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PREFACE

This book provides an introduction to modern physics for students who
have completed an academic year of general physics. As a continuation
of introductory general physics, it includes the subject arcas of classical
relativity (Chapter 1), Einstein’s special theory of relativity (Chapters
2—4), the old quantum theory (Chapters 5—7), an introduction to quan-
tum mechanics (Chapters 8 —10), and introductory classical and quantum
statistical mechanics (Chapters 11—12). In a two-term course, Chapters
1—7 may be covered in the first term and Chapters 8§—12 in the second.
For schools offering a one-term course in modern physics, many of the
topics in Chapters 1 —7 may have previously been covered; consequently,
the portions of this textbook to be covered might include parts of the old
quantum theory, all of quantum mechanics, and possibly some of the top-
ics in statistical mechanics.

It is important to recognize that mathematics is only a tool in the
development of physical theories and that the mathematical skills of stu-
dents at the sophomore level are often limited. Accordingly, algebra and
basic trigonometry are primarily used in Chapters 1—7, with elementary
calculus being introduced either as an alternative approach or when nec-
essary to preserve the integrity and rigor of the subject. The math review
provided in Appendix A is more than sufficient for a study of the entire
book. On occasions when higher mathematics is required, as with the so-
lution to a second-order partial differential equation in Chapter 8, the
mathematics is sufficiently detailed to allow understanding with only a
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knowledge of elementary calculus. Even quantum theory and statistical
mechanics are easily managed with this approach through the introduction
of operator algebra and with the occasional use of one of the five definite
integrals provided in Appendix A. This reduced mathematical emphasis
allows students to concentrate on the more important underlying physical
concepts and not be distracted or intimidated by unfamiliar mathematics.
A major objective of this book is to enhance student understanding
and appreciation of the fundamentals of physics by illustrating the neces-
sary physical and quantitative reasoning with fundamentals that is essential
for theoretical modeling of phenomena in science and engineering. The
majority of physics textbooks at both the introductory and the interme-
diate level concentrate on introducing the basic concepts, formulas, and
associated terminology of a broad spectrum of physics topics, leaving little
space for the development of mathematical logic and physical reasoning
from first principles. Certainly, students must first learn the fundamentals
of the subject before intricate, detailed logic and reasoning are possible.
But most intermediate and advanced books follow the lead of introduc-
tory textbooks and seldom elaborate in sufficient detail the development
of physical theories. Students are expected somehow to develop the nec-
essary physical and quantitative reasoning either on their own or from
classroom lectures. The result is that many students simply memorize phys-
ical formulas and stereotyped problems in their initial study of physics
and continue the practice in intermediate and advanced courses. Students
entering college are often accomplished at rote memorization but poorly
prepared in reasoning skills. They must learn how to reason and how to
employ logic with a set of fundamentals to obtain insights and results that
are not obvious or commonly recognized. Developing understanding and
reasoning is difficult in the qualitative nonscience courses and supremely
challenging in such highly quantitative courses as physics and engineering.
The objective is, however, most desirable in these areas, since memorized
equations and problems are rapidly forgotten by even the best students.
In this textbook, a deliberate and detailed approach has been em-
ployed. All of the topics presented are developed from first principles. In
fact, all but three equations are rigorously derived via physical reasoning be-
fore being applied to problems or used in the discussion of other topics.
Thus, the order of topics throughout the text is dictated by the require-
ment that fundamentals and physical derivations be carefully and judi-
ciously introduced. And there is a gradual increase in the complexity of
topics being considered to allow students to mature steadily in physical
and quantitative reasoning as they progress through the book. For example,
relativity is discussed early, since it depends on only a small number of
physical fundamentals from kinematics and dynamics of general classical
mechanics. Chapter 1 allows students to review pertinent fundamental
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equations of classical mechanics and to apply them to classical relativity
before they are employed in the development of Einstein’s special theory
of relativity in Chapters 2—4. This allows students time to develop the nec-
essary quantitative skills and gain an overview of relativity before consid-
ering the conceptually subtle points of Einsteinian relativity. This basic
approach, of reviewing the classical point of view before developing that
of modern physics, continues throughout the text, to allow students to
build upon what they already know an to develop strong connections be-
tween classical and modern physics. With this approach—where later sub-
ject areas are dependent on the fundamentals and results of earlier
sections—students are led to develop greater insights as they apply previ-
ously gained knowledge to new physical situations. They also see how con-
cepts of classical and modern physics are tied together, rather than secing
them as confused, isolated areas of interest.

This development of reasoning skills and fundamental understanding
better prepares students for all higher level courses. This book does not
therefore pretend to be a survey of all modern physics topics. The pace of
developing scientific understanding requires that some topics be omitted.
For example, since a rigorous development of nuclear physics requires rel-
ativistic quantum mechanics, only a few basic topics (e.g., the size of the
nucleus, nuclear binding energy, etc.) merit development within the peda-
gogic framework of the text. The goal of this book is to provide the back-
ground required for meaningful future studies and not to be a catalog of
modern physics topics. Thus, the traditional coverage of nuclear physics
has been displaced by the extremely useful subject of statistical mechanics.
The fundamentals of statistical mechanics are carefully developed and ap-
plied to numerous topics in solid state physics and engineering, topics
which themselves are so very important for many courses at the interme-
diate and advanced levels.

The following pedagogic features appear throughout this textbook:

1. Each chapter begins with an introductory overview of the direction and
objectives of the chapter.

2. Boldface type is used to emphasize important concepts, principles, pos-

tulates, equation titles. and new terminology when they are first intro-

duced; thereafter, they may be italicized to reemphasize their

importance.

Verbal definitions are set off by the use of italics.

4. Reference titles (and comments) for important equations appear in the
margin of the text.

5. Fundamental defining equations and important results from deriva-
tions are highlighted in color. Furthermore, a defining symbol is used
with fundamental defining equations in place of an equality sign.

98]
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. A'logical and comprehensive list of the fundamental and derived equa-

tions in each chapter appears in a review section. It will assist students
in the assimilation of fundamental equations (and associated reference
terminology) and test their quantitative reasoning ability.

. Formal solutions for the odd-numbered problems are provided at the

end of each chapter, and answers are given for the even-numbered prob-
lems. A student’s efficiency in assimilating fundamentals and develop-
ing quantitative reasoning is greatly enhanced by making solutions an
integral part of the text. The problems generally require students to be
deliberate, reflective, and straightforward in their logic with physical
fundamentals.

. Examples and applications of physical theories are limited in order not

to distract students from the primary aim of understanding the physical
reasoning, fundamentals, and objectives of each section or chapter.
Having solutions to problems at the end of a chapter reduces the num-
ber of examples required within the text, since many of the problems
complement the chapter sections with subtle concepts being further in-
vestigated and discussed.

. Endpapers provide a quick reference of frequently used quantities: the

Greek alphabet, metric prefixes, mathematical symbols, calculus iden-
tities, and physical constants.

Marshall L. Burns



CHAPTER |

Classical mechanics and Galilean relativity apply to everyday objects
traveling with relatively low speeds.

In experimental philosophy we are to look upon
propositions obtained by general induction from phe-
nomena as accurately or very nearly true ... till such
a time as other phenomena occur, by which they may
either be made accurate, or liable to exception.

