
MODERN PHYSICS FOR SCIENCE AND ENGINEERING

First Edition
Marshall L. Burns, Tuskegee University

Copyright © 2012 by Physics Curriculum & Instruction, Inc.
www.PhysicsCurriculum.com

ISBN: 978-0-9713134-4-6

Produced in the United States of America

All Rights Reserved. This electronic textbook is protected by United States and Inter-
national Copyright Law and may only be used in strict accordance with the purchased
license agreement. Unauthorized duplication and/or distribution of this electronic
textbook is a violation of copyright law and subject to severe criminal penalties.  

Evaluation Copy 

Not Licensed for 

Instructional Use 



Electronic Textbook License Agreement

MODERN PHYSICS FOR SCIENCE AND ENGINEERING
First Edition

BY MARSHALL L. BURNS

License Purchased: Single-Copy

Physics Curriculum & Instruction hereby grants you a perpetual non-transferable license to
use Modern Physics for Science and Engineering electronic textbook. In conjunction with a
valid serial number, this license allows you to use the electronic textbook on a single com-
puter only for personal use. The electronic textbook may not be placed on a network,
whether or not it will be shared. Use on more than a single computer is a violation of this li-
cense. Any attempt to remove or alter the security features of this electronic textbook will re-
sult in this license being revoked and forfeiture of the right to use this electronic textbook. 

No portion of the electronic textbook may be copied or extracted, including: text, equations,
illustrations, graphics, and photographs. The electronic textbook may only be used in its en-
tirety. All components, including this license agreement, must remain locked together.

Modern Physics for Science and Engineering is published and copyrighted by Physics Cur-
riculum & Instruction and is protected by United States and International Copyright Law.
Unauthorized duplication and/or distribution of copies of this electronic textbook is a viola-
tion of copyright law and subject to severe criminal penalties.  

For further information or questions concerning this agreement, contact:
Physics Curriculum & Instruction
www.PhysicsCurriculum.com
email: info@physicscurriculum.com
tel: 952-461-3470 

Evaluation Copy 

Not Licensed for 

Instructional Use 



1 Classical Transformations    1
            Introduction 1
     1.1  Fundamental Units    3
     1.2  Review of Classical Mechanics    4
     1.3  Classical Space-Time Transformations    9
     1.4  Classical Velocity and 
            Acceleration Transformations    12
     1.5  Classical Doppler Effect   16
     1.6  Historical and Conceptual Perspective    24
            Review of Fundamental and Derived Equations    27
            Problems    28

2 Basic Concepts of Einsteinian Relativity    34
            Introduction 34
     2.1  Einstein’s Postulates of Special Relativity    36
     2.2  Lengths Perpendicular to the
            Axis of Relative Motion    38
     2.3  Time Interval Comparisons    41
     2.4  Lengths Parallel to the Axis of Relative Motion    44
     2.5  Simultaneity and Clock Synchronization   49
     2.6  Time Dilation Paradox   52
            Review of Derived Equations    55
            Problems    56

3 Transformations of Relativistic
Kinematics    62

            Introduction 62
     3.1  Relativistic Spatial Transformations   63
     3.2  Relativistic Temporal Transformations    65
     3.3  Comparison of Classical and
            Relativistic Transformations    67
     3.4  Relativistic Velocity Transformations    72
     3.5  Relativistic Acceleration Transformations    78
     3.6  Relativistic Frequency Transformations    80
            Review of Derived Equations    86
            Problems    88

i

C O N T E N T S

4 Transformations of Relativistic Dynamics    96
            Introduction 96
     4.1  Relativistic Mass    97
     4.2  Relativistic Force    104
     4.3  Relativistic Kinetic and Total Energy    106
     4.4  Relativistic Momentum    110
     4.5  Energy and Inertial Mass Revisited    112
     4.6  Relativistic Momentum and
            Energy Transformations    115
            Review of Derived Equations    121
            Problems    122

5 Quantization of Matter    129
            Introduction 129
     5.1  Historical Perspective    130
     5.2  Cathode Rays    132
     5.3  Measurement of the Specific Charge e/me

of Electrons    134
Speed of Electrons    136
Analysis of e/me Using the B-field Deflection
of Electrons    137
Analysis of e/me Using the Cathode-
Anode Potential    139
Analysis of e/me Using the E-field Deflection
of Electrons    140

     5.4  Measurement of the Charge of an Electron    143
     5.5  Determination of the Size of an Electron    148
     5.6  Canal Rays and Thomson’s Mass Spectrograph    151
     5.7  Modern Model of the Atom    156
     5.8  Specific and Molal Atomic Masses    158
     5.9  Size and Binding Energy of an Atom    163
            Review of Fundamental and Derived Equations    167
            Problems    170

Click on any topic below to be brought to that page. 
To return to this page, type “i” into the page number field.

Inside Cover Physical Constants, Common Derivatives . . .

Preface    iv Evaluation Copy 

Not Licensed for 

Instructional Use 



9 Schrödinger’s Quantum Mechanics 1    333
            Introduction 333
     9.1  One-Dimensional Time-Dependent Schrödinger

Equation    334
     9.2  Three-dimensional Time-Dependent Schrödinger

Equation    338
     9.3  Time-Independent Schrödinger Equation    340
     9.4  Probability Interpretation of the Wave Function    343
     9.5  Conservation of Probability    346
     9.6  Free Particle and a Constant Potential    349
     9.7  Free Particle in a Box (Infinite Potential Well)    354

Conductions Electrons in One Dimension 361
            Review of Fundamental and Derived Equations    363
            Problems    366

10 Schrödinger’s Quantum Mechanics 11    376
            Introduction 376
     10.1  Wave Functions in Position and

Momentum Representations    377
Dirac Delta Function 378
Free Particle Position and
Momentum Wave Functions 381

     10.2  Expectation Values    382
     10.3  Momentum and Position Operators    387

Momentum Eigenvalues of a Free Particle in a
One-Dimensional Box 394

     10.4  Example: Expectation Values in Position and
Momentum Space    396
Linear Harmonic Oscillator 401

     10.5  Energy Operators    403
Hamiltonian Operator 406

     10.6  Correspondence between Quantum and
Classical Mechanics    407
Operator Algebra 411

     10.7  Free Particle in a Three-Dimensional Box    414
Free Electron Gas in Three-Dimensions 418

             Review of Fundamental and Derived Equations    423
             Problems    428

Contentsii

6 Quantization of Electromagnetic Radiation    179
            Introduction 179
     6.1  Properties and Origin of Electromagnetic Waves    181
     6.2  Intensity, Pressure, and Power of

Electromagnetic Waves    188
     6.3  Diffraction of Electromagnetic Waves    193
     6.4  Energy and Momentum of

Electromagnetic Radiation    196
     6.5  Photoelectric Effect    201
     6.6  Classical and Quantum Explanations of

the Photoelectric Effect    204
     6.7  Quantum Explanation of the Compton Effect    211
     6.8  Relativistic Doppler Effect Revisited    216
            Review of Fundamental and Derived Equations    219
            Problems    223

7 Quantization of One-Electron Atoms    232
            Introduction 232
     7.1  Atomic Spectra    235
     7.2  Classical Model of the One-Electron Atom    237
     7.3  Bohr Model of the One-Electron Atom    242
     7.4  Emission Spectra and the Bohr Model    249
     7.5  Correction to the Bohr Model

for a Finite Nuclear Mass    253
     7.6  Wilson-Sommerfeld Quantization Rule    260

Quantization of Angular Momentum
for the Bohr Electron 260
Quantization of a Linear Harmonic Oscillator 262

     7.7  Quantum Numbers and Electron Configurations    267
            Review of Fundamental and Derived Equations    275
            Problems    279

8 Introduction to Quantum Mechanics    287
            Introduction 287
     8.1  Equation of Motion for a Vibrating String    288
     8.2  Normal Modes of Vibration for the Stretched String    291
     8.3  Traveling Waves and the Classical Wave Equation    295
     8.4  De Broglie’s Hypothesis    299

Consistency with Bohr’s Quantization Hypothesis 301
Consistency with Einsteinian Relativity 305

     8.5  Matter Waves    307
     8.6  Group, Phase, and Particle Velocities    310
     8.7  Heisenberg’s Uncertainty Principle    315
            Review of Fundamental and Derived Equations    317
            Problems    322

Evaluation Copy 

Not Licensed for 

Instructional Use 



11 Classical Statistical Mechanics    439
            Introduction 439
     11.1  Phase Space and the Microcanonical Ensemble    441
     11.2  System Configurations and Complexions:

An Example    443
     11.3  Thermodynamic Probability    447

Ensemble Averaging 451
Entropy and Thermodynamic Probability 453

     11.4  Most Probable Distribution    457
     11.5  Identification of b 460

b and the Zeroth Law of Thermodynamics 461
Evaluation of b 462

     11.6  Significance of the Partition Function    466
     11.7  Monatomic Ideal Gas    472

Energy, Entropy, and Pressure Formulae 472
Energy, Momentum, and
Speed Distribution Formulae 479

     11.8  Equipartition of Energy    485
Classical Specific Heat 488
Review of Fundamental and Derived Equations 491
Problems    495

12 Quantum Statistical Mechanics    510
              Introduction 510
     12.1  Formulation of Quantum Statistics    512
     12.2  Thermodynamic Probabilities in

Quantum Statistics    516
Maxwell-Boltzmann Statistics Revisited 517
Bose-Einstein Statistics 519
Fermi-Dirac Statistics 521

     12.3  Most Probable Distribution    523
Bose-Einstein Distribution 524
Fermi-Dirac Distribution 526
Classical Limit of Quantum Distributions 527

     12.4  Identification of the Lagrange Multipliers    530
     12.5  Specific Heat of a Solid    533

Einstein Theory (M-B Statistics) 534
Debye Theory (Phonon Statistics) 540

     12.6  Blackbody Radiation (Photon Statistics)    545
     12.7  Free Electron Theory of Metals (F-D Statistics)    551

Fermi Energy 552
Electronic Energy and Specific Heat Formulae 557

             Review of Fundamental and Derived Equations    560
             Problems    565

Contents iii

Appendix A
Basic Mathematics    A-1
     A.1  Mathematical Symbols    A-1
     A.2  Exponential Operations    A-1
     A.3  Logarithmic Operations    A-3
     A.4  Scientific Notation and Useful Metric Prefixes    A-4
     A.5  Quadratic Equations    A-5
     A.6  Trigonometry    A-6
     A.7  Algebraic Series   A-9
     A.8  Basic Calculus    A-10
     A.9  Vector Calculus    A-13
     A.10 Definite Integrals    A-16
             Problems    A-17

Appendix B
Properties of Atoms in Bulk    A-21

Appendix C
Partial List of Nuclear Masses    A-24

Index    1-1

Evaluation Copy 

Not Licensed for 

Instructional Use 



This book provides an introduction to modern physics for students who
have completed an academic year of general physics. As a continuation
of introductory general physics, it includes the subject areas of classical
relativity (Chapter 1), Einstein’s special theory of  relativity (Chapters
224), the old quantum theory (Chapters 527), an introduction to quan-
tum mechanics (Chapters 8210), and introductory classical and quantum
statistical mechanics (Chapters 11212). In a two-term course, Chapters
127 may be covered in the first term and Chapters 8212 in the second.
For schools offering a one-term course in modern physics, many of the
topics in Chapters 127 may have previously been covered; consequently,
the portions of this textbook to be covered might include parts of the old
quantum theory, all of quantum mechanics, and possibly some of the top-
ics in statistical mechanics. 

It is important to recognize that mathematics is only a tool in the 
development of physical theories and that the mathematical skills of stu-
dents at the sophomore level are often limited. Accordingly, algebra and
basic trigonometry are primarily used in Chapters 127, with elementary
calculus being introduced either as an alternative approach or when nec-
essary to preserve the integrity and rigor of the subject. The math review
provided in Appendix A is more than sufficient for a study of the entire
book. On occasions when higher mathematics is required, as with the so-
lution to a second-order partial differential equation in Chapter 8, the
mathematics is sufficiently detailed to allow understanding with only a
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knowledge of elementary calculus. Even quantum theory and statistical
mechanics are easily managed with this approach through the introduction
of operator algebra and with the occasional use of one of the five definite
integrals provided in Appendix A. This reduced mathematical emphasis
allows students to concentrate on the more important underlying physical
concepts and not be distracted or intimidated by unfamiliar mathematics. 

A major objective of this book is to enhance student understanding
and appreciation of the fundamentals of physics by illustrating the neces-
sary physical and quantitative reasoning with fundamentals that is essential
for theoretical modeling of phenomena in science and engineering. The
majority of physics textbooks at both the introductory and the interme-
diate level concentrate on introducing the basic concepts, formulas, and
associated terminology of a broad spectrum of physics topics, leaving little
space for the development of mathematical logic and physical reasoning
from first principles. Certainly, students must first learn the fundamentals
of the subject before intricate, detailed logic and reasoning are possible.
But most intermediate and advanced books follow the lead of introduc-
tory textbooks and seldom elaborate in sufficient detail the development
of physical theories. Students are expected somehow to develop the nec-
essary physical and quantitative reasoning either on their own or from
classroom lectures. The result is that many students simply memorize phys-
ical formulas and stereotyped problems in their initial study of  physics
and continue the practice in intermediate and advanced courses. Students
entering college are often accomplished at rote memorization but poorly
prepared in reasoning skills. They must learn how to reason and how to
employ logic with a set of fundamentals to obtain insights and results that
are not obvious or commonly recognized. Developing understanding and
reasoning is difficult in the qualitative nonscience courses and supremely
challenging in such highly quantitative courses as physics and engineering.
The objective is, however, most desirable in these areas, since memorized
equations and problems are rapidly forgotten by even the best students. 

In this textbook, a deliberate and detailed approach has been em-
ployed. All of the topics presented are developed from first principles. In
fact, all but three equations are rigorously derived via physical reasoning be-
fore being applied to problems or used in the discussion of other topics.
Thus, the order of topics throughout the text is dictated by the require-
ment that fundamentals and physical derivations be carefully and judi-
ciously introduced. And there is a gradual increase in the complexity of
topics being considered to allow students to mature steadily in physical
and quantitative reasoning as they progress through the book. For example,
relativity is discussed early, since it depends on only a small number of
physical fundamentals from kinematics and dynamics of general classical
mechanics. Chapter 1 allows students to review pertinent fundamental
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equations of classical mechanics and to apply them to classical relativity
before they are employed in the development of Einstein’s special theory
of relativity in Chapters 224. This allows students time to develop the nec-
essary quantitative skills and gain an overview of relativity before consid-
ering the conceptually subtle points of Einsteinian relativity. This basic
approach, of reviewing the classical point of view before developing that
of  modern physics, continues throughout the text, to allow students to
build upon what they already know an to develop strong connections be-
tween classical and modern physics. With this approach}where later sub-
ject areas are dependent on the fundamentals and results of  earlier
sections}students are led to develop greater insights as they apply previ-
ously gained knowledge to new physical situations. They also see how con-
cepts of classical and modern physics are tied together, rather than seeing
them as confused, isolated areas of interest. 

This development of reasoning skills and fundamental understanding
better prepares students for all higher level courses. This book does not
therefore pretend to be a survey of all modern physics topics. The pace of
developing scientific understanding requires that some topics be omitted.
For example, since a rigorous development of nuclear physics requires rel-
ativistic quantum mechanics, only a few basic topics (e.g., the size of the
nucleus, nuclear binding energy, etc.) merit development within the peda-
gogic framework of the text. The goal of this book is to provide the back-
ground required for meaningful future studies and not to be a catalog of
modern physics topics. Thus, the traditional coverage of nuclear physics
has been displaced by the extremely useful subject of statistical mechanics.
The fundamentals of statistical mechanics are carefully developed and ap-
plied to numerous topics in solid state physics and engineering, topics
which themselves are so very important for many courses at the interme-
diate and advanced levels. 

The following pedagogic features appear throughout this textbook:

1.  Each chapter begins with an introductory overview of the direction and
objectives of the chapter.

2.  Boldface type is used to emphasize important concepts, principles, pos-
tulates, equation titles. and new terminology when they are first intro-
duced; thereafter, they may be italicized to reemphasize their
importance.

3.  Verbal definitions are set off  by the use of italics.
4.  Reference titles (and comments) for important equations appear in the

margin of the text.
5.  Fundamental defining equations and important results from deriva-

tions are highlighted in color. Furthermore, a defining symbol is used
with fundamental defining equations in place of an equality sign.
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6.  A logical and comprehensive list of the fundamental and derived equa-
tions in each chapter appears in a review section. It will assist students
in the assimilation of fundamental equations (and associated reference
terminology) and test their quantitative reasoning ability.

7.  Formal solutions for the odd-numbered problems are provided at the
end of each chapter, and answers are given for the even-numbered prob-
lems. A student’s efficiency in assimilating fundamentals and develop-
ing quantitative reasoning is greatly enhanced by making solutions an
integral part of the text. The problems generally require students to be
deliberate, reflective, and straightforward in their logic with physical
fundamentals.

8.  Examples and applications of physical theories are limited in order not
to distract students from the primary aim of understanding the physical
reasoning, fundamentals, and objectives of  each section or chapter.
Having solutions to problems at the end of a chapter reduces the num-
ber of examples required within the text, since many of the problems
complement the chapter sections with subtle concepts being further in-
vestigated and discussed.

9.  Endpapers provide a quick reference of frequently used quantities: the
Greek alphabet, metric prefixes, mathematical symbols, calculus iden-
tities, and physical constants.

Marshall L. Burns
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Introduction

Before the turn of the twentieth century, classical physics was fully devel-
oped within the three major disciplines—mechanics, thermodynamics, and
electromagnetism. At that time the concepts, fundamental principles, and
theories of classical physics were generally in accord with common sense

1

C H A P T E R 1

Classical Transformations 

In experimental philosophy we are to look upon
propositions obtained by general induction from phe-
nomena as accurately or very nearly true . . . till such
a time as other phenomena occur, by which they may
either be made accurate, or liable to exception.
SIR ISAAC NEWTON, Principia (1686)

Classical mechanics and Galilean relativity apply to everyday objects
traveling with relatively low speeds.
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and highly developed in precise, sophisticated mathematical formalisms.
Alternative formulations to Newtonian mechanics were available through
Lagrangian dynamics, Hamilton’s formulation, and the Hamilton-Jacobi
theory, which were equivalent physical descriptions of nature but differed
mathematically and philosophically. By 1864 the theory of electromagnet-
ism was completely contained in a set of four partial differential equations.
Known as Maxwell’s equations, they embodied all of the laws of electric-
ity, magnetism, optics, and the propagation of electromagnetic radiation.
The applicability and degree of sophistication of theoretical physics by
the end of the nineteenth century was such that is was considered to be
practically a closed subject. In fact, during the early 1890s some physicists
purported that future accomplishments in physics would be limited to im-
proving the accuracy of physical measurements. But, by the turn of the
century, they realized classical physics was limited in its ability to accu-
rately and completely describe many physical phenomena. 

For nearly 200 years after Newton’s contribution to classical mechan-
ics, the disciplines of physics enjoyed an almost flawless existence. But at
the turn of the twentieth century there was considerable turmoil in theo-
retical physics, instigated in 1900 by Max Planck’s theory for the quanti-
zation of  atoms regarded as electromagnetic oscillators and in 1905 by
Albert Einstein’s publication of the special theory of relativity. The latter
work appeared in a paper entitled “On the Electrodynamics of Moving
Bodies,” in the German scholarly periodical, Annalen der Physik. This the-
ory shattered the Newtonian view of nature and brought about an intel-
lectual revelation concerning the concepts of  space, time, matter, and
energy. 

The major objective of the following three chapters is to develop an
understanding of Einsteinian relativity. It should be noted that the basic
concept of relativity, namely that the laws of physics assume the same form
in many different reference frames, is as old as the mechanics of Galileo
Galilei (1564–1642) and Isaac Newton (1642–1727). The immediate task,
however, is to review a few fundamental principles and defining equations
of classical mechanics, which will be utilized in the development of rela-
tivistic transformation equations. In particular, the classical transforma-
tion equations for space, time, velocity, and acceleration are developed for
two inertial reference frames, along with the appropriate frequency and
wavelength equations for the classical Doppler effect. By this review and
development of classical transformations, we will obtain an overview of
the fundamental principles of classical relativity, which we are going to
modify, in order that the relationship between the old theory and the new
one can be fully understood and appreciated. 

Ch. 1  Classical Transformations2
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1.1  Fundamental Units

A philosophical approach to the study of natural phenomena might lead
one to the acceptance of a few basic concepts in terms of which all phys-
ical quantities can be expressed. The concepts of space, time, and matter
appear to be the most fundamental quantities in nature that allow for a
description of physical reality. Certainly, reflection dictates space and time
to be the more basic of  the three, since they can exist independently of
matter in what would constitute an empty universe. In this sense our philo-
sophical and commonsense construction of the physical universe begins
with space and time as given primitive, indefinable concepts and allows
for the distribution of matter here and there in space and now and then in
time. 

A classical scientific description of the basic quantities of nature de-
parts slightly from the philosophical view. Since space is regarded as three-
dimensional, a spatial quantity like volume can be expressed by a length
measurement cubed. Further, the existence of matter gives rise to gravita-
tional, electric, and magnetic fields in nature. These fundamental fields in
the universe are associated with the basic quantities of  mass, electric
charge, and state of motion of charged matter, respectively, with the latter
being expressed in terms of length, time, and charge. Thus, the scientific
view suggests four basic or fundamental quantities in nature: length, mass,
time, and electric charge. It should be realized that an electrically charged
body has an associated electric field according to an observer at rest with
respect to the charged body. However, if  relative motion exists between an
observer and the charged body, the observer will detect not only and elec-
tric field, but also a magnetic field associated with the charged body. As
the constituents of the universe are considered to be in a state of motion,
the fourth fundamental quantity in nature is commonly taken to be electric
current as opposed to electric charge. 

The conventional scientific description of the physical universe, ac-
cording to classical physics, is in terms of the four fundamental quantities:
length, mass, time, and electric current. It should be noted that these four
fundamental or primitive concepts have been somewhat arbitrarily chosen,
as a matter of convenience. For example, all physical concepts of classical
mechanics can be expressed in terms of  the first three basic quantities,
whereas electromagnetism requires the inclusion of the fourth. Certainly,
these four fundamental quantities are convenient choices for the disci-
plines of mechanics and electromagnetism; however, in thermodynamics
it proves convenient to define temperature as a fundamental or primitive
concept. The point is that the number of basic quantities selected to de-
scribe physical reality is arbitrary, to a certain extent, and can be increased

1.1 Fundamental Units 3
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or decreased for convenience in the description of physical concepts in dif-
ferent areas. 

Just as important as the number of basic quantities used in describing
nature is the selection of a system of units. Previously, the systems most
commonly utilized by scientists and engineers included the MKS (meter-
kilogram-second), Gaussian or CGS (centimeter-gram-second), and British
engineering or FPS (foot-pound-second) systems. Fortunately, an interna-
tional system of  units, called the Système internationale (SI), has been
adopted as the preferred system by scientists in most countries. It is based
upon the original MKS rationalized metric system and will probably be-
come universally adopted by scientists and engineers in all countries, even
those in the United States. For this reason it will be primarily utilized as
the system of  units in this textbook, although other special units (e.g.,
Angstrom (Å) for length and electron volt (eV) for energy) will be used in
some instances for emphasis and convenience. In addition to the funda-
mental units of length, mass, time, and electric current, the SI system in-
cludes units for temperature, amount of substance, and luminous intensity.
In the SI (MKS) system the basic units associated with these seven funda-
mental quantities are the meter (m), kilogram (kg), second (s), ampere (A),
kelvin (K), mole (mol), and candela (cd), respectively. The units associated
with every physical quantity in this textbook will be expressed as some
combination of these seven basic units, with frequent reference to their
equivalence in the CGS metric system. Since the CGS system is in reality
a sub-system of the SI, knowledge of  the metric prefixes allows for the
easy conversion of physical units from one system to the other. 

1.2  Review of Classical Mechanics

Before developing the transformation equations of classical relativity, it
will prove prudent to review a few of the fundamental principles and defin-
ing equations of classical mechanics. In kinematics we are primarily con-
cerned with the motion and path of  a particle represented as a
mathematical point. The motion of the particle is normally described by
the position of its representative point in space as a function of time, rel-
ative to some chosen reference frame or coordinate system. Using the usual
Cartesian coordinate system, the position of a particle at time t in three
dimensions is described by its displacement vector r,

r 5 xi 1 yj 1 zk, (1.1)

Ch. 1  Classical Transformations4
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relative to the origin of coordinates, as illustrated in Figure 1.1. Assuming
we know the spatial coordinates as a function of time,

x 5 x(t)       y 5 y(t)       z 5 z(t), (1.2)

then the instantaneous translational velocity of the particle is defined by 

(1.3)

with fundamental units of m/s in the SI system of units. The three-dimen-
sional velocity vector can be expressed in terms of its rectangular compo-
nents as

v 5 vx i 1 vy j 1vz k, (1.4)

where the components of velocity are defined by

Although these equations for the instantaneous translational components
of velocity will be utilized in Einsteinian relativity, the defining equations
for average translational velocity and its components, given by

will be primarily used in the derivations of classical relativity. As is cus-
tomary, the Greek letter delta (D) in these equations is used to denote the
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change in a quantity. For example, Dx 5 x2 2 x1 indicates the displacement
of the particle along the X-axis from its initial position x1 to its final posi-
tion x2.

To continue with our review of kinematics, recall that the definition
of acceleration is the time rate of change of velocity. Thus, instantaneous
translational acceleration can be defined mathematically by the equation 

(1.7)

having components given by

Likewise, average translational acceleration is defined by

(1.9)

with Cartesian components

The basic units of acceleration in the SI system are m/s2, which should be
obvious from the second equality in Equation 1.7.

The kinematical representation of the motion and path of a system
of particles is normally described by the position of the system’s center of
mass point as a function of time, as defined by

(1.11)
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In this equation the Greek letter sigma (o) denotes a sum over the i-par-
ticles, mi is the mass of the ith particle having the position vector ri, and
M 5 omi is the total mass of the system of discrete particles. For a contin-
uous distribution of mass, the position vector for the center of mass is de-
fined in terms of the integral expression

(1.12)

From these definitions, the velocity and acceleration of the center of mass
of a system are obtained by taking the first and second order time deriv-
atives, respectively. That is, for a discrete system of particles,

(1.13)

for the velocity and 

(1.14)

for the acceleration of the center of mass point.
Whereas kinematics is concerned only with the motion and path of

particles, classical dynamics is concerned with the effect that external forces
have on the state of motion of a particle or system of particles. Newton’s
three laws of motion are by far the most important and complete formu-
lation of dynamics and can be stated as follows:

1.  A body in a state of rest or uniform motion will continue in that
state unless acted upon by and external unbalanced force. 

2.  The net external force acting on a body is equal to the time rate
of change of the body’s linear momentum.

3.  For every force acting on a body there exists a reaction force, equal
in magnitude and oppositely directed, acting on another body. 

With linear momentum defined by 

p ; mv, (1.15)

Newton’s second law of motion can be represented by the mathematical
equation

.;r r
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1
c dmy

5v
M

m
1

c i

i

iv/

5a
M

m
1

c i

i

ia/

1.2 Review of Classical Mechanics 7

Evaluation Copy 

Not Licensed for 

Instructional Use 



(1.16) 

for the net external force acting on a body. If  the mass of a body is time
independent, then substitution of Equation 1.15 into Equation 1.16 and
using Equation 1.7 yields

F 5 ma. (1.17)

From this equation it is obvious that the gravitational force acting on a
body, or the weight of a body Fg, is given by

Fg 5 mg, (1.18)

where g is the acceleration due to gravity. In the SI system the defined unit
of force (or weight) is the Newton (N), which has fundamental units given
by

(1.19)

In the Gaussian or CGS system of units, force has the defined unit dyne
(dy) and fundamental units of g ? cm/s2.

Another fundamental concept of classical dynamics that is of par-
ticular importance in Einsteinian relativity is that of  infinitesimal work
dW, which is defined at the dot or scalar product of a force F and an infin-
itesimal displacement vector dr, as given by the equation 

dW ; F ? dr. (1.20)

Work has the defined unit of a Joule (J) in SI units (an erg in CGS units),
with corresponding fundamental units of 

(1.21)

These are the same units that are associated with kinetic energy,

(1.22)

and gravitational potential energy

;F
d

dp

t

.5
?

N
s

kg m
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J
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2

2
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Vg 5 mgy, (1.23)

since it can be shown that the work done on or by a body is equivalent to
the change in mechanical energy of the body.

Although there are a number of other fundamental principles, con-
cepts, and defining equations of classical mechanics that will be utilized
in this textbook, those presented in the review will more than satisfy our
needs for the next few chapters. A review of a general physics textbook of
the defining equations, defined and derived units, basic SI units, and con-
ventional symbols for fundamental quantities of classical physics might
be prudent. Appendix A contains a review of the mathematics (symbols,
algebra, trigonometry, and calculus) necessary for a successful study of
intermediate level modern physics. 

1.3  Classical Space-Time Transformations

The classical or Galilean-Newtonian transformation equations for space
and time are easily obtained by considering two inertial frames of refer-
ence, similar to the coordinate system depicted in Figure 1.1. An inertial

1.3 Classical Space-Time Transformations 9
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frame of reference can be thought of as a nonaccelerating coordinate sys-
tem, where Newton’s laws of motion are valid. Further, all frames of ref-
erence moving at a constant velocity relative to an inertial one are
themselves inertial and in principle equivalent for the formation of physical
laws. 

Consider two inertial systems S and S9, as depicted in Figure 1.2, that
are separating from one another at a constant speed u. We consider the
axis of relative motion between S and S9 to coincide with their respective
X, X9 axis and that their origin of coordinates coincided at time t 5 t9 ; 0.
Generality is not sacrificed by regarding system S as being at rest and sys-
tem S9 to be moving in the positive X direction with a uniform speed u rel-
ative to S. Further, the uniform separation of  two systems need not be
along their common X, X9 axes. However, they can be so chosen without
any loss in generality, since the selection of an origin of coordinates and
the orientation of the coordinate axes in each system is entirely arbitrary.
This requirement essentially simplifies the mathematical details, while
maximizing the readability and understanding of classical and Einsteinian
relativistic kinematics. Further, the requirement that S and S9 coincide at
a time defined to be zero means that identical clocks in the two systems

Ch. 1  Classical Transformations10
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are started simultaneously at that instant in time. This requirement is es-
sentially an assumption of absolute time, since classical common sense dic-
tates that for all time thereafter t 5 t9.

Consider a particle P (P9 in S9) moving about with a velocity at every
instant in time and tracing out some kind of path. At an instant in time t
5 t9 . 0, the position of the particle can be denoted by the coordinates
x, y, z in system S or, alternatively, by the coordinates x9, y9, z9 in system
S9, as illustrated in Figure 1.2. The immediate problem is to deduce the
relation between these two sets of coordinates, which should be clear from
the figure. From the geometry below the X-X9 axis of Figure 1.2a and the
assumption of absolute time, we have

x9 5 x 2 ut, (1.24a)
y9 5 y, (1.24b)
z9 5 z, (1.24c)
t9 5 t, (1.24d)

for the classical transformation equations for space-time coordinates, ac-
cording to an observer in system S. These equations indicate how an ob-
server in the S system relates his coordinates of  particle P to the S9
coordinates of the particle, that he measures for both systems. From the
point of  view of  an observer in the S9 system, the transformations are
given by

x 5 x9 1 ut9, (1.25a)
y 5 y9, (1.25b)
z 5 z9, (1.25c)
t 5 t9, (1.25d)

where the relation between the x and x9 coordinates is suggested by the
geometry below the X9-axis in Figure 1.2b. These equations are just the
inverse of Equations 1.24 and show how an observer in S9 relates the co-
ordinates that he measures in both systems for the position of the particle
at time t9. These sets of equations are known as Galilean transformations.
The space-time coordinate relations for the case where the uniform relative
motion between S and S9 is along the Y-Y9 axis or the Z-Z9 axis should
be obvious by analogy. 

The space-time transformation equations deduced above are for co-
ordinates and are not appropriate for length and time interval calculations.
For example, consider two particles P1 (P91) and P2 (P92) a fixed distance y
5 y9 above the X-X9 axis at an instant t 5 t9 . 0 in time. The horizontal
coordinates of these particles at time t 5 t9 are x1 and x2 in systems S and
x91 and x92 in system S9. The relation between these four coordinates, ac-
cording to Equation 1.24a, is

1.3 Classical Space-Time Transformations 11
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x91 5 x1 2 ut,
x92 5 x2 2 ut,

The distance between the two particles as measured with respect to the S9
system is x92 2 x91. Thus, from the above two equations we have 

x92 2 x91 5 x2 2 x1, (1.26)

which shows that length measurements made at an instant in time are in-
variant (i.e., constant) for inertial frames of  reference under a Galilean
transformation.

Equations 1.24, 1.25, and 1.26 are called transformation equations be-
cause they transform physical measurements from one coordinate system
to another. The basic problem in relativistic kinematics is to deduce the
motion and path of a particle relative to the S9 system, when we know the
kinematics of the particle relative to system S. More generally, the problem
is that of relating any physical measurement in S with the corresponding
measurement in S9. This central problem is of crucial importance, since
an inability to solve it would mean that much of theoretical physics is a
hopeless endeavor. 

1.4  Classical Velocity and Acceleration 
Transformations

In the last section we considered the static effects of classical relativity by
comparing a particle’s position coordinates at an instant in time for two
inertial frames of reference. Dynamic effects can be taken into account by
considering how velocity and acceleration transform between inertial sys-
tems. To simplify our mathematical arguments, we assume all displace-
ments, velocities, and accelerations to be collinear, in the same direction,
and parallel to the X-X9 axis of relative motion, Further, systems S and
S9 coincided at time t 5 t9 ; 0 and S9 is considered to be receding from S
at the constant speed u.

Our simplified view allows us to deduce the classical velocity trans-
formation equation for rectilinear motion by commonsense arguments.
For example, consider yourself  to be standing at a train station, watching
a jogger running due east a 5 m/s relative to and in front of you. Now, if
you observe a train to be traveling due east at 15 m/s relative to and behind
you, then you conclude that the relative speed between the jogger and the
train is 10 m/s. Because all motion is assumed to be collinear and in the
same direction, the train must be approaching the jogger with a relative

Ch. 1  Classical Transformations12
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velocity of 10 m/s due east. A commonsense interpretation of these veloc-
ities (speeds and corresponding directions) can easily be associated with
the symbolism adopted for our two inertial systems. From your point of
view, you are a stationary observer in system S, the jogger represents an
observer in system S9, and the train represents a particle in rectilinear mo-
tion. Consequently, a reasonable symbolic representation of the observed
velocities would be u 5 5 m/s, vx 5 15 m/s, and v9x 5 10 m/s, which would
obey the mathematical relation 

v9x 5 vx 2 u. (1.27)

This equation represents the classical or Galilean transformation of ve-
locities and is expressed as a scalar equation, because of our simplifying
assumptions on rectilinear motion.

For those not appreciating the above commonsense arguments used
for obtaining velocity transformation equation, perhaps the following
quantitative derivation will be more palatable. Consider the situation in-
dicated in Figure 1.3, where a particle is moving in the X-Y plane for some
reasonable time interval D t 5 D t9. As the particle moves from position P1

at time t1 to position P2 at time t2, its rectilinear displacement is measured
by an observer in S to be x2 2 x1. According to this observer, this distance
is also given by his measurements of x92 1 u (t2 2 t1) 2 x91, as suggested in
Figure 1.3. By comparing these two sets of measurements, the observer
in system S concludes that 

x92 2 x91 5 x2 2 x1 2 u (t2 2 t1) (1.28)

1.4 Classical Velocity and Acceleration Transformations 13

Figure 1.3
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Ch. 1  Classical Transformations14

for distance traveled by the particle in the S9 system. It should be noted
that for classical systems a displacement occurring over a nonzero time in-
terval in not invariant, although previously we found that a length meas-
urement made at an instant in time was invariant. Also, since the time
interval for the particle’s rectilinear displacement is

t92 2 t91 5 t2 2 t1, (1.29)

the division of Equation 1.28 by the time interval equation yields the ex-
pected velocity transformation given in Equation 1.27. This result is also
easily produced by considering the coordinate transformations given by
Equations 1.24a and 1.24d for the two positions of the particle in space
and time. Further, the generalization to three-dimensional motion, where
the particle has x, y, and z components of  velocity, should be obvious
from the classical space-time transformation equations. The results ob-
tained for the Galilean velocity transformations in three dimensions are

v9x 5 vx 2 u, (1.30a)
v9y 5 vy , (1.30b)
v9z 5 vz . (1.30c)

Observe that the y- and z- components of the particle’s velocity are invari-
ant, while the x-components, measured by different inertial observers, are
not invariant under a transformation between classical coordinate systems.
We shall later realize that the y- and z- components of  velocity are ob-
served to be the same in both systems because of our commonsense as-
sumption of absolute time. Further, note that the velocities expressed in
Equations 1.30a to 1.30c should be denoted as average velocities (e.g., v·9x,
v·x,etc), because of the manner in which the derivations were performed.
However, transformation equations for instantaneous velocities are directly
obtained by taking the first order time derivative of the transformation
equations for rectangular coordinates (Equations 1.24a to 1.24c). Clearly,
the results obtained are identical to those given in Equations 1.30a to
1.30c, so we can consider all velocities in theses equations as representing
either average or instantaneous quantities. Further, a similar set of velocity
transformation equations could have been obtained by taking the point
of view of an observer in system S9. From Equations 1.25a through 1.25d
we obtain

vx 5 v9x 1 u, (1.31a)
vy 5 v9y, (1.31b)
vz 5 v9z, (1.31c)

S → S9

S9 → S
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which are just the inverse of Equations 1.30a to 1.30c.
To finish our kinematical considerations, we consider taking a first

order time derivative of Equations 1.30a through 1.30c or Equations 1.31a
through 1.31c. The same results

a9x 5 ax, (1.32a)
a9y 5 ay, (1.32b)
a9z 5 az (1.32c)

are obtained, irrespective of which set of velocity transformation equa-
tions we differentiate. These three equations for the components of accel-
eration are more compactly represented by

a9 5 a, (1.33)

which indicates acceleration is invariant under a classical transformation.
Whether a and a9 are regarded as average or instantaneous accelerations
is immaterial, as Equations 1.33 is obtained by either operational deriva-
tion. 

At the beginning of our discussion of classical transformations, we
stated that an inertial frame of reference is on in which Newton’s laws of
motion are valid and that all inertial systems are equivalent for a descrip-
tion of physical reality. It is immediately apparent from Equation 1.33 that
Newton’s second law of  motion is invariant with respect to a Galilean
transformation. That is, since classical common sense dictates that mass
is an invariant quantity, or 

m9 5 m (1.34)

for the mass of a particle as measured relative to system S9 or S, then from
Equations 1.33 and 1.17 we have

F9 5 F. (1.35)

Thus, the net external force acting on a body to cause its uniform acceler-
ation will have the same magnitude and direction to all inertial observers.
Since mass, time, acceleration, and Newton’s second law of motion are in-
variant under a Galilean coordinate transformation, there is no preferred
frame of reference for the measurement of these quantities. 

We could continue our study of Galilean-Newtonian relativity by de-
veloping other transformation equations for classical dynamics (i.e., mo-
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mentum, kinetic energy, etc.), but these would not contribute to our study
of modern physics. There is, however, one other classical relation that de-
serves consideration, which is the transformation of  sound frequencies.
The classical Doppler effect for sound waves is developed in the next sec-
tion from first principles of classical mechanics. An analogous pedagogic
treatment for electromagnetic waves is presented in Chapter 3, with the in-
clusion of Einsteinian relativistic effects. As always, we consider only in-
ertial systems that are moving relative to one another at a constant speed. 

1.5  Classical Doppler Effect

It is of interest to know how the frequency of sound waves transforms be-
tween inertial reference frames. Sound waves are recognized as longitudinal
waves and, unlike transverse light waves, they require a material medium
for their propagation. In fact the speed of sound waves depends strongly
on the physical properties (i.e., temperature, mass density, etc.) of the ma-
terial medium through which they propagate. Assuming a uniform mate-
rial medium, the speed of  sound, or the speed at which the waves
propagate through a stationary material medium, is constant. The basic
relation

vs 5 ln, (1.36)

requires that the product of the wavelength l and frequency n of the waves
be equal to their uniform speed vs of propagation. Classical physics re-
quires that the relation expressed by Equation 1.36 is true for all observers
who are at rest with respect to the transmitting material medium. That is,
once sound waves have been produced by a vibrating source, which can
either be at rest or moving with respect to the propagating medium, the
speed of sound measured by different spatial observers will be identical,
provided they are all stationary with respect to and in the same uniform
material medium. Certainly, the measured values of frequency and wave-
length in a system that is stationary with respect to the transmitting
medium need not be the same as the measured values of frequency and
wavelength in a moving system. 

In this section the unprimed variable (e.g., x, t, l, etc.) are associated
with an observer in the receiver R system while the primed variables (e.g.,
x9, t9, etc.) are associated with the source of sound or emitter E9 system.
In all cases the transmitting material medium, assumed to be air, is consid-
ered to be stationary, whereas the emitter E9 and receiver R may be either
stationary or moving, relative to the transmitting medium. For the situa-
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1.5 Classical Doppler Effect 17

tion where the receiver R is stationary with respect to air, and the emitter
E9 is receding or approaching the receiver, the speed of sound vs as per-
ceived by R is given by Equation 1.36.

To deduce the classical frequency transformation, consider the emit-
ter E9 of sound waves to be positioned at the origin of coordinates of the
S9 reference frame. Let the sound waves be emitted in the direction of the
receiver R, which is located at the origin of coordinates of the unprimed
system and is stationary with respect to air. This situation, depicted in Fig-
ure 1.4, corresponds to the case where the emitter and detector recede from
each other with a uniform speed u. In figure 1.4 the wave pulses of the
emitted sounds are depicted by arcs. It should be noted that the first wave
pulse received at R occurs at a time D t after the emitter E9 was activated
(indicated by the dashed Y9-axis in the figure). The emitter E9 can be
thought of as being activated by pulse of light from R at a time t1 5 t91. A
continuous emission of sound waves traveling at approximately 330 m/s
is assumed until the first sound wave is perceived by R at time t2 5 t92. As
illustrated in Figure 1.4, E9 has moved through the distance uDt during
the time t2 2 t1 required for the first sound wave to travel the distance vs

(t2 2t1) to R. When R detects the first sound wave, it transmits a light pulse
traveling at a constant speed of essentially 3 3 108 m/s to E9, thereby stop-
ping the emission of sound waves almost instantaneously. Consequently,
the number of wave pulses N9 emitted by E9 in the time interval Dt9 5 Dt
is exactly the number of wave pulses N that will be perceived eventually by
R. With x being defined as the distance between R and E9 at that instant
in time when R detects the very first sound wave emitted by E9, we have

(1.37),5
N

x
l

Figure 1.4
An emitter E9 of sound
waves receding from a
detector R, which is
stationary with respect
to air. E9 is activated at
time t91 and deactivated
at time t92, when R re-
ceives the first wave
pulse.
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Ch. 1  Classical Transformations18

where l is the wavelength of the sound waves according to an observer in
the receiving system. Solving Equation 1.36 for n and substituting from
Equation 1.37 gives

(1.38) 

for the frequency of sound waves as observed in system R.

From Figure 1.4

x 5 (vs 1 u) Dt, (1.39)

thus Equation 1.38 can be rewritten as 

(1.40)

Substituting

N 5 N9 5 n9Dt9 (1.41)

into Equation 1.40 and using the Greek letter kappa (k) to represent the
ratio u /vs,

(1.42)

we obtain the relation

(1.43)

where the identity Dt 5 Dt9 has been utilized. Since the denominator of
Equation 1.43 is always greater than one (i.e., 1 1 k . 1), the detected fre-
quency n is always lower than the emitted or proper frequency n9 (i.e., n ,
n9). With musical pitch being related to frequency, in a subjective sense,
then this phenomenon could be referred to as a down-shift. To appreciate
the rationale of this reference terminology, realize that as a train recedes
from you the pitch of its emitted sound is noticeably lower than when it
was approaching. The appropriate wavelength transformation is obtained
by using Equation 1.36 with Equation 1.43 and is of the form
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(1.44)

Since 1 1 k . 1, l . l9 and there is a shift to larger wavelengths when an
emitter E9 of sound waves recedes from an observer R who is stationary
with respect to air.  

What about the case where the emitter is approaching a receiver that
is stationary with respect to air? We should expect the sound waves to be
bunched together, thus resulting in an up-shift phenomenon. To quantita-
tively develop the appropriate transformation equations for the frequency
and wavelength, consider the situation as depicted in Figure 1.5. Again,
let the emitter E9 be at the origin of coordinates of the primed reference
system and the receiver R at the origin of coordinates of the unprimed
system. As viewed by observers in the receiving system R, a time interval
Dt 5 t2 2t1 5 t92 2 t91 is required for the very first wave pulse emitted by E9
to reach the receiver R, at which time the emission by E9 is terminated.
During this time interval the emitter E9 has moved a distance uDt closer
to the receiver R. Hence, the total number of wave pulses N9, emitted by
E9 in the elapsed time Dt9, will be bunched together in the distance x, as il-
lustrated in Figure 1.5. By comparing this situation with the previous one,
we find that Equation 1.37 and 1.38 are still valid. But now,

x 5 (vs 2 u) Dt (1.45)

and substitution into Equation 1.38 yields

(1.46)
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Figure 1.5
An emitter E9 of sound
waves approaching a
detector R, which is
stationary with respect
to air.  E9 is activated at
time t91 and deactivated
at time t92, at the instant
when R receives the
first wave pulse.
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Ch. 1  Classical Transformations20

Using Equation 1.41 and 1.42 with Equation 1.46 results in

(1.47)

Since 1 2 k , 1, n . n9 and we have an up-shift phenomenon. Utilization
of Equation 1.36 will transform Equation 1.47 from the domain of fre-
quencies to that of wavelengths. The result obtained is 

l 5 l9 (1 2 k), (1.48)

where, obviously, l , l9 , since 1 2 k , 1.
In the above cases the receiver R was considered to be stationary with

respect to the transmitting material medium. If, instead the source of the
sound waves is stationary with respect to the material medium, then the
transformation equations for frequency and wavelength take on a slightly
different form. To obtain the correct set of equations, we need only per-
form the following inverse operations:

n → n9 n9 → n u → 2u. (1.49)

Using these operations on Equation 1.43 and 1.47 gives 

n 5 n9(1 2 k) (1.50)
and n 5 n9(1 1 k), (1.51)

respectively. In the last two equations the receiver R is considered to be
moving with respect to the transmitting medium of sound waves, while
the emitter E9 is considered to be stationary with respect to the transmit-
ting material medium. In all cases discussed above, n9 always represents
the natural or proper frequency of the sound waves emitted by E9 in one
system, while n represents an apparent frequency detected by the receiver
R in another inertial system. Clearly, the apparent frequency can be any
one of four values for know values of n9, vs, and u, as given by Equations
1.43, 1.47, 1.50, and 1.51.

For those wanting to derive Equation 1.50, you need only consider
the situation as depicted in Figure 1.6. In this case the first wave pulse is
perceived by R at time t1, at which time the emission from E9 is terminated.
R recedes from E9 at the constant speed u while counting the N9 wave
pulses. At time t2 the last wave pulse emitted by E9 is detected by R and
of course N 5 N9. Since the material medium is at rest with respect to E9.
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vs 5 l9n9. (1.52)

Solving this equation for n9 and using

(1.53)

and x9 5 (vs 2 u)Dt9, (1.54)

we obtain 

Realizing that

N9 5 N 5 nDt (1.55)

and, of course,

Dt 5 Dt9,

we have the sought after result

n 5 n9(1 2 k), (1.50)

where Equation 1.42 has been used. A similar derivation can be employed
to obtain the frequency transformation represented by Equation 1.51.
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Figure 1.6
A detector R of sound
waves receding from
an emitter E9, which is
stationary with respect
to air. E9 is deactivated
at time t1, when R per-
ceives the first wave
pulse. R receives the
last wave pulse at a
later time t2.

R receding from E9
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Ch. 1  Classical Transformations22

The wavelength l detected by R when R is receding from E9 is directly
obtained by using Equation 1.50 and the fact that the speed of  sound
waves, as measured by R, is given by

v 5 vs 2 u 5 ln. (1.56)

Solving Equation 1.56 for the wavelength and substituting from Equation
1.50 for the frequency yields

(1.57)

which, in view of Equation 1.42, immediately reduces to

(1.58)

Clearly, from Equations 1.52 and 1.58 we have

l 5 l9. (1.59)

This same result is obtained for the case where R is approaching the sta-
tionary emitter E9. By using Equation 1.51 and 1.52 and realizing that the
speed of the sound waves as measured by R is given by

v 5 vs 1 u 5 ln, (1.60) 

then we directly obtain the result

l 5 l9. (1.61)

In each of the four cases presented either the receiver R or the emitter
E9 was considered to be stationary with respect to air, the assumed trans-
mitting material medium for sound waves. Certainly, the more general
Doppler effect problem involves an emitter E9 and a receiver R both of
which are moving with respect to air. Such a problem is handled by con-
sidering two of our cases separately for its complete solution. For example,
consider a train traveling at 30 m/s due east relative to air, and approaching
an eastbound car traveling 15 m/s relative to air. If  the train emits sound
of 600 Hz, find the frequency and wavelength of the sound to observers
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in the car for a speed of sound of  vs = 330 m/s. This situation is illustrated
in Figure 1.7, where the reference frame of  the train is denoted as the
primed system and that of the car as the unprimed system. To employ the
equations for one of our four cases, we must have a situation where either
E9 or R is stationary with respect to air. In this example, we simply con-
sider a point, such as A in Figure 1.7, between the emitter (the train) and
the receiver (the car), that is stationary with respect to air. This point be-
comes the receiver of sound waves from the train and the emitter of sound
waves to the observers in the car. In the first consideration, the emitter E9
(train) is approaching the receiver R (point A) and the frequency is deter-
mined by 

Since the receiver R (point A) is stationary with respect to air, then the
wavelength is easily calculated by

Indeed, the train’s sound waves at any point between the train and the car
have a 660 Hz frequency and a 0.5 m wavelength. Now, we can consider
point A as the emitter E9 of 660 Hz sound waves to observers in the re-
ceding car. In this instance R is receding from E9, thus
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Figure 1.7
An emitter (train) and
a receiver (car) of
sound waves, both
moving with respect to
stationary air.
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The wavelength is easily obtained, since for this case (R receding from E9)

l 5 l9 5 0.5 m.

Alternatively, the wavelength could be determined by

since observers in the car are receding from a stationary emitter (point A)
of sound waves. The passengers in the car will measure the frequency and
wavelength of the train’s sound waves to be 630 Hz and 0.5 m, respectively.

It should be understood that the velocity, acceleration, and frequency
transformations are a direct and logical consequence of the space and time
transformations. Therefore, any subsequent criticism of Equations 1.24a
through 1.24d will necessarily affect all the aforementioned results. In fact
there is an a priori criticism available! Is one entitled to assume that what
is apparently true of one’s own experience, is also absolutely, universally
true? Certainly, when the speeds involved are within our domain of ordi-
nary experience, the validity of the classical transformations is easily ver-
ified experimentally. But will the transformation be valid at speeds
approaching the speed of light? Since even our fastest satellite travels ap-
proximately at a mere 1/13,000 the speed of light, we have no business as-
suming that v9x 5 vx 2 u for all possible values of u. Our common sense
(which a philosopher once defined as the total of all prejudices acquired
by age seven) must be regarded as a handicap, and thus subdued, if  we are
to be successful in uncovering and understanding the fundamental laws
of nature. As a last consideration before studying Einstein’s theory on rel-
ative motion, we will review in the next section some historical events and
conceptual crises of classical physics that made for the timely introduction
of a consistent theory of special relativity. 

1.6  Historical and Conceptual Perspective

The classical principle of relativity (CPR) has always been part of physics
(once called natural philosophy) and its validity seems fundamental, un-
questionable. Because it will be referred to many times in this section, and
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because it is one of the two basic postulates of Einstein’s developments
of relativity, we will define it now by several equivalent statements:

1.  The laws of physics are preserved in all inertial frames of refer-
ence.

2.  There exists no preferred reference frame as physical reality con-
tradicts the notion of absolute space. 

3.  An unaccelerated person is incapable of experimentally determin-
ing whether he is in a state of rest or uniform motion—he can only
perceive relative motion existing between himself  and other ob-
jects. 

The last statement is perhaps the most informative. Imagine two astro-
nauts in different spaceships traveling through space at constant but dif-
ferent velocities relative to the Earth. Each can determine the velocity of
the other relative to his system. But, neither astronaut can determine, by
any experimental measurement, whether he is in a state of absolute rest or
uniform motion. In fact, each astronaut will consider himself  at rest and
the other as moving. When you think about it, the classical principle of
relativity is surprisingly subtle, yet it is completely in accord with common
sense and classical physics.  

The role played by the classical principle of relativity in the crises of
theoretical physics that occurred in the years from 1900 to 1905 is schemat-
ically presented in Figure 1.8. Here, the relativistic space-time transforma-
tions (RT) were developed in 1904 by H.A. Lorentz, and for now we will
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Figure 1.8
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simply accept it without elaborating. There are four points that should be
emphasized about the consistency of  the mathematical formalism sug-
gested in Figure 1.8. Using the abbreviations indicated in Figure 1.8, we
now assert the following:

1.  NM obeys the CPR under the CT.
2.  E&M does not obey the CPR under the CT.
3.  E&M obeys the CPR under the RT.
4.  NM does not obey the CPR under the RT.

The first statement asserts that NM, the CPR, and the CT are all compat-
ible and in agreement with common sense. But the second statement indi-
cates that Maxwell’s equations are not covariant (invariant in form) when
subjected to the CPR and the CT. New terms appeared in the mathemat-
ical expression of Maxwell’s equations when they were subjected to the
classical transformations (CT). These new terms involved the relative speed
of the two reference frames and predicted the existence of new electro-
magnetic phenomena. Unfortunately, such phenomena were never exper-
imentally confirmed. This might suggest that the laws of electromagnetism
should be revised to be covariant with the CPR and the CT. When this
was attempted, not even the simplest electromagnetic phenomena could
be described by the resulting laws. 

Around 1903 Lorentz, understanding the difficulties in resolving the
problem of the first and second statements, decided to retain E&M and
the CPR and to replace the CT. He sought to mathematically develop a
set of  space-time transformation equations that would leave Maxwell’s
laws of electromagnetism invariant under the CPR. Lorentz succeeded in
1904, but saw merely the formal validity for the new RT equations and as
applicable to only the theory of electromagnetism. 

During this same time Einstein was working independently on this
problem and succeeded in developing the RT equations, but his reasoning
was quite different from that of Lorentz. Einstein was convinced that the
propagation of light was invariant—a direct consequence of  Maxwell’s
equations of E&M. The Michelson-Morley experiment, which was con-
ducted prior to this time, also supported this supposition that electromag-
netic waves (e.g., light waves) propagate at the same speed c 5 3 3108 m/s
relative to any inertial reference frame. One way of maintaining the invari-
ance of c was to require Maxwell’s equations of electromagnetism (E&M)
to be covariant under a transformation from S to S9. He also reasoned
that such a set of space and time transformation equations should be the
correct ones for NM as well as E&M. But, according to the fourth state-
ment, Newtonian mechanics (NM) is incompatible with the principle of
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relativity (CPR), if  the Lorentz (Einstein) transformation (RT) is used.
Realizing this, Einstein considered that if  the RT is universally applicable,
and if  the CPR is universally true, then the laws of NM cannot be com-
pletely valid at all allowable speeds of uniform separation between two in-
ertial reference frames. He was then led to modify the laws of NM in order
to make them compatible with the CPR under the RT. However, he was
always guided by the requirement that these new laws of mechanics must
reduce exactly to the classical laws of  Galilean-Newtonian mechanics,
when the uniform relative speed between two inertial reference frames is
much less than the speed of light (i.e., u ,, c). This requirement will be
referred to as the correspondence principle, which was formally proposed
by Niels Bohr in 1924. Bohr’s principle simply states that any new theory
must yield the same result as the corresponding classical theory, when the
domain of the two theories converge or overlap. Thus, when u ,, c, Ein-
steinian relativity must reduce to the well-established laws of  classical
physics. It is in this sense, and this sense only, that Newton’s celebrated
laws of motion are incorrect. Obviously, Newton’s laws of motion are eas-
ily validated for our fastest rocket; however, we must always be on guard
against unwarranted extrapolation, lest we predict incorrectly nature’s phe-
nomena. 

Review of Fundamental and Derived Equations

A listing of the fundamental and derived equations for sections concerned
with classical relativity and the Doppler effect is presented below. Also in-
dicated are the fundamental postulates defined in this chapter.

GALILEAN TRANSFORMATION (S → S9)

m9 5 m Mass Transformation
a9 5 a Acceleration Transformation
F9 5 F Force Transformation

Time Transformations

9 5 2

9 5

9 5

9 5

z z

x x ut

y y

t t

-Space

_

`

a

b

b

b
b

y

xv v

v v

v v

9 5 2

9 5

9 5

Velocity Transformations

u

z z
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y

_

`
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bb
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CLASSICAL DOPPLER EFFECT

FUNDAMENTAL POSTULATES

1.  Classical principle of Relativity 
2.  Bohr’s Correspondence Principle

1.1 Starting with the defining equation for average velocity and assuming
uniform translation acceleration, derive the equation Dx 5 v1D t 1
1⁄2a(D t)2.

Solution:
For one-dimensional motion with constant acceleration, average ve-
locity can be expressed as the arithmetic mean of the final velocity v2

and initial velocity v1. Assuming motion along the X-axis, we have

v v
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and from the defining equation for average acceleration (Equation
1.9) we obtain

v2 5 v1 1 aD t,

where the average sign has been dropped. Substitution of the second
equation into the first equation gives

which is easily solved for Dx,

Dx 5 v1D t 1 1⁄2a(D t)2.

1.2   Starting with the defining equation for average velocity and assum-
ing uniform translation acceleration, derive an equation for the final ve-
locity v2 in terms of the initial velocity v1, the constant acceleration a,
and the displacement Dx.

Answer: v
2
2 5 v

2
1 1 2aDx

1.3 Do Problem 1.1 starting with Equation 1.5a and using calculus.

Solution:
Dropping the subscript notation in Equation 1.5a and solving it for
dx gives

dx 5 vdt.

By integrating both sides of this equation and interpreting v as the
final velocity v2 we have

Since v2 5 v1 1 at, substitution into and integration of the last equa-
tion yields

1.4 Do Problem 1.2 starting with Equation 1.7 and using calculus.

Answer:     v2
2 5 v

2
1 1 2aDx

1.5 Staring with W 5 F ? Dx and assuming translational motion, show
that W 5 DT by using the defining equations for average velocity and ac-
celeration. 

,
v v
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1 1
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1 1
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Solution:

1.6 Starting with the defining equation for work (Equation 1.20) and
using calculus, derive the work-energy theorem.

Answer:     W 5 DT

1.7 Consider two cars, traveling due east and separating from one an-
other. Let the first car be moving at 20 m/s and the second car at 30 m/s
relative to the highway. If a passenger in the second car measures the speed
of an eastbound bus to be 15 m/s, find the speed of the bus relative to ob-
servers in the first car.

Solution: 
Thinking of  the first car as system S and the second as system S9,
then

u 5 (30 2 20) m/s 5 10 m/s.

With the speed of the bus denoted accordingly as v9x 5 15 m/s, vx is
given by Equation 1.30a or Equation 1.31a as

vx 5 v9x 1 u 5 15 m/s 1 10 m/s 5 25 m/s.

1.8 Consider a system S9 to be moving at a uniform rate of 30 m/s relative
to system S, and a system S0 to be receding at a constant speed of 20 m/s
relative to system S9. If  observers in S0 measure the translational speed of
a particle to be 50 m/s, what will observers in S9 and S measure for the
speed of  the particle? Assume all motion to be the positive x-direction
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along the common axis of relative motion.

Answer:     70 m/s, 100 m/s

1.9 A passenger on a train traveling at 20 m/s passes a train station at-
tendant. Ten seconds after the train passes, the attendant observes a plane
500 m away horizontally and 300 m high moving in the same direction as
the train. Five seconds after the first observation, the attendant notes the
plane to be 700 m away and 450 m high. What are the space-time coordi-
nates of the plane to the passenger on the train?

Solution:
For the train station attendant

For the passenger on the train

1.10 From the results of Problem 1.9, find the velocity of the plane as
measured by both the attendant and the passenger on the train.

Answer:     50 m/s at 36.9˚, 36.1 m/s at 56.3˚

1.11 A tuning fork of 660 Hz frequency is receding at 30 m/s from a sta-
tionary (with respect to air) observer. Find the apparent frequency and
wavelength of the sound waves as measured by the observer for vs 5 330
m/s.

Solution:
With n9 5 660 Hz and u 5 30 m/s for the case where E9 is receding
from R,

5 5 5m m sx y t700 450 15 .

5 5 5m m sx y t500 300 101 1 1
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and

1.12 Consider Problem 1.11 for the case where the tuning fork is ap-
proaching the stationary observer.

Answer:     726 Hz, 0.455 m

1.13 Consider Problem 1.11 for the case where the observer is approaching
the stationary tuning fork. 

Solution:
With n9 5 660 Hz and u 5 30 m/s for the case where R is approaching
E9, we have

or l 5 l9 5 0.5 m.

1.14 Draw the appropriate schematic and derive the frequency transfor-
mation equation for the case where the emitter E9 is stationary with respect
to air and the receiver R is approaching the emitter.

Answer: n 5 n9 (1 1 k)

1.15 Consider Problem 1.11 for the case where the observer is receding
from the stationary tuning fork.

Solution:
Given that n9 5 660 Hz, u 5 30 m/s, vs 5 330 m/s, and R is receding
from E9, then

or l 5 l9 5 0.5 m.

1.16 Consider a train to be traveling at a uniform rate of 25 m/s relative
to stationary air and a plane to be in front of the train traveling at 40 m/s
relative to and in the same direction as the train. If the engines of the plane
produce sound waves of  800 Hz frequency, what is the frequency and
wavelength of  the sound wave to a ground observer located behind the
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plane for vs 5 335 m/s.

Answer:     670 Hz, 0.5 m

1.17 What is the apparent frequency and wavelength of the plane’s en-
gines of Problem 1.16 to passengers on the train?

Solution:
Any stationary point in air between the plane and the train serves as
a receiver of  sound waves from the plane and an emitter of  sound
waves to the passengers on the train. Thus, from the previous problem
we have n9 5 670 Hz, l9 5 0.5 m, u 5 25 m/s, and vs 5 335 m/s, where
the receiver (train) is approaching the emitter (stationary point). For
this case the frequency becomes

and the wavelength is given by

1.18 A train traveling at 30 m/s due east, relative to stationary air, is ap-
proaching an east bound car traveling at 15 m/s, relative to air. If  the train
emits sound of 600 Hz, find the frequency and wavelength of the sound
to a passenger in the car for vs 5 330 m/s. 

Answer:     630 Hz, 0.5 m

1.19 A train traveling due west at 30 m/s emits 500 Hz sound waves while
approaching a train station attendant. A driver of an automobile traveling
due east at 15 m/s and emitting sound waves of  460 Hz is directly ap-
proaching the attendant, who is at rest with respect to air. For vs 5 330
m/s, find the frequency and wavelength of the train’s sound waves to the
driver of the automobile. 

Solution: 
From the train to the attendant we have n9 5 500 Hz, u 5 30 m/s, vs

5 330 m/s, and E9 approaching R:

From the attendant to the automobile we have n9 5 550 Hz, u 5 15
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m/s, vs 5 330 m/s, and R approaching E9:

1.20 After the automobile and train of Problem 1.19 pass the train station
attendant, what is the frequency of the automobile’s sound waves to pas-
sengers on the train?

Answer:     400 Hz
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Introduction

The discussion of Galilean relativity in the last chapter was mostly in ac-
cord with common sense. The results obtained were intuitive and in agree-
ment with everyday experience for inertial systems separating from one
another at relatively low speeds. The problems associated with comparing
physical measurements made by different inertial observers were easily

34

C H A P T E R 2

Basic Concepts of Einsteinian Relativity

The relativity theory arose from necessity, from serious and deep
contradictions in the old theory from which there seemed no
escape. The strength of the new theory lies in the consistency
and simplicity with which it solves all these difficulties, using only
a few very convincing assumptions. . . . The old mechanics is valid
for small velocities and forms the limiting case of the new one.
A. EINSTEIN AND L. INFELD, The Evolution of Physics (1938)

A depiction of a train traveling with a relativistic velocity as observed from the
frame of reference of the train station.
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handled, once the Galilean space-time coordinate transformations were
obtained. Central to Galilean relativity was the assumption of absolute
time, which suggests that two clocks initially synchronized at t 5 t9 ; 0
will remain synchronized when they are moving relative to one another at
a constant speed. A direct consequence of this assumption is that time in-
terval measurements are invariant, Dt 5 Dt9, for observers in different in-
ertial systems, since temporal coordinates would be identical, t 5 t9, for
all of time. Thus, simultaneous measurements of two spatial positions at
an instant in time results in an invariance of length, Dx 5 Dx9, in Galilean
relativity.

This chapter is primarily concerned with time interval and length
measurements, along with the concepts of synchronization and simultane-
ity, within the framework of  Einstein’s special theory of relativity. Ein-
steinian relativity is an elegant theory that arises logically and naturally
from two fundamental postulates:  (1) the classical principle of relativity
and (2) the invariance of the speed of light. Like Galilean relativity, Ein-
stein’s theory is concerned with problems involving the comparison of
physical measurements made by observers in different inertial frames of
reference. It differs significantly and fundamentally from Galilean relativ-
ity in that the two postulates of relativity are devoid of any temporal as-
sumption. It will be shown that the invariance of time, as well as the
invariance of length, must in general be abandoned, when the speed of
light is assumed invariant. The results of Galilean relativity for time in-
terval and length measurements are, however, directly obtained from Ein-
steinian relativity under the correspondence principle, for the situation
where the uniform speed of  separation between two inertial systems is
small compared to the speed of light. 

Einsteinian relativity has the completely undeserved reputation of
being mathematically intimidating and conceptually mystifying to all but
a few students. This misconception will be laid to rest in this and the next
two chapters, as Einstein’s special theory of relativity is fully developed
utilizing only elementary mathematics of algebra, trigonometry, and oc-
casionally introductory calculus. In developing Einsteinian relativity from
the two fundamental postulates, gedanken (German for thought) experi-
ments will be utilized in illustrating particular concepts that are not intu-
itive from everyday experience. Although some concepts will be introduced
that are not in accord with common sense and may defy visualization, they
will be intellectually stimulating and exciting to the imagination. These
new concepts and results present a far reaching and nonclassical view of
the intimate relationships between space, time, matter, and energy that is
essential for the understanding of microscopic phenomena. Consequently,
the study of special relativity is very important for students of contempo-
rary (atomic, nuclear, and solid state, etc.) physics and electrical engineering.
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2.1  Einstein’s Postulates of Special Relativity

The incompatibility of the laws of electromagnetism, the classical princi-
ple of relativity, and the Galilean space-time transformation led Einstein
to a critical reevaluation of the concepts of space, time, and simultaneity.
He decided to abandon the Galilean transformation of  relativity and
adopt a more fundamental principle of relativity that would be applicable
to all physical laws- electromagnetism and mechanics. Einstein developed
the special theory of relativity from the following two fundamental postu-
lates:

1.  the classical principle of relativity.
2.  the invariance of the speed of light.

Einstein was the first to recognize the profound nature and universal ap-
plicability of the classical principle of relativity and to raise it to the status
of  a postulate. This postulate suggests that all physical laws, including
those of  electromagnetism and mechanics, are covariant in all inertial
frames of reference. Not only are the mathematical interrelations of phys-
ical laws preserved, but also the values associated with all physical con-
stants are identical in all inertial reference frames. Thus, the notion of an
absolute frame of reference is forever discarded, and the concept of invari-
ance is assumed for all of physics. The second postulate is a direct conse-
quence of  Maxwell’s equations and a fact resulting from the
Michelson-Morley experiment. It is incompatible with the first postulate
under the Galilean transformation but totally compatible with the classical
principle of relativity under the Lorentz transformation, as well be seen
in the next chapter. For now, we will attempt to develop an understanding
of the physical implications of Einstein’s postulates, by considering some
simple and intuitive examples involving two identical luxury vans traveling
on a straight smooth road. 

To elaborate on Einstein’s first postulate, consider that you are riding
in one of the vans at a constant velocity of 25 m/s due west. You lie back
in the captain’s chair against the headrest and feel very comfortable, not
experiencing and bumps or accelerations. In fact, if  you slump down in
the chair and look far out at the horizon, you will not have any physical
sensation of motion. Now, let a second identical van, being driven by your
brother, approach you from behind at a uniform speed of 30 m/s relative
to the ground. When your brother’s van comes into view, you make some
measurements and conclude that he is traveling relative to you at 5 m/s
due west. On the other hand, if  your brother measured your speed, he
would conclude that you are backing up toward him with a relative speed
of 5 m/s. You and your brother each determine that the other is moving
with a  relative speed of 5 m/s, but you can not make physical measure-
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ments that would determine whether you are moving, he is moving, or
both of you are moving. This result is consistent with the classical princi-
ple of relativity and carries over to all possible physical measurements in
each van. Further, the results of an experiment performed on any physical
system on your van must yield identical numerical results to those ob-
tained by your brother, when he conducts the same experiment on an iden-
tical system in his van. For example, if  you measure the frequency of
sound waves produced by your van’s horn to be 550 Hz, then your brother
would measure the fundamental frequency of sound from his van’s horn
to be 550 Hz. Also, you would measure the speed of light from your van’s
dome light to be 3 3 108 m/s (approximately) and your brother would ob-
tain the same result for the speed of light from his van’s dome light. 

What about the situation where you measure the frequency of sound
produced by your brother’s horn and he measures the frequency of sound
from your horn? From the results of the classical Doppler effect in the last
chapter, you know the two frequency measurements will be dissimilar,
since your brother is approaching and you are receding from sound waves
in stationary air. The relative speed between the sound waves in air and
your brother would be vs 1 30 m/s, while it would be vs 2 25 m/s between
the sound in air and you. In this situation the transporting material
medium (air) for sound waves is another frame of reference in addition to
the reference frames of the two vans.

What about the situation where you measure the speed of light from
your brother’s headlights and he measures the speed of light from your
taillights? Unlike sound waves, light does not require any material medium
for its transmission, and you need only consider your frame of reference
and that of your brother. In this case the two vans are viewed as approach-
ing each other with a constant speed of u 5 5 m/s. As such, common sense
dictates that the relative speed between you and the light from your
brother’s headlights would be c 1 u and, likewise, between your brother
and the light from your taillights. Although this result is intuitive and in
agreement with Galilean relativity, it is not consistent with Einstein’s sec-
ond postulate. According to Einstein, you and your brother would meas-
ure the relative speed to be c 5 3 3 108 m/s, since the speed of  light is
invariant and independent of the relative motion between the source and
observer. To emphasize this point, suppose your bother’s van is overtaking
you and at half the speed of light and after he passes, you flash your head-
lights at him (possibly to indicate to him that in your considered opinion
he is violating a traffic law). Einstein’s second postulate predicts that he
would measure the speed of light from your headlights to pass him at the
normal speed of c 5 3 3 108 m/s! In fact, he would observe the same speed
of light for that emitted from your headlights as you would observe, re-
gardless of his speed relative to you. Surely, you must find this hard to be-
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lieve and most remarkable. After all, does it not violate our notions of
common sense? Yet, every experimental examination of this phenomenon
verifies the truth of Einstein’s second postulate. Serious experimental ver-
ification of Einstein’s second postulate was not possible until the techno-
logical advances of  the twentieth century. Perhaps because of  this, the
invariance of light was not realized nor even seriously contemplated, until
Einstein published his work on relativity. It was his remarkable insight and
understanding that brought about an intellectual and philosophical revo-
lution and made man recognize the limitations of his dimensional experi-
ence. If  natural phenomena exist that are conceptually beyond the grasp
of  man’s reasoning—beyond deductive realization or physical verifica-
tion— then we must unshackle our imaginations and arrest our beliefs, if
we are to visualize the subtle laws of nature. 

We will now deduce the basic results of Einstein’s special theory of
relativity from some gedanken experiments. As always, we consider two
frames of reference, S and S9, to be separating from each other along their
common X-X9 axis at the uniform speed u, after having coincided at time
t 5 t9 ; 0. Further, it is conceptually convenient to allow observers to exist
at many different spatial positions at the same instant in time in both the
S and S9 frame of reference. Thus, observers spatially separated and at rest
in a particular frame of reference can synchronize their clocks and simplify
their measurements of spatial and temporal intervals for a particle (or sys-
tem) traveling at a relativistic speed. 

2.2  Lengths Perpendicular to the Axis
of Relative Motion

As a beginning to the development of Einsteinian relativity from the two
fundamental postulates, consider whether coordinate axes that are per-
pendicular to an axis of relative motion in one frame of reference will be
viewed by other inertial observers as being perpendicular. The gedanken
experiment for this query is depicted in Figure 2.1, where a meter stick is
aligned with the Y-Z plane in system S and another with the Y9-Z9 plane
in system S9. At the top of each meter stick is located a small plane mirror,
labeled M in system S and M9 in the S9 system, adjusted so the mirror sur-
faces face each other. At some instant in time, a beam of light is emitted
from M parallel to the X-axis at a distance y above it and in the direction
of the M9 mirror. 

How does the beam of light appear to an observer in the S9 frame of
reference? For consistency with Einstein’s second postulate, he will view
the beam of light as traveling at the uniform speed c and incident on his 
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Figure 2.1
The reflection of a light
beam between two
plane mirrors set up
parallel to one another
in systems S and S9
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M9 mirror at some distance y9 above his X9 -axis. When the beam of light
strikes the M9 mirror, the observer in S9 notices the beam of light is re-
flected upon its incident path concluding that the beam of light is parallel
to his X9-axis. This result is consistent with the initial requirements that
the X9-axis coincides with the X-axis and that the beam of light was ad-
justed to be parallel to the X-axis. An observer in system S will also notice
the beam of light to be reflected from M9 upon its incident path, in accor-
dance with Einstein’s first postulate. He concludes that the M9 mirror must
have been perpendicular to the beam of light and, thus, M9 must be par-
allel to his mirror M. 

The conclusion that the two mirrors are parallel would also be ob-
tained by the observer in S9, if  he were to initiate a beam of light from M9
parallel to his X9 axis and in the direction of M. As yet we do not know if
y 5 y9, but the observers in both reference frames conclude that the two
mirrors are parallel to one another and perpendicular to their common
X-X9 axis. Since the mirrors are parallel, then so are the Y-Z and Y9-Z9
planes. Thus, in general, observers in different inertial frames of reference
see coordinate axes Y, Y9, Z, Z9 as being perpendicular to the X-X9 axis.
Since our systems S and S9 coincided at time t 5 t9 ; 0, in addition to
being perpendicular to the axis of relative motion Y is parallel to Y9 and,
likewise, Z and Z9 are parallel. In general, this need not be true for inertial
systems that are not moving along a common axis; however, all inertial
observers having a common axis of relative motion will view any length
measurement made perpendicular to their common axis as being normal
to that axis. 
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From the above discussion it is easy to argue that the distance of the
light beam above the X-X9 axis is the same for observers in both systems
(i.e., y = y9). Obviously, since the light beam strikes M9 and is reflected
upon its incident path a distance y9 above the X9-axis, the value of y9 meas-
ured in S9 must be the same as the value y measured in S. Suppose, how-
ever, that the light reflected from M9 strikes above the mirror M in system
S. An observer in the S frame of reference would surmise that his meter
stick was smaller than the meter stick in the S9 frame of reference. But,
according to Einstein’s first postulate, if  an observer in S9 were to send out
a beam of light from M9 parallel to the X-X9 axis so as to be reflected from
M, he would conclude that his meter sick was smaller than the meter stick
in system S. As illustrated in Figure 2.1, the two reflected rays for this hy-
pothetical case would necessarily cross. However, since light, propagating
at a constant velocity, travels in a straight line, parallel incident rays (in
our case they are coincident) are reflected from parallel plane mirrors such
that the reflected rays are parallel! Thus, there is a contradiction between
Einstein’s first and second postulates, which means that our initial suppo-
sition is in violation of nature’s law and, therefore, incorrect. 

According to Einstein’s first postulate, any supposition made by an
observer in system S would necessarily be the same supposition made by
an observer in the S9 frame of reference. If  the supposition violates any
known laws, like the first gedanken experiment or the fact that parallel
light rays never cross, then the supposition is wrong. An analogous argu-
ment shows the impossibility of a beam of light being emitted from M,
parallel to the X-X9 axis, and reflected from M9 such as to return below
M. Consequently, the only possible conclusion is the one stated initially:
any length or coordinate measurement made perpendicular to the axis of rel-
ative motion has the same value for all inertial observers. This generalization
can be expressed as

y9 5 y         Dy9 5 Dy (2.1)

and z9 5 z         Dz9 5 Dz, (2.2)

which are two of  the three Lorentz space-coordinate transformations.
Clearly, these are identical to the Galilean space transformations for the y,
y9 and z, z9 coordinates. As yet, we do not know the relativistic spatial
transformation for the x, x9 coordinates and we should not, at this time,
make any assumptions regarding its form.
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2.3  Time Interval Comparisons

In this gedanken experiment, illustrated in Figure 2.2, we let the plane of
a mirror M9 be perpendicular to the Y9-axis at some distance Dy9 above
the origin of coordinates. An observer in S9 sends a light pulse up the Y9-
axis, where it is reflected upon its incident path by the mirror M9 and even-
tually absorbed at its point of origin O9. In accordance with Figure 2.2,
any S9 observer will measure the distance from O9 to M9 to be given by 

(2.3)

where Dt9 is defined as the time it takes the light pulse to travel from O9 to
M9 and back to O9.

Observers in the S frame of reference do not see the motion and path
of the light pulse in S9 as being vertical, since M9 (at rest relative to S9) is
moving at a uniform speed u relative to their reference frame. Instead, they
observe the motion and path of the light pulse in S9 to be something like
the isosceles triangle depicted in Figure 2.2, where Dt ; tB 2 tA is the time
interval, according to S observers, for the light pulse to go from A to M9
to B. It should be obvious that, whereas S9 observers need only one clock
to measure the time interval Dt9, S observers need two clocks for their
measurement of the corresponding time interval Dt. In system S, 
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Figure 2.2
The path of a vertical
pulse of light being re-
flected from a mirror in 
S9, as viewed by ob-
servers in S9 and S.
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we need one clock at A and another at B, and since the two clocks are spa-
tially separated, it is essential that they be synchronized. Later, we will con-
sider a method by which clocks can be synchronized, but for now, we
simply assume the synchronization of clocks at A and B has been effected.
Clearly, Dt corresponds to the difference between the reading of the two
clocks at A and B in system S. 

Viewing the left triangle of Figure 2.2 and invoking the Pythagorean
theorem, we have

(Dy)2 1 ( uDt)2 5 ( cDt)2,

which is easily solved for Dy in the form

(2.4)

where we have set

(2.5)

Here, Dy is the vertical displacement of the mirror M9, as measured by
observers in system S. Now, using Equation 2.1 from the previous
gedanken experiment (Dy 5 Dy9) along with Equations 2.3 and 2.4, we
have 

(2.6)

By defining 

(2.7)

and solving Equation 2.6 for Dt, we obtain

Dt 5 gD t9. (2.8)

The result expressed by Equation 2.8 gives a comparison of time in-
tervals measured in two different inertial reference frames. The meaning
and implications of this result may need some elaboration. First, consider
that in the limit as u approaches c in Equation 2.7 (remember b 5 u/c), g
approaches `. However, for u ,, c, g approaches 1, and Equation 2.8 re-
duces to the Galilean transformation (Equation 1.29) in accordance with
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the correspondence principle. Thus, the range of  values for g can be ex-
pressed as

1 # g # `, (2.9)

which implies that Dt . D t9 in Equation 2.8 for u not small. That is, the
time interval Dt measured between two events (emission and absorption
of the light pulse) occurring at spatially different positions in system S is
greater than the proper time Dt9, which is the time interval measured in sys-
tem S9 between two events occurring at the same position. Because of the
factor g in Equation 2.8, Dt is greater than the proper time and is referred
to as a dilated time. Hence, the name time dilation that is normally associ-
ated with Equation 2.8.

It is important to keep in mind Einstein’s first postulate, because if
the experiment were performed in system S, observers in S9 would con-
clude that Dt9 5 gDt. The significance of the time dilation result is that it
emphasizes how time interval measurements differ between inertial ob-
servers in relative motion, because of differing physical measurements. A
time interval between two events is always shortest in a system where the
events occur at the same position and dilated by the factor g in all other in-
ertial systems. In solving problems associated with the time dilation equa-
tion, it is most convenient and less confusing to identify the proper time
as occurring in the primed system, with the dilated time then given by
Equation 2.8 for the unprimed inertial system. As the concept of time di-
lation is most incredible, a few examples will be presented in an attempt
to clarify the subtleties of the phenomenon.

If  you believe the secret of eternal youth is in keeping on the move,
you are not far from wrong. In fact, time dilation predicts that if  you have
a twin, your biological clocks will be different, if  one twin is traveling uni-
formly at a relativistic speed (e.g., u . 0.4c) relative to the other. For ex-
ample, consider that at age twenty you take off  in a rocket ship traveling
at 0.866 the speed of light. You leave behind a younger brother of age ten
and travel through space for twenty years (according to your clock). When
you return home, at age forty, you will find your kid brother to be fifty
years old! He will have aged by Dt = 40 years, while you have aged by only
Dt9 = 20 yrs. That is, time dilation gives

As compared to your brother, your biological clock and aging process was
slowed by the time dilation effect. It should be emphasized that time dila-
tion is a real effect that applies not just to clocks but to time itself—time
flows at different rates to different inertial observers.

/ . / 40 .5 9 5 2 5yrs yrst t c c20 1 866 2gD D ^ ^h h
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Other time dilation effects have been observed in laboratories for the
lifetimes of  radioactive particles. As a particular example, consider the
decay of  unstable elementary particles called muons (or mu-mesons). A
muon is observed in a laboratory to decay into an electron in an average
time of 2.20 3 1026 sec, after it comes into being. Normally, muons are
created in the upper atmosphere by cosmic ray particles and travel with a
uniform mean speed of 2.994 3 108 m/s 5 0.9987c toward the earth’s sur-
face. In their lifetime, the muons should be able to travel a distance of

according to the laws of classical kinematics. Since they are created at al-
titudes exceeding 6000 m, they should rarely reach the earth’s surface. But
they do reach the earth’s surface and in profusion—approximately 207
muons per square meter per second are detected at sea level. 

The muon paradox is immediately resolved, if  we take time dilation
into account. According to observers in the earth’s reference frame, the
muon’s proper mean lifetime is Dt9 5 2.20 3 1026 s. The mean time that we
observe the muons in motion is a time dilated to the value

Thus, according to Einstein’s postulates, the muons should (and do) travel
a mean distance of

in our reference frame. 

2.4  Lengths Parallel to the Axis
of Relative Motion

Consider the situation schematically illustrated in Figure 2.3, where ob-
servers in S9 have placed a mirror M9 perpendicular to their X9-axis at 
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some distance Dx9 from the origin of their reference frame. In order to
measure the distance Dx9, they send out a light pulse from A9 parallel to
the X9-axis such that it will be reflected by M9 back to A9. For generality
we will denote this distance by Dx9 and, thus, observers in S9 reason that

where Dt9 is the time interval required for the light pulse to travel A9 to
M9 and back to A9. Thus, the distance they measure between A9 and M9
is given by

Dx9 5 c Dt9, (2.10)

where Dt9 should be interpreted as a length measurement. 
What do observers in system S measure, and how do they opera-

tionally perform the necessary measurements for the length in question?
First consider the motion of the light pulse from A9 to M9 as viewed by
observers in the S-frame and depicted in Figure 2.4. Observers in system
S note the origination of the light pulse at point A at time tA. It propagates
to the right at the uniform speed c, while the mirror M9 moves to the right
uniformly at a speed u. At some later time tB, the observers in S will note
the light pulse striking the mirror M9. The two clocks in S record a time
difference of DtA2B ; tB 2 tA and, thus, the light pulse must have traveled
the distance cDtA2B. With the distance from the origin of the Y9-axis to
the mirror M9 (as measured by S-observers) denoted by Dx, then Figure 
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Figure 2.3
A horizontal pulse of
light being reflected
from a vertical mirror
in S9, as viewed by ob-
servers in S.

 
 

 

 

      

                               

 

  

 

  

  
 

A9

Y 9Y

u

M9

1
2 cDt 9Dx95

X 9, X

Evaluation Copy 

Not Licensed for 

Instructional Use 



2.4 suggest that

Dx 5 (c 2 u)DtA2B.

Thus, the time interval DtA2B is given by

(2.11)

Now, consider the motion of the light pulse from M9 back to the Y9-
axis, as viewed by observers in system S. The situation, as depicted in Fig-
ure 2.5, suggests that the light pulse is reflected from M9 at point B at the
time tB. It then propagates to the left at the speed of light c, arriving at the
Y9-axis at point C and time tC. Of  course, during the time interval 
DtB2C 5 tC 2 tB, the S9-frame and mirror M9 were moving to the right with
constant speed u. In this case, the distance Dx in question is immediately
obtained from Figure 2.5 as

Dx 5 (c 1 u)DtB2C.

Solving the above equation for the time interval DtB2C gives

(2.12)

which is not the same as DtA2B as far as observers in system S are con-
cerned. These results also agree with classical common sense. That is, if  
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Figure 2.4
A horizontal pulse of
light propagating to-
wards a vertical mirror
in S9, as viewed by ob-
servers in S.
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Ch. 2  Basic Concepts of Einsteinian Relativity47

the mirror and light pulse are traveling to the right, then the relative speed
between the light pulse and the mirror is c 2 u and Equation 2.11 is im-
mediately obtained. On the other hand, if  the mirror is moving to the right
while the light pulse is traveling to the left, then the relative speed of sep-
aration between the mirror and the light pulse is c + u, which lead to Equa-
tion 2.12.

Let observers in S define the time interval Dt as that time required
for the pulse of  light in S9 to travel from A9 to M9 and back to A9, as
viewed in their reference frame.

Clearly, then

which, when solved for Dx, yields

(2.13)

Substitution of Equation 2.8 into Equation 2.13 gives

(2.14)

where Equation 2.5 has been utilized for b. Now, from Equation 2.10 and
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Figure 2.5
A horizontal pulse of
light being reflected
from a vertical mirror
in S9, as viewed by ob-
servers in S.
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2.4 Lengths Parallel to the Axis of Relative Motion 48

2.14 we have the famous Lorentz-Fitzgerald length contraction equation
in the form

which simplifies to 

(2.15)

by using the definition of g given by Equation 2.7. This equation describes
how length measurements made parallel to the axis of  relative motion
compare between the two inertial frames of reference. In view of the result
in Equation 2.9, the length measurement obtained by S-observers on a
moving object is always less than the corresponding proper length measured
by S9-observers on the object at rest (i.e., Dx , Dx9), when u is not small
and the length of the object is parallel to the axis of relative motion. Since
Dx , Dx9, the terminology contraction is associated with Equation 2.15
and the name proper length is always associated with a length measured in
the rest frame of an object. For u ,, c we have g < 1, and Equation 2.15
reduces to the Galilean transformation (Equation 1.26) in accordance with
the correspondence principle. 

