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Preface

A polynomial operator pencil, also called operator polynomial, is an expression of
the form

LX) = XN"Ap + A" A1 + - + Ao, (1)

where the Ay are operators acting in a Hilbert space and A € C is the spectral
parameter. In the simplest case L(\) = Al — A, where I is the identity operator,
we deal with the standard spectral problem. In case of L(\) = \2A4y + AA; + Ao
we have a quadratic operator pencil which we encounter in many applications.

Operator pencils acting in finite-dimensional Hilbert spaces are well known
as matrix polynomials. There exists a vast amount of literature on this topic, see,
e.g., [268], [92] and the references therein.

Historically, at its very beginning, spectral theory of operators in infinite-
dimensional Hilbert spaces dealt with self-adjoint operators which appear in quan-
tum mechanics and also in classical mechanics for conservative systems. The spec-
trum of a self-adjoint operator is real and the questions of interest are existence
of lower bounds for the spectrum and for the essential spectrum, the number of
negative eigenvalues, existence of spectral gaps, etc. Negative eigenvalues in quan-
tum mechanics describe bound states while in classical mechanics they describe
unstable modes of the system. However, even when dealing with conservative sys-
tems, sometimes it is more natural and convenient to consider a quadratic operator
pencil. For example, this happens when gyroscopic forces are taken into account.

Mechanical systems with damping dissipate energy and are therefore noncon-
servative. In this case one deals with non-self-adjoint operators. Even in quantum
mechanics, there exists an approach to deal with non-self-adjoint operators with
real spectrum, see, e. g., [27].

In general, the spectrum of a non-self-adjoint operator can lie anywhere in
the complex plane, and the problem of its location becomes more complicated.
However, if the operator is of a concrete form or belongs to a particular class,
then this information gives restrictions on the location of the spectrum, e.g., the
spectrum of a dissipative operator lies in the upper half-plane, the spectrum of a
bounded operator lies in a bounded domain, etc.

If the forces which make a mechanical system dissipative are caused by vis-
cous friction, then the dynamical problem is described by the equation

d*u du
Mdt2 +Kdt + Au =0,
where t is time, M > 0 is the operator describing mass distribution, K > 0 is
the operator responsible for damping, A is the self-adjoint operator describing
conservative forces, where A is bounded below, and v is the displacement vector.
Substituting u(z,t) = e**v(z), where X is the spectral parameter, we arrive at a
spectral problem (A\2M —i\K — A)v = 0 for the quadratic operator pencil

LX) = \>M —iAK — A. (2)

ix
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If the damping is at one point, then the operator K has rank one. Another case
where the pencil is of the form (2) with an operator K of rank one occurs in op-
erator realizations of boundary value problems for ordinary differential equations
where one boundary condition depends linearly on the spectral parameter.

Surprisingly, one can reduce the spectral problem which occurs in a simple
model describing nuclear interactions, proposed by T. Regge [238], to an operator
pencil of the form (2) with rank one operator K. In this model it is supposed that
the potential of interaction is finite or, in mathematical terms, has bounded sup-
port. Accordingly, the problem of S-wave scattering can be reduced to a boundary
value problem on a finite interval with a spectral parameter dependent boundary
condition. In this case the eigenvalues of the problem on the finite interval which
are located in the lower half-plane describe bound states while those in the upper
half-plane are responsible for the so-called resonances. The same situation occurs
in the theory of quantum graphs.

Another source of quadratic operator pencils are dynamical problems with
gyroscopic forces which are proportional to velocity and which lead to the operator
pencil

L(\) = N2M — AB — A, (3)

where B is a self-adjoint operator describing gyroscopic forces.

In the quadratic operator pencils (2) and (3), the operators A, B, K, M are
self-adjoint, and via the transformation A — i)\, the quadratic pencils (2) and (3)
are formally equivalent. In general, an operator pencil of the form (1), possibly
with A replaced by i), will be called a self-adjoint operator pencil if the operators
Ay, ..., A, are self-adjoint.

Of course, by linearization one can reduce this problem to a linear operator
pencil L(A) = ATy — T, acting in the direct sum of Hilbert spaces. But it is
more convenient to investigate the quadratic (or polynomial) pencils directly, in
particular, when the operators are self-adjoint.

There is an essential difference between finite-dimensional and infinite-dim-
ensional cases. Unlike in the finite-dimensional case, in the infinite-dimensional
case one may describe eigenvalue asymptotics. These asymptotics are important
in order to establish basis properties of eigenvectors and associated vectors (root
vectors) of a pencil. Furthermore, the asymptotics together with the general loca-
tion of the spectrum help to determine if the corresponding dynamical system is
stable. Some early results on asymptotics of eigenvalues of boundary value prob-
lems containing the spectral parameter in the boundary conditions have been
obtained in [257], [258] without use of operator theory. However, those boundary
value problems can be considered as spectral problems for polynomial operator
pencils acting in an infinite-dimensional Hilbert spaces.

Renewed interest for further investigation of operator pencils was stimulated
by M.V. Keldysh [138], see also [139]. Thereafter, many publications were devoted
to completeness and basis properties of root vectors of quadratic and polynomial
operator pencils, see [245], [246], [149], [237], [183], [184], [78]. These completeness
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and basis properties of the sets of eigenfunctions and associated functions are
closely connected with asymptotics of eigenvalues. Here the monographs [273],
[189] can be recommended for further reading.

The next important step towards a better understanding of quadratic opera-
tor pencils was achieved by M.G. Krein and H. Langer [153], [154]. They considered
monic quadratic operator pencils which have operator roots, i. e., operator pencils
of the form A\2I + AB + C = (M — Z;)(M — Z3), where Z; and Z5 have separated
spectra. They proved that the root vectors of each Z; and Z5 form a Riesz basis.
Such separation of spectra of the operator roots can be done in case of so-called
strongly damped and weakly damped pencils. After this many papers appeared
on this topic. A detailed description of these and other results about polynomial
operator pencils can be found in [182], which is the first monograph about opera-
tor pencils. Results on self-adjoint operator pencils can be found in [182, Chapter
IV] and in [95, Section V.12] for quadratic self-adjoint operator pencils.

It was shown by S.G. Krein [158] that the problem of small vibrations of a
viscous liquid in a stable container having a free surface can be described by the
equation
1
A

where G and H are compact operators, G > 0, H > 0. Of course, the above
equation can be reduced to an equation for a quadratic operator pencil with the
exclusion of the point A = 0. For an extention of this theory of small vibrations of
a viscous liquid see [145], [146]. Some other applications of the theory of operator
pencils can be found in [1] and [250].

y=AGy+ _ Hy,

Hermite—Biehler polynomials were first investigated by Ch. Hermite in [107]
and by M. Biehler in [30]. This notion of Hermite-Biehler polynomial was gen-
eralized to entire functions by N.G. Cebotarev, L.S. Pontryagin, N.N. Meiman,
Ju.I. Nefmark, M.G. Krein and B.Ja. Levin, see [173]. A further generalization
to shifted symmetric Hermite-Biehler or shifted symmetric generalized Hermite—
Biehler functions was introduced in [227].

To explain the connection between quadratic operator pencils and shifted
symmetric Hermite-Biehler functions we note that in the above examples, the
operator pencil represents a boundary value problem for differential equations.
Therefore, each such problem has a characteristic function, which is an entire
function whose zeros form the spectrum of such a quadratic operator pencil. Its
spectrum can therefore be described via the spectral theory of the quadratic op-
erator pencil and via the zeros of the characteristic function. All characteristic
functions which are considered in this monograph are shifted symmetric (general-
ized) Hermite-Biehler functions.

The spectral theory of quadratic operator pencils and the theory of shifted
symmetric (generalized) Hermite—Biehler functions give roughly the same results
on the general location of the spectrum. However, when we investigate spectral
asymptotics, the more explicit form of the characteristic function is preferred over
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the spectral theory. Also, for the inverse problem, that is, for the problem of
recovering parameters in the original problem from its spectral data, we will make
use of the theory of entire functions.

A classical result in the theory of inverse problems states that two spec-
tra of boundary value problems generated by the same Sturm—Liouville equation
and different self-adjoint separated boundary conditions uniquely determine the
Sturm-Liouville equation, see [32], [178], [180]. With the exception of Ambarzu-
mian’s case [12], one spectrum does not determine the equation uniquely. In [178],
[180] one can also find necessary and sufficient conditions for two sequences of
numbers to be the spectra of the above two problems. Furthermore, the method
to recover the equation is presented. These classical inverse problems are related to
a self-adjoint operator, i.e., to a monic linear self-adjoint operator pencil. In this
monograph, we will solve inverse problems which are related to quadratic operator
pencils.

We will now present an overview of results for some of the examples consid-
ered in this monograph.

The generalized Regge problem is defined as the boundary value problem

Y+ Ny —q(z)y =0,
y(A,0) =0,
y' (A a) + (iaX + B) y(A,a) =0,

with a > 0, real-valued ¢ € L2(0,a), @ > 0 and 8 € R. The Regge problem is the
special case &« = 1 and = 0. The spectrum of the Regge problem may be empty
as is easily seen for the case a = 1, § = 0, ¢ = 0. However, for the case o # 1,
on which we will focus in this part of the preface, the spectrum is well behaved.
The generalized Regge problem can be represented by a self-adjoint quadratic
operator pencil. Its characteristic function ¢ is a sine type function as well as a
shifted Hermite—Biehler function which has the asymptotic representation
d(\) = cos Aa + iasin Aa + Mbl}\n Aa_ i i\Ob Aa + Tﬂ()\)\) , Ae C\ {0},

where () is “asymptotically small” with respect to cos Aa and sin Aa. The coeffi-
cients M and N can be easily expressed in terms of the given parameters, namely,
N = % foa q(x) dr and M = N + 3. The dominant term of ¢ is cos Aa for 0 < @ < 1
and ‘asin Aa for @ > 1. For a > 1, the asymptotic distribution of the sequence
(Ak)P2 _ . of the zeros of ¢, and therefore the spectrum of the generalized Regge
problem, is

Tk i <a+1> P B ke {0),

= I
Ak a+2a0g a—1 +k+k’

1/ /2 283
P= 27 </0 q(m)dm—a2_1>

where
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and (Bi)72 _o € l2. A similar result holds in the case 0 < a < 1. There are at
most finitely many eigenvalues in the closed lower half-plane, and they are all
located on the nonpositive imaginary semiaxis. Furthermore, the pure imaginary
eigenvalues have a certain pattern. All eigenvalues on the negative imaginary axis,
if any, are simple, and denoting them by —iry,...,—it,, with 4 < -+ < 7,
then the numbers i7;, are no eigenvalues, the intervals (i7g,i7x+1) on the positive
imaginary axis contain an odd number of eigenvalues, counted with multiplicity,
whereas the interval [0,471) contains an even number of eigenvalues. Conversely,
any sequence (Ax)g>_, of the above form gives rise to a unique tuple of a > 0,
q € L2(0,a), « > 1 and B € R for which the sequence of eigenvalues of the
corresponding generalized Regge problem coincides with (A;)52_ . . We observe
that it is sufficient to know only one spectrum to solve the inverse problem. The
generalized Regge problem shares this behaviour with the problem of vibrations
of a string with damping at one point, which was considered in [157] and [156].

Stieltjes strings, also called Sturm systems, describe massless threads bearing
point masses. This notion was introduced in [85]. We consider the case that the
string is fixed at both endpoints and has one point P of damping in the interior.
The following picture describes the situation,

77
77
77

lél) -151) l(l) 17(122) 152) léQ)

ni

) YN0 m®

W, ( (1)
my’ my My My ms

NRNNNNNNNY
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where n; > 0 and ny > 0, respectively, is the number of point masses to either
side of the point of damping, the positive numbers l,(j ) denote the lengths of
the individual threads, and the positive numbers mg ) denote the masses. If the
positive coefficient of damping at the point P is denoted by v, then vibrations of
this Stieltjes string are governed by the system of equations

ud —ulhy | w =, —mIN2uD =0, k=1,...,n;,j=1,2,

PR
(4 _ (2
ug’ = 07 Upy41 = Upyy1s
®n @) 2 _ @
T + il/)\uglll)ﬂ =0.

iy 2

The same equations occur in the theory of synthesis of electrical circuits, see
[102], [262]. The characteristic function ® of the Stieltjes string is a generalized
Hermite—Biehler polynomial of degree 2(ny + n2) + 1. Hence this problem has

finitely many eigenvalues ()‘k)Z:—?il ) All eigenvalues lie in the closed upper
half-plane and can be index in such a way that A\_; = —A for not pure imaginary

Ak. Furthermore, there are at most 2 min{ny, no} real eigenvalues, all of which are
simple and nonzero, and Im ®'(\;) = 0 for each real eigenvalue A;. The inverse
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problem consists in finding parameters of a Stieltjes string from a given sequence
(Ak)p__,, so that it is the sequence of the eigenvalues of the Stieltjes string. The
properties of this given sequence are that all of its terms lie in the closed upper
half-plane, that it can be indexed in such a way that A_p = —M\j for not pure
imaginary Ay, that the sequence has at most 2|7 | real terms, that all real terms
occur only once in the sequence and that Im ¢’(A\) = 0 for each real Ai, where ¢
is any polynomial of degree 2n 4+ 1 whose zeros, counted with multiplicity, are the
numbers \g, kK = —n, ..., n. This inverse problem has a solution, where the lengths
of the two substrings from P to their endpoints can be arbitrarily prescribed.
Furthermore, although n; +ns = n is determined by the length 2n+ 1 of the given
sequence, the individual values of n; or ny can be arbitrarily chosen subject to the
condition that the number of real terms in (A;)7__,, does not exceed 2 min{ny, n2}.
Even with these values fixed, the solution of the inverse problem is not unique in
general.

For the convenience of the reader we now list all our applications and the
sections and subsections where we are dealing with each application.

e (Generalized) Regge problem: 2.1, 6.1, 7.2, 8.1
Damped vibrations of a string: 2.2, 6.3, 7.3, 8.3
Vibrations of star graphs with damping: 2.3, 6.4, 7.4, 8.4

Sturm—Liouville problems on forked graphs: 2.4, 6.5

Sturm-Liouville problems on lasso graphs: 2.5, 6.6

Damped vibrations of Stieltjes strings: 2.6, 6.2, 8.2

Damped vibrations of beams: 2.7, 6.7

Vibrations of an elastic fluid-conveying pipe: 4.3.2

Now we briefly outline the contents of this monograph which is divided into
four parts.

Part 1, consisting of Chapters 1 to 4, deals with theory and applications of
polynomial operator pencils.

In Chapter 1 we consider the spectrum of the quadratic operator pencil
defined by (2), where the operators M > 0, K > 0 and A > —8I (8 > 0) satisfy
additional conditions which guarantee that the spectrum of L consists of normal
(isolated Fredholm) eigenvalues only. In Section 1.2 it is shown that the spectrum of
L lies in the closed upper half-plane except for a finite number of eigenvalues, if any,
which lie on the negative imaginary semiaxis. The properties and the distribution
of the eigenvalues on the imaginary axis are thoroughly discussed in Sections 1.3
and 1.4. We also show in Section 1.3 that the total algebraic multiplicity of the
eigenvalues in the open lower half-plane is independent of K > 0 and coincides
with the total multiplicity of the negative eigenvalues of A. In Section 1.5 more
specific results for the eigenvalues on the real and imaginary axes are obtained in
the case that K is a rank one operator.
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In Chapter 2 we apply the results obtained in Chapter 1 to various physi-
cal problems. In Section 2.1 the spectrum of the Regge problem is described. In
Section 2.2 we consider problems of small transversal vibrations of strings with
damping. It appears that these problems can be considered as eigenvalue problems
for quadratic operator pencils of the form (2). The same is true for the problems
of vibrations of a star graph damped at the interior vertex, which we consider in
Section 2.3. In Section 2.4 we consider a spectral problem for a quantum graph
having the form of a fork, which is a star graph with one infinite edge. We assume
that the potential on the half-infinite edge of such a graph is identically zero. Then
the problem on the forked graph can be reduced to a certain Regge type problem
on a finite interval and with spectral parameter dependent boundary conditions.
In Section 2.5 we do the same for a lasso graph. In Section 2.6 we consider damped
vibrations of a Stieltjes strings. In Section 2.7 we consider vibrations of beams with
damping in a hinge at one of the ends.

In Chapter 3 we present some results for operator pencils which do not satisfy
the assumptions made in Chapter 1. In Section 3.1 we consider polynomial opera-
tor pencils of the form (1) where Ay is self-adjoint, bounded below and can possess
continuous spectrum on the semiaxis [0,00), where A,, = i"I, where A; = K j
with K; >0, k=1,...,n—1, and where the K; are subordinate to Ag. The total
algebraic multiplicity of the part of the spectrum of such a pencil which is located
on the negative imaginary semiaxis coincides with the total multiplicity of the
negative spectrum of Ag. In Section 3.2 we provide lower bounds for the number
of eigenvalues of (2) on the negative imaginary semiaxis when M = I and when
the self-adjoint operator K is bounded below but not necessarily nonnegative.

In Chapter 4 we investigate operator pencils of the form

L) = T —iA\K —\B— A

with positive operator K and self-adjoint operators A and B. In Section 4.1 it is
shown that under certain conditions the total algebraic multiplicity of the spec-
trum of this operator pencil in the open lower half-plane coincides with the to-
tal multiplicity of the negative spectrum of A. In Section 4.2 we compare this
quadratic pencil with the linearized pencil in a Pontryagin space. In Section 4.3
we consider the pencil described by (3) which is associated with the problem of gy-
roscopic stabilization of a mechanical system. We describe necessary conditions for
stabilization as well as certain sufficient conditions. Some applications are given.

Part 11, consisting of Chapters 5 and 6, deals with Hermite—Biehler functions
and their applications to eigenvalue problems.

In Chapter 5 we introduce Hermite—Biehler functions and shifted Hermite—
Biehler functions and derive their main properties which will be used in Chapter 6.
In Section 5.1 we obtain properties of Hermite—Biehler functions, whereas Section
5.2 is concerned with shifted Hermite—Biehler functions.

In Chapter 6 we revisit the applications encountered in Chapter 2 and show
that their characteristic functions are symmetric shifted Hermite—Biehler func-
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tions. Hence the spectra of these applications can be obtained as zeros of shifted
Hermite—Biehler functions, which gives essentially the same results as in Chapter 2.

Part 111, consisting of Chapters 7 and 8, deals with eigenvalue asymptotics of
the applications considered in Parts I and II and with the corresponding inverse
problems.

In Chapter 7 we derive eigenvalue asymptotics for some of the problems
considered in Chapters 2 and 6, namely, for the generalized Regge problem in
Section 7.2, for the damped string problem in Section 7.3, and for the star graph
problem in Section 7.4.

In Chapter 8 we consider inverse problems for some of the applications en-
countered in Chapters 2, 6 and 7, where we have shown necessary properties of
the sequences of eigenvalues of these problems. In this chapter we show for some
applications that these properties are also sufficient, possibly under some mild ad-
ditional conditions. That is, we solve the inverse problems. Section 8.1 deals with
the generalized Regge problem. Here necessary and sufficient conditions for a se-
quence of complex numbers to be the spectrum of the generalized Regge problem
are given, and it is shown that the parameters of the generalized Regge problem
are uniquely determined by the corresponding spectrum. The inverse problem for
a damped Stieltjes string, which has a finite spectrum, is considered in Section
8.2. The inverse problem for a damped smooth string is solved in Section 8.3.
In Section 8.4 we consider the inverse problem on a star graph. Its spectrum is
real, and therefore the spectrum of the star graph does not suffice to recover the
Sturm-Liouville equations on the edges. As additional information we choose the
spectra of the boundary value problems on the edges. If all spectra are mutually
non-intersecting, the inverse problem has a unique solution.

In Part IV, consisting of Chapters 9 to 12, we have collected some background
material which is used throughout Parts I, I, and III.

In Chapter 9 we consider analytic functions and analytic operator functions.
We present results and proofs on the local dependence of their zeros, eigenvalues
and eigenvectors on a parameter. Section 9.1 deals with analytic functions, whereas
Section 9.2 is concerned with analytic operator functions.

In Chapter 10 we present results on differential operators which are used
in Chapter 2 to verify that the operator pencils associated with our applications
satisfy the assumptions made in Chapter 1. In Section 10.1 we briefly recall defi-
nitions and basic properties of Sobolev spaces on finite intervals. In Section 10.2
we write down the Lagrange identity and Green’s formula, which will be used in
Section 10.3 to prove criteria for self-adjointness of differential operators.

In Chapter 11 we collect various known results on meromorphic functions.
In Section 11.1 we present basic properties of meromorphic Nevanlinna functions.
In Section 11.2 we give a comprehensive account of sine type functions. In Section
11.3 perturbations of sine type functions are considered.

In Chapter 12 we present results on Sturm-Liouville operators in a form
which is applied in various earlier chapters of this monograph. In Section 12.1 we
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prove Riemann’s formula, which is used in Section 12.2 to give asymptotic repre-
sentations of solutions of initial value problems of the Sturm-Liouville equation
on a finite interval. Representations of particular sine type functions are given in
Section 12.3. Sections 12.4 and 12.5 prepare for the main result of Section 12.6, the
existence and uniqueness theorem for the inverse Sturm—Liouville problem with
two spectra.



Part 1

Operator Pencils



Chapter 1

Quadratic Operator Pencils

1.1 Operator pencils

In this chapter we will investigate the spectra of quadratic operator pencils L of
the form

L) = M —i\K — A

on a Hilbert space H with domain D(L(X)) = D(M)ND(K)ND(A), where A € C
is the spectral parameter and the three operators M, K, A satisfy the following

Condition I. The operators M, K, and A are self-adjoint operators on H with
the following properties:

(i) M >0, K>0, and A > —pBI for some positive number B3, i. e., A is bounded
below;
(ii) the operator M is bounded on H, i.e., M € L(H);
(iii) for some B1 > f3, the operator (A + B1I)~! € So, where S denotes the
space of all compact operators on H;
(iv) the operator K is A-compact, i.e., K(A+ 1)~ € Sy
(v) N(A)NN(K)NN(M) = {0}.

We will consider more general operator pencils in subsequent chapters. There-
fore it is convenient to formulate some of the basic definitions and results for
general polynomial operator pencils. To this end let H; be a Hilbert space and
V : Hy — H be a closed densely defined operator, e.g., a self-adjoint operator.
Let n be a positive integer, let T1, ..., T, be closable operators from H; to H with
D(T;) > D(V) for j =1,...,n, and define a polynomial operator pencil T by

n

T(\)=> NT;, \eC, (1.1.1)
Jj=0
© Springer International Publishing Switzerland 2015 3
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4 Chapter 1. Quadratic Operator Pencils

with D(T'(X\)) = D(V) for all A € C. We will call T a V-bounded operator pencil.
The formal derivative g is an operator pencil which will be denoted by T’, and

the general jth derivative by 7).

Definition 1.1.1. The pencil T is said to be monic if H; = H and T,, = I, where
I is the identity operator.

Definition 1.1.2. The set of values A € C such that T'(}) is invertible, i.e., T'(A)
is bijective and T=*(\) := (T'(\))~! is bounded from H to Hj, is said to be the
resolvent set p(T') of the pencil T. The spectrum of the pencil T is denoted by
o(T), i.e., o(T)=C\ p(T).

We recall that a closed densely defined operator (in Hilbert spaces) is called
Fredholm if its nullspace has finite dimension and its range has finite codimension.
The difference between the dimension of the nullspace and the codimension of the
range is called the index of the Fredholm operator. The range of a Fredholm
operator is closed, see [99, IV.1.13].

Definition 1.1.3.

1. A number )y € C is said to be an eigenvalue of the pencil T if there exists a
vector yg € D(V), called an eigenvector of T', such that yo # 0 and T'(A\g)yo =
0. The vectors y1,...,ym—1 € D(V) are called associated to yq if

k

1
> S'T(S)()\o)yk_s =0, k=1,...,m—1. (1.1.2)
s=0 "

The number m is said to be the length of the chain of the eigenvector and
associated vectors (Yo, ..., Ym—1)-

2. The geometric multiplicity of an eigenvalue \g is defined to be the number
of the corresponding linearly independent eigenvectors, i. e., the dimension of
the nullspace of T'(A\g). The algebraic multiplicity of an eigenvalue is defined
to be the greatest value of the sum of the lengths of chains corresponding
to linearly independent eigenvectors. An eigenvalue is called semisimple if
its algebraic multiplicity equals its geometric multiplicity. An eigenvalue is
called simple if its algebraic multiplicity is 1.

3. An eigenvalue g is said to be isolated if there is a deleted neighbourhood
of Ao which is contained in the resolvent set p(T). An isolated eigenvalue
of finite algebraic multiplicity is said to be normal. The set of all normal
eigenvalues of T' will be denoted by oo (7).

4. A number )\ € C is called a regular point of T if it belongs to the resolvent
set of T or if it is a normal eigenvalue of T'.

5. The essential spectrum oess(T') of T is the set of complex numbers A such
that T'(\) is not a Fredholm operator.
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Remark 1.1.4. It is well known and easy to see that (1.1.2) is satisfied if and only
if \g is a zero of order at least m of the vector polynomial

-1
Ao TO) 3 (A= Aoy,
J

3

I
o

Definition 1.1.5. The approximate spectrum of 7' is defined to be the set of all
A € C such that there exists a sequence (yz)72; of vectors y, € D(T') with |jyx|| =1
and klim IT(N)yx|| = 0. We denote the approximate spectrum by oapp(T').

—00

Often it is more convenient to deal with bounded operator pencils. Hence we
introduce the auxiliary pencil T} which coincides algebraically with the V-bounded
operator pencil T, i.e., T1(A)z = T(\)z for all A € C and z € D(V), but T1(A) is
considered as an operator

Ti(\):D(V) — H,

where D(V) is equipped with the graph norm of V', which is defined by

lzllv = (l=l* + [Va|®)*, =€ D(V).

It is well known and easy to show that D(V) becomes a Banach space when
equipped with the graph norm of a closed operator V', that D(V) is a Hilbert
space if V' is self-adjoint, and that the closability of T; and D(V') C D(T;) implies
that Tj[p(yv) is bounded from D(V) to H in view of the closed graph theorem.
Hence T1(A) will be bounded from D(V') to H for all A € C if V is self-adjoint.

For a bounded operator S, ||S]| will denote its norm, where the domain and
range spaces will be clear from the context. For example, T7()\) is considered as
an operator from D(V') with its graph norm into H, so that ||T7())]| is the norm
with respect to those spaces.

Lemma 1.1.6. All spectral quantities of the two operator pencils T and Ty coin-
cide, 1. e.,
U(T) = U(T1)7 Uess(T) - o'ess(Tl)a

if A is a normal eigenvalue, then it is of the same algebraic and of the same
geometric multiplicity for T and Ty. The vectors yx, k = 0,...,m—1, are a chain of
an eigenvector and associated vectors at \ for T if and only if this is the case for Ty .

Proof. The statement of this lemma is obvious from the definition of resolvent set,
spectrum, eigenvalues and associated vectors. See also [182, Lemma 20.1]. (]

Definition 1.1.7. A domain 2 C C, bounded by a simple rectifiable closed curve
01, is said to be normal for the operator pencil T if

(i) No(T) =10,
(H) Oess (T) NQ= (Z)
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If © is a normal domain for the pencil T, then o(T) N Q = oo(T) N Q, and
oo(T) N is a finite or empty set. This can be deduced, e. g., from [189, Theorem
1.3.1 and Section 1.4] applied to the operator function 7;.

Definition 1.1.8. Suppose that the domain €2 is normal for the pencil 7. The

total algebraic multiplicity of the spectrum of the pencil T" in  is the number
P

m(Q) = > m;, where the positive integers m;, i = 1,...,p, denote the algebraic
i=1

multiplicities of all eigenvalues of T' lying in 2.

The following lemma is a particular case of Rouché’s theorem for finitely
meromorphic operator functions.

Lemma 1.1.9. Let Q be a normal domain for the pencil T. Then
/ T'(NT () dX
o0

s a finite rank operator, and

1
m(Q) = _tr/ T'NT (N d\ =:indq T, (1.1.3)
271 90
where tr denotes trace. If S is a V-bounded operator polynomial with
STV <1, \e€on, (1.1.4)
then
indg(T-i—S) =indgT. (1.1.5)

Proof. Noting that T'(\)T~Y(\) = T{(\)T; *()\), the result follows from [97,
Proposition 4.2.3 and Theorems 4.4.1 and 4.4.3], applied to the bounded oper-
ator pencil T} if we observe that in [97, (4.4.6)] the order in the product may be
reversed. O

We now return to the operator pencil L satisfying Condition I.
Remark 1.1.10.

1. Parts (ii) and (iv) of Condition I imply that D(A) C H = D(M) and D(A) C
D(K), so that D(L(\)) = D(A) for all A € C.

2. If (A+ BiI)~t € Sy for some By > 3, then (A + AI)~! and K(A+ \)~!
belong to Sy for all A in the resolvent set of A.

3. Clearly, part (v) of Condition I is necessary for the pencil L to have a
nonempty resolvent set, and in Lemma 1.2.1 below it will be shown that
the resolvent set is nonempty if (v) is satisfied.

For the pencil L; with domain D(A) equipped with the graph norm of A we
write
Li(\) = A2M, —iAK; — A;.

In general, the operators M, K7 and A; will no longer be self-adjoint.
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The following lemma summarizes some more or less obvious properties of the
operator pencils L and L1, in addition to those stated in Lemma 1.1.6.

Lemma 1.1.11.

1. The operators My and K1 are compact operators and Ay is a bounded Fred-
holm operator with indez 0.

2. The operator pencils L and Li are Fredholm valued with index 0.

3. L(N)* = L(=\) for all X € C. In particular, the spectrum of L is symmetric
with respect to the imaginary axis.

Proof. 1. By the closed graph theorem, (A + 8;I)~! is an isomorphism from H
onto D(A) with its graph norm. Hence A; and A(A+ $11)~! are norm isomorphic
and since
AA+ BT =1 = Bi(A+ pud) ™

is a compact perturbation of the identity operator and thus a bounded Fredholm
operator with index 0, see, e.g., [137, Theorem IV.5.26], it follows that A; has
this property. Due to Condition I, a similar argument shows that M; and K; are
compact.

2. The same perturbation arguments which were used in the proof of part
1 imply that L is Fredholm valued with index 0. Since this property does not
depend on the norm of D(A), also L is Fredholm valued with index 0.

3. Forall A\ eC,

LO)* = (A\2M —idK — A) = M +idK — A= L(-)\).

Observing that a closed operator is invertible if and only if its adjoint is invertible,
it follows that A € o(L) implies —\ € o(L). Hence the spectrum of L is symmetric
with respect to the imaginary axis. O

1.2 Location of the spectrum of the pencil L

Lemma 1.2.1. The spectrum of the pencil L consists of normal eigenvalues located
in the closed upper half-plane and on the imaginary azis.

Proof. Since the pencil L is an analytic Fredholm operator-valued function, its
spectrum consists of eigenvalues of finite algebraic multiplicity and either o(L) = C
or all eigenvalues are normal, see, e.g., [94, Chapter XI, Corollary 8.4]. Hence it
remains to show that any eigenvalue in the open lower half-plane must lie on the
imaginary axis.

To this end let yy be an eigenvector corresponding to an eigenvalue A\g. Then

(L(Xo)yo,%0) = 0,

and consequently, taking real and imaginary parts,

((Re )\0)2 — (Im Ao)z)(Myo,yo) + Im )\o(Kyo,yo) - (Ayo,yo) =0 (121)
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and
Re )\0[2 Imko(Myo, yo) — (Kyo,yo)} = 0. (122)
If Re A9 # 0, then (1.2.2) reduces to
2Im )\o(Myo,yo) - (Kyo,yo) = 0, (123)

and Im Ag > 0 follows if (Myo,yo) # 0 since M > 0 and K > 0. If (Myo,y0) =0,
then (1.2.3) implies (Kyo,y0) =0, i.e., My = 0 as well as Kyo = 0. Then (1.2.1)
would lead to Ayy = 0, which contradicts Condition I, part (v). Hence Re Ay # 0
implies Im Ag > 0. ([

Remark 1.2.2. The spectrum of a quadratic operator pencil satisfying Condition I
may be empty. This happens for example in the trivial case when M = 0 and
K = 0. Thus statements of the form “the spectrum consists of ...” have to be
read bearing in mind that any or all listed components of the spectrum may be
empty.

Lemma 1.2.3. If K > 0, then the part of the spectrum of the pencil L located in
the closed lower half-plane lies on the imaginary azis.

Proof. In view of Lemma 1.2.1 we have to show that the pencil L has no nonzero
real eigenvalues. Hence, assume that the pencil L has a nonzero real eigenvalue
Ao with corresponding eigenvector yo. Then (1.2.2) leads to (Kyo,yo) = 0, which
contradicts K > 0. |

Lemma 1.2.4.

1. If A > 0, then the spectrum of the pencil L is located in the closed upper
half-plane.

2. If A>0 and K > 0, then the spectrum of the pencil L is located in the open
upper half-plane.

3. If A> 0 and NX>My— Ay # 0 for all real X and all nonzeroy € N(K)ND(A),
then the spectrum of the pencil L is located in the open upper half-plane.

Proof. 1. In view of Lemma 1.2.1 we have to show that there are no eigenvalues
on the negative imaginary semiaxis. Hence, let yo be an eigenvector corresponding
to a pure imaginary eigenvalue \g. Then Re A\g = 0, and in view of M > 0, K > 0,
A > 0, equation (1.2.1) would imply that (Myo,y0) = 0, (Kyo,y0) = 0, and
(Ayo,yo) = 0 if Im A\g < 0. But this contradicts Condition I, part (v).

2. From A > 0 it follows that 0 € p(L), and hence the statement of part 2
follows in view of part 1 and Lemma 1.2.3.

3. The same proof as in part 2 above shows that 0 is not an eigenvalue
of the pencil L. If the pencil L would have a nonzero real eigenvalue )y with
corresponding eigenvector yo, then (1.2.2) would imply Ky = 0, and therefore

NoMyo — Ayo = L(Xo)yo =0,

which contradicts the assumptions of this case. O
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Remark 1.2.5. We note that the assumption A > 0 is equivalent to A > 0, i.e.,
A > eI for some € > 0. Indeed, Condition I, part (iii), implies that the spectrum
of A consists of isolated eigenvalues, and therefore A > 0 leads to A > 0 by the
spectral theorem.

Let us introduce the following parameter dependent operator pencil:
L\ n) = M —ixnK — A. (1.2.4)

It is clear that L(A,1) = L(A). If we write L, we will always mean the operator
function A — L(\). The two parameter operator function will always be written
as L(Avn)a L(ﬂ?) or L(Av )

Remark 1.2.6.

1. The number m(£2,n) will denote the total algebraic multiplicity in © of the
pencil L(-,n) defined in (1.2.4), see Definition 1.1.8.

2. For convenience we will also use the notations m(A) and m(A,n) to denote the
algebraic multiplicities of the eigenvalues of the operator pencils L and L(-, n)
at a point A, where the multiplicity is zero if A belongs to the resolvent set.

By Lemma 1.1.11 we know that the eigenvalues, eigenvectors and associated
vectors of L and L coincide, and that both L and L; are Fredholm operator
valued. Since L; is a bounded operator function, Theorem 9.2.4 is applicable and
we therefore have

Theorem 1.2.7. Let g € C and let Q C C be a domain which contains exactly one
eigenvalue Ao of the pencil L(-,n9). Denote by m the algebraic multiplicity of Ao.
Then there exist numbers € > 0 and m; € N, m; < m, such that the following
assertions are true in a deleted neighbourhood 0 < |n—no| < e of no:

1. The pencil L(-,n) possesses exactly my distinct eigenvalues inside the do-

main Q. Those eigenvalues can be arranged in groups A\ij(n), k =1,...,1,
l
J=1,...,pk, Y. Dk = mq, in such a way that the following Puiseuz series
k=1
expansion
(o)
1 " .
Mg (1) = Ao+ Y arn(((n=m0)))" 5 =1, ,pr, (1.2.5)
n=1

holds, where, for j =1,...,pk,

(7 — o)™ ); = In — mo| 7+ exp ( (1.2.6)

2mi(j — 1) +iarg(n — 770))
Pk .

2. A basis of the eigenspace corresponding to Aij(n) can be written in the form

yl(g) _b(q)+2b ((n =m0 pk) ) oq=1,...,1, (1.2.7)



10 Chapter 1. Quadratic Operator Pencils

where 1y, is the geometric multiplicity of \x;(n) and b;c%) € N(L(Mosm0)) \
{0}. The vectors in the series (1.2.7) belong to D(A) and the series (1.2.7)
converges in the graph norm of D(A).

Proof. For a suitable neighbourhood of Ay this follows from Theorem 9.2.4 if we
observe that we may replace the exponent n in the series expansion (9.2.13) of
y,ig(n) by n — v, where v = min{n € Np : b2 # 0}, since multiplication by

the nonzero constant (((n — 7o) i )j)~" does not change the stated properties of
the y,:(} (n) in (9.2.13). From L(Ag;(n), n)y,(;;) (n) = 0 and a continuity argument it
therefore follows that L(\o, no)y,(c‘é) =0. 0

The vectors b;c%) in (1.2.7) are eigenvectors of L(-,70) with respect to the
eigenvalue \g, but they may be linearly dependent.

We have seen in the last paragraph of the proof of Theorem 9.1.1 that for each
k the least common multiple of p;, and the indices n for which ag, # 0 in (1.2.5)
is 1. Hence, if 7 is real and moves through 7o, then not all Ay;(n), j =1,..., p,
can lie on a given line if p; > 1. Therefore we have the following

Remark 1.2.8. If g # 0 is a real or pure imaginary eigenvalue of L(-, 1) for some
real 79 and if the eigenvalues of L(-,7n) near Ao for real 1 near 7y are also real or
pure imaginary, then py = 1 for all k in Theorem 1.2.7.

Remark 1.2.9. If both 7 and 7y are real so that arg(n — 7o) is an integer multiple
of 7, then we can put

2mi(j — 1) + iy arg(n — ’70)> , (1.2.8)

1 1
((n=mo)7x); = |n — mo|»» exp (
Pk

where J; is an odd integer. This would change the indexing of the roots for

n—no <0if 5’; ;1 is not an even integer but has the advantage that when taking

0 = pi if py is odd then ((n —no) i )1 would be real for all  and we would avoid
a “vertex” when the roots move through 7.

Although we will mostly deal with real 5 in L(\,7n), it is advantageous to
consider 7 as a complex eigenvalue parameter.

If we additionally assume that K is bounded and boundedly invertible, i.e.,
K bounded and K > 0, then we can write, setting A = i7 and assuming \ # 0,
L\n) = M —idK — A
=1’ M+mK - A

1

— K3 (nI—TK—%MK—% —T—lK—%AK—%) K*.

Hence ) )
L\ n) =1K2Q(1,n) K>
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where
Qrn)=nl —7K *MK > —7 'K 2 AK™ %,

For 7 # 0 we note that if N(Q(7,n)) # {0}, then its dimension is the geometric
multiplicity of the eigenvalue 7 of the pencil Q(-,7) as well as the geometric mul-
tiplicity of the eigenvalue 7 of the pencil Q(7,-). The algebraic multiplicities will
be different, in general, but for 7 € R, we have a standard spectral problem for a
self-adjoint operator with the spectral parameter 7, and hence all eigenvalues of
Q(7,-) for real 7 are real and semisimple. Therefore we have

Lemma 1.2.10. Assume that K is bounded and that K > 0, let 7o € R\ {0} and
let no be an eigenvalue of the pencil Q(7o,-) with (geometric) multiplicity I. Then
there are € > 0 and | real analytic functions

() =m0+ > cn(r—70)", k=1...1 |t—m|<e, (1.2.9)

N=pk

where py € N, cgp, € R\ {0}, cxn € R for n > py, such that (ny(7)),_, represents
the eigenvalues near ng of the pencil Q(T,-), counted with multiplicity, for each
T € C with |1 — 70| < €.

Proof. For real 7, the eigenvalues of the self-adjoint operator function Q(r,-) are
real. Hence the lemma immediately follows from Theorem 1.2.7 and Remark 1.2.8.
Alternatively, we could apply the theorem in [239, Section 136, p. 373]. We only
have to observe that 7, cannot be constant, because otherwise iT would be an
eigenvalue of L(-, 1) for all real 7 near 7y, which contradicts the discreteness of
the spectrum of L(+, 1), see Lemma 1.2.1. Therefore, at least one of the coefficients
Ckn in (1.2.9) must be different from zero. O

1.3 Spectrum of the pencil L in the lower half-plane

Lemma 1.3.1.

1. All nonzero eigenvalues of the pencil L located in the closed lower half-plane
are semisimple, 1. e., they do not possess associated vectors.

2. If 0 is an eigenvalue of the pencil L, then its algebraic multiplicity is equal
to dim N(A) + dim(N(A) N N(K)), and the mazimal length of a chain of an
etgenvector and associated vectors is 2.

3. If K >0 on N(A), then all eigenvalues of the pencil L located in the closed
lower half-plane are semisimple.

4. If Ao is a real nonzero eigenvalue of L with eigenvector yo, then Kyy = 0.

Proof. 1 and 4. Let Ay be an eigenvalue of the pencil L and assume there is a
corresponding eigenvector yo with an associated vector y;. By (1.1.2),

L(Xo)y1 + L'(Ao)yo =0, (1.3.1)
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and the inner product with yo gives

(L(X0)y1,90) + (L'(Mo)yo, yo) = 0. (1.3.2)

First assume that A\g € C~. Taking into account that Ay is pure imaginary by
Lemma 1.2.1 we obtain with the aid of Lemma 1.1.11, part 3, that

(L(Xo)y1,90) = (y1, L(=X0)yo) = (y1, L(Ao)yo) = 0.
This together with (1.3.2) leads to
’L((2 Im A()M - K)yo,yo) = (L/(Ao)yo,yo) = 0. (133)

Since Im\g < 0, M >0 and K > 0, (1.3.3) gives (Myo,y0) = (K¥o,%) = 0, i.e.,
Myo = Kyo = 0. Hence Ayg = —L(Ao)yo = 0 and consequently yo € N(M) N
N(K)NN(A). Due to Condition I, part (v), we have arrived at the contradiction
yo = 0.

Now consider an eigenvalue A\g € R\ {0}. Then (1.2.3) implies (Kyo,y0) =0,
and, consequently, Kyo = 0. This proves part 4. Furthermore, L(Ao)*yo = L(Ao)yo
follows, and therefore

(L(Xo)y1,90) = (y1, L(Xo)*v0) = (y1, L(Ao)yo) = 0.
This together with
L'(Xo)yo = 2XoMyo — iKyo = 2XA0Myo,

Ao # 0 and (1.3.2) leads to
(Myo, yO) =0,

i.e., Myo = 0. Hence, taking into account Kyo = 0 and L(Ao)yo = 0 we obtain
Ayo = 0, which contradicts Condition I, part (v).

2. Let yo be an eigenvector and y; an associated vector corresponding to the
eigenvalue 0 of the pencil L. Then

Ayo = —L(0)yo =0 (1.3.4)
and (1.3.1) can be written as
Ay +iKyo = 0. (1.3.5)
Taking the inner product with yg gives
0= (Ay1,y0) + i(Kyo,y0) = (y1, Ayo) + i(Kyo, y0) = i(Kyo,Yo),

and therefore Kyg = 0 is necessary for an associated vector to exist. Conversely,
if yo is an eigenvector corresponding to the eigenvalue 0 of the pencil L with
Kyo = 0, we can choose y; = 0 in order to satisfy (1.3.5). Hence we have that
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the eigenvector yo has an associated vector if and only if yo € N(A) N N(K).
The proof of part 2 will be complete if we show that the maximal length of a
chain of an eigenvector and associated vectors equals 2. Hence assume by proof of
contradiction that there exist yo,y1,y2 € D(L), yo # 0, satisfying (1.3.4), (1.3.5)
and
1 .

0= 2L//(O)y0 + L' (0)y1 + L(0)y2 = Myo — iKy1 — Aya. (1.3.6)
We already know that Ayy = 0 and Kyo = 0. Hence, taking the inner product
with o in (1.3.6) leads to

0= (Myo,y0) — i(Ky1,y0) — (Ay2,90) = (Myo, Yo)-

Therefore we would obtain Myy = 0, which contradicts Condition I, part (v),
because of g # 0.

3. In view of part 1 we only have to consider the case A\ = 0, and the
statement immediately follows from part 2 since N(A4) N N(K = {0} implies that
the algebraic multiplicity equals the geometric multiplicity N(A). |

Theorem 1.3.2.

1. Assume that M = I. Then the total algebraic multiplicity of the spectrum
of L in the open lower half-plane coincides with the total algebraic multi-
plicity (which is the same as the geometric multiplicity) of the negative spec-
trum of A.

2. Assume that M = I and K > 0. Then the total algebraic multiplicity of the
spectrum of L in the closed lower half-plane coincides with the total algebraic
multiplicity of the nonpositive spectrum of A.

Proof. 1. By Lemma 1.3.1, part 1, all eigenvalues of the pencil L(,7n) located in
C—\ {0} are semisimple, and therefore their algebraic and geometric multiplicities
coincide. Hence the total geometric multiplicity of the negative spectrum of A
clearly coincides with the total algebraic multiplicity of the pencil L(-,0) in the
open lower half-plane since L(\,0) = A2T — A, see (1.2.4).

We are going to show that m(C~,n) for L(-,n) is independent of n € [0, 1].
For this we observe that by Lemma 1.2.1 the spectrum of L(-,7) in the open lower
half-plane is located on the imaginary axis. Thus, let us write A = —i7, 7 > 0, for
A on the negative imaginary semiaxis. For any n € [0, 1], consider an eigenvalue
A= —ir, 7 >0, of L(-,n) and a corresponding normed eigenvector y. Then

(=72 — K — A)y =0,
which leads to

7 = (y,y) = —m(Ky,y) = (Ay.y) < ~(Ay,y) < B,
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where § is the upper bound of —A from Condition I, part (i). For each n € [0, 1]
choose €(n) > 0 such that the closure of

0, ={AeC:|Re) <e(n), —B2 —c(n) <ImA < e(n)}

contains exactly those eigenvalues of L(-, ) which lie on the nonpositive imaginary
semiaxis and such that the closure of

Q) ={AxeC:|Re)| <e(n), [ImA| <e(n)}

contains no nonzero eigenvalues of L(-,n). By Lemma 1.1.9, both m(€,,,n) and
m(Q%o,n) are independent of n near 1o for each g € [0, 1]. But by Lemma 1.3.1,
part 2, 0 is either in the resolvent set of L(-,n) for all n € [0,1] or the algebraic
multiplicity m(0,7n) of the eigenvalue 0 is independent of 1 for n € (0,1] and may
be larger for n = 0. Therefore,

m(C_WO) = m(QnmUO) - m(Qg()ﬂ?O) = m(QTIm’UO) - m(07770)

gives
m(C™,n) = m(Qy,,n) —m(0,n)

for n sufficiently close to any 1o € (0, 1], and it follows that m(C~, 7) is independent
of n € (0,1]. The proof of part 1 will be complete if we show that no eigenvalues
can move from 0 onto the negative imaginary semiaxis when 7 increases from 0.
Indeed, we will show that any eigenvalue on the negative imaginary semiaxis does
not move away from zero as n € [0,1] increases. To this end, we again use the

notation A = —ir, 7 > 0. Writing L(7,n) = —L(—it,n) we have
L(t,n) = 721 + ™K + A.

By Lemma 1.2.1, the eigenvalues 7 of I~/(, 7) under consideration are positive for
1n > 0. By Theorem 1.2.7 and Remark 1.2.8, these eigenvalues and corresponding
eigenvectors can be arranged locally in such a way that they are differentiable
functions of 7. Therefore, let 7(n) be such an eigenvalue depending on 1 with
corresponding eigenvector y(n). Then differentiation of

L(r(n),n)y(n) =0

with respect to n gives

Z; (;TL(T, n)) y(n) + (;7/2(7, n)) y(n) + L(7,n) diy(n) =0

at 7 = 7(n). The inner product with y(n) leads to

(2T R () + () +
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where we have used that E(T, n) is self-adjoint for real 7 and n. Therefore

dr __ (Ky(n),y(n) <0 (1.3.7)

dn (271 +nK)y(n),y(n))
which proves that eigenvalues of the pencil L(-, 1) on the negative imaginary semi-
axis do not move away from 0 as 7 increases from 0.

2. By Lemma 1.3.1, part 2, m(0) = dim N(A). Hence the proof is complete
in view of part 1 and Lemma 1.2.3. O

Theorem 1.3.3. Assume that M + K > 0. Then statement 1 of Theorem 1.3.2 is
true, i. e., the total algebraic multiplicity of the spectrum of L in the open lower
half-plane coincides with the total algebraic multiplicity of the negative spectrum

of A.
Proof. We consider
L\, 1) = N2[(1 — )] +nM] — i K — A.

For n = 0 we have the pencil considered in Theorem 1.3.2 and for n = 1 we
have the pencil considered in this theorem. Hence it is sufficient to prove that
the total algebraic multiplicity of the eigenvalues in the open lower half-plane is
independent of € [0,1]. Since (1 —n)I +nM > 0, L(\,7) satisfies Condition
I for all n € [0,1]. The algebraic multiplicity of the eigenvalue 0 of the operator
pencil L(-,n) is independent of 7, see Lemma 1.3.1, part 2. Hence no eigenvalue
can enter or leave the negative imaginary semiaxis through 0. Since eigenvalues
depend continuously on 7, it follows that there is a number a > 0 such that each
eigenvalue A\ = —ir with 7 > 0 of L(-,n) for any 5 € [0, 1] satisfies 7 > a.

We are going to show that the eigenvalues A\ = —i7, 7 > 0, have a bound
which is independent of n € [0, 1]. Hence, consider an eigenvalue A = —i7 of f/(, )
and a corresponding normed eigenvector y. Then

(=721 = I +nM] - 7K — A)y = 0,
which leads to
2([(L =) + nMly,y) + 7(Ky,y) + (Ay,y) = 0. (1.3.8)

Since M + K > 0, there is ¢ > 0 such that M + K > eI. If the coefficient of 72
equals 0, then n =1 and (My,y) = 0, and therefore

(Ky,y) = (M + K)y,y) > e(y,y) =¢,

so that (1.3.8) gives
L —(Ayy) B

Ky S e (1.3.9)
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If the coefficient of 72 in (1.3.8) is different from 0 and hence positive, then 7 > 0
implies that (Ay,y) < 0, and

—(Ky,y) + /(Ky,y)? = 4([(1 = n)I + nM]y,y)(Ay, y)
2([Q =nD)I +nM]y,y)
_ —2(Ay,y)
(Ky,y) + /(Ky,y)? — 4([(1 = n)I + nM]y,y)(Ay,y)

Using that (Ay,y) < 0 and that /r +s > J4/s for r,s > 0, we obtain

< —2(Ay,y) .
T (Kyy) + /(1= +nM]y,y)(Ay, y)
12
a+ bt
in t on [0,00) and that 0 < —(Ay,y) < B, it follows that
26
(Ky.y) + /(L =) +nMly.y)VB~

and it remains to show that the denominator has a positive lower bound. Putting
(My,y) =~ and observing M + K > eI gives

Observing that the function ¢ — with a,b > 0 and a + b > 0 is increasing

(Ky,y) > max{e — 7,0},

and it follows that

(Ky,y) + (1 =) +nMly,y)\/B > —n+ /1 —n+nnyB,

where 71 = min{v,e} € [0,¢] and 7 € [0, 1]. Here we have to note that v depends
on 7 and 7, but in the following we allow any v; € [0,¢], so that «; becomes
independent of 7. Since we may choose € < 1, the function on the right-hand side
is decreasing in 1 and therefore takes its minimum at 1 = 1, which gives

(Ky,y) +/([(1 =) +nMly,y)\/B > =+ 7, VB-

The right-hand side is a concave function of v; and therefore takes its minimum
on [0,¢] at an endpoint, which finally implies

(Ky,y) + /([(1 = )] +nM]y,y)y/B > min{e, vey/B} > 0.

We have seen above that there are positive numbers a and b such that for all
n € [0,1] each eigenvalue X of L(-,n) in the open lower half-plane is of the form
A= —i7 with a < 7 < b. Let

Q={AeC:-b<ImA<a, -1 <Rel <1}
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For \,n € C let Li(\,n) be the operator L(),7) acting from D(A) to H with
the graph norm on D(A). The bounded operator L;(\,7) depends continuously
on A and 7, and therefore the set A of those (X, 7) for which L(),7) is invertible
is an open set and L~'(\,7) depends continuously on (\,7) € A, see, e.g., [189,
Proposition 1.1.4]. Since 990 x [0,1] is a compact subset of A, there is a constant
C > 0 such that

ILTY O\ )| < C for all A € 99 x [0,1]. (1.3.10)

Now let 7 € [0, 1]. Since L; depends continuously on A and 7, for each A € 99
one can choose a real number ), > 0 such that

Uvi={peC:lp—A <} x{{eC:[{—n<m}CA

and ||L1 (i, &) — Li(\,n)|| < o for all (u,€) € Uy. Since {Uy : A € 0Q} is an
open cover of the compact set 9Q x {n}, there is a finite subcover {Uy,,...,Ux,}
of 00 x {n} with A,..., A\, € 9Q. Let &, := min{yx,,...,7x,}. Let (A, &) €
O X [n — €,,m + €y]. There is an index k such that (\,n) € U,,, and therefore
also (X, &) € Uy, . It follows that

11 €) = i)l < I1Lu(A €) = Liy m) | + 1 L1 (A m) = La (s )| < (1]
This together with (1.3.10) leads to
IE1(A€) = L LT (A )| < 1.
Hence, by Lemma 1.1.9,
m(C™, &) =m(Q,§) = m(Q2,n) =m(C™,n) for all § € (n —ey,n+ey) N[0, 1].
Therefore, both
So = {n €[0,1] : m(C~,n) =m(C",0)}

and

S1= {77 € [07 1] : m(c_ﬂ?) 7& m((c_70)}

are open subsets of [0,1]. Since 0 € Sy and [0, 1] is connected, it follows that
So = [0, 1], that is, the total algebraic multiplicity of the eigenvalues in the open
lower half-plane is independent of 7 € [0, 1]. O

Notation 1.3.4. Let J be an index set and ()\j);jes be a family of not necessarily
distinct eigenvalues of an operator pencil. We say that the eigenvalues (\;);es
are distinct with multiplicity if for each eigenvalue A of the pencil the number
of indices j € J with A\; = X does not exceed the algebraic multiplicity of the
eigenvalue \. We say that the finite or infinite sequence of eigenvalues (\;) ez of
the pencil is an indexing of the eigenvalues in Q@ C C if A\; € Q for all j € J and if
for each eigenvalue A € Q of the pencil the number of indices j € J with A\; = A
equals the algebraic multiplicity of the eigenvalue \.
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Lemma 1.3.5. Let M + K > 0. If C~ ¢ p(L), then there is an integer k > 0 and
for each n € [0,1] an indexing (A_x(p))5_, of the eigenvalues of the pencil L(-,n)
in C~ (which all lie on the negative imaginary semiaxis) such that each A_y is
a continous function of n on [0,1] which is analytic on (0,1). We will also write
A_g forn =1, i.e., for the corresponding eigenvalues of L.

Proof. From Lemma 1.2.1 we know that the eigenvalues of L(-,n) in the lower
half-plane lie on the imaginary axis, and by Theorem 1.3.3 their total algebraic
multiplicity « is finite and independent of 7. In view of Theorem 1.2.7 and Remark
1.2.8, for each ny € [0, 1] there is an open interval I, containing 7o such that the
eigenvalues can be arranged as x continuous branches on I,,; which are analytic
when restricted to positive 7. Since [0, 1] is compact, there is a finite subset F' of
[0, 1] such that |J, . I;, D [0, 1]. Now choose py € F such that 0 € I,,, and choose
an indexing (A_x ()5, of the eigenvalues on I,,, such that A_j is continuous on
I,,,N[0, 1] and analytic on I, N(0,1). If I,,, 2 [0, 1], we can choose ps € F such that
I,,nI,,N(0,1) # Qand I,, ¢ I,,. By Theorem 1.2.7, there is ng € I,,, N1,,N(0, 1)
such that the indexing of (A_)f_; in I, and I,,, respectively, can be chosen in
such a way that it coincides near 79. By the identity theorem for analytic functions,
it would coincide on I,,, N1,,,N(0, 1), and it follows that we would have an indexing
resulting in analytic functions on (I, U I,,) N (0,1). Continuing in this way, the
statement of this lemma will be proved after a finite number of steps. O

1.4 Spectrum of the pencil L in the upper half-plane

Lemma 1.4.1. Assume that K is bounded and that K > 0. Let \g = i1y with
70 > 0. Then, with a slight abuse of notation, the Puiseux series Mg ; in (1.2.5)
can be written in the form

N () = Ao+ S apn((ex (= 10) 7 ),)" G =100k, (1.4.1)
n=1

where e, € {—1,1}, ap1 # 0, and with a suitable indexing, all ag, are pure imag-
inary and ax1 has positive imaginary part.

Proof. The eigenvalues A near Ao of L(-,7) for n near 7y are obtained by solving
the equations (1.2.9) for 7 with 79 = —i)¢ and thus for A = 7. To this end, we
fix some k and drop the index k. Then we have in view of Lemma 1.2.10 that

n—m0=Y_ calT —70)" = cp(r = 0)Ph(7),
n=p

where ¢, € R, ¢, # 0 and h is analytic near 7o with h(79) =1 and h(7) is real for
real 7. Near 79, h has a (unique) analytic pth root h, with hy,(79) = 1, which is
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real for real 7. Hence the above identity becomes

=10 = (T = 70)hp(7))". (1.4.2)

The implicit function theorem gives a unique analytic solution

T=T0+ ) ans” (1.4.3)

n=1
of z = (7 — 70)hp(7), which is real for real z. Therefore all «,, are real. Since dz
-

d
equals 1 at 9, dT equals 1 at z = 0, and hence a; = 1. Observing that (1.4.2) has
2z

the p solutions

~ 1 .
Z:Cp(a(n_no)”)jv J :17"'ap7 (144)
where € = sgn(cp) and &, = |cp\_zl), a substitution of z from (1.4.4) into (1.4.3)
completes the proof. O

Lemma 1.4.2. Let M > 0. If the eigenvalue A\ of the pencil L is not pure imaginary
or if it is not semisimple, then Im \g € [my, ma], where
(Ky,y)

mp = L inf (K. y) and mo = L sup .
2 0£yeD(4) (My,y) 2 ozyen(a) (My,y)

Proof. If \g is a not a pure imaginary eigenvalue of the pencil L, then the asser-
tion of this lemma follows from (1.2.2). If Ag is a pure imaginary non-semisimple
eigenvalue, then the assertion of this lemma follows from (1.3.3), which also holds
for eigenvalues on the nonnegative imaginary semiaxis. O

Remark 1.4.3. If M > 0 and K is bounded, then my < oo, and if K > 0, then
mq > 0.

Lemma 1.4.4. Assume that K is bounded and that K > 0. Let ng > 0 and let
Ao = @10 with 79 > 0 be an eigenvalue of L(-,n9). Then there are € > 0 and four
nonnegative integers k1, k2, K3, ka, such that forn € (no—e,no+e) the eigenvalues
of L(-,m) near \g which lie on the imaginary azis, counted with multiplicity, can
be divided into four classes Ay(Ao,m0), Ay(Xo,m0), Ay(Xo,m0), A—(Xo,10), where

o Ay(Xo,mo) consists of k1 increasing continuous functions from (no —e,no+¢€)
to iR,

o Ay(Xo,mo) consists of ko decreasing continuous functions from (no —e,no +¢€)
to iR,

o A (Xo,mo) consists of k3 pairs of an increasing continuous function and a
decreasing continuous function from [ng,no + €) to iR,

o A_(Xg,m0) consists of k4 pairs of an increasing continuous function and a
decreasing continuous function from (ng — e,no] to iR.
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The difference of the number of increasing eigenvalues of L(-,m) on the positive
imaginary semiazis near \g and the number of decreasing eigenvalues of L(-,n) on
the positive imaginary semiazis near Ao is K1 — k2 on (o — 1,70 + 7).

Proof. Consider a group of eigenvalue functions Ay; with fixed k according to
(1.4.1). Let n € R be close to g, 7 # no. By Lemma 1.4.1, Ag1(n) is pure imaginary
if ex.(n —no) is positive.

If pi is odd, then Agi(n) is the only Ay;(n) which is pure imaginary for
ex(n—mno) positive, and Ag1 (1) is increasing along the imaginary axis with e (n—mnp)
since ag1 has positive imaginary part and ((ex(n—mn0)) ok )1 is positive. If ex(n—no)
is negative, then there is exactly one index s for which A\ (7) is pure imaginary, and
((ex(n —m0)) i )s is negative. Hence As(n) is also increasing along the imaginary
axis with ex(n—mno) if ex(n—n0) is negative. Therefore, for this group there is exactly
one eigenvalue of L(-,7) on the imaginary axis for 7 in a deleted neighbourhood of
1o, and this eigenvalue depends continuously on 7, belongs to A+(Ag,n0) if e =1
and to Ay (Ao, no) if e = —1.

If py is even, pp = 2s, and ex(n — 7o) is positive, then (ex(n — 770);2)5+1 =
—(ex(n — 770)11’)1 and hence both A\;1(n) and Ag s4+1(n) lie on the imaginary axis,
where one is decreasing and the other one increasing with e, (n — 79), whereas all
the other eigenvalues are not pure imaginary. If e (n —170) is negative, none of the

Akj(n) are pure imaginary. Hence these pairs contribute to Af (Ao, m0) if e =1
and to A_(Ao,no) if e, = —1. O

Theorem 1.4.5. Let M > 0, K > 0 and K be bounded. Then there is a family of
pure imaginary eigenvalues (A,)i_, of the pencil L in the open upper half-plane
which is distinct with multiplicity and which satisfies

Im(Ag +A_k) >0, k=1,...,K,
where (A_g)f_, is an indexing of the eigenvalues of the pencil L in C~.

Proof. We consider the eigenvalues (A_x(n))5_; of the pencil L(-,n), n € [0,1],
see Lemma 1.3.5. Since (1.3.7) also holds if the operator I there is replaced by
M with M > 0, it follows that these eigenvalue functions A_j are nondecreasing
along the imaginary axis when 7 increases. Since L(\,0) = A\2M — A, we can put
Ae(0) = =A_x(0) for k = 1,..., k to obtain an indexing of the eigenvalues of L(-, 0)
on the positive imaginary semiaxis. The proof will be complete if we show that
for each n € (0, 1] there are pure imaginary eigenvalues (Ax(n))5_, in the upper
half-plane which are distinct with multiplicity and increasing in n € [0, 1].

For small n > 0 we identify the A\i(n) as eigenvalues of L(-,n) according to
Theorem 1.2.7 such that Ag is continuous at 0 and analytic for n > 0. Again by
Theorem 1.2.7, choose an eigenvector yi(n) corresponding to the eigenvalue Ax(n)
of L(-,n) which is an analytic function for n > 0 and continuous at n = 0. Solving
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the eigenvalue equation

(L), myr(n), yr(n)) =0

for A\i(n) gives

k(1)

—in(Kyk(m), yk(m) +i/m? (Kyk(n), yr (1)) — 4( Ay (), o () (Myr (1), yi (1))

B 2(Myk(n), yx(n))
(1.4.5)

If we observe that y; depends continuously on 7 in the graph norm of A, it follows
that the inner products are continuous functions of 7 near n = 0. This, together
with M > 0 and the fact that the radicant of the square root is positive for n = 0,
because A\ (0) is pure imaginary with positive imaginary part, shows that Ag(n) is
pure imaginary with positive imaginary part for sufficiently small n > 0.

Differentiating L(Ax(n),n)yr(n) = 0 with respect to n and taking the inner
product with yx(n) leads to

AL (@AM = inK)yk(n), yx(n)) — i () (Kyk(n),yx(n)) =0,  (1.4.6)
and therefore

Foy i () (Kyx (), yx (1))
MOD = o) (M), we ) — (K)o ()

(Myk(n),yx(n)) is positive and depends continuously on 7 and (Kyx(n),yx(n))
depends continuously on 7. Thus it follows that the denominator of (1.4.7) is pure
imaginary with positive imaginary part for sufficiently small n > 0 and that the
numerator is nonpositive real valued. We therefore have shown that the imaginary
parts of A\ and A_j are nondecreasing, which gives

Im(Ar(n) + A_x(n) =0, j=1,...,x (1.4.8)

for n > 0 small enough.

Let 19 > 0 be the supremum of all 71 € (0, 00) such that a family of increasing
eigenvalue functions (Ax(n))5_, exists on [0,71]. The proof will be complete if we
show that ny > 1. Therefore, assume that n9 < 1. Since M > 0, K is bounded
and A is bounded below, the pure imaginary eigenvalues of L(-,n) are uniformly
bounded with respect to € [0,2] by (1.4.5). Choose € > 0 such that Lemma 1.4.4
applies to each of the eigenvalues of L(-,70) on the positive imaginary semiaxis. By
definition of ng, there is a family of increasing eigenvalue functions (Ax(n))5_; on
[0,70 — 5]. In view of Lemma 1.4.4, these functions can be extended to increasing
eigenvalue functions on [0, 79]. Now fix some Ao € {A1(n0),...,As(n0)}. If the
number n of indices k with Ag = Ai(n0) is at most as large as the number n; of
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those eigenvalue functions Ay;, according to (1.2.5) with Ag;(n0) = Ao, which are
increasing through 7y on the imaginary axis, then we choose n of those to represent
these A\, for n € (no,no + €). If however n > nq, then by Lemma 1.4.4 there are
n — np increasing functions belonging to A_(Ag,70), and therefore also n — ny
decreasing eigenvalue functions for n € (9 —¢,70). We have seen at the beginning
of the proof that, with the notation of Lemma 1.4.4, ko = k3 = k4 =0ifn >0
is sufficiently small. Therefore a decreasing eigenvalue function must eventually
come from some A4 (A1, 7m1) with 0 < 71 < 19 and Im A9 < Im A;. Hence each of
these decreasing eigenvalue branches would have been paired with an increasing
branch, which might already have left the imaginary axis, but only after colliding
with another decreasing eigenvalue branch. After a finite number of steps, we must
meet a remaining increasing branch. Since we arrive at this branch by an upwards
jump, it clearly follows that (1.4.8) is true for n > 1o sufficiently close to 7.
Consequently, (1.4.8) holds for n = 1, that is, the theorem is proved. O

1.5 The case when K has rank one

In this section we assume that in addition to Condition I the following holds:

Condition II. The Hilbert space H is the orthogonal sum of a Hilbert space Hy
and C, H = Hy ® C, and
0 0
=2

with 3¢ > 0.

Lemma 1.5.1.

1. Let 7 € R\ {0} and assume that both it and —it are eigenvalues of the
operator pencil L(-,no) for someny € (0,1]. Then it and —iT are eigenvalues
of the operator pencil L(-,n) for all n € [0,1].

2. Let A € R\ {0} be an eigenvalue of the operator pencil L(-,m9) for some
1o € (0,1]. Then X and —X are eigenvalues of the operator pencil L(-,n) for
all n € 10,1].

Proof. 1. Let y; = <zn> be an eigenvector of L(+,79) corresponding to the eigen-
12

value i7 and let yo = <321> be and eigenvector of L(:,19) corresponding to the
22

eigenvalue —i7. Then

(—=2M + o K — A)y; = 0, (1.5.1)
(—7*M — o K — A)yz = 0, (1.5.2)
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and consequently

—7%(y2, My1) + 710 (Y2, K1) — (y2, Ay1) = 0,
—7%(Myz,y1) — m10(Ky2,y1) — (Aya, y1) = 0.

Taking into account that M, K and A are self-adjoint, the difference of the above
equations gives
0= (Ky2,y1) = sy2212.

Then one of the factors must be zero, say yi12 = 0, which gives Ky; = 0. Hence
(1.5.1) and (1.5.2) lead to L(4i7,n)y1 = 0, which completes the proof of part 1.
2. Due to the symmetry of the spectrum, see Lemma 1.1.11, part 3, it follows
that if A € R\ {0} is an eigenvalue of L(-,n9), then also —\ is an eigenvalue of
L(-,m0). Let y be an eigenvector of L(-, 1) corresponding to the eigenvalue A. Then

N (My,y) — ixno(Ky,y) — (Ay,y) =0.

Since M, K and A are self-adjoint, all three inner products are real. Therefore
A #£ 0 and o > 0 give (Ky,y) = 0 and thus Ky = 0 because K > 0. It follows
that L(£X, n)y = L(A,no)y = 0 for all € [0, 1]. O
Definition 1.5.2. Let 7o € (0,1] and let m () = r%nl]m()\,n).
n€(0,
1. An eigenvalue A of the pencil L(-,79) is said to be an eigenvalue of type I if
A is an eigenvalue of the pencil L(-,n) for each n € (0,1], i.e., if my(\) > 0.
2. For A € C let mg(A\) = dim(N(L(N)) N N(K)). If mg(A\) > 0, then each
nonzero vector in N(L(X))NN(K) is called an eigenvector of type I for L at .
3. An eigenvalue A of the pencil L(-,7) is said to be an eigenvalue of type II if
m(X,10) # mi(A).
Remark 1.5.3.

1. An eigenvalue can be both of type I and type II. If X is both of type I and
type II for some 7, then we say that A is an eigenvalue of the pencil L(-,7n)
of type I multiplicity m;(A) and of type II multiplicity m(\,n) — m;(\).

2. If 0 is an eigenvalue of the pencil L, then it follows from Lemma 1.3.1, part 2,
that 0 is an eigenvalue of L(-,n) for all n € (0,1], and, if dim N(A) = n, the
algebraic multiplicity m(\,7n) is 2n if Kya) = 0 and 2n — 1 if Ky 4y # 0.

3. If N(M)N N(A) = {0}, then the pencil L(-,0) satisfies Condition I. Since
eigenvalues A of type I are eigenvalues of the pencil L(-,7) for all n € (0, 1],
it follows from (1.2.5) that m;(\) branches of the eigenvalue A are constant
near 77 = 0, so that my(\) < m(A,0), whereas the remaining m(\,0) —my(\)
branches are not constant.

Lemma 1.5.4. Assume that N(M)NN(A) = {0}. Then the eigenvalues of type I of
L(-,n), which are independent of n € (0, 1], are located on the imaginary and real

azes, and are symmetric with respect to 0. If additionally M + K > 0, at most
finitely many of the eigenvalues of type I are on the imaginary axis.
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Proof. In view of Remark 1.5.3, part 3, the first statement is proved if we show
that all eigenvalues of L(-,0) are located on the real and imaginary axes. If \ is
an eigenvalue of L(-,0) with corresponding eigenvector y, then

N My — Ay = 0.

Observe that My # 0 since My = 0 implies Ay = 0 which would contradict
N(M)NN(A) ={0}. Since M > 0, it follows that (My,y) # 0, and therefore

2 _ (Ayvy)
M=y, y)

This shows that eigenvalues of type I are real or pure imaginary. Since L(A,0) =
L(—A,0), the spectrum of L(-,0) is symmetric with respect to the origin.

If M + K > 0, then also M 4+ nK > 0, and the total multiplicity of the
eigenvalues of L(-,7n) which lie on the negative imaginary semiaxis equals the total
number of negative eigenvalues of A by Lemma 1.2.1 and Theorem 1.3.3. Hence
this multiplicity is finite, and since the spectrum of type I is symmetric with
respect to the origin, there are at most finitely many eigenvalues of type I on the
positive imaginary axis, and therefore at most finitely many of the eigenvalues of
type I are on the imaginary axis. (]

eR.

Lemma 1.5.5.
1. ForallA\,n € C, N(L(A\,n))NN(K) = N(L(A\))NN(K), that is, N(L(\,n))N
N(K) is independent of n. In particular, mo(X) < my(A).
2. Let X # 0, n € (0,1] and assume that N(L(A\)) N N(K) # {0}. Then no
eigenvector yo € N(L(N)) N N(K) of L(-,n) at A has an associated vector.
3. If N(M)N N(A) = {0}, then my(\) = mg(N) for all A € C\ {0}.

Proof. 1.If y € N(K) N D(A), then
L\ n)y = N*My — Ay = L(\)y,

so that L(A,n)y = 0 if and only if L(\)y = 0. It follows that mq(A\) < m(A,n), so
that mo(A) < my(A) by definition of m ().

2. In view of part 1 and mg(\) = dim(N(L(A))NN(K)) > 0 we conclude that
A is an eigenvalue of type I. Assume that there is an eigenvector yo € N(L(-,1)) N
N(K) of L(-,n) at A which has an associated vector y;. Then

(L' (N m)yo, yo) = (2AMyo — inKyo, yo) = 2M(Myo, yo),

and, by Lemma 1.1.11, part 3, Kyg = 0 and the fact that eigenvalues of type I are
real or pure imaginary and therefore satisfy A2 = (—\)?2, it follows that

L(X\,nm) yo = L(=A,n)yo = L(A,n)yo = 0.
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The equation for the associated vector,
LA myr + L'(X,n)yo =0,

leads to

0= (yla L()\ﬂ?)*yo) + (L/()w??)yo,yo) = 2>‘(My07y0)’

and therefore Myo = 0. This together with L(A n)yo = 0 and Kyo = 0 gives
Ayo = 0 and hence yo = 0, which contradicts the fact that yg is an eigenvector.
Thus yp cannot have an associated vector.

3. From part 1 we know that mz(X) > mo(A).

We are going to prove my(A) = mg(A). This is trivial if m;(\) = 0, so that we
may assume that X is an eigenvalue of type I. From Lemma 1.5.4 we know that A is
real or pure imaginary, so that A> € R. By Remark 1.5.3, part 3, mz(\) < m(X,0),
so that A is an eigenvalue of L(-,0). Since A # 0, it is a semisimple eigenvalues

of L(+,0). Indeed, assume there is an eigenvector yo with associated vector y; of
L(-,0) at A\. Then

N Myo—Ayo =0 and 2XMyo + A2My; — Ay, = 0.

Taking the inner product with yq of the second identity and observing that A% € R,
it follows that 2A(Muyo, yo) = 0. This gives My = 0, and the first identity would
imply Ayo = 0, which contradicts yo # 0 and N(M) N N(A) = {0}. Since A is
semisimple,

m(A,0) = dim N(L(A,0)),

and since K is a rank 1 operator, it follows from part 1 that
m(A,0) — 1 < dim(N(L(X0)) NN(K)) =dim(N(L(A)) NN(K)) = mo(N).
Together with Remark 1.5.3, part 3, we obtain the inequalities
m(A,0) —1 <mo(A) <mr(A) <m(A,0). (1.5.3)

If mo(A) = m(A,0), then the proof is complete.

Therefore, consider the case mg(A) = m(A, 0)—1. Assume that also m(\,n) =
m(A,0) for small 7 > 0. We will show that X is a semisimple eigenvalue of L(-, 7).
Indeed, assume by proof of contradiction that the algebraic multiplicity of the
eigenvalue is larger than its geometric multiplicity. Then

dim N(L(\,m) < m(A, ) — 1 = mo(A)

so that N(L(A,n)) = N(L(A,n)) N N(K) by part 1. But then L(-,n) has no asso-
ciated vector at \ by part 2, which leads to the contradiction that the geometric
multiplicity equals the algebraic multiplicity.
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In the notation of Theorem 1.2.7 we have m; = 1 and thus p; = 1. Hence it
follows from (9.2.15) and its generalization to the infinite-dimensional case as well
as (9.2.16) that the function of two variables

A(p,m) = (= X" LT ()

is analytic at (), 0). Since the pole-order of the resolvent L *(-,7) is the length of
the largest chain of an eigenvector and associated vectors, see, e. g., [189, Theorem
1.6.5] and since ) is a semisimple eigenvalue of L(-,n), the above identity leads to
the Laurent expansion

_ 1 ~
L™ (um) = A_1(n) + A, ),
w—A
where A_; is analytic at 0 and A is analytic at (\,0). Again from [189, Theorem
1.6.5] we can infer that

rank A_1(n) = dim N(L(\, 1)) = m(),0)

and
R(A-1(n)) = N(L(A,n)).

Since mo(A) = m(A,0) — 1 and A is a semisimple eigenvalue of L(-,0), there is an
eigenvector yo of L(-,0) at A with Kyo # 0, that is, (Kyo,yo) > 0, see part 1. Let
x be such that yo = A_1(0)x and put y(n) = A_1(n)z. Then y(n) is an eigenvector
of L(-,n) at A. Differentiating L(X,n)y(n) = 0 with respect to n gives

LA n)y'(n) — iXKy(n) = 0.

Putting n = 0 and taking L(A,0)* = L(),0) into account we arrive at the contra-
diction —iA(Kyo,yo) = 0. Hence we have shown that m(A,n) < m(A,0) for some
small > 0, so that my(A) < m(A,0). In view of (1.5.3), mr(X) = mo(A). This
completes the proof of part 2. O

Theorem 1.5.6. Assume that N(M) N N(A) = {0}.

1. X # 0 is an eigenvalue of type I of the pencil L if and only if X is an eigenvalue
of the pencil L(-,0) having an eigenvector of the form (yo,0)T, and mr()\) is
the dimension of the space of eigenvectors of this form.

2. If A £ 0 is an eigenvalue of type I of the pencil L but not an eigenvalue of
type II, then \ is semisimple.

3. If X # 0 is an eigenvalue of the pencil L of type II, then N(L(X)) has a
basis consisting of mr(X) eigenvectors of type I and one eigenvector yo with

Kyo # 0 with mazimal chain length m(\) — my(\), that is, there is a chain
Am(A)—mr(A)—1
(yj)j:O
vectors of L at \.
4. If X # 0 is an eigenvalue of type II of the pencil L, then —\ is not an

etgenvalue of type II of the pencil L.

of the eigenvector yo and, if m(\) — mr(\) > 1, associated
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Proof. Part 1 follows from Lemma 1.5.5.
2. By assumption and in view of Lemma 1.5.5,

m(A) = m(\ 1) = mr(A) = me(A) < dim N(L(X)),

so that the algebraic and geometric multiplicities of the eigenvalue A of L coincide.
3. By Lemma 1.5.5 we know that

mi(X) = mo(A) = dim(N(L(X)) N N(K))

and that no eigenvector of L at X\ in N(L(X\)) N N(K) has an associated vector.
Since A is an eigenvalue of type II, its multiplicity, m(\) — m;(\), is positive.
Hence there are eigenvectors yo of L at A with Kyo # 0. For two such eigen-
vectors, a suitable nontrivial linear combination would be in N(K). Therefore,
dim N(L(X)) = mo(\) + 1 =: k, and there is a basis z1,..., 25 of N(L()\)) where
each z; is an eigenvector of a chain of length m; with

k
> my=m(),
j=1

see [189, Proposition 1.6.4]. Assume there are two such eigenvectors with associated
vectors. Then a nontrivial linear combination would be an eigenvector in N(K)
with an associated vector, which is impossible by Lemma 1.5.5, part 2. Hence
there is at most one j with m; > 1, and for this j, m; = m(\) — m;(\). If
m(A)—mr(A) > 1, then z; € N(K), and if m(A)—m;(\) = 1, then any eigenvector
not in N(K) has multiplicity m(X\) — m;(}\).

4. Assume that both A and —\ are eigenvalues of type II. In view of part 3
there would be eigenvectors y; of L at A and yo of L at —\ such that Ky; # 0
and Kys # 0. But in the proof of Lemma 1.5.1, part 1, we have seen that this is
impossible. (]

Theorem 1.5.7. Assume that N(M) N N(A) = {0} and that M + K > 0. Then
the eigenvalues of type II of the operator pencil L possess the following properties.

1. Only a finite number, denoted by ko, of the eigenvalues of type II lie in the
closed lower half-plane.

2. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicities are 1. If ko > 0, they

will be uniquely indexed as A_j = —i|A_;|, j = 1,..., Ko, satisfying |A_;| <
‘)‘*(j+1)|7 j = 1, ey R — 1.

3. If ke > 0, then the numbers i|A_;|, j = 1,...,K2, are not eigenvalues of
type I1.

4. If ko > 2, then the number of eigenvalues of type II, counted with type II
multiplicity, in each of the intervals (iA_j;|,i|A_(j41)]), 7 =1,..., 62 — 1, is

odd.



28 Chapter 1. Quadratic Operator Pencils

5. When ry > 0, the interval [0,i|]A-1]) contains mo or an even number of
eigenvalues of type II, counted with type II multiplicity, if N(A) C N(K),
and an odd number of eigenvalues of type II, counted with type II multiplicity,
if N(A) ¢ N(K).

Proof. 1. and 2. We know from Theorem 1.3.3 that the total algebraic multiplicity
of the spectrum of L in the lower half-plane is finite, and by Lemma 1.3.1, part 1,
and Theorem 1.5.6, part 3, the eigenvalues A of type II on the negative imaginary
semiaxis satisfy m(\) — my(A) = 1 and therefore their type II multiplicity must
be 1. Then the statement follows if we show that there are no real eigenvalues of
type IL. Indeed, if X is a nonzero real eigenvalue of the pencil L with eigenvector vy,
then taking the imaginary part of the inner product of the eigenvalue equation

N My —iAKy—Ay =0

with y we arrive at (Ky,y) = 0 and hence Ky = 0. Then Theorem 1.5.6, part
3, shows that A is not an eigenvalue of type II. On the other hand, it follows
from Lemma 1.3.1, part 2, that m(0,n) = dim N(A) + dim(N(A4) N N(K)) for
all n € (0,1]. Therefore m;(0) = m(0,n) for all n € (0,1], so that 0 is not an
eigenvalue of type II.

3. This statement follows from Theorem 1.5.6, part 4, since the A_; are
eigenvalues of type IIL.

4. By Lemma 1.3.5 we can find continuous eigenvalue functions A_z, k =
1,...,k, on [0,1] so that for each n € [0,1], (5\_;{(77))2:1 represents all eigenvalues
of L(-,n) on the negative imaginary semiaxis, counted with multiplicity. Discarding
eigenvalues of type I, we are left with x5 functions, and after suitable reorganization
of these functions, if necessary, we may assume without loss of generality that the
eigenvalues of type II at L(-,n) are ;\_j (n), 7 =1,...,Kk2. Part 2 of this theorem
is clearly also true for L(-,n) with n € (0,1]. Furthermore, since K has rank 1, it
follows that m(X,0) < mg(\)+1, and therefore Lemma 1.5.5 shows that altogether,
the ;\_j (n),j =1,..., ke, are mutually distinct. Hence we may index them in such
a way that [A_;(n)| < |;\,(j+1)(77)| for all j =1,...,k2 and all € [0, 1]. Clearly,
A= S\,j(l) for j =1,...,ke. These eigenvalues depend analytically on 7 in view
of Theorem 1.2.7. Clearly, m(—\,0) = m(X,0), mo(—A) = mo(A), and therefore
mr(—\) = mr(X\). Therefore there is € > 0 such that for each n € (0,¢) there are
exactly ko eigenvalues of type II on (%5\1(0), Ay (0) + 1), where A;(0) = —=A_;(0)
for j = 1,...,ke. In view of Theorem 1.2.7 we can write these eigenvalues as
;\j (n), 5 =1,..., k2, in such a way that these eigenvalue functions are analytic in
7. Here we have to observe that the eigenvalues have to stay on the imaginary axis
since eigenvalues can leave the imaginary axis only in symmetric pairs, see Lemma
1.1.11, part 3. Clearly, for small enoughe >0,0<n<eandj=1,...,kp—1 we
have [A;(n)] < [A—(j+1)(0)]-

For each j = £1,..., £k we can now choose an analytic eigenvalue function

yr on [0,¢), i.e., L(Aj(n),n)y;(n) = 0 according to Theorem 1.2.7. By Theorem
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1.5.6, part 3, we may assume that Ky;(n) # 0 for at least one 1 and therefore for
all n € (0,¢) and sufficiently small . Then (1.4.7) is also valid for negative indices
j under the assumptions made in this section, which shows that Im \_ j(n) >0

for all € (0,¢). For positive indices j, equation (1.4.6) shows that 5\; (n) # 0 for

1 € (0,¢). For all indices j = 1,..., ko, we therefore have
) _ 280 (i) _ 15
Xi(n (Ky;(n),y;(n))

If (My;(0),y;(0)) = 0, then (Ky;(0),y;(0)) > 0. Hence the right-hand side of
(1.5.4) tends to 0 as n — 0. However, the left-hand side does not tend to zero
since \; is analytic at 0. This contradiction shows that (My;(0),y;(0)) # 0. Then
the right-hand side of (1.5.4) is positive for sufficiently small > 0, so that 5\]‘
increases along the imaginary axis for small > 0. We can therefore conclude that

) € GRo LA Gan D, 5= Looeskz =1, R > Pona ()],
(1.5.5)
for sufficiently small > 0.

Hence, statement 4 is true for small n > 0. Due to the symmetry of the spec-
trum, see Lemma 1.1.11, part 3, eigenvalues can only leave or join the imaginary
axis in pairs as 7 increases. Finally, we observe that these eigenvalues of type 11
cannot leave the interval A;(n) € (¢|]A_;(n),{|A=;(n)) through its endpoints due to
Theorem 1.5.6, part 4.

5. This is similar to part 4; we have to prove the statement for small > 0. By
Lemma 1.3.1, part 2, we know that m(0,0) = 2dim N(A4), m(0,n) = 2dim N(A)
forn > 0 if N(A) C N(K), and m(0,n) = 2dimN(A) —1 for n > 0 if N(4) ¢
N(K). Hence, if N(A) C N(K), then no eigenvalue branch of the eigenvalue 0 at
1 = 0 moves away from zero, whereas if N(A) ¢ N(K), then a simple eigenvalue
moves away from zero. Due to the symmetry of the spectrum, this eigenvalue
must stay on the imaginary axis. Since (1.3.7) is also true with the operator I
there replaced by M, this zero cannot move onto the negative imaginary semiaxis.
Therefore it moves onto the positive imaginary semiaxis. Since m(0,0) is zero or
even, the result follows. O

Remark 1.5.8. Let us show how one can distinguish eigenvalues of L of type I from
those of type II, without using n-dependence. We assume that N(M)NN(A) = {0}.

All eigenvalues A # 0 such that —\ is also an eigenvalue are eigenvalues of
type I according to Lemma 1.5.4.

If A is an eigenvalue of multiplicity p and —A is an eigenvalue of multiplicity
q > p, then it follows from Theorem 1.5.6, part 4, that both A and —\ are eigen-
values of type I with m;(A) = my(—X) = p, that A is not an eigenvalue of type II,
and that — A\ is an eigenvalue of type II if and only if ¢ > p, in which case ¢ — p is
the type II multiplicity of —\.
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The previous statements can be strengthened for nonzero real eigenvalues .
Due to the symmetry of the operator pencil, see Lemma 1.1.11, part 3, it follows
that the multiplies of the eigenvalues A and —\ coincide. Hence each nonzero real
eigenvalue is an eigenvalue of type I but not an eigenvalue of type II.

If M + K > 0, then 0 is not an eigenvalue of type II by Theorem 1.5.7,
part 2.

All eigenvalues which are not real and not pure imaginary lie in the upper
half-plane and are not of type I and are therefore of type II.

The classification of the type I and type II eigenvalues of L stated in this
section heavily depend on the fact that K is a rank 1 operator. If K were of finite
rank larger than 1, then the classification would be much more involved.

Theorem 1.5.9. Assume that M > 0.

1. If ko > 0, then the interval (i|A_x,]|,i00) contains an odd number of eigen-
values of type II, counted with type II multiplicity.

2. If ko =0, then there is an even number of positive imaginary eigenvalues of
type 11, counted with type II multiplicity.

Proof. This is shown as in the proof of Theorem 1.5.7, where we have to observe
that due to the assumption M > 0 no eigenvalue can leave the imaginary axis at
100. Indeed, if A = i7, 7 > 0 is an eigenvalue of L with corresponding eigenfunc-
tion y, then

(WM —idK — A)y,y) =0

leads to
T (My,y) = T(Ky,y) + (Ay,y) = 0.
Choosing o > 0 such that M > ol and v = || K|, it follows that

<7_1<Ky,y>>2_1<f<y,y>2 (Ayy) _ 7 B

. - < + .
2 (My,y) 4(My,y)?  (My,y) ~ 40*  «
Hence
gl v B
<
= 2a+\/4a2 T
so that the eigenvalues on the positive imaginary semiaxis are bounded. O
1.6 Notes

Theorem 1.2.7 is a special case of Theorem 9.2.4. Part 1 of Theorem 9.2.4 is an
application of Theorem 9.1.1, which in turn is based on the Weierstrass prepara-
tion theorem. In [136, Theorem 2], T. Kato proved the first result on eigenvalue
and eigenspace dependence on a parameter for operator functions. He considered
the case (A, 1) — A(n) — AI, where A depends analytically on 7. In [72], V.M. Eni
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extended T. Kato’s result to polynomial operator pencils, and in [73], V.M. Eni
generalized this result further to operator functions which are analytic in both
parameters, thereby also showing the statements of Lemma 1.1.9 for the case of
analytic operator functions. The general case of the logarithmic residue theorem
is due to Gohberg and Sigal, see [98]. A comprehensive account of the results on
dependence on a parameter of the eigenvalues and eigenvectors of operator pencils
in finite-dimensional spaces can be found in [25] and [185]. The general Banach
space case is briefly outlined in [25].

Theorem 1.3.2 is a special case of a theorem for monic polynomial operator
pencils which was proved in [211, Theorem 2.1], see also Chapter 3. There exist
many related results, see [247], [5], [4], [3]. This theorem remains true in the case
of nonsymmetric operators K but such that Re X' > 0 (under some additional
restrictions), see Theorem 4.1.8 and also [207], [208].

Theorem 1.4.5 was proved in [187] and Theorem 1.5.7 was proved in [220]. A
review on instability index theory for quadratic pencils can be found in [43].

We note that all boundary value problems generated by the Sturm—Liouville
equation with the spectral parameter A> and one of the boundary conditions con-
taining A have an operator representation as quadratic operator pencils where K
is a rank one operator as considered in Section 1.5. Under suitable assumptions
on the boundary conditions, K > 0 and A is self-adjoint.



Chapter 2

Applications of Quadratic
Operator Pencils

2.1 The Regge problem

The Regge problem occurs in quantum scattering theory [238] when the poten-
tial of interaction has finite support. The S-wave radial Schrédinger equation in
physics, which is obtained after separation of variables in the three-dimensional
Schrédinger equation with radial symmetric potential, is just the Sturm—Liouville
equation on the semiaxis, see [166, §21]:

— +q(x)y = Ny (2.1.1)

where \? = QZZE. Here m is the mass and F is the energy of the particle, A = 2’;,

h is the Plank constant, ¢; is the potential of interaction, and y is the radial
component of the wave function. The boundary condition at x = 0 is

y(0) = 0. (2.1.2)

Since in nuclear physics the form of interaction is unknown, different models were
proposed. One of the first of them is the Regge assumption that the potential has

finite support, i.e.,
q(x) if x €10,al,
a1 () —{ (@) 0.4

0 if x € (a,0),

where a is a positive number. We will assume, as is usual in quantum mechanics,
that ¢ € L2(0, a) is real. It should be mentioned that different authors consider dif-
ferent classes of potentials, for example, L1(0,a) or C(0, a). There exists the solu-
tion s(\, z) to (2.1.1) which satisfies the initial conditions s(A,0) =0, s'(\,0) = 1.
The Jost solution e(A, z) of (2.1.1) is the unique solution which behaves asymp-
totically as

e(\z) = e % 4 o(1).

Tr—r00
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Clearly,
e(\z) =e ™ for x> a, (2.1.3)

and for ImA < 0 a solution to (2.1.1) belongs to L3(0,00) if and only if it is a
multiple of the Jost solution. Note that the solution y of (2.1.1) is a multiple of e
if and only if there is a complex number ¢ such that

y(a) = ce=™7,

y'(a) = —cide e,

Hence for Im A < 0 the spectral problem (2.1.1), (2.1.2) on Ly (0, c0) is equiv-
alent to the eigenvalue problem (2.1.1), (2.1.2),

y'(a) +ixy(a) =0 (2.1.4)

on L3(0,a). The problem (2.1.1), (2.1.2), (2.1.4) on L3(0,a) is called the Regge
problem. This problem was considered first in [238]. It should be mentioned that
the eigenvalues of the Regge problem in the upper half-plane are identified by
physicists as resonances for the corresponding scattering problem (2.1.1), (2.1.2).

Let us consider the operator theoretic approach to this problem. Introduce
the operators A, K and M acting in the Hilbert space H = L2(0,a) & C accord-
ing to

Then the eigenvalue problem (2.1.1), (2.1.2), (2.1.4) has the operator representa-
tion

L) = MM —i\K — A

in the sense that y € L2(0, a) satisfies (2.1.1), (2.1.2), (2.1.4) if and only if ¥ =
(y,y(a))" € D(L) and L(\)Y = 0.

Proposition 2.1.1. The operators A, K and M are self-adjoint, M and K are
bounded, K has rank 1, and A is bounded below and has a compact resolvent. If
q >0, then A> 0.

Proof. The statements about M and K are obvious, so that we turn our attention
to A. In Section 10.3 we have provided two slightly different approaches to verify
self-adjointness. Testing both of them, we will therefore give two proofs for the
self-adjointness of A. For both cases, we have to observe that y!!/ = —y/ according
to Definition 10.2.1.
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First proof. Here we will use Theorem 10.3.4. Let (y,¢)T € W$(0,a) © C and
(z,d,e)T € W£(0,a) ® C ® C and put

A =y, 2)(a) = [y, 2)(0) + d*VY — e*UpY
= (¥(@)21(0) - y(@)2()) + (y(0)=11(0) - 5 (0)(0) )
+dy'(a) - ey(a)
= y(@)(a) ~ ¥'(@)2(a) + ¥/ (0)2(0) + ' (a)d — y(a)e

If (z,d)T € D(A) and e = VZ = 2'(a), then
A =y(a)z'(a) - y'(a)z(a) + y'(a)z(a) — y(a)2'(a) = 0.

Conversely, if A = 0 for all y € W2(0,a) with y(0) = 0, choose polynomials y
with y(0) = 0 and exactly one of y'(0), y'(a), or y(a) different from zero. Then we
obtain, in turn, that

2(0)=0, d=2z(a) and e=2'(a),

which shows that (z,d)T € D(A) and e = VZ. By Theorem 10.3.4 this means that
A is self-adjoint.

Second proof. Here we will use Theorem 10.3.5, so that we have to find Us
and U defined in (10.3.12) and (10.3.13). Tt is easy to see that

Ur=(1 00 0), Us=(0 0 1 0), V=00 0 0 -1,

so that
0 -1 0 0
(1)88(1) 100 0 0 0
Us = ., Uu=10 01 0 -1 0
0 0 =1 0 000 -1 0 -1
0 0 0 -1
0 0 -1 0

Then it follows that
N(U;) = span{ea, e3,e4}, Us(N(Uy)) =span{ei,eq + es,€3 — €5},
R(U™) = span{ey, e3 — e5,e4 + €6},

so that U3(N(Uy)) = R(U*). Hence A is self-adjoint by Theorem 10.3.5.
Now it follows from Theorem 10.3.8 that A has a compact resolvent and that
A is bounded below.

Finally, for Y = (y,y(a))T € D(A) we conclude in view of (10.2.5) that

<mnwa[vam+Amemmx
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Hence A > 0 if ¢ > 0. Furthermore if AY = 0, then ¢y’ = 0, and y(0) = 0 gives
y = 0 and thus Y = 0. Therefore A > 0 has been shown. Since A has a compact
resolvent and thus a discrete spectrum consisting only of eigenvalues, it follows
that A > 0. O

It is obvious that M > 0, K > 0, M+ K = I and N(K)NN(M) = {0}. Thus,
the operator pencil L satisfies Condition I, and Condition II is obviously satisfied.
Furthermore, also N(M)N N(A) = {0}. Indeed, if Y € N(M)N N(A), then Y €
D(A), so that Y = (y,y(a))T for some y € W2(0,a). But MY = 0 means y = 0,
so that also y(a) = 0, and Y = 0 follows. Hence the operator pencil L satisfies
all assumptions of Theorem 1.5.7. Moreover, the geometric multiplicity of each
eigenvalue of the pencil L is 1 because there exists only one linearly independent
solution of (2.1.1) which satisfies the boundary condition (2.1.2). If there would be
an eigenvalue A of L with an eigenvector Y € N(K), then s(A,a) =0, and (2.1.4)
would imply s'(A,a) = 0, which is impossible since s(), -) is not identically zero.
Therefore, Definition 1.5.2 and Lemma 1.5.5 show that we have only eigenvalues
of type Il in C\ {0}. If 0 is an eigenvalue of L, then 0 is clearly of type I and the
above reasoning and Lemma 1.3.1, part 2, show that also 0 is a simple eigenvalue
with N(A) N N(K) = {0}. Thus Theorem 1.5.7 implies

Theorem 2.1.2. The eigenvalues of the pencil L associated with the problem (2.1.1),
(2.1.2), (2.1.4) on L2(0,a) possess the following properties.

1. Only a finite number of the eigenvalues lie in the closed lower half-plane.

2. All monzero eigenvalues in the closed lower half-plane lie on the megative
imaginary semiaxis and are simple. If their number k is positive, they will be
uniquely indexed as A\_; = —i|A_;|, j = 1,... K, satisfying |A_;| < |A_¢j11)]s
j=1,...k—1.

3. If k >0, then the numbers i|A_;|, j = 1,..., kK, are not eigenvalues.

4. If K > 2, then in each of the intervals (i|]A_;|,i|A_j41)]), j = 1,...,k =1,
the number of eigenvalues, counted with multiplicity, is odd.

5. If kK > 0, then the interval [0,i|A\_1]) contains no or an even number of
eigenvalues, counted with multiplicity. If N(A) = {0}, they are all nonzero,
otherwise one of them is the simple eigenvalue 0.

In Section 6.1 we will consider the generalized Regge problem in which the
boundary condition (2.1.4) is replaced by the condition

y'(a) + (ida + B)y(a) = 0, (2.1.5)

with @ > 0 and 8 € R.
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2.2 Damped vibrations of strings

2.2.1 Problem identification

Small transversal vibrations of a smooth inhomogeneous string subject to viscous
damping are described by the boundary value problem

0%y ou 9%y

52 —J(S) ot —p(S) o2 = 07
u(0,t) =0,

ou . 0%u . V@u —0

os " or2 o),

Here u = u(s,t) is the transversal displacement of a point of the string which is
as far as s from the left end of the string at time ¢, [ is the length of the string,
p > € > 0 is its density, and ¢ > 0 is the coefficient of damping along the string.
We will assume p,0 € Ly (0,1). The left end of the string is fixed while the right
end is free to move in the direction orthogonal to the equilibrium position of the
string subject to damping with damping coefficient v > 0. The right end bears a
point mass m > 0.
Substituting u(s,t) = v(}, s)e** we arrive at

0%v

952 ida(s)v 4+ N2p(s)v = 0, (2.2.1)

v(\,0) = 0, (2.2.2)

(gz — Mmo + Mm}) =0. (2.2.3)
s=l

Like in Section 2.1 the eigenvalue problem (2.2.1)—(2.2.3) is described by the op-

erator pencil
LX) = \>M —iAK — A,

where the operators A, K and M act in the Hilbert space H = L3(0,1) & C

according to
()= (o).
(&
u=(6 ) #=(0)

Proposition 2.2.1. The operators A, K and M are self-adjoint, M >0 and K > 0
are bounded, and A > 0 has a compact resolvent. If o > 0, then K > 0.
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Proof. The statements about M and K are obvious, and A is the particular case
of the operator A in Section 2.1 with ¢ = 0. Hence A > 0 by Proposition 2.1.1. O

Proposition 2.2.1 and Lemma 1.2.4 lead to

Theorem 2.2.2. All eigenvalues of (2.2.1)—(2.2.3) lie in the closed upper half-plane
and are different from zero. If o # 0, they lie all in the open upper half-plane.

Proof. We still have to prove the last statement. Assume there exists a real nonzero
eigenvalue A with corresponding eigenvector Y = (v, c). We conclude as in the
proof of Lemma 1.2.3 that (KY,Y) = 0. Since ¢ > 0, this implies that o|v?| =0
almost everywhere on [0, a]. We recall that o # 0 means that o(z) # 0 for all z in
a set of positive Lebesgue measure. Hence v is zero on a set of positive Lebesgue
measure. Due to the uniqueness of the solution of the initial value problem for
linear ordinary differential equations it follows that v = 0. Then also ¢ = v(l) = 0,
which leads to the contradiction V = 0. ]

2.2.2 The location of the spectrum

In order to represent (2.2.1)-(2.2.3) in terms of an operator pencil of the form
L(t) = 72M — irK — A with rank one operator K, we assume that o(s) = 20p(s)
for some constant p. Since p > 0 and o > 0, it follows that o > 0. We make use
of the parameter transformation A = +7 + ip with A = 7 4+ ip if v — 2mp > 0 and
with A = —7 4+ ip if v — 2mp < 0. This parameter transformation gives rise to the
operator pencil
L(x7 +i0) =: L(1) = 7°M — itK — A,
where
M=M, K=+(K-2M), A=A+ ’M — K.

