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Preface

A polynomial operator pencil, also called operator polynomial, is an expression of
the form

L(λ) = λnAn + λn−1An−1 + · · ·+A0, (1)

where the Ak are operators acting in a Hilbert space and λ ∈ C is the spectral
parameter. In the simplest case L(λ) = λI − A, where I is the identity operator,
we deal with the standard spectral problem. In case of L(λ) = λ2A2 + λA1 + A0

we have a quadratic operator pencil which we encounter in many applications.

Operator pencils acting in finite-dimensional Hilbert spaces are well known
as matrix polynomials. There exists a vast amount of literature on this topic, see,
e. g., [268], [92] and the references therein.

Historically, at its very beginning, spectral theory of operators in infinite-
dimensional Hilbert spaces dealt with self-adjoint operators which appear in quan-
tum mechanics and also in classical mechanics for conservative systems. The spec-
trum of a self-adjoint operator is real and the questions of interest are existence
of lower bounds for the spectrum and for the essential spectrum, the number of
negative eigenvalues, existence of spectral gaps, etc. Negative eigenvalues in quan-
tum mechanics describe bound states while in classical mechanics they describe
unstable modes of the system. However, even when dealing with conservative sys-
tems, sometimes it is more natural and convenient to consider a quadratic operator
pencil. For example, this happens when gyroscopic forces are taken into account.

Mechanical systems with damping dissipate energy and are therefore noncon-
servative. In this case one deals with non-self-adjoint operators. Even in quantum
mechanics, there exists an approach to deal with non-self-adjoint operators with
real spectrum, see, e. g., [27].

In general, the spectrum of a non-self-adjoint operator can lie anywhere in
the complex plane, and the problem of its location becomes more complicated.
However, if the operator is of a concrete form or belongs to a particular class,
then this information gives restrictions on the location of the spectrum, e. g., the
spectrum of a dissipative operator lies in the upper half-plane, the spectrum of a
bounded operator lies in a bounded domain, etc.

If the forces which make a mechanical system dissipative are caused by vis-
cous friction, then the dynamical problem is described by the equation

M
d2u

dt2
+K

du

dt
+Au = 0,

where t is time, M ≥ 0 is the operator describing mass distribution, K ≥ 0 is
the operator responsible for damping, A is the self-adjoint operator describing
conservative forces, where A is bounded below, and u is the displacement vector.
Substituting u(x, t) = eiλtv(x), where λ is the spectral parameter, we arrive at a
spectral problem (λ2M − iλK −A)v = 0 for the quadratic operator pencil

L(λ) = λ2M − iλK −A. (2)

 ix
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If the damping is at one point, then the operator K has rank one. Another case
where the pencil is of the form (2) with an operator K of rank one occurs in op-
erator realizations of boundary value problems for ordinary differential equations
where one boundary condition depends linearly on the spectral parameter.

Surprisingly, one can reduce the spectral problem which occurs in a simple
model describing nuclear interactions, proposed by T. Regge [238], to an operator
pencil of the form (2) with rank one operator K. In this model it is supposed that
the potential of interaction is finite or, in mathematical terms, has bounded sup-
port. Accordingly, the problem of S-wave scattering can be reduced to a boundary
value problem on a finite interval with a spectral parameter dependent boundary
condition. In this case the eigenvalues of the problem on the finite interval which
are located in the lower half-plane describe bound states while those in the upper
half-plane are responsible for the so-called resonances. The same situation occurs
in the theory of quantum graphs.

Another source of quadratic operator pencils are dynamical problems with
gyroscopic forces which are proportional to velocity and which lead to the operator
pencil

L(λ) = λ2M − λB −A, (3)

where B is a self-adjoint operator describing gyroscopic forces.

In the quadratic operator pencils (2) and (3), the operators A, B, K, M are
self-adjoint, and via the transformation λ �→ iλ, the quadratic pencils (2) and (3)
are formally equivalent. In general, an operator pencil of the form (1), possibly
with λ replaced by iλ, will be called a self-adjoint operator pencil if the operators
A0, . . . , An are self-adjoint.

Of course, by linearization one can reduce this problem to a linear operator
pencil L(λ) = λT1 − T2 acting in the direct sum of Hilbert spaces. But it is
more convenient to investigate the quadratic (or polynomial) pencils directly, in
particular, when the operators are self-adjoint.

There is an essential difference between finite-dimensional and infinite-dim-
ensional cases. Unlike in the finite-dimensional case, in the infinite-dimensional
case one may describe eigenvalue asymptotics. These asymptotics are important
in order to establish basis properties of eigenvectors and associated vectors (root
vectors) of a pencil. Furthermore, the asymptotics together with the general loca-
tion of the spectrum help to determine if the corresponding dynamical system is
stable. Some early results on asymptotics of eigenvalues of boundary value prob-
lems containing the spectral parameter in the boundary conditions have been
obtained in [257], [258] without use of operator theory. However, those boundary
value problems can be considered as spectral problems for polynomial operator
pencils acting in an infinite-dimensional Hilbert spaces.

Renewed interest for further investigation of operator pencils was stimulated
by M.V. Keldysh [138], see also [139]. Thereafter, many publications were devoted
to completeness and basis properties of root vectors of quadratic and polynomial
operator pencils, see [245], [246], [149], [237], [183], [184], [78]. These completeness
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and basis properties of the sets of eigenfunctions and associated functions are
closely connected with asymptotics of eigenvalues. Here the monographs [273],
[189] can be recommended for further reading.

The next important step towards a better understanding of quadratic opera-
tor pencils was achieved by M.G. Krĕın and H. Langer [153], [154]. They considered
monic quadratic operator pencils which have operator roots, i. e., operator pencils
of the form λ2I + λB+C = (λI −Z1)(λI −Z2), where Z1 and Z2 have separated
spectra. They proved that the root vectors of each Z1 and Z2 form a Riesz basis.
Such separation of spectra of the operator roots can be done in case of so-called
strongly damped and weakly damped pencils. After this many papers appeared
on this topic. A detailed description of these and other results about polynomial
operator pencils can be found in [182], which is the first monograph about opera-
tor pencils. Results on self-adjoint operator pencils can be found in [182, Chapter
IV] and in [95, Section V.12] for quadratic self-adjoint operator pencils.

It was shown by S.G. Krĕın [158] that the problem of small vibrations of a
viscous liquid in a stable container having a free surface can be described by the
equation

y = λGy +
1

λ
Hy,

where G and H are compact operators, G > 0, H ≥ 0. Of course, the above
equation can be reduced to an equation for a quadratic operator pencil with the
exclusion of the point λ = 0. For an extention of this theory of small vibrations of
a viscous liquid see [145], [146]. Some other applications of the theory of operator
pencils can be found in [1] and [250].

Hermite–Biehler polynomials were first investigated by Ch. Hermite in [107]
and by M. Biehler in [30]. This notion of Hermite–Biehler polynomial was gen-
eralized to entire functions by N.G. Cebotarev, L.S. Pontryagin, N.N. Mĕıman,
Ju.I. Nĕımark, M.G. Krĕın and B.Ja. Levin, see [173]. A further generalization
to shifted symmetric Hermite–Biehler or shifted symmetric generalized Hermite–
Biehler functions was introduced in [227].

To explain the connection between quadratic operator pencils and shifted
symmetric Hermite–Biehler functions we note that in the above examples, the
operator pencil represents a boundary value problem for differential equations.
Therefore, each such problem has a characteristic function, which is an entire
function whose zeros form the spectrum of such a quadratic operator pencil. Its
spectrum can therefore be described via the spectral theory of the quadratic op-
erator pencil and via the zeros of the characteristic function. All characteristic
functions which are considered in this monograph are shifted symmetric (general-
ized) Hermite–Biehler functions.

The spectral theory of quadratic operator pencils and the theory of shifted
symmetric (generalized) Hermite–Biehler functions give roughly the same results
on the general location of the spectrum. However, when we investigate spectral
asymptotics, the more explicit form of the characteristic function is preferred over
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the spectral theory. Also, for the inverse problem, that is, for the problem of
recovering parameters in the original problem from its spectral data, we will make
use of the theory of entire functions.

A classical result in the theory of inverse problems states that two spec-
tra of boundary value problems generated by the same Sturm–Liouville equation
and different self-adjoint separated boundary conditions uniquely determine the
Sturm–Liouville equation, see [32], [178], [180]. With the exception of Ambarzu-
mian’s case [12], one spectrum does not determine the equation uniquely. In [178],
[180] one can also find necessary and sufficient conditions for two sequences of
numbers to be the spectra of the above two problems. Furthermore, the method
to recover the equation is presented. These classical inverse problems are related to
a self-adjoint operator, i. e., to a monic linear self-adjoint operator pencil. In this
monograph, we will solve inverse problems which are related to quadratic operator
pencils.

We will now present an overview of results for some of the examples consid-
ered in this monograph.

The generalized Regge problem is defined as the boundary value problem

y′′ + λ2y − q(x)y = 0,

y(λ, 0) = 0,

y′(λ, a) + (iαλ+ β) y(λ, a) = 0,

with a > 0, real-valued q ∈ L2(0, a), α > 0 and β ∈ R. The Regge problem is the
special case α = 1 and β = 0. The spectrum of the Regge problem may be empty
as is easily seen for the case α = 1, β = 0, q = 0. However, for the case α �= 1,
on which we will focus in this part of the preface, the spectrum is well behaved.
The generalized Regge problem can be represented by a self-adjoint quadratic
operator pencil. Its characteristic function φ is a sine type function as well as a
shifted Hermite–Biehler function which has the asymptotic representation

φ(λ) = cosλa+ iα sinλa+
M sinλa

λ
− iαN cosλa

λ
+

ψ(λ)

λ
, λ ∈ C \ {0},

where ψ(λ) is “asymptotically small” with respect to cosλa and sinλa. The coeffi-
cients M and N can be easily expressed in terms of the given parameters, namely,
N = 1

2

∫ a

0
q(x) dx and M = N+β. The dominant term of φ is cosλa for 0 < α < 1

and iα sinλa for α > 1. For α > 1, the asymptotic distribution of the sequence
(λk)

∞
k=−∞ of the zeros of φ, and therefore the spectrum of the generalized Regge

problem, is

λk =
πk

a
+

i

2a
log

(
α+ 1

α− 1

)
+

P

k
+

βk

k
, k ∈ Z \ {0},

where

P =
1

2π

(∫ a

0

q(x) dx − 2β

α2 − 1

)
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and (βk)
∞
k=−∞ ∈ l2. A similar result holds in the case 0 < α < 1. There are at

most finitely many eigenvalues in the closed lower half-plane, and they are all
located on the nonpositive imaginary semiaxis. Furthermore, the pure imaginary
eigenvalues have a certain pattern. All eigenvalues on the negative imaginary axis,
if any, are simple, and denoting them by −iτ1, . . . ,−iτκ, with τ1 < · · · < τκ,
then the numbers iτk are no eigenvalues, the intervals (iτk, iτk+1) on the positive
imaginary axis contain an odd number of eigenvalues, counted with multiplicity,
whereas the interval [0, iτ1) contains an even number of eigenvalues. Conversely,
any sequence (λk)

∞
k=−∞ of the above form gives rise to a unique tuple of a > 0,

q ∈ L2(0, a), α > 1 and β ∈ R for which the sequence of eigenvalues of the
corresponding generalized Regge problem coincides with (λk)

∞
k=−∞. We observe

that it is sufficient to know only one spectrum to solve the inverse problem. The
generalized Regge problem shares this behaviour with the problem of vibrations
of a string with damping at one point, which was considered in [157] and [156].

Stieltjes strings, also called Sturm systems, describe massless threads bearing
point masses. This notion was introduced in [85]. We consider the case that the
string is fixed at both endpoints and has one point P of damping in the interior.
The following picture describes the situation,

m
(1)
1 m

(1)
2 m

(1)
n1 m

(2)
n2 m

(2)
2 m

(1)
2

l
(1)
0 l

(1)
1 l

(1)
n1 l

(2)
n2

l
(2)
1 l

(2)
0

P

where n1 > 0 and n2 > 0, respectively, is the number of point masses to either

side of the point of damping, the positive numbers l
(j)
k denote the lengths of

the individual threads, and the positive numbers m
(j)
k denote the masses. If the

positive coefficient of damping at the point P is denoted by ν, then vibrations of
this Stieltjes string are governed by the system of equations

u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k λ2u

(j)
k = 0, k = 1, . . . , nj , j = 1, 2,

u
(j)
0 = 0, u

(1)
n1+1 = u

(2)
n2+1,

u
(1)
n1+1 − u

(1)
n1

l
(1)
n1

+
u
(2)
n2+1 − u

(2)
n2

l
(2)
n2

+ iνλu
(1)
n1+1 = 0.

The same equations occur in the theory of synthesis of electrical circuits, see
[102], [262]. The characteristic function Φ of the Stieltjes string is a generalized
Hermite–Biehler polynomial of degree 2(n1 + n2) + 1. Hence this problem has
finitely many eigenvalues (λk)

n1+n2

k=−(n1+n2)
. All eigenvalues lie in the closed upper

half-plane and can be index in such a way that λ−k = −λk for not pure imaginary
λk. Furthermore, there are at most 2min{n1, n2} real eigenvalues, all of which are
simple and nonzero, and ImΦ′(λk) = 0 for each real eigenvalue λk. The inverse
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problem consists in finding parameters of a Stieltjes string from a given sequence
(λk)

n
k=−n so that it is the sequence of the eigenvalues of the Stieltjes string. The

properties of this given sequence are that all of its terms lie in the closed upper
half-plane, that it can be indexed in such a way that λ−k = −λk for not pure
imaginary λk, that the sequence has at most 2�n2 � real terms, that all real terms
occur only once in the sequence and that Imϕ′(λk) = 0 for each real λk, where ϕ
is any polynomial of degree 2n+1 whose zeros, counted with multiplicity, are the
numbers λk, k = −n, . . . , n. This inverse problem has a solution, where the lengths
of the two substrings from P to their endpoints can be arbitrarily prescribed.
Furthermore, although n1+n2 = n is determined by the length 2n+1 of the given
sequence, the individual values of n1 or n2 can be arbitrarily chosen subject to the
condition that the number of real terms in (λk)

n
k=−n does not exceed 2min{n1, n2}.

Even with these values fixed, the solution of the inverse problem is not unique in
general.

For the convenience of the reader we now list all our applications and the
sections and subsections where we are dealing with each application.

• (Generalized) Regge problem: 2.1, 6.1, 7.2, 8.1

• Damped vibrations of a string: 2.2, 6.3, 7.3, 8.3

• Vibrations of star graphs with damping: 2.3, 6.4, 7.4, 8.4

• Sturm–Liouville problems on forked graphs: 2.4, 6.5

• Sturm–Liouville problems on lasso graphs: 2.5, 6.6

• Damped vibrations of Stieltjes strings: 2.6, 6.2, 8.2

• Damped vibrations of beams: 2.7, 6.7

• Vibrations of an elastic fluid-conveying pipe: 4.3.2

Now we briefly outline the contents of this monograph which is divided into
four parts.

Part I, consisting of Chapters 1 to 4, deals with theory and applications of
polynomial operator pencils.

In Chapter 1 we consider the spectrum of the quadratic operator pencil
defined by (2), where the operators M ≥ 0, K ≥ 0 and A ≥ −βI (β > 0) satisfy
additional conditions which guarantee that the spectrum of L consists of normal
(isolated Fredholm) eigenvalues only. In Section 1.2 it is shown that the spectrum of
L lies in the closed upper half-plane except for a finite number of eigenvalues, if any,
which lie on the negative imaginary semiaxis. The properties and the distribution
of the eigenvalues on the imaginary axis are thoroughly discussed in Sections 1.3
and 1.4. We also show in Section 1.3 that the total algebraic multiplicity of the
eigenvalues in the open lower half-plane is independent of K ≥ 0 and coincides
with the total multiplicity of the negative eigenvalues of A. In Section 1.5 more
specific results for the eigenvalues on the real and imaginary axes are obtained in
the case that K is a rank one operator.
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In Chapter 2 we apply the results obtained in Chapter 1 to various physi-
cal problems. In Section 2.1 the spectrum of the Regge problem is described. In
Section 2.2 we consider problems of small transversal vibrations of strings with
damping. It appears that these problems can be considered as eigenvalue problems
for quadratic operator pencils of the form (2). The same is true for the problems
of vibrations of a star graph damped at the interior vertex, which we consider in
Section 2.3. In Section 2.4 we consider a spectral problem for a quantum graph
having the form of a fork, which is a star graph with one infinite edge. We assume
that the potential on the half-infinite edge of such a graph is identically zero. Then
the problem on the forked graph can be reduced to a certain Regge type problem
on a finite interval and with spectral parameter dependent boundary conditions.
In Section 2.5 we do the same for a lasso graph. In Section 2.6 we consider damped
vibrations of a Stieltjes strings. In Section 2.7 we consider vibrations of beams with
damping in a hinge at one of the ends.

In Chapter 3 we present some results for operator pencils which do not satisfy
the assumptions made in Chapter 1. In Section 3.1 we consider polynomial opera-
tor pencils of the form (1) where A0 is self-adjoint, bounded below and can possess
continuous spectrum on the semiaxis [0,∞), where An = inI, where Aj = ijKj

with Kj ≥ 0, k = 1, . . . , n− 1, and where the Kj are subordinate to A0. The total
algebraic multiplicity of the part of the spectrum of such a pencil which is located
on the negative imaginary semiaxis coincides with the total multiplicity of the
negative spectrum of A0. In Section 3.2 we provide lower bounds for the number
of eigenvalues of (2) on the negative imaginary semiaxis when M = I and when
the self-adjoint operator K is bounded below but not necessarily nonnegative.

In Chapter 4 we investigate operator pencils of the form

L(λ) = λ2I − iλK − λB −A

with positive operator K and self-adjoint operators A and B. In Section 4.1 it is
shown that under certain conditions the total algebraic multiplicity of the spec-
trum of this operator pencil in the open lower half-plane coincides with the to-
tal multiplicity of the negative spectrum of A. In Section 4.2 we compare this
quadratic pencil with the linearized pencil in a Pontryagin space. In Section 4.3
we consider the pencil described by (3) which is associated with the problem of gy-
roscopic stabilization of a mechanical system. We describe necessary conditions for
stabilization as well as certain sufficient conditions. Some applications are given.

Part II, consisting of Chapters 5 and 6, deals with Hermite–Biehler functions
and their applications to eigenvalue problems.

In Chapter 5 we introduce Hermite–Biehler functions and shifted Hermite–
Biehler functions and derive their main properties which will be used in Chapter 6.
In Section 5.1 we obtain properties of Hermite–Biehler functions, whereas Section
5.2 is concerned with shifted Hermite–Biehler functions.

In Chapter 6 we revisit the applications encountered in Chapter 2 and show
that their characteristic functions are symmetric shifted Hermite–Biehler func-
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tions. Hence the spectra of these applications can be obtained as zeros of shifted
Hermite–Biehler functions, which gives essentially the same results as in Chapter 2.

Part III, consisting of Chapters 7 and 8, deals with eigenvalue asymptotics of
the applications considered in Parts I and II and with the corresponding inverse
problems.

In Chapter 7 we derive eigenvalue asymptotics for some of the problems
considered in Chapters 2 and 6, namely, for the generalized Regge problem in
Section 7.2, for the damped string problem in Section 7.3, and for the star graph
problem in Section 7.4.

In Chapter 8 we consider inverse problems for some of the applications en-
countered in Chapters 2, 6 and 7, where we have shown necessary properties of
the sequences of eigenvalues of these problems. In this chapter we show for some
applications that these properties are also sufficient, possibly under some mild ad-
ditional conditions. That is, we solve the inverse problems. Section 8.1 deals with
the generalized Regge problem. Here necessary and sufficient conditions for a se-
quence of complex numbers to be the spectrum of the generalized Regge problem
are given, and it is shown that the parameters of the generalized Regge problem
are uniquely determined by the corresponding spectrum. The inverse problem for
a damped Stieltjes string, which has a finite spectrum, is considered in Section
8.2. The inverse problem for a damped smooth string is solved in Section 8.3.
In Section 8.4 we consider the inverse problem on a star graph. Its spectrum is
real, and therefore the spectrum of the star graph does not suffice to recover the
Sturm–Liouville equations on the edges. As additional information we choose the
spectra of the boundary value problems on the edges. If all spectra are mutually
non-intersecting, the inverse problem has a unique solution.

In Part IV, consisting of Chapters 9 to 12, we have collected some background
material which is used throughout Parts I, II, and III.

In Chapter 9 we consider analytic functions and analytic operator functions.
We present results and proofs on the local dependence of their zeros, eigenvalues
and eigenvectors on a parameter. Section 9.1 deals with analytic functions, whereas
Section 9.2 is concerned with analytic operator functions.

In Chapter 10 we present results on differential operators which are used
in Chapter 2 to verify that the operator pencils associated with our applications
satisfy the assumptions made in Chapter 1. In Section 10.1 we briefly recall defi-
nitions and basic properties of Sobolev spaces on finite intervals. In Section 10.2
we write down the Lagrange identity and Green’s formula, which will be used in
Section 10.3 to prove criteria for self-adjointness of differential operators.

In Chapter 11 we collect various known results on meromorphic functions.
In Section 11.1 we present basic properties of meromorphic Nevanlinna functions.
In Section 11.2 we give a comprehensive account of sine type functions. In Section
11.3 perturbations of sine type functions are considered.

In Chapter 12 we present results on Sturm–Liouville operators in a form
which is applied in various earlier chapters of this monograph. In Section 12.1 we
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prove Riemann’s formula, which is used in Section 12.2 to give asymptotic repre-
sentations of solutions of initial value problems of the Sturm–Liouville equation
on a finite interval. Representations of particular sine type functions are given in
Section 12.3. Sections 12.4 and 12.5 prepare for the main result of Section 12.6, the
existence and uniqueness theorem for the inverse Sturm–Liouville problem with
two spectra.



Part I

Operator Pencils



Chapter 1

Quadratic Operator Pencils

1.1 Operator pencils

In this chapter we will investigate the spectra of quadratic operator pencils L of
the form

L(λ) = λ2M − iλK −A

on a Hilbert space H with domain D(L(λ)) = D(M)∩D(K)∩D(A), where λ ∈ C

is the spectral parameter and the three operators M , K, A satisfy the following

Condition I. The operators M , K, and A are self-adjoint operators on H with
the following properties:

(i) M ≥ 0, K ≥ 0, and A ≥ −βI for some positive number β, i. e., A is bounded
below;

(ii) the operator M is bounded on H, i. e., M ∈ L(H);

(iii) for some β1 > β, the operator (A + β1I)
−1 ∈ S∞, where S∞ denotes the

space of all compact operators on H;

(iv) the operator K is A-compact, i. e., K(A+ β1I)
−1 ∈ S∞;

(v) N(A) ∩N(K) ∩N(M) = {0}.

We will consider more general operator pencils in subsequent chapters. There-
fore it is convenient to formulate some of the basic definitions and results for
general polynomial operator pencils. To this end let H1 be a Hilbert space and
V : H1 → H be a closed densely defined operator, e. g., a self-adjoint operator.
Let n be a positive integer, let T1, . . . , Tn be closable operators from H1 to H with
D(Tj) ⊃ D(V ) for j = 1, . . . , n, and define a polynomial operator pencil T by

T (λ) =

n∑
j=0

λjTj , λ ∈ C, (1.1.1)
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4 Chapter 1. Quadratic Operator Pencils

with D(T (λ)) = D(V ) for all λ ∈ C. We will call T a V -bounded operator pencil.
The formal derivative dT

dλ is an operator pencil which will be denoted by T ′, and
the general jth derivative by T (j).

Definition 1.1.1. The pencil T is said to be monic if H1 = H and Tn = I, where
I is the identity operator.

Definition 1.1.2. The set of values λ ∈ C such that T (λ) is invertible, i. e., T (λ)
is bijective and T−1(λ) := (T (λ))−1 is bounded from H to H1, is said to be the
resolvent set ρ(T ) of the pencil T . The spectrum of the pencil T is denoted by
σ(T ), i. e., σ(T ) = C \ ρ(T ).

We recall that a closed densely defined operator (in Hilbert spaces) is called
Fredholm if its nullspace has finite dimension and its range has finite codimension.
The difference between the dimension of the nullspace and the codimension of the
range is called the index of the Fredholm operator. The range of a Fredholm
operator is closed, see [99, IV.1.13].

Definition 1.1.3.

1. A number λ0 ∈ C is said to be an eigenvalue of the pencil T if there exists a
vector y0 ∈ D(V ), called an eigenvector of T , such that y0 �= 0 and T (λ0)y0 =
0. The vectors y1, . . . , ym−1 ∈ D(V ) are called associated to y0 if

k∑
s=0

1

s!
T (s)(λ0)yk−s = 0, k = 1, . . . ,m− 1. (1.1.2)

The number m is said to be the length of the chain of the eigenvector and
associated vectors (y0, . . . , ym−1).

2. The geometric multiplicity of an eigenvalue λ0 is defined to be the number
of the corresponding linearly independent eigenvectors, i. e., the dimension of
the nullspace of T (λ0). The algebraic multiplicity of an eigenvalue is defined
to be the greatest value of the sum of the lengths of chains corresponding
to linearly independent eigenvectors. An eigenvalue is called semisimple if
its algebraic multiplicity equals its geometric multiplicity. An eigenvalue is
called simple if its algebraic multiplicity is 1.

3. An eigenvalue λ0 is said to be isolated if there is a deleted neighbourhood
of λ0 which is contained in the resolvent set ρ(T ). An isolated eigenvalue
of finite algebraic multiplicity is said to be normal. The set of all normal
eigenvalues of T will be denoted by σ0(T ).

4. A number λ ∈ C is called a regular point of T if it belongs to the resolvent
set of T or if it is a normal eigenvalue of T .

5. The essential spectrum σess(T ) of T is the set of complex numbers λ such
that T (λ) is not a Fredholm operator.
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Remark 1.1.4. It is well known and easy to see that (1.1.2) is satisfied if and only
if λ0 is a zero of order at least m of the vector polynomial

λ �→ T (λ)

m−1∑
j=0

(λ − λ0)
jyj .

Definition 1.1.5. The approximate spectrum of T is defined to be the set of all
λ ∈ C such that there exists a sequence (yk)

∞
k=1 of vectors yk ∈ D(T ) with ‖yk‖ = 1

and lim
k→∞

‖T (λ)yk‖ = 0. We denote the approximate spectrum by σapp(T ).

Often it is more convenient to deal with bounded operator pencils. Hence we
introduce the auxiliary pencil T1 which coincides algebraically with the V -bounded
operator pencil T , i. e., T1(λ)x = T (λ)x for all λ ∈ C and x ∈ D(V ), but T1(λ) is
considered as an operator

T1(λ) : D(V )→ H,

where D(V ) is equipped with the graph norm of V , which is defined by

‖x‖V =
(‖x‖2 + ‖V x‖2) 1

2 , x ∈ D(V ).

It is well known and easy to show that D(V ) becomes a Banach space when
equipped with the graph norm of a closed operator V , that D(V ) is a Hilbert
space if V is self-adjoint, and that the closability of Tj and D(V ) ⊂ D(Tj) implies
that Tj|D(V ) is bounded from D(V ) to H in view of the closed graph theorem.
Hence T1(λ) will be bounded from D(V ) to H for all λ ∈ C if V is self-adjoint.

For a bounded operator S, ‖S‖ will denote its norm, where the domain and
range spaces will be clear from the context. For example, T1(λ) is considered as
an operator from D(V ) with its graph norm into H , so that ‖T1(λ)‖ is the norm
with respect to those spaces.

Lemma 1.1.6. All spectral quantities of the two operator pencils T and T1 coin-
cide, i. e.,

σ(T ) = σ(T1), σess(T ) = σess(T1),

if λ is a normal eigenvalue, then it is of the same algebraic and of the same
geometric multiplicity for T and T1. The vectors yk, k = 0, . . . ,m−1, are a chain of
an eigenvector and associated vectors at λ for T if and only if this is the case for T1.

Proof. The statement of this lemma is obvious from the definition of resolvent set,
spectrum, eigenvalues and associated vectors. See also [182, Lemma 20.1]. �
Definition 1.1.7. A domain Ω ⊂ C, bounded by a simple rectifiable closed curve
∂Ω, is said to be normal for the operator pencil T if

(i) ∂Ω ∩ σ(T ) = ∅,
(ii) σess(T ) ∩ Ω = ∅.
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If Ω is a normal domain for the pencil T , then σ(T ) ∩ Ω = σ0(T ) ∩ Ω, and
σ0(T )∩Ω is a finite or empty set. This can be deduced, e. g., from [189, Theorem
1.3.1 and Section 1.4] applied to the operator function T1.

Definition 1.1.8. Suppose that the domain Ω is normal for the pencil T . The
total algebraic multiplicity of the spectrum of the pencil T in Ω is the number

m(Ω) =
p∑

i=1

mi, where the positive integers mi, i = 1, . . . , p, denote the algebraic

multiplicities of all eigenvalues of T lying in Ω.

The following lemma is a particular case of Rouché’s theorem for finitely
meromorphic operator functions.

Lemma 1.1.9. Let Ω be a normal domain for the pencil T . Then∫
∂Ω

T ′(λ)T−1(λ) dλ

is a finite rank operator, and

m(Ω) =
1

2πi
tr

∫
∂Ω

T ′(λ)T−1(λ) dλ =: indΩ T, (1.1.3)

where tr denotes trace. If S is a V -bounded operator polynomial with

‖S(λ)T−1(λ)‖ < 1, λ ∈ ∂Ω, (1.1.4)

then
indΩ(T + S) = indΩ T. (1.1.5)

Proof. Noting that T ′(λ)T−1(λ) = T ′
1(λ)T

−1
1 (λ), the result follows from [97,

Proposition 4.2.3 and Theorems 4.4.1 and 4.4.3], applied to the bounded oper-
ator pencil T1 if we observe that in [97, (4.4.6)] the order in the product may be
reversed. �

We now return to the operator pencil L satisfying Condition I.

Remark 1.1.10.

1. Parts (ii) and (iv) of Condition I imply thatD(A) ⊂ H = D(M) and D(A) ⊂
D(K), so that D(L(λ)) = D(A) for all λ ∈ C.

2. If (A + β1I)
−1 ∈ S∞ for some β1 > β, then (A + λI)−1 and K(A + λI)−1

belong to S∞ for all λ in the resolvent set of A.

3. Clearly, part (v) of Condition I is necessary for the pencil L to have a
nonempty resolvent set, and in Lemma 1.2.1 below it will be shown that
the resolvent set is nonempty if (v) is satisfied.

For the pencil L1 with domain D(A) equipped with the graph norm of A we
write

L1(λ) = λ2M1 − iλK1 −A1.

In general, the operators M1, K1 and A1 will no longer be self-adjoint.
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The following lemma summarizes some more or less obvious properties of the
operator pencils L and L1, in addition to those stated in Lemma 1.1.6.

Lemma 1.1.11.

1. The operators M1 and K1 are compact operators and A1 is a bounded Fred-
holm operator with index 0.

2. The operator pencils L and L1 are Fredholm valued with index 0.

3. L(λ)∗ = L(−λ) for all λ ∈ C. In particular, the spectrum of L is symmetric
with respect to the imaginary axis.

Proof. 1. By the closed graph theorem, (A + β1I)
−1 is an isomorphism from H

onto D(A) with its graph norm. Hence A1 and A(A+β1I)
−1 are norm isomorphic

and since
A(A+ β1I)

−1 = I − β1(A+ β1I)
−1

is a compact perturbation of the identity operator and thus a bounded Fredholm
operator with index 0, see, e. g., [137, Theorem IV.5.26], it follows that A1 has
this property. Due to Condition I, a similar argument shows that M1 and K1 are
compact.

2. The same perturbation arguments which were used in the proof of part
1 imply that L1 is Fredholm valued with index 0. Since this property does not
depend on the norm of D(A), also L is Fredholm valued with index 0.

3. For all λ ∈ C,

L(λ)∗ = (λ2M − iλK −A)∗ = λ
2
M + iλK −A = L(−λ).

Observing that a closed operator is invertible if and only if its adjoint is invertible,
it follows that λ ∈ σ(L) implies −λ ∈ σ(L). Hence the spectrum of L is symmetric
with respect to the imaginary axis. �

1.2 Location of the spectrum of the pencil L

Lemma 1.2.1. The spectrum of the pencil L consists of normal eigenvalues located
in the closed upper half-plane and on the imaginary axis.

Proof. Since the pencil L is an analytic Fredholm operator-valued function, its
spectrum consists of eigenvalues of finite algebraic multiplicity and either σ(L) = C

or all eigenvalues are normal, see, e. g., [94, Chapter XI, Corollary 8.4]. Hence it
remains to show that any eigenvalue in the open lower half-plane must lie on the
imaginary axis.

To this end let y0 be an eigenvector corresponding to an eigenvalue λ0. Then

(L(λ0)y0, y0) = 0,

and consequently, taking real and imaginary parts,

((Re λ0)
2 − (Imλ0)

2)(My0, y0) + Imλ0(Ky0, y0)− (Ay0, y0) = 0 (1.2.1)
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and
Reλ0[2 Imλ0(My0, y0)− (Ky0, y0)] = 0. (1.2.2)

If Reλ0 �= 0, then (1.2.2) reduces to

2 Imλ0(My0, y0)− (Ky0, y0) = 0, (1.2.3)

and Imλ0 ≥ 0 follows if (My0, y0) �= 0 since M ≥ 0 and K ≥ 0. If (My0, y0) = 0,
then (1.2.3) implies (Ky0, y0) = 0, i. e., My0 = 0 as well as Ky0 = 0. Then (1.2.1)
would lead to Ay0 = 0, which contradicts Condition I, part (v). Hence Reλ0 �= 0
implies Imλ0 ≥ 0. �
Remark 1.2.2. The spectrum of a quadratic operator pencil satisfying Condition I
may be empty. This happens for example in the trivial case when M = 0 and
K = 0. Thus statements of the form “the spectrum consists of . . . ” have to be
read bearing in mind that any or all listed components of the spectrum may be
empty.

Lemma 1.2.3. If K > 0, then the part of the spectrum of the pencil L located in
the closed lower half-plane lies on the imaginary axis.

Proof. In view of Lemma 1.2.1 we have to show that the pencil L has no nonzero
real eigenvalues. Hence, assume that the pencil L has a nonzero real eigenvalue
λ0 with corresponding eigenvector y0. Then (1.2.2) leads to (Ky0, y0) = 0, which
contradicts K > 0. �
Lemma 1.2.4.

1. If A ≥ 0, then the spectrum of the pencil L is located in the closed upper
half-plane.

2. If A > 0 and K > 0, then the spectrum of the pencil L is located in the open
upper half-plane.

3. If A > 0 and λ2My−Ay �= 0 for all real λ and all nonzero y ∈ N(K)∩D(A),
then the spectrum of the pencil L is located in the open upper half-plane.

Proof. 1. In view of Lemma 1.2.1 we have to show that there are no eigenvalues
on the negative imaginary semiaxis. Hence, let y0 be an eigenvector corresponding
to a pure imaginary eigenvalue λ0. Then Reλ0 = 0, and in view of M ≥ 0, K ≥ 0,
A ≥ 0, equation (1.2.1) would imply that (My0, y0) = 0, (Ky0, y0) = 0, and
(Ay0, y0) = 0 if Imλ0 < 0. But this contradicts Condition I, part (v).

2. From A > 0 it follows that 0 ∈ ρ(L), and hence the statement of part 2
follows in view of part 1 and Lemma 1.2.3.

3. The same proof as in part 2 above shows that 0 is not an eigenvalue
of the pencil L. If the pencil L would have a nonzero real eigenvalue λ0 with
corresponding eigenvector y0, then (1.2.2) would imply Ky0 = 0, and therefore

λ2
0My0 −Ay0 = L(λ0)y0 = 0,

which contradicts the assumptions of this case. �
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Remark 1.2.5. We note that the assumption A > 0 is equivalent to A � 0, i. e.,
A ≥ εI for some ε > 0. Indeed, Condition I, part (iii), implies that the spectrum
of A consists of isolated eigenvalues, and therefore A > 0 leads to A � 0 by the
spectral theorem.

Let us introduce the following parameter dependent operator pencil:

L(λ, η) = λ2M − iληK −A. (1.2.4)

It is clear that L(λ, 1) = L(λ). If we write L, we will always mean the operator
function λ �→ L(λ). The two parameter operator function will always be written
as L(λ, η), L(·, η) or L(λ, ·).
Remark 1.2.6.

1. The number m(Ω, η) will denote the total algebraic multiplicity in Ω of the
pencil L(·, η) defined in (1.2.4), see Definition 1.1.8.

2. For convenience we will also use the notationsm(λ) andm(λ, η) to denote the
algebraic multiplicities of the eigenvalues of the operator pencils L and L(·, η)
at a point λ, where the multiplicity is zero if λ belongs to the resolvent set.

By Lemma 1.1.11 we know that the eigenvalues, eigenvectors and associated
vectors of L and L1 coincide, and that both L and L1 are Fredholm operator
valued. Since L1 is a bounded operator function, Theorem 9.2.4 is applicable and
we therefore have

Theorem 1.2.7. Let η0 ∈ C and let Ω ⊂ C be a domain which contains exactly one
eigenvalue λ0 of the pencil L(·, η0). Denote by m the algebraic multiplicity of λ0.
Then there exist numbers ε > 0 and m1 ∈ N, m1 ≤ m, such that the following
assertions are true in a deleted neighbourhood 0 < |η − η0| < ε of η0:

1. The pencil L(·, η) possesses exactly m1 distinct eigenvalues inside the do-
main Ω. Those eigenvalues can be arranged in groups λkj(η), k = 1, . . . , l,

j = 1, . . . , pk,
l∑

k=1

pk = m1, in such a way that the following Puiseux series

expansion

λkj(η) = λ0 +

∞∑
n=1

akn(((η − η0)
1
pk )j)

n, j = 1, . . . , pk, (1.2.5)

holds, where, for j = 1, . . . , pk,

((η − η0)
1
pk )j = |η − η0|

1
pk exp

(
2πi(j − 1) + i arg(η − η0)

pk

)
. (1.2.6)

2. A basis of the eigenspace corresponding to λkj(η) can be written in the form

y
(q)
kj (η) = b

(q)
k0 +

∞∑
n=1

b
(q)
kn (((η − η0)

1
pk )j)

n, q = 1, . . . , rk, (1.2.7)
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where rk is the geometric multiplicity of λkj(η) and b
(q)
k0 ∈ N(L(λ0, η0)) \

{0}. The vectors in the series (1.2.7) belong to D(A) and the series (1.2.7)
converges in the graph norm of D(A).

Proof. For a suitable neighbourhood of λ0 this follows from Theorem 9.2.4 if we
observe that we may replace the exponent n in the series expansion (9.2.13) of
yι0kj(η) by n − ν, where ν = min{n ∈ N0 : bι0kn �= 0}, since multiplication by

the nonzero constant (((η − η0)
1
pk )j)

−ν does not change the stated properties of

the yι0kj(η) in (9.2.13). From L(λkj(η), η)y
(q)
kj (η) = 0 and a continuity argument it

therefore follows that L(λ0, η0)y
(q)
k0 = 0. �

The vectors b
(q)
k0 in (1.2.7) are eigenvectors of L(·, η0) with respect to the

eigenvalue λ0, but they may be linearly dependent.

We have seen in the last paragraph of the proof of Theorem 9.1.1 that for each
k the least common multiple of pk and the indices n for which akn �= 0 in (1.2.5)
is 1. Hence, if η is real and moves through η0, then not all λkj(η), j = 1, . . . , pk,
can lie on a given line if pk > 1. Therefore we have the following

Remark 1.2.8. If λ0 �= 0 is a real or pure imaginary eigenvalue of L(·, η0) for some
real η0 and if the eigenvalues of L(·, η) near λ0 for real η near η0 are also real or
pure imaginary, then pk = 1 for all k in Theorem 1.2.7.

Remark 1.2.9. If both η and η0 are real so that arg(η − η0) is an integer multiple
of π, then we can put

((η − η0)
1
pk )j = |η − η0|

1
pk exp

(
2πi(j − 1) + iδk arg(η − η0)

pk

)
, (1.2.8)

where δk is an odd integer. This would change the indexing of the roots for
η − η0 < 0 if δk−1

pk
is not an even integer but has the advantage that when taking

δk = pk if pk is odd then ((η− η0)
1
pk )1 would be real for all η and we would avoid

a “vertex” when the roots move through η0.

Although we will mostly deal with real η in L(λ, η), it is advantageous to
consider η as a complex eigenvalue parameter.

If we additionally assume that K is bounded and boundedly invertible, i. e.,
K bounded and K � 0, then we can write, setting λ = iτ and assuming λ �= 0,

L(λ, η) = λ2M − iληK − A

= −τ2M + τηK −A

= τK
1
2

(
ηI − τK− 1

2MK−1
2 − τ−1K− 1

2AK− 1
2

)
K

1
2 .

Hence
L(λ, η) = τK

1
2Q(τ, η)K

1
2
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where
Q(τ, η) = ηI − τK− 1

2MK−1
2 − τ−1K− 1

2AK− 1
2 .

For τ �= 0 we note that if N(Q(τ, η)) �= {0}, then its dimension is the geometric
multiplicity of the eigenvalue τ of the pencil Q(·, η) as well as the geometric mul-
tiplicity of the eigenvalue η of the pencil Q(τ, ·). The algebraic multiplicities will
be different, in general, but for τ ∈ R, we have a standard spectral problem for a
self-adjoint operator with the spectral parameter η, and hence all eigenvalues of
Q(τ, ·) for real τ are real and semisimple. Therefore we have

Lemma 1.2.10. Assume that K is bounded and that K � 0, let τ0 ∈ R \ {0} and
let η0 be an eigenvalue of the pencil Q(τ0, ·) with (geometric) multiplicity l. Then
there are ε > 0 and l real analytic functions

ηk(τ) = η0 +
∞∑

n=pk

ckn(τ − τ0)
n, k = 1, . . . , l, |τ − τ0| < ε, (1.2.9)

where pk ∈ N, ckpk
∈ R \ {0}, ckn ∈ R for n > pk, such that (ηk(τ))

l
k=1 represents

the eigenvalues near η0 of the pencil Q(τ, ·), counted with multiplicity, for each
τ ∈ C with |τ − τ0| < ε.

Proof. For real τ , the eigenvalues of the self-adjoint operator function Q(τ, ·) are
real. Hence the lemma immediately follows from Theorem 1.2.7 and Remark 1.2.8.
Alternatively, we could apply the theorem in [239, Section 136, p. 373]. We only
have to observe that ηk cannot be constant, because otherwise iτ would be an
eigenvalue of L(·, η0) for all real τ near τ0, which contradicts the discreteness of
the spectrum of L(·, η0), see Lemma 1.2.1. Therefore, at least one of the coefficients
ckn in (1.2.9) must be different from zero. �

1.3 Spectrum of the pencil L in the lower half-plane

Lemma 1.3.1.

1. All nonzero eigenvalues of the pencil L located in the closed lower half-plane
are semisimple, i. e., they do not possess associated vectors.

2. If 0 is an eigenvalue of the pencil L, then its algebraic multiplicity is equal
to dimN(A) + dim(N(A)∩N(K)), and the maximal length of a chain of an
eigenvector and associated vectors is 2.

3. If K > 0 on N(A), then all eigenvalues of the pencil L located in the closed
lower half-plane are semisimple.

4. If λ0 is a real nonzero eigenvalue of L with eigenvector y0, then Ky0 = 0.

Proof. 1 and 4. Let λ0 be an eigenvalue of the pencil L and assume there is a
corresponding eigenvector y0 with an associated vector y1. By (1.1.2),

L(λ0)y1 + L′(λ0)y0 = 0, (1.3.1)
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and the inner product with y0 gives

(L(λ0)y1, y0) + (L′(λ0)y0, y0) = 0. (1.3.2)

First assume that λ0 ∈ C−. Taking into account that λ0 is pure imaginary by
Lemma 1.2.1 we obtain with the aid of Lemma 1.1.11, part 3, that

(L(λ0)y1, y0) = (y1, L(−λ0)y0) = (y1, L(λ0)y0) = 0.

This together with (1.3.2) leads to

i((2 Imλ0M −K)y0, y0) = (L′(λ0)y0, y0) = 0. (1.3.3)

Since Imλ0 < 0, M ≥ 0 and K ≥ 0, (1.3.3) gives (My0, y0) = (Ky0, y0) = 0, i. e.,
My0 = Ky0 = 0. Hence Ay0 = −L(λ0)y0 = 0 and consequently y0 ∈ N(M) ∩
N(K)∩N(A). Due to Condition I, part (v), we have arrived at the contradiction
y0 = 0.

Now consider an eigenvalue λ0 ∈ R\ {0}. Then (1.2.3) implies (Ky0, y0) = 0,
and, consequently, Ky0 = 0. This proves part 4. Furthermore, L(λ0)

∗y0 = L(λ0)y0
follows, and therefore

(L(λ0)y1, y0) = (y1, L(λ0)
∗y0) = (y1, L(λ0)y0) = 0.

This together with

L′(λ0)y0 = 2λ0My0 − iKy0 = 2λ0My0,

λ0 �= 0 and (1.3.2) leads to
(My0, y0) = 0,

i. e., My0 = 0. Hence, taking into account Ky0 = 0 and L(λ0)y0 = 0 we obtain
Ay0 = 0, which contradicts Condition I, part (v).

2. Let y0 be an eigenvector and y1 an associated vector corresponding to the
eigenvalue 0 of the pencil L. Then

Ay0 = −L(0)y0 = 0 (1.3.4)

and (1.3.1) can be written as

Ay1 + iKy0 = 0. (1.3.5)

Taking the inner product with y0 gives

0 = (Ay1, y0) + i(Ky0, y0) = (y1, Ay0) + i(Ky0, y0) = i(Ky0, y0),

and therefore Ky0 = 0 is necessary for an associated vector to exist. Conversely,
if y0 is an eigenvector corresponding to the eigenvalue 0 of the pencil L with
Ky0 = 0, we can choose y1 = 0 in order to satisfy (1.3.5). Hence we have that
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the eigenvector y0 has an associated vector if and only if y0 ∈ N(A) ∩ N(K).
The proof of part 2 will be complete if we show that the maximal length of a
chain of an eigenvector and associated vectors equals 2. Hence assume by proof of
contradiction that there exist y0, y1, y2 ∈ D(L), y0 �= 0, satisfying (1.3.4), (1.3.5)
and

0 =
1

2
L′′(0)y0 + L′(0)y1 + L(0)y2 = My0 − iKy1 −Ay2. (1.3.6)

We already know that Ay0 = 0 and Ky0 = 0. Hence, taking the inner product
with y0 in (1.3.6) leads to

0 = (My0, y0)− i(Ky1, y0)− (Ay2, y0) = (My0, y0).

Therefore we would obtain My0 = 0, which contradicts Condition I, part (v),
because of y0 �= 0.

3. In view of part 1 we only have to consider the case λ0 = 0, and the
statement immediately follows from part 2 since N(A) ∩N(K = {0} implies that
the algebraic multiplicity equals the geometric multiplicity N(A). �

Theorem 1.3.2.

1. Assume that M = I. Then the total algebraic multiplicity of the spectrum
of L in the open lower half-plane coincides with the total algebraic multi-
plicity (which is the same as the geometric multiplicity) of the negative spec-
trum of A.

2. Assume that M = I and K > 0. Then the total algebraic multiplicity of the
spectrum of L in the closed lower half-plane coincides with the total algebraic
multiplicity of the nonpositive spectrum of A.

Proof. 1. By Lemma 1.3.1, part 1, all eigenvalues of the pencil L(·, η) located in
C− \{0} are semisimple, and therefore their algebraic and geometric multiplicities
coincide. Hence the total geometric multiplicity of the negative spectrum of A
clearly coincides with the total algebraic multiplicity of the pencil L(·, 0) in the
open lower half-plane since L(λ, 0) = λ2I −A, see (1.2.4).

We are going to show that m(C−, η) for L(·, η) is independent of η ∈ [0, 1].
For this we observe that by Lemma 1.2.1 the spectrum of L(·, η) in the open lower
half-plane is located on the imaginary axis. Thus, let us write λ = −iτ , τ > 0, for
λ on the negative imaginary semiaxis. For any η ∈ [0, 1], consider an eigenvalue
λ = −iτ , τ > 0, of L(·, η) and a corresponding normed eigenvector y. Then

(−τ2I − τηK −A)y = 0,

which leads to

τ2 = τ2(y, y) = −τη(Ky, y)− (Ay, y) ≤ −(Ay, y) ≤ β,
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where β is the upper bound of −A from Condition I, part (i). For each η ∈ [0, 1]
choose ε(η) > 0 such that the closure of

Ωη = {λ ∈ C : |Reλ| < ε(η), −β 1
2 − ε(η) < Imλ < ε(η)}

contains exactly those eigenvalues of L(·, η) which lie on the nonpositive imaginary
semiaxis and such that the closure of

Ω0
η = {λ ∈ C : |Reλ| < ε(η), | Imλ| < ε(η)}

contains no nonzero eigenvalues of L(·, η). By Lemma 1.1.9, both m(Ωη0 , η) and
m(Ω0

η0
, η) are independent of η near η0 for each η0 ∈ [0, 1]. But by Lemma 1.3.1,

part 2, 0 is either in the resolvent set of L(·, η) for all η ∈ [0, 1] or the algebraic
multiplicity m(0, η) of the eigenvalue 0 is independent of η for η ∈ (0, 1] and may
be larger for η = 0. Therefore,

m(C−, η0) = m(Ωη0 , η0)−m(Ω0
η0
, η0) = m(Ωη0 , η0)−m(0, η0)

gives
m(C−, η) = m(Ωη0 , η)−m(0, η)

for η sufficiently close to any η0 ∈ (0, 1], and it follows thatm(C−, η) is independent
of η ∈ (0, 1]. The proof of part 1 will be complete if we show that no eigenvalues
can move from 0 onto the negative imaginary semiaxis when η increases from 0.
Indeed, we will show that any eigenvalue on the negative imaginary semiaxis does
not move away from zero as η ∈ [0, 1] increases. To this end, we again use the
notation λ = −iτ , τ > 0. Writing L̃(τ, η) = −L(−iτ, η) we have

L̃(τ, η) = τ2I + τηK +A.

By Lemma 1.2.1, the eigenvalues τ of L̃(·, η) under consideration are positive for
η > 0. By Theorem 1.2.7 and Remark 1.2.8, these eigenvalues and corresponding
eigenvectors can be arranged locally in such a way that they are differentiable
functions of η. Therefore, let τ(η) be such an eigenvalue depending on η with
corresponding eigenvector y(η). Then differentiation of

L̃(τ(η), η)y(η) = 0

with respect to η gives

dτ

dη

(
∂

∂τ
L̃(τ, η)

)
y(η) +

(
∂

∂η
L̃(τ, η)

)
y(η) + L̃(τ, η)

d

dη
y(η) = 0

at τ = τ(η). The inner product with y(η) leads to

dτ

dη
((2τI + ηK)y(η), y(η)) + τ(Ky(η), y(η)) +

(
d

dη
y(η), L̃(τ, η)y(η)

)
= 0,
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where we have used that L̃(τ, η) is self-adjoint for real τ and η. Therefore

dτ

dη
= −τ (Ky(η), y(η))

((2τI + ηK)y(η), y(η))
≤ 0, (1.3.7)

which proves that eigenvalues of the pencil L(·, η) on the negative imaginary semi-
axis do not move away from 0 as η increases from 0.

2. By Lemma 1.3.1, part 2, m(0) = dimN(A). Hence the proof is complete
in view of part 1 and Lemma 1.2.3. �

Theorem 1.3.3. Assume that M +K � 0. Then statement 1 of Theorem 1.3.2 is
true, i. e., the total algebraic multiplicity of the spectrum of L in the open lower
half-plane coincides with the total algebraic multiplicity of the negative spectrum
of A.

Proof. We consider

L̃(λ, η) = λ2[(1− η)I + ηM ]− iλK −A.

For η = 0 we have the pencil considered in Theorem 1.3.2 and for η = 1 we
have the pencil considered in this theorem. Hence it is sufficient to prove that
the total algebraic multiplicity of the eigenvalues in the open lower half-plane is
independent of η ∈ [0, 1]. Since (1 − η)I + ηM ≥ 0, L̃(λ, η) satisfies Condition
I for all η ∈ [0, 1]. The algebraic multiplicity of the eigenvalue 0 of the operator
pencil L̃(·, η) is independent of η, see Lemma 1.3.1, part 2. Hence no eigenvalue
can enter or leave the negative imaginary semiaxis through 0. Since eigenvalues
depend continuously on η, it follows that there is a number a > 0 such that each
eigenvalue λ = −iτ with τ > 0 of L̃(·, η) for any η ∈ [0, 1] satisfies τ > a.

We are going to show that the eigenvalues λ = −iτ , τ > 0, have a bound
which is independent of η ∈ [0, 1]. Hence, consider an eigenvalue λ = −iτ of L̃(·, η)
and a corresponding normed eigenvector y. Then

(−τ2[(1− η)I + ηM ]− τK −A)y = 0,

which leads to

τ2([(1 − η)I + ηM ]y, y) + τ(Ky, y) + (Ay, y) = 0. (1.3.8)

Since M +K � 0, there is ε > 0 such that M +K ≥ εI. If the coefficient of τ2

equals 0, then η = 1 and (My, y) = 0, and therefore

(Ky, y) = ((M +K)y, y) ≥ ε(y, y) = ε,

so that (1.3.8) gives

τ =
−(Ay, y)
(Ky, y)

≤ β

ε
. (1.3.9)
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If the coefficient of τ2 in (1.3.8) is different from 0 and hence positive, then τ > 0
implies that (Ay, y) ≤ 0, and

τ =
−(Ky, y) +

√
(Ky, y)2 − 4([(1− η)I + ηM ]y, y)(Ay, y)

2([(1− ηI)I + ηM ]y, y)

=
−2(Ay, y)

(Ky, y) +
√
(Ky, y)2 − 4([(1− η)I + ηM ]y, y)(Ay, y)

.

Using that (Ay, y) ≤ 0 and that
√
r + s ≥ 1

2

√
s for r, s ≥ 0, we obtain

τ ≤ −2(Ay, y)
(Ky, y) +

√−([(1 − η)I + ηM ]y, y)(Ay, y)
.

Observing that the function t �→ t2

a+ bt
with a, b ≥ 0 and a + b > 0 is increasing

in t on [0,∞) and that 0 ≤ −(Ay, y) ≤ β, it follows that

τ ≤ 2β

(Ky, y) +
√
([(1 − η)I + ηM ]y, y)

√
β
,

and it remains to show that the denominator has a positive lower bound. Putting
(My, y) = γ and observing M +K ≥ εI gives

(Ky, y) ≥ max{ε− γ, 0},
and it follows that

(Ky, y) +
√
([(1 − η)I + ηM ]y, y)

√
β ≥ ε− γ1 +

√
1− η + ηγ1

√
β,

where γ1 = min{γ, ε} ∈ [0, ε] and η ∈ [0, 1]. Here we have to note that γ depends
on η and τ , but in the following we allow any γ1 ∈ [0, ε], so that γ1 becomes
independent of η. Since we may choose ε < 1, the function on the right-hand side
is decreasing in η and therefore takes its minimum at η = 1, which gives

(Ky, y) +
√
([(1 − η)I + ηM ]y, y)

√
β ≥ ε− γ1 +

√
γ1

√
β.

The right-hand side is a concave function of γ1 and therefore takes its minimum
on [0, ε] at an endpoint, which finally implies

(Ky, y) +
√
([(1− η)I + ηM ]y, y)

√
β ≥ min{ε,√ε

√
β} > 0.

We have seen above that there are positive numbers a and b such that for all
η ∈ [0, 1] each eigenvalue λ of L̃(·, η) in the open lower half-plane is of the form
λ = −iτ with a < τ < b. Let

Ω = {λ ∈ C : −b < Imλ < a, −1 < Reλ < 1}.
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For λ, η ∈ C let L̃1(λ, η) be the operator L̃(λ, η) acting from D(A) to H with
the graph norm on D(A). The bounded operator L̃1(λ, η) depends continuously
on λ and η, and therefore the set Λ of those (λ, η) for which L̃(λ, η) is invertible
is an open set and L̃−1(λ, η) depends continuously on (λ, η) ∈ Λ, see, e. g., [189,
Proposition 1.1.4]. Since ∂Ω× [0, 1] is a compact subset of Λ, there is a constant
C > 0 such that

‖L̃−1
1 (λ, η)‖ ≤ C for all λ ∈ ∂Ω× [0, 1]. (1.3.10)

Now let η ∈ [0, 1]. Since L̃1 depends continuously on λ and η, for each λ ∈ ∂Ω
one can choose a real number γλ > 0 such that

Uλ := {μ ∈ C : |μ− λ| < γλ} × {ξ ∈ C : |ξ − η| < γλ} ⊂ Λ

and ‖L̃1(μ, ξ) − L̃1(λ, η)‖ < 1
2C for all (μ, ξ) ∈ Uλ. Since {Uλ : λ ∈ ∂Ω} is an

open cover of the compact set ∂Ω× {η}, there is a finite subcover {Uλ1 , . . . , Uλn}
of ∂Ω × {η} with λ1, . . . , λn ∈ ∂Ω. Let εη := min{γλ1 , . . . , γλn}. Let (λ, ξ) ∈
∂Ω × [η − εη, η + εη]. There is an index k such that (λ, η) ∈ Uλk

, and therefore
also (λ, ξ) ∈ Uλk

. It follows that

‖L̃1(λ, ξ)− L̃1(λ, η)‖ ≤ ‖L̃1(λ, ξ)− L̃1(λk, η)‖ + ‖L̃1(λ, η) − L̃1(λk, η)‖ < 1

C
.

This together with (1.3.10) leads to

‖[L̃1(λ, ξ)− L̃1(λ, η)]L̃
−1
1 (λ, η)‖ ≤ 1.

Hence, by Lemma 1.1.9,

m(C−, ξ) = m(Ω, ξ) = m(Ω, η) = m(C−, η) for all ξ ∈ (η − εη, η + εη) ∩ [0, 1].

Therefore, both

S0 = {η ∈ [0, 1] : m(C−, η) = m(C−, 0)}
and

S1 = {η ∈ [0, 1] : m(C−, η) �= m(C−, 0)}
are open subsets of [0, 1]. Since 0 ∈ S0 and [0, 1] is connected, it follows that
S0 = [0, 1], that is, the total algebraic multiplicity of the eigenvalues in the open
lower half-plane is independent of η ∈ [0, 1]. �
Notation 1.3.4. Let J be an index set and (λj)j∈J be a family of not necessarily
distinct eigenvalues of an operator pencil. We say that the eigenvalues (λj)j∈J

are distinct with multiplicity if for each eigenvalue λ of the pencil the number
of indices j ∈ J with λj = λ does not exceed the algebraic multiplicity of the
eigenvalue λ. We say that the finite or infinite sequence of eigenvalues (λj)j∈J of
the pencil is an indexing of the eigenvalues in Ω ⊂ C if λj ∈ Ω for all j ∈ J and if
for each eigenvalue λ ∈ Ω of the pencil the number of indices j ∈ J with λj = λ
equals the algebraic multiplicity of the eigenvalue λ.
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Lemma 1.3.5. Let M +K � 0. If C− �⊂ ρ(L), then there is an integer κ > 0 and
for each η ∈ [0, 1] an indexing (λ−k(μ))

κ
k=1 of the eigenvalues of the pencil L(·, η)

in C− (which all lie on the negative imaginary semiaxis) such that each λ−k is
a continous function of η on [0, 1] which is analytic on (0, 1). We will also write
λ−k for η = 1, i. e., for the corresponding eigenvalues of L.

Proof. From Lemma 1.2.1 we know that the eigenvalues of L(·, η) in the lower
half-plane lie on the imaginary axis, and by Theorem 1.3.3 their total algebraic
multiplicity κ is finite and independent of η. In view of Theorem 1.2.7 and Remark
1.2.8, for each η0 ∈ [0, 1] there is an open interval Iη0 containing η0 such that the
eigenvalues can be arranged as κ continuous branches on Iη0 which are analytic
when restricted to positive η. Since [0, 1] is compact, there is a finite subset F of
[0, 1] such that

⋃
η∈F Iη ⊃ [0, 1]. Now choose μ1 ∈ F such that 0 ∈ Iμ1 and choose

an indexing (λ−k(μ))
κ
k=1 of the eigenvalues on Iμ1 such that λ−k is continuous on

Iμ1∩[0, 1] and analytic on Iμ1∩(0, 1). If Iμ1 �⊃ [0, 1], we can choose μ2 ∈ F such that
Iμ1∩Iμ2∩(0, 1) �= ∅ and Iμ2 �⊂ Iμ1 . By Theorem 1.2.7, there is η0 ∈ Iμ1∩Iμ2∩(0, 1)
such that the indexing of (λ−k)

κ
k=1 in Iμ1 and Iμ2 , respectively, can be chosen in

such a way that it coincides near η0. By the identity theorem for analytic functions,
it would coincide on Iμ1∩Iμ2∩(0, 1), and it follows that we would have an indexing
resulting in analytic functions on (Iμ1 ∪ Iμ2) ∩ (0, 1). Continuing in this way, the
statement of this lemma will be proved after a finite number of steps. �

1.4 Spectrum of the pencil L in the upper half-plane

Lemma 1.4.1. Assume that K is bounded and that K � 0. Let λ0 = iτ0 with
τ0 > 0. Then, with a slight abuse of notation, the Puiseux series λk,j in (1.2.5)
can be written in the form

λkj(η) = λ0 +

∞∑
n=1

akn((εk(η − η0)
1
pk )j)

n, j = 1, . . . , pk, (1.4.1)

where εk ∈ {−1, 1}, ak1 �= 0, and with a suitable indexing, all akn are pure imag-
inary and ak1 has positive imaginary part.

Proof. The eigenvalues λ near λ0 of L(·, η) for η near η0 are obtained by solving
the equations (1.2.9) for τ with τ0 = −iλ0 and thus for λ = iτ . To this end, we
fix some k and drop the index k. Then we have in view of Lemma 1.2.10 that

η − η0 =

∞∑
n=p

cn(τ − τ0)
n = cp(τ − τ0)

ph(τ),

where cn ∈ R, cp �= 0 and h is analytic near τ0 with h(τ0) = 1 and h(τ) is real for
real τ . Near τ0, h has a (unique) analytic pth root hp with hp(τ0) = 1, which is
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real for real τ . Hence the above identity becomes

η − η0 = cp((τ − τ0)hp(τ))
p. (1.4.2)

The implicit function theorem gives a unique analytic solution

τ = τ0 +
∞∑

n=1

αnz
n (1.4.3)

of z = (τ − τ0)hp(τ), which is real for real z. Therefore all αn are real. Since
dz

dτ

equals 1 at τ0,
dτ

dz
equals 1 at z = 0, and hence α1 = 1. Observing that (1.4.2) has

the p solutions

z = c̃p(ε(η − η0)
1
p )j , j = 1, . . . , p, (1.4.4)

where ε = sgn(cp) and c̃p = |cp|− 1
p , a substitution of z from (1.4.4) into (1.4.3)

completes the proof. �
Lemma 1.4.2. Let M > 0. If the eigenvalue λ0 of the pencil L is not pure imaginary
or if it is not semisimple, then Imλ0 ∈ [m1,m2], where

m1 =
1

2
inf

0�=y∈D(A)

(Ky, y)

(My, y)
and m2 =

1

2
sup

0�=y∈D(A)

(Ky, y)

(My, y)
.

Proof. If λ0 is a not a pure imaginary eigenvalue of the pencil L, then the asser-
tion of this lemma follows from (1.2.2). If λ0 is a pure imaginary non-semisimple
eigenvalue, then the assertion of this lemma follows from (1.3.3), which also holds
for eigenvalues on the nonnegative imaginary semiaxis. �
Remark 1.4.3. If M � 0 and K is bounded, then m2 < ∞, and if K � 0, then
m1 > 0.

Lemma 1.4.4. Assume that K is bounded and that K � 0. Let η0 > 0 and let
λ0 = iτ0 with τ0 > 0 be an eigenvalue of L(·, η0). Then there are ε > 0 and four
nonnegative integers κ1, κ2, κ3, κ4, such that for η ∈ (η0−ε, η0+ε) the eigenvalues
of L(·, η) near λ0 which lie on the imaginary axis, counted with multiplicity, can
be divided into four classes Λ↑(λ0, η0), Λ↓(λ0, η0), Λ+(λ0, η0), Λ−(λ0, η0), where

• Λ↑(λ0, η0) consists of κ1 increasing continuous functions from (η0−ε, η0+ε)
to iR,

• Λ↓(λ0, η0) consists of κ2 decreasing continuous functions from (η0−ε, η0+ε)
to iR,

• Λ+(λ0, η0) consists of κ3 pairs of an increasing continuous function and a
decreasing continuous function from [η0, η0 + ε) to iR,

• Λ−(λ0, η0) consists of κ4 pairs of an increasing continuous function and a
decreasing continuous function from (η0 − ε, η0] to iR.
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The difference of the number of increasing eigenvalues of L(·, η) on the positive
imaginary semiaxis near λ0 and the number of decreasing eigenvalues of L(·, η) on
the positive imaginary semiaxis near λ0 is κ1 − κ2 on (η0 − η, η0 + η).

Proof. Consider a group of eigenvalue functions λkj with fixed k according to
(1.4.1). Let η ∈ R be close to η0, η �= η0. By Lemma 1.4.1, λk1(η) is pure imaginary
if εk(η − η0) is positive.

If pk is odd, then λk1(η) is the only λkj(η) which is pure imaginary for
εk(η−η0) positive, and λk1(η) is increasing along the imaginary axis with εk(η−η0)
since ak1 has positive imaginary part and ((εk(η−η0))

1
pk )1 is positive. If εk(η−η0)

is negative, then there is exactly one index s for which λks(η) is pure imaginary, and

((εk(η − η0))
1
pk )s is negative. Hence λks(η) is also increasing along the imaginary

axis with εk(η−η0) if εk(η−η0) is negative. Therefore, for this group there is exactly
one eigenvalue of L(·, η) on the imaginary axis for η in a deleted neighbourhood of
η0, and this eigenvalue depends continuously on η, belongs to Λ↑(λ0, η0) if εk = 1
and to Λ↓(λ0, η0) if εk = −1.

If pk is even, pk = 2s, and εk(η − η0) is positive, then (εk(η − η0)
1
p )s+1 =

−(εk(η − η0)
1
p )1 and hence both λk1(η) and λk,s+1(η) lie on the imaginary axis,

where one is decreasing and the other one increasing with εk(η − η0), whereas all
the other eigenvalues are not pure imaginary. If εk(η− η0) is negative, none of the
λkj(η) are pure imaginary. Hence these pairs contribute to Λ+(λ0, η0) if εk = 1
and to Λ−(λ0, η0) if εk = −1. �

Theorem 1.4.5. Let M � 0, K � 0 and K be bounded. Then there is a family of
pure imaginary eigenvalues (λk)

κ
k=1 of the pencil L in the open upper half-plane

which is distinct with multiplicity and which satisfies

Im(λk + λ−k) ≥ 0, k = 1, . . . , κ,

where (λ−k)
κ
k=1 is an indexing of the eigenvalues of the pencil L in C−.

Proof. We consider the eigenvalues (λ−k(η))
κ
k=1 of the pencil L(·, η), η ∈ [0, 1],

see Lemma 1.3.5. Since (1.3.7) also holds if the operator I there is replaced by
M with M � 0, it follows that these eigenvalue functions λ−k are nondecreasing
along the imaginary axis when η increases. Since L(λ, 0) = λ2M −A, we can put
λk(0) = −λ−k(0) for k = 1, . . . , κ to obtain an indexing of the eigenvalues of L(·, 0)
on the positive imaginary semiaxis. The proof will be complete if we show that
for each η ∈ (0, 1] there are pure imaginary eigenvalues (λk(η))

κ
k=1 in the upper

half-plane which are distinct with multiplicity and increasing in η ∈ [0, 1].

For small η > 0 we identify the λk(η) as eigenvalues of L(·, η) according to
Theorem 1.2.7 such that λk is continuous at 0 and analytic for η > 0. Again by
Theorem 1.2.7, choose an eigenvector yk(η) corresponding to the eigenvalue λk(η)
of L(·, η) which is an analytic function for η > 0 and continuous at η = 0. Solving
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the eigenvalue equation

(L(λk(η), η)yk(η), yk(η)) = 0

for λk(η) gives

λk(η)

=
iη(Kyk(η), yk(η)) + i

√
η2(Kyk(η), yk(η))2 − 4(Ayk(η), yk(η))(Myk(η), yk(η))

2(Myk(η), yk(η))
.

(1.4.5)

If we observe that yk depends continuously on η in the graph norm of A, it follows
that the inner products are continuous functions of η near η = 0. This, together
with M � 0 and the fact that the radicant of the square root is positive for η = 0,
because λk(0) is pure imaginary with positive imaginary part, shows that λk(η) is
pure imaginary with positive imaginary part for sufficiently small η > 0.

Differentiating L(λk(η), η)yk(η) = 0 with respect to η and taking the inner
product with yk(η) leads to

λ′
k(η)((2λk(η)M − iηK)yk(η), yk(η))− iλk(η)(Kyk(η), yk(η)) = 0, (1.4.6)

and therefore

λ′
k(η) =

iλk(η)(Kyk(η), yk(η))

2λk(η)(Myk(η), yk(η)) − iη(Kyk(η), yk(η))
. (1.4.7)

(Myk(η), yk(η)) is positive and depends continuously on η and (Kyk(η), yk(η))
depends continuously on η. Thus it follows that the denominator of (1.4.7) is pure
imaginary with positive imaginary part for sufficiently small η > 0 and that the
numerator is nonpositive real valued. We therefore have shown that the imaginary
parts of λk and λ−k are nondecreasing, which gives

Im(λk(η) + λ−k(η)) ≥ 0, j = 1, . . . , κ, (1.4.8)

for η ≥ 0 small enough.

Let η0 > 0 be the supremum of all η1 ∈ (0,∞) such that a family of increasing
eigenvalue functions (λk(η))

κ
k=1 exists on [0, η1]. The proof will be complete if we

show that η0 > 1. Therefore, assume that η0 ≤ 1. Since M � 0, K is bounded
and A is bounded below, the pure imaginary eigenvalues of L(·, η) are uniformly
bounded with respect to η ∈ [0, 2] by (1.4.5). Choose ε > 0 such that Lemma 1.4.4
applies to each of the eigenvalues of L(·, η0) on the positive imaginary semiaxis. By
definition of η0, there is a family of increasing eigenvalue functions (λk(η))

κ
k=1 on

[0, η0 − ε
2 ]. In view of Lemma 1.4.4, these functions can be extended to increasing

eigenvalue functions on [0, η0]. Now fix some λ0 ∈ {λ1(η0), . . . , λκ(η0)}. If the
number n of indices k with λ0 = λk(η0) is at most as large as the number n1 of
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those eigenvalue functions λkj , according to (1.2.5) with λkj(η0) = λ0, which are
increasing through η0 on the imaginary axis, then we choose n of those to represent
these λk for η ∈ (η0, η0 + ε). If however n > n1, then by Lemma 1.4.4 there are
n − n1 increasing functions belonging to Λ−(λ0, η0), and therefore also n − n1

decreasing eigenvalue functions for η ∈ (η0− ε, η0). We have seen at the beginning
of the proof that, with the notation of Lemma 1.4.4, κ2 = κ3 = κ4 = 0 if η > 0
is sufficiently small. Therefore a decreasing eigenvalue function must eventually
come from some Λ+(λ1, η1) with 0 < η1 < η0 and Imλ0 < Imλ1. Hence each of
these decreasing eigenvalue branches would have been paired with an increasing
branch, which might already have left the imaginary axis, but only after colliding
with another decreasing eigenvalue branch. After a finite number of steps, we must
meet a remaining increasing branch. Since we arrive at this branch by an upwards
jump, it clearly follows that (1.4.8) is true for η > η0 sufficiently close to η0.
Consequently, (1.4.8) holds for η = 1, that is, the theorem is proved. �

1.5 The case when K has rank one

In this section we assume that in addition to Condition I the following holds:

Condition II. The Hilbert space H is the orthogonal sum of a Hilbert space H0

and C, H = H0 ⊕ C, and

K =

(
0 0
0 κ

)
with κ > 0.

Lemma 1.5.1.

1. Let τ ∈ R \ {0} and assume that both iτ and −iτ are eigenvalues of the
operator pencil L(·, η0) for some η0 ∈ (0, 1]. Then iτ and −iτ are eigenvalues
of the operator pencil L(·, η) for all η ∈ [0, 1].

2. Let λ ∈ R \ {0} be an eigenvalue of the operator pencil L(·, η0) for some
η0 ∈ (0, 1]. Then λ and −λ are eigenvalues of the operator pencil L(·, η) for
all η ∈ [0, 1].

Proof. 1. Let y1 =

(
y11
y12

)
be an eigenvector of L(·, η0) corresponding to the eigen-

value iτ and let y2 =

(
y21
y22

)
be and eigenvector of L(·, η0) corresponding to the

eigenvalue −iτ . Then

(−τ2M + τη0K −A)y1 = 0, (1.5.1)

(−τ2M − τη0K −A)y2 = 0, (1.5.2)
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and consequently

−τ2(y2,My1) + τη0(y2,Ky1)− (y2, Ay1) = 0,

−τ2(My2, y1)− τη0(Ky2, y1)− (Ay2, y1) = 0.

Taking into account that M , K and A are self-adjoint, the difference of the above
equations gives

0 = (Ky2, y1) = κy22y12.

Then one of the factors must be zero, say y12 = 0, which gives Ky1 = 0. Hence
(1.5.1) and (1.5.2) lead to L(±iτ, η)y1 = 0, which completes the proof of part 1.

2. Due to the symmetry of the spectrum, see Lemma 1.1.11, part 3, it follows
that if λ ∈ R \ {0} is an eigenvalue of L(·, η0), then also −λ is an eigenvalue of
L(·, η0). Let y be an eigenvector of L(·, η0) corresponding to the eigenvalue λ. Then

λ2(My, y)− iλη0(Ky, y)− (Ay, y) = 0.

Since M , K and A are self-adjoint, all three inner products are real. Therefore
λ �= 0 and η0 > 0 give (Ky, y) = 0 and thus Ky = 0 because K ≥ 0. It follows
that L(±λ, η)y = L(λ, η0)y = 0 for all η ∈ [0, 1]. �
Definition 1.5.2. Let η0 ∈ (0, 1] and let mI(λ) = min

η∈(0,1]
m(λ, η).

1. An eigenvalue λ of the pencil L(·, η0) is said to be an eigenvalue of type I if
λ is an eigenvalue of the pencil L(·, η) for each η ∈ (0, 1], i. e., if mI(λ) > 0.

2. For λ ∈ C let m0(λ) = dim(N(L(λ)) ∩ N(K)). If m0(λ) > 0, then each
nonzero vector in N(L(λ))∩N(K) is called an eigenvector of type I for L at λ.

3. An eigenvalue λ of the pencil L(·, η0) is said to be an eigenvalue of type II if
m(λ, η0) �= mI(λ).

Remark 1.5.3.

1. An eigenvalue can be both of type I and type II. If λ is both of type I and
type II for some η, then we say that λ is an eigenvalue of the pencil L(·, η)
of type I multiplicity mI(λ) and of type II multiplicity m(λ, η) −mI(λ).

2. If 0 is an eigenvalue of the pencil L, then it follows from Lemma 1.3.1, part 2,
that 0 is an eigenvalue of L(·, η) for all η ∈ (0, 1], and, if dimN(A) = n, the
algebraic multiplicity m(λ, η) is 2n if KN(A) = 0 and 2n− 1 if KN(A) �= 0.

3. If N(M) ∩ N(A) = {0}, then the pencil L(·, 0) satisfies Condition I. Since
eigenvalues λ of type I are eigenvalues of the pencil L(·, η) for all η ∈ (0, 1],
it follows from (1.2.5) that mI(λ) branches of the eigenvalue λ are constant
near η = 0, so that mI(λ) ≤ m(λ, 0), whereas the remaining m(λ, 0)−mI(λ)
branches are not constant.

Lemma 1.5.4. Assume that N(M)∩N(A) = {0}. Then the eigenvalues of type I of
L(·, η), which are independent of η ∈ (0, 1], are located on the imaginary and real
axes, and are symmetric with respect to 0. If additionally M + K � 0, at most
finitely many of the eigenvalues of type I are on the imaginary axis.
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Proof. In view of Remark 1.5.3, part 3, the first statement is proved if we show
that all eigenvalues of L(·, 0) are located on the real and imaginary axes. If λ is
an eigenvalue of L(·, 0) with corresponding eigenvector y, then

λ2My −Ay = 0.

Observe that My �= 0 since My = 0 implies Ay = 0 which would contradict
N(M) ∩N(A) = {0}. Since M ≥ 0, it follows that (My, y) �= 0, and therefore

λ2 = − (Ay, y)

(My, y)
∈ R.

This shows that eigenvalues of type I are real or pure imaginary. Since L(λ, 0) =
L(−λ, 0), the spectrum of L(·, 0) is symmetric with respect to the origin.

If M + K � 0, then also M + ηK � 0, and the total multiplicity of the
eigenvalues of L(·, η) which lie on the negative imaginary semiaxis equals the total
number of negative eigenvalues of A by Lemma 1.2.1 and Theorem 1.3.3. Hence
this multiplicity is finite, and since the spectrum of type I is symmetric with
respect to the origin, there are at most finitely many eigenvalues of type I on the
positive imaginary axis, and therefore at most finitely many of the eigenvalues of
type I are on the imaginary axis. �

Lemma 1.5.5.

1. For all λ, η ∈ C, N(L(λ, η))∩N(K) = N(L(λ))∩N(K), that is, N(L(λ, η))∩
N(K) is independent of η. In particular, m0(λ) ≤ mI(λ).

2. Let λ �= 0, η ∈ (0, 1] and assume that N(L(λ)) ∩ N(K) �= {0}. Then no
eigenvector y0 ∈ N(L(λ)) ∩N(K) of L(·, η) at λ has an associated vector.

3. If N(M) ∩N(A) = {0}, then mI(λ) = m0(λ) for all λ ∈ C \ {0}.
Proof. 1. If y ∈ N(K) ∩D(A), then

L(λ, η)y = λ2My −Ay = L(λ)y,

so that L(λ, η)y = 0 if and only if L(λ)y = 0. It follows that m0(λ) ≤ m(λ, η), so
that m0(λ) ≤ mI(λ) by definition of mI(λ).

2. In view of part 1 and m0(λ) = dim(N(L(λ))∩N(K)) > 0 we conclude that
λ is an eigenvalue of type I. Assume that there is an eigenvector y0 ∈ N(L(·, η))∩
N(K) of L(·, η) at λ which has an associated vector y1. Then

(L′(λ, η)y0, y0) = (2λMy0 − iηKy0, y0) = 2λ(My0, y0),

and, by Lemma 1.1.11, part 3, Ky0 = 0 and the fact that eigenvalues of type I are
real or pure imaginary and therefore satisfy λ2 = (−λ)2, it follows that

L(λ, η)∗y0 = L(−λ, η)y0 = L(λ, η)y0 = 0.
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The equation for the associated vector,

L(λ, η)y1 + L′(λ, η)y0 = 0,

leads to

0 = (y1, L(λ, η)
∗y0) + (L′(λ, η)y0, y0) = 2λ(My0, y0),

and therefore My0 = 0. This together with L(λ, η)y0 = 0 and Ky0 = 0 gives
Ay0 = 0 and hence y0 = 0, which contradicts the fact that y0 is an eigenvector.
Thus y0 cannot have an associated vector.

3. From part 1 we know that mI(λ) ≥ m0(λ).

We are going to provemI(λ) = m0(λ). This is trivial if mI(λ) = 0, so that we
may assume that λ is an eigenvalue of type I. From Lemma 1.5.4 we know that λ is
real or pure imaginary, so that λ2 ∈ R. By Remark 1.5.3, part 3, mI(λ) ≤ m(λ, 0),
so that λ is an eigenvalue of L(·, 0). Since λ �= 0, it is a semisimple eigenvalues
of L(·, 0). Indeed, assume there is an eigenvector y0 with associated vector y1 of
L(·, 0) at λ. Then

λ2My0 −Ay0 = 0 and 2λMy0 + λ2My1 −Ay1 = 0.

Taking the inner product with y0 of the second identity and observing that λ2 ∈ R,
it follows that 2λ(My0, y0) = 0. This gives My0 = 0, and the first identity would
imply Ay0 = 0, which contradicts y0 �= 0 and N(M) ∩ N(A) = {0}. Since λ is
semisimple,

m(λ, 0) = dimN(L(λ, 0)),

and since K is a rank 1 operator, it follows from part 1 that

m(λ, 0)− 1 ≤ dim(N(L(λ, 0)) ∩N(K)) = dim(N(L(λ)) ∩N(K)) = m0(λ).

Together with Remark 1.5.3, part 3, we obtain the inequalities

m(λ, 0)− 1 ≤ m0(λ) ≤ mI(λ) ≤ m(λ, 0). (1.5.3)

If m0(λ) = m(λ, 0), then the proof is complete.

Therefore, consider the casem0(λ) = m(λ, 0)−1. Assume that alsom(λ, η) =
m(λ, 0) for small η > 0. We will show that λ is a semisimple eigenvalue of L(·, η).
Indeed, assume by proof of contradiction that the algebraic multiplicity of the
eigenvalue is larger than its geometric multiplicity. Then

dimN(L(λ, η)) ≤ m(λ, η) − 1 = m0(λ)

so that N(L(λ, η)) = N(L(λ, η)) ∩N(K) by part 1. But then L(·, η) has no asso-
ciated vector at λ by part 2, which leads to the contradiction that the geometric
multiplicity equals the algebraic multiplicity.
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In the notation of Theorem 1.2.7 we have m1 = 1 and thus p1 = 1. Hence it
follows from (9.2.15) and its generalization to the infinite-dimensional case as well
as (9.2.16) that the function of two variables

A(μ, η) = (μ− λ)m(λ,0)L−1
1 (μ, η)

is analytic at (λ, 0). Since the pole-order of the resolvent L−1
1 (·, η) is the length of

the largest chain of an eigenvector and associated vectors, see, e. g., [189, Theorem
1.6.5] and since λ is a semisimple eigenvalue of L(·, η), the above identity leads to
the Laurent expansion

L−1(μ, η) =
1

μ− λ
A−1(η) + Ã(μ, η),

where A−1 is analytic at 0 and Ã is analytic at (λ, 0). Again from [189, Theorem
1.6.5] we can infer that

rankA−1(η) = dimN(L(λ, η)) = m(λ, 0)

and
R(A−1(η)) = N(L(λ, η)).

Since m0(λ) = m(λ, 0)− 1 and λ is a semisimple eigenvalue of L(·, 0), there is an
eigenvector y0 of L(·, 0) at λ with Ky0 �= 0, that is, (Ky0, y0) > 0, see part 1. Let
x be such that y0 = A−1(0)x and put y(η) = A−1(η)x. Then y(η) is an eigenvector
of L(·, η) at λ. Differentiating L(λ, η)y(η) = 0 with respect to η gives

L(λ, η)y′(η)− iλKy(η) = 0.

Putting η = 0 and taking L(λ, 0)∗ = L(λ, 0) into account we arrive at the contra-
diction −iλ(Ky0, y0) = 0. Hence we have shown that m(λ, η) < m(λ, 0) for some
small η > 0, so that mI(λ) < m(λ, 0). In view of (1.5.3), mI(λ) = m0(λ). This
completes the proof of part 2. �
Theorem 1.5.6. Assume that N(M) ∩N(A) = {0}.
1. λ �= 0 is an eigenvalue of type I of the pencil L if and only if λ is an eigenvalue

of the pencil L(·, 0) having an eigenvector of the form (y0, 0)
T, and mI(λ) is

the dimension of the space of eigenvectors of this form.

2. If λ �= 0 is an eigenvalue of type I of the pencil L but not an eigenvalue of
type II, then λ is semisimple.

3. If λ �= 0 is an eigenvalue of the pencil L of type II, then N(L(λ)) has a
basis consisting of mI(λ) eigenvectors of type I and one eigenvector y0 with
Ky0 �= 0 with maximal chain length m(λ) −mI(λ), that is, there is a chain

(yj)
m(λ)−mI (λ)−1
j=0 of the eigenvector y0 and, if m(λ)−mI(λ) > 1, associated

vectors of L at λ.

4. If λ �= 0 is an eigenvalue of type II of the pencil L, then −λ is not an
eigenvalue of type II of the pencil L.
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Proof. Part 1 follows from Lemma 1.5.5.

2. By assumption and in view of Lemma 1.5.5,

m(λ) = m(λ, 1) = mI(λ) = m0(λ) ≤ dimN(L(λ)),

so that the algebraic and geometric multiplicities of the eigenvalue λ of L coincide.

3. By Lemma 1.5.5 we know that

mI(λ) = m0(λ) = dim(N(L(λ)) ∩N(K))

and that no eigenvector of L at λ in N(L(λ)) ∩ N(K) has an associated vector.
Since λ is an eigenvalue of type II, its multiplicity, m(λ) − mI(λ), is positive.
Hence there are eigenvectors y0 of L at λ with Ky0 �= 0. For two such eigen-
vectors, a suitable nontrivial linear combination would be in N(K). Therefore,
dimN(L(λ)) = m0(λ) + 1 =: k, and there is a basis z1, . . . , zk of N(L(λ)) where
each zj is an eigenvector of a chain of length mj with

k∑
j=1

mj = m(λ),

see [189, Proposition 1.6.4]. Assume there are two such eigenvectors with associated
vectors. Then a nontrivial linear combination would be an eigenvector in N(K)
with an associated vector, which is impossible by Lemma 1.5.5, part 2. Hence
there is at most one j with mj > 1, and for this j, mj = m(λ) − mI(λ). If
m(λ)−mI(λ) > 1, then zj �∈ N(K), and if m(λ)−mI(λ) = 1, then any eigenvector
not in N(K) has multiplicity m(λ)−mI(λ).

4. Assume that both λ and −λ are eigenvalues of type II. In view of part 3
there would be eigenvectors y1 of L at λ and y2 of L at −λ such that Ky1 �= 0
and Ky2 �= 0. But in the proof of Lemma 1.5.1, part 1, we have seen that this is
impossible. �
Theorem 1.5.7. Assume that N(M) ∩ N(A) = {0} and that M + K � 0. Then
the eigenvalues of type II of the operator pencil L possess the following properties.

1. Only a finite number, denoted by κ2, of the eigenvalues of type II lie in the
closed lower half-plane.

2. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicities are 1. If κ2 > 0, they
will be uniquely indexed as λ−j = −i|λ−j |, j = 1, . . . , κ2, satisfying |λ−j | <
|λ−(j+1)|, j = 1, . . . , κ2 − 1.

3. If κ2 > 0, then the numbers i|λ−j |, j = 1, . . . , κ2, are not eigenvalues of
type II.

4. If κ2 ≥ 2, then the number of eigenvalues of type II, counted with type II
multiplicity, in each of the intervals (iλ−j |, i|λ−(j+1)|), j = 1, . . . , κ2 − 1, is
odd.
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5. When κ2 > 0, the interval [0, i|λ−1|) contains no or an even number of
eigenvalues of type II, counted with type II multiplicity, if N(A) ⊂ N(K),
and an odd number of eigenvalues of type II, counted with type II multiplicity,
if N(A) �⊂ N(K).

Proof. 1. and 2. We know from Theorem 1.3.3 that the total algebraic multiplicity
of the spectrum of L in the lower half-plane is finite, and by Lemma 1.3.1, part 1,
and Theorem 1.5.6, part 3, the eigenvalues λ of type II on the negative imaginary
semiaxis satisfy m(λ) −mI(λ) = 1 and therefore their type II multiplicity must
be 1. Then the statement follows if we show that there are no real eigenvalues of
type II. Indeed, if λ is a nonzero real eigenvalue of the pencil L with eigenvector y,
then taking the imaginary part of the inner product of the eigenvalue equation

λ2My − iλKy −Ay = 0

with y we arrive at (Ky, y) = 0 and hence Ky = 0. Then Theorem 1.5.6, part
3, shows that λ is not an eigenvalue of type II. On the other hand, it follows
from Lemma 1.3.1, part 2, that m(0, η) = dimN(A) + dim(N(A) ∩ N(K)) for
all η ∈ (0, 1]. Therefore mI(0) = m(0, η) for all η ∈ (0, 1], so that 0 is not an
eigenvalue of type II.

3. This statement follows from Theorem 1.5.6, part 4, since the λ−j are
eigenvalues of type II.

4. By Lemma 1.3.5 we can find continuous eigenvalue functions λ̂−k, k =
1, . . . , κ, on [0, 1] so that for each η ∈ [0, 1], (λ̂−k(η))

κ
k=1 represents all eigenvalues

of L(·, η) on the negative imaginary semiaxis, counted with multiplicity. Discarding
eigenvalues of type I, we are left with κ2 functions, and after suitable reorganization
of these functions, if necessary, we may assume without loss of generality that the
eigenvalues of type II at L(·, η) are λ̂−j(η), j = 1, . . . , κ2. Part 2 of this theorem
is clearly also true for L(·, η) with η ∈ (0, 1]. Furthermore, since K has rank 1, it
follows thatm(λ, 0) ≤ m0(λ)+1, and therefore Lemma 1.5.5 shows that altogether,

the λ̂−j(η), j = 1, . . . , κ2, are mutually distinct. Hence we may index them in such

a way that |λ̂−j(η)| < |λ̂−(j+1)(η)| for all j = 1, . . . , κ2 and all η ∈ [0, 1]. Clearly,

λ−j = λ̂−j(1) for j = 1, . . . , κ2. These eigenvalues depend analytically on η in view
of Theorem 1.2.7. Clearly, m(−λ, 0) = m(λ, 0), m0(−λ) = m0(λ), and therefore
mI(−λ) = mI(λ). Therefore there is ε > 0 such that for each η ∈ (0, ε) there are

exactly κ2 eigenvalues of type II on (12 λ̂1(0), λ̂κ2(0) + i), where λ̂j(0) = −λ̂−j(0)
for j = 1, . . . , κ2. In view of Theorem 1.2.7 we can write these eigenvalues as
λ̂j(η), j = 1, . . . , κ2, in such a way that these eigenvalue functions are analytic in
η. Here we have to observe that the eigenvalues have to stay on the imaginary axis
since eigenvalues can leave the imaginary axis only in symmetric pairs, see Lemma
1.1.11, part 3. Clearly, for small enough ε > 0, 0 < η < ε and j = 1, . . . , κ2− 1 we
have |λ̂j(η)| < |λ̂−(j+1)(η)|.

For each j = ±1, . . . ,±κ2 we can now choose an analytic eigenvalue function
yk on [0, ε), i. e., L(λ̂j(η), η)yj(η) = 0 according to Theorem 1.2.7. By Theorem
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1.5.6, part 3, we may assume that Kyj(η) �= 0 for at least one η and therefore for
all η ∈ (0, ε) and sufficiently small ε. Then (1.4.7) is also valid for negative indices

j under the assumptions made in this section, which shows that Im λ̂′
−j(η) > 0

for all η ∈ (0, ε). For positive indices j, equation (1.4.6) shows that λ̂′
j(η) �= 0 for

η ∈ (0, ε). For all indices j = 1, . . . , κ2, we therefore have

λ̂j(η)

λ̂′
j(η)

=
2λ̂j(η)

i

(Myj(η), yj(η))

(Kyj(η), yj(η))
− η. (1.5.4)

If (Myj(0), yj(0)) = 0, then (Kyj(0), yj(0)) > 0. Hence the right-hand side of
(1.5.4) tends to 0 as η → 0. However, the left-hand side does not tend to zero

since λ̂j is analytic at 0. This contradiction shows that (Myj(0), yj(0)) �= 0. Then

the right-hand side of (1.5.4) is positive for sufficiently small η > 0, so that λ̂j

increases along the imaginary axis for small η > 0. We can therefore conclude that

λ̂j(η) ∈ (i|λ̂−j(η)|, i|λ̂−(j+1)(η)|), j = 1, . . . , κ2 − 1, |λ̂κ2(η)| > |λ̂−κ2(η)|,
(1.5.5)

for sufficiently small η > 0.

Hence, statement 4 is true for small η > 0. Due to the symmetry of the spec-
trum, see Lemma 1.1.11, part 3, eigenvalues can only leave or join the imaginary
axis in pairs as η increases. Finally, we observe that these eigenvalues of type II
cannot leave the interval λj(η) ∈ (i|λ−j(η), i|λ−j(η)) through its endpoints due to
Theorem 1.5.6, part 4.

5. This is similar to part 4; we have to prove the statement for small η > 0. By
Lemma 1.3.1, part 2, we know that m(0, 0) = 2 dimN(A), m(0, η) = 2 dimN(A)
for η > 0 if N(A) ⊂ N(K), and m(0, η) = 2 dimN(A) − 1 for η > 0 if N(A) �⊂
N(K). Hence, if N(A) ⊂ N(K), then no eigenvalue branch of the eigenvalue 0 at
η = 0 moves away from zero, whereas if N(A) �⊂ N(K), then a simple eigenvalue
moves away from zero. Due to the symmetry of the spectrum, this eigenvalue
must stay on the imaginary axis. Since (1.3.7) is also true with the operator I
there replaced by M , this zero cannot move onto the negative imaginary semiaxis.
Therefore it moves onto the positive imaginary semiaxis. Since m(0, 0) is zero or
even, the result follows. �

Remark 1.5.8. Let us show how one can distinguish eigenvalues of L of type I from
those of type II, without using η-dependence. We assume thatN(M)∩N(A) = {0}.

All eigenvalues λ �= 0 such that −λ is also an eigenvalue are eigenvalues of
type I according to Lemma 1.5.4.

If λ is an eigenvalue of multiplicity p and −λ is an eigenvalue of multiplicity
q ≥ p, then it follows from Theorem 1.5.6, part 4, that both λ and −λ are eigen-
values of type I with mI(λ) = mI(−λ) = p, that λ is not an eigenvalue of type II,
and that −λ is an eigenvalue of type II if and only if q > p, in which case q − p is
the type II multiplicity of −λ.
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The previous statements can be strengthened for nonzero real eigenvalues λ.
Due to the symmetry of the operator pencil, see Lemma 1.1.11, part 3, it follows
that the multiplies of the eigenvalues λ and −λ coincide. Hence each nonzero real
eigenvalue is an eigenvalue of type I but not an eigenvalue of type II.

If M + K � 0, then 0 is not an eigenvalue of type II by Theorem 1.5.7,
part 2.

All eigenvalues which are not real and not pure imaginary lie in the upper
half-plane and are not of type I and are therefore of type II.

The classification of the type I and type II eigenvalues of L stated in this
section heavily depend on the fact that K is a rank 1 operator. If K were of finite
rank larger than 1, then the classification would be much more involved.

Theorem 1.5.9. Assume that M � 0.

1. If κ2 > 0, then the interval (i|λ−κ2 |, i∞) contains an odd number of eigen-
values of type II, counted with type II multiplicity.

2. If κ2 = 0, then there is an even number of positive imaginary eigenvalues of
type II, counted with type II multiplicity.

Proof. This is shown as in the proof of Theorem 1.5.7, where we have to observe
that due to the assumption M � 0 no eigenvalue can leave the imaginary axis at
i∞. Indeed, if λ = iτ , τ > 0 is an eigenvalue of L with corresponding eigenfunc-
tion y, then

((λ2M − iλK −A)y, y) = 0

leads to
τ2(My, y)− τ(Ky, y) + (Ay, y) = 0.

Choosing α > 0 such that M ≥ αI and γ = ‖K‖, it follows that(
τ − 1

2

(Ky, y)

(My, y)

)2

=
1

4

(Ky, y)2

(My, y)2
− (Ay, y)

(My, y)
≤ γ2

4α2
+

β

α
.

Hence

τ ≤ γ

2α
+

√
γ2

4α2
+

β

α
,

so that the eigenvalues on the positive imaginary semiaxis are bounded. �

1.6 Notes

Theorem 1.2.7 is a special case of Theorem 9.2.4. Part 1 of Theorem 9.2.4 is an
application of Theorem 9.1.1, which in turn is based on the Weierstrass prepara-
tion theorem. In [136, Theorem 2], T. Kato proved the first result on eigenvalue
and eigenspace dependence on a parameter for operator functions. He considered
the case (λ, η) �→ A(η)−λI, where A depends analytically on η. In [72], V.M. Eni
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extended T. Kato’s result to polynomial operator pencils, and in [73], V.M. Eni
generalized this result further to operator functions which are analytic in both
parameters, thereby also showing the statements of Lemma 1.1.9 for the case of
analytic operator functions. The general case of the logarithmic residue theorem
is due to Gohberg and Sigal, see [98]. A comprehensive account of the results on
dependence on a parameter of the eigenvalues and eigenvectors of operator pencils
in finite-dimensional spaces can be found in [25] and [185]. The general Banach
space case is briefly outlined in [25].

Theorem 1.3.2 is a special case of a theorem for monic polynomial operator
pencils which was proved in [211, Theorem 2.1], see also Chapter 3. There exist
many related results, see [247], [5], [4], [3]. This theorem remains true in the case
of nonsymmetric operators K but such that ReK � 0 (under some additional
restrictions), see Theorem 4.1.8 and also [207], [208].

Theorem 1.4.5 was proved in [187] and Theorem 1.5.7 was proved in [220]. A
review on instability index theory for quadratic pencils can be found in [43].

We note that all boundary value problems generated by the Sturm–Liouville
equation with the spectral parameter λ2 and one of the boundary conditions con-
taining λ have an operator representation as quadratic operator pencils where K
is a rank one operator as considered in Section 1.5. Under suitable assumptions
on the boundary conditions, K ≥ 0 and A is self-adjoint.



Chapter 2

Applications of Quadratic
Operator Pencils

2.1 The Regge problem

The Regge problem occurs in quantum scattering theory [238] when the poten-
tial of interaction has finite support. The S-wave radial Schrödinger equation in
physics, which is obtained after separation of variables in the three-dimensional
Schrödinger equation with radial symmetric potential, is just the Sturm–Liouville
equation on the semiaxis, see [166, §21]:

−y′′ + q1(x)y = λ2y (2.1.1)

where λ2 = 2mE
�2 . Here m is the mass and E is the energy of the particle, � = h

2π ,
h is the Plank constant, q1 is the potential of interaction, and y is the radial
component of the wave function. The boundary condition at x = 0 is

y(0) = 0. (2.1.2)

Since in nuclear physics the form of interaction is unknown, different models were
proposed. One of the first of them is the Regge assumption that the potential has
finite support, i. e.,

q1(x) =

{
q(x) if x ∈ [0, a],

0 if x ∈ (a,∞),

where a is a positive number. We will assume, as is usual in quantum mechanics,
that q ∈ L2(0, a) is real. It should be mentioned that different authors consider dif-
ferent classes of potentials, for example, L1(0, a) or C(0, a). There exists the solu-
tion s(λ, x) to (2.1.1) which satisfies the initial conditions s(λ, 0) = 0, s′(λ, 0) = 1.
The Jost solution e(λ, x) of (2.1.1) is the unique solution which behaves asymp-
totically as

e(λ, x) =
x→∞ e−iλx + o(1).
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Clearly,
e(λ, x) = e−iλx for x ≥ a, (2.1.3)

and for Imλ < 0 a solution to (2.1.1) belongs to L2(0,∞) if and only if it is a
multiple of the Jost solution. Note that the solution y of (2.1.1) is a multiple of e
if and only if there is a complex number c such that

y(a) = ce−iλa,

y′(a) = −ciλe−iλa.

Hence for Imλ < 0 the spectral problem (2.1.1), (2.1.2) on L2(0,∞) is equiv-
alent to the eigenvalue problem (2.1.1), (2.1.2),

y′(a) + iλy(a) = 0 (2.1.4)

on L2(0, a). The problem (2.1.1), (2.1.2), (2.1.4) on L2(0, a) is called the Regge
problem. This problem was considered first in [238]. It should be mentioned that
the eigenvalues of the Regge problem in the upper half-plane are identified by
physicists as resonances for the corresponding scattering problem (2.1.1), (2.1.2).

Let us consider the operator theoretic approach to this problem. Introduce
the operators A, K and M acting in the Hilbert space H = L2(0, a) ⊕ C accord-
ing to

A

(
y
c

)
=

(−y′′ + qy
y′(a)

)
,

D(A) =

{(
y
c

)
: y ∈W 2

2 (0, a), y(0) = 0, c = y(a)

}
,

M =

(
I 0
0 0

)
, K =

(
0 0
0 1

)
.

Then the eigenvalue problem (2.1.1), (2.1.2), (2.1.4) has the operator representa-
tion

L(λ) = λ2M − iλK −A

in the sense that y ∈ L2(0, a) satisfies (2.1.1), (2.1.2), (2.1.4) if and only if Y =
(y, y(a))T ∈ D(L) and L(λ)Y = 0.

Proposition 2.1.1. The operators A, K and M are self-adjoint, M and K are
bounded, K has rank 1, and A is bounded below and has a compact resolvent. If
q ≥ 0, then A� 0.

Proof. The statements about M and K are obvious, so that we turn our attention
to A. In Section 10.3 we have provided two slightly different approaches to verify
self-adjointness. Testing both of them, we will therefore give two proofs for the
self-adjointness of A. For both cases, we have to observe that y[1] = −y′ according
to Definition 10.2.1.
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First proof. Here we will use Theorem 10.3.4. Let (y, c)T ∈W 2
2 (0, a)⊕C and

(z, d, e)T ∈ W 2
2 (0, a)⊕ C⊕ C and put

Δ = [y, z](a)− [y, z](0) + d∗V Ŷ − e∗U2Ŷ

= −
(
y(a)z[1](a)− y[1](a)z(a)

)
+
(
y(0)z[1](0)− y[1](0)z(0)

)
+ dy′(a)− ey(a)

= y(a)z′(a)− y′(a)z(a) + y′(0)z(0) + y′(a)d− y(a)e.

If (z, d)T ∈ D(A) and e = V Ẑ = z′(a), then

Δ = y(a)z′(a)− y′(a)z(a) + y′(a)z(a)− y(a)z′(a) = 0.

Conversely, if Δ = 0 for all y ∈ W 2
2 (0, a) with y(0) = 0, choose polynomials y

with y(0) = 0 and exactly one of y′(0), y′(a), or y(a) different from zero. Then we
obtain, in turn, that

z(0) = 0, d = z(a) and e = z′(a),

which shows that (z, d)T ∈ D(A) and e = V Ẑ. By Theorem 10.3.4 this means that
A is self-adjoint.

Second proof. Here we will use Theorem 10.3.5, so that we have to find U3

and U defined in (10.3.12) and (10.3.13). It is easy to see that

U1 =
(
1 0 0 0

)
, U2 =

(
0 0 1 0

)
, V =

(
0 0 0 −1) ,

so that

U3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U =

⎛⎝1 0 0 0 0 0
0 0 1 0 −1 0
0 0 0 −1 0 −1

⎞⎠ .

Then it follows that

N(U1) = span{e2, e3, e4}, U3(N(U1)) = span{e1, e4 + e6, e3 − e5},
R(U∗) = span{e1, e3 − e5, e4 + e6},

so that U3(N(U1)) = R(U∗). Hence A is self-adjoint by Theorem 10.3.5.

Now it follows from Theorem 10.3.8 that A has a compact resolvent and that
A is bounded below.

Finally, for Y = (y, y(a))T ∈ D(A) we conclude in view of (10.2.5) that

(AY, Y ) =

∫ a

0

|y′(x)|2dx+

∫ a

0

q(x)|y(x)|2dx.
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Hence A ≥ 0 if q ≥ 0. Furthermore if AY = 0, then y′ = 0, and y(0) = 0 gives
y = 0 and thus Y = 0. Therefore A > 0 has been shown. Since A has a compact
resolvent and thus a discrete spectrum consisting only of eigenvalues, it follows
that A� 0. �

It is obvious that M ≥ 0, K ≥ 0, M+K = I and N(K)∩N(M) = {0}. Thus,
the operator pencil L satisfies Condition I, and Condition II is obviously satisfied.
Furthermore, also N(M) ∩N(A) = {0}. Indeed, if Y ∈ N(M) ∩N(A), then Y ∈
D(A), so that Y = (y, y(a))T for some y ∈ W 2

2 (0, a). But MY = 0 means y = 0,
so that also y(a) = 0, and Y = 0 follows. Hence the operator pencil L satisfies
all assumptions of Theorem 1.5.7. Moreover, the geometric multiplicity of each
eigenvalue of the pencil L is 1 because there exists only one linearly independent
solution of (2.1.1) which satisfies the boundary condition (2.1.2). If there would be
an eigenvalue λ of L with an eigenvector Y ∈ N(K), then s(λ, a) = 0, and (2.1.4)
would imply s′(λ, a) = 0, which is impossible since s(λ, ·) is not identically zero.
Therefore, Definition 1.5.2 and Lemma 1.5.5 show that we have only eigenvalues
of type II in C \ {0}. If 0 is an eigenvalue of L, then 0 is clearly of type I and the
above reasoning and Lemma 1.3.1, part 2, show that also 0 is a simple eigenvalue
with N(A) ∩N(K) = {0}. Thus Theorem 1.5.7 implies

Theorem 2.1.2. The eigenvalues of the pencil L associated with the problem (2.1.1),
(2.1.2), (2.1.4) on L2(0, a) possess the following properties.

1. Only a finite number of the eigenvalues lie in the closed lower half-plane.

2. All nonzero eigenvalues in the closed lower half-plane lie on the negative
imaginary semiaxis and are simple. If their number κ is positive, they will be
uniquely indexed as λ−j = −i|λ−j|, j = 1, . . . , κ, satisfying |λ−j | < |λ−(j+1)|,
j = 1, . . . , κ− 1.

3. If κ > 0, then the numbers i|λ−j |, j = 1, . . . , κ, are not eigenvalues.

4. If κ ≥ 2, then in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ − 1,
the number of eigenvalues, counted with multiplicity, is odd.

5. If κ > 0, then the interval [0, i|λ−1|) contains no or an even number of
eigenvalues, counted with multiplicity. If N(A) = {0}, they are all nonzero,
otherwise one of them is the simple eigenvalue 0.

In Section 6.1 we will consider the generalized Regge problem in which the
boundary condition (2.1.4) is replaced by the condition

y′(a) + (iλα+ β)y(a) = 0, (2.1.5)

with α > 0 and β ∈ R.
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2.2 Damped vibrations of strings

2.2.1 Problem identification

Small transversal vibrations of a smooth inhomogeneous string subject to viscous
damping are described by the boundary value problem

∂2u

∂s2
− σ(s)

∂u

∂t
− ρ(s)

∂2u

∂t2
= 0,

u(0, t) = 0,(
∂u

∂s
+m

∂2u

∂t2
+ ν

∂u

∂t

)∣∣∣∣
s=l

= 0.

Here u = u(s, t) is the transversal displacement of a point of the string which is
as far as s from the left end of the string at time t, l is the length of the string,
ρ ≥ ε > 0 is its density, and σ ≥ 0 is the coefficient of damping along the string.
We will assume ρ, σ ∈ L∞(0, l). The left end of the string is fixed while the right
end is free to move in the direction orthogonal to the equilibrium position of the
string subject to damping with damping coefficient ν > 0. The right end bears a
point mass m > 0.

Substituting u(s, t) = v(λ, s)eiλt we arrive at

∂2v

∂s2
− iλσ(s)v + λ2ρ(s)v = 0, (2.2.1)

v(λ, 0) = 0, (2.2.2)(
∂v

∂s
− λ2mv + iλνv

)∣∣∣∣
s=l

= 0. (2.2.3)

Like in Section 2.1 the eigenvalue problem (2.2.1)–(2.2.3) is described by the op-
erator pencil

L(λ) = λ2M − iλK −A,

where the operators A, K and M act in the Hilbert space H = L2(0, l) ⊕ C

according to

A

(
v
c

)
=

(−v′′
v′(l)

)
,

D(A) =

{(
v
c

)
: v ∈ W 2

2 (0, l), v(0) = 0, c = v(l)

}
,

M =

(
ρ 0
0 m

)
, K =

(
σ 0
0 ν

)
.

Proposition 2.2.1. The operators A, K and M are self-adjoint, M � 0 and K ≥ 0
are bounded, and A� 0 has a compact resolvent. If σ > 0, then K > 0.



38 Chapter 2. Applications of Quadratic Operator Pencils

Proof. The statements about M and K are obvious, and A is the particular case
of the operator A in Section 2.1 with q = 0. Hence A� 0 by Proposition 2.1.1. �

Proposition 2.2.1 and Lemma 1.2.4 lead to

Theorem 2.2.2. All eigenvalues of (2.2.1)–(2.2.3) lie in the closed upper half-plane
and are different from zero. If σ �= 0, they lie all in the open upper half-plane.

Proof. We still have to prove the last statement. Assume there exists a real nonzero
eigenvalue λ with corresponding eigenvector Y = (v, c). We conclude as in the
proof of Lemma 1.2.3 that (KY, Y ) = 0. Since σ ≥ 0, this implies that σ|v2| = 0
almost everywhere on [0, a]. We recall that σ �= 0 means that σ(x) �= 0 for all x in
a set of positive Lebesgue measure. Hence v is zero on a set of positive Lebesgue
measure. Due to the uniqueness of the solution of the initial value problem for
linear ordinary differential equations it follows that v = 0. Then also c = v(l) = 0,
which leads to the contradiction V = 0. �

2.2.2 The location of the spectrum

In order to represent (2.2.1)–(2.2.3) in terms of an operator pencil of the form
L̂(τ) = τ2M̂ − iτK̂ − Â with rank one operator K̂, we assume that σ(s) ≡ 2�ρ(s)
for some constant �. Since ρ > 0 and σ ≥ 0, it follows that � ≥ 0. We make use
of the parameter transformation λ = ±τ + i� with λ = τ + i� if ν − 2m� ≥ 0 and
with λ = −τ + i� if ν − 2m� < 0. This parameter transformation gives rise to the
operator pencil

L(±τ + i�) =: L̂(τ) = τ2M̂ − iτK̂ − Â,

where
M̂ = M, K̂ = ±(K − 2�M), Â = A+ �2M − �K.

This gives the representations

Â

(
v
c

)
=

( −v′′ − �2ρv
v′(l) + (m�2 − ν�)v(l)

)
,

(
v
c

)
∈ D(Â) = D(A) ⊂ L2(0, l)⊕ C,

M̂ =

(
ρ 0
0 m

)
, K̂ =

(
0 0
0 |ν − 2m�|

)
.

By Proposition 2.2.1, Â is a relatively compact self-adjoint perturbation of A,
and therefore Â is self-adjoint, bounded below and has a compact resolvent. Also,
observe that M̂ � 0 and that K̂ ≥ 0, and that both M̂ and K̂ are bounded.

Three distinguished cases will be considered:

1) ν = 2mk, 2) ν > 2mk and 3) ν < 2mk.

The first case is trivial because K̂ = 0 and hence L̂(τ) = τ2M̂− Â. The spec-

trum of the pencil L̂(τ) is linked to the spectrum of the operator M̂− 1
2 ÂM̂− 1

2 via

the substitution τ2 = ζ. The infinitely many positive eigenvalues of M̂− 1
2 ÂM̂− 1

2

give pairs of real eigenvalues of L̂ which are symmetric with respect to the origin,
and the at most finitely many negative eigenvalues of M̂− 1

2 ÂM̂− 1
2 give pairs of
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pure imaginary eigenvalues of L̂ which are symmetric with respect to the origin.
Taking Theorem 2.2.2 into account, we therefore conclude that the spectrum of
problem (2.2.1)–(2.2.3) lies on the line Imλ = � and on the interval (0, 2i�) of
the imaginary axis, being symmetric with respect to the imaginary axis and with
respect to the line Imλ = �, respectively.

In the second and third cases, K̂ ≥ 0 is a rank one operator. Hence the
pencil L̂ satisfies Condition II if ν �= 2m�, and we can apply all the statements
of Theorems 1.5.6 and 1.5.7 to the pencil L̂. Note that the pencil L associated
with (2.2.1)–(2.2.3) is related to the pencil L̂ via L(λ) = L̃(±(λ− i�)). Observing
Theorem 2.2.2, we obtain the following result as in Section 2.1, taking into account
that an eigenvalue of type I can occur only at τ = 0, i .e. at λ = i�.

Theorem 2.2.3. Let σ(s) ≡ 2�ρ(s) and ν > 2m�.Then:

1. Only a finite number of the eigenvalues of problem (2.2.1)–(2.2.3) lie in the
closed half-plane Imλ ≤ �.

2. All eigenvalues in the half-plane Imλ ≤ � which are different from i� lie on
(0, i�) and are simple. Their number will be denoted by κ. If κ > 0, they
will be uniquely indexed as λ−j = i� − i|λ−j − i�|, j = 1, . . . , κ, satisfying
|λ−j − i�| < |λ−(j+1) − i�|, j = 1, . . . , κ− 1.

3. If κ > 0, then the numbers i�+ i|λ−j − i�|, j = 1, . . . , κ, are not eigenvalues.

4. If κ ≥ 2, then in each of the intervals (i�+ i|λ−j − i�|, i�+ i|λ−(j+1) − i�|),
j = 1, . . . , κ− 1, the number of eigenvalues, counted with multiplicity, is odd.

5. If κ > 0, then the interval [i�, i�+i|λ−1−i�|) contains no or an even number
of eigenvalues, counted with multiplicity. If N(Â) = {0}, they are all different
from i�, otherwise one of them is the simple eigenvalue i�.

Theorem 2.2.4. Let σ(s) ≡ 2�ρ(s) and ν < 2m�.Then:

1. Only a finite number of the eigenvalues of problem (2.2.1)–(2.2.3) lie in the
closed half-plane Imλ ≥ �, and all other eigenvalues lie in the open strip
0 < Imλ < �.

2. All eigenvalues in the half-plane Imλ ≥ � which are different from i� lie on
(i�, i∞) and are simple. Their number will be denoted by κ. If κ > 0, they
will be uniquely indexed as λ−j = i� + i|λ−j − i�|, j = 1, . . . , κ, satisfying
|λ−j | < |λ−(j+1)|, j = 1, . . . , κ− 1.

3. If κ > 0, then the numbers i�− i|λ−j − i�|, j = 1, . . . , κ, are not eigenvalues.

4. If κ ≥ 2, then in each of the intervals (i�− i|λ−(j+1) − i�|, i�− i|λ−j − i�|),
j = 1, . . . , κ− 1, the number of eigenvalues, counted with multiplicity, is odd.

5. If κ > 0, then the interval (i�−i|λ−1−i�|, i�] contains no or an even number
of eigenvalues, counted with multiplicity. If N(Â) = {0}, they are all different
from i�, otherwise one of them is the simple eigenvalue i�.

We observe that Theorem 2.2.4 shows a priori in case ν < 2m� that the
spectrum lies in a horizontal strip of the complex plane. Furthermore, we have
explicit upper and lower bounds for the imaginary parts of the eigenvalues if we
possibly disregard finitely many eigenvalues on the positive imaginary axis.
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2.2.3 Liouville transform for smooth strings

In this subsection we give an alternate approach under the assumption that ρ ∈
W 2

2 (0, l). Then the Liouville transform [57, p. 292]

x(s) =

∫ s

0

ρ
1
2 (r) dr, 0 ≤ s ≤ l,

y(λ, x) = ρ
1
4 (s(x))v(λ, s(x)), 0 ≤ x ≤ a, λ ∈ C,

leads to the equivalent boundary value problem

y′′ − iλσ(s(x))ρ−1(s(x))y − q(x)y + λ2y = 0, (2.2.4)

y(λ, 0) = 0, (2.2.5)

y′(λ, a) + (−λ2m̃+ iλν̃ + β)y(λ, a) = 0, (2.2.6)

where

q(x) = ρ−
1
4 (s(x))

d2

dx2
ρ

1
4 (s(x)),

a =

∫ l

0

ρ
1
2 (r) dr,

m̃ = ρ−
1
2 (s(a))m > 0,

ν̃ = ρ−
1
2 (s(a))ν > 0,

β = −ρ− 1
4 (s(a))

dρ
1
4 (s(x))

dx

∣∣∣∣
x=a

.

As in Subsection 2.2.2 we assume that σ(s) ≡ 2�ρ(s) for some nonnegative
constant �, and we will make use of the parameter transformation λ = ±τ+i� with
λ = τ + i� if ν̃− 2m̃� ≥ 0 and with λ = −τ + i� if ν̃− 2m̃� < 0. Like in Subsection
2.2.2 the eigenvalue problem (2.2.4)–(2.2.6) is described by the operator pencil

L̃(τ) = τ2M̃ − iτK̃ − Ã,

where the operators Ã, K̃ and M̃ act in the Hilbert space H = L2(0, a) ⊕ C

according to

Ã

(
y
c

)
=

( −y′′ + (q − �2)y
y′(a) +

(
β − ν̃�+ m̃�2

)
y(a)

)
,

D(Ã) =

{(
y
c

)
: y ∈W 2

2 (0, a), y(0) = 0, c = y(a)

}
,

M̃ =

(
I 0
0 m̃

)
, K̃ =

(
0 0
0 |ν̃ − 2m̃�|

)
.
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It is clear that

Ã = A+

(−�2 0
0 β − ν̃�+ m̃�2

)
,

where A is defined in Section 2.1. Thus Ã is a relatively compact symmetric per-
turbation of A, and therefore Ã is self-adjoint, bounded below and has a compact
resolvent.

Now it follows that Theorems 2.2.3 and 2.2.4 are also true if (2.2.1)–(2.2.3)
there is replaced by (2.2.4)–(2.2.6), either by a direct proof referring to the results
from Section 2.1, as we did in Subsection 2.2.2, or by observing that the problems
(2.2.1)–(2.2.3) and (2.2.4)–(2.2.6) are equivalent.

2.3 Vibrations of star graphs with damping

2.3.1 Problem identification

Let us consider p inhomogeneous strings, labelled by subscripts 1, . . . , p, p ≥ 2,
each having one end joined at the interior vertex and the other end fixed. The
interior vertex is free to move in the direction orthogonal to the equilibrium po-
sition of the star graph subject to damping at this interior vertex with damping
coefficient ν > 0. A point mass m may be present at the interior vertex. Small
transverse vibrations of such a star graph are described by the following system
of equations:

∂2

∂s2j
uj(sj , t)− σj(sj)

∂

∂t
uj(sj , t)− ρj(sj)

∂2

∂t2
uj(sj , t) = 0, j = 1, . . . , p, (2.3.1)

uj(0, t) = 0, j = 1, . . . , p, (2.3.2)

u1(l1, t) = u2(l2, t) = · · · = up(lp, t), (2.3.3)
p∑

j=1

∂

∂sj
uj(lj , t) +m

∂2

∂t2
u1(l1, t) + ν

∂

∂t
u1(l1, t) = 0. (2.3.4)

Here lj > 0 is the length of the jth string, ρj ≥ ε > 0 its density and σj ≥ 0
its damping, uj(sj , t) stands for the transverse displacement of the jth string at
position sj and at time t. We will assume that ρj ∈ L∞(0, aj).

We mention two particular cases.

The first case is that we have a damped string with a mass at an interior
point. In this case, p = 2 and m > 0.