SIR ISAAC NEWTON, Principia (1686)

Introduction

Before the turn of the twentieth century, classical physics was fully devel-
oped within the three major disciplines—mechanics, thermodynamics, and
electromagnetism. At that time the concepts, fundamental principles, and
theories of classical physics were generally in accord with common sense
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and highly developed in precise, sophisticated mathematical formalisms.
Alternative formulations to Newtonian mechanics were available through
Lagrangian dynamics, Hamilton’s formulation, and the Hamilton-Jacobi
theory, which were equivalent physical descriptions of nature but differed
mathematically and philosophically. By 1864 the theory of electromagnet-
ism was completely contained in a set of four partial differential equations.
Known as Maxwell’s equations, they embodied all of the laws of electric-
ity, magnetism, optics, and the propagation of electromagnetic radiation.
The applicability and degree of sophistication of theoretical physics by
the end of the nineteenth century was such that is was considered to be
practically a closed subject. In fact, during the early 1890s some physicists
purported that future accomplishments in physics would be limited to im-
proving the accuracy of physical measurements. But, by the turn of the
century, they realized classical physics was limited in its ability to accu-
rately and completely describe many physical phenomena.

For nearly 200 years after Newton’s contribution to classical mechan-
ics, the disciplines of physics enjoyed an almost flawless existence. But at
the turn of the twentieth century there was considerable turmoil in theo-
retical physics, instigated in 1900 by Max Planck’s theory for the quanti-
zation of atoms regarded as electromagnetic oscillators and in 1905 by
Albert Einstein’s publication of the special theory of relativity. The latter
work appeared in a paper entitled “On the Electrodynamics of Moving
Bodies,” in the German scholarly periodical, Annalen der Physik. This the-
ory shattered the Newtonian view of nature and brought about an intel-
lectual revelation concerning the concepts of space, time, matter, and
energy.

The major objective of the following three chapters is to develop an
understanding of Einsteinian relativity. It should be noted that the basic
concept of relativity, namely that the laws of physics assume the same form
in many different reference frames, is as old as the mechanics of Galileo
Galilei (1564-1642) and Isaac Newton (1642—1727). The immediate task,
however, is to review a few fundamental principles and defining equations
of classical mechanics, which will be utilized in the development of rela-
tivistic transformation equations. In particular, the classical transforma-
tion equations for space, time, velocity, and acceleration are developed for
two inertial reference frames, along with the appropriate frequency and
wavelength equations for the classical Doppler effect. By this review and
development of classical transformations, we will obtain an overview of
the fundamental principles of classical relativity, which we are going to
modify, in order that the relationship between the old theory and the new
one can be fully understood and appreciated.



1.1 Fundamental Units

|.I Fundamental Units

A philosophical approach to the study of natural phenomena might lead
one to the acceptance of a few basic concepts in terms of which all phys-
ical quantities can be expressed. The concepts of space, time, and matter
appear to be the most fundamental quantities in nature that allow for a
description of physical reality. Certainly, reflection dictates space and time
to be the more basic of the three, since they can exist independently of
matter in what would constitute an empty universe. In this sense our philo-
sophical and commonsense construction of the physical universe begins
with space and time as given primitive, indefinable concepts and allows
for the distribution of matter here and there in space and now and then in
time.

A classical scientific description of the basic quantities of nature de-
parts slightly from the philosophical view. Since space is regarded as three-
dimensional, a spatial quantity like volume can be expressed by a length
measurement cubed. Further, the existence of matter gives rise to gravita-
tional, electric, and magnetic fields in nature. These fundamental fields in
the universe are associated with the basic quantities of mass, electric
charge, and state of motion of charged matter, respectively, with the latter
being expressed in terms of length, time, and charge. Thus, the scientific
view suggests four basic or fundamental quantities in nature: length, mass,
time, and electric charge. It should be realized that an electrically charged
body has an associated electric field according to an observer at rest with
respect to the charged body. However, if relative motion exists between an
observer and the charged body, the observer will detect not only and elec-
tric field, but also a magnetic field associated with the charged body. As
the constituents of the universe are considered to be in a state of motion,
the fourth fundamental quantity in nature is commonly taken to be electric
current as opposed to electric charge.

The conventional scientific description of the physical universe, ac-
cording to classical physics, is in terms of the four fundamental quantities:
length, mass, time, and electric current. It should be noted that these four
fundamental or primitive concepts have been somewhat arbitrarily chosen,
as a matter of convenience. For example, all physical concepts of classical
mechanics can be expressed in terms of the first three basic quantities,
whereas electromagnetism requires the inclusion of the fourth. Certainly,
these four fundamental quantities are convenient choices for the disci-
plines of mechanics and electromagnetism; however, in thermodynamics
it proves convenient to define temperature as a fundamental or primitive
concept. The point is that the number of basic quantities selected to de-
scribe physical reality is arbitrary, to a certain extent, and can be increased
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or decreased for convenience in the description of physical concepts in dif-
ferent areas.

Just as important as the number of basic quantities used in describing
nature is the selection of a system of units. Previously, the systems most
commonly utilized by scientists and engineers included the MKS (meter-
kilogram-second), Gaussian or CGS (centimeter-gram-second), and British
engineering or FPS (foot-pound-second) systems. Fortunately, an interna-
tional system of units, called the Systéme internationale (SI), has been
adopted as the preferred system by scientists in most countries. It is based
upon the original MKS rationalized metric system and will probably be-
come universally adopted by scientists and engineers in all countries, even
those in the United States. For this reason it will be primarily utilized as
the system of units in this textbook, although other special units (e.g.,
Angstrom (A) for length and electron volt (eV) for energy) will be used in
some instances for emphasis and convenience. In addition to the funda-
mental units of length, mass, time, and electric current, the SI system in-
cludes units for temperature, amount of substance, and luminous intensity.
In the ST (MKS) system the basic units associated with these seven funda-
mental quantities are the meter (m), kilogram (kg), second (s), ampere (A),
kelvin (K), mole (mol), and candela (cd), respectively. The units associated
with every physical quantity in this textbook will be expressed as some
combination of these seven basic units, with frequent reference to their
equivalence in the CGS metric system. Since the CGS system is in reality
a sub-system of the SI, knowledge of the metric prefixes allows for the
easy conversion of physical units from one system to the other.

.2 Review of Classical Mechanics

Before developing the transformation equations of classical relativity, it
will prove prudent to review a few of the fundamental principles and defin-
ing equations of classical mechanics. In kinematics we are primarily con-
cerned with the motion and path of a particle represented as a
mathematical point. The motion of the particle is normally described by
the position of its representative point in space as a function of time, rel-
ative to some chosen reference frame or coordinate system. Using the usual
Cartesian coordinate system, the position of a particle at time 7 in three
dimensions is described by its displacement vector r,

r =xi+ yj+zk, (1.1
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relative to the origin of coordinates, as illustrated in Figure 1.1. Assuming
we know the spatial coordinates as a function of time,

x=x() y=y0 z=:z0), (1.2)
then the instantaneous translational velocity of the particle is defined by

dr

o (1.3)

v =

with fundamental units of m/s in the SI system of units. The three-dimen-
sional velocity vector can be expressed in terms of its rectangular compo-
nents as

v=ud+u,jtuk, (1.4)

where the components of velocity are defined by

= —— 1.5
V=N (1.5a)
dy
=<4 1.5b
dz
= 4z 1.5
v = (1.5¢)

Although these equations for the instantaneous translational components
of velocity will be utilized in Einsteinian relativity, the defining equations
for average translational velocity and its components, given by

v= irt : (1.6a)
b = i’; , (1.6b)
g, = ii , (1.6¢)
b = ij : (1.6d)

will be primarily used in the derivations of classical relativity. As is cus-
tomary, the Greek letter delta (A) in these equations is used to denote the



Ch. 1 Classical Transformations

change in a quantity. For example, Ax = x, — x; indicates the displacement
of the particle along the X-axis from its initial position x; to its final posi-
tion x,.