The length contraction phenomenon has also been verified in actual
laboratory experiments. For example, we can consider the muon paradox
by taking into account contracted displacements. From the point of view
of the muon, which is at rest relative to itself, it views the earth as traveling
toward it with a speed of u = 0.9987c for average time of Dt 5 2.20 3 1026 s.
Thus, the resulting displacement of the earth relative to the muon is

Dx 5 uDt 5 659 m,

which is a contracted length as measured by the muon. The proper length
(Dx9 in the earth’s reference frame) would correspond to

This result is in perfect agreement with that obtained by the time dilation
arguments, except for the interpretive meanings of Dx and Dx9 being re-
versed. Note that the primed variables still refer to proper time intervals
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Ch. 2  Basic Concepts of Einsteinian Relativity49

Dt9 and length measurements Dx9, and the problem can be solved by Equa-
tions 2.8 and 2.15.

2.5  Simultaneity and Clock Synchronization

Consider the situation as depicted in the schematic of Figure 2.6, where
observers in S9 set up two identical clocks on the X9-axis that are spatially
separated by the distance Dx9. The origin of the S9 reference frame is lo-
cated at the midpoint between the clocks that are positioned at points A9
and B9. A flash bulb at the origin of S9 is used to send out simultaneous
light pulses in the direction of A9 and B9 respectively, so that the clocks
can be started at the instant the light pulses strike. In this manner, ob-
servers in system S9 can be assured of  their clocks being started at the
same instant in time (simultaneously started) and thus synchronized for all
time. 

The inquiry now is as to whether two events that appear to occur si-
multaneously to observers in S9 will be viewed as occurring simultaneously
to observers in S. Clearly, when the flash bulb goes off, light pulses are si-
multaneously propagating at the speed c in the direction of A9 and B9. But
according to observers in S, A9 is approaching a light pulse at the uniform
speed u, while B9 is receding from a light pulse at the speed u. As depicted
in Figure 2.7a, the observers in S notice the clock at A9 being started at a
time tA, as recorded on their clock at position A. But at that particular in-
stant in time, the observers in S do not notice the light pulse striking the 

Figure 2.6
The synchronization of
two clocks at rest in
the S9 frame of refer-
ence, according to ob-
servers in system S9.
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clock at B9, since the clock at B9 has been moving to the right at a constant
speed u. Instead, as suggested by Figure 2.7b, the clock at B9 will be started
at a time later than tA ; tA 2 t0, say tB ; tB 2 t0, according to observers in
S. From Figure 2.7, 

Dx 5 (c 1 u)tA,

and observers in S conclude that the clock A9 in S9 starts at time

whereas, the clock at B9 in S9 starts at a later time

5
1

t
c u

x

A

2

1
D

;

1
2
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Figure 2.7
The synchronization of
two clocks at rest in
the S9 frame of refer-
ence, according to ob-
servers in system S.
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Ch. 2  Basic Concepts of Einsteinian Relativity51

We can call this discrepancy in time, as viewed only by observers in S on
events (the starting of the two clocks) occurring simultaneously in S9, a
synchronization correction term, ts, and define it by

(2.16)

The algebraic simplification of  Equation 2.16 gives the synchronization
correction as 

(2.17)

Taking into account length contraction, as given by Equation 2.15, ts, can
be expressed in the more convenient form

(2.18)

where the definition given in Equation 2.7  has been used in the last rep-
resentation. In Equation 2.18, Dx9 should be recognized as the proper dis-
tance between the two clocks in S9. It should also be noted that the
synchronization correction of Equation 2.18 is entirely different from the
previously discussed time dilation effect. Whereas synchronization is re-
lated to the nonuniqueness of simultaneity to different inertial observers,
time dilation has to do with differing time interval measurements between
two events by different inertial observers. For the meaning of the former,
consider clocks in both reference frames to be identical and initially started
at the same instant in time (say at the instant when both reference frames
were coincident), such that all clocks are initially synchronized. Later on
in time, we can say that all clocks in S are still synchronized and likewise
for all clocks in S9, but the clocks in S are no longer synchronized with the
clocks in S9. There is a synchronization correction resulting from the mo-
tion of separation between the two sets of clocks. 

The form of Equation 2.18 can be varied to a still more convenient
one by taking out the time dilation effect. That is, since

Dt 5 gDt9,
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we can write 

ts 5 gt9s , (2.19)

where, in accordance with Equation 2.18,

(2.20)

t9s must be interpreted as the time discrepancy expected by observers in S
to exist between the two S9 clocks according to observers in S9! It should
be emphasized that from the point of view of the S frame of reference,
observers in S9 should see the clock at A9 leading to the clock at B9 by the
time t9s; but, according to observers in S9, there is no time discrepancy be-
tween the two clocks in S9. Think about the meaning of this in relation to
Equation 2.19, when you consider the problems at the end of the chapter. 

2.6  Time Dilation Paradox

According to Einstein’s first postulate, all inertial systems are equivalent
for the formulation of physical laws. This principle, combined with time
dilation considerations, means that observers in any one inertial system
will consider their own clocks to run faster than clocks in any other inertial
system. This presents an apparently paradoxical situation, since observers
in two different inertial systems view the other’s clocks as running slower.
As a particular case in point, consider Homer and Triper to be identical
twins. Homer remains on the earth (home), while Triper travels to a distant
planet and back at a relativistic speed. Because of time dilation, Homer
considers his biological clock as being faster than Triper’s and concludes
that he will be older than Triper when Triper returns from his voyage. But,
while Triper was traveling at a constant speed away from or toward the
earth, he regarded himself as stationary and the earth as moving. As such,
he would consider Homer’s clock to be slower than his and would expect
Homer to be younger than he is when he returns home. It is paradoxical
to Triper to find that Homer is older than he when he returns to earth.
The paradox arises from the seemingly symmetric roles played by the twins
as contrasted with their asymmetric aging. 

To particularize this example, let planet P be 20 light years (abbrevi-
ated as c-yrs) from, and stationary with respect to, the earth. Further, let
the acceleration and deceleration times for Triper be negligible in compar-

s
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Ch. 2  Basic Concepts of Einsteinian Relativity53

ison to his coasting times, where he has the uniform speed of 0.8c. Actu-
ally, a detailed treatment of this problem would require the inclusion of
accelerating reference frames, a topic requiring the general theory of rela-
tivity. However, we will attempt to gain some insight into this problem by
using the synchronization disparity of moving clocks. 

Consider the situation as depicted in Figure 2.8, where Triper is il-
lustrated in system S9 as either receding or approaching the earth at the
uniform speed of 0.8c. Homer considers himself  at rest and calculates the
time required for Triper to go from the earth (E) to the planet (P) as

Since the return trip would take the same time, DtP2E 5 25 yrs, then Homer
would age by

DtH 5 DtE2P 1 DtP2E 5 50 yrs

during Triper’s voyage. But, according to Homer, Triper’s clock would reg-
ister a time change of only

Thus, Homer concludes that he will be 20 yrs older than his twin when
Triper returns from the voyage.

From Triper’s point of view, the distance from the earth to the planet
is contracted to the value

.
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Figure 2.8
The aging of Triper as
viewed by Homer.
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2.6 Time Dilation Paradox 54

as suggested by Figure 2.9. Here, of course, Triper considers himself  in
the stationary system S and Homer in the moving system S9. Accordingly,
for u = 0.8c we have

and the total time required for his trip would be

DtT 5 DtE2P 1 DtP2E 5 30 yrs,

which is exactly what Homer predicted for Triper’s time. But, the real prob-
lem is that Triper does not understand why Homer would age by 50 yrs.
After all, Triper considers himself  at rest in his system and Homer to be
moving, which means that Homer’s clock measures proper time. Thus, for
30 yrs to pass on Triper’s clock, Homer’s clock should record only

which is of course the real paradox.
To understand this apparent discrepancy, let there be a clock on the

Planet P that is synchronized with Homer’s clock on the earth E. To Triper
these clocks are unsynchronized by the amount.

This means that when Triper is approaching the planet, the planet-clock
leads the earth-clock by 16 yrs. When Triper momentarily stops at P, he is
in the same reference system as the earth-planet system and observes the

.
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The aging of Homer as
viewed by Triper
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E-clock and P-clock to be synchronized. This means that in the decelerat-
ing time required for Triper to slow down to a stop (assumed negligible
for Triper), the E-clock must have gained a time of 16 yrs. Of course, as
Triper is returning home, he is approaching the earth and the E-clock leads
the P-clock by 16 yrs, suggesting to Triper that the E-clock gained another
16 yrs while he was accelerating up to the 0.8c speed. When he lands on
earth, the P-clock is synchronized with the E-clock, indicating that the P-
clock gained 16 yrs while Triper was decelerating to a stop. When Triper
takes the total synchronization correction time into account, he realizes
that Homer must have aged by

while he has aged by only 30 years. This result predicted by Einsteinian
relativity becomes nonparadoxical only when the asymmetric roles of the
twins is properly taken into account. Homer and Triper realize that the
one (Homer) who remains in an inertial frame will age more than the one
(Triper) who accelerates. 

Review of Derived Equations

A listing of the derived equations in this chapter is presented below, along
with new defined units and symbols. Not included are the well-known defi-
nitions of kinematics.

EINSTEIN’S POSTULATES

1. Classical Principle of Relativity
2. Invariance of the Speed of Light

DEFINED UNITS

c-yrs Distance

SPECIAL SYMBOLS

H 18 16 16 50 ,9 5 1 1 5yrs yrs yrs yrstD

12

;

;

c

u

1
2

b

g
b
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DERIVED EQUATIONS

2.1 Find the value of g for u 5 (0.84)1/2c, u 5 0.6c, u 5 0.8c, and u =
0.866c.

Solution:
From Equations 2.5 and 2.7 we have

so direct substitution for u gives

2.2 Express g as a series, using the binomial expansion. 

Answer: g 5 1 1 b2 1 b4 1 ...

2.3 Two inertial systems are receding from one another at a uniform speed
of 0.6c. In one system a sprinter runs 200 m in 20 s, according to his stop-
watch. If  the path of the sprinter is perpendicular to the axis of relative
motion between the two systems, how far did the sprinter run and how
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long did it take him, according to observers in the other inertial system?

Solution: 
Given u = 0.6c, Dz9 5 200 m, Dt9 5 20 s, and Dz 5 Dz9 5 200 m, ac-
cording to Equation 2.2. With b 5 u/c 5 0.6, g can be computed with
Equation 2.7, 

and Equation 2.8 immediately yields

Dt 5 gDt9 5 ( ) (20 s) 5 25 s.

2.4 Consider Problem 2.3 for the situation where the path of the sprinter
is parallel to the axis of relative motion between the two systems.

Answer:     160 m, 25 s

2.5 An observer moves at 0.8c parallel to the edge of  a cube having a
proper volume of 153 cm3. What does the observer measure for the volume
of the cube?

Solution:
With u = 0.8c → g 5 5/3, Dy 5 Dy9 5 15 cm, Dz 5 Dz9 5 15 cm, and
Dx9 5 15 cm,

Accordingly, the volume measured by the observer is

V 5 DxDyDz 5 (9 cm)(15 cm)(15 cm) 5 2025 cm3.

2.6 Two inertial systems are uniformly separating at a speed of exactly
Ï0.84wc. In one system a jogger runs a mile (1609m) in 6 min along the
axis of relative motion. How far in meters does he run and how long does
it take, to observers in the other system?

Answer:     643.6 m, 15 min

2.7 Consider two inertial systems separating at the uniform speed of 3c/5.
If  a rod is parallel to the axis of relative motion and measures 1.5 m in its
system, what is its length to observers in the other system?

Solution:
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Using u = 3c/5 → g 55/4 and the proper length as Dx9 5 1.5 m,

2.8 The proper mean lifetime of p-mesons with a speed of 0.90c is 2.6 3
1028 s. Compute their average lifetime as measured in a laboratory and
the average distance they would travel before decaying.

Answer: 6.0 3 1028 s, 16 m

2.9 A meterstick moves parallel to its length with a  uniform speed of
0.6c, relative to an observer. Compute the length of  the meter stick as
measured by the observer and the time it takes for the meter stick to pass
him.

Solution:
With u 5 0.6c → g 5 5/4 and Dx9 5 1 m,

2.10 Two inertial systems are separating at the uniform rate of 0.6c. If  in
one system a particle is observed to move parallel to the axis of relative
motion between the two systems at a speed of 0.1c for 2 3 1025 s, how far
does the particle move, according to observers in the other system?

Answer:    480 m

2.11 How long must a satellite orbit the earth at the uniform rate of 6,711
mi/hr before its clock loses one second by comparison with an earth clock?

Solution:
With knowledge of u 5 6,711 mi/hr 5 3 3 103 m/s and Dt 2 Dt9 5 1
s, we need to find Dt9. Since

Dt 2 Dt9 5 gDt9 2 Dt9 5 Dt9(g 2 1),

the proper time can be expressed as

Unfortunately, since u is very small compared to the speed of light, g
in the last expression is very nearly one. To avoid this difficulty, we
use the result obtained in Problem 2.2,
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and substitute into the previous expression to obtain

Using c 5 3 3 108 m/s and the value for u gives

Dt9 5 2 3 1010 s < 634 yrs.

2.12 What must be the relative speed of separation between two inertial
observers, if  their time interval measurements are to differ by ten percent?
That is, for (Dt 2 Dt9)/Dt9 5 0.10, find u.

Answer:     0.417c

2.13 What must be the relative speed of separation between two inertial
systems, for a length measurement to be contracted to 0.90 of its proper
length?

Solution:
For this situation

Therefore, from the definition g we have

Since b 5 u/c, u = 0.436c.

2.14 A flying saucer passes a rocket ship traveling at 0.8c and the alien
adjusts his clock to coincide with the rocket pilot’s watch. Twenty minutes
later, according to the alien, the flying saucer passes a space station that is
stationary with respect to the rocket ship. What is the distance in meters
between the rocket ship and the space station, according to (a) the alien
and (b) the pilot of the rocket ship?

Answer:  2.88 3 1011 m, 4.80 3 1011 m

2.15 Consider the situation described in Section 2.5, with the distance
between A9 and B9 in S9 as 100 c-min. With u = 0.6c, compute the distance
between the clocks at A9 and B9, as measured by observers in system S.
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Further, if  stopwatches in S are started at the instant the flashbulb in S9
goes off, show that a stopwatch in S reads 25 min when the light flash
reaches A9 and another reads 100 min when the light flash reaches B9.

Solution:
With u = 0.6c → g 5 5/4 and the proper length given as Dx9 5 100 c-
min, then

2.16 According to observers in system S of Problem 2.15, how much time
elapses between the activation of the two clocks in S9? How much time do
they expect to have elapsed on the clock at A9 in S9, when the B9 clock is
activated?

Answer:     75 min, 60 min

2.17 Two explosions, separated by a distance of 200 c-min in space, occur
simultaneously to an earth observer. How much time elapses between the
two explosions, according to aliens traveling at 0.8c parallel to a line con-
necting the two events?

Solution:
With proper distance between the explosions being measured by the
earth observer, we have Dx9 5 200 c-min and u 5 0.8c → g 5 5/3.
Thus, the aliens see the explosions occurring a distance of 

apart, during the time interval

2.18 How much time will the aliens of  Problem 2.17 expect to have
elapsed, on an earth clock, between the occurrence of the two explosions?
Is this time interval equal to that measured by the earth observer?
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Answer: 160 min, No

2.19 Two inertial systems are uniformly separating at a speed of 0.8c. A
gun fired in one system is equidistant from two observers in that system.
Both observers hear the shot 6 s after it was fired and each raises a flag. If
the speed of sound in that system is 300 m/s, how much time elapses be-
tween the occurrence of  the two events (raising the flags), according to
observers in the other system? 

Solution:
In this problem we know u 5 0.8c → g 5 5/3, Dt9 5 6 s, and v9s 5 300
m/s. The question is answered by finding ts, which requires that we
first compute Dx9. Accordingly,

which results in

2.20 Consider the situation described for Homer and Triper in Section
2.6, with u = 0.6c and the distance between the earth and planet 9 c-yrs.
How many years will Homer and Triper age, during Triper’s voyage?

Answer: 30 yrs, 24 yrs
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Introduction

The initial consideration of Einsteinian relativity in the preceding chapter
was based totally on two fundamental postulates and basic physical rea-
soning (logic) applied to several gedanken experiments. The results ob-
tained for time dilation and length contraction were in stark contrast to
the time interval (Dt 5 Dt9) and length measurement (Dx 5 Dx9) trans-
formation equations predicted by Galilean relativity in Chapter 1. It was
demonstrated, however, that these two relativistic effects reduced exactly

62

C H A P T E R 3

Transformations of Relativistic Kinematics 

The velocity of light forms the upper limit of velocities for all mate-
rial bodies. . . . The simple mechanical law of adding and subtracting
velocities is no longer valid or, more precisely, is only approximately
valid for small velocities, but not for those near the velocity of light.
A. EINSTEIN AND L. INFIELD, The Evolution of Physics (1938)

A galaxy cluster in the foreground with lensed galaxies in
the background displaying varying degrees of redshift.
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63 Ch. 3  Transformations of Relative Kinematics

to their classical counterparts under the correspondence principle, and we
can expect any extensions of Einsteinian relativity in kinematics and dy-
namics to reduce to their corresponding classical transformation, when
the relative speed between two inertial systems is small compared to the
speed of light. 

Since the classical time interval and length measurement transforma-
tion equations were a direct consequence of the Galilean space-time co-
ordinate transformations, Equations 1.25a and 1.25d, then the results of
the last chapter clearly illustrate the inconsistency of the Galilean trans-
formations with the basic postulates of Einstein’s special theory of rela-
tivity. As such, we need a new set of space-time coordinate transformation
equations capable of relating the position and time variables x, y, z, and t
of an event measured in one coordinate system with the coordinates x9,
y9, z9, and t9 of the same event as measured in another system, when there
is uniform relative motion between the two systems. The correct spatial
transformations are obtained in the next section by incorporating the
length contraction effect with physical arguments similar to those pre-
sented in Section 1.3. The relativistic temporal transformation equation
is then directly obtained from either the spatial transformations or by
qualitative arguments combining time dilation and synchronization phe-
nomena. After the relativistic coordinate transformations are fully devel-
oped and compared with the corresponding classical transformations, the
relativistic kinematic transformation equations for velocity and accelera-
tion are derived from first principles in a manner similar to that presented
in Chapter 1. Finally, the relativistic Doppler effect for transverse electro-
magnetic waves is considered using arguments analogous to those pre-
sented in the development of the classical Doppler effect for sound waves. 

3.1  Relativistic Spatial Transformations

To develop the relativistic spatial transformation equations, we consider
two inertial systems S and S9 to be separating from one another at a con-
stant speed u along their common X-X9 axis. As always, we allow that the
origins of S and S9 coincided at time t = t9 ; 0 and that identical clocks
in both systems were started simultaneously at that instant. To avoid any
conflict with the concept of  simultaneity, the spatial coordinates of  the
clocks in both systems should be identical (x = x9, y = y9, and z = z9) at
the instant t = t9 ; 0, so that we are comparing two clocks at the same
point in space. Now, consider a particle moving about in space being
viewed by observers in both systems S and S9. The immediate problem is
to deduce the relation between the S-coordinates (x, y, and z) and S9-co-
ordinates (x9, y9, and z9) of the particle’s position at an instant t . 0 in
time. From the results given by Equations 2.1 and 2.2, we know the rela-
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643.1 Relativistic Spacial Transformations

tions y = y9 and z = z9 are valid for all of time. This suggests that the phys-
ical considerations for the particle being viewed can be simplified by al-
lowing y = y9 = 0 and z = z9 = 0 at some instant t . 0 in time. Accordingly,
Figure 3.1 depicts the position of the particle on the X-X9 axis at point P
in system S and at point P9 in system S9. The relation between the coordi-
nates x and x9 will obviously depend on the frame of reference assumed,
so each point of view will be considered separately. 

The point of  view of  observers in system S is illustrated in Figure
3.1a by length measurements given below the X-X9 axis. The particle’s
nonzero space-time coordinates are denoted as x and t, where the coordi-
nate t represents the time that has elapsed on a clock in system S after the
two systems coincided. Consequently, observers in S would measure the
distance of separation between their origin O and the origin O9 as ut, while
the distance between O9 and P9 would be viewed as being contracted to
the value x9/g. Thus, from Figure 3.1a observers in S conclude that

x9 5 g (x 2 ut), (3.1a)
y9 5 y, (3.1b)
z9 5 z, (3.1c)
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are the correct set of relativistic transformation equations for spatial co-
ordinates, where the latter two were previously obtained and noted as
Equations 2.1 and 2.2, respectively. These equations constitute part of
what is commonly called the Lorentz transformation, with the other part
being the relativistic relation between t9 and t. They were first derived by
H. A. Lorentz; however, it was not until a number of years later that their
real significance was fully understood and explained by Einstein. Since g
< 1 in the limit of small u, these relativistic transformations reduce exactly
to the Galilean transformation given by Equations 1.24a through 1.24c. 

Observers in system S9 can also deduce a set of spatial transformation
equations, as suggested by the geometry given in Figure 3.1b. At that in-
stant in time t9 . 0 when the particle is on the X9 axis, observers in S9 view
the distance from O9 to P9 as x9, the distance from O9 to O as ut9, and the
distance from O to P as contracted to the value x/g. Accordingly, their spa-
tial transformation equations are of the form

x 5 g (x9 1 ut9), (3.2a)
y 5 y9, (3.2b)
z 5 z9, (3.2c)

It should be noted that these equations are just the inverse of Equations
3.1a to 3.1c, which can be obtained from the first set by replacing primed
with unprimed variables and vise versa, and by replacing u with –u. Again,
these equations reduce to the ordinary classical transformations, Equa-
tions 1.25a to 1.25c , when the relative speed of separation u between S
and S9 is small compared to the speed of light c. To complete our discus-
sion of the space-time Lorentz transformation, the next section considers
the manner in which time coordinates in S and S9 transform.

3.2  Relativistic Temporal Transformations 

The correct relativistic relation between the time coordinates t and t9 of
systems S and S9 is easily obtained by direct qualitative arguments com-
bining the effects of time dilation and synchronization. Since all clocks in
both systems were simultaneously set to the value of zero, at that instant
when the two systems coincided, then all clocks in both systems are ini-
tially synchronized. However, after that instant the clocks in system S are
no longer synchronized with the clocks in system S9 (recall Section 2.5), be-
cause of the relativistic motion between the two systems. Now consider a
stationary clock in system S9 to be located at point P in system S, at that
instant in time when the particle is on the X-X9 axis. The clock in S9 at P9
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is unsynchronized with the clock in S at P by the amount ts. Further, any
time measurement made in S9 will correspond to a dilated time in system
S. Combining these arguments with the fact that ts 5 (t9s)dilated suggests that
a time measurement of t in system S corresponds to a time measurement
of t9 in S9 being increased by the amount t9s and the resulting total time
being dilated. That is, 

t 5 (t9 1 t9s )dilated

or  t 5 g (t9 1 t9s ). (3.3)

Substitution of Equation 2.20 into Equation 3.3, with Dx9 being replaced
appropriately with x9, gives the more fundamental result

(3.4)

This is the correct relativistic time coordinate transformation equation that
constitutes the other part of the inverse Lorentz transformation referred to
in the previous section. It gives the relation between the measurement of
the time coordinate of an event occurring in S9 to the corresponding meas-
urement made on the same event occurring in S by an observer in system
S9. From the point of view of an observer in system S, the time coordinate
transformation is of the form

(3.5)

and is just the inverse of the relation expressed by Equation 3.4. These re-
sults are clearly different from the classical results given by Equations
1.25d and 1.24d, respectively; however, they obviously reduce to their clas-
sical counterparts in the limit that u is small compared to the speed of
light c. 

The relativistic time transformation equations, obtained above by
qualitative arguments, can be easily derived by combining Equations 3.1a
and 3.2a. From the point of view of an observer in system S, we desire a
relativistic equation for t9 in terms of unprimed coordinates x and t. This
is directly accomplished by solving Equations 3.1a and 3.2a simultane-
ously to eliminate the variable x9. That is, substitution of Equation 3.1a
into Equation 3.2a gives

x 5 g [g (x 2 ut) 1 ut9]

5 g2 (x 2 ut) 1 gut9,
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which can be solved for t9 in terms of x and t as

From Equations 2.5 and 2.7

(3.7)

thus 1/g2 is simply given by

(3.8)

With Equation 3.8 substituted into Equation 3.6 we have

which immediately reduces to the result given by Equation 3.5,

(3.5)

The result expressed by Equation 3.4 is obtained by a similar procedure,
that is, Equation 3.2a is solved for x and substitution into Equation 3.1a,
and the resulting equation solved for t in terms of t9 and x9.

3.3  Comparison of Classical and Relativistic
Transformations

The relativistic space-time coordinate transformations have been developed
in the previous two sections from fundamental considerations. These re-
lations are known as the Lorentz or Einstein transformations and will be
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S9 → S
Coordinate Transformations

                      Lorentz-Einstein                      Galileo-Newton
                      x 5 g (x9 1 ut9)                        x 5 x9 1 ut9
                      y 5 y9                                        y 5 y9
                      z 5 z9                                         z 5 z9

TABLE 3.1
A comparison of the
relativistic and classical
space-time coordinate
equations for the trans-
formation of measure-
ments from S9 to S.

t 5 g _t9 1 +x9u
c2w t = t9

683.3 Comparison of Classical and Relativistic Transformations

tabulated below in a concise and informative manner and compared with
the analogous Galilean transformations of classical mechanics. 

Consider the occurrence of a single event in space and allow coordi-
nate measurements to be made by an observer in system S and, likewise,
by an observer in S9. The Lorentz transformation representing how an ob-
server in S9 relates his coordinates (x9, y9, z9 and t9) of the event to the S
coordinates (x, y, z, and t) of  the same event, is compared with the
Galilean transformation in Table 3.1. Although it should be obvious from
our discussion of Einsteinian relativity, it merits emphasizing that it is the
relativistic Lorentz transformations that are uniquely compatible with Ein-
stein’s postulates and, therefore, supersede the classical Galilean transfor-
mations. Another important observation is that for u ,, c, g < 1, and the
relativistic (Lorentzian-Einsteinian) equations reduce exactly to the clas-
sical (Galilean-Newtonian) transformations. 

As indicated in the derivational sections, the inverse transformation
equations to those presented in Table 3.1 are easily obtained by replacing
unprimed coordinates with primed coordinates and vise versa, and by sub-
stituting –u for u. That is, 

Table 3.2 illustrates the results of applying these operations, thus giving
the coordinate equations for the transformation of measurements on an
event from S to S9. As before, the inverse Lorentz transformation equa-
tions reduce exactly to the inverse Galilean transformations for u ,, c.

The equations in Tables 3.1 and 3.2 represent the most fundamental
transformations allowable by nature for problems involving the relative
motion of inertial systems. It should be noted that these transformations
are universally applicable in inertial systems; whereas the Galilean-New-
tonian transformations are only good approximations to physical reality

,

,
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9 9 9 9
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for

TABLE 3.2
A comparison of the
relativistic and classical
space-time coordinate
equations for the trans-
formation of measure-
ments from S to S9.

S → S9
Coordinate Transformations

                      Lorentz-Einstein                      Galileo-Newton
                      x9 5 g (x 2 ut)                         x9 5 x 2 ut
                      y9 5 y                                        y9 5 y
                      z9 5 z                                         z9 5 z

t9 5 g _t 2 +xu
c2w t9 = t

69 Ch. 3  Transformations of Reletivistic Kinematics

when u ,, c. Unlike the Galilean-Newtonian transformations and classi-
cal mechanics, the Lorentzian-Einsteinian transformations predict an
upper limit for the speed of  a particle or system. This results from the

mathematical form of being real for u ,, c and imag-
inary for u . c. Consequently, for g imaginary the transformation equa-
tions have no physical interpretation, and thus c must be viewed as the
upper limit for the speed of any physical entity. Furthermore, it should be
emphasized that this speed limitation in nature is entirely consistent with
Einstein’s first postulate that required all inertial systems to be equivalent
with respect to physical measurements. Otherwise, for u . c an event, and
the coordinate measurements associated with it, would be real and observ-
able in one inertial system but imaginary or unobservable in another. 

An appreciation and understanding of the Lorentz transformation
equations are best attained by an application of theses relations to basic
problems. Having available two sets of transformation equations tends to
be confusing to beginning students, until it is realized that the two sets are
in essence the same equations. Since all space-time coordinate variables
for both systems S and S9 are contained in each set of transformations,
knowledge of either set should be sufficient for solving any physical prob-
lem. To be specific, suppose you know the values of x9, t9 and u and wish
to find the values of x and t. Certainly, the easiest approach would be to
employ the Lorentz equations of Table 3.1; however, those in Table 3.2
will suffice. You need only replace x9, t9, u, and g in the first and last equa-
tion with their known values, and then solve the resulting equations si-
multaneously for x and t. The results for x and t obtained by this
procedure will be identical to those predicted by the equations of Table
3.1. To prove part of this last statement, we need only solve the equation

/5 2 u c1 1 2 2g
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703.3 Comparison of Classical and Relativistic Transformations

substitute into the equation

and solve the resulting equation,

for x to obtain

x 5 g (x9 1 ut9).

In a similar manner the equation

is directly derived from the Lorentz relations for x9 and t9 given in Table
3.2. The important point to remember in using the Lorentz transformation
is that proper time and proper length measurements were originally asso-
ciated with the S9 system, where the experiment of interest was always con-
sidered to be stationary. Although it may be unnecessary, it tends to be
more convenient and less confusing to identify proper time and proper
length measurements with the S9 system. The following examples should
help clarify this point and further decrease any confusion surrounding the
two sets of transformations.

Imagine two events as occurring at the same position in a frame of
reference at two different instances in time. Using the Lorentz time coor-
dinate transformation equation, show that in any other frame of reference,
the time interval between the events is greater than the proper time by the
factor g. In this problem, we choose S9 as the system where the two events
occur at the same position at instants t91 and t92. Thus, with

x91 2 x92 ; x9 → Dx9 5 0

,
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(3.9b)
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and the S9 → S (Table 3.1) Lorentz time transformation

we immediately obtain

which is the time dilation result given by Equation 2.8. This same result
can be obtained using the S → S9 space-time transformations (Table 3.2)
in the form

Again, with proper time being defined in system S9, Dx9 5 0 and Equation
3.9a gives

Dx 5 uDt. (3.10)

Now, substitution of Equation3.10 into Equation 3.9b gives the expected
time dilation equation, that is

It should now be apparent that either set of Lorentz transformations
can be utilized with equivalent and relative ease in solving physical prob-
lems. The results obtained by either set will be correct and entirely consis-
tent with the point of  view assumed. In the above example, we knew
Dt9 5 t92 2 t91 would be the proper time interval and that Dt 5 t2 2 t1 would
be a dilated time interval, since we allowed S9 to be the system where the
two events occurred at the same position. If  we had assumed S to be the
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723.4 Relativistic Velocity Transformations

system where x1 5 x2 for two events, then t2 2 t1 would be the proper time
and t92 2 t91 would be dilated by the factor g, as the equation

Dt9 5 gDt

would be directly obtained by either set of  Lorentz transformations.
Length contraction is also directly obtained from the Lorentz transforma-
tions, and is considered, along with other examples, in the problems at the
end of the chapter. 

3.4  Relativistic Velocity Transformations

In the last section we observed that the Lorentz transformation equations
predict an upper limit for the speed of a particle. This result is also pre-
dicted by the relativistic transformation equations for velocity compo-
nents, which will be derived by the same mathematical procedure used in
obtaining the Galilean velocity transformations in Chapter 1. We consider
a particle moving in a rectilinear path with constant velocity and being
viewed by observers in two inertial systems S and S9. In system S the par-
ticle is observed to be at position x1, y1, and z1 at time t1 and at x2, y2, and
z2 at time t2, while in system S9 the initial coordinates of the particle are
denoted as x91, y91, z91, and t91 and the final coordinates as x92, y92, z92, and t92.
The relativistic velocity transformations can be derived from the Lorentz
space-time transformation by using the definition of either average velocity
or instantaneous velocity, and each derivation will be considered separately. 

To observers at rest in system S, the x-component of average velocity
is defined as the ratio of displacement x2 2 x1 to the corresponding time
interval t2 2 t1. But the position x1 of the particle at time t1 in S corre-
sponds to the position

x91 5 g (x1 2 ut1) (3.11)

at time

(3.12)

in system S9, according to the Lorentz transformation of Table 3.2. Like-
wise, the particle’s position x2 at time t2 in S corresponds to position

x92 5 g (x2 2 ut2) (3.13)
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at the instant in time

(3.14)

in S9, according to measurements made by observers in system S. Sub-
tracting Equation 3.11 from Equation 3.13 gives the horizontal displace-
ment of the particle in S9 as

Dx9 5 g(Dx 2 uDt), (3.15)

which occurs during the time interval 

(3.16)

obtained by subtracting Equation 3.12 from Equation 3.14. The particle’s
x-component of average velocity in system S9 is measured by observers in
S to be

(3.17)

which is obtained by dividing Equation 3.15 by Equation 3.16 and using
the definition 

(3.18)

As the x-component of  average velocity observed in S is simply
, division of the numerator and denominator of Equation 3.17

by Dt gives the relation between and as

(3.19)

This is the relativistic velocity transformation equation for the motion of
a particle parallel to the common X-X9 axis, as measured by observers in
system S. The relativistic transformations for the y and z components of
velocity are easily obtained by this same procedure. It is obvious from the
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S → S9

(3.21a)

(3.21b)

(3.21c)

S → S9

S → S9

S → S9

743.4 Relativistic Velocity Transformations

Lorentz transformation of Table 3.2 that during the time interval Dt the
particle’s displacements parallel to the y and z axes in S are related to its
displacements in system S9 by the equations

Dy9 5 Dy and           Dz9 5 Dz.

Division of these relations by Equation 3.16 immediately yields

(3.20a)

and (3.20b)

where the definition of average velocity for each of the spatial coordinates
had been appropriately utilized. 

The velocity-component transformations given by Equations 3.19,
3.20a, and 3.20b were derived by using the definition of average velocity.
However, similar relations (with average velocities replaced by instanta-
neous velocities) are obtainable by employing the definition of instanta-
neous velocity, after taking the differential of each Lorentz transformation
equation in Table 3.2. The results obtained are

which are identical to the previous transformations with average velocities
being replaced by instantaneous velocities. To illustrate the procedure used
in obtaining these results, we ill derive the inverse velocity transformation
equations by adopting the point of view of observers in system S9. The
derivation is based on the idea that for any inertial system S or S9, instan-
taneous velocity is defined at the ratio of an infinitesimal displacement to
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(3.24a)

(3.24b)

(3.24c)

S9 → S

S9 → S

S9 → S

75 Ch. 3  Transformations of Relativistic Kinematics

the corresponding infinitesimal time interval dt or dt9, in the limit that the
time interval goes to zero. Accordingly, we differentiate the coordinates
of Table 3.1 to obtain

dx 5 g(dx9 1 udt9), (3.22a)
dy 5 dy9, (3.22b)
dz 5 dz9, (3.22c)

(3.22d)

From the definition of instantaneous velocity, we have for the infinitesimal
displacements in S9

which upon substitution into Equations 3.22 a-d give

dx 5 g(v9x 1 u) dt9, (3.23a)
dy 5 v9y dt9, (3.23b)
dz 5 v9z dt9, (3.23c)

(3.23d)

Using the same definition for instantaneous velocity in system S (vx ;
dx/dt, vy ; dy/dt, and vz ; dz/dt) we divide the equations for dx, dy, and
dz by the equation for dt and immediately obtain
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and

763.4 Relativistic Velocity Transformations

These velocity component transformations are the inverse of those given
in Equations 3.21 a-c and contain quantities measured by observers in sys-
tem S9. 

The two sets of relativistic velocity transformation equations have a
surprising and interesting result in common. With respect to the axis of
relative motion, a transverse component of velocity in one system is de-
pendent on both the corresponding transverse and longitudinal compo-
nents of velocity in the other system. Further, both sets of transformations
reduce exactly to their classical counterparts under the correspondence
principle. For example, in Equations 3.21 and 3.24

for u ,, c. Consequently, both Equations 3.21a and 3.24a reduce to

v9x 5 vx 2 u,

which is exactly the classical or Galilean transformation equation given
by Equation 1.30a or Equation 1.31a. It is also interesting to note that un-
like the Galilean transformations, none of the relativistic velocity trans-
formations are invariant. This is a direct result of the dilation of time in
Einsteinian relativity. 

To illustrate the consistency between Einstein’s second postulate and
the above results, consider a situation where a particle moves along the
X9-axis with a speed c relative to S9 (i.e., v9x 5 c). The problem is to calcu-
late the particle’s speed relative to observers in system S. According to the
classical view, the particle’s speed relative to S is v9x 5 c 1 u—it has a speed
exceeding the speed of light as far as observers in S are concerned. How-
ever, according to Einstein and Equation 3.24a

That is, if  observers in S9 measure a particle’s speed to be c, then observers
in system S will also measure c for the speed of the particle, irrespective
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of the speed of separation between the inertial reference frames S and S9.
The result is totally compatible with Einstein’s postulates and it tends to
suggest that particle velocities can not exceed the speed of light.

As another example of the application of Einstein’s velocity addition
formula, Equation 3.24a, consider three inertial reference frames separat-
ing from one another along a common axis of relative motion. Let S9 be
moving to the right of S with a speed relative to S of u = 3c/4. Allow the
third system S0 to be moving to the right of S9 with a speed u9 = 3c/4 rel-
ative to S9. Now, consider a particle to be moving parallel to the axis of
relative motion with a speed v0x 5 3c/4, as measured by observers in S0.
The problem is to obtain the speed of the particle vx, as measured by ob-
servers in system S. Clearly, observers in S9 obtain

while to observers in system S the particle’s speed is
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The result of this example suggests that a particle’s speed can be viewed as
approaching the speed of light, but it can never really attain the exact speed
c. By comparison with the previous example, if  a particle’s speed is exactly
c, as measured by any inertial observer, then its speed is c according to all
inertial observers. The difference between these two conclusions is subtle,
but an important one to keep in mind!

3.5  Relativistic Acceleration Transformations

To complete our kinematical considerations, we need to develop the ap-
propriate transformation equations for acceleration components in Ein-
steinian relativity. Frequently, you may hear a statement that the special
theory of relativity is incapable of considering the acceleration of particles.
Clearly this is a misconception, since we can surely consider the Lorentzian
spatial coordinate transformations and all of their time derivatives. It is
only a special and restrictive class of problems that deal with rectilinear
motion and constant velocity. The more general problem is concerned with
a particle moving about in space and exhibiting curvilinear motion, which
necessarily requires the particle to have a nonzero acceleration.

The derivational procedure for obtaining the relativistic acceleration
transformations is based on the definition of instantaneous acceleration as
being the ratio of an infinitesimal change in velocity to the corresponding
time interval. To simplify the mathematics of this section, we introduce

(3.25a)

and note that

(3.25b)

Using these relations, the differential of Equation 3.21a becomes
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(3.26)

S → S9

79 Ch. 3  Transformations of Relative Kinematics

Since in system S9, a9x ; dv9x/dt9, then Equation 3.26 can be divided by the
differential of Equation 3.5 in the form

(3.27)

to easily obtain the transformation equation for the x-component of ac-
celeration as

(3.28a)

By using similar reasoning to that above, we can derive the y-component
of acceleration by differentiating Equation 3.21b:
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S 2 S9

S → S9

S9 → S

S9 → S

S9 → S

(3.29b)

(3.29c)

803.6 Relativistic Frequency Transformations

Again, dividing this relation for the differential velocity by the expression
for differential time (Equation 3.27), we obtain

(3.28b)

Of course, the relativistic transformation equation for the z-component
of acceleration is identical to Equation 3.28b, except for the y-subscripts
being replaced by z-subscripts:

(3.28c)

For the inverse acceleration transformations we obtain

(3.29a)

Whereas the Galilean-Newtonian acceleration transformations
(Equations 1.32 a-c) were invariant, acceleration is certainly not invariant
in Einsteinian relativity. Not only are the acceleration transformations
mathematically intimidating, but the transverse components transform dif-
ferently than the longitudinal component. Interestingly, however, they do
reduce exactly to their classical counterparts under the correspondence
principle.

3.6  Relativistic Frequency Transformations

To complete our discussion on relativistic kinematics, we will develop the
transformation equations for the frequency and wavelength of electromag-
netic waves. Unlike sound waves considered in the classical Doppler effect,
electromagnetic waves (x-rays, visible light, etc.) do not require a physical
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Invariance of Light
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An emitter E9 of elec-
tromagnetic waves re-
ceding from a detector
(receiver) R at a uni-
form speed u.

medium for their propagation. Further, all electromagnetic waves in free
space travel at the speed of light and obey the basic relation

c 5 ln 5 l9n9. (3.30)

This equation reflects the requirement of Einstein’s second postulate that
the product of wavelength and frequency of an electromagnetic wave be
equal to the universal constant c for all inertial observers. Clearly, the val-
ues of l and n measured by observers in system S need not be identical to
l9 and n9 measured in S9; however, Equation 3.30 must always be valid.

The relativistic transformation equations for the frequency and wave-
length of electromagnetic waves are easily derived by using arguments sim-
ilar to those presented for the classical Doppler effect. By analogy with
the fist case considered there, our relativistic gedanken experiment con-
siders an emitter E9 of monochromatic light waves to be positioned at the
origin of coordinates in system S9, and a receiver or detector to be located
at the origin of system S. The first situation to be considered is depicted
in Figure 3.2, where the emitter and detector are receding from each other
with a uniform speed u. The schematic represents the point of  view for
observers in inertial system S, who are at rest relative to themselves and
view system S9 as receding. Accordingly, a time interval Dt 5 t2 2 t1 is re-
quired for the first electromagnetic wave emitted by E9 to travel the dis-
tance cDt to reach R. As illustrated in Figure 3.2, system S9 has receded
through the distance uDt during the time of wave emission Dt. With x being
the distance between R and E9 at the instant t2 when R first detects a wave,
then the wavelength measured by an observer in system S is

(3.31),5
N

x
l
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Receding Case

Receding Case

823.6 Relativistic Frequency Transformations

where N is the number of waves perceived eventually by R. Solving Equa-
tion 3.30a for n and using Equation 3.31 gives

(3.32)

for the frequency as measured by an observer in system S. From the geom-
etry of Figure 3.2

x 5 (c 1 u) Dt, (3.33)

which allows Equation 3.32 to take form

(3.34)

Since  N 5 N9 ; n9Dt9 (3.35)

and b ; u/c, the Equation 3.34 becomes

(3.36)

Up to this point our derivation has been exactly like the first case
considered for the classical Doppler effect leading to Equation 1.43; how-
ever, in Einsteinian relativity Dt Þ Dt9. Since the first and last wave emitted
by E9 occurred at the same position in S9 at instants t91 and t92, respectively,
then the time interval Dt9 must be recognized as the proper time in our
equation. Thus, taking time dilation (Equation 2.8) into account allows
our frequency transformation to be expressed as 

(3.37)

The wavelength transformation is directly obtained from this result by re-
alizing that n 5 c/l and n9 5 c/l9 from Equation 3.30:

l 5 l9g (1 1 b). (3.38)

These two equations represent the relativistic Doppler effect of electro-
magnetic waves for receding systems. Except for the presence of g in these
equations, the results are of the same form as the classical Doppler effect
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83 Ch. 3  Transformations of Relativistic Kinematics

given by Equations 1.43 and 1.44. This difference in form is solely precip-
itated by the absence of absolute time in Einsteinian relativity. 

There is yet another significant difference between the classical and
relativistic Doppler effects. In our classical considerations we had two sep-
arate cases for the situation where S and S9 were receding from each other.
The second case (Equation 1.50) was the inverse of the first obtained by
allowing

n → n9 n9 → n u → 2u. (3.39)

Performing these operations on Equations 3.37 gives

n 5 n9g (1 2 b), (3.40)

which corresponds to the situation where the emitter E9 is stationary in S9
and the receiver R in S is viewed as receding from observers in S9 with the
uniform speed u. Unlike the classical effect, where the two equations
(Equations 1.43 and 1.50) predicted different physical phenomena, Equa-
tion 3.40 can be shown to reduce exactly to Equation 3.37. That is, 

n 5 n9g (1 2 b)

Whereas in Galilean relativity there are two frequency transformation
equations required for the complete description of sound waves perceived
by observers in receding inertial systems, there is only one such equation
predicted by Einsteinian relativity for electromagnetic waves. This partic-
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Angstrom Unit

ular difference is not due to the absence of absolute time in the latter the-
ory, but, rather, by the absence of a material medium being required in na-
ture for the propagation of electromagnetic waves. 

Before considering the situation where the emitter and receiver ap-
proach one another, let us look at the phenomenological implications of
Equation 3.37 and 3.38. For u relativistic g . 1 and b , 1, which means
that

g (1 1 b) . 1. (3.41)

Consequently, in Equations 3.37 and 3.38

n , n9 and      l . l9, (3.42)

respectively. Since blue light has a shorter wavelength (lb < 4.7 3 1027 m)
than red light (lr < 6.7 3 1027 m), this phenomena is referred to as a red
shift because l . l9. When an emitter of electromagnetic waves is receding
from a detector, the shift toward longer wavelengths is called a red shift.
As an example of this phenomenon, consider a distant star to be receding
from the earth at a speed of 3c/5. If  the star emits electromagnetic radia-
tion of 3.3 3 1027 m, then observers on the earth will measure the wave-
length of the incident waves to be

In this example the waves have been shifted from the ultraviolet to the red
wavelength region of the electromagnetic spectrum. Frequently, electro-
magnetic wavelengths are specified in Angstrom units, where an Angstrom
unit is simply defined by 

Å ; 10210 m. (3.43)

What about the case where a distant star is approaching the earth with
a uniform speed u relative to the earth? We might expect the wave pulses
to be bunched together thus giving rise to a blue shift. To quantitatively de-
velop the appropriate relativistic frequency and wavelength transforma-
tions, consider the situation as depicted in Figure 3.3. As before, let the
emitter E9 be at the origin of coordinates of the S9 system and the receiver
R be at the coordinate origin of system S. As viewed by observers in S, a
time interval Dt is required for the first wave pulse emitted by E9 to reach
the receiver R. During this time E9 has moved a distance uDt closer to R. 

1 3.3 10 1 6.6 10 .5 9 1 5 3 1 5 3m m
4
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85 Ch. 3  Transformations of Relativistic Kinematics

Hence, the total number of waves N9, emitted by E9 in the elapsed time
Dt, will be bunched together in the distance x, as illustrated in Figure 3.3.
But comparing this situation with the one previously discussed, we find
that Equations 3.31 and 3.32 are still valid. But now

x 5 (c 2 u)Dt, (3.44)

as seen from the geometry of Figure 3.3, and Equation 3.32 becomes

(3.45)

Substitution of Equation 3.35 into Equation 3.45 results in

(3.46)

and after time dilation is properly accounted for, we have

(3.47)

Utilization of Equation 3.30 transforms Equation 3.47 from the domain
of frequencies to that of wavelengths, resulting in

l 5 l9g (1 2 b). (3.48)

Since g (1 2 b) is less than one for u , c, then l , l9 and we have what is
called a blue shift. Also, it should be observed that Equations 3.47 and
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86Review of Derived Equations

3.48 are just the inverse of Equations 3.37 and 3.38, respectively, with u
being replaced by 2u (b replaced by 2b). If  you were to consider this case
from the point of view of observers in S9, who view themselves at rest and
system S to be approaching, the frequency transformation obtained is of
the form

n 5 n9g (1 1 b). (3.49)

This result is easily deduced by performing the operations given in Equa-
tion 3.39 on Equation 3.47. However, it can readily be shown that this re-
sult reduces exactly to Equation 3.47, by using arguments similar to those
presented following Equation 3.40. It is important to note that only two
frequency transformation equations (Equations 3.37 and 3.47) are re-
quired for the complete description of  the relativistic Doppler effect for
electromagnetic waves; whereas, four such equations are required to de-
scribe the classical Doppler effect for sound waves.

Review of Derived Equations

A listing of the derived Lorentz-Einstein transformation equations is pre-
sented below, along with the transformations for the frequency and wave-
length of  electromagnetic waves. Only the coordinate, velocity, and
acceleration equations for the transformation of  measurements on an
event from S9 to S are listed, as the inverse transformations are easily ob-
tained by replacing unprimed variables with primed variable and vise
versa, and by substituting 2u for u. The velocity transformations can be
derived by employing the definition of either average or instantaneous ve-
locity with the space-time coordinate transformations.

LORENTZ-EINSTEIN TRANSFORMATIONS (S9 → S)

Space-Time Transformations
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87 Ch. 3  Transformations of Relativistic Kinematics

Velocity Transformations

Acceleration Transformations

RELATIVISTIC FREQUENCY TRANSFORMATIONS

c 5 ln 5 l9n9 Invariance of Light
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Problems

↑

3.1 Consider inertial systems S and S9 to be separating along their com-
mon X-X9 axis at the uniform speed of 3c/5. If  an observer in S9 views an
exploding flashbulb to occur 60 m from his origin of coordinates along
the X9-axis at a time reading of 8 3 1028 s, what are the horizontal and
time coordinates of the event according to an observer in system S?

Solution: 
With x9 5 60 m, t9 5 8 3 1028 s, and 3c/5 → g 5 5/4, we obtain the
x-coordinate from Equation 3.2a,

and the time coordinate from Equation 3.4,

3.2 Observers in system S measure the horizontal coordinate of an event
to be 50 m at a time reading 2 3 1027. What are the horizontal and time
coordinates of the event to observers in S9, if  the uniform speed of sepa-
ration between S and S9 is 3c/5?

Answer:     x9 5 17.5 m, t9 5 1.25 3 1027 s

3.3 Consider measuring the length of an object moving relative to your
reference frame by measuring the positions of each end x1 and x2 at the
same instant in time. Using the Lorentz spatial coordinate transformation
given by Equation 3.1a, show that the length you measure is smaller than
the object’s proper length.

Solution: 
The proper length of an object is always measured in a frame of ref-
erence, say S9, in which the object is at rest. With u being the speed
of the object and system S9 relative to S, then from Equation 3.1a we
have

x91 5 g (x1 2 ut1)      and      x92 5 g (x2 2 ut2).

Since t1 5 t2 → Dt 5 0 in system S, Dx9 5 x92 2 x91 is

Dx9 5 g (Dx 2 uDt
0
) 5 gDx.

93 ,

5 9 1 9

5 1 3 3 5m
s

m
s m

x x ut

4

5
60

5

3
3 10 8 1028 8

g ^
` ^

h
j h; E

8 10
3 10 /

60 /
2.5 10 .

5 9 1
9 9

5 3 1
3

5 3s
m s

m
s

t t
c

x u

4

5 3 5
2 2

2

8

8

7

g c
^ ^

m
h h= G

88Problems

Evaluation Copy 

Not Licensed for 

Instructional Use 



Because g . 1, the proper length Dx9 5 x92 2x91 in S is greater than
the length Dx 5 x2 2 x1 you measure.

3.4 Do Problem 3.3 using Lorentz coordinate transformations given by
Equations 3.2a and 3.4. You might wish to review Section 3.3 for a similar
problem concerning time dilation.

Answer:

3.5 Two clocks, positioned in system S9 at x9A 5 25 m and x9B 5 75 m,
record the same time t90 for the occurrence of an event. What is the differ-
ence in time between the two clocks in S9, according to observers in system
S, if  u = 3c/5?

Solution:
With Dx9 ; x9B 2 x9A 5 50 m, t9A 5 t9B ; t90, and u 5 3c/5 → g 5 5/4,
the Lorentz transformation gives

Subtracting tA from tB and substituting the data gives

where Dx9u/c2 is recognized as the quantity t9s of Chapter 2.

3.6 Keeping in mind the physical coordinates associated with the event
of Problem 3.2, if  a second event occurs at 10 m, 3 3 1027 s as measured
in system S, what is the time interval between the events measured by ob-
servers in system S9?

Answer: Dt9 5 2.25 3 1027 s

3.7 Derive the time transformation equation t 5 g (t9 1 x9u/c2) by using
Equations 3.1a and 3.2a.

Solution:
Substitution of Equation 3.2a,

x 5 g (x9 1 ut9),
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into Equation 3.1a,

x9 5 g (x 2 ut),

allows for the elimination of x:

x9 5 g [g(x9 1 ut9) 2 ut]

5 g2x9 1g2ut9 2 gut.

This result can be solved for t in terms of t9 and x9 as

3.8 Derive the S9 → S time coordinate transformation equation by using
Equations 3.1a and 3.5.

Answer:

3.9 Observers in one inertial system measure the coordinates of  two
events and determine that they are separated in space and time by 1500 m
and 7 3 1026 s, while observers in a second inertial system measure the
two events to be separated by 5 3 1026 s. Find the relative speed of sepa-
ration between the two systems.

Solution:
From the obvious dilation of time in the given data, we consider the
second system to be moving relative to the first with an unknown
speed u. Consequently, the data given can be identified as Dx 5
1500m, Dt 5 7 3 1026 s, and Dt9 5 5 3 1026 s. Using Equation 3.5 in
the form (Note: b ; u/c)
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direct substitution of the physical data gives

or, more simply

5 5 g (7 2 5 b).

Squaring this equation and using the definition of g gives

50b2 2 70b 1 24 5 0,

which can be solved for b using the general solution for a quadratic
equation given in Appendix A. Section A.5. Accordingly

and the two answers to this problem are u = 0.8c and u = 0.6c.

3.10 What must be the uniform speed of separation between two inertial
systems, if in one system observers determine that two events are separated
in space and time by 900 m and 1.8 3 1026 s, respectively, while in the
other system the two events occur simultaneously?

Answer: u = 0.6c

3.11 An alien in a flying saucer passes an astronaut in a space station at
0.6c. Two-thirds second after the flying saucer passes, the astronaut ob-
serves a particle 3 3 108 m away moving in the same direction as the
saucer. One second after the first observation, the astronaut notes the par-
ticle to be 5 3 108 m away. What are the particle’s space-time coordinates
for each position according to the alien?

Solution:
With the space station being identified as system S and the flying
saucer as S9, then the physical data are denoted as x1 5 3 3 108 m, t1

5 (2/3)s, x2 5 5 3 108, t2 5 (5/3)s, and u 5 0.6c 5 1.8 3 108 m/s → g
5 5/4. Using the Lorentz transformations from S → S9 of Table 3.2,
we have
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3.12 Referring to Problem 3.11, find the particle’s x-component of ve-
locity as measured by (a) the astronaut and (b) the alien 

Answer: vx 5 2 3 108 m⁄s, v9x 5 1⁄3 3 108 m⁄s

3.13 Two spaceships are receding from each other at a uniform speed and
in line with the earth. If  the speed of each spaceship is 0.8c relative to the
earth, find the speed of one relative to the other.

Solution:
The three systems in this problem can be identified in a simple man-
ner. The earth is considered to be system S, and the spaceship that is
receding from the earth is taken as system S9. Thus, its velocity relative
to the earth is u = 0.8c, and the other spaceship must be approaching
the earth with a velocity vx 5 2 0.8c. The problem now becomes one
of finding v9x by using the appropriate velocity transformation equa-
tion. That is
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3.14 Two spaceships are observed to have the same speed relative to the
earth. If  they are in line with the earth and approaching each other at a
uniform speed of  1.2c/1.36, what is the velocity of  each relative to the
earth?

Answer:     u = 0.6c, vx = 20.6c

3.15 If  a beam of light moves along the Y9-axis in system S9, find (a) the
components of  velocity and (b) the magnitude of  velocity for the light
beam, as measured by observers in system S.

Solution:
With the data v9x 5 v9z 5 0 and v9y 5 c, then from the Lorentz velocity
transformations we have

for the components of velocity observed in system S. The magnitude
of the velocity is given by
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3.16 Systems S and S9 are separating uniformly at a speed of 0.8c. Ob-
servers in S9 view a particle moving in the positive Y9 direction, and at one
instant the particle’s instantaneous speed is measured to be 0.6c. If  the
particle accelerates in the positive Y9 direction to a speed of 0.8c in six
seconds, what is the particle’s acceleration to observers in system S?

Answer:

3.17 Derive the wavelength transformation equation for the case of E9
receding from R, by expressing the distances in Figure 3.2 in terms of
wavelength.

Solution:
From Figure 3.2 we have

x 5 cDt 1 uDt,

where each term can be related to wavelength as follows:

x 5 lN 5 lN9,

cDt 5 l9n9 Dt 5l9n9 (gDt9) 5gl9N9,

With these equalities substituted into the first equation above, we ob-
tain

lN9 5 gl9N9 1gl9N9b,

which reduces to the familiar wavelength equation

l 5 l9g (1 1 b).

3.18 Starting with Equation 3.49, show that Equation 3.47 is obtained

Answer:

3.19 If  a distant galaxy is approaching the earth at a uniform speed of
0.6c, what is the ratio of n9 to n?

Solution:
Since u 5 0.6c, b 5 3/5 and g 5 5/4. From the blue shift frequency
transformation equation
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we immediately obtain

3.20 A distant galaxy is receding from the earth uniformly at a speed of
0.8c. If  the wavelength of electromagnetic radiation received by the earth
measures 6600 Å, what is the wavelength of the emitted radiation?

Answer: l9 5 2200 Å

3.21 How fast must you move toward light of proper wavelength 6400 Å
for it to appear to have a wavelength of 3200 Å?

Solution: 
This problem corresponds to a blue shift phenomenon with l 5 3200
Å and l9 5 6400 Å. From the wavelength transformation (Equation
3.48)

l 5 l9g (1 2 b)

and the fact that l/l9 5 1/2, we obtain

Squaring this equation gives

which can be simplified to

and solved for b:

3.22 If  a distant galaxy is receding from the earth such that the emitted
radiation wavelength is shifted by a factor of two, what is the speed of the
galaxy relative to the earth?

Answer: u 5 3/5c
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Introduction

The discussion of classical and Einsteinian relativity in the previous chap-
ters illustrates how fundamental physical quantities, such as space-time
coordinates, velocity, and acceleration, depend on the inertial system in

96

C H A P T E R 4

Transformations of Relativistic Dynamics

The most important result of a general character to which
the special theory has led is concerned with the conception
of mass. Before the advent of relativity, physics recognized
two conservation laws of fundamental importance, namely,
the law of the conservation of energy and the law of the
conservation of mass; these two fundamental laws appeared
to be quite independent of each other. By means of the
theory of relativity they have been united into one law.
A. EINSTEIN, Relativity (1961)

Photo: CERN

Having been accelerated to nearly the speed of light, Lead ions collide at
the Large Hadron Collider particle accelerator. 
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which they are measured. In our investigation of relativistic dynamics, we
will find how the mass, energy, and momentum of a body depend on the
relativistic speed existing between the body and an inertial observer. We
will also find it necessary to redefine basic quantities like total energy and
kinetic energy, since their classical definitions are limited and become in-
valid for bodies traveling at relativistic speeds. However, these new rela-
tionships will reduce to their classical counterparts under the
correspondence principle. 

Up to this point, gedanken experiments have been viewed by ob-
servers in two different inertial systems, such that measurements of phys-
ical quantities in each system could be compared in obtaining
transformation equations. The results obtained from this theoretical ap-
proach are most useful in that any physical quantity in kinematics can be
transformed correctly from one inertial system to another by the appro-
priate use of  the associated transformations. This same theoretical ap-
proach will be initially utilized herein to obtain a relativistic mass
equation. For the most part, however, transformation equations per se are
not obtained in our consideration of relativistic dynamics. Instead, equa-
tions for mass, force, energy, and momentum are developed that are ap-
propriate for any particular inertial system. The derivations for relativistic
force, energy and momentum employ the fundamental defining equations
of these quantities from classical mechanics, with a relativistic mass rela-
tion being appropriately incorporated. This allows for a logical develop-
ment of these concepts in Einsteinian relativity, while capitalizing on our
knowledge of the fundamentals of classical physics. 

The classical conservation principles of energy and momentum are
employed in obtaining new relativistic relationships, and the appropriate-
ness of  these conservation principles in special relativity is also investi-
gated. As will be seen, conservation of  momentum is assumed in both
classical and relativistic mechanics; however, the classical conservation of
energy principle becomes a mass-energy conservation principle in Einstein-
ian relativity. Our discussion of relativistic dynamics is concluded with a
straight forward development of momentum and energy transformation
equations for two inertial systems S and S9.

4.1  Relativistic Mass

It is of immediate interest to study the behavior of mass within the frame-
work of Einstein’s special theory of relativity. Unfortunately, we have a
rather limited knowledge of mass and gravity, so a direct and logical de-
velopment of  the properties of  a massive body moving at a relativistic
speed is not available. Instead, we employ the fundamental conservation

Ch. 4  Transformations of Relativistic Dynamics97

Evaluation Copy 

Not Licensed for 

Instructional Use 



4.1 Relativistic Mass 98

principle for linear momentum to deduce a relativistic mass relation for an
isolated inertial system. As before, we will consider two inertial systems S
and S9 to be separating from each other along their common X-X9 axis at
a uniform relative speed u and consider a gedanken experiment being
viewed by observers in both systems. 

Consider two identical massive bodies to be approaching each other
on a collision course at a constant speed parallel to the X-X9 axis, as illus-
trated in Figure 4.1a. Let observers in system S9 measure the speed of each
body before the collision to be u, with m91 moving in the positive x9-direc-
tion and m92 traveling in the negative x9-direction. Further, allow the bodies
to have a perfectly inelastic collision, such that observers in S9 will view the
combined mass m91 1 m92 5 2m9 to be at rest relative to S9 after the collision
(see Figure 4.1b). We denote the velocities of m91 and m92 in S9 as

v91x 5 u, (4.1)
v92x 5 2u, (4.2)
v91y 5 v91z 5 v92y 5v92z 5 0 (4.3)

6 Before Impact

u

u

(a) Before impact

(b) After impact

 
 

 

 

      

                               

 

  

 

  

  
 

X 9, X

Y Y 9

X 9, X

YY Y 9

m92m91

v91                     x = u

m92m91

v9                     x = 0

v92                     x = –u

Figure 4.1
A perfectly inelastic
collision of two identi-
cal bodies of mass m91
5 m92 traveling in op-
posite directions with
identical speeds, ac-
cording to observers in
system S9.
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Ch. 4  Transformations of Relativistic Dynamics99

before the collision and as

v9x 5 v9y 5 v9z 5 0 (4.4)

after the collision. 
The physical data measured in S9 can now be transformed to system

S, where observers consider themselves at rest and S9 to be moving in the
positive x-direction with a speed u. To observers in system S, the situation
before and after impact is similar to that depicted in Figures 4.2a and 4.2b.
The velocity of each body can be obtained using the relativistic velocity
component transformations given by Equations 3.24a, 3.24b, and 3.24c.
Accordingly, we obtain
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The perfectly inelastic
collision of two massive
bodies before (a) and
after (b) impact, ac-
cording to observers in
system S.

(a)

(b)

Evaluation Copy 

Not Licensed for 

Instructional Use 



for the velocity components of m1 and m2 before the collision. After the
collision, the two masses are viewed in S as stuck together with a total
mass

M 5 m1 1 m2 (4.8)

and velocity components

At this point we invoke the conservation of linear momentum principle,
which says total linear momentum before impact must equal total linear
momentum after impact. Since the y and z components of  velocity are
zero before (Equation 4.7) and after (Equation 4.10) impact, we are only
concerned with the translational momentum in the x-direction. Thus, in
system S the conservation of momentum can be expressed by

m1v1x 1 m2v2x 5 Mvx, (4.11)

where M is defined by Equation 4.8. Substitution from Equation 4.6, 4.8,
and 4.9 allows the momentum equation to be expressed as

m1v1x 5 (m1 1 m2)u. (4.12)
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It is now convenient to generalize the result expressed by Equation
4.12 and to simplify the symbolic notation. From Equation 4.6, it is ap-
parent that mass m2 is at rest in system S before the collision. We adopt
the convention that the rest or inertial mass of a body be denoted as m0

and, like proper length and proper time, allow it to be defined as that mass
measured in a frame of reference in which the body is at rest. With this con-
vention for m2, there is no longer any need for the subscript on m1 and,
consequently, we have

m1 ; m, (4.13a)
m2 ; m0. (4.13b)

Although the two masses are identical in S9, they are viewed differently in
system S in that m0 is at rest and m is a relativistic mass, since it is in a state
of uniform relative motion (Equation 4.5). To generalize Equation 4.12 we
need only recognize that the velocity of m (m1 originally) before the colli-
sion corresponds to a speed in the positive x-direction of 

(4.14)

where Equation 4.7 has been used in obtaining the last equality. Again,
there is no need for the subscript on v1, so with

v1 5 v1x ; v (4.15)

and the identities of Equations 4.13a and 4.13b, Equations 4.12 becomes

mv 5 (m 1 m0)u. (4.16)

Even though Equation 4.16 is expressed as a scalar equation in terms of
speeds v and u, it is equivalent to the vector equation expressed in terms
of velocities v and u, since the directions of v and u are identical. For this
reason we will refer to v and u as velocities, with the directions being un-
derstood to be in the positive x-direction. With this understanding, the
velocity of m before the collision, as given by Equation 4.5, can be rewrit-
ten, with v1x being replaced by v, as

(4.17)

Referring to Equations 4.16 and 4.17, it is obvious that the relativistic
mass m can be expressed in terms of the rest mass m0 and v, the velocity
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of m relative to m0, by solving the two equations simultaneously to elimi-
nate u. To do so, we first solve Equation 4.16 for m/m0 as

which can be rewritten in terms of b (b ; u/c) as

(4.18)

Likewise, Equation 4.17 can be expressed in terms of b as

(4.19)

and these last two equations can now be combined to eliminate b and
hence also u. The idea is to solve Equation 4.19 for b and substitute into
Equation 4.18. From Equation 4.19 we obtain a quadratic equation in
terms of b,

(4.20)

which has the solution

(4.21)

Since b → 0 for u ,, c, then the negative sign must clearly be chosen in
Equation 4.21 with the result being
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Ch. 4  Transformations of Relativistic Dynamics103

By analogy with the definition of g

(2.7)

we define

(4.23)

and immediately rewrite Equation 4.22 as 

(4.24)

Now, substitution of this expression for b into the conservation of mo-
mentum equation (Equation 4.18) gives

This result can be rewritten in the more symmetrical form

m 5 Gm0, (4.25)

which is Einstein’s relativistic mass equation. Since G . 1 for v relativistic,
then

m . m0.
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That is, the mass of a body is not invariant in Einsteinian relativity, but
will be observed to increase when the body is in a state of motion. For v
,, c, this increase in mass is very small (G < 1) and m < m0, which is ex-
actly why we do not observe this phenomenon in everyday experiences.
This result also explains why it is impossible to accelerate a body up to or
beyond the speed of light c. As the body is accelerated toward the speed
of light, its mass continuously increases and the externally applied accel-
erating force becomes less and less effective. At a speed very close to c, the
mass of the body tends toward infinity, which would require an infinite ex-
ternal force for additional acceleration. Hence, acceleration of a body up
to or beyond the speed of light is impossible by any finite force.

4.2  Relativistic Force

Frequently, in classical mechanics Newton’s second law of motion is rep-
resented by

F 5 ma,          m Þ m(t), (1.17)

instead of the more general defining equation

(1.16)

Often, the application of either equation to a problem will give the correct
answer, since the mass of a body or a system of bodies is usually constant
and independent of time in Newtonian dynamics. This is not the situation
in relativistic dynamics, however, as the mass of an accelerating body ex-
periences a dilation that is time dependent. This is immediately apparent
from the relativistic mass equation, since the mass of a body is dependent
on speed, which is ever changing for an accelerating body. From these ar-
guments, it should be clear that F 5 ma 5 Gm0a is not valid in relativistic
dynamics. The defining equation of Newton’s second law is, however, ap-
plicable in relativistic dynamics and can be expressed as
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Ch. 4  Transformations of Relativistic Dynamics105

(4.27)

Relativistic Force

Relativistic Force

or more fundamentally as

(4.26)

A relativistic relationship that is analogous to the classical F 5 ma
can be derived by using Newton’s second law as expressed by Equation
4.26. The derivation can be greatly simplified by considering a body to be
in a state of rectilinear motion and uniform acceleration, as viewed by ob-
servers in inertial system S. Under these conditions, Newton’s second law
can be expressed as

where n is a unit vector in the direction of the momentum. It should be
noted that we are considering a special case where the force, velocity, mo-
mentum, and acceleration vectors are all in the same direction. Substitut-
ing for linear momentum (p 5 mv), Equation 4.27 becomes

which from Equation 4.25 is rewritten as

(4.28)

This result is also easily obtained from Equation 4.26, with n representing
the assumed common direction for v and a, that is
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Further, Equation 4.28 for the relativistic force is easily reduced in form
by obtaining the derivative of G with respect to velocity. That is, differen-
tiating Equation 4.23 yields

which upon substitution into Equation 4.28 gives

Thus, for a body in rectilinear motion, the net accelerating force is given
by

F 5 G3 m0a 5 G2ma. (4.30)

This result is analogous to the classical equation F 5 ma and in fact re-
duces to it as G → 1. Although this result is limited to a special class of
problems, it will prove useful for derivations in the next section.

4.3  Relativistic Kinetic and Total Energy

The work-energy theorem of classical mechanics states that the work done
on a body is equivalent to its change in kinetic energy. Accordingly, if  a
body is at rest with inertial mass m0, then the work done in accelerating it
to a uniform velocity v is equivalent to its final kinetic energy T. For this
situation the derivation of the body’s relativistic kinetic energy can be sim-
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plified and previous results utilized, if we allow the net external force doing
the work to be in the same direction as the body’s displacement. This al-
lows the work equation

dW ; F ? dr (1.20)

to be written as

dT 5 Fdr (4.31)

since u 5 08 and cos u from the dot product becomes one. As the body is
in rectilinear motion, the magnitude of the force expressed by Equation
4.30 can be substituted into Equation 4.31 and simplified as

This result is amenable to integration by parts; however, a further simpli-
fication is attained by solving Equation 4.29 for

c2dG 5 G3
v dv

so that Equation 4.32 becomes

dT 5 m0c2dG (4.33)

This result represents the relativistic kinetic energy in differential form,
which can be integrated once the limits of integration have been decided.
In our present consideration, where work is done on a body initially at
rest (vi 5 0, vf 5 v), we need only recognize that for vi 5 0, Ti 5 0 and Gi

5 1. Thus, from Equation 4.33 we have

(4.34)
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which immediately yields

T 5 m0c2(G 2 1) (4.35)

for the relativistic kinetic energy. This result has several interesting inter-
pretations and is perfectly general and applicable in spite of our initial sim-
plifying assumptions.   

Under the correspondence principle the relativistic kinetic energy must
reduce exactly to the classical kinetic energy. This is easily demonstrated
by expanding G in Equation 4.35 by use of the binomial expansion

(x 1 y)n 5 xn 1 nxn21y 1 ??? (4.36)

given in Appendix A, to obtain

(4.37)

With this relation for G (remember v ,, c and only the first couple of
terms are significant) Equation 4.35 becomes

in agreement with classical mechanics. For a body moving at a relativistic
speed, the error arising from using 1⁄2m0v

2 for T is only 0.75 percent for v
5 0.1c but nearly 69 percent when v 5 0.9c, for example

A more interesting consequence of Equation 4.35 becomes evident
by rewriting it in the form

,,v v1 .1 ,<
c

c
2

1
2

2

G

v

v

5 1 2

5

T m c
c

m

1
2

1
10

2

2

2

2

1

0
2

c m

v v

c

v

v

1

1

1
1

/

1
.

.
. .

2
5 2

5 2
2

5 2
2

5 2 <

T

T m

T

m

m

m

c

1

1 3

0 81
0 69

2

1

0
2

2

1

0
2

0
2

2

1

0
2

2

1 2

2

1

G

G

^
^

^

h
h

h

4.3 Relativistic Kinetic and Total Energy 108

Relativistic Kinetic
Energy

Binomial Expan-
sion

(1.22)
Classical Kinetic
Energy

Evaluation Copy 

Not Licensed for 

Instructional Use 



Ch. 4  Transformations of Relativistic Dynamics109

T 5 Gm0c2 2 m0c2 5 mc2 2 m0c2. (4.38)

Both terms on the right-hand side of this equation have, necessarily, di-
mensions of  energy and they represent an energy-mass equivalence that
are symbolically identified as 

E0 ; m0c2, (4.39)

E ; mc2. (4.40)

The interpretation of these quantities is straightforward in that for a body
at rest with inertial mass m0, E0 must correspond to its rest energy, while
E corresponds to its total relativistic energy. For a body at rest, kinetic en-
ergy, represented by

T 5 E 2 E0, (4.41a)

must be zero and E, given by

E 5 E0 1 T, (4.41b)

must equal E0. Amazingly, a body at rest possesses energy m0c2 according
to Einsteinian relativity. Equation 4.41a is practically always used as the
fundamental equation for relativistic kinetic energy instead of Equation
4.35, since it is conceptually much simpler and logically much more direct.
Further, the relativistic energy defined by Equation 4.40 is recognized as
the total energy of a body from Equation 4.41b.        

These results are surprising and have absolutely no counterpart in
classical physics. The energy mass equivalence represented by Equation
4.40 is the single most important result of Einstein’s special theory of rel-
ativity. It gives the energy equivalence of a 1 kg mass to be on the order
of c2 or 9 3 1016 J. Consequently, even an extremely small mass has a rel-
atively large energy equivalence. As an example, assuming the average
caloric intake per person per day to be 3200 kcal, then the energy con-
sumed per day by ten million people has a mass equivalence of approxi-
mately one and a half  grams:

3200 10
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Another interesting result is easily obtained from Equation 4.33. If  a
body has an initial velocity vi 5 v1 and final velocity vf 5 v2, then integra-
tion of Equation 4.33 gives

T2 2 T1 5 m0c2(G2 2 G1)
5 G2m0c2 2 G1m0c2

5 m2c2 2 m1c2

5 (m2 2 m1) c2.

The result can be symbolically represented as

DT 5 Dmc2 5 DE, (4.42)

where the last equality (DT 5 DE) is obvious from Equation 4.41. Conse-
quently, any change in the kinetic or total energy of a body results in a cor-
responding change in its mass. Indeed, hot water has more mass than the
same amount of cold water, and so forth. The reason we do not observe
these changes in everyday experiences is because Dm is very small as com-
pared to the change in energy and, furthermore, commonly encountered
values of DE are relatively small.

It needs to be emphasized that the concept of  total energy in Ein-
steinian relativity differs from that of classical mechanics in that the for-
mer does not include potential energy V. The conservation of energy
principle in a broader sense is, however, still valid in relativistic dynamics,
provided the rest energy of a body or system of bodies is taken into ac-
count. The principle now becomes one of mass-energy conservation, which
is represented as

E0 1 T 1 V 5 CONSTANT (4.43)

for an isolated inertial system.

4.4  Relativistic Momentum

An expression for the relativistic momentum of a body is easily obtained
from the classical definition of momentum and the equations representing
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Ch. 4  Transformations of Relativistic Dynamics111

relativistic mass and energy. That is,

p ; mv (1.15)

or more simply

(4.44)

One interesting interpretation of Equation 4.44 is for electromagnetic
radiation (e.g., x-rays, g-rays, visible light, etc.), since it propagates through
free space at the speed c. In this case v = c and the total energy of a quan-
tum of radiation is given by

E 5 pc. (4.45)

The result suggests a particle-like behavior for electromagnetic waves,
which was originally proposed by Einstein in 1905. In explaining the pho-
toelectric effect (see Chapter 6, Section 6.6), he postulated that electro-
magnetic radiation consisted of  quanta of light-energy in the form of
fundamental particles, later called photons, that propagate at the speed of
light. This particle-like behavior of light will be the topic of considerable
discussion in Chapter 6 as well as in the next section.  

Another very useful relationship between momentum and energy can
be obtained from either the relativistic energy (Equation 4.40) or relativistic
mass (Equation 4.25) equations. From the former we have

E 5 mc2 5 Gm0c2 5 GE0,

which, when squared, gives
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where the definitions of momentum and relativistic energy have been uti-
lized. The last equality, solved for E 2, gives

E 2 5 E 2
0 1 p2c2, (4.46)

which in Section 4.6 will be shown to be an invariant relationship to all in-
ertial observers. At this time, however, additional insight into the proper-
ties of  a particle traveling at the speed of  light (i.e., a photon) can be
obtained by combining Equations 4.45 and 4.46. Clearly, since for a pho-
ton E = pc (Equation 4.45), the Equation 4.46 gives E0 = 0, which means
m0 = 0 for a photon. That is, a body traveling at the speed of light must
have a zero rest mass and, conversely, a particle of zero rest must be trav-
eling at the speed of light. This result of Einsteinian relativity yields con-
siderable insight into the behavior of particles and waves in nature, which
was not fully appreciated nor understood for nearly two decades after Ein-
stein’s published work. His theory clearly predicts that particles having a
nonzero rest mass can never be accelerated to the speed of light, while en-
tities in nature traveling at such a speed must necessarily have a zero rest
mass. This relativistic view is in sharp contrast to the predictions of clas-
sical physics, but, as will be seen, it is the correct one and accurately de-
scribes the properties of photons. 

4.5  Energy and Inertial Mass Revisited

The results of the last section were totally surprising to the physics com-
munity of the early twentieth century; however, Equation 4.45 was known
from classical electromagnetism for well over thirty years (see Chapter 6,
Section 6.4) before the publication of Einstein’s theory. We will utilize that
equation and the concept of a photon as an elementary particle or quantum
of electromagnetic radiation to re-derive the energy-mass relationship, by
considering a gedanken experiment originally developed by Einstein in
1906.
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Consider two identical spheres, each of mass 1⁄2M, separated a dis-
tance L by a rod of negligible mass. This dumbbell system is assumed to be
isolated from its surroundings and initially stationary with its center of
mass (C.M.) located midway between the spheres on their common axis.
At some instant in time a burst of photons is emitted from the right-hand
sphere and propagates toward the left-hand sphere, as illustrated in Figure
4.3. If  we think of these photons as possessing an equivalent mass m, then
the radiant energy associated with the photons is

E 5 pc, (4.45)

according to Equation 4.45. Assuming conservation of momentum to be
valid, then the momentum of the photons to the left, p, is just equal to
the momentum of the dumbbell system to the right, (M 2 m)u, where m
is the assumed mass equivalent of the emitted radiation. Thus,

p 5 (M 2 m)u (4.47)

and Equation  4.45 becomes

E 5 (M 2 m)uc. (4.48)

If  Dt is the time required for the photons to travel from the right-hand
sphere to the left-hand sphere, then from the postulate of the constancy
of the speed of light

(4.49),5
2

t
c

L x
D

D
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Figure 4.3
The emission of pho-
tons of equivalent mass
m from the right-hand
sphere, the recoil of
the dumbbell with ve-
locity u, and the final
absorption of the pho-
tons by the left-hand
sphere.
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4.5 Energy and Inertial Mass Revisited 114

(4.51)

Energy-Mass
Equivalence

where the recoil distance Dx of the dumbbell system has been taken into
account. Accordingly, the average speed of the dumbbell is just

(4.50)

which upon substitution into Equation 4.48 gives

Since the sum of all mass moments on one side of the C.M. point must
equal the sum of all mass moments on the other side (by definition of the
center of mass), then

( M 1 m) ( L 2 Dx) 5 ( M 2 m) ( L 1 Dx). (4.52a)

Solving this equation for L/Dx,

(4.52b)

and substituting into Equation 4.51 immediately gives

E 5 mc2. (4.40)

Although this equation has been obtained by a derivation that differs
somewhat from Einstein’s, the resulting implications are the same and are
in agreement with the interpretations of Equation 4.40. The interpretation
here, however, is that the sphere emitting electromagnetic radiation experi-
ences an inertial mass decrease of E/c2, while the other sphere’s inertial
mass increases by the amount E/c2 upon absorption of the radiation. Thus,
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any change in the energy DE of a body results in a corresponding change
in its inertial mass Dm in accordance with Equation 4.42.

4.6  Relativistic Momentum and Energy 
Transformations

The previous discussions of this chapter have been primarily concerned
with the view of Einsteinian dynamics in one inertial system; however, it
is desirable to transform momentum and energy measurements of a par-
ticle from one inertial system to another. Linear momentum has already
been defined as the product of mass and velocity, so in system S the mo-
mentum of a particle is

p ; mv 5 Gm0v, (4.53a)

while in system S9 it is denoted as

p9 ; m9v9 5 G9m0v9. (4.53b)

Clearly, these are vector equations and can be expressed in terms of Carte-
sian components as

p 5 pxi 1 pyj 1 pzk (4.54a)
and p9 5 p9xi9 1 p9yj9 1 p9zk9. (4.54b)

The immediate problem is to find out how these components of mo-
mentum transform between two inertial systems S and S9, when they are
separating from each other at a constant speed u.

Consider a particle to be moving about in space and time with a ve-
locity v measured in system S and v9 measured in S9. In this context the
velocity of the particle, as measured by observers in either system, need
not be parallel to the common axis of  relative motion between the two
systems. According to observers in S, the particle has a longitudinal com-
ponent of momentum given by

px 5 mvx,

which, upon substitution of Equations 4.25 and 3.24a, can be expanded
to the form

(4.55)
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It will be shown that

(4.56)

where for observers in system S9

(4.57)

by analogy with the definition given by Equation 4.23. To obtain this re-
sult, consider the expansion of 1 2 v

2
x/c2,

where Equation 3.24a has been used. From Equations 3.24b, 3.24c, and
2.7 we have
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which upon subtraction from Equation 4.58 and rearrangement gives

(4.59)

where the fundamental relations 

v
2 5 v

2
x 1 v2

y 1 v
2
z, (4.60a)

v92 5 v92
x 1 v92

y 1 v92
z (4.60b)

have been used. Now, taking the square root of Equation 4.59 and using
the defining equations for G, G9, and g gives

which is equivalent to Equation 4.56. Using this result (actually Equation
4.56) allows the x-component of momentum, given by Equation 4.55, to
be expressed in the more compact form

or more simply

(4.61)
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4.6 Relativistic Momentum and Energy Transformations 118

In a similar manner the transformations for the transverse components
of momentum are easily obtained. For example,

which from Equation 4.53b yields

py 5 p9y (4.62)

and similarly

pz 5 p9z . (4.63)

Equations 4.61, 4.62, and 4.63 represent the relativistic momentum-com-
ponent transformations from system S9 to system S; whereas, the inverse
transformations are given by

p9x 5 g (px 2 mu) (4.64a)

p9y 5 py (4.64b)

p9z 5 pz (4.64c)

Frequently, the transformation for the longitudinal component of
momentum is expressed in terms of energy. This is easily accomplished
with Equations 4.61 and 4.64a by realizing that Einstein’s energy-mass
equivalence relationship is valid for any inertial system. That is, to ob-
servers in S

(4.65a)

while to observers in system S9
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Ch. 4  Transformations of Relativistic Dynamics119

E9 5 m9c2

5 G9m0c2

5 G9E0 (4.65b)

for a particle having an inertial mass m0. Consequently, Equations 4.61
and 4.64a can be expressed as

(4.66)

and (4.67)

which will prove useful in our next consideration.
To obtain the relativistic transformation for E and E9, it is convenient

to capitalize on the results expressed by Equations 4.66 and 4.67. If  we
desire an equation for E in terms of primed quantities p9x and E9, then px

must be eliminated between the two equations. Thus, substitution of Equa-
tion 4.66 into Equation 4.67 gives

which can be solved for the term involving E as

Multiplying both sides of this equation by c2/gu gives

Because g22 5 1 2 u2/c2, the energy transformation equation for S9 to S be-
comes

E 5 g (E9 1 p9xu) (4.68)
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while the inverse transformation is given by

E9 5 g (E 2 pxu). (4.69)

This last expression is directly obtained in a similar manner by substituting
p9x from Equation 4.67 directly into Equation 4.66 and solving for E9.

In this and previous sections it was clear that momentum and energy
of a particle depend on the observer, and in general these quantities have
different measured values for different inertial observers. Equation 4.46
solved in the form

E 2 2 p2c2 5 E 2
0

suggests that if  E0 for a particle is to have the same value to all inertial
observers, then the particle’s energy squared minus the square of the prod-
uct of its momentum and the speed of light must be an invariant to all in-
ertial observers. To verify this observation, we need only substitute
Equation 4.69, 4.67, and 4.64c into the expression E 92 2 p92c2 to obtain

Thus, although our other relativistic transformations for momentum, en-
ergy, mass, and force are not invariant, Equation 4.46,

E 2 5 E 2
0 1 p2c2, (4.46)
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represents a particular invariant combination of energy and momentum
on which all inertial observers are in agreement. 

Special relativity has profoundly altered our world view and raised a
host of philosophical and scientific questions. Its exhaustively verified cor-
rectness suggests that we have been presumptuous in defining nature’s laws
to be consistent with our common sense. We should examine our funda-
mental view with the aim of  removing inherent, prejudicious concepts,
since we are three-dimensional creatures in, at least, a four-dimensional
world. In particular, the concept of a semi-infinite time axis should be re-
examined and our understanding of gravity (mass) could stand much im-
provement. At any rate, the developmental logic of  special relativity
illustrates the need to liberate our reasoning from physical prejudices and
to rely only on pure logic within any carefully defined hypothetical frame-
work. We may not be able to answer all the questions today, but we now
know how, and perhaps where, to begin looking for at least some of the
answers.

Review of Derived Equations

A listing of the fundamental and derived equations of relativistic dynam-
ics is presented below, along with the transformation equations for rela-
tivistic energy and momentum. Also included are the newly defined special
symbols of this chapter.
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DERIVED EQUATIONS

m 5 Gm0 Relativistic Mass

E0 ; m0c2 Rest Energy
E ; mc2 Relativistic Total Energy

E 5 pc Photon Energy
E2 5 E2

0 1 p2c2 Energy-Momentum Invariant

Relativistic Momentum Transformations

Relativistic Energy Transformations

E 5 g (E9 1 p9xu)                       E9 5 g (E 1 pxu)

4.1 Combining Equations 4.16 and 4.17, show that the ratio of m to m0

is given by m/m0 5 (1 1 b2)/(1 2 b2).
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Solution:
Solving Equation 4.16,

mv 5 (m 1 m0)u,

for m/m0 and substituting Equation 4.17,

immediately yields

4.2 Starting with Equation 4.17 and using the result of Problem 4.1, show
that 1 2 v

2/c2 5 m2
0/m2 and that Equation 4.25 for the relativistic mass is

obtained.

Answer: 

4.3 A particle of rest mass 1.60 3 10229 kg moves with a speed of 0.6c
relative to some inertial system. Find its relativistic mass and momentum.

Solution:
With m0 5 1.60 3 10229 kg and v 5 3c/5 → G 5 5/4 substituted di-
rectly into Equation 4.25,

m 5 Gm0,

the relativistic mass is
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and the relativistic momentum is just

4.4 A particle of relativistic mass 1.80 3 10229 kg is moving with a con-
stant speed of 3c/5. Find its relativistic momentum and rest mass.

Answer: p 5 3.24 3 10221 kg ? m/s, m0 5 1.44 3 10229 kg

4.5 Find the rest energy, relativistic total energy, and relativistic kinetic
energy for the particle of Problem 4.3.

Solution:
At this point we know m0 5 1.60 3 10229 kg, v5 3c/5, G 5 5/4, m 5
2.00 3 10229 kg, p 5 3.60 3 10221 kg ? m/s and we need to find E0, E,
and T. Direct substitution into Equation 4.39, 4.40, and 4.41a gives

4.6 Find the rest energy, total energy, and relativistic kinetic energy for
the particle of Problem 4.4.

Answer:
E0 5 1.30 3 10212 J, E 5 1.62 3 10212 J, T 5 3.24 3 10213 J

4.7 Express the answers to Problem 4.5 in units of MeV, where M = 106

and 1 eV = 1.60 3 10219 J. Verify that the total energy in MeV is also given
by Equation 4.46.

Solution:
For the conversion units we have
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Now, using Equation 4.46,

E2 5 E2
0 1 p2c2,

direct substitution yields

Thus, the total energy is given by

E < 11.25 MeV.