This gives the representations
A(Y) = —v" = *pv v i
A <C> N <U'(l) + (mo? —vo)v(l))’ \c € D(A) = D(A) C L(0,1) & C,

< (p O\ . (0 0
M_<O m)’ K_<0 V—2mg|>'

By Proposition 2.2.1, Ais a relatively compact self-adjoint perturbation of A,
and therefore A is self-adjoint, bounded below and has a compact resolvent. Also,
observe that M > 0 and that K > 0, and that both M and K are bounded.

Three distinguished cases will be considered:

1) v=2mk, 2)v>2mk and 3)v<2mk.

The first case is trivial because K = 0 and hence ﬁ( )= T2 M — A The spec-
trum of the pencil I:( ) is linked to the spectrum of the operator M~2 AM 2 Vla
the substitution 72 = ¢. The infinitely many positive eigenvalues of M~ 2 AN~
give pairs of real eigenvalues of L which are symmetric with respect to the origin,
and the at most finitely many negative eigenvalues of M “2 AM—2 give pairs of
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pure imaginary eigenvalues of L which are symmetric with respect to the origin.
Taking Theorem 2.2.2 into account, we therefore conclude that the spectrum of
problem (2.2.1)-(2.2.3) lies on the line Im A = p and on the interval (0,2ip) of
the imaginary axis, being symmetric with respect to the imaginary axis and with
respect to the line Im A = p, respectively.

In the second and third cases, K > 0 is a rank one operator. Hence the
pencil L satisfies Condition II if v # 2mp, and we can apply all the statements
of Theorems 1.5.6 and 1.5.7 to the pencil L. Note that the pencil L associated
with (2.2.1)-(2.2.3) is related to the pencil L via L(\) = L(£(\ — ip)). Observing
Theorem 2.2.2, we obtain the following result as in Section 2.1, taking into account
that an eigenvalue of type I can occur only at 7 =0, i.e. at A = ip.

Theorem 2.2.3. Let o(s) = 2pp(s) and v > 2mp. Then:

1. Only a finite number of the eigenvalues of problem (2.2.1)—(2.2.3) lie in the
closed half-plane ITm A < p.

2. All eigenvalues in the half-plane Im A < o which are different from ip lie on
(0,i0) and are simple. Their number will be denoted by k. If k > 0, they
will be uniquely indexed as A\_j = ip —i|A_; —ip|, j = 1,..., K, satisfying
‘)\_j — ’LQ‘ < ‘)\,(jJrl) — ZQ|, j =1,...,k—1.

3. If k > 0, then the numbers io+i|A\_; —ig|, j =1,..., K, are not eigenvalues.
4. If K > 2, then in each of the intervals (io +i|A_; —igl,i0 + i|A_(j41) —i0|),
j=1,...,k—1, the number of eigenvalues, counted with multiplicity, is odd.

5. If k > 0, then the interval [ig,io+i|\-1—1ig|) contains no or an even number
of eigenvalues, counted with multiplicity. If N(A) = {0}, they are all different
from ip, otherwise one of them is the simple eigenvalue io.

Theorem 2.2.4. Let o(s) = 2pp(s) and v < 2mp. Then:

1. Only a finite number of the eigenvalues of problem (2.2.1)—(2.2.3) lie in the
closed half-plane Tm A > o, and all other eigenvalues lie in the open strip
0<ImA<p.

2. All eigenvalues in the half-plane Im A > o which are different from io lie on
(ig,i00) and are simple. Their number will be denoted by k. If k > 0, they
will be uniquely indexed as A_; = ip +i|A_; —ig|, j = 1,..., K, satisfying
‘)\_j| < |A,(j+]_)|, j =1,...,k—1.

3. If k > 0, then the numbers io—i|A\_; —ig|, j =1,..., K, are not eigenvalues.
4. If K > 2, then in each of the intervals (i — i|A_(j4+1) —i0l,i0 — i|A_; —io|),
j=1,...,k—1, the number of eigenvalues, counted with multiplicity, is odd.

5. If K > 0, then the interval (ig—i|A_1—1iol|, 0] contains no or an even number
of eigenvalues, counted with multiplicity. If N(A) = {0}, they are all different
from ip, otherwise one of them is the simple eigenvalue ig.

We observe that Theorem 2.2.4 shows a priori in case v < 2mp that the
spectrum lies in a horizontal strip of the complex plane. Furthermore, we have
explicit upper and lower bounds for the imaginary parts of the eigenvalues if we
possibly disregard finitely many eigenvalues on the positive imaginary axis.
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2.2.3 Liouville transform for smooth strings

In this subsection we give an alternate approach under the assumption that p €
W3(0,1). Then the Liouville transform [57, p. 292]

x(s) :/Osp2(r)dr, 0<s<l,
y(\ ) = p‘11 (s(x))v(A, s(z)), 0<z<a, A€C,

leads to the equivalent boundary value problem

Y’ —ida(s(x))p~ (s(2))y — q(@)y + Ny =0, (2.24)
y(A,0) =0, (2.2.5)
y' (N a) + (=22 + idv + B)y(\,a) =0, (2.2.6)
where
1 2 1
ala) = p (s(0) 0 (5(2),
l
a= [ pirdn
0
m = p~2(s(a))m >0,
v =p2(s(a)y >0,
5= —p (st @

As in Subsection 2.2.2 we assume that o(s) = 2pp(s) for some nonnegative
constant g, and we will make use of the parameter transformation A = +7+ip with
A=7+ipif »—2mp > 0 and with A = —7+ip if 7 — 2mp < 0. Like in Subsection
2.2.2 the eigenvalue problem (2.2.4)—(2.2.6) is described by the operator pencil

L(r) =M —itK — A,

where the operators /1, K and M act in the Hilbert space H = Ls(0,a) ® C

according to
i <y> _ ( —y" + (g 0%y )
c y'(a) + (8 —vo+me*) y(a))’

p(d) = { (%) v e W20.01, 40 =0, e =y},

- (I 0 = (0 0
M‘(o m> K‘(o |ﬁ—2mg>'
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It is clear that
2
- —0 0
A_A+< 0 ﬂ—ﬂg+mg2>’

where A is defined in Section 2.1. Thus A is a relatively compact symmetric per-
turbation of A, and therefore A is self-adjoint, bounded below and has a compact
resolvent.

Now it follows that Theorems 2.2.3 and 2.2.4 are also true if (2.2.1)—(2.2.3)
there is replaced by (2.2.4)—(2.2.6), either by a direct proof referring to the results
from Section 2.1, as we did in Subsection 2.2.2, or by observing that the problems
(2.2.1)-(2.2.3) and (2.2.4)—(2.2.6) are equivalent.

2.3 Vibrations of star graphs with damping

2.3.1 Problem identification

Let us consider p inhomogeneous strings, labelled by subscripts 1,...,p, p > 2,
each having one end joined at the interior vertex and the other end fixed. The
interior vertex is free to move in the direction orthogonal to the equilibrium po-
sition of the star graph subject to damping at this interior vertex with damping
coefficient v > 0. A point mass m may be present at the interior vertex. Small
transverse vibrations of such a star graph are described by the following system
of equations:

H? 0 0? .
852.uj(8j’t) — aj(sj)atuj(sj,t) — pj(sj)at2uj(sj,t) =0, j=1,...,p, (2.3.1)
J
u;(0,8) =0, j=1,...,p, (2.3.2)
ul(ll,t) = Uz(lg,t) == Up(lp,t),
) 92 )
jz:; aSj Uj(lj,t) + m8t2 Ul(ll,t) + I/atul(ll,t) =0. (234)

Here I; > 0 is the length of the jth string, p; > € > 0 its density and o; > 0
its damping, u;(s;,t) stands for the transverse displacement of the jth string at
position s; and at time t. We will assume that p; € Loo(0, a;).

We mention two particular cases.

The first case is that we have a damped string with a mass at an interior
point. In this case, p = 2 and m > 0.

The second particular case is that we have a star graph with undamped
strings and without mass at the interior point. In this case, o; = 0 for all j =
1,...,pand m =0.
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Substituting u;(s;,t) = vj(A, s;)e™* into (2.3.1)—(2.3.4) we obtain

0? _ )
92 vi(A, 85) —iAaj(sj)vi(A, s5) + )\ij(sj)vj(/\, sj)=0, j=1,...,p, (2.3.5)
j

vi(\0)=0, j=1,...,p, (2.3.6)
’Ul()\,ll) = U2 )\,lg) == ’Up(/\, lp), (237)
p
d
> 5. LA L) = Nmor (A 1) + idvor (A1) = 0. (2.3.8)
j=1""

The eigenvalue problem (2.3.5)—(2.3.8) is described by the operator pencil
LX) = N>M —iAK — A,

P
where A, K and M act in the Hilbert space @ L5(0,1;) ® C. A is defined by

j=1
"
—
U1
Al - = —" ,
Up

v
D(A) = S o € WH0,1)), vi(0) =0, v(lj) =¢, j=1,...,p ¢,
Up
c
whereas
p1 0 O o1 0 0
M= 3 Iy
0 pp O 0 op O
0 0 m 0 0 v

Proposition 2.3.1. The operators A, K and M are self-adjoint, M >0 and K >0
are bounded, M + K > 0, and A > 0 has a compact resolvent. If m > 0, then
M>0, and if o1 > ¢,...,0, > € for some € >0, then K > 0.

Proof. The statements about M and K are obvious, so that we turn our attention
to A. We will use Theorem 10.3.5 to verify self-adjointness. Observe that vjm =
—v§, j=1,...,p, according to Definition 10.2.1. We have to find Us and U defined
in (10.3.12) and (10.3.13). Before doing so we note that the conditions v;(l;) = c,
j=1,...,p, can be written as v1(l1) = ¢ and vi(ly) —v;(l;) = 0,5 =2,...,p,
which contribute to Us and Uy, respectively. It follows now that U; is a (2p—1) x4p
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matrix, whose rows are 64Tj_3, j=1,....pand el — e4Tj_1, J = 2,...,p. Hence

N(Uy) is spanned by eqj—2, j = 1,...,p, eqj, j = 1,...,p, and e3 +Ze4j,1.

j=2
Furthermore,
P
Us = e}, VZ—Zte.
=1
We recall that
0O -1 0 0
J 7 1 0 0 0
Us = v where J:@Jl and J; = 0 0 0 1
U2 =t 0 0 -1 0
and
U, 0 0
U=|U, —-I 0
\%4 0o -1

It is now straightforward to verify that Us(N(U;)) is the subspace of C*+2
P

spanned by e4;—3,j =1,...,p, e45-1 —€4pt1,J = 1,...,p, and 64+64p+2+z e4;

j=2
and that R(U*) is the subspace of C*?2 spanned by es;_3,j = 1,...,p, e3—eqj_1,
P
j = 2, <.y D, €3 — €4pt1 and Z €4; + €4p42- This shows that Ug(N(Ul)) = R(U*)

j=1
Hence A is self-adjoint by Theorem 10.3.5. Furthermore, A has a compact resolvent
by Theorem 10.3.8.

To prove that A > 0, we take Y = (v1,...,vp,¢)7 € D(A)\ {0}. Then at

least one v; is not constant, and (10.2.5) leads to

p

(AY)Y) Z/ " (s5)| ds, +Zv],v] (1) +Zv§(lj)vj(lj)
j=1 j=1
—Z/ 7 (s5)|* ds; > 0.

Since A has a compact resolvent and thus a discrete spectrum consisting only of
normal eigenvalues, it follows that A > 0. O

Theorem 2.3.2.

1. The eigenvalues of problem (2.3.5)—(2.3.8) lie in the closed upper half-plane
and are monzero. The real eigenvalues, if any, are semisimple eigenvalues
whose multiplicities do not exceed p — 1.
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2. If o1 #0,...,0p, # 0, all eigenvalues lie in the open upper half-plane.

3. If o1 =0,...,0p = 0, the real eigenvalues, if any, are of type I but not of
type 11

Proof. Throughout this proof, we will use the results of Proposition 2.3.1.

1. Lemma 1.2.4, part 1, shows that all eigenvalues lie in the closed upper half-
plane. Since A > 0, it follows that 0 is no eigenvalue, and all other real eigenvalues,
if any, are semisimple by Lemma 1.3.1, part 1. If Y = (vq,...,vp,¢)7 € D(A)
satisfies L(A)Y = 0, then vy, ..., v, are solutions of second-order linear differential
equations satisfying the initial conditions v;(0) = 0, and since v1 (1) = ¢, there are
at most p linearly independent solutions. Note, however, that (2.3.7) and (2.3.8)
imply that v, (l,) and v}, (l,) are uniquely determined by v1, ..., v,-1. Hence v, is
the unique solution of an initial value problem and therefore uniquely determined
by v1,...,vp—1. Therefore we have at most p — 1 linearly independent solutions.

Part 2 can be proved like the corresponding statement of Theorem 2.2.2.

In part 3, K has rank one, and the statement follows from Lemma 1.1.11,
part 3, Theorem 1.5.6, part 4, and the fact that 0 is no eigenvalue. O

Due to arguments similar to those in Section 2.2 we assume in what follows
that o1(s1) = 20p1(81), ..., 0p(8p) = 20pp(sp) for some nonnegative constant p,
and we will make use of the parameter transformation A =7 +ip if v — 2mp > 0
and A= —7+ipif v —2mp < 0.

2.3.2 The location of the spectrum
The parameter transformation gives rise to the operator pencil
L(£7 4 ip) =: L(r) = 7°M — itk — A,

where
M=M, K=+(K-20M), A=A+ ’M — K.

The operators A, K and M act in the Hilbert space H = @5.’:1 L(0,1;) ® C and
have the representations

" 2
—Up — o7 p1v1L

" 2
—Up — 0"PpUp ’

c év}(lj) + (mo® —vo) vi(ly)
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U1
D(A) = S v € WE0,1), vi(0)=0, vi(l)=c, j=1,...,p ¢,

Up
C
01 0 0 0 0 0

M=1": Do , K=+ :
0 ... pp O 0 ... 0 0
0 ... 0 m 0 ... 0 [|v—2myg

Proposition 2.3.3. The operators A, K and M are self-adjoint, M>0and K >0
are bounded, and A is bounded below and has a compact resolvent. Furthermore,
N(M)NN(A) = {0} while M >0 if m > 0.

Proof. In view of Proposition 2.3.1 we only have to show N(M)NN(A) = {0}. To
this end let Y = (vq,...,vp,¢)7T € N(M) N N(A). Then MY = 0 implies v; = 0,

j=1,...;p,and Y € D(A) then leads to ¢ = 0. |

Three distinguished cases will be considered:
1) v=2mp, 2)v>2mp and 3)v<2mp.

The first case is trivial because K = 0 and hence L(r) = 72M — A. Note
that v > 0 implies m > 0 and g > 0 in this case. The spectrum of the operator
pencil L is linked to the spectrum of the operator M~ 2 AN~ 2 via the substitution
72 = (. The infinitely many positive eigenvalues of M 2 AN 2 give pairs of real
cigenvalues of L which are symmetric with respect to the origin, and the at most
finitely many negative eigenvalues of M “2AM-2 give pairs of pure imaginary
eigenvalues of L which are symmetric with respect to the origin. Taking Theorem
2.3.2 into account, we conclude that the spectrum of problem (2.3.5)—(2.3.8) lies on
the line Im A\ = g and on the interval (0, 2i9) of the imaginary axis, being symmetric
with respect to the imaginary axis and to the line Im A = p, respectively.

In the second and third cases, K is a rank one operator. Recall that L(\) =
L(+()\ — ig)). We have defined eigenvalues of type I and type II in Section 1.5.
Below, we will use this notation relative to the pencil L, that is with respect to
the eigenvalue parameter 7.

Theorem 2.3.4. Let 01(s1) = 20p1(51),--.,0p(Sp) = 20pp(sp) and v # 2mp. Then:
1. The geometric multiplicity of each eigenvalue of (2.3.5)—~(2.3.8) does not ex-
ceed p— 1.
2. The eigenvalues of type I are located on the imaginary axis and on the line
Im A = g, and they are symmetric with respect to 0.
3. The sets of eigenvalues of types I and II do not intersect.

Proof. 1. The proof for the bound of the geometric multiplicity in Theorem 2.3.2
is valid for all eigenvalues.
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Part 2 follows from Lemma 1.5.4.

3. Let A # ip be an eigenvalue of type II. In view of Theorem 1.5.6, part
3, there is a corresponding eigenvector Y = (vq,...,v,,¢)7 with ¢ # 0. Then
vi(li) = -+ = vp(lp) = ¢ # 0, so that none of the v;, j = 1,...,p is identically
zero. Assume that A is also an eigenvalue of type I. In view of Theorem 1.5.6, part
1, there is an eigenvector Z = (w1,...,wp,d)" corresponding to the eigenvalue
A with d = 0, and it follows that wq(l1) = -+ = wp(l,) = 0. Since v; and wy,
j=1,...,p, satisfy the second-order differential equations (2.3.5) and the initial
conditions (2.3.6), each w; must be a multiple of v;. But v;(l;) = d; # 0 and
w;(l;) = d = 0 then leads to w; = 0 for j = 1,...,p, so that Z = 0, which is
impossible since Z is an eigenvector. Finally, Theorem 1.5.7, part 2, applied to the
pencil L shows that 10 is not an eigenvalue of type II. O

Remark 2.3.5. Eigenvalues A # ip of type I can exist. Let p = 2. By Theorem 1.5.6,
part 1, an eigenvector Y = (v1,v2,¢)" of L at 7 is of type I if and only if ¢ = 0.
Hence, if v1(l1) = va(l2) = ¢ = 0, then v (l1) + v5(l2) = 0 which is possible, e.g.,
incasel1:lg,plngzgand722732—g2 with real 7 # 0 and 7; = 7lrf,j€N,
so that v1(s1) = sin(7s1) and va(s2) = —sin(7s2). The physical interpretation of
this phenomenon is that there can be modes of vibration with a node at the point
where the mass m is located. These modes are independent of v — pm. If p = 0,
these modes do not depend on v, and the amplitudes of corresponding modes do
not decay with time since the corresponding eigenvalues are real as A=4>0.

We describe the eigenvalues of type II by applying Theorem 1.5.7 to the
pencil L and by observing Proposition 2.3.1 and Theorems 2.3.2 and 2.3.4, part 3.

Theorem 2.3.6. Let 01(s1) = 20p1(51), .-, 0p(Sp) = 20pp(sp) and v > 2mp. Then:

1. Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.3.5)(2.3.8) lie in the closed half-plane Im A < p.

2. All eigenvalues of type II in the closed half-plane Im A < g lie on (0,ip0) and
their type II multiplicities are 1. If ko > 0, they will be uniquely indexred as
A_j =i —ilA_j —ig|, j = 1,..., Ko, satisfying |A_j — io| < |A_(j+1) — i0l,
jzl,...,fig—l.

3. If ko > 0, then the numbers io+ilA_j—ig|, j = 1,..., ka2, are not eigenvalues.

4. If ky > 2, then the intervals (io + ilA_; — io|,i0 + i|A_(j41) —i0]), § =
1,...,k2 — 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let kg > 0. Then the interval [ig, i0+i|\-1—ig|) contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(A) C N(K), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

Proof. All statements except for part 3 are exactly the same as in Theorem 1.5.7.
To complete the proof of part 3 we have to show that the numbers ip+ i|A_; — ig]
are not eigenvalues of type I. Indeed, if any of those numbers were an eigenvalue
of type I, then by Theorem 2.3.4, part 2, also A_; = ip — i|A_; — ip| would be



2.3. Vibrations of star graphs with damping 47

an eigenvalue of type I. But this is impossible by Theorem 2.3.4, part 3, since
io — i|A—; — ig| is an eigenvalue of type IL O

Theorem 2.3.7. Let 01(s1) = 20p1(51),--.,0p(Sp) = 20pp(sp) and v < 2mp. Then:

1. Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.3.5)—(2.3.8) lie in the closed half-plane Im A > g, and all other eigenvalues
lie in the open strip 0 < Im A < p.

2. All eigenvalues of type II in the closed half-plane Tm A > ¢ lie on (ig,i00)
and their type II multiplicities are 1. If ko > 0, they will be uniquely indexed
as A_j = o+ iA_j —igl, j = 1,... k2, satisfying [A_;| < [A_¢jx)l, J =

]., ey R — 1.
3. If ko > 0, then the numbers io—i|A_j—ig|, j = 1,..., k2, are not eigenvalues.
4. If ky > 2, then the intervals (io — i|A_(j41) — io|,i0 — i|A_; —ig]), j =
1,...,k2 — 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let kg > 0. Then the interval (io—i|\—1—igl,ig] contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(A) C N(K), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

2.3.3 Liouville transform for smooth star graphs
We assume that p; € W$(0,1;) for j =1,...,p and apply the Liouville transform

as in Section 2.2, i.e.,

85 )
2i(s5) = /0 p,(r) dr,
1

yi (A zj) = pjlaslavi (A, s5(z5)),

where we use the notation p;[z;] =: p;(s;(x;)). Then (2.3.5)-(2.3.8) with o;(s;) =
opj(s;) for j =1,...,p becomes the Sturm-Liouville problem

i (N ) — 2idoy; (N 25) + Nyi (N 25) — g5 (2)y; (N 2;) =0, G =1,....p,

(2.3.9)
y]()\70) :07 j:1?"'7p? (2.310)
m[alriyl@,al) = = pplay) "1 yp(N ap), (2.3.11)

P 1
Z (N ag) + (= A2 + A+ By (N, a1) = 0, (2.3.12)

where primes denote z;-differentiation and where

aj(@;) = pilei]™* 4 (psli] ),
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lj
a; = / pj(r)é dr,
0

v=vpila1]” 2,

Tj=aj;

Making use of the parameter transformation A = £7 4+ ip, the eigenvalue problem
(2.3.9)—(2.3.12) has an operator pencil representation

L(r)=7>M —irK — A

P
acting in the Hilbert space @ L3(0,a;) @ C, with

j=1
Y1
DAy ={ | |y € W20, ;). 5;0) =0, pjlaa) byslag) =c, j=1,....p},
ycp
and with operators
i + (0 —*)n
Y :
il ] = —yp+(q,.)—92)yp ;
Yp

N N

c ij

yi(a;) + (B — o+ mo*) yi(ar)

Y1
~ : 1 .
D(A) = : :yjeW22(0,aj), y;(0) =0, pjla1] ty;(a;)=c, j=1,...,pp,
Yp
c
I ... 0 O 0 ... 0 0
M f A , K= SRR :
0O ... I O 0O ... 0 0
0 ... 0 m 0 ... 0 |72l

As in Proposition 2.3.1 or Proposition 2.3.3 it now follows that the operators
A K and M are self-adjoint, M >0 and K > 0 are bounded, K is a rank

one operator or the zero operator, and A is bounded below and has a compact
resolvent.
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Now it follows that Theorems 2.3.6 and 2.3.7 are also true if (2.3.5)—(2.3.8)
there is replaced by (2.3.9)—(2.3.12), either by a direct proof similar to the proofs
given in Subsection 2.3.2, or by observing that the problems (2.3.5)-(2.3.8) and
(2.3.9)—(2.3.12) are equivalent.

2.3.4 General potentials

For later use we will consider a slight generalization of (2.3.5)—(2.3.8) in that we
allow an additional real potential ¢; € L2(0,[;) in each of the differential equations
in (2.3.5), i.e.,
82 . 2
952V (A 83) = iAaj(s5)vj (A, 85) + A7pi(s5)vi (A, 85) = ¢j(s)v(X, 55) = 0 (2.3.13)
J
for j =1,...,p. Here the g; are distinct from those in the previous subsection; in
both cases we have used the conventional notation for potentials, and no confusion
should arise. Clearly, this additional potential does not change the domain of the

operator A. Also, these terms do not enter into any of the quasi-derivatives UJ[.O],
vj[.l], j=1,...,p. Hence the corresponding operator A is self-adjoint and bounded
below.

A review of the proof of Theorem 2.3.2 shows that

Theorem 2.3.8.

1. The geometric multiplicities of the eigenvalues of the problem (2.3.13),
(2.3.6)(2.3.8) do not exceed p — 1. The nonzero real eigenvalues, if any,
are semisimple.

2. If 01 =0,...,0, =0, then the real eigenvalues, if any, are of type I, and the
real nonzero eigenvalues, if any, are not of type IL.

Theorem 2.3.4 holds verbatim also for the eigenvalue problem given by the
differential equation (2.3.13) and the boundary conditions (2.3.6)—(2.3.8), whereas
Theorems 2.3.6 and 2.3.7 have the following weaker counterparts, with the operator
A given by
—vf + quur — 0’ pron

vy
4 ’U.p o —Up + QU = 07 PpUp ’
c > vi(ly) + (me® —ve) vi(ly)

whereas the operators M and A are as in Subsection 2.3.2.

Theorem 2.3.9. Let 01(s1) = 20p1(51),---,0p(Sp) = 20pp(sp) and v > 2mp. Then:

1. Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.3.5)(2.3.8) lie in the closed half-plane Im A < p.
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All eigenvalues of type II in the closed half-plane Im A\ < p lie on (—ico,ip)
and their multiplicities are 1. If ko > 0, they will be uniquely indexed as
A_j =i —ilA_j —igl, j = 1,..., k2, satisfying |A_j —io| < |A_(j+1) — ol
j=1,.. .,k —1.

If ko > 0, then the numbers ip+i|A_j—ig|, j = 1,..., ka2, are not eigenvalues.
If ko > 2, then the intervals (io + i|A_; — igl,i0 + i|A_(j41) —i0]), J =
1,...,k2 — 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

Let k3 > 0. Then the interval [ig, io+i|A—1—ig|) contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(A) C N(K), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

Theorem 2.3.10. Let o1(s1) = 20p1(51),---,0p(sp) = 20p2(sp) and v < 2mp.
Then:

1.

Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.3.5)(2.3.8) lie in the closed half-plane Im A\ > p.

. All eigenvalues of type II in the half-plane Im A\ > o lie on (ip,ic0) and

their multiplicities are 1. If ko > 0, they will be uniquely indexed as A\_; =
io+ilA_j —iol, j = 1,..., Ky, satisfying [A_j| < [A_ipl, j=1,..., ke —1.

If ko > 0, then the numbers io—i|A_;—ip|, j = 1,..., ke, are not eigenvalues.
If ko > 2, then the intervals (ip — i|A_(j41) — io|,i0 — i|]A_j —ig|), j =
1,...,k2 — 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

Let k2 > 0. Then the interval (io—i|\-1—ig|,ig] contains no or an even num-
ber of eigenvalues of type II, counted with multiplicity, if N(A) C N(K), and
an odd number of eigenvalues of type II, counted with multiplicity, otherwise.

2.4 Sturm-Liouville problems on forked graphs

The following spectral problem describes one-dimensional scattering of a quantum
particle when the path of propagation is a graph which consists of two finite
intervals and one half-infinite interval, where the three edges have one common
vertex:

—yj + qi(x)y; = Ny;, x€0,a], j=1,2,
—yy = Ny, x € [a,00),
y1(\ a) = y2(A, a) = y3(\, a),
y1(\,a) +y3(\, a) — y3(\,a) =0,
y1(A,0) =0,
y2(A, 0) =0,
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where \? = QTEEE , E is the energy of the quantum particle, i = 2*; , h is the Plank
constant, g; is the potential of interaction, and y; is the radial component of the
wave function on the corresponding edge. Here we assume the potentials to be
real valued and to satisfy ¢; € L2(0, a) for j = 1,2. Conditions (2.4.5) and (2.4.6)
describe complete reflection of the wave at the pendant vertices.

Similar to the Regge problem we assume that the potential is supported only
on the finite edges of the graph. The Jost solution e(A, z) of (2.4.2) is

e(\,z)=e ",

Substituting the multiple y3(\, ) = 31 (X, a)e**®e~** of the Jost function into
(2.4.3) and (2.4.4), the part of (2.4.3) relating to ys is satisfied, and (2.4.1)—(2.4.6)
is reduced to

—y] +qj(@)y; = Ny, z€0,a], j=1,2 (2.4.7)
y1(A a) = y2(A, a), (2.4.8)

yi(\ a) +y5(N a) +idyi (A a) =0, (2.4.9)
y1(A,0) =0, (2.4.10)

y2(A, 0) = 0. (2.4.11)

This problem is a particular case of problem (2.3.13), (2.3.6)—(2.3.8) consid-
ered in Subsection 2.3.4 with p =2, p1 =1, p2 =1, 01 =0, 09 =0, m = 0, and
v = 1. Hence o = 0, and in the notation of Section 2.3, A = A, M = M, and
K =K are given by

(7 —y! + qn I 00 0 00
Aly | = —v¥+qy2 |, M=1|0 I 0|, K=|0 0 0
c yi(a) + yh(a) 0 00 0 01

Then M + K =1 > 0, Lemma 1.5.4, and Theorems 2.3.8 and 2.3.9 lead to
Theorem 2.4.1.

1. All eigenvalues of (2.4.7)—(2.4.11) have geometrical multiplicity 1.

2. All eigenvalues of type I are located on the real and imaginary azxes, are
symmetric with respect to the origin, are not eigenvalues of type II, and at
most finitely many of them lie on the imaginary azis.

3. Only a finite number, denoted by k2, of eigenvalues of type II lie in the closed
lower half-plane.

4. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiazxis and are simple. If ko > 0, they will be uniquely indezed as
Aj=—ilA_|, j=1,... Ko, satisfying |A_;| < |A_(j4l, 7=1,..., k2 — L.

5. If ka >0, then the numbers i|A_j|, j = 1,..., k2, are not eigenvalues.

6. If ko > 2, then in each of the intervals (i|A_j|,i[A_(j41)]), J=1,..., 62 — 1,
the number of eigenvalues of type II, counted with multiplicity, is odd.
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7. Let ka > 0. Then the interval [0,i|A_1|) contains no or an even number of
eigenvalues of type II, counted with multiplicity, if N(A) C N(K), and an
odd number of eigenvalues of type II, counted with multiplicity, otherwise.

Let us briefly discuss the meaning of the eigenvalues of problem (2.4.7)-
(2.4.11) for problem (2.4.1)—(2.4.6). The eigenvalues of problem (2.4.7)—(2.4.11) in
the open lower half-plane are normal eigenvalues or, in physical terms, bound states
of problem (2.4.1)—(2.4.6). The real nonzero eigenvalues of problem (2.4.7)-(2.4.11)
are bound states embedded in the continuous spectrum of problem (2.4.1)—(2.4.6).
The zero eigenvalue of problem (2.4.7)—(2.4.11) describes the so-called virtual label
(or virtual state) for problem (2.4.1)-(2.4.6). The eigenvalues of problem (2.4.7)—
(2.4.11) located in the open upper half-plane are poles of the resolvent of the
corresponding operator or, in physical terms, resonances of problem (2.4.1)—(2.4.6).

2.5 Sturm-Liouville problems on lasso graphs

The following spectral problem describes one-dimensional scattering of a quantum
particle whose path of propagation is a graph consisting of one finite and one half-
infinite interval where the three finite ends of the edges meet in a common vertex:

—yf +aq(@)yr = Ny1, z€0,dl, (2.5.1)

—yy = Nya, x€[0,00), (2.5.2)

y1(A,0) = y1 (A, @) = y2(A, 0), (2.5.3)

y1(A, @) =41 (A, 0) — y5(A, 0) = 0, (2.5.4)

where \2 = 27};‘2]5, E is the energy of a quantum particle, m is the mass, i = 2*;,

h is the Planck constant.

As in the Regge problem we assume that the potential is supported only on
the finite edge of the graph. The Jost solution e(\, z) of (2.5.2) is

e(\, ) =e T,

Substituting the multiple y2 (), ) = y1 (A, 0)e™*** of the Jost function, the part of
(2.5.3) relating to ys is satisfied, and (2.5.1)—(2.5.4) is reduced to

—f +aq(@)yr = Vo1, w€0,al, (2.5.5)
y1(A,0) =y1(A a), (2.5.6)
y1(X,0) —y1 (N, a) — idy1(A, 0) = 0. (2.5.7)

The eigenvalue problem (2.5.5)—(2.5.7) is described by the operator pencil

LX) = \>M —i\K — A,
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where A, K and M act in the Hilbert space H = Ls(0,a) ® C according to

A0 - ()

D) = { (4) v e W20, 01, 4(0) = yt) =<}

I 0 0 0
v=(0) x=Gh)
To prove that the operator A is Hermitian, we will apply Theorem 10.3.5, so

that we have to find Us and U defined in (10.3.12) and (10.3.13). Observing that
y(0) = ¢ contributes to Us and y(0) = y(a) contributes to Uy, it is easy to see that

Uy=(1 0 =1 0), Us=(1 0 0 0), V=(0 1 0 —-1),

so that
0O -1 0 0
Lo Lo 10 0 o
Us = , uUu=(1 0 0 0 -1 0
0 0 -1 0 01 0 -1 0 -1
o 1 o0 -1
-1 0 0 O

Then it follows that

N(U,) = span{e; + e3,e2,e4},
Us(N(Uy)) = span{es — e4 — eg,€1 — €5,€3 — €5},

R(U*) = span{e; —e3,e1 —e5,e2 —e4 — €6},

so that U3(N(Uy)) = R(U*). Hence A is self-adjoint by Theorem 10.3.5.

By Theorem 10.3.8, A has a compact resolvent, and A is bounded below.
To see the latter property, we observe that U;Y = y(0) — y(1) only contains
quasi-derivatives of order 0 and hence satisfies condition (ii) of Theorem 10.3.8.
Condition (iii) of Theorem 10.3.8 holds since UsY" = y(0) only has quasi-derivatives
of order 0, and finally, condition (iv) is trivially satisfied since the order of the
quasi-derivative in UsY is less than 1.

It is also clear that M > 0, K > 0 and M 4+ K = I > 0. One can easily show
as in Section 2.1 that N(M)NN(A) = {0}. Therefore, we can apply Lemma 1.5.4
and Theorems 1.5.6 and 1.5.7. Thus we obtain

Theorem 2.5.1.

1. All nonzero real eigenvalues of problem (2.5.5)~(2.5.7) have geometric mul-
tiplicity 1.
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2. All eigenvalues of type I are located on the real and imaginary azxes, are
symmetric with respect to the origin, and at most finitely many of them lie
on the imaginary axis.

3. Only a finite number, denoted by k2, of eigenvalues of type II lie in the closed
lower half-plane.

4. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicities are 1. If ko > 0, they

will be uniquely indezed as A\_; = —i|A\_j|, j = 1,..., ke, satisfying |A_;| <
‘)‘*(j+1)|7 j = 1, ey R — 1.

5. If ko > 0, then the numbers i|A_;|, 7 = 1,..., k2, are not eigenvalues of
type 11

6. If ko > 2, then in each of the intervals (i|A_;|,i[A_41)]), J=1,..., 62 — 1,
the number of eigenvalues of type II, counted with type II multiplicity, is odd.
7. Let ky > 0. Then the interval [0,i|A_1|) contains no or an even number of
eigenvalues of type II, counted with type II multiplicity, if N(A) C N(K),
and an odd number of eigenvalues of type II, counted with type II multiplicity,

if N(A) ¢ N(K).

Proof. We still have to prove statement 1. To this end let A be a nonzero real
eigenvalue of problem (2.5.5)—(2.5.7). Since (2.5.5) has two linearly independent
solutions, it suffices to show that the solution y(A, -) of (2.5.5) with y(A,0) = 1 and
y'(A,0) = 0 is not an eigenvector of (2.5.5)—(2.5.7). Indeed, since ¢ is a real-valued
function and A a real number, it follows that y is a real-valued function, so that
y' (A, a) € R. But on the other hand, (2.5.7) gives

Y\ a) = ' (A,0) — iAg(A,0) = —iA,
and we have arrived at a contradiction. O

Let us briefly discuss the meaning of the eigenvalues of the eigenvalue prob-
lem (2.5.5)—(2.5.7) for problem (2.5.1)—(2.5.4). The eigenvalues of problem (2.5.5)—
(2.5.7) in the open lower half-plane are eigenvalues or, in physical terms, bound
states of problem (2.5.1)—(2.5.4). The real nonzero eigenvalues of problem (2.5.5)—
(2.5.7) are bound states embedded in the continuous spectrum of problem (2.5.1)—
(2.5.4). The zero eigenvalue of problem (2.5.5)—(2.5.7) describes the so-called vir-
tual label (or virtual state) for problem (2.5.1)—(2.5.4). The eigenvalues of problem
(2.5.5)—(2.5.7) in the open upper half-plane are poles of the resolvent of the cor-
responding operator or, in physical terms, resonances of problem (2.5.1)—(2.5.4).
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2.6 Damped vibrations of Stieltjes strings

The notion of Stieltjes string was introduced in [85, Supplement II]. Like in [85]
we suppose the string to be a thread, i.e. a string of zero density, bearing a finite
number of point masses. Assume that the string consists of two parts, which are
joined at one end and fixed at the other end.

2 2
l(l) lﬁf) lg ) l( )

% . o . . ol 17

= () P © (2) IOl

Z my o my My M, My my 7
Starting indexing from the fixed ends, n; masses mgcj) >0,k =1,...,n;, are

positioned on the jth part, 7 = 1,2, which divide the jth part into n;+1 substrings,
denoted by l,(j ) > 0, k=0,...,n;, again starting indexing from the fixed end. In

particular, l(()j ) is the distance on the jth part between the fixed endpoint and
m(lj)7 l,(f) for k =1,...,n; — 1 is the distance between mg) and mgll, and lﬁf}

is the distance on the jth thread between the joined endpoint P and m%). The
tension of the thread is assumed to be equal to 1, and at the point P damping is
assumed with coefficient of damping v > 0. The transversal displacement of the

point masses m,(j ) at the time ¢ is denoted by v,(j ) (t), where we assume the thread

to be stretched by a force equal to 1. For convenience, we denote by véj ) =0
the transversal displacement at the fixed endpoints and by UT(L]J ) 1 the transversal
displacement at the joined endpoints.

However, the mathematical treatment will become easier if we use a unified
treatment by considering just one thread with finitely many point masses with

damping on it.

" bt {7
2 P R Poor By f
This means we have n points Py, k£ = 1,...,n, on the thread, either bearing a

mass my > 0, or being a joint, in which case we set my = 0. At each of the points
Py, we also allow damping with coefficient of damping v, > 0. Absence of damping
is, of course, indicated by v, = 0. It may be assumed that damping is present
at each joint, in which case, using dimensionless quantities, my + v > 0 for all
k = 1,...,n. The transversal displacement of the points P, from the position
of rest at time ¢ is denoted by vi(t) for &k = 1,...,n, and for convenience we
introduce vy(t) and v,41(t) for the displacements of the left and right end points
of the thread, respectively.

It is clear that the Stieltjes string introduced at the beginning of this section
is a special case of this latter setting, with n = n; +ne+ 1, vy, = v # 0 if and only
if k=n1+ 1, and my =0 if and only if £k =nq + 1.
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Since the threads have zero density, the general solution of the string equation
for each substring is a linear function of s at any time ¢. Therefore, each P is
connected by straight line threads to its two neighbours, possibly one of them one
of the fixed ends of the thread. Linearizing the forces exerted on each of the points
Py, by the adjacent strings in terms of the displacements, Newton’s law of motion
gives the following equations of motion for the particles:

vg(t) — vg1(t) N vg(t) — vg-1(t)

+ vy (E) +miop (1) =0, k=1,...,n. (2.6.1)
L l—1

At the fixed ends we have
Uo(t) = O, ’Un+1(t) =0. (262)

For the particular problem we started with, the corresponding equations are

v () ol () o) — oD Gy Gy

o) ) +mg vy’ () =0, k=1,...,n;5 j=1,2.
b 2y
(2.6.3)
At the fixed ends we have
o) =0, j=1,2. (2.6.4)
The joined ends give rise to
1 2
ol (1) = o, (1), (2.6.5)
and the equation of damped motion at the joint is
(1) (1) (2) (2)
Uppg1 () = ony () 0,04 () —vny (1) 1y
1 Py Tt 2l @) =o. (2.6.6)

Returning to the general case, we substitute vy (t) = uge’™ into (2.6.1)—
(2.6.2) and obtain

Uk — Uk+1 Uk — Uk—1
+

+idvpug — N2mpup =0, kE=1,...,n, (2.6.7)
Uy lk—1

up =0, Upy1 =0. (2.6.8)
Then problem (2.6.1)—(2.6.2) can be written in matrix form
(MM —iAK — A)Y =0,
where A = (ak,m)} =1 i an n X n Jacobi matrix with diagonal elements

arp =L+ k=1,...,n,
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subdiagonal and superdiagonal elements
ik = Gpps1 = 1Y k=1,...,n—1,
and
M = diag(my,...,my,), K =diag(vi,...,vn), Y = (ui,...,un) .

Proposition 2.6.1. The matrices M > 0, K > 0, and A > 0 are Hermitian, and
M+K>0ifmg+uvg>0forallk=1,... n.

Proof. The statements about M and K are obvious, so that we now turn our
attention to A. The matrix A is clearly Hermitian as it is a real Jacobi matrix.
For Y = (v1,...,v,)" € C" we estimate

n—1 n
YRAY =g or P+ 0 ol + Y 5 okl + 0 foa?
k=1 k=2
n—1
N lezl(vk'vlwrl + Vp10k)
k=1
n—1
=15 o1 2+ 1, o + Zl,:l (Jokl® + [vk+1]® — 2 Re(vkvit1))
k=1

> 15 o |2 41 o]

Hence A > 0. If AY = 0, then the above estimate gives v; = 0. Since A is
tridiagonal and since all entries in the superdiagonal are nonzero, it follows by
induction that vo = 0,...,v, = 0, so that N(4) = {0}. Altogether, we have
shown that A > 0. ]

We note that the Stieltjes string introduced at the beginning of this section
has the operator pencil representation with a rank one operator K and satisfies
M + K > 0. Hence the following theorem holds for Stieltjes strings.

Theorem 2.6.2.

1. All eigenvalues of (2.6.7), (2.6.8) lie in the closed upper half-plane.

2. If vy, > 0 for exactly one m € {1,...,n} and my > 0 for k # m, then all
etgenvalues of type II lie in the open upper half-plane, whereas all eigenvalues
of type I are monzero real numbers.

Proof. 1. This follows from Proposition 2.6.1 and Lemma 1.2.4, part 1.

2. Since eigenvalues of type I lie on the real and imaginary axes and are symmetric
with respect to the origin by Lemma 1.5.4, eigenvalues of type I can only be
nonzero and real by part 1 and Proposition 2.6.1. By Lemma 1.3.1, part 3, all real
eigenvalues are semisimple, and by Lemma 1.3.1, part 4, and Theorem 1.5.6, part 3,
all real eigenvalues, counted with multiplicity, are of type I, so that eigenvalues of
type II must be nonreal. |
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2.7 Damped vibrations of beams

2.7.1 Beams with friction at one end

The equation
o 0 ou  0%u
— x + = 0 2.7.1
et~ 09 e T op2 27.1)
describes small transverse vibrations of an elastic beam. Here ¢ is a stretching or
compressing distributed force, u(z,t) is the transverse displacement of the point
located at x and at time ¢t. We assume a hinge connection at the left end of the

beam, which is described by the boundary conditions

0%u
0,t) = =0.
u0,t)= 5 o -
The boundary conditions at the right end a > 0,
0%u 0%u
t) = =0
waD = gl T g0, =0

describe a hinge connection with viscous friction at the hinge, where o > 0 is the
coefficient of damping. We will assume that the real-valued function g belongs to
W40, a).

Substituting u(z,t) = y(\, r)e** we obtain

y D 2) = (99) (N 2) = Ny(A, ), (2.7.2)
together with the boundary conditions
y(A,0) =0, (2.7.3)
y"(\,0) =0, (2.7.4)
y(A,a) =0, (2.7.5)
y"(A a) +iday’ (N, a) = 0. (2.7.6)

Now we establish the operator approach to this problem. Define the operators
A, K and M by

D(A) = {Y = (g) Ly € Wi(0,a), y(0) =y"(0) =y(a) =0, y'(a) = c} :
D(K)=D(M) = Ls(0,a) ® C,
4) _ Y
v\ _ (v —(9v) _(0 0 _(1T O
A<C>_< vy’ (a) )’ K_<0 a)’ M= 0 0/)°
Then the eigenvectors of the operator pencil L given by
L\) = M —i)\K — A (2.7.7)

correspond to nontrivial solutions of (2.7.2)—(2.7.6).
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Proposition 2.7.1. The operators A, K and M are self-adjoint, M and K are
bounded, K has rank 1, M >0, K >0, M + K > 0, N(M)NN(A) = {0}, and
A is bounded below and has a compact resolvent.

Proof. The statements about M and K are obvious. If (y,c)T € N(M) N N(A),
then (y,¢)T € N(M) gives y = 0, and (y,c)" € D(A) leads to ¢ = y/(a) = 0. Hence
N(M)nN(A) ={0}.

We are going to use Theorem 10.3.5 to verify that A is self-adjoint. Observe
that Ul = ) for j = 0,1,2 and y1¥ = ) — gy’ according to Definition 10.2.1.
We have to find Uy, Us and U defined in (10.3.3), (10.3.12) and (10.3.13). First,
it is straightforward to see that

100 0 00 OO
Uy=(0 0 1 0 0 00 0],
00001 O0O0O0

Us=(0 000 0 1 0 0),
V=0 0000 0 1 0.

In particular, <gl> has rank 4. Clearly,
2

N(Uy) = span{es, e4, €6, €7, 5} C C™.

We recall that

J 0O 0 0 1
2
_ _(—J21 O o o0 -1 0
Us = _‘g where Jg—( 0 J2’1> and Jo1 = o 1 o0 ol
2 -1 0 0 0
and
Uy 0 0
U=|Us -1 0
vV 0 -1

It is now straightforward to verify that

Us(N(Up)) = span{es, e1, e — e10, €9 — €6, €5} C C',
R(U*) = span{ey, e3, e5, e6 — eg, e7 — e19} C C°.
This shows that Us(N(U;)) = R(U*). Hence A is self-adjoint by Theorem 10.3.5.

Finally, Theorem 10.3.8 shows that A has a compact resolvent and that A is
bounded below. ]

It is clear that in this problem both eigenvalues of type I and type II can
exist. Theorems 1.5.6 and 1.5.7 imply
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Theorem 2.7.2.

1. The geometric multiplicity of each eigenvalue of (2.7.2)~(2.7.6) does not ex-
ceed 2.

2. All eigenvalues of type I are located on the imaginary and real azes and are
symmetric with respect to the origin. All nonzero eigenvalues of type I have
type I multiplicity 1. If the geometric multiplicity of a nonzero eigenvalue is
2, then this eigenvalue is a pure imaginary eigenvalue of both type I and type
1I.

3. Only a finite number, denoted by ke, of the eigenvalues of type II lie in the
closed lower half-plane.

4. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicity is 1. If ko > 0, they will

be uniquely indezed as A_; = —i|A_j|, j = 1,...,Ke, satisfying |A_;| <
AGepl, i=1,... k2 — 1.

5. If kg > 0, then the numbers i|A_;|, j = 1,..., ko, are not eigenvalues of type
1

6. If ko > 2, then the number of eigenvalues of type II, counted with type IT
multiplicity, in each of the intervals (i|A_j|,i|A_;1n)]), 7 =1,..., k2 — 1, is
odd.

7. Let ko > 0. Then the interval (0,i|\_1|) contains no or an even number of
eigenvalues of type II, counted with type II multiplicity, if N(A) C N(K),
and an odd number of eigenvalues of type II, counted with type II multiplicity,
otherwise.

Proof. Parts 3 to 7 of this theorem immediately follow from Theorem 1.5.7.

1. Because of the initial conditions (2.7.3) and (2.7.4), each eigenvalue A can
have at most two linearly independent eigenvectors.

2. The first statement follows from Lemma 1.5.4. Now let A\ be a nonzero
eigenvalue of type I. Then every eigenvector of type I is of the form (y(A,-),0)"
by Theorem 1.5.6, and therefore y'(A,a) = 0. Hence y(},-) is a solution of the
initial value problem (2.7.2), y(XA,a) = y'(A\,a) = y”’(A,a) = 0, and it follows from
Theorem 1.5.6, part 1, that the type I multiplicity m;(\) equals 1. If now A # 0
has geometric multiplicity 2, then A must be an eigenvalue of type I since the
geometric multiplicity of a type II eigenvalue is 1 by Theorem 1.5.6, part 3. We
already know that the type I multiplicity is 1, so that A must also be of type II
and pure imaginary since a type II eigenvalue cannot be real by part 4. O

2.7.2 Damped beams

Physically better justified boundary conditions for the problem generated by a
fourth-order differential equation were considered in [100]:

y W z) — (9y) (N ) + 2idoy = A2y(\, z), (2.7.8)
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(A, 0) =0, (2.7.9)

y"(A,0) =0, (2.7.10)

y"' (A a) =0, (2.7.11)

—y" (N, a) + g(a)y' (A a) + iday(\, a) = N?my(\, a). (2.7.12)

Here g € W3(0,a) is a stretching or compressing distributed force, 29 > 0 is the
constant damping coefficient due to viscous friction along the beam and m is a
point mass at the right end a > 0. This right end can move with damping in the
direction orthogonal to the equilibrium position of the beam, where o > 0 is the
coefficient of damping.

For the operator approach to this problem we define the operators A, K and
M by
D) = {¥ = (1) s 5 € WE0.0), 5(0) =5(0) =5"(@) = 0. 9(a) =}
D(K) = D(M) = L3(0,a) ® C,
4) _ AV,
v\ _ y (9y) _ (20 0 _ (1 0
4 () - (—y“'(a) +g<a>y'<a>> R (o o) M=o m)

Then the eigenvectors of the operator pencil L given by
L) = MM —i\K — A (2.7.13)

correspond to nontrivial solutions of (2.7.8)—(2.7.12).

Proposition 2.7.3. The operators A, K and M are self-adjoint, M and K are
bounded, M >0, K > 0, and A is bounded below and has a compact resolvent.

Proof. The statements about M and K are obvious. We will use Theorem 10.3.5
to verify that A is self-adjoint. Observe that yl/! = 3@ for j = 0,1,2 and that
yB3l = ¢y — gy according to Definition 10.2.1. We have to find Uy, Us and U
defined in (10.3.3), (10.3.12) and (10.3.13). First, it is straightforward to see that

U, =

OO =
o O O
O = O
o o o
o O O
o O O
= o O
o o o

Us=(0 00 0 1 0 0 0,
V=0 000 0 0 0 —1).

~—

In particular, (gl> has rank 4. Clearly,
2

N(Uy) = span{es, es, €5, 5, s} C C°.
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We recall that

J 0O 0 0 1
2
_ _(—=J21 O 10 0 -1 0
Uz = _Xg where Jg—( 0 ,]271) and Jo; = 0o 1 0 ol
2 -1 0 0 0
and
Ui 0 0
U=|U; -1 0
vV 0 -1

It is now straightforward to verify that

Us(N(Uy)) = span{es, e1, es + €10, €7,e5 — €9} C Co,
R(U*) = Span{el7 637 673 65 - 69, 68 + 610} C (Clo.

This shows that Us(N(Uy)) = R(U*). Hence A is self-adjoint by Theorem 10.3.5.
Finally, Theorem 10.3.8 shows that A has a compact resolvent and that A is
bounded below. ]

We will make use of the parameter transformation A = 7 +ip if « —2mp > 0
and A = —7 +1ip if @ — 2mp < 0. This parameter transformation gives rise to the
operator pencil

L(x7 +ip) = L(t) = 72M — itK — A,

where . . .
M=M, K==+(K-2oM), A=A+ ’M — oK.

Thus M, K and A act in Ly(0,a) & C and are given as follows:

A(2) = (Lo L st + ok agyate)) (2.714)
p(h) = {(¥) v e 0.1 =90 =y O) =y @ 719
M= (é 7%) , K= (8 o _O2mg|> . (2.7.16)

Three distinguished cases will be considered:
1) a=2mp, 2)a>2mp and 3)a < 2mp.

The first case is trivial because K = 0 and hence L(t) = 72M — A. The
spectrum of the pencil L is linked to the spectrum of the operator M~:AM~2 via
the substitution 72 = ¢. The infinitely many positive eigenvalues of M—2ANM~2
give pairs of real eigenvalues of L which are symmetric with respect to the origin,
and the at most finitely many negative eigenvalues of M —2 AM-: give pairs of
pure imaginary eigenvalues of L which are symmetric with respect to the origin.
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Hence the spectrum of problem (2.7.8)—(2.7.12) lies on the line ImA = p and on a
finite interval of the imaginary axis, being symmetric with respect to the imaginary
axis and to the line Im \ = p, respectively.

In the second and third cases K > 0 has rank one and we can apply the
results of Section 1.5 to the pencil L. Taking into account that the geometric
multiplicities of the eigenvalues of problem (2.7.8)-(2.7.12) do not exceed 2 and

that L(A) = L(\ £1i0), we arrive at the following results.
From Lemma 1.5.4 we obtain

Theorem 2.7.4. Assume that o # 2mp. Then the eigenvalues of type I of L are
located on the imaginary azis and on the line Im A = o, and are symmetric with
respect to the point A = ip. At most finitely many of the eigenvalues of type I are
on the imaginary axis.

Theorem 1.5.7 implies the following two theorems.

Theorem 2.7.5. Assume that o > 2mo. Then:

1. Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.7.8)(2.7.12) lie in the closed half-plane Tm X < p.

2. All eigenvalues of type II in the closed half-plane Im X\ < o lie on (—ico,ip)
and their type II multiplicities are 1. If ko > 0, they will be uniquely indexed
as A_j = io—1i|A_j—ig|, j =1,..., ko, satisfying |A_; —io| < |A_¢j11) —i0l,
j=1,... ke — 1

3. If ke >0, then the numbers ip+i|A_;—ig|, j = 1,..., K2, are not eigenvalues
of type II.

4. If ko > 2, then the intervals (ip+i|A_;—ig|, io+ilA_j—1—ig|), = 1,..., Ko—
1, contain an odd number of eigenvalues of type II, counted with type II
multiplicity.

5. Let kg > 0. Then the interval [ip,i0 + i|A_1 — ip|) contains no or an even
number of eigenvalues of type I, counted with type I multiplicity, if N (A) -
N(K), and an odd number of eigenvalues of type II, counted with type II
multiplicity, otherwise.

Theorem 2.7.6. Assume that o < 2mk. Then:

1. Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.7.8)~(2.7.12) lie in the closed half-plane Im X\ > p.

2. All eigenvalues of type II in the closed half-plane Im A > o lie on (ig,ic0) and
their type II multiplicities are 1. If ko > 0, they will be uniquely enumerated
as A_j = i+ iA_j —igl, j = 1,... k2, satisfying [A_;| < [A_¢j+)l, J =
1, N 0 R 1.

3. If ke > 0, then the numbers io—i|A_;—ig|, j = 1,..., K2, are not eigenvalues
of type II.

4. If ky > 2, then the intervals (io — i|A_(j41) — to|,i0 — i|A_; —ig]), j =
1,...,k2 — 1, contain an odd number of eigenvalues of type II, counted with
type II multiplicity.
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5. Let ky > 0. Then the interval (ig — i|A_1 — i0|,i0] contains no or an even
number of eigenvalues of type 11, counted with type II multiplicity, if N(A) -
N(K), and an odd number of eigenvalues of type II, counted with type II
multiplicity, otherwise.

2.8 Notes

The Regge problem was considered in detail by T. Regge [238] in connection with
the description of nuclear interaction as presented in Section 2.1. The results in
Section 2.1 are taken from [186]. For further aspects of the theory related to
the Regge problem we refer the reader to [122], [115] [255], [256], [150], [142],
[243], [148] and [251]. In particular, statement 4 of Theorem 2.1.2 was obtained
in [251, Theorem 6]. In general, the radial component of the Schrédinger equation
has a correction term to the potential which is singular at 0. However, for zero
orbital momentum, also called S-wave by physicists, this additional potential is
zero. Therefore, the Schrodinger equation is a Sturm-Liouville equation with the
original potential.

Similar equations occur in mechanics of string vibrations. The simplest model
of string musical instrument leads to one-dimensional damping (viscous friction).
In [19] a model was proposed to explain the playing of ‘harmonics’ on stringed
instruments. This has a long history, see [59].

In Section 2.2 we consider strings with density from p € Lo (0,1), where
0 <l < oo and p>e>0. This class does not include beaded strings, also called
Stieltjes strings. These two types of strings may be regarded as extremal cases of
a wider class of strings which was considered by I.S. Kac and M.G. Krein in [127],
see also [125], [71]. They studied the equation

0%u 0%u
OM(s)0s  Ot?
which describes small transversal vibrations of a stretched inhomogeneous string.
Here ¢ stands for the time, s for the longitudinal coordinate, u(s, t) is the transverse
displacement, M is a nonnegative nondecreasing function on [a,b] describing the
mass distribution. Recall that M is differentiable a.e. by Lebesgue’s theorem, see,
e.g., [108, (17.12)], and its derivative p = M’ is called the density of the string.
Without loss of generality it is assumed that M (s+0) = M (s) for all s € [a,b). If
M (so — 0) < M(sp), then there is a point mass M (sg) — M(so — 0) at so € (a, b].
If M(a) > 0, then there is a point mass M(a) at s = a. The intervals on which
M is constant, if any, correspond to massless intervals, that is, intervals where the
string is a thread.

Substituting u(s, t) = y(\, s)e** into (2.8.1) we obtain the following equation

for the amplitude function y(A, s):
dy’'
dM (s)

=0, (2.8.1)

+ Ay =0. (2.8.2)
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The generalized differential operator 1\/?(5) is the Radon—Nikodym derivative. In
the case when M(s) is an absolutely continuous function and M’(s) > 0 almost
everywhere on [a, b], then this operator acts on absolutely continuous functions
which have absolutely continuous first-order derivatives and the action of the gen-
eralized differential operator is given by

dy' ae. y//

M) Mi(s) (2.8.3)

Here and in the sequel a.e. means almost everywhere. In the general case the
generalized differential operator is defined only on so-called prolonged functions
u[s] which are obtained from usual functions u(s), a < s < b, by attaching two
arbitrary numbers u’ (a) and u/, (b), which are called left derivative at s = a
and right derivative at s = b, respectively. Then u[s] = (u(s),u’ (a),u/ (b)). The
domain of the generalized differential operator is the set Dy, of all complex-valued
functions u[s] of the form

S

u(s) =a+ fs — / (s —p)g(p)dM(p), a<s<b, (2.8.4)

¢ b
W (0) = B, W (b) =B / 9(p)AM (p), (2.8.5)

where o and 8 are complex numbers, and g is a complex-valued function which is
summable on [a, b] with respect to the measure dM. For each such pair (u[s], g)
we have the equation
du’
TaM(s) © 9(s)

in view of (2.8.4).

In [168] it was noted that the Hamiltonian of a canonical system can be rep-
resented by “strings” whose mass distribution function is not necessarily nonde-
creasing. Therefore, in [168] generalized strings M are considered which may have
exceptional points xg at which M(xg—) = oo, M(z¢g+) = —oco and M is square
integrable near xg or M (xo—) and M (xo+) are finite but M (zo+) — M (xo—) < 0.

Recent results on damped strings can be found in [90], who use a Dirac op-
erator approach rather than separation of variables. The main results are trace
formulas and completeness of eigenvectors and associated vectors. Smooth string
vibrations with piecewise constant damping were considered in [141]. Related scat-
tering problems for damped strings and further examples of physical configurations
leading to such models can be found in [123, Section 1.B, p. 1353]. Properties of
spectra of finite-dimensional quadratic operator pencils in connection with the
damped wave equation were studied in [81].

In quantum graph theory, see [28], [231], the Sturm-Liouville equation is
assumed to be defined on a graph domain with boundary conditions and matching
conditions at the vertices of a graph.
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In most cases, continuity and Kirchhoff conditions are imposed at interior
vertices especially in quantum mechanics. However, we have seen in Subsection
2.3.3, see (2.3.11), (2.3.12), that they can be more complicated. For more general
conditions see [231]. In this monograph Sturm type theorems on number of nodes
of eigenfunctions on graphs were established, see also [82], [21], [20], [205].

We have seen in Theorem 2.3.8 that the maximal multiplicity of an eigenvalue
of a problem on a star graph is p — 1, where p is the number of edges. More
generally, it was shown in [128] that an upper bound for the maximal multiplicity
of eigenvalues can be deduced from the shape of the graph.

Theorem 2.4.1 was proved in [169]. Spectral problems on lasso graphs were
considered in [88], [89], [77] with constant potential on the loop and identically
zero potential on the tail.

The famous Stieltjes memoir [254] was devoted to infinite continued fractions

C
0 (2.8.6)
1
z+
C
1+ 2

C3
zZ+

1+
’ Con—1

1 + Con

1+
zZ+

where the ¢; are complex numbers and z is the complex variable. As far as we
know, Stieltjes did not associate any physical object with this continued fraction.
The first physical interpretation of finite continued fractions was given by W.
Cauer [49] in connection with the theory of synthesis of electrical circuits. He
gave a continued fraction representation for RC driving point impedances, see
also [102, p. 119]. Here the coefficients are inductances and capacities.

An interpretation of Stieltjes’ results in terms of problems in mechanics has
been given by M.G. Krein [151], [85]. These authors introduced the term Stieltjes
string (another name is Sturm system) and considered also the question of con-
vergence in case of infinite continued fractions corresponding to Stieltjes strings.
It should be mentioned that there exists a nice review paper [58] containing the
description of these problems and related experiments. The same equations as for
transverse vibrations of a Stieltjes string appear when one considers longitudinal
vibrations of point masses connected by springs [92], [181]. Vibrations of a star
graph of Stieltjes strings were considered in [87], [34] and [224].
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As shown in Section 2.6, spectral problems generated by Stieltjes string
can be considered as problems for Jacobi matrices. In case of trees of Stieltjes
strings the corresponding matrices are so-called indextree-patterned matrices tree-
patterned matrices, see also the comments to Chapter 8.

Theorem 2.7.2 was proved in [195]. Some other spectral problems generated
by fourth-order ordinary differential equation with dissipative terms can be found
in [197], [198], [199].

While for star graphs of strings which are damped at the interior vertex
the only point of intersection of the set of eigenvalues of type I and the set of
eigenvalues of type II is ip, this intersection can have many points for beams
which are damped at an end.



Chapter 3

Operator Pencils with Essential
Spectrum

3.1 Monic polynomial operator pencils

In this section we will investigate the spectra of monic polynomial operator pencils
n—1
L) =i"\"T+ Y PINK; + A,

j=1
n—1

acting on a Hilbert space H with the domain D(L())) = () D(K;)ND(A), where
j=1

A € C is the spectral parameter and the operators K;, A satisfy

Condition III. The operators K;, j = 1,...,n and A are self-adjoint operators
on H with the following properties:

(i) K; >0 and A > —pBI for some positive number [3;
(i) K; =vA+ Kj(-o), where the 7v; are nonnegative numbers, the operators Kj(-o)
n—1
are subordinate to A, i.e., D(A) C ) D(K](-O)) and the operators KJ(-O),
j=1
j=1,...,n—1, are bounded with respect to the operator (A + 61])5, where
p1 > B.

The following lemma shows that the subordination in Condition III can be
expressed in terms of an inequality.

Lemma 3.1.1. The subordination property in Condition III, part (ii), is satisfied
n—1

if and only if D(A) C N D(K](-O)) and there exist positive numbers a and b such
j=1

that for all y € D(A)

0
_max_[IKyI < allyl® + b(4y, ). (3.1.1)
j=1,...,n—1
© Springer International Publishing Switzerland 2015 69
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Proof. Assume that the K j(o) are bounded with respect to (A+ 11)2. Then there
is a number ¢ > 0 such that

max_[[K[7y]* < el (4 -+ BuD) by
=c((A+ By, y)
= eyl +e(4y.v)

for all y € D(A), which proves (3.1.1) with a = ¢f; and b= c.
Conversely, if (3.1.1) is satisfied, choose 81 > max { ¢, 3}. Then a < b and
thus

max K7yl < ally]* + b(Ay, )

=1,..., n—1
< bBullyl* + b(Ay, )
=b(A+ BiD)2y, (A+ Bid)2y)

for all y € D(A). Thus K;O)\D(A) is bounded from D((A + $11)2) with the graph
norm of (A + f11)2 to H. Since D(A) = D(A + 1) is a core for (A + 511)2,
see [137, Theorems VI.2.1 and VI1.2.23], it follows that K;O)\D(A) is bounded and
densely defined on D((A + f11)2) with respect to the graph norm of (A + $,1)2.
Therefore, K§O)|D(A) has a bounded closure Kj(l) from D((A + $11)2) to H with

D(KSY) = D((A + B11)3). Since K\* is self-adjoint and therefore closed, the
graph of K;l) is a subset of the graph of KJ(O). Hence D((A + Bll)é) C D(KJ(.O))
and KJ(O)(A + BI)" 2 = Kjgl)(A + B1I)"2 is bounded, i.e., K;O) is subordinate
to A. O
Lemma 3.1.2.

1. For each by > 0 there exist a1 > 0 such that

max_|[K”y|l < ally] + bl Ay (3.1.2)

5o

for each y € D(A).
2. There exist as > 0 and by > 0 such that

semax ([ Kyl < asllyll + bzl Ay (3.1.3)

for each y € D(A).
3. There exist az > 0 and bg > 0 such that

el (K”y,y)| < as|ly||? + bs(Ay, y) (3.1.4)

for each y € D(A).
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4. There exist ags > 0 and by > 0 such that

semax (K;y,y) < aallyl® + ba(Ay,y) (3.1.5)

for each y € D(A).
Proof. By Condition IIT and Lemma 3.1.1, the operators KJ(O) satisfy (3.1.1). Hence

it suffices to show that (3.1.1) implies the corresponding inequality in each case.
1. Let by > 0 and choose a; > 0 such that b < 2a1b; and a < a%, i.e.,

1
a; > max{zzl,m } Then

0
max KV < allyl* + b(Ay, )

< aillyll* + 2a1b1 || Ayl |y
2
< (a1 lyll + b1 [l Ayll)”

Taking square roots proves (3.1.2).

Part 2 follows from part 1 with az = a1 and by = b1 + max ;.
j=1,...,n

3. Since (Ay,y) > —B(y,y) = —B|ly|? it follows that

1
1% = 2llyl1* = llylI* = 2lylI* + ﬂ(—5||y||2)
1
B

= 5 O8I0 + by,

Putting aj = max{a, 2b3} it follows that

<2llyl*+ ,(Ay,y)

0
max Ky Pyl < (allyll® + b(Ay,v) [y

< (@I + b(Ay0)) g (5P + by )

2
= (as|lyll® + bs(Ay,v))"
where az = a4(b8)~/? and bz = b'/23=1/2. This proves
_max |(Ky,y)| < _max K y|lly]l < asllyl® + bs(Ay, y)
7j=1,..., n—1 Jj=1,....n—1

since the right-hand side is clearly nonnegative by the above estimates.
4. Forall k=1,...,n and y € D(A), the estimate (3.1.4) gives

(Kry,y) = (Ky,y) + v(Ay, ) < asllyll® + bs(Ay, v) + 1[(Ay, y) + Blly||’]
< asllyll® +bs(Ay.y) + _max 7 [(Ay.y) + Blyl°)

This proves (3.1.5) with ay = a3+ 5 max _ y; and by = b3 + max ;. O
J=1,.n— j=1,...n—
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It is easy to see that the statement of Lemma 1.1.11, part 3, extends to this
case:

Lemma 3.1.3. For all A € C, L(A\)* = L(—=\).

Theorem 3.1.4. If the domain €2 is normal for the pencil L, then there exists
a number 6 > 0 depending on A and K; with the following properties. If Sj,
j=1,....,n—1 are closed operators on H with D(A) C D(S;) and if for all
y € D(4)

n—1

YIS — Kyl < 601l Ayl + Iyl (3.1.6)

j=1
then Q) is normal for the pencil L given by

n—1
L) =i"A"T+ ) iIMS; + A,

j=1
and the total algebraic multiplicities of the spectra of L and L in Q coincide.

Proof. Let A\g € Q. Since L()\g) is a Fredholm operator by assumption, it is a
closed operator with domain D(A), and hence the graph norms of L()\g) and A
are equivalent by the closed graph theorem. Therefore, there is ¢ > 0 such that

1Ayl < e(IL(o)yll + llyll)

for all y € D(A). For each pair of positive numbers a(\g) and b(\g) there is
0 = 6(Ao) such that for all y € D(A), A in a sufficiently small neighbourhood of
Ao and S; satisfying (3.1.6) we estimate

L) = L)yl < (£A) = L)yl + [[(LA) = L))yl

n—1 n—1
< IVIICS; = Kyl + A" = M5 lllyll+ > 1V = X1 Ky
j=1 j=1

< a(Xo)[lyll + b(ro) [IL(Ao)yll;

where we have also used (3.1.3). Observe that the reduced minimum modulus
v(L(No)), defined in [137, p. 231], is positive since L(Ag) is a Fredholm operator,
see [137, Theorem IV.5.2]. Choosing §(A¢) and the neighbourhood of A sufficiently
small, we may assume that the positive numbers a(\g) and b(\g) are so small that
the inequality a(Ao) < (1 —b(No))v(L(No)), i.e., [137, (IV.5.20)], is satisfied. Then
the index stability theorem for Fredholm operators, see [137, Theorem IV.5.22]
shows that £(\) is a Fredholm operator for all A in that neighbourhood of Ag
and for all S; satisfying (3.1.6) with ¢ = d(Ao). Also, since L(Ao) is invertible for
Ao € 99, we conclude again from [137, Theorem IV.5.22] that £()) is invertible
for all A in the corresponding neighbourhood of A\ and for all S; satisfying (3.1.6)
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with § = d(Ag). A compactness argument shows that £(\) is a Fredholm operator
for all A €  and invertible for all A\ € 02, with \S; satistying (3.1.6) for a suitable
positive § (the minimum of all §()\g) for the Ay used for the finite cover of ).
Since L£(\) is invertible for A € 99, it follows that € is a normal domain for £ if
the S; satisfy (3.1.6).

Finally, introducing
n—1 o
L) ="\ T+ N (K +(S; — Kj)) + A
j=1
we have L(A\) = L(\, 1) and £(A,0) = L(A). Rouché’s theorem for finitely mero-
morphic operator functions, Lemma 1.1.9, also applies to £(A,t) for all ¢ € [0, 1],

and a compactness argument shows that m(Q) is independent of ¢, which proves
that the total algebraic multiplicities of the spectra of L and £ in ) coincide. [

For \,n € C we define

n—1
L(An) =i"A"T + Y i NnK; + A,
j=1
n—1
EAm) =0 N + 1,
j=1

E(n) ={re C:&(\n) =0}

Since &(+,7) is a polynomial of degree less or equal n — 1, () consists of at most
n — 1 complex numbers.

Lemma 3.1.5. Let A\g,n0 € C such that Ao € Z(no) and assume that the operator
L(Xo,mo) has the following properties:

(i) there exists a number € > 0 such that

1L (Ao, m0)yll = ellyll (3.1.7)
for all y € D(A);
(ii) codim R(L(Xo,m0)) =¢, 0 < ¢ < 0.

Then for every e’ € (0,¢) there is some 6 > 0 such that the operators L(\,n) have
the properties (i) and (ii) in the neighbourhood {(\,n) € C% : |A—Xo|+|n—mn0| < 8}
of (Mo, mo) with € replaced by &' in (3.1.7) but with the same q in (ii).

Proof. We can write

n—1
L\n) = "X+ > XK + e n)A.

j=1
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Because of £(Ag, 10) # 0, the operator
Ag =" Ag T+ &(Mo,m0)A

is closed with D(Ay) = D(A), and hence the graph norms of A and A on D(A)
are equivalent by the closed graph theorem. By Lemma 3.1.2, part 1, there exists
a1 > 0 such that

1
(L (o, m0) = Ao)yll < arllyll + [ Aoyl

for all y € D(A). Then [137, Theorem IV.1.1] implies that L(Ag,70) is closed.
It follows from inequality (3.1.7) that the image R(L(\g,70)) is closed and that
L(Xo, o) is injective, and hence L(Ag, 7o) is semi-Fredholm, see [137, p. 230]. By
the closed graph theorem, the closedness of L(\g, 7o) gives that the graph norms
of A and L(Ag,no) are equivalent on D(A). Hence, since all the operators KJ(O) are
subordinate to A, we estimate for y € D(A) with the aid of (3.1.2)

(L) = Lo, m0))yll

n—1
= |l = Ay + D7 7 (= M) K7y + (€O 1) — £(h,m0)) Ay
j=1
< I =Nyl + 37 1IN0 = N 1K 7yl + [ 1) — €0, o) | Ayl
Jj=1
< a0\ )1yl + b0 I L (Ao, m0)yl (3.1.8)

with non-negative functions ag and by such that ag(A, ) — 0 and by(A,n) — 0
as (A, n) = (Ao, m0). Note that since L(\g, 7o) is injective, the reduced minimum
modulus y(L(Ag,10)) equals the inverse of the norm of the inverse operator, so
that € < v(L(Xo,10))- In other words, v(L(Xo,70)) is the supremum of all € for
which (3.1.7) holds. For any ¢’ € (0, ¢) there exists a number § > 0 such that

aO()‘vn) + ¢’ < (1 - bo()\ﬂ?))g (319)

for |A — Ao| + |7 — nmo| < 6, and hence, for these A and n, the operator L(A,n) is
closed and semi-Fredholm by [137, Theorem IV.5.22], with

dim N (L(\, 7)) < dim N(L(Xo,m0)),
codim R(L(\, 1)) < codim R(L(Ag,m0)),
ind L(A,n) = ind L(Ag, 10)-

<
<

Since the dimension of the nullspace of L(Ao,70) is equal to 0, it follows that the
dimension of the nullspace of L(\, 1) is also equal to 0 for all A and 7 satisfying the
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inequality |A — Xo| + |n — no| < §. Using that the indices of L(A,n) and L(Ag, 7o)
are equal, we conclude that

codim R(L(\, 1)) = codim R(L(Xo,m0)) = q

for all A and 7 satisfying the inequality |\ — Xo| + |7 — 70| < J. Finally, for these
(\,m) and y € D(A), the inequalities (3.1.7), (3.1.8) and (3.1.9) lead to

IZOS Myl = (1L (Aos m0)yll — I(L(A, 1) = L(Aos m0))yl
> (1 =bo(X, m)IIL(Xo, m0)yll — ao (A, m) |yl
> (L=bo(Am)ellyll — ao(X,m)llyll
> &'|lyll.

This completes the proof of the lemma. |
Corollary 3.1.6. For alln € C, 9o(L(-,n)) \ Z(1n) C Tapp(L(-,1))-

Proof. Let A € o (L(-,n)) \ E(n).

If dim N(L(X,n)) > 0, then choose y € N(L(A, 7)) with |ly|| = 1 and put
yr = y. Then L(A, n)yr = 0, so that A\ € gapp(L(+, 7)) follows.

If dim N(L(A,n)) = 0 but there is no € > 0 such that || L(\,n)y|| > €]ly| for
all y € D(A), then we can choose y; € D(A) with [lyx|| =1 and ||L(X, n)yx|l < 1.
Hence A € oapp(L(-,7)).

But if dim N(L(X,7n)) = 0 and there is € > 0 such that ||L(A, n)y| > eyl
for all y € D(A), then, by Lemma 3.1.5, either X € p(L(-,n)) for all A in a
neighbourhood of A or A € o(L(-,n)) for all X' in a neighbourhood of A. Both
properties contradict the assumption that A € do(L(-,n)). O

Let us introduce the notations
AeC\{0}:0< ‘argwr;] < Z}

-
W,?:{Ae@\{o;t:og

Tow
arg A + 2’ < n}
Lemma 3.1.7. W,, N oapp(L(-,n)) =0 for all n € [0,1].

Proof. Let \g € Wy, Noapp((L(+,7m0)), where n € [0,1] and —7 <arglo < =35 + 7
and let {yx}%2, be a corresponding approximate sequence. Then

lim (L(Xo,70)Yk, yx) =0

k—o0
and consequently

n—1

Im((iXo)™) + 10 Z(ijk, yi) Im((iXo)?) =Im(L(Xo, 70) Yk Yk)

j=1

o(1). (3.1.10)

k:m



76 Chapter 3. Operator Pencils with Essential Spectrum

Taking into account that 79 > 0 and that for all j = 1,...,n the inequalities
Im(i\o)’ > 0 and (Kjyk,yr) > 0 are valid, we obtain that the left-hand side of
(3.1.10) is not less than Im(iXg)™ > 0, which means that (3.1.10) is false. The

proof for the case —7 — 7 < arg Ao < —7 is analogous. O

Lemma 3.1.8. (—ioo, —i3Y/™) N oapp(L(-,n)) =0 for all n € [0,1].

Proof. Let \g € (—ioco, —iBY/™) and 1y € [0,1]. Then for all y € D(A) the inequal-
n—1
ities (Ay,y) > —Bllyl|* and no > (iXo)? (K;y,y) > 0 hold. This leads to

Jj=1

1L, mylllyll = (Lo, )y, y) = ((20)" = B)llylI?

for all y € D(A) and particularly to

IL(os Myl = ((iAo)"™ = B) > 0

for all y € D(A) with ||ly|]| = 1. But this shows that L(-,7) cannot have an approx-
imate sequence at Ao, i.e., Ao & Tapp(L(-,7)). O

Lemma 3.1.9. o(L(-,n)) N W2 C [—iBY"™,0) for all n € [0,1].

Proof. By Lemmas 3.1.7 and 3.1.8, (W2 \ [<i3'/™,0)) N 0app(L(-,7))) = O for all
n € [0,1]. Clearly, for (\,n) € W2 x [0,1] we have £(\,n) > 1 or Im&(\,n) > 0 or
Im¢(N, 1) < 0. Therefore L(\,n) satisfies the assumption of Lemma 3.1.5 for all
(A1) € WO\ [—iB'/™,0)) x [0,1]. In view of Lemma 3.1.5, the sets

So ={(Am) € (W2 \ [=iB"/",0)) x [0,1] : codim R(L(o,70)) = 0}
and
S = {()"77) € (WT? \ [_Zﬂl/nvo)) X [07 1} : codim R(L()‘Ovno)) 7é 0}

form a disjoint relatively open cover of (W2 \ [—i8Y/",0)) x [0,1]. Since A is self-
adjoint, the spectrum of the operator pencil i"A\"I + A lies on the rays given
by argA = 7j — 7,5 = 0,...,2n — 1, so that W,, x {0} C Sp. Hence Sy is
nonempty, and since (W2 \ [=i3'/™,0)) x [0, 1] is connected, it follows that Sy =
(WO \ [<iBY/™,0)) x [0,1]. But L(\,n) is invertible for each (\,n) € Sy, and the
proof of the lemma is complete. O

Taking Corollary 3.1.6 and Lemma 3.1.9 into account and observing that
A g Z(n) for X € W2 and 7 € [0, 1] we obtain

Corollary 3.1.10. For n € [0,1], the spectrum of the pencil L(-,n) located on the
interval [—iBY™,0) is approzimate.

Lemma 3.1.11. Let \g € [—iB'Y/™,0) N oo(L(-,1m0)) and let ny € [0,1]. Then the
eigenvalue Ao does not possess associated vectors.
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Proof. Assume there is a chain of an eigenvector y9 and an associated vector y;
corresponding to A\g. The equation for the associated vector y; is

0
L(Xo,m0)y1 + a)\L(/\ovﬂo)yo =0.
This implies
0
(L(Xo,m0)y1,y0) + (a)\L(/\o,no)yo,yo> =0.

n—1
Since £(Mo,m0) # 0 and n > (iAo)jKJ(O) is subordinate to (iXo)"I + &(Xo, 10)A4,
j=1

it follows from Lemma 3.1.2, part 1, and [137, Theorem V.4.3] that L(Ag,n0) is
self-adjoint. Hence we have

(L(Aosm0)y1590) = (1, L(Xo,m0)yo) = 0,

and 5
<6/\L()\0’ 70)Yo, yo> =0

follows. Taking the imaginary part of the latter equation we obtain

n—1
ol Mol + 37 dhol (K w0, 50) = 0,
j=1
which is impossible due to [Ag| > 0 and (K,yo,y0) > 0. O

Lemma 3.1.12. Assume that 0(A) N [—5,0) C o¢(A). Then
[=iB"/",0) N o (L(-,n)) C oo(L(-,n))

for every n € [0,1].

Proof. Let A € [—if'/™,0) and n € [0,1]. Then L(\, ) is symmetric with L(\,7) >
(tA)"I + A. From &(A\,n) # 0, Lemma 3.1.2, part 1, and [137, Theorem V.4.3] it
follows that L(A,n) is self-adjoint. Choose € € (0, (iA)™) and let P be the projection
associated with the self-adjoint operator L(\,n) and its spectrum below e. For all
y € R(P) we have

(GN™ = &I + A)y,y) < (LOn) — D)y, y) < 0

so that R(P) is a nonpositive subspace of ((iA\)® —e)I+ A. From (iA\)" —e > 0 and
the assumption on A it follows that every nonnegative subspace of the operator
((iA\)™—&)I+ A must be finite dimensional. Hence R(P) must be finite dimensional,
and therefore the spectrum of L(\,n) below € consists of finitely many eigenvalues
of finite multiplicity. In particular, since € > 0, L(\,n) is a Fredholm operator.
In view of Lemma 3.1.9, L(\,n) is a Fredholm operator for all A\ € W?. Since
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L(-,m) is analytical on W with respect to the graph norm of A on D(A) and since
W, C p(L(-,n)) by Lemma 3.1.9, it follows that o(L(-,n)) N WY is a discrete set,
see, e. g., [189, Theorem 1.3.1]. Finally, by Lemma 3.1.11, the algebraic multiplicity
of each eigenvalue equals its geometric multiplicity and is therefore finite. O

Evidently, we obtain from Lemmas 3.1.9 and 3.1.12
Corollary 3.1.13. If o(A)N[—3,0) C o0(A), then a(L(-,n))NW2 C oo(L(-,n)) for
every n € [0,1].

Theorem 3.1.14. Assume that o(A) N [—B,0) C o¢(A). Then the total algebraic
multiplicity of the spectrum of L located on (—ioo,0) coincides with the total alge-
braic (geometric) multiplicity of the negative spectrum of A.

Proof. Let us denote by N(n) the total algebraic multiplicity of the spectrum of
L(-,n) located on (—ico,0). Since (iA)"I + A < L(A,n) for A € (—ic0,0), the

minimax principle gives
N(n) < N(0), nel0,1], (3.1.11)

see the proof of Lemma 3.1.12. Consider the auxiliary operator pencil
Lo(\, €)= (i) I+Zm O)(aal + bsA) + CK;] +

where A € C, ¢ € [0,1], and a4 > 0 and by > 0 are the constants from Lemma
3.1.2, part 4, and where we may assume that ay > $by. Then Lg(-, ¢) is an operator
pencil satisfying Condition III with KJ(O) replaced by (KJ(O) + (1 = ¢)asl and v;
replaced by (7; + (1 —¢)bs. Applying Lemma 3.1.9 to the pencil Lo (-, {) we obtain
o(L(-,¢)) N W2 c [—iB'/™ 0) for all ¢ € [0,1]. Clearly, Theorem 9.2.4 leads to
a representation of the eigenvalues and eigenvectors of Lg(+,{) on (—ico,0) as in
Theorem 1.2.7, and Remark 1.2.8 also applies here. Then we have for {, € [0, 1]
and an eigenvalue \g € [—i3Y/™,0) of Lo(-, o) the expansions

MO =X+ D anC—)F =11

yOQ) =0 + Db C—m0)t, a=1,.m
k=1
of eigenvalues and eigenvectors near Ay of Lg(-,() for ¢ near (y. Differentiating

LO(AL(C),C)yEq)(C) = 0 with respect to ¢ and taking the inner product of the
resulting equation with y,(¢), we obtain for ( = (o and with 79 = iAo > 0 that
ia,1 is a quotient of real numbers, where the denominator

nrg o) ||2+Zm (1= Co)aallbf 1% + ba( b8 b(2)) + Go (K08, 6(8)))
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is positive because of a4 > by, whereas the numerator

n—1
>3 (aallb 117 + ba(Ab20(0)) — (K502 b8))

j=1

is nonnegative by Lemma 3.1.2, part 4. It follows that ia,; > 0 and consequently
No(¢) > No(0), where Ny(() is the total algebraic multiplicity of the spectrum of
Lo (-, ¢) located on (—ioco,0). Therefore

No(1) > No(0). (3.1.12)
It is easy to check that the function f given by

n—1
t" 4+ asp(t) 4
t) = ,  where t) = t7,
oy =+ w0= 3
maps (0,00) onto (0,00) and that f/(¢) > 0 for all ¢ > 0. Hence the parameter
transformation 7 = — f(i\) maps the semiaxis (—ioco,0) in the A-plane bijectively
onto the semiaxis (—o0,0) in the 7-plane. Since

Lo(X,0) = ((iA)" + aap(iN)) I + (bap(iX) + 1)A,

it follows that there is a ono-to-one correspondence between the eigenvalues, with
multiplicity, of Lo(-,0) on (—ico0,0) and those of A on (—o0,0). Consequently,
taking into account the absence of associated vectors, see Lemma 3.1.11, we obtain
No(0) = Ny, where N4 is the total multiplicity of the negative spectrum of A.
With a similar reasoning for 7 = —(4A\)"™ we obtain N(0) = Na.

The evident identity L(A, 1) = Lo(A, 1) implies N (1) = Ny(1). Using (3.1.11)
and (3.1.12) we obtain N(0) > N (1) = No(1) > No(0) = N4 = N(0). This means
that all numbers are equal, and in particular N (1) = N4. |

3.2 Quadratic pencils with indefinite linear term

In this section we consider the quadratic operator pencil
L(A\1) = T —i)\K — A,

where A and K are self-adjoint on H, A > 0 and K > —(,] for some positive
number S5, and K is relatively compact with respect to A. Observe that gess(A4) C
o(A) C [0, 00).

Definition 3.2.1. Let p be a positive integer and assume that Hj is a closed sub-
space of H. The operator K is said to have p negative squares on Hy if Hy C D(K),
if dim V' < p for each subspace V' C Hj for which K|y < 0, and there is at least
one such subspace V with dim V' = p.
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Theorem 3.2.2. Let p be a positive integer and assume that K has p megative
squares on N(A). Then for each € > 0 there exists 6 > 0 such that L(-,n) has at
least p normal eigenvalues, counted with multiplicity, on (—ig,0) for alln € (0,0).

Proof. For z € C and 7,7 € [0,00) define
L(z,7,m) =2 —mnK — A.

Since K is A-compact, the essential spectrum of £(-,7,1) does not depend on 7
and 7, see [137, Theorem IV.5.22]. In particular,

Oess(L(+,7,1)) = Oess(L(+,0,0)) = 0ess(A) C [0700)‘

By assumption, there is a p-dimensional subspace V' of N(A) such that K|y < 0.
For k=1,...,p consider

B . ((TnK + A)y,y)
2 = min max
MCD(A),dim M=k 07y€ M [yl

and

B , (Ky,y)

= min maXx
McCV,dim M=k 0£yeM ||y||?

For 7,1 € (0, 00) it follows from K|y < 0 and A > 0 that

g

2z < tnag < 0

and that (Ky.y)

. Y9

zZr > Tn  min > —7nBs.
ozyeDn(a) |ly|[?

Since 2z < 0 is below the essential spectrum of L£(-,7,7), the minimax principle
says that, for > 0 fixed, the number z; is a (negative) eigenvalue of L(-,7,7).
This eigenvalue is a continuous function of 7 € (0, c0) by Theorem 1.2.7. Its graph
in the (7, z)-plane is located in the angular region

{(T,Z) eR%:7>0, —nfBe < j_ Snak}.

This curve intersects the parabola z = —72, and for all intersection points,
nok < 7 < nfa. (3.2.1)
Choose such an intersection point (7x, 2x). Then A\ = —i7; will be an eigenvalue

of the pencil L(-,n) located on the negative imaginary semiaxis. Notice that if zj
occurs with multiplicity larger than 1, then we may choose the same 73 for these
zk, and every eigenvector of L(-,7k,7) at zx is also an eigenvector of L(-,n) at
Ar. This shows that L(-,n) has at least p eigenvalues on the negative imaginary
semiaxis, counted with multiplicity.
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Now let € > 0 and set § = 5551. Then the right-hand side of the estimates
(3.2.1) shows for n € (0,9) that

‘)\k‘ = Tk Snﬁg <Py =c¢

forall k=1,...,p. O

3.3 Notes

Theorem 3.1.14 was obtained in [211]. Self-adjoint quadratic operator pencils occur
in problems of plate and shell vibrations [149]. Further applications of polynomial
operator pencils can be found in [193], [204].

The effect of inner damping is well known in mechanics and leads to an

additional term in the equation of small motions. For transverse vibrations of a
rod, (2.7.1) becomes

0%u 0ty 0 ou  O%u
Yorowt T oxt 009 oy T o =0 (8:3.1)

where v > 0 is the coefficient of inner damping, see [31, Section 3.6]. For pipes

conveying fluid, the equation of small lateral motions was obtained in [206, (12)].

This equation is similar to (3.3.1), but has some additional lower-order terms.
The spectral problem corresponding to (3.3.1) is

1+ iy W (A z) — (9y) (N, 2) = Ny(\, 2),

y(A,0) =0,
y"(A,0) =0,
y(Aa) =0,

y'(\ @) +iary (A a) =0,

where o > 0. We cannot apply the theory of Chapter 1 to this problem. But
setting n = 2, Lemma 3.1.9 and Theorem 3.1.14 give that the spectrum of this
problem in the open lower half-plane lies on the negative imaginary semiaxis and
its total algebraic multiplicity does not depend on v and on a.

A related problem describing vibrations of a rotating beam with inner damp-
ing leading to a non-self-adjoint operator pencil was considered in [6].

Lemma 3.1.9 is a generalization of [155, statement 2.4°]. We recall that in
[155], M.G. Krein and H. Langer consider the pencil A>T + AB + C, where B is
self-adjoint and bounded and C > 0 is compact. Replacing A with ¢\, this pencil
becomes

(i\)?I +i\B + C,

which satisfies Condition IIT since the boundedness of the operators involved im-
plies the subordination property. Hence Theorem 3.1.14 implies that the spectrum



82 Chapter 3. Operator Pencils with Essential Spectrum

of the pencil A\2T 4+ AB + C lies in the closed left half-plane if B > 0, as stated in
[155, statement 2.4°].

Theorem 3.2.2 was proved in [147], where it was used to obtain a sufficient
condition of instability of liquid convective motions in case of heating.

In the proof of Theorem 3.2.2 we have applied the minimax principle to
a quadratic operator pencil. The minimax principle for more general operator
functions was investigated in [74], [75], [167]. This method is the same as for finite-
dimensional spaces or for compact operators, see, e.g., [137, p. 60] or [70, p. 908].



Chapter 4

Operator Pencils with
a (Gyroscopic Term

4.1 Quadratic operator pencils involving
a gyroscopic term

In this section we will investigate the spectra of monic quadratic operator pencils
which include a term corresponding to gyroscopic forces. We also admit presence
of essential spectrum. Our operator pencil is

LX) = M1 —iAK —AB — A,

acting in a Hilbert space H with domain D(L(A)) = D(K)ND(B)ND(A), where
the operators K, B, A satisfy the following conditions.

Condition IV. The operators K, B and A are self-adjoint operators on H with
the following properties:

(i) K > kI, k>0, A> =8I for some positive number 3, and (—v,0) C p(A)
for some v € (0, B];

(i) the operators B and K are subordinate to A, i.e., D(A) C D(B)ND(K) and

the operators B and K are bounded with respect to the operator (A + 11) : ,
where B1 > 3.

We note that Condition IV, part (ii), implies D(L(X)) = D(A).

Proposition 4.1.1.
1. Assume that part (i) of Condition IV holds. Then part (ii) of Condition IV is
satisfied if and only if D(A) C D(B)ND(K) and there exist positive numbers
a and b such that the inequality

max{|| By|*, | KylI*} < ally|® + b(Ay, y) (4.1.1)

holds for each y € D(A).
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2. If Condition 1V is satisfied, then
(i) for each by > 0 there exist a1 > 0 such that

max{||Byll, [Ky} < axllyl[ + b1 ][ Ay]| (4.1.2)

for each y € D(A),
(ii) there exist az > 0 and by > 0 such that

max{|| By||, [|Ky||*} < ax|ly[|* + b2l Ay|® (4.1.3)

for each y € D(A),
(iii) there exist as > 0 and bs > 0 such that

max{|(By, y)|, (Ky,y)} < asllyl|* + bs(Ay, y). (4.1.4)

Proof. The statements 1 and 2, parts (i) and (iii), are special cases of Lemmas
3.1.1 and 3.1.2 if we observe that the property K; > 0 of Condition III is not used
in the proof of Lemma 3.1.2. Hence we only have to prove 2, part (ii). From (4.1.1)
we immediately obtain

max{[| By||%, | Ky[*} < ally[|* + bl Ay| ||
b
<ally|® + 5 (Il +114y]1?) .
which proves (4.1.3) with as = a+ 5 and by = 5. O

In the same way as Theorem 3.1.4 one can prove

Theorem 4.1.2. If the domain ) is normal for the pencil L, then there exists a
number § > 0 depending on A, B and K with the following properties. If By and
K are closed operators in H which are subordinate to A and if for all y € D(A)

1(B1 = B)yll + | (K1 — K)yll < o[ Ayl + llylD), (4.1.5)
then Q) is normal for the pencil
LX) = NT —i\K; —AB; — A,
and the total algebraic multiplicities of the spectra of L and L in € coincide.
Let us consider the operator pencil dependent on the parameter n € [0, 1]:

L(A\,1) = AT —iAK —nA\B — A.
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Similar to Lemma 3.1.5 we have

Lemma 4.1.3. Let A\g,n0 € C and suppose that the operator L(\g,mo) has the
following properties:

(i) there exists a number € > 0 such that

1L (Aosm0)yll > ellyll (4.1.6)
for ally € D(A);
(ii) codim R(L(Xo,m0)) =¢, 0 < ¢ < 0.

Then for every e’ € (0,¢) there is some 6 > 0 such that the operators L(\,n) have
these properties in the neighbourhood {(\,n) € C? : |X — Xo| + |n — no| < 6} of
(Mo, mo) with € replaced by €' in (4.1.6) but with the same q in (ii).

Similar to Corollary 3.1.6 we have
Corollary 4.1.4. For alln € C, 0o(L(-,n)) C Gapp(L(-,7)).

Lemma 4.1.5. For n € [0,1], the part of the spectrum of L(-,n) in the open lower
half-plane is located in the set {\ € C:0 >TIm\ > —3Y2 |Re )| < g3/4x~1/2}.

Proof. Let Ao € Gapp(L(-,n0)), where ng € [0,1] and Im Ay < 0. Choose an ap-
proximate sequence {y;} of vectors y; € D(A) such that ||y,|| =1 and

s — ido(Kyj,y;) — moXo(By;, y;) — (Ayj, ;) = &, (4.1.7)

where lim £; = 0. To shorten the notation we introduce X = Re g, Y = Im Aq,
j—o0

k; = (Ky;,y5), bj = (Byj,v;), a; = (Ay;,y;). Taking the imaginary and the real
parts of (4.1.7) we obtain

2XY—X]€] —Y?’]()bj = Y5, (418)

X2 —Y?+Ykj — Xnob; —a; = a; (4.1.9)

with lim o; =0 and lim y; = 0. Solving for X in (4.1.8) we obtain
Jj—o0o Jj—o0o

x = Yobj +7;
2V — kj
and thus
Ynob; + 75 — 2Ynob; + k;jnob,
2 —

_ (kj =Y)nobj +;
2V — k;

X —nob; =

Since (4.1.9) can be written as

X(X =nobj) =YY = kj) —a; = ay,
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substituting X and X — nob; into this equation gives

(Ynob; + ;) [(k; — Y)nob; + ;]

V(Y — k) —a; = aj.
(2Y — kj)? (V' —kj) —a; =y

This can be written as

—(Y = k)Y[(2Y — k;)? + b2n2 bikiv; +77
( 7)Y [( i) ]770] Caj=a; - No0; K75 T 7; (4.1.10)
(2Y — k;)? (2Y — k;)?
We denote the left-hand side of (4.1.10) by ¢; and the right-hand side by d;. Hence
Cj S —(Y — kJ)Y — aj = —Y2 + Yk‘j — aj.

Now assume additionally that Im Ay < —3'/2. The inequality Y2 > 8 > 0
implies that there is § > 0 such that Y2 = (14 §)3. Because of k; > 0 and Y <0
we obtain the estimate

Cj < —(1+5)6—|—ij—&]‘ < —(1—|—5)ﬂ—aj.

On the other hand, in view of ¥ < 0, k; > k > 0 and Proposition 4.1.1, 2.(iii),
there are positive constants a and b such that

2
 molbilkslvil

d; >
T=NT ik 4v?
_ o molbilll
IT4ly| 4y
2
Mol7;1 V5
> o) — 4| (@ +baj) — e
Hence
brgo;] anolv;| | 7
Ozcj_djg_(l'i_é)ﬁ_aj_aj—’_ 4|Y‘ aj + 4|Y‘ 4772
bno ;| anoly;l | i
S—(l—i—é)ﬁ— 1-— 4|Y‘ aj—ozj—i- 4‘Y| +4Y2

Since v; — 0 as j — oo, we have for all sufficiently large j that bng|y;| < 4|Y], so
that —a; < 3 leads to

bro |5 anolv;| | 3
0< —(14+9 1-— —
< -1+ )BJ“( gy )PTG9T gy Taye
anoly;| | Vi
§—5B—aj+ J + J

4y| T4y
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Letting j — oo leads to the contradiction 0 < —§3. This means that there is no
approximate spectrum of L(-, 7o) in the half-plane {A € C: Im A < —B2 }.

Now let 0 > Im \g > —43'/2. Multiplying (4.1.8) by X and (4.1.9) by Y and
taking the difference of the resulting equations we obtain

(X2+Y2)(Y — k;) + Ya; = o(1). (4.1.11)
Since kj > K, —a; < f and Y < 0, it follows that
(X24YH)(Y —kj)+Ya; < —X%kj+Ya; < —X%k-YB < X2+ %2 (4.1.12)

Together with (4.1.11) this implies | X | < g3/45=1/2,
Thus we have proved that for all € [0,1] the approximate spectrum of
L(-,7n) in the open lower half-plane is located in the domain

Q={\eC:0>ImA>—8Y2 |Re)| < g3471/2}.

Hence for each (A,n) € (C™\ Q) x [0,1], A & 0app(L(+,7)), and therefore (4.1.6)
holds for these (A, 7). Letting

So ={(An) € (CT\ Q) x[0,1] : codim R(L(A, n)) = 0},
S1={(A\n) € (C\ Q) x[0,1] : codim R(L(A,n)) # 0},

it therefore follows from Lemma 4.1.3 that both Sy and S; are open subsets of
(C7\Q) x[0,1]. Since (C~\ ) x [0,1] is connected, one of the sets Sy or S; equals
(C\ Q) x [0,1], whereas the other one is empty. Observe that L(-,0) is a pencil
of the form as considered in Chapter 3. Hence the spectrum of L(-,0) in the open
lower half-plane lies on the negative imaginary axis, see Lemma 3.1.9. Choosing
A€ C7\ Q with Re A # 0 it follows that (A,0) € Sp. Hence Sy is nonempty, and
from the above reasoning we obtain (C~ \ 2) x [0,1] = Sp. Thus R(L(A\,n)) = H
for all (\,n) € (C~\ Q) x [0,1]. Since also (4.1.6) is satisfied for these (\,7),
it follows that C~ \ Q C p(L(-,n)) for all n € [0,1]. Thus we have shown that
o(L(-,n))NC~ Cc Qfor all n € [0,1]. O

With the notation in the proof of Lemma 4.1.5, an obvious modification of
inequality (4.1.12) together with (4.1.11) leads to

0> (X2 +YHKk-Y)+YB> (X2 +YHr+ Y5

Hence we have

Remark 4.1.6. For 7 € [0, 1], the part of the spectrum of L(-,n) in the open lower
half-plane is located in the disc {A\ € C: 0 > [(Re A\)? + (Im A\)?]x + (Im )3 < 0}.

