,
showing that fluid particles bob up and down and forward and backward,
but return to their original position upon completion of one wave period;
there is no net forward motion. You may have experienced something simi-
lar while bobbing up and down on ocean waves.

A modern experimental technique called particle image velocimetry
(PIV) utilizes particle pathlines to measure the velocity field over an entire
plane in a flow (Adrian, 1991). (Recent advances also extend the technique
to three dimensions.) In PIV, tiny tracer particles are suspended in the fluid,
much like in Fig. 4-21. However, the flow is illuminated by two flashes of
light (usually from a laser as in Fig. 4-22) to produce two bright spots on
the film or photosensor for each moving particle. Then, both the magnitude
and direction of the velocity vector at each particle location can be inferred,
assuming that the tracer particles are small enough that they move with the
fluid. Modern digital photography and fast computers have enabled PIV to
be performed rapidly enough so that unsteady features of a flow field can
also be measured. PIV is discussed in more detail in Chap. 8.
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FIGURE 4-19

In an incompressible flow field, a
streamtube (a) decreases in diameter
as the flow accelerates or converges
and (b) increases in diameter as the
flow decelerates or diverges.

Fluid particle at t = tg,

Pathline

Py T
o* S

Fluid particle at t = tg,q

Fluid particle at some
intermediate time

FIGURE 4-20
A pathline is formed by following the
actual path of a fluid particle.

FIGURE 4-21

Pathlines produced by white tracer
particles suspended in water and
captured by time-exposure
photography; as waves pass
horizontally, each particle moves
in an elliptical path during one
wave period.

Wallet, A. & Ruellan, F. 1950, La Houille
Blanche 5:483-489. Used by permission.

FIGURE 4-22
P1V applied to a model car in a wind
tunnel.

Courtesy Dantec Dynamics, Inc.
Used by permission.
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l Dye or smoke

Injected fluid particle

Streakline

FIGURE 4-23

A streakline is formed by continuous
introduction of dye or smoke from a
point in the flow. Labeled tracer
particles (1 through 8) were
introduced sequentially.

FIGURE 4-24

Streaklines produced by colored fluid
introduced upstream; since the flow is
steady, these streaklines are the same

as streamlines and pathlines.

Courtesy ONERA. Photograph by Werlé.

Pathlines can also be calculated numerically for a known velocity field.
Specifically, the location of the tracer particle is integrated over time from
some starting location X, and starting time t,, to some later time t.

t
Tracer particle location at time t: X = Xy + J V dt 4-17)

Ltart

When Eq. 4-17 is calculated for t between tg,, and t,,4, a plot of X(t) is the
pathline of the fluid particle during that time interval, as illustrated in Fig.
4-20. For some simple flow fields, Eq. 4-17 can be integrated analytically.
For more complex flows, we must perform a numerical integration.

If the velocity field is steady, individual fluid particles will follow stream-
lines. Thus, for steady flow, pathlines are identical to streamlines.

Streaklines

A streakline is the locus of fluid particles that have passed sequentially
through a prescribed point in the flow.

Streaklines are the most common flow pattern generated in a physical
experiment. If you insert a small tube into a flow and introduce a continu-
ous stream of tracer fluid (dye in a water flow or smoke in an airflow), the
observed pattern is a streakline. Figure 4-23 shows a tracer being injected
into a free-stream flow containing an object, such as the nose of a wing. The
circles represent individual injected tracer fluid particles, released at a uni-
form time interval. As the particles are forced out of the way by the object,
they accelerate around the shoulder of the object, as indicated by the
increased distance between individual tracer particles in that region. The
streakline is formed by connecting all the circles into a smooth curve. In
physical experiments in a wind or water tunnel, the smoke or dye is injected
continuously, not as individual particles, and the resulting flow pattern is by
definition a streakline. In Fig. 4-23, tracer particle 1 was released at an ear-
lier time than tracer particle 2, and so on. The location of an individual
tracer particle is determined by the surrounding velocity field from the
moment of its injection into the flow until the present time. If the flow is
unsteady, the surrounding velocity field changes, and we cannot expect the
resulting streakline to resemble a streamline or pathline at any given instant
in time. However, if the flow is steady, streamlines, pathlines, and streak-
lines are identical (Fig. 4-24).

Streaklines are often confused with streamlines or pathlines. While the
three flow patterns are identical in steady flow, they can be quite different in
unsteady flow. The main difference is that a streamline represents an instan-
taneous flow pattern at a given instant in time, while a streakline and a
pathline are flow patterns that have some age and thus a time history
associated with them. A streakline is an instantaneous snapshot of a time-
integrated flow pattern. A pathline, on the other hand, is the time-exposed
flow path of an individual particle over some time period.

The time-integrative property of streaklines is vividly illustrated in an
experiment by Cimbala et al. (1988), reproduced here as Fig. 4-25. The
authors used a smoke wire for flow visualization in a wind tunnel. In opera-
tion, the smoke wire is a thin vertical wire that is coated with mineral oil.
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FIGURE 4-25

Smoke streaklines introduced by a smoke wire at two different locations in the
wake of a circular cylinder: (a) smoke wire just downstream of the cylinder and
(b) smoke wire located at x/D = 150. The time-integrative nature of streaklines
is clearly seen by comparing the two photographs.

Photos by John M. Cimbala.

The oil breaks up into beads along the length of the wire due to surface ten-
sion effects. When an electric current heats the wire, each little bead of oil
produces a streakline of smoke. In Fig. 4-25a, streaklines are introduced
from a smoke wire located just downstream of a circular cylinder of diameter
D aligned normal to the plane of view. (When multiple streaklines are intro-
duced along a line, as in Fig. 4-25, we refer to this as a rake of streaklines.)
The Reynolds number of the flow is Re = pVD/u = 93. Because of unsteady
vortices shed in an alternating pattern from the cylinder, the smoke collects
into a clearly defined pattern called a Karman vortex street.

From Fig. 4-25a alone, one may think that the shed vortices continue to
exist to several hundred diameters downstream of the cylinder. However, the
streakline pattern of this figure is misleading! In Fig. 4-25b, the smoke wire
is placed 150 diameters downstream of the cylinder. The resulting streaklines
are straight, indicating that the shed vortices have in reality disappeared by
this downstream distance. The flow is steady and parallel at this location, and
there are no more vortices; viscous diffusion has caused adjacent vortices of
opposite sign to cancel each other out by around 100 cylinder diameters. The
patterns of Fig. 4-25a near x/D = 150 are merely remnants of the vortex
street that existed upstream. The streaklines of Fig. 4-25b, however, show
the correct features of the flow at that location. The streaklines generated at
x/D = 150 are identical to streamlines or pathlines in that region of the
flow—straight, nearly horizontal lines—since the flow is steady there.

For a known velocity field, a streakline can be generated numerically,
although with some difficulty. One needs to follow the paths of a continuous
stream of tracer particles from the time of their injection into the flow until
the present time, using Eqg. 4-17. Mathematically, the location of a tracer
particle is integrated over time from the time of its injection t; .. to the
present time t; ... Equation 4-17 becomes

esen
Integrated tracer particle location: X = Xinjection + J V dt (4-18)
1,

inject
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In a complex unsteady flow, the time integration must be performed numer-
ically as the velocity field changes with time. When the locus of tracer par-
ticle locations at t = t,.. is connected by a smooth curve, the result is the
desired streakline.

EXAMPLE 4-5 Comparison of Flow Patterns in an Unsteady Flow

An unsteady, incompressible, two-dimensional velocity field is given by
V = (u,v) = (0.5 + 0.8X)i + (L5 + 2.5 sin(wt) — 0.8y)] )

where the angular frequency w is equal to 27 rad/s (a physical frequency of m
1 Hz). This velocity field is identical to that of Eq. 1 of Example 4-1 except ®
for the additional periodic term in the v-component of velocity. In fact, since ™
the period of oscillation is 1 s, when time ¢ is any integral multiple of 3 s (¢
=0,4% 1,3 2,...5), the sine term in Eq. 1 is zero and the velocity field
is instantaneously identical to that of Example 4-1. Physically, we imagine
flow into a large bell mouth inlet that is oscillating up and down at a fre-
quency of 1 Hz. Consider two complete cycles of flow fromt = 0Ostot= 2
s. Compare instantaneous streamlines at t = 2 s to pathlines and streaklines
generated during the time period from t = Ostot= 2 s.

——>—— Streamlinesatt=2s

Pathlines for0<t<2s

€ SOLUTION Streamlines, pathlines, and streaklines are to be generated and
Streaklinesfor0<t<2s

compared for the given unsteady velocity field.

Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional,
implying no z-component of velocity and no variation of u or v with z.
Analysis The instantaneous streamlines at t = 2 s are identical to those of

FIGURE 4-26
Streamlines, pathlines, and streaklines

for the oscillating velocity field of
Example 4-5. The streaklines and
pathlines are wavy because of their
integrated time history, but the
streamlines are not wavy since they
represent an instantaneous snapshot
of the velocity field.

Fig. 4-17, and several of them are replotted in Fig. 4-26. To simulate path-
lines, we use the Runge—Kutta numerical integration technique to march in
time from t = O s to t = 2 s, tracing the path of fluid particles released at
three locations: (x = 0.5 m, y = 0.5 m), (x = 0.5 m, y = 2.5 m), and (x
= 0.5 m, y = 4.5 m). These pathlines are shown in Fig. 4-26, along with
the streamlines. Finally, streaklines are simulated by following the paths of
many fluid tracer particles released at the given three locations at times
between t = O s and t = 2 s, and connecting the locus of their positions at
t = 2 s. These streaklines are also plotted in Fig. 4-26.

Discussion Since the flow is unsteady, the streamlines, pathlines, and
streaklines are not coincident. In fact, they differ significantly from each
other. Note that the streaklines and pathlines are wavy due to the undulating
v-component of velocity. Two complete periods of oscillation have occurred
between t = O s and t = 2 s, as verified by a careful look at the pathlines
and streaklines. The streamlines have no such waviness since they have no
time history; they represent an instantaneous snapshot of the velocity field at
t=2s.

Timelines

A timeline is a set of adjacent fluid particles that were marked at the same
(earlier) instant in time.

Timelines are particularly useful in situations where the uniformity of a
flow (or lack thereof) is to be examined. Figure 4-27 illustrates timelines in



a channel flow between two parallel walls. Because of friction at the walls,
the fluid velocity there is zero (the no-slip condition), and the top and bot-
tom of the timeline are anchored at their starting locations. In regions of the
flow away from the walls, the marked fluid particles move at the local fluid
velocity, deforming the timeline. In the example of Fig. 4-27, the speed
near the center of the channel is fairly uniform, but small deviations tend to
amplify with time as the timeline stretches. Timelines can be generated
experimentally in a water channel through use of a hydrogen bubble wire.
When a short burst of electric current is sent through the cathode wire, elec-
trolysis of the water occurs and tiny hydrogen gas bubbles form at the wire.
Since the bubbles are so small, their buoyancy is nearly negligible, and the
bubbles follow the water flow nicely (Fig. 4-28).

Refractive Flow Visualization Techniques

Another category of flow visualization is based on the refractive property
of light waves. As you recall from your study of physics, the speed of light
through one material may differ somewhat from that in another material, or
even in the same material if its density changes. As light travels through one
fluid into a fluid with a different index of refraction, the light rays bend
(they are refracted).

There are two primary flow visualization techniques that utilize the fact
that the index of refraction in air (or other gases) varies with density. They
are the shadowgraph technique and the schlieren technique (Settles,
2001). Interferometry is a visualization technique that utilizes the related
phase change of light as it passes through air of varying densities as the
basis for flow visualization and is not discussed here (see Merzkirch, 1987).
All these techniques are useful for flow visualization in flow fields where
density changes from one location in the flow to another, such as natural
convection flows (temperature differences cause the density variations),
mixing flows (fluid species cause the density variations), and supersonic
flows (shock waves and expansion waves cause the density variations).

Unlike flow visualizations involving streaklines, pathlines, and timelines,
the shadowgraph and schlieren methods do not require injection of a visible
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Timelineatt=0

Timeline
att=t;

Timeline/at t = t3

FIGURE 4-27

Timelines are formed by marking a
line of fluid particles, and then
watching that line move (and deform)
through the flow field; timelines are
shownatt =0, t;, t,, and t;.

FIGURE 4-28

Timelines produced by a hydrogen
bubble wire are used to visualize the
boundary layer velocity profile shape.
Flow is from left to right, and the
hydrogen bubble wire is located to the
left of the field of view. Bubbles near
the wall reveal a flow instability that
leads to turbulence.

Bippes, H. 1972 Sitzungsber, Heidelb. Akad. Wiss.
Math. Naturwiss. Kl., no. 3, 103-180; NASA TM-
75243, 1978.
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FIGURE 4-29

Shadowgram of a 14.3 mm sphere in
free flight through air at Ma = 3.0.
A shock wave is clearly visible in the
shadow as a dark band that curves
around the sphere and is called a
bow wave (see Chap. 12).

A. C. Charters, Air Flow Branch, U.S. Army
Ballistic Research Laboratory.

FIGURE 4-30
Schlieren image of natural convection
due to a barbeque grill.

G. S. Settles, Gas Dynamics Lab, Penn State
University. Used by permission.

tracer (smoke or dye). Rather, density differences and the refractive property
of light provide the necessary means for visualizing regions of activity in
the flow field, allowing us to “see the invisible.” The image (a shadow-
gram) produced by the shadowgraph method is formed when the refracted
rays of light rearrange the shadow cast onto a viewing screen or camera
focal plane, causing bright or dark patterns to appear in the shadow. The
dark patterns indicate the location where the refracted rays originate, while
the bright patterns mark where these rays end up, and can be misleading. As
a result, the dark regions are less distorted than the bright regions and are
more useful in the interpretation of the shadowgram. In the shadowgram of
Fig. 4-29, for example, we can be confident of the shape and position of the
bow shock wave (the dark band), but the refracted bright light has distorted
the front of the sphere’s shadow.

A shadowgram is not a true optical image; it is, after all, merely a
shadow. A schlieren image, however, involves lenses (or mirrors) and a
knife edge or other cutoff device to block the refracted light and is a true
focused optical image. Schlieren imaging is more complicated to set up than
is shadowgraphy (see Settles, 2001, for details) but has a number of advan-
tages. For example, a schlieren image does not suffer from optical distortion
by the refracted light rays. Schlieren imaging is also more sensitive to weak
density gradients such as those caused by natural convection (Fig. 4-30) or
by gradual phenomena like expansion fans in supersonic flow. Color
schlieren imaging techniques have also been developed. Finally, one can
adjust more components in a schlieren setup, such as the location, orienta-
tion, and type of the cutoff device, in order to produce an image that is most
useful for the problem at hand.

Surface Flow Visualization Techniques

Finally, we briefly mention some flow visualization techniques that are use-
ful along solid surfaces. The direction of fluid flow immediately above a
solid surface can be visualized with tufts—short, flexible strings glued to
the surface at one end that point in the flow direction. Tufts are especially
useful for locating regions of flow separation, where the flow direction sud-
denly reverses.

A technique called surface oil visualization can be used for the same
purpose—oil placed on the surface forms streaks that indicate the direction
of flow. If it rains lightly when your car is dirty (especially in the winter
when salt is on the roads), you may have noticed streaks along the hood and
sides of the car, or even on the windshield. This is similar to what is
observed with surface oil visualization.

Lastly, there are pressure-sensitive and temperature-sensitive paints that
enable researchers to observe the pressure or temperature distribution along
solid surfaces.

4-3 = PLOTS OF FLUID FLOW DATA

Regardless of how the results are obtained (analytically, experimentally, or
computationally), it is usually necessary to plot flow data in ways that
enable the reader to get a feel for how the flow properties vary in time
and/or space. You are already familiar with time plots, which are especially



useful in turbulent flows (e.g., a velocity component plotted as a function of
time), and xy-plots (e.g., pressure as a function of radius). In this section,
we discuss three additional types of plots that are useful in fluid mechan-
ics—profile plots, vector plots, and contour plots.

Profile Plots

A profile plot indicates how the value of a scalar property varies along some
desired direction in the flow field.

Profile plots are the simplest of the three to understand because they are like
the common xy-plots that you have generated since grade school. Namely,
you plot how one variable y varies as a function of a second variable x. In
fluid mechanics, profile plots of any scalar variable (pressure, temperature,
density, etc.) can be created, but the most common one used in this book is
the velocity profile plot. We note that since velocity is a vector quantity, we
usually plot either the magnitude of velocity or one of the components of
the velocity vector as a function of distance in some desired direction.

For example, one of the timelines in the boundary layer flow of Fig. 4-28
can be converted into a velocity profile plot by recognizing that at a given
instant in time, the horizontal distance traveled by a hydrogen bubble at ver-
tical location y is proportional to the local x-component of velocity u. We
plot u as a function of y in Fig. 4-31. The values of u for the plot can also
be obtained analytically (see Chaps. 9 and 10), experimentally using PIV or
some kind of local velocity measurement device (see Chap. 8), or computa-
tionally (see Chap. 15). Note that it is more physically meaningful in this
example to plot u on the abscissa (horizontal axis) rather than on the ordi-
nate (vertical axis) even though it is the dependent variable, since position y
is then in its proper orientation (up) rather than across.

Finally, it is common to add arrows to velocity profile plots to make them
more visually appealing, although no additional information is provided by
the arrows. If more than one component of velocity is plotted by the arrow,
the direction of the local velocity vector is indicated and the velocity profile
plot becomes a velocity vector plot.

Vector Plots

A vector plot is an array of arrows indicating the magnitude and direction of a
vector property at an instant in time.

While streamlines indicate the direction of the instantaneous velocity field,
they do not directly indicate the magnitude of the velocity (i.e., the speed).
A useful flow pattern for both experimental and computational fluid flows is
thus the vector plot, which consists of an array of arrows that indicate both
magnitude and direction of an instantaneous vector property. We have
already seen an example of a velocity vector plot in Fig. 4-4 and an acceler-
ation vector plot in Fig. 4-14. These were generated analytically. Vector
plots can also be generated from experimentally obtained data (e.g., from
PIV measurements) or numerically from CFD calculations.