To continue with our review of kinematics, recall that the definition
of acceleration is the time rate of change of velocity. Thus, instantaneous
translational acceleration can be defined mathematically by the equation

_dv _ dr
A= —=—
dt  dr’
=adi+aj+ ak, (1.7)
having components given by
dv, _ d’x
o == == ) 1
a T (1.8a)
dv, d%
“= (1.8b)
_dv. g’z
= (1.8¢c)
Likewise, average translational acceleration is defined by
~_Av _ . .
a=—=gq/d+aj+ ak 1.9
A7 v (1.9)
with Cartesian components
_ _ Av, (1.10a)
a, = ) .
Al :
- Av,
a, = ;
" T A, (1.10b)
_ _Auv.
a. = Ar (1.10¢)

The basic units of acceleration in the SI system are m/s*, which should be
obvious from the second equality in Equation 1.7.

The kinematical representation of the motion and path of a system
of particles is normally described by the position of the system’s center of
mass point as a function of time, as defined by

1
f M5 i ( )
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In this equation the Greek letter sigma (2) denotes a sum over the i-par-
ticles, m; is the mass of the ith particle having the position vector r,, and
M = Zm;is the total mass of the system of discrete particles. For a contin-
uous distribution of mass, the position vector for the center of mass is de-
fined in terms of the integral expression

1
Q—MﬁWL (1.12)

From these definitions, the velocity and acceleration of the center of mass
of a system are obtained by taking the first and second order time deriv-
atives, respectively. That is, for a discrete system of particles,

“:iimw (1.13)
for the velocity and
a = LZmiai (1.14)
M=

for the acceleration of the center of mass point.

Whereas kinematics is concerned only with the motion and path of
particles, classical dynamics is concerned with the effect that external forces
have on the state of motion of a particle or system of particles. Newton’s
three laws of motion are by far the most important and complete formu-
lation of dynamics and can be stated as follows:

1. A body in a state of rest or uniform motion will continue in that
state unless acted upon by and external unbalanced force.

2. The net external force acting on a body is equal to the time rate
of change of the body’s linear momentum.

3. For every force acting on a body there exists a reaction force, equal
in magnitude and oppositely directed, acting on another body.

With linear momentum defined by
p = mv, (1.15)

Newton’s second law of motion can be represented by the mathematical
equation
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dp
dt

F= (1.16)

for the net external force acting on a body. If the mass of a body is time
independent, then substitution of Equation 1.15 into Equation 1.16 and
using Equation 1.7 yields

F = ma. (1.17)

From this equation it is obvious that the gravitational force acting on a
body, or the weight of a body F,, is given by

where g is the acceleration due to gravity. In the SI system the defined unit

of force (or weight) is the Newton (N), which has fundamental units given
by

N=-—-° . (1.19)

In the Gaussian or CGS system of units, force has the defined unit dyne
(dy) and fundamental units of g - cm/s’.

Another fundamental concept of classical dynamics that is of par-
ticular importance in Einsteinian relativity is that of infinitesimal work
dW, which is defined at the dot or scalar product of a force F and an infin-
itesimal displacement vector dr, as given by the equation

dW =F - dr. (1.20)

Work has the defined unit of a Joule (J) in SI units (an erg in CGS units),
with corresponding fundamental units of

j=-o"0 (1.21)

These are the same units that are associated with kinetic energy,
T =_mv’, (1.22)

and gravitational potential energy
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V., =mgy, (1.23)

since it can be shown that the work done on or by a body is equivalent to
the change in mechanical energy of the body.

Although there are a number of other fundamental principles, con-
cepts, and defining equations of classical mechanics that will be utilized
in this textbook, those presented in the review will more than satisfy our
needs for the next few chapters. A review of a general physics textbook of
the defining equations, defined and derived units, basic SI units, and con-
ventional symbols for fundamental quantities of classical physics might
be prudent. Appendix A contains a review of the mathematics (symbols,
algebra, trigonometry, and calculus) necessary for a successful study of
intermediate level modern physics.

|.3 Classical Space-Time Transformations

The classical or Galilean-Newtonian transformation equations for space
and time are easily obtained by considering two inertial frames of refer-
ence, similar to the coordinate system depicted in Figure 1.1. An inertial

Figure 1.1

The position of a parti-
cle specified by a dis-
placement vector in
Cartesian coordinates.
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Figure 1.2

The classical coordinate
transformations from
() StoS"and (b) S’
to S.

frame of reference can be thought of as a nonaccelerating coordinate sys-
tem, where Newton’s laws of motion are valid. Further, all frames of ref-
erence moving at a constant velocity relative to an inertial one are
themselves inertial and in principle equivalent for the formation of physical
laws.

Consider two inertial systems S and S’, as depicted in Figure 1.2, that
are separating from one another at a constant speed u. We consider the
axis of relative motion between S and S’ to coincide with their respective
X, X" axis and that their origin of coordinates coincided at time t = ¢’ = 0.
Generality is not sacrificed by regarding system S as being at rest and sys-
tem S’ to be moving in the positive X direction with a uniform speed u rel-
ative to S. Further, the uniform separation of two systems need not be
along their common X, X" axes. However, they can be so chosen without
any loss in generality, since the selection of an origin of coordinates and
the orientation of the coordinate axes in each system is entirely arbitrary.
This requirement essentially simplifies the mathematical details, while
maximizing the readability and understanding of classical and Einsteinian
relativistic kinematics. Further, the requirement that S and S’ coincide at
a time defined to be zero means that identical clocks in the two systems

Y Y’
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are started simultaneously at that instant in time. This requirement is es-
sentially an assumption of absolute time, since classical common sense dic-
tates that for all time thereafter = ¢'.

Consider a particle P (P’ in S") moving about with a velocity at every
instant in time and tracing out some kind of path. At an instant in time ¢
= t' > 0, the position of the particle can be denoted by the coordinates
X, y, z in system S or, alternatively, by the coordinates x’, ', z’ in system
S’, as illustrated in Figure 1.2. The immediate problem is to deduce the
relation between these two sets of coordinates, which should be clear from
the figure. From the geometry below the X-X" axis of Figure 1.2a and the
assumption of absolute time, we have

x' = x — ut, (1.24a)
y' =y (1.24b)
W= (1.24¢)
=1, (1.24d)

for the classical transformation equations for space-time coordinates, ac-
cording to an observer in system S. These equations indicate how an ob-
server in the S system relates his coordinates of particle P to the S’
coordinates of the particle, that he measures for both systems. From the
point of view of an observer in the S’ system, the transformations are
given by

x=x"+ut, (1.25a)
y=y, (1.25b)
z=7z, (1.25¢)
t=1, (1.254d)

where the relation between the x and x’ coordinates is suggested by the
geometry below the X’-axis in Figure 1.2b. These equations are just the
inverse of Equations 1.24 and show how an observer in S’ relates the co-
ordinates that he measures in both systems for the position of the particle
at time ¢'. These sets of equations are known as Galilean transformations.
The space-time coordinate relations for the case where the uniform relative
motion between S and S’ is along the Y-Y’ axis or the Z-Z' axis should
be obvious by analogy.

The space-time transformation equations deduced above are for co-
ordinates and are not appropriate for length and time interval calculations.
For example, consider two particles P, (P/) and P, (P3) a fixed distance y
=y’ above the X-X" axis at an instant # = ¢’ > 0 in time. The horizontal
coordinates of these particles at time ¢ = ¢" are x, and x, in systems S and
x1 and xj in system S’. The relation between these four coordinates, ac-
cording to Equation 1.24a, is

S>>

S"—S
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X| = X, — ut,
X5 = X, — ut,

The distance between the two particles as measured with respect to the S’
system is x; — x;. Thus, from the above two equations we have

Xy — X| =X, — Xy, (1.26)

which shows that length measurements made at an instant in time are in-
variant (i.e., constant) for inertial frames of reference under a Galilean
transformation.