Lemma 4.1.7. For each n € [0,1] all points on the real azxis, with the possible
exception of 0, belong to p(L(-,n)).
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Proof. The set of points X + 7Y in the complex plane with (X2 +Y?)k+Y B <0
describes an open disc in the lower half-plane whose boundary touches the real axis
at the origin. Hence it follows from Remark 4.1.6 and a reasoning as in the proof
of Corollary 3.1.6 that o(L(-,n)) "R C 0app(L(-,n)). It is obvious that (4.1.11)
also holds for Y = 0, so that lim k;X? = 0, which is possible only if X = 0 due

J—00

to k; > k. This means that o(L(-, 7)) NR = gapp(L(-,n)) N R C {0}. O

Theorem 4.1.8. Assume that the negative spectrum of A consists of at most finitely
many eigenvalues of finite multiplicity. Then the total algebraic multiplicity of the
spectrum of L(-,n) in the open lower half-plane does not depend on n € [0,1] and
equals the total multiplicity of the negative spectrum of A.

Proof. According to Theorem 3.1.14 the part of the spectrum of L(-,0) lying in
the open lower half-plane consists of finitely many normal eigenvalues, and the
total algebraic multiplicity of L(-,0) in the open lower half-plane equals the total
multiplicity of the negative eigenvalues of A. In view of Lemma 1.1.9, the fact
that the spectrum in the open lower half-plane is located in the disc {A € C :
((ReX)? + (ImA)?)kx + Y3 < 0}, see Remark 4.1.6, and a connectedness argument
it is sufficient to show that this part of the spectrum is uniformly separated from
the closed upper half-plane, that is, it remains to prove that there is no convergent
sequence of pairs (\s,ns)22; with the following properties: s € [0,1], Im A; < 0,
lim As =0, As € 9o (L(-,ns))-
S— 00

By proof of contradiction, assume that such a sequence exists. In view of
Corollary 3.1.6 it follows that As € gapp(L(+,7s)) for all s € N. Hence for each
s € N there exists a sequence (ysn )52 ; of vectors ys, € D(A) such that ||ys,| =1
and nh_)rréo L(As,ms)ysn = 0. Let us choose for each s a vector 15 = ysp,, such that

IL(As,ms) s || < s A, (4.1.13)

where [As]1 = |Ag| if ReAs = 0 and | Re A;| otherwise. The Hilbert space H can
be written as an orthogonal sum of two invariant subspaces D; and Ds in such a
way that if fl € D1 ﬂD(A), f2 € D2 and ||f]H = 1, j = 1,2, then (Aflafl) Z 0
and —f8 < (Afa, fo) < —y < 0. We observe that D5 is finite dimensional since
it is assumed that the negative spectrum of A consists of at most finitely many
eigenvalues of finite multiplicity.

The vectors 1; can be written in the form ¢; = (P +0,V, where &, € D,
U, € Dy, [|[Us]| = ||Ds]| =1, ¢ >0, 05 >0, (2 + 62 = 1. Write Xs = Re ), and
Y, = Im ). Below we will make use of the identities

(L(Asﬂ?s)iﬁs, \Ijs) = )\305 - iAsCs(K(I)sv \Ijs) - iAsas(K\Psv \Ijs)
- WsAsCs(B‘I’s, \I/s) - 775)\595(3‘1’37 \Ijs) - GS(A\II& \Ijs)

- 99 [)\5 - Z)\Q(K\I/€7 \Ile) - ngAS (B\Ilsa \IIS) - (A\I/97 \Ile)]
— G [N (K, W) + nohs (BO,, U,)] (4.1.14)
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and

Re(L(As, 05)0s, ®5) = Re[A2C, — ids (Kths, @) — s ds(Bibs, @) — ((AD,, )]

= (X2 - Y2 — (A®,,,))Cs — Refirs(Kibs, Bs) + 15 As(Bihs, ®,)].
(4.1.15)

Inequality (4.1.13) implies
Re(L(As, 15)1hs, ®s) = o(1). (4.1.16)

Since the operators B and K are bounded on the finite-dimensional space Ds, we
conclude that

(LM, ms) P2, Uy) = —id(KDg, Uy) — nsAs(BPs, Uy) = 0o(\g) (4.1.17)

We consider two cases.

1. Assume there exists a positive number C such that | BU|| < C and | K%, < C
for all s € N. From (4.1.15), X, = o(1), Yy = o(1), (A®,, ®s) < —v, (Z + 02 =1,
0s > 0, and (4.1.16) we deduce that

lim ¢, =0, lim 6, = 1. (4.1.18)
S— 00

S§—00

In view of (4.1.13), (4.1.17) and (4.1.18), we obtain
M iN(KW,,U,) — A\ (B, U,) — (AT, T,)

! [(L()‘Sv USWS, \IIS) - Cs (L(/\g, 77$)q>57 \Ile)}

= o(\s).

We may assume, by choosing a suitable subsequence, if necessary, that either all
X, are zero or all X, are different from zero. If all X are zero, then the real part
of the previous identity gives

—Y7 4 V(KT U,) — (AT, Ty) = o(Y5).
Since all terms on the left-hand side are nonpositive, we arrive at
(KWs, ¥s) = o(1),

which contradicts (KUg, Uy) > k.
Now assume that X # 0 for all s. Taking the imaginary part in (4.1.14) and
observing (4.1.13) and (4.1.18) it follows that

99[_X9 (K\II% \IIS) - nng (B\II% \IIS)] + CSYS [Im(K(I’g, \IIS) - 779 Re(B@g, \IIS)]
= Im(L(\s, ms)0s, Us) — 2X Vs + (s X [Re(K @y, Us) + 15 Im(BO, )]
= o(Xy)
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and therefore, in view of (KU, U,) >k > 0,

_Y;(’I]S(B\Ifs, \Ijs) + 0(1))
(KW, Uy)

In particular, X, = O(Y;) since {BU,, U,) : s € N} is bounded by assumption.
Taking the real part in (4.1.14) leads to

95 [YS (K\I/97 \Ile) - nsXs(B\IISa \IIS) - (A\I/w \Ile)} = O(Xs) + O(Ye)- (4120)
Using (4.1.18) and substituting (4.1.19) into (4.1.20) we obtain

2
(5(‘1\’;; ‘I\’I/)) = o(Yy). (4.1.21)

X, = + o(X,). (4.1.19)

Yi(KW,, W) — (AU, U,) + Y,

Since all summands on the left-hand side of (4.1.21) are nonpositive, it follows
that (KW, U,) = o(1), which contradicts K > 0.

2. If there exists no positive number C such that ||BY,|| < C and ||KV,|| < C for
all s € N, we may assume, by choosing a subsequence, if necessary, that

|BY || + [|[KTs|| — o0 as s — oo. (4.1.22)
From (4.1.14) and (4.1.13) it follows that
05 (AT, U,) = 0, (A2 — iN (KT, Ty) — oA (BT, Ty)]
= Gs [IA (K @y, W) + 15 As (BPs, Ws)] + 0(1).
Hence there is a positive constant C; such that
0:(AVs, Ws) < Cr(1 4 || BY[| + [ KT ).
In view of Proposition 4.1.1, part 1, there is a positive constant p such that
PUIBYS|? + | KW|%) < 1+ (AT, 0y),
where we have used that (AU, ¥s) > 0. The last two inequalities lead to
Oslp(I B + [ KT|%) = 1] < C1(1+ | B[] + [ KLs])),

and thus
p. < CLAH B +[|KT,)])

T (B2 + | E2) -1
In view of (4.1.22) and 62 + (%=1, this gives
0s =o(1), ¢s =1+ o0(1). (4.1.23)
From (4.1.16) and (4.1.15) we obtain
Co(ADq, @) = (XT = Y2)(o — Refida (ths, KPs) + 1A (s, BPs)] + (1)
=o(1)

since K and B are bounded on the finite-dimensional space Ds. But this is a
contradiction since (s = 1+ o(1) and (AP, D) < —7. O
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4.2 Linearized pencils in Pontryagin spaces

Theorem 4.1.8 is related to indefinite inner product spaces. We consider the op-
erator polynomial L from Section 4.1 satisfying Condition IV and, for simplicity,
0 € p(A). The operator pencil L is linearized by introducing z = Ay. Then the
equation L(A)y = 0 can be rewritten as the system of equations

Az —iKz— Bz— Ay =0,
Ay —z=0,

which has the operator matrix representation
(M —-9X =0,

where X = (2,9)7, 2,y € D(A), and

5= (’KI* B 6‘) . (4.2.1)

We now use the spectral resolution of A to introduce an indefinite inner
product on D(|A|2). Let Hy and H_ be the (invariant) spectral subspaces of
H associated with the positive and negative spectrum of A, respectively. Then
H=H ®H_,and Ay := A|g, and A_ := A|y_ are self-adjoint operators on
H, and H_, respectively, satisfying Ay > 0 and —A_ > 0. Since 0 € p(A) and
since the negative spectrum of A consists of finitely many eigenvalues of finite
multiplicity, H_ is finite dimensional and \A|é is bounded and invertible on H_,
whereas |A|2 is invertible on H . Hence, for z = x4 +2_ € D(|A|2) withz, € H,
and z_ € H_, and y =y, +y_ € D(JA|2),

(x,y) = (|Al2ap, |Al2ys) — (|A] 22—, |Al2y_) (4.2.2)

defines an inner product on D(|A|2) which makes it a Pontryagin space. More
precisely, (D(]A|2),(-,-)) is a Il.-space, where &, the dimension of H_, equals
the number of negative eigenvalues of A, counted with multiplicity. Note that
D(A_) = H_ and that A_ is bounded. For x € D(A) we therefore have z € D(A)
and z_ € D(A), and thus, for z € D(A) and y € D(|A|2),

(Al zs, [Al2ys) = (|Ales, ye) = £(Azs, ye),
so that
<.’E,y> = (Ax+7y+) + (Avay*) = (A.’E,y)
Therefore H @& D(]A|2) equipped with the inner product

(X1, X2) = (21,22) + (W1, 42), X1 = (21,51)", Xo=(22,0)" € HEBD(\A|§),
(4.2.3)
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is a I,.-space. Note that D(JA|2) = D((A + B11)2) so that we will use whichever
appears to be more convenient.

Together with the operator S with domain D(|A|2) x D(A) we consider the
operator S_ with D(S_) = D(|A|2) x D(A) in the Pontryagin space H & D(|A|2)

given by
S — (‘”2*3 6’) . (4.2.4)

Here we observe that D((A+ B11)2) is a subset of D(K) and D(B), see the proof
Lemma 3.1.1.

Proposition 4.2.1. The operators S and S_ are closed in the Pontryagin space
1
H® D(|A]2), and S_ = S*.

Proof. Let X1, X, € D(|A|2) x D(A). Then

<SX1,X2> = ((ZK + B)Zl, Zz) + (Ayl, 22) + <Zl,y2>
= (21, (=K + B)22) + (y1, 22) + (21, Ay2)
= (X1,5_X>)

shows that S_ C S*. Now let X5 € D(5*). Then there is X5 € H @ D(]A|2) such
that (SX7, X3) = (X1, X3) for all X; € D(S). Taking first X; € {0} ® D(A), i.e.,
z1 = 0, it follows that

(Ay1, z2) = (SX1, Xo) = (X1, X3) = (y1,93) = (Ay1,93).

Observing that {Ay; : y; € D(A)} = H since 0 € p(A), we get 2o = y3 € D(|A|2).
Now let X1 € D(A) x {0}. Then it follows that

Using again that A is invertible, we obtain yo = A7!(25 + (iK — B)z2) € D(A).
We have thus shown that D(S*) C D(|A|2) x D(A) = D(S_), and S* = S_
follows. Since we did not use K > 0 in this proof, we may replace K with —K,
i.e., interchange S and S_, in the above result. Then we obtain S = §* = §**,
which means that S is closed. ]

Proposition 4.2.2. The operator S is maximal dissipative, and the number ng(C™)
of eigenvalues of the operator S, counted with multiplicity, in the open lower half-
plane, does not exceed Kk =nA(C™).
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Proof. For X = (z,y)T € D(S) we have

1 1
Im(SX, X) = 22,((SX,X)—(X, SX)) = 2i(<SX,X>—<S_X,X>) = (Kz,2)>0.
It also follows immediately that

Im(—5*X, X) = Im(—S_X, X) = Im(SX, X) >0

for all X € D(S*) = D(S). Hence S is maximal dissipative by [18, Chapter 2,
2.7]. An application of [18, Chapter 2, Corollary 2.23] completes the proof, where
we have to observe that the convention used in [18] is that in Pontryagin spaces
the positive subspace is finite dimensional. Hence we have to replace the inner
product and the operator S by their negatives, so that the upper half-plane C* in
[18, Chapter 2, Corollary 2.23] becomes the lower half-plane C™~ in our settings. O
Remark 4.2.3. Proposition 4.2.2 states that the number ng(C~) does not ex-
ceed k, whereas Theorem 4.1.8 states that this total multiplicity ng(C~) = m(C™)
equals k.

4.3 Gyroscopically stabilized operator pencils

4.3.1 General results

In Theorem 4.1.8 we saw that the condition K > 0 guarantees that the total al-
gebraic multiplicity of the spectrum located in the lower half-plane is independent
of the gyroscopic operator B.

Here we consider the case K = 0. This enables the so-called gyroscopic
stabilization. Namely, the spectrum of the pencil

LN =MNI-)AB—-A

may lie on the real axis and be simple while o(A4) N (—o0, 0) # 0.
We henceforth require in this section that the operators A and B in the pencil
L satisfy

Condition V. The operators A and B are self-adjoint operators on H with the
following properties:
(i) A > —pBI for some positive number [3;
(i) (A+ B1I)~t € So for some By > B;
(iii) the operator B is subordinate to A, i.e., D(A) C D(B) and the operator B
is bounded with respect to the operator (A + B1I)Y/?.

Together with the pencil L we consider the family of pencils given by

L\,n) =XT—- B — A (4.3.1)
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with D(L(XA,n)) = D(A), where n € [0,1] is the parameter of this family and X is
the spectral parameter.

Lemma 4.3.1. For n € [0,1], the nonreal eigenvalues \ of L(-,n) satisfy |A| < Bz.

Proof. If A is a nonreal eigenvalue of L(-,n) with normalized eigenvector y, then
L(\,n)y = 0. Taking real and imaginary parts of (L(\,n)y,y) = 0 leads to

(ReA)? — (Im A)? — (Re \)n(By, y) — (Ay,y) =0,
2(Re \)(Im \) — (Im \)n(By,y) = 0.

Since we assume that Im A # 0, the second equation gives n(By,y) = 2ReA.
Substituting this identity into the first equation leads to

A = (ReA)” + (ImX)? = —(Ay,y) < B. O

Remark 4.3.2. Since (A + 3;1)~! is compact by Condition V, part (ii), the spec-
tral theorem for self-adjoint operators gives that also the operator (A + 51)7é
is compact. In view of Condition V, part (iii), it follows that B is (A + 811)~*
compact. Therefore L(A,n) is a Fredholm operator for all A € C and n € [0,1],
see [137, Theorem IV.5.26]. In view of Lemma 4.3.1 it follows that the spectrum
of L(-,n) consists of normal eigenvalues.

Proposition 4.3.3. If A = 0 is a semisimple eigenvalue of the pencil L(-,ny) for
some ng € (0,1], then A = 0 is a semisimple eigenvalue of the pencil L(-,n) for
all p € (0,1], and the multiplicity of the eigenvalue X = 0 of the pencil L(-,n) is
independent of n € (0,1].

Proof. 1t is clear that y is an eigenvector of L(-,n) corresponding to the eigenvalue
A = 0 if and only if y is a nonzero vector in N(A). Assume there is 7 # 0 such
that the eigenvector yo corresponding to the eigenvalue A = 0 of L(-,n) has an
associated vector y;. Then Ay, + nByy = 0, and Z;)yl would be a corresponding
associated vector for the eigenvalue A = 0 of L(+,7n9) with eigenvector yo, which
contradicts the assumption that A = 0 is a semi-simple eigenvalue of L(-,n9). O

The following theorem and an outline of its proof can be found in [284].

Theorem 4.3.4. Let n € [0, 1]. Then the total algebraic multiplicity of the spectrum
of L(-,m) in the open lower (or, what is the same, upper) half-plane does not exceed
the total geometric (or, what is the same, algebraic) multiplicity of the negative
spectrum of the operator A.

Proof. In view of L(A,n)* = L(A,n) for all A € C and 7 € [0,1], it suffices to
prove the statement about the spectrum in the lower half-plane. We have noted in
Remark 4.3.2 that the spectrum of the operator pencil L(-,7) consists of normal
eigenvalues. Also, the spectrum of A consists of normal eigenvalues.
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We first consider the case that 0 € p(A). In the notation of Section 4.2 we

have
_(nB A
s=(7 1)

and H & D(JA|2) is a IL.-space with respect to the innner product (-,-) defined
n (4.2.3), where k is the number of negative eigenvalues of A, counted with mul-
tiplicity. Since for S_ defined in (4.2.4) we have S_ = S in the present case,
Proposition 4.2.1 shows that S is self-adjoint. Then the statement of our theo-
rem follows from well-known results of L.S. Pontryagin [233], see also [121] or
[18, Chapter 2, Corollary 3.15].

If 0 € o(A), then for small positive real numbers 7,0 € p(A+7I) and A+ 71
has the same number of negative eigenvalues, counted with multiplicity, as A.
Hence, the statement of this theorem holds for L(-, u) replaced with L£(-,n,7) =
L(-,n) — 71, i.e., with A replaced by A + 7I for these small positive 7. Theorem
1.2.7 shows that the eigenvalues depend continuously on 7 near 7 = 0, and this
property is uniform in 7 for all eigenvalues in the open lower half-plane since by
Lemma 4.3.1 there are only finitely many eigenvalues in the open lower half-plane.
Hence the number of eigenvalues of L(-,n) in the open lower half-plane, counted
with multiplicity, does not exceed that of L(-,n, ) for sufficiently small positive 7.
But since 0 € p(A+71), we already know that this latter number does not exceed
the total multiplicity of the negative spectrum of A. Thus we have shown that the
total multiplicity of the spectrum of L(-,n) in the open lower half-plane does not
exceed the total multiplicity of the negative spectrum of the operator A. O

For the remainder of this section we write B = i(G and assume in addition
to Condition V that the following holds.

Condition VI.

(i) The Hilbert space H is a complezification of a real Hilbert space.

(ii) The operators A and G are real, i. e., Ax and Gz are real whenever x € D(A)
or © € D(G), respectively, are real elements of the Hilbert space H.

Remark 4.3.5. 1. The operator G = —iB is a skew-symmetric (or antisymmetric)
operator, i.e., (Gy1,y2) = —(y1, Gyz) for all y1,y2 € D(A).

2. For all n € [0, 1], the spectrum of L(-,n) is symmetric with respect to the
real and imaginary axes, with multiplicity. Indeed, by [189, Corollary 1.5.5] the
statement on symmetry with respect to the real axis is obvious since L(A)* = L(A)
due to the self-adjointness of A and B. Now let A\¢ be an eigenvalue of L(-,7) and
(zo,...,Zm—1) be a corresponding chain of an eigenvector and associated vectors.
Putting

'_l

m—

=3 (A= X

j=0
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it follows that

LOWma(N) = [(=X)2T = (~X)iG = A] 2(A) = L(=A, ma()).

With p = —X we can write

mfl m—1
—f = Ao) 37] Z 1+ Xo) (1) ;.
j:O j=0
Hence it follows from Remark 1.1.4 that (xg,...,(—=1)""'x,,_1) is a chain of

an eigenvector and associated vectors of L(-,n) at —\g. Therefore, the algebraic
multiplicities of the eigenvalues A\g and —\g of L(-,n) are equal in view of Definition
1.1.3, part 2.

Theorem 4.3.6. Assume that 0 € p(A). Then the total algebraic (geometric) mul-
tiplicity of the spectrum of the pencil L(-,0) located in the open lower half-plane
is odd [even] if and only if the total algebraic multiplicity of the spectrum of the
pencil L(-,n) located in the open lower half-plane is odd [even] for alln € (0,1].

Proof. Similar to Theorem 1.2.7 we conclude from Theorem 9.2.4, that the eigen-
values of the operator pencil L(+, ) are continuous and piecewise analytic functions
of the parameter 7, and the spectrum of the pencil L(-,n) is symmetric with re-
spect to the real axis by Remark 4.3.5. The eigenvalues can leave or enter the upper
half-plane only in pairs, taking multiplicities into account, if we observe that the
assumption 0 € p(A) implies that 0 € p(L(-,n)) since L(0,n) = —A. Finally, since
nonreal eigenvalues are bounded with bound independent of 7 by Lemma 4.3.1,
nonreal eigenvalues cannot tend to infinity. O

4.3.2 Vibrations of an elastic fluid conveying pipe

To solve the stability problem for small vibrations of a linear pipe conveying a sta-
tionary flow of an incompressible fluid, we must investigate the pipe frequencies
or, equivalently, the location of the spectrum of the corresponding quadratic op-
erator pencil. Small transversal vibrations of a horizontal elastic pipe conveying a
stationary flow of an incompressible fluid are described in dimensionless variables
by the equation, see [79],

oM ,0%u Pu  *u
2 =0, 4.3.2
ot T au2 T M agor T or2 (4.3.2)
where u(z, t) is the transversal displacement, ¢ is the dimensionless time, z = 7, s is
the longitudinal coordinate, [ is the pipe length, v = 2712311/)21(/]2[ ,n = (m/(m+m,))"/?,

m and m, are linear densities of the fluid and the pipe, respectively, U is the
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fluid velocity, and EI is the bending stiffness of the pipe section. The boundary

conditions 92 o2

u u

S| —ul = (433)

represent hinge connection of the ends of the pipe.
We are going to give a definition of stability of such a problem. To this end

we impose the initial conditions

u(0,t) =

=0 z=1

u(z,0) =up(z), =e€]l0,1], (4.3.4)
Ou(z,t)
ot

=wui(z), z€]0,1]. (4.3.5)
=0
It follows from [272] that the initial-boundary value problem (4.3.2)—(4.3.5) pos-
sesses a unique solution for any ug € Wi (0,1) with uo(0) = ufj(0) = ug(1) =
uf(1) = 0 and any u; € W2(0,1) with uo(0) = ug(1) = 0.

Definition 4.3.7. The initial-boundary value problem (4.3.2)-(4.3.5) is stable if
there is a constant C' such that for each uy € Wi (0,1) with ug(0) = uf(0) =
up(1) = uf (1) = 0 and each u; € WZ(0,1) with u1(0) = u1(1) = 0, the solution u
of (4.3.2)-(4.3.5) satisfies

[ullo(t) < C|lullo(0) (4.3.6)
for all t > 0, where
1 2 1 2 2
ou 0%u
2 _
ey = [ |Gr0] dos []] Swn)| an

Let us substitute u(z,t) = y(x)e** into (4.3.2) and (4.3.3). Then we obtain

y @ o2y + 2iduy’ — N2y =0, (4.3.7)
y(0) = y"(0) = y(1) = y"(0) = 0. (4.3.8)

We introduce the operators Ay, A_, A= A, + A_ and G acting in L2(0,1) by
setting

D(A4) = D(A-) = {y € W5(0,1) : y(0) = y(1) = y"(0) = y"(1) = 0},
Apy =y, Ay =1,
D(G) = {y € W5(0,1) : y(0) — y(1) = 0}
Gy = 2vy/'.
!
Proposition 4.3.8. The operators Ay and A are self-adjoint, AL >0, A > — 4 I,

4
and AT', (A + BiI)™! € Soo for B > Z . The operator iG is self-adjoint and

subordinate to A.
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Proof. We will use Theorem 10.3.5 to verify that A and A, are self-adjoint. Ob-
serve that yUl = yU) for j = 0,1, 2 according to Definition 10.2.1. We have to find
Ui, Us and U defined in (10.3.3), (10.3.12) and (10.3.13), where in the present sit-
uation Uy and V are zero dimensional, so that U = Uj. First, it is straightforward
to see that

U, =

S oo
OO OO
oo = O
O O OO
o= OO
OO OO
_— o o o
o O O O

In particular, U; has rank 4. Clearly,
N(U;) = span{ea, €4, €5,€8} C Cs.

We recall that

0 0 0 1
Us =Jy where Jy= <_<é2’1 J(2)1> and Jy1 = 8 2 _01 8
’ 10 0 0

It is now straightforward to verify that

Us(N(Uy)) = span{es, e1,e7,e5} C C?,
R(U*) = R(U}) = span{ey, e3, e5,e7} C CB,

This shows that Us(N(Uy)) = R(U™*). Hence A and A are self-adjoint by Theorem
10.3.5. Then we conclude with the aid of Theorem 10.3.8 that A; and A have
compact resolvents and that A is bounded below.

Integration by parts shows that
v Ayl = (Avy,y) < [[Atylllyll, v € D(A). (4.3.9)

It follows immediately that A, > 0. Furthermore, it is easy to see that 0 is not an
eigenvalue of A . Since A, has a compact resolvent, its spectrum is discrete, and
altogether we have shown that A4 > 0. From (4.3.9) we obtain for all y € D(A)
that

4
1 v
(A-y,9) = =[A-yllllyll = —v*(Ary, 9)2 vl = = |(Ary,m) +  lyl?|, (4.3.10)

which leads to
o

(Ay,y) = (A-y,9) + Ar(y,y) 2 =,

(Y, )
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For y, z € D(G) integration by parts leads to
(Gy,z) = 21)/0 y'(2)z(x) dx
1
=20 (41200 = 90):(0)) =20 [ (@) (@) de = ~(0. Gz,

where we have used that y(1) = y(0) and z(1) = 2(0). Hence iG is symmetric.
Now let z € D(G*) and w = G*z. Then

(v, 2v2) = (Gy,2) = (y,G"2) = (y,w)

for all y € D(G). In particular, this holds for all y € C§°(0, 1), and it follows that
w = —2vz' in the sense of distributions. Definition 10.1.1 therefore shows that
z € W2(0,1). Taking now y = 1 € D(G), we calculate

1
0= Quy.2) = (Cy.2) = (y.w) = —20(y, ) = 20 / /() de

= =20 (2(1) - 2(0)) .

We conclude that z(0) — z(1) = 0, which means that z € D(G). We have thus
shown that D(G*) C D(G), and the self-adjointness of ¢G follows in view of the
symmetry of iG.

For y € D(A), integration by parts shows that

IGy|1? = —4(A-y,y). (4.3.11)
We observe that a slight modification of (4.3.10) gives

1 v? 9
—(A-y,y) < (Ary,y) + Nyl
and thus
1 1 vt
— (A_ < (A 2,
o, (A-yy) = (Ay,y) + - Iyl
This together with (4.3.11) leads to
IGyl* < 4(Ay, y) + 40*|yl?

for all y € D(A). With the aid of Proposition 4.1.1, part 1, we therefore conclude
that G is subordinate to A. O

Proposition 4.3.9. The numbers
=7k — 12?2, k€N, (4.3.12)

are the eigenvalues of A, counted with multiplicity. The eigenvalues are simple
with the exception of finitely many double eigenvalue in case v? = (k3 + k?)r? for
distinct positive integers kv and ko. For such a pair of distinct integers k1 and ks,
the double eigenvalue is T = —kik3mt
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Proof. Since all coefficients of the differential equation (4.3.7) are constant, one can
write down the eigenvalue equation explicitly and thus improve the lower bound
of A and even find its spectrum explicitly. Indeed, if 7 € R, then (A —71)y =0
reads

y(4) + fuzy// — Ty = 07 (4.3.13)
so that the characteristic function becomes
ptHv?p? -7 =0, (4.3.14)
which can be rewritten as
2\ 2 4
9 U v
= . 4.3.1
<,0 + 5 > T+ 4 (4.3.15)
Hence
2 4
9 U v
2 4
= \/T Ty

which has four solutions for p, counted with multiplicity, of the form +iw,, +iws
with complex numbers w; and ws. If wy; and ws are distinct and different from 0,
then the functions sin wyx, coswix, sinwsx, coswsex form a basis for the solutions
of the differential equation (4.3.13), and a straightforward calculation shows that

(2) sinwix sin ws
Yysxr) =
wi(wi —w?) w2 (wf —w3)’

Y2 1= yh, y1 =y +v%ys, yo =5 + 0y}

defines a basis yg, y1, y2, ys for the solutions of the differential equation (4.3.13)
satisfying y,(cj)(O) = 0y; for k,j = 0,1,2,3. Here 6, is the Kronecker symbol,
which is 1 if K = j and 0 otherwise. For the verification we note that one can
use the differential equation to reduce differentiations of order greater or equal 4.
Although this system is initially more complicated to derive, it has the advantage
that it extends to the cases when w; = 0 or wy = 0 or w; = wo as these cases
are removable singularities in the parameters w; and we of the above solutions.
The initial conditions y(0) = 0 and y”(0) = 0 show that a nontrivial solution of
(A — 7I)y = 0 must be a linear combination of y; and ys.

Taking the boundary conditions y(1) = 0 and y”(1) = 0 into account, it
follows that a nontrivial solution of (A — 71)y = 0 corresponds to a zero of the
characteristic equation

_ yi(1) ws(1)) _
c(7) = det (Z/i/(l) yé/(1)> =0, (4.3.16)

where we have to note that the determinant also depends on 7; for brevity we
have omitted the parameter 7 in the functions w; and y;. Also note that the mul-
tiplicity of 7 as a zero of ¢ equals the multiplicity of the eigenvalue 7 of A, see,



4.3. Gyroscopically stabilized operator pencils 101

e.g [189, Theorem 6.3.4], where it is shown that the structure of the eigenvector
and associated vectors of a differential operator pencil and an associated charac-
teristic matrix coincide; in particular, the (algebraic) multiplicities coincide and
equal the multiplicity 7 as a zero of the determinant of the characteristic matrix,
see [189, Proposition 1.8.5]. In view of

yi(D) +02(1) gD (w1 (D)
yﬁa»+w%a>yyn>‘dﬂ<ﬁ“a>yyn>’

a straightforward calculation shows that

o(r) = det <

sinwi Sinwsg
= 4.3.17
clr) = h I, (43.17)
which also holds for w; = 0 and wy = 0. Indeed, since the corresponding limit
would be 1, it follows that the cases w; = 0 and w2 = 0 do not contribute towards
eigenvalues of A.

It is convenient to introduce the variables w; = wjz, 7 =1,2. Then

2 . 2
’(ﬂj = —p2 = v + (—1)j1\/’7’ + v (4318)

and

sinw; = (=nm™ )
wj mZ:O (2m + 1)!wj s(@5), B
where s is an entire function with simple zeros at k72, k € N, and no other zeros.
Although the choice of the square root in the definition of w; is ambiguous, the
uniqueness of the sets {w1 (1), w2(7)}, 7 € C, shows that we can choose w; locally
in such a way that it is analytic, except at the point 79 = — ’f. If ¢(m9) = 0, then
w1(70) = w2(10) shows that s(w;(r)) = 0 for j = 1,2. By 'Hopital’s rule,
i SO _ @O (7))
ro10 /T—T90 o7 (—1)tlw/(7) 2
It follows that
o) 1 SO () | s(ma()
=70 T—1To =70 /T — To T=7T0 /T — To

2 2
(%)) o
and therefore, if 79 is a zero of ¢, then it must be simple. For 7 # 79, @/, (7) # 0 is

)
obvious, so that all zeros of s o w; in C\ {7y} are simple. In view of (4.3.14) and
(4.3.18), s(w;(7)) = 0 if and only if

T= wjz —v’w; = 7T4k;~1 - 7?21)2/{?, k; € N. (4.3.19)
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Since @ (1) = wa(7) if and only if 7 = 79, it follows that 7 is a double zero of ¢
if and only if 7 # 79 and (4.3.19) holds for j = 1 and j = 2, where 7 # 79 holds if
and only if k1 # ko. In this case,

1kt — w20k} = 7 = ntky — n20?k3,
which means that v? = 72(k? + k3) and
7=tk — 7t (k] + K3k = —kTk37. O

Remark 4.3.10. 1. It is a rather curious fact that double eigenvalues can only be
of the form —k?7* for integers k > 2, and letting v? = (1 + k?)7? we see that each
such number can indeed be a double eigenvalue for a suitably chosen v > 0. The
sum of squares function, see [105, Section 16.9, Theorem 278] shows that for each
positive integer n we can find v such that the number of double eigenvalues of A
exceeds n.

2. Although in the original problem we assume v # 0, we may apply (4.3.12)
to v =0, in which case A = A. Hence A, > 7*. Then (4.3.9) leads to

v A_y|? = (Ayy,y) > 7yl% y € D(A),

so that we have
JA_yll = v*x?lly]l, y € D(A). (4.3.20)

We know by Remarks 4.3.2 and 4.3.5 that the spectra of the operator pencils
(4.3.1) with B =G, i.e.,

consist of normal eigenvalues which are symmetric with respect to the real and
imaginary axes. Here we have to observe that by definition, the parameter 7 in
(4.3.2) satisfies n € (0,1).

The following criterion for stability was proved in [284].

Lemma 4.3.11 ([284]). Problem (4.3.2)—(4.3.5) is stable if and only if the spectrum
of the quadratic operator pencil L(-,n) is real and semisimple.

It is this criterion which we will use below to investigate the stability of the
pencil L. Consequently, we make the following definition.

Definition 4.3.12. Let n € (0,1). A quadratic operator pencil L(-,7) of the form
(4.3.1) is called stable if its spectrum is real and semisimple.

Remark 4.3.13. It should be mentioned that gyroscopic stabilization in terms
of moving eigenvalues can be described as follows. Assume that the operator A is
invertible and has negative eigenvalues. A symmetric pair of pure imaginary eigen-
values of L(-,0) corresponds to each of them. When 1 > 0 grows the eigenvalues
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moving on the imaginary axis can collide. In this case they can leave the imaginary
axis in symmetric pairs. Then they can join the real axis, colliding with another
complex eigenvalue joining the real axis, and after a new collision they may again
leave the real axis. Thus instead of two pairs of pure imaginary eigenvalues there
appear two pairs of real eigenvalues. This can lead to gyroscopic stabilization.
But the pure imaginary eigenvalues can disappear only in the case when the total
algebraic multiplicity of the negative spectrum of A is even, otherwise one of the
eigenvalues will not find a partner to leave the imaginary axis. Here we have used
that eigenvalues of L(-,n) cannot cross the origin since L(0,7n) = —A is invertible
for all n € (0,1).

Proposition 4.3.14. Assume that A > 0. Then all eigenvalues of L(-,n), n € (0,1),
are real and semisimple.

Proof. The spectrum of L(-,7n) is real in view of Theorem 4.3.4. To show that all
eigenvalues are semisimple, assume that there is an eigenvalue A of L(-,n) with
an eigenvector yo and an associated vector y;. Writing L(A,n) in the form (4.3.1),
this means by Definition 1.1.3, part 1, of associated vectors that

(NI — 2B — A)yo = 0, (4.3.21)
(2M — nB)yo + (AN — AnB — A)y; = 0. (4.3.22)

Taking the inner product of (4.3.22) with yo and observing that X is real and that
A and B are self-adjoint, it follows in view of (4.3.21) that

2M(y0,%0) — 1(Byo, yo) = 0.

Substituting 1(Boyo, yo) from this equation into the inner product of (4.3.21) with
Yo, We arrive at

0= )\Q(yovyo) — An(Byo,y0) — (Ayo, yo) = —)\Q(yo,yo) — (Ayo, %),

which is impossible since the right-hand side is negative in view of A € R and
A > 0. This contradiction proves that all eigenvalues of L(-,7) are semisimple. [

Corollary 4.3.15. Assume that v < w. Then problem (4.3.2)—(4.3.5) is stable.

Proof. For v < ™ we have A > 0 by (4.3.12). An application of Proposition 4.3.14
and Lemma 4.3.11 completes the proof. O

Proposition 4.3.16. Assume that 0 € o(A). Then 0 € o(L(-,n)) and 0 is not
semisimple for all n € (0,1).

Proof. From Proposition 4.3.9 we know that all nonnegative eigenvalues of A have
geometric multiplicity 1. Hence the algebraic multiplicity of the eigenvalue 0 of
L(-,0) is 2. Due to the symmetry of the spectrum of L(-,7), see Remark 4.3.5,
eigenvalues can leave 0 only in pairs, which is impossible since 0 is an eigenvalue of
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geometric multiplicity 1 of L(-, ) for all n. It follows that the algebraic multiplicity
of the eigenvalue 0 of L(-,n) is 2 for all 7, and therefore 0 is not a semisimple
eigenvalue of L(-,n) for any 7. O

We now consider the case that A has at least one negative eigenvalue. In
view of the eigenvalue formula (4.3.12) this is true if and only if v > 7. Denote
by Cx(v?) the kth eigenvalue of A, k € N, enumerated in increasing order, that is,
Ce(v?) < g1 (v?). Then there is k1 € N such that (x, (v?) < 0 and (g, 41(v?) > 0.
Clearly, 0 € o(A) if and only if (,+1(v?) = 0. From (4.3.12) we immediately
obtain that k; is the largest integer k such that k < vr~1!.

Let us introduce the operator function
L(r,n) = L(v/7,n) =71 —i/TnG — A.

We consider the term i/7nG as a perturbation of the linear pencil Lo(7) = 71— A.

Proposition 4.3.17. Letv > m, 1 € (¢1(v?),0)Np(A) and d = min{dist(l, o(A)), |I|},
and define

1
N = 4min{d\l\_%v_z,di|l|_%v_1}. (4.3.23)

If n € (0,m.), then the total algebraic multiplicity of the spectrum of the pencil
L(-,n) in each of the two domains determined by the inequality (Re \)? — (Im \)? <
1 is equal to k(l), the number of eigenvalues of A below .

Proof. All points of the line 7 = [ +is (s € R) belong to the resolvent set of the
operator A. We are going to show that for all € (0,74), all points of the line
T =1+1s, s € R, also belong to the resolvent set of the operator function L(-, 7).
Since the operator A is self-adjoint,we have the inequality

(@ +is)T = Ayl = (@ +5°)2 |y (4.3.24)

for all y € D(A). Consider the following two cases for s € R and y € D(A) \ {0}.
1. Let the pair s,y satisfy the condition

n(1% + 52)1 || Gyl < (d® + s2)2||y]l. (4.3.25)
Then it follows that

£ +is,myll = (1 +is)T —in((1 +is)> G — A)y|
> [[((1+is)T = Ayl —n(® + 5%+ | Gy|| > 0 (4.3.26)

2. Now let the pair s,y satisfy the condition

n(% + s2)1(|Gy| > (@ + s%)2 |yl (4.3.27)
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We obtain from (4.3.9) and (4.3.11) for 7 = [ + is that
1
1L, myll = [ Axyll — 1A=yl — I7lllyll — 7|20l Gyl
> o~ Ay Pyl — | A—yll — (% + s%)2 ||y
—29(% + s%) 4 | A_yl|2|ly||>. (4.3.28)

It follows from (4.3.11) and (4.3.27) that

1 1 _1
1A-yll= =, IGylliyl ™
Lo 2\— 1 (2 2\ 3 ;
2 5+ )@ + 52l (4.3.29)

The estimate (4.3.29), d < |I| and the fact that the function ¢ — (a + )P (b + )4
takes its minimum on [0,00) at ¢ = 0 when a, b, p, ¢ are real numbers satisfying
0<a<b,p>0andp—+qg>0lead to

1
A_yll> I d?
|A—yl[l > 4772\ |~ 7|yl
1 .
2 —3 74/12 2 2
[A—y|* > 16774\l\ d* (I + s%) 2 [|y|%,

1
lA-ylE = g g W72 + %) 4yl

For n € (0,7,) the above estimates give

L _ -
S Ayl = > 1Ayl (4.3.30)
L -
o0 Ay Pyl ™t > @+ 5%) 2l (4331)
L -
o0 Ay Pyl ™t > 2002 + 53 Ay # ]l (4.3.32)

Consequently, for all pairs s,y satisfying (4.3.27), the inequalities (4.3.28) and
(4.3.30)—(4.3.32) show that || L(r,n)y|| > 0.

Combining cases 1 and 2 shows that £(7,7) is injective. Since the spectrum
of L(-,n) consists only of eigenvalues, the points of the line 7 = [ 4+ is, s € R,
belong to the resolvent set of £(7,n) for all n € (0, 7).

The transformation A2 = 7 maps the half-plane Re7 < [ into two domains
Q4 in the open upper and lower half-planes, which are the sets of A € C determined
by the inequality (ReA)? — (ImA\)? < [ < 0. Since £(-,n) has no eigenvalues on
the line Re7 = [ for n € [0,7.), it follows that L(-,7) has no eigenvalues on the
curves (ReA)? — (ImA\)? = [ for € [0,7,). Bearing in mind the continuity in 7
of the eigenvalues of the operator function L(-,7) and that by Lemma 4.3.1 the
nonreal eigenvalues have a bound which does not depend on 7, it follows that the
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total algebraic multiplicity of the spectrum of the pencil L(-,7) in each of the two
domains Q4 does not depend on 7 for 1 € [0,7,). Since this multiplicity is k(I) for
n = 0, the proof is complete. O

Corollary 4.3.18. Under the assumptions of Proposition 4.3.17 let n € (0,n,).
Then the total algebraic multiplicity k of the spectrum of L(-,n) in the open lower
half-plane satisfies the inequality x > k(l).

Corollary 4.3.19. Let n € (0,1) and v > w. If nm < v < (n + 1) for some even
integer n, assume additionally that n < n., where 1, is defined in (4.3.23). Then
problem (4.3.2)-(4.3.5) is unstable.

Proof. For v > m and n € (0,n,) the statement follows from Definition 4.3.12 and
Corollary 4.3.18 if we observe that k(1) > 0 for any suitably chosen {. If v does not
belong to an interval of the form (nm, (n+1)7) with even n, then v € (nm, (n+1)7)
for some odd integer n or v7 ! is an integer. The first case means that 0 € p(A)
and the total algebraic multiplicity of the negative spectrum of A is n and therefore
odd. Hence it follows from Remark 4.3.13 that the problem is unstable in this case.
Finally, if v7r~! is an integer, then 0 € o(A), and Proposition 4.3.16 shows that
the problem is unstable. O

Theorem 4.3.20. Let v > 7, let d = }|C, (v?)| and define
1 . 1 _o 1 4
1= min{dzv™% d1v " }.

Then for n € (0,n.1) the total algebraic multiplicity of the spectrum of the pencil
L(-,n) in the open lower half-plane is equal to the total algebraic multiplicity k1 of
the negative spectrum of the operator A.

Proof. The number 7,; is the special case of the number 7, defined in (4.3.23)
for I = 1[Ck, (v?)]. Let n € (0,m.1). Then the total algebraic multiplicity of the
spectrum of the pencil L(-,7) in the open lower half-plane is at least as large as
the total algebraic multiplicity of the negative spectrum of the operator A in view
of Proposition 4.3.17. Since it cannot be larger by Theorem 4.3.4, the proof is
complete. O

Above we have found a reasonably simple constant 7,. We are now going to
find the optimal constant based on the estimate (4.3.29). Here we consider now
€ (¢1(v?),0]N p(A) and d = dist(l,0(A)). Observe that we now allow d > |I| and
also [ = 0 when 0 € p(A). Similar to above, let m(a,b, p, q¢) be the infimum of the
function f : (0,00) — R defined by f(t) = (a+t)?(b+1)?, where a, b, p, ¢ are real
numbers satisfying a >0, 56> 0,p >0, ¢ <0, and p+ g > 0. If bp+ aqg > 0, then
b > 0 and f is also defined at 0. It is easy to see that the minimum of f is then
taken at 0, and we have

m(a,b,p,q) = aPb? if bp+ aq > 0. (4.3.33)
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If bp + ag < 0, then the minimum is taken at — bgi;q, and we have
a—>b p+q
m(a,b,p,q) = (p n q) pP(—q)? if bp+aq < 0. (4.3.34)

Then the estimate (4.3.29) leads to

1 1
Al 2 gy (20,21 ) ol

1 3 1
2 2 12 2 2 2
Al = g (2,20 ) 024 ) P
Ayt > Lom (@2 1) @2+ )y
_y — 8"73m b 727 S y -

For «, 8, in (0,1) such that o + 8 + v = 1 we obtain

av Ayl > 1 A-yll,

— — 1
B A—ylPllyl =t > (2 + %) |y,

— — 1 1 1
o AylPllyl Tt > 200 + )4 | A-y] 2 Iyl 2

if n € (0,7(1,v,a, B,7)), where
ﬁ(lvv2a aa/Ba’y) = min{ala’hﬁlblvrylcl}

Withalzaé761:l8i7’yl:’y}l and

_ 1 22 1 1

a =, ,m (d N/ o 4), (4.3.35)
1 , .1 3

by = 5™ <d ,1 Lo 8>’ (4.3.36)
1 , 53 1

cL=, m (d N/ g 4>. (4.3.37)

It is clear that this minimum is maximal as a function of «, 8, when the three
numbers oy a1, 8101, y1c1 are equal, because for any other choice of the parameters
a, B, v, at least one of these numbers will be smaller. It is easy to see that
ara; = B1by = v1¢p if and only if

01b1c1 dra1cy d1a1b1

aib; +ajc1 + blcl’ t= arby + arcy + blCl7 m= arby + arc1 + blCl7
where 1 = a1 4+ 81 + 71, and in this case,

dra1bicy

. 4.3.38
arby +aic1 +bicy ( )

A, v) = arar = by = yic1 =
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We still have to find ;. We observe that from
af+pi+ri=at+f+y=1
we obtain the equation

1= a7bic + dtai(ct +b1)
(a1by + arc1 + bic1)?  (arby + arer + biep)?’
which can be written in the form
9101 + f16] = &1
with
e1 = (a1by + arcr +bicr)*, fi = bici(aibr + arer + bicr)?, g1 = ai(c) +b7).

It follows that
5 ! \/ fi+ \/4 + fi
p— - e

1 \/291 1 191 1

\/—b%c% +/4ad (b} + b)) + bict (a1by + arer + bicr)
\/Qa%\/b‘ll +cf
V2 (a1by + arcr + bicy)
\/ bict + /4ai (bt +cf) + blcl

Substitution into (4.3.38) gives

V2a1bicy

= (4.3.39)
V¥R + Jaad (v + ) + et

Hence we may replace the number 7, in (4.3.23) by the optimal number 7(I, v)

given by (4.3.39). Although the calculations to find 7(I, v) are quite involved, they

are explicit for each given pair v and . The number 7j(I, v) can therefore be easily

calculated with computer algebra programmes or numerically.

Finally, we define

n*(v) = sup 7(l,v), v>2m. (4.3.40)
1€(C1(v?),0]Np(A)

Then we have the following improvement of Corollary 4.3.18.

Corollary 4.3.21. Assume that v satisfies nm < v < (n + 1)w for some positive
even integer n and that 0 < n < n*(v). Then problem (4.3.2)—(4.3.5) is unstable.
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Similarly, we define

)= sup q(lv), v>2m, on ' ¢Z (4.3.41)
1E(Cry (v2),0]

Then we have the following improvement of Theorem 4.3.20.

Theorem 4.3.22. Assume that v satisfies nw < v < (n+1)7 for some positive inte-
ger n and that 0 < n < ni(v). Then for n € (0,7n3) the total algebraic multiplicity
of the spectrum of the pencil L(-,n) in the open lower half-plane is equal to the
total algebraic multiplicity k1 of the negative spectrum of the operator A.

Although the numbers 7(I,v) are explicitly given, it is not easy to find the
corresponding suprema (4.3.40) and (4.3.41). For j = 1,...,k;—1, let [;(v?) be the
midpoint between (;(v?) and (j+1(v?), let I, (v?) be the midpoint between (y, (v?)
and 0, and let lo(v?) = 0. Then we define 7j; (v) = 7(l;,v) for l = 0,. .., k;. It should
be reasonable to expect that the maximum of 7jp(v) and 7, (v) is relatively close
to ng. Furthermore, the maximum of 7;(v) for j = 0,. .., k1 might be quite close to
n*(v). Here we have to note that the values of the function m in (4.3.35)-(4.3.37)
are given by (4.3.34) for [ = 0 and by (4.3.33) for [;(v) with { = 1,...,k; since
d < |I| if I is the midpoint of two nonpositive real numbers and d the distance of
the midpoint from these two numbers.

A simpler expression will be obtained if we estimate the denominator in
7(l,v) as follows:

(haf + dabet + 24ty < [k + st + ) + il
< 2i (4a1bi + dajct + 21)‘%511)i .

Then the numbers

satisfy
274, (1, v) < il v) < i (l,v). (4.3.42)

We are now going to present explicit 7-bounds for the case that v € (4, 57).
We have seen in (4.3.12) that A has 4 negative eigenvalues, which we will denote
by 7, (v?) = min* — 120202, n = 1,2, 3,4, and that the smallest positive eigenvalue
is (5(v?) = 6257% — 257202, It is easy to see that 71 (v?) > 72(v?) > 73(v?) and that
m4(v?) > 71 (v?) if 47 < v < V177, 71(0?) > 74(v?) > 7(v?) if V177 < v < /20T,
and 72(v?) > 74(v?) > 13(0?) if V207 < v < 57. Numerical calculation starting at
v =4.017 up to v = 4.99 7 with step size 0.02 7 give the following graphs.
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0.1 P 0.1
i 72 73
m
[ [ | [ I |
AT 17 /207 5T T Mt /207 om

This shows the somewhat surprising fact that 7o(v) is the best of these five val-
ues, except for v very close to 47 or 5w, respectively, in which case 72 and 73,
respectively, appear to be best.

Further numerical calculations with 200 values for [ show that the maximum
over the corresponding values of 7(I,v) does not exceed the maximum of 7;(v),
j=0,...,4, except for values of v which are very close the 57. But even in these
cases, the improvement is marginal.

Another necessary condition of instability was obtained in [217].

For a positive number &; we denote by (i€, n) the total algebraic multiplicity
of the spectrum of L(\,7n) located on the interval (i€;,i00).

Lemma 4.3.23. Let 1 > 0, & > 0 and assume that i& € p(L(-,n)) for all n €
[0,m]. Then the parity of k(i&1,n) is independent of n € [0, m], that is, if K(i&1,0)
is odd (even), then k(i&1,n) is odd (even) for all n € [0,m1].

Proof. Making use of the fact that the spectrum of L(-,n) is symmetric with
respect to the imaginary axis by Remark 4.3.5, the proof is similar to the proof
of Theorem 4.3.6, if we additionally observe that eigenvalues on the imaginary
axis cannot move through i¢ because of the assumption i; € p(L(-,n)) for all
ne [O’ 771]' O

Lemma 4.3.24. Let v > 2x. If
0<n <2730 (G(0") = GG () + )72, (4.3.43)
then the points £\ = +i272[¢1(v2) + G2 (v2)]2 belongs to p(L(-,7)).

Proof. Let n > 0 and £ > 0 and assume that i§ or —i& is an eigenvalue of L(-, 7).
Let y be a corresponding eigenvector, which can be chosen to be real. Then

—Ey 4+ Gy — ALy — A_y =0. (4.3.44)
The operator G is real and antisymmetric, and therefore
(Gy,y) =0. (4.3.45)
Using (4.3.44) and (4.3.45) we obtain

(Ary,y) = —(Ay,y)l = ElylI* < [ A-yllllyll - €llyll*. (4.3.46)
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In view of (4.3.9) and (4.3.46) we arrive at

v Ayl < A-ylllly] - €1yl
which implies
1, 1
43l < (G0 + 5 vor - avie2) ol (4.3.47)

Combining (4.3.11) with (4.3.47) gives

|Gyl < 02\/2+2¢1 — 4u=12 ||y|. (4.3.48)
From (4.3.48) we obtain
0= [ L(xi& )yl > || — &y — Ayl — n¢||Gy|

> (atie) - miey/2 21— 0 ol (4349

where d(i€) is the distance between the point —¢2? and the spectrum of A. Thus
we have proved that

n> ;v’%’ld(zf). (4.3.50)

Since v > 27, both (;(v?) and (2(v?) are negative, and therefore (di\;)? is
the midpoint between ¢;(v?) and (2(v?). Evidently, d(£X1) = 3 (¢1(v?) — ((v?)).
Therefore, the right-hand sides of (4.3.50) and (4.3.43) are equal for i€ = A;. Thus
(4.3.50) is false, which proves that £X; cannot be an eigenvalue of L(-, 7). O

Theorem 4.3.25. Under condition (4.3.43) the total algebraic multiplicity of the
spectrum of the operator pencil L(-,n) in the interval (12721 (v2) 4 C2(v?)] 2, ioc)
is odd.

Proof. For n = 0 the total algebraic multiplicity of the spectrum of L(A,n) lo-
cated in the interval (127 2|1 (v2) 4 C2(v2)|2,ic0) is 1. Hence the statement of this
theorem immediately follows from Lemmas 4.3.23 and 4.3.24. (]

Corollary 4.3.26. Under condition (4.3.43), problem (4.3.2)-(4.3.5) is unstable.
In (4.3.50) and (4.3.43) we have simplified the condition for instability derived
from the inequality (4.3.49). Using the full strength of the inequality (4.3.49), we

may divide the right-hand side of (4.3.43) by %\/2 +24/1 — 4v=4€2 to obtain a
slightly larger n-interval of instability.

The contrapositive of Corollary 4.3.26 gives the following necessary condition
for gyroscopic stabilization:

0> 2730 2(G(0?) — Q)G (0) + G (0] 2.
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Inequality (4.3.43) can be written in explicit form by finding ¢; (v?) and (2(v?)
explicitly. We already know from Corollary 4.3.19 that the problem is unstable if
v € [(2n — )7, 2n7], n € N. Hence we may restrict our calculations to the case
that v € (2mn, 7(2n + 1)), n € N. For example, we will consider n = 1 and n = 2.

If v € (27, 37), then A has exactly two negative eigenvalues, and therefore

{G(?), %)} = {—7%? + 7%, —4x%v? + 1674}

Substituting these values into (4.3.43) we obtain the following domains of insta-
bility:
27 < v < 3m,
0 <n<2 207 2[5r% — 3n202|(5n20? — 17742,
For v € (4m,57), we have noted on page 109 that (;(v?) = 817% — 9202,
whereas (2(v?) = 167% — 47202 if v < V201 and ((v?) = 2567* — 167202 if
v > 4/207. This gives the following domains of instability:

dr <o < \/207?,
0<n<2 20 2(5r202 — 657%) (137202 — 9774) 2

and
V20r < v < 5,
0<n<2 307 2(1757% — Tn202)(25m202 — 3377%) 2.

Numerical calculations show that, even with the slight improvement mentioned
after Corollary 4.3.26, the values of the upper bound is smaller than 0.0005 for
v € (4w, 57). This indicates that the value n*(v) is (much) better than the value
on the right-hand side of (4.3.43).

4.4 Notes

In the papers [65], [261], [133], [283] the authors considered, in our notation, a
finite-dimensional operator pencil A2M — AB — A with Hermitian matrices A,
B, and M > 0. It was shown that the zeros of the characteristic polynomial
det(A\2M — AB — A) can be all real and simple, i. e., the corresponding dynamical
system described by the equation
d*v . _du
Mdt2 —zBdt + Au =0,

can be stable even if some of the eigenvalues of A are negative. Here u is a vector
whose components are small angular displacements of a moving shell, M is the
inertia matrix, the real antisymmetric matrix ¢ B describes gyroscopic forces and A
describes potential forces. This effect, called gyroscopic stabilization, was pointed
out by W.T. Kelvin and P.G. Tait [140]. They made the assertion, see [140, 345V1]:
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“When there is any dissipativity the equilibrium in the zero position is
stable or unstable according as the same system with no motional forces,
but with the same positional forces, is stable or unstable. The gyroscopic
forces which we now proceed to consider may convert instability into
stability” ... “when there is no dissipativity: — but when there is any
dissipativity gyroscopic forces may convert rapid falling away from an
unstable configuration into falling by (as it were) exceedingly gradual
spirals, but they cannot convert instability into stability if there be any
dissipativity.”

That is, the character of A alone determines the stability of the system containing
both dissipative and gyroscopic terms.

Ziegler made a similar conclusion following [286, Example 16.1] when he
states, see [286, p. 117],

“Theorem 16b. Dissipative forces, applied to other than purely nongy-
roscopic systems, may have a destabilizing effect.”

W.T. Kelvin and P.G. Tait’s statement was proved by N.G. Cetaev, see
[52, p. 89] with the aid of Ljapunov function techniques. It is now commonly
referred to as the Kelvin-Tait-Cetaev theorem. For the finite-dimensional case
another proof of the Kelvin-Tait-Cetaev theorem was given in [283], who also
proved that the number of eigenvalues, with account of multiplicity, of the matrix
pencil A2] — iAK — AB — A is equal to the total multiplicity of the negative
spectrum of A. The matrix formulation of the Kelvin-Tait-Cetaev-Zajac theorem
has been extended to operators in Hilbert spaces by A.I. Miloslavskii, see [191],
[192]. Theorem 4.1.8, which was proved in [208], is a generalization of the Kelvin—
Tait-Cetaev-Zajac-Miloslavskii theorem to quadratic operator pencils which are
allowed to possess essential spectrum.

The Kelvin-Tait-Cetaev theorem agrees with experience. Consider a child’s
top. The unspun top is unstable. With sufficient spin and with no friction the
upright orientation of the top is stable. But the top falls down due to damping at
the support.

If K = 0, existence of gyroscopic stabilization is clear in the finite-dimensional
case if, for example, the matrix B is positive. Then the pencil A>T — A\nB — A has
only real and semisimple eigenvalues for n > 0 large enough. More refined results
on this topic can be found in [165], [116], [118], [117], [161], [160], [267].

The results in Subsection 4.3.2 are based on work in [209], [210], [217]. It
was shown in [200] that the pipe is stable for 0 < v < 7 and unstable for v = mn,
n € N.

Problem (4.3.2)—(4.3.5) and related problems were studied in [206], [68], [67],
[191] and [284] by numerical methods. It was shown in [206] that gyroscopic stabi-
lization is possible, i.e., it was shown that although the pipe is unstable for some
v and n = 0, it can be stable for the same v and some 1 > 0. In [284] gyroscopic
stabilization was obtained for this problem, where it is stated that for n > 3-1/2
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and v = 27 + 6%, where § is small enough, problem (4.3.2)—(4.3.3) is stable. But
the proof is probably not correct.

The instability index

N 0o
K= Zn,j + Z(nk — DPk)s
j=1 k=1

was investigated in [164], where n_; are the algebraic multiplicities of the eigen-
values of the pencil located in the lower half-plane, and nj are the algebraic and
pi are the geometric multiplicities of the eigenvalues of the pencil located on the
real axis.

In [23] and [24] another situation was considered where a different version of
gyroscopic stabilization occurred. In these papers the operators were supposed to
be self-adjoint and bounded, and the pencil is given by L(\) = A\2I +AB + A. The
quadratic operator pencil L is said to be (almost) gyroscopically stabilized if A > 0,
B is invertible and indefinite and |B| — kI — kA is positive (semi-)definite for
some k > 0, where | B| denotes the positive square root of B2. It was shown in [24]
that the spectrum of an almost gyroscopically stabilized pencil is real. However,
this result cannot be applied to the operator pencils considered in Subsection 4.3.2.
Whereas the unboundedness of our operators may be more of a technical issue,
the definiteness of A is crucial as the following simple example shows. For

(0 1 _(2n O
A_<1 0)’ B_<0 —277)

it is easy to see that the pencil L is almost gyroscopically stabilized if n > 1. But
the eigenvalues are the four numbers \ satisfying

N =202 £ /42 4+ 1,

which shows that the pencil has two real eigenvalues and two nonreal eigenvalues.

A collection of problems for finite-dimensional quadratic operator pencils,
including those with gyroscopic terms, together with algorithms for finding eigen-
values can be found in [29].

We now return to the pencil with a damping term but without gyroscopic
term, i.e., A2M — iAK — A, where we have introduced a bounded self-adjoint
operator M > 0 in accordance with the publications we will discuss below. Clearly,
this operator pencil is similar to a monic operator pencil. In [182, Section 31] the
pencil 72M + 7K + A is called hyperbolic if

(Ky,y)> — 4(Ay,y)(My,y) >0, y e D(A)\{0}.

Clearly, the pencil is equivalent to our pencil with respect to the parameter trans-
formation A = —i7. With the physical meaning of this condition in mind, this
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condition is also called overdamped, see [69] and [268, Chapter 14] for the finite-
dimensional case. It is clear that under this condition the pencil has only pure
imaginary eigenvalues. Indeed, if A is an eigenvalue and y is a corresponding eigen-
vector, then

\_ ((Ky,y) £ /= (Ky,9)? + 4(My, y)(Ay, )
2(My,y)

is pure imaginary. This result can be proved by variational principles, see [1, Ch.
5, Theorem 5.4]. Conversely, the eigenvalues are not pure imaginary in the case of
a weakly damped pencil, i.e., when (Ky,y)? < 4(My,y)(Ay,y), y € D(A) \ {0}.
Rotating the eigenvalue parameter, hyperbolic problems are linked to gyro-
scopically stabilized problems. For more details we refer the reader to [23] and [24].
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Chapter 5

Generalized Hermite—Biehler
Functions

5.1 S-functions and Hermite—Biehler functions

In this section we present some useful definitions and classic results on entire
functions due to B.Ya. Levin, N.I. Ahiezer, M.G. Krein, N.N. Meiman as they are
described in [173].

If Q is an open subset of the complex plane C, then Q* = {A € C: X € O}
denotes its conjugate complex set. For a function w which is defined and analytic
on a domain {2, its conjugate complex w is defined on Q* by

W) =w(\), AeQr.

Then also w is analytic.

In the following, we will not take explicit care of the domains of analytic
functions. For example, if we take a sum of two analytic functions, then its domains
will be the intersection of the domains of the summands, possibly enlarged through
analytic continuation. In particular, when both w and w occur in an algebraic
expression such as a sum and quotient, then it will be implicitly assumed that
QN Q* is dense in ; often 2 and Q2* will coincide or differ in a discrete set of
points. In particular, since € is connected, 2NR is an open nonempty subset of R.

Definition 5.1.1 ([173, pp. 305, 317]). The real and imaginary parts Rw and ITw of
the analytic function w are defined by
1

1
Rw= 2(w+w), Tw= 22_(w—w).

An analytic function w is said to be real if it takes real values on the real axis.

Remark 5.1.2. 1. By the identity theorem it is clear that w is real if and only if
w=w.
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2. Let © be the domain of the analytic function w and assume that 2NQ* is dense
in . Then the real and imaginary parts Rw and Iw are real, and

w=Rw+ilw.

If w is written in the form
w=P+iQ (5.1.1)

with real analytic functions P and @, then P and @ are uniquely determined by w,
and P = Rw and @ = Iw. We will often write P and @ instead of Rw and Tw.

Definition 5.1.3 ([173, p. 314]). The pair of real entire functions P and @ is said
to be a real pair if P and @ have no common zeros and if all zeros of any of their
nontrivial real linear combinations uP + 9Q, i, ¥ € R, u? + 92 > 0, are real.

Definition 5.1.4 ([173, p. 307]). The entire function w is said to be a function of
Hermite—Biehler class (HB class) if it has no zeros in the closed lower half-plane
C~ and if

w(A)
w(A)

‘ <1 for ImX\>0. (5.1.2)

Remark 5.1.5. For nonconstant polynomials, (5.1.2) is redundant since it follows
from the absence of zeros in the closed lower half-plane.

We recall the Weierstrass Factorization Theorem, see, e.g., [55, Theorem
VIL.5.14]: every nonzero entire function w has a product representation of the
form

(0)
W) = A es(N) AN ()
(A) =\ 11 (1 ak) , (5.1.3)

k=1

where m is the multiplicity of the zero of w at 0, with m = 0 if w(0) # 0, (c0)
indicates that the product may end at a finite number or be void, g is an entire
function, the ay are the nonzero zeros of w, counted with multiplicity, and where
the Py are polynomials of the form

Uy

> N (5.1.4)

=17

of suitable degree [j, with the zero polynomial if [ = 0. Convergence of the infinite
product is guaranteed if the degree of Py is chosen to be k.

If convenient, also nonpositive integers may be used in the indexing of the
zeros in (5.1.3), the P, may be chosen to be zero for finitely many k, and 1 — a);
may be replaced with A — aj, for finitely many k.
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For convenience, we introduce the following notations.

Remark 5.1.6. Let a and b be countable sets of real numbers, at least one of them
nonempty, without limit points. Assume that a and b are interlacing sets, i.e.,
anb = (), if a has at least two elements, then between any two elements of a
there is an element of b, and if b has at least two elements, then between any two
elements of b there is an element of a. With a and b we associate index sets I4 and
Iy which are sets of consecutive integers such that we can write a = {ay, : k € I}
and b = {by : k € Iy}, where both a; and by are strictly increasing with k, and
such that aj is the largest element in a smaller than by and by is the smallest
element in b larger than ay, with the possible exception of a largest a;, in a and
a smallest b;_ in b. We can choose the index sets in such a way that ax < 0 and
bi, < 0 whenever k < 0, and ag > 0 and by, > 0 whenever k£ > 0. Whenever possible,
we will assume that 0 € I, N I, but we will always assume that 0 € I, U Iy.

We say that the zeros of two entire functions interlace if all zeros are real
and simple and if the sets of their zeros interlace. An analogue definition is used
for interlacing poles and zeros of a meromorphic function on C.

Below we will consider products of functions containing the factors A — ag
and A\ — by, respectively. If 0 & I, then A — ay has to be replaced with 1, whereas
if 0 € Iy, then A — by has to be replaced with —1. In order to remind the reader of
this convention, we will use the notations (A — ag)+ and (A — bg)_, respectively.

Finally, we observe that if I, = I, = Z, then the ordering conditions can be
written as ap < by < ap41 for all k € Z and b_; < 0 < aq, and this extends to the
general case whenever the corresponding numbers exist in the sets I, and Ig.

The following criterion is due to N.N. Meiman, see [173, Theorem 3, p. 311].

Theorem 5.1.7. Let w = P + iQ, where P and Q are real entire functions. For
the function w to be of HB class it is necessary and sufficient that the following
conditions are satisfied:

(i) all zeros of the functions P and @Q are real, at least one of the functions P
or Q has at least one zero, and the zeros of the functions P and Q interlace;

(ii) the functions P and @ have the following expansions into infinite products:

P(\) = Ae"M (X —ag)4 H (1 _ A ) epk(“kk), u(0) =0, (5.1.5)

ag
kel.\{0}
_ o) AN\ e(R) _
Q) =Be'MA—bo)- [ (1- e o) 9(0) =0, (5.1.6)
kel \{0} k

where u and v are entire functions and I, and I, are as defined in Remark
5.1.6.

(iii) the constants A and B are nonzero real numbers and have the same sign;
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(iv) the entire functions u and v and the polynomials Py and Qy satisfy

e 5 () a()] -0 e

k=—00,k#0
where P, =0 or Qr, =0 if k & I, or k & Iy, respectively.

Proof. First assume that w is of HB class. Then w has no zero in the closed lower
half-plane, i.e., w and w and thus P and @ have no common zeros. By Lemma
11.1.1, § = QP! is a real meromorphic function which maps the open upper
half-plane into itself. Since P and @ have no common zeros, the zeros of 6 are the
zeros of @) and the poles of 6 are the zeros of P. Hence property (i) immediately
follows from Theorem 11.1.6. Clearly, the product representations (5.1.3) of P and
@ can be written in the form (5.1.5) and (5.1.6), respectively, where A and B are
nonzero numbers. From
A = lim PO
=0 (A —ao)+

we see that A € R; similarly, B € R. Furthermore, with the notations from
Theorem 11.1.6 and this theorem we have that

where C' > 0 and

w) = o) a4 3 {Qk@) —Pk<a);>].

k=—00,k#0

Therefore w is constant, and u(0) = v(0) = P,(0) = Qx(0) = 0 shows that w =0
and thus A and B have the same sign.

Conversely, assume that the conditions (i)—(iv) are satisfied. Then § = QP~1
is a real meromorphic function 6 of the form (11.1.2). By Theorem 11.1.6 it follows
that @ maps the open upper half-plane into itself, and Lemma 11.1.1 shows that
w has no zeros in the open lower half-plane and that F' = ww~! maps the open
upper half-plane into the open unit disc. Finally, since a real zero of w would be
a common real zero of the real entire functions P and @, it follows that w cannot
have real zeros. |

Definition 5.1.8 ([173, p. 313]). An entire function w which has no zeros in the
open lower half-plane and satisfies the condition

w(X)
‘w()\)lgl for TmA >0 (5.1.8)

is said to be a function of the generalized Hermite—Biehler class (HB class).
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The next proposition shows that generalized Hermite—Biehler functions can
be characterized in terms of Hermite-Biehler functions and real analytic functions
with real zeros.

Theorem 5.1.9. An entire function w is of HB class if and only if w = wiws, where
wo 15 a Teal entire function with only real zeros and wy is either of HB class or a
nonzero constant.

Proof. Tt is easy to see that if w = wyws, where ws is a real function with only real
zeros and wy is either of HB class or a nonzero constant, then w is of HB class.
Conversely, let w be of HB class. If |w(A\)w ™! ()\)| = 1 for some ) in the upper
half-plane, then ww™! would be a constant function in the open upper half-plane
by the maximum modulus principle. Hence there is a complex number «; with
|ar| = 1 such that ayw = w in the open upper half-plane and hence also in C
by the identity theorem. Choosing o € C such that a?a; = 1 and observing that

a~! = q, it follows that

wo = a tw = aow = aw = o~ lw = wo,

so that wy is real and aws = w. Furthermore, since w has no zeros in the open
lower half-plane, so has the function ws. Since the zeros of a real function are
symmetric with respect to the real axis, wo therefore has only real zeros.

Now let w be of HB class satisfying (5.1.2). Using a product representation
we see that there is a real analytic function ws which has the same real zeros
as w, counted with multiplicity. Then w; := wwy ! has no zeros in the closed lower
half-plane and satisfies (5.1.2), i.e., wy is of HB class. O

Theorems 5.1.7 and 5.1.9 give a first characterization of functions in the
generalized Hermite—Biehler class, see also [173, p. 314].

Proposition 5.1.10. The closure of the HB class in the topology of uniform con-
vergence on compact subsets of C consists of all functions in the HB class and the
zero function.

Proof. If (wy)$2; is a sequence in HB which converges uniformly on compact
subset of C to some w, then either w has no zeros in the open lower half-plane
or w is identically zero by Hurwitz’ theorem, see [55, Corollary VII.2.6]. Clearly,
(5.1.2) for wy, implies (5.1.8) for w if w is not identically zero.

Conversely, if w is a real analytic function of HB class and if it has at least
one real zero, then we replace all real zeros aj, by the complex zeros aj, + i, in the
product representation of w. For suitably chosen small positive numbers ag, the
product representation converges to a function w,, of HB class, and the w,, converge
to w uniformly on compact sets. If w is a real analytic function without zeros, then
wn(A) = (1+14i))w(A) is a sequence of functions of HB class converging to w. An
application of Theorem 5.1.9 shows that every function of HB class is the uniform
limit on compact subsets of functions of HB class. Finally, x,(\) = ! (A—14) defines
a sequence (x)7° in HB which converges to 0 uniformly on compact sets. ]
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The following theorem is due to M.G. Krein, see [173, Theorem 6, p. 318].
We note that a polynomial Py of the form (5.1.4) is a real polynomial. Below

the notation R Py (ai) for a; € C\ {0} means the real part of the function
AP ()

Theorem 5.1.11. In order that the entire function w be of HB class, it is necessary
and sufficient that it can be represented in the form

(o0)
w(A) = Nt HIA+) H <1 -2 > eRPk(aAk)v (5.1.9)
k=1 Ok

where m € Ng, v >0, § € R, u is a real entire function and

()

1
Z Imak

k=1

< 00, Imag > 0 for all k. (5.1.10)

Proof. For the convenience of the reader we recall Levin’s proof. First let w be of

HB class and denote the sequence of its nonzero zeros by (ozk)g;oi. The function

1 defined by

satisfies the assumptions of Lemma 11.1.9. Hence (5.1.10) holds since the zeros
of w and ¢ in the upper half-plane coincide and since the real zeros of w do not
contribute to the sum in (5.1.10). Therefore the series

(00) -1 (00) -1
A 1 1 A 1
ZA(l— ) ( _ >:—2iz>\<1— ) Im
Qg 073 073 =1 Qf 6753

converges absolutely and uniformly on each compact subset of C which does not
contain any of the points «aj. Since

-1 —1
() () (-0 0-0)
[e%% Qg [e%% QA (077

it follows that
(o0) A\ A\ !
N=T](1- 1- 111
=T (- 2) (- 2) G.11)

k=1

converges absolutely and uniformly on each such set to a function without zeros,
see, e. g., [55, Corollary VIL.5.6]. Let

(o0)
[1 A ()
_ () 1 (o 1.12
w(A) = A"e k_1< ak)e (5 )
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be the Weierstrass factorization of w. Defining

k=1 k
n 2 N
W(\) = A7 9<A>||<1 ) (),
wn(A) e 11 o e K

it follows that

Wn (A _ A
( ;[Xn()\)] = exp 2i [Ig +kzllPk (%)]’ (5.1.13)

wn (A

so that

ZIPk (%)

k=1

converges uniformly on each compact subset of C as n — oco. Defining

()
N+ D 1P (ol) and  u(\) = Rg(\), (5.1.14)
k=1

we can write
oo

w(A) = AmerNFiv(A H( ) RP(2). (5.1.15)

Since

—>H #Oab/\—>oo

the maximum modulus principle gives that A — w(A)[w(\)] 7 [xn(N)] 7! is a bound-
ed function in the closed upper half-plane. Since it has modulus 1 on the real axis,
it follows from the Phragmén-Lindeldf principle, see [173, Theorem 20, p. 48] or
[55, Corollary VI.4.4], that

w(A)

w(\) [Xno‘)}il

<1 for ImA>0. (5.1.16)

Passing to the limits as n — oo in (5.1.13) and (5.1.16) and taking the definition
of v in (5.1.14) into account, it follows that [e2**(V)| < 1 for Im X > 0, which means
that v maps the closed upper half-plane into itself. If v is not constant, it must
map the open upper half-plane into itself by the open mapping theorem, and since
v has no poles, Theorem 11.1.6 shows that v(X\) = C(\ — ¢p) for some ¢y € R and
C > 0. Thus, in any case, v(A) = vA+J with v > 0 and ¢ € R, and (5.1.9) follows.
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Conversely, if (5.1.9) holds subject to (5.1.10), then w is an entire function
without zeros in the open lower half-plane, and

w(A) _ 2w
o =€ NN

implies that, for Im A > 0,

w(A) 2ivA
= w )\ < )\ < 1 .1.1
‘w()\)’ 2 x(W) < Ix(V) < 1, (5.1.17)
which shows that w is of HB class. O

Theorem 5.1.12. In order that the entire function w be of HB class, it is necessary
and sufficient that it can be represented in the form

(o0)
w(A) = e FIEAD) TT (1 _ A ) AP(2) (5.1.18)
k=1 Ok

where v > 0, § is a real number, u is a real entire function,

(0)

D

k=1

Im < 00, Imay > 0 for all k, (5.1.19)

Ak

and v > 0 if w has no zeros.

Proof. Assume that w is of HB class. Then w is of HB class without real zeros,
so that (5.1.18) and (5.1.19) follow from Theorem 5.1.11. If w has no zeros, then
x defined by (5.1.11) satisfies xy = 1 since it is defined by an empty product, and
(5.1.17) shows that v > 0 is necessary for (5.1.2) to hold.

Conversely, if (5.1.18) and (5.1.19) hold, then w has no zeros in the lower
half-plane and is of HB class by Theorem 5.1.11. Finally, since |x(A\)| < 1 for
Im A > 0 if w has zeros and since [e2**| < 1 for Im A > 0 if v > 0, (5.1.2) follows
from (5.1.17), taking into account that v > 0 if w has no zeros. O

We will use also other criteria for an entire function to be of HB class.

Theorem 5.1.13 ([173, Theorem 4, p. 315]). Let w = P +iQ, where P and Q are
real entire functions. Then w is of HB class if and only if P and Q form a real
pair and at any point xo of the real axis the inequality

Q/(IQ)P(I()) — Q(l‘o)Pl(Io) >0 (5120)

holds.
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Proof. Assume that P and @ are a real pair satisfying (5.1.20). Then the real
meromorphic function
Q

P

does not have zeros or poles in the open upper and open lower half-planes. In
particular,  must map the open upper half-plane into the open upper half-plane
or into the open lower half-plane. Hence 8 or —f maps the open upper half-plane
into itself, so that ¢ > 0 or —" > 0, respectively, on the real axis by Lemma

11.1.3. Since
_QP-PQ
= P2 ,
and Q' (xo)P(xo)— P (20)Q’'(z0) > 0 for at least one xg € R, it follows that §' > 0,
and therefore  maps the open upper half-plane into itself. From the equivalence
of properties (ii) and (iii) in Lemma 11.1.1, part 1, it follows that w is of HB class.

0:

4 (5.1.21)

Conversely, if w is of HB class, then we know from Lemma 11.1.1 that 8 maps
the open upper half-plane into itself, and thus the open lower half-plane into itself
since f is a real meromorphic function. Therefore, P and @ form a real pair. Again
by Lemma 11.1.3 and by (5.1.21), Q'(z)P(z) — P'(z)Q(x) > 0 for all z € R which
are not zeros of P. But if P(z) = 0, then Q'(z)P(z) — P'(2)Q(z) = P'(z)Q(z) #0
since the zeros of P and @) are simple and interlace by Lemma 11.1.3. By continuity,
Q'(z)P(z) — P'(x)Q(x) > 0 follows for all z € R. O

Definition 5.1.14. An entire function of HB class is said to be nontrivial if it is not
a constant multiple of a real function.

It is clear that a function w of HB class is nontrivial if and only if its real
and imaginary parts are not multiples of each other.

Corollary 5.1.15. Let w = P +iQ be an entire function of HB class, where P and
Q are real entire functions. Then

Q'(@)P() — Q(z)P'(z) > 0 (5.1.22)
holds for all x € R, and
Q'(20)P(x0) — Q(z0)P'(z0) > 0
for some z € R if w is nontrividl.

Proof. By Proposition 5.1.10, w is the uniform limit on compact subsets of func-
tions of HB class. Hence also their real and imaginary parts have this property,
and therefore converge, together with their derivatives, uniformly, see [55, Theo-
rem VII.2.1]. Therefore (5.1.22) follows from (5.1.20).

Now assume that w is nontrivial. Then 6 = CI?, is not constant, so that Q' P —
QP' has only isolated zeros and therefore some nonzero values on the real axis.
From (5.1.22) it follows that these nonzero values must be positive. O
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Definition 5.1.16. The function w of HB class (HB class) is said to be a function
of symmetric Hermite-Biehler (SHB) class (a function of symmetric generalized
Hermite-Biehler class (SHB class)) if w(—\) = w()) for all A € C.

Remark 5.1.17. In the sequel we will frequently deal with functions which are
symmetric with respect to the imaginary axis, that is, entire functions w which
satisfy w(—A) = w(A) for all A € C. This property can be rewritten in the form
w(=A) = w(A) for all A € C. For an arbitrary entire function w define wy by
wr(A) = w(iA), A € C. Observing that

wr(A) =wr(\) = w(iN) =w(—iA), AeC,

holds, it is immediately clear that w is symmetric with respect to the imaginary
axis if and only if wy is a real entire function, that is, if and only if w is real on
the imaginary axis.

Proposition 5.1.18. Let w be an entire function which is symmetric with respect
to the imaginary axis, i.e., w(—\) = w(\) for all A € C. Then P(—)\) = P()\)
and Q(—=X) = —Q(A) for all A € C. In particular, Q(0) = 0 and all real zeros of
P and Q are symmetric with respect to the origin. Furthermore, there are unique
real entire functions Ps and Qs such that

W) = Po(A?) +iAQ (M), A e C. (5.1.23)

Proof. Since

1
P =

2(w+w)v Q:

2 (w - w)v

it follows in view of Remark 5.1.17 that P and i@ are real on the imaginary axis,
and thus P(—\) = P(A) and Q(—\) = —Q()) for all A € C. Since P and @ are
real entire functions, the statement about the real zeros of P and @ follows from
P(—z) = P(z) and Q(—z) = —Q(x) for x € R.

For A\ € C define

sy W) (=) o W) ==X QM

P\ = 9 =P\, Q)= 9i) =\ (5.1.24)
Clearly, P and Q are even entire functions, so that there are entire functions P,
and Qs such that

PN = P()), Q) =Q(\), AreC. (5.1.25)

Hence (5.1.23) holds. Furthermore, P and Q are real on the real and imaginary
axes, so that P; and Qg are real entire functions.

Clearly, Rw()\) = Ps(A\?) and Tw(\) = AQs(A\?), A € C. The uniqueness of
Rw and I w shows that the real entire functions P; and Qs are uniquely determined
by w. O
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Proposition 5.1.19. Ifw is of SHB class, then (5.1.5) and (5.1.6) can be rewritten
in the form

(o0) 2 A2
2 A Py
P\ = AqetO?) 1— (“%) 1.2
=40 ] ( k) &) (5.1.26)
, (o0) 2 [ 22
Q(\) = Boe?™) (1 = %) eQ"(b% ) (5.1.27)
k=1

the exponents satisfy the condition

u(?) — o(32) +§ (Pk (2) o (A)) _o,  (3129)

and the numbers Ay and By have the same sign.

Proof. We use the notation of Theorem 5.1.7. Since Q(0) = 0, we have by = 0,
and hence b_; = —b;. In the Weierstrass product, we may replace each Q; with
a corresponding polynomial of higher order, so that we may assume that Q and
@ _j have the same even order 2l;, and thus are identical. Then we can write
(5.1.6) as

(00)
_ v(X\) - A - A Qk ,}k +Qk _?,k _
Q(\) = Be Akl;[l (1 be 1 (i )ree(3,) = 0,

—by,

where

With some abuse of notation we write the right-hand side as Qy, (23 ), so that
k
2
by,

(c0) 2
o= e (1= ),
k=1

Then
(OO) 2 22
Q(—X) = —Be" "IN ]| (1 — 22> eQ’“(bi )
k=1 k
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and Proposition 5.1.18 gives
e”(_)\) = ev(N),

Since v is a real function, it follows that v(—\) = v(A), which means that v is an
even function.

A similar reasoning holds for P. We only have to observe that a—_;11 = —a;
for j = —1,—2,..., and that, in case P has zeros, the factor A — ag has to be
written in the form —aq (1 - a/\o> with —ag > 0. O

In the sequel we will use the notion of Nevanlinna function, also called R-
function in [127] and function of negative imaginary type in [16, Appendix IT], and
the notion of S-function [127].

Definition 5.1.20. The function 6 is said to be a Nevanlinna function, or an R-
function, or an N-function (N-function) if:

(i) 0 is analytic in the half-planes Im A > 0 and Im A < 0;
(ii) O(N) =0(N) if Im A # 0;
(iii) Im A Im@(X) > 0 for Im A # 0 (Im A Im O#(A) > 0 for Im A # 0).
Remark 5.1.21. Let 6§ € A/. We recall that the open mapping theorem gives that 0

is either constant, where this constant is real, or maps the open upper half-plane
into itself. That is, N' = N UR, where R represents here constant functions in C.

Lemma 5.1.22. If 6 # 0 is a Nevanlinna function, then so are the functions —é

and (5 4+ ¢)=! for each real constant c.
Proof. This easily follows from Remark 5.1.21,

_ 1
1 Im(\) ( 1 ) o —Imgg,
Im | — = and Im +c = . O
( 9@)) O 0(2) ’ 1 +C’2
0(N)

The relation between N/-functions and functions of HB class is given by the
following simple lemma, see [173, p. 307].

Lemma 5.1.23. For the function
w=P+iQ,

where P and Q are real entire functions withoul common nonreal zeros, the state-
ment P~1Q is an N-function is equivalent to the condition (5.1.2).

Proof. This follows from Lemma 11.1.1 if we observe that part 2 of Definition
5.1.20 is satisfied since P~1(Q is real analytic. O
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Definition 5.1.24. The function ¢ is said to be an S-function or a function of
Stieltjes class (S-function) if:
(i) € is analytic in C\ [0, c0);
(ii) 6(N\) = 0(\) for Im # 0;
(iif) ImA(A) > 0 for Im A > 0 (Im@(A) > 0 for Im A > 0);
(iv) () >0 for all A € (=0, 0).

Definition 5.1.25. An S-function which is meromorphic on C is said to be of Sy
class if it has no pole at the origin.

Definition 5.1.26.

1. The class N°P of essentially positive Nevanlinna functions is the set of all
functions # € N which are analytic in C \ [0, 00) with the possible exception
of finitely many poles.

2. The class Vi is the set of all functions § € NP such that for some v € R
we have (X)) > 0 for all A € (—o0,7).

3. The class NP is the set of all functions § € A°P such that for some v € R
we have 6(\) < 0 for all A € (—o0,7).

4. The class S71 is the set of all functions § € A such that #(\) < 0 for all
A € (—00,0).

Relations between A -functions and S-functions were obtained by I.S. Kac
and M.G. Krein in [126] and [127]. However, we do not need these results in their
full generality. In the next section we will deal with meromorphic functions in
the whole complex plane, and statements and proofs will be given there for the
subclasses consisting of functions which are meromorphic in C.

5.2 Shifted Hermite—Biehler functions

The field of meromorphic functions in the whole complex plane will be denoted
by M.

First we recall some properties of meromorphic functions which belong to
the classes of Nevanlinna functions defined in Section 5.1. General results without
the restriction to M can be found, e.g., in [127], [13] and [14].

Remark 5.2.1. Let # € N N M. If 0 is not constant, it follows from Remark 5.1.21
and Theorem 11.1.6 that 6 has a representation of the form (11.1.2). In particular,
the zeros and poles of # interlace.

Lemma 5.2.2. Let 0 € N N M be nonconstant. Then 6 € S if and only if 0 has no
negative zeros or poles, has at least one pole, and the smallest pole is less than all
zeros, if any.
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Proof. In view of Remark 5.2.1 and Lemma 11.1.3, € has at least one pole or zero.
Clearly if 8 € S, then all zeros and poles are nonnegative, and in view of Remark
5.2.1 it remains to show that, under this assumption, §(\) > 0 for all A < 0 if and
only if 6 has at least one pole and the smallest pole is less than all zeros. Clearly,
for A < 0, the representation (11.1.2) shows that 6(A) > 0 if and only if

(A =bo)-
(A —ao)+

If 6 has at least one zero and if the smallest zero is less than any pole, then we
have that 0 ¢ a, in the notation of Theorem 11.1.6, so that

> 0.

(A —bo)-
(A —ao)+

and it follows that 0 ¢ S. If, however, 6 has at least one pole and the smallest pole
is less than any zero, then we have that

=A—by<0 for A<O,

. (A=bo)- _ A—=bo (A —=bo)- -1
either = >0 or = >0 for A <0,
()\—ao)+ )\—ao ()\—ao)Jr )\—ao
and it follows that 6 € S. O

Corollary 5.2.3. Let 0 € N N M be nonconstant. Then 6 € NI* if and only if the
set of poles of 0 is nonempty and bounded below, and the smallest pole of 0 is less
than all of its zeros, if any.

Proof. 1f 6 € N3P, choose r > 0 such that 6 is positive on (—oo,—r]. Then the
function A — (A — r) belongs to Sp. By Lemma 5.2.2, this function has at least
one pole, and the smallest pole of this function is less than all zeros, if any. Clearly,
the same properties hold for 6.

Conversely, if a is the smallest pole of 6 and all zeros of 8, if any, are larger
that a, then A — (XA — a) belongs to S, and it follows that § € NP, O

Lemma 5.2.4. Let 0 € M. Then
L0 ENP & — ) € NP,
2. 0e NP & — ) e N°P;
3.0eSe—,e8Y;
4. 0SS (eN and A= M(N) EN) & X = M\ e N;
5. NP M= (NP M)U (NP NM);
6. SN M CNPU{0}, (-871)n M C NP U{0}.

Proof. Observing Remark 5.2.1 and Lemma 5.1.22 and the obvious fact that S C
N, parts 1-3 follow immediately.
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4. Let 0 € S. If 0 is constant, then this constant is a nonnegative real number
C, and C\ is a Nevanlinna function. If 6 is not constant, then, by Remark 5.2.1
and Lemma 5.2.2,

o) = w02 = x> T (1_ Az> (1_ A2>1

2 _
A ao wel bk ag
a,b

—1 -1
—cv I] <1+A1><1+A1> (hf)(l—f) ,
kel , by a by a

(A+53)+ (A= bg)-
(A +ad)(A —ag)

It remains to be shown that ¢ can be written such that it fits the form (11.1.2).
We have to distinguish the cases ap > 0 and ag = 0. If ag > 0, then clearly poles
and zeros of 61 are simple and interlace, and

—1
1 A A
7/)(>\) = 1 1 (1 o )
ag A+ aj ag
if # has no zeros, and

—1
b A A A A

1#(/\)2 ? 1<1+ 1)(1_ 1)(1_ 1>
ag A+ ag b b ag

otherwise. If now ag = 0, then clearly 0 is a simple pole of 64, so that again zeros
and poles of 8 interlace, and

where

P(A) = A

(A+05)+ (A =bg)-

b = \ ,

which equals —A~! if § has no zeros and

1
A — b3 A
b <1+ >
bg
otherwise.

To complete the proof of part 4, assume that §; € NV, where 61()\) = M\(\?).
Since 61 is an odd function, its zeros and poles are symmetric, so that we can write

0 =0 ] (1— 2:) (1_ i)—l

kel
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with some abuse of notation as we might not have identified all terms with index
0, and where C # 0, but not necessarily positive. Here m = 1 if 0 is no pole of
and m = —1if 0 is a pole of 0, all a; and by are positive and interlace. Also, since
the zeros of 61 are simple, 0 cannot be a zero of . Hence we have

mmzchlII<1—a><L—2>4,

kel

where in case m = —1, 0 is a pole of €, and therefore smaller than the smallest
zero of 0, and in case m = 1, 0 is a zero of 6, so that the smallest positive pole
of 67 is smaller than the smallest positive zero of 81, which again means that the
smallest pole of # is smaller than the smallest zero of 6. Since the case of constant
0 is trivial, by Lemma 5.2.2 it remains to show that 6 € N. In view of Theorem
11.1.6, either 8 € N or —0 € N. But —0 € N and the location of poles and zeros
of # would imply by Lemma 5.2.2 that —0 € S. Therefore —6; € N by what we
have already proved, which contradicts 6, € N.

5. Since poles and zeros of § € N°P interlace by Remark 5.2.1, there is v < 0 such
that 6 has no poles or zeros in (—00,7), so that either (\) > 0 for all A € (—o0,7)
or O(\) <0 for all A € (—o0,7).

6. is obvious. (]

Proposition 5.2.5. Let n € N. Then every rational So-function 6 with n poles has
a continued fraction expansion

0N =ao+
—bi A+
ay+---+ 1
b\ +

429

1

withb; >0,j=1,...,n,a0>0anda; >0 forj=1,...,n.

Proof. We recall from the definition of Sy that 8(A) > 0 for A € (—o0,0] and
that all poles and zeros of 6 are real. By Theorem 11.1.6, the poles and zeros
of 6 interlace, and by Lemma 5.2.2, the smallest pole of € is smaller than any
zero of 6. Hence 6 has n or n — 1 zeros. Therefore we write 6§ = Z, where p is
a polynomial of degree n and ¢ is a polynomial of degree n or n — 1. We may
assume, for definiteness, that p(A) > 0 for A € (—o0, 0], so that also ¢(A\) > 0 for
A € (—00,0]. If Ay is the smallest pole of 4, that is, the smallest zero of p, then

q(Ao) > 0. Performing long division, we can write

(N

9()\) =ap + p()x) )

(5.2.1)
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where ¢; is a polynomial of degree less than n and ag > 0 by taking the limit
as A\ = —oo in the above identity. Multiplying (5.2.1) by p(}\), it follows that
q1(Ao) = q(Ao) > 0.

If n =1, we may assume that ¢; = 1, so that p(})
and ¢ > 0 since p(A) > 0 for A € (—o0,0]. Writing a; =
for n = 1.

= —b1 A+ ¢ where b; >0
! . broves the proposition

Now let n > 2. If A; and Az are two consecutive zeros of p, then ¢1(A;) = ¢();)
for j = 1,2, and since ¢ has exactly one (simple) zero between \; and As as the
zeros of p and ¢ interlace, ¢1 (A1) and g1 (\2) have opposite signs, so that ¢; has at
least one zero between any two zeros of p. Since the degree of ¢; is at most n — 1,
it must be exactly n — 1, and the zeros and ¢; and p are real and interlace, with
both ¢; and ¢ being positive on (—oo,0]. Hence long division gives

ZZ((AA)) = b+ 7(28; (5.2.2)
where b; > 0 and p; is a polynomial of degree less than n. Defining 6, = gi, we
have shown that

W=awt
b1\ + 61())

Then the statement of this proposition follows by induction on n provided we show
that 6; € Sy and 6, has n — 1 poles and zeros.

To prove this property, let po be the smallest zero of g;. We already know
that the zeros of p and ¢; interlace, that p has degree n and ¢; has degree n — 1.
Therefore it follows that A\g < 0. Since p is positive on (—oo, 0] we have p(ug) < 0.
Substituting Ag into (5.2.2) and observing that A\g > 0 and ¢1(\g) > 0 shows that
p1(Ag) > 0, and substituting o gives p1(uo) = p(po) < 0. Hence p; has a zero
vg € (Mo, o). We know that ¢; has n — 1 zeros, and the same argument we used
to show that the zeros of p and ¢; interlace, now applied to (5.2.2), shows that
between any two zeros of g1 there is a zeros of p;. Since the degree of p; does not
exceed the degree of ¢, it follows that the zeros of p; and ¢; interlace, that p; and
q1 have both degree n — 1, and that the smallest zero vy of p; is positive and less
than the smallest zero pg of ¢1. Finally, both p; and ¢; are positive on the interval
(—00, Ag), so that indeed 61 € Sy by Theorem 11.1.6 and Remark 5.2.1. |

Definition 5.2.6. Let P and ()5 be real entire functions with no common zeros such
that Q’ belong to AP, Then the function w defined by w(X) = Ps(A?) +iAQ4(A?)
is bald to belong to the class of symmetric shifted Hermite— Blehler functions. The
class of all symmetric shifted Hermite-Biehler functions is denoted by SSHB. If
the number of negative zeros of Ps is k, then we say that w belongs to SSHB,.
We note that a shifted Hermite—Biehler function w is symmetric with respect to
the imaginary axis, i.e., w(—A) = w(A) for A € C.
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If w denotes such a shifted Hermite-Biehler function, then Ps(A\?) = Rw(\)
and Qs(\%) = A1 Tw()), so that Py and Q are uniquely determined by w. Also
recall that P, 'Q, € N{P implies that the set of zeros of P is bounded below.

Definition 5.2.7. Let P, and @), be real entire functions with no common zeros such
that % belong to N}* and let R, be a real entire function whose zeros are real and
bounded below. Then the function w given by w(\) = R.(A\?)(P. (A\?) +iAQ«(\?))
is said to belong to the generalized class of symmetric shifted Hermite—Biehler
functions (SSHB class). If the number of negative zeros of R, P, is , then we say
that the function w belongs to SSHB,.

If w is of SSHB class, then Py, @, and R, are uniquely determined by w up
to multiplication by real entire functions without zeros.

The following Proposition shows some relations between shifted (generalized)
Hermite—Biehler functions and (generalized) Hermite—Biehler functions.

Proposition 5.2.8.

1. An entire function w is of SSHBg class if and only if there are an entire
function w1 of HB class and m € {0,1} such that w(\) = A"wi(A), A € C,
and such that 1wy is symmetric with respect to the imaginary axis.

2. An entire function w is of SSHBq class if and only if w is a nontrivial function
of SHB class.

Proof. If w belongs to any of the classses in the statement of this proposition, then
w is symmetric with respect to the imaginary axis, and w can be written in the
form (5.1.23). Let 6, = %, and observing the notation (5.1.24) and the property
(5.1.25), we define ’

_Tw(h) _ QM) _ AW

600 = Rw(A) PN P

= M0, (\2).

1. If w is of SSHBy class, then P; # 0, Qs # 0 and 85 € S by definition of the
SSHBy class. Hence # € N by Lemma 5.2.4, part 4, and thus 0 € N since 6 is not
constant. Since P; and Qs do not have common zeros, it follows that P and @ do
not have common nonzero zeros. In view of Lemma 11.1.1, part 1, w satisfies (5.1.2)
and does not have zeros in the open lower half-plane. Since the real entire functions
P and @ do not have common nonzero real zeros, it follows that w does not have
nonzero real zeros. If w(0) # 0, we conclude that w is of HB class and hence of
SHB class since by assumption w is symmetric with respect to the imaginary axis.
If, however, w(0) = 0, then P5(0) = 0 and (Qs(0) # 0, which implies that w has a
simple zero at 0. Writing w(\) = Awi(A) with wi(A) = A"LP(A) +iQ()) it follows
from 11{“:1 = 6 that w; is of HB class. Clearly, in this case iw; is symmetric with
respect to the imaginary axis since w has this property.

Conversely, if w; is of HB class, then § € /. Hence 6, € S by Lemma 5.2.4,
part 4. With the arguments from the beginning of the proof of Theorem 5.1.7 we
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conclude that P = Rw and Q = [w do not have common nonzero zeros. Hence P;
and Qs do not have common nonzero zeros. Since w (0) # 0, 0 cannot be a common
zero of Py and Q. Because @ # 0 implies Q¢ # 0, either 6, is a positive constant
or 6, is positive on the negative imaginary axis by Lemma 5.2.2. Therefore w is of
SSHBy class.

2. Let w be of SSHB class. With the notation from Definition 5.2.7 we write
W = Wy, where ©1(A) = Pu(A?) +iAQ.(\?) and &2(\) = R.(A\?). Furthermore,
wy is of SHBg class and R, has only nonnegative real zeros, if any. In view of
part 1, ©1(\) = A™wi()\), where w; is of HB class. Defining wa(\) = A™ R, (\?), it
follows that ws is a real entire function which has only real zero. Hence w = wyws
is a nontrivial function of SHB class.

Conversely, let w be a nontrivial function of SHB class. Then its real zeros are
symmetric with respect to the origin, and we can construct an even entire function
w3 whose zeros are the nonzero real zeros of w, counted with multiplicity. Let
n = 2k 4+ m be the multiplicity of the zero 0 of w, where k € Ny and m € {0,1}. Tt
follows that there is an entire function R, such that A?*w3()\) = R.(\2?). Since the
function wo defined by wa(A) = A"ws(A) is a real entire function which accounts
for all real zeros of w and since w is nontrivial, Theorem 5.1.9 gives a function
wy of HB class such that w(\) = wa(Nwi(A) = R.(A?)A™wi(N). Clearly, i™w;
is symmetric with respect to the imaginary axis, and an application of part 1
completes the proof. |

Recall that zeros of analytic functions will be counted with multiplicity.
Theorem 5.2.9. Let w € SSHB,. Then

1. The zeros of w lie in the open upper half-plane and on the imaginary axis.

2. The number of zeros of w on (—ic0,0) is equal to k, the number of negative
zeros of Ps. The zeros of w on (—ico, 0] are simple.

3. If kK > 0 and the zeros in the open lower half-plane are enumerated such that
Aj = iTj, where T, < To—1 < --- <71 <0, then w(i|7j|) #0 for j=1,..., k.

4. If k > 1, then each interval (i|7;],4|Tj+1]), 7 =1,...,k — 1, contains an odd
number of zeros of w, counted with multiplicity.

5. If kK > 0 and w(0) # 0, then the interval (0,i|71|) contains an even number
of zeros of w, counted with multiplicity, or does not contain any zeros of w.

6. If K > 0 and w(0) = 0, then the interval (0,i|71|) contains an odd number of
zeros of w, counted with multiplicity.

Proof. 1. If X is a nonzero real number, then w()\) = Ps(A?) +i\Qs(\?) # 0 since
P; and Qs are real on the real axis and do not have common zeros. Suppose now
w(Ag) = 0 where Re A\g # 0 and Im A9 < 0. Then P,(\g) # 0 and

Qs(A3)

P\ = iXg L. (5.2.3)
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Since % € N we have

Re /\0

0 <Im M2 Im(irg') = 2Re\gIm g o2
0

<0,
which is impossible.

2. First let us prove that the zeros of w on the negative semiaxis are simple.
If % is constant, then @), is a real multiple of P,;, and Ps has no zeros. Hence

w has at most one zero. If ?,S is not constant, then Lemma 11.1.1, part 1, shows
that Ps + Qs is of HB class, so that according to Theorem 5.1.13,

QN Ps(A) = Qs(\)PL(A) > 0 (5.2.4)

S

for all real \.
Suppose that A = —i7, 7 > 0, is a multiple zero of w. Then

Po(—1*) +7Qs(—72) =0 (5.2.5)

and

—2irPl(—7%) +iQ4(—7%) — 2iT°Q,(—7%) = 0. (5.2.6)
Since P, and @Q, have no common zeros, (5.2.5) shows that P,(—72) # 0. Multi-
plying (5.2.6) by —iQs(—72) and using (5.2.5) we obtain

—27[Pl(—=72)Qs(—77) — Py(—m2)Q4(—7%)] + Q*(—7%) = 0, (5.2.7)

which is impossible in view of (5.2.4).