To further illustrate vector plots, we generate a two-dimensional flow
field consisting of free-stream flow impinging on a block of rectangular
cross section. We perform CFD calculations, and the results are shown in
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FIGURE 4-31

Profile plots of the horizontal
component of velocity as a function of
vertical distance; flow in the boundary
layer growing along a horizontal flat
plate: (a) standard profile plot and

(b) profile plot with arrows.
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Symmetry plane

FIGURE 4-32

Results of CFD calculations of flow
impinging on a block; (a) streamlines,
(b) velocity vector plot of the upper
half of the flow, and (c) velocity vector
plot, close-up view revealing more
details.

Fig. 4-32. Note that this flow is by nature turbulent and unsteady, but only
the long-time averaged results are calculated and displayed here. Stream-
lines are plotted in Fig. 4-32a; a view of the entire block and a large portion
of its wake is shown. The closed streamlines above and below the symmetry
plane indicate large recirculating eddies, one above and one below the line
of symmetry. A velocity vector plot is shown in Fig. 4-32b. (Only the upper
half of the flow is shown because of symmetry.) It is clear from this plot
that the flow accelerates around the upstream corner of the block, so much
so in fact that the boundary layer cannot negotiate the sharp corner and sep-
arates off the block, producing the large recirculating eddies downstream of
the block. (Note that these velocity vectors are time-averaged values; the
instantaneous vectors change in both magnitude and direction with time as
vortices are shed from the body, similar to those of Fig. 4-25a.) A close-up
view of the separated flow region is plotted in Fig. 4-32c, where we verify
the reverse flow in the lower half of the large recirculating eddy.

Modern CFD codes and postprocessors can add color to a vector plot. For
example, the vectors can be colored according to some other flow property
such as pressure (red for high pressure and blue for low pressure) or tem-
perature (red for hot and blue for cold). In this manner, one can easily visu-
alize not only the magnitude and direction of the flow, but other properties
as well, simultaneously.

Contour Plots

A contour plot shows curves of constant values of a scalar property (or
magnitude of a vector property) at an instant in time.

If you do any hiking, you are familiar with contour maps of mountain trails.
The maps consist of a series of closed curves, each indicating a constant
elevation or altitude. Near the center of a group of such curves is the
mountain peak or valley; the actual peak or valley is a point on the map
showing the highest or lowest elevation. Such maps are useful in that not
only do you get a bird’s-eye view of the streams and trails, etc., but you can
also easily see your elevation and where the trail is flat or steep. In fluid
mechanics, the same principle is applied to various scalar flow properties;
contour plots (also called isocontour plots) are generated of pressure, tem-
perature, velocity magnitude, species concentration, properties of turbu-
lence, etc. A contour plot can quickly reveal regions of high (or low) values
of the flow property being studied.

A contour plot may consist simply of curves indicating various levels of
the property; this is called a contour line plot. Alternatively, the contours
can be filled in with either colors or shades of gray; this is called a filled
contour plot. An example of pressure contours is shown in Fig. 4-33 for
the same flow as in Fig. 4-32. In Fig. 4-33a, filled contours are shown
using shades of gray to identify regions of different pressure levels—dark
regions indicate low pressure and light regions indicate high pressure. It is
clear from this figure that the pressure is highest at the front face of the
block and lowest along the top of the block in the separated zone. The pres-
sure is also low in the wake of the block, as expected. In Fig. 4-33b, the
same pressure contours are shown, but as a contour line plot with labeled
levels of gage pressure in units of pascals.



In CFD, contour plots are often displayed in vivid colors with red usually
indicating the highest value of the scalar and blue the lowest. A healthy
human eye can easily spot a red or blue region and thus locate regions of
high or low value of the flow property. Because of the pretty pictures
produced by CFD, computational fluid dynamics is sometimes given the
nickname “colorful fluid dynamics.”

4-4 - OTHER KINEMATIC DESCRIPTIONS

Types of Motion or Deformation of Fluid Elements
In fluid mechanics, as in solid mechanics, an element may undergo four
fundamental types of motion or deformation, as illustrated in two dimen-
sions in Fig. 4-34: (a) translation, (b) rotation, (c) linear strain (some-
times called extensional strain), and (d) shear strain. The study of fluid
dynamics is further complicated by the fact that all four types of motion or
deformation usually occur simultaneously. Because fluid elements may be
in constant motion, it is preferable in fluid dynamics to describe the motion
and deformation of fluid elements in terms of rates. In particular, we dis-
cuss velocity (rate of translation), angular velocity (rate of rotation), linear
strain rate (rate of linear strain), and shear strain rate (rate of shear strain).
In order for these deformation rates to be useful in the calculation of fluid
flows, we must express them in terms of velocity and derivatives of velocity.
Translation and rotation are easily understood since they are commonly
observed in the motion of solid particles such as billiard balls (Fig. 4-1). A
vector is required in order to fully describe the rate of translation in three
dimensions. The rate of translation vector is described mathematically as
the velocity vector. In Cartesian coordinates,

Rate of translation vector in Cartesian coordinates:

V=ui +0vj +wk 4-19)
In Fig. 4-34a, the fluid element has moved in the positive horizontal (x)
direction; thus u is positive, while v (and w) are zero.

Rate of rotation (angular velocity) at a point is defined as the average
rotation rate of two initially perpendicular lines that intersect at that point.
In Fig. 4-34b, for example, consider the point at the bottom-left corner of
the initially square fluid element. The left edge and the bottom edge of the
element intersect at that point and are initially perpendicular. Both of these
lines rotate counterclockwise, which is the mathematically positive direc-
tion. The angle between these two lines (or between any two initially per-
pendicular lines on this fluid element) remains at 90° since solid body rota-
tion is illustrated in the figure. Therefore, both lines rotate at the same rate,
and the rate of rotation in the plane is simply the component of angular
velocity in that plane.

In the more general, but still two-dimensional case (Fig. 4-35), the fluid
particle translates and deforms as it rotates, and the rate of rotation is calcu-
lated according to the definition given in the previous paragraph. Namely,
we begin at time t; with two initially perpendicular lines (lines a and b in
Fig. 4-35) that intersect at point P in the xy-plane. We follow these lines as
they move and rotate in an infinitesimal increment of time dt = t, — t,. At
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FIGURE 4-33

Contour plots of the pressure field
due to flow impinging on a block,

as produced by CFD calculations;
only the upper half is shown due

to symmetry; (a) filled gray scale
contour plot and (b) contour line plot
where pressure values are displayed
in units of Pa (pascals) gage pressure.
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Fundamental types of fluid element
motion or deformation: (a) translation,
(b) rotation, (c) linear strain, and

(d) shear strain.

Fluid element
attime t,

y
Line a
Fluid element

attime t;

FIGURE 4-35

For a fluid element that translates
and deforms as sketched, the rate of
rotation at point P is defined as the
average rotation rate of two initially
perpendicular lines (lines a and b).

time t,, line a has rotated by angle «,, and line b has rotated by angle «,
and both lines have moved with the flow as sketched (both angle values are
given in radians and are shown mathematically positive in the sketch). The
average rotation angle is thus («, + «,)/2, and the rate of rotation or angu-
lar velocity in the xy-plane is equal to the time derivative of this average
rotation angle,

Rate of rotation of fluid element about point P in Fig. 4-35:

wzd(aa-i-ab):l(avau) (4-20)
dt 2 2\9x oy
It is left as an exercise to prove the right side of Eq. 4-20 where we have writ-
ten w in terms of velocity components u and v in place of angles «, and «,.
In three dimensions, we must define a vector for the rate of rotation at a
point in the flow since its magnitude may differ in each of the three dimen-
sions. Derivation of the rate of rotation vector in three dimensions can be
found in many fluid mechanics books such as Kundu (1990) and White
(1991). The rate of rotation vector is equal to the angular velocity vector
and is expressed in Cartesian coordinates as

Rate of rotation vector in Cartesian coordinates:

- 1 (aw au>? WL (au aw>? L1 <ay au)E
) ay az : 2\oz aX J 2 \ox ay @20
Linear strain rate is defined as the rate of increase in length per unit
length. Mathematically, the linear strain rate of a fluid element depends on
the initial orientation or direction of the line segment upon which we mea-
sure the linear strain. Thus, it cannot be expressed as a scalar or vector
guantity. Instead, we define linear strain rate in some arbitrary direction,
which we denote as the x_-direction. For example, line segment PQ in Fig.
4-36 has an initial length of dx,, and it grows to line segment P’'Q’ as
shown. From the given definition and using the lengths marked in
Fig. 4-36, the linear strain rate in the x_-direction is

_d <M)
foe =g\ PQ

Length of P'Q" in the x,-direction

Length of PQ in the x,-direction

au, (4-22)
U, + dx, | dt + dx, — u, dt - dx,
_d OX,, _du,
Tt dx,, X,

—

Length of PQ in the x,-direction

In Cartesian coordinates, we normally take the x -direction as that of each of
the three coordinate axes, although we are not restricted to these directions.

Linear strain rate in Cartesian coordinates:

- N w _ M (4-23)
T By ay NP
For the more general case, the fluid element moves and deforms as sketched
in Fig. 4-35. It is left as an exercise to show that Eq. 4-23 is still valid for
the general case.



Solid objects such as wires, rods, and beams stretch when pulled. You
should recall from your study of engineering mechanics that when such an
object stretches in one direction, it usually shrinks in direction(s) normal to
that direction. The same is true of fluid elements. In Fig. 4-34c, the origi-
nally square fluid element stretches in the horizontal direction and shrinks
in the vertical direction. The linear strain rate is thus positive horizontally
and negative vertically.

If the flow is incompressible, the net volume of the fluid element must
remain constant; thus if the element stretches in one direction, it must
shrink by an appropriate amount in other direction(s) to compensate. The
volume of a compressible fluid element, however, may increase or decrease
as its density decreases or increases, respectively. (The mass of a fluid ele-
ment must remain constant, but since p = m/V, density and volume are
inversely proportional.) Consider for example a parcel of air in a cylinder
being compressed by a piston (Fig. 4-37); the volume of the fluid element
decreases while its density increases such that the fluid element’s mass is
conserved. The rate of increase of volume of a fluid element per unit vol-
ume is called its volumetric strain rate or bulk strain rate. This kinematic
property is defined as positive when the volume increases. Another syn-
onym of volumetric strain rate is rate of volumetric dilatation, which is
easy to remember if you think about how the iris of your eye dilates
(enlarges) when exposed to dim light. It turns out that the volumetric strain
rate is the sum of the linear strain rates in three mutually orthogonal direc-
tions. In Cartesian coordinates (Eq. 4-23), the volumetric strain rate is thus

Volumetric strain rate in Cartesian coordinates:
1DV 1dV ou v ow

= = = 4-24
VDt Vdt ax ay Iz ( )

In Eq. 4-24, the uppercase D notation is used to stress that we are talking
about the volume following a fluid element, that is to say, the material vol-
ume of the fluid element, as in Eq. 4-12.

The volumetric strain rate is zero in an incompressible flow.

Shear strain rate is a more difficult deformation rate to describe and
understand. Shear strain rate at a point is defined as half of the rate of
decrease of the angle between two initially perpendicular lines that inter-
sect at the point. (The reason for the half will become clear later when we
combine shear strain rate and linear strain rate into one tensor.) In Fig.
4-34d, for example, the initially 90° angles at the lower-left corner and
upper-right corner of the square fluid element decrease; this is by definition
a positive shear strain. However, the angles at the upper-left and lower-right
corners of the square fluid element increase as the initially square fluid ele-
ment deforms; this is a negative shear strain. Obviously we cannot describe
the shear strain rate in terms of only one scalar quantity or even in terms of
one vector quantity for that matter. Rather, a full mathematical description
of shear strain rate requires its specification in any two mutually perpendic-
ular directions. In Cartesian coordinates, the axes themselves are the most
obvious choice, although we are not restricted to these. Consider a fluid ele-
ment in two dimensions in the xy-plane. The element translates and deforms
with time as sketched in Fig. 4-38. Two initially mutually perpendicular
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FIGURE 4-36

Linear strain rate in some arbitrary
direction x,, is defined as the rate of
increase in length per unit length in
that direction. Linear strain rate would
be negative if the line segment length
were to decrease. Here we follow the
increase in length of line segment

PQ into line segment P'Q’, which
yields a positive linear strain rate.
Velocity components and distances are
truncated to first-order since dx,,

and dt are infinitesimally small.

Air parcel

Time t; Timet,

FIGURE 4-37

Air being compressed by a piston
in a cylinder; the volume of a fluid
element in the cylinder decreases,
corresponding to a negative rate
of volumetric dilatation.
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at time t,

Line a u
Fluid element
at time t,

FIGURE 4-38

For a fluid element that translates and
deforms as sketched, the shear strain
rate at point P is defined as half of the
rate of decrease of the angle between
two initially perpendicular lines (lines
aand b).
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FIGURE 4-39

A fluid element illustrating translation,
rotation, linear strain, shear strain, and
volumetric strain.

lines (lines a and b in the x- and y-directions, respectively) are followed.
The angle between these two lines decreases from /2 (90°) to the angle
marked a,_, at t, in the sketch. It is left as an exercise to show that the shear
strain rate at point P for initially perpendicular lines in the x- and y-direc-
tions is given by

Shear strain rate, initially perpendicular lines in the x- and y-directions:

__1d _1<@+(LU)
T T ot 2 \ay | ax

Equation 4-25 can be easily extended to three dimensions. The shear strain
rate is thus

(4-25)

Shear strain rate in Cartesian coordinates:

o975 ay X fam o \ox oz #v =2\ oz ay
Finally, it turns out that we can mathematically combine linear strain rate

and shear strain rate into one symmetric second-order tensor called the
strain rate tensor, which is a combination of Eqgs. 4-23 and 4-26:

Strain rate tensor in Cartesian coordinates:

au 1(au au) 1(au aw)
ax 2\9y odx/ 2\dz ox
& & &
Ty e 1(8v+au> v 1(ay+avv> @2m)
Ei — | € & & = —\ — — —\ —
v e e 2\ox oy ay 2\9z oy
& & &
o }<<'LW+fLU> }<LW+61) ow
2\dx dz) 2\ody oz 0z

The strain rate tensor obeys all the laws of mathematical tensors, such as
tensor invariants, transformation laws, and principal axes.

Figure 4-39 shows a general (although two-dimensional) situation in a
compressible fluid flow in which all possible motions and deformations are
present simultaneously. In particular, there is translation, rotation, linear
strain, and shear strain. Because of the compressible nature of the fluid,
there is also volumetric strain (dilatation). You should now have a better
appreciation of the inherent complexity of fluid dynamics, and the mathe-
matical sophistication required to fully describe fluid motion.

EXAMPLE 4-6 Calculation of Kinematic Properties

in a Two-Dimensional Flow

Consider the steady, two-dimensional velocity field of Example 4-1:
V=(uv)=(05+08x)i + (15— 0.8Y)] )

where lengths are in units of m, time in s, and velocities in m/s. There is a
stagnation point at (=0.625, 1.875) as shown in Fig. 4-40. Streamlines of
the flow are also plotted in Fig. 4-40. Calculate the various kinematic proper-
ties, namely, the rate of translation, rate of rotation, linear strain rate, shear
strain rate, and volumetric strain rate. Verify that this flow is incompressible.



SOLUTION We are to calculate several kinematic properties of a given
velocity field and verify that the flow is incompressible.

Assumptions 1 The flow is steady. 2 The flow is two-dimensional, implying
no z-component of velocity and no variation of v or v with z.

Analysis By Eq. 4-19, the rate of translation is simply the velocity vector
itself, given by Eq. 1. Thus,

Rate of translation:  u = 0.5 + 0.8x v=15-0.8y w =0 (2)

The rate of rotation is found from Eq. 4-21. In this case, since w = 0O
everywhere, and since neither v nor v vary with z the only nonzero compo-
nent of rotation rate is in the zdirection. Thus,

Rate of rotation: o=1 (a—v - B—U)E _1 0—-0k=0 )
2\ox oy 2
In this case, we see that there is no net rotation of fluid particles as they
move about. (This is a significant piece of information, to be discussed in
more detail later in this chapter and also in Chap. 10.)
Linear strain rates can be calculated in any arbitrary direction using Eq.
4-22. In the x-, y-, and zdirections, the linear strain rates of Eq. 4-23 are

au v
s,‘XX:&:O.Ss’1 SW:?y: —-0.8s! g,=0 4)

Thus, we predict that fluid particles stretch in the x-direction (positive linear
strain rate) and shrink in the y-direction (negative linear strain rate). This is
illustrated in Fig. 4-41, where we have marked an initially square parcel of
fluid centered at (0.25, 4.25). By integrating Eqgs. 2 with time, we calculate
the location of the four corners of the marked fluid after an elapsed time of
1.5 s. Indeed this fluid parcel has stretched in the x-direction and has
shrunk in the y-direction as predicted.

Shear strain rate is determined from Eq. 4-26. Because of the two-
dimensionality, nonzero shear strain rates can occur only in the xy-plane.
Using lines parallel to the x- and y-axes as our initially perpendicular lines,
we calculate e,, from Eq. 4-26:

1/0u v 1
=>(=+Z)=20+0=0 5
Exy Z(ay ax) 2( ) )

Thus, there is no shear strain in this flow, as also indicated by Fig. 4-41.

Although the sample fluid particle deforms, it remains rectangular; its initially

90° corner angles remain at 90° throughout the time period of the calculation.
Finally, the volumetric strain rate is calculated from Eq. 4-24:

%%/:exﬁsyﬁsuz(0.8—0.8+0)s*1:0 (6)
Since the volumetric strain rate is zero everywhere, we can say definitively
that fluid particles are neither dilating (expanding) nor shrinking (compress-
ing) in volume. Thus, we verify that this flow is indeed incompressible. In Fig.
4-41, the area of the shaded fluid particle remains constant as it moves and
deforms in the flow field.