Equations 1.24, 1.25, and 1.26 are called transformation equations be-
cause they transform physical measurements from one coordinate system
to another. The basic problem in relativistic kinematics is to deduce the
motion and path of a particle relative to the S’ system, when we know the
kinematics of the particle relative to system S. More generally, the problem
is that of relating any physical measurement in S with the corresponding
measurement in S’. This central problem is of crucial importance, since
an inability to solve it would mean that much of theoretical physics is a
hopeless endeavor.

|.4 Classical Velocity and Acceleration
Transformations

In the last section we considered the static effects of classical relativity by
comparing a particle’s position coordinates at an instant in time for two
inertial frames of reference. Dynamic effects can be taken into account by
considering how velocity and acceleration transform between inertial sys-
tems. To simplify our mathematical arguments, we assume all displace-
ments, velocities, and accelerations to be collinear, in the same direction,
and parallel to the X-X" axis of relative motion, Further, systems S and
S’ coincided at time = ¢' = 0 and S’ is considered to be receding from S
at the constant speed u.

Our simplified view allows us to deduce the classical velocity trans-
formation equation for rectilinear motion by commonsense arguments.
For example, consider yourself to be standing at a train station, watching
a jogger running due east a 5 m/s relative to and in front of you. Now, if
you observe a train to be traveling due east at 15 m/s relative to and behind
you, then you conclude that the relative speed between the jogger and the
train is 10 m/s. Because all motion is assumed to be collinear and in the
same direction, the train must be approaching the jogger with a relative
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velocity of 10 m/s due east. A commonsense interpretation of these veloc-
ities (speeds and corresponding directions) can easily be associated with
the symbolism adopted for our two inertial systems. From your point of
view, you are a stationary observer in system S, the jogger represents an
observer in system S’, and the train represents a particle in rectilinear mo-
tion. Consequently, a reasonable symbolic representation of the observed
velocities would be u = 5 m/s, v, = 15 m/s, and v, = 10 m/s, which would
obey the mathematical relation

UL = U, — U (1.27)

This equation represents the classical or Galilean transformation of ve-
locities and is expressed as a scalar equation, because of our simplifying
assumptions on rectilinear motion.

For those not appreciating the above commonsense arguments used
for obtaining velocity transformation equation, perhaps the following
quantitative derivation will be more palatable. Consider the situation in-
dicated in Figure 1.3, where a particle is moving in the X-Y plane for some
reasonable time interval Az = At'. As the particle moves from position P,
at time ¢, to position P, at time 7, its rectilinear displacement is measured
by an observer in S to be x, — x,. According to this observer, this distance
is also given by his measurements of x} + u(z, — ;) — x{, as suggested in
Figure 1.3. By comparing these two sets of measurements, the observer
in system S concludes that

Xy = X1 =x,—x;,—u(t, — t;) (1.28)
Y Y'(¢)) Y'(ty)
i
|
|
ﬁ—" u ——- 1
:
|
| Py(ty) Py(ty)
| ] ]
I 1 1
I 1 1
| 1 1
| 1 1
| 1 1
| 1 1
I 1 1
I 1 1
| 1 1
| 1 1
| 1 1
| 1 1
I 1 1
1 1 1 X,X/
ut; i
uty
- u(ty— 1)) x5
X'
X Xy — X
X2

Figure 1.3

The displacement
geometry of a particle
at two different instants
t, and t,, as viewed by
an observer in system S.
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for distance traveled by the particle in the S’ system. It should be noted
that for classical systems a displacement occurring over a nonzero time in-
terval in not invariant, although previously we found that a length meas-
urement made at an instant in time was invariant. Also, since the time
interval for the particle’s rectilinear displacement is

the division of Equation 1.28 by the time interval equation yields the ex-
pected velocity transformation given in Equation 1.27. This result is also
easily produced by considering the coordinate transformations given by
Equations 1.24a and 1.24d for the two positions of the particle in space
and time. Further, the generalization to three-dimensional motion, where
the particle has x, y, and z components of velocity, should be obvious
from the classical space-time transformation equations. The results ob-
tained for the Galilean velocity transformations in three dimensions are

FE U T, (1.30a)
L=, (1.30b)
vl =v.. (1.30c)

Observe that the y- and z- components of the particle’s velocity are invari-
ant, while the x-components, measured by different inertial observers, are
not invariant under a transformation between classical coordinate systems.
We shall later realize that the y- and z- components of velocity are ob-
served to be the same in both systems because of our commonsense as-
sumption of absolute time. Further, note that the velocities expressed in
Equations 1.30a to 1.30c should be denoted as average velocities (e.g., Us,
v, etc), because of the manner in which the derivations were performed.
However, transformation equations for instantaneous velocities are directly
obtained by taking the first order time derivative of the transformation
equations for rectangular coordinates (Equations 1.24a to 1.24¢). Clearly,
the results obtained are identical to those given in Equations 1.30a to
1.30c, so we can consider all velocities in theses equations as representing
either average or instantaneous quantities. Further, a similar set of velocity
transformation equations could have been obtained by taking the point
of view of an observer in system S’. From Equations 1.25a through 1.25d
we obtain

v, = ULt u, (1.31a)
v, =v,, (1.31b)
v. = v, (1.31¢)

I
<
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which are just the inverse of Equations 1.30a to 1.30c.

To finish our kinematical considerations, we consider taking a first
order time derivative of Equations 1.30a through 1.30c or Equations 1.31a
through 1.31c. The same results

a.=a,, (1.32a)
a,=a,, (1.32b)
a = a. (1.32¢)

are obtained, irrespective of which set of velocity transformation equa-
tions we differentiate. These three equations for the components of accel-
eration are more compactly represented by

a = a, (1.33)

which indicates acceleration is invariant under a classical transformation.
Whether a and a’ are regarded as average or instantaneous accelerations
is immaterial, as Equations 1.33 is obtained by either operational deriva-
tion.

At the beginning of our discussion of classical transformations, we
stated that an inertial frame of reference is on in which Newton’s laws of
motion are valid and that all inertial systems are equivalent for a descrip-
tion of physical reality. It is immediately apparent from Equation 1.33 that
Newton’s second law of motion is invariant with respect to a Galilean
transformation. That is, since classical common sense dictates that mass
is an invariant quantity, or

m' = m (1.34)

for the mass of a particle as measured relative to system S’ or S, then from
Equations 1.33 and 1.17 we have

F' = F. (1.35)

Thus, the net external force acting on a body to cause its uniform acceler-
ation will have the same magnitude and direction to all inertial observers.
Since mass, time, acceleration, and Newton’s second law of motion are in-
variant under a Galilean coordinate transformation, there is no preferred
frame of reference for the measurement of these quantities.

We could continue our study of Galilean-Newtonian relativity by de-
veloping other transformation equations for classical dynamics (i.e., mo-
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mentum, kinetic energy, etc.), but these would not contribute to our study
of modern physics. There is, however, one other classical relation that de-
serves consideration, which is the transformation of sound frequencies.
The classical Doppler effect for sound waves is developed in the next sec-
tion from first principles of classical mechanics. An analogous pedagogic
treatment for electromagnetic waves is presented in Chapter 3, with the in-
clusion of Einsteinian relativistic effects. As always, we consider only in-
ertial systems that are moving relative to one another at a constant speed.

|.5 Classical Doppler Effect

It is of interest to know how the frequency of sound waves transforms be-
tween inertial reference frames. Sound waves are recognized as longitudinal
waves and, unlike transverse light waves, they require a material medium
for their propagation. In fact the speed of sound waves depends strongly
on the physical properties (i.e., temperature, mass density, etc.) of the ma-
terial medium through which they propagate. Assuming a uniform mate-
rial medium, the speed of sound, or the speed at which the waves
propagate through a stationary material medium, is constant. The basic
relation

v, = \v, (1.36)

requires that the product of the wavelength A and frequency v of the waves
be equal to their uniform speed v, of propagation. Classical physics re-
quires that the relation expressed by Equation 1.36 is true for all observers
who are at rest with respect to the transmitting material medium. That is,
once sound waves have been produced by a vibrating source, which can
either be at rest or moving with respect to the propagating medium, the
speed of sound measured by different spatial observers will be identical,
provided they are all stationary with respect to and in the same uniform
material medium. Certainly, the measured values of frequency and wave-
length in a system that is stationary with respect to the transmitting
medium need not be the same as the measured values of frequency and
wavelength in a moving system.