Suppose w has a multiple zero at the origin. Then (5.2.5) and (5.2.6) with
7 = 0 implies Ps(0) = Q4(0) = 0, which is impossible since Ps; and Qs have no
COMIMON Z€eros.

Let A\x(c) be a zero of w(\, a) = Ps(\?) + i aQ,()\?), where we may assume
in view of Theorem 9.1.1 that Ay depends continuously on « € [0,1]. Then

2

)\k(a) = PS()‘k(a)) )

aQs(A (@)

In the above reasoning on the simplicity of zeros we may replace Q¢ with a@), for

all @« > 0, and for @« = 0 we can argue with the simplicity of the zeros of Ps to

conclude that all zeros on the negative imaginary semiaxis are simple for aw > 0.
From Theorem 9.1.1 we therefore know that \j is differentiable, and we find

B k(@)@ (2())
20k (@) P{AR (@) + iaQs (AF () + 2iad} () QL (AF (a)
Substituting (5.2.8) into (5.2.9) we obtain

M (@) Q2 (A (a))
(

_i2Ak(a)[Qs(Ai(a))P;(Ai(a)) — Ps(A\2 () QL (A ()] +iaQ2 (A (a))
(5.2.10)

(5.2.8)

Ae(@) (5.2.9)

Ay (a) =
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For A\i(a) = —i7(e) with 7(a) > 0 and a > 0, (5.2.10) and (5.2.4) imply 7/(a) > 0.
This means that the zeros on the negative imaginary semiaxis move upwards.
On the other hand they never cross the origin because a zero at the origin is
independent of o and simple for all @ > 0. Since (}2, belong to NP, there is v < 0
such that

QS(_TQ)

Py(—=72)
Hence, for 7 > |y|2, Py(—72) # 0 and

>0if —7%2 <.

w(_iTv O‘) _ Qs(_7—2)
P2y “ 1T (Lr2)

> 1,
so that w(-, ) does not have any zeros on (—ico, —i|y|2), and therefore no zeros
of w(-, @) can join the imaginary axis from —ico. Hence the number of zeros of
w(+, @) on the negative imaginary semiaxis is independent of a > 0, and it equals
k for a = 0, so that, taking a = 1, we have proved that w has x simple zeros on
the negative imaginary semiaxis.

3. Suppose w(iT) = w(—iT) = 0 where 7 € R\ {0}. Then

Py(—72) + 7Q4(—72) = Py(—72) — 1Q4(—7%) =0

and, consequently, Ps(—72) = Q,(—72) = 0, which is impossible.

4. Let A\,(0) be a pure imaginary zero of w(\,0) = Ps(A?). Then (5.2.9),
which is true for all pure imaginary zeros A (a) of w(-, &) with sufficiently small
a > 0, implies Re A}, (0) = 0 and Im A} (0) > 0. Hence, statement 4 is true for small
a > 0. Because of

W=\ a) = P\ — idaQs(\) = w(), q)

for all A € C, all zeros of w(+, ) are symmetric with respect to the imaginary axis.
Thus, the zeros of w(-, @) can only leave or join the imaginary axis in pairs as «
increases, and therefore statement 4 remains true for all « € (0, 1].

5. The proof of this statement is the same as the proof of statement 4 since
no zero can join the positive imaginary semiaxis through 0.

6. Here we have to observe that 0 is a double zero of w(-,«) for @« = 0 and
a simple zero for a > 0, as we know from statement 2 in the case a = 1, which
readily extends to any a > 0. Hence one zero of w(-, «) has to move away from 0
as a becomes positive. As we have seen in the proof of part 4, zeros can leave the
imaginary axis only in pairs, so that this eigenvalues must stay on the imaginary
axis and therefore must move upward as « becomes positive. A reasoning as in
the proof of part 4 completes the proof. O

Remark 5.2.10. By definition, w € SSHB can be written as w(A\) = R.(A)wi(N),
where w; € SSHB. A zero A of w; will be called a zero of w of type II, and its
type II multiplicity is the multiplicity of A as a zero of wi. A zero of A — R, (\?)



140 Chapter 5. Generalized Hermite-Biehler Functions

will be called a zero of w of type I, and its type I multiplicity as a zero of w is its
multiplicity as a zero of A — R, ()\2).
Corollary 5.2.11. Let w € SSHB. Then:

1. The zeros of w which are of type I lie on the real and imaginary axes with at
most a finite number on the imaginary axis. They are located symmetrically
with respect to the origin.

2. The zeros of w which are of type 11 satisfy the statements 1-6 of Theorem
5.2.9.

3. All zeros of w which are both of type I and type II lie on the imaginary axis.

4. In the notation of Definition 5.2.7 let {y and (1 be the smallest zero of R, Px
and Py, respectively. Put v; = min{(;,0}, j =0,1. If —iT is a zero of w with
T >0, then 72 < —9, and 7% < —, if —iT is a zero of type II.

Proof. Statement 1, 2 and 3 follow from Remark 5.2.10, Definition 5.2.7 and The-
orem 5.2.9.

4. Since wy is of SSHB class, the function Q. P, * belongs to N}” by Definition
5.2.6. Hence we have in view of Corollary 5.2.3 that P.((1) = 0, Q.(¢1) # 0, and
P,.(z) an Q.(z) are different from zero and have the same sign for z < (;. Then it
is easy to see that wi(—i7) = Pu(—72) + 7Q.(—72) # 0 for 7 > 0 with 72 > —~;.
This proves the statement for the zeros of type II. Since —iT is a zero of w of type
I if and only if —72 is a zero of R, the proof is complete. ]

We will make use of the following simple

Lemma 5.2.12. If o« € CT and B € C*, then

oa+j 4
agect

Proof. Since 0 < arga < 7w and 0 < arg § < 7, we have 0 < argaf3 < 27, so that
a3 is not a positive real number, and the fraction is well defined. Then

at+pf _ (a+B)(1—ap)
1—aB n1—ap2

and the proof will be complete if we observe that
Im ((a+ 8)(1 - ap)) = Im(a + 8 —|a*8 — [5*a)
=Ima+ImB+ |a*Im B + |8 Ima. O

Lemma 5.2.13. Let 0p € M be such that there are r1,79 > 0 such that 6y(\) € C*
Jor all X € C* with |\| > 1 and A200(\) € C* for all A € CT with || > 7o,
where A2 is the square root in the upper half-plane. Let

) =X+ +, qN) =2, &CER E>0,
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and define

o(Mp(A) +4(A)

P(A) = Ao(N)a(A)

Then 0 € M, O(X\) € Ct for all X € CT with |\| > 71, and A20(\) € C* for all
A € CT with [N > ra. If Oy is real, then also 6 is real.

0()) =

Proof. We have

6(y) = (=A+E2+¢%)00(N) +2¢

“A+E2 42— N0p(N)2¢

which gives in particular that 6 is real if 6y has this property. Note that the
denominator is not identically zero since for A € C*, |A| > r1, the complex number
A1 + 09(N)2¢) is a product of two numbers in C* and therefore cannot be a
positive real number. Hence § € M. Assume there is \g € CT, |\g| > 7y, such
that Im6(Ag) < 0. Putting

wn) = Tt €2+ ()nbo (o) + 2¢
P N €2+ ¢2 = omflo(M)2¢

for n € [0,1], the same reasoning as above, applied to Ao(1 + 1n6p(Ag)2€), gives
that the denominator of 4 is never zero, so that 1) is continuous on [0, 1]. We have
(1) = 0(XNo) ¢ CT and, since

_qN) 2¢
=00 T et

defines a Mobius transformation ¢; mapping CT onto itself, 1(0) = 61(A\g) € CT.
By continuity, there is 1y € (0, 1] such that ¥(ng) € R. Then

(Ao + &%+ ¢?)(no) — 2¢

nobo(Ao) = —Xo + &2+ 2+ Aotp(m0)26

(5.2.11)

But in view of

—(n0)(€2 + ¢2) — [(€% + () (no) — 2€] [~1 + ¥ (no)2¢]
= =2 [(&€ + )P (o) + 1 — 2&0(no)]
= =26 [(&(no) — 1)* + ¢*¢*(m0)] <0,
the map

(=A+E%+ C)o(mo) — 26
—A+ &2+ 7+ Mp(n0)2¢
is either a real constant function or a Mébius transformation which maps CT onto

C~, and we arrive at the contradiction that the left-hand side of (5.2.11) belongs
to C*, whereas the right-hand side does not.

A=
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Since also
26N

A+ +¢

defines a Mobius transformation mapping C* onto itself, it is clear that

A1 (A) =

0 < arg(6:())) < arg ()\501(/\)) <arg(Mi(\) <7 for A e CH,

so that A20;(\) € C* if A € C*. Then

) L Az00(\) + A20:()N)

A20(N) . . eCt ifAeCT, |\l >r
1—)\290(>\)>\291(>\)

by Lemma 5.2.12. O

Lemma 5.2.14. Let 6 € M and assume that there are 11 > 0 and ro > 0 such
that 0o(\) € C for all X € Ct with |\| > 11 and A20p(\) € CT for all X € C*
with |\| > rq. Let

pA) ==A+&0 qA) =¢&+¢ §CER, £+(>0,

and define
0o(Mp(A) +4(A)
o)) = .
™= 000 = Mo (3)a)
Then 0 € M, 0 has no zeros in {\ € C* : [A\| > r1} and no poles in {\ € CT :
IA| > r3}, where rs = max{ry,r9, —£C}, and A20(\) € CT for all X € CT with
|A| > r4 = max{ry, —£C}. If Op is real, then also 0 is real.

Proof. We have
A EC— Mo(N(E+ Q)

which gives in particular that 6 is real if 6y has this property. We are going to show
that the denominator is not zero for all A € C* with |\| > r3. Indeed, assume that

—A+EC=A(M)(E+¢) =0

B = (f%)

for some such A. Then

§+¢
and thus
L& 1
= 2 (59)
1 2
= o (€27 - i),
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so that N
Im (Azao()\)> =—mad SO

The right-hand side is negative for A € CT with |[A\| > —£(, whereas the left-hand
side is positive for |A| > ro by assumption. This contradiction shows that 6 has no
poles in {\ € C* : |\ > r3}.

Assume there is \g € CT, |X\g| > r1, such that 8(\g) = 0. Then

) = 05

where the right-hand side is a Mobius transformation mapping C* onto C~, thus
arriving at a contradiction since the left-hand side belongs to CT.

We define
g(A) _ &+¢

BV= 000 T At

and observe that

. CA(EHQ) A (EFO(=AFEQ)
MON =Tl T At

and

tm (A} (=A+€0)) =Tm A (A +€0)
show that A26;(\) € Ct if A € CT, |A| > —£C. Then

A20()\) = MQOEA) +A2191(A) €CT ifAeCt, [N\ >ry,
1-— )\290(>\)>\291(>\)
by Lemma 5.2.12. ]

Lemma 5.2.15. Let 6 € M NN, Then there is v > 0 such that A20()\) € C* if
A € CH with [N > .

Proof. The case that 6 is constant is trivial, so that we may assume now that 6
is not constant and therefore 6 € N. Since 6 € NP, there is r > 0 such that 6 is
positive on (—oo, —7]. By Corollary 5.2.3, 6 has at least one pole, and the smallest
pole is smaller than all zeros of 8, if any. Then the zeros and poles of ¢ defined by
PY(A) = (A +7r)0(N) interlace. We observe that

A =0(N) + (A+7)0'(N),

so that ¢'(—r) = 0(—r) > 0, and it follows from Theorem 11.1.6 and Remark
11.1.7 that ¢ € M. For A € C* we write

1
A7 =Ab (A% n :\|)\2>
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and observe that

Im (A% + |§\)\2> = Tm A2 (1— &) >0if A e CH |\ >

Hence, for A € C*, |A| > r, we have

1

m > arg(A+ 1) :argx\é + arg (x\é + :\|)\2> > argx\% >0

and therefore

7> argp(\) = arg((A + r)0(\)) > arg(A20())) > argO(A) > 0,

whence A20()\) € Ctif A e CT, |A| > 7. O

The following theorem is the converse of Theorem 5.2.9.

Theorem 5.2.16. Consider the entire function

(o0)
W(N) = AN FIA+) H (1 A ) eRPk,<a>\k)’
k=1 Ak

where m € Ng, v >0, 6 € R, u(\) is a real entire function and

(o0)

1
Z Im a

k=1

Assume that w is symmetric with respect to the imaginary azis, i. e., w(—A) = w(A)
for all A € C, and assume that the zeros of w satisfy the following conditions:

1.
2.

7.

The zeros of w lie in the open upper half-plane and on the imaginary azis.
There are at most finitely many zeros of w on (—ic0,0), these zeros are
simple, and their number is denoted by k.

If k > 0 and the zeros in the open lower half-plane are enumerated such that
A\j = iTj, where T, < Te—1 < --- <71 <0, then w(i|rj|) #0 for j=1,... k.
If k > 1, then each interval (i|7;|,i|Tj41]), j=1,...,k — 1, contains an odd
number of zeros of w, counted with multiplicity.

If k > 0 and w(0) # 0, then the interval (0,i|m1|) contains an even number
of zeros of w, counted with multiplicity, or does not contain any zeros of w.
If w(0) = 0, then this zero is simple, and if additionally k > 0, then the inter-
val (0,4|m1]) contains an odd number of zeros of w, counted with multiplicity.
If k > 0, then the interval (i|7.|,i00) contains at least one zeros of w.

Then w € SSHB,; if w has at least one nonzero zero.
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Proof. Let P;, Q, P, and Q be as in (5.1.23) and (5.1.24). We are going to show
that Ps; and @, do not have common zeros. Indeed, assume there is A € C\ {0}
such that Ps(A?) = Q5(A?) = 0. Then w(+\) = Ps(A\?) £iAQs(A\?) = 0, which is
impossible because in view of conditions 1 and 3 there are no nonzero zeros of w
which are symmetric with respect to the origin. Also, since 0 is at most a simple
zero of w and since P and Q are even functions, at least one of P,(0) and Q,(0)
must be different from zero.

Next assume that w has at least one nonzero zero. Then the zeros of w are
not symmetric with respect to the origin, but the zeros of Ps(A\?) and i Qs (\?)
are. Hence neither P nor s can be identically zero.

We are going to prove the statement of the theorem by induction on x, where
we are also going to prove and use that there is r > 0 such that

;Qs()\) 4+ . +
A POV eCT HAeCT, |A\>r (5.2.12)

If kK =0, then w is an entire function without zeros in the closed lower half-
plane, except possibly at 0. Due to Theorem 5.1.11, w is of HB class. We have
shown that P; # 0 and Qs # 0, so that

A0, _ Qs

o(A) Ay TR
are well-defined nonzero meromorphic functions. In view of Lemma 11.1.1, applied
o (5.1.23), € N, and then 6()\) = A0s(\?) shows by Lemma 5.2.4, part 4, that
0, € S, so that w € SSHBy. Then Proposition 5.2.8 gives § € N, and (5.2.12)
follows from Lemma 5.2.15.
Now assume that x > 0 and that the statement of this theorem and (5.2.12)
are true for k — 1. We are going to construct a family of entire functions w(-, ),
€ [0,1], such that w = w(-,0), the zeros of w(:,n) depend continuously on 7,
w(-,m) satisfies the same assumptions as w for all n > 0, and w(-,1) has kK — 1
zeros on (—i00,0). We start with writing w in a form which is more convenient
for our purposes. Let kg € N be such that kg — 2 is the number of zeros of w in
[0,4]71]). It will be convenient to choose a certain indexing for finitely many zeros
of w, to include 0 into this indexing if w(0) = 0, and to rewrite the corresponding
factors in the product representation of w in the following way. Let a; = i1y, let
ag, k=2,...,kg — 1, be all zeros of w in [0,|7]), if any, where we may assume
that Im oy, < Imagyq for k=2,..., ko — 2, and let oy, be the zero on (i|7|,i00)
with the smallest absolute value, which exists by assumptions 4 and 7. For each ay

A
with 1 < k < kg and ay # 0, e b (‘*k) can be moved into u(\), possibly changing
u to a different real entire function. Secondly, we will write
A

1-— =—a; '\ —
g a ( ak)
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1

for these k. The constants —ca,, = can be absorbed into the exponential term, pos-

sibly changing u and d, so that
w(A) = @(Nwo(A),

where © = @1(2)2,

ko—1
) = [THO=an)l @) = (A= im0 - o),
k=2
wo(A) = AN Fi(vA+5) ﬁ (1 B A ) eRPk(aAkX
(€773

k=ko+1

il is a real entire function and § € R. In our construction, at most two linear factors
from & of the form i(A — ay(n)) will change with 1 at a time, continuously depend-
ing on the parameter 7, so that the resulting functions @1 (+,n) and @9 (-, n) will be
polynomials which depend continuously on 7, uniformly on compact subsets.
Now we describe how to move i7; from the open lower half-plane into the
open upper half-plane. According to the conditions 2, 5 and 6, the interval [0, ¢|7|)
contains an even number of zeros of w and thus of @&;. Let us arrange them in
adjacent pairs (ag,as),. .., (Qg,—2, gy—1), if any. Then we move elements of each
pair along the interval (0,4|m1|), continuously as functions of the parameter n in
[0, %}, to collide and after the collision we move them into the complex plane
symmetrically with respect to the imaginary axis. In this process all other zeros
are kept fixed. Now, since there are no zeros of @(-,n) in the interval (0,4|r|) for
n= ;, we move the zero im; up along the imaginary axis until it appears in the
upper half-plane in the interval (0,|7(|) for n = 1. Here, this zero is paired with
the zero ayg,, which may stay fixed. Clearly, in this process all of the properties
1-7 are satisfied for &1 (-, 1), @a2(+,n), wo and any of their products with 7 € [0, 1].
Observe that

i(-A+8)=i(A—B), \BeC,
so that (=) = ¥(A) if

PA) =i(A = Bu(p) or p(A) = [i(A = B2(p)][i(A + Ba(p)],

where 81(n) € iR and B3(p) € C. This shows &1(—\,n) = ©1(\, 1), G2(—=A,n) =
Wa(A,m) and thus wo(—A,n) = we(A, n) for all A € C and 7 € [0, 1].

Therefore, w(-,1) and w1 (, n)wp satisfy all assumptions of this theorem, but
with x replaced with x — 1. By induction hypothesis, w(-, 1) € SSHB,_1.

Next we note that the symmetry proved above shows in view of Proposition
5.2.8 that there are real entire functions Py (-, 1) and Qo(-,7) such that

G1(A mwo(A) = Po(X%,m) +iAQo (N, 7).
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If &1 (-, m)wo has at least one nonzero zero, then this function belongs to SSHB,_1
by induction hypothesis, so that

Oo(-,n) = (;253((:’2)) EN.

Otherwise, if @&1(+,n)wo has no nonzero zero, then £ = 1, and @;(0,n)wo(0) # 0
by condition 6 since the interval (0,|71|] contains no zeros of &1 (-, n)wo, so that
w1(+,n)wo has no zeros at all. Then @;(-,n) = 1 as it is an empty product. Hence
w1(+,M)wo = wp is independent of 7, and so are 150(~,77) and QO(-,U). In this case,
By(0,1) = wo(0) # 0, so that By(-,n) # 0. However, Qo(-,17) = 0 is possible as the
trivial case wo = 1 demonstrates. But if Qo(-,7) # 0, then @y (-, n)wy satisfies the
assumptions of this theorem with « = 0, and the proof of that case shows that

Oo(-,n) € N, that &y (-, n)wo € SSHBy, and that (5.2.12) holds for A ~— A2 igéjg;

Summarizing the above result, we have either

0o(-,m) € NP and A — A2 QO()\’U) satisfies (5.2.12) for all n € [0,1] (5.2.13)
Po()\ﬂ?)
or R
0o(-,n) = 0 for all n € [0,1]. (5.2.14)

All of the pairs of zeros in wi(-,n) and Wa(+,n) are of the form (i¢,i¢) with
€+ ¢ >0or (i€ + (,i€ — ¢) with & > 0, where £, ¢ € R. In the first case,

i = 2)J[i(A = Q)] = —A? + A€ +¢) + £¢ = p(A?) +iAq(A?),

with
p(A) ==A+&, q(N) =&+ (5.2.15)

In the second case,
[i(X = (i€ + ON[EA = (i€ = )] = =A% +iX2€ + €2 + ¢* = p(\?) +irg(N?),

with
pA) = A+ 24+ q(N) = 2¢ (5.2.16)

In particular, with the real-imaginary parts decomposition
@2(A, 1) = p2(N%,m) + iAG2(N%, )
it follows that
w(A, ) = [0 (A mwo(A)wa (A, )
= [A020) +rQo (0| (202, m) + irda (N, m)]
= B\, m)p2(A\,m) = A Qo (A%, m)d2(\*, )
X (QoA% mp2(3%,m) + o, m)as (V)
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so that
with
Py(A\m) = Po(\mpa (A, 1) — AQo (A, m)da (A, ),
Qs(A\m) = QoA mp2(A 1) + Po(A, m)dz(A, )
Therefore
PS()\’U) p2()\>77) - )‘00(>‘777)q2(>‘777)

From the alternative (5.2.13), (5.2.14) we know that fy(-,7) = 0 for some 7 € [0,1]
implies that 0y(-,n) = 0 for all n € [0,1], so that in this case

(A,0)

‘ako‘ +7
A+ |k, |71

Clearly, 8 is a Mobius transformation which belongs to SSHB;, and 6 satisfies
(5.2.12) in view of Lemma 5.2.15.

Now let Qo(-,1) # 0 for € [0,1]. Then y(-,n) € NP with k — 1 negative

poles, see (5.2.13). Writing wo(A) = po(A?) + iAgo(A?) and fp(A) = ©})

by induction hypothesis that there is 72 > 0 such that A\265(\) € C* for all
A € CT with |A| > 72. Adding pairs of factors from @; recursively, Lemmas 5.2.13
and 5.2.14 show that the corresponding estimates remain true with the same 7o,
and therefore, eventually, A26y()\, ) € C* for all A € CT with |A| > ro.

Also, starting with 0y, recursively adding pairs of factors from @; to wg gives
meromorphic functions

, we have

0j—1(Am) + 15 (Am)

0;(Am) =~ A0 (N m)vi(An)
where either
| _ &) +Gn)
bi(Am) = A+ & ()¢ (n)
or
. 2¢;(n)

T A E2(n) + )

with continuous functions §; : [0,1] = (0,00) and ¢ : [0,1] — [0, 00). Since there
is v € R such that 6p(\) > 0 for A € (—00,7), it follows in each step that also
0;(\, 1) > 0 for each A € (—00,7) and 7 € [0,1]. Because 6(),7) is the final of
these 6;(c0,7), also A(\, 1) > 0 for each A € (—00,~) and 7 € [0, 1].
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Since, by construction,

P2(A, ) = =A+EM)Cn),  G(N\n) =E&m) +<{(n)

for 1 € [0,1] with €(n) = |, |, (1) =1 if 7 € [0, 1] and ¢(1) € (0,71]), where ¢
increases with n € [3,1], we have

—5(77)4(77) < ‘akoHTl‘» ne [071}'

By Lemma 5.2.14, there are r3,r4 > 0, independent of 7, such that 6(-,7) has no
zeros in Ct, 0(-,n) has no poles in {A € C* : |A| > r3}, and A26()\,5) € C* for
A € CT, |A| > r4. In particular, (5.2.12) is satisfied.
Setting
j G(Am) _ &) +<(n)
0o )‘777 = . = )
= o) T At

(5.2.17) can be written as

Oo(A, ) + 02(A,m)

05 >\7 = N N )
) = O Oun)

which implies that 65(X\,77) > 0 if A € (—o00,%), where 4 = min{~, —|ag, ||71|}-
Next we are going to study the behaviour of the real zeros of P(-,n). Writing

wo(A) = Po(A\?) +iAQo(N\?),
WA, m) =DA%, n) +iAG(A%,n),

it follows that

Py(A ) = Bo(A)p(A 1) — AQo(A)q(A, ),
Qs(/\’n) = Qo (/\) ()‘777)+P0( )qA( )
1)

Since w(-,n) are polynomials, so are p(-,n) and ¢(-,n). Furthermore, since p(-,7n)
and ¢(+,n) can be constructed according to the above rules from building blocks of
the form (5.2.15) and (5.2.16), it is easy to see that the corresponding polynomials
p;(-,n) and g;(-,n) have the form p;(\,n) = (—=A\)7 + O ()\j_l) and §;(\,n) =
oj(n)(=A)J714+0 (M~2), where the o are positive continuous functions and where
the O-terms are uniform on 7 € [0, 1]. Hence there is § > r3 such that p(-,7) and
4(-,m) do not have zeros on (4, c0).

First we consider the case that Py has infinitely many zeros, and therefore
infinitely many positive zeros. We recall that 6y = Q" is a Nevanlinna function. If
A1 and \g are two consecutive zeros of Py in (§, 00), then there is exactly one simple
zero of Qg between A\; and Ao, and therefore Qo(\1) and Qp(A2) have opposite
signs. Then also

Ps(A1,m) = =A1Qo(A1)q(A1,n) and  Ps(A2,m) = —X2Qo(X2)d(A2,m)
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have opposite signs, so that between any two zeros of Py in (J, c0) there is a zero of
Ps(-,m), for any n € [0,1]. Conversely, any such zero A(n), depending continuously
on 7, must stay in such an interval (A1, A2) since Ps(-,n) does not have nonreal
zeros A with || > r3.

On the other hand, if Py has finitely many zeros, then 6 is a rational function,
and in view of Theorem 11.1.6 we may replace Py and Q¢ by real polynomials,
thus replacing Ps(-,n) and Qs(-,n) by polynomials whose leading coeffients are
never zero. Hence also the zeros of P,(-,n) must remain in a finite region.

In particular, since zeros A of Py(-,n) and Q,(-,n) with |A\| > rs must be
real, zeros of Ps(-,n) and Qs(-,n) cannot leave or join the complex plane through
oo. Hence, if (/\J(l))gfl) denotes the zeros of Ps(-,1) and Qs(+,1), then all zeros
are real, may be arranged such that A;(1) < A;11(1) for all j € N, and they are
alternatively zeros of Ps(-,1) and of Qs(-,1). The above considerations show that

there is a sequence of continuous functions ()\J)giol) on [0,1] such that (); (77))50201)
is the sequence of the zeros of Py(-,n) and Qs(-,n) for all n € [0,1]. As n decreases
from 1 to 0, the A\;(n) must remain distinct since Ps(-,n) and Q4(-,n) do not have
common zeros. Since real zeros of a real analytic functions can leave the real axis
into the complex plane only in conjugate complex pairs, all zeros of Ps(-,7n) must
therefore stay on the real axis for all 7, and it follows for all » € [0,1] that the
zeros of Ps(-,n) and Qs(-,n) are real and interlace.

We now show that 6, € . The proof of this part is similar to the last para-
graph of the proof of Theorem 11.1.6. To this end, we use that there is a product
¥ € N of the form (11.1.2), with C = 1, such that ¢ has the same zeros and
poles as ;. Then f = (i;‘ is a real meromorphic function without poles and zeros,
that is, a real entire function without zeros. From what we have already shown
for 65 and from Lemma 5.2.15 applied to 1) we have that there is r > 0 such that
A20,(\) € C* and A2ep(A) € C* for all A € CT with [A| > 7. Then it follows for
these A that f(\) ¢ (—o0,0). Also, there is m > 0 such that |f(X)] < m for all
A € C with |\ < r. Tt follows that f(C*T)N(—o0o0,—m) = 0, and since f is real, also
f(C7)N (=00, —m) = B. Continuing as in the last paragraph of the proof of Theo-
rem 11.1.6, it follows that f is a positive constant, and then ¢ € N gives 0, € N.

Finally, since we already know that 05(A) > 0 for A € (—o0,7), it follows
that w € SSHB,, for some s’ € Ny. In view of Theorem 5.2.9, w has x’ zeros in
(0, —ic0), so that k' = k. O

The following simple example shows that Theorem 5.2.16 may be false or
true without assumption 7.

Example 5.2.17. Let 0 < b < a and define w(\) = (i\ — a)(i\ + b)%. Then w
satisfies all assumptions of Theorem 5.2.16 except assumption 7, which does not
hold. We can write w(\) = Ps(A\?) 4+ iAQs(A\?) with Ps(\) = (a — 2b)\ — ab? and
Qs(\) = =X —b(2a —b). Now it is easy to see that % e N7 if and only if a < 2b.
Hence w is of SSHB; class if 0 < b < a < 2b, but w does not belong to SSHB if
0<2b<a.
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5.3 Notes

Hermite-Biehler polynomials were introduced and investigated in [107]. In [30],
Biehler considered a class of polynomials for which the imaginary parts of its zeros
have the same sign and showed that the zeros of the real and imaginary parts of
these polynomials have only real simple zeros which interlace. By the change of
parameter A — —i\ we obtain Hurwitz polynomials [120]. For a detailed review
of these and related results we refer the reader to [113].

Hermite—Biehler entire functions and generalized Hermite—Biehler entire
functions were described in [173]. We cite the following statements about the his-
tory of generalizations of Hermite—Biehler polynomials to Hermite—Biehler func-
tions from [173, Chapter VII, pp. 306, 307].

For the solution of certain questions of the theory of automation one
needs effective criteria for all the roots of the function

F(z)= ) agzlet* (5.3.1)
k,j=0

to lie in the left half-plane. N.G. Cebotarév called functions of type
(5.3.1) quasipolynomials. Quasipolynomials depend only on a finite
number of parameters, and therefore it is natural to suppose that for
them there exists an effective method of solving this problem.

In 1942 N.G. Cebotarév found such an effective criterion for a very
special case of polynomials [51]. In another paper N.G. Cebotarév [50],
generalizing the Sturm algorithm to quasipolynomials, gave a general
principle for solving this problem for arbitrary quasipolynomials. How-
ever the application of this general principle required a generalization
of the Hermite—Biehler theorem to quasipolynomials.

L.S. Pontryagin [232] in 1942 generalized the Hermite-Biehler the-
orem to quasipolynomials of the type P(z,e*), where P(z,u) is a poly-
nomial in two variables.

In carrying over the Hermite—Biehler criterion to arbitrary entire
functions, an essential role is played by a particular class of entire func-
tions. This class was introduced and studied by M.G. Krein in his paper
“On a class of entire and meromorphic functions”, which was devoted
to the extension of the Hurwitz criterion to entire functions. The def-
inition of this class presented here is due to N.N. Meiman [188]. It is
equivalent to the definition given earlier by M.G. Krein (see the book
of N.I. Ahiezer and M.G. Krein [7]).

For further results on Hermite—Biehler polynomials and related polynomials
we refer to [110], [111], [45, P. 215] [112], [203], [253] and the review paper [113].
Different results connected with Hermite—Biehler functions can be found in [61].
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Shifted Hermite-Biehler polynomials were introduced in [219]. For polyno-
mials, an analogue of Theorem 5.2.9 was obtained in [219] and [264, Theorem 5.3].

The class of essentially positive Nevanlinna functions has been introduced by
M. Kaltenbédck, H. Winkler and H. Woracek in [131].

In [227] the theory of de Branges Pontryagin spaces of entire functions was
used to characterize zeros of shifted Hermite—Biehler functions. The main result
there is [227, Theorem 3.1], which corresponds to Theorems 5.2.9 and 5.2.16. Our
proof of Theorem 5.2.16 follows the geometric approach in [228].

Results on representing rational functions as continued fractions can be found
in [270, Chapter IX], see also [264, Theorem 1.36] and [113, Sections 1.3-1.5].



Chapter 6

Applications of Shifted
Hermite—Biehler Functions

In this chapter we revisit some of the applications in Chapter 2 and express their
spectra as the zeros of entire functions.

Indeed, we are going to use shifted Hermite—Biehler functions and general-
ized shifted Hermite—Biehler functions to describe characteristic functions of those
spectral problems from Chapter 2 which are described by quadratic operator pen-
cils L(A\) = A2M — iAK — A with the operator K having rank 1. The results in
this chapter differ slightly form those obtained in Chapter 2, and this additional
information by either method will be exploited in Chapters 7 and 8.

In Definition 1.5.2 we have defined eigenvalues of type I and type II, whereas
in Remark 5.2.10 we have defined zeros of type I and type II. In Chapter 2 the
operator approach allowed us to classify eigenvalues of our applications as being of
type I and type II. In this chapter we will consider characteristic functions of our
applications, and the zeros of these characteristic functions, which are of SSHB
class, will be classified as being of type I and type II. But from Remark 1.5.8 we
readily conclude that a nonzero eigenvalue is of type I if and only it is a zero of
A = R.(\?), with multiplicity, see Remark 5.2.10. Hence nonzero eigenvalues of
type I and type 11, respectively, are zeros of type I and type II, respectively, of the
characteristic function.

Therefore the notions of type of an eigenvalue for an eigenvalue problem and
type of a zero of the characteristic function of that eigenvalue problem coincide for
nonzero numbers, and in this chapter we may henceforth write, e.g., “eigenvalue
of type I” rather than “zero of type I of the characteristic function”.

However, the situation may be different at 0. For example, if 0 is a simple
eigenvalue of a pencil L as considered in Section 1.5, then it is an eigenvalue of type
I by Remark 1.5.3, part 2. On the other hand, if this problem has a characteristic
function of SSHB class, then 0 is a zero of type II since this zero is simple.
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6.1 The generalized Regge problem

The Regge problem was considered in Section 2.1. Recall that s is the solution of
the differential equation (2.1.1) which satisfies the initial conditions s(A,0) = 0,
s'(X\,0) = 1. Then the eigenvalues of the generalized Regge problem (2.1.1), (2.1.2),
(2.1.5) are exactly the zeros of the entire function ¢ obtained by substituting s,
the solution of (2.1.1), (2.1.2) satisfying s'(0) = 1, into (2.1.5):

d(N) = s’ (N, a) + (ida + B)s(A, a), (6.1.1)

where a > 0 and g € R.

Proposition 6.1.1. 1. The function ¢ is an entire function of exponential type a.
2. The function ¢ is of sine type if and only if o # 1.

Proof. Substituting (12.2.22) and (12.2.23) with n = 0 into (6.1.1) we obtain

1 . 1-—- ;
+ael>‘a n Oée_Ma +O(€|Im>\|a)_ (6.1.2)

o= )

Clearly,

¢(A)=o(ellmla) and  @(—ir) = (1;O‘+0(1)>em for 7 >0, (6.1.3)

which shows that ¢ is of exponential type a. Similarly,

11—«

o(iT) = ( , 0(1)> e for T >0, (6.1.4)

and therefore (6.1.3) and (6.1.4) show that ¢ is of exponential type both in the
upper and lower half-planes if a # 1. Furthermore, it immediately follows from
(6.1.2) that there are positive real numbers h, m, M such that

me < < Me or a e C wit mA| >
[TmAle < g(\)| < Mel™AMNe for all A € C with |Im | > &

if & # 1. Therefore ¢ is of sine type if & # 1 by Definition 11.2.5. On the other
hand, if o = 1, then (6.1.2) gives |p(\)| = o(e!™*¢) for all A € C, and therefore
¢ is not a sine type function by Proposition 11.2.19. (]

Proposition 6.1.2. The function ¢ defined in (6.1.1) belongs to the class SSHB.

Proof. Since s(-,x) is an even function, there are unique entire functions f and g
such that
fO?) =5'(\a), g(\?) =s(\a), AeC.

By Theorem 12.6.2, the sequence (u2)?°, of the squares of the zeros of s/(-,a)
interlaces with the sequence (v7)?°, of the squares of the zeros of s(-,a):

pi<vi<ps<vi< - (6.1.5)
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That is, the zeros of f and g interlace. As in the proof of Proposition 6.1.1 it
follows from (12.2.22) and (12.2.23) with n = 0 that s'(-,a) and XA — As(\,a) are
sine type functions. In view of Lemma 11.2.29, there are nonzero complex numbers
c and ¢ and integers m,m’ € {0,1} such that

As(ha) = A2 T (1 _ V2> ,
k

k=1

iy A2
s'(\a) =\ H (1— 2>,

k=1 i

!/
where H indicates that the factor, if any, for which vy, = 0 or ux = 0, respectively,
is omitted, and where m +m’ < 1 in view of (6.1.5). It follows that

g =TT (1—12),
k=1 k
/ ’Oo/ A
fO) =X ] (1— 2)
k=1 i

Since s(),-) is a real solution of (2.1.1) for real A, f and g are real analytic. In

particular c and ¢ are real numbers. We conclude from Remark 11.1.7 that either
or / is a Nevanlinna function. Denote that function which is a Nevanlinna

f{unctlon by 6. Clearly, § € NP by Definition 5.1.26, part 1. Furthermore,

\ |Nla |Ala 1o

SN, S o +0< Al > (6.1.6)
|Ala

’ _ ¢ [Aa

Sva) = 7, +o(e ) (6.1.7)

shows that (\) is positive for X — —oo, that is, § € N{® by Definition 5.1.26,
part 2. Since p?, the smallest zero of f, is smaller than the smallest zero of g, u?
must be a pole of by Corollary 5.2.3. It follows that ¢ = %. Then _ch € N°P by
Lemma 5.2.4, part 2, and therefore

_f+ﬁg:_1f_ﬁeNip

ag ag «
if we observe that 583 — 00 as A = —oo by (6.1.6) and (6.1.7). We conclude,
again from Lemma 5.2.4, part 2, that

ag o
e NYP.
f+8g

Since ¢(A) = (f + Bg)(A\?) + iaAg(A\?), the function ¢ belongs to the class SSHB
by Definition 5.2.6. (]
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Theorem 6.1.3. The eigenvalues of the generalized Regge problem (2.1.1), (2.1.2),
(2.1.5) have the properties:

1. Only a finite number of the eigenvalues lie in the closed lower half-plane.

2. All nonzero eigenvalues in the closed lower half-plane lie on the negative
imaginary semiaxis and are simple. If their number K is positive, they will be
uniquely indexed as \_j = —i|A_j|, j = 1,..., K, satisfying |A_;| < |A_¢j+1)l,
j=1,...,5—1.

3. If k > 0, then the numbers i|A_;|, j =1,...,k, are not eigenvalues.

4. If K > 2, then in each of the intervals (i|A_;|,i[A_(j41)|), 5 =1,...,k—1 the
number of eigenvalues, counted with multiplicity, is odd.

5. If K > 0 and 0 is not an eigenvalue, then the interval (0,i|A_1|) contains an
even number of eigenvalues, counted with multiplicity, or does not contain
any eigenvalues.

6. If k > 0 and 0 is an eigenvalue, then the interval (0,i|A_1|) contains an odd
number of eigenvalues, counted with multiplicity.

7. If a # 1, then the generalized Regge problem has infinitely many eigenvalues,
which lie in a horizontal strip of the complex plane.

Proof. Parts 1-6 follow from Proposition 6.1.2 and Theorem 5.2.9.
Part 7 immediately follows from Proposition 11.2.8, part 2, since ¢ is a sine
type function by Proposition 6.1.1. ]

Remark 6.1.4. The statement of part 7 of Theorem 6.1.3 may fail if & = 1. For
example, if ¢ =0 and g = 0, then
sin(A\z)

s(A\x) = N A€ C\ {0},

and therefore
(X)) = cos(Aa) + isin(\a) = e,

which has no zeros at all.

Remark 6.1.5. We recall that Theorem 2.1.2 is concerned with the Regge problem,
whereas Theorem 6.1.3 deals with the generalized Regge problem. Statements 1-4
are identical in both theorems, up to minor differences in formulation. Statement 5
in Theorem 2.1.2 distinguishes two cases determined by whether the operator A is
injective. Since the operator A does not feature in this section, in statements 5 and
6 of Theorem 6.1.3 the condition on the nullspace of A is replaced by the equivalent
condition on whether 0 is an eigenvalue. It is also important to note that infinitely
many eigenvalues can only be guaranteed if o # 1. Hence the condition o # 1
will play a prominent role in Chapters 7 and 8. In Chapter 7 we will encounter
sufficient conditions for the Regge problem to have infinitely many eigenvalues;
however these eigenvalues will not lie in a horizontal strip but in a logarithmic
strip of the complex plane.
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6.2 Damped vibrations of Stieltjes strings

Let us recall problem (2.6.7)—(2.6.8) for the case with only one point of damping,
which is derived from (2.6.3)-(2.6.6):

(4) (4) (4) (4)
Up " —Uppr | U —Upr o (), (G) _ _ i
1) 1) Amyluy’ =0, k=1,...,n;,7=1,2, (6.2.1)
k k—1
ud) =0, (6.2.2)
1 2
ul) = ulyy, (6.2.3)

(1) (1) (2) (2)

un1+1 — Un, un2+1 — Uny

. 1
ey )@ + z)\llugll)_s_1 =0. (6.2.4)
ni n2

Here v > 0 is the coefficient of damping at the interior point of damping and
mgcj) >0 for k=1,...,n; and j = 1,2. Following [85, Supplement II, (16) and

(17)], a recursive application of (6.2.1) leads to
u(0) = RE) 0P (N, k=2, 0+ 1, j=1,2
k - 2k—2 1 ’ kA R y J =L, 4

where the Réj,l2 are real polynomials of degree k — 1. For convenience we extend

the above equations to k¥ = 1 and k£ = 0 by putting R(()j) =1 and R(E% = 0, the
latter in view of (6.2.2). We further define

) RY-RY, ‘
RY) = oo k=0,...,nj, j=1,2 (6.2.5)

From (6.2.1) we obtain

RG)(02) = R ,(0) _ R§),(0%) = R, (0)
1) B 1)
k k—1

)‘2ml(cj)RéJ1372 (/\2)

for k = 1,...,n; and j = 1,2. Substituting (6.2.5) into these equations, solv-
ing (6.2.5) for R;Jk), and observing Réj) =1 and R(_J% = 0, we obtain that the

polynomials R;f ) satisfy the recurrence relations and initial conditions

RY) (0 = -NmPRY) ,(\) + RY) ,(X%), k=1,...,n;, j=12 (6.2.)

Réﬂk) — ll(cj)Réjk:)fl + Réjllc)72’ k= 1,... NS ] =1, 2, (627)
, 1 , ,
RY — RrR{Y) =1, RY) = 0. (6.2.8)

1)
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The conditions (6.2.3) and (6.2.4) at the joint of the two substrings give

RS 02)uiV () = RE) (A)ufP (), (6.2.9)
RY) _ (02)uM ) + RE (02l () + iwvARS) () uP(A) =0, (6.2.10)

The characteristic polynomial ® of (6.2.1)-(6.2.3) is the determinant of the coef-
ficient matrix of the linear system (6.2.9), (6.2.10):

B(\) = ¢(N%) + iR (A)RS) (A2), (6.2.11)
where W ) ®
¢ =Ry R + RG) RS (6.2.12)
Proposition 6.2.1.
. . R(j) R(j)
1. For k = 1,...,n; and j = 1,2, the functions (5> and 3 are S-
Ryl Rk 1
functions.
VR R®
2. The function 2"; 2 s an S-function.
3. Form = 1,...,2n; and j = 1,2, all zeros of Rfﬁ) lie in (0,00) and are

simple, and R is positive on (—oo,0]. If R%)(z) =0 for some z € C, then
RY) (2) #0.
4. If RS (2) = RS

9y (2) = 0 for some z € C, then z is a simple zero of ¢.

Proof. 1. The statement will be proved by induction on k. For convenience, we
start with the case k = 0, which is obvious since gg% = 0 and g%’jz = l(()j ) by
(6.2.8). Now let k € {1,...,n,} and assume that the statement is true for k — 1.
We observe that all R,ij ) for k = 1,...,n; and j = 1,2 are nonzero polynomials.

From (6.2.6) it follows that

Ry \(2) _ @ 4 R54(2) (6.2.13)
4 — eml =37 2.
Rg]k)—Q(Z) jok)—2(z)

)
By induction hypothesis and Lemma 5.2.4, part 3, we obtain — 2?}‘;3 € S71. Then

2k—2

() @)
e by (6.2.13), and gfﬁ” € S by Lemma 5.2.4, part 3. Hence (6.2.7)

2k—2 2k—1

R - RY)
2=+ P es (6.2.14)
R2k:71 RQkfl

2. The same reasoning as in the proof of part 1 shows that

R R LR R®
_R(1)¢R(2) = ;7(1;)71 - ;T(LS;I €87 and 2”;5 eS8 (6.2.15)

2n112no 211 2n2
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3. If RY) (z) =0 and Rgi)_l(z) = 0, then a recursive substitution into (6.2.6)
and (6.2.7) would lead to R;,j)(z) =0 for all p = m,m —1,...,0, which is im-
possible due to (6.2.8). Hence R%é)l does not have zero-pole cancellations, and
in view of part 1, all zeros of Rfﬁ) lie in [0,00) and are simple by Lemma 11.1.3.
The recurrence relations (6.2.6)—(6.2.8) show that RY (0) > 0, and since the real
polynomials R%) have no zeros on (—o0,0), they must also be positive there.
&)

RY)
4. By part 3, z > 0, and from the proof of part 3 we know that — 2?5) es.
R2"n,j

Hence the function on the left in (6.2.15) belongs to S~! and therefore Lemma
11.1.3 shows that it has a simple pole at z. Since its denominator has a double
zero at z, its numerator ¢ must have a simple zero at z. (|

Proposition 6.2.2. The function ® defined in (6.2.11) is a nontrivial function of
SHB class with ®(0) > 0.

Proof. Clearly, the functions ¢ and VRgiL)l Rgié are real polynomials and therefore
® is real on the imaginary axis, that is, ® is symmetric with respect to the imagi-

nary axis. Let z be a common zero of ¢ and vRY R

ony Ron, - Without loss of generality,
(1)

we may assume that R;’ (z) = 0, and it follows from Proposition 6.2.1, part 3,

2n1
M) @)
that z € (0,00). Hence the function ! 2”; "2 does not have zero-pole cancella-
M) @)
tions on (—o0,0). By Proposition 6.2.1, part 2, the rational function 2”; 2

has no poles on (—o0,0). Altogether it follows that ¢ has no negative real ze-

ros. Letting R, be a real polynomial whose zeros are the common zeros of ¢ and
(1) p2)

vRs,” R

9ny o, it now easily follows that ® can be written as in Definition 5.2.7, and

therefore @ is of SHB( class. An application of Proposition 5.2.8 gives that @ is a
nontrivial function of SHB class. In view of Proposition 6.2.1, part 3, we have

(0) = 9(0) = Ry, ()RS, 1(0) + Ry 1 (0)RS), (0) > 0. O
Theorem 6.2.3. The eigenvalues ()\k)z;tré;l+n2) of problem (6.2.1)—(6.2.4) can be

indexed in such a way that they have the following properties:

1. Im A\, >0 for k=0,£1, -+ (n1 + ne);

A_g = — A for not pure imaginary A_g;

all real eigenvalues, if any, are simple and nonzero;

for each real eigenvalue A, Tm ®'(N\) = 0;

the number of real eigenvalues does not exceed 2min{ny,na}.

GUR LN

Proof. The eigenvalues of this problem are the zeros of the function ®. Since
the polynomials Réjn)j and Rg{l)rl have degree n;, it follows that ® has degree
2n1 + 2ns + 1, and the eigenvalues can be labelled as indicated.
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An application of Proposition 6.2.2 and Corollary 5.2.11 proves part 1, and
part 2 follows from the symmetry of ®.

3. By Proposition 6.2.2, real eigenvalues are nonzero, and hence a real eigen-
(1) p2)

2n1 2n9*

Assume without loss of generality that R2n1( 2) = 0. Then Régﬁl()‘%) # 0 by
Proposition 6.2.1, part 3, and

value A is a square root of a common zero of the real polynomials ¢ and R

0=0(\}) = RS, (O})RE) (A})

2’1’L2

gives RgiL (A7) = 0. In view of Proposition 6.2.1, part 4, it follows that A is a
simple zero of ¢, which implies that Ay is a simple zero of ®.

4 and 5. For real A, we have Im®(\) = )\Rgl (/\2)R(2) (A?). From the proof
of part 3 and from Proposition 6.2.1, part 3, we recall that real eigenvalues are

square roots of common simple zeros of R( and R ) and therefore double zeros
of Im ®. This immediately proves part 4. We have albo shown that the number of

real eigenvalues is bounded by 2n; and 2ng, the degrees of Rzn1 and R2n2,
part 5 follows. D

6.3 Vibrations of smooth strings

Here we revisit problem (2.2.1)—(2.2.3). We recall that separation of variables and
the Liouville transform lead to the boundary eigenvalue problem (2.2.4)—(2.2.6),

which upon the assumption o(s) = 2¢p(s) and the parameter transformation
A = +7 + ip, see the beginning of Subsection 2.2.2, takes the form

y" = (q(x) — )y + 7%y =0, (6.3.1)

y(r,0) =0, (6.3.2)

Y (1,a) + (—mr? +it|v — 2| + B — Do + me?)y(T,a) = 0. (6.3.3)

Recall that s(7,-) denotes the solution of (6.3.1) which satisfies the initial con-
ditions s(7,0) = 0, §’(7,0) = 1. Then the spectrum of problem (6.3.1)—(6.3.3)
coincides with the set of zeros of the function ¢ given by

(1) = §'(1,a) + (=72 +it|p — 2me| + B — Do + me?)s(r, a). (6.3.4)
Let us consider

s(T,a)
s'(t,a) + (—m72 4+ B — Do+ me?)s(T,a)

s'(7,a) -1
:< ’ +(—m72+ﬂ—ﬁg+ﬁlgz)> .

s(T,a)

91(7’2) =

Since the above initial value problem is as considered in Section 6.1, we obtain
as in the proof of Proposition 6.1.2 that # as defined there satisfies —0~1 € N°P.
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From 1 1
- =— | +1z— B+ Dp— g’ 6.3.5
0.2) = 0(2) B+ o — o (6.3.5)
we conclude that —67' € NP, and Lemma 5.1.22 shows that ¢; € NP. If the nu-
merator and denominator in the definition of §; would have common zeros, s would
satisfy the initial conditions s(7,a) = s'(7,a) = 0 for some 7 € C, which would lead
to the contradiction s(7,-) = 0. Therefore ¢ is a shifted Hermite-Biehler function.
We can now apply Theorem 5.2.9 to the characteristic function ¢ of the
problem (6.3.1)-(6.3.3), which leads to the following results if we recall that the
zeros of ¢ are the eigenvalues of (6.3.1)-(6.3.3).

Theorem 6.3.1. Let v > 2mp. Then:

1. Only a finite number of the eigenvalues of problem (6.3.1)—(6.3.3) lie in the
closed half-plane Im A < p.

2. All eigenvalues in the half-plane Im A < o which are different from ip lie on
(0,i0) and are simple. Their number will be denoted by k. If k > 0, they
will be uniquely indexed as A\_j = ip —i|A_; —ip|, j = 1,..., K, satisfying
A_j —io| < [A_gy1) —d0l, j=1,...,k—1.

3. If k > 0, then the numbers io+i|A_; —io|, j =1,..., K, are not eigenvalues.
4. If K > 2, then in each of the intervals (io +i|A_; —iol,i0 + i|A_(j41) —i0|),
j=1,...,k—1, the number of eigenvalues, counted with multiplicity, is odd.

5. If k > 0, then the interval [ip,i0 + i|A_1 — ig|) contains no or an even
number of eigenvalues, counted with multiplicity. If ip is an eigenvalue, then
it is simple.

Theorem 6.3.2. Let U < 2mp. Then:

1. Only a finite number of the eigenvalues of problem (6.3.1)—(6.3.3) lie in the
closed half-plane Tm A > o, and all other eigenvalues lie in the open strip
0<ImA<p.

2. All eigenvalues in the half-plane Im A > o which are different from ip lie on
(ig,i00) and are simple. Their number will be denoted by k. If k > 0, they
will be uniquely indexed as A\_j = ip+i|A_; —ip|, j = 1,...,K, satisfying
‘)\*j| < |>\—(j+1)|? J = 1,...,I€— 1.

3. If k > 0, then the numbers ip—i|A_; —ip|, j =1,..., K, are not eigenvalues.
4. If k > 2, then in each of the intervals (i — i|A_(j41) —i0l,i0 — i|]A_j —io|),
j=1,...,k—1, the number of eigenvalues, counted with multiplicity, is odd.

5. If k > 0, then the interval (ip — i|]A_1 — ip|,i0] contains no or an even
number of eigenvalues, counted with multiplicity. If ip is an eigenvalue, then
it is simple.

It is evident that Theorems 6.3.1 and 6.3.2 are equivalent to Theorems 2.2.3
and 2.2.4.

We have seen for o > 0 and ¥ # 2/mp that the characteristic function ¢ is a
shifted Hermite-Biehler function, say ¢(7) = P5(72) +iAQ5(7?). Hence the zeros
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of P; and )y are real, bounded below and interlace. But Qas5,, = 0, whereas Pa,
has still infinitely many zeros which are real and bounded below. Hence, in case
U = 2mp, the characteristic function ¢ has infinitely many real zeros, at most
finitely many pure imaginary zeros, and no other zeros. This confirms the result
from Subsection 2.2.2.

6.4 Vibrations of star graphs

Here we revisit the problem (2.3.9)—(2.3.12). Applying the parameter transforma-
tion A = +7 + ip leads to

v (roa;) + 2y (o) + (08 — i (@))ys(r,2;) =0, j=1,...,p,  (6.4.1)
yj(1,0) =0, j=1,...,p, (6.4.2)
V11 (7—7 al) == 'Upyp(Tv ap)7 (6.4.3)

p
> 095(r a5) + (—mr? + il — 2ielr + e — o + B)oryi(r,a1) =0, (6.4.4)
j=1

with positive constants v; and 6;, 7 =1,...,p.

For j =1,...,p let us denote by s;(7,-) the solutions of (6.4.1) which satisfy
the initial conditions s;(7,0) = 0, s}(7,0) = 1. The solutions of (6.4.1)-(6.4.2)
are of the form (y;(7,-));_; = (Cjs;(1,-))}—;. Then a complex number 7 is an
eigenvalue of (6.4.1)-(6.4.4) if and only if there is a nontrivial (y;(r, -))5.):1 =
(Cjsj(r,-))i=, which satisfies (6.4.3)-(6.4.4). Therefore we obtain a p x p system
of linear algebraic equation with respect to the C;’s, which is singular if and only
if 7 is an eigenvalue of our problem. A coefficient matrix B(7) = (bj,m (7))} = for
this system is given by b, ;(7) = v;s;(7,a;) and bj j11(T) = —vj+1841(T, aj41)
forj=1,...,p—1 from (6.4.3),

bp1(T) = 0151 (1,a1) + (—mr? + |0 — 2mo|T + me® — Do + Buisi (T, a1),

by, (T) = st;. (r,a;) for j =2,...,p from (6.4.4), and b;;, = 0 for all other pairs
of indices 7, k. If ¢(7) denotes the determinant of B(7), then the eigenvalues of
(6.4.1)-(6.4.4) are the zeros of ¢. An expansion of this determinant by its first
column gives

P p
¢(T) = Zejs;‘(Tv aj) H Umsm(Ta am)
S
P
+ (=72 +i|p — 2|t + 1™me® — o + B) H v;8;(T, a;). (6.4.5)
j=1
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We give now an alternative way to find ¢, which involves some more abstract
reasoning but less calculation at the end. An equivalent coefficient matrix can be
written in 2 x 2 block matrix form as

B0 = (Tt Batn):

where B11(7) is the column vector of length p—1 with all entries equal v151(7, a1),
By = diag(vesa(T, a2),. .., Upsp(T,ap)), B21(T) = by 1(7) from above, and B 2(T)
is the row vector (0255(7, az), ..., 0,s,(7, a2)).

By Theorem 12.6.2, the zeros of s;(-, a;) are real and pure imaginary. Hence,
for complex numbers 7 which are not real or pure imaginary, we have the Schur
factorization

B 1 0 —Bui(7) Ba(7)
B(r) = (Bzz(T)(Blz(T))_l I) (Bzz(Blz(T))_an(T) +Bu(r) 0 ) '
Bao(B1a(7)) ' By (7 Zvlsl T, a1 vjsj(lT aj)QJS](T ,aj)

it easily follows that det B(7) = i¢(7), which is true for all complex numbers 7.
Define the entire functions P and @ by

P p
Z (1,a5) H U Sm (T, am)
7j=1 m=1

m#j
P
+ (=t + me® — o+ B) [ [ vssi(r,a5) (6.4.6)
j=1
and

p

Q(?) = | — 2mo| H v;5i(T,a;). (6.4.7)
j=1

In the remainder of this section we will assume that 7 # 2mp. As we have seen
above, all zeros of ) are real, and therefore common zeros of P and @, if any,
must be real. Furthermore,

+1mz—mo’+vo0—0y, (6.4.8)

where 5;(7%) = (7, a;) and &;(7) = s/,(7,a;). This equation is similar to (6.3.5),
and as in Section 6.3 we conclude that — g € N°P. An application of Lemma 5.1.22
gives g € N{P. Since the zeros of @ are real and bounded below by Theorem 12.6.2,
also common zeros of P and @), if any, have this property. Hence ¢ is of SSHB class.
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Next we are going to show that zeros of type I and type II do not intersect.
We start with z € R such that Q(z) = 0. Without loss of generality we may assume
that there is 1 < ¢ < p such that s;(7,a;) =0for j =1,...,q and s,(7, a;) # 0 for
j=q+1,...,p. It follows from Theorem 12.6.2 that the multiplicity of the zero z of

Q is ¢, and in view of (6.4.8), the meromorphic function PQ~! has either a simple
1

pole or a removable singularity at z. We already know that 1; := —535; is a
Nevanlinna function with a simple pole at z for j = 1,..., q. Since their derivatives

Y} are increasing in a deleted neighbourhood of z by Lemma 11.1.3, it follows that
z — Yj(z)(z — 2z) < 0 for = in a sufficiently small deleted neighbourhood of z.
Hence, for j =1,...,q, :Llclgi; Yj(x)(x — z) < 0. Since this limit is the residue of v,
at z and since v; has a simple pole at z, it follows that this residue is negative.
Summing up over j = 1,...,q in (6.4.8) shows that —PQ~" has a simple pole with
negative residue at z, that is, z cannot be a removable singularity.

In particular, if z is also a zero of P, then its multiplicity as a zero of P is less
than its multiplicity as a zero of Q. If now A, is a zero of type I of w, then in the
factorization w(\) = Ru(A?)(P.(A?) + iAQ.(A?)) we have R.(A\2) =0, P.(\2) #0
and Q.(\?) = 0, which shows that ), is not a zero of type II of w. Since zeros of
type I are symmetric, it follows that if A # 0 is a zero of type II of ¢, then —\ is
neither a zero of type I nor a zero of type 11, that is, ¢(—\) # 0.

An application of Theorem 5.2.9 and Corollary 5.2.11 gives the following
results, which are equivalent to Theorems 2.3.9 and 2.3.10.

Theorem 6.4.1. Let U > 2mp. Then:

1. The sets of type I and type II eigenvectors do not intersect. Only a finite
number, denoted by ks, of the eigenvalues of type II of problem (6.4.1)—(6.4.4)
lie in the closed half-plane Im A < p.

2. All eigenvalues of type II in the closed half-plane Im A\ < p lie on (—ico,ip)
and their multiplicities are 1. If ko > 0, they will be uniquely indexed as
A_j =i —ilA_j —igl, j = 1,..., k2, satisfying |A_j —io| < |A_(j+1) —iol,
jzl,...,fig—l.

3. If ko > 0, then the numbers io+ilA_j—ig|, j = 1,..., k2, are not eigenvalues.

4. If ky > 2, then the intervals (io + ilA_; — io|,i0 + i|A_(j41) —i0]), 7 =
1,...,k2 — 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

5. Let k3 > 0. Then the interval (ip,i0 + i|A_1 — ig|) contains no or an even
number of eigenvalues of type II, counted with multiplicity, if ip is no eigen-
value or an eigenvalue of even multiplicity, and an odd number of eigenvalues
of type 11, counted with multiplicity, if io is an eigenvalue of odd multiplicity.

Theorem 6.4.2. Let U < 2mp. Then:

1. The sets of type I and type II eigenvectors do not intersect. Only a finite
number, denoted by ks, of the eigenvalues of type II of problem (6.4.1)—(6.4.4)
lie in the closed half-plane Im X > p.



6.5. Forked graphs 165

All eigenvalues of type II in the closed half-plane Im X > o lie on (ip,i00) and
their multiplicities are 1. If ko > 0, they will be uniquely indexed as \_; =
io+ilA_j —iol, j = 1,..., Ky, satisfying [A_j| < [A_ipl, j=1,..., ke —1.

If ko > 0, then the numbers io—i|A_;j—ip|, j = 1,..., ke, are not eigenvalues.
If ke > 2, then the intervals (io — i|A_(j41) — io|,i0 —i|A_; —ig]), j =
1,...,k2 — 1, contain an odd number of eigenvalues of type II, counted with
multiplicity.

Let ko > 0. Then the interval (ip — i|A_1 — ig|,i0) contains no or an even
number of eigenvalues of type II, counted with multiplicity, if ip is no eigen-
value or an eigenvalue of even multiplicity, and an odd number of eigenvalues
of type II, counted with multiplicity, if io is an eigenvalue of odd multiplicity.

6.5 Forked graphs

Here we revisit problem (2.4.7)—(2.4.11), which is a particular case of problem
(6.4.1)-(6.44) withp=2, m=p=pF=0and v=0; =v; =1

—yf +qi(x)y; = Ny;, x€[0,a], j=1,2, (6.5.1)
y1 (A a) = y2(A, a), (6.5.2)

y1(A\a) +y5(A,a) + Myl(A a) =0, (6.5.3)

y1(A,0) = (6.5.4)

y2(A,0) = (6.5.5)

Therefore Theorem 6.4.1 leads to the following result.

Theorem 6.5.1. The eigenvalues of (6.5.1)=(6.5.5) have the following properties:

1.

All eigenvalues of type I are located on the real and imaginary azes, are
symmetric with respect to the origin, are not eigenvalues of type II, and at
most finitely many of them lie on the imaginary axis.

. Only a finite number, denoted by ko, of eigenvalues of type I lie in the closed

lower half-plane.

All eigenvalues of type II in the closed lower half-plane lie on the nega-
tive imaginary semiazis and their multiplicities are 1. If ko > 0, they will

be uniquely indezed as A_; = —i|A_j|, j = 1,...,Ke, satisfying |A_;| <
AGepl, i=1,. . k2 — 1.
If ko > 0, then the numbers i|\_;|, j =1,..., k2, are not eigenvalues.

If ko > 2, then in each of the intervals (i|A_j;|,iA_¢j41)]), J=1,..., 62 — 1,
the number of eigenvalues of type II, counted with multiplicity, is odd.

If 0 is an eigenvalue, then its multiplicity is 1 or 2.

Let ko > 0. Then the interval (0,3|A_1|) contains no or an even number of
eigenvalues of type II, counted with multiplicity, if 0 is no eigenvalue or an
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etgenvalue of multiplicity 2, and an odd number of eigenvalues of type II,
counted with multiplicity, if 0 is a simple eigenvalue.

Proof. We still have to prove statement 6. We observe that the characteristic
function ¢ of (6.5.1)-(6.5.5) is a special case of (6.4.5) with p = 2. Since ¢(A) =
P(A\?)+iAQ(A\?) with P and @ as in (6.4.6) and (6.4.7), It follows that P(0) = 0. If
Q(0) # 0, then 0 is a simple zero of ¢. If, however, Q(0) = 0, then the multiplicity
of (Q can be at most 2 since p = 2. On the other hand, we have shown in Section
6.4 that for a common real zero z of P and @, the multiplicity of z as a zero of @
exceeds the multiplicity of the zero of P by 1. Hence 0 must be a simple zero of
P and a double zero of Q). Hence 0 is a zero of ¢ of multiplicity 2 in this case. O

Remark 6.5.2. Theorems 2.4.1 and 6.5.1 differ in that Theorem 2.4.1 has the
additional statement 1 whereas Theorem 6.5.1 has the additional statement 6.
The geometric simplicity of the eigenvalues cannot be proved with the methods of
this subsection since the characteristic function does not contain any information
on the geometric multiplicity of eigenvalues.

6.6 Lasso graphs

Here we revisit problem (2.5.5)-(2.5.7),

—yi +a(@)yr = Ny, (6.6.1)
y1(A,0) =y1(A, a), (6.6.2)
y1(A,0) — 1 (N, a) — idyi (X, 0) =0, (6.6.3)

which differs from the previous applications in that solutions do not necessarily
vanish at the initial points. With our usual notation s(),-) and c¢(A,-) for the
fundamental system of solutions of (6.6.1), see Theorem 12.2.9, we substitute the
general solution

y(>‘7 ) = AS(}\, ) + BC()‘v )

of (6.6.1) into (6.6.2) and (6.6.3) and obtain

B = As(A,a) + Be(\ a),
A— As'(\a) — Bd' (M a) —iAB = 0.

The characteristic function, i.e., the determinant of the coefficients of the above
linear system in the unknown parameters A and B, is

d(\) =2 —c(\ a) — s (N a) —irs(), a),

where we have used that the Wronskian ¢(X, -)s’ (X, ) —c' (A, -)s(}, ) is identically 1.
It is well known and easily follows along the lines of the above calculations that
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P(A\?) =2—c()\ a)—s'()\, a) is the characteristic function of the periodic problem
(6.6.1), (6.6.2),

y1(A,0) —y1 (A, a) =0, (6.6.4)
while Q(A\?) = —s()\,a) is the characteristic function of the Dirichlet problem
(6.6.1),

y1(>‘7 0) = y1(>‘7 a’) =0. (665)

It is also well known, see, e.g., [271, Theorem 13.10], that the zeros ((x)52, of P
interlace with the zeros (vg)32, of Q:

<0<I/1<C1§l/2§<2<'”. (666)
Using (6.1.7), (6.1.6) and

elMa N
c(X a) N + o(eley, (6.6.7)
which follows from (12.2.24) with n = 0, we obtain that the real entire functions
P and @ satisty P(z) < 0 and Q(z) < 0 as z — —oo. We can conclude as in
Proposition 6.1.1 that A — P(A?) and A — AQ(A?) are sine type functions. Similar
to the proof of Proposition 6.1.2 we then obtain with (6.6.6) and Corollary 5.2.3
that QP! € NP,

By (6.6.6), P and @ may have common zeros, which are all real. Hence we
can write ¢(A) = R.(A\?)(P.(\?) +iAQ.()\?)), where R, has only real zeros and
where P, and Q. do not have common zeros. Hence ¢ is of SSHB class.

It follows from (6.6.6) that the zeros of @ = R.Q. are simple, whereas the
zeros of P = R, P, have multiplicities 1 or 2. In particular, if 0 is a zero of ¢, then
its multiplicity is at most 3.

With the aid of Theorem 5.2.9 and Corollary 5.2.11 we obtain the follow-
ing result, which is equivalent to the statements 2—7 of Theorem 2.5.1. We cannot
prove statement 1 of Theorem 2.5.1 with the methods of this section since the char-
acteristic function does not contain any information on the geometric multiplicity
of eigenvalues.

Theorem 6.6.1. The eigenvalues of problem (6.6.1)—(6.6.3) have the following prop-
erties.

1. All eigenvalues of type I are located on the real and imaginary azxes, are
symmetric with respect to the origin, and at most finitely many of them lie
on the imaginary axis.

2. Only a finite number, denoted by ks, of eigenvalues of type 11 lie in the closed
lower half-plane.

3. All eigenvalues of type II in the closed lower half-plane lie on the negative
imaginary semiaxis and their type II multiplicities are 1. If ko > 0, they
will be uniquely indezed as A\_; = —i|A_j|, j = 1,..., ke, satisfying |A_;| <
A—Gpl =1, k2 — 1.
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4. If ke > 0, then the numbers i|]A_;|, j = 1,..., K2, are not eigenvalues of
type 11

5. If ko > 2, then in each of the intervals (i|A_;|,i[A_jx1)]), J=1,..., 62 — 1,
the number of eigenvalues of type II, counted with type II multiplicity, is odd.

6. If 0 is an eigenvalue, then its multiplicity is 1, 2 or 3.

7. Let ko > 0. Then the interval (0,i|A_1|) contains no or an even number
of eigenvalues of type II, counted with type II multiplicity, if 0 is not an
etgenvalue of type II, and an odd number of eigenvalues of type II, counted
with type II multiplicity, if 0 is an eigenvalue of type II.

6.7 Beams with friction at one end

Here we revisit problem (2.7.2)—(2.7.6):

y W\ 2) = (gy) (A 2) = Ny(\, @), (6.7.1)
(A,0) =0, (6.7.2)

y"(A,0) =0, (6.7.3)

y(A,a) =0, (6.7.4)

y"(\,a) +iary’ (A a) =0 (6.7.5)

Putting 2 = A?, there exists the canonical fundamental system of solutions y;(z, -),
j=1,...,4, of (6.7.1) with y§m)(2,0) = 0jm+1 for m = 0,...,3, which are real
entire functions with respect to z, see, e.g., [189, Theorem 6.1.8]. The functions
y2(A2,-) and y4(A\?,-) form a basis of the solutions of the initial value problem
(6.7.1)—(6.7.3). Substituting the generic linear combination of these two solutions
into the boundary conditions (6.7.4)—(6.7.5), we obtain a 2 x 2 system of linear
equations, and the determinant ¢ of its coefficient matrix is given by

$(N) = f'(N,a) +iadf' (A%, ),

where
f(z,2) = y2(2, a)ya(z, ) — ya(2, a)ya(z, z).

Hence the eigenvalues of (6.7.1)-(6.7.5) are the zeros of ¢. Similarly, we have
for k = 1,2 that the real entire functions f*)(-,a) are characteristic functions
of the eigenvalue problems (6.7.1)(6.7.4), y*)(\,a) = 0 with z = A\2. These
two eigenvalue problems are realized by self-adjoint operators which are bounded
below, which can be proved as in Proposition 2.7.1 by applying Theorems 10.3.5
and 10.3.8. Hence the zeros of f(k)(~,a), k = 1,2, are real and bounded below.
Clearly, f(z,-) is a solution of (6.7.1)—(6.7.4), and therefore, in view of (6.7.1),

a(4)zx 2z, x)dr — ’ Nz V() f(z, 2)dr = 2 ’ 2. 2)|? dz.
/Of(,)f(,)d /O(gf(,))()f(,)d /Olf(,)ld
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Integrating by parts twice and taking (6.7.2)—(6.7.4) into account we obtain

P a)f(a) + /Oa|f“<z,x>|2dx+ / 9(@)| /(s )P do = = / F(era) P de.

mr@

Taking imaginary parts leads to

Im(— f"(z, ) f'(.0)) = (Im ) / 1) de.

For Im z > 0 we therefore conclude that

f'(z,a)

mf”(z,a) = (Imz)

(e 2/)|fo2dx>0

Consequently, JJ:,,,((',’Z)) € NP, In view of Lemmas 10.3.6 and 10.3.7 it follows from
(6.7.6) that there is a real number v such that f”(z,a)f'(z,a) > 0 for z < ~. Hence

f'(5a)

e,

o € NP, which shows that ¢ is of SSHB class.
An application of Theorem 5.2.9 and Corollary 5.2.11 gives the following

result which is equivalent to Theorem 2.7.2 without the statements about the
geometric multiplicity of eigenvalues.

Theorem 6.7.1. The eigenvalues of (6.7.1)=(6.7.5) have the following properties:

1.

All eigenvalues of type I are located on the imaginary and real axes and are
symmetric with respect to the origin.

Only a finite number, denoted by ks, of the eigenvalues of type II lie in the
closed lower half-plane.

. All eigenvalues of type II in the closed lower half-plane lie on the negative

imaginary semiazis and their type II multiplicities are 1. If ko > 0, they

will be uniquely indezed as A\_; = —i|A\_j|, j = 1,..., ke, satisfying |A_;| <
‘)‘—(j+l)|} j = 1, ey R — 1.

If ko > 0, then the numbers i|A_j|, j = 1,...,Ka, are not eigenvalues of
type I1.

If ko > 2, then the number of eigenvalues of type II, counted with type II
multiplicity, in each of the intervals (i[A_;|,i|A_;1n)]), 7 = 1,..., 82 — 1,
is odd.

Let k2 > 0. Then the interval (0,i|A_1|) contains no or an even number
of eigenvalues of type II, counted with type II multiplicity, if 0 is not an
etgenvalue of type II, and an odd number of eigenvalues of type II, counted
with type II multiplicity, if 0 is an eigenvalue of type II.
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6.8 Vibrations of damped beams

Here we reconsider problem (2.7.8)-(2.7.12). With the parameter transformation
A = +7 + ip as in Subsection 2.7.2, the problem becomes

yW(r.2) — (gy) (r,2) — *y(r, ) = T°y(7, ), (6.8.1)
(1,0) =0, (6.8.2)
y"(1,0) =0, (6.8.3)
y"(1,a) =0, (6.8.4)
—y"(1,a) + g(a)y' (7, a) + (mo* — a)y(r,a) + it — 2mely(, a) = T°my(7, ).

(6.8.5)

Putting z = 72, there exists the canonical fundamental system of solutions y;(z, -),
j=1,...,4, of (6.8.1) with yjm)(z,O) = 0jm+1 for m = 0,...,3, which are real
entire functions with respect to z, see, e.g., [189, Theorem 6.1.8]. The functions
y2(72,+) and y4(72,-) form a basis of the solutions of the initial value problem
(6.8.1)—(6.8.3). Substituting the generic linear combination of these two solutions
into the boundary conditions (6.8.4)—-(6.8.5), we obtain a 2 x 2 system of linear
equations, and the determinant ¢ of its coefficient matrix is given by

¢(m) = —f"(r%,a) + g(a) f'(72,a) + (mo® — o) f(7°, @) +iT|a — 2mo| f(7°, a)

—’mf(r% a),

where
f(z.2) = 5 (2,a)ya(z, @) — yi (z,a)y2(z, ).

Hence the eigenvalues of (6.8.1)—(6.8.5) are the zeros of ¢. Similarly, assuming now
that | — 2mp| # 0, we have that the real entire functions P and @ defined by

P(z) = —f"(z,a) + g(a)f'(z, a) + (mo® — ag)f(z,a) — zm[(z, a),
Q(z) = |a = 2me|f(z, a),

are characteristic functions of the eigenvalue problems (6.8.1)—(6.8.4) with the
fourth boundary condition being

—y"'(7,a) + g(a)y'(7,a) + (mg® — a)y(r,a)y(r,a) = T>my(r,a) for P,
y(r,a) =0 for Q,

with z = 72. With the reasoning from Section 6.7 if follows that the zeros of Q
are real and bounded below. Similarly, with A and M from (2.7. 14) and (2 7.16),
the zeros of P are the eigenvalues of the self-adjoint operator M~ > AM~:. Hence
also the zeros of P are real and bounded below.
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Clearly, f(z,-) is a solution of (6.8.1)—(6.8.4), and therefore, in view of (6.8.1),
| 9o [ of GOy @sead - ¢ [ 17EoPd
0 0 0
= ?dax.
2 [ W i

Integrating by parts twice and taking (6.8.2)—(6.8.4) into account we obtain

G+ [ 1R - g@f (af.a)
+ /Oag($)|f/(2,$)|2 dz — o° /Oa \f(z,x)\zdx = z/oa |f(Z,£L')|2 dx. (6.8.6)
Taking imaginary parts leads to
tia(-PQ() = (e — 2l [l () + [ 1700 ]
For Im z > 0 we therefore conclude that

mQ(Z)— mz ‘a_2mg| m Za2 ’ Zl‘2 X
57 = (im0 2 mls e+ [P ad] >0

Consequently, QP~! € NP, From (6.8.6) we obtain for z € R that

PRICE) _ i, o) 4 g(a)f(210) + (me? — ap — zm) (2, )] £(za)

| — 2mo|
— [ eold s [ @ o de
0 0
(@) [ 1) do+ (me? — ag = )l (2. 0)
0
In view of Lemmas 10.3.6 and 10.3.7 it follows that there is a real number ~ such
that P(2)Q(z) > 0 for z < . Hence PQ~" € N{P, which shows that ¢ is of SSHB

class. An application of Theorem 5.2.9 and Corollary 5.2.11 gives the following
results, which are slightly weaker than Theorems 2.7.5 and 2.7.6.

Theorem 6.8.1. Assume that o > 2mo. Then:

1. Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.7.8)(2.7.12) lie in the closed half-plane Tm A < p.

2. All eigenvalues of type II in the closed half-plane Im A < ¢ which are different
from ip lie on (—ioco,ip). If ko > 0, they will be uniquely indexed as A_; =
io —ilA_j —io|, j = 1,... ko, satisfying |A\_; —io| < [A_(j41) — 0|, J =
]., ey R — 1.
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3. If ko > 0, then the numbers to+i|A_;—ip|, j = 1,..., K2, are not eigenvalues
of type II.

4. If ko > 2, then in each of the intervals (io + i|A_; —ig|,i0 +i|A_;—1 —ig|),
j=1,...,k2 — 1, the number of eigenvalues of type II, counted with type II
multiplicity, is odd.

5. Let k3 > 0. Then the interval (ip,i0 + i|A_1 — ig|) contains no or an even
number of eigenvalues of type II, counted with type II multiplicity, if 0 is not
an eigenvalue of type 11, and an odd number of eigenvalues of type II, counted
with type 11 multiplicity, if 0 is an eigenvalue of type II.

Theorem 6.8.2. Assume that o < 2mk. Then:

1. Only a finite number, denoted by ko, of the eigenvalues of type II of problem
(2.7.8)~(2.7.12) lie in the closed half-plane Im X\ > p.

2. All eigenvalues of type II in the closed half-plane Im X\ > o which are different
from ip lie on (ip,i00). If ko > 0, they will be uniquely enumerated as A_; =
io+ilA_j —iol, j = 1,..., Ky, satisfying [A_j| < [A_4pl, j=1,..., ke —1.

3. If ko > 0, then the numbers to—i|A_;—tio|, j = 1,..., K2, are not eigenvalues
of type II.

4. If ko > 2, then in each of the intervals (io —i|A_(j 1) —i0|,i0 — i|A_; —io|),
j=1,...,ko — 1, the number of eigenvalues of type II, counted with type II
multiplicity, is odd.

5. Let kg > 0. Then the interval (ip — i|A\_1 — ip|,i0) contains no or an even
number of eigenvalues of type II, counted with type II multiplicity, if 0 is not
an eigenvalue of type 11, and an odd number of eigenvalues of type II, counted
with type 11 multiplicity, if 0 is an eigenvalue of type II.

6.9 Notes

The spectral properties of the generalized Regge problem in Theorem 6.1.3 were
obtained in [223, Theorem 3.1].

Theorem 6.2.3 was proved in [33, Theorem 4.1].

Let us briefly discuss the physical meaning of the real eigenvalues of damped
vibrations of Stieltjes strings. If no damping occurs, then the spectrum of the
corresponding boundary problem, i.e., of problem (6.2.1)-(6.2.4) with v = 0, is
real. Let (u(lk), u(zk), ... ,u%kl), 1251’“2), R ag’“), a(l’“)) be the eigenvector corresponding
to the eigenvalue A\r with 1 < k < ny + no. Here ugk) and ﬂgm are the amplitudes
of vibrations of the point masses. Then the piecewise linear graph describing the
threads between point masses, i. e., the amplitude function of vibrations of the kth
frequency, possesses k—1 nodes. If we now apply the one-dimensional damping and
the point of damping is a node of this graph, then the real eigenvalue A; remains
an eigenvalue for the damped string; otherwise it moves into the upper half-plane.
The number of eigenvalues of the undamped string whose eigenvectors have nodes
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at the same point does not exceed 2 min{ny,na} since the corresponding piecewise
linear graphs must be eigenfunctions of the Dirichlet problems on the intervals
between the point masses. Thus we obtain statement 5 of Theorem 6.2.3 using
just physical arguments.

It is shown in [229, Subsection 6.1] that sums of essentially positive Nevan-
linna functions can be considered as ratios of Neumann and Dirichlet characteristic
functions of a boundary problem for a star graph of strings.

In [194], K. Mochizuki and I. Trooshin consider a star graph with some finite
rays and some infinite rays, which is more general than what we deal with in this
book. The case were all rays are infinite was considered by M. Harmer in [106].

The first results on lasso graph (with zero potential) were obtained in [77].
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Direct and Inverse Problems



Chapter 7

Eigenvalue Asymptotics

7.1 Asymptotics of the zeros of some classes
of entire functions

The asymptotic behaviour of large eigenvalues provides important information
about boundary value problems. Indeed, to be able to solve inverse problems, which
will be accomplished in Chapter 8, we need to know the asymptotic behaviour of
the eigenvalues of the underlying boundary eigenvalue problems.

The eigenvalue problems considered in this chapter will have a representation
via quadratic operator pencils as considered in Chapter 1. Since the spectra of such
problems are symmetric with respect to the imaginary axis by Lemma 1.1.11, we
can index the eigenvalues taking this symmetry into account. A suitable indexing
of the eigenvalues is of utmost importance for asymptotic expansion formulas
which depend on the index of the eigenvalue as main parameter. We will use the
notation (Ax)g2 _ . for the sequence of the eigenvalues, counted with multiplicity,
where the index k runs through all integers, with the possible exception of k = 0.

Definition 7.1.1. We call the indexing of the sequence of the eigenvalues proper if:

(i) A = — g for all A\g which are not pure imaginary;
(ii) ReAx > Re A, forall k > p > 0;
(iii) the multiplicities are taken into account;
)

(iv) the index set is Z if the number of pure imaginary eigenvalues is odd and is
Z \ {0} if the number of pure imaginary eigenvalues is even.

Whenever the eigenvalues are represented by the zeros of a characteristic
function of the eigenvalue problem, the notation ‘eigenvalues’ in the above defini-
tion is synonymous with zeros of this characteristic function. If there is no upper
bound for the real parts of the eigenvalues, then a proper indexing is only possible
if each vertical strip in the complex plane contains only finitely many eigenvalues.
In particular, there are only finitely many eigenvalues on the imaginary axis.
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In this chapter we consider applications which were encountered in Chapters
2 and 6, and it will be shown that the respective eigenvalues can be indexed
properly. In this section we will present results on asymptotic distributions of the
zeros of some entire functions, which will be applied in the subsequent sections of
this chapter.

Proposition 7.1.2. Let o, o be nonnegative real number with o # « and let a > 0.
Then the zeros of the entire function ¢V defined by

dV(N) = Mo cos ha + iasin \a), A€ C, (7.1.1)

have the following asymptotic representations.

1. For a > o, the properly indexed zeros (/\21))2‘):_00@60 of M) are )\(_1% =0,

a+o

U) ,keZ\{-1,0}. (712

-1
AL m([kl 1)
a

sgnk + ! log<
2a a—

2. For a < o, the properly indexed zeros (/\21)),;“;700 of M) are /\él) =0,

1 7 _ 1 ) o+«
A= " sgnk <|k 2) + 9% log <a—a>’ keZ\{0}. (7.1.3)

Proof. With p = Re A and v = Im A, the real and imaginary parts of }\qb(l) N)=0
are

cos pa(o coshva — asinhva) = 0,

sin pa(o coshva — osinhva) = 0.

For all v € R, g coshva — asinhva # 0 if & < ¢ and acoshva — osinhva # 0 if
a > 0. Hence the stated results follow easily. O

Lemma 7.1.3. Let ¢ be an entire function which has the representation
©(\) = 6V(\) + M sin Aa — iN cos Aa + (\), A € C, (7.1.4)

where ¢ is given by (7.1.1), M, N € C and 1) € L°.
1. Let 0 < 0 < a. Then the zeros (S\k)zozioo’,#o of ¢ behave asymptotically as

follows:
~ k| —1 ) P
)\k:ﬂ(| \ )sgnk—i— N LR A +/8k7
a 2a a—o k k
where N M
p_ aN—-o
(a2 — o?)

and (Br)pZ_ oo k0 € l2-
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2. Let 0 < a < o. Then the zeros (A\,)32
follows:

of ¢ behave asymptotically as

k=—o00
< T 1 i o+« P B
A= sgnk||k| — 1
B %80 <| 2>+2an<a—a>+k+k
where P and (Br)32_ o« pzo are as in part 1.

Proof. Since o # «, we conclude as in the proof of Proposition 6.1.1 that the
function ¢(© defined by

¢ O (\) = o cos ha +iasin\a, A€ C, (7.1.5)

is a sine type function. Let r € (0, .J ). Recall that the set A, defined in (11.2.31)

’ 2a
associated with the sine type function ¢(® is the complement in C of the union

of the open discs Cj, of radii r with the centres at the zeros )\](CO) of ¢(©. For
convenience, we will index these zeros in such a way that they coincide with the
Zeros /\g) of M) when |k| > 2. By Remark 11.2.21 we find d > 0 such that

10O (N)| > de®! ™A for all A € C\ A, (7.1.6)

For all indices k, |k| > 2, and all A € C with |A — )\,(cl)| < . we have

PO ) = / @) ()d

A z
= =AD+ [ ] @O @ dwa:

= (D) A=A +0(A = AL P).

The sum of arguments formula for sin )\,(Cl)a and cos )\S)

tation (7.1.2) and (7.1.3), shows for |k| > 2 that

a, applied to the represen-

sin )\ffl)a = oey, (7.1.7)
cos )\,(cl)a = —jagg, (7.1.8)
where
i(=1)F1(a? — ¢2)"2 if >0, |k| > 2,
= e a1 (7.1.9)
sgnk(—1)"Ho*—a*)72z fa<o, |k >2.
Hence

(¢(0))'()\,(€1)) = —oasin /\,(Cl)a + i cos /\,(Cl)a

= a(a? — 0?)ey.
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Therefore there is C > 0 such that
6@ W] 2 ala? = o?[2[A = NV = CIA = AP

for all indices k and all A € C with |\ — )\S)\ < o+ We conclude that there are

numbers 7 € (0, ;7 ) and ¢ > 0 such that cro < d and
6O > A= 1]

for all indices k and A € Cy . Hence we can choose d = cr for r € (0,rp) in
(7.1.6). Since ¢ — ¢M) is a sum of two sine type functions of type a and a function
in £%, an application of Lemmas 11.2.6 and 12.2.4 gives a number K > 0 such
that

lo(\) — D (V)| < K™ for all A e C.

Consequently, it follows for all A € C\ A, with [\ > & that
BN = A (V)] = [AdeT™ A > KTt > Jp(n) = D (V). (7.1.10)

In particular, ¢(A) # 0 for these \. We can choose kg € N and R > 5 such that

/\ét) +r<R< /\gi))+1 —r. Then all discs Cy, , with |k| < ko lie inside the circle with
centre 0 and radius R, whereas all discs Cy , with |k| > ko lie outside the circle
with centre 0 and radius R. In view of (7.1.10) we can apply Rouché’s theorem
to the disc with centre 0 and radius R and to the discs Cy, with |k| > ko. Hence
#1) and ¢ have the same number of zeros, counted with multiplicity, inside the
disc with centre 0 and radius R, whereas outside this disc, all zeros of ¢ are simple
with exactly one zero inside each Cf, with |k| > ko. This proves that the zeros

i of ¢ satisfy
e = A0 46, (7.1.11)

with the same index set as the zeros of ¢(*) and with || < r for |k| > |ko|. For
k|

sufficiently large |k|, we can choose r € (0,79) and R such that R > ", and
R< 25( = fo. Hence
e 2K < 4Ka
cR ~ crlk|’
which proves
Sk = O(kI™). (7.1.12)

|k|—o00

_Now we substitute (7.1.11) into ©(Ar) = 0. To this end we observe that
(W) € ly in view of (7.1.12) and Lemmas 12.2.4 and 12.2.1. Hence,

k=—o00
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making use of (7.1.7) and (7.1.8), we calculate
0=p(\) = (6Ax — iN) cos Apa + (iakg + M) sin Apa + (M)
= (oMx —iN) [cos )\Eco)a cos dra — sin /\](Co)a sin 5ka}
+ (iahy, + M) {sin )\,(Co)a cos dra + cos )\,(Co)a sin 5ka} + (M)
= (U;\k — iN)ey [—iacos dpa — o sin dal
+ (ia;\k + M)ey, [0 cos dra — iasin dia] + w(S\k)
= ey [(O’M — aN)cosdga + ((a2 — )\ +i(oN — aM)) sinéka} + (i)
Observing that A, = O(|k|), cosdra = 1 + O(|k|72), sindpa = dra + O(|k|~3),

Ao = Tk + O(1) and that any sequence satisfying O(|k|™) belongs to I, the
above identity and (7.1.7) lead to

0= (oM —aN) + (a® — e*)7kdy, + Y&,
where (7£)52 _ o € l2. Solving this equation with respect to d gives

_ P Bk
(5k—k+k,

where {5}, € la. O
Remark 7.1.4. If we assume in Lemma 7.1.3 that M and N are real and that v is
pure imaginary on the imaginary axis, then ¢ is pure imaginary on the imaginary
axis, and the asymptotic representations in Lemma 7.1.3 describe the properly
indexed zeros of .

Lemma 7.1.5. Let n € Ny and let x be an entire function of exponential type < a
having the form

n+1 n+1
x(w)=DBo [ |+ Z e;Bip ™I | sin pa + Z gj1A;p 7t | cos pa
j=1 j=1
+ W ()",

where €; = 1 if j is even and €; = i if j is odd, Ay € R fork =1,...,n+1,
B, R fork=0,....,.n+1, By #0, ¥,, € L% and U, (u)u~" is real for pure
1Maginary L.

Then the properly indexed zeros (uk)zo:_oqk;éo of X have the following asymptotic
behaviour:

w(k=1) <~ ey by
= ) 7.1.13
o= +;(k—1)J+kn+1’ ( )

where (b,gn))gozz € ls.
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The explicit values of p1, p2, p3 are

p=—Ar !, (7.1.14)
P2 = a7r_2(BlA1 - AQ) (7115)
p3 = a’n 3[~Asz + A1 By — AyBy + Ay (B} + A3/3) — a1 A7) (7.1.16)

Proof. Without loss of generality we may assume that By = 1. We define

o(p) = ix(p), peC.

Then ¢ has the representation
o(p) = ipsin pa — By sin pa + A5 cos pa + 1 (u), p € C, (7.1.17)

with ¢ € L£%. Clearly, ¢ is as in Lemma 7.1.3 with 0 =0, «a =1, M = —B; and
N = —A;, and 7 is pure imaginary on the imaginary axis. Hence it follows from
Lemma 7.1.3 and Remark 7.1.4 that the zeros of x can be indexed properly, and
that the properly indexed zeros satisfy the asymptotic representation

nk—1)  p1 | B

Mkn_zm a +k+k’

(7.1.18)

where (81)72 5 € lz. This proves (7.1.13) for n = 0 with b(o) Br— (k—1)71
In order to prove (7.1.13) for n > 0, we write
k-1
L (7.1.19)
a

and assume that (7.1.13) holds for n — 1. By definition of X there are real polyno-
mials ¢,,1 and g2 of degree at most n such that
X(p) = =i [ip+ qn1 (i) ™)) sin pa + g 2((i1) ™) cos pa + T ()p ™"
We already know from that (7.1.18) that d; — 0 as k — oo, and we can therefore
choose kg > 2 such that [dra| < 7 and 2\u;1qn,1((iuk)_1)\ < 1 for k > k.
For k > ko we substitute p = px into the above equation. From x(ur) = O,
sin pra = (—1)F~1sin éra and cos pra = (—1)F~! cos d;, we conclude that

-1 qn,Q((i/Jfk)il) hn,k
L+ (ip) g ((p)=4) kY

where (hmk),;“;ko € l. We define

itandra = (ipg) (7.1.20)

n —1 ~
Z 5J+1pj T ﬂ-(ka )4_5,“ (7.1.21)
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and observe that

~ b(”*l) b(nfl)
Op = O + kkn e = s + kkn : (7.1.22)

Substituting this representation of uy into the right-hand side of (7.1.20) and
observing that

I R T
e i k™ fue”
we obtain
.~ —1 iL
tan dpa = —i(ifix) " an2((if)~") .k (7.1.23)

L (ifin) " qna () =) k4t
where (ﬁn,k)lﬁko € ly. Expanding the first summand on the right-hand side into
its Taylor series in powers of (i(k — 1))~!, we obtain a real polynomial g, 3 of
degree at most n + 1 with ¢, 3(0) = 0 and a bounded sequence (cp k)2, such
that }

hn,k: + Cn,k

tandpa = —iQn,S [('L(k - 1))71] + fn+1 fn+2’

(7.1.24)

Applying the arctan on both sides, we obtain a real polynomial g, 4 of degree at
most n + 1 with g, 4(0) = 0 such that

» (n)
i , _ b
0 = o [(G(k—1)"'] + kjo, (7.1.25)

where (bi"))go:ko € ly. This proves the representation (7.1.13), and since the rep-
resentation (7.1.25) of §; must coincide with (7.1.22), it follows that the numbers
p; are independent of n.

To find p2 and ps, we need to find g2 4. We have
q271(2) = —By — Bz + 3322, QQ72(Z) =A; — Ayz — A322,
and therefore

2q2,2(2)

= Az + (A1 By — A3)2% + (A1 By — AsBy — As + A1 B?)2% + 0(z%).
1+ 22.1(2) 1 (A1 By 2) (A1Bo 2B 3 1B7) (%)

We further calculate

2= (i) = ivr(ka— 1) (1 + w(ka]ill)z O (k_3)>

aw (1+ a72:1w2> +O(w4),

s
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where w = (i(k — 1)) 1. Substituting this value for z into the above equation and
taking the Taylor polynomial in w of order 3 we find

a a? 5
q2,3(w) = WAlw + -2 (A1 By — Ao)w

Cl3 2 a2p1 3
+ 3(AlB2 —AgBl —A3+AlBl)+ 2 A1 w-.
T e

From arctan(—i¢) = —i¢ — £¢* 4+ O(¢®) we finally conclude that

; 1 . . .
! palw) =—"A1(iw) + i a2 (A1 By — As)(iw)?
a T ™

CL2 2 api Cl2 3 . 3
—|— l: 3 (A1B2 — AgBl — Ag + AlBl) + A1 + 3A1:| (’LIU) .
™ 3w

2
Observing that iw = (k — 1)71, we arrive at (7.1.15) and (7.1.16). O
Lemma 7.1.6. Let p > 0, n € R and define
b1(2) = pe'e® + 2. (7.1.26)

Then ¢1 has infinitely many zeros (zr)se_o,, counted with multiplicity, which
satisfy the asymptotics

Re z;

1
Imz, = - <2k — 5580 k) 7 —n+ O(|k| ' log |K|). (7.1.28)

S log |k| + log(27) — log p + O(k|™1), (7.1.27)
— 00

|k]—o0

Proof. We put
z=logu —i(x +n), (7.1.29)

where x € R and w > 0. Then the zeros of ¢; are given by
pue”® = —logu + i(x + 7).
Taking real and imaginary parts leads to the equations

pucosz = — logu, (7.1.30)
pusinz = —(x + 7). (7.1.31)

Note that sinz = 0 implies « + n = 0, and thus the two equations (7.1.30) and
(7.1.31) lead to

p*u? =log? u+ (z +n)?, (7.1.32)
(z +1n) cotx = logu, (7.1.33)
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unless x = —n = jx for some j € Z. Substituting logu from (7.1.33) into (7.1.32)
shows that x must satisfy f(z) = 0, where

J(2) = P2 (g )2(1+ cot?a).

We calculate

1

2f’(x) = pPe2(@tm) cotw (cot — (z +n)(1 + cot® z))

— (z+n)(L +cot’z) + (x +n)* cot z(1 + cot® z).

For any zero x of f we find a unique u from (7.1.33), which then satisfies (7.1.32)
and therefore

p*u® = (x +1)%(1 + cot® x). (7.1.34)
It follows that whenever z +n # 0 and f(z) = 0, then

Ly = - 7% 2 + 1) cotz — 1)2 7.1.35
5 (z) = x+n((fﬂ+77) + ((z +n)cotz — 1)%). (7.1.35)

We observe that « +n > 0 for all z in the interval (km, (k + 1)) if and only if
k > —nm~1, and if we also include the endpoints of the intervals, then k > —nr ! is
required. Similarly, for 47 < 0 to hold for all x on such an interval, the condition
E<-—nr'—1lork < —nrn~! —1, respectively, is necessary and sufficient. Thus f
is decreasing at each zero x of f on each interval (k= (k+ 1)7) when k > —n7r—1,
which means that f can have at most one zero on this interval. On the other
hand, if k > —n7~ 1, (z +n)cotz — oo as x N\, kr shows that f(z) — oo as
x N\ km, whereas (z + n)cotx — —oco as « ' (k + 1) shows that f(z) — —o0 as
x / (k+1)m. Hence f has exactly one simple zero in the interval (km, (k+ 1)) for
k > —nm~!. Similarly, it follows that f has exactly one simple zero in the interval
(km, (k+ 1)7) for k < —mpr—! — 1.

By construction, every solution of (7.1.30), (7.1.31) is also a solutions of
(7.1.32), (7.1.33), but not vice versa. Indeed, by (7.1.34), any solution of (7.1.32),
(7.1.33) satisfies p?u®sin®’z = (z + 7)?, and in order for (7.1.31) to hold it is
necessary and sufficient that sinz and (x + n) have opposite signs, that is, k must
be odd in case k > —nm~! and k must be even in case k < —nm~! — 1.

Denoting the smallest integer k with 2k > —nm~! + 1 by k, and the largest
integer k with 2k < —ym~* — 1 by k_, we conclude that all solutions of (7.1.30),
(7.1.31) with > (2k; — 1)w or & < (2k_ 4+ 1)7 can be indexed as (xy, ux), where
xg € ((2k — 1)m, 2kn) if k > k4 and where g € (2km, (2k + 1)7) if k < k_.

From (7.1.32) it follows that

2 2
ug, (@ +n) —2 —1y)2
> = 2 O(|k

k2= p2k2 ‘kHoop (7T+ (%l )) ;
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so that
_ log2uk _
2 21 2 — 2 1— — 2 1 9] 1
up — p~?log? up = uj o 0 Uk (14 O(ux| ™)
2 -1
= 1+ O0(k
o (1 Ok™)
and - ) )
pruj —log”up _ (zk +n) ~1y)2
k2 k2 |k|—>oo( ™+ O(lkl ))
lead to
we = 2mp k(1 + O(K| ).
|k|—o0
Therefore
log ug ‘k‘ioolog |k| + log(27) — log p + O(|k|™1). (7.1.36)

Together with (7.1.33) we conclude that

log uy,

tay = = O(|k| ' log |k
LTk = ) e (|k|~" log [Kl),
which finally shows that
1
Tp = <2k— sgnk>7r+0(k;|llog|k). (7.1.37)
|k| =00 2

We still have to account for those solutions of (7.1.30), (7.1.31) for which x €
((2k—+1)m, (2k4+ —1)m). Since the values = x(n) of these solutions are uniformly
bounded when 7 varies in a bounded interval, the corresponding solutions logu of
(7.1.33) must be uniformly bounded by (7.1.32). Thus also the corresponding zeros
z of ¢1, given by (7.1.29), are uniformly bounded. We recall that the zeros 2z, which
are already accounted for satisfy | Im 2z +2k7+n| = | — (zx +n)+ 2k7+1n| < 7 and
depend continuously on 7. It follows that for any 79 € R, we can find a sufficiently
large circle in C such that each zero of ¢, already accounted for stays either inside
or outside this circle for n close to 79, and all zeros not yet accounted for stay
inside this circle. Since ¢; depends continuously on 7, the argument principle, see
[55, V.3.4], shows that the total number of zeros of ¢; inside this circle is locally
constant. Hence, with the indexing (7.1.27), (7.1.28) for large zeros, it follows that
the index set for the zeros is independent of 7, and it suffices to consider one value
of 1. Indeed, we choose = 0, in which case k; = 1 and k_ = —1. This means
that we have to solve (7.1.31), (7.1.32) for z € (—7, 7). But we already know from
(7.1.31) that there is no such solution if z # 0. However, if x = 0, then (7.1.31)
holds, and the increasing function v — pu + logu has exactly one (simple) zero.
Therefore (7.1.30) has exactly one solution v in case = 0, which leads to one
more zero zg of ¢1. Hence the sequence of zeros of ¢; is indexed by Z. O
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Corollary 7.1.7. There are §g > 0 and ko > 0 such that the function ¢1 defined in
Lemma 7.1.6 satisfies

1
|p1(2)| > 2|zk\ |z —zx| for |kl >ko and |z— z| < do. (7.1.38)

Proof. From pe™ = —z,e~** it follows that

D1(2) = 2z — zpe® 2k,

Then
H(2) = 1 - 2™, 6(2) = —zme™,

and Taylor’s theorem show that
1 _
[1(2)] 2 [1 =zl [z = 2] — |zilel* 77z — 2.