The second particular case is that we have a star graph with undamped
strings and without mass at the interior point. In this case, σj = 0 for all j =
1, . . . , p and m = 0.
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Substituting uj(sj , t) = vj(λ, sj)e
iλt into (2.3.1)–(2.3.4) we obtain

∂2

∂s2j
vj(λ, sj)− iλσj(sj)vj(λ, sj) + λ2ρj(sj)vj(λ, sj) = 0, j = 1, . . . , p, (2.3.5)

vj(λ, 0) = 0, j = 1, . . . , p, (2.3.6)

v1(λ, l1) = v2(λ, l2) = · · · = vp(λ, lp), (2.3.7)
p∑

j=1

∂

∂sj
vj(λ, lj)− λ2mv1(λ, l1) + iλνv1(λ, l1) = 0. (2.3.8)

The eigenvalue problem (2.3.5)–(2.3.8) is described by the operator pencil

L(λ) = λ2M − iλK −A,

where A, K and M act in the Hilbert space

p⊕
j=1

L2(0, lj)⊕ C. A is defined by

A

⎛⎜⎜⎜⎝
v1
...
vp
c

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−v′′1
...
−v′′p

p∑
j=1

v′j(lj)

⎞⎟⎟⎟⎟⎟⎠ ,

D(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
v1
...
vp
c

⎞⎟⎟⎟⎠ : vj ∈ W 2
2 (0, lj), vj(0) = 0, vj(lj) = c, j = 1, . . . , p

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

whereas

M =

⎛⎜⎜⎜⎝
ρ1 . . . 0 0
...

. . .
...

...
0 . . . ρp 0
0 . . . 0 m

⎞⎟⎟⎟⎠ , K =

⎛⎜⎜⎜⎝
σ1 . . . 0 0
...

. . .
...

...
0 . . . σp 0
0 . . . 0 ν

⎞⎟⎟⎟⎠ .

Proposition 2.3.1. The operators A, K and M are self-adjoint, M ≥ 0 and K ≥ 0
are bounded, M + K � 0, and A � 0 has a compact resolvent. If m > 0, then
M � 0, and if σ1 ≥ ε, . . . , σp ≥ ε for some ε > 0, then K � 0.

Proof. The statements about M and K are obvious, so that we turn our attention

to A. We will use Theorem 10.3.5 to verify self-adjointness. Observe that v
[1]
j =

−v′j, j = 1, . . . , p, according to Definition 10.2.1. We have to find U3 and U defined
in (10.3.12) and (10.3.13). Before doing so we note that the conditions vj(lj) = c,
j = 1, . . . , p, can be written as v1(l1) = c and v1(l1) − vj(lj) = 0, j = 2, . . . , p,
which contribute to U2 and U1, respectively. It follows now that U1 is a (2p−1)×4p
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matrix, whose rows are eT4j−3, j = 1, . . . , p and eT3 − eT4j−1, j = 2, . . . , p. Hence

N(U1) is spanned by e4j−2, j = 1, . . . , p, e4j , j = 1, . . . , p, and e3 +

p∑
j=2

e4j−1.

Furthermore,

U2 = eT3 , V = −
p∑

j=1

eT4j .

We recall that

U3 =

⎛⎝ J
V
−U2

⎞⎠ where J =

p⊕
j=1

J1 and J1 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠
and

U =

⎛⎝U1 0 0
U2 −I 0
V 0 −I

⎞⎠ .

It is now straightforward to verify that U3(N(U1)) is the subspace of C4p+2

spanned by e4j−3, j = 1, . . . , p, e4j−1−e4p+1, j = 1, . . . , p, and e4+e4p+2+

p∑
j=2

e4j

and that R(U∗) is the subspace of C4p+2 spanned by e4j−3, j = 1, . . . , p, e3−e4j−1,

j = 2, . . . , p, e3− e4p+1 and

p∑
j=1

e4j + e4p+2. This shows that U3(N(U1)) = R(U∗).

Hence A is self-adjoint by Theorem 10.3.5. Furthermore, A has a compact resolvent
by Theorem 10.3.8.

To prove that A > 0, we take Y = (v1, . . . , vp, c)
T ∈ D(A) \ {0}. Then at

least one vj is not constant, and (10.2.5) leads to

(AY, Y ) =

p∑
j=1

∫ lj

0

|v′j(sj)|2 dsj +
p∑

j=1

[vj , vj ]1(lj) +

p∑
j=1

v′j(lj)vj(lj)

=

p∑
j=1

∫ lj

0

|v′j(sj)|2 dsj > 0.

Since A has a compact resolvent and thus a discrete spectrum consisting only of
normal eigenvalues, it follows that A� 0. �

Theorem 2.3.2.

1. The eigenvalues of problem (2.3.5)–(2.3.8) lie in the closed upper half-plane
and are nonzero. The real eigenvalues, if any, are semisimple eigenvalues
whose multiplicities do not exceed p− 1.
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2. If σ1 �= 0, . . . , σp �= 0, all eigenvalues lie in the open upper half-plane.

3. If σ1 = 0, . . . , σp = 0, the real eigenvalues, if any, are of type I but not of
type II.

Proof. Throughout this proof, we will use the results of Proposition 2.3.1.

1. Lemma 1.2.4, part 1, shows that all eigenvalues lie in the closed upper half-
plane. Since A� 0, it follows that 0 is no eigenvalue, and all other real eigenvalues,
if any, are semisimple by Lemma 1.3.1, part 1. If Y = (v1, . . . , vp, c)

T ∈ D(A)
satisfies L(λ)Y = 0, then v1, . . . , vp are solutions of second-order linear differential
equations satisfying the initial conditions vj(0) = 0, and since v1(l1) = c, there are
at most p linearly independent solutions. Note, however, that (2.3.7) and (2.3.8)
imply that vp(lp) and v′p(lp) are uniquely determined by v1, . . . , vp−1. Hence vp is
the unique solution of an initial value problem and therefore uniquely determined
by v1, . . . , vp−1. Therefore we have at most p− 1 linearly independent solutions.

Part 2 can be proved like the corresponding statement of Theorem 2.2.2.

In part 3, K has rank one, and the statement follows from Lemma 1.1.11,
part 3, Theorem 1.5.6, part 4, and the fact that 0 is no eigenvalue. �

Due to arguments similar to those in Section 2.2 we assume in what follows
that σ1(s1) ≡ 2�ρ1(s1), . . . , σp(sp) ≡ 2�ρp(sp) for some nonnegative constant �,
and we will make use of the parameter transformation λ = τ + i� if ν − 2m� ≥ 0
and λ = −τ + i� if ν − 2m� < 0.

2.3.2 The location of the spectrum

The parameter transformation gives rise to the operator pencil

L(±τ + i�) =: L̂(τ) = τ2M̂ − iτK̂ − Â,

where

M̂ = M, K̂ = ±(K − 2�M), Â = A+ �2M − �K.

The operators Â, K̂ and M̂ act in the Hilbert space H =
⊕p

j=1 L2(0, lj)⊕ C and
have the representations

Â

⎛⎜⎜⎜⎝
v1
...
vp
c

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−v′′1 − �2ρ1v1

...
−v′′p − �2ρpvp

p∑
j=1

v′j(lj) +
(
m�2 − ν�

)
v1(l1)

⎞⎟⎟⎟⎟⎟⎠ ,
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D(Â) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
v1
...
vp
c

⎞⎟⎟⎟⎠ : vj ∈W 2
2 (0, lj), vj(0) = 0, vj(lj) = c, j = 1, . . . , p

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

M̂ =

⎛⎜⎜⎜⎝
ρ1 . . . 0 0
...

. . .
...

...
0 . . . ρp 0
0 . . . 0 m

⎞⎟⎟⎟⎠ , K̂ =

⎛⎜⎜⎜⎝
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 |ν − 2m�|

⎞⎟⎟⎟⎠ .

Proposition 2.3.3. The operators Â, K̂ and M̂ are self-adjoint, M̂ ≥ 0 and K̂ ≥ 0
are bounded, and Â is bounded below and has a compact resolvent. Furthermore,
N(M̂) ∩N(Â) = {0} while M̂ � 0 if m > 0.

Proof. In view of Proposition 2.3.1 we only have to show N(M̂)∩N(Â) = {0}. To
this end let Y = (v1, . . . , vp, c)

T ∈ N(M̂) ∩N(Â). Then M̂Y = 0 implies vj = 0,

j = 1, . . . , p, and Y ∈ D(Â) then leads to c = 0. �

Three distinguished cases will be considered:

1) ν = 2m�, 2) ν > 2m� and 3) ν < 2m�.

The first case is trivial because K̂ = 0 and hence L̂(τ) = τ2M̂ − Â. Note
that ν > 0 implies m > 0 and � > 0 in this case. The spectrum of the operator
pencil L̂ is linked to the spectrum of the operator M̂− 1

2 ÂM̂− 1
2 via the substitution

τ2 = ζ. The infinitely many positive eigenvalues of M̂− 1
2 ÂM̂− 1

2 give pairs of real
eigenvalues of L̂ which are symmetric with respect to the origin, and the at most
finitely many negative eigenvalues of M̂− 1

2 ÂM̂− 1
2 give pairs of pure imaginary

eigenvalues of L̂ which are symmetric with respect to the origin. Taking Theorem
2.3.2 into account, we conclude that the spectrum of problem (2.3.5)–(2.3.8) lies on
the line Imλ = � and on the interval (0, 2i�) of the imaginary axis, being symmetric
with respect to the imaginary axis and to the line Imλ = �, respectively.

In the second and third cases, K̂ is a rank one operator. Recall that L(λ) =
L̂(±(λ − i�)). We have defined eigenvalues of type I and type II in Section 1.5.
Below, we will use this notation relative to the pencil L̂, that is with respect to
the eigenvalue parameter τ .

Theorem 2.3.4. Let σ1(s1) ≡ 2�ρ1(s1), . . . , σp(sp) ≡ 2�ρp(sp) and ν �= 2m�. Then:

1. The geometric multiplicity of each eigenvalue of (2.3.5)–(2.3.8) does not ex-
ceed p− 1.

2. The eigenvalues of type I are located on the imaginary axis and on the line
Imλ = �, and they are symmetric with respect to i�.

3. The sets of eigenvalues of types I and II do not intersect.

Proof. 1. The proof for the bound of the geometric multiplicity in Theorem 2.3.2
is valid for all eigenvalues.
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Part 2 follows from Lemma 1.5.4.

3. Let λ �= i� be an eigenvalue of type II. In view of Theorem 1.5.6, part
3, there is a corresponding eigenvector Y = (v1, . . . , vp, c)

T with c �= 0. Then
v1(l1) = · · · = vp(lp) = c �= 0, so that none of the vj , j = 1, . . . , p is identically
zero. Assume that λ is also an eigenvalue of type I. In view of Theorem 1.5.6, part
1, there is an eigenvector Z = (w1, . . . , wp, d)

T corresponding to the eigenvalue
λ with d = 0, and it follows that w1(l1) = · · · = wp(lp) = 0. Since vj and wj ,
j = 1, . . . , p, satisfy the second-order differential equations (2.3.5) and the initial
conditions (2.3.6), each wj must be a multiple of vj . But vj(lj) = dj �= 0 and
wj(lj) = d = 0 then leads to wj = 0 for j = 1, . . . , p, so that Z = 0, which is
impossible since Z is an eigenvector. Finally, Theorem 1.5.7, part 2, applied to the
pencil L̂ shows that i� is not an eigenvalue of type II. �
Remark 2.3.5. Eigenvalues λ �= i� of type I can exist. Let p = 2. By Theorem 1.5.6,
part 1, an eigenvector Y = (v1, v2, c)

T of L̂ at τ is of type I if and only if c = 0.
Hence, if v1(l1) = v2(l2) = c = 0, then v′1(l1) + v′2(l2) = 0 which is possible, e. g.,
in case l1 = l2, ρ1 ≡ ρ2 ≡ � and τ2 = τ2j − �2 with real τ �= 0 and τj =

πj
l1
, j ∈ N,

so that v1(s1) = sin(τs1) and v2(s2) = − sin(τs2). The physical interpretation of
this phenomenon is that there can be modes of vibration with a node at the point
where the mass m is located. These modes are independent of ν − �m. If � = 0,
these modes do not depend on ν, and the amplitudes of corresponding modes do
not decay with time since the corresponding eigenvalues are real as Â = A� 0.

We describe the eigenvalues of type II by applying Theorem 1.5.7 to the
pencil L̂ and by observing Proposition 2.3.1 and Theorems 2.3.2 and 2.3.4, part 3.

Theorem 2.3.6. Let σ1(s1) ≡ 2�ρ1(s1), . . . , σp(sp) ≡ 2�ρp(sp) and ν > 2m�. Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.3.5)–(2.3.8) lie in the closed half-plane Imλ ≤ �.

2. All eigenvalues of type II in the closed half-plane Imλ ≤ � lie on (0, i�) and
their type II multiplicities are 1. If κ2 > 0, they will be uniquely indexed as
λ−j = i�− i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j − i�| < |λ−(j+1) − i�|,
j = 1, . . . , κ2 − 1.

3. If κ2 > 0, then the numbers i�+i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues.

4. If κ2 ≥ 2, then the intervals (i� + i|λ−j − i�|, i� + i|λ−(j+1) − i�|), j =
1, . . . , κ2 − 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let κ2 > 0. Then the interval [i�, i�+i|λ−1−i�|) contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(Â) ⊂ N(K̂), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

Proof. All statements except for part 3 are exactly the same as in Theorem 1.5.7.
To complete the proof of part 3 we have to show that the numbers i�+ i|λ−j− i�|
are not eigenvalues of type I. Indeed, if any of those numbers were an eigenvalue
of type I, then by Theorem 2.3.4, part 2, also λ−j = i� − i|λ−j − i�| would be
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an eigenvalue of type I. But this is impossible by Theorem 2.3.4, part 3, since
i�− i|λ−j − i�| is an eigenvalue of type II. �

Theorem 2.3.7. Let σ1(s1) ≡ 2�ρ1(s1), . . . , σp(sp) ≡ 2�ρp(sp) and ν < 2m�. Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.3.5)–(2.3.8) lie in the closed half-plane Imλ ≥ �, and all other eigenvalues
lie in the open strip 0 < Imλ < �.

2. All eigenvalues of type II in the closed half-plane Imλ ≥ � lie on (i�, i∞)
and their type II multiplicities are 1. If κ2 > 0, they will be uniquely indexed
as λ−j = i� + i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j | < |λ−(j+1)|, j =
1, . . . , κ2 − 1.

3. If κ2 > 0, then the numbers i�−i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues.

4. If κ2 ≥ 2, then the intervals (i� − i|λ−(j+1) − i�|, i� − i|λ−j − i�|), j =
1, . . . , κ2 − 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let κ2 > 0. Then the interval (i�−i|λ−1−i�|, i�] contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(Â) ⊂ N(K̂), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

2.3.3 Liouville transform for smooth star graphs

We assume that ρj ∈W 2
2 (0, lj) for j = 1, . . . , p and apply the Liouville transform

as in Section 2.2, i. e.,

xj(sj) =

∫ sj

0

ρj(r)
1
2 dr,

yj(λ, xj) = ρj[xj ]
1
4 vj(λ, sj(xj)),

where we use the notation ρj [xj ] =: ρj(sj(xj)). Then (2.3.5)–(2.3.8) with σj(sj) ≡
�ρj(sj) for j = 1, . . . , p becomes the Sturm–Liouville problem

y′′j (λ, xj)− 2iλ�yj(λ, xj) + λ2yj(λ, xj)− qj(x)yj(λ, xj) = 0, j = 1, . . . , p,

(2.3.9)

yj(λ, 0) = 0, j = 1, . . . , p, (2.3.10)

ρ1[a1]
− 1

4 y1(λ, a1) = · · · = ρp[ap]
− 1

4 yp(λ, ap), (2.3.11)
p∑

j=1

ρj [aj ]
1
4

ρ1[a1]
1
4

y′j(λ, aj) + (−m̃λ2 + iν̃λ+ β)y1(λ, a1) = 0, (2.3.12)

where primes denote xj -differentiation and where

qj(xj) = ρj[xj ]
− 1

4
d2

dx2
j

(ρj [xj ]
1
4 ),
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aj =

∫ lj

0

ρj(r)
1
2 dr,

ν̃ = νρ1[a1]
− 1

2 ,

m̃ = mρ1[a1]
− 1

2 ,

β = −
p∑

j=1

ρj [aj ]
1
4

ρ1[a1]
1
2

d

dxj
ρj [xj ]

1
4

∣∣∣∣∣
xj=aj

.

Making use of the parameter transformation λ = ±τ + i�, the eigenvalue problem
(2.3.9)–(2.3.12) has an operator pencil representation

L̃(τ) = τ2M̃ − iτK̃ − Ã

acting in the Hilbert space

p⊕
j=1

L2(0, aj)⊕ C, with

D(Ã) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
y1
...
yp
c

⎞⎟⎟⎟⎠ : yj ∈ W 2
2 (0, aj), yj(0) = 0, ρj [a1]

− 1
4 yj(aj) = c, j = 1, . . . , p

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

and with operators

Ã

⎛⎜⎜⎜⎝
y1
...
yp
c

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

−y′′1 +
(
q1 − �2

)
y1

...
−y′′p +

(
qp − �2

)
yp

p∑
j=1

ρj [aj ]
1
4

ρ1[a1]
1
4

y′j(aj) +
(
β − ν̃�+ m̃�2

)
y1(a1)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

D(Ã) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
y1
...
yp
c

⎞⎟⎟⎟⎠ : yj ∈ W 2
2 (0, aj), yj(0) = 0, ρj [a1]

− 1
4 yj(aj) = c, j = 1, . . . , p

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

M̃ =

⎛⎜⎜⎜⎝
I . . . 0 0
...

. . .
...

...
0 . . . I 0
0 . . . 0 m

⎞⎟⎟⎟⎠ , K̃ =

⎛⎜⎜⎜⎝
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 |ν̃ − 2m̃�|

⎞⎟⎟⎟⎠ .

As in Proposition 2.3.1 or Proposition 2.3.3 it now follows that the operators
Ã, K̃ and M̃ are self-adjoint, M̃ ≥ 0 and K̃ ≥ 0 are bounded, K̃ is a rank
one operator or the zero operator, and Ã is bounded below and has a compact
resolvent.
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Now it follows that Theorems 2.3.6 and 2.3.7 are also true if (2.3.5)–(2.3.8)
there is replaced by (2.3.9)–(2.3.12), either by a direct proof similar to the proofs
given in Subsection 2.3.2, or by observing that the problems (2.3.5)–(2.3.8) and
(2.3.9)–(2.3.12) are equivalent.

2.3.4 General potentials

For later use we will consider a slight generalization of (2.3.5)–(2.3.8) in that we
allow an additional real potential qj ∈ L2(0, lj) in each of the differential equations
in (2.3.5), i. e.,

∂2

∂s2j
vj(λ, sj)− iλσj(sj)vj(λ, sj) + λ2ρj(sj)vj(λ, sj)− qj(s)vj(λ, sj) = 0 (2.3.13)

for j = 1, . . . , p. Here the qj are distinct from those in the previous subsection; in
both cases we have used the conventional notation for potentials, and no confusion
should arise. Clearly, this additional potential does not change the domain of the

operator A. Also, these terms do not enter into any of the quasi-derivatives v
[0]
j ,

v
[1]
j , j = 1, . . . , p. Hence the corresponding operator A is self-adjoint and bounded
below.

A review of the proof of Theorem 2.3.2 shows that

Theorem 2.3.8.

1. The geometric multiplicities of the eigenvalues of the problem (2.3.13),
(2.3.6)–(2.3.8) do not exceed p − 1. The nonzero real eigenvalues, if any,
are semisimple.

2. If σ1 = 0, . . . , σp = 0, then the real eigenvalues, if any, are of type I, and the
real nonzero eigenvalues, if any, are not of type II.

Theorem 2.3.4 holds verbatim also for the eigenvalue problem given by the
differential equation (2.3.13) and the boundary conditions (2.3.6)–(2.3.8), whereas
Theorems 2.3.6 and 2.3.7 have the following weaker counterparts, with the operator
Â given by

Â

⎛⎜⎜⎜⎝
v1
...
vp
c

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
−v′′1 + q1v1 − �2ρ1v1

...
−v′′p + qpvp − �2ρpvp

p∑
j=1

v′j(lj) +
(
m�2 − ν�

)
v1(l1)

⎞⎟⎟⎟⎟⎟⎠ ,

whereas the operators M̂ and Â are as in Subsection 2.3.2.

Theorem 2.3.9. Let σ1(s1) ≡ 2�ρ1(s1), . . . , σp(sp) ≡ 2�ρp(sp) and ν > 2m�. Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.3.5)–(2.3.8) lie in the closed half-plane Imλ ≤ �.
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2. All eigenvalues of type II in the closed half-plane Imλ ≤ � lie on (−i∞, i�)
and their multiplicities are 1. If κ2 > 0, they will be uniquely indexed as
λ−j = i�− i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j − i�| < |λ−(j+1) − i�|,
j = 1, . . . , κ2 − 1.

3. If κ2 > 0, then the numbers i�+i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues.

4. If κ2 ≥ 2, then the intervals (i� + i|λ−j − i�|, i� + i|λ−(j+1) − i�|), j =
1, . . . , κ2 − 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let κ2 > 0. Then the interval [i�, i�+i|λ−1−i�|) contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(Â) ⊂ N(K̂), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

Theorem 2.3.10. Let σ1(s1) ≡ 2�ρ1(s1), . . . , σp(sp) ≡ 2�ρ2(sp) and ν < 2m�.
Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.3.5)–(2.3.8) lie in the closed half-plane Imλ ≥ �.

2. All eigenvalues of type II in the half-plane Imλ ≥ � lie on (i�, i∞) and
their multiplicities are 1. If κ2 > 0, they will be uniquely indexed as λ−j =
i�+ i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j | < |λ−(j+1)|, j = 1, . . . , κ2− 1.

3. If κ2 > 0, then the numbers i�−i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues.

4. If κ2 ≥ 2, then the intervals (i� − i|λ−(j+1) − i�|, i� − i|λ−j − i�|), j =
1, . . . , κ2 − 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let κ2 > 0. Then the interval (i�−i|λ−1−i�|, i�] contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(Â) ⊂ N(K̂), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

2.4 Sturm–Liouville problems on forked graphs

The following spectral problem describes one-dimensional scattering of a quantum
particle when the path of propagation is a graph which consists of two finite
intervals and one half-infinite interval, where the three edges have one common
vertex:

−y′′j + qj(x)yj = λ2yj , x ∈ [0, a], j = 1, 2, (2.4.1)

−y′′3 = λ2y3, x ∈ [a,∞), (2.4.2)

y1(λ, a) = y2(λ, a) = y3(λ, a), (2.4.3)

y′1(λ, a) + y′2(λ, a)− y′3(λ, a) = 0, (2.4.4)

y1(λ, 0) = 0, (2.4.5)

y2(λ, 0) = 0, (2.4.6)
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where λ2 = 2mE
�2 , E is the energy of the quantum particle, � = h

2π , h is the Plank
constant, qj is the potential of interaction, and yj is the radial component of the
wave function on the corresponding edge. Here we assume the potentials to be
real valued and to satisfy qj ∈ L2(0, a) for j = 1, 2. Conditions (2.4.5) and (2.4.6)
describe complete reflection of the wave at the pendant vertices.

Similar to the Regge problem we assume that the potential is supported only
on the finite edges of the graph. The Jost solution e(λ, x) of (2.4.2) is

e(λ, x)= e−iλx.

Substituting the multiple y3(λ, x) = y1(λ, a)e
iλae−iλx of the Jost function into

(2.4.3) and (2.4.4), the part of (2.4.3) relating to y3 is satisfied, and (2.4.1)–(2.4.6)
is reduced to

−y′′j + qj(x)yj = λ2yj , x ∈ [0, a], j = 1, 2, (2.4.7)

y1(λ, a) = y2(λ, a), (2.4.8)

y′1(λ, a) + y′2(λ, a) + iλy1(λ, a) = 0, (2.4.9)

y1(λ, 0) = 0, (2.4.10)

y2(λ, 0) = 0. (2.4.11)

This problem is a particular case of problem (2.3.13), (2.3.6)–(2.3.8) consid-
ered in Subsection 2.3.4 with p = 2, ρ1 = 1, ρ2 = 1, σ1 = 0, σ2 = 0, m = 0, and
ν = 1. Hence � = 0, and in the notation of Section 2.3, A = Â, M = M̂ , and
K = K̂ are given by

A

⎛⎝y1
y2
c

⎞⎠ =

⎛⎝ −y′′1 + q1y1
−y′′2 + q2y2
y′1(a) + y′2(a)

⎞⎠ , M =

⎛⎝I 0 0
0 I 0
0 0 0

⎞⎠ , K =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ .

Then M +K = I � 0, Lemma 1.5.4, and Theorems 2.3.8 and 2.3.9 lead to

Theorem 2.4.1.

1. All eigenvalues of (2.4.7)–(2.4.11) have geometrical multiplicity 1.

2. All eigenvalues of type I are located on the real and imaginary axes, are
symmetric with respect to the origin, are not eigenvalues of type II, and at
most finitely many of them lie on the imaginary axis.

3. Only a finite number, denoted by κ2, of eigenvalues of type II lie in the closed
lower half-plane.

4. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and are simple. If κ2 > 0, they will be uniquely indexed as
λ−j = −i|λ−j |, j = 1, . . . , κ2, satisfying |λ−j | < |λ−(j+1)|, j = 1, . . . , κ2 − 1.

5. If κ2 > 0, then the numbers i|λ−j|, j = 1, . . . , κ2, are not eigenvalues.

6. If κ2 ≥ 2, then in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ2 − 1,
the number of eigenvalues of type II, counted with multiplicity, is odd.
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7. Let κ2 > 0. Then the interval [0, i|λ−1|) contains no or an even number of
eigenvalues of type II, counted with multiplicity, if N(A) ⊂ N(K), and an
odd number of eigenvalues of type II, counted with multiplicity, otherwise.

Let us briefly discuss the meaning of the eigenvalues of problem (2.4.7)–
(2.4.11) for problem (2.4.1)–(2.4.6). The eigenvalues of problem (2.4.7)–(2.4.11) in
the open lower half-plane are normal eigenvalues or, in physical terms, bound states
of problem (2.4.1)–(2.4.6). The real nonzero eigenvalues of problem (2.4.7)–(2.4.11)
are bound states embedded in the continuous spectrum of problem (2.4.1)–(2.4.6).
The zero eigenvalue of problem (2.4.7)–(2.4.11) describes the so-called virtual label
(or virtual state) for problem (2.4.1)–(2.4.6). The eigenvalues of problem (2.4.7)–
(2.4.11) located in the open upper half-plane are poles of the resolvent of the
corresponding operator or, in physical terms, resonances of problem (2.4.1)–(2.4.6).

2.5 Sturm–Liouville problems on lasso graphs

The following spectral problem describes one-dimensional scattering of a quantum
particle whose path of propagation is a graph consisting of one finite and one half-
infinite interval where the three finite ends of the edges meet in a common vertex:

−y′′1 + q(x)y1 = λ2y1, x ∈ [0, a], (2.5.1)

−y′′2 = λ2y2, x ∈ [0,∞), (2.5.2)

y1(λ, 0) = y1(λ, a) = y2(λ, 0), (2.5.3)

y′1(λ, a)− y′1(λ, 0)− y′2(λ, 0) = 0, (2.5.4)

where λ2 = 2mE
�2 , E is the energy of a quantum particle, m is the mass, � = h

2π ,
h is the Planck constant.

As in the Regge problem we assume that the potential is supported only on
the finite edge of the graph. The Jost solution e(λ, x) of (2.5.2) is

e(λ, x)= e−iλx.

Substituting the multiple y2(λ, x) = y1(λ, 0)e
−iλx of the Jost function, the part of

(2.5.3) relating to y2 is satisfied, and (2.5.1)–(2.5.4) is reduced to

−y′′1 + q(x)y1 = λ2y1, x ∈ [0, a], (2.5.5)

y1(λ, 0) = y1(λ, a), (2.5.6)

y′1(λ, 0)− y′1(λ, a)− iλy1(λ, 0) = 0. (2.5.7)

The eigenvalue problem (2.5.5)–(2.5.7) is described by the operator pencil

L(λ) = λ2M − iλK −A,
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where A, K and M act in the Hilbert space H = L2(0, a)⊕ C according to

A

(
y
c

)
=

( −y′′ + qy
y′(a)− y′(0)

)
,

D(A) =

{(
y
c

)
: y ∈W 2

2 (0, a), y(0) = y(a) = c

}
,

M =

(
I 0
0 0

)
, K =

(
0 0
0 1

)
.

To prove that the operator A is Hermitian, we will apply Theorem 10.3.5, so
that we have to find U3 and U defined in (10.3.12) and (10.3.13). Observing that
y(0) = c contributes to U2 and y(0) = y(a) contributes to U1, it is easy to see that

U1 =
(
1 0 −1 0

)
, U2 =

(
1 0 0 0

)
, V =

(
0 1 0 −1) ,

so that

U3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 −1
−1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U =

⎛⎝1 0 −1 0 0 0
1 0 0 0 −1 0
0 1 0 −1 0 −1

⎞⎠ .

Then it follows that

N(U1) = span{e1 + e3, e2, e4},
U3(N(U1)) = span{e2 − e4 − e6, e1 − e5, e3 − e5},

R(U∗) = span{e1 − e3, e1 − e5, e2 − e4 − e6},

so that U3(N(U1)) = R(U∗). Hence A is self-adjoint by Theorem 10.3.5.

By Theorem 10.3.8, A has a compact resolvent, and A is bounded below.
To see the latter property, we observe that U1Ŷ = y(0) − y(1) only contains
quasi-derivatives of order 0 and hence satisfies condition (ii) of Theorem 10.3.8.
Condition (iii) of Theorem 10.3.8 holds since U2Ŷ = y(0) only has quasi-derivatives
of order 0, and finally, condition (iv) is trivially satisfied since the order of the
quasi-derivative in U2Ŷ is less than 1.

It is also clear that M ≥ 0, K ≥ 0 and M +K = I � 0. One can easily show
as in Section 2.1 that N(M)∩N(A) = {0}. Therefore, we can apply Lemma 1.5.4
and Theorems 1.5.6 and 1.5.7. Thus we obtain

Theorem 2.5.1.

1. All nonzero real eigenvalues of problem (2.5.5)–(2.5.7) have geometric mul-
tiplicity 1.
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2. All eigenvalues of type I are located on the real and imaginary axes, are
symmetric with respect to the origin, and at most finitely many of them lie
on the imaginary axis.

3. Only a finite number, denoted by κ2, of eigenvalues of type II lie in the closed
lower half-plane.

4. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicities are 1. If κ2 > 0, they
will be uniquely indexed as λ−j = −i|λ−j |, j = 1, . . . , κ2, satisfying |λ−j | <
|λ−(j+1)|, j = 1, . . . , κ2 − 1.

5. If κ2 > 0, then the numbers i|λ−j |, j = 1, . . . , κ2, are not eigenvalues of
type II.

6. If κ2 ≥ 2, then in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ2 − 1,
the number of eigenvalues of type II, counted with type II multiplicity, is odd.

7. Let κ2 > 0. Then the interval [0, i|λ−1|) contains no or an even number of
eigenvalues of type II, counted with type II multiplicity, if N(A) ⊂ N(K),
and an odd number of eigenvalues of type II, counted with type II multiplicity,
if N(A) �⊂ N(K).

Proof. We still have to prove statement 1. To this end let λ be a nonzero real
eigenvalue of problem (2.5.5)–(2.5.7). Since (2.5.5) has two linearly independent
solutions, it suffices to show that the solution y(λ, ·) of (2.5.5) with y(λ, 0) = 1 and
y′(λ, 0) = 0 is not an eigenvector of (2.5.5)–(2.5.7). Indeed, since q is a real-valued
function and λ a real number, it follows that y is a real-valued function, so that
y′(λ, a) ∈ R. But on the other hand, (2.5.7) gives

y′(λ, a) = y′(λ, 0)− iλy(λ, 0) = −iλ,

and we have arrived at a contradiction. �

Let us briefly discuss the meaning of the eigenvalues of the eigenvalue prob-
lem (2.5.5)–(2.5.7) for problem (2.5.1)–(2.5.4). The eigenvalues of problem (2.5.5)–
(2.5.7) in the open lower half-plane are eigenvalues or, in physical terms, bound
states of problem (2.5.1)–(2.5.4). The real nonzero eigenvalues of problem (2.5.5)–
(2.5.7) are bound states embedded in the continuous spectrum of problem (2.5.1)–
(2.5.4). The zero eigenvalue of problem (2.5.5)–(2.5.7) describes the so-called vir-
tual label (or virtual state) for problem (2.5.1)–(2.5.4). The eigenvalues of problem
(2.5.5)–(2.5.7) in the open upper half-plane are poles of the resolvent of the cor-
responding operator or, in physical terms, resonances of problem (2.5.1)–(2.5.4).
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2.6 Damped vibrations of Stieltjes strings

The notion of Stieltjes string was introduced in [85, Supplement II]. Like in [85]
we suppose the string to be a thread, i. e. a string of zero density, bearing a finite
number of point masses. Assume that the string consists of two parts, which are
joined at one end and fixed at the other end.

m
(1)
1 m

(1)
2 m

(1)
n1 m

(2)
n2 m

(2)
2 m

(1)
2

l
(1)
0 l

(1)
1 l

(1)
n1 l

(2)
n2

l
(2)
1 l

(2)
0

P

Starting indexing from the fixed ends, nj masses m
(j)
k > 0, k = 1, . . . , nj , are

positioned on the jth part, j = 1, 2, which divide the jth part into nj+1 substrings,

denoted by l
(j)
k > 0, k = 0, . . . , nj, again starting indexing from the fixed end. In

particular, l
(j)
0 is the distance on the jth part between the fixed endpoint and

m
(j)
1 , l

(j)
k for k = 1, . . . , nj − 1 is the distance between m

(j)
k and m

(j)
k+1, and l

(j)
nj

is the distance on the jth thread between the joined endpoint P and m
(j)
nj . The

tension of the thread is assumed to be equal to 1, and at the point P damping is
assumed with coefficient of damping ν > 0. The transversal displacement of the

point masses m
(j)
k at the time t is denoted by v

(j)
k (t), where we assume the thread

to be stretched by a force equal to 1. For convenience, we denote by v
(j)
0 = 0

the transversal displacement at the fixed endpoints and by v
(j)
nj+1 the transversal

displacement at the joined endpoints.

However, the mathematical treatment will become easier if we use a unified
treatment by considering just one thread with finitely many point masses with
damping on it.

P1 P2 Pn−1 Pn

l0 l1 ln−1 ln

This means we have n points Pk, k = 1, . . . , n, on the thread, either bearing a
mass mk > 0, or being a joint, in which case we set mk = 0. At each of the points
Pk we also allow damping with coefficient of damping νk > 0. Absence of damping
is, of course, indicated by νk = 0. It may be assumed that damping is present
at each joint, in which case, using dimensionless quantities, mk + νk > 0 for all
k = 1, . . . , n. The transversal displacement of the points Pk from the position
of rest at time t is denoted by vk(t) for k = 1, . . . , n, and for convenience we
introduce v0(t) and vn+1(t) for the displacements of the left and right end points
of the thread, respectively.

It is clear that the Stieltjes string introduced at the beginning of this section
is a special case of this latter setting, with n = n1+n2+1, νk = ν �= 0 if and only
if k = n1 + 1, and mk = 0 if and only if k = n1 + 1.
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Since the threads have zero density, the general solution of the string equation
for each substring is a linear function of s at any time t. Therefore, each Pk is
connected by straight line threads to its two neighbours, possibly one of them one
of the fixed ends of the thread. Linearizing the forces exerted on each of the points
Pk by the adjacent strings in terms of the displacements, Newton’s law of motion
gives the following equations of motion for the particles:

vk(t)− vk+1(t)

lk
+
vk(t)− vk−1(t)

lk−1
+νkv

′
k(t)+mkv

′′
k (t) = 0, k = 1, . . . , n. (2.6.1)

At the fixed ends we have

v0(t) = 0, vn+1(t) = 0. (2.6.2)

For the particular problem we started with, the corresponding equations are

v
(j)
k (t)− v

(j)
k+1(t)

l
(j)
k

+
v
(j)
k (t)− v

(j)
k−1(t)

l
(j)
k−1

+m
(j)
k v

(j)
k

′′
(t) = 0, k = 1, . . . , nj, j = 1, 2.

(2.6.3)
At the fixed ends we have

v
(j)
0 (t) = 0, j = 1, 2. (2.6.4)

The joined ends give rise to

v
(1)
n1+1(t) = v

(2)
n2+1(t), (2.6.5)

and the equation of damped motion at the joint is

v
(1)
n1+1(t)− v

(1)
n1 (t)

ln1

+
v
(2)
n2+1(t)− v

(2)
n2 (t)

ln2

+ νv
(1)′
n1+1(t) = 0. (2.6.6)

Returning to the general case, we substitute vk(t) = uke
iλt into (2.6.1)–

(2.6.2) and obtain

uk − uk+1

lk
+

uk − uk−1

lk−1
+ iλνkuk − λ2mkuk = 0, k = 1, . . . , n, (2.6.7)

u0 = 0, un+1 = 0. (2.6.8)

Then problem (2.6.1)–(2.6.2) can be written in matrix form

(λ2M − iλK −A)Y = 0,

where A = (ak,m)nk,m=1 is an n× n Jacobi matrix with diagonal elements

ak,k = l−1
k−1 + l−1

k , k = 1, . . . , n,
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subdiagonal and superdiagonal elements

ak+1,k = ak,k+1 = −l−1
k , k = 1, . . . , n− 1,

and

M = diag(m1, . . . ,mn), K = diag(ν1, . . . , νn), Y = (u1, . . . , un)
T.

Proposition 2.6.1. The matrices M ≥ 0, K ≥ 0, and A > 0 are Hermitian, and
M +K > 0 if mk + νk > 0 for all k = 1, . . . , n.

Proof. The statements about M and K are obvious, so that we now turn our
attention to A. The matrix A is clearly Hermitian as it is a real Jacobi matrix.
For Y = (v1, . . . , vn)

T ∈ Cn we estimate

Y ∗AY = l−1
0 |v1|2 +

n−1∑
k=1

l−1
k |vk|2 +

n∑
k=2

l−1
k−1|vk|2 + l−1

n |vn|2

−
n−1∑
k=1

l−1
k (vkvk+1 + vk+1vk)

= l−1
0 |v1|2 + l−1

n |vn|2 +
n−1∑
k=1

l−1
k

(|vk|2 + |vk+1|2 − 2Re(vkvk+1)
)

≥ l−1
0 |v1|2 + l−1

n |vn|2.
Hence A ≥ 0. If AY = 0, then the above estimate gives v1 = 0. Since A is
tridiagonal and since all entries in the superdiagonal are nonzero, it follows by
induction that v2 = 0, . . . , vn = 0, so that N(A) = {0}. Altogether, we have
shown that A > 0. �

We note that the Stieltjes string introduced at the beginning of this section
has the operator pencil representation with a rank one operator K and satisfies
M +K > 0. Hence the following theorem holds for Stieltjes strings.

Theorem 2.6.2.

1. All eigenvalues of (2.6.7), (2.6.8) lie in the closed upper half-plane.

2. If νm > 0 for exactly one m ∈ {1, . . . , n} and mk > 0 for k �= m, then all
eigenvalues of type II lie in the open upper half-plane, whereas all eigenvalues
of type I are nonzero real numbers.

Proof. 1. This follows from Proposition 2.6.1 and Lemma 1.2.4, part 1.
2. Since eigenvalues of type I lie on the real and imaginary axes and are symmetric
with respect to the origin by Lemma 1.5.4, eigenvalues of type I can only be
nonzero and real by part 1 and Proposition 2.6.1. By Lemma 1.3.1, part 3, all real
eigenvalues are semisimple, and by Lemma 1.3.1, part 4, and Theorem 1.5.6, part 3,
all real eigenvalues, counted with multiplicity, are of type I, so that eigenvalues of
type II must be nonreal. �
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2.7 Damped vibrations of beams

2.7.1 Beams with friction at one end

The equation
∂4u

∂x4
− ∂

∂x
g(x)

∂u

∂x
+

∂2u

∂t2
= 0 (2.7.1)

describes small transverse vibrations of an elastic beam. Here g is a stretching or
compressing distributed force, u(x, t) is the transverse displacement of the point
located at x and at time t. We assume a hinge connection at the left end of the
beam, which is described by the boundary conditions

u(0, t) =
∂2u

∂x2

∣∣∣∣
x=0

= 0 .

The boundary conditions at the right end a > 0,

u(a, t) =
∂2u

∂x2

∣∣∣∣
x=a

+ α
∂2u

∂t∂x

∣∣∣∣
x=a

= 0,

describe a hinge connection with viscous friction at the hinge, where α > 0 is the
coefficient of damping. We will assume that the real-valued function g belongs to
W 1

2 (0, a).

Substituting u(x, t) = y(λ, x)eiλt we obtain

y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x), (2.7.2)

together with the boundary conditions

y(λ, 0) = 0, (2.7.3)

y′′(λ, 0) = 0, (2.7.4)

y(λ, a) = 0, (2.7.5)

y′′(λ, a) + iλαy′(λ, a) = 0. (2.7.6)

Now we establish the operator approach to this problem. Define the operators
A, K and M by

D(A) =

{
Y =

(
y
c

)
: y ∈W 4

2 (0, a), y(0) = y′′(0) = y(a) = 0, y′(a) = c

}
,

D(K) = D(M) = L2(0, a)⊕ C,

A

(
y
c

)
=

(
y(4) − (gy′)′

y′′(a)

)
, K =

(
0 0
0 α

)
, M =

(
I 0
0 0

)
.

Then the eigenvectors of the operator pencil L given by

L(λ) = λ2M − iλK −A (2.7.7)

correspond to nontrivial solutions of (2.7.2)–(2.7.6).
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Proposition 2.7.1. The operators A, K and M are self-adjoint, M and K are
bounded, K has rank 1, M ≥ 0, K ≥ 0, M +K � 0, N(M) ∩N(A) = {0}, and
A is bounded below and has a compact resolvent.

Proof. The statements about M and K are obvious. If (y, c)T ∈ N(M) ∩ N(A),
then (y, c)T ∈ N(M) gives y = 0, and (y, c)T ∈ D(A) leads to c = y′(a) = 0. Hence
N(M) ∩N(A) = {0}.

We are going to use Theorem 10.3.5 to verify that A is self-adjoint. Observe
that y[j] = y(j) for j = 0, 1, 2 and y[3] = y(3) − gy′ according to Definition 10.2.1.
We have to find U1, U3 and U defined in (10.3.3), (10.3.12) and (10.3.13). First,
it is straightforward to see that

U1 =

⎛⎝1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0

⎞⎠ ,

U2 =
(
0 0 0 0 0 1 0 0

)
,

V =
(
0 0 0 0 0 0 1 0

)
.

In particular,

(
U1

U2

)
has rank 4. Clearly,

N(U1) = span{e2, e4, e6, e7, e8} ⊂ C
8.

We recall that

U3 =

⎛⎝ J2
V
−U2

⎞⎠ where J2 =

(−J2,1 0
0 J2,1

)
and J2,1 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ ,

and

U =

⎛⎝U1 0 0
U2 −1 0
V 0 −1

⎞⎠ .

It is now straightforward to verify that

U3(N(U1)) = span{e3, e1, e7 − e10, e9 − e6, e5} ⊂ C
10,

R(U∗) = span{e1, e3, e5, e6 − e9, e7 − e10} ⊂ C
10.

This shows that U3(N(U1)) = R(U∗). Hence A is self-adjoint by Theorem 10.3.5.

Finally, Theorem 10.3.8 shows that A has a compact resolvent and that A is
bounded below. �

It is clear that in this problem both eigenvalues of type I and type II can
exist. Theorems 1.5.6 and 1.5.7 imply
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Theorem 2.7.2.

1. The geometric multiplicity of each eigenvalue of (2.7.2)–(2.7.6) does not ex-
ceed 2.

2. All eigenvalues of type I are located on the imaginary and real axes and are
symmetric with respect to the origin. All nonzero eigenvalues of type I have
type I multiplicity 1. If the geometric multiplicity of a nonzero eigenvalue is
2, then this eigenvalue is a pure imaginary eigenvalue of both type I and type
II.

3. Only a finite number, denoted by κ2, of the eigenvalues of type II lie in the
closed lower half-plane.

4. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicity is 1. If κ2 > 0, they will
be uniquely indexed as λ−j = −i|λ−j|, j = 1, . . . , κ2, satisfying |λ−j | <
|λ−(j+1)|, j = 1, . . . , κ2 − 1.

5. If κ2 > 0, then the numbers i|λ−j |, j = 1, . . . , κ2, are not eigenvalues of type
II.

6. If κ2 ≥ 2, then the number of eigenvalues of type II, counted with type II
multiplicity, in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ2 − 1, is
odd.

7. Let κ2 > 0. Then the interval (0, i|λ−1|) contains no or an even number of
eigenvalues of type II, counted with type II multiplicity, if N(A) ⊂ N(K),
and an odd number of eigenvalues of type II, counted with type II multiplicity,
otherwise.

Proof. Parts 3 to 7 of this theorem immediately follow from Theorem 1.5.7.

1. Because of the initial conditions (2.7.3) and (2.7.4), each eigenvalue λ can
have at most two linearly independent eigenvectors.

2. The first statement follows from Lemma 1.5.4. Now let λ be a nonzero
eigenvalue of type I. Then every eigenvector of type I is of the form (y(λ, ·), 0)T
by Theorem 1.5.6, and therefore y′(λ, a) = 0. Hence y(λ, ·) is a solution of the
initial value problem (2.7.2), y(λ, a) = y′(λ, a) = y′′(λ, a) = 0, and it follows from
Theorem 1.5.6, part 1, that the type I multiplicity mI(λ) equals 1. If now λ �= 0
has geometric multiplicity 2, then λ must be an eigenvalue of type I since the
geometric multiplicity of a type II eigenvalue is 1 by Theorem 1.5.6, part 3. We
already know that the type I multiplicity is 1, so that λ must also be of type II
and pure imaginary since a type II eigenvalue cannot be real by part 4. �

2.7.2 Damped beams

Physically better justified boundary conditions for the problem generated by a
fourth-order differential equation were considered in [100]:

y(4)(λ, x) − (gy′)′(λ, x) + 2iλ�y = λ2y(λ, x), (2.7.8)
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y(λ, 0) = 0, (2.7.9)

y′′(λ, 0) = 0, (2.7.10)

y′′(λ, a) = 0, (2.7.11)

−y′′′(λ, a) + g(a)y′(λ, a) + iλαy(λ, a) = λ2my(λ, a). (2.7.12)

Here g ∈ W 1
2 (0, a) is a stretching or compressing distributed force, 2� > 0 is the

constant damping coefficient due to viscous friction along the beam and m is a
point mass at the right end a > 0. This right end can move with damping in the
direction orthogonal to the equilibrium position of the beam, where α > 0 is the
coefficient of damping.

For the operator approach to this problem we define the operators A, K and
M by

D(A) =

{
Y =

(
y
c

)
: y ∈ W 2

4 (0, a), y(0) = y′′(0) = y′′(a) = 0, y(a) = c

}
,

D(K) = D(M) = L2(0, a)⊕ C,

A

(
y
c

)
=

(
y(4) − (gy′)′

−y′′′(a) + g(a)y′(a)

)
, K =

(
2� 0
0 α

)
, M =

(
I 0
0 m

)
.

Then the eigenvectors of the operator pencil L given by

L(λ) = λ2M − iλK −A (2.7.13)

correspond to nontrivial solutions of (2.7.8)–(2.7.12).

Proposition 2.7.3. The operators A, K and M are self-adjoint, M and K are
bounded, M � 0, K � 0, and A is bounded below and has a compact resolvent.

Proof. The statements about M and K are obvious. We will use Theorem 10.3.5
to verify that A is self-adjoint. Observe that y[j] = y(j) for j = 0, 1, 2 and that
y[3] = y(3) − gy′ according to Definition 10.2.1. We have to find U1, U3 and U
defined in (10.3.3), (10.3.12) and (10.3.13). First, it is straightforward to see that

U1 =

⎛⎝1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

⎞⎠ ,

U2 =
(
0 0 0 0 1 0 0 0

)
,

V =
(
0 0 0 0 0 0 0 −1) .

In particular,

(
U1

U2

)
has rank 4. Clearly,

N(U1) = span{e2, e4, e5, e6, e8} ⊂ C
8.
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We recall that

U3 =

⎛⎝ J2
V
−U2

⎞⎠ where J2 =

(−J2,1 0
0 J2,1

)
and J2,1 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ ,

and

U =

⎛⎝U1 0 0
U2 −1 0
V 0 −1

⎞⎠ .

It is now straightforward to verify that

U3(N(U1)) = span{e3, e1, e8 + e10, e7, e5 − e9} ⊂ C
10,

R(U∗) = span{e1, e3, e7, e5 − e9, e8 + e10} ⊂ C
10.

This shows that U3(N(U1)) = R(U∗). Hence A is self-adjoint by Theorem 10.3.5.

Finally, Theorem 10.3.8 shows that A has a compact resolvent and that A is
bounded below. �

We will make use of the parameter transformation λ = τ + i� if α− 2m� ≥ 0
and λ = −τ + i� if α− 2m� < 0. This parameter transformation gives rise to the
operator pencil

L(±τ + i�) =: L̂(τ) = τ2M̂ − iτK̂ − Â,

where
M̂ = M, K̂ = ±(K − 2�M), Â = A+ �2M − �K.

Thus M̂ , K̂ and Â act in L2(0, a)⊕ C and are given as follows:

Â

(
y
c

)
=

(
y(4) − (gy′)′ − �2y(x)

−y(3)(a) + g(a)y′(a) +
(
m�2 − α�

)
y(a)

)
, (2.7.14)

D(Â) =

{(
y
c

)
: y ∈W 4

2 (0, a), c = y(a), y(0) = y′′(0) = y′′(a)
}
, (2.7.15)

M̂ =

(
I 0
0 m

)
, K̂ =

(
0 0
0 |α− 2m�|

)
. (2.7.16)

Three distinguished cases will be considered:

1) α = 2m�, 2) α > 2m� and 3) α < 2m�.

The first case is trivial because K̂ = 0 and hence L̂(τ) = τ2M̂ − Â. The

spectrum of the pencil L is linked to the spectrum of the operator M̂− 1
2 ÂM̂− 1

2 via
the substitution τ2 = ζ. The infinitely many positive eigenvalues of M̂− 1

2 ÂM̂− 1
2

give pairs of real eigenvalues of L̂ which are symmetric with respect to the origin,
and the at most finitely many negative eigenvalues of M̂− 1

2 ÂM̂− 1
2 give pairs of

pure imaginary eigenvalues of L̂ which are symmetric with respect to the origin.
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Hence the spectrum of problem (2.7.8)–(2.7.12) lies on the line Imλ = � and on a
finite interval of the imaginary axis, being symmetric with respect to the imaginary
axis and to the line Imλ = �, respectively.

In the second and third cases K̂ ≥ 0 has rank one and we can apply the
results of Section 1.5 to the pencil L̂. Taking into account that the geometric
multiplicities of the eigenvalues of problem (2.7.8)–(2.7.12) do not exceed 2 and
that L(λ) = L̂(λ± i�), we arrive at the following results.

From Lemma 1.5.4 we obtain

Theorem 2.7.4. Assume that α �= 2m�. Then the eigenvalues of type I of L are
located on the imaginary axis and on the line Imλ = �, and are symmetric with
respect to the point λ = i�. At most finitely many of the eigenvalues of type I are
on the imaginary axis.

Theorem 1.5.7 implies the following two theorems.

Theorem 2.7.5. Assume that α > 2m�. Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.7.8)–(2.7.12) lie in the closed half-plane Imλ ≤ �.

2. All eigenvalues of type II in the closed half-plane Imλ ≤ � lie on (−i∞, i�)
and their type II multiplicities are 1. If κ2 > 0, they will be uniquely indexed
as λ−j = i�− i|λ−j− i�|, j = 1, . . . , κ2, satisfying |λ−j− i�| < |λ−(j+1)− i�|,
j = 1, . . . , κ2 − 1.

3. If κ2 > 0, then the numbers i�+i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues
of type II.

4. If κ2 ≥ 2, then the intervals (i�+i|λ−j−i�|, i�+i|λ−j−1−i�|), j = 1, . . . , κ2−
1, contain an odd number of eigenvalues of type II, counted with type II
multiplicity.

5. Let κ2 > 0. Then the interval [i�, i� + i|λ−1 − i�|) contains no or an even
number of eigenvalues of type II, counted with type II multiplicity, if N(Â) ⊂
N(K̂), and an odd number of eigenvalues of type II, counted with type II
multiplicity, otherwise.

Theorem 2.7.6. Assume that α < 2mk. Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.7.8)–(2.7.12) lie in the closed half-plane Imλ ≥ �.

2. All eigenvalues of type II in the closed half-plane Imλ ≥ � lie on (i�, i∞) and
their type II multiplicities are 1. If κ2 > 0, they will be uniquely enumerated
as λ−j = i� + i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j | < |λ−(j+1)|, j =
1, . . . , κ2 − 1.

3. If κ2 > 0, then the numbers i�−i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues
of type II.

4. If κ2 ≥ 2, then the intervals (i� − i|λ−(j+1) − i�|, i� − i|λ−j − i�|), j =
1, . . . , κ2 − 1, contain an odd number of eigenvalues of type II, counted with
type II multiplicity.
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5. Let κ2 > 0. Then the interval (i� − i|λ−1 − i�|, i�] contains no or an even
number of eigenvalues of type II, counted with type II multiplicity, if N(Â) ⊂
N(K̂), and an odd number of eigenvalues of type II, counted with type II
multiplicity, otherwise.

2.8 Notes

The Regge problem was considered in detail by T. Regge [238] in connection with
the description of nuclear interaction as presented in Section 2.1. The results in
Section 2.1 are taken from [186]. For further aspects of the theory related to
the Regge problem we refer the reader to [122], [115] [255], [256], [150], [142],
[243], [148] and [251]. In particular, statement 4 of Theorem 2.1.2 was obtained
in [251, Theorem 6]. In general, the radial component of the Schrödinger equation
has a correction term to the potential which is singular at 0. However, for zero
orbital momentum, also called S-wave by physicists, this additional potential is
zero. Therefore, the Schrödinger equation is a Sturm–Liouville equation with the
original potential.

Similar equations occur in mechanics of string vibrations. The simplest model
of string musical instrument leads to one-dimensional damping (viscous friction).
In [19] a model was proposed to explain the playing of ‘harmonics’ on stringed
instruments. This has a long history, see [59].

In Section 2.2 we consider strings with density from ρ ∈ L∞(0, l), where
0 < l < ∞ and ρ ≥ ε > 0. This class does not include beaded strings, also called
Stieltjes strings. These two types of strings may be regarded as extremal cases of
a wider class of strings which was considered by I.S. Kac and M.G. Krĕın in [127],
see also [125], [71]. They studied the equation

∂2u

∂M(s)∂s
− ∂2u

∂t2
= 0, (2.8.1)

which describes small transversal vibrations of a stretched inhomogeneous string.
Here t stands for the time, s for the longitudinal coordinate, u(s, t) is the transverse
displacement, M is a nonnegative nondecreasing function on [a, b] describing the
mass distribution. Recall that M is differentiable a. e. by Lebesgue’s theorem, see,
e. g., [108, (17.12)], and its derivative ρ = M ′ is called the density of the string.
Without loss of generality it is assumed that M(s+0) = M(s) for all s ∈ [a, b). If
M(s0 − 0) < M(s0), then there is a point mass M(s0)−M(s0 − 0) at s0 ∈ (a, b].
If M(a) > 0, then there is a point mass M(a) at s = a. The intervals on which
M is constant, if any, correspond to massless intervals, that is, intervals where the
string is a thread.

Substituting u(s, t) = y(λ, s)eiλt into (2.8.1) we obtain the following equation
for the amplitude function y(λ, s):

dy′

dM(s)
+ λ2y = 0. (2.8.2)
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The generalized differential operator d
dM(s) is the Radon–Nikodým derivative. In

the case when M(s) is an absolutely continuous function and M ′(s) > 0 almost
everywhere on [a, b], then this operator acts on absolutely continuous functions
which have absolutely continuous first-order derivatives and the action of the gen-
eralized differential operator is given by

dy′

dM(s)

a.e.
=

y′′

M ′(s)
. (2.8.3)

Here and in the sequel a. e. means almost everywhere. In the general case the
generalized differential operator is defined only on so-called prolonged functions
u[s] which are obtained from usual functions u(s), a < s < b, by attaching two
arbitrary numbers u′

−(a) and u′
+(b), which are called left derivative at s = a

and right derivative at s = b, respectively. Then u[s] = (u(s), u′−(a), u′
+(b)). The

domain of the generalized differential operator is the set DM of all complex-valued
functions u[s] of the form

u(s) = α+ βs−
∫ s

a

(s− p)g(p)dM(p), a < s < b, (2.8.4)

u′
−(0) = β, u′

+(b) = β −
∫ b

a

g(p)dM(p), (2.8.5)

where α and β are complex numbers, and g is a complex-valued function which is
summable on [a, b] with respect to the measure dM . For each such pair (u[s], g)
we have the equation

− du′

dM(s)
= g(s)

in view of (2.8.4).

In [168] it was noted that the Hamiltonian of a canonical system can be rep-
resented by “strings” whose mass distribution function is not necessarily nonde-
creasing. Therefore, in [168] generalized strings M are considered which may have
exceptional points x0 at which M(x0−) = ∞, M(x0+) = −∞ and M is square
integrable near x0 or M(x0−) and M(x0+) are finite but M(x0+)−M(x0−) < 0.

Recent results on damped strings can be found in [90], who use a Dirac op-
erator approach rather than separation of variables. The main results are trace
formulas and completeness of eigenvectors and associated vectors. Smooth string
vibrations with piecewise constant damping were considered in [141]. Related scat-
tering problems for damped strings and further examples of physical configurations
leading to such models can be found in [123, Section I.B, p. 1353]. Properties of
spectra of finite-dimensional quadratic operator pencils in connection with the
damped wave equation were studied in [81].

In quantum graph theory, see [28], [231], the Sturm–Liouville equation is
assumed to be defined on a graph domain with boundary conditions and matching
conditions at the vertices of a graph.
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In most cases, continuity and Kirchhoff conditions are imposed at interior
vertices especially in quantum mechanics. However, we have seen in Subsection
2.3.3, see (2.3.11), (2.3.12), that they can be more complicated. For more general
conditions see [231]. In this monograph Sturm type theorems on number of nodes
of eigenfunctions on graphs were established, see also [82], [21], [20], [205].

We have seen in Theorem 2.3.8 that the maximal multiplicity of an eigenvalue
of a problem on a star graph is p − 1, where p is the number of edges. More
generally, it was shown in [128] that an upper bound for the maximal multiplicity
of eigenvalues can be deduced from the shape of the graph.

Theorem 2.4.1 was proved in [169]. Spectral problems on lasso graphs were
considered in [88], [89], [77] with constant potential on the loop and identically
zero potential on the tail.

The famous Stieltjes memoir [254] was devoted to infinite continued fractions

c0

z +
c1

1 +
c2

z +
c3

1+
. . .

+
c2n−1

1 +
c2n

1 +
1

z+
.. .

(2.8.6)

where the cj are complex numbers and z is the complex variable. As far as we
know, Stieltjes did not associate any physical object with this continued fraction.
The first physical interpretation of finite continued fractions was given by W.
Cauer [49] in connection with the theory of synthesis of electrical circuits. He
gave a continued fraction representation for RC driving point impedances, see
also [102, p. 119]. Here the coefficients are inductances and capacities.

An interpretation of Stieltjes’ results in terms of problems in mechanics has
been given by M.G. Krĕın [151], [85]. These authors introduced the term Stieltjes
string (another name is Sturm system) and considered also the question of con-
vergence in case of infinite continued fractions corresponding to Stieltjes strings.
It should be mentioned that there exists a nice review paper [58] containing the
description of these problems and related experiments. The same equations as for
transverse vibrations of a Stieltjes string appear when one considers longitudinal
vibrations of point masses connected by springs [92], [181]. Vibrations of a star
graph of Stieltjes strings were considered in [87], [34] and [224].
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As shown in Section 2.6, spectral problems generated by Stieltjes string
can be considered as problems for Jacobi matrices. In case of trees of Stieltjes
strings the corresponding matrices are so-called indextree-patterned matrices tree-
patterned matrices, see also the comments to Chapter 8.

Theorem 2.7.2 was proved in [195]. Some other spectral problems generated
by fourth-order ordinary differential equation with dissipative terms can be found
in [197], [198], [199].

While for star graphs of strings which are damped at the interior vertex
the only point of intersection of the set of eigenvalues of type I and the set of
eigenvalues of type II is iρ, this intersection can have many points for beams
which are damped at an end.



Chapter 3

Operator Pencils with Essential
Spectrum

3.1 Monic polynomial operator pencils

In this section we will investigate the spectra of monic polynomial operator pencils

L(λ) = inλnI +

n−1∑
j=1

ijλjKj +A,

acting on a Hilbert space H with the domain D(L(λ)) =
n−1⋂
j=1

D(Kj)∩D(A), where

λ ∈ C is the spectral parameter and the operators Kj, A satisfy

Condition III. The operators Kj, j = 1, . . . , n and A are self-adjoint operators
on H with the following properties:

(i) Kj ≥ 0 and A ≥ −βI for some positive number β;

(ii) Kj = γjA+K
(0)
j , where the γj are nonnegative numbers, the operators K

(0)
j

are subordinate to A, i. e., D(A) ⊂
n−1⋂
j=1

D(K
(0)
j ) and the operators K

(0)
j ,

j = 1, . . . , n− 1, are bounded with respect to the operator (A+ β1I)
1
2 , where

β1 > β.

The following lemma shows that the subordination in Condition III can be
expressed in terms of an inequality.

Lemma 3.1.1. The subordination property in Condition III, part (ii), is satisfied

if and only if D(A) ⊂
n−1⋂
j=1

D(K
(0)
j ) and there exist positive numbers a and b such

that for all y ∈ D(A)

max
j=1,...,n−1

‖K(0)
j y‖2 ≤ a‖y‖2 + b(Ay, y). (3.1.1)
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Proof. Assume that the K
(0)
j are bounded with respect to (A+β1I)

1
2 . Then there

is a number c > 0 such that

max
j=1,...,n−1

‖K(0)
j y‖2 ≤ c‖(A+ β1I)

1
2 y‖2

= c((A+ β1I)y, y)

= cβ1‖y‖2 + c(Ay, y)

for all y ∈ D(A), which proves (3.1.1) with a = cβ1 and b = c.

Conversely, if (3.1.1) is satisfied, choose β1 > max
{

a
b , β
}
. Then a < bβ1 and

thus

max
j=1,...,n−1

‖K(0)
j y‖2 ≤ a‖y‖2 + b(Ay, y)

≤ bβ1‖y‖2 + b(Ay, y)

= b((A+ β1I)
1
2 y, (A+ β1I)

1
2 y)

for all y ∈ D(A). Thus K
(0)
j |D(A) is bounded from D((A+ β1I)

1
2 ) with the graph

norm of (A + β1I)
1
2 to H . Since D(A) = D(A + β1I) is a core for (A + β1I)

1
2 ,

see [137, Theorems VI.2.1 and VI.2.23], it follows that K
(0)
j |D(A) is bounded and

densely defined on D((A+ β1I)
1
2 ) with respect to the graph norm of (A+ β1I)

1
2 .

Therefore, K
(0)
j |D(A) has a bounded closure K

(1)
j from D((A + β1I)

1
2 ) to H with

D(K
(1)
j ) = D((A + β1I)

1
2 ). Since K

(0)
j is self-adjoint and therefore closed, the

graph of K
(1)
j is a subset of the graph of K

(0)
j . Hence D((A + β1I)

1
2 ) ⊂ D(K

(0)
j )

and K
(0)
j (A + β1I)

− 1
2 = K

(1)
j (A + β1I)

− 1
2 is bounded, i. e., K

(0)
j is subordinate

to A. �
Lemma 3.1.2.

1. For each b1 > 0 there exist a1 > 0 such that

max
j=1,...,n−1

‖K(0)
j y‖ ≤ a1‖y‖+ b1‖Ay‖ (3.1.2)

for each y ∈ D(A).

2. There exist a2 > 0 and b2 > 0 such that

max
j∈1,...,n−1

‖Kjy‖ ≤ a2‖y‖+ b2‖Ay‖ (3.1.3)

for each y ∈ D(A).

3. There exist a3 > 0 and b3 > 0 such that

max
j∈1,...,n−1

|(K(0)
j y, y)| ≤ a3‖y‖2 + b3(Ay, y) (3.1.4)

for each y ∈ D(A).
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4. There exist a4 > 0 and b4 > 0 such that

max
j∈1,...,n−1

(Kjy, y) ≤ a4‖y‖2 + b4(Ay, y) (3.1.5)

for each y ∈ D(A).

Proof. By Condition III and Lemma 3.1.1, the operatorsK
(0)
j satisfy (3.1.1). Hence

it suffices to show that (3.1.1) implies the corresponding inequality in each case.

1. Let b1 > 0 and choose a1 > 0 such that b ≤ 2a1b1 and a ≤ a21, i. e.,

a1 ≥ max
{

b
2b1

, a
1
2

}
. Then

max
j=1,...,n−1

‖K(0)
j y‖2 ≤ a‖y‖2 + b(Ay, y)

≤ a21‖y‖2 + 2a1b1‖Ay‖ ‖y‖
≤ (a1‖y‖+ b1‖Ay‖)2 .

Taking square roots proves (3.1.2).

Part 2 follows from part 1 with a2 = a1 and b2 = b1 + max
j=1,...,n

γj .

3. Since (Ay, y) ≥ −β(y, y) = −β‖y‖2 it follows that

‖y‖2 = 2‖y‖2 − ‖y‖2 = 2‖y‖2 + 1

β
(−β‖y‖2)

≤ 2‖y‖2 + 1

β
(Ay, y)

=
1

bβ

(
2bβ‖y‖2 + b(Ay, y)

)
.

Putting a′3 = max{a, 2bβ} it follows that
max

j=1,...,n−1
‖K(0)

j y‖2‖y‖2 ≤ (a‖y‖2 + b(Ay, y)
) ‖y‖2

≤ (a′3‖y‖2 + b(Ay, y)
) 1

bβ

(
a′3‖y‖2 + b(Ay, y)

)
=
(
a3‖y‖2 + b3(Ay, y)

)2
,

where a3 = a′3(bβ)
−1/2 and b3 = b1/2β−1/2. This proves

max
j=1,...,n−1

|(K(0)
j y, y)| ≤ max

j=1,...,n−1
‖K(0)

j y‖‖y‖ ≤ a3‖y‖2 + b3(Ay, y)

since the right-hand side is clearly nonnegative by the above estimates.

4. For all k = 1, . . . , n and y ∈ D(A), the estimate (3.1.4) gives

(Kky, y) = (K
(0)
k y, y) + γk(Ay, y) ≤ a3‖y‖2 + b3(Ay, y) + γk[(Ay, y) + β‖y‖2]

≤ a3‖y‖2 + b3(Ay, y) + max
j=1,...,n−1

γj [(Ay, y) + β‖y‖2].

This proves (3.1.5) with a4 = a3 + β max
j=1,...,n−1

γj and b4 = b3 + max
j=1,...,n−1

γj . �
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It is easy to see that the statement of Lemma 1.1.11, part 3, extends to this
case:

Lemma 3.1.3. For all λ ∈ C, L(λ)∗ = L(−λ).
Theorem 3.1.4. If the domain Ω is normal for the pencil L, then there exists
a number δ > 0 depending on A and Kj with the following properties. If Sj,
j = 1, . . . , n − 1 are closed operators on H with D(A) ⊂ D(Sj) and if for all
y ∈ D(A)

n−1∑
j=1

‖(Sj −Kj)y‖ ≤ δ(‖Ay‖+ ‖y‖), (3.1.6)

then Ω is normal for the pencil L given by

L(λ) = inλnI +

n−1∑
j=1

ijλjSj +A,

and the total algebraic multiplicities of the spectra of L and L in Ω coincide.

Proof. Let λ0 ∈ Ω. Since L(λ0) is a Fredholm operator by assumption, it is a
closed operator with domain D(A), and hence the graph norms of L(λ0) and A
are equivalent by the closed graph theorem. Therefore, there is c > 0 such that

‖Ay‖ ≤ c(‖L(λ0)y‖+ ‖y‖)

for all y ∈ D(A). For each pair of positive numbers a(λ0) and b(λ0) there is
δ = δ(λ0) such that for all y ∈ D(A), λ in a sufficiently small neighbourhood of
λ0 and Sj satisfying (3.1.6) we estimate

‖(L(λ)− L(λ0))y‖ ≤ ‖(L(λ) − L(λ))y‖+ ‖(L(λ)− L(λ0))y‖

≤
n−1∑
j=1

|λj |‖(Sj −Kj)y‖+ |λn − λn
0 |‖y‖+

n−1∑
j=1

|λj − λj
0|‖Kjy‖

≤ a(λ0)‖y‖+ b(λ0)‖L(λ0)y‖,

where we have also used (3.1.3). Observe that the reduced minimum modulus
γ(L(λ0)), defined in [137, p. 231], is positive since L(λ0) is a Fredholm operator,
see [137, Theorem IV.5.2]. Choosing δ(λ0) and the neighbourhood of λ0 sufficiently
small, we may assume that the positive numbers a(λ0) and b(λ0) are so small that
the inequality a(λ0) < (1− b(λ0))γ(L(λ0)), i. e., [137, (IV.5.20)], is satisfied. Then
the index stability theorem for Fredholm operators, see [137, Theorem IV.5.22]
shows that L(λ) is a Fredholm operator for all λ in that neighbourhood of λ0

and for all Sj satisfying (3.1.6) with δ = δ(λ0). Also, since L(λ0) is invertible for
λ0 ∈ ∂Ω, we conclude again from [137, Theorem IV.5.22] that L(λ) is invertible
for all λ in the corresponding neighbourhood of λ0 and for all Sj satisfying (3.1.6)
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with δ = δ(λ0). A compactness argument shows that L(λ) is a Fredholm operator
for all λ ∈ Ω and invertible for all λ ∈ ∂Ω, with Sj satisfying (3.1.6) for a suitable
positive δ (the minimum of all δ(λ0) for the λ0 used for the finite cover of Ω).
Since L(λ) is invertible for λ ∈ ∂Ω, it follows that Ω is a normal domain for L if
the Sj satisfy (3.1.6).

Finally, introducing

L(λ, t) = inλnI +

n−1∑
j=1

ijλj(Kj + t(Sj −Kj)) + A

we have L(λ) = L(λ, 1) and L(λ, 0) = L(λ). Rouché’s theorem for finitely mero-
morphic operator functions, Lemma 1.1.9, also applies to L(λ, t) for all t ∈ [0, 1],
and a compactness argument shows that m(Ω) is independent of t, which proves
that the total algebraic multiplicities of the spectra of L and L in Ω coincide. �

For λ, η ∈ C we define

L(λ, η) = inλnI +

n−1∑
j=1

ijλjηKj +A,

ξ(λ, η) = η

n−1∑
j=1

γji
jλj + 1,

Ξ(η) = {λ ∈ C : ξ(λ, η) = 0}.

Since ξ(·, η) is a polynomial of degree less or equal n− 1, Ξ(η) consists of at most
n− 1 complex numbers.

Lemma 3.1.5. Let λ0, η0 ∈ C such that λ0 �∈ Ξ(η0) and assume that the operator
L(λ0, η0) has the following properties:

(i) there exists a number ε > 0 such that

‖L(λ0, η0)y‖ ≥ ε‖y‖ (3.1.7)

for all y ∈ D(A);

(ii) codimR(L(λ0, η0)) = q, 0 ≤ q ≤ ∞.

Then for every ε′ ∈ (0, ε) there is some δ > 0 such that the operators L(λ, η) have
the properties (i) and (ii) in the neighbourhood {(λ, η) ∈ C2 : |λ−λ0|+|η−η0| ≤ δ}
of (λ0, η0) with ε replaced by ε′ in (3.1.7) but with the same q in (ii).

Proof. We can write

L(λ, η) = inλnI +

n−1∑
j=1

ijλjηK
(0)
j + ξ(λ, η)A.
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Because of ξ(λ0, η0) �= 0, the operator

A0 = inλn
0 I + ξ(λ0, η0)A

is closed with D(A0) = D(A), and hence the graph norms of A and A0 on D(A)
are equivalent by the closed graph theorem. By Lemma 3.1.2, part 1, there exists
a1 > 0 such that

‖(L(λ0, η0)− A0)y‖ ≤ a1‖y‖+ 1

2
‖A0y‖

for all y ∈ D(A). Then [137, Theorem IV.1.1] implies that L(λ0, η0) is closed.
It follows from inequality (3.1.7) that the image R(L(λ0, η0)) is closed and that
L(λ0, η0) is injective, and hence L(λ0, η0) is semi-Fredholm, see [137, p. 230]. By
the closed graph theorem, the closedness of L(λ0, η0) gives that the graph norms

of A and L(λ0, η0) are equivalent on D(A). Hence, since all the operators K
(0)
j are

subordinate to A, we estimate for y ∈ D(A) with the aid of (3.1.2)

‖(L(λ,η)− L(λ0, η0))y‖

=

∥∥∥∥∥∥in(λn − λn
0 )y +

n−1∑
j=1

ij(λjη − λj
0η0)K

(0)
j y + (ξ(λ, η) − ξ(λ0, η0))Ay

∥∥∥∥∥∥
≤ |λn − λn

0 |‖y‖+
n−1∑
j=1

|λjη − λj
0η0|‖K(0)

j y‖+ |ξ(λ, η) − ξ(λ0, η0)|‖Ay‖

≤ a0(λ, η)‖y‖ + b0(λ, η)‖L(λ0, η0)y‖ (3.1.8)

with non-negative functions a0 and b0 such that a0(λ, η) → 0 and b0(λ, η) → 0
as (λ, η) → (λ0, η0). Note that since L(λ0, η0) is injective, the reduced minimum
modulus γ(L(λ0, η0)) equals the inverse of the norm of the inverse operator, so
that ε ≤ γ(L(λ0, η0)). In other words, γ(L(λ0, η0)) is the supremum of all ε for
which (3.1.7) holds. For any ε′ ∈ (0, ε) there exists a number δ > 0 such that

a0(λ, η) + ε′ ≤ (1− b0(λ, η))ε (3.1.9)

for |λ − λ0| + |η − η0| ≤ δ, and hence, for these λ and η, the operator L(λ, η) is
closed and semi-Fredholm by [137, Theorem IV.5.22], with

dimN(L(λ, η)) ≤ dimN(L(λ0, η0)),

codimR(L(λ, η)) ≤ codimR(L(λ0, η0)),

indL(λ, η) = indL(λ0, η0).

Since the dimension of the nullspace of L(λ0, η0) is equal to 0, it follows that the
dimension of the nullspace of L(λ, η) is also equal to 0 for all λ and η satisfying the
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inequality |λ − λ0| + |η − η0| ≤ δ. Using that the indices of L(λ, η) and L(λ0, η0)
are equal, we conclude that

codimR(L(λ, η)) = codimR(L(λ0, η0)) = q

for all λ and η satisfying the inequality |λ − λ0| + |η − η0| ≤ δ. Finally, for these
(λ, η) and y ∈ D(A), the inequalities (3.1.7), (3.1.8) and (3.1.9) lead to

‖L(λ, η)y‖ ≥ ‖L(λ0, η0)y‖ − ‖(L(λ, η)− L(λ0, η0))y‖
≥ (1− b0(λ, η))‖L(λ0, η0)y‖ − a0(λ, η)‖y‖
≥ (1− b0(λ, η))ε‖y‖ − a0(λ, η)‖y‖
≥ ε′‖y‖.

This completes the proof of the lemma. �

Corollary 3.1.6. For all η ∈ C, ∂σ(L(·, η)) \ Ξ(η) ⊂ σapp(L(·, η)).
Proof. Let λ ∈ ∂σ(L(·, η)) \ Ξ(η).

If dimN(L(λ, η)) > 0, then choose y ∈ N(L(λ, η)) with ‖y‖ = 1 and put
yk = y. Then L(λ, η)yk = 0, so that λ ∈ σapp(L(·, η)) follows.

If dimN(L(λ, η)) = 0 but there is no ε > 0 such that ‖L(λ, η)y‖ ≥ ε‖y‖ for
all y ∈ D(A), then we can choose yk ∈ D(A) with ‖yk‖ = 1 and ‖L(λ, η)yk‖ ≤ 1

k .
Hence λ ∈ σapp(L(·, η)).

But if dimN(L(λ, η)) = 0 and there is ε > 0 such that ‖L(λ, η)y‖ ≥ ε‖y‖
for all y ∈ D(A), then, by Lemma 3.1.5, either λ′ ∈ ρ(L(·, η)) for all λ′ in a
neighbourhood of λ or λ′ ∈ σ(L(·, η)) for all λ′ in a neighbourhood of λ. Both
properties contradict the assumption that λ ∈ ∂σ(L(·, η)). �

Let us introduce the notations

Wn =
{
λ ∈ C \ {0} : 0 <

∣∣∣argλ+
π

2

∣∣∣ < π

n

}
,

W 0
n =

{
λ ∈ C \ {0} : 0 ≤

∣∣∣argλ+
π

2

∣∣∣ < π

n

}
.

Lemma 3.1.7. Wn ∩ σapp(L(·, η)) = ∅ for all η ∈ [0, 1].

Proof. Let λ0 ∈ Wn ∩ σapp((L(·, η0)), where η ∈ [0, 1] and −π
2 < argλ0 < −π

2 + π
n

and let {yk}∞k=1 be a corresponding approximate sequence. Then

lim
k→∞

(L(λ0, η0)yk, yk) = 0

and consequently

Im((iλ0)
n)+η0

n−1∑
j=1

(Kjyk, yk) Im((iλ0)
j)=Im(L(λ0, η0)yk, yk) =

k→∞
o(1). (3.1.10)
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Taking into account that η0 ≥ 0 and that for all j = 1, . . . , n the inequalities
Im(iλ0)

j > 0 and (Kjyk, yk) ≥ 0 are valid, we obtain that the left-hand side of
(3.1.10) is not less than Im(iλ0)

n > 0, which means that (3.1.10) is false. The
proof for the case −π

2 − π
n < argλ0 < −π

2 is analogous. �

Lemma 3.1.8. (−i∞,−iβ1/n) ∩ σapp(L(·, η)) = ∅ for all η ∈ [0, 1].

Proof. Let λ0 ∈ (−i∞,−iβ1/n) and η0 ∈ [0, 1]. Then for all y ∈ D(A) the inequal-

ities (Ay, y) ≥ −β‖y‖2 and η0
n−1∑
j=1

(iλ0)
j(Kjy, y) ≥ 0 hold. This leads to

‖L(λ0, η)y‖‖y‖ ≥ (L(λ0, η)y, y) ≥ ((iλ0)
n − β)‖y‖2

for all y ∈ D(A) and particularly to

‖L(λ0, η)y‖ ≥ ((iλ0)
n − β) > 0

for all y ∈ D(A) with ‖y‖ = 1. But this shows that L(·, η) cannot have an approx-
imate sequence at λ0, i. e., λ0 �∈ σapp(L(·, η)). �

Lemma 3.1.9. σ(L(·, η)) ∩W 0
n ⊂ [−iβ1/n, 0) for all η ∈ [0, 1].

Proof. By Lemmas 3.1.7 and 3.1.8, (W 0
n \ [−iβ1/n, 0)) ∩ σapp(L(·, η))) = ∅ for all

η ∈ [0, 1]. Clearly, for (λ, η) ∈ W 0
n × [0, 1] we have ξ(λ, η) ≥ 1 or Im ξ(λ, η) > 0 or

Im ξ(λ, η) < 0. Therefore L(λ, η) satisfies the assumption of Lemma 3.1.5 for all
(λ, η) ∈ (W 0

n \ [−iβ1/n, 0))× [0, 1]. In view of Lemma 3.1.5, the sets

S0 = {(λ, η) ∈ (W 0
n \ [−iβ1/n, 0))× [0, 1] : codimR(L(λ0, η0)) = 0}

and

S1 = {(λ, η) ∈ (W 0
n \ [−iβ1/n, 0))× [0, 1] : codimR(L(λ0, η0)) �= 0}

form a disjoint relatively open cover of (W 0
n \ [−iβ1/n, 0))× [0, 1]. Since A is self-

adjoint, the spectrum of the operator pencil inλnI + A lies on the rays given
by argλ = π

nj − π
2 , j = 0, . . . , 2n − 1, so that Wn × {0} ⊂ S0. Hence S0 is

nonempty, and since (W 0
n \ [−iβ1/n, 0)) × [0, 1] is connected, it follows that S0 =

(W 0
n \ [−iβ1/n, 0)) × [0, 1]. But L(λ, η) is invertible for each (λ, η) ∈ S0, and the

proof of the lemma is complete. �

Taking Corollary 3.1.6 and Lemma 3.1.9 into account and observing that
λ �∈ Ξ(η) for λ ∈W 0

n and η ∈ [0, 1] we obtain

Corollary 3.1.10. For η ∈ [0, 1], the spectrum of the pencil L(·, η) located on the
interval [−iβ1/n, 0) is approximate.

Lemma 3.1.11. Let λ0 ∈ [−iβ1/n, 0) ∩ σ0(L(·, η0)) and let η0 ∈ [0, 1]. Then the
eigenvalue λ0 does not possess associated vectors.
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Proof. Assume there is a chain of an eigenvector y0 and an associated vector y1
corresponding to λ0. The equation for the associated vector y1 is

L(λ0, η0)y1 +
∂

∂λ
L(λ0, η0)y0 = 0.

This implies

(L(λ0, η0)y1, y0) +

(
∂

∂λ
L(λ0, η0)y0, y0

)
= 0.

Since ξ(λ0, η0) �= 0 and η
n−1∑
j=1

(iλ0)
jK

(0)
j is subordinate to (iλ0)

nI + ξ(λ0, η0)A,

it follows from Lemma 3.1.2, part 1, and [137, Theorem V.4.3] that L(λ0, η0) is
self-adjoint. Hence we have

(L(λ0, η0)y1, y0) = (y1, L(λ0, η0)y0) = 0,

and (
∂

∂λ
L(λ0, η0)y0, y0

)
= 0

follows. Taking the imaginary part of the latter equation we obtain

n|λ0|n−1‖y0‖2 +
n−1∑
j=1

j|λ0|j−1(Kjy0, y0) = 0,

which is impossible due to |λ0| > 0 and (Kjy0, y0) ≥ 0. �
Lemma 3.1.12. Assume that σ(A) ∩ [−β, 0) ⊂ σ0(A). Then

[−iβ1/n, 0) ∩ σ(L(·, η)) ⊂ σ0(L(·, η))
for every η ∈ [0, 1].

Proof. Let λ ∈ [−iβ1/n, 0) and η ∈ [0, 1]. Then L(λ, η) is symmetric with L(λ, η) ≥
(iλ)nI + A. From ξ(λ, η) �= 0, Lemma 3.1.2, part 1, and [137, Theorem V.4.3] it
follows that L(λ, η) is self-adjoint. Choose ε ∈ (0, (iλ)n) and let P be the projection
associated with the self-adjoint operator L(λ, η) and its spectrum below ε. For all
y ∈ R(P ) we have

(((iλ)nI − εI +A)y, y) ≤ ((L(λ, η)− εI)y, y) ≤ 0

so that R(P ) is a nonpositive subspace of ((iλ)n−ε)I+A. From (iλ)n−ε > 0 and
the assumption on A it follows that every nonnegative subspace of the operator
((iλ)n−ε)I+Amust be finite dimensional. Hence R(P ) must be finite dimensional,
and therefore the spectrum of L(λ, η) below ε consists of finitely many eigenvalues
of finite multiplicity. In particular, since ε > 0, L(λ, η) is a Fredholm operator.
In view of Lemma 3.1.9, L(λ, η) is a Fredholm operator for all λ ∈ W 0

n . Since
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L(·, η) is analytical on W 0
n with respect to the graph norm of A on D(A) and since

Wn ⊂ ρ(L(·, η)) by Lemma 3.1.9, it follows that σ(L(·, η)) ∩W 0
n is a discrete set,

see, e. g., [189, Theorem 1.3.1]. Finally, by Lemma 3.1.11, the algebraic multiplicity
of each eigenvalue equals its geometric multiplicity and is therefore finite. �

Evidently, we obtain from Lemmas 3.1.9 and 3.1.12

Corollary 3.1.13. If σ(A)∩ [−β, 0) ⊂ σ0(A), then σ(L(·, η))∩W 0
n ⊂ σ0(L(·, η)) for

every η ∈ [0, 1].

Theorem 3.1.14. Assume that σ(A) ∩ [−β, 0) ⊂ σ0(A). Then the total algebraic
multiplicity of the spectrum of L located on (−i∞, 0) coincides with the total alge-
braic (geometric) multiplicity of the negative spectrum of A.

Proof. Let us denote by N(η) the total algebraic multiplicity of the spectrum of
L(·, η) located on (−i∞, 0). Since (iλ)nI + A ≤ L(λ, η) for λ ∈ (−i∞, 0), the
minimax principle gives

N(η) ≤ N(0), η ∈ [0, 1], (3.1.11)

see the proof of Lemma 3.1.12. Consider the auxiliary operator pencil

L0(λ, ζ) = (iλ)nI +

n−1∑
j=1

(iλ)j [(1− ζ)(a4I + b4A) + ζKj] +A,

where λ ∈ C, ζ ∈ [0, 1], and a4 > 0 and b4 > 0 are the constants from Lemma
3.1.2, part 4, and where we may assume that a4 ≥ βb4. Then L0(·, ζ) is an operator

pencil satisfying Condition III with K
(0)
j replaced by ζK

(0)
j + (1 − ζ)a4I and γj

replaced by ζγj +(1− ζ)b4. Applying Lemma 3.1.9 to the pencil L0(·, ζ) we obtain
σ(L(·, ζ)) ∩W 0

n ⊂ [−iβ1/n, 0) for all ζ ∈ [0, 1]. Clearly, Theorem 9.2.4 leads to
a representation of the eigenvalues and eigenvectors of L0(·, ζ) on (−i∞, 0) as in
Theorem 1.2.7, and Remark 1.2.8 also applies here. Then we have for ζ0 ∈ [0, 1]
and an eigenvalue λ0 ∈ [−iβ1/n, 0) of L0(·, ζ0) the expansions

λι(ζ) = λ0 +
∞∑
k=1

aιk(ζ − ζ0)
k, ι = 1, . . . , l,

y(q)ι (ζ) = b
(q)
ι0 +

∞∑
k=1

b
(q)
ιk (ζ − zη0)

k, q = 1, . . . , rι,

of eigenvalues and eigenvectors near λ0 of L0(·, ζ) for ζ near ζ0. Differentiating

L0(λι(ζ), ζ)y
(q)
ι (ζ) = 0 with respect to ζ and taking the inner product of the

resulting equation with yι(ζ), we obtain for ζ = ζ0 and with τ0 = iλ0 > 0 that
iaι1 is a quotient of real numbers, where the denominator

nτn−1
0 ‖b(q)ι0 ‖2 +

n−1∑
j=1

jτ j−1
0

(
(1− ζ0)(a4‖b(q)ι0 ‖2 + b4(Ab

(q)
ι0 , b

(q)
ι0 )) + ζ0(Kjb

(q)
ι0 , b

(q)
ι0 )
)
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is positive because of a4 ≥ βb4, whereas the numerator

n−1∑
j=1

τ j0

(
a4‖b(q)ι0 ‖2 + b4(Ab

(q)
ι0 , b

(q)
ι0 )− (Kjb

(q)
ι0 , b

(q)
ι0 )
)

is nonnegative by Lemma 3.1.2, part 4. It follows that iaι1 ≥ 0 and consequently
N0(ζ) ≥ N0(0), where N0(ζ) is the total algebraic multiplicity of the spectrum of
L0(·, ζ) located on (−i∞, 0). Therefore

N0(1) ≥ N0(0). (3.1.12)

It is easy to check that the function f given by

f(t) =
tn + a4p(t)

b4p(t) + 1
, where p(t) =

n−1∑
j=1

tj ,

maps (0,∞) onto (0,∞) and that f ′(t) > 0 for all t > 0. Hence the parameter
transformation τ = −f(iλ) maps the semiaxis (−i∞, 0) in the λ-plane bijectively
onto the semiaxis (−∞, 0) in the τ -plane. Since

L0(λ, 0) = ((iλ)n + a4p(iλ)) I + (b4p(iλ) + 1)A,

it follows that there is a ono-to-one correspondence between the eigenvalues, with
multiplicity, of L0(·, 0) on (−i∞, 0) and those of A on (−∞, 0). Consequently,
taking into account the absence of associated vectors, see Lemma 3.1.11, we obtain
N0(0) = NA, where NA is the total multiplicity of the negative spectrum of A.
With a similar reasoning for τ = −(iλ)n we obtain N(0) = NA.

The evident identity L(λ, 1) = L0(λ, 1) implies N(1) = N0(1). Using (3.1.11)
and (3.1.12) we obtain N(0) ≥ N(1) = N0(1) ≥ N0(0) = NA = N(0). This means
that all numbers are equal, and in particular N(1) = NA. �

3.2 Quadratic pencils with indefinite linear term

In this section we consider the quadratic operator pencil

L(λ, η) = λ2I − iλK −A,

where A and K are self-adjoint on H , A ≥ 0 and K ≥ −β2I for some positive
number β2, and K is relatively compact with respect to A. Observe that σess(A) ⊂
σ(A) ⊂ [0,∞).

Definition 3.2.1. Let p be a positive integer and assume that H0 is a closed sub-
space ofH . The operatorK is said to have p negative squares onH0 ifH0 ⊂ D(K),
if dimV ≤ p for each subspace V ⊂ H0 for which K|V < 0, and there is at least
one such subspace V with dim V = p.
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Theorem 3.2.2. Let p be a positive integer and assume that K has p negative
squares on N(A). Then for each ε > 0 there exists δ > 0 such that L(·, η) has at
least p normal eigenvalues, counted with multiplicity, on (−iε, 0) for all η ∈ (0, δ).

Proof. For z ∈ C and τ, η ∈ [0,∞) define

L(z, τ, η) = zI − τηK −A.

Since K is A-compact, the essential spectrum of L(·, τ, η) does not depend on η
and τ , see [137, Theorem IV.5.22]. In particular,

σess(L(·, τ, η)) = σess(L(·, 0, 0)) = σess(A) ⊂ [0,∞).

By assumption, there is a p-dimensional subspace V of N(A) such that K|V < 0.

For k = 1, . . . , p consider

zk = min
M⊂D(A),dimM=k

max
0�=y∈M

((τηK +A)y, y)

||y||2

and

αk = min
M⊂V,dimM=k

max
0�=y∈M

(Ky, y)

||y||2 .

For τ, η ∈ (0,∞) it follows from K|V < 0 and A ≥ 0 that

zk ≤ τηαk < 0

and that

zk ≥ τη min
0�=y∈D(A)

(Ky, y)

||y||2 ≥ −τηβ2.

Since zk < 0 is below the essential spectrum of L(·, τ, η), the minimax principle
says that, for η > 0 fixed, the number zk is a (negative) eigenvalue of L(·, τ, η).
This eigenvalue is a continuous function of τ ∈ (0,∞) by Theorem 1.2.7. Its graph
in the (τ, z)-plane is located in the angular region{

(τ, z) ∈ R
2 : τ > 0, −ηβ2 ≤ z

τ
≤ ηαk

}
.

This curve intersects the parabola z = −τ2, and for all intersection points,

−ηαk ≤ τ ≤ ηβ2. (3.2.1)

Choose such an intersection point (τk, zk). Then λk = −iτk will be an eigenvalue
of the pencil L(·, η) located on the negative imaginary semiaxis. Notice that if zk
occurs with multiplicity larger than 1, then we may choose the same τk for these
zk, and every eigenvector of L(·, τk, η) at zk is also an eigenvector of L(·, η) at
λk. This shows that L(·, η) has at least p eigenvalues on the negative imaginary
semiaxis, counted with multiplicity.
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Now let ε > 0 and set δ = εβ−1
2 . Then the right-hand side of the estimates

(3.2.1) shows for η ∈ (0, δ) that

|λk| = τk ≤ ηβ2 < δβ2 = ε

for all k = 1, . . . , p. �

3.3 Notes

Theorem 3.1.14 was obtained in [211]. Self-adjoint quadratic operator pencils occur
in problems of plate and shell vibrations [149]. Further applications of polynomial
operator pencils can be found in [193], [204].

The effect of inner damping is well known in mechanics and leads to an
additional term in the equation of small motions. For transverse vibrations of a
rod, (2.7.1) becomes

γ
∂5u

∂t∂x4
+

∂4u

∂x4
− ∂

∂x
g(x)

∂u

∂x
+

∂2u

∂t2
= 0 (3.3.1)

where γ > 0 is the coefficient of inner damping, see [31, Section 3.6]. For pipes
conveying fluid, the equation of small lateral motions was obtained in [206, (12)].
This equation is similar to (3.3.1), but has some additional lower-order terms.

The spectral problem corresponding to (3.3.1) is

(1 + iγλ)y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x),

y(λ, 0) = 0,

y′′(λ, 0) = 0,

y(λ, a) = 0,

y′′(λ, a) + iαλy′(λ, a) = 0,

where α > 0. We cannot apply the theory of Chapter 1 to this problem. But
setting n = 2, Lemma 3.1.9 and Theorem 3.1.14 give that the spectrum of this
problem in the open lower half-plane lies on the negative imaginary semiaxis and
its total algebraic multiplicity does not depend on γ and on α.

A related problem describing vibrations of a rotating beam with inner damp-
ing leading to a non-self-adjoint operator pencil was considered in [6].

Lemma 3.1.9 is a generalization of [155, statement 2.40]. We recall that in
[155], M.G. Krĕın and H. Langer consider the pencil λ2I + λB + C, where B is
self-adjoint and bounded and C > 0 is compact. Replacing λ with iλ, this pencil
becomes

(iλ)2I + iλB + C,

which satisfies Condition III since the boundedness of the operators involved im-
plies the subordination property. Hence Theorem 3.1.14 implies that the spectrum



82 Chapter 3. Operator Pencils with Essential Spectrum

of the pencil λ2I + λB + C lies in the closed left half-plane if B ≥ 0, as stated in
[155, statement 2.40].

Theorem 3.2.2 was proved in [147], where it was used to obtain a sufficient
condition of instability of liquid convective motions in case of heating.

In the proof of Theorem 3.2.2 we have applied the minimax principle to
a quadratic operator pencil. The minimax principle for more general operator
functions was investigated in [74], [75], [167]. This method is the same as for finite-
dimensional spaces or for compact operators, see, e. g., [137, p. 60] or [70, p. 908].



Chapter 4

Operator Pencils with
a Gyroscopic Term

4.1 Quadratic operator pencils involving
a gyroscopic term

In this section we will investigate the spectra of monic quadratic operator pencils
which include a term corresponding to gyroscopic forces. We also admit presence
of essential spectrum. Our operator pencil is

L(λ) = λ2I − iλK − λB −A,

acting in a Hilbert space H with domain D(L(λ)) = D(K)∩D(B)∩D(A), where
the operators K, B, A satisfy the following conditions.

Condition IV. The operators K, B and A are self-adjoint operators on H with
the following properties:

(i) K ≥ κI, κ > 0, A ≥ −βI for some positive number β, and (−γ, 0) ⊂ ρ(A)
for some γ ∈ (0, β];

(ii) the operators B and K are subordinate to A, i. e., D(A) ⊂ D(B)∩D(K) and

the operators B and K are bounded with respect to the operator (A+ β1I)
1
2 ,

where β1 > β.

We note that Condition IV, part (ii), implies D(L(λ)) = D(A).

Proposition 4.1.1.

1. Assume that part (i) of Condition IV holds. Then part (ii) of Condition IV is
satisfied if and only if D(A) ⊂ D(B)∩D(K) and there exist positive numbers
a and b such that the inequality

max{‖By‖2, ‖Ky‖2} ≤ a‖y‖2 + b(Ay, y) (4.1.1)

holds for each y ∈ D(A).
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2. If Condition IV is satisfied, then

(i) for each b1 > 0 there exist a1 > 0 such that

max{‖By‖, ‖Ky‖} ≤ a1‖y‖+ b1‖Ay‖ (4.1.2)

for each y ∈ D(A),

(ii) there exist a2 > 0 and b2 > 0 such that

max{‖By‖2, ‖Ky‖2} ≤ a2‖y‖2 + b2‖Ay‖2 (4.1.3)

for each y ∈ D(A),

(iii) there exist a3 > 0 and b3 > 0 such that

max{|(By, y)|, (Ky, y)} ≤ a3||y||2 + b3(Ay, y). (4.1.4)

Proof. The statements 1 and 2, parts (i) and (iii), are special cases of Lemmas
3.1.1 and 3.1.2 if we observe that the property Kj ≥ 0 of Condition III is not used
in the proof of Lemma 3.1.2. Hence we only have to prove 2, part (ii). From (4.1.1)
we immediately obtain

max{‖By‖2, ‖Ky‖2} ≤ a‖y‖2 + b‖Ay‖ ‖y‖
≤ a‖y‖2 + b

2

(‖y‖2 + ‖Ay‖2) ,
which proves (4.1.3) with a2 = a+ b

2 and b2 = b
2 . �

In the same way as Theorem 3.1.4 one can prove

Theorem 4.1.2. If the domain Ω is normal for the pencil L, then there exists a
number δ > 0 depending on A, B and K with the following properties. If B1 and
K1 are closed operators in H which are subordinate to A and if for all y ∈ D(A)

‖(B1 −B)y‖+ ‖(K1 −K)y‖ ≤ δ(‖Ay‖+ ‖y‖), (4.1.5)

then Ω is normal for the pencil

L(λ) = λ2I − iλK1 − λB1 −A,

and the total algebraic multiplicities of the spectra of L and L in Ω coincide.

Let us consider the operator pencil dependent on the parameter η ∈ [0, 1]:

L(λ, η) = λ2I − iλK − ηλB −A.
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Similar to Lemma 3.1.5 we have

Lemma 4.1.3. Let λ0, η0 ∈ C and suppose that the operator L(λ0, η0) has the
following properties:

(i) there exists a number ε > 0 such that

‖L(λ0, η0)y‖ ≥ ε‖y‖ (4.1.6)

for all y ∈ D(A);

(ii) codimR(L(λ0, η0)) = q, 0 ≤ q ≤ ∞.

Then for every ε′ ∈ (0, ε) there is some δ > 0 such that the operators L(λ, η) have
these properties in the neighbourhood {(λ, η) ∈ C2 : |λ − λ0| + |η − η0| ≤ δ} of
(λ0, η0) with ε replaced by ε′ in (4.1.6) but with the same q in (ii).

Similar to Corollary 3.1.6 we have

Corollary 4.1.4. For all η ∈ C, ∂σ(L(·, η)) ⊂ σapp(L(·, η)).
Lemma 4.1.5. For η ∈ [0, 1], the part of the spectrum of L(·, η) in the open lower
half-plane is located in the set {λ ∈ C : 0 > Imλ ≥ −β1/2, |Reλ| ≤ β3/4κ−1/2}.
Proof. Let λ0 ∈ σapp(L(·, η0)), where η0 ∈ [0, 1] and Imλ0 < 0. Choose an ap-
proximate sequence {yj} of vectors yj ∈ D(A) such that ‖yj‖ = 1 and

λ2
0 − iλ0(Kyj, yj)− η0λ0(Byj , yj)− (Ayj , yj) = ξj , (4.1.7)

where lim
j→∞

ξj = 0. To shorten the notation we introduce X = Reλ0, Y = Imλ0,

kj = (Kyj, yj), bj = (Byj , yj), aj = (Ayj , yj). Taking the imaginary and the real
parts of (4.1.7) we obtain

2XY −Xkj − Y η0bj = γj , (4.1.8)

X2 − Y 2 + Y kj −Xη0bj − aj = αj (4.1.9)

with lim
j→∞

αj = 0 and lim
j→∞

γj = 0. Solving for X in (4.1.8) we obtain

X =
Y η0bj + γj
2Y − kj

and thus

X − η0bj =
Y η0bj + γj − 2Y η0bj + kjη0bj

2Y − kj

=
(kj − Y )η0bj + γj

2Y − kj
.

Since (4.1.9) can be written as

X(X − η0bj)− Y (Y − kj)− aj = αj ,
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substituting X and X − η0bj into this equation gives

(Y η0bj + γj)[(kj − Y )η0bj + γj ]

(2Y − kj)2
− Y (Y − kj)− aj = αj .

This can be written as

−(Y − kj)Y [(2Y − kj)
2 + b2jη

2
0 ]

(2Y − kj)2
− aj = αj −

η0bjkjγj + γ2
j

(2Y − kj)2
. (4.1.10)

We denote the left-hand side of (4.1.10) by cj and the right-hand side by dj . Hence

cj ≤ −(Y − kj)Y − aj = −Y 2 + Y kj − aj .

Now assume additionally that Imλ0 < −β1/2. The inequality Y 2 > β > 0
implies that there is δ > 0 such that Y 2 = (1 + δ)β. Because of kj > 0 and Y < 0
we obtain the estimate

cj ≤ −(1 + δ)β + Y kj − aj ≤ −(1 + δ)β − aj .

On the other hand, in view of Y < 0, kj ≥ κ > 0 and Proposition 4.1.1, 2.(iii),
there are positive constants a and b such that

dj ≥ αj − η0|bj |kj |γj |
4|Y |kj − γ2

j

4Y 2

= αj − η0|bj ||γj |
4|Y | − γ2

j

4Y 2

≥ αj − η0|γj |
4|Y | (a+ baj)−

γ2
j

4Y 2
.

Hence

0 = cj − dj ≤ −(1 + δ)β − aj − αj +
bη0|γj |
4|Y | aj +

aη0|γj |
4|Y | +

γ2
j

4Y 2

≤ −(1 + δ)β −
(
1− bη0|γj |

4|Y |
)
aj − αj +

aη0|γj |
4|Y | +

γ2
j

4Y 2
.

Since γj → 0 as j →∞, we have for all sufficiently large j that bη0|γj | ≤ 4|Y |, so
that −aj ≤ β leads to

0 ≤ −(1 + δ)β +

(
1− bη0|γj |

4|Y |
)
β − αj +

aη0|γj |
4|Y | +

γ2
j

4Y 2

≤ −δβ − αj +
aη0|γj |
4|Y | +

γ2
j

4Y 2
.
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Letting j → ∞ leads to the contradiction 0 ≤ −δβ. This means that there is no
approximate spectrum of L(·, η0) in the half-plane {λ ∈ C : Imλ < −β 1

2 }.
Now let 0 > Imλ0 ≥ −β1/2. Multiplying (4.1.8) by X and (4.1.9) by Y and

taking the difference of the resulting equations we obtain

(X2 + Y 2)(Y − kj) + Y aj = o(1). (4.1.11)

Since kj ≥ κ, −aj ≤ β and Y < 0, it follows that

(X2+Y 2)(Y −kj)+Y aj ≤ −X2kj+Y aj ≤ −X2κ−Y β ≤ −X2κ+β3/2. (4.1.12)

Together with (4.1.11) this implies |X | ≤ β3/4κ−1/2.

Thus we have proved that for all η ∈ [0, 1] the approximate spectrum of
L(·, η) in the open lower half-plane is located in the domain

Ω = {λ ∈ C : 0 > Imλ ≥ −β1/2, |Reλ| < β3/4κ−1/2}.

Hence for each (λ, η) ∈ (C− \ Ω) × [0, 1], λ �∈ σapp(L(·, η)), and therefore (4.1.6)
holds for these (λ, η). Letting

S0 = {(λ, η) ∈ (C− \ Ω)× [0, 1] : codimR(L(λ, η)) = 0},
S1 = {(λ, η) ∈ (C− \ Ω)× [0, 1] : codimR(L(λ, η)) �= 0},

it therefore follows from Lemma 4.1.3 that both S0 and S1 are open subsets of
(C− \Ω)× [0, 1]. Since (C− \Ω)× [0, 1] is connected, one of the sets S0 or S1 equals
(C− \ Ω) × [0, 1], whereas the other one is empty. Observe that L(·, 0) is a pencil
of the form as considered in Chapter 3. Hence the spectrum of L(·, 0) in the open
lower half-plane lies on the negative imaginary axis, see Lemma 3.1.9. Choosing
λ ∈ C

− \ Ω with Reλ �= 0 it follows that (λ, 0) ∈ S0. Hence S0 is nonempty, and
from the above reasoning we obtain (C− \ Ω) × [0, 1] = S0. Thus R(L(λ, η)) = H
for all (λ, η) ∈ (C− \ Ω) × [0, 1]. Since also (4.1.6) is satisfied for these (λ, η),
it follows that C− \ Ω ⊂ ρ(L(·, η)) for all η ∈ [0, 1]. Thus we have shown that
σ(L(·, η)) ∩ C− ⊂ Ω for all η ∈ [0, 1]. �

With the notation in the proof of Lemma 4.1.5, an obvious modification of
inequality (4.1.12) together with (4.1.11) leads to

0 ≥ (X2 + Y 2)(κ− Y ) + Y β > (X2 + Y 2)κ+ Y β.

Hence we have

Remark 4.1.6. For η ∈ [0, 1], the part of the spectrum of L(·, η) in the open lower
half-plane is located in the disc {λ ∈ C : 0 > [(Re λ)2 + (Im λ)2]κ+ (Imλ)β < 0}.
Lemma 4.1.7. For each η ∈ [0, 1] all points on the real axis, with the possible
exception of 0, belong to ρ(L(·, η)).
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Proof. The set of points X + iY in the complex plane with (X2 + Y 2)κ+ Y β < 0
describes an open disc in the lower half-plane whose boundary touches the real axis
at the origin. Hence it follows from Remark 4.1.6 and a reasoning as in the proof
of Corollary 3.1.6 that σ(L(·, η)) ∩ R ⊂ σapp(L(·, η)). It is obvious that (4.1.11)
also holds for Y = 0, so that lim

j→∞
kjX

2 = 0, which is possible only if X = 0 due

to kj ≥ κ. This means that σ(L(·, η)) ∩ R = σapp(L(·, η)) ∩R ⊂ {0}. �
Theorem 4.1.8. Assume that the negative spectrum of A consists of at most finitely
many eigenvalues of finite multiplicity. Then the total algebraic multiplicity of the
spectrum of L(·, η) in the open lower half-plane does not depend on η ∈ [0, 1] and
equals the total multiplicity of the negative spectrum of A.

Proof. According to Theorem 3.1.14 the part of the spectrum of L(·, 0) lying in
the open lower half-plane consists of finitely many normal eigenvalues, and the
total algebraic multiplicity of L(·, 0) in the open lower half-plane equals the total
multiplicity of the negative eigenvalues of A. In view of Lemma 1.1.9, the fact
that the spectrum in the open lower half-plane is located in the disc {λ ∈ C :
((Reλ)2 +(Imλ)2)κ+ Y β < 0}, see Remark 4.1.6, and a connectedness argument
it is sufficient to show that this part of the spectrum is uniformly separated from
the closed upper half-plane, that is, it remains to prove that there is no convergent
sequence of pairs (λs, ηs)

∞
s=1 with the following properties: ηs ∈ [0, 1], Imλs < 0,

lim
s→∞λs = 0, λs ∈ ∂σ(L(·, ηs)).

By proof of contradiction, assume that such a sequence exists. In view of
Corollary 3.1.6 it follows that λs ∈ σapp(L(·, ηs)) for all s ∈ N. Hence for each
s ∈ N there exists a sequence (ysn)

∞
n=1 of vectors ysn ∈ D(A) such that ‖ysn‖ = 1

and lim
n→∞L(λs, ηs)ysn = 0. Let us choose for each s a vector ψs = ysns such that

‖L(λs, ηs)ψs‖ < s−1[λs]1, (4.1.13)

where [λs]1 = |λs| if Reλs = 0 and |Reλs| otherwise. The Hilbert space H can
be written as an orthogonal sum of two invariant subspaces D1 and D2 in such a
way that if f1 ∈ D1 ∩ D(A), f2 ∈ D2 and ‖fj‖ = 1, j = 1, 2, then (Af1, f1) ≥ 0
and −β ≤ (Af2, f2) ≤ −γ < 0. We observe that D2 is finite dimensional since
it is assumed that the negative spectrum of A consists of at most finitely many
eigenvalues of finite multiplicity.

The vectors ψs can be written in the form ψs = ζsΦs+θsΨs, where Φs ∈ D2,
Ψs ∈ D1, ‖Ψs‖ = ‖Φs‖ = 1, ζs ≥ 0, θs ≥ 0, ζ2s + θ2s = 1. Write Xs = Reλs and
Ys = Imλs. Below we will make use of the identities

(L(λs, ηs)ψs,Ψs) = λ2
sθs − iλsζs(KΦs,Ψs)− iλsθs(KΨs,Ψs)

− ηsλsζs(BΦs,Ψs)− ηsλsθs(BΨs,Ψs)− θs(AΨs,Ψs)

= θs
[
λ2
s − iλs(KΨs,Ψs)− ηsλs(BΨs,Ψs)− (AΨs,Ψs)

]
− ζs [iλs(KΦs,Ψs) + ηsλs(BΦs,Ψs)] (4.1.14)
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and

Re(L(λs, ηs)ψs,Φs) = Re[λ2
sζs − iλs(Kψs,Φs)− ηsλs(Bψs,Φs)− ζs(AΦs,Φs)]

= (X2
s − Y 2

s − (AΦs,Φs))ζs − Re[iλs(Kψs,Φs) + ηsλs(Bψs,Φs)].
(4.1.15)

Inequality (4.1.13) implies

Re(L(λs, ηs)ψs,Φs) = o(1). (4.1.16)

Since the operators B and K are bounded on the finite-dimensional space D2, we
conclude that

(L(λs, ηs)Φ2,Ψs) = −iλs(KΦs,Ψs)− ηsλs(BΦs,Ψs) = o(λs) (4.1.17)

We consider two cases.

1. Assume there exists a positive number C such that ‖BΨs‖ < C and ‖KΨs‖ < C
for all s ∈ N. From (4.1.15), Xs = o(1), Ys = o(1), (AΦs,Φs) ≤ −γ, ζ2s + θ2s = 1,
θs ≥ 0, and (4.1.16) we deduce that

lim
s→∞ ζs = 0, lim

s→∞ θs = 1. (4.1.18)

In view of (4.1.13), (4.1.17) and (4.1.18), we obtain

λ2
s − iλs(KΨs,Ψs)− ηsλs(BΨs,Ψs)− (AΨs,Ψs)

= (L(λs, ηs)Ψs,Ψs) =
1

θs
[(L(λs, ηs)ψs,Ψs)− ζs(L(λs, ηs)Φs,Ψs)]

= o(λs).

We may assume, by choosing a suitable subsequence, if necessary, that either all
Xs are zero or all Xs are different from zero. If all Xs are zero, then the real part
of the previous identity gives

−Y 2
s + Ys(KΨs,Ψs)− (AΨs,Ψs) = o(Ys).

Since all terms on the left-hand side are nonpositive, we arrive at

(KΨs,Ψs) = o(1),

which contradicts (KΨs,Ψs) ≥ κ.

Now assume that Xs �= 0 for all s. Taking the imaginary part in (4.1.14) and
observing (4.1.13) and (4.1.18) it follows that

θs[−Xs(KΨs,Ψs)− ηsYs(BΨs,Ψs)] + ζsYs[Im(KΦs,Ψs)− ηs Re(BΦs,Ψs)]

= Im(L(λs, ηs)ψs,Ψs)− 2XsYs + ζsXs [Re(KΦs,Ψs) + ηs Im(BΦs,Ψs)]

= o(Xs)
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and therefore, in view of (KΨs,Ψs) ≥ κ > 0,

Xs = −Ys(ηs(BΨs,Ψs) + o(1))

(KΨs,Ψs)
+ o(Xs). (4.1.19)

In particular, Xs = O(Ys) since {BΨs,Ψs) : s ∈ N} is bounded by assumption.
Taking the real part in (4.1.14) leads to

θs[Ys(KΨs,Ψs)− ηsXs(BΨs,Ψs)− (AΨs,Ψs)] = o(Xs) + o(Ys). (4.1.20)

Using (4.1.18) and substituting (4.1.19) into (4.1.20) we obtain

Ys(KΨs,Ψs)− (AΨs,Ψs) + η2sYs
(BΨs,Ψs)

2

(KΨs,Ψs)
= o(Ys). (4.1.21)

Since all summands on the left-hand side of (4.1.21) are nonpositive, it follows
that (KΨs,Ψs) = o(1), which contradicts K � 0.

2. If there exists no positive number C such that ‖BΨs‖ < C and ‖KΨs‖ < C for
all s ∈ N, we may assume, by choosing a subsequence, if necessary, that

‖BΨs‖+ ‖KΨs‖ → ∞ as s→∞. (4.1.22)

From (4.1.14) and (4.1.13) it follows that

θs(AΨs,Ψs) = θs
[
λ2
s − iλs(KΨs,Ψs)− ηsλs(BΨs,Ψs)

]
− ζs [iλs(KΦs,Ψs) + ηsλs(BΦs,Ψs)] + o(1).

Hence there is a positive constant C1 such that

θs(AΨs,Ψs) ≤ C1(1 + ‖BΨs‖+ ‖KΨs‖).
In view of Proposition 4.1.1, part 1, there is a positive constant p such that

p(‖BΨs‖2 + ‖KΨs‖2) ≤ 1 + (AΨs,Ψs),

where we have used that (AΨs,Ψs) ≥ 0. The last two inequalities lead to

θs[p(‖BΨs‖2 + ‖KΨs‖2)− 1] ≤ C1(1 + ‖BΨs‖+ ‖KΨs‖),
and thus

θs ≤ C1(1 + ‖BΨs‖+ ‖KΨs)‖)
p(‖BΨs‖2 + ‖KΨs‖2)− 1

.

In view of (4.1.22) and θ2s + ζ2s=1, this gives

θs = o(1), ζs = 1 + o(1). (4.1.23)

From (4.1.16) and (4.1.15) we obtain

ζs(AΦs,Φs) = (X2
s − Y 2

s )ζs − Re[iλs(ψs,KΦs) + ηsλs(ψs, BΦs)] + o(1)

= o(1)

since K and B are bounded on the finite-dimensional space D2. But this is a
contradiction since ζs = 1 + o(1) and (AΦs,Φs) ≤ −γ. �
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4.2 Linearized pencils in Pontryagin spaces

Theorem 4.1.8 is related to indefinite inner product spaces. We consider the op-
erator polynomial L from Section 4.1 satisfying Condition IV and, for simplicity,
0 ∈ ρ(A). The operator pencil L is linearized by introducing z = λy. Then the
equation L(λ)y = 0 can be rewritten as the system of equations

λz − iKz −Bz −Ay = 0,

λy − z = 0,

which has the operator matrix representation

(λI − S)X = 0,

where X = (z, y)T, z, y ∈ D(A), and

S =

(
iK +B A

I 0

)
. (4.2.1)

We now use the spectral resolution of A to introduce an indefinite inner
product on D(|A| 12 ). Let H+ and H− be the (invariant) spectral subspaces of
H associated with the positive and negative spectrum of A, respectively. Then
H = H+ ⊕H−, and A+ := A|H+ and A− := A|H− are self-adjoint operators on
H+ and H−, respectively, satisfying A+ � 0 and −A− � 0. Since 0 ∈ ρ(A) and
since the negative spectrum of A consists of finitely many eigenvalues of finite
multiplicity, H− is finite dimensional and |A| 12 is bounded and invertible on H−,
whereas |A| 12 is invertible onH+. Hence, for x = x++x− ∈ D(|A| 12 ) with x+ ∈ H+

and x− ∈ H−, and y = y+ + y− ∈ D(|A| 12 ),

〈x, y〉 := (|A| 12x+, |A| 12 y+)− (|A| 12x−, |A| 12 y−) (4.2.2)

defines an inner product on D(|A| 12 ) which makes it a Pontryagin space. More

precisely, (D(|A| 12 ), 〈·, ·〉) is a Πκ-space, where κ, the dimension of H−, equals
the number of negative eigenvalues of A, counted with multiplicity. Note that
D(A−) = H− and that A− is bounded. For x ∈ D(A) we therefore have x+ ∈ D(A)

and x− ∈ D(A), and thus, for x ∈ D(A) and y ∈ D(|A| 12 ),

(|A| 12x±, |A| 12 y±) = (|A|x±, y±) = ±(Ax±, y±),

so that
〈x, y〉 = (Ax+, y+) + (Ax−, y−) = (Ax, y).

Therefore H ⊕D(|A| 12 ) equipped with the inner product

〈X1, X2〉 = (z1, z2) + 〈y1, y2〉, X1 = (z1, y1)
T, X2 = (z2, y2)

T ∈ H ⊕D(|A| 12 ),
(4.2.3)
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is a Πκ-space. Note that D(|A| 12 ) = D((A+ β1I)
1
2 ) so that we will use whichever

appears to be more convenient.

Together with the operator S with domain D(|A| 12 )×D(A) we consider the

operator S− with D(S−) = D(|A| 12 )×D(A) in the Pontryagin space H ⊕D(|A| 12 )
given by

S− =

(−iK +B A
I 0

)
. (4.2.4)

Here we observe that D((A+ β1I)
1
2 ) is a subset of D(K) and D(B), see the proof

Lemma 3.1.1.

Proposition 4.2.1. The operators S and S− are closed in the Pontryagin space
H ⊕D(|A| 12 ), and S− = S∗.

Proof. Let X1, X2 ∈ D(|A| 12 )×D(A). Then

〈SX1, X2〉 = ((iK +B)z1, z2) + (Ay1, z2) + 〈z1, y2〉
= (z1, (−iK +B)z2) + 〈y1, z2〉+ (z1, Ay2)

= 〈X1, S−X2〉

shows that S− ⊂ S∗. Now let X2 ∈ D(S∗). Then there is X3 ∈ H ⊕D(|A| 12 ) such
that 〈SX1, X2〉 = 〈X1, X3〉 for all X1 ∈ D(S). Taking first X1 ∈ {0}⊕D(A), i. e.,
z1 = 0, it follows that

(Ay1, z2) = 〈SX1, X2〉 = 〈X1, X3〉 = 〈y1, y3〉 = (Ay1, y3).

Observing that {Ay1 : y1 ∈ D(A)} = H since 0 ∈ ρ(A), we get z2 = y3 ∈ D(|A| 12 ).
Now let X1 ∈ D(A)× {0}. Then it follows that

(Az1, A
−1(z3 + (iK −B)z2)) = (z1, z3 + (iK −B)z2)

= (z1, z3)− ((iK +B)z1, z2)

= 〈X1, X3〉 − 〈SX1, X2〉+ 〈z1, y2〉
= (Az1, y2).

Using again that A is invertible, we obtain y2 = A−1(z3 + (iK − B)z2) ∈ D(A).

We have thus shown that D(S∗) ⊂ D(|A| 12 ) × D(A) = D(S−), and S∗ = S−
follows. Since we did not use K � 0 in this proof, we may replace K with −K,
i. e., interchange S and S−, in the above result. Then we obtain S = S∗

− = S∗∗,
which means that S is closed. �

Proposition 4.2.2. The operator S is maximal dissipative, and the number nS(C
−)

of eigenvalues of the operator S, counted with multiplicity, in the open lower half-
plane, does not exceed κ = nA(C

−).
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Proof. For X = (z, y)T ∈ D(S) we have

Im〈SX,X〉 = 1

2i
(〈SX,X〉−〈X,SX〉) = 1

2i
(〈SX,X〉−〈S−X,X〉) = (Kz, z) ≥ 0.