Discussion In this example it turns out that the linear strain rates (e,, and ¢,
are nonzero, while the shear strain rates (e,, and its symmetric partner e,
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FIGURE 440

Streamlines for the velocity field

of Example 4-6. The stagnation
point is indicated by the circle at
x=—0.625mandy = 1.875 m.
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FIGURE 4-41

Deformation of an initially square
parcel of marked fluid subjected to
the velocity field of Example 4-6 for
a time period of 1.5 s. The stagnation
point is indicated by the circle at x =
—0.625mandy = 1.875 m, and
several streamlines are plotted.
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FIGURE 442
The direction of a vector cross product
is determined by the right-hand rule.
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FIGURE 443

The vorticity vector is equal to twice
the angular velocity vector of a
rotating fluid particle.

are zero. This means that the x- and y-axes of this flow field are the principal
axes. The (two-dimensional) strain rate tensor in this orientation is thus

= (sxx sxy> _ (0.8 0 >Sfl -
By By 0 -08

If we were to rotate the axes by some arbitrary angle, the new axes would not
be principal axes, and all four elements of the strain rate tensor would be
nonzero. You may recall rotating axes in your engineering mechanics classes
through use of Mohr's circles to determine principal axes, maximum shear
strains, etc. Similar analyses can be performed in fluid mechanics.

Vorticity and Rotationality

We have already defined the rate of rotation vector of a fluid element (see
Eqg. 4-21). A closely related kinematic property is of great importance to the
analysis of fluid flows. Namely, the vorticity vector is defined mathemati-
cally as the curl of the velocity vector V,

\orticity vector: Z = 6 XV = curl(\7) (4-28)

Physically, you can tell the direction of the vorticity vector by using the
right-hand rule for cross product (Fig. 4-42). The symbol £ used for vortic-
ity is the Greek letter zeta. You should note that this symbol for vorticity is
not universal among fluid mechanics textbooks; some authors use the Greek
letter omega (w) while still others use uppercase omega (€2). In this book, @
is used to denote the rate of rotation vector (angular velocity vector) of a
fluid element. It turns out that the rate of rotation vector is equal to half of
the vorticity vector,

5
. = 1 — — 1 — g
Rate of rotation vector: = > VXV=—curl(V) == (4-29)

2 2
Thus, vorticity is a measure of rotation of a fluid particle. Specifically,

Vorticity is equal to twice the angular velocity of a fluid particle (Fig. 4-43).

If the vorticity at a point in a flow field is nonzero, the fluid particle that
happens to occupy that point in space is rotating; the flow in that region is
called rotational. Likewise, if the vorticity in a region of the flow is zero
(or negligibly small), fluid particles there are not rotating; the flow in that
region is called irrotational. Physically, fluid particles in a rotational region
of flow rotate end over end as they move along in the flow. For example,
fluid particles within the viscous boundary layer near a solid wall are rota-
tional (and thus have nonzero vorticity), while fluid particles outside the
boundary layer are irrotational (and their vorticity is zero). Both of these
cases are illustrated in Fig. 4-44.

Rotation of fluid elements is associated with wakes, boundary layers, flow
through turbomachinery (fans, turbines, compressors, etc.), and flow with
heat transfer. The vorticity of a fluid element cannot change except through
the action of viscosity, nonuniform heating (temperature gradients), or other
nonuniform phenomena. Thus if a flow originates in an irrotational region,
it remains irrotational until some nonuniform process alters it. For example,
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air entering an inlet from quiescent (still) surroundings is irrotational and
remains so unless it encounters an object in its path or is subjected to
nonuniform heating. If a region of flow can be approximated as irrotational,
the equations of motion are greatly simplified, as you will see in Chap. 10.

In Cartesian coordinates, (i, j, K), (x, y, z), and (u, v, w), Eq. 4-28 can be
expanded as follows:

\orticity vector in Cartesian coordinates:

- <aw 81/)? (au aw>? (81/ au)a
(=(——-—=)i+|l=——=)]+[=—=)k
ay oz 9z X X oy

If the flow is two-dimensional in the xy-plane, the z-component of velocity
(w) is zero and neither u nor v varies with z. Thus the first two components
of Eq. 4-30 are identically zero and the vorticity reduces to

(4-30)

Two-dimensional flow in Cartesian coordinates:

- Jdv  Jdu\’
=——=—]k
i-(5-5)

Note that if a flow is two-dimensional in the xy-plane, the vorticity vector
must point in either the z- or —z-direction (Fig. 4-45).

(4-31)

: EXAMPLE 4-7 Vorticity Contours in a Two-Dimensional Flow

® Consider the CFD calculation of two-dimensional free-stream flow impinging
m on a block of rectangular cross section, as shown in Figs. 4-32 and 4-33.
m Plot vorticity contours and discuss.
|
SOLUTION We are to calculate the vorticity field for a given velocity field
produced by CFD and then generate a contour plot of vorticity.
Analysis Since the flow is two-dimensional, the only nonzero component of
vorticity is in the zdirection, normal to the page in Figs. 4-32 and 4-33. A
contour plot of the zcomponent of vorticity for this flow field is shown in Fig.
4-46. The dark region near the upper-left corner of the block indicates large
negative values of vorticity, implying clockwise rotation of fluid particles in
that region. This is due to the large velocity gradients encountered in this por-
tion of the flow field; the boundary layer separates off the wall at the corner of
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FIGURE 4-44

The difference between rotational and
irrotational flow: fluid elements in a
rotational region of the flow rotate, but
those in an irrotational region of the

flow do not.
g
2| T
T I b
-
FIGURE 4-45

For a two-dimensional flow in the
xy-plane, the vorticity vector always
points in the z- or —z-direction. In

this illustration, the flag-shaped fluid
particle rotates in the counterclockwise
direction as it moves in the xy-plane;
its vorticity points in the positive
z-direction as shown.

[ FLOW

Block

Symmetry plane

FIGURE 4-46

Contour plot of the vorticity field ¢,
due to flow impinging on a block,
as produced by CFD calculations;
only the upper half is shown due to
symmetry. Dark regions represent
large negative vorticity, and light
regions represent large positive
vorticity.
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Deformation of an initially square
fluid parcel subjected to the velocity
field of Example 4-8 for a time period
of 0.25 s and 0.50 s. Several streamlines
are also plotted in the first quadrant. It
is clear that this flow is rotational.

the body and forms a thin shear layer across which the velocity changes
rapidly. The concentration of vorticity in the shear layer diminishes as vorticity
diffuses downstream. The small lightly shaded region near the top right corner
of the block represents a region of positive vorticity (counterclockwise rota-
tion)—a secondary flow pattern caused by the flow separation.

Discussion We expect the magnitude of vorticity to be highest in regions
where spatial derivatives of velocity are high (see Eq. 4-30). Close examina-
tion reveals that the dark region in Fig. 4-46 does indeed correspond to
large velocity gradients in Fig. 4-32. Keep in mind that the vorticity field of
Fig. 4-46 is time-averaged. The instantaneous flow field is in reality turbu-
lent and unsteady, and vortices are shed from the bluff body.

EXAMPLE 4-8 Determination of Rotationality
in a Two-Dimensional Flow

Consider the following steady, incompressible, two-dimensional velocity field:
V=(uv)= x2i + (—2xy — 1)T (1)
Is this flow rotational or irrotational? Sketch some streamlines in the first

quadrant and discuss.

SOLUTION We are to determine whether a flow with a given velocity field is
rotational or irrotational, and we are to draw some streamlines in the first

quadrant.
Analysis Since the flow is two-dimensional, Eq. 4-31 is valid. Thus,
- v
\orticity: =|— k=(-2 0)k = —2yk 2
y ¢ (ax ay> (=2y - 0) y @

Since the vorticity is nonzero, this flow is rotational. In Fig. 4-47 we plot
several streamlines of the flow in the first quadrant; we see that fluid moves
downward and to the right. The translation and deformation of a fluid parcel
is also shown: at At = 0, the fluid parcel is square, at At = 0.25 s, it has
moved and deformed, and at Af = 0.50 s, the parcel has moved farther and
is further deformed. In particular, the right-most portion of the fluid parcel
moves faster to the right and faster downward compared to the left-most por-
tion, stretching the parcel in the x-direction and squashing it in the vertical
direction. It is clear that there is also a net clockwise rotation of the fluid
parcel, which agrees with the result of Eq. 2.

Discussion From Eq 4— 29 individual fluid particles rotate at an angular
velocity equal to o= fyk half of the vorticity vector. Since @ is not con-
stant, this flow is not solid-body rotation. Rather,  is a linear function of y.
Further analysis reveals that this flow field is incompressible; the shaded
areas representing the fluid parcel in Fig. 4-47 remain constant at all three
instants in time.

In cylindrical coordinates, (€,, €, €,), (r, 6, z), and (u,, U,, U,), Eq. 4-28

can be expanded as
Vorticity vector in cylindrical coordinates:

N 10u Uy )\, ou au,\ 1/0(ru au,\
{ = (7,—2 — —”)er + (—r - ,—Z)eH + 7( (rua) _ ,—’)ez (4-32)
r a0 0z 0z ar r\ oar a6



For two-dimensional flow in the ro-plane, Eq. 4-32 reduces to

Two-dimensional flow in cylindrical coordinates:

- 1/0(ru Jau,\-
{ = f( (rus) _ —’)k (4-33)
r\ or J0

where K is used as the unit vector in the z-direction in place of €,. Note that
if a flow is two-dimensional in the r6-plane, the vorticity vector must point
in either the z- or —z-direction (Fig. 4-48).

Comparison of Two Circular Flows

Not all flows with circular streamlines are rotational. To illustrate this point,
we consider two incompressible, steady, two-dimensional flows, both of
which have circular streamlines in the r-plane:

Flow A—solid-body rotation: u =20 and Ug = or (4-34)

Flow B—line vortex: u =20 and Up=— (4-35)

where w and K are constants. (Alert readers will note that u, in Eq. 4-35 is
infinite at r = 0, which is of course physically impossible; we ignore the
region close to the origin to avoid this problem.) Since the radial component
of velocity is zero in both cases, the streamlines are circles about the origin.
The velocity profiles for the two flows, along with their streamlines, are
sketched in Fig. 4-49. We now calculate and compare the vorticity field for
each of these flows, using Eq. 4-33.

. . 2 1 a(wrz) - -
Flow A—solid-body rotation: { = T T 0 |k = 2wk (4-36)
i 1/0(K -
Flow B—line vortex: (= ?(% - O)k =0 (4-37)

Not surprisingly, the vorticity for solid-body rotation is nonzero. In fact, it is
a constant of magnitude twice the angular velocity and pointing in the same
direction. (This agrees with Eq. 4-29.) Flow A is rotational. Physically, this
means that individual fluid particles rotate as they revolve around the origin
(Fig. 4-49a). By contrast, the vorticity of the line vortex is identically zero
everywhere (except right at the origin, which is a mathematical singularity).
Flow B is irrotational. Physically, fluid particles do not rotate as they
revolve in circles about the origin (Fig. 4-49b).

A simple analogy can be made between flow A and a merry-go-round or
roundabout, and flow B and a Ferris wheel (Fig. 4-50). As children revolve
around a roundabout, they also rotate at the same angular velocity as that of
the ride itself. This is analogous to a rotational flow. In contrast, children on
a Ferris wheel always remain oriented in an upright position as they trace
out their circular path. This is analogous to an irrotational flow.
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FIGURE 4-48

For a two-dimensional flow in the
ro-plane, the vorticity vector always
points in the z (or —2z) direction. In
this illustration, the flag-shaped fluid
particle rotates in the clockwise
direction as it moves in the r6-plane;
its vorticity points in the —z-direction
as shown.

Flow A Ug

@ Up=wr

Flow B Uy

FIGURE 4-49

Streamlines and velocity profiles for
(a) flow A, solid-body rotation and
(b) flow B, a line vortex. Flow A is
rotational, but flow B is irrotational

everywhere except at the origin.
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Streamlines

FIGURE 4-51
Streamlines in the r6-plane for the
case of a line sink.

@) (b)

FIGURE 4-50

A simple analogy: (a) rotational circular flow is analogous to a roundabout,
while (b) irrotational circular flow is analogous to a Ferris wheel.

© Robb Gregg/PhotoEdit

EXAMPLE 4-9 Determination of Rotationality of a Line Sink

A simple two-dimensional velocity field called a line sink is often used to
simulate fluid being sucked into a line along the zaxis. Suppose the volume
flow rate per unit length along the z-axis, V/L, is known, where V is a nega-
tive quantity. In two dimensions in the rd-plane,

v 1

Line sink: u, = 7L T
T

and u, =0 (1)
Draw several streamlines of the flow and calculate the vorticity. Is this flow
rotational or irrotational?

SOLUTION Streamlines of the given flow field are to be sketched and the
rotationality of the flow is to be determined.

Analysis Since there is only radial flow and no tangential flow, we know
immediately that all streamlines must be rays into the origin. Several stream-
lines are sketched in Fig. 4-51. The vorticity is calculated from Eq. 4-33:

7 _L(3u) 5 )ﬂ_z( a<vl>)ﬁ_
é'V_r( ar aeu'k_ro 90 \2m7L r $=0 2l

Since the vorticity vector is everywhere zero, this flow field is irrotational.
Discussion Many practical flow fields involving suction, such as flow into
inlets and hoods, can be approximated quite accurately by assuming irrota-
tional flow (Heinsohn and Cimbala, 2003).

4-5 = THE REYNOLDS TRANSPORT THEOREM

In thermodynamics and solid mechanics we often work with a system (also
called a closed system), defined as a quantity of matter of fixed identity. In
fluid dynamics, it is more common to work with a control volume (also



called an open system), defined as a region in space chosen for study. The
size and shape of a system may change during a process, but no mass
crosses its boundaries. A control volume, on the other hand, allows mass to
flow in or out across its boundaries, which are called the control surface. A
control volume may also move and deform during a process, but many real-
world applications involve fixed, nondeformable control volumes.

Figure 4-52 illustrates both a system and a control volume for the case of
deodorant being sprayed from a spray can. When analyzing the spraying
process, a natural choice for our analysis is either the moving, deforming
fluid (a system) or the volume bounded by the inner surfaces of the can (a
control volume). These two choices are identical before the deodorant is
sprayed. When some contents of the can are discharged, the system
approach considers the discharged mass as part of the system and tracks it
(a difficult job indeed); thus the mass of the system remains constant. Con-
ceptually, this is equivalent to attaching a flat balloon to the nozzle of the
can and letting the spray inflate the balloon. The inner surface of the bal-
loon now becomes part of the boundary of the system. The control volume
approach, however, is not concerned at all with the deodorant that has
escaped the can (other than its properties at the exit), and thus the mass of
the control volume decreases during this process while its volume remains
constant. Therefore, the system approach treats the spraying process as an
expansion of the system’s volume, whereas the control volume approach
considers it as a fluid discharge through the control surface of the fixed con-
trol volume.

Most principles of fluid mechanics are adopted from solid mechanics,
where the physical laws dealing with the time rates of change of extensive
properties are expressed for systems. In fluid mechanics, it is usually more
convenient to work with control volumes, and thus there is a need to relate
the changes in a control volume to the changes in a system. The relationship
between the time rates of change of an extensive property for a system and
for a control volume is expressed by the Reynolds transport theorem
(RTT), which provides the link between the system and control volume
approaches (Fig. 4-53). RTT is named after the English engineer, Osborne
Reynolds (1842-1912), who did much to advance its application in fluid
mechanics.

The general form of the Reynolds transport theorem can be derived by
considering a system with an arbitrary shape and arbitrary interactions, but
the derivation is rather involved. To help you grasp the fundamental mean-
ing of the theorem, we derive it first in a straightforward manner using a
simple geometry and then generalize the results.

Consider flow from left to right through a diverging (expanding) portion
of a flow field as sketched in Fig. 4-54. The upper and lower bounds of the
fluid under consideration are streamlines of the flow, and we assume uni-
form flow through any cross section between these two streamlines. We
choose the control volume to be fixed between sections (1) and (2) of the
flow field. Both (1) and (2) are normal to the direction of flow. At some ini-
tial time t, the system coincides with the control volume, and thus the sys-
tem and control volume are identical (the shaded region in Fig. 4-54). Dur-
ing time interval At, the system moves in the flow direction at uniform
speeds V, at section (1) and V, at section (2). The system at this later time is
indicated by the hatched region. The region uncovered by the system during
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Two methods of analyzing the
spraying of deodorant from a spray
can: (a) We follow the fluid as it
moves and deforms. This is the system
approach—no mass crosses the
boundary, and the total mass of the
system remains fixed. (b) We consider

a fixed interior volume of the can. This

is the control volume approach—mass
crosses the boundary.

Control
volume

FIGURE 4-53

The Reynolds transport theorem
(RTT) provides a link between the
system approach and the control
volume approach.
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Control volume at time t + At
(CV remains fixed in time)

System (material volume)
and control volume at time t
(shaded region)

System at time t + At
(hatched region)

nal o

Inflow during At

Outflow during At

Attime t: Sys=CV
Attimet+At: Sys=CV -1+l

FIGURE 4-54

A moving system (hatched region) and
a fixed control volume (shaded region)
in a diverging portion of a flow field at
times tand t + At. The upper and lower
bounds are streamlines of the flow.

this motion is designated as section | (part of the CV), and the new region
covered by the system is designated as section Il (not part of the CV).
Therefore, at time t + At, the system consists of the same fluid, but it occu-
pies the region CV — | + II. The control volume is fixed in space, and thus
it remains as the shaded region marked CV at all times.