4.8 Find the percentage of error arising from using the classical definition
of kinetic energy (T 5 1⁄2m0v

2) instead of the relativistic definition for a
particle traveling at 3c/5.

Answer: 28 percent

4.9 Show that the percentage of  error arising from using the classical
definition of momentum (p 5 m0v) instead of the relativistic momentum
is 20 percent for a particle traveling at 3c/5.

Solution:
With v 5 3c/5 → G 5 5/4, we have

4.10 Derive Equation 4.46 by starting with Equation 4.25.

Answer: E2 5 E2
0 1 p2c2

4.11 What is the momentum for a particle of rest energy 0.513 MeV and
total energy 0.855 MeV?

Solution:
Linear momentum can be expressed in terms of E0 5 0.513 MeV and
E = 0.855 MeV using Equation 4.46 in the form
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Thus, direct substitution of E0 and E gives

4.12 Find the speed of the particle described in Problem 4.11.

Answer:     v = 0.800c

4.13 A particle of rest energy 3 MeV has a total energy of 5 MeV. Find
the particle’s speed v and momentum p.

Solution:
We need an expression for v in terms of E and E0. Squaring both sides
of the Equation

and solving for v gives

where E0 5 3 MeV and E = 5 MeV have been substituted. The mo-
mentum p is now easily obtained by realizing that

This approach offers an alternative to that used in Problems 4.11 and
4.12.

4.14 How much energy in terms of E0 would be required to accelerate a
particle of mass m0 from rest to a speed of 0.8c?

Answer:
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4.15 Two particles separated by a massless spring are forced closer to-
gether by a compressive force doing 18 J of work on the system. What is
the change in mass of the system in units of kilograms?

Solution:
We know DE 5 18 J and need to find Dm. From Equation 4.42 we have

4.16 If  a particle of rest energy E0 is traveling at a speed of 0.6c, how
much energy in terms of E0 is needed to increase its speed to 0.8c?

Answer:

4.17 At what fraction of the speed of light must a particle travel so that
its total energy is just double its rest energy?

Solution:
Under the condition

E 5 2E0,

we substitute GE0 for E and obtain

G 5 2,

Substituting from Equation 4.23 for G and squaring gives

which is easily solved for

4.18 At what fraction of the speed of light must a particle travel to have
a kinetic energy that is exactly double its rest energy?

Answer: v = 0.9248c

4.19 Observers in system S9 measure the speed of a 1.60 3 10229 kg par-
ticle traveling parallel to their X9-axis to be 0.6c. If  the relative speed be-
tween S and S9 is 0.8c, what do observers in S measure for the momentum
of the particle?
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Solution:
We know m0 5 1.60 3 10229 kg, v9x 5 v9 5 0.6c → G9 5 5/4, and u 5
0.8c → g 5 5/3 and need to find px. From Equation 4.66 we have

which is expressible in terms of the given information as

Now, direct substitution yields

Actually, this problem could have been solved more directly by using
Equation 4.66, since we had already calculated its momentum and
energy for an inertial system in Problems 4.3 and 4.5, respectively.

4.20 In Problem 4.19, what do observers in system S measure for the par-
ticle’s total energy?

Answer: E 5 4.44 3 10212 J
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Introduction

The study of Einstein’s special theory of relativity has expanded and com-
pletely altered our fundamental view of  nature from that suggested by
classical mechanics. It is important to realize that our new perception of
the concepts of length, mass, time, and energy resulted from essentially

129

C h a p t e r 5

Quantization of Matter 

Atoms of the different chemical elements are different aggregations of
atoms [particles] of the same kind.... Thus on this view we have in the
cathode rays matter in a new state, a state in which the subdivision of
matter is carried very much further than in the ordinary gaseous state:  a
state in which all matter—that is, matter derived from different sources
such as hydrogen, oxygen, etc.—is of one and the same kind; this matter
being the substance from which all the chemical elements are built up.
J. J. THOMSON, Philosophical Magazine 44, 293 (1897)

An experiment showing the path of single electrons
passing through liquid helium.
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one new basic postulate of nature (the invariance of the speed of light)
and an application of classical mechanics to fundamental physical consid-
erations of macroscopic phenomena. Additional deviations from classical
physics and insights of microscopic phenomena will be detailed in this and
the next few chapters, as we consider other theoretical and experimental
contributions to modern physics. The method of inquiry is similar to that
utilized in the study of Einsteinian relativity, in that a few new fundamen-
tal postulates of nature are combined with well known principles of clas-
sical mechanics and electromagnetic theory to produce a new nonclassical
view of nature on the microscopic level.

The immediate objective of this chapter is to study the quantization
of matter, a concept that suggests matter is composed of basic constituents
or minute particles. After a brief  review of the evolution and scientific ac-
ceptance of this atomic view, the qualitative physical properties of an elec-
tron will be investigated. This is immediately followed by a study of the
early measurements and estimates of the specific charge (e/me), absolute
charge, mass, and size of an electron. The emphasis of these discussions
is not on the actual experiments and analyses performed by physicists in
obtaining these early estimates. Instead, the logical application of basic
principles of classical physics is emphasized in the development of rela-
tionships capable of predicting theses fundamental physical properties of
an electron. Further, a limited discussion of the modern model of the atom
and nucleus is presented, followed by theoretical considerations for the
mass, size, and binding energy of an atom. As a number of fundamental
relationships of  classical electromagnetic theory will be utilized in this
chapter, a review of the basic equations, SI units, defined units, and con-
ventional symbols presented in a general physics textbook might prove
beneficial.

5.1  historical perspective

The concept of matter being quantized (i.e., discrete) was suggested as early
as the fifth century B.C. by Greek philosopher Democritus. This view,
however, was mostly disregarded for nearly two thousand years by scien-
tists in favor of the Aristotelian philosophy that consider space and matter
as being continuous. Serious theoretical support for the atomic view of
matter by Pierre Gassendi, Robert Hooke, and Isaac Newton appeared in
the middle and latter part of the seventeenth century. These efforts, how-
ever, were essentially ignored for nearly another hundred years, before ini-
tial experimental evidence from quantitative chemistry was available in
support of the quantization of matter.

Of the many scientists involved in the development of quantitative

Ch. 5  Quantization of Matter130

Evaluation Copy 

Not Licensed for 

Instructional Use 



chemistry at the turn of the nineteenth century, the more noteworthy in-
clude chemists Antoine Lavoisier, J. L. Proust, John Dalton, J. L. Gay-
Lussac, and the Italian physicist Amedeo Avogadro. The work of these
individuals clearly established that basic substances participate in chemical
reactions in discrete or quantized entities. Their efforts led to the definition
of chemical elements and the concept of atomic masses (originally called
atomic weights). In fact Dalton suggested each element was composed of
physically and chemically identically atoms and that these atoms were dif-
ferent from the atoms of any other element. He also introduced the con-
cept of atomic masses; however, it was Avogadro who provided the best
rationale for finding atomic masses by way of his hypothesis that at the
same temperature and pressure equal volumes of gases contain the same
number of particles. He was also the first to recognize that two or more
atoms could combine to form what he called a molecule, a concept that
was not fully understood until the development of quantum mechanics in
the twentieth century. His hypothesis is of  fundamental importance to
physics and physical chemistry in that it predicts the number of atoms or
molecules in one mole of a substance (any element or compound) as being
exactly equal to a number No, called Avogadro’s constant. Although the
absolute magnitude of No was not known for more than fifty years after
Avogadro’s hypothesis, knowledge of its existence was sufficient and of
primary importance in the development of relative atomic masses for the
chemical elements. In the last section of this chapter Avogadro’s hypoth-
esis and the value of No will be utilized in calculating the absolute mass
and size of an atom.

An enormous amount of evidence for the quantization of matter was
provided by the advent and development of  kinetic theory in the nine-
teenth century, which was complementary to and independent of the view
suggested by quantitative chemistry. Kinetic theory arises from the appli-
cation of Newtonian mechanics to a gas considered as a system consisting
of a very large number of identical particles. These particles are imagined
to exist in a state of random motion and have elastic collisions with one
another and the gas container. This large and very elegant subject was the
first microscopic model of matter describing the physical properties of a
gas. It was initially developed in part by Daniel Bernoulli In 1738; however,
the major contributions and development occurred in the nineteenth cen-
tury and were brought about notably by J. P. Joule, R. J. Clausius, J. C.
Maxwell, L. Boltzmann, and J. W. Gibbs. Although kinetic theory per se
is not germane to our immediate objectives, it is appropriate to acknowl-
edge its contribution to the atomic view of nature. Many of the results of
kinetic theory will be independently developed and discussed later in this
textbook, when we consider the fundamental principles and physical ap-
plications of statistical mechanics.
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One other contribution supporting the atomic view of matter came
from the law of electrolysis developed by Michael Faraday in 1833. By al-
lowing electricity to flow though electrolytic solutions and observing the
components of the solution being liberated at the electrodes, Faraday was
able to predict the existence of a discrete unit of electrical charge. His work
supported not only the quantization of matter, but also the quantization
of electrical charge. This discreteness in nature was later confirmed by ex-
perimental investigation of cathode and canal rays, which led to measure-
ments of the elemental electrical charge in nature and measurements of
atomic masses, respectively. The qualitative physical properties of cathode
rays is the topic of discussion in the next section, while canal rays will be
considered in some detail in Section 5.6.

5.2  Cathode rays

During the second half  of the nineteenth century considerable scientific
effort was devoted to the investigation of electrical discharge through rar-
efied gases. In 1853 a Frenchman by the name of Masson discharged an
electrical spark through a rarefied gas and found that the glass tube con-
taining the gas was filled with a bright glow, instead of the normal spark
as observed in air. A few years later the German glass blower Heinrich
Geissler manufactured a number of  these gaseous discharge tubes and
sold them to scientists around the world. The Geissler tube, as illustrated
in Figure 5.1, essentially contained an anode and cathode electrode em-
bedded in a partially evacuated glass tube. As the internal pressure to the
tube is further decreased, the electrical discharge through the rarefied gas
undergoes a number of different phases, as was reported by W. Crookes,
Faraday, and others. At a pressure of roughly 0.01 mm of Hg a glow dis-
charge is produced, as the entire tube tends to glow with a faint greenish
light. The initial explanation was that invisible rays, called cathode rays,
emanating from the cathode electrode would strike the walls of the tube
and cause a florescence of the glass. The existence of these invisible cath-
ode rays caused considerable investigatory excitement in the scientific com-
munity during the remainder of the nineteenth century.
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It can be easily demonstrated that the rays travel from the cathode to
the anode in a straight line by using a discharge tube similar to that of
Figure 5.2, where the dashed lines represent the rays emanating from a
point source. A greenish fluorescence is observed where the rays strike the
glass, while the glass in the shadow of the object remains dark. Since the
shadow is distinctive and always on the side opposite the cathode, the rays
must be traveling in straight lines and emanating from the cathode elec-
trode. This 1869 discovery of the rectilinear propagation of cathode rays
is credited to Johann W. Hittorf. One year later William Crookes demon-
strated that cathode rays have energy and momentum by using a modified
discharge tube similar to the one depicted in Figure 5.3. Here, the rays
strike a frictionless pinwheel causing it to rotate in a counterclockwise
fashion. That the rays are emanating from the cathode is also verifiable,
since a reversal of the electrical polarity on the electrodes results in a clock-
wise rotation of  the pinwheel. Because of  the motion of  the pinwheel
Crookes concluded that cathode rays consisted of invisible particles pos-
sessing both mass and velocity and, consequently, momentum mv and ki-
netic energy 1⁄2mv2.

Cathode rays were found to be negatively charged particles by Jean
Perrin in 1895. A simple demonstration of this is illustrated in Figure 5.4,
where a beam of cathode rays is created by a pinhole placed close to the
cathode electrode. With the magnetic field on and directed into the plane
of the page, the beam of rays is observed to cause fluorescence around re-
gion B. Without the magnetic field the region of fluorescence is around
point A, while fluorescence is observed to occur at B9, when the direction
of the field is reversed. With these results noted, and application of the left-
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hand rule shows cathode rays to be negatively charged particles. Recall that
the left-hand rule is based on the famous Lorentz force equation of general
physics.

FB 5 qv 3 B, (5.1)

where FB is the force experienced by a body having an electrical charge q
traveling with a velocity v though an external B field. For negatively
charged particles the vector form of this equation suggest that the thumb,
first, and second finger of the left hand can represent the directions of FB,
v, and B, respectively. Thus, with the magnetic filed directed as depicted
in Figure 5.4, negatively charged particles will experience an acceleration
due to the force FB as they traverse the magnetic field and, subsequently,
be deviated from their initial rectilinear path to a point like B at the end
of the tube.

5.3  Measurement of the Specific Charge e/me

of electrons

At this time cathode rays were understood to consist of particles of some
unknown mass and negative electrical charge. In 1897 J. J. Thomson suc-
cessfully determined the charge-to-mass ratio of cathode particles by using
a highly evacuated discharge tube. Although he used different gases in the
discharge tube and different cathode metals, he always obtained the same
value for the charge-to-mass ratio of  the cathode particles. Calling these
particles cathode corpuscles, Thomson properly concluded that they were
common to all metals and different from the chemical atoms. He suggested
a revolutionary new model for electrical neutral atoms as consisting of
negatively electrified corpuscles that can be liberated from an atom by elec-
trical forces. These corpuscles were later called electrons (a term first in-
troduced by G. J. Stoney in 1874 to describe the charge carried by and ion)
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and recognized as possessing a quantized charge and as being fundamental
constituents of all atoms.

Thomson’s insight on the nature of electricity resulted from experi-
ments using a highly evacuated discharge tube similar to the one depicted
in Figure 5.5. The electrons emanating from the cathode electrode C are
strongly affected by the potential difference between the cathode and
anode electrodes. This potential difference is not uniformly distributed be-
tween the electrodes, however, as roughly 0.95 of the potential drop is con-
centrated very close to and in front (within approximately 1 cm) of the
cathode. Consequently, assuming the cathode metal C to be small and ap-
proximating a point, the emanating electrons are radially accelerated and
travel in straight lines away from the cathode. Some of these electrons will
pass through the apertures A1 and A2 of Figure 5.5 and become a highly
collimated beam of particles, which travel rectilinearly at nearly a constant
speed vx along the axis of the tube. In this manner the apparatus creates
a thin beam of electrons, which can pass through a region where a uniform
electric field E (created by a parallel plate capacitor) coexists and is direc-
tionally perpendicular to a uniform magnetic field B (created by
Helmholtz coils). In the absence of the electric and magnetic fields, the
rectilinearly propagating electrons will strike the end of the tube at point
R, as illustrated in Figure 5.5. The existence of the magnetic B field alone
causes the beam of electrons to be deflected to position B on the fluores-
cent end of the tube, while the electric E filed existing alone results in a
deflection of the beam to point E. Using the apparatus of Figure 5.5, a
number of  different methods and analyses will be described below for
measuring the specific charge e/me of electrons, where e and me are the con-
ventional symbols used to represent the electrical charge and rest mass,
respectively, of electrons. In all considerations the electric and magnetic
fields are assumed to be uniform within a rather well-defined geometric
region and zero outside this region. Further, we ignore as insignificant the
gravitational force acting on electrons and the interaction of their electric
fields, as they pass though the discharge tube.
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Speed of Electrons

Thomson knew the cathode electrons had a nearly uniform speed vx, be-
fore entering the coexisting E and B fields, since in the absence of these
fields the beam of electrons produced a well-defined fluorescent spot on
the end of the tube. A value of vx can be determined by considering the
electric E and magnetic B fields of the Thomson apparatus to be activated.
Further, the magnitudes and directions of the E and B fields are adjusted
such that the beam of particles is undeflected upon passing through the
geometrical region where the fields coexist. With this adjustment of the
apparatus, the particles will not experience any net external accelerating
force, as they pass through the coexisting E and B fields. Consequently, in
that region of the tube the upward magnetic force FB on the particles must
be equal in magnitude to the downward electric force FE ,

FB 5 FE . (5.2)

An equality for FB is directly obtained from Equations 5.1 as

FB 5 evxB , (5.3)

with q and v being replace by e and vx respectively. The cross product v 3
B in Equation 5.1 reduces to that given in Equation 5.3, since the velocity
of the electrons is everywhere perpendicular to the magnetic field in Figure
5.5. An expression for FE of Equation 5.2 is also easily obtained by recall-
ing the defining equation for electric field intensity,

(5.4)

Replacing q with e, this definition gives

FE 5 eE, (5.5)

which when substituted along with Equation 5.3 into Equation 5.2 gives

(5.6)

The values for E and B in this expression are easily determined by knowing
the geometry of the capacitor and Helmholtz coils and by taking readings
of the voltmeter and ammeter associated with each. For example, the par-

.;E
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q

.v 5
B
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x

Electric Field Intensity

Speed of Electrons
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allel plate capacitor has a uniform electric field intensity given by

(5.7)

where Vc is the potential drop (read from a voltmeter) across the capacitor
plates and d is the plate separation distance. Although the acceleration of
the cathode electrons from rest to the speed vx is accomplished by the
nonuniform electric field between the electrodes, Equation 5.6 allows the
determination of vx, from knowledge of well-defined and uniform electric
and magnetic fields. The approximate value of  vx, is also important to
know, as we must decide whether classical physics or Einsteinian relativity
is more appropriate in our derivations for the e/me ratio of  electrons.
Thomson found vx to be on the order of 1/10 the speed of light, which
means classical physics can be safely employed in the analyses (e.g., see
example of kinetic energy preceding Equation 4.38).

Analysis of e/me Using the B-field Deflection of Electrons

Up to this point in our deliberation of Thomson’s experiment, a beam of
cathode electrons has been allowed to pass undeflected through a region
of coexisting E and B fields. Now, if  the electric field E is deactivated, the
path of cathode electrons is depicted in Figure 5.6 as being uniformly
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Ch. 5  Quantization of Matter138

deflected by the magnetic B field and as being rectilinear beyond the field.
The uniform deflection of an electron in this magnetic field alone results
from it experiencing an accelerating force FB, which is everywhere perpen-
dicular to the electron’s velocity v (e.g. v1, v2, and v3 of Figure 5.6) and the
magnetic induction B. In this situation the electron will traverse the mag-
netic filed in a circular path of radius r in a plane perpendicular to the B
field. Although the velocity of the electron undergoes a directional change
due to the accelerating force FB, the electron’s speed is constant as it trav-
erses the magnetic field. Consequently, the accelerating force is of constant
magnitude FB, as given by Equation 5.3, and changing direction. Further,
under these conditions FB is recognized as being a centripetal force Fc ,
which is given by

(5.8)

From this centripetal force expression and Equation 5.3 we obtain

where m and v in Equation 5.8 have been replaced by me and vx, respec-
tively. Thus, 

(5.9)

where me is the rest mass of an electron and r is the radius of the arc de-
picted in Figure 5.6. This equation can be further modified by substitution
from Equation 5.6 to obtain

(5.10)

which gives the specific charge of electrons in terms of directly measurable
quantities B, E, and r. Although this equation differs (because of  our
analysis) somewhat from that used by Thomson, it has an advantage of
simplicity in derivational steps and form. Thomson measured values for
e/me in the range 0.7 3 1011 C/kg to 2 3 1011 C/kg, whereas the more recent
accepted value is
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(5.11)

Since the value of e in coulombs (C) is necessarily micro in size, the value
given for e/me portends the rest mass of an electron in kilograms (kg) must
be extremely small. 

Analysis of e/me Using the Cathode-Anode Potential

Equation 5.10 is somewhat inhibiting to use for the determination of the
charge-to-mass ratio of electrons, since the radius r of the circular arc of
Figure 5.6 is usually difficult to accurately measure. An equation involving
e/me for the electrons can be obtained in terms of easily measurable vari-
ables by considering the work done on the cathode electrons by the im-
pressed electric field between the cathode and anode electrodes. Assuming
the liberation energy required to free the electrons from the cathode metal
is negligibly small, then the work done by the electric field on the electrons
goes into kinetic energy. From the definition of electrical potential, 

(5.12)

it follows that the work done on the electrons of charge e is related to the
potential drop V between the electrodes as

W 5 eV, (5.13)

where V is read directly from the apparatus voltmeter. Since the electrons
of mass me have a zero initial velocity after being liberated from the cath-
ode, the apparatus collimates and the electric field of the electrodes accel-
erates the electrons to a final horizontal velocity of  vx . Thus, the work
done by the accelerating potential is just

(5.14)

which upon substitution into Equation 5.13 gives

(5.15)
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Ch. 5  Quantization of Matter140

With the coexisting E and B fields of the apparatus adjusted such that the
cathode electrons are undeviated from their rectilinear path, vx is given by
Equation 5.6 and Equation 5.15 becomes

(5.16)

for the charge to mass ratio of the electrons. The advantage of Equation
5.16 over Equation 5.10 is the ease and reliability of accurately measuring
the values of the parameters B, E, and V. Further, by using this equation
to determine the specific charge of electrons, there is no need to consider
a magnetic deflection of the cathode rays. 

Analysis of e/me Using the E-field Deflection of Electrons

It was fortunate that the electrons were of equal mass, charge, and nearly
equal velocities vx before passing through Thomson’s coexisting electric
and magnetic fields. The uniformity of vx for the electrons can be verified
by comparing the value of e/me obtained from another analysis with that
predicted by Equation 5.16. In this instance the B field is deactivated so
the path of the electrons is dependent on only the uniform E field. The af-
fect of the electric field alone on the beam of cathode electrons is depicted
in Figure 5.7, where the direction of the E field has been reversed from
that of Figure 5.5 for illustration purposes. The electrons of identical
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mass me enter the E field with a zero y-component of velocity. Because of
their electrically charged state they are accelerated in the positive y-direc-
tion by the capacitor’s uniform E field, such that they emerge from the ca-
pacitor with independent and uniform components of velocity vx and vy.
Unlike the accelerating force FB due to the magnetic field alone, the cath-
ode electrons now experience an accelerating force FE that is constant in
both magnitude and direction. Consequently, the electrons experience a
uniform vertical acceleration ay due to the electric field, while their hori-
zontal component of velocity vx that is perpendicular to E remains totally
unchanged. For a uniform vertical acceleration ay, the electrons vertical
displacement due to the electric field only is given by classical kinematics
as

(5.17)

where t1 is the time required for the electrons to traverse the E field as given
by

(5.18)

The acceleration in the y-direction due to the E field is simply expressed
from Newton’s second law of motion (see Equation 1.17) for m ? m(t) by

(5.19)

where Equation 5.5 has been utilized in obtaining the second equality.
Clearly, substitution of Equations 5.18 and 5.19 into Equation 5.17 yields

(5.20)

for the electric field deflection of the cathode electrons. As the electrons
emerge from the E field of the parallel plate capacitor, they have a constant
speed of vy in the y-direction, which portends their vertical displacement
y2 as they traverse the horizontal distance x2 at the constant speed vx. In
this case the vertical displacement is given by

y2 5 vyt2, (5.21)
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where the time involved is simply

(5.22)

Since the defining equation for average acceleration allows

then from Equation 5.18 and 5.19 we have

(5.23)

Now, substitution of Equations 5.22 and 5.23 into Equation 5.21 yields

(5.24)

Consequently, from Equations 5.20 and 5.24 the total deflection of the
electrons is just

(5.25)

which is easily solved for

or more simply

(5.26)

by using Equation 5.6 for vx. This equation could be reduced further in
terms of easily measurable physical parameters by using Equation 5.7 (E
5 Vc /d). The point is that Equation 5.26 is but another analysis for the
electron’s charge-to-mass ratio using the Thomson apparatus. The results
obtained by this equation should compare favorably with those predicted
by Equation 5.16, if  the electrons enter the E field with very nearly equal

.
v

5t
x

x

2

2

v v ,5 1 a ty y y0 1

.v

v

5
m

eE x
y

e x

1

.
v

5y
m

eEx x

e x

2
2

1 2

v

,5 1 5 1y y y
m

eEx
x x

e x

1 2
2

1

2

1

1 2` j

xv

5
1m

e

x E x x

y

2
e

1
2

1

1

2

` j

5
1m

e

x B x x

yE

e
1

2

2

1

1 2` j

Ch. 5  Quantization of Matter142

↑ 0

Evaluation Copy 

Not Licensed for 

Instructional Use 



velocities vx. It is also interesting to note that a deflection analysis very sim-
ilar to the one just presented could be made for the situation where the E
field is turned off  instead of the B field. It is left to the reader to verify
that when the deflection due to the E field alone is equated to the deflection
due to the B field alone, Equation 5.6 is directly obtained.

The physical principles and analyses associated with the Thomson-
like discharge tube are very important to students of  physics and engi-
neering, as a number of current electronic instruments utilize cathode ray
tubes. For example, modern oscilloscopes use electric fields to deflect the
cathode electrons, while television tubes utilize magnetic filed deflection of
electrons. Also, a diverging electron beam can be focused by a magnetic
field applied along the axis of the beam using a solenoid, which is of con-
siderable importance in the design and construction of  electron micro-
scopes.

5.4  Measurement of the Charge of an electron

Although Thomson’s investigation of cathode rays did not establish all
electrons as having identical charges and rest masses, he is attributed with
the discovery of  the electron. Thomson realized it was possible for the
electrons to differ slightly in mass and electrical charge in such a way as
to preserve their charge-to-mass ratio. Consequently, it was necessary to
measure either the mass or the charge of electrons to determine if  either
was quantized. Because of the suspected extremely small mass of the elec-
tron and the difficulty anticipated in determining it, researchers opted for
measurements of  the electron’s charge. Experiments initiated by J. J.
Thomson and J. S. Townsend and later modified by J. J. Thomson and H.
A. Wilson were eventually refined by Robert A. Millikan, who in 1909
made the first successful determination of  the electronic charge e. Mil-
likan’s research provided entirely independent evidence for the quantization
of electrical charge and allowed for the accurate determination of the elec-
tron’s rest mass me (utilizing Thomson’s e/me result), Avogadro’s number
No (see Section 5.7), and atomic masses. 

Basic to Millikan’s experimental apparatus was an air filled parallel
plate capacitor, wherein minute oil drops were illuminated and viewed with
a microscope. The oil droplets are normally produced by an atomizer,
which will result in some droplets being electrically charged by nozzle fric-
tion of the atomizer, or they could be charged by external irradiation by
x-rays or a radioactive material. Because of the retarding force of  fluid
friction on an oil droplet moving in air, a droplet quickly attains a uniform
velocity called its terminal velocity, when acted upon by an accelerating
force due to gravity or an external electric field. The terminal velocity vg
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of a negatively charged droplet falling in the gravitational field and the
droplet’s terminal velocity vE attained when the electric field of the capac-
itor is activated are determined by means of a scale in the eyepiece of the
microscope. With measured values for the terminal velocities and the value
of the uniform electric field, the total electrical charge of the droplet can
be determined. 

The physical fundamentals of the Millikan oil drop experiment are
depicted in Figure 5.8. Since the charge of a droplet results from an excess
or a deficient number of electrons, it is desirable to observe a droplet hav-
ing the smallest electrical charge. Such a droplet is easily selected by ob-
serving the response of  all droplets to the external electric field of  the
capacitor. With the electric field applied as in Figure 5.8b, uncharged
droplets will be observed to fall under the influence of gravity, positively
charged droplets (those deficient in electrons) will fall due to the electric
and gravitational fields, and negatively charged droplets will rise under the
accelerating force of the electric field. Since terminal velocities are attained
very rapidly by the droplets, the slowest rising droplet would have the
smallest number of excess electrons. Selecting this droplet and deactivating
the electric field, the droplet would be observed to fall under the influence
of gravity, as depicted in Figure 5.8a. When its uniform terminal velocity
vg is attained, the net external force acting on the droplet is zero. Thus, we
have from Figure 5.8a
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Fg 5 FB 1 F
v

(5.27)

where Fg is the downward gravitational force (weight of the droplet), FB is
the buoyant force of the air, and F

v
is the retarding force of fluid friction.

Assuming the droplet to be a small sphere, F
v

is given by Stokes’ law as

F
v

5 6prhvg (5.28)

for a spherical droplet of radius r moving through a homogenous resisting
medium (air) of  viscosity coefficient h. Combining Equations 5.27 and
5.28, we obtain

Fg 2 FB 5 6prhvg , (5.29)

where vg has already been defined as the terminal velocity of the droplet
due to the gravitational field only, as determined from measurements of
displacement and time. 

When the electric field of the parallel plate capacitor is activated, we
have the situation depicted in Figure 5.8b. The negatively charged oil
droplet will rise due to the accelerating force FE given by Equation 5.5.
Again, when the terminal velocity vE is attained, the net external force act-
ing on the droplet is zero, and from Figure 5.8b we have

FE 1 FB 5 Fg 1 F
v
. (5.30)

In this equation the force due to the electric field FE is given by combining
Equations 5.5 and 5.7,

and F
v

is given by Stokes’ law as

F
v

5 6prhvE ,

where vE is the terminal velocity of the droplet under the influence of the
uniform E field. Substituting these two equalities into Equation 5.30 and
solving for the charge on the oil droplet gives
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which can be further reduce by Equation 5.29 to the form

(5.31)

Once the radius r of the oil drop is determined, the electrical charge to the
droplet is easily calculable by using Equation 5.31.

An expression for the radius of the droplet is obtainable from Equa-
tion 5.29, by realizing that Fg is the weight of  the droplet and FB is the
weight of the volume of air displaced by the droplet. Since weight, as given
by Equation 1.18, is the product of a mass and the acceleration of gravity
g, then with mo being the mass of the oil droplet and ma being the mass of
the air displaced by the droplet, we have

Fg 5 mog (5.32a)

and FB 5 mag. (5.32b)

Further, from the definition of mass density,

(5.33)

and the equation for the volume of a sphere of radius r,

(5.34)

we obtain

(5.35a)

and (5.35b)

Now, substitution of Equations 5.32 and 5.35 into 5.29 yields

which is easily solved for the radius of the droplet in the form
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(5.36)

In this equation ro and ra represent the mass density of the oil and air, re-
spectively, which are normally known or easily measured quantities. As a
point of interest, Millikan obtained an experimental correction to Stokes’
law, which effectively results in a correction factor to Equation 5.36. Thus,
the best value for the charge of an oil droplet is obtained by calculating
the radius of the droplet using Equation 5.36 and employing Millikan’s
correction factor before using Equation 5.31. The point of interest, how-
ever, is that Millikan was able to directly calculate the minute charge on
an oil droplet from basic experimental data, which is easily visualized by
combining Equations 5.36 and 5.31 to obtain

(5.37)

With the relationship given by Equation 5.37, an experimenter can
measure the value of vg for a particular oil droplet in the absence of the E
field, then a number of  values for vE can be determined for the same
droplet with the E field activated. Since the charge on the droplet will
change over time, due to a loss or gain in electrons, the different values
measured for vE will result in a set of values for q when they are separately
substituted into Equation 5.37. Now, if  the electron charge is always
unique and discrete, the difference q1 2 q2 between any two different neg-
ative changes of the set will always be an integral multiple of the charge
of an electron e. Although Millikan personally conduced or supervised
measurements on hundreds of  droplets, he always found the electrical
charge on a droplet to be an integral multiple of  one electrical charge,
which he proposed as the fundamental unit of electrical charge. Thus, elec-
tron charge is quantized, having a currently accepted value of 

e 5 1.60219 3 10219 C (5.38)

to six significant figures. Clearly, any one electron is just like every other
electron, having a definite rest mass me and a quantized charge e. The rest
mass of an electron is now immediately calculable by combining the results
of Thomson and Millikan. That is,
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Electron Rest Mass

from Equations 5.11 and 5.38, which will give the rest mass of an electron
as

me 5 9.10953 3 10231 kg (5.39)

to six significant figures. The values for e and me have been verified many
times by numerous experimentalists, with more recent measurements to
eight significant figures.

A new unit of energy commonly used in modern physics is now de-
finable in terms of the electron charge e. The work done in accelerating a
particle of charge e through a potential difference V is given by Equation
5.13. The work done on the particle goes into kinetic energy and this en-
ergy is independent of  the mass of the particle, according to Equation
5.13. Since many calculations in modern physics involve electrons and
other elementary particles being accelerated through a potential difference,
it is convenient to compute kinetic energy in terms of a new unit of energy,
called the electron volt and abbreviated eV. One eV is defined as the kinetic
energy received by any particle of charge e that is accelerated through a po-
tential difference of one volt. Thus, in accordance with this definition and
Equation 5.13, we have

1eV ; 1.60219 3 10219 J, (5.40) 

where the abbreviation J for Joule represents the defined unit of energy in
the SI system. 

5.5  Determination of the Size of an electron

Just as no direct method of measuring the electron’s mass or charge exists,
none are available for determining its size. A rough idea of the electron’s
physical volume can be approximated by considering its mass as being
electromagnetic in nature. Since Einsteinian relativity gives the proportion-
ality between mass and energy as

E0 5 m0c2, (4.39)

then the electron’s mass may be considered as a manifestation of the energy
associated with its electrostatic charge. These considerations suggest that
the work done in assembling the charge of an electron may be thought

Electron Volt
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of as representative of its Einsteinian rest energy. It must be emphasized
that these ideas in the construction of a theoretical model are at best only
approximate, and should not be taken literally. None the less, assuming
the electron to be a sphere of radius re as illustrated in Figure 5.9, then its
assemblage of total charge e may be thought of as consisting of a large
number N of minute negative charges q that have been brought from in-
finity up to the electron’s sphere. Clearly,

(5.41)

and the work done in bringing the first imaginary and negligibly small
charge q from infinity up to the electron’s sphere is

(5.42)

The work W1 is zero since the Coulombic force defined by 

(5.43)

is necessarily zero (i.e., FC 5 k(0)q/r2 5 0). In brining up the second charge
q the charge on the electron is q, thus the Coulombic force is FC 5 kqq/r2

and the resulting work is

(5.44)

The first negative sign in Equation 5.44 is necessary since FC is oppositely
directed to dr, which results in cos 1808 5 21 from the scalar product of
the two vectors. In a similar fashion it is easily verified that

W3 5 2W2, W4 5 3W2, ? ? ? , WN 5 (N 2 1)W2. (5.45)
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Thus, the total work done in assembling the N minute charges q on the
electron’s sphere of radius re is

with the last equality coming from Equation 5.44 and the obvious series
identity. This result may be further reduced to 

(5.47)

by considering N .. 1 and using Equation 5.41. Now, equating Equations
4.39 and 5.47,

and solving for the radius of an electron gives

(5.48)

where me has been substituted for m0 in Equation 4.39. With k, defined in
terms of the permittivity of free space e0 by

(5.49)

and the speed of light c having values of 

(5.50)

(5.51)

substituted along with the values for e and me (Equations 5.38 and 5.39,
respectively) into Equation 5.48, we obtain 
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re 5 1.40898 3 10215 m (5.52)

for the radius of an electron.
It should be emphasized that the value given by Equation 5.52 for

the radius of an electron is only correct within its order of magnitude. Our
value differs somewhat from other determinations for the size of an elec-
tron (e.g., magnetic field calculations for the energy of an accelerated elec-
tron, x-ray scattering experiments, etc.), but it is a reasonable one to use
until a more precise value is obtained. Further, even though Equation 5.48
represents only an approximation to the size of an electron, it clearly sug-
gests a surprising inverse proportionality between the radius of an electron
and its mass. This implies that any attempt at reducing the size of the elec-
tron, by close packing of the electrostatic charge, will result in an increase
in the electron’s mass, because of the extra work required against the re-
pulsive Coulombic forces arising from the spatial distribution of the elec-
tron’s charge. 

5.6  Canal rays and thomson’s Mass Spectrograph

During the experimental investigations of cathode rays, E. Goldstein ob-
served in 1886 rays propagating in the opposite direction toward the cath-
ode electrode. He designed a special discharge tube (schematically
illustrated in Figure 5.10) to isolate these rays, which were originally called
canal rays. Shortly after J. J. Thomson’s determination of  the specific
charge of electrons in 1897, W. Wien deflected a beam of canal rays by a
magnetic field and concluded that they consisted of positively charged par-
ticles. Since that time, they have been found to be positively charged atoms
of different masses, having a much smaller charge-to-mass ratio than elec-
trons.

The processes taking place in the Goldstein discharge tube that result
in the origin of canal rays are best explained by using the modern model
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of an atom, which is briefly presented in the next section. Referring to Fig-
ure 5.10, as the cathode electrons move toward the anode, they occasion-
ally have an inelastic collision with the atoms and molecules of the residual
gas in the tube. In this manner some atoms and molecules are ionized (lose
an electron) and are thus attracted (accelerated) toward the cathode elec-
trode. Between the cathode and anode, there exist both electrons and pos-
itively charged atoms moving in opposite directions toward the anode and
cathode, respectively. Of the many positively charged particles striking the
cathode, those passing through the small aperture A represent the ob-
served canal rays. When these canal ray particles strike the fluorescent
screen at the end of the tube, tiny flashes of light, called scintillations, are
produced. 

In 1911 J. J. Thomson took advantage of the properties of canal rays
in developing the mass spectrograph, which is depicted schematically in
Figure 5.11. A small amount of gas is injected between the cathode and
anode of the apparatus and the inelastic collusions between the cathode
and anode of  the apparatus and the inelastic collisions between the
gaseous atoms and electrons result in the observed canal rays. After being
accelerated to the cathode electrode, these positively charged particles pass
through a region where a B field and an E field coexist parallel to one an-
other. If  the gas in the apparatus contains only one type of atom, then a
single parabolic curve will be observed on the florescent screen or photo-
graphic plate. Particles ionized close to the anode will be greatly acceler-
ated while traveling toward the cathode and, being under the deflecting
fields’ influence for a short time, their rectilinear paths will be only slightly
bent by the external E and B fields to a point like A on the screen. On the
other hand, particles ionized fairly close to the cathode are only slightly
accelerated by the electric field between the anode and cathode. These par-
ticles clearly remain longer in the deflecting E and B fields, and thus their
rectilinear paths are bent considerably to a point like C on the screen.
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If  there are different types of  atoms in the gas, different curves will be
recorded on the screen or photographic plate, each parabola correspon-
ding to one particular type of atom or molecule. From knowledge of the
values for the E and B fields, and the assumption that each canal particle
possesses a unit positive charge because of being singly ionized, it is a rel-
atively simple manner, as detailed below, to calculate the mass of the atoms
producing each parabola.

Unlike Thomson’s charge-to-mass ratio analysis presented in Section
5.3, where electrons were accelerated only along the y-axis, the positively
charged atoms comprising canal rays are deflected in the positive y-direc-
tion due to the E field, while simultaneously being accelerated in the pos-
itive z-direction by the coexisting B field. Assuming the fields to be
uniform and of length x1, as depicted in Figure 5.11, the analysis here is
similar to the on detailed in Section 5.3.

The total deflection in the y-direction due to the E field is given by
the derivation 

which is in essence the same derivation present previously. Taking into ac-
count that the acceleration ay is due to the E field (see Equation 5.19), then
Equation 5.53 becomes

(5.54)

This result is identical to that of Equation 5.25, except for the presence of
q and m instead of e and me. In this consideration for a singly ionized atom,
the magnitude of q is identical to e and m is the mass of the atom in kilo-
grams.

Although the deflection of the ionized atoms in the positive z-direc-
tion is a bit more complicated than the y-direction deflection, it may be
handled in a similar fashion. From Section 5.3 we know the magnetic field
exerts and accelerating force FB on a charge particle that is uniform in mag-
nitude and changing in direction. These properties of FB are easily observed
in Figure 5.6, where the displacement of the particle due to the B field is
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indicated as y1. Imagining y1 ; z1, y2 ; z2, and B 5 2B in Figure 5.6, then
the displacement z1 is expressible in terms of x1 and r. This is easily ac-
complished by using the Pythagorean theorem on the right triangle of
sides r 2 z and x1 and hypotenuse r in Figure 5.6. Accordingly, 

r2 5 (r 2 z1)2 1 x2
1 ,

which when solved for r gives

(5.55)

The approximation in Equation 5.55 is good if  the displacement z1 is very
small compared with the length of the B field (i.e., z1 ,, x1). Another ex-
pression for the radius of the circular arc traversed by the particle in the
B field is obtained by realizing the accelerating force FB is a centripetal
force. Thus, from Equations 5.3 and 5.8 we have

which when solved for r gives

(5.56)

As the radius r is difficult to measure, we eliminate r from Equations 5.55
and 5.56 to obtain

(5.57)

Consequently, for small B field deflections of the particle, the circular path
approximates the parabolic path given by Equation 5.57. Interestingly, the
small deflection approximation is equivalent to approximating the acceler-
ating force FB by a constant force in both magnitude and direction. This is
easily realized by applying kinematics for uniform acceleration to the prob-
lem. That is,
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Which is an identical result to that given by Equation 5.57.
From the above discussion it is clear that assuming the B field deflec-

tion of the canal ray particle to be very small compared with the length x1

of the field, the force FB can be considered as constant in both magnitude
and direction. Thus, the accelerating force FB, which is normal to the plane
of Figure 5.11, can be incorporated in our analysis by the same method
as that used earlier for FE. Clearly, the total displacement in the z-direction
is just

(5.58)

which is identical to Equation 5.53 except for the presence of az instead
of ay. Now, however, the acceleration due to the B field is given by

(5.59)

where the Lorentz force equation (Equation 5.1) has been used in obtain-
ing the second equality. Under the assumption of small B field deflections,
the angle u between v< vx and B is always very nearly 908. Consequently,
Equation 5.59 reduces to

(5.60)

which when substituted into Equation 5.58 yields

(5.61)
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Now, solving Equation 5.61 for vx, substituting into Equation 5.54, and
solving the resultant equation for the mass m of the canal particles yields

(5.62)

This equation allows for the determination of the mass or q/m ratio of an
atom or molecule of the residual gas in the Thomson apparatus in terms
of easily measurable physical quantities. The equation is clearly that of a
parabola, since z2 is proportional to y. Taking q to be the absolute magni-
tude of the electronic charge, the smallest value of m would be for the hy-
drogen ion (or proton). The hydrogen ion mass mp was found to be
approximately 1836me, which means electrons contribute very little to the
mass of atoms. 

5.7  Modern Model of an atom

The first information concerning the existence of the atomic nucleus re-
sulted from the discovery of radioactive atoms. Radioactivity simply refers
to the disintegration or decay of one atom into another. It was originally
discovered by H. Becquerel in 1896 when he observed radiation emitting
from a uranium salt. It was later found that radioactive rays subjected to
a transverse magnetic field split into three rays, classified by E. Rutherford
as a-, b-, and g-rays. The physical properties of these rays are quite dif-
ferent: a-rays are helium nuclei, b-rays consist of  high speed electrons,
and g-rays are very short wavelength electromagnetic radiation. It should
be mentioned that g-rays are very similar to x-rays, which were discovered
in the year 1895 by W. K. Roentgen, but with grater penetrating power.
The scattering of radioactive rays and x-rays, when used to bombard nu-
clei, has resulted in a wealth of information about the atom. 

It is beneficial at this point to introduce some new terminology and
the basic model of an atom and its constituents. An atom of any chemical
element can be thought of as containing nucleons in the nucleus, with elec-
trons encircling the nucleus in some naturally fixed energy levels. Nucleons
are defined as being either positively charged particles, called protons, or
electrically neutral particles, called neutrons. Although the proton was not
named unto 1920 by E. Rutherford, it was easily observed in the Thomson
parabola apparatus as a hydrogen ion. The proton has a rest mass of

mp 5 1.67265 3 10227 kg (5.63)
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and an electrical charge of 

qp 5 1.60219 3 10219 C. (5.64)

It should be noted that the electrical charge of a proton is identical in mag-
nitude to the charge of  an electron, except it is electrically positive. Its
mass, however, is mysteriously larger than the mass of  an electron by a
factor of 1836,

The neutron, on the other hand, has a rest mass of

mn 5 1.67495 3 10227 kg, (5.65)

which is larger than the combined masses of the proton and the electron.
The existence of the neutron was postulated as early as 1920 by Ruther-
ford; however, it was not identified until 1932 by J. Chadwick.

Although there are a number of other subatomic particles that are of
interest in nuclear physics (e.g., the antielectron or positron, antiproton,
neutrino, antineutrino, etc.), our purposes will be completely served by
considering electrons, protons, and neutrons as the basic constituents of
an atom. A normal atom of any chemical element will be taken as one that
has the same number of electrons as protons and is thus electrically neu-
tral. Any process by which an atom loses an electron is called ionization.
An atom can be singly ionized, doubly ionized, and so forth by losing one,
two, and so forth electrons, respectively. Some atoms have an affinity for
more than their normal number of electrons. For our purposes such atoms
will be referred to as being singly or doubly countervailed, if  they gain one
or two additional electrons, respectively. Further, a molecule is simply
taken to be a combination of two or more elemental chemical atoms.

It is convenient at this point to define a few other terms that are com-
monly referenced in the study of atomic structure. The atomic number Z
is the number ascribed to an element that specifies its position in a periodic
table by defining the number of protons in that normal atom. The atomic
mass number A specifies the combined number of neutrons and protons in
a nucleus and is often referred to as the nucleon number. Consequently,
the neutron number N may be defined by N ; A 2 Z. To summarize the
above,
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Z ; Atomic Number
5 number of protons in the nucleus
5 number of electrons in the atom;

A ; Mass Number or Nucleon Number
5 number of nucleons in the nucleus;

N ; Neutron Number
5 number of neutrons in the nucleus
5 A 2 Z

The nuclide for a species of atom is characterized by the constitution
of its nucleus and hence by the values of the A and Z numbers. It is nor-
mally denoted by A

ZS, where S represents the chemical symbol for the par-
ticular element. Measuring q/m for atoms by the parabola method,
Thomson realized as early as 1912 that atoms of different mass could be-
long to the same chemical element. Atoms having identical electronic con-
figurations but differing in the number of neutrons in the nucleus were later
names isotopes by F. Soddy and are recognized as nuclides of identical Z
by different N numbers. Thus, for Z 5 1 the isotopes of hydrogen are de-
noted by the nuclides 1

1H for hydrogen, 2
1H (or 2

1D) for deuterium, and 3
1H

(or 3
1T) for tritium. In the year 1933 K. T. Bainbridge developed a high

precision mass spectrograph and discovered what are now commonly
called isobars. These are atoms having essentially the same mass but differ-
ing in their electronic configuration and thus belonging to different chem-
ical elements. That is, isobars are nuclides of  identical A but different Z
and, consequently, N numbers (e.g., 3

1H and 3
2He). Further, nuclides having

identical N but different Z numbers, such as 2
1H and 3

2He, are classified as
isotones. The common terms defined above are restated for emphasis as
follows:

Nuclide 5 Nuclear configuration characterized by A and Z,
Isotopes 5 Nuclides of identical Z but different A,
Isobars 5 Nuclides of identical A but different Z,
Isotones 5 Nuclides of identical N but different Z.

The atomic number Z, the mass number A, the number of isotopes, and
the relative abundance of isotopes in nature for the chemical elements are
listed in Appendix C. This constitutes only a partial list of  isotopes, as
well over 1000 nuclides have been identified as either stable or radioactive. 

5.8  Specific and Molal atomic Masses

In most textbooks the table of  Appendix C includes a listing of  either
atomic masses or atomic weights. These two quantities are different by defi-
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5.8 Specific and Molal Atomic Mass 159

nition and need to be carefully considered. Originally, the mass of an in-
dividual atom (or molecule) was completely unknown. However, Avo-
gadro’s hypothesis provided the rationale for the comparison of the masses
of equal numbers of different kinds of atoms (or molecules). As the hy-
drogen atom was the least massive of all chemical atoms, its mass was ar-
bitrarily taken as one. Then, the mass of a given volume of hydrogen gas
could be compared with the mass of an equal volume of another gas, both
at the same temperature and pressure, to obtain relative masses for other
atoms (and molecules). The basis for assigning relative masses changed
from hydrogen to oxygen and more recently to carbon. Currently, the basic
unit for relative masses is called the unified atomic mass unit u, or amu. It
is defined to be exactly 1/12 the mass of the most common isotope of car-
bon, 12

6C, and has a value to six significant figures of 

u ; 1.66057 3 10227 kg. (5.66)

This equation should be regarded as nothing more than a conversion factor
between the mass unit kg and the new mass unit u. Thus, in atomic mass
units the electron has a mass of

while the rest masses of the proton and neutron are

mp 5 1.00727 u,

mn 5 1.00866 u.

Frequently, we will employ the notation mu to denote the mass (1.66057
3 10227 kg) of the atomic mass unit. When compared to the mass me of an
electron, mu is nearly 1823 times larger, which means that the hydrogen
atom (being essentially 1837 times larger than me) is slightly larger than
mu. It should also be obvious from the above considerations that mu is very
nearly equal to the mass of a proton mp and to the mass of a neutron mn.
These comparisons are significant, as the mass of an atom is essentially
dependent on its constitution of nucleons. Consequently, with u (or mu)
taken as the basis, relative atomic (and molecular) masses will be very
nearly equal to integers, with that of  the hydrogen atom being close to
unity. 

It is important to emphasize that relative atomic (and molecular)
masses are dimensionless quantities. With this in mind, let us now make
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Ch. 5  Quantization of Matter160

the distinction between atomic weight and atomic mass. The chemical
atomic weight can be defined as the average mass of all the isotopes of an
element, weighted according to their relative abundance in nature, in atomic
mass units. Although this average relative mass is useful in chemistry, the
study of physics requires knowledge of the absolute mass of atoms and
their nuclei. With ma representing the absolute mass of an atom, including
its Z electrons, and mu being the mass of the unified atomic mass unit,
then we can define the relative atomic mass of an atom, denoted by (AM)a

as the ratio of ma and mu,

(5.67)

Clearly, this definition of atomic mass compares the mass of an electrically
neutral atom with mu and is, consequently, a relative and dimensionless
quantity. It is sometimes loosely referred to as the specific atomic mass,
by analogy with the definitions of specific heat, specific thermal capacity,
specific internal energy, and so forth in thermal physics. 

A listing of relative atomic masses for neutral atoms of all stable and
many radioactive nuclides is given in the table of Appendix C. It should
be noted that the atomic mass listed for each isotope is nearly equal to the
corresponding atomic mass number A. The reason for this is easily under-
stood by considering an atom of any isotope as consisting of a number
of electrons Ne, a number of protons Np, and a number of neutrons Nn.
Accordingly, Equation 5.67 could be interpreted as

where mp, mn, and mu have been considered as nearly equal in magnitude
and much greater than me. The second equality is indicated as an approx-
imation because the nuclear binding energy (discussed in Section 5.9) has
been ignored. Further, it should be noted that chemical atomic weights
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have been given for each element in the table of Appendix B, which are
easily calculated from the table of Appendix C using the relative atomic
mass and the relative abundance datum for the stable isotopes of  each
chemical element. 

We have already discussed the basic importance of Avogadro’s hy-
pothesis in the assignment of atomic masses. The Avogadro constant No

is also integrally related to atomic mass and the value of mu. To see this
relationship consider the definition of a mole as being the amount of a sub-
stance (gas, liquid, or solid) whose actual number of particles (atoms or mol-
ecules) is exactly equivalent to No. Accordingly, the defining equation for
the number of moles n of a substance is 

(5.69)

where N is the total number of particles (atoms or molecules) and No is
the Avogadro constant given by

No 5 6.022045 3 1023 mole21. (5.70)

If  the total mass M of a substance is known to be

M 5 maN, (5.71)

then Equation 5.69 can be expressed as

(5.72)

Since ma is the absolute mass of a particular atom, then the denominator
maNo of this equation must represent the total mass of one mole of such
atoms. Denoting the product maNo by the symbol },

} ; maNo , (5.73)

and using Equation 5.67 we obtain

} 5 (AM)amuNo

5 (AM)a (1.00000 3 1023 kg/mol)

5 (AM)a ? grams/mole, (5.74)
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Ch. 5  Quantization of Matter162

where values for mu (Equation 5.66) and No (Equation 5.70) have been
used in obtaining the second equality. Clearly, the absolute mass of one
mole of a substance } is equivalent to the relative atomic mass in units of
grams/mole. The quantity }, defined by Equation 5.73, could be called
the gram atomic mass, but we shall call it the molal atomic mass. From the
first and last equality in Equation 5.74, it is clear that

(5.75)

Thus, in the sense of this equation Avogadro’s number No is the reciprocal
of the unified atomic mass unit u. If  ma in Equation 5.73 referred to the
mass of a molecule, then } would be interpreted as the molal molecular
mass. The point, however, is that the molal mass (or molecular) mass is the
absolute mass of one mole of atoms (or molecular) mass in grams. Because
the atomic masses are very nearly equal to the atomic mass numbers in
the table of Appendix C, essentially 2 g of hydrogen represents a mole of
H2, 32 g of oxygen constitutes a mole of O2, and 18 g of water represents
a mole of H2O.

One of the most useful relationships for solving problems is obtained
by combining Equations 5.69, 5.72, and 5.73 to obtain

(5.76)

This allows for the determination of any one of the three quantities n, N,
or M by knowing either one of the other two. For example the mass of a
hydrogen atom is easily found by realizing N 5 1 and M 5 mH and using
the second equality of this equation, 

Alternatively, Equation 5.67 could be used with identical results. That is, 

mH 5(AM)Hmu

5 (1.007825)(1.6605655 3 10227 kg)

5 1.673559 3 10224 g.
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The number of moles n or the number of particles N (atoms or molecules)
in a known mass of a substance is also easily computed using Equation
5.76. For example, 1 g (exactly) of hydrogen gas contains

atoms, which represents

The last two answers differ by rounding-off errors.

5.9  Size and Binding energy of an atom

The size of  a particular atom can be estimated from knowing its molal
atomic mass and a few other fundamental physical relations. To be more
specific, the volume of space occupied by an atom Va is simply the volume
of one mole of such atoms Vo divided by No

(5.77)

1.007825 /

1 6.022045 10

5.975288

5

5
3

5 3

}

g mol

g mol

N
M N

10

2

H

H

H o

23 1

23

^ ^h h

. /

.

.

. /

. .

5

5
3

3

5

5

5

5

}

mol

mol

g mol

g

mol

n
N

N

n
M

6 022045 10

5 975288 10

0 9922357

1 007825

1

0 9922358

H

H

H

H

H

o

23

23

.5V
N

V
a

o

o

5.9 Size and Binding Energy of an Atom 163

or

Evaluation Copy 

Not Licensed for 

Instructional Use 



From the definition of mass density we obtain

where the mass of one mole Mo has been identified as equivalent to }a

(see Equation 5.76) in the second equality. If, further, Va is imagined to be
a sphere of radius ra

then from Equation 5.78 we obtain

(5.79)

for the radius of an atom. Using carbon 12
6C as an example, with }C 5

12.0 g/mol and rC = 2.25 g/cm3 from Appendix B, Equation 5.79 gives

Consequently, the radius of a carbon atom is approximately one angstrom
(1 Å 5 10210 m), which is enormous compared with the radius of the elec-
tron (re < 10215 m) computed previously in Section 5.5. Further, the proton
radius is estimated to be roughly 10215 m and recent estimates of the nu-
clear radius, rN , place an upward limit of about 10214 m for the more mas-
sive nuclear radius. Our picture of the atom from these estimates reveals
it to be largely empty, with the volume of the atom to the volume of the
nucleus being
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for carbon. Thus, a collapse of atomic structure would result in an increase
in the mass density of matter by a factor of roughly 1012. Such a collapse
of atomic structure is postulated for white dwarf and neutron stars, where
1 cm3 of such matter would weigh several million tons on the surface of
the Earth. For example, a collapse of carbon atoms would result in a mass
density r9C given roughly by

Consequently, one cubic centimeter of such atoms would have a weight
on Earth of

As a last consideration of the data in the table of Appendix C and
using the accuracy of other constants from the inside cover, note that the
mass of the hydrogen atom 11H given by

is exactly the sum of the proton and electron masses

mp 1 me 5 (1.6726485 3 10227 kg) 1 (9.109534 3 10231 kg)

5 1.673559 3 10227 kg, (5.82)

within the degree of accuracy assumed. For deuterium 2
1D, however, the
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mD 5 (2.014102)(1.6605655 3 10227 kg)
5 3.344548 3 10227 kg,

is not the same as the sum of the proton mass mp, the neutron mass mn,
and the electron mass me:

mp 1 mn 1 me 5 3.348513 3 10227 kg.

This difference or loss in mass

DM 5 3.965000 3 10230 kg

between the free particles and the bound particles goes into the binding en-
ergy of the atom, as given by Einstein’s formula (Equation 4.40)

As we shall see in Chapter 7, the binding energy of the electron is on the
order of  10 eV, thus the result given by Equation 5.83 is essentially the
binding energy of the nucleons, often called the nuclear binding energy and
denoted as BN. Using the same symbolic notation as in the derivation of
Equation 5.68, BN can be expressed as

where for a normal atom Np 5 Ne ; Z. But from comparing the results
of Equations 5.81 and 5.82, we can replace mp 1 me with essentially the
mass of the hydrogen atom mH and obtain

BN < ZmHc2 1 (A 2 Z)mnc2 2 mac2 (5.85)
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for the nuclear binding energy of any atom of mass ma having Z protons.
In this equation mH and ma would be calculated using either Equation 5.67
or Equation 5.73. That is,

(5.86)

where }H is simply the molal atomic mass of hydrogen.

review of Fundamental and Derived equations

A listing of the fundamental and derived equations of this chapter is pre-
sented below, along with new defined units, terms, and symbols. Not in-
cluded are the well-known definitions and derived equations of kinematics. 
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FunDaMental eQuatIonS – MoDern phySICS

DeFIneD unItS
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Specific Charge ← B Field only

Specific Charge ← Cathode Potential

E Field Displacement

Displacement Beyond E Field
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Relative and Molal Atomic Mass

Size of Atom

Nuclear Binding Energy

BN < ZmHc2 1 (A 2 Z)mnc2 2 mac2

5.1 If the accelerating potential between the cathode and anode of Thom-
son’s e/me apparatus is 182.2 V, what uniform velocity vx will the electrons
acquire before entering the coexisting E and B fields? Assume accuracy to
three significant figures and derive the appropriate equation.

Solution:
With knowledge of V 5 182.2 V, vx is easily obtained by realizing the
work done on the electron by the electric field, W 5 eV, goes into ki-
netic energy. That is, 

eV 5 mev
2
x ,

which is identical to Equation 5.15. Solving this equation for vx, and
substituting the known quantities yields
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5.2 An electron is accelerated from rest by an electrical potential V. If  the
velocity squared of the electron is 32 3 1012 m2/s2, derive the equation for
V and find its value.

Answer:     V 5 91.1 V

5.3 Electrons are directed through a region where uniform B and E fields
coexist such that the path of the electrons is not altered. The uniform E
field is established by a parallel plate capacitor having a 5 cm plate sepa-
ration distance and the capacitor is connected to a 50 V battery. If  B 5 2
3 1023 Wb/m2 (tesla), derive the equation and calculate the value for vx .

Solution:
With Vc 5 50 V, d 5 5 3 1022 m, B 5 2 3 1023 Wb/m2, and FE 5 eE
equated to FB 5 evxB sin 908 we obtain

5.4 Electrons with a speed of 1.60 3 107 m/s enter a uniform B field at
right angles to the induction lines. If  B 5 4.555 3 1023 Wb/m2, derive the
equation for the radius of the electrons circular path and calculate its
value.

Answer:     r 5 2 3 1022 m

5.5 If  a beam of electrons, moving with a speed of 2 3 107 m/s, enters a
uniform B field at right angles to the lines of force and describes a circular
path with a 30 cm radius, what is the magnetic induction? Derive the ap-
propriate equation for B before substituting the physical data.

Solution:
Given vx 5 2 3 107 m/s, u 5 908, and r 5 3 3 1021 m, how do we find
B ? Since FB 5 Fc , then

which yields
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As sin 908 5 1, substitution of the physical data yields

5.6 Electrons with 6.396404 3 104 eV kinetic energy enter a uniform mag-
netic field at 65.63788 with respect to the induction lines. If  the magnetic
induction is 6.24146 3 103 T, derive the equation and find the value for
the radius of the electrons circular arc?

Answer: r 5 0.15 m

5.7 A parallel plate capacitor 25 cm long with a 5 cm separation between
the plates is connected to a 91.1 V battery. If  an electron enters this field
with a velocity of 2 3 109 cm/s at an angle of 908 to the E field, how far
will the electron be deviated from its original rectilinear path immediately
after passing through the electric field?

Solution:
The physical data given is x 5 0.25 m, d 5 0.05 m, Vc 5 91.0 V, vx 5
2 3 107 m/s, and u 5 908, and we want to find the displacement y1 of
the electron due to only the E field. The derivation starting with
Equation 5.17 and ending with Equation 5.20 is appropriate for this
problem. That is,  with v0y 5 0, we have

5.8 Let the electron of Problem 5.7 travel a horizontal distance of 80 cm after
exiting the E field. Derive the equation and calculate its additional vertical deflec-
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tion y2.

Answer: y2 5 16 cm

5.9 A parallel plate capacitor 25 cm long with a 5 cm separation between
the plates is connected to 182.2 V. If  electrons enter this capacitor at right
angles to the E field and are deviated by y1 5 5 cm from their original rec-
tilinear path after passing through the capacitor, what is their original hor-
izontal speed vx? Further, if  these electrons travel a horizontal distance of
80 cm after exiting the E field, what additional vertical defection y2 will
they experience?

Solution:
For the first part of this problem we know x1 5 0.25 m, d 5 0.05 m,
Vc 5 182.2 V, u 5 908, and y1 5 0.05 m, and we want to find vx . From
Problem 5.7 we have

which when solved for vx yields

For the second part of this problem we have additional knowledge
of x2 5 0.80 m and we want to find y2. From Problem 5.8 or Equa-
tions 5.7 and 5.24 we have

5.10 Verify that Equation 5.6 is directly obtained for an undeflected elec-
tron passing through the Thomson e/me apparatus, by equating the deflec-
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tion of the electron due to the E field alone to the deflection due to the B
field alone.

Answer: vx 5 E/B

5.11 An electron traveling at 8 3 106 m/s enters that region of the Thom-
son e/me apparatus where the E and B fields coexist and are adjusted to be
counter balancing. The E field is created by a parallel plate capacitor con-
nected to a 91.1 V battery and having a 6.4 cm plate separation. If  the E
field is deactivated, what is the radius of the electron’s circular arc through
the counter balancing magnetic field?

Solution:
In this problem we know vx 5 8 3 106 m/s, Vc 5 91.1 V, d 5 0.064 m,
and u 5 908, and we need to find r. By equating FB and Fc (i.e., evxB
sin u 5 mev

2
x/r), we obtain

since sin 908 5 1. Also, with FB 5 FE giving

evxB 5 eE

we have

where Equation 5.7 has been used for E. Now, substitution of this
expression for B into our radius equation yields

5.12 Consider the situation described in Problem 5.11 only now allow the
counter balancing B field to be deactivated instead of the E field. If  the
electron is deflected vertically by 5 cm while traversing the E field of the
capacitor, how long is the capacitor and what is the vertical speed acquired
by the electron?

Answer: x1 5 16 cm, vy 5 5 3 106 m/s
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5.13 In the Millikan oil-drop experiment consider a droplet having ter-
minal velocity to fall 0.240 cm in 18 s with the E field deactivated. Find
the radius of the droplet for ro 5 891 kg/m3, and h 5 1.80 3 1025 kg/m ? s.

Solution:
With Dy 5 2.40 3 1023 m and Dt 5 18 s, vg is found to be

Now, suppressing the units and substituting the physical data into
Equation 5.36 (which should be derived from first principles) gives

5.14 If  the droplet in Problem 5.13 experiences terminal velocity of 1.11
3 1025 m/s when the E field is activated, what is the charge on the droplet?
Allow the E field to be established by a parallel plate capacitor having 1.5
cm plate separation being connected to a 169.56 V battery.

Answer:   q 5 30e

5.15 The atomic mass of cobalt (Co) is 58.9332. Find the mass in grams
of one Co atom using the definition of atomic mass and the definition of
a mole. 

Solution:
From Equation 5.67 we have

while from Equation 5.76 (n 5 N/No 5 M/}), we obtain the same re-
sult for N 5 1 and M ; mCo. That is, 
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5.16 The atomic mass of  the most abundant isotope of  copper (Cu) is
62.9296. How many atoms are there in exactly one gram of Cu and how
many moles are represented by this mass?

Answer: NCu 5 9.56950 3 1021, nCu 5 1.58908 3 1022 mol

5.17 What is the mass in grams of exactly 3.5 moles of carbon (C) and
how many atoms does this amount represent?

Solution:
We know nC 5 3.5 moles and }C 5 12.0000 g/mol, and we want to
find MC and NC. Since n 5 M/}, then

Further, since n 5 N/No we have

5.18 How many atoms are there in a 15 kg bar consisting of 70 percent
Cu and 30 percent Zn by mass?

Answer: N 5 1.42869 3 1026

5.19 A massive bar of 1026 atoms is composed of 70 percent Cu (AM 5
62.93) atoms and 30 percent Fe (AM 5 55.94) atoms. What is the mass of
the bar?

Solution:
With N 5 1026, NCu 5 7 3 1025, and NFe 5 3 3 1025, the mass M of
the bar is given by
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5.20 A beam of doubly ionized Zn atoms (AM 5 63.9) enter the electric
field of a 16.6 m long parallel plate capacitor, which has a separation dis-
tance between the plates of 8 cm. The Zn atoms enter the capacitor with
a horizontal speed of 2 3 107 m/s at right angles to the existing E field. If
the capacitor is connected to a 63.9 V battery, how far vertically will the
Zn atoms be deviated from their original rectilinear path after passing
through the E field?

Answer: y 5 8.30 3 1024 m

5.21 A beam of triply ionized Zn (AM = 63.9) atoms, moving with a speed
1.60 3 107 m/s, enters a uniform field of 4.98 3 10214 Wb/m2 magnitude
at an angle of 308 with respect to the magnetic flux lines. What is the radius
of the circular arc described by the beam?

Solution:
The given information includes (AM)Zn 5 63.9, v 5 1.60 3 107 m/s,
B 5 4.98 3 10214 Wb/m2, u 5 308, and q 5 3e, and we need to find
the radius r described by the beam of ionized Zn atoms as it traverses
the B field. Since Fc 5 FB we have

which allows r to be described by

5.22 Derive the equation and find the nuclear binding energy BN of a car-
bon atom in MeV?

Answer: BN 5 92.16484 MeV
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5.23 Derive the equation and find the radius of a copper atom, using the
data of Appendix B.

Solution:
Assuming an atom to be a sphere of radius ra, then we approximate
its volume as Va 5 (4/3) pr3

a, from which

Now, using }Cu 5 63.546 g and rCu 5 8.96 g/cm3 from Appendix B,
direct substitution yields

5.24 Consider Thomson’s mass spectrograph where a B field of 4.15 3
1023 Wb/m2 is antiparallel to a coexisting E field. Assume doubly ionized
atoms are accelerated through the distance x1 5 24 cm and then travel x2

5 88 cm farther at a uniform speed before striking a fluorescent screen. If
the y-deflection data associated with the E field yields vx 5 2 3 105 m/s
and the total z-displacement is 24 cm, what is the mass of the ions?

Answer:   m 5 6.64 3 10227 kg
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Introduction

In the seventeenth century there were two conflicting views concerning the
nature of  electromagnetic radiation (often referred to as simply light).
Newton and his followers believed light consisted of very small and fast
moving elastic particles called corpuscles. This view satisfactorily ac-
counted for the law of reflection in geometrical optics, as the angle of inci-
dence is equal to the angle of reflection for perfectly elastic bodies and light

179

C H A P T E R 6

Quantization of Electromagnetic Radiation 

Are not gross Bodies and Light convertible into one
another, and may not Bodies receive much of their
activity from the Particles of Light which enter their
Composition?
I. NEWTON, Opticks (1730)

Double-slit interference revealing single photons building up the pattern over time.
Photo: Brown University
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rays being reflected from a plane surface. The theory also predicted the
law of refraction, allowing corpuscles of  light to be attracted toward a
transparent material medium (e.g., air, water, glass, etc.), with a resulting
increase in their component of  velocity that was perpendicular to the
medium’s surface. Accordingly, Newton’s corpuscular theory predicted the
speed of light to be greater in a transparent material medium than in free
space and its direction of propagation to be bent toward the normal. The
other view by Christian Huygens regarded light as being composed of
waves, which also explained the reflection and refraction of light. Accord-
ing to this theory, light waves would also be bent toward the normal upon
entering a transparent material medium, but the speed of wave propaga-
tion in the medium would be less than its speed in free space. The debate
surrounding these two different theories continued until the middle of the
nineteenth century, when the French physicists A. H. Fizeau in 1849 and
J. B. Foucault in 1850 measured the speed of light in air and water, respec-
tively. Their results of the speed of light in air (Fizeau) being greater than
the speed of light in water (Foucault) confirmed Huygens’ wave theory,
completely negating Newton’s corpuscular view.

The wave nature of  electromagnetic radiation was well established
and almost universally accepted by the end of  the nineteenth century.
However, the particle view was once again to gain support, as the result
of a fundamentally new interpretation of electromagnetic radiation initi-
ated by Max Planck in 1900 and later modified by Einstein in 1905. Planck
assumed atoms to be capable of absorbing and emitting quanta of elec-
tromagnetic energy, by considering atoms as tiny electromagnetic oscilla-
tors having allowed energy states that are quantized in nature. Planck’s
quantization of energy for atoms was generalized by Einstein to be a fun-
damental property of  electromagnetic radiation and not just a special
property of atoms. In 1905 Einstein explained the photoelectric effect by
assuming electromagnetic radiation to behave as if  its energy was concen-
trated into discrete bundles or packets, called quanta or more commonly
photons. Later in 1923 A. H. Compton provided evidence that photons un-
dergo particle-like collisions with atoms, by considering the energy and
linear momentum of a beam of x-rays to be concentrated in photons. In
general, physicists were most reluctant to accept the quantum explanations
of the photoelectric and Compton effects, because of the apparent con-
tradiction to the successful wave theory. In fact, for many years after Ein-
stein’s successful explanation of the photoelectric effect, Planck considered
light as propagating though space as an electromagnetic wave and Ein-
stein’s photon concept as being wholly untenable.

Although the major objective of this chapter is to illuminate the par-
ticle-like behavior of electromagnetic radiation, we begin with a review of
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the classical properties and generation of electromagnetic waves. The wave
properties of electromagnetic radiation are further illustrated by energy
considerations and Bragg reflection (actually diffraction) of  x-rays. We
then emphasize two experiments where the quantum or particle-like nature
of light dominates its wave nature, by a discussion of the photoelectric ef-
fect and the Compton effect. The failure of classical wave theory to explain
the former phenomenon and the success of Einstein’s photon concept are
fully detailed in one section. Finally, an alternative derivation for the rel-
ativistic Doppler effect is presented, which demonstrates the consistency
between the photon quantization hypothesis and Einstein’s special theory
of relativity. This chapter illustrates that electromagnetic radiation appears
to possess a dual personality, behaving at times like waves and at other
times like particles. This dual-like behavior of radiation, later recognized
to be a general characteristic of all physical entities, is neither explainable
by classical physics nor by the old quantum theory being presented in Chap-
ters 5 through 7. It is, however, satisfactory reconciled with the aid of the
theory of quantum mechanics and will be discussed in considerable detail
in Chapter 8.

6.1  Properties and Origin of
Electromagnetic Waves 

The wavelength spectrum of electromagnetic radiation, illustrated in Table
6.1, consists of  radiation ranging from g-rays of wavelength 10214 m to
long waves of wavelength 105 m. The ranges indicated for the differently
named bands of radiation are only approximate, as there is considerable
overlapping presented in Table 6.1. It is of interest to note that visible 
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TABLE 6.1
The approximate
wavelength spectrum
of electromagnetic
waves.

                Name of Radiation                  Wavelength Range (m)

                      g-Rays                                       10214 2 10210

                      x-Rays                                       10211 2 1028

                      Ultraviolet                                  1028 2 1027

                      Visible                                         1027 2 1026

                      Infrared                                      1026 2 1024

                      Heat                                            1025 2 1021

                      Microwaves                                1022 2 10
                      Radio Waves                                 10 2 103

                      Long Waves                                 103 2 105
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light waves represent only a very small slice of  the total spectrum. The
wavelength in angstrom units,

Å ; 10210 m,

of each color of visible light corresponding to the approximate center of
each color band is

lr 5 6600 Å,
lo 5 6100 Å,
ly 5 5800 Å,
lg 5 5500 Å,
lb 5 4700 Å,
l
v

5 4100 Å.

As pointed out previously in Chapter 3, all electromagnetic radiation prop-
agates in free space (vacuum) at the speed of light

(5.51)

and obeys the wave equation

c 5 ln (3.30)

where l is the wavelength and n is the frequency of a particular radiation.
From this wave equation it is obvious that a short wavelength corresponds
to a high frequency and a long wavelength to a low frequency. Further,
the speed of light in air is very nearly the same as its speed in free space,
but its speed in other optically dense media is slower. Consequently, the
ratio of the speed of light c in free space to the speed of light v in a trans-
parent material medium is always greater than one (e.g., approximately
4/3 for water and 3/2 for glass) and is defined as the index of refraction, 

(6.1)

The classical concept of an electromagnetic wave is, as its name im-
plies, a combination of a varying electric field and a varying magnetic field
propagating through space at the speed c. To better understand the prop-
erties of the electric and magnetic fields associated with an electromagnetic 
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wave, we will discuss, qualitatively, how the origin of radiation is ultimately
an accelerated electric charge. First, however, consider the small positive
electric charge at rest in Figure 6.1a, where the electric field is depicted by
imaginary lines of force extending radically from the charge. Each line of
force gives the direction of the electric field E and the Coulombic force FC

on a very small positive test charge q placed at any point along the line.
This is in total agreement with the definition of electric field intensity given
by

(5.4)

where the magnitude of FC is defined by Coulomb’s law as

(5.43)

,;E
F

q

C

;F k
r

Qq

2
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6.1 Properties and Origin of Electromagnetic Waves 183

a.

b.

 
 

 

 

      

                               

 

  

 

  

  
 

R90

A

O

R0

RA

qr

FC

a

E

R9A

Q

Figure 6.1
The electric field lines
of force associated
with (a), a stationary
and (b), an accelerating
positive charge Q.
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in terms of the distance r between the charges. It should be emphasized
that although we restrict our discussion to lines of force in a plane, they
extend radially in all directions of real space. Further, if  the charge Q were
moving with a small uniform velocity in the plane of the figure, the asso-
ciated lines of force would be the same as depicted in Figure 6.1a. Now,
however, in accordance with Ampere’s law the electric current is sur-
rounded by a concentric magnetic field B, whose lines of force are normal
(perpendicular) to the plane of Figure 6.1a. For these imaginary electric
and magnetic fields, a tangent constructed at any point on an electric or
magnetic line of force would give the direction of the electric E field or
magnetic B field, respectively, at that point. 

A major point of the above discussion is that steady electric and mag-
netic fields are associated with steady electric currents. Clearly, an electro-
magnetic wave cannot be produced by any steady electric current. It is
suggested, however, that an electric and a magnetic wave can be produced
by a varying or alternating electric current. Such a current can be thought
of  as resulting from an oscillating electric charge, which necessarily re-
quires a periodic acceleration of the charge. Before discussing the more
general case of  an electric charge undergoing periodic motion, we first
consider a charge undergoing a single acceleration. A positive electric
charge Q is depicted in Figure 6.1b as experiencing a rapid acceleration
from point A to point O. Let the acceleration from A to O require a time
Dta and a time Dto elapse after the charge reaches position O. After the
time Dta 1 Dto has elapsed, the original electric field lines of force about Q
at position A are depicted in Figure 6.1b beyond the arc RAR9A, which is
drawn about point A with the radius c(Dta 1 Dto). The uniform lines of
force about Q between point O and the arc ROR9O, which is drawn with the
radius cDto, represent the uniform lines of force of Q at position O during
the time Dto. The lines of force during the acceleration time Dta of Q are,
consequently, represented by the connecting wavy lines between the arcs
ROR9O and RAR9A. The form of these wavy lines of force will depend upon
the exact kind of acceleration experienced by Q between points A and O. 

The acceleration of an electric charge is accompanied by changes in
the uniform lines of force (e.g., the wavy lines of force in Figure 6.1b) and
these changes propagate away from the accelerated charge at the speed of
light c. In this manner an accelerated electric charge produces a pulse of
electromagnetic radiation. This pulse of  radiation can be better under-
stood by considering Figure 6.2a, where a wavy line of force normal to
AO in Figure 6.1b is enlarged. At point P1 on this line of force a tangent
is constructed, which gives the actual direction of the electric E field at
point P1. The vector E can be regarded as the resultant of a transverse field
Et and a field Eo that would be associated with the charge at rest. If  tan-
gents at a number of points along the wavy line of force were constructed,
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(a)  Electric field line distorted
by linear acceleration.

(b)  Electric field pulse propa-
gating at speed c.

(c)  Electromagnetic pulse con-
sisting of transverse electric
and magnetic field lines.

Figure 6.2
The construction of an
electromagnetic pulse
from an accelerated
electric charge line of
force.

we would obtain the various transverse components depicted in Figure
6.2b. This is clearly not a wave but merely a pulse consisting of transverse
electric field vectors. A similar analysis of the magnetic B field associated
with the accelerated charge Q of Figure 6.1 would yield a magnetic field
pulse that is in phase and perpendicular to the electric field pulse. Thus, as
illustrated in Figure 6.2c, an electric charge undergoing a linear accelera-
tion produces a pulse of  electromagnetic radiation having electric and
magnetic field components that are perpendicular to one another and their
direction of propagation.

If  the electric charge in Figure 6.1 is forced to oscillate with simple
periodic motion, electromagnetic waves are produced like the one illus-
trated in Figure 6.3. This wave results from the electric field line of force
that is perpendicular to and in the same plane as the oscillating electric
charge and is depicted at an instant in time. It is recognized as a transverse
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wave, since the alternating electric and magnetic field vectors are at right
angles to the direction of  propagation. Because the fields are acknowl-
edged to consist of  only transverse vectors, the t-subscript has been
dropped from E and B in this figure. Since the alternating electric field vec-
tors at all points in the wave are parallel, the wave is said to be polarized
or more specifically, plane polarized. The plane of vibration, which is com-
monly called the plane of polarization, is defined by the direction of po-
larization (the Y-axis) and the direction of propagation (the X-axis). It is
important to realize, however, that the wavy lines of Figure 6.3 simply de-
pict the strengths of the electric and magnetic field vectors and that nothing
is vibrating in the electromagnetic wave. The direction of the alternating
magnetic field is interrelated with the electric field in that it must be normal
to the plane of polarization. Consequently, the three vectors E, B, and c
constitute a set of  mutually orthogonal vectors, where the direction of
propagation is given by E 3 B.

A quantitative description of the electric and magnetic field compo-
nents of a plane-polarized electromagnetic wave propagating in the x-di-
rection should now be rather obvious. In Figure 6.3, Ex 5 Ez 5 0 and the
sinusoidal form of Ey is dependent on only x and t. Thus, we postulate the
electric field vector E by the equation

E 5 Em sin (kx 2 vt)j, (6.2)

where Em is the maximum amplitude and k is the wave number defined by

(6.3)

In a similar manner, since Bx 5 By 5 0 and Bz 5 Bz(x, t) in Figure 6.3, we
postulate the magnetic field vector B to be of the form

B 5 Bm sin  (kx 2 vt)k, (6.4)

with the symbol Bm representing the maximum amplitude. The symbol v
in Equations 6.2 and 6.4 represents the angular speed, which is often called
the angular (or circular) frequency because of the relationship

v 5 2pn. (6.5)

It is interesting to note that from Equations 3.30, 6.3, and 6.5 the speed
of propagation c is equal to the ratio of v and k,

.;k
2

l

p
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(6.6)

There are a couple of  points that are important to realize about
Equations 6.2 and 6.4 in relationship to Figure 6.3. The first point is that
the E and B field components of  the electromagnetic wave are in phase
with each other in space and time. This can be visualized by realizing that
as time goes on the entire field structure of Figure 6.3 moves along as a
unit at the speed c. If  the wave moves past a point in space, however, the
electric and magnetic fields at that point change in phase every instant, with
both E and B attaining their maximum or minimum at the same point in
space and at the same instant in time. The second point to be realized is
that Figure 6.3  represents a plot of E versus the position coordinate x at
a constant value of time, say t 5 t0 ; 0. Thus E(x, t0) has a sinusoidal de-
pendence on x with a wavelength l 5 2p/k. Likewise, if  x is held constant,
say x 5 x0 ; 0, a plot of E(x0, t) versus t would look like Figure 6.3, with
the X-axis being replaced by a t-axis. In this case, the period of oscillation
(instead of wavelength) would be given by T 5 1/n 5 2p/v.

Before leaving this section, it should be emphasized that the qualita-
tive discussion of the origin of electromagnetic waves has been concerned
with only those waves produced by linear acceleration of an electric charge.
However, electromagnetic radiation occurs whenever an electric charge is
accelerated, irrespectively of the manner in which it is accelerated. For ex-
ample, a charge in uniform circular motion experiences centripetal accel-
eration that produces a circularly polarized electromagnetic wave. Such
waves are commonly produced by a synchrotron, which imparts very high

.25 5 5c
k2

ln
p

l
pn

v
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speeds to charged particles by a high-frequency electric field combined
with a  low-frequency magnetic field. As a last point of interest, we can
infer from this section that the frequency of an electromagnetic wave pro-
duced by an accelerating charge depends on the frequency of oscillation
of that charge. Conversely, an electric charge, say the electrons in a receiv-
ing antenna, will be accelerated by the forces they encounter from passing
electromagnetic waves. The frequency of the resulting alternating current
will then depend on the frequency of the incident electromagnetic waves. 

6.2  Intensity, Pressure, and Power
of Electromagnetic Waves

The laws of electricity, magnetism, optics, and the propagation of electro-
magnetic waves were well understood by 1864 and completely contained
in a set of four partial differential equations—known as Maxwell’s equa-
tions. Although it would not serve our objectives to develop James Clark
Maxwell’s electrodynamics, one of  his equations in differential form,
namely

(6.7)

will be briefly utilized. This equation is normally derived in general physics
starting with Faraday’s law of induction and invoking the calculus of
Stokes’ formula. The inverted delta symbol =, as given in Appendix A Sec-
tion A.9, is called the del operator and defined by

(6.8)

The curly dees in the expression −/−x are, as you may well know, simply
interpreted as the partial derivative with respect to x. We need only consider
the operational nature of Equations 6.7 and 6.8 and their application to
the plane-polarized electromagnetic wave of the previous section. That is,
direct substitution of Equations 6.2 and 6.4 into Equation 6.7 gives

Emk cos (kx 2 vt)k 5 2Bm(2v) cos (kx 2 vt)k. (6.9)

The left-hand side of this equation is directly obtained from the curl of E
(i.e., = 3 E), when it is realized that for E 5 E(x, t) the partials with respect

,3 5E
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6.2 Intensity, Pressure, and Power of Electromagnetic Waves 189

to y and z become identically zero, and the remaining term, (−E/−x) (i 3 j),
gives a vector pointing in the k-direction (i.e., i 3 j 5 k). Equation 6.9 im-
mediately reduces to

Em 5 cBm (6.10)

by substitution from Equation 6.6. Further, considering only the magni-
tudes of E and B given in Equations 6.2 and 6.4, the ratio of these two
equations gives

which combines with Equation 6.10 to give

E 5 cB (6.11)

for the instantaneous magnitudes of E and B. Thus taking into account
the vector properties of E, B, and c we obtain

E 5 B 3 c. (6.12)

The results given by Equations 6.10 to 6.12 show the interdependence
of the electric and magnetic field vectors, and they will prove most useful
in developing equations for the energy transported by an electromagnetic
wave. Usually, the energy transmitted in a radiation field by an electro-
magnetic wave is specified in terms of the intensity, which can be simply
thought of as energy per unit area per unit of time. More specifically, in-
tensity is the energy per unit time transmitted across a unit area that is nor-
mal to the direction of propagation of a wave. It can be calculated using the
Poynting vector S, which is defined in general physics by the equation

(6.13)

The quantity m0 in this equation is called the permeability constant, which
has the defined value (exactly) of 

(6.14)
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The units of S are easily obtained by realizing that E has units of N/C 5
N/A ? s, since it is defined as a force per unit charge, and B has the defined
unit of a tesla (T). Thinking of B as being defined as a force FB per unit
magnetic pole m9 of units A ? m,

(6.15)

then T 5 N/A ? m. Consequently, the units of S are given by

as expected for a quantity representing energy per unit time per unit area.
It should also be realized that the magnitude of S divided by the speed of
light c would give the amount of radiant energy per unit volume of space,
which is called the energy density. That is, using the symbol e to represent
electromagnetic wave energy to distinguish it from particle energy, S could
be thought of as

(6.16)

where A represents the unit surface area. Now, since the electromagnetic
wave is propagating in the x-direction with a speed c 5 dx/dt, then

(6.17a)

Frequently, the ratio of S to c is called the radiation pressure, since
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and pressure is recognized as force per unit area. Equations 6.17b gives
the radiation pressure for a totally absorbed wave; whereas a totally re-
flected wave undergoes a change of momentum that is twice as great, and
consequently, the resulting pressure is 2S/c.

It should be emphasized that the Poynting vector, as defined by Equa-
tion 6.13, is perfectly applicable to any kind of electromagnetic radiation.
For the plane-polarized monochromatic traveling wave given by Equations
6.2 and 6.4, the instantaneous value of S is given by 

(6.18)

which is seen to point in the direction of wave propagation as expected.
In terms of the magnitudes of S, E, and B we have

(6.19)

which from Equation 6.12 can be rewritten as

(6.20)

This equation (actually, all of the equations involving S) represents the in-
stantaneous rate of energy flow per unit area, which is characterized at a
point in space at a particular instant in time. Normally in optics, the in-
tensity of radiation is taken as the time-averaged value of S at a particular
point. With Ie representing the intensity of electromagnetic radiation and
k l representing a time average, we have

Ie 5 kSl . (6.21)

Thus, from the last two equations, the intensity of a plane-polarized elec-
tromagnetic wave is

(6.22)

As a final expression for the intensity of our electromagnetic wave,
Equation 6.22 is less than satisfying. We need to establish a definition for
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Ch. 6  Quantization of Electromagnetic Radiation192

time-averaging and then evaluate ,E2.. The time average of any function
of time f (t) over one complete cycle can be defined as

(6.23)

where T represents the period of one complete cycle of oscillation. Since
T 5 2p/v and E 5 Em sin(kx 2 vt) for the plane polarized-electromag-
netic wave, then at the point x 5 x0 ; 0 we have

(6.24)

The integral of Equation 6.24 can be easily handled by changing the vari-
able of integration. That is, with u ; vt, dt 5 du/v, and the limits of in-
tegration are given by t 5 0 → u 5 0 and t 5 2p/v → u 5 2p. Thus,
Equation 6.24 becomes

where a few math identities of  Appendix A have been utilized. Finally,
substitution of Equation 6.25 into Equation 6.22 yields

(6.26)

for the wave intensity over one cycle for plane-polarized electromagnetic
radiation.

There are two major points of Equation 6.26 that should be fully re-
alized. The first is that intensity is directly proportional to the square of the
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amplitude, which is a general property of all waves. The second point is
that the time-average power dissipated perpendicularly to a particular unit
area A is given by IeA or 

(6.27)

6.3  Diffraction of Electromagnetic Waves

When two waves collide in a region of space, the collision is quite dissimilar
from one involving two particles in that the two waves combine according
to the principle of linear superposition (see Chapter 8, Section 8.5), then
each wave emerges from the collision with its original physical character-
istics unchanged. This particular property of waves produces the phenom-
enon known as interference, which is commonly demonstrated in general
physics by a resonance experiment using sound waves or by double-slit and
diffraction grating experiments using visible light. We generally observe
interference when two or more waves of the same type and similar physical
properties (i.e., amplitude, frequency, and phase) enter the same region of
space at the same time. Conversely, if  interference is observed, like in a dif-
fraction experiment, it indicates a wave-like phenomenon. This is an im-
portant point to emphasize, as later (in Chapter 8, Section 8.4) we will see
how electrons exhibit wave-like behavior in a diffraction experiment. For
now, however, we will concentrate on how x-rays were first demonstrated
to consist of electromagnetic waves by an experiment involving diffraction. 