It also follows immediately that

Im〈−S∗X,X〉 = Im〈−S−X,X〉 = Im〈SX,X〉 ≥ 0

for all X ∈ D(S∗) = D(S). Hence S is maximal dissipative by [18, Chapter 2,
2.7]. An application of [18, Chapter 2, Corollary 2.23] completes the proof, where
we have to observe that the convention used in [18] is that in Pontryagin spaces
the positive subspace is finite dimensional. Hence we have to replace the inner
product and the operator S by their negatives, so that the upper half-plane C+ in
[18, Chapter 2, Corollary 2.23] becomes the lower half-plane C− in our settings. �
Remark 4.2.3. Proposition 4.2.2 states that the number nS(C

−) does not ex-
ceed κ, whereas Theorem 4.1.8 states that this total multiplicity nS(C

−) = m(C−)
equals κ.

4.3 Gyroscopically stabilized operator pencils

4.3.1 General results

In Theorem 4.1.8 we saw that the condition K � 0 guarantees that the total al-
gebraic multiplicity of the spectrum located in the lower half-plane is independent
of the gyroscopic operator B.

Here we consider the case K = 0. This enables the so-called gyroscopic
stabilization. Namely, the spectrum of the pencil

L(λ) = λ2I − λB −A

may lie on the real axis and be simple while σ(A) ∩ (−∞, 0) �= ∅.
We henceforth require in this section that the operators A and B in the pencil

L satisfy

Condition V. The operators A and B are self-adjoint operators on H with the
following properties:

(i) A ≥ −βI for some positive number β;

(ii) (A+ β1I)
−1 ∈ S∞ for some β1 > β;

(iii) the operator B is subordinate to A, i. e., D(A) ⊂ D(B) and the operator B
is bounded with respect to the operator (A+ β1I)

1/2.

Together with the pencil L we consider the family of pencils given by

L(λ, η) = λ2I − ληB −A (4.3.1)
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with D(L(λ, η)) = D(A), where η ∈ [0, 1] is the parameter of this family and λ is
the spectral parameter.

Lemma 4.3.1. For η ∈ [0, 1], the nonreal eigenvalues λ of L(·, η) satisfy |λ| ≤ β
1
2 .

Proof. If λ is a nonreal eigenvalue of L(·, η) with normalized eigenvector y, then
L(λ, η)y = 0. Taking real and imaginary parts of (L(λ, η)y, y) = 0 leads to

(Reλ)2 − (Imλ)2 − (Reλ)η(By, y)− (Ay, y) = 0,

2(Reλ)(Im λ)− (Imλ)η(By, y) = 0.

Since we assume that Imλ �= 0, the second equation gives η(By, y) = 2Reλ.
Substituting this identity into the first equation leads to

|λ|2 = (Reλ)2 + (Imλ)2 = −(Ay, y) ≤ β. �

Remark 4.3.2. Since (A+ β1I)
−1 is compact by Condition V, part (ii), the spec-

tral theorem for self-adjoint operators gives that also the operator (A + β1)
− 1

2

is compact. In view of Condition V, part (iii), it follows that B is (A + β1I)
−1

compact. Therefore L(λ, η) is a Fredholm operator for all λ ∈ C and η ∈ [0, 1],
see [137, Theorem IV.5.26]. In view of Lemma 4.3.1 it follows that the spectrum
of L(·, η) consists of normal eigenvalues.

Proposition 4.3.3. If λ = 0 is a semisimple eigenvalue of the pencil L(·, η0) for
some η0 ∈ (0, 1], then λ = 0 is a semisimple eigenvalue of the pencil L(·, η) for
all η ∈ (0, 1], and the multiplicity of the eigenvalue λ = 0 of the pencil L(·, η) is
independent of η ∈ (0, 1].

Proof. It is clear that y0 is an eigenvector of L(·, η) corresponding to the eigenvalue
λ = 0 if and only if y0 is a nonzero vector in N(A). Assume there is η �= 0 such
that the eigenvector y0 corresponding to the eigenvalue λ = 0 of L(·, η) has an
associated vector y1. Then Ay1 + ηBy0 = 0, and η0

η y1 would be a corresponding

associated vector for the eigenvalue λ = 0 of L(·, η0) with eigenvector y0, which
contradicts the assumption that λ = 0 is a semi-simple eigenvalue of L(·, η0). �

The following theorem and an outline of its proof can be found in [284].

Theorem 4.3.4. Let η ∈ [0, 1]. Then the total algebraic multiplicity of the spectrum
of L(·, η) in the open lower (or, what is the same, upper) half-plane does not exceed
the total geometric (or, what is the same, algebraic) multiplicity of the negative
spectrum of the operator A.

Proof. In view of L(λ, η)∗ = L(λ, η) for all λ ∈ C and η ∈ [0, 1], it suffices to
prove the statement about the spectrum in the lower half-plane. We have noted in
Remark 4.3.2 that the spectrum of the operator pencil L(·, η) consists of normal
eigenvalues. Also, the spectrum of A consists of normal eigenvalues.
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We first consider the case that 0 ∈ ρ(A). In the notation of Section 4.2 we
have

S =

(
ηB A
I 0

)
,

and H ⊕ D(|A| 12 ) is a Πκ-space with respect to the innner product 〈·, ·〉 defined
in (4.2.3), where κ is the number of negative eigenvalues of A, counted with mul-
tiplicity. Since for S− defined in (4.2.4) we have S− = S in the present case,
Proposition 4.2.1 shows that S is self-adjoint. Then the statement of our theo-
rem follows from well-known results of L.S. Pontryagin [233], see also [121] or
[18, Chapter 2, Corollary 3.15].

If 0 ∈ σ(A), then for small positive real numbers τ , 0 ∈ ρ(A+ τI) and A+ τI
has the same number of negative eigenvalues, counted with multiplicity, as A.
Hence, the statement of this theorem holds for L(·, μ) replaced with L(·, η, τ) =
L(·, η)− τI, i. e., with A replaced by A + τI for these small positive τ . Theorem
1.2.7 shows that the eigenvalues depend continuously on τ near τ = 0, and this
property is uniform in τ for all eigenvalues in the open lower half-plane since by
Lemma 4.3.1 there are only finitely many eigenvalues in the open lower half-plane.
Hence the number of eigenvalues of L(·, η) in the open lower half-plane, counted
with multiplicity, does not exceed that of L(·, η, τ) for sufficiently small positive τ .
But since 0 ∈ ρ(A+ τI), we already know that this latter number does not exceed
the total multiplicity of the negative spectrum of A. Thus we have shown that the
total multiplicity of the spectrum of L(·, η) in the open lower half-plane does not
exceed the total multiplicity of the negative spectrum of the operator A. �

For the remainder of this section we write B = iG and assume in addition
to Condition V that the following holds.

Condition VI.

(i) The Hilbert space H is a complexification of a real Hilbert space.

(ii) The operators A and G are real, i. e., Ax and Gx are real whenever x ∈ D(A)
or x ∈ D(G), respectively, are real elements of the Hilbert space H.

Remark 4.3.5. 1. The operator G = −iB is a skew-symmetric (or antisymmetric)
operator, i. e., (Gy1, y2) = −(y1, Gy2) for all y1, y2 ∈ D(A).

2. For all η ∈ [0, 1], the spectrum of L(·, η) is symmetric with respect to the
real and imaginary axes, with multiplicity. Indeed, by [189, Corollary 1.5.5] the
statement on symmetry with respect to the real axis is obvious since L(λ)∗ = L(λ)
due to the self-adjointness of A and B. Now let λ0 be an eigenvalue of L(·, η) and
(x0, . . . , xm−1) be a corresponding chain of an eigenvector and associated vectors.
Putting

x(λ) =

m−1∑
j=0

(λ− λ0)
jxj
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it follows that

L(λ, η)x(λ) =
[
(−λ)2I − (−λ)iG−A

]
x(λ) = L(−λ, η)x(λ).

With μ = −λ we can write

x(λ) =
m−1∑
j=0

(−μ− λ0)
j
xj =

m−1∑
j=0

(μ+ λ0)
j(−1)jxj .

Hence it follows from Remark 1.1.4 that (x0, . . . , (−1)m−1xm−1) is a chain of
an eigenvector and associated vectors of L(·, η) at −λ0. Therefore, the algebraic
multiplicities of the eigenvalues λ0 and−λ0 of L(·, η) are equal in view of Definition
1.1.3, part 2.

Theorem 4.3.6. Assume that 0 ∈ ρ(A). Then the total algebraic (geometric) mul-
tiplicity of the spectrum of the pencil L(·, 0) located in the open lower half-plane
is odd [even] if and only if the total algebraic multiplicity of the spectrum of the
pencil L(·, η) located in the open lower half-plane is odd [even] for all η ∈ (0, 1].

Proof. Similar to Theorem 1.2.7 we conclude from Theorem 9.2.4, that the eigen-
values of the operator pencil L(·, η) are continuous and piecewise analytic functions
of the parameter η, and the spectrum of the pencil L(·, η) is symmetric with re-
spect to the real axis by Remark 4.3.5. The eigenvalues can leave or enter the upper
half-plane only in pairs, taking multiplicities into account, if we observe that the
assumption 0 ∈ ρ(A) implies that 0 ∈ ρ(L(·, η)) since L(0, η) = −A. Finally, since
nonreal eigenvalues are bounded with bound independent of η by Lemma 4.3.1,
nonreal eigenvalues cannot tend to infinity. �

4.3.2 Vibrations of an elastic fluid conveying pipe

To solve the stability problem for small vibrations of a linear pipe conveying a sta-
tionary flow of an incompressible fluid, we must investigate the pipe frequencies
or, equivalently, the location of the spectrum of the corresponding quadratic op-
erator pencil. Small transversal vibrations of a horizontal elastic pipe conveying a
stationary flow of an incompressible fluid are described in dimensionless variables
by the equation, see [79],

∂4u

∂x4
+ v2

∂2u

∂x2
+ 2ηv

∂2u

∂x∂t
+

∂2u

∂t2
= 0, (4.3.2)

where u(x, t) is the transversal displacement, t is the dimensionless time, x = s
l , s is

the longitudinal coordinate, l is the pipe length, v = m1/2Ul
(EI)1/2

, η = (m/(m+mr))
1/2,

m and mr are linear densities of the fluid and the pipe, respectively, U is the
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fluid velocity, and EI is the bending stiffness of the pipe section. The boundary
conditions

u(0, t) =
∂2u

∂x2

∣∣∣∣
x=0

= u(1, t) =
∂2u

∂x2

∣∣∣∣
x=1

= 0 (4.3.3)

represent hinge connection of the ends of the pipe.

We are going to give a definition of stability of such a problem. To this end
we impose the initial conditions

u(x, 0) = u0(x), x ∈ [0, 1], (4.3.4)

∂u(x, t)

∂t

∣∣∣∣
t=0

= u1(x), x ∈ [0, 1]. (4.3.5)

It follows from [272] that the initial-boundary value problem (4.3.2)–(4.3.5) pos-
sesses a unique solution for any u0 ∈ W 4

2 (0, 1) with u0(0) = u′′
0(0) = u0(1) =

u′′
0(1) = 0 and any u1 ∈W 2

2 (0, 1) with u0(0) = u0(1) = 0.

Definition 4.3.7. The initial-boundary value problem (4.3.2)–(4.3.5) is stable if
there is a constant C such that for each u0 ∈ W 4

2 (0, 1) with u0(0) = u′′
0(0) =

u0(1) = u′′
0(1) = 0 and each u1 ∈ W 2

2 (0, 1) with u1(0) = u1(1) = 0, the solution u
of (4.3.2)–(4.3.5) satisfies

‖u‖0(t) ≤ C‖u‖0(0) (4.3.6)

for all t ≥ 0, where

‖u‖20(t) =
∫ 1

0

∣∣∣∣∂u∂t (x, t)
∣∣∣∣2 dx+

∫ 1

0

∣∣∣∣∂2u

∂x2
(x, t)

∣∣∣∣2 dx.
Let us substitute u(x, t) = y(x)eiλt into (4.3.2) and (4.3.3). Then we obtain

y(4) + v2y′′ + 2iληvy′ − λ2y = 0, (4.3.7)

y(0) = y′′(0) = y(1) = y′′(0) = 0. (4.3.8)

We introduce the operators A+, A−, A = A+ + A− and G acting in L2(0, 1) by
setting

D(A+) = D(A−) = {y ∈ W 4
2 (0, 1) : y(0) = y(1) = y′′(0) = y′′(1) = 0},

A+y = y(4), A−y = v2y′′,

D(G) = {y ∈W 1
2 (0, 1) : y(0)− y(1) = 0}
Gy = 2vy′.

Proposition 4.3.8. The operators A+ and A are self-adjoint, A+ � 0, A ≥ −v4

4
I,

and A−1
+ , (A + β1I)

−1 ∈ S∞ for β1 >
v4

4
. The operator iG is self-adjoint and

subordinate to A.
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Proof. We will use Theorem 10.3.5 to verify that A and A+ are self-adjoint. Ob-
serve that y[j] = y(j) for j = 0, 1, 2 according to Definition 10.2.1. We have to find
U1, U3 and U defined in (10.3.3), (10.3.12) and (10.3.13), where in the present sit-
uation U2 and V are zero dimensional, so that U = U1. First, it is straightforward
to see that

U1 =

⎛⎜⎜⎝
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

⎞⎟⎟⎠ .

In particular, U1 has rank 4. Clearly,

N(U1) = span{e2, e4, e6, e8} ⊂ C
8.

We recall that

U3 = J2 where J2 =

(−J2,1 0
0 J2,1

)
and J2,1 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ .

It is now straightforward to verify that

U3(N(U1)) = span{e3, e1, e7, e5} ⊂ C
8,

R(U∗) = R(U∗
1 ) = span{e1, e3, e5, e7} ⊂ C

8.

This shows that U3(N(U1)) = R(U∗). Hence A+ and A are self-adjoint by Theorem
10.3.5. Then we conclude with the aid of Theorem 10.3.8 that A+ and A have
compact resolvents and that A is bounded below.

Integration by parts shows that

v−4‖A−y‖2 = (A+y, y) ≤ ‖A+y‖‖y‖, y ∈ D(A). (4.3.9)

It follows immediately that A+ ≥ 0. Furthermore, it is easy to see that 0 is not an
eigenvalue of A+. Since A+ has a compact resolvent, its spectrum is discrete, and
altogether we have shown that A+ � 0. From (4.3.9) we obtain for all y ∈ D(A)
that

(A−y, y) ≥ −‖A−y‖‖y‖ = −v2(A+y, y)
1
2 ‖y‖ ≥ −

[
(A+y, y) +

v4

4
‖y‖2

]
, (4.3.10)

which leads to

(Ay, y) = (A−y, y) +A+(y, y) ≥ −v4

4
(y, y).
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For y, z ∈ D(G) integration by parts leads to

(Gy, z) = 2v

∫ 1

0

y′(x)z(x) dx

= 2v
(
y(1)z(1)− y(0)z(0)

)
− 2v

∫ 1

0

y(x)z′(x) dx = −(y,Gz),

where we have used that y(1) = y(0) and z(1) = z(0). Hence iG is symmetric.
Now let z ∈ D(G∗) and w = G∗z. Then

(y′, 2vz) = (Gy, z) = (y,G∗z) = (y, w)

for all y ∈ D(G). In particular, this holds for all y ∈ C∞
0 (0, 1), and it follows that

w = −2vz′ in the sense of distributions. Definition 10.1.1 therefore shows that
z ∈W 1

2 (0, 1). Taking now y = 1 ∈ D(G), we calculate

0 = (2vy′, z) = (Gy, z) = (y, w) = −2v(y, z′) = −2v
∫ 1

0

z′(x) dx

= −2v
(
z(1)− z(0)

)
.

We conclude that z(0) − z(1) = 0, which means that z ∈ D(G). We have thus
shown that D(G∗) ⊂ D(G), and the self-adjointness of iG follows in view of the
symmetry of iG.

For y ∈ D(A), integration by parts shows that

‖Gy‖2 = −4(A−y, y). (4.3.11)

We observe that a slight modification of (4.3.10) gives

−(A−y, y) ≤ 1

2
(A+y, y) +

v4

2
‖y‖2

and thus

−1

2
(A−y, y) ≤ 1

2
(Ay, y) +

v4

2
‖y‖2.

This together with (4.3.11) leads to

‖Gy‖2 ≤ 4(Ay, y) + 4v4‖y‖2

for all y ∈ D(A). With the aid of Proposition 4.1.1, part 1, we therefore conclude
that G is subordinate to A. �
Proposition 4.3.9. The numbers

τ = π4k4 − π2v2k2, k ∈ N, (4.3.12)

are the eigenvalues of A, counted with multiplicity. The eigenvalues are simple
with the exception of finitely many double eigenvalue in case v2 = (k22 + k21)π

2 for
distinct positive integers k1 and k2. For such a pair of distinct integers k1 and k2,
the double eigenvalue is τ = −k21k22π4.
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Proof. Since all coefficients of the differential equation (4.3.7) are constant, one can
write down the eigenvalue equation explicitly and thus improve the lower bound
of A and even find its spectrum explicitly. Indeed, if τ ∈ R, then (A − τI)y = 0
reads

y(4) + v2y′′ − τy = 0, (4.3.13)

so that the characteristic function becomes

ρ4 + v2ρ2 − τ = 0, (4.3.14)

which can be rewritten as (
ρ2 +

v2

2

)2

= τ +
v4

4
. (4.3.15)

Hence

−ρ2 = v2

2
±
√
τ +

v4

4
,

which has four solutions for ρ, counted with multiplicity, of the form ±iω1, ±iω2

with complex numbers ω1 and ω2. If ω1 and ω2 are distinct and different from 0,
then the functions sinω1x, cosω1x, sinω2x, cosω2x form a basis for the solutions
of the differential equation (4.3.13), and a straightforward calculation shows that

y3(x) :=
sinω1x

ω1(ω2
2 − ω2

1)
+

sinω2x

ω2(ω2
1 − ω2

2)
,

y2 := y′3, y1 := y′′3 + v2y3, y0 := y′′′3 + v2y′3

defines a basis y0, y1, y2, y3 for the solutions of the differential equation (4.3.13)

satisfying y
(j)
k (0) = δkj for k, j = 0, 1, 2, 3. Here δkj is the Kronecker symbol,

which is 1 if k = j and 0 otherwise. For the verification we note that one can
use the differential equation to reduce differentiations of order greater or equal 4.
Although this system is initially more complicated to derive, it has the advantage
that it extends to the cases when ω1 = 0 or ω2 = 0 or ω1 = ω2 as these cases
are removable singularities in the parameters ω1 and ω2 of the above solutions.
The initial conditions y(0) = 0 and y′′(0) = 0 show that a nontrivial solution of
(A− τI)y = 0 must be a linear combination of y1 and y3.

Taking the boundary conditions y(1) = 0 and y′′(1) = 0 into account, it
follows that a nontrivial solution of (A − τI)y = 0 corresponds to a zero of the
characteristic equation

c(τ) = det

(
y1(1) y3(1)
y′′1 (1) y′′3 (1)

)
= 0, (4.3.16)

where we have to note that the determinant also depends on τ ; for brevity we
have omitted the parameter τ in the functions ωj and yj . Also note that the mul-
tiplicity of τ as a zero of c equals the multiplicity of the eigenvalue τ of A, see,
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e. g [189, Theorem 6.3.4], where it is shown that the structure of the eigenvector
and associated vectors of a differential operator pencil and an associated charac-
teristic matrix coincide; in particular, the (algebraic) multiplicities coincide and
equal the multiplicity τ as a zero of the determinant of the characteristic matrix,
see [189, Proposition 1.8.5]. In view of

c(τ) = det

(
y′′3 (1) + v2y3(1) y3(1)

y
(4)
3 (1) + v2y′′3 (1) y′′3 (1)

)
= det

(
y′′3 (1) y3(1)

y
(4)
3 (1) y′′3 (1)

)
,

a straightforward calculation shows that

c(τ) =
sinω1

ω1

sinω2

ω2
, (4.3.17)

which also holds for ω1 = 0 and ω2 = 0. Indeed, since the corresponding limit
would be 1, it follows that the cases ω1 = 0 and ω2 = 0 do not contribute towards
eigenvalues of A.

It is convenient to introduce the variables �j = ω2
j , j = 1, 2. Then

�j = −ρ2 =
v2

2
+ (−1)j−1

√
τ +

v2

4
(4.3.18)

and
sinωj

ωj
=

∞∑
m=0

(−1)m
(2m+ 1)!

�m
j =: s(�j), j = 1, 2,

where s is an entire function with simple zeros at k2π2, k ∈ N, and no other zeros.
Although the choice of the square root in the definition of �j is ambiguous, the
uniqueness of the sets {�1(τ), �2(τ)}, τ ∈ C, shows that we can choose �j locally

in such a way that it is analytic, except at the point τ0 = − v4

4 . If c(τ0) = 0, then
�1(τ0) = �2(τ0) shows that s(�j(τ0)) = 0 for j = 1, 2. By l’Hôpital’s rule,

lim
τ→τ0

s(�j(τ))√
τ − τ0

= lim
τ→τ0

s′(�j(τ))�
′(τ)

(−1)j+1�′(τ)
= (−1)j−1s′

(
v2

2

)
.

It follows that

c′(τ0) = lim
τ→τ0

s(�1(τ))s(�2(τ))

τ − τ0
= lim

τ→τ0

s(�1(τ))√
τ − τ0

lim
τ→τ0

s(�2(τ))√
τ − τ0

= −
[
s′
(
v2

2

)]2
�= 0,

and therefore, if τ0 is a zero of c, then it must be simple. For τ �= τ0, �
′
j(τ) �= 0 is

obvious, so that all zeros of s ◦�j in C \ {τ0} are simple. In view of (4.3.14) and
(4.3.18), s(�j(τ)) = 0 if and only if

τ = �2
j − v2�j = π4k4j − π2v2k2j , kj ∈ N. (4.3.19)
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Since �1(τ) = �2(τ) if and only if τ = τ0, it follows that τ is a double zero of c
if and only if τ �= τ0 and (4.3.19) holds for j = 1 and j = 2, where τ �= τ0 holds if
and only if k1 �= k2. In this case,

π4k41 − π2v2k21 = τ = π4k42 − π2v2k22 ,

which means that v2 = π2(k21 + k22) and

τ = π4k41 − π4(k21 + k22)k
2
1 = −k21k22π4. �

Remark 4.3.10. 1. It is a rather curious fact that double eigenvalues can only be
of the form −k2π4 for integers k ≥ 2, and letting v2 = (1+ k2)π2 we see that each
such number can indeed be a double eigenvalue for a suitably chosen v > 0. The
sum of squares function, see [105, Section 16.9, Theorem 278] shows that for each
positive integer n we can find v such that the number of double eigenvalues of A
exceeds n.

2. Although in the original problem we assume v �= 0, we may apply (4.3.12)
to v = 0, in which case A = A+. Hence A+ ≥ π4. Then (4.3.9) leads to

v−4‖A−y‖2 = (A+y, y) ≥ π4‖y‖2, y ∈ D(A),

so that we have
‖A−y‖ ≥ v2π2‖y‖, y ∈ D(A). (4.3.20)

We know by Remarks 4.3.2 and 4.3.5 that the spectra of the operator pencils
(4.3.1) with B = iG, i. e.,

L(λ, η) = λ2I − iληG−A, η ∈ (0, 1),

consist of normal eigenvalues which are symmetric with respect to the real and
imaginary axes. Here we have to observe that by definition, the parameter η in
(4.3.2) satisfies η ∈ (0, 1).

The following criterion for stability was proved in [284].

Lemma 4.3.11 ([284]). Problem (4.3.2)–(4.3.5) is stable if and only if the spectrum
of the quadratic operator pencil L(·, η) is real and semisimple.

It is this criterion which we will use below to investigate the stability of the
pencil L. Consequently, we make the following definition.

Definition 4.3.12. Let η ∈ (0, 1). A quadratic operator pencil L(·, η) of the form
(4.3.1) is called stable if its spectrum is real and semisimple.

Remark 4.3.13. It should be mentioned that gyroscopic stabilization in terms
of moving eigenvalues can be described as follows. Assume that the operator A is
invertible and has negative eigenvalues. A symmetric pair of pure imaginary eigen-
values of L(·, 0) corresponds to each of them. When η > 0 grows the eigenvalues
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moving on the imaginary axis can collide. In this case they can leave the imaginary
axis in symmetric pairs. Then they can join the real axis, colliding with another
complex eigenvalue joining the real axis, and after a new collision they may again
leave the real axis. Thus instead of two pairs of pure imaginary eigenvalues there
appear two pairs of real eigenvalues. This can lead to gyroscopic stabilization.
But the pure imaginary eigenvalues can disappear only in the case when the total
algebraic multiplicity of the negative spectrum of A is even, otherwise one of the
eigenvalues will not find a partner to leave the imaginary axis. Here we have used
that eigenvalues of L(·, η) cannot cross the origin since L(0, η) = −A is invertible
for all η ∈ (0, 1).

Proposition 4.3.14. Assume that A� 0. Then all eigenvalues of L(·, η), η ∈ (0, 1),
are real and semisimple.

Proof. The spectrum of L(·, η) is real in view of Theorem 4.3.4. To show that all
eigenvalues are semisimple, assume that there is an eigenvalue λ of L(·, η) with
an eigenvector y0 and an associated vector y1. Writing L(λ, η) in the form (4.3.1),
this means by Definition 1.1.3, part 1, of associated vectors that

(λ2I − ληB −A)y0 = 0, (4.3.21)

(2λI − ηB)y0 + (λ2I − ληB −A)y1 = 0. (4.3.22)

Taking the inner product of (4.3.22) with y0 and observing that λ is real and that
A and B are self-adjoint, it follows in view of (4.3.21) that

2λ(y0, y0)− η(By0, y0) = 0.

Substituting η(B0y0, y0) from this equation into the inner product of (4.3.21) with
y0, we arrive at

0 = λ2(y0, y0)− λη(By0, y0)− (Ay0, y0) = −λ2(y0, y0)− (Ay0, y0),

which is impossible since the right-hand side is negative in view of λ ∈ R and
A� 0. This contradiction proves that all eigenvalues of L(·, η) are semisimple. �

Corollary 4.3.15. Assume that v < π. Then problem (4.3.2)–(4.3.5) is stable.

Proof. For v < π we have A� 0 by (4.3.12). An application of Proposition 4.3.14
and Lemma 4.3.11 completes the proof. �

Proposition 4.3.16. Assume that 0 ∈ σ(A). Then 0 ∈ σ(L(·, η)) and 0 is not
semisimple for all η ∈ (0, 1).

Proof. From Proposition 4.3.9 we know that all nonnegative eigenvalues of A have
geometric multiplicity 1. Hence the algebraic multiplicity of the eigenvalue 0 of
L(·, 0) is 2. Due to the symmetry of the spectrum of L(·, η), see Remark 4.3.5,
eigenvalues can leave 0 only in pairs, which is impossible since 0 is an eigenvalue of
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geometric multiplicity 1 of L(·, η) for all η. It follows that the algebraic multiplicity
of the eigenvalue 0 of L(·, η) is 2 for all η, and therefore 0 is not a semisimple
eigenvalue of L(·, η) for any η. �

We now consider the case that A has at least one negative eigenvalue. In
view of the eigenvalue formula (4.3.12) this is true if and only if v > π. Denote
by ζk(v

2) the kth eigenvalue of A, k ∈ N, enumerated in increasing order, that is,
ζk(v

2) ≤ ζk+1(v
2). Then there is k1 ∈ N such that ζk1 (v

2) < 0 and ζk1+1(v
2) ≥ 0.

Clearly, 0 ∈ σ(A) if and only if ζk1+1(v
2) = 0. From (4.3.12) we immediately

obtain that k1 is the largest integer k such that k < vπ−1.

Let us introduce the operator function

L(τ, η) = L(
√
τ, η) = τI − i

√
τηG−A.

We consider the term i
√
τηG as a perturbation of the linear pencil L0(τ) = τI−A.

Proposition 4.3.17. Let v > π, l ∈ (ζ1(v
2), 0)∩ρ(A) and d = min{dist(l, σ(A)), |l|},

and define

η∗ =
1

4
min{d|l|− 1

2 v−2, d
3
4 |l|− 1

2 v−1}. (4.3.23)

If η ∈ (0, η∗), then the total algebraic multiplicity of the spectrum of the pencil
L(·, η) in each of the two domains determined by the inequality (Reλ)2−(Imλ)2 ≤
l is equal to k(l), the number of eigenvalues of A below l.

Proof. All points of the line τ = l + is (s ∈ R) belong to the resolvent set of the
operator A. We are going to show that for all η ∈ (0, η∗), all points of the line
τ = l+ is, s ∈ R, also belong to the resolvent set of the operator function L(·, η).
Since the operator A is self-adjoint,we have the inequality

‖((l + is)I −A)y‖ ≥ (d2 + s2)
1
2 ‖y‖ (4.3.24)

for all y ∈ D(A). Consider the following two cases for s ∈ R and y ∈ D(A) \ {0}.
1. Let the pair s, y satisfy the condition

η(l2 + s2)
1
4 ‖Gy‖ < (d2 + s2)

1
2 ‖y‖. (4.3.25)

Then it follows that

‖L(l + is, η)y‖ = ‖((l + is)I − iη((l + is)
1
2G−A)y‖

≥ ‖((l + is)I −A)y‖ − η(l2 + s2)
1
4 ‖Gy‖ > 0 (4.3.26)

2. Now let the pair s, y satisfy the condition

η(l2 + s2)
1
4 ‖Gy‖ ≥ (d2 + s2)

1
2 ‖y‖. (4.3.27)
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We obtain from (4.3.9) and (4.3.11) for τ = l + is that

‖L(τ, η)y‖ ≥ ‖A+y‖ − ‖A−y‖ − |τ |‖y‖ − |τ | 12 η‖Gy‖
≥ v−4‖A−y‖2‖y‖−1 − ‖A−y‖ − (l2 + s2)

1
2 ‖y‖

− 2η(l2 + s2)
1
4 ‖A−y‖ 1

2 ‖y‖ 1
2 . (4.3.28)

It follows from (4.3.11) and (4.3.27) that

‖A−y‖ 1
2 ≥ 1

2
‖Gy‖‖y‖−1

2

≥ 1

2η
(l2 + s2)−

1
4 (d2 + s2)

1
2 ‖y‖ 1

2 . (4.3.29)

The estimate (4.3.29), d ≤ |l| and the fact that the function t �→ (a + t)p(b + t)q

takes its minimum on [0,∞) at t = 0 when a, b, p, q are real numbers satisfying
0 < a ≤ b, p ≥ 0 and p+ q ≥ 0 lead to

‖A−y‖ ≥ 1

4η2
|l|−1d2‖y‖,

‖A−y‖2 ≥ 1

16η4
|l|−3d4(l2 + s2)

1
2 ‖y‖2,

‖A−y‖ 3
2 ≥ 1

8η3
|l|−2d3(l2 + s2)

1
4 ‖y‖ 3

2 .

For η ∈ (0, η∗) the above estimates give

1

3
v−4‖A−y‖2‖y‖−1 > ‖A−y‖, (4.3.30)

1

3
v−4‖A−y‖2‖y‖−1 > (l2 + s2)

1
2 ‖y‖, (4.3.31)

1

3
v−4‖A−y‖2‖y‖−1 > 2η(l2 + s2)

1
4 ‖A−y‖ 1

2 ‖y‖ 1
2 . (4.3.32)

Consequently, for all pairs s, y satisfying (4.3.27), the inequalities (4.3.28) and
(4.3.30)–(4.3.32) show that ‖L(τ, η)y‖ > 0.

Combining cases 1 and 2 shows that L(τ, η) is injective. Since the spectrum
of L(·, η) consists only of eigenvalues, the points of the line τ = l + is, s ∈ R,
belong to the resolvent set of L(τ, η) for all η ∈ (0, η∗).

The transformation λ2 = τ maps the half-plane Re τ ≤ l into two domains
Ω± in the open upper and lower half-planes, which are the sets of λ ∈ C determined
by the inequality (Reλ)2 − (Im λ)2 ≤ l < 0. Since L(·, η) has no eigenvalues on
the line Re τ = l for η ∈ [0, η∗), it follows that L(·, η) has no eigenvalues on the
curves (Reλ)2 − (Imλ)2 = l for η ∈ [0, η∗). Bearing in mind the continuity in η
of the eigenvalues of the operator function L(·, η) and that by Lemma 4.3.1 the
nonreal eigenvalues have a bound which does not depend on η, it follows that the
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total algebraic multiplicity of the spectrum of the pencil L(·, η) in each of the two
domains Ω± does not depend on η for η ∈ [0, η∗). Since this multiplicity is k(l) for
η = 0, the proof is complete. �

Corollary 4.3.18. Under the assumptions of Proposition 4.3.17 let η ∈ (0, η∗).
Then the total algebraic multiplicity κ of the spectrum of L(·, η) in the open lower
half-plane satisfies the inequality κ ≥ k(l).

Corollary 4.3.19. Let η ∈ (0, 1) and v ≥ π. If nπ < v < (n + 1)π for some even
integer n, assume additionally that η < η∗, where η∗ is defined in (4.3.23). Then
problem (4.3.2)–(4.3.5) is unstable.

Proof. For v > π and η ∈ (0, η∗) the statement follows from Definition 4.3.12 and
Corollary 4.3.18 if we observe that k(l) > 0 for any suitably chosen l. If v does not
belong to an interval of the form (nπ, (n+1)π) with even n, then v ∈ (nπ, (n+1)π)
for some odd integer n or vπ−1 is an integer. The first case means that 0 ∈ ρ(A)
and the total algebraic multiplicity of the negative spectrum of A is n and therefore
odd. Hence it follows from Remark 4.3.13 that the problem is unstable in this case.
Finally, if vπ−1 is an integer, then 0 ∈ σ(A), and Proposition 4.3.16 shows that
the problem is unstable. �

Theorem 4.3.20. Let v > π, let d = 1
2 |ζk1(v

2)| and define

η∗1 =
1

4
min{d 1

2 v−2, d
1
4 v−1}.

Then for η ∈ (0, η∗1) the total algebraic multiplicity of the spectrum of the pencil
L(·, η) in the open lower half-plane is equal to the total algebraic multiplicity k1 of
the negative spectrum of the operator A.

Proof. The number η∗1 is the special case of the number η∗ defined in (4.3.23)
for l = 1

2 |ζk1(v
2)|. Let η ∈ (0, η∗1). Then the total algebraic multiplicity of the

spectrum of the pencil L(·, η) in the open lower half-plane is at least as large as
the total algebraic multiplicity of the negative spectrum of the operator A in view
of Proposition 4.3.17. Since it cannot be larger by Theorem 4.3.4, the proof is
complete. �

Above we have found a reasonably simple constant η∗. We are now going to
find the optimal constant based on the estimate (4.3.29). Here we consider now
l ∈ (ζ1(v

2), 0]∩ ρ(A) and d = dist(l, σ(A)). Observe that we now allow d > |l| and
also l = 0 when 0 ∈ ρ(A). Similar to above, let m(a, b, p, q) be the infimum of the
function f : (0,∞)→ R defined by f(t) = (a+ t)p(b+ t)q, where a, b, p, q are real
numbers satisfying a > 0, b ≥ 0, p > 0, q < 0, and p+ q > 0. If bp+ aq ≥ 0, then
b > 0 and f is also defined at 0. It is easy to see that the minimum of f is then
taken at 0, and we have

m(a, b, p, q) = apbq if bp+ aq ≥ 0. (4.3.33)
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If bp+ aq < 0, then the minimum is taken at − bp+aq
p+q , and we have

m(a, b, p, q) =

(
a− b

p+ q

)p+q

pp(−q)q if bp+ aq < 0. (4.3.34)

Then the estimate (4.3.29) leads to

‖A−y‖ ≥ 1

4η2
m

(
d2, l2, 1,−1

2

)
‖y‖,

‖A−y‖2 ≥ 1

16η4
m

(
d2, l2, 2,−3

2

)
(l2 + s2)

1
2 ‖y‖2,

‖A−y‖ 3
2 ≥ 1

8η3
m

(
d2, l2,

3

2
,−1
)
(l2 + s2)

1
4 ‖y‖ 3

2 .

For α, β, γ in (0, 1) such that α+ β + γ = 1 we obtain

αv−4‖A−y‖2‖y‖−1 > ‖A−y‖,
βv−4‖A−y‖2‖y‖−1 > (l2 + s2)

1
2 ‖y‖,

γv−4‖A−y‖2‖y‖−1 > 2η(l2 + s2)
1
4 ‖A−y‖ 1

2 ‖y‖ 1
2

if η ∈ (0, η̂(l, v, α, β, γ)), where

η̂(l, v2, α, β, γ) = min{α1a1, β1b1, γ1c1}

with α1 = α
1
2 , β1 = β

1
4 , γ1 = γ

1
4 and

a1 =
1

2v2
m

(
d2, l2,

1

2
,−1

4

)
, (4.3.35)

b1 =
1

2v
m

(
d2, l2,

1

2
,−3

8

)
, (4.3.36)

c1 =
1

2v
m

(
d2, l2,

3

8
,−1

4

)
. (4.3.37)

It is clear that this minimum is maximal as a function of α, β, γ when the three
numbers α1a1, β1b1, γ1c1 are equal, because for any other choice of the parameters
α, β, γ, at least one of these numbers will be smaller. It is easy to see that
α1a1 = β1b1 = γ1c1 if and only if

α1 =
δ1b1c1

a1b1 + a1c1 + b1c1
, β1 =

δ1a1c1
a1b1 + a1c1 + b1c1

, γ1 =
δ1a1b1

a1b1 + a1c1 + b1c1
,

where δ1 = α1 + β1 + γ1, and in this case,

η̃(l, v) = α1a1 = β1b1 = γ1c1 =
δ1a1b1c1

a1b1 + a1c1 + b1c1
. (4.3.38)
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We still have to find δ1. We observe that from

α2
1 + β4

1 + γ4
1 = α+ β + γ = 1

we obtain the equation

1 =
δ21b

2
1c

2
1

(a1b1 + a1c1 + b1c1)2
+

δ41a
4
1(c

4
1 + b41)

(a1b1 + a1c1 + b1c1)4
,

which can be written in the form

g1δ
4
1 + f1δ

2
1 = e1

with

e1 = (a1b1 + a1c1 + b1c1)
4, f1 = b21c

2
1(a1b1 + a1c1 + b1c1)

2, g1 = a41(c
4
1 + b41).

It follows that

δ1 =
1√
2g1

√
−f1 +

√
4e1g1 + f2

1

=

√
−b21c21 +

√
4a41(b

4
1 + c41) + b41c

4
1 (a1b1 + a1c1 + b1c1)√

2a21
√
b41 + c41

=

√
2 (a1b1 + a1c1 + b1c1)√

b21c
2
1 +
√
4a41(b

4
1 + c41) + b41c

4
1

.

Substitution into (4.3.38) gives

η̃(l, v) =

√
2a1b1c1√

b21c
2
1 +
√
4a41(b

4
1 + c41) + b41c

4
1

. (4.3.39)

Hence we may replace the number η∗ in (4.3.23) by the optimal number η̃(l, v)
given by (4.3.39). Although the calculations to find η̃(l, v) are quite involved, they
are explicit for each given pair v and l. The number η̃(l, v) can therefore be easily
calculated with computer algebra programmes or numerically.

Finally, we define

η∗(v) = sup
l∈(ζ1(v2),0]∩ρ(A)

η̃(l, v), v > 2π. (4.3.40)

Then we have the following improvement of Corollary 4.3.18.

Corollary 4.3.21. Assume that v satisfies nπ < v < (n + 1)π for some positive
even integer n and that 0 < η < η∗(v). Then problem (4.3.2)–(4.3.5) is unstable.



4.3. Gyroscopically stabilized operator pencils 109

Similarly, we define

η∗0(v) = sup
l∈(ζk1 (v

2),0]

η̃(l, v), v > 2π, vπ−1 �∈ Z. (4.3.41)

Then we have the following improvement of Theorem 4.3.20.

Theorem 4.3.22. Assume that v satisfies nπ < v < (n+1)π for some positive inte-
ger n and that 0 < η < η∗0(v). Then for η ∈ (0, η∗0) the total algebraic multiplicity
of the spectrum of the pencil L(·, η) in the open lower half-plane is equal to the
total algebraic multiplicity k1 of the negative spectrum of the operator A.

Although the numbers η̃(l, v) are explicitly given, it is not easy to find the
corresponding suprema (4.3.40) and (4.3.41). For j = 1, . . . , k1−1, let lj(v2) be the
midpoint between ζj(v

2) and ζj+1(v
2), let lk1(v

2) be the midpoint between ζk1(v
2)

and 0, and let l0(v
2) = 0. Then we define η̃j(v) = η̃(lj , v) for l = 0, . . . , kj . It should

be reasonable to expect that the maximum of η̃0(v) and η̃k1(v) is relatively close
to η∗0 . Furthermore, the maximum of η̃j(v) for j = 0, . . . , k1 might be quite close to
η∗(v). Here we have to note that the values of the function m in (4.3.35)–(4.3.37)
are given by (4.3.34) for l = 0 and by (4.3.33) for lj(v) with l = 1, . . . , kj since
d ≤ |l| if l is the midpoint of two nonpositive real numbers and d the distance of
the midpoint from these two numbers.

A simpler expression will be obtained if we estimate the denominator in
η̃(l, v) as follows:

(4a41b
4
1 + 4a41c

4
1 + 2b41c

4
1)

1
4 ≤

√
b21c

2
1 +
√

4a41(b
4
1 + c41) + b41c

4
1

≤ 2
1
4 (4a41b

4
1 + 4a41c

4
1 + 2b41c

4
1)

1
4 .

Then the numbers

η̃1(l, v) =

(
1

2a41
+

1

b41
+

1

c41

)− 1
4

satisfy

2−
1
4 η̃1(l, v) ≤ η̃(l, v) ≤ η̃1(l, v). (4.3.42)

We are now going to present explicit η-bounds for the case that v ∈ (4π, 5π).
We have seen in (4.3.12) that A has 4 negative eigenvalues, which we will denote
by τn(v

2) = π4n4−π2v2n2, n = 1, 2, 3, 4, and that the smallest positive eigenvalue
is ζ5(v

2) = 625π4−25π2v2. It is easy to see that τ1(v
2) > τ2(v

2) > τ3(v
2) and that

τ4(v
2) > τ1(v

2) if 4π < v <
√
17π, τ1(v

2) > τ4(v
2) > τ2(v

2) if
√
17π < v <

√
20π,

and τ2(v
2) > τ4(v

2) > τ3(v
2) if

√
20π < v < 5π. Numerical calculation starting at

v = 4.01 π up to v = 4.99 π with step size 0.02 π give the following graphs.
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0.1

4π
√
17π

√
20π 5π

η̃4

η̃0
0.1

4π
√
17π

√
20π 5π

η̃1

η̃2 η̃3

This shows the somewhat surprising fact that η̃0(v) is the best of these five val-
ues, except for v very close to 4π or 5π, respectively, in which case η̃2 and η̃3,
respectively, appear to be best.

Further numerical calculations with 200 values for l show that the maximum
over the corresponding values of η̃(l, v) does not exceed the maximum of η̃j(v),
j = 0, . . . , 4, except for values of v which are very close the 5π. But even in these
cases, the improvement is marginal.

Another necessary condition of instability was obtained in [217].

For a positive number ξ1 we denote by κ(iξ1, η) the total algebraic multiplicity
of the spectrum of L(λ, η) located on the interval (iξ1, i∞).

Lemma 4.3.23. Let η1 > 0, ξ1 > 0 and assume that iξ1 ∈ ρ(L(·, η)) for all η ∈
[0, η1]. Then the parity of κ(iξ1, η) is independent of η ∈ [0, η1], that is, if κ(iξ1, 0)
is odd (even), then κ(iξ1, η) is odd (even) for all η ∈ [0, η1].

Proof. Making use of the fact that the spectrum of L(·, η) is symmetric with
respect to the imaginary axis by Remark 4.3.5, the proof is similar to the proof
of Theorem 4.3.6, if we additionally observe that eigenvalues on the imaginary
axis cannot move through iξ because of the assumption iξ1 ∈ ρ(L(·, η)) for all
η ∈ [0, η1]. �
Lemma 4.3.24. Let v > 2π. If

0 < η ≤ 2−
3
2 v−2(ζ2(v

2)− ζ1(v
2))|ζ1(v2) + ζ2(v

2)|− 1
2 , (4.3.43)

then the points ±λ1 = ±i2−1
2 |ζ1(v2) + ζ2(v

2)| 12 belongs to ρ(L(·, η)).
Proof. Let η > 0 and ξ > 0 and assume that iξ or −iξ is an eigenvalue of L(·, η).
Let y be a corresponding eigenvector, which can be chosen to be real. Then

−ξ2y + ηξGy −A+y −A−y = 0. (4.3.44)

The operator G is real and antisymmetric, and therefore

(Gy, y) = 0. (4.3.45)

Using (4.3.44) and (4.3.45) we obtain

(A+y, y) = −(A−y, y)| − ξ2‖y‖2 ≤ ‖A−y‖‖y‖ − ξ2‖y‖2. (4.3.46)
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In view of (4.3.9) and (4.3.46) we arrive at

v−4‖A−y‖2 ≤ ‖A−y‖‖y‖ − ξ2‖y‖2,

which implies

‖A−y‖ ≤
(
1

2
v4 +

1

2

√
v8 − 4v4ξ2

)
‖y‖. (4.3.47)

Combining (4.3.11) with (4.3.47) gives

‖Gy‖ ≤ v2
√
2 + 2

√
1− 4v−4ξ2 ‖y‖. (4.3.48)

From (4.3.48) we obtain

0 = ‖L(±iξ, η)y‖ ≥ ‖ − ξ2y −Ay‖ − ηξ‖Gy‖

≥
(
d(iξ)− ηv2ξ

√
2 + 2

√
1− 4v−4ξ2

)
‖y‖, (4.3.49)

where d(iξ) is the distance between the point −ξ2 and the spectrum of A. Thus
we have proved that

η >
1

2
v−2ξ−1d(iξ). (4.3.50)

Since v > 2π, both ζ1(v
2) and ζ2(v

2) are negative, and therefore (±iλ1)
2 is

the midpoint between ζ1(v
2) and ζ2(v

2). Evidently, d(±λ1) =
1
2 (ζ1(v

2)− ζ2(v
2)).

Therefore, the right-hand sides of (4.3.50) and (4.3.43) are equal for iξ = λ1. Thus
(4.3.50) is false, which proves that ±λ1 cannot be an eigenvalue of L(·, η). �

Theorem 4.3.25. Under condition (4.3.43) the total algebraic multiplicity of the

spectrum of the operator pencil L(·, η) in the interval (i2−
1
2 |ζ1(v2) + ζ2(v

2)| 12 , i∞)
is odd.

Proof. For η = 0 the total algebraic multiplicity of the spectrum of L(λ, η) lo-

cated in the interval (i2−
1
2 |ζ1(v2)+ ζ2(v

2)| 12 , i∞) is 1. Hence the statement of this
theorem immediately follows from Lemmas 4.3.23 and 4.3.24. �

Corollary 4.3.26. Under condition (4.3.43), problem (4.3.2)–(4.3.5) is unstable.

In (4.3.50) and (4.3.43) we have simplified the condition for instability derived
from the inequality (4.3.49). Using the full strength of the inequality (4.3.49), we

may divide the right-hand side of (4.3.43) by 1
2

√
2 + 2

√
1− 4v−4ξ2 to obtain a

slightly larger η-interval of instability.

The contrapositive of Corollary 4.3.26 gives the following necessary condition
for gyroscopic stabilization:

η > 2−
3
2 v−2(ζ2(v

2)− ζ1(v
2))|ζ0(v2) + ζ1(v

2)|− 1
2 .
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Inequality (4.3.43) can be written in explicit form by finding ζ1(v
2) and ζ2(v

2)
explicitly. We already know from Corollary 4.3.19 that the problem is unstable if
v ∈ [(2n − 1)π, 2nπ], n ∈ N. Hence we may restrict our calculations to the case
that v ∈ (2πn, π(2n+ 1)), n ∈ N. For example, we will consider n = 1 and n = 2.

If v ∈ (2π, 3π), then A has exactly two negative eigenvalues, and therefore

{ζ1(v2), ζ2(v2)} = {−π2v2 + π4,−4π2v2 + 16π4}.
Substituting these values into (4.3.43) we obtain the following domains of insta-
bility: {

2π ≤ v ≤ 3π,

0 < η < 2−
3
2 v−2|5π4 − 3π2v2|(5π2v2 − 17π4|− 1

2 .

For v ∈ (4π, 5π), we have noted on page 109 that ζ1(v
2) = 81π4 − 9π2v2,

whereas ζ2(v
2) = 16π4 − 4π2v2 if v ≤ √20π and ζ2(v

2) = 256π4 − 16π2v2 if
v ≥ √20π. This gives the following domains of instability:{

4π ≤ v ≤ √20π,
0 < η < 2−

3
2 v−2(5π2v2 − 65π4)(13π2v2 − 97π4)−

1
2

and {√
20π ≤ v ≤ 5π,

0 < η < 2−
3
2 v−2(175π4 − 7π2v2)(25π2v2 − 337π4)−

1
2 .

Numerical calculations show that, even with the slight improvement mentioned
after Corollary 4.3.26, the values of the upper bound is smaller than 0.0005 for
v ∈ (4π, 5π). This indicates that the value η∗(v) is (much) better than the value
on the right-hand side of (4.3.43).

4.4 Notes

In the papers [65], [261], [133], [283] the authors considered, in our notation, a
finite-dimensional operator pencil λ2M − λB − A with Hermitian matrices A,
B, and M > 0. It was shown that the zeros of the characteristic polynomial
det(λ2M − λB −A) can be all real and simple, i. e., the corresponding dynamical
system described by the equation

M
d2u

dt2
− iB

du

dt
+Au = 0,

can be stable even if some of the eigenvalues of A are negative. Here u is a vector
whose components are small angular displacements of a moving shell, M is the
inertia matrix, the real antisymmetric matrix iB describes gyroscopic forces and A
describes potential forces. This effect, called gyroscopic stabilization, was pointed
out by W.T. Kelvin and P.G. Tait [140]. They made the assertion, see [140, 345VI]:
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“When there is any dissipativity the equilibrium in the zero position is
stable or unstable according as the same system with no motional forces,
but with the same positional forces, is stable or unstable. The gyroscopic
forces which we now proceed to consider may convert instability into
stability” . . . “when there is no dissipativity: – but when there is any
dissipativity gyroscopic forces may convert rapid falling away from an
unstable configuration into falling by (as it were) exceedingly gradual
spirals, but they cannot convert instability into stability if there be any
dissipativity.”

That is, the character of A alone determines the stability of the system containing
both dissipative and gyroscopic terms.

Ziegler made a similar conclusion following [286, Example 16.1] when he
states, see [286, p. 117],

“Theorem 16b. Dissipative forces, applied to other than purely nongy-
roscopic systems, may have a destabilizing effect.”

W.T. Kelvin and P.G. Tait’s statement was proved by N.G. Četaev, see
[52, p. 89] with the aid of Ljapunov function techniques. It is now commonly
referred to as the Kelvin–Tait–Četaev theorem. For the finite-dimensional case
another proof of the Kelvin–Tait–Četaev theorem was given in [283], who also
proved that the number of eigenvalues, with account of multiplicity, of the matrix
pencil λ2I − iλK − λB − A is equal to the total multiplicity of the negative
spectrum of A. The matrix formulation of the Kelvin–Tait–Četaev–Zajac theorem
has been extended to operators in Hilbert spaces by A.I. Miloslavskii, see [191],
[192]. Theorem 4.1.8, which was proved in [208], is a generalization of the Kelvin–
Tait–Četaev–Zajac–Miloslavskii theorem to quadratic operator pencils which are
allowed to possess essential spectrum.

The Kelvin–Tait–Četaev theorem agrees with experience. Consider a child’s
top. The unspun top is unstable. With sufficient spin and with no friction the
upright orientation of the top is stable. But the top falls down due to damping at
the support.

IfK = 0, existence of gyroscopic stabilization is clear in the finite-dimensional
case if, for example, the matrix B is positive. Then the pencil λ2I − ληB −A has
only real and semisimple eigenvalues for η > 0 large enough. More refined results
on this topic can be found in [165], [116], [118], [117], [161], [160], [267].

The results in Subsection 4.3.2 are based on work in [209], [210], [217]. It
was shown in [200] that the pipe is stable for 0 ≤ v < π and unstable for v = πn,
n ∈ N.

Problem (4.3.2)–(4.3.5) and related problems were studied in [206], [68], [67],
[191] and [284] by numerical methods. It was shown in [206] that gyroscopic stabi-
lization is possible, i. e., it was shown that although the pipe is unstable for some
v and η = 0, it can be stable for the same v and some η > 0. In [284] gyroscopic
stabilization was obtained for this problem, where it is stated that for η > 3−1/2
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and v = 2π + δ2, where δ is small enough, problem (4.3.2)–(4.3.3) is stable. But
the proof is probably not correct.

The instability index

κ =

N∑
j=1

n−j +

∞∑
k=1

(nk − pk),

was investigated in [164], where n−j are the algebraic multiplicities of the eigen-
values of the pencil located in the lower half-plane, and nk are the algebraic and
pk are the geometric multiplicities of the eigenvalues of the pencil located on the
real axis.

In [23] and [24] another situation was considered where a different version of
gyroscopic stabilization occurred. In these papers the operators were supposed to
be self-adjoint and bounded, and the pencil is given by L(λ) = λ2I+λB+A. The
quadratic operator pencil L is said to be (almost) gyroscopically stabilized if A > 0,
B is invertible and indefinite and |B| − kI − k−1A is positive (semi-)definite for
some k > 0, where |B| denotes the positive square root of B2. It was shown in [24]
that the spectrum of an almost gyroscopically stabilized pencil is real. However,
this result cannot be applied to the operator pencils considered in Subsection 4.3.2.
Whereas the unboundedness of our operators may be more of a technical issue,
the definiteness of A is crucial as the following simple example shows. For

A =

(
0 1
1 0

)
, B =

(
2η 0
0 −2η

)
it is easy to see that the pencil L is almost gyroscopically stabilized if η ≥ 1. But
the eigenvalues are the four numbers λ satisfying

λ2 = 2η2 ±
√
4η2 + 1,

which shows that the pencil has two real eigenvalues and two nonreal eigenvalues.

A collection of problems for finite-dimensional quadratic operator pencils,
including those with gyroscopic terms, together with algorithms for finding eigen-
values can be found in [29].

We now return to the pencil with a damping term but without gyroscopic
term, i. e., λ2M − iλK − A, where we have introduced a bounded self-adjoint
operatorM � 0 in accordance with the publications we will discuss below. Clearly,
this operator pencil is similar to a monic operator pencil. In [182, Section 31] the
pencil τ2M + τK +A is called hyperbolic if

(Ky, y)2 − 4(Ay, y)(My, y) > 0, y ∈ D(A) \ {0}.

Clearly, the pencil is equivalent to our pencil with respect to the parameter trans-
formation λ = −iτ . With the physical meaning of this condition in mind, this
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condition is also called overdamped, see [69] and [268, Chapter 14] for the finite-
dimensional case. It is clear that under this condition the pencil has only pure
imaginary eigenvalues. Indeed, if λ is an eigenvalue and y is a corresponding eigen-
vector, then

λ =
i(Ky, y)±√−(Ky, y)2 + 4(My, y)(Ay, y)

2(My, y)

is pure imaginary. This result can be proved by variational principles, see [1, Ch.
5, Theorem 5.4]. Conversely, the eigenvalues are not pure imaginary in the case of
a weakly damped pencil, i. e., when (Ky, y)2 < 4(My, y)(Ay, y), y ∈ D(A) \ {0}.

Rotating the eigenvalue parameter, hyperbolic problems are linked to gyro-
scopically stabilized problems. For more details we refer the reader to [23] and [24].
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Hermite–Biehler Functions



Chapter 5

Generalized Hermite–Biehler
Functions

5.1 S-functions and Hermite–Biehler functions

In this section we present some useful definitions and classic results on entire
functions due to B.Ya. Levin, N.I. Ahiezer, M.G. Krĕın, N.N. Mĕıman as they are
described in [173].

If Ω is an open subset of the complex plane C, then Ω∗ = {λ ∈ C : λ ∈ Ω}
denotes its conjugate complex set. For a function ω which is defined and analytic
on a domain Ω, its conjugate complex ω is defined on Ω∗ by

ω(λ) = ω(λ), λ ∈ Ω∗.

Then also ω is analytic.

In the following, we will not take explicit care of the domains of analytic
functions. For example, if we take a sum of two analytic functions, then its domains
will be the intersection of the domains of the summands, possibly enlarged through
analytic continuation. In particular, when both ω and ω occur in an algebraic
expression such as a sum and quotient, then it will be implicitly assumed that
Ω ∩ Ω∗ is dense in Ω; often Ω and Ω∗ will coincide or differ in a discrete set of
points. In particular, since Ω is connected, Ω∩R is an open nonempty subset of R.

Definition 5.1.1 ([173, pp. 305, 317]). The real and imaginary parts Rω and Iω of
the analytic function ω are defined by

Rω =
1

2
(ω + ω), Iω =

1

2i
(ω − ω).

An analytic function ω is said to be real if it takes real values on the real axis.

Remark 5.1.2. 1. By the identity theorem it is clear that ω is real if and only if
ω = ω.
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2. Let Ω be the domain of the analytic function ω and assume that Ω∩Ω∗ is dense
in Ω. Then the real and imaginary parts Rω and Iω are real, and

ω = Rω + i Iω.

If ω is written in the form

ω = P + iQ (5.1.1)

with real analytic functions P and Q, then P and Q are uniquely determined by ω,
and P = Rω and Q = Iω. We will often write P and Q instead of Rω and Iω.

Definition 5.1.3 ([173, p. 314]). The pair of real entire functions P and Q is said
to be a real pair if P and Q have no common zeros and if all zeros of any of their
nontrivial real linear combinations μP + ϑQ, μ, ϑ ∈ R, μ2 + ϑ2 > 0, are real.

Definition 5.1.4 ([173, p. 307]). The entire function ω is said to be a function of
Hermite–Biehler class (HB class) if it has no zeros in the closed lower half-plane
C− and if ∣∣∣∣ω(λ)ω(λ)

∣∣∣∣ < 1 for Imλ > 0. (5.1.2)

Remark 5.1.5. For nonconstant polynomials, (5.1.2) is redundant since it follows
from the absence of zeros in the closed lower half-plane.

We recall the Weierstrass Factorization Theorem, see, e. g., [55, Theorem
VII.5.14]: every nonzero entire function ω has a product representation of the
form

ω(λ) = λmeg(λ)
(∞)∏
k=1

(
1− λ

ak

)
e
Pk

(
λ
ak

)
, (5.1.3)

where m is the multiplicity of the zero of ω at 0, with m = 0 if ω(0) �= 0, (∞)
indicates that the product may end at a finite number or be void, g is an entire
function, the ak are the nonzero zeros of ω, counted with multiplicity, and where
the Pk are polynomials of the form

lk∑
j=1

λj

j
(5.1.4)

of suitable degree lk, with the zero polynomial if lk = 0. Convergence of the infinite
product is guaranteed if the degree of Pk is chosen to be k.

If convenient, also nonpositive integers may be used in the indexing of the
zeros in (5.1.3), the Pk may be chosen to be zero for finitely many k, and 1 − λ

ak

may be replaced with λ− ak for finitely many k.
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For convenience, we introduce the following notations.

Remark 5.1.6. Let a and b be countable sets of real numbers, at least one of them
nonempty, without limit points. Assume that a and b are interlacing sets, i. e.,
a ∩ b = ∅, if a has at least two elements, then between any two elements of a
there is an element of b, and if b has at least two elements, then between any two
elements of b there is an element of a. With a and b we associate index sets Ia and
Ib which are sets of consecutive integers such that we can write a = {ak : k ∈ Ia}
and b = {bk : k ∈ Ib}, where both ak and bk are strictly increasing with k, and
such that ak is the largest element in a smaller than bk and bk is the smallest
element in b larger than ak, with the possible exception of a largest ak+ in a and
a smallest bk− in b. We can choose the index sets in such a way that ak < 0 and
bk < 0 whenever k < 0, and ak > 0 and bk > 0 whenever k > 0. Whenever possible,
we will assume that 0 ∈ Ia ∩ Ib, but we will always assume that 0 ∈ Ia ∪ Ib.

We say that the zeros of two entire functions interlace if all zeros are real
and simple and if the sets of their zeros interlace. An analogue definition is used
for interlacing poles and zeros of a meromorphic function on C.

Below we will consider products of functions containing the factors λ − a0
and λ− b0, respectively. If 0 �∈ Ia, then λ− a0 has to be replaced with 1, whereas
if 0 �∈ Ib, then λ− b0 has to be replaced with −1. In order to remind the reader of
this convention, we will use the notations (λ− a0)+ and (λ− b0)−, respectively.

Finally, we observe that if Ia = Ib = Z, then the ordering conditions can be
written as ak < bk < ak+1 for all k ∈ Z and b−1 < 0 < a1, and this extends to the
general case whenever the corresponding numbers exist in the sets Ia and Ib.

The following criterion is due to N.N. Mĕıman, see [173, Theorem 3, p. 311].

Theorem 5.1.7. Let ω = P + iQ, where P and Q are real entire functions. For
the function ω to be of HB class it is necessary and sufficient that the following
conditions are satisfied:

(i) all zeros of the functions P and Q are real, at least one of the functions P
or Q has at least one zero, and the zeros of the functions P and Q interlace;

(ii) the functions P and Q have the following expansions into infinite products:

P (λ) = Aeu(λ)(λ− a0)+
∏

k∈Ia\{0}

(
1− λ

ak

)
e
Pk

(
λ
ak

)
, u(0) = 0, (5.1.5)

Q(λ) = Bev(λ)(λ− b0)−
∏

k∈Ib\{0}

(
1− λ

bk

)
e
Qk

(
λ
bk

)
, v(0) = 0, (5.1.6)

where u and v are entire functions and Ia and Ib are as defined in Remark
5.1.6.

(iii) the constants A and B are nonzero real numbers and have the same sign;
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(iv) the entire functions u and v and the polynomials Pk and Qk satisfy

u(λ)− v(λ) +

∞∑
k=−∞,k �=0

[
Pk

(
λ

bk

)
−Qk

(
λ

ak

)]
= 0, (5.1.7)

where Pk = 0 or Qk = 0 if k �∈ Ia or k �∈ Ib, respectively.

Proof. First assume that ω is of HB class. Then ω has no zero in the closed lower
half-plane, i. e., ω and ω and thus P and Q have no common zeros. By Lemma
11.1.1, θ = QP−1 is a real meromorphic function which maps the open upper
half-plane into itself. Since P and Q have no common zeros, the zeros of θ are the
zeros of Q and the poles of θ are the zeros of P . Hence property (i) immediately
follows from Theorem 11.1.6. Clearly, the product representations (5.1.3) of P and
Q can be written in the form (5.1.5) and (5.1.6), respectively, where A and B are
nonzero numbers. From

A = lim
λ→0

P (λ)

(λ− a0)+

we see that A ∈ R; similarly, B ∈ R. Furthermore, with the notations from
Theorem 11.1.6 and this theorem we have that

B

A
ew(λ) = C,

where C > 0 and

w(λ) = v(λ) − u(λ) +

∞∑
k=−∞,k �=0

[
Qk

(
λ

bk

)
− Pk

(
λ

ak

)]
.

Therefore w is constant, and u(0) = v(0) = Pk(0) = Qk(0) = 0 shows that w = 0
and thus A and B have the same sign.

Conversely, assume that the conditions (i)–(iv) are satisfied. Then θ = QP−1

is a real meromorphic function θ of the form (11.1.2). By Theorem 11.1.6 it follows
that θ maps the open upper half-plane into itself, and Lemma 11.1.1 shows that
ω has no zeros in the open lower half-plane and that F = ωω−1 maps the open
upper half-plane into the open unit disc. Finally, since a real zero of ω would be
a common real zero of the real entire functions P and Q, it follows that ω cannot
have real zeros. �

Definition 5.1.8 ([173, p. 313]). An entire function ω which has no zeros in the
open lower half-plane and satisfies the condition∣∣∣∣ω(λ)ω(λ)

∣∣∣∣ ≤ 1 for Imλ > 0 (5.1.8)

is said to be a function of the generalized Hermite–Biehler class (HB class).
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The next proposition shows that generalized Hermite–Biehler functions can
be characterized in terms of Hermite–Biehler functions and real analytic functions
with real zeros.

Theorem 5.1.9. An entire function ω is of HB class if and only if ω = ω1ω2, where
ω2 is a real entire function with only real zeros and ω1 is either of HB class or a
nonzero constant.

Proof. It is easy to see that if ω = ω1ω2, where ω2 is a real function with only real
zeros and ω1 is either of HB class or a nonzero constant, then ω is of HB class.

Conversely, let ω be of HB class. If |ω(λ)ω−1(λ)| = 1 for some λ in the upper
half-plane, then ωω−1 would be a constant function in the open upper half-plane
by the maximum modulus principle. Hence there is a complex number α1 with
|α1| = 1 such that α1ω = ω in the open upper half-plane and hence also in C

by the identity theorem. Choosing α ∈ C such that α2α1 = 1 and observing that
α−1 = α, it follows that

ω2 := α−1ω = αα1ω = αω = α−1ω = ω2,

so that ω2 is real and αω2 = ω. Furthermore, since ω has no zeros in the open
lower half-plane, so has the function ω2. Since the zeros of a real function are
symmetric with respect to the real axis, ω2 therefore has only real zeros.

Now let ω be of HB class satisfying (5.1.2). Using a product representation
we see that there is a real analytic function ω2 which has the same real zeros
as ω, counted with multiplicity. Then ω1 := ωω−1

2 has no zeros in the closed lower
half-plane and satisfies (5.1.2), i. e., ω1 is of HB class. �

Theorems 5.1.7 and 5.1.9 give a first characterization of functions in the
generalized Hermite–Biehler class, see also [173, p. 314].

Proposition 5.1.10. The closure of the HB class in the topology of uniform con-
vergence on compact subsets of C consists of all functions in the HB class and the
zero function.

Proof. If (ωn)
∞
n=1 is a sequence in HB which converges uniformly on compact

subset of C to some ω, then either ω has no zeros in the open lower half-plane
or ω is identically zero by Hurwitz’ theorem, see [55, Corollary VII.2.6]. Clearly,
(5.1.2) for ωn implies (5.1.8) for ω if ω is not identically zero.

Conversely, if ω is a real analytic function of HB class and if it has at least
one real zero, then we replace all real zeros ak by the complex zeros ak+iαkn in the
product representation of ω. For suitably chosen small positive numbers αkn the
product representation converges to a function ωn of HB class, and the ωn converge
to ω uniformly on compact sets. If ω is a real analytic function without zeros, then
ωn(λ) = (1 + iλn )ω(λ) is a sequence of functions of HB class converging to ω. An

application of Theorem 5.1.9 shows that every function of HB class is the uniform
limit on compact subsets of functions of HB class. Finally, χn(λ) =

1
n (λ−i) defines

a sequence (χn)
∞
1 in HB which converges to 0 uniformly on compact sets. �
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The following theorem is due to M.G. Krĕın, see [173, Theorem 6, p. 318].
We note that a polynomial Pk of the form (5.1.4) is a real polynomial. Below

the notation RPk

(
λ
αk

)
for αk ∈ C \ {0} means the real part of the function

λ �→ Pk

(
λ
αk

)
.

Theorem 5.1.11. In order that the entire function ω be of HB class, it is necessary
and sufficient that it can be represented in the form

ω(λ) = λmeu(λ)+i(νλ+δ)

(∞)∏
k=1

(
1− λ

αk

)
e
RPk

(
λ
αk

)
, (5.1.9)

where m ∈ N0, ν ≥ 0, δ ∈ R, u is a real entire function and

(∞)∑
k=1

∣∣∣∣Im 1

αk

∣∣∣∣ <∞, Imαk ≥ 0 for all k. (5.1.10)

Proof. For the convenience of the reader we recall Levin’s proof. First let ω be of

HB class and denote the sequence of its nonzero zeros by (αk)
(∞)
k=1. The function

ψ defined by

ψ(λ) =
ω(λ)

ω(λ)

satisfies the assumptions of Lemma 11.1.9. Hence (5.1.10) holds since the zeros
of ω and ψ in the upper half-plane coincide and since the real zeros of ω do not
contribute to the sum in (5.1.10). Therefore the series

(∞)∑
k=1

λ

(
1− λ

αk

)−1(
1

αk
− 1

αk

)
= −2i

(∞)∑
k=1

λ

(
1− λ

αk

)−1

Im
1

αk

converges absolutely and uniformly on each compact subset of C which does not
contain any of the points αk. Since

1 + λ

(
1− λ

αk

)−1(
1

αk
− 1

αk

)
=

(
1− λ

αk

)(
1− λ

αk

)−1

,

it follows that

χ(λ) =

(∞)∏
k=1

(
1− λ

αk

)(
1− λ

αk

)−1

(5.1.11)

converges absolutely and uniformly on each such set to a function without zeros,
see, e. g., [55, Corollary VII.5.6]. Let

ω(λ) = λmeg(λ)
(∞)∏
k=1

(
1− λ

αk

)
e
Pk

(
λ
αk

)
(5.1.12)
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be the Weierstrass factorization of ω. Defining

χn(λ) =

n∏
k=1

(
1− λ

αk

)(
1− λ

αk

)−1

,

ωn(λ) = λmeg(λ)
n∏

k=1

(
1− λ

αk

)
e
Pk

(
λ
αk

)
,

it follows that

ωn(λ)

ωn(λ)
[χn(λ)]

−1 = exp 2i

[
I g(λ) +

n∑
k=1

IPk

(
λ

αk

)]
, (5.1.13)

so that
n∑

k=1

IPk

(
λ

αk

)
converges uniformly on each compact subset of C as n→∞. Defining

v(λ) = I g(λ) +

(∞)∑
k=1

IPk

(
λ

αk

)
and u(λ) = R g(λ), (5.1.14)

we can write

ω(λ) = λmeu(λ)+iv(λ)

(∞)∏
k=1

(
1− λ

αk

)
e
RPk

(
λ
αk

)
. (5.1.15)

Since

χn(λ)→
n∏

k=1

αk

αk
�= 0 as λ→∞,

the maximum modulus principle gives that λ �→ ω(λ)[ω(λ)]−1[χn(λ)]
−1 is a bound-

ed function in the closed upper half-plane. Since it has modulus 1 on the real axis,
it follows from the Phragmén–Lindelöf principle, see [173, Theorem 20, p. 48] or
[55, Corollary VI.4.4], that∣∣∣∣ω(λ)ω(λ)

[χn(λ)]
−1

∣∣∣∣ ≤ 1 for Imλ ≥ 0. (5.1.16)

Passing to the limits as n→ ∞ in (5.1.13) and (5.1.16) and taking the definition
of v in (5.1.14) into account, it follows that |e2iv(λ)| ≤ 1 for Imλ ≥ 0, which means
that v maps the closed upper half-plane into itself. If v is not constant, it must
map the open upper half-plane into itself by the open mapping theorem, and since
v has no poles, Theorem 11.1.6 shows that v(λ) = C(λ− c0) for some c0 ∈ R and
C > 0. Thus, in any case, v(λ) = νλ+ δ with ν ≥ 0 and δ ∈ R, and (5.1.9) follows.
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Conversely, if (5.1.9) holds subject to (5.1.10), then ω is an entire function
without zeros in the open lower half-plane, and

ω(λ)

ω(λ)
= e2i(νλ+δ)χ(λ)

implies that, for Imλ > 0,∣∣∣∣ω(λ)ω(λ)

∣∣∣∣ = ∣∣e2iνλ∣∣ |χ(λ)| ≤ |χ(λ)| ≤ 1, (5.1.17)

which shows that ω is of HB class. �

Theorem 5.1.12. In order that the entire function ω be of HB class, it is necessary
and sufficient that it can be represented in the form

ω(λ) = eu(λ)+i(νλ+δ)

(∞)∏
k=1

(
1− λ

αk

)
e
RPk

(
λ
αk

)
, (5.1.18)

where ν ≥ 0, δ is a real number, u is a real entire function,

(∞)∑
k=1

∣∣∣∣Im 1

αk

∣∣∣∣ <∞, Imαk > 0 for all k, (5.1.19)

and ν > 0 if ω has no zeros.

Proof. Assume that ω is of HB class. Then ω is of HB class without real zeros,
so that (5.1.18) and (5.1.19) follow from Theorem 5.1.11. If ω has no zeros, then
χ defined by (5.1.11) satisfies χ = 1 since it is defined by an empty product, and
(5.1.17) shows that ν > 0 is necessary for (5.1.2) to hold.

Conversely, if (5.1.18) and (5.1.19) hold, then ω has no zeros in the lower
half-plane and is of HB class by Theorem 5.1.11. Finally, since |χ(λ)| < 1 for
Imλ > 0 if ω has zeros and since |e2iνλ| < 1 for Imλ > 0 if ν > 0, (5.1.2) follows
from (5.1.17), taking into account that ν > 0 if ω has no zeros. �

We will use also other criteria for an entire function to be of HB class.

Theorem 5.1.13 ([173, Theorem 4, p. 315]). Let ω = P + iQ, where P and Q are
real entire functions. Then ω is of HB class if and only if P and Q form a real
pair and at any point x0 of the real axis the inequality

Q′(x0)P (x0)−Q(x0)P
′(x0) > 0 (5.1.20)

holds.
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Proof. Assume that P and Q are a real pair satisfying (5.1.20). Then the real
meromorphic function

θ =
Q

P

does not have zeros or poles in the open upper and open lower half-planes. In
particular, θ must map the open upper half-plane into the open upper half-plane
or into the open lower half-plane. Hence θ or −θ maps the open upper half-plane
into itself, so that θ′ > 0 or −θ′ > 0, respectively, on the real axis by Lemma
11.1.3. Since

θ′ =
Q′P − P ′Q

P 2
, (5.1.21)

and Q′(x0)P (x0)−P ′(x0)Q
′(x0) > 0 for at least one x0 ∈ R, it follows that θ′ > 0,

and therefore θ maps the open upper half-plane into itself. From the equivalence
of properties (ii) and (iii) in Lemma 11.1.1, part 1, it follows that ω is of HB class.

Conversely, if ω is of HB class, then we know from Lemma 11.1.1 that θ maps
the open upper half-plane into itself, and thus the open lower half-plane into itself
since θ is a real meromorphic function. Therefore, P and Q form a real pair. Again
by Lemma 11.1.3 and by (5.1.21), Q′(x)P (x)−P ′(x)Q(x) > 0 for all x ∈ R which
are not zeros of P . But if P (x) = 0, then Q′(x)P (x)−P ′(x)Q(x) = P ′(x)Q(x) �= 0
since the zeros of P andQ are simple and interlace by Lemma 11.1.3. By continuity,
Q′(x)P (x) − P ′(x)Q(x) > 0 follows for all x ∈ R. �
Definition 5.1.14. An entire function of HB class is said to be nontrivial if it is not
a constant multiple of a real function.

It is clear that a function ω of HB class is nontrivial if and only if its real
and imaginary parts are not multiples of each other.

Corollary 5.1.15. Let ω = P + iQ be an entire function of HB class, where P and
Q are real entire functions. Then

Q′(x)P (x) −Q(x)P ′(x) ≥ 0 (5.1.22)

holds for all x ∈ R, and

Q′(x0)P (x0)−Q(x0)P
′(x0) > 0

for some x0 ∈ R if ω is nontrivial.

Proof. By Proposition 5.1.10, ω is the uniform limit on compact subsets of func-
tions of HB class. Hence also their real and imaginary parts have this property,
and therefore converge, together with their derivatives, uniformly, see [55, Theo-
rem VII.2.1]. Therefore (5.1.22) follows from (5.1.20).

Now assume that ω is nontrivial. Then θ = Q
P is not constant, so that Q′P −

QP ′ has only isolated zeros and therefore some nonzero values on the real axis.
From (5.1.22) it follows that these nonzero values must be positive. �
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Definition 5.1.16. The function ω of HB class (HB class) is said to be a function
of symmetric Hermite–Biehler (SHB) class (a function of symmetric generalized
Hermite–Biehler class (SHB class)) if ω(−λ) = ω(λ) for all λ ∈ C.

Remark 5.1.17. In the sequel we will frequently deal with functions which are
symmetric with respect to the imaginary axis, that is, entire functions ω which
satisfy ω(−λ) = ω(λ) for all λ ∈ C. This property can be rewritten in the form
ω(−λ) = ω(λ) for all λ ∈ C. For an arbitrary entire function ω define ωI by
ωI(λ) = ω(iλ), λ ∈ C. Observing that

ωI(λ) = ωI(λ) = ω(iλ) = ω(−iλ), λ ∈ C,

holds, it is immediately clear that ω is symmetric with respect to the imaginary
axis if and only if ωI is a real entire function, that is, if and only if ω is real on
the imaginary axis.

Proposition 5.1.18. Let ω be an entire function which is symmetric with respect
to the imaginary axis, i. e., ω(−λ) = ω(λ) for all λ ∈ C. Then P (−λ) = P (λ)
and Q(−λ) = −Q(λ) for all λ ∈ C. In particular, Q(0) = 0 and all real zeros of
P and Q are symmetric with respect to the origin. Furthermore, there are unique
real entire functions Ps and Qs such that

ω(λ) = Ps(λ
2) + iλQs(λ

2), λ ∈ C. (5.1.23)

Proof. Since

P =
1

2
(ω + ω), Q =

1

2i
(ω − ω),

it follows in view of Remark 5.1.17 that P and iQ are real on the imaginary axis,
and thus P (−λ) = P (λ) and Q(−λ) = −Q(λ) for all λ ∈ C. Since P and Q are
real entire functions, the statement about the real zeros of P and Q follows from
P (−x) = P (x) and Q(−x) = −Q(x) for x ∈ R.

For λ ∈ C define

P̃ (λ) =
ω(λ) + ω(−λ)

2
= P (λ), Q̃(λ) =

ω(λ)− ω(−λ)
2iλ

=
Q(λ)

λ
. (5.1.24)

Clearly, P̃ and Q̃ are even entire functions, so that there are entire functions Ps

and Qs such that

Ps(λ
2) = P̃ (λ), Qs(λ

2) = Q̃(λ), λ ∈ C. (5.1.25)

Hence (5.1.23) holds. Furthermore, P̃ and Q̃ are real on the real and imaginary
axes, so that Ps and Qs are real entire functions.

Clearly, Rω(λ) = Ps(λ
2) and Iω(λ) = λQs(λ

2), λ ∈ C. The uniqueness of
Rω and Iω shows that the real entire functions Ps and Qs are uniquely determined
by ω. �
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Proposition 5.1.19. If ω is of SHB class, then (5.1.5) and (5.1.6) can be rewritten
in the form

P (λ) = A0e
u(λ2)

(∞)∏
k=1

(
1− λ2

a2k

)
e
Pk

(
λ2

a2
k

)
, (5.1.26)

Q(λ) = B0λe
v(λ2)

(∞)∏
k=1

(
1− λ2

b2k

)
e
Qk

(
λ2

b2
k

)
, (5.1.27)

the exponents satisfy the condition

u(λ2)− v(λ2) +

(∞)∑
k=1

(
Pk

(
λ2

b2k

)
−Qk

(
λ2

a2k

))
= 0, (5.1.28)

and the numbers A0 and B0 have the same sign.

Proof. We use the notation of Theorem 5.1.7. Since Q(0) = 0, we have b0 = 0,
and hence b−j = −bj. In the Weierstrass product, we may replace each Qk with
a corresponding polynomial of higher order, so that we may assume that Qk and
Q−k have the same even order 2lk′ and thus are identical. Then we can write
(5.1.6) as

Q(λ) = Bev(λ)λ

(∞)∏
k=1

(
1− λ

bk

)(
1− λ

−bk

)
e
Qk

(
λ
bk

)
+Qk

(
λ

−bk

)
= 0,

where

Qk

(
λ

bk

)
+Qk

(
λ

−bk

)
=

l′k∑
j=1

(
λj

jbjk
+ (−1)j λj

jbjk

)

=

l′k∑
j=1

(λ2)j

j(b2k)
j
.

With some abuse of notation we write the right-hand side as Qk

(
λ2

a2
k

)
, so that

Q(λ) = Bev(λ)λ

(∞)∏
k=1

(
1− λ2

b2k

)
e
Qk

(
λ2

b2
k

)
.

Then

Q(−λ) = −Bev(−λ)λ

(∞)∏
k=1

(
1− λ

2

b2k

)
e
Qk

(
λ2

b2
k

)
,
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and Proposition 5.1.18 gives

ev(−λ) = ev(λ).

Since v is a real function, it follows that v(−λ) = v(λ), which means that v is an
even function.

A similar reasoning holds for P . We only have to observe that a−j+1 = −aj
for j = −1,−2, . . . , and that, in case P has zeros, the factor λ − a0 has to be

written in the form −a0
(
1− λ

a0

)
with −a0 > 0. �

In the sequel we will use the notion of Nevanlinna function, also called R-
function in [127] and function of negative imaginary type in [16, Appendix II], and
the notion of S-function [127].

Definition 5.1.20. The function θ is said to be a Nevanlinna function, or an R-
function, or an N -function (N̂ -function) if:

(i) θ is analytic in the half-planes Imλ > 0 and Imλ < 0;

(ii) θ(λ) = θ(λ) if Imλ �= 0;

(iii) Imλ Im θ(λ) ≥ 0 for Imλ �= 0 (Imλ Im θ(λ) > 0 for Imλ �= 0).

Remark 5.1.21. Let θ ∈ N . We recall that the open mapping theorem gives that θ
is either constant, where this constant is real, or maps the open upper half-plane
into itself. That is, N = N̂ ∪R, where R represents here constant functions in C.

Lemma 5.1.22. If θ �= 0 is a Nevanlinna function, then so are the functions − 1
θ

and (1θ + c)−1 for each real constant c.

Proof. This easily follows from Remark 5.1.21,

Im

(
− 1

θ(λ)

)
=

Im θ(λ)

|θ(λ)|2 and Im

(
1

θ(λ)
+ c

)−1

=
− Im 1

θ(λ)∣∣∣ 1
θ(λ) + c

∣∣∣2 . �

The relation between N̂ -functions and functions of HB class is given by the
following simple lemma, see [173, p. 307].

Lemma 5.1.23. For the function

ω = P + iQ,

where P and Q are real entire functions without common nonreal zeros, the state-
ment P−1Q is an N̂ -function is equivalent to the condition (5.1.2).

Proof. This follows from Lemma 11.1.1 if we observe that part 2 of Definition
5.1.20 is satisfied since P−1Q is real analytic. �
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Definition 5.1.24. The function θ is said to be an S-function or a function of
Stieltjes class (Ŝ-function) if:
(i) θ is analytic in C \ [0,∞);

(ii) θ(λ) = θ(λ) for Im �= 0;

(iii) Im θ(λ) ≥ 0 for Imλ > 0 (Im θ(λ) > 0 for Imλ > 0);

(iv) θ(λ) ≥ 0 for all λ ∈ (−∞, 0).

Definition 5.1.25. An S-function which is meromorphic on C is said to be of S0
class if it has no pole at the origin.

Definition 5.1.26.

1. The class N ep of essentially positive Nevanlinna functions is the set of all
functions θ ∈ N which are analytic in C \ [0,∞) with the possible exception
of finitely many poles.

2. The class N ep
+ is the set of all functions θ ∈ N ep such that for some γ ∈ R

we have θ(λ) > 0 for all λ ∈ (−∞, γ).

3. The class N ep
− is the set of all functions θ ∈ N ep such that for some γ ∈ R

we have θ(λ) < 0 for all λ ∈ (−∞, γ).

4. The class S−1 is the set of all functions θ ∈ N such that θ(λ) ≤ 0 for all
λ ∈ (−∞, 0).

Relations between N -functions and S-functions were obtained by I.S. Kac
and M.G. Krĕın in [126] and [127]. However, we do not need these results in their
full generality. In the next section we will deal with meromorphic functions in
the whole complex plane, and statements and proofs will be given there for the
subclasses consisting of functions which are meromorphic in C.

5.2 Shifted Hermite–Biehler functions

The field of meromorphic functions in the whole complex plane will be denoted
byM.

First we recall some properties of meromorphic functions which belong to
the classes of Nevanlinna functions defined in Section 5.1. General results without
the restriction toM can be found, e. g., in [127], [13] and [14].

Remark 5.2.1. Let θ ∈ N ∩M. If θ is not constant, it follows from Remark 5.1.21
and Theorem 11.1.6 that θ has a representation of the form (11.1.2). In particular,
the zeros and poles of θ interlace.

Lemma 5.2.2. Let θ ∈ N ∩M be nonconstant. Then θ ∈ S if and only if θ has no
negative zeros or poles, has at least one pole, and the smallest pole is less than all
zeros, if any.
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Proof. In view of Remark 5.2.1 and Lemma 11.1.3, θ has at least one pole or zero.
Clearly if θ ∈ S, then all zeros and poles are nonnegative, and in view of Remark
5.2.1 it remains to show that, under this assumption, θ(λ) > 0 for all λ < 0 if and
only if θ has at least one pole and the smallest pole is less than all zeros. Clearly,
for λ < 0, the representation (11.1.2) shows that θ(λ) > 0 if and only if

(λ− b0)−
(λ− a0)+

> 0.

If θ has at least one zero and if the smallest zero is less than any pole, then we
have that 0 /∈ a, in the notation of Theorem 11.1.6, so that

(λ− b0)−
(λ− a0)+

= λ− b0 < 0 for λ < 0,

and it follows that θ �∈ S. If, however, θ has at least one pole and the smallest pole
is less than any zero, then we have that

either
(λ− b0)−
(λ− a0)+

=
λ− b0
λ− a0

> 0 or
(λ− b0)−
(λ− a0)+

=
−1

λ− a0
> 0 for λ < 0,

and it follows that θ ∈ S. �

Corollary 5.2.3. Let θ ∈ N ∩M be nonconstant. Then θ ∈ N ep
+ if and only if the

set of poles of θ is nonempty and bounded below, and the smallest pole of θ is less
than all of its zeros, if any.

Proof. If θ ∈ N ep
+ , choose r ≥ 0 such that θ is positive on (−∞,−r]. Then the

function λ �→ θ(λ − r) belongs to S0. By Lemma 5.2.2, this function has at least
one pole, and the smallest pole of this function is less than all zeros, if any. Clearly,
the same properties hold for θ.

Conversely, if a is the smallest pole of θ and all zeros of θ, if any, are larger
that a, then λ �→ θ(λ− a) belongs to S, and it follows that θ ∈ N ep

+ . �

Lemma 5.2.4. Let θ ∈ M. Then

1. θ ∈ N ep ⇔ − 1
θ ∈ N ep;

2. θ ∈ N ep
+ ⇔ − 1

θ ∈ N ep
− ;

3. θ ∈ S ⇔ − 1
θ ∈ S−1;

4. θ ∈ S ⇔ (θ ∈ N and λ �→ λθ(λ2) ∈ N )⇔ λ �→ λθ(λ2) ∈ N ;

5. N ep ∩M =
(N ep

+ ∩M
) ∪ (N ep

− ∩M
)
;

6. S ∩M ⊆ N ep
+ ∪ {0},

(−S−1
) ∩M ⊆ N ep

− ∪ {0}.
Proof. Observing Remark 5.2.1 and Lemma 5.1.22 and the obvious fact that S ⊆
N , parts 1–3 follow immediately.
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4. Let θ ∈ S. If θ is constant, then this constant is a nonnegative real number
C, and Cλ is a Nevanlinna function. If θ is not constant, then, by Remark 5.2.1
and Lemma 5.2.2,

θ1(λ) := λθ(λ2) = Cλ
(λ2 − b0)−
λ2 − a0

∏
k∈I′

a,b

(
1− λ2

bk

)(
1− λ2

ak

)−1

= Cψ(λ)
∏

k∈I′
a,b

(
1 +

λ

b
1
2

k

)(
1 +

λ

a
1
2

k

)−1(
1− λ

b
1
2

k

)(
1− λ

a
1
2

k

)−1

,

where

ψ(λ) = λ
(λ + b

1
2
0 )+(λ− b

1
2
0 )−

(λ+ a
1
2
0 )(λ − a

1
2
0 )

It remains to be shown that ψ can be written such that it fits the form (11.1.2).
We have to distinguish the cases a0 > 0 and a0 = 0. If a0 > 0, then clearly poles
and zeros of θ1 are simple and interlace, and

ψ(λ) =
1

a
1
2
0

λ

λ+ a
1
2
0

(
1− λ

a
1
2
0

)−1

if θ has no zeros, and

ψ(λ) =
b0

a
1
2
0

λ

λ+ a
1
2
0

(
1 +

λ

b
1
2
0

)(
1− λ

b
1
2
0

)(
1− λ

a
1
2
0

)−1

otherwise. If now a0 = 0, then clearly 0 is a simple pole of θ1, so that again zeros
and poles of θ1 interlace, and

ψ(λ) =
(λ+ b

1
2
0 )+(λ− b

1
2
0 )−

λ
,

which equals −λ−1 if θ has no zeros and

b
1
2
0

λ− b
1
2
0

λ

(
1 +

λ

b
1
2
0

)

otherwise.

To complete the proof of part 4, assume that θ1 ∈ N , where θ1(λ) = λθ(λ2).
Since θ1 is an odd function, its zeros and poles are symmetric, so that we can write

θ1(λ) = Cλm
∏

k∈I′
a,b

(
1− λ2

bk

)(
1− λ2

ak

)−1
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with some abuse of notation as we might not have identified all terms with index
0, and where C �= 0, but not necessarily positive. Here m = 1 if 0 is no pole of θ
and m = −1 if 0 is a pole of θ, all ak and bk are positive and interlace. Also, since
the zeros of θ1 are simple, 0 cannot be a zero of θ. Hence we have

θ(λ) = Cλ
m−1

2

∏
k∈I′

a,b

(
1− λ

bk

)(
1− λ

ak

)−1

,

where in case m = −1, 0 is a pole of θ, and therefore smaller than the smallest
zero of θ, and in case m = 1, 0 is a zero of θ1, so that the smallest positive pole
of θ1 is smaller than the smallest positive zero of θ1, which again means that the
smallest pole of θ is smaller than the smallest zero of θ. Since the case of constant
θ is trivial, by Lemma 5.2.2 it remains to show that θ ∈ N̂ . In view of Theorem
11.1.6, either θ ∈ N̂ or −θ ∈ N̂ . But −θ ∈ N̂ and the location of poles and zeros
of θ would imply by Lemma 5.2.2 that −θ ∈ S. Therefore −θ1 ∈ N̂ by what we
have already proved, which contradicts θ1 ∈ N̂ .
5. Since poles and zeros of θ ∈ N ep interlace by Remark 5.2.1, there is γ ≤ 0 such
that θ has no poles or zeros in (−∞, γ), so that either θ(λ) > 0 for all λ ∈ (−∞, γ)
or θ(λ) < 0 for all λ ∈ (−∞, γ).
6. is obvious. �

Proposition 5.2.5. Let n ∈ N. Then every rational S0-function θ with n poles has
a continued fraction expansion

θ(λ) = a0 +
1

−b1λ+
1

a1 + · · ·+
1

−bnλ+
1

an

with bj > 0, j = 1, . . . , n, a0 ≥ 0 and aj > 0 for j = 1, . . . , n.

Proof. We recall from the definition of S0 that θ(λ) > 0 for λ ∈ (−∞, 0] and
that all poles and zeros of θ are real. By Theorem 11.1.6, the poles and zeros
of θ interlace, and by Lemma 5.2.2, the smallest pole of θ is smaller than any
zero of θ. Hence θ has n or n − 1 zeros. Therefore we write θ = q

p , where p is
a polynomial of degree n and q is a polynomial of degree n or n − 1. We may
assume, for definiteness, that p(λ) > 0 for λ ∈ (−∞, 0], so that also q(λ) > 0 for
λ ∈ (−∞, 0]. If λ0 is the smallest pole of θ, that is, the smallest zero of p, then
q(λ0) > 0. Performing long division, we can write

θ(λ) = a0 +
q1(λ)

p(λ)
, (5.2.1)
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where q1 is a polynomial of degree less than n and a0 ≥ 0 by taking the limit
as λ → −∞ in the above identity. Multiplying (5.2.1) by p(λ), it follows that
q1(λ0) = q(λ0) > 0.

If n = 1, we may assume that q1 = 1, so that p(λ) = −b1λ+ c where b1 > 0
and c > 0 since p(λ) > 0 for λ ∈ (−∞, 0]. Writing a1 = 1

c proves the proposition
for n = 1.

Now let n ≥ 2. If λ1 and λ2 are two consecutive zeros of p, then q1(λj) = q(λj)
for j = 1, 2, and since q has exactly one (simple) zero between λ1 and λ2 as the
zeros of p and q interlace, q1(λ1) and q1(λ2) have opposite signs, so that q1 has at
least one zero between any two zeros of p. Since the degree of q1 is at most n− 1,
it must be exactly n− 1, and the zeros and q1 and p are real and interlace, with
both q1 and q being positive on (−∞, 0]. Hence long division gives

p(λ)

q1(λ)
= −b1λ+

p1(λ)

q1(λ)
, (5.2.2)

where b1 > 0 and p1 is a polynomial of degree less than n. Defining θ1 = q1
p1
, we

have shown that

θ(λ) = a0 +
1

−b1λ+
1

θ1(λ)

.

Then the statement of this proposition follows by induction on n provided we show
that θ1 ∈ S0 and θ1 has n− 1 poles and zeros.

To prove this property, let μ0 be the smallest zero of q1. We already know
that the zeros of p and q1 interlace, that p has degree n and q1 has degree n− 1.
Therefore it follows that λ0 < μ0. Since p is positive on (−∞, 0] we have p(μ0) < 0.
Substituting λ0 into (5.2.2) and observing that λ0 > 0 and q1(λ0) > 0 shows that
p1(λ0) > 0, and substituting μ0 gives p1(μ0) = p(μ0) < 0. Hence p1 has a zero
ν0 ∈ (λ0, μ0). We know that q1 has n − 1 zeros, and the same argument we used
to show that the zeros of p and q1 interlace, now applied to (5.2.2), shows that
between any two zeros of q1 there is a zeros of p1. Since the degree of p1 does not
exceed the degree of q1, it follows that the zeros of p1 and q1 interlace, that p1 and
q1 have both degree n− 1, and that the smallest zero ν0 of p1 is positive and less
than the smallest zero μ0 of q1. Finally, both p1 and q1 are positive on the interval
(−∞, λ0), so that indeed θ1 ∈ S0 by Theorem 11.1.6 and Remark 5.2.1. �

Definition 5.2.6. Let Ps and Qs be real entire functions with no common zeros such
that Qs

Ps
belong to N ep

+ . Then the function ω defined by ω(λ) = Ps(λ
2)+ iλQs(λ

2)
is said to belong to the class of symmetric shifted Hermite–Biehler functions. The
class of all symmetric shifted Hermite–Biehler functions is denoted by SSHB. If
the number of negative zeros of Ps is κ, then we say that ω belongs to SSHBκ.
We note that a shifted Hermite–Biehler function ω is symmetric with respect to
the imaginary axis, i. e., ω(−λ) = ω(λ) for λ ∈ C.
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If ω denotes such a shifted Hermite–Biehler function, then Ps(λ
2) = Rω(λ)

and Qs(λ
2) = λ−1 Iω(λ), so that Ps and Qs are uniquely determined by ω. Also

recall that P−1
s Qs ∈ N ep

+ implies that the set of zeros of P is bounded below.

Definition 5.2.7. Let P∗ and Q∗ be real entire functions with no common zeros such
that Q∗

P∗
belong to N ep

+ and let R∗ be a real entire function whose zeros are real and

bounded below. Then the function ω given by ω(λ) = R∗(λ2)(P∗(λ2) + iλQ∗(λ2))
is said to belong to the generalized class of symmetric shifted Hermite–Biehler
functions (SSHB class). If the number of negative zeros of R∗P∗ is κ, then we say
that the function ω belongs to SSHBκ.

If ω is of SSHB class, then P∗, Q∗ and R∗ are uniquely determined by ω up
to multiplication by real entire functions without zeros.

The following Proposition shows some relations between shifted (generalized)
Hermite–Biehler functions and (generalized) Hermite–Biehler functions.

Proposition 5.2.8.

1. An entire function ω is of SSHB0 class if and only if there are an entire
function ω1 of HB class and m ∈ {0, 1} such that ω(λ) = λmω1(λ), λ ∈ C,
and such that imω1 is symmetric with respect to the imaginary axis.

2. An entire function ω is of SSHB0 class if and only if ω is a nontrivial function
of SHB class.

Proof. If ω belongs to any of the classses in the statement of this proposition, then
ω is symmetric with respect to the imaginary axis, and ω can be written in the
form (5.1.23). Let θs =

Qs

Ps
, and observing the notation (5.1.24) and the property

(5.1.25), we define

θ(λ) =
Iω(λ)

Rω(λ)
=

Q(λ)

P (λ)
=

λQ̃(λ)

P̃ (λ)
= λθs(λ

2).

1. If ω is of SSHB0 class, then Ps �= 0, Qs �= 0 and θs ∈ S by definition of the
SSHB0 class. Hence θ ∈ N by Lemma 5.2.4, part 4, and thus θ ∈ N̂ since θ is not
constant. Since Ps and Qs do not have common zeros, it follows that P and Q do
not have common nonzero zeros. In view of Lemma 11.1.1, part 1, ω satisfies (5.1.2)
and does not have zeros in the open lower half-plane. Since the real entire functions
P and Q do not have common nonzero real zeros, it follows that ω does not have
nonzero real zeros. If ω(0) �= 0, we conclude that ω is of HB class and hence of
SHB class since by assumption ω is symmetric with respect to the imaginary axis.
If, however, ω(0) = 0, then Ps(0) = 0 and Qs(0) �= 0, which implies that ω has a
simple zero at 0. Writing ω(λ) = λω1(λ) with ω1(λ) = λ−1P̃ (λ) + iQ̃(λ) it follows
from Iω1

Rω1
= θ that ω1 is of HB class. Clearly, in this case iω1 is symmetric with

respect to the imaginary axis since ω has this property.

Conversely, if ω1 is of HB class, then θ ∈ N . Hence θs ∈ S by Lemma 5.2.4,
part 4. With the arguments from the beginning of the proof of Theorem 5.1.7 we
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conclude that P = Rω and Q = Iω do not have common nonzero zeros. Hence Ps

andQs do not have common nonzero zeros. Since ω1(0) �= 0, 0 cannot be a common
zero of Ps and Qs. Because Q �= 0 implies Qs �= 0, either θs is a positive constant
or θs is positive on the negative imaginary axis by Lemma 5.2.2. Therefore ω is of
SSHB0 class.

2. Let ω be of SSHB0 class. With the notation from Definition 5.2.7 we write
ω = ω̂2ω̂1, where ω̂1(λ) = P∗(λ2) + iλQ∗(λ2) and ω̂2(λ) = R∗(λ2). Furthermore,
ω̂1 is of SHB0 class and R∗ has only nonnegative real zeros, if any. In view of
part 1, ω̂1(λ) = λmω1(λ), where ω1 is of HB class. Defining ω2(λ) = λmR∗(λ2), it
follows that ω2 is a real entire function which has only real zero. Hence ω = ω1ω2

is a nontrivial function of SHB class.

Conversely, let ω be a nontrivial function of SHB class. Then its real zeros are
symmetric with respect to the origin, and we can construct an even entire function
ω3 whose zeros are the nonzero real zeros of ω, counted with multiplicity. Let
n = 2k+m be the multiplicity of the zero 0 of ω, where k ∈ N0 and m ∈ {0, 1}. It
follows that there is an entire function R∗ such that λ2kω3(λ) = R∗(λ2). Since the
function ω2 defined by ω2(λ) = λnω3(λ) is a real entire function which accounts
for all real zeros of ω and since ω is nontrivial, Theorem 5.1.9 gives a function
ω1 of HB class such that ω(λ) = ω2(λ)ω1(λ) = R∗(λ2)λmω1(λ). Clearly, i

mω1

is symmetric with respect to the imaginary axis, and an application of part 1
completes the proof. �

Recall that zeros of analytic functions will be counted with multiplicity.

Theorem 5.2.9. Let ω ∈ SSHBκ. Then

1. The zeros of ω lie in the open upper half-plane and on the imaginary axis.

2. The number of zeros of ω on (−i∞, 0) is equal to κ, the number of negative
zeros of Ps. The zeros of ω on (−i∞, 0] are simple.

3. If κ > 0 and the zeros in the open lower half-plane are enumerated such that
λj = iτj, where τκ < τκ−1 < · · · < τ1 < 0, then ω(i|τj |) �= 0 for j = 1, . . . , κ.

4. If κ > 1, then each interval (i|τj |, i|τj+1|), j = 1, . . . , κ− 1, contains an odd
number of zeros of ω, counted with multiplicity.

5. If κ > 0 and ω(0) �= 0, then the interval (0, i|τ1|) contains an even number
of zeros of ω, counted with multiplicity, or does not contain any zeros of ω.

6. If κ > 0 and ω(0) = 0, then the interval (0, i|τ1|) contains an odd number of
zeros of ω, counted with multiplicity.

Proof. 1. If λ is a nonzero real number, then ω(λ) = Ps(λ
2) + iλQs(λ

2) �= 0 since
Ps and Qs are real on the real axis and do not have common zeros. Suppose now
ω(λ0) = 0 where Reλ0 �= 0 and Imλ0 < 0. Then Ps(λ0) �= 0 and

Qs(λ
2
0)

Ps(λ2
0)

= iλ−1
0 . (5.2.3)
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Since Qs

Ps
∈ N we have

0 ≤ Imλ2
0 Im(iλ−1

0 ) = 2Reλ0 Imλ0
Reλ0

|λ0|2 < 0,

which is impossible.

2. First let us prove that the zeros of ω on the negative semiaxis are simple.
If Qs

Ps
is constant, then Qs is a real multiple of Ps, and Ps has no zeros. Hence

ω has at most one zero. If Qs

Ps
is not constant, then Lemma 11.1.1, part 1, shows

that Ps + iQs is of HB class, so that according to Theorem 5.1.13,

Q′
s(λ)Ps(λ) −Qs(λ)P

′
s(λ) > 0 (5.2.4)

for all real λ.

Suppose that λ = −iτ , τ > 0, is a multiple zero of ω. Then

Ps(−τ2) + τQs(−τ2) = 0 (5.2.5)

and
−2iτP ′

s(−τ2) + iQs(−τ2)− 2iτ2Q′
s(−τ2) = 0. (5.2.6)

Since Ps and Qs have no common zeros, (5.2.5) shows that Ps(−τ2) �= 0. Multi-
plying (5.2.6) by −iQs(−τ2) and using (5.2.5) we obtain

−2τ [P ′
s(−τ2)Qs(−τ2)− Ps(−τ2)Q′

s(−τ2)] +Q2
s(−τ2) = 0, (5.2.7)

which is impossible in view of (5.2.4).

Suppose ω has a multiple zero at the origin. Then (5.2.5) and (5.2.6) with
τ = 0 implies Ps(0) = Qs(0) = 0, which is impossible since Ps and Qs have no
common zeros.

Let λk(α) be a zero of ω(λ, α) = Ps(λ
2) + iλαQs(λ

2), where we may assume
in view of Theorem 9.1.1 that λk depends continuously on α ∈ [0, 1]. Then

λk(α) = i
Ps(λ

2
k(α))

αQs(λ2
k(α))

. (5.2.8)

In the above reasoning on the simplicity of zeros we may replace Qs with αQs for
all α > 0, and for α = 0 we can argue with the simplicity of the zeros of Ps to
conclude that all zeros on the negative imaginary semiaxis are simple for α ≥ 0.
From Theorem 9.1.1 we therefore know that λk is differentiable, and we find

λ′
k(α) =

−iλk(α)Qs(λ
2
k(α))

2λk(α)P ′
s(λ

2
k(α)) + iαQs(λ2

k(α)) + 2iαλ2
k(α)Q

′
s(λ

2
k(α))

. (5.2.9)

Substituting (5.2.8) into (5.2.9) we obtain

λ′
k(α) = −i

λk(α)Q
2
s(λ

2
k(α))

2λk(α)[Qs(λ2
k(α))P

′
s(λ

2
k(α)) − Ps(λ2

k(α))Q
′
s(λ

2
k(α))] + iαQ2

s(λ
2
k(α))

.

(5.2.10)
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For λk(α) = −iτ(α) with τ(α) > 0 and α ≥ 0, (5.2.10) and (5.2.4) imply τ ′(α) > 0.
This means that the zeros on the negative imaginary semiaxis move upwards.
On the other hand they never cross the origin because a zero at the origin is
independent of α and simple for all α > 0. Since Qs

Ps
belong to N ep

+ , there is γ < 0
such that

Qs(−τ2)
Ps(−τ2) > 0 if − τ2 < γ.

Hence, for τ > |γ| 12 , Ps(−τ2) �= 0 and

ω(−iτ, α)
Ps(−τ2) = 1 + τα

Qs(−τ2)
Ps(−τ2) > 1,

so that ω(·, α) does not have any zeros on (−i∞,−i|γ| 12 ), and therefore no zeros
of ω(·, α) can join the imaginary axis from −i∞. Hence the number of zeros of
ω(·, α) on the negative imaginary semiaxis is independent of α ≥ 0, and it equals
κ for α = 0, so that, taking α = 1, we have proved that ω has κ simple zeros on
the negative imaginary semiaxis.

3. Suppose ω(iτ) = ω(−iτ) = 0 where τ ∈ R \ {0}. Then
Ps(−τ2) + τQs(−τ2) = Ps(−τ2)− τQs(−τ2) = 0

and, consequently, Ps(−τ2) = Qs(−τ2) = 0, which is impossible.

4. Let λk(0) be a pure imaginary zero of ω(λ, 0) = Ps(λ
2). Then (5.2.9),

which is true for all pure imaginary zeros λk(α) of ω(·, α) with sufficiently small
α > 0, implies Reλ′

k(0) = 0 and Imλ′
k(0) > 0. Hence, statement 4 is true for small

α > 0. Because of

ω(−λ, α) = Ps(λ
2
)− iλαQs(λ

2
) = ω(λ, α)

for all λ ∈ C, all zeros of ω(·, α) are symmetric with respect to the imaginary axis.
Thus, the zeros of ω(·, α) can only leave or join the imaginary axis in pairs as α
increases, and therefore statement 4 remains true for all α ∈ (0, 1].

5. The proof of this statement is the same as the proof of statement 4 since
no zero can join the positive imaginary semiaxis through 0.

6. Here we have to observe that 0 is a double zero of ω(·, α) for α = 0 and
a simple zero for α > 0, as we know from statement 2 in the case α = 1, which
readily extends to any α > 0. Hence one zero of ω(·, α) has to move away from 0
as α becomes positive. As we have seen in the proof of part 4, zeros can leave the
imaginary axis only in pairs, so that this eigenvalues must stay on the imaginary
axis and therefore must move upward as α becomes positive. A reasoning as in
the proof of part 4 completes the proof. �
Remark 5.2.10. By definition, ω ∈ SSHB can be written as ω(λ) = R∗(λ2)ω1(λ),
where ω1 ∈ SSHB. A zero λ of ω1 will be called a zero of ω of type II, and its
type II multiplicity is the multiplicity of λ as a zero of ω1. A zero of λ �→ R∗(λ2)
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will be called a zero of ω of type I, and its type I multiplicity as a zero of ω is its
multiplicity as a zero of λ �→ R∗(λ2).

Corollary 5.2.11. Let ω ∈ SSHB. Then:

1. The zeros of ω which are of type I lie on the real and imaginary axes with at
most a finite number on the imaginary axis. They are located symmetrically
with respect to the origin.

2. The zeros of ω which are of type II satisfy the statements 1–6 of Theorem
5.2.9.

3. All zeros of ω which are both of type I and type II lie on the imaginary axis.

4. In the notation of Definition 5.2.7 let ζ0 and ζ1 be the smallest zero of R∗P∗
and P∗, respectively. Put γj = min{ζj , 0}, j = 0, 1. If −iτ is a zero of ω with
τ > 0, then τ2 ≤ −γ0, and τ2 < −γ1 if −iτ is a zero of type II.

Proof. Statement 1, 2 and 3 follow from Remark 5.2.10, Definition 5.2.7 and The-
orem 5.2.9.

4. Since ω1 is of SSHB class, the function Q∗P−1∗ belongs to N ep
+ by Definition

5.2.6. Hence we have in view of Corollary 5.2.3 that P∗(ζ1) = 0, Q∗(ζ1) �= 0, and
P∗(z) an Q∗(z) are different from zero and have the same sign for z < ζ1. Then it
is easy to see that ω1(−iτ) = P∗(−τ2) + τQ∗(−τ2) �= 0 for τ > 0 with τ2 ≥ −γ1.
This proves the statement for the zeros of type II. Since −iτ is a zero of ω of type
I if and only if −τ2 is a zero of R∗, the proof is complete. �

We will make use of the following simple

Lemma 5.2.12. If α ∈ C+ and β ∈ C+, then

α+ β

1− αβ
∈ C

+.

Proof. Since 0 < argα < π and 0 ≤ argβ ≤ π, we have 0 < argαβ < 2π, so that
αβ is not a positive real number, and the fraction is well defined. Then

α+ β

1− αβ
=

(α+ β)(1 − αβ)

|1− αβ|2 ,

and the proof will be complete if we observe that

Im
(
(α+ β)(1 − αβ)

)
= Im(α+ β − |α|2β − |β|2α)
= Imα+ Imβ + |α|2 Imβ + |β|2 Imα. �

Lemma 5.2.13. Let θ0 ∈M be such that there are r1, r2 ≥ 0 such that θ0(λ) ∈ C+

for all λ ∈ C
+ with |λ| > r1 and λ

1
2 θ0(λ) ∈ C

+ for all λ ∈ C
+ with |λ| > r2,

where λ
1
2 is the square root in the upper half-plane. Let

p(λ) = −λ+ ξ2 + ζ2, q(λ) = 2ξ, ξ, ζ ∈ R, ξ > 0,
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and define

θ(λ) =
θ0(λ)p(λ) + q(λ)

p(λ)− λθ0(λ)q(λ)
.

Then θ ∈ M, θ(λ) ∈ C+ for all λ ∈ C+ with |λ| > r1, and λ
1
2 θ(λ) ∈ C+ for all

λ ∈ C+ with |λ| > r2. If θ0 is real, then also θ is real.

Proof. We have

θ(λ) =
(−λ+ ξ2 + ζ2)θ0(λ) + 2ξ

−λ+ ξ2 + ζ2 − λθ0(λ)2ξ
,

which gives in particular that θ is real if θ0 has this property. Note that the
denominator is not identically zero since for λ ∈ C+, |λ| > r1, the complex number
λ(1 + θ0(λ)2ξ) is a product of two numbers in C+ and therefore cannot be a
positive real number. Hence θ ∈ M. Assume there is λ0 ∈ C+, |λ0| > r1, such
that Im θ(λ0) ≤ 0. Putting

ψ(η) =
(−λ0 + ξ2 + ζ2)ηθ0(λ0) + 2ξ

−λ0 + ξ2 + ζ2 − λ0ηθ0(λ0)2ξ

for η ∈ [0, 1], the same reasoning as above, applied to λ0(1 + ηθ0(λ0)2ξ), gives
that the denominator of ψ is never zero, so that ψ is continuous on [0, 1]. We have
ψ(1) = θ(λ0) /∈ C+ and, since

θ1(λ) =
q(λ)

p(λ)
=

2ξ

−λ+ ξ2 + ζ2

defines a Möbius transformation θ1 mapping C+ onto itself, ψ(0) = θ1(λ0) ∈ C+.
By continuity, there is η0 ∈ (0, 1] such that ψ(η0) ∈ R. Then

η0θ0(λ0) =
(−λ0 + ξ2 + ζ2)ψ(η0)− 2ξ

−λ0 + ξ2 + ζ2 + λ0ψ(η0)2ξ
. (5.2.11)

But in view of

−ψ(η0)(ξ2 + ζ2)− [(ξ2 + ζ2)ψ(η0)− 2ξ
]
[−1 + ψ(η0)2ξ]

= −2ξ [(ξ2 + ζ2)ψ2(η0) + 1− 2ξψ(η0)
]

= −2ξ [(ξψ(η0)− 1)2 + ζ2ψ2(η0)
] ≤ 0,

the map

λ �→ (−λ+ ξ2 + ζ2)ψ(η0)− 2ξ

−λ+ ξ2 + ζ2 + λψ(η0)2ξ

is either a real constant function or a Möbius transformation which maps C+ onto
C−, and we arrive at the contradiction that the left-hand side of (5.2.11) belongs
to C

+, whereas the right-hand side does not.
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Since also

λθ1(λ) =
2ξλ

−λ+ ξ2 + ζ2

defines a Möbius transformation mapping C
+ onto itself, it is clear that

0 < arg(θ1(λ)) < arg
(
λ

1
2 θ1(λ)

)
< arg (λθ1(λ)) < π for λ ∈ C

+,

so that λ
1
2 θ1(λ) ∈ C+ if λ ∈ C+. Then

λ
1
2 θ(λ) =

λ
1
2 θ0(λ) + λ

1
2 θ1(λ)

1− λ
1
2 θ0(λ)λ

1
2 θ1(λ)

∈ C
+ if λ ∈ C

+, |λ| > r2,

by Lemma 5.2.12. �
Lemma 5.2.14. Let θ0 ∈ M and assume that there are r1 ≥ 0 and r2 ≥ 0 such
that θ0(λ) ∈ C+ for all λ ∈ C+ with |λ| > r1 and λ

1
2 θ0(λ) ∈ C+ for all λ ∈ C+

with |λ| > r2. Let

p(λ) = −λ+ ξζ, q(λ) = ξ + ζ, ξ, ζ ∈ R, ξ + ζ > 0,

and define

θ(λ) =
θ0(λ)p(λ) + q(λ)

p(λ)− λθ0(λ)q(λ)
.

Then θ ∈ M, θ has no zeros in {λ ∈ C
+ : |λ| > r1} and no poles in {λ ∈ C

+ :

|λ| > r3}, where r3 = max{r1, r2,−ξζ}, and λ
1
2 θ(λ) ∈ C+ for all λ ∈ C+ with

|λ| > r4 = max{r2,−ξζ}. If θ0 is real, then also θ is real.

Proof. We have

θ(λ) =
(−λ+ ξζ)θ0(λ) + ξ + ζ

−λ+ ξζ − λθ0(λ)(ξ + ζ)
,

which gives in particular that θ is real if θ0 has this property. We are going to show
that the denominator is not zero for all λ ∈ C+ with |λ| > r3. Indeed, assume that

−λ+ ξζ − λθ0(λ)(ξ + ζ) = 0

for some such λ. Then

θ0(λ) =
1

ξ + ζ

(
ξζ

λ
− 1

)
and thus

λ
1
2 θ0(λ) =

1

ξ + ζ

(
ξζ

λ
1
2

− λ
1
2

)
=

1

(ξ + ζ)|λ|
(
ξζλ

1
2 − |λ|λ 1

2

)
,
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so that

Im
(
λ

1
2 θ0(λ)

)
= − Imλ

1
2

ξζ + |λ|
(ξ + ζ)|λ| .

The right-hand side is negative for λ ∈ C+ with |λ| > −ξζ, whereas the left-hand
side is positive for |λ| > r2 by assumption. This contradiction shows that θ has no
poles in {λ ∈ C+ : |λ| > r3}.

Assume there is λ0 ∈ C+, |λ0| > r1, such that θ(λ0) = 0. Then

θ0(λ0) =
ξ + ζ

λ0 − ξζ
,

where the right-hand side is a Möbius transformation mapping C+ onto C−, thus
arriving at a contradiction since the left-hand side belongs to C+.

We define

θ1(λ) =
q(λ)

p(λ)
=

ξ + ζ

−λ+ ξζ

and observe that

λ
1
2 θ1(λ) =

λ
1
2 (ξ + ζ)

−λ+ ξζ
=

λ
1
2 (ξ + ζ)(−λ+ ξζ)

| − λ+ ξζ|2

and
Im
(
λ

1
2 (−λ+ ξζ)

)
= Imλ

1
2 (|λ|+ ξζ)

show that λ
1
2 θ1(λ) ∈ C+ if λ ∈ C+, |λ| > −ξζ. Then

λ
1
2 θ(λ) =

λ
1
2 θ0(λ) + λ

1
2 θ1(λ)

1− λ
1
2 θ0(λ)λ

1
2 θ1(λ)

∈ C
+ if λ ∈ C

+, |λ| > r4,

by Lemma 5.2.12. �
Lemma 5.2.15. Let θ ∈ M ∩N ep

+ . Then there is r ≥ 0 such that λ
1
2 θ(λ) ∈ C+ if

λ ∈ C+ with |λ| > r.

Proof. The case that θ is constant is trivial, so that we may assume now that θ
is not constant and therefore θ ∈ N̂ . Since θ ∈ N ep

+ , there is r ≥ 0 such that θ is
positive on (−∞,−r]. By Corollary 5.2.3, θ has at least one pole, and the smallest
pole is smaller than all zeros of θ, if any. Then the zeros and poles of ψ defined by
ψ(λ) = (λ+ r)θ(λ) interlace. We observe that

ψ′(λ) = θ(λ) + (λ+ r)θ′(λ),

so that ψ′(−r) = θ(−r) > 0, and it follows from Theorem 11.1.6 and Remark
11.1.7 that ψ ∈ N̂ . For λ ∈ C+ we write

λ+ r = λ
1
2

(
λ

1
2 +

r

|λ|λ
1
2

)
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and observe that

Im

(
λ

1
2 +

r

|λ|λ
1
2

)
= Imλ

1
2

(
1− r

|λ|
)

> 0 if λ ∈ C
+, |λ| > r.

Hence, for λ ∈ C+, |λ| > r, we have

π > arg(λ+ r) = argλ
1
2 + arg

(
λ

1
2 +

r

|λ|λ
1
2

)
> argλ

1
2 > 0

and therefore

π > argψ(λ) = arg((λ + r)θ(λ)) > arg(λ
1
2 θ(λ)) > arg θ(λ) > 0,

whence λ
1
2 θ(λ) ∈ C

+ if λ ∈ C
+, |λ| > r. �

The following theorem is the converse of Theorem 5.2.9.

Theorem 5.2.16. Consider the entire function

ω(λ) = λmeu(λ)+i(νλ+δ)

(∞)∏
k=1

(
1− λ

αk

)
e
RPk

(
λ
αk

)
,

where m ∈ N0, ν ≥ 0, δ ∈ R, u(λ) is a real entire function and

(∞)∑
k=1

∣∣∣∣Im 1

αk

∣∣∣∣ <∞.

Assume that ω is symmetric with respect to the imaginary axis, i. e., ω(−λ) = ω(λ)
for all λ ∈ C, and assume that the zeros of ω satisfy the following conditions:

1. The zeros of ω lie in the open upper half-plane and on the imaginary axis.

2. There are at most finitely many zeros of ω on (−i∞, 0), these zeros are
simple, and their number is denoted by κ.

3. If κ > 0 and the zeros in the open lower half-plane are enumerated such that
λj = iτj, where τκ < τκ−1 < · · · < τ1 < 0, then ω(i|τj |) �= 0 for j = 1, . . . , κ.

4. If κ > 1, then each interval (i|τj |, i|τj+1|), j = 1, . . . , κ− 1, contains an odd
number of zeros of ω, counted with multiplicity.

5. If κ > 0 and ω(0) �= 0, then the interval (0, i|τ1|) contains an even number
of zeros of ω, counted with multiplicity, or does not contain any zeros of ω.

6. If ω(0) = 0, then this zero is simple, and if additionally κ > 0, then the inter-
val (0, i|τ1|) contains an odd number of zeros of ω, counted with multiplicity.