In this section the unprimed variable (e.g., x, , \, etc.) are associated
with an observer in the receiver R system while the primed variables (e.g.,
x', t', etc.) are associated with the source of sound or emitter E’ system.
In all cases the transmitting material medium, assumed to be air, is consid-
ered to be stationary, whereas the emitter E” and receiver R may be either
stationary or moving, relative to the transmitting medium. For the situa-
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tion where the receiver R is stationary with respect to air, and the emitter
E’ is receding or approaching the receiver, the speed of sound v, as per-
ceived by R is given by Equation 1.36.

To deduce the classical frequency transformation, consider the emit-
ter E’ of sound waves to be positioned at the origin of coordinates of the
S’ reference frame. Let the sound waves be emitted in the direction of the
receiver R, which is located at the origin of coordinates of the unprimed
system and is stationary with respect to air. This situation, depicted in Fig-
ure 1.4, corresponds to the case where the emitter and detector recede from
each other with a uniform speed u. In figure 1.4 the wave pulses of the
emitted sounds are depicted by arcs. It should be noted that the first wave
pulse received at R occurs at a time At after the emitter E' was activated
(indicated by the dashed Y’-axis in the figure). The emitter E’ can be
thought of as being activated by pulse of light from R at a time ¢, = ¢{. A
continuous emission of sound waves traveling at approximately 330 m/s
is assumed until the first sound wave is perceived by R at time z, = 5. As
illustrated in Figure 1.4, E’ has moved through the distance uA¢ during
the time 7, — ¢, required for the first sound wave to travel the distance v,
(t, —t,) to R. When R detects the first sound wave, it transmits a light pulse
traveling at a constant speed of essentially 3 X 10* m/s to E’, thereby stop-
ping the emission of sound waves almost instantaneously. Consequently,
the number of wave pulses N’ emitted by E’ in the time interval A" = Az
is exactly the number of wave pulses N that will be perceived eventually by
R. With x being defined as the distance between R and E’ at that instant
in time when R detects the very first sound wave emitted by E’, we have

_ X ,
A= (1.37)
Y Y'(ty) Y'(ty)
—5—>u —_—u
1st Pulse 1st Pulse i Nth Pulse
ri:?ived emitted i ?itted
R(((((((((*(l'a’(((((’ x
v A i ult —» ’
X

Figure 1.4

An emitter E' of sound
waves receding from a
detector R, which is
stationary with respect
to air E' is activated at
time t| and deactivated
at time t5, when R re-
ceives the first wave
pulse.
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E’ receding from R

where \ is the wavelength of the sound waves according to an observer in
the receiving system. Solving Equation 1.36 for v and substituting from
Equation 1.37 gives

y = ”iv (1.38)

for the frequency of sound waves as observed in system R.
From Figure 1.4

x = (v, + u) At, (1.39)
thus Equation 1.38 can be rewritten as

v = (Mr];/)m (1.40)
Substituting

N=N =v'A¢ (1.41)

into Equation 1.40 and using the Greek letter kappa (k) to represent the
ratio u/v,,

_u,
K= ) (1.42)
we obtain the relation
v/
= , 1.43
v 1+« ( )

where the identity Az = A¢’ has been utilized. Since the denominator of
Equation 1.43 is always greater than one (i.e., 1 + k > 1), the detected fre-
quency v is always lower than the emitted or proper frequency v' (i.e., v <
v"). With musical pitch being related to frequency, in a subjective sense,
then this phenomenon could be referred to as a down-shift. To appreciate
the rationale of this reference terminology, realize that as a train recedes
from you the pitch of its emitted sound is noticeably lower than when it
was approaching. The appropriate wavelength transformation is obtained
by using Equation 1.36 with Equation 1.43 and is of the form
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c

}\:

(1+k)=N(1+k). (1.44)

s
!

<

Since 1 + k > 1, A > N\ and there is a shift to larger wavelengths when an
emitter E’ of sound waves recedes from an observer R who is stationary
with respect to air.

What about the case where the emitter is approaching a receiver that
is stationary with respect to air? We should expect the sound waves to be
bunched together, thus resulting in an up-shift phenomenon. To quantita-
tively develop the appropriate transformation equations for the frequency
and wavelength, consider the situation as depicted in Figure 1.5. Again,
let the emitter E’ be at the origin of coordinates of the primed reference
system and the receiver R at the origin of coordinates of the unprimed
system. As viewed by observers in the receiving system R, a time interval
At =1t, —t, = t5 — t{ is required for the very first wave pulse emitted by E’
to reach the receiver R, at which time the emission by E’ is terminated.
During this time interval the emitter E’ has moved a distance uA¢ closer
to the receiver R. Hence, the total number of wave pulses V', emitted by
E’ in the elapsed time A¢', will be bunched together in the distance x, as il-
lustrated in Figure 1.5. By comparing this situation with the previous one,
we find that Equation 1.37 and 1.38 are still valid. But now,

x = (v, —u)At (1.45)
and substitution into Equation 1.38 yields
u,N
vV ——— (1.46)
(v, — u)At
Y Y'(13) Y1)
!
U ~—— u 4—5—
1st Pulse Nth Pulse i 1st Pulse
received emitted | emitted
RCLCCLCCOOCO(RY DR ‘o
X i uAt4>| ’
v At i

Figure 1.5

An emitter E' of sound
waves approaching a
detector R, which is
stationary with respect
to air. E' is activated at
time t| and deactivated
at time t}, at the instant
when R receives the
first wave pulse.
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E’ approaching R

E’ approaching R

R receding from E’
R approaching E’

Using Equation 1.41 and 1.42 with Equation 1.46 results in

v=—"_. (1.47)

Since 1 — k < 1, v > v" and we have an up-shift phenomenon. Utilization
of Equation 1.36 will transform Equation 1.47 from the domain of fre-
quencies to that of wavelengths. The result obtained is

A= (1 — ), (1.48)

where, obviously, A <\’ ,since 1 — k < 1.

In the above cases the receiver R was considered to be stationary with
respect to the transmitting material medium. If, instead the source of the
sound waves is stationary with respect to the material medium, then the
transformation equations for frequency and wavelength take on a slightly
different form. To obtain the correct set of equations, we need only per-
form the following inverse operations:

! !

Vo vV > u— —u. (1.49)

Using these operations on Equation 1.43 and 1.47 gives

v=1v'(1 — k) (1.50)
and v=1v'(1 + k), (1.51)

respectively. In the last two equations the receiver R is considered to be
moving with respect to the transmitting medium of sound waves, while
the emitter E’ is considered to be stationary with respect to the transmit-
ting material medium. In all cases discussed above, v’ always represents
the natural or proper frequency of the sound waves emitted by E’ in one
system, while v represents an apparent frequency detected by the receiver
R in another inertial system. Clearly, the apparent frequency can be any
one of four values for know values of v', v,, and u, as given by Equations
1.43,1.47,1.50, and 1.51.