Let B represent any extensive property (such as mass, energy, or momen-
tum), and let b = B/m represent the corresponding intensive property. Not-
ing that extensive properties are additive, the extensive property B of the
system at times t and t + At can be expressed as

Bgys.t = Bev t (the system and CV concide at time t)
Bsys,t+m = BCV,HAt - BI,HAt + BII,HAt
Subtracting the first equation from the second one and dividing by At gives

Bsys,t+At - Bsys,t _ Bcv,t+At - Bcv,t BI,t+At I BH,t+At

At At At At
Taking the limit as At — 0, and using the definition of derivative, we get
dBgyys  dBoy - .
= — By, +B 4-38
dt dt n out ( )
or
dBys dB
at dfv = bip ViAL + Dyp, VoA,
since
Bl t+at = DMy a0 = b1p1Vi trae = D1p Vi At Ay
Bi t+at = DoMyy a0 = B2paVyy tiae = bopaVo At A,
and
. . Bitear - bypsVi AtA,
Bn=Bi= im =y S Am Ty e
. . B byp,V, At A
BOUt = B” = Iim I e at = Iim 2p2 2 2 = bzszz Az

A0 At At—0 At

where A; and A, are the cross-sectional areas at locations 1 and 2. Equation
4-38 states that the time rate of change of the property B of the system is
equal to the time rate of change of B of the control volume plus the net flux
of B out of the control volume by mass crossing the control surface. This is
the desired relation since it relates the change of a property of a system to
the change of that property for a control volume. Note that Eq. 4-38 applies
at any instant in time, where it is assumed that the system and the control
volume occupy the same space at that particular instant in time.

The influx B;, and outflux B, of the property B in this case are easy to
determine since there is only one inlet and one outlet, and the velocities are
normal to the surfaces at sections (1) and (2). In general, however, we may
have several inlet and outlet ports, and the velocity may not be normal to
the control surface at the point of entry. Also, the velocity may not be uni-
form. To generalize the process, we consider a differential surface area dA
on the control surface and denote its unit outer normal by n. The flow rate



of property b through dA is pb\7 - dA since the dot product V. n gives the
normal component of the velocity. Then the net rate of outflow through the
entire control surface is determined by integration to be (Fig. 4-55)
Bret = Bow — Bin = J pbV - i dA  (inflow if negative) (4-39)
CS
An important aspect of this relation is that it automatically subtracts the
inflow from the outflow, as explained next. The dot product of the velocity
vector at a point on the control surface and the outer normal at that point is
V- i = V| cos 6 = V|cos 6, where 6 is the angle between the velocity
vector and the outer normal as shown in Fig. 4-56. For 6 < 90°, we have
cos § > 0 and thus V - n > 0 for outflow of mass from the control volume,
and for @ > 90°, we have cos @ < 0 and thus V - n < 0 for inflow of mass
into the control volume. Therefore, the differential quantity pr n dA is
positive for mass flowing out of the control volume, and negative for mass
flowing into the control volume, and its integral over the entire control sur-
face gives the rate of net outflow of the property B by mass.
The properties within the control volume may vary with position, in gen-
eral. In such a case, the total amount of property B within the control vol-
ume must be determined by integration:

cv

The term dB,/dt in Eq. 4-38 is thus equal to% J pb dV, and represents
CcVv
the time rate of change of the property B content of the control volume. A
positive value for dB,/dt indicates an increase in the B content, and a neg-
ative value indicates a decrease. Substituting Egs. 4-39 and 4-40 into Eq.
4-38 yields the Reynolds transport theorem, also known as the system-to-
control-volume transformation for a fixed control volume:
" i stys d J J =
RTT, fixed CV: =— | phdV+ | pbV-AdA
dt dt )., s

Since the control volume is not moving or deforming with time, the time
derivative on the right-hand side can be moved inside the integral, since the
domain of integration does not change with time. (In other words, it is irrel-
evant whether we differentiate or integrate first.) But the time derivative in
that case must be expressed as a partial derivative (9/0t) since density and
the quantity b may depend on the position within the control volume. Thus,
an alternate form of the Reynolds transport theorem for a fixed control vol-
ume is

(4-41)

dBsys

dt

Equation 4-41 was derived for a fixed control volume. However, many
practical systems such as turbine and propeller blades involve nonfixed con-
trol volumes. Fortunately, Eq. 4-41 is also valid for moving and/or deform-
ing control volumes provided that the absolute fluid velocity V in the last
term is replaced by the relative velocity Vr,

Alternate RTT, fixed CV:

0 -
=J ‘—(pb)dv+prv-ndA (4-42)
CV(:)t CSs
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The integral of bpV - 1i dA over the
control surface gives the net amount
of the property B flowing out of the
control volume (into the control
volume if it is negative) per unit time.

"oy n
\
dA
9 dA ™0
Outflow: Inflow: v
0 < 90° 6 >90°

V -f=|V|R|cosf=Vcosd

If 6 < 90°, then cos 6 > 0 (outflow).
If 6 > 90°, then cos 6 < 0 (inflow).
If 6 = 90°, then cos 6 = 0 (no flow).

FIGURE 4-56
Outflow and inflow of mass across the
differential area of a control surface.
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FIGURE 4-57

Relative velocity crossing a control
surface is found by vector addition
of the absolute velocity of the fluid
and the negative of the local velocity
of the control surface.

Absolute reference frame:

Control volume

SN

Relative reference frame:

Control volume

N

FIGURE 4-58

Reynolds transport theorem applied to
a control volume moving at constant
velocity.

Relative velocity: \7r =V - \7CS (4-43)

where \7CS is the local velocity of the control surface (Fig. 4-57). The most
general form of the Reynolds transport theorem is thus

) dBys d S5
RTT, nonfixed CV: =— pbdV + pbV, - ndA (4-44)
dt dt )., s

Note that for a control volume that moves and/or deforms with time, the
time derivative must be applied after integration, as in Eq. 4-44. As a simple
example of a moving control volume, consider a toy car moving at a con-
stant absolute velocity V., = 10 km/h to the right. A high-speed jet of water
(absolute velocity = Vj,, = 25 km/h to the right) strikes the back of the car
and propels it (Fig. 4-58). If we draw a control volume around the car, the
relative velocity is V, = 25 — 10 = 15 km/h to the right. This represents
the velocity at which an observer moving with the control volume (moving
with the car) would observe the fluid crossing the control surface. In other
words, V, is the fluid velocity expressed relative to a coordinate system
moving with the control volume.

Finally, by application of the Leibnitz theorem, it can be shown that the
Reynolds transport theorem for a general moving and/or deforming control
volume (Eq. 4-44) is equivalent to the form given by Eq. 4-42, which is
repeated here:

dB ) .
Alternate RTT, nonfixed CV: P _ [ L (pb) dV + J pbV - i dA (4-45)
dt ov ot cs

In contrast to Eq. 4-44, the velocity vector Vin Eq. 4-45 must be taken as
the absolute velocity (as viewed from a fixed reference frame) in order to
apply to a nonfixed control volume.

During steady flow, the amount of the property B within the control vol-
ume remains constant in time, and thus the time derivative in Eq. 4-44
becomes zero. Then the Reynolds transport theorem reduces to

dByys L
RTT, steady flow: m = pbV, - ndA (4-46)
Cs

Note that unlike the control volume, the property B content of the system
may still change with time during a steady process. But in this case the
change must be equal to the net property transported by mass across the
control surface (an advective rather than an unsteady effect).

In most practical engineering applications of the RTT, fluid crosses the
boundary of the control volume at a finite number of well-defined inlets and
outlets (Fig. 4-59). In such cases, it is convenient to cut the control surface
directly across each inlet and outlet and replace the surface integral in Eq.
4-44 with approximate algebraic expressions at each inlet and outlet based
on the average values of fluid properties crossing the boundary. We define
Pavg Pavgr @Nd 'V, 4 as the average values of p, b, and V,, respectively, across

an inlet or outlet of cross-sectional area A [e.g., b,y = (1/A) J b dA]. The
A



surface integrals in the RTT (Eq. 4-44), when applied over an inlet or outlet
of cross-sectional area A, are then approximated by pulling property b out
of the surface integral and replacing it with its average. This yields

J;mﬁnﬁdAEbwngQ»ﬁdA=bwmn

A A
where m, is the mass flow rate through the inlet or outlet relative to the
(moving) control surface. The approximation in this equation is exact when
property b is uniform over cross-sectional area A. Equation 4-44 thus
becomes

stys d . .
=— | pbdV+ D mby, — D m, by, 4-47)
dt dt cv out for each outlet in for each inlet

In some applications, we may wish to rewrite Eq. 4-47 in terms of volume
(rather than mass) flow rate. In such cases, we make a further approxima-
tion that m, =~ PavgVr = PavgVr, avgA. This approximation is exact when fluid
density p is uniform over A. Equation 4-47 then reduces to

Approximate RTT for well-defined inlets and outlets:

stys d
= . pbdV+ E pavgbavgvr, avg A— E pavgbavgvr,avg A
dt dt cv out in

(4-48)

for each outlet for each inlet

Note that these approximations simplify the analysis greatly but may not
always be accurate, especially in cases where the velocity distribution
across the inlet or outlet is not very uniform (e.g., pipe flows; Fig. 4-59). In
particular, the control surface integral of Eq. 4-45 becomes nonlinear when
property b contains a velocity term (e.g., when applying RTT to the linear
momentum equation, b = V), and the approximation of Eq. 4-48 leads to
errors. Fortunately we can eliminate the errors by including correction fac-
tors in Eq. 4-48, as discussed in Chaps. 5 and 6.

Equations 4-47 and 4-48 apply to fixed or moving control volumes, but
as discussed previously, the relative velocity must be used for the case of a
nonfixed control volume. In Eq. 4-47 for example, the mass flow rate m, is
relative to the (moving) control surface, hence the r subscript.

*Alternate Derivation of the Reynolds

Transport Theorem

A more elegant mathematical derivation of the Reynolds transport theorem
is possible through use of the Leibnitz theorem (see Kundu, 1990). You are
probably familiar with the one-dimensional version of this theorem, which
allows you to differentiate an integral whose limits of integration are func-
tions of the variable with which you need to differentiate (Fig. 4-60):

One-dimensional Leibnitz theorem:

d x=h(t) b oG
—J G(x,t)dx=J—dx+
dt ) _ ot

x=a(t) a

db

— 4-49
at ( )

G&Q—%G@o

* This section may be omitted without loss of continuity.
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FIGURE 4-59

An example control volume in which
there is one well-defined inlet (1) and
two well-defined outlets (2 and 3). In
such cases, the control surface integral
in the RTT can be more conveniently
written in terms of the average values
of fluid properties crossing each inlet
and outlet.

G(x, 1)

x = b(t)
j G(x, t) dx
x = a(t)

a(t) b(t) X

FIGURE 4-60

The one-dimensional Leibnitz theorem
is required when calculating the time
derivative of an integral (with respect
to x) for which the limits of the
integral are functions of time.
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The Leibnitz theorem takes into account the change of limits a(t) and b(t)
with respect to time, as well as the unsteady changes of integrand G(x, t)
with time.

EXAMPLE 4-10 One-Dimensional Leibnitz Integration

Reduce the following expression as far as possible:

d x=Ct X
F(t) = &J e dx (1)
x=0

SOLUTION F(1) is to be evaluated from the given expression.

Analysis We could try integrating first and then differentiating, but since
Eq. 1 is of the form of Eq. 4-49, we use the one-dimensional Leibnitz theo-
rem. Here, G(x, t) = e (G is not a function of time in this simple exam-
ple). The limits of integration are a(f) = 0 and b(#) = Ct. Thus,

%2

b
F(t) = J ﬁdx+d—6(b t) - G(a ) - Ft)=Ce™ @)

At ——
0 T e 0
Discussion You are welcome to try to obtain the same solution without using
the Leibnitz theorem.

In three dimensions, the Leibnitz theorem for a volume integral is

Three-dimensional Leibnitz theorem:
G(x,y,z t)dV
Ut

) -
EJ G(x,y,z,t)d\/zj ﬁdV+J GV, - dA (4-50)
At)

dt t
V(1) V() v(t)

/_\ where Ut) is a moving and/or deforming volume (a function of time), A(t)
is its surface (boundary), and VA is the absolute velocity of this (moving)
surface (Fig. 4-61). Equation 4-50 is valid for any volume, moving and/or
deforming arbitrarily in space and time. For consistency with the previous
analyses, we set integrand G to pb for application to fluid flow,

Three-dimensional Leibnitz theorem applied to fluid flow:

%J pde=J %(pb)d\/-ﬁ-J pbV, - A dA (4-51)
v(t) v(t) At)

If we apply the Leibnitz theorem to the special case of a material volume

(a system of fixed identity moving with the fluid flow), then VA v / every-

where on the material surface since it moves with the fluid. Here V is the

local fluid velocity, and Eq. 4-51 becomes

FIGURE 4-61

The three-dimensional Leibnitz o ] ]
theorem is required when calculating Leibnitz theorem applied to a material volume:

the time derivative of a volume dBgys -

integral for which the volume itself f pbdV = = f —(pb)dV + J pbV - i dA (4-52)
L dt dt at

moves and/or deforms with time. It _ oo Ve A

turns out that the three-dimensional Equation 4-52 is valid at any instant in time t. We define our control vol-

form of the Leibnitz theorem can be ume such that at this time t, the control volume and the system occupy the

used in an alternative derivation of same space; in other words, they are coincident. At some later time t + At,

the Reynolds transport theorem. the system has moved and deformed with the flow, but the control volume



may have moved and deformed differently (Fig. 4-62). The key, however, is
that at time t, the system (material volume) and control volume are one and
the same. Thus, the volume integral on the right-hand side of Eq. 4-52 can
be evaluated over the control volume at time t, and the surface integral can
be evaluated over the control surface at time t. Hence,

dB : .

General RTT, nonfixed CV: P _ J 2 (pb) dV + J pbV - AdA (4-53)
dt cv at CS

This expression is identical to that of Eq. 4-45 and is valid for an arbitrarily

shaped, moving, and/or deforming control volume at time t. Keep in mind

that V in Eq. 4-53 is the absolute fluid velocity.

EXAMPLE 4-11 Reynolds Transport Theorem
in Terms of Relative Velocity

Beginning with the Leibnitz theorem and the general Reynolds transport the-
orem for an arbitrarily moving and deforming control volume, Eq. 4-53,
prove that Eq. 4-44 is valid.

SOLUTION Equation 4-44 is to be proven.

Analysis The general three-dimensional version of the Leibnitz theorem, Eq.
4-50, applies to any volume. We choose to apply it to the control volume of
interest, which can be moving and/or deforming differently than the material
volume (Fig. 4-62). Setting G to pb, Eq. 4-50 becomes

d d -
EJ pde=J *(pb)dV-i-J pbVes - T dA Q)]
t Ccv cv at CS
We solve Eq. 4-53 for the control volume integral,
9 dB .
J Z(pb)dv = SyS—J pbV - 7t dA @
- ot dt les
Substituting Eq. 2 into Eq. 1, we get
d stys - S = N
— | pbdV= — | pbV-ndA + pbVes - ndA (3)
dt CcVv dt Cs Cs
Combining the last two terms and rearranging,
dB d = =
Sys:—J pde+J pb(V — Vo) - i dA @
dt dt J, -
But recall that the relative velocity is defined by Eq. 4-43. Thus,
. . . stys d =
RTT in terms of relative velocity: T pbdV + pbV, - ndA (5)

Ccv Cs

Discussion Equation 5 is indeed identical to Eq. 4-44, and the power and
elegance of the Leibnitz theorem are demonstrated.

Relationship between Material Derivative and RTT

You may have noticed a similarity or analogy between the material derivative
discussed in Section 4-1 and the Reynolds transport theorem discussed here.
In fact, both analyses represent methods to transform from fundamentally
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System (material volume)

and control volume at time t

System at time t + At

Control volume at time t + At

FIGURE 4-62

The material volume (system) and
control volume occupy the same space
at time t (the blue shaded area), but
move and deform differently. At a
later time they are not coincident.
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Eulerian
description

Lagrangian concepts to Eulerian interpretations of those concepts. While the
Reynolds transport theorem deals with finite-size control volumes and the
material derivative deals with infinitesimal fluid particles, the same funda-
] mental physical interpretation applies to both (Fig. 4-63). In fact, the

Lagrangian D
description Dt

Reynolds transport theorem can be thought of as the integral counterpart of
the material derivative. In either case, the total rate of change of some prop-

System Control erty following an identified portion of fluid consists of two parts: There is a
analysis || RTT | — ;’r?a'“””;f; local or unsteady part that accounts for changes in the flow field with time
Y (compare the first term on the right-hand side of Eq. 4-12 to that of Eq. 4-

FIGURE 4-63 45). There is also an advective part that accounts for the movement of fluid

from one region of the flow to another (compare the second term on the
right-hand sides of Eqgs. 4-12 and 4-45).

Just as the material derivative can be applied to any fluid property, scalar
or vector, the Reynolds transport theorem can be applied to any scalar or
vector property as well. In Chaps. 5 and 6, we apply the Reynolds transport
theorem to conservation of mass, energy, momentum, and angular momen-
tum by choosing parameter B to be mass, energy, momentum, and angular
momentum, respectively. In this fashion we can easily convert from the fun-
damental system conservation laws (Lagrangian viewpoint) to forms that are
valid and useful in a control volume analysis (Eulerian viewpoint).

The Reynolds transport theorem for
finite volumes (integral analysis) is
analogous to the material derivative
for infinitesimal volumes (differential
analysis). In both cases, we transform
from a Lagrangian or system viewpoint
to an Eulerian or control volume
viewpoint.

SUMMARY

Fluid kinematics is concerned with describing fluid motion,
without necessarily analyzing the forces responsible for such
motion. There are two fundamental descriptions of fluid
motion—Lagrangian and Eulerian. In a Lagrangian descrip-
tion, we follow individual fluid particles or collections of
fluid particles, while in the Eulerian description, we define a
control volume through which fluid flows in and out. We
transform equations of motion from Lagrangian to Eulerian
through use of the material derivative for infinitesimal fluid
particles and through use of the Reynolds transport theorem
(RTT) for systems of finite volume. For some extensive prop-
erty B or its corresponding intensive property b,
b b

D —> =
Material derivative: —=—+(V-V)b
Dt ot

General RTT, nonfixed CV:

dB .
Sys:J i(pb)o|v+J pbV - 7t dA
dt Cvat cs

In both equations, the total change of the property following a
fluid particle or following a system is composed of two parts:
a local (unsteady) part and an advective (movement) part.
There are various ways to visualize and analyze flow
fields—streamlines, streaklines, pathlines, timelines, surface

imaging, shadowgraphy, schlieren imaging, profile plots, vec-
tor plots, and contour plots. We define each of these and pro-
vide examples in this chapter. In general unsteady flow,
streamlines, streaklines, and pathlines differ, but in steady
flow, streamlines, streaklines, and pathlines are coincident.
Four fundamental rates of motion (deformation rates) are
required to fully describe the kinematics of a fluid flow: veloc-
ity (rate of translation), angular velocity (rate of rotation), lin-
ear strain rate, and shear strain rate. Vorticity is a property of
fluid flows that indicates the rotationality of fluid particles.