7. If κ > 0, then the interval (i|τκ|, i∞) contains at least one zeros of ω.

Then ω ∈ SSHBκ if ω has at least one nonzero zero.
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Proof. Let Ps, Qs, P̃ , and Q̃ be as in (5.1.23) and (5.1.24). We are going to show
that Ps and Qs do not have common zeros. Indeed, assume there is λ ∈ C \ {0}
such that Ps(λ

2) = Qs(λ
2) = 0. Then ω(±λ) = Ps(λ

2) ± iλQs(λ
2) = 0, which is

impossible because in view of conditions 1 and 3 there are no nonzero zeros of ω
which are symmetric with respect to the origin. Also, since 0 is at most a simple
zero of ω and since P̃ and Q̃ are even functions, at least one of Ps(0) and Qs(0)
must be different from zero.

Next assume that ω has at least one nonzero zero. Then the zeros of ω are
not symmetric with respect to the origin, but the zeros of Ps(λ

2) and iλQs(λ
2)

are. Hence neither Ps nor Qs can be identically zero.

We are going to prove the statement of the theorem by induction on κ, where
we are also going to prove and use that there is r ≥ 0 such that

λ
1
2
Qs(λ)

Ps(λ)
∈ C

+ if λ ∈ C
+, |λ| > r. (5.2.12)

If κ = 0, then ω is an entire function without zeros in the closed lower half-
plane, except possibly at 0. Due to Theorem 5.1.11, ω is of HB class. We have
shown that Ps �= 0 and Qs �= 0, so that

θ(λ) =
λQ̃(λ)

P̃ (λ)
, θs =

Qs

Ps
,

are well-defined nonzero meromorphic functions. In view of Lemma 11.1.1, applied
to (5.1.23), θ ∈ N , and then θ(λ) = λθs(λ

2) shows by Lemma 5.2.4, part 4, that
θs ∈ S, so that ω ∈ SSHB0. Then Proposition 5.2.8 gives θ ∈ N̂ , and (5.2.12)
follows from Lemma 5.2.15.

Now assume that κ > 0 and that the statement of this theorem and (5.2.12)
are true for κ − 1. We are going to construct a family of entire functions ω(·, η),
η ∈ [0, 1], such that ω = ω(·, 0), the zeros of ω(·, η) depend continuously on η,
ω(·, η) satisfies the same assumptions as ω for all η > 0, and ω(·, 1) has κ − 1
zeros on (−i∞, 0). We start with writing ω in a form which is more convenient
for our purposes. Let k0 ∈ N be such that k0 − 2 is the number of zeros of ω in
[0, i|τ1|). It will be convenient to choose a certain indexing for finitely many zeros
of ω, to include 0 into this indexing if ω(0) = 0, and to rewrite the corresponding
factors in the product representation of ω in the following way. Let α1 = iτ1, let
αk, k = 2, . . . , k0 − 1, be all zeros of ω in [0, i|τ1|), if any, where we may assume
that Imαk ≤ Imαk+1 for k = 2, . . . , k0 − 2, and let αk0 be the zero on (i|τ1|, i∞)
with the smallest absolute value, which exists by assumptions 4 and 7. For each αk

with 1 ≤ k ≤ k0 and αk �= 0, e
RPk

(
λ
αk

)
can be moved into u(λ), possibly changing

u to a different real entire function. Secondly, we will write

1− λ

αk
= −α−1

k (λ− αk)
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for these k. The constants −α−1
k can be absorbed into the exponential term, pos-

sibly changing u and δ, so that

ω(λ) = ω̂(λ)ω0(λ),

where ω̂ = ω̂1ω̂2,

ω̂1(λ) =

k0−1∏
k=2

[i(λ− αk)], ω̂2(λ) = [i(λ− iτ1)][i(λ − αk0)],

ω0(λ) = eû(λ)+i(νλ+δ̂)

(∞)∏
k=k0+1

(
1− λ

αk

)
e
RPk

(
λ
αk

)
,

û is a real entire function and δ̂ ∈ R. In our construction, at most two linear factors
from ω̂ of the form i(λ−αk(η)) will change with η at a time, continuously depend-
ing on the parameter η, so that the resulting functions ω̂1(·, η) and ω̂2(·, η) will be
polynomials which depend continuously on η, uniformly on compact subsets.

Now we describe how to move iτ1 from the open lower half-plane into the
open upper half-plane. According to the conditions 2, 5 and 6, the interval [0, i|τ1|)
contains an even number of zeros of ω and thus of ω̂1. Let us arrange them in
adjacent pairs (α2, α3), . . . , (αk0−2, αk0−1), if any. Then we move elements of each
pair along the interval (0, i|τ1|), continuously as functions of the parameter η in
[0, 12 ], to collide and after the collision we move them into the complex plane
symmetrically with respect to the imaginary axis. In this process all other zeros
are kept fixed. Now, since there are no zeros of ω̂(·, η) in the interval (0, i|τ1|) for
η = 1

2 , we move the zero iτ1 up along the imaginary axis until it appears in the
upper half-plane in the interval (0, i|τ1|) for η = 1. Here, this zero is paired with
the zero αk0 , which may stay fixed. Clearly, in this process all of the properties
1–7 are satisfied for ω̂1(·, η), ω̂2(·, η), ω0 and any of their products with η ∈ [0, 1].

Observe that
i
(−λ+ β

)
= i(λ− β), λ, β ∈ C,

so that ψ(−λ) = ψ(λ) if

ψ(λ) = i(λ− β1(μ)) or ψ(λ) = [i(λ− β2(μ))][i(λ + β2(μ))],

where β1(η) ∈ iR and β2(μ) ∈ C. This shows ω̂1(−λ, η) = ω̂1(λ, η), ω̂2(−λ, η) =
ω̂2(λ, η) and thus ω0(−λ, η) = ω0(λ, η) for all λ ∈ C and η ∈ [0, 1].

Therefore, ω(·, 1) and ω̂1(·, η)ω0 satisfy all assumptions of this theorem, but
with κ replaced with κ− 1. By induction hypothesis, ω(·, 1) ∈ SSHBκ−1.

Next we note that the symmetry proved above shows in view of Proposition
5.2.8 that there are real entire functions P̂0(·, η) and Q̂0(·, η) such that

ω̂1(λ, η)ω0(λ) = P̂0(λ
2, η) + iλQ̂0(λ

2, η).



5.2. Shifted Hermite–Biehler functions 147

If ω̂1(·, η)ω0 has at least one nonzero zero, then this function belongs to SSHBκ−1

by induction hypothesis, so that

θ̂0(·, η) = Q̂0(·, η)
P̂0(·, η)

∈ N .

Otherwise, if ω̂1(·, η)ω0 has no nonzero zero, then κ = 1, and ω̂1(0, η)ω0(0) �= 0
by condition 6 since the interval (0, i|τ1|] contains no zeros of ω̂1(·, η)ω0, so that
ω̂1(·, η)ω0 has no zeros at all. Then ω̂1(·, η) = 1 as it is an empty product. Hence
ω̂1(·, η)ω0 = ω0 is independent of η, and so are P̂0(·, η) and Q̂0(·, η). In this case,
P̂0(0, η) = ω0(0) �= 0, so that P̂0(·, η) �= 0. However, Q̂0(·, η) = 0 is possible as the
trivial case ω0 = 1 demonstrates. But if Q̂0(·, η) �= 0, then ω̂1(·, η)ω0 satisfies the
assumptions of this theorem with κ = 0, and the proof of that case shows that

θ̂0(·, η) ∈ N̂ , that ω̂1(·, η)ω0 ∈ SSHB0, and that (5.2.12) holds for λ �→ λ
1
2
Q̂0(λ,η)

P̂0(λ,η)
.

Summarizing the above result, we have either

θ̂0(·, η) ∈ N ep
+ and λ �→ λ

1
2
Q̂0(λ, η)

P̂0(λ, η)
satisfies (5.2.12) for all η ∈ [0, 1] (5.2.13)

or
θ̂0(·, η) = 0 for all η ∈ [0, 1]. (5.2.14)

All of the pairs of zeros in ω̂1(·, η) and ω̂2(·, η) are of the form (iξ, iζ) with
ξ + ζ > 0 or (iξ + ζ, iξ − ζ) with ξ > 0, where ξ, ζ ∈ R. In the first case,

[i(λ− iξ)][i(λ− iζ)] = −λ2 + iλ(ξ + ζ) + ξζ =: p(λ2) + iλq(λ2),

with
p(λ) = −λ+ ξζ, q(λ) = ξ + ζ. (5.2.15)

In the second case,

[i(λ− (iξ + ζ))][i(λ − (iξ − ζ))] = −λ2 + iλ2ξ + ξ2 + ζ2 =: p(λ2) + iλq(λ2),

with
p(λ) = −λ+ ξ2 + ζ2, q(λ) = 2ξ. (5.2.16)

In particular, with the real-imaginary parts decomposition

ω̂2(λ, η) =: p̂2(λ
2, η) + iλq̂2(λ

2, η)

it follows that

ω(λ, η) = [ω̂1(λ, η)ω0(λ)]ω̂2(λ, η)

=
[
P̂0(λ

2, η) + iλQ̂0(λ
2, η)

] [
p̂2(λ

2, η) + iλq̂2(λ
2, η)

]
= P̂0(λ

2, η)p̂2(λ
2, η)− λ2Q̂0(λ

2, η)q̂2(λ
2, η)

+ iλ
(
Q̂0(λ

2, η)p̂2(λ
2, η) + P̂0(λ

2, η)q̂2(λ
2, η)

)
,
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so that

ω(λ, η) = Ps(λ
2, η) + iλQs(λ

2, η)

with

Ps(λ, η) = P̂0(λ, η)p̂2(λ, η)− λQ̂0(λ, η)q̂2(λ, η),

Qs(λ, η) = Q̂0(λ, η)p̂2(λ, η) + P̂0(λ, η)q̂2(λ, η).

Therefore

θs(λ, η) =
Qs(λ, η)

Ps(λ, η)
=

θ̂0(λ, η)p̂2(λ, η) + q̂2(λ, η)

p̂2(λ, η) − λθ̂0(λ, η)q̂2(λ, η)
. (5.2.17)

From the alternative (5.2.13), (5.2.14) we know that θ̂0(·, η) = 0 for some η ∈ [0, 1]

implies that θ̂0(·, η) = 0 for all η ∈ [0, 1], so that in this case

θs(λ) = θs(λ, 0) =
q̂2(λ, 0)

p̂2(λ, 0)
=
|αk0 |+ τ1
−λ+ |αk0 |τ1

.

Clearly, θ is a Möbius transformation which belongs to SSHB1, and θ satisfies
(5.2.12) in view of Lemma 5.2.15.

Now let Q̂0(·, η) �= 0 for η ∈ [0, 1]. Then θ̂0(·, η) ∈ N ep
+ with κ − 1 negative

poles, see (5.2.13). Writing ω0(λ) = p0(λ
2) + iλq0(λ

2) and θ0(λ) =
q0(λ)
p0(λ)

, we have

by induction hypothesis that there is r2 ≥ 0 such that λ
1
2 θ0(λ) ∈ C+ for all

λ ∈ C+ with |λ| > r2. Adding pairs of factors from ω̂1 recursively, Lemmas 5.2.13
and 5.2.14 show that the corresponding estimates remain true with the same r2,
and therefore, eventually, λ

1
2 θ̂0(λ, η) ∈ C+ for all λ ∈ C+ with |λ| > r2.

Also, starting with θ0, recursively adding pairs of factors from ω̂1 to ω0 gives
meromorphic functions

θj(λ, η) =
θj−1(λ, η) + ψj(λ, η)

1− λθj−1(λ, η)ψj(λ, η)
,

where either

ψj(λ, η) =
ξj(η) + ζj(η)

−λ+ ξj(η)ζj(η)
or

ψj(λ, η) =
2ξj(η)

−λ+ ξ2j (η) + ζ2j (η)

with continuous functions ξj : [0, 1]→ (0,∞) and ζj : [0, 1]→ [0,∞). Since there
is γ ∈ R such that θ0(λ) > 0 for λ ∈ (−∞, γ), it follows in each step that also

θj(λ, η) > 0 for each λ ∈ (−∞, γ) and η ∈ [0, 1]. Because θ̂(λ, η) is the final of

these θj(∞, η), also θ̂(λ, η) > 0 for each λ ∈ (−∞, γ) and η ∈ [0, 1].
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Since, by construction,

p̂2(λ, η) = −λ+ ξ(η)ζ(η), q̂2(λ, η) = ξ(η) + ζ(η)

for η ∈ [0, 1] with ξ(η) = |αk0 |, ζ(η) = τ1 if η ∈ [0, 12 ] and ζ(1) ∈ (0, |τ1|), where ζ
increases with η ∈ [ 12 , 1], we have

−ξ(η)ζ(η) ≤ |αk0 ||τ1|, η ∈ [0, 1].

By Lemma 5.2.14, there are r3, r4 ≥ 0, independent of η, such that θ(·, η) has no
zeros in C

+, θ(·, η) has no poles in {λ ∈ C
+ : |λ| > r3}, and λ

1
2 θ(λ, η) ∈ C

+ for
λ ∈ C+, |λ| > r4. In particular, (5.2.12) is satisfied.

Setting

θ̂2(λ, η) =
q̂2(λ, η)

p̂2(λ, η)
=

ξ(η) + ζ(η)

−λ+ ξ(η)ζ(η)
,

(5.2.17) can be written as

θs(λ, η) =
θ̂0(λ, η) + θ̂2(λ, η)

1− λθ̂0(λ, η)θ̂2(λ, η)
,

which implies that θs(λ, η) > 0 if λ ∈ (−∞, γ̂), where γ̂ = min{γ,−|αk0 ||τ1|}.
Next we are going to study the behaviour of the real zeros of P (·, η). Writing

ω0(λ) = P0(λ
2) + iλQ0(λ

2),

ω̂(λ, η) = p̂(λ2, η) + iλq̂(λ2, η),

it follows that

Ps(λ, η) = P0(λ)p̂(λ, η) − λQ0(λ)q̂(λ, η),

Qs(λ, η) = Q0(λ)p̂(λ, η) + P0(λ)q̂(λ, η).

Since ω̂(·, η) are polynomials, so are p̂(·, η) and q̂(·, η). Furthermore, since p̂(·, η)
and q̂(·, η) can be constructed according to the above rules from building blocks of
the form (5.2.15) and (5.2.16), it is easy to see that the corresponding polynomials
pj(·, η) and qj(·, η) have the form p̂j(λ, η) = (−λ)j + O

(
λj−1

)
and q̂j(λ, η) =

σj(η)(−λ)j−1+O
(
λj−2

)
, where the σj are positive continuous functions and where

the O-terms are uniform on η ∈ [0, 1]. Hence there is δ > r3 such that p̂(·, η) and
q̂(·, η) do not have zeros on (δ,∞).

First we consider the case that P0 has infinitely many zeros, and therefore
infinitely many positive zeros. We recall that θ0 = Q0

P0
is a Nevanlinna function. If

λ1 and λ2 are two consecutive zeros of P0 in (δ,∞), then there is exactly one simple
zero of Q0 between λ1 and λ2, and therefore Q0(λ1) and Q0(λ2) have opposite
signs. Then also

Ps(λ1, η) = −λ1Q0(λ1)q̂(λ1, η) and Ps(λ2, η) = −λ2Q0(λ2)q̂(λ2, η)
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have opposite signs, so that between any two zeros of P0 in (δ,∞) there is a zero of
Ps(·, η), for any η ∈ [0, 1]. Conversely, any such zero λ(η), depending continuously
on η, must stay in such an interval (λ1, λ2) since Ps(·, η) does not have nonreal
zeros λ with |λ| > r3.

On the other hand, if P0 has finitely many zeros, then θ0 is a rational function,
and in view of Theorem 11.1.6 we may replace P0 and Q0 by real polynomials,
thus replacing Ps(·, η) and Qs(·, η) by polynomials whose leading coeffients are
never zero. Hence also the zeros of Ps(·, η) must remain in a finite region.

In particular, since zeros λ of Ps(·, η) and Qs(·, η) with |λ| > r3 must be
real, zeros of Ps(·, η) and Qs(·, η) cannot leave or join the complex plane through

∞. Hence, if (λj(1))
(∞)
j=1 denotes the zeros of Ps(·, 1) and Qs(·, 1), then all zeros

are real, may be arranged such that λj(1) < λj+1(1) for all j ∈ N, and they are
alternatively zeros of Ps(·, 1) and of Qs(·, 1). The above considerations show that

there is a sequence of continuous functions (λj)
(∞)
j=1 on [0, 1] such that (λj(η))

(∞)
j=1

is the sequence of the zeros of Ps(·, η) and Qs(·, η) for all η ∈ [0, 1]. As η decreases
from 1 to 0, the λj(η) must remain distinct since Ps(·, η) and Qs(·, η) do not have
common zeros. Since real zeros of a real analytic functions can leave the real axis
into the complex plane only in conjugate complex pairs, all zeros of Ps(·, η) must
therefore stay on the real axis for all η, and it follows for all η ∈ [0, 1] that the
zeros of Ps(·, η) and Qs(·, η) are real and interlace.

We now show that θs ∈ N̂ . The proof of this part is similar to the last para-
graph of the proof of Theorem 11.1.6. To this end, we use that there is a product
ψ ∈ N̂ of the form (11.1.2), with C = 1, such that ψ has the same zeros and
poles as θs. Then f = θs

ψ is a real meromorphic function without poles and zeros,
that is, a real entire function without zeros. From what we have already shown
for θs and from Lemma 5.2.15 applied to ψ we have that there is r > 0 such that
λ

1
2 θs(λ) ∈ C+ and λ

1
2ψ(λ) ∈ C+ for all λ ∈ C+ with |λ| > r. Then it follows for

these λ that f(λ) /∈ (−∞, 0). Also, there is m > 0 such that |f(λ)| ≤ m for all
λ ∈ C with |λ| ≤ r. It follows that f(C+)∩(−∞,−m) = ∅, and since f is real, also
f(C−)∩ (−∞,−m) = ∅. Continuing as in the last paragraph of the proof of Theo-
rem 11.1.6, it follows that f is a positive constant, and then ψ ∈ N̂ gives θs ∈ N̂ .

Finally, since we already know that θs(λ) > 0 for λ ∈ (−∞, γ), it follows
that ω ∈ SSHBκ′ for some κ′ ∈ N0. In view of Theorem 5.2.9, ω has κ′ zeros in
(0,−i∞), so that κ′ = κ. �

The following simple example shows that Theorem 5.2.16 may be false or
true without assumption 7.

Example 5.2.17. Let 0 < b < a and define ω(λ) = (iλ − a)(iλ + b)2. Then ω
satisfies all assumptions of Theorem 5.2.16 except assumption 7, which does not
hold. We can write ω(λ) = Ps(λ

2) + iλQs(λ
2) with Ps(λ) = (a − 2b)λ − ab2 and

Qs(λ) = −λ− b(2a− b). Now it is easy to see that Qs

Ps
∈ N ep

+ if and only if a < 2b.
Hence ω is of SSHB1 class if 0 < b < a < 2b, but ω does not belong to SSHB if
0 < 2b ≤ a.
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5.3 Notes

Hermite–Biehler polynomials were introduced and investigated in [107]. In [30],
Biehler considered a class of polynomials for which the imaginary parts of its zeros
have the same sign and showed that the zeros of the real and imaginary parts of
these polynomials have only real simple zeros which interlace. By the change of
parameter λ �→ −iλ we obtain Hurwitz polynomials [120]. For a detailed review
of these and related results we refer the reader to [113].

Hermite–Biehler entire functions and generalized Hermite–Biehler entire
functions were described in [173]. We cite the following statements about the his-
tory of generalizations of Hermite–Biehler polynomials to Hermite–Biehler func-
tions from [173, Chapter VII, pp. 306, 307].

For the solution of certain questions of the theory of automation one
needs effective criteria for all the roots of the function

F (z) =

n,m∑
k,j=0

akjz
jeλkz (5.3.1)

to lie in the left half-plane. N.G. Čebotarëv called functions of type
(5.3.1) quasipolynomials. Quasipolynomials depend only on a finite
number of parameters, and therefore it is natural to suppose that for
them there exists an effective method of solving this problem.

In 1942 N.G. Čebotarëv found such an effective criterion for a very
special case of polynomials [51]. In another paper N.G. Čebotarëv [50],
generalizing the Sturm algorithm to quasipolynomials, gave a general
principle for solving this problem for arbitrary quasipolynomials. How-
ever the application of this general principle required a generalization
of the Hermite–Biehler theorem to quasipolynomials.

L.S. Pontryagin [232] in 1942 generalized the Hermite–Biehler the-
orem to quasipolynomials of the type P (z, ez), where P (z, u) is a poly-
nomial in two variables.

In carrying over the Hermite–Biehler criterion to arbitrary entire
functions, an essential role is played by a particular class of entire func-
tions. This class was introduced and studied by M.G. Krĕın in his paper
“On a class of entire and meromorphic functions”, which was devoted
to the extension of the Hurwitz criterion to entire functions. The def-
inition of this class presented here is due to N.N. Mĕıman [188]. It is
equivalent to the definition given earlier by M.G. Krĕın (see the book
of N.I. Ahiezer and M.G. Krĕın [7]).

For further results on Hermite–Biehler polynomials and related polynomials
we refer to [110], [111], [45, P. 215] [112], [203], [253] and the review paper [113].
Different results connected with Hermite–Biehler functions can be found in [61].
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Shifted Hermite–Biehler polynomials were introduced in [219]. For polyno-
mials, an analogue of Theorem 5.2.9 was obtained in [219] and [264, Theorem 5.3].

The class of essentially positive Nevanlinna functions has been introduced by
M. Kaltenbäck, H. Winkler and H. Woracek in [131].

In [227] the theory of de Branges Pontryagin spaces of entire functions was
used to characterize zeros of shifted Hermite–Biehler functions. The main result
there is [227, Theorem 3.1], which corresponds to Theorems 5.2.9 and 5.2.16. Our
proof of Theorem 5.2.16 follows the geometric approach in [228].

Results on representing rational functions as continued fractions can be found
in [270, Chapter IX], see also [264, Theorem 1.36] and [113, Sections 1.3–1.5].



Chapter 6

Applications of Shifted
Hermite–Biehler Functions

In this chapter we revisit some of the applications in Chapter 2 and express their
spectra as the zeros of entire functions.

Indeed, we are going to use shifted Hermite–Biehler functions and general-
ized shifted Hermite–Biehler functions to describe characteristic functions of those
spectral problems from Chapter 2 which are described by quadratic operator pen-
cils L(λ) = λ2M − iλK − A with the operator K having rank 1. The results in
this chapter differ slightly form those obtained in Chapter 2, and this additional
information by either method will be exploited in Chapters 7 and 8.

In Definition 1.5.2 we have defined eigenvalues of type I and type II, whereas
in Remark 5.2.10 we have defined zeros of type I and type II. In Chapter 2 the
operator approach allowed us to classify eigenvalues of our applications as being of
type I and type II. In this chapter we will consider characteristic functions of our
applications, and the zeros of these characteristic functions, which are of SSHB
class, will be classified as being of type I and type II. But from Remark 1.5.8 we
readily conclude that a nonzero eigenvalue is of type I if and only it is a zero of
λ �→ R∗(λ2), with multiplicity, see Remark 5.2.10. Hence nonzero eigenvalues of
type I and type II, respectively, are zeros of type I and type II, respectively, of the
characteristic function.

Therefore the notions of type of an eigenvalue for an eigenvalue problem and
type of a zero of the characteristic function of that eigenvalue problem coincide for
nonzero numbers, and in this chapter we may henceforth write, e. g., “eigenvalue
of type I” rather than “zero of type I of the characteristic function”.

However, the situation may be different at 0. For example, if 0 is a simple
eigenvalue of a pencil L as considered in Section 1.5, then it is an eigenvalue of type
I by Remark 1.5.3, part 2. On the other hand, if this problem has a characteristic
function of SSHB class, then 0 is a zero of type II since this zero is simple.

© Springer International Publishing Switzerland 2015 
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6.1 The generalized Regge problem

The Regge problem was considered in Section 2.1. Recall that s is the solution of
the differential equation (2.1.1) which satisfies the initial conditions s(λ, 0) = 0,
s′(λ, 0) = 1. Then the eigenvalues of the generalized Regge problem (2.1.1), (2.1.2),
(2.1.5) are exactly the zeros of the entire function φ obtained by substituting s,
the solution of (2.1.1), (2.1.2) satisfying s′(0) = 1, into (2.1.5):

φ(λ) = s′(λ, a) + (iλα+ β)s(λ, a), (6.1.1)

where α > 0 and β ∈ R.

Proposition 6.1.1. 1. The function φ is an entire function of exponential type a.
2. The function φ is of sine type if and only if α �= 1.

Proof. Substituting (12.2.22) and (12.2.23) with n = 0 into (6.1.1) we obtain

φ(λ) =
1 + α

2
eiλa +

1− α

2
e−iλa + o(e| Imλ|a). (6.1.2)

Clearly,

φ(λ) = O
(
e| Imλ|a

)
and φ(−iτ) =

(
1 + α

2
+ o(1)

)
eτa for τ > 0, (6.1.3)

which shows that φ is of exponential type a. Similarly,

φ(iτ) =

(
1− α

2
+ o(1)

)
eτa for τ > 0, (6.1.4)

and therefore (6.1.3) and (6.1.4) show that φ is of exponential type both in the
upper and lower half-planes if α �= 1. Furthermore, it immediately follows from
(6.1.2) that there are positive real numbers h, m, M such that

me| Imλ|a ≤ |φ(λ)| ≤Me| Imλ|a for all λ ∈ C with | Imλ| ≥ h

if α �= 1. Therefore φ is of sine type if α �= 1 by Definition 11.2.5. On the other
hand, if α = 1, then (6.1.2) gives |φ(λ)| = o(eImλa) for all λ ∈ C+, and therefore
φ is not a sine type function by Proposition 11.2.19. �
Proposition 6.1.2. The function φ defined in (6.1.1) belongs to the class SSHB.

Proof. Since s(·, x) is an even function, there are unique entire functions f and g
such that

f(λ2) = s′(λ, a), g(λ2) = s(λ, a), λ ∈ C.

By Theorem 12.6.2, the sequence (μ2
k)

∞
k=1 of the squares of the zeros of s′(·, a)

interlaces with the sequence (ν2k)
∞
k=1 of the squares of the zeros of s(·, a):

μ2
1 < ν21 < μ2

2 < ν22 < · · · (6.1.5)
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That is, the zeros of f and g interlace. As in the proof of Proposition 6.1.1 it
follows from (12.2.22) and (12.2.23) with n = 0 that s′(·, a) and λ �→ λs(λ, a) are
sine type functions. In view of Lemma 11.2.29, there are nonzero complex numbers
c and c′ and integers m,m′ ∈ {0, 1} such that

λs(λ, a) = cλ2m+1

∞∏′

k=1

(
1− λ2

ν2k

)
,

s′(λ, a) = c′λ2m′
∞∏′

k=1

(
1− λ2

μ2
k

)
,

where
∏′

indicates that the factor, if any, for which νk = 0 or μk = 0, respectively,

is omitted, and where m+m′ ≤ 1 in view of (6.1.5). It follows that

g(λ) = cλm

∞∏′

k=1

(
1− λ

ν2k

)
,

f(λ) = c′λm′
∞∏′

k=1

(
1− λ

μ2
k

)
.

Since s(λ, ·) is a real solution of (2.1.1) for real λ, f and g are real analytic. In
particular, c and c′ are real numbers. We conclude from Remark 11.1.7 that either
g
f or f

g is a Nevanlinna function. Denote that function which is a Nevanlinna
function by θ. Clearly, θ ∈ N ep by Definition 5.1.26, part 1. Furthermore,

s(λ, a) =
λ→±i∞

e|λ|a

2|λ| + o

(
e|λ|a

|λ|
)
, (6.1.6)

s′(λ, a) =
λ→±i∞

e|λ|a

2
+ o
(
e|λ|a

)
, (6.1.7)

shows that θ(λ) is positive for λ → −∞, that is, θ ∈ N ep
+ by Definition 5.1.26,

part 2. Since μ2
1, the smallest zero of f , is smaller than the smallest zero of g, μ2

1

must be a pole of θ by Corollary 5.2.3. It follows that θ = g
f . Then − f

g ∈ N ep
− by

Lemma 5.2.4, part 2, and therefore

−f + βg

αg
= − 1

α

f

g
− β

α
∈ N ep

−

if we observe that f(λ)
g(λ) → ∞ as λ → −∞ by (6.1.6) and (6.1.7). We conclude,

again from Lemma 5.2.4, part 2, that

αg

f + βg
∈ N ep

+ .

Since φ(λ) = (f + βg)(λ2) + iαλg(λ2), the function φ belongs to the class SSHB
by Definition 5.2.6. �
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Theorem 6.1.3. The eigenvalues of the generalized Regge problem (2.1.1), (2.1.2),
(2.1.5) have the properties:

1. Only a finite number of the eigenvalues lie in the closed lower half-plane.

2. All nonzero eigenvalues in the closed lower half-plane lie on the negative
imaginary semiaxis and are simple. If their number κ is positive, they will be
uniquely indexed as λ−j = −i|λ−j|, j = 1, . . . , κ, satisfying |λ−j | < |λ−(j+1)|,
j = 1, . . . , κ− 1.

3. If κ > 0, then the numbers i|λ−j |, j = 1, . . . , κ, are not eigenvalues.

4. If κ ≥ 2, then in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ−1 the
number of eigenvalues, counted with multiplicity, is odd.

5. If κ > 0 and 0 is not an eigenvalue, then the interval (0, i|λ−1|) contains an
even number of eigenvalues, counted with multiplicity, or does not contain
any eigenvalues.

6. If κ > 0 and 0 is an eigenvalue, then the interval (0, i|λ−1|) contains an odd
number of eigenvalues, counted with multiplicity.

7. If α �= 1, then the generalized Regge problem has infinitely many eigenvalues,
which lie in a horizontal strip of the complex plane.

Proof. Parts 1–6 follow from Proposition 6.1.2 and Theorem 5.2.9.

Part 7 immediately follows from Proposition 11.2.8, part 2, since φ is a sine
type function by Proposition 6.1.1. �

Remark 6.1.4. The statement of part 7 of Theorem 6.1.3 may fail if α = 1. For
example, if q = 0 and β = 0, then

s(λ, x) =
sin(λx)

λ
, λ ∈ C \ {0},

and therefore

φ(λ) = cos(λa) + i sin(λa) = eiλa,

which has no zeros at all.

Remark 6.1.5. We recall that Theorem 2.1.2 is concerned with the Regge problem,
whereas Theorem 6.1.3 deals with the generalized Regge problem. Statements 1–4
are identical in both theorems, up to minor differences in formulation. Statement 5
in Theorem 2.1.2 distinguishes two cases determined by whether the operator A is
injective. Since the operator A does not feature in this section, in statements 5 and
6 of Theorem 6.1.3 the condition on the nullspace of A is replaced by the equivalent
condition on whether 0 is an eigenvalue. It is also important to note that infinitely
many eigenvalues can only be guaranteed if α �= 1. Hence the condition α �= 1
will play a prominent role in Chapters 7 and 8. In Chapter 7 we will encounter
sufficient conditions for the Regge problem to have infinitely many eigenvalues;
however these eigenvalues will not lie in a horizontal strip but in a logarithmic
strip of the complex plane.
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6.2 Damped vibrations of Stieltjes strings

Let us recall problem (2.6.7)–(2.6.8) for the case with only one point of damping,
which is derived from (2.6.3)–(2.6.6):

u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

− λ2m
(j)
k u

(j)
k = 0, k = 1, . . . , nj , j = 1, 2, (6.2.1)

u
(j)
0 = 0, (6.2.2)

u
(1)
n1+1 = u

(2)
n2+1, (6.2.3)

u
(1)
n1+1 − u

(1)
n1

l
(1)
n1

+
u
(2)
n2+1 − u

(2)
n2

l
(2)
n2

+ iλνu
(1)
n1+1 = 0. (6.2.4)

Here ν > 0 is the coefficient of damping at the interior point of damping and

m
(j)
k > 0 for k = 1, . . . , nj and j = 1, 2. Following [85, Supplement II, (16) and

(17)], a recursive application of (6.2.1) leads to

u
(j)
k (λ) = R

(j)
2k−2(λ

2)u
(j)
1 (λ), k = 2, . . . , nj + 1, j = 1, 2,

where the R
(j)
2k−2 are real polynomials of degree k − 1. For convenience we extend

the above equations to k = 1 and k = 0 by putting R
(j)
0 = 1 and R

(j)
−2 = 0, the

latter in view of (6.2.2). We further define

R
(j)
2k−1 =

R
(j)
2k −R

(j)
2k−2

l
(j)
k

, k = 0, . . . , nj , j = 1, 2. (6.2.5)

From (6.2.1) we obtain

R
(j)
2k (λ

2)−R
(j)
2k−2(λ

2)

l
(j)
k

=
R

(j)
2k−2(λ

2)−R
(j)
2k−4(λ

2)

l
(j)
k−1

− λ2m
(j)
k R

(j)
2k−2(λ

2)

for k = 1, . . . , nj and j = 1, 2. Substituting (6.2.5) into these equations, solv-

ing (6.2.5) for R
(j)
2k , and observing R

(j)
0 = 1 and R

(j)
−2 = 0, we obtain that the

polynomials R
(j)
k satisfy the recurrence relations and initial conditions

R
(j)
2k−1(λ

2) = −λ2m
(j)
k R

(j)
2k−2(λ

2) +R
(j)
2k−3(λ

2), k = 1, . . . , nj , j = 1, 2, (6.2.6)

R
(j)
2k = l

(j)
k R

(j)
2k−1 +R

(j)
2k−2, k = 1, . . . , nj , j = 1, 2, (6.2.7)

R
(j)
−1 =

1

l
(j)
0

, R
(j)
0 = 1, R

(j)
−2 = 0. (6.2.8)
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The conditions (6.2.3) and (6.2.4) at the joint of the two substrings give

R
(1)
2n1

(λ2)u
(1)
1 (λ) = R

(2)
2n2

(λ2)u
(2)
1 (λ), (6.2.9)

R
(1)
2n1−1(λ

2)u
(1)
1 (λ) +R

(2)
2n2−1(λ

2)u
(2)
1 (λ) + iνλR

(1)
2n1

(λ2)u(1)
1

(λ) = 0. (6.2.10)

The characteristic polynomial Φ of (6.2.1)–(6.2.3) is the determinant of the coef-
ficient matrix of the linear system (6.2.9), (6.2.10):

Φ(λ) = φ(λ2) + iλνR
(1)
2n1

(λ2)R
(2)
2n2

(λ2), (6.2.11)

where
φ = R

(1)
2n1

R
(2)
2n2−1 +R

(1)
2n1−1R

(2)
2n2

. (6.2.12)

Proposition 6.2.1.

1. For k = 1, . . . , nj and j = 1, 2, the functions
R

(j)
2k−2

R
(j)
2k−1

and
R

(j)
2k

R
(j)
2k−1

are S-
functions.

2. The function
νR

(1)
2n1

R
(2)
2n2

φ is an S-function.
3. For m = 1, . . . , 2nj and j = 1, 2, all zeros of R

(j)
m lie in (0,∞) and are

simple, and R
(j)
m is positive on (−∞, 0]. If R

(j)
m (z) = 0 for some z ∈ C, then

R
(j)
m−1(z) �= 0.

4. If R
(1)
2n1

(z) = R
(2)
2n2

(z) = 0 for some z ∈ C, then z is a simple zero of φ.

Proof. 1. The statement will be proved by induction on k. For convenience, we

start with the case k = 0, which is obvious since
R

(j)
−2

R
(j)
−1

= 0 and
R

(j)
0

R
(j)
−1

= l
(j)
0 by

(6.2.8). Now let k ∈ {1, . . . , nj} and assume that the statement is true for k − 1.

We observe that all R
(j)
k for k = 1, . . . , nj and j = 1, 2 are nonzero polynomials.

From (6.2.6) it follows that

R
(j)
2k−1(z)

R
(j)
2k−2(z)

= −zm(j)
k +

R
(j)
2k−3(z)

R
(j)
2k−2(z)

. (6.2.13)

By induction hypothesis and Lemma 5.2.4, part 3, we obtain −R
(j)
2k−3

R
(j)
2k−2

∈ S−1. Then

−R
(j)
2k−1

R
(j)
2k−2

∈ S−1 by (6.2.13), and
R

(j)
2k−2

R
(j)
2k−1

∈ S by Lemma 5.2.4, part 3. Hence (6.2.7)

gives

R
(j)
2k

R
(j)
2k−1

= l
(j)
k +

R
(j)
2k−2

R
(j)
2k−1

∈ S. (6.2.14)

2. The same reasoning as in the proof of part 1 shows that

− φ

R
(1)
2n1

R
(2)
2n2

= −R
(1)
2n1−1

R
(1)
2n1

− R
(2)
2n2−1

R
(2)
2n2

∈ S−1 and
νR

(1)
2n1

R
(2)
2n2

φ
∈ S. (6.2.15)
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3. If R
(j)
m (z) = 0 and R

(j)
m−1(z) = 0, then a recursive substitution into (6.2.6)

and (6.2.7) would lead to R
(j)
p (z) = 0 for all p = m,m − 1, . . . , 0, which is im-

possible due to (6.2.8). Hence
R(j)

m

R
(j)
m−1

does not have zero-pole cancellations, and

in view of part 1, all zeros of R
(j)
m lie in [0,∞) and are simple by Lemma 11.1.3.

The recurrence relations (6.2.6)–(6.2.8) show that R
(j)
m (0) > 0, and since the real

polynomials R
(j)
m have no zeros on (−∞, 0), they must also be positive there.

4. By part 3, z > 0, and from the proof of part 3 we know that −R
(j)
2nj−1

R
(j)
2nj

∈ S.
Hence the function on the left in (6.2.15) belongs to S−1 and therefore Lemma
11.1.3 shows that it has a simple pole at z. Since its denominator has a double
zero at z, its numerator φ must have a simple zero at z. �

Proposition 6.2.2. The function Φ defined in (6.2.11) is a nontrivial function of
SHB class with Φ(0) > 0.

Proof. Clearly, the functions φ and νR
(1)
2n1

R
(2)
2n2

are real polynomials and therefore
Φ is real on the imaginary axis, that is, Φ is symmetric with respect to the imagi-

nary axis. Let z be a common zero of φ and νR
(1)
2n1

R
(2)
2n2

. Without loss of generality,

we may assume that R
(1)
2n1

(z) = 0, and it follows from Proposition 6.2.1, part 3,

that z ∈ (0,∞). Hence the function
νR

(1)
2n1

R
(2)
2n2

φ does not have zero-pole cancella-

tions on (−∞, 0). By Proposition 6.2.1, part 2, the rational function
νR

(1)
2n1

R
(2)
2n2

φ

has no poles on (−∞, 0). Altogether it follows that φ has no negative real ze-
ros. Letting R∗ be a real polynomial whose zeros are the common zeros of φ and

νR
(1)
2n1

R
(2)
2n2

, it now easily follows that Φ can be written as in Definition 5.2.7, and

therefore Φ is of SHB0 class. An application of Proposition 5.2.8 gives that Φ is a
nontrivial function of SHB class. In view of Proposition 6.2.1, part 3, we have

Φ(0) = φ(0) = R
(1)
2n1

(0)R
(2)
2n2−1(0) +R

(1)
2n1−1(0)R

(2)
2n2

(0) > 0. �

Theorem 6.2.3. The eigenvalues (λk)
n1+n2

k=−(n1+n2)
of problem (6.2.1)–(6.2.4) can be

indexed in such a way that they have the following properties:

1. Imλk ≥ 0 for k = 0,±1, · · · ± (n1 + n2);

2. λ−k = −λk for not pure imaginary λ−k;

3. all real eigenvalues, if any, are simple and nonzero;

4. for each real eigenvalue λk, ImΦ′(λk) = 0;

5. the number of real eigenvalues does not exceed 2min{n1, n2}.
Proof. The eigenvalues of this problem are the zeros of the function Φ. Since

the polynomials R
(j)
2nj

and R
(j)
2nj−1 have degree nj , it follows that Φ has degree

2n1 + 2n2 + 1, and the eigenvalues can be labelled as indicated.
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An application of Proposition 6.2.2 and Corollary 5.2.11 proves part 1, and
part 2 follows from the symmetry of Φ.

3. By Proposition 6.2.2, real eigenvalues are nonzero, and hence a real eigen-

value λk is a square root of a common zero of the real polynomials φ and R
(1)
2n1

R
(2)
2n2

.

Assume without loss of generality that R
(1)
2n1

(λ2
k) = 0. Then R

(1)
2n1−1(λ

2
k) �= 0 by

Proposition 6.2.1, part 3, and

0 = φ(λ2
k) = R

(1)
2n1−1(λ

2
k)R

(2)
2n2

(λ2
k)

gives R
(2)
2n2

(λ2
k) = 0. In view of Proposition 6.2.1, part 4, it follows that λ2

k is a
simple zero of φ, which implies that λk is a simple zero of Φ.

4 and 5. For real λ, we have ImΦ(λ) = λR
(1)
2n1

(λ2)R
(2)
2n2

(λ2). From the proof
of part 3 and from Proposition 6.2.1, part 3, we recall that real eigenvalues are

square roots of common simple zeros of R
(1)
2n1

and R
(2)
2n2

and therefore double zeros
of ImΦ. This immediately proves part 4. We have also shown that the number of

real eigenvalues is bounded by 2n1 and 2n2, the degrees of R
(1)
2n1

and R
(2)
2n2

, and
part 5 follows. �

6.3 Vibrations of smooth strings

Here we revisit problem (2.2.1)–(2.2.3). We recall that separation of variables and
the Liouville transform lead to the boundary eigenvalue problem (2.2.4)–(2.2.6),
which upon the assumption σ(s) ≡ 2�ρ(s) and the parameter transformation
λ = ±τ + i�, see the beginning of Subsection 2.2.2, takes the form

y′′ − (q(x) − �2)y + τ2y = 0, (6.3.1)

y(τ, 0) = 0, (6.3.2)

y′(τ, a) + (−m̃τ2 + iτ |ν̃ − 2m̃�|+ β − ν̃�+ m̃�2)y(τ, a) = 0. (6.3.3)

Recall that s(τ, ·) denotes the solution of (6.3.1) which satisfies the initial con-
ditions s(τ, 0) = 0, s′(τ, 0) = 1. Then the spectrum of problem (6.3.1)–(6.3.3)
coincides with the set of zeros of the function φ given by

φ(τ) = s′(τ, a) + (−m̃τ2 + iτ |ν̃ − 2m̃�|+ β − ν̃�+ m̃�2)s(τ, a). (6.3.4)

Let us consider

θ1(τ
2) =

s(τ, a)

s′(τ, a) + (−m̃τ2 + β − ν̃�+ m̃�2)s(τ, a)

=

(
s′(τ, a)
s(τ, a)

+ (−m̃τ2 + β − ν̃�+ m̃�2)

)−1

.

Since the above initial value problem is as considered in Section 6.1, we obtain
as in the proof of Proposition 6.1.2 that θ as defined there satisfies −θ−1 ∈ N ep

− .
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From

− 1

θ1(z)
= − 1

θ(z)
+ m̃z − β + ν̃�− m̃�2 (6.3.5)

we conclude that −θ−1
1 ∈ N ep

− , and Lemma 5.1.22 shows that θ1 ∈ N ep
+ . If the nu-

merator and denominator in the definition of θ1 would have common zeros, s would
satisfy the initial conditions s(τ, a) = s′(τ, a) = 0 for some τ ∈ C, which would lead
to the contradiction s(τ, ·) = 0. Therefore φ is a shifted Hermite–Biehler function.

We can now apply Theorem 5.2.9 to the characteristic function φ of the
problem (6.3.1)–(6.3.3), which leads to the following results if we recall that the
zeros of φ are the eigenvalues of (6.3.1)–(6.3.3).

Theorem 6.3.1. Let ν̃ > 2m̃�. Then:

1. Only a finite number of the eigenvalues of problem (6.3.1)–(6.3.3) lie in the
closed half-plane Imλ ≤ �.

2. All eigenvalues in the half-plane Imλ ≤ � which are different from i� lie on
(0, i�) and are simple. Their number will be denoted by κ. If κ > 0, they
will be uniquely indexed as λ−j = i� − i|λ−j − i�|, j = 1, . . . , κ, satisfying
|λ−j − i�| < |λ−(j+1) − i�|, j = 1, . . . , κ− 1.

3. If κ > 0, then the numbers i�+ i|λ−j − i�|, j = 1, . . . , κ, are not eigenvalues.

4. If κ ≥ 2, then in each of the intervals (i�+ i|λ−j − i�|, i�+ i|λ−(j+1) − i�|),
j = 1, . . . , κ− 1, the number of eigenvalues, counted with multiplicity, is odd.

5. If κ > 0, then the interval [i�, i� + i|λ−1 − i�|) contains no or an even
number of eigenvalues, counted with multiplicity. If i� is an eigenvalue, then
it is simple.

Theorem 6.3.2. Let ν̃ < 2m̃�. Then:

1. Only a finite number of the eigenvalues of problem (6.3.1)–(6.3.3) lie in the
closed half-plane Imλ ≥ �, and all other eigenvalues lie in the open strip
0 < Imλ < �.

2. All eigenvalues in the half-plane Imλ ≥ � which are different from i� lie on
(i�, i∞) and are simple. Their number will be denoted by κ. If κ > 0, they
will be uniquely indexed as λ−j = i� + i|λ−j − i�|, j = 1, . . . , κ, satisfying
|λ−j | < |λ−(j+1)|, j = 1, . . . , κ− 1.

3. If κ > 0, then the numbers i�− i|λ−j − i�|, j = 1, . . . , κ, are not eigenvalues.

4. If κ ≥ 2, then in each of the intervals (i�− i|λ−(j+1) − i�|, i�− i|λ−j − i�|),
j = 1, . . . , κ− 1, the number of eigenvalues, counted with multiplicity, is odd.

5. If κ > 0, then the interval (i� − i|λ−1 − i�|, i�] contains no or an even
number of eigenvalues, counted with multiplicity. If i� is an eigenvalue, then
it is simple.

It is evident that Theorems 6.3.1 and 6.3.2 are equivalent to Theorems 2.2.3
and 2.2.4.

We have seen for ν̃ > 0 and ν̃ �= 2m̃� that the characteristic function φ is a
shifted Hermite–Biehler function, say φ(τ) = Pν̃(τ

2) + iλQν̃(τ
2). Hence the zeros
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of Pν̃ and Qν̃ are real, bounded below and interlace. But Q2m̃� = 0, whereas P2m̃�

has still infinitely many zeros which are real and bounded below. Hence, in case
ν̃ = 2m̃�, the characteristic function φ has infinitely many real zeros, at most
finitely many pure imaginary zeros, and no other zeros. This confirms the result
from Subsection 2.2.2.

6.4 Vibrations of star graphs

Here we revisit the problem (2.3.9)–(2.3.12). Applying the parameter transforma-
tion λ = ±τ + i� leads to

y′′j (τ, xj) + τ2yj(τ, xj) + (�2 − qj(x))yj(τ, xj) = 0, j = 1, . . . , p, (6.4.1)

yj(τ, 0) = 0, j = 1, . . . , p, (6.4.2)

υ1y1(τ, a1) = · · · = υpyp(τ, ap), (6.4.3)
p∑

j=1

θjy
′
j(τ, aj) + (−m̃τ2 + i|ν̃ − 2m̃�|τ + m̃�2 − ν̃�+ β)υ1y1(τ, a1) = 0, (6.4.4)

with positive constants υj and θj , j = 1, . . . , p.

For j = 1, . . . , p let us denote by sj(τ, ·) the solutions of (6.4.1) which satisfy
the initial conditions sj(τ, 0) = 0, s′j(τ, 0) = 1. The solutions of (6.4.1)–(6.4.2)
are of the form (yj(τ, ·))pj=1 = (Cjsj(τ, ·))pj=1. Then a complex number τ is an
eigenvalue of (6.4.1)–(6.4.4) if and only if there is a nontrivial (yj(τ, ·))pj=1 =
(Cjsj(τ, ·))pj=1 which satisfies (6.4.3)–(6.4.4). Therefore we obtain a p× p system
of linear algebraic equation with respect to the Cj ’s, which is singular if and only
if τ is an eigenvalue of our problem. A coefficient matrix B(τ) = (bj,m(τ))pj,m=1 for
this system is given by bj,j(τ) = υjsj(τ, aj) and bj,j+1(τ) = −υj+1sj+1(τ, aj+1)
for j = 1, . . . , p− 1 from (6.4.3),

bp,1(τ) = θ1s
′
1(τ, a1) + (−m̃τ2 + i|ν̃ − 2m̃�|τ + m̃�2 − ν̃�+ β)υ1s1(τ, a1),

bp,j(τ) = θjs
′
j(τ, aj) for j = 2, . . . , p from (6.4.4), and bj,k = 0 for all other pairs

of indices j, k. If φ(τ) denotes the determinant of B(τ), then the eigenvalues of
(6.4.1)–(6.4.4) are the zeros of φ. An expansion of this determinant by its first
column gives

φ(τ) =

p∑
j=1

θjs
′
j(τ, aj)

p∏
m=1
m �=j

υmsm(τ, am)

+ (−m̃τ2 + i|ν̃ − 2m̃�|τ + m̃�2 − ν̃�+ β)

p∏
j=1

υjsj(τ, aj). (6.4.5)
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We give now an alternative way to find φ, which involves some more abstract
reasoning but less calculation at the end. An equivalent coefficient matrix can be
written in 2× 2 block matrix form as

B̃(τ) =

(−B11(τ) B12(τ)
B21(τ) B22(τ)

)
,

where B11(τ) is the column vector of length p−1 with all entries equal υ1s1(τ, a1),
B12 = diag(υ2s2(τ, a2), . . . , υpsp(τ, ap)), B21(τ) = bp,1(τ) from above, and B2,2(τ)
is the row vector (θ2s

′
2(τ, a2), . . . , θps

′
p(τ, a2)).

By Theorem 12.6.2, the zeros of sj(·, aj) are real and pure imaginary. Hence,
for complex numbers τ which are not real or pure imaginary, we have the Schur
factorization

B̃(τ) =

(
1 0

B22(τ)(B12(τ))
−1 Ip−1

)( −B11(τ) B12(τ)
B22(B12(τ))

−1B11(τ) +B21(τ) 0

)
.

From

B22(B12(τ))
−1B11(τ) =

p∑
j=2

υ1s1(τ, a1)
1

υjsj(τ, aj)
θjs

′
j(τ, aj)

it easily follows that det B̃(τ) = ±φ(τ), which is true for all complex numbers τ .

Define the entire functions P and Q by

P (τ2) =

p∑
j=1

θjs
′
j(τ, aj)

p∏
m=1
m �=j

υmsm(τ, am)

+ (−m̃τ2 + m̃�2 − ν̃�+ β)

p∏
j=1

υjsj(τ, aj) (6.4.6)

and

Q(τ2) = |ν̃ − 2m̃�|
p∏

j=1

υjsj(τ, aj). (6.4.7)

In the remainder of this section we will assume that ν̃ �= 2m̃�. As we have seen
above, all zeros of Q are real, and therefore common zeros of P and Q, if any,
must be real. Furthermore,

−P (z)

Q(z)
=

1

|ν̃ − 2m̃�|

⎧⎨⎩−
p∑

j=1

θj s̃
′
j(z)

υj s̃j(z)
+ m̃z − m̃�2 + ν̃�− β

⎫⎬⎭ , (6.4.8)

where s̃j(τ
2) = sj(τ, aj) and s̃′j(τ

2) = s′j(τ, aj). This equation is similar to (6.3.5),

and as in Section 6.3 we conclude that −P
Q ∈ N ep

− . An application of Lemma 5.1.22

gives Q
P ∈ N ep

+ . Since the zeros ofQ are real and bounded below by Theorem 12.6.2,

also common zeros of P and Q, if any, have this property. Hence φ is of SSHB class.
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Next we are going to show that zeros of type I and type II do not intersect.
We start with z ∈ R such that Q(z) = 0. Without loss of generality we may assume
that there is 1 ≤ q ≤ p such that sj(τ, aj) = 0 for j = 1, . . . , q and sj(τ, aj) �= 0 for
j = q+1, . . . , p. It follows from Theorem 12.6.2 that the multiplicity of the zero z of
Q is q, and in view of (6.4.8), the meromorphic function PQ−1 has either a simple
pole or a removable singularity at z. We already know that ψj := −s̃′j s̃−1

j is a
Nevanlinna function with a simple pole at z for j = 1, . . . , q. Since their derivatives
ψ′
j are increasing in a deleted neighbourhood of z by Lemma 11.1.3, it follows that

x �→ ψj(x)(x − z) < 0 for x in a sufficiently small deleted neighbourhood of z.
Hence, for j = 1, . . . , q, lim

x→z
ψj(x)(x − z) ≤ 0. Since this limit is the residue of ψj

at z and since ψj has a simple pole at z, it follows that this residue is negative.
Summing up over j = 1, . . . , q in (6.4.8) shows that −PQ−1 has a simple pole with
negative residue at z, that is, z cannot be a removable singularity.

In particular, if z is also a zero of P , then its multiplicity as a zero of P is less
than its multiplicity as a zero of Q. If now λ∗ is a zero of type I of ω, then in the
factorization ω(λ) = R∗(λ2)(P∗(λ2) + iλQ∗(λ2)) we have R∗(λ2∗) = 0, P∗(λ2∗) �= 0
and Q∗(λ2

∗) = 0, which shows that λ∗ is not a zero of type II of ω. Since zeros of
type I are symmetric, it follows that if λ �= 0 is a zero of type II of φ, then −λ is
neither a zero of type I nor a zero of type II, that is, φ(−λ) �= 0.

An application of Theorem 5.2.9 and Corollary 5.2.11 gives the following
results, which are equivalent to Theorems 2.3.9 and 2.3.10.

Theorem 6.4.1. Let ν̃ > 2m̃�. Then:

1. The sets of type I and type II eigenvectors do not intersect. Only a finite
number, denoted by κ2, of the eigenvalues of type II of problem (6.4.1)–(6.4.4)
lie in the closed half-plane Imλ ≤ �.

2. All eigenvalues of type II in the closed half-plane Imλ ≤ � lie on (−i∞, i�)
and their multiplicities are 1. If κ2 > 0, they will be uniquely indexed as
λ−j = i�− i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j − i�| < |λ−(j+1) − i�|,
j = 1, . . . , κ2 − 1.

3. If κ2 > 0, then the numbers i�+i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues.

4. If κ2 ≥ 2, then the intervals (i� + i|λ−j − i�|, i� + i|λ−(j+1) − i�|), j =
1, . . . , κ2 − 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let κ2 > 0. Then the interval (i�, i� + i|λ−1 − i�|) contains no or an even
number of eigenvalues of type II, counted with multiplicity, if i� is no eigen-
value or an eigenvalue of even multiplicity, and an odd number of eigenvalues
of type II, counted with multiplicity, if i� is an eigenvalue of odd multiplicity.

Theorem 6.4.2. Let ν̃ < 2m̃�. Then:

1. The sets of type I and type II eigenvectors do not intersect. Only a finite
number, denoted by κ2, of the eigenvalues of type II of problem (6.4.1)–(6.4.4)
lie in the closed half-plane Imλ ≥ �.
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2. All eigenvalues of type II in the closed half-plane Imλ ≥ � lie on (i�, i∞) and
their multiplicities are 1. If κ2 > 0, they will be uniquely indexed as λ−j =
i�+ i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j | < |λ−(j+1)|, j = 1, . . . , κ2− 1.

3. If κ2 > 0, then the numbers i�−i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues.

4. If κ2 ≥ 2, then the intervals (i� − i|λ−(j+1) − i�|, i� − i|λ−j − i�|), j =
1, . . . , κ2 − 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let κ2 > 0. Then the interval (i� − i|λ−1 − i�|, i�) contains no or an even
number of eigenvalues of type II, counted with multiplicity, if i� is no eigen-
value or an eigenvalue of even multiplicity, and an odd number of eigenvalues
of type II, counted with multiplicity, if i� is an eigenvalue of odd multiplicity.

6.5 Forked graphs

Here we revisit problem (2.4.7)–(2.4.11), which is a particular case of problem
(6.4.1)–(6.4.4) with p = 2, m̃ = � = β = 0 and ν̃ = θj = υj = 1:

−y′′j + qj(x)yj = λ2yj , x ∈ [0, a], j = 1, 2, (6.5.1)

y1(λ, a) = y2(λ, a), (6.5.2)

y′1(λ, a) + y′2(λ, a) + iλy1(λ, a) = 0, (6.5.3)

y1(λ, 0) = 0, (6.5.4)

y2(λ, 0) = 0. (6.5.5)

Therefore Theorem 6.4.1 leads to the following result.

Theorem 6.5.1. The eigenvalues of (6.5.1)–(6.5.5) have the following properties:

1. All eigenvalues of type I are located on the real and imaginary axes, are
symmetric with respect to the origin, are not eigenvalues of type II, and at
most finitely many of them lie on the imaginary axis.

2. Only a finite number, denoted by κ2, of eigenvalues of type II lie in the closed
lower half-plane.

3. All eigenvalues of type II in the closed lower half-plane lie on the nega-
tive imaginary semiaxis and their multiplicities are 1. If κ2 > 0, they will
be uniquely indexed as λ−j = −i|λ−j|, j = 1, . . . , κ2, satisfying |λ−j | <
|λ−(j+1)|, j = 1, . . . , κ2 − 1.

4. If κ2 > 0, then the numbers i|λ−j|, j = 1, . . . , κ2, are not eigenvalues.

5. If κ2 ≥ 2, then in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ2 − 1,
the number of eigenvalues of type II, counted with multiplicity, is odd.

6. If 0 is an eigenvalue, then its multiplicity is 1 or 2.

7. Let κ2 > 0. Then the interval (0, i|λ−1|) contains no or an even number of
eigenvalues of type II, counted with multiplicity, if 0 is no eigenvalue or an
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eigenvalue of multiplicity 2, and an odd number of eigenvalues of type II,
counted with multiplicity, if 0 is a simple eigenvalue.

Proof. We still have to prove statement 6. We observe that the characteristic
function φ of (6.5.1)–(6.5.5) is a special case of (6.4.5) with p = 2. Since φ(λ) =
P (λ2)+iλQ(λ2) with P and Q as in (6.4.6) and (6.4.7), It follows that P (0) = 0. If
Q(0) �= 0, then 0 is a simple zero of φ. If, however, Q(0) = 0, then the multiplicity
of Q can be at most 2 since p = 2. On the other hand, we have shown in Section
6.4 that for a common real zero z of P and Q, the multiplicity of z as a zero of Q
exceeds the multiplicity of the zero of P by 1. Hence 0 must be a simple zero of
P and a double zero of Q. Hence 0 is a zero of φ of multiplicity 2 in this case. �

Remark 6.5.2. Theorems 2.4.1 and 6.5.1 differ in that Theorem 2.4.1 has the
additional statement 1 whereas Theorem 6.5.1 has the additional statement 6.
The geometric simplicity of the eigenvalues cannot be proved with the methods of
this subsection since the characteristic function does not contain any information
on the geometric multiplicity of eigenvalues.

6.6 Lasso graphs

Here we revisit problem (2.5.5)–(2.5.7),

−y′′1 + q(x)y1 = λ2y1, (6.6.1)

y1(λ, 0) = y1(λ, a), (6.6.2)

y′1(λ, 0)− y′1(λ, a)− iλy1(λ, 0) = 0, (6.6.3)

which differs from the previous applications in that solutions do not necessarily
vanish at the initial points. With our usual notation s(λ, ·) and c(λ, ·) for the
fundamental system of solutions of (6.6.1), see Theorem 12.2.9, we substitute the
general solution

y(λ, ·) = As(λ, ·) +Bc(λ, ·)
of (6.6.1) into (6.6.2) and (6.6.3) and obtain

B = As(λ, a) +Bc(λ, a),

A−As′(λ, a)−Bc′(λ, a)− iλB = 0.

The characteristic function, i. e., the determinant of the coefficients of the above
linear system in the unknown parameters A and B, is

φ(λ) = 2− c(λ, a) − s′(λ, a)− iλs(λ, a),

where we have used that the Wronskian c(λ, ·)s′(λ, ·)−c′(λ, ·)s(λ, ·) is identically 1.
It is well known and easily follows along the lines of the above calculations that
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P (λ2) = 2− c(λ, a)− s′(λ, a) is the characteristic function of the periodic problem
(6.6.1), (6.6.2),

y′1(λ, 0)− y′1(λ, a) = 0, (6.6.4)

while Q(λ2) = −s(λ, a) is the characteristic function of the Dirichlet problem
(6.6.1),

y1(λ, 0) = y1(λ, a) = 0. (6.6.5)

It is also well known, see, e. g., [271, Theorem 13.10], that the zeros (ζk)
∞
k=0 of P

interlace with the zeros (νk)
∞
k=1 of Q:

ζ0 < ν1 < ζ1 ≤ ν2 ≤ ζ2 < · · · . (6.6.6)

Using (6.1.7), (6.1.6) and

c(λ, a) =
λ→±i∞

e|λ|a

2
+ o(e|λ|a), (6.6.7)

which follows from (12.2.24) with n = 0, we obtain that the real entire functions
P and Q satisfy P (z) < 0 and Q(z) < 0 as z → −∞. We can conclude as in
Proposition 6.1.1 that λ �→ P (λ2) and λ �→ λQ(λ2) are sine type functions. Similar
to the proof of Proposition 6.1.2 we then obtain with (6.6.6) and Corollary 5.2.3
that QP−1 ∈ N ep

+ .

By (6.6.6), P and Q may have common zeros, which are all real. Hence we
can write φ(λ) = R∗(λ2)(P∗(λ2) + iλQ∗(λ2)), where R∗ has only real zeros and
where P∗ and Q∗ do not have common zeros. Hence φ is of SSHB class.

It follows from (6.6.6) that the zeros of Q = R∗Q∗ are simple, whereas the
zeros of P = R∗P∗ have multiplicities 1 or 2. In particular, if 0 is a zero of φ, then
its multiplicity is at most 3.

With the aid of Theorem 5.2.9 and Corollary 5.2.11 we obtain the follow-
ing result, which is equivalent to the statements 2–7 of Theorem 2.5.1. We cannot
prove statement 1 of Theorem 2.5.1 with the methods of this section since the char-
acteristic function does not contain any information on the geometric multiplicity
of eigenvalues.

Theorem 6.6.1. The eigenvalues of problem (6.6.1)–(6.6.3) have the following prop-
erties.

1. All eigenvalues of type I are located on the real and imaginary axes, are
symmetric with respect to the origin, and at most finitely many of them lie
on the imaginary axis.

2. Only a finite number, denoted by κ2, of eigenvalues of type II lie in the closed
lower half-plane.

3. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicities are 1. If κ2 > 0, they
will be uniquely indexed as λ−j = −i|λ−j |, j = 1, . . . , κ2, satisfying |λ−j | <
|λ−(j+1)|, j = 1, . . . , κ2 − 1.
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4. If κ2 > 0, then the numbers i|λ−j |, j = 1, . . . , κ2, are not eigenvalues of
type II.

5. If κ2 ≥ 2, then in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ2 − 1,
the number of eigenvalues of type II, counted with type II multiplicity, is odd.

6. If 0 is an eigenvalue, then its multiplicity is 1, 2 or 3.

7. Let κ2 > 0. Then the interval (0, i|λ−1|) contains no or an even number
of eigenvalues of type II, counted with type II multiplicity, if 0 is not an
eigenvalue of type II, and an odd number of eigenvalues of type II, counted
with type II multiplicity, if 0 is an eigenvalue of type II.

6.7 Beams with friction at one end

Here we revisit problem (2.7.2)–(2.7.6):

y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x), (6.7.1)

y(λ, 0) = 0, (6.7.2)

y′′(λ, 0) = 0, (6.7.3)

y(λ, a) = 0, (6.7.4)

y′′(λ, a) + iαλy′(λ, a) = 0. (6.7.5)

Putting z = λ2, there exists the canonical fundamental system of solutions yj(z, ·),
j = 1, . . . , 4, of (6.7.1) with y

(m)
j (z, 0) = δj,m+1 for m = 0, . . . , 3, which are real

entire functions with respect to z, see, e. g., [189, Theorem 6.1.8]. The functions
y2(λ

2, ·) and y4(λ
2, ·) form a basis of the solutions of the initial value problem

(6.7.1)–(6.7.3). Substituting the generic linear combination of these two solutions
into the boundary conditions (6.7.4)–(6.7.5), we obtain a 2 × 2 system of linear
equations, and the determinant φ of its coefficient matrix is given by

φ(λ) = f ′′(λ2, a) + iαλf ′(λ2, a),

where
f(z, x) = y2(z, a)y4(z, x)− y4(z, a)y2(z, x).

Hence the eigenvalues of (6.7.1)–(6.7.5) are the zeros of φ. Similarly, we have
for k = 1, 2 that the real entire functions f (k)(·, a) are characteristic functions
of the eigenvalue problems (6.7.1)–(6.7.4), y(k)(λ, a) = 0 with z = λ2. These
two eigenvalue problems are realized by self-adjoint operators which are bounded
below, which can be proved as in Proposition 2.7.1 by applying Theorems 10.3.5
and 10.3.8. Hence the zeros of f (k)(·, a), k = 1, 2, are real and bounded below.
Clearly, f(z, ·) is a solution of (6.7.1)–(6.7.4), and therefore, in view of (6.7.1),∫ a

0

f (4)(z, x)f(z, x) dx−
∫ a

0

(gf ′(z, ·))′(x)f(z, x) dx = z

∫ a

0

|f(z, x)|2 dx.
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Integrating by parts twice and taking (6.7.2)–(6.7.4) into account we obtain

−f ′′(z, a)f ′(z, a) +
∫ a

0

|f ′′(z, x)|2 dx+

∫ a

0

g(x)|f ′(z, x)|2 dx = z

∫ a

0

|f(z, x)|2 dx.
(6.7.6)

Taking imaginary parts leads to

Im(−f ′′(z, a)f ′(z, a)) = (Im z)

∫ a

0

|f(λ, x)|2 dx.

For Im z > 0 we therefore conclude that

Im
f ′(z, a)
f ′′(z, a)

= (Im z)
1

|f ′′(z, a)|2
∫ a

0

|f(λ, x)|2 dx > 0.

Consequently, f ′(·,a)
f ′′(·,a) ∈ N ep. In view of Lemmas 10.3.6 and 10.3.7 it follows from

(6.7.6) that there is a real number γ such that f ′′(z, a)f ′(z, a) > 0 for z < γ. Hence
f ′(·,a)
f ′′(·,a) ∈ N ep

+ , which shows that φ is of SSHB class.

An application of Theorem 5.2.9 and Corollary 5.2.11 gives the following
result which is equivalent to Theorem 2.7.2 without the statements about the
geometric multiplicity of eigenvalues.

Theorem 6.7.1. The eigenvalues of (6.7.1)–(6.7.5) have the following properties:

1. All eigenvalues of type I are located on the imaginary and real axes and are
symmetric with respect to the origin.

3. Only a finite number, denoted by κ2, of the eigenvalues of type II lie in the
closed lower half-plane.

4. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicities are 1. If κ2 > 0, they
will be uniquely indexed as λ−j = −i|λ−j |, j = 1, . . . , κ2, satisfying |λ−j | <
|λ−(j+1)|, j = 1, . . . , κ2 − 1.

5. If κ2 > 0, then the numbers i|λ−j |, j = 1, . . . , κ2, are not eigenvalues of
type II.

6. If κ2 ≥ 2, then the number of eigenvalues of type II, counted with type II
multiplicity, in each of the intervals (i|λ−j |, i|λ−(j+1)|), j = 1, . . . , κ2 − 1,
is odd.

7. Let κ2 > 0. Then the interval (0, i|λ−1|) contains no or an even number
of eigenvalues of type II, counted with type II multiplicity, if 0 is not an
eigenvalue of type II, and an odd number of eigenvalues of type II, counted
with type II multiplicity, if 0 is an eigenvalue of type II.
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6.8 Vibrations of damped beams

Here we reconsider problem (2.7.8)–(2.7.12). With the parameter transformation
λ = ±τ + i� as in Subsection 2.7.2, the problem becomes

y(4)(τ, x)− (gy′)′(τ, x)− �2y(τ, x) = τ2y(τ, x), (6.8.1)

y(τ, 0) = 0, (6.8.2)

y′′(τ, 0) = 0, (6.8.3)

y′′(τ, a) = 0, (6.8.4)

−y′′′(τ, a) + g(a)y′(τ, a) + (m�2 − α�)y(τ,a) + iτ |α − 2m�|y(τ, a) = τ2my(τ, a).
(6.8.5)

Putting z = τ2, there exists the canonical fundamental system of solutions yj(z, ·),
j = 1, . . . , 4, of (6.8.1) with y

(m)
j (z, 0) = δj,m+1 for m = 0, . . . , 3, which are real

entire functions with respect to z, see, e. g., [189, Theorem 6.1.8]. The functions
y2(τ

2, ·) and y4(τ
2, ·) form a basis of the solutions of the initial value problem

(6.8.1)–(6.8.3). Substituting the generic linear combination of these two solutions
into the boundary conditions (6.8.4)–(6.8.5), we obtain a 2 × 2 system of linear
equations, and the determinant φ of its coefficient matrix is given by

φ(τ) = −f ′′′(τ2, a) + g(a)f ′(τ2, a) + (m�2 − α�)f(τ2, a) + iτ |α− 2m�|f(τ2, a)
− τ2mf(τ2, a),

where

f(z, x) = y′′2 (z, a)y4(z, x)− y′′4 (z, a)y2(z, x).

Hence the eigenvalues of (6.8.1)–(6.8.5) are the zeros of φ. Similarly, assuming now
that |α− 2m�| �= 0, we have that the real entire functions P and Q defined by

P (z) = −f ′′′(z, a) + g(a)f ′(z, a) + (m�2 − α�)f(z, a)− zmf(z, a),

Q(z) = |α− 2m�|f(z, a),

are characteristic functions of the eigenvalue problems (6.8.1)–(6.8.4) with the
fourth boundary condition being

−y′′′(τ, a) + g(a)y′(τ, a) + (m�2 − α�)y(τ, a)y(τ, a) = τ2my(τ, a) for P,

y(τ, a) = 0 for Q,

with z = τ2. With the reasoning from Section 6.7 if follows that the zeros of Q
are real and bounded below. Similarly, with Ã and M̃ from (2.7.14) and (2.7.16),

the zeros of P are the eigenvalues of the self-adjoint operator M̃− 1
2 ÃM̃− 1

2 . Hence
also the zeros of P are real and bounded below.
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Clearly, f(z, ·) is a solution of (6.8.1)–(6.8.4), and therefore, in view of (6.8.1),∫ a

0

f (4)(z, x)f(z, x) dx−
∫ a

0

(gf ′(z, ·))′(x)f(z, x) dx− �2
∫ a

0

|f(z, x)|2 dx

= z

∫ a

0

|f(z, x)|2 dx.

Integrating by parts twice and taking (6.8.2)–(6.8.4) into account we obtain

f ′′′(z, a)f(z, a) +
∫ a

0

|f ′′(z, x)|2 dx − g(a)f ′(z, a)f(z, a)

+

∫ a

0

g(x)|f ′(z, x)|2 dx− �2
∫ a

0

|f(z, x)|2 dx = z

∫ a

0

|f(z, x)|2 dx. (6.8.6)

Taking imaginary parts leads to

Im(−P (z)Q(z)) = (Im z)|α− 2m�|
[
m|f(z, a)|2 +

∫ a

0

|f(z, x)|2 dx
]
.

For Im z > 0 we therefore conclude that

Im
Q(z)

P (z)
= (Im z)

|α− 2m�|
|P (z)|2

[
m|f(z, a)|2 +

∫ a

0

|f(z, x)|2 dx
]
> 0.

Consequently, QP−1 ∈ N ep. From (6.8.6) we obtain for z ∈ R that

P (z)Q(z)

|α− 2m�| =
[−f ′′′(z, a) + g(a)f ′(z, a) + (m�2 − α�− zm)f(z, a)

]
f(z, a)

=

∫ a

0

|f ′′(z, x)|2 dx +

∫ a

0

g(x)|f ′(z, x)|2 dx

− (z + �2)

∫ a

0

|f(z, x)|2 dx+ (m�2 − α�− zm)|f(z, a)|2.

In view of Lemmas 10.3.6 and 10.3.7 it follows that there is a real number γ such
that P (z)Q(z) > 0 for z < γ. Hence PQ−1 ∈ N ep

+ , which shows that φ is of SSHB
class. An application of Theorem 5.2.9 and Corollary 5.2.11 gives the following
results, which are slightly weaker than Theorems 2.7.5 and 2.7.6.

Theorem 6.8.1. Assume that α > 2m�. Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.7.8)–(2.7.12) lie in the closed half-plane Imλ ≤ �.

2. All eigenvalues of type II in the closed half-plane Imλ ≤ � which are different
from i� lie on (−i∞, i�). If κ2 > 0, they will be uniquely indexed as λ−j =
i� − i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j − i�| < |λ−(j+1) − i�|, j =
1, . . . , κ2 − 1.
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3. If κ2 > 0, then the numbers i�+i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues
of type II.

4. If κ2 ≥ 2, then in each of the intervals (i�+ i|λ−j − i�|, i�+ i|λ−j−1 − i�|),
j = 1, . . . , κ2 − 1, the number of eigenvalues of type II, counted with type II
multiplicity, is odd.

5. Let κ2 > 0. Then the interval (i�, i� + i|λ−1 − i�|) contains no or an even
number of eigenvalues of type II, counted with type II multiplicity, if 0 is not
an eigenvalue of type II, and an odd number of eigenvalues of type II, counted
with type II multiplicity, if 0 is an eigenvalue of type II.

Theorem 6.8.2. Assume that α < 2mk. Then:

1. Only a finite number, denoted by κ2, of the eigenvalues of type II of problem
(2.7.8)–(2.7.12) lie in the closed half-plane Imλ ≥ �.

2. All eigenvalues of type II in the closed half-plane Imλ ≥ � which are different
from i� lie on (i�, i∞). If κ2 > 0, they will be uniquely enumerated as λ−j =
i�+ i|λ−j − i�|, j = 1, . . . , κ2, satisfying |λ−j | < |λ−(j+1)|, j = 1, . . . , κ2− 1.

3. If κ2 > 0, then the numbers i�−i|λ−j−i�|, j = 1, . . . , κ2, are not eigenvalues
of type II.

4. If κ2 ≥ 2, then in each of the intervals (i�− i|λ−(j+1) − i�|, i�− i|λ−j − i�|),
j = 1, . . . , κ2 − 1, the number of eigenvalues of type II, counted with type II
multiplicity, is odd.

5. Let κ2 > 0. Then the interval (i� − i|λ−1 − i�|, i�) contains no or an even
number of eigenvalues of type II, counted with type II multiplicity, if 0 is not
an eigenvalue of type II, and an odd number of eigenvalues of type II, counted
with type II multiplicity, if 0 is an eigenvalue of type II.

6.9 Notes

The spectral properties of the generalized Regge problem in Theorem 6.1.3 were
obtained in [223, Theorem 3.1].

Theorem 6.2.3 was proved in [33, Theorem 4.1].

Let us briefly discuss the physical meaning of the real eigenvalues of damped
vibrations of Stieltjes strings. If no damping occurs, then the spectrum of the
corresponding boundary problem, i. e., of problem (6.2.1)–(6.2.4) with ν = 0, is

real. Let (u
(k)
1 , u

(k)
2 , . . . , u

(k)
n1 , ũ

(k)
n2 , . . . , ũ

(k)
2 , ũ

(k)
1 ) be the eigenvector corresponding

to the eigenvalue λk with 1 < k ≤ n1 + n2. Here u
(k)
j and ũ

(k)
j are the amplitudes

of vibrations of the point masses. Then the piecewise linear graph describing the
threads between point masses, i. e., the amplitude function of vibrations of the kth
frequency, possesses k−1 nodes. If we now apply the one-dimensional damping and
the point of damping is a node of this graph, then the real eigenvalue λk remains
an eigenvalue for the damped string; otherwise it moves into the upper half-plane.
The number of eigenvalues of the undamped string whose eigenvectors have nodes
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at the same point does not exceed 2min{n1, n2} since the corresponding piecewise
linear graphs must be eigenfunctions of the Dirichlet problems on the intervals
between the point masses. Thus we obtain statement 5 of Theorem 6.2.3 using
just physical arguments.

It is shown in [229, Subsection 6.1] that sums of essentially positive Nevan-
linna functions can be considered as ratios of Neumann and Dirichlet characteristic
functions of a boundary problem for a star graph of strings.

In [194], K. Mochizuki and I. Trooshin consider a star graph with some finite
rays and some infinite rays, which is more general than what we deal with in this
book. The case were all rays are infinite was considered by M. Harmer in [106].

The first results on lasso graph (with zero potential) were obtained in [77].
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Direct and Inverse Problems



Chapter 7

Eigenvalue Asymptotics

7.1 Asymptotics of the zeros of some classes
of entire functions

The asymptotic behaviour of large eigenvalues provides important information
about boundary value problems. Indeed, to be able to solve inverse problems, which
will be accomplished in Chapter 8, we need to know the asymptotic behaviour of
the eigenvalues of the underlying boundary eigenvalue problems.

The eigenvalue problems considered in this chapter will have a representation
via quadratic operator pencils as considered in Chapter 1. Since the spectra of such
problems are symmetric with respect to the imaginary axis by Lemma 1.1.11, we
can index the eigenvalues taking this symmetry into account. A suitable indexing
of the eigenvalues is of utmost importance for asymptotic expansion formulas
which depend on the index of the eigenvalue as main parameter. We will use the
notation (λk)

∞
k=−∞ for the sequence of the eigenvalues, counted with multiplicity,

where the index k runs through all integers, with the possible exception of k = 0.

Definition 7.1.1. We call the indexing of the sequence of the eigenvalues proper if:

(i) λ−k = −λk for all λk which are not pure imaginary;

(ii) Reλk ≥ Reλp for all k > p > 0;

(iii) the multiplicities are taken into account;

(iv) the index set is Z if the number of pure imaginary eigenvalues is odd and is
Z \ {0} if the number of pure imaginary eigenvalues is even.

Whenever the eigenvalues are represented by the zeros of a characteristic
function of the eigenvalue problem, the notation ‘eigenvalues’ in the above defini-
tion is synonymous with zeros of this characteristic function. If there is no upper
bound for the real parts of the eigenvalues, then a proper indexing is only possible
if each vertical strip in the complex plane contains only finitely many eigenvalues.
In particular, there are only finitely many eigenvalues on the imaginary axis.
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In this chapter we consider applications which were encountered in Chapters
2 and 6, and it will be shown that the respective eigenvalues can be indexed
properly. In this section we will present results on asymptotic distributions of the
zeros of some entire functions, which will be applied in the subsequent sections of
this chapter.

Proposition 7.1.2. Let σ, α be nonnegative real number with σ �= α and let a > 0.
Then the zeros of the entire function φ(1) defined by

φ(1)(λ) = λ(σ cosλa+ iα sinλa), λ ∈ C, (7.1.1)

have the following asymptotic representations.

1. For α > σ, the properly indexed zeros (λ
(1)
k )∞k=−∞,k �=0 of φ(1) are λ

(1)
−1 = 0,

λ
(1)
k =

π(|k| − 1)

a
sgn k +

i

2a
log

(
α+ σ

α− σ

)
, k ∈ Z \ {−1, 0}. (7.1.2)

2. For α < σ, the properly indexed zeros (λ
(1)
k )∞k=−∞ of φ(1) are λ

(1)
0 = 0,

λ
(1)
k =

π

a
sgnk

(
|k| − 1

2

)
+

i

2a
log

(
σ + α

σ − α

)
, k ∈ Z \ {0}. (7.1.3)

Proof. With μ = Reλ and ν = Imλ, the real and imaginary parts of 1
λφ

(1)(λ) = 0
are

cosμa(σ cosh νa− α sinh νa) = 0,

sinμa(α cosh νa− σ sinh νa) = 0.

For all ν ∈ R, σ cosh νa − α sinh νa �= 0 if α < σ and α cosh νa − σ sinh νa �= 0 if
α > σ. Hence the stated results follow easily. �

Lemma 7.1.3. Let ϕ be an entire function which has the representation

ϕ(λ) = φ(1)(λ) +M sinλa− iN cosλa+ ψ(λ), λ ∈ C, (7.1.4)

where φ(1) is given by (7.1.1), M,N ∈ C and ψ ∈ La.
1. Let 0 ≤ σ < α. Then the zeros (λ̃k)

∞
k=−∞,k �=0 of ϕ behave asymptotically as

follows:

λ̃k =
π(|k| − 1)

a
sgnk +

i

2a
ln

(
α+ σ

α− σ

)
+

P

k
+

βk

k
,

where

P =
αN − σM

π(α2 − σ2)

and (βk)
∞
k=−∞,k �=0 ∈ l2.
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2. Let 0 ≤ α < σ. Then the zeros (λ̃k)
∞
k=−∞ of ϕ behave asymptotically as

follows:

λ̃k =
π

a
sgn k

(
|k| − 1

2

)
+

i

2a
ln

(
σ + α

σ − α

)
+

P

k
+

βk

k
,

where P and (βk)
∞
k=−∞,k �=0 are as in part 1.

Proof. Since σ �= α, we conclude as in the proof of Proposition 6.1.1 that the
function φ(0) defined by

φ(0)(λ) = σ cosλa+ iα sinλa, λ ∈ C, (7.1.5)

is a sine type function. Let r ∈ (0, π
2a ). Recall that the set Λr defined in (11.2.31)

associated with the sine type function φ(0) is the complement in C of the union

of the open discs Ck,r of radii r with the centres at the zeros λ
(0)
k of φ(0). For

convenience, we will index these zeros in such a way that they coincide with the

zeros λ
(1)
k of φ(1) when |k| ≥ 2. By Remark 11.2.21 we find d > 0 such that

|φ(0)(λ)| ≥ dea| Imλ| for all λ ∈ C \ Λr. (7.1.6)

For all indices k, |k| ≥ 2, and all λ ∈ C with |λ− λ
(1)
k | ≤ π

2a we have

φ(0)(λ) =

∫ λ

λ
(1)
k

(φ(0))′(z) dz

= (φ(0))′(λ(1)
k )(λ− λ

(1)
k ) +

∫ λ

λ
(1)
k

∫ z

λ
(1)
k

(φ(0))′′(w) dw dz

= (φ(0))′(λ(1)
k )(λ− λ

(1)
k ) +O(|λ − λ

(1)
k |2).

The sum of arguments formula for sinλ
(1)
k a and cosλ

(1)
k a, applied to the represen-

tation (7.1.2) and (7.1.3), shows for |k| ≥ 2 that

sinλ
(1)
k a = σεk, (7.1.7)

cosλ
(1)
k a = −iαεk, (7.1.8)

where

εk =

{
i(−1)k−1(α2 − σ2)−

1
2 if α > σ, |k| ≥ 2,

sgnk(−1)k−1(σ2 − α2)−
1
2 if α < σ, |k| ≥ 2.

(7.1.9)

Hence

(φ(0))′(λ(1)
k ) = −σa sinλ(1)

k a+ iαa cosλ
(1)
k a

= a(α2 − σ2)εk.
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Therefore there is C > 0 such that

|φ(0)(λ)| ≥ a|α2 − σ2| 12 |λ− λ
(1)
k | − C|λ− λ

(1)
k |2

for all indices k and all λ ∈ C with |λ − λ
(1)
k | ≤ π

2a . We conclude that there are
numbers r0 ∈ (0, π

2a ) and c > 0 such that cr0 ≤ d and

|φ(0)(λ)| ≥ c|λ− λ
(1)
k |

for all indices k and λ ∈ Ck,r0 . Hence we can choose d = cr for r ∈ (0, r0) in
(7.1.6). Since ϕ−φ(1) is a sum of two sine type functions of type a and a function
in La, an application of Lemmas 11.2.6 and 12.2.4 gives a number K > 0 such
that

|ϕ(λ) − φ(1)(λ)| < Kea| Imλ| for all λ ∈ C.

Consequently, it follows for all λ ∈ C \ Λr with |λ| > K
d that

|φ(1)(λ)| = |λ| |φ(0)(λ)| ≥ |λ|dea| Imλ| > Kea| Imλ| > |ϕ(λ) − φ(1)(λ)|. (7.1.10)

In particular, ϕ(λ) �= 0 for these λ. We can choose k0 ∈ N and R > K
d such that

λ
(1)
k0

+r < R < λ
(1)
k0+1−r. Then all discs Ck,r with |k| ≤ k0 lie inside the circle with

centre 0 and radius R, whereas all discs Ck,r with |k| > k0 lie outside the circle
with centre 0 and radius R. In view of (7.1.10) we can apply Rouché’s theorem
to the disc with centre 0 and radius R and to the discs Ck,r with |k| > k0. Hence
φ(1) and ϕ have the same number of zeros, counted with multiplicity, inside the
disc with centre 0 and radius R, whereas outside this disc, all zeros of ϕ are simple
with exactly one zero inside each Ck,r with |k| > k0. This proves that the zeros

λ̃k of ϕ satisfy

λ̃k = λ
(0)
k + δk, (7.1.11)

with the same index set as the zeros of φ(1) and with |δk| < r for |k| > |k0|. For
sufficiently large |k|, we can choose r ∈ (0, r0) and R such that R > π|k|

2a and

R < 2K
d = 2K

cr . Hence

r <
2K

cR
<

4Ka

cπ|k| ,

which proves

δk =
|k|→∞

O(|k|−1). (7.1.12)

Now we substitute (7.1.11) into ϕ(λ̃k) = 0. To this end we observe that
(ψ(λ̃k))

∞
k=−∞ ∈ l2 in view of (7.1.12) and Lemmas 12.2.4 and 12.2.1. Hence,
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making use of (7.1.7) and (7.1.8), we calculate

0 = ϕ(λ̃k) = (σλ̃k − iN) cos λ̃ka+ (iαλ̃k +M) sin λ̃ka+ ψ(λ̃k)

= (σλ̃k − iN)
[
cosλ

(0)
k a cos δka− sinλ

(0)
k a sin δka

]
+ (iαλ̃k +M)

[
sinλ

(0)
k a cos δka+ cosλ

(0)
k a sin δka

]
+ ψ(λ̃k)

= (σλ̃k − iN)εk [−iα cos δka− σ sin δka]

+ (iαλ̃k +M)εk [σ cos δka− iα sin δka] + ψ(λ̃k)

= εk

[
(σM − αN) cos δka+

(
(α2 − σ2)λ̃k + i(σN − αM)

)
sin δka

]
+ ψ(λ̃k).

Observing that λ̃k = O(|k|), cos δka = 1 + O(|k|−2), sin δka = δka + O(|k|−3),
λ̃k = π

a k + O(1) and that any sequence satisfying O(|k|−1) belongs to l2, the
above identity and (7.1.7) lead to

0 = (σM − αN) + (α2 − σ2)πkδk + γk,

where (γk)
∞
k=−∞ ∈ l2. Solving this equation with respect to δk gives

δk =
P

k
+

βk

k
,

where {βk}∞−∞ ∈ l2. �
Remark 7.1.4. If we assume in Lemma 7.1.3 that M and N are real and that ψ is
pure imaginary on the imaginary axis, then ϕ is pure imaginary on the imaginary
axis, and the asymptotic representations in Lemma 7.1.3 describe the properly
indexed zeros of ϕ.

Lemma 7.1.5. Let n ∈ N0 and let χ̃ be an entire function of exponential type ≤ a
having the form

χ̃(μ) = B0

⎛⎝⎛⎝μ+

n+1∑
j=1

εjBjμ
−j+1

⎞⎠ sinμa+

⎛⎝n+1∑
j=1

εj+1Ajμ
−j+1

⎞⎠ cosμa

⎞⎠
+Ψn(μ)μ

−n,

where εj = 1 if j is even and εj = i if j is odd, Ak ∈ R for k = 1, . . . , n + 1,
Bk ∈ R for k = 0, . . . , n + 1, B0 �= 0, Ψn ∈ La, and Ψn(μ)μ

−n is real for pure
imaginary μ.

Then the properly indexed zeros (μk)
∞
k=−∞,k �=0 of χ̃ have the following asymptotic

behaviour:

μk =
n→∞

π(k − 1)

a
+

n+1∑
j=1

εj+1pj
(k − 1)j

+
b
(n)
k

kn+1
, (7.1.13)

where (b
(n)
k )∞k=2 ∈ l2.
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The explicit values of p1, p2, p3 are

p1 = −A1π
−1, (7.1.14)

p2 = aπ−2(B1A1 −A2), (7.1.15)

p3 = a2π−3[−A3 +A1B2 −A2B1 +A1(B
2
1 +A2

1/3)− a−1A2
1]. (7.1.16)

Proof. Without loss of generality we may assume that B0 = 1. We define

ϕ(μ) = iχ̃(μ), μ ∈ C.

Then ϕ has the representation

ϕ(μ) = iμ sinμa−B1 sinμa+ iA1 cosμa+ ψ(μ), μ ∈ C, (7.1.17)

with ψ ∈ La. Clearly, ϕ is as in Lemma 7.1.3 with σ = 0, α = 1, M = −B1 and
N = −A1, and ψ is pure imaginary on the imaginary axis. Hence it follows from
Lemma 7.1.3 and Remark 7.1.4 that the zeros of χ̃ can be indexed properly, and
that the properly indexed zeros satisfy the asymptotic representation

μk =
n→∞

π(k − 1)

a
+

p1
k

+
βk

k
, (7.1.18)

where (βk)
∞
k=2 ∈ l2. This proves (7.1.13) for n = 0 with b

(0)
k = βk − (k − 1)−1p1.

In order to prove (7.1.13) for n > 0, we write

μk =
π(k − 1)

a
+ δk, k ≥ 2, (7.1.19)

and assume that (7.1.13) holds for n− 1. By definition of χ̃ there are real polyno-
mials qn,1 and qn,2 of degree at most n such that

χ̃(μ) = −i [iμ+ qn,1((iμ)
−1)
]
sinμa+ qn,2((iμ)

−1) cosμa+Ψn(μ)μ
−n.

We already know from that (7.1.18) that δk → 0 as k →∞, and we can therefore
choose k0 ≥ 2 such that |δka| < π

2 and 2|μ−1
k qn,1((iμk)

−1)| < 1 for k ≥ k0.
For k ≥ k0 we substitute μ = μk into the above equation. From χ̃(μk) = 0,
sinμka = (−1)k−1 sin δka and cosμka = (−1)k−1 cos δk we conclude that

i tan δka = (iμk)
−1 qn,2((iμk)

−1)

1 + (iμk)−1qn,1((iμk)−1)
+

hn,k

kn+1
, (7.1.20)

where (hn,k)
∞
k=k0

∈ l2. We define

δ̃k =

n∑
j=1

εj+1pj
(k − 1)j

, μ̃k =
π(k − 1)

a
+ δ̃k, (7.1.21)
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and observe that

δk = δ̃k +
b
(n−1)
k

kn
, μk = μ̃k +

b
(n−1)
k

kn
. (7.1.22)

Substituting this representation of μk into the right-hand side of (7.1.20) and
observing that

1

μk
− 1

μ̃k
=

μ̃k − μk

μkμ̃k
= − b

(n−1)
k

knμkμ̃k
,

we obtain

tan δka = −i(iμ̃k)
−1 qn,2((iμ̃k)

−1)

1 + (iμ̃k)−1qn,1((iμ̃k)−1)
+

h̃n,k

kn+1
, (7.1.23)

where (h̃n,k)
∞
k=k0

∈ l2. Expanding the first summand on the right-hand side into
its Taylor series in powers of (i(k − 1))−1, we obtain a real polynomial qn,3 of
degree at most n + 1 with qn,3(0) = 0 and a bounded sequence (cn,k)

∞
k=k0

such
that

tan δka = −iqn,3
[
(i(k − 1))−1

]
+

h̃n,k

kn+1
+

cn,k
kn+2

. (7.1.24)

Applying the arctan on both sides, we obtain a real polynomial qn,4 of degree at
most n+ 1 with qn,4(0) = 0 such that

δk =
i

a
qn,4

[
(i(k − 1))−1

]
+

b
(n)
k

kn+1
, (7.1.25)

where (b
(n)
k )∞k=k0

∈ l2. This proves the representation (7.1.13), and since the rep-
resentation (7.1.25) of δk must coincide with (7.1.22), it follows that the numbers
pj are independent of n.

To find p2 and p3, we need to find q2,4. We have

q2,1(z) = −B1 −B2z +B3z
2, q2,2(z) = A1 −A2z −A3z

2,

and therefore

zq2,2(z)

1 + zq2,1(z)
= A1z + (A1B1 −A2)z

2 + (A1B2 −A2B1 −A3 +A1B
2
1)z

3 +O(z4).

We further calculate

z = (iμk)
−1 =

a

iπ(k − 1)

(
1 +

ap1
π(k − 1)2

+O
(
k−3
))−1

=
a

π
w
(
1 +

ap1
π

w2
)
+O

(
w4
)
,
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where w = (i(k− 1))−1. Substituting this value for z into the above equation and
taking the Taylor polynomial in w of order 3 we find

q2,3(w) =
a

π
A1w +

a2

π2
(A1B1 −A2)w

2

+

[
a3

π3
(A1B2 −A2B1 −A3 +A1B

2
1) +

a2p1
π2

A1

]
w3.

From arctan(−iζ) = −iζ − i
3 ζ

3 +O(ζ5) we finally conclude that

i

a
q2,4(w) = − 1

π
A1(iw) + i

a

π2
(A1B1 − A2)(iw)

2

+

[
a2

π3
(A1B2 −A2B1 −A3 +A1B

2
1) +

ap1
π2

A1 +
a2

3π3
A3

1

]
(iw)3.

Observing that iw = (k − 1)−1, we arrive at (7.1.15) and (7.1.16). �
Lemma 7.1.6. Let ρ > 0, η ∈ R and define

φ1(z) = ρeiηez + z. (7.1.26)

Then φ1 has infinitely many zeros (zk)
∞
k=−∞, counted with multiplicity, which

satisfy the asymptotics

Re zk =
|k|→∞

log |k|+ log(2π)− log ρ+ O(k|−1), (7.1.27)

Im zk =
|k|→∞

−
(
2k − 1

2
sgnk

)
π − η + O(|k|−1 log |k|). (7.1.28)

Proof. We put
z = log u− i(x+ η), (7.1.29)

where x ∈ R and u > 0. Then the zeros of φ1 are given by

ρue−ix = − logu+ i(x+ η).

Taking real and imaginary parts leads to the equations

ρu cosx = − log u, (7.1.30)

ρu sinx = −(x+ η). (7.1.31)

Note that sinx = 0 implies x + η = 0, and thus the two equations (7.1.30) and
(7.1.31) lead to

ρ2u2 = log2 u+ (x+ η)2, (7.1.32)

(x + η) cotx = log u, (7.1.33)
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unless x = −η = jπ for some j ∈ Z. Substituting log u from (7.1.33) into (7.1.32)
shows that x must satisfy f(x) = 0, where

f(x) = ρ2e2(x+η) cotx − (x+ η)2(1 + cot2 x).

We calculate

1

2
f ′(x) = ρ2e2(x+η) cotx

(
cotx− (x+ η)(1 + cot2 x)

)
− (x+ η)(1 + cot2 x) + (x+ η)2 cotx(1 + cot2 x).

For any zero x of f we find a unique u from (7.1.33), which then satisfies (7.1.32)
and therefore

ρ2u2 = (x+ η)2(1 + cot2 x). (7.1.34)

It follows that whenever x+ η �= 0 and f(x) = 0, then

1

2
f ′(x) = − ρ2u2

x+ η

(
(x+ η)2 + ((x+ η) cotx− 1)2

)
. (7.1.35)

We observe that x + η > 0 for all x in the interval (kπ, (k + 1)π) if and only if
k ≥ −ηπ−1, and if we also include the endpoints of the intervals, then k > −ηπ−1 is
required. Similarly, for x+η < 0 to hold for all x on such an interval, the condition
k ≤ −ηπ−1− 1 or k < −ηπ−1− 1, respectively, is necessary and sufficient. Thus f
is decreasing at each zero x of f on each interval (kπ, (k+1)π) when k ≥ −ηπ−1,
which means that f can have at most one zero on this interval. On the other
hand, if k > −ηπ−1, (x + η) cotx → ∞ as x ↘ kπ shows that f(x) → ∞ as
x↘ kπ, whereas (x+ η) cotx→ −∞ as x↗ (k + 1)π shows that f(x)→ −∞ as
x↗ (k+1)π. Hence f has exactly one simple zero in the interval (kπ, (k+1)π) for
k > −ηπ−1. Similarly, it follows that f has exactly one simple zero in the interval
(kπ, (k + 1)π) for k < −ηπ−1 − 1.

By construction, every solution of (7.1.30), (7.1.31) is also a solutions of
(7.1.32), (7.1.33), but not vice versa. Indeed, by (7.1.34), any solution of (7.1.32),
(7.1.33) satisfies ρ2u2 sin2 x = (x + η)2, and in order for (7.1.31) to hold it is
necessary and sufficient that sinx and (x+ η) have opposite signs, that is, k must
be odd in case k > −ηπ−1 and k must be even in case k < −ηπ−1 − 1.

Denoting the smallest integer k with 2k > −ηπ−1 + 1 by k+ and the largest
integer k with 2k < −ηπ−1 − 1 by k−, we conclude that all solutions of (7.1.30),
(7.1.31) with x ≥ (2k+− 1)π or x ≤ (2k− +1)π can be indexed as (xk, uk), where
xk ∈ ((2k − 1)π, 2kπ) if k ≥ k+ and where xk ∈ (2kπ, (2k + 1)π) if k ≤ k−.

From (7.1.32) it follows that

u2
k

k2
≥ (xk + η)2

ρ2k2
=

|k|→∞
ρ−2
(
2π +O(|k|−1)

)2
,
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so that

u2
k − ρ−2 log2 uk = u2

k

(
1− log2 uk

ρ2u2
k

)
=

|k|→∞
u2
k

(
1 +O(|uk|−1)

)
=

|k|→∞
u2
k

(
1 +O(|k|−1)

)
and

ρ2u2
k − log2 uk

k2
=

(xk + η)2

k2
=

|k|→∞
(
2π +O(|k|−1)

)2
lead to

uk =
|k|→∞

2πρ−1|k|(1 +O(|k|−1)).

Therefore
log uk =

|k|→∞
log |k|+ log(2π)− log ρ+O(|k|−1). (7.1.36)

Together with (7.1.33) we conclude that

cotxk =
log uk

xk + η
=

|k|→∞
O(|k|−1 log |k|),

which finally shows that

xk =
|k|→∞

(
2k − 1

2
sgnk

)
π +O(|k|−1 log |k|). (7.1.37)

We still have to account for those solutions of (7.1.30), (7.1.31) for which x ∈
((2k−+1)π, (2k+−1)π). Since the values x = x(η) of these solutions are uniformly
bounded when η varies in a bounded interval, the corresponding solutions logu of
(7.1.33) must be uniformly bounded by (7.1.32). Thus also the corresponding zeros
z of φ1, given by (7.1.29), are uniformly bounded. We recall that the zeros zk which
are already accounted for satisfy | Im zk+2kπ+η| = |−(xk+η)+2kπ+η| < π and
depend continuously on η. It follows that for any η0 ∈ R, we can find a sufficiently
large circle in C such that each zero of φ1 already accounted for stays either inside
or outside this circle for η close to η0, and all zeros not yet accounted for stay
inside this circle. Since φ1 depends continuously on η, the argument principle, see
[55, V.3.4], shows that the total number of zeros of φ1 inside this circle is locally
constant. Hence, with the indexing (7.1.27), (7.1.28) for large zeros, it follows that
the index set for the zeros is independent of η, and it suffices to consider one value
of η. Indeed, we choose η = 0, in which case k+ = 1 and k− = −1. This means
that we have to solve (7.1.31), (7.1.32) for x ∈ (−π, π). But we already know from
(7.1.31) that there is no such solution if x �= 0. However, if x = 0, then (7.1.31)
holds, and the increasing function u �→ ρu + log u has exactly one (simple) zero.
Therefore (7.1.30) has exactly one solution u in case x = 0, which leads to one
more zero z0 of φ1. Hence the sequence of zeros of φ1 is indexed by Z. �
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Corollary 7.1.7. There are δ0 > 0 and k0 > 0 such that the function φ1 defined in
Lemma 7.1.6 satisfies

|φ1(z)| ≥ 1

2
|zk| |z − zk| for |k| ≥ k0 and |z − zk| ≤ δ0. (7.1.38)

Proof. From ρeiη = −zke−zk it follows that

φ1(z) = z − zke
z−zk .

Then
φ′
1(z) = 1− zke

z−zk , φ′′
1(z) = −zkez−zk ,

and Taylor’s theorem show that

|φ1(z)| ≥ |1− zk| |z − zk| − 1

2
|zk|e|z−zk||z − zk|2.

Choosing k0 such that |zk| > 4 for |k| ≥ k0 and δ0 > 0 such that δ0e
δ0 < 1

2
completes the proof. �
Corollary 7.1.8. Let φ1 be defined as in Lemma 7.1.6. Let δ > 0, r > 0 and let
Uδ,r be the set of z ∈ C such that |z| > r and |zk − z| ≥ δ. Then for each δ > 0
there are r0 > 0 and γ > 0 such that

|φ1(z)| ≥ |z|γ, (7.1.39)

|φ1(z)| ≥ γeRe z , (7.1.40)

for all z ∈ Uδ,r0.

Proof. Defining D+(z) = z−1φ1(z) and D−(z) = e−zφ1(z), we have

D+(z) = ρeiηz−1ez + 1, D−(z) = ρeiη + ze−z.

From [189, Proposition A.2.6] we know that there is l ∈ N such that for all δ > 0
there are K(δ) > 0 and g(δ) > 0 such that for all R > K(δ) there are at most l
discs of radius 1

2δ such that |D+(z)| ≥ g(δ) and |D−(z)| ≥ g(δ) for all z outside
these discs and R ≤ |z| ≤ R+1. Choosing δ < l−1, we see that components of the
union of these discs consist of at most 2l discs. Each of these components must
contain a zero of φ1 because otherwise it can be removed since then |D+(z)| ≥ g(δ)
and |D−(z)| ≥ g(δ) for all z inside these components by the minimum principle.
We may assume that g(δ) < 1

2δmin{1, ρe−δ0} and δ < δ0, where δ0 is from Corol-
lary 7.1.7. In view of Corollary 7.1.7 we can apply the same reasoning to this
component with all discs with centre zk and radius δ removed, whenever zk is in
this component. Hence we have shown that each exceptional disc must contain
one zero of φ1, and thus is contained in a disc with centre zk and radius δ for
some k. For z in the boundary of the union of these discs we have |z − rk| = δ
for some k, and for sufficiently large |z| and hence k, Corollary 7.1.7 shows that
|φ1(z)| ≥ 1

2 |zk|δ ≥ g(δ)|z|, and therefore |D+(z)| ≥ g(δ) =: γ for all z ∈ Uδ,r0 for
a suitable r0 > 0. This proves the estimate (7.1.39), and the proof of the estimate
(7.1.40) is similar. �
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7.2 Eigenvalue asymptotics of the generalized
Regge problem

We recall the generalized Regge problem, which we already encountered in Sections
2.1 and 6.1:

−y′′ + q(x)y = λ2y, (7.2.1)

y(λ, 0) = 0, (7.2.2)

y′(λ, a) + (iλα+ β) y(λ, a) = 0, (7.2.3)

with a real-valued function q ∈ L2(0, a), α > 0 and β ∈ R. By (6.1.1), a charac-
teristic function φ of (7.2.1)–(7.2.3) is given by

φ(λ) = s′(λ, a) + (iλα+ β)s(λ, a), (7.2.4)

and the zeros of φ are exactly the eigenvalues of this eigenvalue problem. To find
the eigenvalue asymptotics we will use the asymptotic representations (6.1.2) and
(6.1.3) of φ.

Theorem 7.2.1.

1. If α ∈ (1,∞), then the properly indexed eigenvalues (λk)
∞
k=−∞ of problem

(7.2.1)–(7.2.3) have the asymptotic behaviour

λk =
πk

a
+

i

2a
log

(
α+ 1

α− 1

)
+

P

k
+

βk

k
, k ∈ Z \ {0}, (7.2.5)

where

P =
1

2π

(∫ a

0

q(x) dx − 2β

α2 − 1

)
(7.2.6)

and (βk)
∞
k=−∞ ∈ l2. In particular, the total algebraic multiplicity of the pure

imaginary eigenvalues is odd.

2. If α ∈ (0, 1), then the properly indexed eigenvalues (λk)
∞
k=−∞,k �=0 of problem

(7.2.1)–(7.2.3) have the asymptotic behaviour

λk =
π
(|k| − 1

2

)
a

sgnk +
i

2a
log

(
α+ 1

1− α

)
+

P

k
+

β̃k

k
, k ∈ Z \ {0}, (7.2.7)

where P is given by (7.2.6) and {β̃k}∞k=−∞,k �=0 ∈ l2. In particular, the total
algebraic multiplicity of the pure imaginary eigenvalues is even.

Proof. In view of Corollary 12.2.10 and Lemma 12.2.4,

s(λ, a) =
sinλa

λ
−K(a, a)

cosλa

λ2
+

ψ1(λ)

λ2
,

s′(λ, a) = cosλa+K(a, a)
sinλa

λ
+

ψ2(λ)

λ
,
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where ψ1, ψ2 ∈ La. Hence the characteristic function φ of the eigenvalue problem
(7.2.1)–(7.2.3), see (7.2.4), has the representation

φ(λ) = φ(0)(λ) + (K(a, a) + β)
sinλa

λ
− iαK(a, a)

cosλa

λ
+

ψ(λ)

λ
,

where φ(0)(λ) = cosλa+ iα sinλa, see (7.1.5),

ψ(λ) = −βK(a, a)
cosλa

λ
+ ψ2(λ) +

iλα+ β

λ
ψ1(λ).

Multiplying the equation for φ above by λ we see that ψ is an entire function.
Clearly, ψ is an L2-function on the real axis. Hence λ �→ λφ(λ) is of the form ϕ
as considered in Lemma 7.1.3 with σ = 1, M = K(a, a) + β and N = αK(a, a).
Since the multiplication with λ introduces one more zero, we have to remove this
zero from the indexing in Lemma 7.1.3. In part 2 we simply remove the index 0,
whereas in part 1 we remove the index 1 and shift all remaining indices towards 0
by 1. Here we observe that in part 1, the resulting remainder becomes

β̂k

k ± 1
=

β̂k

k

(
1− ±1

k ± 1

)
=

βk

k
,

where (β̂k) ∈ l2 implies (βk) ∈ l2. Taking into account that K(a, a) = 1
2

∫ a

0 q(x) dx,
see (12.2.19), the asymptotic representation of the eigenvalues follows from Lemma
7.1.3. Finally, since s(·, a) and s′(·, a) are even real entire functions, we have
φ(−λ) = φ(λ) for all λ ∈ C, which shows that the indexing of the eigenvalues
is proper. �

Now we turn our attention to the case α = 1.

Theorem 7.2.2. If α = 1 and β �= 0, then the properly indexed eigenvalues of
problem (7.2.1)–(7.2.3) behave asymptotically as

λk =
|k|→∞

π

a

(
k − 1

4
sgn(kβ)

)
+

i

2a
(log |k|+ log(2π)− log(|β|a)) + o(1), (7.2.8)

where k = 0 belongs to the index set if and only if β < 0.

Proof. Substituting the representations (12.2.22) and (12.2.23) of s(λ, a) and
s′(λ, a) for n = 0 into (7.2.4), we obtain that the characteristic function φ is

φ(λ) = eiλa +

(
β + 2K(a, a)

2iλ
− β

K(a, a)

2λ2

)
eiλa − β

2λ

(
−i+ K(a, a)

λ

)
e−iλa

+
1

λ

∫ a

0

Kx(a, t) sinλt dt+
iλ+ β

λ2

∫ a

0

Kt(a, t) cosλt dt. (7.2.9)
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In view of | sinλt| ≤ e| Imλ|t for t ∈ R, Hölder’s inequality gives∣∣∣∣∫ a

0

Kx(a, t) sinλt dt

∣∣∣∣ ≤ ‖Kx(a, ·)‖2
(
e2| Imλ|a − 1

2| Imλ|
) 1

2

, (7.2.10)∣∣∣∣∫ a

0

Kt(a, t) cosλt dt

∣∣∣∣ ≤ ‖Kt(a, ·)‖2
(
e2| Imλ|a − 1

2| Imλ|
) 1

2

, (7.2.11)

for all nonreal λ, which extends to real λ if we take the limit as | Imλ| → 0. Putting
z = −2iλa, we can therefore write

−2iλae−iλaφ(λ) =: φ0(z) = φ1(z) + p1(z
−1) +

p2
z
ez + ψ(z), (7.2.12)

where p1 is a polynomial and p2 ∈ C,

φ1(z) = z + βaez , ψ(z) = O

((
e|Re z| − 1

|Re z| eRe z

) 1
2

)
. (7.2.13)

We observe that φ1 is of the form (7.1.26) with

ρeiη = βa. (7.2.14)

Choose δ > 0, r0 > 0 and γ > 0 according to Corollary 7.1.8. In view of (7.2.12)
and (7.2.13) we can find positive constants r1 ≥ r0 and C such that

|φ0(z)− φ1(z)| < C
(
1 + (1 + |Re z|)− 1

2 eRe z
)
, |z| > r1. (7.2.15)

In view of (7.1.39),

|φ0(z)− φ1(z)| < |φ1(z)| if z ∈ Uδ,r2 , Re z ≤ 0, (7.2.16)

where r2 = max{r1, 2Cγ−1}. Similarly, (7.1.39) shows that

|φ0(z)− φ1(z)| < |φ(1)(z)| if z ∈ Uδ,r1 , Re z > 0, |z| > 2Cγ−1eRe z . (7.2.17)

From (7.2.15) and (7.1.40) it follows that

|φ0(z)− φ1(z)| ≤ |φ1(z)|Cγ−1
(
e−Re z + (1 + |Re z|)− 1

2

)
(7.2.18)

for z ∈ Uδ,r1 . For Re z > 0 and |z| ≤ 2Cγ−1eRe z we conclude

e−Re z ≤ 2Cγ−1|z|−1 (7.2.19)

and thus
Re z ≥ log |z|+ log γ − log(2C),
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which gives

(1 + |Re z|)− 1
2 ≤ (C′ + log |z|)− 1

2 (7.2.20)

for C′ = 1 + log γ − log(2C) and |z| > e−C′
. Substituting the estimates (7.2.19)

and (7.2.20) into (7.2.18) and observing that the right-hand sides of (7.2.19) and
(7.2.20) tend to 0 as |z| → ∞, we conclude that there is r3 ≥ r2 such that the
right-hand side of (7.2.18) becomes less than |φ1(z)| if additionally |z| > r3. Hence
(7.2.18) leads to

|φ0(z)− φ1(z)| < |φ1(z)| if z ∈ Uδ,r3 , Re z > 0, |z| ≤ 2Cγ−1eRe z. (7.2.21)

The estimates (7.2.16), (7.2.17) and (7.2.21) give

|φ0(z)− φ1(z)| < |φ1(z)| if z ∈ Uδ,r3. (7.2.22)

It now follows immediately that φ0(z) �= 0 for all z ∈ Uδ,r3 .

We can find an increasing sequence of positive numbers (Rn)
∞
n=1 such that

Rn = n + O(1), Rn+1 − Rn < 2 and {z ∈ C : |z| = Rn} ⊂ Uδ,r3 for all n ∈ N.
Applying Rouché’s theorem to the discs with radius Rn, n ∈ N, and centre zero,
we see that the numbers of zeros of φ0 and φ1 with modulus less than Rn are equal.
In particular, φ1 has an infinite number of zeros, which we denote by (z1,k)

∞
k=−∞.

Then the above estimates show that we can apply Rouché’s theorem to discs with
centre zk and radius δ, which gives z1,k−zk = o(1) since δ can be made arbitrarily
small. In the transition from φ to φ0 we have introduced one additional zero, so
that, with the exception of one value, the numbers λ̃k =

iz1,k
2a are the zeros of φ.

By (7.2.14) we have that ρ = |β|a, η = 0 if β > 0 and η = −π if β < 0. Hence
(7.2.8) follows from (7.1.27) and (7.1.28) if we observe that some reindexing is
needed to arrive at a properly indexed sequence. �

In the case α = 1, β = 0, where we face the classical Regge problem, see
Section 2.1, the eigenvalue asymptotics are even more complicated. Indeed, we
have seen in Remark 6.1.4 that there may be no eigenvalues at all. Thus conditions
on the potential q are needed to assure that there are infinitely many eigenvalues.
However, if we assume that there are infinitely many eigenvalues (λk)

∞
k=1, then it

follows from (7.2.9) with β = 0, (7.2.10) and (7.2.11) that∣∣∣∣1 + K(a, a)

iλk

∣∣∣∣ = O(|λk|−1)e(| Imλk|+Imλk)a,

so that Imλk →∞ as |λk| → ∞. Hence we have shown

Proposition 7.2.3. If α = 1 and β = 0 and if problem (7.2.1)–(7.2.3) has infinitely
many eigenvalues (λk)

∞
k=1, then Imλk →∞ as k →∞.

Theorem 7.2.4. Consider problem (7.2.1)–(7.2.3) with α = 1 and β = 0 and as-
sume that there is p ∈ N0 such that q ∈ W p+1

2 (a, b), q(j)(a) = 0 for j = 0, . . . , p−1
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and q(p)(a) �= 0. Then the properly indexed eigenvalues of problem (7.2.1)–(7.2.3)
have the asymptotic behavior

λk =
|k|→∞

π

a

(
k +

1

4
sgnk

[
p+ 1 + (−1)p sgn(q(p)(a))

])
+

i

2a

(
(p+ 2) [log |k|+ log(2π)− log a]− log |q(p)(a)|

)
+ o(1), (7.2.23)

and the index k = 0 is omitted if (−1)p sgn(q(p)(a)) < 0.

Proof. Substituting (12.2.22) and (12.2.23) into (7.2.4) we obtain

φ(λ) = s′(λ, a) + iλs(λ, a)

= cosλa+ i sinλa+
1

λ
K(a, a)(sinλa− i cosλa)

−
p+1∑
j=1

1

λj+1

(
∂j−1

∂tj−1
Kx(a, a) sin

(j) λa+ i
∂j

∂tj
K(a, a) sin(j+1) λa

)

+
1

λp+2

∫ a

0

(
∂p+1

∂tp+1
Kx(a, t) sin

(p+1) λt+ i
∂p+2

∂tp+2
K(a, t) sin(p+2) λt

)
dt.

Observing that sin(j)(τ) = 1
2 i

j−1eiτ + 1
2 (−i)j−1e−iτ , we can write

φ(λ) = eiλa − 1

−iλK(a, a)eiλa +

p+1∑
j=1

Aj

(−2iλ)j+1
eiλa

+

p+1∑
j=1

(−1)j Bj

(−2iλ)j+1
e−iλa +

1

(−2iλ)p+2
ψp(λ),

where ψp(λ) = O

((
e2| Imλ|a−1

2| Imλ|
) 1

2

)
, see (7.2.10) and (7.2.11), where the Aj are

real numbers, and where

Bj = 2j
∂j−1

∂tj−1
[Kx(a, t) +Kt(a, t)]t=a

for j = 1, . . . , p+ 1. Taking partial derivatives in (12.2.18) shows that

K̃x(x, t) =
1

4
q

(
x+ t

2

)
+

1

2

∫ x+t
2

0

q

(
s+

x− t

2

)
K̃

(
s+

x− t

2
, s− x− t

2

)
ds

+
1

2

∫ x−t
2

0

q

(
x+ t

2
+ u

)
K̃

(
x+ t

2
+ u,

x+ t

2
− u

)
du,
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K̃t(x, t) =
1

4
q

(
x+ t

2

)
− 1

2

∫ x+t
2

0

q

(
s+

x− t

2

)
K̃

(
s+

x− t

2
, s− x− t

2

)
ds

+
1

2

∫ x−t
2

0

q

(
x+ t

2
+ u

)
K̃

(
x+ t

2
+ u,

x+ t

2
− u

)
du,

and a straightforward calculation gives

Kx(a, t) +Kt(a, t) = K̃x(a, t)− K̃x(a,−t) + K̃t(a, t) + K̃t(a,−t)

=
1

2
q

(
a+ t

2

)
+

∫ a−t
2

0

q

(
a+ t

2
+ u

)
K̃

(
a+ t

2
+ u,

a+ t

2
− u

)
du

−
∫ a−t

2

0

q

(
s+

a+ t

2

)
K̃

(
s+

a+ t

2
, s− a+ t

2

)
ds.

It follows that

Bj = 2j
∂j−1

∂tj−1
[Kx(a, t) +Kt(a, t)]t=a = q(j−1)(a) +

j−2∑
m=0

ajmq(m)(a)

for j = 1, . . . , p+ 1, where the ajm are real numbers. By assumption, q(j)(a) = 0
for j = 0, . . . , p− 1 and q(p)(a) �= 0, and we therefore conclude that

φ(λ) = eiλa +

p+1∑
j=0

Aj

(−2iλ)j+1
eiλa + (−1)p+1 q(p)(a)

(−2iλ)p+2
e−iλa +

1

(−2iλ)p+2
ψp(λ).

As in the proof of Theorem 7.2.2, we set z = −2iλa and obtain

(−2iλa)p+2e−iλaφ(λ) =: φ(2)(z) = φ2(z) +

p+1∑
j=0

A′
jz

p−j+1 + ψ(z),

where the A′
j are real numbers and where

φ2(z) = zp+2 − (−a)p+2q(p)(a)ez , ψ(z) = O

((
e|Re z| − 1

|Re z| eRe z

) 1
2

)
.

Defining ρ = a|q(p)(a)| 1
p+2 and putting η = 0 if (−1)p sgn(q(p)(a)) < 0 and η = π

if (−1)p sgn(q(p)(a)) > 0, we can write

φ2(z) = zp+2 + ρp+2eiηez = (p+ 2)p+2

p+2∏
j=1

(
z

p+ 2
+

ρ

p+ 2
eiηje

z
p+2

)
, (7.2.24)

where

ηj =
η − π + 2πj

p+ 2
− π for j = 1, . . . , p+ 2.
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In view of Lemma 7.1.6, the zeros of φ2 can be indexed as zj,k̃, j = 1, . . . , p + 2,

k̃ ∈ Z, where

Re zj,k̃ =
|k̃|→∞

(p+ 2)
(
log |k̃|+ log(2π)− log ρ+ log(p+ 2) +O(|k̃|−1)

)
, (7.2.25)

Im zj,k̃ =
|k̃|→∞

−(p+ 2)

((
2k̃ − 1

2
sgn k̃

)
π + ηj

)
+O(|k̃|−1 log |k̃|). (7.2.26)

It is straightforward to verify that Corollary 7.1.8, applied to each factor on the
right-hand side of (7.2.24), also hold if φ1 is replaced with φ2, z

−1 with z−(p+2),
and if all zeros zj,k̃, j = 1, . . . , p + 2, k̃ ∈ Z, are taken into account. As in the

proof of Lemma 7.1.3 we obtain, mutatis mutandis, that the zeros of φ(2) can be
indexed as z̃j,k̃, j = 1, . . . , p+ 2, k̃ ∈ Z, such that z̃j,k̃ = zj,k̃ + o(1) as |k̃| → ∞.