For those wanting to derive Equation 1.50, you need only consider
the situation as depicted in Figure 1.6. In this case the first wave pulse is
perceived by R at time ¢,, at which time the emission from E’ is terminated.
R recedes from E’ at the constant speed u while counting the N’ wave
pulses. At time ¢, the last wave pulse emitted by E’ is detected by R and
of course N = N'. Since the material medium is at rest with respect to E’.
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Y’ Yty Y(t)
!
N — Figure 1.6
i A detector R of sound
i waves receding from
! an emitter E’, which is
! stationary with respect
Nth Pulse Ist Pulse | Nth Pulse 0 air E/ is deactivated
emitted received | received o
i at time t,, when R per
A ceives the first wave
E) ) ) ) ) ) ) ) ) ) )II{ , )R Lo XX pu|sel R receives the
x [ uAs _’| last wave pulse at a
v A1 | later time t,.
v, =\, (1.52)
Solving this equation for v’ and using
N = 1.53
N (1.53)
and x' = (v, — wAt', (1.54)
we obtain
. o, N’
(v, — u)Ar
Realizing that
N' =N =vAt¢ (1.55)
and, of course,
At =AY,
we have the sought after result
v=1v'(1 — k), (1.50) R receding from E’

where Equation 1.42 has been used. A similar derivation can be employed
to obtain the frequency transformation represented by Equation 1.51.
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R receding from E’

R receding from E’

R approaching E’

R approaching E’

The wavelength A detected by R when R is receding from E’ is directly
obtained by using Equation 1.50 and the fact that the speed of sound
waves, as measured by R, is given by

U=Uv,— u=\v. (1.56)

Solving Equation 1.56 for the wavelength and substituting from Equation
1.50 for the frequency yields

v, — u
A=—"—s 1.57
V' (1 — k) (1.5

which, in view of Equation 1.42, immediately reduces to

e R (1.58)

v/

Clearly, from Equations 1.52 and 1.58 we have
A=\ (1.59)

This same result is obtained for the case where R is approaching the sta-
tionary emitter E'. By using Equation 1.51 and 1.52 and realizing that the
speed of the sound waves as measured by R is given by

v=u,+u=N\v, (1.60)
then we directly obtain the result
A=\ (1.61)

In each of the four cases presented either the receiver R or the emitter
E’ was considered to be stationary with respect to air, the assumed trans-
mitting material medium for sound waves. Certainly, the more general
Doppler effect problem involves an emitter E’ and a receiver R both of
which are moving with respect to air. Such a problem is handled by con-
sidering two of our cases separately for its complete solution. For example,
consider a train traveling at 30 m/s due east relative to air, and approaching
an eastbound car traveling 15 m/s relative to air. If the train emits sound
of 600 Hz, find the frequency and wavelength of the sound to observers
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Y’ Y
—t u=30m/s — u=15m/s
v’ =600 Hz
Stationary air
Train A Car

X X'

in the car for a speed of sound of v, =330 m/s. This situation is illustrated
in Figure 1.7, where the reference frame of the train is denoted as the
primed system and that of the car as the unprimed system. To employ the
equations for one of our four cases, we must have a situation where either
E’ or R is stationary with respect to air. In this example, we simply con-
sider a point, such as A in Figure 1.7, between the emitter (the train) and
the receiver (the car), that is stationary with respect to air. This point be-
comes the receiver of sound waves from the train and the emitter of sound
waves to the observers in the car. In the first consideration, the emitter E’
(train) is approaching the receiver R (point A) and the frequency is deter-
mined by

py=_v  _600Hz _ ooy,
-« 30
330

Since the receiver R (point A) is stationary with respect to air, then the
wavelength is easily calculated by

Indeed, the train’s sound waves at any point between the train and the car
have a 660 Hz frequency and a 0.5 m wavelength. Now, we can consider
point A as the emitter E’ of 660 Hz sound waves to observers in the re-
ceding car. In this instance R is receding from E’, thus

v =v'(1— k) = (660 Hz)<1 - i) — 630 Hz.
330

Figure 1.7

An emitter (train) and
a receiver (car) of
sound waves, both
moving with respect to
stationary air.
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The wavelength is easily obtained, since for this case (R receding from E’)
A=\ =05m.

Alternatively, the wavelength could be determined by

v, — U
A =
v
_ 330 m/s — 15 m/s — 0.5 m,
630 Hz

since observers in the car are receding from a stationary emitter (point A)
of sound waves. The passengers in the car will measure the frequency and
wavelength of the train’s sound waves to be 630 Hz and 0.5 m, respectively.

It should be understood that the velocity, acceleration, and frequency
transformations are a direct and logical consequence of the space and time
transformations. Therefore, any subsequent criticism of Equations 1.24a
through 1.24d will necessarily affect all the aforementioned results. In fact
there is an a priori criticism available! Is one entitled to assume that what
is apparently true of one’s own experience, is also absolutely, universally
true? Certainly, when the speeds involved are within our domain of ordi-
nary experience, the validity of the classical transformations is easily ver-
ified experimentally. But will the transformation be valid at speeds
approaching the speed of light? Since even our fastest satellite travels ap-
proximately at a mere 1/13,000 the speed of light, we have no business as-
suming that v, = v, — u for all possible values of u. Our common sense
(which a philosopher once defined as the total of all prejudices acquired
by age seven) must be regarded as a handicap, and thus subdued, if we are
to be successful in uncovering and understanding the fundamental laws
of nature. As a last consideration before studying Einstein’s theory on rel-
ative motion, we will review in the next section some historical events and
conceptual crises of classical physics that made for the timely introduction
of a consistent theory of special relativity.

|.6 Historical and Conceptual Perspective

The classical principle of relativity (CPR) has always been part of physics
(once called natural philosophy) and its validity seems fundamental, un-
questionable. Because it will be referred to many times in this section, and
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because it is one of the two basic postulates of Einstein’s developments
of relativity, we will define it now by several equivalent statements:

1. The laws of physics are preserved in all inertial frames of refer-
ence.

2. There exists no preferred reference frame as physical reality con-
tradicts the notion of absolute space.

3. An unaccelerated person is incapable of experimentally determin-
ing whether he is in a state of rest or uniform motion—he can only
perceive relative motion existing between himself and other ob-
jects.

The last statement is perhaps the most informative. Imagine two astro-
nauts in different spaceships traveling through space at constant but dif-
ferent velocities relative to the Earth. Each can determine the velocity of
the other relative to his system. But, neither astronaut can determine, by
any experimental measurement, whether he is in a state of absolute rest or
uniform motion. In fact, each astronaut will consider himself at rest and

the other as moving. When you think about it, the classical principle of

relativity is surprisingly subtle, yet it is completely in accord with common
sense and classical physics.

The role played by the classical principle of relativity in the crises of
theoretical physics that occurred in the years from 1900 to 1905 is schemat-
ically presented in Figure 1.8. Here, the relativistic space-time transforma-
tions (RT) were developed in 1904 by H.A. Lorentz, and for now we will

| Classical Physics |
| |
Theory of Mechanics - Electromagnetic Theory
(NM) (Galileo & Newton) | UL RIS | (Maxwell) (E&M)
I |
[
must obey the
(CPR) | Classical Principle of Relativity | (CPR)
which employs
I
I |
either or
| |
Classical Space-Time Relativistic Space-Time
(CT) Transformations Transformations (RT)
(Galileo & Newton) (Lorentz & Einstein)

Figure 1.8
Theoretical physics at
the turn of the 20th
century.
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simply accept it without elaborating. There are four points that should be
emphasized about the consistency of the mathematical formalism sug-
gested in Figure 1.8. Using the abbreviations indicated in Figure 1.8, we
now assert the following:

1. NM obeys the CPR under the CT.

2. E&M does not obey the CPR under the CT.
3. E&M obeys the CPR under the RT.

4. NM does not obey the CPR under the RT.

The first statement asserts that NM, the CPR, and the CT are all compat-
ible and in agreement with common sense. But the second statement indi-
cates that Maxwell’s equations are not covariant (invariant in form) when
subjected to the CPR and the CT. New terms appeared in the mathemat-
ical expression of Maxwell’s equations when they were subjected to the
classical transformations (CT). These new terms involved the relative speed
of the two reference frames and predicted the existence of new electro-
magnetic phenomena. Unfortunately, such phenomena were never exper-
imentally confirmed. This might suggest that the laws of electromagnetism
should be revised to be covariant with the CPR and the CT. When this
was attempted, not even the simplest electromagnetic phenomena could
be described by the resulting laws.