Vorticity vector: £ = V X V = curl(V) = 26

A region of flow is irrotational if the vorticity is zero in that
region.

The concepts learned in this chapter are used repeatedly
throughout the rest of the book. We use the RTT to transform
the conservation laws from closed systems to control vol-
umes in Chaps. 5 and 6, and again in Chap. 9 in the deriva-
tion of the differential equations of fluid motion. The role of
vorticity and irrotationality is revisited in greater detail in
Chap. 10 where we show that the irrotationality approxima-
tion leads to greatly reduced complexity in the solution of
fluid flows. Finally, we use various types of flow visualiza-
tion and data plots to describe the kinematics of example
flow fields in nearly every chapter of this book.
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Fluidic actuators are devices that use fluid logic circuits to produce oscilla-
tory velocity or pressure perturbations in jets and shear layers for delaying
separation, enhancing mixing, and suppressing noise. Fluidic actuators are
potentially useful for shear flow control applications for many reasons: they
have no moving parts; they can produce perturbations that are controllable in
frequency, amplitude, and phase; they can operate in harsh thermal environ-
ments and are not susceptible to electromagnetic interference; and they are
easy to integrate into a functioning device. Although fluidics technology has
been around for many years, recent advances in miniaturization and micro-
fabrication have made them very attractive candidates for practical use. The
fluidic actuator produces a self-sustaining oscillatory flow using the princi-
ples of wall attachment and backflow that occur within miniature passages of
the device.

Figure 4-64 demonstrates the application of a fluidic actuator for jet thrust
vectoring. Fluidic thrust vectoring is important for future aircraft designs,
since they can improve maneuverability without the complexity of additional
surfaces near the nozzle exhaust. In the three images of Fig. 4-64, the pri-
mary jet exhausts from right to left and a single fluidic actuator is located at
the top. Figure 4-64a shows the unperturbed jet. Figures 4-64b and c show
the vectoring effect at two fluidic actuation levels. Changes to the primary jet
are characterized using particle image velocimetry (PIV). A simplified expla-
nation is as follows: In this technique tracer particles are introduced into the
flow and illuminated by a thin laser light sheet that is pulsed to freeze parti-
cle motion. Laser light scattered by the particles is recorded at two instances
in time using a digital camera. Using a spatial cross correlation, the local dis-
placement vector is obtained. The results indicate that there exists the poten-
tial for integrating multiple fluidic subelements into aircraft components for
improved performance.

Figure 4-64 is actually a combination vector plot and contour plot. Veloc-
ity vectors are superimposed on contour plots of velocity magnitude (speed).
The white regions represent high speeds, and the dark regions represent low
speeds.
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PO APPLICATION SPOTLIGHT m Fluidic Actuators

(@

(b)
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FIGURE 4-64

Time-averaged mean velocity field of
a fluidic actuator jet. Results are from
150 PIV realizations, overlaid on an
image of the seeded flow. Every
seventh and second velocity vector is
shown in the horizontal and vertical
directions, respectively. The contour
levels denote the magnitude of the
velocity field in m/s. (a) No actuation;
(b) single actuator operating at 3 psig;
(c) single actuator operating at 9 psig.

Courtesy Ganesh Raman, lllinois Institute of
Technology. Used by permission.
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PROBLEMS*

Introductory Problems

4-1C What does the word kinematics mean? Explain what
the study of fluid kinematics involves.

4-2  Consider steady flow of water through an axisymmetric
garden hose nozzle (Fig. P4-2). Along the centerline of the
nozzle, the water speed increases from Ugyance 10 Ueit @S
sketched. Measurements reveal that the centerline water
speed increases parabolically through the nozzle. Write an
equation for centerline speed u(x), based on the parameters
given here, from x = 0 to x = L.

Dentrance Dexit
| .
I
I
I
u
| enirance Uexit

‘
|
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FIGURE P4-2

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the & icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.

4-3 Consider the following steady, two-dimensional veloc-
ity field:
V=(uv)=(05+1.2%)7 + (—2.0 — 1.2y)]

Is there a stagnation point in this flow field? If so, where is it?
Answer: x = —0.417, y = —1.67

4-4  Consider the following steady, two-dimensional veloc-
ity field:

V=(uv)=(@*— (b — cx)?)i + (—2chy + 2c%y)]
Is there a stagnation point in this flow field? If so, where is it?
Lagrangian and Eulerian Descriptions
4-5C What is the Lagrangian description of fluid motion?

4-6C Is the Lagrangian method of fluid flow analysis more
similar to study of a system or a control volume? Explain.

4-7C What is the Eulerian description of fluid motion?
How does it differ from the Lagrangian description?

4-8C A stationary probe is placed in a fluid flow and mea-
sures pressure and temperature as functions of time at one

Probe

FIGURE P4-8C



location in the flow (Fig. P4-8C). Is this a Lagrangian or an
Eulerian measurement? Explain.

4-9C A tiny neutrally buoyant electronic pressure probe is
released into the inlet pipe of a water pump and transmits
2000 pressure readings per second as it passes through the
pump. Is this a Lagrangian or an Eulerian measurement?
Explain.

4-10C A weather balloon is launched into the atmosphere
by meteorologists. When the balloon reaches an altitude
where it is neutrally buoyant, it transmits information about
weather conditions to monitoring stations on the ground (Fig.
P4-10C). Is this a Lagrangian or an Eulerian measurement?
Explain.

/ \ Helium-filled
{ / weather balloon

‘ Transmitting
@/ instrumentation

FIGURE P4-10C

4-11C A Pitot-static probe can often be seen protruding
from the underside of an airplane (Fig. P4-11C). As the air-
plane flies, the probe measures relative wind speed. Is this a
Lagrangian or an Eulerian measurement? Explain.

Probe

FIGURE P4-11C

4-12C s the Eulerian method of fluid flow analysis more
similar to study of a system or a control volume? Explain.
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4-13C Define a steady flow field in the Eulerian reference
frame. In such a steady flow, is it possible for a fluid particle
to experience a nonzero acceleration?

4-14C List at least three other names for the material deriv-
ative, and write a brief explanation about why each name is
appropriate.

4-15 Consider steady, incompressible, two-dimensional
flow through a converging duct (Fig. P4-15). A simple
approximate velocity field for this flow is

V = (u,v) = (Uy + bx)i — byj

where U, is the horizontal speed at x = 0. Note that this
equation ignores viscous effects along the walls but is a rea-
sonable approximation throughout the majority of the flow
field. Calculate the material acceleration for fluid particles
passing through this duct. Give your answer in two ways:
(1) as acceleration components a, and a, and (2) as accelera-
tion vector a.

B —
D ——

~—
X >
—

\ r/

FIGURE P4-15

4-16 Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-15. The pressure
field is given by

P=P,— 2ﬁ [ZUO bx + b%(x? + yZ)J

where P, is the pressure at X = 0. Generate an expression for
the rate of change of pressure following a fluid particle.

4-17 A steady, incompressible, two-dimensional velocity
field is given by the following components in the xy-plane:

u=11+ 28x+ 0.65y v =098 — 2.1x — 2.8y

Calculate the acceleration field (find expressions for accelera-
tion components a, and a,), and calculate the acceleration at
the point (x,y) = (=2, 3). Answers: a, = —9.233, a, = 14.37

4-18 A steady, incompressible, two-dimensional velocity
field is given by the following components in the xy-plane:

u=0.20 + 1.3x + 0.85y v = —0.50 + 0.95x — 1.3y
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Calculate the acceleration field (find expressions for accelera-
tion components a, and a,) and calculate the acceleration at
the point (x, y) = (1, 2).

4-19 For the velocity field of Prob. 4-2, calculate the fluid
acceleration along the nozzle centerline as a function of x and
the given parameters.

4-20 Consider steady flow of air through the diffuser por-
tion of a wind tunnel (Fig. P4-20). Along the centerline of
the diffuser, the air speed decreases from Uy yance T0 Ugyir @S
sketched. Measurements reveal that the centerline air speed
decreases parabolically through the diffuser. Write an equa-
tion for centerline speed u(x), based on the parameters given
here, from x = 0 to x = L.

Dentrance

FIGURE P4-20

4-21 For the velocity field of Prob. 4-20, calculate the fluid
acceleration along the diffuser centerline as a function of x
and the given parameters. For L = 2.0 M, Ugrance = 30.0 /s,
and u,; = 5.0 m/s, calculate the acceleration at x = 0 and
x =1.0m. Answers: 0, —297 m/s?

Flow Patterns and Flow Visualization

4-22C What is the definition of a streamline? What do
streamlines indicate?

4-23 Converging duct flow (Fig. P4-15) is modeled by the
steady, two-dimensional velocity field of Prob. 4-15. Generate
an analytical expression for the flow streamlines.

Answer: y = Cl(Uy + bx)

4-24E  Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-15. For the case in
which U, = 5.0 ft/s and b = 4.6 s7, plot several streamlines
fromx =0ftto5ftandy = —3 ft to 3 ft. Be sure to show
the direction of the streamlines.

4-25C Consider the visualization of flow over a 12° cone
in Fig. P4-25C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.

FIGURE P4-25C

Visualization of flow over a 12° cone at a 16° angle of
attack at a Reynolds number of 15,000. The visualization
is produced by colored fluid injected into water from ports
in the body.

Courtesy ONERA. Photograph by Werlé.

4-26C What is the definition of a pathline? What do path-
lines indicate?

4-27C What is the definition of a streakline? How do
streaklines differ from streamlines?

4-28C Consider the visualization of flow over a 15° delta
wing in Fig. P4-28C. Are we seeing streamlines, streaklines,
pathlines, or timelines? Explain.

FIGURE P4-28C

Visualization of flow over a 15° delta wing at a 20° angle
of attack at a Reynolds number of 20,000. The
visualization is produced by colored fluid injected into
water from ports on the underside of the wing.

Courtesy ONERA. Photograph by Werlé.

4-29C Consider the visualization of ground vortex flow in
Fig. P4-29C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.



FIGURE P4-29C

Visualization of ground vortex flow. A high-speed round
air jet impinges on the ground in the presence of a free-
stream flow of air from left to right. (The ground is at the
bottom of the picture.) The portion of the jet that travels
upstream forms a recirculating flow known as a ground
vortex. The visualization is produced by a smoke wire
mounted vertically to the left of the field of view.

Photo by John M. Cimbala.

4-30C Consider the visualization of flow over a sphere in
Fig. P4-30C. Are we seeing streamlines, streaklines, path-
lines, or timelines? Explain.

FIGURE P4-30C

Visualization of flow over a sphere at a Reynolds number
of 15,000. The visualization is produced by a time
exposure of air bubbles in water.

Courtesy ONERA. Photograph by Werlé.

4-31C What is the definition of a timeline? How can time-
lines be produced in a water channel? Name an application
where timelines are more useful than streaklines.

4-32C Consider a cross-sectional slice through an array of
heat exchanger tubes (Fig. P4-32C). For each desired piece
of information, choose which kind of flow visualization plot

CHAPTER 4

(vector plot or contour plot) would be most appropriate, and
explain why.

(a) The location of maximum fluid speed is to be visualized.
(b) Flow separation at the rear of the tubes is to be visualized.

(c) The temperature field throughout the plane is to be
visualized.

(d) The distribution of the vorticity component normal to the
plane is to be visualized.
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FIGURE P4-32C

4-33 Consider the following steady, incompressible, two-
dimensional velocity field:

V=(uuv)=(05+12x)i + (—2.0 — 1.2y)]

Generate an analytical expression for the flow streamlines
and draw several streamlines in the upper-right quadrant from
x=0to5andy = 0to 6.

4-34 Consider the steady, incompressible, two-dimensional
velocity field of Prob. 4-33. Generate a velocity vector plot
in the upper-right quadrant fromx = 0to5andy = 0 to 6.

4-35 Consider the steady, incompressible, two-dimensional
velocity field of Prob. 4-33. Generate a vector plot of the
acceleration field in the upper-right quadrant from x = 0to 5
andy = 0to 6.

4-36 A steady, incompressible, two-dimensional velocity
field is given by

V=(uv)=(+25x+Yy)i + (=05 — 1.5x — 2.5)]
where the x- and y-coordinates are in m and the magnitude of

velocity is in m/s.

(a) Determine if there are any stagnation points in this flow
field, and if so, where they are.
(b) Sketch velocity vectors at several locations in the upper-
right quadrant forx = 0mto4 mandy = 0 m to 4 m; qual-
itatively describe the flow field.

4-37 Consider the steady, incompressible, two-dimensional
velocity field of Prob. 4-36.

(a) Calculate the material acceleration at the point (x = 2 m,
y =3m). Answers: a, = 11.5 m/s?, a, = 14.0 m/s?

(b) Sketch the material acceleration vectors at the same array
of x- and y-values as in Prob. 4-36.
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4-38 The velocity field for solid-body rotation in the r6-
plane (Fig. P4-38) is given by
u=>0 Uy = or

where w is the magnitude of the angular velocity (o points in
the z-direction). For the case with o = 1.0 s7%, plot a contour
plot of velocity magnitude (speed). Specifically, draw curves
of constant speed V = 0.5, 1.0, 1.5, 2.0, and 2.5 m/s. Be sure
to label these speeds on your plot.

Ug

Uy = r

()
S

FIGURE P4-38

4-39 The velocity field for a line vortex in the rf-plane
(Fig. P4-39) is given by

FIGURE P4-39

where K is the line vortex strength. For the case with K
= 1.0 m¥s, plot a contour plot of velocity magnitude (speed).
Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5,
2.0, and 2.5 m/s. Be sure to label these speeds on your plot.

4-40 The velocity field for a line source in the r6-plane
(Fig. P4-40) is given by

m
Uy =—-—

u, =0
2mr 0

where m is the line source strength. For the case with m/(27)
= 1.0 m?s, plot a contour plot of velocity magnitude (speed).
Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5,
2.0, and 2.5 m/s. Be sure to label these speeds on your plot.

-/ ’ ? I
L
>0 A

. ¥ <
g
FIGURE P4-40

Motion and Deformation of Fluid Elements

4-41C Name and briefly describe the four fundamental
types of motion or deformation of fluid particles.

4-42  Converging duct flow (Fig. P4-15) is modeled by the
steady, two-dimensional velocity field of Prob. 4-15. Is this
flow field rotational or irrotational? Show all your work.
Answer: irrotational

4-43 Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-15. A fluid particle (A)
is located on the x-axis at x = x, at time t = 0 (Fig. P4-43).
At some later time t, the fluid particle has moved downstream
with the flow to some new location x = Xx,,, as shown in the

Fluid particle at
some later time t

Fluid particle at
timet=0

FIGURE P4-43



figure. Since the flow is symmetric about the x-axis, the fluid
particle remains on the x-axis at all times. Generate an ana-
Iytical expression for the x-location of the fluid particle at
some arbitrary time t in terms of its initial location x, and
constants U, and b. In other words, develop an expression for
Xa (Hint: We know that u = dXp,cie/dt following a fluid par-
ticle. Plug in u, separate variables, and integrate.)

4-44  Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-15. Since the flow is
symmetric about the x-axis, line segment AB along the x-axis
remains on the axis, but stretches from length £ to length &
+ A¢ as it flows along the channel centerline (Fig. P4-44).
Generate an analytical expression for the change in length of
the line segment, A¢. (Hint: Use the result of Prob. 4-43.)
Answer: (xg — x)(e?t — 1)

FIGURE P4-44

4-45 Using the results from Prob. 4-44 and the fundamen-
tal definition of linear strain rate (the rate of increase in
length per unit length), develop an expression for the linear
strain rate in the x-direction (e,,) of fluid particles located on
the centerline of the channel. Compare your result to the gen-
eral expression for ¢, in terms of the velocity field, i.e., g,
= 9gu/dx. (Hint: Take the limit as time t — 0. You may need
to apply a truncated series expansion for eP.)  Answer: b

4-46 Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-15. A fluid particle (A)
is located at x = x, and y = y, at time t = 0 (Fig. P4-46). At
some later time t, the fluid particle has moved downstream
with the flow to some new location X = X, ¥ = Y, as
shown in the figure. Generate an analytical expression for
the y-location of the fluid particle at arbitrary time t in
terms of its initial y-location y, and constant b. In other
words, develop an expression for y,.. (Hint: We know that v
= dYpanice/dt following a fluid particle. Substitute the equa-
tion for v, separate variables, and integrate.) Answer: y,e~

CHAPTER 4

Fluid particle at
some later time t

Fluid particle at
timet=0

FIGURE P4-46

4-47 Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-15. As vertical line seg-
ment AB moves downstream it shrinks from length n to
length  + An as sketched in Fig. P4-47. Generate an ana-
Iytical expression for the change in length of the line seg-
ment, Arn. Note that the change in length, Az, is negative.
(Hint: Use the result of Prob. 4-46.)

FIGURE P4-47

4-48 Using the results of Prob. 4-47 and the fundamental
definition of linear strain rate (the rate of increase in length
per unit length), develop an expression for the linear strain
rate in the y-direction (e,,) of fluid particles moving down the
channel. Compare your result to the general expression for
&,y in terms of the velocity field, i.e., e, = dv/dy. (Hint: Take
the limit as time t — 0. You may need to apply a truncated
series expansion for e o)

4-49E Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-15.
For the case in which U, = 5.0 ft/s and b = 4.6 s™, consider
an initially square fluid particle of edge dimension 0.5 ft,

centered at x = 0.5 ftandy = 1.0 ftat t = 0 (Fig. P4—49E).
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Carefully calculate and plot where the fluid particle will be
and what it will look like at time t = 0.2 s later. Comment on
the fluid particle’s distortion. (Hint: Use the results of Probs.
4-43 and 4-46.)