Choosing ko such that |zz| > 4 for |k| > ko and &y > 0 such that e < %
completes the proof. O

Corollary 7.1.8. Let ¢, be defined as in Lemma 7.1.6. Let § > 0, r > 0 and let
Us, be the set of z € C such that |z| > r and |z, — z| > 6. Then for each § > 0
there are ro > 0 and v > 0 such that

¢1(2)] > [2]7, (7.1.39)
|61(2)] = yee?, (7.1.40)

for all z € Usr,.
Proof. Defining D (2) = 27 ¢1(2) and D_(z) = e *¢1(z), we have
Dy (2) =pez7e* +1, D_(2) = pe' + ze .

From [189, Proposition A.2.6] we know that there is [ € N such that for all 6 > 0
there are K (0) > 0 and g(d) > 0 such that for all R > K () there are at most !
discs of radius 4 such that [Dy(z)| > g(6) and |D_(z)| > g(é) for all z outside
these discs and R < |z| < R+ 1. Choosing 0 < 171, we see that components of the
union of these discs consist of at most 2/ discs. Each of these components must
contain a zero of ¢; because otherwise it can be removed since then | Dy (z)| > ¢(0)
and |D_(z)| > g(¢) for all z inside these components by the minimum principle.
We may assume that g(6) < 3émin{1, pe=} and 6 < &y, where dy is from Corol-
lary 7.1.7. In view of Corollary 7.1.7 we can apply the same reasoning to this
component with all discs with centre z; and radius § removed, whenever z; is in
this component. Hence we have shown that each exceptional disc must contain
one zero of ¢, and thus is contained in a disc with centre z; and radius § for
some k. For z in the boundary of the union of these discs we have |z — ri| = §
for some k, and for sufficiently large |z| and hence k, Corollary 7.1.7 shows that
[91(2)| = 3|2K]0 > g(0)|2], and therefore | D (2)| > g(6) =: v for all z € Uy, for
a suitable ro > 0. This proves the estimate (7.1.39), and the proof of the estimate
(7.1.40) is similar. O
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7.2 Eigenvalue asymptotics of the generalized
Regge problem

We recall the generalized Regge problem, which we already encountered in Sections
2.1 and 6.1:

—y" +q(x)y = Ny, (7.2.1)
y(\,0) =0, (7.2.2)
y' (A, a) + (ida+ B)y(\ a) = 0, (7.2.3)

with a real-valued function ¢ € Ly(0,a), « > 0 and 8 € R. By (6.1.1), a charac-
teristic function ¢ of (7.2.1)—(7.2.3) is given by
d(\) = s'(\,a) + (IAa+ B)s(\, a), (7.2.4)

and the zeros of ¢ are exactly the eigenvalues of this eigenvalue problem. To find

the eigenvalue asymptotics we will use the asymptotic representations (6.1.2) and
(6.1.3) of ¢.

Theorem 7.2.1.

1. If @ € (1,00), then the properly indexed eigenvalues (A\i)7> _., of problem
(7.2.1)~(7.2.3) have the asymptotic behaviour
wk 1 a+1 P B
A = 1 kel 2.
k a+2a0g<a—1>+k+k’ e zZ\ {0}, (7.2.5)
where . " 28
P = dx — 7.2.6
MURCTE (7.26)

and (Br)72_ ., € lo. In particular, the total algebraic multiplicity of the pure
imaginary eigenvalues is odd.
2. If « € (0,1), then the properly indexed eigenvalues (/\k)zo:_oqk;éo of problem
(7.2.1)(7.2.3) have the asymptotic behaviour
m (| = 3) a+1
Ak = “

P B
1—a>+k + 0 keZ\{0}, (7.27)

sgn k + ' log<
2a

where P is given by (7.2.6) and {Bk}zoz—oo,k;éo € ly. In particular, the total
algebraic multiplicity of the pure imaginary eigenvalues is even.

Proof. In view of Corollary 12.2.10 and Lemma 12.2.4,

in A A A
s()\’a):sm a_K(a,a)co)sga_‘_¢1)\(2)7

A
in A A
s'(\,a) = cos \a + K(a,a) Sm}\ ‘4 ¢2>(\ ),
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where 1,12 € L. Hence the characteristic function ¢ of the eigenvalue problem
(7.2.1)-(7.2.3), see (7.2.4), has the representation

d(\) = ¢(0)(>\) + (K (a,a) + B) sin)\)\a _ iaK (a,a) cos)\)\a n wE\A)’
where ¢(°)(\) = cos Aa + iasin Aa, see (7.1.5),
PO = K () 0 4 ga) + T Py,

Multiplying the equation for ¢ above by A we see that v is an entire function.
Clearly, v is an Lo-function on the real axis. Hence A — A¢(N) is of the form ¢
as considered in Lemma 7.1.3 with 0 = 1, M = K(a,a) + 8 and N = aK(a,a).
Since the multiplication with A introduces one more zero, we have to remove this
zero from the indexing in Lemma 7.1.3. In part 2 we simply remove the index 0,
whereas in part 1 we remove the index 1 and shift all remaining indices towards 0
by 1. Here we observe that in part 1, the resulting remainder becomes

Be B  _ * B
k+1 k k+1) Kk’

where (3)) € Iy implies (8;) € lo. Taking into account that K (a,a) = 5 fo

see (12.2.19), the asymptotic representation of the eigenvalues follows from Lemma
7.1.3. Finally, since s(-,a) and s’(,a) are even real entire functions, we have
d(=A) = ¢(\) for all A € C, which shows that the indexing of the eigenvalues
is proper. ([l

Now we turn our attention to the case o = 1.

Theorem 7.2.2. If « = 1 and 5 # 0, then the properly indexed eigenvalues of
problem (7.2.1)~(7.2.3) behave asymptotically as

- (k— bgn(kﬁ)) ;a(log|k\+log(27r)—log(|ﬁ|a))+o(1), (7.2.8)

|k]—o0 @
where k = 0 belongs to the index set if and only if B < 0.

Proof. Substituting the representations (12.2.22) and (12.2.23) of s(A,a) and
s'(A\,a) for n = 0 into (7.2.4), we obtain that the characteristic function ¢ is

d(N) = €M 4 <5+2K(a ,a) ﬁK(a,a)> it _ B (—i+ K(a,a)) J—ida

2\ 7 o2 2\ A

1 [ P
+ /\/ K. (a,t)sin At dt + ! +ﬁ/ Ki(a,t) cos At dt. (7.2.9)
0
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In view of |sin Xt| < el ™At for ¢ € R, Hélder’s inequality gives

a e2|Im>\|a -1 2

/0 Ko (a,1) sin/\tdt‘ < |Ka(a,)|l2 ( - ) , (7.2.10)
a 62|Im)\\a —1\2

/0 Ki(a,t) cos)\tdt‘ < || K¢(a, )2 < 2 Tm )| ) , (7.2.11)

for all nonreal A, which extends to real A if we take the limit as | Im A| — 0. Putting
z = —2iAa, we can therefore write

—2idae”" P P(N) =: po(2) = ¢1(2) +p1(z7Y) + ng e +Y(2), (7.2.12)

where p; is a polynomial and py € C,

_ ; _ e|Rez| -1 Re s é
¢1(2) = z+ Pae®, Y(z)=0 IRe | e . (7.2.13)

We observe that ¢, is of the form (7.1.26) with
pe’ = Ba. (7.2.14)

Choose 6 > 0, 79 > 0 and v > 0 according to Corollary 7.1.8. In view of (7.2.12)
and (7.2.13) we can find positive constants 7 > rg and C' such that

60(2) = 61(2) < C (1+ (L4 [Rez)"2eR%), Jz] > . (7.2.15)
In view of (7.1.39),
|do(2) — ¢1(2)| < |#1(2)] if z € Usry, Rez <0, (7.2.16)
where 72 = max{ry,2C~y~'}. Similarly, (7.1.39) shows that
lpo(2) — ¢1(2)] < |¢M (2)] if z € Usy, Rez >0, |2| > 20y teRe. (7.2.17)
From (7.2.15) and (7.1.40) it follows that
60() — ()] < [or(2ICy (7% 4 (Lt [Rea) ™) (72.18)
for 2 € Us,,. For Rez > 0 and |2| < 2Cvy~'ef# we conclude
e” Rz <20y 27t (7.2.19)

and thus
Re z > log |z| + logy — log(2C),
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which gives
1
(1+|Rez|)™2 < (C' +1log|z|) 2 (7.2.20)

for C' = 1+ logy — log(2C) and |z| > e~¢". Substituting the estimates (7.2.19)
and (7.2.20) into (7.2.18) and observing that the right-hand sides of (7.2.19) and
(7.2.20) tend to 0 as |z| — oo, we conclude that there is r3 > 7o such that the
right-hand side of (7.2.18) becomes less than |¢1 (z)| if additionally |z| > r3. Hence
(7.2.18) leads to

|po(2) — ¢1(2)| < |p1(2)] if 2 € Usry, Rez >0, |2] <20y teRe7 (7.2.21)
The estimates (7.2.16), (7.2.17) and (7.2.21) give

|po(2) — ¢1(2)| < |p1(2)] if 2 € Us - (7.2.22)

It now follows immediately that ¢¢(z) # 0 for all z € Us .

We can find an increasing sequence of positive numbers (R,,)5 ; such that
R, =n+0(Q1), Rpy1 — R, < 2and {z € C: |z| = R,} C Us,, for all n € N.
Applying Rouché’s theorem to the discs with radius R,,, n € N, and centre zero,
we see that the numbers of zeros of ¢g and ¢; with modulus less than R,, are equal.
In particular, ¢; has an infinite number of zeros, which we denote by (21,%)52_ .-
Then the above estimates show that we can apply Rouché’s theorem to discs with
centre z;, and radius §, which gives z1  — 2z = o(1) since d can be made arbitrarily
small. In the transition from ¢ to ¢y we have introduced one additional zero, so
that, with the exception of one value, the numbers e = Zzld’“ are the zeros of ¢.
By (7.2.14) we have that p = |Bla, n = 0if 8§ > 0 and n = —7 if 8 < 0. Hence
(7.2.8) follows from (7.1.27) and (7.1.28) if we observe that some reindexing is

needed to arrive at a properly indexed sequence. O

In the case a = 1, § = 0, where we face the classical Regge problem, see
Section 2.1, the eigenvalue asymptotics are even more complicated. Indeed, we
have seen in Remark 6.1.4 that there may be no eigenvalues at all. Thus conditions
on the potential ¢ are needed to assure that there are infinitely many eigenvalues.
However, if we assume that there are infinitely many eigenvalues (Ag)72 ,, then it
follows from (7.2.9) with 5 =0, (7.2.10) and (7.2.11) that

K(a,a)

= O(I\ =1\, (| Im X [+Im Ay )a
= ogae ,

‘1-1—

so that Im A\, — oo as |Agx| — co. Hence we have shown

Proposition 7.2.3. Ifa =1 and 8 = 0 and if problem (7.2.1)—(7.2.3) has infinitely
many eigenvalues (M), then Im Ay — oo as k — oo.

Theorem 7.2.4. Consider problem (7.2.1)~(7.2.3) with o =1 and 8 = 0 and as-
sume that there is p € Ny such that q € W2p+1(a, b), ¢V (a) =0 forj=0,...,p—1
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and q'P)(a) # 0. Then the properly indezed eigenvalues of problem (7.2.1)~(7.2.3)
have the asymptotic behavior

T (ke ysmnb o 1 17 0)] )

|k|—>oo a

+ ;a ((p +2) [log |k| + log(27) — log a] — log |¢® (a)o +o(1), (7.2.23)

and the index k = 0 is omitted if (—1)? sgn(¢® (a)) < 0.
Proof. Substituting (12.2.22) and (12.2.23) into (7.2.4) we obtain

d(\) = s'(\,a) +iAs(\, a)

1
= cos Aa + isin Aa + )\K(a, a)(sin Aa — i cos Aa)

p+1

1 ot ~ o ,
- 2 o <8tj1 Ky(a,a)sin® Aa + iatj K(a,a)sintU+D Aa)

1 ortt in(P+1) L ort? in(P+2)
+ \p+2 /0 (61517“ K, (a,t)sin A+ U ggp+2 K(a,t)sin At) dt.

Observing that sin® (1) = 1/~ 1e’™ + 1 (—i)7=1e~"", we can write

1 p+l
_ ida _ zAa \a
o) =e —iA K(a,a)e™™ + Z 22)\ j+1€
p+1
—1) J ) —ida A
+;( ) (_22’)\)3+1€ + (—2i)\)p+2 %( ),

e2lImXla _q

where 1,(A) = O (( o/ Tm A )2>, see (7.2.10) and (7.2.11), where the A; are

real numbers, and where

K.(a,t) + K¢(a,t)],_,

for j =1,...,p+ 1. Taking partial derivatives in (12.2.18) shows that

T+t
. 1 (z+t\ 1 [ —t\ ~ —t —t
Kz(x,t):4q<x2 >+2/0 q<s+x2 >K<s+x2 ,s—x2 )ds
1[5 (r+t _(x+t o+t
K — d
ATy ) R T
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x4t
~ 1 +t 1 2 r—1t\ ~ x—1t x—t
Kt(x,t):4q<x2 )—2/ q<s+ 9 >K<s+ 5 157 4 )ds
0
1 2 x4+t ~ (x+t T+t
K — d
ARG L QMRS IR

and a straightforward calculation gives

Kz(avt) + Kt(avt) = IN{@:(aﬂt) - I?w(av _t) + I?t(avt) + IN{t(av _t)

1 a+t 2 a+t ~ a4+t a+t
= K — d
2q< 9 )4—/0 q( 9 —i—u) ( 9 + u, 9 u) U

2 t\ ~ t t
_/0 q(s—i—a;_)K(s—i—a;_ ,s—a;_>ds.

It follows that
C9i—1 )
Bj =2 [Ku(a,t) + Ki(a,t)],—, = ¢V V(@) + Y ajmg"™ ()

for j =1,...,p+ 1, where the a;,, are real numbers. By assumption, q9) (a) =0
for j=0,...,p—1 and ¢ (a) # 0, and we therefore conclude that

_ z)\a_|_1§:1 z)\a_|_(_1)p+1 q(p)(a,) e—“‘“+ 1 w ()\)
N 22)\ i+l (—2i\)P+2 (—2i\)ptr2 7P

As in the proof of Theorem 7.2.2, we set 2 = —2iA\a and obtain

p+1

(—2iAa)PT2e g(\) = 6P (2) = pa(2) + D Aj2P I 4 y(2),

Jj=0

where the A; are real numbers and where

|Rez| _ 2
$o(2) = 277% = (—a)" 2P (a)e”, W(z) =0 ((6 RRez 1eR“> > :

Defining p = al¢® (a)\zﬂlr? and putting n = 0 if (—=1)?sgn(¢”(a)) <0 and n =7
if (—1)7sgn(q? (a)) > 0, we can write

p+2
= opt2 2 _ +2 P ing 7
to(2) = 2PT2 4 pPT2ete? = (p + 2)P jl_[1<p+2+p+26me +2>, (7.2.24)

where .
n—m+ 27

49 —7m forj=1,...,p+2.
p

n =
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In view of Lemma 7.1.6, the zeros of ¢2 can be indexed as ZiwJ=1...,p+2
ke Z, where
Rez, \_IZ (p+2) <log k| + log(27) — log p + log(p + 2) + O(\Ig\’l)> , (7.2.25)
k| = oo
| - - -
Imz;; = —(p+2) <<2k Yy sgnk) T+ 77]‘) + O(|k| * log |k|). (7.2.26)
k| = oo

It is straightforward to verify that Corollary 7.1.8, applied to each factor on the
right-hand side of (7.2.24), also hold if ¢; is replaced with ¢, 271 with z=®+2)
and if all zeros ZiwJ=1...,p+2 k € Z, are taken into account. As in the
proof of Lemma 7.1.3 we obtain, mutatis mutandis, that the zeros of (;5(23 can be
indexed as Z;;,j =1,...,p+2, k € Z, such that Z,; =z, + o(1) as |k| — oc.
In the transition from ¢ to ¢(2~) we have added a (p + 2)-fold zero at 0. Hence,
omitting the terms with index k = 0 from the above sequences and putting

Aproits = {{“%”EH =0,

2a %5,k ifk < 07
a straightforward calculation shows that Ay := S\k for k£ > 0 has the representation
(7.2.23) and that —\, = Ay +o(1) if n = m and —A\x = A_j41 +o(1) if n = 0.
Hence proper indexing is achieved by putting A\, = Ay for £ < 0 in case n = 7 and
by putting A\ = A1 for £ < 0 in case n = 0. Finally, we observe that in the case
1n =0, the index k& = 0 is omitted. (]

7.3 Eigenvalue asymptotics of the damped
string problem

In this section we will find eigenvalue asymptotics for problem (2.2.4)—(2.2.6),

y" — 2idoy — q(x)y + N2y =0, (7.3.1)
y(\,0) =0, (7.3.2)
v (N a) + (=X2m +idv + B)y(\, a) =0, (7.3.3)

with ¢ € L2(0,a), 0 > 0, m > 0, v > 0 and 8 € R. Whereas in (2.24) g is a
function, we assume here that ¢ is a constant. Also, for simplicity of notation, we
have replaced m and © with m and v, respectively.

Theorem 7.3.1. The properly indexed eigenvalues (Ag)7Z _ . 1o of problem (7.3.1)-
(7.3.3) have the following asymptotic behaviour:
1. if ¢ € L2(0,a) then
k-1
A = ( a ) + 10+

k—o0

0
+b§“)

P1
3.4
PR (7.3.4)
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2. if g € W3(0,a) then

: (1)
m(k—-1) P1 1p2 by,
Ao = 3.
Fegee a T T o T e (7:3.5)
3. if g € W3(0,a) then
o= TRSD i s +b§“2) (7.3.6)
Fioee @ e o1 T k=12 T (k-1 T k3 .

where (b,(cn))ff’:l €ly forn=0,1,2,

1 K(a,a) o*a

— _ 7.3.7
P1 m + T 27'('7 ( )
a (v
P, (m - 29) : (7.3.8)
A2
p3=a’n 3 —A3+ A1 By — AyBy + Ay (B%Jr 31> —a1A§>, (7.3.9)
By=20-",
m
K 3 1
B2__ (a7a’) —|—Kt(a,a)— B _ Q2+VQ Cl2Q4
m m 2 m 8
1 a92
K 2
+ Ko a)ad? + 92
2 2 2.4
Ba=(20- 1) (Kilaa) =+ K=" )
1 1
A = 2a92 o — K(a,a),
1
Ay = <2a92—K(a,a)> (29— V),
Kr 2 3
Az = (a,0) + Ky (a,a) + K(a,a) (ﬂ +Q<2Q— V)) _ae’h + e
m m m 2m 2m
ap? ao®  ao* /a a3 o®
—K(a,a)an—i—Kt(a,a) 5 + g (m—i—aK(a,a)—?)— 45 .

Proof. The eigenvalues of (7.3.1)—(7.3.3) coincide with the zeros of the entire func-
tion
d(N) = 5" (F(N),a) + (—=mA* +idv + B)s(F(N), a), (7.3.10)

where s is the function defined in Theorem 12.2.9 and 7(\) = /A2 — 2ip\. Here we
have to observe that s(-,a) and s'(-,a) are even functions, and therefore s(7(\), a)
and s'(7()), a) are unambiguous. Letting = A — ip, we have

T(u) = 7(N) = Vi + o
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Below we will briefly write 7 for 7(u). We substitute (12.2.22) and (12.2.23) into
(7.3.10) and obtain for n € Ny and ¢ € W3'(0,a) that the entire function ¢ has
the representation

sinTa nLopitt sin@ 7q U1 n(7)
d(A) = costa + K(a,a) o > -1 K,(a,a) e ntl
; " 5 G+
9 . sinta 07 sin Ta  Pon(T)
+ (—mA +ivA + B) ) . ot K(a,a L2 otz |
=
(7.3.11)

where ., ,, € L in view of Lemma 12.2.4.

We now consider the case n = 2. The cases n = 0 and n = 1 easily follow
by adapting the proof below. Introducing the function x defined by X (1) = ¢(X),
(7.3.11) becomes

X(n) = {u(u) (—K(T“; ) K“ijf’”) +1- Kﬂ”iﬁ’a)] cosTa

+ {u(,u) <1 + Kt(;;’ a)> + K(a,a) +

where ¥ € £ and

2 T /”'2’

Kzt(a,a)} sinta N W)
T

u(p) = —myp® +i(v — 2om)p + mo® — vo + B.

1

In view of Corollary 12.3.2 with b = 0 and ¢ = —p?, we can write 7! sin 7a and

cosTa in terms of (12.3.8) and (12.3.9). Therefore
X(1) = Pr(p) sin pa + Pa(p) cos pa + ¢ (p)p ™2,

where 11 € L* and

P 2 futn (1459 ) 4 K + S e

fi {u(u) (—K(j:’—a) + Kttij’a)> +1-— Kmic;,a)} fa2(u™h),
Po(p) £ [u(u) (— K(Tag 9 4 K“iff””) +1- ng’a)} foa2(p™h)

Kt(C;v a)> + K(a,a) + Km’;(;l’a)] Frasn™),

T

?
+  jul(p (1 +
' [ (1)
and where f(u) ~ g(u) means that

fw) = g(p) = Z%‘ (@)O(lul™™) +O(lul=""")
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with ’l/)l, . ,’l/)r € L% From f1,1’3(0) = f2,1’2(0) = ]., f1’2,3(0) = f2’2,2(0) = 0, and
1 1 o2 _
72 = ,U/2 - /~L4 +O(‘:u| 6)

we obtain constants and AJ, 7 =1,2,3, such that

2 = ~ =
Pi(p) = —mp+iBy + Bop™ ' +iBsp™? =t Py 2(p),
2~ Y _ e —
Po(p) ~ Ay +iAop™ + Asp™2% =: Py ao(p).
We conclude that

X(p) = Pro(p) sin pa + Py o) cos pa + Wo(p)p=2,

0
where Wy ~ 0. Multiplying this identity with p? we see that W5 is an entire function,
and it follows that Wo € L£®. Hence x is formally as considered in Lemma 7.1.5.
In particular, By = —m. From

=) = ¢ (~(u+i0)) = 6 (u+ie) = X(n)

we conclude that y also satisfies the symmetry conditions as required in Lemma
7.1.5. Hence (7.3.6) follows from Lemma 7.1.5, and it remains to find the constants
B; = B;jBy* and A; = A;By* for j =1,2,3.

Putting z = = !, the functions in (12.3.4)-(12.3.7) are

1 1
hi(z) =1+ _0%2% — _o*2* + O(|u| ™),

2 8
1 1
1 22 L Ol
h(2) 9 +O0(|pl™%)
_h(z) -1 _ 1, 1,434 4
ma(e) = M) T2 e gt o),
3 3 14495
far2(2) = f213(2)2005h2(2)a21—89a2,
3 cosha(z)a 3 1549 1445,
~ ~1-— -
f1,1,3(z) h]_(Z) 29 z oa =z,
f2,2,2(2) 2 isin ha(z)a 2 ;Q22a,
3 sinha(z)a 3 i 3i 4 i 6 3 3
f12,3(2) >~ —i i) o 2@ za + 89 az® +489 a’z°.
We further calculate
1 K, K.(a, )
o (1+ 5 ) b e+ G =t i 20m)
1 T T

+ (mo® —vo+ B —mK(a,a) + K(a,a)) p~" +i(v — 20m)K(a,a)u>
+0(lul™?),
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K(a,a Ky(a,a K.(a,a
o (=5 ) B e
T T T
—i(v = 20m)K(a,a)p™" — K(a,a) (2mo* —vo+ B) p=* — mKy(a,a)u™>
— Ky(a,a)p™% + O(|ul7?).
Evaluating now the coefficients of P, and P, with respect to powers of u gives

By = v —2om,

5 3Imo2 4.2 2
By=""% —votp-mKi(a,a)+ K(a)+ ¢ " =40 = aK (a,0),

. 1 1 ap?
Bs = (v —2om) (Kt(a,a)— 2Q2— 894a2—|—K(a,a) 5 ),

A =1+mK(a,a) — T;QQa,

A = (v~ 20m) (K(a.0) — y%a).

- 1 1 1
A3 = —mKtt(Cl,a) — Kx(aza Cl) - 894a2(1 + mK(a’? Cl)) - 2”93& + 2Q2a6
_ 1mQ2aKt(a a) + 1QQCLK(a a)+ 7Q4am+ ! 96a3m
2 ’ 2 ’ 8 48
~ K(a,a) (2mo® —vp + B).

This proves the representations of the B; and A; for j = 1,2,3. From Lemma
7.1.5 we now find p1, p2 and ps. |

7.4 Eigenvalue asymptotics of star graphs of strings

In this section we revisit problem (6.4.1)—-(6.4.4), see also (2.3.9)-(2.3.12). For the

sake of simplicity we suppose in what follows that a1 = a2 = -+ = ap = q,
o=m=0,v;j=0;=1forall j=1,...,p. Thus, we deal with the problem

Yy + My, —qj(r)y; =0, j=1,...,p, z €[0,a], (7.4.1)

yi(\0)=0, j=1,...,p, (7.4.2)

yi(ha)=---=yp(\ a), (7.4.3)

Zy] (N a) + (GAD + B)y1 (A, a) = 0. (7.4.4)

We assume that p > 2, that ¢;, = 1,. .., p, are real-valued functions from L4 (0, a),
that 7 > 0 and that 8 is a real constant derived in Subsection 2.3.3. We recall
from Section 6.4 that for j =1,...,p, s;(A, ) denotes the solution of (7.4.1) which
satisfies the initial conditions s; (A, 0) = 0, s%(),0) = 1 and that the characteristic
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function ¢ of the of problem (7.4.1)—(7.4.4) has been derived in (6.4.5). With our
particular assumptions we have

P(A) = p(A) + (A7 + B)x(N), (7.4.5)
where
e(N) =) si(\a) H sm(A,a), (7.4.6)
=

X(A)

H 5;(\ a). (7.4.7)

Lemma 7.4.1. The function ¢ has the representation

sin? ! \a u cos’Aa ., o u sin? Aa
o\ =p \o1 €O Aa—(p—1) ;Bﬂr yp Sin Aa + z;Bﬂr >
j= j=
v1(A) . B sin Aa & sin? ™! \a va(A)
+ \» + <’Ll/+ )\ e —ZIBJW \ cos \a + w o | (7.4.8)
=
where v1 € LP*, vy € LP® and
1 a
B; = / gj(x)dz, j=1,...,p. (7.4.9)
2w 0

Proof. In view of Theorem 12.2.9, Corollary 12.2.10, Lemma 12.2.4 and Remark
12.2.5 we have

sin \a cosAa  w;(A) .
sj (A a) = N Bjm \2 + J)\2 , j=1,...,p, (7.4.10)
sinda 7 (A)
A + A
where w; € L2, 7; € L. Substituting (7.4.10) and (7.4.11) into (7.4.6) and (7.4.7)
we obtain

85 (N, a) = cos \a + B;m ji=1,...,p, (7.4.11)

sin? ™! \a P cos? \a | p—2
o(\) =p o1 cos)\a—(p—l)ZBjﬂ \» sin? ™% \a
j=1
p GNP
sin da  v1(A)
+;Bﬂf w T o (7.4.12)
]:
sin” \a sin?~! \a va(A)
X =", —;Bjﬂ' et coshat 2O (7.4.13)
]:

From (7.4.12) and (7.4.13) it easily follows that v; and v are entire functions
of exponential type less or equal pa which are Lo-functions on the real line, i.e.,
v1,v9 € LP%. Substituting (7.4.12) and (7.4.13) into (7.4.5) gives (7.4.8). O
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The “leading term” of ¢ is the entire function ¢y given by

inP~ 1\
do (\) = bmApfl “ (pcos\a + ivsin \a) . (7.4.14)
Clearly, ¢o has infinitely many zeros and ¢o(—\) = ¢o(A). In view of Proposition
7.1.2, the sequence (/\;0))00 of the zeros of ¢y can be indexed properly. There-

k=—o0
fore /\(f),)C = —/\20) for all k # 0, and the following result for nonnegative indices is
obvious, see Proposition 7.1.2 and its proof.
Lemma 7.4.2.

1. If v > p, then

0 _ 1 v+p (0) Tk i
/\0 24 log b p’ /\1+(k—1)p = . + % og 5 for k € N. (7.4.15)
(0) 7k o
)‘j+(k71)p T forj=2,...,p, k€N, (7.4.16)

2. If v <p, then (7.4.16) holds, )\(()0) is absent and instead of (7.4.15) we have

1 . ~
(0) _mlk=y) i ptD
Mt (h—1)p = a + 9 log b7 for ke N. (7.4.17)

3. If p =1, then the index O is absent and

wk .
A e = . Jori=1..p-1 keN (7.4.18)

Lemma 7.4.3. Let U # p. Then:

1. The function X — NP~1p(N) is of sine type pa.
2. The zeros ()2 of ¢ can be indexed properly and satisfy

k=—o00

Ao A9 o), (7.4.19)

k| =00
where the index 0 is absent in case U < p.

3. There are a nonzero constant C and a nonnegative integer m < p — 1 such
that ¢ has the product representation

$(\) = CA™ lim kH; (1 A ) , (7.4.20)

n—roo - >\k

/
where H means that m factors are omitted from the product in case v > p
and m + 1 factors in case U < p.



7.4. Eigenvalue asymptotics of star graphs of strings 201

Proof. 1.1t is easy to see that the function A — AP~1¢g(\) satisfies the conditions
(i), (ii) and (iii) of Definition 11.2.5 with exponential type pa, that is, this function
is of sine type pa. The representation (7.4.8) of ¢ easily shows that there is a
positive constant ¢ such that

16(\) — do(N)| < ‘)jpe‘lm)\@a

for all A € C\ {0}, and therefore also A — AP~1¢()) is a sine type function of
type pa.
2. Using Remark 11.2.21 or the periodicity of the entire function defined by

A= AP 1pg(N) = sin? ! Aa(p cos Aa+isin Aa), we find for every r > 0 a constant

d > 0 such that J
A
|¢0( )| > ‘)\|p—1

for all A € C\ |JCk with |A| > r, where the C} are the open discs of radii r with
k

e|Im)\\pa

centres at the points )\,(CO). Consequently, we have for all A € C\ | Cy, with [A] > §
k

that
[o(N)| > [6(N) — do(N)]- (7.4.21)

Due to Lemma 7.4.2, for each k € N, Coy (1_1)p = C3yp—1)p = = C}p and

hence the disc Cyy (1), contains exactly p — 1 (equal) /\( )—b for all positive
integers k. Taking r sufficiently small we obtain Cyy (;_1), N C’H (K —1)p = (0 for all
k, k" € N. With different indexing, an analogous result holds for negative indices
k. For sufficiently small » > 0 we apply Rouché’s theorem to these small C}, for
sufficiently large |k| and to a large disc with radius larger than § and centre 0 and
obtain the assertion 2.

Assertion 3 is an immediate consequence of Lemma 11.2.29, where m < p—1

has been shown in Theorem 2.3.2. O

For convenience we state the following simple algebraic result, which can be
easily proved by induction.

Lemma 7.4.4. Let wq,...,w, and z1, ..., 2z, be complex numbers. Then
n n m— n
[Tw H — #m) H H
j=1 j=1 j=1  j=m+

Lemma 7.4.5. Let (ar)3,, (be)52, and (2i)52, be sequences of complex numbers
such that (by)$2, is bounded, 2z, — 0 as k — 00, 2z = ar+bgzi and A == lim kag

n

:1

exists. Then z = aj + O(k™2).

Proof. 1If a;, = 0, then z(1 — brzx) = 0 and therefore z;, = 0 except for at most
finitely many indices k. Also, if z = 0, then a; = 0. For these k, the statement of
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this lemma is trivial, and we may now assume that z; # 0 and ag # 0 for all k.
Then a
1= k + bz
2k

and byzr = o(1) imply that

lim kz, = hm kay, hm = A.

Z—00 —00 200 Q)
Hence 2z, = O(k~1). Substituting this for zj into the right-hand side of the identity
2k = ay + brz? completes the proof. O

Lemma 7.4.6. Define the polynomial P by

= zp: ﬁ M — B,,), (7.4.22)

m=1
= 1m7éj
where the B;, j = 1,...,p are given by (7.4.9). Then the zeros M;, j =1,...,p—1,
of the polynomial P defined by (7.4.22) are real but not necessarily different and
will be indexed such that My < M1 forj=1,...,p—2.

Proof. Clearly, the polynomial P is the derivative of the polynomial P; defined by

P

Py(M) =[] (M- By). (7.4.23)

m=1

We assume that the B, are indexed in such a way that By < By <--- < Bp. If M
is a multiple zero of P; of multiplicity r, then M is a zero of multiplicity »—1 of P.
Hence the Mean Value Theorem shows that all p—1 zeros M;, ..., M,_; of P are
real and can be indexed in such a way that B; < M; < Bjyy forj=1,...,p—1.
If Bj < Bj+1, then Bj < Mj < Bj+1. O

Theorem 7.4.7. Let B;, j =1,...,p be given by (7.4.9) and let M;, j=1,...,p—1,
be the zeros of the polynomial P defined by (7.4.22). Then the properly indexed
sequence (A\g)po of the eigenvalues of (7.4.1)~(7.4.4) with U # p can be repre-

k=—oc0

. oo
sented as the union of p properly indexed subsequences ( m) o i=1,....p,

where the index k = 0 is omitted unless j = p and U > p, and where these subse-
quences have the following asymptotic expansions: For all v # p,

Gk M;  BY

= i=1,...,p—1, ke N. 7.4.24
P s T r T g J=ELpmLke ( )
For v >p,
. ~ (p)
(p):ﬂ'k‘ 1 ] v+ 1 B /8 Bk ke N
pk: a +2a Ogi) k ]z:; .7+ p _1/2) + k ) € )

(7.4.25)
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For v < p,
I L ZB+ L T
= 0 .
Pi a 2a gp (p2 — ) E’
(7.4.26)
Here ( ,(Cj)>k oo clbifj=porifl<j<p—1and M; is a simple zero of
P, and (B’(“j))szoo,k;éo € lage for any € > 0 otherwise.
Proof. We are going to index (B;)"_; and (M;)}Z ~1 as in the proof of Lemma

7.4.6. Furthermore, p; will denote the multlphclty of the zero M; of P for each
ji=1...,p—1

We know from Lemmas 7.4.3 and 7.4.2 that all eigenvalues Ay with £ > 0
are represented by complex numbers of the form pk = /\J(_?H_ k—1)p T o(1), j =

1,...,p—1,k €N, and pk A(la_(k p +0(1), k € N. From the representation of

/\(0) it follows that there is 7o € (0, )7 ) such that the closed discs C} with centre

)\gf(k Dp and radius rg and the closed discs Cp with centre )\g_g(k Dp

ro and k € N are mutually disjoint and that C} contains p — 1 zeros while C?
contains one zero. Hence we still have to show for sufficiently large k that the
Z€eros pg), j=1,...,p—1, inside C} have the representation (7.4.24) and that the

Zero pl(f) inside C? has the representation (7.4.25) or (7.4.26), respectively.

We will prove (7.4.24) by starting with a sequence of simplified functions,
depending on the index k, whose zeros near " k can be found in terms of the zeros
of a polynomial. These functions ¢; ; are defined as

L. aB aP~1
d1E(N) = Z H (tan/\a - km> = kP*1P (a”'ktan Aa) ,

and radius

where k € Nand [A - 7k| <

Setting
m k1 M.,
p,(co’ =" + arctan( a), keN,m=1,...,p—1, (7.4.27)
a a k
we obtain
m M, M,
tan p;co, Ja = tan <7rk + arctan ( i a)) = “ (7.4.28)

and therefore

d1x (™)) =
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We observe that the numbers pfco’m) are zeros of ¢ ; of multiplicity p,, since the

derivative of tan has no zeros, so that there is a local one-to-one correspondence
between the multiplicities of the zeros of ¢; ; and the zeros of P. Hence ¢ ; has
exactly p— 1 zeros inside C} for sufficiently large k, counted with multiplicity, and
the numbers p;co,m)’ m=1,...,p—1, defined in (7.4.28) are the zeros of ¢y j.

To prove (7.4.24) let M, be any of the zeros of P. In case of a multiple zero
we may choose the index ¢ to be the smallest index j for which M; equals this
zero. We can find r € (0,r9) such that

2r <min{|M, — Mp,|:m=1,...,m, My, # M,}.

Since M, is a zero of the polynomial P of multiplicity p,, we can find ;3 > 0 such
that
|[P(M)| > v1|M — M,|P- if |M — M,| < 2r. (7.4.29)

For |\ — p,(CO’L)

< ;. we conclude in view of (7.4.28) and Taylor’s Theorem that

|CL_1]€ tan Aa — ML‘ = a_lk-‘ tan \a — taﬂpgco’L)a| < a_1k2a|/\ _ pSCO,L)

< 2r,

1 '
la™ ktan Aa — M,| > Qk\)\ - p,(CO’ )|
if k is sufficiently large. In view of (7.4.29) it follows that there is 4 > 0 such that

A

p—1
INP~1o (V)] = aP! ( ; ) |P(a~"k tan Aa)| > v (k\)\ - p,gow>|) (7.4.30)

for |\ — pgfo’L)\ < . and sufficiently large k € N.
From (7.4.5)—(7.4.7) we obtain that

A2(p—1)

cosP Aa

P(A) = Z COSIAG, (s;()\,a) + ;(i)\ﬂ + ﬂ)sj()\,a)> H A sm(A, a),

whereas

Taking the representations of s;(\,a) and s%(),a) in (7.4.10) and (7.4.11) into
account, it easily follows that all factors of A2P~1 (cos Aa) P¢(A) and AP~y x (),
which are of the form

A2 B\
Sm(A,a), Atanda — “ E

(7.4.31)

1
cos \a

<89()\, a) + ]1)(2’)\17 + B)s;(A, a)) ,

cos \a
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are uniformly bounded with respect to j,m = 1,...,p, |A — péO’L) <, and suf-
ficiently large k. Note that Lemma 12.2.4 shows for v € £ that [v(A)] — 0 as
|A| = oo subject to |A — p(®Y| < 7k € N. Then the differences of corresponding

factors in A2P~1) (cos Aa) "Pp(\) and AP~1¢y () satisfy

1
cos \a

Bjm +p~t(iAv + B)
A

1
( tan Aa

(s

TN Bim  ATi(A) + (@A + B)w; (N)
-1 J j j
p (1A + ) A2 + A2 cos \a

IAD + ﬁ)sj(A,a)> —1=
=0(k™) (7.4.32)

and
)\2
cos \a

aB, A\

Sm(A\,a) — ()\ tan Aa — L

) — O(k™?) + (- D}wn(N) = o(1) (7.433)

for [\ — p®9)| < 7 and k € N.
In view of Lemma 7.4.4, the estimates (7.4.31), (7.4.32) and (7.4.33) show

that there is a sequence of constant ¢, > 0 such that ¢, — 0 as k — oo and

A2(p—1)

cosP \a

P(A) — A”‘lcbl,k(A)‘ <cp (7.4.34)

for |)\—p(0")| < ; and k € N sufficiently large. It follows from (7.4.30) and
(7.4.34) that for sufficiently large k, say k > ko, and all A on the circle with centre

pECOVL) and radius Ilc(”’;e)pl the estimate

a1
cosP \a

o) - asl,km] < 1610V

holds, and an application of Rouche’s Theorem shows that ¢ has p, zeros pgf),
K=1,...,t+p,— 1, such that |p§:) - péO’L)| < ,lc(ci)pi . Hence we have shown that
¢ has zeros of the form

ng) = pgm + 0(k71)7 K=1l,...,t+p —1,

and we can write

(r)
() _ T M, L S _ _q
P ak+ k + k 7k_k‘0a"<‘ byt + D0 ’

where ﬂ,(f) — 0 as kK — oo. For each k, these are p — 1 zeros, counted with
multiplicity, of ¢ satisfying the asymptotics 7 k + o(1). Hence, for large k, they
account for all zeros of (7.4.1)—(7.4.4) inside the disc C}, as required.

So far we have proved the representation (7.4.24) with B](Cj) — 0 as k — oo.
In view of Lemma 12.2.1, applied to the sets of even and odd indices k separately,
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we have that the sequences (wj(pgf)))zo:ko and (Tj(pgf)))?:ko belong to Iy for
j=1,...,p. Substituting A = p,(f) into (7.4.32) and (7.4.33) it follows that these
terms belong to Iy if considered as a sequence with index k. Then the sequence
(ck)iZ, occurring in (7.4.34) belongs to Iz, and (7.4.34) and d)(p;:)) = 0 imply

( (rc))”‘l Wy -
Pr o1e(py”) € ly. Hence (7.4.30) gives
k=ko

(k(p,(:") - pECO’L))) k:koe lop, fork=u¢,...,0+p —1 (7.4.35)

In view of ! arctan (%) = M= 4+ O(k~2), the representation (7.4.24) follows for
all j for which Mj is a simple zero of P.
In order to find the estimate for the remainder term in case p, > 1 we need

()
a closer inspection of the terms pff) tan pgf)a — @B With k =4,...,p, — 1 and
B,,, = M,. In these cases we have
pé)tanpgc)a—a Pk :’pé) tanpgc)a—a ‘
k k
T (%) g
- (ak + O(k—l)) b o) | = 7B + Ok, (7.4.36)

We define the sequence (t,)52; recursively by

1 1 /1 p -1
t = 2p,, - for n € N.
! P tn+1 2 (2 * ln ) o

We are going to show that for all n € N,
t, > 2, ( ,(f)>k . €ly, fork=1¢...,0+p — 1L (7.4.37)
=Ko

Let n € N and assume that (7.4.37) holds. From ¢, > 2 we conclude
1 1(1 p—1) 1
tn+1<pb<2+ 2 )‘2’

so that ¢,4+1 > 2. It follows from (7.4.33) and (7.4.36) that

)
Pk (%) :
() 50 (py @) ely, forw,j=u¢,...;04+p —1. (7.4.38)
cosp;a
k=ko

Applying Lemma 7.4.4 to A2P=1)(cos Aa) "Ph(A) — NP~y 1 (N) with A = p,(f), we
see that each summand is a product of p bounded factors, where one of them
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satisfies the estimate (7.4.32) or (7.4.33), whereas at least p, — 1 of the other
factors satisfy (7.4.36) or (7.4.38). It follows that the absolute value of any of these
summands has an upper bound of the form c1 xco k- ¢p, x With (c1x)72,, € l2

and (¢jk)ply, € Ui, for j=2,...,p,. From
t"n, t7l
fnt1 2 721:1 tn tn;j tn tn‘;i
(crrCop Cp k) 7 = (Cl,k) “\Cok oGk )
o0 o0 t t
2\ ( tn ) ( tn ) nt1 n+l
c c ..l €l;, and + —1 =1
( 1’k)k:k0 ’ 2,k k=ko ’ T\ TPk k=ko ’ 2pL (pL )tan

it follows in view of the generalized Hoélder’s inequality, see [108, (13.26)], that

1
(dk)zozk'o = ((C]-JVCQJV e Cpolak?)pL ) 6 ltn«l»l'

—r0
Hence we find finitely many sequences (d1,k)3y,, - - -» (dhk)7Zp, € liny, With pos-
itive terms so that (7.4.34) for A = pgf) can be improved to

Vo

h
’ <pl(€’£)> ¢1 kP (K) ‘ Z dpL Z dj,k = dk;
j=0

with (d)32,, € It

n+1°

From (7.4.30) we conclude (k( () —pé )))Zo_k € li,yy
—ro

o0
and therefore ( ]in))k i € lt,,,- By the principle of mathematical induction, it
=Rro

follows that (7.4.37) holds for all n € N.
Hence the proof of the representation (7.4.24) will be complete if we show
that t,, — 2 as n — oco. From

tn 1 [/t,
= +p.—-1]>1
tn—i—l D < 2 b )

we see that (¢,)02 is a decreasing sequence, which therefore has a limit ¢ > 2.
This limit ¢ satisfies
1 1/1 p -1
= + s
t  p o \2 t
which shows that ¢ = 2.

Now we are going to prove (7.4.25) and (7.4.26). With the notation from
Proposition 7.1.2 we can write )‘goj(kq)p as )\g) with ¢ = p and o = U and
with an index shift in case 7 > p. We already know from Lemma 7.4.3 that

pgcp) - )\](Cl) = 0(1) and from (7.1.7) and (7.1.8) that

sin )\S)a = peg, COS )\g)a = —ilgy,

where €7 # 0 is independent of k.
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By Taylor’s theorem,

—o(M) = 6(0”) — sAM) = S A (0 = ALY + (o = A2, (7.4.39)
where
I < sup{|¢“< ) ae A o)

It is easy to see from Lemma 12.2.4 that the derivative of a function in £¢ also
belongs to £. Hence it follows from (7.4.12) and (7.4.13) that

= Ok 7Y).

Furthermore,
()\(1)) ()\(3])31’ ) ((p — 1) sin? ™2 )\lgfl)acos2 )\S)a — sin” )\,(:)a> + O(()\S))*P)
and
a o _
X’(AS)) = (/\(1];)]3 sin? ! )\ffl)acos )\S)a + O(()\S)) (p+1)y
k

show that

ap sin? 2 )\S) a

(A
+O((A) )
)

(1

apsin?~ 2)\ a _

a0yt —p*) +O(N) ™).
k

d)'()\,(cl)) = ((p — 1) cos? )\,(cl)a — sin? )\,(cl)a + i sin /\,(Cl)a cos )\,(cl)a)

Next we calculate

SO = go(AW) - Ep: cos? Al! )(c;(sll)n; 2A0q zp: Slﬂ;(f\gc Ja
i=1 -
bmp(f\,(c a . Xp: sin? ! /\(1()16; cos /\(1) n 111(/\,(C )) —ZZ)VW(/\S))
(M = (A )P (A )P
+O(() ")
sin? 2 )\S)a P (p)

_ 2 (-2 2 2 ak
= (/\,(Cl))p g | (@ p)ZBJﬂ- pB ko

(P))

where (¢ )32, € l2 in view of Lemma 12.2.1.
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From the above calculations and with ~;, from (7.4.39) we infer that

by, o= — ¢/&’§1 ) = o(1), (7.4.40)
ap ‘= — QS()\U ) _ = ZB ™+ PP + Bk
oY) apa o pe R L A
1 [ 2 3
- 3 B+ (p2p_f;)7r + ik, (7.4.41)

j=1

where (64)72, and (Bk)oo belong to l2. Hence (7.4.39) can be written in the form

ZE = ap + bkzk with 2z = p )\(1 , and Lemma 7.4.5 gives
(p)
(P) _ (1) _ ﬁ A
— Ay ZB e | Tk (7.4.42)
where ( (p))k 1 € la. This proves (7.4.25) and (7.4.26). O

Corollary 7.4.8. Let = 0, let g; belong to the Sobolev space W3(0,a) for j =
1,...,p and assume that the zeros of the polynomial P defined in Theorem 7.4.7 are
simple. Then the subsequences in Theorem 7.4.7 have the asymptotic expansions

G _ kM BY

= i=1,...,p—1 4.4
P a + k + kga J ) D ) (7 3)
1 P (»)
w _ m(k—3) 1 B P K 7.4.44
where ( m) € ls.
k=—00,k#£0

Proof. Because of 7 = 0, the estimate (7.4.32) can be sharpened to O(k~2). For
(7.4.33) we simply observe that Corollary 12.2.10 shows that w;(A) in (7.4.10) can
be written as

sin Aa wj(~1)

wj(A) = D; \ \

,Ji=1,...,p,

where the D, are real constants and (wj(.l));’il € lo. Since sin A\a = O(k~1) for the
A considered in the part of the proof of Theorem 7.4.7 corresponding to (7.4.24),
we see that the differences (7.4.33) are of the form O(k=2)+k~tw(\) with w € £°.
Then we can replace ¢, with k~lcy in (7.4.34), and (7.4.43) easily follows from
this modification in the proof of Theorem 7.4.7.
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To prove (7.4.44) we first observe that going one step further in the Taylor
expansion of ¢ we find that 4 defined in (7.4.39) can be written as

= ¢" )+ (0 = XD,

where vk = O(()\(1 )~(P=1)). Note that cos A,gl)a = 0 and sin A,gl)a = (=1)k 1
It is easy to see that (;S”(/\,(Cl)) = O(()\,(cl))_p), and therefore v, = O(()\,(cl))_p). Tt

follows that (7.4.40) can be improved to
b = O(k™1).
Substituting the above representation of w; into (7.4.10) gives

1 k—1 3
000 = T o)),
k

0

or S5 a) = 0(OF) 7).

Similarly, 7;(A) in (7.4.11) can be written as

cos \a Tj(l) .
Ti(A) = Ej y t o d=hop

1)

where the E; are real constants and T, € l5. Thus we have

ES LoV

s/l(/\(l) a) = B
J\k J
)\,(:) ()\g))2

)

0
oy SO @) = (=1 O(() ).
We calculate
_ (1)
1, (—1pe=D & wM () ()= (p+2)
‘P()‘k )= G+ O(()‘k ) )
Wy = (A yrt
—1)p(k=1)
W) = CUT L oy,

(A
where w1 € £P%, Therefore

1pt=1) [P w(l)(A/(cl))

(1) (1)y—
o(N,)) = A(l) ZB O+ ppn T O #+2)).
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Furthermore,
(—1)p(k=1) a
A == )y P O ),
k
X)) = o) =),
gives

(—1)p(k=1)

+Oo((AM)~+n),
(Al(el))(pil)pa (A7) )

¢ (A) =~

Observing the definition of ay in (7.4.41) we conclude that

p (p)
(r) _ (1) —3y _ (D) 1 A X
pr =N, Far+OK™) =N+ A ZBJ“"‘ﬁ T e
baAy j=1
1 p ﬁ (p)
=0 + B+ |+ "k,
k p(k— é) ; J T k2

where (ﬂ,@)k:_m o €1 O

7.5 Notes

First results on asymptotics of eigenvalues of boundary value problems can be
found in [257], [258]. Since then many results concerning eigenvalue asymptotics
for concrete boundary value problems generated by the Sturm—Liouville equation
and similar equations have been published, see, e.g., [17], [84] and the references
therein.

Asymptotics for the eigenvalues of the generalized Regge problem (7.2.5)—
(7.2.7) with @ # 1 were obtained in [101]. However, asymptotics of the classical
Regge problem, that is, the case when o = 1 and 8 = 0, being investigated for a
long time are not completely known. An analogue of formula (7.2.23) under the
assumption that ¢\9)(a) = 0 for j = 1,...,p — 1 and ¢?)(a) # 0 was obtained in
the original paper by T. Regge [238, (19)], see also [150, (6)]. Under the above
assumption on the behaviour of the potential at a, [150] also obtained two-fold
series expansions into eigenfunctions and associated functions of the Regge prob-
lem for certain classes of sufficiently smooth functions. It was shown in [142] that
the condition that the potential g satisfies a € suppq is necessary for two-fold
completeness in L2(0, a). Also sufficient conditions for two-fold completeness were
given in [142]. More recently, it was shown in [248, Theorem 3] that under the
assumption that a € supp ¢ and that all of its eigenvalues A, n € Z are simple
with eigenfunctions y,,, then the system {(yn, A\nyn) : n € Z} is complete and min-
imal in W3 ;(0,a) x Ly(0,1), where Wy ;(0,a) is the space of functions y from
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W3 (0, a) satisfying £(0) = 0. For the case when a € supp ¢ and ¢(¥)(a) = 0 for all
k € Ny, asymptotics of eigenvalues are unknown in general. However, if addition-
ally |g(x) (exp((a — z)~%)| is bounded and bounded away from 0 as x — a — 0 for
some « > 0, an asymptotic formula for the eigenvalues can be found in [243, II1.4].

A double-sided Regge problem was considered in [234] and [287].

The undamped string problem is given by equation (2.8.2). For the main
term of the asymptotics of the eigenvalues of boundary value problems generated
by (2.8.2), the following formula was obtained by M.G. Krein for a regular string
in [152], see also [96, Chapter VI, (8.5)]:

n 1 [ [dM
li = . 5.1
R R (751

This formula is independent of the boundary conditions, at least if they are self-
adjoint and independent of the spectral parameter. We observe that if M is abso-
lutely continuous with M’ € L3(0, a), then (2.8.2) is the undamped string equation
(2.2.1) with 0 =0, i.e.,

v+ A2 pv = 0. (7.5.2)

For continuous p, formula (7.5.1) was known to J. Liouville [179, pp. 420, 426].

Another general result on asymptotics for the eigenvalues of string problems
is the Barcilon formula

[ v

p(0)= 5 » 2 © g
7Ry 2 PPy
associated with (7.5.2), where the string density p is continuous and bounded away
from zero, (v)ken are the eigenvalues of the Dirichlet problem and (ug)ren are
the eigenvalues of the Neumann—Dirichlet problem. This formula was obtained
in [22] by the method of Stieltjes continued fractions and proved by [244] using
the Liouville transform under the assumption that the density of the string has a
piecewise continuous derivative. For p = 1, the Barcilon formula reduces to Wallis’
formula. In [129, Theorem 4.4] it was shown that this formula remains true even
at least in some cases of singular strings if p(0) is replaced by Tl_igo Mg(f).
For the free Laplacian on finite quantum graphs, that is p = 1 on each edge,

the formula corresponding to (7.5.1) is

n 1<
li = l 7.5.3
= D (153)

n—o00 \p,

where I, (k=1,2,...,g) are the lengths of the edges of the graph, see [83, Propo-
sition 3.3].

Eigenvalue asymptotics for star graphs were found in [215, Lemma 1.3]. The-
orem 7.4.7 on the eigenvalue asymptotics for problem (7.4.1)-(7.4.4) was obtained
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in [230, Theorem 2.7 and Remark 2.8] with a slightly weaker result on the remain-
der terms if not all of the M}, j =1,...,p— 1, are distinct.

Eigenvalue asymptotics for quantum star graphs can be found in [279, Theo-
rems 2.1 and 2.2]. Eigenvalue asymptotics for boundary value problems generated
by the Dirac equation on star graphs were obtained in [276, Theorems 2.1 and 2.2].

For finite connected graphs, the main term of the eigenvalue asymptotics can
be obtained from (7.5.3). The next terms depend on complicated combinations of
folj ¢;(z)dx, j = 1,...,g, where g is the number of edges. Some results can be
found in [47, Theorem 5.4], [62, Theorem 7.9 and Corollary 7.10], [279, Theorems
2.1 and 2.2]. However, in case all edges have the same length and the same po-
tentials on them, symmetric with respect to the midpoint of the edge, there is a
connection between spectral theory of quantum graphs and the classical spectral
theory of graphs; for the classical spectral theory on graphs see, e.g., [63], [53].
This connection was pointed out by [11] and was proved in [48], [76]. In this case
it was shown in [225, p. 193] that the characteristic function for problems with
Neumann boundary conditions at pendant vertices is of the form

¢(N) = "7\ a) [T (c(ha) —ay)
r=1

where o, are the eigenvalues of the matrix A = B~ 2AB~:. Here A is the adja-
cency matrix of the graph, B = diag{d(v1),...,d(vp)}, d(v;) is the degree of the
vertex v;, g is the number of the edges and p is the number of vertices of the graph,
s(+, a) is the characteristic function of the Dirichlet-Dirichlet problem on the edges
while ¢(+,a) is the characteristic problem of the Neumann—Dirichlet problem on
the edge. If p > g, then the zeros of the factor sP~9(-,a) give the Dirichlet spec-
trum, that is, the set of eigenvalues of the Dirichlet—Dirichlet problem on an edge
of this graph, each eigenvalue having multiplicity p — g.

For asymptotics of eigenvalues of boundary value problems generated by a
fourth-order differential equations and spectral parameter dependent boundary
conditions see [195], [197], [198], [199].

An interesting and important question is whether the spectrum of a bound-
ary value problem lies in the open upper half-plane and is separated from the real
axis. In other words, whether a positive constant € exists such that Im Ag > ¢ for
all eigenvalues \g. It is important because if the spectrum is separated and the
eigenvectors and associated vectors form a two-fold Riesz basis, then the solution
of the corresponding initial-boundary-value problem exists and is decaying expo-
nentially, see [272], [274]. It was shown in [104, Theorem 6.2] that the spectrum
of a string with constant density and damping at both ends is separated from the
real axis even if there is point mass at an interior point, while in [104, Theorem
6.3] it was shown that this is not true with one fixed end, one damped end and a
point mass at an interior point. However, for a string with distributed damping the
spectrum is separated from the real axis, see [60, Corollary 5.4]. In [213, Theorem
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3.1] it was shown that if the string satisfies p € WZ(0,a) and if the string bears
a point mass at the right end, then the spectrum is not separated from the real
axis. See [249, Theorem 2.5] and [190, Theorem 2.1] for related problems.

The problem of optimal resonances, i. e., the problem of design of optical cav-
ities with minimal rate of energy decay for a given frequency is closely connected
with the distance between the spectrum and the real axis. For related results see
[134, (3.2)], [135, Proposition 2.3].



Chapter 8

Inverse Problems

8.1 The inverse generalized Regge problem

In this section we will consider the inverse problem corresponding to the gener-
alized Regge problem, which was introduced at the end of Section 2.1 and whose
eigenvalues were discussed in Sections 6.1 and 7.2:

—y +q(z)y = Ny, (8.1.1)
y(\,0) =0, (8.1.2)
y' (A a) + (ida+ B)y(A a) = 0. (8.1.3)

Definition 8.1.1. The classes B (BT, B™) are the sets of 4-tuples (a, ¢, @, 3), where
a>0,q¢€ L3(0,a) is real valued, B € R, a € R (a € (1,00), a € (0,1)).

oo

Definition 8.1.2. Let x € Ng. Then the properly indexed sequence (Ax)3e_ .. (or
(M)RZ — oo kz0) 18 said to have the SHB;' (respectively SHB,) property if the
following conditions are satisfied, where term means term of this sequence.

(i) All but & terms lie in the open upper half-plane.

(ii) All terms in the closed lower half-plane are pure imaginary and pairwise
different. If x > 0, we denote them as A_; = —i|A\_;|, 7 = 1,...,k, and
assume that [A_;| < [A_ipl,j=1,..., k= 1,if K > 1.

(iii) If K > 0, the numbers i|A_,|, j = 1,...,k, with the exception of A\_; if it is
equal to zero, are not terms of the sequence.

(iv) If kK > 1, then there is an odd number of terms in the interval (i|A_;|,
i|)\_(j+1)|), ] = 1, N A 1.

(v) If kK > 0 and |A_1| > 0, then the interval (0,%4|A_1|) contains no terms at all
or an even number of terms.

(vi) If k > 0, then the interval (i|A\_|,i00) contains a positive even number of
terms in case SHB;" or an odd number of terms in case SHB, .
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(vii) If k = 0, then the sequence has an odd number of positive imaginary terms
in case SHB;" or no or an even number of positive imaginary terms in case
SHB; .

We start with a result which covers all @ > 0 but where the eigenvalues
of (8.1.1)-(8.1.3) are only given implicitly as the zeros of an analytic function.
Unfortunately, in the exceptional case @ = 1 we are unable to obtain an explicit
form of the inverse problem. In case o # 1, the explicit forms of the inverse problem
are investigated in Theorems 8.1.4 and 8.1.5.

Theorem 8.1.3. For the sequence (\), which can be infinite or finite and possi-
bly empty, to be the sequence of the eigenvalues of problem (8.1.1)—(8.1.3) with
(a,q,,8) € B and with o > 0, it is necessary and sufficient that (\;) be the
sequence of the zeros of an entire function x which belongs to the class SSHB and
which is of the form

sinAa . _cosAa n P(A)

X(A\) = cos Aa + iasin Aa + M +iN

| N L AEC\{0) (8.14)

where M, N € R and 1 € L*.

Proof. Let ¢ be the characteristic function of (8.1.1)—(8.1.3) given by (6.1.1). By
Proposition 6.1.2, the function ¢ belongs to the class SSHB and satisfies (8.1.4)
in view of Corollary 12.2.10.

Conversely, assume that x belongs to the class SSHB and satisfies (8.1.4).
The numbers a > 0 and a > 0 are explicitly given in (8.1.4). We recall from
Definition 5.2.6 that we can write the shifted Hermite-Biehler function y in the
form

XA) = @1 (A?) +iADy(A\?), A € C, (8.1.5)

with real entire functions ®; and ®5. The representation (8.1.4) of x shows that

$1()\?) = cos \a + MS”;M + wliA), (8.1.6)
sin Aa cosha  thy(A
By(N)=a AN+ 1/’1(2 ), (8.1.7)
where ¥, € L& and 1y € L2 Tt follows from (8.1.6) and (8.1.7) that
[Aa [Aa Aa
2y _ ¢ [Ala 2y _ € €
1A ))\—>:|:ioo 2 +0(6 )’ 2(A ),\—>iiooa2\)\| +O< Al ) (8.18)

We shall prove that the sequence of the zeros of y is the sequence of the
eigenvalues of problem (8.1.1)—(8.1.3) with

B=M+a N, (8.1.9)
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and with some real-valued function ¢ € L3(0,a). To this end we consider the entire
functions Z; and Z5 defined by

(1]

1 =0 — a1y, (8.1.10)
By = a1 d,. (8.1.11)

In view of (8.1.6), (8.1.7), (8.1.10) and (8.1.11) we have

in \ A

sin Aa +¢1( )

E1(\?) =cosha+ (M — 3) N N (8.1.12)
— 2, sinda N Y2,0(N)
Ea(N\°) = N + a2 €0 Aa + N2 (8.1.13)

where ¢ € L2 and 12 € LE. We define

4a? _ N2cosAa

a  4X2a? — 72’

Clearly, 12,1 is an even entire function of exponential type < a, and for z € R,
[4p2.1(x)] = O(z72) as |z| — oo. Therefore 121 € L%, and we have

sin\a  4a? cos \a V2(A)
A + a  4X202 — 72 A2 7
where 2 = P20 + 2,1 € LE. Since =y is an entire function, multiplication of
(8.1.14) by A? and evaluation at A = 0 gives 2(0) = 0.
Since x belongs to the class SSHB, gf belongs to N{* and ®; and ®, do not
have common zeros by Definition 5.2.6. In view of Lemma 5.1.22, the function

—_ _ -1 —1
=2 _ 1 — a1 BP, _ -t ¢y 018
=1 Oé_l(bg @2

@1 (M)

is a Nevanlinna function. By (8.1.8), By(r) — 00 as A = —0o0, so that there is

v € R such that gfgig > 0 if A < 7. This shows that the meromorphic function gf

belongs to N{P.

There are various ways to ascertain that the functions Z; and Z; have
infinitely many zeros. One way to do so is to observe that A\ — Z;(\?) and
A — AZ2()\2?) are sine type functions and then to apply Proposition 11.2.8, 1.
Since ®; and ®, do not have common zeros, also =; and Z; have no common
zeros. Because Ef belongs to N}, we know from Theorem 11.1.6 and Corollary

5.2.3 that the zeros (ux)5>, of Z; interlace with the zeros (v4)72, of =3 in the
following way:

N
P21 () = N cos \a —

Ea(\?) = (8.1.14)

p1 <y < pg <vg < ---. (8.1.15)

By (8.1.12) and (8.1.14), the functions A — Z;(A\?) and X — Z3()\?) are of the
form (12.3.11) and (12.3.10), respectively, where
A:_aN B (M—zﬁ)a:_aN

, .
T2 0 T2



218 Chapter 8. Inverse Problems

Hence Lemma 12.3.3 shows that uj, = v and v = u3, k € N, with

™ 1\ N1 AP
= — — 1.1
=y (k 2) rak ko (8.1.16)
2

7Tk _ N1 ’y,(c)

Uy, = (8.1.17)

a Tak ko’

o0

where (q/,(f))k:1 € [y for j = 1,2. Thus the sequences (ug)5>; and (vk)3,
satisfy the assumptions of Theorem 12.6.2. Therefore there exists a real-valued
g € L2(0,a) such that (u)22; is the spectrum of the Dirichlet—~Neumann problem

y' +(z—q(x)y =0,
y(2,0) =y'(z,a) =0,

and (v)72, is the spectrum of the corresponding Dirichlet problem

y' 4+ (z—q(x))y =0,
y(2,0) = y(z,a) = 0.

Putting z = A2, let s(), -) be the solution of 3’ + (A2 —g(z))y = 0 with y(\,0) = 0,
y'(A,0) = 1. From Corollary 12.2.10 we know that s'(-,a) is a sine type function,
and since s'(-,a) is a characteristic function of the Dirichlet—Neumann problem
with z = )2, it follows in view of Lemma 11.2.29 that there is a constant ¢ such

that
s(\a) = c)\mH <1 - > :

he1 223

Here H/ indicates that the factor, if any, for which u; = 0, is replaced by the
term A™ with m = 2, whereas m = 0 otherwise. On the other hand, it follows
from (8.1.12) that A — Z1()\?) is a sine type function and hence A — Z;(\?)
has the same product representation as s'(-,a) with the same constant ¢ because
both functions have the same leading term cos Aa. Similarly, A — As(A,a) and
A — AZ2()\?) are sine type functions with the same zeros and the same leading
terms. Hence it follows from (8.1.10), (8.1.11) and (8.1.5) that

s'(\,a) + (iaX + B)s(A,a) = E1(A\?) + (i + B)E2(A\?)
1(A%) — a7t BBy (N) + (ia) + B)a™ Dy (\?)
(A2) + iADy(A2)

Therefore we have shown that the sequence of the zeros (Ag) of x is the sequence
of the eigenvalues of the problem (8.1.1)-(8.1.3) with a, ¢, @ and 8 as found
above. ]
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Theorem 8.1.4. Let k € Ng and let ()\k)?:_oovk#o be a properly indezed sequence
which has the SHB, property and which satisfies the asymptotic representation

B 1 . h vk
/\k—<k—2>b+zg+k+k, k — oo, (8.1.18)

where b >0, g > 0, h € R and (V)32 _ k20 € l2- Then there exists a unique
(a,q,a,8) € B for which problem (8.1.1)~(8.1.3) has the spectrum (Ak)>, jzo-
Furthermore, « € (0,1), i.e., (a,q,a,3) € B™.
Proof. We put

a= 7; > 0. (8.1.19)

Since

<1_ Q) (1_ ;k) . (1_ jk) (1+ ;k) — 1= 0(AR)Ok)

for k > 1, it follows for any C; € R\ {0} that

XN =01 lim (A =N =) ] (1 - Ai) (8.1.20)
k=—n, |k|>1

converges for all A € C and defines an entire function Y, see, e.g., [55, Theorem
VIL5.9]. Here we have used that Ay # 0 for k # —1 by definition of SHB,.

We now consider an auxiliary problem for (a,2wha™!,a,0) € B~, where
a = tanhag:

Y’ + (/\2 - 2%2) y =0 on (0,a), (8.1.21)
y(A,0) =0, (8.1.22)
y'(\ a) + iday(\, a) = 0. (8.1.23)

The differential equation (8.1.21) is of the form (12.3.1) with b = 0 and ¢ = 27rha~ L.
We are going to apply Corollary 12.3.2 with n = 1 to find an asymptotic repre-
sentation of the characteristic function xo of problem (8.1.21)-(8.1.23). In the
notation of Lemma 12.3.1 and observing (12.3.4) and (12.3.5) we conclude that
7(\) = VA2 = 21ha 1,

sinT(\)a

Xo(A) = cosT(N)a + i\ )

hi(z) = V1 —2rha=122 = 1 — tha='2% + O(2*) and ha(2) = 271 (hi(2) — 1) =
—rmha=1z + O(23). Therefore, by (12.3.6) and (12.3.7), f21.1(2) = fi11(2) =1
coincide with the Taylor polynomial about 0 of order 1 of z — cos ha(z)a, whereas
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—f1,21(2) = fa2,1(2) = —imhz is the Taylor polynomial about 0 of order 1 of
z > isin ha(2)a. From Corollary 12.3.2 we therefore conclude that
h A
Xo(A) = cos Aa + iasin Aa + 7;\ (sin Aa — iacos \a) + ¢0§\ ) , (8.1.24)

where g € L% and ¥o(—\) = —1ho(A) for all A € C.

We know from Proposition 6.1.1 that yg is a sine type function of type a
and from Theorem 7.2.1 that its sequence of zeros (Ck)ioz_oq k0 Can be properly
indexed and satisfies

k-1 h d o0
o = m( . 2) +igt, + kk for k>1, (d)° € ly. (8.1.25)

Comparing (8.1.18) with (8.1.25) implies

br ~ \>®
Ap = : (b) € ly. 8.1.26
k= Ck+ G 5) e po € 2 ( )
Due to Lemma 11.3.15 and Remark 11.3.16 with w = xo, @ = x with C; = 1,
a =0 and n = 1, we obtain

x(\) = C1Cy (1 + Z;F) Xo(A) + wg\)\)v

where Cy # 0 and T are constants and 1 belongs to the class £%. Since the
sequence (Ak);;oo’,#o is properly indexed, x(—A) = x(}A) for all A € C. From
72(A) = A2 — 2wha~1 it follows that also xo(—A) = xo()) for all A € C. Hence y

and xo are real on the imaginary axis, and we conclude that Cy € R\ {0}, T € R
and (=) = —()) for all A € C. We now choose C; = C,, ' and obtain

iT A
xX(A) = (1 + ) Xo(A) + WA ), (8.1.27)
Substituting (8.1.24) into (8.1.27) we obtain
h—T (T — th b
X(A) = cos Aa + iasin Aa + i N “sinAa + i )\F @) cos Aa + ¢g\ ), (8.1.28)
where ¥ € L.
We note that in the product representation (5.1.3) for x we can choose
Pk(;;,) = A);, if A_p = =\, and Pk(f;) = 1 otherwise since

Z |/\k|_2 < 0.

k=—o00,|k|>1
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In view of the definition of R P( )\)‘k) right before the formulation of Theorem
5.1.11, we have

A A 1/ A A 1 A A
R +R = + + + =0
N Ak 2 (Ak /\k> 2 <_)\k —Ak>

whenever A_; = —\g. Hence x has the form of the function w in Theorem 5.2.16,
with u constant and v = 0. From A\, = O(|k]) as |k| — oo and from the bounded-
ness of the set {Im Ay, : k € Z} it follows that Im Alk = O(k™?) as |k| — oo, and
therefore

Since the zeros of x belong to SHB,, it easily follows that x satisfies the conditions
1-7 in Theorem 5.2.16. Thus Theorem 5.2.16 shows that y € SSHB,/, where ' = &
if \_1 # 0 and where ' =k —1if A_; = 0.

Hence we have shown that x belongs to the class SSHB and has the repre-
sentation (8.1.28). In view of Theorem 8.1.3, there are § € R and a real-valued
function ¢ € L2(0,a) such that the sequence of the zeros (Ax)72 _ . 1o is the se-
quence of the eigenvalues of the problem (8.1.1)-(8.1.3) with @ > 0, and o € (0,1)
as found above.

Now we are going to show that (a,q,a,8) € B is uniquely determined by
(8.1.18). Firstly, we are going to show that o € (0,1). By proof of contradiction,
assume that a > 1. Then the index set of the properly indexed eigenvalues would
be Z by Theorem 7.2.1, 1, which is impossible since the index set of the properly
indexed sequence of numbers in (8.1.18) is Z \ {0}. Since {Im X\, : k € Z} is
a bounded set, it follows from Proposition 7.2.3 that a # 1. If & = 0, then
the eigenvalues would have to be symmetric with respect to the origin, which is
impossible since g # 0 in (8.1.18). Next assume that o < 0. Then the substitution
A= =\ a — —a would show by Theorem 7.2.1 and Proposition 7.2.3 that the
sequence of eigenvalues would have infinitely many terms with negative imaginary
parts, contradicting g > 0 in the representation (8.1.18).

Hence we have established that o € (0,1), and therefore the representations
(8.1.18) and (7.2.7) coincide. In particular, the first two terms must be equal,

which shows that
1 a+1

b=" and g= log
a 2a

1—a’
Thus we have proved that a and « are uniquely determined by b and g.

Let q1,q2 € L2(0,a) and By, B2 € R such that (a,q1,a, 1) and (a, g2, @, 52)
generate the same spectrum of problem (8.1.1)—(8.1.3), given by the sequence

(8.1.18). For j = 1,2, let s; be the solution of (8.1.1) corresponding to (a, g;, &, 3;)
with s;(A,0) =0, s%(),0) = 1 for all A € C. Since the spectra of these two problems
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coincide, it follows again from Lemma 11.2.29 and the representations of s;(-,a)
and of (-, a) in Corollary 12.2.10 that

s1(A a) + (ida + Br)s1(A, @) = s5(A, a) + (ida + Ba)s2(A, a)

for all A € C. Denoting this function by ¢, we have seen in the proof of Theorem
7.2.1 that A — A@(A) is of the form (7.1.4) with M = Kj(a,a) + 8; and N =
aKj(a,a), j = 1,2, where K;(a,a) = } [, q;(z) dz according to Theorem 12.2.9.
Clearly, the numbers M and N are uniquely determined by ¢, and therefore

fr=M—a 'N=ps.

Hence S is uniquely determined by (8.1.18), and so also the functions Z; and =,
defined in (8.1.10) and (8.1.11). Consequently, the zeros of Z; and =y, considered
in the proof of Theorem 8.1.3, are uniquely determined by (8.1.18). Thus also the
potential ¢ is uniquely determined in view of Theorem 12.6.2. ([l

Theorem 8.1.5. Let x € Ny and let (Ag)7>
has the SHB: property and which satisfies the asymptotic representation

be a properly indexed sequence which

— 00

hooA

No=kbtig+ 408, ko, (8.1.29)
where b > 0, g > 0, h € R and (V)32 _., € lo. Then there exists a unique
(a,q,0, B) € B for which problem (8.1.1)—(8.1.3) has the spectrum (A,)>s. Fur-
thermore, a € (1,00), i. e., (a,q,, ) € BT.

Proof. The proof is, mutatis mutandis, as in Theorem 8.1.4 if we observe that we
have to put a = cothag in this case. ([l

8.2 The inverse problem for damped Stieltjes strings

Theorem 6.2.3 states that conditions 1-5 there are necessary for a sequence of
complex numbers to be the spectrum of the eigenvalue problem

(9) (9) (9) (9)
Up " — Uy +“k —Up—y

@2, ) _ -
ll(Cj) 10) my Ay =0, k=1,...,n;, 7=1,2, (82.1)

k—1
ud) =0, (8.2.2)
1 2
“511)4-1 = “512)-5-1’ (8.2.3)

1) (1) (2) (2)

’LLnlJrl — Uny un2+1 — Uny

, 1
ey )@ + Z)‘Vugzl)-s-l =0. (8.2.4)
ni ng

Here we prove that these conditions are sufficient.
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Theorem 8.2.1. Let two positive numbers | > 0 and [ € (0,1) and two natural num-
bers ny and ng be given together with the sequence of complex numbers ()\k)zl(::’jw)
which satisfy

(i) ImAg >0 for k=0,£1,42,...,£(n1 + n2);

(il) A_x = =X for not pure imaginary \g;
(iii) all real terms of the sequence, if any, are simple and nonzero;
(iv) for each real term Mg of the sequence, Im ®'(Ag) = 0 and Im ®”(\g) # 0;
(v) the number of real terms of the sequence does not exceed 2min{ny,na}; i. e.,

conditions 1-5 of Theorem 6.2.3 are satisfied, where

ni+na

OV | (1 - 2{) , AeC. (8.2.5)

sz(nlJr’ﬂz)

Then there exists a problem (8.2.1)—(8.2.4), i. e., a positive constant v, sequences

of positive numbers (mg))zlzl, (mgf))Zil, (l,(Cl))Zl:O and (l,(f))ZiO with 21: l,(:) =1
k=0

n2 ~
and Y l,(f) =1 —1, the spectrum of which coincides with ()\k)ﬁl(:fjm).
E=0

Proof. Since the polynomial ® satisfies the symmetry condition ®(—X) = ®(A),
A € C, there are real polynomials P and @ such that

d(\) = P(\?) +iAQ(N\?), A€ C, (8.2.6)
see (5.1.23). We set
v = Q(0) (ifl . Z)*l) . (8.2.7)
Using (8.2.5) and (8.2.6) we obtain
1 ) . ni+nz 1
Q) = @'(0) =i > %
k=—(n1+4+n2)

Due to conditions (i), (ii) and (v), @(0) > 0 and consequently v > 0.

If Ay, is a real zero of ®, then by conditions (ii) and (iii), A\x # 0 and —\j, are
simple zeros of ®, and since P and @ are real polynomials, it follows that A} is a
zero of both P and (). For convenience, we let m be the number of positive real
terms in the sequence (/\k)il(:lrfjm) and we assume that these positive real terms
in the sequence have the indices ny +ne —m+1,...,n1 + ns. Introducing

ni+nz
R(z) = H (1 — ;) , z€C, (8.2.8)
k=ni+no—m-+1 k

ni+ns—m

d(\) = 11 (1 - 2{) , AeC, (8.2.9)

k=—(ni4+nz2—m)
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it follows that }
d(\) = R(A?)P(N\), AeC. (8.2.10)
We can find again unique real polynomials P and Q such that
d(\) = P(\}) +iAQ(N\?), M e C. (8.2.11)

By construction and condition (i), all zeros of ® lie in the open upper half-plane.
Hence, by Theorem 5.2.16 and Definitions 5.2.6, 5.1.24, 5.1.25, P and @ have no

common zeros and the rational function g belongs to the class Sy, where we have

used that P(0) = ®(0) # 0. In view of Lemma 5.2.2, all zeros of P and Q are
positive. From (8.2.10) it follows that

P=RP and Q=RQ. (8.2.12)
From condition (iv) we obtain for k = ny +ns —m+1,...,n; + ns that
0=Im® (\) = QA7) + 202Q" (A7),

which shows that Q'(A\2) = 0. Therefore \? is at least a double zero of Q. By
definition of R, these values A2 are simple zeros of R. Hence the numbers A7 are

zeros of Q when k = ni+nq— m+1,...,n1+ns. These zeros and all the remaining
zeros of ) are simple zeros of () in view of Theorem 11.1.6. It follows that A7 are
double zeros of @ for kK = ny +ns —m+1,...,n1 + no, whereas the remaining

zeros of () are simple. Since ® is a polynomial of odd degree 2ny + 2ny + 1, the
polynomial @ has degree ny + ng. Because of condition (v), we can arrange the

zeros of @, counted with multiplicity, into two sequences (1/,21));6“:1 and (V,(cz))Zil
in such a way that V,(Cl) = V,(CQ) = /\le+ml_m+k for k =1,...,m. In particular, the

terms in each of these two sequences are mutually distinct, i.e., I/,EJ ) #* l/}(lj ) for
j=121<k<h<mn;.

By Lemma 5.2.2 and Theorem 11.1.6, the zeros of P and Q interlace and the
smallest zero of P is smaller than the smallest zero of Q Hence the degree of Q
cannot exceed the degree of P. Tt follows that the degree of P is greater or equal
the degree of @, which is n1 + ns. On the other hand, the degree of P cannot be
larger than nq + ng since the degree of ® is 2n; + 2ns + 1. Therefore the degree of
P equals ni + ny. Hence we have the partial fraction decomposition

P() Pl g AT gAY

+ B, (8.2.13)
Q(Z) Q(Z) k=1 z = l/](gl) k=1 Z = V](CQ)

where we have to observe that for K = 1, ..., m, the denominators z—ylil) = z—v,(f)

are duplicated, and therefore the numbers AS) + A,(f) fork=1,...,m, AS) for
k=m+1,...,nq, A,(f) for k=m+1,...,n9, and B are uniquely determined by



8.2. The inverse problem for damped Stieltjes strings 225

P and Q. We will show now they are all positive. In particular, we can also choose
Ag) and A;f) for k =1,...,m to be positive. Firstly, since the degrees of P and

Q coincide, B # 0, and from % € Sy it follows that B > 0. Secondly, since % isa

Nevanlinna function, we have Im ggj; < 0 when Im z > 0. Near each zero v of Q,
the dominant term of ggz; is of the form i“y = Alz(_zyf‘;’), whence A, > 0.

Since P(0) = ®(0) = 1, we obtain from (8.2.13) and (8.2.7) that

AL 22 A2 1/1 1
D> 2 ey tB= <A+ ) (8.2.14)
k=1

: A
o AV

‘We define

oAl
By=Y_ 0 + " (8.2.15)
k=1 "k

B i 47 + L (8.2.16)
2 = N N
— ,,,<j> v(l —1)

and
nj AE{J)
bi(z) = G T8 i=12 (8.2.17)
k=174 " Vg

Evidently, By > 0, By > 0, By + Bo = B by (8.2.14), and —t; and —» are
Nevanlinna functions whose poles are positive. Hence 1 and 15 can have at most
one simple zero in (—oo,0]. Then

Y1 (0) = v 7 >0, 9a(0) = (1=t >0, (8.2.18)
and lim ;(z) = B; > 0, j = 1,2, show that the functions v¥;, j = 1,2, are
positzi\7e7§;1 (=00, 0]. Therefore the functions

0; = mij, j=1,2, (8.2.19)
are Sp-functions in view of Lemma 5.2.4, 3. In view of Proposition 5.2.5 we have
the continued fractions expansions

) 1
) — 4
0i(z) = an’j + " 1 (8.2.20)
_bnj z+ ‘ 1
a(a) +
n,»—l
' b9 a4t !
’I’Lj*l . 1
a(]) +
1
—bgj)z +

o
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with agcj) >0for k=0,...,n5, j=1,2, and b;cj) >0for k=0,...,n5,5=1,2.
Here we have to observe that (5.2.1) gives
1

, 1 1
(3 — 7 . _ : _
ay) = lim 0:(z) = lim = > 0.
] |z| =00 j( ) V |z| =00 w(z) Z/Bj

We identify the positive numbers agcj), k=0,...,n;, j =1,2, with the lengths of

subintervals l,(cj), and we identify the positive numbers b;cj), k=1,...,n;,7=1,2,
with masses mg). Defining the rational functions 6,5, Kk = 0,...,n;, j = 1,2,
inductively by 6;0(2) = l(gj) and
0 () = 1@ 1 _ i
ik(z) =0 + 1 k=1,...,n5 j=1,2, (8.2.21)
(9)
—-myg 'z +
g 0jk-1(2)

it is clear that 0; = 0;,,, for j =1,2.
Let us prove that problem (8.2.1)—(8.2.4) generated by these masses and

subintervals possesses the spectrum (/\k)zlj_?fll ) With the notations of Section
()
6.2 we deduce from (6.2.14), (6.2.13) and (6.2.8) that the functions lef)’“ satisfy
2k—1
the same recurrence relation (8.2.21) and the same initial condition as 8, x, and we
)

therefore conclude that 6; = R%;“ for j = 1,2. Using (8.2.13), (8.2.17), (8.2.19)

2nq—1
and (6.2.12) we obtain
1 2
A A :Ré”)ﬁ1 Ran, = ¢
Q TP wer T wey LM R® T LpW p@
Vion, Vo, Vigy, figy,

We know from the discussion at the beginning of Section 6.2 that Réjn)j is a poly-

nomial of degree n; for j = 1,2. Since 6; has n; simple zeros, which are the poles
(4)

of 1;, these zeros coincide with the zeros of R2nj, j =1,2. Consequently, the zeros

of @ and Ré}l)l Réil, counted with multiplicity, coincide, so that there is a nonzero
constant C' such that Rgi)l Rgié = C'Q. We then also have ¢ = C'vP. Denoting the
function ® in (6.2.11) by @ in order to avoid confusion with the function defined
in (8.2.5), we therefore have by (8.2.6) that

d(\) = CvP(\?) 4+ iavCQ(A%) = Cvd(N), A € C.

This proves that @ is the characteristic function of the eigenvalue problem (8.2.1)—

(8.2.4), so that its eigenvalues coincide with (/\k)Z;Jféf“ )

Using (8.2.18) and (8.2.20) or (8.2.21) as well as (8.2.18), we obtain

Ay 1 [ ifj=1
l(J):Q,O — _ . ’ O
];0 k 5(0) vih;(0) {l—l if j =2.
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Remark 8.2.2. The solution of this inverse problem is not unique because of the
ambiguity in choice of ¥; and 5. It can be shown that the solution is unique if
and only if n; =0 or no = 0.

8.3 The inverse problem for damped strings

In this section we continue the investigation of the eigenvalue problem for damped
strings, considered in Sections 2.2, 6.3 and 7.3. We recall from (7.3.1)—(7.3.3) that
this problem is given by

y" — 2idoy — q(z)y + N2y =0, (8.3.1)
y(\,0) =0, (8.3.2)
y'(\ a) + (=X2m +i\v + B)y(\,a) = 0. (8.3.3)

Lemma 8.3.1. Let (/\k)zo:_oqk;éo be a properly indexed sequence satisfying the con-
ditions

(i) Im A, > 0 for all terms of the sequence;

(ii) the sequence has the asymptotic representation

m(k—1) . P ip2 p3 b,

Ay = 3.4
Fee o T Tl o T B3

where a >0, 0> 0, p; €R for j=1,2,3, (bp)2, € la.

Then the entire function x defined by

x(A) = lim ﬁ 1- A recC (8.3.5)

n—oo P >\k ’ ’

k40

may be represented in the form
x(A\) = By [(,u +iBy + Bop ™! + iBsp %) sin pa
+ (Ay +iAop ™" + Agp™?) cos pa] + U (p)p 2, (8.3.6)

where p =X —1ip and A, e R, k=1,2,3, By € R, k=0,1,2,3, By #0, ¥ € L*
and W(—p) = W(p).

Proof. Since

(1_ 2{) (1_ A:) 1= (1— ;k> <1+ Ai) 1= O(NP)O2)

for k > 1, it follows that x defined in (8.3.5) is an entire function, see, e.g.,
[55, Theorem VIL.5.9]. We now define the entire function x by

X() = x (1 +i0) = x(N).
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Letting
e = A\ —io, k€ Z\ {0},

it follows that (px)72 _ o x40 is the properly indexed sequence of zeros of X.

Next we consider an auxiliary problem of the form (8.3.1)—(8.3.3) whose
eigenvalues have an asymptotic representation which may only differ in the re-
mainder term from the asymptotic representation of the sequence (1x)72 o jzo-
To this end let d be a real number such that

py

2
d< pito®-"2
a a?p

, (8.3.7)
where p; = max{0, —p2}. Then we consider problem (8.3.1)—(8.3.3) with ¢ = d
and as yet unspecified constants m > 0, a > 0, and 5 € R. We will use the upper
index ‘(0)’ for functions and constants related to this auxiliary problem.

The characteristic function x(© is

X0 = cosra+ (<m (i) +iv (u+io) +5) T (838)

where 7(u) = \/;ﬂ + 0% — d. In view of Theorem 7.3.1, part 3, the properly indexed

zeros (M;(CO))EO:_OOJC#O of x(©) have the asymptotics

© .o © 0
©_yo_, _ "mk=1) p ip Ps b,
me =N e = 0 et e g (839)

where (b( )),c 5 €1z and p1 ,pgo), p:(,,) are given by (7.3.7)-(7.3.9), i.e

1 K(O) 2
0 _ + (a a) o%a

3.1
! - (33.10)
o0 — v
(m 29) (8.3.11)
2
PO =4 s
=C+ ", (8.3.12)

where C' in (8.3.12) is a real number which is independent of 5. From Theorem
12.2.9 we know that K (a,a) = }ad, and therefore

K©O(a,a) o%a a

- ’ =p1—_ (d—¢*) >0

n1 - + op D1 27r( 0%)

in view of (8.3.7). Hence there is a unique m such that pgo) = p1, and this m is

positive. From (8.3.11) we can now find a unique real number v such that ps = pgo).

Clearly, v > 0 if po > 0. If po < 0, then

2a 2a0 ad a
p2+ 292p2+ P — Q >0
m™3m T 27 27r
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by (8.3.7), and therefore also v > 0 in this case. From (8.3.12) we finally can find
(0)
3

We will now continue the investigation of x(9) with these values of m, v and 3.
From the representation (8.3.8) of x(*) and from Corollary 12.3.2 with b = 0, with
n =3 in (12.3.8) and with n = 2 in (12.3.9) we know that there are real constants
B;O), j=1,2,3 and Ago), j=1,2,3 and wj(p) € L* with wj(o)(—u) = wj(o) () such
that

KO ) = B (1+iB + B ! + B 2 ) sin ua

a unique real number 3 such that p3 = p

+ (Ago) + iA;O),ufl + Aéo),u*Q) cos pa + O ()2, (8.3.13)
Here we took into account that f123(0) = 0 by Corollary 12.3.2. Furthermore,
Corollary 12.3.2 also shows that B(()O) =—mfi113(0) = —m.
We choose any index j such that ug.o) # 0 and p; # 0 and we consider the
entire function Xgo) defined by

-1
0 w
X (1) = (1 - (0)> X (). (8.3.14)
Hj
The leading term of x(lo) as |u| — oo is
0
s

0
=

B(()O) sin pa.

Therefore it easily follows from Proposition 11.2.19 that X(10) is a sine type function

of exponential type a. A comparison of (8.3.4) with (8.3.9) yields

b,
e = ) + ((f) ,» ke Z\{0},
(Mk)

where (b;)72; € l2. An application of Lemma 11.3.15 and Remark 11.3.16 leads to
—1 -~ -~ -~ ~
- H (0) ~ Tn T> T3 o(p)
x(p) 1= > =xi W (To+ ~+ 5+ + ,
(w) ( 11 r ( oo 13

where T}, € C,k=0,1,2,3, Ty # 0, and ¢ is an entire function belonging to £*.

From
-1 (0) ON .
(1 Il ) Lk _ K (1 Mj) Lt
T T (0) - . o o
Ky Hj Ky I K

© Aooa
Ky T T T:
_ M <1+ 1+M§+M§+O(|u4)>
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with Tj, € C, k = 1,2,3 and (8.3.14) we can now conclude that

T T: T
)NC(:U) = X(O)(,U) (To +1 1 + 2 +4 i) + ‘p(g)
H Hw w W

where T, € C, k =0,1,2,3, Ty # 0, and ¢ is an entire function belonging to £%.
From the symmetry of ¥ and x(?) we immediately conclude that the numbers T},
k=0,1,2,3, are real. Inserting the representation (8.3.13) for %9 into the above
identity leads to (8.3.6) with By = B(()O)TO #0. O

Lemma 8.3.2. Let o > 0 and let ()‘k)zo:—oo,k;éo be a properly indexed sequence
satisfying the conditions:

(i) Only a finite number, denoted by K, of terms of the sequence lie in the closed
half-plane Im \ < o.

(ii) All terms in the open half-plane Im A\ < o lie on (0,i0) and are pairwise
different. If k > 0, we denote them by A\_; = to —i|A_; —io|, j =1,...,K,
satisfying |A_j —io| < [A_(j41) —iol, j=1,...,k— 1.

(iii) If k > 0, then the numbers ip+i|A_; —ig|, j =1,..., K, are not terms of the
sequence (Ak)p_ o gzo0-

(iv) If k > 2, then in each interval (ip +i|A_; — io|,i0 + i|A_(j41) —i0]), j =
L,....k =1, the number of terms of the sequence (Ak)3%_ zo 18 odd.

(v) If K > 0, then the interval [ig,i0+i|A\_1—1ig|) contains no or an even number
of terms of the sequence ()\k)zozioo’,#o.

(vi) The asymptotic representation (8.3.4) holds.

Then x belongs to the class SSHB and X := x(- +i0) belongs to the class SSHB,.

Proof. Due to the asymptotics (8.3.4),

o) o] . —1
_ i
Z ’Im (Ak) 1’ < oo and Z Im <)\k - 2Q> < 00.
k=—00,k#0 k=—00,k#0
Hence the statement of the present theorem follows from Theorem 5.2.16. O

Denote by M™ (M™) the class of tuples (a, 0, m, q,v, 3), where a > 0, o > 0,
m > 0,v>2mp, (0<v<2mp), f€R and g € Ly(0,a) is real valued.

Theorem 8.3.3. Let (Ak);;oo’,#o be a sequence of complexr numbers satisfying
the conditions of Lemma 8.3.2, and let ps # 0 in (8.3.4). Then there exists a
unique (a, 0,m,q,v, ) from M™T such that (AR oo k0 18 the spectrum of the
eigenvalue problem (8.3.1)—(8.3.3) with (a, 0, m,q,v, ).

Proof. Since a and g occur explicitly in (8.3.4), a and ¢ are uniquely determined
by (8.3.4). Furthermore, replacing A with A4ip gives a one-to-one relation between
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the eigenvalue problem (8.3.1)—(8.3.3) and the eigenvalue problem

y" — (a(z) = )y + Ny =0, (8.3.15)
y(A,0) =0, (8.3.16)
y' (AN a) + (=A2m +i\(v — 2mo) + B — vo +mo*)y(\,a) =0, (8.3.17)

see (6.3.1)—(6.3.3). Hence, given any ¢ > 0 and a sequence of the form (8.3.4) with
o replaced by 0, i.e.,

_ m(k—=1) D1 P2 P3 by
M T e Tk T h—12 T T

(8.3.18)
we have to show that there are unique m, ¢, v, 8, such that (a, o, m, q, v, 8) belongs
to M™T and such that (8.3.18) is the sequence of the eigenvalues of (8.3.15)—
(8.3.17). Let x be the entire function defined in Lemma 8.3.2 associated with the
sequence given by (8.3.18). Then g = A in the notation of Lemma 8.3.2. Since y
is real on the imaginary axis and observing (8.3.6), we can write

By'x(\) = @1(A\?) +iAda(N?),
with real entire functions ®; and ®,, where

D1 (A?) = (A 4+ Bad Y sinda + (A1 + Az %) cos da + T (A)A72, (8.3.19)
sin \a

Py(A\?) = (By + B3\ ?) \

+ AsA "2 cos Aa + Ty M)A, (8.3.20)

and where ¥; € £, j = 1,2, are real entire functions, ¥ is even and V¥, is odd.
Since ¥ € SSHB,, by Lemma 8.3.2, it follows by Definition 5.2.6 that gf e NP

and that ®; and ®5 have no common zeros. Hence we have that 2?8 > 0 as

z — —o0. But for A = in with n — oo we have
Ca(—n?) _ 7 (Bito(1))e

Oy (—n2)  pl+o(l))en (=B1+o(1))n~7,

so that By < 0. Corollaries 5.2.3 and 11.1.8 imply that B; # 0. Altogether, it
follows that

B <0. (8.3.21)

From (7.1.15) we know that A;B; — Ay = ’;2;02. The assumption py # 0 as
well as the fact that only finitely many Ay lie in the closed lower half-plane imply
that p, > 0. Hence we have

Ai1By — Ay > 0. (8322)
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We now define

== Byl (8.3.23)
By SA
= _ B0\ — o
176()\) A]_B]_ — A2 1()\) AlBl _ A2 2()\)
1 A3 AsA; B
T B, - 4 (Bf ~ B "B~ By ) ®2(N\), A 6€eC, (83.24)
== S (8.3.25)

It follows from (8.3.19), (8.3.20), (8.3.23) and (8.3.25) that
Ag sin A A
9 sin \a n Yo ()

Z1(\?) = cos \a — B, A NE (8.3.26)
= /2y _ sinAa Ascosda  Bssinda = 1()N)
Ea(N\°) = N B, A2 B, A3 3 (8.3.27)

where 9; € LS for j =1,2.

By (8.3.26) and (8.3.27), the functions A — Z;(\?) and A — Z3(\?) are of
the form (12.3.11) and (12.3.10), respectively, if we observe that Zj is of the form
(8.1.13) and can therefore be written in the form (8.1.14). Hence Lemma 12.3.3
shows that the zeros ((x)72; of 21 and ()72, of Zs can be written in the form
Cp = v} and & = ui, k € N, with

™ 1y Ay 1 AWV

= k— — 3.2

Uk a< 2) Birk 'k (8:3.28)
™ A2 1 ’}/,(CQ)

Uk = k— s
a Bk k

(8.3.29)
where (’y,(j))zo:_oq kzo € l2 for j =1,2.

We are going to show that these zeros are real, bounded below, and interlace.
To this end we observe that gf € N{¥ and the fact that ®; and ®, do not
have common zeros imply that the zeros of ®, are real and bounded below, see
Definition 5.1.26 and Lemma 11.1.3. Since these zeros are the zeros (£)732, of Za,
we have shown that the sequence (§;)72, is real, bounded below, and increasing.
Furthermore,

= P A2
(A1 By — Ay) :1;0 (\) = B2 <1>; () + Bj — Ay Ay + Bs — B, B,.

Since gf is a Nevanlinna function and since A;B7 — As > 0, we conclude with

the aid of Lemma 5.1.22, in turn, that also —i;, —551;’ and 55120 are Nevanlinna
functions. The leading terms in Z;( and =, are positive on the negative real

axis, i.e., for A in (8.3.26) and (8.3.27) on the imaginary axis, and therefore also
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=P
Z1,0
have common zeros for each § € C. From Corollary 5.2.3 and Lemma 11.1.3 we

conclude that the zeros ((o,x)5>, of 21,0 are real and interlace with the zeros of Zs:

S J\/ﬁp. Since ®; and ®2 do not have common zeros, also =; 5 and Z3 do not

Co1 <& <(Coa<&<---.

Let k > 2, let §o € R and let  be a zero of =1 5, in (€x—1,&k), if any, of
multiplicity [. In view of Theorem 11.1.1, =; s has exactly [ continuous branches
of zeros near 7 for J near dyp, counted with multiplicity. Since =, 5 is real analytic
for 6 € R, nonreal zeros would appear in conjugate complex pairs, and therefore
the parity of the number of the real zeros amongst these zeros is constant for real §
near §p. Because = 5 and =3 do not have common zeros, no real zeros of =; 5 can
enter the interval (€1, &) through its endpoints. Altogether, it follows that the
parity of real zeros of 21 s in (€x—1, &) is locally and therefore globally constant for
0 € R. Clearly, this parity is odd since (o is the single zero of =1 ¢ in (£x—1, &k).

It follows in particular for 6 = 1 that Z; = Z;; has an odd number of zeros
in (€—1,&) for k> 2. From (8.3.28) and (8.3.29) we infer that

_ 2 1\? _ 2 9
(= 2 <k— 2) +0(1) and & = azk +O(1).
Hence there is kg > 2 such that for k > ko we have that the interval (£,_1,&)
contains exactly one zero of Z1 and that this zero is (;. Each of the ky— 1 intervals
(€k—1,&k), k= 2,...,ko— 1, must contain at least one of the remaining k¢ zeros of
=1. We are left with one zero of Z1. Again, since Z; is real analytic, this zero must
be real because otherwise there would be an additional conjugate complex zero.
Also, this zero must be different from all &, k¥ > 1, and cannot lie in any of the
intervals (§k—1,&k), k > 2, because otherwise such an interval would have exactly
two zeros of =1, contradicting the parity of the number of these zeros being odd.
Hence this remaining zero must lie in (—o0, &), and we therefore have shown that

Q<& <@<b< . (8.3.30)

In view of (8.3.28), (8.3.29) and (8.3.30), the sequences ((x)72; and (€)%,
satisfy the assumptions of Theorem 12.6.2, and therefore there exists a real-valued
go € L2(0, a) such that ({x)52, is the spectrum of the Dirichlet-Neumann problem

y'+ (2 = qo(x))y =0,
y(2,0) = y'(2,a) = 0,

and (£x)52, is the spectrum of the corresponding Dirichlet problem

Y+ (2= qo(z))y =0,
y(2,0) = y(z,a) = 0.
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Putting z = A2, let s(),-) be the solution of y” + (A2 — qo(z))y = 0 with
y(A,0) = 0,9y’ (A, 0) = 1. From Corollary 12.2.10 we know that s'(-, a) is a sine type
function, and since s'(-,a) is a characteristic function of the Dirichlet~Neumann
problem with z = A2, it follows in view of Lemma 11.2.29 that there is a constant

¢ such that
s'(\,a) = e\ ﬁ/ (1 - /\2>
’ Pt )

/
Here H indicates that the factor, if any, for which (x = 0, is replaced by the term

A with [ = 2, whereas [ = 0 otherwise. On the other hand, it follows from (8.3.26)
that A — Z1()\2) is a sine type function and hence A — =;(\?) has the same prod-
uct representation as s'(-, a) with the same constant ¢ because both functions have
the same leading term cos Aa. Therefore, s’(\,a) = Z;(\?) for all A € C. Similarly,
A= As(A @) and A — AZ2(A\?) are sine type functions with the same zeros and

the same leading terms, and we conclude that s(\,a) = Z2(A\?) for all A € C.
We set
B 9
m= o aB Y m(20—B1), ¢=q+0°,

A B
B:Vg—mg2—Bgm+Bj +mBj’.

Then s(-, \) is a solution of (8.3.15) satisfying the initial condition (8.3.16). From
(8.3.21) and (8.3.22) we conclude that m > 0 and v > 2mp. Hence it follows from
(8.3.23) and (8.3.25) that

s'(\, a) + (=A2m 4+ iA(v — 2mp) + B — vo + mp®)s(\, a)

= E1(A\?) + (=N’m +iX(v — 2mp) + B — vo + mg®)Ea(N°)

P TG B W0
- AlBl — A2 ! AlBl - A2 2
1 A2 AA, By ,
+ By — A, ( - B + B, — By | ®2(A%)

+ (- )\2m+z)\(u—2mg)+5—ug+mg B1 Ldy(A?)