In the transition from φ to φ(2) we have added a (p + 2)-fold zero at 0. Hence,
omitting the terms with index k̃ = 0 from the above sequences and putting

λ̃(p+2)k̃+j =

{
i
2a z̃j,k̃+1 if k̃ ≥ 0,
i
2a z̃j,k̃ if k̃ < 0,

a straightforward calculation shows that λk := λ̃k for k > 0 has the representation

(7.2.23) and that −λ̃k = λ̃−k + o(1) if η = π and −λ̃k = λ̃−k+1 + o(1) if η = 0.
Hence proper indexing is achieved by putting λk = λ̃k for k ≤ 0 in case η = π and
by putting λk = λ̃k+1 for k < 0 in case η = 0. Finally, we observe that in the case
η = 0, the index k = 0 is omitted. �

7.3 Eigenvalue asymptotics of the damped

string problem

In this section we will find eigenvalue asymptotics for problem (2.2.4)–(2.2.6),

y′′ − 2iλ�y − q(x)y + λ2y = 0, (7.3.1)

y(λ, 0) = 0, (7.3.2)

y′(λ, a) + (−λ2m+ iλν + β)y(λ, a) = 0, (7.3.3)

with q ∈ L2(0, a), � > 0, m > 0, ν > 0 and β ∈ R. Whereas in (2.2.4) � is a
function, we assume here that � is a constant. Also, for simplicity of notation, we
have replaced m̃ and ν̃ with m and ν, respectively.

Theorem 7.3.1. The properly indexed eigenvalues (λk)
∞
k=−∞,k �=0 of problem (7.3.1)–

(7.3.3) have the following asymptotic behaviour:

1. if q ∈ L2(0, a) then

λk =
k→∞

π(k − 1)

a
+ i�+

p1
k − 1

+
b
(0)
k

k
, (7.3.4)
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2. if q ∈ W 1
2 (0, a) then

λk =
k→∞

π(k − 1)

a
+ i�+

p1
k − 1

+
ip2

(k − 1)2
+

b
(1)
k

k2
, (7.3.5)

3. if q ∈ W 2
2 (0, a) then

λk =
k→∞

π(k − 1)

a
+ i�+

p1
k − 1

+
ip2

(k − 1)2
+

p3
(k − 1)3

+
b
(2)
k

k3
, (7.3.6)

where (b
(n)
k )∞n=1 ∈ l2 for n = 0, 1, 2,

p1 =
1

πm
+

K(a, a)

π
− �2a

2π
, (7.3.7)

p2 =
a

π2m

( ν

m
− 2�

)
, (7.3.8)

p3 = a2π−3

(
−A3 +A1B2 −A2B1 +A1

(
B2

1 +
A2

1

3

)
− a−1A2

1

)
, (7.3.9)

B1 = 2�− ν

m
,

B2 = −K(a, a)

m
+Kt(a, a)− β

m
− 3

2
�2 +

ν�

m
− 1

8
a2�4

+
1

2
K(a, a)a�2 +

a�2

2m
,

B3 =
(
2�− ν

m

)(
Kt(a, a)− �2

2
+

a�2

2
K(a, a)− a2�4

8

)
,

A1 =
1

2
a�2 − 1

m
−K(a, a),

A2 =

(
1

2
a�2 −K(a, a)

)(
2�− ν

m

)
,

A3 =
Kx(a, a)

m
+Ktt(a, a) +K(a, a)

(
β

m
+ �
(
2�− ν

m

))
− a�2β

2m
+

aν�3

2m

−K(a, a)
a�2

2m
+Kt(a, a)

a�2

2
+

a�4

8

( a

m
+ aK(a, a)− 7

)
− a3�6

48
.

Proof. The eigenvalues of (7.3.1)–(7.3.3) coincide with the zeros of the entire func-
tion

φ(λ) = s′(τ̃ (λ), a) + (−mλ2 + iλν + β)s(τ̃ (λ), a), (7.3.10)

where s is the function defined in Theorem 12.2.9 and τ̃ (λ) =
√
λ2 − 2i�λ. Here we

have to observe that s(·, a) and s′(·, a) are even functions, and therefore s(τ̃ (λ), a)
and s′(τ̃ (λ), a) are unambiguous. Letting μ = λ− i�, we have

τ(μ) := τ̃ (λ) =
√
μ2 + �2.
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Below we will briefly write τ for τ(μ). We substitute (12.2.22) and (12.2.23) into
(7.3.10) and obtain for n ∈ N0 and q ∈ Wn

2 (0, a) that the entire function φ has
the representation

φ(λ) = cos τa+K(a, a)
sin τa

τ
−

n∑
j=1

∂j−1

∂tj−1
Kx(a, a)

sin(j) τa

τ j+1
+

ψ1,n(τ)

τn+1

+
(−mλ2 + iνλ+ β

)⎛⎝ sin τa

τ
−

n∑
j=0

∂j

∂tj
K(a, a)

sin(j+1) τa

τ j+2
+

ψ2,n(τ)

τn+2

⎞⎠ ,

(7.3.11)

where ψm,n ∈ La in view of Lemma 12.2.4.

We now consider the case n = 2. The cases n = 0 and n = 1 easily follow
by adapting the proof below. Introducing the function χ̃ defined by χ̃(μ) = φ(λ),
(7.3.11) becomes

χ̃(μ) =

[
u(μ)

(
−K(a, a)

τ2
+

Ktt(a, a)

τ4

)
+ 1− Kx(a, a)

τ2

]
cos τa

+

[
u(μ)

(
1 +

Kt(a, a)

τ2

)
+K(a, a) +

Kxt(a, a)

τ2

]
sin τa

τ
+

Ψ(μ)

μ2
,

where Ψ ∈ La and

u(μ) = −mμ2 + i(ν − 2�m)μ+m�2 − ν�+ β.

In view of Corollary 12.3.2 with b = 0 and c = −�2, we can write τ−1 sin τa and
cos τa in terms of (12.3.8) and (12.3.9). Therefore

χ̃(μ) = P1(μ) sinμa+ P2(μ) cosμa+ ψ1(μ)μ
−2,

where ψ1 ∈ La and

P1(μ)
2� 1

μ

[
u(μ)

(
1 +

Kt(a, a)

τ2

)
+K(a, a) +

Kxt(a, a)

τ2

]
f1,1,3(μ

−1)

+ i

[
u(μ)

(
−K(a, a)

τ2
+

Ktt(a, a)

τ4

)
+ 1− Kx(a, a)

τ2

]
f2,2,2(μ

−1),

P2(μ)
2�
[
u(μ)

(
−K(a, a)

τ2
+

Ktt(a, a)

τ4

)
+ 1− Kx(a, a)

τ2

]
f2,1,2(μ

−1)

+
i

μ

[
u(μ)

(
1 +

Kt(a, a)

τ2

)
+K(a, a) +

Kx,t(a, a)

τ2

]
f1,2,3(μ

−1),

and where f(μ)
n� g(μ) means that

f(μ)− g(μ) =

r∑
j=1

ψj(μ)O(|μ|−n) +O(|μ|−n−1)
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with ψ1, . . . , ψr ∈ La. From f1,1,3(0) = f2,1,2(0) = 1, f1,2,3(0) = f2,2,2(0) = 0, and

1

τ2
=

1

μ2
− �2

μ4
+O(|μ|−6)

we obtain constants B̃j and Ãj , j = 1, 2, 3, such that

P1(μ)
2� −mμ+ iB̃1 + B̃2μ

−1 + iB̃3μ
−2 =: P1,2(μ),

P2(μ)
2� Ã1 + iÃ2μ

−1 + Ã3μ
−2 =: P2,2(μ).

We conclude that

χ̃(μ) = P1,2(μ) sinμa+ P2,2(μ) cosμa+Ψ2(μ)μ
−2,

where Ψ2
0� 0. Multiplying this identity with μ2 we see that Ψ2 is an entire function,

and it follows that Ψ2 ∈ La. Hence χ̃ is formally as considered in Lemma 7.1.5.
In particular, B0 = −m. From

χ̃(−μ) = φ
(
−(μ+ i�)

)
= φ (μ+ i�) = χ̃(μ)

we conclude that χ̃ also satisfies the symmetry conditions as required in Lemma
7.1.5. Hence (7.3.6) follows from Lemma 7.1.5, and it remains to find the constants
Bj = B̃jB

−1
0 and Aj = ÃjB

−1
0 for j = 1, 2, 3.

Putting z = μ−1, the functions in (12.3.4)–(12.3.7) are

h1(z) = 1 +
1

2
�2z2 − 1

8
�4z4 +O(|μ|−5),

1

h1(z)
= 1− 1

2
�2z2 +O(|μ|−4),

h2(z) =
h1(z)− 1

z
=

1

2
�2z − 1

8
�4z3 +O(|μ|−4),

f2,1,2(z) = f2,1,3(z)
3� cosh2(z)a

3� 1− 1

8
�4a2z2,

f1,1,3(z)
3� cosh2(z)a

h1(z)

3� 1− 1

2
�2z2 − 1

8
�4a2z2,

f2,2,2(z)
2� i sinh2(z)a

2� i

2
�2za,

f1,2,3(z)
3� −i sinh2(z)a

h1(z)

3� − i

2
�2za+

3i

8
�4az3 +

i

48
�6a3z3.

We further calculate

1

μ

[
u(μ)

(
1 +

Kt(a, a)

τ2

)
+K(a, a) +

Kxt(a, a)

τ2

]
= −mμ+ i(ν − 2�m)

+
(
m�2 − ν�+ β −mKt(a, a) +K(a, a)

)
μ−1 + i(ν − 2�m)Kt(a, a)μ

−2

+O(|μ|−3),
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[
u(μ)

(
−K(a, a)

τ2
+

Ktt(a, a)

τ4

)
+ 1− Kx(a, a)

τ2

]
= 1 +mK(a, a)

− i(ν − 2�m)K(a, a)μ−1 −K(a, a)
(
2m�2 − ν�+ β

)
μ−2 −mKtt(a, a)μ

−2

−Kx(a, a)μ
−2 +O(|μ|−3).

Evaluating now the coefficients of P1 and P2 with respect to powers of μ gives

B̃1 = ν − 2�m,

B̃2 =
3m�2

2
− ν�+ β −mKt(a, a) +K(a, a) +

�4a2m

8
− �2a

2
− m

2
�2aK(a, a),

B̃3 = (ν − 2�m)

(
Kt(a, a)− 1

2
�2 − 1

8
�4a2 +K(a, a)

a�2

2

)
,

Ã1 = 1 +mK(a, a)− m

2
�2a,

Ã2 = −(ν − 2�m)

(
K(a, a)− 1

2
�2a

)
,

Ã3 = −mKtt(a, a)−Kx(a, a)− 1

8
�4a2(1 +mK(a, a))− 1

2
ν�3a+

1

2
�2aβ

− 1

2
m�2aKt(a, a) +

1

2
�2aK(a, a) +

7

8
�4am+

1

48
�6a3m

−K(a, a)
(
2m�2 − νρ+ β

)
.

This proves the representations of the Bj and Aj for j = 1, 2, 3. From Lemma
7.1.5 we now find p1, p2 and p3. �

7.4 Eigenvalue asymptotics of star graphs of strings

In this section we revisit problem (6.4.1)–(6.4.4), see also (2.3.9)–(2.3.12). For the
sake of simplicity we suppose in what follows that a1 = a2 = · · · = ap =: a,
� = m̃ = 0, υj = θj = 1 for all j = 1, . . . , p. Thus, we deal with the problem

y′′j + λ2yj − qj(x)yj = 0, j = 1, . . . , p, x ∈ [0, a], (7.4.1)

yj(λ, 0) = 0, j = 1, . . . , p, (7.4.2)

y1(λ, a) = · · · = yp(λ, a), (7.4.3)
p∑

j=1

y′j(λ, a) + (iλν̃ + β)y1(λ, a) = 0. (7.4.4)

We assume that p ≥ 2, that qj , j = 1, . . . , p, are real-valued functions from L2(0, a),
that ν̃ ≥ 0 and that β is a real constant derived in Subsection 2.3.3. We recall
from Section 6.4 that for j = 1, . . . , p, sj(λ, ·) denotes the solution of (7.4.1) which
satisfies the initial conditions sj (λ, 0) = 0, s′j(λ, 0) = 1 and that the characteristic
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function φ of the of problem (7.4.1)–(7.4.4) has been derived in (6.4.5). With our
particular assumptions we have

φ(λ) = ϕ(λ) + (iλν̃ + β)χ(λ), (7.4.5)

where

ϕ(λ) =

p∑
j=1

s′j(λ, a)
p∏

m=1
m �=j

sm(λ, a), (7.4.6)

χ(λ) =

p∏
j=1

sj(λ, a). (7.4.7)

Lemma 7.4.1. The function φ has the representation

φ(λ) = p
sinp−1 λa

λp−1
cosλa− (p− 1)

p∑
j=1

Bjπ
cos2 λa

λp
sinp−2 λa+

p∑
j=1

Bjπ
sinp λa

λp

+
υ1(λ)

λp
+

(
iν̃ +

β

λ

)⎛⎝ sinp λa

λp−1
−

p∑
j=1

Bjπ
sinp−1 λa

λp
cosλa+

υ2(λ)

λp

⎞⎠ , (7.4.8)

where υ1 ∈ Lpa, υ2 ∈ Lpa and

Bj =
1

2π

∫ a

0

qj(x)dx, j = 1, . . . , p. (7.4.9)

Proof. In view of Theorem 12.2.9, Corollary 12.2.10, Lemma 12.2.4 and Remark
12.2.5 we have

sj (λ, a) =
sinλa

λ
−Bjπ

cosλa

λ2
+

ωj (λ)

λ2
, j = 1, . . . , p, (7.4.10)

s′j (λ, a) = cosλa+Bjπ
sinλa

λ
+

τj (λ)

λ
, j = 1, . . . , p, (7.4.11)

where ωj ∈ Lae , τj ∈ Lao . Substituting (7.4.10) and (7.4.11) into (7.4.6) and (7.4.7)
we obtain

ϕ(λ) = p
sinp−1 λa

λp−1
cosλa− (p− 1)

p∑
j=1

Bjπ
cos2 λa

λp
sinp−2 λa

+

p∑
j=1

Bjπ
sinp λa

λp
+

υ1(λ)

λp
, (7.4.12)

χ(λ) =
sinp λa

λp
−

p∑
j=1

Bjπ
sinp−1 λa

λp+1
cosλa+

υ2(λ)

λp+1
. (7.4.13)

From (7.4.12) and (7.4.13) it easily follows that υ1 and υ2 are entire functions
of exponential type less or equal pa which are L2-functions on the real line, i. e.,
v1, v2 ∈ Lpa. Substituting (7.4.12) and (7.4.13) into (7.4.5) gives (7.4.8). �
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The “leading term” of φ is the entire function φ0 given by

φ0 (λ) =
sinp−1 λa

λp−1
(p cosλa+ iν̃ sinλa) . (7.4.14)

Clearly, φ0 has infinitely many zeros and φ0(−λ) = φ0(λ). In view of Proposition

7.1.2, the sequence (λ
(0)
k )∞k=−∞ of the zeros of φ0 can be indexed properly. There-

fore λ
(0)
−k = −λ(0)

k for all k �= 0, and the following result for nonnegative indices is
obvious, see Proposition 7.1.2 and its proof.

Lemma 7.4.2.

1. If ν̃ > p, then

λ
(0)
0 =

i

2a
log

ν̃ + p

ν̃ − p
, λ

(0)
1+(k−1)p =

πk

a
+

i

2a
log

ν̃ + p

ν̃ − p
for k ∈ N. (7.4.15)

λ
(0)
j+(k−1)p =

πk

a
for j = 2, . . . , p, k ∈ N. (7.4.16)

2. If ν̃ < p, then (7.4.16) holds, λ
(0)
0 is absent and instead of (7.4.15) we have

λ
(0)
1+(k−1)p =

π(k − 1
2 )

a
+

i

2a
log

p+ ν̃

p− ν̃
for k ∈ N. (7.4.17)

3. If p = ν̃, then the index 0 is absent and

λ
(0)
j+(k−1)(p−1) =

πk

a
for j = 1, . . . , p− 1, k ∈ N. (7.4.18)

Lemma 7.4.3. Let ν̃ �= p. Then:

1. The function λ �→ λp−1φ(λ) is of sine type pa.

2. The zeros (λk)
∞
k=−∞ of φ can be indexed properly and satisfy

λk =
|k|→∞

λ
(0)
k + o(1), (7.4.19)

where the index 0 is absent in case ν̃ < p.

3. There are a nonzero constant C and a nonnegative integer m ≤ p − 1 such
that φ has the product representation

φ(λ) = Cλm lim
n→∞

n∏′

k=−n

(
1− λ

λk

)
, (7.4.20)

where
∏′

means that m factors are omitted from the product in case ν̃ > p

and m+ 1 factors in case ν̃ < p.
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Proof. 1. It is easy to see that the function λ �→ λp−1φ0(λ) satisfies the conditions
(i), (ii) and (iii) of Definition 11.2.5 with exponential type pa, that is, this function
is of sine type pa. The representation (7.4.8) of φ easily shows that there is a
positive constant c such that

|φ(λ) − φ0(λ)| < c

|λ|p e
| Imλ|pa

for all λ ∈ C \ {0}, and therefore also λ �→ λp−1φ(λ) is a sine type function of
type pa.

2. Using Remark 11.2.21 or the periodicity of the entire function defined by
λ �→ λp−1φ0(λ) = sinp−1 λa(p cosλa+iν̃ sinλa), we find for every r > 0 a constant
d > 0 such that

|φ0(λ)| > d

|λ|p−1
e| Imλ|pa

for all λ ∈ C \⋃
k

Ck with |λ| ≥ r, where the Ck are the open discs of radii r with

centres at the points λ
(0)
k . Consequently, we have for all λ ∈ C\⋃

k

Ck with |λ| > c
d

that
|φ0(λ)| > |φ(λ) − φ0(λ)|. (7.4.21)

Due to Lemma 7.4.2, for each k ∈ N, C2+(k−1)p = C3+(k−1)p = · · · = Ckp and

hence the disc C2+(k−1)p contains exactly p − 1 (equal) λ
(0)
k -s for all positive

integers k. Taking r sufficiently small we obtain C2+(k−1)p ∩C1+(k′−1)p = ∅ for all
k, k′ ∈ N. With different indexing, an analogous result holds for negative indices
k. For sufficiently small r > 0 we apply Rouché’s theorem to these small Ck for
sufficiently large |k| and to a large disc with radius larger than c

d and centre 0 and
obtain the assertion 2.

Assertion 3 is an immediate consequence of Lemma 11.2.29, where m ≤ p−1
has been shown in Theorem 2.3.2. �

For convenience we state the following simple algebraic result, which can be
easily proved by induction.

Lemma 7.4.4. Let w1, . . . , wn and z1, . . . , zn be complex numbers. Then

n∏
j=1

wj −
n∏

j=1

zj =
n∑

m=1

(wm − zm)
m−1∏
j=1

wj

n∏
j=m+1

zj .

Lemma 7.4.5. Let (ak)
∞
k=1, (bk)

∞
k=1 and (zk)

∞
k=1 be sequences of complex numbers

such that (bk)
∞
k=1 is bounded, zk → 0 as k →∞, zk = ak+bkz

2
k and A := lim

k→∞
kak

exists. Then zk = ak +O(k−2).

Proof. If ak = 0, then zk(1 − bkzk) = 0 and therefore zk = 0 except for at most
finitely many indices k. Also, if zk = 0, then ak = 0. For these k, the statement of
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this lemma is trivial, and we may now assume that zk �= 0 and ak �= 0 for all k.
Then

1 =
ak
zk

+ bkzk

and bkzk = o(1) imply that

lim
z→∞ kzk = lim

k→∞
kak lim

z→∞
zk
ak

= A.

Hence zk = O(k−1). Substituting this for zk into the right-hand side of the identity
zk = ak + bkz

2
k completes the proof. �

Lemma 7.4.6. Define the polynomial P by

P (M) =

p∑
j=1

p∏
m=1
m �=j

(M −Bm), (7.4.22)

where the Bj, j = 1, . . . , p are given by (7.4.9). Then the zeros Mj, j = 1, . . . , p−1,
of the polynomial P defined by (7.4.22) are real but not necessarily different and
will be indexed such that Mj ≤Mj+1 for j = 1, . . . , p− 2.

Proof. Clearly, the polynomial P is the derivative of the polynomial P1 defined by

P1(M) =

p∏
m=1

(M −Bm). (7.4.23)

We assume that the Bm are indexed in such a way that B1 ≤ B2 ≤ · · · ≤ Bp. If M
is a multiple zero of P1 of multiplicity r, then M is a zero of multiplicity r−1 of P .
Hence the Mean Value Theorem shows that all p− 1 zeros M1, . . . ,Mp−1 of P are
real and can be indexed in such a way that Bj ≤Mj ≤ Bj+1 for j = 1, . . . , p− 1.
If Bj < Bj+1, then Bj < Mj < Bj+1. �
Theorem 7.4.7. Let Bj, j = 1, . . . , p be given by (7.4.9) and let Mj, j = 1, . . . , p−1,
be the zeros of the polynomial P defined by (7.4.22). Then the properly indexed
sequence (λk)

∞
k=−∞ of the eigenvalues of (7.4.1)–(7.4.4) with ν̃ �= p can be repre-

sented as the union of p properly indexed subsequences
(
ρ
(j)
k

)∞
k=−∞

, j = 1, . . . , p,

where the index k = 0 is omitted unless j = p and ν̃ > p, and where these subse-
quences have the following asymptotic expansions: For all ν̃ �= p,

ρ
(j)
k =

πk

a
+

Mj

k
+

β
(j)
k

k
, j = 1, . . . , p− 1, k ∈ N. (7.4.24)

For ν̃ > p,

ρ
(p)
k =

πk

a
+

i

2a
log

ν̃ + p

ν̃ − p
+

1

pk

⎛⎝ p∑
j=1

Bj +
p2β

(p2 − ν̃2)π

⎞⎠+
β
(p)
k

k
, k ∈ N,

(7.4.25)
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For ν̃ < p,

ρ
(p)
k =

π(k − 1
2 )

a
+

i

2a
log

p+ ν̃

p− ν̃
+

1

pk

⎛⎝ p∑
j=1

Bj +
p2β

(p2 − ν̃2)π

⎞⎠+
β
(p)
k

k
, k ∈ N.

(7.4.26)

Here
(
β
(j)
k

)∞
k=−∞,k �=0

∈ l2 if j = p or if 1 ≤ j ≤ p− 1 and Mj is a simple zero of

P , and
(
β
(j)
k

)∞
k=−∞,k �=0

∈ l2+ε for any ε > 0 otherwise.

Proof. We are going to index (Bj)
p
j=1 and (Mj)

p−1
j=1 as in the proof of Lemma

7.4.6. Furthermore, pj will denote the multiplicity of the zero Mj of P for each
j = 1, . . . , p− 1.

We know from Lemmas 7.4.3 and 7.4.2 that all eigenvalues λk with k > 0

are represented by complex numbers of the form ρ
(j)
k = λ

(0)
j+1+(k−1)p + o(1), j =

1, . . . , p− 1, k ∈ N, and ρ
(p)
k = λ

(0)
1+(k−1)p+ o(1), k ∈ N. From the representation of

λ
(0)
k it follows that there is r0 ∈ (0, π

2a ) such that the closed discs C1
k with centre

λ
(0)
2+(k−1)p and radius r0 and the closed discs Cp

k with centre λ
(0)
1+(k−1)p and radius

r0 and k ∈ N are mutually disjoint and that C1
k contains p − 1 zeros while Cp

k

contains one zero. Hence we still have to show for sufficiently large k that the

zeros ρ
(j)
k , j = 1, . . . , p−1, inside C1

k have the representation (7.4.24) and that the

zero ρ
(p)
k inside Cp

k has the representation (7.4.25) or (7.4.26), respectively.

We will prove (7.4.24) by starting with a sequence of simplified functions,
depending on the index k, whose zeros near π

a k can be found in terms of the zeros
of a polynomial. These functions φ1,k are defined as

φ1,k(λ) =

p∑
j=1

p∏
m=1
m �=j

(
tanλa− aBm

k

)
=

ap−1

kp−1
P
(
a−1k tanλa

)
,

where k ∈ N and |λ− π
a k| < π

2a .

Setting

ρ
(0,m)
k =

πk

a
+

1

a
arctan

(
Mma

k

)
, k ∈ N, m = 1, . . . , p− 1, (7.4.27)

we obtain

tan ρ
(0,m)
k a = tan

(
πk + arctan

(
Mma

k

))
=

Mma

k
(7.4.28)

and therefore

φ1,k(ρ
(0,m)
k ) =

ap−1

kp−1
P (Mm) = 0, k ∈ N, m = 1, . . . , p− 1.
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We observe that the numbers ρ
(0,m)
k are zeros of φ1,k of multiplicity pm since the

derivative of tan has no zeros, so that there is a local one-to-one correspondence
between the multiplicities of the zeros of φ1,k and the zeros of P . Hence φ1,k has
exactly p−1 zeros inside C1

k for sufficiently large k, counted with multiplicity, and

the numbers ρ
(0,m)
k , m = 1, . . . , p− 1, defined in (7.4.28) are the zeros of φ1,k.

To prove (7.4.24) let Mι be any of the zeros of P . In case of a multiple zero
we may choose the index ι to be the smallest index j for which Mj equals this
zero. We can find r ∈ (0, r0) such that

2r < min{|Mι −Mm| : m = 1, . . . ,m, Mm �= Mι}.

Since Mι is a zero of the polynomial P of multiplicity pι, we can find γ1 > 0 such
that

|P (M)| ≥ γ1|M −Mι|pι if |M −Mι| ≤ 2r. (7.4.29)

For |λ− ρ
(0,ι)
k | < r

k we conclude in view of (7.4.28) and Taylor’s Theorem that

|a−1k tanλa−Mι| = a−1k| tanλa− tan ρ
(0,ι)
k a| ≤ a−1k2a|λ− ρ

(0,ι)
k | ≤ 2r,

|a−1k tanλa−Mι| ≥ 1

2
k|λ− ρ

(0,ι)
k |

if k is sufficiently large. In view of (7.4.29) it follows that there is γ > 0 such that

|λp−1φ1,k(λ)| = ap−1

( |λ|
k

)p−1

|P (a−1k tanλa)| ≥ γ
(
k|λ− ρ

(0,ι)
k |

)pι

(7.4.30)

for |λ− ρ
(0,ι)
k | ≤ r

k and sufficiently large k ∈ N.

From (7.4.5)–(7.4.7) we obtain that

λ2(p−1)

cosp λa
φ(λ) =

p∑
j=1

1

cosλa

(
s′j(λ, a) +

1

p
(iλν̃ + β)sj(λ, a)

) p∏
m=1
m �=j

λ2

cosλa
sm(λ, a),

whereas

λp−1φ1,k(λ) =

p∑
j=1

p∏
m=1
m �=j

(
λ tanλa− aBmλ

k

)
.

Taking the representations of sj(λ, a) and s′j(λ, a) in (7.4.10) and (7.4.11) into

account, it easily follows that all factors of λ2(p−1)(cosλa)−pφ(λ) and λp−1φ1,k(λ),
which are of the form

1

cosλa

(
s′j(λ, a) +

1

p
(iλν̃ + β)sj(λ, a)

)
,

λ2

cosλa
sm(λ, a), λ tanλa− aBmλ

k
,

(7.4.31)
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are uniformly bounded with respect to j,m = 1, . . . , p, |λ − ρ
(0,ι)
k | < r

k and suf-
ficiently large k. Note that Lemma 12.2.4 shows for v ∈ La that |v(λ)| → 0 as
|λ| → ∞ subject to |λ− ρ(0,ι)| ≤ r

k , k ∈ N. Then the differences of corresponding

factors in λ2(p−1)(cosλa)−pφ(λ) and λp−1φ1,k(λ) satisfy

1

cosλa

(
s′j(λ, a) +

1

p
(iλν̃ + β)sj(λ, a)

)
− 1 =

Bjπ + p−1(iλν̃ + β)

λ
tanλa

−p−1(iλν̃ + β)
Bjπ

λ2
+

λτj(λ) + p−1(iλν̃ + β)ωj(λ)

λ2 cosλa
= O(k−1) (7.4.32)

and

λ2

cosλa
sm(λ, a)−

(
λ tanλa− aBmλ

k

)
= O(k−2) + (−1)kωm(λ) = o(1) (7.4.33)

for
∣∣λ− ρ(0,ι)

∣∣ ≤ r
k and k ∈ N.

In view of Lemma 7.4.4, the estimates (7.4.31), (7.4.32) and (7.4.33) show
that there is a sequence of constant ck > 0 such that ck → 0 as k →∞ and∣∣∣∣λ2(p−1)

cosp λa
φ(λ) − λp−1φ1,k(λ)

∣∣∣∣ < ck (7.4.34)

for
∣∣λ− ρ(0,ι)

∣∣ ≤ r
k and k ∈ N sufficiently large. It follows from (7.4.30) and

(7.4.34) that for sufficiently large k, say k ≥ k0, and all λ on the circle with centre

ρ
(0,ι)
k and radius 1

k (
ck
γ )

1
pι the estimate∣∣∣∣ λp−1

cosp λa
φ(λ) − φ1,k(λ)

∣∣∣∣ < |φ1,k(λ)|

holds, and an application of Rouche’s Theorem shows that φ has pι zeros ρ
(κ)
k ,

κ = ι, . . . , ι+pι− 1, such that |ρ(κ)k −ρ
(0,ι)
k | < 1

k (
ck
γ )

1
pι . Hence we have shown that

φ has zeros of the form

ρ
(κ)
k = ρ

(0,ι)
k + o(k−1), κ = ι, . . . , ι+ pι − 1,

and we can write

ρ
(κ)
k =

π

a
k +

Mκ

k
+

β
(κ)
k

k
, k ≥ k0, κ = ι, . . . , ι+ pι − 1,

where β
(κ)
k → 0 as k → ∞. For each k, these are p − 1 zeros, counted with

multiplicity, of φ satisfying the asymptotics π
a k + o(1). Hence, for large k, they

account for all zeros of (7.4.1)–(7.4.4) inside the disc C1
k , as required.

So far we have proved the representation (7.4.24) with β
(j)
k → 0 as k → ∞.

In view of Lemma 12.2.1, applied to the sets of even and odd indices k separately,
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we have that the sequences (ωj(ρ
(κ)
k ))∞k=k0

and (τj(ρ
(κ)
k ))∞k=k0

belong to l2 for

j = 1, . . . , p. Substituting λ = ρ
(κ)
k into (7.4.32) and (7.4.33) it follows that these

terms belong to l2 if considered as a sequence with index k. Then the sequence

(ck)
∞
k=k0

occurring in (7.4.34) belongs to l2, and (7.4.34) and φ(ρ
(κ)
k ) = 0 imply((

ρ
(κ)
k

)p−1

φ1,k(ρ
(κ)
k )

)∞

k=k0

∈ l2. Hence (7.4.30) gives

(
k(ρ

(κ)
k − ρ

(0,ι)
k )

)∞
k=k0

∈ l2pι for κ = ι, . . . , ι+ pι − 1. (7.4.35)

In view of 1
a arctan

(
Mκa
k

)
= Mκ

k +O(k−3), the representation (7.4.24) follows for
all j for which Mj is a simple zero of P .

In order to find the estimate for the remainder term in case pι > 1 we need

a closer inspection of the terms ρ
(κ)
k tan ρ

(κ)
k a− aBmρ

(κ)
k

k with κ = ι, . . . , pι − 1 and
Bm = Mι. In these cases we have∣∣∣∣∣ρ(κ)k tan ρ

(κ)
k a− aBmρ

(κ)
k

k

∣∣∣∣∣ = ∣∣∣ρ(κ)k

∣∣∣ ∣∣∣∣tan ρ(κ)k a− aBm

k

∣∣∣∣
=
(π
a
k +O(k−1)

)(β
(κ)
k a

k
+O(k−2)

)
= πβ

(κ)
k +O(k−1). (7.4.36)

We define the sequence (tn)
∞
n=1 recursively by

t1 = 2pι,
1

tn+1
=

1

pι

(
1

2
+

pι − 1

tn

)
for n ∈ N.

We are going to show that for all n ∈ N,

tn > 2,
(
β
(κ)
k

)∞
k=k0

∈ ltn for κ = ι, . . . , ι+ pι − 1. (7.4.37)

Let n ∈ N and assume that (7.4.37) holds. From tn > 2 we conclude

1

tn+1
<

1

pι

(
1

2
+

pι − 1

2

)
=

1

2
,

so that tn+1 > 2. It follows from (7.4.33) and (7.4.36) that⎛⎜⎝
(
ρ
(κ)
k

)2
cos ρ

(κ)
k a

sj(ρ
(κ)
k , a)

⎞⎟⎠
∞

k=k0

∈ ltn for κ, j = ι, . . . , ι+ pι − 1. (7.4.38)

Applying Lemma 7.4.4 to λ2(p−1)(cosλa)−pφ(λ) − λp−1φ1,k(λ) with λ = ρ
(κ)
k , we

see that each summand is a product of p bounded factors, where one of them
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satisfies the estimate (7.4.32) or (7.4.33), whereas at least pι − 1 of the other
factors satisfy (7.4.36) or (7.4.38). It follows that the absolute value of any of these
summands has an upper bound of the form c1,kc2,k · · · cpι,k with (c1,k)

∞
k=k0

∈ l2
and (cj,k)

∞
k=k0

∈ ltn for j = 2, . . . , pι. From

(c1,kc2,k · · · cpι,k)
tn+1
pι =

(
c21,k
) tn+1

2pι

(
ctn2,k

) tn+1
tnpι · · ·

(
ctnpι,k

) tn+1
tnpι

,

(
c21,k
)∞
k=k0

,
(
ctn2,k

)∞
k=k0

, . . . ,
(
ctnpι,k

)∞
k=k0

∈ l1, and
tn+1

2pι
+ (pι − 1)

tn+1

tnpι
= 1

it follows in view of the generalized Hölder’s inequality, see [108, (13.26)], that

(dk)
∞
k=k0

:=
(
(c1,kc2,k · · · cpι−1,k)

1
pι

)∞
k=k0

∈ ltn+1 .

Hence we find finitely many sequences (d1,k)
∞
k=k0

, . . . , (dh,k)
∞
k=k0

∈ ltn+1 with pos-

itive terms so that (7.4.34) for λ = ρ
(κ)
k can be improved to

∣∣∣∣(ρ(κ)k

)p−1

φ1,k(ρ
(κ)
k )

∣∣∣∣ ≤ h∑
j=0

dpι

j,k ≤
⎛⎝ h∑

j=0

dj,k

⎞⎠pι

=: d̃k

with (d̃k)
∞
k=k0

∈ ltn+1 . From (7.4.30) we conclude
(
k(ρ

(κ)
k − ρ

(0,ι)
k )

)∞
k=k0

∈ ltn+1

and therefore
(
β
(κ)
k

)∞
k=k0

∈ ltn+1. By the principle of mathematical induction, it

follows that (7.4.37) holds for all n ∈ N.

Hence the proof of the representation (7.4.24) will be complete if we show
that tn → 2 as n→∞. From

tn
tn+1

=
1

pι

(
tn
2

+ pι − 1

)
> 1

we see that (tn)
∞
n=1 is a decreasing sequence, which therefore has a limit t ≥ 2.

This limit t satisfies
1

t
=

1

pι

(
1

2
+

pι − 1

t

)
,

which shows that t = 2.

Now we are going to prove (7.4.25) and (7.4.26). With the notation from

Proposition 7.1.2 we can write λ
(0)
1+(k−1)p as λ

(1)
k with σ = p and α = ν̃ and

with an index shift in case ν̃ > p. We already know from Lemma 7.4.3 that

ρ
(p)
k − λ

(1)
k = o(1) and from (7.1.7) and (7.1.8) that

sinλ
(1)
k a = pεk, cosλ

(1)
k a = −iν̃εk,

where ε2k �= 0 is independent of k.
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By Taylor’s theorem,

−φ(λ(1)
k ) = φ(ρ

(p)
k )− φ(λ

(1)
k ) = φ′(λ(1)

k )(ρ
(p)
k − λ

(1)
k ) + γk(ρ

(p)
k − λ

(1)
k )2, (7.4.39)

where

|γk| ≤ 1

2
sup{|φ′′(λ)| : λ ∈ [λ

(1)
k , ρ

(p)
k ]}.

It is easy to see from Lemma 12.2.4 that the derivative of a function in La also
belongs to La. Hence it follows from (7.4.12) and (7.4.13) that

γk = O(k−(p−1)).

Furthermore,

ϕ′(λ(1)
k ) =

ap

(λ
(1)
k )p−1

(
(p− 1) sinp−2 λ

(1)
k a cos2 λ

(1)
k a− sinp λ

(1)
k a
)
+O((λ

(1)
k )−p)

and

χ′(λ(1)
k ) =

ap

(λ
(1)
k )p

sinp−1 λ
(1)
k a cosλ

(1)
k a+O((λ

(1)
k )−(p+1))

show that

φ′(λ(1)
k ) =

ap sinp−2 λ
(1)
k a

(λ
(1)
k )p−1

(
(p− 1) cos2 λ

(1)
k a− sin2 λ

(1)
k a+ iν̃ sinλ

(1)
k a cosλ

(1)
k a
)

+O((λ
(1)
k )−p)

=
ap sinp−2 λ

(1)
k a

(λ
(1)
k )p−1

ε2k
(
ν̃2 − p2

)
+O((λ

(1)
k )−p).

Next we calculate

φ(λ
(1)
k ) = φ0(λ

(1)
k )− (p− 1)

p∑
j=1

Bjπ
cos2 λ

(1)
k a sinp−2 λ

(1)
k a

(λ
(1)
k )p

+

p∑
j=1

Bjπ
sinp λ

(1)
k a

(λ
(1)
k )p

+ β
sinp λ

(1)
k a

(λ
(1)
k )p

− iν̃

p∑
j=1

Bjπ
sinp−1 λ

(1)
k a cosλ

(1)
k a

(λ
(1)
k )p

+
v1(λ

(1)
k ) + iν̃v2(λ

(1)
k )

(λ
(1)
k )p

+O((λ
(1)
k )−(p+1))

= − sinp−2 λ
(1)
k a

(λ
(1)
k )p

ε2k

⎡⎣(ν̃2 − p2)

p∑
j=1

Bjπ − p2β

⎤⎦+
α
(p)
k

k
,

where (α
(p)
k )∞k=1 ∈ l2 in view of Lemma 12.2.1.
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From the above calculations and with γk from (7.4.39) we infer that

bk := − γk

φ′(λ(1)
k )

= O(1), (7.4.40)

ak := − φ(λ
(1)
k )

φ′(λ(1)
k )

=
1

apλ
(1)
k

⎛⎝ p∑
j=1

Bjπ +
p2β

p2 − ν̃2

⎞⎠+
β̃k

k

=
1

pk

⎛⎝ p∑
j=1

Bj +
p2β

(p2 − ν̃2)π

⎞⎠+
β̂k

k
, (7.4.41)

where (β̃k)
∞
k=1 and (β̂k)

∞
k=1 belong to l2. Hence (7.4.39) can be written in the form

zk = ak + bkz
2
k with zk = ρ

(p)
k − λ

(1)
k , and Lemma 7.4.5 gives

ρ
(p)
k − λ

(1)
k =

1

pk

⎛⎝ p∑
j=1

Bj +
p2β

(p2 − ν̃2)π

⎞⎠+
β
(p)
k

k
, (7.4.42)

where (β
(p)
k )∞k=1 ∈ l2. This proves (7.4.25) and (7.4.26). �

Corollary 7.4.8. Let ν̃ = 0, let qj belong to the Sobolev space W 1
2 (0, a) for j =

1, . . . , p and assume that the zeros of the polynomial P defined in Theorem 7.4.7 are
simple. Then the subsequences in Theorem 7.4.7 have the asymptotic expansions

ρ
(j)
k =

πk

a
+

Mj

k
+

β
(j)
k

k2
, j = 1, . . . , p− 1, (7.4.43)

ρ
(p)
k =

π(k − 1
2 )

a
+

1

p
(
k − 1

2

)
⎛⎝ p∑

j=1

Bj +
β

π

⎞⎠+
β
(p)
k

k2
, (7.4.44)

where
(
β
(j)
k

)∞
k=−∞,k �=0

∈ l2.

Proof. Because of ν̃ = 0, the estimate (7.4.32) can be sharpened to O(k−2). For
(7.4.33) we simply observe that Corollary 12.2.10 shows that ωj(λ) in (7.4.10) can
be written as

ωj(λ) = Dj
sinλa

λ
+

ω
(1)
j

λ
, j = 1, . . . , p,

where the Dj are real constants and (ω
(1)
j )∞j=1 ∈ l2. Since sinλa = O(k−1) for the

λ considered in the part of the proof of Theorem 7.4.7 corresponding to (7.4.24),
we see that the differences (7.4.33) are of the form O(k−2)+k−1ω(λ) with ω ∈ La.
Then we can replace ck with k−1ck in (7.4.34), and (7.4.43) easily follows from
this modification in the proof of Theorem 7.4.7.
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To prove (7.4.44) we first observe that going one step further in the Taylor
expansion of φ we find that γk defined in (7.4.39) can be written as

γk = φ′′(λ(1)
k ) + γ

(1)
k (ρ

(p)
k − λ

(1)
k ),

where γ
(1)
k = O((λ

(1)
k )−(p−1)). Note that cosλ

(1)
k a = 0 and sinλ

(1)
k a = (−1)k−1.

It is easy to see that φ′′(λ(1)
k ) = O((λ

(1)
k )−p), and therefore γk = O((λ

(1)
k )−p). It

follows that (7.4.40) can be improved to

bk = O(k−1).

Substituting the above representation of ωj into (7.4.10) gives

sj(λ
(1)
k , a) =

(−1)k−1

λ
(1)
k

+O((λ
(1)
k )−3),

∂

∂λ
sj(λ

(1)
k , a) = O((λ

(1)
k )−2).

Similarly, τj(λ) in (7.4.11) can be written as

τj(λ) = Ej
cosλa

λ
+

τ
(1)
j

λ
, j = 1, . . . , p,

where the Ej are real constants and τ
(1)
j ∈ l2. Thus we have

s′j(λ
(1)
k , a) = Bjπ

(−1)k−1

λ
(1)
k

+
τj(λ

(1)
k )

(λ
(1)
k )2

,

∂

∂λ
s′j(λ

(1)
k , a) = −(−1)k−1a+O((λ

(1)
k )−2).

We calculate

ϕ(λ
(1)
k ) =

(−1)p(k−1)

(λ
(1)
k )p

p∑
j=1

Bjπ +
ω(1)(λ

(1)
k )

(λ
(1)
k )p+1

+O((λ
(1)
k )−(p+2)),

χ(λ
(1)
k ) =

(−1)p(k−1)

(λ
(1)
k )p

+O((λ
(1)
k )−(p+2)),

where ω(1) ∈ Lpa. Therefore

φ(λ
(1)
k ) =

(−1)p(k−1)

(λ
(1)
k )p

⎛⎝ p∑
j=1

Bjπ + β

⎞⎠ +
ω(1)(λ

(1)
k )

(λ
(1)
k )p+1

+O((λ
(1)
k )−(p+2)).
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Furthermore,

ϕ′(λ(1)
k ) = − (−1)p(k−1)

(λ
(1)
k )(p−1)

pa+O((λ
(1)
k )−(p+1)),

χ′(λ(1)
k ) = O((λ

(1)
k )−(p+1)),

gives

φ′(λ(1)
k ) = − (−1)p(k−1)

(λ
(1)
k )(p−1)

pa+O((λ
(1)
k )−(p+1)).

Observing the definition of ak in (7.4.41) we conclude that

ρ
(p)
k = λ

(1)
k + ak +O(k−3) = λ

(1)
k +

1

paλ
(1)
k

⎛⎝ p∑
j=1

Bjπ + β

⎞⎠+
β
(p)
k

k2

= λ
(1)
k +

1

p(k − 1
2 )

⎛⎝ p∑
j=1

Bj +
β

π

⎞⎠+
β
(p)
k

k2
,

where
(
β
(j)
k

)∞
k=−∞,k �=0

∈ l2. �

7.5 Notes

First results on asymptotics of eigenvalues of boundary value problems can be
found in [257], [258]. Since then many results concerning eigenvalue asymptotics
for concrete boundary value problems generated by the Sturm–Liouville equation
and similar equations have been published, see, e. g., [17], [84] and the references
therein.

Asymptotics for the eigenvalues of the generalized Regge problem (7.2.5)–
(7.2.7) with α �= 1 were obtained in [101]. However, asymptotics of the classical
Regge problem, that is, the case when α = 1 and β = 0, being investigated for a
long time are not completely known. An analogue of formula (7.2.23) under the
assumption that q(j)(a) = 0 for j = 1, . . . , p− 1 and q(p)(a) �= 0 was obtained in
the original paper by T. Regge [238, (19)], see also [150, (6)]. Under the above
assumption on the behaviour of the potential at a, [150] also obtained two-fold
series expansions into eigenfunctions and associated functions of the Regge prob-
lem for certain classes of sufficiently smooth functions. It was shown in [142] that
the condition that the potential q satisfies a ∈ supp q is necessary for two-fold
completeness in L2(0, a). Also sufficient conditions for two-fold completeness were
given in [142]. More recently, it was shown in [248, Theorem 3] that under the
assumption that a ∈ supp q and that all of its eigenvalues λn, n ∈ Z are simple
with eigenfunctions yn, then the system {(yn, λnyn) : n ∈ Z} is complete and min-
imal in W 1

2,U (0, a) × L2(0, 1), where W 1
2,U (0, a) is the space of functions y from
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W 1
2 (0, a) satisfying f(0) = 0. For the case when a ∈ supp q and q(k)(a) = 0 for all

k ∈ N0, asymptotics of eigenvalues are unknown in general. However, if addition-
ally |q(x) (exp((a− x)−α)| is bounded and bounded away from 0 as x→ a− 0 for
some α > 0, an asymptotic formula for the eigenvalues can be found in [243, III.4].

A double-sided Regge problem was considered in [234] and [287].

The undamped string problem is given by equation (2.8.2). For the main
term of the asymptotics of the eigenvalues of boundary value problems generated
by (2.8.2), the following formula was obtained by M.G. Krĕın for a regular string
in [152], see also [96, Chapter VI, (8.5)]:

lim
n→∞

n

λn
=

1

π

∫ a

0

√
dM

dx
dx. (7.5.1)

This formula is independent of the boundary conditions, at least if they are self-
adjoint and independent of the spectral parameter. We observe that if M is abso-
lutely continuous with M ′ ∈ L2(0, a), then (2.8.2) is the undamped string equation
(2.2.1) with σ = 0, i. e.,

v′′ + λ2ρv = 0. (7.5.2)

For continuous ρ, formula (7.5.1) was known to J. Liouville [179, pp. 420, 426].

Another general result on asymptotics for the eigenvalues of string problems
is the Barcilon formula

ρ(0) =
1

a2μ2
1

∞∏
k=1

ν4k
μ2
k+1μ

2
k

associated with (7.5.2), where the string density ρ is continuous and bounded away
from zero, (νk)k∈N are the eigenvalues of the Dirichlet problem and (μk)k∈N are
the eigenvalues of the Neumann–Dirichlet problem. This formula was obtained
in [22] by the method of Stieltjes continued fractions and proved by [244] using
the Liouville transform under the assumption that the density of the string has a
piecewise continuous derivative. For ρ = 1, the Barcilon formula reduces to Wallis’
formula. In [129, Theorem 4.4] it was shown that this formula remains true even

at least in some cases of singular strings if ρ(0) is replaced by lim
x→+0

M(x)
x .

For the free Laplacian on finite quantum graphs, that is ρ = 1 on each edge,
the formula corresponding to (7.5.1) is

lim
n→∞

n

λn
=

1

π

g∑
k=1

lk, (7.5.3)

where lk (k = 1, 2, . . . , g) are the lengths of the edges of the graph, see [83, Propo-
sition 3.3].

Eigenvalue asymptotics for star graphs were found in [215, Lemma 1.3]. The-
orem 7.4.7 on the eigenvalue asymptotics for problem (7.4.1)–(7.4.4) was obtained
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in [230, Theorem 2.7 and Remark 2.8] with a slightly weaker result on the remain-
der terms if not all of the Mj, j = 1, . . . , p− 1, are distinct.

Eigenvalue asymptotics for quantum star graphs can be found in [279, Theo-
rems 2.1 and 2.2]. Eigenvalue asymptotics for boundary value problems generated
by the Dirac equation on star graphs were obtained in [276, Theorems 2.1 and 2.2].

For finite connected graphs, the main term of the eigenvalue asymptotics can
be obtained from (7.5.3). The next terms depend on complicated combinations of∫ lj
0

qj(x) dx, j = 1, . . . , g, where g is the number of edges. Some results can be
found in [47, Theorem 5.4], [62, Theorem 7.9 and Corollary 7.10], [279, Theorems
2.1 and 2.2]. However, in case all edges have the same length and the same po-
tentials on them, symmetric with respect to the midpoint of the edge, there is a
connection between spectral theory of quantum graphs and the classical spectral
theory of graphs; for the classical spectral theory on graphs see, e. g., [63], [53].
This connection was pointed out by [11] and was proved in [48], [76]. In this case
it was shown in [225, p. 193] that the characteristic function for problems with
Neumann boundary conditions at pendant vertices is of the form

φ(λ) = sp−g(λ, a)

p∏
r=1

(c(λ, a)− αr)

where αr are the eigenvalues of the matrix Ã = B− 1
2AB− 1

2 . Here A is the adja-
cency matrix of the graph, B = diag{d(v1), . . . , d(vp)}, d(vi) is the degree of the
vertex vi, g is the number of the edges and p is the number of vertices of the graph,
s(·, a) is the characteristic function of the Dirichlet–Dirichlet problem on the edges
while c(·, a) is the characteristic problem of the Neumann–Dirichlet problem on
the edge. If p > g, then the zeros of the factor sp−g(·, a) give the Dirichlet spec-
trum, that is, the set of eigenvalues of the Dirichlet–Dirichlet problem on an edge
of this graph, each eigenvalue having multiplicity p− g.

For asymptotics of eigenvalues of boundary value problems generated by a
fourth-order differential equations and spectral parameter dependent boundary
conditions see [195], [197], [198], [199].

An interesting and important question is whether the spectrum of a bound-
ary value problem lies in the open upper half-plane and is separated from the real
axis. In other words, whether a positive constant ε exists such that Imλk ≥ ε for
all eigenvalues λk. It is important because if the spectrum is separated and the
eigenvectors and associated vectors form a two-fold Riesz basis, then the solution
of the corresponding initial-boundary-value problem exists and is decaying expo-
nentially, see [272], [274]. It was shown in [104, Theorem 6.2] that the spectrum
of a string with constant density and damping at both ends is separated from the
real axis even if there is point mass at an interior point, while in [104, Theorem
6.3] it was shown that this is not true with one fixed end, one damped end and a
point mass at an interior point. However, for a string with distributed damping the
spectrum is separated from the real axis, see [60, Corollary 5.4]. In [213, Theorem
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3.1] it was shown that if the string satisfies ρ ∈ W 2
2 (0, a) and if the string bears

a point mass at the right end, then the spectrum is not separated from the real
axis. See [249, Theorem 2.5] and [190, Theorem 2.1] for related problems.

The problem of optimal resonances, i. e., the problem of design of optical cav-
ities with minimal rate of energy decay for a given frequency is closely connected
with the distance between the spectrum and the real axis. For related results see
[134, (3.2)], [135, Proposition 2.3].



Chapter 8

Inverse Problems

8.1 The inverse generalized Regge problem

In this section we will consider the inverse problem corresponding to the gener-
alized Regge problem, which was introduced at the end of Section 2.1 and whose
eigenvalues were discussed in Sections 6.1 and 7.2:

−y′′ + q(x)y = λ2y, (8.1.1)

y(λ, 0) = 0, (8.1.2)

y′(λ, a) + (iλα+ β) y(λ, a) = 0. (8.1.3)

Definition 8.1.1. The classes B (B+, B−) are the sets of 4-tuples (a, q, α, β), where
a > 0, q ∈ L2(0, a) is real valued, β ∈ R, α ∈ R (α ∈ (1,∞), α ∈ (0, 1)).

Definition 8.1.2. Let κ ∈ N0. Then the properly indexed sequence (λk)
∞
k=−∞ (or

(λk)
∞
k=−∞,k �=0) is said to have the SHB+

κ (respectively SHB−
κ ) property if the

following conditions are satisfied, where term means term of this sequence.

(i) All but κ terms lie in the open upper half-plane.

(ii) All terms in the closed lower half-plane are pure imaginary and pairwise
different. If κ > 0, we denote them as λ−j = −i|λ−j |, j = 1, . . . , κ, and
assume that |λ−j | < |λ−(j+1)|, j = 1, . . . , κ− 1, if κ > 1.

(iii) If κ > 0, the numbers i|λ−j |, j = 1, . . . , κ, with the exception of λ−1 if it is
equal to zero, are not terms of the sequence.

(iv) If κ > 1, then there is an odd number of terms in the interval (i|λ−j |,
i|λ−(j+1)|), j = 1, . . . , κ− 1.

(v) If κ > 0 and |λ−1| > 0, then the interval (0, i|λ−1|) contains no terms at all
or an even number of terms.

(vi) If κ > 0, then the interval (i|λ−κ|, i∞) contains a positive even number of
terms in case SHB+

κ or an odd number of terms in case SHB−
κ .

© Springer International Publishing Switzerland 2015  
M. Möller, V. Pivovarchik, Spectral Theory of Operator Pencils, Hermite-Biehler  
Functions, and their Applications, Operator Theory: Advances and Applications 246,  
DOI 10.1007/978-3-319-17070-1_  

215

8



216 Chapter 8. Inverse Problems

(vii) If κ = 0, then the sequence has an odd number of positive imaginary terms
in case SHB+

κ or no or an even number of positive imaginary terms in case
SHB−

κ .

We start with a result which covers all α > 0 but where the eigenvalues
of (8.1.1)–(8.1.3) are only given implicitly as the zeros of an analytic function.
Unfortunately, in the exceptional case α = 1 we are unable to obtain an explicit
form of the inverse problem. In case α �= 1, the explicit forms of the inverse problem
are investigated in Theorems 8.1.4 and 8.1.5.

Theorem 8.1.3. For the sequence (λk), which can be infinite or finite and possi-
bly empty, to be the sequence of the eigenvalues of problem (8.1.1)–(8.1.3) with
(a, q, α, β) ∈ B and with α > 0, it is necessary and sufficient that (λk) be the
sequence of the zeros of an entire function χ which belongs to the class SSHB and
which is of the form

χ(λ) = cosλa+ iα sinλa+M
sinλa

λ
+ iN

cosλa

λ
+

ψ(λ)

λ
, λ ∈ C \ {0}, (8.1.4)

where M,N ∈ R and ψ ∈ La.
Proof. Let φ be the characteristic function of (8.1.1)–(8.1.3) given by (6.1.1). By
Proposition 6.1.2, the function φ belongs to the class SSHB and satisfies (8.1.4)
in view of Corollary 12.2.10.

Conversely, assume that χ belongs to the class SSHB and satisfies (8.1.4).
The numbers a > 0 and α > 0 are explicitly given in (8.1.4). We recall from
Definition 5.2.6 that we can write the shifted Hermite–Biehler function χ in the
form

χ(λ) = Φ1(λ
2) + iλΦ2(λ

2), λ ∈ C, (8.1.5)

with real entire functions Φ1 and Φ2. The representation (8.1.4) of χ shows that

Φ1(λ
2) = cosλa+M

sinλa

λ
+

ψ̃1(λ)

λ
, (8.1.6)

Φ2(λ
2) = α

sinλa

λ
+N

cosλa

λ2
+

ψ̃2(λ)

λ2
, (8.1.7)

where ψ̃1 ∈ Lao and ψ̃2 ∈ Lae . It follows from (8.1.6) and (8.1.7) that

Φ1(λ
2) =

λ→±i∞
e|λ|a

2
+ o
(
e|λ|a

)
, Φ2(λ

2) =
λ→±i∞

α
e|λ|a

2|λ| + o

(
e|λ|a

|λ|
)
. (8.1.8)

We shall prove that the sequence of the zeros of χ is the sequence of the
eigenvalues of problem (8.1.1)–(8.1.3) with

β = M + α−1N, (8.1.9)
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and with some real-valued function q ∈ L2(0, a). To this end we consider the entire
functions Ξ1 and Ξ2 defined by

Ξ1 = Φ1 − α−1βΦ2, (8.1.10)

Ξ2 = α−1Φ2. (8.1.11)

In view of (8.1.6), (8.1.7), (8.1.10) and (8.1.11) we have

Ξ1(λ
2) = cosλa+ (M − β)

sinλa

λ
+

ψ1(λ)

λ
, (8.1.12)

Ξ2(λ
2) =

sinλa

λ
+

N

αλ2
cosλa+

ψ2,0(λ)

λ2
, (8.1.13)

where ψ1 ∈ Lao and ψ2,0 ∈ Lae . We define

ψ2,1(λ) =
N

α
cosλa− 4a2

α
N

λ2 cosλa

4λ2a2 − π2
.

Clearly, ψ2,1 is an even entire function of exponential type ≤ a, and for x ∈ R,
|ψ2,1(x)| = O(x−2) as |x| → ∞. Therefore ψ2,1 ∈ Lae , and we have

Ξ2(λ
2) =

sinλa

λ
+

4a2

α
N

cosλa

4λ2a2 − π2
+

ψ2(λ)

λ2
, (8.1.14)

where ψ2 = ψ2,0 + ψ2,1 ∈ Lae . Since Ξ2 is an entire function, multiplication of
(8.1.14) by λ2 and evaluation at λ = 0 gives ψ2(0) = 0.

Since χ belongs to the class SSHB, Φ2

Φ1
belongs to N ep

+ and Φ1 and Φ2 do not
have common zeros by Definition 5.2.6. In view of Lemma 5.1.22, the function

Ξ2

Ξ1
=

(
Φ1 − α−1βΦ2

α−1Φ2

)−1

= α−1

(
Φ1

Φ2
− α−1β

)−1

is a Nevanlinna function. By (8.1.8), Φ1(λ)
Φ2(λ)

→ ∞ as λ → −∞, so that there is

γ ∈ R such that Ξ2(λ)
Ξ1(λ)

> 0 if λ < γ. This shows that the meromorphic function Ξ2

Ξ1

belongs to N ep
+ .

There are various ways to ascertain that the functions Ξ1 and Ξ2 have
infinitely many zeros. One way to do so is to observe that λ �→ Ξ1(λ

2) and
λ �→ λΞ2(λ

2) are sine type functions and then to apply Proposition 11.2.8, 1.
Since Φ1 and Φ2 do not have common zeros, also Ξ1 and Ξ2 have no common
zeros. Because Ξ2

Ξ1
belongs to N ep

+ , we know from Theorem 11.1.6 and Corollary
5.2.3 that the zeros (μk)

∞
k=1 of Ξ1 interlace with the zeros (νk)

∞
k=1 of Ξ2 in the

following way:
μ1 < ν1 < μ2 < ν2 < · · · . (8.1.15)

By (8.1.12) and (8.1.14), the functions λ �→ Ξ1(λ
2) and λ �→ Ξ2(λ

2) are of the
form (12.3.11) and (12.3.10), respectively, where

A = − aN

π2α
, B =

(M − β)a

π2
= − aN

π2α
.
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Hence Lemma 12.3.3 shows that μk = v2k and νk = u2
k, k ∈ N, with

vk =
π

a

(
k − 1

2

)
− N

πα

1

k
+

γ
(1)
k

k
, (8.1.16)

uk =
π

a
k − N

πα

1

k
+

γ
(2)
k

k
, (8.1.17)

where (γ
(j)
k )∞k=1 ∈ l2 for j = 1, 2. Thus the sequences (μk)

∞
k=1 and (νk)

∞
k=1

satisfy the assumptions of Theorem 12.6.2. Therefore there exists a real-valued
q ∈ L2(0, a) such that (μk)

∞
k=1 is the spectrum of the Dirichlet–Neumann problem

y′′ + (z − q(x)) y = 0,

y(z, 0) = y′(z, a) = 0,

and (νk)
∞
k=1 is the spectrum of the corresponding Dirichlet problem

y′′ + (z − q(x)) y = 0,

y(z, 0) = y(z, a) = 0.

Putting z = λ2, let s(λ, ·) be the solution of y′′+(λ2−q(x))y = 0 with y(λ, 0) = 0,
y′(λ, 0) = 1. From Corollary 12.2.10 we know that s′(·, a) is a sine type function,
and since s′(·, a) is a characteristic function of the Dirichlet–Neumann problem
with z = λ2, it follows in view of Lemma 11.2.29 that there is a constant c such
that

s′(λ, a) = cλm

∞∏′

k=1

(
1− λ2

μk

)
.

Here
∏′

indicates that the factor, if any, for which μk = 0, is replaced by the

term λm with m = 2, whereas m = 0 otherwise. On the other hand, it follows
from (8.1.12) that λ �→ Ξ1(λ

2) is a sine type function and hence λ �→ Ξ1(λ
2)

has the same product representation as s′(·, a) with the same constant c because
both functions have the same leading term cosλa. Similarly, λ �→ λs(λ, a) and
λ �→ λΞ2(λ

2) are sine type functions with the same zeros and the same leading
terms. Hence it follows from (8.1.10), (8.1.11) and (8.1.5) that

s′(λ, a) + (iαλ+ β)s(λ, a) = Ξ1(λ
2) + (iαλ+ β)Ξ2(λ

2)

= Φ1(λ
2)− α−1βΦ2(λ) + (iαλ+ β)α−1Φ2(λ

2)

= Φ1(λ
2) + iλΦ2(λ

2)

= χ(λ).

Therefore we have shown that the sequence of the zeros (λk) of χ is the sequence
of the eigenvalues of the problem (8.1.1)–(8.1.3) with a, q, α and β as found
above. �
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Theorem 8.1.4. Let κ ∈ N0 and let (λk)
∞
k=−∞,k �=0 be a properly indexed sequence

which has the SHB−
κ property and which satisfies the asymptotic representation

λk =

(
k − 1

2

)
b+ ig +

h

k
+

γk
k
, k →∞, (8.1.18)

where b > 0, g > 0, h ∈ R and (γk)
∞
k=−∞.k �=0 ∈ l2. Then there exists a unique

(a, q, α, β) ∈ B for which problem (8.1.1)–(8.1.3) has the spectrum (λk)
∞
−∞,k �=0.

Furthermore, α ∈ (0, 1), i. e., (a, q, α, β) ∈ B−.

Proof. We put

a =
π

b
> 0. (8.1.19)

Since(
1− λ

λk

)(
1− λ

λ−k

)
− 1 =

(
1− λ

λk

)(
1 +

λ

λk

)
− 1 = O(|λ|2)O(k−2)

for k > 1, it follows for any C1 ∈ R \ {0} that

χ(λ) = C1 lim
n→∞(λ−1 − λ)(λ1 − λ)

n∏
k=−n, |k|>1

(
1− λ

λk

)
(8.1.20)

converges for all λ ∈ C and defines an entire function χ, see, e. g., [55, Theorem
VII.5.9]. Here we have used that λk �= 0 for k �= −1 by definition of SHB−

κ .

We now consider an auxiliary problem for (a, 2πha−1, α, 0) ∈ B−, where
α = tanhag:

y′′ +
(
λ2 − 2π

h

a

)
y = 0 on (0, a), (8.1.21)

y(λ, 0) = 0, (8.1.22)

y′(λ, a) + iλαy(λ, a) = 0. (8.1.23)

The differential equation (8.1.21) is of the form (12.3.1) with b = 0 and c = 2πha−1.
We are going to apply Corollary 12.3.2 with n = 1 to find an asymptotic repre-
sentation of the characteristic function χ0 of problem (8.1.21)–(8.1.23). In the
notation of Lemma 12.3.1 and observing (12.3.4) and (12.3.5) we conclude that
τ(λ) =

√
λ2 − 2πha−1,

χ0(λ) = cos τ(λ)a + iλα
sin τ(λ)a

τ(λ)
,

h1(z) =
√
1− 2πha−1z2 = 1 − πha−1z2 + O(z4) and h2(z) = z−1(h1(z) − 1) =

−πha−1z + O(z3). Therefore, by (12.3.6) and (12.3.7), f2,1,1(z) = f1,1,1(z) = 1
coincide with the Taylor polynomial about 0 of order 1 of z �→ cosh2(z)a, whereas
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−f1,2,1(z) = f2,2,1(z) = −iπhz is the Taylor polynomial about 0 of order 1 of
z �→ i sinh2(z)a. From Corollary 12.3.2 we therefore conclude that

χ0(λ) = cosλa+ iα sinλa+
πh

λ
(sinλa− iα cosλa) +

ψ0(λ)

λ
, (8.1.24)

where ψ0 ∈ La and ψ0(−λ) = −ψ0(λ) for all λ ∈ C.

We know from Proposition 6.1.1 that χ0 is a sine type function of type a
and from Theorem 7.2.1 that its sequence of zeros (ζk)

∞
k=−∞, k �=0 can be properly

indexed and satisfies

ζk =
π(k − 1

2 )

a
+ ig +

h

k
+

dk
k

for k ≥ 1, (dk)
∞
1 ∈ l2. (8.1.25)

Comparing (8.1.18) with (8.1.25) implies

λk = ζk +
b̃k
ζk

,
(
b̃k

)∞
k=−∞, k �=0

∈ l2. (8.1.26)

Due to Lemma 11.3.15 and Remark 11.3.16 with ω = χ0, ω̃ = χ with C1 = 1,
a = 0 and n = 1, we obtain

χ(λ) = C1C0

(
1 +

iT

λ

)
χ0(λ) +

ψ(λ)

λ
,

where C0 �= 0 and T are constants and ψ belongs to the class La. Since the
sequence (λk)

∞
k=−∞,k �=0 is properly indexed, χ(−λ) = χ(λ) for all λ ∈ C. From

τ2(λ) = λ2 − 2πha−1 it follows that also χ0(−λ) = χ0(λ) for all λ ∈ C. Hence χ
and χ0 are real on the imaginary axis, and we conclude that C0 ∈ R \ {0}, T ∈ R

and ψ(−λ) = −ψ(λ) for all λ ∈ C. We now choose C1 = C−1
0 and obtain

χ(λ) =

(
1 +

iT

λ

)
χ0(λ) +

ψ(λ)

λ
. (8.1.27)

Substituting (8.1.24) into (8.1.27) we obtain

χ(λ) = cosλa+ iα sinλa+
πh− Tα

λ
sinλa+

i(T − πhα)

λ
cosλa+

ψ̃(λ)

λ
, (8.1.28)

where ψ̃ ∈ La.
We note that in the product representation (5.1.3) for χ we can choose

Pk(
λ
λk

) = λ
λk

if λ−k = −λk and Pk(
λ
λk

) = 1 otherwise since

∞∑
k=−∞,|k|>1

|λk|−2 <∞.
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In view of the definition of RPk(
λ
λk

) right before the formulation of Theorem
5.1.11, we have

R
λ

λk
+R

λ

λ−k
=

1

2

(
λ

λk
+

λ

λk

)
+

1

2

(
λ

−λk

+
λ

−λk

)
= 0

whenever λ−k = −λk. Hence χ has the form of the function ω in Theorem 5.2.16,
with u constant and ν = 0. From λk = O(|k|) as |k| → ∞ and from the bounded-
ness of the set {Imλk : k ∈ Z} it follows that Im 1

λk
= O(k−2) as |k| → ∞, and

therefore
∞∑

k=−∞
|k|>1

∣∣∣∣Im 1

λk

∣∣∣∣ <∞.

Since the zeros of χ belong to SHB−
κ , it easily follows that χ satisfies the conditions

1–7 in Theorem 5.2.16. Thus Theorem 5.2.16 shows that χ ∈ SSHBκ′ , where κ′ = κ
if λ−1 �= 0 and where κ′ = κ− 1 if λ−1 = 0.

Hence we have shown that χ belongs to the class SSHB and has the repre-
sentation (8.1.28). In view of Theorem 8.1.3, there are β ∈ R and a real-valued
function q ∈ L2(0, a) such that the sequence of the zeros (λk)

∞
k=−∞,k �=0 is the se-

quence of the eigenvalues of the problem (8.1.1)–(8.1.3) with a > 0, and α ∈ (0, 1)
as found above.

Now we are going to show that (a, q, α, β) ∈ B is uniquely determined by
(8.1.18). Firstly, we are going to show that α ∈ (0, 1). By proof of contradiction,
assume that α > 1. Then the index set of the properly indexed eigenvalues would
be Z by Theorem 7.2.1, 1, which is impossible since the index set of the properly
indexed sequence of numbers in (8.1.18) is Z \ {0}. Since {Imλk : k ∈ Z} is
a bounded set, it follows from Proposition 7.2.3 that α �= 1. If α = 0, then
the eigenvalues would have to be symmetric with respect to the origin, which is
impossible since g �= 0 in (8.1.18). Next assume that α < 0. Then the substitution
λ �→ −λ, α �→ −α would show by Theorem 7.2.1 and Proposition 7.2.3 that the
sequence of eigenvalues would have infinitely many terms with negative imaginary
parts, contradicting g > 0 in the representation (8.1.18).

Hence we have established that α ∈ (0, 1), and therefore the representations
(8.1.18) and (7.2.7) coincide. In particular, the first two terms must be equal,
which shows that

b =
π

a
and g =

1

2a
log

α+ 1

1− α
.

Thus we have proved that a and α are uniquely determined by b and g.

Let q1, q2 ∈ L2(0, a) and β1, β2 ∈ R such that (a, q1, α, β1) and (a, q2, α, β2)
generate the same spectrum of problem (8.1.1)–(8.1.3), given by the sequence
(8.1.18). For j = 1, 2, let sj be the solution of (8.1.1) corresponding to (a, qj , α, βj)
with sj(λ, 0) = 0, s′j(λ, 0) = 1 for all λ ∈ C. Since the spectra of these two problems
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coincide, it follows again from Lemma 11.2.29 and the representations of sj(·, a)
and of s′j(·, a) in Corollary 12.2.10 that

s′1(λ, a) + (iλα+ β1)s1(λ, a) = s′2(λ, a) + (iλα+ β2)s2(λ, a)

for all λ ∈ C. Denoting this function by φ, we have seen in the proof of Theorem
7.2.1 that λ �→ λφ(λ) is of the form (7.1.4) with M = Kj(a, a) + βj and N =
αKj(a, a), j = 1, 2, where Kj(a, a) =

1
2

∫ a

0 qj(x) dx according to Theorem 12.2.9.
Clearly, the numbers M and N are uniquely determined by φ, and therefore

β1 = M − α−1N = β2.

Hence β is uniquely determined by (8.1.18), and so also the functions Ξ1 and Ξ2

defined in (8.1.10) and (8.1.11). Consequently, the zeros of Ξ1 and Ξ2, considered
in the proof of Theorem 8.1.3, are uniquely determined by (8.1.18). Thus also the
potential q is uniquely determined in view of Theorem 12.6.2. �

Theorem 8.1.5. Let κ ∈ N0 and let (λk)
∞
k=−∞ be a properly indexed sequence which

has the SHB+
κ property and which satisfies the asymptotic representation

λk = kb+ ig +
h

k
+

γ̃k
k
, k →∞, (8.1.29)

where b > 0, g > 0, h ∈ R and (γk)
∞
k=−∞ ∈ l2. Then there exists a unique

(a, q, α, β) ∈ B for which problem (8.1.1)–(8.1.3) has the spectrum (λk)
∞−∞. Fur-

thermore, α ∈ (1,∞), i. e., (a, q, α, β) ∈ B+.

Proof. The proof is, mutatis mutandis, as in Theorem 8.1.4 if we observe that we
have to put α = cothag in this case. �

8.2 The inverse problem for damped Stieltjes strings

Theorem 6.2.3 states that conditions 1–5 there are necessary for a sequence of
complex numbers to be the spectrum of the eigenvalue problem

u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k λ2u

(j)
k = 0, k = 1, . . . , nj , j = 1, 2, (8.2.1)

u
(j)
0 = 0, (8.2.2)

u
(1)
n1+1 = u

(2)
n2+1, (8.2.3)

u
(1)
n1+1 − u

(1)
n1

l
(1)
n1

+
u
(2)
n2+1 − u

(2)
n2

l
(2)
n2

+ iλνu
(1)
n1+1 = 0. (8.2.4)

Here we prove that these conditions are sufficient.
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Theorem 8.2.1. Let two positive numbers l > 0 and l̂ ∈ (0, l) and two natural num-
bers n1 and n2 be given together with the sequence of complex numbers (λk)

n1+n2

−(n1+n2)

which satisfy

(i) Imλk ≥ 0 for k = 0,±1,±2, . . . ,±(n1 + n2);

(ii) λ−k = −λk for not pure imaginary λk;

(iii) all real terms of the sequence, if any, are simple and nonzero;

(iv) for each real term λk of the sequence, ImΦ′(λk) = 0 and ImΦ′′(λk) �= 0;

(v) the number of real terms of the sequence does not exceed 2min{n1, n2}; i. e.,
conditions 1–5 of Theorem 6.2.3 are satisfied, where

Φ(λ) =

n1+n2∏
k=−(n1+n2)

(
1− λ

λk

)
, λ ∈ C. (8.2.5)

Then there exists a problem (8.2.1)–(8.2.4), i. e., a positive constant ν, sequences

of positive numbers (m
(1)
k )n1

k=1, (m
(2)
k )n2

k=1, (l
(1)
k )n1

k=0 and (l
(2)
k )n2

k=0 with
n1∑
k=0

l
(1)
k = l̂

and
n2∑
k=0

l
(2)
k = l− l̂, the spectrum of which coincides with (λk)

n1+n2

−(n1+n2)
.

Proof. Since the polynomial Φ satisfies the symmetry condition Φ(−λ) = Φ(λ),
λ ∈ C, there are real polynomials P and Q such that

Φ(λ) = P (λ2) + iλQ(λ2), λ ∈ C, (8.2.6)

see (5.1.23). We set

ν = Q(0)
(
l̂−1 + (l − l̂)−1

)
. (8.2.7)

Using (8.2.5) and (8.2.6) we obtain

Q(0) =
1

i
Φ′(0) = i

n1+n2∑
k=−(n1+n2)

1

λk
.

Due to conditions (i), (ii) and (v), Q(0) > 0 and consequently ν > 0.

If λk is a real zero of Φ, then by conditions (ii) and (iii), λk �= 0 and −λk are
simple zeros of Φ, and since P and Q are real polynomials, it follows that λ2

k is a
zero of both P and Q. For convenience, we let m be the number of positive real
terms in the sequence (λk)

n1+n2

−(n1+n2)
and we assume that these positive real terms

in the sequence have the indices n1 + n2 −m+ 1, . . . , n1 + n2. Introducing

R(z) =

n1+n2∏
k=n1+n2−m+1

(
1− z

λ2
k

)
, z ∈ C, (8.2.8)

Φ̃(λ) =

n1+n2−m∏
k=−(n1+n2−m)

(
1− λ

λk

)
, λ ∈ C, (8.2.9)



224 Chapter 8. Inverse Problems

it follows that
Φ(λ) = R(λ2)Φ̃(λ), λ ∈ C. (8.2.10)

We can find again unique real polynomials P̃ and Q̃ such that

Φ̃(λ) = P̃ (λ2) + iλQ̃(λ2), λ ∈ C. (8.2.11)

By construction and condition (i), all zeros of Φ̃ lie in the open upper half-plane.
Hence, by Theorem 5.2.16 and Definitions 5.2.6, 5.1.24, 5.1.25, P̃ and Q̃ have no

common zeros and the rational function Q̃

P̃
belongs to the class S0, where we have

used that P̃ (0) = Φ̃(0) �= 0. In view of Lemma 5.2.2, all zeros of P̃ and Q̃ are
positive. From (8.2.10) it follows that

P = RP̃ and Q = RQ̃. (8.2.12)

From condition (iv) we obtain for k = n1 + n2 −m+ 1, . . . , n1 + n2 that

0 = ImΦ′(λk) = Q(λ2
k) + 2λ2

kQ
′(λ2

k),

which shows that Q′(λ2
k) = 0. Therefore λ2

k is at least a double zero of Q. By
definition of R, these values λ2

k are simple zeros of R. Hence the numbers λ2
k are

zeros of Q̃ when k = n1+n2−m+1, . . . , n1+n2. These zeros and all the remaining
zeros of Q̃ are simple zeros of Q̃ in view of Theorem 11.1.6. It follows that λ2

k are
double zeros of Q for k = n1 + n2 −m + 1, . . . , n1 + n2, whereas the remaining
zeros of Q are simple. Since Φ is a polynomial of odd degree 2n1 + 2n2 + 1, the
polynomial Q has degree n1 + n2. Because of condition (v), we can arrange the

zeros of Q, counted with multiplicity, into two sequences (ν
(1)
k )n1

k=1 and (ν
(2)
k )n2

k=1

in such a way that ν
(1)
k = ν

(2)
k = λ2

n1+m1−m+k for k = 1, . . . ,m. In particular, the

terms in each of these two sequences are mutually distinct, i. e., ν
(j)
k �= ν

(j)
h for

j = 1, 2, 1 ≤ k < h ≤ nj .

By Lemma 5.2.2 and Theorem 11.1.6, the zeros of P̃ and Q̃ interlace and the
smallest zero of P̃ is smaller than the smallest zero of Q̃. Hence the degree of Q̃
cannot exceed the degree of P̃ . It follows that the degree of P is greater or equal
the degree of Q, which is n1 + n2. On the other hand, the degree of P cannot be
larger than n1 +n2 since the degree of Φ is 2n1 +2n2 +1. Therefore the degree of
P equals n1 + n2. Hence we have the partial fraction decomposition

P (z)

Q(z)
=

P̃ (z)

Q̃(z)
=

n1∑
k=1

A
(1)
k

z − ν
(1)
k

+

n2∑
k=1

A
(2)
k

z − ν
(2)
k

+B, (8.2.13)

where we have to observe that for k = 1, . . . ,m, the denominators z−ν(1)k = z−ν(2)k

are duplicated, and therefore the numbers A
(1)
k + A

(2)
k for k = 1, . . . ,m, A

(1)
k for

k = m+ 1, . . . , n1, A
(2)
k for k = m+ 1, . . . , n2, and B are uniquely determined by
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P and Q. We will show now they are all positive. In particular, we can also choose

A
(1)
k and A

(2)
k for k = 1, . . . ,m to be positive. Firstly, since the degrees of P and

Q coincide, B �= 0, and from Q̃

P̃
∈ S0 it follows that B > 0. Secondly, since Q̃

P̃
is a

Nevanlinna function, we have Im P̃ (z)

Q̃(z)
< 0 when Im z > 0. Near each zero ν of Q̃,

the dominant term of P̃ (z)

Q̃(z)
is of the form Aν

z−ν = Aν(z−ν)
|z−ν|2 , whence Aν > 0.

Since P (0) = Φ(0) = 1, we obtain from (8.2.13) and (8.2.7) that

−
n1∑
k=1

A
(1)
k

ν
(1)
k

−
n2∑
k=1

A
(2)
k

ν
(2)
k

+B =
1

ν

(
1

l̂
+

1

l− l̂

)
. (8.2.14)

We define

B1 =

n1∑
k=1

A
(1)
k

ν
(1)
k

+
1

νl̂
, (8.2.15)

B2 =

n2∑
k=1

A
(2)
k

ν
(2)
k

+
1

ν(l − l̂)
, (8.2.16)

and

ψj(z) =

nj∑
k=1

A
(j)
k

z − ν
(j)
k

+Bj , j = 1, 2. (8.2.17)

Evidently, B1 > 0, B2 > 0, B1 + B2 = B by (8.2.14), and −ψ1 and −ψ2 are
Nevanlinna functions whose poles are positive. Hence ψ1 and ψ2 can have at most
one simple zero in (−∞, 0]. Then

ψ1(0) = ν−1 l̂−1 > 0, ψ2(0) = ν−1(l − l̂)−1 > 0, (8.2.18)

and lim
z→−∞ψj(z) = Bj > 0, j = 1, 2, show that the functions ψj , j = 1, 2, are

positive on (−∞, 0]. Therefore the functions

θj =
1

νψj
, j = 1, 2, (8.2.19)

are S0-functions in view of Lemma 5.2.4, 3. In view of Proposition 5.2.5 we have
the continued fractions expansions

θj(z) = a(j)nj
+

1

−b(j)nj z +
1

a
(j)
nj−1 +

1

−b(j)nj−1z + · · ·+
1

a
(j)
1 +

1

−b(j)1 z +
1

a
(j)
0

(8.2.20)
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with a
(j)
k > 0 for k = 0, . . . , nj, j = 1, 2, and b

(j)
k > 0 for k = 0, . . . , nj, j = 1, 2.

Here we have to observe that (5.2.1) gives

a(j)nj
= lim

|z|→∞
θj(z) =

1

ν
lim

|z|→∞
1

ψ(z)
=

1

νBj
> 0.

We identify the positive numbers a
(j)
k , k = 0, . . . , nj , j = 1, 2, with the lengths of

subintervals l
(j)
k , and we identify the positive numbers b

(j)
k , k = 1, . . . , nj, j = 1, 2,

with masses m
(j)
k . Defining the rational functions θj,k, k = 0, . . . , nj, j = 1, 2,

inductively by θj,0(z) = l
(j)
0 and

θj,k(z) = l
(j)
k +

1

−m(j)
k z +

1

θj,k−1(z)

, k = 1, . . . , nj , j = 1, 2, (8.2.21)

it is clear that θj = θj,nj for j = 1, 2.

Let us prove that problem (8.2.1)–(8.2.4) generated by these masses and
subintervals possesses the spectrum (λk)

n1+n2

k=−(n1+n2)
. With the notations of Section

6.2 we deduce from (6.2.14), (6.2.13) and (6.2.8) that the functions
R

(j)
2k

R
(j)
2k−1

satisfy

the same recurrence relation (8.2.21) and the same initial condition as θj,k, and we

therefore conclude that θj =
R

(j)
2n1

R
(j)
2n1−1

for j = 1, 2. Using (8.2.13), (8.2.17), (8.2.19)

and (6.2.12) we obtain

P

Q
= ψ1 + ψ2 =

1

νθ1
+

1

νθ2
=

R
(1)
2n1−1

νR
(1)
2n1

+
R

(2)
2n2−1

νR
(2)
2n2

=
φ

νR
(1)
2n1

R
(2)
2n2

.

We know from the discussion at the beginning of Section 6.2 that R
(j)
2nj

is a poly-
nomial of degree nj for j = 1, 2. Since θj has nj simple zeros, which are the poles

of ψj , these zeros coincide with the zeros of R
(j)
2nj

, j = 1, 2. Consequently, the zeros

of Q and R
(1)
2n1

R
(2)
2n2

, counted with multiplicity, coincide, so that there is a nonzero

constant C such that R
(1)
2n1

R
(2)
2n2

= CQ. We then also have φ = CνP . Denoting the

function Φ in (6.2.11) by Φ̂ in order to avoid confusion with the function defined
in (8.2.5), we therefore have by (8.2.6) that

Φ̂(λ) = CνP (λ2) + iλνCQ(λ2) = CνΦ(λ), λ ∈ C.

This proves that Φ is the characteristic function of the eigenvalue problem (8.2.1)–
(8.2.4), so that its eigenvalues coincide with (λk)

n1+n2

k=−(n1+n2)
.

Using (8.2.18) and (8.2.20) or (8.2.21) as well as (8.2.18), we obtain

nj∑
k=0

l
(j)
k = θj(0) =

1

νψj(0)
=

{
l̂ if j = 1,

l− l̂ if j = 2.
�
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Remark 8.2.2. The solution of this inverse problem is not unique because of the
ambiguity in choice of ψ1 and ψ2. It can be shown that the solution is unique if
and only if n1 = 0 or n2 = 0.

8.3 The inverse problem for damped strings

In this section we continue the investigation of the eigenvalue problem for damped
strings, considered in Sections 2.2, 6.3 and 7.3. We recall from (7.3.1)–(7.3.3) that
this problem is given by

y′′ − 2iλ�y − q(x)y + λ2y = 0, (8.3.1)

y(λ, 0) = 0, (8.3.2)

y′(λ, a) + (−λ2m+ iλν + β)y(λ, a) = 0. (8.3.3)

Lemma 8.3.1. Let (λk)
∞
k=−∞,k �=0 be a properly indexed sequence satisfying the con-

ditions

(i) Imλk > 0 for all terms of the sequence;

(ii) the sequence has the asymptotic representation

λk =
k→∞

π(k − 1)

a
+ i�+

p1
k − 1

+
i p2

(k − 1)2
+

p3
(k − 1)3

+
bk
k3

, (8.3.4)

where a > 0, � > 0, pj ∈ R for j = 1, 2, 3, (bk)
∞
k=1 ∈ l2.

Then the entire function χ defined by

χ(λ) = lim
n→∞

n∏
k=−n
k �=0

(
1− λ

λk

)
, λ ∈ C, (8.3.5)

may be represented in the form

χ(λ) = B0

[
(μ+ iB1 +B2μ

−1 + iB3μ
−2) sinμa

+ (A1 + iA2μ
−1 +A3μ

−2) cosμa
]
+Ψ(μ)μ−2, (8.3.6)

where μ = λ− i� and Ak ∈ R, k = 1, 2, 3, Bk ∈ R, k = 0, 1, 2, 3, B0 �= 0, Ψ ∈ La
and Ψ(−μ) = Ψ(μ).

Proof. Since(
1− λ

λk

)(
1− λ

λ−k

)
− 1 =

(
1− λ

λk

)(
1 +

λ

λk

)
− 1 = O(|λ|2)O(k−2)

for k > 1, it follows that χ defined in (8.3.5) is an entire function, see, e. g.,
[55, Theorem VII.5.9]. We now define the entire function χ̃ by

χ̃(μ) := χ (μ+ i�) = χ(λ).
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Letting
μk = λk − i�, k ∈ Z \ {0},

it follows that (μk)
∞
k=−∞,k �=0 is the properly indexed sequence of zeros of χ̃.

Next we consider an auxiliary problem of the form (8.3.1)–(8.3.3) whose
eigenvalues have an asymptotic representation which may only differ in the re-
mainder term from the asymptotic representation of the sequence (μk)

∞
k=−∞,k �=0.

To this end let d be a real number such that

d <
2π

a
p1 + �2 − p−2 π

2

a2�
, (8.3.7)

where p−2 = max{0,−p2}. Then we consider problem (8.3.1)–(8.3.3) with q = d
and as yet unspecified constants m > 0, α > 0, and β ∈ R. We will use the upper
index ‘(0)’ for functions and constants related to this auxiliary problem.

The characteristic function χ(0) is

χ(0)(μ) = cos τ(μ)a +
(
−m (μ+ i�)

2
+ iν (μ+ i�) + β

) sin τ(μ)a

τ(μ)
, (8.3.8)

where τ(μ) =
√
μ2 + �2 − d. In view of Theorem 7.3.1, part 3, the properly indexed

zeros (μ
(0)
k )∞k=−∞,k �=0 of χ(0) have the asymptotics

μ
(0)
k = λ

(0)
k − i� =

k→∞
π(k − 1)

a
+

p
(0)
1

k − 1
+

ip
(0)
2

(k − 1)2
+

p
(0)
3

(k − 1)3
+

b
(0)
k

k3
, (8.3.9)

where (b
(0)
k )∞k=2 ∈ l2 and p

(0)
1 , p

(0)
2 , p

(0)
3 are given by (7.3.7)–(7.3.9), i. e.,

p
(0)
1 =

1

πm
+

K(0)(a, a)

π
− �2a

2π
, (8.3.10)

p
(0)
2 =

a

π2m

( ν

m
− 2�

)
, (8.3.11)

p
(0)
3 = C +

a2

π3

β

m2
, (8.3.12)

where C in (8.3.12) is a real number which is independent of β. From Theorem
12.2.9 we know that K(0)(a, a) = 1

2ad, and therefore

p1 − K(0)(a, a)

π
+

�2a

2π
= p1 − a

2π
(d− �2) > 0

in view of (8.3.7). Hence there is a unique m such that p
(0)
1 = p1, and this m is

positive. From (8.3.11) we can now find a unique real number ν such that p2 = p
(0)
2 .

Clearly, ν > 0 if p2 ≥ 0. If p2 < 0, then

p2 +
2a�

π2m
= p2 +

2a�

π

(
p1 − ad

2π
+

�2a

2π

)
> 0
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by (8.3.7), and therefore also ν > 0 in this case. From (8.3.12) we finally can find

a unique real number β such that p3 = p
(0)
3 .

We will now continue the investigation of χ(0) with these values ofm, ν and β.
From the representation (8.3.8) of χ(0) and from Corollary 12.3.2 with b = 0, with
n = 3 in (12.3.8) and with n = 2 in (12.3.9) we know that there are real constants

B
(0)
j , j = 1, 2, 3 and A

(0)
j , j = 1, 2, 3 and ψ

(0)
j ∈ La with ψ

(0)
j (−μ) = ψ

(0)
j (μ) such

that

χ(0)(μ) = B
(0)
0

(
μ+ iB

(0)
1 +B

(0)
2 μ−1 + iB

(0)
3 μ−2

)
sinμa

+
(
A

(0)
1 + iA

(0)
2 μ−1 +A

(0)
3 μ−2

)
cosμa+ ψ(0)(μ)μ−2. (8.3.13)

Here we took into account that f1,2,3(0) = 0 by Corollary 12.3.2. Furthermore,

Corollary 12.3.2 also shows that B
(0)
0 = −mf1,1,3(0) = −m.

We choose any index j such that μ
(0)
j �= 0 and μj �= 0 and we consider the

entire function χ
(0)
1 defined by

χ
(0)
1 (μ) =

(
1− μ

μ
(0)
j

)−1

χ(0)(μ). (8.3.14)

The leading term of χ
(0)
1 as |μ| → ∞ is

μμ
(0)
j

μ
(0)
j − μ

B
(0)
0 sinμa.

Therefore it easily follows from Proposition 11.2.19 that χ
(0)
1 is a sine type function

of exponential type a. A comparison of (8.3.4) with (8.3.9) yields

μk = μ
(0)
k +

b̃k

(μ
(0)
k )3

, k ∈ Z \ {0},

where (̃bk)
∞
k=1 ∈ l2. An application of Lemma 11.3.15 and Remark 11.3.16 leads to

χ̃(μ)

(
1− μ

μj

)−1

= χ
(0)
1 (μ)

(
T̃0 +

T̃1

μ
+

T̃2

μ2
+

T̃3

μ3

)
+

ϕ̃(μ)

μ3
,

where T̃k ∈ C, k = 0, 1, 2, 3, T̃0 �= 0, and ϕ̃ is an entire function belonging to La.
From (

1− μ

μj

)(
1− μ

μ
(0)
j

)−1

=
μ
(0)
j

μj

(
1− μj

μ

)(
1− μ

(0)
j

μ

)−1

=
μ
(0)
j

μj

(
1 +

T̂1

μ
+

T̂2

μ2
+

T̂3

μ3
+O(|μ|−4)

)
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with T̂k ∈ C, k = 1, 2, 3 and (8.3.14) we can now conclude that

χ̃(μ) = χ(0)(μ)

(
T0 + i

T1

μ
+

T2

μ
+ i

T3

μ3

)
+

ϕ(μ)

μ3
,

where Tk ∈ C, k = 0, 1, 2, 3, T0 �= 0, and ϕ is an entire function belonging to La.
From the symmetry of χ̃ and χ(0) we immediately conclude that the numbers Tk,
k = 0, 1, 2, 3, are real. Inserting the representation (8.3.13) for χ(0) into the above

identity leads to (8.3.6) with B0 = B
(0)
0 T0 �= 0. �

Lemma 8.3.2. Let � > 0 and let (λk)
∞
k=−∞,k �=0 be a properly indexed sequence

satisfying the conditions:

(i) Only a finite number, denoted by κ, of terms of the sequence lie in the closed
half-plane Imλ ≤ �.

(ii) All terms in the open half-plane Imλ ≤ � lie on (0, i�) and are pairwise
different. If κ > 0, we denote them by λ−j = i�− i|λ−j − i�|, j = 1, . . . , κ,
satisfying |λ−j − i�| < |λ−(j+1) − i�|, j = 1, . . . , κ− 1.

(iii) If κ > 0, then the numbers i�+ i|λ−j− i�|, j = 1, . . . , κ, are not terms of the
sequence (λk)

∞
k=−∞,k �=0.

(iv) If κ ≥ 2, then in each interval (i� + i|λ−j − i�|, i� + i|λ−(j+1) − i�|), j =
1, . . . , κ− 1, the number of terms of the sequence (λk)

∞
k=−∞,k �=0 is odd.

(v) If κ > 0, then the interval [i�, i�+i|λ−1−i�|) contains no or an even number
of terms of the sequence (λk)

∞
k=−∞,k �=0.

(vi) The asymptotic representation (8.3.4) holds.

Then χ belongs to the class SSHB and χ̃ := χ(·+ i�) belongs to the class SSHBκ.

Proof. Due to the asymptotics (8.3.4),

∞∑
k=−∞,k �=0

∣∣∣Im (λk)
−1
∣∣∣ <∞ and

∞∑
k=−∞,k �=0

∣∣∣∣∣Im
(
λk − i�

2

)−1
∣∣∣∣∣ <∞.

Hence the statement of the present theorem follows from Theorem 5.2.16. �

Denote byM+ (M−) the class of tuples (a, �,m, q, ν, β), where a > 0, � > 0,
m > 0, ν > 2m�, (0 < ν < 2m�), β ∈ R and q ∈ L2(0, a) is real valued.

Theorem 8.3.3. Let (λk)
∞
k=−∞,k �=0 be a sequence of complex numbers satisfying

the conditions of Lemma 8.3.2, and let p2 �= 0 in (8.3.4). Then there exists a
unique (a, �,m, q, ν, β) from M+ such that (λk)

∞
k=−∞,k �=0 is the spectrum of the

eigenvalue problem (8.3.1)–(8.3.3) with (a, �,m, q, ν, β).

Proof. Since a and � occur explicitly in (8.3.4), a and � are uniquely determined
by (8.3.4). Furthermore, replacing λ with λ+i� gives a one-to-one relation between
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the eigenvalue problem (8.3.1)–(8.3.3) and the eigenvalue problem

y′′ − (q(x) − �2)y + λ2y = 0, (8.3.15)

y(λ, 0) = 0, (8.3.16)

y′(λ, a) + (−λ2m+ iλ(ν − 2m�) + β − ν�+m�2)y(λ, a) = 0, (8.3.17)

see (6.3.1)–(6.3.3). Hence, given any � > 0 and a sequence of the form (8.3.4) with
� replaced by 0, i. e.,

λk =
k→∞

π(k − 1)

a
+

p1
k − 1

+
i p2

(k − 1)2
+

p3
(k − 1)3

+
bk
k3

, (8.3.18)

we have to show that there are unique m, q, ν, β, such that (a, �,m, q, ν, β) belongs
to M+ and such that (8.3.18) is the sequence of the eigenvalues of (8.3.15)–
(8.3.17). Let χ̃ be the entire function defined in Lemma 8.3.2 associated with the
sequence given by (8.3.18). Then μ = λ in the notation of Lemma 8.3.2. Since χ̃
is real on the imaginary axis and observing (8.3.6), we can write

B−1
0 χ̃(λ) = Φ1(λ

2) + iλΦ2(λ
2),

with real entire functions Φ1 and Φ2, where

Φ1(λ
2) = (λ+B2λ

−1) sinλa+ (A1 +A3λ
−2) cosλa+Ψ1(λ

2)λ−2, (8.3.19)

Φ2(λ
2) = (B1 +B3λ

−2)
sinλa

λ
+A2λ

−2 cosλa+Ψ2(λ
2)λ−3, (8.3.20)

and where Ψj ∈ La, j = 1, 2, are real entire functions, Ψ1 is even and Ψ2 is odd.
Since χ̃ ∈ SSHBκ by Lemma 8.3.2, it follows by Definition 5.2.6 that Φ2

Φ1
∈ N ep

+

and that Φ1 and Φ2 have no common zeros. Hence we have that Φ2(z)
Φ1(z)

> 0 as

z → −∞. But for λ = iη with η →∞ we have

Φ2(−η2)
Φ1(−η2) = −η−1(B1 + o(1))eηa

η(1 + o(1))eηa
= (−B1 + o(1))η−2,

so that B1 ≤ 0. Corollaries 5.2.3 and 11.1.8 imply that B1 �= 0. Altogether, it
follows that

B1 < 0. (8.3.21)

From (7.1.15) we know that A1B1 − A2 = π2

a p2. The assumption p2 �= 0 as
well as the fact that only finitely many λk lie in the closed lower half-plane imply
that p2 > 0. Hence we have

A1B1 −A2 > 0. (8.3.22)
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We now define

Ξ2 = B−1
1 Φ2, (8.3.23)

Ξ1,δ(λ) =
B1

A1B1 −A2
Φ1(λ)− δλ

A1B1 −A2
Φ2(λ)

+
1

A1B1 −A2

(
A2

2

B2
1

− A2A1

B1
+

B3

B1
−B2

)
Φ2(λ), λ, δ ∈ C, (8.3.24)

Ξ1 = Ξ1,1. (8.3.25)

It follows from (8.3.19), (8.3.20), (8.3.23) and (8.3.25) that

Ξ1(λ
2) = cosλa− A2

B1

sinλa

λ
+

ψ2(λ)

λ
, (8.3.26)

Ξ2(λ
2) =

sinλa

λ
+

A2

B1

cosλa

λ2
+

B3

B1

sinλa

λ3
+

ψ1(λ)

λ3
(8.3.27)

where ψj ∈ Lao for j = 1, 2.

By (8.3.26) and (8.3.27), the functions λ �→ Ξ1(λ
2) and λ �→ Ξ2(λ

2) are of
the form (12.3.11) and (12.3.10), respectively, if we observe that Ξ2 is of the form
(8.1.13) and can therefore be written in the form (8.1.14). Hence Lemma 12.3.3
shows that the zeros (ζk)

∞
k=1 of Ξ1 and (ξk)

∞
k=1 of Ξ2 can be written in the form

ζk = v2k and ξk = u2
k, k ∈ N, with

vk =
π

a

(
k − 1

2

)
− A2

B1π

1

k
+

γ
(1)
k

k
, (8.3.28)

uk =
π

a
k − A2

B1π

1

k
+

γ
(2)
k

k
, (8.3.29)

where (γ
(j)
k )∞k=−∞, k �=0 ∈ l2 for j = 1, 2.

We are going to show that these zeros are real, bounded below, and interlace.
To this end we observe that Φ2

Φ1
∈ N ep

+ and the fact that Φ1 and Φ2 do not
have common zeros imply that the zeros of Φ2 are real and bounded below, see
Definition 5.1.26 and Lemma 11.1.3. Since these zeros are the zeros (ξk)

∞
k=1 of Ξ2,

we have shown that the sequence (ξk)
∞
k=1 is real, bounded below, and increasing.

Furthermore,

(A1B1 −A2)
Ξ1,0

Ξ2
(λ) = B2

1

Φ1

Φ2
(λ) +

A2
2

B1
−A2A1 +B3 −B1B2.

Since Φ2

Φ1
is a Nevanlinna function and since A1B1 − A2 > 0, we conclude with

the aid of Lemma 5.1.22, in turn, that also −Φ1

Φ2
, −Ξ1,0

Ξ2
and Ξ2

Ξ1,0
are Nevanlinna

functions. The leading terms in Ξ1,0 and Ξ2 are positive on the negative real
axis, i. e., for λ in (8.3.26) and (8.3.27) on the imaginary axis, and therefore also
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Ξ2

Ξ1,0
∈ N ep

+ . Since Φ1 and Φ2 do not have common zeros, also Ξ1,δ and Ξ2 do not

have common zeros for each δ ∈ C. From Corollary 5.2.3 and Lemma 11.1.3 we
conclude that the zeros (ζ0,k)

∞
k=1 of Ξ1,0 are real and interlace with the zeros of Ξ2:

ζ0,1 < ξ1 < ζ0,2 < ξ2 < · · · .

Let k ≥ 2, let δ0 ∈ R and let η be a zero of Ξ1,δ0 in (ξk−1, ξk), if any, of
multiplicity l. In view of Theorem 11.1.1, Ξ1,δ has exactly l continuous branches
of zeros near η for δ near δ0, counted with multiplicity. Since Ξ1,δ is real analytic
for δ ∈ R, nonreal zeros would appear in conjugate complex pairs, and therefore
the parity of the number of the real zeros amongst these zeros is constant for real δ
near δ0. Because Ξ1,δ and Ξ2 do not have common zeros, no real zeros of Ξ1,δ can
enter the interval (ξk−1, ξk) through its endpoints. Altogether, it follows that the
parity of real zeros of Ξ1,δ in (ξk−1, ξk) is locally and therefore globally constant for
δ ∈ R. Clearly, this parity is odd since ζ0,k is the single zero of Ξ1,0 in (ξk−1, ξk).

It follows in particular for δ = 1 that Ξ1 = Ξ1,1 has an odd number of zeros
in (ξk−1, ξk) for k ≥ 2. From (8.3.28) and (8.3.29) we infer that

ζk =
π2

a2

(
k − 1

2

)2

+O(1) and ξk =
π2

a2
k2 +O(1).

Hence there is k0 ≥ 2 such that for k > k0 we have that the interval (ξk−1, ξk)
contains exactly one zero of Ξ1 and that this zero is ζk. Each of the k0−1 intervals
(ξk−1, ξk), k = 2, . . . , k0−1, must contain at least one of the remaining k0 zeros of
Ξ1. We are left with one zero of Ξ1. Again, since Ξ1 is real analytic, this zero must
be real because otherwise there would be an additional conjugate complex zero.
Also, this zero must be different from all ξk, k ≥ 1, and cannot lie in any of the
intervals (ξk−1, ξk), k ≥ 2, because otherwise such an interval would have exactly
two zeros of Ξ1, contradicting the parity of the number of these zeros being odd.
Hence this remaining zero must lie in (−∞, ξ1), and we therefore have shown that

ζ1 < ξ1 < ζ2 < ξ2 < · · · . (8.3.30)

In view of (8.3.28), (8.3.29) and (8.3.30), the sequences (ζk)
∞
k=1 and (ξk)

∞
k=1

satisfy the assumptions of Theorem 12.6.2, and therefore there exists a real-valued
q0 ∈ L2(0, a) such that (ζk)

∞
k=1 is the spectrum of the Dirichlet–Neumann problem

y′′ + (z − q0(x)) y = 0,

y(z, 0) = y′(z, a) = 0,

and (ξk)
∞
k=1 is the spectrum of the corresponding Dirichlet problem

y′′ + (z − q0(x)) y = 0,

y(z, 0) = y(z, a) = 0.
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Putting z = λ2, let s(λ, ·) be the solution of y′′ + (λ2 − q0(x))y = 0 with
y(λ, 0) = 0, y′(λ, 0) = 1. From Corollary 12.2.10 we know that s′(·, a) is a sine type
function, and since s′(·, a) is a characteristic function of the Dirichlet–Neumann
problem with z = λ2, it follows in view of Lemma 11.2.29 that there is a constant
c such that

s′(λ, a) = cλl

∞∏′

k=1

(
1− λ2

ζk

)
.

Here
∏′

indicates that the factor, if any, for which ζk = 0, is replaced by the term

λl with l = 2, whereas l = 0 otherwise. On the other hand, it follows from (8.3.26)
that λ �→ Ξ1(λ

2) is a sine type function and hence λ �→ Ξ1(λ
2) has the same prod-

uct representation as s′(·, a) with the same constant c because both functions have
the same leading term cosλa. Therefore, s′(λ, a) = Ξ1(λ

2) for all λ ∈ C. Similarly,
λ �→ λs(λ, a) and λ �→ λΞ2(λ

2) are sine type functions with the same zeros and
the same leading terms, and we conclude that s(λ, a) = Ξ2(λ

2) for all λ ∈ C.

We set

m =
B1

A2 −A1B1
, ν = m(2�−B1), q = q0 + �2,

β = ν�−m�2 −B2m+
A2

B1
+m

B3

B1
.

Then s(·, λ) is a solution of (8.3.15) satisfying the initial condition (8.3.16). From
(8.3.21) and (8.3.22) we conclude that m > 0 and ν > 2m�. Hence it follows from
(8.3.23) and (8.3.25) that

s′(λ, a) + (−λ2m+ iλ(ν − 2m�) + β − ν�+m�2)s(λ, a)

= Ξ1(λ
2) + (−λ2m+ iλ(ν − 2m�) + β − ν�+m�2)Ξ2(λ

2)

=
B1

A1B1 −A2
Φ1(λ

2)− λ2

A1B1 −A2
Φ2(λ

2)

+
1

A1B1 −A2

(
A2

2

B2
1

− A2A1

B1
+

B3

B1
−B2

)
Φ2(λ

2)

+ (−λ2m+ iλ(ν − 2m�) + β − ν�+m�2)B−1
1 Φ2(λ

2)

= −mΦ1(λ
2) +

mλ2

B1
Φ2(λ

2) +
1

A1B1 −A2

(
A2

2

B2
1

− A2A1

B1
+

B3

B1
−B2

)
Φ2(λ

2)

+

(
−mλ2

B1
+ i

ν − 2m�

B1
λ+

β − ν�+m�2

B1

)
Φ2(λ

2)

= −mχ̃(λ).

Hence we have shown that the sequence (8.3.18) is the sequence of the eigenvalues
of the problem (8.3.15)–(8.3.17) with m, q, α and β as found above and where
(a, �,m, q, ν, β) belongs toM+.



8.3. The inverse problem for damped strings 235

For the uniqueness we recall that we have already stated at the beginning
of this proof that a and � are unique. Hence let (a, ρ,m, q, ν, β) be the tuple
constructed above and let (a, ρ,m1, q1, ν1, β1) ∈ M+ for which problem (8.3.15)–
(8.3.17) has the same sequence of eigenvalues (λk)

∞
k=−∞,k �=0. We are going to show

that the two tuples are equal. Let s and s1 be the solutions of (8.3.15), (8.3.16),
y′(λ, 0) = 1 with q and q1, respectively. The corresponding characteristic func-
tions of (8.3.15)–(8.3.17) with respect to the parameter tuples (a, ρ,m, q, ν, β) and
(a, ρ,m1, q1, ν1, β1) are

χ(λ) = s′(λ, a) + (−λ2m+ iλ(ν − 2m�) + β − ν�+m�2)s(λ, a)

χ1(λ) = s′1(λ, a) + (−λ2m1 + iλ(ν1 − 2m1�) + β1 − ν1�+m1�
2)s1(λ, a),

respectively. From m �= 0, m1 �= 0, and Corollary 12.2.10 we know that λ �→
(λ−λ1)

−1χ(λ) and λ �→ (λ−λ1)
−1χ1(λ) are sine type functions. Hence it follows

in view of Lemma 11.2.29 that the two characteristic functions are multiples of
each other, i. e., there is C �= 0 such that

χ(λ) = Cχ1(λ), λ ∈ C.

Since s(·, a), s′(·, a), s1(·, a) and s′1(·, a) are even entire functions, we have

χ(λ)− χ(−λ) = 2iλ(ν − 2m�)s(λ, a),

χ1(λ)− χ1(−λ) = 2iλ(ν1 − 2m1�)s1(λ, a).

Hence s(·, a) and s1(·, a) are multiples of each other. Since these two functions
have the same leading term by Theorem 12.2.9, we conclude that s(·, a) = s1(·, a)
and ν − 2m� = C(ν1 − 2m1�). We now calculate

χ(λ) + χ(−λ) = 2s′(λ, a) +
(−2λ2m− 2�(ν −m�) + 2β

)
s(λ, a)

= C
(
2s′1(λ, a) +

(−2λ2m1 − 2�(ν1 −m1�) + 2β1

)
s1(τ, a)

)
= C

(
2s′1(λ, a) + (−2λ2m1 + 2β1 + 2m1�

2)s(λ, a)
) − 2�(ν − 2m�)s(λ, a),

and obtain

s′(λ, a) + (−mλ2 + β +m�2)s(λ, a) = Cs′1(λ, a) +C(−m1λ
2 + β1 +m1�

2)s(λ, a).

Taking the asymptotic representations of s(·, a), s′(·, a), s1(·, a) and s′1(·, a) into
account, see Corollary 12.2.10, we conclude that the coefficients of λ2s(λ, a) must
coincide, so that m = Cm1. Then

s′(λ, a) + βs(λ, a) = C(s′1(λ, a) + β1s(λ, a)).

Considering the leading terms again we obtain C = 1 and therefore m = m1. Then
ν − 2m� = C(ν1 − 2m1�) implies ν = ν1 and

s′(λ, a) + βs(λ, a) = s′1(λ, a) + β1s(λ, a).
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In view of (12.2.22) and (12.2.23) it follows from this latter identity that

K(a, a) + β

λ
sinλa+ o(λ−1) =

K1(a, a) + β1

λ
sinλa+ o(λ−1), λ ∈ R \ {0},

and therefore K(a, a) + β = K1(a, a) + β1. Applying Theorem 7.3.1 to (8.3.15)–
(8.3.17) with these two tuples of parameters, (7.3.7) gives that K(a, a) = K1(a, a).
Consequently β = β1 and s′(·, a) = s′1(·, a). Therefore s1(·, a) and s′1(·, a) have the
same sequences of zeros as s(·, a) and s′(·, a). Using now the uniqueness statement
in Theorem 12.6.2 proves that q − �2 = q1 − �2, that is, q = q1. �

8.3.1 Recovering string parameters

In Theorem 8.3.3 we have given a solution for the inverse problem associated with
the spectral problem (8.3.1)–(8.3.3), which is the particular case of the spectral
problem (2.2.4)–(2.2.6) with σ(s) ≡ 2�ρ(s). However, (2.2.4)–(2.2.6) was obtained
from the spectral problem (2.2.1)–(2.2.3) via the Liouville transform, and in this
subsection we will address the question if and how the parameters in (2.2.1)–(2.2.3)
can be recovered from a sequence satisfying the conditions of Lemma 8.3.2.

Theorem 8.3.4. Let the sequence (λk)
∞
k=−∞,k �=0 of complex numbers satisfy the

conditions of Lemma 8.3.2 and let l > 0. Then there exists a unique string of
length l with density ρ ∈W 2

2 (0, l), ρ� 0, with a point mass m > 0 and a damping
coefficient ν > 0 at the right end, which generates problem (2.2.1)–(2.2.3) with
σ(s) ≡ 2�ρ(s) and the spectrum of which coincides with (λk)

∞
k=−∞,k �=0.

Proof. By Theorem 8.3.3 there exists a unique tuple (a, �, m̃, q, ν̃, β) from M+

such that the sequence (λk)
∞
k=−∞,k �=0 represents the spectrum of the problem

(8.3.1)–(8.3.3) with the parameters (a, �, m̃, q, ν̃, β). For the operator pencil L̃
defined in Subsection 2.2.3 this means that the spectrum of the operator pencil
λ �→ L̃(λ− i�) lies in the open upper half-plane. Writing L(λ) = λ2M − iλK −A,
λ ∈ C, it follows that M = M̃ , K = K̃ + 2�M̃ , A = Ã+ �2M̃ + �K̃, where M̃ , K̃
and Ã are as in Subsection 2.2.3. Therefore M � 0, K ≥ 0 and hence the operator
A is strictly positive by Theorem 1.3.3. This means that the lowest eigenvalue ν1
of the operator A is positive. Since the operator A has the representation

D(A) =

{
ỹ =

(
y
c

)
: y ∈W 2

2 (0, a), y(0) = 0, c = y(a)

}
,

A

(
y
c

)
=

( −y′′ + qy
y′(a) + βy(a)

)
,

it follows that

0 < ν1 = min
ỹ∈D(A)\{0}

(Aỹ, ỹ)∫ a

0 |y(x)|2 dx+ |y(a)|2 ≤ min
ỹ∈D(A)\{0}

(Aỹ, ỹ)∫ a

0 |y(x)|2 dx
.
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We define the auxiliary operator A0 in L2(0, a) by

D(A0) =
{
y ∈W 2

2 (0, a) : y(0) = 0, y′(a) + βy(a) = 0
}
, A0y = −y′′ + qy.

The operator A0 is selfadjoint, see, e. g., [285, (4.2.1), (4.2.2)]. For all y ∈ D(A0)

we have ỹ =

(
y

y(a)

)
∈ D(A) and Aỹ =

(
A0y
0

)
, and hence (Aỹ, ỹ) = (A0y, y). It

follows that

0 < ν1 ≤ min
ỹ∈D(A)\{0}

(Aỹ, ỹ)∫ a

0
|y(x)|2 dx ≤ min

y∈D(A0)\{0}
(A0y, y)

(y, y)
.

Therefore A0 is bounded below with lower bound ν1, and the lowest eigenvalue μ1

of A0 satisfies μ1 ≥ ν1 > 0.

Let φ be the solution of the initial value problem

φ′′ − qφ = 0, φ(a) = 1, φ′(a) + βφ(a) = 0,

and let ψ be the solution of the initial value problem

ψ′′ − qψ + μ1ψ = 0, ψ(a) = 1, ψ′(a) + βψ(a) = 0.

Since ψ′(a)+βψ(a) = 0 and since μ1 is an eigenvalue of A0, ψ is an eigenfunction of
A0 with respect to its lowest eigenvalue μ1. We conclude from the Sturm oscillation
theorem, see, e. g., [16, Theorem 8.4.5], that ψ has no zeros on (0, a). Both φ and ψ
are real valued, and since μ1 > 0, it follows from the Sturm comparison theorem,
see, e. g., [54, Chapter 8, Theorem 1.1] for continuous potentials and [271, Theorem
13.1] for integrable potentials, that also φ has no zeros on (0, a). Furthermore, since
0 is not an eigenvalue of A0 and since φ′(a) + βφ(a) = 0, it follows that φ(0) �= 0.
Together with φ(a) = 1 this implies that φ is strictly positive.

We recall from the very beginning of Subsection 2.2.3 that the density ρ of
the string has to satisfy

q(x) = ρ−
1
4 (s(x))

d2

dx2
ρ

1
4 (s(x)), (8.3.31)

a =

∫ l

0

ρ
1
2 (r)dr, (8.3.32)

β = −ρ− 1
4 (s(a))

dρ
1
4 (s(x))

dx

∣∣∣∣∣
x=a

, (8.3.33)

where

x(s) =

∫ s

0

ρ
1
2 (τ) dτ, 0 ≤ s ≤ l. (8.3.34)

and x �→ s(x) is the inverse of s �→ x(s). Any solution ρ
1
4 ◦ s of (8.3.31), (8.3.33)

is a multiple of φ, say Cφ, C ∈ C. The equations (8.3.32) and (8.3.34) show that
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l = s(a) and

s′(x) =
1

x′(s(x))
=

1

ρ
1
2 (s(x))

=
1

C2φ2(x)
,

and therefore

l = s(a) =

∫ a

0

dx

C2φ2(x)
.

Hence there is a unique strictly positive function ρ ∈W 2
2 (0, l) satisfying (8.3.31)–

(8.3.34), and this function is given by

ρ(s) = Cφ(x(s)), 0 ≤ s ≤ l,

where

C =

(
1

l

∫ a

0

dx

φ2(x)

) 1
2

and

s(x) =

∫ x

0

dt

C2φ2(t)
, 0 ≤ x ≤ a.

Finally, we know from Subsection 2.2.3 that m = ρ
1
2 (s(a))m̃ and ν = ρ

1
2 (s(a))ν̃.

Altogether, we have shown that there is a unique eigenvalue problem (2.2.1)–
(2.2.3) with ρ ∈ W 2

2 (0, l) and σ = 2�ρ whose spectrum is the given sequence of
complex numbers. �

8.4 The inverse Sturm–Liouville problem on a star graph

We revisit the system (7.4.1)–(7.4.4) with ν̃ = 0:

y′′j + λ2yj − qj(x)yj = 0, j = 1, . . . , p, x ∈ (0, a), (8.4.1)

yj(λ, 0) = 0, j = 1, . . . , p, (8.4.2)

y1(λ, a) = · · · = yp(λ, a), (8.4.3)
p∑

j=1

y′j(λ, a) + βy1(λ, a) = 0. (8.4.4)

In this section we deal with the inverse problem of recovering the potentials qj ,
j = 1, . . . , p, and the parameter β from spectra of (8.4.1)–(8.4.4) and the related
problems

y′′j + λ2yj − qj(x)yj = 0, j = 1, . . . , p, x ∈ (0, a), (8.4.5)

yj(λ, 0) = yj(λ, a) = 0, j = 1, . . . , p. (8.4.6)

Denote by Q the class of tuples ((qj)
p
j=1, β) where the real-valued functions

qj , j = 1, . . . , p, belong to L2(0, a) and where β ∈ R.



8.4. The inverse Sturm–Liouville problem on a star graph 239

Theorem 8.4.1. Let p+ 1 properly indexed sequences (ν
(j)
k )∞k−∞,k �=0, j = 1, . . . , p,

and (ζk)
∞
k=−∞,k �=0 of real numbers be given, satisfying the following conditions:

1. The sequences (ν
(j)
k )∞k=−∞,k �=0, j = 1, . . . , p, are such that:

(i) ν
(j)
1 > 0;

(ii) ν
(j)
k �= ν

(j′)
k′ whenever (k, j) �= (k′, j′);

(iii) ν
(j)
k =

πk

a
+

Bj

k
+

δ
(j)
k

k2
, j = 1, . . . , p, k ∈ N, (8.4.7)

where the Bj are real constants, Bj �= Bj′ for j �= j′, and where

(δ
(j)
k )∞k=1 ∈ l2 for j = 1, . . . , p.

2. The sequence (ζk)
∞
k=−∞,k �=0 can be represented as the union of p properly

indexed subsequences (ρ
(j)
k )∞k=−∞,k �=0, k = 1, . . . , p, which have the asymptotic

behavior

ρ
(j)
k =

πk

a
+

Mj

k
+

β
(j)
k

k2
, j = 1, . . . , p− 1, k ∈ N, (8.4.8)

ρ
(p)
k =

π(k − 1
2 )

a
+

B0

k
+

β
(n)
k

k2
, k ∈ N, (8.4.9)

where (β
(j)
k )∞k=−∞,k �=0 ∈ l2 for j = 1, . . . , p, B0 ∈ R and Mj, j = 1, . . . , p−1,

are the roots of the polynomial P defined by (7.4.22).

3. The properly indexed sequences of real numbers (ζk)
∞
k=−∞,k �=0 and (ξk)

∞
k=−∞

interlace, where ξ0 = 0 and where the sequence (ξk)
∞
k=−∞,k �=0 is the union of

the sequences (ν
(j)
k )∞k=−∞,k �=0, j = 1, . . . , p:

· · · < ξ−1 < ζ−1 < ξ0 < ζ1 < ξ1 < ζ2 < · · · . (8.4.10)

Then there exists a unique ((qj))
p
j=1, β) in Q such that the sequence

(ζk)
∞
k=−∞,k �=0 coincides with the spectrum of problem (8.4.1)–(8.4.4), where

β = π

⎛⎝pB0 −
p∑

j=1

Bj

⎞⎠ , (8.4.11)

and such that the sequences (ν
(j)
k )∞k=−∞, k �=0, j = 1, . . . , p, coincide with the

spectra of problems (8.4.5), (8.4.6).