Initially square fluid
particleatt =0

Unknown shape and
location of fluid particle
at later time t

FIGURE P4-49E

4-50E Based on the results of Prob. 4-49E, verify that the
converging duct flow field is indeed incompressible.

4-51 Converging duct flow is modeled by the steady, two-
dimensional velocity field of Prob. 4-15. Use the equation
for volumetric strain rate to verify that this flow field is
incompressible.

4-52 A general equation for a steady, two-dimensional
velocity field that is linear in both spatial directions (x and y) is

V=(u2)=(U+ax+by)i + (V+ ax + by)j

where U and V and the coefficients are constants. Their
dimensions are assumed to be appropriately defined. Calcu-
late the x- and y-components of the acceleration field.

4-53  For the velocity field of Prob. 4-52, what relationship
must exist between the coefficients to ensure that the flow
field is incompressible?  Answer: a, + b, = 0

4-54  For the velocity field of Prob. 4-52, calculate the lin-
ear strain rates in the x- and y-directions.  Answers: a,, b,

4-55 For the velocity field of Prob. 4-52, calculate the
shear strain rate in the xy-plane.

4-56 Combine your results from Probs. 4-54 and 4-55 to
form the two-dimensional strain rate tensor ;; in the xy-plane,

Under what conditions would the x- and y-axes be principal
axes? Answer: b, + a, =0

4-57 For the velocity field of Prob. 4-52, calculate the vor-
ticity vector. In which girection does the vorticity vector
point?  Answer: (a, — b))k

4-58 Consider steady, incompressible, two-dimensional shear
flow for which the velocity field is

V=(uv)=(a+by)i+0j

where a and b are constants. Sketched in Fig. P4-58 is a
small rectangular fluid particle of dimensions dx and dy at
time t. The fluid particle moves and deforms with the flow
such that at a later time (t + dt), the particle is no longer rec-
tangular, as also shown in the figure. The initial location of
each corner of the fluid particle is labeled in Fig. P4-58. The
lower-left corner is at (x, y) at time t, where the x-component
of velocity is u = a + by. At the later time, this corner
moves to (x + u dt, y), or

(x + (a+ by) dt, y)
(@) In similar fashion, calculate the location of each of the

other three corners of the fluid particle at time t + dt.

(b) From the fundamental definition of linear strain rate (the
rate of increase in length per unit length), calculate linear
strain rates e,, and e,,. Answers: 0, 0

(c) Compare your results with those obtained from the equa-
tions for &,, and ,, in Cartesian coordinates, i.e.,

au v
=& g =%
X W ay

Exx

Particle at time t Particle at

/ time t + dt
» (x +dx, y +dy)

*xy) (x+dx,y)

FIGURE P4-58

4-59 Use two methods to verify that the flow of Prob. 4-58
is incompressible: (a) by calculating the volume of the fluid
particle at both times, and (b) by calculating the volumetric
strain rate. Note that Prob. 4-58 should be completed before
this problem.

4-60 Consider the steady, incompressible, two-dimensional
flow field of Prob. 4-58. Using the results of Prob. 4-58(a),
do the following:

(a) From the fundamental definition of shear strain rate
(half of the rate of decrease of the angle between two initially
perpendicular lines that intersect at a point), calculate shear



strain rate e, in the xy-plane. (Hint: Use the lower edge and
the left edge of the fluid particle, which intersect at 90° at the
lower-left corner of the particle at the initial time.)

(b) Compare your results with those obtained from the equa-
tion for &, in Cartesian coordinates, i.e.,

_1fw
A ay X

Answers: (a) bl2, (b) b/2

4-61 Consider the steady, incompressible, two-dimensional
flow field of Prob. 4-58. Using the results of Prob. 4-58(a),
do the following:

(a) From the fundamental definition of the rate of rotation
(average rotation rate of two initially perpendicular lines that
intersect at a point), calculate the rate of rotation of the fluid
particle in the xy-plane, w,. (Hint: Use the lower edge and the
left edge of the fluid particle, which intersect at 90° at the
lower-left corner of the particle at the initial time.)

(b) Compare your results with those obtained from the equa-
tion for w, in Cartesian coordinates, i.e.,

1(ov du
w,==———
Lo2\ox oy

Answers: (a) —bl2, (b) —b/2

4-62  From the results of Prob. 4-61,

(a) Is this flow rotational or irrotational?

(b) Calculate the z-component of vorticity for this flow field.
4-63 A two-dimensional fluid element of dimensions dx

and dy translates and distorts as shown in Fig. P4-63 during
the infinitesimal time period dt = t, — t;. The velocity com-

Fluid element
attimet,

dx \u

y
Line a
Fluid element
attime t;

FIGURE P4-63
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ponents at point P at the initial time are u and v in the x- and
y-directions, respectively. Show that the magnitude of the rate
of rotation (angular velocity) about point P in the xy-plane is
1/ov du
o =-(Z_=Z
to2\ax oy

4-64 A two-dimensional fluid element of dimensions dx
and dy translates and distorts as shown in Fig. P4-63 during
the infinitesimal time period dt = t, — t,. The velocity com-
ponents at point P at the initial time are u and v in the x- and
y-directions, respectively. Consider the line segment PA in
Fig. P4-63, and show that the magnitude of the linear strain
rate in the x-direction is

au
Exx = &
4-65 A two-dimensional fluid element of dimensions dx
and dy translates and distorts as shown in Fig. P4-63 during
the infinitesimal time period dt = t, — t;. The velocity com-
ponents at point P at the initial time are u and v in the x- and
y-directions, respectively. Show that the magnitude of the
shear strain rate about point P in the xy-plane is

_ifou
oy ay X

4-66 Consider a steady, two-dimensional, incompressible
flow field in the xy-plane. The linear strain rate in the x-
direction is 2.5 s~%. Calculate the linear strain rate in the y-
direction.

4-67 A cylindrical tank of water rotates in solid-body rota-
tion, counterclockwise about its vertical axis (Fig. P4-67) at
angular speed n = 360 rpm. Calculate the vorticity of fluid
particles in the tank. Answer: 75.4 K rad/s

A
Z1
: Ttim >
Free i—» r
surface :
et
Liquid i
FIGURE P4-67
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4-68 A cylindrical tank of water rotates about its vertical
axis (Fig. P4-67). A PIV system is used to measure the vor-
ticity field of the flow. The measured value of vorticity in the
z-direction is —55.4 rad/s and is constant to within 0.5 per-
cent everywhere that it is measured. Calculate the angular
speed of rotation of the tank in rpm. Is the tank rotating
clockwise or counterclockwise about the vertical axis?

4-69 A cylindrical tank of radius r,;,, = 0.35 m rotates about
its vertical axis (Fig. P4-67). The tank is partially filled with
oil. The speed of the rim is 2.6 m/s in the counterclockwise
direction (looking from the top), and the tank has been spin-
ning long enough to be in solid-body rotation. For any fluid
particle in the tank, calculate the magnitude of the component
of vorticity in the vertical z-direction.  Answer: 15.0 rad/s

4-70C Explain the relationship between vorticity and rota-
tionality.

4-71 Consider a two-dimensional, incompressible flow
field in which an initially square fluid particle moves and
deforms. The fluid particle dimension is a at time t and is
aligned with the x- and y-axes as sketched in Fig. P4-71. At
some later time, the particle is still aligned with the x- and y-
axes, but has deformed into a rectangle of horizontal length
2a. What is the vertical length of the rectangular fluid particle
at this later time?

y

: L

a

FIGURE P4-71

4-72 Consider a two-dimensional, compressible flow field
in which an initially square fluid particle moves and deforms.
The fluid particle dimension is a at time t and is aligned with
the x- and y-axes as sketched in Fig. P4-71. At some later
time, the particle is still aligned with the x- and y-axes but
has deformed into a rectangle of horizontal length 1.06a and
vertical length 0.931a. (The particle’s dimension in the z-
direction does not change since the flow is two-dimensional.)
By what percentage has the density of the fluid particle
increased or decreased?

4-73  Consider the following steady, three-dimensional veloc-
ity field:

V= (u, v, w)
= (3.0 + 2.0x — )i + (2.0x — 2.0y)] + (0.5xy)k

Calculate the vorticity vector as a function of space (x, y, z).

4-74  Consider fully developed Couette flon—flow between
two infinite parallel plates separated by distance h, with the
top plate moving and the bottom plate stationary as illustrated
in Fig. P4-74. The flow is steady, incompressible, and two-
dimensional in the xy-plane. The velocity field is given by

rd
1

oI

+0j

Is this flow rotational or irrotational? If it is rotational, calcu-
late the vorticity component in the z-direction. Do fluid parti-
cles in this flow rotate clockwise or counterclockwise?
Answers: yes, —V/h, clockwise

h u=v=

h y
l x
FIGURE P4-74

4-75 For the Couette flow of Fig. P4-74, calculate the lin-
ear strain rates in the x- and y-directions, and calculate the
shear strain rate e,

4-76 Combine your results from Prob. 4-75 to form the

two-dimensional strain rate tensor e,

Are the x- and y-axes principal axes?

Reynolds Transport Theorem

4-77C True or false: For each statement, choose whether
the statement is true or false and discuss your answer briefly.

(a) The Reynolds transport theorem is useful for transform-
ing conservation equations from their naturally occurring
control volume forms to their system forms.

(b) The Reynolds transport theorem is applicable only to
nondeforming control volumes.
(c) The Reynolds transport theorem can be applied to both
steady and unsteady flow fields.

(d) The Reynolds transport theorem can be applied to both
scalar and vector quantities.

4-78 Consider the general form of the Reynolds transport
theorem (RTT) given by

dB d S
Sys:—J pde-i-J pbV, - i dA
dt  dt ), -




where \7r is the velocity of the fluid relative to the control
surface. Let B, be the mass m of a system of fluid particles.
We know that for a system, dm/dt = 0 since no mass can
enter or leave the system by definition. Use the given equa-
tion to derive the equation of conservation of mass for a con-
trol volume.

4-79 Consider the general form of the Reynolds transport
theorem (RTT) given by Prob. 4-78. Let B, be the linear
momentum mV of a system of fluid particles. We know that
for a system, Newton’s second law is

dV

EF— ma=m =

Use the equation of Prob. 4-78 and this equation to derive
the equation of conservation of linear momentum for a con-
trol volume.

4-80 Consider the general form of the Reynolds transport
theorem (RTT) glven in Prob. 4-78. Let B, be the angular
momentum H = 7 X mV of a system of fluid particles,
where T is the moment arm. We know that for a system, con-
servation of angular momentum can be expressed as

EM = sys

where X, M is the net moment applied to the system. Use the
equation given in Prob. 4-78 and this equation to derive the
equation of conservation of angular momentum for a control
volume.

s

4-81 Reduce the following expression as far as possible:

d x=Bt ,
FO = j e~ 2" dx
Xx=At

(Hint: Use the one-dimensional Leibnitz theorem.)
Be Bt — pe#t

Answer:

Review Problems

4-82 Consider fully developed two-dimensional Poiseuille
flow—flow between two infinite parallel plates separated by
distance h, with both the top plate and bottom plate station-
ary, and a forced pressure gradient dP/dx driving the flow as
illustrated in Fig. P4-82. (dP/dx is constant and negative.)

u(y)

Y X

FIGURE P4-82
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The flow is steady, incompressible, and two-dimensional in
the xy-plane. The velocity components are given by

1 dP

———(y*—hy)

= =0
2u dx v

where w is the fluid’s viscosity. Is this flow rotational or irro-
tational? If it is rotational, calculate the vorticity component
in the z-direction. Do fluid particles in this flow rotate clock-
wise or counterclockwise?

4-83 For the two-dimensional Poiseuille flow of Prob. 4-82,
calculate the linear strain rates in the x- and y-directions, and
calculate the shear strain rate e,,.

4-84 Combine your results from Prob. 4-83 to form the
two-dimensional strain rate tensor ;; in the xy-plane,

_ [ &xx  Exy
Sij =
st Syy

Are the x- and y-axes principal axes?

4-85 Consider the two-dimensional Poiseuille flow of
Prob. 4-82. The fluid between the plates is water
at 40°C. Let the gap height h = 1.6 mm and the pressure gra-
dient dP/dx = —230 N/m?3. Calculate and plot seven path-
lines fromt = 0 to t = 10 s. The fluid particles are released

atx =0andaty = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 mm.

4-86 %@5 Consider the two-dimensional Poiseuille flow of

Prob. 4-82. The fluid between the plates is
water at 40°C. Let the gap height h = 1.6 mm and the pres-
sure gradient dP/dx = —230 N/md. Calculate and plot seven
streaklines generated from a dye rake that introduces dye
streaks at x = 0 and aty = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and
1.4 mm (Fig. P4-86). The dye is introduced from t = 0 to
t = 10 s, and the streaklines are to be plotted at t = 10 s.

E Dye rake
I > :\g(y)
h >
y —»/
X

FIGURE P4-86

4-87 Repeat Prob. 4-86 except that the dye is intro-
duced fromt = 0tot = 10 s, and the streaklines

are to be plotted at t = 12 s instead of 10 s.

4-88 Compare the results of Probs. 4-86 and 4-87
and comment about the linear strain rate in the

x-direction.

4-89 Consider the two-dimensional Poiseuille flow of

Prob. 4-82. The fluid between the plates is water
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at 40°C. Let the gap height h = 1.6 mm and the pressure gra-
dient dP/dx = —230 N/m?3. Imagine a hydrogen bubble wire
stretched vertically through the channel at x = 0 (Fig. P4-89).
The wire is pulsed on and off such that bubbles are produced
periodically to create timelines. Five distinct timelines are
generated att = 0, 2.5, 5.0, 7.5, and 10.0 s. Calculate and plot
what these five timelines look like at timet = 12.5s.

I H, wire

u(y)
h ——
y
Vo
FIGURE P4-89

4-90 Consider fully developed axisymmetric Poiseuille
flow—flow in a round pipe of radius R (diameter D = 2R),
with a forced pressure gradient dP/dx driving the flow as
illustrated in Fig. P4-90. (dP/dx is constant and negative.)
The flow is steady, incompressible, and axisymmetric about
the x-axis. The velocity components are given by

Y
 4u dx

where w is the fluid’s viscosity. Is this flow rotational or irro-
tational? If it is rotational, calculate the vorticity component
in the circumferential (6) direction and discuss the sign of the

rotation.
r
D L;
u(r) R

FIGURE P4-90

(r?-R»  u,=0 u,=0

4-91 For the axisymmetric Poiseuille flow of Prob. 4-90,
calculate the linear strain rates in the x- and r-directions, and
calculate the shear strain rate e,. The strain rate tensor in
cylindrical coordinates (r, 6, X) and (u,, Uy, U,), is

€ € Erx
Eij = | €or €00 Eox
Exr Exo Exx
au 1/ o (u 10u\ 1/0u, odu
R E
ar 2\ ar\r rag/) 2\ ox ar
1 d [u 140u au u au Ju
_ ,(rf(;’)Jr,ir) 1ouy U 1(17@70)
2\ ar\r r 90 r a0 r 2\r 960 )4

1 <aur N aux> 1 <1 Uy N 8u9> Uy
2 \ X ar 2\r a0 X X

4-92 Combine your results from Prob. 4-91 to form the
axisymmetric strain rate tensor &,

_[&r Ex
fi T\, e
Xr XX.

Are the x- and r-axes principal axes?

4-93 We approximate the flow of air into a vacuum cleaner
attachment by the following velocity components in the cen-
terplane (the xy-plane):

= Ux X2 +y?+ b?

Coal x4+ 2x%y? + 2x%? + y* — 2y%? + b

and
_—Vy X2+ y2—Db?
-y X4+ 2x%y% + 2x%? + y* — 2y%? + b*

where b is the distance of the attachment above the floor, L is
the length of the attachment, and Vis the volume flow rate of
air being sucked up into the hose (Fig. P4-93). Determine the
location of any stagnation point(s) in this flow field. Answer:
at the origin

|

FIGURE P4-93

4-94  Consider the vacuum cleaner of Prob. 4-93. For the
case where b = 2.0 cm, L = 35 cm, and V = 0.1098 m?/s,
create a velocity vector plot in the upper half of the xy-plane
fromx = —3 cmto 3 cm and fromy = 0 cm to 2.5 cm. Draw
as many vectors as you need to get a good feel of the flow
field. Note: The velocity is infinite at the point (x, y) = (0,
2.0 cm), so do not attempt to draw a velocity vector at that
point.

4-95 Consider the approximate velocity field given for the
vacuum cleaner of Prob. 4-93. Calculate the flow speed
along the floor. Dust particles on the floor are most likely to
be sucked up by the vacuum cleaner at the location of maxi-



mum speed. Where is that location? Do you think the vacuum
cleaner will do a good job at sucking up dust directly below
the inlet (at the origin)? Why or why not?

4-96 Consider a steady, two-dimensional flow field in the
xy-plane whose x-component of velocity is given by

u=a+b(x —c)?

where a, b, and ¢ are constants with appropriate dimensions.
Of what form does the y-component of velocity need to be in
order for the flow field to be incompressible? In other words,
generate an expression for v as a function of x, y, and the
constants of the given equation such that the flow is incom-
pressible.  Answer: —2b(x — c)y + f(x)

4-97 There are numerous occasions in which a fairly uni-
form free-stream flow encounters a long circular cylinder
aligned normal to the flow (Fig. P4-97). Examples include air
flowing around a car antenna, wind blowing against a flag
pole or telephone pole, wind hitting electrical wires, and
ocean currents impinging on the submerged round beams that
support oil platforms. In all these cases, the flow at the rear of
the cylinder is separated and unsteady, and usually turbulent.
However, the flow in the front half of the cylinder is much
more steady and predictable. In fact, except for a very thin
boundary layer near the cylinder surface, the flow field may
be approximated by the following steady, two-dimensional
velocity components in the xy- or ré-plane:

a’ . a?
u, = Vcos 0(1 - F) U, = —Vsin 0(1 + F)

FIGURE P4-97

Is this flow field rotational or irrotational? Explain.