_ 2 m)\2 2 A2A1 B3 _ 2
= m<I>1()\ )+ Bl (I)Q()\ ) AlBl ( Bl B2 @2(}\ )
mA2 v —2mp ﬁ—ug—i—mg 9
+<— B, +1 B, A+ B, Dy (A7)
= —my(N).

Hence we have shown that the sequence (8.3.18) is the sequence of the eigenvalues
of the problem (8.3.15)—(8.3.17) with m, ¢, o and § as found above and where
(a, 0,m, q,v, 3) belongs to MT.
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For the uniqueness we recall that we have already stated at the beginning
of this proof that a and ¢ are unique. Hence let (a,p,m,q,v,3) be the tuple
constructed above and let (a, p, m1,q1,v1,581) € MT for which problem (8.3.15)—
(8.3.17) has the same sequence of eigenvalues (A)72 _ ., jzo- We are going to show
that the two tuples are equal. Let s and s; be the solutions of (8.3.15), (8.3.16),
y'(A\,0) = 1 with ¢ and ¢;, respectively. The corresponding characteristic func-
tions of (8.3.15)—(8.3.17) with respect to the parameter tuples (a, p,m, ¢, v, §) and
(a,p,m1,q1,v1, 1) are

X(A) = 8" (A a) + (=A\*m + iV — 2mo) + B — vo +me?)s(\, a)
x1(\) = 81 (A, a) + (=X2my + iX(v1 — 2ma0) + B1 — 10+ mio?)si(\ a),
respectively. From m # 0, m; # 0, and Corollary 12.2.10 we know that A\ —
(A —=X1)"tx(A) and A — (A — A1) "Ly (A) are sine type functions. Hence it follows

in view of Lemma 11.2.29 that the two characteristic functions are multiples of
each other, i.e., there is C' # 0 such that

x(A) =Cx1(A\), XeC.
Since s(-,a), §'(-,a), s1(-,a) and s} (-, a) are even entire functions, we have
X(A) = xX(=A) = 2iA(v = 2mp)s(A, a),
X1(A) = x1(=A) = 2iA(1 — 2ma0)s1(As a).-

Hence s(-,a) and si(-,a) are multiples of each other. Since these two functions
have the same leading term by Theorem 12.2.9, we conclude that s(-,a) = s1(-,a)
and v — 2mp = C(v; — 2my0). We now calculate

XN +x(=X) = 25" (A a) + (=23°m — 20(v — mo) +28) s(\, a)
=C (25)(\ @) + (—2X*m1 — 20(v1 — m10) +251) s1(7,a))
=C (25)(\, @) + (=2X°my + 281 + 2m10°)s(A, a)) — 20(v — 2mo)s(A, a),
and obtain
s'(\, @) + (—mA? + B +mo?)s(\ a) = Os) (N, a) + C(—mi A\ + B1 +mi10%)s(\, a).

Taking the asymptotic representations of s(-,a), s'(-,a), s1(-,a) and s}(-,a) into
account, see Corollary 12.2.10, we conclude that the coefficients of A\2s(\, a) must
coincide, so that m = Cmy. Then

s'(Aa) + Bs(A, a) = C(s1 (A, a) + Bis(X, a)).

Considering the leading terms again we obtain C' = 1 and therefore m = my. Then
v —2mp = C(v1 — 2myp) implies v = 1 and

s'(\a) + Bs(\,a) = s1(\ a) + Bis(\, a).
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In view of (12.2.22) and (12.2.23) it follows from this latter identity that

K(a,a) + 5
A

sin\a + o(A™1) = Kl(“’i) T Gnda+ oA, AR\ {0},

and therefore K(a,a) + 8 = Ki(a,a) + 1. Applying Theorem 7.3.1 to (8.3.15)—
(8.3.17) with these two tuples of parameters, (7.3.7) gives that K (a,a) = K1(a,a).
Consequently 8 = 8 and §'(-,a) = s;(-,a). Therefore s1(-, a) and s} (-, a) have the
same sequences of zeros as s(-,a) and §'(+, a). Using now the uniqueness statement
in Theorem 12.6.2 proves that ¢ — 0?> = q; — 0?, that is, ¢ = ¢;. O

8.3.1 Recovering string parameters

In Theorem 8.3.3 we have given a solution for the inverse problem associated with
the spectral problem (8.3.1)—(8.3.3), which is the particular case of the spectral
problem (2.2.4)—(2.2.6) with o(s) = 2¢p(s). However, (2.2.4)-(2.2.6) was obtained
from the spectral problem (2.2.1)—(2.2.3) via the Liouville transform, and in this
subsection we will address the question if and how the parametersin (2.2.1)-(2.2.3)
can be recovered from a sequence satisfying the conditions of Lemma 8.3.2.

Theorem 8.3.4. Let the sequence ()\k)z‘;_oqk;éo of complex numbers satisfy the
conditions of Lemma 8.3.2 and let | > 0. Then there exists a unique string of
length | with density p € W2(0,1), p>> 0, with a point mass m > 0 and a damping
coefficient v > 0 at the right end, which generates problem (2.2.1)—~(2.2.3) with
o(s) = 20p(s) and the spectrum of which coincides with (Ax)72 _ o ko

Proof. By Theorem 8.3.3 there exists a unique tuple (a, o,m,q,7,3) from M™T
such that the sequence (Ak)li.;foo,k:;éo represents the spectrum of the problem
(8.3.1)—(8.3.3) with the parameters (a,o,m,q, 7, ). For the operator pencil L
defined in Subsection 2.2.3 this means that the spectrum of the operator pencil
A — L(\ —ip) lies in the open upper half-plane. Writing L(\) = \2M — i K — A,
A € C, it follows that M = M, K = K +2oM, A= A+ ¢*>M + oK, where M, K
and A are as in Subsection 2.2.3. Therefore M >> 0, K > 0 and hence the operator
A is strictly positive by Theorem 1.3.3. This means that the lowest eigenvalue 14
of the operator A is positive. Since the operator A has the representation

o) = {i= (1) 1w € W30.0). 50 =0, c=y(@)

0-(m)
c y'(a) + By(a) )’
it follows that

(A7, 9) . (A7, 9)

0<wvy= min @ < min o .
' gepaN0) [y ly(@) 2 da + [y(@)]? ~ seDaN0) [y [y(x)[? de
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We define the auxiliary operator Ag in L2(0,a) by
Ao) = {y € W5(0,a) : y(0) = 0,4/(a) + By(a) =0}, Aoy = —y" +qy.
The operator Ay is selfadjoint, see, e.g., [285, (4.2.1), (4.2.2)]. For all y € D(Ay)

we have § = (y(ya)> € D(A) and Ag = <A8y>, and hence (A7,7) = (Aoy,y). It
follows that
(A7, 7) : (Aoy y)

0<i < < min
"= gen(anoy [ ly(@)2dz ~ vep(AoN0}  (y,9)

Therefore Ag is bounded below with lower bound v;, and the lowest eigenvalue 111
of Ay satisfies 1 > 11 > 0.
Let ¢ be the solution of the initial value problem

¢" —qp =0, ¢(a) = 1, ¢'(a) + Be(a) =

and let ¥ be the solution of the initial value problem

=+ =0, ¥(a) =1, ¢'(a) + B(a) =

Since ¥'(a)+ B¢ (a) = 0 and since p; is an eigenvalue of Ay, v is an eigenfunction of
A with respect to its lowest eigenvalue p;. We conclude from the Sturm oscillation
theorem, see, e. g., [16, Theorem 8.4.5], that 1) has no zeros on (0, a). Both ¢ and v
are real valued, and since p; > 0, it follows from the Sturm comparison theorem,
see, e. g., [54, Chapter 8, Theorem 1.1] for continuous potentials and [271, Theorem
13.1] for integrable potentials, that also ¢ has no zeros on (0, a). Furthermore, since
0 is not an eigenvalue of Ag and since ¢'(a) + Sé(a) = 0, it follows that ¢(0) # 0.
Together with ¢(a) = 1 this implies that ¢ is strictly positive.

We recall from the very beginning of Subsection 2.2.3 that the density p of
the string has to satisfy

1 d2 1
@) = pHs(w) oyt (5(a), (8:3.31)
a= /l p2 (r)dr, (8.3.32)
0
8= —p=i(s(a)) ¥ 4;‘;(96)) : (8.3.33)
where o
x(s) = /0 p2(r)dr, 0<s<l. (8.3.34)

and z — s(x) is the inverse of s — x(s). Any solution pi o s of (8.3.31), (8.3.33)
is a multiple of ¢, say C'¢, C € C. The equations (8.3.32) and (8.3.34) show that
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[ = s(a) and

and therefore

¢ dx
1=50= [ agaey

Hence there is a unique strictly positive function p € W3(0,1) satisfying (8.3.31)—
(8.3.34), and this function is given by

pls) = Cola(s)), 0<s<l,
() o)

roodt
s(m):/o C262(1)’ 0<z<a.

Finally, we know from Subsection 2.2.3 that m = p2 (s(a))m and v = pz (s(a))p.

Altogether, we have shown that there is a unique eigenvalue problem (2.2.1)-
(2.2.3) with p € W2(0,1) and o = 2pp whose spectrum is the given sequence of
complex numbers. O

where

and

8.4 The inverse Sturm—Liouville problem on a star graph

We revisit the system (7.4.1)—(7.4.4) with & = 0:

v+ Ny —qi(x)y; =0, j=1,....p, z € (0,a), (8.4.1)
yi(A,0)=0, j=1,...,p, (8.4.2)
yl(A? Cl) == yp()\v CL), (843)
p
D yi(Aa) + Byi(Aa) = 0. (8.4.4)
j=1

In this section we deal with the inverse problem of recovering the potentials g;,
j=1,...,p, and the parameter 8 from spectra of (8.4.1)—(8.4.4) and the related
problems

yi + Ny —qi(x)y; =0, j=1,....p, z € (0,a), (8.4.5)
y;i(X\,0) =y;(N\,a)=0, j=1,....p.

Denote by Q the class of tuples ((qj)le, B) where the real-valued functions
gj, j=1,...,p, belong to L(0,a) and where 8 € R.
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Theorem 8.4.1. Let p+ 1 properly indexed sequences (V,(Cj))z‘ioqkyéo, i=1...,p,
and (Ck)i‘):foo,kio of real numbers be given, satisfying the following conditions:

1. The sequences (V,(Cj))zozfoo’kﬂ, j=1,...,p, are such that:

() v > 0;
(ii) v # v whenever (k, ) # (', ');
()

ok B 0
(i) v :”a + =L keN, (8.4.7)

where the Bj; are real constants, B; # Bj for j # j', and where
(092 €la forj=1,...,p.
2. The sequence (Ck),;“;foo,kio can be represented as the union of p properly

indexed subsequences (pg)),;“;foo,kio, k=1,...,p, which have the asymptotic
behavior

G _ kM BY

= j=1,...,p—1 4.
pk; a + k + k2 ’ J 9 D ) k GN, (8 8)
1 (n)
w _ ™k=13)  Bo k 4
P = a +k+k2’ keN, (8.4.9)

where ( ,(Cj)),;“;foo,kio €lyforj=1,....,p, BeRand M;,j=1,...,p—1,
are the roots of the polynomial P defined by (7.4.22).

3. The properly indexed sequences of real numbers (Cr)72_ o gzo and (k)72 oo
interlace, where §o = 0 and where the sequence (§)R2_ o jzo 5 the union of

the sequences (Vi(cj))?:—oo,k;éw j=1,...,p:
<< (<& <G <bhH << (8.4.10)

Then there exists a unique ((g;))5—y,0) in Q such that the sequence
(Ck )R oo k0 cotncides with the spectrum of problem (8.4.1)~(8.4.4), where

P
B=m|pBo—Y Bj|, (8.4.11)

j=1
and such that the sequences (V,gj))zo:_oq kz0: J = 1,...,p, coincide with the

spectra of problems (8.4.5), (8.4.6).

Proof. First note that we know from the proof of Lemma 7.4.6 that the numbers
M;, 5 =1,...,p—1, are mutually distinct since this is true for the numbers B;
forj=1,...,p.
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According to Lemma 12.3.4, the entire functions defined by

0:(\) = a;ﬁ (ﬂ‘;; ((p,gj))2 - >\2)> L j=1,...p—1, (8.4.12)

ep(A) = :1 (Wz(kai e ((p;(f)f - Az)) : (8.4.13)

®(N) =p ﬁ @i (A), (8.4.14)
j=1

si(\) = a;f[l (ﬂg; ((u,ﬁj))Q - >\2>> L =1,....p, (8.4.15)

satisfy the representations

sin\a  7wMjcos Aa n E;sin \a n £i(N)

piA) =" =, 33 a0 J=Ll..p—1, (3416)
] mBpsinda  Epcosia  fp(N)
©p(A) = cos Aa + N + )2 + 2 (8.4.17)
sin\a 7wB;cos\a sinha = g;(A) .
sV =" = T Dy T d=hen, (8.4.18)

where E;,D; € R and fj,g; € £ for j = 1,...,p. Here we have used that the

function
4X2a2 cos \a

A cos Aa — AN2g2 — 72
is an entire function belonging to £% which satisfies the estimate O(A=2) for A € R
with |A] = oo.
Substituting (8.4.7) into (8.4.16), (8.4.17) and (8.4.18) we obtain

. 2 B. — M, 5(l7j)
o) = (=1)*" ( ;k2 DI ’23 Jl=1,....n—1,j=1,....n, (8.4.19)

. a®*B} 4’B;By, d’E s
()DP(V]E;j)):(_l)k (1_ 2k2] + kJQ 7_‘_2]{5 ’};2 , J :17"'ap7
(8.4.20)
) 2(B: — B g(l,j)
sy = (~1)F* (B; —Bi) | 9 Gl=1,....p, j#£1, (8.4.21)

k2 k3

L) o0 “(1,5) 00 )
where ((5,(C ’]))szoo,,#o, , ((5,(C ]))k:ioo’k?,éo €lyforj,l=1,...,p.
In the following, j is any integer with 1 < j < p. For k € Z \ {0} define

@ . @ oV TT L o, 7Bjsinya
X = | o) H (), — €08 v a — ) (8.4.22)
=1 Sl(l/k] ) ij

1£]
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Observe that the terms of a properly indexed sequence of real numbers satisfy
a_p = —ag for all £k € N. Since the functions ¢; and s;, [ = 1,...,p, are even
functions, it is therefore clear that X (_],2 =-X ,EJ ). With P and Py as defined in
(7.4.22) and (7.4.23) and taking into account that the M;, I =1,...,p— 1, are the
roots of P, we have

R TR IR § ()

=1

p
[T~ - oy ")

=1
I#j

Substituting (8.4.19) and (8.4.20) into (8.4.14) with A = v/} we then sce that

H Bj — M)
L 5 7) 5
L= (=1 + = (=1)F+
— ij k
1#] 113 - By
=1
I#]
This together with the evident asymptotic representation

()
cos Vl(gj)a n mBj sin l/kj

_ (_1\k —2
L0 Sl O
k
shows that 4
(XN sppo Elo G=1...p. (8.4.23)

We now apply Theorem 11.3.14 to the sine type function s;o defined by
sj,0(A) = As;j(A) and the sequence (X,gj))z‘):_oo with X( ) = 0. Hence the functions
€j, j=1,...,p, defined by

& X(J) & X(J)
ei(N) =500 Y iy = A5 D 5 4
b0 50N = 1) ACOS7)
(8.4.24)
converge uniformly on any compact subset of the complex plane and in the norm

of Lo(R) on R to an entire function €; which belongs to £Z. Then the functions
rj, j =1,...,n, defined by

7B sin Aa N g;(N)
A A

j(v,(cj)) = X,gj), and thus equation

rj(A) = cos ha + (8.4.25)

are even entire functions. Due to (8.4.24), ¢
(8.4.22) implies

P
: : 1
ri() = o) H G (8.4.26)
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By Lemma 12.3.3, the zeros of the function r;, 7 = 1,...,p, are real with the
possible exception of a finite number of pure imaginary zeros, and can be written as

a properly indexed sequence (,ug))k_7C>o k0 Hence we may assume that (p (J)) <

(uk +1) for all £ € N. Furthermore, it also follows from Lemma 12.3.3 that

(J)
W9 = (g B 42
ORIty o)
where (y,gj))iozfoo, ko € lo

Next we are going to show that

(0 L
p() >0, H ) >O,j:1,...,p,keN. (8.4.28)
[0 o

The first inequality is obvious since ®(0) > 0 and s;(0) > 0 by (8.4.12)-(8.4.15).
Since the real entire function

A= oM ]] ) (IA)

=1 L

has simple poles and zeros by condition 3, it changes sign at its poles and zeros.
Hence it follows from the first inequality in (8.4.28) and from (8.4.10) that for
all I € N, this function is positive on the intervals (&, (;+1) and negative on the
intervals (¢;,&;). Thus

()

1 A—v) (-
o[ . lim A=) gy B l( “) S0, (8.4.29)
5;1 ( J ) A=u) sj(A) A—vD) H (A
J
With a similar reasoning we conclude that
A — (9)
im AT ) (LS ke, (8.4.30)

/\—n/](cj) Sj ()‘)

The inequalities on the right-hand side of (8.4.28) now follow from (8.4.29) and
(8.4.30).
Using (8.4.28) we obtain

(=1)Fr; () > 0.
This means that between consecutive V,ij ) there is an odd number of ,ufcj ). From

the asymptotic formulas (8.4.7) and (8.4.27) we can now conclude that

1/9) ©) () G

<y < < 4y and  (u)?2 < (W2, (8.4.31)
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Indeed, otherwise there would be some k and &’ such thatAthere are at least three
distinct indices [ for which ,ul(J ) lies between V,(CJ ) and l/,(igl and no index ! such

that ,u(] ) lies between V,(j) and l/k,l_l, which is impossible.

Due to (8.4.7), (8.4.27) and (8.4.31), the two sequences ((v (j)) )R o0 k0
and ((p (j)) )0 k0 Satisty the conditions of Theorem 12.6.2. Thus, there is a real
function ¢; € L2(0, a) such that (v, ) ye0 72 oo k20 18 the sequence of eigenvalues of
the Dirichlet-Dirichlet problem (8.4.5), (8.4.6) and (u (]))k_foo k0 18 the sequence
of eigenvalues of the Dirichlet—Neumann problem

Yl + Ny — qi(x)y; =0,
yi (X, 0) =y (X,a) = 0.
Finally, we define 8 by (8.4.11).

We are going to prove that the sequence (Cx)7Z_o k.o IS the spectrum of
problem (8.4.1)-(8.4.4) with the above ¢;, j = 1,...,p, and 8 defined by (8.4.11).
Indeed, for j =1,...,p, let 5;(A,-) be the solution of (8.4.5) with the potential g;

which satisfies 5;(),0) = 0 and 87(A,0) = 1. By (7.4.5) the characteristic function
¢ of problem (8.4.1)—(8.4.4) is given by

(8.4.32)

o) =Y & (na) [T aha) +8 ] smra). (8.4.33)
m=1 =1 m=1
l#m

We already know that the sequence of the zeros of §;(-,a) coincides with the
sequence of the zeros of s; and that the sequence of the zeros of 53(, a) coincides
with the sequence of the zeros of r;. In view of (12.2.22), (12.2.23), (8.4.18) and
(8.4.25), 3;(-,a) and s; as well as 5(-, a) and 7; have the same leading terms. Since
r; and A — As;j(\) are sine type functions, it follows from Lemma 11.2.29 that
3j(-,a) = s; and 8}(-,a) = ;. By (7.4.11),

sinAa  7;(A)
A + A

with B; € R and 7; € £%. From the representation (8.4.27) of the zeros of §;(-, a)
and from Lemma 12.3.3 we conclude that Bj = B;. Hence ¢ has the representation
(7.4.5) with 0 = 0, (7.4.12), (7.4.13) and with the numbers B; as given in (8.4.7).

For each k € Z\ {0} and j = 1,...,p we obtain with the aid of (8.4.26) that

P p
o047 =3 rm H s1037) + 8 ] sm(4?)
m=1 m=1

85(\,a) = cos ha + Bjm

l;ém
SOV TT s () )
=r;(vy )Hsl(ykj )=o)

=1
I#]
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This implies that the entire function A := ¢ — ® is zero at each I/,(cj), ke Z\ {0},
j=1,...,n. Hence

p
1
w:=AT] S (8.4.34)
1

is an entire function. Substituting (8.4.16) and (8.4.17) into (8.4.14) we obtain

sin? ™! \a sinf” 2 ha = sin” \a  ¥(N)
O\ =0p yo—1 €08 Aa —p o 08 Aai;ﬂMj + pBom \» NP1
j=
(8.4.35)

where 1) € £%. We recall that for a polynomial A — doA™ + d; A"~ ! + -- -, the
number —d,, 'd, equals the sum of its zeros. Hence, writing

p
Pi(A) =M+ ;A
j=1

and observing that P/ = P, we obtain

(P=1)) Bj=—(p-1a =pz_:Mj~

=

J
Comparing (7.4.8) with (8.4.35) and taking (8.4.11) into account, we obtain

Ay =",

where ¢ € L% Since A — AP ﬁ 5;j(A) is a sine type function of exponential type
=1

ap, it follows from Lemma 12?2.4 and Remark 11.2.21 that w is bounded outside
discs of radius 6 < [ centred at the y,(j) for k € Z\ {0} and j = 1,...,p and that
lw(A\)] = 0 as |A\| — 0 outside these discs. Hence the entire function w is bounded
by the Maximum Modulus Theorem. We conclude from Liouville’s theorem that
1; = 0. Consequently, the sequence (Ck),;“;foo, k£0 coincides with the sequence of
eigenvalues of problem (8.4.1)— (8.4.4) generated by the tuple ((g;)}—;,3) obtained
in this proof.

By Theorem 12.6.2, the functions ¢;, j = 1, ..., p, are uniquely determined by

the sequence of the eigenvalues (I/](Cj ))zozfoo, k20 of the Dirichlet—Dirichlet problem

(8.4.5), (8.4.6) and the sequence of the eigenvalues (u,(j) )R%— oo, k0 Of the Dirichlet—
Neumann problem (8.4.5), (8.4.32). But this latter sequence is the sequence of the
zeros of the function 7;, and 7; is uniquely determined by the given sequences
(V,(j))zo_oqk;éo, j=1,....p, and (Ck)3Z_ oo ko- Therefore the potentials g;, j =
1,....p, are uniquely determined by these sequences. Finally, the numbers Bj,
j =0,...,p, are uniquely determined by (8.4.7) and (8.4.9). Comparing (8.4.9)

and (7.4.26) with o = 0, it follows that also § is uniquely determined. O
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8.5 Notes

The history of inverse problems generated by the Sturm—Liouville equation be-
gins with V. Ambarzumian’s theorem [12]. Ambarzumian considered the excep-
tional case of the Neumann—Neumann boundary value problem and stated that its
spectrum uniquely determines the potential. A correct proof of this theorem was
given by G. Borg [32], who also showed that in general two spectra of boundary
value problems with self-adjoint separated boundary conditions uniquely deter-
mine the potential. For example one can take the spectra of Dirichlet—Dirichlet
and Dirichlet—Neumann problems. We see from Theorem 8.1.4 that instead of two
real spectra one can take one complex spectrum of problem (8.1.1)—(8.1.3). This
was proved in [223, Theorem 4.7]. But the phenomenon has been already known
since M.G. Krein and A.A. Nudel'man’s papers [156] and [157]. In [157] a class of
strings was introduced which is more general than the class of regular strings.

A string on ({1,a), —co < 1 < a < oo with mass distribution function M
is called regular at the right end a if a < co and SEamOM(s) < 00. The class &
denotes the set of all strings with regular right end and with finite momentum
fl(ll(l — 8)dM (s). It is easy to see that such a string has finite mass fl? dM (s) but
its length can be infinite. General properties of such strings were investigated in
[127], [125] and [71]. For a connection with canonical systems see [132].

One of the results of [157] is that the spectrum of a boundary value problem
generated by (2.8.2) with the Neumann boundary condition

uw'(04+0)=0 (8.5.1)

and a dissipative boundary condition linearly dependent on the spectral parameter
u(a) — i '/ (a —0) =0 (8.5.2)

together with the total length of the string (if it is finite) uniquely determine the

mass distribution on the string. They proved the following theorem.

Theorem 8.5.1 ([157, Theorem 3.1]). Let K = (\i) be a sequence of complex num-
bers. In order that K be the spectrum of problem (2.8.2), (8.5.1), (8.5.2) generated
by a mass distribution M € & it is necessary and sufficient that the following
conditions are satisfied:

1. The sequence K is symmetric with respect to the imaginary axis, and sym-
metrically located terms have the same multiplicity;

2. Im A, > 0 for all Ay, € K
3. Y Im(—, ) < oo;

j J
4. Z ‘)\j‘_Q < 0.

J

In the proof of this theorem the authors made essential use of the ‘main’
theorem on existence of a string corresponding to two spectra, which was proved
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in [35]—-[41]. This ‘main’ theorem can already be found without proof in [127]; it
is also presented in the monographs [71] and [42].

It should be mentioned that in implicit form a result of this kind has been
obtained earlier by D.Z. Arov [15]. He proved the following theorem

Theorem 8.5.2 ([15, Theorem 4.1]). For a set K of complex numbers located in
the open upper half-plane symmetric with respect to the imaginary azxis to be the
spectrum of problem (2.8.2), (8.5.1), (8.5.2) generated by a regular string it is
necessary and sufficient that K is the set of zeros of an entire function F of
exponential type which satisfies the inequalities

(o) o)
/ (1+2*) 7 F(x)|7? dx < oo, / (1+2*) tlog™ |F(x)| dz < co.
— 00 — 00

The last inequality means that F belongs to the Cartwright class, see [173,
Chapter 5], where this class is called class A.

It was shown in [275] that two spectra of Neumann and Dirichlet boundary
value problems uniquely determine the tension and the density of a string if the
damping is a known constant function.

The problem of small vibrations of a smooth inhomogeneous string which
is damped at one end is described by (8.1.1)-(8.1.3). Of course, from a physical
point of view it is clear that the spectrum must lie in the open upper half-plane
because the corresponding dynamical system, a damped string, is stable. In this
case the operator A defined in Subsection 2.2.3 is strictly positive. Hence it follows
from Theorem 8.1.3 that for a sequence (A ), which can be countable or empty, to
be the spectrum of problem (8.1.1)-(8.1.3) with @ > 0, « > 0, 8 € R, real-valued
q € Ly(0,a) and strictly positive operator A it is necessary and sufficient that (Ay)
be the set of zeros of an entire function y of SHB class which has the representation
(8.1.4). Numerical results for the generalized inverse Regge problem can be found
in [240].

Since asymptotics of eigenvalues in the classical Regge problem are known
only in special cases, e.g., if the potential ¢ is continuous and g(a) # 0, the
corresponding inverse problem is solved also in these particular cases [148].

In Section 8.2 we consider the case of a Stieltjes string damped at an interior
point. The problem with damping at one of its ends was consider in [162]. A
nice review containing experimental results can be found in [58]. A related matrix
problem for a vibrational system with damping has been considered in [265], [266]
and [163].

Certain results on the inverse Sturm—Liouville problem on a semiaxis and
on an axis with the potential linearly dependent on the spectral parameter, which
corresponds to a smooth inhomogeneous string vibration in an absorbing medium,
were obtained in [123], [8], [9], [10]. The inverse problem for the diffusion equation
on a finite interval was considered in [86] (without proof) and solved in [236], [119].

Theorem 8.2.1 was proved in [33, Theorem 4.1]. The theorem in [33] contains
a misprint, namely condition (5) must be included.
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Since this problem can be considered as a problem on a star graph with two
edges, its undamped version was generalized in [34] to the case of a star graph
with g edges. Namely, consider the problem

(9) (9) (4) (4)

Uy —u uy’ —u 4 4
k k-l k k_l—mg))\2u§€]):0, k=1,....,n5, 7=1,...,q,

")
(8.5.3)
u=0, j=1,....q (8.5.4)
1 2
ugll)+1 — u£l2)+1 — ... = uqu-‘rl’ (8.55)
a0

3 ””*2 T =0, (8.5.6)

=1 "

which bears the Neumann condition at the interior vertex, together with the ¢
Dirichlet problems

“l(gj) - ul(i&)-l “l(gj) - “1(21

_ (@2, () _ — )
1) 1) mp Ay =0, k=1,...,n; (8.5.7)
k k—1
u§ =ul) ) =0, (8.5.8)

j =1,...,q, on the edges. It was shown in [34, Theorem 3.1] that these g + 1
spectra, if they do not intersect, together with the total lengths of the edges
uniquely determine the masses on the edges and the lengths of the subintervals
between them. Moreover, [34, Theorems 2.2 and 3.1] give conditions which are
necessary and sufficient for ¢ + 1 sequences to be the spectra of problems (8.5.3)—
(8.5.8). The proof of [34, Theorem 3.1] is constructive and allows to find the masses
and the lengths of the subintervals explicitly.

In [224] a more complicated problem was considered: Neumann and Dirichlet
conditions were imposed at a pendant vertex of a star graph of Stieltjes strings.
The problem was completely solved, but the conditions on two sequences of real
numbers to be the spectra of the Dirichlet and Neumann problems on a star graph
of Stieltjes strings are given in implicit form in [224, Theorem 3.14]. In this paper
and in [226], a connection was noticed with the algebraic problems of possible
multiplicities of eigenvalues of the so-called tree patterned matrices, see [171],
[202], [124].

Inverse problems for vibrations of tree graphs of Stieltjes strings were con-
sidered in [93] and [222]. In [222] it was shown that the two spectra corresponding
to the Dirichlet and Neumann boundary conditions at the root of the tree and
the length of the edge incident with the root uniquely determine the point masses
and the lengths of the subintervals between the point masses of this edge. In this
paper, expansion of a Nevanlinna function into a branching continued fraction was
used to find the values of point masses and their destribution on a given metric
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tree. Branching continued fractions were studied in [252]. A similar results on the
uniqueness of the potential for the Sturm-Liouville problem on tree graphs was
obtained in [44] and [282].

Theorem 8.3.3 with ¢ = 0 was proved in [212, Theorem 2.2] and with ¢ > 0
in [213, Theorem 4.16]. In [190] an inverse problem for a smooth inhomogeneous
string damped at one end and having massless interval at the damped end was
solved.

The inverse Sturm—Liouville problem on a star graph with three edges was
considered in [215]. For generalizations see [221], [269], [260], and for the case
of non-local boundary conditions see [201]. Theorem 8.4.1 was proved in [221,
Theorem 4.1]. Related numerical results can be found in [241].

If the sequences (V;(CJ))ZOZ,OOJ#O intersect, i.e., condition 1.(ii) of Theorem
8.4.1 is violated, and, consequently, also condition 3, then the solution of the
inverse problem either is not unique or does not exist for the same reasons as in the
case of the three spectra problem, see [91] and [214]. If the sequence (Ck)3L_ o xz0
and the properly indexed sequence (£)2° ., which is defined as the union of (0)

and the sequences (V,(Cj)),;“;foo,kio, j—1,..., p, satisfy the statements of Corollary

5.2.11, then the solution of the inverse problem exists but it is not unique.

In quantum graph theory conditions (8.4.3) and (8.4.4) with 5 = 0 are some-
times called Neumann conditions at a interior vertex while conditions (8.4.6) are
called Dirichlet conditions at this vertex. The spectrum of the problem with these
Neumann conditions alone does not determine the potentials on the edges uniquely.
However, an exceptional Ambarzumian like case where one spectrum uniquely de-
termines the potentials exists for quantum graphs too. This was shown for a star
graph in [218] and [277] and for trees in [46], [64, Section 5], [170]. Generalizations
for Dirac system on graphs can be found in [278], [280].

Unlike in the case of inverse problems on a finite interval, in quantum graph
theory another inverse problem arises. If the potential is zero on all edges, does
the spectrum determine the form of the graph uniquely? The answer is negative
in general, see [26], but positive if the edges are not commensurable, see [103].

In the case of equal lengths of the edges and of equal potentials, symmetric
with respect to the middle of the edges, the problem of finding the shape of the
graph becomes purely algebraic and can be reduced to the problem of finding the
shape of the graph in the classical spectral graph theory [63]. It is known that the
spectrum uniquely determines the shape of the graph if the number of its vertices
does not exceed 4 for general graphs and 5 for connected graphs, see [63, p. 157
and pp. 272-274]. Counterexamples with 5 and 6 vertices, respectively, can be
found in [63, p. 157].

In [216] the inverse problem of recovering the potential on the loop of a lasso
graph was solved using the Jost function. In [159] the Titchmarsh-Weyl function
was used to prove uniqueness for such problems.
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Chapter 9

Spectral Dependence on a Parameter

9.1 Zeros of analytic functions of two variables

The following theorem on the representation of zeros of an analytic function in
two variables is well known, however often formulated in slightly different forms.
For the sake of completeness and to have it in exactly the form we need it, the
theorem and its proof are given below. For slightly different formulations and
proofs we refer the reader to [25, Appendix A 5.4, Theorem 3|, [114, Section A.1,
Lemma A.1.3] and [185, Section 45, Corollary, p. 303].

Theorem 9.1.1. Let ® C C2? be an open set and let f : ® — C be analytic. Let
(z0,wp) € ® such that f(zo,wo) =0 and such that f(-,wp) is not identically zero
in a neighbourhood of zy. Let m be the multiplicity of the zero zy of f(-,wo). Then
there are numbers € > 0, § > 0, and positive integers I, px, and my, k =1,...,1,

such that l
Zpkmk =m
k=1

and such that for each w € C with |w — wo| < € the analytic function f(-,w) has
exactly m zeros, counted with multiplicity, in the disc {z € C: |z — z9| < ¢}. The
zeros of f(-,w) can be organized into I groups and denoted by zi;(w), k=1,...,1,
j =1,...,pk, such that the zy; are pairwise different when 0 < |w| < e, have
multiplicity my, and are represented by Puiseux series

zij(w) :Z(Hrzakn(((w*wo)pl’f )i)"s (9.1.1)

n=1

where, for j=1,...,pg,

2mi(j — 1) + i arg(w — wo)) (9.1.2)

Pk

and arg denotes the principal argument. The coefficients ay, of (9.1.1) are complex
numbers and the Puiseuz series converges in the disc {w € C: |w — wo| < €}.

((w = wp) 7 ); = |w — wo| 7* exp <
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Proof. For simplicity of proof we may assume that zop = 0 = wp. Since f(-,0) is
not identically zero, there is ¢ > 0 such that f(z,0) # 0 for 0 < |z| < 4. Since f is
continuous in z and w, by a compactness argument we can choose € > 0 such that
|f(z,w) — f(2,0)] < |f(2,0)] for |z| = ¢ and |w| < e. By Rouché’s theorem, for
each w with |w| < e, f(-,w) has exactly m zeros, say Z1(w), ..., Zm(w), counted
with multiplicity, in {z € C : |z| < 0}. Here, for each w we take an arbitrary
indexing, and the proof will be complete when we have shown that we can choose
a particular indexing satisfying (9.1.1).

We observe that for 0 < ¢’ < § there is 0 < €’ < € such that f(-,w) has m

zeros in {z € C: |z| < §'} if |w| < €, and these roots are Z1(w), . . ., Zm(w). Hence
mglx |Z,(w)] = 0 as w — 0. (9.1.3)
=

Now we fix w with |w| < ¢ and consider one Z,(w). This zero of h = f(-,w) has a
certain multiplicity 0 < n < m, which depends on w and ¢, and we can write

h(z) = (z = Z.(w))"g(2),
where ¢ is analytic with g(Z,(w)) # 0. Then, for integers k > 0,

b/ (2) 2z = Z(w)" " lg(z) _ 4
h(z) = reszsz(w) =nz

(z = Z(w))"g(2) '
and the residue theorem gives that

(w),

IeS,=z, (w)

)
sp(w) == 1 T P e
pw): 271 ‘/|Z|—5 fz,w) d ; ; (w). (9.1.4)

The functions s, depend analytically on w for |w| < € since the above integrand
depends continuously on z for |z| = § and analytically on w for |w| < e. We define

P(z,w) = [[(z — Z.(w)). (9.1.5)

=1

Then P is a monic polynomial of degree m in z, and by Newton’s identities, the
coeflicients of P are polynomials in s1,..., s, and hence analytic functions of w,
see, e.g., [130] or [242, Theorem 4.3.7]. The discriminant of the polynomial P is
defined by

m—1 m
Aw)=T] ] Gw) - zw))? | <e. (9.1.6)
=1 k=1+1
Clearly, A is symmetric in 21, ..., Z,, i.e., invariant under permutations, and by

the fundamental theorem of symmetric polynomials and Newton’s identities, see,
e.g., [242, Theorem 4.3.7], A is a polynomial in sy,..., s, and hence analytic.
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Observe that A is identically zero if and only if P(-,w) has at least one double

0
zero for all |w| < e, which in turn is true if and only if P(-, w) and aZP(~, w) have
a common zero for each w with |w| < e. If A is identically zero, let R be the

greatest common divisor of P and _ P in the polynomial ring (in z) over the

z
field of meromorphic functions (in w) on {w € C : |w| < €}. The function R can
be found as the last nonzero remainder in the Euclidean algorithm applied to P

and 0 P. Since P and 0 P have a common zero z(w), also each remainder in

the Etfclidean algorithm flzas this common zero z(w) for each w which is not a
pole of any of the coefficients. Therefore R must be a nonconstant polynomial in
z. Dividing by the coeflicient of the highest power in z, we may assume that R
is monic. Since zeros z of R must also be zeros of P for those w which are not
poles of the coeflicients of R and P/R, we may assume with a suitable indexing
of Z,(w), v =1,...,m that
n
R(z,w) = [ (2 - 2(w)),
=1
where n is the degree of the polynomial R. Since the Z,(w) are bounded functions
of w (recall that |Z,(w)| < §), so are the coeflicients of R, which therefore must be
analytic functions. Similarly,
P(z,w -
p = I == (w)
t=n+1
is analytic in w. This shows that P can be factored into nonconstant polynomials
with respect to z if A = 0. After a finite number of steps we have factored

P = IZ[P,.C
k=1

into polynomials P, in z whose discriminants A, are not identically zero (note
that A,, = 1 if the degree of the polynomial is 1). Let x € {1,...,v}. With a
slight abuse of notation, we write P, = P, m for the degree of this P, and A for
its discriminant. Choosing € > 0 sufficiently small we may assume that A has no
zeros in {w € C: 0 < |w| < e}.

Clearly, if P(0,w) = 0 for all w, then we can write P(z, w) = zP(z, w), where
P is a polynomial in z and P(0,w) # 0 for 0 < |w| < e. Therefore we still have to
consider the case that, for some ¢ > 0, P(-,w) = 0 has m zeros which are mutually
distinct and nonzero for 0 < |w| < e.

As in (9.1.4) we can now find local branches

z . P(z,w)
Z,(w) 1/F 92 (zyw)dz, ¢v=1,...,m,

o
Z, (wo )
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of zeros of P(-,w) which depend analytically on w near wqg, where 0 < |wy| < &
and I'z, (,,) is a contour about Z,(wg) with no other zero of P(-,wp) inside or on
that contour. Hence, by a standard compactness argument, along each curve on
the Riemann surface of the logarithm over {z € C: 0 < |w| < €}, for definiteness

say starting at 5, there are unique analytic functions (, in a neighbourhood of

that curve with (,(5,0) = Z,(5), where (r,¢), 0 <r < ¢, ¢ € R, is a point on the
Riemann surface over re*?. By the principle of analytic continuation, we therefore
have well-defined analytic functions (, on this Riemann surface, : = 1,...,m, and
for each (r, ), the m complex numbers (,(r,¢), t = 1,...,m, are the m distinct
zeros of the polynomial P(-,7e?).

Now fix ¢, choose some 0 < rg < € and consider the sequence

(CL(T07 27Tp));i—oo .

Since each term of the sequence is a zero of P(:,rg), there are po € Z and p € N
such that

C.(r0,27po) = C.(r0, 27 (po + p))-

Hence, by the uniqueness of the ¢, we have that since {,(r, ) and (,(r, ¢ + 27p)
coincide in one point they must coincide everywhere, i. e., we have

C(r ) = (1, p + 27p)

forall 0 < 7 < € and ¢ € R. We may choose p to be minimal having this property.
For 0 < p; < p2 < p we have

C(ryo+2mp1) # C(ryp+2mpe) forall 0<r<e and p€eR
or

G(ryo+2mp1) = (ryp+2mpe) forall 0<r<e and @€eR.
Since the latter case would contradict the minimality of p, we therefore have that
CL(T780+27T(])7 q:07~~~ap_1>

represents a group of p distinct zeros of P(, re'?) satisfying ¢, (r, ¢ +27q+ 27p) =
¢.(r, ¢ + 2mq). In particular, for v = (re*?)P,

&(v) = G(r", pp)

is a uniquely defined analytic function on {v € C : 0 < |v| < €P}. By (9.1.3),
£.(0) = 0. Hence we have a power series expansion

&) = Z apv™.
n=1
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Observing that
CL(T,(,O+27T(j— l)) gb u)p Zan

for j = 1,...,p describes the set of zeros of P(-,w) for w = re? belonging to this
group of p zeros, it follows that the Puiseux series representation (9.1.1) has been
proved for this group of zeros.

Returning to P given by (9.1.5), it follows that there are m Puiseux series
Zekg, K=1,...,v, k=1,...,l¢, 5 =1,...,Pxk, of the form (9.1.1) which rep-
resent the zeros of P(-,w) for |w| < €. We may assume that ¢ > 0 is so small
that each two of these Puiseux series are either identical or are different for all w
with 0 < |w| < e. By construction, 2. r; # 2k, if (k,5) # (K',7’). Since the
Zi ki (W), 7 =1,..., Pk, are pairwise different, we have that p,  and the set of
indices n > 0 with a, i, 7 0 have no common multiple larger than 1. Therefore
the number py 1 is uniquely determined by the representation of the function z . ;
as a Puiseux series (9.1.1). Hence it follows that p. r = pe i if there are j and j’
such that z. r ; = 2./ 5+ and thus

ek =1 ,pert={2wrin:d1=1....Dck}

This proves that the zeros of f(-,w) can be indexed in such a way that they have
the Puiseux series expansions (9.1.1) with the indices and multiplicities as stated
in this theorem. (|

Corollary 9.1.2. Under the assumptions of Theorem 9.1.1, let
Oy={z€C:|z| <} x{weC:|w <e}

and let
Il Dk
=TT TGz =2k (@)™, (2,w) € .
k=1j=1
Then there is an analytic function fi without zeros on ®qy such that f = fof1.
Proof. 1f in (9.1.2) we allow the argument of w — wy to be any real number, then
the values of zy;(w), 7 = 1,...,pk, are obtained from those with the principal

value of the argument of n by a permutation of the indices 1,...,pg. Hence the
functions g defined by

Pr

gk(z,w) = H(z —zii(w)), (z,w) € Po, k=1,...,1,
j=1

!
are analytic on ®g, and then also fo = [] gx is analytic on ®. For each w with

k=1
|lw| < €, the function }{)((',’:”D)) has an analytic extension fi(-,w) to {z € C: z < §}
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without zeros. By Cauchy’s theorem,

1 / flryw) dr

2w J =y fo(T,w) T — 2

fl(zaw)

where |z9| < §,0 < v < d—|z0], |z—20| < 7, and ~ is chosen so that fo(7,w) # 0 for
all 7 with |7—zo| = . This shows that f; is (locally) analytic in both variables. O

9.2 Spectral dependence of analytic operator functions

For operator functions in Banach spaces which are of the form T'(¢) — A where
T depends analytically on the complex parameter ¢ and where A is the spectral
parameter, T. Kato [136] has obtained a complete description of the dependence
on ¢ of the eigenvalues and operators associated with the principal spaces for iso-
lated eigenvalues of finite multiplicity. This has been generalized by V. Eni [73]
to operator functions which are also analytic in the spectral parameter. T. Kato’s
proof depends on the analyticity of the eigenprojections P(e), and to be able to
use this method V. Eni has linearized the operator function with respect to the
spectral parameter A. V. Eni also investigates analytic dependence of eigenvectors
and associated vectors. H. Baumgértel’s monograph [25] presents a detailed and
comprehensive treatment of analytic dependence of spectral data on the param-
eter. For an overview of the history of this problem we refer the reader to the
introduction of [25].

The main result of this section is due to V. Eni [73] and its formulation is
extracted from [25]. Eni’s results and their proofs, published in [73] and [72] have
a limited accessibility, whereas H. Baumgartel does not state and prove this case
explicitly (even for operator polynomials), although it follows relatively easily from
other results and observations in [25], see [25, p. 370].

For the convenience of the reader we will present a full proof for operator
functions which depend analytically on two parameters, one of which may be
considered as the spectral parameter. Indeed, our first step is Lemma 9.2.1, which
reduces the problem to a problem in finite-dimensional spaces and which would
result, in general, in non-polynomial dependence of both parameters even if the
original problem were linear in both parameters.

The proof of the following result is an adaptation of part of the proof of
[189, Theorem 1.3.1] to our situation.

Lemma 9.2.1. Let ® C C? be open, let X and Y be Banach spaces and let T : & —
L(X,Y) be analytic and Fredholm operator valued. Furthermore, let (Ao,10) € ®
such that Ao is an isolated eigenvalue of T(-,n0). Let Xo = N(T(Xo,m0)) be the
null space of T'(Xo,mo) and let Y1 = R(T(Ao,10)) be the range T (Ao, n0). Let X3
be a topological complement of Xo in X and let Yy be a topological complement of
Y1 inY. Then there are a neighbourhood ®y C ® of (Ao, m0) and analytic operator
functions C : &9 — L(Y)Y), D : &g — L(X,X), T11 : &9 — L(X31,Y7) and
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S ®y — L(Xo,Ys) such that C(\,n), D(A,n) and T11(\,n) are invertible for all
(\,n) € ®g and such that

(T O
T=C ( 0 S) D on 9y, (9.2.1)

where the operator matriz is taken with respect to the decompositions X = X1+ X
andY =Y; +Y,.

Proof. Since T'(Ao,n0) is a Fredholm operator, Xy is a finite-dimensional subspace
of X and Y7 is a closed finite-codimensional subspace of Y. Hence there are a
finite-codimensional subspace X; C X and a finite-dimensional subspace Yy C Y
such that

X=X1+Xo, Y=V14+Y,

are topologically direct sums, see [259, p. 247]. With this decomposition of X and
Y we have the operator matrix representation

Ti(An) Tia(An) ; ;
T(\ = : X X Y + Y, 9.2.2
= (i ) KXy 022

for (A,n) € ®. The operator functions T;;, 4, j = 1,2 are analytic in ®.

It is clear that N(Tll()\o, ’I]o)) = {O} and R(Tll()\o, ’I]o)) = R(T()\(], 770)) = Yl.
Hence T11(Mo,n0) is invertible. Since T1; depends analytically and hence continu-
ously on A and 7, the perturbation theory of invertible operators, see [137, Theorem

IV.2.21], yields that there is an open neighbourhood @ of (Mg, 7o) such that 71,
is invertible on ®q. In ®¢ we consider the Schur factorization

<T11 T12> _ IYI 0 Tll 0 IXl T1_11T12
Toy Tao TnT' Iy, 0 Toy —TonTy;'Tio 0 Ix,

(9.2.3)
It is easy to see that the left-hand and right-hand factors
oo ( Iy, 0 ) d D (le TH1T12>
TnTh' Iy, 0 Ix,
on the right-hand side of (9.2.3) are invertible on ®y. Putting
S = Too — Toi Ty, 'Tho
on @ completes the proof. O

Lemma 9.2.2. Let Q C C be a domain, let X and Y be finite-dimensional spaces
andlet A : Q — L(Y, X) be meromorphic. Then there are complementary subspaces
Xo and X1 of X, complementary subspaces Yy and Y1 of Y, meromorphic operator
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functions C : Q@ - L(X,X), D: Q — L(Y,Y) and A1; : Q — L(Y1,X1) and an
open subset Qo C Q such that the following is true. The set Q\ Qo is a discrete
subset of , the operators C(o), D(o) and A11(0o) are invertible for all o € Qo,
and

A=C (A” 0) D on Q. (9.2.4)
0 O

Proof. Let Q' be the set of o € Q for which A(o) is analytic, let m be the maximum

of the rank of A(c), o € Q', and choose o € Q) such that A(og) has rank m. Similar

to Lemma 9.2.1 we set Yy = N(A(0p)) and X; = R(A(0yp)). Let Xy and Y7 be

corresponding complementary subspaces. Then we can write

A= (A Ar) Y 4 Yy = X1 4+ X, (9.2.5)
Azy Ag

where the operator functions A;j, ¢,j = 1,2, are meromorphic in  and analytic
in .

For fixed bases of X; and Y7, the function o — det A11(0), o € /, is mero-
morphic on © and analytic on . By construction, Aj;(cg) is invertible, so that
det A11(00) # 0. Then Qo = {0 € ' : det A11(0) # 0} is an open subset of Q such
that 2\ Qo is a discrete subset of  since the poles and zeros of det 417 form a
discrete subset of . As in Lemma 9.2.1 we have a factorization

o A11 0
A=C ( 0 S) D, (9.2.6)

where C, D and S are meromorphic on 2 and C and D are analytic and invertible
on . Since rank A(c) < m = rank A1 (0¢) for all o € €', it follows that S(o) =0
since otherwise m > rank A(o) > rank A1 (o) = m. Therefore (9.2.6) leads to the
meromorphic factorization (9.2.4). O

Before proceeding with the statement and proof of the main results of this
section, we need a few preparations for its proof.

We are going to use the following definitions only for finite-dimensional
spaces, although they also hold for infinite-dimensional Banach spaces X and
Y. The dual space X’ is the (Banach) space of all linear functionals on X. For
v e X and u € Y we define the tensor product v ® u by

(v@u)(w) = (w,u)v (wey),

where (-, ) is the canonical bilinear form on Y x Y’. The tensor product v ® u is
a bounded linear operator from Y to X.

We will call vector functions vy, ...,v; from a set U to a vector space V
pointwise linearly independent if v1 (), . . ., vk (1) are linearly independent for each
pel.
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Proposition 9.2.3. Let X and Y be finite-dimensional spaces, let Q be a domain in
C, let A: Q — L(Y, X) be meromorphic and let vy, ...,v. : Q@ — X be meromor-
phic on  and pointwise linearly independent outside a discrete subset of 2. Then
there are meromorphic functions vy : Q — X, k=r+1,...,n, andug : Q =Y’
k=1,...,n, such that

A= v @uy (9.2.7)
k=1

and such that vy, ..., v, as well as uy41,...,u, are pointwise linearly independent
outside a discrete subset of Q). There are meromorphic functions y : Q@ — Y,
k=r+1,...,n, such that Ay, = vi. The integer n is uniquely determined by
these properties.

Proof. Let Q' C Q be the set of o € Q for which A and v1,...,v, are analytic,
let m = max{rank A(c) : 0 € Q'} and let Qy be the set of all o € Q' with
rank A(o) = m. Choose o € Qg such that R(A(c)) Nspan{vy(c),...,v,(0)} has
maximal rank, say s, for ¢ = gp. With the notation of Lemma 9.2.2 we put

~ A
A= ()

and T, = C~lug, k = 1,...,s. Then R(A1(00)) N span{®(0),...,0,(00)} has

rank s. Let ¢ = dim Xj. Since dim X; = m, there are m — s vectors Tsy1,...,Tm

in X1 and ¢ —r + s vectors Z0__ 4, ... ,5:2 in Xy such that v;(09),...,0.(00),

Tsqlseooy@m and T0_ 4, ... ,ig form a basis for X. Therefore the operator
V(o) = (51(0) coo (o) Esp1 oo Em 5c§2_s+1 :ig) CMT 5 X

depends meromorphically on ¢ in 2 and is invertible for ¢ = 0o. Hence V! is
meromorphic on Q. Let ©; be the set of o € Qg for which V(o) is invertible.
Now choose Z1,...,Zs in X; such that Z1,...,%,, is a basis of X;. For each
o € O, every x € X1 is a (unique) linear combination of v;(c),...,v,(c) and
Ts41y-- -, Tm. Since z = V(0)V =1 (0)x and V~1(0)x depends meromorphically on
o for all € X, there are meromorphic functions oy, j =1,...,5, k=1,...,r,
and Bk, j=1,...,5, k=s4+1,...,m, on Q such that

;= Zozjk(a)ﬂk(a) + Z Bik(o)Tk, j=1,...,s, o€ Q. (9.2.8)
k=1 k=s+1

By the Hahn-Banach Theorem there are 152 € Xi, k=1,...,m, such that

<‘:EJ’,&72> = Ojk, j,k=1,...,m. (929)
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It is well known, and obvious for operator functions in finite-dimensional spaces,
that with A;; also its adjoint A}y : Q@ — L(X{,Y{) is meromorphic. For k =
1 m and o € Qy we have

PR

ij [(Ar1 (o)) @l § A (0)Tk =D (A7 (0)Fk, (A1 (0)) B))3;

Since Z1,...,Tm is a basis of X7, we have that Al_ll(a)fl, . ,Al_ll(a)im is a basis
of Y7 for all o € Qg, and it follows that

A11 ij A11 )/ 0] , O€ Q. (9210)

For j =1,...,m and o € Qq let w;(c) be the extension of (A11(c))' @ to Y’ by
zero on Yy. Then, in view of (9.2.4), (9.2.8) and (9.2.10),

o) (Z Tj® @(0)) D(o)
j=1
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Setting n = r — s + m, the representation (9.2.7) follows with
v = Chgys—r, k=r+1,...,n,

S
~
ukzg ojprD'w;, k=1,...,m

Jj=1

s
U = D/{Ek—&-s—r + Z Bj7k+(g_rDl@j’ k=r + 1, e,
j=1

For k = r+1,...,n define 3y, = Al_llfkﬂ,r and yr = D7 'y,. Since 3, € Y7,
(9.2.4) gives Ay = CA11yx = CZp—s—y = V.

From the pointwise linear independence of v1,...,0,,Zs41,...,Tm on O it
follows that their images under C, i.e., v1,...,v,, are pointwise linearly indepen-
dent on Q; since C(0) is invertible for o € ;.

Since the 117?, j = 1,...,m, are linearly independent by (9.2.9) and since
Al,(0) as well as D'(o) are invertible for o € €, it follows that the vectors
D'(c)wj(o), j = 1,...,m, are linearly independent for o € €. Hence it is clear
from their definition that also the vectors ug(c), 7 = r + 1,...,n, are linearly

independent for all o € ;.

Finally, to show the uniqueness of n assume that we have a representation
(9.2.7) with the stated properties. For a generic point oy € 2 where the operator
and vector functions are analytic and the linear independence properties hold, we
can find §; €Y, j=r+1,...,n, such that

<gj,uk(0'0)>= ks j,k:r—i—l,...,n.

Hence (9.2.7) gives

T

A(00)g; = Y (G5 un(00))ve(o0) +vi(o0), j=r+1,...,n.
k=1

This shows that
span{v,11(00), ..., vn(00)} C span{vi(og),...,v.(c0)} + R(A(00))

and therefore

span{v1(00),...,vn(00)} C span{vi(og),...,v.(00)} + R(A(09)). (9.2.11)

Again by (9.2.7) the reverse inclusion holds. For generic oq, v1(09), - . .,v,(00) are
linearly independent and the dimension of the vector space on the right-hand side
of (9.2.11) is independent of op. Hence n is uniquely determined by v1,...,v,
and A. O
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Theorem 9.2.4. Let ® C C? be open, let X and Y be Banach spaces and let
T :® — L(X,Y) be analytic and Fredholm operator valued. Furthermore, let
(Mo,m0) € @ such that \g is an isolated eigenvalue of T(-,19). Denote by m the
algebraic multiplicity of the eigenvalue \g. Then there are numbers e > 0, § > 0,
and positive integers 1, pr, and mg, k= 1,...,1, such that

l
E Pk =m
k=1

and such that the following assertions are true:

1. For each n € C with |n —no| < e, T(-,n) has exactly m eigenvalues, counted
with algebraic multiplicity, in the disc {\ € C: |A—Xg| < 6}. The eigenvalues
can be organized into I groups and denoted by A\p;, k=1,...,1,5=1,...,px,
such that the A\; are pairwise different when 0 < |n—mno| < e, have algebraic
multiplicity my, and are represented by Puiseux series

e 1
Mej (1) = Ao+ > arn(((n = mo) e );)™ (9.2.12)
n=1
2. For k = 1,...,1 there are positive integers ri and qii,-..,Qkr, Such that

T, 1s the geometric multiplicity of the eigenvalue A\gj(n), j = 1,...,pk, if

0<|n—ml <e,
Tk
Z%L =M,
=1

and there are vectors

oo
1
y/i:};(n) = Z Z:’:l(((n_no)pk )J)n’ L= 1a sy Ty K= 07 ey qu_la (9213)
n=0
in X such that y,ﬁ(n), e ,y,i‘é’“_l(n) is a chain of an eigenvector and asso-

ciated vectors of T(-,n) at Arj(n) if 0 < |n—1mo| < e and where {y;(n) : v =
1,...,7rk} is a basis of N(T'(Ag;(n),n)) fork=1,....,l and j=1,...,ps.

Proof. Without loss of generality assume that \y = 0 and 79 = 0. First we will
assume that X and Y are finite dimensional. Since 0 is an isolated eigenvalue of
T(-,0), it follows that X and Y have the same dimensions, and with chosen fixed
bases we can write T as a matrix function which depends analytically on A and
7. Then its determinant is analytic in A and n, and T(\,n) is invertible if and
only if t(A,n) = det T'(A,n) # 0. Furthermore, it is well known that the algebraic
multiplicity of the eigenvalue A of T'(-,n) equals the multiplicity of the zero A of
t(-,n), see [189, Proposition 1.8.5]. By Theorem 9.1.1, the zeros of ¢(-,n) and thus
the eigenvalues of T'(-,n) have the representations as stated in part 1. Hence part
1 has been proved.
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Now we are going to prove part 2. By Cramer’s rule, t(\,n)T~1()\,n) is
analytic in A and 7. Putting tg = HL:O g with

Pk
aOum) = [IO = Mg m)™, A<e [l <6 k=1,....0,
j=1
it follows from Corollary 9.1.2 that

S = toT™* (9.2.14)

is analytic on ®3. We now focus our attention on one group of eigenvalues, for
some fixed k. We put o = (nf’lk ); for some fixed j and 0 < |n| < e. Themap n — o
depends on j, but A\y(c) = Akj(n) defines an analytic function Ak which is indepen-
dent of 7, see (9.2.12). Replacing ) with oP* in the Taylor series expansion of (-, )
about Ag; (1) shows that the multiplicity of the zero Mi(0) of t(-,oP*) remains my,.
Since n = oP*, it follows that T—!(\,oP*) is analytic in A and o when
t(A,oP%) # 0 and has a pole, as a function of A for fixed o, of order at most

my, at A (0). Hence, for 0 < |o| < e7 we have a Laurent series expansion
TN o") = Y (A= A(0)" Akn(0) (9.2.15)

n=—mi

in a punctured neighbourhood of Xk(a), and the Ay, are given by Cauchy’s for-
mula )

Apn(o) = 7( (A = 3p(0) 1T L (N, 0P+ ) d), (9.2.16)

211 T
A (o)
where F;\k () is a counterclockwise simply connected closed curve surrounding
A (o) with no other zero of (-, o?*) inside this curve. Since locally we may choose
this curve to be independent of o, it follows that the Ay, are analytic functions
1

for 0 < |o| < err. We also observe that there is an integer p > 2, e. g., the least
common multiple of all p,, ¢ = 1,..., 1, such that each A\ ;/(n) can be written as a

power series in (7711) )2. Since the functions Ay (1) are pairwise distinct, it follows
that the differences Ay j/ () — Mg () for (K, j') # (K", ") are analytic functions

in (7711) )2 without zeros in 0 < |n| < e. Hence there is a positive integer « such that
| Akrje () = Ao ()| Im] ™ » has a positive lower bound for 0 < || < 5 and (K, j) #
(k”,7"). Thus there is v > 0 so that the curve I'5, (») can be chosen such that

(A= 20)) ™ =0(™) and (A= Ay (0™)) ™ = O(c™)

for all (K',j’) considered here, A € 5, () and o close to 0. We can therefore find
a positive integer 1 such that
1
to(\, oPr)
In view of (9.2.14) it follows that Ay, has a pole at 0.

=O0(c™ ™).
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Below we are going to use the following notation: for 0 < ¢, < ¢ let
Qe ={neC:n <etlet Ay = {(he(n),n) :np € C:0< |y <ep}, and
let ®,, C ® be a neighbourhood of A.

Let s be the smallest positive integer such that Ay _s # 0. We are going to
prove

Claim 1. For k = 0,...,s there are ¢, > 0, integers r,(f) and gg1,...,q,, - and
k

v, (A, 0) € X and uEK)()\,U) €Y, (\o) € D, =1,.. r,(C ), which are ana-
lytic on ®, and polynomials in A of degree less than g, Whose coeflicients are
meromorphic in o on €, such that the v,(A\e(c),0), ¢ = 1,.. .,7‘,(:), are linearly
independent, uf)(/\k(a),a) #0fore=1,... ,r,gﬁ), such that T'(-,oP*)v,(-,0) has

a zero of order > qi, at A (o) for all 0 < |o| < &,, and such that

(r)
Tk

A= k(@)™ |T7H N 0%) = > (A= X)) "™ v, (A, 0) @ ul™ (A, 0) | (9.2.17)

=1

is analytic on .
Claim 1 is trivial for K = 0 where we can take r,(f ) =0.
Suppose that Claim 1 is true for some 0 < £ < s. We set

ANo) = Y (A= M(0) A(o) (9.2.18)
L=—S8+kK
()
=T A 0™) = Y (A= Ae(0) ™0, (A, 0) @ ul™ (A, 0)

for (\, o) € ®, in some punctured neighbourhood of A(c), where 4,(c) € L(Y, X)

and A, is meromorphic in €. By Proposition 9.2.3 there are a number r,(fH) >
7’]({"“) and §T£H)+1(J), . ,grl(:-u) (0) €Y, “’(H+1)(g), ﬂ(":’j;}r)l( ) € Y’ depending

meromorphically on o € €41 such that

() (s D)
A_ S-‘rK Z UL Ak ® u(ﬁ+1 Z A_ S—‘,—K (U) ® ﬂEHJrl)(O’)’
L—’I‘,i, )+1
where u('f:;ir)l (0),. ,ﬂ(:fl)) (o) as well as
Tk

v1(Ak(0),0),. .. 7'07"1(:) (S‘k (0),0), Asir (a)grl(:)_;'_l(a)v e vAferH(o—):Ur;CN‘H) (o)

are linearly independent. Here €41 > 0 is chosen in such a way that 0 is the only
pole of all the above meromorphic functions in o.
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For.=1,..., (”) let
u{™ V(N 0) = ul (A o) + (A = Ai(0) P A (o),
and for « = r,(f) +1,... ,r,(fH) let

qk, = S — R,
5N 0) = (A= A(0)) ™ AN, 0)5(0),
ul" (X 0) = @ (o).

7"](:+1)

Observe that these v, for « = r(”) +1,. are analytic in A at each \g (o)

since (A, o) — (/\—Xk(a))q’“A()\, o) has this property by assumption. For ¢ = r,(vﬁ)—k

1,... ,r,(fﬂ) let v, be the Taylor polynomial of v, in A of order g, —1 at /\k( ), i.e.,

qr.—1
; Lo () (k+1)
v(A0) = ;)(/\—/\k(a)) SR TCN | NIk Sl TP

Since
0, (Ai(0),0) = T,(0i(0),0) = A_pn(@)(o), =7 41, p0HD,

it follows that the v, (A\x(0),0), t=1,... ,r,(c'Hl) are linearly independent. By as-
sumption and definition, the v, are polynomials of degree less than ¢, in A for

L= r,(:) +1,...,r (F”H) , and the same is true for the u( "+ dince s — k > 0 and

qr, = s —k for . = r(ﬁ) +1,. (HH) . Also, u{"*V M(0),0) = u(ﬁ)(;\k( ),0)#0

for v = 1,. r,(C ). whereas the hnear independence of u(ffi)l( o),.. ﬂ('f:_&l)) (o)

gives u" TV (A (0),0) £ 0 for L = r(ﬁ) +1,. (HH)

(N+1

For . = 7"( M, the definition of v, and (9.2.18) give

T\, 0?)0, (A, 0) = (A= A(0))*" (@(U)
= Y0P 0)) [~ Ael0) T (N, 0P () )

Since (A — Ap(0)) "% T(\, 0P )v, (A, 0), L =1,.. r,(C ), is analytic at (Ak(0),0) by
assumption, it follows that T'(-,oP*)v,(-,0), t = r(ﬁ) +1,. (HH) , has a zero of
order > gi,. Since v, is the Taylor polynomial of vbof order q;“, the same is true



266 Chapter 9. Spectral Dependence on a Parameter

for T'(-,0P*)v,(+,0). Finally, we have that

(r41)
Tk

T\ o) — Z (A = Ak(0) "% v,(\, 0) @ u+tD (A, o)
=1

’I"N)

= A 0) = Y= Me(0) 0,0, 0) @ (uFV (A 0) = uP (A o)

L

E

Il
-

(r+1)
’I‘kN

= ) (= M(@) ™ u (A 0) @ u"I(N)
L:’I‘;H)Jrl

)

>~

= A 0) = YO = Au(0) 0 (A 0) @ 85D (o)

L

Il
-

(r+1)
Tk

— Y (AN 0)E(0) ® TV (o)

L:’I";N)—‘rl
TI(CH+1)

— 3 = A@) ™ (A o) — T (A o) © T (o)
L:r,(:)Jrl

o0

= Y (A0 A)

t1=—s+kK+1

= > = Ao) T (0A0) = 0. (i), 0)) @ T (o)

- Y Y A0 (An@ie) 2 ()

L:T,(:)—i-l V=—s+k+1
Tlim{»l)
— Y = A@) ™ (1 (A o) — T(h o) @ TV (o).

L:T,iﬂ) +1

Therefore Claim 1 is proved for £+ 1 since the pole orders at A = A (o) of the first
three sums do not exceed s — k — 1, whereas the last sum is analytic at A = \x (o).

Putting r, = r,(:) and u, = uES) for . =1,...,r; shows that

E(\0) =T Y\ o) - Ek:()\ — M (0) v, (N, 0) @ u, (N, o) (9.2.19)

=1
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is analytic at (S\k (0),0). Multiplying this equation by T'(\, oP*) from the right we
see that the identity operator on X can be written as

Ix =3 (A= Ak(0)) ™0 (X 0) ® (T* (A, 0™ Ju,(X, 0)) + E(A, 0)T(A, o),
=1
(9.2.20)
where T*(\, oP*) is the adjoint operator of T'(\, oP*). Hence

Tk

Z(/\ - Xk(a))_q’“m(/\, o) @ (T*(\, aP*)u, (N, 0))

=1

is analytic in A at Ap(c). From [189, Proposition 1.5.3], we conclude that the
functions A\ — (A — Ap(0)) "% T*(X, 0P )u, (A, o), ¢+ = 1,...,75, are analytic at
Ak(0) since the v,(Ax(0),0), ¢t = 1,...,7%, are linearly independent. Therefore,
the functions T"(-, 0P*)u, (-, o) have a zero of order at least g, at Ax (o).

Next we are going to show that

N(T(Ar(0),0)) = span{v,(\e(0),0) s e =1,... 1%}

It is clear that v,(Ax(0),0) C N(T(A(0),0)) for c = 1,. .., 7} since Tv, has a zero
at A= Ag(o) for e =1,... 7.
Conversely, let € N(T(Ax(c),0)). Then (9.2.20) leads to

Tk

e=Y <x A= Ae(0)) "™ T* (X, 0P)u, (\, a)> v\ o) + B, 0)T(\, 0P )z,

=1

which shows that z is a linear combination of the v,(Ax(0),0), t = 1,...,7%.

We note that the above statements hold with analytic dependence on ¢ for
0 < |o| < &’ and suitable positive ¢’. Then, for these o, the general assumptions as
well as condition ii) of [189, Theorem 1.5.9] are satisfied since E(-,0) is analytic
at Ak (o). Therefore vy (-, 0), ..., vy, (-, ) form a canonical system of root functions
of T(-,07*) at Ay(0), see [189, Definition 1.4.5] for notation. We conclude that the
numbers gk1, ...,k are the partial multiplicities of T'(-,0P) at j\k(a) and that

the number
Tk
Z Qe = M
=1

is the algebraic multiplicity of the eigenvalue Ay (0) of T'(-, o®), see [189, p. 15 and
Proposition 1.8.5].

To complete the proof of the case that X and Y are finite dimensional we still
have to show the representation (9.2.13). Since A as well as oP* are independent

of the choice of o = (nplk )j, it follows that (9.2.20) is valid for all j if it holds
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for one j, with the same vector functions v, and u,, ¢t = 1,...,7r. Since v, is a
polynomial of degree less than ¢, we have

qr.—1
o) = 3 (A= Alo) v (o),
~k=0
where v,0(0), ..., ., ,(c) is a chain of an eigenvector and associated vectors of

T(-,0P%) at A (c), which depend meromorphically on o. Letting v be the maximum
of the pole orders of these functions at 0 and observing that ¢” does not depend
on A, we obtain that also 0”v,0(0),...,0"0,q,,_,(c) is a chain of an eigenvector
and associated vectors of T'(-, 0P*) at A, (o) and that these function are analytic at

0. Substituting ¢ = (n7« ); into the corresponding Taylor series expansions proves
(9.2.13).

Finally, if X and Y are infinite dimensional, then we use the factorization
(9.2.1) and consider S, which is an operator function in finite-dimensional spaces,
where we may replace ® with the neighbourhood ®¢ from Lemma 9.2.1. Because
of the invertibility of C, T1; and D, the eigenvalues of T" and S coincide, together
with their algebraic multiplicities. Hence the proof of part 1 is complete.

For the proof of part 2 let {g;(n)}1x, be the chain of an eigenvector and
associated vectors for S as in (9.2.13). Then

) = D700 S 0= A () @220)

prt gii5 ()

is a root function of C~1(-,n)T'(-,n) and thus of T'(-,n) at Ag;(n), that is, the first
gr, Taylor coefficients of (9.2.21) about Ag;(n) are a chain of an eigenvector and
associated vectors which is of the form (9.2.13). O



Chapter 10

Sobolev Spaces and
Differential Operators

10.1 Sobolev spaces on intervals

For the convenience of the reader, we recall the main definitions and results on
Sobolev spaces on intervals which are used in this monograph. For the general
theory of Sobolev spaces, we refer the reader to [2]. However, in this monograph
we are only concerned with Sobolev spaces on compact intervals, and therefore
the particular results in [189, Chapter II] suffice, and it is some of those results
which will be cited without proof here. Throughout this section we assume that a
and b are real numbers with a < b.

Let Z = (a,b) or T = R. First we recall the definition of the Lebesgue spaces
L,(Z) for 1 < p < co. For Lebesgue measurable functions f,g : Z — C we write
f=9(f<g,etc)if f(x) =g(z) (f(z) < g(x), etc.) for almost all z € Z,, i.e., if
there is a Lebesgue measurable set X C Z such that Z \ X has Lebesgue measure
zero and such that f(z) = g(z) (f(z) < g(z), etc.) for all x € X. The function
f is called essentially bounded if there is such a Lebesgue measurable set X such
that f is bounded on X. The relation f = g in the above sense defines equivalence
classes of Lebesgue measurable functions, and for 1 < p < oo, L,(Z) is defined as
the set of equivalence classes of measurable functions f on Z for which

/ F(@)|P dz < oo,
v

whereas L (Z) is the set of equivalence classes of essentially bounded functions on
Z. As is customary, we will identify equivalence classes with any of the functions
representing it. In particular, when such an equivalence class contains a contin-
uous functions, then this continuous function is unique, and we will identify the
equivalence class with its continuous representative. The sesquilinear form

(f.9) = / f@)g(@)dz, f.g € Lo(D),

defines an inner product on Ly(Z) which makes Ls(Z) a Hilbert space.
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A function f € C(Z) is called a test function if its support is a compact
subset of Z. The space of all test functions on Z is denoted by C§°(Z). We identify
C§°(a,b) = C§°((a, b)) with a subspace of C§°(R) by setting f = 0 outside of (a,b)
for each f € C§°(a,b).

A certain class of linear functionals on C§°(a,b) is called the space of distri-
butions on (a,b) and denoted by D’(a,b). For u € D'(a,b) and ¢ € C§°(a,b) it is
customary to write

(pu)o = ulp).
Correspondingly, D'(R) denotes the space of distributions on R, and we write
(p,u)or = u(p) for u € D'(R) and ¢ € CF°(R).

It is not necessary to know the exact conditions for a linear functional on
C§°(a,b) to be a distribution; rather, it suffices to recall a few properties of dis-
tributions. One of these properties is that La(a,b) C D'(a,b) via

b
(. Fo = / p@)f(x)do = (9, f), @€ C&(ab), f € Lo(a,b).  (10.1.1)

We have chosen to write (-, -)p as a sesquilinear form rather than a bilinear form
on the dual pair (C§°(a,b),D'(a,b)) so that we do not have to resort to conjugate
complex functions in any of the two forms occurring in (10.1.1).

A second property is that every u € D’'(a,b) has a derivative v’ € D’'(a,b)
which is defined by (p,u)o = —(¢’,u)o for ¢ € C§°(a,b). Hence every function
f € La(a,b) has a derivative in the sense of distributions, and by the integration
by parts formula, this derivative coincides with the classical derivative if f is con-
tinuously differentiable, or somewhat more general, if f is absolutely continuous.

Thirdly, for v € D’'(a,b) and ¢ € C*®(a,b),

(¢, Yu)o = (Yo, u)o, ¢ € C°(a,b), (10.1.2)
defines a unique distribution ¥u on (a,b).
Definition 10.1.1. Let & € Ny. The space
Wi(a,b) = {f € La(a,b) : Vj € {1,...,k}, f9 € La(a,b)}

is called a Sobolev space. Here the derivatives f() are the derivatives in the sense
of distributions. For f € Wk(a,b) we set

1
2

k
£llze = | D N1
§=0

where || || is the norm on La(a,b).

Note that W2 (a,b) = La(a,b).
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Proposition 10.1.2 ([189, Propositions 2.1.6 and 2.1.7]). Let k € N. Then Wk (a,b)
is a Banach space with respect to the norm || |25, W¥(a,b) € C*~1([a,b]), and
the corresponding inclusion map is continuous.

Proposition 10.1.3 ([189, Proposition 2.3.2]). Let k € Ng, | € N and k < 1I. Then
the multiplication operator from W¥(a,b) x Wi(a,b) to W¥(a,b) is a continuous
bilinear map.

For f € La(a,b) let f. be its extension by zero onto R. Then f, € D’'(R).
Proposition 10.1.4 ([189, Proposition 2.2.4 and Theorem 2.2.5]). For k € N set

k
Wi Hlo, ] = {u e DR 3 (koo € (ala, D), w=Y () .

k ,
Then, for u = Z(uj)g) € Wy *[a,b] and f € Wk(a,b),
=0

UMM:Z/PWWWM@M
j=0’a

does not depend on the representation of u. For ¢ € C§°(R) we have
((p|(a,b)7 u)z,k = (SO’ u)O,R-

Equipped with a suitable norm, Wz_k[a,b] s a representation of the dual of the
Banach space W¥(a,b) with respect to the sesquilinear form ( , )a .

For k € N denote the restriction of elements in Wz_k[a, b] to distributions on
(a,b) by Wy *(a,b). From [114, Theorem 3.1.4], [189, Proposition 2.1.5] and the
definition of W, *[a, b] in Proposition 10.1.4 we immediately obtain

Proposition 10.1.5. For every k € Z, j € N and u € D'(a,b) we have u € W¥(a,b)
if and only if u9) € W*=J(a,b).

Remark 10.1.6. Let k € Ny, [ € N, k < [, and ¢ € W¥(a,b). By Proposition
10.1.3, g- is a continuous operator from Wi(a,b) to W¥(a,b). Propositions 10.1.3
and 10.1.4 yield that its adjoint (g-)* is an operator from Wy *[a,b] to W, '[a, D).
For v € Ly(a,b) and f € W}(a,b) it follows that (g:)*ve = (gv)e, so that we will
write

(9" u=rg-u=: gu
for all u € W, *[a, b).

Theorem 10.1.7 ([189, Lemma 2.4.1 and Theorem 2.4.2]). For each k € N, the
inclusion maps Wi (a,b) < C*~a,b] and W} (a,b) — W}~ (a,b) are compact.
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10.2 Lagrange identity and Green’s formula

In this section we recall some basic properties of differential operators on Sobolev
spaces. Rather than using the most general formulation, we will restrict ourselves
to assumptions which cover all examples and applications in this monograph. For
proofs and more general assumptions, we refer the reader to [271, Section 2] and
[189, Chapter VII].

Let n = 2k where k € N. We consider nth-order differential expressions of

the form
b NE
= Z (gjy(J)) (10.2.1)
j=0
on an interval [a, b], where g; € WQJ (a,b),j = .., k, are real valued functions and
lgi(x)| > € for some € > 0 and all z € [ ,b] We will often consider applications
where gy = 1 or g, = —1 and g; € CV[a,b]. In any case, fy is well defined for

y € Wi(a,b), in which case fy € La(a,b). The operator Lo defined by
D(Lg) = W3(a,b), Loy=1"Ly, ye€ Wi(a,b), (10.2.2)

is called the maximal operator associated with the differential expression ¢ on
[a,b].

We will now prove the Lagrange identity and Green’s formula. In general, one
would need to define the adjoint differential expression. However, in our situation,
the differential expression /¢ is formally self-adjoint, so that there is no need to
introduce the adjoint differential expression here.

Definition 10.2.1. Let y € W3'(a,b). For j = 0,...,n, the jth quasi-derivative of
y, denoted by yl!, is recursively defined by
y[j] :y(j) for j=0,...,k—1,

y* = gry®,

Yl = (=Y g, sy for j=k+1,...,n

Observe that quasi-derivatives depend on the differential expression (10.2.1).
Quasi-derivates are convenient for the formulation of the Lagrange identity when
dealing with differential operators which have fairly general coefficients, see, e. g.,
[271, Section 2] and [196, Section 2]. Note, however, that these definitions may
differ from each other. In particular, our definition is not exactly the same as in
[271, Theorem 2.2]. A straightforward proof by induction shows that

k- .
A\ (J+m—k)
y[k+m] _ Z (gjy(j)) form=0,...,k.

j=k—m

In particular, m = k gives

by =y,
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Proposition 10.2.2. For the differential expression £ and y,z € Wi(a,b), we have

b d
U) 4+ 10.2.3
]Z::O ) gy z + g 2 ( )

on [a,b] almost everywhere, where

[yaz]l = l)j—ly[n—j]z[j—l]’ (1024)

-

and
Kk
(b, 2) = 3 (=17 (g5, 29) + [y, 21 (b) — [y, 21 (). (10.2.5)
7=0

Proof. (10.2.5) follows from (10.2.3) by integration, so that we only have to prove
the latter. A straightforward calculation for j = 1,..., k gives

dci: (y[”*j]z[j—l]> — y[nfj]z(j) + y[n*j+1]z(j—1) _ gj_ly(j’l)z(j—l).
Therefore

d Kk k—1 k—1
p [y, 2] :Z(_l)j 1y [n=3 ,(5) +Z J [n—j]Z(j) _ Z(—l)jgjy(j)z(j)

x j=1 =0 =0

k: .
=yl = (1) g;y20). O
§=0

We can now formulate the Lagrange identity and Green’s formula.

Theorem 10.2.3. For the differential expression ¢ and y, z € Wi (a,b), the Lagrange
identity

d
ly)z —y(Lz) = 10.2.
(ty)z —y(lz) = ly,~] (10.2.6)
holds on [a,b] almost everywhere, where
k
= Y (1) (Y et -yl sl (10.2.7)
j=1
and Green’s formula
(by, 2) = (y, £2) = [y, 2](b) — [y, 2] (a) (10.2.8)

is walid, where (-,-) is the inner product in La(a,b).
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Proof. Green’s formula follows from the Lagrange identity by integration, so that
we only have to prove the latter. Observing that the functions g; are real valued,
we conclude from (10.2.3) that

(ly)z —y(lz) = (Ly)z — (L2)y
i

[

¢ )
dl‘ y Yl
z]. O

= dx Y, Z}l -
d

= Y
10.3 Self-adjoint differential operators

In this section we will deduce criteria for self-adjointness for a class of differential
operators. This class will cover all applications in this monograph. Readers inter-
ested in a particular problem may find it easier to verify the results in this section
by considering just that particular case.

Let p € N and for j = 1,...,p let ¢; be formally self-adjoint differential
expressions of even order n; = 2k; on the interval [0, a;] as defined in (10.2.1),
ie.,

kj
Gy =3 (gimyd™) ™, (10.3.1)
m=0
where g;.,, € W3*(0,a;) for j =1,...,p, m =0,...,k;, are real valued functions

and |gjx,; (z)] > € for some € > 0 and all = € [a,b]. Let ¢ € Ng. We are going to
use the notation

Y1 Z1 w1

S RO H RO RS H R
U c /)’ 2 d)’ w, e
c d e

for elements in the Hilbert space
P
H =P Ly(0,a;) & C.
j=1
Furthermore, for y; € W57 (0,a;), j = 1,...,p, we use the notations
~ n;—1 n;j—1 .
g5 = (w0),. ..y ), yi(ap), -y T ag)), G=1,
Y/ :}A/O = (Qla"'vgp)—ra

with corresponding notations for Z and W. Setting

p
n = E nj,
Jj=1
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it is clear that Y € C2*. Finally, let
r € Ng, Uy an r X 2n matrix, Us a ¢ X 2n matrix, V a ¢ x 2n matrix. (10.3.2)

Then the operator A in H is defined by

l1
. p R R
Ay = | |, DA) =Y e @PW;7(0,a;) ®CP : U1Y =0, c=UpY
gpyAp j=1
0%

(10.3.3)

We have to observe that the Lagrange brackets introduced in (10.2.7) depend
on the quasi-derivatives and hence on the differential equation £. In order to avoid
further notation, we will use the convention that an expression of the form [y;, z;]
means the Lagrange bracket with respect to the operator ¢;. As usual, V* denotes
the adjoint, i.e., the conjugate complex transpose, matrix of V', and ¢ € C? is
identified with a ¢ x 1 matrix.

In view of Remark 10.1.6 it is clear that the definition of the quasi—derivat[iv]es,

m

Definition 10.2.1, can be extended to z; € L2(0, a;) giving quasi-derivatives z;" €

W, ™[0, a;] in the sense of distributions for m = 0,...,n;. In particular,
kj
A0 =57 (gm0 (10.3.4)
m=0

Proposition 10.3.1. Let Z,W € H such that (AY,Z) = (Y, W) for allY € D(A).
Then z; € W57 (0,a;) and £;z; = w; for j=1,...,n.

Proof. Fixing j € {1,...,p}, taking y; € C5°(0,a;), letting ¢ = 0 and y;» = 0 for
all j' # 7, it follows that Y € D(A) and

J

((gj,my§m))(m), Zj)

=

3
I
=

k;

(=™ (gjmy;m), ZJ(m)) 2,m

)

3
I
<

k;

O (),

3
I
<

k;
= (yj, (gj,m2§m))(m)) .

3
I
<
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Since C§°(0, a;) is dense in Ls(a, b), it follows that

k;
S (gim2™) ™ = w; € La(0,a;). (10.3.5)

m=0

Assume that z; &€ W,7(0,a;). Then there is an integer mj, 0 < m; < n;, such
that z; € W, (0,a;) and z; ¢ W;n'j+1(0,aj). Then

k; i) ) ) m)\ (m mj—mn;+1 )
(gj,kaj(' '))(k )= wy — Z (gj,ng(‘ ))( Ve W, (0,a;).

m=0

By Proposition 10.1.5 it follows that
i,z e Wy TR0, a;).

Since g,lk € Wij (0,aj) C W;ﬂrkﬁl(O,aj), see [189, Proposition 2.5.8], we con-
3ok

clude from Remark 10.1.6 that
zj(k'j) € W;lj_k'j+1(0,aj).
Another application of Proposition 10.1.5 gives the contradiction z; € W, (0, a;).
Hence z; € W57 (0,a;), and (10.3.5) shows that ¢;z; = w;. O
Proposition 10.3.2. Assume that rank (gl> = r + q. Then the operator A is
2

densely defined, and
P
D(A*) c W37 (0,a;) & CO.
j=1

Proof. Let W € H be orthogonal to D(A). For Z =0¢€ H and al Y € D(A) it
follows that
(AY,Z) =0 = (Y, W),

and therefore w; = ¢;z; = 0 by Proposition 10.3.1. Then
0= (Y,W)=¢e*c=e*UY. (10.3.6)

It is well known, see, e.g., [196, Corollary 2.7], that the map y; — ¢; from
W;j (0,a;) to C?"i is surjective. With respect to the decomposition C2" =
N(Up)t @ N(Uy) we write

U\ (U 0
Us U1 U/’
where the U;; may be represented as matrices in bases of N(Uy)*+ and N(Uy),

respectively. Since rank (gl> =1+ q and U; and Uy are r x 2n and ¢ X 2n
2
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matrices, respectively, it follows that Uss has rank ¢ and is therefore surjective.
P

Thus there is Yy € @) W57 (0, ;) such that Yo € N(Uy) and UpYp = e. Putting

j=1
Yo
Y= (V%) ’

it follows U;Y = 0 and therefore Y € D(A). Then (10.3.6) gives
0=e*UypY = e*e,
which shows e = 0. Altogether, we have W = 0, which proves the denseness of
D(A).
Let Z € D(A*). Then, by definition of the adjoint operator, there is W € H

such that (AY,Z) = (Y, W) for all Y € D(A), and the statement about D(A*)
follows from Proposition 10.3.1. O

Proposition 10.3.3. Assume that rank <U1

U > =r-+gq. Then Z € D(A*) if and only
2

P
if Z € @ W57 (0,a;) ®CY and there is e € C? such that
j=1

p p
> i zla) =Y [y, %1(0) + VY — e UnY =0 (10.3.7)
Jj=1

j=1
for all Y € N(Uy). For Z € D(A*), e is unique and
£121

az=| |, (10.3.8)

Proof. By definition of the adjoint, Z € D(A*) if and only if there is W € H
such that (AY,Z) = (Y, W) for all Y € D(A). By Propositions 10.3.1 and 10.3.2,
P

if Z € D(A*), then Z € @W;'j(o,aj) ® C? and /ljz; = w; for j = 1,...,p.
j=1

P

Therefore, for Y € D(A), W € H, and Z € @ W;7(0,a;) & C? with £;z; = w,
j=1

forj=1,...,p,

P P
(AY, Z) — Z (Cy5,25) Zyj,ﬁ zj)+d* VY —e*e.
j=1 Jj=1
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In view of Green’s formula, (10.2.8), we conclude that
p
(AY, Z) — Zyj,z] Zy],zj )+ VY — Uy
Jj=1 j=1

This and A*Z = W if (AY, Z) — (Y, W) =0 for all Y € D(A) completes the proof
if we observe that Y € D(A) if and only if U;Y = 0 and ¢ = U,Y". O

Since A is self-adjoint if and only if D(A) = D(A*) and A*Z = AZ for all
Z € D(A) = D(A*), we have the following characterization of self-adjointness of A.

Theorem 10.3.4. Assume that rank <51> =r+q. Then A is self-adjoint if and
2

P

only if the following holds for all Z € @ W57 (0,a;) & C:
j=1

Z € D(A) if and only if there is e € C such that e =V Z and

P
> i 25 Z i, 2](0) + VY —e*UsY =0 (10.3.9)
j=1 j=1

for all Y € N(Uy).
For m € N define

o m 0 Im —JIm 0
Jm,O = ((_1) 15s,m+17t)57t:17 Jm,l = (_ * 0’0>7 Jm = < 0 ! Jm 1>~

m,0 5
(10.3.10)
Then it follows for y;, z; € W57 (0,a;) that
0] \ * (k5] o] \ * [0]
%j Yi %j Yi
[ijzj]l = ka,O ) [ijzj] = Jk:j,l . 3
k;j—1 n;—1 nj—1 n,»—l
z][ 5—1] yj[ i—1] ZJ[ ] ?/J[ ]
(10.3.11)
so that
w5, 2)(a;) = [ys, 21(0) = (Ju; 95, 25)-
Finally, define
P J
J=@J, and Us=| V |. (10.3.12)

Note that J is a 2n x 2n matrix and that Us is a (2n + 2¢) x 2n matrix. We
also observe that (10.3.9) can be written as

*

Z A
d| Uy =0
€
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and that Z € D(A) and e = VZ is equivalent to

Z
d| eN(@),
e
where
Ui 0 0
U=|Us -1 0 (10.3.13)
vV 0 -I

and where [ is the ¢ X ¢ identity matrix.
Observing that (N(U))* = R(U*), Theorem 10.3.4 can therefore be refor-
mulated as

Theorem 10.3.5. In the notation of (10.3.2) and (10.3.3), assume that

Ui\
rank <U2> =r+q.

Then A is self-adjoint if and only if
Us(N(U1)) = R(U™).

Theorem 10.3.5 may become quite unwieldy since one might have to deal
with matrices of possibly quite large sizes. In many cases, it might therefore be
easier to apply Theorem 10.3.4.

Lemma 10.3.6. Let j € No, g € Ly(0,a) and 1 > 0. Then, for all y € W3'(0,a),

(1+5k)

1
a 2 2/{/2 () 2
+ N2,
an gll o) gl 1yl

[(gy™, y )| < nllyU+D )12 +

where the estimate is true in general with k = 1, whereas it holds with k = 0 if
additionally y9)(0) = 0. If additionally n < 2a, then

. . . 4 .
ly PO,y (@) < iy )? + . Iy 2.

Proof. 1t suffices to consider the case j = 0; the general case is then obtained by
applying this special case to y7). Also, the first estimate is trivial if g = 0, so that
we will assume that g # 0.

By Hoélder’s inequality and using that y(z) —y(0) = OI y'(t) dt we obtain for
x € [0, a] that

v vl < ([ z/(t)zdt)é ([ dt)é ) (10.3.14)
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Then |y(0)] < |y(x)] + az||y’|| leads to the estimate |y(0)[2 < 2Jy(z)[* + 2ally’||2.
Integrating from 0 to a gives aly(0)|? < 2||y||? + 2a?||y’||?, which is equivalent to

2
ly(0)* < a||y||2 +2ally'[|*. (10.3.15)

From (10.3.14) we have |y(z)| < |y(0)| + a2 ||y/||, and making use of (10.3.15) we
obtain the estimate

4k
(@) < 2y(0)* + (1 + wally’|* < (1L +5x)ally’ >+ “llyll*,  (10.3.16)

with k = 1 in general and where we may choose K = 0 if y(O) = 0. Again by

Holder’s inequality,
< ([ w@pa) ([ era)
0

/Oa (@) y(@)|? da
< gl ( / ly(@)? de [(1 +5m)ally’|I* + Af'y'z])é

1
101 2K 2
< Lol {1+ 50202 11+ 7 Tyl
) /|| + b||y||2 3
< gl | (1 +5myad I+ 2y e

(1+5k)2a2

for any positive b. Choosing b = 5
n

llgll, it follows that

(14 5k)a

< 7112
[(gy, »)| < nlly'||* + 41

2/@é
gl + ||9|] [yl
a2

which proves the first estimate of this theorem. For the second estimate we just
have to observe that (10.3.14) and (10.3.15) also hold on the interval [0, 7], and
that the corresponding norms over this smaller interval in (10.3.15) can be replaced
by the possibly larger norms on the original interval [0, a]. The estimate at a follows
with the obvious change of notation. O

Lemma 10.3.7. Let j € N, m € Ng such that m < j and n > 0. Then there is
C > 0 such that for all y € W3 (0,a),

Iy 11> < nlly D )1? + Cllyl. (10.3.17)

Proof. The statement is trivial for m = 0. Now let j = 2 and m = 1. Then the
integration by parts formula

1Y/ 11” = (/. y") = ' (a)y(a) — ¥ (0)y(0) — (4", y),
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Lemma 10.3.6 and Holder’s inequality show that for each ¢t = 1,...,6 and 1, > 0
there is a constant C, > 0, which is independent of y, such that

1y 112 < 2(mlly" |l + Cilly' D (m2lly'[| + Callyll) + nslly”[1* + Csllyll®
< 2mna(nally” |12 + Cally'||?) + 2m2C1 ||y |12 + 2m Co (s ]ly” ||* + Csllyl|?)
+CiCo(nsly' 11 + Collyll®) + nslly” |1 + Callyll?
< (2mmama + 2mCans + n3)|ly"|I?
+ (2mn2C4 + 2n2C1 + C1Cane) 19|
+ (2mCC5 + C102C + Cs) ||y |-

Let 7' > 0. Choosing suitable pairs (n4,C4), (n1,C1), (n2,C2), (n3,C3), (n5,C5),
(n6,Cs), in that order, we obtain a constant C7, depending on the choice of the
above pairs, such that

1 1 1
' < o'l I + 1917 + , Crllyll®,
which implies
19/ II> < 7'lly"II” + Collyll*.

This proves (10.3.17) for j = 2.

We are going to prove the general case of (10.3.17) by induction on j. Assume
(10.3.17) is true for 1 < m < j < k. First let 2 < m < k. Then, applying the
induction hypothesis to 3/, it follows that for each ¢ = 1,2 and each 7, > 0 there
is C, > 0 such that

Iy 12 = 1) V12 < mll )P+ Cally/|1?
<ml @)+ Comally "™ ||? + CLCa |yl
Choosing 71 = 3 and then n2 > 0 such that Ciny < !, (10.3.17) follows for

29
j = k + 1. Finally, if m = 1, then, with a notation as for the case m > 2, we
obtain, making use of (10.3.17) for m = 1 and j = 2 as well as m = 2 and
J=k+1,
Iy'I” < mlly”II* + Cullyl® < mnelly™ V1% + (m Cz + C)ly)1*.
Thus we have shown that (10.3.17) is true for 1 <m < j <k + 1. O

In order to give easily checkable conditions for A to be bounded below, we
will use the following notation. For k£ € N define the 2k x 2k and 4k x 4k matrices

Pk,o and Pk by
(I O _(Prpo 0
Ppo= (0 0) , P = ( 0 Pk’()) .

Furthermore, we define

p
P=p,.
j=1
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Theorem 10.3.8. Assume that A is self-adjoint. Then A has a compact resolvent.
Assume additionally that

(1) (—1)’“J'gj,kj >0 forallj=1,...,p,
[m]

(ii) each component of ULY either contains only quasiderivatives y; = with m <
k; or contains only quasiderivatives ygm] with m > kj,
(iii) each component of UsY either contains only quasiderivatives yj[.m] with m <

k; or contains only quasiderivatives ygm] with m > kj,

(iv) for each component of UsY which only contains quasiderivatives yj[.m] with
m > kj, the corresponding component of VY only contains quasiderivatives
y; - withm <k;.

Then A is bounded below.
Proof. Since A is self-adjoint, its spectrum is a subset of R, and A+4[ is therefore

invertible. If D(A) is equipped with the norm of @ W57 (0,a;)®CY, then it follows
j=1

P
by the closed graph theorem that (A+iI)~! is bounded from @ L5(0,a,)®C? to
j=1

P
D(A). Theorem 10.1.7 shows that the embedding from D(A) into @ L5(0,a;)®C?
j=1
is compact. Hence (A +4I)~! is compact.
Now let Y = (y1,...,yp,c)T € D(A). Then it follows from (10.3.3) and
(10.2.5) that

p
(AY,Y) = (ly;.y;) + Y U3 VY (10.3.18)
Jj=1
k; P P
- Z Z(—l)m(gj’myj , J +Z Yi>Yil Z Y5, 9511 (0) + YU VY.
j=1m=0 j=1 J=1

In view of the general assumption and (—1)*s gjk; > 0, there is € > 0 such that
(=1)*ig;k,(x) > € for all @ € [0, a]. Therefore

kj k?j*l

k;
> 1 gimyy™ ™) 2 25 ) = 3 gimyl™ ™).
m=0 m=0
An application of Lemmas 10.3.6 and 10.3.7 shows that there is C' > 0 such that
p k;
> ™gsmys™yi"™) = ~CIYIP, Y € D(A). (10.3.19)

j=1 m:O
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From (10.3.10) and (10.3.11) we infer that

P P
> i vili(a) = > lys, yih(0) + Y UsVY = Y*PJY + Y*U;VY  (10.3.20)
j=1 j=1

for Y € C**. Now let Y € D(A), so that Y € N(U;). In view of Theorem 10.3.5,
there is ® = (¢1, @2, ¢3)T € C*" @ C" @ C such that

R Ui +Usda + V73
UV = U*® — — s
—¢3

By definition of Us in (10.3.12) it follows that ¢35 = UsY, ¢o = —VY, and then
JY = Uiy —UsVY + V*UY.

We apply Y*P on the left-hand side. Observing that P is Hermitian, the resulting
equation can be written as

Y*PJY = (U PY)* ¢y — Y*PUVY + Y*PV*U,Y.

By assumption (ii), each row of U P is either zero or the corresponding row of Us.
Hence U3 PY =0 for all Y € N(U). Therefore

Y*PJY +Y*U;VY = (Us(I — P)Y)*'VY + (VPY) Uy Y (10.3.21)

forall Y € N (U1). Now PY only contains quasi-derivatives yj[.m] at 0 and a; with
m < kj;, and in view of Lemma 10.3.6 there is a constant C; > 0 such that

[VPY|| < Ci|Y]l, Y € D(A). (10.3.22)
Since U,Y is the last block component of Y € D(A), we also have
|UY[| < [[Y], Y € D(A). (10.3.23)

Essentially the same reasoning applies to (Uz(I — P)Y’ )*V'Y. By assumption (i),
each component of Us(I — P)Y is either 0 or equals the corresponding component
of UsY. Since we only have to consider the components of VY for which the
corresponding component of Us(I — P)Y is not zero, assumption (iv) and Lemma
10.3.6 show that

|(Us(I — P)YY' VY| < C1||Y]?, Y € D(A). (10.3.24)
Altogether, we have from (10.3.18)—(10.3.24) that
(AY,Y) > —(C +2C))|Y]P%, Y € D(A). 0



Chapter 11

Analytic and Meromorphic Functions

11.1 Meromorphic functions mapping C* into itself

For convenience, in this chapter we will provide full proofs of the results from
[173] which are cited in Chapter 5. One of the gaps in B.Ja. Levin’s results is that
[173, Theorem 1, p. 308] only deals with the case that the meromorphic functions
under consideration have infinitely many positive and negative zeros and poles.
We therefore will provide more detailed proofs and will cover all possible cases.
However, the layout of the proofs is as presented in [173, Chapter VII].

It is sometimes convenient to consider a meromorphic function f on Q C C
as a function from €2 to C = CU {oo} by putting f(A\) = oo for poles A of f.

Lemma 11.1.1. Let P and Q be real entire functions without common nonreal
zeros. Consider the functions
Q w

w=P+iQ, 6= P F—w.
1. The following statements are equivalent:
(i) |[F(\)| <1 for all X € CT such that w(\) # 0;
(ii) w has no zeros in the open lower half-plane, and |F(N\)| < 1 for all
A e Ct;
(iii) P # 0 and ImO(X) > 0 for all X € C* with P(\) # 0;
(iv) All zeros of P and Q are real, 9(C*) C Ct and 6(C~) C C™.
2. Assume that P # 0. Then the following statements are equivalent:
(i) |[F(N)| <1 for all X € CT such that w(\) # 0;
(ii) w has no zeros in the open lower half-plane, and |F(\)| < 1 for all
e Ct;
(iii) ImO(X) > 0 for all A € CT with P(\) # 0;
(iv) All zeros of P are real, Q = 0 or all zeros of Q are real, O(CT) Cc C+
and (C7) Cc C—.
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£)=6 )@

and the assumption that P and ¢ do not have common nonreal zeros it follows
that also w and w have no common nonreal zeros. In particular, w # 0. Since F' is
bounded in the open upper half-plane, F' does not have a pole there, and hence
w has no zeros in the open upper half-plane, which means that w has no zeros in
the open lower half-plane.

(ii)=(iil): From

Proof. 1. (i)=(ii): From

Q—Q—iw_w—il_F
P wHw 1+F

it is clear that |F(A)| < 1 implies P # 0 and Imf()\) > 0 for A € Ct with
P(X\) #£0.