Proof. First note that we know from the proof of Lemma 7.4.6 that the numbers
Mj, j = 1, . . . , p − 1, are mutually distinct since this is true for the numbers Bj

for j = 1, . . . , p.
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According to Lemma 12.3.4, the entire functions defined by

ϕj(λ) = a

∞∏
k=1

(
a2

π2k2

(
(ρ

(j)
k )2 − λ2

))
, j = 1, . . . , p− 1, (8.4.12)

ϕp(λ) =

∞∏
k=1

(
a2

π2(k − 1
2 )

2

(
(ρ

(p)
k )2 − λ2

))
, (8.4.13)

Φ(λ) = p

p∏
j=1

ϕj(λ), (8.4.14)

sj(λ) = a
∞∏
k=1

(
a2

π2k2

(
(ν

(j)
k )2 − λ2

))
, j = 1, . . . , p, (8.4.15)

satisfy the representations

ϕj(λ) =
sinλa

λ
− πMj cosλa

λ2
+

Ej sinλa

λ3
+

fj(λ)

λ3
, j = 1, . . . , p− 1, (8.4.16)

ϕp(λ) = cosλa+
πB0 sinλa

λ
+

Ep cosλa

λ2
+

fp(λ)

λ2
, (8.4.17)

sj(λ) =
sinλa

λ
− πBj cosλa

λ2
+Dj

sinλa

λ3
+

gj(λ)

λ3
, j = 1, . . . , p, (8.4.18)

where Ej , Dj ∈ R and fj , gj ∈ La for j = 1, . . . , p. Here we have used that the
function

λ �→ cosλa− 4λ2a2 cosλa

4λ2a2 − π2

is an entire function belonging to La which satisfies the estimate O(λ−2) for λ ∈ R

with |λ| → ∞.

Substituting (8.4.7) into (8.4.16), (8.4.17) and (8.4.18) we obtain

ϕl(ν
(j)
k ) = (−1)k a

2(Bj −Ml)

πk2
+

δ
(l,j)
k

k3
, l = 1, . . . , n− 1, j = 1, . . . , n, (8.4.19)

ϕp(ν
(j)
k ) = (−1)k

(
1− a2B2

j

2k2
+

a2BjB0

k2
+

a2Ep

π2k2

)
+

δ
(p,j)
k

k2
, j = 1, . . . , p,

(8.4.20)

sl(ν
(j)
k ) = (−1)k a

2(Bj −Bl)

πk2
+

δ̃
(l,j)
k

k3
, j, l = 1, . . . , p, j �= l, (8.4.21)

where (δ
(l,j)
k )∞k=−∞,k �=0, , (δ̃

(l,j)
k )∞k=−∞,k �=0 ∈ l2 for j, l = 1, . . . , p.

In the following, j is any integer with 1 ≤ j ≤ p. For k ∈ Z \ {0} define

X
(j)
k := ν

(j)
k

⎛⎜⎝Φ(ν
(j)
k )

p∏
l=1
l �=j

1

sl(ν
(j)
k )
− cos ν

(j)
k a− πBj sin ν

(j)
k a

ν
(j)
k

⎞⎟⎠ . (8.4.22)
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Observe that the terms of a properly indexed sequence of real numbers satisfy
α−k = −αk for all k ∈ N. Since the functions ϕl and sl, l = 1, . . . , p, are even

functions, it is therefore clear that X
(j)
−k = −X(j)

k . With P and P1 as defined in
(7.4.22) and (7.4.23) and taking into account that the Ml, l = 1, . . . , p− 1, are the
roots of P , we have

p∏
l=1
l �=j

(Bj −Bl) = lim
t→Bj

P1(t)

t−Bj
= P ′

1(Bj) = P (Bj) = p

p−1∏
l=1

(Bj −Ml).

Substituting (8.4.19) and (8.4.20) into (8.4.14) with λ = ν
(j)
k we then see that

Φ(ν
(j)
k )

p∏
l=1
l �=j

1

sl(ν
(j)
k )

= (−1)k
p

p−1∏
l=1

(Bj −Ml)

p∏
l=1
l �=j

(Bj −Bl)

+
δ̃
(j)
k

k
= (−1)k + δ̃

(j)
k

k
.

This together with the evident asymptotic representation

cos ν
(j)
k a+

πBj sin ν
(j)
k a

ν
(j)
k

=
k→∞

(−1)k +O(k−2)

shows that
(X

(j)
k )∞k=−∞,k �=0 ∈ l2, j = 1, . . . , p. (8.4.23)

We now apply Theorem 11.3.14 to the sine type function sj,0 defined by

sj,0(λ) = λsj(λ) and the sequence (X
(j)
k )∞k=−∞ with X

(j)
0 = 0. Hence the functions

εj, j = 1, . . . , p, defined by

εj(λ) = sj,0(λ)

∞∑
k=−∞

X
(j)
k

s′j,0(ν
(j)
k )(λ− ν

(j)
k )

= λsj(λ)

∞∑
k=−∞
k �=0

X
(j)
k

s′j(ν
(j)
k )ν

(j)
k (λ− ν

(j)
k )

(8.4.24)
converge uniformly on any compact subset of the complex plane and in the norm
of L2(R) on R to an entire function εj which belongs to Lao . Then the functions
rj , j = 1, . . . , n, defined by

rj(λ) = cosλa+
πBj sinλa

λ
+

εj(λ)

λ
, (8.4.25)

are even entire functions. Due to (8.4.24), εj(ν
(j)
k ) = X

(j)
k , and thus equation

(8.4.22) implies

rj(ν
(j)
k ) = Φ(ν

(j)
k )

p∏
l=1
l �=j

1

sl(ν
(j)
k )

. (8.4.26)
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By Lemma 12.3.3, the zeros of the function rj , j = 1, . . . , p, are real with the
possible exception of a finite number of pure imaginary zeros, and can be written as

a properly indexed sequence (μ
(j)
k )∞k=−∞, k �=0. Hence we may assume that (μ

(j)
k )2 ≤

(μ
(j)
k+1)

2 for all k ∈ N. Furthermore, it also follows from Lemma 12.3.3 that

μ
(j)
k =

π

a

(
k − 1

2

)
+

Bj

k
+

γ
(j)
k

k
, (8.4.27)

where (γ
(j)
k )∞k=−∞, k �=0 ∈ l2.

Next we are going to show that

Φ(0)
p∏

l=1

sl(0)

> 0, (−1)kΦ(ν(j)k )

p∏
l=1
l �=j

1

sl(ν
(j)
k )

> 0, j = 1, . . . , p, k ∈ N. (8.4.28)

The first inequality is obvious since Φ(0) > 0 and sl(0) > 0 by (8.4.12)–(8.4.15).
Since the real entire function

λ �→ Φ(λ)

p∏
l=1

1

sl(λ)

has simple poles and zeros by condition 3, it changes sign at its poles and zeros.
Hence it follows from the first inequality in (8.4.28) and from (8.4.10) that for
all l ∈ N, this function is positive on the intervals (ξl, ζl+1) and negative on the
intervals (ζl, ξl). Thus

Φ(ν
(j)
k )

n∏
l=1
l �=j

1

sl(ν
(j)
k )

lim
λ→ν

(j)
k

(λ − ν
(j)
k )

sj(λ)
= lim

λ→ν
(j)
k

Φ(λ)(λ − ν
(j)
k )

p∏
l=1

sl(λ)

> 0. (8.4.29)

With a similar reasoning we conclude that

lim
λ→ν

(j)
k

(λ− ν
(j)
k )

sj(λ)
(−1)k > 0, k ∈ N. (8.4.30)

The inequalities on the right-hand side of (8.4.28) now follow from (8.4.29) and
(8.4.30).

Using (8.4.28) we obtain

(−1)krj(ν(j)k ) > 0.

This means that between consecutive ν
(j)
k there is an odd number of μ

(j)
k . From

the asymptotic formulas (8.4.7) and (8.4.27) we can now conclude that

ν
(j)
1 < μ

(j)
2 < ν

(j)
2 < μ

(j)
3 < · · · and (μ

(j)
1 )2 < (ν

(j)
1 )2. (8.4.31)
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Indeed, otherwise there would be some k and k′ such that there are at least three

distinct indices l for which μ
(j)
l lies between ν

(j)
k and ν

(j)
k+1 and no index l such

that μ
(j)
l lies between ν

(j)
k′ and ν

(j)
k′+1, which is impossible.

Due to (8.4.7), (8.4.27) and (8.4.31), the two sequences ((ν
(j)
k )2)∞k=−∞,k �=0

and ((μ
(j)
k )2)∞−∞,k �=0 satisfy the conditions of Theorem 12.6.2. Thus, there is a real

function qj ∈ L2(0, a) such that (ν
(j)
k )∞k=−∞,k �=0 is the sequence of eigenvalues of

the Dirichlet–Dirichlet problem (8.4.5), (8.4.6) and (μ
(j)
k )∞k=−∞,k �=0 is the sequence

of eigenvalues of the Dirichlet–Neumann problem

y′′j + λ2yj − qj(x)yj = 0,

yj(λ, 0) = y′j(λ, a) = 0.
(8.4.32)

Finally, we define β by (8.4.11).

We are going to prove that the sequence (ζk)
∞
k=−∞,k �=0 is the spectrum of

problem (8.4.1)–(8.4.4) with the above qj , j = 1, . . . , p, and β defined by (8.4.11).
Indeed, for j = 1, . . . , p, let s̃j(λ, ·) be the solution of (8.4.5) with the potential qj
which satisfies s̃j(λ, 0) = 0 and s̃′j(λ, 0) = 1. By (7.4.5) the characteristic function
ϕ of problem (8.4.1)–(8.4.4) is given by

φ(λ) =

p∑
m=1

s̃′m(λ, a)

p∏
l=1
l �=m

s̃l(λ, a) + β

p∏
m=1

s̃m(λ, a). (8.4.33)

We already know that the sequence of the zeros of s̃j(·, a) coincides with the
sequence of the zeros of sj and that the sequence of the zeros of s̃′j(·, a) coincides
with the sequence of the zeros of rj . In view of (12.2.22), (12.2.23), (8.4.18) and
(8.4.25), s̃j(·, a) and sj as well as s̃

′
j(·, a) and rj have the same leading terms. Since

rj and λ �→ λsj(λ) are sine type functions, it follows from Lemma 11.2.29 that
s̃j(·, a) = sj and s̃′j(·, a) = rj . By (7.4.11),

s̃′j(λ, a) = cosλa+ B̃jπ
sinλa

λ
+

τ̃j(λ)

λ

with B̃j ∈ R and τ̃j ∈ La. From the representation (8.4.27) of the zeros of s̃j(·, a)
and from Lemma 12.3.3 we conclude that B̃j = Bj . Hence φ has the representation
(7.4.5) with ν̃ = 0, (7.4.12), (7.4.13) and with the numbers Bj as given in (8.4.7).

For each k ∈ Z \ {0} and j = 1, . . . , p we obtain with the aid of (8.4.26) that

φ(ν
(j)
k ) =

p∑
m=1

rm(ν
(j)
k )

p∏
l=1
l �=m

sl(ν
(j)
k ) + β

p∏
m=1

sm(ν
(j)
k )

= rj(ν
(j)
k )

p∏
l=1
l �=j

sl(ν
(j)
k ) = Φ(ν

(j)
k ).
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This implies that the entire function Δ := φ− Φ is zero at each ν
(j)
k , k ∈ Z \ {0},

j = 1, . . . , n. Hence

ω := Δ

p∏
j=1

1

sj
(8.4.34)

is an entire function. Substituting (8.4.16) and (8.4.17) into (8.4.14) we obtain

Φ(λ) = p
sinp−1 λa

λp−1
cosλa− p

sinp−2 λa

λp
cos2 λa

p−1∑
j=1

πMj + pB0π
sinp λa

λp
+

ψ(λ)

λp+1
,

(8.4.35)

where ψ ∈ Lap. We recall that for a polynomial λ �→ d0λ
n + d1λ

n−1 + · · · , the
number −d−1

0 d1 equals the sum of its zeros. Hence, writing

P1(λ) = λp +

p∑
j=1

cjλ
p−j

and observing that P ′
1 = P , we obtain

(p− 1)

p∑
j=1

Bj = −(p− 1)c1 = p

p−1∑
j=1

Mj .

Comparing (7.4.8) with (8.4.35) and taking (8.4.11) into account, we obtain

Δ(λ) =
ψ̃(λ)

λp
,

where ψ̃ ∈ Lap. Since λ �→ λp
p∏

j=1

sj(λ) is a sine type function of exponential type

ap, it follows from Lemma 12.2.4 and Remark 11.2.21 that ω is bounded outside

discs of radius δ < π
4a centred at the ν

(j)
k for k ∈ Z \ {0} and j = 1, . . . , p and that

|ω(λ)| → 0 as |λ| → 0 outside these discs. Hence the entire function ω is bounded
by the Maximum Modulus Theorem. We conclude from Liouville’s theorem that
ψ̃ = 0. Consequently, the sequence (ζk)

∞
k=−∞,k �=0 coincides with the sequence of

eigenvalues of problem (8.4.1)– (8.4.4) generated by the tuple ((qj)
n
j=1, β) obtained

in this proof.

By Theorem 12.6.2, the functions qj , j = 1, . . . , p, are uniquely determined by

the sequence of the eigenvalues (ν
(j)
k )∞k=−∞,k �=0 of the Dirichlet–Dirichlet problem

(8.4.5), (8.4.6) and the sequence of the eigenvalues (μ
(j)
k )∞k=−∞,k �=0 of the Dirichlet–

Neumann problem (8.4.5), (8.4.32). But this latter sequence is the sequence of the
zeros of the function rj , and rj is uniquely determined by the given sequences

(ν
(j)
k )∞k−∞,k �=0, j = 1, . . . , p, and (ζk)

∞
k=−∞,k �=0. Therefore the potentials qj , j =

1, . . . .p, are uniquely determined by these sequences. Finally, the numbers Bj ,
j = 0, . . . , p, are uniquely determined by (8.4.7) and (8.4.9). Comparing (8.4.9)
and (7.4.26) with ν̃ = 0, it follows that also β is uniquely determined. �
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8.5 Notes

The history of inverse problems generated by the Sturm–Liouville equation be-
gins with V. Ambarzumian’s theorem [12]. Ambarzumian considered the excep-
tional case of the Neumann–Neumann boundary value problem and stated that its
spectrum uniquely determines the potential. A correct proof of this theorem was
given by G. Borg [32], who also showed that in general two spectra of boundary
value problems with self-adjoint separated boundary conditions uniquely deter-
mine the potential. For example one can take the spectra of Dirichlet–Dirichlet
and Dirichlet–Neumann problems. We see from Theorem 8.1.4 that instead of two
real spectra one can take one complex spectrum of problem (8.1.1)–(8.1.3). This
was proved in [223, Theorem 4.7]. But the phenomenon has been already known
since M.G. Krĕın and A.A. Nudel′man’s papers [156] and [157]. In [157] a class of
strings was introduced which is more general than the class of regular strings.

A string on (l1, a), −∞ ≤ l1 < a ≤ ∞ with mass distribution function M
is called regular at the right end a if a < ∞ and lim

s→a−0
M(s) < ∞. The class S

denotes the set of all strings with regular right end and with finite momentum∫ a

l1
(l − s)dM(s). It is easy to see that such a string has finite mass

∫ a

l1
dM(s) but

its length can be infinite. General properties of such strings were investigated in
[127], [125] and [71]. For a connection with canonical systems see [132].

One of the results of [157] is that the spectrum of a boundary value problem
generated by (2.8.2) with the Neumann boundary condition

u′(0 + 0) = 0 (8.5.1)

and a dissipative boundary condition linearly dependent on the spectral parameter

u(a)− iλ−1u′(a− 0) = 0 (8.5.2)

together with the total length of the string (if it is finite) uniquely determine the
mass distribution on the string. They proved the following theorem.

Theorem 8.5.1 ([157, Theorem 3.1]). Let K = (λk) be a sequence of complex num-
bers. In order that K be the spectrum of problem (2.8.2), (8.5.1), (8.5.2) generated
by a mass distribution M ∈ S it is necessary and sufficient that the following
conditions are satisfied:

1. The sequence K is symmetric with respect to the imaginary axis, and sym-
metrically located terms have the same multiplicity;

2. Imλk > 0 for all λk ∈ K;

3.
∑
j

Im(− 1
λj
) <∞;

4.
∑
j

|λj |−2 <∞.

In the proof of this theorem the authors made essential use of the ‘main’
theorem on existence of a string corresponding to two spectra, which was proved
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in [35]–[41]. This ‘main’ theorem can already be found without proof in [127]; it
is also presented in the monographs [71] and [42].

It should be mentioned that in implicit form a result of this kind has been
obtained earlier by D.Z. Arov [15]. He proved the following theorem

Theorem 8.5.2 ([15, Theorem 4.1]). For a set K of complex numbers located in
the open upper half-plane symmetric with respect to the imaginary axis to be the
spectrum of problem (2.8.2), (8.5.1), (8.5.2) generated by a regular string it is
necessary and sufficient that K is the set of zeros of an entire function F of
exponential type which satisfies the inequalities∫ ∞

−∞
(1 + x2)−1|F (x)|−2 dx <∞,

∫ ∞

−∞
(1 + x2)−1 log+ |F (x)| dx <∞.

The last inequality means that F belongs to the Cartwright class, see [173,
Chapter 5], where this class is called class A.

It was shown in [275] that two spectra of Neumann and Dirichlet boundary
value problems uniquely determine the tension and the density of a string if the
damping is a known constant function.

The problem of small vibrations of a smooth inhomogeneous string which
is damped at one end is described by (8.1.1)–(8.1.3). Of course, from a physical
point of view it is clear that the spectrum must lie in the open upper half-plane
because the corresponding dynamical system, a damped string, is stable. In this
case the operator Ã defined in Subsection 2.2.3 is strictly positive. Hence it follows
from Theorem 8.1.3 that for a sequence (λk), which can be countable or empty, to
be the spectrum of problem (8.1.1)–(8.1.3) with a > 0, α > 0, β ∈ R, real-valued
q ∈ L2(0, a) and strictly positive operator Ã it is necessary and sufficient that (λk)
be the set of zeros of an entire function χ of SHB class which has the representation
(8.1.4). Numerical results for the generalized inverse Regge problem can be found
in [240].

Since asymptotics of eigenvalues in the classical Regge problem are known
only in special cases, e. g., if the potential q is continuous and q(a) �= 0, the
corresponding inverse problem is solved also in these particular cases [148].

In Section 8.2 we consider the case of a Stieltjes string damped at an interior
point. The problem with damping at one of its ends was consider in [162]. A
nice review containing experimental results can be found in [58]. A related matrix
problem for a vibrational system with damping has been considered in [265], [266]
and [163].

Certain results on the inverse Sturm–Liouville problem on a semiaxis and
on an axis with the potential linearly dependent on the spectral parameter, which
corresponds to a smooth inhomogeneous string vibration in an absorbing medium,
were obtained in [123], [8], [9], [10]. The inverse problem for the diffusion equation
on a finite interval was considered in [86] (without proof) and solved in [236], [119].

Theorem 8.2.1 was proved in [33, Theorem 4.1]. The theorem in [33] contains
a misprint, namely condition (5) must be included.
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Since this problem can be considered as a problem on a star graph with two
edges, its undamped version was generalized in [34] to the case of a star graph
with q edges. Namely, consider the problem

u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k λ2u

(j)
k = 0, k = 1, . . . , nj, j = 1, . . . , q,

(8.5.3)

u
(j)
0 = 0, j = 1, . . . , q, (8.5.4)

u
(1)
n1+1 = u

(2)
n2+1 = · · · = uq

nq+1, (8.5.5)

q∑
j=1

u
(j)
nj+1 − u

(1)
nj

lnj

= 0, (8.5.6)

which bears the Neumann condition at the interior vertex, together with the q
Dirichlet problems

u
(j)
k − u

(j)
k+1

l
(j)
k

+
u
(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k λ2u

(j)
k = 0, k = 1, . . . , nj , (8.5.7)

u
(j)
0 = u

(j)
nj+1 = 0, (8.5.8)

j = 1, . . . , q, on the edges. It was shown in [34, Theorem 3.1] that these q + 1
spectra, if they do not intersect, together with the total lengths of the edges
uniquely determine the masses on the edges and the lengths of the subintervals
between them. Moreover, [34, Theorems 2.2 and 3.1] give conditions which are
necessary and sufficient for q+ 1 sequences to be the spectra of problems (8.5.3)–
(8.5.8). The proof of [34, Theorem 3.1] is constructive and allows to find the masses
and the lengths of the subintervals explicitly.

In [224] a more complicated problem was considered: Neumann and Dirichlet
conditions were imposed at a pendant vertex of a star graph of Stieltjes strings.
The problem was completely solved, but the conditions on two sequences of real
numbers to be the spectra of the Dirichlet and Neumann problems on a star graph
of Stieltjes strings are given in implicit form in [224, Theorem 3.14]. In this paper
and in [226], a connection was noticed with the algebraic problems of possible
multiplicities of eigenvalues of the so-called tree patterned matrices, see [171],
[202], [124].

Inverse problems for vibrations of tree graphs of Stieltjes strings were con-
sidered in [93] and [222]. In [222] it was shown that the two spectra corresponding
to the Dirichlet and Neumann boundary conditions at the root of the tree and
the length of the edge incident with the root uniquely determine the point masses
and the lengths of the subintervals between the point masses of this edge. In this
paper, expansion of a Nevanlinna function into a branching continued fraction was
used to find the values of point masses and their destribution on a given metric



248 Chapter 8. Inverse Problems

tree. Branching continued fractions were studied in [252]. A similar results on the
uniqueness of the potential for the Sturm–Liouville problem on tree graphs was
obtained in [44] and [282].

Theorem 8.3.3 with � = 0 was proved in [212, Theorem 2.2] and with � > 0
in [213, Theorem 4.16]. In [190] an inverse problem for a smooth inhomogeneous
string damped at one end and having massless interval at the damped end was
solved.

The inverse Sturm–Liouville problem on a star graph with three edges was
considered in [215]. For generalizations see [221], [269], [260], and for the case
of non-local boundary conditions see [201]. Theorem 8.4.1 was proved in [221,
Theorem 4.1]. Related numerical results can be found in [241].

If the sequences (ν
(j)
k )∞k=−∞,k �=0 intersect, i. e., condition 1.(ii) of Theorem

8.4.1 is violated, and, consequently, also condition 3, then the solution of the
inverse problem either is not unique or does not exist for the same reasons as in the
case of the three spectra problem, see [91] and [214]. If the sequence (ζk)

∞
k=−∞,k �=0

and the properly indexed sequence (ξk)
∞
k−∞, which is defined as the union of (0)

and the sequences (ν
(j)
k )∞k=−∞,k �=0, j−1, . . . , p, satisfy the statements of Corollary

5.2.11, then the solution of the inverse problem exists but it is not unique.

In quantum graph theory conditions (8.4.3) and (8.4.4) with β = 0 are some-
times called Neumann conditions at a interior vertex while conditions (8.4.6) are
called Dirichlet conditions at this vertex. The spectrum of the problem with these
Neumann conditions alone does not determine the potentials on the edges uniquely.
However, an exceptional Ambarzumian like case where one spectrum uniquely de-
termines the potentials exists for quantum graphs too. This was shown for a star
graph in [218] and [277] and for trees in [46], [64, Section 5], [170]. Generalizations
for Dirac system on graphs can be found in [278], [280].

Unlike in the case of inverse problems on a finite interval, in quantum graph
theory another inverse problem arises. If the potential is zero on all edges, does
the spectrum determine the form of the graph uniquely? The answer is negative
in general, see [26], but positive if the edges are not commensurable, see [103].

In the case of equal lengths of the edges and of equal potentials, symmetric
with respect to the middle of the edges, the problem of finding the shape of the
graph becomes purely algebraic and can be reduced to the problem of finding the
shape of the graph in the classical spectral graph theory [63]. It is known that the
spectrum uniquely determines the shape of the graph if the number of its vertices
does not exceed 4 for general graphs and 5 for connected graphs, see [63, p. 157
and pp. 272–274]. Counterexamples with 5 and 6 vertices, respectively, can be
found in [63, p. 157].

In [216] the inverse problem of recovering the potential on the loop of a lasso
graph was solved using the Jost function. In [159] the Titchmarsh–Weyl function
was used to prove uniqueness for such problems.
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Chapter 9

Spectral Dependence on a Parameter

9.1 Zeros of analytic functions of two variables

The following theorem on the representation of zeros of an analytic function in
two variables is well known, however often formulated in slightly different forms.
For the sake of completeness and to have it in exactly the form we need it, the
theorem and its proof are given below. For slightly different formulations and
proofs we refer the reader to [25, Appendix A 5.4, Theorem 3], [114, Section A.1,
Lemma A.1.3] and [185, Section 45, Corollary, p. 303].

Theorem 9.1.1. Let Φ ⊂ C2 be an open set and let f : Φ → C be analytic. Let
(z0, w0) ∈ Φ such that f(z0, w0) = 0 and such that f(·, w0) is not identically zero
in a neighbourhood of z0. Let m be the multiplicity of the zero z0 of f(·, w0). Then
there are numbers ε > 0, δ > 0, and positive integers l, pk and mk, k = 1, . . . , l,
such that

l∑
k=1

pkmk = m

and such that for each w ∈ C with |w − w0| < ε the analytic function f(·, w) has
exactly m zeros, counted with multiplicity, in the disc {z ∈ C : |z − z0| < δ}. The
zeros of f(·, w) can be organized into l groups and denoted by zkj(w), k = 1, . . . , l,
j = 1, . . . , pk, such that the zkj are pairwise different when 0 < |w| < ε, have
multiplicity mk, and are represented by Puiseux series

zkj(w) = z0 +

∞∑
n=1

akn(((w − w0)
1
pk )j)

n, (9.1.1)

where, for j = 1, . . . , pk,

((w − w0)
1
pk )j = |w − w0|

1
pk exp

(
2πi(j − 1) + i arg(w − w0)

pk

)
(9.1.2)

and arg denotes the principal argument. The coefficients akn of (9.1.1) are complex
numbers and the Puiseux series converges in the disc {w ∈ C : |w − w0| < ε}.
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Proof. For simplicity of proof we may assume that z0 = 0 = w0. Since f(·, 0) is
not identically zero, there is δ > 0 such that f(z, 0) �= 0 for 0 < |z| ≤ δ. Since f is
continuous in z and w, by a compactness argument we can choose ε > 0 such that
|f(z, w) − f(z, 0)| < |f(z, 0)| for |z| = δ and |w| ≤ ε. By Rouché’s theorem, for
each w with |w| ≤ ε, f(·, w) has exactly m zeros, say z̃1(w), . . . , z̃m(w), counted
with multiplicity, in {z ∈ C : |z| < δ}. Here, for each w we take an arbitrary
indexing, and the proof will be complete when we have shown that we can choose
a particular indexing satisfying (9.1.1).

We observe that for 0 < δ′ < δ there is 0 < ε′ < ε such that f(·, w) has m
zeros in {z ∈ C : |z| < δ′} if |w| < ε′, and these roots are z̃1(w), . . . , z̃m(w). Hence

m
max
ι=1
|z̃ι(w)| → 0 as w→ 0. (9.1.3)

Now we fix w with |w| ≤ ε and consider one z̃ι(w). This zero of h = f(·, w) has a
certain multiplicity 0 < n ≤ m, which depends on w and ι, and we can write

h(z) = (z − z̃ι(w))
ng(z),

where g is analytic with g(z̃ι(w)) �= 0. Then, for integers k ≥ 0,

resz=z̃ι(w)
zkh′(z)
h(z)

= resz=z̃ι(w)
zkn(z − z̃ι(w))

n−1g(z)

(z − z̃ι(w))ng(z)
= nz̃kι (w),

and the residue theorem gives that

sk(w) :=
1

2πi

∫
|z|=δ

zk
∂

∂z
f(z, w)

f(z, w)
dz =

m∑
ι=1

z̃kι (w). (9.1.4)

The functions sk depend analytically on w for |w| < ε since the above integrand
depends continuously on z for |z| = δ and analytically on w for |w| < ε. We define

P (z, w) =

m∏
ι=1

(z − z̃ι(w)). (9.1.5)

Then P is a monic polynomial of degree m in z, and by Newton’s identities, the
coefficients of P are polynomials in s1, . . . , sm and hence analytic functions of w,
see, e. g., [130] or [242, Theorem 4.3.7]. The discriminant of the polynomial P is
defined by

Δ(w) =

m−1∏
ι=1

m∏
k=ι+1

(z̃ι(w) − z̃k(w))
2, |w| < ε. (9.1.6)

Clearly, Δ is symmetric in z̃1, . . . , z̃m, i. e., invariant under permutations, and by
the fundamental theorem of symmetric polynomials and Newton’s identities, see,
e. g., [242, Theorem 4.3.7], Δ is a polynomial in s1, . . . , sm and hence analytic.
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Observe that Δ is identically zero if and only if P (·, w) has at least one double
zero for all |w| < ε, which in turn is true if and only if P (·, w) and ∂

∂z
P (·, w) have

a common zero for each w with |w| < ε. If Δ is identically zero, let R be the

greatest common divisor of P and
∂

∂z
P in the polynomial ring (in z) over the

field of meromorphic functions (in w) on {w ∈ C : |w| < ε}. The function R can
be found as the last nonzero remainder in the Euclidean algorithm applied to P

and
∂

∂z
P . Since P and

∂

∂z
P have a common zero z(w), also each remainder in

the Euclidean algorithm has this common zero z(w) for each w which is not a
pole of any of the coefficients. Therefore R must be a nonconstant polynomial in
z. Dividing by the coefficient of the highest power in z, we may assume that R
is monic. Since zeros z of R must also be zeros of P for those w which are not
poles of the coefficients of R and P/R, we may assume with a suitable indexing
of z̃ι(w), ι = 1, . . . ,m that

R(z, w) =
n∏

ι=1

(z − z̃ι(w)),

where n is the degree of the polynomial R. Since the z̃ι(w) are bounded functions
of w (recall that |z̃ι(w)| < δ), so are the coefficients of R, which therefore must be
analytic functions. Similarly,

P (z, w)

R(z, w)
=

m∏
ι=n+1

(z − z̃ι(w))

is analytic in w. This shows that P can be factored into nonconstant polynomials
with respect to z if Δ = 0. After a finite number of steps we have factored

P =
ν∏

κ=1

Pκ

into polynomials Pκ in z whose discriminants Δκ are not identically zero (note
that Δκ = 1 if the degree of the polynomial is 1). Let κ ∈ {1, . . . , ν}. With a
slight abuse of notation, we write Pκ = P , m for the degree of this P , and Δ for
its discriminant. Choosing ε > 0 sufficiently small we may assume that Δ has no
zeros in {w ∈ C : 0 < |w| < ε}.

Clearly, if P (0, w) = 0 for all w, then we can write P (z, w) = zP̃ (z, w), where

P̃ is a polynomial in z and P̃ (0, w) �= 0 for 0 < |w| < ε. Therefore we still have to
consider the case that, for some ε > 0, P (·, w) = 0 has m zeros which are mutually
distinct and nonzero for 0 < |w| < ε.

As in (9.1.4) we can now find local branches

ẑι(w) =
1

2πi

∫
Γz̃ι(w0)

z
∂

∂z
P (z, w)

P
(z, w) dz, ι = 1, . . . ,m,
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of zeros of P (·, w) which depend analytically on w near w0, where 0 < |w0| < ε
and Γz̃ι(w0) is a contour about z̃ι(w0) with no other zero of P (·, w0) inside or on
that contour. Hence, by a standard compactness argument, along each curve on
the Riemann surface of the logarithm over {z ∈ C : 0 < |w| < ε}, for definiteness
say starting at ε

2 , there are unique analytic functions ζι in a neighbourhood of
that curve with ζι(

ε
2 , 0) = z̃ι(

ε
2 ), where (r, ϕ), 0 < r < ε, ϕ ∈ R, is a point on the

Riemann surface over reiϕ. By the principle of analytic continuation, we therefore
have well-defined analytic functions ζι on this Riemann surface, ι = 1, . . . ,m, and
for each (r, ϕ), the m complex numbers ζι(r, ϕ), ι = 1, . . . ,m, are the m distinct
zeros of the polynomial P (·, reiϕ).

Now fix ι, choose some 0 < r0 < ε and consider the sequence

(ζι(r0, 2πp))
∞
p=−∞ .

Since each term of the sequence is a zero of P (·, r0), there are p0 ∈ Z and p ∈ N

such that

ζι(r0, 2πp0) = ζι(r0, 2π(p0 + p)).

Hence, by the uniqueness of the ζι we have that since ζι(r, ϕ) and ζι(r, ϕ + 2πp)
coincide in one point they must coincide everywhere, i. e., we have

ζι(r, ϕ) = ζι(r, ϕ+ 2πp)

for all 0 < r < ε and ϕ ∈ R. We may choose p to be minimal having this property.
For 0 ≤ p1 < p2 < p we have

ζι(r, ϕ+ 2πp1) �= ζι(r, ϕ+ 2πp2) for all 0 < r < ε and ϕ ∈ R

or

ζι(r, ϕ+ 2πp1) = ζι(r, ϕ+ 2πp2) for all 0 < r < ε and ϕ ∈ R.

Since the latter case would contradict the minimality of p, we therefore have that

ζι(r, ϕ+ 2πq), q = 0, . . . , p− 1,

represents a group of p distinct zeros of P (·, reiϕ) satisfying ζι(r, ϕ+2πq+2πp) =
ζι(r, ϕ+ 2πq). In particular, for v = (reiϕ)p,

ξι(v) = ζι(r
p, pϕ)

is a uniquely defined analytic function on {v ∈ C : 0 < |v| < εp}. By (9.1.3),
ξι(0) = 0. Hence we have a power series expansion

ξι(v) =

∞∑
n=1

anv
n.
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Observing that

ζι(r, ϕ+ 2π(j − 1)) = ξι((w
1
p )j) =

∞∑
n=1

an((w
1
p )j)

n

for j = 1, . . . , p describes the set of zeros of P (·, w) for w = reiϕ belonging to this
group of p zeros, it follows that the Puiseux series representation (9.1.1) has been
proved for this group of zeros.

Returning to P given by (9.1.5), it follows that there are m Puiseux series
zκ,k,j, k = 1, . . . , ν, k = 1, . . . , lκ, j = 1, . . . , pκ,k, of the form (9.1.1) which rep-
resent the zeros of P (·, w) for |w| < ε. We may assume that ε > 0 is so small
that each two of these Puiseux series are either identical or are different for all w
with 0 < |w| < ε. By construction, zκ,k,j �= zκ,k′,j′ if (k, j) �= (k′, j′). Since the
zκ,k,j(w), j = 1, . . . , pκ,k, are pairwise different, we have that pκ,k and the set of
indices n > 0 with aκ,k,n �= 0 have no common multiple larger than 1. Therefore
the number pκ,k is uniquely determined by the representation of the function zκ,k,j
as a Puiseux series (9.1.1). Hence it follows that pκ,k = pκ′,k′ if there are j and j′

such that zκ,k,j = zκ′,k′,j′ and thus

{zκ,k,j1 : j1 = 1, . . . , pκ,k} = {zκ′,k′,j1 : j1 = 1, . . . , pκ,k}.
This proves that the zeros of f(·, w) can be indexed in such a way that they have
the Puiseux series expansions (9.1.1) with the indices and multiplicities as stated
in this theorem. �
Corollary 9.1.2. Under the assumptions of Theorem 9.1.1, let

Φ0 = {z ∈ C : |z| < δ} × {w ∈ C : |w| < ε}
and let

f0(z, w) =
l∏

k=1

pk∏
j=1

(z − zkj(w))
mk , (z, w) ∈ Φ0.

Then there is an analytic function f1 without zeros on Φ0 such that f = f0f1.

Proof. If in (9.1.2) we allow the argument of w − w0 to be any real number, then
the values of zkj(w), j = 1, . . . , pk, are obtained from those with the principal
value of the argument of η by a permutation of the indices 1, . . . , pk. Hence the
functions gk defined by

gk(z, w) =

pk∏
j=1

(z − zkj(w)), (z, w) ∈ Φ0, k = 1, . . . , l,

are analytic on Φ0, and then also f0 =
l∏

k=1

gk is analytic on Φ0. For each w with

|w| < ε, the function f(·,w)
f0(·,w) has an analytic extension f1(·, w) to {z ∈ C : z < δ}
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without zeros. By Cauchy’s theorem,

f1(z, w) =
1

2πi

∫
|τ−z0|=γ

f(τ, w)

f0(τ, w)

dτ

τ − z
,

where |z0| < δ, 0 < γ < δ−|z0|, |z−z0| < γ, and γ is chosen so that f0(τ, ω) �= 0 for
all τ with |τ−z0| = γ. This shows that f1 is (locally) analytic in both variables. �

9.2 Spectral dependence of analytic operator functions

For operator functions in Banach spaces which are of the form T (ε) − λI where
T depends analytically on the complex parameter ε and where λ is the spectral
parameter, T. Kato [136] has obtained a complete description of the dependence
on ε of the eigenvalues and operators associated with the principal spaces for iso-
lated eigenvalues of finite multiplicity. This has been generalized by V. Eni [73]
to operator functions which are also analytic in the spectral parameter. T. Kato’s
proof depends on the analyticity of the eigenprojections P (ε), and to be able to
use this method V. Eni has linearized the operator function with respect to the
spectral parameter λ. V. Eni also investigates analytic dependence of eigenvectors
and associated vectors. H. Baumgärtel’s monograph [25] presents a detailed and
comprehensive treatment of analytic dependence of spectral data on the param-
eter. For an overview of the history of this problem we refer the reader to the
introduction of [25].

The main result of this section is due to V. Eni [73] and its formulation is
extracted from [25]. Eni’s results and their proofs, published in [73] and [72] have
a limited accessibility, whereas H. Baumgärtel does not state and prove this case
explicitly (even for operator polynomials), although it follows relatively easily from
other results and observations in [25], see [25, p. 370].

For the convenience of the reader we will present a full proof for operator
functions which depend analytically on two parameters, one of which may be
considered as the spectral parameter. Indeed, our first step is Lemma 9.2.1, which
reduces the problem to a problem in finite-dimensional spaces and which would
result, in general, in non-polynomial dependence of both parameters even if the
original problem were linear in both parameters.

The proof of the following result is an adaptation of part of the proof of
[189, Theorem 1.3.1] to our situation.

Lemma 9.2.1. Let Φ ⊂ C
2 be open, let X and Y be Banach spaces and let T : Φ→

L(X,Y ) be analytic and Fredholm operator valued. Furthermore, let (λ0, η0) ∈ Φ
such that λ0 is an isolated eigenvalue of T (·, η0). Let X0 = N(T (λ0, η0)) be the
null space of T (λ0, η0) and let Y1 = R(T (λ0, η0)) be the range T (λ0, η0). Let X1

be a topological complement of X0 in X and let Y0 be a topological complement of
Y1 in Y . Then there are a neighbourhood Φ0 ⊂ Φ of (λ0, η0) and analytic operator
functions C : Φ0 → L(Y, Y ), D : Φ0 → L(X,X), T11 : Φ0 → L(X1, Y1) and
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S : Φ0 → L(X0, Y0) such that C(λ, η), D(λ, η) and T11(λ, η) are invertible for all
(λ, η) ∈ Φ0 and such that

T = C

(
T11 0
0 S

)
D on Φ0, (9.2.1)

where the operator matrix is taken with respect to the decompositions X = X1�X0

and Y = Y1 � Y0.

Proof. Since T (λ0, η0) is a Fredholm operator, X0 is a finite-dimensional subspace
of X and Y1 is a closed finite-codimensional subspace of Y . Hence there are a
finite-codimensional subspace X1 ⊂ X and a finite-dimensional subspace Y0 ⊂ Y
such that

X = X1 �X0, Y = Y1 � Y0

are topologically direct sums, see [259, p. 247]. With this decomposition of X and
Y we have the operator matrix representation

T (λ, η) =

(
T11(λ, η) T12(λ, η)
T21(λ, η) T22(λ, η)

)
: X1 �X0 → Y1 � Y0 (9.2.2)

for (λ, η) ∈ Φ. The operator functions Tij , i, j = 1, 2 are analytic in Φ.

It is clear that N(T11(λ0, η0)) = {0} and R(T11(λ0, η0)) = R(T (λ0, η0)) = Y1.
Hence T11(λ0, η0) is invertible. Since T11 depends analytically and hence continu-
ously on λ and η, the perturbation theory of invertible operators, see [137, Theorem
IV.2.21], yields that there is an open neighbourhood Φ0 of (λ0, η0) such that T11

is invertible on Φ0. In Φ0 we consider the Schur factorization(
T11 T12

T21 T22

)
=

(
IY1 0

T21T
−1
11 IY0

)(
T11 0

0 T22 − T21T
−1
11 T12

)(
IX1 T−1

11 T12

0 IX0

)
.

(9.2.3)

It is easy to see that the left-hand and right-hand factors

C =

(
IY1 0

T21T
−1
11 IY0

)
and D =

(
IX1 T−1

11 T12

0 IX0

)

on the right-hand side of (9.2.3) are invertible on Φ0. Putting

S := T22 − T21T
−1
11 T12

on Φ0 completes the proof. �
Lemma 9.2.2. Let Ω ⊂ C be a domain, let X and Y be finite-dimensional spaces
and let A : Ω→ L(Y,X) be meromorphic. Then there are complementary subspaces
X0 and X1 of X, complementary subspaces Y0 and Y1 of Y , meromorphic operator
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functions C : Ω → L(X,X), D : Ω → L(Y, Y ) and A11 : Ω → L(Y1, X1) and an
open subset Ω0 ⊂ Ω such that the following is true. The set Ω \ Ω0 is a discrete
subset of Ω, the operators C(σ), D(σ) and A11(σ) are invertible for all σ ∈ Ω0,
and

A = C

(
A11 0
0 0

)
D on Ω0. (9.2.4)

Proof. Let Ω′ be the set of σ ∈ Ω for which A(σ) is analytic, letm be the maximum
of the rank of A(σ), σ ∈ Ω′, and choose σ0 ∈ Ω such that A(σ0) has rankm. Similar
to Lemma 9.2.1 we set Y0 = N(A(σ0)) and X1 = R(A(σ0)). Let X0 and Y1 be
corresponding complementary subspaces. Then we can write

A =

(
A11 A12

A21 A22

)
: Y1 � Y0 → X1 �X0, (9.2.5)

where the operator functions Aij , i, j = 1, 2, are meromorphic in Ω and analytic
in Ω′.

For fixed bases of X1 and Y1, the function σ �→ detA11(σ), σ ∈ Ω′, is mero-
morphic on Ω and analytic on Ω′. By construction, A11(σ0) is invertible, so that
detA11(σ0) �= 0. Then Ω0 = {σ ∈ Ω′ : detA11(σ) �= 0} is an open subset of Ω such
that Ω \ Ω0 is a discrete subset of Ω since the poles and zeros of detA11 form a
discrete subset of Ω. As in Lemma 9.2.1 we have a factorization

A = C

(
A11 0
0 S

)
D, (9.2.6)

where C, D and S are meromorphic on Ω and C and D are analytic and invertible
on Ω0. Since rankA(σ) ≤ m = rankA11(σ0) for all σ ∈ Ω′, it follows that S(σ) = 0
since otherwise m ≥ rankA(σ) > rankA11(σ) = m. Therefore (9.2.6) leads to the
meromorphic factorization (9.2.4). �

Before proceeding with the statement and proof of the main results of this
section, we need a few preparations for its proof.

We are going to use the following definitions only for finite-dimensional
spaces, although they also hold for infinite-dimensional Banach spaces X and
Y . The dual space X ′ is the (Banach) space of all linear functionals on X . For
v ∈ X and u ∈ Y ′ we define the tensor product v ⊗ u by

(v ⊗ u)(w) := 〈w, u〉v (w ∈ Y ),

where 〈·, ·〉 is the canonical bilinear form on Y × Y ′. The tensor product v ⊗ u is
a bounded linear operator from Y to X .

We will call vector functions v1, . . . , vk from a set U to a vector space V
pointwise linearly independent if v1(μ), . . . , vk(μ) are linearly independent for each
μ ∈ U .
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Proposition 9.2.3. Let X and Y be finite-dimensional spaces, let Ω be a domain in
C, let A : Ω → L(Y,X) be meromorphic and let v1, . . . , vr : Ω → X be meromor-
phic on Ω and pointwise linearly independent outside a discrete subset of Ω. Then
there are meromorphic functions vk : Ω→ X, k = r + 1, . . . , n, and uk : Ω→ Y ′,
k = 1, . . . , n, such that

A =

n∑
k=1

vk ⊗ uk (9.2.7)

and such that v1, . . . , vn as well as ur+1, . . . , un are pointwise linearly independent
outside a discrete subset of Ω. There are meromorphic functions yk : Ω → Y ,
k = r + 1, . . . , n, such that Ayk = vk. The integer n is uniquely determined by
these properties.

Proof. Let Ω′ ⊂ Ω be the set of σ ∈ Ω for which A and v1, . . . , vr are analytic,
let m = max{rankA(σ) : σ ∈ Ω′} and let Ω0 be the set of all σ ∈ Ω′ with
rankA(σ) = m. Choose σ0 ∈ Ω0 such that R(A(σ)) ∩ span{v1(σ), . . . , vr(σ)} has
maximal rank, say s, for σ = σ0. With the notation of Lemma 9.2.2 we put

Ã11 =

(
A11

0

)

and ṽk = C−1vk, k = 1, . . . , s. Then R(Ã11(σ0)) ∩ span{ṽ1(σ0), . . . , ṽr(σ0)} has
rank s. Let q = dimX0. Since dimX1 = m, there are m− s vectors x̃s+1, . . . , x̃m

in X1 and q − r + s vectors x̃0
r−s+1, . . . , x̃

0
q in X0 such that ṽ1(σ0), . . . , ṽr(σ0),

x̃s+1, . . . , x̃m and x̃0
r−s+1, . . . , x̃

0
q form a basis for X . Therefore the operator

V (σ) =
(
ṽ1(σ) . . . ṽr(σ) x̃s+1 . . . x̃m x̃0

r−s+1 . . . x̃0
q

)
: Cm+q → X

depends meromorphically on σ in Ω and is invertible for σ = σ0. Hence V −1 is
meromorphic on Ω. Let Ω1 be the set of σ ∈ Ω0 for which V (σ) is invertible.
Now choose x̃1, . . . , x̃s in X1 such that x̃1, . . . , x̃m is a basis of X1. For each
σ ∈ Ω1, every x ∈ X1 is a (unique) linear combination of ṽ1(σ), . . . , ṽr(σ) and
x̃s+1, . . . , x̃m. Since x = V (σ)V −1(σ)x and V −1(σ)x depends meromorphically on
σ for all x ∈ X1, there are meromorphic functions αjk, j = 1, . . . , s, k = 1, . . . , r,
and βj,k, j = 1, . . . , s, k = s+ 1, . . . ,m, on Ω such that

x̃j =

r∑
k=1

αjk(σ)ṽk(σ) +

m∑
k=s+1

βjk(σ)x̃k, j = 1, . . . , s, σ ∈ Ω1. (9.2.8)

By the Hahn–Banach Theorem there are w̃0
k ∈ X ′

1, k = 1, . . . ,m, such that

〈x̃j , w̃
0
k〉 = δjk, j, k = 1, . . . ,m. (9.2.9)
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It is well known, and obvious for operator functions in finite-dimensional spaces,
that with A11 also its adjoint A′

11 : Ω → L(X ′
1, Y

′
1) is meromorphic. For k =

1, . . . ,m and σ ∈ Ω0 we have⎧⎨⎩
m∑
j=1

x̃j ⊗
[
(A11(σ))

′w̃0
j

]⎫⎬⎭A−1
11 (σ)x̃k =

m∑
j=1

〈A−1
11 (σ)x̃k , (A11(σ))

′w̃0
j 〉x̃j

=

m∑
j=1

〈x̃k, w̃
0
j 〉x̃j

= x̃k

= A11(σ)A
−1
11 (σ)x̃k.

Since x̃1, . . . , x̃m is a basis of X1, we have that A
−1
11 (σ)x̃1, . . . , A

−1
11 (σ)x̃m is a basis

of Y1 for all σ ∈ Ω0, and it follows that

A11(σ) =

m∑
j=1

x̃j ⊗
[
(A11(σ))

′w̃0
j

]
, σ ∈ Ω0. (9.2.10)

For j = 1, . . . ,m and σ ∈ Ω0 let w̃j(σ) be the extension of (A11(σ))
′w̃0

j to Y ′ by
zero on Y0. Then, in view of (9.2.4), (9.2.8) and (9.2.10),

A(σ) = C(σ)

⎛⎝ m∑
j=1

x̃j ⊗ w̃j(σ)

⎞⎠D(σ)

= C(σ)

⎛⎝ r∑
k=1

s∑
j=1

αjk(σ)ṽk(σ)⊗ w̃j(σ)

⎞⎠D(σ)

+ C(σ)

⎛⎝ m∑
k=s+1

s∑
j=1

βjk(σ)x̃k ⊗ w̃j(σ)

⎞⎠D(σ)

+ C(σ)

⎛⎝ m∑
j=s+1

x̃j ⊗ w̃j(σ)

⎞⎠D(σ)

=

r∑
k=1

vk(σ) ⊗
⎛⎝ s∑

j=1

αjk(σ)D
′(σ)w̃j(σ)

⎞⎠
+

m∑
k=s+1

C(σ)x̃k ⊗
⎛⎝D′(σ)w̃k(σ) +

s∑
j=1

βjk(σ)D
′(σ)w̃j(σ)

⎞⎠ .
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Setting n = r − s+m, the representation (9.2.7) follows with

vk = Cx̃k+s−r , k = r + 1, . . . , n,

uk =
s∑

j=1

αjkD
′w̃j , k = 1, . . . , r,

uk = D′w̃k+s−r +
s∑

j=1

βj,k+s−rD
′w̃j , k = r + 1, . . . , n.

For k = r + 1, . . . , n define ỹk = A−1
11 x̃k+s−r and yk = D−1ỹk. Since ỹk ∈ Y1,

(9.2.4) gives Ayk = CA11ỹk = Cx̃k−s−r = vk.

From the pointwise linear independence of ṽ1, . . . , ṽr, x̃s+1, . . . , x̃m on Ω1 it
follows that their images under C, i. e., v1, . . . , vn, are pointwise linearly indepen-
dent on Ω1 since C(σ) is invertible for σ ∈ Ω1.

Since the w̃0
j , j = 1, . . . ,m, are linearly independent by (9.2.9) and since

A′
11(σ) as well as D′(σ) are invertible for σ ∈ Ω1, it follows that the vectors

D′(σ)w̃j(σ), j = 1, . . . ,m, are linearly independent for σ ∈ Ω1. Hence it is clear
from their definition that also the vectors uk(σ), j = r + 1, . . . , n, are linearly
independent for all σ ∈ Ω1.

Finally, to show the uniqueness of n assume that we have a representation
(9.2.7) with the stated properties. For a generic point σ0 ∈ Ω where the operator
and vector functions are analytic and the linear independence properties hold, we
can find ŷj ∈ Y , j = r + 1, . . . , n, such that

〈ŷj , uk(σ0)〉 = δjk, j, k = r + 1, . . . , n.

Hence (9.2.7) gives

A(σ0)ŷj =

r∑
k=1

〈ŷj , uk(σ0)〉vk(σ0) + vj(σ0), j = r + 1, . . . , n.

This shows that

span{vr+1(σ0), . . . , vn(σ0)} ⊂ span{v1(σ0), . . . , vr(σ0)}+R(A(σ0))

and therefore

span{v1(σ0), . . . , vn(σ0)} ⊂ span{v1(σ0), . . . , vr(σ0)} +R(A(σ0)). (9.2.11)

Again by (9.2.7) the reverse inclusion holds. For generic σ0, v1(σ0), . . . , vn(σ0) are
linearly independent and the dimension of the vector space on the right-hand side
of (9.2.11) is independent of σ0. Hence n is uniquely determined by v1, . . . , vr
and A. �
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Theorem 9.2.4. Let Φ ⊂ C2 be open, let X and Y be Banach spaces and let
T : Φ → L(X,Y ) be analytic and Fredholm operator valued. Furthermore, let
(λ0, η0) ∈ Φ such that λ0 is an isolated eigenvalue of T (·, η0). Denote by m the
algebraic multiplicity of the eigenvalue λ0. Then there are numbers ε > 0, δ > 0,
and positive integers l, pk and mk, k = 1, . . . , l, such that

l∑
k=1

pkmk = m

and such that the following assertions are true:

1. For each η ∈ C with |η − η0| < ε, T (·, η) has exactly m eigenvalues, counted
with algebraic multiplicity, in the disc {λ ∈ C : |λ−λ0| < δ}. The eigenvalues
can be organized into l groups and denoted by λkj , k = 1, . . . , l, j = 1, . . . , pk,
such that the λkj are pairwise different when 0 < |η− η0| < ε, have algebraic
multiplicity mk, and are represented by Puiseux series

λkj(η) = λ0 +

∞∑
n=1

akn(((η − η0)
1
pk )j)

n. (9.2.12)

2. For k = 1, . . . , l there are positive integers rk and qk1, . . . , qkrk such that
rk is the geometric multiplicity of the eigenvalue λkj(η), j = 1, . . . , pk, if
0 < |η − η0| < ε,

rk∑
ι=1

qkι = mk ,

and there are vectors

yικkj(η) =
∞∑
n=0

bικkn(((η−η0)
1
pk )j)

n, ι = 1, . . . , rk, κ = 0, . . . , qkι−1, (9.2.13)

in X such that yι0kj(η), . . . , y
ιqkι−1
kj (η) is a chain of an eigenvector and asso-

ciated vectors of T (·, η) at λkj(η) if 0 < |η − η0| < ε and where {yι0kj(η) : ι =
1, . . . , rk} is a basis of N(T (λkj(η), η)) for k = 1, . . . , l and j = 1, . . . , pk.

Proof. Without loss of generality assume that λ0 = 0 and η0 = 0. First we will
assume that X and Y are finite dimensional. Since 0 is an isolated eigenvalue of
T (·, 0), it follows that X and Y have the same dimensions, and with chosen fixed
bases we can write T as a matrix function which depends analytically on λ and
η. Then its determinant is analytic in λ and η, and T (λ, η) is invertible if and
only if t(λ, η) = detT (λ, η) �= 0. Furthermore, it is well known that the algebraic
multiplicity of the eigenvalue λ of T (·, η) equals the multiplicity of the zero λ of
t(·, η), see [189, Proposition 1.8.5]. By Theorem 9.1.1, the zeros of t(·, η) and thus
the eigenvalues of T (·, η) have the representations as stated in part 1. Hence part
1 has been proved.
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Now we are going to prove part 2. By Cramer’s rule, t(λ, η)T−1(λ, η) is

analytic in λ and η. Putting t0 =
∏l

k=0 gk with

gk(λ, η) =

pk∏
j=1

(λ− λkj(η))
mk , |λ| < ε, |η| < δ, k = 1, . . . , l,

it follows from Corollary 9.1.2 that

S := t0T
−1 (9.2.14)

is analytic on Φ0. We now focus our attention on one group of eigenvalues, for

some fixed k. We put σ = (η
1
pk )j for some fixed j and 0 < |η| < ε. The map η �→ σ

depends on j, but λ̂k(σ) = λkj(η) defines an analytic function λ̂k which is indepen-
dent of j, see (9.2.12). Replacing η with σpk in the Taylor series expansion of t(·, η)
about λkj(η) shows that the multiplicity of the zero λ̂k(σ) of t(·, σpk) remains mk.

Since η = σpk , it follows that T−1(λ, σpk) is analytic in λ and σ when
t(λ, σpk) �= 0 and has a pole, as a function of λ for fixed σ, of order at most

mk at λ̂k(σ). Hence, for 0 < |σ| < ε
1
pk we have a Laurent series expansion

T−1(λ, σpk ) =

∞∑
n=−mk

(λ− λ̂k(σ))
nAk,n(σ) (9.2.15)

in a punctured neighbourhood of λ̂k(σ), and the Ak,n are given by Cauchy’s for-
mula

Ak,n(σ) =
1

2πi

∮
Γλ̂k(σ)

(λ − λ̂k(σ))
−n−1T−1(λ, σpk ) dλ, (9.2.16)

where Γλ̂k(σ)
is a counterclockwise simply connected closed curve surrounding

λ̂k(σ) with no other zero of t(·, σpk ) inside this curve. Since locally we may choose
this curve to be independent of σ, it follows that the Ak,n are analytic functions

for 0 < |σ| < ε
1
pk . We also observe that there is an integer p ≥ 2, e. g., the least

common multiple of all pι, ι = 1, . . . , l, such that each λk′j′ (η) can be written as a

power series in (η
1
p )2. Since the functions λk′j′(η) are pairwise distinct, it follows

that the differences λk′j′ (η)−λk′′j′′ (η) for (k
′, j′) �= (k′′, j′′) are analytic functions

in (η
1
p )2 without zeros in 0 < |η| < ε. Hence there is a positive integer α such that

|λk′j′ (η)−λk′′j′′ (η)||η|−α
p has a positive lower bound for 0 < |η| ≤ ε

2 and (k′, j′) �=
(k′′, j′′). Thus there is γ > 0 so that the curve Γλ̂k(σ)

can be chosen such that

(λ − λ̂k(σ))
−1 = O(σ−γ) and (λ− λk′j′(σ

pk))−1 = O(σ−γ)

for all (k′, j′) considered here, λ ∈ Γλ̂k(σ)
and σ close to 0. We can therefore find

a positive integer γ1 such that

1

t0(λ, σpk )
= O(σ−γ1 ).

In view of (9.2.14) it follows that Ak,n has a pole at 0.
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Below we are going to use the following notation: for 0 < εκ ≤ ε let
Ωκ = {η ∈ C : |η| < εκ}, let Λκ = {(λ̂k(η), η) : η ∈ C : 0 < |η| < εκ}, and
let Φκ ⊂ Φ be a neighbourhood of Λκ.

Let s be the smallest positive integer such that Ak,−s �= 0. We are going to
prove

Claim 1. For κ = 0, . . . , s there are εκ > 0, integers r
(κ)
k and qk1, . . . , qkr(κ)

k

and

vι(λ, σ) ∈ X and u
(κ)
ι (λ, σ) ∈ Y ′, (λ, σ) ∈ Φκ, ι = 1, . . . , r

(κ)
k , which are ana-

lytic on Φκ and polynomials in λ of degree less than qkι whose coefficients are

meromorphic in σ on Ωκ, such that the vι(λ̂k(σ), σ), ι = 1, . . . , r
(κ)
k , are linearly

independent, u
(κ)
ι (λk(σ), σ) �= 0 for ι = 1, . . . , r

(κ)
k , such that T (·, σpk)vι(·, σ) has

a zero of order ≥ qkι at λ̂k(σ) for all 0 ≤ |σ| < εκ, and such that

(λ− λ̂k(σ))
s−κ

⎡⎣T−1(λ, σpk )−
r
(κ)
k∑
ι=1

(λ − λ̂k(σ))
−qkιvι(λ, σ)⊗ u(κ)

ι (λ, σ)

⎤⎦ (9.2.17)

is analytic on Φκ.

Claim 1 is trivial for κ = 0 where we can take r
(0)
k = 0.

Suppose that Claim 1 is true for some 0 ≤ κ < s. We set

A(λ, σ) : =

∞∑
ι=−s+κ

(λ− λ̂k(σ))
ιAι(σ) (9.2.18)

:= T−1(λ, σpk )−
r
(κ)
k∑
ι=1

(λ− λ̂k(σ))
−qkιvι(λ, σ)⊗ u(κ)

ι (λ, σ)

for (λ, σ) ∈ Φk in some punctured neighbourhood of λ̂k(σ), where Aι(σ) ∈ L(Y,X)

and Aι is meromorphic in Ωκ. By Proposition 9.2.3 there are a number r
(κ+1)
k ≥

r
(κ)
k and ỹ

r
(κ)
k +1

(σ), . . . , ỹ
r
(κ+1)
k

(σ) ∈ Y , ũ
(κ+1)
1 (σ), . . . , ũ

(κ+1)

r
(κ)+1
k

(σ) ∈ Y ′ depending

meromorphically on σ ∈ Ωκ+1 such that

A−s+κ(σ) =

r
(κ)
k∑
ι=1

vι(λ̂k(σ), σ) ⊗ ũ(κ+1)
ι (σ) +

r
(κ+1)
k∑

ι=r
(κ)
k +1

A−s+κ(σ)ỹι(σ)⊗ ũ(κ+1)
ι (σ),

where ũ
(κ+1)

r
(κ)
k +1

(σ), . . . , ũ
(κ+1)

r
(κ+1)
k

(σ) as well as

v1(λ̂k(σ), σ), . . . , vr(κ)
k

(λ̂k(σ), σ), A−s+κ(σ)ỹr(κ)
k +1

(σ), . . . , A−s+κ(σ)ỹr(κ+1)
k

(σ)

are linearly independent. Here εκ+1 > 0 is chosen in such a way that 0 is the only
pole of all the above meromorphic functions in σ.
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For ι = 1, . . . , r
(κ)
k let

u(κ+1)
ι (λ, σ) = u(κ)

ι (λ, σ) + (λ− λ̂k(σ))
qkι−s+κũ(κ+1)

ι (σ),

and for ι = r
(κ)
k + 1, . . . , r

(κ+1)
k let

qkι = s− κ,

ṽι(λ, σ) = (λ− λ̂k(σ))
qkιA(λ, σ)ỹι(σ),

u(κ+1)
ι (λ, σ) = ũ(κ+1)

ι (σ).

Observe that these ṽι for ι = r
(κ)
k + 1, . . . , r

(κ+1)
k are analytic in λ at each λ̂k(σ)

since (λ, σ) �→ (λ−λ̂k(σ))
qkιA(λ, σ) has this property by assumption. For ι = r

(κ)
k +

1, . . . , r
(κ+1)
k let vι be the Taylor polynomial of ṽι in λ of order qkι−1 at λ̂k(σ), i. e.,

vι(λ, σ) =

qkι−1∑
τ=0

(λ− λ̂k(σ))
τ 1

τ !

∂τ

∂λτ
ṽι(λ, σ)

∣∣∣
λ=λ̂k(σ)

, ι = r
(κ)
k + 1, . . . , r

(κ+1)
k .

Since

vι(λ̂k(σ), σ) = ṽι(λ̂k(σ), σ) = A−s+κ(σ)ỹι(σ), ι = r
(κ)
k + 1, . . . , r

(κ+1)
k ,

it follows that the vι(λ̂k(σ), σ), ι = 1, . . . , r
(κ+1)
k are linearly independent. By as-

sumption and definition, the vι are polynomials of degree less than qkι in λ for

ι = r
(κ)
k + 1, . . . , r

(κ+1)
k , and the same is true for the u

(κ+1)
ι since s − κ > 0 and

qkι = s−κ for ι = r
(κ)
k +1, . . . , r

(κ+1)
k . Also, u

(κ+1)
ι (λ̂k(σ), σ) = u

(κ)
ι (λ̂k(σ), σ) �= 0

for ι = 1, . . . , r
(κ)
k , whereas the linear independence of ũ

(κ+1)

r
(κ)
k +1

(σ), . . . , ũ
(κ+1)

r
(κ+1)
k

(σ)

gives u
(κ+1)
ι (λ̂k(σ), σ) �= 0 for ι = r

(κ)
k + 1, . . . , r

(κ+1)
k .

For ι = r
(κ)
k + 1, . . . , r

(κ+1)
k the definition of ṽι and (9.2.18) give

T (λ, σpk)ṽι(λ, σ) = (λ− λ̂k(σ))
s−κ

(
ỹι(σ)

−
r
(κ)
k∑

ι′=1

〈ỹι(σ), u(κ)
ι′ (λ, σ)〉

[
(λ− λ̂k(σ))

−qkιT (λ, σpk)vι(λ, σ)
])

.

Since (λ− λ̂k(σ))
−qkιT (λ, σpk)vι(λ, σ), ι = 1, . . . , r

(κ)
k , is analytic at (λ̂k(σ), σ) by

assumption, it follows that T (·, σpk)ṽι(·, σ), ι = r
(κ)
k + 1, . . . , r

(κ+1)
k , has a zero of

order ≥ qkι. Since vι is the Taylor polynomial of ṽιof order qkι, the same is true
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for T (·, σpk)vι(·, σ). Finally, we have that

T−1(λ, σpk )−
r
(κ+1)
k∑
ι=1

(λ− λ̂k(σ))
−qkιvι(λ, σ) ⊗ u(κ+1)

ι (λ, σ)

= A(λ, σ) −
r
(κ)
k∑
ι=1

(λ− λ̂k(σ))
−qkιvι(λ, σ) ⊗

(
u(κ+1)
ι (λ, σ) − u(κ)

ι (λ, σ)
)

−
r
(κ+1)
k∑

ι=r
(κ)
k +1

(λ − λ̂k(σ))
−qkιvι(λ, σ)⊗ u(κ+1)

ι (λ)

= A(λ, σ) −
r
(κ)
k∑
ι=1

(λ− λ̂k(σ))
−s+κvι(λ, σ) ⊗ ũ(κ+1)

ι (σ)

−
r
(κ+1)
k∑

ι=r
(κ)
k

+1

(A(λ, σ)ỹι(σ))⊗ ũ(κ+1)
ι (σ)

−
r
(κ+1)
k∑

ι=r
(κ)
k

+1

(λ − λ̂k(σ))
−qkι (vι(λ, σ) − ṽι(λ, σ)) ⊗ ũ(κ+1)

ι (σ)

=

∞∑
ι=−s+κ+1

(λ− λ̂(σ))ιAι(σ)

−
r
(κ)
k∑
ι=1

(λ− λ̂k(σ))
−s+κ

(
vι(λ, σ) − vι(λ̂k(σ), σ)

)
⊗ ũ(κ+1)

ι (σ)

−
r
(κ+1)
k∑

ι=r
(κ)
k +1

∞∑
ι′=−s+κ+1

(λ − λ̂k(σ))
ι′ (Aι′(σ)ỹι(σ)) ⊗ ũ(κ+1)

ι (σ)

−
r
(κ+1)
k∑

ι=r
(κ)
k +1

(λ − λ̂k(σ))
−qkι (vι(λ, σ) − ṽι(λ, σ)) ⊗ ũ(κ+1)

ι (σ).

Therefore Claim 1 is proved for κ+1 since the pole orders at λ = λ̂k(σ) of the first

three sums do not exceed s−κ− 1, whereas the last sum is analytic at λ = λ̂k(σ).

Putting rk = r
(s)
k and uι = u

(s)
ι for ι = 1, . . . , rk shows that

E(λ, σ) := T−1(λ, σpk )−
rk∑
ι=1

(λ− λ̂k(σ))
−qkιvι(λ, σ) ⊗ uι(λ, σ) (9.2.19)
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is analytic at (λ̂k(σ), σ). Multiplying this equation by T (λ, σpk) from the right we
see that the identity operator on X can be written as

IX =

rk∑
ι=1

(λ− λ̂k(σ))
−qkιvι(λ, σ) ⊗ (T ∗(λ, σpk )uι(λ, σ)) + E(λ, σ)T (λ, σpk ),

(9.2.20)
where T ∗(λ, σpk) is the adjoint operator of T (λ, σpk). Hence

rk∑
ι=1

(λ − λ̂k(σ))
−qkιvι(λ, σ)⊗ (T ∗(λ, σpk )uι(λ, σ))

is analytic in λ at λ̂k(σ). From [189, Proposition 1.5.3], we conclude that the

functions λ �→ (λ − λ̂k(σ))
−qkιT ∗(λ, σpk )uι(λ, σ), ι = 1, . . . , rk, are analytic at

λ̂k(σ) since the vι(λ̂k(σ), σ), ι = 1, . . . , rk, are linearly independent. Therefore,

the functions T ′(·, σpk)uι(·, σ) have a zero of order at least qkι at λ̂k(σ).

Next we are going to show that

N(T (λ̂k(σ), σ)) = span{vι(λ̂k(σ), σ) : ι = 1, . . . , rk}.

It is clear that vι(λ̂k(σ), σ) ⊂ N(T (λ̂k(σ), σ)) for ι = 1, . . . , rk since Tvι has a zero

at λ = λ̂k(σ) for ι = 1, . . . , rk.

Conversely, let x ∈ N(T (λ̂k(σ), σ)). Then (9.2.20) leads to

x =

rk∑
ι=1

〈
x, (λ− λ̂k(σ))

−qkιT ∗(λ, σp)uι(λ, σ)
〉
vι(λ, σ) + E(λ, σ)T (λ, σp)x,

which shows that x is a linear combination of the vι(λ̂k(σ), σ), ι = 1, . . . , rk.

We note that the above statements hold with analytic dependence on σ for
0 < |σ| < ε′ and suitable positive ε′. Then, for these σ, the general assumptions as
well as condition ii) of [189, Theorem 1.5.9] are satisfied since E(·, σ) is analytic

at λ̂k(σ). Therefore v1(·, σ), . . . , vrk(·, σ) form a canonical system of root functions

of T (·, σpk) at λ̂k(σ), see [189, Definition 1.4.5] for notation. We conclude that the

numbers qk1, . . . , qkrk are the partial multiplicities of T (·, σp) at λ̂k(σ) and that
the number

rk∑
ι=1

qkι = mk

is the algebraic multiplicity of the eigenvalue λ̂k(σ) of T (·, σp), see [189, p. 15 and
Proposition 1.8.5].

To complete the proof of the case that X and Y are finite dimensional we still
have to show the representation (9.2.13). Since λ̂k as well as σpk are independent

of the choice of σ = (η
1
pk )j , it follows that (9.2.20) is valid for all j if it holds
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for one j, with the same vector functions vι and uι, ι = 1, . . . , rk. Since vι is a
polynomial of degree less than qkι we have

vι(λ, σ) =

qkι−1∑
κ=0

(λ− λ̂k(σ))
κvικ(σ),

where vι0(σ), . . . , vιqkι−1
(σ) is a chain of an eigenvector and associated vectors of

T (·, σpk) at λ̂k(σ), which depend meromorphically on σ. Letting ν be the maximum
of the pole orders of these functions at 0 and observing that σν does not depend
on λ, we obtain that also σνvι0(σ), . . . , σ

νvιqkι−1
(σ) is a chain of an eigenvector

and associated vectors of T (·, σpk) at λ̂k(σ) and that these function are analytic at

0. Substituting σ = (η
1
pk )j into the corresponding Taylor series expansions proves

(9.2.13).

Finally, if X and Y are infinite dimensional, then we use the factorization
(9.2.1) and consider S, which is an operator function in finite-dimensional spaces,
where we may replace Φ with the neighbourhood Φ0 from Lemma 9.2.1. Because
of the invertibility of C, T11 and D, the eigenvalues of T and S coincide, together
with their algebraic multiplicities. Hence the proof of part 1 is complete.

For the proof of part 2 let {ỹικkj(η)}qkι

κ=0 be the chain of an eigenvector and
associated vectors for S as in (9.2.13). Then

yιkj(λ, η) := D−1(λ, η)

qkι−1∑
κ=0

(λ− λk,j(η))
κ

(
0

ỹικkj(η)

)
(9.2.21)

is a root function of C−1(·, η)T (·, η) and thus of T (·, η) at λkj(η), that is, the first
qkι Taylor coefficients of (9.2.21) about λkj(η) are a chain of an eigenvector and
associated vectors which is of the form (9.2.13). �



Chapter 10

Sobolev Spaces and
Differential Operators

10.1 Sobolev spaces on intervals

For the convenience of the reader, we recall the main definitions and results on
Sobolev spaces on intervals which are used in this monograph. For the general
theory of Sobolev spaces, we refer the reader to [2]. However, in this monograph
we are only concerned with Sobolev spaces on compact intervals, and therefore
the particular results in [189, Chapter II] suffice, and it is some of those results
which will be cited without proof here. Throughout this section we assume that a
and b are real numbers with a < b.

Let I = (a, b) or I = R. First we recall the definition of the Lebesgue spaces
Lp(I) for 1 ≤ p ≤ ∞. For Lebesgue measurable functions f, g : I → C we write
f = g ( f ≤ g, etc.) if f(x) = g(x) (f(x) ≤ g(x), etc.) for almost all x ∈ I,, i. e., if
there is a Lebesgue measurable set X ⊂ I such that I \X has Lebesgue measure
zero and such that f(x) = g(x) (f(x) ≤ g(x), etc.) for all x ∈ X . The function
f is called essentially bounded if there is such a Lebesgue measurable set X such
that f is bounded on X . The relation f = g in the above sense defines equivalence
classes of Lebesgue measurable functions, and for 1 ≤ p <∞, Lp(I) is defined as
the set of equivalence classes of measurable functions f on I for which∫

I
|f(x)|p dx <∞,

whereas L∞(I) is the set of equivalence classes of essentially bounded functions on
I. As is customary, we will identify equivalence classes with any of the functions
representing it. In particular, when such an equivalence class contains a contin-
uous functions, then this continuous function is unique, and we will identify the
equivalence class with its continuous representative. The sesquilinear form

(f, g) :=

∫
I
f(x)g(x) dx, f, g ∈ L2(I),

defines an inner product on L2(I) which makes L2(I) a Hilbert space.
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A function f ∈ C∞(I) is called a test function if its support is a compact
subset of I. The space of all test functions on I is denoted by C∞

0 (I). We identify
C∞

0 (a, b) = C∞
0 ((a, b)) with a subspace of C∞

0 (R) by setting f = 0 outside of (a, b)
for each f ∈ C∞

0 (a, b).

A certain class of linear functionals on C∞
0 (a, b) is called the space of distri-

butions on (a, b) and denoted by D′(a, b). For u ∈ D′(a, b) and ϕ ∈ C∞
0 (a, b) it is

customary to write
(ϕ, u)0 = u(ϕ).

Correspondingly, D′(R) denotes the space of distributions on R, and we write
(ϕ, u)0,R = u(ϕ) for u ∈ D′(R) and ϕ ∈ C∞

0 (R).

It is not necessary to know the exact conditions for a linear functional on
C∞

0 (a, b) to be a distribution; rather, it suffices to recall a few properties of dis-
tributions. One of these properties is that L2(a, b) ⊂ D′(a, b) via

(ϕ, f)0 :=

∫ b

a

ϕ(x)f(x) dx = (ϕ, f), ϕ ∈ C∞
0 (a, b), f ∈ L2(a, b). (10.1.1)

We have chosen to write (·, ·)0 as a sesquilinear form rather than a bilinear form
on the dual pair (C∞

0 (a, b),D′(a, b)) so that we do not have to resort to conjugate
complex functions in any of the two forms occurring in (10.1.1).

A second property is that every u ∈ D′(a, b) has a derivative u′ ∈ D′(a, b)
which is defined by (ϕ, u′)0 = −(ϕ′, u)0 for ϕ ∈ C∞

0 (a, b). Hence every function
f ∈ L2(a, b) has a derivative in the sense of distributions, and by the integration
by parts formula, this derivative coincides with the classical derivative if f is con-
tinuously differentiable, or somewhat more general, if f is absolutely continuous.

Thirdly, for u ∈ D′(a, b) and ψ ∈ C∞(a, b),

(ϕ, ψu)0 = (ψϕ, u)0, ϕ ∈ C∞
0 (a, b), (10.1.2)

defines a unique distribution ψu on (a, b).

Definition 10.1.1. Let k ∈ N0. The space

W k
2 (a, b) = {f ∈ L2(a, b) : ∀j ∈ {1, . . . , k}, f (j) ∈ L2(a, b)}

is called a Sobolev space. Here the derivatives f (j) are the derivatives in the sense
of distributions. For f ∈ W k

2 (a, b) we set

‖f‖2,k =

⎛⎝ k∑
j=0

‖f (j)‖2
⎞⎠

1
2

,

where ‖ ‖ is the norm on L2(a, b).

Note that W 0
2 (a, b) = L2(a, b).
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Proposition 10.1.2 ([189, Propositions 2.1.6 and 2.1.7]). Let k ∈ N. Then W k
2 (a, b)

is a Banach space with respect to the norm ‖ ‖2,k, W k
2 (a, b) ⊂ Ck−1([a, b]), and

the corresponding inclusion map is continuous.

Proposition 10.1.3 ([189, Proposition 2.3.2]). Let k ∈ N0, l ∈ N and k ≤ l. Then
the multiplication operator from W k

2 (a, b) ×W l
2(a, b) to W k

2 (a, b) is a continuous
bilinear map.

For f ∈ L2(a, b) let fe be its extension by zero onto R. Then fe ∈ D′(R).

Proposition 10.1.4 ([189, Proposition 2.2.4 and Theorem 2.2.5]). For k ∈ N set

W−k
2 [a, b] =

{
u ∈ D′(R) : ∃ (uj)

k
j=0 ∈ (L2(a, b))

k+1, u =

k∑
j=0

(uj)
(j)
e

}
.

Then, for u =
k∑

j=0

(uj)
(j)
e ∈ W−k

2 [a, b] and f ∈ W k
2 (a, b),

(f, u)2,k :=

k∑
j=0

∫ b

a

(−1)jf (j)(x)uj(x) dx

does not depend on the representation of u. For ϕ ∈ C∞
0 (R) we have

(ϕ|(a,b), u)2,k = (ϕ, u)0,R.

Equipped with a suitable norm, W−k
2 [a, b] is a representation of the dual of the

Banach space W k
2 (a, b) with respect to the sesquilinear form ( , )2,k.

For k ∈ N denote the restriction of elements in W−k
2 [a, b] to distributions on

(a, b) by W−k
2 (a, b). From [114, Theorem 3.1.4], [189, Proposition 2.1.5] and the

definition of W−k
p [a, b] in Proposition 10.1.4 we immediately obtain

Proposition 10.1.5. For every k ∈ Z, j ∈ N and u ∈ D′(a, b) we have u ∈W k
2 (a, b)

if and only if u(j) ∈W k−j(a, b).

Remark 10.1.6. Let k ∈ N0, l ∈ N, k ≤ l, and g ∈ W k
2 (a, b). By Proposition

10.1.3, g· is a continuous operator from W l
2(a, b) to W k

2 (a, b). Propositions 10.1.3
and 10.1.4 yield that its adjoint (g·)∗ is an operator from W−k

2 [a, b] to W−l
2 [a, b].

For v ∈ L2(a, b) and f ∈ W l
p(a, b) it follows that (g·)∗ve = (gv)e, so that we will

write

(g·)∗u =: g · u =: gu

for all u ∈ W−k
2 [a, b].

Theorem 10.1.7 ([189, Lemma 2.4.1 and Theorem 2.4.2]). For each k ∈ N, the
inclusion maps W k

2 (a, b) ↪→ Ck−1[a, b] and W k
p (a, b) ↪→W k−1

p (a, b) are compact.
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10.2 Lagrange identity and Green’s formula

In this section we recall some basic properties of differential operators on Sobolev
spaces. Rather than using the most general formulation, we will restrict ourselves
to assumptions which cover all examples and applications in this monograph. For
proofs and more general assumptions, we refer the reader to [271, Section 2] and
[189, Chapter VII].

Let n = 2k where k ∈ N. We consider nth-order differential expressions of
the form

�y =

k∑
j=0

(
gjy

(j)
)(j)

(10.2.1)

on an interval [a, b], where gj ∈ W j
2 (a, b), j = 0, . . . , k, are real valued functions and

|gk(x)| ≥ ε for some ε > 0 and all x ∈ [a, b]. We will often consider applications
where gk = 1 or gk = −1 and gj ∈ Cj [a, b]. In any case, �y is well defined for
y ∈ Wn

2 (a, b), in which case �y ∈ L2(a, b). The operator L0 defined by

D(L0) = Wn
2 (a, b), L0y = �y, y ∈Wn

2 (a, b), (10.2.2)

is called the maximal operator associated with the differential expression � on
[a, b].

We will now prove the Lagrange identity and Green’s formula. In general, one
would need to define the adjoint differential expression. However, in our situation,
the differential expression � is formally self-adjoint, so that there is no need to
introduce the adjoint differential expression here.

Definition 10.2.1. Let y ∈ Wn
2 (a, b). For j = 0, . . . , n, the jth quasi-derivative of

y, denoted by y[j], is recursively defined by

y[j] = y(j) for j = 0, . . . , k − 1,

y[k] = gky
(k),

y[j] = (y[j−1])′ + gn−jy
[n−j] for j = k + 1, . . . , n.

Observe that quasi-derivatives depend on the differential expression (10.2.1).
Quasi-derivates are convenient for the formulation of the Lagrange identity when
dealing with differential operators which have fairly general coefficients, see, e. g.,
[271, Section 2] and [196, Section 2]. Note, however, that these definitions may
differ from each other. In particular, our definition is not exactly the same as in
[271, Theorem 2.2]. A straightforward proof by induction shows that

y[k+m] =

k∑
j=k−m

(
gjy

(j)
)(j+m−k)

for m = 0, . . . , k.

In particular, m = k gives
�y = y[n].
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Proposition 10.2.2. For the differential expression � and y, z ∈ Wn
2 (a, b), we have

(�y)z =

k∑
j=0

(−1)jgjy(j)z(j) + d

dx
[y, z]1 (10.2.3)

on [a, b] almost everywhere, where

[y, z]1 =

k∑
j=1

(−1)j−1y[n−j]z[j−1], (10.2.4)

and

(�y, z) =

k∑
j=0

(−1)j(gjy(j), z(j)) + [y, z]1(b)− [y, z]1(a). (10.2.5)

Proof. (10.2.5) follows from (10.2.3) by integration, so that we only have to prove
the latter. A straightforward calculation for j = 1, . . . , k gives

d

dx

(
y[n−j]z[j−1]

)
= y[n−j]z(j) + y[n−j+1]z(j−1) − gj−1y

(j−1)z(j−1).

Therefore

d

dx
[y, z]1 =

k∑
j=1

(−1)j−1y[n−j]z(j) +

k−1∑
j=0

(−1)jy[n−j]z(j) −
k−1∑
j=0

(−1)jgjy(j)z(j)

= y[n]z −
k∑

j=0

(−1)jgjy(j)z(j). �

We can now formulate the Lagrange identity and Green’s formula.

Theorem 10.2.3. For the differential expression � and y, z ∈ Wn
2 (a, b), the Lagrange

identity

(�y)z − y(�z) =
d

dx
[y, z] (10.2.6)

holds on [a, b] almost everywhere, where

[y, z] =

k∑
j=1

(−1)j
(
y[j−1]z[n−j] − y[n−j]z[j−1]

)
, (10.2.7)

and Green’s formula

(�y, z)− (y, �z) = [y, z](b)− [y, z](a) (10.2.8)

is valid, where (·, ·) is the inner product in L2(a, b).
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Proof. Green’s formula follows from the Lagrange identity by integration, so that
we only have to prove the latter. Observing that the functions gj are real valued,
we conclude from (10.2.3) that

(�y)z − y(�z) = (�y)z − (�z)y

=
d

dx
[y, z]1 − d

dx
[z, y]1

=
d

dx
[y, z]. �

10.3 Self-adjoint differential operators

In this section we will deduce criteria for self-adjointness for a class of differential
operators. This class will cover all applications in this monograph. Readers inter-
ested in a particular problem may find it easier to verify the results in this section
by considering just that particular case.

Let p ∈ N and for j = 1, . . . , p let �j be formally self-adjoint differential
expressions of even order nj = 2kj on the interval [0, aj] as defined in (10.2.1),
i. e.,

�jyj =

kj∑
m=0

(gj,my
(m)
j )(m), (10.3.1)

where gj,m ∈ Wm
2 (0, aj) for j = 1, . . . , p, m = 0, . . . , kj , are real valued functions

and |gj,kj (x)| ≥ ε for some ε > 0 and all x ∈ [a, b]. Let q ∈ N0. We are going to
use the notation

Y =

⎛⎜⎜⎜⎝
y1
...
yp
c

⎞⎟⎟⎟⎠ =

(
Y0

c

)
, Z =

⎛⎜⎜⎜⎝
z1
...
zp
d

⎞⎟⎟⎟⎠ =

(
Z0

d

)
, W =

⎛⎜⎜⎜⎝
w1

...
wp

e

⎞⎟⎟⎟⎠ =

(
W0

e

)

for elements in the Hilbert space

H =

p⊕
j=1

L2(0, aj)⊕ C
q.

Furthermore, for yj ∈W
nj

2 (0, aj), j = 1, . . . , p, we use the notations

ŷj = (yj(0), . . . , y
[nj−1]
j (0), yj(aj), . . . , y

[nj−1]
j (aj)), j = 1, . . . , p,

Ŷ = Ŷ0 = (ŷ1, . . . , ŷp)
T,

with corresponding notations for Ẑ and Ŵ . Setting

n =

p∑
j=1

nj ,
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it is clear that Ŷ ∈ C2n. Finally, let

r ∈ N0, U1 an r × 2n matrix, U2 a q × 2n matrix, V a q × 2n matrix. (10.3.2)

Then the operator A in H is defined by

AY =

⎛⎜⎜⎜⎝
�1y1
...

�pyp
V Ŷ

⎞⎟⎟⎟⎠ , D(A) =

⎧⎨⎩Y ∈
p⊕

j=1

W
nj

2 (0, aj)⊕ C
p : U1Ŷ = 0, c = U2Ŷ

⎫⎬⎭ .

(10.3.3)

We have to observe that the Lagrange brackets introduced in (10.2.7) depend
on the quasi-derivatives and hence on the differential equation �. In order to avoid
further notation, we will use the convention that an expression of the form [yj , zj ]
means the Lagrange bracket with respect to the operator �j . As usual, V

∗ denotes
the adjoint, i. e., the conjugate complex transpose, matrix of V , and c ∈ Cq is
identified with a q × 1 matrix.

In view of Remark 10.1.6 it is clear that the definition of the quasi-derivatives,

Definition 10.2.1, can be extended to zj ∈ L2(0, aj) giving quasi-derivatives z
[m]
j ∈

W−m
2 [0, aj ] in the sense of distributions for m = 0, . . . , nj . In particular,

z
[nj]
j =

kj∑
m=0

(gj,mz
(m)
j )(m). (10.3.4)

Proposition 10.3.1. Let Z,W ∈ H such that (AY,Z) = (Y,W ) for all Y ∈ D(A).
Then zj ∈W

nj

2 (0, aj) and �jzj = wj for j = 1, . . . , n.

Proof. Fixing j ∈ {1, . . . , p}, taking yj ∈ C∞
0 (0, aj), letting c = 0 and yj′ = 0 for

all j′ �= j, it follows that Y ∈ D(A) and

(yj , wj) = (Y,W ) = (AY,Z) = (�jyj , zj)

=

kj∑
m=0

(
(gj,my

(m)
j )(m), zj

)

=

kj∑
m=0

(−1)m
(
gj,my

(m)
j , z

(m)
j

)
2,m

=

kj∑
m=0

(−1)m
(
y
(m)
j , gj,mz

(m)
j

)
2,m

=

kj∑
m=0

(
yj, (gj,mz

(m)
j )(m)

)
0
.
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Since C∞
0 (0, aj) is dense in L2(a, b), it follows that

kj∑
m=0

(gj,mz
(m)
j )(m) = wj ∈ L2(0, aj). (10.3.5)

Assume that zj �∈ W
nj

2 (0, aj). Then there is an integer mj , 0 ≤ mj < nj , such

that zj ∈W
mj

2 (0, aj) and zj �∈W
mj+1
2 (0, aj). Then

(gj,kjz
(kj)
j )(kj) = wj −

kj−1∑
m=0

(gj,mz
(m)
j )(m) ∈ W

mj−nj+1
2 (0, aj).

By Proposition 10.1.5 it follows that

gj,kjz
(kj)
j ∈W

mj−kj+1
2 (0, aj).

Since 1
gj,kj

∈ W
kj

2 (0, aj) ⊂ W
mj−kj+1
2 (0, aj), see [189, Proposition 2.5.8], we con-

clude from Remark 10.1.6 that

z
(kj)
j ∈ W

mj−kj+1
2 (0, aj).

Another application of Proposition 10.1.5 gives the contradiction zj ∈ W
mj

2 (0, aj).
Hence zj ∈W

nj

2 (0, aj), and (10.3.5) shows that �jzj = wj . �

Proposition 10.3.2. Assume that rank

(
U1

U2

)
= r + q. Then the operator A is

densely defined, and

D(A∗) ⊂
p⊕

j=1

W
nj

2 (0, aj)⊕ C
q.

Proof. Let W ∈ H be orthogonal to D(A). For Z = 0 ∈ H and all Y ∈ D(A) it
follows that

(AY,Z) = 0 = (Y,W ),

and therefore wj = �jzj = 0 by Proposition 10.3.1. Then

0 = (Y,W ) = e∗c = e∗U2Ŷ . (10.3.6)

It is well known, see, e. g., [196, Corollary 2.7], that the map yj �→ ŷj from
W

nj

2 (0, aj) to C2nj is surjective. With respect to the decomposition C2n =
N(U1)

⊥ ⊕N(U1) we write (
U1

U2

)
=

(
U11 0
U21 U22

)
,

where the Uij may be represented as matrices in bases of N(U1)
⊥ and N(U1),

respectively. Since rank

(
U1

U2

)
= r + q and U1 and U2 are r × 2n and q × 2n
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matrices, respectively, it follows that U22 has rank q and is therefore surjective.

Thus there is Y0 ∈
p⊕

j=1

W
nj

2 (0, aj) such that Ŷ0 ∈ N(U1) and U22Ŷ0 = e. Putting

Y =

(
Y0

V Ŷ0

)
,

it follows U1Ŷ = 0 and therefore Y ∈ D(A). Then (10.3.6) gives

0 = e∗U22Ŷ = e∗e,

which shows e = 0. Altogether, we have W = 0, which proves the denseness of
D(A).

Let Z ∈ D(A∗). Then, by definition of the adjoint operator, there is W ∈ H
such that (AY,Z) = (Y,W ) for all Y ∈ D(A), and the statement about D(A∗)
follows from Proposition 10.3.1. �

Proposition 10.3.3. Assume that rank

(
U1

U2

)
= r+ q. Then Z ∈ D(A∗) if and only

if Z ∈
p⊕

j=1

W
nj

2 (0, aj)⊕ C
q and there is e ∈ Cq such that

p∑
j=1

[yj , zj](aj)−
p∑

j=1

[yj , zj ](0) + d∗V Ŷ − e∗U2Ŷ = 0 (10.3.7)

for all Ŷ ∈ N(U1). For Z ∈ D(A∗), e is unique and

A∗Z =

⎛⎜⎜⎜⎝
�1z1
...

�pzp
e

⎞⎟⎟⎟⎠ . (10.3.8)

Proof. By definition of the adjoint, Z ∈ D(A∗) if and only if there is W ∈ H
such that (AY,Z) = (Y,W ) for all Y ∈ D(A). By Propositions 10.3.1 and 10.3.2,

if Z ∈ D(A∗), then Z ∈
p⊕

j=1

W
nj

2 (0, aj) ⊕ C
q and �jzj = wj for j = 1, . . . , p.

Therefore, for Y ∈ D(A), W ∈ H , and Z ∈
p⊕

j=1

W
nj

2 (0, aj) ⊕ C
q with �jzj = wj

for j = 1, . . . , p,

(AY,Z)− (Y,W ) =

p∑
j=1

(�jyj , zj)−
p∑

j=1

(yj , �jzj) + d∗V Ŷ − e∗c.
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In view of Green’s formula, (10.2.8), we conclude that

(AY,Z)− (Y,W ) =

p∑
j=1

[yj , zj](aj)−
p∑

j=1

[yj , zj](0) + d∗V Ŷ − e∗U2Ŷ .

This and A∗Z = W if (AY,Z)− (Y,W ) = 0 for all Y ∈ D(A) completes the proof
if we observe that Y ∈ D(A) if and only if U1Ŷ = 0 and c = U2Ŷ . �

Since A is self-adjoint if and only if D(A) = D(A∗) and A∗Z = AZ for all
Z ∈ D(A) = D(A∗), we have the following characterization of self-adjointness ofA.

Theorem 10.3.4. Assume that rank

(
U1

U2

)
= r + q. Then A is self-adjoint if and

only if the following holds for all Z ∈
p⊕

j=1

W
nj

2 (0, aj)⊕ C
q:

Z ∈ D(A) if and only if there is e ∈ Cq such that e = V Ẑ and

p∑
j=1

[yj , zj](aj)−
p∑

j=1

[yj , zj ](0) + d∗V Ŷ − e∗U2Ŷ = 0 (10.3.9)

for all Ŷ ∈ N(U1).

For m ∈ N define

Jm,0 =
(
(−1)s−1δs,m+1−t

)m
s,t=1

, Jm,1 =

(
0 Jm,0

−J∗
m,0 0

)
, Jm =

(−Jm,1 0
0 Jm,1

)
.

(10.3.10)
Then it follows for yj , zj ∈ W

nj

2 (0, aj) that

[yj, zj ]1 =

⎛⎜⎜⎝
z
[0]
j
...

z
[kj−1]
j

⎞⎟⎟⎠
∗

Jkj ,0

⎛⎜⎜⎝
y
[kj ]
j
...

y
[nj−1]
j

⎞⎟⎟⎠ , [yj, zj ] =

⎛⎜⎜⎝
z
[0]
j
...

z
[nj−1]
j

⎞⎟⎟⎠
∗

Jkj ,1

⎛⎜⎜⎝
y
[0]
j
...

y
[nj−1]
j

⎞⎟⎟⎠ ,

(10.3.11)

so that
[yj , zj](aj)− [yj , zj](0) = (Jkj ŷj , ẑj).

Finally, define

J =

p⊕
j=1

Jkj and U3 =

⎛⎝ J
V
−U2

⎞⎠ . (10.3.12)

Note that J is a 2n× 2n matrix and that U3 is a (2n+ 2q)× 2n matrix. We
also observe that (10.3.9) can be written as⎛⎝Ẑ

d
e

⎞⎠∗

U3Ŷ = 0
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and that Z ∈ D(A) and e = V Ẑ is equivalent to⎛⎝Ẑ
d
e

⎞⎠ ∈ N(U),

where

U =

⎛⎝U1 0 0
U2 −I 0
V 0 −I

⎞⎠ (10.3.13)

and where I is the q × q identity matrix.

Observing that (N(U))⊥ = R(U∗), Theorem 10.3.4 can therefore be refor-
mulated as

Theorem 10.3.5. In the notation of (10.3.2) and (10.3.3), assume that

rank

(
U1

U2

)
= r + q.

Then A is self-adjoint if and only if

U3(N(U1)) = R(U∗).

Theorem 10.3.5 may become quite unwieldy since one might have to deal
with matrices of possibly quite large sizes. In many cases, it might therefore be
easier to apply Theorem 10.3.4.

Lemma 10.3.6. Let j ∈ N0, g ∈ L2(0, a) and η > 0. Then, for all y ∈W j+1
2 (0, a),

|(gy(j), y(j))| ≤ η‖y(j+1)‖2 +
[
(1 + 5κ)a

4η
‖g‖2 + 2κ

1
2

a
1
2

‖g‖
]
‖y(j)‖2,

where the estimate is true in general with κ = 1, whereas it holds with κ = 0 if
additionally y(j)(0) = 0. If additionally η ≤ 2a, then

|y(j)(0)|2,|y(j)(a)|2 ≤ η‖y(j+1)‖2 + 4

η
‖y(j)‖2.

Proof. It suffices to consider the case j = 0; the general case is then obtained by
applying this special case to y(j). Also, the first estimate is trivial if g = 0, so that
we will assume that g �= 0.

By Hölder’s inequality and using that y(x)− y(0) =
∫ x

0
y′(t) dt we obtain for

x ∈ [0, a] that

|y(x)− y(0)| ≤
(∫ a

0

|y′(t)|2 dt
) 1

2
(∫ a

0

dt

) 1
2

= a
1
2 ‖y′‖. (10.3.14)
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Then |y(0)| ≤ |y(x)| + a
1
2 ‖y′‖ leads to the estimate |y(0)|2 ≤ 2|y(x)|2 + 2a‖y′‖2.

Integrating from 0 to a gives a|y(0)|2 ≤ 2‖y‖2 + 2a2‖y′‖2, which is equivalent to

|y(0)|2 ≤ 2

a
‖y‖2 + 2a‖y′‖2. (10.3.15)

From (10.3.14) we have |y(x)| ≤ |y(0)| + a
1
2 ‖y′‖, and making use of (10.3.15) we

obtain the estimate

|y(x)|2 ≤ 2|y(0)|2 + (1 + κ)a‖y′‖2 ≤ (1 + 5κ)a‖y′‖2 + 4κ

a
‖y‖2, (10.3.16)

with κ = 1 in general and where we may choose κ = 0 if y(0) = 0. Again by
Hölder’s inequality,∣∣∣∣∫ a

0

g(x)|y(x)|2 dx
∣∣∣∣ ≤ (∫ a

0

|g(x)|2dx
) 1

2
(∫ a

0

|y(x)|4dx
) 1

2

≤ ‖g‖
(∫ a

0

|y(x)|2 dx
[
(1 + 5κ)a‖y′‖2 + 4κ

a
‖y‖2

]) 1
2

≤ ‖g‖‖y‖
[
(1 + 5κ)

1
2 a

1
2 ‖y′‖+ 2κ

1
2

a
1
2

‖y‖
]

≤ ‖g‖
[
(1 + 5κ)

1
2 a

1
2
b−1‖y′‖2 + b‖y‖2

2
+

2κ
1
2

a
1
2

‖y‖2
]

for any positive b. Choosing b =
(1 + 5κ)

1
2 a

1
2

2η
‖g‖, it follows that

|(gy, y)| ≤ η‖y′‖2 +
[
(1 + 5κ)a

4η
‖g‖2 + 2κ

1
2

a
1
2

‖g‖
]
‖y‖2,

which proves the first estimate of this theorem. For the second estimate we just
have to observe that (10.3.14) and (10.3.15) also hold on the interval [0, η2 ], and
that the corresponding norms over this smaller interval in (10.3.15) can be replaced
by the possibly larger norms on the original interval [0, a]. The estimate at a follows
with the obvious change of notation. �
Lemma 10.3.7. Let j ∈ N, m ∈ N0 such that m < j and η > 0. Then there is
C > 0 such that for all y ∈ W j

2 (0, a),

‖y(m)‖2 ≤ η‖y(j)‖2 + C‖y‖2. (10.3.17)

Proof. The statement is trivial for m = 0. Now let j = 2 and m = 1. Then the
integration by parts formula

‖y′‖2 = (y′, y′) = y′(a)y(a)− y′(0)y(0)− (y′′, y),
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Lemma 10.3.6 and Hölder’s inequality show that for each ι = 1, . . . , 6 and ηι > 0
there is a constant Cι > 0, which is independent of y, such that

‖y′‖2 ≤ 2(η1‖y′′‖+ C1‖y′‖)(η2‖y′‖+ C2‖y‖) + η3‖y′′‖2 + C3‖y‖2
≤ 2η1η2(η4‖y′′‖2 + C4‖y′‖2) + 2η2C1‖y′‖2 + 2η1C2(η5‖y′′‖2 + C5‖y‖2)
+ C1C2(η6‖y′‖2 + C6‖y‖2) + η3‖y′′‖2 + C3‖y‖2
≤ (2η1η2η4 + 2η1C2η5 + η3)‖y′′‖2
+ (2η1η2C4 + 2η2C1 + C1C2η6)‖y′‖2
+ (2η1C2C5 + C1C2C6 + C3)‖y‖2.

Let η′ > 0. Choosing suitable pairs (η4, C4), (η1, C1), (η2, C2), (η3, C3), (η5, C5),
(η6, C6), in that order, we obtain a constant C7, depending on the choice of the
above pairs, such that

‖y′‖2 ≤ 1

2
η′‖y′′‖2 + 1

2
‖y′‖2 + 1

2
C7‖y‖2,

which implies

‖y′‖2 ≤ η′‖y′′‖2 + C7‖y‖2.
This proves (10.3.17) for j = 2.

We are going to prove the general case of (10.3.17) by induction on j. Assume
(10.3.17) is true for 1 ≤ m < j ≤ k. First let 2 ≤ m ≤ k. Then, applying the
induction hypothesis to y′, it follows that for each ι = 1, 2 and each ηι > 0 there
is Cι > 0 such that

‖y(m)‖2 = ‖(y′)(m−1)‖2 ≤ η1‖(y′)(k)‖2 + C1‖y′‖2
≤ η1‖(y′)(k)‖2 + C1η2‖y(m)‖2 + C1C2‖y‖2.

Choosing η1 = η
2 and then η2 > 0 such that C1η2 ≤ 1

2 , (10.3.17) follows for
j = k + 1. Finally, if m = 1, then, with a notation as for the case m ≥ 2, we
obtain, making use of (10.3.17) for m = 1 and j = 2 as well as m = 2 and
j = k + 1,

‖y′‖2 ≤ η1‖y′′‖2 + C1‖y‖2 ≤ η1η2‖y(k+1)‖2 + (η1C2 + C1)‖y‖2.
Thus we have shown that (10.3.17) is true for 1 ≤ m < j ≤ k + 1. �

In order to give easily checkable conditions for A to be bounded below, we
will use the following notation. For k ∈ N define the 2k× 2k and 4k× 4k matrices
Pk,0 and Pk by

Pk,0 =

(
Ik 0
0 0

)
, Pk =

(
Pk,0 0
0 Pk,0

)
.

Furthermore, we define

P =

p⊕
j=1

Pkj .
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Theorem 10.3.8. Assume that A is self-adjoint. Then A has a compact resolvent.
Assume additionally that

(i) (−1)kjgj,kj > 0 for all j = 1, . . . , p,

(ii) each component of U1Ŷ either contains only quasiderivatives y
[m]
j with m <

kj or contains only quasiderivatives y
[m]
j with m ≥ kj,

(iii) each component of U2Ŷ either contains only quasiderivatives y
[m]
j with m <

kj or contains only quasiderivatives y
[m]
j with m ≥ kj,

(iv) for each component of U2Ŷ which only contains quasiderivatives y
[m]
j with

m ≥ kj, the corresponding component of V Ŷ only contains quasiderivatives

y
[m]
j with m < kj .

Then A is bounded below.

Proof. Since A is self-adjoint, its spectrum is a subset of R, and A+ iI is therefore

invertible. IfD(A) is equipped with the norm of

p⊕
j=1

W
nj

2 (0, aj)⊕Cq, then it follows

by the closed graph theorem that (A+ iI)−1 is bounded from

p⊕
j=1

L2(0, aj)⊕C
q to

D(A). Theorem 10.1.7 shows that the embedding fromD(A) into

p⊕
j=1

L2(0, aj)⊕Cq

is compact. Hence (A+ iI)−1 is compact.

Now let Y = (y1, . . . , yp, c)
T ∈ D(A). Then it follows from (10.3.3) and

(10.2.5) that

(AY, Y ) =

p∑
j=1

(�jyj, yj) + Ŷ ∗U∗
2V Ŷ (10.3.18)

=

p∑
j=1

kj∑
m=0

(−1)m(gj,my
(m)
j , y

(m)
j ) +

p∑
j=1

[yj , yj ]1(aj)−
p∑

j=1

[yj, yj ]1(0) + Ŷ ∗U∗
2V Ŷ .

In view of the general assumption and (−1)kjgj,kj > 0, there is ε > 0 such that
(−1)kjgj,kj (x) ≥ ε for all x ∈ [0, a]. Therefore

kj∑
m=0

(−1)j(gj,my
(m)
j , y

(m)
j ) ≥ ε(y

(kj)
j , y

(kj)
j )−

kj−1∑
m=0

|(gj,my
(m)
j , y

(m)
j )|.

An application of Lemmas 10.3.6 and 10.3.7 shows that there is C > 0 such that

p∑
j=1

kj∑
m=0

(−1)m(gj,my
(m)
j , y

(m)
j ) ≥ −C‖Y ‖2, Y ∈ D(A). (10.3.19)
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From (10.3.10) and (10.3.11) we infer that

p∑
j=1

[yj, yj ]1(aj)−
p∑

j=1

[yj , yj]1(0) + Ŷ ∗U∗
2V Ŷ = Ŷ ∗PJŶ + Ŷ ∗U∗

2V Ŷ (10.3.20)

for Ŷ ∈ C4n. Now let Y ∈ D(A), so that Ŷ ∈ N(U1). In view of Theorem 10.3.5,
there is Φ = (φ1, φ2, φ3)

T ∈ C4n ⊕ Cr ⊕ Cq such that

U3Ŷ = U∗Φ =

⎛⎝U∗
1φ1 + U∗

2φ2 + V ∗φ3

−φ2

−φ3

⎞⎠ .

By definition of U3 in (10.3.12) it follows that φ3 = U2Ŷ , φ2 = −V Ŷ , and then

JŶ = U∗
1φ1 − U∗

2V Ŷ + V ∗U2Ŷ .

We apply Ŷ ∗P on the left-hand side. Observing that P is Hermitian, the resulting
equation can be written as

Ŷ ∗PJŶ = (U1P Ŷ )∗φ1 − Ŷ ∗PU∗
2V Ŷ + Ŷ ∗PV ∗U2Ŷ .

By assumption (ii), each row of U1P is either zero or the corresponding row of U1.
Hence U1P Ŷ = 0 for all Ŷ ∈ N(U). Therefore

Ŷ ∗PJŶ + Ŷ ∗U∗
2V Ŷ = (U2(I − P )Ŷ )∗V Ŷ + (V P Ŷ )∗U2Ŷ (10.3.21)

for all Ŷ ∈ N(U1). Now P Ŷ only contains quasi-derivatives y
[m]
j at 0 and aj with

m < kj , and in view of Lemma 10.3.6 there is a constant C1 > 0 such that

‖V P Ŷ ‖ ≤ C1‖Y ‖, Y ∈ D(A). (10.3.22)

Since U2Ŷ is the last block component of Y ∈ D(A), we also have

‖U2Ŷ ‖ ≤ ‖Y ‖, Y ∈ D(A). (10.3.23)

Essentially the same reasoning applies to (U2(I −P )Ŷ )∗V Ŷ . By assumption (iii),
each component of U2(I −P )Ŷ is either 0 or equals the corresponding component
of U2Ŷ . Since we only have to consider the components of V Ŷ for which the
corresponding component of U2(I −P )Ŷ is not zero, assumption (iv) and Lemma
10.3.6 show that

|(U2(I − P )Ŷ )∗V Ŷ | ≤ C1‖Y ‖2, Y ∈ D(A). (10.3.24)

Altogether, we have from (10.3.18)–(10.3.24) that

(AY, Y ) ≥ −(C + 2C1)‖Y ‖2, Y ∈ D(A). �



Chapter 11

Analytic and Meromorphic Functions

11.1 Meromorphic functions mapping C+ into itself

For convenience, in this chapter we will provide full proofs of the results from
[173] which are cited in Chapter 5. One of the gaps in B.Ja. Levin’s results is that
[173, Theorem 1, p. 308] only deals with the case that the meromorphic functions
under consideration have infinitely many positive and negative zeros and poles.
We therefore will provide more detailed proofs and will cover all possible cases.
However, the layout of the proofs is as presented in [173, Chapter VII].

It is sometimes convenient to consider a meromorphic function f on Ω ⊂ C

as a function from Ω to C = C ∪ {∞} by putting f(λ) =∞ for poles λ of f .

Lemma 11.1.1. Let P and Q be real entire functions without common nonreal
zeros. Consider the functions

ω = P + iQ, θ =
Q

P
, F =

ω

ω
.

1. The following statements are equivalent:

(i) |F (λ)| < 1 for all λ ∈ C+ such that ω(λ) �= 0;

(ii) ω has no zeros in the open lower half-plane, and |F (λ)| < 1 for all
λ ∈ C+;

(iii) P �= 0 and Im θ(λ) > 0 for all λ ∈ C
+ with P (λ) �= 0;

(iv) All zeros of P and Q are real, θ(C+) ⊂ C
+ and θ(C−) ⊂ C

−.

2. Assume that P �= 0. Then the following statements are equivalent:

(i) |F (λ)| ≤ 1 for all λ ∈ C+ such that ω(λ) �= 0;

(ii) ω has no zeros in the open lower half-plane, and |F (λ)| ≤ 1 for all
λ ∈ C+;

(iii) Im θ(λ) ≥ 0 for all λ ∈ C+ with P (λ) �= 0;

(iv) All zeros of P are real, Q = 0 or all zeros of Q are real, θ(C+) ⊂ C+

and θ(C−) ⊂ C−.
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Proof. 1. (i)⇒(ii): From (
ω
ω

)
=

(
1 i
1 −i

)(
P
Q

)
and the assumption that P and Q do not have common nonreal zeros it follows
that also ω and ω have no common nonreal zeros. In particular, ω �= 0. Since F is
bounded in the open upper half-plane, F does not have a pole there, and hence
ω has no zeros in the open upper half-plane, which means that ω has no zeros in
the open lower half-plane.

(ii)⇒(iii): From

θ =
Q

P
= i

ω − ω

ω + ω
= i

1− F

1 + F
(11.1.1)

it is clear that |F (λ)| < 1 implies P �= 0 and Im θ(λ) > 0 for λ ∈ C+ with
P (λ) �= 0.

(iii)⇒(iv): Since θ(λ) �= 0 for all λ ∈ C+ with P (λ) �= 0, Q has no zeros
in the open upper half-plane and therefore no zeros in the open lower half-plane
since zeros of real analytic functions are symmetric with respect to the real axis.
But then 1

θ = PQ−1 maps C+ into C− ∪ {0}, where 0 occurs if and only if P has
a zero in the open upper half-plane. In this case, by the open mapping theorem,
see [55, IV.7.5], PQ−1 would be constant, which leads to the contradiction P = 0.
Therefore P has no zeros in C+ and as with Q we conclude that P has no nonreal
zeros. By assumption (iii), θ(C+) ⊂ C+, and since θ is real analytic, θ(C−) ⊂ C−

follows.

(iv)⇒(i) is an immediate consequence of (11.1.1).

2. The difference to part 1 is that |F (λ)| = 1 and Im θ(λ) = 0 is possible for some
λ ∈ C+. But by the open mapping theorem, this gives a constant function, and it
is easy to see that for such functions, (i)–(iv) are equivalent. �

For the sake of completeness, we recall the following well-known result.

Lemma 11.1.2. Let f be a nonconstant meromorpic function on C. Then C \ f(C)
has at most two elements.

Proof. If C ⊂ f(C), nothing has to be shown. If there is β ∈ C \ f(C), consider
the Möbius transformation m(λ) =

1

λ− β
and define g = m ◦ f . Then g is a

nonconstant entire function, and by the Little Picard Theorem, see [55, XII.2.3],
g assumes all complex numbers, with one possible exception, i. e., C \ g(C) has
at most two elements. Since m is bijective on C, also C \ f(C) has at most two
elements. �
Lemma 11.1.3. Let θ be a real meromorphic function on C which maps the open
upper half-plane into the open upper half-plane. Then θ has at least one zero or
pole, C+\θ(C+) is either the empty set or consists of one complex number, and all
zeros and poles of θ lie on the real axis, are simple and interlace. For each x ∈ R

which is not a pole of θ, the inequality θ′(x) > 0 holds.
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Proof. Since θ maps the open upper half-plane into the open upper half-plane, θ
has neither poles nor zeros in the open upper half-plane, and hence also not in the
open lower half-plane since θ is real. Therefore all zeros and poles of θ are real.

Assume θ has no zero or pole. Then θ is an entire function which takes real
values only on the real axis. Since θ is continuous and does not have zeros, θ must
therefore be either positive or negative on the real axis. Hence θ does not assume
any value on either the positive or the negative real semiaxis, and it follows by
Lemma 11.1.2 that θ is constant. Since θ is real analytic, this constant would be
real, contradicting the fact that θ maps C

+ into itself. Therefore θ must have at
least one pole or zero.

Now let us consider any circle centred on the real axis which does not meet
zeros or poles of θ. Since θ maps C+ into itself, the argument of θ(λ) for λ on the
upper half of the circle lies in [0, π], so that the difference of the arguments of θ(λ)
is π, 0, or −π when λ moves along the upper semicircle. Using that θ is real, the
same conclusion can be made when λ moves along the lower semi-circle. Hence
the change of argument of the function θ along the full circle is 2π, 0, or −2π. By
the argument principle, this means that the difference of the numbers of zeros and
poles, counted with multiplicity, inside the circle equals 1, 0, or −1. In particular,
if we choose circles enclosing just one zero or pole of θ, this shows that the zeros
and poles are simple. If, however we choose two adjacent zeros or poles x1 < x2

and a circle which contains x1 and x2, but no zeros and poles x with x < x1 or
x > x2, then it follows that between two zeros of θ there must be a pole of θ and
between two poles of θ there must be a zero of θ, that is, zeros and poles interlace.

Now assume there is α ∈ C+ such that θ(λ) �= α for all λ ∈ C+. Since θ is
real analytic, it follows that α /∈ θ(C) and then α /∈ θ(C), so that θ(C) = C\{α, α}
by Lemma 11.1.2. Hence θ(C+) = θ(C) ∩ C+ = C+ \ {α}.

Finally, when x ∈ R is not a pole of θ, then also θ− θ(x) is real analytic and
maps C+ into itself. Hence, by what we have already proved, x is a simple zero of
θ − θ(x). Therefore

θ(λ) = θ(x) + (λ− x)h(λ),

where h is real analytic in a neighbourhood of x and h(x) �= 0. Since

Im θ(x + iε) > 0 for ε > 0,

it follows that

Reh(x+ iε) =
1

ε
Im θ(x + iε) > 0.

By continuity,
θ′(x) = h(x) = lim

ε↘0
Reh(x+ iε) ≥ 0,

and θ′(x) > 0 follows since h(x) �= 0. �
Remark 11.1.4. In Lemma 11.1.3 one may impose the weaker assumption that
θ only maps the domain of θ in the open upper half-plane into the open upper
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half-plane, i. e., θ is allowed to have poles in C+. Then − 1
θ maps the open upper

half-plane into the closed upper half-plane, and a pole of θ becomes a zero of − 1
θ .

However, since a nonconstant analytic function maps open sets into open sets,
see, e. g., [55, IV.7.5], − 1

θ(λ) would have negative imaginary part for some λ in the

open upper half-plane, and so also θ(λ). This proves that θ cannot have poles in
C+. By the same reason, allowing θ to map the open upper half-plane into the
closed upper half-plane would imply that either θ(C+) ⊂ C

+ or θ is constant.

Lemma 11.1.5. Let p and q be real polynomials with deg p = deg q+1 and such that
all zeros of p and q are real and simple and interlace. Then p and q is a real pair.

Proof. By Definition 5.1.3 we have to show that all zeros of μp+ϑq are real, where
μ, ϑ ∈ R such that μ2 + ϑ2 > 0. This is trivial if μ = 0 or ϑ = 0 or deg p = 1.
Hence it is sufficient to consider p + ϑq with ϑ �= 0 and deg p ≥ 2. Choose two
adjacent zeros x1 and x2 of p. By assumption, q has exactly one zero between x1

and x2, this zero is simple, and q(x1) �= 0, q(x2) �= 0. Therefore q(x1) and q(x2)
are different from zero and have opposite signs. From p(xj) + ϑq(xj) = ϑq(xj) for
j = 1, 2 it then follows that p+ϑq changes sign between x1 and x2. Since there are
deg p− 1 pairs of such numbers x1 and x2, p+ϑq has at least deg p− 1 real zeros.
But p+ ϑq is real, so that nonreal zeros must occur in pairs of a number and its
conjugate complex number, i. e., the number of nonreal zeros must be even, and
it follows that p+ ϑq cannot have any nonreal zeros. �

The following theorem clarifies the statement and proof of [173, Theorem 1,
p. 308].

Theorem 11.1.6. A real meromorphic function θ on C maps the open upper half-
plane into itself if and only if θ is represented in the form

θ(λ) = C
(λ− b0)−
(λ− a0)+

∏
k∈I′

a,b

(
1− λ

bk

)(
1− λ

ak

)−1

, (11.1.2)

where C > 0, the sets a, b, Ia, Ib satisfy the properties as layed out in Remark

5.1.6, in particular a∪ b �= ∅, and where k ∈ I ′a,b means that the factors
(
1− λ

ak

)
occur for k ∈ Ia \ {0}, the factors

(
1− λ

bk

)−1

occur for k ∈ Ib \ {0}, that is, if for
some k only one factor occurs, then the non-occurring factor has to be replaced by
1, and, similarly, λ − a0 and λ − b0 have to be replaced by 1 if 0 �∈ a or by −1 if
0 �∈ b, respectively.

Proof. Assume that θ is of the form (11.1.2). We will first consider the case that
Ib = Ia. The series ∑

k∈Ia\{0}

(
1

ak
− 1

bk

)
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converges absolutely if it has infinitely many terms. For example,∑
k≥1

(
1

ak
− 1

bk

)
is a series of differences of positive interlacing numbers which is therefore bounded
above by 1

a1
. Since the functions

λ �→
(
1− λ

ak

)−1

are uniformly bounded on compact subsets of C not containing the points ak, with
bound independent of k, it follows that the series∑

k∈Ia\{0}

[(
1− λ

bk

)(
1− λ

ak

)−1

− 1

]
= λ

∑
k∈Ia\{0}

(
1

ak
− 1

bk

)(
1− λ

ak

)−1

converges uniformly on such sets.

For all k ∈ Ia \ {0} we have akbk > 0 and therefore

arg
1− λ

bk

1− λ

ak

= arg(λ− bk)− arg(λ− ak).

Denoting α = arg(λ− ak) and β = arg(λ− bk), the sketch

ak

λ

bkak−1 bk−1
ak+1 bk+1

α β

β − α

π − β

shows that for Imλ > 0 this argument is the angle subtended by the segment
[ak, bk] of the real axis from the point λ. Since

arg θ(λ) =
∑
k∈Ia

[arg(λ− bk)− arg(λ− ak)],

it follows that 0 < arg θ(λ) < π if Imλ > 0, i. e., θ(C+) ⊂ C+.

Next we consider the case that Ib = Ia − 1. Interchanging a and b we have
an interlacing pair ã = b, b̃ = a with Ib̃ = Iã. Then

ψ(λ) =
λ− b̃0
λ− ã0

∏
k∈I′

ã,b̃

(
1− λ

b̃k

)(
1− λ

ãk

)−1
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defines a real meromorphic function which satisfies ψ(C+) ⊂ C+ by the first part
of the proof, and thus 1

ψ (C
+) ⊂ C−. In order to relate θ to ψ we have to investigate

the indexing of the zeros and poles of θ and ψ.

If 0 �∈ Ia, then b̃0 = a1, ã0 = b0 shows that

θ(λ)ψ(λ) = C
λ− a1

1− λ
a1

= −Ca1 < 0.

Hence θ(C+) ⊂ C+.

If 0 �∈ Ib, then b̃0 = a0, ã0 = b−1 shows that

θ(λ)ψ(λ) = (−C)
1− λ

b−1

λ− b−1
=

C

b−1
< 0.

Hence θ(C+) ⊂ C+.

If 0 ∈ Ia∩Ib, then we consider two subcases. The first subcase is that b̃0 = a1,
ã0 = b0, b̃−1 = a0, so that

θ(λ)ψ(λ) = C
λ− a1

1− λ
a1

1− λ
b̃−1

λ− b̃−1

= C
a1

b̃−1

< 0.

The second subcase is that b̃0 = a0, ã0 = b−1, ã1 = b0, so that

θ(λ)ψ(λ) = C
1− λ

b−1

λ− b−1

λ− ã1

1− λ
ã1

= C
ã1
b−1

< 0.

Finally, we have to consider the case that Ia and Ib are finite with differ-
ent magnitude. If θ(λ) = α ∈ R, then writing θ = Q

P where Q and P are real
polynomials with real interlacing zeros, it follows that Q(λ)−αP (λ) = 0. Lemma
11.1.5 implies that λ ∈ R. Therefore θ(C+)∩R = ∅. Since θ(C+) is connected, we
conclude that θ(C+) ⊂ C

+ or (−θ)(C+) ⊂ C
+.

If θ has more zeros than poles, let λ0 be the smallest zero and define

ψ(λ) = (λ− λ0)
∏
k∈Ia

λ− bk
λ− ak

.

As for θ above, we conclude that ψ(C+) ⊂ C
+ or (−ψ)(C+) ⊂ C

+, and with the
aid of

ψ′(λ0) =
∏
k∈Ia

λ0 − bk
λ0 − ak

> 0

and Lemma 11.1.3 we conclude that (−ψ)(C+) ⊂ C+ is impossible, which shows
that ψ(C+) ⊂ C

+. Observe that λ0 = b0 if and only if 0 �∈ Ia.
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In case 0 �∈ Ia we therefore have

θ(λ) = C(λ− λ0)
∏
k∈Ia

1− λ
bk

1− λ
ak

= C(λ− λ0)
∏
k∈Ia

ak
bk

λ− bk
λ− ak

= C
∏
k∈Ia

ak
bk

ψ(λ),

so that θ(C+) ⊂ C+.