4-98 Consider the flow field of Prob. 4-97 (flow over a cir-
cular cylinder). Consider only the front half of the flow (x
< 0). There is one stagnation point in the front half of the
flow field. Where is it? Give your answer in both cylindrical
(r, ) coordinates and Cartesian (x, y) coordinates.
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4-99 Consider the upstream half (x < 0) of the flow
field of Prob. 4-97 (flow over a circular cylin-
der). We introduce a parameter called the stream function ¢,
which is constant along streamlines in two-dimensional
flows such as the one being considered here (Fig. P4-99).

The velocity field of Prob. 4-97 corresponds to a stream

function given by
2
lp:VsinG(r—a?)

(a) Setting ¢ to a constant, generate an equation for a
streamline. (Hint: Use the quadratic rule to solve for r as a
function of 6.)

(b) For the particular case in which V = 1.00 m/s and cylinder
radius a = 10.0 cm, plot several streamlines in the upstream
half of the flow (90° < 6 < 270°). For consistency, plot in
the range —04 m < x<0m, —02m <y < 0.2m, with
stream function values evenly spaced between —0.16 m?/s
and 0.16 m?/s.

Streamlines /—
w4 /—
" /
2 /_
2

4-100 Consider the flow field of Prob. 4-97 (flow over a
circular cylinder). Calculate the two linear strain rates in the
ré-plane; i.e., calculate &, and &4, Discuss whether fluid line
segments stretch (or shrink) in this flow field. (Hint: The
strain rate tensor in cylindrical coordinates is given in Prob.
4-91)

4-101 Based on your results of Prob. 4-100, discuss the
compressibility (or incompressibility) of this flow. Answer:
flow is incompressible

4-102 Consider the flow field of Prob. 4-97 (flow over a
circular cylinder). Calculate €, the shear strain rate in the
ro-plane. Discuss whether fluid particles in this flow deform
with shear or not. (Hint: The strain rate tensor in cylindrical
coordinates is given in Prob. 4-91.)

FIGURE P4-99






MASS, BERNOULLI, AND
ENERGY EQUATIONS

mechanics: the mass, Bernoulli, and energy equations. The mass equa-

tion is an expression of the conservation of mass principle. The
Bernoulli equation is concerned with the conservation of kinetic, potential,
and flow energies of a fluid stream and their conversion to each other in
regions of flow where net viscous forces are negligible and where other
restrictive conditions apply. The energy equation is a statement of the con-
servation of energy principle. In fluid mechanics, it is found convenient to
separate mechanical energy from thermal energy and to consider the con-
version of mechanical energy to thermal energy as a result of frictional
effects as mechanical energy loss. Then the energy equation becomes the
mechanical energy balance.

We start this chapter with an overview of conservation principles and the
conservation of mass relation. This is followed by a discussion of various
forms of mechanical energy and the efficiency of mechanical work devices
such as pumps and turbines. Then we derive the Bernoulli equation by
applying Newton’s second law to a fluid element along a streamline and
demonstrate its use in a variety of applications. We continue with the devel-
opment of the energy equation in a form suitable for use in fluid mechanics
and introduce the concept of head loss. Finally, we apply the energy equa-
tion to various engineering systems.

This chapter deals with three equations commonly used in fluid

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

Apply the mass equation to
balance the incoming and
outgoing flow rates in a flow
system

Recognize various forms of
mechanical energy, and work
with energy conversion
efficiencies

Understand the use and
limitations of the Bernoulli
equation, and apply it to solve a
variety of fluid flow problems

Work with the energy equation

expressed in terms of heads, and
use it to determine turbine
power output and pumping
power requirements
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FIGURE 5-1

Many fluid flow devices such as this
Pelton wheel hydraulic turbine are
analyzed by applying the conservation
of mass, momentum, and energy
principles.

Courtesy of Hydro Tasmania, www.hydro.com.au.
Used by permission.

5-1 = INTRODUCTION

You are already familiar with numerous conservation laws such as the laws
of conservation of mass, conservation of energy, and conservation of
momentum. Historically, the conservation laws are first applied to a fixed
quantity of matter called a closed system or just a system, and then extended
to regions in space called control volumes. The conservation relations are
also called balance equations since any conserved quantity must balance
during a process. We now give a brief description of the conservation of
mass, momentum, and energy relations (Fig. 5-1).

Conservation of Mass

The conservation of mass relation for a closed system undergoing a change
is expressed as my,; = constant or dmg,/dt = 0, which is a statement of the
obvious that the mass of the system remains constant during a process. For
a control volume (CV), mass balance is expressed in the rate form as

. , . dmey
Conservation of mass: My — My = dt

where m;, and m,, are the total rates of mass flow into and out of the con-
trol volume, respectively, and dmg,/dt is the rate of change of mass within
the control volume boundaries. In fluid mechanics, the conservation of mass
relation written for a differential control volume is usually called the conti-
nuity equation. Conservation of mass is discussed in Section 5-2.

(5-1)

Conservation of Momentum

The product of the mass and the velocity of a body is called the linear
momentum or just the momentum of the body, and the momentum of a rigid
body of mass m moving with a velocity Vis mV. Newton’s second law states
that the acceleration of a body is proportional to the net force acting on it
and is inversely proportional to its mass, and that the rate of change of the
momentum of a body is equal to the net force acting on the body. Therefore,
the momentum of a system remains constant when the net force acting on it
is zero, and thus the momentum of such systems is conserved. This is known
as the conservation of momentum principle. In fluid mechanics, Newton’s
second law is usually referred to as the linear momentum equation, which is
discussed in Chap. 6 together with the angular momentum equation.

Conservation of Energy

Energy can be transferred to or from a closed system by heat or work, and
the conservation of energy principle requires that the net energy transfer to
or from a system during a process be equal to the change in the energy con-
tent of the system. Control volumes involve energy transfer via mass flow
also, and the conservation of energy principle, also called the energy bal-
ance, is expressed as

- : : dEcy
Conservation of energy: En—Eot = “dt (5-2)
where Ein and E'Out are the total rates of energy transfer into and out of the
control volume, respectively, and dE.,/dt is the rate of change of energy
within the control volume boundaries. In fluid mechanics, we usually limit



our consideration to mechanical forms of energy only. Conservation of
energy is discussed in Section 5-6.

5-2 = CONSERVATION OF MASS

The conservation of mass principle is one of the most fundamental princi-
ples in nature. We are all familiar with this principle, and it is not difficult to
understand. As the saying goes, You cannot have your cake and eat it too! A
person does not have to be a scientist to figure out how much vinegar-and-
oil dressing will be obtained by mixing 100 g of oil with 25 g of vinegar.
Even chemical equations are balanced on the basis of the conservation of
mass principle. When 16 kg of oxygen reacts with 2 kg of hydrogen, 18 kg
of water is formed (Fig. 5-2). In an electrolysis process, the water will sep-
arate back to 2 kg of hydrogen and 16 kg of oxygen.

Mass, like energy, is a conserved property, and it cannot be created or
destroyed during a process. However, mass m and energy E can be con-
verted to each other according to the well-known formula proposed by
Albert Einstein (1879-1955):

E = mc? (5-3)

where c is the speed of light in a vacuum, which is ¢ = 2.9979 X 108 m/s.
This equation suggests that the mass of a system changes when its energy
changes. However, for all energy interactions encountered in practice, with
the exception of nuclear reactions, the change in mass is extremely small and
cannot be detected by even the most sensitive devices. For example, when
1 kg of water is formed from oxygen and hydrogen, the amount of energy
released is 15,879 kJ, which corresponds to a mass of 1.76 X 1071° kg. A
mass of this magnitude is beyond the accuracy required by practically all
engineering calculations and thus can be disregarded.

For closed systems, the conservation of mass principle is implicitly used by
requiring that the mass of the system remain constant during a process. For
control volumes, however, mass can cross the boundaries, and so we must
keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates

The amount of mass flowing through a cross section per unit time is called
the mass flow rate and is denoted by m. The dot over a symbol is used to
indicate time rate of change.

A fluid flows into or out of a control volume, usually through pipes or
ducts. The differential mass flow rate of fluid flowing across a small area
element dA, in a cross section of the pipe is proportional to dA, itself, the
fluid density p, and the component of the flow velocity normal to dA,,
which we denote as V,,, and is expressed as (Fig. 5-3)

st = pV, dA, (5-4)

Note that both 6 and d are used to indicate differential quantities, but & is
typically used for quantities (such as heat, work, and mass transfer) that are
path functions and have inexact differentials, while d is used for quantities
(such as properties) that are point functions and have exact differentials. For
flow through an annulus of inner radius r; and outer radius r,, for example,
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2 kg 16 kg 18 kg
Hy | T 0, || Ho
FIGURE 5-2

Mass is conserved even during
chemical reactions.

Control surface \

FIGURE 5-3

The normal velocity V,, for a surface
is the component of velocity
perpendicular to the surface.
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The average velocity V,q is defined
as the average speed through a cross

section.
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FIGURE 5-5

The volume flow rate is the volume of
fluid flowing through a cross section
per unit time.

2 2
J dA. = A, — Ay = 7(r3 — r?) but J SM = My, (total mass flow rate
1 1

through the annulus), not m, — m,. For specified values of r; and r,, the
value of the integral of dA, is fixed (thus the names point function and exact
differential), but this is not the case for the integral of ém (thus the names
path function and inexact differential).

The mass flow rate through the entire cross-sectional area of a pipe or
duct is obtained by integration:

m = J o = f pVodA,  (kgls) (5-5)
A A

While Eq. 5-5 is always valid (in fact it is exact), it is not always practi-
cal for engineering analyses because of the integral. We would like instead
to express mass flow rate in terms of average values over a cross section of
the pipe. In a general compressible flow, both p and V,, vary across the pipe.
In many practical applications, however, the density is essentially uniform
over the pipe cross section, and we can take p outside the integral of Eq.
5-5. Velocity, however, is never uniform over a cross section of a pipe
because of the no-slip condition at the walls. Rather, the velocity varies
from zero at the walls to some maximum value at or near the centerline of
the pipe. We define the average velocity V,,, as the average value of V,

across the entire cross section of the pipe (Fig. 5-4),

Average velocity: Vavg = £ J V, dA, (5-6)
Al

where A, is the area of the cross section normal to the flow direction. Note

that if the speed were V,, all through the cross section, the mass flow rate

would be identical to that obtained by integrating the actual velocity profile.

Thus for incompressible flow or even for compressible flow where p is uni-

form across A, Eq. 5-5 becomes

M = pVaygAc (kgls) (5-7)

For compressible flow, we can think of p as the bulk average density over the
cross section, and then Eq. 5-7 can still be used as a reasonable approximation.
For simplicity, we drop the subscript on the average velocity. Unless other-
wise stated, V denotes the average velocity in the flow direction. Also, A,
denotes the cross-sectional area normal to the flow direction.

The volume of the fluid flowing through a cross section per unit time is
called the volume flow rate V (Fig. 5-5) and is given by

V= J V, dA; =V, A, = VA, (m%s) (5-8)
A,
An early form of Eq. 5-8 was published in 1628 by the Italian monk Bene-
detto Castelli (circa 1577-1644). Note that many fluid mechanics textbooks
use Q instead of V for volume flow rate. We use \/ to avoid confusion with
heat transfer.
The mass and volume flow rates are related by
v

m=pV = o (5-9)



where v is the specific volume. This relation is analogous to m = pV =
Vlv, which is the relation between the mass and the volume of a fluid in a
container.

Conservation of Mass Principle

The conservation of mass principle for a control volume can be expressed
as: The net mass transfer to or from a control volume during a time interval
At is equal to the net change (increase or decrease) in the total mass within
the control volume during At. That is,

(Total mass entering) B (Total mass Ieaving) B ( Net change in mass >
the CV during At the CV during At within the CV during At

or
Mip — Mgy = AMgy (k9) (5-10)

where Amey = Mgy — Miniia 1S the change in the mass of the control vol-
ume during the process (Fig. 5-6). It can also be expressed in rate form as

I’hin - mout = dmcv/dt (kg/S) (5-11)

where m;, and m,, are the total rates of mass flow into and out of the con-
trol volume, and dm,/dt is the rate of change of mass within the control
volume boundaries. Equations 5-10 and 5-11 are often referred to as the
mass balance and are applicable to any control volume undergoing any
kind of process.

Consider a control volume of arbitrary shape, as shown in Fig. 5-7. The
mass of a differential volume dV within the control volume is dm = p dV.
The total mass within the control volume at any instant in time t is deter-
mined by integration to be

Total mass within the CV: Moy = J pdV (5-12)
cv

Then the time rate of change of the amount of mass within the control vol-
ume can be expressed as

. dmey  d
Rate of change of mass within the CV: —=— | pdV (5-13)
dt dt J.,

For the special case of no mass crossing the control surface (i.e., the control
volume resembles a closed system), the conservation of mass principle
reduces to that of a system that can be expressed as dmg,/dt = 0. This rela-
tion is valid whether the control volume is fixed, moving, or deforming.
Now consider mass flow into or out of the control volume through a differ-
ential area dA on the control surface of a fixed control volume. Let i be the
outward unit vector of dA normal to dA and V be the flow velocity at dA rel-
ative to a fixed coordinate system, as shown in Fig. 5-7. In general, the
velocity may cross dA at an angle 6 off the normal of dA, and the mass flow
rate is proportional to the normal component of velocity V,, = V cos 6 rang-
ing from a maximum outflow of V for 6 = 0 (flow is normal to dA) to a min-
imum of zero for 6 = 90° (flow is tangent to dA) to a maximum inflow of V
for 6 = 180° (flow is normal to dA but in the opposite direction). Making
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i m;, = 50 kg
kg
wetl =2
= Min
Ambathtub
l Moyt = 30 kg
FIGURE 5-6

Conservation of mass principle
for an ordinary bathtub.
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Control surface (CS)
FIGURE 5-7

The differential control volume dV
and the differential control surface
dA used in the derivation of the
conservation of mass relation.
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The conservation of mass equation
is obtained by replacing B in the
Reynolds transport theorem by
mass m, and b by 1 (m per unit
mass = m/m = 1).

use of the concept of dot product of two vectors, the magnitude of the nor-
mal component of velocity can be expressed as

Normal component of velocity: V,=VcosH = Vi (5-14)

The mass flow rate through dA is proportional to the fluid density p, normal
velocity V,,, and the flow area dA, and can be expressed as

Differential mass flow rate:  ém = pV, dA = p(V cos 6) dA = p(\7 -n)dA  (5-15)

The net flow rate into or out of the control volume through the entire con-
trol surface is obtained by integrating 8m over the entire control surface,

Net mass flow rate: Mper = J om = J pV, dA = j p(V - A) dA (5-16)
CS CSs CS

Note that V- i = V cos @ is positive for 6§ < 90° (outflow) and negative for
0 > 90° (inflow). Therefore, the direction of flow is automatically
accounted for, and the surface integral in Eq. 5-16 directly gives the net
mass flow rate. A positive value for m,,, indicates net outflow, and a nega-
tive value indicates a net inflow of mass.

Rearranging Eq. 5-11 as dmg,/dt + m,,, — m;, = 0, the conservation of
mass relation for a fixed control volume can then be expressed as

. d S,
General conservation of mass: at J pdV+ J p(V-n)dA=0 (5-17)

Ccv Cs

It states that the time rate of change of mass within the control volume plus
the net mass flow rate through the control surface is equal to zero.

The general conservation of mass relation for a control volume can also
be derived using the Reynolds transport theorem (RTT) by taking the prop-
erty B to be the mass m (Chap. 4). Then we have b = 1 since dividing the
mass by mass to get the property per unit mass gives unity. Also, the mass
of a system is constant, and thus its time derivative is zero. That is, dm/dt
= 0. Then the Reynolds transport equation reduces immediately to Eq.
5-17, as shown in Fig. 5-8, and thus illustrates that the Reynolds transport
theorem is a very powerful tool indeed. In Chap. 6 we apply the RTT to
obtain the linear and angular momentum equations for control volumes.

Splitting the surface integral in Eq. 5-17 into two parts—one for the out-
going flow streams (positive) and one for the incoming streams (negative)—
the general conservation of mass relation can also be expressed as

d
*J pdV+ EijHdA—EJandA=O (5-18)
dt cVv out Jp in Jp
where A represents the area for an inlet or outlet, and the summation signs
are used to emphasize that all the inlets and outlets are to be considered.
Using the definition of mass flow rate, Eq. 5-18 can also be expressed as
dmey

EJ pdV=>m- Dm or =>m->m (5-19
dt Jg, < dt <

out out

There is considerable flexibility in the selection of a control volume when
solving a problem. Several control volume choices may be correct, but some
are more convenient to work with. A control volume should not introduce
any unnecessary complications. The proper choice of a control volume can
make the solution of a seemingly complicated problem rather easy. A simple



rule in selecting a control volume is to make the control surface normal to
flow at all locations Where it crosses fluid flow, whenever possible. This
way the dot product V. i simply becomes the magnitude of the velocity,

and the integral J p(V - 1) dA becomes simply pVA (Fig. 5-9).
A

Moving or Deforming Control Volumes

Equations 5-17 and 5-18 are also valid for moving or deforming control
volumes provided that the absolute velocity V is replaced by the relative
velocity V,, which is the fluid velocity relative to the control surface (Chap.
4). In the case of a nondeforming control volume, relative velocity is the
fluid velocity observed by a person moving with the control volume and is
expressed as V =V- ch, where V is the fluid velocity and ch is the
velocity of the control volume, both relative to a fixed point outside. Again
note that this is a vector subtraction.

Some practical problems (such as the injection of medication through the
needle of a syringe by the forced motion of the plunger) involve deforming
control volumes. The conservation of mass relations developed can still be
used for such deforming control volumes provided that the velocity of the
fluid crossing a deforming part of the control surface is expressed relative to
the control surface (that is, the fluid velocity should be expressed relative to
a reference frame attached to the deforming part of the control surface). The
relative velocity in this case at any point on the control surface is expressed
as V.=V — Vg, Where Vg is the local velocity of the control surface at that
point relative to a fixed point outside the control volume.