The interference of electromagnetic radiation is easily demonstrated
for visible light using a mechanically constructed diffraction grating. This
is because the line-spacing d(< 3 mm) of the grating is only a few times
larger than the wavelength of  visible light, lvisible < 0.5 mm. For x-rays,
however, it is impossible to mechanically produce a grating having d < lx-rays,
as the wavelength of x-rays (Table 6.1) is on the order of 10210 m. It was
suggested by Max von Laue in 1912 that the atoms in a crystal might serve
as a three-dimensional grating for x-rays, since the atomic spacing was
known to be on the order of an angstrom. Atomic spacing is easily deter-
mined from knowledge of atomic masses and the mass density for a par-
ticular crystal. For example, consider the periodic array of atoms
illustrated in Figure 6.4 for common salt (NaCl), which has a simple struc-
ture called face-centered cubic. In the primitive cell, illustrated by the
shaded region in the figure, there are eight lattice points, one at each corner
of the cube of edge a. These lattice points locate the positions of the Na
ions and Cl ions, which are indicated by either black or colored circles.
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Looking at the lattice point in the geometrical center of the figure, we note
that it is shared by the eight adjoining cells. Thus, there is only one lattice
point per primitive cell in the face-centered cubic structure. This also
means that the mass of the eight atoms (four Na and four Cl) in a primitive
cell of NaCl is the sum of the individual masses divided by eight. Thus,
the mass density of NaCl can be expressed as

where a3 is just the volume of the primitive cell. The quantities mNa and mCl

are easily determined by using Equation 5.67 and the atomic masses of
Na and Cl given in the table of Appendix C. That is, for the one common
isotope of Na we have

while for the two naturally occurring isotopes of Cl
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Now, with the mass density of NaCl being 2.18 3 103 kg/m3, substitution
into Equation 6.28 gives

Clearly, this value for the atomic spacing of NaCl is on the order of an x-
ray wavelength, so Max von Laue’s suggestion to use crystals as diffraction
gratings appears to be reasonable and applicable. 

In 1913 William L. Bragg presented a simplistic analysis of the dif-
fraction of x-rays by crystalline solids. Bragg considered the constructive
interference of x-rays could result from the scattering of waves from two
adjacent atoms lying in separate but parallel planes, which are now re-
ferred to as Bragg planes. Figure 6.5a illustrates two sets of Bragg planes
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for a face-centered cubic crystal, although there are many other possible
sets that could be drawn. Figure 6.5b depicts the Bragg scattering of  a
beam of x-rays from two successive planes of atomic spacing d. Although
each plane scatters part of the incident beam in random directions, a small
fraction of the beam, depicted by two solid rays, is specularly (angle of in-
cidence is equal to angle of reflection) reflected from the Bragg planes at an
angle u. The two parallel scattered rays will interfere constructively, if  their
paths differ by an integral number of wavelengths. That is, the path dif-
ference between the two rays must be nl for monochromatic waves, where
n 5 1, 2, 3, and so forth. Since the bottom ray travels a distance of 2d sin
u further than the top ray, the condition for constructive interference of
specularly scattered waves is satisfied if

2d sin u 5 nl . (6.31)

This equation is known as Bragg’s law for x-ray diffraction. Because of the
condition of specular scattering, it is often, though incorrectly, referred to
as Bragg reflection. The x-ray diffraction experiments by Laue and Bragg
confirmed two presumptions made by turn-of-the-century physicists: that
x-rays consist of electromagnetic waves, and that crystals contain atoms in
a periodic array. 

The theory of waves and its applications in physical optics is a broad
and interesting subject that we have barely touched in these three sections.
Our discussions have been totally concerned with the wave-like behavior
of electromagnetic radiation. We now turn our attention to the theory and
experiments that suggest radiation as having additional properties in na-
ture that are particle-like. Our understanding of wave properties and the
associated theory will, however, be most useful in the following sections
and chapters. 

6.4  Energy and Momentum of
Electromagnetic Radiation

Although the transmission of  energy by electromagnetic waves is well
known and common to everyday experiences (e.g., the energy transmitted
to a closed car on a sunny day), less known is that electromagnetic waves
transport momentum. In this section we will derive a relationship between
the energy e and momentum pe of an electromagnetic wave and see how,
in a sense, it suggests a particle-like behavior for radiation. This relation-
ship will be developed by capitalizing on previously established wave prop-
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erties and fundamental physical relationships. In particular, consider a
plane-polarized electromagnetic wave traveling in the x-direction to be in-
cident on a positively charged particle at rest. The charged particle will
initially experience a force

FE 5 qEj .

due to the electric field component of the incident wave, and undergo an
acceleration in the positive y-direction. Once the particle starts moving,
however, it experiences and additional force

FB 5 qv 3 B

due to the magnetic field component of the wave. Since initially v in this
expression is in the positive y-direction and B is in the positive z-direction
(i.e., B 5 Bk), then according to the right-hand rule the particle will un-
dergo an additional acceleration in the positive x-direction. Consequently,
a positively charged particle at rest will have a contribution to its velocity
of vyj from the electric field and vxi from the magnetic field components
of the incident electromagnetic wave. Realizing that vx and vy are rapidly
varying with time, due to the alternating electric and magnetic field vectors
of the wave, we can say that very quickly after the particle is exposed to
the radiation it has an instantaneous velocity given by

(6.32)

The acceleration of the particle is now governed by the total force

F 5 qE 1 qv 3 B , (6.33)

where v is given by Equation 6.32. Combining these two equations and re-
alizing that E 5 Ej and B 5 Bk we immediately obtain

F 5 qEj 1 q(vxi 1 vyj) 3 Bk

5 qEj 1 qvxB(2j) 1 qvyBi ,

which can be expressed more simply as

F 5 qvyBi 1 q(E 2 vxB)j. (6.34)

.v v5 1 5 1v i j i j
dt

dx

dt

dy
x y
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Ch. 6  Quantization of Electromagnetic Radiation198

In this form, the components of force are easily recognized as

Fx 5 qvyB , (6.35)

and Fy 5 q(E 2 vxB). (6.36)

The components of force given by the last two equations can now be uti-
lized to obtain an expression for the momentum transferred to the charged
particle by invoking Newton’s second law,

(1.16)

in terms of x- and y- components, 

(6.37)

From Equations 6.36 and 6.37 the infinitesimal y-component of momen-
tum is just

Integrating over one complete cycle after substitution from Equation 6.2
and 6.4 gives

The two integrals in the second equality can be evaluated by using sin(kx
2 vt) 5 sin kx cos vt 2 sin vt cos kx or, as illustrated, by letting x 5 x0

; 0 in the first integral and t 5 t0 ; 0 in the second integral. With the latter,

,;F
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6.4 Energy and Momentum of Electromagnetic Radiation 199

Instantaneous Power

they obviously go to zero, since cos 2p 2 cos 0 5 1 2 1 5 0 is obtained in
both cases. In a similar manner Equations 6.35 and 6.37 give

where the last integral is just over dy, as B 5 B(x, t). Thus, we obtain

px 5 qBy (6.40)

for the x-component of momentum. Since p 5 pxi 1 pyj, then

p 5 qByi (6.41)

for the total momentum transferred to the charged particle by one com-
plete cycle of  the electromagnetic wave. Actually, this result is valid for
any number of complete cycles of the wave, as the two integrals involving
the sine function still vanish. Further, even though E and B reverse direc-
tion during every cycle of the wave, with Fy averaging to zero, the net force
Fx on the particle in the x-direction does not average to zero over one cycle
and its direction remains constant.

By itself, Equation 6.41 is not particularly important, unless we
choose a value for q and estimate values for B and y. However, it can be
combined with an expression for energy to obtain a significant result.
From the definitions of instantaneous power,

(6.42)

and work (Equation 1.20), the energy W of the electromagnetic radiation
is given by

(6.43)
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Ch. 6  Quantization of Electromagnetic Radiation200

where F and v are given by Equations 6.34 and 6.32. Thus,

Now, treating the differentials algebraically we obtain

which when integrated over one cycle,

gives

e 5 qEy . (6.46)

since E 5 cB (Equation 6.11), substitution into Equation 6.46 along with
the magnitude of Equation 6.41 yields

e 5 pc . (6.47)

This result is most significant in its interpretation that as a charged
particle absorbs radiant energy e in the time 2p/v, the linear momentum p
transferred to the particle in the same time is e/c. We have in essence de-
scribed a perfectly inelastic collision between the incident electromagnetic
radiation and the charged particle. This is very analogous to an inelastic
collision between two particles that are very dissimilar in mass. If  one par-
ticle of mass M is stationary and the other of mass m ,, M is incident
with kinetic energy T 5 1⁄2mv2, then effectively the momentum p 5 2T/v
is transferred to the mass M 1 m < M during a perfectly inelastic collu-
sion. In this sense, the electromagnetic wave is exhibiting a particle-like
behavior. Aside from this analogy, our result is totally consistent with Ein-
steinian relativity (Chapter 4, Section 4.5), since the energy of a particle
with zero rest mass traveling at the speed c is given by E 5 pc. Interestingly,
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Maxwell knew of this energy-momentum relationship (Equation 6.47) for
electromagnetic waves for well over thirty years before the development
of the special theory of relativity. However, he was so entrenched with his
differential equations of wave theory that he totally overlooked any par-
ticle-like behavior of electromagnetic radiation. 

6.5  Photoelectric Effect

Although the wave nature of light characterized by interference, diffrac-
tion, and polarization was supported by overwhelming evidence prior to
the twentieth century, classical physics recognized that a quantum of elec-
tromagnetic radiation possessed momentum. Einstein’s special theory of
relativity (Chapter 4, Section 4.4) also acknowledged a quanta of light en-
ergy now called a photon, as possessing energy and momentum; however,
the theory predicted that a photon, necessarily, has a zero rest mass and
cannot be accelerated. These latter characteristics are not normally asso-
ciated with a particle, such as an electron, since it can be accelerated and
we can determine its mass, size, charge, and kinetic energy. 

The classical wave nature of light is displaced by a quantum or parti-
cle behavior in a phenomenon known as the photoelectric effect, where a
satisfactory explanation assumes a single photon to interact directly with
an electron. A basic description of the photoelectric effect is the ejection
of electrons from a metal surface that is irradiated by electromagnetic radi-
ation. In general photoelectrons are produced by most metals when ex-
posed to ultraviolet light. If  visible light is incident on the alkali metals
(lithium, sodium, potassium, rubidium, and cesium), the production of
photoelectrons is observed. The photoelectron phenomenon was first ob-
served by Heinrich Hertz in 1887 and later by W. Hallwachs in 1888.
Hallwachs observed that ultraviolet light neutralized a negatively charged
metal, whereas a positively charge body was unaffected by irradiation. 

In 1898 J. J. Thomson and Philip Lenard observed the photoelectric
phenomenon by experimental apparatus similar to that shown schemati-
cally in Figure 6.6. Electromagnetic radiation from the light source S
causes electrically charged particles to be liberated at the cathode metal
C. The deflection of these particles by a magnetic field and the determi-
nation of their specific charge by the methods described in Chapter 5, Sec-
tion 5.3, identified the particles as electrons. Such electrons are called
photoelectrons in reference to their source of  excitation. If  an electrical
potential is impressed across the cathode and anode electrodes, then any
photoelectrons produced at C will migrate to A as the result of Coulombic
forces of attraction by A and repulsion by C. Any photoelectron current
produced is measured by a micro-ammeter m-A. Further, as indicated in
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the schematic, the amount and polarity of the impressed voltage is con-
trolled by a variable resistor R and a switching arrangement, respectively,
and measured by a voltmeter V. As will be presently discussed, various
types of measurements can be made using this apparatus. First, however,
we will adopt the following symbolic notation that will be utilized through-
out the remainder of our discussion of this phenomenon:

Ie 5 photoelectron current,
V 5 impressed electrical potential,
Ie 5 intensity of the electromagnetic radiation,
n 5 frequency of the electromagnetic radiation,
C 5 cathode metal material.

A plot of Ie versus V is illustrated in Figure 6.7a, where the physical
measurements involved varying V and measuring Ie while Ie, n, and, C were
maintained constant. Since an impressed negative voltage tends to keep
photoelectrons from reaching A, then V 5 2Vs, the so called stopping po-
tential, is the electrical potential required to stop the most energetic pho-
toelectrons. Clearly, the most energetic photoelectrons would normally be
the surface electrons of C, since once liberated these electrons would not
loose kinetic energy by way of atomic collisions within the metal before
escaping from the cathode surface. It follows that the maximum kinetic
energy of a photoelectron is given by 

Tmax 5 eVs , (6.48)
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where e is the magnitude of an electron charge. It should also be observed
in Figure 6.7a that for a small positive voltage impressed across C and A,
the saturation current is attained, as all the photoelectrons produced reach
A. Allowing the light intensity Ie to vary results in the graph illustrated in
Figure 6.7b. The surprising result illustrated here is that Vs and conse-
quently Tmax is independent of the intensity (brightness) of the incident elec-
tromagnetic radiation. If  the frequency of the incident light is altered, the
value of Vs would be affected but Tmax would still be independent of the
light intensity. A similar statement could also be made for the data if C
was changed. 

If  V, n, and C are held constant and Ie is allowed to vary, it is possible
to realize more directly how the photocurrent Ie is dependent on the in-
tensity of the incident light. A representative plot of this data is illustrated
in Figure 6.8a. Obviously, the rate at which photoelectrons are emitted
from the cathode metal is directly proportional to the intensity of light in-
cident on it, other variables being held constant. A change in n or C results
in the slope of the graph being changed. Another interesting result is ob-
served when the photocurrent Ie is measured while allowing the electro-
magnetic wave frequency n to vary, as depicted in Figure 6.8b. Here, two
different cathode materials are used with similar results. There appears to
exist in nature a minimum frequency, n0, for incident electromagnetic 
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waves on a particular cathode material, below which no photoelectrons
will be produced. This explains why blue light on zinc does not produce
photoelectrons while ultraviolet light does. Apparently, for every metal
there is a threshold frequency, n0, necessary to produce a photoelectric ef-
fect. 

In Figure 6.9a we have a plot of Vs versus n and an equally surprising
observation. Photoelectrons are produced with their minimum (zero) ki-
netic energy at the threshold frequency of light for a particular cathode.
For higher frequencies of  the incident light the photoelectrons are pro-
duced with a correspondingly greater kinetic energy. A plot of Vs versus
Ie is illustrated in Figure 6.9b for two different cathode materials. This is
not a surprising result, since it is rather obvious from Figure 6.7b that the
stopping potential Vs is independent of the wave intensity Ie of the incident
electromagnetic radiation. 

6.6  Classical and Quantum Explanations
of the Photoelectric Effect

Physicists were perplexed by the experimental findings of the photoelectric
phenomenon, as they were not able to explain the experimental data by
treating the incident electromagnetic radiation as waves. Classical physics
considers the valence electrons of a cathode metal to exist as conduction
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electrons or, essentially, free electrons. These electrons move about the
metal in a fairly unrestricted manner and freely respond to any externally
imposed electric field. Conduction electrons are weakly bound to the metal,
however, because of the Coulombic force of attraction existing between
the positively charged ionized atoms of  the metal and each conduction
electron. It seems reasonable that electrons (conduction electrons or va-
lence electrons of surface atoms) could be liberated from the cathode metal
by absorbing enough energy from incident electromagnetic waves. We
would expect an increase in the number of  electrons liberated to occur
with an increase in the light intensity, in agreement with Figure 6.8a. How-
ever, the absorption of electromagnetic wave energy by electrons should
occur at any frequency of incident light, so the existence of a threshold
frequency in Figure 6.8b is completely contradictory to a classical wave
theory.

A closer analysis of the photoelectric phenomenon by classical wave
theory suggests that cathode electrons should oscillate in response to the
alternating electric field of the incident electromagnetic waves. The waves
should cause the electrons to vibrate with an amplitude Ae that is directly
proportional to the maximum amplitude Em (see Equation 6.2) of the in-
cident wave,

Ae ~ Em .
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Further, classical physics predicts the average kinetic energy of the pho-
toelectrons to be directly proportional to the square of their vibrational
amplitude, that is, 

Tavg ~ A2
e .

Thus, from these two proportionalities, the average kinetic energy of the
photoelectrons is proportional to the square of the maximum amplitude
of the incident electromagnetic waves. That is, 

Tavg ~ E2
m ,

but from Equation 6.26

Ie ~ E2
m ,

so we have Tavg directly proportional to the intensity of the electromagnetic
wave,

Tavg ~ Ie .

This suggests that for electrons at the surface of the cathode metal

Tavg 5 Tmax ~ Ie

and from Equation 6.48 we obtain the relation

Vs ~ Ie .

This resulting proportionality is clearly contradictory to the experimental
data illustrated in Figure 6.9b, since the stopping potential for the most en-
ergetic photoelectrons is independent of the incident light intensity.

Another failure of classical physics is the prediction of a lag time be-
tween the activation of the light source and the emission of a photoelec-
tron. We can estimate this lag time by allowing the light source to be a
common helium-neon laser, which has a maximum power of

PL 5 1023 W

and a beam area of approximately 

AL 5 1024 m2 .
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The laser intensity is thus

which falls on cathode atoms having an approximate radius (see Chapter
5, Section 5.9) of

ra < 10210 m.

Thus, the wave energy per unit time available to a cathode atom would be

Consequently, it should take approximately a second for a valence electron
to absorb enough radiant energy (, 1 to 2 eV) from our laser for the pro-
duction of a photoelectron. This result is not consistent with the experi-
mental findings of E. O. Lawrence and J. W. Beams in 1927, which placed
an upper limit of 1029 s on the liberation time of photoelectrons. Our ex-
ample is indeed generous, as the photoelectric effect for a sodium surface
is detectable for violent light intensities on the order of Ie < 1026 W/m2.
In this case Equation 6.49 predicts

Pa 5 p ? 10226 J/s

< 2 3 1027 eV/s,

or a time for the absorption of 1 eV of energy per atom of
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These rough classical estimates for the photoelectron liberation time are
clearly inconsistent by many orders of magnitude with the phenomenon
observed. 

Realizing that the experimental data illustrated in Figures 6.7 through
6.9 could not be understood on the basis of the classical electromagnetic
wave theory, Albert Einstein proposed an explanation in 1905 for the pho-
toelectric phenomenon that was based on a quantum hypothesis suggested
earlier by Max Planck in 1900. Planck had been concerned with an expla-
nation of  blackbody radiation and developed an empirical formula that
predicted the intensity of radiation emitted by hot (luminous) bodies as a
function of wavelength and the temperature of the body. He sought a the-
oretical basis for his formula (see Chapter 12, Section 12.6) in terms of an
atomic model that considered the atoms of the blackbody to behave like
small electromagnetic oscillators. He made a radical departure from clas-
sical physics by assuming an atomic oscillator (see Chapter 7, Section 7.6
for a derivation) to have an energy given by

E 5 nhn , (6.50)

where n is the oscillator frequency, h is a constant, and n (now called the
principal quantum number) is any one number of the positive integers (i.e.,
1,2,3, ….). The constant h, originally estimated by Planck by fitting his
formula to experimental data, is now called Planck’s constant and has the
value

h 5 6.626176 3 10234 J ? s . (6.51)

Planck’s hypothesis (Equation 6.50) asserts that the energy of an atomic
oscillator does not represent a continuum of energy states in accordance
with classical physics but, rather, a discrete or quantized set of values. He
further assumed that the oscillators could not radiate energy continuously
but only in quanta, as given by

DE 5 Dnhn , (6.52)

when the oscillator changes from one allowed energy state to another. So
long as an oscillator remains in a quantized or stationary state, energy is
neither emitted nor absorbed. 

Although Planck recognized the energy emitted by atomic oscillators
to be quantized by Equation 6.52, he considered the radiant energy to
propagate through space as a continuum of electromagnetic waves. This
reasoning is entirely consistent with classical physics and the discussions
presented in Section 6.1. Einstein, however, reasoned that if  atomic oscil-
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lators could neither emit nor absorb light energy except in quantized
amounts, then this suggests that electromagnetic radiation consists of
quanta of energy. He postulated that the energy in a light beam propagates
though space in concentrated bundles or quanta, which are now called
photons, each having an energy given by

e 5 hn . (6.53)

Here, the Greek letter epsilon (e) is used to denote photon energy to distin-
guish it from the oscillator energy E. Einstein was able to immediately test
his hypothesis by applying the photon concept to an explanation of  the
photoelectric effect. He considered an incident photon to have a perfectly
inelastic collision with a bound electron in the cathode metal, thereby an-
nihilating itself and giving up its energy to the electron. Part of this energy,
called the work function W0, is consumed in liberating the electron from
the metal surface, with the remainder being transformed into the electron’s
kinetic energy Tmax. By conservation of energy, Einstein obtained

e 5 W0 1 Tmax , (6.54)

where e is given by Equation 6.53 and Tmax 5 1⁄2mev
2. For an electron at

the metal surface that receives just enough energy from a photon to be
liberated Tmax 5 0, and Equation 6.54 combined with the requirements of
Figure 6.8b or Figure 6.9a suggest the work function be defined by

W0 ; hn0 . (6.55)

Thus, Einstein’s conservation of energy equation can be rewritten in the
form

hn 5 hn0 1 Tmax , (6.56)

which is his famous photoelectric equation. Since a photon travels at the
speed of light c 5 ln, this equation can be further modified by substituting
c/l for n or c/l0 for n0, allowing for the solution of several different types
of photoelectric problems given at the end of the chapter.

Einstein’s equation is consistent with the experimental features of the
photoelectric effect. Substitution of Equation 6.48 into Equation 6.56 and
solving for Vs gives

(6.57),5 2V
e

h
0s n n^ h
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which is in perfect agreement with the experimental data of Figure 6.9a.
It is also obvious from the equation that Vs is independent of the light in-
tensity Ie but dependent on the cathode metal work function hn0, in agree-
ment with Figure 6.9b. Furthermore, the lag time between incident light
and photoelectron emission is expected to be quite small, due to the anni-
hilation of  a photon by an electron. Shortly after Einstein’s published
work, Robert A. Millikan confirmed the photoelectric equation and meas-
ured the value of Planck’s constant h from experimental data of the pho-
toelectric phenomenon. His graph was consistent with the equation

(6.58)

which is directly obtainable from Equation 6.56 by substitution of Tmax 5
1⁄2mev

2.
As an instructive illustration of the photoelectric equation, we will

derive an equation for the change in stopping potential of photoelectrons
emitted from a surface for a change in the wavelength of the incident light.
With 

and

where c 5 ln has been used with Equation 6.57, then

(6.59)

Hence, the stopping potential depends on the wavelength (or frequency)
of the incident photons and not on the intensity of  light, in agreement
with our discussion of Figure 6.7b.

Although Einstein’s photon concept was strikingly successful in ex-
plaining photoelectric phenomena, it was in direct conflict with the clas-
sical wave theory of  electromagnetic radiation. His quantum theory of
light is fundamentally different from the wave theory of light in that nei-
ther can be approximated nor derived from the other. This case of con-
tradictory theories is even more profound than the case of  Einsteinian
versus classical relativity, where the latter was seen to be an approximation
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of the former. Here, we see that light has a dual property, behaving as a
wave in interference and diffraction phenomena and as a particle, or pho-
ton, in the photoelectric phenomenon. Our modern view of the nature of
light considers both theories as complementary to each other and as nec-
essary for a complete description of electromagnetic radiation. This wave-
particle duality in nature is discussed at length in Chapter 8; however, for
now we continue our discussion with another experiment on which the
photon concept is firmly based.

6.7  Quantum Explanation of the Compton Effect

The analysis of the photoelectric effect by Einstein did not tell us that a
photon behaves like a particle with localized properties of mass and mo-
mentum. Compelling evidence of these properties was provided by Arthur
H. Compton in 1923 when he analyzed the scattering of well defined inci-
dent x-rays from a metallic foil. In this investigation Compton found that
incident x-rays of wavelength around 7.10 3 10211 m became x-rays of a
slightly greater wavelength (about 7.34 3 10211 m) when scattered by the
electrons in a foil. In particular, Compton found the scattered wavelength
l9 to be greater than and independent of the incident wavelength l of the
x-ray photon, but the scattered photon’s wavelength l9 was strongly de-
pendent on the angle u through which it was scattered.

To understand this phenomenon consider the situation depicted in
Figure 6.10. Compton considered that the incident x-ray photon has a
speed c in accordance with Einstein’s second postulate of special relativity
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978097131346
Author Author's review

(if needed)

Initials Date

OK Correx

ISBN #

Fig. #

Artist

Final Size (Width x Depth in Picas)

B x W                2/C             4/C

Document name

Date

Check if revision

Modern Physics

F06.10 31346_F0610.eps

22w x 14d

Accurate Art, Inc.
12/07/2009

CE's review

Initials Date

OK Correx

f

u

pe = h/l

pe = h/l

T = moc2 (G – 1)
pe 

e = hc/l

e = hc/l
9 9 

9 9 

Figure 6.10
The scattering of an x-
ray photon by a
“bound” electron.

Evaluation Copy 

Not Licensed for 

Instructional Use 



Ch. 6  Quantization of Electromagnetic Radiation212

and a finite energy e as given by Einstein’s photon postulate. He further
reasoned the relativistic mass of a photon to be given by 

me 5 G(m0)e , (6.60)

where

(4.23)

because v5 c for a photon. These equations suggest that the photon’s rest
mass (m0)e must be zero,

(m0)e 5 0, (6.61)

and consequently Equation 6.60 is an indeterminate expression (i.e., me 5
0/0). Although previously discussed in Chapter 4, Section 4.4 by an alter-
native derivation, in no way does this result imply the photon’s momentum
to be zero. Compton reasoned that if  the relativistic energy of a photon is
given by

e2 5 p2
e c2 1 (m0)e

2c4 , (6.62)

then for a zero rest mass its energy is simply

e 5 pe c, (6.63)

which is consistent with Einsteinian relativity (Equation 4.45) and classical
electrodynamics (Equation 6.47). Substituting Einstein’s photon postulate
(Equation 6.53) and c 5 ln, Compton obtained

(6.64)

for the photon’s momentum.
To obtain an expression involving the wavelengths of  the incident

and scattered photons, l and l9 respectively, Compton employed conser-
vation principles. From Figure 6.10 it is easy to write down

pe 2 p9e cos u 5 pe cos f (6.65)

v
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for the conservation of momentum along the X-axis. Likewise, the con-
servation of momentum along the Y-axis is simply

p9e sin u 5 pe sin f . (6.66)

Squaring Equations 6.65 and 6.66 and adding the results gives

p2
e 1 p9e

2 2 2pep9e cos u 5 p2
e , (6.67)

which involves two unknowns pe and p9e . The momentum of the electron
pe is expressible in terms of the electron’s relativistic energy because

E 2 5 p2
e c2 1 E 2

0 , (6.68)

where, of course,

E0 ; m0c2 (4.39)

and m0 is the rest mass of the scattered electron. Solving Equation 6.68
for p2

e yields

(6.69)

and using the relativistic equation of kinetic energy,

T 5 E 2 E0 , (4.41a)

we obtain

(6.70)

Employing Equation 4.39 with Equation 6.70 gives

(6.71)

This result could be substituted into Equation 6.67; however, at this point
the kinetic energy of the electron is unknown. It can be conveniently ex-
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Ch. 6  Quantization of Electromagnetic Radiation214

pressed in terms of pe and p9e by employing the conservation of relativistic
energy principle. That is,

e 1 (m0)ec2 5 e9 1 (m0)ec2 1 T , (6.72)

which immediately reduces to

T 5 e 2 e9 5 c(pe 2 p9e ) (6.73)

by utilization of Equation 6.63. At this point, substitution of Equation
6.73 into Equation 6.71 yields another expression for the electron’s mo-
mentum in terms of the photon momenta pe and p9e , that is, 

p2
e 5 p2

e 1 p9e
2 2 2pe p9e 1 2m0c(pe 2 p9e) . (6.74)

Now, p2
e in this equation can be substituted into Equation 6.67 to obtain

(6.75)

This result can be written in a more amenable form, since

(6.76)

where Equation 6.64 has been used in obtaining the last equality. The well-
known Compton equation is now easily obtained by substitution of Equa-
tion 6.76 into Equation 6.75. That is,

l9 2 l 5 lC (1 2 cos u) , (6.77)

where the so-called Compton wavelength, lC, is defined by

(6.78)

Equation 6.77 shows that the increase in the scattered x-ray wavelength
(l9 2 l) is dependent on only the scattering angle u and the constant 

lC 5 2.42631 3 10212 m. (6.79)
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This rather surprising theoretical prediction was later verified by many ex-
periments. Compton’s theory provides a particularly strong case for the
existence of electromagnetic quanta; stronger even than Einstein’s analysis
of the photoelectric effect.  

As an instructive example of the Compton analysis, we will consider
whether or not a free electron at rest can annihilate a photon and thereby
obtain a nonzero kinetic energy. Assuming the annihilation of the photon
to occur, then the conservation of momentum requires that the momen-
tum of the photon before the perfectly inelastic collision be equal to the
momentum of the electron after the collision. That is, 

pe 5 pe,

which upon multiplication by the speed of light yields

where Equations 6.63, 6.68, and 4.41a have been employed. Conservation
of relativistic energy requires the energy of the photon plus the rest energy
of the electron before the collision be equal to the energy of motion of the
electron after the collision. That is, e 1 E0 5 E, which immediately be-
comes

e 5 T (6.81)

from Equation 4.41a. The obvious contradiction between these last two
numbered equations indicates that such a process (the annihilation of a
photon by a free electron) could never occur in nature.

As a more practical example of the Compton equation, consider an
incident photon of wavelength 7.10 3 10211 m colliding with a bound elec-
tron in such a manner that a scattered photon occurs at an 888 angle.
Clearly, the scattered wavelength is given by

l9 5 l 1 lC (1 2 cos u)

5 7.10 3 10211 m 1 (2.43 3 10212 m) (1 2 0.035)

5 7.34 3 10211 m.

,
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Ch. 6  Quantization of Electromagnetic Radiation216

The energy of the scattered electron is obtainable from Equation 6.72 with
the aid of Einstein’s photon postulate e 5 hn and c 5 ln, that is

(6.82)

With the value of h taken from Equation 6.51 we have

which reduces nicely to

hc 5 12.4 3 1027 m ? eV. (6.83)

Now, Equation 6.82 yields

for the kinetic energy of the scattered electron. Of course this is rather
small when compared to the electron’s rest energy of 

E0 ; m0c 2 5 5.12 3 105 eV. (6.84)

6.8  Relativistic Doppler Effect Revisited

As a last example of  the quantization of  electromagnetic radiation, we
consider the consistency between Einstein’s photon postulate (Equation
6.53) and his special theory of relativity. It seems reasonable that since a
photon has energy related to its frequency, then the relativistic frequency
transformations (Chapter 3, Section 3.6) should be derivable from the rel-
ativistic energy transformations (Chapter 4, Section 4.6). As a particular
example, we imagine a source (emitter) of monochromatic photons to be
at the origin of coordinates of system S9 and an observer (receiver) to be
at the origin of S. The photons in S9 have energy denoted by e9, while ob-
servers in S denote their energy as e. These two energy quantities should
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transform according to Equations 4.68 and 4.69, with E and E9 being re-
placed accordingly by e and e9. That is, Equation 4.68 becomes

e 5 g(e9 1 p9xu) , (6.85)

where p9x is interpreted as the momentum of the photon in the x-direction.
Since the emitter of photons in S9 must be allowed to approach S from
the left, pass S, and then recede from S to the right, then the photons emis-
sion angle u9 relative to the X9-axis must vary from 0 to p. Accordingly, p9x
in Equation 6.85 is replaced by

p9x 5 p9e cos u9, (6.86)

which can be rewritten as

(6.87)

from Equation 6.63 (or Equation 6.47). Thus, Equation 6.85 becomes

where Equation 2.5 for b has been utilized in the second equality. Now,
using Einstein’s photon postulate e 5 hn and e9 5 hn9, our last equation
immediately becomes

n 5 gn9(1 1 b cos u9) . (6.89)

This equation is a general transformation formula for the relativistic
Doppler effect for emitted photons of proper frequency n9 and their fre-
quency n measured by an inertial observer. The inverse of this equation,
given by

n9 5 gn(1 1 b cos u) , (6.90)

can be derived by analogous arguments with Equation 4.69 for the situa-
tion where photons are emitted from system S and detected by an inertial
observer in S9.

Because of the angle (u or u9) variable in the Doppler effect equations,
three different phenomena are easily predicted. First consider Equation

x9 5
e9 9cos

p
c

u

1 ,

e 5 e9 1 e9 9
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Ch. 6  Quantization of Electromagnetic Radiation218

Transverse Case

6.89 and the case where the emitter of photons S9 is approaching the ob-
server in S from the left. In this instance the photons are emitted at the
angle u9 5 0, with respect to the positive X9-axis, and the frequency de-
tected in S is given by

n 5 gn9(1 1 b) , (6.91)

since cos 08 5 1. Further, since

(6.92)

(see Chapter 3, Section 3.6 and Problem 3.18), then Equation 6.91 be-
comes

(6.93)

which is identical to our previously derived result given by Equation 3.47.
When S9 passes S, u9 5 p/2 and Equation 6.89 gives

n 5 gn9, (6.94)

which is a new transverse Doppler effect not previously considered in
Chapter 3, Section 3.6. When S9 is receding from S, u9 5 p and Equation
6.89 yields

n 5 gn9(1 2 b) ,

which immediately reduces to

(6.95)

by using the identity given in Equation 6.92. Thus, the general Doppler
effect equation for photons emitted from S9 to S (Equation 6.89) yields
identical results for the longitudinal phenomena previously derived in
Chapter 3, Section 3.6, and it predicts a transverse phenomenon not pre-
viously considered. Crucial to the derivation was the assumption that elec-
tromagnetic radiation propagates as quanta of energy, as defined
quantitatively by Einstein’s photon postulate. Consequently, the concept of
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Review of Fundamental and Derived Equations 219

photons propagating at the speed of light c with energy given by e 5 hn
and momentum pe 5 e/c is entirely consistent with Einsteinian relativity. 

The inverse situation, where light is emitted from S and detected in
S9, is directly obtained from Equation 6.90. For the three cases we obtain

(6.96)

(6.97)

(6.98)

Although the first and last results are directly obtained from Equations
6.93 and 6.95 by algebra, the proper frequency here is denoted by n and
not n9. Further, the transverse effect is clearly an example of the time di-
lation phenomenon. 

Review of Fundamental and Derived Equations

A listing of the fundamental equations of classical and relativistic dynam-
ics used in this chapter is presented below, along with newly introduced
physical constants and fundamental postulates. Further, equations derived
from the wave theory and quantum theory of electromagnetic radiation
are separated in logical listings that parallel their development in each sec-
tion of the chapter.

FUNDAMENTAL EQUATIONS—CLASSICAL PHYSICS
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FUNDAMENTAL EQUATIONS—EINSTEINIAN RELATIVITY

v

9

5 3

5

v 5

;

;

;

;

z

Re

Magnetic Induction

Lorent Force Equation

Speed of Light in a Vacuum

Index of fraction

Angular Speed

Wave Number

B
F

F v B

V
q

W
Electric Potential

m

q

c

n
c

k

2

2

B

ln

pn

l

p

'

5 2 v

5 2 v

3 5

3

5

5

;

;

sin

sin

tantan

Electric Field Vector

Magnetic Field Vector

Maxwell s Equation

Poynting Vector

Ins eous Intensity

Time Average

Time Average Intensity

E j

B k

E
B

S E B

E kx t

B kx t

t

S
A dt

d

f t
T

f t dt

I S

1

1

1

e

m

m

T

0

0

2

2
=

m

e

2

^
^

^ ^

h
h

h hy

x

5

5 2

5 1

5 9 1 9

;

;

Re

Re

lativistic Mass

st Energy

Total Energy

Kinetic Energy

Energy Momentum Invariant

Energy Transformation

m m

E m c

E mc

T E E

E E p c

E E p u

0

0 0
2

2

0

2 2
0

2 2 -

g

G

^ h

Ch. 6  Quantization of Electromagnetic Radiation220

Evaluation Copy 

Not Licensed for 

Instructional Use 



NEW PHYSICAL CONSTANTS

FUNDAMENTAL POSTULATES

Atomic Oscillators

Electromagnetic Radiation

e 5 hn Einstein’s Photon Postulate

DERIVED EQUATIONS—ELECTROMAGNETIC WAVES
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Diffraction

2d sin u 5 nl Bragg’s Law

Energy and Momentum

DERIVED EQUATIONS—ELECTROMAGNETIC QUANTA

Photoelectric Effect
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Compton Effect

me 5 G (m0)e 5 (1/0)0 Photon Relativistic Mass

e 5 pec Photon Total Energy

pe 5 h/l Photon Momentum

E0 5 m0c2 Electron Rest Energy

E 2 5 p2
ec2 1 E 2

0 Electron Total Energy

T 5 E 2 E0 Electron Kinetic Energy

pe
2 1 p9e

2 2 2pep9e cos u 5 p2
e Momentum Conservation

e 1 (m0)ec2 5 e9 1 (m0)ec2 1 T Energy Conservation

pe
2 1 p9e

2 2 2pep9e 1 2m0c(pe 2 p9e) 5 p2
e Energy Conservation

l9 2 l 5 lC (1 2 cos u) Compton Equation

Doppler Effect S9 → S

6.1 An observer is 1.0 m from a point source of light whose power output
is 1.5 kW. What are the maximum amplitudes of the electric and magnetic
field vectors at that point, if  the source radiates monochromatic plane
waves uniformly in all directions?
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Solution:
With r 5 1.0 m and P 5 1.5 3 103 W, Em is obtainable from Equation
6.27,

with A being replaced by the area of a sphere of radius r,

A 5 4pr 2.

Thus, we find the maximum amplitude of the electric field vector to
be 

From knowledge of  Em , the maximum amplitude of  the magnetic
field vector is easily obtained by using the relation Em 5 cBm (Equa-
tion 6.10). That is,

6.2 If  a NaCl crystal is irradiated by x-rays of 0.250 nm wavelength and
the first Bragg reflection is observed at 26.48, what is the atomic spacing
of the crystal?

Answer: d 5 2.81 3 10210 m

6.3 A laser beam of energy flux 60 W/m2 falls on a square metal surface
of edge 10 mm for one hour. Assuming total absorption of the beam by
the metal, find the momentum delivered to the metal surface during the
irradiation time.

Solution:

Knowing S 5 60 W/m2, A 5 (10 mm)2, and Dt 5 3.6 3 103 s, the
total momentum pt of the laser beam transferred to the metal surface
is similar to Equation 6.47,
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The total radiation energy We is calculated using

We 5 SADt ,

thus we have for the total momentum

6.4 Photons of 2 3 10227 kg ? m/s momentum are incident normally to a
10 cm2 surface. If  the intensity of  the photons is 30 3 1022 W/m2, how
many photons strike the surface per second?

Answer:

6.5 If  a radio station operates at 110 MHz with a power output of 300
kW, what is the rate of emission of photons from the station?

Solution:
With P 5 3 3 105 W and n 5 1.10 3 108 Hz, a dimensional analysis
gives

where Einstein’s photon postulate have been used.

6.6 Find the wavelength of the photon that will just liberate an electron
of 20 eV binding energy in a cathode metal.

Answer:     l0 5 6.20 3 1028 m

6.7 What is the energy in eV and momentum in kg ? m/s of ultraviolet
photons of wavelength 310 nm?
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Solution:
With l 5 3.1 3 1027 m and Einstein’s photon postulate,

we obtain

where hc given by Equation 6.83 has been used. From this result and
the relation e 5 pc, the momentum of the ultraviolet photon is

Alternatively, since

we could have used (see Equation 6.64)

The difference in these two answers results from rounding-off errors
in our conversion from electron-volts to Joules.

6.8 Assuming the kinetic energy of photoelectrons to be negligibly small,
find the threshold frequency for the production of photoelectrons emitted
by incident light of 6 3 1027 m wavelength.

Answer: n0 5 5 3 1014 Hz
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6.9 Assuming the work function of sodium to be negligibly small, what
is the velocity of photoelectrons resulting from incident light of 3 3 1028

m wavelength?

Solution:
We know W0 5 0 and l 5 3 3 1028 m, and we need to find ve. Since 

e 5 W0 1 Tmax ,

then with e 5 hc/l and Tmax 5 1⁄2mv2
e , we have

which can be solved for ve to obtain

6.10 Incident light on a cathode metal has a wavelength of 2.00 3 1027

m. If the kinetic energy of the photoelectrons produced range from zero
to 6 3 10219 J, find the stopping potential for the incident light and the
threshold wavelength for the metal.

Answer: Vs 5 3.75 V, l0 5 5.06 3 1027 m

6.11 If the largest wavelength for photoelectron emission from potassium
is 5000 Å, what is the maximum kinetic energy of photoelectrons produced
by illumination of 2000 Å light?

Solution:
In this problem we know l0 5 5 3 1027 m, l 5 2 3 1027 m, and need
to find Tmax. Using Einstein’s photoelectric equation we have

6.12  The threshold frequency of beryllium is 9.4 3 1014 Hz. Assume light
of wavelength 1⁄2l0 illuminates beryllium, what is the maximum kinetic en-
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ergy in electron volts of emitted photoelectrons?

Answer: Tmax 5 3.90 eV

6.13 What is the threshold wavelength for a cathode material of 3.75 V
stopping potential, if  the incident light has a momentum of 3.315 3 10227

kg ? m/s?

Solution:
Knowing Vs 5 3.75 V and pe 5 3.315 3 10227 kg ? m/s, then an equa-
tion for l0 in terms of Vs and pe must be derived. From Einstein’s pho-
toelectric equation

e 5 W0 1 Tmax

we have

which immediately yields

6.14 What is the maximum speed of a photoelectron resulting from an
incident photon of  momentum 3.31 3 10227 kg ? m/s, if  the threshold
wavelength is 5.06 3 1027 m?

Answer: ve 5 1.15 3 106

6.15 If  the scattering angle is 908, what is the increase in the scattered
photon’s wavelength in a Compton experiment?

Solution:
The wavelength l9 of the scattered photon is greater than that of the
incident photon, as given by the Compton equation. That is,

l9 2 l 5 lC(1 2 cos u)

5 (2.43 3 10212 m) (1 2 0)

5 2.43 3 10212 m.
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6.16 If  a 0.2 Å x-ray photon in a Compton experiment is scattered
through an angle of  608, what is the fractional change (l9 2 l)/l in the
wavelength?

Answer:

6.17 If  a Compton electron attains a kinetic energy of 0.024 MeV when
an incident x-ray photon of energy 0.124 MeV strikes it, then what is the
wavelength of the scattered photon?

Solution:
With T 5 2.4 3 104 eV and e 5 1.24 3 105 eV, l9 can be obtained
from the conservation of energy requirement for the Compton ex-
periment. That is, from Equation 6.72,

e 5 e9 1 T ,

with the substitution

we obtain

6.18 What is the increase in the scattered wavelength of an x-ray photon,
if  the Compton electron attains a kinetic energy of 0.024 MeV from an
incident photon of 0.124 MeV energy?

Answer: l9 2 l 5 2.4 3 10212 m

6.19 What angle does the scattered photon of Problem 6.17 make with
respect to the direction of the incident photon?

Solution:
Knowing e 5 1.24 3 105 eV and l9 5 1.24 3 10211 m, then u can be
obtained from the Compton equation. That is,

where l is given by
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Direct substitution gives

thus u < 89.38

6.20 In a Compton scattering experiment let T 5 0.04 MeV and e 5 0.2
MeV. Find the angle that the scattered photon makes with respect to the
direction of the incident photon.

Answer: u 5 68.88

6.21 Prove that a free electron moving at a relativistic speed v cannot emit
a photon of energy e and continue at a slower speed v9.

Solution:
From the conversation of momentum principle we have

pe 5 p9e 1 pe ,

which can be written as

Using Einstein’s relativistic mass equation, this equation becomes

which can be solved for the energy of the emitted photon in the form

e 5 (Gv 2 G9v9)m0c

or

However, the conservation of energy requires that

E 5 E9 1 e ,

which can be rewritten as

GE0 5 G9E0 1 e
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and solved for e to obtain

e 5 E0(G 2 G9) .

Because of  the difference between these two equation for e, the
process will never occur in nature.

6.22 Consider an electron moving at a speed v to annihilate a photon of
energy e and continue moving with an increased speed of v9. Show that
conservation of  energy predicts e 5 E0(G9 2 G) , while conservation of
momentum gives e 5 (E0/c) (G9v9 2 Gv) .
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Introduction

Early in the twentieth century much was known about the interrelationship
between, and the quantization of, matter and electromagnetic radiation.
There was the need, however, for a descriptive quantitative model of the

232

C h A p t E r 7

Quantization of One-Electron Atoms 

In any molecular system consisting of positive nuclei and
electrons in which the nuclei are at rest relative to each
other and the electors move in circular orbits, the angu-
lar momentum of every electron round the centre of
its orbit will in the permanent state of the system be
equal to h/2p, where h is Planck’s constant.
N. BOHR, “On the Constitution of Atoms and Molecules,” 
Philosophical Magazine 26,1 (1913)

Wave function probability density for an electron in
the hydrogen atom (n = 4; l =1(p); m = 0).

Image: Paul Falstad 
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atom that would properly account for the many physical properties
(e.g., electrical neutrality, energy quantization, etc.) that had been ex-
perimentally determined. At this time, the chemical elements were
widely acknowledged as consisting of  electrically neutral atoms, but
very little was known about the actual structure of  atoms. As we have
discussed, the first insight into atomic structure was provided by J. J.
Thomson’s discovery of  the electron in 1897 and the subsequent de-
termination of  its quantized properties of  electrical charge and rest
mass by R. A. Millikan in 1909. Further, the discovery of  canal rays
and the development of  the mass spectrograph by J. J. Thomson in
1911 clearly established atoms as possessing a positively charged con-
stituent, later called the proton, that was 1836 times more massive
than an electron. Since the proton was found to possess an electrically
positive charge that is equal in magnitude to the charge of  an electron,
it was logical to assume electrons and protons were fundamental con-
stituents of  all electrically neutral atoms comprising the chemical el-
ements. This assumption was a reasonable inference from a number
of  different experiments, including those discussed in the last chapter
pertaining to the photoelectric and Compton effects. There, however,
we discussed the nonclassical property of  atoms to exist in quantized
energy states that allow for the emission and absorption of  quanta of
electromagnetic radiation. Thus, it appears that quantization princi-
ples and electrical neutrality must be incorporated in any complete
physical description of  the structure of  the atom.

The modern model of  the atom presented in Chapter 5, Section 5.7
was not immediately obvious to scientists of  the early twentieth century.
In fact, considerable difficulty was encountered when attempts were
made to theoretically describe the existence of  both electrons and pro-
tons in a stable atom by purely classical arguments. J. J. Thomson pro-
posed a plum pudding atomic model as early as 1898, where the atom
was regarded as a heavy sphere of  uniformly distributed positive charge
(the pudding) with enough electrons (the plums) embedded to make it
electrically neutral. This model was found to be inconsistent with the
scattering experiments conducted by E. Rutherford in 1911, where a
beam of  high energy alpha particles (helium nuclei) were used to bom-
bard a thin gold foil. Expecting most of  the alpha particles to pass di-
rectly through the foil and a few passing near or through a Thomson
atom to be only slightly deflected from their original rectilinear path,
Rutherford was amazed to find particles deflected through large angles
and a few to be actually reflected. From the experimental results,
Rutherford proposed a planetary model of  the atom, where he consid-
ered the rather massive nucleus at the center of  the atom. To account
for the electrical neutrality, he further considered the nucleus to be sur-
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rounded, at a relatively large distance away, by a cloud of  the appro-
priate number of  electrons. This model satisfactorily explained the
scattering of alpha particles, since the atoms of the foil, consisting prima-
rily of empty space, would allow the majority of particles to pass though
undeflected. A close encounter of an alpha particle with a nucleus, how-
ever, would result in the particle experiencing a large repulsive Coulombic
forces and being deflected through a large angle. Obviously, a collision
with an electron would result in the electron being appreciably deflected,
owing to its comparatively very small mass.

Although the Rutherford model of the atom met with initial success
in the explanation of experimental data, it was quickly demonstrated to
be incapable of  explaining the long term stability of  the atom’s con-
stituents. Further, a number of classical theories for atomic structure were
also developed around the turn of the century, but they could not ade-
quately predict the observed spectrum of electromagnetic radiation emit-
ted by atoms. Accordingly, we begin this chapter with a review of  the
well-known energy spectrum of  the hydrogen atom and the empirical
equations used to predict its line emission spectra. Then an analysis of the
planetary model for a one-electron atom (e.g., hydrogen, singly ionized he-
lium, doubly ionized lithium, etc.) using arguments of classical physics is
considered. The success of the model within Newtonian mechanics is fully
discussed, along with its failure in connection with electromagnetic theory.
We will find that an electron orbiting a nucleus in an assumed circular
orbit is classically expected to have an energy spectrum consisting of a con-
tinuum of frequencies, as it spirals inward toward the nucleus. This theo-
retical prediction of the electrodynamics is contrary to the spectrum of
discrete frequencies observed for atoms. Next, Bohr’s postulates for the
one-electron atom are introduced and quantitatively developed, followed
by a discussion of their successful explanation of the radius, orbital fre-
quency, and energy of the hydrogen electron and the observed energy spec-
trum of the hydrogen atom. Since our initial treatment of the Bohr model
assumes a stationary nucleus (i.e., an infinite nuclear mass as compared
to the mass of the electron) with the electron moving in a stable circular
orbit, the effect of a finite nuclear mass on the Bohr model is taken into
account. We consider the Wilson-Sommerfeld quantization rule and its gen-
eralized applicability to systems exhibiting periodic motion, including the
Bohr electron and the classical linear harmonic oscillator. These quanti-
zation calculations are followed by a discussion of the principal and or-
bital quantum numbers associated with each electron in an atom, the
Bohr-Sommerfeld scheme for denoting the electron configuration of
atoms in the periodic table, the magnetic and spin quantum numbers, and
the Pauli exclusion principle.
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7.1  Atomic Spectra

A successful atomic model should be capable of explaining not only the
long term stability of an electrically neutral atom consisting of electrons
and protons, but also the observed spectrum of emitted electromagnetic
radiation. To better understand the latter requirement, we will now con-
sider some of the more salient features of atomic spectra in general and
the hydrogen spectrum in particular. A spectrum is simply an orderly array
of the wavelengths of light described by either a continuum or a discrete
set of wavelengths. As illustrated in Figure 7.1, a spectrum may be pro-
duced by collimating rays of light from a source by a slit (or a lens) and
then allowing the collimated light to pass through a prism (or diffraction
grating), where it is broken up into its spectrum, and finally recorded on
a photographic plate. Spectra may be classified as either emission or ab-
sorption, depending on whether they are created by the emission of pho-
tons on a system of atoms constituting the source, or by the absorption of
incident photons on a system of atoms resulting in the unabsorbed photons
constituting the source. An emission or absorption spectrum can be further
subdivided into continuous or line spectra, depending on whether the light
recorded on the photographic plate appears as a continuum of wavelengths
or as a discrete set of wavelengths characterized normally by lines. Con-
tinuous emission spectra arise from the photons emitted by hot solids serv-
ing as the source, while line emission spectra arise from the photons emitted
by a hot rarefied gas serving as the source.

Because of its simplicity, the line emission spectrum of hydrogen gas
was carefully studied by physicists before the turn of the century. At that
time, the wavelengths of the first nine spectral lines were known accurately
from spectroscopic measurements. The six spectral lines in the visible re-
gion of the electromagnetic spectrum are given in Table 7.1.
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Because of the obvious regularity of the hydrogen spectrum, many scien-
tists attempted to design an empirical formula that would predict the ob-
served wavelengths. The first such formula, developed by J. J. Balmer in
1885, was of the general form

(7.1)

ni 5 3, 4, 5, ? ? ? ,        nf 5 2.

For ni 5 3, l 5 6562.1 Å, which is identified as the red Ha line in Table
7.1. As ni increases in value, the wavelengths converge to the series limit l
5 3645.6 Å at ni 5 `. The visible spectral lines predicted by Equation 7.1,
and listed in table 7.1 in the third column, show remarkable agreement
with those observed experimentally.

Because of  the success of  Balmer, empirical formulas were sought
that would predict the spectral lines of other elements. In 1890 the Swedish
spectroscopist J. R. Rydberg was successful in developing a general for-
mula that was capable of predicting the spectral lines of the known ele-
ments with a good degree of accuracy. For the hydrogen series his formula
has the form

(7.2)

where RH 5 1.09677576 3 107 m21 (7.3)

is the Rydberg constant for hydrogen and the values for ni and nf are the
same as given above. The Rydberg constant for other elements is very
nearly the same as that given by Equation 7.3, increasing only slightly in
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Balmer’s Formula

tABLE 7.1
The visible spectral
lines of hydrogen.

Rydberg Formula

Wavelength (Å)               

                   Name             Measured       Balmer        Bohr

                       Ha                6562.8            6562.1        6561.7
                       Hb                4861.3            4860.8        4860.5
                       Hg                4340.5            4340.0        4339.7
                       Hd                4101.7            4101.3        4101.1
                       He                3970.1            3969.7        3969.4
                       Hh                3889.1            3888.6        3888.4
                       H`                3645.6            3645.6        3645.4
                                                                              

Rydberg Constant
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Ch. 7  Quantization of One-Electron Atoms237

value with increasing atomic mass. Formulas of this type were also suc-
cessful in predicting spectral lines that were not in the visible portion of
the electromagnetic spectrum. As a case in point, there are five series of
spectral lines now acknowledged in the hydrogen spectrum, which are pre-
dicted by either Equation 7.1 or Equation 7.2. The name of each series,
their spectral region, and the values of  ni and nf are listed in Table 7.2,
along with the series limit when ni goes to infinity. Each spectral series is
named after the scientist who first discovered it and they include the
Balmer series in the visible spectrum discovered in 1885, the Paschen series
in the infrared observed in 1908, the Lyman series in the ultraviolet meas-
ured in 1916, and two other series in the infrared discovered by Brackett
and Pfund in 1922 and 1924, respectively.

7.2  Classical Model of the One-Electron Atom

The long term stability of an atom consisting of both electrically positive
and negative masses was certainly explained by the Thomson plum pudding
model; however, the model’s inconsistency with the Rutherford scattering
experiment resulted in a planetary model for the atom and its constituents.
Unlike the static Thomson model where electrons are essentially stationary
in the positively charged pudding, the Rutherford planetary model was out
of necessity a dynamic system. Because of the attractive Coulombic force
existing between the negatively charged electrons and the electrically pos-
itive nucleus of the Rutherford model, the electrons could not be stationary
at some distance away from the nucleus. If, however, they are moving in
circular or elliptical orbits around the nucleus, then dynamically stable or-
bits, similar to those of the planets about the sun, seem entirely possible.

Let us consider a simple model for the atom, where an electron moves
about the nucleus in an assumed circular orbit. To generalize the model

tABLE 7.2
The known spectral 
series of hydrogen.      Series          Spectral                ni                     nt             Series

      Name           Region             Values              Bohr            Limit

      Lyman          Ultraviolet          2, 3, 4, ? ? ?          1            911.27 Å

      Balmer         Visible              3, 4, 5, ? ? ?          2            3645.1 Å

      Paschen       Infrared            4, 5, 6, ? ? ?          3            8201.4 Å

     Brackett       Infrared            5, 6, 7, ? ? ?          4            14,580 Å

     Pfund           Infrared            6, 7, 8, ? ? ?          5            22,782 Å
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7.2 Classical Model of the One-Electron Atom 238

slightly, we also assume the nucleus to have a positive charge of

qN 5 Ze (7.4)

where Z is the atomic number and e is the absolute magnitude of the charge
of an electron. This allows our model to describe the hydrogen atom (Z
5 1), the singly ionized helium atom (Z 5 2), the doubly ionized lithium
atom (Z 5 3), and so forth for one-electron atoms. Since the mass of  a
proton is considerably greater than the mass of an electron (i.e., mp 5 1836
me), then to a first order approximation we can assume the nuclear mass
M (M .. m) to be stationary in space, as illustrated by Figure 7.2. Our
model is thus one of a single electron of mass m and charge 2e traversing
a stationary nucleus of mass M and charge Ze in a circular orbit.

In the one-electron model, the accelerating force of  the electron is
provided by its Coulombic attraction to the nucleus and given by

where r is the radius of the electron’s circular path. Since this inward di-
rected force is perpendicular to the electron’s velocity vector at every point
in its path, the force is recognized as being a centripetal force 

,

5

5

F
r

kq q

r

Z

C

N e

2

2

2ke

,v5F
r

m
c

2

Nuclear Charge

(7.5)

(5.8)

 
 

 

 

      

                  2/C             4/C

D  

  

 

  

  
 

r

FC

ve

M

m

qN = Ze

qe = – e

Figure 7.2
The Rutherford “plane-
tary model” of the
one-electron atom.

Centripetal Force

Evaluation Copy 

Not Licensed for 

Instructional Use 



where v is the uniform speed of the electron. The mechanical or orbital
stability of the electron is given by equating the centripetal and Coulombic
forces,

(7.6)

which immediately yields

(7.7)

for the velocity of the electron in terms of its orbital radius. With the elec-
tron’s translational speed related to its angular speed by

v 5 rv, (7.8)

then from Equation 6.5 (v 5 2pn) and Equation 7.7 we obtain

for the classical orbital frequency of the electron. Using Z 5 1 for hydrogen
and the value r 5 5.29 3 10211 m obtained below, along with the known
values of k, e, and m, Equation 7.9 yields n 5 6.58 3 1015 Hz. This result
for the number of revolutions per second made by a hydrogen electron in
orbit about a single proton agrees well with the orbital frequency deter-
mined by other methods.

The value used for the atomic radius of the electron’s circular orbit
can be estimated from energy considerations. Since the nucleus of the one-
electron model is considered to be stationary, then the total energy Et of
the two-body system is given by

Et 5 Ek 1 Ep , (7.10)

which consists of the electron’s kinetic energy Ek

Ek 5 mv
2, (7.11)

and electrostatic potential energy Ep . The potential energy of the electron
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in the electrostatic field of the nucleus is obtained by calculating the work
done on the system in removing the electron from position r, relative to
the nucleus, to infinity. From the definition of work (Equation 1.20) and
Equation 7.5 we have

where the negative sign indicates an attractive Coulombic force between
the electron and nucleus. Integration of Equation 7.12 yields

(7.13)

which can be substituted along with Equation 7.11 into Equation 7.10 to
obtain

(7.14)

for the total energy of the electron. With

from Equation 7.6, our expression for the total energy can be reduced in
form and solved for r to obtain

(7.15)

From experimental findings the energy required to ionize a hydrogen atom
is 13.6 eV. Thus, the electron’s binding energy must be Et 5 213.6 eV, since
Et in Equation 7.15 is negative valued. It should be noted that if  the elec-
tron had zero or positive valued energy, it would not exist in a bound stable
orbit about the nucleus. Substitution of Z 5 1 and Et 5 (213.6 eV) (1.60
3 10219 J/eV) 5 212.18 3 10218 J, along with the values for k and e2, into
Equation 7.15 yields r 5 5.29 3 10211 m. This value for the radius of the
electron’s circular orbit is in good agreement with estimates made by other
experimental techniques.
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Ch. 7  Quantization of One-Electron Atoms241

In spite of the success of the Rutherford model in explaining alpha
particle scattering and in predicting the orbital radius and frequency of
the hydrogen electron, it was found to be in conflict with the predictions
of classical electromagnetic theory. Radiation theory of classical physics
predicts the energy radiated per unit time, by a charge of e experiencing
an acceleration a, to be given by

(7.16)

The electron of the Rutherford model undergoes a centripetal acceleration
given by

(7.17)

which takes the form

(7.18)

by substitution from Equation 7.6 for v2. Thus, substitution of this result
into Equation 7.16 gives

(7.19)

which for a hydrogen electron in a circular orbit of radius r 5 5.29 3 10211

m yields P 5 4.63 3 1028 J/s 5 2.89 3 1011 eV/s. Since the orbital fre-
quency of the hydrogen electron given by Equation 7.9 is n 5 6.58 3 1015

s21, the period for one complete orbit is just T 5 1/n 5 1.52 3 10216 s.
Now, multiplication of P in Equation 7.19 by the electron’s period gives
PT 5 4.39 3 1025 eV, which is the amount of energy radiated by the elec-
tron in just one complete orbit about the hydrogen proton. This means
that Et in Equation 7.15 becomes more negative and r necessarily becomes
smaller. As r becomes smaller, the time rate at which the electron radiates
energy increases markedly, since P in Equation 7.19 is inversely propor-
tional to r4. Thus, according to classical electromagnetic theory applied
to the Rutherford model, the electron cannot exist in a stable circular
orbit, but rather spirals in toward the nucleus as it rapidly radiates more
and more energy. In the creation of a hydrogen atom, for example, an elec-
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tron of  zero free energy would spiral within a distance of  r 5 5.29
3 10211 m in a time roughly given by

From this distance to the proton, the electron would spiral in even more
rapidly, since P very quickly increases for any decrease in the value of r.
Classical estimates predict the electron to collapse on the proton within
about 10216 s after the formation of a hydrogen atom.

According to classical physics the Rutherford model had a fatal flaw
in predicting the long term stability of atoms. All atoms of the chemical
elements should collapse in a very short time after their formation, and
the energy spectra of all atoms should be a continuum, owing to the con-
tinuous radiation of energy by spiraling electrons. Both conclusions, how-
ever, were contradicted by experimental data that negated the classical
planetary model as a viable explanation of  atomic structure. It was re-
vived, however, two years later when Niels Bohr combined the essentials
of the model, a very small and massive nucleus surrounded ay some dis-
tance by electrons, with Planck’s quantum hypothesis for a simple yet bril-
liant description of atomic structure. Bohr’s postulates, his break with the
classical theory of radiation, and the amazing success of his model will
be the next subject of inquiry.

7.3  Bohr Model of the One-Electron Atom

Immediately after obtaining his doctorate degree in Copenhagen in 1911,
Niels Bohr was involved in post-graduate research under J. J. Thomson,
which was followed by additional studies under Ernest Rutherford. He re-
turned to Copenhagen in 1913 to develop and publish his famous theory
on the atomic structure of the hydrogen atom. Being aware of Planck’s
quantum hypothesis, the predictability of the observed hydrogen spectrum
by empirical equations, and the limited success of the Rutherford model
of the atom, Bohr recognized that a successful theoretical model of the
hydrogen atom had to depart, somewhat, from classical physics. He con-
ceived a remarkable set of  postulates for atomic structure that retained
the laws of classical mechanics and abandoned the classical theory of ra-
diation. Although the success of the Bohr model was immediate and most
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impressive, it will be seen to be limited in applicability and seriously inad-
equate as a generalized model for atomic structure. Its subsequent dis-
placement within a decade by a more accurate quantum mechanics model
does not detract, however, from its mathematical and pictorial simplicity,
elegance, and usefulness. In fact, there are several important ideas of the
Bohr model (i.e., stationary states, quantum jumps, conservation of en-
ergy, and the correspondence principle) that have been retained as essential
aspects of modern physics. Furthermore, Bohr’s model of the hydrogen
atom was a significant and most important contribution to the acceptance
of the quantum concept and the development of quantum mechanics.

Bohr’s model of the hydrogen atom considers classical physics to be
limited in its applicability for the description of the motion of the electron
about the proton. He assumed the Rutherford planetary model, illustrated
in Figure 7.2, where a single electron traverses the nucleus in a circular
orbit with a constant speed. It should be emphasized that our generaliza-
tion of the model to be descriptive of any one-electron atom of nuclear
charge Ze does not alter the considerations and results obtained by Bohr
for the hydrogen atom. Recognizing the inconsistency between the plane-
tary model and electromagnetic radiation theory, Bohr found it necessary
to make several assumptions concerning the structure of  atoms. Bohr’s
work on the binding energy of electrons by positive nuclei was first pub-
lished in the July 1913 issue of the Philosophical Magazine under the title
“On the Constitution of Atoms and Molecules.” This was the first of a
trilogy of papers published by Bohr in the scholarly journal in 1913, and
the primary assumptions of  his model for atomic structure were most
clearly stated in his third publication appearing in the November 1913
issue. Rearranged somewhat in order, his assumptions on pages 874 to 875
were as follows:

That the dynamical equilibrium of the systems in the stationary
states is governed by the ordinary laws of mechanics, while these laws
do not hold for the passing of the systems between the different sta-
tionary states.

That the different stationary states of a simple system consisting
of an electron rotating round a positive nucleus are determined by the
condition that the ratio between the total energy, emitted during the
formation of the configuration, and the frequency of revolution of the
electron is an entire multiple of h/2. Assuming that the orbit of the elec-
tron is circular, this assumption is equivalent with the assumption that
the angular momentum of the electron round the nucleus is equal to
an entire multiple of h/2p.

That energy radiation is not emitted (or observed) in the contin-
uous way assumed in the ordinary electrodynamics, but only during the
passing of the system between different “stationary” states.
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That the radiation emitted during the transition of a system be-
tween two stationary states is homogeneous, and that the relation be-
tween the frequency n and the total amount of energy emitted E is given
by E 5 hn, where h is Planck’s constant.

To capitalize on our previous discussion and maximize the information
content, we restate Bohr’s postulates as follows:

1. An electron obeys the laws of classical mechanics while encircling
the nucleus of an atom in a stable orbit with a uniform speed under
the influence of a Coulombic force of attraction.

2. Only highly restricted orbits are allowed by nature for the electron,
the selection of which is specified by the quantization of the elec-
tron’s angular momentum to the value nh/2p, where the principal
quantum number n takes on the values n 5 1, 2, 3, ? ? ? .

3. An electron is prohibited from emitting any electromagnetic
quanta while encircling the nucleus along a permitted orbit, allow-
ing the electrons’ total energy to remain constant.

4. An electron may make a direct transition from one permitted orbit
to another by the emission of a single Planck photon having an
energy equal to the energy difference of the two electron states of
motion.

Bohr’s first postulate allowed the orbital stability of the electron to be given
by classical mechanics, where the attractive Coulombic force is equated to
the centripetal force, as given by Equation 7.6. That is,

(7.20)

is a simplified quantitative expression for Bohr’s first postulate.
Bohr’s second postulate quantized the angular momentum of the electron
(see also Equations 8.56 to 8.57 of Chapter 8, section 8.4)

(7.21)

to an integer value

n 5 1, 2, 3, ? ? ? (7.22)

(now called the principal quantum number) times h/2p. With the symbolic
definition
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(7.23)

the quantization of angular momentum for the Bohr electron is obtained
by equating Equation 7.21 to the product of n times Equation 7.23. That
is,

mvr 5 n" (7.24)

is a quantitative representation of Bohr’s famous quantization postulate.
The allowed radii of the Bohr electron is now easily obtained by com-

bining Bohr’s first and second postulates. That is, solving Equation 7.24
for the translational speed v of the electron and squaring gives

which can be substituted into Equation 7.20 to yield

Because the value of r in this expression varies as the principal quantum
number n takes on the values 1, 2, 3, ? ? ? , we adopt n as a subscript for r.
Now, solving the equation for the radius and using the new subscript no-
tation, we obtain

for the radius of the electron in the nth allowed orbit. The use of the prin-
cipal quantum number n as a subscript on the radius of the Bohr electron
allows for the identification of the permitted stable electron orbits, rn 5 r1 ,
r2 , r3 , ? ? ? . The value of r1, which is often referred to as the Bohr Radius,
is directly calculated by using the values of  the known constants in the
defining equation

(7.26)
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to obtain

r1 5 0.529178 Å. (7.27)

Clearly, the value obtained for r1 corresponds to the innermost radius (n
5 1) allowed for a hydrogen (Z 5 1) atom. Further, Equation 7.25 indi-
cates that for a large value of n the radius of the permitted electron orbit
is considerably larger than the radius of  the innermost or ground state
orbit r1 (e.g., r2 5 4r1, r3 5 9r1, and r4 5 16r1 for a hydrogen electron).

A generalized equation for the translational speed vn of an electron
in any of its n allowed orbits is also obtainable from Bohr’s first and second
postulates. That is, solving Equation 7.20 (Bohr’s fist postulate) for v 5
Zke2/mvr and substituting from Equation 7.24 (Bohr’s second postulate)
immediately gives

where the subscript notation has again been employed. The ground state
translational speed, defined by

(7.29)

has the value

v1 5 2.18769 3 106 m/s, (7.30)

which is the maximum allowed speed of the electron in a hydrogen atom.
To a good approximation (four significant numbers) the value of v1 can
be expressed by

(7.31)

where c is the speed of light in a vacuum and a is the so-called fine struc-
ture constant. From Equations 7.29 and 7.31 we obtain

(7.32)
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and, occasionally, the allowed Bohr velocities, Equation 7.28, are ex-
pressed in terms of a as

(7.33)

Further, Equation 7.28 predicts that the speed of the Bohr electron de-
creases with increasing values of the principal quantum number (e.g., v2

5 v1/2, v3 5 v1/3, and v4 5 v1/4 for a hydrogen electron).
Knowing the generalized equation for the velocity of the Bohr elec-

tron in any orbit, it now becomes an easy task to obtain an equation for
the electron’s orbital frequencies. Since v 5 rv and v 5 2pn, the orbital
frequency is given by

(7.34)

Substitution from Equations 7.25 and 7.28 gives

where the subscript notation has been employed. The Bohr frequency for
the hydrogen electron in the ground state is defined by

(7.36)

which, upon substitution of the values for k, e, and h, has the value

n1 5 6.57912 3 1015 Hz. (7.37)

From Equation 7.35 it is obvious that the orbital frequency of the Bohr
electron decreases very rapidly with any increase in the value of the prin-
cipal quantum number (e.g., n2 5 n1/8, n3 5 n1/27, and n4 5 n1/64 for a hy-
drogen electron), because of its inverse dependence on n3.

Our derivations of the generalized equations for the allowed radii,
velocities, and orbital frequencies of  an atomic electron constrained to
move in one of the permitted circular orbits has been based on the laws
of classical mechanics and Bohr’s quantization postulate. Although the
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classical theory of radiation predicts that the accelerated electron must ra-
diate energy continuously and, thus, should spiral inward to the nucleus,
Bohr’s third postulate recognized the validity of electromagnetic theory
was restricted to macroscopic phenomena and not applicable to the mi-
croscopic atom. Classical mechanics is still valid, however, according to
his first postulate, so the total energy of the one-electron atom is given by
Equation 7.15. Using the subscript notation involving the principal quan-
tum number, Equations 7.15 becomes

(7.38)

which is a quantitative representation of Bohr’s third postulate. Substitu-
tion from Equation 7.25 for rn gives

for the energy of the Bohr electron in any one of the permitted orbits de-
fined by n. The absolute magnitude of the Bohr electron’s ground state en-
ergy, defined by

(7.40)

has the value

)E1) 5 2.17972 3 10218 J 5 13.6046 eV. (7.41)

By using this value for )E1) in Equation 7.39, it is easily shown that the val-
ues of En become less negative rather rapidly for increasing values of the
principal quantum number (e.g., E1 5 213.6046 eV, E2 5 23.40115 eV,
E3 5 21.51162 eV, E4 5 20.850288 eV, and E5 5 20.544184 eV for a hy-
drogen electron) with En approaching zero as n increases to infinity. It
should be emphasized that Equation 7.39 yields negative energies, because
the electron is bound to the nucleus in a stationary state. If  the electron
was free, it could have either zero energy or positive valued kinetic energy.
Further, a bound electron is in its most stable state when it is in the state
of lowest total energy, that state characterized by n 5 1.

An interesting relationship between the energy of a Bohr electron in
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the nth stationary state and its orbital frequency can be obtained from
Equations 7.35 and 7.39. That is, Equation 7.35 can be expressed as

which when solved for the absolute magnitude of En gives

(7.42)

This relationship is strikingly similar to Planck’s quantization hypothesis
for atomic oscillators and is, indeed, recognized as the correct expression
for energy quantization, instead of that given by Equation 6.50. This result
and Bohr’s fourth postulate, which will be quantitatively developed and
discussed in the next section, provide the link between atomic structure
and Planck’s quantum theory of radiation. Although Equation 7.42 em-
phasized the quantization of energy of the Bohr atom, we should realize
that Bohr’s quantization postulate for the electron’s angular momentum
has lead to the quantization of the electron’s orbital radius, velocity, fre-
quency, and energy (i.e., Equations 7.25, 7.28, 7.35, and 7.39, respectively),
as illustrated for the hydrogen atom in Table 7.3.

7.4  Emission Spectra and the Bohr Model

The known visible spectral lines of the hydrogen atom are fairly well pre-
dicted by the Bohr model, as illustrated in the fourth column of Table 7.1.
To understand how the values presented in Table 7.1 were obtained, we
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     n             rn (Å)          vn (106 m/s)      nn (1015 Hz)         En (eV)

     1           0.529178       2.18769           6.57912         213.6046
     2           2.11671         1.09385           0.822390       23.40115
     3           4.76260         0.729230         0.243671       21.51162
     4           8.46685         0.546923         0.102799       20.850288       
     5           13.2295         0.437538         0.0526330     20.544184
     6           19.0504         0.364615         0.0304589     20.377906
     7           25.9297         0.312527         0.0191811     20.277645
     8           33.8674         0.273461         0.0128498     20.212572
      9          42.8634         0.243077         0.0090249     20.167958

table 7.3
A few quantized states
(defined by the value
of n) of the hydrogen
atom, characterized by
the electron’s radius,
speed, orbital fre-
quency, and energy
predicted by the Bohr
model. Evaluation Copy 
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will consider Bohr’s fourth postulate. Accordingly, the energy of the emit-
ted photon representing any one of the illustrated spectral lines of Figure
7.3 results from the Bohr electron making a downward quantum transition
from an initial energy level Ei to a lower final energy level Ef . For example,
the third Lyman emission corresponds to the Bohr electron making a di-
rect transition from the n 5 4 level to the n 5 1 level, where the energy of
the emitted photon associated with this quantum jump is just equal to the
difference between E4 and E1 of the electron. Thus, the emitted photon
would have a positive valued energy given by (see Table 7.3) e 5 E4 2 E1

5 20.850288 eV 2 (213.6046 eV) or e 5 12.754312 eV. In general the en-
ergy e of any emitted photon is expressible in terms of the initial ni and
final nf quantum levels of the electron. From Bohr’s fourth postulate

e 5 Ei 2 Ef , (7.43)

and Equation 7.39 we have

(7.44)

which is more conveniently written in the form

(7.45)

Now, using Einstein’s photon postulate as expressed by Equation 6.53, the
frequency of an emitted photon is given by

(7.46)

The ratio of constants in this expression can be solved for

(7.47)

allowing Equation 7.46 to become

(7.48)

Of course if  a photon is absorbed, the electron makes an upward transition
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and nf . ni . In this case knowledge of n and ni is sufficient for a determi-
nation of nf by using Equation 7.48. Since electromagnetic radiation prop-
agates at the speed of light c, the wavelength of an emitted or absorbed
photon is directly obtainable from Equation 7.46. That is, with n 5 c/l
substituted into Equation 7.46, we obtain

(7.49)

which can be reduced to

(7.50)

by substitution for the physical constants h, c, and E1. Equation 7.50 pre-
dicts, with reasonable accuracy, the experimentally reported emission lines
of the hydrogen atom, listed in Table 7.1, as it agrees rather closely with
Balmer’s formula given by Equation 7.1. Very often you will see Equation
7.50 written in terms of the Rydberg constant RH. According to the Bohr
model this constant can be evaluated from

(7.51)

which upon substitution of constants gives

RH 5 1.09714 3 107 m21. (7.52)

Thus, Equation 7.49 can take the form

(7.53)

which agrees reasonably well with Rydberg’s formula given by Equation
7.2 Actually, with the correction to the Bohr model obtained in the next
section, the model predicted value of RH agrees almost perfectly with the
experimental value given by Equation 7.3.

The predictions of the Bohr model contained in Equations 7.45, 7.46,
and 7.49 are most important in that they predict the energy, frequency,
and wavelength of  observed spectral lines for hydrogen, denoted as the
Lyman, Balmer, Paschen, Brackett, and Pfund series in Figure 7.3. Nor-
mally, an atom of hydrogen exists in its ground state corresponding to n 5 1,
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where the electron has its lowest energy. If  the atom absorbs energy
through collisions, irradiation, and so forth, the electron makes a direct
transition to an excited state for which n . 1. As is the tendency for all
physical systems, the atom in the excited state will return to its ground state
by the emission of its excess energy. This can be accomplished by the elec-
tron making a direct transition or quantum jump from the excited state ni

. 1 to the ground state nf 5 1, with the emission of a photon of energy e
given by Equation 7.45. Alternatively, the electron might cascade from its
initial excited state to successively lower energy states, until the ground
state is attained. In this instance each quantum jump to a lower energy
state is accomplished by the emission of a single photon. For example, an
electron excited into the n 5 5 state, could cascade successively through
energy states n 5 4, n 5 3, n 5 2, and n 5 1. Four spectral lines of the hy-
drogen atom would be emitted with wave lengths given by Equation 7.49
for the quantum jump ni 5 5 to nf 5 4, ni 5 4 to nf 5 3, ni 5 3 to nf 5 2,
and ni 5 2 to nf 5 1. These spectral lines represent the first line of  the
Brackett, Paschen, Balmer, and Lyman series, respectively, and are illus-
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An energy level dia-
gram for the hydrogen
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trated in Figure 7.3 by an arrow going from the initial quantum state ni to
the final quantum state nf.

The success of the Bohr theory for the one-electron atom is most im-
pressive, as the spectral lines of the Lyman, Balmer, Paschen, Brackett,
and Pfund series, illustrated in Figure 7.3, are all accurately predicted by
Equation 7.50. It should be emphasized that the Lyman, Brackett, and
Pfund series had not been experimentally observed prior to the publication
of Bohr’s theory in 1913. They were sought after and soon discovered,
however, because of the general acceptance of the Bohr model. In the ad-
dition to the success of the Bohr theory in predicting the hydrogen spec-
trum, the model worked equally well for the other one-electron atoms, like
the single ionized helium atom.

7.5  Correction to the Bohr Model
for a Finite Nuclear Mass

Implicit in our derivations involving the Bohr model of the one-electron
atom is the assumption of an infinitely large nucleus that remains fixed in
space. Actually, this was a reasonable first approximation for even the
lightest atom, since the nucleus of  a hydrogen atom is 1836 times more
massive than the bound electron. Even though the mass of a nucleus is
considerable greater than the mass of  an electron, its mass is finite and
should not be considered as fixed in space. To enhance the accuracy of the
Bohr model for the one-electron atom, we need to take into account the
finite mass of the nucleus and attribute some degree of motion to both
the electron and the nucleus.

Consider the more realistic picture of  an atom as that depicted in
Figure 7.4, where the electron of mass m and nucleus of mass M each re-
volve about their center of mass (C.M.) such that it remains fixed in space.
The center-to-center distance between the nucleus and the electron is taken
to be r, while x is the distance from the nucleus and r 2 x is the distance
from the electron to the center of mass. By definition of the center of mass,
we have

Mx 5 m(r 2 x) , (7.54)

which can be solved for x in the form

(7.55).5
1

x
m M

mr
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Also, from Equation 7.54

and substitution from Equation 7.55 gives

(7.56)

These last two numbered equations are important and will be frequently
utilized in our derivational considerations. The former equation gives the
radius of the circular orbit made by the nucleus about the center of mass
while the latter gives the radius of the electron’s circular orbit.

As a first consideration, let us derive an expression for the angular
momentum of the electron-nucleus system. This is easily accomplished by
adding the angular momentum of the electron Le and the angular mo-
mentum of the nucleus LN, that is

L 5 Le 1 LN

5 Ieve 1 INvN

5 m(r 2 x)2ve 1 Mx2vN . (7.57)
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Substituting from Equations 7.55 and 7.56 for the quantities r 2 x and x
gives

Realizing that

ve 5 vN ; v , (7.58)

since the distance of  separation r between the nucleus and the electron
must be constant at all times for the center of mass to be fixed in space,
then our expression for the angular momentum reduces to

(7.59)

At this point it is convenient to introduce the so-called reduced mass,

(7.60)

which allows Equation 7.59 to be written as

L 5 mr2v . (7.61)

There is a tendency, at this point, to let the electron’s speed v be given by
v 5 rv and write Equation 7.61 as L 5 mvr. This result for the total angu-
lar momentum of the electron-nucleus system is identical to Equation 7.21,
except for the presence of the reduced mass m instead of the mass of the
electron m. The result L 5 mvr, however, is not correct, as the translational
speed of the electron v is related to its angular speed ve by the equation

v 5 (r 2 x)ve. (7.62)

Since v in Equation 7.61 is to ve by Equation 7.58, Equation 7.61 can be
recast in the form
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where the defining equation for the reduced mass m (Equation 7.60) has
been used in obtaining the last equality. Clearly, the total angular momen-
tum of the electron-nucleus system is identical to the angular momentum
of the electron (Equation 7.21) in the fixed nucleus system.

The Bohr theory for the electron-nucleus system of Figure 7.4 is now
slightly different than that developed in the previous two sections. The
electron moves uniformly in a circular orbit of radius r 2 x about the cen-
ter of mass of the two-body system. The Coulombic force of attraction
between the electron and nucleus, given by

(7.5)

causes the electron to experience a centripetal acceleration. The centripetal
force on the electron in this case, however, is given by

where the defining equation (Equation 7.60) for the reduced mass m has
been used in obtaining the last equality. Consequently, the orbital stability
of the electron in this reduced mass model is given by

(7.65)
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Bohr’s 2nd Postulate

which is a quantitative expression for Bohr’s first postulate. Because of
the result expressed in Equation 7.63, Bohr’s second postulate has the
quantitative form

mvr 5 n", (7.24)

which is identical to that obtained for the fixed nucleus model. In our pres-
ent case, however, it must be interpreted as the quantization of the total
angular momentum of the two-body system. With mvr 5 mr2v from Equa-
tions 7.61 and 7.63, then Equation 7.24 becomes

mr2v 5 n", (7.66)

which is a more amenable form of Bohr’s second postulate for the present
considerations. Solving this last equation for v and substituting into Equa-
tion 7.65 immediately yields

(7.67)

for the quantized stationary states of the atom. This result is identical to
that given by Equation 7.25, except the mass of the electron has been re-
placed by the reduced mass m. The interpretation of  rn for a particular
value of n, however, is a bit different in this case. It represents the mean
distance of separation between the electron and nucleus, not the radius of
the electron’s circular orbit in the nth allowed stationary state of the atom.

The total energy of the electron-nucleus system is still given by Equa-
tion 7.10,

Et 5 Ek 1 Ep (7.10)

now, however, the kinetic energy has contributions from both the electron
and the nucleus. That is, with ve and vN representing the translational speed
of the electron and nucleus, respectively, about their common center of
mass, we have
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where we have used

vN 5 xvN (7.69)

for the translational speed of the nucleus in the second equality. Because
of Equation 7.65, the kinetic energy is also expressible as

(7.70)

Now, with the potential energy Ep given by Equation 7.13,

(7.13)

the total energy for this case (Equation 7.10) is identical to that obtained
previously, that is

(7.15)

Consequently, substitution from Equation 7.67 and introducing the n-sub-
script notation, we obtain

(7.71)

for the permitted quantized energy states of the one-electron atom having
a finite nuclear mass.

It is instructive to reproduce all of the derivations of the Bohr theory,
with the inclusion of the finite nuclear mass model of Figure 7.4. The net
effect to the theory, however, is that all of the equations are identical to
those previously derived, except the electron mass m is replaced by the re-
duced mass m. Further, by comparing the value of the electron’s rest mass
m to the value of m for hydrogen, we find
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Thus, the ground state energy of the hydrogen atom is now given by

and it is separated from the proton by a distance of

As a last example, the theoretical value of the Rydberg constant for hy-
drogen (Equation 7.51) now becomes

which varies from the experimental value given in Equation 7.3 by only
24 parts in 100,000. Actually, a more careful calculation, using eight sig-
nificant figure accuracy for the physical constants, gives RH 5 1.0967758
3 107 m21.

Before leaving this section, it needs to be emphasized that most ref-
erences give the total angular momentum of the electron-nucleus system
as L 5 mvr instead of our result given in Equation 7.63. It is, however,
easy to show that the angular moment of only the electron of Figure 7.4
is given by Le 5 mvr. That is,

.

.

5 2

5 2

eV

eV

E
m

13 6046

13 5971

m
1 ^ h

.

. .

5

5

Å

Å

r
m

0 529178

0 529469

m1 ^ h

/

. ,

5

5 3 m

R m
hc

E

1 09654 10 2

H

7 1

m
1^ h

v

v

v

v

.

.

.

,

5 v

5 2 v

5
2

2

5 2

5
1

5

sin

sin

sin

u g Figure

u g Equation

u g Equation

L I

m r x

r x

m r x

m r x

m
m M

Mr

r

7 4

7 62

7 56

e e e

e

m

2

2

^ ^
^ ^
^
c ^

h h
h h
h

m h

Ch. 7  Quantization of One-Electron Atoms259

(7.73)

(7.74)

(7.75)

(7.76)
Electron’s Angular
Momentum

Evaluation Copy 

Not Licensed for 

Instructional Use 



where Equation 7.60 has been used in obtaining the last equality. Further,
by starting with Equation 7.57, it is straight forward to derive

L5 m(ve 1 vN)r (7.77)

for the total angular momentum of the electron and nucleus. This result
reduces to L 5 mver under the assumption ve .. vN , but this is equivalent
to assuming the nuclear mass to be fixed in space, which is clearly contra-
dictory to our finite mass model.

7.6  Wilson-Sommerfeld Quantization rule

Planck’s quantization of atomic oscillators and Bohr’s quantization of the
one-electron atom raised questions as to the existence of a fundamental
relationship between these two quantization conditions. In 1916 William
Wilson and Arnold Sommerfeld enunciated a general rule for the quanti-
zation of any physical system having coordinates that are periodic func-
tions of time. Their rule is

(7.78)

where dq is an infinitesimal generalized coordinate, pq is the generalized mo-
mentum associated with the coordinate, nq is a quantum number which takes
on integral values, and the integration is over one complete cycle of the
generalized coordinate. The importance of this quantization rule is its uti-
lization in expanding the range of applicability of the old quantum theory
to all systems exhibiting a periodic dependence on time. The rule is per-
fectly general and, as will be illustrated, capable of  predicting both the
Bohr and the Planck quantization conditions by straight forward analyses
of simple models.

Quantization of Angular Momentum
for the Bohr Electron

As a specific example of the application of the Wilson-Sommerfeld quan-
tization rule, we will consider the Bohr model of the electron moving with
period motion in a circular orbit about a nucleus fixed in space. The best
coordinates to use for the Bohr model of a one-electron atom are the polar

,5dq n hpq qy
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coordinates r and u. According to Equation 7.78 the radial quantization
of the electron is given by

(7.79)

where r is the radius of the electron’s circular orbit. Since the radius is con-
stant, r ? r(t), then dr/dt 5 0 and the left-hand side of Equation 7.79 be-
comes exactly zero. Thus, there is no quantization condition arising from
the r-coordinate.