If 0 ∈ Ia, then λ0 < a0, so that λ0 = bk for some k < 0 and therefore λ0 < 0.
Then

θ(λ) = C

(
1− λ

λ0

)
λ− b0
λ− a0

∏
k∈Ia\{0}

1− λ
bk

1− λ
ak

= − C

λ0
(λ− λ0)

λ− b0
λ− a0

∏
k∈Ia\{0}

ak
bk

λ− bk
λ− ak

= − C

λ0

∏
k∈Ia\{0}

ak
bk

ψ(λ),

so that θ(C+) ⊂ C+.

If θ has more poles than zeros, let ã = −b, b̃ = −a, Iã = −Ib, Ib̃ = −Ia, so
that ã−k = −bk and b̃−k = −ak for the relevant indices k. Note that this setting
is consistent since b̃−1 = −a1 < 0 < −b−1 = a1. Let

θ̃(λ) =
(λ− b̃0)−
(λ − ã0)+

∏
k∈I′

ã,b̃

(
1− λ

b̃k

)(
1− λ

ãk

)−1

=
(λ− b̃0)−
(λ − ã0)+

∏
k∈I′

a,b

(
1 +

λ

ak

)(
1 +

λ

bk

)−1

.

We note that 0 ∈ Ia because we have more poles than zeros. If also 0 ∈ Ib, then

λ− b̃0
λ− ã0

=
−λ− a0
−λ− b0

,

whereas if 0 �∈ Ib and hence 0 �∈ Iã, then

(λ− b̃0)−
(λ− ã0)+

= λ− b̃0 = −(−λ− a0) =
(−λ− a0)+
(−λ− b0)−

.
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Thus in either case

θ(λ) =
C

θ̃(−λ) .

Since θ̃ is real meromorphic with more zeros than poles, it follows from the previous
case that θ̃(C+) ⊂ C+ and then θ̃(C−) ⊂ C−, so that θ(C+) ⊂ C+.

Conversely, assume that θ is a real meromorphic function such that θ(C)+ ⊂
C+. By Lemma 11.1.3 the zeros and poles of θ are simple and interlace. Denoting
the sets of zeros and poles by a and b, respectively, we have a ∪ b �= ∅ by Lemma
11.1.3. It follows by the first part of the proof that the real meromorphic function
ψ of the form (11.1.2) with C = 1 maps the open upper half-plane into itself.
Then f = θ

ψ is a meromorphic function without zeros and poles, i. e., an entire

function without zeros. Therefore there is an entire function h such that f = h2,
see [55, Theorem VIII.2.2]. We have to show that f = C with a positive constant
C. Since θ(C+) ⊂ C+ and ψ(C+) ⊂ C+, it follows that f(λ) /∈ (−∞, 0] for all
λ ∈ C+, and similarly for all λ ∈ C− because f is real analytic. Since f is real on
the real line, either f(R) ⊂ (0,∞) or f(R) ⊂ (−∞, 0). Therefore h(C\R) ⊂ C\ iR
and h(R) ⊂ R or h(R) ⊂ iR. Since h is never zero, it follows that h(R) is a subset
of (0,∞), (−∞, 0), (0, i∞), or (−i∞, 0). In any case, one of (0, i∞) or (−i∞, 0) has
no common points with h(C). By Lemma 11.1.2, this implies that h is constant.
Since this constant must belong to h(C \ R) and h(R), this constant is real and
nonzero, so that f = C with a positive constant C. �

Remark 11.1.7. If we only assume that a and b interlace without the requirement
of the particular enumeration from Remark 5.1.6, with a possible gap for the index
0 in the index sets, and where (λ− a0)− is possibly replaced by (λ− a0)+, where
0 �∈ a ∪ b is allowed and where we only require C �= 0, then it is clear that this
representation of θ is a nonzero constant multiple of that in Theorem 11.1.6. Hence
θ(C+) ⊂ C

+ or (−θ)(C+) ⊂ C
+. By Lemma 11.1.3, this weaker assumption and

θ′(x) > 0 for some x ∈ R would be necessary and sufficient for θ to map the open
upper half-plane into the open upper half-plane.

Corollary 11.1.8. Let θ be a real meromorphic function which maps the upper half-
plane into itself. Assume that the set of poles of θ is bounded below and that the
smallest pole of θ is smaller than the smallest zero of θ. Then there are positive
constants c1, c2, and γ such that

c1|λ|−1 ≤ |θ(λ)| ≤ c2 for λ < −γ.

Proof. If we take any two factor in (11.1.2) corresponding to a pole and a zero, the
corresponding limit as λ→ −∞ is a nonzero constant, and it is therefore sufficient
to consider an infinite product

∞∏
k=k0

(
1− λ

bk

)(
1− λ

ak

)−1
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with 0 < ak0 < bk0 < ak0+1 < bk0+1 < · · · . Then we conclude that(
1− λ

bk

)(
1− λ

ak

)−1

=
akbk − akλ

akbk − bkλ
< 1 for λ < 0, k ≥ k0,

which proves that |θ(λ)| ≤ c2 for suitable c2, γ > 0 and λ < γ. Similarly,(
1− λ

bk

)(
1− λ

ak+1

)−1

=
ak+1bk − ak+1λ

ak+1bk − bkλ
> 1 for λ < 0, k ≥ k0,

and (
1− λ

ak0

)−1

= −ak0

λ
(1 + o(1)) for λ < 0

proves that |θ(λ)| ≥ c1|λ|−1 for suitable c1, γ > 0 and λ < γ. �

The following lemma is a particular case of [173, Theorem 1, p. 224 and
Theorem 2, p. 225]. For convenience of the reader we provide a proof, taking just
those parts of the proofs in [173] which are needed for this special case.

Lemma 11.1.9. Let ψ be analytic and bounded on C+ and let |ψ(λ)| = 1 for all
λ ∈ R. Let a1, a2, . . . denote the zeros of ψ, counted with multiplicity. Then

(∞)∑
k=1

∣∣∣∣Im 1

ak

∣∣∣∣ <∞.

Proof. The zeros may be indexed in such a way that |aj | ≤ |aj+1|. Let ε > 0 such
that |aj | > ε for all j and let R > ε such that |aj | �= R for all j. Let C be the
positively oriented boundary of the region given by ε < |λ| < R, Imλ > 0 and
consider the contour integral

J =
1

2πi

∫
C

(
1

R2
− 1

λ2

)
logψ(λ) dλ.

Here we have to observe that J depends on the choice of the branch of logψ. We
first choose a fixed branch on the semicircle in the upper half-plane with centre 0
and radius R. Then, for each such R, we extend this branch of logψ to a continuous
branch along C, say, starting and ending at ε. Then

J =
1

2πi

∫ R

ε

(
1

R2
− 1

x2

)
logψ(x) dx +

1

2π

∫ π

0

(
1

R2
− e−2iθ

R2

)
logψ(Reiθ)Reiθ dθ

+
1

2πi

∫ −ε

−R

(
1

R2
− 1

x2

)
logψ(x) dx

+
1

2π

∫ 0

π

(
1

R2
− e−2iθ

ε2

)
logψ(εeiθ)εeiθ dθ. (11.1.3)
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On the other hand, integration by parts yields

J =
1

2πi
ΦC

[(
λ

R2
+

1

λ

)
logψ(λ)

]
− 1

2πi

∫
C

(
λ

R2
+

1

λ

)
ψ′(λ)
ψ(λ)

dλ, (11.1.4)

where ΦC denotes the increase of the function along C, starting and ending at
ε. By the argument principle, this increase equals 2πi(ε/R2 + 1/ε)n(R), where
n(R) is the number of zeros of ψ with modulus less than R. We recall that the

assumptions on ψ imply that all zeros (ak)
(∞)
k=1 of ψ lie in C+. The residue theorem

shows that the second summand in (11.1.4) is

−
n(R)∑
k=1

(
ak
R2

+
1

ak

)
.

Equating imaginary parts of (11.1.3) and (11.1.4) gives

1

πR

∫ π

0

sin θ log |ψ(Reiθ)| dθ +Aε(ψ,R) = −
n(R)∑
k=1

Im

(
ak
R2

+
1

ak

)
, (11.1.5)

where

Aε(ψ,R) = Im
1

2π

∫ 0

π

(
1

R2
− e−2iθ

ε2

)
logψ(εeiθ)εeiθ dθ

− 1

2π

∫ R

ε

(
1

R2
− 1

x2

)
log |ψ(x)ψ(−x)| dx.

Since ψ is bounded in the closed upper half-plane, log |ψ| is bounded above, and
therefore the left-hand side of (11.1.5) is bounded above as R →∞. For 1 ≤ k ≤
n(R), the identities∣∣∣∣Im 1

ak

∣∣∣∣ = ∣∣∣∣Im ak
|ak|2

∣∣∣∣ = Im
ak
|ak|2 = Im

(
ak
|ak|2 −

ak
R2

)
R2

R2 − |ak|2

=

(
Im ak
|ak|2 −

Im ak
R2

)
R2

R2 − |ak|2 =

(
Im

1

ak
− Im ak

R2

)
R2

R2 − |ak|2

= − Im

(
1

ak
+

ak
R2

)
R2

R2 − |ak|2

show that the right-hand side of (11.1.5) is a sum of positive terms. Choosing now
r > ε and R ≥ 2r such that |aj | �∈ {r, R} for all indices j, the above identity gives
for k = 1, . . . , n(r) that∣∣∣∣Im 1

ak

∣∣∣∣ ≤ − Im

(
1

ak
+

ak
R2

)
4R2

4R2 −R2
= −4

3
Im

(
1

ak
+

ak
R2

)
,
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so that
n(r)∑
j=1

∣∣∣∣Im 1

ak

∣∣∣∣ ≤ −4

3

n(R)∑
j=1

Im

(
1

ak
+

ak
R2

)
.

Then (11.1.5) and the fact that the left-hand side of (11.1.5) is bounded above as
R→∞ complete the proof. �

11.2 Sine type functions

Definition 11.2.1. An entire function ω is said to be an entire function of finite
order if there is k ≥ 0 such that

|ω(λ)| ≤ e|λ|
k

for all λ ∈ C with sufficiently large modulus. The largest lower bound of all k for
which this estimate is true is denoted by ρω and is called the order of ω.

For a different characterization, we introduce the following notation. For an
entire function ω and r > 0 let

Mω(r) = max
|λ|=r

|ω(λ)|. (11.2.1)

If ω is not a constant function, then Mω(r)→∞ as r→∞ by Liouville’s theorem.
Then

ρ = ρω = lim sup
r→∞

log logMω(r)

log r
(11.2.2)

is well defined with ρω ∈ [0,∞], ω is of finite order if and only if ρω <∞, and in
this case ρω is the order of ω, see, e. g., [173, p. 3].

For a nonconstant entire function ω of order ρ one may fine-tune the defining
estimate by considering the inequality

|Mω(r)| < ear
ρ

.

Similar to (11.2.2) we now define, see [173, p. 3],

σ = σω = lim sup
r→∞

logMω(r)

rρω
. (11.2.3)

Definition 11.2.2. An entire function ω of finite order is said to be of minimal type
if σ = 0, of normal type if 0 < σ <∞, and of maximal type if σ =∞.

Definition 11.2.3. An entire function ω is said to be of exponential type if

σ = σω = lim sup
r→∞

logMω(r)

r
<∞, (11.2.4)

and then the number σ is called the exponential type of ω.
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The definitions immediately show the following characterization.

Remark 11.2.4 ([173, p. 84]). An entire function ω is of exponential type if and
only if

(i) ω is of finite order ρ less than 1, in which case its exponential type equals 0

or

(ii) ω is of finite order ρ = 1 and minimal or normal type, in which case its
exponential type equals its type.

If in the above definitions we restrict the function ω to the upper or lower half-
planes, then we obtain corresponding definitions of order, type, and exponential
order in that half-plane.

Definition 11.2.5 ([176, §1]). An entire function ω of positive exponential type is
said to be a sine type function if

(i) there is h > 0 such that all zeros of ω lie in the strip {λ ∈ C : |Imλ| < h},
(ii) there are h1 ∈ R and positive numbers m < M such that m ≤ |ω (λ)| ≤ M

holds for λ ∈ C with Imλ = h1,

(iii) the exponential type of ω in the lower half-plane coincides with the exponen-
tial type of ω in the upper half-plane.

For convenience, we introduce the functions ωη, η ∈ R, defined by

ωη(λ) = ω(λ+ iη), λ ∈ C. (11.2.5)

Let f be a function which is analytic on an angular domain

S = Sφ1,φ2 = {λ : φ1 < argλ < φ2},
and continuous on S. We will refer to such functions as functions on S. Define

Mf,φ1,φ2(r) = max
φ∈[φ1,φ2]

|f(reiφ)|, r > 0.

Lemma 11.2.6. Let ω be a function of exponential type σ and let η ∈ R.

1. ωη is a function of exponential type σ.

2. If there are h1 ∈ R and a positive number M such that |ω (λ)| ≤M holds for
λ ∈ C with Imλ = h1, then there is Mω,η > 0 such that

|ωη(λ)| ≤Mω,ηe
σ| Imλ|, λ ∈ C. (11.2.6)

3. If ω is a sine type function, then also ωη is a sine type function.

Proof. 1. From the definition of the maximum modulus function (11.2.1) and the
Maximum Modulus Theorem we have Mω(r− |η|) ≤Mωη(r) ≤Mω(r+ |η|) for all
r > |η| and therefore

σ = lim sup
r→∞

logMω(r − |η|)
r

≤ lim sup
r→∞

logMωη(r)

r
≤ lim sup

r→∞
logMω(r + |η|)

r
= σ,

which shows that ωη is of exponential type σ.
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2. First we are going to prove (11.2.6) for η = h1. For ε ≥ 0 define

ψε(λ) = ωh1(λ)e
i(σ+ε)λ, λ ∈ C.

Then, in view of
|ψε(λ)| = |ωh1(λ)|e−(σ+ε) Imλ, λ ∈ C,

it follows for all ε > 0 that ψε is bounded on the real axis as well as on the positive
imaginary semiaxis since the type of ωh1 is σ. Applying the Phragmén–Lindelöf
principle in the form of [55, Corollary VI.4.2] to the first and second quadrants in
the upper half-plane, it follows that ψε is bounded on the closed upper half-plane
for all ε > 0. Then [55, Corollary VI.4.4] shows that also ψ0 is bounded on the
closed upper half-plane. Hence there is Mω,h1 > 0 such that

|ωh1(λ)|e−σ Imλ ≤Mω,h1 , Imλ ≥ 0.

Since also ωh1 is of exponential type σ and bounded on the real axis, the above
estimate also applies to ωh1 , and therefore

|ωh1(λ)|eσ Imλ ≤Mω,h1 , Imλ ≤ 0,

where we can take the same constant in both estimates.

The estimate (11.2.6) for arbitrary η now easily follows from this special case:

|ωη(λ)| = |ωh1(λ+ i(η − h1))| ≤Mω,h1e
σ| Imλ+η−h1| ≤Mω,h1e

σ|η−h1|eσ| Imλ|.

3. Clearly, properties (i) and (ii) in Definition 11.2.5 also hold for ωη, with h
replaced with h+ |η| and h1 replaced with h1 − η.

In order to show property (iii) in Definition 11.2.5 we observe that, by (11.2.6)
and the maximum modulus principle,

Mωη,0,π(r) +Mω,0e
σ|η| ≥Mωη,0,π(r) + max{|ω(λ)| : |Reλ| ≤ r, | Imλ| ≤ |η|}
≥ max{|ω(λ)| : |λ| = r − |η|, Imλ ≥ 0}
= Mω,0,π(r − |η|)

for r > |η|, which gives

σ ≥ lim sup
r→∞

logMωη,0,π(r)

r
≥ lim sup

r→∞
logMω,0,π(r − |η|)

r
= σ.

Hence the type of ωη in the upper half-plane is σ. Similarly, we obtain that the
type of ωη in the lower half-plane is σ. �

The following lemma is a special case of [172, Lemma 2].

Lemma 11.2.7. Let ω be a sine type function. Then there is a natural number
� such that for each t ∈ R the number of zeros of ω inside the vertical strip
St = {λ ∈ C : t ≤ Reλ ≤ t+ 1}, counted with multiplicity, does not exceed �.
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Proof. Suppose the statement of the lemma is false. Then there is a sequence of
real numbers (tj)

∞
j=1 such that for each j, the entire function ωj = ω(tj + ·) has at

least j zeros in the strip S0. In view of Lemma 11.2.6, part 2, the sequence (ωj)
∞
j=1

of entire functions is locally bounded. By Montel’s theorem, see [55, VII.2.9], we
may assume that the tj are chosen in such a way that (ωj)

∞
j=1 converges uniformly

on compact subsets of C to some entire function ω̃. In view of Definition 11.2.5,
(ii), it follows that |ω̃(x+ih1)| ≥ m > 0 for all x ∈ R. Therefore ω̃ is not identically
zero. With h from Definition 11.2.5,(i), we choose R > h + 1 such that ω̃ has no
zeros λ with |λ| = R. From Definition 11.2.5, (i), it follows that all zeros λ of ωj

in the strip S0 satisfy |λ| < R, which implies that ωj has at least j zeros with
|λ| < R, contradicting the fact that this number must be constant for sufficiently
large j by Hurwitz’s theorem, see [55, VII.2.5]. �
Proposition 11.2.8. Let ω be of sine type and let nω(r) be the number of zeros λ
of ω with |λ| ≤ r, counted with multiplicity. Then:

1. ω has infinitely many zeros.

2. There is a number d > 0 such that nω(r) − nω(r − 1) ≤ d for all r > 1.

3. There is c ≥ 0 such that nω(r) ≤ c+ dr for all r > 1, where d is as in 2.

4. The nonzero zeros ak of ω, k ∈ N, counted with multiplicity, satisfy

∞∑
k=1

∣∣∣∣Im 1

ak

∣∣∣∣ <∞. (11.2.7)

Proof. 1. If ω has no zeros, then the standard form of ω, see (5.1.3), is ω(λ) = ebλ+c,
λ ∈ C, where b, c ∈ C, and it is easy to see that the type of ω is |b|. Since ω is of
sine type, there are h1,M ∈ R such that

eRe c−h1 Im bexRe b = |ω(x+ ih1)| ≤M, x ∈ R, (11.2.8)

whence Re b = 0. Then |ω(x+ iy)| = e−y Im beRe c, so that ω would be bounded in
C+ or C−, contradicting the fact that ω must have the same positive type on C+

and C− by Definition 11.2.5, (iii).

Now assume ω has finitely many zeros. Then the standard form of ω is
ω(λ) = ebλ+cp(λ), λ ∈ C, where b, c ∈ C, p is a nonconstant polynomial, and
b �= 0 since the order of ω is 1. Observing that |eb(x+ih1)+c| has a positive lower
bound in the set {x ∈ R : xRe b ≥ 0} and that |p(λ)| → ∞ as |λ| → ∞, it follows
that ω is not bounded on any horizontal line {x + ih1 : x ∈ R}, contradicting
property (ii) of Definition 11.2.5 of functions of sine type. Hence ω has infinitely
many zeros.

2. Because of Definition 11.2.5, (i), and Lemma 11.2.7 it is obvious for r >
1
2 (h

2 + 3) that all zeros of ω inside the annulus {λ ∈ C : r − 1 < |λ| ≤ r} lie
inside the two vertical strips −r ≤ Reλ ≤ −r + 2 and r − 2 ≤ Reλ ≤ r. With �
from Lemma 11.2.7 it follows that nω(r) − nω(r − 1) ≤ 4� if r > 1

2 (h
2 + 3) and

nω(r) − nω(r − 1) ≤ nω(r) ≤ �(h2 + 4) for 1 < r < 1
2 (h

2 + 3). This proves part 2
with d = �(h2 + 4).
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3. immediately follows with c = nω(1) since nω(r) ≤ d�r�+ nω(1) by part 2.

4. If we arrange the nonzero zeros of ω in such a way that |ak| ≤ |ak+1| for
all k ∈ N, then it follows from part 3 with r = |ak| that

k ≤ n(|ak|) ≤ c+ d|ak|

and hence ∞∑
k=�c�+1

|ak|−2 ≤
∞∑

k=�c�+1

d2

(k − c)2
<∞.

But ∣∣∣∣Im 1

ak

∣∣∣∣ = | Im ak|
|ak|2 <

h

|ak|2 , (11.2.9)

and the estimate (11.2.7) follows. �

Later in this section we will substantially improve our knowledge on the
location of the zeros of ω; however, the rough estimate in Proposition 11.2.8 is
needed for the proof of the refinement.

Next we will prove an auxiliary result which roughly says that a slight move-
ment of the zeros of the above form does not change the estimates of the function
too much. For this we introduce the following notation, based on Proposition
11.2.8.

Notation 11.2.9. A sequence (bk)
∞
k=1 in C\{0} is called a pseudoregular sequence if

(i) the number n(r) of k ∈ N with |bk| ≤ r is finite for all r > 0,

(ii) there is a number d > 0 such that n(r) − n(r − 1) ≤ d for all r > 1.

Remark 11.2.10. From the proof of Proposition 11.2.8 we know that a pseudoreg-
ular sequence (bk)

∞
k=1 satisfies n(r) ≤ (d + 1)r for some d > 0 and all r > 1 and

that (b−1
k )∞k=1 ∈ �2. Clearly, if (bk)

∞
k=1 is a pseudoregular sequence and if (ck)

∞
k=1

is a sequence in C \ {0} such that (ck − bk)
∞
k=1 is bounded, then also (ck)

∞
k=1 is a

pseudoregular sequence. Furthermore, since c−1
k − b−1

k = (bk − ck)c
−1
k b−1

k we have
that (c−1

k − b−1
k )∞k=1 ∈ �1.

The following lemma is a generalization of [173, Lemma 5, p. 237].

Lemma 11.2.11. Let (bk)
∞
k=1 and (ck)

∞
k=1 be sequences in C\{0} such that (bk)

∞
k=1

is pseudoregular and such that (ck − bk)
∞
k=1 is bounded, and consider

f(λ) =

∞∏
k=1

(
1− λ

ck

)(
1− λ

bk

)−1

, λ ∈ C \ {bk : k ∈ N}.

Then f converges uniformly on compact subsets of C \ {bk : k ∈ N}, and for all
δ > 0,

lim sup
r→∞

log |f(reiφ)|
r

≤ 0 (11.2.10)
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uniformly for all φ ∈ [−π, π] on the set of reiφ ∈ C with |reiφ − bk| ≥ δ for all
k ∈ N, and

lim inf
r→∞

log |f(reiφ)|
r

≥ 0 (11.2.11)

uniformly for all φ ∈ [−π, π] on the set of reiφ ∈ C with |reiφ − ck| ≥ δ for all
k ∈ N.

Proof. For k ∈ N let

fk(λ) =

(
1− λ

ck

)(
1− λ

bk

)−1

.

Then we can write

log |fk(λ)| = log

∣∣∣∣∣∣∣∣1 + λ

1

bk
− 1

ck

1− λ

bk

∣∣∣∣∣∣∣∣ .
From log |1 + z| ≤ log(1 + |z|) ≤ |z| for all z ∈ C \ {−1} it therefore follows with
r = |λ| that

log |fk(λ)|
r

≤ |ck − bk|∣∣∣∣1− λ

bk

∣∣∣∣
1

|bk| |ck| .

Since 1 − λ
bk
→ 1 as k → ∞ and since (b−1

k )∞k=1, (c
−1
k )∞k=1 ∈ �2, we can deduce

that the series over k on the right-hand side converges locally uniformly for all
λ ∈ C \ {bk : k ∈ N}, which proves the stated convergence of the infinite product
f and gives the estimate

log |f(λ)|
r

≤
∞∑
k=1

|ck − bk|∣∣∣∣1− λ

bk

∣∣∣∣
1

|bk| |ck| . (11.2.12)

To prove (11.2.10), let δ > 0, m =
∞
sup
k=1
|ck − bk| and consider λ ∈ C such that

r = |λ| > m+δ+1 and |λ−bk| ≥ δ for all k ∈ N. We may assume that |bk| ≤ |bk+1|
for all k ∈ N. Then, in view of (11.2.12), we can establish the estimates

log |f(λ)|
r

≤
∞∑
k=1

m

|ck| |bk − λ|

≤
n(r−δ)∑
k=1

m

|ck| (r − |bk|) +
n(r+δ)∑

k=n(r−δ)+1

m

(|bk| − |ck − bk|) |bk − λ|

+

n(2r)∑
k=n(r+δ)+1

m

|ck| (|bk| − r)
+

∞∑
k=n(2r)+1

2m

|ck| |bk| . (11.2.13)
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We are going to show that each of the four sums tends to 0 as r → ∞. Let d be
the number from Notation 11.2.9. Then the second sum has at most !2δ"d terms,
and it follows that

n(r+δ)∑
k=n(r−δ)+1

m

(|bk| − |ck − bk|) |bk − λ| ≤
n(r+δ)∑

k=n(r−δ)+1

m

(r −m− δ)δ
−→
r→∞ 0 (11.2.14)

since each summand tends to 0 as r → ∞. Since the fourth sum is the tail of a
converging series, we have

∞∑
k=n(2r)+1

2m

|ck| |bk| −→r→∞ 0. (11.2.15)

For the first sum we observe that there are at most !m+ 2"d indices k for which
|bk| < m + 2 and at most d indices k such that δ ≤ r − |bk| < 1. For each of
the remaining indices k we can find an integer j ∈ {1, . . . , �r −m− 2�} such that
j ≤ r − |bk| ≤ j + 1. Since (bk)

∞
k=1 is pseudoregular, for each such j there are at

most d indices k with this property. For such index k, we have

|ck| ≥ r − (r − |bk|)− |bk − ck| ≥ r − j − 1−m ≥ �r − 1−m� − j.

Altogether, we have the estimate

n(r−δ)∑
k=1

1

|ck| (r − |bk|)

≤ !m+ 2"d
c0(r −m− 2)

+
d

(r −m− 1)δ
+ d

�r−m−2�∑
j=1

1

(�r − 1−m� − j)j
,

where c0 is the minimum of the |ck|, k ∈ N. We calculate

n−1∑
j=1

1

(n− j)j
=

1

n

n−1∑
j=1

(
1

n− j
+

1

j

)
=

2

n

n−1∑
j=1

1

j
=

2

n
(logn+ γn),

where γn → γ as n→∞ and γ is Euler’s number, see [55, VII.7.5]. Therefore

n(r−δ)∑
k=1

m

|ck| (r − |bk|) −→r→∞ 0. (11.2.16)

Finally, the third sum in (11.2.13) can be estimated in a similar way to the
first sum. The corresponding ck have modulus at least r + δ − m, so that an
estimate of the third sum follows indeed from that of the first sum. We do not
need a better estimate, and therefore we are content to state

n(2r)∑
k=n(r+δ)+1

m

|ck| (|bk| − r)
−→
r→∞ 0. (11.2.17)

The estimates (11.2.13)–(11.2.17) immediately imply (11.2.10).
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Interchanging bk with ck will result in replacing log |f(λ)| with − log |f(λ)|,
and (11.2.11) will follow from (11.2.10). �

As in Proposition 11.2.8, let ak, k ∈ N, be the nonzero zeros of the sine type
function ω, where we assume without loss of generality that the modulus increases
with the index, that is, |ak| ≤ |ak+1| for all k ∈ N. We will use the following
notations:

Uω,δ = {r ∈ (0,∞) : ∀ k ∈ N |r − |ak|| ≥ δ}, δ > 0, (11.2.18)

Eω,δ = (0,∞) \ Uω,δ, δ > 0, (11.2.19)

Eω,δ,r = Eω,δ ∩ (0, r), δ, r > 0, (11.2.20)

Corollary 11.2.12. Let ω be a sine type function. Then there exists δ > 0 such that
for all r > 1, the set Uω,δ ∩ (r, r + 1) contains an interval of length at least 2δ.

Proof. With d from Proposition 11.2.8, part 2, (r, r+1)∩Uω,δ consists of at most
d+ 1 intervals, whose total length is at least 1− 2dδ. Hence every positive δ with
δ < (4d+ 2)−1 will satisfy the statement of this corollary. �

Remark 11.2.13. Let ω be a sine type function and let (αk)
(∞)
k=1 be its zeros, counted

with multiplicity, in the upper half-plane. From Lemma 11.2.11 we know that χ+
ω

defined by

χ+
ω (λ) =

(∞)∏
k=1

(
1− λ

αk

)(
1− λ

αk

)−1

(11.2.21)

is a meromorphic function which converges absolutely and uniformly on compact
subset of C \ {αk : k ∈ Z}, and therefore in particular on compact subsets in the
closed upper half-plane. Indeed, χ+

ω is a function as considered in Lemma 11.2.11
if (ak)

∞
k=1 denotes the zeros of ω and if we put ck = ak for all k ∈ N, bk = ak if

Im ak ≤ 0, and bk = ak if Im ak > 0.

Corollary 11.2.14. Let ω be a sine type function. Then

lim
r→∞

log |χ+
ω (re

iφ)|
r

= 0 for all φ ∈ [0, π],

where for all δ > 0, the convergence is uniform on all λ ∈ C+ such that |λ−αk| ≥ δ
for all indices k.

Proof. For φ = 0 and φ = π, that is λ ∈ R, we have |χ+
ω (λ)| = 1, and the statement

of the lemma is trivial in this case. The general result now follow from (11.2.11)
and the fact that |χ+

ω (λ)| ≤ 1 for λ ∈ C+. �

We need the following generalization of the Schwarz reflection principle.
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Lemma 11.2.15. Let f be analytic on C+ such that the absolute value of f has a
continuous extension to C+ which is 1 on the real axis. Then f has a meromorphic

extension h to C, and h(λ) =
1

f(λ)
for all λ ∈ C− with f(λ) �= 0.

Proof. Let P = {λ ∈ C− : f(λ) = 0} and let Ω be the set of all λ ∈ C such that
the line segment connecting i and λ does not contain any of the points of P . It is
clear that Ω is an open set containing C+. For λ ∈ C\ (R∪P ) let h0(λ) be defined
by f(λ) if Imλ > 0 and by 1

f(λ)
otherwise. It is clear that h0 is a meromorphic

function in C \R with poles at the points in P . We are going to show that h0 has
an extension h to the real axis which is analytic at each point on the real axis. For
λ ∈ Ω define

g(λ) =

∫ 1

0

(λ − i)h0(i+ t(λ− i)) dt,

that is, g(λ) is the integral over h0 along the straight line segment from i to λ.
This integral is well defined since the integrand is bounded and continuous on Iλ,
where Iλ = [0, 1] if λ ∈ C+, and Iλ = [0, 1] \ {t0} in case λ ∈ C−, and where t0 is
the one value of t for which i+ t(λ0 − i) ∈ R. For λ, λ0 ∈ Ω we have

g(λ)− g(λ0) =

∫ 1

0

[(λ− i)h0(i+ t(λ− i))− (λ0 − i)h0(i + t(λ0 − i))] dt,

where the integrand is uniformly bounded for λ in any compact neighbourhood
of λ0 in Ω, and converges to 0 pointwise as λ → λ0 for all t ∈ Iλ0 . In view of
Lebesgue’s dominated convergence theorem it follows that g is continuous on Ω.

Clearly, since f is analytic in the open upper half-plane, also g is analytic in
C+, and a straightforward calculation shows that g′ = h0 in C+. Furthermore, if
λ0, λ ∈ Ω ∩ C− such that the line segment Γλ0,λ from λ0 to λ is contained in Ω,
then

g(λ)− g(λ0) =

∫
Γλ0,λ

h0(z) dz. (11.2.22)

Indeed, since h0 is analytic in Ω \ R, by a standard argument using Cauchy’s
integral theorem, it suffices to show that the contour integral over h0 along the
quadrilateral with vertices a±ε ± iε and b±ε± iε with a±ε, b±ε ∈ R for sufficiently
small ε > 0, a±ε → a, b±ε → b and a < b, tends to 0 as ε→ 0. Since h0 is locally
bounded, it suffices to show that

Iε =

∫ b

a

|h0(t+ iε)− h0(t− iε)| dt→ 0 as ε→ 0.

The integrand∣∣∣∣∣f(t+ iε)− 1

f(t+ iε)

∣∣∣∣∣ = |f(t+ iε)|
∣∣∣∣1− 1

|f(t+ iε)|2
∣∣∣∣
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is uniformly bounded in t and ε and converges to 0 pointwise for all t ∈ [a, b] as
ε → 0. This completes the proof of (11.2.22), and the Fundamental Theorem of
Calculus shows that g is analytic in Ω ∩ C− with g′ = h0 in Ω ∩ C−.

Let T be a triangular path which together with its interior lies in Ω. If T is
in C+ or C−, then Cauchy’s integral theorem shows that∫

T

g(z) dz = 0.

Since g is continuous, this extends to the case when T is in C+ or in in C−, and
therefore to arbitrary such T in Ω. But by Morera’s theorem, see [55, Theorem
IV.5.10], this means that g is analytic in Ω. Hence also g′ is analytic in Ω, and since
g′ = h0 on Ω \ R, it follows that h0 has an analytic extension h to C \ P , which,
in particular, is analytic at each point of the real axis and which is meromorphic
on C with h(λ) = h0(λ) =

1
f(λ)

for all λ ∈ C− \ P . �

The following result is a special case of [173, Theorem 5, p. 240].

Lemma 11.2.16. Let ω be a function of sine type σ with h1 = 0. Then

log |ω(λ)| = |y|
π

∫ ∞

−∞
log |ω(t)| dt

(t− x)2 + y2
+ σ|y|+ log |χ(λ)| (11.2.23)

for all λ = x+ iy ∈ C with ω(λ) �= 0, where

χ(λ) =

{
χ+
ω (λ) if Imλ ≥ 0,

χ+
ω (λ) if Imλ < 0.

Proof. It suffices to prove the results for Imλ ≥ 0 since also ω is a function of sine
type σ with h1 = 0. The function u on C+ defined by

u(λ) =
y

π

∫ ∞

−∞
log |ω(t)| dt

(t− x)2 + y2
+ σy

is well defined and satisfies

|u(λ)− σy| ≤ max{| logM |, | logm|} =: M0 for y > 0 (11.2.24)

since
y

π

∫ ∞

−∞

dt

(t− x)2 + y2
= 1,

where m and M are the constants from Definition 11.2.5, (ii). From

y

(t− x)2 + y2
= − Im

λ− t

|λ− t|2 = − Im
1

λ− t
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and a standard argument it follows that u is harmonic. Furthermore, for x0 ∈ R

we have

u(λ)− σ|y| − log |ω(x0)| = y

π

∫ ∞

−∞

log |ω(t)| − log |ω(x0)|
(t− x)2 + y2

dt,

so that for all δ > 0 and λ ∈ (x0 − δ, x0 + δ)× i(0,∞),

∣∣u(λ)− σ|y| − log |ω(x0)|
∣∣ ≤ ∣∣∣∣∣ yπ

∫
|t−x0|>2δ

log |ω(t)| − log |ω(x0)|
(t− x)2 + y2

dt

∣∣∣∣∣
+

∣∣∣∣∣ yπ
∫
|t−x0|<2δ

log |ω(t)| − log |ω(x0)|
(t− x)2 + y2

dt

∣∣∣∣∣
≤ 4M0

π

(
π

2
− arctan

δ

y

)
+

2

π
sup

|t−x0|<2δ

∣∣log |ω(t)| − log |ω(x0)|
∣∣ arctan 3δ

y

≤ 4M0

π

(
π

2
− arctan

δ

y

)
+ sup

|t−x0|<2δ

∣∣log |ω(t)| − log |ω(x0)|
∣∣.

Now let ε > 0 and choose δ, δ1 > 0 such that sup
|t−x0|<2δ

∣∣log |ω(t)| − log |ω(x0)|
∣∣ < ε

2

and
4M0

π

(
π

2
− arctan

δ

δ1

)
<

ε

2
. Then it follows for λ ∈ (x0 − δ, x0 + δ)× i(0, δ1)

that
∣∣u(λ)−σ|y|− log |ω(x0)|

∣∣ < ε. Therefore u has a continuous extension to C+,
given by u(x) = log |ω(x)|, x ∈ R. Let v : C+ → R be a harmonic conjugate of u
on C+ and define

ψ(λ) = ω(λ)e−u(λ)−iv(λ), λ ∈ C
+.

For x ∈ R we have in view of u(x) = log |ω(x)| that |ψ(x)| = 1 defines a continuous
extension of the absolute value of ψ to C+. By the Schwarz reflection principle,
see Lemma 11.2.15, ψ can be extended to a meromorphic function on C without
poles in C+. Since ω is of sine type σ, it follows from Lemma 11.2.6 that there is
M1 > 0 such that

|ψ(λ)| ≤M1e
σy−u(λ) ≤M1e

M0 , λ ∈ C
+,

where we have made use of (11.2.24) in the last estimate. Hence |ψ(λ)| ≤ 1 for all
λ ∈ C+ by the Phragmén–Lindelöf principle, see [55, Corollary VI.4.2]. With the
notation from χ+

ω , we define

χ+
n (λ) =

(n)∏
k=1

(
1− λ

αk

)(
1− λ

αk

)−1

,

where (n) means that we extend the product over all indices k = 1, . . . , n for which
αk exists. Since |χ+

n (λ)| → 1 as |λ| → ∞ and |χ+
n (λ)| = 1 for λ ∈ R, it follows that

ψn =
ψ

χ+
n
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is meromorphic without poles in the closed upper half-plane and bounded in the
closed upper half-plane with |ψn(λ)| = 1 for λ ∈ R. Again by the Phragmén–
Lindelöf principle, |ψn(λ)| ≤ 1 for all λ ∈ C+. In view of Remark 11.2.13

ψ∞ := lim
n→∞ψn =

ψ

χ+
ω

exists. Since both ψ and χ+
ω are analytic in the closed upper half-plane and their

zeros there coincide, with multiplicity, ψ∞ is meromorphic without zeros and poles
in the closed upper half-plane. The properties of the ψn carry over to the limit so
that |ψ∞(λ)| ≤ 1 for λ ∈ C+ and |ψ∞(λ)| = 1 for λ ∈ R. By the Schwarz reflection
principle, see Lemma 11.2.15, ψ∞ has no zeros and poles in C. Hence

ϕ = −i logψ∞

is a real entire function satisfying ϕ(C+) ⊂ C+. If ϕ maps the open upper half-
plane into itself, then Lemma 11.1.3 shows that ϕ has exactly one zero, which is
real. In view of Theorem 11.1.6, there are real number α and β with α > 0 such
that ϕ(λ) = αλ+ β. If ϕ does not map the open upper half-plane into itself, then
ϕ must be constant by the maximum principle. This case is covered if we allow
α = 0 above. It therefore follows from the definition of ψ that

log |ω(λ)| = u(λ) + log |ψ(λ)|
= u(λ) + Re logψ∞(λ) + log |χ+

ω (λ)|
= u(λ)− αy + log |χ+

ω (λ)| (11.2.25)

for all λ = x + iy ∈ C+ with ω(λ) �= 0. To complete the proof we have to show
that α = 0.

To this end let (λn)
∞
n=1 be a sequence in C+ such that |λn| → ∞ as n→∞

and

lim
n→∞

log |ω(λn)|
|λn| = σ, (11.2.26)

which exists since ω is of exponential type σ in the upper half-plane. In view of
(11.2.6) we have

lim
n→∞

log |ω(λn)|
|λn| ≤ σ lim inf

n→∞
Imλn

|λn| . (11.2.27)

From (11.2.26) and (11.2.27) it follows that

lim
n→∞

Imλn

|λn| = 1.

Then (11.2.26), (11.2.27), (11.2.24) and Corollary 11.2.14 lead to

σ = lim
n→∞

log |ω(λn)|
|λn| = σ − α,

which proves that α = 0. �
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The following lemma is a particular case of a result from [172].

Lemma 11.2.17. Let ω be a sine type function of type σ. Then there is a positive
real number m1 such that

|ω(λ)| ≥ m1e
σ| Imλ|, | Imλ| ≥ h+ 1, (11.2.28)

where h is chosen according to Definition 11.2.5.

Proof. Let h0 = h+ 1. First we are going to prove that there is m0 > 0 such that

|ω(x+ ih0)| ≥ m0, x ∈ R. (11.2.29)

Suppose that (11.2.29) is false. Then there exists a sequence (xj)
∞
j=1 of real num-

bers such that ω(xj + ih0) → 0 as j → ∞. Similar to the proof of Lemma 11.2.7
we may assume that ωj = ω(xj + ·) converges uniformly on compact subsets to
an entire function ω̃ which is not identically zero. By Definition 11.2.5, (i), none
of the functions ωj has a zero in the open disc with centre ih0 and radius 1. By
Hurwitz’s theorem, also ω̃ has no zero there. On the other hand,

ω̃(ih0) = lim
j→∞

ωj(ih0) = lim
j→∞

ω(xj + ih0) = 0.

This contradiction proves (11.2.29).

In view of Lemma 11.2.6 and (11.2.29), ωh0 is a sine type function with
h1 = 0. Now we can apply Lemma 11.2.16 to ωh0 , which does not have any zeros
in the upper half-plane, so that χωh0

(λ) = 1 for Imλ ≥ 0. Then (11.2.23) and
(11.2.24) show that

|ωh0(λ)| ≥ e−M0eσ Imλ, Imλ ≥ 0.

This proves (11.2.28) for Imλ ≥ h + 1. Applying this result to ω completes the
proof. �
Lemma 11.2.18. Let ω be an entire function of finite order, let θ, M and h1 < h2

be real numbers and let

S = {λ ∈ C : h1 ≤ Imλeiθ ≤ h2}
be a strip in the complex plane such that ω is bounded on the boundary ∂S of S.
Then ω is bounded on S.

Proof. Let ρ be the order of ω, choose α ∈ (0, π
2ρ ) with α < π and define

Sj = {λ ∈ S \ {0} : arg(λeiθ) ∈ (−α+ jπ, α+ jπ)}, j = 0, 1.

Clearly, ∂Sj \ ∂S and S \ (S0 ∪ S1) are bounded sets. Therefore, ω is bounded
on ∂Sj for j = 0, 1, and it suffices to prove that ω is bounded on Sj for j = 0, 1.
But the boundedness of ω on Sj follows from the Phragmén–Lindelöf principle, see
[55, Theorem VI.4.1], by a straightforward adaptation of the proof of [55, Corollary
VI.4.2] to subsets of angular regions. �
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The following result is mentioned in [176, §1].
Proposition 11.2.19. An entire function ω of finite order is of sine type if and only
if there exist positive constants σ, h, m and M such that

m ≤ |ω(λ)|e−σ| Imλ| ≤M (11.2.30)

for | Imλ| > h, in which case σ is the exponential type of ω.

Proof. First we prove that the condition is sufficient. Indeed, property (i) of Defi-
nition 11.2.5 is obvious since m > 0, whereas property (ii) holds with h1 = h and
m and M replaced with meσh and Meσh, respectively. Since ω is bounded on the
lines Imλ = h and Imλ = −h, Lemma 11.2.18 shows that ω is also bounded on
the strip {λ ∈ C : | Imλ| ≤ h}, where we may write the bound as M ′eσh with
M ′ ≥M . For | Imλ| > h we have

|ω(λ)| ≤Meσ| Imλ| ≤Meσ|λ|,

and therefore Mω(r) ≤ M ′eσr for r > h. Hence ω is of exponential type σ′ ≤ σ.
On the other hand,

|ω(±iy)| ≥ meσy for y > h

shows that the exponential type of ω is at least σ both in the upper and lower
half-plane, and it therefore equals σ in both half-planes. We have thus shown that
property (iii) of Definition 11.2.5 holds.

The necessity of (11.2.30) immediately follows from Lemmas 11.2.6 and
11.2.17. �

The following lemma is a special case of [175, Theorem 2.2].

Lemma 11.2.20. Let ω be a sine type function and for δ > 0 let Λδ be the set of
all complex numbers whose distance from the set of zeros of ω is less than δ, i. e.,

Λδ = {λ ∈ C : ∃ ζ ∈ C ω(ζ) = 0 and |λ− ζ| < δ}. (11.2.31)

Then for each δ > 0 there exists kδ > 0 such that

|ω(λ)| ≥ kδ for λ ∈ C \ Λδ. (11.2.32)

Proof. Assume that for some δ > 0 such kδ does not exist. Then there exists a
sequence of points (ζk)

∞
k=1 in C\Λδ such that lim

k→∞
ω(ζk) = 0. In view of the lower

bound in (11.2.30), the sequence (Im ζk)
∞
k=1 is bounded. Then ωk = ω(·+ζk) defines

a sequence of entire functions (ωk)
∞
k=1 which is locally bounded in C because of

the upper bound in (11.2.30). By Montel’s theorem we may assume that (ωk)
∞
k=1

converges to an entire function ω0, choosing a subsequence, if necessary. Again,
the lower bound in (11.2.30) shows that ω0 is not identically zero, whereas

ω0(0) = lim
k→∞

ωk(0) = lim
k→∞

ω(ζk) = 0.
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Then by Hurwitz’ theorem there exists k0 such that for all k > k0 the open disc
with centre zero and radius δ contains at least one zero of ωk, which means that ζk
has a distance less than δ to at least one zero of ω. This contradicts ζk ∈ C\Λδ. �
Remark 11.2.21. Lemma 11.2.20 extends the lower bound in (11.2.30) to C \ Λδ.
Indeed, it is easy to see that (11.2.30) and (11.2.32) lead to the following statement:
for any δ > 0 there exists mδ > 0 such that

e−σ| Imλ||ω(λ)| ≥ mδ for λ ∈ C \ Λδ, (11.2.33)

where σ is the order of the sine type function ω.

In order to give a more precise statement on the location of the zeros of sine
type functions, we need some preparations.

Definition 11.2.22. An analytic function f on S = Sφ1,φ2 is said to be of exponential
type on Sφ1,φ2 if

σ = σf,φ1,φ2 = lim sup
r→∞

logMf,φ1,φ2(r)

r
<∞, (11.2.34)

and then the number σ is called the exponential type of f on S. The indicator
function of f on S is defined by

hf (φ) = lim sup
r→∞

log |f(reiφ)|
r

, φ1 ≤ φ ≤ φ2.

We will also write ĥf (φ) = hf (φ) if the limit of
log |f(reiφ)|

r
as r → ∞ exists. If

f is analytic on S, then nf (r, φ1, φ2) denotes the number of zeros λ of f in S with
|λ| ≤ r.

From (11.2.30) and (11.2.33) we immediately obtain

Proposition 11.2.23. Let ω be a function of sine type σ. Then ĥω(φ) = σ| sinφ| for
all angles φ ∈ R \ Zπ, where the convergence is uniform on each compact subset
of R \ Zπ. Furthermore, for each δ > 0, the following limit is uniform in φ ∈ R:

lim
r→∞
r∈Uω,δ

log |ω(reiφ)|
r

= σ| sinφ|.

The following result can be found in [173, pp. 142–143].

Lemma 11.2.24. Let φ1 < φ2 < φ1+2π, let f be an analytic function on the sector
Sr = {λ ∈ Sφ1,φ2 : |λ| ≤ r} and assume that no zeros of f lie on the boundary of
Sr. Then

2πnf (r, φ1, φ2) =

∫ r

0

1

t

∂ log |f(teiφ)|
∂φ

∣∣∣
φ=φ2

dt−
∫ r

0

1

t

∂ log |f(teiφ)|
∂φ

∣∣∣
φ=φ1

dt

+ r

∫ φ2

φ1

∂ log |f(reiφ)|
∂r

dφ.
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Proof. By the argument principle, an integration along the boundary of Sr gives

2πinf(r, φ1, φ2) = eiφ1

∫ r

0

f ′(teiφ1)

f(teiφ1)
dt− eiφ2

∫ r

0

f ′(teiφ2)

f(teiφ2)
dt

+ ir

∫ φ2

φ1

eiφ
f ′(reiφ)
f(reiφ)

dφ.

From

∂ log f(teiφ)

∂t
= eiφ

f ′(teiφ)
f(teiφ)

and
∂ log f(teiφ)

∂φ
= iteiφ

f ′(teiφ)
f(teiφ)

it follows that

2πinf(r, φ1, φ2) =

∫ r

0

∂ log f(teiφ1)

∂t
dt−

∫ r

0

∂ log f(teiφ2)

∂t
dt

+

∫ φ2

φ1

∂ log f(reiφ)

∂φ
dφ.

Using the polar form
∂ log f

∂t
+

i

t

∂ log f

∂φ
= 0 of the Cauchy–Riemann equations

and taking imaginary parts completes the proof. �
Proposition 11.2.25. Let ω be a sine type function of sine type σ with |ω(0)| = 1
and define

Jr
ω(φ) =

1

r

∫ r

0

log |ω(teiφ)|
t

dt, r > 0, φ ∈ R \ Zπ.

Then
lim
r→∞ Jr

ω(φ) = σ| sinφ|, φ ∈ R \ Zπ,
uniformly on each compact subset of R \ Zπ.
Proof. Let ε > 0 and let Φ be a compact subset of R\Zπ. By Proposition 11.2.23,
there is r0 > 1 such that∣∣∣∣ log |ω(teiφ)|t

− σ| sinφ|
∣∣∣∣ < ε for t > r0 and φ ∈ Φ.

Since ω(0) = 1, λ �→ logω(λ)
λ is analytic at 0, and therefore there exist r1 ∈ (0, r0)

and C1 > 0 such that ω(λ) �= 0 for |λ| ≤ r1 and

| log |ω(teiφ)||
t

≤ C1 for 0 < t ≤ r1, φ ∈ Φ.

Hence ∫ r1

0

| log |ω(teiφ)||
t

dt ≤ C1r1, φ ∈ Φ.
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Let (ak)
n
k=1 be the tuple of all zeros λ of ω, counted with multiplicity, satisfying

|λ| ≤ 2r0. Then we can write

ω(λ) = h(λ)
n∏

k=1

(λ− ak), λ ∈ C,

where h(λ) �= 0 for |λ| ≤ 2r0. Hence there is C2 > 0 such that | log |h(λ)|| ≤ C2

for |λ| ≤ 2r0. Then ∫ r0

r1

| log |h(teiφ)||
t

dt ≤ r0 − r1
r1

C2, φ ∈ Φ.

For k = 1, . . . , n and φ ∈ Φ we calculate∫ r0

r1

| log |teiφ − ak|| dt ≤
∫ |ak|+1

|ak|−1

|log |t− |ak||| dt+
∫ r0

r1

max{0, log(t+ |ak|)} dt

≤ 2

∫ 1

0

| log t| dt+ (r0 − r1) log(3r0)

= 2 + (r0 − r1) log(3r0).

Altogether, we get∫ r0

0

∣∣∣∣ log |ω(teiφ)|t
− σ| sin φ|

∣∣∣∣ ≤ C1r1+
r0 − r1

r1
C2+n(2+ (r0− r1) log(3r0))+σr0.

Therefore we conclude for all φ ∈ Φ that

lim sup
r→∞

|Jr
ω(φ)− σ| sinφ|| ≤ lim sup

r→∞
1

r

∫ r0

0

∣∣∣∣ log |ω(teiφ)|t
− σ| sinφ|

∣∣∣∣ dt
+ lim sup

r→∞
1

r

∫ r

r0

ε dt ≤ ε. �

The following result is a special case of [173, Theorem III.3, p. 152].

Proposition 11.2.26. Let ω be a sine type function of sine type σ and let φ1, φ2 ∈
R \ Zπ such that φ1 < φ2 < φ1 + 2π. Then

lim
r→∞

nω(r, φ1, φ2)

r
=

σ

π
nφ1,φ2 ,

where nφ1,φ2 is the number of elements of the set (φ1, φ2) ∩ Zπ.

Proof. If nφ1,φ2 = 0, then the angular region Sφ1,φ2 contains at most finitely many
zeros of ω, and the statement is trivially true. Thus it suffices to prove the result for
nφ1,φ2 = 1. The transformation ω̂(λ) = ω(−λ) gives a sine type function ω̂ whose
zeros are obtained by rotating the zeros of ω by the angle π. Hence it suffices to
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consider the case −π < φ1 < 0 < φ2 < π. Since a shift of the variable and the
multiplication of ω by a nonzero constant changes neither the assumptions nor
the conclusion of this proposition, we may assume that ω(0) = 1. We also may
assume that φ1 and φ2 are chosen such that no zeros of ω lie on the rays with
angle φ1 and φ2, respectively. Hence no zeros of ω lie on the rays with angle φ in
[φ1, φ1 + k] and [φ2, φ2 + l] for sufficiently small positive k and l. Introducing the
function

N(r, φ, ϕ) =

∫ r

0

nω(t, φ, ϕ)

t
dt

and averaging over the above intervals we obtain in view of Lemma 11.2.24 that

N(r, φ1, φ2) =
1

kl

∫ φ1+k

φ1

∫ φ2+l

φ2

N(r, φ, ϕ) dϕdφ

=
1

2π

∫ r

0

J t
ω(φ2 + l)− J t

ω(φ2)

l
dt− 1

2π

∫ r

0

J t
ω(φ1 + k)− J t

ω(φ1)

k
dt

+
1

2πkl

∫ φ1+k

φ1

∫ φ2+l

φ2

∫ ϕ

φ

log |ω(reiϑ)| dϑ dφ dϕ,

where we have to observe that the integration over t is valid for all angles ϑ such
that ω has no zero on the ray teiϑ.

Let ε > 0. In view of Proposition 11.2.25 there is r0 > 0 such that

|Jr
ω(φ)− σ| sin φ|| < ε

for r > r0 and φ ∈ {φ1, φ1 + k, φ2, φ2 + l}. In the proof of Proposition 11.2.25
we have seen that |Jr

ω(φ)| ≤ C1 for φ ∈ R and 0 < r < r1, with r0 and C1 from
the proof of Proposition 11.2.25. From that proof we also conclude that there is
C3 > 0 such that |Jr

ω(φ)| ≤ C3 for all r ∈ [r1, r0] and φ ∈ R. Hence we obtain

lim
r→∞

1

r

∫ r

0

J t
ω(φ) dt = σ| sinφ|

uniformly on each compact subset of R \ Zπ. In view of Corollary 11.2.12, for
sufficiently small δ > 0,

lim
r→∞
r∈Uω,δ

N(r, φ1, φ2)

r
=

σ

2π

sin(φ2 + l)− sinφ2

l
+

σ

2π

sin(φ1 + k)− sinφ1

k

+
σ

2πkl

∫ φ1+k

φ1

∫ φ2+l

φ2

∫ ϕ

φ

| sinϑ| dϑ dφ dϕ,

where we have used Proposition 11.2.23 in the last summand. Therefore

lim
r→∞
r∈Uω,δ

N(r, φ1, φ2)

r
=

σ

π
. (11.2.35)
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We shall prove that

lim
r→∞

N(r, φ1, φ2)

r
=

σ

π
. (11.2.36)

To this end, let r > 1. Choose δ > 0 according to Corollary 11.2.12. Then there
are α(r) ∈ (r − 1, r) ∩ Uω,δ and β(r) ∈ (r, r + 1) ∩ Uω,δ. Since N(·, φ1, φ2) is an
increasing nonnegative function, it follows that

r − 1

r

N(α(r), φ1 , φ2)

α(r)
≤ N(r, φ1, φ2)

r
≤ r + 1

r

N(β(r), φ1, φ2)

β(r)
,

and therefore (11.2.36) follows from (11.2.35).

To establish the limit as r → ∞ of nω(r, φ1, φ2) we use the monotonicity of
nω(·, φ1, φ2) to deduce for γ > 1 that

nω(r, φ1, φ2) log γ ≤
∫ γr

r

nω(t, φ1, φ2)

t
dt

= N(γr, φ1, φ2)−N(r, φ1, φ2).

In view of (11.2.36) it follows that

lim sup
r→∞

nω(r, φ1, φ2)

r
≤ γ − 1

log γ

σ

π
,

and taking the limit as γ → 1 on the right-hand side we obtain

lim sup
r→∞

nω(r, φ1, φ2)

r
≤ σ

π
. (11.2.37)

Similarly, for 0 < γ < 1,

nω(r, φ1, φ2)(− log γ) ≥
∫ r

γr

nω(t, φ1, φ2)

t
dt

= N(r, φ1, φ2)−N(γr, φ1, φ2),

so that

lim inf
r→∞

nω(r, φ1, φ2)

r
≥ σ

π
. (11.2.38)

The inequalities (11.2.37) and (11.2.38) complete the proof in case nφ1,φ2 = 1. �

Lemma 11.2.27. If ω is a sine type function of type σ, then there is a positive
number M1 such that

|ω′(λ)| ≤M1e
σ| Imλ|, λ ∈ C,

and for each δ > 0, the logarithmic derivative
ω′

ω
of ω is bounded on C \ Λδ.
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Proof. For λ ∈ C and r > 0, let Γλ,r be the counter-clockwise circle with centre λ
and radius r. By Cauchy’s integral formula and (11.2.30),

|ω′(λ)| =
∣∣∣∣∣ 1

2πi

∮
Γλ,1

ω(z)

(z − λ)2
dz

∣∣∣∣∣ ≤Meσeσ| Imλ|.

The second statement follows from this estimate and (11.2.33). �
Notation 11.2.28. In view of Proposition 11.2.26 a sine type function ω has in-
finitely many zeros with positive real part and infinitely many zeros with nega-
tive real part. We therefore can write the nonzero zeros of ω, counted with mul-
tiplicity, as a sequence (λk)

∞
k=−∞ which is indexed over all integers such that

Reλk ≤ Reλk+1. For convenience we may also assume that Reλk ≥ 0 if k ≥ 0
and that Reλk ≤ 0 if k < 0.

Lemma 11.2.29. Observing Notation 11.2.28, it is true that for each sine type
function ω,

lim
n→∞

n∑
k=−n

1

λk

exists, and, there are c ∈ C \ {0} and m ∈ N0 such that

ω(λ) = cλm lim
n→∞

n∏
k=−n

(
1− λ

λk

)
, λ ∈ C.

Proof. Let σ be the type of ω and let bk = |λk| if k ≥ 0 and bk = −|λk| if k < 0.
Since the imaginary parts of the λk are uniformly bounded, it follows that the
sequence (bk − λk)

∞
k=−∞ is bounded. Observing that (λk)

∞
k=−∞ is pseudoregular,

we conclude that also (bk)
∞
k=−∞ is pseudoregular and that (b−1

k −λ−1
k )∞k=−∞ ∈ �1,

see Remark 11.2.10. From Proposition 11.2.26 and Proposition 11.2.8, part 2, we
know that

lim
n→∞

bn
n

= lim
n→∞

−b−n

n
=

π

σ
. (11.2.39)

In order to account for repeated values in the sequence bk, we let l
−
n be the smallest

negative integer k such that bk ≥ b−n and l+n be the largest positive integer k such
that bk ≤ bn. Since −n− d + 1 ≤ l−n ≤ −n and n ≤ l+n ≤ n+ d− 1, with d from
Proposition 11.2.8, part 2, we may replace the limits −n and n in the sum and
the product in the statement by l−n and l+n .

In view of Corollary 11.2.12 and Lemma 11.2.20, choosing δ > 0 there suf-
ficiently small, we can find for each sufficiently large positive integer n a circle
γn whose centre lies on the real axis and which intersects the real axis inside the
intervals (bl−n − 1, bl−n ) and (bl+n , bl+n + 1), respectively, such that γn lies in C \ Λδ.
Hence, by Lemma 11.2.27, there are n0 > 0 and M2 > 0 such that∣∣∣∣ω′(λ)

ω(λ)

∣∣∣∣ ≤M2 for all λ ∈ γn and all integers n > n0. (11.2.40)
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We may also assume that all λk with l−n ≤ k ≤ l+n lie inside γn. Let Δn be the
set of remaining indices k for which λk is inside γn. In view of Lemma 11.2.7, the
number of elements in Δn has a bound which is independent of n. Therefore

lim
n→∞

∣∣∣∣∣ ∑
k∈Δn

1

λk

∣∣∣∣∣ = 0.

In view of the residue theorem, we have

ηn :=

l+n∑
k=l−n

1

λk
=

1

2πi

∮
γn

ω′(λ)
λω(λ)

dλ−
∑
k∈Δn

1

λk
− resλ=0

ω′(λ)
λω(λ)

,

where ∣∣∣∣ 1

2πi

∮
γn

ω′(λ)
λω(λ)

dλ

∣∣∣∣ ≤ max{bn,−b−n}
min{bn,−b−n}M2 →M2 as n→∞

by (11.2.39) and (11.2.40). Therefore the sequence (ηn)
∞
n=1 is bounded. Since ω

has order 1, we know from (5.1.3) and Hadamard’s factorization theorem, see
[55, XI.3.4], that there are complex numbers a and b and a nonnegative integer m
such that

ω(λ) = λmeaλ+b
∞∏

k=−∞

(
1− λ

λk

)
e

λ
λk .

For n ∈ N we can write

ω(λ) = λme(a+ηn)λ+b

l+n∏
k=l−n

(
1− λ

λk

) ∏
k<l−n ,k>l+n

(
1− λ

λk

)
e

λ
λk . (11.2.41)

In view of the boundedness of (ηn) we can choose a subsequence (ηnj )
∞
j=1 of (ηn)

∞
n=1

such that
lim
j→∞

ηnj = η

exists. Since the infinite product on the right-hand side of (11.2.41) converges to
1 uniformly on each compact subset of C, it follows that

ω(λ) = λme(a+η)λ+b lim
j→∞

l+nj∏
k=l−nj

(
1− λ

λk

)
. (11.2.42)

The proof will be complete if we show that a + η = 0 because this shows that η
does not depend on the chosen convergent subsequence as n→∞, so that

lim
n→∞ ηn = −a.
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From Lemma 11.2.11 we know that

f(λ) =
∞∏

k=−∞

(
1− λ

λk

)(
1− λ

bk

)−1

, λ ∈ C \ {bk : k ∈ Z},

defines a meromorphic function f , so that (11.2.42) leads to the representation

ω(λ) = λme(a+η)λ+bf(λ)ωR(λ), (11.2.43)

where

ωR(λ) = lim
j→∞

l+nj∏
k=l−nj

(
1− λ

bk

)
. (11.2.44)

We obtain for all k ∈ Z and λ = reiφ with 0 < |φ| < π and sufficiently large r that

log

(∣∣∣∣1− reiφ

bk

∣∣∣∣2
)

= log

(
1 +

r2

b2k
− 2r cosφ

bk

)

= log

(
1 +

r2

b2k

)
+ log

⎛⎜⎜⎝1− 2

r

bk
cosφ

1 +
r2

b2k

⎞⎟⎟⎠ . (11.2.45)

In particular, for cosφ = 0, i. e., λ = ±ir, we have

log |ωR(±ir)| = 1

2

∞∑
k=−∞

log

(
1 +

r2

b2k

)
. (11.2.46)

On the other hand, it follows from (11.2.43), Proposition 11.2.23 and Lemma
11.2.11 that

log |ωR(±ir)|
r

=
log |ω(±ir)|

r
− Re b+m log r

r
∓ Im(a+ η)− log |f(±ir)|

r
−→
r→∞ σ ∓ Im(a+ η).

Since this limit must be the same along the positive and the negative imaginary
semiaxis by (11.2.46), it follows that

Im(a+ η) = 0 (11.2.47)

and that

lim
r→∞

1

2r

∞∑
k=−∞

log

(
1 +

r2

b2k

)
= σ (11.2.48)

exists.
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We put

ωR,n(λ) =

l+n∏
k=l−n

(
1− λ

bk

)
, δn =

l+n∑
k=l−n

1

bk
,

σn(r) =
1

2

l+n∑
k=l−n

log

(
1 +

r2

b2k

)
, σ∞(r) =

1

2

∞∑
k=−∞

log

(
1 +

r2

b2k

)
,

we let n(t) be the number of k for which 0 < bk ≤ t for t ≥ 0, and we let n(t) be
the number of k for which 0 > bk ≥ t for t < 0. Then it follows with the aid of
(11.2.45) and integration by parts that

log |ωR,n(re
iφ)|+ rδn cosφ =

∫ bn

b−n

[
1

2
log

(
1 +

r2

t2
− 2r cosφ

t

)
+

r cosφ

t

]
dn(t)

= σn(r) +

∫ bn

b−n

⎡⎢⎣1
2
log

⎛⎜⎝1− 2

r

t
cosφ

1 +
r2

t2

⎞⎟⎠+
r cosφ

t

⎤⎥⎦ dn(t)

= σn(r) +
1

2
log

⎛⎜⎜⎝1− 2

r

bn
cosφ

1 +
r2

b2n

⎞⎟⎟⎠ l+n − log

⎛⎜⎜⎝1− 2

r

b−n
cosφ

1 +
r2

b2−n

⎞⎟⎟⎠ l−n

+ r cosφ

(
l+n
bn
− l−n

b−n

)
+

∫ bn

b−n

[
r(r2 − t2) cosφ

(r2 + t2)(r2 + t2 − 2rt cosφ)
+

r cosφ

t2

]
n(t) dt.

At the beginning of this proof we have stated that (b−1
k − λ−1

k )∞k=−∞ ∈ �1, and
therefore

δ = lim
j→∞

δnj

exists. Using (11.2.39), l’Hôpital’s rule and the fact that

r(r2 − t2) cosφ

(r2 + t2)(r2 + t2 − 2rt cosφ)
+

r cosφ

t2
= O(t−3) as |t| → ∞

and that t−1n(t) is bounded, it follows that

log |ωR(re
iφ)| = −rδ cosφ+ σ∞(r)

+ r cosφ

∫ ∞

−∞

[
t(r2 − t2)

(r2 + t2)(r2 + t2 − 2rt cosφ)
+

1

t

]
n(t)

t
dt.
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Taking logarithms of the absolute values in (11.2.43) with λ = reiφ, substituting
the above identity, dividing the resulting equation by r and taking the limit as
r→∞ and observing Proposition 11.2.23, (11.2.47), Lemma 11.2.11 and (11.2.48),
it follows that

σ| sinφ| = (a+ η) cosφ− δ cosφ+ σ

+ cosφ lim
r→∞

∫ ∞

−∞

[
t(r2 − t2)

(r2 + t2)(r2 + t2 − 2rt cosφ)
+

1

t

]
n(t)

t
dt.

We consider integer values k for r, split off one part of the integral and substitute
t = kτ for the remaining part, so that the integral becomes∫ ∞

−∞

[
τ(1 − τ2)

(1 + τ2)(1 + τ2 − 2τ cosφ)
+

1

τ
(1 − χ

[
b−k
k ,

bk
k ]
(τ))

]
n(kτ)

kτ
dτ +

∫ bk

b−k

n(t)

t2
dt.

In the course of the above calculations, using integration by parts and the limiting
process, we have seen that

δ = lim
j→∞

∫ bnj

b−nj

n(t)

t2
dt.

The sequence of the functions in the square brackets is absolutely integrable with
integrable upper bound

τ �→ |τ |(1 − τ2)

(1 + τ2)(1 + τ2 − 2τ cosφ)
+

1

|τ | (1− χ[b−,b+](τ)),

where

b− = sup
k>0

b−k

k
< 0 and b+ = inf

k>0

bk
k

> 0

in view of (11.2.39) and since b−k < 0 and bk > 0 for k > 0. Furthermore, the
boundedness of t−1n(t) and Proposition 11.2.26 show that (kτ)−1n(kτ) is bounded
and converges to π−1σ as k → ∞ pointwise for all τ �= 0. Hence, by Lebesgue’s
dominated convergence theorem as k = nj →∞ and by (11.2.39),

σ| sinφ| = (a+ η) cosφ+ σ

+
σ

π
cosφ

∫ ∞

−∞

[
τ(1 − τ2)

(1 + τ2)(1 + τ2 − 2τ cosφ)
+

1

τ
(1 − χ[−π

σ ,πσ ](τ))

]
dτ

= (a+ η) cosφ+ σ

+
σ

π
cosφ

∫ ∞

0

τ(1 − τ2)

1 + τ2

[
1

1 + τ2 − 2τ cosφ
− 1

1 + τ2 + 2τ cosφ

]
dτ

= (a+ η) cosφ+ σ

+
σ

π
cos2 φ

∫ ∞

0

4τ2(1− τ2)

(1 + τ2)[(1 + τ2)2 − 4τ2 cos2 φ]
dτ.
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Taking now, say, 0 < φ < π
2 , and subtracting the corresponding expression for φ

replaced with π − φ, i. e., cosφ replaced with − cosφ, we arrive at

0 = 2(a+ η) cosφ,

which finally shows that (a+ η) = 0. �

11.3 Perturbations of sine type functions

In this section we are going to provide results on perturbations of sine type func-
tions through perturbations of their zeros. The constant c in Lemma 11.2.29 is
mostly immaterial in our considerations, so that, in general, we will consider only
the case c = 1.

If we perturb zeros, then the conditions Reλk ≤ Reλk+1 for all k ∈ Z will
no longer be true, so that we may relax this ordering condition to the requirement
that there is a positive integer k0 such that Reλk ≤ Reλk+k0 for all k ∈ Z. Such a
condition will always hold if we replace λk with λk +μk for any bounded sequence
(μk)

∞
k=−∞ if (λk)

∞
k=−∞ is pseudoregular. By the same reasoning one can abandon

the technical requirement that Reλk ≥ 0 if k ≥ 0 and Reλk ≤ 0 if k < 0. Finally,
we can omit some indices when indexing the sequence of zeros; notably, we may
omit 0 so that each index k has a matching distinct index −k and the product
from −n to n has 2n factors. To see that all these corresponding finite products
from −n to n have the same limit we just have to observe that they differ by at
most a finite number n0, independent on n, of factors of the form(

1− λ

c

)
and

(
1− λ

d

)−1

with |c|, |d| → ∞ as n → ∞ and that these factors converge to 1 uniformly on
compact subsets of C.

Furthermore, when perturbing the zeros of sine type functions, they may
enter or leave the imaginary axis and in particular 0, so that it may be convenient

to replace factors of the form 1 − λ

ak
with λ − ak. If we do such a substitution

for finitely many factors, then the function will differ from the original one by a
nonzero factor, which is immaterial for the properties of sine type function. Hence
we may do such a substitution whenever it appears to be convenient.

However, in general it will be more convenient to do the following shift of
the variable. In this way, all factors look formally the same, and we will therefore
assume in the following generic lemmas and propositions that no zero is located
on the imaginary axis.
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Lemma 11.3.1. Let ω be an entire function of the form

ω(λ) = λm lim
n→∞

n∏
k=−n

(
1− λ

λk

)
, λ ∈ C.

Choose a number a ∈ C such that Im a �= Imλk for all k ∈ Z. Then

ω̂a(λ) =

(
1 +

λ− a

a

)m

lim
n→∞

n∏
k=−n

(
1− λ− a

λk − a

)
, λ ∈ C.

defines an entire function ω̂a, and ω̂a(λ)ω(a) = ω(λ) for all λ ∈ C.

Proof. The statement immediately follows from(
1− λ− a

λk − a

)(
1− a

λk

)
=

(
1− λ

λk

)
and (

1 +
λ− a

a

)
a = λ. �

Lemma 11.3.2. Let μ ∈ C be such that Reμ �= 0 and define

f(λ) =

(
1− λ

μ

)
, fR(λ) =

(
1− λ

Reμ

)
.

Let h > | Imμ|. Then
|fR(λ− ih)||fR(−ih)|−1 ≤ |f(λ)| ≤ |fR(λ + ih)| (11.3.1)

for λ ∈ C with Imλ ≥ h and

|fR(λ + ih)||fR(ih)|−1 ≤ |f(λ)| ≤ |fR(λ− ih)| (11.3.2)

for λ ∈ C with Imλ ≤ −h.
Proof. Replacing λ with −λ and μ with −μ does not change f and fR. Hence
(11.3.2) follows from (11.3.1) via this substitution, and it suffices to prove (11.3.1).
Let a, b, x be fixed real numbers with b ≥ h and x �= 0 and consider the function

g(γ) =
|(a+ ib)− (x+ iγ)|2

|x+ iγ|2 =
(a− x)2 + (b − γ)2

x2 + γ2
, γ ∈ R.

Differentiation leads to

g̃(γ) :=
1

2
g′(γ)(x2 + γ2)2 = (γ − b)(x2 + γ2)− γ[(a− x)2 + (b− γ)2]

= bγ2 − γ((a− x)2 + b2 − x2)− bx2.
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In particular,

g̃(0) = −bx2 < 0 and g̃(b) = −b(a− x)2 ≤ 0.

Since g̃ is a quadratic polynomial with positive leading term, the set where this
function is not positive is a closed interval, and it follows that g is decreasing on
the interval [0, b]. Putting a = Reλ, b = Imλ, x = Reμ and, in turn, γ = h,
γ = Imμ and γ = 0 in case Imμ ≥ 0 it follows that

|λ− (Reμ+ ih)|
|Reμ+ ih| ≤ |λ− μ|

|μ| ≤ |λ− Reμ|
|Reμ| ≤

|λ− (Re μ− ih)|
|Reμ| ,

where the last inequality is obvious because Imλ > 0 gives | Imλ| < | Imλ−(−h)|.
If now Imμ < 0, then the above estimates can be applied to μ, so that

|λ− (Reμ+ ih)|
|Reμ+ ih| ≤ |λ− μ|

|μ| ≤ |λ− μ|
|μ| ≤ |λ− μ|

|Reμ| ≤
|λ− (Reμ− ih)|

|Reμ| ,

where the last three estimates are straightforward estimates of the numerator and
denominator, respectively. This leads to common estimates for all μ, λ ∈ C with
Reμ �= 0, | Imμ| < h and Imλ ≥ h:

|λ− (Reμ+ ih)|
|Reμ+ ih| ≤ |λ− μ|

|μ| ≤ |λ− (Reμ− ih)|
|Reμ| ,

which can be written as∣∣∣∣1− λ− ih

Reμ

∣∣∣∣ ∣∣∣∣1 + ih

Reμ

∣∣∣∣−1

≤
∣∣∣∣1− λ

μ

∣∣∣∣ ≤ ∣∣∣∣1− λ+ ih

Reμ

∣∣∣∣ .
The proof of (11.3.1) is complete. �
Lemma 11.3.3 ([176, Lemma 1]). Let (λk)

∞
k=−∞ be a sequence in C such that

Reλk �= 0 for all k ∈ Z. Then for the infinite product

ω(λ) = lim
n→∞

n∏
k=−n

(
1− λ

λk

)
(11.3.3)

to converge and represent a sine type function ω it is necessary and sufficient that
sup
k∈Z

| Imλk| <∞ and that the infinite product

ωR(λ) = lim
n→∞

n∏
k=−n

(
1− λ

Reλk

)
(11.3.4)

converges and represents a sine type function ωR. In this case, the types of ω and
ωR coincide.
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Proof. If either condition is satisfied, then both (λk)
∞
k=−∞ and (Reλk)

∞
k=−∞ are

pseudoregular and (λk −Reλk)
∞
k=−∞ is bounded. By Lemma 11.2.11, the infinite

product (11.3.3) converges if and only if the infinite product (11.3.4) converges.
From Lemma 11.3.2 we know for h > sup

k∈Z

| Imλk| <∞ that

|ωR(λ− ih)||ωR(−ih)|−1 ≤ |ω(λ)| ≤ |ωR(λ + ih)|
for λ ∈ C with Imλ ≥ h and

|ωR(λ + ih)||ωR(ih)|−1 ≤ |ω(λ)| ≤ |ωR(λ− ih)|
for λ ∈ C with Imλ ≤ −h. This shows that ω satisfies inequalities of the form
(11.2.30) if and only if ωR does, with different constants h, m, and M , in general,
but with the same σ.

Also, if one of the functions (11.3.3) or (11.3.4) represents a sine type func-
tion, then its order is 1, and (11.2.10), (11.2.11) and the maximum principle imply
that then also the other function has order 1. An application of Proposition 11.2.19
completes the proof. �

The following result is a special case of [176, Lemma 3].

Lemma 11.3.4. Let ω be a sine type function with h > 0 as in Definition 11.2.5 (i).
In the half-plane Imλ > h choose one sheet of argω. Then, for each H > h,

argωR(T + iH)− argωR(iH) = −πnω(T ) +O(1), T > 1,

where nω(T ) is the number of zeros, counted with multiplicity, of ω in the rectangle
{λ ∈ C : 0 < Reλ < T, | Imλ| < h}.
Proof. According to Lemmas 11.3.3 and 11.3.1, ωR(λ) is a sine type function. In
view of Lemmas 11.2.12 and 11.2.20 there are δ > 0 and kδ > 0 such that for each
T > 1 there is T ′ ∈ [T, T +1] such that |ωR(λ)| ≥ kδ for all λ ∈ C with Reλ = T ′.
Now consider the rectangle {λ ∈ C : 0 < Reλ < T ′, | Imλ| < H} and the change
of the argument of ω along its boundary. Since the change of argument of ωR along

a path equals the imaginary part of the integral over
ω′

R

ωR
along this path, it follows

from above and from Lemma 11.2.27 that the change of argument of ωR along the
vertical sides of the rectangle has a bound which is independent of T ′ and thus of
T . The same applies to the horizontal paths from T ± iH to T ′ ± iH . Since ωR is
a real analytic function, it follows that

argωR(T − iH)− argωR(−iH) = −[argωR(T + iH)− argωR(iH)].

Together with the argument principle the above estimates and identities show that

argωR(T + iH)− argωR(iH) = −πnωR(T ) +O(1).

Observing nωR(T ) = nω(T ) completes the proof. �
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Lemma 11.3.5. Let ω be a sine type function with h > 0 as in Definition 11.2.5 (i).
In the half-plane Imλ > h choose one sheet of argω. Then, for each H > h,

argω(T + iH)− argω(iH) = −πnω(T ) +O(log T ), T > 1,

where nω(T ) is the number of zeros, counted with multiplicity, of ω in the rectangle
{λ ∈ C : 0 < Reλ < T, | Imλ| < h}.
Proof. It is convenient to take a particular sheet of argω. By Lemma 11.3.1 we
may assume without loss of generality that the sine type function ω has no zeros
on the imaginary axis, and we may also assume that ω(0) = 1. Then letting Ω be
a simply connected open neighbourhood of {λ ∈ C : | Imλ| ≥ h} ∪ iR which does
not contain any zeros of ω, we choose the continuous branch of the argument of
ω on Ω with argω(0) = 0. Then clearly

argω(λ) = lim
n→∞

n∑
k=−n

arg

(
1− λ

λk

)
, (11.3.5)

where arg
(
1− λ

λk

)
is the continuous branch on Ω whose argument is 0 at λ = 0.

To evaluate this latter argument, we consider ζ ∈ C with Re ζ �= 0 and
Im ζ < h and write

arg

(
1− λ

ζ

)
= arg(ζ − λ)− arg(ζ),

where it is convenient to take arg(ζ) ∈ (− 3π
2 , π

2 ). As λ moves from 0 along the
imaginary axis to iH with H ≥ h, Re(ζ − λ) = Re ζ �= 0, so that arg(ζ − λ) ∈
(− 3π

2 , π
2 ) for λ along the (positive) imaginary axis. Since Im(ζ−iH) < 0, it follows

that arg(ζ−iH) ∈ (−π, 0). Now the real part of ζ−(x+iH) is decreasing with x ∈
R, while the imaginary part is a constant negative number. Hence arg(ζ−(x+iH))
is decreasing with increasing x ∈ R. The following sketch

y + iH

x+ iH

ζ1

ζ2

ζ3

ζ4

shows that for y < x and Im ζ < h,

arg(ζ − (y + iH))− arg(ζ − (x+ iH)) ∈ (0, π)

is the angle subtended by the segment [y+ iH, x+ iH ] from the point ζ, and that
for y ≤ Re ζ ≤ x, this angle decreases with decreasing Im ζ. However, the situation
differs for Re ζ outside [y, x]. Here the angle first increases with decreasing Im ζ
and then decreases.



324 Chapter 11. Analytic and Meromorphic Functions

The following sketch illustrates the generic case which we will investigate:

iH T + iH

ξ

ξ + iη

α

β

Here T > 0, η < h < H , and ξ is an arbitrary real number. Then

arg(ξ + iη − (T + iH))− arg(ξ + iη − iH) = −α,
arg(ξ − (T + iH))− arg(ξ − iH) = −β.

Observing that the sine of the angle between two complex numbers a and b of
modulus one is the imaginary part of ab, it follows that

sin(−α− (−β))

= Im
(ξ + iη − (T + iH))(ξ + iη − iH) (ξ − (T + iH)(ξ − iH)

|ξ + iη − (T + iH)| |ξ + iη − iH | |ξ − (T + iH)| |ξ − iH |
= Im

[(ξ − T )ξ + (η −H)2 + i(η −H)T ] [(ξ − T )ξ +H2 + iHT ]

|ξ + iη − (T + iH)| |ξ + iη − iH | |ξ − (T + iH)| |ξ − iH |
=

ηT [(ξ − T )ξ + (η −H)H ]

|ξ + iη − (T + iH)| |ξ + iη − iH | |ξ − (T + iH)| |ξ − iH | .

Clearly, β − α ∈ (−π, π) since α, β ∈ (0, π). However, we would like to have
β − α ∈ (−π

2 ,
π
2 ), that is, cos(β − α) > 0. But cos(β − α) is the real part of the

above expression, so that we consider

Re[(ξ + iη − (T + iH))(ξ + iη − iH) (ξ − (T + iH)(ξ − iH)]

= (ξ − T )2ξ2 + (ξ − T )ξ[(η −H)2 +H2] + (η −H)2H2 + (H − η)HT 2

=

(
(ξ − T )ξ +

1

2
[(η −H)2 +H2]

)2

− 1

4
[(η −H)2 −H2]2 + (H − η)HT 2,

which is positive if T > 0 is sufficiently large.

Putting now ξ + iη = λk, we obtain for

γk = arg

(
1− T + iH

λk

)
− arg

(
1− iH

λk

)
−
[
arg

(
1− T + iH

Reλk

)
− arg

(
1− iH

Reλk

)]
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that

lim
n→∞

n∑
k=−n

γk = argω(T + iH)− argω(iH)− [argωR(T + iH)− argωR(iH)]

(11.3.6)

and that

sin γk =: ck =
Imλk T [(Reλk − T )Reλk + (Imλk −H)H ]

|λk − (T + iH)| |λk − iH | |Reλk − (T + iH)| |Reλk − iH | .

With the above restrictions on H and T we can write

γk = arcsin ck = ck + g(ck)c
3
k,

where g is a bounded function on [−1, 1]. There are positive constants C1 and C2

such that

|ck| ≤ [|Reλk − T |+ |Reλk|][C1|Reλk − T ||Reλk|+ C2]

|λk − (T + iH)| |λk − iH | |Reλk − (T + iH)| |Reλk − iH | .

Expanding the numerator on the right-hand side we obtain a sum of four terms
where each of the factors in the numerator, apart from C1 or C2, is of the form
|Reu| with a matching term |u| in the denominator for some complex number u.
Cancelling these pairs of numbers, the above estimate leads to

|ck| ≤ C1

|Reλk − iH | +
C1

|Reλk − (T + iH)|
+

C2

|λk − iH | |Reλk − (T + iH)| |Reλk − iH |
+

C2

|λk − (T + iH)| |Reλk − (T + iH)| |Reλk − iH | . (11.3.7)

We observe that all factors in the denominators are bounded below by H −h > 0.
Recall from Proposition 11.2.8, part 2, that the number of indices k with |λk|
inside an interval of length 1 has a bound which is independent of the location of
that interval. Taking (11.2.39) into account, it follows that there is δ > 0 and for
each t ∈ R a number ν(t) ∈ Z such that

|λk − t− iH | ≥ δ(|k − ν(t)|+ 1), |Reλk − t− iH | ≥ δ(|k − ν(t)| + 1), k ∈ Z.

Here ν(t) is the index k for which |Reλk − t| assumes its minimum. We can now
conclude that all four terms on the right-hand side of (11.3.7) give l2 sequences
whose l2 norms are bounded as functions of T . Hence

∞∑
k=−∞

|ck|3
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converges with a limit which is bounded as a function of T . Also, the sums over
the last two summands in (11.3.7) converge with limits which are bounded as
functions of T , so that

lim
n→∞

n∑
k=−n

γk = lim
n→∞

n∑
k=−n

dk +O(1),

where

dk =
T (Imλk)(Re λk − T )Reλk

|λk − (T + iH)| |λk − iH | |Reλk − (T + iH)| |Reλk − iH | .

Clearly,

|dk| ≤ C1T

δ2(|k − ν(T )|+ 1)(|k|+ 1)
,

and

∞∑
k=−∞

T

(|k − ν(T )|+ 1)(|k|+ 1)
=

∞∑
k=0

T

(k + ν(T ) + 1)(k + 1)

+

ν(T )−1∑
k=1

T

(ν(T )− k + 1)(k + 1)
+

∞∑
k=ν(T )

T

(k − ν(T ) + 1)(k + 1)

=
T

ν(T )

∞∑
k=0

(
1

k + 1
− 1

k + ν(T ) + 1

)

+
T

ν(T ) + 2

ν(T )−1∑
k=1

(
1

ν(T )− k + 1
+

1

k + 1

)

+
T

ν(T )

∞∑
k=ν(T )

(
1

k − ν(T ) + 1
− 1

k + 1

)

=
T

ν(T )

ν(T )−1∑
k=0

1

k + 1
+

2T

ν(T ) + 2

ν(T )−1∑
k=1

1

k + 1
+

T

ν(T )

2ν(T )−1∑
k=ν(T )

1

k − ν(T ) + 1

≤ 4T

ν(T )

ν(T )−1∑
k=0

1

k + 1
≤ 4T

ν(T )
O(log ν(T ))

= O(log(T )),

where we have used that lim
T→∞

T
ν(T ) = π

σ in view of (11.2.36). Therefore, (11.3.6)

leads to

argω(T + iH)− argω(iH) = argωR(T + iH)− argωR(iH) +O(log(T )),

which completes the proof in view of Lemma 11.3.4. �
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In [176, Lemma 3] the authors formulate the statement of Lemma 11.3.5
with O(1) instead of O(log(T )). However, the following example shows that this
is incorrect and that indeed the asymptotic behaviour stated in Lemma 11.3.5 is
sharp.

Example 11.3.6. We now consider the special case of a sequence (λk)
∞
k=−∞ given

by λk = 2k+1 for k ≥ 0 and λk = 2k+1+ i for k < 0. Choosing H > 1 it follows
that the numbers dk from the proof of Lemma 11.3.5 satisfy dk = 0 for k > 0 and
dk > 0 for k < 0. Since

ωR(λ) = lim
n→∞

n∑
k=−n

(
1− λ

2k + 1

)
= cos

(π
2
λ
)
,

is a sine type function of type π
2 , it follows from Lemma 11.3.3 that also

ω(λ) = lim
n→∞

n∑
k=−n

(
1− λ

λk

)

is a sine type function of type π
2 . From the reasoning in the proof of Lemma 11.3.5

we know that

Δ(T,H) = argω(T + iH)− argω(iH)− [argωR(T + iH)− argω(iH)]

=
−1∑

k=−∞
dk + δ(T,H),

where δ is bounded with respect to T > 0 and all H in any bounded closed interval
of [2,∞). Here, for k < 0,

dk =
T (2k + 1− T )(2k + 1)

|2k + 1 + i− (T + iH)| |2k + 1 + i− iH |
1

|2k + 1− (T + iH)| |2k + 1− iH |
≥ T (2|k| − 1 + T )(2|k| − 1)

|2|k| − 1 + T +H | |2|k| − 1 +H | |2|k| − 1 + T +H | |2|k| − 1| .

For k ≥ H we conclude further that

d−k ≥ T (2k − 1 + T )(2k − 1)

16|2k − 1 + T | |2k− 1| |2k − 1 + T | |2k − 1|
≥ T

16(2k + T )(2k)

=
1

16(2k)
− 1

16(2k + T )
.
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We assume now for convenience that T is a positive even integer. Then

−1∑
k=−∞

dk ≥ 1

16

∞∑
k=�H�

(
1

2k
− 1

2k + T

)

=
1

16

�H�+ T
2 −1∑

k=�H�

1

2k

=
1

32
logT +O(1).

Altogether, it follows that

Δ(T,H) ≥ 1

40
logT

for sufficiently large T , uniformly in H ∈ [2, H0] for any H0 > 2. Next we observe
that for y > 0 and x ∈ R,

cos(x+ iy) = cosx cosh y − i sinx sinh y,

so that
tan arg cos(x+ iy) = − tanx tanh y.

Choosing a continuous branch of arg cos in the open upper half-plane it follows
that

arg cos(jπ + iy)− arg cos(iy) = −jπ
for all positive integers j. In particular,

argωR(T + iH)− argωR(iH) = −T π

2

for all even integers T . Altogether, we have

argω(T + iH)− argω(iH) ≥ −T π

2
+

1

40
logT.

The claim in [176, Lemma 3] for this case is that

argω(T + iH)− argω(iH) = −T π

2
+O(1)

for all T > 0. Hence this example shows that the claim is incorrect.

Corollary 11.3.7. Let ω be a sine type function with h > 0 as in Definition 11.2.5,
(i). In each of the half-planes Imλ > h and Imλ < −h choose one sheet of argω.
Then, for each H ∈ R with |H | > h,

argωR(T + iH)− argωR(iH) = − sgn(TH)πnω(T ) +O(1|), |T | > 1,

argω(T + iH)− argω(iH) = − sgn(TH)πnω(T ) + O(log |T |), |T | > 1,

where nω(T ) is the number of zeros, counted with multiplicity, of ω in the rectangle
{λ ∈ C : 0 < Reλ < T, | Imλ| < h} if T > 1, {λ ∈ C : −T < Reλ < 0, | Imλ| < h}
if T < −1.
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Proof. The statements for T > 1 and H > h are those of Lemmas 11.3.4 and
11.3.5. Now let T > 1 and H < −h. Observing that also ω is a sine type function,
it follows from Lemma 11.3.5 that

argω(T + iH)− argω(iH) = − argω(T − iH) + argω(−iH)

= πnω(T ) +O(log T ) = πnω(T ) +O(log T ).

For T < −1 we apply the above to the function ω̌ defined by ω̌(λ) = ω(−λ) and
obtain

argω(T + iH)− argω(iH) = arg ω̌(−T − iH)− arg ω̌(−iH)

= (sgnH)πnω̌(−T ) +O(log(−T )) = (sgnH)πnω(T ) +O(log |T |).

A corresponding proof holds for ωR. �

Taking the correction to [176, Lemma 3] in Lemma 11.3.5 into account, we
obtain the following analogue of [176, Lemma 4].

Lemma 11.3.8. Let (ψk)
∞
k=−∞ be a bounded sequence of complex numbers and let

(λk)
∞
k=−∞ be the sequence of zeros of a sine type function ω. Assume that Imλk �= 0

and Im(λk + ψk) �= 0 for all k ∈ Z. Then the function ω̃ defined by

ω̃(λ) = lim
n→∞

n∏
k=−n

(
1− λ

λk + ψk

)
(11.3.8)

represents an entire function. The function ω̃ is a sine type function if and only
if there is a line Imλ = H located in the exterior of the strip containing all the
zeros of ω and ω̃ on which the real part of

Φ = log

(
ω̃

ω

)
is bounded.

If ω̃ is a sine type function, then

Im log

(
ω̃R

ωR

)
(x+iH) = O(1) and ImΦ(x+iH) = O(log x) as |x| → ∞ (11.3.9)

on any line Imλ = H located in the exterior of the strip containing all the zeros
of ω and ω̃.

Proof. It follows from Lemma 11.2.11 that ω̃ represents an entire function which
has the same exponential type as ω in the upper and lower half-planes. Indeed, let
f be defined as in Lemma 11.2.11 with bk = λk and ck = λk + ψk, k ∈ Z. Then
ω̃ = fω, and we may apply the notation Uω̃,δ, see (11.2.18), to ω̃. Let σ be the
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type of ω. For all δ, ε > 0 it follows from Lemmas 11.2.6 and 11.2.11 that there is
r0 > 0 such that

log |ω̃(λ)| ≤ (σ + ε)|λ|, |λ| > r0, |λ| ∈ Uω̃,δ.

Choosing δ > 0 sufficiently small it follows as in the proof of Corollary 11.2.12
that for each λ ∈ C there is r ∈ (|λ|, |λ| + 1) ∩ Uω̃,δ. Applying the Maximum
Modulus Theorem to ω̃ on the disc with centre 0 and radius r, it follows that
log |ω̃(λ)| ≤ (σ + ε)r ≤ (σ + ε)(|λ| + 1) for each λ ∈ C with |λ| > r0. Hence
the exponential type of ω̃ is at most σ. Finally, Lemma 11.2.11 applied to f and
Lemma 11.2.17 applied to ω show that the exponential types of ω̃ in the upper
and lower half-planes are at least σ.

In view of Proposition 11.2.19 and Definition 11.2.5 it is clear that ω̃ is a sine
type function if and only if there are real numbers H and 0 < m < M such that

m ≤
∣∣∣∣ ω̃(λ)ω(λ)

∣∣∣∣ ≤M for λ ∈ C with Imλ = H.

But this condition means that the real part of Φ is bounded on the line Imλ = H .

Because of Lemma 11.3.3 the same arguments apply to ωR, ω̃R and ΦR.

Now assume that ω̃ is a sine type function. Since (ψk)
∞
k=−∞ is bounded, it

follows that nω̃(x) − nω(x) = O(1) for |x| → ∞. Applying Corollary 11.3.7 to ω
and ω̃ as well as ωR and ω̃R we obtain (11.3.9). �

Taking the above corrections to results from [176] into account, we obtain
the following analogue of [176, Theorem 1].

Theorem 11.3.9. Let (ψk)
∞
k=−∞ be a bounded sequence of complex numbers and let

(λk)
∞
k=−∞ be the sequence of zeros of a sine type function ω of sine type σ. For

the function ω̃ of the form (11.3.8) to be a sine type function it is sufficient that
there exists an entire function φ of exponential type ≤ σ which is bounded on the
real axis and which satisfies the following interpolation conditions at all points λk,
k ∈ Z, where qk denotes the multiplicity of λk:

φ(p)(λk) = 0 for p = 0, . . . , qk − 2, φ(qk−1)(λk) =
1

qk

∞∑
j=−∞
λj=λk

ψj ω
(qk)(λk).

(11.3.10)
If all ψk and λk are real, this sufficient condition is also necessary.

Proof. We start by constructing an auxiliary entire function φ1 of exponential type
≤ σ which satisfies (11.3.10) for the two given sequences (ψk)

∞
k=−∞ and (λk)

∞
k=−∞.

Replacing ω with a nonzero multiple of ω̂ defined by ω̂(λ) = ω(λ+η) for a suitable
real number η, we may assume that λk �= 0 and λk + ψk �= 0 for all k ∈ Z and
that ω is of the form (11.3.3). Because of (λ−1

k )∞k=−∞ ∈ �2,

ψ(λ) =

∞∑
k=−∞

ψk

(
1

λ− λk
+

1

λk

)
= λ

∞∑
k=−∞

ψk

λk(λ− λk)
(11.3.11)
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converges absolutely for all λ ∈ C \ {λk : k ∈ Z}. With the notation from Lemma
11.3.8 we can write

Φ(λ) = log
ω̃(λ)

ω(λ)
=

∞∑
k=−∞

(
log

(
1− ψk

λ− λk

)
− log

(
1 +

ψk

λk

))
for | Imλ| ≥ H ≥ h + 2A where A = sup

k∈Z

|ψk|. Then |ψk(λ − λk)
−1| < 1

2 is valid

for all k ∈ Z. Using that | log(1− τ) + τ | ≤ |τ |2 for|τ | < 1
2 we obtain

|Φ(λ) + ψ(λ)| ≤ C +

∞∑
k=−∞

|ψk|2
|λ− λk|2 , (11.3.12)

where

C =
∑

|ψkλ
−1
k

|≥ 1
2

∣∣∣∣log(1 + ψk

λk

)
− ψk

λk

∣∣∣∣+ ∞∑
k=−∞

∣∣∣∣ψk

λk

∣∣∣∣2 .
Denoting by Q(λ) the sum of the series on the right-hand side of (11.3.12) and
setting λ = x+ iy we obtain

Q(λ) ≤ A2
∞∑

k=−∞

1

|λ− λk|2 = A2
∞∑

s=−∞

∑
λk∈Π(s,x)

1

|λ− λk|2 (11.3.13)

where

Π(s, x) =

{
ζ : x− s− 1

2
< Re ζ ≤ x− s+

1

2
, | Im ζ| ≤ H

}
.

For all s ∈ Z \ {0} we have

∑
λk∈Π(s,x)

|λ− λk|−2 ≤ �

((
|s| − 1

2

)2

+ (|y| − h)2

)−1

,

where � is an upper bound of the number of zeros of ω which can occur in any
vertical strip of width 1, see Lemma 11.2.7. Therefore,

∞∑
k=−∞

|λ− λk|−2 ≤
∑

λk∈Π(0,x)

|λ− λk|−2 + 2�

∞∑
s=1

((
s− 1

2

)2

+ (|y| − h)2

)−1

,

(11.3.14)
and using, e. g., the integral test, (11.3.14) implies that there is a positive constant
C1 such that for |y| > h,

Q(x+ iy) ≤ C1

|y| − h
. (11.3.15)

Thus it follows from (11.3.12) and (11.3.15) that the function

Φ + ψ is bounded on {λ ∈ C : | Imλ| ≥ H}. (11.3.16)
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From (11.3.11) we find

|ψ(λ)| ≤ A|λ|
∞∑

k=−∞

1

|λk||λ− λk| ≤ A|λ|
( ∞∑

k=−∞

1

|λ− λk|2
) 1

2
( ∞∑

k=−∞

1

|λk|2
) 1

2

.

For each δ > 0 and λ ∈ C \ Λδ, where Λδ is defined in (11.2.31), we have

∞∑
k=−∞

|λ− λk|−2 ≤
∑

λk∈Π(0,x)

|λ− λk|−2 + 2�

∞∑
s=1

(
s− 1

2

)−2

≤ �δ−2 + 2�
∞∑
s=1

(
s− 1

2

)−2

, (11.3.17)

so that there is C2(δ) > 0 such that

|ψ(λ)| ≤ C2(δ)|λ| for λ ∈ C \ Λδ.

From (11.3.15) we also infer ψ(iy) = o(|y|) for |y| → ∞. Taking Lemma 11.2.6 into
account, it follows that the entire function φ1 = ψω satisfies the estimate O(|λ|)
on ∂Λδ. For sufficiently small δ > 0, all components of Λδ are bounded in view of
Corollary 11.2.12, so that the Maximum Modulus Theorem gives that φ1 satisfies
the estimate O(|λ|) on Λδ. These estimates of φ1, ψ and ω lead to

|φ1(x + iy)| ≤ C3|x+ iy|eσ|y|, x, y ∈ R, (11.3.18)

for a suitable constant C3, and also |φ1(iy)| = o(|y|eσ|y|) as |y| → ∞. Hence φ1

is a function of exponential type ≤ σ. Inserting the right-hand side of (11.3.11)
for ψ and the Taylor expansion of ω about λk into φ1 = ψω proves (11.3.10) for
φ = φ1.

To prove sufficiency, let φ be a function of exponential type ≤ σ which is
bounded on the real axis and satisfies the interpolation condition (11.3.10). Then

χ =
φ1 − φ

ω
= ψ − φ

ω

is an entire function. Since φ is bounded on the real axis and of exponential type
≤ σ, it follows from Lemma 11.2.6 that |φ(x + iy)| ≤ Ceσ|y| for some C > 0 and
all x, y ∈ R. Then Lemma 11.2.20 and (11.3.18) show that χ(λ) = O(|λ|) on C\Λδ

for each δ > 0, and the Maximum Modulus Theorem gives that χ is a polynomial

of degree not exceeding 1. Also, χ(iy) = o(|y|) as |y| → ∞ since φ(iy)
ω(iy) = O(1)

and ψ(iy) = o(|y|) as |y| → ∞. It follows that χ is constant, say c, and therefore
φ1 = φ+ cω is bounded on the real axis. In view of Lemmas 11.2.6 and 11.2.20 it
follows that ψ = φ1

ω is bounded on each line Imλ = H for sufficiently large |H |.
Therefore Φ is bounded on each such line by (11.3.16), and Lemma 11.3.8 shows
that ω̃ is a sine type function.



11.3. Perturbations of sine type functions 333

If ω̃ is of sine type and if all ψk and λk are real, then ω = ωR and ω̃ = ω̃R,
and Lemma 11.3.8 gives that Φ is bounded on some line Imλ = H , and therefore
ψ has this property in view of (11.3.16). Since ω is also bounded on this line, see
Lemma 11.2.6, it follows that φ = φ1 = ψω is bounded on the line Imλ = H .
Again in view of Lemma 11.2.6 it follows that φ is bounded on each horizontal
line and in particular on the real axis. �

Remark 11.3.10. In the proof of Theorem 11.3.9 we have seen that the function
φ1 is of exponential type ≤ σ and satisfies the interpolation condition (11.3.10).
We also know that any entire function φ satisfying these properties is of the form
φ1 + cω for some c ∈ C. Hence there exists such a φ which is bounded on the real
axis if and only if φ1 is bounded on the real axis.

Example 11.3.11. Denoting the entire functions ω and ωR from Example 11.3.6 by
ω̃ and ω, we have the assumptions of Theorem 11.3.9 satisfied with λk = 2k − 1
for k ∈ Z, ψk = i for k ≤ 0 and ψk = 0 for k > 0. Then, again in the notation of
Theorem 11.3.9, it follows that

ψ(λ) =

∞∑
k=0

i

(
1

λ+ 2k + 1
− 1

2k + 1

)
and

φ1(λ) = i cos
(π
2
λ
) ∞∑

k=0

(
1

λ+ 2k + 1
− 1

2k + 1

)
.

It follows for positive integers j that

|φ1(4j)| =
∣∣∣∣∣
∞∑
k=0

(
1

4j + 2k + 1
− 1

2k + 1

)∣∣∣∣∣
=

2j−1∑
k=0

1

2k + 1
≥ C log j,

where C is a positive constant which is independent of j. From Remark 11.3.10
we conclude that there are sine type functions ω and ω̃ as in Theorem 11.3.9 for
which there is no entire function of exponential type ≤ σ which satisfies (11.3.10)
and is bounded on the real axis.

Corollary 11.3.12 ([176, Corollary, p. 85]). If in Theorem 11.3.9, (ψk)
∞
k=−∞ ∈ lp

for some real number p > 1, then the function ω̃ defined by (11.3.8) is a sine type
function.

Proof. In view of Remark 11.3.10 it suffices to show that φ1 is bounded on the
real axis, which, by Lemma 11.2.6, is equivalent to the boundedness of φ1 on any
horizontal line. Since ω is a sine type function and φ1 = ψω, it therefore suffices
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to prove that ψ defined by (11.3.11) is bounded on some line Imλ = H . To this
end, let H ≥ 1 + sup

k∈Z

| Imλk| and x ∈ R. Then, by Hölder’s inequality,

|ψ(x+ iH)| ≤
( ∞∑

k=−∞
|ψk|p

) 1
p
( ∞∑

k=−∞
|λk|−p′

) 1
p′

+

( ∞∑
k=−∞

|ψk|p
) 1

p
( ∞∑

k=−∞
|x+ iH − λk|−p′

) 1
p′

,

where 1
p + 1

p′ = 1. Similar to (11.3.13) we finally have that

∞∑
k=−∞

|x+ iH − λk|−p′
=

∞∑
s=−∞

∑
λk∈Π(s,x)

1

|x+ iH − λk|p′

≤ �+ 2�
∞∑
s=1

((
s− 1

2

)2

+ 1

)− p′
2

≤ 3�+ 2�

∞∑
k=1

k−p′
<∞

is bounded with respect to x. �

The following lemma is adapted from [174, Lecture 22.1, Theorem 1]. It
should be noted that in [174], sine type functions are assumed to have simple
zeros (λk)

∞
k=−∞ with inf{|λk − λj | : k, j ∈ Z, k �= j} > 0.

Lemma 11.3.13. Let (λk)
∞
k=−∞ be the sequence of the zeros of a sine type function

ω of sine type σ. For d = (dk)
∞
k=−∞ ∈ lp, p > 1, the function ψd is defined by

ψd(λ) = lim
n→∞

n∑
k=−n

dk
λ− λk

,

where Imλ ≥ H > A =
∞
sup

k=−∞
Imλk. Then d �→ ψd is a bounded operator from lp

to the Hardy class Hp in the half-plane C
+

H = {λ ∈ C : Imλ ≥ H}, i. e., for each

d ∈ lp, ψd is analytic in C
+

H , and there is C > 0 such that

sup
y≥H

∫ ∞

−∞
|ψd(x+ iy)|p dx ≤ C‖d‖pp (11.3.19)

for all d ∈ lp, where ‖d‖p is the lp-norm of the series d. Furthermore, ωψd is
an entire function of exponential type not exceeding σ, the corresponding series
converges uniformly on any compact subset of C, and ωψd|iy+R converges in the
sense of Lp(R) for all y ∈ R.



11.3. Perturbations of sine type functions 335

Proof. In this proof we will refer to results which assume that Re λk �= 0 for all
k ∈ Z. This can be achieved by the transformation λ �→ λ − a for a suitable
real number a, which neither changes the assumptions nor the conclusions of this
lemma. Similarly, in view of Lemma 11.3.3, we may apply the transformation
λ �→ λ+ iA, that is, we may assume that A = 0.

Let d ∈ lp. The statement is trivial for d = 0, so that we may assume
d �= 0, that is, dk �= 0 for at least one k ∈ Z. From Lemma 11.2.7 it follows that
|λ − λk|−p′

= O(|k|−p′
) as |k| → ∞ uniformly for all λ in any compact subset of

C
+

H , and from Hölder’s inequality

∞∑
k=−∞

∣∣∣∣ dk
λ− λk

∣∣∣∣ ≤
( ∞∑

k=−∞
|dk|p

) 1
p
( ∞∑

k=−∞
|λ− λk|−p′

) 1
p′

(11.3.20)

it follows that the series converges uniformly and absolutely on compact subsets

of C
+

H . Hence ψd is an analytic function in C
+

H .

By Lemma 11.3.3, ωR is a sine type function, and, with λ = x + iy, x ∈ R,
y ≥ H ,

ω′
R(λ)

ωR(λ)
=

∞∑
k=−∞

1

λ− Reλk

=

∞∑
k=−∞

x− Reλk

(x − Reλk)2 + y2
− i

∞∑
k=−∞

y

(x− Reλk)2 + y2
,

is bounded in C
+

H by Lemma 11.2.27. Putting

h(x, y) =

∞∑
k=−∞

1

(x− Reλk)2 + y2
, x ∈ R, y ≥ H,

the imaginary part of the previous expression leads to

η := sup
x∈R, y≥H

yh(x, y) <∞. (11.3.21)

Next let

ψd,R(λ) = lim
n→∞

n∑
k=−n

dk
λ− Reλk

and consider

ψd,I(λ) = ψd(λ) − ψd,R(λ) = lim
n→∞

n∑
k=−n

idk Imλk

(λ− λk)(λ − Reλk)
.
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Clearly, ψd,R is analytic in C
+

H and, with λ = x+ iy,

|ψd,I(λ)| ≤ A1

∞∑
k=−∞

|dk|
(x− Reλk)2 + y2

, (11.3.22)

where A1 = sup{| Imλk| : k ∈ Z}. We are going to show that ψd,I satisfies the
estimate (11.3.19). By definition of h,

μx,y(n) =

n∑
k=−∞

1

h(x, y)[(x− Reλk)2 + y2]

defines a probability measure on Z for all x ∈ R and y ≥ H . Since t �→ tp is a
convex function on [0,∞), Jensen’s inequality, see [56, 19.4.13], gives

|ψd,I(x+ iy)|p ≤ Ap
1(h(x, y))

p−1
∞∑

k=−∞

|dk|p
(x − Reλk)2 + y2

,

and therefore, for y ≥ H ,∫ ∞

−∞
|ψd,I(x+ iy)|p dx ≤ Ap

1

( η

H

)p−1 ∞∑
k=−∞

|dk|p
∫ ∞

−∞

dx

x2 +H2
= C‖d‖pp,

(11.3.23)
where the constant C does not depend on y and d.

We still have to prove (11.3.19) for ψd,R, so that we may now assume that all
λk are real. We are going to use a proof which follows along the lines of the proof for
the Hilbert transform, [263, Theorem 101*], see also the proof of [189, Proposition
4.5.1]. Since each dk can be written as dk = dk,1 − dk,2 + i(dk,3 − dk,4) with
non-negative real numbers dk,j , j = 1, 2, 3, 4, we may assume that all dk are
non-negative real numbers. It suffices to consider finite sums, i. e., the case that
Z = {k ∈ Z : dk �= 0} is finite. The general case is easily obtained by a standard
limiting process. Clearly, ψd(λ) = O

(|λ|−1
)
as |λ| → ∞ since each of the finite

number of summands has this property.

1. First we consider the case that p is not an odd integer. We set C1 = p2
1
2 (p−1)

and
C2 = sup

{
r > 0 : C1(1 + r1−p)− r

∣∣∣cos(pπ
2

)∣∣∣ ≥ 0
}
+ 1,

which is finite since r1−p → 0 as r →∞ and cos(pπ
2 ) �= 0. Then we write

ψd(λ) =: u(x, y)− iv(x, y),

where x, y ∈ R, y > H , λ = x+ iy, and u, v are real valued functions. Then

u(x, y) =
∑
k∈Z

dk(x − λk)

(x− λk)2 + y2
, v(x, y) = y

∑
k∈Z

dk
(x − λk)2 + y2

> 0.
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This shows that Imψd(λ) < 0 for all λ ∈ C with Imλ ≥ H . Hence

λ �→ (ψd(λ))
p = exp{p logψd(λ)}

defines an analytic function on {λ ∈ C : Imλ ≥ H}, where the argument of the
logarithm is taken in (−π, 0). For R > 0, we consider the contour integral∮

(ψd(λ))
p dλ = 0

along the straight line from −R+ iy to R+ iy and along the semicircle above it.
Since ψd(λ) = O(|λ|−1), we obtain that∫ R

−R

(ψd(x+ iy))p dx = O(R−p) · πR = O(R1−p) as R→∞.

Hence ∫ ∞

−∞
(ψd(x+ iy))p dx = 0 (11.3.24)

for all y ≥ H . From

(ψd(x+ iy))p − (u(x, y))p = p

∫ ψd(x+iy)

u(x,y)

zp−1 dz

we infer∣∣(ψd(x+ iy))p − (u(x, y))p
∣∣ ≤ pv(x, y)

(
u(x, y)2 + v(x, y)2

) 1
2 (p−1)

≤ pv(x, y)
(
2max{u(x, y)2, v(x, y)2}) 1

2 (p−1)

≤ C1

(
v(x, y)|u(x, y)|p−1 + v(x, y)p

)
.

With the aid of (11.3.24) we conclude∣∣∣∫ ∞

−∞
(u(x, y))p dx

∣∣∣ = ∣∣∣∫ ∞

−∞

(
(ψd(x+ iy))p − (u(x, y))p

)
dx
∣∣∣

≤ C1

(∫ ∞

−∞
v(x, y)|u(x, y)|p−1 dx+

∫ ∞

−∞
v(x, y)p dx

)
.

Since

eip
π
2 u(x, y)p =

{
eip

π
2 |u(x, y)|p if u(x, y) > 0,

e−ipπ
2 |u(x, y)|p if u(x, y) < 0,

we obtain ∣∣∣cos(pπ
2

)∣∣∣ ∫ ∞

−∞
|u(x, y)|p dx =

∣∣∣Re(eipπ
2

∫ ∞

−∞
u(x, y)p dx

)∣∣∣
≤
∣∣∣∫ ∞

−∞
u(x, y)p dx

∣∣∣.
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Then, by Hölder’s inequality,∣∣∣cos(pπ
2

)∣∣∣ ‖u(·, y)‖pp ≤ C1

{‖u(·, y) p

p′ v(·, y)‖1 + ‖v(·, y)‖pp
}

≤ C1

{‖u(·, y) p

p′ ‖p′‖v(·, y)‖p + ‖v(·, y)‖pp
}

= C1

{‖u(·, y)‖p−1
p ‖v(·, y)‖p + ‖v(·, y)‖pp

}
.

Dividing the above inequality by ‖u(·, y)‖p−1
p ‖v(·, y)‖p if u(·, y) is not identically

zero and setting r = ‖u(·, y)‖p‖v(·, y)‖−1
p we obtain | cos(pπ

2 )|r ≤ C1(1 + r1−p).
Hence r ≤ C2 − 1 by definition of C2, i. e.,

‖u(·, y)‖p ≤ (C2 − 1)‖v(·, y)‖p , (11.3.25)

which trivially holds if u is identically zero. Applying Hölder’s inequality to(
dk

((x− λk)2 + y2)
1
p

)
k∈Z

∈ lp and

(
1

((x− λk)2 + y2)
1
p′

)
k∈Z

∈ lp
′

we obtain that

(v(x, y))p ≤ yp
∑
k∈Z

dpk
(x− λk)2 + y2

(∑
k∈Z

1

(x− λk)2 + y2

)p−1

≤ ηp−1y
∑
k∈Z

dpk
(x − λk)2 + y2

.

Hence

‖v(·, y)‖pp ≤ ηp−1
∑
k∈Z

dpk

∫ ∞

−∞

y dx

(x− λk)2 + y2
= πηp−1‖d‖pp .

Together with (11.3.25) we infer

‖ψd(·+ iy)‖p ≤ C2π
1
p η

1
p′ ‖d‖p .

2. Now let p be an odd integer. Then the result follows from part 1 due to the
Riesz convexity theorem, see [70, 6.10.11].

To prove the last statement, we can apply the transformation λ �→ λ+ iy, so
that we may assume y = 0. Putting χ = ωψd, it follows as in (11.3.20) from

|χ(λ)| ≤
( ∞∑

k=−∞
|dk|p

) 1
p
( ∞∑

k=−∞
|ω(λ)(λ − λk)

−1|p′
) 1

p′

(11.3.26)

that χ is an entire function. Here we have used that∣∣∣∣ ω(λ)

λ− λk

∣∣∣∣ ≤ sup
|μ−λk|<|λ−λk|

|ω′(μ)|, (11.3.27)
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which shows in view of the boundedness of ω′ on horizontal strips, see Lemma
11.2.27, that on each set {λ ∈ C : |λ−λk| ≤ δ} the function λ �→ |ω(λ)(λ−λk)

−1|
is bounded by a constant which is independent of k ∈ Z and δ ∈ (0, 1).

From

ω(λ)

λ− λk
− ω(λ+ iH)

λ+ iH − λk
=

ω(λ) − ω(λ+ iH)

λ+ iH − λk
+ iH

ω(λ)

(λ− λk)(λ + iH − λk)

we see that χ− χ(·+ iH) = χ1 + χ2, where

χ1(λ) = (ω(λ)− ω(λ+ iH))

∞∑
k=−∞

dk
λ− (λk − iH)

,

χ2(λ) = iH
∞∑

k=−∞

dkω(λ)

(λ− λk)(λ − (λk − iH))
.

The first part of this lemma shows that χ(· + iH) is an Lp-function on the real
axis. Since ω and ω(·+ iH) are sine type functions and therefore bounded on the
real axis, we obtain that also χ1 = (ω − ω(·+ iH))χ(·+ iH) is an Lp-function on
the real axis. In view of (11.3.27) and the boundedness of ω on horizontal strips
we can find C1 > 0 such that, for all k ∈ Z and x ∈ R, |ω(x)(x − λk)

−1| ≤ C1 if
|x−Reλk| < H −A and |ω(x)(x− λk)

−1| ≤ C1|x− λk|−1 if |x−Reλk| ≥ H −A.
It is now easy to see that

|ω(x)(x − λk)
−1| ≤ C3[(x− Reλk)

2 + (H −A)2]−
1
2

for some C3 > 0 and all k ∈ Z and x ∈ R. Therefore,

|χ2(x)| ≤ C3

∞∑
k=−∞

|dk|
(x− Reλk)2 + (H −A)2

, x ∈ R.

But the right-hand side is as in (11.3.22), so that (11.3.23) shows that also χ2 is
an Lp-function on the real axis.

Altogether, we have proved that χ = χ(· + iH) + χ1 + χ2 is an Lp-function
on the real axis, and the norm estimates in Lemma 11.3.13 which we have used in
this proof show that the series ωψd converges in the Lp-norm on the real axis.

Finally we are going to prove that the entire function χ = ωψd is of expo-
nential type ≤ σ. Estimating the second factor on the right-hand side of (11.3.26),
without ω(λ), as in (11.3.17), we obtain constants C2, C3 > 0 such that

∞∑
k=−∞

1

|λk − λ|p′ ≤ C2

∞∑
j=1

j−p′
= C3 (11.3.28)

for λ ∈ C \ Λ1. The same estimate is clearly true for λ ∈ Λ1 if one omits the at
most � indices k from the sum for which |λ−λk| < 1. In view of (11.3.27), each of
the remaining terms ω(λ)(λ− λk)

−1 is bounded by the bound of ω′ on Λ1. Hence
(11.3.26) shows that χ is of exponential type ≤ σ. �
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Theorem 11.3.14 ([175, Theorem A]). Let ω be a sine type function of type σ with
only simple zeros. Let (λk)

∞
k=−∞ be the sequence of the zeros of ω and assume that

(ak)
∞
k=−∞ ∈ lp, where p > 1. If inf{|λk−λj | : k, j ∈ Z, k �= j} > 0, then the series

ω(λ)

∞∑
k=−∞

ak
ω′(λk)(λ − λk)

, λ ∈ C, (11.3.29)

converges uniformly on any compact subset of C to an entire function of exponen-
tial type not exceeding σ and converges in the sense of Lp(R) for real λ.

Proof. By assumption, there is δ > 0 such that |λk − λj | > 2δ whenever k �= j. In
particular, all zeros of ω are simple. Hence, for all k ∈ Z,

1

ω′(λk)
= lim

λ→λk

λ− λk

ω(λ)
= res

(
1

ω
, λk

)
=

1

2πi

∮
|λ−λk|=δ

dλ

ω(λ)
,

and hence it follows from Lemma 11.2.20 that there is a positive number kδ, which
is independent of k, such that ∣∣∣∣ 1

ω′(λk)

∣∣∣∣ ≤ δ

kδ
.

Therefore, setting

dk =
ak

ω′(λk)
, k ∈ Z,

we find that (dk)
∞
k=−∞ ∈ lp. Applying Lemma 11.3.13 completes the proof. �

Lemma 11.3.15 ([176, Lemma 5]). Let (λk)
∞
k=−∞ be the sequence of the zeros of

a sine type function ω of sine type σ. Assume that λk �= 0 for all k ∈ Z. Let
(ψk)

∞
k=−∞ be a sequence of the form

ψk = aλ−n
k + bkλ

−n
k , (11.3.30)

where n ∈ N, a ∈ C, and (bk)
∞
k=−∞ ∈ lp, p > 1. If λk + ψk �= 0 for all k ∈ Z, then

the function ω̃ defined by

ω̃(λ) = lim
m→∞

m∏
k=−m

(
1− λ

λk + ψk

)
is a sine type function of sine type σ, which has a representation of the form

ω̃(λ) = Cω(λ)(1 +B1λ
−1 + · · ·+Bnλ

−n)− Caω′(λ)λ−n + fn(λ)λ
−n, (11.3.31)

where

C =

∞∏
k=−∞

(
1 + ψkλ

−1
k

)−1
,

Bj ∈ C for j = 1, . . . , n, and fn is an entire function of exponential type ≤ σ,
whose restriction to the real axis belongs to Lp(R).
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Proof. The infinite product C converges absolutely since (ψkλ
−1
k )∞k=−∞ ∈ l1 in

view of Lemma 11.2.7 and (11.3.30). The function ω̃ is a sine type function of type
σ by Theorem 11.3.9 and Corollary 11.3.12 since (ψk)

∞
k=−∞ ∈ lq for any q > 1.