(iii)=-(iv): Since O(A) # 0 for all A € C* with P(\) # 0, Q has no zeros
in the open upper half-plane and therefore no zeros in the open lower half-plane
since zeros of real analytic functions are symmetric with respect to the real axis.
But then ; = PQ~! maps C* into C~ U {0}, where 0 occurs if and only if P has
a zero in the open upper half-plane. In this case, by the open mapping theorem,
see [55, IV.7.5], PQ~! would be constant, which leads to the contradiction P = 0.
Therefore P has no zeros in C* and as with Q we conclude that P has no nonreal
zeros. By assumption (iii), §(C*) € C*, and since 6 is real analytic, §(C~) c C~
follows.

(iv)=(i) is an immediate consequence of (11.1.1).

2. The difference to part 1 is that |F'(\)] = 1 and Im 6(\) = 0 is possible for some
A € CT. But by the open mapping theorem, this gives a constant function, and it
is easy to see that for such functions, (i)—(iv) are equivalent. O

(11.1.1)

For the sake of completeness, we recall the following well-known result.

Lemma 11.1.2. Let f be a nonconstant meromorpic function on C. Then C\ f(C)
has at most two elements.

Proof. If C C f(C), nothing has to be shown. If there is 8 € C\ f(C), consider

the Mobius transformation m(\) and define ¢ = mo f. Then g is a

1
=5
nonconstant entire function, and by the Little Picard Theorem, see [55, XII.2.3],
g assumes all complex numbers, with one possible exception, i.e., C\ g(C) has
at most two elements. Since m is bijective on C, also C\ f(C) has at most two

elements. O

Lemma 11.1.3. Let 6 be a real meromorphic function on C which maps the open
upper half-plane into the open upper half-plane. Then 6 has at least one zero or
pole, Ct\ O(CT) is either the empty set or consists of one complex number, and all
zeros and poles of 0 lie on the real axis, are simple and interlace. For each x € R
which is not a pole of 6, the inequality 6'(x) > 0 holds.
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Proof. Since 6 maps the open upper half-plane into the open upper half-plane, 6
has neither poles nor zeros in the open upper half-plane, and hence also not in the
open lower half-plane since 6 is real. Therefore all zeros and poles of 6 are real.

Assume 6 has no zero or pole. Then # is an entire function which takes real
values only on the real axis. Since 6 is continuous and does not have zeros, § must
therefore be either positive or negative on the real axis. Hence 6 does not assume
any value on either the positive or the negative real semiaxis, and it follows by
Lemma 11.1.2 that 0 is constant. Since 6 is real analytic, this constant would be
real, contradicting the fact that @ maps CT into itself. Therefore § must have at
least one pole or zero.

Now let us consider any circle centred on the real axis which does not meet
zeros or poles of 0. Since § maps CT into itself, the argument of (\) for A on the
upper half of the circle lies in [0, 7], so that the difference of the arguments of 8(\)
is m, 0, or —m when A\ moves along the upper semicircle. Using that 6 is real, the
same conclusion can be made when A moves along the lower semi-circle. Hence
the change of argument of the function 6 along the full circle is 2x, 0, or —27. By
the argument principle, this means that the difference of the numbers of zeros and
poles, counted with multiplicity, inside the circle equals 1, 0, or —1. In particular,
if we choose circles enclosing just one zero or pole of 6, this shows that the zeros
and poles are simple. If, however we choose two adjacent zeros or poles x1 < 2
and a circle which contains z; and x2, but no zeros and poles x with x < x; or
x > xo, then it follows that between two zeros of 6 there must be a pole of § and
between two poles of 6 there must be a zero of 6, that is, zeros and poles interlace.

Now assume there is o € C* such that 6(\) # « for all A € C*. Since 6 is
real analytic, it follows that a ¢ 6(C) and then « ¢ 0(C), so that 0(C) = C\{«, a}
by Lemma 11.1.2. Hence §(C*) = (C) N C* = C* \ {a}.

Finally, when x € R is not a pole of 0, then also 6§ — §(z) is real analytic and
maps CT into itself. Hence, by what we have already proved, z is a simple zero of
0 — 6(x). Therefore

O(A) =0(z) + (A —x2)h(N),

where h is real analytic in a neighbourhood of z and h(z) # 0. Since
Imé(x+ic) >0 fore >0,
it follows that 1
Reh(xz +ic) = . Im6(x 4 ie) > 0.
By continuity,
0 (x) = h(z) = li\r‘r%J Reh(xz +ig) > 0,
€

and 6'(z) > 0 follows since h(z) # 0. O

Remark 11.1.4. In Lemma 11.1.3 one may impose the weaker assumption that
0 only maps the domain of € in the open upper half-plane into the open upper
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half-plane, i.e., 0 is allowed to have poles in C*. Then —é maps the open upper
half-plane into the closed upper half-plane, and a pole of § becomes a zero of — é.
However, since a nonconstant analytic function maps open sets into open sets,
see, e. g., [55, IV.7.5], — 9(&) would have negative imaginary part for some X in the
open upper half-plane, and so also 6(X). This proves that § cannot have poles in
C*. By the same reason, allowing 6 to map the open upper half-plane into the
closed upper half-plane would imply that either §(C*) C C* or 6 is constant.

Lemma 11.1.5. Let p and q be real polynomials with degp = deg g+ 1 and such that
all zeros of p and q are real and simple and interlace. Then p and q is a real pair.

Proof. By Definition 5.1.3 we have to show that all zeros of up+ 1q are real, where
w,¥ € R such that p? 4+ 92 > 0. This is trivial if 4 = 0 or ¥ = 0 or degp = 1.
Hence it is sufficient to consider p 4+ ¥¢q with ¥ # 0 and degp > 2. Choose two
adjacent zeros x; and z2 of p. By assumption, ¢ has exactly one zero between x
and xg, this zero is simple, and ¢q(z1) # 0, g(x2) # 0. Therefore ¢(z1) and ¢(x2)
are different from zero and have opposite signs. From p(z;) + ¥q(z;) = ¥q(z;) for
j = 1,2 it then follows that p+1J¢q changes sign between z; and z2. Since there are
deg p — 1 pairs of such numbers x; and x3, p+ ¥q has at least degp — 1 real zeros.
But p + Yq is real, so that nonreal zeros must occur in pairs of a number and its
conjugate complex number, i.e., the number of nonreal zeros must be even, and
it follows that p + ¥¢ cannot have any nonreal zeros. O

The following theorem clarifies the statement and proof of [173, Theorem 1,
p. 308].

Theorem 11.1.6. A real meromorphic function 8 on C maps the open upper half-
plane into itself if and only if 6 is represented in the form

o(\) = 08:2‘3‘ 11 (1 - bi) (1 - 2)_1, (11.1.2)

+ keI;,b

where C' > 0, the sets a, b, I,, Iy satisfy the properties as layed out in Remark
5.1.6, in particular aUb # 0, and where k € I&,b means that the factors (1 - A )

(2

occur for k € I, \ {0}, the factors (1 — bi) occur for k € Iy \ {0}, that is, if for

some k only one factor occurs, then the non-occurring factor has to be replaced by
1, and, similarly, A\ — ag and A\ — by have to be replaced by 1 if 0 & a or by —1 if
0 € b, respectively.

Proof. Assume that 6 is of the form (11.1.2). We will first consider the case that

Iy = I,. The series
Z 1
ag bk

kel.\{0}
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converges absolutely if it has infinitely many terms. For example,
Z ( 11 )
=1\ br

is a series of differences of positive interlacing numbers which is therefore bounded
above by all. Since the functions

-1
ag

are uniformly bounded on compact subsets of C not containing the points aj, with
bound independent of k, it follows that the series

S ) ) e s () ()
keI \{0} bk @k keloqoy N Dk @

converges uniformly on such sets.
For all k € I, \ {0} we have axbr > 0 and therefore

A
"
arg /\k =arg(A — br) — arg(A — ag).
1—
ar

Denoting a = arg(\ — ai) and 8 = arg(\ — by), the sketch

A

k-1 bp—1 @k b Qk+1 b+1

shows that for Im A > 0 this argument is the angle subtended by the segment
[ak, bi] of the real axis from the point A. Since

argf(\) = Z [arg(A — by) — arg(A — ay)],
kel,

it follows that 0 < argf(A\) < 7 if Im A > 0, i.e., §(CT) C C*.
Next we consider the case that I, = I, — 1. Interchanging a and b we have
an interlacing pair a = b, b = a with I; = Iz. Then

() = j:g‘] 1T (1— zi) (1‘ ai)l
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defines a real meromorphic function which satisfies ¢)(CT) C C* by the first part
of the proof, and thus i(CJ’) C C~. In order to relate 6 to 1 we have to investigate
the indexing of the zeros and poles of € and .
If 0 € I, then by = a1, g = by shows that
A— a1

s =% =y <.

ai

Hence §(C*) C C*.
If 0 € Iy, then by = ag, a9 = b_1 shows that

1—
I = (~0) , _ g_ll - <o

Hence §(C*) c C*.
If 0 € 14N 1y, then we consider two subcases. The first subcase is that by = a1,
Zlo = bo, b,1 = ap, SO that
A
A—ar 1730, _om

0 - b !
e =cy TS =t

< 0.

The second subcase is that 50 = ag, a9 = b_1, a1 = by, so that

1= A i
_ -1 —d1r 1
BN =0 7T » =c," <o

Finally, we have to consider the case that I, and I, are finite with differ-
ent magnitude. If §(\) = a € R, then writing § = g where @ and P are real
polynomials with real interlacing zeros, it follows that Q(A) — aP(\) = 0. Lemma
11.1.5 implies that A € R. Therefore (C*) NR = (). Since §(C™) is connected, we
conclude that §(C*T) c C* or (—6)(C*) c C*.

If # has more zeros than poles, let \g be the smallest zero and define

A—b
OVESCEPON | N
k€l

As for 6 above, we conclude that (CT) C C* or (—¢)(C*) c C*, and with the

aid of
H Ao — bk
A

—a
ker, 0T Yk

and Lemma 11.1.3 we conclude that (—)(C") C C* is impossible, which shows
that ¢(CT) C CT. Observe that \g = by if and only if 0 & I,,.
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In case 0 & I, we therefore have

12X
oy =co-x) IT %
kel, =~ ak
ar A — bk
=c(=2) []
kel bk A— Ak
a
=C [ e

k€l
so that (C*) c C*.

If 0 € I, then Ay < ag, so that A\g = by for some k < 0 and therefore Ay < 0.

Then
A
—bo H 1-— b
—ag 1— A
kel \{0} ak
C A—Db ap A —b
=TT —0 bk)\—ak
0 per oy k
C ar
O per\foy F
so that (C*) c C+.

If # has more poles than zeros, let @ = —b, b = —a, I3 = —Ip, I; = —1q, so
that a_, = —by, anNd b_r = —ay for the relevant indices k. Note that this setting
is consistent since b_1 = —a; <0 < —b_1 = a;. Let

- A —bo)_ A A\
=G 0 00
(A —ao)+ hel” b, ak

a e () ()
= i 1+ 1+
(A —ao)+ kelgh ak b,
We note that 0 € I, because we have more poles than zeros. If also 0 € I, then
A — bo . -\ — ao
A—ag —A—Dby’
whereas if 0 € I, and hence 0 & I3, then
(A —bo)— 5
(A —ao)+ (=A—=bo)-"
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Thus in either case

Since 6 is real meromorphic with more zeros than poles, it follows from the previous
case that §(CT) C CT and then §(C~) ¢ C~, so that (CT) c C*.

Conversely, assume that 6 is a real meromorphic function such that §(C)+ C
C*. By Lemma 11.1.3 the zeros and poles of 8 are simple and interlace. Denoting
the sets of zeros and poles by a and b, respectively, we have a U b # () by Lemma
11.1.3. It follows by the first part of the proof that the real meromorphic function
¥ of the form (11.1.2) with C' = 1 maps the open upper half-plane into itself.
Then f = Z is a meromorphic function without zeros and poles, i.e., an entire
function without zeros. Therefore there is an entire function h such that f = h2,
see [55, Theorem VIII.2.2]. We have to show that f = C' with a positive constant
C. Since (C*T) ¢ C* and (Ct) c C*, it follows that f()\) ¢ (—o0,0] for all
A € CT, and similarly for all A € C~ because f is real analytic. Since f is real on
the real line, either f(R) C (0,00) or f(R) C (—00,0). Therefore h(C\R) C C\iR
and h(R) C R or A(R) C iR. Since h is never zero, it follows that hA(R) is a subset
of (0, 0), (—00,0), (0,i00), or (—ico, 0). In any case, one of (0, i00) or (—ico, 0) has
no common points with A(C). By Lemma 11.1.2, this implies that & is constant.
Since this constant must belong to hA(C \ R) and h(R), this constant is real and
nonzero, so that f = C with a positive constant C. ]

Remark 11.1.7. If we only assume that a and b interlace without the requirement
of the particular enumeration from Remark 5.1.6, with a possible gap for the index
0 in the index sets, and where (A — ag)— is possibly replaced by (A — ag)+, where
0 € aUb is allowed and where we only require C' # 0, then it is clear that this
representation of 6 is a nonzero constant multiple of that in Theorem 11.1.6. Hence
f(C*t) Cc C* or (—6)(C*) c C*. By Lemma 11.1.3, this weaker assumption and
0'(z) > 0 for some x € R would be necessary and sufficient for § to map the open
upper half-plane into the open upper half-plane.

Corollary 11.1.8. Let 0 be a real meromorphic function which maps the upper half-
plane into itself. Assume that the set of poles of 0 is bounded below and that the
smallest pole of 0 is smaller than the smallest zero of 8. Then there are positive
constants c1, ca, and v such that

al NP <0 <o for A< —.

Proof. If we take any two factor in (11.1.2) corresponding to a pole and a zero, the
corresponding limit as A — —oo0 is a nonzero constant, and it is therefore sufficient
to consider an infinite product
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with 0 < ap, < br, < aky+1 < bgg+1 < ---. Then we conclude that
A M\ apbr — aph
1-— 1-— = 1 forA<0, k>Fk
( bk> ( ak> arpbr — b\ < orA<b, ="

which proves that |0(\)| < cq for suitable ¢,y > 0 and A < . Similarly,

-1
<1_)\><1_ )\> Zak+1bk_ak+l>\>l for A <0, k > ko,

by G+1 ak+1bg — bEA
and )
1= ) 2% 4o(1)) for A< 0
(2779 B A
proves that |§(\)| > c1|A\|~! for suitable ¢1,7 > 0 and \ < 7. O

The following lemma is a particular case of [173, Theorem 1, p. 224 and
Theorem 2, p. 225]. For convenience of the reader we provide a proof, taking just
those parts of the proofs in [173] which are needed for this special case.

Lemma 11.1.9. Let ¢ be analytic and bounded on Ct and let |yp(N)] = 1 for all
A €R. Let ay,aq,... denote the zeros of 1, counted with multiplicity. Then

(o0)

D

k=1

Im
ag

Proof. The zeros may be indexed in such a way that |a;| < |a;41]. Let € > 0 such
that |a;| > e for all j and let R > € such that |a;| # R for all j. Let C be the
positively oriented boundary of the region given by ¢ < |[A| < R, ImA > 0 and
consider the contour integral

1 1 1
J = o /C <R2 - /\2> log () dA.

Here we have to observe that J depends on the choice of the branch of logy. We
first choose a fixed branch on the semicircle in the upper half-plane with centre 0
and radius R. Then, for each such R, we extend this branch of log ¢ to a continuous
branch along C, say, starting and ending at €. Then

g= 1 /R L PY Y(z)de + ! /Tr L log 1 (Re™)Re' df
Tomi ). \R2 T 22)® or Jy \R2~ R2 )®

I
]
"o /_R <R2 x2> g (@)dr

i1 /0 L e e (eei®)ee df (11.1.3)
or | g2 o2 ) logi(ee®)ze” db. 1.
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On the other hand, integration by parts yields

J= 2;@0 K}; + i) 1og¢(x)} - 271”, /C (1; + i) i&; d (11.1.4)

where ®¢ denotes the increase of the function along C, starting and ending at
e. By the argument principle, this increase equals 27i(e/R? + 1/¢)n(R), where
n(R) is the number of zeros of ¢ with modulus less than R. We recall that the
assumptions on ¢ imply that all zeros (ak)gcozoi of 9 lie in C*. The residue theorem
shows that the second summand in (11.1.4) is

5 ()
_ ) .
=1 R Qg

Equating imaginary parts of (11.1.3) and (11.1.4) gives

™ n(R)
1 . i0 A 1
71_R/O sinflog [¢(Re")|df + A (¥, R) = — ,;:1 Im <R2 + ak) . (11.1.5)

where

1 0/ 1 e—2i0 ) )
Ac(Y,R) =Im / < ~ ) log 1 (e'®)ee®® df

B 217r /ER (];2 - xlz> log [¢(2)i(—z)| da.

Since 1 is bounded in the closed upper half-plane, log || is bounded above, and
therefore the left-hand side of (11.1.5) is bounded above as R — oco. For 1 < k <
n(R), the identities

‘Im 1 = ’Im @k =Im @k :Im( @ ak) R?
ak |ak|? |ak|? lag|>  R?) R? —|ak|?
_ <Imak B Imak> R? _ <Im L Imak> R?
lag |2 R2 ] R? — |ag|? ay R2 ) R? — |ag|?

=—Im 1 + a U
B ag R?) R? — |ak|2

show that the right-hand side of (11.1.5) is a sum of positive terms. Choosing now
r > ¢ and R > 2r such that |a;| & {r, R} for all indices j, the above identity gives
for k=1,...,n(r) that

1 Qg 4R2 4 1 Qg
I <1 _ Y
‘m = m(ak+R2>4R2—R2 3 m(ak+R2 ’

ag
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so that
n(r)

D

4 (&) 1 ag
< - E I .
- - 3« o (ak + R2>
Jj=1 Jj=1

Then (11.1.5) and the fact that the left-hand side of (11.1.5) is bounded above as
R — oo complete the proof. O

1
Im
a

11.2 Sine type functions

Definition 11.2.1. An entire function w is said to be an entire function of finite
order if there is k > 0 such that

wN)] < e’

for all A € C with sufficiently large modulus. The largest lower bound of all &k for
which this estimate is true is denoted by p,, and is called the order of w.

For a different characterization, we introduce the following notation. For an
entire function w and r > 0 let

M, (r) = ‘rilla:i lw(A)]. (11.2.1)

If w is not a constant function, then M, (r) — oo as r — oo by Liouville’s theorem.
Then los los M
p = pw = limsup oglog Me,(r) (11.2.2)
r—00 logr
is well defined with p,, € [0, 0], w is of finite order if and only if p, < oo, and in
this case p,, is the order of w, see, e.g., [173, p. 3].
For a nonconstant entire function w of order p one may fine-tune the defining

estimate by considering the inequality
| M (r)] < e
Similar to (11.2.2) we now define, see [173, p. 3],

log M, (r)
rPo

(11.2.3)

o = o, = limsup
77— 00

Definition 11.2.2. An entire function w of finite order is said to be of minimal type
if 0 = 0, of normal type if 0 < o < oo, and of maximal type if o = co.

Definition 11.2.3. An entire function w is said to be of exponential type if

log M,
o =0, = limsup 0g Mo (r) < 00, (11.2.4)
r

r—00

and then the number o is called the exponential type of w.
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The definitions immediately show the following characterization.
Remark 11.2.4 ([173, p. 84]). An entire function w is of exponential type if and
only if
(i) w is of finite order p less than 1, in which case its exponential type equals 0
or
(ii) w is of finite order p = 1 and minimal or normal type, in which case its
exponential type equals its type.

If in the above definitions we restrict the function w to the upper or lower half-
planes, then we obtain corresponding definitions of order, type, and exponential
order in that half-plane.

Definition 11.2.5 ([176, §1]). An entire function w of positive exponential type is
said to be a sine type function if

(i) there is h > 0 such that all zeros of w lie in the strip {\ € C: [Im A| < h},
(i) there are h; € R and positive numbers m < M such that m < |w(\)| < M
holds for A € C with Im A = Ay,

(iii) the exponential type of w in the lower half-plane coincides with the exponen-
tial type of w in the upper half-plane.

For convenience, we introduce the functions w,, n € R, defined by
wp(A) =w(A+1n), AeC. (11.2.5)
Let f be a function which is analytic on an angular domain
S =846, ={N: 1 <arg < ¢o},
and continuous on S. We will refer to such functions as functions on S. Define

M r) = max re'®)|, r > 0.
finoar) = max [f(re”)

Lemma 11.2.6. Let w be a function of exponential type o and let n € R.

1. wy is a function of exponential type o.
2. If there are hy € R and a positive number M such that |w (X)| < M holds for
A € C with Im A = hy, then there is M, > 0 such that

|lwn(A)| < My, ™A X e C. (11.2.6)
3. If w is a sine type function, then also wy is a sine type function.

Proof. 1. From the definition of the maximum modulus function (11.2.1) and the
Maximum Modulus Theorem we have M, (r —[n|) < M., (r) < M, (r 4+ |n|) for all
r > |n| and therefore

log My,(r — |n]) log Mo, (r) log My,(r + [n])

o = limsup < lim sup < lim sup =0,
r—00 r r—00 r r—00 r

which shows that w, is of exponential type o.
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2. First we are going to prove (11.2.6) for n = hy. For € > 0 define
c(A) = wp, V)T N e C.
Pe( :
Then, in view of
9= (W)] = lwn, (V]e” TN N e C,

it follows for all £ > 0 that 1. is bounded on the real axis as well as on the positive
imaginary semiaxis since the type of wp, is 0. Applying the Phragmén-Lindel6f
principle in the form of [55, Corollary V1.4.2] to the first and second quadrants in
the upper half-plane, it follows that 1. is bounded on the closed upper half-plane
for all € > 0. Then [55, Corollary VI.4.4] shows that also 1y is bounded on the
closed upper half-plane. Hence there is M, 5, > 0 such that

why (A)]e™7 A < My p,, TmA > 0.

Since also wp, is of exponential type o and bounded on the real axis, the above
estimate also applies to wy,, and therefore

wn, (A)|e” ™ < My, p,, Im A <0,

where we can take the same constant in both estimates.
The estimate (11.2.6) for arbitrary 7 now easily follows from this special case:

g (W] = lwny A+ (= ha))| < Moy e P10 < M g 1=l AL

3. Clearly, properties (i) and (ii) in Definition 11.2.5 also hold for w,, with h
replaced with h + || and hy replaced with hy — 7.

In order to show property (iii) in Definition 11.2.5 we observe that, by (11.2.6)
and the maximum modulus principle,

Mwn,O,Tr(r) + Mw,OeUW > Mwn,O,Tr(T) + max{\w()\)\ : \Re)\| <7, [ImA| < |77‘}
> max{lw(N)| : |\l =7 — [gl, TmA > 0}
= Mq,0,(r — |n)

for r > |n|, which gives

log M, T log M, o.~(r —
o > limsup & Moy 0.m(r) > lim sup 08 Mes0.x(r = [n]) = .

r—00 T r—00 r

Hence the type of w,, in the upper half-plane is . Similarly, we obtain that the
type of w,, in the lower half-plane is o. ([l

The following lemma is a special case of [172, Lemma 2].

Lemma 11.2.7. Let w be a sine type function. Then there is a natural number
{ such that for each t € R the number of zeros of w inside the vertical strip
Sy ={AeC:t<ReX <t+ 1}, counted with multiplicity, does not exceed {.
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Proof. Suppose the statement of the lemma is false. Then there is a sequence of
real numbers (t;)32; such that for each j, the entire function w; = w(t; + ) has at
least j zeros in the strip Sp. In view of Lemma 11.2.6, part 2, the sequence (w;)52
of entire functions is locally bounded. By Montel’s theorem, see [55, VIL.2.9], we
may assume that the ¢; are chosen in such a way that (wj)jo.';l converges uniformly
on compact subsets of C to some entire function @. In view of Definition 11.2.5,
(ii), it follows that |w(x+ih1)| > m > 0 for all x € R. Therefore @ is not identically
zero. With h from Definition 11.2.5,(i), we choose R > h + 1 such that & has no
zeros A with [A| = R. From Definition 11.2.5, (i), it follows that all zeros A of w;
in the strip Sy satisfy |[A] < R, which implies that w; has at least j zeros with
|A] < R, contradicting the fact that this number must be constant for sufficiently
large j by Hurwitz’s theorem, see [55, VIL.2.5]. O

Proposition 11.2.8. Let w be of sine type and let n,(r) be the number of zeros A
of w with |A| < r, counted with multiplicity. Then:

1. w has infinitely many zeros.

2. There is a number d > 0 such that ny,(r) —ny,(r — 1) < d for all r > 1.
3. There is ¢ > 0 such that n,(r) < c+dr for all r > 1, where d is as in 2.
4. The nonzero zeros ay of w, k € N, counted with multiplicity, satisfy

[eS)
k=1

Proof. 1.Tf w has no zeros, then the standard form of w, see (5.1.3), is w(\) = e?**¢,
A € C, where b,c € C, and it is easy to see that the type of w is |b|. Since w is of
sine type, there are hy, M € R such that

eRee—mImberReb _ 10 4 ih))| < M, z €R, (11.2.8)

1
Im = | < oo. (11.2.7)
ag

whence Reb = 0. Then |w(x + iy)| = e7¥IMbeRec 5o that w would be bounded in
C* or C™, contradicting the fact that w must have the same positive type on CT
and C~ by Definition 11.2.5, (iii).

Now assume w has finitely many zeros. Then the standard form of w is
w(A) = e’**ep()\), A € C, where b,c € C, p is a nonconstant polynomial, and
b # 0 since the order of w is 1. Observing that |e?(*+#1)+¢| has a positive lower
bound in the set {x € R: 2z Reb > 0} and that [p(\)] = oo as |A| — oo, it follows
that w is not bounded on any horizontal line {z + ih; : € R}, contradicting
property (ii) of Definition 11.2.5 of functions of sine type. Hence w has infinitely
many zeros.

2. Because of Definition 11.2.5, (i), and Lemma 11.2.7 it is obvious for r >
5(h? +3) that all zeros of w inside the annulus {A € C : r — 1 < [A] < 7} lie
inside the two vertical strips —r < ReA < —r+2and r — 2 < Re X < r. With /¢
from Lemma 11.2.7 it follows that n,(r) — ny(r — 1) < 4€if r > 1 (h* + 3) and
Ny (r) — nw(r — 1) < ny,(r) < €(h* +4) for 1 < r < J(h*+ 3). This proves part 2
with d = ¢(h? + 4).
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3. immediately follows with ¢ = n, (1) since ny,(r) < d|r] + ny (1) by part 2.
4. If we arrange the nonzero zeros of w in such a way that |ag| < |ag41]| for
all k € N; then it follows from part 3 with r = |ay| that

k < n(lak]) < ¢+ d|ag]

and hence
Z jar] ™" < Z (k — c)2 < o0
k=lc]+1 k=|c]+1
But . B | L
mapg
Im = , 11.2.9
= e < (129
and the estimate (11.2.7) follows. O

Later in this section we will substantially improve our knowledge on the
location of the zeros of w; however, the rough estimate in Proposition 11.2.8 is
needed for the proof of the refinement.

Next we will prove an auxiliary result which roughly says that a slight move-
ment of the zeros of the above form does not change the estimates of the function

too much. For this we introduce the following notation, based on Proposition
11.2.8.

Notation 11.2.9. A sequence (bg)52; in C\ {0} is called a pseudoregular sequence if

(i) the number n(r) of k € N with |b| < r is finite for all r» > 0,
(ii) there is a number d > 0 such that n(r) —n(r —1) < d for all r > 1.

Remark 11.2.10. From the proof of Proposition 11.2.8 we know that a pseudoreg-
ular sequence (by)52, satisfies n(r) < (d + 1)r for some d > 0 and all » > 1 and
that (b, )32, € ¢2. Clearly, if (b)$2, is a pseudoregular sequence and if (cx)3,
is a sequence in C\ {0} such that (cy — br)72; is bounded, then also (c)32, is a
pseudoregular sequence. Furthermore, since c,?l — b,;l = (b — ck)c,zlb,zl we have
that (c; ' — by 1)5o, € £

The following lemma is a generalization of [173, Lemma 5, p. 237].

Lemma 11.2.11. Let (bg)52, and (cx)72, be sequences in C\ {0} such that (br)32,
is pseudoregular and such that (cx — by)52, is bounded, and consider

f()\):f[<1—2€> (1—[2)1, AeC\{b;:keN}.

=1

Then f converges uniformly on compact subsets of C\ {by : k € N}, and for all
0 >0,

1 i
lim sup & 7€) < (11.2.10)
T

r—00
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uniformly for all ¢ € [—m,«| on the set of re’® € C with |re'® — by| > § for all
ke N, and

1P
log £ (re)| __

lim inf (11.2.11)
r—00 r

uniformly for all ¢ € [—m,«| on the set of re’® € C with |re'® — cx| > § for all
ke N.

Proof. For k € N let

Then we can write

1 1

log | (M| = log|1 + A% ¥
1_

bi

From log|1 + z| < log(1l + |z]) < |z| for all z € C\ {—1} it therefore follows with
r = |A| that
log [f(M] _ lex —bx| 1
roT ’1 A b Jex|

bi

Since 1 — b>l\c — 1 as k — oo and since (b 1), (¢ 1)5, € 2, we can deduce
that the series over k£ on the right-hand side converges locally uniformly for all
A € C\ {by, : k € N}, which proves the stated convergence of the infinite product
f and gives the estimate

log[FN] _ o= lex = bk 1
. <> . (11.2.12)

= A bkl lexl
bi

To prove (11.2.10), let 6 > 0, m = bup |er, — b| and consider A € C such that

r=|A>m+d+1and |A—bg| > for all k € N. We may assume that |by| < |byy1]
for all k € N. Then, in view of (11.2.12), we can establish the estimates

loglf
Z |kl \bk = Al

n(r—5) m n(r+9) m
+
,; k] (r = [br]) k_ng_:ém(bk—%—bkﬂbk—/\
n@n) m > 2m
+ + . 11.2.13
2 ol -n T 2 ey (219

k=n(r+d)+1 k=n(2r)+1
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We are going to show that each of the four sums tends to 0 as r — oo. Let d be
the number from Notation 11.2.9. Then the second sum has at most [2d]d terms,
and it follows that

n(r+34) m n(r+34) m
< — 0 (11.2.14)
ke n(g:é +1 (‘bk‘ |Ck - bk|) ‘bk - )\| k-n?&)«}l (T —-m — (5)(5 r—00

since each summand tends to 0 as r — oo. Since the fourth sum is the tail of a
converging series, we have

>, 2

) A— (11.2.15)
. |k [br| r—o
=n(2r)+1

For the first sum we observe that there are at most [m + 2]d indices k for which
|bs] < m + 2 and at most d indices k such that 6 < r — |bg] < 1. For each of
the remaining indices k& we can find an integer j € {1,..., |r —m — 2]} such that
Jj <7 —|bg] <j+ 1. Since (b)), is pseudoregular, for each such j there are at
most d indices k£ with this property. For such index k, we have
lek| >r—(r—|bg]) —|bk —ck| >2r—F—1—-m>|r—1—m] —j.
Altogether, we have the estimate
n(r—>4)

Z 1
|ex| (r — [bk])

[r—m—2]

[m+2]d d 1
< +d o
co(r—-m-—2) (r—m-—1)0 J; (lIr=1—m] —3)j
where ¢p is the minimum of the |c|, k¥ € N. We calculate
n—1 n—1 n—1
1 1 1 1 2 1 2
N )= .= (logn +n),
;(H—J)J ”;(”—J J> H;J n )

where 7, — 7 as n — oo and « is Euler’s number, see [55, VIL.7.5]. Therefore

n(r—>24)
3 " — 0. (11.2.16)
2 oyl (- [bl) 7=

Finally, the third sum in (11.2.13) can be estimated in a similar way to the
first sum. The corresponding ¢, have modulus at least r + 6 — m, so that an
estimate of the third sum follows indeed from that of the first sum. We do not
need a better estimate, and therefore we are content to state

n(2r)
3 [:n — 0. (11.2.17)
2 e ()

The estimates (11.2.13)—(11.2.17) immediately imply (11.2.10).
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Interchanging by with ¢; will result in replacing log|f(\)| with —log|f ()],
and (11.2.11) will follow from (11.2.10). O

As in Proposition 11.2.8, let ay, k € N, be the nonzero zeros of the sine type
function w, where we assume without loss of generality that the modulus increases
with the index, that is, |ax| < |ag+1| for all k& € N. We will use the following
notations:

Uw,s ={r € (0,00) : Vk € N |r — |ag|| > 6}, 6 >0, (11.2.18)
Ey5 = (0,00)\Us.s, >0, (11.2.19)
EW#S,”‘ = w,0 n (0,7‘), (5,7’ > 07 (11220)

Corollary 11.2.12. Let w be a sine type function. Then there exists § > 0 such that
for all v > 1, the set U, s N (r,r + 1) contains an interval of length at least 20.

Proof. With d from Proposition 11.2.8, part 2, (r,7+1)NU,, s consists of at most
d+ 1 intervals, whose total length is at least 1 — 2dd. Hence every positive § with
d < (4d +2)~! will satisfy the statement of this corollary. O

Remark 11.2.13. Let w be a sine type function and let (ak)g:i be its zeros, counted
with multiplicity, in the upper half-plane. From Lemma 11.2.11 we know that
defined by

Xo (A) = ﬁ) (1 - Oi) (1 — ol)l (11.2.21)

k=1

is a meromorphic function which converges absolutely and uniformly on compact
subset of C\ {«ay : k € Z}, and therefore in particular on compact subsets in the
closed upper half-plane. Indeed, x7 is a function as considered in Lemma 11.2.11
if (ar)?2, denotes the zeros of w and if we put ¢, = a, for all k € N, by, = ay, if
Imay <0, and by = ag if Imag > 0.

Corollary 11.2.14. Let w be a sine type function. Then

1 + i}
i 108 x5 (re'?)]|
.

r—00

=0 for all ¢ € [0, 7],

where for all § > 0, the convergence is uniform on all A\ € Ct such that |A\—ay| > §
for all indices k.

Proof. For ¢ = 0and ¢ = m, that is A € R, we have |x (\)| = 1, and the statement
of the lemma is trivial in this case. The general result now follow from (11.2.11)

and the fact that [y} (\)| <1 for A € Ct. O

We need the following generalization of the Schwarz reflection principle.
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Lemma 11.2.15. Let f be analytic on CT such that the absolute value of f has a

continuous extension to Ct which is 1 on the real axis. Then f has a meromorphic

1
extension h to C, and h(\) = for all X € C~ with f(X\) #0.

)
Proof. Let P ={\ € C~ : f(X) = 0} and let Q be the set of all A € C such that
the line segment connecting ¢ and A does not contain any of the points of P. It is
clear that ) is an open set containing C+. For A € C\ (RU P) let ho(\) be defined
by f(A) if ImA > 0 and by f (1/\) otherwise. It is clear that hg is a meromorphic

function in C\ R with poles at the points in P. We are going to show that hg has
an extension h to the real axis which is analytic at each point on the real axis. For
A € Q define

g(N) = / (A= Vol + t(A — ) dt.

that is, g(\) is the integral over hg along the straight line segment from i to A.
This integral is well defined since the integrand is bounded and continuous on Zy,
where Z, = [0,1] if A € C*, and Z, = [0,1] \ {to} in case A € C—, and where ¢ is
the one value of ¢ for which i 4+ t(Ao —¢) € R. For A, Ao € Q we have

9% — g(h0) = / (= i)holi + A — 1)) — (o — holi + t(ho — )] dr,

where the integrand is uniformly bounded for A in any compact neighbourhood
of Ao in €2, and converges to 0 pointwise as A — Ao for all ¢ € 7,,. In view of
Lebesgue’s dominated convergence theorem it follows that g is continuous on €.

Clearly, since f is analytic in the open upper half-plane, also g is analytic in
C*, and a straightforward calculation shows that ¢’ = hg in C*. Furthermore, if
Ao, A € N C~ such that the line segment I'y, » from A to A is contained in €2,
then

g(A) —g(h) = / ho(z)dz. (11.2.22)
Ixga

Indeed, since hg is analytic in  \ R, by a standard argument using Cauchy’s
integral theorem, it suffices to show that the contour integral over hg along the
quadrilateral with vertices a4, +ie and b4, *ic with a4., b4, € R for sufficiently
small € > 0, a4 — a, by — b and a < b, tends to 0 as € — 0. Since hg is locally
bounded, it suffices to show that

b
I :/ |ho(t + i€) — ho(t —i€)|dt — 0 as e — 0.

The integrand

1

15+ 1 L

’f(tﬂg) Tt +ie)
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is uniformly bounded in ¢ and ¢ and converges to 0 pointwise for all ¢ € [a,b] as
¢ — 0. This completes the proof of (11.2.22), and the Fundamental Theorem of
Calculus shows that g is analytic in QN C~ with ¢’ = hg in QN C~.

Let T be a triangular path which together with its interior lies in . If T is
in CT or C™, then Cauchy’s integral theorem shows that

/Tg(z) dz=0.

Since g is continuous, this extends to the case when T is in C*t or in in C—, and
therefore to arbitrary such T in Q. But by Morera’s theorem, see [55, Theorem
IV.5.10], this means that g is analytic in Q. Hence also ¢’ is analytic in €2, and since
g = ho on Q\ R, it follows that ho has an analytic extension h to C\ P, which,
in particular, is analytic at each point of the real axis and which is meromorphic
on C with h(X) = ho(A) = f(lA) forall A € C™\ P. O
The following result is a special case of [173, Theorem 5, p. 240].
Lemma 11.2.16. Let w be a function of sine type o with hy = 0. Then

dt

gy 42 TOWIFlog XV (11:223)

|yl /°°
1 A= 1 t
oglo] = " [ tog o),
for all X = x + iy € C with w(\) # 0, where

_xd)  if ImA >0,
X(A)_{Xj(x) if Tm X < 0.

Proof. Tt suffices to prove the results for Im A > 0 since also w is a function of sine
type o with h; = 0. The function v on C* defined by

y [ dt
= log |w +
u()\) T /_ 0g | (t)| (t 1’)2 y2 gy

is well defined and satisfies

|u(A) — oy| < max{|log M|, |logm|} =: My fory >0 (11.2.24)

y/oo dt 1
T ) G =22y

where m and M are the constants from Definition 11.2.5, (ii). From

since

y = —Im A=t = —Im 1
(t—2x)2 492 IA—t2 A—t
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and a standard argument it follows that w is harmonic. Furthermore, for zg € R
we have

W) — olul — g )| i /_oo log |°L(’Iftz|x—)210—'g_ ;2(330”

so that for all § > 0 and A € (zg — d, 29 + J) x i(0,0),

dt,

|[u(N) = aly| = log |w(zo)|| <

v [ emlett] el
T Jlt—ao|>26 (t — )2 + y?

_|_

V[ sl bk,
T Jt—ao|<28 (t —x)% +y?

4My (7 ) 2 36
—arctan | + sup  |log w(t)| — log |w(wo)|| arctan
T \2 Y) T |i—ao|<2s

4M0 e
s 2

)
— arctan > + sup |loglw(t)| —log|w(zo)]|.
Yy ‘tfa:o‘<25

Now let £ > 0 and choose 8,01 > 0 such that  sup |log |w(t)| — log |w(zo)|| < ;
|t7w0‘<25

4M,
™

é
and (ﬂ — arctan ) < ; Then it follows for A € (zg — §, 20 + §) x i(0, 1)

2 01

that |u(\) — oly| —log |w(zo)|| < e. Therefore u has a continuous extension to C*,
given by u(z) = log|w(x)|, * € R. Let v : CT — R be a harmonic conjugate of u
on C* and define

P(\) = w(\)e Tt TN Ty e CF,

For x € R we have in view of u(z) = log |w(x)| that |¢)(z)| = 1 defines a continuous
extension of the absolute value of 1) to C*+. By the Schwarz reflection principle,
see Lemma 11.2.15, ¥ can be extended to a meromorphic function on C without
poles in C*. Since w is of sine type o, it follows from Lemma 11.2.6 that there is
M, > 0 such that

(N < Myeo?=*XN) < MieMo, N e CH,

where we have made use of (11.2.24) in the last estimate. Hence |¢(\)| < 1 for all
A € Ct+ by the Phragmén-Lindeldf principle, see [55, Corollary VI1.4.2]. With the
notation from x;, we define

(n) -1
A A
+ — | I _ —
Xn ()\) - (1 Qg ) (1 Olk;) ’

k=1
where (n) means that we extend the product over all indices k = 1, ..., n for which

ay, exists. Since |x;" (A)| — 1 as |A| = oo and |x;7 (\)| = 1 for A € R, it follows that

¢n_¢

X
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is meromorphic without poles in the closed upper half-plane and bounded in the
closed upper half-plane with |[¢,(A)] = 1 for A € R. Again by the Phragmén—
Lindel6f principle, |1, (A)] < 1 for all A € Ct. In view of Remark 11.2.13

oo = lim oy = ‘ﬁ
n—oo X‘-’-"

exists. Since both 1 and x are analytic in the closed upper half-plane and their
zeros there coincide, with multiplicity, ¥, is meromorphic without zeros and poles
in the closed upper half-plane. The properties of the 1, carry over to the limit so
that |9eo (A)| < 1 for A € C* and |¢oo (A)| = 1 for A € R. By the Schwarz reflection
principle, see Lemma 11.2.15, 1o has no zeros and poles in C. Hence

¢ = —ilog oo

is a real entire function satisfying o(C*) C C*. If ¢ maps the open upper half-
plane into itself, then Lemma 11.1.3 shows that ¢ has exactly one zero, which is
real. In view of Theorem 11.1.6, there are real number a and § with o > 0 such
that p(A) = aX+ 5. If ¢ does not map the open upper half-plane into itself, then
@ must be constant by the maximum principle. This case is covered if we allow
a = 0 above. It therefore follows from the definition of ¢ that

log lw(A)] = u(A) +log [y ()]
= u(A) + Relog ¢ho (A) +log xS (V)]
=u(A) — ay + log |xF (V)] (11.2.25)

for all A = z 4 iy € C*+ with w(X) # 0. To complete the proof we have to show
that a = 0.
To this end let (A\,)22; be a sequence in Ct such that |\,| = co as n — 0o
and | \
L Togl(h)

n—o0o |)\n‘

=0, (11.2.26)

which exists since w is of exponential type o in the upper half-plane. In view of
(11.2.6) we have

log |w(An)] Im /\n.

nh_)rréo N < "hﬁ{gf Dl (11.2.27)
From (11.2.26) and (11.2.27) it follows that
lim =1

n— oo |/\n‘ -
Then (11.2.26), (11.2.27), (11.2.24) and Corollary 11.2.14 lead to
log |w(An)]

o=tm T T

which proves that o = 0. ]
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The following lemma is a particular case of a result from [172].

Lemma 11.2.17. Let w be a sine type function of type o. Then there is a positive
real number my such that

lw(A)| > mye! ™A Im A > b +1, (11.2.28)

where h is chosen according to Definition 11.2.5.
Proof. Let hg = h + 1. First we are going to prove that there is mg > 0 such that
lw(z 4+ the)| > mo, = € R. (11.2.29)

Suppose that (11.2.29) is false. Then there exists a sequence (x;)72; of real num-
bers such that w(x; + ihg) — 0 as j — oco. Similar to the proof of Lemma 11.2.7
we may assume that w; = w(z; + -) converges uniformly on compact subsets to
an entire function @ which is not identically zero. By Definition 11.2.5, (i), none
of the functions w; has a zero in the open disc with centre ¢hy and radius 1. By
Hurwitz’s theorem, also @ has no zero there. On the other hand,

L:J(Zho) = leI{.lo Wj(iho) = jlirgo w(xj + Zho) =0.

This contradiction proves (11.2.29).

In view of Lemma 11.2.6 and (11.2.29), wp, is a sine type function with
h1 = 0. Now we can apply Lemma 11.2.16 to wp,,, which does not have any zeros
in the upper half-plane, so that x., (A) = 1 for ImA > 0. Then (11.2.23) and
(11.2.24) show that

|why (V)| > e Moo ImA Tm X > 0.

This proves (11.2.28) for ImA > h + 1. Applying this result to w completes the
proof. |

Lemma 11.2.18. Let w be an entire function of finite order, let 0, M and hy < hg
be real numbers and let

S={AeC:h <ImAe? < hy}

be a strip in the complex plane such that w is bounded on the boundary 0S of S.
Then w is bounded on S.

Proof. Let p be the order of w, choose « € (0, 27;) with @ < 7 and define

S; ={x€ S\ {0} : arg(Ne?) € (—a + jm,a+jm)}, j=0,1.

Clearly, 95, \ 9S and S\ (Sp U S1) are bounded sets. Therefore, w is bounded
on 05; for j = 0,1, and it suffices to prove that w is bounded on S; for j =0, 1.
But the boundedness of w on S follows from the Phragmén-Lindeldf principle, see
[565, Theorem V1.4.1], by a straightforward adaptation of the proof of [55, Corollary
V1.4.2] to subsets of angular regions. O
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The following result is mentioned in [176, §1].

Proposition 11.2.19. An entire function w of finite order is of sine type if and only
if there exist positive constants o, h, m and M such that

m < Jw(\)|e"omA < pr (11.2.30)
for |[Tm A| > h, in which case o is the exponential type of w.

Proof. First we prove that the condition is sufficient. Indeed, property (i) of Defi-
nition 11.2.5 is obvious since m > 0, whereas property (ii) holds with Ay = h and
m and M replaced with me?” and Me?", respectively. Since w is bounded on the
lines ImA = h and Im A = —h, Lemma 11.2.18 shows that w is also bounded on
the strip {\ € C : |Im\| < h}, where we may write the bound as M’e”" with
M’ > M. For |Im A| > h we have

‘w(/\)‘ §M60|Im/\| < M€o|)\\’

and therefore M, (r) < M'e’" for r > h. Hence w is of exponential type ¢’ < o.
On the other hand,
|w(Liy)| > me’ fory>h

shows that the exponential type of w is at least o both in the upper and lower
half-plane, and it therefore equals ¢ in both half-planes. We have thus shown that
property (iii) of Definition 11.2.5 holds.

The necessity of (11.2.30) immediately follows from Lemmas 11.2.6 and
11.2.17. |

The following lemma is a special case of [175, Theorem 2.2].
Lemma 11.2.20. Let w be a sine type function and for 6 > 0 let As be the set of
all complex numbers whose distance from the set of zeros of w is less than §, i. e.,
As={1eC:3¢eCw()=0 and |N—{(| <} (11.2.31)
Then for each § > 0 there exists ks > 0 such that
lw(N)| > ks for A€ C\ As. (11.2.32)
Proof. Assume that for some § > 0 such ks does not exist. Then there exists a

sequence of points ({x)72; in C\ As such that klim w(Cx) = 0. In view of the lower
— 00

bound in (11.2.30), the sequence (Im ¢x)$2 ; is bounded. Then wy, = w(-+(x) defines
a sequence of entire functions (wg)72; which is locally bounded in C because of
the upper bound in (11.2.30). By Montel’s theorem we may assume that (wg)3
converges to an entire function wp, choosing a subsequence, if necessary. Again,
the lower bound in (11.2.30) shows that wq is not identically zero, whereas

w0(0) = Jim wi(0) = Jlim w(G) =0.
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Then by Hurwitz’ theorem there exists kg such that for all £ > ko the open disc
with centre zero and radius § contains at least one zero of wy, which means that (i
has a distance less than ¢ to at least one zero of w. This contradicts ;, € C\As. O

Remark 11.2.21. Lemma 11.2.20 extends the lower bound in (11.2.30) to C\ As.
Indeed, it is easy to see that (11.2.30) and (11.2.32) lead to the following statement:
for any § > 0 there exists ms > 0 such that

e oMM |u(N)] > ms  for A€ C\ Ay, (11.2.33)
where o is the order of the sine type function w.

In order to give a more precise statement on the location of the zeros of sine
type functions, we need some preparations.

Definition 11.2.22. An analytic function f on S = Sy, 4, is said to be of exponential
type on Sg, g, if

log M
0 = 0§46, = limsup 08 My.61.6:(r) < 00, (11.2.34)

r—00 r

and then the number o is called the exponential type of f on S. The indicator
function of f on S is defined by

, 01 < ¢ < ¢o.

log | f(re'®)|

1 i
hf(¢) = limsup og|f(re®?)]
r—00 T

We will also write fo(QS) = hy¢(¢) if the limit of
r

f is analytic on S, then ns(r, ¢1, ¢2) denotes the number of zeros A of f in S with

A < 7.

From (11.2.30) and (11.2.33) we immediately obtain

Proposition 11.2.23. Let w be a function of sine type o. Then D, (¢) = o|sin | for
all angles ¢ € R\ Zw, where the convergence is uniform on each compact subset
of R\ Zr. Furthermore, for each § > 0, the following limit is uniform in ¢ € R:

as r — oo exists. If

1 P
L loglw(re®)]
r—00 r
reUy.s

The following result can be found in [173, pp. 142-143].

Lemma 11.2.24. Let ¢p1 < ¢o < ¢1+ 27, let f be an analytic function on the sector

Sy ={A € Sy, 4, : |A| <1} and assume that no zeros of f lie on the boundary of
S,. Then

"1 dlog|f(te'?)| / 1 dlog|f(te')]
Wﬂf(ra ¢1a¢2) /0 t a¢ ’¢:¢2 0 t 3(;5 d=c¢1
@2 1P
+r/ dlog|f(re'?)|

= ol sin ¢|.

dt

or do.

1
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Proof. By the argument principle, an integration along the boundary of S, gives

f tel¢‘1 f te’¢2
2ming(r, g1, ¢2) = (teitr) (teide)
o)
+zr/ e’ 0 do.
. f(re?)

From

i¢ P (4pid i¢ (i
Dlog f(te%) _ , f/(t%)  Ologf(te?) _ ., f(te")
o f(tei®) 96 f(tei®)
it follows that

r i¢1 T ,L‘¢2
Sring(r,n, ) — [ O CBSIEET) gy [T Dlog St ™)

0 ot 0 ot
?2 9log f(re'?)
de.
+f %
1 i 01
Using the polar form ? ;ff + 13 Bojyf = 0 of the Cauchy—Riemann equations

and taking imaginary parts completes the proof. O

Proposition 11.2.25. Let w be a sine type function of sine type o with |w(0)] =1
and define
1 ("1 te'®
J5 () = 7ﬂ/ Og‘”t( el dt, r >0, p € R\ Zm.
0

Then
lim J/(¢) = o|sing|, ¢ € R\ Z,

T—>00
uniformly on each compact subset of R\ Z.

Proof. Let € > 0 and let ® be a compact subset of R\ Zm. By Proposition 11.2.23,
there is rg > 1 such that

log |w(te™®
0g|wie )|—U\sin¢\ <e for t>ry and ¢ € P.

Since w(0) =1, A — log‘/‘\’(k) is analytic at 0, and therefore there exist r; € (0,70)

and C1 > 0 such that w(A) # 0 for |\| < r; and
1 te'®
|0g|wt(e il <C; for 0<t<ry, ¢ €.

Hence

! te
/ ‘Og‘”t(e Wit <o, vea.
0
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Let (ax)}_; be the tuple of all zeros A of w, counted with multiplicity, satisfying
|A| < 2rg. Then we can write

wA) =hN) [JTA—ax), AeC,
k=1

where h(X) # 0 for |A| < 2rg. Hence there is Cy > 0 such that |log|h(N)|| < Cy
for |A| < 2rg. Then

) i¢ _
/ | log |h(te )Hdtgro TICQ, 6 b

1 t T1

For k=1,...,n and ¢ € ® we calculate

T0 ) \ak\+1 T0
/ \bg\tew—akudtg/ \log\t—\akmdt—i—/ maxc{0, log(t + |ax|)} dt
T1

T1 |ak —1
1
< 2/ |logt| dt + (ro — 1) log(3ro)
0
=2+ (rg — r1) log(3ro).

Altogether, we get

ro
/0

Therefore we conclude for all ¢ € ® that

log |w(te’®)|
t

— o] sin d)‘ < Cyri+ 0 r_ "Ly +n(24 (ro—71) log(3rp)) + oro.
1

I te'?
limsup |J](¢) — o sin ¢|| < limsup / oglw(te™)| _ o|sing|| dt
r—00 r—oo T Jo t
. 1/
+ lim sup edt <e. O
r—oo T Jpy

The following result is a special case of [173, Theorem II1.3, p. 152].

Proposition 11.2.26. Let w be a sine type function of sine type o and let ¢1, P2 €
R\ Z7 such that ¢1 < ¢o < ¢1 + 2. Then

lim T (7‘, ¢1a ¢2)
T

g
= n
el - 1,029

where Ny, ¢, 1 the number of elements of the set (¢1, p2) N Z.

Proof. If ng, ¢, = 0, then the angular region Sy, 4, contains at most finitely many
zeros of w, and the statement is trivially true. Thus it suffices to prove the result for
Ng,.6, = 1. The transformation &(\) = w(—A\) gives a sine type function & whose
zeros are obtained by rotating the zeros of w by the angle w. Hence it suffices to
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consider the case —m < ¢1 < 0 < ¢ < m. Since a shift of the variable and the
multiplication of w by a nonzero constant changes neither the assumptions nor
the conclusion of this proposition, we may assume that w(0) = 1. We also may
assume that ¢; and ¢o are chosen such that no zeros of w lie on the rays with
angle ¢1 and ¢2, respectively. Hence no zeros of w lie on the rays with angle ¢ in
[01,d1 + k] and [¢2, ¢2 + ] for sufficiently small positive k and [. Introducing the

function (t.6,0)
" ny(t, ¢,
N(r,¢,so)=/0 . 7t

and averaging over the above intervals we obtain in view of Lemma 11.2.24 that

1 p1+k  ppa+l
Niowo) = [ [ Nnop)dods
1 2

_ 1 TG 1) = T (¢2) L (7T (1 + k) = (1)
B 27r/0 l dt = 27r/0 k dt

1 é1+k phatl o 0
1 "N dddod
+ ok .. /2 /¢ og |w(re')| dv do dy,

where we have to observe that the integration over ¢ is valid for all angles 1} such
that w has no zero on the ray te?”.
Let € > 0. In view of Proposition 11.2.25 there is 7y > 0 such that

[J5(¢) —olsin || <&

for r > rg and ¢ € {p1,¢1 + k, 2, d2 + I}. In the proof of Proposition 11.2.25
we have seen that |J7(¢)| < Cy for ¢ € R and 0 < r < 71, with ry and Cy from
the proof of Proposition 11.2.25. From that proof we also conclude that there is
C3 > 0 such that |J5(¢)| < Cs for all r € [r1, 7] and ¢ € R. Hence we obtain

lim 1/ T (6) dt = o] sin g|

r—oo 1T [

uniformly on each compact subset of R \ Zx. In view of Corollary 11.2.12, for
sufficiently small § > 0,

N(r,¢1,02) o sin(¢gg + 1) — sin ¢ . o sin(¢y + k) — sin ¢

li =
im i

r—00 T 2 { 2
o d1+k  po2t+l e

sind| dd do d

ol /¢5m bdy,

reUy,s
where we have used Proposition 11.2.23 in the last summand. Therefore

i N (OL92) o (11.2.35)
T—00 r e
reUy.s
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We shall prove that

i N P092) 0 (11.2.36)

r—00 r T

To this end, let r > 1. Choose § > 0 according to Corollary 11.2.12. Then there
are a(r) € (r—1,7r)NU,s and B(r) € (r,r + 1) N U,s. Since N(-, ¢1, p2) is an
increasing nonnegative function, it follows that

r—1 N(a(r)v(blv(b?) < N(r’¢1’¢2) < r+1 N(/B(T)7¢1a¢2)
r a(r) - r - r B(r) ’

and therefore (11.2.36) follows from (11.2.35).
To establish the limit as » — 0o of ny(r, @1, P2) we use the monotonicity of
Ny (-, @1, P2) to deduce for v > 1 that

N (r, 61, d2) log7</ ¢1’¢2)

('YT ¢17¢2) (T7¢17¢2)~

In view of (11.2.36) it follows that

I N (7, ¢1, ¢2) —1lo
1um sup
r—00 r logv T

and taking the limit as v — 1 on the right-hand side we obtain

nw(’rv ¢17¢2) < 0-.

lim sup < (11.2.37)
r—o00 T ™
Similarly, for 0 < v < 1,
w(t, d1,
N, (’l", ¢17 ¢2 IOg ’Y / ¢1 ¢2
o
(7’, ¢17¢2) - (’77’, ¢17¢2)7
so that
lim ng " (7 91:02) 5 0 (11.2.38)
r—o00 r T

The inequalities (11.2.37) and (11.2.38) complete the proof in case ng, ¢, = 1. O

Lemma 11.2.27. If w is a sine type function of type o, then there is a positive
number My such that
W'(A)] < Mye?l ™M X ec,
!/

and for each § > 0, the logarithmic derivative (: of w is bounded on C\ Aj.
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Proof. For A € C and r > 0, let I'y , be the counter-clockwise circle with centre A
and radius r. By Cauchy’s integral formula and (11.2.30),

1 w(z)
omi fm (z— 2 %

The second statement follows from this estimate and (11.2.33). g

|w’(/\)\: SMeaea\Im)\\.

Notation 11.2.28. In view of Proposition 11.2.26 a sine type function w has in-
finitely many zeros with positive real part and infinitely many zeros with nega-
tive real part. We therefore can write the nonzero zeros of w, counted with mul-
tiplicity, as a sequence (Ap)32_., which is indexed over all integers such that
ReAr < ReAp41. For convenience we may also assume that ReAy, > 0if £ > 0
and that Re A\, <0if k£ < 0.

Lemma 11.2.29. Observing Notation 11.2.28, it is true that for each sine type

function w,
1
dm >
k=—n

exists, and, there are ¢ € C\ {0} and m € Ny such that

w(A) = e nl;r&kgn <1—/\k>, ArecC.

Proof. Let o be the type of w and let by, = || if £ > 0 and by, = —|\i| if & < 0.
Since the imaginary parts of the Ax are uniformly bounded, it follows that the
sequence (by — A\g)7> _ ., is bounded. Observing that (Az)52 _ . is pseudoregular,
we conclude that also (by,)e.___ is pseudoregular and that (b, " — A\, 1)5 € ¢4,
see Remark 11.2.10. From Proposition 11.2.26 and Proposition 11.2.8, part 2, we
know that b

b, =

lim " = tim =", (11.2.39)

n—oo M n—oo n ag

In order to account for repeated values in the sequence by, we let [, be the smallest
negative integer k such that by > b_, and [} be the largest positive integer k such
that by < by,. Since —n—d+1<i; <-nandn <} <n+d-—1, with d from
Proposition 11.2.8, part 2, we may replace the limits —n and n in the sum and
the product in the statement by /,; and ;.

In view of Corollary 11.2.12 and Lemma 11.2.20, choosing § > 0 there suf-
ficiently small, we can find for each sufficiently large positive integer n a circle
vn whose centre lies on the real axis and which intersects the real axis inside the
intervals (b~ —1,b,-) and (b;+,b;+ + 1), respectively, such that v, lies in C \ As.
Hence, by Lemma 11.2.27, there are ng > 0 and My > 0 such that

W ()
w(N)

’ < M for all X € ~,, and all integers n > ny. (11.2.40)
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We may also assume that all Ay with [; < k < I lie inside 7,. Let A, be the
set of remaining indices k for which \g is inside ~,. In view of Lemma 11.2.7, the
number of elements in A,, has a bound which is independent of n. Therefore

1
lim | ) =0.
nree keA, Ak
In view of the residue theorem, we have
Do 'O 1 'O
w w
Np = = _ % d\ — — resy—o ,
k_zl_ e 2mi [ dw(N) kEZAn Ak Aw(A)

n

where

My — My as n — oo

1’7{ w'(A) d/\’ < m%.xx{bn,—b_n}
2mi [, Aw(A) min{b,, —b_,}
by (11.2.39) and (11.2.40). Therefore the sequence (1,)5%; is bounded. Since w

has order 1, we know from (5.1.3) and Hadamard’s factorization theorem, see
[55, X1.3.4], that there are complex numbers a and b and a nonnegative integer m

such that
s A
w(A) = Attt H <1 - )\k> ek

k=—o0

For n € N we can write

Ly
UJ(A) — )\me(a+7ln))\+b H (1 _ ;\ ) H (1 — )\)\ ) ek . (11241)
k k

k=l, k<l k>t

In view of the boundedness of (1),,) we can choose a subsequence (15, )72; of (,)72,
such that

lim n,, =7

Jj—oo
exists. Since the infinite product on the right-hand side of (11.2.41) converges to
1 uniformly on each compact subset of C, it follows that

i
J )\
w(A) = A"l lim - T (1 > (11.2.42)

j—ooo L4 AL
k=l

The proof will be complete if we show that a + 1 = 0 because this shows that 7
does not depend on the chosen convergent subsequence as n — 0o, so that

lim n, = —a.
n— oo
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From Lemma 11.2.11 we know that
o A A —1
A) = 1-— 1-— AeC\{b,:keZ
Iy k_HOO( (-0) s reciinken

defines a meromorphic function f, so that (11.2.42) leads to the representation

w(A) = A TP £(N)wg (M), (11.2.43)
where
g
4 A
A) = 1i 1-— . 11.2.44
wr(}) jggokl—l[_ ( bk> ( )
“iny

We obtain for all k € Z and A = re’® with 0 < |¢| < 7 and sufficiently large r that

i¢ |2 2 S
re r 2r cos ¢
1 1-— =1 1 —

% (‘ by ) Og( TR on )

2 b cos ¢

=log (1 + 2) +log|1-2"% , |. (11.2.45)

by r

1+ 5

bk

In particular, for cos¢ = 0, i.e., A = £ir, we have
log |wr(dir)| = © f: tog (147 (11.2.46)
= 0 . 2.
gIWR 2 = g bi

On the other hand, it follows from (11.2.43), Proposition 11.2.23 and Lemma
11.2.11 that

log lwr(&ir)| _ log|w(Eir)|  Reb+mlogr _ log | f(=ir)|
r

I

' ) + Im(a + 1)
— o FIm(a +n).
r—00

Since this limit must be the same along the positive and the negative imaginary

semiaxis by (11.2.46), it follows that

Im(a + 1) =0 (11.2.47)
and that
lim il 1+ (11.2.48)
1m = L.
r—oo 21 e 08 bz g

exists.
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We put
A \ I
n nq
w n)\ = 1-— B 5n: )
) }?< W) =2

1 & 2
Z log <1 + b2> Ooo(T) = N k;oolog <1+ b%) ,

k i
we let n(t) be the number of k for which 0 < by < ¢ for t > 0, and we let n(t) be
the number of k& for which 0 > b, > ¢ for ¢t < 0. Then it follows with the aid of
(11.2.45) and integration by parts that

2 2rcos¢ n 7 COS ¢
2 t t

b
, n 1
log |wpr.n(1€'®)| + 176, cos ¢ = / {2 log (1 + ] dn(t)
b_n

r
br, cos ¢
1
:an(r)—i—/ 2log 1-21 +rcos¢ dn(t)

_ r? t
1+t2
r
1 brcosgz) b cos ¢
:an(r)+210g 1—2"" |l -log|1=2"" , |1,
T r
1+b2 1+b2

i _
+ r cos ¢ P

b s o
’ r(r® —t*)cos¢ 7 COS ¢
’ / [(TQ (2 + 42— 2rtcosg) | 12 n(t) dt.

At the beginning of this proof we have stated that (b,;1 — )\lzl)z":_oo € (', and
therefore
0= lim 4y,

j‘)OO

exists. Using (11.2.39), 'Hopital’s rule and the fact that

r(r? —t?)cos ¢ 7 COS _3
=0(t S |¢

(r2 +12)(r2 +t2 — 2rtcos ¢) t2 (t7%) as [t] = o
and that t~!n(t) is bounded, it follows that

log |wr(re'®)| = —rd cos ¢ + oo (r)

1 — 12) 17 n(t)
dt.
+rcob¢/ {r2+t2 7n2_|_152—27ﬂtcosq5)—i_ t



318 Chapter 11. Analytic and Meromorphic Functions

Taking logarithms of the absolute values in (11.2.43) with A = re’®, substituting
the above identity, dividing the resulting equation by r and taking the limit as
r — oo and observing Proposition 11.2.23, (11.2.47), Lemma 11.2.11 and (11.2.48),
it follows that

o|lsing| = (a+mn)cosd —dcosp+ o
o] 2 42
+ cos¢ lim Hre = £9) (*) d

1| n
t.
r—oo [ [(r2 + t2)(r2 4 2 — 2rt cos @) + t} t

We consider integer values k for r, split off one part of the integral and substitute
t = k7 for the remaining part, so that the integral becomes

o (1 —72) 1 n(kt) bk n(t)
/_OO [(1 +72)(1+ 72 — 27 cos ) * 7(1 a X[blk’bﬁf](ﬂ)} kTt dT+/b 12 dt.

—k

In the course of the above calculations, using integration by parts and the limiting
process, we have seen that

by, .
" t
6 = lim ’ n(2)
j—o0o b t
J

dt.

The sequence of the functions in the square brackets is absolutely integrable with
integrable upper bound

7|1 —72) 1
1
T (1+72)(1 472 — 27 CO8 ) + \T\( Xpo-:1(7):

where

. b,k . bk
b,—ili% i <0 and b+—’1r>1%k>0

in view of (11.2.39) and since b_; < 0 and by > 0 for k¥ > 0. Furthermore, the
boundedness of t ~*n(t) and Proposition 11.2.26 show that (k7)~'n(k7) is bounded
and converges to 7 !0 as k — oo pointwise for all 7 # 0. Hence, by Lebesgue’s
dominated convergence theorem as k = n; — oo and by (11.2.39),

olsing| = (a+mn)cosp+o
T(1—17?)
CObd)/ [ 1+ 72) 1+7‘2—27(:os¢) (l_x[ 20T ))] dr
:(a+n)cos¢+a

o ¢/ - 1 : !
C S 1+72 [1+7%2—27cos¢p 1+72+27cos¢ '
:(a+7])cob¢+0
a 2 472(1_72)
d
+7rCOS ¢/() (14 72)[(1 + 72)2 — 472 cos? @] !
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Taking now, say, 0 < ¢ < 7, and subtracting the corresponding expression for ¢
replaced with m — ¢, i.e., cos ¢ replaced with — cos ¢, we arrive at

0=2(a+mn)coso,

which finally shows that (a +n) = 0. O

11.3 Perturbations of sine type functions

In this section we are going to provide results on perturbations of sine type func-
tions through perturbations of their zeros. The constant ¢ in Lemma 11.2.29 is
mostly immaterial in our considerations, so that, in general, we will consider only
the case ¢ = 1.

If we perturb zeros, then the conditions Re A\ < Re Mgy for all & € Z will
no longer be true, so that we may relax this ordering condition to the requirement
that there is a positive integer ko such that Re Ay < Re A\gyy, for all k € Z. Such a
condition will always hold if we replace Ay, with Ay, + px for any bounded sequence
(r)52 _ oo 1f (Ak)P2 _, is pseudoregular. By the same reasoning one can abandon
the technical requirement that Re A\, > 0 if £ > 0 and Re A\ < 0 if £ < 0. Finally,
we can omit some indices when indexing the sequence of zeros; notably, we may
omit 0 so that each index k£ has a matching distinct index —k and the product
from —n to n has 2n factors. To see that all these corresponding finite products
from —n to n have the same limit we just have to observe that they differ by at
most a finite number ng, independent on n, of factors of the form

() ()

with |c|,|d| — oo as n — oo and that these factors converge to 1 uniformly on
compact subsets of C.

Furthermore, when perturbing the zeros of sine type functions, they may
enter or leave the imaginary axis and in particular 0, so that it may be convenient

to replace factors of the form 1 — with A — ai. If we do such a substitution
a

k
for finitely many factors, then the function will differ from the original one by a
nonzero factor, which is immaterial for the properties of sine type function. Hence
we may do such a substitution whenever it appears to be convenient.

However, in general it will be more convenient to do the following shift of
the variable. In this way, all factors look formally the same, and we will therefore
assume in the following generic lemmas and propositions that no zero is located
on the imaginary axis.
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Lemma 11.3.1. Let w be an entire function of the form

mo T A
w()) = A nlLr%oan<1_Ak>’ AeC.

Choose a number a € C such that Ima # Im A\ for all k € Z. Then

Ga(A) = <1+ /\;a> lim H (1 - ;\k__i) , AeC.
k=—n

defines an entire function &g, and &,(N)w(a) = w(A) for all X € C.

Proof. The statement immediately follows from

(- a ) ()=00)
(1+A;“)a:x

Lemma 11.3.2. Let u € C be such that Reu # 0 and define

fO) = (1— 2) fr(N) = (1— R2u>'

Let h > |Im pu|. Then

[frRON = ih)[[fr(=ih)[ 7 < |FN)] < [fr(X +ih)]
for A € C with Tm A > h and

[fRON+ )| fr(ih)| 7 < [F(V)] < [fr(X = ih)]

for A € C with Im A < —h.

and

(11.3.1)

(11.3.2)

Proof. Replacing A with —A and p with —p does not change f and fr. Hence
(11.3.2) follows from (11.3.1) via this substitution, and it suffices to prove (11.3.1).
Let a, b, x be fixed real numbers with b > h and = # 0 and consider the function

((@+ib) = (z+i7)? _ (a—x)*+ (b—1)?

g(v) = = , YER.

|z + iv|? x2 4 2

Differentiation leads to

2
=by? — y((a —2)* +b* — 2?) — ba?.

33) = g (D@2 7422 = (7= B)(@® +72) — (@ — ) + (b )?]
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In particular,
G(0) = —bz* <0 and §(b) = —b(a —x)* <0.

Since g is a quadratic polynomial with positive leading term, the set where this
function is not positive is a closed interval, and it follows that ¢ is decreasing on
the interval [0,b]. Putting @ = ReA, b = Im A, z = Rep and, in turn, v = h,
v =Imy and v =0 in case Im p > 0 it follows that
A= Rep+ih)| _ |A=pl _ [A=Rep| _[A=(Reu—ih)]

|[Repp+ih| = |u[  — [|Rep| — | Re ’
where the last inequality is obvious because Im A > 0 gives | Im A| < |[Im A—(—h)].
If now Im i < 0, then the above estimates can be applied to p, so that

A= Reptin)] A—ul _A—ul _A=pl \A—(Reu—zh)\’
| Re p + ih| |l [l | Re pf | Re pf

where the last three estimates are straightforward estimates of the numerator and
denominator, respectively. This leads to common estimates for all u, A € C with
Rep #0, [Imp| < h and Im A > h:

A= Rep+ih)] _ [A=pl _ A= Rep—ih)
|[Rep+ih| = ful  — | Re

which can be written as

{— A —ih 1+ ih <1 A <1 A+ih
Rep Rep I Rep
The proof of (11.3.1) is complete. O

Lemma 11.3.3 ([176, Lemma 1]). Let (Ax)72_., be a sequence in C such that
ReAr # 0 for all k € Z. Then for the infinite product

w(N) = lim kﬁn (1 - §k> (11.3.3)

to converge and represent a sine type function w it is necessary and sufficient that

sup | Im A\, | < oo and that the infinite product
kEZ

wr(A :JLHQOH< ReM) (11.3.4)

converges and represents a sine type function wg. In this case, the types of w and
wg coincide.
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Proof. If either condition is satisfied, then both (A;)52_., and (Re )3 _ ., are
pseudoregular and (Ay —Re Ag)$2 _ . is bounded. By Lemma 11.2.11, the infinite
product (11.3.3) converges if and only if the infinite product (11.3.4) converges.

From Lemma 11.3.2 we know for h > sup |Im A;| < oo that
kez

lwr(A = ih)[|wr(—=ih)| 7! < Jw(A)| < lwr(A +ih)|
for A € C with Im A > h and
lwr(A + ih)[|wr(ih)| ' < [w(N)| < lwr(A — ih)]

for A € C with Im A < —h. This shows that w satisfies inequalities of the form
(11.2.30) if and only if wr does, with different constants h, m, and M, in general,
but with the same o.

Also, if one of the functions (11.3.3) or (11.3.4) represents a sine type func-
tion, then its order is 1, and (11.2.10), (11.2.11) and the maximum principle imply
that then also the other function has order 1. An application of Proposition 11.2.19
completes the proof. O

The following result is a special case of [176, Lemma 3].

Lemma 11.3.4. Let w be a sine type function with h > 0 as in Definition 11.2.5 (i).
In the half-plane Im XA > h choose one sheet of argw. Then, for each H > h,

argwr(T +iH) — argwr(iH) = —mn,(T) + O(1), T >1,

where ng,(T) is the number of zeros, counted with multiplicity, of w in the rectangle
{AeC:0<ReA<T,|Im)\| < h}.

Proof. According to Lemmas 11.3.3 and 11.3.1, wr()) is a sine type function. In
view of Lemmas 11.2.12 and 11.2.20 there are 6 > 0 and ks > 0 such that for each
T > 1 thereis T" € [T, T + 1] such that |wgr(\)| > ks for all A € C with Re A =T".
Now consider the rectangle {A € C: 0 < ReA < T, |Im\| < H} and the change
of the argument of w along its boundary. Since the change of argument of wg along
a path equals the imaginary part of the integral over z;’i along this path, it follows
from above and from Lemma 11.2.27 that the change of argument of wr along the
vertical sides of the rectangle has a bound which is independent of T” and thus of
T. The same applies to the horizontal paths from T +iH to T’ +iH. Since wg is
a real analytic function, it follows that

argwr(T —iH) — argwgr(—iH) = —[argwgr(T + tH) — argwr(iH)].
Together with the argument principle the above estimates and identities show that
argwr(T +iH) — argwr(iH) = —mng,, (T) + O(1).

Observing n,, (T) = n,(T") completes the proof. O
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Lemma 11.3.5. Let w be a sine type function with h > 0 as in Definition 11.2.5 (i).
In the half-plane Im XA > h choose one sheet of argw. Then, for each H > h,

argw(T +iH) —argw(iH) = —mny,(T) + O(logT), T >1,

where ng,(T) is the number of zeros, counted with multiplicity, of w in the rectangle
{AeC:0<ReA<T,|Im)\| < h}.

Proof. Tt is convenient to take a particular sheet of argw. By Lemma 11.3.1 we
may assume without loss of generality that the sine type function w has no zeros
on the imaginary axis, and we may also assume that w(0) = 1. Then letting €2 be
a simply connected open neighbourhood of {A € C: |Im A| > h} U iR which does
not contain any zeros of w, we choose the continuous branch of the argument of
w on  with argw(0) = 0. Then clearly

argw(\) = nlgr;o Z arg <1 — ;;) , (11.3.5)

k=—n

where arg (1 — /\);C ) is the continuous branch on €2 whose argument is 0 at A = 0.

To evaluate this latter argument, we consider ¢ € C with Re( # 0 and
Im (¢ < h and write

arg (1 - 2) — arg(¢ — ) — arg(0),
where it is convenient to take arg(¢) € (=7, 7). As A moves from 0 along the
imaginary axis to ¢H with H > h, Re({ — A\) = Re( # 0, so that arg(¢ — \) €
(=37, 7) for X along the (positive) imaginary axis. Since Im(¢ —iH) < 0, it follows
that arg((—iH) € (—m,0). Now the real part of {(— (x+iH) is decreasing with = €
R, while the imaginary part is a constant negative number. Hence arg(¢ — (z+iH))
is decreasing with increasing « € R. The following sketch

. w+iH
y+iH 43

G4

shows that for y <  and Im{ < h,
arg(¢ — (y +iH)) — arg(¢ — (z + iH)) € (0,7)

is the angle subtended by the segment [y + iH, x + ¢H] from the point ¢, and that
for y < Re( < z, this angle decreases with decreasing Im (. However, the situation
differs for Re ¢ outside [y, z]. Here the angle first increases with decreasing Im ¢
and then decreases.
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The following sketch illustrates the generic case which we will investigate:

1H T+iH

Here T'> 0,7 < h < H, and £ is an arbitrary real number. Then

arg(§ +in— (T +iH)) —arg(§ +in— iH) = —q,
arg(§ — (T 4+ iH)) —arg(§ —iH) = —8.

Observing that the sine of the angle between two complex numbers a and b of
modulus one is the imaginary part of ab, it follows that

sin(—a — (=f))
_ g &= (T +iH))(E+in —iH) (€ = (T +iH)(§ — iH)
€ +in — (T +iH)||{+in —iH||§ — (T +iH)|[§ — iH]|
_ o (€= T+ (0= H)? +i(n = H)T][(§ = T)E + H? +iHT)
€ +in — (T +iH)||{ +in—iH|[§ — (T +iH)|[§ — iH]|
_ nT[(§ —T)E+ (n— H)H]
S e+in— (T +iH)||§+in—iH||¢ — (T +iH)||¢ —iH|

Clearly, 8 — a € (—m,7) since «,8 € (0,7). However, we would like to have

B—ac (—7,7), that is, cos(8 — a) > 0. But cos(8 — a) is the real part of the

above expression, so that we consider
Re[(§ +in — (T'+ iH))(§ +in — i) (§ — (T +iH)(§ — 1H)]
= (£ —-T)°¢ + (£ = T)&l(n — H)* + H*) + (n — H)*H* + (H — n) HT*
— (€= yltu— 10+ B) = |llu— £ - HPP 4 (1T - )T

which is positive if T' > 0 is sufficiently large.
Putting now £ + in = Ag, we obtain for

%:arg<l_T+iH>_arg<1_iH>
)\k )\k
— {arg(l—T_FiH) —arg (1— i )]
Re)\k Re)\k
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that

lim g v =argw(T 4+ iH) —argw(iH) — [argwr(T + iH) — argwg (i H))
n— oo
k=—n

(11.3.6)

and that

Im A\, T[(Re A\ — T) Re A\ + (Im A — H)H]

R TR T\ = (T +iH)| |\ — iH| | Re My — (T + iH)| | Re A — iH|

With the above restrictions on H and T we can write
_ . _ 3
vi = arcsincg, = ¢ + g(ck)cr,

where g is a bounded function on [—1, 1]. There are positive constants C; and Cs
such that

[\Re)\k —T‘ + \Re)\k\][CﬂRe)\k —THRE)\/C‘ +02]

< .
ekl < Ao — (T +iH)| |\e — iH||Re A, — (T + iH)| | Re Ay — i H|

Expanding the numerator on the right-hand side we obtain a sum of four terms
where each of the factors in the numerator, apart from Cy or Cy, is of the form
| Rew| with a matching term |u| in the denominator for some complex number u.
Cancelling these pairs of numbers, the above estimate leads to

wl< o @
\Re/\k—zH\ \Re)\k—(T+zH)\
+ e
I\ — iH||Re Ap — (T + iH)| | Re As — iH|
Cs

T\ = (T + iH)| | Re e — (T + iH)| | Re A — i’ (11.3.7)
We observe that all factors in the denominators are bounded below by H —h > 0.
Recall from Proposition 11.2.8, part 2, that the number of indices &k with |Ag|
inside an interval of length 1 has a bound which is independent of the location of
that interval. Taking (11.2.39) into account, it follows that there is § > 0 and for
each t € R a number v(f) € Z such that

e —t—iH| > 6(Jk — v(t)] + 1), |ReX, —t —iH| > 8(|k — v(t)] + 1), k € Z.

Here v(t) is the index k for which | Re Ay — ¢| assumes its minimum. We can now
conclude that all four terms on the right-hand side of (11.3.7) give I sequences
whose ls norms are bounded as functions of 7. Hence

o0
> laf’

k=—o00
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converges with a limit which is bounded as a function of T'. Also, the sums over
the last two summands in (11.3.7) converge with limits which are bounded as
functions of T, so that

Jim, O =i, 3 di+O()

where
. T(Im A ) (Re A, — T) Re g
T e = (T +iH)| |\, — iH||Re Ay — (T +iH)| |Re A\, — iH|
Clearly,
T
di| < ,
S ko) + K+ 1)
and
> ! S DU
(R —v(+ (k1) = (k4 v(T) +1)(k+1)
v(T)—1
T T
+ +
; w(T)—k+1)(E+1) kz (k—v(T)+1)(E+1)
= v(T)
T [ 1 1
~u(T) I; <k+1 B k+1/(T)+1>
LT YD1 1 L1
v(T)+2 — v(T)—k+1 k+1
T & 1 1
i, 2 (s en i)
v(T) M E—v(T)+1 k+1
v(T)-1 v(T)-1 2v(T)—1
T 1
Z k+l -|-2 Z k-i—l Z k—v(T
k=v(T)
v(T)-1
4T 1 4T
Z ka1 S ) Otos(D)
= O(log( )),
where we have used that Tlim U(TT) = 7 in view of (11.2.36). Therefore, (11.3.6)
—00
leads to

argw(T +iH) — argw(iH) = argwr(T + iH) — argwr(1H) + O(log(T)),

which completes the proof in view of Lemma 11.3.4. ]
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In [176, Lemma 3| the authors formulate the statement of Lemma 11.3.5
with O(1) instead of O(log(T")). However, the following example shows that this
is incorrect and that indeed the asymptotic behaviour stated in Lemma 11.3.5 is
sharp.

Example 11.3.6. We now consider the special case of a sequence (A;)72 _ . given
by A = 2k+1 for k> 0 and A\, = 2k+ 141 for k < 0. Choosing H > 1 it follows
that the numbers dj from the proof of Lemma 11.3.5 satisfy d, = 0 for k£ > 0 and
di > 0 for k < 0. Since

wr(N) = lim > (1 N 2ki—1> - s (;0

T

5 it follows from Lemma 11.3.3 that also

is a sine type function of type

=i 5 (1)

k=—n

is a sine type function of type 7. From the reasoning in the proof of Lemma 11.3.5
we know that

A(T,H) = argw(T +iH) — argw(iH) — [argwr(T + iH) — argw(i H)]
—1

= > dp +4(T,H),

k=—o0

where ¢ is bounded with respect to T' > 0 and all H in any bounded closed interval
of [2,00). Here, for k < 0,

B T(2k+1—T)(2k+1) 1

T 2k+1+i— (T+iH)|[2k+1+i—iH| |2k + 1 — (T +iH)|[2k + 1 — iH]|
- T(2k| -1+ T)(2/k| - 1)

=20kl =14+ T+ H||2k| — 1+ H||2k| — 1+ T+ H||2k] — 1|~

dy,

For k > H we conclude further that

. T(2k —1+T)(2k — 1)
F 162k — 1+ T2k — 1|2k — 1+ T |2k — 1]
T
>
= 16(2k + T)(2k)
1 1
16(2k) ~ 16(2k+T)
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We assume now for convenience that T is a positive even integer. Then

— 1 X /1 1
dy > ( - )
k;m 16 k;ﬂ 2k  2k+T
LA
16 k_z“:ﬂ 2k
-1 logT + O(1).
32
Altogether, it follows that

1
>
A(T,H) > 40 logT

for sufficiently large T', uniformly in H € [2, Hp] for any Hy > 2. Next we observe
that for y > 0 and = € R,

cos(z + iy) = cosx coshy — isinx sinh y,
so that
tanargcos(z + iy) = — tanz tanh y.

Choosing a continuous branch of argcos in the open upper half-plane it follows
that

arg cos(jm + iy) — arg cos(iy) = —jm
for all positive integers j. In particular,

s

argwr(T +iH) —argwr(iH) = —T2

for all even integers T'. Altogether, we have

1
logT.

argw(T +iH) —argw(iH) > —T;T + 40

The claim in [176, Lemma 3] for this case is that
argw(T +iH) —argw(iH) = —T;T +0(1)

for all T > 0. Hence this example shows that the claim is incorrect.

Corollary 11.3.7. Let w be a sine type function with h > 0 as in Definition 11.2.5,
(i). In each of the half-planes Im X\ > h and Im A < —h choose one sheet of argw.
Then, for each H € R with |H| > h,

argwr(T +iH) —argwr(iH) = —sgn(TH)mn,(T) + O(1]), |T]>1,
argw(T +iH) — argw(iH) = —sgn(TH)mn,(T) + O(log|T), |T]> 1,
where ny,(T) is the number of zeros, counted with multiplicity, of w in the rectangle

{AeC:0<ReA<T,|ImA <h}ifT>1,{AeC:-T <Rer<0,|Im) <h}
if T < —1.
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Proof. The statements for T > 1 and H > h are those of Lemmas 11.3.4 and
11.3.5. Now let 7' > 1 and H < —h. Observing that also w is a sine type function,
it follows from Lemma 11.3.5 that

argw(T 4+ iH) —argw(iH) = —argw(T —iH) + argw(—iH)
=1 (T) + O(logT) = mn,(T) + O(log T).

For T' < —1 we apply the above to the function & defined by &(A\) = w(—A) and
obtain

argw(T 4+ iH) —argw(iH) = argw(—T —iH) — argw(—iH)
= (sgn H)mng(=T) + O(log(—T)) = (sgn H)mn,(T) + O(log |T|).
A corresponding proof holds for wg. |

Taking the correction to [176, Lemma 3] in Lemma 11.3.5 into account, we
obtain the following analogue of [176, Lemma 4].

Lemma 11.3.8. Let ()72 _ ., be a bounded sequence of complex numbers and let
(Ak)P2 _ . be the sequence of zeros of a sine type function w. Assume that Im \i, # 0
and Im(Ag + x) # 0 for all k € Z. Then the function W defined by

G(A) = lim_ H ( AHW) (11.3.8)

represents an entire function. The function @ is a sine type function if and only
if there is a line Im A = H located in the exterior of the strip containing all the
zeros of w and & on which the real part of

® = log (w)
w

If W is a sine type function, then

is bounded.

Imlog (ZR> (z+iH) =0(1) and Im®(z+iH) = O(log ) as |x| — oo (11.3.9)
R

on any line Im A\ = H located in the exterior of the strip containing all the zeros
of w and w.

Proof. Tt follows from Lemma 11.2.11 that w represents an entire function which
has the same exponential type as w in the upper and lower half-planes. Indeed, let
f be defined as in Lemma 11.2.11 with by = A\ and cx = A\ + Yg, k € Z. Then
w = fw, and we may apply the notation Uz s, see (11.2.18), to w. Let o be the
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type of w. For all 4, > 0 it follows from Lemmas 11.2.6 and 11.2.11 that there is
ro > 0 such that

log |w(A)] < (0 +&)|Al; [Al > ro, [A] € Uz s-

Choosing § > 0 sufficiently small it follows as in the proof of Corollary 11.2.12
that for each A € C there is r € (JA|,|A| +1) N Ugz,s. Applying the Maximum
Modulus Theorem to w on the disc with centre 0 and radius r, it follows that
log|w(A)] < (o +¢e)r < (o +¢e)(|]A] +1) for each A € C with |A] > ro. Hence
the exponential type of @ is at most ¢. Finally, Lemma 11.2.11 applied to f and
Lemma 11.2.17 applied to w show that the exponential types of @ in the upper
and lower half-planes are at least o.

In view of Proposition 11.2.19 and Definition 11.2.5 it is clear that w is a sine
type function if and only if there are real numbers H and 0 < m < M such that

w(A)

w(X)

But this condition means that the real part of ® is bounded on the line Im A = H.
Because of Lemma 11.3.3 the same arguments apply to wg, wr and ®p.
Now assume that w is a sine type function. Since (v)72 _ . is bounded, it

follows that ng(z) — ne(z) = O(1) for |z| — oo. Applying Corollary 11.3.7 to w
and w as well as wr and wr we obtain (11.3.9). O

m <

’SM for A € C with Im A = H.

Taking the above corrections to results from [176] into account, we obtain
the following analogue of [176, Theorem 1].

Theorem 11.3.9. Let (v1)32 _ . be a bounded sequence of complex numbers and let
(A)P2 _ o be the sequence of zeros of a sine type function w of sine type o. For
the function @ of the form (11.3.8) to be a sine type function it is sufficient that
there exists an entire function ¢ of exponential type < o which is bounded on the
real azis and which satisfies the following interpolation conditions at all points A,
k € Z, where qi denotes the multiplicity of Ax:

1 o0
P =0 Jorp=0,..oq =2, o= D) = 3 @A),
e ;T
)\j:)\k

(11.3.10)
If all ¥y, and M\, are real, this sufficient condition is also necessary.

Proof. We start by constructing an auxiliary entire function ¢, of exponential type
< o which satisfies (11.3.10) for the two given sequences ()72 _ . and (A\g)3_ .-
Replacing w with a nonzero multiple of & defined by @w(\) = w(A+n) for a suitable
real number 7, we may assume that A\x # 0 and A\ + ¢ # 0 for all k£ € Z and
that w is of the form (11.3.3). Because of (A, )2 € 2,

k=—o0

R 1 1y | © U,
Y(\) = k;mwk (A_ Nt A}f) =\ ;oo MO Ad) (11.3.11)



11.3. Perturbations of sine type functions 331

converges absolutely for all A € C\ {\x : k € Z}. With the notation from Lemma
11.3.8 we can write

oo = £ (o, %) e+ 3)

for [ImA| > H > h + 2A where A = sup [¢y,|. Then [y, (A — Xg) 7| < 3 is valid
keZ

for all k € Z. Using that |log(1 — 7) + 7| < |7|? for|r| < } we obtain

— |l

(V) + (M) < C+k;oo FRS (11.3.12)
where )
_ (P L — |t
C = Z log<1+)\k>—)\k +k:z_:oo "

[YrAy 1>

Denoting by Q(\) the sum of the series on the right-hand side of (11.3.12) and
setting A = x + iy we obtain

o0

1 . 1
QN <4 Y A A2 =AY Y A a2 (11.3.13)

he oo s=—00 A €11(s,7)

where . .
H(s,x)z{(:m—s—Q<Re§§x—s+2,|ImC|§H}.

For all s € Z\ {0} we have
-1

2
> |A—Ak|2<£((|s|—;) +<|y—h>2> ,

A €Il(s,x)
where ¢ is an upper bound of the number of zeros of w which can occur in any
vertical strip of width 1, see Lemma 11.2.7. Therefore,
-1

oo o] 2
1
—92 —2 2
Soaearte X peareays (=) v
k=—o00 Ak €I1(0,z) s=1
(11.3.14)
and using, e. g., the integral test, (11.3.14) implies that there is a positive constant
C such that for |y| > h,
Ch

Qz +iy) < . 11.3.15
i), (11.3.15)

Thus it follows from (11.3.12) and (11.3.15) that the function

® + 1) is bounded on {A € C: |[Im )| > H}. (11.3.16)
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From (11.3.11) we find

oo

|¢()\)|§A\A|k;oo )\k|)\_)\kSA>\|<Z A—A,ﬂ) (Z |Ak2> :

k=—oc0 k=—oc0

For each 6 > 0 and A € C\ Aj, where As is defined in (11.2.31), we have

[eS) 00 -2
PR EPH IR A—A,;%%Z(s—;)

k=—o00 A, €II(0,z) s=1

o] —2
<20y <s = ;) , (11.3.17)

s=1
so that there is C(J) > 0 such that
W] < Co()A for A € C\ As.

From (11.3.15) we also infer ¢ (iy) = o(|y|) for |y| — oo. Taking Lemma 11.2.6 into
account, it follows that the entire function ¢; = ¢w satisfies the estimate O(|A|)
on JAs. For sufficiently small § > 0, all components of As are bounded in view of
Corollary 11.2.12, so that the Maximum Modulus Theorem gives that ¢, satisfies
the estimate O(|A\|) on As. These estimates of ¢1, ¢ and w lead to

|61z +iy)| < Csla +iyle”!, 2,y € R, (11.3.18)

for a suitable constant Cs, and also |¢1(iy)| = o(|yle®¥!) as |y| — co. Hence ¢,
is a function of exponential type < o. Inserting the right-hand side of (11.3.11)
for ¢ and the Taylor expansion of w about Ay into ¢; = ¢w proves (11.3.10) for
b= o1

To prove sufficiency, let ¢ be a function of exponential type < ¢ which is
bounded on the real axis and satisfies the interpolation condition (11.3.10). Then

NI

w w

is an entire function. Since ¢ is bounded on the real axis and of exponential type
< o, it follows from Lemma 11.2.6 that |¢(x + iy)| < Ce?l¥! for some C' > 0 and
all z,y € R. Then Lemma 11.2.20 and (11.3.18) show that x(A) = O(|A]) on C\As
for each § > 0, and the Maximum Modulus Theorem gives that x is a polynomial

of degree not exceeding 1. Also, x(iy) = o(]y|) as |y| — oo since 385% = 0(1)

and ¥(iy) = o(|y|) as |y| — oo. It follows that x is constant, say ¢, and therefore
¢1 = ¢ + cw is bounded on the real axis. In view of Lemmas 11.2.6 and 11.2.20 it
follows that ¢ = il is bounded on each line Im A = H for sufficiently large |H|.
Therefore ® is bounded on each such line by (11.3.16), and Lemma 11.3.8 shows
that @ is a sine type function.
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If @ is of sine type and if all v, and Ay are real, then w = wr and W = wg,
and Lemma 11.3.8 gives that ® is bounded on some line Im A = H, and therefore
1 has this property in view of (11.3.16). Since w is also bounded on this line, see
Lemma 11.2.6, it follows that ¢ = ¢; = ®w is bounded on the line ImA = H.
Again in view of Lemma 11.2.6 it follows that ¢ is bounded on each horizontal
line and in particular on the real axis. O

Remark 11.3.10. In the proof of Theorem 11.3.9 we have seen that the function
¢1 is of exponential type < ¢ and satisfies the interpolation condition (11.3.10).
We also know that any entire function ¢ satisfying these properties is of the form
¢1 + cw for some ¢ € C. Hence there exists such a ¢ which is bounded on the real
axis if and only if ¢, is bounded on the real axis.

Example 11.3.11. Denoting the entire functions w and wg from Example 11.3.6 by
w and w, we have the assumptions of Theorem 11.3.9 satisfied with A\, = 2k — 1
for k € Z, ¢, =i for k <0 and ¢, = 0 for k > 0. Then, again in the notation of
Theorem 11.3.9, it follows that

= . 1 1
MA)_MZ(AJF%H _2k+1>

and

. ™ > 1 1
¢1(/\):ZC°S(2)‘>Z<A+%+1 _2k+1>'

k=0

It follows for positive integers j that

S0l
k_0<4j+2k+1 2%k + 1
2j—1

P 2k +1

|p1(45)| =

where C' is a positive constant which is independent of j. From Remark 11.3.10
we conclude that there are sine type functions w and w as in Theorem 11.3.9 for
which there is no entire function of exponential type < o which satisfies (11.3.10)
and is bounded on the real axis.

Corollary 11.3.12 ([176, Corollary, p. 85]). If in Theorem 11.3.9, (i) _., €17

for some real number p > 1, then the function @ defined by (11.3.8) is a sine type
function.

Proof. In view of Remark 11.3.10 it suffices to show that ¢, is bounded on the
real axis, which, by Lemma 11.2.6, is equivalent to the boundedness of ¢; on any
horizontal line. Since w is a sine type function and ¢ = 9w, it therefore suffices
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to prove that ¢ defined by (11.3.11) is bounded on some line Im A = H. To this
end, let H > 1+ sup|Im A;| and = € R. Then, by Holder’s inequality,

kEZ
1 1
9] P 00 »’
[z +iH)| < ( > 1/%]’) ( > I/\kl_p>
k=—oc0 k=—o0
1 1
oo P eS] »’
(3 ) (3 )
k=—o k=—o00
where 11) + pl, = 1. Similar to (11.3.13) we finally have that
(o) , o0 1
H — M| 7P =
DYITETIENS S SR
k=—00 §=—00 A\, €Il(s,x)

’

[e'e] 2 _1)2
<e+20y ((s— ;) +1>
s=1

<30+20> kT < o0
k=1

is bounded with respect to x. O

The following lemma is adapted from [174, Lecture 22.1, Theorem 1]. It
should be noted that in [174], sine type functions are assumed to have simple
zeros (Ag)32 with inf{|A\y — \j| : k,j € Z, k# j} > 0.

k=—oc0

Lemma 11.3.13. Let (A\;)32 _ . be the sequence of the zeros of a sine type function
w of sine type 0. For d = (dp)3>_. € lp, p > 1, the function 14 is defined by

where ImA > H > A = s%op Im A;. Then d — 1q is a bounded operator from I,

k=—oc0

to the Hardy class H, in the half-plane (CE ={AeC:Im\> H}, ie., for each
d € l,, 1q s analytic in (CZ, and there is C' > 0 such that

sup / [Ya(z +iy) [P dz < C||d||} (11.3.19)
y>H J—o00

for all d € l,, where ||d||, is the l,-norm of the series d. Furthermore, wiq is
an entire function of exponential type not exceeding o, the corresponding series
converges uniformly on any compact subset of C, and wiq|iy+r converges in the
sense of L,(R) for all y € R.
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Proof. In this proof we will refer to results which assume that Re Ay # 0 for all
k € Z. This can be achieved by the transformation A — A — a for a suitable
real number a, which neither changes the assumptions nor the conclusions of this
lemma. Similarly, in view of Lemma 11.3.3, we may apply the transformation
A= A+ iA, that is, we may assume that A = 0.

Let d € [,. The statement is trivial for d = 0, so that we may assume
d # 0, that is, di # 0 for at least one k € Z. From Lemma 11.2.7 it follows that
A= Xe| ™" = O(Jk|=?) as |k| — oo uniformly for all A in any compact subset of
(CJ{I, and from Holder’s inequality

( i dw’) p ( i IA—AkI"">p (11.3.20)
k

=—00 k=—o0

>,

it follows that the series converges uniformly and absolutely on compact subsets
of (C;. Hence 14 is an analytic function in (C;.

By Lemma 11.3.3, wg is a sine type function, and, with A = = + iy, © € R,
y=>H,

A o0
)\ ; Re /\k
> — Re )\k . > Yy
2_: x—Re)\k Zkzz_:oo (x — Re )2 +y?’
is bounded in (CE by Lemma 11.2.27. Putting
h(xy)=§: ! zeR, y > H,
’ Nt (x — Re )2 + 42’ o

the imaginary part of the previous expression leads to

n:= sup yh(z,y) <. (11.3.21)
zeR, y>H

Next let

and consider

n

idy, Im A\
)= ) )= i 3
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Clearly, 14, r is analytic in (CE and, with A = z + 1y,

(oo}

[Ya, (V)] < Ay Z

k=—o0

|d|

11.3.22
(z —Re )2 + 92’ ( )

where A; = sup{|ImM\g| : k € Z}. We are going to show that 14 ; satisfies the
estimate (11.3.19). By definition of h,

n 1
OE k;oo h(z, y)[(z — Re Ap)2 + y7]

defines a probability measure on Z for all x € R and y > H. Since ¢t — t? is a
convex function on [0, 00), Jensen’s inequality, see [56, 19.4.13], gives

oo

, - dr|?
P < AP(h p—1 ‘
(a1 (x +iy)|” < A7 (h(z,y)) k;m (£~ ReAp)? 442"
and therefore, for y > H,
> : p (MY N *ode
[ st sipar<a ()7 3w [ =clal

(11.3.23)

where the constant C' does not depend on y and d.

We still have to prove (11.3.19) for 14, g, so that we may now assume that all
A are real. We are going to use a proof which follows along the lines of the proof for
the Hilbert transform, [263, Theorem 101*], see also the proof of [189, Proposition
4.5.1]. Since each dj can be written as dy = dg1 — dio + i(dk,3 — di,a) with
non-negative real numbers di ;, 7 = 1,2,3,4, we may assume that all d are
non-negative real numbers. It suffices to consider finite sums, i.e., the case that
Z ={k € Z : dy, # 0} is finite. The general case is easily obtained by a standard
limiting process. Clearly, 1a(A) = O(|A|7!) as [A| = oo since each of the finite
number of summands has this property.
1. First we consider the case that p is not an odd integer. We set C; = pQé(p’l)
and

Cs = sup {r >0:C1(1+77P)—r ‘cos (p;r)‘ > 0} +1,

which is finite since r'=? — 0 as r — oo and cos(p}) # 0. Then we write
¢d(/\) = U(l’, y) - iU(l‘, y)a

where z,y € R, y > H, A\ = x + iy, and u, v are real valued functions. Then

u(a,y) =Y ( di(@ = M) v(z,y) =y . o > 0.

N2 20 24 .2
e G ) +y = M) 4y
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This shows that Im 1¢(\) < 0 for all A € C with Im A > H. Hence
A= ($a(N)P = exp{plogya(A)}

defines an analytic function on {A € C : Im A > H}, where the argument of the
logarithm is taken in (—m,0). For R > 0, we consider the contour integral

;f (a(N)? dA =0

along the straight line from —R + iy to R + iy and along the semicircle above it.
Since ¥4(A) = O(J]A|~1), we obtain that

R
/ (ale + i) de = O(R?) R = O(R'?) o5 R .