The quantization of the angular motion is obtained by realizing

(7.80)

where the moment of inertia is given by

Iu 5 mr2. (7.81)

Since the angular speed defined by

(7.82)

is a constant, by substitution of Equations 7.81 and 7.82 into Equation
7.80 we have

pu 5 mr2v . (7.83)

The Wilson-Sommerfeld quantization formula now becomes

which upon substitution from Equation 7.83 becomes

(7.84)

One complete cycle of the angular coordinate u is accomplished by allow-
ing u to take on the values from 0 to 2p. As such, Equation 7.84 becomes

(7.85)
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which upon integration and substitution from Equation 7.8 yields

mvr 5 nu" .

This result is in perfect agreement with the Bohr quantization of the elec-
tron’s angular momentum, as given by Equation 7.24.

The Wilson-Sommerfeld quantization rule is also applicable to the
reduced mass model of the one-electron atom. As before, the radial quan-
tization of the atom is exactly zero, since the radii of the circular orbits
described by the electron and the nucleus are constant in time, that is, d(r
2 x)/dt 5 0 and dx/dt 5 0. Consequently, there is only the need to consider
the quantization of the angular motion of both the electron and nucleus.
In this case, the total angular momentum is given by Equation 7.61, so in-
stead of Equation 7.83 we have

pu 5 mr2v .

The Wilson-Sommerfeld quantization rule now gives

which reduces exactly to the quantization of angular momentum that is
expressed in Equation 7.66, that is

mr2v 5 nu" .

Quantization of a Linear Harmonic Oscillator

As a second example of the applicability of the Wilson-Sommerfeld quan-
tization rule, consider a classical harmonic oscillator oriented along the x-
axis as illustrated in Figure 7.5. By way of a review, the particle of mass
m executes periodic motion from A to 2A back to A, after it is initially dis-
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placed to the right through the distance A. We can take the restoring force
on the particle to be that defined by the well known Hooke’s law

F 5 2kx , (7.86)

where k is the coefficient of elasticity. In the absence of  any frictional
forces, Newton’s second law of motion gives

mẍ 1 kx 5 0, (7.87)

where the double dot above the spatial coordinate denotes a second order
differentiation with respect to time. The total energy of the system is just
the sum of the kinetic energy T and the potential energy V, as given by

E 5 T 1 V. (7.88)

For a conservative field with V 5 V(x), general physics predicts the restor-
ing force to be given by

(7.89)

which can be rewritten as

(7.90)

After substitution from Equation 7.86, integration yields

V 5 kx2 (7.91)

for the potential energy of the linear oscillator. With the kinetic energy
defined by the usual equation,

T 5 mv
2 5 mẋ2, (7.92)
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The total energy (Equation 7.88) becomes

mẋ2 1 kx2 5 E . (7.93)

Actually, this last equation of motion can be obtained directly from Equa-
tion 7.87 by integration. That is,

Integration at this point is accomplished by using

which gives

mv
2 1 kx2 5 E ,

where E is the integration constant
Since the harmonic oscillator is periodic in time with a maximum am-

plitude A, we assume the coordinate solution of Equation 7.87 and Equa-
tion 7.93 to be of the form

x 5 A sin vt , (7.94)

which has a dependence on time as that illustrated in Figure 7.6. Now, di-
rect substitution of  this assumed solution into Newton’s second law
(Equation 7.87) gives

2mv2x 1 kx 5 0,
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which simplifies to

(7.95)

for the oscillator’s angular speed or

(7.96)

for the frequency of the oscillator. Also, the total energy of the oscillator
is now directly obtained from the assumed solution (Equation 7.94) and
Equation 7.93 as

m(vA cos vt)2 1 k(A sin vt)2 5 E ,

which is easily reduced by Equation 7.95 to

(7.97)

In this form the oscillator has only potential energy; whereas, when the
particle is at the origin 0, it has only kinetic energy. Since the total energy
is always equal to the sum of the kinetic and potential energies, it is always
equal to the maximum of either. That is, in general we have

E 5 kA2

5 mv
2
max (7.98)

for the total energy of the oscillator.
Having reviewed the classical theory of the linear harmonic oscillator,

we can now proceed to apply the Wilson-Sommerfeld quantization rule.
In this case the rule (Equation 7.78) becomes

where the momentum is given by 
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With the assumed coordinate solution given in Equation 7.94, we can write
the translational velocity as

from whence we obtain

dx 5 vA cos vt dt.

Thus, the Wilson-Sommerfeld rule gives

where Equations 7.95 and 7.97 have been used, respectively, in obtaining
the last two equalities. The integral in this last expression can be simplified
by letting

u 5 vt

and using Equation 7.82 in the form

Realizing that over one complete cycle t goes from 0 to 2p/v, then our
new variable of integration goes from 0 to 2p. With these substitutions,
Equation 7.99 gives
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where the trigonometric identity

cos2 u 5 cos 2u 1

from Appendix A, Section A.6 has been employed. As the first integral of
Equation 7.100 goes to zero, we obtain

which immediately reduces to

E 5 nhn (7.101)

by using v 5 2pn. Consequently, the total energy of the classical linear
harmonic oscillator is quantized to an integral number n times the energy
hn, which is identical with Planck’s quantum hypothesis given by Equation
6.50.

7.7  Quantum Numbers and 
Electron Configurations

Although the circular orbit theory of the Bohr model was successful in ex-
plaining the line spectrum of  hydrogen-like atoms and the small wave-
length shift arising from the relative motion of the nucleus, very precise
measurements on hydrogen reveal that the energy levels have fine structure.
Bohr considered the more general case of elliptical orbits to explain the
fine structure splitting of spectral lines; however, his results lead to exactly
the same spectral lines as that predicted by the circular orbits theory. In
1915 Sommerfeld was successful in generalizing the Bohr model to include
elliptical orbits and relativistic effects, which explained the fine structure
of the hydrogen spectrum. Although the translational velocities of bound
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7.7 Quantum Numbers and Electron Configurations 268

electrons are considerably smaller than the velocity of light (e.g., 2.18769
3 106/2.99792 3 108 < 7.3 3 1023), the very small relativistic corrections
to the electron mass account for the fine structure splitting of the hydrogen
spectral lines.

Sommerfeld’s results for the quantization of elliptical orbits revealed
that the single energy state of the Bohr model actually consisted of several
energy states. He came up with an additional quantum number and some
special selection rules governing the allowable transitions for the hydrogen
atom. However, the selection rules did not always agree with observed
transitions and it was realized that the mechanics of quanta, as perpetuated
by Planck, Einstein, Bohr, Sommerfeld, and others was in itself  limited.
This started a new era in physical reasoning and the development of the
new quantum mechanics. In as much as the Bohr model and Sommerfeld’s
extensions allow the physicist of  today to quickly approximate physical
reality, we will consider one aspect of Sommerfeld’s generalizations before
discussing the fundamental concepts of quantum mechanics. 

An interesting result of Sommerfeld’s work is that for any of the al-
lowed energy states, the electron can move in any one of a number of el-
liptical orbits. More specifically, for each energy level denoted by the
principal quantum number n there exists n possible orbits for the electron,
as given by

l 5 0, 1, 2, 3, ? ? ? , n 2 1, (7.102)

where l is called the orbital quantum number. Further, all orbits for a par-
ticular value of n have the same energy as that given by Bohr’s equation
(Equation 7.39) for the assumed circular orbits. Thus, for n 5 1 the elec-
tron moves in a circular orbit characterized by l 5 0, whereas for n 5 2
the electron can move in a circular orbit (l 5 0) or an elliptical orbit (l 5
1) of the same total energy. The orbital quantum number was actually ad-
vanced independently by Wilson and Sommerfeld in 1915, and their ar-
guments supported the generalized Wilson-Sommerfeld quantization rule
discussed in the previous section. The quantity l represents the quantum
number of the orbital angular momentum of the electron in both the orig-
inal Wilson-Sommerfeld theory and the later developed quantum mechan-
ics. It specifies the quantization of angular momentum in units of " that
are associated with an electron in any of the allowed states that correspond
to classical elliptical orbits having equal energy but different shapes or ec-
centricities. For example, there are three allowed angular momentum states
(l 5 0, 1, 2) corresponding to three degenerate states of motion for n 5 3
in hydrogen.

Using the results of the Bohr theory and the Sommerfeld generaliza-
tions, we can develop the Bohr-Sommerfeld scheme for the building up of

Orbital QN
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the chemical atoms. Electrons are imagined to exist in energy states called
shells, which are specified by the letter K corresponding to n 5 1, the letter
L to n 5 2, and so on according to the following scheme:

Because of the orbital quantum number l, each shell is further imagined to
be divided into degenerate energy states called subshells, which are specified
by a letter according to the following scheme:

This particular convention for the names of the subshells originated from
the empirical classification of the spectra of alkali metals (lithium, sodium,
and potassium) into series called sharp, principal, diffuse, and fundamental.
Later these series were recognized as resulting from electron transitions to
the l 5 0, 1, 2, and 3 states, respectively, so electrons in the l 5 0, 1, 2, 3,
4, 5, and so forth states have conventionally been described as being in the
s, p, d, f, g, h, and so forth states. The resulting atomic notation specifies
the state of an electron by indicating the value of n before the letter de-
noting l. For example, an electron in the 2s state corresponds to one having
quantum numbers n 5 2 and l 5 0, while a 4f electron has n 5 4 and l 5
0. The atomic states for hydrogen are illustrated in Table 7.4 through quan-
tum numbers n 5 6 and l 5 5.

The atomic notation illustrated in Table 7.4 is further extended to in-
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Energy States

Electron Shells

Angular Momentum
States

Electron Subshells

                                                      SHELLS
                      n 5 1       n 5 2      n 5 3       n 5 4      n 5 5      n 5 6        ???

S  l 5 0 → s     1s           2s           3s            4s           5s           6s             ???  
U  l 5 1 → p                   2p           3p            4p           5p           6p             ???  
B  l 5 2 → d                                  3d            4d           5d           6d             ???  
S  l 5 3 → f                                                   4f            5f            6f              ???  
H  l 5 4 → g                                                                5g           6g             ???  
E  l 5 5 → h                                                                               6h             ???  
L                                                                                                                 
L                                                                                                 
S                                                                                                                      

table 7.4
The atomic notation
for a few electron
states in hydrogen.
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clude an atom containing more than one electron with identical values of
n and l. In this case the number of electrons having identical n and l values
is written as a superscript to the letter denoting l, that is

ATOMIC NOTATION ; nlNo. of Electrons . (7.103)

Consequently, an atom having 6 electrons for which n 5 3 and l 5 1 is said
to have 3p6 electrons. The maximum number of electrons allowed in a shell
is given by

Nn 5 2n2, (7.104)

while the maximum number allowed in a subshell can be obtained from
the equation

Nl 5 2(2l 1 1). (7.105)

These equations are easily justified in quantum mechanics by the inclusion
of two additional quantum numbers, which will be briefly discussed later.
For now, however, we accept Equations 7.104 and 7.105 as empirical equa-
tions in the Bohr-Sommerfeld scheme. As an example of this scheme, con-
sider the M-shell (n 5 3), where we have the existence of the s, p, and d
subshells (i.e., l 5 0, 1, and 2). From Equation 7.104 we find Nn 5 2(3)2 5
18 for the maximum allowable number of electrons in the M-shell, and
these electrons are imagined to fill up the s, p, and d subshells in that order.
For an s-subshell Equation 7.105 gives Ns 5 2(2 ? 0 1 1) 5 2 electrons,
whereas for the p and d subshells we obtain a maximum of 6 (Np 5 2(2 ?
1 11) and 10 (Nd 5 2(2 ? 2 1 1) 5 10) allowed electrons, respectively. Con-
sequently, since the s, p, and d subshells are associated with the M-shell,
we have a maximum number of electrons Nl 5 Ns 1 Np 1 Nd 5 2 1 6 1
10 5 18, which is in agreement with the Nn 5 2n2 calculation. Table 7.5 il-
lustrates the maximum number of electrons in each shell and subshell and
the atomic scheme for n 5 1 through n 5 4. This model suggests the shells
and subshells of atoms are to be filled by electrons in the order presented.
Generalizing Table 7.5 and employing the atomic notation given in Equa-
tion 7.103, we obtain the following Bohr-Sommerfeld scheme for the build-
ing up of chemical atoms:

1s22s22p63s23p63d10 ? ? ?. (7.106)
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The Bohr-Sommerfeld scheme of Equation 7.106 allows us to write
down the electron configuration for a normal unexcited electron. For ex-
ample, in atomic notation the electron configuration for a silicon atom (Z
5 14) is given by

14Si:  1s22s22p63s23p2,

where the atomic number Z 5 14 indicates the number of  protons, and
hence electrons, in a neutral atom of silicon. This scheme works well for
chemical atoms through Z 5 18 (argon); however, a departure occurs for
Z 5 19 (potassium) and the heavier elements. For potassium (Z 5 19) the
electron configuration is given by

19K:  1s22s22p63s23p64s1,

where the nineteenth electron goes into the 4s state instead of the expected
3d state suggested by the Bohr-Sommerfeld scheme (Equation 7.106). This
type of  departure occurs frequently for the rest of  the elements in the
chemical periodic table. However, a scheme known as Paschen’s triangle

table 7.5
Bohr-Sommerfeld
scheme for electron
configurations.

  

                                                                  Maximum                                                        Maximum
                                                                     no. of                                       Name of             no. 
 Values of n        Name of Shell          Electrons           Values of l        Subshell        of Electrons

        1                           K                           2                        0                     s                      2

                                                                          

        2                           L                           8                         
0                     s                      2

                                                                                            
1                     p                      6

         

                                                                                            0                     s                      2

        3                           M                          18                      1                     p                      6

                                                                                            2                     d                      10

                                                                                            0                     s                      2          

                                                                                            1                     p                      6

        
4                           N                           32

                      2                     d                      10        

                                                                                            3                     f                       14

        ?                            ?                            ?                         ?                      ?                       ?

        ?                            ?                            ?                         ?                      ?                       ?

        ?                            ?                            ?                         ?                      ?                       ?
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appears to accommodate most of these departures, except for a few heavy
chemical atoms. This scheme can be obtained from the electron states il-
lustrated in Table 7.4, by imagining diagonal lines of positive slope to be
drawn through the states. This is illustrated in Table 7.6, with the resulting
Paschen scheme given by

1s22s22p63s23p64s23d 104p6 ??? . (7.107)

Using this scheme, the electron configuration for cobalt,

27Co:  1s22s22p63s23p64s23d 7 ,

indicates an unfilled 3d subshell; whereas, zinc (30Zn) has a completely
filled 3d subshell. Irregularities from the Paschen scheme are indicated by
an asterisk in Appendix B.

The departure of electronic states from the Bohr-Sommerfeld scheme
and the justification of the Paschen scheme can not be understood from
the old quantum theory. The correct model that is consistent with experi-
mental spectroscopic data can only be understood with the theory of quan-
tum mechanics and the inclusion of  two additional quantum numbers.
Although we are not theoretically prepared to develop these additional
quantum numbers from first principles, we can consider them empirically
and somewhat superficially. Historically, these additional quantum num-
bers were introduced to explain the observed fine structure of some spec-
tral lines. The third quantum number is associated with the so called
Zeeman effect, where spectral lines are observed to split up into compo-
nents, when the source of radiation is placed in an external B-field. The
orbital magnetic quantum number, m or ml, was introduced to explain the
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Paschen Scheme

table 7.6
Paschen’s triangle of
subshells illustrating an
atomic scheme for
electron configurations.

                                                      SHELLS

                        1s         2s         3s         4s         5s         6s         ???              

                                      2p         3p         4p         5p         6p         ???              

                                                   3d         4d         5d         6d         ???              

                                                                4f          5f          6f          ???              

                                                                             5g         6g         ???              

                                                                                          6h         ???              

S
U
B
S
H
E
L
L
S
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magnetic moment associated with an electron in each of its allowed orbits.
It takes on the values

ml 5 2l, ? ? ? , 0, ? ? ? , l (7.108)

and determines the components of the orbital angular momentum of an
electron in an external magnetic field. Because of the restrictions, due to
the orbital quantum number l, on the orientation of electron orbits, the
orbits are said to be space quantized by the values of ml . O. Stern and W.
Gerlach verified space quantization of atoms in 1921. Later, in 1925 G. E.
Uhlenbeck and S. A. Goudsmit postulated a fourth quantum number,
called the electron spin magnetic number, to account for additional fine
structure in the hydrogen spectrum in the hydrogen spectrum and space
quantization of the atoms. The spin quantum number, s or ms, accounts
for the intrinsic spin of an electron as it orbits the nucleus, which gives
rise to not only an additional magnetic moment, but also an angular mo-
mentum that is independent of any orbital angular momentum. The quan-
tity ms specifies the quantized spin angular momentum of an electron and
has only the allowed values

(7.109)

These values for ms are often referred to as spin up and spin down, respec-
tively.

With the inclusion of magnetic and spin quantizations, we have the
state of motion (or quantum state) of an electron in an atom characterized
by the set

Electron State ; (n, l, ml, ms) (7.110)

of quantum numbers that have restricted values that are summarized in
Table 7.7. This set of  quantum numbers along with the Pauli exclusion
principle, which states that no two electrons in an atom can have identical
sets of quantum numbers, allows us to specify a scheme for the electronic
configuration of the chemical atoms. The model illustrated in Table 7.8 is
only exact for the hydrogen atom; however, all of the chemical atoms are
found to follow the same scheme. In its lowest energy state, the hydrogen
electron is characterized by n 5 1, l 5 0, ml 5 0, and ms 5 21⁄2 or ms 5
11⁄2. This means that there are only two allowed and distinct states of mo-
tion for the hydrogen electron in the K-shell, which differ only in spin ori-
entation. Thus, a maximum of 2 electrons can be accommodated in the
K-shell, having quantum states defined by (1, 0, 0, 21⁄2) and (1, 0, 0, 11⁄2).

, .ms
2

1

2

1
5 1 2
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In the L-shell Table 7.8 gives 8 distinct orbital states allowed for the hy-
drogen electron, which means that 8 electrons can be accommodated with
different quantum numbers in this shell. Similarly, for n 5 3 the M-shell
is seen to be filled by 18 electrons, 2 in the s-subshell (l 5 0), six in the p-
subshell (l 5 1), and 10 in the d-subshell (l 5 2). Thus, the maximum num-
ber of  electrons in the shells and subshells are correctly predicted by
Equations 7.104 and 7.105, respectively. Further, the order in which sub-
shells are filled by electrons is given by spectroscopic data to be
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table 7.7
The restricted values of
the four quantum num-
bers n, l, ml , and ms .

table 7.8
The allowed values of
the four quantum num-
bers for the lowest
three states in the H-
atom.

             Principle           n 5 1, 2, 3, 4, 5, ? ? ?

           Orbital              l 5 0, 1, 2, ? ? ? , n 2 1
           Magnetic          ml 5 2l, 2l 1 1, ? ? ? , 0, ? ? ? , l 2 1, l
           Spin                  ms 5 2 , 11

2
1
2

                            n               l                  ml               ms

                         1               0                 0                 6

                         2               0                 0                 6

                                                         21                 6

                                         1                 0                 6

                                                            1                 6

                         3               0                 0                 6

                                         1              21                 6

                                                            0                 6

                                                            1                 6

                                         2              22                 6

                                                         21                 6

                                                            0                 6

                                                            1                 6

                                                            2                 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2
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1s2s2p3s3p4s3d4p5s4d5p6s4f5d6p7s5f

which is the same as that predicted by the Paschen scheme up to Z 5 88.

review of Fundamental and Derived Equations

A listing of the fundamental and derived equations of this chapter is pre-
sented below, along with newly introduced physical constants and postu-
lates. The derivations of modern physics are presented in a logical listing,
which is similar to their development in each section of the chapter.

FUNDAMENtAL EQUAtIONS—CLASSICAL phYSICS
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EMpErICAL EQUAtIONS

NEW phYSICAL CONStANtS
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FUNDAMENtAL pOStULAtES

1. Bohr’s Four Postulates for the One-Electron Atom
2. Pauli Exclusion Principle

DErIVED EQUAtIONS

Bohr Model—Infinite Nuclear Mass

Bohr Model—Finite Nuclear Mass
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Wilson-Sommerfeld Angular Momentum Quantization

mvr 5 nu" Bohr Model—Infinite Nuclear Mass

mr2v 5 nu" Bohr Model—Finite Nuclear Mass

Wilson-Sommerfeld Quantization—Linear Harmonic Oscillator

QUANtUM NUMBErS AND ELECtrON CONFIGUrAtIONS

n 5 1, 2, 3, 4, 5, ? ? ? Principal Quantum Number

l 5 0, 1, 2, ? ? ? , n 5 1        Orbital Quantum Number

ml 5 2l, ? ? ? , 0, ? ? ? , l Orbital Magnetic Quantum Number

ms 5 2 , 1 Spin Magnetic Quantum Number

Nn 5 2n2 Maximum Number of Shell Electrons
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Nl 5 2(2l 1 1) Maximum Number of Subshell Electrons

n 5 1 2 3 4 5 ? ? ? Atomic Energy States
↓ ↓ ↓ ↓ ↓
K L M N O ? ? ? Names of Electron Shells

l 5 0  2 3 4 5 ? ? ? Angular Momentum States
↓  ↓  ↓  ↓  ↓
s  p  d f g ? ? ? Names of Electron Subshells

nlNo. of Electrons Atomic Notation for Electron States

1s,2s,2p,3s,3p,3d ? ? ? Bohr-Sommerfeld Scheme

1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f ? ? ?Paschen Triangle Scheme

1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f ? ? ? Quantum Mechanic’s Scheme

7.1 Classically, an electron in an orbit about a fixed proton obeys Kepler’s
third law, which has the form T 2 5 (CONSTANT) r3. Here T is the electron’s
orbital period and r is the mean distance of separation between the electron
and proton. Assuming a circular orbit for the electron, show that the con-
stant in Kepler’s law is 16p3e0m/e2 for the Rutherford model of the hydrogen
atom.

Solution:
From fundamental relationships the period of  the electron’s orbit is
given by (see Equation 7.9)

so that the square of the period is

Also, with orbital stability for 1
1H given by Equation 7.6,

the velocity squared can be solved for and substituted into the equation
for T 2 to obtain

.
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Since k ; 1/4pe0 (see Equation 5.49), our last equation gives the de-
sired result.

7.2 Like Problem 7.1, find the constant in Kepler’s third law for the re-
duced mass model of the hydrogen atom.

Answer: 

7.3 After deriving the generalized equations for the Bohr radii (Equation
7.25) and Bohr velocities (Equation 7.28), find the principal quantum
number and translational speed of an electron encircling a single fixed pro-
ton with a 1 m radius.

Solution:
Knowing Z 5 1 and rn 5 1 m, we want to find n and vn. From Equa-
tion 7.25 we have

The translational speed for such a Bohr electron is given by Equation
7.28,

where the value of v1 from Equation 7.30 has been used.

7.4 Show that the dimensions of the derived expressions for the Bohr ra-
dius (Equation 7.26) and the Bohr velocity (Equation 7.29) reduce to those
of length and length divided by time, respectively.

Answer: m, m/s

7.5 Show that the fine structure constant a is dimensionless. Find the ratio
of the Bohr radii to the reduced Compton wavelength ("/mc) and illustrate
algebraically how it is related to a.
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Solution:
From Equation 7.32 we have

Also, with l9C ; "/mc and Equation 7.25 we obtain

7.6 After deriving the generalized equation for the Bohr frequencies
(Equation 7.35), find the Bohr electron’s radius, translational speed, and
orbital frequency for Z 5 12 and n 5 6.

Answer: 1.58753 Å, 4.37538 3 106 m/s, 4.38608 1015 Hz

7.7 After deriving the generalized equation for the Bohr energies (Equa-
tion 7.39), find the translational speed and energy of a Bohr electron for
Z 5 5 and n 5 10.

Solution:
For n 5 10 and Z 5 5, the speed of  the electron is obtained from
Equations 7.28 and 7.30, that is

while the energy is given by Equations 7.39 and 7.41
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Problems 282

7.8 Show that the Bohr electron’s binding energy in the ground state of a
hydrogen atom is directly proportional to a2.

Answer: E1 5 2 mc2a2.

7.9 If  the electron in a hydrogen atom is replaced by a negative muon (mm

5 207me), what changes occur in the allowable radii, velocities, and ener-
gies?

Solution:
Since only the mass of  the negatively charged particle in the Bohr
model has changed, the generalized equations for the radii and ener-
gies are the same as Equations 7.25 and 7.39, except m is replaced
with mm. There is no change in the Bohr velocities, since Equation
7.28 is independent of the electron’s mass. Accordingly, our equation
for rn takes the form of

where

Likewise, the equation for En is of the form

with )E91) given by

7.10 A hydrogen electron is in its first excited state. Find the ionization
energy of the atom and the frequency of a photon of this energy.

Answer: E2 5 23.40115 eV, n 5 8.22388 3 1014 Hz

7.11 If  the energy of a hydrogen electron is 20.544 eV, find the electron’s
principal quantum number n and orbital frequency nn.

Solution:
With Z 5 1 and En 5 20.544 eV, Equation 7.39 gives n as
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The orbital frequency for the hydrogen electron in the n 5 5 state is
most easily obtained from Equation 7.42, that is

Alternatively, Equation 7.35 could be used to directly calculate nn for
n 5 5 and Z 5 1.

7.12 If the radius and orbital speed of a Bohr electron is 4.232 Å and 1.10
3 106 m/s, respectively, what are the values for n and Z ?

Answer: n 5 4, Z 5 2

7.13 Find the energy of a photon required to excite a hydrogen electron
from the K-shell to the M-shell and from the L-shell to the O-shell.

Solution:
The absorbed or annihilated photon would have an energy given by
the absolute magnitude of Equation 7.45, that is

For the K to M transition (ni 5 1 and nf 5 3) we obtain

while the L to O transition (ni 5 2 and nf 5 5) requires a photon of
energy
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7.14 If  a hydrogen electron makes a single transition form the O-shell to
the M-shell, emitting the second spectral line of the Paschen series, what
is the energy and wavelength of the emitted photon?

Answer: e 5 0.967438 eV,  l 5 1.28158 3 1026 m

7.15 Compute the wavelengths for the third, fourth, and fifth lines of the
Lyman series of hydrogen.

Solution:
For the Lyman series nf 5 1 and the three spectral lines correspond
to ni 5 4, 5, 6. Thus, direct substitution into Equation 7.50,

gives the following:

7.16 Find the wavelengths of the first three spectral lines of the Paschen
series.

Answer: 18747.7 Å,  12815.8 Å,  10936.2 Å

7.17 Beginning at n 5 7 an electron in a hydrogen atom makes six succes-
sive quantum jumps as it cascades downward through every lower energy
level. Find the wavelength of each of the six photons emitted.

Solution:
With Z 5 1 and lB ; 911.346 Å, Equation 7.50 immediately yields
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7.18 A ground states helium electron annihilates a 243 Å photon and then
emits a photon of 2.46 3 1015 Hz. What is the electron’s final state binding
energy in eV?

Answer: Ef 5 213.6 eV

7.19 A ground state hydrogen atom absorbs 10.20345 eV of excitation en-
ergy. Afterward, the electron absorbs a 4860.512 Å photon. What is the
binding energy of the electron’s final state?

Solution:
With ni 5 1, Z 5 1, EABSORBED 5 10.20345 eV, and le 5 4860.512 Å
(absorbed), we have the final energy given by

Thus, after being excited to the n 5 2 state (see Table 7.3) the electron
annihilates a photon of energy

Now, substitution into the equation for Ef gives

Ef 5 20.850288,

which corresponds to nf 5 4.

7.20 In the reduced mass model of the one-electron atom, the centripetal
force on the nucleus must be equal in magnitude and oppositely directed
to the centripetal force on the electron. Show that an application of New-
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ton’s third law of motion on this model of the atom reduces to the defini-
tion of the center of mass of the system, as given by Equation 7.54.

Answer:     Mx 5 m(r 2 x)

7.21 Verify that the dimension of the Rydberg constant is inverse length
and show that the product RHr1 is dimensionless, as given by a/4p.

Solution:
From Equation 7.51 we have

so the units are obviously those of inverse wavelength or m21. From
Equation 7.51, 7.26, and 7.40 we obtain

where Equation 7.32 has been used in obtaining the last equality. This
result is clearly the same whether we use the fixed nuclear mass model
or the finite nuclear mass model.

7.22 Name the first four shells of the Bohr-Sommerfeld atomic model and
calculate the maximum number of electrons allowed in each shell.

Answer: K → 2,  L → 8,  M → 18,  N → 32

7.23 Using the atomic notation defined in Equation 7.103 and Paschen’s
triangle, write down the electronic configuration for argon (Z 5 18), iron
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(Z 5 26), and silver (Z 5 47).

Solution:
For the three elements given we have

18Ar:  1s22s22p63s23p6

26Fe:  1s22s22p63s23p64s23d 6

47Ag: 1s22s22p63s23p64s23d 104p65s24d 9

7.24 Name each of the subshells associated with the N-shell and calculate
the maximum number allowed in each subshell.

Answer: s → 2,  p → 6,  d → 10, f → 14

7.25 Using the Pauli exclusion principle and Equation 7.110, write down
the eight quantum states allowed for electrons in the L-shell.

Solution:
For the L-shell n 5 2 and the quantum numbers l, ml, and ms have al-
lowed values as given in Table 7.8. Accordingly, the allowed quantum
states are given by
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Introduction

The preceding chapters were concerned with departures from classical
views of relative motion, matter, and electromagnetic radiation in the con-
ceptualization and theoretical description of  natural phenomena. The
classical wave model of light was found to have limited applicability and,
consequently, a particle view of radiation as consisting of quanta was pos-
tulated by Einstein. The wave and particle models were demonstrated to
be complementary in that together they provide a complete description of
all observed radiation phenomena. In this chapter it is postulated that a
dual wave-particle behavior is characteristic of not only electromagnetic
radiation but also fundamental particles, such as electrons and protons.
As will be discussed, this newly postulated wave nature of matter necessi-
tates the description of a particle as a matter wave, which is not localized
in space and time.

We begin with a discussion of the classical wave equation and its so-
lutions for a vibrating string. This review of the classical wave equation
will prove to be most instructive, as later in E. Schrödinger’s quantum me-
chanics the wave function that characterizes a particle will be found to be
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Scanning tunneling microscope image of a circular structure created
from 48 iron atoms on a copper surface. The wave patterns are
formed by copper electrons confined by the iron atoms.
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Ch. 8  Introduction to Quantum Mechanics288

a solution to an analogous partial differential equation. Before introducing
de Broglie’s postulates for the frequency and wavelength of particles, our
review of classical waves is extended to include a generalized theoretical
discussion of  traveling waves. After detailing de Broglie’s hypothesis for
the wave nature of particles, we consider a confirmation of the hypothesis
by a diffraction experiment involving electrons and its consistency with
Bohr’s quantization hypothesis and Einsteinian relativity. Our next subject
of inquiry considers matter waves and the principle of linear superposition,
followed by a theoretical discussion of group, phase, and particle velocities.
Finally, the famous Heisenberg uncertainty principle is developed from gen-
eral observations and insights on matter waves.

8.1  Equation of Motion for a Vibrating String

Before describing how waves can be associated with particles, it is instruc-
tive to review classical waves, such as those allowed on a vibrating string.
Consider the string of mass M and length L in Figure 8.1, where its ends
are fastened at the points x 5 0 and x 5 L. As a simplifying assumption,
we allow the vibrations of the string to be restricted to the x-y plane, such
that each point on the string can move only vertically. The string is also
assumed to be of uniform linear density defined by

(8.1)

which allows the linear density of an elemental segment of length dx and
mass dm to be expressed as

(8.2)
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Figure 8.1
The vibrating string fas-
tened at x 5 0 and x
5 L.
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Further, the amplitude of vibration is assumed to be sufficiently small such
that the tension T in the string can be considered as essentially constant.
With these assumptions and Figure 8.1, the net longitudinal (horizontal)
force acting on an elemental string segment of length dx is given by 

dFx 5 T cos (u 1 du) 2 T cos u < 0,

which is essentially zero for very small angular displacements u (i.e., cos u
< 1 and cos (u 1 du) < 1). This result is obviously necessary for consis-
tency with our initial simplifying assumption, which allows each elemental
segment of the string to experience only transverse (vertical) motion. Since
sin u < u and sin (u 1 du) < u 1 du for small angular displacements, the
net transverse force acting on the segment dx is given by

dFy 5 T sin (u 1 du) 2 T sin u
< T(u 1 du) 2 Tu
5 Tdu. (8.3)

From Newton’s second law of motion and Equation 8.2, this force is given
by

In the last equality the transverse acceleration has been expressed by the
second order partial derivative

(8.5)

since the transverse or vertical displacement of any point on the string is
a function of both x and t, that is, y 5 y(x, t). Thus, by equating Equations
8.3 and 8.4 the equation representing the transverse motion of an elemen-
tal segment dx of the string is obtained as 

which is easily rearranged in the form

(8.6)
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Ch. 8  Introduction to Quantum Mechanics290

The equation of motion represented by Equation 8.6 can be expressed in a
more recognizable form by operating on

with d/dx. That is,

thus we obtain

which under the small angle approximation becomes

(8.7)

With this result for du/dx, Equation 8.6 yields the more recognizable wave
equation

(8.8)

Since the fundamental units of m/T are inverse velocity squared, we take
the liberty of defining

(8.9)

which will later be identified as the phase velocity with which traveling
waves propagate on a long string. From Equations 8.8 and 8.9 we obtain
the well known second order partial differential equation representing the
equation of motion for the vibrating string

(8.10)
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Although this equation was derived for the vibrating string, it should be
recognized as the classical wave equation, whose solutions y(x, t) can rep-
resent waves traveling along a string or wire, sound waves propagating
through a material medium, or electromagnetic waves propagating in a
vacuum. In all cases the phase velocity w is dependent on only the physical
properties of the medium and in the case of light waves in a vacuum w 5
c. The solution y(x, t) to Equation 8.10 must be obtained for any given
initial position y(x) and velocity v(x) of each point along the string in con-
junction with the imposed boundary conditions. That is, at time t 5 0, y(x, t)
must satisfy the initial conditions

y(x, 0) 5 y0(x), (8.11a)

(8.11b)

and also the boundary conditions

y(0, t) 5 y(L, t) 5 0. (8.12)

These boundary conditions simply express the fact that the string is tied at
both ends and the displacements at these two points must always be zero.
The particular solution of Equation 8.10 will be the usual standing wave,
which will be obtained in the next section by the linear superposition of
traveling waves.

8.2  Normal Modes of Vibration for 
the Stretched String

The solution to the classical wave equation will be presented in detail, since
the mathematical procedures are useful in Schrödinger’s quantum mechan-
ics. One method for solving the second order partial differential equation
is the method of separation of variables, which consists in looking for so-
lutions of the form,

y(x, t) 5 f(x)h(t). (8.13)

Taking derivatives of Equation 8.13 with respect to x and t gives
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which can be substituted into Equation 8.10 to obtain

(8.14)

Since the left side of this equation is a function of x only and the right
side is a function of t only, both sides may be set equal to a constant. De-
ciding what physical constant to use is easily facilitated by observing that
the right side expresses acceleration divided by a displacement. Conse-
quently, the constant will have units of 1/s2 and should be negative valued,
as acceleration must be opposite the displacement at every value of t for
the string to return to its equilibrium position. Since angular velocity v
has fundamental units of 1/s, then the constant chosen is v2:

(8.15a)

(8.15b)

These equations can be rewritten as

(8.16)

(8.17)

which are well known and relatively simple differential equations to solve.
Equations 8.16 and 8.17 are of the same form as the equation of mo-

tion (Equation 7.87) for the linear harmonic oscillator of Chapter 7. Al-
though the sine function was used as a solution in that problem, the
general solution to equation 8.16 should be a combination of sine and co-
sine functions of the form

h(t) 5 A cos vt 1 B sin vt, (8.18)

where A and B are arbitrary constants. The solution to Equation 8.17 is
very similar and of the form
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(8.19)

but it must satisfy the boundary conditions expressed by Equation 8.12.
That is, at x 5 0, f (x) of Equation 8.19 must equal zero, which can only
be satisfied if

C 5 0. (8.20)

Consequently, Equation 8.19 reduces to

(8.21)

The second boundary condition requires f(x) to be equal to zero at x 5 L.
This condition is satisfied when

(8.22)

which requires that

(8.23)

Considering the vibrating string in its first few normal modes, as il-
lustrated in Figure 8.2, we have the general equation

(8.24)

suggested for the wavelength as a function of the vibrating mode n. From
this equation the condition for standing waves is clearly that the length of
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the string must be an integral number of half  wavelengths. Substituting
Equation 8.24 into Equation 8.23 gives

where k is the wave number or propagation constant originally defined in
Equation 6.3.

Using the result expressed by Equation 8.25 in Equation 8.21, the so-
lution to Equation 8.17 is

f (x) 5 D sin kx, (8.26)

while the solution to Equation 8.16 is given by Equation 8.18. Using Equa-
tions 8.26 and 8.18 for the assumed general solution (Equation 8.13) and
then substituting into the equation of motion of the vibrating string (Equa-
tion 8.10) gives

y(x, t) 5 AD sin kx cos vt 1 BD sin kx sin vt. (8.27)

Since the coefficients AD and BD are arbitrary constants, we can let AD
; A and BD ; B and express the solution as

y(x, t) 5 A sin kx cos vt 1 B sin kx sin vt. (8.28)

This solution is representative of  the normal mode of vibration of the
string, where each point on the string vibrates at the same frequency

(8.29)

The initial position and velocity at t 5 0 is easily obtained from the initial
conditions (Equations 8.11a and 8.11b) and Equation 8.28 to be

y0(x) 5 A sin knx , (8.30)

v0(x) 5 vnB sin knx , (8.31)

where the subscript on v and k has been introduced to signify their de-
pendence on the mode of vibration n. Only with these initial conditions
will the string vibrate in one of its normal modes. However, a more general
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solution may be obtained by invoking the principle of linear superstition.
That is, by adding solutions of the type given by Equation 8.28, using dif-
ferent constants A and B for each normal mode, we have

(8.32)

with initial conditions

(8.33)

(8.34)

as the general solution to Equation 8.10 that satisfies the boundary con-
ditions expressed by Equation 8.12. Actually, the general solution is only
completely known when each of the infinite number of coefficients An and
Bn are known. These may be determined directly from the initial condi-
tions, as given in Equations 8.33 and 8.34, by expressing kn as np/L, mul-
tiplying by sin (mpx/L)dx, and integrating from x 5 0 to x 5 L to obtain

(8.35)

(8.36)

8.3  Traveling Waves and the Classical Wave Equation

Although the general solution to the classical wave equation has been ob-
tained, it is interesting to note that Equations 8.16 and 8.17 also have com-
plex solutions

h(t) 5 Ae6jvt, (8.37)

f (x) 5 e jkx, (8.38)

where j ; Ï21·. These solutions are easily verified by direct substitution
into the respective partial differential equations and realizing that
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(8.39)

Consequently, the classical wave equation (Equation 8.10) has complex
solutions of the form

y(x, t) 5 Ae j(kx 6 vt). (8.40)

As only the real part of a complex solution is of physical significance, in
the classical case the solutions expressed by Equation 8.40 are of the form

y(x, t) 5 A cos (kx 1 vt), (8.41a)

y(x, t) 5 A cos (kx 2 vt). (8.41b)

Since the sine and cosine are similar mathematical functions, then

y(x, t) 5 A sin (kx 1 vt), (8.42a)

y(x, t) 5 A sin (kx 2 vt) (8.42b)

are also possible solutions. Even though all of these solutions (Equations
8.40 to 8.42) satisfy the equation of motion of a vibrating string, they, un-
fortunately, do not satisfy all of  the initial and boundary conditions ex-
pressed by Equations 8.11 and 8.12. However, they are of  considerable
interest in that they represent waves traveling down the string, as will be
directly illustrated.

According to the solutions given above, any particular point on a vi-
brating string will move with simple harmonic motion in time with am-
plitude A and frequency v. Instead of  using the exponential, sine, or
cosine functions explicitly, let the solutions be generalized to the form

y1(x, t) 5 Af (kx 1 vt) (8.43a)

and y2(x, t) 5 Af (kx 2 vt). (8.43b)

Since angular velocity v is related to wave number k by the relation (see
Equation 8.25 or 8.39)

v 5 kw,

then the generalized solutions can be expressed as

y1(x, t) 5 Af (kx 1 kwt)

and y2(x, t) 5 Af (kx 2 kwt).
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Defining the phase of these waves by

a ; x 1 wt (8.44a)

and b ; x 2 wt, (8.44b)

our generalized solutions become

y1(x, t) 5 Af (ka) (8.45a)

and y2(x, t) 5 Af (kb). (8.45b)

For a constant value of the phase a, y1(x, t) of Equation 8.45a has a fixed
value. That is, for a constant phase da = 0 and Equation 8.44a gives

dx 1 wdt 5 0.

Solving this result for the phase velocity,

(8.46a)

results in w being negative valued. This means that the value of y+ (x, t) at
the point x 1 dx at the time t 1 dt will be the same as its value at the point
x at time t. Thus, the wave moves along the string in the negative x-direc-
tion with a constant phase velocity. Likewise, from Equation 8.44b

dx 2 wdt 5 0

for a constant value of the phase b. Consequently, for the solution given
by Equation 8.43b

(8.46b)

and the wave is recognized as moving along the string in a positive x-di-
rection with constant phase b.

The above results suggest that the solutions of the general form given
by Equations 8.43a and 8.43b represent traveling waves moving in either
the negative or positive x-direction, respectively. These solutions can be
combined and expressed as

y(x, t) 5 f (kx 6 vt), (8.47)
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where both directions of the phase velocity are included and f represents
either a complex exponential, sine, or cosine function. In what follows, a
general mathematical procedure is presented for obtaining the wave equa-
tion for which y(x, t) is a solution. Even though we know the answer, such
a procedure will prove useful later in the development of  Schrödinger’s
quantum mechanics. The wave equation for which y(x, t) of Equation 8.47
is a solution is directly obtainable by defining

g ; kx 6 vt (8.48)

and taking a few partial derivatives. The second order partial derivative
of y(x, t) with respect to x is just

where the explicit form of g has been used in reducing −g/−x. The second
order partial derivative of y(x, t) with respect to t is obtained in a similar
manner as

(8.50)

From Equations 8.49 and 8.50 we have
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which means

(8.51)

Since k 5 v/w (Equation 8.25), the result of Equation 8.51 reduces exactly
to the previously derived classical wave equation. Certainly, then, any wave
traveling with a phase velocity w is a solution to the classical wave equa-
tion.

8.4  De Broglie’s Hypothesis

Electromagnetic radiation has been shown to possess dual properties of
wave and particle-like behavior. This dual nature of light is difficult to ac-
cept, since a wave and a particle are fundamentally different in classical
physics. Typically, a wave is characterized by an amplitude  A, intensity  I,
phase velocity  w, wavelength  l, and frequency  n; whereas, mass  m, ve-
locity  v, momentum  p, and energy  E are specified for a particle. The
conceptual difficulty arises because at any instant in time a particle is con-
sidered to occupy a very definite position in space, but a wave is necessarily
extended over a relatively large region of space. The acceptance of  this
dual property is necessary, however, for the satisfactory explanation of all
physical phenomena observed and quantitatively measured for the radia-
tion of the electromagnetic spectrum.

The connection between the wave and particle behavior of electro-
magnetic radiation was postulated by Einstein to be

e 5 hn, (6.53)

where e is the photon’s energy and n is the frequency of  the associated
wave. We have seen how this fundamental postulate of nature has been of
importance in the development of the relativistic Doppler effect (Chapter
6, Section 6.8), the photoelectric equation, the Compton equation, and
the Bohr model of the hydrogen atom. In fact, the relationship between a
particle-like momentum and wavelength was obtained in our discussion
of the Compton effect (Chapter 6, Section 6.7) as

(6.64)
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by a utilization of Einstein’s photon postulate. Although this dual property
appears contradictory, these two equations allow the particle-like proper-
ties of energy and momentum for a photon to be directly obtained from
the wave characteristics of frequency and wavelength, respectively.

Believing symmetry and simplicity in physical phenomena to be fun-
damental in nature, Louis de Broglie considered ordinary particles like
electrons and alpha particles as manifesting wave characteristics. In his
1924 dissertation de Broglie considered matter waves (originally called pilot
waves) as being associated with particles and the motion of a particle as
being governed by the wave propagation properties of the associated mat-
ter waves. By analogy with the modern view of the dual nature of electro-
magnetic radiation, de Broglie postulated the frequency and wavelength
of a particle’s associated matter wave to be determined by the particle’s
energy E and momentum p, respectively, by

(8.52)

(8.53)

This hypothesis concerning the wave properties of matter was fundamen-
tally necessary for the later development of the modern quantum theory.

It should be emphasized that de Broglie’s hypothesis was based en-
tirely on his physical insight of nature and constituted a serious departure
from conventional thinking. In fact, at that time there was no direct exper-
imental evidence available to support his hypothesis of  particles having
wave-like characteristics. It was three years (1927) after de Broglie pub-
lished his dissertation on the postulated wave nature of particles that ex-
perimental confirmation was reported by C. Davisson and L. Germer of
Bell Telephone Laboratories. Davisson and Germer were studying the scat-
tering of a beam of electrons from a single large crystal of nickel. The re-
sults of  their experiment suggested that electrons were being diffracted
from crystal planes, much like x-ray diffraction obeying the Bragg condi-
tion (Chapter 6, Section 6.3) for constructive interference. In one particular
experiment a beam of 54 V electrons, obtained from a hot cathode, were
scattered at a 658 angle with respect to the crystal planes. The atomic spac-
ing of the planes was measured by x-ray diffraction to be 0.91 Å. Thus,
the wavelength associated with the electrons is directly calculable using the
equation for Bragg diffraction,

nl 5 2d sin u, (6.31)
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developed in Section 6.3. With n 5 1, the electron wavelength is given by

l 5 2(0.91 Å) sin 658 5 1.65 Å. (8.54)

This wavelength reported by Davisson and Germer is very nearly predicted
by de Broglie’s wavelength postulate. The energy of the beam of electrons
is obtained from the electric field between two electrodes. Consequently,
using the same reasoning as presented in Chapter 5 leading to Equation
5.13, the electrons have kinetic energy given by

where e is the charge of an electron and V 5 54 V is the electrical potential
between the electrodes. From this relation and de Broglie’s wavelength pos-
tulate we obtain

which is very close to the Davisson and Germer observed wavelength given
in Equation 8.54. The slight difference is attributable to the refraction of
electron waves at the air-crystal boundary, which we have ignored in our
theoretical calculation. The kinetic energy of an electron actually increases
slightly when it enters the nickel crystal, with the net effect of the associ-
ated de Broglie wavelength being slightly less than that predicted by Equa-
tion 8.55. Despite this slight discrepancy between the theoretical and
experimental results, the Davisson and Germer diffraction experiment con-
firmed de Broglie’s wave hypothesis for particles. Since that time, the dif-
fraction of atomic particles and atoms has been frequently demonstrated
and widely used in studying crystal structure.

Consistency with Bohr’s Quantization Hypothesis

Although de Broglie’s frequency and wavelength postulates were not im-
mediately confirmed by experimental observations, they did provide a fun-
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damental explanation for Bohr’s apparently arbitrary quantization con-
dition governing the discrete energy levels of  an electron in a hydrogen
atom. In the previous classical consideration of a string of length L that
is fastened at both ends, standing waves occurred when the length of the
string was exactly equal to an integral value of half  wavelengths, as illus-
trated in Figure 8.2. Now, however, the consideration is to obtain the con-
dition for de Broglie standing waves associated with an electron traveling
in a circular orbit of radius r and length 2pr. If  a string was formed into
a circular loop, waves could be thought of  as propagating around the
string in both directions, but now there would be no reflections. Conse-
quently, as suggested by Figure 8.3, the condition for standing waves in a
circular path is

2pr 5 nl,            n 5 1, 2, 3, ? ? ? . (8.56)Standing Waves

 
 

 

 

      

                               

 

  

 

  

  
 

n = 2

n = 3

n = 1

2pr = 2l

2pr = 3l2pr = l

Figure 8.3
The electron orbit
(blue line) in a Bohr
atom and its associated
de Broglie standing
waves (black line).
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Substitution of the de Broglie wavelength postulate (Equation 8.53) into
this equation immediately yields

This can be rewritten as

pr 5 n",

where " is the normal Plank’s constant h divided by 2p. Since the electron
momentum is just mv, the last equation becomes

mvr 5 n", (8.57)

which is precisely Bohr’s quantum hypothesis (Equation 7.24) presented
in Chapter 7. In essence we have that Bohr’s quantization condition could
be replaced by the more fundamental de Broglie wavelength postulate.

The de Broglie frequency postulate is also completely consistent with
the Bohr model of the hydrogen atom. To realize this, we must first recog-
nize that the phase velocity w, defined by

w ; ln, (8.58)

can be expressed in terms of the electron’s energy E and momentum p,

(8.59)

by direct substitution of de Broglie’s wavelength and frequency postulates.
Since the nonrelativistic energy of a particle is given by

(8.60)

then substitution into Equation 8.59 immediately yields

(8.61)

Thus, the phase velocity w is directly related to the particle velocity v by
the relation
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(8.62)

by substituting p 5 mv in Equation 8.61.Returning to de Broglie’s fre-
quency postulate, we can express the energy of an electron in a hydrogen
atom as

E 5 2hn, (8.63)

where the negative sign simply indicates the electron is in a stable bound
circular orbit about the proton. Since n 5 w/l from Equation 8.58, then
from Equations 8.62 and 8.63 we have

But, from Equation 8.56 l 5 2pr/n, thus our energy equation becomes

where the definition for " has been utilized. Clearly, the electron’s energy
E, velocity v and radius r are dependent on the principal quantum number
n. As such, we rewrite the energy equation using a subscript notation as

(8.65b)

From Chapter 7,Section 7.3 rn and vn are given by

(7.25)

and (7.28)

respectively. Substitution of these quantities into Equation 8.65b imme-
diately yields
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(8.66)

which is exactly the electron’s energy in any of the allowed orbits given by
Bohr’s model of the one-electron atom. The de Broglie hypothesis is cer-
tainly consistent with Bohr’s theory; however, it is restrictive in that it ig-
nores the three spatial dimensions of a wave propagating though space.
Although the description of the hydrogen electron by a de Broglie wave is
somewhat limited and unsatisfactory, the above demonstrated consistency
is astonishing and suggests that the de Broglie hypothesis is important in
the description of atomic particles.

Consistency with Einsteinian Relativity

It needs to be emphasized that the relationship between the de Broglie
wavelength and frequency postulates and the Bohr model of the hydrogen
atom does not verify de Broglie’s hypothesis. Additional confidence in the
fundamental validity of de Broglie’s hypothesis is attainable, however, by
realizing that it is totally compatible with Einstein’s special theory of rel-
ativity. This consistency can be demonstrated by considering a particle to
be in motion along the common X-X9 axis of two inertial systems S and
S9, which are receding from one another at a uniform speed u. To differ-
entiate between the traveling wave solutions y(x, t) for the classical wave
equation and the de Broglie waves associated with a particle, the latter will
be represented by the Greek letter psi, C. The quantity C characterizes de
Broglie waves and is called a wave function in quantum mechanics. Its
properties are fully discussed in the next chapter, but for now we use it to
describe a generalized wave displacement of our particle as

C9(x9, t9) 5 A9f 9(k9xx9 2 v9t9) (8.67)

in the S9 system and as

C(x, t) 5 Af (kxx 2 vt) (8.68)

in inertial system S. The subscript x has been added to k and k9 to represent
the one-dimensionality of the de Broglie wave. Since C9 and C are analo-
gous to y9 and y in Einsteinian relativity, then from the Lorentz transfor-
mation we know that C9 5 C, A9 5 A and Equations 8.67 and 8.68 can
be combined as

f(kxx 2 vt) 5 f 9(k9xx9 2 v9t9). (8.69)
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Further, substitution of the Lorentz transformations

x9 5 g(x 2 ut), (3.1a)

(3.5)

into Equation 8.69 gives

(8.70)

where the coefficients of x and t must necessarily be equal. That is, the co-
efficients of x in Equation 8.70 can be equated to obtain

(8.71)

while the coefficients of t give

v 5 g(v9 1 k9xu). (8.72)

Equations 8.71 and 8.72 represent the relativistic transformation of
particle wave properties between two inertial systems S and S9. They are
completely compatible with the momentum and energy transformation
equations of Einsteinian relativity under the de Broglie hypothesis. This is
immediately demonstrable by realizing the particle’s momentum and energy
are expressible under de Broglie’s postulates as

(8.73a)

and (8.74a)

in system S9 and, similarly, by

px 5 "kx , (8.73b)

E 5 "v (8.74b)

in system S. Consequently, Equations 8.71 and 8.72 can be multiplied by
" and immediately reduced to

9 5t t
c

xu
2

g 2c m

xx u ,2 5 9 1
9

2 9 1f k x t f k
c

u
x tx

2
v g

v
g v9 9k^ c ^h m h; E

x 1 ,5 9
9

k k
c

u
x

2
g

vc m

x x9 5
9

5
9

5 9p
h h

k
2

2
&

l p l

p

29 5 9 5 5 9E h
h

2
&n

p
pn v

De Broglie—
Momentum

De Broglie—Energy

Evaluation Copy 

Not Licensed for 

Instructional Use 



(8.75)

and (8.76)

respectively, by utilizing the relations of Equations 8.73 and 8.74. These
results are identical to the momentum and energy transformation equa-
tions derived in Chapter 4 for Einsteinian relativity. Unlike classical
physics, modern physics recognizes particles as having dual properties of
particle and wave-like behavior, which are properly consolidated under the
de Broglie hypothesis.

8.5  Matter Waves

In an attempt to understand the physical meaning of matter waves, we will
consider the simplest type of  wave motion discussed previously. A de
Broglie wave propagating along the positive X-axis with angular velocity
v, wavelength l, and constant amplitude A could be represented by

C(x, t) 5 A cos (kx 2 vt). (8.77)

In this representation we have definite knowledge of  the momentum
(Equation 8.73b), energy (Equation 8.74b), and phase velocity w, since w
5 v/k from Equation 8.25. If  we were to plot this wave function versus
the position coordinate x at a constant t, we would observe that C(x, t)t0
has a sinusoidal dependence on x with a wavelength l 5 2p/k, as illus-
trated in Figure 8.4a.Likewise, if  x is held constant, C(x, t)x0

is observed
to oscillate in time t with a frequency n 5 v/2p, as represented by Figure
8.4b. Since k is related to momentum, Figure 8.4a suggests that a funda-
mental relationship exists between position x and momentum p. Likewise,
Figure 8.4b suggests a similar fundamental relationship exists between en-
ergy E and time t. Unfortunately, if  we attempt to describe the motion of
a particle by utilizing the wave function of  Equation 8.77, we obtain a
rather puzzling physical interpretation. That is, C(x, t) as illustrated in
Figure 8.4 can be viewed as a wave packet of infinite extent and, conse-
quently, the exact position of the particle is not specified. Even though we
know the particle’s momentum exactly, we know nothing about its position
at time t 5 t0 —the wave is not localized anywhere along the X-axis from
2` to 1`.

In an attempt to localize the wave, let us consider adding two such
waves together. If  we let the first wave be represented by

C1(x, t) 5 A cos (kx 2 vt) (8.78a)
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and the second one by

C2(x, t) 5 A cos [(k 1 Dk)x 2 (v 1 Dv)t], (8.78b)

then the linear superposition of the two functions is given by

C(x, t) 5 C1(x, t) 1 C2(x, t). (8.79)

The qualitative features of adding two monochromatic waves of identical
amplitudes and slightly different frequencies are illustrated in Figure 8.5.
The quantitative aspects of Equation 8.79 are obtained by substitution of
C1(x, t) and C2(x, t) to obtain

C(x, t) 5 A{cos (kx 2 vt) 1 cos [(k 1 Dk)x 2 (v 1 Dv)t]}.

Using the definitions

a ; kx 2vt and         b ; (k 1 Dk)x 2 (v 1 Dv)t (8.80)

and the trigonometric identity

(8.81),21 5
1 2

cos cos cos cos
2 2

a b
a b a bc cm m
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we obtain a rather interesting result of

which immediately reduces to

Allowing that Dk ,, k and Dv ,, v, Equation 8.82 becomes

(8.83)
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where cos (kx 2 vt) represents phase waves and cos (1⁄2Dkx 2 1⁄2Dvt) rep-
resents the group waves with

(8.84)

(8.85)

The physical meaning of phase and group waves is suggested in Figure
8.6, where C(x, t) of Equation 8.83 is plotted as a function of x for a fixed
value of time t 5 t0 .

8.6  Group, Phase, and Particle Velocities

From our previous discussion it should be clear that in general we can su-
perpose any number of waves to obtain virtually any type of wave-packet
(see Figure 8.6) desirable. The resulting matter waves have associated with
them a phase velocity w and a group velocity vg . To understand the differ-
ences between group, phase, and particle velocities, each will be repre-
sented by a defining equation and then its relationship to other quantities
like energy and momentum will be examined. From these relationships
the interrelation between the three velocities can be obtained for a particle
traveling at relativistic or nonrelativistic speeds.

Group velocity vg is simply defined by the equation

vg ; lgng. (8.86)
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Its relationship to energy and momentum is easily obtained by consider-
ing

From this result the group velocity is also obviously expressible as the dif-
ferential

(8.88)

Phase velocity w, defined by Equation 8.58,

w ; ln, (8.58)

is also easily expressed in terms of energy and momentum as

which was originally obtained and expressed in Equation 8.59.
Particle velocity v has the same defining equations in our present con-

sideration as it does in general physics. With respect to the considerations
made herein, we take its defining equation to be

(8.89)

because of the one-dimensionality of the de Broglie waves. One interesting
relationship between Dx and Dk can be obtained by referring to Figure
8.6 and Equation 8.84. From Figure 8.6 we have
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Uncertainty in Positron

and substitution from Equation 8.84 immediately gives

(8.90)

This relationship will prove useful in the problems, as well as, in the de-
velopment of the Heisenberg uncertainty principle in the next section.

We are now in a position to develop the interrelationship between the
group, phase, and particles velocities. The first consideration is for a clas-
sical particle having nonrelativistic energy given by

(8.60)

as given by Equation 8.60. We already know its phase velocity is related
to its particle velocity from Equation 8.62

(8.62)

so we need to find how w is related to the group velocity vg . Since Equation
8.88 gives the group velocity vg as the first order derivative of energy E
with respect to momentum p, we differentiate Equation 8.60 to obtain

Rearranging this last equation and using the definition of linear momen-
tum gives

from which we obtain
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vg 5 v. (8.91)

Of course, a comparison of Equations 8.62 and 8.91gives the relationship
between the phase velocity w and group velocity vg ,

(8.92)

for a particle having nonrelativistic energy E.
From the classical considerations above, it is reasonable to expect that

relationships between vg , w, and v for a particle having a relativistic energy
can be obtained in a similar manner. That is, we start with a relativistic
equation involving energy and momentum and manipulate it to obtain all
possible relationships between the three velocities. One equation satisfying
this requirement is

E2 5 E 2
0 1 p2c2, (4.46)

which we recall is invariant to all inertial observers. Proceeding in the same
spirit as before, we first need to find an expression for phase velocity w
and then one for group velocity vg . Since phase velocity is equal to the
ratio of energy E and momentum p, then we divide Equation 4.46 by p 2

to obtain

(8.93)

This can be reduced by using

m 5 Gm0 (4.25)

to express the relativistic momentum as

p 5 mv 5 Gm0v, (8.94)

and the equations
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Relativistic

Substitution of these equations into Equation 8.93 gives

and taking the square root of the last equality gives the result

(8.95)

To obtain an expression for the group velocity vg , we note it involves a dif-
ferential from Equation 8.88 and, accordingly, differentiate Equation 4.46
to obtain

2EdE 5 2pc2dp

or EdE 5 pc2dp.

This result is easily rearranged in a more convenient form as

which in terms of group velocity and phase velocity becomes

(8.96)

A comparison of Equations 8.95 and 8.96 gives the relationship between
vg and v for a particle having a relativistic energy:

vg 5 v. (8.97)

From Equations 8.91 and 8.97 we see that the group velocity of  the de
Broglie wave associated with a particle is always equal to the classical par-
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ticle velocity. The results expressed by Equations 8.95, 8.96, and 8.97 are
also obtainable from Einstein’s famous energy-mass equivalence rela-
tion,

E 5 mc2 5 Gm0c2 (4.40)

and the relationships expressed by Equations 4.23, 4.25, and 4.39. This
should be conceptually obvious, since Equation 4.46 was originally derived
from Equation 4.40 in chapter 4. Although the derivations suggested are
straight forward, a bit more mathematics is involved in obtaining an ex-
pression for dE/dp and is left as an exercise in the problem section.

8.7  Heisenberg’s Uncertainty Principle

We have thus far observed that the monochromatic wave (constant angular
velocity v)

C(x, t) 5 A cos (kx 2 vt),

having constant amplitude A (undamped), definite momentum p 5 "k and
energy E 5 "v, can be viewed as a wave packet of infinite extent (lg 5 `).
Therefore, the particle’s exact location cannot be specified—the wave is
not localized along the X-axis. We know the particle’s momentum exactly,
but we know nothing about its position. Another way of saying this is that
there is equal probability of finding it anywhere in the x-domain, 2` < x < 1`.
We have seen that the linear superposition of two waves C1(x, t) and C2(x,
t) describes a particle and gives rise to wave groups. We are no longer to-
tally ignorant of the particle’s location; however, we now have some un-
certainty in the momentum of the particle, since we have a mixture of two
momentum states corresponding to k and k 1 Dk. In particular, for

C2(x, t) 5 A cos [(k 1 Dk)x 2 (v 1 Dv)t],

the linear superposition of C1(x, t) and C2(x, t) gave us the function C(x,
t), plotted in Figure 8.6, which represents an infinite succession of groups
of waves traveling in the positive x-direction. This particular matter wave
suggests that the associated particle has equal probability of being located
within any one of the groups at the time t 5 0. Even if  we consider a single
group, our interpretation of C(x, t) suggests that the particle’s location
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within that group is uncertain to within a distance comparable to the length
Dx of the group.

It is possible, by adding a sufficiently large number of the right kind
of monochromatic waves, to obtain a resultant single wave packet, being
quantitatively represented by

(8.98)

Let us consider three possible wave packets, as illustrated in Figure 8.7.
The wave depicted in (a) is highly localized in space; however, its wave-
length and thus its momentum is very indefinite. The wave illustrated in
(b) is less spatially localized, but its momentum is also less indefinite. Ob-
viously, by comparing the waves of (a) and (b), it appears that we must
sacrifice our absolute knowledge of the position of a particle, if  we are to
have a reasonably well defined momentum. This situation is suggested in
(c) of Figure 8.7.

One should note with particular attention the difference between the
phase wavelength l depicted in Figure 8.7 and the group wavelength lg il-
lustrated in Figure 8.6. From Equation 8.90,

(8.90)

we have that the uncertainty Dx in the particle’s position is related to the
uncertainty Dk in the particle’s wave number. This relationship is also
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derivable by realizing that v 5 vg for a particle having relativistic or non-
relativistic energy. Consequently, substitution from Equations 8.89 and
8.87b and solving for the spatial spread Dx gives

(8.90)

where the last equality was obtained by equating the frequency spread Dn
with the inverse time spread Dt (i.e., Dn 5 1/Dt). Now, using de Broglie’s
postulate in the form

we obtain one form of Heisenberg’s uncertainty principle

DxDp 5 h. (8.99a)

This equation is interpreted to mean that the uncertainty in position times
the uncertainty in momentum is equal to the universal constant h. To obtain
an alternative expression for the uncertainty principle, we need only recall
that for a relativistic or nonrelativistic particle v 5 vg. Thus substitution
form Equations 8.89 and 8.87c yields

Solving this equation for DxDp and using Equation 8.99a results in

DxDp 5 DEDt 5 h, (8.99b)

which illustrates that the uncertainty in energy times the uncertainty in time
is equal to Plank’s constant. The latter equality is an alternative form of
the Heisenberg uncertainty principle.

Review of Fundamental and Derived Equations

Many fundamental and derived equations of this chapter are listed below,
along with new fundamental postulates of modern physics.
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FUNDAMENTAL EQUATIONS—CLASSICAL/MODERN
PHYSICS
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NEW FUNDAMENTAL POSTULATES

DERIVED EQUATIONS

Vibrating String—Equation of Motion

Vibrating String—Normal Modes
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Traveling Waves

Negatively Directed Traveling Wave

Positively Directed Traveling Wave

De Broglie’s Hypothesis and Bohr’s Quantization Condition

De Broglie’s Hypothesis and Einsteinian Relativity

Waves
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Matter Waves

C1 5 A cos (kx 2 vt)

C2 5 A cos [(k 1 Dk)x 2 (v 1 Dv)t] Monochromatic Waves

C(x, t) 5 C1(x, t) 1 C2(x, t) Linear Superposition

Group, Phase, and Particle Velocities

Heisenberg’s Uncertainty Principle
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8.1 Verify that y(x, t) 5 A sin (vx/w) cos vt is a solution to the Equation
8.10. Show whether the boundary conditions of Equation 8.12 and initial
conditions of Equations 8.11a and 8.11b are satisfied and find the allowed
nodes (values of n).

Solution:
Taking second order derivatives of y(x, t) 5 A sin (vx/w) cos vt yields

which upon substitution into Equation 8.10,

gives

This result verifies that y(x, t) is a solution to the classical wave equa-
tion. The boundary conditions

y(0, t) 5 y(L, t) 5 0

are satisfied since

where the second condition is valid for

Further, since l 5 2L/n → L 5 nl/2, we have

or
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as expected. The initial condition

y(x, 0) 5 y0(x)

is satisfied, since

y(x, 0) 5 A sin kx cos 08

gives the initial displacement as

y0(x) 5 A sin kx.

However, the second initial condition

is not satisfied, since

8.2 Do Problem 8.1 for displacements given by (a) y(x, t) 5 A sin (vx/w)
sin vt and (b) y(x, t) 5 A sin (vx/w 2 vt).

8.3 Verify that y(x, t) 5 A cos (vx/w) cos vt is a solution to Equation
8.10. Show whether the boundary conditions, y(2L/2, t) 5 y(L/2, t) 5 0,
are satisfied. Find the allowed nodes and demonstrate whether the initial
conditions given by Equations 8.11a and 8.11b are satisfied.

Solution:
In abbreviated form we have the following:

Thus, y(x, t) is a solution to

Boundary Conditions:
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Since these conditions reduce to

Initial Conditions:

8.4 Do Problem 8.3 for (a) y(x, t) 5 A cos (vx/w) sin vt and (b) y(x, t) =
A cos (vx/w 2 vt).

8.5 Starting with Equation 8.33 derive Equation 8.35.

Solution:
Multiplication of Eq. 8.33,

by sin(mpx/L) dx and integrating gives

where we have used

With the change of variable

the change in the limits of integration are given by
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x 5 0 → y 5 0       and       x 5 L → y 5 p.

Thus, the integral to be solved is of the form

since An comes outside of the integral. In solving this integral we need
to consider the following two cases:

Case 1: n 5 m

Thus, substitution back into our first integral equation gives the re-
sult

where we have let n → m and m → n to obtain the exact form of Equa-
tion 8.35.

Case 2: n ? m

which goes to zero for y 5 0 or y 5 p. We could note that

where the symbol dnm is called the Kronecker delta and defined by

dnm 5 0 for       n ? m,

dnm 5 1 for       n 5 m.

Accordingly, we could have considered this problem as
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8.6  Starting with Equation 8.34 derive Equation 8.36 using the Kronecker
delta symbol.

8.7  Find the de Broglie wavelength and frequency associated with a 1 g
bullet traveling at 663 m/s.

Solution:
With m 5 1 g 5 1023 kg and v 5 663 m/s, we have the de Broglie
wavelength given by (Equation 8.53)

and the de Broglie frequency given by (Equation 8.52)

8.8 What is the de Broglie wavelength and frequency of an alpha particle
(helium nucleus) of 2 MeV energy?

Answer: 1.01 3 10214 m,  4.83 3 1020 Hz

8.9 What is the energy of  a photon having a de Broglie wavelength
of  1 m?

Solution:
Knowing mp 5 1.673 3 10227 kg and l 5 1 m, we can find the energy
E by using
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8.10  Electrons are accelerated from rest by an electrical potential V. If
their wave number is 6.28 3 1010/m, what is the accelerating potential V?

Answer: 149 V

8.11  Find the wave number associated with sound waves traveling at 314
m/s in a medium, if  they have a period of 1022 s.

Solution:
With vs 5 314 m/s and T 5 1022 s, the wave number is given by

8.12  Derive the trigonometric identity given by Equation 8.81.

Answer:

8.13 Find the sum of C1 5 0.004 cos (5.8x 2 280t) and C2 5 .004 cos
(6x 2 300t), where all units are in the SI system. Find the phase velocity,
the group velocity, and the uncertainty in position of the associated par-
ticle.

Solution:
From the form of C1 5 4 3 1023 cos (5.8x – 280t), we obtain (deleting
all units)

A 5 4 3 1023,        k 5 5.8,        v 5 280,
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while C2 5 4 3 1023 cos (6x – 300t) gives additional values

k 1 Dk 5 6,       v 1 Dv 5 300 → Dk 5 0.2,       Dv 5 20.

Thus, we have from Equation 8.82

From the linear superposition of C1 and C2 we recognize

k 5 5.9,        v 5 290,        kg 5 0.1,        vg 5 10,

from which the phase velocity

the group velocity

and the uncertainty in position

are directly obtained.

8.14  Repeat Problem 8.13 for C1 5 0.005 cos (6x – 300t) and C2 5 0.005
cos (6.2x – 320t).

Answer:    

8.15  Consider two sound waves of frequencies 510 Hz and 680 Hz trav-
eling at 340 m/s. (a) Find the wave numbers k1 and k2 and the spatial spread
Dx 5 2p/(k2 2 k1). (b) Find Dv and the time spread Dt 5 2p/Dv. (c) Com-
pare the spatial spread obtained with that computed using Dx 5 vs Dt.

Solution:
With n1 5 510 Hz, n2 5 680 Hz, and vs 5 340 m/s ; vg , the wave num-
bers are given by
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From these values for k1 and k2, the spatial spread is

while the time is just

Also, the spatial spread is given by

Dx 5 vsDt 5 (340 m/s)(5.9 3 1023 s) 5 2 m.

8.16 Using the relativistic equations E 5 mc2 and p 5 mv, where m 5
Gm0 , derive Equations 8.95 and 8.97.

Answer:

8.17 Calculate the nonrelativistic and relativistic phase velocity w of the
de Broglie waves associated with a neutron of 33.4 eV energy.

Solution:
With the nonrelativistic phase velocity given by Equation 8.62 (or
Equations 8.91 and 8.92) as

and the relativistic phase velocity given by Equation 8.95 as
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Ch. 8  Introduction to Quantum Mechanics330

we need to first find the particle velocity v associated with the neu-
tron. Using the energy relation (Equation 8.60)

E 5 mv2 ,

we immediately obtain

Thus, the nonrelativistic phase velocity is

while the relativistic phase velocity is

for the associated de Broglie waves.

8.18 Repeat Problem 8.17 for an electron of 182.2 eV energy.

Answer: w 5 4 3 106 m/s, w 5 1.125 3 1010 m/s

8.19 Consider a 2 mg mass traveling with a speed of 10 cm/s. If  the par-
ticle’s speed is uncertain by 1.5%, what is its uncertainty in position?

Solution:
With m 5 2 3 1026 g 5 2 3 1029 kg and v 5 10 cm/s 5 0.1 m/s, the
uncertainty in speed is

Dv 5 (0.15)(0.1 m/s) 5 1.5 3 1023 m/s.

Thus, the uncertainty in position is given by
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8.20 If  the energy of a nuclear state is uncertain by 1 eV, what is the life-
time of this state, according to Heisenberg?

Answer: 4.14 3 10215 s

8.21  A matter wave traveling at 500 m/s for 10s has a 0.1% uncertainty in
the position of a particle. Find the uncertainty in momentum for the par-
ticle.

Solution:
With v 5 500 m/s, t 5 10 s, Dx 5 (0.001)x, we have the uncertainty
in momentum given by

8.22 What is the de Broglie wave number of a proton of 50 MeV kinetic
energy? If  the energy is uncertain by 3%, what is the uncertainty in time?

Answer: 1.56 3 1015 m21,  2.76 3 10221 s

8.23  If  the position of a 1 kg object is measured on a frictionless surface
to a precision of 0.100 cm, what velocity has been imparted to the object
by the measurement, according to the uncertainty principle?

Solution:
With m 5 1 kg and Dx 5 1.00 3 1023 m, the uncertainty in momen-
tum is given by

Dp 5 mDv,

which upon substitution into the uncertainty relation gives

8.24  If  the speed of an electron in the ground state of the Bohr model is
uncertain by 1%, what is the uncertainty in position?

Answer: Dx 5 3.32 3 1028 m
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8.25  Using the Heisenberg uncertainty relation in the form pr 5 ", derive
an expression for the minimum radius r1 and energy E1 of a hydrogen
atom.

Solution:
The total energy of the hydrogen electron is given by Equation 7.14
as

where p 5 "/r has been used in obtaining the second equality. The
minimum value of E occurs at r 5 r1, which can be obtained by tak-
ing the first order derivative of E with respect to r and setting the re-
sult to zero:

From this relation we immediately obtain

and substitution into the equation for E gives

These results are in agreement with those predicted by the Bohr
model in Equations 7.27 and 7.40, respectively.

8.26  Using the Heisenberg uncertainty principle in the form px 5 ", de-
rive and expression for the minimum energy E1 of a linear harmonic os-
cillator:

Answer: E1 5 hn
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Introduction

The discussion of  matter waves in the last chapter emphasized how the
wave-particle duality can be combined in a more general description of
nature without any logical contradiction. We considered the problems of
a matter wave associated with a free particle having an assumed zero po-
tential energy. However, the more general problem involves a particle pos-
sessing both kinetic and potential energy that vary in space and time. The
de Broglie approach for this more general problem would require the spec-
ification of a matter wave at every point in space for the propagation of a
particle, which would be conceptually and mathematically unattractive.
Shortly after de Broglie’s hypothesis, Erwin Schrödinger realized this dif-
ficulty and circumvented it by postulating a nonrelativistic wave equation.
Schrödinger’s equation combined the total particle energy (kinetic and po-
tential) with de Broglie’s energy and momentum postulates, such that a
wave function solution to the equation would be appropriate for a specified
potential energy and consistent with de Broglie’s hypothesis.

The Schrödinger equation and its wave function solution are consid-
ered in some detail in this chapter. Since Schrödinger postulated the wave
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equation of  quantum mechanics, it represents a fundamental principle
that can not be derived. Our approach is a combination of postulating and
construction the Schrödinger wave equation, by making analogies with the
classical wave equation and establishing requirements that the quantum
mechanical wave equation and its solutions must satisfy. After construct-
ing the one-dimensional time-dependent Schrödinger equation and gen-
eralizing it to three dimensions, we develop the time-independent
Schrödinger equation and discuss its general mathematical form in rela-
tionship to eigenvalue problems. This is followed by a discussion of the
wave function, its normalization condition, and the physical interpretation
of its absolute magnitude squared as a probability density. The chapter is
concluded with one-dimensional examples of quantum mechanics, where
the Schrödinger wave equation is solved for the free particle under the in-
fluence of a constant potential and the free particle in a box.

9.1  One-Dimensional time-Dependent 
Schrödinger equation

In 1925 Erwin Schrödinger developed a wave equation whose wave func-
tion solutions were capable of appropriately describing the propagation
of de Broglie matter waves. Our study of Schrödinger’s fundamental pos-
tulate and his theory of quantum mechanics will be primarily concerned
with the mathematical details rather than the elusive physical interpreta-
tions represented by the mathematics. An alternative formulation of quan-
tum mechanics was developed by W. Heisenberg at about the same time
as the Schrödinger theory; however, the latter is more amenable to an in-
troductory treatment than the operational matrix formulation of Heisenberg.

Schrödinger postulated his famous equation as a fundamental prin-
ciple of nature, based on his remarkable insight into the wave nature of
matter and his thorough understanding of wave mechanics. He combined
the wave and particle characteristics of  matter by adopting de Broglie’s
postulates,

(8.53)

(8.52)

and the classical definition

(9.1)
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for the nonrelativistic total energy E of a particle having momentum p,
rest mass m, and potential energy V. It should be noted that the first term
on the right-hand side of Equation 9.1 is just the usual nonrelativistic ki-
netic energy of a particle. Further, the group velocity vg of a particle’s as-
sociated matter wave is still equal to the velocity v of a particle for the
energy expression of Equation 9.1. This is easily verified by using the equa-
tion for group velocity,

(8.87)

derived in Chapter 8. That is, substitution of Equation 9.1 into this ex-
pression for vg and realizing that the potential energy V is constant for a
free particle gives

which is the expected result. That Schrödinger chose the energy expression
of Equation 9.1 is not surprising, since it represents conservation of energy,
a fundamental principle of classical physics that has been demonstrated
to be applicable in nonclassical considerations such as Einsteinian relativ-
ity, the photoelectric effect, the Compton effect, and the Bohr model of
the hydrogen atom. Schrödinger felt that the desired wave equation must
be consistent with the de Broglie postulates and the conservation of energy
principle for a particle or system of  particles. Thus, the wave equation
must be consistent with

(9.2)

which is directly obtained by combining Equations 8.52, 8.53, and 9.1.
One should observe that the potential energy in Equation 9.2 is indicated
as having a general dependence on space and time coordinates. Schrödinger
felt this to be the correct dependence in general, with conservative force
fields being a special class. In the case of a conservative force field the po-
tential energy is time independent,

V 5 V(x), (9.3)
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and the force is given by the classical expression

(9.4)

Since the force is independent of time, then so is the momentum, accord-
ing to Newton’s second law of motion

(1.16)

and, of course, the total energy given by Equation 9.1.
In addition to the wave equation being consistent with Equation 9.2,

Schrödinger felt that it must be linear in the wave function C(x, t), such
that the wave function solution to the equation will have the superposition
property. This suggests that the equation could be of the form

(9.5)

where Equation 9.2 has been simply multiplied by C(x, t) from the right-
hand side. This symbolic equation is not a wave equation per se, as we
should expect is to contain spatial and temporal derivatives of the wave
function by analogy with the classical wave equation.

In an attempt to identify the partial differential equation that is con-
sistent with Equation 9.5, we will work backward by considering a possible
solution to the equation. Since a conservative force field constitutes a spe-
cial case of the general equation, we can consider a free particle and its
associated wave function as a possible solution. We could select the simple
wave function

C(x, t) 5 A cos (kx 2 vt) (8.41b)

discussed in Chapter 8, but its tendency to change in functional form upon
differentiation makes is impossible to obtain a general equation involving
C(x, t) and its derivatives that is in agreement for all values of x and t with
Equation 9.5. In an effort to circumvent this difficulty, we select the plane
monochromatic wave for a free particle given by

(9.6)
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which is similar to the displacement given by Equation 8.40 with de
Broglie’s postulates being incorporated. This wave function represents a
free particle traveling in the positive x-direction with a momentum and en-
ergy known to be exactly p 5 "k and E 5 "v, respectively. Assuming a
constant potential energy V(x) 5 V0 for the free particle, then the force
(Equation 9.4) is equivalent to zero, the momentum p is constant from
Equation 1.16 above, and consequently, from Equation 9.1 the energy E
is constant. Thus k and v are constants in accordance with de Broglie’s
relations (Equations 8.52 and 8.53) and the free particle wave function
(Equation 9.6) can be expressed as

(9.7)

in terms of the particle’s constant wave number and angular velocity. The
first and second order spatial derivatives of this wave function are

(9.8a)

(9.8b)

whereas the first order time derivative yields

(9.9)

From the last two equations we obtain

and

respectively, which upon substitution into Equation 9.5 yields

(9.10)

This equation represents the famous one-dimensional time-dependent
Schrödinger equation. Even though our consideration was for a free particle
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having a time-independent or constant potential energy V0 , we postulate
Equation 9.10 to be the correct wave equation in general for V(x, t) ? V0 .
It needs to be emphasized that this equation has not been derived but
merely constructed through postulates, as the Schrödinger equation is a
fundamental first principle of quantum mechanics, much like the first law
of thermodynamics or Newton’s second law of motion. Our construction
of this result utilized a free particle wave function as an assumed solution
to a linear energy equation, with Schrödinger’s nonrelativistic energy con-
servation and de Broglie’s postulates imposed. Under these constraints,
other differential equations could be constructed; however, only Equation
9.10 is compatible with nature and capable of predicting experimental ob-
servations for different physical phenomena. A comparison of
Schrödinger’s equation with the classical wave equation (Equation 8.10)
shows that they are similar only in that both contain second order deriv-
atives with respect to the spatial coordinate. A major difference between
these equations is the presence of only a first order derivative and an in-
teraction potential in Schrödinger’s equation. Further, and of great signifi-
cance is the fact that the Schrödinger equation is imaginary on the
right-hand-side, whereas the classical wave equation is real. Although
Equation 9.10 is one-dimensional, it is easily generalized to three dimen-
sions, as will be seen in the next section. Incidentally, it is now straight for-
ward and left as an exercise to show that the plane monochromatic wave
function of a free particle in one dimension (Equation 9.6) is a solution
to the Schrödinger wave equation.

9.2  three-Dimensional time-Dependent
Schrödinger equation

The generalization of the previous section to include all three spatial di-
mensions is rather straight forward from the fundamentals of  classical
physics. A free particle moving in a region of constant potential energy

V(r, t) ; V(r) 5 V0 (9.11)

has a position vector given by

r 5 xi 1 yj 1 zk (1.1)

and a momentum vector

p 5 pxi 1 pyj 1 pzk, (4.54a)
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where i, j, and k are the usual set of orthonormal unit vectors for a Carte-
sian coordinate system. The three-dimensional wave function associated
with the free particle is given by

which can be more compactly written as

by making use of the definition for the inner or dot product of vectors p
and r. To simplify the mathematical form of  the three dimensional
Schrödinger equation, we introduce the del operator (see Appendix A, Sec-
tion A.9)

(9.14)

which is a vector differential operator that must satisfy the mathematical
rules for both vectors and partial differentials. The scalar product of this
vector operator with itself  is called the Laplacian operator and is given by

(9.15)

The construction of the three-dimensional Schrödinger equation can
now proceed in a similar manner to that presented in the previous section,
with the new operators given being utilized. Multiplying Schrödinger’s en-
ergy conservation equation by C(r, t),

(9.16)

we realize that p 2C and EC can be expressed in terms of partial differen-
tials in view of Equation 9.12. That is, operating on Equation 9.2 with the
Laplacian gives

(9.17)
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which is directly solved for

p 2C(r, t) 5 2"2=2C(r, t). (9.18)

Further, the time derivative of the free particle wave function (Equation
9.12 or 9.13) immediately yields

(9.19)

It must be emphasized that these two results are contingent upon the mo-
mentum and energy of the free particle being time-independent, as was
previously discussed for the free particle. Now, we postulate that the results
given by Equations 9.18 and 9.19 are valid in general, even for a potential
energy V(r, t) ? V0 , and substitute them directly into Equation 9.16 to
obtain

(9.20)

This equation represents the generalized three-dimensional time-dependent
Schrödinger equation of quantum mechanics. Even though it has been con-
structed and postulated herein, its form should be obvious from the defi-
nition of  the Laplacian operator and the one-dimensional Schrödinger
equation. One advantage of using the Laplacian operator in the formula-
tion of Equation 9.20, instead of the second order spatial derivatives in
Cartesian coordinates, is that the equation is valid in all coordinate systems,
provided that =2 is appropriately defined in each system. It should be em-
phasized that the Schrödinger equation can only be used for nonrelativistic
problems, where it has been found to be completely accurate in predicting
observed phenomena. Further it is important to recognize that the
Schrödinger equation does not represent an additional postulate of nature,
because with it Newton’s second law of motion can be derived. The details
of this derivation are presented in Chapter 10, Section 10.6, where we rec-
ognize Newtonian mechanics to be nothing more than a limited approxi-
mation to quantum mechanics.

9.3  time-independent Schrödinger equation

The time-independent or steady state Schrödinger equation is directly ob-
tainable from the time-dependent equation. As before, we consider one-
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9.3 Time-Independent Schrodinger Equation 341

Conservative Field

dimensional motion first and then generalize to three dimensions. For a
particle restricted to one-dimensional motion having a potential energy
which is time-independent,

V 5 V(x), (9.3)

solutions to the Schrödinger equation are assumed to be of the form

C(x, t) 5 c(x)f(t). (9.21)

In this equation the lower case Greek letters c (psi) and f (phi) represent
the spatial and temporal functions, respectively. By analogy with the sep-
aration of variables method presented for the classical vibrating string, and
recognizing the type of differentials that occur in Schrödinger’s one-di-
mensional equation we have

(9.22)

and (9.23)

Substitution of these equations into Equation 9.10 yields

(9.24)

which can be rewritten in the form

(9.25)

by dividing both sides of the equations by c(x)f(t). Since the spatial and
temporal coordinates are independent variables, Equation 9.25 is only
valid if  each side of  the equation is equal to the same constant. From
Schrödinger’s energy conservation postulate (Equation 9.1) it is obvious
that the separation constant for Equations 9.25 must be the total energy
E. Thus, from Equation 9.25

(9.26)
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which suggests that

since E is a constant. This integral equation is easily solved for

and exponentiated to give

(9.27)

The result expressed by Equation 9.27 is perfectly general for a time-
independent potential energy and, consequently, the wave function solution
to Schrödinger’s one-dimensional equation is of the form

where Equation 9.27 has been substituted into Equation 9.21. Now, sub-
stitution of this wave function into Schrödinger’s one-dimensional time-
dependent equation (Equation 9.10) and performing the indicated
differentials yields

which should be obvious from Equations 9.24 and 9.27. Cancelling the
common factor f and simplifying the right-hand side of  this equation
gives the sought after one-dimensional time-independent Schrödinger equa-
tion,

(9.29)

This result is also obvious from Equation 9.25, since the right-hand side of
that equation is equal to the separation constant E. As this is an ordinary
second order differential equation in the position variable with no imaginary
factors, its solutions c(x) need not be, necessarily, complex functions.
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The generalization of Equation 9.29 to three dimensions is

(9.30)

which should be obvious from the considerations of the previous section
and the definition of the Laplacian. Schrödinger’s time-independent equa-
tion (Equation 9.19 or 9.30) is of the general form of what is commonly
called an eigenvalue equation. Its solutions c(r), referred to as eigenfunc-
tions, are normally obtained for only certain values of E, which are com-
monly referred to as the energy eigenvalues. Many of the mathematical
techniques for solving an eigenvalue equation have already been presented
in the discussion of the classical vibrating string, where the eigenvalues of
Equation 8.17 corresponded to k2

n with eigenfunctions given by Equation
8.26. Eigenvalue problems represent one of the most important types of
problems in mathematical physics and the solution techniques will be fur-
ther illustrated by the way of examples in Sections 9.6 and 9.7.

9.4  probability Interpretation
of the Wave Function

In writing the plane monochromatic wave of Equation 9.6 we realized it
to be the associated matter wave of a particle of definite momentum and
energy. If  it is to be viewed as a wave packet, then clearly, because it is of
infinite extent, we know nothing of the exact location of the particle. This
corresponds to saying that there is equal probability of finding the particle
anywhere in the domain 2` , x , 1`. As suggested in Chapter 8, if  we
add two such waves,

(9.31)

and (9.32)

together to form the linear superposition

C(x, t) 5 C1(x, t) 1 C2(x, t), (9.33)

the resulting wave function describes a particle about whose location we
are no longer totally ignorant. Of course we no longer know the particle’s
momentum exactly, since it is now a mixture of the two momentum states
p1 and p2. In an attempt to obtain a wave packet that is rather well localized
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at any time t, we can generalize the linear superposition to include an in-
finite number of  monochromatic waves. This is easily accomplished by
defining

(9.34)

where the Ai are arbitrary constant. Actually, this wave function is the
most general form of the solution to the Schrödinger equation for the po-
tential V(x).