Around 1903 Lorentz, understanding the difficulties in resolving the
problem of the first and second statements, decided to retain E&M and
the CPR and to replace the CT. He sought to mathematically develop a
set of space-time transformation equations that would leave Maxwell’s
laws of electromagnetism invariant under the CPR. Lorentz succeeded in
1904, but saw merely the formal validity for the new RT equations and as
applicable to only the theory of electromagnetism.

During this same time Einstein was working independently on this
problem and succeeded in developing the RT equations, but his reasoning
was quite different from that of Lorentz. Einstein was convinced that the
propagation of light was invariant—a direct consequence of Maxwell’s
equations of E&M. The Michelson-Morley experiment, which was con-
ducted prior to this time, also supported this supposition that electromag-
netic waves (e.g., light waves) propagate at the same speed ¢ = 3 X10* m/s
relative to any inertial reference frame. One way of maintaining the invari-
ance of ¢ was to require Maxwell’s equations of electromagnetism (E&M)
to be covariant under a transformation from S to S’. He also reasoned
that such a set of space and time transformation equations should be the
correct ones for NM as well as E&M. But, according to the fourth state-
ment, Newtonian mechanics (NM) is incompatible with the principle of
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relativity (CPR), if the Lorentz (Einstein) transformation (RT) is used.
Realizing this, Einstein considered that if the RT is universally applicable,
and if the CPR is universally true, then the laws of NM cannot be com-
pletely valid at all allowable speeds of uniform separation between two in-
ertial reference frames. He was then led to modify the laws of NM in order
to make them compatible with the CPR under the RT. However, he was
always guided by the requirement that these new laws of mechanics must
reduce exactly to the classical laws of Galilean-Newtonian mechanics,
when the uniform relative speed between two inertial reference frames is
much less than the speed of light (i.e., u << ¢). This requirement will be
referred to as the correspondence principle, which was formally proposed
by Niels Bohr in 1924. Bohr’s principle simply states that any new theory
must yield the same result as the corresponding classical theory, when the
domain of the two theories converge or overlap. Thus, when u << ¢, Ein-
steinian relativity must reduce to the well-established laws of classical
physics. It is in this sense, and this sense only, that Newton’s celebrated
laws of motion are incorrect. Obviously, Newton’s laws of motion are eas-
ily validated for our fastest rocket; however, we must always be on guard
against unwarranted extrapolation, lest we predict incorrectly nature’s phe-
nomena.

Review of Fundamental and Derived Equations
A listing of the fundamental and derived equations for sections concerned

with classical relativity and the Doppler effect is presented below. Also in-
dicated are the fundamental postulates defined in this chapter.

GALILEAN TRANSFORMATION (S — S)

— ut

x'=x
!

Y= Space —Time Transformations
!

z z

I
-

t

v, =0, Velocity Transformations

vl =u,

m =m Mass Transformation

a’ =a Acceleration Transformation

F'=F Force Transformation
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CLASSICAL DOPPLER EFFECT

U, = \v R stationary
V'
1 + K E’ receding from R
=N (1+«)
— v’
V PN K E’ approaching R
A=\ (l—-x)
v, =N E’ stationary
v=v(l —«)
v=v,—u=Av; R receding from E’
A=\
v=v(l+k)
v=v,+u=Av; R approaching E’
A=\

FUNDAMENTAL POSTULATES

1. Classical principle of Relativity
2. Bohr’s Correspondence Principle

1.1 Starting with the defining equation for average velocity and assuming
uniform translation acceleration, derive the equation Ax = v,At +
Vaa(A 1)

Solution:

For one-dimensional motion with constant acceleration, average ve-
locity can be expressed as the arithmetic mean of the final velocity v,
and initial velocity v,. Assuming motion along the X-axis, we have

M: v, + U,
At 2

v
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1.2

and from the defining equation for average acceleration (Equation
1.9) we obtain

v, = U, + aAt,

where the average sign has been dropped. Substitution of the second
equation into the first equation gives

Ax U+ aAt+ vy
At 2

which is easily solved for Ax,
Ax = v, At + Ya(A1)>

Starting with the defining equation for average velocity and assum-

ing uniform translation acceleration, derive an equation for the final ve-
locity v, in terms of the initial velocity v,, the constant acceleration a,
and the displacement Ax.

1.3

14

1.5

Answer:  v3 = v + 2aAx

Do Problem 1.1 starting with Equation 1.5a and using calculus.

Solution:
Dropping the subscript notation in Equation 1.5a and solving it for
dx gives

dx = vdt.

By integrating both sides of this equation and interpreting v as the

final velocity v, we have
X t=At
f dx = f v, dt.
X 0

Since v, = v, + at, substitution into and integration of the last equa-
tion yields
t=Ar |
Ax = f (v + at)dt = v At + Sa(Ar)’.
0
Do Problem 1.2 starting with Equation 1.7 and using calculus.

Answer: v3 = v} + 2aAx

Staring with W = F - Ax and assuming translational motion, show

that W = AT by using the defining equations for average velocity and ac-
celeration.
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Solution:
W =F - Ax
= FcosB Ax definition of a dot product
= FAx assuming 6 = 0°
= ma Ax assuming m # m(t)
= m& Ax from Eq. 1.9
At

= mAv&

At

+

= mAv<v2 2 Ul) average velocity definition

Z%m(vz— v)(v, + 1)
= émv% - %mvf

= AT from Equation 1.22

1.6 Starting with the defining equation for work (Equation 1.20) and
using calculus, derive the work-energy theorem.

Answer: W =AT

1.7 Consider two cars, traveling due east and separating from one an-
other. Let the first car be moving at 20 m/s and the second car at 30 m/s
relative to the highway. If a passenger in the second car measures the speed
of an eastbound bus to be 15 m/s, find the speed of the bus relative to ob-
servers in the first car.

Solution:
Thinking of the first car as system S and the second as system S’,
then

u= (30 —20) m/s = 10 m/s.

With the speed of the bus denoted accordingly as v, = 15 m/s, v, is
given by Equation 1.30a or Equation 1.31a as

v, =v.+u=15m/s + 10 m/s = 25 m/s.

1.8 Consider a system S’ to be moving at a uniform rate of 30 m/s relative
to system S, and a system S” to be receding at a constant speed of 20 m/s
relative to system S'. If observers in S” measure the translational speed of
a particle to be 50 m/s, what will observers in S" and S measure for the
speed of the particle? Assume all motion to be the positive x-direction
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along the common axis of relative motion.

Answer: 70 m/s, 100 m/s

1.9 A passenger on a train traveling at 20 m/s passes a train station at-
tendant. Ten seconds after the train passes, the attendant observes a plane
500 m away horizontally and 300 m high moving in the same direction as
the train. Five seconds after the first observation, the attendant notes the
plane to be 700 m away and 450 m high. What are the space-time coordi-
nates of the plane to the passenger on the train?

Solution:
For the train station attendant

x =500m ¥, =300m tL=10s
X% =700m y,=450m £ =15s.

For the passenger on the train
xi = x —ut; =500 m — (20 %)(10 s) = 300 m,
yi =y =300 m,
7 =4,=10s,
Xy =x —ut, =700 m — (20 %)(15 s) = 400 m,

v, =y =450 m,
th =t =15s.

1.10 From the results of Problem 1.9, find the velocity of the plane as
measured by both the attendant and the passenger on the train.

Answer: 50 m/s at 36.9°, 36.1 m/s at 56.3°

1.11 A tuning fork of 660 Hz frequency is receding at 30 m/s from a sta-
tionary (with respect to air) observer. Find the apparent frequency and
wavelength of the sound waves as measured by the observer for v, = 330
m/s.