Mass Balance for Steady-Flow Processes
During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (mq,, = constant). Then the con-
servation of mass principle requires that the total amount of mass entering a
control volume equal the total amount of mass leaving it. For a garden hose
nozzle in steady operation, for example, the amount of water entering the
nozzle per unit time is equal to the amount of water leaving it per unit time.
When dealing with steady-flow processes, we are not interested in the
amount of mass that flows in or out of a device over time; instead, we are
interested in the amount of mass flowing per unit time, that is, the mass flow
rate m. The conservation of mass principle for a general steady-flow system
with multiple inlets and outlets can be expressed in rate form as (Fig. 5-10)

Steady flow: E m= >m  (kgls) (5-20)
out

It states that the total rate of mass entering a control volume is equal to the

total rate of mass leaving it.

Many engineering devices such as nozzles, diffusers, turbines, compres-
sors, and pumps involve a single stream (only one inlet and one outlet). For
these cases, we denote the inlet state by the subscript 1 and the outlet state
by the subscript 2, and drop the summation signs. Then Eq. 5-20 reduces,
for single-stream steady-flow systems, to

Steady flow (single stream): m=m, — pViA; = p VLA, (5-21)
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FIGURE 5-9

A control surface should always be
selected normal to flow at all locations
where it crosses the fluid flow to avoid
complications, even though the result
is the same.

fn3=fn1+m2=5kg/s

FIGURE 5-10

Conservation of mass principle
for a two-inlet—one-outlet
steady-flow system.
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FIGURE 5-11

During a steady-flow process,
volume flow rates are not necessarily
conserved although mass flow

rates are.

Bucket

FIGURE 5-12
Schematic for Example 5-1.

Special Case: Incompressible Flow

The conservation of mass relations can be simplified even further when the
fluid is incompressible, which is usually the case for liquids. Canceling the
density from both sides of the general steady-flow relation gives

Steady, incompressible flow: Sv=3Sv (m¥) (5-22)
in out

For single-stream steady-flow systems it becomes

Steady, incompressible flow (single stream): V.=V, 5 ViA; = VLA, (5-23)

It should always be kept in mind that there is no such thing as a “conserva-
tion of volume” principle. Therefore, the volume flow rates into and out of a
steady-flow device may be different. The volume flow rate at the outlet of
an air compressor is much less than that at the inlet even though the mass
flow rate of air through the compressor is constant (Fig. 5-11). This is due
to the higher density of air at the compressor exit. For steady flow of lig-
uids, however, the volume flow rates, as well as the mass flow rates, remain
constant since liquids are essentially incompressible (constant-density) sub-
stances. Water flow through the nozzle of a garden hose is an example of
the latter case.

The conservation of mass principle is based on experimental observations
and requires every bit of mass to be accounted for during a process. If you
can balance your checkbook (by keeping track of deposits and withdrawals,
or by simply observing the “conservation of money” principle), you should
have no difficulty applying the conservation of mass principle to engineer-
ing systems.

EXAMPLE 5-1 Water Flow through a Garden Hose Nozzle

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The
inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle
exit (Fig. 5-12). If it takes 50 s to fill the bucket with water, determine
(a) the volume and mass flow rates of water through the hose, and (b) the
average velocity of water at the nozzle exit.

SOLUTION A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is an incompressible substance. 2 Flow through the
hose is steady. 3 There is no waste of water by splashing.

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

vV 10gal (3.7854 L)
— SO 0757 Lt
At~ 50s \ 1gal >

m = pV = (1 kg/L)(0.757 L/s) = 0.757 kg/s
(b) The cross-sectional area of the nozzle exit is
A, = 7r?2 = 77(0.4 cm)? = 0.5027 cm? = 0.5027 X 10 * m?
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The volume flow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes

v oV __ 0757Us ( 1m
¢ A, 05027 x 10 *m?\1000 L

Discussion 1t can be shown that the average velocity in the hose is 2.4 m/s.
Therefore, the nozzle increases the water velocity by over six times.

) =15.1m/s

EXAMPLE 5-2 Discharge of Water from a Tank v

A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the
atmosphere is initially filled with water. Now the discharge plug near the bot-
tom of the tank is pulled out, and a water jet whose diameter is 0.5 in
streams out (Fig. 5-13). The average velocity of the jet is given by
V = V2gh, where h is the height of water in the tank measured from the 1
center of the hole (a variable) and g is the gravitational acceleration. Deter- }
mine how long it will take for the water level in the tank to drop to 2 ft from hI h,

leet
the bottom.

|

|

|

|

|

|

|

|

|

|

|

|
SOLUTION The plug near the bottom of a water tank is pulled out. The 0 } Diank W
time it will take for half of the water in the tank to empty is to be deter-

mined.
Assumptions 1 Water is an incompressible substance. 2 The distance FIGURE 5-13
between the bottom of the tank and the center of the hole is negligible com- Schematic for Example 5-2.
pared to the total water height. 3 The gravitational acceleration is 32.2 ft/s2.
Analysis We take the volume occupied by water as the control volume. The
size of the control volume decreases in this case as the water level drops,
and thus this is a variable control volume. (We could also treat this as a
fixed control volume that consists of the interior volume of the tank by disre-
garding the air that replaces the space vacated by the water.) This is obvi-
ously an unsteady-flow problem since the properties (such as the amount of
mass) within the control volume change with time.
The conservation of mass relation for a control volume undergoing any
process is given in the rate form as

dmey
dt

During this process no mass enters the control volume (m;, = 0), and the
mass flow rate of discharged water can be expressed as

Mip — Moy = (1)

Moyt = (PVA)out = p'V 2ghAjet (2)

where A, = mD2%,/4 is the cross-sectional area of the jet, which is constant.
Noting that the density of water is constant, the mass of water in the tank at
any time is

Mey = pV = pAguh (3

where A, = D%, /4 is the base area of the cylindrical tank. Substituting
Egs. 2 and 3 into the mass balance relation (Eq. 1) gives

d(pAandh D2,,/4) dh

dt dt
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Canceling the densities and other common terms and separating the vari-
ables give

dt = _thank dh
Djzet vzgh

Integrating from t = O at which h = h, to t = t at which h = h, gives
Jtdtz _ Dfnk thdh L t= Vh, - \/E<Dtank>2
b D2 V2g h, Vh Vg2 \Dju
Substituting, the time of discharge is determined to be
t:\/ﬁ—\/ﬁ(sxuin
\/32.2/2 ft/s? 0.5in

Therefore, half of the tank will be emptied in 12.6 min after the discharge
hole is unplugged.

Discussion Using the same relation with h, = O gives t = 43.1 min for the
discharge of the entire amount of water in the tank. Therefore, emptying the
bottom half of the tank takes much longer than emptying the top half. This
is due to the decrease in the average discharge velocity of water with
decreasing h.

2
) = 757s = 12.6 min

5-3 = MECHANICAL ENERGY AND EFFICIENCY

Many fluid systems are designed to transport a fluid from one location to
another at a specified flow rate, velocity, and elevation difference, and the
system may generate mechanical work in a turbine or it may consume
mechanical work in a pump or fan during this process. These systems do
not involve the conversion of nuclear, chemical, or thermal energy to
mechanical energy. Also, they do not involve any heat transfer in any signif-
icant amount, and they operate essentially at constant temperature. Such
systems can be analyzed conveniently by considering the mechanical forms
of energy only and the frictional effects that cause the mechanical energy to
be lost (i.e., to be converted to thermal energy that usually cannot be used
for any useful purpose).

The mechanical energy can be defined as the form of energy that can be
converted to mechanical work completely and directly by an ideal mechani-
cal device such as an ideal turbine. Kinetic and potential energies are the
familiar forms of mechanical energy. Thermal energy is not mechanical
energy, however, since it cannot be converted to work directly and com-
pletely (the second law of thermodynamics).

A pump transfers mechanical energy to a fluid by raising its pressure, and
a turbine extracts mechanical energy from a fluid by dropping its pressure.
Therefore, the pressure of a flowing fluid is also associated with its mechan-
ical energy. In fact, the pressure unit Pa is equivalent to Pa = N/m? =
N - m/m3 = J/m?3, which is energy per unit volume, and the product Pv or
its equivalent P/p has the unit J/kg, which is energy per unit mass. Note that
pressure itself is not a form of energy. But a pressure force acting on a fluid
through a distance produces work, called flow work, in the amount of P/p
per unit mass. Flow work is expressed in terms of fluid properties, and it is
convenient to view it as part of the energy of a flowing fluid and call it flow



energy. Therefore, the mechanical energy of a flowing fluid can be
expressed on a unit-mass basis as (Fig. 5-14).

P V2
emech:;+?+gz

where P/p is the flow energy, V2/2 is the kinetic energy, and gz is the poten-
tial energy of the fluid, all per unit mass. Then the mechanical energy
change of a fluid during incompressible flow becomes

P,— Py V3-Vi
p 2

Therefore, the mechanical energy of a fluid does not change during flow if
its pressure, density, velocity, and elevation remain constant. In the absence
of any losses, the mechanical energy change represents the mechanical
work supplied to the fluid (if Ae,,;, > 0) or extracted from the fluid (if
Aepeen < 0).

Consider a container of height h filled with water, as shown in Fig. 5-15,
with the reference level selected at the bottom surface. The gage pressure
and the potential energy per unit mass are, respectively, P, = 0 and pe,
= gh at point A at the free surface, and Pg = pgh and pe; = 0 at point B at
the bottom of the container. An ideal hydraulic turbine would produce the
same work per unit mass Wy, = 9h whether it receives water (or any
other fluid with constant density) from the top or from the bottom of the
container. Note that we are also assuming ideal flow (no irreversible losses)
through the pipe leading from the tank to the turbine. Therefore, the total
mechanical energy of water at the bottom is equivalent to that at the top.

The transfer of mechanical energy is usually accomplished by a rotating
shaft, and thus mechanical work is often referred to as shaft work. A pump
or a fan receives shaft work (usually from an electric motor) and transfers it
to the fluid as mechanical energy (less frictional losses). A turbine, on the
other hand, converts the mechanical energy of a fluid to shaft work. In the
absence of any irreversibilities such as friction, mechanical energy can be
converted entirely from one mechanical form to another, and the mechani-
cal efficiency of a device or process can be defined as (Fig. 5-16)

_l’_

A€pech = + 9@z, — z) (kJ/kg) (5-24)

Mechanical energy output E mech, out _1 E mech, loss (5-25)
Mechanical energy input - E mech, in B E mech, in B

MNmech =

A conversion efficiency of less than 100 percent indicates that conversion is
less than perfect and some losses have occurred during conversion. A
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= (2 kg/s)(9.81 m/s?)(10 m)
=196 W

FIGURE 5-14

In the absence of any changes in flow
velocity and elevation, the power
produced by an ideal hydraulic turbine
is proportional to the pressure drop

of water across the turbine.

FIGURE 5-15

The mechanical energy of water

at the bottom of a container is equal
to the mechanical energy at any
depth including the free surface

of the container.
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Fan

_—

_—

SO W\l — 1 = 0.50 kg/s
NO) # @

_—

V,=0, Vy= 12 mis
21=17y
P, =P,

: 2
ABmech, fluid _ _MV2/2

Mmech, fan = -
Wshaft, in Wshaft, in

_ (0.50 kg/s)(12 m/s)/2
50 W
=0.72

FIGURE 5-16

The mechanical efficiency of a fan
is the ratio of the kinetic energy
of air at the fan exit to the
mechanical power input.

Murbine = 0.75 Tgenerator — 0.97

Turbine v Generator

MNturbine-gen = Mturbine generator
=0.75x0.97
=0.73

FIGURE 5-17

The overall efficiency of a turbine—
generator is the product of the
efficiency of the turbine and the
efficiency of the generator, and
represents the fraction of the
mechanical energy of the fluid
converted to electric energy.

mechanical efficiency of 97 percent indicates that 3 percent of the mechani-
cal energy input is converted to thermal energy as a result of frictional heat-
ing, and this will manifest itself as a slight rise in the temperature of the
fluid.

In fluid systems, we are usually interested in increasing the pressure,
velocity, and/or elevation of a fluid. This is done by supplying mechanical
energy to the fluid by a pump, a fan, or a compressor (we will refer to all of
them as pumps). Or we are interested in the reverse process of extracting
mechanical energy from a fluid by a turbine and producing mechanical
power in the form of a rotating shaft that can drive a generator or any other
rotary device. The degree of perfection of the conversion process between
the mechanical work supplied or extracted and the mechanical energy of the
fluid is expressed by the pump efficiency and turbine efficiency, defined as

Mechanical energy increase of the fluid AEmecn,ﬂuid _ W pump, u

- - : . (5-26)
Mechanical energy input W gnatt. in W pump
£ .

where AE'mech, fisid = Emech, out — Emech, in 1S the rate of increase in the mechan-
ical energy of the fluid, which is equivalent to the useful pumping power

Woump, u SUPPlied to the fluid, and

Npump =

Mechanical energy output C Woaton Wogpine
Mechanical energy decrease of the fluid \AEmech il B

Mturbine — (5-27)

Wturbine‘ e

where |AE, o fiial = Emech in = Emech, ot IS the rate of decrease in the
mechanical energy of the fluid, which is equivalent to the mechanical power
extracted from the fluid by the turbine W . and we use the absolute
value sign to avoid negative values for efficiencies. A pump or turbine
efficiency of 100 percent indicates perfect conversion between the shaft
work and the mechanical energy of the fluid, and this value can be
approached (but never attained) as the frictional effects are minimized.

The mechanical efficiency should not be confused with the motor
efficiency and the generator efficiency, which are defined as

Mechanical power output - W ghat. out

Motor: = - - - (5-28)
Tmotor Electric power input Woiect in
and
Electric power output We|ect, out
Generator: Ngenerator = =— (5-29)

Mechanical power input a W gnatt in

A pump is usually packaged together with its motor, and a turbine with its
generator. Therefore, we are usually interested in the combined or overall
efficiency of pump—motor and turbine—generator combinations (Fig. 5-17),
which are defined as

Wpump,u _ AEmech,fluid
Welect, in Welect, in

M pump-motor — TTpump Mmotor —

(5-30)

and

Welect, out Welect, out

Mturbine-gen = Mturbine Mgenerator — _ - = - (5-31)
Wturbine, e ‘AEmech, fluid|

All the efficiencies just defined range between 0 and 100 percent. The
lower limit of O percent corresponds to the conversion of the entire




mechanical or electric energy input to thermal energy, and the device in
this case functions like a resistance heater. The upper limit of 100 percent
corresponds to the case of perfect conversion with no friction or other irre-
versibilities, and thus no conversion of mechanical or electric energy to

thermal energy.

: EXAMPLE 5-3 Performance of a Hydraulic Turbine—Generator

® The water in a large lake is to be used to generate electricity by the installa-
tion of a hydraulic turbine-generator at a location where the depth of the
water is 50 m (Fig. 5-18). Water is to be supplied at a rate of 5000 kg/s. If
the electric power generated is measured to be 1862 kW and the generator
efficiency is 95 percent, determine (a) the overall efficiency of the tur-
bine-generator, (b) the mechanical efficiency of the turbine, and (c) the
shaft power supplied by the turbine to the generator.

|

|

|

|

|

| |

|

SOLUTION A hydraulic turbine-generator is to generate electricity from the

water of a lake. The overall efficiency, the turbine efficiency, and the shaft

power are to be determined.

Assumptions 1 The elevation of the lake remains constant. 2 The mechani-

cal energy of water at the turbine exit is negligible.

Properties The density of water can be taken to be p = 1000 kg/m3.
Analysis (a) We take the bottom of the lake as the reference level for conve-
nience. Then kinetic and potential energies of water are zero, and the
change in its mechanical energy per unit mass becomes

P , 1 kilkg
€mech, in — Cmech, out = ; - 0= gh = (981 m/s )(50 m) m = 0.491 kJ/kg

Then the rate at which mechanical energy is supplied to the turbine by the
fluid and the overall efficiency become

|AEmech, ﬂuid| = n"](emech, in emech,out) = (5000 kg/s)(0491 k‘]/kg) = 2455 kW

Wetect, out 1862 kW
Moverall = Mturbine-gen — _ _
|AE pech fiuia] 2495 KW

= 0.76

(b) Knowing the overall and generator efficiencies, the mechanical efficiency
of the turbine is determined from
Ntrbine-gen  0.76
MNturbine-gen — Mturbine Mgenerator — Mturbine — T generator = 0.95 =0.80

(c) The shaft power output is determined from the definition of mechanical
efficiency,

Wshaﬂ, out — 7]turbinelAE.mech, quid| = (0.80)(2455 kW) = 1964 kW

T Lake TNgenerator = 0-95
1862 kW
h=50m
l i Generator
m = 5000 kg/s
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FIGURE 5-18
Schematic for Example 5-3.
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Discussion Note that the lake supplies 2455 kW of mechanical energy to
the turbine, which converts 1964 kW of it to shaft work that drives the gen-
erator, which generates 1862 kW of electric power. There are irreversible
losses through each component.

EXAMPLE 54 Conservation of Energy for
an Oscillating Steel Ball

The motion of a steel ball in a hemispherical bowl of radius h shown in Fig.
5-19 is to be analyzed. The ball is initially held at the highest location at
point A, and then it is released. Obtain relations for the conservation of
energy of the ball for the cases of frictionless and actual motions.

]
]
]
]
]
]
]
]
]
SOLUTION A steel ball is released in a bowl. Relations for the energy bal-
ance are to be obtained.

Assumptions The motion is frictionless, and thus friction between the ball,
the bowl, and the air is negligible.

Analysis When the ball is released, it accelerates under the influence of
gravity, reaches a maximum velocity (and minimum elevation) at point B at
the bottom of the bowl, and moves up toward point C on the opposite side.
In the ideal case of frictionless motion, the ball will oscillate between points
A and C. The actual motion involves the conversion of the kinetic and poten-
tial energies of the ball to each other, together with overcoming resistance to
motion due to fricti