For a free particle the generalized wave function of  Equation 9.34
takes the form

where the position x of the associated particle is known to within a fairly
narrow range along the X-axis. But the momentum of the particle is now
virtually unknown. It is neither p1, p2 , nor p3 but rather is a mixture of the
infinite number of momentum states. The state function defined by Equa-
tion 9.35 is not the most general wave packet for a free particle, as a free
particle could have any one value of a continuous range of possible mo-
mentum values from 2` to 1`. Thus, the associated wave could have any
value of wave number in the domain 2` , k , 1`. Further, the ampli-
tude symbolized by the letter Ai in Equation 9.35 is generally a function
(commonly an exponential) of the wave number. With this in mind we de-
fine

F(k, t) ; A (9.36)

and replicate the summation with an integral to obtain

(9.37)

as the ultimate generalization in one dimension to Equation 9.35. Clearly,
de Broglie’s postulates have been utilized in obtaining this last equation
and the angular frequency v has been indicated as a function of the wave
number k.

One can easily prove that C(x, t) of Equation 9.37 is indeed a con-
centrated wave packet. That is, C(x, t) at t ; 0 is large near x 5 0, since
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for x 5 0, e jkx 5 1 for all k, and the contribution to the integral coming
from different k add up in phase, making the sum of Equation 9.37 large
near x 5 0. On the other hand, for large x, e jkx is a rapidly oscillating func-
tion of k and its integral tends to cancel itself  out. In other words, it ap-
pears that the probability of finding the particle in a given region of space
is large where the wave function is large and small where it is small. The
wave function is commonly called the probability amplitude and many mis-
takenly use it as a probability. However, the wave function should not be
considered as a probability, since C(x, t) can be both positive and negative
valued; whereas, negative probabilities are meaningless. Further, the prob-
ability per unit length or probability density P(x, t) of finding a particle in
a region of space at a particular time is a real quantity; whereas, the wave
function C(x, t) is an inherently complex function.

In 1926 Max Born postulated a probability interpretation. He pro-
posed that the relative probability density or relative probability per unit
length of finding the particle between x and x + dx at an instant in time t
be defined by

where the asterisk denotes the complex conjugate of C. The absolute prob-
ability density is defined by

(9.39)

which presupposes that the wave function be square integrable, that is, the
integral of psi-star-psi,

must be finite at the instant t. The point to understand is that the wave
function C(x, t) has only indirect physical significance, while the quantity
)C(x, t))2 has direct physical meaning.

It has been pointed out that the Schrödinger equation must be linear.
Consequently, for any solution of the Schrödinger equation, another so-
lution can be obtained by multiplying it by a phase factor e ju, or a constant,
without affecting the physics. So long as the square-integrability require-
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Ch. 9  Schrödinger’s Quantum Mechanics I346

ment is satisfied, we can select the constant such as to normalize the wave
function. For properly normalized wave functions the normalization con-
dition at an instant t is

(9.40a)

for one dimension or

(9.40b)

for three dimensions. If  we consider the most general form of the wave
function as given by Equation 9.34, then it appears reasonable that the
normalization condition can be satisfied at any given instant in time by
the proper choice of the arbitrary constants Ai . Of course, we will want
to select the constants carefully so that the wave function is normalized in
accordance with Equation 9.40 at all values of time. Equation 9.40a simply
means that the total probability of finding the particle associated with the
wave function somewhere along the spatial domain is one at time t, and
all values of t must give this probability. With the normalization condition
always required, it is apparent from Equation 9.39 that the probability
density r(x, t) is identical to the relative probability density, P(x, t). That
is, the quantity )C(x, t))2 can be interpreted as a probability density rather
than a relative probability density.

In addition to C being normalizable, nature tends to support a wave
function and its partial derivatives (both spatial and temporal) that are lin-
ear, single valued, finite, and continuous (i.e., well behaved). Further, in the
limit as the spatial coordinates approach 1` or 2`, the wave function
must approach zero for a bound state. Occasionally, we relax one or more
of these conditions for mathematical simplification. For example, the free
particle wave function is not square integrable (see Section 9.6), but we
have found it to be most useful as an example to illustrate the concepts of
Schrödinger’s quantum mechanics. Clearly, it is an idealization for exact
knowledge of the particle’s momentum is not obtainable in wave mechan-
ics.

9.5  Conservation of probability

With the normalization condition (Equation 9.40a) always required, we al-
ways have

15dxC* , ,x t x t
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P(x, t) 5 r(x, t) 5 C*(x, t)C(x, t) (9.41)

as the probability per unit length of  finding the particle between x and
x 1 dx. Consequently,

P(x, t)dx 5 r(x, t)dx 5 C*(x, t)C(x, t)dx (9.42)

is the probability, a dimensionless quantity, of finding the particle at a par-
ticular point along the X-axis. Integrating Equation 9.42 over the range
x 5 2` to x 5 1` gives the total probability of finding the particle any-
where along the X-axis. We can define this probability as

(9.43a)

which reduces to

(9.43b)

for properly normalized wave functions. The question now is whether or
not the Schrödinger equation is compatible with our interpretation of the
wave function. More specifically, is P(t) really dependent on time? To ob-
tain the answer, we assume the normalization condition to be required and
differentiate Equation 9.43b with respect to time, which results in

From the one-dimensional time-dependent Schrödinger equation (Equa-
tion 9.10) we obtain

(9.45a)

and taking the complex conjugate of this equation gives

(9.45b)

, ,;P t x t dx
2`

1`

r^ ^h hy

,dxC* , ,5P t x t x t
2`

1`

C^ ^ ^h h hy

dxC*

*
*

, ,

.

5

5

dt

dP

dt

d
x t x t

t t
dx

2`

1`

2`

1`

2

2

2

2

C

C C
C C1

^ ^

c
h h

m
y

y

,
t m

j

x

j
V

2 2

2

2

2 &

2

2

&

C C
5 2 C

**
* .

t m

j

x

j
V

2 2

2

2

&

2 &
5 2 1

2 C2C
C

9.5 Conservation of Probability 347

Total Probability

(9.44)

Evaluation Copy 

Not Licensed for 

Instructional Use 



Now, substitution of  the Schrödinger equation in these two forms into
Equation 9.44 yields

Recalling that if  the wave function is bounded and sufficiently well be-
haved to be normalized, then C(x, t) and C*(x, t) must vanish at x 5 6`.
Thus, Equation 9.46 reduces to

(9.47)

which means that the total probability P is constant. That is, if  P 5 1 at
the zero of time (t ; 0), then P = 1 for all of time (t . 0). This is called
the conservation of probability or norm-preservation. This result originates
in the fortunate circumstance that the temporal derivative in the
Schrödinger equation is only a first order partial derivative. If  the
Schrödinger equation contained a second order partial derivative with re-
spect to time, like the classical wave equation, the normalization preserva-
tion condition would simply not be obtained.

The conservation of probability is also required for a particle in mo-
tion along the X-axis between any two coordinate positions, say x1 and x2

in figure 9.1. At position x1 the probability density flux, or probability cur-
rent, has a value S1, while at coordinate position x2 it has the value S2. In
order to conserve probability density r(x, t) any difference between the
probability currents S1 and S2 must correspond to the time rate at which
the total probability P(t) changes between x1 and x2. That is,
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Probability
Current

(9.48a)

which for properly normalized wave functions reduces to

(9.48b)

With the time rate of change of the total probability given by Equation
9.46, a comparison with Equation 9.48b immediately yields

(9.49)

For this result (note the limits are from x1 to x2) to equal S1 2 S2 of Equa-
tion 9.48b, we define the probability density flux, or probability current,
with a negative sign as

(9.50)

This is the probability per unit time that a particle associated with the wave
function C(x, t) will cross the point x, in the direction of increasing values
of the x-coordinate. The generalization to three dimensions is easily ac-
complished by replacing x with r. The interpretation of S(r, t) pertains to
the probability flux through a region of space that is bounded by a surface
area A. The definition of the probability current, along with the other con-
cepts of Schrödinger’s quantum mechanics introduced in this chapter, will
be made plausible in the next section, where we consider the case of a free
particle of energy E and momentum p.

9.6  Free particle and a Constant potential

Having constructed the Schrödinger equation by using the free particle
wave function, it seems only appropriate that we use this example to illus-
trate some other features of  the theory of quantum mechanics, such as
eigenfunctions, probability density, and probability current. For the case
of  a free particle moving under the influence of  a constant potential
(V(x, t) ; CONSTANT), we know the force, given by Equation 9.4, will
vanish irrespective of the constant value assumed by the potential energy
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V(x, t). Thus, no generality is sacrificed by defining the potential energy
to be zero

V(x, t) ; 0. (9.51)

This corresponds to the classical situation where the particle may be at
rest or in a state of uniform motion with constant momentum p, such that
in either case its total energy E is a constant.

Quantum mechanically the behavior of the free particle is predicted
by eigenfunction solutions to Schrödinger’s time-independent equation
(Equation 9.29) for V(x) 5 0, that is

(9.52)

We know that a solution to this ordinary second order differential equa-
tion is of the form

which is easily verified by direct substitution into Equation 9.52 and real-
izing that

p 5 (2mE)1/2. (9.54)

The wave function associated with the eigenfunction solution (Equation
9.53) is easily obtained from Equation 9.28,

in the form

as given previously by Equation 9.6. As discussed in Chapter 8, the free
particle wave function is recognized as a traveling wave that oscillates with
angular frequency v and travels in the positive x-direction with a phase
velocity

(9.55)
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That the free particle characterized by Equation 9.6 is traveling in the
positive x-direction can now be realized by evaluating the probability cur-
rent S(x, t), since the sign of S(x, t) indicates the direction of motion of
the particle. With

and

substituted into Equation 9.50, we obtain

where the classical linear momentum p 5 mv has been used in obtaining
the last equality. Thus, the probability current for the free particle is just
the product of its constant speed v and probability density P(x, t). The
conservation of probability for the free particle is given by Equation 9.48b
as

For the free particle v1 = v2 ; v and P(x, t) is given by

P(x, t) ; C*(x, t)C(x, t) 5 A*A. (9.58)

Under these substitutions, Equation 9.57 obviously reduces to zero,

irrespective of  the values chosen for x1 and x2. This result is consistent
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with the fact that for our free particle v, A and A* are constant in the tem-
poral and position coordinates.

What if  the particle is traveling in the negative x-direction? Clearly,
the associated wave function could be represented by

since for this wave function the probability current has a negative valued
result given by

S(x, t) 5 2v)C)2 5 2vB*B. (9.60)

As before, the probability current S(x, t) and probability density P(x, t),

P(x, t) 5 )C)2 5 B*B, (9.61)

are constants in time and independent of the particle’s position, so that
conservation of probability,

is obtained. For the particle described by the wave function of Equation
9.59 (or Equation 9.6), the momentum is known to be a constant p, but
we have no knowledge whatsoever of its position along the X-axis. That
is, the particle can be anywhere in the domain from x 5 2` to x 5 1`.

Since the Schrödinger equation is a linear differential equation, and
since the wave functions given by Equations 9.6 and 9.59 are solutions,
then so is their sum

A comparison of this equation with Equation 9.28 suggests that the eigen-
function
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is also a solution to Equation 9.52. In fact, since the eigenfunction solution
of Equation 9.64 involves two arbitrary constants, it is the general form of
the solution to the ordinary second order differential equation (Equation
9.52).

There is one point of  difficulty with the solutions represented by
Equations 9.6, 9.59, and 9.63 and it is that the normalization condition
can not be satisfied for finite values of the constants A and B. As a specific
example, the normalization condition for the wave function of Equation
9.6 diverges unless A 5 0, that is

It must be emphasized that the free particle wave function of Equation
9.6 represents the highly idealized situation of  a particle traveling in a
beam of infinite length, whose momentum is know exactly and whose po-
sition is completely unknown. A physically meaningful wave function
would be of essentially uniform amplitude over the length of the beam
but would vanish for values of x that are very large or very small. It would
constitute a group of length Dx which is finite. Further, Heisenberg’s un-
certainty principle requires the realistic wave function to have not only the
single momentum p 5 "k but also a momenta distribution Dp 5 "Dk 5
h/Dx that is centered about the single momentum p. The idealized wave
function of Equation 9.6 can be considered as representing the realistic
wave function in the limit Dx → `. In this limiting case the normalization
condition is not obtain; however, the idealized wave function can be em-
ployed to calculate physically meaningful quantities that do not depend on
the value of the multiplicative constant.

One last observation is in order before concluding our discussion of
the free particle wave functions. The problem of the normalization condi-
tion not vanishing unless the constants A and B in Equation 9.63 are equal
to zero can be removed by completely suppressing the wave function out-
side of a large but finite region. That is, we construct a more realistic wave
function by allowing the eigenfunction of Equation 9.64 to be

(9.65)

and (9.66)

This particular problem will be the topic of discussion in the next section.
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9.7  Free particle in a Box (Infinite potential Well)

Consider a particle of  mass m confined to one dimensional motion in a
box of size L. The motion of  the particle takes place along the X-axis in
the domain 0 , x , L, which constitutes the box illustrated in Figure
9.2. The particle is free inside this domain, but not really free since a
truly free particle must have a domain 2` , x , 1`. We further con-
sider the box to have impenetrable walls at x 5 0 and x 5 L, by assuming
an infinite potential energy to exist at these coordinate positions. In the
domain 0 , x , L the potential energy is of  course constant and, as be-
fore, we will choose the constant to be zero. Thus, the potential energy
is described as

0,        0 , x , L,
V(x) 5 (9.67)

`,       L # x # 0.

Under the constraints of the potential, the particle moves back and forth
in the one dimensional box having perfectly elastic collisions with the in-
finitely hard potential walls. Clearly, the particle cannot be found outside
the box, since it cannot have an infinite energy. Consequently, we have the
boundary conditions of Equation 9.66,

C(x, t) 5 0,       L # x # 0 (9.66)

imposed on the particle’s associated wave function.
Since within the box the potential energy is independent of  time,

Schrödinger’s time-independent equation (Equation 9.29) is applicable
and becomes
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(9.68)

We know from the previous section that this ordinary second order dif-
ferential equation has a general solution of the form

c(x) 5 Ae jkx 1 Be2jkx, (9.69)

where de Broglie’s momentum postulate p 5 "k has been substituted into
Equation 9.64. Expanding this eigenfunction solution by using Euler’s re-
lation (see Appendix A, Section A.7) results in 

c(x) 5 A cos kx 1 jA sin kx 1 B cos kx 2 jB sin kx, (9.70)

which under the boundary condition c(x 5 0) 5 0 yields

0 5 A cos 08 1 B cos 08.

Thus, for the eigenfunction to vanish at x 5 0 we must require

B 5 2A (9.71)

and the eigenfunction of Equation 9.70 reduces to the form

c(x) 5 2jA sin kx. (9.72)

Now, imposing the second boundary condition, c(x 5 L) 5 0, on this
eigenfunction gives

0 5 2jA sin kL. (9.73)

Since A ? 0, Equation 9.73 can be satisfied by requiring

kL 5 np,       n 5 1, 2, 3, ? ? ? ,

where n is interpreted as the principal quantum number. Recognizing that
the value of the wave number k will depend upon the value assumed by n,
we rewrite the above wave number quantization relation with a subscript
notation as

(9.74)
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Ch. 9  Schrödinger’s Quantum Mechanics I356

Now, the eigenfunction of Equation 9.72 becomes

(9.75)

where the n-subscript on c denotes the dependence of the eigenfunctions
on the principal quantum number.

The free particle in a box eigenfunction of Equation 9.75 could be
substituted into the eigenvalue equation (Equation 9.68) to obtain a rela-
tion for the energy eigenvalues En. But, as a general rule, it is always pru-
dent to first normalize the eigenfunction. This is easily accomplished by
realizing that the normalization condition,

(9.40a)

reduces to

(9.76)

as a result of Equation 9.28,

For our particular case of a particle confined to an infinitely deep potential
well, the limits of  integration on Equation 9.76 must be from x 2 0 to
x 5 L. Thus, the eigenfunctions of Equation 9.75 are normalized by con-
sidering
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(9.77)

Normalized
Energy
Eigenfunction

(9.80)

where the variable of integration has been changed form x to u ; npx/L
and the trigonometric identity

from Appendix A, Section A.6 has been employed. Now solving Equation
9.77 for A,

(9.78)

and substituting into Equation 9.75 gives

(9.79)

as the normalization eigenfunctions for the free particle in an infinite po-
tential well.

With the normalized eigenfunction given by Equation 9.79, it is now
an easy task to substitute into the eigenvalue equation (Equation 9.68) and
obtain the relation

for the allowed energy eigenvalues of the particle in a box. This result is
also easily obtained by noting that the allowed energy of the free particle
in a box is given by

(9.81)

and using Equation 9.74 for the quantized wave numbers kn. From the form
of Equation 9.80, it is immediately obvious that the particle’s energy is
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Ch. 9  Schrödinger’s Quantum Mechanics I358

quantized into discrete values or levels and that the particle can be in any
one of a number of discrete energy states available. Also, we note that the
allowed energy of  the particle is a quadratic function of  the principal
quantum number n, as illustrated in Figure 9.3. The particle can lose or
absorb energy; however, the amount lost or absorbed must be exactly equal
to the energy difference between two allowable energy states. Further, we
note that the particle can not have an energy of zero, since its ground state
energy or zero point energy is given by Equation 9.80 for n 5 1 as

(9.82)

Clearly, this result is in contradiction to the predictions of classical physics,
since according to Newtonian mechanics the particle could have any value,
including zero for its energy. This contradiction is, however, consistent
with Heisenberg’s uncertainty principle. That is, the uncertainty in position
is known to be

Dx < L,

which implies that
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Figure 9.3
The quadratic depend-
ence of the energy
eigenvalues En on the
principle quantum
number n for a particle
in a box.
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from Heisenberg’s principle of Equation 8.99a. Thus, the energy can never
be equal to zero, as this would require the uncertainty in momentum to
be zero (Dp 5 0) and complete ignorance in the position of the particle, i.e.,

Consider the quantum-mechanical implications for a 10 g macro-
size particle confined to a box of  length L 5 10 cm. In this case Equa-
tion 9.82 predicts that E1 < 5.5 3 10264 J, which suggests the particle
has an approximate speed of 3.3 3 10231 m/s. If you were observing
such a macro-particle, you would be convinced that is was stationary.
On the other hand, if  the macro-particle were moving with a distin-
guishable speed, say about 0.2 m/s, the corresponding principal quan-
tum number would be approximately 6 3 1029. It is not difficult to
understand why we will never directly observe a quantum-mechanical
particle in a box. However, an electron of  mass me 5 9.11 3 10231 kg
in a box of size L 5 10210 m has energy levels given by roughly En <
38n2 eV. Thus, we realize that in the micro-world the energy-level
spacing is easily perceptible, but in the macro-world the quantum-
mechanical aspects are physically infinitesimal.

It needs to be emphasized that the normalized eigenfunctions of
Equation 9.79 represent only one possible solution to the eigenvalue
equation (Equation 9.68). We could have assumed a general solution
of  the form

c(x) 5 A sin kx 1 B cos kx, (9.83)

which reduces to

c(x) 5 A sin kx (9.84)

under the boundary condition (see Equation 9.66) c(x) 5 0 at x 5 0. From
the second boundary condition, c(x) 5 0 at x 5 L, the quantization of the
wave number is obtained,

(9.74)
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Ch. 9  Schrödinger’s Quantum Mechanics I360

which is identical to that determined previously. The normalized eigen-
functions in this case are given by

(9.85)

which is easily verified by arguments similar to those presented in the der-
ivation leading to Equations 9.77 and 9.78. Also, the energy eigenvalues
given in Equation 9.80 are appropriate for these eigenfunctions, which
should be obvious since Equation 9.81 (En 5 "2k2

n /2m) is still applicable.
As a few other observations about the quantum-mechanical particle

in a box, we note that the normalized wave functions (see Equations 9.28
and 9.85)

satisfy the requirements of Schrödinger’s quantum mechanics. That is, for
every value of the principle quantum number n, the eigenfunction cn(x)
and its spatial derivatives are continuous and single valued in x. Certainly,
the wave function Cn(x, t) is square integrable, since the normalization con-
dition (see Equation 9.76) is satisfied. Thus, the absolute probability den-
sity r(x, t) is equal to the relative probability density P(x, t) for each
quantum number n,

It is instructive to plot a few of the probability densities Pn ,

from x 5 0 to x 5 L, as illustrated in Figure 9.4. Clearly, for n 5 1 (Figure
9.4), the particle has the greatest probability of being located at x 5 L/2.
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However, for n 5 2 and n 5 4, the particle has a zero probability of being
located at x 5 L/2. Also, note that this same result (Equation 9.88) is ob-
tained for either set of eigenfunctions given by Equation 9.79 or Equation
9.85.

Conduction Electrons in One Dimension

As a particular application of the quantum mechanics for a particle in a
box, suppose we have a large number N of free electrons to be accommo-
dated in the one-dimensional box. This situation corresponds to the va-
lence electrons of the atoms in a metal, which become conductors of
electricity and, hence, are called conduction electrons. In this free electron
model, we consider the conduction electrons as being noninteracting and
ignore the electrostatic potential of  the ion cores. This approximating
model is particularly useful in describing and understanding the electrical
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properties of simple metals, where a crystal of N atoms contains N con-
duction electrons and N positive ion cores (e.g., alkali metals).

Certainly, the N-electrons can not all have the same quantum me-
chanical energy, for then they would all have identical principal quantum
numbers n, according to Equation 9.80. Recall that the Pauli exclusion
principal introduced in Chapter 7, Section 7.7, which applies to electrons
in any quantum state in atoms, molecules, and solids, does not allow any
two electrons to have identical sets of quantum numbers. Accordingly, each
quantum state can accommodate at most only one electron, although from
the Bohr-Sommerfeld model we know that a degeneracy of the energy level
can occur when more than one quantum state has the same energy. Since
all electrons have an intrinsic spin, given by the spin magnetic quantum num-
ber as ms 5 61⁄2, the quantum state of a free electron is completely specified
by a numeration of  its principal and spin quantum numbers n and ms.
Thus, each energy level specified by the principal quantum number n can
accommodate two electrons, one with ms 5 11⁄2 and the other with ms 5 21⁄2.
If N 5 10 in our system of N-electrons, then in the ground state, the energy
levels corresponding to n 5 1, 2, 3, 4, and 5 are completely filled with elec-
trons, while the levels for n . 5 are completely empty.

With this understanding of the energy levels and the quantum states
associated with each energy level, we can easily calculate the density of
electronic states in our free electron system. The density of states D(E) can
be simply thought of  as the number of electronic states per unit energy
range and defined by the relation

(9.89)

where N(E) is the total allowed number of quantum states. With two spin
states associated with each energy level, then

N(E) 5 2n (9.90)

for a ground state configuration, where n is (from Equation 9.80)

Thus, substitution into Equation 9.90 gives
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for the total allowed number of electronic quantum states in our system
of N-electrons. Now, substitution into the defining equation for the density
of states (Equation 9.89) gives

(9.93)

This result is particularly important in the study of the theory of metals
for the electrical properties resulting from essentially free conduction elec-
trons. Actually, the more useful result is the density of electron states in
three dimensions, which will be considered in detail in Section 10.7.

review of Fundamental and Derived equations

The fundamental and derived equations of this chapter are listed below,
along with the fundamental postulates of quantum mechanics.

FUNDaMeNtaL eQUatIONS—CLaSSICaL phYSICS
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MatheMatICaL OperatOrS aND reLatIONS

FUNDaMeNtaL pOStULateS—QUaNtUM MeChaNICS
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DerIVeD eQUatIONS

Time-Independent Schrödinger Equation
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Free Particle and an Infinite Potential Well

9.1 By combing de Broglie’s and Schrödinger’s postulates and using the
free particle wave function C(x, t) 5 Ae j(kx 2 vt), construct Schrödinger’s
one-dimensional time-dependent wave equation.

Solution:
Combining Schrödinger’s postulate (E 5 p2/2m 1 V) with d Broglie’s
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postulates (p 5 "k, E 5 "v) yields

The quantities v and k2 in this equation can be replaced by partial
derivatives of the free particle wave function. That is, with 

substituted into the above equation, we immediately obtain
Schrödinger’s one-dimensional time-dependent wave equation:

9.2 Show that Schrödinger’s energy conservation postulate (Equation
9.1) is directly obtained, by using the free particle wave function of Equa-
tion 9.6 as a solution to the one-dimensional time-dependent Schrödinger
equation.

Answer:

9.3 Show conclusively that the wave functions C(x, t) 5 A cos(kx 2 vt)
and C(x, t) 5 A sin(kx 2 vt) are not solutions to the one-dimensional
time-dependent Schrödinger equation.

Solution:
Assuming V(x, t) ; 0, direct substitution of C(x, t) 5 A cos(kx 2
vt) into Equation 9.10 yields

With "2k2/2m 5 p2/2m 5 E and "v 5 E substituted into this result,
we obtain

cos(kx 2 vt) 5 j sin(kx 2 vt),

which is clearly not valid. In a similar manner, substitution of
C(x, t) 5 A sin(kx 2 vt) into the Schrödinger equation gives

sin(kx 2 vt) 5 2j cos(kx 2 vt),

after de Broglie’s postulates are employed.
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9.4 Assuming C(x, t) 5 c(x)f(x) is a solution to Schrödinger’s time-de-
pendent equation, obtain Schrödinger’s one-dimensional time-indepen-
dent equation. Further, show that in general the time-dependent
eigenfunction is given by f(t) 5 e2( j /")Et, where the total energy E is the
separation constant.

Answer:

9.5 Show that if  C(x, t) is in general a complex function, then the product
of C*(x, t) and C(x, t) is always a real function.

Solution:
Consider a general complex wave function to be of the form

C(x, t) 5 A 1 jB,

where A and B are real functions. With the complex conjugate of
C(x, t) taken as

C*(x, t) 5 A 2 jB,

then the product

C*(x, t)C(x, t) 5 A2 1 B 2

is always real.

9.6 Show that the probability density flux S(x, t) is always real for the
general case where C(x, t) 5 A(x, t) 1 jB(x, t) is a complex function.

Answer:

9.7 Show that S(x, t) is real for the free particle wave function of Equation
9.6.

Solution:
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where the second equality is obvious since C*C 5 CC* 5 A2. Since m,
v, and A are real, then S(x, t) is real for the free particle wave function.

9.8 Verify the result given in Equation 9.60 by employing the wave func-
tion given in Equation 9.59 with the defining equation for the probability
density flux.

Answer: S(x, t) 5 2vB*B

9.9 Consider the three dimensional plane wave

at time defined to be zero, and show that S(r, 0) 5 v.

Solution:

9.10 By considering the three dimensional Schrödinger equation and
probability current S(r, t), show that the divergence of S(r, t) results in a
relation that is similar in form to the classical equation of continuity.

Answer:     
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9.11 Verify that the eigenfunction given in Equation 9.69 is a solution to
the time-independent Schrödinger equation.

Solution:
With the eigenfunction c(x) 5 Ae jkx 1 Be2 j kx substituted into Equa-
tion 9.29,

we obtain

This result is identical to Schrödinger’s conservation of energy pos-
tulate (Equation 9.1), after cancelling out the common eigenfunction
c(x) and using de Broglie’s momentum postulate p 5 "k.

9.12 A free particle in the ground state is confined to a one dimensional
box of size L. What is the probability of finding the particle in an interval
Dx 5 1023L at x 5 (1/4)L, x 5 (3/4)L, and x 5 L?

Answer:

1 3 1023, 2 3 1023, 1 3 1023, 0

9.13 Repeat Problem 9.12 for a free particle in a box in the first excited
state.

Solution:
In the first excited state the normalized eigenfunction for a free particle
in a box (see Equation 9.85) is

so the probability is given by
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where the third equality was obtained by substituting Dx 5 1023L. Thus,
for the different values of x from Problem 9.12 we obtain the following:

9.14 Verify that the eigenfunctions cn(x) 5 Ï2/Lw sin knx and cn(x) 5
Ï2/Lw cos knx, where kn 5 np/L, are both solutions to the eigenvalue equa-
tion for the free particle in a box (Equation 9.68), by showing that
En 5 n2h2/8mL2 are the energy eigenvalues obtained for both.

9.15  Consider a proton to be a free particle in a box of the size of a nu-
cleus. Find the energy released when a proton makes a transition form the
quantum state E2 to the ground state E1.

Solution:
With the nucleus of an atom being thought of as a one-dimensional
box of length L 5 1 3 10214 m (see the discussion preceding Equation
5.80) and m 5 mp 5 1.67 3 10227 kg, the energy released is given by

E2 2 E1 5 22E1 2 E1 5 3E1,

where the ground state energy

is obtained from Equation 9.80. Combining the above two equations
and substituting the physical data gives

This result is in approximate agreement with the observed energy differ-
ences between stationary states of protons (and neutrons) in a nucleus.
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9.16 Consider a particle of mass 1023 g confined to a box of length 1 cm.
Treating this problem quantum mechanically, find the ground state energy
and speed of the particle.

Answer:

E1 5 5.44 3 10258 j, v1 5 3.30 3 10226 m/s

9.17 If  the particle of Problem 9.16 were moving with a distinguishable
speed of 1021 cm/s, what is the approximate value of the principal quan-
tum number n?

Solution:

Equating the quantized energy of Equation 9.80 with kinetic energy mv2,

and solving for n gives

which with the physical data yields

9.18 Evaluate the probability density flux for the wave function given by
Equation 9.86.

Answer: S(x, t) 5 0

9.19 Consider a particle confined to a two dimensional box of edge L,
where the potential energy V(x, y) is restricted to the values V 5 0 inside
and V 5 ` outside of  the box. If  the eigenfunction solution c(x, y) to
Schrödinger’s two dimensional time-dependent equation has the boundary
conditions c(x, y) 5 0 at x 5 0 and x 5 L (for all y) and c(x, y) 5 0 at y
5 0 and y 5 L (for all x), find the normalized eigenfunction.

Solution:
From Equations 9.29 and 9.30 it is apparent that Schrödinger’s two-di-
mensional time-independent equation is of the form (with V(x, y) 5 0)
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and assuming separation of variables for c(x, y),

c(x, y) 5 cx(x)cy(y),

we immediately obtain

Since the energy for a free particle in a two-dimensional box can be
expressed as

then substitution into the above wave equation yields

These two ordinary differential equations are of  identical form to
that given by Equation 9.68 for the one-dimensional free particle in
a box. Thus, the normalized eigenfunction solutions can be chosen
as (see Equation 9.85)

and the normalized eigenfunction associated with a particle in a
square box becomes

where the symbolic notation

cnxny
; c(x, y) 5 cx(x)cy(y)

has been introduced.

9.20 Find the energy eigenvalues for the free particle in a square box of
Problem 9.19, and show that the wave number quantization conditions
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are given by kx 5 nxp/L and ky 5 nyp/L.

Answer:

9.21 Consider a proton to be a free particle in a square box of edge L 5
1 3 10214 m. Find the energy released when a proton makes a transition
from the first excited state to the ground state.

Solution:
From the energy eigenvalue equation obtained in Problem 9.20, the
ground state energy for a particle in a square box corresponds to
nx 5 1 and ny 5 1, while the first state is specified by the set of quan-
tum numbers (nx, ny) 5 (1, 2) or (nx, ny) = (2, 1). Consequently, using
the energy eigenvalue equation

we immediately obtain

Thus, the energy released is given by

which is identical to the equation obtained in Problem 9.15 for the pro-
ton confined to a one dimensional box of length L 5 1 3 10214 m.

9.22 Verify that . For 

a ,, k0, what does the graph of this wave function resemble?

Answer:

9.23 Consider the wave function defined at t 5 0.

If  the amplitude is given by A(k) 5 2e2k2/2s2
, show that C(x, 0) 5 sÏ2pw
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e2s2x2/2, by evaluating the, so called, Gaussian integral.

Solution:
The integral can be expressed as

where a ; 1/2s2 and c ; jx. Since this integral is of the general form

given in Section A.10 (see also the discussion presented in Section
10.4), we have

9.24 Normalize the wave function obtained in Problem 9.23.

Answer: C(x, 0) 5 (s2/p)1/4 e2s2x2/2.
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Introduction

Many of the fundamentals of Schrödinger’s theory of quantum mechanics
were introduced in the last chapter, including the time-dependent
Schrödinger equation and the interpretation of its wave function solution
as a probability amplitude, the steady-state Schrödinger equation and its
eigenfunction solution, the definition of probability requirements for con-
servation of probability and wave function (or eigenfunction) normaliza-
tion, and the concept of a probability density flux. These fundamentals
of quantum mechanics were applied to two examples involving free par-
ticles, with the free particle in a box example being most noteworthy as a
one-dimensional description of conduction band electrons in a solid. In
all of these discussions the wave function and eigenfunction solutions to
Schrödinger’s equations were represented as being intrinsically dependent
on the positions variable x. There exist, however, physical properties of a
quantum mechanical particle or system that are more directly dependent
on the momentum variable p instead of the position variable. In this con-
cluding chapter of Schrödinger’s quantum mechanics, we first investigate
the representation of wave functions and eigenfunctions in both position-
space and momentum-space, and then consider additional fundamentals
like expectation values and quantum mechanical differential operators.

We begin this chapter by considering the problem of  finding the
Fourier transform of a position-space wave function, C(x, t). To facilitate
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Ch. 10  Schrödinger’s Quantum Mechanics II377

this problem and find the wave function F(p, t) in momentum-space, we
introduce the Dirac delta function and capitalize on its mathematical prop-
erties. The problem is then particularized and the Fourier transform ob-
tained for the generalized free particle wave function. We then consider
how the average value of a physical observable is mathematically described
in quantum mechanics. This average value of an observable for a quantum
mechanical particle, corresponding to the value we would expect to obtain
by averaging actual experimental measurements, is called the expectation
value, which is carefully introduced and defined in terms of the particle’s
associated wave function. The discussion of a quantum mechanical ex-
pectation value is followed by a consideration of how the momentum vari-
able p behaves like a differential operator in position-space, and likewise
for the position variable in momentum-space. Our discussion of quantum
mechanical operators continues with an interpretation of energy as an op-
erator in both position and momentum space and the definition of  the
Hamiltonian operator. Equipped with the fundamental relations for the
expectation values and quantum mechanical operators, we next consider
the formal mathematical correspondence between quantum mechanics and
classical mechanics. In this consideration, Bohr’s correspondence principle
is illustrated by way of two examples, using rather straight forward, al-
though somewhat involved, mathematical arguments. In addition, we in-
troduce a more elegant method for demonstrating the correspondence
principle, which employs operational algebra and the definition of the com-
mutator. We conclude our introductory treatment of quantum mechanics
by considering the problem of a free particle in a three-dimensional box.
Further, the generalization of this problem to describe conduction elec-
tions in a solid is considered, by deriving the very important electronic
density of states formula.

10.1  Wave Functions in Position and Momentum
Representations

In the last chapter the wave function of Schrödinger’s equation was dis-
cussed in terms of its functional dependence on the spatial and temporal
coordinates. Because of the spatial dependence, the wave function, often
referred to as a state function, is said to be expressed in the position repre-
sentation. For example, the ultimate generalization of the one-dimensional
free particle state function is given in the position representation as

(10.1)
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which is, essentially, the same as that given by Equation 9.37. This state
function in the position representation has been directly obtained from
Equation 9.37 by employing de Broglie’s energy and momentum postulates
(Equations 8.52 and 8.53) and introducing a convenient multiplicative con-
stant of (1/2p")1/2. Remember, the physics has not been affected by intro-
ducing this constant, but its usefulness will shortly become apparent in
the development of this section. Since C(x, t) is a state function in the po-
sition representation, F(p, t) could be interpreted as the free particle state
function in the momentum representation. Our immediate objective is to
mathematically operate on Equation 10.1 and solve it for F(p, t), which
in mathematical language is equivalent to finding the Fourier transform
F(p, t) of the position state function C(x, t). This task is reminiscent of
the problem encountered with the vibrating string in Chapter 8, Section
8.2, where the relations for the coefficients An and Bn (Equations 8.35 and
8.36) were determined (recall Problems 8.5 and 8.6) from the two equa-
tions representing the initial conditions. Although we could proceed with
the problem of determining F(p, t) in a similar manner using ordinary
calculus, it is both convenient and advantageous to introduce a new math-
ematical function that provides and easy operational approach for finding
Fourier transforms in quantum mechanics.

Dirac Delta Function

The mathematical properties of the Fourier transform of a function sug-
gested the definition of a new singular function to P. A. M. Dirac, which
has become known as the Dirac delta function. In terms of the one-dimen-
sional wave number kx, which we will simply call k for convenience, the
Dirac delta function is defined as

(10.2)

where k9 represents a wave number whose value is only slightly different
from that of k. This function could also be defined in terms of the one-di-
mensional position coordinate as

(10.3)

which in terms of momentum (de Broglie’s postulate) becomes
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In a similar manner Equation 10.2 can be expressed in terms of momenta
p and p9 by

where a property of the Dirac delta function given by Equation 10.11 has
been employed in addition to de Broglie’s momentum postulate. Consid-
ering k to be a dummy variable for the moment, the definition of the func-
tion d(k 2 k9) by Equation 10.2 means that the function has the properties

(10.6)

The Dirac delta function is meaningful only when it appears under integral
signs, where it has the property

(10.7)

Two other properties which are of particular usefulness are

d(k 2 k9) 5 d(k9 2 k), (10.8)

and f(k)d(k 2 k9) 5 f(k9)d(k 2 k9), (10.9)

where f(k) is just a general function of the dummy variable k. This last
equality allows us to obtain the most commonly used property of  the
Dirac delta function, namely
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where the property given by Equation 10.7 has been used in obtaining the
last equality. It should be emphasized that f(k) can be any function of the
variable k, real or complex, and that as a result of the property given by
Equation 10.9, f(k9) could be taken out of the integral in the above deri-
vation. Other useful properties of the Dirac delta function include

(10.11)

where a is a constant, and

(10.12)

It should be observed that the property given by Equation 10.11 has al-
ready been used in obtaining Equation 10.5 form Equation 10.2, that is,

Although other properties of the Dirac delta function involving de-
rivatives could be listed, those listed above are the most useful and are
completely adequate for our purposes. We need to remember, however,
that in general problems of quantum mechanics are expressed in a three-
dimensional formulation. The definition for the Dirac delta function and
its properties can be easily generalized to three dimensions, for example,

Under the initial conditions of

k9x 5 k9y 5 k9z 5 0,

these equations reduce to
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As a last point of interest, it needs to be emphasized that the definitions
and properties of the Dirac delta function can be generalized and partic-
ularized for any useful and important physical variable. We will continue
to emphasize one-dimensional considerations and use px ; p and kx ; k;
however, the generalizations to three dimensions should be rather appar-
ent.

Free Particle Position and Momentum Wave Functions

As an example of the operational utilization of the Dirac delta function,
let us return to the problem of obtaining an expression in the momentum
representation for the state function of a one-dimensional free particle. To
simplify matters consider an instant in time, say at t ; 0, such that Equa-
tion 10.1 can be expressed in terms of the eigenfunctions c(x) 5 C(x, 0)
and f(p) 5 F(p, 0) as

Now, multiply both sides of  this equation by Ï1/2p"w e2(j/")p9x and inte-
grating over the position variable gives

where the second equality has been obtained by interchanging the order of in-
tegration. Invoking the properties of the Dirac delta function, we obtain
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Dropping the prime in our result, as it no longer serves any useful purpose,
we have

for the Fourier transform of Equation 10.16. This result represents the
eigenfunction in the momentum representation for the one-dimensional
free particle. Since for the free particle the wave functions in the position
and momentum representations are given by (see Equation 9.28)

and (note the exponential in Equation 10.1)

then the Fourier transform to Equation 10.1 is just

This equation gives the state function for a one-dimensional free particle
in the momentum representation. Usually little or no emphasis is placed
on the momentum representation in quantum mechanics, since, as we shall
see in the following sections, solutions to quantum mechanical problems
are invariant to the representation formulation.

10.2  Expectation Values

Consider a particle being in a quantum mechanical state described by its
associated wave function, which contains all of the physical information
of the particle allowed by the Heisenberg uncertainty principle. In an at-
tempt to find a suitable method for averaging the physical properties of this
system, we could make a number of measurements on a large number N
of identical particles in similarly prepared systems. Alternatively, we could
make a large number of repeated measurements on the same particle over
a considerable period of time. After J. Willard Gibbs (see Chapter 11, Sec-
tion 11.1), we choose to average over a large number N of copies of the

e dxc
&

5p x
2

1

2

1

`

` px

&
f

p

2
j

^ ^h hy

&, 5x t x e
Et

cC
2

j

^ ^h h

&, ,5p t p e
Et

fF

j

^ ^h h

&
, ,5

p
p t x t

2

1

2

1

`

` 2px Et

&
F

2
j

e dxC^ ^ ^h h h
y

10.2 Expectation Values 382

Momentum-Space
Free Particle
Eigenfunction

Momentum-Space
Free Particle
Wave Function

(10.17)

(10.18) Free Particle

Free Particle(10.19)

(10.20)

Evaluation Copy 

Not Licensed for 

Instructional Use 



system, with each particle being in the quantum state associated with the
wave function, to obtain what is called an ensemble average. Now, allow
any physical observable, like position, momentum, energy, and so on, to
be denoted by the letter Q. If  a measurement is made on one of the sys-
tems in the ensemble to determine whether the particle has a particular
value for the physical observable, the result will be definite—either it has
that particular value for Q or it has some other value. If  this measurement
is repeated on all of the systems in the ensemble, the relative number of
times that the particle is found to have the same value for Q is taken as a
measure of the probability that the particle will have that particular value
for the physical observable Q. As a more specific example, consider an en-
semble of systems containing a classical particle and the measurements
for the particle’s position x at an instant in time. If  our measurements re-
vealed the particle to have the position x1 in n1 systems, the position x2 in
n2 systems, and so on, then a common sense definition for the average or
expected value of the particle’s position in our ensemble is given by

(10.21)

where the total number of systems N is simply

N 5 n1 1 n2 1 n3 1 ??? . (10.22)

In this case, n1/N is interpreted as the probability of the particle having
the particular value x1. In quantum theory this probability of finding the
particle at the particular point x1 along the X-axis is given by (see Equa-
tions 9.41 and 9.42)

(10.23)

where C1 is the particle’s associated wave function evaluated at x 5 x1. As
our quantum mechanical probability is analogous to the first term in
Equation 10.21 for the classical particle, it is apparent that in quantum
mechanics the summation (N 5 n1 1 n2 1 n3 1 ???) is replaced by an inte-
gral and the, so called, occupation umbers ni are replaced by the relative
probabilities

Pi(x, t)dx 5 )Ci )2dx. (10.24)
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10.2 Expectation Values 384

Thus, by these analogies and the form of Equation 10.21, we can define
the quantum mechanical expectation value for a particle’s position as

(10.25)

with an integral in the numerator instead of the summation in Equation
10.21. The form of Equation 10.25 and the definition of the absolute prob-
ability density,

suggest that the position expectation value can be expressed as

(10.26)

which reduces to

(10.27)

for properly normalized wave functions.
The discussion above can be generalized and used to define the ex-

pectation value of any physical variable that is a function of the x-coordi-
nate of a particle described by its associated wave function. As such, the
quantum mechanical expectation value of a variable Q(x) is defined by

(10.28)
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for properly normalized wave functions. These formulas are valid even for
variables that are dependent on the time coordinate, since the expectation
value of Q, kQl, must be evaluated at an instant, usually t ; 0, in time.
The reasons for the form of the integrand in Equation 10.29 as C*QC in-
stead of QC*C or C*CQ will be fully discussed in the next section. It
should be emphasized that kQl is the value of the physical observable that
we expect to obtain, if  we average the experimental values of Q that are
measured at an instant in time for a large number of particles described
by the same wave function.

The form of Equations 10.28 and 10.29 are clearly appropriate for a
position-dependent variable of a particle described by a state function in
the position representation. But, suppose the physical observable in ques-
tion is directly dependent on momentum instead of position, that is Q 5
Q(p). In this case it would seem more appropriate to specify the state of
the particle in the momentum representation and define the expectation
value of Q by

(10.30)

where the absolute probability density r(p, t) in the momentum representa-
tion is given by

(10.31)

For properly normalized state functions F(p, t), our definition for kQ(p)l
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At this point an important question must be raised. If  the physical observ-
able in Equations 10.29 and 10.32 is the same, will the value obtained by
using Equation 10.29 be identical to the value obtained for kQl by using
Equation 10.32? Clearly, we must have an affirmative answer to this ques-
tion, if  the formalism introduced is to be consistent. We must be able to
calculate the expectation value of any physical observable with either the
position or momentum representations of the state function and obtain
the exact same answers. That is, at any particular value of time t (say at
the value t ; 0), we must have

(10.33)

for normalized wave functions.
As a verification of  Equation 10.33 and an example of  the opera-

tional properties of the Dirac delta function, let us employ the one-dimen-
sional wave function of  a free particle given by Equation 10.1. At an
instant in time, say t ; 0, the state function in the position representation
given by Equation 10.1 reduces to the eigenfunction given in Equation
10.16. Thus, direct substitution into Equation 10.33 gives

where we have rearranged factors and interchanged the order of integra-
tion in obtaining the last equality. Now, employing the definition of the
Dirac delta function (in the form of Equation 10.5) and its properties in
Equation 10.34 yields
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(10.35)

where the last equality should be obvious for t 5 0 from Equation 10.19.
A comparison of Equations 10.34 and 10.35 verifies the validity of Equa-
tion 10.33 fir the free particle wave functions. Particular attention should
be given to the properties of the Dirac delta function as used in this veri-
fication, as they will be further employed in the next section. Also, we
should note that since the free particle wave functions of Equations 10.1
and 10.2 are not normalized, we should have verified the equality of Equa-
tions 10.28 and 10.30, i.e.,

(10.36)

The numerators in this equation are clearly equivalent from the above ver-
ification, and the equivalence of the denominators,

(10.37)

can be easily demonstrated by similar arguments.

10.3  Momentum and Position Operators

In most quantum mechanical problems Schrödinger’s equation is solved
for the wave function and then the expectation value of physical variables
like position, momentum, and energy are determined. This poses a prob-
lem, however, since the wave function solution to Schrödinger’s equation
(Equation 9.10) is necessarily in the position representation. How, then, is
the expectation value of momentum to be determined? It would seem most
appropriate to use the wave function in the momentum representation for
this problem and begin with the equation

(10.38)
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10.3 Momentum and Position Operators 388

which would necessitate finding the Fourier transform of  the solution
C (x, t) to Schrödinger’s equation. This should not be necessary, however,
since the result expressed by Equation 10.33 indicates that the problem
can be formulated in either the position or the momentum representation.
But in the position representation,

(10.39)

an immediate difficulty is encountered, as the momentum p must be ex-
pressed as a function of x and t before the integration can be performed.
If, however, the position x is specified, the Heisenberg uncertainty princi-
ple,

DxDp 5 h, (8.99a)

indicates that no such functions as p 5 p(x, t) exists, since an exact deter-
mination of p is not possible.

To obtain some insight as to the proper way of evaluating kpl in the
position representation, we will consider Equation 10.38 and use the one
dimensional free particle wave function given by Equation 10.20. At a par-
ticular instant in time, say t 5 0, the wave function of Equation 10.20 be-
comes identical to the eigenfunction of Equation 10.17, F(p, 0) 5 f(p),
so direct substitution into Equation 10.38 yields

The reduction of this equation is facilitated by observing that

which can be solved for 

(10.41)
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Substitution of this result into Equation 10.40 results in

where the integral in the bracket of the second term must vanish,

for a well behaved eigenfunction. Now, substituting Equation 10.43 into
Equation 10.42 and using the properties of the Dirac delta function, we
obtain

where the last equality should be obvious from Equation 10.18 for t 5 0.
A comparison of Equations 10.40 and 10.44 gives

which suggests that momentum p behaves like a differential operator in the
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position representation. That is, we should associate the differential mo-
mentum operator

(10.46)

with the x-component of momentum, when we attempt a calculation for
the expectation value of  momentum in the position representation. Our
discussion also indicates that in momentum-space the momentum operator
behaves like

p̂f(p) 5 pf(p) (10.47)

while in real-space it behaves like

(10.48)

Generalizing to three dimensions, the vector momentum operator can be
defined by

p̂ ; 2j"=, (10.49)

which suggests that the momentum eigenvalue equation is of the form

2j"=c(r) 5 pc(r) (10.50)

with a solution

Of course the eigenfunction of Equation 10.51 could be multiplied by a
constant or a function of  time and the eigenvalue equation (Equation
10.50) would still be satisfied. Consequently, the plane monochromatic
waves introduced in Chapter 8 are the eigenfunctions of the momentum op-
erator.

It is rather straight forward to reproduce arguments similar to the
ones used above to show that the position variable x should be treated as
an operator x̂ in the momentum representation. The result obtained using
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the free particle wave function given by Equation 10.1 and the properties
of the Dirac delta function is

which suggests that position x behaves like a differential operator in the
momentum representation. Thus, we define the differential position operator
by

(10.53)

where it is understood that p is the x-component of the vector momentum
p. Of course x̂ → x in position space just like p̂x → px in momentum space.
Although the derivation leading to Equation 10.52 is rigorous using the
properties of the Dirac delta function, the relation for the position operator
is easily inferred by considering a plane traveling wave of the form (see
Equation 10.17 and 10.19)

Taking the derivative of this wave function with respect to p gives

(10.54)
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* dpf

,dpF*

x dx

f

C*

x dxc

F

*

, ,

, ,

5

5

5

5

? ?

? ?

? ?

x x x

x x

p j
dp

d
p

p j
p

p

0 0

0 0

2

1

2

1

2

1

2

1

`

`

`

`

`

`

`

`

&

&
2

2

c

C ^ ^
^ ^

^ c ^
^ c ^

h h
h h

h m h
h m h

y

y

y

y

c ,;x j
p

&
2

2

2
&

, .5p t Ae
2px Et

F

j

^ ^h h

x .5F F, ,5
p

j
x p t j

p
p t"

2

2

&
&
2

2F
F2 c ^ c ^h m h

&
, 5x t Ae

2px Et

C

j

^ ^h h

Ch. 10  Schrödinger’s Quantum Mechanics II391

(10.52)

Position Operator

(9.6)

Evaluation Copy 

Not Licensed for 

Instructional Use 



with respect to x gives 

(10.55)

which suggests the momentum operator defined by Equation 10.46. As be-
fore, we can write down an eigenvalue equation for x in the position repre-
sentation as

x̂c(x) 5 xc(x), (10.56)

while in the momentum representation we have

(10.57)

Although the results of this section have been obtained for free par-
ticles, they are perfectly general and as valid as Schrödinger’s equation,
which will be convincingly argued in the next section. To reiterate in a
slightly different form, the eigenvalue equations in the position representa-
tion are

while in the momentum representation they are

Incidentally, the eigensolutions to Equations 10.48 and 10.57 are Fourier
transforms of one another,

(10.58)

while the solutions to Equations 10.56 and 10.47 are improper functions,

c(x) 5 d(x 2 x0)       and        f(p) 5 d(p 2 p0), (10.59)
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which vanish everywhere except for x 5 x0 and p 5 p0. The eigenfunctions
expressed by Equation 10.59 are exactly what we need for a wave function
where the square of the probability amplitude is to represent the relative
probability that the associated particle will be found at a particular point
x0 or have a particular momentum p0. If there is no uncertainty in our
knowledge that the particle is at the position x0, then the state function
must vanish at all other points for which x ? x0.

It is now possible to show why the expectation value of  a physical
variable is defined by

(10.29)

instead of the alternatives

(10.60a)

or (10.60b)

Clearly, if  Q 5 p, Equation 10.60a gives

since well behaved wave functions and their complex conjugates must van-
ish at x 5 6`. In the case of the second alternative (Equation 10.60b) we
have

which is mathematically absurd. Thus, the expectation value given by
Equations 10.29 and 10.32 are the only appropriate definitions for vari-
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ables that behave as operators in the position or momentum representa-
tions. Of course, for quantities like x and V(x) in the position representa-
tion or p in the momentum representation, the order of  factors in the
integrand is immaterial, but for differential operators, the defining order
for the wave functions and the operator must be preserved.

Momentum Eigenvalues of a Free Particle
in a One-Dimensional Box

Before leaving this section to consider energy operators in quantum me-
chanics, it might prove beneficial to apply our results for the one-dimen-
sional momentum operator (Equation 10.46) and the associated momentum
eigenvalue (Equation 10.48) to the problem of a free particle in a box dis-
cussed in Section 9.7. For this problem we found the normalized eigenfunc-
tions to Schrödinger’s eigenvalue equation to be of the form

(9.79)

with associated quantized energy eigenvalues given by

(9.80)

It should be apparent that the momentum eigenvalue equation (Equation
10.48) can be expressed as

(10.61)

where pn denotes the quantized momentum eigenvalues. Clearly, the energy
eigenfunctions of Equation 9.79 are not solutions to Equation 10.61, as

The correct solution to Equation 10.61 is suggested by Equation 9.80 and
the relation En 5 p2

n /2m. Since En in Equation 9.80 is constant for any given
value of n, then the quantized momentum eigenvalues given by
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(10.62)

are constant for a given value of n. Thus, Equation 10.61 can be expressed
as

which upon integration and exponentiation yields

cn 5 e6jnpx/L.

The normalized momentum eigenfunctions are of the form

(10.63)

since the normalization condition

is obviously satisfied. The 6 sign in the exponential of  Equation 10.63
means that we have the two eigenfunctions

(10.64a)

and (10.64b)

as solutions to the momentum eigenvalue equation (Equation 10.61).
These eigenfunctions represent plane waves traveling in the positive and
negative x-directions, respectively, and they are obvious solutions to Equa-
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tion 10.61. That is, substitution of Equations 10.64a and 10.64b separately
into Equation 10.61 yields

which are in agreement with the momentum eigenvalues for the free particle
in a box expressed by Equation 10.62. These momentum eigenvalues re-
flect the fact that the particle is moving back and forth between x 5 0 and
x 5 L. This means that the particle’s momentum expectation value kpl
should be zero, since its average momentum for a given value of n is clearly

As a last point of interest, it should be noted that the energy eigenfunction
(Equation 9.79) can be represented by a linear combination of  the two
momentum eigenfunctions by the relation

which along with Equations 10.64a and 10.64b suggests an alternative
form for the momentum eigenfunctions.

(10.65a)

(10.65b)

10.4  Example: Expectation Values 
in Position and Momentum Space

Before going any further in the development of the theory of quantum
mechanics, an example of position and momentum expectation values in
both representations will be considered, which should clarify the meaning
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Ch. 10  Schrödinger’s Quantum Mechanics II397

of the previous sections. A wave function in the momentum representation
is considered to be given by

(10.66)

where time has been suppressed (t ; 0) and the u-subscript denotes an un-
normalized state function. Preferring to work with normalized wave func-
tions, we write down the normalization integral and perform the obvious
substitution from Equation 10.66:

This integral is of the form

(10.67)

given Appendix A, Section A.10, whence the integral above yields

A comparison of this result with the normalization integral gives

(10.68)

for the properly normalized eigenfunction. Since this eigenfunction is ap-
propriate for the momentum representation, the expectation values of mo-
mentum and the square of momentum can now be easily determined. We
have for the former from Equations 10.32 and 10.68
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The integral above was evaluated by recalling that every odd function inte-
grated between symmetric limits vanishes, where a function f (x) is odd if
and only if

f (x) 5 2f (2x) (10.70a)

and even if  and only if

f (x) 5 1f (2x). (10.70b)

The determination of  the expectation value of  p 2 is also easily accom-
plished by using Equations 10.32 and 10.68. That is,

where the integral is of the general form (see Appendix A, Section A.10)

(10.72)

With n 5 1 and a 5 (1/d")2 in this equation, Equation 10.71 becomes

We could go further and determine the expectation values of x and
x2 by using Equations 10.29, 10.53, and 10.68, but we attempt to edify by
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Ch. 10  Schrödinger’s Quantum Mechanics II399

first obtaining the appropriate eigenfunction in the position representation.
The problem is simply to obtain c(x) by finding the Fourier transform of
f(p). We begin by substituting Equation 10.68 into Equation 10.16 to ob-
tain

This integral is of the form

(10.74)

given in Appendix A, Section A.10, so with a 5 1/2d 2"2, c 5 jx/", and a
bit of algebraic simplification we obtain

(10.75)

This eigenfunction in the position representation is the Fourier transform
of the eigenfunction f(p) given in Equation 10.68. Since f(p) is normal-
ized, c(x) should also be normalized. As a check we consider

where Equation 10.67 has been used in evaluating the integral.
With the normalized eigenfunction in position-space given by Equa-

tion 10.75, it becomes an easy task to determine expectation values of x
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and x2. Using Equations 10.29 and 10.75, we obtain

where the integrand has been observed to be an odd function of x. In a
similar manner, kx2l is given by

where the integral was evaluated using Equation 10.72. As a point of in-
terest, for kxl 5 0 the root-mean-square, kx2l1/2, of the position variable in-
dicates the deviation about the average, which would be observed in
measuring the position of the particle. In a case where kxl ? 0, the stan-
dard deviation, (kx2l 2 kxl2)1/2, is the measure of such deviations about the
average. Such comments are equally applicable for the expectation value
of momentum.

From the above considerations it should be obvious that the expec-
tation values of x and x2 are most easily determined by using a normalized
eigenfunction in position space, while the momentum representation is
more appropriate in determining kpl and kp2l. From the last section, how-
ever, we know that the expectation value of any physical variable can be
found with either position-space or momentum-space wave functions. As
a last example, illustrating the manner in which expectation values are cal-
culated, we will consider the determination of kp2l in the position repre-
sentation. Clearly, from the previous sections we have
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(10.78)

where the momentum operator is defined by Equation 10.46 and c(x) is
given by Equation 10.75. With these substitutions, Equation 10.78 be-
comes

where the integrals were evaluated using Equations 10.67 and 10.72. A
quick comparison of this result with Equation 10.73 shows that the ex-
pectation value of p2 when determined in the position representation is the
same when it is determined in the momentum representation. However, it
should be observed that the former evaluation was considerably easier,
mathematically, than the latter.

Linear Harmonic Oscillator

Although the eigenfunction of this section has been most useful in illus-
trative examples for finding expectation values and a Fourier transform,
it was not chosen arbitrarily. It is in fact the ground state eigenfunction for
the linear harmonic oscillator. To verify this fact, recall from Chapter 7,
Section 7.6 that

(7.91)
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where the wave number k is related to the angular frequency v of the os-
cillator by

k 5 mv2. (7.95)

This equation is easily determined, since for the conservative force F 5
2kx (Hooke’s law) of  the harmonic oscillator, Tmax 5 Vmax → mv2 5

kx2 → mx2v2 5 kx2 → k 5 mv2. Using the two relations given
above, the steady-state Schrödinger equation takes the form

which can be rearranged in the form

(10.80)

Now, direct substitution of c(x) given in Equation 10.75 should yield a
relation for the ground state energy eigenvalue. That is, with

substituted into Equation 10.80, we obtain

(10.81)

For this equation to be satisfied for all values of x, the terms involving x2

must sum to zero. This required the parameter d to be equated with
(mv/")1/2, that is

(10.82)

Thus, cancelling the common factor c(x) in Equation 10.81 and substi-
tuting Equation 10.82 yields
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which when solved for E gives

This result is identical to that obtained in Chapter 7, Section 7.3 (Equation
7.42) for an orbiting electron about an atomic nucleus. It is different than
Equation 7.101, obtained by the Wilson-Sommerfeld quantization rule in
Section 7.6, since in that derivation we were considering a purely classical
harmonic oscillator. 

The quantum mechanical harmonic oscillator has not been consid-
ered in rigorous detail because the general methods of finding the eigen-
function solutions to Schrödinger’s equation (Equation 10.80) are beyond
the mathematical level of this text. Although not terribly difficult, the gen-
eral solution to Equation 10.80 involves Hermite polynomials, which are
normally introduced to students in advanced mathematics. We can, how-
ever, guess at the general form of the energy eigenvalues, by realizing the
energy levels are equally spaced (see Equation 7.101) for the classical os-
cillator. Assuming this to be equally valid for the quantum mechanical os-
cillator, the relation

(10.84)

satisfies this requirement and Equation 10.83 for n 5 0, 1, 2, 3, ? ? ?. That
is, at n 5 0, the ground state or zero point energy is correctly predicted by
Equation 10.84 to be that given by Equation 10.83.

10.5  Energy Operators

The total energy E for a quantum mechanical particle is expected to be-
have like a differential operator, since for a free particle of constant energy,
E is directly proportional to the square of momentum, which is a quantum
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mechanical operator. We could find the energy operator of quantum me-
chanics by determining its expectation value kEl using a method similar
to that detailed for kpl, where the free particle wave function in momen-
tum space (Equation 10.20) was employed along with the properties of
the Dirac delta function. Now, however, it is considerably easier to cap-
italize on the wave functions of  position and momentum space given by
Equations 10.18 and 10.19. That is, for the one-dimensional free particle
wave function in the position representation given by Equation 10.18,
kEl is just

where the third equality has been obtained from

by solving for

The result of Equation 10.85 suggests that the total energy E behaves like
a differential operator in quantum mechanics. Thus, we define the energy
operator in position space by

(10.87)
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Clearly, the energy eigenvalue equation in the position representation is given
by

(10.88)

where the eigenfunction solution is of the form

The energy operator in the momentum representation can be found
by using similar arguments to those presented above. That is, using Equa-
tion 10.19 we have

so the momentum-space energy operator is

(10.91)

In this case the corresponding eigenvalue equation is given by

(10.92)

having the solution 

jc ,9 9 5 9E" &c c cE t
dt

d
t t^ ^ ^h h h

2 Et
&

.9 5t ec

j

^ h

,

e E e dp

dp

f

F

*

*

f

F

2 EtEt
& &

, ,

, ,

5

5

5 2

E p t p t

p p

p t j
t

p t

2

1

2

1

2

1

`

`

`

`

`

`

&
2

2

j j

E dpF*F ^ ^

^ ^

^ c ^

h h

h h

h m h

y

y

y

c .2; j&E
t2

2

c ,9 2 9 5 9j E" &f f fE t
dt

d
t t^ ^ ^h h h

1 Et
&

.9 5t ef

j

^ h

Ch. 10  Schrödinger’s Quantum Mechanics II405

(10.89)

(10.90)

Energy Operator in
Momentum - Space

(10.93)

Evaluation Copy 

Not Licensed for 

Instructional Use 



Hamiltonian Operator

In advanced classical mechanics the total energy for a conservative system
is called the Hamiltonian and given by

H 5 T 1 V, (10.94)

where T is the kinetic energy and V is the potential energy. Since kinetic
energy can be expressed in terms of the momentum (T 5 p 2/2m), we can
obtain the kinetic energy operator in position space from the momentum
operator given in Equation 10.46 as

Thus, the Hamiltonian of Equation 10.94 can be regarded as an operator
defined by

(10.96)

in terms of the momentum and position operators. It should be emphasized
that the potential energy is an operator because of its dependence on the
position operator. Further, since the Hamiltonian of Equation 10.94 is in
general equivalent to the total mechanical energy,

H 5 E, (10.97)

it is evident that the time-dependent Schrödinger equation can be ex-
pressed as

(10.98)

That is, from the operator properties for H and E above we have the one-
dimensional equation
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which from Equations 10.95 and 10.87 becomes

(9.10)

Further, if  the potential energy is time-independent, V 5 V(x), then Equa-
tion 10.97 suggests that

(10.99)

Thus, the time-independent or steady-state Schrödinger equation is di-
rectly obtained by substituting from Equation 10.96 for V(x, t) 5 V(x),

and realizing the operator equivalence of p:

(9.29)

Since Schrödinger’s equations are regarded as fundamental postulates of
quantum mechanics, the above arguments demonstrate that the energy
and momentum operator definitions are fundamental postulates. It is im-
portant in this and the last section to realize that energy E, momentum p,
and position x can be replaced by their corresponding differential opera-
tors in an equation. These substitutional properties will be fully utilized in
the next section to demonstrate Bohr’s correspondence principle in quan-
tum mechanics.

10.6  Correspondence between 
Quantum and Classical Mechanics

In 1924 Niels Bohr proposed that all new theories of physics must reduce
to the well-known corresponding classical theory in the limit to which the
classical theory is known to be valid. This requirement is known as Bohr’s
correspondence principle, which was originally introduced in Chapter 1,
Section 1.6. As we have already seen in Chapters 2 to 4, Einstein’s special
theory of relativity constitutes a new theory of physics which obeys Bohr’s
principle. Originally, Bohr proposed that this principle must be obeyed by
quantum mechanics in the limit that the objects of consideration are macro
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instead of micro in size. That is, in the limit of large objects, the theory of
quantum mechanics must reduce to classical physics. Indeed, as will be
demonstrated by examples below, Newtonian mechanics is only an ap-
proximation of quantum mechanics, when the average motion of a wave
packet described by a wave function solution to Schrödinger’s equation is
considered. 

As a first example of the correspondence principle, we will utilize the
Schrödinger equation and the concept of expectation (average) values to
derive the classical equation defining momentum in the form

(10.100)

Clearly, from the definition of momentum as an operator in position space
(Equation 10.46) and the defining equation for an expectation value
(Equation 10.29 or Equation 10.33) we have

where we have assumed normalized wave functions for simplicity in writing
kpl. This is as far as we need to go with the left-hand side of  Equation
10.100, so we turn our attention to the right-hand side. Considering the
first order time derivative of the expectation value of position, we have

where the partial derivative with respect to time has been used in the second
equality, since the wave function depends on both position and time vari-
ables. This equation can be transformed by using Schrödinger’s equation
and its complex conjugate,

(9.45a)

(9.45b)
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into the form

(10.103)

To simplify this equation we need only consider the following:

                         (10.104)

The integral on the left-hand side of Equation 10.104 is just

since the wave function solution and their derivatives must vanish at x 5
6 `. Further, as the first integral on the right-hand side of  Equation
10.104 is obviously zero, we have

(10.105)

which transforms Equation 10.103 into

(10.106)
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we have

(10.107)

and Equation 10.106 becomes

(10.108)

Now, substitution from Equation 10.101 gives

which is the desired result expressed in Equation 10.100. It is interesting
to observe that Equation 10.106 can be expressed in terms of the one-di-
mensional probability density flux as

(10.106)

and that Equation 10.107 can be expressed in terms of the momentum op-
erator as (multiply by 2j")

(10.109)

Any operator behaving as p̂ in this equation has what is known as a
Hermitian property.

It is also straight forward to derive the quantum mechanical equiva-
lent to Newton’s second law in the form

(10.110)
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by using the operator equivalence of momentum. That is,

Substitution from Schrödinger’s equation and its complex conjugate
(Equations 9.45a and 9.45b) and rearranging the terms yields

(10.112)

The second integral on the right-hand side of this equation is equivalent
to

(10.113)

from which we obtain

(10.114)

Thus, the second integral on the right-hand side of Equation 10.112 re-
duces to zero and the equation reduces to Newton’s second law in the form
given by Equation 10.110. It is now trivial to demonstrate Newton’s second
law in the form

(10.115)

by taking a time differential of Equation 10.109, assuming m ? m(t), and
equating the result to Equation 10.111.

Operator Algebra
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cumbersome. A far more elegant method is available by capitalizing on
the properties of the position, momentum, and Hamiltonian operators.
To generalize, imagine a quantum mechanical operator Q to be an explicit
function of position and time, Q 5 Q (x, t). A general identity for the time
derivative of the expectation value of Q can be obtained from

by substitution of Schrödinger’s equation in the form

(10.116a)

(10.116b)

to obtain

(10.117)

It should be noted that this result is also dependent on the Hermitian prop-
erty of H, which was used in obtaining the second equality of Equation
10.116b. By using Equation 10.29 for the expectation value of Q and the
definition for the commutator,

(10.118)

(H and Q could be any two operators in this defining equation) Equation
10.117 is transformed into

(10.119)

It should be emphasized that kQl represents an ensemble average of the
results of a single measurement of Q on each system of the ensemble. The
derivative, dkQl/dt, is the time rate of change of this average, which is not
the same as kdQ/dtl. This is easily realized if  we imagine Q 5 x, since then
kdx/dtl represents the average of velocity measurements made on each sys-
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tem of the ensemble, but velocity operators simply do not occur in non-
relativistic quantum mechanics. Also, if  the operator Q is not an explicit
function of time, the generalized operator equation (Equation 10.119) re-
duces to

(10.120)

This equation is perfectly valid for Q 5 x or Q 5 p, since in quantum me-
chanics position and momentum are time-independent operators. 

As an example of the usefulness and ease of application of Equation
10.120 (or Equation 10.119), we will operationally derive Equation 10.100.
That is, with Q 5 x, Equation 10.120 gives

This equation can be reduced by realizing

(10.122)

follows immediately from the definition of  the commutator (Equation
10.118). Also, consider
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which means that

(10.123)

Now, with Equations 10.122 and 10.123 we can transform Equation
10.121 into

which is identical to Equation 10.100. By using the above techniques, it is
also easy to verify the relationship given in Equation 10.110, which is left
as an exercise in the problem set. This problem is facilitated by realizing

and taking note of the derivational procedure lead-
ing to Equation 10.123.

10.7  Free Particle in a Three-Dimensional Box

The development and application of Schrödinger’s quantum mechanics
has been primarily restricted to one-dimensional considerations for math-
ematical simplicity. Physical reality, however, requires an application of
quantum theory in three dimensions, which necessitates a generalization
of our previous discussions to include position variables in the y and z di-
rections, as well as the x-direction. The general character of the eigenfunc-
tion solutions to Schrödinger’s three-dimensional eigenvalue equation will
be illustrated by considering a particle of mass m confined to a three-di-
mensional box. This problem is but a generalization of  the one-dimen-
sional free particle in a box problem considered in Chapter 9, Section 9.7.
Now, however, we consider the box to be a cube of edge L, with impene-
trable walls parallel to the coordinate axes at x = 0, L; y = 0, L; z = 0, L.
By analogy with Equation 10.99, Schrödinger’s time-independent equation
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in three dimensions can be expressed in the form

(10.124)

where the generalized Hamiltonian operator

(10.125)

is given in terms of the three-dimensional momentum operator

(10.126) 

Of course, in Equation 10.125 is easily obtained from the defining
equation of by taking an inner product of with itself. That is,

where the definition for the Laplacian operator given in Equation 9.15
has been used in obtaining the second equality. Now, with this result sub-
stituted into the Hamiltonian (Equation 10.125) and that result substituted
into Schrödinger’s eigenvalue equation (Equation 10.124), we obtain

(10.128)

for the steady-state form of Schrödinger’s equation in three dimensions.
Although obtained here by operational algebra, this result is equivalent
to that expressed in Equation 9.30. This equation simplifies for the free
particle in a three-dimensional box to

(10.129)

since the potential energy V(x, y, z) is restricted to the values V 5 0 inside
and V 5 ` outside the box. As a result of these values for V, the eigen-
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function solution to Equation 10.129 has the boundary conditions c (x,
y, z) 5 0 at x 5 0 or L, y 5 0 or L, and z 5 0 or L. 

The form of the eigenfunction solution to Equation 10.129 is sug-
gested by analogy with classical mechanics, where the position coordinates
x, y, and z for a free particle are considered to be independent variables.
Accordingly, we consider a separation of variables and assume the eigen-
function solution to be of the form.

(10.130)

Upon substitution of this assumed solution into the eigenvalue equation
(Equation 10.129) and division by cx(x)cy(y)cz(z), we obtain

(10.131)

where the second-order partial derivatives become ordinary derivatives be-
cause of the separation of variables assumption. Since each differential
term on the left-hand side of this equation is dependent on a different po-
sition variable and the right-hand side is a constant, each differential term
must be set equal to a different constant. The identification of these con-
stants is easily accomplished by realizing the total energy of the free par-
ticle is given by

where de Broglie’s momentum postulate has been employed in obtaining
the final expression. Thus, a comparison of the last two equations results
in

(10.133a)

(10.133b)

(10.133c)

c c ., , 5z zx y x y zx yc c^ ^ ^ ^h h h h

,5
zm dx

d

dy

d

d

d
E

2

1 1 1

z

z

x

x

y

y
2

2

2

2

2

2

2
&

c

c

c

c

c

c
2 1 1e o

,

5

5
1 1

5 1 1

E
m

p

m

p p p

m
k k k

2

2

2

z

z

x y

x y

2

2 2 2

2
2 2 2& ^ h

,5
dx

d
k

1
2

x

x

x
2

2

c

c
2

,5
dy

d
k

1

y

y

y
2

2

2

c

c
2

,5
zd

d
k

1

z

z

z
2

2

2

c

c
2

10.7  Free Particle in a Three-Dimensional Box 416

(10.132)

Evaluation Copy 

Not Licensed for 

Instructional Use 



Ch. 10  Schrödinger’s Quantum Mechanics II417

which are ordinary differential equations of identical form to that given
by Equation 9.68 for the one-dimensional free particle in a box. Conse-
quently, the normalized eigenfunction solutions to these equations can be
chosen as (see Equation 9.85)

(10.134a)

(10.134b)

(10.134c)

where the values of kx, ky, and kz (obtained from the boundary conditions)
are quantized and given by the relations

(10.135a)

(10.135b)

(10.135c)

The eigenfunction solutions associated with a particle in a cubical box are
now obtained from Equation 10.130 by substitution of Equations 10.134a-
c. That is,

(10.136)

where V 5 L3 and a subscript notation has been introduced on the eigen-
function to account for the dependence of kx, ky, and kz on the quantum
numbers nx, ny, and nz. For each eigenfunction represented in Equation
10.136 there exists an energy eigenvalue given by

(10.137)

which is directly obtained by substitution of  Equations 10.136 and
10.135a-c into Equation 10.129 or by substitution of Equations 10.135a-c
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into Equation 10.132. From this equation we note a general characteristic
of three-dimensional problems, which is the requirement of three principle
quantum numbers for the complete specification of each quantum state, as
illustrated in Figure 10.1. Also, we note that Equation 10.137 predicts an
energy level degeneracy, since, for example, the eigenfunctions c112, c121,
and c211 all describe quantum states with identical energy E112 5E121 5 E211.
Although these quantum states have identical energy eigenvalues, they have
physically different momentum eigenvalues.

Free Electron Gas in Three Dimensions

An important application of the free particle in a box occurs in solid state
physics and electrical engineering by applying the model to describe con-
duction electrons in a simple metal. As was pointed out in Chapter 9, Sec-
tion 9.7, conduction electrons in condensed matter behave like a gas of
noninteracting particles. As such, we consider a large number N of con-
duction electrons in a three-dimensional crystal and ignore any interaction
of the electrons with the periodic arrangement of the ion cores. This con-
sideration is reasonable since the matter waves associated with a conduc-

10.7  Free Particle in a Three-Dimensional Box 418

Figure 10.1
A few of the lower
permitted energy levels
for a free particle in a
three dimensional box,
with the corresponding
level degeneracy indi-
cated.
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tion electron propagate freely in a periodic structure. Further, the medium
can be thought of as unbounded, if  we require the eigenfunction to be pe-
riodic over a large distance L. This means that the particle in a box bound-
ary conditions are replaced by periodic boundary conditions, which are given
by

(10.138a)

(10.138b)

(10.318c)

This method of periodic boundary conditions does not alter the physics of
the problem in any essential respect, so long as the system contains a large
number N of particles. It allows for the enumeration of quantum states
that is equally valid to those expressed in Equations 10.135a-c, although
the results are slightly different. To see this, consider the eigenfunction so-
lutions to Equation 10.129 to be of the traveling wave form

where V 5 L3. The normalization condition is satisfied by this eigenfunction
because

and the eigenvalue equation is satisfied, since by direct substitution into
Equation 10.129 we obtain E 5 "2k2/2m. Further, the separation of vari-
ables eigenvalue equation expressed in Equation 10.131 is satisfied, as the
eigenfunction of Equation 10.139 can be expressed as
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Wave Vector
Quantization

Density of States

(10.143)

Imposing the periodic boundary condition of Equation 10.138a on cnx
(x),

we have

which results in

ejkxL
5 cos kxL 1 j sin kxL 5 1.

Clearly, this equation is satisfied by requiring 

(10.142)

and similar results are obtained for the y and z components. Thus, the free
particle steady-state Schrödinger equation, the normalization condition,
and the periodicity condition are satisfied by the assumed traveling wave
eigenfunction (Equation 10.139 or Equation 10.141), provided the com-
ponents of the wave vector k are given by

where nx, ny, and nz are integers.
With the above results, we are now prepared to derive the density of

states, defined by

(9.89)

for the free electron gas (conduction electrons) in three dimensions. Taking
the Pauli exclusion principle (see Chapter 9, Section 9.7) into account, the
quantum states allowed for the N conduction electrons are specified by the
quantum numbers nx, ny, and nz, along with the spin quantum number ms.
Thus, there are two allowed quantum states for a distinct triplet of quan-
tum numbers nx, ny, and nz, one with ms 5 2 and the other with
ms 5 1 which can accommodate two conduction electrons. This means
that in k-space a volume element Dk,
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(10.144)

can accommodate

DN 5 2DnxDnyDnz (10.145)

quantum states or electrons, where the factor 2 comes from the two allowed
values of ms. Now, the total number of quantum states or electrons con-
tained within a sphere of radius )k) in k-space, is given by the product of
the volume of that sphere and the number of states per unit volume. That
is, in a sphere of volume (see Figure 10.2)

(10.146)
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the total number of quantum states allowed is given by

where V 5 L3 and the above relations (Equations 10.144 to 10.146) have
been used. With E 5 "2k2/2m solved for k3,

(10.148)

substituted into Equation 10.147, we obtain

(10.149)

where the number of quantum states, equal to the number of electrons N,
has been expressed as a function of the energy E. With this result, the den-
sity of electronic states is immediately obtained from the defining equation
(Equation 9.89) above:

(10.150)

This result is very important in the theoretical development and un-
derstanding of electrical phenomena in solids. Insight into these electrical
properties of matter can not be attained with only our introductory treat-
ment of quantum mechanics. However, combining the fundamentals of
Schrödinger’s quantum mechanics with a few fundamentals of statistical
mechanics will allow for a rigorous development of many interesting elec-
trical phenomena in solids. For this reason, we turn our attention to an
introductory treatment of statistical mechanics, and in Chapter 12 we will
return to the free electron gas problem and its application in solid state
physics, material science, and electrical engineering. 
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Review of Fundamental and Derived Equations

Below is a listing of the fundamental and derived equations of this chapter,
along with newly introduced mathematical operators.

FUNDAMENTAL EQUATIONS – QUANTUM MECHANICS
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GENERALIZED FREE PARTICLE WAVE FUNCTION

MATHEMATICAL OPERATORS/RELATION
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FUNDAMENTAL DERIVATIONS
Dirac Delta Function

Generalized Free Particle Wave Function
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Free Particle in a One-Dimensional Box

Linear Harmonic Oscillator—Ground State

Correspondence between Quantum and Classical Mechanics
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Free Particle in a Three-Dimensional Box

Free Electron Gas in Three Dimensions
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10.1 Starting with Equation 10.17, show that c(x) in Equation 10.16 is the
Fourier transform of f(p).

Solution:
Multiplying the free particle eigenfunction in momentum-space, given
in Equation 10.17 as

by (1/2p")1/2e(j/")px9dp and integrating yields

where the properties of the Dirac delta function have been used. This
result is identical to Equation 10.16, except for the prime associated
with the position variable. 

10.2 Verify Equation 10.37 by using the one-dimensional free particle wave
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function of Equation 10.1 and the properties of the Dirac delta function.

Answer:

10.3 Verify Equation 10.52 by using the free particle eigenfunction c(x)
given in Equation 10.16.

Solution:
With the free particle eigenfunction and its complex conjugate in po-
sition-space given by

substituted into Equation 10.29, we obtain

where Q ; x and t ; 0 in Equation 10.29. Since

we obtain

Now, substitution of this result into the equation above for kxl yields
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10.4 Find kpl for the free particle in a one-dimensional box, by using the
normalized position-space eigenfunction given in Equation 9.85.

Answer:     kpl = 0

10.5  Repeat problem 10.4 for kxl, using a table of indefinite integrals.

Solution:
With the normalized free particle eigenfunction

for a free particle in a one-dimensional box, the expectation value of
x is simply

where a change in the integration variable of

was performed in the 3rd equality.

10.6 Using a table of indefinite integrals, repeat Problem 10.4 for kx2l.

Answer:     kx2l 5 L2 /3 2 L2/2n2p2
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10.7 Starting with Schrödinger’s one dimensional time-independent equa-
tion show that kp2l 5 2mk[E 2 V(x)]l in general. Using this result, find kp2l
for the free particle in a one dimensional box.

Solution:
Schrödinger’s one dimensional time-independent equation (Equation 9.29),

can be rewritten in the form

which from Equation 10.46 can be expressed as

Now, multiplying this equation by c*(x) and integrating over the
range of x gives

which defines the expectation value equation

or more simply

For a free particle in a one-dimensional box V(x) ; 0, so we have

where Equation 9.80 was used for the allowed energy eigenvalues cor-
responding to the values n 5 1, 2, 3, ??? for the principal quantum
number. 

10.8 Verify the result of Problem 10.7 by finding kp2l for the free particle
in a one-dimensional box, using the normalized position-space eigenfunc-
tion given by Equation 9.85.
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10.9 Find the standard deviations sx ; [kx2l 2 kxl2]1/2 and sp ; [kp2l 2
kpl2]1/2 and their product sxsp for the free particle in a one-dimensional
box in the ground state.

Solution:
From Problems 10.5 and 10.6 we have

so sx is simply

Likewise, from Problems 10.4 and 10.7 (or 10.8) we have

thus sp is

for the ground state n = 1. The product of these standard deviations
for position and momentum is
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10.10 Find sx, sp, and sxsp (defined in Problem 10.9) for the ground state
of the linear harmonic oscillator.

Answer:     sx 5 ("/2mv)1/2, sp 5 "(mv/2")1/2, sxsp 5 "

10.11 Verify that the free particle in a box momentum eigenfunctions
given in Equations 10.65a and 10.65b have associated momentum eigen-
values given by Equation 10.62

Solution:
With the momentum eigenfunctions given in Equations 10.65a and 10.65b,

substituted into the momentum eigenvalue equation (Equation
10.61), we obtain

10.12  Find the expectation value of x2 in the momentum representation
for the linear harmonic oscillator, where the normalized ground state
eigenfunction f(p) is given by Equation 10.68.

Answer:     kx2l 5 1/2d 2

10.13 Consider the linear harmonic oscillator and show exactly how
Schrödinger’s time-independent equation can be expressed in the form
d 2c /dx2 2 (mv/")2x 2c 5 ( 2 2mE /"2)c.

Solution:
The potential energy for the linear harmonic oscillator is given by V
5 kx2. Since Vmax 5 Tmax → kx2 5 mv2 5 m(xv)2 5 mx2v2 →
k 5 mv2, then Schrödinger’s equation (Equation 9.29)

can be expressed as 
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and rearranged in the form

10.14 Consider the linear harmonic oscillator and its normalized ground
state eigenfunction c(x) 5 (d/p1/2)1/2e2d2x2/2. Using the result of Problem
10.13, find the equivalence of d 2 in terms of v and find the energy eigen-
value E.

Answer:     d 2 5 mv /", E 5 hv

10.15 By considering the free particle wave function C(x, t) representing
a plane wave traveling in the positive x-direction (Equation 9.7), show how
the momentum and energy operators in position-space are obtained.

Solution:
Taking a partial derivative of

with respect to the position variable gives

                              

while a first order partial with respect to time yields

10.16 Find the position and energy operators in momentum-space, by
considering the free particle wave function F(p, t) representing a plane
wave traveling in the negative x-direction.

Answer:     

10.17 Consider a one-dimensional free particle with V 5 V(x) ; 0 and
show that the Hamiltonian operator is Hermitian in accordance with Equa-
tion 10.109.

Solution:
With the one-dimensional free particle Hamiltonian given by

then the expectation value of Ĥ is
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where the first and last equality on the right-hand-side demonstrate
the Hermitian property of H in accordance with Equation 10.109.
Clearly, the Hermitian property of p was utilized in the intervening
equalities. 

10.18 If the operators ĝ and q̂ are Hermitian, show that their linear com-
bination ĥ 5 aĝ 1 bq̂ is also Hermitian, where a and b are constants. 

Answer:     

10.19 Show that the commutator [−/−x, V] is equivalent to −V /−x, where
V 5 V (x, t) is the potential energy.

Solution:
This commutator identity is easily obtained by considering the prod-
uct of the commutator and a function F 5 F (x, t). That is,

Cancelling the common factor F from the left-hand-side of the first
equality and the right-hand-side of the last equality yields
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10.20 Verify Equation 10.110 by starting with Equation 10.119 for Q 5
p and using the result of the last problem.

Answer:     

10.21 Show that the commutator [−2/−x2, x] is equivalent to 2(−/−x), and
that this result can be expressed in terms of the momentum operator as
[p2, x] 5 22 j"p.

Solution:
Multiplying the commutator by a function F 5 F(x, t) yields

from which we obtain

by cancelling the common factor F in the last equality. Now, multi-
plying both sides of this equation by (2 j")2 immediately yields

which in view of the momentum operator equivalence gives

10.22 By considering a free particle for which V 5 V(x) 5 0 and a time
derivative of Equation 10.119 for Q 5 x, verify the correspondence given
in Equation 10.115 using operator algebra.

Answer:     

10.23 By considering a free particle for which V 5 V(x) 5 0, verify the
correspondence dkxl /dt 5 kpl/m by using Equation 10.119 and the result
of Problem 10.21.
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Solution:
Allowing Q 5 x in Equation 10.119,

we obtain

where the equality [ p2, x] 5 22 j"p of Problem 10.21 was substituted
into the next-to-the-last equality.

10.24  Consider an electron to be trapped in a three dimensional box of
the size of a typical atomic diameter. Find the energy released when the
electron makes a transition from the first excited state to the ground state.

Answer:     E112 2 E111 5 112 eV

10.25 Consider an electron to be trapped in a three dimensional box of
the size of  a typical atom (L 5 1.0 3 10210m). If the electron is in the
ground state, calculate the total probability of finding the electron between
x 5 y 5 z 5 0 and x 5 y 5 z 5 0.50 3 10210 m.

Solution:
The normalized eigenfunction for the electron in terms of the quan-
tum numbers nx, ny, and nz is given by combining Equations 10.135
and 10.136 to obtain
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Using nx 5 ny 5 nz 51 for the ground state, we have

for the ground state eigenfunction. Now, substitution of c111 into the
three dimensional counterpart to Equation 9.43b,

gives the total probability as a triple integral over all the position-
space, where each integral is of the same form. For example, the con-
tribution to the probability by the x-component of the eigenfunction
is just

Identical results are obtained for the y and z-components of  the
eigenfunction, so

10.26 Repeat Problem 10.25 for an electron in the fourth excited quantum
state.

Answer:     P 5 1.00 5 100 %
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Introduction

Statistical mechanics attempts to relate the macroscopic properties (U, S,
F, p, etc.) of a many-bodied system to the microscopic properties of the
system’s particles. Because of its general formulation, statistical mechanics
is equally applicable to problems of classical mechanics (e.g., molecules
in a gas) and quantum mechanics (e.g., free electrons in a metal or semi-
conductor), where the classical equations of  motion and Schrödinger’s
equation can not be solved exactly for a system consisting of a large num-
ber of particles. The particles of a statistical system can be representative
of molecules, electrons, photons, or even wave functions. Statistical me-
chanics takes advantage of the fact that for a statistical system (one con-
sisting of  a very large number of  particles) the most probable or,
equivalently, the ensemble average properties of the system can be deter-
mined, even in the absence of any knowledge concerning the motions and
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interactions of the individual particles. Both equilibrium and nonequilib-
rium systems can be addressed by statistical mechanics, as illustrated in
Figure 11.1. We will be totally concerned, however, with microscopic equi-
librium systems and their associated macroscopic properties. In particular,
statistical mechanics (classical in this chapter and quantum in the next)
will be applied to microscopic variables of position and momentum to ob-
tain (a) a distribution function for the microscopic parameters (e.g., molec-
ular speeds and energies of  particles in a gas) and (b) macroscopic
parameters characterizing the system. 