Let A =
∞
sup

k=−∞
(| Imλk| + |ψk|) and fix some H > A. Choosing suitable sheets of

the logarithms considered below we have for | Imλ| ≥ H that

log
ω̃(λ)

Cω(λ)
=

∞∑
k=−∞

log
λk + ψk − λ

λk − λ
=

∞∑
k=−∞

∫ λk+ψk

λk

dτ

τ − λ
,

where the integration is taken along the line segment joining the points λk and
λk + ψk. From

1

τ − λ
= −

n−1∑
j=0

τ j

λj+1
+

τn

λn(τ − λ)

it follows that∫ λk+ψk

λk

dτ

τ − λ
= −

n−1∑
j=0

∫ λk+ψk

λk

τ j

λj+1
dτ +

1

λn

a

λk − λ

+
1

λn

(∫ λk+ψk

λk

τn dτ

τ − λ
− a

λk − λ

)
.

In view of (11.3.30) we have∫ λk+ψk

λk

τ j dτ =
1

j + 1
[(λk + ψk)

j+1 − λj+1
k ] = λj

kψk

(
1 +O

(
1

|λk|
))

= O(|λk|−2), j = 0, . . . , n− 2;∫ λk+ψk

λk

τn−1 dτ = λn−1
k ψk

(
1 +O

(
1

|λk|
))

=
a

λk
+

bk
λk

+O(|λk|−2),

and therefore the numbers

Aj+1 = lim
m→∞

m∑
k=−m

∫ λk+ψk

λk

τ j dτ, j = 0, . . . , n− 1,

exist, where we have taken Proposition 11.2.26 and Lemma 11.2.29 into account.
Observing that

lim
m→∞

m∑
k=−m

a

λk − λ
= −aω

′(λ)
ω(λ)

and setting

q(λ) = lim
m→∞

m∑
k=−m

(∫ λk+ψk

λk

τn dτ

τ − λ
− a

λk − λ

)
,
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it follows that

log
ω̃(λ)

Cω(λ)
= −

n∑
j=1

Ajλ
−j − aλ−nω

′(λ)
ω(λ)

+ q(λ)λ−n. (11.3.32)

Next we are going to show that q belongs to the Hardy class Hp in the

half-plane C
+

H . To this end we write q = q1 + q2, where

q1(λ) = lim
m→∞

m∑
k=−m

∫ λk+ψk

λk

τn(λk − τ) dτ

(τ − λ)(λk − λ)
, q2(λ) = lim

m→∞

m∑
k=−m

ck
λ− λk

,

with

ck = a−
∫ λk+ψk

λk

τn dτ.

To estimate q1, we note that∣∣∣∣∣
∫ λk+ψk

λk

τn(λk − τ) dτ

(τ − λ)(λk − λ)

∣∣∣∣∣ ≤ (|λk|+ |ψk|)n|ψk|
|λk − λ|2

∫ λk+ψk

λk

∣∣∣∣λk − λ

τ − λ

∣∣∣∣ |dτ |. (11.3.33)

For Imλ ≥ H , k ∈ Z and τ on the line segment from λk to λk +ψk, which can be
written as τ = λk + tψk with 0 ≤ t ≤ 1, we conclude

|λk − λ| ≥ H − | Imλk| ≥ H −A+ |ψk|
and thus ∣∣∣∣λk − λ

τ − λ

∣∣∣∣ = ∣∣∣∣1 + t
ψk

λk − λ

∣∣∣∣−1

≤
(
1− |ψk|
|λk − λ|

)−1

≤
(
1− |ψk|

H −A+ |ψk|
)−1

=
H −A+ |ψk|

H −A

≤ H

H −A
.

It follows that the integral on the right-hand side of (11.3.33) is bounded by
H(H −A)−1|ψk|. Taking (11.3.30) into account, there is C1 > 0 such that

|q1(λ)| ≤ H

H −A

∞∑
k=−∞

(
1 + |ψk| |λk|−1

)n
(|a|+ |bk|)2

|λk|n|λk − λ|2 ≤ C1

∞∑
k=−∞

1

|λk|n|λk − λ|2 ,

and applying Hölder’s inequality with 1
p + 1

p′ = 1 leads to

|q1(λ)| ≤ C1

( ∞∑
k=−∞

1

|λk|np|λk − λ|p
) 1

p
( ∞∑

k=−∞

1

|λk − λ|p′

) 1
p′

. (11.3.34)
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Clearly, each factor on the right-hand side is decreasing with increasing Imλ ≥ H ,
so that it suffices to prove that the right-hand side represents an Lp-function on
the line Imλ = H . The second factor on the right-hand side has been estimated
in (11.3.28).

Hence we obtain

|q1(λ)|p ≤ Cp
1C

p

p′
3

∞∑
k=−∞

1

|λk|np|λk − λ|p . (11.3.35)

Integrating (11.3.35) along the line Imλ = H and using Fubini’s theorem, see
[108, (21.12) or (21.13)], applied to the Lebesgue measure on R and the counting
measure on Z, we can interchange integration and summation to arrive at∫ ∞

−∞
|q1(x + iH)|p dx ≤ Cp

1C
p

p′
3

∞∑
k=−∞

1

|λk|np
∫ ∞

−∞

dx

|λk − x− iH |p

= Cp
1C

p

p′
3

∞∑
k=−∞

1

|λk|np
∫ ∞

−∞

dx

|x+ i(H − Imλk)|p

≤ Cp
1C

p
p′
3

∞∑
k=−∞

1

|λk|np
∫ ∞

−∞

dx

|x+ i(H −A)|p .

Since p > 1 and n ≥ 1, both the sum and the integral converge. We have thus

shown that q1 ∈ Hp in C
+

H .

Turning our attention now to q2, we obtain

ck = a−
∫ λk+ψk

λk

τn dτ = a− 1

n+ 1

[
(λk + ψk)

n+1 − λn+1
k

]
= a− λn

kψk − 1

n+ 1

n−1∑
j=0

(
n+ 1

j

)
λj
kψ

n+1−j
k = −bk +O(|λk|−n−1).

Hence (ck)
∞
k=−∞ ∈ lp. Therefore q2 belongs to the Hp class in C

+

H by Lemma
11.3.13.

Since q belongs to the Hp class, q is bounded in C
+

H . This boundedness also
follows immediately for q1 from (11.3.35) since

∞∑
k=−∞

1

|λk|np|λk − λ|p ≤
1

(H −A)p

∞∑
k=−∞

1

|λk|np <∞

and for q2 from the estimate (11.3.20). Since ω′
ω is bounded in C

+

H by Lemma
11.2.27, we therefore conclude from (11.3.32) that

log
ω̃(λ)

Cω(λ)
= O(|λ|−1).
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Applying the exponential function, its Taylor series expansion leads to

ω̃(λ)

Cω(λ)
= 1 +

n∑
k=1

1

k!

[
log

ω̃(λ)

Cω(λ)

]k
+

ϑ(λ)

λn
, (11.3.36)

where ϑ is analytic in C
+

H and satisfies O(|λ|−1) there, which implies that ϑ is of

Hp class and is bounded in C
+

H . Substituting (11.3.32) into the right-hand side of
the above identity, a reasoning as above shows that

ω̃(λ)

Cω(λ)
= 1 +B1λ

−1 + · · ·+Bnλ
−n − aλ−nω

′(λ)
ω(λ)

+
κ(λ)

λn
,

where κ belongs to the Hp class and is bounded in C
+

H and B1, . . . , Bn are com-
plex numbers. This gives the equation (11.3.31) with fn = Cωκ. On multiplying
(11.3.31) by λn we see that fn is an entire function of exponential type not ex-
ceeding σ.

Replacing λ with −λ, we obtain a representation of ω̃ in the half-plane defined
by Imλ ≤ −H . We observe that, with a suitable choice of the logarithm, we
obtain the same values for Aj and thus Bj , j = 1, . . . , n, as above. Therefore,
the corresponding function fn in this half-plane Imλ ≤ −H is represented by the

same entire function as in the half-plane C
+

H . In particular, fn belongs to Hp in
the half-plane Imλ ≤ −H .

Since κ is bounded in C
+

H , fn is bounded on the line Imλ = H . Then it
follows in view of Lemma 11.2.6, part 2, that the entire function gn defined by

gn(λ) = fn(λ)e
iσλ is bounded in the half-plane C

+

−H . Therefore, for λ = x + iy
with y > −H ,

gn(λ) =
1

π

∫ ∞

−∞

y +H

(x − t)2 + (y +H)2
gn(t− iH) dt,

see [144, p. 107]. Since fn is an Lp-function on the line Imλ = −H , so is gn. But
then the above integral representation of gn shows that gn(· + iy) ∈ Lp(R) for
all y > −H , see [144, pp. 111-112]. In particular, gn|R, and then also fn|R, are
Lp-functions. �

Remark 11.3.16. If in Lemma 11.3.15 we have λk = 0 or λk + ψk = 0 for some
k and if ω and ω̃ are sine type functions with their sequences of zeros being
(λk)

∞
k=−∞ and (λk + ψk)

∞
k=−∞, respectively, then (11.3.31) still holds, but with a

differently defined nonzero complex number C. To see this, we observe the general
representation of sine type functions given in Lemma 11.2.29. Then we apply
Lemma 11.3.15 to the sequences of zeros (λk + b)∞k=−∞ and (λk + ψk + b)∞k=−∞
of ω(· − b) and ω̃(· − b), respectively, for a suitable real number b. This leads to
(11.3.31) with λ−j replaced by (λ+ b)−j . Finally, we expand (λ+ b)j in terms of
λ−j and observe that a bounded function of the form O(|λ|−1) belongs to Lp.
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Inverse Sturm–Liouville Problems

We will need representations of solutions of the Sturm–Liouville equation and
algorithms for recovering its potential q from two of its spectra, corresponding to
two distinct sets of separated boundary conditions. These results are due to [178],
see also [177], [180]. For the convenience of the reader and easy reference we recall
these results from V.A. Marchenko [180], thereby adapting them to our notation
and considering Sturm–Liouville problems on intervals [0, a] with arbitrary a > 0.
Other presentations of the inverse Sturm–Liouville problem can be found, e. g., in
[177], [235], [282], [80].

12.1 Riemann’s formula

This section is a rewrite of [180, Section 1.1]. The main improvement is that we
allow for integrable potentials. This generalization is an exercise in [180] and there
is no proof in [180].

Lemma 12.1.1. Let α < β be real numbers and put

D0 = {(ξ, η, ξ0, η0) : α ≤ η0 ≤ η ≤ ξ ≤ ξ0 ≤ β}.

Let q0 be a locally integrable function on R
2. For f ∈ L∞(D0) define

(Tf)(ξ, η, ξ0, η0) =

∫ ξ0

ξ

∫ η

η0

q0(σ, τ)f(σ, τ, ξ0 , η0) dτ dσ, (ξ, η, ξ0, η0) ∈ D0.

(12.1.1)
Then T is a bounded linear operator on L∞(D0) and I +T is invertible. Denoting
by 1 the function which is identically 1 on D0, it follows that g = (I + T )−11 is
the unique solution of f = 1− Tf on D0. The function g is continuous.

Proof. Clearly, T is a linear operator, and Fubini’s theorem shows that T maps
L∞(D0) into itself. For each M ∈ R, the standard norm on L∞(D0) is equivalent
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to the weighted norm given by

‖f‖M = ess sup{|f(ξ, η, ξ0, η0)|e−M((ξ0−ξ)+(η−η0)) : (ξ, η, ξ0, η0) ∈ D0}.

For f ∈ L∞(D0) and (ξ, η, ξ0, η0) ∈ D0 we estimate

|(Tf)(ξ, η, ξ0, η0)|e−M((ξ0−ξ)+(η−η0))

≤
∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)| |f(σ, τ, ξ0 , η0)|e−M((ξ0−ξ)+(η−η0)) dτ dσ

≤
∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−M((σ−ξ)+(η−τ)) dτ dσ ‖f‖M .

Letting χξ,η,ξ0,η0 be the characteristic function of the set {(σ, τ) : η0 ≤ τ ≤ η ≤ ξ ≤
σ ≤ ξ0}, and observing that χξ′,η′,ξ′0,η

′
0
(σ, τ) → χξ,η,ξ0,η0(σ, τ) as (ξ′, η′, ξ′0, η

′
0) →

(ξ, η, ξ0, η0) for almost all (σ, τ), it follows from Lebesgue’s dominated convergence
theorem that the function fM defined by

fM (ξ, η, ξ0, η0) :=

∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−M((σ−ξ)+(η−τ)) dτ dσ

= eM(ξ−η)

∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−M(σ−τ) dτ dσ

is continuous on D0. For (ξ, η), (ξ
′, η′) with η0 ≤ η′ ≤ η ≤ ξ ≤ ξ′ ≤ ξ0 we have

f0(ξ, η, ξ0, η0)− f0(ξ
′, η′, ξ0, η0) ≥

∫ ξ′

ξ

∫ η

η′
|q0(σ, τ)| dτ dσ,

as can be easily seen from the following sketch:

η0

ξ0

η′ η ξ ξ′

η′
η

ξ

ξ′
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Since f0 is a continuous function on the compact setD0, f0 is uniformly continuous,
and it follows that there is δ > 0 such that for all (ξ, η, ξ0, η0), (ξ

′, η′, ξ0, η0) ∈ D0

with 0 ≤ η − η′ ≤ δ and 0 ≤ ξ′ − ξ ≤ δ we have∫ ξ′

ξ

∫ η

η′
|q0(σ, τ)| dτ dσ ≤ 1

4
.

Now let (ξ, η, ξ0, η0) ∈ D0 and put η′ = max{η − δ, η0} and ξ′ = min{ξ + δ, ξ0}.
Denoting the rectangle with opposite vertices (ξ, η0) and (ξ0, η) by D1 and the
rectangle with opposite vertices (ξ, η′) and (ξ′, η) by D2, it follows that σ − ξ ≥ δ
or η − τ ≥ δ for (σ, τ) ∈ D1 \D2. Hence we obtain

fM (ξ, η, ξ0, η0) ≤ 1

4
+

∫ ξ0

ξ

∫ η

η0

|q0(σ, τ)|e−Mδ dτ dσ

≤ 1

4
+ e−Mδ

∫ β

α

∫ σ

α

|q0(σ, τ)| dτ dσ

→ 1

4
as M →∞.

Hence we may choose M such that

fM (ξ, η, ξ0, η0) ≤ 1

2
, (ξ, η, ξ0, η0) ∈ D0.

Combining the above estimates we have shown that T is a contractive operator.
Hence the operator (I + T ) is invertible, and the unique solution g of f = 1− Tf
has the representation

g = (I + T )−11 =
∞∑
j=0

(−T )j1.

Since clearly T maps continuous function into continuous function, since 1 is con-
tinuous and since the set of continuous functions C(D0) is closed in L∞(D0), it
follows that g is continuous. �
Lemma 12.1.2. Let q0 be a locally integrable function on R2, let η0 and ξ0 be real
numbers with η0 < ξ0 and let D(ξ0, η0) = {(ξ, η) : η0 ≤ η ≤ ξ ≤ ξ0}. Then the
problem

rξη − q0r = 0 on D(ξ0, η0), (12.1.2)

r(ξ0, η) = r(ξ, η0) = 1 for ξ, η ∈ [ξ0, η0], (12.1.3)

has a unique continuous solution r on D(ξ0, η0). Furthermore, rξ, rη, rξη and rηξ
exist and belong to L1(D(ξ0, η0)), and rηξ = rξη. If q0 is continuously differen-
tiable, then r has continuous second derivatives.
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Proof. From Lemma 12.1.1 we know that the integral equation

r(ξ, η) = 1−
∫ ξ0

ξ

∫ η

η0

q0(σ, τ)r(σ, τ) dτ dσ. (12.1.4)

has a solution g, and we write

r(ξ, η) = r(ξ, η; ξ0, η0) = g(ξ, η, ξ0, η0).

The existence of rξ and rξη, their properties, and (12.1.2) and (12.1.3) easily follow
from (12.1.4), so that this r is indeed a solution of (12.1.2) and (12.1.3).

Conversely, if r is a continuous solution r of problem (12.1.2), (12.1.3) where
the partial derivates in (12.1.2) exist, integration of (12.1.2) with respect to η and
taking into account that (12.1.3) implies rξ(ξ, η0) = 0 for all ξ ∈ [η0, ξ0] gives

rξ(ξ, η) =

∫ η

η0

q0(ξ, τ)r(ξ, τ) dτ. (12.1.5)

Integration with respect to ξ and (12.1.3) lead to (12.1.4). With fixed ξ0 and η0,
the operator T from the proof of Lemma 12.1.1 becomes a contraction Tξ0,η0 on
L∞(D(ξ0, η0)), and the uniqueness of the solution r of (12.1.2), (12.1.3) follows.

�

For real x0 and y0 with y0 ≥ 0 let D be the triangular region whose vertices
are (x0, y0), (x0 − y0, 0), (x0 + y0, 0). We put ξ0 = x0 + y0, η0 = x0 − y0 and

q0(ξ, η) =
1

4

[
q1

(
ξ + η

2

)
− q2

(
ξ − η

2

)]
, η0 ≤ η ≤ ξ ≤ x0. (12.1.6)

The linear transformation ξ = x + y, η = x − y, maps the triangle with
vertices (x0, y0), (x0 − y0, 0), (x0 + y0, 0) into the triangle with vertices (ξ0, η0),
(η0, η0), (ξ0, ξ0), that is, it maps the triangle D to the triangle D(ξ0, η0) defined in
Lemma 12.1.2. Then let (ξ, η) �→ r(ξ, η; ξ0, η0) be the solution according to Lemma
12.1.2 and define

R(x, y;x0, y0) = r(x + y, x− y;x0 + y0, x0 − y0), (x, y) ∈ D. (12.1.7)

The following theorem is a generalization of Riemann’s theorem as stated in
[180, Theorem 1.1.1].

Theorem 12.1.3. Let q1 and q2 be locally integrable on R and let ϕ and ψ be
continuous functions on R. Let u ∈W 2

1 (D) be a solution of

uxx − q1(x)u = uyy − q2(y)u (12.1.8)

such that ux and uy are continuous on D. Assume that u satisfies the initial
conditions

u(x, 0) = ϕ(x), uy(x, 0) = ψ(x), x0 − y0 ≤ x ≤ x0 + y0. (12.1.9)



12.1. Riemann’s formula 349

Then

u(x0, y0) =
ϕ(x0 + y0) + ϕ(x0 − y0)

2

+
1

2

∫ x0+y0

x0−y0

(
ψ(x)R(x, 0;x0, y0)− ϕ(x)Ry(x, 0;x0, y0)

)
dx. (12.1.10)

Proof. We are going to use the transformation ξ = x+ y, ξ0 = x0 + y0, η = x− y,
η0 = x0 − y0. Expressing u as function ũ in these new variables, i. e., ũ(ξ, η) =
u(x, y), we get

uxx = ũξξ + 2ũξη + ũηη,

uyy = ũξξ − 2ũξη + ũηη.

Observing that the continuity of the partial derivatives of u and hence of ũ gives
ũξη = ũηξ, we obtain

ũξη =
1

4
(uxx − uyy) =

1

4
(q1(x)− q2(y))u = q0ũ. (12.1.11)

We recall from Lemma 12.1.2 that (12.1.2), (12.1.3) with q0 given by (12.1.6)
has a unique solution r. Multiplying equations (12.1.11) and (12.1.2) by r and ũ,
respectively, and then subtracting the second equation from the first equation we
obtain

ũξηr − ũrξη = 0. (12.1.12)

Observing

∂

∂η
(ũξr) = ũξηr + ũξrη,

∂

∂ξ
(ũηr) = ũηξr + ũηrξ,

∂

∂η
(ũrξ) = ũηrξ + ũrξη,

∂

∂ξ
(ũrη) = ũξrη + ũrηξ,

we conclude that

ũξηr − ũrξη =
1

2

(
∂

∂η
(ũξr − ũrξ) +

∂

∂ξ
(ũηr − ũrη)

)
(12.1.13)

Integrating both sides of (12.1.12) over D(ξ0, η0) and taking (12.1.13) into account
we get ∫∫

D(ξ0,η0)

[
∂

∂η
(ũξr − ũrξ) +

∂

∂ξ
(ũηr − ũrη)

]
dξ dη = 0. (12.1.14)
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By Fubini’s theorem we can integrate componentwise, and therefore the left-hand
side is the sum of the two integrals

I1 :=

∫ ξ0

η0

[(ũξ(ξ, ξ)r(ξ, ξ) − ũ(ξ, ξ)rξ(ξ, ξ))

− (ũξ(ξ, η0)r(ξ, η0)− ũ(ξ, η0)rξ(ξ, η0))]dξ

=: I11 − I12,

I2 :=

∫ ξ0

η0

[(ũη(ξ0, η)r(ξ0, η)− ũ(ξ0, η)rη(ξ0, η))

− (ũη(η, η)r(η, η) − ũ(η, η)rη(η, η))]dη

=: I21 − I22.

Here we have used that, e. g., ∂
∂η (ũξr − ũrξ) is integrable with respect to η for

almost all ξ and that ũξr− ũrξ is continuous with respect to η for these ξ in view
of (12.1.5) and the continuity assumption on u and its partial derivatives.

Integrating by parts and observing that r(ξ, η) = 1 if ξ = ξ0 or η = η0 we get

I12 = 2

∫ ξ0

η0

ũξ(ξ, η0)r(ξ, η0) dξ − ũ(ξ0, η0)r(ξ0, η0) + ũ(η0, η0)r(η0, η0)

= 2

∫ ξ0

η0

ũξ(ξ, η0) dξ − ũ(ξ0, η0) + ũ(η0, η0)

= ũ(ξ0, η0)− ũ(η0, η0)

I21 = 2

∫ ξ0

η0

ũη(ξ0, η)r(ξ0, η) dη − ũ(ξ0, ξ0)r(ξ0, ξ0) + ũ(ξ0, η0)r(ξ0, η0)

= 2

∫ ξ0

η0

ũη(ξ0, η) dη − ũ(ξ0, ξ0) + ũ(ξ0, η0)

= ũ(ξ0, ξ0)− ũ(ξ0, η0).

For ξ = η we have x+ y = x− y, so that y = 0 and x = ξ. Hence

I21 − I12 = −2ũ(ξ0, η0) + ũ(ξ0, ξ0) + ũ(η0, η0)

= −2u(x0, y0) + u(x0 + y0, 0) + u(x0 − y0, 0)

= −2u(x0, y0) + ϕ(x0 + y0) + ϕ(x0 − y0). (12.1.15)

From

uy(x, y) = ũξ(x + y, x− y)
∂ξ

∂y
+ ũη(x+ y, x− y)

∂η

∂y

= ũξ(x + y, x− y)− ũη(x+ y, x− y) (12.1.16)
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and the same equation for R defined by (12.1.7) and r we find

I11 − I22

=

∫ ξ0

η0

[ũξ(ξ, ξ)r(ξ, ξ) − ũ(ξ, ξ)rξ(ξ, ξ)− ũη(ξ, ξ)r(ξ, ξ) + ũ(ξ, ξ)rη(ξ, ξ)] dξ

=

∫ ξ0

η0

[ũξ(ξ, ξ)− ũη(ξ, ξ)]r(ξ, ξ) dξ −
∫ ξ0

η0

ũ(ξ, ξ)[rξ(ξ, ξ)− rη(ξ, ξ)] dξ

=

∫ ξ0

η0

uy(x, 0)R(x, 0) dx −
∫ ξ0

η0

u(x, 0)Ry(x, 0) dx

=

∫ x0+y0

x0−y0

ψ(x)R(x, 0) dx −
∫ x0+y0

x0−y0

ϕ(x)Ry(x, 0) dx. (12.1.17)

Recall that I1 + I2 = 0 by (12.1.14). Hence the sum of (12.1.15) and (12.1.17) is
zero, and solving this equation for u(x0, y0) completes the proof. �

For the solution r of (12.1.2), (12.1.3) we have already used the four variable
notation r(ξ, η; ξ0, η0), and rξ will denote the derivative with respect to the first
variable, even if the first variable is denoted by a different symbol.

Corollary 12.1.4. Let q1 and q2 be locally integrable on R and let ϕ be a continuously
differentiable function on R. Let u ∈ W 2

1 (D) be a solution of

uxx − q1(x)u = uyy − q2(y)u (12.1.18)

such that ux and uy are continuous on D. Assume that u satisfies the initial
conditions

u(x, 0) = ϕ(x), uy(x, 0) = ϕ′(x), x0 − y0 ≤ x ≤ x0 + y0. (12.1.19)

Let r be the unique solution of (12.1.2), (12.1.3) with q0 given by (12.1.6). Then

u(x0, y0) = ϕ(x0 + y0)−
∫ x0+y0

x0−y0

ϕ(x)rξ(x, x;x0 + y0, x0 − y0) dx. (12.1.20)

Proof. By Theorem 12.1.3, u has the representation (12.1.10) with ψ = ϕ′. Recall
that R has been defined in (12.1.7), where r is the unique solution of (12.1.2),
(12.1.3) with q0 given by (12.1.6). Since x0 + y0 = ξ0 and x0 − y0 = η0, it follows
that

R(x0 ± y0, 0;x0, y0) = r(x0 ± y0, x0 ± y0;x0 + y0, x0 − y0) = 1.

As we have argued in the proof of Theorem 12.1.3, we may used integration by
parts to arrive at∫ x0+y0

x0−y0

ϕ′(x)R(x, 0;x0, y0) dx = ϕ(x0 + y0)− ϕ(x0 − y0)

−
∫ x0+y0

x0−y0

ϕ(x)Rx(x, 0;x0, y0) dx.
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From (12.1.16) for Ry and the corresponding formula for Rx we see that

Rx(x, 0;x0, y0) +Rx(x, 0;x0, y0) = 2rξ(x, x;x0 + y0, x0 − y0).

Substitution of these identities into (12.1.10) gives (12.1.20). �

12.2 Solutions of Sturm–Liouville problems

Lemma 12.2.1 ([180, Lemma 1.4.3]). Let (ak)
∞
k=−∞ be a sequence of complex num-

bers of the form ak = 2π
a k + b + hk, where b ∈ C and hk = O(k−1) for k → ±∞,

let f ∈ L2(0, a) and let

f̃(λ) :=

∫ a

0

f(x)e−iλx dx

be its Fourier transform. Then

f̃(ak) = f̃

(
2π

a
k + b

)
+ k−1g(k)

with
(
f̃
(
2π
a k + b

))∞
k=−∞

∈ l2 and (g(k))∞k=−∞ ∈ l2.

Proof. From the equality

f̃(ak) =

∫ a

0

f(x)e−i( 2π
a k+b)xe−ihkx dx =

∫ a

0

f(x)e−i( 2π
a k+b)x[1− ihkx+O(h2

k)] dx

it follows that

f̃(ak) = f̃

(
2π

a
k + b

)
+ hkf̃

′
(
2π

a
k + b

)
+O(h2

k) = f̃

(
2π

a
k + b

)
+ k−1g(k),

where

g(k) = khkf̃
′
(
2π

a
k + b

)
+ k−1O(k2h2

k).

Since

f̃

(
2π

a
k + b

)
=

∫ a

0

f(x)e−ibxe−2iπa x dx

and

f̃ ′
(
2π

a
k + b

)
= −i

∫ a

0

f(x)xe−ibaxe−2iπa kx dx

are the Fourier coefficients of the functions x �→ f(x)e−ibx and x �→ −if(x)xe−ibx,
which belong to L2(0, a), Bessel’s inequality implies that

∞∑
k=−∞

∣∣∣∣f̃ (2π

a
k + b

)∣∣∣∣2 <∞,

∞∑
k=−∞

∣∣∣∣f̃ ′
(
2π

a
k + b

)∣∣∣∣2 <∞,

and hence also that
∞∑

k=−∞
|g(k)|2 <∞, because by assumption, sup

k∈Z

|khk| <∞. �
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Definition 12.2.2 ([281, Section 2.5]). An entire function ω of exponential type ≤ σ
is said to belong to the Paley–Wiener class Lσ if its restriction to the real axis
belongs to L2(−∞,∞).

Remark 12.2.3. For an entire function ω, let ωe = 1
2 (ω + ω̌) and ωo = 1

2 (ω − ω̌)
be the even and odd parts of ω, where ω̌(λ) = ω(−λ). Clearly, ω belongs to Lσ if
and only if ωe and ωo belong to Lσ. We denote the sets of even and odd functions
in Lσ by Lσe and Lσo , respectively.
Lemma 12.2.4 (Plancherel’s theorem). The function ω belongs to Lσ if and only
if it is of the form

ω(λ) =

∫ σ

0

ξ(t) cosλt dt+ i

∫ σ

0

ζ(t) sin λt dt, λ ∈ C,

where ξ, ζ ∈ L2(0, σ). Furthermore, lim
|λ|→∞

e−| Imλ|a|ω(λ)| = 0 if ω ∈ La.

Proof. The first statement can be found in [263, Theorems 48 and 50] or [281,
Theorem 2.18], while the second statement easily follows from [180, Lemma 1.3.1].

�
Remark 12.2.5. In the notation of Lemma 12.2.4,

ωe(λ) =

∫ σ

0

ξ(t) cosλt dt, ωo(λ) = i

∫ σ

0

ζ(t) sinλt dt, λ ∈ C.

Consider the Sturm–Liouville equation

y′′ − q(x)y + λ2y = 0 (12.2.1)

on the interval (0, a), where 0 < a <∞, q ∈ L2(0, a) is a real-valued function and
λ is a complex parameter. Let e0(λ, x) denote the solution of equation (12.2.1)
with initial data

e0(λ, 0) = 1, e′0(λ, 0) = −iλ. (12.2.2)

Theorem 12.2.6 ([180, Theorem 1.2.1]). The solution e0(λ, ·) of the initial value
problem (12.2.1), (12.2.2) admits the representation

e0(λ, x) = e−iλx +

∫ x

−x

K̃(x, t)e−iλtdt, 0 ≤ x ≤ a, (12.2.3)

where
K̃(x, t) = −rξ(t, t;x,−x), 0 ≤ x ≤ a, |t| ≤ x, (12.2.4)

and r is the function defined in Lemma 12.1.2 with

q0(ξ, η) = −1

4
q

(
ξ − η

2

)
. (12.2.5)
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Proof. The function
u(x, y) = e−iλxe0(λ, y)

belongs locally to W 2
2 , is continuously differentiable for −∞ < x <∞, 0 ≤ y ≤ a,

and solves the Cauchy problem

uxx = uyy − q(y)u (12.2.6)

with initial conditions

u(x, 0) = e−iλx, uy(x, 0) = −iλe−iλx.

Corollary 12.1.4 gives that the value of the function u at (x0, y0) is given by

e−iλx0e0(λ, y0) = e−iλ(x0+y0) −
∫ x0+y0

x0−y0

rξ(x, x;x0 + y0, x0 − y0)e
−iλxdx.

Letting x0 = 0 we get

e0(λ, y0) = e−iλy0 −
∫ y0

−y0

rξ(x, x; y0,−y0)e−iλxdx.

An obvious change in notation now proves (12.2.3). Since (12.2.6) is equation
(12.1.18) with q1 = 0 and q2 = q, (12.2.5) follows from (12.1.6). �
Proposition 12.2.7.

e0(λ, x) = e−iλx +

∫ x

0

sinλ(x − t)

λ
q(t)e0(λ, t) dt. (12.2.7)

Proof. It is easy to see that

y(x) = e−iλx +

∫ x

0

sinλ(x− t)

λ
g(t) dt (12.2.8)

is the solution of the differential equation y′′ + λ2y = g with g ∈ L2(0, a) subject
to the initial condition y(0) = 1, y′(0) = −iλ. For g = qe0(λ, ·) it follows that y is
the unique solution of (12.2.1), (12.2.2). Since this solution is e0(λ, ·), the equation
(12.2.7) follows. �
Lemma 12.2.8. Let p ∈ N0 and q ∈ W p

2 (0, a). Then K̃ defined in Theorem 12.2.6
is continuous, and for all 0 ≤ x ≤ a and |t| ≤ x,

K̃(x, t) =
1

2

∫ x+t
2

0

q(u) du+

∫ x+t
2

0

∫ x−t
2

0

q(α+ β)K̃(α+ β, α− β) dβ dα. (12.2.9)

Furthermore, ∂p1∂p2

∂xp1∂tp2 K̃(a, ·) ∈ W p+1−p1−p2

2 (−a, a) whenever p1 + p2 ≤ p + 1. If

q is real valued, then also K̃ is real valued.
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Proof. From (12.2.4), (12.1.4) and Lemma 12.1.1 we conclude that K̃ is continu-
ous. If q is real valued, then also q0 given by (12.2.5) is real valued, and hence the
real part of r also satisfies (12.1.4). From the uniqueness of the solution of (12.1.4)
we conclude that r is real valued. Substituting (12.2.3) into (12.2.7) we arrive at∫ x

−x

K̃(x, t)e−iλtdt =

∫ x

0

sinλ(x− t)

λ
q(t)e−iλtdt

+

∫ x

0

sinλ(x− t)

λ
q(t)

∫ t

−t

K̃(t, ξ)e−iλξ dξ dt. (12.2.10)

Next we express the right-hand side of the above equation as a Fourier transform.
Since

sinλ(x− t)

λ
e−iλξ =

1

2

∫ ξ+(x−t)

ξ−(x−t)

e−iλu du, (12.2.11)

it follows that∫ x

0

sinλ(x− t)

λ
q(t)e−iλtdt =

1

2

∫ x

0

q(t)

∫ x

2t−x

e−iλu du dt

=
1

2

∫ x

−x

e−iλu

∫ x+u
2

0

q(t) dt du. (12.2.12)

Using equation (12.2.11) once more, we obtain the equality∫ x

0

sinλ(x− t)

λ
q(t)

∫ t

−t

K̃(t, ξ)e−iλξ dξ dt

=
1

2

∫ x

0

q(t)
( ∫ t

−t

K̃(t, ξ)

∫ ξ+(x−t)

ξ−(x−t)

e−iλu du dξ
)
dt.

Interchanging variables, the inner double integral becomes∫ t

−t

K̃(t, ξ)

∫ ξ+(x−t)

ξ−(x−t)

eiλu du dξ =

∫ x

−x

eiλu
∫ min{t,u+(x−t)}

max{−t,u−(x−t)}
K̃(t, ξ) dξ du.

Consequently,∫ x

0

q(t)

∫ t

−t

K̃(t, ξ)

∫ ξ+(x−t)

ξ−(x−t)

e−iλu du dξ dt

=

∫ x

−x

e−iλu

∫ x

0

q(t)

∫ min{t,u+(x−t)}

max{−t,u−(x−t)}
K̃(t, ξ) dξ dt du.

It follows that∫ x

0

sinλ(x − t)

λ
q(t)

∫ t

−t

K̃(t, ξ)e−iλξ dξ dt (12.2.13)

=
1

2

∫ x

−x

e−iλt

∫ x

0

q(u)

∫ min{−u,t+(x−u)}

max{−u,t−(x−u)}
K̃(u, ξ) dξ du dt.
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Equations (12.2.12) and (12.2.13) show that (12.2.10) leads to∫ x

−x

K̃(x, t)e−iλtdt

=
1

2

∫ x

−x

(∫ x+t
2

0

q(u)du +

∫ x

0

q(u)

∫ min{u,t+(x−u)}

max{−u,t−(x−u)}
K̃(u, ξ) dξ du

)
e−iλt dt.

Taking the inverse Fourier transform, we arrive at

K̃(x, t) =
1

2

∫ x+t
2

0

q(u)du+
1

2

∫ x

0

q(u)

∫ min{u,t+(x−u)}

max{−u,t−(x−u)}
K̃(u, ξ) dξ du. (12.2.14)

Performing the change of variables

u+ ξ = 2α and u− ξ = 2β

in this integral, the region of the double integral,

−u ≤ ξ ≤ u, t− (x − u) ≤ ξ ≤ t+ (x − u), 0 ≤ u ≤ x,

becomes

0 ≤ α, 0 ≤ β, 2β ≤ x− t, 2α ≤ x+ t, 0 ≤ α+ β ≤ x,

where the last condition is redundant since it follows from the first four. Hence
(12.2.9) follows. �

From [180, Corollary after Theorem 1.2.1, Theorem 1.2.2 and (1.2.18)] we
obtain

Theorem 12.2.9.

1. If the potential q of the Sturm–Liouville equation

−y′′(x) + q(x)y(x) = λ2y(x), x ∈ (0, a), (12.2.15)

belongs to L2(0, a), then the solutions of the initial value problems s(λ, 0) = 0,
s′(λ, 0) = 1 and c(λ, 0) = 1, c′(λ, 0) = 0 can be expressed as

s(λ, x) =
sinλx

λ
+

∫ x

0

K(x, t)
sinλt

λ
dt, (12.2.16)

c(λ, x) = cosλx +

∫ x

0

B(x, t) cosλt dt, (12.2.17)

where K(x, t) = K̃(x, t)−K̃(x,−t), B(x, t) = K̃(x, t)+K̃(x,−t), and K̃(x, t)
is the unique solution of the integral equation

K̃(x, t) =
1

2

∫ x+t
2

0

q(s) ds+

∫ x+t
2

0

∫ x−t
2

0

q(s+ p)K̃(s+ p, s− p) dp ds

(12.2.18)
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on the triangular region {(x, t) ∈ [0, a]× [−a, a] : |t| ≤ x}. In particular, it is
true that K(x, 0) = 0 and

B(x, x) = K(x, x) = K̃(x, x) =
1

2

∫ x

0

q(s)ds. (12.2.19)

2. If q ∈ Wn
2 (0, a), then K and B have partial derivatives up to (n+1)th order

which belong to L2(0, a).

Proof. We observe that

s(λ, x) =
e0(−λ, x) − e0(λ, x)

2iλ
(12.2.20)

for all x ∈ [0, a] and all nonzero complex numbers λ since both functions solve
the initial value problem (12.2.15) subject to the boundary condition y(0) = 0,
y′(0) = 1, see (12.2.1) and (12.2.2) for e0. Theorem 12.2.6 shows that

s(λ, x) =
sinλx

λ
+

1

2iλ

∫ x

−x

(
K̃(x, t)eiλt − K̃(x, t)e−iλt

)
dt

=
sinλx

λ
+

1

2iλ

∫ x

0

(
[K̃(x, t)− K̃(x,−t)]eiλt − (K̃(x, t)− K̃(x,−t)e−iλt

)
dt

=
sinλx

λ
+

∫ x

0

[K̃(x, t)− K̃(x,−t)] sinλt
λ

dt,

which proves (12.2.17). Similarly, (12.2.18) follows from

c(λ, x) =
e0(λ, x) + e0(−λ, x)

2
. (12.2.21)

The properties of K and B now follow immediately from their definition and
Lemma 12.2.8. �

Observe that − sin(j+1) is an antiderivative of sin(j) for all j ∈ N0. We also

note that K is an odd function with respect to t, whence ∂j

∂tj K(a, 0) = 0 and
∂j

∂tj Kx(a, 0) = 0 for all even nonnegative integers. Similarly, since B is an even

function with respect to t, it follows that ∂j

∂tj B(a, 0) = 0 and ∂j

∂tj Bx(a, 0) = 0 for
all odd nonnegative integers. Then integration by parts and differentiation with
respect to x, respectively, followed by n integrations by parts in (12.2.16) and
(12.2.17) leads to
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Corollary 12.2.10. If n ∈ N0 and q ∈Wn
2 (0, a), then

s(λ, a) =
sinλa

λ
−

n∑
j=0

∂j

∂tj
K(a, a)

sin(j+1) λa

λj+2
+

∫ a

0

∂n+1

∂tn+1
K(a, t)

sin(n+1) λt

λn+2
dt,

(12.2.22)

s′(λ, a) = cosλa+K(a, a)
sinλa

λ
−

n∑
j=1

∂j−1

∂tj−1
Kx(a, a)

sin(j) λa

λj+1

+

∫ a

0

∂n

∂tn
Kx(a, t)

sin(n) λt

λn+1
dt, (12.2.23)

c(λ, a) = cosλa+

n∑
j=0

∂j

∂tj
B(a, a)

sin(j) λa

λj+1
−
∫ a

0

∂n+1

∂tn+1
B(a, t)

sin(n) λt

λn+1
dt,

(12.2.24)

c′(λ, a) = −λ sinλa+B(a, a) cosλa+

n∑
j=1

∂j−1

∂tj−1
Bx(a, a)

sin(j−1) λa

λj

+

∫ a

0

∂n

∂tn
Bx(a, t)

sin(n+1) λt

λn
dt, (12.2.25)

where ∂n+1

∂tn+1K(a, ·), ∂n

∂tnKx(a, ·), ∂n+1

∂tn+1B(a, ·), ∂n

∂tnBx(a, ·) belong to L2(0, a).

Corollary 12.2.11. The entire functions λ �→ λs(λ, a), s′(·, a), c(·, a), and λ �→
λ−1c′(λ, a) are sine type functions of type a.

Proof. The first term of the representation in Corollary 12.2.10 of each of these
functions can be estimated as

1

4
e| Imλ|a ≤ | sinλa| ≤ e| Imλ|a or

1

4
e| Imλ|a ≤ | cosλa| ≤ e| Imλ|a

for sufficiently large | Imλ|, whereas the remaining terms satisfy

O(λ−1)e| Imλ|a.

Hence each of these functions is a sine type function by Proposition 11.2.19. �

12.3 Representations of some sine type functions

Let b and c be real numbers. Then the solution ω of the initial value problem

y′′ +
(
λ2 − 2ibλ− c

)
y = 0, x ∈ (0, a), y(λ, 0) = 0, y′(λ, 0) = 1, (12.3.1)

has the representation ω(λ, x) = τ(λ)−1 sin τ(λ)x, and ω′(λ, x) = cos τ(λ)x, where
τ(λ) =

√
λ2 − 2ibλ− c. Since both ω and ω′ are even functions with respect to

τ , the representation is unambiguous. The next lemma gives an asymptotic rep-
resentation of these two functions in terms of sinλa and cosλa for x = a > 0.
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Lemma 12.3.1. Let b, c ∈ R and a > 0. Then there are R > 0 and analytic
functions fj,k on {z ∈ C : |z| < R−1} for j, k = 1, 2, satisfying fj,k(−z) = fj,k(z),
f1,1(0) = f2,1(0) = cosh ba and −f1,2(0) = f2,2(0) = sinh ba such that for the
solution ω(·, a) of the initial value problem (12.3.1) at x = a and its derivative
ω′(·, a) at x = a we have the representations

ω(λ, a) =
sin τ(λ)a

τ(λ)
= f1,1(λ

−1)
sinλa

λ
+ if1,2(λ

−1)
cosλa

λ
, (12.3.2)

ω′(λ, a) = cos τ(λ)a = f2,1(λ
−1) cosλa+ if2,2(λ

−1) sinλa, (12.3.3)

for |λ| > R.

Proof. Let r > 0 such that 2|b|r + cr2 < 1. Let h1 be the unique analytic branch
of z �→ √1− 2ibz − cz2 on {z ∈ C : |z| < r} with h1(0) = 1, i. e.,

h1(z) =
∞∑
j=0

(1
2

j

)
(−2ibz − cz2)j , |z| < r. (12.3.4)

Note that h1(z) �= 0 for all |z| < r. For |λ| > R = 1
r we will now choose the branch

of τ such that
τ(λ)

λ
= h1(λ

−1).

For |z| < r we define

h2(z) =
h1(z)− 1

z
. (12.3.5)

Clearly, h2 is analytic with h2(0) = −ib. For |λ| > R we conclude that

τ(λ) − λ = λ

(
τ(λ)

λ
− 1

)
= h2(λ

−1).

It follows that

sin τ(λ)a

τ(λ)
=

cosh2(λ
−1)a

h1(λ−1)

sinλa

λ
+

sinh2(λ
−1)a

h1(λ−1)

cosλa

λ
,

cos τ(λ)a = cosh2(λ
−1)a cosλa− sinh2(λ

−1)a sinλa.

For |z| < r we define

f1,1(z) =
cosh2(z)a

h1(z)
, f1,2(z) = −i sinh2(z)a

h1(z)
, (12.3.6)

f2,1(z) = cosh2(z)a, f2,2(z) = i sinh2(z)a, (12.3.7)

which proves the representations (12.3.2) and (12.3.3). We also obtain f1,1(0) =
f2,1(0) = cosh2(0)a = cosh ba and −f1,2(0) = f2,2(0) = i sinhh2(0)a = sinh ba.
The symmetry of these functions follows from

h1(−z) =
√
1 + 2ibz − cz2 = h1(z)

and h2(−z) = −h2(z) for |z| < r. �
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Corollary 12.3.2. Under the assumptions of Lemma 12.3.1, for each n ∈ N there
are polynomials fj,k,n of degree ≤ n and entire functions ψj,n ∈ La, j, k = 1, 2,

such that fj,k,n(−z) = fj,k,n(z), fj,1,n(0) = cosh ba, (−1)jfj,2,n(0) = sinh ba,

ψj,n(−z) = (−1)n+jψj,n(z) and such that

sin τ(λ)a

τ(λ)
= f1,1,n(λ

−1)
sinλa

λ
+ if1,2,n(λ

−1)
cosλa

λ
+

ψ1,n(λ)

λn+1
, (12.3.8)

cos τ(λ)a = f2,1,n(λ
−1) cosλa+ if2,2,n(λ

−1) sinλa+
ψ2,n(λ)

λn
. (12.3.9)

Proof. Let fj,k,n, j, k = 1, 2, be the Taylor polynomial about 0 of order n of the
function fj,k from Lemma 12.3.1. Defining the function ψ1,n by (12.3.8), we have

ψ1,n(λ) = λn+1 sin τ(λ)a

τ(λ)
− λnf1,1,n(λ

−1) sinλa− iλnf1,2,n(λ
−1) cosλa

= λn
(
f1,1(λ

−1)− f1,1,n(λ
−1)
)
sinλa+ iλn

(
f1,2(λ

−1)− f1,2,n(λ
−1)
)
cosλa,

where the second identity follows from (12.3.2). The first of these representations
shows that ψ1,n is an entire function with the stated symmetry. Finally, the second
representation shows that ψ1,n is of the form O(|λ|−1) sinλa + O(|λ|−1) cosλa,
and therefore ψ1,n is of exponential type ≤ a and O(|λ|−1) on the real axis. Hence
ψ1,n ∈ La. The proof for ψ2,n is similar. �
Lemma 12.3.3 ([180, Lemma 3.4.2]). For the functions u and v to have the repre-
sentations

u(λ) =
sinλa

λ
− 4π2Aa cosλa

4λ2a2 − π2
+

f(λ)

λ2
, (12.3.10)

v(λ) = cosλa+Bπ2 sinλa

λa
+

g(λ)

λ
, (12.3.11)

where A,B ∈ C, f ∈ Lae , f(0) = 0, g ∈ Lao, it is necessary and sufficient that

u(λ) = a

∞∏
k=1

(
πk

a

)−2

(u2
k − λ2), uk =

πk

a
+

πA

ak
+

αk

k
, (12.3.12)

v(λ) =
∞∏
k=1

(
π

a

(
k − 1

2

))−2

(v2k − λ2), vk =
π

a

(
k − 1

2

)
+

πB

ak
+

βk

k
,

(12.3.13)

where (αk)
∞
k=1 ∈ l2 and (βk)

∞
k=1 ∈ l2.

Proof. We define
ϕs(λ) = iλ2u(λ).

In view of
4π2aλ2

4λ2a2 − π2
− π2

a
=

π4

(4λ2a2 − π2)a
,
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ϕs is an even entire function of the form ϕ as in (7.1.4) with σ = 0, α = 1, M = 0

and N = π2A
a . Then the representation of uk in (12.3.13) follows from part 1 in

Lemma 7.1.3 if we observe that u is even and that we have to omit a double zeros
at 0 from the sequence (λ̃k)

∞
k=−∞,k �=0. Since λ �→ λ sinλa is a sine type function,

it follows from Lemma 11.2.29 that

u(λ) = a′
∞∏
k=1

(
πk

a

)−2

(u2
k − λ2)

with some a′ �= 0. From the product representation of the sine function we infer
that

λu(λ)

sinλa
=

a′

a

∞∏
k=1

(
πk

a

)−2

(u2
k − λ2)

(
1− λ2a2

π2k2

)−1

=
a′

a

∞∏
k=1

u2
k − λ2

π2k2

a2 − λ2

=
a′

a

∞∏
k=1

(
1 +

u2
k − π2k2

a2

π2k2

a2 − λ2

)
.

Since u2
k− π2k2

a2 is bounded with respect to k and since |π2k2

a2 −λ2| ≥ π2k2

a2 for λ on

the imaginary axis, it follows that the right-hand side converges to a′
a as λ → ∞

along the imaginary axis, whereas the corresponding limit on the left-hand side
is 1. Hence a′ = a and we have shown that the function given by (12.3.10) has the
representation (12.3.12).

Conversely, assume that u is given by (12.3.12). Putting λk = πk
a , we have

uk = λk +
π2A

a2
λ−1
k +

παk

a
λ−1
k .

Since (λk)k∈Z is the sequence of the zeros of λ �→ sinλa, it follows from Remark
11.3.16 that

λu(λ) = C0 sinλa

(
1 +

B1

λ

)
− C0

π2A

aλ
cosλa+

f2(λ)

λ
, (12.3.14)

where C0 �= 0, B1 is a constant and f2 ∈ La. Taking into account that u is an even
entire function, we obtain B1 = 0, f2 ∈ Lae and f2(0) = 0. From the first part of
the proof we conclude that C0 = 1. Hence u is of the form (12.3.10).

Similarly, the function defined by

ϕc(λ) = λv(λ)

is an odd entire function of the form ϕ as in (7.1.4) with σ = 1, α = 0, M =
π2B
a and N = 0. Arguing as for ϕs it follows that (12.3.11) and (12.3.13) are

equivalent. �
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Lemma 12.3.4. For the entire functions u and v to admit the representations

u(λ) =
sinλa

λ
− 4π2Aa cosλa

4λ2a2 − π2
+ C

sinλa

λ3
+

f(λ)

λ3
, (12.3.15)

v(λ) = cosλa+Bπ2 sinλa

λa
+D

cosλa

4λ2a2 − π2
+

g(λ)

λ2
, (12.3.16)

where A,B,C,D ∈ C, f ∈ Lao , g ∈ Lae , it is necessary and sufficient that

u(λ) = a

∞∏
k=1

(
πk

a

)−2

(u2
k − λ2), uk =

πk

a
+

πA

ak
+

αk

k2
, (12.3.17)

v(λ) =

∞∏
k=1

(
π

a

(
k − 1

2

))−2

(v2k − λ2), vk =
π

a

(
k − 1

2

)
+

πB

ak
+

βk

k2
,

(12.3.18)

where (αk)
∞
k=1 ∈ l2 and (βk)

∞
1 ∈ l2.

Proof. First assume that (12.3.15) or (12.3.16) hold. We are going to prove that
the representations of the zeros uk and vk given in (12.3.12) and (12.3.13) can be
written in the form (12.3.17) and (12.3.18). In case (12.3.15) we define

χ̃(μ) = μ2u(μ), (12.3.19)

while in case (12.3.16) we define

χ̃(μ) = −μv
(
μ+

π

2a

)
. (12.3.20)

It is easy to see that in either case,

χ̃(μ) = (μ+B2μ
−1) sinμa+A1 cosμa+Ψ1(μ)μ

−1

with Ψ1 ∈ La. Indeed, in case (12.3.15) we have B2 = C and A1 = −π2Aa−1,
while in case (12.3.16) we have B2 = D

4a2 and A1 = −Bπ2a−1. Hence χ̃ is of the
form as considered in Lemma 7.1.5 with n = 1, B0 = 1, B1 = 0, A2 = 0, except
that we do not require that A1 and B1 are real and that Ψn is symmetric. But it
is easy to see that these requirements are only used to guarantee that the zeros
of χ̃ can be indexed properly; the asymptotic representation (7.1.13) of the zeros
holds without these requirements. We therefore conclude from Lemma 7.1.5 that
the zeros of χ̃ have the asymptotic representation

μk =
πk

a
− A1

kπ
+

b
(1)
k

k2
,

where (b
(1)
k )∞k=1 ∈ l2. Observing that uk = μk and vk = μk− π

2a , the representations
(12.3.17) and (12.3.18) follow.
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Conversely, assume that (12.3.17) holds. By the first part of this proof, the

zeros (λ
(0)
k )k∈Z\{0} of the entire function u0 defined by

u0(λ) =
sinλa

λ
− 4π2Aa cosλa

4λ2a2 − π2
(12.3.21)

have the asymptotic behaviour

λ
(0)
k =

πk

a
+

πA

ak
+

α0,k

k2
, (12.3.22)

where (α0,k)
∞
k=1 ∈ l2 and α0,−k = −α0,k for all k ∈ N. Comparing (12.3.22) with

(12.3.17) we obtain

uk = λ
(0)
k +

γk(
λ
(0)
k

)2 ,
where (γk)k∈Z\{0} ∈ l2. It is easy to see that λ �→ λu0(λ) is a sine-type function
of type a. In view of Remark 11.3.16 we obtain

λu(λ) = C0λu0(λ)

(
1 +

B1

λ
+

C

λ2

)
+

f2(λ)

λ2
, (12.3.23)

where C0 �= 0, B1, C are constants and f2 ∈ La. Taking into account that u
and u0 are even functions, we obtain B1 = 0 and f2 ∈ Lao . Since u satisfies the
representation (12.3.10) in Lemma 12.3.3, it follows that C0 = 1. Substituting
(12.3.21) into (12.3.23) and observing C0 = 1 and B1 = 0, we obtain (12.3.15).

Finally assume that (12.3.18) holds. By the first part of this proof, the zeros

(λ
(0)
k )k∈Z\{0} of the entire function v0 defined by

v0(λ) = cosλa+Bπ2 sinλa

λa
(12.3.24)

have the asymptotic behaviour

λ
(0)
k =

π

a

(
|k| − 1

2

)
sgnk +

πB

ak
+

β0,k

k2
, (12.3.25)

where (β0,k)
∞
k=1 ∈ l2 and β0,−k = −β0,k for all k ∈ N. Comparing (12.3.25) with

(12.3.18) we obtain

vk = λ
(0)
k +

γk(
λ
(0)
k

)2 ,
where (γk)k∈Z\{0} ∈ l2. It is easy to see that v0 is a sine-type function of type a.
In view of Remark 11.3.16 we obtain

v(λ) = C0v0(λ)

(
1 +

B1

λ
+

D

4a2λ2

)
+

f2(λ)

λ2
, (12.3.26)

where C0 �= 0, B1, D are constants and f2 ∈ La. Taking into account that v
and v0 are even functions, we obtain B1 = 0 and f2 ∈ Lae . Since v satisfies
the representation (12.3.11) in Lemma 12.3.3, it follows that C0 = 1. Substituting
(12.3.24) into (12.3.26) and observing C0 = 1 and B1 = 0, we obtain (12.3.16). �
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12.4 The fundamental equation

Throughout this section let u and v be as in (12.3.10) and (12.3.11) with A = B
and such that the numbers uk and vk in (12.3.12) and (12.3.13) are real or pure
imaginary for all k ∈ N and satisfy

v21 < u2
1 < v22 < u2

2 · · · .

We consider the entire function χ defined by

χ(λ) = v(λ) + iλu(λ), λ ∈ C. (12.4.1)

Lemma 12.4.1. The function χ is of SSHB class.

Proof. By definition, u and v are even functions, and we can write u(λ) = Q(λ2)
and v(λ) = P (λ2) with entire functions Q and P , where the sets {u2

k : k ∈ N} and
{v2k : k ∈ N} are the sets of the zeros of Q and P , respectively, and all zeros of Q
and P are simple and interlace. Since Q and P have the representations (12.3.12)
and (12.3.13), it is easy to see that Q(v21) is an infinite product of positive numbers,
whereas P ′(v21) is the negative of an infinite product of positive numbers. It follows
that Q′(x)P (x)−Q(x)P ′(x) > 0 for all x ∈ R sufficiently close to v21 . Hence there
are x ∈ R such that P (x) �= 0 and such that θ = Q

P satisfies θ′(x) > 0. Therefore
θ is a Nevanlinna function by Theorem 11.1.6 and Remark 11.1.7. Then θ ∈ N ep

+

by Corollary 5.2.3, and thus χ is of SSHB class by Definition 5.2.6. �

We further define the function ψ by

ψ(λ) = e−iλaχ(λ) (12.4.2)

and the function S by

S(λ) =
ψ(λ)

ψ(−λ) . (12.4.3)

Proposition 12.4.2. Let κ := #{k ∈ N : v2k < 0}. Then S is meromorphic on C and
analytic on R, and S has exactly κ poles in the open upper half-plane. All poles in
the open upper half-plane are simple and lie on the imaginary axis. Furthermore,
for λ ∈ C such that ψ(λ) �= 0 and ψ(−λ) �= 0 we have

S(−λ) = ψ(−λ)
ψ(λ)

= S(λ), and
1

S(λ)
=

ψ(−λ)
ψ(λ)

= S(−λ). (12.4.4)

In particular,

S(−λ) = S(λ), |S(λ)| = 1, λ ∈ R. (12.4.5)
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Proof. The function S is the quotient of two nonzeros entire functions and hence
meromorphic on C. Let χ̌(λ) = χ(−λ), λ ∈ C. Since χ and χ̌ do not have common
nonzero zeros, the statement on the poles and the analyticity of S on R \ {0}
immediately follows from Theorem 5.2.9. Furthermore, the possible singularity of
S at 0 is removable since lim

λ→0
S(λ) = −1 if 0 is a (simple) zero of χ. The identities

(12.4.4) and (12.4.5) are immediate consequences of the fact that χ is real on the
imaginary axis. �

For b ≥ 0 we define Sb by

Sb(λ) = 1− S(ib+ λ), λ ∈ C, ψ(−ib− iλ) �= 0. (12.4.6)

Lemma 12.4.3.

1. Let b ≥ 0 such that ib is not a pole of S. Then Sb ∈ L2(R).

2. Let γ ≥ 0 such that S is analytic on {λ ∈ C : Imλ ≥ γ} and define

F (x) =
e−γx

2π

∫ ∞

−∞
Sγ(λ)e

iλx dλ, x ∈ R. (12.4.7)

Then the function F is real valued and independent of γ. Furthermore, the function
x �→ eγxF (x) is the inverse Fourier transform of Sγ and can be represented as
F1 + F2, where F1 ∈ L2(R), F2 ∈ W 1

2 (R) are real-valued functions, F1(x) = 0 for
x > 0, and F2(x) = 0 for x > 2a.

Proof. 1. We conclude from the representations (12.3.10) and (12.3.11) of u and v
that

χ(λ) = eiλa +
Aπ2

a

sinλa

λ
− 4π2iλAa cosλa

4λ2a2 − π2
+

g(λ) + if(λ)

λ
,

which gives

ψ(λ) = 1+
Aπ2

a

sinλa

λ
e−iλa− 4π2iλAa cosλa

4λ2a2 − π2
e−iλa+

g(λ) + if(λ)

λ
e−iλa (12.4.8)

and

1

ψ(−λ) = 1− Aπ2

a

sinλa

λ
eiλa − 4π2iλAa cosλa

4λ2a2 − π2
eiλa +

g(λ)− if(λ)

λ
eiλa +O(λ−2)

(12.4.9)
for λ in the closed upper half-plane. Therefore, the function S satisfies

S(λ) = 1− 2
Aπ2i

a

sin2 λa

λ
− 8π2iλAa cos2 λa

4λ2a2 − π2
+

2

λ
(g(λ) cosλa− f(λ) sinλa)

+O(λ−2)e2 Imλa.

Observing that
4a2

4λ2a− π2
=

1

λ2
+O(λ−4),
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this representation can be written in the form

1− S(λ) = 2
Aπ2i

λa
− 2

λ
(g(λ) cosλa− f(λ) sin λa) +O(λ−2)e2 Imλa. (12.4.10)

By Proposition 12.4.2 we know that poles of S in the closed upper half-plane
lie on the positive imaginary axis, and from (12.4.10) we thus infer that 1 − S is
analytic and square integrable on each line Imλ = b with b ≥ 0 for which ib is not
a pole of S.

2. Using (12.4.4) we have

Sγ(−λ) = 1− S(iγ − λ) = 1− S(iγ + λ) = Sγ(λ), λ ∈ R,

so that

F (x) =
e−γx

π

∫ ∞

0

Re
(
Sγ(λ)e

iλx
)
dλ, x ∈ R,

which shows that F is real valued. We can write

F (x) =
1

2π

∫ ∞

−∞
(1− S(iγ + λ))ei(iγ+λ)x dλ

=
1

2π

∫
Imλ=γ

(1− S(λ))eiλx dλ =: Fγ(λ).

If we now take γ′ > γ, then it follows from Cauchy’s theorem that

|Fγ′(x) − Fγ(x)| ≤ 1

2π
lim sup
R→∞

(∫ γ′

γ

|(1− S(R+ it))ei(R+it)x|dt

+

∫ γ′

γ

|(1− S(−R+ it))ei(−R+it)x|dt
)

= lim sup
R→∞

O(R−1) = 0,

and therefore the function F is independent of the special choice of γ.

The first term of the representation (12.4.10) of 1 − S has a pole at λ = 0.
But it is easy to see that (12.4.10) can be written as

1− S(λ) =
2Aπ2i

a(λ+ i)
+

ω(λ)

λ+ i
, λ ∈ C,

where ω is analytic in the closed half-plane {λ ∈ C : Imλ ≥ γ}, ω(iγ+ ·) ∈ L2(R),
and λ �→ ω(λ)e−2 Imλa is bounded in that half-plane. We can therefore write
eγxF (x) = F1(x) + F2(x) with

F1(x) =
1

2π

∫ ∞

−∞

2Aπ2i

a(λ + iγ + i)
eiλx dλ, F2(x) =

1

2π

∫ ∞

−∞

ω(λ+ iγ)

λ+ iγ + i
eiλx dλ.
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For x > 0 and R > 0 it follows from Cauchy’s integral theorem and Lebesgue’s
dominated convergence theorem that∫ R

−R

eiλx

λ+ iγ + i
dλ = −

∫ π

0

eRei(θ+
π
2

)x

Reiθ + iγ + i
Reiθ dθ → 0 as R→∞.

Similarly, for x < 0 and R > γ + 1 we use the residue theorem and Lebesgue’s
dominated convergence theorem to conclude that∫ R

−R

eiλx

λ+ iγ + i
dλ =

∫ 2π

π

eRei(θ+
π
2

)x

Reiθ + iγ + i
Reiθ dθ − 2πi res−iγ−i

eiλx

λ+ iγ + i

→ −2πie(γ+1)x as R→∞.

Therefore

F1(x) =

{
0 if x > 0,
2Aπ2

a e(γ+1)x if x < 0.

The function F2 is differentiable with

F ′
2(x) =

i

2π

∫ ∞

−∞

λ

λ+ iγ + i
ω(λ+ iγ)eiλx dλ, x ∈ R.

Hence F2 and F ′
2 are inverse Fourier transforms of functions in L2(R), which shows

that F2 ∈W 1
2 (R). For x > 2a and R > 0 it follows from Cauchy’s integral theorem,

the boundedness of λ �→ ω(λ)e2iλa in the closed half-plane {λ ∈ C : Imλ ≥ γ},
and Lebesgue’s dominated convergence theorem that∫ R

−R

ω(λ+ iγ)

λ+ iγ + i
eiλx dλ = −

∫ π

0

ω(Reiθ + iγ)

Reiθ + iγ + i
eRei(θ+

π
2

)(2a−x)Reiθ dθ → 0

as R→∞. Therefore, F2(x) = 0 for x > 2a. �

The fundamental equation, see [180, (3,2,10), (3.3.7)] will formally be de-
fined as

F (x+ y) +H(x, y) +

∫ ∞

x

H(x, t)F (y + t) dt = 0, 0 ≤ x ≤ y. (12.4.11)

In order to have the limits of integration independent of x, we substitute y+x for
y and t+ x for t, see [180, (3.3.7′)], and the fundamental equation becomes

F (2x+y)+H(x, x+y)+

∫ ∞

0

H(x, x+t)F (2x+y+t) dt = 0, x, y ≥ 0. (12.4.12)

We observe that in view of F (x) = 0 for x > 2a, the equation (12.4.12) can be
written as

F (2x+ y)+H(x, x+ y)+

∫ 2a−2x−y

0

H(x, x+ t)F (2x+ y+ t) dt = 0, (x, y) ∈ D,

(12.4.13)
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where D = {(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ 2(a − x)} since for any other
values of x, y ≥ 0, H(x, x+ y) = 0 is necessary and sufficient for (12.4.12) to hold.
However, it will be more convenient to use a rectangular region, and therefore we
will consider the region [0, a]× [0, 2a] instead of D.

For 0 ≤ x ≤ a define

(Fxf)(y) =

∫ 2a

0

F (2x+ y + t)f(t) dt, f ∈ L2(0, 2a), y ∈ [0, 2a]. (12.4.14)

The following result is a special case of [180, Lemmas 3.3.1, 3.3.2 and 3.3.3].

Lemma 12.4.4. For 0 ≤ x ≤ a, the operator Fx is a self-adjoint compact operator
in the space L2(0, 2a). If v

2
1 > 0, then I + Fx � 0.

Proof. Since (y, t) �→ F (2x + y + t) is a real-valued and symmetric continuous
function on [0, 2a]× [0, 2a], the operator Fx is self-adjoint and compact, see, e. g.,
[109, p. 240].

Now let v21 > 0. Then S is analytic in the closed upper half-plane, and we
can take γ = 0 in (12.4.7). In particular, F ∈ L2(R). Let f ∈ L2(0, 2a). Putting
f(t) = (Fxf)(t) = 0 for t ∈ R \ [0, 2a] and using the notations f̌(t) = f(−t),
τb(t) = y + b for x, b ∈ R, the right-hand side of (12.4.14) can be written as a
convolution, so that we arrive at

Fxf = (F ◦ τ2x) ∗ f̌ on [0,∞).

Hence there is a function g with support in (−∞, 0] such that

Fxf + g = (F ◦ τ2x) ∗ f̌ on R. (12.4.15)

For y < 0 we have

|g(y)|2 =

∣∣∣∣∫ 2a

0

F (2x+ y + t)f(t) dt

∣∣∣∣2 ≤ ∫ 2a

0

|F (2x+ y + t)|2 dt ‖f‖2,

where ‖ · ‖ denotes the norm in L2(R). Hence

‖g‖ =
∫ 0

−∞
|g(y)|2 dy ≤

∫ 0

−∞

∫ 2a

0

|F (2x+ y + t)|2 dt dy ‖f‖2

=

∫ 2a

0

∫ 0

−∞
|F (2x+ y + t)|2 dy dt ‖f‖2 ≤ 2a‖F‖2‖f‖2,

which shows that g ∈ L2(−∞, 0).

Taking the inner product with f in (12.4.15) and observing that gf = 0, we
arrive at

(Fxf, f) = ((F ◦ τ2x) ∗ f̌ , f).
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Let f̂ denote the Fourier transformation of f . Taking the Fourier transforms of
the functions in the above inner product and observing Parseval’s formula gives

((Fxf )̂, f̂) = ((F ◦ τ2x)̂ ˇ̂
f, f̂),

see, e. g., [108, (21.41)]. It is well known and easy to check that f̂ is an entire
function. We observe that for any function h ∈ L2(R) and b ∈ R,

(h ◦ τb)̂(λ) =
∫ ∞

−∞
h(b+ t)e−iλt dt =

∫ ∞

−∞
h(t)e−iλ(t−b) dt = eiλbĥ(λ). (12.4.16)

Since F̂ = 1− S by definition of F in (12.4.7), we conclude that

((Fxf )̂, f̂) =

∫ ∞

−∞
e2iλx(1 − S(λ))f̂(−λ)f̂(λ) dλ.

Again from (12.4.16) and Parseval’s identity we conclude that∫ ∞

−∞
e2iλxf̂(−λ)f̂ (λ) dλ =

∫ ∞

−∞
eiλxf̂(−λ)e−iλxf̂(λ) dλ

=

∫ ∞

−∞
(f ◦ τ−x)(−t)(f ◦ τ−x)(t) dt.

But (f ◦ τ−x)(t) = f(t−x) = 0 if t < 0 since f is zero outside [0, 2a], and therefore
the integrand on the right-hand side is zero. We conclude that

(Fxf, f) =
1

2π
((Fxf )̂, f̂) = − 1

2π

∫ ∞

−∞
e2iλxS(λ)f̂(−λ)f̂(λ) dλ. (12.4.17)

Observing (12.4.5) it follows from the Cauchy–Schwarz–Bunyakovskii inequality
that

(Fxf, f) ≥ − 1

2π

∫ ∞

−∞
|f̂(−λ)| |f̂(λ)| dλ ≥ − 1

2π
‖f̂‖2 = −‖f‖2. (12.4.18)

Altogether, we conclude that

((I + Fx)f, f) ≥ 0 (12.4.19)

for all f ∈ L2[0, 2a]. Hence I + Fx ≥ 0.

Since Fx is compact, I + Fx is a Fredholm operator of index 0, and for
I + Fx � 0 it remains to show that I + Fx is injective. Hence let f ∈ L2(0, 2a)
such that (I + Fx)f = 0. For this f , (12.4.19) becomes and inequality, and hence
also the Cauchy–Schwarz–Bunyakovskii inequality (12.4.18) is an equality. But
this happens if and only if one function in the inner product is a nonnegative
multiple of the other function, i. e., when there is α ≥ 0 such that

−e2iλxS(λ)f̂(−λ) = αf̂(λ), λ ∈ R.
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Observing that S(0) = 1 and that in case f �= 0 the Taylor expansion of the entire

function f̂ about 0 leads to

lim
λ→0

∣∣∣∣∣ f̂(λ)f̂(−λ)

∣∣∣∣∣ = 1,

it follows that α = 1, and the identity theorem gives

f̂(λ) + e2iλxS(λ)f̂(−λ) = 0, λ ∈ C, S(λ) �= 0, (12.4.20)

which is also trivially true in case f = 0.

First let x = 0. Then (12.4.20) holds with x = 0. Hence all poles of S must

be cancelled by zeros of
ˇ̂
f , and since the poles of S are the zeros of ψ̌, there is an

entire function ω such that
f̂ = ωψ.

Multiplying (12.4.20) by ψ̌ we arrive at

ωψψ̌ = f̂ ψ̌ = − ˇ̂
fψ = −ω̌ψ̌ψ,

which shows that ω is an odd entire function. We have seen at the beginning of
this section that ψ has no zeros in the closed lower half-plane and satisfies the
estimate (12.4.9). Hence 1

ψ is a bounded analytic function in the closed lower

half-plane. Since f̂ is the Fourier transform of a function in L2[0, 2a], also f̂ is
bounded in the closed lower half-plane. Indeed, it is easy to see that the integral

over |f | is such a bound. Hence ω = f̂
ψ is bounded in the closed lower half-plane

and then also bounded in the closed upper half-plane due to the symmetry of ω.
By Liouville’s theorem, ω is constant. But 1

ψ is bounded on R, see (12.4.9), and f̂
is an L2 function on R, so that this constant must be zero. We have shown that
ω = 0, and f̂ = 0 follows. Therefore I + F0 is injective, and I + F0 � 0 is proved.

Now let x > 0. Recall that we consider (I+Fx)f = 0. Since (Fxf)(y) = 0 for
y > 2(a− x), this implies f(y) = 0 for y > 2(a− x). It follows for 0 < h < x that
the function

fh =
1

2
(f ◦ τ−x+h + f ◦ τ−x−h)

has support in [x−h, 2a−x+h], and therefore fh ∈ L2[0, 2a]. In view of (12.4.16)
we conclude that

f̂h(λ) = f̂(λ)e−iλx cosλh. (12.4.21)

A substitution of (12.4.21) into (12.4.20) leads to

f̂h(λ) − S(λ)f̂h(−λ) = 0, λ ∈ R,

which means that ((I + F0)fh, fh) = 0 for 0 < h < a. In view of

((I + F0)fh, fh) = ((I + F0)
1
2 fh, (I + F0)

1
2 fh)

we conclude that (I + F0)fh = 0. But from the case x = 0 we already know that

this implies fh = 0. Then (12.4.21) gives f̂ = 0 and thus f = 0. �
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Lemma 12.4.5. Let v21 > 0. For 0 ≤ x ≤ a, define the operator F0
x as the restriction

of Fx to C[0, 2a]. Then F0
x is a compact operator in the space C[0, 2a], and I +F0

x

is invertible.

Proof. We begin by defining an auxiliary operator T by

((Tg)f)(y) =

∫ 2a

0

g(y + t)f(t) dt, g ∈ L2(0, 2a), f ∈ C[0, 2a], y ∈ [0, 2a].

Here we set g(x) = 0 for x > 2a. Clearly, (Tg)f is a measurable function on [0, 2a]
for all g ∈ L2(0, 2a) and f ∈ C[0, 2a], and

|((Tg)f)(y)| ≤ ‖g‖ ‖f‖ ≤ √2a‖g‖ ‖f‖0,
where ‖·‖0 is the maximum norm in the Banach spaceC[0, 2a]. This shows that T ∈
L(L2(0, 2a), L(C[0, 2a], L∞(0, 2a))). Clearly, for continuous g with g(2a) = 0, also
(Tg)f is continuous. Observing that the set of such functions g is dense in L2(0, 2a),
that C[0, 2a] is closed in L∞(0, 2a) and that therefore L(C[0, 2a], C[0, 2a]) is closed
in L(C[0, 2a], L∞(0, 2a)), it follows that T ∈ L(L2(0, 2a), L(C[0, 2a])). Further-
more, if g ∈ W 1

2 (0, 2a) with g(2a) = 0, then we can write

g(x) = −
∫ 2a

x

g′(τ) dτ, x ≥ 0,

see, e. g., [189, Proposition 2.1.5], and therefore

((Tg)f)(y) = −
∫ 2a

0

∫ 2a

y+t

g′(τ) dτ f(t) dt = −
∫ 2a

0

∫ 2a

y

g′(τ + t) dτ f(t) dt

= −
∫ 2a

y

∫ 2a

0

g′(τ + t) dt f(t) dτ = −
∫ 2a

y

((Tg′)f)(τ) dτ.

Since (Tg′)f is continuous by what we have already shown, it follows that (Tg)f
is differentiable with continuous derivative ((Tg)f)′ = (Tg′)f . Then the norm of
(Tg)f in C1[0, 2a] is

‖(Tg)f‖0 + ‖((Tg)f)′‖0 = ‖(Tg)f‖0 + ‖(Tg′)f‖0 ≤
√
2a(‖g‖+ ‖g′‖)‖f‖0,

which shows that Tg ∈ L(C[0, 2a], C1[0, 2a]) if g ∈ W 1
2 [0, 2a] with g(2a) = 0.

But since the embedding from C1[0, 2a] into C[0, 2a] is compact, see, e. g., [189,
Proposition 2.1.7 and Lemma 2.4.1], it follows that Tg is a compact operator on
C[0, 2a].

As we have seen in the proof of Lemma 12.4.4, we can take γ = 0 in (12.4.7).
For 0 ≤ x ≤ a we now apply the above auxiliary result to the operators

F
0
x = T (F ◦ τ2x),

which proves that F0
x is a compact operator in C[0, 2a]. Therefore I + F0

x is a
Fredholm operator with index 0. But N(I + F0

x) ⊆ N(I + Fx) and I + Fx is
injective by Lemma 12.4.4. It follows that I + Fx is invertible. �
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Lemma 12.4.6. The operator functions x �→ Fx and x �→ F0
x are differentiable on

[0, a]. The derivative F′
x of x �→ Fx at x is the operator

(F′
xf)(y) = 2

∫ 2a

0

F ′(2x+ y + t)f(t) dt, f ∈ L2(0, 2a), y ∈ [0, 2a], (12.4.22)

and (F0
x)

′ is the restriction of F′
x to C[0, 2a]. For each x ∈ [0, a] and for all f ∈

L2(a, b), the function Fxf is differentiable, and (Fxf)
′ = 1

2F
′
xf .

Proof. Arguing as at the beginning of the proof of Lemma 12.4.4 we see that F′
x is

a bounded operator in L2(0, 2a). For x, x
′ ∈ [0, a] we define the auxiliary operator

Fx,x′ = Fx′ − Fx − (x′ − x)F′
x.

Then it follows for f ∈ L2(0, 2a) and y ∈ [0, 2a] that

(Fx,x′f)(y)

=

∫ 2a

0

[F (2x′ + y + t)− F (2x+ y + t)− 2(x′ − x)F ′(2x+ y + t)]f(t) dt.

Since F ∈ W 1
2 (0, a) by Lemma 12.4.3, we can write

F (2x′ + y + t)− F (2x+ y + t) =

∫ 2x′

2x

F ′(τ + y + t) dτ,

see, e. g., [189, Proposition 2.1.5]. Therefore

(Fx,x′f)(y) =

∫ 2a

0

∫ 2x′

2x

[F ′(τ + y + t)− F ′(2x+ y + t)]f(t) dτ dt.

Let ε > 0. Since the set of continuous functions on [0, 2a] is dense in L2(0, a), there
is a continuous function g on [0, 2a] such that ‖F ′ − g‖ < ε. Then∣∣∣∣∣

∫ 2a

0

∫ 2x′

2x

[(F ′ − g)(τ + y + t)− (F ′ − g)(2x+ y + t)]f(t) dτ dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ 2x′

2x

∫ 2a

0

|(F ′ − g)(τ + y + t)| |f(t)| dt dτ
∣∣∣∣∣

+

∣∣∣∣∣
∫ 2x′

2x

∫ 2a

0

|(F ′ − g)(2x+ y + t)| |f(t)| dt dτ
∣∣∣∣∣

≤ 4|x′ − x|‖F ′ − g‖‖f‖ < 4ε|x′ − x|‖f‖.

Since g is continuous and therefore uniformly continuous, there exists δ > 0 such
that |g(t) − g(t′)| < ε for all t, t′ ∈ [0, 2a] with |t − t′| < 2δ. Hence it follows for



12.4. The fundamental equation 373

|x′ − x| < δ that∣∣∣∣∣
∫ 2a

0

∫ 2x′

2x

[g(τ + y + t)− g(2x+ y + t)]f(t) dt

∣∣∣∣∣ ≤ ε

∣∣∣∣∣
∫ 2x′

2x

∫ 2a

0

|f(t)| dt dτ
∣∣∣∣∣

≤ ε
√
2a|x′ − x|‖f‖.

Altogether, we conclude that

‖Fx,x′f‖∞ ≤ ε(4 +
√
2a)|x′ − x|‖f‖.

This shows that Fx is differentiable as an operator function from L2(0, 2a) to
L∞(0, 2a) with derivative F′

x, see, e. g., [66, Section 8.1]. By the product rule,
see, e. g., [66, 8.3.1], the same is clearly true if these operators are considered
as operators into L2(0, 2a), that is, multiplied by the constant embedding from
L∞(0, 2a) to L2(0, 2a).

The same reasoning as above applies to the operator function x �→ F0
x. We

only have to restrict f to functions in C[0, 2a] and replace ‖f‖ with √2a‖f‖0.
In (12.4.14), we can interchange integration and differentiation with respect

to y, and (Fxf)
′ = 1

2F
′
xf is therefore an immediate consequence of (12.4.22). �

Proposition 12.4.7. Let v21 > 0 and let the function F be as defined in (12.4.7).
Then for every x ∈ [0, a], (I + Fx)g = −F ◦ τ2x has a unique solution g = G(x, ·)
in L2(0, 2a). The function G is continuous on [0, a]× [0, 2a] and G(·, y) ∈ W 1

2 (0, a)
for y ∈ [0, 2a].

Proof. As we have seen in the proof of Lemma 12.4.4, we can take γ = 0 in (12.4.7).
The existence and uniqueness of G follows immediately from the invertibility of
I + Fx for all x ∈ [0, a], which was shown in Lemma 12.4.4, and we have

G(x, y) = −((I + Fx)
−1(F ◦ τ2x))(y)

for all (x, y) ∈ [0, a]× [0, 2a]. Since F ◦ τ2x is continuous, Lemma 12.4.5 shows that
we can also write

G(x, y) = −((I + F
0
x)

−1(F ◦ τ2x))(y),
and therefore G(x, ·) is continuous. By Lemma 12.4.6, x �→ F0

x is differentiable
and therefore continuous on [0, a], so that also x �→ (I + F0

x)
−1 is continuous. For

x, x′ ∈ [0, a] we therefore conclude

|G(x′, y)−G(x, y)| ≤ |((I + F
0
x′)−1(F ◦ τ2x′))(y)− ((I + F

0
x)

−1(F ◦ τ2x′))(y)|
+ |((I + F

0
x)

−1(F ◦ τ2x′))(y) − ((I + F
0
x)

−1(F ◦ τ2x))(y)|
≤ ‖(I + F

0
x′)−1 − (I + F

0
x)

−1‖ ‖(F ◦ τ2x′)‖
+ ‖(I + F

0
x)

−1‖ ‖F ◦ τ2x′ − F ◦ τ2x‖
→ 0 as x′ → x.
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In the last step we also have used that F is uniformly continuous. We have thus
shown that G(x, ·) and G(·, y) are continuous for all x ∈ [0, a] and y ∈ [0, 2a], and
a standard argument shows that G is continuous on [0, a]× [0, 2a].

Since x �→ Fx is differentiable by Lemma 12.4.6 and since I +Fx is invertible
for all x ∈ [0, a] by Lemma 12.4.4, x �→ (I +Fx)

−1 is differentiable on [0, a] by the
quotient rule, see [66, 8.3.2], and

d

dx
(I + Fx)

−1 = −(I + Fx)
−1

F
′
x(I + Fx)

−1.

Furthermore, also x �→ F ◦ τ2x is differentiable with derivative 2F ′ ◦ τ2x, and the
product rule, see [66, 8.3.1], gives

∂

∂x
G(x, ·) = (I + Fx)

−1
F
′
x(I + Fx)

−1(F ◦ τ2x)− 2(I + Fx)
−1(F ′ ◦ τ2x). (12.4.23)

Since F ◦ τ2x is continuous, we know from Lemma 12.4.5 that the first summand
can be written as

G1(x, ·) := (I + F
0
x)

−1(F0
x)

′(I + F
0
x)

−1(F ◦ τ2x),
and since

x �→ (I + F
0
x)

−1(F0
x)

′(I + F
0
x)

−1

is a continuous operator function in L(C[0, 2a]), it follows like we have shown for G
above that also G1 is continuous on [0, a]× [0, 2a]. Next we consider the auxiliary
operator G0 defined by

(G0g)(x, ·) := (I + Fx)
−1(g ◦ τ2x), g ∈ L2(0, 2a), x ∈ [0, a].

Again for continuous g, we can replace Fx with F0
x, and the above considerations

show thatG0g is continuous on [0, 2a] and therefore square integrable. We calculate∣∣∣∣∫ a

0

∫ 2a

0

(
(I + Fx)

−1(g ◦ τ2x)
)
(y) dy dx

∣∣∣∣ ≤ ∫ a

0

‖(I + Fx)
−1‖ ‖g‖ dx

≤ a max
x∈[0,a]

‖(I + Fx)
−1‖ ‖g‖.

By continuity, this extends to all g ∈ L2(0, 2a), and we obtain that G0 is a bounded
operator from L2(0, a) to L2((0, a) × (0, 2a)). Therefore, G2 := G0F

′ belongs to
L2((0, a)× (0, 2a)). Finally, let y ∈ [0, 2a]. Then

((I + Fx)G2)(x, ·) = F ′ ◦ τ2x
gives

G2(x, y) = −
∫ a

0

F (2x+ y + t)G2(x, t) dt+ F ′(2x+ y).

Since (x, t) �→ F (2x+y+t)G2(x, t) is a square integrable kernel, it follows that the
function x �→ ∫ a

0 F (2x + y + t)G2(x, t) dt is square integrable on (0, a), see, e. g.,

[109, p. 240]. Altogether, ∂
∂xG(·, y) = G1(·, y)− 2G2(·, y) ∈ L2(0, a) follows. �
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Proposition 12.4.8 ([180, Theorem 3.3.1]). Let v21 > 0 and consider the function
F defined in (12.4.7). Then the fundamental equation (12.4.11) has a unique con-
tinuous solution H on D0 = {(x, y) ∈ R2 : 0 ≤ x ≤ y}. Furthermore, q ∈ L2(0, a),
where

q(x) := −2 d

dx
H(x, x), x ∈ (0, a), (12.4.24)

H and q are real valued, and H satisfies the integral equation

H(x, y) =
1

2

∫ a+ y−x
2

x+y
2

∫ a−|a−τ |

x+|y−τ |
q(σ)H(σ, τ) dσ dτ +

1

2

∫ 2a

x+y
2

q(σ) dσ. (12.4.25)

Proof. As we have seen in the proof of Lemma 12.4.4, we can take γ = 0 in (12.4.7).
Recall that H satisfies the fundamental equation if and only if (x, y) �→ H(x, x+y)
satisfies (12.4.13). But from Proposition 12.4.7 we know that (12.4.13) has a unique
solution G. Hence the fundamental equation has the unique continuous solution
H given by H(x, x + y) = G(x, y) for (x, y) ∈ D0. Since F is real valued, Also
H is real valued. In view of H(x, x) = G(x, 0), q ∈ L2(0, a) is a consequence of
G(·, 0) ∈W 1

2 (0, a), which was shown in Proposition 12.4.7.

To prove (12.4.25), we first consider the case that F is a twice continuously
differentiable function on (0,∞) with support in [0, 2a] such that I + F0

x has an
inverse for all x ∈ [0, a]. We observe that F0

x depends continuously on x and hence
a compactness argument shows that the norm of (I +F0

x)
−1 is uniformly bounded

for x ∈ [0, a]. In that case, the operator function x �→ F
0
x is twice differentiable and

we can differentiate once more on both sides of (12.4.22). Adapting the proof of
Proposition 12.4.7 to this case we see that Gx and Gxx exist and are continuous.
It is also immediately clear from (12.4.13) that Gy , Gxy and Gyy exist and are
continuous. Furthermore, for x ∈ [0, a], y ∈ [0, 2a] and h ∈ R such that x+h ∈ [0, a]
and y + 2h ∈ [0, 2a] we have

G(x, y + 2h)−G(x, y)

= ((I + F
0
x)

−1(F ◦ τ2x))(y+2h)−((I + F
0
x)

−1(F ◦ τ2x))(y)
= ((I + F

0
x)

−1(F ◦ τ2(x+h)))(y)−((I + F
0
x)

−1(F ◦ τ2x))(y)
= ((I + F

0
x)

−1[F ◦ τ2(x+h) − F ◦ τ2x])(y).

A reasoning as in the proof of Lemma 12.4.6 shows that

Gy(x, y) =
1

2
((I + F

0
x)

−1(F ′ ◦ τ2x))(y).

Arguing as in the proof of Proposition 12.4.7 and as above in this proof we see that
also Gyx exists and is continuous. We have shown that G is twice continuously
differentiable, and therefore also H is twice continuously differentiable.
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Differentiating the fundamental equation (12.4.11) twice with respect to x
and twice with respect to y we obtain

F ′′(x + y) +Hxx(x, y)− d

dx
[H(x, x)F (x + y)]

−Hx(x, x)F (x + y) +

∫ ∞

x

Hxx(x, t)F (y + t) dt = 0

and

F ′′(x+ y) +Hyy(x, y) +

∫ ∞

x

H(x, t)F ′′(y + t) dt = 0.

Integrating by parts twice we have∫ ∞

x

H(x, t)F ′′(y + t) dt = −H(x, x)F ′(x+ y) +Hy(x, x)F (x + y)

+

∫ ∞

x

Hyy(x, t)F (y + t) dt.

Taking now the difference of the two second-order partial derivatives we arrive at

Hxx(x, y)−Hyy(x, y) + q(x)F (x + y)

+

∫ ∞

x

[Hxx(x, t)−Hyy(x, t)]F (y + t) dt = 0.

With y = x+ ỹ this equation becomes

Hxx(x, x+ ỹ)−Hyy(x, x+ ỹ) + q(x)F (2x+ ỹ)

+

∫ ∞

0

[Hxx(x, x + t)−Hyy(x, x + t)]F (2x+ ỹ + t) dt = 0. (12.4.26)

Since the fundamental equation in the form (12.4.12) gives

q(x)(F ◦ τ2x) = −q(x)(I + Fx)H(x, x + ·) = −(I + Fx)(q(x)H(x, x + ·)),
equation (12.4.26) can be written as

(I + Fx)[Hxx(x, x + ·)−Hyy(x, x + ·))− q(x)H(x, x + ·)] = 0.

Defining
ϕ(x, y) = Hxx(x, y)−Hyy(x, y)− q(x)H(x, y),

ϕ(x, x+ ·) is continuous for all x ∈ [0, a] and satisfies

(I + Fx)ϕ(x, x + ·) = 0.

In view of Lemma 12.4.4 we conclude that ϕ = 0.
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Now put ξ = 2a+ x− y and η = 2a− x− y and define

ũ(ξ, η) := H(x, y) = H

(
ξ − η

2
, 2a− ξ + η

2

)
. (12.4.27)

We observe that 0 ≤ x ≤ y ≤ 2a− x gives the domain 0 ≤ η ≤ ξ ≤ 2a for ξ and
η. As in the proof of Theorem 12.1.3 we obtain

ũξη = −1

4

(
Hxx

(
ξ − η

2
, 2a− ξ + η

2

)
−Hyy

(
ξ − η

2
, 2a− ξ + η

2

))
,

and ϕ = 0 leads to

ũξη(ξ, η) = −1

4
q

(
ξ − η

2

)
ũ(ξ, η).

With

U(ξ, η) :=
1

4

∫ 2a

ξ

∫ η

0

q

(
σ − τ

2

)
ũ(σ, τ) dτ dσ

we conclude that
ũξη − Uξη = 0.

Hence there are continuous functions f and g on [0, 2a] such that

ũ(ξ, η) = U(ξ, η) + f(ξ) + g(η), 0 ≤ η ≤ ξ ≤ 2a.

For definiteness, we may assume that g(0) = 0. For ξ ∈ [0, 2a] we have

ũ(ξ, 0) = H

(
ξ

2
, 2a− ξ

2

)
= 0 and U(ξ, 0) = 0,

which shows that f = 0. Similarly,

ũ(2a, η) = H
(
a− η

2
, a− η

2

)
=

1

2

∫ a

a− η
2

q(σ) dσ and U(2a, η) = 0,

which shows that

g(η) =
1

2

∫ a

a− η
2

q(σ) dσ.

Altogether, we have shown that

ũ(ξ, η) =
1

4

∫ 2a

ξ

∫ η

0

q

(
σ − τ

2

)
ũ(σ, τ) dτ dσ +

1

2

∫ a

a− η
2

q(σ) dσ. (12.4.28)

Now let F be defined by (12.4.7). In W 1
2 (0,∞) we can approximate the

restriction of F to [0,∞) by a sequence (Fn)n∈N of twice differentiable functions
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on [0,∞) with support in [0, 2a]. Consider the corresponding operators F0
n,x, which

converge as n→∞ and depend continuously on x. Then a compactness argument
shows that we may assume without loss of generality that I + F0

n,x is invertible
for all n ∈ N and x ∈ [0, a]. Furthermore, (I+F

0
n,x)

−1 converges uniformly in x to
(I + F0

x)
−1. Since also Fn → F uniformly as n→∞, a standard argument shows

that Gn → G uniformly as n→∞, where the functions Gn are defined as

Gn(x, y) = −((I + F
0
n,x)

−1(Fn ◦ τx))(y).

Hence also Hn → H uniformly as n→∞ and the corresponding functions ũn de-
fined by (12.4.27) with Hn converge uniformly to ũ as n→∞. Since the functions
ũn satisfy the integral equation (12.4.28), it follows that also ũ satisfies (12.4.28).
Substituting H for ũ in (12.4.28) shows that H satisfies the integral equation
(12.4.25). Here we have to observe that the region of integration is determined by

2a+ x− y ≤ 2a+ σ − τ ≤ 2a and 0 ≤ 2a− σ − τ ≤ 2a− x− y,

which can be rewritten as

x+ y

2
≤ τ ≤ a+

y − x

2
, τ + x− y ≤ σ ≤ τ, and x+ y− τ ≤ σ ≤ 2a− τ. �

Lemma 12.4.9. Let q ∈ L2(0, a). Then the integral equation

H(x, y) =
1

2

∫ a+ y−x
2

x+y
2

∫ a−|a−τ |

x+|y−τ |
q(σ)H(σ, τ) dσ dτ +

1

2

∫ 2a

x+y
2

q(σ) dσ (12.4.29)

has a unique solution H on {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 2a− x}.

Proof. Putting ξ = 2a+ x− y and η = 2a− x− y and

ũ(ξ, η) := H(x, y) = H

(
ξ − η

2
, 2a− ξ + η

2

)
,

we have seen in the proof of Proposition 12.4.8 that the integral equation (12.4.29)
becomes equivalent to the integral equation

ũ(ξ, η) =
1

4

∫ 2a

ξ

∫ η

0

q

(
σ − τ

2

)
ũ(σ, τ) dτ dσ +

1

2

∫ a

a− η
2

q(σ) dσ

for 0 ≤ η ≤ ξ ≤ 2a. From the proof of Lemma 12.1.1 we see that its statement
remains true for fixed ξ0 and η0. Thus the above integral equation can be written as
ũ = −T̃ ũ+ g̃ with invertible operator I + T̃ on C({(ξ, η) ∈ R

2 : 0 ≤ η ≤ ξ ≤ 2a}).
Hence the integral equation for ũ has a unique continuous solution, and it follows
that (12.4.29) has a unique continuous solution H . �
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12.5 Two spectra and the fundamental equation

Lemma 12.5.1. The spectrum of the Sturm–Liouville problem

−y′′ + q(x)y = λy, 0 ≤ x ≤ a, (12.5.1)

y(0) = 0, cosβy(a)− sinβy′(a) = 0, (12.5.2)

with a real potential q ∈ L2(0, a) and β ∈ [0, π] consists of an increasing sequence
of simple real eigenvalues (λk(β))

∞
k=1 which tend to ∞. For 0 < β′ < β ≤ π, the

eigenvalues interlace as follows:

λ1(β
′) < λ1(β) < λ2(β

′) < λ2(β) < · · · .
Proof. The result is well known. Indeed, it is easy to see from Theorems 10.3.5,
10.3.8 and the spectral theorem for compact operators that the spectrum consists
of real eigenvalues which are bounded below and tend to∞. Since the initial value
problem (12.5.1), y(0) = 0 has a one-dimensional solution space, it follows that all
eigenvalues are simple and that λk(β) �= λj(β

′) for all k, j ∈ N and 0 < β′ < β ≤ π.
From [143, Theorem 4.2, (4.5)] we know that λk(β) depends continuously on β
and is strictly increasing as a function of β for all k, and the stated interlacing
property of the eigenvalues follows. �
Corollary 12.5.2. Let q ∈ L2(0, a) be real valued. Then the spectra of the Sturm–
Liouville problem (12.5.1) subject to the boundary conditions y(0) = y(a) = 0 and
y(0) = y′(a) = 0, respectively, consist of two sequences of real eigenvalues which
interlace as follows:

ζ1 < ξ1 < ζ2 < ξ2 < · · ·
and obey the asymptotic formulae

ξk =
π2k2

a2
− 2

π2A

a2
+ αk, ζk =

π2

a2

(
k − 1

2

)2

− 2
π2A

a2
+ βk, (12.5.3)

where A ∈ R, (αk)
∞
k=1 ∈ l2 and (βk)

∞
k=1 ∈ l2 are real-valued sequences.

Proof. The first part is an immediate consequence of Lemma 12.5.1 with λk(π) =
ξk and λk(

π
2 ) = ζk. For the asymptotic expansion of the eigenvalues we recall from

Corollary 12.2.10 that

s(λ, a) =
sinλa

λ
−K(a, a)

cosλa

λ2
+

f(λ)

λ2
,

s′(λ, a) = cosλa+K(a, a)
sinλa

λ
+

g(λ)

λ

with f, g ∈ La. An application of Lemma 12.3.3 and (12.2.19) proves (12.5.3) with

A = − a

π2
K(a, a) = − a

2π2

∫ a

0

q(x) dx. (12.5.4)

�
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Let q ∈ L2(0, a) and define qa(x) = q(a− x). Clearly, qa ∈ L2(0, a).

Proposition 12.5.3. Let ea be the solution of (12.2.1), (12.2.2) with respect to qa.
For λ ∈ C define

e(λ, x) =

{
e−iλaea(−λ, a− x) if 0 ≤ x ≤ a,

e−iλx if a < x.
(12.5.5)

Then the function e is the Jost solution of (12.2.1) as defined in Section 2.1.

Proof. Clearly, e(λ, ·) satisfies the differential equation (12.2.1) on (0, a) and

e(λ, a) = e−iλaea(−λ, 0) = e−iλa,

e′(λ, a) = −e−iλae′a(−λ, 0) = −iλe−iλa

shows that e is indeed the Jost solution. �

Proposition 12.5.4. Let Ka be the function K̃ from Theorem 12.2.6 with respect
to the potential qa and define

K∞(x, t) =

{
Ka(a− x, a− t) if 0 ≤ x ≤ t ≤ 2a− x,

0 for all other x, t ∈ R.
(12.5.6)

Then K∞ satisfies the integral equation (12.4.29),

e(λ, x) = e−iλx +

∫ ∞

x

K∞(x, t)e−iλt dt, λ ∈ C, x ≥ 0, (12.5.7)

and

K∞(x, x) =
1

2

∫ a

x

q(t) dt, x ∈ [0, a]. (12.5.8)

Proof. With the aid of (12.2.18) we calculate

K∞(x, y) = Ka(a− x, a− y) =
1

2

∫ a− x+y
2

0

q(a− s) ds

+

∫ a− x+t
2

0

∫ y−x
2

0

q(a− s− p)K∞(a− s− p, a− s+ p) dp ds

=
1

2

∫ a+ y−x
2

x+y
2

∫ a−|a−τ |

x+|y−τ |
q(σ)K∞(σ, τ) dσ dτ +

1

2

∫ 2a

x+y
2

q(σ) dσ.
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From Proposition 12.5.3, Theorem 12.2.6 and with the aid of the transfor-
mation τ = a− t we infer for 0 ≤ x ≤ a that

e(λ, x) = e−iλaea(−λ, a− x)

= e−iλaeiλ(a−x) +

∫ a−x

x−a

Ka(a− x, t)eiλte−iλa dt

= e−iλx +

∫ 2a−x

x

Ka(a− x, a− t)e−iλt dt,

and (12.5.7) follows in view of (12.5.6). For x > a, (12.5.7) is obvious. Finally, we
conclude from (12.2.19) that

K∞(x, x) = Ka(a− x, a− x) =
1

2

∫ a−x

0

qa(σ) dσ

=
1

2

∫ a

x

qa(a− τ) dτ =
1

2

∫ a

x

q(t) dt. �

The function

va(λ, ·) := e(λ, ·)eiλa + e(−λ, ·)e−iλa

2

is the solution of (12.2.1) satisfying va(λ, a) = 1 and v′a(λ, a) = 0, whereas the
function

ua(λ, ·) := e(−λ, ·)e−iλa − e(λ, ·)eiλa
2iλ

is the solution of (12.2.1) satisfying ua(λ, a) = 0 and u′
a(λ, a) = 1. Observe that

e(λ, ·) = e−iλa(va(λ, ·) − iλua(λ, ·)). Since x �→ q(a − x) belongs to L2(0, a), va
and ua have a representation like c and −s in Theorem 12.2.9, respectively, with
x replaced by a− x.

Clearly, the zeros of ua(·, 0) are the eigenvalues of (12.5.1) with the boundary
conditions y(0) = y(a) = 0, whereas the zeros of va(·, 0) are the eigenvalues of
(12.2.1) with the boundary conditions y(0) = y′(a) = 0. With ζk and ξk according

to Corollary 12.5.2 we put vk = ζ
1
2

k , uk = ξ
1
2

k for k ∈ Z. Then it follows from
Corollary 12.5.2 that these numbers satisfy the assumptions posed at the beginning
of Section 12.4. Hence the entire function u defined there has exactly the same
zeros as ua(·, 0), and the entire function v defined there has exactly the same
zeros as va(·, 0). The function v has the representation (12.3.11), and by the above
discussion, also va(·, 0) has such a representation, with the same leading term as
v. By Corollary 12.2.11 and its proof, both v and va(·, 0) are sine type functions.
Hence they are multiples of each other by Lemma 11.2.29, and since they have
the same leading terms, va(·, 0) = v follows. A corresponding argument for the
function λ �→ λu(λ) and λ �→ −λua(λ, 0) gives ua(·, 0) = −u.
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Hence the function ψ defined in (12.4.2) satisfies

ψ(λ) = e−iλa(va(λ, 0)− iλua(λ, 0)) = e(λ, 0), (12.5.9)

and it follows that the function S defined in (12.4.3) has the representation

S(λ) =
e(λ, 0)

e(−λ, 0) , λ ∈ R. (12.5.10)

Lemma 12.5.5 ([180, Lemma 3.1.5]). For λ �= 0 and e(−λ, 0) �= 0,

−2iλs(λ, ·)
e(−λ, 0) = e(λ, ·) − S(λ)e(−λ, ·).

Proof. The function s(λ, ·) is the solution of (12.2.1) which satisfies the initial
conditions s(λ, 0) = 0, s′(λ, 0) = 1. On the other hand,

ω(λ, ·) := e(−λ, 0)e(λ, ·)− e(λ, 0)e(−λ, ·)

is a solution of (12.2.1) with ω(λ, 0) = 0. It is well known that the Wronskian

W (e(−λ, ·), e(λ, ·)) = e(−λ, ·)e′(λ, ·) − e′(−λ, ·)e(λ, ·)

is constant, and its value at a is −2iλ, so that ω′(λ, 0) = −2iλ. Hence we have
shown that ω(λ, ·) = −2iλs(λ, ·). �

The proof of the following lemma is extracted from [180, pp. 204–206].

Lemma 12.5.6. Let γ ≥ 0 such that S is analytic on {λ ∈ C : Imλ ≥ γ} and define
F by

F (x) =
e−γx

2π

∫ ∞

−∞
Sγ(λ)e

iλx dλ, x ∈ R, (12.5.11)

where Sγ is defined by (12.4.6). Then the fundamental equation

F (x+ y) +K∞(x, y) +

∫ ∞

x

K∞(x, t)F (y + t) dt = 0, 0 ≤ x ≤ y, (12.5.12)

is satisfied.

Proof. In view of Lemma 12.5.5 and (12.5.7) we have

−2iλs(λ, x)

e(−λ, 0) = e−iλx − eiλx +

∫ ∞

x

K∞(x, t)e−iλt dt−
∫ ∞

x

K∞(x, t)eiλt dt

+ (1− S(λ))

(
eiλx +

∫ ∞

x

K∞(x, t)eiλt dt

)
,
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which can be rewritten as

−2iλs(λ, x)
(

1

e(−λ, 0) − 1

)
+ 2i(sinλx − λs(λ, x))

=

∫ ∞

x

K∞(x, t)e−iλt dt−
∫ −x

−∞
K∞(x,−t)e−iλt dt

+ (1− S(λ))

(
eiλx +

∫ ∞

x

K∞(x, t)eiλt dt

)
. (12.5.13)

We multiply both sides of (12.5.13) by 1
2π e

iλy, y ∈ R, and integrate along Imλ = γ,
resulting in an identity which we formally write as Il(x, y) = Ir(x, y). Then Ir(x, y)
is the sum of the 4 integrals

I1(x, y) =
1

2π

∫ ∞

−∞

∫ ∞

x

K∞(x, t)e−i(iγ+λ)t dt ei(iγ+λ)y dλ,

I2(x, y) = − 1

2π

∫ ∞

−∞

∫ −x

−∞
K∞(x,−t)e−i(iγ+λ)t dt ei(iγ+λ)y dλ,

I3(x, y) =
1

2π

∫ ∞

−∞
Sγ(λ)e

i(iγ+λ)xei(iγ+λ)y dλ,

I4(x, y) =
1

2π

∫ ∞

−∞
Sγ(λ)

∫ ∞

x

K∞(x, t)ei(iγ+λ)tei(iγ+λ)y dt dλ.

The Fourier inversion formula gives

I1 =
1

2π

∫ ∞

−∞

∫ ∞

x

eγ(t−y)K∞(x, t)e−iλt dt eiλy dλ = K∞(x, y),

and similarly

I2 = −K∞(x,−y) = 0 for y > x.

We further calculate

I3 =
e−γ(x+y)

2π

∫ ∞

−∞
Sγ(λ)e

iλ(x+y) dλ = F (x+ y)

and

I4(x, y) =
1

2π

∫ ∞

x

K∞(x, t)e−γ(y+t)

∫ ∞

−∞
Sγ(λ)e

iλ(y+t) dλ dt

=

∫ ∞

x

K∞(x, t)F (y + t) dt.
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Hence we obtain

Ir(x, y) = K∞(x, y)+F (x+y)+

∫ ∞

x

K∞(x, t)F (y+ t) dt, 0 ≤ x < y. (12.5.14)

To prove the fundamental equation, it remains to prove that Il(x, y) = 0 for
0 ≤ x ≤ a and y > x.

Therefore, let x ∈ [0, a] and y > x. We define the functions g1 and g2 by

g1(λ) = λs(λ, x)

(
1

e(−λ, 0) − 1

)
eiλy, g2(λ) = (sinλx − λs(λ, x))eiλy . (12.5.15)

The function g2 is an entire function and the function g1 is analytic on the set
{λ ∈ C : Imλ ≥ γ} since the poles of S are the zeros of λ �→ e(−λ, 0). By Lemma
12.2.8 applied to Ka we conclude that ∂

∂tK∞(0, ·) ∈ L2(−a, a). Therefore we have
in view of (12.5.7) that

e(−λ, 0)− 1 =

∫ 2a

0

K∞(0, t)eiλt dt

=
1

iλ

[
K∞(0, 2a)e2iλa −Ka(0, 0)

]− 1

iλ

∫ 2a

0

∂

∂t
K∞(0, t)eiλt dt

= O
(
λ−1
)
for Imλ ≥ 0.

Hence it follows that

1

e(−λ, 0) − 1 =
1

1 +O(λ−1)
− 1 = O(λ−1) for Imλ ≥ 0. (12.5.16)

From (12.2.16) we conclude that λ �→ λs(λ, x) is bounded on each horizontal line
and that g2(λ) = O(λ−1) for λ on any horizontal line. Together with (12.5.16) we
conclude that g1 and g2 are square integrable on the line Imλ = γ.

Up to a constant factor, Il(x, y) is the difference of the integrals I5(x, y) and
I6(x, y) given by

I4+j(x, y) =

∫ ∞

−∞
gj(λ) dλ, j = 1, 2.

Clearly, Corollary 12.2.11 holds with a there replaced by any x > 0, and we can
conclude in view of Lemma 11.2.6 and (12.5.16) that there are constants M1 > 0
and M2 > 0 such that

|gj(iγ +Reiθ)| ≤MjR
−1e−R(y−x) sin θ, R > 0, 0 ≤ θ ≤ π, j = 1, 2.

Hence it follows from Cauchy’s theorem and Lebesgue’s dominated convergence
theorem that

Ij = −i lim
R→∞

∫ π

0

gj(iγ +Reiθ)Reiθ dθ = 0, j = 5, 6. �
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12.6 The potential and two spectra

The following result is well known, but for convenience we will present its proof.

Lemma 12.6.1. Let h be a bounded measurable function on [0, 2a] × [0, 2a] and
define

(Hf)(x) =

∫ 2a

x

h(x, t)f(t) dt, f ∈ L2(0, 2a), 0 ≤ x ≤ 2a. (12.6.1)

Then the operator H is a Volterra operator on L2(0, 2a), i. e., H is compact and
its spectral radius is 0.

Proof. With
M = sup{|h(x, t)| : 0 ≤ x, t ≤ 2a},

the estimate ∫ 2a

0

∫ 2a

0

|h(x, t)|2 dt dx ≤ 4aM <∞

shows that H is an integral operator with L2 kernel and therefore compact, see,
e. g., [109, p. 240].

Since the spectral radius of the adjoint H∗ equals the spectral radius of H,
it suffices to show that the spectral radius of H∗ is 0. For f, g ∈ L2(0, 2a) we
calculate

(H∗f, g) = (f,Hg) =

∫ 2a

0

f(x)

∫ 2a

x

h(x, t) g(t) dt dx

=

∫ 2a

0

∫ t

0

h(x, t)f(x) dx g(t) dt,

which shows that the adjoint H∗ of H has the representation

(H∗f)(t) =
∫ t

0

h(x, t)f(x) dx, f ∈ L2(0, 2a), 0 ≤ t ≤ 2a.

Let m > 0 and define the norm ‖ · ‖m on L2(0, 2a) by

‖f‖2m =

∫ 2a

0

|f(x)|2e−2mx dx, f ∈ L2(0, 2a),

which is clearly equivalent to the standard L2-norm. Then we obtain for each
f ∈ L2(0, 2a) and 0 ≤ t ≤ 2a that

|(H∗f)(t)|2e−2mt =

∣∣∣∣∫ t

0

h(x, t)e−m(t−x)f(x)e−mx dx

∣∣∣∣2
≤
∫ t

0

|h(x, t)|2e−2m(t−x) dx

∫ t

0

|f(x)|2e−2mx dx

≤ M2

2m
‖f‖2m,
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which gives

‖H∗f‖2m ≤
aM2

m
‖f‖2m.

Since the spectral radius of a bounded operator is bounded by the norm of the
operator, it follows that the spectral radius of H∗ is less or equal to M

√
am−1.

But m > 0 was arbitrary, and it follows that the spectral radius of H∗ is 0. �

Theorem 12.6.2 ([180, Theorem 3.4.1, p. 248]). For two sequences (ξk)
∞
k=1 and

(ζk)
∞
k=1 of real numbers to be the spectra of the boundary value problems generated

by the Sturm–Liouville equation

−y′′ + q(x)y = λy on [0, a], (12.6.2)

with a real potential q ∈ L2(0, a) and the boundary conditions y(0) = y(a) = 0
and y(0) = y′(a) = 0, respectively, it is necessary and sufficient that the sequences
interlace:

ζ1 < ξ1 < ζ2 < ξ2 < · · ·
and obey the asymptotic formulae

ξk =
π2k2

a2
− 2

π2A

a2
+ αk, ζk =

π2

a2

(
k − 1

2

)2

− 2
π2A

a2
+ βk,

where A ∈ R, (αk)
∞
k=1 ∈ l2 and (βk)

∞
k=1 ∈ l2. The potential q is uniquely deter-

mined by the sequences (ξk)
∞
k=1 and (ζk)

∞
k=1.

Proof. The necessity of the interlacing property and the asymptotic distribution
of the eigenvalues was shown in Corollary 12.5.2.

Next we are going to show that the potential is uniquely determined by
the two spectra. Let q ∈ L2(a, b) be real valued and let (ξk)

∞
k=1 and (ζk)

∞
k=1 be

the corresponding spectra. Without loss of generality we may assume that ζ1 > 0,
which can be achieved by a shift of the eigenvalue parameter λ in (12.6.2). Putting

uk = (ξk)
1
2 and vk = (ζk)

1
2 for k ∈ N, we consider the two functions S and F

defined by (12.4.3) and (12.4.7). It remains to show that q is uniquely determined
by F . Indeed, in view of (12.5.8), q is uniquely determined by K∞. From Lemma
12.5.6 we know that the function K∞ associated with the potential q satisfies the
fundamental equation (12.5.12), which is the same as (12.4.11). Then it follows
from Proposition 12.4.8 that K∞ is uniquely determined by F . Altogether, we
have shown that the potential is uniquely determined by the two sequences.

Now let two sequences (ξk)
∞
k=1 and (ζk)

∞
k=1 with the required properties be

given. Shifting all elements in these two sequences by the same real number b0 >
−ζ1 if ζ1 ≤ 0, we obtain that ζ1 > 0. With the two sequences (ξk)

∞
k=1 and (ζk)

∞
k=1

we associate the functions S and F defined by (12.4.3) and (12.4.7). By Proposition
12.4.8, there is a unique solution H of the fundamental equation and a potential
q defined by (12.4.24). With this q we associate the two sequences (ξ̃k)

∞
k=1 and
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(ζ̃k)
∞
k=1 representing the Dirichlet spectrum and the Dirichlet–Neumann spectrum,

respectively, of (12.6.2). With these two sequences we can now associate functions
S̃ and F̃ defined by (12.4.3) and (12.4.7). Let K∞ be the function defined in
(12.5.6) with respect to q. By Propositions 12.4.8 and 12.5.4, both H and K∞
satisfy (12.4.29) with the same q. But since the solution of the integral equation
(12.4.29) is unique by Proposition 12.4.8, K∞ = H follows. Let

(Hf)(x) =

∫ 2a

x

H(x, t)f(t) dt, f ∈ L2(0, 2a), x ∈ [0, 2a].

Since I +H is invertible by Lemma 12.6.1, we obtain from the fundamental equa-
tions (12.4.11) and (12.5.12) for y ∈ [0, 2a] that

F ◦ τy = −(I +H)−1H(·, y) = −(I +H)−1K∞(·, y) = F̃ ◦ τy.

Hence F = F̃ , and since the definition of F in (12.4.7) is independent of γ ≥ 0, we
can take the same γ in F and F̃ . But Sγ is the Fourier transform of x �→ eγxF (x),
which show that Sγ and therefore S is uniquely determined by F . Thus we have

that S = S̃.

Next we will show that the sequences (ξk)
∞
k=1 and (ζ)∞k=1 are uniquely de-

termined by S. Indeed, it follows from (12.4.1), (12.4.2), (12.4.3) and the proof of
Lemma 12.4.1 that

P (λ2) + iλQ(λ2)

P (λ2)− iλQ(λ2)
= S(λ)e−2iλa.

The sequences (ξk)
∞
k=1 and (ζk)

∞
k=1 interlace and are the zeros of the entire func-

tions P and Q, respectively, with a corresponding result for the sequences (ξ̃k)
∞
k=1

and (ζ̃k)
∞
k=1 and entire functions Q̃ and P̃ . Hence it follows for λ �= 0 that Q(λ2) =

0 if and only if S(λ)e−2iλa = 1, that P (λ2) = 0 if and only if S(λ)e−2iλa = −1,
that Q̃(λ2) = 0 if and only if S(λ)e−2iλa = 1, and that P (λ2) = 0 if and only
if S(λ)e−2iλa = −1. Since ζ1 > 0, it follows that the two sequences (ξk)

∞
k=1 and

(ζk)
∞
k=1 are indeed uniquely determined by S. Furthermore, the nonzero zeros of P̃

and Q̃ coincide with the nonzero zeros of P and Q, respectively. Hence 0 < ζ1 < ξ1
and 0 ≤ ζ̃1 < ξ̃1, so that ξ̃1 = ξ1 since they are positive and the smallest zeros
of Q̃ and Q, respectively. Now ζ1 is a positive zero of P , and therefore also a
positive zero of P̃ , and ζ̃1 = ζ1 follows. Hence also the two sequences (ξ̃k)

∞
k=1 and

(ζ̃k)
∞
k=1 are uniquely determined by S. We have shown that the two spectra of

the differential equation (12.6.2) with the q given by Proposition 12.4.8, after a
possible backshift by b0, are indeed the two sequences (ξk)

∞
k=1 and (ζk)

∞
k=1. �
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Sibirsk. Mat. Ž. 16 (1975), no. 3, 440–463, 643 (Russian); English transl., Siberian
Math. J. 16 (1975), no. 3, 335–352.

[16] F.V. Atkinson,Discrete and continuous boundary problems, Mathematics in Science
and Engineering, vol. 8, Academic Press, New York, 1964.

[17] F.V. Atkinson and A.B. Mingarelli, Asymptotics of the number of zeros and of the
eigenvalues of general weighted Sturm–Liouville problems, J. Reine Angew. Math.
375/376 (1987), 380–393.

[18] T.Ya. Azizov and I.S. Iokhvidov, Linear operators in spaces with an indefinite
metric, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd.,
Chichester, 1989.

[19] A. Bamberger, J. Rauch, and M. Taylor, A model for harmonics on stringed in-
struments, Arch. Rational Mech. Anal. 79 (1982), no. 4, 267–290.

[20] R. Band, G. Berkolaiko, H. Raz, and U. Smilansky, The number of nodal domains
on quantum graphs as a stability index of graph partitions, Comm. Math. Phys. 311
(2012), no. 3, 815–838.

[21] R. Band, T. Shapira, and U. Smilansky, Nodal domains on isospectral quantum
graphs: the resolution of isospectrality?, J. Phys. A 39 (2006), no. 45, 13999–14014.

[22] V. Barcilon, Explicit solution of the inverse problem for a vibrating string, J. Math.
Anal. Appl. 93 (1983), no. 1, 222–234.

[23] L. Barkwell and P. Lancaster, Overdamped and gyroscopic vibrating systems, Trans.
ASME J. Appl. Mech. 59 (1992), no. 1, 176–181.

[24] L. Barkwell, P. Lancaster, and A.S. Markus, Gyroscopically stabilized systems:
a class of quadratic eigenvalue problems with real spectrum, Canad. J. Math. 44
(1992), no. 1, 42–53.
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collection of nonlinear eigenvalue problems, ACM Trans. Math. Software 39 (2013),
no. 2, Art. 7, 28 pp.



Bibliography 391

[30] M. Biehler, Sur une classe d’équations algébriques dont toutes les racines sont
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[75] D. Eschwé and M. Langer, Variational principles for eigenvalues of self-adjoint
operator functions, Integral Equations Operator Theory 49 (2004), no. 3, 287–321.

[76] P. Exner, Contact interactions on graph superlattices, J. Phys. A 29 (1996), no. 1,
87–102.

[77] , Magnetoresonances on a lasso graph, Found. Phys. 27 (1997), no. 2, 171–
190.

[78] M. Faierman, A. Markus, V. Matsaev, and M. Möller, On n-fold expansions for
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[120] A. Hurwitz, Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit
negativen reellen Teilen besitzt, Math. Ann. 46 (1895), 273–284.
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[150] A.O. Kravickĭı, The two-fold expansion of a certain non-selfadjoint boundary value
problem in series of eigenfunctions, Differencial′nye Uravnenija 4 (1968), 165–177
(Russian).
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Kelvin–Tait–Četaev theorem, 113

Lagrange identity, 273
Liouville transform, 40, 47, 212

matrix
tree patterned, 247

motion
liquid convective, 82

negative squares, 79
Newton’s law, 56
norm of an operator, 5
normal domain, 5, 72, 84
nth-order differential expression, 272

operator
A-compact, 3
bounded below, 3, 282
compact, 3, 271
Fredholm, 4

index, 4
gyroscopic, 93
maximal, 272
maximal dissipative, 92
subordinate, 69

operator pencil
monic, 4
monic polynomial, 69
parameter dependent, 9
polynomial, 3
quadratic, 3

monic, 83
stable, 102

V -bounded, 4

pencil
linearized, 91
quadratic

hyperbolic, 114
overdamped, 115
weakly damped, 115

pipe
fluid conveying, 81, 96

Plancherel’s theorem, 353
Pontryagin space, 91



Index 409

proper indexing, 177
Puiseux series, 9, 18, 251, 262

Quantum particle, 50
quasi-derivative, 272

real meromorphic function, 288
real pair, 288
Regge problem, 34, 64, 156, 191, 211

double-sided, 212
generalized, 36, 154, 172, 188,

211, 215
regular point, 4
resolvent

compact, 282
resolvent set, 4
Riemann’s theorem, 348
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