Hence o

/ (Ya(z +iy))" dz =0 (11.3.24)
for all y > H. From

Pq(z+iy) )
(alw + iy))” — (u(z, ) =p / 1
u(,y)
we infer
|(alx + i) — (u(e.9))?| < po(e.y) (ule,y)* +v(z,y)?) @Y

< pv(z, y)(Zmax{u(x )2, v(z, )2})2(17 1)
< Cu (ol )l I + o, 0))

With the aid of (11.3.24) we conclude

[ty as| = | [ (ata+ ) - wle)) do

<o vepluyr i [ oeyrds).
Since 4
. ez |u(z,y)P  if u(z,y) >0,
e = D) (z.9)
e~ P2 |u(z,y)P if u(z,y) <0,
we obtain

o0

s ()] [t = e’ f

o0

N u(w,y)? dw)‘

‘/ xypdx
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Then, by Hoélder’s inequality,

™
jcos (p5) ] IuC- 0I5 < Coflut, )7 o)l + o w)115)
< Cu{flul9)# I 9)llp + o )5}
= Cu{lluC I~ oG )l + v, )||§}~
Dividing the above inequality by ||u(-, )||p (-, y)|lp if u(-,y) is not identically

zero and setting r = [Ju(-,y)|p|v(;, )||p we obtain |cos(p})|r < Ci(1 + r17P).
Hence r < C5 — 1 by definition of Cs, i.e.,

[u(9)llp < (C2 = Dol 9)llp (11.3.25)

which trivially holds if u is identically zero. Applying Hélder’s inequality to

( i > €1 and ( ! > e
(=) +9%)7 ) es (. =M)2+ 927 ) ey

we obtain that

(v, ) <yzx_ +y<

< p— lyz di
(x — )2+ 92

1 !
Z (Jf _ Ak)Q +y2>

keZ

keZ
Hence
> dx
. P < pp—1 dp/ Yy 0P~ Lqle
LS I SR I -

Together with (11.3.25) we infer

. 1 1
[Pa(- +y)llp < Comrne' ||dllp .

2. Now let p be an odd integer. Then the result follows from part 1 due to the
Riesz convexity theorem, see [70, 6.10.11].

To prove the last statement, we can apply the transformation A — X\ + iy, so
that we may assume y = 0. Putting x = w4, it follows as in (11.3.20) from

N < ( > dkv’) ( > w()\)()\—)\k)‘lp/>p (11.3.26)
k=—o00 k=—o00

that x is an entire function. Here we have used that

w(A)
A= Ak

< sup ' (1)1, (11.3.27)
[= Ak <[A=Ak]
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which shows in view of the boundedness of w’ on horizontal strips, see Lemma
11.2.27, that on each set {\ € C : |[A — \i| < 6} the function A — |w(A)(A— Ag) 7!
is bounded by a constant which is independent of k£ € Z and ¢ € (0, 1).

From
wA)  wA+iH) _w()\)—w()\+iH)+_H w(A)
A=Xn AHiH - N AFiH =X T O= M)A+ H — )
we see that x — x(- +¢H) = x1 + x2, where
. - dy
A) = A —wA+1H
W) = @) —wO i) 30y

ey © dkw()\)
X2(A) = Hk:z_:oo A =)A= (g —iH))

The first part of this lemma shows that x(- + ¢H) is an Lp-function on the real
axis. Since w and w(- 4 ¢H) are sine type functions and therefore bounded on the
real axis, we obtain that also x; = (w —w(- +i¢H))x(- +¢H) is an Ly-function on
the real axis. In view of (11.3.27) and the boundedness of w on horizontal strips
we can find C; > 0 such that, for all k € Z and x € R, |w(x)(z — A\p) 7Y < O if
|z —Re x| < H— A and |w(z)(z — M) 7Y < Chlz — Mg| 7L if |2 —Re | > H — A.
It is now easy to see that

w(z) (@ — M) < Csl(z — Re Ag)? + (H — A)?] >
for some C3 > 0 and all k € Z and x € R. Therefore,

- |di|
e (@)] < C k;o (2 Ra)A (7 = )
But the right-hand side is as in (11.3.22), so that (11.3.23) shows that also x2 is
an L,-function on the real axis.

Altogether, we have proved that x = x(- +4H) + x1 + x2 is an L,-function
on the real axis, and the norm estimates in Lemma 11.3.13 which we have used in
this proof show that the series wi)q converges in the L,-norm on the real axis.

Finally we are going to prove that the entire function xy = wiy is of expo-
nential type < o. Estimating the second factor on the right-hand side of (11.3.26),
without w(A), as in (11.3.17), we obtain constants Cs,Cs > 0 such that

z € R.

o0

1 o
> Ao AP <SGy jV =0 (11.3.28)
j=1

k=—o0

oo

for A € C\ A;1. The same estimate is clearly true for A € A; if one omits the at
most £ indices k from the sum for which |A — Ax| < 1. In view of (11.3.27), each of
the remaining terms w(A)(A — A\;) ! is bounded by the bound of w’ on A;. Hence
(11.3.26) shows that x is of exponential type < o. |
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Theorem 11.3.14 ([175, Theorem A]). Let w be a sine type function of type o with
only simple zeros. Let (\g)52 _ . be the sequence of the zeros of w and assume that
(ar)_ o € lp, where p > 1. If inf{| A\, — \j| 1 k,j € Z, k # j} > 0, then the series

w(\) k; w'(Ak)C(Li Ly EC (11.3.29)

converges uniformly on any compact subset of C to an entire function of exponen-
tial type not exceeding o and converges in the sense of Ly(R) for real A.

Proof. By assumption, there is ¢ > 0 such that |\ — A;| > 26 whenever k # j. In
particular, all zeros of w are simple. Hence, for all k € Z,

r lim A— A ~ res 1 ) = 1 dX
W' A) ASa w(A) w )T omi w(A)’
A=Ak |=0

and hence it follows from Lemma 11.2.20 that there is a positive number ks, which
is independent of k, such that

1 < )
w’()\k) ~ ks ’
Therefore, setting
ar
dy, = keZ
k w/(Ak) ) )

we find that (dg)32_ . € lp. Applying Lemma 11.3.13 completes the proof. O

Lemma 11.3.15 ([176, Lemma 5]). Let (A\x)3>_., be the sequence of the zeros of

a sine type function w of sine type o. Assume that A\, # 0 for all k € Z. Let
(Vi) _ o, be a sequence of the form

Y = aX," F AL, (11.3.30)

wheren € N, a € C, and (by)2 €lp, p>1. If g+ #0 for all k € Z, then

the function w defined by

w0 :mlgnoo H ( )\k+¢k>

is a sine type function of sine type o, which has a representation of the form

O(\) = Cw\)(A +BA™ "+ -+ BA™™) — Caw’ (MDA + fu(MA™", (11.3.31)

k=—o00

where -
_1y -1
C= ] @+u") .
k=—o00
Bj € C forj =1,...,n, and f, is an entire function of exponential type < o,

whose restriction to the real axis belongs to Ly(R).
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Proof. The infinite product C' converges absolutely since (¢rA, ) R €L in
view of Lemma 11.2.7 and (11.3.30). The function @ is a sine type function of type
o by Theorem 11.3.9 and Corollary 11.3.12 since ()2 € l, for any ¢ > 1.

k=—o00

Let A= sup (|ImAx| + |¢%]) and fix some H > A. Choosing suitable sheets of
k=—o0
the logarithms considered below we have for |Im A| > H that
w(A) = Ak + = A — /’\’“W’“ dr
1 = 1 =
og C’w()\) k:Z_OO 0og A — A k:z—oo Ak =\

where the integration is taken along the line segment joining the points A; and
Ak + Y. From

n—1 ;
1 7J T

reA T T 2 -

//\k+wk dr B TS//\erbk 73 i 1 a
S S AT T

n 1 /)‘kw’“ T dr a
A AL T—XA M—X]

n

it follows that

At 1 - 11 i 1
J — J —_ = 1
A Pdr= O ) =) Ak¢k< +o<|Ak|>>
:O(|>‘k‘72)7 j=0,...,n—2;
A+ 1 a b
v hdr =\t (1—1—0( >>: + " Oo(n2),
/ o i) = a0l
and therefore the numbers

Atk
Ajp = lim Z/ ™dr, 7=0,...,n—1,
e

m—o0
k=—m

exist, where we have taken Proposition 11.2.26 and Lemma 11.2.29 into account.
Observing that

and setting
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it follows that

tog CONJOE(AA)) - ;ij—i - a”"o;/((;)) +g(M)AT (11.3.32)

Next we are going to show that ¢ belongs to the Hardy class H, in the
half-plane (CE. To this end we write ¢ = ¢q1 + g2, where

. Ui Akt vk TN — T) dT . i Ck
n) = k—X: /Ak (T =Nk =) =) = kZ A

with
Ak +k
Cr=a— / 7" dr.
Ak

To estimate g1, we note that

/)"“+w’° TN\ — 7)dT
A

(1] 4 [or )™ w | [0
RTINSV /

Ak — A2

A’C ‘d| (11.3.33)

For Im\ > H, k € Z and 7 on the line segment from Ay to Ay + 1k, which can be
written as 7 = A\x 4+t with 0 <t < 1, we conclude

Ap — Al > H — |[ImAg| > H — A+ [y

and thus
Ak — A v |7 el )7
1+t <(1-
T—)\‘ ‘+/\k—)\ ( e — Al
<<1_ [ )‘1:H—A+|wk|
- H — A+ |y H-A
H
< .
S H-A

It follows that the integral on the right-hand side of (11.3.33) is bounded by
H(H — A)~!4x|. Taking (11.3.30) into account, there is C; > 0 such that

H o S ([l M) (al + (b)) = 1
A < § <C E )
lg1 (V)] < H_Aszoo IAk]? | Ak — A2 = lk:ﬂ)o \)\k\"\)\k _/\‘2

and applying Holder’s inequality with 11) + ;, =1 leads to

oo oo

1 ’ Lo\
<o R 11.3.34
(M) < G (k_zoo I\ |2 A — )\|P> (k_zoo A — AP > ( )
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Clearly, each factor on the right-hand side is decreasing with increasing Im A > H,
so that it suffices to prove that the right-hand side represents an L,-function on
the line Im A = H. The second factor on the right-hand side has been estimated
in (11.3.28).
Hence we obtain
P (o]
(VP <cteg” Y

k=—o00

1

. 11.3.35
Dl A — AP (11:3.35)
Integrating (11.3.35) along the line InA = H and using Fubini’s theorem, see
[108, (21.12) or (21.13)], applied to the Lebesgue measure on R and the counting
measure on Z, we can interchange integration and summation to arrive at

/ (o +iH)Pde < CPCE Y / de

—oo M| ) [ A — 2 —iH|P

k=—oc0
oo

_CPC:’ Z 1 /Oo da
Seite’ M| "P ) oo &+ i(H — Tm X\ )P

k=—00 -
oo

L 1 e dx

<ctoy / .

=ciey 2 Akl J oo [+ i(H — A)[P

k=—o

Since p > 1 and n > 1, both the sum and the integral converge. We have thus
ot

shown that ¢; € H, in Cp.

Turning our attention now to ¢, we obtain

Ak +r 1 1 1
— ndr=q— A n —_\"
Cr = a /)\)C T aT = a "t 1 [( k+ ¢k) & ]

n—1
B n 1 n+1\ ; ng1—j —n—1
_a—)\kwk—n+1j§< ; )Ak P = b+ O A 7).
Hence (cx)$2_ ., € IP. Therefore ¢ belongs to the H, class in (CE by Lemma
11.3.13.

Since ¢ belongs to the H,, class, ¢ is bounded in (C;. This boundedness also
follows immediately for ¢; from (11.3.35) since

oo

Z 1 - 1 i 1 e
[Ak["P|Ae — AP (H — AP | Ak [P

k=—o00 =—00

and for ¢ from the estimate (11.3.20). Since “:J/ is bounded in (CE by Lemma
11.2.27, we therefore conclude from (11.3.32) that

log gi?))\) =O(AI™h).
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Applying the exponential function, its Taylor series expansion leads to

() L N 1% 90

=1 1 11.3.36
Coy) T k; k! {Og Con | T oan ( )
where ¥ is analytic in (CJ{I and satisfies O(|A\|~!) there, which implies that o is of
H, class and is bounded in (CE. Substituting (11.3.32) into the right-hand side of
the above identity, a reasoning as above shows that

(N . _ _aW'(A) KN
=1+ B1A o+ Bp ATt —a™" ,
Cow(y) — T Ay T
where k belongs to the H,, class and is bounded in (CZ and Bj,..., B, are com-

plex numbers. This gives the equation (11.3.31) with f,, = Cwk. On multiplying
(11.3.31) by A™ we see that f,, is an entire function of exponential type not ex-
ceeding o.

Replacing A\ with — )\, we obtain a representation of w in the half-plane defined
by ImA < —H. We observe that, with a suitable choice of the logarithm, we
obtain the same values for A; and thus Bj, j = 1,...,n, as above. Therefore,
the corresponding function f,, in this half-plane Im A < —H is represented by the
same entire function as in the half-plane (CE. In particular, f;, belongs to H), in
the half-plane Im A < —H.

Since x is bounded in C;, fn is bounded on the line ImA = H. Then it
follows in view of Lemma 11.2.6, part 2, that the entire function g, defined by
gn(N) = fu(N)e'* is bounded in the half-plane (CJ:H. Therefore, for A = = + iy
with y > —H,

1 [ y+H .

n(A) = n(t —iH) dt,
() w/_oo(x—t>2+(y+H)2g( )

see [144, p. 107]. Since f, is an L,-function on the line ImA = —H, so is g,,. But

then the above integral representation of g, shows that g,(- + iy) € L,(R) for

all y > —H, see [144, pp. 111-112]. In particular, g,|r, and then also f,|gr, are

L,-functions. O

Remark 11.3.16. If in Lemma 11.3.15 we have Ay, = 0 or A\ + ¢ = 0 for some
k and if w and w are sine type functions with their sequences of zeros being
(M) _ oo and (Mg + 9)22 _ ., respectively, then (11.3.31) still holds, but with a
differently defined nonzero complex number C. To see this, we observe the general
representation of sine type functions given in Lemma 11.2.29. Then we apply
Lemma 11.3.15 to the sequences of zeros (Ay + )72 _ . and (Mg + ¢¥r +0)32_
of w(- — b) and @(- — b), respectively, for a suitable real number b. This leads to
(11.3.31) with A=/ replaced by (A + b) /. Finally, we expand (A + b)7 in terms of
A7 and observe that a bounded function of the form O(|]A|~1) belongs to L,.
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Inverse Sturm—Liouville Problems

We will need representations of solutions of the Sturm—Liouville equation and
algorithms for recovering its potential ¢ from two of its spectra, corresponding to
two distinct sets of separated boundary conditions. These results are due to [178§],
see also [177], [180]. For the convenience of the reader and easy reference we recall
these results from V.A. Marchenko [180], thereby adapting them to our notation
and considering Sturm—Liouville problems on intervals [0, a] with arbitrary a > 0.
Other presentations of the inverse Sturm—Liouville problem can be found, e. g., in
[177], [235], [282], [80].

12.1 Riemann’s formula

This section is a rewrite of [180, Section 1.1]. The main improvement is that we
allow for integrable potentials. This generalization is an exercise in [180] and there
is no proof in [180].

Lemma 12.1.1. Let a < 8 be real numbers and put

Do ={(&n,80,m0) e <mo < < €< & < BT

Let qq be a locally integrable function on R?. For f € Lo (Dy) define

o M
(Tf)(g,n7€07770) = L / QO(U, T)f(07 T, 50,770) dr dJ, (5777,507770) S DO~
7o

(12.1.1)
Then T is a bounded linear operator on Lo(Do) and I+ T is invertible. Denoting
by 1 the function which is identically 1 on Dy, it follows that g = (I +T)~'1 is
the unique solution of f =1 —Tf on Dy. The function g is continuous.

Proof. Clearly, T is a linear operator, and Fubini’s theorem shows that 7" maps
Lo (Do) into itself. For each M € R, the standard norm on L (Dy) is equivalent
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to the weighted norm given by
1 £1lar = esssup{| f (&, m, o, mo) e~ M EmOF =m0 - (¢ 1y, €9,1m0) € Do}
For f € Loo(Dy) and (£,1,&,m0) € Do we estimate
(T £) (&7, €0, mo)|e™ M (o=@ Fln=mo))

o
< / g0 (0, 7)| | f (0, T, £0, mo) [e ™M (S0 =8O Fr=m0)) g s
3 no

o m
= / lqo(o, 7)]e” MO dr do | £l ar-
3 10

Letting xe¢,n.¢0,m0 D€ the characteristic function of the set {(o,7) : 1o <7<y < ¢ <

o< 50}7 and observing that Xe' ' & mpy (0,7) = X&m.€0,m0 (0,7) as (5/7 ' 567 776) -
(&,m, &, mo) for almost all (o, 7), it follows from Lebesgue’s dominated convergence
theorem that the function fj; defined by

o
(€51, 80,m0) 12/ / g0 (0, 7)|e M e=OF=7) 47 dg
13 no
o
= eM(E=n) / lqo (o, T)|e*M(U*T) dr do
3

7o

is continuous on Dy. For (£,7),(¢',n') with ng <7’ <n < ¢ <& <& we have

& m
fo(&n,&0,m0) — fo(&', 1, &0y m0) >/5 / 90 (0, 7)| dT do,
,'7/

as can be easily seen from the following sketch:

€o

é‘/

"o 0 n § ¢
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Since fj is a continuous function on the compact set Dy, fo is uniformly continuous,
and it follows that there is 6 > 0 such that for all (£,n,&,n0), (&',1,&0,m0) € Do
with0<n—n'<dand 0 <& — & < § we have

& 1
| [ (ol do <
3 n’ 4

Now let (§,7,&0,m0) € Do and put ' = max{n — d,n0} and £ = min{¢ + 4,&}.
Denoting the rectangle with opposite vertices (£,719) and (§,7) by D1 and the
rectangle with opposite vertices (£,7') and (¢, n) by Do, it follows that o — & > §
orn—7 > ¢ for (o,7) € D1\ D2. Hence we obtain

1 o
T (€:m,80,m0) < +/ / lgo(o, 7)|e "M% dr do
0

4
1
4 M(S/ / lgo(o, 7)| d7 do
1

—>4asM—>oo.

Hence we may choose M such that

f (g 777507770) (57777507770) S D0~

1
2’
Combining the above estimates we have shown that T is a contractive operator.
Hence the operator (I + T') is invertible, and the unique solution g of f =1-Tf
has the representation

oo

g=I+T)""1=) (-T

j=0

Since clearly T maps continuous function into continuous function, since 1 is con-
tinuous and since the set of continuous functions C(Dy) is closed in Lo (D), it
follows that g is continuous. O

Lemma 12.1.2. Let qo be a locally integrable function on R2, let ny and & be real

numbers with ng < & and let D(&o,m0) = {(§&;m) : mo < n < & < &}. Then the
problem

ren —qor =0 on D(&o,m0), (12.1.2)
(&0, n) =7(&m0) =1 for &,n € [€o0. 0], (12.1.3)
has o unique continuous solution r on D(&,n0). Furthermore, r¢, v, Ten and rpe

exist and belong to L1(D(&,m0)), and rpe = 7ey. If qo is continuously differen-
tiable, then r has continuous second derivatives.
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Proof. From Lemma 12.1.1 we know that the integral equation

o
ri&n) =1 —/ / qo(o, 7)r(c, ) dr do. (12.1.4)
§ Mo
has a solution g, and we write

r(&,m) = (& n;80,m0) = 9(§1,80,M0)-

The existence of r¢ and r¢,, their properties, and (12.1.2) and (12.1.3) easily follow
from (12.1.4), so that this r is indeed a solution of (12.1.2) and (12.1.3).
Conversely, if 7 is a continuous solution r of problem (12.1.2), (12.1.3) where
the partial derivates in (12.1.2) exist, integration of (12.1.2) with respect to n and
taking into account that (12.1.3) implies r¢(§,m0) = 0 for all £ € [no, &o] gives

re(§m) = /77 qo (&, m)r(&, 1) dr. (12.1.5)

0

Integration with respect to £ and (12.1.3) lead to (12.1.4). With fixed &, and 7y,
the operator T' from the proof of Lemma 12.1.1 becomes a contraction T¢, ,, on
Loo(D(&0,m0)), and the uniqueness of the solution r of (12.1.2), (12.1.3) follows.

(|

For real zg and yo with yo > 0 let D be the triangular region whose vertices
are (zo,v0), (o — ¥0,0), (zo + yo,0). We put § = xo + Yo, 0 = To — Yo and

%@nn:i[m<£;")—@(f;”>} no <n < €< . (12.1.6)

The linear transformation £ = x + y, n = « — y, maps the triangle with
vertices (2o, y0), (o — ¥0,0), (zo + Yo, 0) into the triangle with vertices (£o,70),
(M0, M0), (£0,&0), that is, it maps the triangle D to the triangle D(&g, 1) defined in
Lemma 12.1.2. Then let (£,7n) — r(&,n; &, 10) be the solution according to Lemma
12.1.2 and define

R(x,y; xOvyO) = T(.’E +Y, —Y;To + Yo, To — y0)7 (xvy) eD. (1217)

The following theorem is a generalization of Riemann’s theorem as stated in
[180, Theorem 1.1.1].

Theorem 12.1.3. Let q1 and g2 be locally integrable on R and let ¢ and 1) be
continuous functions on R. Let u € W2(D) be a solution of

Uz — qL(T)u = tyy — g2(y)u (12.1.8)

such that u, and u, are continuous on D. Assume that u satisfies the initial
conditions

u(z,0) = p(x), uy(zr,0) =v(z), z0—yo <z < 20+ Yo (12.1.9)
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Then
Zo +yo) + @(To —
u(zo,yo) = ©(zo + o) ; ©(xo — Yo)
1 zo+Yo
+ 2/ (w(x)R(x,O;xo,yo)—@(x)Ry(x,O;xo,yo)) dz. (12.1.10)
To—Yo

Proof. We are going to use the transformation £ = x+ 1y, o = xo+yo, n = — ¥,
Mo = To — Yo. Expressing u as function @ in these new variables, i.e., 4(§,n) =
u(z,y), we get

Ugy = Uge + 2Ugn + Uy,

Uyy = Ugg — 2Ugy + Uppy.

Observing that the continuity of the partial derivatives of u and hence of u gives
Ugy = Upe, We obtain

ey = (e =) = 4 (@10) — @29 = aoi (12.1.11)

We recall from Lemma 12.1.2 that (12.1.2), (12.1.3) with go given by (12.1.6)
has a unique solution r. Multiplying equations (12.1.11) and (12.1.2) by r and 4,
respectively, and then subtracting the second equation from the first equation we
obtain

figyr — Tire, = 0. (12.1.12)
Observing
- - - 0 . - -
an (Ugr) = Ugyr + Uery, ¢ (Uyr) = Uper + Uyre,
0 . - . a . . -
877 (UTE) = UpTe + UTey, o¢ (u?“n) = UgTy + UTpe,
we conclude that
1
UgyT — Urgy = 5 (6877 (TQer — are) + gg(ﬂnr — ﬂrn)> (12.1.13)

Integrating both sides of (12.1.12) over D(&g, 19) and taking (12.1.13) into account
we get

{8677 (TUer — are) + aaé_(ﬂnr - ﬂrn)] dé dn = 0. (12.1.14)

D(&0,m0)
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By Fubini’s theorem we can integrate componentwise, and therefore the left-hand
side is the sum of the two integrals

&o
L= / [(e(€, )r(&,€) — A&, E)re(£,€))

- (ﬂﬁ(gv 770)7.(57 770) - ’&,(5, 770)7“5 (57 nO))}dé-

=: I11 — Iho,

&o
L= / (g (€0 1) (€0, 1) — (€0, n)m (E0v)

— (@y(n,m)r(n,n) — w(n,n)ry(n,n))ldn
=: Iy — Ip.

Here we have used that, e.g., 597, (gr — ure) is integrable with respect to n for
almost all £ and that ¢r — tre is continuous with respect to 7 for these £ in view
of (12.1.5) and the continuity assumption on u and its partial derivatives.

Integrating by parts and observing that 7(£,n) = 1if £ = &y or n = 1y we get

o
Ly = 2/ e (&, m0)7(€,m0) d§ — w(€o,m0)7 (80, 10) + @(10,10)7 (10, M0)
)

[¢]

o
= 2/ tig (€,m0) d€ — @(§o0,m0) + @(no,10)
il

0

= (&0, m0) — @(no,M0)

o
I = 2/ Ty (o, m)7r (&0, 1) dn — (€0, 0)7 (0, 0) + (&0, m0)7 (€05 M0)
n

(o]

&o
_ 2/ ii (€0, 1) dip — W0, o) + (€0, 170)
)

0

= ($0,%0) — (&0, M0)-

For ¢ =n we have z + y = x — y, so that y = 0 and « = £. Hence

Iy — Iiz = —20(&0, m0) + @(€o, §0) + @(no,M0)
= —2u(zo, yo) + u(xo + yo,0) + u(xo — yo,0)
= —2u(z0, Yo0) + ¢(o + ¥o) + ¢(zo — Yo)- (12.1.15)
From

. & 0
wy(2.9) = Tela+ 0 =)'yt + o+ .0 - ) )

=tg(z+y,z—y) —Uy(z+y,z—y) (12.1.16)
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and the same equation for R defined by (12.1.7) and r we find
L — I
&o
— [ ael€ 7l €) ~ 26 Ore(€.€) — (€ (€ €) + e, (€. )] e
)

o]

o o
=/ [4g(€,€) — n(&,8)]r(§,8) dE — | (&, §)[re (&, &) —ry(&: )] d€

0] 7o

&o &o
:/ uy(x,O)R(x,O)dx—/ u(z,0)Ry(x,0) dx

0 Mo
To+Yo zo+yo

:/ Y(z)R(z,0) dm—/ o(x)Ry(z,0) du. (12.1.17)
To—Yo Zo—Yo

Recall that Iy + Iz = 0 by (12.1.14). Hence the sum of (12.1.15) and (12.1.17) is
zero, and solving this equation for u(xo,yo) completes the proof. ([l

For the solution r of (12.1.2), (12.1.3) we have already used the four variable
notation (£, n; o, m0), and re will denote the derivative with respect to the first
variable, even if the first variable is denoted by a different symbol.

Corollary 12.1.4. Let q1 and g2 be locally integrable on R and let @ be a continuously
differentiable function on R. Let u € W2(D) be a solution of

Uze — q1(T)U = Uyy — q2(y)u (12.1.18)

such that u, and uy are continuous on D. Assume that u satisfies the initial
conditions

u(z,0) = (), uy(z,0) =¢' (x), x0—1yo <z <20+ Y0 (12.1.19)
Let r be the unique solution of (12.1.2), (12.1.3) with qo given by (12.1.6). Then

zo+Yo

u(wo,yo) = (o + o) — / o(x)re (z, ;20 + Yo, To — Yo) da. (12.1.20)

Zo—Yo

Proof. By Theorem 12.1.3, u has the representation (12.1.10) with ) = ¢’. Recall
that R has been defined in (12.1.7), where r is the unique solution of (12.1.2),
(12.1.3) with g given by (12.1.6). Since x¢ + yo = & and xo — yo = 7o, it follows
that

R(zo £ yo,0; 20, y0) = (0 £ Yo, To £ Yo; To + Yo, To — Yo) = 1.
As we have argued in the proof of Theorem 12.1.3, we may used integration by
parts to arrive at

To+Yo
/ ¢ (x)R(x,0; z0,y0) dz = ©(x0 + y0) — ¢(o — Yo)

0—Yo

To+Yo
- / (@) Ro (2, 0: 20, o) e

0—Yo
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From (12.1.16) for R, and the corresponding formula for R, we see that
R (x,0;20,%0) + Rz (x,0; 20, y0) = 2r¢(x, ;20 + Yo, To — Yo)-
Substitution of these identities into (12.1.10) gives (12.1.20). O

12.2 Solutions of Sturm—Liouville problems

Lemma 12.2.1 ([180, Lemma 1.4.3]). Let (ax)5> _.. be a sequence of complex num-
bers of the form ay = Q;rk + b+ hi, where b € C and hy = O(k™') for k — +o0,
let f € Ly(0,a) and let

f\) = /O ’ f(z)e™™ dx

be its Fourier transform. Then

flaw) =f (2;% + b> +kLg(k)

k=—oc0

with (f(2;k+b)):im € ly and (g(k))=__ € la.

Proof. From the equality

flap) = /Oa f(z)e WD)z o —ihkz gy /Oa f(x)e*i(%Zr K0T — ihgx + O(h2)] dz
it follows that

Flax) = f<2;k+b> e (2;Tk+b> +Oh2) = f<2;k+b> +E k),

where )
g(k) = khy.f' ( ;Tk + b) +ETLO(K2hD).
Since ) "
f:( 7Tk+b> :/ f(x)e*iba:efﬁzlra:dx
a 0
and

~ 2 a ) -
I ( ;T/f —|—b> = —i/ f(x)xe—zbame—zzakm d
0
ibx

are the Fourier coefficients of the functions  — f(z)e™®* and x + —if(z)ze™ ",
which belong to L3(0,a), Bessel’s inequality implies that

3 ‘f(%j/ﬁb) f/<2;k+b>

k=—o
o0
and hence also that > |g(k)|? < oo, because by assumption, sup |khg| < co. [
keZ

k=—o0

2
< 00,

oo

2
< 00, Z

k=—o
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Definition 12.2.2 ([281, Section 2.5]). An entire function w of exponential type < o
is said to belong to the Paley—Wiener class L7 if its restriction to the real axis
belongs to La(—00, 00).

Remark 12.2.3. For an entire function w, let we = J(w + @) and w, = 3 (w — @)

be the even and odd parts of w, where @w(A) = w(—A). Clearly, w belongs to L7 if
and only if w, and w, belong to £7. We denote the sets of even and odd functions
in £7 by £¢ and L7, respectively.

Lemma 12.2.4 (Plancherel’s theorem). The function w belongs to L7 if and only
if it is of the form

w(M) :/ £(t) cos At dt +i/ C(H)sinMdl, AeC,
0 0
where &, ¢ € Ly(0,0). Furthermore, \Allim e ImAla|,(\) =0 ifw e L2,
—00

Proof. The first statement can be found in [263, Theorems 48 and 50] or [281,
Theorem 2.18], while the second statement easily follows from [180, Lemma 1.3.1].

O
Remark 12.2.5. In the notation of Lemma 12.2.4,
we(A) = / E(t)cos Atdt, wo(A) = z/ C(t)sinAtdt, XeC.
0 0
Consider the Sturm-Liouville equation
Y —q(x)y + N2y =0 (12.2.1)

on the interval (0, a), where 0 < a < 00, ¢ € L2(0,a) is a real-valued function and
A is a complex parameter. Let eg(A, ) denote the solution of equation (12.2.1)
with initial data

eo(N,0) =1, e((N,0) = —iA. (12.2.2)

Theorem 12.2.6 ([180, Theorem 1.2.1]). The solution eg(A, ) of the initial value
problem (12.2.1), (12.2.2) admits the representation

eo(\, ) = e 4 K(z,t)e”™dt, 0 <z < a, (12.2.3)

—T

where

K(z,t) = —re(t, bz, —x), 0<z<a, |t <z, (12.2.4)

and r is the function defined in Lemma 12.1.2 with

q0(&,m) Z—iq (5;77). (12.2.5)
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Proof. The function »
u('ra y) = e—l)xmeo()\7 y)

belongs locally to W3, is continuously differentiable for —co < # < 00, 0 <y < a,
and solves the Cauchy problem

Upy = Uyy — ¢(Y)u (12.2.6)
with initial conditions
u(r,0) = ™, (x,0) = —ide A,
Corollary 12.1.4 gives that the value of the function w at (g, yo) is given by
. . Zo+Yo )
e*”\moeo()\,yo) = ¢~ Mzotyo) _ / re(z, z; 20 + Yo, Lo — yo)e*M"”dx.
Zo—Yo
Letting 9 = 0 we get
60(>‘7 yO) = eil/\yo - / ’l"g(x, x5 Yo, _yO)eierdx'
—Yo

An obvious change in notation now proves (12.2.3). Since (12.2.6) is equation
(12.1.18) with g1 = 0 and ¢ = ¢, (12.2.5) follows from (12.1.6). |

Proposition 12.2.7.

o\, z) = e~ 4 / S”“(f = yDeo () dt. (12.2.7)
0
Proof. It is easy to see that
y(x) = e A 4 / sm/\(;\: a t)g(t) dt (12.2.8)
0

is the solution of the differential equation y” + A2y = g with g € L2(0,a) subject
to the initial condition y(0) = 1, y'(0) = —iX. For g = geo(}, -) it follows that y is
the unique solution of (12.2.1), (12.2.2). Since this solution is ey (4, -), the equation
(12.2.7) follows. O

Lemma 12.2.8. Let p € Ny and ¢ € WP(0,a). Then K defined in Theorem 12.2.6
is continuous, and for all0 < x < a and |t| < z,

[N((x,t):;/o B du+/ / g+ B)K(a+B,a—B)dfda. (12.2.9)

Furthermore, 32211‘?;22 K(a,-) € WPH'=P1=P2(_q a) whenever p; 4+ py < p+ 1. If

q is real valued, then also K is real valued.
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Proof. From (12.2.4), (12.1.4) and Lemma 12.1.1 we conclude that K is continu-
ous. If ¢ is real valued, then also ¢o given by (12.2.5) is real valued, and hence the
real part of r also satisfies (12.1.4). From the uniqueness of the solution of (12.1.4)
we conclude that r is real valued. Substituting (12.2.3) into (12.2.7) we arrive at
T ) T gin A —¢ }
K(z,t)e~Mdt = / o (f ) gt
0

—x

. _ t ,
+/ A t)q(t) K(t,&)e"™8dedt.  (12.2.10)
o A —t

Next we express the right-hand side of the above equation as a Fourier transform.
Since o)
inA(z—1t) _, 1 T ;
Sin (:L' )672/\5 _ / 672/\’“ du, (12211)
A 2 Je—(a-1)
it follows that

T : _ . 1 r * 3
/ sSin )\(.13 t) q(t)e_”\tdt — / q(t) / e—zAu du dt
o A 2 Jo 2t—x

z4u

I 2
= 2/ e—”"/ q(t) dt du. (12.2.12)
—x 0

Using equation (12.2.11) once more, we obtain the equality

m““‘”w>ﬂm@—wﬁﬁ

Er—t)
/ / th/ e_“\“dudf) dt
e (a1)

Interchanging variables, the inner double integral becomes
t E+(z—t) min{t,u+(z—t)}
Ko [ v~ [Con | R (1,€) dé du.
—t E—(z—t) —z max{—t,u—(z—t)}
Consequently,

z b E+(z—t)
/ q(t) | K(t,€) / e~ du dE dt
0 —t E—(z—1t)

T ) T min{t,u+(z—t)}
:/ e—m/ q(t)/ K(t,€) dé dt du.
0 I

-z ax{—t,u—(xz—t)}

It follows that

/m bln/\(/\l' - t)q(t) ! K(t g) —iA§ dé dt (12213)
0

min{—u,t+(x—u)} _
/ —ix / / K (u,€) dé dudt.
—z max{—u,t—(z—u)}
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Equations (12.2.12) and (12.2.13) show that (12.2.10) leads to

K(x,t)e”Mdt

—x

1 [ ot z min{u,t+(x—u)} o
- 2/ (/ q(u)du+/ q(u)/ K(u,§) dﬁalu)e_Z tdt.
—x 0 0 max{—u,t—(z—u)}

Taking the inverse Fourier transform, we arrive at
_ 1 3 1/ min{u,t+(z—u)}
K(z,t) = / q(u)du + / q(u)/ K(u,§)dédu. (12.2.14)
2 Jo 2 Jo max{ —u,i—(z—u)}
Performing the change of variables
u+€&=2aand u—§€ =20
in this integral, the region of the double integral,
—u<é<u, t—(r—u)<E<t+(zx—u), 0<u<u,
becomes
0<a, 0<g8, 26<x—t, 2a<z+4+t, 0<a+pg<uz,

where the last condition is redundant since it follows from the first four. Hence
(12.2.9) follows. O

From [180, Corollary after Theorem 1.2.1, Theorem 1.2.2 and (1.2.18)] we
obtain

Theorem 12.2.9.
1. If the potential q of the Sturm—Liouville equation

—y"(z) + q(z)y(z) = Ny(z), =€ (0,a), (12.2.15)

belongs to L2(0,a), then the solutions of the initial value problems s(A,0) = 0,
§'(A,0) =1 and ¢(X,0) =1, ¢/(X,0) =0 can be expressed as

A )\t
s\ ) :Sm * / K(a,)" M, (12.2.16)
c()\,x):cos)\x—i—/ B(z,t) cos At dt, (12.2.17)
0

where K (z,t) = K (z,t)— K (z, —t), B(z,t) = K(z,t)+K (z,—t), and K (z,t)
s the unique solution of the integral equation

’l‘+f
~ 1 2
K(x,t)=2/ ds—|—/ / q(s +p)K(s+p,s —p)dpds
(12.2.18)
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on the triangular region {(z,t) € [0,a] X [—a,a] : [t| < z}. In particular, it is
true that K(x,0) =0 and

B(z,2) = K(z,2) = K(z,2) = ; /Ow q(s)ds. (12.2.19)

2. If g € W}(0,a), then K and B have partial derivatives up to (n+ 1)th order
which belong to L2(0,a).

Proof. We observe that

=\, x) —eg(A, x)

e
s z) = ! %\

(12.2.20)

for all € [0,a] and all nonzero complex numbers A since both functions solve
the initial value problem (12.2.15) subject to the boundary condition y(0) = 0,
y'(0) =1, see (12.2.1) and (12.2.2) for eg. Theorem 12.2.6 shows that

51 1 z ~ . ~ .
5()\7l') _ bln)\)\.r + 22)\/ (K(l‘,t)el/\t _ K(x’t)ef’LAt) dt

_ Sin;x + 2; /0 ' ([f{(x,t) — K(z,—t)]e™ — (K (2,t) — K (z, —t)e*W) dt

_ sin X +/ [f{(x,t) - K’(m, _t)]sm)\t at.
A 0 A

which proves (12.2.17). Similarly, (12.2.18) follows from

O z) = OO +2e°(_A’x). (12.2.21)

The properties of K and B now follow immediately from their definition and
Lemma 12.2.8. ]

Observe that —sin”*1) is an antiderivative of sin®?) for all j € Ng. We also
note that K is an odd function with respect to t, whence g’tjj K(a,0) = 0 and

g,» K,(a,0) = 0 for all even nonnegative integers. Similarly, since B is an even

function with respect to ¢, it follows that gzj B(a,0) = 0 and g; B, (a,0) =0 for
all odd nonnegative integers. Then integration by parts and differentiation with
respect to x, respectively, followed by n integrations by parts in (12.2.16) and

(12.2.17) leads to
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Corollary 12.2.10. If n € Ny and g € W3*(0,a), then

sinda o &7 sint*h \q a gntl sin(™ D) a¢
s(\,a) = \ _FO ot K(a,a) wer o T i athrlK(a,t) et dt,
(12.2.22)
/ _ sinda = 0771 sin® \a
=t Ko™ 5 2 Ko™
‘o sin(™ ¢
T o atnKm(a’t) An+1 dt, (12.2.23)
— sin®) \a @ gntl sin(™ At
C(A’ a) -8 )\a + ]z:;) ath(a,a) )\j+1 o 0 atn+1 a, )\n+1 dtv
(12.2.24)
Ve qnG=1
(A, a) = —\sin \a + B(a, a) cos ,\a_|_z atjle-T a.a sin N a
j=1
a gn Sin(n—i—l) 2\
+/ Bo(a,t) dt, (12.2.25)
o ot A"
where gg}iﬁK(a,% gg; K.(a,-), g::lB(a")7 gt’; By(a,-) belong to Ls(0, a).

Corollary 12.2.11. The entire functions A\ — As(\ a), §'(-,a), c(-,a), and X —
AL (N, a) are sine type functions of type a.

Proof. The first term of the representation in Corollary 12.2.10 of each of these
functions can be estimated as

1
4

for sufficiently large | Im A|, whereas the remaining terms satisfy

O(A—1)€|Im>\|a.

. 1
e\ImMa < |sm/\a\ < €|Im)\\a or 4€|Im>\|a < ‘COS)\CL| < €|Im)\\a

Hence each of these functions is a sine type function by Proposition 11.2.19. [

12.3 Representations of some sine type functions

Let b and ¢ be real numbers. Then the solution w of the initial value problem
y'+ (N =2ibA—c)y=0, z€(0,a), y(A\0)=0, y'(A\0)=1, (12.3.1)

has the representation w(\, z) = 7(A)~!sin7(\)z, and w'(\, ) = cos 7(\)z, where
7(A) = VA2 — 2ib\ — c. Since both w and w’ are even functions with respect to
T, the representation is unambiguous. The next lemma gives an asymptotic rep-
resentation of these two functions in terms of sin Aa and cos Aa for x = a > 0.



12.3. Representations of some sine type functions 359

Lemma 12.3.1. Let b,c € R and a > 0. Then there are R > 0 and analytic
functions fjr on {z € C:|z| < R7} for j,k = 1,2, satisfying fjx(—2) = fjr(2),
f1,1(0) = f21(0) = coshba and —f12(0) = f22(0) = sinhba such that for the
solution w(-,a) of the initial value problem (12.3.1) at * = a and its derivative
Ww'(,a) at x = a we have the representations

w(ha) = sin;(’i)) — faO- )bm)\)\a ifa(h- )cos)\)\a7 (12.3.2)
W'\, a) =cosT(N)a = fa1 (A1) cos Aa + i fa0( A7) sin Aa, (12.3.3)
for |A] > R.

Proof. Let r > 0 such that 2|b|r + c¢r? < 1. Let hy be the unique analytic branch
of 2+ V1 —2ibz —cz2 on {z € C: |z| < r} with hy(0) = 1, i.e.,

o 1
hi(z) = ZO (;) (=2ibz — 2, 2] <. (12.3.4)

Note that hy(z) # 0 for all [z| < r. For [\| > R = ! we will now choose the branch
of 7 such that

T(A) -1
= h1(A
) (A7)
For |z| < r we define
-1
ho(z) = hl(z; . (12.3.5)
Clearly, hs is analytic with hy(0) = —ib. For |A| > R we conclude that
) = A=A (T(;) - 1) — hy(A7Y).
It follows that
sint(A)a  cosha(A™)asinAa n sin ho(A~1)a cos Aa
A h(\h) A hi(A71) A
cos T(A)a = cos ha(A"1)a cos Aa — sin ho(A™1)a sin \a.
For |z| < r we define
fia(z) = C%hz( 0 o) = z‘smh?(z)a, (12.3.6)
f2.1(z) = cos hg(z)a, fa.2(2) = isin hg( )a, (12.3.7)

which proves the representations (12.3.2) and (12.3.3). We also obtain f11(0) =
f2.1(0) = coshz(0)a = coshba and —f12(0) = f2,2(0) = isinhhe(0)a = sinh ba.
The symmetry of these functions follows from

hi(— =1+ 2ibz — 22 = h1(2)
and ho(—z) = —ha(z) for |z| <r. O
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Corollary 12.3.2. Under the assumptions of Lemma 12.3.1, for each n € N there
are polynomials f;rn of degree < n and entire functions ¢, € L, j,k = 1,2,
such that fjrn(—2) = fikn(2), fj1,n(0) = coshba, (—1)7 fj2,(0) = sinhba,
VYin(—2) = (=1)"T; ,(2) and such that

sinT(Aa _\sinda _1,€08Aa Y1 (N)
T()\) - f1,17n()\ ) )\ +Zf1,27n(>\ ) )\ + )\n+1 ’ (1238)

- -1 . —1\ - 'll)Q,n()\)
cosT(N)a = fa1n(A" ") cosAa+ifa2,(A77)sinAa + . (12.3.9)

)\n
Proof. Let fjin, 3,k =1,2, be the Taylor polynomial about 0 of order n of the
function f; from Lemma 12.3.1. Defining the function 1 , by (12.3.8), we have

Grn(A) = Anrt zg)“ AN 1A sin NG — i f o0 (A1) cos Aa
T

=\" (fl’l()\il) — fl’l,n(Ail)) sin Aa + A" (f1’2(>\71) — fl’g,n()\il)) cos )\a,

where the second identity follows from (12.3.2). The first of these representations
shows that 11 ,, is an entire function with the stated symmetry. Finally, the second
representation shows that 1y, is of the form O(|]A|™!)sin Aa + O(|A|™!) cos Aa,
and therefore v1 ,, is of exponential type < a and O(|]A\|~!) on the real axis. Hence
¥1,n € L% The proof for s ,, is similar. |

Lemma 12.3.3 ([180, Lemma 3.4.2]). For the functions u and v to have the repre-
sentations

sin\a  4n%Aacosha  f())

= — 12.3.1

uN =y AN -2 T N2 (123.10)
v(\) = cos \a + Br? Sli:a + g(;), (12.3.11)

where A,B € C, f € L2, f(0)=0, g€ LY, it is necessary and sufficient that

oo —2
7k Tk TA oy
A) = P— A\ = 12.3.12
s =aIL(7y) 0= w=T T (12312
= [T 1\ 2 T 1 B B
\) = k- 2 _\? = (k-

’U( ) P <a < 2>> (vk )7 Vg a < 2> + ak + k )

(12.3.13)

where (o), € l2 and (Br)52, € la.

Proof. We define
©0s(A) = iX2u(N).
In view of
4Ar2a)? 2 d

N2 — 72 a (4N —72)a’
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s is an even entire function of the form ¢ asin (7.1.4) witho =0, a =1, M =0
and N = ”ZA. Then the representation of uy in (12.3.13) follows from part 1 in
Lemma 7.1.3 if we observe that u is even and that we have to omit a double zeros
at 0 from the sequence (S\k)zozfooJ#o- Since A — Asin Aa is a sine type function,
it follows from Lemma 11.2.29 that

u(\) = d’ ﬁ (”j) - (u? — A2)

k=1

with some a’ # 0. From the product representation of the sine function we infer

that
(N d (RN . A2a2\ 7!
sin/\a_aH a (ux =A%) 1_7r2k;2
o 9 2
_ a’ H up — A
a 7'r212€2 _ )

I
Q 8

. 2,2 . . . 2,2 2,2
Since uf — ™ 5" is bounded with respect to k and since |, 5" — 2| > ™ X" for A on

the imaginary axis, it follows that the right-hand side converges to ‘ZI as A — oo
along the imaginary axis, whereas the corresponding limit on the left-hand side
is 1. Hence o/ = a and we have shown that the function given by (12.3.10) has the
representation (12.3.12).

Conversely, assume that u is given by (12.3.12). Putting Ay = ™", we have

2

A T
U = A\, + a2 )\];1+ k

AL
a k

Since (Ak)kez is the sequence of the zeros of A — sin Aq, it follows from Remark
11.3.16 that

2
Au(A) = Cpsin Aa <l + Bl) " A cos Aa + fQ(A), (12.3.14)
A a\ A
where Cy # 0, Bj is a constant and fo € £®. Taking into account that u is an even
entire function, we obtain By = 0, fo € L% and f2(0) = 0. From the first part of
the proof we conclude that Cyp = 1. Hence u is of the form (12.3.10).
Similarly, the function defined by

Pc(A) = Av(N)

is an odd entire function of the form ¢ as in (7.1.4) with o = 1, « = 0, M =
™B and N = 0. Arguing as for ps it follows that (12.3.11) and (12.3.13) are

a

equivalent. O
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Lemma 12.3.4. For the entire functions u and v to admit the representations

sin\a  4n%Aacos \a sin \a n f)

w = = O g (12.3.15)
B osin Aa cos \a g(A)
v(A\) = cos \a + Br \a + D4)\2a2 2 + 2 (12.3.16)

where A,B,C,D € C, f € L%, g € L, it is necessary and sufficient that

S A Tk TwA oy
_ 2 _ 2 _
u(N) _ag ( . > (uf =), we=""+ L+ 5, (12.3.17)
= [T 1\ 2 T 1 B B
v(/\)zl_[(a (k;—2>> (vZ — \?), vk=a<k—2>+ak+k2,
k=1
(12.3.18)

where (ag)32, € la and (B)5° € lo.

Proof. First assume that (12.3.15) or (12.3.16) hold. We are going to prove that
the representations of the zeros uy and vg given in (12.3.12) and (12.3.13) can be
written in the form (12.3.17) and (12.3.18). In case (12.3.15) we define

X(w) = pPu(p), (12.3.19)

while in case (12.3.16) we define

() = —po (ot 27;) . (12.3.20)

It is easy to see that in either case,

X(1) = (p + Bap™ ") sin pa + Ay cos pa + Wy (p)p ™"

with ¥; € £ Indeed, in case (12.3.15) we have By = C and A; = —n2Aa™?,
while in case (12.3.16) we have By = 452 and A; = —Bn?a~!. Hence ¥ is of the
form as considered in Lemma 7.1.5 with n = 1, By = 1, B; = 0, A = 0, except
that we do not require that A; and Bj are real and that ¥,, is symmetric. But it
is easy to see that these requirements are only used to guarantee that the zeros
of x can be indexed properly; the asymptotic representation (7.1.13) of the zeros
holds without these requirements. We therefore conclude from Lemma 7.1.5 that
the zeros of xy have the asymptotic representation

kA b

b= g kﬂ'—'_kz7

™
2a’

where (b,(:))zo:l € ls. Observing that uy = py and vy, = pp—
(12.3.17) and (12.3.18) follow.

the representations
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Conversely, assume that (12.3.17) holds. By the first part of this proof, the

Zeros (Aéo))kez\{o} of the entire function ug defined by

sinA\a  4w%Aacos \a

A) = — 12.3.21
uO( ) A 4)\20,2 _ 7'('2 ( )
have the asymptotic behaviour
(0) 7k TA Qo k
= 12.3.22
Ak ak k2 (12.3.22)

where (o), € lo and ap,— = —ag  for all k € N. Comparing (12.3.22) with
(12.3.17) we obtain

_ (0 Tk
up = A, + ()\LO))Q’

where (Vk)rez\ {0y € l2. It is easy to see that A +— Aug()) is a sine-type function
of type a. In view of Remark 11.3.16 we obtain

A A2 A2

where Cy # 0, By, C are constants and fo € L% Taking into account that u
and wug are even functions, we obtain By = 0 and fy € L%. Since u satisfies the
representation (12.3.10) in Lemma 12.3.3, it follows that Cy = 1. Substituting
(12.3.21) into (12.3.23) and observing Cy = 1 and B; = 0, we obtain (12.3.15).
Finally assume that (12.3.18) holds. By the first part of this proof, the zeros

(Aéo))kez\{o} of the entire function vy defined by

Mu(\) = Coug(N) (1 4By C) 4+ 20 (12.3.23)

vo(\) = cos \a + Br? b”;aa (12.3.24)
have the asymptotic behaviour
1 B Box
AD =T (k| = ki ’ 12.3.2
O =T (k= ) seuk+ T 0 (123.25)

where (So,k)52, € l2 and fo,— = —Bo,x for all k£ € N. Comparing (12.3.25) with
(12.3.18) we obtain

_(0) Tk
v = A, + (/\20))2,

where (7&)rez\fo} € l2. It is easy to see that vy is a sine-type function of type a.
In view of Remark 11.3.16 we obtain

B D fa(N)
v(A) = Covp(N) <1+ 5 + 4a2>\2> + 2 (12.3.26)
where Cy # 0, By, D are constants and fy € £ Taking into account that v
and v are even functions, we obtain B; = 0 and fo € L2 Since v satisfies

the representation (12.3.11) in Lemma 12.3.3, it follows that Cy = 1. Substituting
(12.3.24) into (12.3.26) and observing Cy = 1 and B; = 0, we obtain (12.3.16). O
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12.4 The fundamental equation

Throughout this section let u and v be as in (12.3.10) and (12.3.11) with A = B
and such that the numbers u; and v, in (12.3.12) and (12.3.13) are real or pure
imaginary for all k¥ € N and satisfy

vi<ud <vi<udooo.
We consider the entire function y defined by
X(A) =v(A) +idu(r), AeC. (12.4.1)
Lemma 12.4.1. The function x is of SSHB class.

Proof. By definition, u and v are even functions, and we can write u(\) = Q(\?)
and v()\) = P(A\?) with entire functions @ and P, where the sets {u} : k € N} and
{v? : k € N} are the sets of the zeros of @ and P, respectively, and all zeros of
and P are simple and interlace. Since @ and P have the representations (12.3.12)
and (12.3.13), it is easy to see that Q(v) is an infinite product of positive numbers,
whereas P’(v?) is the negative of an infinite product of positive numbers. It follows
that Q'(z)P(z) — Q(x)P'(z) > 0 for all z € R sufficiently close to v?. Hence there
are x € R such that P(z) # 0 and such that 6 = 5 satisfies §'(z) > 0. Therefore
0 is a Nevanlinna function by Theorem 11.1.6 and Remark 11.1.7. Then 6 € N}?
by Corollary 5.2.3, and thus x is of SSHB class by Definition 5.2.6. O

We further define the function i by

P(A) = e X () (12.4.2)
and the function S by
¥(A)
S(A) = BN (12.4.3)

Proposition 12.4.2. Let x := #{k € N : v,% < 0}. Then S is meromorphic on C and
analytic on R, and S has exactly k poles in the open upper half-plane. All poles in

the open upper half-plane are simple and lie on the imaginary axis. Furthermore,
for X € C such that (X) # 0 and (=) # 0 we have

o) S (N

S(=\) =80\, [SN)| =1, reR (12.4.5)
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Proof. The function S is the quotient of two nonzeros entire functions and hence
meromorphic on C. Let x(A\) = x(—=A), A € C. Since x and x do not have common
nonzero zeros, the statement on the poles and the analyticity of S on R\ {0}
immediately follows from Theorem 5.2.9. Furthermore, the possible singularity of
S at 0 is removable since )lg% S(A) = —11if 01is a (simple) zero of x. The identities
(12.4.4) and (12.4.5) are immediate consequences of the fact that x is real on the
imaginary axis. |

For b > 0 we define S; by
Sp(A) =1—=S(ib+)N), XeC, ¢p(—ib—1i)) #£0. (12.4.6)

Lemma 12.4.3.

1. Let b > 0 such that ib is not a pole of S. Then Sy € La(R).
2. Let v > 0 such that S is analytic on {\ € C:Im A\ >~} and define

—yz oo .
Py =° / S,(VePdr, zER. (12.4.7)

Then the function F is real valued and independent of v. Furthermore, the function
x +— e’ F(x) is the inverse Fourier transform of S, and can be represented as
Fy + Fy, where Fy € Ly(R), Fy € W3 (R) are real-valued functions, Fy(z) =0 for
x>0, and Fy(z) =0 for x > 2a.

Proof. 1. We conclude from the representations (12.3.10) and (12.3.11) of w and v

that
ity An?sinAa  4m2%idAacosha  g(A) +if(N)

A) = -
X a A 4)2q2 — 2 A ’
which gives

Ar?sinha _;y, B 472iNAa cos )\aeﬂ»/\a gA) +if(N) p—ira

A =1 12.4.
v a A € 4X\2a? — 72 + A ( 8)
and
1 An?sin\a 4n%idAacos \a gA) —if(N\)
—1— iha _ ia ia -2
B(=N) a A © a2 g2 O T Ao rronT
(12.4.9)

for A in the closed upper half-plane. Therefore, the function S satisfies

Ar?isin® \a  8m%iMAacos® \a 2

—1-2 -

SO a A 4X2a2 — 72 + A
+ O(/\72)e21m /\a.

(g(\) cos Aa — f(N)sin Aa)

Observing that
4a? 1 4
4\2q — 72 )2
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this representation can be written in the form

Ar?i 2
1-5(\) =2 ; L L9 cos Aa = F(N)sin Aa) + O )™ . (12.4.10)
a
By Proposition 12.4.2 we know that poles of S in the closed upper half-plane
lie on the positive imaginary axis, and from (12.4.10) we thus infer that 1 — S is
analytic and square integrable on each line Im A = b with b > 0 for which b is not
a pole of S.

2. Using (12.4.4) we have
Sy(=A)=1-8@y—X) =1-S>GEy+ ) =5,(1), AeR,

so that

e > iz
F(x) = Re (Sy(A\)e) dX, z €R,
0

™

which shows that F' is real valued. We can write

F(zx) = ;ﬂ / (1 = S(iry + \))elr Nz g

1

= — e d\ =: .
- /m_wu SO dA = ()

If we now take v/ > =, then it follows from Cauchy’s theorem that

’

|F’y/ (ZL') - F’y(iL')| < limsup (/ |(]_ — S(R + it))el(R+zt)z|dt
2 R—o0 ~

’Y/ . .
+/ (1 — S(—R+it))e’(R“t)$dt>
vy

=limsupO(R™!) =0,
R—oo
and therefore the function F' is independent of the special choice of ~.
The first term of the representation (12.4.10) of 1 — S has a pole at A = 0.
But it is easy to see that (12.4.10) can be written as

1S\ = 2A7?i w(A)

a0+ Tar M6

where w is analytic in the closed half-plane {A € C: Im A > v}, w(iv+-) € L2(R),
and A — w(N\)e 22 j5 bounded in that half-plane. We can therefore write
eV F(x) = Fy(z) + Fa(x) with

1 [ 24Ar% 1 [ wA+iv) ,
F = (2% F — IAT
(@) 27 [oo a(/\—|—z"y+i)e A, Fa(x) 27 ,Oo)\—ki’y—l—ie dX
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For x > 0 and R > 0 it follows from Cauchy’s integral theorem and Lebesgue’s
dominated convergence theorem that
R ei/\a: T eRei(9+72r)a: )
o dA=— o .. Re®df—0as R— o
_pAFiv+i o Re¥ +iy+i
Similarly, for x < 0 and R > v 4+ 1 we use the residue theorem and Lebesgue’s
dominated convergence theorem to conclude that

R ei/\a: 27 RT3, ) ei)\z
. dA = 0 | - _Re" df — 2mi res_jy—i . .
_pAt+iv+i = Re?® +iy+i A+iy+i
— —27ie(*tD? a5 R — 0.
Therefore
0 ifx >0,
F (l‘) = {2A7r2 e(’y+1)w ifx <0.

The function F5 is differentiable with

i [ A ;
Fi(z) = A +iy)ed\, zeR.
0=y [ e
Hence F, and F) are inverse Fourier transforms of functions in Ly(R), which shows
that F» € W3 (R). For x > 2a and R > 0 it follows from Cauchy’s integral theorem,
the boundedness of A — w(\)e?¢ in the closed half-plane {\ € C : Im \ > ~},
and Lebesgue’s dominated convergence theorem that

R . g 0 ; . P
W(A + Z’Y) ei)\z d\ = — OJ(.IEB + Z’Y)Iel:iet(eJr 2 )(2a7$)R6i0 d9 = 0
_RAFIY+1 o e +iy 41
as R — oo. Therefore, Fy(x) =0 for z > 2a. O

The fundamental equation, see [180, (3,2,10), (3.3.7)] will formally be de-
fined as

F(z+y) + H(z,y) + / H(z t)F(y+t)dt=0, 0<z<y  (12.4.11)

In order to have the limits of integration independent of x, we substitute y 4 x for
y and t + x for ¢, see [180, (3.3.7")], and the fundamental equation becomes

F(2x—|—y)+H(m,m+y)—|—/ H(z,x+t)F(2x+y+t)dt =0, z,y>0. (12.4.12)
0

We observe that in view of F(z) = 0 for > 2a, the equation (12.4.12) can be
written as

2a—2z—y
F<2x+y>+H<m,x+y>+/ H(z,o 4 )FQ+y+8)dt =0, (z.y) € D,
0
(12.4.13)
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where D = {(z,y) € R? : 0 < 2 < a,0 <y < 2(a — )} since for any other
values of z,y > 0, H(x,x+y) = 0 is necessary and sufficient for (12.4.12) to hold.
However, it will be more convenient to use a rectangular region, and therefore we
will consider the region [0, a] x [0, 2a] instead of D.

For 0 < 2 < a define

(IFIf)(y)z/O aF(2x+y+t)f(t)dt, f € Ly0,2a), y€[0,2a]. (12.4.14)

The following result is a special case of [180, Lemmas 3.3.1, 3.3.2 and 3.3.3].

Lemma 12.4.4. For 0 < z < a, the operator F, is a self-adjoint compact operator
in the space Lo(0,2a). If v? > 0, then I +F, > 0.

Proof. Since (y,t) — F(2x + y + t) is a real-valued and symmetric continuous
function on [0, 2a] x [0, 2a], the operator F, is self-adjoint and compact, see, e. g.,
109, p. 240).

Now let v? > 0. Then S is analytic in the closed upper half-plane, and we
can take v = 0 in (12.4.7). In particular, F' € Lo(R). Let f € L3(0,2a). Putting
f(t) = (F.f)(t) = 0 for t € R\ [0,2a] and using the notations f(t) = f(—t),
7(t) = y + b for z,b € R, the right-hand side of (12.4.14) can be written as a
convolution, so that we arrive at

Fof = (Fomy)* f on [0,00).
Hence there is a function g with support in (—oo, 0] such that
Fof +9=(Fory)*fonR. (12.4.15)

For y < 0 we have

2a 2

F2x+y+t)f(t)dt
0

2a
9()? = < / P2z +y + D) dt || f]|2,

where || - || denotes the norm in Lo(R). Hence

0 0 2a
||g\|=/ \g(y)\zdys/ / F@r+y+0) dedy | f|?
2a 0
= [ [ IPessyroPayas <2l PRSP,
0 —00

which shows that g € La(—00,0).
Taking the inner product with f in (12.4.15) and observing that ¢gf = 0, we
arrive at

(wavf):((FoT%:)*fvf)'
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Let f denote the Fourier transformation of f. Taking the Fourier transforms of
the functions in the above inner product and observing Parseval’s formula gives

(Fof), f) = (F o 7] £ ),

see, e.g., [108, (21.41)]. It is well known and easy to check that f is an entire
function. We observe that for any function h € Ly(R) and b € R,

(hom)(A) = /_OO h(b+t)e~ ™ dt = /_OO h(t)e 0 g = ¢MPR(N).  (12.4.16)

Since F' =1 — S by definition of F in (12.4.7), we conclude that

(oo}

(Faf), f) = / 2 (1 — S(N) F(=A)F(A) d.

— 00

Again from (12.4.16) and Parseval’s identity we conclude that

/oo 621)\33.]?(_)\).]5()\) A\ — /OO e’i)\wf(_)\)e_i)\xf(A) dA

— 00 — 00

— [ Geora-feradn
But (for_;)(t) = f(t—z) = 0if t < 0 since f is zero outside [0, 2a], and therefore
the integrand on the right-hand side is zero. We conclude that

1
2

1 . © sixe ; ;
€0 0) = 5 (Efr ) ==y [ ENSOFNiNan 24
Observing (12.4.5) it follows from the Cauchy—Schwarz—Bunyakovskii inequality

that

1

©0.02 -, [ VN0l - 17 =517 (2419

— 00

Altogether, we conclude that
(I +F)f, f) =0 (12.4.19)

for all f € L]0, 2a]. Hence I +F, > 0.

Since F, is compact, I + F, is a Fredholm operator of index 0, and for
I+TF, > 0 it remains to show that I + F, is injective. Hence let f € L2(0,2a)
such that (I +F,)f = 0. For this f, (12.4.19) becomes and inequality, and hence
also the Cauchy—Schwarz—Bunyakovskii inequality (12.4.18) is an equality. But
this happens if and only if one function in the inner product is a nonnegative
multiple of the other function, i.e., when there is « > 0 such that

—eZA SN f(=N) = af(\), AeR.
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Observing that S(0) = 1 and that in case f # 0 the Taylor expansion of the entire
function f about 0 leads to

oy |
7
it follows that @ = 1, and the identity theorem gives
FO) + 2SN f(=N) =0, AeC, S(\)#0, (12.4.20)

which is also trivially true in case f = 0.

First let = 0. Then (12.4.20) holds with 2 = 0. Hence all poles of S must
be cancelled by zeros of f , and since the poles of S are the zeros of 9, there is an
entire function w such that .

f=wy.
Multiplying (12.4.20) by v we arrive at

wpp = [ = —fip =~y
which shows that w is an odd entire function. We have seen at the beginning of

this section that v has no zeros in the closed lower half-plane and satisfies the

estimate (12.4.9). Hence i} is a bounded analytic function in the closed lower

half-plane. Since f is the Fourier transform of a function in L[0,2a], also f is
bounded in the closed lower half-plane. Indeed, it is easy to see that the integral
over |f] is such a bound. Hence w = i is bounded in the closed lower half-plane
and then also bounded in the closed upper half-plane due to the symmetry of w.
By Liouville’s theorem, w is constant. But i} is bounded on R, see (12.4.9), and f
is an Ly function on R, so that this constant must be zero. We have shown that
w =0, and f = 0 follows. Therefore I + Fy is injective, and I 4+ Fy > 0 is proved.

Now let > 0. Recall that we consider (I +F,)f = 0. Since (F,f)(y) = 0 for
y > 2(a — ), this implies f(y) =0 for y > 2(a — z). It follows for 0 < h < z that
the function )

fo= o (foTarn+ foT o)

has support in [z — h, 2a — x + k], and therefore f5 € L3[0, 2a]. In view of (12.4.16)
we conclude that ‘
e~ cos Ah. (12.4.21)

(20) leads to

Fa(N) = SO fn(=X) =0, A€R,

which means that ((I +Fo)fn, fn) = 0 for 0 < h < a. In view of
(T +TFo) fu, fa) = ((I +Fo)? fn, (I + Fo)> fn)

we conclude that (I + Fg)fn, = 0. But from the case x = 0 we already know that
this implies f;, = 0. Then (12.4.21) gives f = 0 and thus f = 0. |

) =f
A substitution of (12.4.21) into (12.4.
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Lemma 12.4.5. Let v% > 0. For 0 < z < a, define the operator Fg as the restriction
of F, to C[0,2a]. Then FY is a compact operator in the space C[0,2a], and I + F?
is invertible.

Proof. We begin by defining an auxiliary operator 7" by

2a
(T9)f)(y) =/O gly+t)ft)dt, g€ L2(0,2a), f € C[0,2a], y € [0,2a].

Here we set g(z) = 0 for > 2a. Clearly, (T'g) f is a measurable function on [0, 2a)
for all g € L3(0,2a) and f € C]0,2a], and

(T W) < gl 11T < v2allgl 11 £,
where ||-||o is the maximum norm in the Banach space C[0, 2a]. This shows that T' €
L(L2(0,2a), L(C|0,2a], Loo(0, 2a))). Clearly, for continuous g with g(2a) = 0, also
(T'g)f is continuous. Observing that the set of such functions g is dense in Ls(0, 2a),
that C[0, 2a] is closed in Lo (0, 2a) and that therefore L(C0, 2a], C10, 2a]) is closed
in L(C0,2a], Ls(0,2a)), it follows that T € L(L2(0,2a), L(C[0,2a])). Further-
more, if g € W3 (0,2a) with g(2a) = 0, then we can write

2a
g(z) = — / J(r)dr, w20,

see, e. g., [189, Proposition 2.1.5], and therefore
2a 2a 2a 2a
@opw=-[ [ gwarsma = [ [ gernari
0o Jy+t 0 Jy

= /:a /:a g (r+t)dt f(t)dr = —/;a((Tg/)f)(T) dr.

Since (T'¢')f is continuous by what we have already shown, it follows that (T'g)f
is differentiable with continuous derivative ((T'g)f)’ = (T'¢’)f. Then the norm of
(Tg)f in C[0,2aq] is

1(Tg) fllo + 1((T9). ) llo = 1T g) fllo + 1(Tg") fllo < vV2alllgll + llg' DI flo.

which shows that Tg € L(C|0,2a],C[0,2a]) if g € W4[0,2a] with g(2a) = 0.
But since the embedding from C'[0,2a] into C[0,2a] is compact, see, e.g., [189,
Proposition 2.1.7 and Lemma 2.4.1], it follows that Tg is a compact operator on
10, 2a).

As we have seen in the proof of Lemma 12.4.4, we can take v = 0 in (12.4.7).
For 0 < z < a we now apply the above auxiliary result to the operators

FO = T(F o 13,),

which proves that FY is a compact operator in C[0,2a]. Therefore I + FC is a
Fredholm operator with index 0. But N(I + F%) C N(I + F,) and I + F, is
injective by Lemma 12.4.4. It follows that I 4+ I, is invertible. O
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Lemma 12.4.6. The operator functions x — F, and x — FO are differentiable on
[0,a]. The derivative !, of x — F, at x is the operator

(FLf)(y) =2 /Oza F'Qe+y+t)f(t)dt, feLy0,2a), y€l0,2a], (12.4.22)

and (FQ)' is the restriction of F’, to C[0,2a]. For each x € [0,a] and for all f €
La(a,b), the function Fyf is differentiable, and (Fyf) = JF.f.

Proof. Arguing as at the beginning of the proof of Lemma 12.4.4 we see that F., is
a bounded operator in Ly (0, 2a). For z, 2’ € [0, a] we define the auxiliary operator

Fm,m’ - Fm’ - Fr - (l’l — ]J)F;

Then it follows for f € L2(0,2a) and y € [0, 2a] that

(Fa,ar f)(y)

= /2a[F(2J:/ +y+t)—FQ2r+y+t)—2a —z)F' 2z +y+t)|f(t)dt.
0

Since F' € W3 (0,a) by Lemma 12.4.3, we can write
2z’

F(2x/+y+t)—F(2x+y+t):/ F'(r +y+t)dr,
2

x

see, e. g., [189, Proposition 2.1.5]. Therefore

2a
(Fou )y //2 Fl(r+y+1) — F'(22 +y+ O] f(t) dr dt.

Let € > 0. Since the set of continuous functions on [0, 2a] is dense in L3(0, a), there
is a continuous function g on [0, 2a] such that ||F’ — g|| < e. Then

2a

9T +y+t)—(F —g)2x +y+t)|f(t)drdt

2x

2a
s/% / (F — g)(r +y +0)| |f(8)| dt dr

z’ 2a
" /2 /0 [(F" = 9)z +y + )| |f(t)| dt dT

< 42’ — zl[|F" = gllIlf]] < dela’ — ||| f]]

Since g is continuous and therefore uniformly continuous, there exists 4 > 0 such
that |g(t) — g(t')] < ¢ for all ¢,t' € [0,2a] with |t —¢'| < 20. Hence it follows for
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|z" — x| < 6 that

<e

/;I/ /:a |f()| dtdr

/Oa/2 ' (9T +y+1)— g2z +y+t)]f(t)dt

< ev2ala’ — a| f].

Altogether, we conclude that
IFo0 flloo < (4 + V2a)la’ — || ]I

This shows that F, is differentiable as an operator function from Ls(0,2a) to
Loo(0,2a) with derivative F/,, see, e.g., [66, Section 8.1]. By the product rule,
see, e.g., [66, 8.3.1], the same is clearly true if these operators are considered
as operators into L2(0,2a), that is, multiplied by the constant embedding from
L+(0,2a) to L2(0, 2a).

The same reasoning as above applies to the operator function x +— F2. We
only have to restrict f to functions in C[0, 2a] and replace || f| with v/2al| f|o-

In (12.4.14), we can interchange integration and differentiation with respect
to y, and (F,.f) = éIF;f is therefore an immediate consequence of (12.4.22). O

Proposition 12.4.7. Let v > 0 and let the function F be as defined in (12.4.7).
Then for every x € [0,a], (I + F;)g = —F o 7oy has a unique solution g = G(z,-)
in L(0,2a). The function G is continuous on [0, a] x [0,2a] and G(-,y) € W3 (0, a)
for y € [0, 2a].

Proof. As we have seen in the proof of Lemma 12.4.4, we can take v = 0in (12.4.7).
The existence and uniqueness of G follows immediately from the invertibility of
I+TF, for all z € [0,a], which was shown in Lemma 12.4.4, and we have

G(z,y) = —((I +Fa)7H(F 0 724))(y)

for all (x,y) € [0, a] x [0, 2a]. Since F o7y, is continuous, Lemma 12.4.5 shows that
we can also write

G(z,y) = —((I +F3) 7' (F o 72)) (),

and therefore G(x,-) is continuous. By Lemma 12.4.6, x — F? is differentiable
and therefore continuous on [0, a, so that also z — (I +F2)~! is continuous. For
z,x’ € [0,a] we therefore conclude

G, y) — Gz, y)| < (I +Fo) ™ (F omae))(y) — (I +Fg) ™ (F o)) (y)|
+ (I +F) " HF o mo0))(y) — (I +F2) ™ H(F 0 792))(v)]
<N +FQ) ™ = (I +FQ) M I(F o o)
I +TFD)THF 0 m2ar — F o 70|
—0asz’ — x.



374 Chapter 12. Inverse Sturm-Liouville Problems

In the last step we also have used that F' is uniformly continuous. We have thus
shown that G(z,-) and G(:,y) are continuous for all z € [0,a] and y € [0, 2a], and
a standard argument shows that G is continuous on [0, a] x [0, 2a].

Since x — [, is differentiable by Lemma 12.4.6 and since I + I, is invertible
for all z € [0, a] by Lemma 12.4.4, z +— (I +F,)~! is differentiable on [0, a] by the
quotient rule, see [66, 8.3.2], and

d

dx

Furthermore, also x + F o 7o, is differentiable with derivative 2F" o 79,, and the
product rule, see [66, 8.3.1], gives

0

ox

Since F' o Ty, is continuous, we know from Lemma 12.4.5 that the first summand
can be written as

Gi(,) = (I +Fg) 7 (Fy) (I + F3) 7 (F 0 m2a),

(I4+F,) =T +F,) 'F,(I+F,)!

Gz, )= (T +TF) 'F (I +F,) Y (Fomy,)—2(I +F,) " (F om,). (12.4.23)

and since
z— (I+FO)~YF0) (I +F2)!
]

(
) it follows like we have shown for G

(F;)
is a continuous operator function in L(C[0, 2a
] x [0, 2a]. Next we consider the auxiliary

above that also G is continuous on [0, a
operator G defined by

(Gog)(z,) := (I +F,) " (goma), g€ Ly(0,2a),z € [0,a.
Again for continuous g, we can replace F, with F2, and the above considerations

show that Gog is continuous on [0, 2a] and therefore square integrable. We calculate

2a

((I+ Fe)~'(go T2x)) (y) dy da

g/o (I +F) | [lgll dae
< a max ||[(T+F.)" gl
z€[0,a]

By continuity, this extends to all g € L2(0, 2a), and we obtain that Gy is a bounded
operator from L2(0,a) to L2((0,a) x (0,2a)). Therefore, Go := GoF"’ belongs to
L2((0,a) x (0,2a)). Finally, let y € [0, 2a]. Then

((I + IFI)GQ)(xv ) =F'o T2x
gives

Go(z,y) = / F2x +y+t)Ga(z,t) dt + F' (22 + y).

Since (z,t) — F(2x+y+1t)Ga(x,t) is a square integrable kernel, it follows that the
function x — [/ F(22 + y + t)G2(w,t) dt is square integrable on (0,a), see, e.g.,
[109, p. 240]. Altogether, ? G(-,y) = G1(-,y) — 2G2(-,y) € L2(0,a) follows. O
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Proposition 12.4.8 ([180, Theorem 3.3.1]). Let v > 0 and consider the function
F defined in (12.4.7). Then the fundamental equation (12.4.11) has a unique con-
tinuous solution H on Dy = {(z,y) € R? : 0 < z < y}. Furthermore, q € L2(0,a),
where

q(z) = —QddxH(x,x), z € (0,a), (12.4.24)

H and q are real valued, and H satisfies the integral equation

1 a+Y," a—|a— Tl 1 2a
= 2/ / (a,7’)dod7’—|—2/ q(o)do. (12.4.25)

ey +Hly—| "L

Proof. As we have seen in the proof of Lemma 12.4.4, we can take v = 0in (12.4.7).
Recall that H satisfies the fundamental equation if and only if (x,y) — H(z,x+y)
satisfies (12.4.13). But from Proposition 12.4.7 we know that (12.4.13) has a unique
solution G. Hence the fundamental equation has the unique continuous solution
H given by H(z,z + y) = G(z,y) for (z,y) € Dy. Since F' is real valued, Also
H is real valued. In view of H(z,z) = G(z,0), ¢ € L2(0,a) is a consequence of
G(-,0) € W1(0,a), which was shown in Proposition 12.4.7.

To prove (12.4.25), we first consider the case that F' is a twice continuously
differentiable function on (0,00) with support in [0,2a] such that I + FQ has an
inverse for all z € [0, a]. We observe that FY depends continuously on z and hence
a compactness argument shows that the norm of (I +F%)~! is uniformly bounded
for x € [0, a]. In that case, the operator function z — F? is twice differentiable and
we can differentiate once more on both sides of (12.4.22). Adapting the proof of
Proposition 12.4.7 to this case we see that G, and G, exist and are continuous.
It is also immediately clear from (12.4.13) that Gy, G4, and G, exist and are
continuous. Furthermore, for z € [0, a], y € [0, 2a] and h € R such that z+h € [0, ]
and y + 2h € [0, 2a] we have

G(z,y +2h) — G(x,y)
= (I +TF%) "1 (F o 722))(y+2h)— (I + FO) " (F 0 722))(v)
= (I +F2) " (F o Ta(aqm))(y) = (I + F) "1 (F 0 72,)) (y)
= (I +FQ)[F o marn) — F o 72]) (y).

A reasoning as in the proof of Lemma 12.4.6 shows that
1 0\—1 /
Gy(z,y) = (I +Fo)™ (F 0 72a))(y).

Arguing as in the proof of Proposition 12.4.7 and as above in this proof we see that
also Gy, exists and is continuous. We have shown that G is twice continuously
differentiable, and therefore also H is twice continuously differentiable.
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Differentiating the fundamental equation (12.4.11) twice with respect to x
and twice with respect to y we obtain

F/ (o4 ) + Hea(r,y) — o [, 0)F(z+ )]
— Hy(x,2)F(z +y) + /OO Hyp(z,t)F(y+t)dt =0
and
F'(z+y)+ Hyy(z,y) + /Oo H(x, t)F"(y +t)dt = 0.
Integrating by parts twice we have
/OO H(z, t)F"(y+t)dt = —H(z,z)F'(z +y) + Hy(z,z)F(x + y)

+ / Hyy(z,t)F(y +t) dt.
Taking now the difference of the two second-order partial derivatives we arrive at
Hao(2,y) — Hyy(z,y) + q(2)F(z +y)

b [ UHaalst) = Hyy o, OV G +6) bt =0

With y = x + g this equation becomes
Hypn(z, 2 +9) — Hyy(x, 2 +7) + q¢(2)F(2z + g)

+ / [Hypw(z,2 +t) — Hyy(z, 2 +t)|F2e + g +t)dt =0. (12.4.26)
0

Since the fundamental equation in the form (12.4.12) gives
Q@) (F 0 722) = —q(@)(I + Fa)H (2,2 + ) = —(I + ) (q(e) H(z, 5 + ),
equation (12.4.26) can be written as
(I + F) [Haa (2, + ) — Hyy (2,2 + ) — a(@) H (@, + )] = 0.

Defining
p(,y) = Hea(2,y) — Hyy(z,y) — q(z)H(z,y),

o(x,x + ) is continuous for all z € [0, a] and satisfies
(I+TFy)p(x,z+-)=0.

In view of Lemma 12.4.4 we conclude that ¢ = 0.
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Now put £ = 2a+ x —y and n = 2a — x — y and define
a(e,n) == H(z,y) = H <5;”,2a— 5;”). (12.4.27)

We observe that 0 < z < y < 2a — x gives the domain 0 < 7 < ¢ < 2qa for £ and
7. As in the proof of Theorem 12.1.3 we obtain

ﬂ&n:—i <H:c:c (5;77’2&_ f—;—n) — Hy, <£gnv2a_ f‘|2'77>>7

and ¢ = 0 leads to

lign(&,m) = —iq (5 R 77) (e, ).

U(&m) :le/:a/on(J<U;T>ﬂ(U,T)d7da

Ugy — Ugn = 0.

With

we conclude that

Hence there are continuous functions f and g on [0, 2a] such that

a(€,n) =U(&n) + f(§)+gn), 0<n<E<2a.

For definiteness, we may assume that g(0) = 0. For £ € [0, 2a] we have

3 3

a(g,0)=H<2,2a—2>:o and U(£,0) =0,

which shows that f = 0. Similarly,

_ B ooy _ L[ _
u(2a,n)—H(a g0 2)—2/a nq(a)da and U(2a,n) =0,

which shows that

Altogether, we have shown that

2a a
a(&,m) = ‘11/5 /an (J ; T) (o, 7)dr do + ; /J q(o) do. (12.4.28)

Now let F' be defined by (12.4.7). In W} (0,00) we can approximate the
restriction of F to [0,00) by a sequence (F},)nen of twice differentiable functions



378 Chapter 12. Inverse Sturm-Liouville Problems

on [0, 00) with support in [0, 2a]. Consider the corresponding operators IFn »» Which
converge as n — oo and depend continuously on . Then a compactness argument
shows that we may assume without loss of generahty that I 4+ F , is invertible
for all n € N and z € [0, a]. Furthermore, (I —HFO »)~ 1 converges umformly inz to
(I +F2)~!. Since also F,, — F uniformly as n — 00, a standard argument shows
that G, — G uniformly as n — oo, where the functions G,, are defined as

Gu(z,y) = —((I +Fy )~ (Fn 0 72))(y)-

Hence also H,, — H uniformly as n — oo and the corresponding functions @, de-
fined by (12.4.27) with H,, converge uniformly to @ as n — oo. Since the functions
Uy, satisfy the integral equation (12.4.28), it follows that also @ satisfies (12.4.28).
Substituting H for @ in (12.4.28) shows that H satisfies the integral equation
(12.4.25). Here we have to observe that the region of integration is determined by

20+ —y<2a0+0c—-—7<2a and 0<2a—0—-—7<2a—zx—y,

which can be rewritten as

x;—ynga—i—y;x,T—i—x—ygagT, and z+y—7<0<2a—7. O

Lemma 12.4.9. Let q € Lo(0,a). Then the integral equation

+ly—7|

a—|a— ‘r\ 1 2a
/ / H(o,7)dodr + / q(o)do  (12.4.29)
m+y T 2 «v;ry

has a unique solution H on {(x,y) € R?: 0 <z <y < 2a—x}.

Proof. Putting £ =2a+x —y and n = 2a — x — y and

o) = ftep) = (£ 2= €17

we have seen in the proof of Proposition 12.4.8 that the integral equation (12.4.29)
becomes equivalent to the integral equation

2a n o a
n) = L / / q o7 (o, 7)dr do + L / q(o) do

for 0 < n < & < 2a. From the proof of Lemma 12.1.1 we see that its statement
remains true for fixed £y and 7ny. Thus the above integral equation can be written as
i = —Tt+ § with invertible operator I +T on C({(¢,17) € R?: 0 <7 < & < 2a}).
Hence the integral equation for % has a unique continuous solution, and it follows
that (12.4.29) has a unique continuous solution H. O



12.5. Two spectra and the fundamental equation 379

12.5 Two spectra and the fundamental equation

Lemma 12.5.1. The spectrum of the Sturm—Liouville problem
-y +q(x)y =Xy, 0<z<a, (12.5.1)
y(0) =0, cosBy(a) — sinBy'(a) =0, (12.5.2)

with a real potential ¢ € L2(0,a) and 8 € [0, 7] consists of an increasing sequence
of simple real eigenvalues (A, (B))52, which tend to co. For 0 < ' < B < 7, the
etgenvalues interlace as follows:

Al(ﬂ/) < )\1(5) < )\2(/8/) < )\2(5) <L el

Proof. The result is well known. Indeed, it is easy to see from Theorems 10.3.5,
10.3.8 and the spectral theorem for compact operators that the spectrum consists
of real eigenvalues which are bounded below and tend to co. Since the initial value
problem (12.5.1), y(0) = 0 has a one-dimensional solution space, it follows that all
eigenvalues are simple and that A, (3) # X\;(8) forallk,j e Nand0 < 8’ < § < .
From [143, Theorem 4.2, (4.5)] we know that A\,(83) depends continuously on S
and is strictly increasing as a function of 8 for all k, and the stated interlacing
property of the eigenvalues follows. O

Corollary 12.5.2. Let q € L2(0,a) be real valued. Then the spectra of the Sturm-—
Liouville problem (12.5.1) subject to the boundary conditions y(0) = y(a) =0 and
y(0) = y'(a) = 0, respectively, consist of two sequences of real eigenvalues which
interlace as follows:

Q<& <@<&E<--

and obey the asymptotic formulae

m2k2 m2A 2 1\? m2A
& = 2 -2 2 +ag, (= 2 <k— 2) -2 2 + Bk, (12.5.3)

where A € R, (ag)52, € l2 and (Br)32, € l2 are real-valued sequences.

Proof. The first part is an immediate consequence of Lemma 12.5.1 with Ag(7) =
&k and A\, (7)) = (k. For the asymptotic expansion of the eigenvalues we recall from
Corollary 12.2.10 that

sin \a cosia  f(N)
S(Aa a) = A - K(av a’) A2 + A2’
in A A
s'(\,a) = cos \a + K (a,a) sm)\ ‘4 g(/\ )
with f,g € L% An application of Lemma 12.3.3 and (12.2.19) proves (12.5.3) with
A=—"K( )——a/a()d (12.5.4)
=- oK(aa)= 27T20q:£ x. 5.

O
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Let g € L2(0,a) and define g4(x) = g(a — x). Clearly, g, € L2(0, a).

Proposition 12.5.3. Let e, be the solution of (12.2.1), (12.2.2) with respect to qq.
For \ € C define

(12.5.5)

e*i/\“ea(—)\,a —z) if0<z<aq,
eh ) = {e‘“‘m ifa <.

Then the function e is the Jost solution of (12.2.1) as defined in Section 2.1.

Proof. Clearly, e(),-) satisfies the differential equation (12.2.1) on (0, a) and

e(N,a) = e P, (=N, 0) = e A
e'(/\,a) — _e—zAa /( A O) )\e—i)\a

shows that e is indeed the Jost solution. O

Proposition 12.5.4. Let K, be the function K from Theorem 12.2.6 with respect
to the potential q, and define

Kola —z,a— f0<z<t<2a—u,
Kool 1) = (a—z,a—1t) f0<z<t<2a—x (12.5.6)
0 for all other xz,t € R.
Then Ko satisfies the integral equation (12.4.29),
e(\,z) = e —|—/ Koo(z,t)e ™™ dt, NeC, >0, (12.5.7)
and
1 a
Ko (2,2) = 2/ o) dt, z€0,a). (12.5.8)
Proof. With the aid of (12.2.18) we calculate
1 a— m;—y
Kenlo) = Kaa=sa-y) =, [ ala=s)ds
0
1+t y—
—|—/ / gla—s—p)Ks(a—s—p,a—s+p)dpds
0 0
a—|a— 'r| 1 2a
/ / Ko (o,7)dodr + / q(o) do.
+u +ly—| 2 m-;—y
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From Proposition 12.5.3, Theorem 12.2.6 and with the aid of the transfor-
mation 7 = a — ¢ we infer for 0 < z < g that

e\ z) = e ey (=N\a— )

a—x
_ e—i)\aei)\(a—:c) + / Ka(a — 2z, t)ei)\te—i)\a dt
T—a
) 2a—x )
= e 4 / Ky (a—z,a—t)e” M dt,
z

and (12.5.7) follows in view of (12.5.6). For z > a, (12.5.7) is obvious. Finally, we
conclude from (12.2.19) that

1 a
Koo(z,z) = Ko(a —z,a — ) = 2/
0

1 [ 1 [
—2/1 qa(a—T)dT—2/I q(t) dt. O

6()\, .)ei)\a + 6(—)\, .)e—i)\a
2

The function
'Ua(>‘7 ) =

is the solution of (12.2.1) satisfying v, (A,a) = 1 and v/,(A\,a) = 0, whereas the
function
e(_>\7 .)e*i/\a _ 6()\, _)ei/\a
21\

is the solution of (12.2.1) satisfying uq(A,a) = 0 and u),(\,a) = 1. Observe that
e(\, ) = e (v (N, -) — idug (A, -)). Since x — g(a — ) belongs to Lo(0,a), va
and u, have a representation like ¢ and —s in Theorem 12.2.9, respectively, with
x replaced by a — x.

Clearly, the zeros of u,(+,0) are the eigenvalues of (12.5.1) with the boundary
conditions y(0) = y(a) = 0, whereas the zeros of v,(-,0) are the eigenvalues of
(12.2.1) with the boundary condltlons y(0) = Y "(a) = 0. With ¢ and &, according

to Corollary 12.5.2 we put vy = Ck, up = fk for k € Z. Then it follows from
Corollary 12.5.2 that these numbers satisfy the assumptions posed at the beginning
of Section 12.4. Hence the entire function u defined there has exactly the same
zeros as ug(+,0), and the entire function v defined there has exactly the same
zeros as Ug(+, 0). The function v has the representation (12.3.11), and by the above
discussion, also v, (+,0) has such a representation, with the same leading term as
v. By Corollary 12.2.11 and its proof, both v and v,(+,0) are sine type functions.
Hence they are multiples of each other by Lemma 11.2.29, and since they have
the same leading terms, v,(-,0) = v follows. A corresponding argument for the
function A — Au(A) and A — —Aug (A, 0) gives uq(-,0) = —u.

ug(A,+) =
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Hence the function ¢ defined in (12.4.2) satisfies
P(A) = e e (N, 0) — idug (X, 0)) = e(), 0), (12.5.9)
and it follows that the function S defined in (12.4.3) has the representation

S(\) = ;(_XOO), A€R. (12.5.10)

Lemma 12.5.5 ([180, Lemma 3.1.5]). For A # 0 and e(—\,0) # 0,

2iAs(A,-)

o) =€) = Se(=A)

Proof. The function s(),-) is the solution of (12.2.1) which satisfies the initial
conditions s(A,0) = 0, s’(A,0) = 1. On the other hand,

w(Aa ) = 6(—)\, 0)6()\, ) - €(A, 0)6(—)\, )
is a solution of (12.2.1) with w(A,0) = 0. It is well known that the Wronskian
W(e(_)‘v ')7 6()\, )) = 6(—)\, -)6/(>\, ) - 6/(_>‘7 ')e()‘7 )

is constant, and its value at a is —2i)\, so that w’(A,0) = —2i\. Hence we have
shown that w(), ) = —2iAs(), ). O

The proof of the following lemma is extracted from [180, pp. 204-206].

Lemma 12.5.6. Let v > 0 such that S is analytic on {\ € C: Im X >~} and define
F by

vz poo 4
F(z) = 62 / S, (Nerdx,  zeR, (12.5.11)
™ —o0
where S- is defined by (12.4.6). Then the fundamental equation
F(z+y)+ Koo(z,y) +/ Koz, )Fly+t)dt =0, 0<z<y, (12.512)

is satisfied.
Proof. In view of Lemma 12.5.5 and (12.5.7) we have

_ 2ids(\, @)

e(—)\,()) — e—iAm _ eiAr +L Koo(l‘,t)e—iAt dt — /I Koo(l',t)ew\t dt

+(1=5(\) (d‘” + /:o Koo(x, t)e dt) ,
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which can be rewritten as
2ixsve) (= 1) 4 2i(sin A — As(\,2))
—2iAs(\, x — i(sin Ax — As(\, x
) (_A 0) )
/ Kooz, t)e™ ™ dt — Koo(x, —t)e M at
+(1-S(\) (e’“ + / Koo(x,t)e”t dt> . (12.5.13)

We multiply both sides of (12.5.13) by 217r ey € R, and integrate along Im A = ,
resulting in an identity which we formally write as I;(z,y) = I,.(z,y). Then I.(z,y)
is the sum of the 4 integrals

5i(z,y) = o / / Koo(x,t)e_l(”‘”)t dt e/ TNY gy
I (x,y) = —27r / / Koo(x’ _t)e—z(z’y-‘r}\)t dt ez(z‘y+>\)y d/\,
1 [ o .
T y) — / SV()\)e'L(Z"/“I’/\)ﬂ?eZ(’L’y«F)\)y d)\,

I(z,y) / S.( / Koo (,1)e TN DY g g\,
The Fourier inversion formula gives

I = 2/ / VK (x,t)e” M dte™ d\ = Koo (z,y),
s

and similarly

Iy =—Ks(z,—y) =0 fory > z.

We further calculate

677(I+y) o i
=" [ S0 = Faty)
and
Ii(z,y) = / Kooz, t)e™ 7(y+t)/ S, (A)eFD g dt

/ Koo(z,t)F(y +t) dt.
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Hence we obtain
I.(z,y) = Koo(x,y)—i—F(x—i—y)—i—/ Koo(z,t)F(y+t)dt, 0<z<y. (12.5.14)

To prove the fundamental equation, it remains to prove that I;(x,y) = 0 for
0<zx<aandy>zx.
Therefore, let z € [0,a] and y > x. We define the functions g; and go by

1

g1(A) = As(\, x) (e(—)\ 0

= 1> e go(N) = (sin Az — As(\, z))e™Y. (12.5.15)
The function g2 is an entire function and the function g; is analytic on the set
{A € C:ImA > ~} since the poles of S are the zeros of A — e(—A,0). By Lemma

12.2.8 applied to K, we conclude that gt K (0,) € Lay(—a,a). Therefore we have
in view of (12.5.7) that

2a
e(—X\,0)—1= Koo(0,t)e™ dt
0

= L [Kael0,20)% — Ko(0,0)] -

=0 ()fl) forIm A > 0.

1 (%9

Koo (0, )™ dt
iXJy Ot (0,2)e

Hence it follows that

1 1

o = - = 71 > . . .
(-0 T 1o OO forlmA >0 (12.5.16)

From (12.2.16) we conclude that A — As(A, x) is bounded on each horizontal line
and that g2(\) = O(A™1) for A on any horizontal line. Together with (12.5.16) we
conclude that g; and g, are square integrable on the line Im A = ~.

Up to a constant factor, I;(x,y) is the difference of the integrals I5(x,y) and
Is(x,y) given by

I4+j('rvy) :/ g]()‘) dAa .7 = 1a2

Clearly, Corollary 12.2.11 holds with a there replaced by any = > 0, and we can
conclude in view of Lemma 11.2.6 and (12.5.16) that there are constants M; > 0
and Ms > 0 such that

|g; (i + Re®)| < MR~ e Ry—®)sind - p~ g 0<fg<mj=1,2

Hence it follows from Cauchy’s theorem and Lebesgue’s dominated convergence
theorem that

™

I; = —i lim g;(iy + Re®®)Re® d) =0, j =5,6. O

R—oo J
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12.6 The potential and two spectra

The following result is well known, but for convenience we will present its proof.

Lemma 12.6.1. Let h be a bounded measurable function on [0,2a] x [0,2a] and
define
2a
(Hf)(x) = h(z,t)f(t)dt, f € L2(0,2a), 0 <z < 2a. (12.6.1)

T

Then the operator H is a Volterra operator on Ls(0,2a), i. e., H is compact and
its spectral radius is 0.

Proof. With
M = sup{|h(z,t)] : 0 < z,t < 2a},

the estimate
2a 2a
/ / |h(z, 1) dt de < 4aM < oo
o Jo

shows that H is an integral operator with Ly kernel and therefore compact, see,
e.g., [109, p. 240].

Since the spectral radius of the adjoint H* equals the spectral radius of H,
it suffices to show that the spectral radius of H* is 0. For f,g € L2(0,2a) we

calculate
2a

(IHI"f,g)=(f,1HIg):/0 af(:r)/ h(x,t) g(t) dt da

- /za /th(x,t)f(x) du g(t) dt,
which shows that the adjoir?t ]HI*O of H has the representation
(H F)(t) = /Oth(x,t)f(x) e, f e La(0,2a), 0 <1< 2.
Let m > 0 and define the norm || - ||, on L2(0,2a) by

2a
1712, = / F@)Pe ™ dr, [ € La(0,2a),

which is clearly equivalent to the standard Ls-norm. Then we obtain for each
f € L2(0,2a) and 0 < t < 2a that
2

‘(H*f) (t)‘Qe—th _ ‘At h(% t)e_m(t—m)f(x)e—mm de

t t
g/ |h(x,t)\2672m<t*$>dx/ |f(z)[2e2™" da
0 0

M? 9
<
<y 713
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which gives
. aM?
1 f17 < 1£17-
m

Since the spectral radius of a bounded operator is bounded by the norm of the
operator, it follows that the spectral radius of H* is less or equal to M+vam~=!.
But m > 0 was arbitrary, and it follows that the spectral radius of H* is 0. (]

Theorem 12.6.2 ([180, Theorem 3.4.1, p. 248]). For two sequences (£)%, and
(Ck)32, of real numbers to be the spectra of the boundary value problems generated
by the Sturm—Liouville equation

—y" +q(z)y = Ay on [0,d], (12.6.2)

with a real potential ¢ € L2(0,a) and the boundary conditions y(0) = y(a) = 0
and y(0) = 3'(a) = 0, respectively, it is necessary and sufficient that the sequences
interlace:

G<&E <@<&E< -

and obey the asymptotic formulae

e
& = o2 _2a2 + ag, Ck=a2 2 + B,

w2k? 2 A 2 (k— 1)2 _271'2A
where A € R, (o), € l2 and (Br)72, € la. The potential q is uniquely deter-
mined by the sequences (£,)%, and (Ck)52 -

Proof. The necessity of the interlacing property and the asymptotic distribution
of the eigenvalues was shown in Corollary 12.5.2.

Next we are going to show that the potential is uniquely determined by
the two spectra. Let ¢ € La(a,b) be real valued and let (£)72, and (k)72 be
the corresponding spectra. Without loss of generality we may assume that ; > 0,
which can be achieved by a shift of the eigenvalue parameter A in (12.6.2). Putting
up = (&)2 and v, = ()2 for k € N, we consider the two functions S and F
defined by (12.4.3) and (12.4.7). It remains to show that ¢ is uniquely determined
by F. Indeed, in view of (12.5.8), ¢ is uniquely determined by K. From Lemma
12.5.6 we know that the function K, associated with the potential g satisfies the
fundamental equation (12.5.12), which is the same as (12.4.11). Then it follows
from Proposition 12.4.8 that K. is uniquely determined by F'. Altogether, we
have shown that the potential is uniquely determined by the two sequences.

Now let two sequences (€))7, and ()52, with the required properties be
given. Shifting all elements in these two sequences by the same real number by >
—(1 if ¢1 <0, we obtain that ¢; > 0. With the two sequences (&;)72; and (¢x)52,
we associate the functions S and F defined by (12.4.3) and (12.4.7). By Proposition
12.4.8, there is a unique solution H of the fundamental equation and a potential
q defined by (12.4.24). With this g we associate the two sequences (é:k)?:l and
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(Ek);gl representing the Dirichlet spectrum and the Dirichlet—Neumann spectrum,
respectively, of (12.6.2). With these two sequences we can now associate functions
S and F defined by (12.4.3) and (12.4.7). Let K, be the function defined in
(12.5.6) with respect to g. By Propositions 12.4.8 and 12.5.4, both H and K
satisfy (12.4.29) with the same g. But since the solution of the integral equation
(12.4.29) is unique by Proposition 12.4.8, K., = H follows. Let

2a
(Hf)(z) = H(xz,t)f(t)dt, f € L2(0,2a), z € [0,2a).
Since I + H is invertible by Lemma 12.6.1, we obtain from the fundamental equa-
tions (12.4.11) and (12.5.12) for y € [0, 2a] that

For, = _(I+H)71H('7y) = —(I+H)71Koo(-,y) = FoTy_

Hence F = F', and since the definition of F in (12.4.7) is independent of v > 0, we
can take the same ~ in F and F. But S, is the Fourier transform of x — " F(z),
which show that S, and therefore S is uniquely determined by F'. Thus we have
that S = S.

Next we will show that the sequences (£)52, and ({)32; are uniquely de-
termined by S. Indeed, it follows from (12.4.1), (12.4.2), (12.4.3) and the proof of

Lemma 12.4.1 that

P(A\?) +iAQ(N\?)

P(X2) — iAQ(V?)
The sequences (€))7, and ((x)72; interlace and are the zeros of the entire func-
tions P and @, respectively, with a corresponding result for the sequences (ék)i“;1
and ((;)?2, and entire functions Q and P. Hence it follows for A # 0 that Q(\?) =
0 if and only if S(\)e~2? = 1, that P(A?) = 0 if and only if S(\)e~ 2 = —1,
that Q(A\2) = 0 if and only if S(\)e~2*¢ = 1, and that P(\?) = 0 if and only
if S(A\)e=2*e = —1. Since ¢; > 0, it follows that the two sequences (£)22, and
(Ck)32, are indeed uniquely determined by S. Furthermore, the nonzero zeros of P
and Q coincide with the nonzero zeros of P and Q, respectively. Hence 0 < ¢; < &
and 0 < (1 < &, so that & = & since they are positive and the smallest zeros
of Q and Q, respectively. Now (; is a positive zero of P, and therefore also a
p051tlve zero of P and Cl = (4 follows. Hence also the two sequences (fk) 72, and
(Ck) 22, are uniquely determined by S. We have shown that the two spectra of

the differential equation (12.6.2) with the ¢ given by Proposition 12.4.8, after a
possible backshift by by, are indeed the two sequences (£x)52, and (k)72 ;. O

= S(\)e e,
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