We begin with a discussion of a phase space description for the state
of an isolated N particle system at an instant in time, which culminates
with a definition of the microcanonical ensemble. A simple example of
five particles confined to a two cell phase space is then used to introduce
the counting procedure of  Maxwell-Boltzmann statistics and to distin-
guish macrostates from microstates. The counting procedure leads to the
description of the Maxwell-Boltzmann (sometimes abbreviated as M-B)
and classical thermodynamic probabilities for a system of N identical par-
ticles that are considered to be distinguishable in M-B statistics and indis-
tinguishable in classical statistics. From these results the definition of
ensemble averaging becomes apparent and the concept of the most prob-
able macrostate is introduced. The fundamental relation between thermo-
dynamic probability of statistics and entropy of thermodynamics is then
derived by considering two isolated systems in equilibrium. Next, the most
probable distribution for M-B statistics is derived by maximizing the
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M-B thermodynamic probability, using Stirling’s approximation to eval-
uate logarithmic factorials and introducing the Lagrange multipliers a and
b to incorporate conservation of particles and energy requirements. The
elimination of the undetermined multiplier a, by imposing conservation
of particles on the Maxwell-Boltzmann distribution, results in the well-
known Boltzmann distribution and the definition of the partition func-
tion. Because the Boltzmann distribution and the partition function are
both dependent on the Lagrange multiplier b, we turn our attention to a
qualitative and quantitative identification of b. The fundamental signifi-
cance of the partition function Z in Maxwell-Boltzmann and classical sta-
tistics is then discussed, with the appropriate basic relations for total
energy E, average energy e·, occupation number nj, pressure p, entropy S,
and the Helmholtz function F being developed. Maxwell-Boltzmann sta-
tistics is then applied to the molecules of an ideal gas. After evaluating the
degeneracy and partition function for a continuum of energy states, the
average energy of an ideal gas molecule is determined, along with expres-
sions for the pressure and entropy of the ideal gas. These considerations
are followed by a derivation of distribution formulae for molecular mo-
mentum, energy, and speed. The Boltzmann distribution formulae are then
used in fundamental applications to obtain expressions for average energy,
average speed, root-mean-square speed, and the most probable speed of
an ideal gas molecule. Our discussion of  classical mechanics concludes
with the equipartition of energy principle being applied to the determina-
tion of the molal specific heat for a monatomic, diatomic, and polyatomic
ideal gas. 

11.1  phase Space and the
Microcanonical ensemble

In classical mechanics the state of an N particle system can be completely
defined at a particular instant in time by enumerating the position ri, and
momentum pi of every particle in the system. Since we must know three
position (xi, yi, zi) and three momentum (pxi

, pyi
, pzi

) coordinates for each
particle, the complete specification of  the state of  the system requires
knowledge of 6N variables at an instant in time. It is convenient to con-
sider a six-dimensional space, where each particle could be represented by
a point having six coordinates x, y, z, px, py, and pz. With this geometrical
description, the state of a system of particles (usually molecules) is repre-
sented by a certain distribution of  N points in a six-dimensional phase
space called m-space to suggest molecular space. Alternatively, a system of
N particles could be represented by one point in a 6N-dimensional phase
space called G-space to suggest gas space, where there would be dimensions
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Ch. 11  Classical Statistical Mechanics442

for the six position and momentum coordinates and for the N molecules.
We will restrict the statistical description of a system to a representation
in m-space and frequently refer to it as simply phase space.

Consider partitioning m-space into very small six-dimensional cells
having sides of length dx, dy, dz, dpx, dpy, dpz. The volume of each cell, as
defined by

t ; dx dy dz dpx dpy dpz, (11.1)

is very small compared to the spatial dimensions and range of momenta
of the real system, but large enough such that each cell can contain a num-
ber of particles or representative phase points. Because of the Heisenberg
uncertainty principle discussed in Chapter 8, Section 8.7, we have

dx dpx 5 dy dpy 5 dz dpz 5 h. (11.2)

Thus, quantum mechanically the position and momentum coordinates of
a particle are restricted such that the representative phase point exists
somewhere within an elemental volume of h3 in m-space. Consequently,
the minimum volume of a cell in m-space is given by

t0 5 h3. (11.3)

Of course, the cell volume defined by Equation 11.1 is completely arbitrary,
subject only to the restrictions t0 # t ,, Vm, where Vm represents the actual
volume of the system in m-space.

By numbering each cell in m-space as 1, 2, 3, ???, i, ???, the number of
phase points (particles) in each corresponding cell, called the occupation
number, can be denoted as n1, n2, n3, ??? , ni, ??? . With this definition of the
occupation number it is apparent that the total number of particles in the
system is given by

N 5 o
i

ni, (11.4)

where the summation extends over all cells in m-space. Further, it should
be noted that all particles in any one cell have exactly the same energy ei

to within the limits of t. Consequently, the total energy of the particles in
the ith cell is ni ei, and the total energy of the system is clearly

E 5 o
i

ni ei. (11.5)

Frequently, the thermodynamic internal energy U of a system is substituted
for the total energy E in this equation, which is completely valid for sys-

Cell Volume
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Conservation
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Conservation
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tems wherein the potential energy can be defined as zero. 
Since an assembly is taken to be a number of identical entities, which

may be particles or identical systems of particles, our system is an assembly
of N particles. If  we constructed an assembly of replicas of a system, we
would have an assembly of assemblies, which is commonly called an en-
semble of systems. The conceptualization of an ensemble arises from the
realization that initially a system of N particles would have macroscopic
properties that slowly change with the passing of time until equilibrium
is established. After J. Willard Gibbs (recall Chapter 10, Section 10.2), we
consider this intellectual construction of an ensemble of systems to simu-
late and represent at one instant in time the properties of the actual system,
as would develop in the course of time. An ensemble is also considered to
be suitable randomized, such that every configuration of position and mo-
mentum coordinates that are accessible to the actual system in the course
of time is represented by one or more systems in the ensemble at one in-
stant in time. Thus, Gibbs’ scheme allows us to replace time averages over
a single system by ensemble averages at a fixed time. The Ergodic hypothesis
of statistical mechanics postulates the equivalence of time averages and
ensemble averages, but such an equivalence has not been proven in general.
It can be argued, however, that an ensemble average is more representative
of the actual system than a time average, since we never know the initial
conditions of a real system and, thus, cannot know exactly how to take a
time average.

If our system of interest is in an external conservative force field (e.g.,
gravitational, electric, or magnetic), then from classical physics we know
that the total energy of the system is a constant. An ensemble of such sys-
tems could be constructed such that the energy of every system is the same
and independent of time. Such an ensemble is known at the microcanonical
ensemble, and is appropriate for the discussion of an isolated system, since
the system’s total energy is necessarily a constant in time. Essentially, we
can consider a system of a microcanonical ensemble as one wherein parti-
cles are sufficiently independent of one another, such that an energy ei can
be assigned to each, but sufficiently interactive with one another to establish
thermodynamic equilibrium. 

11.2  System Configurations and Complexions:
an example

The configuration of a system is specified by enumerating the energies (e1,
e2, e3, ??? , ei, ??? ) of all possible regions of equal phase volume in m-space
and specifying the number of phase points (n1, n2, n3, ??? , ni, ??? ) in each
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cell. It should be emphasized that the energy associated with a cell in m-
space is a constant of time for systems of a microcanonical ensemble. This
results from the fact that such a system is composed of N identical and
essentially free particles, where the energy of a particle is dependent on
only its momentum. That is, for a particle in the ith cell of m-space, its en-
ergy is given by 

Thus, the system configuration consists of  cells of  equal extension (i.e.,
Equation 11.1) and constant energy (i.e., Equation 11.6), wherein particles
(represented by phase points) are considered to be located. Certainly, the
number of particles in a particular cell (the occupation number) will in gen-
eral change with the passing of time, but at a particular instant in time,
this number associated with each cell in m-space is fixed. The specification
of the occupation numbers n1, n2, n3, ??? , ni, ??? associated with each cell in
m-space at an instant in time is said to define a macrostate of the system.
Thus, the configuration of a system at a particular instant, as illustrated
in Table 11.1, represents one possible macrostate of the system. From this
discussion, it should be clear that the macroscopic properties of our system
will depend only on the occupation numbers of our system’s configuration. 

We are now confronted with the important problem of determining
the number of  different ways n1, n2, and so on particles can be selected
from N identical particles and placed in cells 1, 2, and so on for a specific
macrostate. The total number of ways of making this selection is referred
to as the number of complexions or microstates of the macrostate, which
are allowed by the nature of the real system being considered. The count-
ing procedure utilized in obtaining the number of allowed complexions for
a system configuration will be illustrated by an example that should clarify
the distinction between macrostates and microstates (complexions) and
allow for generalizations. In particular, consider a system of five particles
being represented in a two-cell m-space. As illustrated in Table 11.2, the
number of possible macrostates of the system is six because particle con-
servation (Equation 11.4) allows for only six sets of  values for the cell 
occupation numbers n1 and n2.

.e 5
m

p

2
i

2

i

Ch. 11  Classical Statistical Mechanics444

taBLe 11.1
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macrostate.
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The number of complexions or microstates associated with a partic-
ular macrostate is obtainable by enumerating the possible arrangements
(or permutations) of the particles in the macrostate, exclusive of the com-
binations (irrelevant permutations) that merely interchange the particles
within each phase cell. Before enumerating the microstates associated with
each macrostate given in Table 11.2, we must realize that in Maxwell-Boltz-
mann statistics particles are considered to be identical yet distinguishable.
That is, in principle it must be possible to label each particle as a, b, c, and
so on, such that a microstate in which particle a is in one cell and b in an-
other is regarded as distinct and different from the macrostate in which
they are reversed. Thus, for the macrostate corresponding to n1 5 2 and
n2 5 3 of Table 11.2, the allowed microstates, exclusive of the irrelevant
ones, are enumerated in Table 11.3. Clearly, the number of microstates in
this case is ten for the n1 5 2 and n2 5 3 macrostate. The microstate ba in
cell 1 and cde in cell 2 is equivalent to the first one tabulated in Table 11.3
and corresponds to an irrelevant permutation of the particles in cell 1. In
defining the number of microstates, parentheses were used to indicate that
it was equivalent to the number of permutations of the particles in the
macrostate. The number of permutations of five particles is defined by 5!
; 1?2?3?4?5 5 120, where 5!, read as “5 factorial,” is an abbreviation for
the product of the integers 1 through 5. This result of 120 is not equivalent
to the number of microstates, however, because the irrelevant permutations
within each cell have not been discarded. These irrelevant permutations
correspond to n1! 5 2! 5 2 for cell 1 and n2! 5 3! 5 6 for cell 2. Thus, the
total number of  permutations (120) must be divided by the product of
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taBLe  11.2
The macrostates allowed
for a five particle system
in a 2-cell m-space.

taBLe 11.3
The number of micro-
states for the macrostate
n1 5 2, n2 5 3 of Table
11.2, excluding the irrel-
evant permutations of
particles in a cell.

n1 5 4 3 2 1 0

n2 0 1 2 3 4 5
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those that only permute particles within the individual cells, which gives
the total number of microstates as 5!/2!3! 5 120/2?6 5 10.

The result obtained above by considering permutations is certainly in
agreement with the counting result of  Table 11.3. This suggests a more
generalized expression for the determination of the number of microstates
(complexions) associated with a particular system configuration for the kth
macrostate of 

(11.7)

for the example considered. This result should be rather obvious from the
above discussion, or we can consider the counting in a more general way
for a system of N particles in a two-cell m-space. For the first cell, the n1

particles can be selected in

ways, where the n1! in the denominator refers to the irrelevant permuta-
tions within the cell. Similarly, the n2 particles for the second cell can be
selected from the N 2 n1 particles remaining in

ways. Consequently, the total number of microstates corresponding to a
particular n1, n2 macrostate is simply the product of w1 and w2. That is,

(11.7)

represents the number of microstates (complexions) for a particular, say
kth, macrostate. The result is equivalent to Equation 11.7, since from par-
ticle conservation N 2 n1 2 n2 5 0 and 0! ; 1.
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Using the result of Equation 11.7, it is now easy to calculate the num-
ber of microstates corresponding to each macrostate for the example il-
lustrated in Table 11.2:

Altogether, there are 32 different microstates corresponding to the 6 dif-
ferent macrostates. In statistical mechanics the principle of equal a prior
probability assumes that each microstate occurs with equal probability.
From this fundamental postulate and our example, it is clear that each
macrostate is not equally probable, since the number of microstates cor-
responding to different macrostates are in general different. We can, how-
ever, define the probability of occurrence of a particular macrostate as the
ratio of its corresponding number of microstates to the total number of
microstates. This means that the first and sixth macrostates in our example
will be observed 1/32 of the time, the second and fifth will each occur 5/32
of the time, and the third and fourth will each be observed most frequently
for 5/16 of the time. As a result of this interpretation of Wk, it is often re-
ferred to as the thermodynamic probability of the kth macrostate, which
will be more completely discussed in the next section. 

11.3  thermodynamic probability 

Although Equation 11.7 was developed for an N 5 5 particle system of
distinguishable particles distributed among two cells, its generalization to
a m-space configuration of many cells should clearly be 

Wk ; ∏iwi, (11.11)
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where the symbol ∏i defines a product of all terms that follow. Generalizing
the w9i s of Equations 11.8 and 11.9 and substituting into Equation 11.11
gives

(11.12)

for the number of microstates of the kth macrostate for N identical but
distinguishable particles in a m-space partitioned into i cells. It should be
understood that the distinguishability of N identical particles is a feature
of classical systems that has no validity in quantum statistical mechanics.
Equation 11.12 represents the thermodynamic probability of a classical sys-
tem for the configuration represented in Table 11.1.

The thermodynamic probability of Maxwell-Boltzmann statistics
(Equation 11.12) is not completely general as it does not allow particles
in different cells to possess the same energy. Such a degeneracy in a number
of cells corresponding to the same energy must be allowed classically. This
is easily understood by realizing that the energy of each cell in m-space is
given by Equation 11.6, which is quadratic in the momentum coordinates
associated with each cell. Thus, particles traveling with the same speeds in
different directions would have different momentum vectors but identical
energies because Equation 11.6 gives ei ~ pi ? pi. For example, considering
the two-dimensional momentum space illustrated by Figure 11.2, particles
in the circular shell of radius p 5 (p2

x 1 p2
y)1/2 and thickness dp possess mo-

mentum between p and p 1 dp. Consequently, the phase points represent-
ing such particles would be in different cells of identical energy in m-space. 

To understand how cell-energy degeneracy can be taken into account,
imagine N identical but distinguishable particles of which n1 particles are
to be placed into one or the other of two cells having the same cell-energy
e. There are N ways the first particle can be selected and put in the first
cell and N ways the same first particle can be put in the second cell. Be-
cause it cannot be placed in both cells simultaneously, the two events are
mutually exclusive. Thus, the total number of ways of selecting the first
particle and placing it in either cell is 2N. For the second particle the num-
ber of ways is 2(N 2 1), for the third particle 2(N 2 2), and so forth for
the n1 particles. Clearly, from this discussion we have
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which should be compared with Equation 11.8. If  now there are n2 parti-
cles to be distributed among three cells of identical energy e2, then the
number of ways would be 

which is similar the Equation 11.9 except for the 3n2 factor.
From the above discussion, it should be straight forward to generalize

to a system having the configuration illustrated in Table 11.4 for i cells in
m-space, where the cell-energy degeneracy is denoted as g1, g2, g3, ??? , gi.
For this configuration of a system our interpretation of the occupation
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Figure 11.2
Particles in p-space
having essentially the
same energy.

taBLe 11.4
A system configuration
for i cells in m-space,
including cell-energy
degeneracy.
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Ch. 11  Classical Statistical Mechanics450

number is somewhat modified. For the i th cell of degeneracy gi, the occu-
pation number represents the number of particles distributed among the gi

cells of identical energy ei. We can think of the gi cells as different particle
energy states at the same energy level, so a macrostate of the assembly is
now defined by specifying the number of particles ni in each energy level.
This definition of a macrostate for degenerate cells is equally valid for dis-
tinguishable or indistinguishable particles. If  the particles are distinguish-
able, which is our present consideration for M-B statistics, a microstate of
the assembly still corresponds to the specification of the particular energy
state (i.e., the particular cell of the gi cells) of each particle. Thus, for the
configuration of  Table 11.4 a generalization of  Equations 11.13a and
11.13b gives

which upon substitution into Equation 11.11 yields

(11.15)

This result is known as the Maxwell-Boltzmann thermodynamic probability
for the kth macrostate of a system of N identical but distinguishable par-
ticles distributed among cells having an energy level degeneracy.

From the above discussion of the M-B statistics for distinguishable
particles, it is now relatively easy to count the number of microstates cor-
responding to a particular macrostate for identical and indistinguishable
particles. In this case we do not need to specify the energy state of each
particle, since the particles are indistinguishable. Instead, a microstate of
the assembly corresponds to the specification of the total number of par-
ticles in each energy level. For the configuration of Table 11.4, the ith en-
ergy level contains gi cells of identical energy ei. For the ni indistinguishable
particles distributed among the gi cells, the first particle may be placed in
any one of the gi cells. The second particle may also be placed in any one
of the gi cells, since there is no limitation to the number of particles per
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cell. Similarly, there are gi ways of placing the third particle, the fourth
particle, and so forth for each of the ni particles. Thus, the total number
of possible distributions for the ni particles in the gi cells of energy level ei

is simply 

where the ni! in the denominator takes into account the irrelevant permu-
tations of the ni particles. Counting every possible distribution of particles
in every energy level gives the so-called classical thermodynamic probability 

(11.16)

for the kth macrostate of a system of identical but indistinguishable parti-
cles.

Ensemble Averaging

The principle of equal a priori probability of statistical mechanics has been
interpreted to mean that every possible microstate of an isolated assembly
is equally probable. The thermodynamic probability of the kth macrostate,
denoted by Wk and given by Equations 11.15 and 11.16 for classical sta-
tistical mechanics, represents the number of equally probable microstates
corresponding to a particular macrostate. Thus, for a system of N particles
the total number of equally probable microstates V is defined by

(11.17)

where the summation is over all possible macrostates. Frequently and for
obvious reasons, V is referred to as the thermodynamic probability of the
assembly. An alternative and sometimes more useful relation for the total
number of microstates for M-B statistics is given by

(11.18)

This relation can be argued for a system of N distinguishable particles,
since for the configuration defined in Table 11.4 we should in principle be
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able to specify which particles have energy e1, which have energy e2, and
so forth for all N particles. The total number of distinct cells in which a
given particle can exist with energy ei is given by o

i
gi. Because each particle

can exist in any one of the o
i

gi possible cells, the total number of ways
the N particles can be distributed among the various cells is given by Equa-
tion 11.18. Hence, for the example of Section 11.2, where N 5 5 particles
were distributed in a nondegenerate two cell m-space, g1 5 g2 5 1 and the
total number of  possible microstates is V M-B 5 (1 1 1)5 5 25 5 32 in
agreement with our previous result.

As defined previously, the microcanonical ensemble consists of a very
large number of  replicas of  a given assembly of  free particles having a
constant total energy, where all equally probable microstates of the assem-
bly are represented by one or more replicas in the ensemble at one instant
in time. Thus, an ensemble average of any physical variable Aik, giving its
average distribution of values in the i-cells of the kth macrostate, can be
obtained by multiplying Aik by the number of  replicas in the kth
macrostate, summing over all macrostates, and dividing by the total num-
ber of possible microstates. That is, the ensemble average of Aik is defined
by

(11.19)

where the sum extends over all possible macrostates for which the conser-
vation requirements of Equations 11.4 and 11.5 are valid.  This definition
of ensemble average of a physical variable is completely general and valid
for both classical and quantum statistical mechanics, and it should be
compared with the quantum theory expectation value discussed in Chapter
10, Section 10.2.

The actual averaging of Equation 11.19 may be performed by several
different general methods, including the Burns-Brown-Becker method
(Becker Averaging Technique for Obtaining Distribution Functions in Sta-
tistical Mechanics, M. L. Burns, R. A. Brown, Amer. J. Phys. 39, no. 7
[1971]: 802-805). If  the physical observable of interest is the occupation
number (i.e., Ai 5 ni), then Equation 11.19 would yield a distribution func-
tion for the average values of the occupation numbers. That is, a distribu-
tion function ni· 5 f (ei) could be derived (see reference cited), which gives
the average number of particles in the ith degenerate cell having an energy
ei. Allowing the i subscript to take on all values for the cells in m-space,
such a relation would describe the average macrostate for a system in ther-
modynamic equilibrium. For pedagogic reasons we derive in Section 11.4

,
V

;A

A W
k

k

i

ik/
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the most probable distribution ni 5 f (ei), where the method detailed con-
siders the most probable Wk to be so much more probable than any other
that all other macrostates can be ignored. This fundamental assumption
of the most probable distribution means that the average value of any phys-
ical variable tends toward its most probable value. That is, from Equations
11.17 and 11.19 we have 

(11.20)

where the second subscript MP denotes most probable. The assumption
of this method is completely valid in the limit as the number of particles
of the system goes to infinity. Indeed, we can recognize the merit of this
result by applying Equation 11.19 to the example discussed in Section 11.2.
For the case of N 5 5 particles distributed between two nondegenerate
cells, we have from Equation 11.19 for i 5 1

where Table 11.2 and Equation 11.7 have been used. A similar calculation
for i 5 2 gives n2· 5 2.5, such that the average macrostate is defined by
W (n1· , n2· ) 5 W (2.5, 2.5). In section 11.2 we found the most probable
macrostates for this example to be W (n1, n2) 5 W (3, 2) 5 W (2, 3), which
makes us suspect that ni· trends toward ni for large values of N. Certainly,
the results of this example demonstrate that the average of the two most
probable macrostates is identical to W (n1· , n2· ).

Entropy and Thermodynamic Probability

Before leaving our discussion of thermodynamic probability, we can cap-
italize on the concept of the most probable distribution. The assumption
of the most probable macrostate can be interpreted as that state in which
the system is most likely to exist. It is the macrostate toward which an iso-
lated system would trend in attaining thermodynamic equilibrium and,
consequently, that state with the maximum number of microstates. How-
ever, in classical thermodynamics the equilibrium state of an isolated sys-
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Ch. 11  Classical Statistical Mechanics454

tem corresponds to the state of maximum entropy. Thus, we should expect
some correlation between entropy S and thermodynamic probability W,
since they both have their maximum values in the equilibrium state of an
isolated system. In this context W without the k subscript represents the
most probable macrostate for any kind of statistics, including Maxwell-
Boltzmann, classical, or the Bose-Einstein and Fermi-Dirac thermody-
namic probabilities of Chapter 12.

Consider two isolated systems that are brought together and allowed
to exchange energy but not particles through a diathermic partition, as il-
lustrated in Figure 11.3. Since the two systems are allowed to exchange
energy, thermodynamic equilibrium will be established after a sufficient
contact time. In equilibrium the total entropy of the two systems is given
by 

ST 5 S1 1 S2, (11.21)

while the total thermodynamic probability of the most probable macrostate
is given by 

WT 5 W1W2. (11.22)

From the above discussion, it seems reasonable to assume entropy to be a
function of thermodynamic probability. That is, we assume ST 5 ST (WT)
and Si 5 Si(Wi) for i 5 1 or 2, which allows Equation 11.21 to be expressed
as 

ST (WT) 5 ST (W1, W2) 5 S1(W1) 1 S2(W2). (11.23)

This assumed functional dependence of entropy allows the total derivative
of Equation 11.21, 

Figure 11.3
Two systems in thermody-
namic equilibrium, sepa-
rated by a diathermic
partition.
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dST 5 dS1 1 dS2, (11.24)

to be expressed as

For this equation to be valid, the coefficients of dW1 must be equal and
likewise for the coefficients of dW2:

By employing the chain rule of differential calculus, the left-hand side of
these equations can be rewritten as

where Equation 11.22 has been used in evaluating the partial derivatives
of WT. Thus, from Equations 11.25 (a 2 b) and 11.26 (a 2 b) we obtain
the equations 

which can be combined as

(11.28)
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by multiplication of Equation 11.27a by W1 and Equation 11.27b by W2.
Since W1 and W2 are independent, this equation is valid only if each side
is equal to the same constant, say kB. Thus, we have the results

which can be arranged as 

and integrated to obtain 

S1 5 kB ln W1 , (11.29a)
S2 5 kB ln W2 . (11.29b)

These results suggest that

S 5 kB ln W (11.30)

for an isolated system in thermodynamic equilibrium, where W represents
the most probable or maximum macrostate.

The relation given by Equation 11.30 provides the fundamental con-
nection between classical thermodynamics and statistical mechanics. In-
stead of being developed in terms of the thermodynamic probability of
the most probable macrostate W, it could have been expressed in terms of
the thermodynamic probability of the assembly Ω, that is, 

S 5 kB ln Ω, (11.31)

by the same general arguments. Although the constant kB was arbitrarily
chosen and undefined in our derivation, it must be selected such that ther-
modynamic and statistical values of a system’s entropy are in agreement.
Later in Section 11.7, kB will be shown to be the well-known Boltzmann
constant. Further, Equations 11.30 and 11.31 are completely valid in both
classical and quantum statistical mechanics.
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11.4  Most probable Distribution

The primary objective of this section is to derive an equation of the form
ni 5 f (ei) for the most probable distribution by determining the particular
Wk of Equation 11.15 that has the largest or maximum value. Since the
M-B thermodynamic probability of N distinguishable particles (Equation
11.15) has products of cell-energy degeneracies and occupation numbers,
it is simpler to work with 1n WM2B rather than WM2B. This approach is
completely justified since if WM2B is a maximum, then so is the natural
logarithm of WM2B.  Hence, we consider

(11.32)

where the product ∏ has been replaced by the sum o, due to the properties
of the logarithm, and Equation 11.15 has been used. The Logarithm of
the factorial of any number, say A, can be handled most easily by Stirling’s
formula

ln A! < A 1n A 2 A,       A .. 1. (11.33)

This formula is easily verified, since for N = 60 we have ln 60! < ln
(8.321 3 1081) < 188.6 and 60 ln 60 2 60 < 185.6, which results in an
error of  only roughly 1.6 percent. The error is completely negligible in
practical problems, where the number of particles is typically on the order
of  magnitude of  Avogadro’s number. With Stirling’s formula Equation
11.32 becomes

which immediately reduces to

(11.34)

because the second and fifth terms cancel due to the conservation of par-
ticles requirement (Equation 11.4). The classical thermodynamics proba-
bility of Equation 11.16 can be handled similarly to obtain

(11.35)

which is seen to differ from WM2B in only the first term.
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The requirement for Wk or lnWk to be the most probable is for its
value to be unaffected by small changes in any of the occupation numbers.
If  the occupation numbers were continuous instead of  discrete, this re-
quirement could be expressed as 

For discrete occupation numbers, however, a change in ln Wk correspon-
ding to a very small change in ni of dni is denoted by d ln Wk, which must
be equal to zero for the most probable distribution. Thus, for M-B statis-
tics and Equation 11.34 we have 

Because N and gi are constants of the system we have

(11.38)

and the first, second, third, and fifth terms vanish in Equation 11.37.

Thus, the only terms remaining in Equation 11.37 are the fourth and sixth,
which can be combined by a logarithm property in the form

(11.40)

Even though this equation has been derived for M-B statistics, the sub-
script M-B has been omitted from W, since an identical result is obtained
by similar arguments for d inWC (see Problem 11.11).
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Although, Equation 11.40 must be satisfied by the most probable dis-
tribution, it does not specify such a distribution, since the dni’s are not in-
dependent. The dni’s must satisfy the conservation of  particles and the
energy requirements.

(11.41)

(11.42)

In this last requirement the normal term o
i

nidei is omitted, since ei is con-
stant for every cell in m-space and dei 5 0. These two conservation require-
ments can be incorporated into Equation 11.40 by the Lagrange method
of undetermined multipliers. The method consists of multiplying Equation
11.41 by 2a and Equation 11.42 by 2b, with the resulting expressions
being added to Equation 11.40 to obtain

(11.43)

The undetermined multipliers a and b are independent of the occupation
numbers and the dni’s of this equation are effectively independent. Thus,
Equation 11.43 is valid only under the condition that the coefficient of dni

vanishes for each and every value in the sum. That is, 

(11.44)

which by simple mathematics can be expressed as

(11.45)

This equation represents the Maxwell-Boltzmann distribution for the most
probable occupation number and is a direct result of maximizing either 
1n WM2B (Equation 11.34) or 1n WC (Equation 11.35).

The evaluation of the undetermined multipliers is the next important
consideration. An expression involving a is easily obtained from the con-
servation of particles requirement. That is, substitution of ni from Equation
11.45 into Equation 11.4 yields
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Ch. 11  Classical Statistical Mechanics460

which can be easily solved for e2a in the form

(11.46)

With this expression for e2a, Equation 11.45 becomes

(11.47)

where we have made the symbolic definition 

(11.48)

The result in Equation 11.47 is often referred to as the Boltzmann distri-
bution. The sum over states in the denominator, represented by the letter
Z representing the German word zustandssumme is called the partition
function. The partition function, defined in Equation 11.48, is very impor-
tant in statistical mechanics as will be illustrated in Section 11.6. For now,
however, we will accept it as a convenient symbolic simplification of the
distribution function and turn our attention to the meaning of the second
undetermined multiplier b.

11.5  Identification of b
In the previous section the derivation for the distribution law of classical
mechanics was initiated using the method of the most probable distribu-
tion and Stirling’s formula to evaluate d ln Wk 5 0. The requirements for
the conservation of total energy and total number of particles were ac-
commodated using the Lagrange method of  undetermined multipliers,
where the parameter a was introduced for the latter and b for the former
conservative condition. This led to the well-known Maxwell-Boltzmann
distribution law given by Equation 11.45, where the most probable occu-
pation number is dependent on both undetermined multipliers a and b.
The elimination of a from the distribution law was easily facilitated by
considering conservation of particles, which immediately led to the Boltz-
mann distribution law (Equation 11.47) and the definition of the partition
function (Equation 11.48). Since both of these equations have a depend-
ence on the undetermined multiplier b, it is imperative that b be evaluated.
In the discussion that follows a qualitative interpretation of b is developed
by considering the zeroth law of thermodynamics and then a quantitative
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evaluation is accomplished using a fundamental relation between classical
thermodynamics and statistical (i.e., Equation 11.30).

b and the Zeroth Law of Thermodynamics

Consider the two systems in thermodynamic equilibrium of Figure 11.3,
where the statistical quantities (energy, degeneracy, etc.) are unprimed in
the first system and primed in the second system. Since the systems will
exchange energy through the diathermic wall in attaining equilibrium, the
conservation of energy requirement becomes

(11.49)

but the condition of the conservation of particles is just 

Now, however, the total number of microstates for a particular macrostate
is given by the product

(11.51)

where for the sake of argument the M-B thermodynamic probability may
be used for W and W9, that is

WT can be maximized by the method of the most probable distribution by
considering

(11.53)

By analogy with derivational steps leading from Equation 11.32 to Equa-
tion 11.40, the condition for the most probable distribution is
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(11.54)

Again, we can use Lagrange’s method of undetermined multipliers to take
into account the conservation requirements. That is, with 

added to Equation 11.54, we obtain

(11.56)

In this equation the dni’s and ’s are effectively independent, so their co-
efficients must be identically zero for all values of  i and j, respectively.
Thus, after a little mathematical manipulation, we obtain

These two relations for the most probable distribution functions have only
b in common, while all other quantities are in general different for the two
systems. But, the zeroth law of thermodynamics states that temperature is
the only property common to systems in thermodynamic equilibrium. For
this reason, b is often referred to as empirical temperature of a statistical
system. We can not equate b with the absolute temperature T, however,
because of our results (Equation 11.57a and 11.57b) and interpretation
are still valid if  we multiply T by a constant or take its inverse. Fortunately,
we are in a position to capitalize on previous results and derive an exact
expression for b, which is the topic of our next discussion.

Evaluation of b

Since ln W is dependent on ni (Equation 11.34 or Equation 11.35) and ni

is dependent on b (Equation 11.47), we propose the identification of b by
starting with the fundamental relation between thermodynamics and sta-
tistical mechanics given by Equation 11.30. This method of identifying b
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will allow the entropy S expressed by Equation 11.30 to be consistent with
the entropy predicted by thermodynamics. Realizing that classical ther-
modynamics relates entropy to other physical properties of a system by
partial derivatives, we begin by differentiating Equation 11.30 to obtain 

(11.58)

In view of Equation 11.40, d ln W must be

where gi/ni is obtainable from the Boltzmann distribution (Equation 11.47)
as

Substitution of the last two equations into Equation 11.58 yields

Conservation of particles and energy require

(see discussion of Equations 11.41 and 11.42) from which we obtain

(11. 59)

Rearranging this equation to the form

(11.60)
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Ch. 11  Classical Statistical Mechanics464

allows for a term-by-term comparison with the combined first and second
laws of thermodynamics,

(11.61)

under the assumption of constant volume (i.e., dV = 0),

dU 5 TdS 1 mdN. (11.62)

This assumption of dV 5 0 is completely valid in general, as a statistical
system of an ideal gas can be thought of as isolated with a fixed volume
V (see Section 11.7). Hence, equating the coefficients of dS from Equations
11.60 and 11.62 results in the identity of the Lagrange multiplier b being

(11.63)

In essence this derivation has demonstrated that the assumed statistical re-
lation for entropy, as given by Equation 11.30, yields an identical value
for entropy as predicted by classical thermodynamic, if b is defined by
Equation 11.63. It needs to be emphasized that Equation 11.59 for dS is
valid for both Maxwell-Boltzmann and classical statistics under the Boltz-
mann distribution. The entropy S, however, is not the same in both cases,
because ln W differs for each case (see Section 11.6). 

It is also interesting to note that a comparison of the coefficients of
dN from Equations 11.60 and 11.62 gives an expression for the classical
chemical potential mC as

(11.64)

From this relation we immediately obtain

which can be substituted in to the Boltzmann distribution to obtain the
so-called classical distribution

(11.65)

It needs to be emphasized that classical statistics differs somewhat from
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Maxwell-Boltzmann statistics even though one can be derived from the
other by an appropriate definition of the partition function. To be more
specific, summing Equation 11.65 over i gives 

which from the equations representing conservation of particles (Equation
11.4) and the partition function (Equation 11.48) becomes

Thus, substituting N/Z for in Equation 11.65 gives the Boltzmann 
distribution

As a last point, the chemical potential given by Equation 11.64 is only ap-
propriate for classical statistics, where particles are considered to be indis-
tinguishable. For a system of  distinguishable particles obeying
Maxwell-Boltzmann statistics, the chemical potential mM2B is given by
Equation 11.87. 

To illustrate the results of this and the previous section, consider the
example described in Section 11.2 of N 5 5 distinguishable particles dis-
tributed among two cells. Assuming g1 5 g2, the most probable occupation
number for each cell is given by the Boltzmann distribution (Equation
11.47) as

Under the condition that any particle will have the same energy in either
cell (i.e., e1 5 e2), we have the particles being distributed equally among
the cells (i.e., n1 5 n2 5 N/2). Of course, for our example where N 5 5 
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this means that the most probable distribution will occur when n1 5 3 and 
n2 5 2 or vise versa, since we cannot have n1 5 n2 5N/2 5 2.5 particles in
each cell. Further, if  we let e2 5 2e1 and u ; e1/kB, then the most probable
distribution is given by

where the degeneracies g1 and g2 have cancelled because of our simplifying
assumption. The quantity u in these equations has the dimensions of tem-
perature and is often referred to as the characteristic temperature. If  T is
very small compared with u, then nearly all of the particles will be found
in the first cell, as n1 < N and n2 < 0. For T 5u we have n1 5 0.73N and 
n2 5 0.27N, while for T .. u we have n1 5 n2 < N/2.

11.6  Significance of the partition Function

The partition function defined by Equation 11.48 is of fundamental im-
portance in Maxwell-Boltzmann and classical statistics, because it can be
easily related to the average particle energy, the occupation number, and
the thermodynamic properties of a system. We can immediately obtain an
expression for e· and nj in terms of Z by considering partial derivatives of
Z with respect to b and with respect to ej, respectively. For example, the
partial derivative of Z, 

with respect to b gives

(11.66)

This result is very similar to that obtained from the conservation of energy
equation,
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after substitution of the Boltzmann distribution

except for a multiplicative factor of N/Z, that is, 

Comparing this equation with Equation 11.66 gives

which can be expressed in a more compact form as 

(11.68)

with the aid of differential calculus.
Also, from the identification of b given by Equation 11.63 we have 

(11.69)

and this allows the total energy E (Equation 11.68) to be expressed in
terms of the absolute temperature T as

(11.70)

Furthermore, since the average energy per particle in a system can be de-
fined by the ratio of the total energy E to the total number of particles N,
we have

(11.71)
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where Equations 11.68 and 11.70 have been utilized in obtaining the last
two equalities, respectively. Since the Boltzmann distribution was used in
the derivation, the results for the total energy E and the average energy e·
are valid for both the Maxwell-Boltzmann and classical statistics (see
Problem 11.12).

The relationship between the occupation number and the partition
function is easily derived by considering the partial of Z with respect to ej, 

In this consideration the partial derivative is zero for all terms in the sum-
mation, except for the jth term. Thus, 

and multiplication by 2N/bZ yields

A comparison of the right-hand side of this equation with the Boltzmann
distribution (Equation 11.47) gives

(11.72)

which can clearly be expressed as

(11.73)

Again, this result is perfectly valid for both Maxwell-Boltzmann and clas-
sical statistics (see Problem 11.13).

Thermodynamic properties are also easily related to the partition
function by use of Equation 11.30,

where W represents any thermodynamic probability WM2B, WC, and so
on. Accordingly, for Maxwell-Boltzmann statistics and Equation 11.34, 
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we obtain

Because of the Boltzmann distribution, ni /gi can be replaced by (N/Z)e2bei

resulting in

where the conservation requirements (Equations 11.4 and 11.5) have been
used in obtaining the third quality. Normally, this equation is expressed
as

(11.75)

where the total particle energy E has been replaced by the total internal en-
ergy U and Equation 11.63 has been used for b. Also, by combining Equa-
tions 11.74 and 11.70, SM2B can be expressed in terms of the partition
function Z as

(11.76)

These results for entropy are only valid for Maxwell-Boltzmann statistics
and systems wherein the particles are considered distinguishable. For sys-
tems obeying classical statistics, where the particles are considered to be
indistinguishable, we obtain
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Ch. 11  Classical Statistical Mechanics470

by using arguments similar to those above (see Problem 11.14).
Other thermodynamic properties of a system can also be expressed

in terms of the partition function. For example, from the defining equa-
tions of Helmholtz function,

F ; U 2 TS , (11.79)

we immediately obtain

by substitution from Equation 11.75 and 11.77, respectively. Also, we note
that taking the total derivative of the Helmholtz function,

dF 5 dU 2 T ds 2 S dT,

and substituting for dU from the combined first and second laws of ther-
modynamics (Equation 11.61) gives

dF 5 2pdV 1 m dN 2 S dT, (11.82)

which immediately yields the general relations

Thus, the thermodynamic equation of state for a statistical system can be
expressed in terms of  Z from Equation 11.83 with F being replaced by 
either FM2B (Equation 11.80) or FC (Equation 11.81). Surprisingly, in either
case the result obtained is given by 

(11.86)
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and there is no need for a subscript (M-B or C) on p. It should be clear
from Equation 11.84 that the chemical potential m will be different for
Maxwell-Boltzmann and classical statistics, since the Helmholtz function
F is different for the two cases. More specifically, for Maxwell-Boltzmann
statistics the chemical potential is given by Equation 11.84, 

upon substitution from Equation 11.80 and the assumption Z ? Z (N):

mM2B 5 2kBT ln Z. (11.87)

The corresponding equation from classical statistics can be obtained in a
similar manner, with the result being identical to that previously given by
Equation 11.64,

(11.64)

Just as this expression for mC was used with the Boltzmann distribution
to obtain the classical distribution, we can use the above relation for mM2B

to obtain an alternative expression for the Boltzmann distribution. That
is, from Equation 11.87 we have

which can be substituted into the Boltzmann distribution (11.47) to ob-
tain

(11.88)

The most probable occupation number for the Boltzmann distribution
(Equation 11.88) is identical to that for the classical distribution (Equation
11.65), except for the multiplicative factor of N. As will be illustrated in
Chapter 12, these particular distribution laws (Equations 11.65 and 11.88)
are easily and directly compared wit the Bose-Einstein and Fermi-Dirac
distribution laws of quantum mechanics. Unlike quantum statistical me-
chanics, however, the thermodynamic properties of internal energy (Equa-
tions 11.68 and 11.70), entropy (Equations 11.75 and 11.78), the Helmholtz
function (Equations 11.80 and 11.81), and pressure (Equation 11.86) are
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easily obtained, once the partition function of classical statistical mechan-
ics has been evaluated. Further, we have demonstrated that the total en-
ergy, average energy per particle, occupation number, and pressure of
classical statistical mechanics does not depend on whether the particles of
a system are considered to be distinguishable of indistinguishable. Other
thermodynamic properties, like the Helmholtz free energy and entropy,
do depend on whether the system obeys Maxwell-Boltzmann or classical
statistics. 

11.7  Monatomic Ideal Gas

As a fundamental application of  classical statistical mechanics (i.e.,
Maxwell-Boltzmann or classical statistics), consider an ideal gas consisting
of N identical but distinguishable (or indistinguishable) monatomic mole-
cules of particle mass m confined to a volume V. Since the particles of an
ideal gas are essentially independent of one another, the potential energy
between particles is effectively zero. Further, considering any gravitational
potential energy associated with a particle as being insignificant, then the
energy possessed by each particle in the system is all kinetic and given by
Equation 11.6. As such, the total kinetic energy of the system is equal to
the thermodynamic internal energy (i.e., E 5 U). In the discussions that
follow, the equations are derived for the internal energy U, the average en-
ergy per particle e·, entropy, pressure, and distribution laws for molecular
energy, momentum, and speed. As will be illustrated in the problem sec-
tion, the formulae developed in this section are of  fundamental impor-
tance in the application of classical statistical mechanics. 

Energy, Entropy, and Pressure Formulae

The immediate objective is to find expressions for the internal energy U
and the average energy per particle e·,which can be accomplished most eas-
ily by the utilization of Equations 11.68 and 11.71, respectively. Since these
equations have a strong dependence on the partition function Z, which it-
self  depends on the cell-energy degeneracy gi (see Equation 11.48, we need
to first determine an expression for degeneracy and then and expression
for Z, before attempting an evaluation of U and e·. Accordingly, recall that
cell-energy degeneracy in classical statistical mechanics is defined as the
number of cells in phase space corresponding to the same energy. To be
consistent with a quantum mechanical interpretation of nature, this defi-

Ch. 11  Classical Statistical Mechanics472

Evaluation Copy 

Not Licensed for 

Instructional Use 



nition of degeneracy needs to be somewhat refined. In quantum mechan-
ics, a degeneracy of the energy level occurs when more than one quantum
state has the same energy. Hence, we need to consider gi in statistical me-
chanics as the number of possible and physically distinct particle states
having a given energy ei. With the minimum m-space volume of a particle
state given by t0 (Equation 11.3), then gi is essentially the volume of cells
in phase space of identical energy divided by t0 or

(11.89)

To quantify the numerator of this expression, it is convenient to consider
a continuous distribution of molecular energies, rather than the discrete
values e1, e2, ? ? ? ,ei. Consequently, instead of Equation 11.6, we have the
energy of a particle given by 

(11.90)

which is a continuous function of the particle’s momentum p. For a con-
tinuous distribution of energy defined by this equation, momentum space
must be considered as partitioned into thin spherical shells of essentially
constant energy, as illustrated in Figure 11.4. That is, particles in the spher-
ical shell of Figure 11.4 of radius p and thickness dp possess momentum
between p and p + dp and, consequently, have essentially the same energy
according to Equation 11.90. Since the volume of a sphere in momentum
space of radius p is given by

(11.91)

then the elemental volume

(11.92)

represents the volume of a thin spherical shell of surface area 4pp2 and
thickness dp. With this expression for a spherical shell of uniform energy
in momentum space, the relation for degeneracy of Equation 11.89 can be
expressed as

(11.93)
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in terms of a continuous distribution of momenta. Since the volume oc-
cupied by the ideal gas in ordinary space is

(11.94)

then Equation 11.93 becomes

(11.95)

where Equation 11.3 for t0 and Equation 11.92 for dVp have been substi-
tuted. The degeneracy given by Equation 11.95 represents the distribution
or number of elemental cells in m-space of, essentially, the same energy.
Because all equal volumes of  m-space are energetically accessible to a 
molecule and have equal a priori probability, g(p)dp is often interpreted as
the a priori probability that the momentum of  an ideal gas molecule is 
between p and p + dp. 

In going from the discrete to a continuous distribution of molecular
energies, the partition function of Equation 11.48, 
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can be expressed

(11.96)

where the summation is replaced by an integral, gi by g(p) dp, and ei by 
e 5 p2/2m. Now, substituting from Equation 11.95 allows Z to take the
form

(11.97)

The integral in this expression is of the same form as that given by Equa-
tion 10.72 (also see Appendix A, section A.10), except here we must realize
that 

(11.98)

Therefore, the generalized integral is of the form

(11.99)

and Equation 11.97 becomes

which simplifies to

(11.100)

Having evaluated the partition function, it is now relatively easy to obtain
the thermodynamic properties of the monatomic ideal gas. In particular,
the thermodynamic internal energy U can be evaluated using Equation
11.68,
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Ch. 11  Classical Statistical Mechanics476

upon substitution from Equation 11.100 to obtain

which simplifies to 

(11.101)

With this result for the total internal energy of the monatomic ideal gas,
the average energy per molecule e· is simply given by U divided by the total
number of particles N as

(11.102)

where equation 11.63 for b has been used. This result can also be directly
obtained without knowledge of U, by substituting the partition function
of  Equation 11.100 into the expression for the average particle energy
given by Equation 11.71,

and performing the indicated partial derivative. Actually, we can obtain
the result for e· (Equation 11.102) with out first evaluating Z and U. That
is, since
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then for a continuous distribution of energies the summations are replaced
by integrals, ei by e, and gi by g(e) de to obtain

Now, substitution of Equations 11.6 and 11.95, along with the equality

into the above equation for e· yields

(11.103)

for the average energy per molecule in terms of a continuous distribution
of momentum. Obviously, there is no advantage in using this approach,
since the partition function integral (Equation 11.97) must be evaluated
along with another integral.

Having evaluated an expression for the total internal energy (Equa-
tion 11.101), it is relative easy to obtain expressions for the thermal capac-
ity and entropy. From general physics thermal capacity for an isometric
process is given by the partial derivative of U with respect to T (see also
Equations 11.146 to 11.149),

so we immediately obtain

(11.104)

for the thermal capacity of a monatomic ideal gas. Also, the entropy can
be evaluated using Equation 11.75,
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Ch. 11  Classical Statistical Mechanics478

upon substitution of the expressions for U from Equation 11.101 and Z
from Equation 11.100. That is, 

which becomes

(11.105)

after the obvious cancellation of T and substitution for b. If  the ideal gas
is fairly dense, where the molecules must be considered as essentially in-
distinguishable, then Equations 11.77 must be used to evaluate the entropy
SC. In either case, it is interesting to note that in classical thermodynamics
we obtain differences in entropy, while relations for entropy contain an un-
determined constant. When statistical mechanics is applied to different
problems, however, we obtain exact expressions for entropy without any
undetermined constants.

The central role of the statistical partition function is analyzing the
monatomic ideal gas should be obvious from the above evaluations of en-
ergy and entropy formulae. It can also be employed to obtain the equation
of state for the ideal gas molecules, by direct substitution into Equation
11.86. That is, with

from Equation 11.86 and

from Equation 11.100, we immediately obtain

or, as it is customarily written

(11.106)
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An interesting and fundamental relationship can now be realized by com-
paring this result with that predicted by general classical physics. Elemen-
tary classical thermodynamics gives the ideal gas equation of state in the
form

pV 5 nRT, (11.107a)

where n represents the number of moles and R is the universal gas constant.
Since we can define the number of moles by the ratio of the number of
particles N to Avogadro’s number No

(5.69)

then Equation 11.107a can be expressed as

(11.107b)

A comparison of this equation from classical thermodynamics with Equa-
tion 11.106 from statistical mechanics gives

(11.108)

This result can also be obtained by comparing our result for U (see Equa-
tion 11.101) with that predicted by kinetic theory, that is, U 5 (3/2)nRT 5
(3/2)N(R/No)T. The important point, however, is that although kB in sta-
tistics was simply an unknown constant for Equation 11.28, it is now rec-
ognized as necessarily being identical to R/N0 and called the Boltzmann
constant, if  classical statistical mechanics is to agree with classical ther-
modynamics and kinetic theory. 

Energy, Momentum, and Speed Distribution Formulae

Now that the cell degeneracy and partition function have been evaluated
for the monatomic ideal gas, we can obtain an expression for the Boltz-
mann distribution,
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Ch. 11  Classical Statistical Mechanics480

in terms of a continuous distribution of molecular momenta. In this case
ni is replaced by n(p) dp, gi by g(p) dp, and ei by e 5 p2/2m to obtain

(11.109)

Substitution for g(p) dp and Z from equations 11.95 and 11.100 gives

which with the algebra of exponents reduces to

(11.110)

This result, called the Boltzmann distribution of momenta, represents the
number of  ideal gas molecules having momenta between p and p + dp,
where b is related to the absolute temperature of the system by Equation
11.63. The Boltzmann distribution of an ideal gas can also be expressed
in terms of molecular energies and speeds by fundamental substitutions
into Equation 11.110. That is, with

Equation 11.110 becomes

which with a little effort reduces to the Boltzmann distribution of energies

(11.113)

for the number of gas molecules having energies between e and e 1 de.
In a similar manner, substituting
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into the right-hand side of Equation 11.110 yields

(11.114)

for the Boltzmann distribution of speeds. This result, originally obtained
by Maxwell in 1859, represents the distribution of speeds between v and
v 1 dv for the molecules of an ideal gas. Although it was directly obtained
from the Boltzmann distribution of momenta (Equation 11.110), it can also
be easily derived from the energy distribution formula given by Equation
11.113 (see Problem 11.17).

It should be obvious from the above discussion that starting with any
one of  the three distribution formulae (Equations 11.110, 11.113, or
11.114) allows for the direct derivation of the other two distribution func-
tions. In this sense the distribution formulae are redundant, even though
each one has its particular usefulness in statistical applications for an ideal
gas. For example, by analogy with the definition for the ensemble average
(Equation 11.19) and the quantum mechanical expectation value (Equa-
tion 10.25), it seems appropriate to define the statistical average of any
physical variable A by the general equation 

(11.115)

where q is a generalized coordinate that can be replaced by p, v, e, and so
forth. Clearly, the distribution formulae are redundant, since the average
value of any physical variable (e.g., A-→ v

-, p-, e-, etc.) can be obtained in
any one of three different ways corresponding to q 5 v, q 5 p, or q 5 e.
It is also interesting to note that unlike the quantum mechanical
expectation value defined by Equation 10.29, the integral in the denomi-
nator of Equation 11.115 is not normalized to unity. Instead, conservation
of particles must be required in statistical mechanics, which means that

(11.116)
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As an example of the validity of this equation, for an ideal gas with q = p
we have

where the integral was evaluated using Equation 11.99. This same result
is certainly obtained for an ideal gas with q 5 v and q 5 e (see Problems
11.18 and 11.19). Hence, the generalized equation defining a statistical 
average for a continuous distribution can be expressed as

(11.118)

Further, it should be clear that in general the number of particles with val-
ues between q and q 1 dq can always be expressed in the form

(11.119)

With this relation, the result expressed in Equation 11.117 is obvious for
q 5 p and likewise for q 5 v or q 5 e.

The defining equation for the statistical average of a physical variable
is extremely useful in a number of physical applications. For example, the
average energy of an ideal gas molecule given by Equation 11.102 can be
obtained using Equation 11.118 by replacing A with e and q with e. Ac-
cordingly, 

where the energy distribution of Equation 11.113 has been used in obtain-
ing the second equality. With a new variable of integration defined by 
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Equation 11.120 can be expressed in a form that is amenable to integration
using Equation 11.99. That is, combining the last three equations results
in

which is identical to our previously derived result of Equation 11.102. Of
course, because of the redundancy of the distribution formulae, this result
could be obtained from Equation 11.118 for the momentum distribution
(Equation 11.110) or speed distribution (Equation 11.114), that is,

by using e 5 p2/2m and e 5 mv
2, respectively, in the integrals. The ver-

ification of these two equations for an ideal gas molecule is left as an ex-
ercise in the problem set.

By capitalizing on the result for the average molecular energy e-, it is
simple to obtain an expression for the average speed squared v2w and the
root-mean-square speed vrms. That is, since e 5 mv

2 we have

(11.125)

which when compared with Equation 11.102 gives

Thus, v2w is given by

(11.126)
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from which the root-mean-square speed, is defined by 

(11.127)

is simply given by

(11.128)

Had we not first evaluated e-, the result for v2w could be easily derived from
Equation 11.118. The important point above, however, is that once an ex-
pression for v

2w is obtained, the result for vrms is immediate from its defining
equation. It is also important to emphasize that vrms is not the same as v-.
For an ideal gas obeying the Boltzmann distribution, v- is given by (see
Problem 11.23)

(11.129)

so the relationship between vrms and v- is

(11.130)

The results for vrms and v- can also be compared with the most probable
speed v, where v is obtained by maximizing n(v), that is,

(11.131)

and solving the resulting equation for v. For the Boltzmann distribution of
speeds (Equation 11.114) substituted into this equation (see Problem
11.25) we obtain

(11.132)
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Clearly, from the above results we have

(11.133)

and v , v
- , vrms. This relationship between v , v

- , and vrms is indicated
in Figure 11.5, where the Boltzmann distribution of  speeds (Equation
11.114) is plotted.

11.8  equipartition of energy

Consider the energy of a molecule to be expressed in terms of generalized
parameters in the form e 5 e(x1, x2, ??? , x’s),where the x’s represent the
various position, linear momenta, and angular momenta coordinates of
the molecule. If  this energy can be written in terms of a quadratic term as

(11.134)

then the mean energy associated with the quadratic term is
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In the limit of a continuous distribution of energy states, this equation be-
comes

(11.137)

where e 5 e(x1, x2, ??? , xn) and the degeneracy has been thought of as
(see Equations 11.89 and 11.93)

(11.138)

Expressing the exponentials in Equation 11.137 as (see Equation 11.134)

the expression for e-q simplifies to

(11.139)

as the coefficient

cancels from the numerator and the denominator. Now, employing the
transformation
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(11.140)

Equation 11.139 becomes

(11.141)

where Equation 11.98 has been used. The integrals of this equation are
evaluated using Equation 11.99 for the numerator and Equation 10.67 for
the denominator (see also Appendix A, Section A.10) to obtain

which reduces to

(11.142)

The result shows that each quadratic term in an expression for the total
energy of a particle has associated with it a mean energy of kBT. We can
think of each parameter associated with the energy of a particle as repre-
senting a degree of freedom. Consequently, for each degree of freedom that
is consistent with the above requirements, its contribution to the total en-
ergy of a particle in an assembly in thermodynamic equilibrium is given
by Equation 11.142. From these observations, we can state that the energy
of a particle depends only on temperature and is equally distributed among
its independent degrees of freedom. This statement represents the equipar-
tition of energy principle of thermal physics.

The quadratic conditions discussed above are certainly fulfilled for
an essentially free particle of an ideal gas, since the energy is the sum of
quadratic momenta terms They are also sat-
isfied by a linear harmonic oscillator, since its maximum potential energy
given by kx2

m , in terms of its maximum displacement xm, is equivalent to
its maximum kinetic energy mv

2
m (see Equation 7.89). The conditions are

not satisfied for particles in a gravitational field, however, because the grav-
itational potential energy given by mgy (Equation 1.23) is not quadratic
in the y-coordinate. Further, it should be clear that the principle is not
valid for the quantized energies predicted by quantum mechanics, as the
discrete energy values cannot be expressed as a continuous function of 
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Ch. 11  Classical Statistical Mechanics488

coordinates. Consequently, for classical systems obeying the equipartition
of energy principle, we can consider the total energy per particle to be given
by 

(11.143)

where Nf represents the total number of degrees of freedom. Thus, for a
system of N particles, the total internal energy is 

(11.144)

which can be expressed as

(11.145)

because of Equations 11.108 and 5.69.

Classical Specific Heat

The above results are particularly useful in applications to specific heat
problems. To fully appreciate this application, we will derive an expression
for specific heat in terms of a particle’s number of degrees of freedom Nf.
To begin, thermal capacity, often called specific heat, is defined in thermo-
dynamics as 

(11.146)

where Q is the heat energy and T is the absolute temperature. From the
first law of thermodynamics,

(11.147)

we have for an isometric process

(11.148)
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Thus, thermal capacity at a constant volume is obtained from Equations
11.146 and 11.148 as

(11.149)

Dividing both by sides of this equation by the number of moles n of a sys-
tem gives

(11.150)

which identifies the molal specific thermal capacity,

(11.151)

as equal to the partial derivative of the molal specific internal energy,

(11.152)

with respect to absolute temperature. The subscript denotes that the molal
specific volume, 

(11.153)

is constant with respect to the derivative. In terms of  the molal specific 
internal energy (defined by Equation 11.152), the total internal energy of
a system obeying the equipartition of energy principle, as given by Equation
11.145, can be expressed as

(11.154)

Now, substituting this equation into Equation 11.150 and performing the
partial differential gives 

(11.155)
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Ch. 11  Classical Statistical Mechanics490

for the molal specific thermal capacity or molal specific heat in terms of
the number of degrees of freedom Nf.

As a particular example of the usefulness of Equation 11.155, con-
sider a monatomic ideal gas, where the molecules are thought of as being
spherical in shape. The number of degrees of freedom Nf for each molecule
is three, arising from each of  the three translational terms in Equation
11.90. Thus, Equation 11.155 gives

This result is also predicted by Equation 11.104 when the definition for
the Boltzmann constant kB (Equation 11.108) and the number of moles n
(Equation 5.69) are taken into account.

For a diatomic ideal gas, we may imagine the molecules as dumbbell-
like consisting of  two spatially separated atoms aligned on the X-axis.
There are still three translational degrees of freedom and, in addition, two
relational degrees of freedom exist. The latter originate from a rotation of
the dumbbell-like molecule in the x-y plane and a rotation in the x-z plane.
Rotation in the y-z plane, which is rotation about the imaginary line con-
necting the two atoms, is considered to be insignificant by comparison
with the other two rotation modes. Thus, there are a total of five degrees
of freedom, Nf 5 5, and the molal specific heat from Equation 11.155 is 

For a polyatomic ideal gas, each molecule consists of three or more
atoms having a finite separation. Consequently, there are three transla-
tional and three rotational degrees of  freedom, Nf 5 6, giving rise to a
molal specific heat of

Coincidentally, this result for polyatomic molecules is identical to the 
Dulong-Petit law (see Problem 11.30) of  solid state physics, where the
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atoms in a simple cubic lattice of a solid are considered to be a series of
identical harmonic oscillators.

review of Fundamental and Derived equations

A listing of the fundamental and derived equations of this chapter is pre-
sented below. The derivations of  classical statistical mechanics are pre-
sented in a logical listing that parallels their development in each section
of this chapter.

FUNDaMeNtaL eQUatIONS—CLaSSICaL phYSICS

                             Free Particle Kinetic Energy

                                           Average Particle Energy

                                           Number of Moles

                                             Molal Specific Volume

                                             Molal Specific Internal Energy

                                          Thermal Capacity

                                             Molal Specific Thermal Capacity

            First Law of Thermodynamics
                                       Second Law of Thermodynamics

                                   Helmholtz Function

BaSIC eQUatIONS—CLaSSICaL StatIStICaL MeChaNICS

                    Cell Volume in m-Space
                                            Minimum Volume Per Cell

                                      Conservation of Particles

    Conservation of Energy
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                                   Total Microstates for kth Macrostate

               M-B Thermodynamic Probability

                       ClassicalThermodynamic Probability

                                 Total Microstates

                        Total Microstates for M-B Statistics

                           Ensemble Average

                        Statistical Average—Discrete Case

StatisticalAverage—Continuous Case

                           Partition Function

DerIVeD eQUatIONS
Entropy and Thermodynamic Probability—Two Systems in Equilibrium

                                  Total Thermodynamic Probability
   Total Entropy

                                Entropy in Statistical Mechanics

Most Probable Distribution

     Stirling’s Formula

            

            Condition for Most Probable
Distribution

                 

                            Maxwell-Boltzmann Distribution

Boltzmann Distribution
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Evaluation of b

         
Differential Entropy

Combined First and Second Laws
of Thermodynamics

Lagrange Multiplier

Classical Chemical Potential

Classical Distribution

Significance of the Partition Function

Total Particle Energy

                     

Occupation Number

M-B Entropy

          Classical Entropy

                    M-B Helmholtz Function

Classical Helmholtz Function

Differential Helmholtz Function

Pressure

Chemical Potential

                              Entropy

Thermodynamic Pressure
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                                     M-B Chemical Potential

                                         Classical Chemical Potential

                                       Boltzmann Distribution

Monatomic Ideal Gas

                    

Degeneracy—Continuous Case

                              

Partition Function—Continuous Case

                                           

Internal Energy

                                                Thermal Capacity

                                

Pressure—Equation of State

                                                      Boltzmann Constant

Boltzmann Distribution Formulae

      Distribution of Momenta

                 Distribution of Energies

         Distribution of Speeds
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                                 Root-Mean-Square Speed

                             Average Speed

Most Probable Speed

Equipartition of Energy

       

Equipartition of Internal Energy

Molal Specific Thermal Capacity

11.1 Consider a system of six particles being represented in a two-cell 
m-space. Enumerate the number of macrostates associated with this system
and calculate the number of  microstates corresponding to each
macrostate.

Solution:
The distribution of six particles in two cells can be accomplished in
seven different ways as given by

(n1, n2) → (6, 0), (5, 1), (4, 2), (3, 3), (2, 4), (1, 5), (0, 6).

v 5
m

k T2 B

2

( )

5 1

1

5

5

5

;
???

???

???

ax x x x

n

n

e dx dx

e dx dx

k T

, , ,

2

2

1

2

2

1

B

n

q

q

i

q i i

n

q n

0 2 3

0

1

1

2

1

/

/

e e

e e

e
e

e

3

3

3

3

be

be

1 ^ h

y

y

v 5
m

k T
2

2 B

p

5
m

k T3 B

5U
N

nRT
2

f

5c
N

R
2

v

f

Problems 495

Energy Per Degree of Freedom

problems

Evaluation Copy 

Not Licensed for 

Instructional Use 



The number of  microstates corresponding to each of  these
macrostates is given by equation 11.7, 

                                              

to be

11.2 Consider a system of four particles being represented in a three-cell
m-space. Find (a) the number of different macrostates, (b) the total number
of microstates, and (c) the most probable macrostates.

Answer:     (a) 15, (b) 81, (c) W(2, 1, 1) = W(1, 2, 1) = W(1, 1, 2)

11.3 Find the total number of microstates and the most probable distri-
bution for N = 5 distinguishable particles distributed among three degen-
erate cells having g1 = g2 = g3 = 2.

Solution:
The total number of macrostates is easily obtained from Equation 11.18 as

                                

The most probable distribution of n1, n2, and n3 is that for which Equation 11.15,
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is a maximum. Because the interchange of particles in any two cells results
in the same value for Wk, there is only the need to calculate Wk for the
cases where n1 $ n2 $ n3. Thus, with Wk denoted as W(n1, n2, n3) we have

Which shows the most probable distribution is given by

              W(n1, n2, n3) = W(2, 2, 1) = W(2, 1, 2) = W(1, 2, 2).

11.4 Use the basic equation for an ensemble average defined by Equation
11.19 to calculate n·i for i = 1, 2, 3 for the distribution of particles described
in Problem 11.2.

Answer:     

11.5 Find the most probable distribution for a system of N = 104 distin-
guishable particles distributed among three degenerate cells having g1 = 1,
g2 = 2, g3 = 3. Assume the system is at a temperature such that
e2 2 e1 = e3 2 e2 5 kBT.

Solution:
From the description of this system the choice of e1 is arbitrary. Thus,
with e1 = 0, the partition function (Equation 11.48) is easily evaluated
for i = 1, 2, 3 as

                      

Therefore, the most probable set of occupation numbers is given by
the Boltzmann distribution (Equation 11.47) as
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11.6 Find the most probable set of occupation numbers for a system of
N = 105 distinguishable particles distributed among three cells having de-
generacies g1 = 1, g2 = 2 and g3 = 3. Assume the system is at a temperature
such that e2 2 e1 = 2/b and e3 2 e2 = 1/b.

Answer:     n1 5 70421, n2 5 19061, n3 5 10518

11.7 Verify that the total number of microstates W(n1, n2, n3) is a maxi-
mum number for the set of n1 obtained in Problem 11.5, by varying the
set of occupation numbers such that the conservation requirements (en-
ergy and particles) are maintained.

Solution:
For W(n1, n2, n3) to be a maximum for the set of ni calculated in Prob-
lem 11.5, any slight variation in the values of n1, n2, n3 should result
in a new set of n91, n92, n93 such that W9(n91, n92, n93) , W(n1, n2, n3). Con-
sequently, the ratio of

for the most probable set of ni to

for the slightly varied set of n9i, as given by

should be greater than one. This observation can be tested by allowing
dn1 to vary by +1 or 21 and generating values for dn2 and dn3 such that
the conservation requirements are maintained. For dn1 = +1 the con-
servation of total energy requires that dn3 = +1 and dn2 = 22, since then
dE 5 1 ? e1 2 2 ? e2 1 1 ? e3 5 1 ? 0 2 2 ? kBT 1 1 ? 2kBT 5 0. Maintain-
ing the conservation of total energy in this case also results in the con-
servation particles being preserved (i.e., dN 5 dn1 1 dn2 1 dn3 5 1 2
2 1 1 5 0), and the result can be generalized to dn1 5 dn3 5 2dn2 /2.
Consequently, the new set of numbers for the case dn1 5 1 is given by

         dn1 5 11 → n91 5 n11 1,        n92 5 n2 2 2,       n935 n3 1 1,
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from which we obtain

Applying similar arguments for dn1 5 21 gives

       dn1 5 21 → n91 5 n1 2 1,        n92 5 n2 1 2,        n93 5 n3 2 1,

with the result for W/W9 being

Since W/W9 . 1 for an increase or decrease in n1, W9 is smaller than W
and the original distribution for n1, n2, and n3 must be the most probable.

11.8 While maintaining conservation requirements consider dn1 5 61
and generate the set of n9i for each case from the most probable set of ni

calculated in Problem 11.6. Now, verify that W(ni) is a maximum by show-
ing that W(ni)/W9(n9i) . 1.

Answer:     

11.9 An ideal gas consisting of atomic hydrogen is at a temperature of
300 K. Find (a) the ration of the number of atoms in the first excited state
to the number in the ground state and (b) the temperature at which 20.0
percent of the atoms are in the first excited state.

Solution:
Using the Boltzmann distribution (Equation 11.47)

we obtain
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for the relative population of the first excited state to that of the ground
state. Recalling that the maximum number of electrons allowed in a shell
is given in terms of the principal quantum number n by Equation 7.104,

Nn 5 2n2 ,

then the degeneracy of the ground state (n = 1) is g1 = 2 and the first
excited state (n = 2) has a degeneracy of g2 = 8. Of course the energies
associated with these electron states are e1 = 213.6 eV and e2 = 23.4
eV, which are obvious from Equations 7.39 and 7.41, so the expres-
sion for the relative population becomes

With b = 1/kBT, kB = 1.38 3 10223 J/K (Equation 11.108), and T =
300 K, we obtain

and

We see that few atoms are in the first excited state, because the energy
difference e1 2 e2 is so large compared with kBT. In fact, for one atom
to be in the first excited state, the gas would have to contain approx-
imately 0.32 3 10171 atoms of hydrogen, which is physically impossi-
ble, since the mass of the gas would exceed the mass of the universe.

To find the temperature at which 20.0 percent of the atoms are in the
first excited state, we require n2/n1 = 0.200/0.800 = 0.250 and solve for T.
That is, 

from which we obtain

11.10 Find the average energy per molecule of polarized HCL molecules,
if  they are in a uniform external electric field of E 5 1.38 3 107 N/C at a
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temperature of 344 K. Imagine each molecule to have a charge distribution
of +q separated from a charge of – q by a distance of r, such that its dipole
moment is given by m = qr = 3.44 3 10230 C ? m and its potential energy is
given by 2mE if aligned parallel to the E field or +mE if aligned antiparallel.

Answer:     E· 5 2 4.75 3 10225 J

11.11 Starting with the expression of Equation 11.16 for WC, derive an
equation for d 1n WC using Stirling’s formula and conservation of particles
and energy requirements.

Solution:
Taking the logarithm of Equation 11.16, 

immediately yields

where Stirling’s approximation and conservation of  particles have
been used. Now, d 1n WC is given by
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which is identical to the expression obtained for d 1n WM2B (see Equa-
tion 11.40).

11.12 Starting with the fundamental equation defining the average energy
per particle (i.e., e· ; E/N) and using the equations for conservation of par-
ticles and energy, derive an equation of  the form e· = e·(Z) for (a) the
Maxwell-Boltzmann distribution, and (b) the classical distribution.

Answer:     

11.13 By considering the partial derivative of Z with respect to ej, derive
Equation 11.73 for (a) the Maxwell-Boltzmann distribution and (b) the
classical distribution.

Solution:
Performing the indicated partial derivative on Z gives

which can be rewritten in the form

If we multiply this equation by e2a, the left-hand side becomes identical
to the Maxwell-Boltzmann distribution (Equation 11.45) in the form

nj 5 gj e2ae2bej.

Thus, we obtain

But, from Equation 11.46

so our equation for nj becomes

2 5 2
ln Z

2

2

b
e

j
j,

5

5 2

Z
g e

g e

2

2

j j

i

i

i

2

2

2

2

e e

b

be

be

/

j
j

.5 2g e
Z12 j

2

2

b e
be

j
.5 2n e

Z12

j2

2

b e
a

,5e
Z

N2a

j

j

j

.

5 2

5 2
ln

n
Z

N Z

N Z

1

2

2

2

2

b e

b e

Ch. 11  Classical Statistical Mechanics502

Evaluation Copy 

Not Licensed for 

Instructional Use 



Similarly, after multiplying

by ebmC, the left-hand side is recognized as the classical distribution 

But, from Equation 11.64 we have

so again we obtain

11.14 Starting with S = kB 1n W and using 1n WC given by Equation
11.35, derive an expression for entropy SC that is appropriate for classical
statistical mechanics.

Answer:     

11.15 By starting with the equation p = 2(−F/−V)N,T, derive an equation
for pressure in terms of the partition function for (a) Maxwell-Boltzmann
statistics and (b) classical statistics.

Solution:
Substituting the Helmholtz function FM-B from Equation 11.80, 

FM-B 5 2NkBT ln Z,

into the above expression for pressure gives

Similarly, using

for classical statistics, we obtain
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11.16 Starting with the equation m = (−F/−N)V,T, derive an equation for
the classical chemical potential mC, in terms of the partition function.

Answer:     

11.17 Starting with the ideal gas distribution of energies formula (Equa-
tion 11.113), derive Equation 11.114 for the Boltzmann distribution of
speeds.

Solution:
Starting with the Boltzmann distribution of energies,

and substituting

yields

which reduces to the Boltzmann distribution of speeds in the form

11.18   Verify the normalization condition of statistical mechanics (Equa-
tion 11.116) for an ideal gas with q = v.

Answer:     

11.19 Verify that the Boltzmann distribution of energies is normalized to
N for an ideal gas.
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Solution:
From the normalization condition (Equation 11.116) with q = e and
the energy distribution for an ideal gas (Equation 11.113) we have

By changing the variable of  integration, the integral on the right-
hand side can be evaluated using Equation 11.99. That is, with

we have

11.20   Starting with Equation 11.123, find the average energy e· of an ideal
molecule predicted by Maxwell-Boltzmann statistics.

Answer:     

11.21 Starting with Equation 11.124, show that e· 5 (3/2)kBT for an ideal
gas molecule obeying Maxwell-Boltzmann statistics.

Solution:
Substituting the Boltzmann distribution of speeds (Equation 11.114)
and e 5 mv

2 into Equation 11.124 gives

where the integral has been evaluated using Equation 11.99.
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11.22 Starting with Equation 11.118 and using the Boltzmann distribu-
tion of speeds, find the average speed squared for a monatomic ideal gas
molecule.

Answer:     

11.23 For an ideal gas governed by Maxwell-Boltzmann statistics, find
an expression for the average molecular speed v·.

Solution:
From Equation 11.118, with A = v and q = v, and the Boltzmann dis-
tribution of speeds (Equation 11.114), we have 

The integral is of the form

given in Appendix A, Section A.10. With n = 3 and a = bm/2, we have 

Thus, the equation for v· reduces to

11.24 Starting with Equation 11.118, find an expression for the average
momentum of an ideal gas molecule obeying Maxwell-Boltzmann statis-
tics.

Answer:     

11.25 Derive an expression for the most probable speed of an ideal gas
molecule for a system obeying Maxwell-Boltzmann statistics.
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Solution:
Maximizing the Boltzmann distribution of speeds given by Equation 11.114,

requires the first order derivative of n(v) with respect to v to vanish.
Thus, with A 5 4pN(bm/2p)3/2, we have 

which immediately reduces to

Solving for this result for v and using b 5 1/kBT, gives

11.26 Derive an expression for the most probable energy of an ideal gas
molecule obeying Maxwell-Boltzmann statistics.

Answer:     

11.27 The theoretical expression for the speed of sound in a monatomic
ideal gas is given in terms of pressure p and mass density r by (5p/3r)1/2.
By what factor does this differ from the root-mean-square speed vrms and
the most probable speed v?

Solution:
With the theoretical speed of sound represented by vs, the ideal gas
equation of state (Equation 11.107a), and the defining equation for
mass density (Equation 5.33), we have
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where the defining equation kB 5 R/No for the Boltzmann constant
and m = M/N have been used in obtaining the last two equalities, re-
spectively. Now, a comparison of this expression for vs with that of

given by Equation 11.128 yields

Likewise, for the most probable speed

we immediately obtain

11.28 Find (a) vrms of a nitrogen molecule at a temperature of T =
273 K, and (b) its translational kinetic energy according to Maxwell-Boltz-
mann statistics.

Answer:     

11.29 Show that the Boltzmann distribution of speeds can be expressed as
n(v) dv = (4N/p1/2 vmp)(v/vmp)2e2(v/vmp)2dv, where vmp represents the most
probable speed. Now, by considering a system of No (Avogadro’s number)
molecules and approximating dv by Dv 5 0.01vmp, find the number of
molecules Dn with speeds in dv at v = 0, v = vmp, v = 2vmp, v = 3vmp, v =
4vmp, v = 5vmp, v = 6vmp, v = 7vmp, and v 5 8vmp.
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Solution:
From Equations 11.114 and 11.119 we have

where Equation 11.132 has been used in obtaining the third equality.
With dnv → Dnv and dv → Dv 5 0.01vmp we obtain

Thus, we obtain the following:

11.30 Consider a solid to consist of regularly spaced atoms on a simple
cubic lattice connected by springs. Using the equipartition of energy prin-
ciple, find the molal specific thermal capacity of the solid.

Answer:     

mp

v v

v v

v

v v

v v

v
v,

5

5

5

5

dn N
m

e d

N

k T

m
e d

N
e d

N
e d

4
2

4

2

4 1

4

v

v

v

v v

v v

/
/

/

/
( / )

/

( / )

/

( / )

2

2

2

2

B

mp mp

m

m k T

3 2
2 2

1 2

3 2
2 2

1 2 3

2

1 2

2

mp

mp

2

2

2

2

p
p

b

p

p

p

b

B

c
c

c

m
m

m

v v

v
v

v

v

(0.01 )

1.36 .

5

5 3

n
N

e

e

4

10

v

v v

v v

/

( / )

( / )

2

2

mp mp
mp

mp

o

1 2

2

22
2

mp

mp

2

2

p
D c

c

m

m

v

v v

v v

v v

v v

v v

v v

v v

v v

. ( )

. ( ) .

. ( ) .

. ( ) .

4 1.36 10 4 2.45 10

5 1.36 10 5 4.72 10

6 1.36 10 6 1.14 10

7 1.36 10 7 3.49 10

8 1.36 10 8 1.40

5 5 3 5

5 5 3 5 3

5 5 3 5 3

5 5 3 5 3

5 5 3 5 3

5 5 3 5 3

5 5 3 5 3

5 5 3 5 3

5 5 3 5 3

n e

n e

n e

n e

n e

n e

n e

n e

n e

0 1 36 10 0 0

1 36 10 1 5 00 10

2 1 36 10 2 9 96 10

3 1 36 10 3 1 51 10

10

v

v

v

v

v

v

v

v

v

2

2

2

2

2

2

2

2

2 2

mp

mp

mp

mp

mp

mp

mp

mp

22 2 0

22 2 1 21

22 2 4 20

22 2 9 19

22 2 16 16

22 2 25 12

22 2 36 8

22 2 49 2

22 2 64 4

"

"

"

"

"

"

"

"

"

D

D

D

D

D

D

D

D

D

35c Rv

Problems 509

Evaluation Copy 

Not Licensed for 

Instructional Use 



Introduction

In the preceding chapter the development of Maxwell-Boltzmann statistics
involved an essentially classical counting procedure, wherein identical par-
ticles were explicitly considered to be distinguishable. This assumed dis-
tinguishability of particles is applicable in classical physics, especially for
the molecules of an ideal rarefied gas or the molecules of a crystal lattice,
but it is not valid in quantum mechanics for, say, the description of inher-
ently indistinguishable conduction electrons in a metal. If  free conduction
electrons are considered as a monatomic ideal gas, classical statistical me-
chanics predicts a thermal capacity of  (3/2)nR according to Equation
11.104. But, the observed heat capacity of a metal at high temperatures is
given by the Dulong and Petit law as 3nR (recall Equation 11.158 and
Problem 11.30), which is due solely to the metal lattice. Since the thermal
capacity predicted by classical statistical mechanics is valid for both
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A plot of the wave function of a particle in a two-dimensional rectangular
square well (2nd energy level) with brightness indicating magnitude.
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Maxwell-Boltzmann (distinguishable particles) and classical (indistin-
guishable particles) statistics, the difference between classical and quantum
statistical mechanics is more than just the indistinguishability of particles.
The correct quantum mechanical distribution law for electrons differs sig-
nificantly from that of  classical statistical mechanics in two important,
and related, respects. First, in quantum theory electrons are quantized and
second, they obey the Pauli exclusion principle where no quantum state can
be occupied by more than one electron.

We have also seen (Chapter 6) how electromagnetic radiation is quan-
tized in nature, exhibiting particle-like behavior in the photoelectric and
Compton effects. If  we consider the classical statistical mechanics of an
ideal gas consisting of indistinguishable photons, the classical energy dis-
tribution formula obtained also predicts the distribution in frequency (or
wavelength) because the energy of a photon is directly proportional to its
frequency (or inversely proportional to its wavelength). In this case, clas-
sical statistical mechanics predicts a frequency dependence for the radia-
tion energy density (energy per unit volume) that is inconsistent with
observation and the well-known Planck radiation law. Even though pho-
tons do not obey the Pauli exclusion principle, the associated quantum
statistics differs significantly from that of classical statistical mechanics in
that photons are quantized. This means that the concept of representative
phase points being continuously distributed in phase space is no longer
valid in quantum theory because the energy of a particle (e.g., electrons,
photons, etc.) is restricted to a discrete set of quantized energy states and
cannot change in a continuous manner or assume an arbitrary value.

The difficulties arising from employing classical statistical mechanics
to describe electrons and photons is completely resolved by quantum sta-
tistics. The discussion of this chapter is still restricted to the statistics of a
microcanonical ensemble of systems consisting of, essentially, free particles.
However, each system will now be treated in a completely quantum me-
chanical manner, where identical particles are considered to be indistin-
guishable and quantized. Certainly, because of  these requirements,
quantum statistics will differ from the classical theory in the counting of
the number of microstates associated with a particular macrostate. This
difference is illustrated by a simple example where the formulation of
quantum statistics is carefully discussed. From this understanding, the
thermodynamic probabilities for Bose-Einstein and Fermi-Dirac statistics
are developed, which apply, respectively, to quantized indistinguishable
particles to which the Pauli exclusion principle is not applicable (e.g., pho-
tons) and to the particles that obey the principle (e.g., electrons). Next,
the quantum distribution functions for Bose-Einstein and Fermi-Dirac
statistics are derived, using the method of the most probable distribution
that was detailed for classical statistical mechanics. Then useful insights
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are obtained by comparing all four of the distribution functions with one
another. Further, after evaluating the Lagrange undetermined multiplier
b for quantum statistics, the distribution functions for Maxwell-Boltz-
mann, Bose-Einstein, and Fermi-Dirac statistics are applied to different
quantum mechanical examples. In particular, the specific heat of a solid
is obtained by applying (a) Maxwell-Boltzmann statistics to quantized
harmonic oscillators and (b) Bose-Einstein statistics to quanta of vibra-
tional energy, called phonons, in the respective development of the Einstein
theory and the Debye theory. Bose-Einstein statistics is also applied to an
ideal gas consisting of  photons for the analysis of  radiation in a cavity,
where the Planck radiation formula, Wien’s displacement law, and the Ste-
fan-Boltzmann law are derived. Finally, Fermi-Dirac statistics is applied
to the conduction electrons in a metal for the determination of the elec-
tronic density of states and specific heat.

12.1  Formulation of Quantum Statistics

Because classical statistical mechanics is not in agreement with observed
physical phenomenon involving quantized particles (e.g., electrons, pho-
tons, etc.), there must be a fundamental conceptual difficulty with the
counting procedure used in obtaining Maxwell-Boltzmann and classical
statistics. This is especially true for the discussion presented in Chapter
11, Sections 11.1 and 11.2, where cells in m-space were considered to be
very small compared to the spatial dimensions and range of momenta of
the real system, yet large enough to accommodate a number of represen-
tative phase points. Usually, the number of  particles (or representative
phase points) per cell is quite large for a real system described by classical
statistical mechanics, as was suggested by several problems at the end of
Chapter 11. It is noteworthy, however, that the introduction of the Heisen-
berg uncertainty principle, predicting a minimum volume per cell of 

(12.1)

suggests that there are considerably more elemental cells in accessible m-
space than particles. Consequently, only a small fraction of the elemental
cells in m-space have a nonzero occupation number. This statement is easily
verified for Maxwell-Boltzmann statistics by considering the quantity

(12.2)
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called the occupation index of a cell energy ei. It represents the average
number of particles in each of the gi cells of identical energy ei. Using the
Boltzmann distribution (Equation 11.47) in this equation gives

from which it is obvious that f(ei) is a maximum for cells where ei = 0. Thus
for a monatomic gas with

(11.100)

we have

(12.3)

This equation can be evaluated for an ideal monatomic gas by solving the
ideal gas equation of state for V (see Equations 11.107a to 11.108),

and substituting to obtain

(12.4)

Considering helium, as the lightest monatomic gas, at standard conditions
(i.e., STP → T 5 273 K, p 5 1.013 3 105 N/m2), we have, without the in-
clusion of units,

and Equation 12.4 gives
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This result means that there is only one particle to every 252,700 cells in
the most densely occupied region of m-space. The occupation index is even
smaller for heavier gasses (i.e., m . mHe) and for real gases, where the ki-
netic energy per particle is nonzero (i.e., ei . 0). Clearly, the number of
elemental cells in m-space is prodigiously larger than the number of par-
ticles in a real gas and, consequently, only a very small fraction of the cells
are occupied.

From the above discussion, it is clear that introducing the fundamen-
tal quantum mechanical concept of the Heisenberg uncertainty principle
necessitates a fundamental revision of the statistical argument. This revi-
sion was, essentially, addressed in Chapter 11, Section 11.3 with the intro-
duction of energy-cell degeneracy and the system configuration given in
Table 11.4. We need, however, to restate the statistical argument using
purely quantum mechanical concepts and terminology. In quantum me-
chanics the energy of a particle (e.g., electron, photon, etc.)is quantized to
a set of discrete values that are allowed by the principle quantum number.
But, because of the existence of three other quantum numbers (i.e., orbital
quantum number, magnetic quantum number, and spin quantum num-
ber), we have in general the existence of different quantum states having
the same energy. Thus, a degeneracy in the energy level, defined by the prin-
ciple quantum number n, is fundamental in quantum theory. For bound
electrons, as an example, a unique quantum state is completely defined by
specifying all four quantum numbers. The quantum state for a free elec-
tron, however, is completely defined by specifying its principle and spin
quantum numbers n and ms. Again, we have an obvious energy level de-
generacy, because of  the two values (2 , 1 ) allowed for ms. Further,
there is an additional degeneracy resulting from the requirement of three
principle quantum numbers (nx, ny, nz) for the complete specification of each
energy level, as was discussed in connection with Equation 10.137. Thus,
instead of thinking of cell-energy degeneracy, we need to consider energy
level degeneracy in quantum statistics. Accordingly, the occupation number
must now be thought of as the number of particles distributed among the
allowed quantum states of a degenerate energy level, and a macrostate is
specified by enumerating the occupation number ni in each quantum me-
chanically allowed energy level ei. With this, the configuration of a quantum
mechanical system in m-space can be represented by that illustrated in
Table 12.1, where the degeneracy gi refers to the number of unique and al-
lowed quantum states for the energy level ei. The energy level e0, correspon-
ding to the principle quantum number n = 0, has been included in this
configuration to accommodate the zero point energy of quantum mechan-
ics (e.g., recall the quantum mechanical harmonic oscillator of Chapter
10, Section 10.4).

It is also important to note that although the energy levels in quantum 

1
}2

1
}2
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theory are discrete and not continuous, there are a number of  cases in
quantum statistics where the energy levels for free particles (e.g., electrons,
protons, and photons) are so closely spaced that they form a continuum.
In these cases the same arguments that led to Equation 11.95 may be used
to obtain a general expression for the degeneracy in the form

(12.5)

This expression differs from Equation 11.95 by only the multiplicative fac-
tor 2, which takes into account the two directions of polarization for pho-
tons or the two directions of spin for electrons (see Sections 12.6 and 12.7,
respectively). This equation gives the total number of quantum states in m-
space that have a momentum between p and p + dp and, as will be later il-
lustrated, can be easily transformed into a degeneracy in terms of  the
energy of the quantum states allowed for free electrons, photons, and even
phonons (see Section 12.5).

The above discussion for the configuration of a system in quantum
statistics is basically the same as that following Table 11.4, where we mod-
ified, somewhat, our interpretation of the classical counting procedure.
For an isolated system, we still have the conservation requirements for the
total number of particles,

(11.4)

and the total energy,

(11.5)

of a system, where now the summation extends over all allowed energy
levels in m-space. To be consistent with the notion of energy level degen-
eracy, we may now imagine an energy level ei of m-space to be partitioned
into the appropriate number of quantum states that will exactly accom-
modate the degeneracy gi, wherein the ni particles may be distributed. An

( ) 2 .5g p dp
h

V
p dp

4
3

2p

,5N ni

i

/

,5E ni

i

ie/

Ch. 12  Quantum Statistical Mechanics515

Degeneracy

Conservation
of Particles

Conservation
of Energy

table 12.1
A quantum system
configuration for the al-
lowed degenerate en-
ergy levels in m-space.

Prinicipal Quantum Number 0 1 2 3  ??? i ???

Energy Level e0 e1 e2 e3 ??? ei ???
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example of this scheme is depicted in Figure 12.1, where the energy level
e1 has been subdivided by one partition to accommodate g1 5 2 quantum
states, e2 has three partitions to subdivide the energy level in g2 5 4 quan-
tum states, and ei has five partitions for gi 5 6. Of course, the counting of
the total number of different distributions of ni particles in each of the ei

energy levels must be done in a manner to ensure the indistinguishability
requirement that is fundamental in quantum statistics. This requirement
and the appropriate counting procedure for Bose-Einstein and Fermi-
Dirac statistics will be discussed in some detail in the next section.

12.2  thermodynamic probabilities 
in Quantum Statistics

The method of determining the thermodynamic probability in quantum
statistics is rather similar to that presented for Maxwell-Boltzmann and
classical statistics. That is, the number of microstates Wk corresponding
to a particular macrostate requires an assumed set of occupation numbers, 

n0, n1, n2, ??? , ni, ??? ,

for a set of different energy levels,

e0, e1, e2, ??? , ei, ??? .

The total number of  microstates Wk for the kth macrostate is then ob-
tained by enumerating or calculating the allowed permutations w for the
quantities occupying each separate energy level,

w0, w1, w2, ??? , wi, ??? ,

and multiplying the results, that is, 
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Figure 12.1
Representative quan-
tum states associated
with degenerate en-
ergy levels in m-space.
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(12.6)

The product of  the wi’s in this equation should be reasonably obvious,
since for the permutations w0 allowed for the quantities of every level e0,
there are w1 independent permutations allowed for e1, w2 for e2, and so
forth. The actual counting for the various statistics is easily understood
by a simple example, like the one discussed in Chapter 11, Section 11.2.
More specifically, however, we will consider a very simple example of dis-
tributing N 5 2 particles in a m-space consisting of only one energy level
e1 having a degeneracy g1 5 4. Before considering the enumeration of the
microstates for Bose-Einstein and Fermi-Dirac statistics, the Maxwell-
Boltzmann case will be discussed for the purposes of comparison.

Maxwell-Boltzmann Statistics Revisited

In this example of two particles occupying one energy level, there is only
one possible macrostate corresponding to n1 5 2. The allowed microstates
associated with this macrostate for Maxwell-Boltzmann statistics are illus-
trated in Figure 12.2, where two conditions on the distribution of  the

.5W wk i iP
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Figure 12.2
The M-B microstates
associated with two
particles restricted to a
m-space of one
quadruply degenerate
energy level.
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particles have been observed. First, the particles are treated as distinguish-
able by labeling them as a and b and, second, there are no restrictions on
the number of particles that can occupy a given quantum state.

The sixteen microstates illustrated in Figure 12.2 can be predicted by
the statistical counting method discussed previously in Chapter 11, Sec-
tions 11.2 and 11.3. Generalizing and recapitulating in the terminology of
quantum statistics, the first particle can be chosen in N ways and placed
in any one of the g1 quantum states in energy level e1. So the total number
of ways of selecting the first particles and placing it somewhere is Ng1. For
the second particle the number of ways is (N 2 1)g1, for the third particle
it is (N 2 2)g1, and so forth for the n1 particles occupying energy level e1.
Since the last particle for e1 can be chosen in (N 2 n1 1 1)g1 ways, then
the total number of ways of selecting n1 particles to occupy g1 quantum
states of energy level e1 is simply

where the n1! in the denominator eliminates the irrelevant permutations.
This same reasoning is used if  there is a second energy level e2 having a
degeneracy g2 only, now, the first particle may be selected in (N 2 n1)g2

ways, the second in (N 2 n1 2 1)g2 ways, and so forth, until the last of the
n2 particles is selected in (N 2 n1 2 n2 + 1)g2 ways. Thus, eliminating the
n2! irrelevant permutations we have

and generalizing to the ith energy level gives

In this recapitulation we have reproduced Equations 11.14a through
11.14c, which upon substitution in Equation 12.6 yields the familiar
Maxwell-Boltzmann thermodynamic probability, 
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(12.7)

This result is clearly capable of predicting the number of microstates listed
in Figure 12.2, since for N 5 2, i 5 1, gi 5 4, and ni 5 2 we have

An interesting difference between Maxwell-Boltzmann and quantum sta-
tistics can be obtained from this example and the definition

(12.8)

For our simple example

which will be interesting when compared with the results predicted by
quantum statistics.

Bose-Einstein Statistics

In quantum statistics particles are considered to be inherently indistin-
guishable. But, in Bose-Einstein (frequently abbreviated as B-E) statistics
the Pauli exclusion principle is not obeyed, which means that any number
of particles can occupy any one quantum state. Particles with this behavior
are collectively called bosons (see Table 12.2 for listing) and represent
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table 12.2
A partial listing of par-
ticles classified as
bosons and fermions.

Bosons Spin Fermions Spin
a particle 0 Electron 1

}2

He atom 0 Neutron 1
}2

p-meson (pion) 0 Proton 1
}2

Phonon 1 Positron 1
}2

Photon 1 m-meson (muon) 1
}2

Deuteron 1 Neutrino 1
}2
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those particles in nature that have an integral (0, 1, 2, ???) total spin angular
momentum measured in units of ". Since the particles are indistinguish-
able, both particles in our simple example must be labeled the same, say
a, and the allowed microstates may be enumerated as illustrated in Figure
12.3. There are g1 5 4 ways of placing all particles in the same quantum
state and six ways of placing them in different states, so the total number
of microstates is ten. It should be noted that the number of microstates
allowed by B-E statistics is less than those allowed by M-B statistics by
exactly the number of microstates corresponding to an interchange of par-
ticles (i.e., distinguishability) between different quantum states.

To quantify the counting procedure that is appropriate for the B-E
distribution of particles, observe that in general gi 2 1 partitions or vertical
lines are required to subdivide an energy level ei into gi quantum states.
We have ni particles to place in gi quantum states that are defined by
gi 2 1 lines. Thus, there are ni 1 gi 2 1 quantities to be distributed, and
any order in which these quantities are placed will represent a microstate
of the ith energy level. The total number of possible ways of distributing
ni 1 gi 2 1 quantities is given by (ni 1 gi 2 1)!. But, of these possible per-
mutations there are ni! and (gi 2 1)! irrelevant permutations of the particles
and lines, respectively. Consequently, there are

(12.9)

allowed and unique distributions of the ni indistinguishable particles among
the gi quantum states of the ei energy level. Clearly, a similar result may
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Figure 12.3
The microstates al-
lowed by B-E statistics
for two particles re-
stricted to a m-space of
a quadruply degener-
ate energy level.
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be argued for any energy level, so the Bose-Einstein thermodynamic prob-
ability for a particular macrostate is obtained from Equations 12.6 and
12.9 as

(12.10)

where the product extends over all possible energy levels.
It is easy to verify that ten microstates are allowed for our simple ex-

ample illustrated in Figure 12.3 by direct substitution of i 5 1, ni 5 2, and
gi 5 4 in Equation 12.10, that is, 

Also, since there are only four ways of placing all the particles in any one
quantum state, Equation 12.8 gives

Because this result is larger than that obtained for 1M-B, there is a greater
relative tendency for bosons to bunch together than particles obeying M-B
statistics.

Fermi-Dirac Statistics

In Fermi-Dirac (frequently abbreviated as F-D) statistics particles are con-
sidered to be indistinguishable and to obey the Pauli exclusion principle.
Such particles are collectively called fermions (see listing in Table 12.2) and
have a total spin angular momentum (measured in units of ") that is half-
integral (1/2, 3/2, 5/2, ???). The enumeration of allowed microstates in this
case for our simple example of two particles distributed among four quan-
tum states is illustrated in Figure 12.4. Because of the Pauli exclusion prin-
ciple, there are only six distinguishable different ways of placing the two
particles in different quantum states.

From the above example we can generalize and obtain the appropriate
quantitative expression for the F-D distribution of indistinguishable parti-
cles. This situation differs from the B-E case in that now a quantum state
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can either be vacant or occupied by only one particle. In general then,
gi 2 ni quantum states are vacant and ni quantum states are filled. Thus,
there are gi ways of selecting the first quantum state to be occupied by any
one of the ni particles, gi 2 1 ways of selecting the second quantum state
to be populated, and so forth, and gi 2 ni 1 1 ways of selecting the nith
quantum state to be occupied with the last of the ni particles. Thus, there
are gi ? (gi 2 1) ??? (gi 2 ni 1 1) ways of selecting ni of the gi quantum states
to be populated by the ni indistinguishable particles, where the order in
which the ni quantum states were selected has been counted. But this order
should not be counted, so we must divide by the irrelevant permutations
ni! of  the filled quantum states. Consequently, there are

(12.11)

allowed and unique distributions of ni indistinguishable particles among gi

quantum states of equal energy ei. Since this result was argued in general
for any degenerate energy level being populated by indistinguishable par-
ticles obeying the Pauli exclusion principle, then the Fermi-Dirac thermo-
dynamic probability for a particular macrostate of a system is immediately
obtained from Equations 12.6 and 12.11 in the form

(12.12)

As before in the previous cases, this distribution law can be used to predict
the number of allowed microstates illustrated in Figure 12.4 for our simple
example, that is, 
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Figure 12.4
The microstates al-
lowed by F-D statistics
for two particles re-
stricted to a m-space of
a quadruply degener-
ate energy level.
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Further, since (see Equation 12.8 and Figure 12.4)

is less than 1M-B 5 1/3 or 1B-E 5 2/3, there is a greater relative tendency
for fermions to be separated in different states than that allowed by either
M-B or B-E statistics.

12.3  Most probable Distribution

The method of the most probable distribution, which was detailed in chap-
ter 11, Section 11.4 for classical statistical mechanics will now be employed
to find a distribution law for the form ni 5 f(ei) that gives the most prob-
able occupation number for B-E and F-D statistics. The recipe for these
derivations is to fist take the appropriate thermodynamic probability Wk

for B-E or F-D statistics and find 1n Wk, using Stirling’s formula,

(11.33)

to evaluate logarithmic factorials. Second, the relation for 1n Wk is maxi-
mized by considering d 1n Wk = 0, which gives a relation of the form

(12.13)

after judicious application of the requirements dN 5 dgi 5 0. Since the
dni’s of this equation are not independent then, third, the Lagrange method
of undermined multipliers is employed to incorporate the conservation re-
quirement by adding

(12.14)

(12.15)

to Equation 12.13 to obtain
(12.16)
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Since undetermined multipliers a and b are independent of the occupation
numbers ni, this equation is in terms of effectively independent dni’s. Thus,
the coefficient in the brackets must vanish for every value in the sum and
we have the relation.

(12.17)

which can be solved algebraically for the most probable occupation num-
ber ni in terms of energy level ei. This three part recipe will now be em-
ployed to find the appropriate distribution laws for B-E and F-D statistics.

Bose-Einstein Distribution 

Before taking the logarithm of the Bose-Einstein thermodynamic proba-
bility, 

let us assume

gi .. 1,

so that the numerator and the denominator of WB-E simplifies and 

(12.18)

The logarithm of WB-E is easily obtained by considering

(12.19)

where Stirling’s formula has been used. Realizing that dgi 5 0, d ln WB-E is
immediately determined in the form

which obviously reduces to
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(12.20)

Introducing the Lagrange multipliers by way of the conservation require-
ments, as given by Equations 12.14 and 12.15, we obtain

It is interesting to note that this same result is obtained under the assumption
ni 1 gi .. 1, which reduces to only the numerator of WB-E (see Problems
12.3 and 12.4). Since the dni’s are independent in this expression, the coeffi-
cient in the brackets must vanish for each and every value in the sum. Thus,

which can be rearranged as

and solved for ni in the form

(12.21)

This result represents the Bose-Einstein distribution for the most probable
occupation number for a system consisting of bosons (see Table 12.2). 

In this derivation the conservation of  particles was explicitly as-
sumed, when Equation 12.14 involving the Lagrange multiplier a was
added to Equation 12.20. Such a requirement is not applicable to certain
bosons like photons and phonons. For example, the photons of  an ideal
photon gas enclosed in a container of volume V will be annihilated (ab-
sorbed) and created (emitted) by the container walls. For this particular
class of bosons, a is not introduced in the above derivation (i.e., particles
are not conserved), so the Bose-Einstein distribution (Equation 12.21) re-
duces to

(12.22)

for the special case of  photon (or phonon) statistics. The undetermined
multiplier b in this equation, as well as in Equation 12.21, is related to the
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absolute temperature of the system and, as before, is given by b 5 1/kBT.
The derivation of  this identity, however, is postponed to Section 12.4,
where it will be demonstrated to be the same for B-E and F-D statistics.

Fermi-Dirac Distribution

An expression for the most probable occupation number for Fermi-Dirac
statistics is easily obtained from the expression for WF-D

given by Equation 12.12. In this case there is no need for any assumption
(recall that gi .. 1 was assumed for B-E statistics) before evaluating the
logarithm of WF-D. Using the properties of the logarithm and Stirling’s
formula, we immediately obtain

(12.23)

from which

(12.24)

It should be noted that these last two equations are rather similar to the
corresponding ones obtained for B-E statistics (i.e., Equations 12.19 and
12.20, respectively). Now, however, adding the conservation requirements
with Lagrange multipliers (Equations 12.14 and 12.15) to the expression
for d ln WF-D gives

from which we obtain

(12.25)

This equation represents the Fermi-Dirac distribution, which gives the most
probable occupation number for a system containing fermions (see Table
12.2). It differs only slightly from the B-E distribution, in that the sign in
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Ch. 12.. Quantum Statistical Mechanics527

the denominator is positive instead of negative. One of the most important
applications of this distribution law is in the description of the free con-
duction electrons of a metal, which will be addressed in some detail in Sec-
tion 12.7.

Classical Limit of Quantum Distributions

The form of the Maxwell-Boltzmann distribution given by Equation 11.45
lends itself  to a comparison with the Bose-Einstein and Fermi-Dirac dis-
tributions. The three distributions,

(11.45)

(12.21) 

(12.25)

can all be represented by the generalized equation

(12.26)

where d 5 0, 21, 11 corresponds to the M-B, B-E, and F-D distributions,
respectively. In writing this general expression, the parameter a was re-
placed by 2bm that is, 

a 5 2bm, (12.27)

because of a comparison of the classical distribution,

(11.65)

with the Maxwell-Boltzmann distribution (see also Section 12.4). Since
the classical distribution (indistinguishable particles) is derivable from the
Maxwell-Boltzmann distribution (distinguishable particles) or vice versa,
then the distribution given by Equation 12.26 is perfectly general for clas-

,5n
e e

g
i

i

ia be

,5
2

n
e e

g

1
i

i

a bei

,5
1

n
e e

g

1
i

i

a bei

i

,

,

,

,

5

5
1

5 2

5 1

M B

B E

F D

d

n
e d

g
d

d

0

1

1

( )2
i

i

"

"

"

-

-

-

b e m

,5n g e ( )2
i i

ib m e
C

Maxwell-Boltzmann

Bose-Einstein

Fermi-Dirac

Generalized
Distribution

Classical
Distribution

Evaluation Copy 

Not Licensed for 

Instructional Use 



sical and quantum statistical mechanics. Further, if  the system of interest
contains a fixed number of particles N, the quantity m (or a) is in principle
always determined by the conservation of particles condition 

(12.28)

where the sum extends over all energy levels of the system.
From the generalized form of Equation 12.26, it is obvious that B-E

and F-D statistics (d 5 21, 11) tend toward M-B statistics (d 5 0) under
the condition

(12.29)

which will be referred to as the classical limit. Alternatively, the condition
for the classical limit may be expressed in terms of the occupation index
(see Equation 12.2) as

(12.30)

since for ni /gi ,, 1 the relation given by Equation 12.29 is necessarily re-
quired by both Equations 12.26 and 12.28. Thus, the classical limit corre-
sponds to a small number of particles for the available quantum states,
which is in total agreement with the discussion and example of Section
12.1.

Another interesting interpretation of the classical limit is directly ob-
tainable from Equation 12.29 for bosons that do not obey the conservation
of particles requirement. This case corresponds to photon or phonon sta-
tistics, where a 5 0 and, consequently, m 5 0 from Equation 12.27. Ac-
cordingly, the classical limit expressed by Equation 12.29 becomes

(12.31)

which is clearly valid at energies ei that are large compared to kBT. To be
more specific, consider a photon gas in the visible portion of the electro-
magnetic spectrum, where the wavelength of  photons (see Table 6.1) is
roughly on the order of 5 3 1027 m. With the energy of the photon given
by
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and b evaluated as

the classical limit expressed by Equation 12.31 becomes

(12.32)

This result for photon statistics is certainly valid at low and indeterminate
temperatures. From this example it should be rather obvious that at low
temperatures Equation 12.31 is easily satisfied for photons ranging from
gamma to infrared radiation.

Additional insight on the essential features of the statistical distribu-
tion is obtainable from the occupation index. For example, at all tempera-
tures when ei 5 m the occupation index (Equation 12.2) can be obtained
from Equation 12.26 as

(12.33)

while sufficiently low temperatures (in the limit as T 5 0 K) we have results

(12.34)
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Thus, for ei in B-E statistics, the occupation index f(e) becomes infinite,
while it is zero for energy levels greater than m (ei . m) and meaningless
for energy levels smaller than m (ei , m). Consequently, bosons tend to
concentrate in energy levels ei that are only slightly greater than m. Fermi-
ons, on the other hand, tend to populate levels that are equal to and less
than m, with the lower energy levels being fully populated with one particle
for every allowed gi quantum state. The nature of the F-D distribution is
more fully discussed in Section 12.7, where the free electron theory of met-
als is considered.

12.4 Identification of the Lagrange Multipliers

Before the B-E and F-D distribution laws are applied to different quantum
mechanical problems, it is convenient to evaluate the Lagrange multiplier
b in quantum statistics and show in general that it is related to the unde-
termined multiplier a by Equation 12.27. The identification of b is easily
obtained by considering arguments similar to those presented in Chapter
11, Section 11.5, where b was found to be the inverse of the product of
the Boltzmann constant kB and the absolute temperature T. This same re-
sult will be obtained in quantum statistical mechanics for both B-E and
F-D statistics by evaluating, as before,

(12.36)

for both cases and comparing the results with the combined first and sec-
ond laws of thermodynamics. Since the derivational method and the result
are not new, this section provides a slight respite from our fundamental
considerations of quantum statistical mechanics. Many of the basic rela-
tions of quantum statistics will be reiterated in our evaluation of b, and
some interesting results of entropy S and differential entropy dS will be
noted for B-E and F-D statistics.

From the above overview of the derivational requirements, the eval-
uation of  Equation 12.36 immediately requires a determination of
d 1n W for both B-E and F-D statistics, where the respective thermody-
namic probabilities are given by

(12.18)

(12.12)
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Differentiating the logarithm of these expressions (see Equations 12.19
and 12.23), 

(12.37)

(12.38)

gives results that are essentially identical to the previously derived Equa-
tions 12.20 and 12.24, respectively. That is, from Equation 12.20 we ob-
tain

(12.39)

whereas Equation 12.24 gives

(12.40)

which are also obvious from Equations 12.37 and 12.38 by realizing that
dgi 5 0 and d ln (gi /ni) 5 2d ln (ni /gi). These two equations can be further
reduced by employing, respectively, the B-E and F-D distribution laws,

(12.41)

in the form

(12.42)

Thus, the argument of the logarithm in Equation 12.39 is identical to that
in Equation 12.40, and the two equations can be expressed as

(12.43)
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upon substitution from Equation 12.42. Using the conservation of parti-
cles and energy requirements in the form

(see discussion of Equations 11.41 and 11.42) allows Equation 12.43 to
be expressed as

(12.44)

This result is perfectly general and valid for both B-E and F-D statistics,
hence the inclusion of B-E and F-D subscripts on W is unnecessary. With
this determination of d lnW in quantum statistics, substitution in Equa-
tion 12.36 immediately yields

(12.45)

for the differential entropy. A comparison of  this result with Equation
11.59 shows that differential entropy has a common term of kBb dU in
classical and quantum statistical mechanics. Further, although the relation
for differential entropy dS is common in B-E and F-D statistics, the en-
tropy S is not the same in both cases, because lnW differs for each case
(see Equations 12.37 and 12.38).

Having obtained an expression for the differential entropy in quan-
tum statistics, we rewrite the result in the form

(12.46)

which is nicely amenable to a term-by-term comparison with the combined
first and second laws of thermodynamics,

(11.61)

Taking the partial derivative of internal energy U with respect to entropy
S at constant V and N, these two equations give
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from which we obtain the identity of b in quantum statistics as

(12.47)

Hence, the Lagrange multiplier b has an identical form in both classical
(see Equation 11.63) and quantum statistical mechanics. It is also rather
interesting to note that from Equations 12.46 and 11.61 a comparison of 
the coefficients of dN gives the general relation 

(12.27)

that was previously assumed in writing Equation 12.26.

12.5  Specific heat of a Solid

Over a century ago the molal specific heat of a solid was experimentally
observed by P. L. Dulong and A. L. Petit to be very nearly the same for
all solids, approximately 6 cal/mole ? K. More specifically, the amount of
heat energy required to raise the temperature of one mole of a substance
by 18 C at a constant volume, called the molal specific thermal capacity cv
(see Equations 11.146 and 11.151), is essentially independent of the chem-
ical composition of  a solid. This result was easily understood from the
ideas of classical statistical mechanics for the equipartition of energy (see
Equation 11.158). Regarding each atom of a solid as executing simple har-
monic motion about its lattice point, then each atom in a one-dimensional
solid could be represented by a linear harmonic oscillator. In this case the
total energy of an oscillator consists of two quadratic terms, owning to
its kinetic (px

2 /2m) and elastic potential ( kx2) energies (recall Equation
7.39), resulting in the linear oscillator having two degrees of freedom.
Hence, the average energy per oscillator is given by Equation 11.143 as

(12.48)
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since Nf 5 2. In three dimensions each atom of a solid may be represented
by three harmonic oscillators, so the average energy per atom is simply
e·a 5 3e·o. Thus, the total internal energy U for a system of N particles is

(12.49)

where the fundamental relations given by Equations 11.108 and 5.69 have
been used. From this result, the molal specific internal energy (recall Equa-
tion 11.152) is

u 5 3RT, (12.50)

and the molal specific thermal capacity (recall Equation 11.150) is given
by

(12.51)

This result for a classical solid, which we originally derived in Problem
11.30, is known as the law of Dulong and Petit. It is rather closely obeyed
by solids at high temperatures. As temperatures are lowered toward room
temperature, however, serious discrepancies are observed especially for the
less massive elements (e.g., (cv)Be 5 3.85 cal/mole ? K for berylium and (cv)B

5 3.34 cal/mole ? K for boron). At lower temperatures, observed specific
heats of  all solids depart even more dramatically from the Dulong and
Petit law, which suggests that classical analysis is fundamentally in error.

Einstein Theory (M-B Statistics)

At the turn of the century, it was well recognized experimentally that the
specific heat of any solid (a) tends to obey the Dulong and Petit law at a
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Linear Oscillator
Eigenvalues

high temperature, (b) tends toward zero as the temperature decreases, and
(c) varies as T 3 near absolute zero. It was Einstein in 1907 who first rec-
ognized that the basic error in the classical analysis resulted from the
equipartition factor of kBT (Equation 12.48) for the average energy per
oscillator in a solid. This factor had to be replaced by one that properly
accounts for the energy quantization of a linear harmonic oscillator, as the
energy spectrum is not continuous but, rather, discrete in multiples of
quantized energy hv. More specifically, the quantum mechanical energy
eigenvalues for a linear harmonic oscillator are given by (recall Equation
10.84 with E replaced by e)

en 5 (n 1 )hv, (12.52)

where v is the fundamental frequency of oscillation and n 5 0, 1, 2, ???, `.
With this fundamental correction to the classical analysis, we need to first
find the average energy per oscillator e·o, from which the total internal en-
ergy U and molal specific thermal capacity cv are readily obtainable by ar-
guments similar to those above (i.e., Equations 12.49 to 12.51).
Accordingly, the average energy per oscillator is given by

where the Boltzmann distribution (11.47) and the defining equation for
the classical partition function Z (Equation 11.48) have been used. The
summations in Equation 11.53 are over all energy levels, which are defined
for the quantized linear oscillator by Equation 12.52. Since there is, obvi-
ously, no degeneracy in the energy levels, gi 5 1 in the above equation.
Further, we need to replace the i-subscript with an n-subscript to particu-
larize Equation 12.53 for the quantized oscillator problem. Thus, Equation
12.53 becomes
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where Equation 12.52 has been utilized in the expansion of the first equal-
ity. The summations in the second term of the Equation 12.54 can be eval-
uated by expansion. For example, expanding the denominator we have

(12.55)

The geometric series in parenthesis is well known and can be obtained
from the binomial expansion,

(12.56)

given in Appendix A, Section A.7. That is, with x 5 1, y 5 2z, and n 5
21, the binomial expansion gives (see Problem A.7)

(12.57)

Thus, Equation 12.55 can be represented in the reduced form

(12.58)

In a similar manner the summation in the numerator of the second term
of Equation 12.54 can be expressed as
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(12.59)

where the geometric series in the second equality is of the form

(12.60)

Now, substitution of Equations 12.58 and 12.59 into Equation 12.54 im-
mediately yields

which can be reduced to the form

(12.61)

This equation represents the average energy of a quantized linear harmonic
oscillator. Since b 5 1/kBT, only the second term is temperature depend-
ent. Consequently, the first term gives the ground-state energy of the os-
cillator, called the zero-point energy, while the second term gives the energy
of thermal excitation. Further, with the Einstein characteristic temperature,
represented by uE.(recall the illustrative considerations of Chapter 11, Sec-
tion 11.5), being that temperature at which kBT 5 hv, then

(12.62)

and we can express Equation 12.61 as

(12.63)

In this form, we can see that e·o depends on the ratio of the characteristic
temperature to the actual temperature. Since the greater the natural fre-
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quency v of the assembly of oscillators the higher the characteristic tem-
perature, uE provides a reference temperature for the assembly. For exam-
ple, if the natural frequency is in the infrared region of the electromagnetic
spectrum (see Table 6.1) with say l = 144 3 1025 m, then

Thus, an actual temperature of T 5 100 K is equivalent to uE/10, while a
temperature of T 5 5000 K is equal to 5uE.

With e·o being the average energy per linear oscillator, then the total
internal energy U for a three-dimensional solid consisting of N atoms is

(12.64)

Thus, the molal specific internal energy of the solid is

(12.65)

and its molal specific thermal capacity is

(12.66)

With NokB 5 R and hv/kB 5 uE, this equation reduces to

(12.67)
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Ch. 12  Quantum Statistical Mechanics539

which is known as the Einstein specific heat formula. It is also interesting
to note that the zero-point energy hv does not contribute to cv, since it is
independent of  temperature and vanishes when the partial derivative
(−u/−T)v is performed. Also of importance is that Einstein’s formula im-
mediately reduces to the Dulong and Petit law at high temperatures and
trends toward zero at low temperatures. That is, at high temperatures,
T .. uE and

(12.68)

so Equation 12.67 reduces to

(12.69)

Thus, for T .. uE the exponential goes to one and the law of Dulong and
Petit is obtained. On the other hand, as T approaches zero so does cv, since
uE .. T, euE/T .. 1, and Equation 12.67 reduces to

(12.70)

It is rather interesting to note that virtually all of the oscillators are found
in the four lowest energy levels, when the condition uE $ T is valid. This
is illustrated in Problems 12.9 and 12.10 by evaluating the fractional num-
ber of oscillators in the ith level ni /N for the cases uE 5 T and uE 5 2T, re-
spectively. Although Einstein’s model of a solid is in good agreement with
observed cv data over a wide range of temperatures, (see Figure 12.5) its
inability to predict cv ~ T 3 near absolute zero requires that we search fur-
ther for a complete theoretical explanation for the specific heats of solids.
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Debye Theory (Phonon Statistics)

The principle deficiency of  the Einstein theory lies in considering the
atoms of a solid as oscillating independently at the same fundamental fre-
quency. Although efforts to rectify this deficiency were made by Max
Born, Theodor von Karman, and others, it was not until 1912 that a sat-
isfactory theory was proposed by Peter Debye. He considered the atoms
of a solid to represent a system of coupled oscillators having a continuous
range of frequencies. Although the statistics of noninteracting or free par-
ticles is inappropriate for such a model, Debye further assumed a solid to
be a continuous elastic body. This assumption allows that the frequencies
of thermal excitation of the atoms of a solid are equivalent to the frequen-
cies of the possible standing acoustic (or elastic) waves of an elastic solid.
Thus, the N atoms of  a solid, modeled as a three-dimensional array of
particles connected by springs, are replaced by 3N elastic modes of vibra-
tion. By analogy with the vibrating string analysis presented in Chapter
8, Section 8.2, we immediately realize that in the Debye model the elastic
modes of  vibration are independent and noninteracting. Furthermore,
each vibrating mode in a three-dimensional model would be characterized
by a unique set of nx, ny, and nz numbers, whereas for the vibrating string
only nx (see Equation 8.23) was required. Hence, the Debye model allows
for the distinguishability of the vibration modes, so Maxwell-Boltzmann
statistics is applicable.

Instead of using M-B statistics to develop the Debye theory of the
specific heats of solids, we will employ B-E statistics by considering each
elastic wave to be a particle called a phonon. A phonon is simply defined as
a quanta of vibrational energy in a solid. Phonons are rather similar to
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Ch. 12  Quantum Statistical Mechanics541

photons in that they are indistinguishable entities having quantized energy
given by the equation

e 5 hv, (12.71)

where h is Planck’s constant. Unlike photons, which travel at the speed of
light, phonons propagate through a solid with the speed of sound obeying
the wave equation

vs 5 lv. (12.72)

Further, phonons obey the de Broglie relation (see Equation 8.53)

(12.73)

Hence, we propose replacing the assembly of elastic waves in the Debye
model with an ideal phonon gas, where the allowable wave frequencies and
energies are given by the above relations. Since phonons are indistinguish-
able particles they do not obey the Pauli exclusion principle, they are clas-
sified as bosons and obey the Bose-Einstein statistics or, more specifically,
photon/phonon statistics (see Equation 12.22).

Before the specific heat of a solid can be determined, we need to first
find the total internal energy U of the ideal gas. Even though particles are
not conserved in a phonon gas, energy is conserved. From this most fun-
damental conservation principle, then, we have

(12.74)

where Equation 12.22 has been used for the phonon distribution law. For
a continuous distribution of  frequencies in the solid, this equation be-
comes

(12.75)

where Equation 12.71 has been used and vm represents a maximum or
cutoff frequency that limits the internal energy to a finite value. The de-
generacy g(v) represents the number of states having the same frequency
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(or energy since e 5 hv) in m-space for the ideal phonon gas. Accordingly,
we can use arguments similar to those that led to Equation 11.95 and write

(11.95)

which from the de Broglie’s relation (Equation 12.73) becomes

(12.76)

This equation can be interpreted as the maximum possible number of
states (vibration modes) having a frequency between v and v 1 dv. The
constant factor in parenthesis can be expressed in terms of the cutoff  fre-
quency vm by properly normalizing Equation 12.76. That is, for a solid
consisting of N atoms, we assume there to be 3N vibration modes or
phonons with allowed frequencies varying from zero to vm. Hence, the
total number of phonon states is limited to

(12.77)

from which we obtain

(12.78)

It should be mentioned that for any direction of propagation in an elastic
solid there are three types of elastic waves. These correspond to a longitu-
dinal wave propagating with a speed of vl and two mutually perpendicular
transverse waves propagating with a speed of vt. Accordingly, we have 

(12.79)

and the right-hand side of this relation is normally substituted in Equa-
tions 12.76 to 12.78 for 1/vs

3. Interestingly, however, from Equations 12.78
and 12.76 we obtain
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(12.80)

and substitution into Equation 12.75 gives

(12.81)

Letting the integration variable be the dimensionless quantity

(12.82)

from which

(12.83)

and

(12.84)

the total energy can be expressed in a more compact form as 

(12.85)

where N/b 5 kBNT 5 (R/No)NT 5 nRT has been used in obtaining the
second equality.

The specific heat of a solid for the Debye model is now easily deter-
mined from the total internal energy relation given by Equation 12.85.
First, however, defining the Debye characteristic temperature uD by 

(12.86)

from which 

(12.87)
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Equation 12.85 becomes

(12.88)

for the total internal energy. Dividing this equation by the number of moles
n and taking the partial derivative with respect to temperature yields

(12.89)

for the molal specific thermal capacity. This relation is known as the Debye
specific heat formula and can be compared (as illustrated in Figure 12.5)
with the Einstein formula given by Equation 12.67. As Problems 12.13 to
12.16 illustrate, the Debye temperature is independent of  specific heat
measurements and can be obtained directly from the elastic properties of
a solid. Using such theoretically determined values in Debye’s formula
yields cv values that are generally in good to excellent agreement with ex-
perimental observations at all values of the absolute temperature T.

We can immediately see that this formula is in agreement with the
Dulong and Petit law at high temperatures and that cv is proportional to
T 3 at very low temperatures. That is, at high temperatures (T .. uD) the
integral of Equation 12.89 becomes

(12.90)

and the second term reduces to

(12.91)

where an approximation similar to that of Equation 12.68 has been used
in both cases. Hence, Equation 12.89 reduces to
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Ch. 12  Quantum Statistical Mechanics545

(12.92)

On the other hand, at very low temperatures uD .. T and uD /T → `.
Consequently, the second term of Equation 12.89 becomes insignificant
and the first term contains the definite integral

(12.93)

so Equation 12.89 reduces to

(12.94)

This relation is frequently referred to as the Debye T 3 law. Although the
Debye theory is remarkably good in predicting observed cv values, it is
somewhat limited and not universally applicable to all solids because the
actual frequency spectrum of elastic waves depends on the particular crys-
talline structure of a solid. Further, it considers only the contributions to
specific heat from atomic vibrations of individual atoms that are assumed
to occupy the crystal lattice points and must be modified for molecular
solids. Also, there are contributions to the specific heat from free conduc-
tion electrons in a solid, which will be addressed for metals in Section 12.7.

12.6  Blackbody radiation (photon Statistics)

Before the development of quantum statistics, it was well known that the
electromagnetic radiation absorbed and emitted by every substance was
dependent on the nature and absolute temperature of the substance. By
considering this phenomenon, Max Planck formulated his revolutionary
quantum hypothesis (see Equation 6.50) by developing a theoretical expla-
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nation for the spectral emission of electromagnetic radiation from an ideal
emitter. It should be mentioned that the spectral energy distribution from
an ideal emitter is experimentally found to be independent of its material
composition and dependent only on its absolute temperature. Such an
emitter is commonly referred to as an ideal blackbody, because a good
emitter is a good absorber of radiation and, at nonluminous temperatures,
any body that absorbs all radiation incident upon it appears black in color.
An ideal blackbody, or simply a blackbody, can be closely approximated
in any heat resisting material. Since virtually all of the radiation entering
the opening is reflected within the cavity and eventually absorbed, the ra-
diator is an ideal absorber. Further, if  the enclosure is at a uniform tem-
perature, the radiation in thermal equilibrium with its surroundings has
the property of emitting radiation at the same rate as it absorbs energy
and is, hence, an ideal emitter. Our primary objective is to apply the meth-
ods of statistics to such a radiator and obtain the well known Planck for-
mula for observed blackbody radiation, which is graphically illustrated in
Figure 12.6.

The first theoretical attempts at explaining the spectral energy distri-
bution of a blackbody was made by Lord J. W. S. Rayleigh and later mod-
ified by Sir James H. Jeans. Their classical formulation of  the problem
combined kinetic theory and the classical theory of electromagnetic radi-
ation, by considering the radiation in a blackbody cavity as a series of
standing electromagnetic waves. We can easily obtain an expression of
their formula by considering the electromagnetic waves as classical oscil-
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Ch. 12  Quantum Statistical Mechanics547

lators and calculating the radiant energy per unit volume within the black-
body enclosure. With U representing the total energy of the electromag-
netic radiation confined to a cavity of volume V, the total radiant energy
density is defined by

(12.95)

where bold type has been used here so as not to confuse energy density
with the molal specific internal energy. Since the total radiant energy
within the cavity remains constant, this relation may be expressed as

(12.96)

for quanta of electromagnetic energy. Considering the cavity to contain a
large number of waves of all possible frequencies from zero to infinity, then
in the limit of  a continuous distribution of  frequency Equation 12.96
becomes

(12.97)

From this relation we can immediately write down an expression for the
spectral energy density as (see also Equation 11.119)

(12.98)

which is the radiation energy per unit volume having frequencies between
v and v 1 dv. In this relation, n(v) dv is the number of waves having a fre-
quency between v and v 1 dv. Let us assume that n(v) dv is identical to the
available number of states with frequencies between v and v 1 dv, where
the latter is given by the arguments that led to Equation 11.95. Accord-
ingly, assuming all possible energy states to be occupied, we have

(12.99)

which when compared with de Broglie’s relation p 5 h/l and the wave
equation c 5 lv yields
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(12.100)

The multiplicative factor of  2 in Equation 12.99 takes into account the
two possible polarization directions associated with transverse electromag-
netic waves. Incidentally, this corrective factor is attributed to Jeans in his
modification of Rayleigh’s original radiation formula. Now, if  we combine
Equation 12.100 with Equation 12.98 and take the classical value of kBT
(see Equation 12.48) as the energy e associated with each quanta of elec-
tromagnetic energy, then the energy distribution is given by

(12.101)

This equation is known as the Rayleigh-Jeans formula for blackbody ra-
diation and is illustrated graphically in Figure 12.6. It agrees reasonable
well with experimental data at low frequencies, but it is absurdly in error
at predicting the radiant energy density at high frequencies. In fact, for
frequencies in the ultraviolet region of the electromagnetic spectrum, the
total energy density (see Equation 12.97) goes to infinity. This critical flaw
in the classical theory became known as the ultraviolet catastrophe. 

The correct formula for the spectral energy density in a blackbody
cavity was advanced by Max Planck in 1900. His formula can be easily
derived by considering the electromagnetic waves to be represented by par-
ticles, called photons, of  an assembly. Since photons are indistinguishable
particles that do not obey the Pauli exclusion principle, they are classified
as bosons and Bose-Einstein statistics is applicable to the assembly. More
specifically, we are considering the electromagnetic radiation in the cavity
to be an ideal photon gas that obeys the photon distribution given by Equa-
tion 12.22,

(12.22)

which for a continuous distribution of frequencies becomes

(12.102)

The problem of applying this distribution law is very similar to that en-
countered for the ideal phonon gas of the Debye theory. Here, however,
g(v) dv is given by the arguments that led to Equation 12.100 (recall that

( ) ( ) .5n v dv g v dv
c

V
v dv

8
3

2
"

p

( ) .5 5u ud v dv
c

k Tv dv
8

Bv
3

2p

,5
2

n
e

g

1
i

i

ibe

.( )
( )

5 5
2

dn n v dv
e

g v dv

1
v be

12.6  Blackbody Radiation (Photon Statistics) 548

Rayleigh-Jeans
Formula

Evaluation Copy 

Not Licensed for 

Instructional Use 



Ch. 12  Quantum Statistical Mechanics549

the multiplicative factor of 2 accounts for the two allowed states associated
with polarization) and the energy e of a photon is given by e 5 hv 5hc/l
Hence, for the radiation in a cavity of volume V at the absolute tempera-
ture T, we have (from Equations 12.100 and 12.102) the relation 

(12.103)

representing the number of  photons having frequencies between v and
v 1 dv. Substitution of this equation and e 5 hv into the spectral energy
density relation (Equation 12.98) immediately yields the well known
Planck radiation formula,

(12.104)

which very nicely predicts observed spectral emission data (see Figure
12.6).

The Planck radiation formula can be seen to immediately reduce the
Rayleigh-Jeans formula at low frequencies for which hv ,, kBT, since

(12.105)

At high temperatures for which hv .. kBT, however, 

(12.106)

and Equation 12.104 reduces to

(12.107)

This relation is called the Wien formula for blackbody radiation and is il-
lustrated graphically in Figure 12.6. It was originally advanced as an em-
pirical relation by Wilhelm Wien, shortly after the development of  the
Rayleigh-Jeans formula, to predict the spectral emission at high frequen-
cies. Incidentally, Planck’s formula was originally empirically developed
to agree with the Wien formula at high frequencies and the Rayleigh-Jeans
formula at low frequencies. Planck’s efforts at deriving the equation from
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fundamental physical principles necessitated his advancing the quantum
hypothesis of atomic oscillators. 

Another interesting result can be obtained by integrating the Planck
radiation formula over the allowed frequency range. Clearly, from Equa-
tion 12.98 the total energy density is given by

(12.108)

which upon substitution from Equation 12.104 gives

(12.109)

Using the dimensionless variable defined by Equation 12.82 (i.e., x 5 bhv),
this equation takes the form 

(12.110)

where Equation 12.93 has been used to evaluate the definite integral. Using
the symbolic definition

(12.111)

we obtain the well known Stefan-Boltzmann law

(12.112)

Thus, the total energy density is dependent on only the absolute tempera-
ture raised to the fourth power. Incidentally, when Equation 12.111 is used
to calculate s, the value obtained agrees perfectly with that determined
experimentally.
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12.7  Free electron theory of Metals
(F-D Statistics)

As a last consideration illustrating the methods of statistical mechanics,
we will apply Fermi-Dirac statistics to the free electrons in a metal. We al-
ready know from Chapter 9, Section 9.7 that conduction electrons are the
liberated outer valence electrons associated with the atoms of  a metal.
Since they are assumed to be, essentially, noninteracting with each other
and the positively charged ion cores, conduction electrons move freely
throughout a metal behaving like an ideal electron gas. Further since free
electrons obey the Pauli exclusion principle, they are characterized as
fermions and the assembly obeys the Fermi-Dirac statistics of noninter-
acting particles. 

The quantum mechanics of a free electron gas has already been de-
tailed in Chapter 10, Section 10.7, where the relation for the density of
electronic states was derived (see Equation 10.150). It is interesting to note
that the density of states introduced in quantum mechanics (Equation
9.89) and defined by (replacing E with e)

(12.113)

is equivalent to our interpretation of degeneracy g(e) in statistical mechan-
ics. This is perhaps more evident from the interpretation of dN(e) as the
number of quantum states available to electrons having energies between
e and e 1 de. Hence, from this qualitative interpretation and the above
equation 

(12.114)

and the general equivalence between D(e) and g(e) is obvious. To see this
equivalence quantitatively, for the free electron gas, we can use the argu-
ments that led to Equation 11.95 and write

(12.115)

for the degeneracy of quantum states in terms of momentum. The multi-
plicative factor 2 in this relation takes into account the two spin states
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(ms 5 2 , 1 ) allowed for free electrons. This relation can be expressed
in terms of energy by using the classical (nonrelativistic) free particle en-
ergy relations

(11.111)

(11.112)

with the result

Multiplying and dividing this result by 2p2 yields

(12.116)

which should be compared with the density of electronic states given by
Equation 10.150. Clearly, statistical mechanics offers an alternative and
perhaps simpler method for the derivation of the density of states allowed
quantum mechanically for conduction electrons. Of course, with this re-
lation and the fundamentals of statistical mechanics, it is relatively easy
to obtain expressions for the energy distribution, internal energy, and spe-
cific heat of conduction electrons.

Fermi Energy

Before derivations for energy and specific heat are attempted, however, re-
call that in the Debye theory a maximum or cutoff frequency was required
to limit the internal energy of the phonon gas to a finite value. For the same
reason, we assume the free electron gas to be in a ground state or minimum
energy configuration. This means that in a metal of N atoms contributing
N conduction electrons, the available quantum states will be populated by
one electron each, because of the Pauli exclusion principle, from the lowest
energy state e 5 0 to the highest state, say e 5 eF. It is customary to refer
to the energy of the topmost filled quantum state as the Fermi energy and
denote it symbolically as eF. The Fermi energy for the assembly in its
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ground state can be determined by the same reasoning employed in the
Debye theory for vm. That is, we normalize the available quantum states
g(e) of Equation 12.116 to the number of conduction electrons N by eval-
uating the integral relation

(12.117)

Substitution from Equation 12.116 for g(e) de immediately yields

(12.118)

from which we obtain

(12.119)

or in simpler form

(12.120)

The first equation for eF
23/2 is given because a comparison of it with Equa-

tion 12.116 immediately allows g(e) de to be expressed as

(12.121)

while the second equation for eF in reduced form is more amenable to com-
putational problems.

The expression for the Fermi energy (Equation 12.120) can be ex-
pressed in terms of more fundamental quantities by recognizing that the
electron density, defined by 

(12.122)
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can be represented as

(12.123)

where the definitions for mass density, 

(5.33)

and the number of moles, 

(5.76)

have been employed. Hence, a more amenable form of Fermi energy rela-
tion for computational purposes is given by

(12.124)

For example, potassium has a ground state electron configuration given by
(see Chapter 7, Section 7.7)

so each atom contributes a single 4s electron to the electron gas. With mass
density r and molal atomic mass } (using the chemical atomic weight in-
stead of the relative atomic mass) given by rK 5 0.86 g/cm3, }K 5 39.1
g/mole, Equation 12.123 gives the electron density as 
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Ch. 12  Quantum Statistical Mechanics555

and the Fermi energy is obtained from Equation 12.124 as

Thus, in the ground state energy configuration, conduction electrons in
potassium would have energies from zero up to 2.02 eV. Electrons at the
Fermi energy are said to have a classical Fermi velocity defined by

(12.125)

and a Fermi temperature defined by

(12.126)

The Fermi temperature corresponds to the approximate temperature of a
metal described by classical theory at which the electron would have an
energy eF. A more complete discussion and example of this point is pre-
sented following Equation 12.135.

There is another very interesting point concerning the Fermi energy
and its interpretation with the Fermi-Dirac distribution,

(12.26)

Recall that the occupation index for this distribution at absolute zero was
given by (see Equations 12.34 and 12.35)

(12.127)

,1.32 105 3
m

electrons28

3

( )

( . )

( . )
( . / )

( . ) ( . / )

( . ) ( . / )

3.23 10 2.02 .

5

5
3

3
3

5 3 3

5 3 3

5 3 5

?

?

?

kg

J s
m

J m m

J m m

J eV

m2
3

2 9 11 10

1 05 10
3 1 32 10

6 05 10 3 90 10

6 05 10 5 34 10

/

/

/

2

2

2

2

2

F

2
2 2 3

31

34 2

2 28 3 2 3

39 2 29 3 2 3

39 2 19 2

19

&
e p h

p6 @

v ;
m

2 /

F

F

e

1 2ec m

.;T
k

F

F

B

e

i

.5
1

n
e

g

1( )2
i

i

b e m

( ) 1, ,

0, ,

5 ,

5 .

f e e m

e m

Fermi Velocity

Fermi Temperature

Evaluation Copy 

Not Licensed for 

Instructional Use 



which means that electrons will tend to populate all energy states that are
less than μ up to and including those that are equal to m. Consequently,
from our definition of the Fermi energy, we set

m 5 eF. (12.128)

For a continuous distribution of electron energies, the occupation index
is now expressed by 

(12.129)

and illustrated graphically in Figure 12.7 for T 5 0 K and T . 0 K. From
this interpretation of  m and eF, the most interesting observation is that
even at absolute zero conduction electrons have energies from zero up to
the Fermi energy eF. This is decidedly a nonclassical behavior, since par-
ticles in a classical ideal gas would have zero energy (recall e 5 (3/2)kBT
from Equation 11.102) at a temperature of absolute zero. 
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Electronic Energy and Specific Heat Formulae

It is now straightforward to obtain an expression for the total internal en-
ergy of the free electron gas. Assuming a continuous distribution of elec-
tron energies, the Fermi-Dirac distribution law of Equation 12.129 gives

(12.130)

which upon substitution from Equation 12.116 for g(e) de becomes

(12.131)

In terms of the Fermi energy eF, the number of electrons having energies
between e and e 1 de is given by Equations 12.121 and 12.130 as

(12.132)

Thus, for the assembly of free conduction electrons the total internal en-
ergy is given by the integral expression

(12.133)

The integral of  this expression cannot be evaluated in closed form but
must be expressed as an infinite series.

Although the reduction of  Equation 12.133 requires mathematics
that is beyond the scope of this textbook, we can evaluate U at absolute
zero. That is, assuming the assembly to be in the ground state with the
highest energy state being eF, then T 5 0 K the integral expression for U
reduces to 

(12.134)
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from which the average energy per electron becomes

(12.135)

This result is considerably different than that predicted by the classical
theory for a monatomic ideal gas,

(11.102)

since at T 5 0 K the average particle energy is zero. According to the clas-
sical theory of  Maxwell-Boltzmann statistics, a sample of  potassium
would have to be at a temperature (see previous example for eF value)

(12.136)

for its electrons to be at the same average energy as that predicted by
Fermi-Dirac statistics (Equation 12.135) at 0 K.

A more detailed evaluation of Equation 12.133 gives

(12.137)

for the total internal energy, which obviously reduces to Equation 12.134
at T 5 0 K. With this relation for U, it is straightforward to determine the
electronic specific heat. That is, the thermal capacity at a constant volume
is given by
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Ch. 12  Quantum Statistical Mechanics559

(12.138)

from which the electronic molal specific thermal capacity becomes (note
that NkB 5 nR)

(12.139)

Usually, only the first term in this expression is retained, as the second and
higher order terms in T are rather small compared to one. For example,
in the case of potassium at T 5 500 K, we have the second term in the
brackets of Equation 12.139 given by 1.35 3 1023. Thus, at relatively low
temperatures, the molal specific thermal capacity of the free electrons in a
metal is given by

(12.140)

Since the coefficient of R is quite small for metals over a broad range of
temperatures (e.g., for potassium at 300 K, cv 2 e 5 6.32 3 1022 R), the
electronic specific heat cv2 e does not appreciably contribute to the specific
heat of metals. The lattice specific heat cv given by Equation 12.89, dom-
inates cv 2 e at all but very low temperatures, where cv ~ T 3and cv 2 e ~ T. 

It is also interesting to note that the result for cv2 e given by Equation
12.140 is essentially consistent with allowing only electrons within about
kBT of the Fermi energy (see Figure 12.7) to absorb energy as a solid is
heated. The effective number of electrons in this region is approximately
given by

(12.141)

which from Equation 12.121 becomes

(12.142)
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Assuming each of these electrons with kBT of eF to acquire (3/2) kBT of en-
ergy, the total electronic contribution to the internal energy of the metal is

(12.143)

which becomes 

(12.144)

Thus, the electronic molal specific thermal capacity is

(12.145)

which is only slightly different from the more exact result given by Equa-
tion 12.140. In either case, however, it should be clear that the electrons
contribution to the specific heat of a solid is essentially negligible. 

review of Fundamental and Derived equations

A listing of the fundamental and derived equations of this chapter is pre-
sented below. The derivations and applications of statistical mechanics are
presented in a logical listing that parallels their development in each sec-
tion of the chapter.

FUNDaMeNtaL eQUatIONS—CLaSSICaL phYSICS

                          Free Particle Kinetic Energy

                                          Average Particle Energy
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                                               Free Particle Average Energy

                                                       Mass Density

                                                        Total Energy Density

                                                       Particle Density

                                                      Number of Moles

                                  Ideal Gas Equation of State

                     1st & 2nd Laws of Thermodynamics

FUNDaMeNtaL eQUatIONS—StatIStICaL MeChaNICS
Discrete Distribution of Particle Energies

                                                Conservation of Particles

                                              Conservation of Energy

                                          Total Energy Density

                                                 Thermodynamic Probability

                                               Entropy in Statistical Mechanics

                                      M-B Thermodynamic Probability

                          B-E Thermodynamic Probability

                             F-D Thermodynamic Probability

      Distribution Laws

                             Lagrange Multipliers

                                                  Occupation Index
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Continuous Distribution of Particle Energies—Generalized Equations

                Distribution of Particles

                          Distribution of Energy States

                    Conservation of Particles

                   Conservation of Energy

                              Spectral Energy Density

                                          Total Energy Density

DerIVeD eQUatIONS
Most Probable Distribution

                      Stirling’s Formula

                       

Bose-Einstein Distribution

                       

Fermi-Dirac Distribution

                                                   Classical Limit

                                              Classical Limit

Identification of Lagrange Multipliers

                                

Differential Entropy
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                   Lagrange Multipliers

Specific Heat of a Solid—Classical Theory

                                          Average Energy of Linear Oscillator
            Internal Energy for N-Atoms
                                            Law of Dulong and Petit

Specific Heat of a Solid—Einstein Theory (M-B Statistics)

                                Linear Oscillator Eigenvalues

                        Average Energy—Quantized Oscillator

                              Einstein’s Characteristic Temperature

         Molal Specific Internal Energy

                       Einstein’s Specific Heat Formula

Specific Heat of a Solid—Debye Theory (Phonon Statistics)

                                              Phonon/Photon Energy Quantization
                                             Phonon Speed

                                     Phonon Momentum

                                   Phonon Speed—Elastic Waves

                            Normalization of Phonon States

                        Debye Characteristic Temperature
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                            High Temperature Limit

                Low Temperature Limit

Blackbody Radiation (Photon Statistics)

                    

Spectral Energy Density

                         Planck Radiation Formula

                         Rayleigh-Jeans Formula

                      Wien Formula

                            Stefan-Boltzmann Law

Free Electron Theory of Metals (F-D Statistics)

             

Degeneracy/Density of States

                                     Normalization of Quantum States

                            

Fermi Energy
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                             Fermi Velocity

                                     Fermi Temperatures

   Distribution of Electron Energies

   Electronic Internal Energy

          Internal Energy—Low Temperatures

              

Effective Internal Energy

                        Effective Molal Specific Thermal Capacity

12.1 Consider a system of N 5 4 particles in a m-space consisting of one
energy level e1 having degeneracy g1 5 6. Calculate the thermodynamic
probability for the one allowed macrostate for M-B, B-E, and F-D statistics
and determine the value for N of Equation 12.8 for each case.

Solution:
With N 5 4, g1 5 6, and n1 5 4, the M-B, B-E, and F-D thermody-
namic probabilities are given by
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Since there are only g1 5 6 ways of placing all the particles in one
quantum state for M-B and B-E statistics (recall that the Pauli exclu-
sion principle is not applicable in these cases), then from the above
results and Equation 12.8 we obtain

Of course, for F-D statistics we have

12.2 Consider a system of N 5 3 particles in a m-space consisting of two
energy levels having degeneracies given by g1 5 2, g2 5 4. Determine the
number of microstates associated with each allowed macrostate for M-B,
B-E, and F-D statistics.

Answer:     8, 48, 96, 64; 4, 12, 20, 20; 4, 12

12.3 Assuming ni 1 gi .. 1, derive an expression for the logarithm of
the Bose-Einstein thermodynamic probability

Solution:
Assuming ni 1 gi .. 1, the B-E thermodynamic probability of Equa-
tion 12.10 reduces to

from which 1n WB-E is easily determined using Stirling’s approxima-
tion, that is, 
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This result should be compared with that given by Equation 12.19.

12.4 Using the result of Problem 12.3, derive an expression for d lnWB-E

Answer:     

12.5 Starting with Equation 12.36 and using Equations 12.13 and 12.16,
show that for any statistics b 5 1/kBT and a 5 2bm.

Solution:
Since the method of the most probable distribution results in a rela-
tion of the form (Equation 12.13)

then Equation 12.36,

can be expressed as

But, from Equation 12.16,

we obtain

and the differential entropy becomes

A comparison of this result with the combined first and second laws
of thermodynamics in the form

immediately yields
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12.6 Using Maxwell-Boltzmann statistics, expand the partition function
Zo for the quantized linear harmonic oscillator and simplify it using the
geometric series of Equation 12.57.

Answer:     

12.7 Derive the equation for the average energy of an quantized linear
harmonic oscillator, using the result of  Problem 12.6 and the equality
e·o 5 2− ln Zo/−b

Solution:
With the expression of the partition function for the quantized linear
harmonic oscillator given by

the average oscillator energy is determined by

12.8 Using the Boltzmann distribution and the partition function Zo of
Problem 12.6, derive a relation for the fractional number of quantized os-
cillators in the ith energy level, ni /N, in terms of the Einstein characteristic
temperature uE.

Answer:     

12.9 Using the result for Problem 12.8, determine ni /N for the quantized
linear oscillator for the four lowest energy levels when uE 5 T.

Solution:
With the fractional number of oscillators in the ith level expressed by 
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then for uE we have

Consequently, ni/N for the four lowest energy levels (n 5 0, 1, 2, 3) is

Thus, about 63 percent of the oscillators are in the lowest energy level
when uE 5 T.

12.10 Allowing uE 5 2T, evaluate ni/N for the quantized linear oscillator
for the four lowest energy levels

Answer:     0.8647, 0.1170, 0.0158, 0.0021

12.11 Consider each atom of a solid to be represented by three quantized
linear harmonic oscillators, and derive an expression for the entropy SM-B

of the solid in terms of the Einstein characteristic temperature.

Solution:
For Maxwell-Boltzmann statistics the entropy is given by Equation 11.75,

Expressing the internal energy by

and using

the expression for entropy becomes

It should be noted that we have used
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suggests that

Now, with e· given by Equation 12.61,

and in 1n Zo given by (see result of Problem 12.6)

the expression for entropy becomes

In terms of  the Einstein characteristic temperature this expression
becomes

12.12 What does the entropy for Einstein oscillators (see Problem
12.11) approach at high temperatures (T .. uE) and at low tempera-
tures (T ,, uE)?

Answer:     

12.13 Express the maximum frequency vm and characteristic temperatures
uD of the Debye theory in terms of the mass density r of a solid.

Solution:
From the Debye theory of the specific heat of a solid the cutoff  fre-
quency is obtainable from Equation 12.78 in the form

where N/V represents the atomic density (number of atoms per unit vol-
ume). From the definitions of mass density and number of moles (see de-
velopment of Equation 12.123), the atomic density can be expressed as
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with which vm becomes

and the Debye temperature defined by Equation 12.86 becomes

12.14 Using Equation 12.79 for vs and the results of Problem 12.13, cal-
culate vm and uD for aluminum, where v1 5 6420 m/s, vt 5 3040 m/s, rA1 5
2.70 3 103 kg/m3, and }A1 5 26.98 g/mole. Note that specific heat meas-
urements of aluminum give uD 5 398 K.

Answer:     vm 5 8.32 3 1012 s21, uD 5 400 K

12.15 Calculate vs, vm and uD for silver, using vt 5 3650 m/s, vt5 1610
m/s, rAg 5 10.5 3 103 kg/m3, and } 5 107.87 g/mole. How does the cal-
culated value of uD compare with the value obtained from specific heat
measurements of uD 5 215 K?

Solution:
Using the values of vt 5 3650 m/s and vt 5 1610 m/s, the speed of
sound in silver is given by (see Equation 12.79)

With the above values for vs, rAg, and }Ag, the maximum frequency
vm can be calculated using (see Problem 12.13)
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Hence, dropping units we obtain

and the Debye characteristic temperature is given by

This calculated value compares favorably with the experimentally de-
termined value of uD 5 215 K, being in error by only about 2 percent.

12.16 At 10 K the measured specific thermal capacity of copper is 0.860
J/kg ? K, find uD using the low temperature approximation given by Equa-
tion 12.94 and }Cu 5 63.55 g/mole.

Answer:     uD 5 329 K

12.17 Calculate vs and vm for copper, using vl 5 4560 m/s, vt 5 2250 m/s,
rCu 5 8.96 g/cm3, and }Cu 5 63.55 g/mole. Compare the calculated value
of vm with that predicted by experiment from Problem 12.16

Solution:
With the data given and Equation 12.79 we have

and from Problem 12.13 we have
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This value of  vm obtained from measurements of the velocity of
sound can be compared with that obtained from specific heat meas-
urements by using the value of uD obtained in Problem 12.16. That
is, with (uD)SH 5 329 K, then from Equation 12.86 we have 

The value obtained using velocity of sound data differs from that ob-
tained from specific heat measurements by only

12.18 Find the density of photon states in the energy interval between e
and e 1 de for blackbody radiation.

Answer:     

12.19 Express the spectral energy density for blackbody radiation in terms
of wavelength.

Solution:
To express the Planck radiation formula,

in terms of wavelength l rather than frequency v, note that

Further, since an increase in wavelength corresponds to a decrease in
frequency,

then direct substitution of the above three relations in the equation
for u(v) dv gives

12.20 Using the result of Problem 12.19, find the value of the wavelength
for which the spectral energy density is a maximum. That is, consider
du(l)/dl 5 0 and solve for l ; lmax to obtain an expression of the form
lmax T 5 CONSTANT, which is known as the Wien displacement law.

Answer:     lmax T5 2.8977 3 1023 m ? K
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12.21 Consider a boson gas of N particles confined to a volume V. Show
that the Lagrange multiplier a is an increasing function of temperature T,
by normalizing the system.

Solution:
The normalization condition in statistical mechanics is given by (see
Equation 11.116 and Problem 11.18)

where for a boson gas the Bose-Einstein distribution (Equation 12.21) gives

for a continuous distribution of energy. The degeneracy of quantum
states can be obtained by using the arguments that led to Equation 11.95,

This expression for degeneracy can be transformed in terms of energy
by using (see discussion following Equation 12.115)

to obtain

Now, substitution of dne and g(e) de into the normalization integral gives

Letting the variable of the integral be the quantity

we obtain

This equation implicitly defines a as a function of T. Since N is finite,
as T increases the integral must correspondingly decrease, which
means that a must increase. Further, the integral must always con-
verge for N to be finite, so a can never be a negative quantity.
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12.22 Find the lowest possible temperature T0 of the boson gas of Prob-
lem 12.21 that is consistent with Bose-Einstein statistics. Express T0 in
terms of the particle density h ; N/V and the Einstein energy-mass rela-
tion e 5 mc2.

Answer:     T0 5 (2.42 3 10228 JKm2) h2/3e21

12.23 Consider a fermion gas of N spin- particles confined to a volume
V. Show that the Lagrange multiplier a is an increasing function of tem-
perature T.

Solution:
This problem is similar to that of  Problem 12.21, except now the
Fermi-Dirac distribution (Equation 12.25)

must be used for a continuous distribution of energy. The degeneracy
g(e) de must be multiplied by a factor of two in this case for spin-
fermions (see Equation 12.115), so we have

by analogy with Problem 12.21. Thus, the normalization condition is

where x 5 be → dx 5 bde was used in obtaining the final expression.
That a is an increasing function of  T follows by the arguments of
Problem 12.21.

12.24 Derive an equation for the Fermi energy of conduction electrons
in terms of the electron density h, and find eF for sodium using the data
from Appendix B.

Answer:     

12.25   Find the Fermi energy, velocity, and temperature for electrons in
copper using the data of Appendix B.
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Solution:
With rCu 5 8.96 g/cm3, }Cu 5 63.546 g/mole, and

29Cu: 1s22s22p63s23p64s23d104p1,

Equation 12.123 gives the electron density as

from which the Fermi energy is given by Equation 12.124 as

Now, from Equation 12.125 we obtain

for the Fermi velocity, and from Equation 12.126 we have

for the Fermi temperature.

12.26 Find the Fermi energy and temperature for electrons in silver, using
the data of Appendix B. Consider the effective mass of an electron in silver
to be 0.99me. 
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Answer:   eF 5 5.50 eV, TF 5 6.38 3 104 K

12.27 The effective mass of an electron in zinc is 0.85me. Find the Fermi
energy, the average energy per electron at absolute zero, and the temperature
necessary for an ideal gas molecule (classical theory) to have energy eF.

Solution:
With the ground state electronic configuration of zinc given by

30Zn: 1s22s22p63s23p64s23d104p2,

we consider there to be two 4p electrons liberated as conduction elec-
trons. Thus, with rZn 5 7.13 g/cm3 and }Zn 5 65.38 g/mole from Ap-
pendix B, the electron density (see Equation 12.123 multiplied by two) is

Taking the effective mass into account, Equation 12.124 for the Fermi
energy becomes

Using this value for the Fermi energy, the average energy per electron
is given by (see Equation 12.135)

For a classical ideal gas molecule to have this same energy, the gas
would have to be at a temperature of (also see Equation 12.136)
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12.28 Find the Fermi energy and electronic specific heat of aluminum at
258 C. Consider all M-shell electrons in an aluminum atom to contribute
to the conduction electrons and take the electron effective mass to be
0.97me.

Answer:     eF 5 11.9 eV, cv2e 5 (1.06 3 1022) R

12.29   In a semiconductor the Fermi energy is in the energy gap eg between
the valence and conduction bands. Assuming e 2 eF 5 eg, eg 5 1 eV and
T 5 258 C, show that the Fermi-Dirac distribution for conduction elec-
trons reduces to the Maxwell-Boltzmann distribution.

Solution:
With e 5 0 being the lowest energy state in the conduction band, the
Fermi-Dirac distribution of Equation 12.129 becomes

Since the exponential e19.5 5 2.94 3 108 is much greater than 1, the
result using the Fermi-Dirac distribution reduces to that predicted
by the Maxwell-Boltzmann distribution of Equation 11.45,

with a replaced by 2beF.

12.30 Compute the occupation index for conduction electrons in germa-
nium, assuming eF 5 eg , e 5 eg , eg 5 0.7 eV, and T = 258 C.

Answer:     f(e) 5 1.24 3 1026

1
}2

F

2

.

( )
( )

( )

( )

( )

( )

( )

5
1

5
1

5
1

5
1

5
1

<

n
e

g

e

g

e

g

e

g

e

g

e

g

1

1

1

1

1.

.

( )

/

(0.5 )/(1.38 10 / )(298 )

(0.5 )/(2.57 10 )

2

3

3

eV J K K

eV eV

k T

19 5

19 5

2

2

Bg

23

2

e
e

e

e

e

e

e

b e e

e
1

,( )
( )

5n
e e

g
e

e
a be

1
}2

Problems 578

Evaluation Copy 

Not Licensed for 

Instructional Use 



The mathematical symbols and formulas presented here are all that is re-
quired for a successful study of this textbook. Some of the formulas will
not be explicitly utilized in this text, but are presented for completeness in
the mathematics review of algebra, trigonometry, and introductory calcu-
lus. The theme throughout this mathematical review is for commonly used
formulas to be initially presented and discussed, with other infrequently
used mathematical relationships being derived from knowledge of these
basic identities. 

A.1  Mathematical Symbols

;   defined by
5   equal to
Þ   not equal to
<   approximately equal to
~    proportional to
.   greater than
.. much greater than
,   less than
,, much less than
$   greater than or equal to
#   less than or equal to
→  implying, yielding, approaching
D    change in
`    infinity

A.2  exponential Operations

The quantity xn is referred to as an algebraic exponential, where n is the
exponent and the base x has been raised to the nth power. The most trivial
exponential involves any base x raised to the zeroth power, as given by

1.;x0

A-1
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Appendix A  Basic MathematicsA-2

Arithmetic and algebraic operations involving expontials are most easily ac-
complished by employing one or more of the basic principles defined below.

Multiplication of exponential numbers is generalized by the formula

where a number x raised to the nth power is multipled by the same number
or base raised to the mth power by simply adding the exponents. The ex-
ponentials are additive for the multiplication of numbers having the same
base, but there is no way of simplifying an expression like

since the bases are different. If  the expression contained dissimilar bases
but identical exponents, then the rule is

Further, an exponential number can also be raised to the mth power, ac-
cording to the rule

where nm represents an implied product of the exponents.
Changing the sign of the exponent on an exponential number in the

numerator of an expression allows it to be represented in the denominator
or vice versa, as given by the rule.

or

Negative exponents are primarily used to indicate division, since by com-
bining this definition with the multiplication principle the rule for division
of exponents is obviously given by

Another commonly used property of exponential numbers employs
fractional exponents to indicate roots. By definition

which means that x to the fractional exponent of 1/n is equal to the nth
root of x.

,5x x x 1n m n m

,5x y x yn m n m

( ) .5x y xyn n n

( ) ,5x xn m nm

5x
x

12n

n

.5
x

x
1
2n

n

.5
x

x
x 2

m

n
n m

,5x x/n n1
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A.3  Logarithmic Operations

For an exponential equation of the form

y 5 ax,

the value of the exponent is obtained by taking the logarithm to the base
a of y, as given by

x 5 log a y.

This equation represents a common logarithm for a 5 10 and natural log-
arithm for a 5 e, where e 5 2.71828. Normally the subscript is omitted
by adopting the convention

x 5 log y

to represent a common logarithm (log) and

x9 5 ln y

to mean the natural logarithm (ln), where of course

ln e 5 1,      log 10 5 1

and ln 1 5 log 1 5 0.

Since logarithms are exponents, exponential properties are also prop-
erties of logarithms. There are essentially three basic principles, which are
stated in general below, with the base of the logarithm being deleted.

1. The logarithm of the product of two numbers equals the sum of
their logarithms,

log xy 5 log x 1 log y.

2. The logarithm of the ratio (quotient) of two numbers is equal to
the difference of the logarithm of the numerator and the logarithm
of the denominator,

3. The logarithm of an exponential number equals the product of the
exponent and the logarithm of the base,

From this last property it should be obvious that the logarithm of the nth root of
a number is just equal to the ratio of the logarithm of the number to n, as given by

.5 2log log log
y

x
x y

.5log logx n xn

.5log
log

x
n

x
/n1
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Appendix A  Basic MathematicsA-4

Frequently it is desirable to effect a change in base of a logarithm,
such that, for example, a common logarithm can be expressed as its equiv-
alent natural logarithm or vice versa. It is rather straightforward to derive
a general equation to see how a change in base can be effected. Taking the
logarithm to the base b of the equation y 5 ax gives

logb y 5 logb ax

5 x logb a,

where the exponential principle above has been utilized. Since x 5 loga y,
direct substitution gives

logb y 5 loga y logb a,

which can be rewritten in the form

This general equation can be employed in a change of base from b to a
for any values of b and a. Consequently, in terms of the common and nat-
ural logarithms and the convention adopted above, the base conversion
formula yields

where (ln 10)21 5 0.43429, and

where (log e)21 5 2.3026.

A.4  Scientific notation and Useful Metric prefixes

Although the rules governing the algebra of exponents apply to any base,
the decimal system in general and the metric systems of units in particular
place major emphasis on powers of ten. The important metric prefixes,
their abbreviations, and their equivalence expressed in scientific notation
as powers of ten are listed below, with the most commonly used prefixes
indicated in bold type.

         PREFIX         ABBREVIATION         VALUE
           tera                              T                         1012

           giga                              G                         109

.5log
log

log
y

a

y
a

b

b

,5log
ln

ln
y

y

10

,5ln
log

log
y

e

y

Base Conversion
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                 mega                      M                        106

                 kilo                          k                         103

                 hecto                       h                         102

                 deka                       da                        101

                 deci                         d                        1021

                 centi                        c                         1022

                 milli                        m                        1023

                 micro                      m                        1026

                 nano                       n                        1029

                 pico                         p                        10212

The primary advantage of knowing the metric prefixes is the ease with
which such knowledge allows for the conversion of units from one metric
system to the other. For example the number of centimeters in a meter is
easily found, since the prefix centi can be replaced with its equivalence
1022 (i.e., cm 5 1022 m). From that relation it follows that 1 m 5 cm/1022

5 1012 cm. Another way of utilizing a metric prefix is to realize that a pre-
fix divided by its power of ten equivalence defines 1 exactly. Thus, for ex-
ample, 1 m 5 (milli/1023)m 5 103 mm, and we realize there are one
thousand (103) millimeters in a meter. Since the metric prefixes are so com-
monly used in science and engineering, the table of prefixes given above is
reproduced on the inside cover of this textbook for ease of reference.

A.5  Quadratic equations

Frequently, physical equations representing fundamental laws of nature
are linear, since the physical variables (unknowns) are raised only to the
first power. Occasionally, there is the need to solve a more complex equa-
tion known as a quadratic equation, where the physical variable is raised
to the second power as well as to the first power. The general quadratic
formula, expressed by

ax2 1 bx 1 c 5 0,
has solutions given by

From the form of the solution equation, it is obvious that in general two
solutions are obtainable for a quadratic equation. If b2 . 4ac, the solutions
are real; whereas, if  b2 , 4ac, the solutions are complex or imaginary. For
the special case where b2 5 4ac, the two solutions coincide.

.5
2 6 2

x
a

b b ac

2

42
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Appendix A  Basic MathematicsA-6

A.6  Trigonometry

The use of the sine, cosine, and tangent functions of a variable are often
essential in the formulation of a physical problem. These functions can be
defined for acute angles in terms of the sides of a right triangle. Consider
the right triangle given below, where side c is the

hypotenuse and sides a and b are the legs. In terms of the sides of this right
triangle the well known Pythagorean theorem is given by

c2 5 a2 1 b2.

Since for any triangle the sum of the interior angles always equals 1808(p),

a 1 b 1 g 5 p,

then for g 5 908,

The interior angles a and b are called complementary angles, since their sum
is equal to 908 (p/2). The sine, cosine, and tangent functions of these comple-
mentary angles are related to the sides of the right triangle by the relations

Defining the common trigonometric functions with respect to a right
triangle is advantageous as several other basic relationships are immedi-
ately suggested. For example, the sine of any angle u is known to be equal
to the cosine of the complement of u or vice versa, as given by 

sin u 5 cos (908 2 u)

or cos u 5 sin (908 2 u),

.1 5
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a b
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which is suggested above by sin a 5 cos b and cos a 5 sin b. Also, it is
obvious from the above relations that tan a 5 sin a/cos a and tan b 5
sin b/cos b. These observations suggest

is valid in general for any angle u. Further, the familiar identity

sin2 u 1 cos2 u 5 1

is easily verified for angles a and b for our right triangle. That is,

where the Pythagorean theorem has been utilized in obtaining the last equality.
In addition to the above trigonometric formulas involving the sine,

cosine, and tangent functions, there are two (actually four) other very use-
ful formulas that are well worth remembering. They are called addition
formulas and in terms of any two angles a and b are given by

Since tan (a 6 b) 5 sin (a 6 b)/cos (a 6 b), them a direct derivation using
the above addition formulas immediately yields

Likewise, the following trigonometric identities are easily derived by em-
ploying the addition formulas and the previously given basic relationships
between the sine, cosine, and tangent functions:

,
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Normally, knowledge of the basic relationships between sine, cosine,
and tangent functions along with the sine and cosine addition formulas
are more than adequate for the formulation of physical problems. Occa-
sionally, the less common functions of cotangent (cot), secant (sec), and
cosecant (csc) are utilized but are easily handled by employing the relations

With these relationships and the basic identities for the common functions,
it is easy to verify that

and

In addition to the basic relationships given above, there are two funda-
mental identities that are very useful in finding unknown sides and angles of
any triangle. With respect to our right triangle, the law of cosines is defined by

and the law of sines by

These identities are completely general for any triangle having sides a, b,
and c and interior angles a, b, and g. Since g 5 908 in our triangle, the
law of cosines immediately yields the equation representing the
Pythagorean theorem, as cos 908 5 0. Further, a general interpretation is
applicable for the equation representing the law of cosines, as the unknown
side c is given in terms of the two known sides (a and b) and the interior
angle g between the known sides. Consequently, we could also represent
the law of cosines by

or

,

,
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In general physics the addition of  two vectors (velocities, acceleration,
forces, etc.) is one important application of the laws of sines and cosines.

A.7  Algebraic Series

Sometimes in a theoretical derivation of a physical problem it is necessary
to represent a function or expression by a converging series. The binomial
expansion is most common and can be defined in general by the equation

where

and is called a factorial as defined in general by

m! ; 1 ? 2 ? 3 ??? m

for m a positive integer. The Taylor series, represented by

and the MacLaurin series

are also very useful. In the above f 9 represents the first derivative of f and
f 99 is the second order derivative of f.

It is instructive to utilize the MacLaurin series and expand e jx, sin x,
and cos x to obtain

where
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Appendix A  Basic MathematicsA-10

Euler’s Relation

is the so-called imaginary unit for which

j 2 5 21.

Clearly, from the above expansions the complex exponential e jx is related
to the sine and cosine functions by the simple expression

e jx 5 cos x 1 j sin x,

which is known as Euler's relation. It can also be shown that

e2 jx 5 cos x 2 j sin x

from which it immediately follows that

and

It is most beneficial to verify these examples, as the mathematical tech-
niques involved will prove useful in many physical derivations.

A.8 Basic Calculus
Derivations of some very common mathematical functions along with for-
mulas illustrating some fundamental properties of the derivative are listed
below, where u and v are arbitrary functions of x [u 5 u(x), v5 v(x)], f is
a function of u [f 5 f(u)], and n is a constant.
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Knowledge of these common derivatives is completely adequate for the development
of other infrequently used derivatives, which are easily obtained by repetitive application
of one or more of the above identities. For example, with the notation D;d/dxrepre-
senting a first order differential operator, that operates on anything following it, we have

Likewise, the derivatives for cotangent, secant, and cosecant, given by

are directly obtained from basic trigonometric identities and the above common de-
rivatives. The point of this observation is that other identities involving derivatives need
not be memorized, as they can be easily derived from knowledge of the more basic
identities. As a last example of this derivational approach, consider the following:
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Our discussion of derivatives has been limited to total derivatives of
a function depending on only one variable. If  a function w depends on
more than one variable, say

w 5 w (x, y, z),

and the variables x, y, and z are differentiable functions of time t, then the
total derivative of w is given by the well known chain rule

This identity is normally condensed to the form

where the factors in parenthesis are called partial derivatives. That is, the
curly dees in the expression −w/−x is interpreted as the partial derivative of
w with respect to x, where y and z are understood to be held constant. The
total derivative defined above will prove useful in a number of physical ap-
plications throughout this textbook, beginning with Einsteinian relativity.

A few commonly used indefinate integrals are listed below, where u
and v are functions of x and n is a constant. Unless the limits of integration
are known, a constant of integration should be added to the right-hand
side of each identity.
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Integrals can be thought of as antiderivatives and are easily derived
by making use of the properties of derivatives. For example, the identity
for #sin x dx is easily obtained by imagining the function which upon dif-
ferentiation would yield sin x. Clearly, we can use the cosine function and
differentiate to obtain

Multiplying both sides of this equation by dx and integrating gives

which immediately yields

since #d (cos x) is of the form #du 5 u. Although this approach requires
some mathematical imagination at times, it is an easy way of obtaining
the more common integrals from a knowledge of derivatives. As another
example, consider taking the derivative of x n 1 1 to obtain 

Again, multiplying both sides of the equation by dx and integrating gives

where n 1 1 is a constant and is placed outside of the integral. Integrating
the left-hand side of this equation and simplifying gives the identity

The advantage of this operational approach in calculus is that very few
basic identities need to be remembered. However, an operational facility
with these identities and the ability to make derivations is required or must
be developed for physics and engineering.
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A.9  Vector Calculus

To continue this review of basic mathematics, a few definitions and identi-
ties pertaining to vectors and vector calculus will be presented. Consider
vectors A and B to be expressed in terms of their Cartesian components as

A 5 Axi 1 Ayj 1 Azk
and B 5 Bxi 1 Byj 1 Bzk,

where i, j, and k are the normal set of unit vectors that are parallel to the
X, Y, and Z axes, respectively. The scalar product (sometimes called the
dot, or inner product) of A and B is defined by

                                          A ? B ; AB cos u,

where A and B represent the absolute magnitude of vectors A and B, as
given by

and

Since the unit vectors have the properties

i ? i 5 j ? j 5 k ? k 5 1
and i ? j 5 j ? k 5 k ? i 5 0,

then the scalar product can also be expressed by

A ? B 5 AxBx 1 AyBy 1 AzBz .

From these definitions it should be obvious that the commutative law,

A ? B 5 B ? A,
and distributive law,

A ? (B 1 C) 5 A ? B 1 A ? C

are valid.
The vector product (sometimes called the cross or outer product) of

vectors A and B is defined by

A 3 B ; AB sin u n,

where n is a unit vector perpendicular to the plane of vectors A and B.
With the unit vectors having the properties

i 3 i 5 j 3 j 5 k 3 k 5 0,
i 3 j 5 k,      j 3 k 5 i,     k 3 i 5 j,
k 3 j 5 2i,     j 3 i 5 2k,     i 3 k 5 2j,

( )1 1;A A A A /
zx y

2 2 2 1 2

( ) .1 1;B B B B /
zx y

2 2 2 1 2
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the vector product of A and B becomes

A 3 B 5 (AyBz 2 AzBy) i 1 (AzBx 2 AxBz) j 1 (AxBy 2 AyBx) k.

Further, the properties

A 3 B 5 2B 3 A
and A 3 (A 3 B) 5 B 3 (A 3 B) 5 0

are immediate consequences of the definition.
Up to this point, the calculus review is consistent with an introduc-

tory treatment; however, an interesing and slightly more advanced obser-
vation is now possible with regards to the equation representing the total
derivative. That equation can now be represented as a scalar product, as
given by

The first vector on the right-hand side is called the gradient of w and nor-
mally denoted as

The inverted delta symbol = is normally considered to be an operator, as
defined by

which can be applied to any scalar function to produce a gradient vector.
The scalar and vector product of the del operator with a vector A defines
the divergence

and the curl

respectively. The scalar product of the del operator with itself  is just
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which is called the Laplacian operator. Although the vector operations
given above are used only occasionally in this textbook, the del and Lapla-
cian operators will be most useful in considering expressions in quantum
mechanics.

A.10  definite integrals

A few rather commonly used definite integrals are listed below for easy ref-
erence. These integrals will be most useful in the application of quantum
and statistical mechanics.
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A.1 Derive the identity

by using the addition formulas for the sine and cosine functions given in
section A.6.

Solution:

where we have multiplied numerator and denominator of the second
equality by 1/cos a and of the third equality by 1/cos b.

A.2 Derive the addition formula for the cot (a 6 b), by using the addition
formulas for the sine and cosine funtions.

Answer:      

A.3 Show that (a) sin (2a) 5 2sin a, (b) cos (2a) 5 cos a, (c) sin
(a 6 p/2) 5 6 cos a, and (d) cos (a 6 p/2) 5 7 sin a, by using the ap-
propriate sine and cosine addition formulas.

Solution:

,( )
1

6 5
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6
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a b
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( )

1

6 5
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( ) ( ) (0 ) 0 0

( ) ( ) (0 ) 0 0
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c c c

a a a a a

a a a a a

a
p

a
p p

a a

a
p

a
p

a
p

a

`
`

j
j

Problems A-17

problems

Evaluation Copy 

Not Licensed for 

Instructional Use 



A.4 By using the addition formulas for the sine, cosine, and tangent func-
tions, show that (a) sin 2a 5 2 sin a cos a, (b) cos 2a 5 1 2 2 sin2 a 5 2
cos2 a 2 1 , and (c) tan 2a 5 2 tan a/(1 2 tan2 a).

A.5 Consider a triangle of sides a, b, and c and interior angles a, b, and
g, where g . 908. Show how the law of cosines is expressed in terms of the
exterior angle u, where u 1 g 5 p.

Solution:
In this case the cos g can be expressed as

Consequently, the law of cosines becomes

c2 5 a2 1 b2 1 2ab cos u.

A.6 Express the quantity (1 2 z2)21/2 as a series using the Binomial expansion.

Answer:      

A.7 Using the Binomial expansion, find the first few terms in the series of (1 2z)21.

Solution:
By analogy with the Binomial expansion,

with x 5 1, y 5 2z, and n 5 21, we have

A.8 Find the series expansion for (1 2 z)22, using the Binomial expansion.

Answer:     (1 2 z)22 5 1 1 2z 1 3z2 1 4z3 1 ???

A.9 Expand ex using the general form of the MacLaurin series.

Solution:
With the MacLaurin series,
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!
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we immediately obtain

A.10 Derive the complex exponential representation of (a) sin a and (b)
cos a, by using Euler's relations for any angle a.

Answer:      

A.11 Using the results of  Problem A.10, verify the identity sin2 x 1
cos2 x 5 1.

Solution:
Direct substitution into the identity yields

A.12 Show that 2 sin a cos a 5 sin 2a, by direct substitution of the results
from Problem A.10.

A.13 What generalization results from the successive application of the
differential operator d/dx to the complex exponential e jx?

Solution:
Taking successive derivatives of e jx yields

which is easily generalized to the nth derivative as
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A.14 Derive the identity for the first order derivative of  sec u, where
u 5 u(x).

Answer:      

A.15 Derive the identity for d csc u/dx, where u 5 u(x).

Solution:
Using the notation D ; d/dx, we have

A.16 Derive the identity for d tan a/da.

Answer:     

A.17 Derive the identity # cos x dx 5 sin x by differentiating sin x.

Solution:
The first order derivative of sin x is

Multiplying both sides of this equation by dx and integrating yields

which reduces to

A.18 Derive the identity for # vdu by differentiating uv with respect to x.

Answer:      
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FUNDAMENTAL CONSTANTS

Quantity Symbol Value
Uncertainty

(ppm)

Permeability of Vacuum m0
4p 3 1027 N/A2

5 12.5663706144 3 1027N/A2

Speed of Light (vacuum) c 2.99792458(1.2) 3 108 m/s 0.004

Gravitational Constant G 6.6720(41) 3 10211 N ? m2/kg2 615

Avogradro Constant No (or NA) 6.022045(31) 3 1023 mole21 5.1

Gas Constant R 8.31441(26) J/mole ? K 31

Boltzmann Constant kB 5 R/No 1.380662(44) 3 10223 J/K 32

Rydberg Constant R` 1.097373177(83) 3 107 m21 0.075

Elementary Charge e 1.6021892(46) 3 10219 C 2.9

Planck Constant h 6.626176(36) 3 10234 J ? s 5.4

Reduced Planck Constant " ; h/2p 1.0545887(57) 3 10234 J ? s 5.4

Atomic Mass Unit u 1.6605655(86) 3 10227 kg 5.1

Electron Rest Mass me
9.109534(47) 3 10231 kg
5.4858026(21) 3 1024 u

5.1
0.38

Muon Rest Mass mm

1.883566(11) 3 10228 kg
0.11342920(26) u

5.6
2.3

Proton Rest Mass mp
1.6726485(86) 3 10227 kg
1.007276470(11) u

5.1
0.011

Neutron Rest Mass mn
1.6749543(86) 3 10227 kg
1.008665012(37) u

5.1
0.037

Ratio, Proton Mass to
Electron Mass

mp/me 1,836.15152(70) 0.38

Ratio, Muon Mass to
Electron Mass

mm/me 206.76865(47) 2.3

Specific Electron Charge e/me 1.7588047(49) 3 1011 C/kg 2.8

Data from CODATA Bulletin No. 11, ICSU CODATA Central Office, CODATA Secretariat: 51 Boulevard de Mont-
morency, 75016 Paris, France. Numbers in parenthesis are the standard deviation uncertainties in the last digits of the
quoted value, computed on the basis of internal consistency.
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METRIC PREFIXES

Prefix Abbreviation Value

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 1021

centi c 1022

milli m 1023

micro m 1026

nano n 1029

pico p 10212

Alpha A a Nu N n

Beta B b Xi J j

Gamma G g Omicron O o

Delta D d −* Pi P p

Epsilon E e Rho R r

Zeta Z z Sigma S s

Eta H h Tau T t

Theta U u q* Upsilon Y y

Iota I i Phi F f w*

Kappa K k Chi X x

Lambda L l Psi C c

Mu M m Omega V v

GREEK ALPHABET

MATHEMATICAL SYMBOLS
; defined by
5 equal to
Þ not equal to
< approximately equal to
~ proportional to
. greater than
.. much greater than
, less than
,, much less than
$ greater than or equal to
# less than or equal to
→ implying, yielding, approaching
D change in
` infinity
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COMMON DERIVATIVES
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COMMON DEFINITE INTEGRALS
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