Solution:
With v = 660 Hz and u = 30 m/s for the case where E’ is receding
from R,

b= v’ _ 600Hz
1+« 12
11

= 605 Hz



32

Ch. 1 Classical Transformations

and AN=—="——=0545m.

1.12 Consider Problem 1.11 for the case where the tuning fork is ap-
proaching the stationary observer.

Answer: 726 Hz, 0.455 m

1.13 Consider Problem 1.11 for the case where the observer is approaching
the stationary tuning fork.

Solution:
With v’ = 660 Hz and u = 30 m/s for the case where R is approaching
E’, we have
— _ 12\ _
v =v'(1+ k) = 660 Hz <H>_720 Hz,
+
)\:U,s M:330m/s+30m/szo.Sm
v 720 Hz
or A=\ =0.5m.

1.14 Draw the appropriate schematic and derive the frequency transfor-
mation equation for the case where the emitter E’ is stationary with respect
to air and the receiver R is approaching the emitter.

Answer: v =v'(l + k)

1.15 Consider Problem 1.11 for the case where the observer is receding
from the stationary tuning fork.

Solution:
Given that v = 660 Hz, u = 30 m/s, v, = 330 m/s, and R is receding
from E’, then
_ _ 10\ _
v =v"(1—-x) = 660 Hz <ﬁ)—600 Hz,
)\ZUS—M:33Om/s—3Om/s=O.5m
v 600 Hz

or A=N =05m.

1.16 Consider a train to be traveling at a uniform rate of 25 m/s relative
to stationary air and a plane to be in front of the train traveling at 40 m/s
relative to and in the same direction as the train. If the engines of the plane
produce sound waves of 800 Hz frequency, what is the frequency and
wavelength of the sound wave to a ground observer located behind the



Problems

33

plane for v, = 335 m/s.

Answer: 670 Hz, 0.5 m

1.17 What is the apparent frequency and wavelength of the plane’s en-
gines of Problem 1.16 to passengers on the train?

Solution:

Any stationary point in air between the plane and the train serves as
a receiver of sound waves from the plane and an emitter of sound
waves to the passengers on the train. Thus, from the previous problem
we have v’ = 670 Hz, ' = 0.5m, u = 25 m/s, and v, = 335 m/s, where
the receiver (train) is approaching the emitter (stationary point). For
this case the frequency becomes

v =v'(1+«) =670 Hz <1+%>=720 Hz
and the wavelength is given by

A=——=""=05m or AN=N=05m.

1.18 A train traveling at 30 m/s due east, relative to stationary air, is ap-
proaching an east bound car traveling at 15 m/s, relative to air. If the train
emits sound of 600 Hz, find the frequency and wavelength of the sound
to a passenger in the car for v, = 330 m/s.

Answer: 630 Hz, 0.5 m

1.19 A train traveling due west at 30 m/s emits 500 Hz sound waves while
approaching a train station attendant. A driver of an automobile traveling
due east at 15 m/s and emitting sound waves of 460 Hz is directly ap-
proaching the attendant, who is at rest with respect to air. For v, = 330
m/s, find the frequency and wavelength of the train’s sound waves to the
driver of the automobile.

Solution:
From the train to the attendant we have v’ = 500 Hz, u = 30 m/s, v,
= 330 m/s, and E’ approaching R

b= v’ _ 500 Hz
-k 1-—1/11
Uy 330m/s _ 3

v 550Hz 5

From the attendant to the automobile we have v' = 550 Hz, u = 15

= 550 Hz,
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m/s, v, = 330 m/s, and R approaching E':

v=v’(1+K)=550HZ<1+$>=575HZ,
+
7\=)x’=§m or )\Zuzﬁ:gm.
5 v 575 5

1.20 After the automobile and train of Problem 1.19 pass the train station
attendant, what is the frequency of the automobile’s sound waves to pas-
sengers on the train?

Answer: 400 Hz
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CHAPTER 2

Basic Concepts of Einsteinian Relativity

A depiction of a train traveling with a relativistic velocity as observed from the
frame of reference of the train station.

The relativity theory arose from necessity, from serious and deep
contradictions in the old theory from which there seemed no
escape. The strength of the new theory lies in the consistency
and simplicity with which it solves all these difficulties, using only
a few very convincing assumptions. ... The old mechanics is valid
for small velocities and forms the limiting case of the new one.

A EINSTEIN AND L. INFELD, The Evolution of Physics (1938)

Introduction

The discussion of Galilean relativity in the last chapter was mostly in ac-
cord with common sense. The results obtained were intuitive and in agree-
ment with everyday experience for inertial systems separating from one
another at relatively low speeds. The problems associated with comparing
physical measurements made by different inertial observers were easily
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handled, once the Galilean space-time coordinate transformations were
obtained. Central to Galilean relativity was the assumption of absolute
time, which suggests that two clocks initially synchronized at t = ¢’ =
will remain synchronized when they are moving relative to one another at
a constant speed. A direct consequence of this assumption is that time in-
terval measurements are invariant, At = At’, for observers in different in-
ertial systems, since temporal coordinates would be identical, t = ¢’, for
all of time. Thus, simultaneous measurements of two spatial positions at
an instant in time results in an invariance of length, Ax = Ax’', in Galilean
relativity.

This chapter is primarily concerned with time interval and length
measurements, along with the concepts of synchronization and simultane-
ity, within the framework of Einstein’s special theory of relativity. Ein-
steinian relativity is an elegant theory that arises logically and naturally
from two fundamental postulates: (1) the classical principle of relativity
and (2) the invariance of the speed of light. Like Galilean relativity, Ein-
stein’s theory is concerned with problems involving the comparison of
physical measurements made by observers in different inertial frames of
reference. It differs significantly and fundamentally from Galilean relativ-
ity in that the two postulates of relativity are devoid of any temporal as-
sumption. It will be shown that the invariance of time, as well as the
invariance of length, must in general be abandoned, when the speed of
light is assumed invariant. The results of Galilean relativity for time in-
terval and length measurements are, however, directly obtained from Ein-
steinian relativity under the correspondence principle, for the situation
where the uniform speed of separation between two inertial systems is
small compared to the speed of light.

Einsteinian relativity has the completely undeserved reputation of
being mathematically intimidating and conceptually mystifying to all but
a few students. This misconception will be laid to rest in this and the next
two chapters, as Einstein’s special theory of relativity is fully developed
utilizing only elementary mathematics of algebra, trigonometry, and oc-
casionally introductory calculus. In developing Einsteinian relativity from
the two fundamental postulates, gedanken (German for thought) experi-
ments will be utilized in illustrating particular concepts that are not intu-
itive from everyday experience. Although some concepts will be introduced
that are not in accord with common sense and may defy visualization, they
will be intellectually stimulating and exciting to the imagination. These
new concepts and results present a far reaching and nonclassical view of
the intimate relationships between space, time, matter, and energy that is
essential for the understanding of microscopic phenomena. Consequently,
the study of special relativity is very important for students of contempo-
rary (atomic, nuclear, and solid state, etc.) physics and electrical engineering.
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2.1 Einstein’s Postulates of Special Relativity

The incompatibility of the laws of electromagnetism, the classical princi-
ple of relativity, and the Galilean space-time transformation led Einstein
to a critical reevaluation of the concepts of space, time, and simultaneity.
He decided to abandon the Galilean transformation of relativity and
adopt a more fundamental principle of relativity that would be applicable
to all physical laws- electromagnetism and mechanics. Einstein developed
the special theory of relativity from the following two fundamental postu-
lates:

1. the classical principle of relativity.
2. the invariance of the speed of light.

Einstein was the first to recognize the profound nature and universal ap-
plicability of the classical principle of relativity and to raise it to the status
of a postulate. This postulate suggests that a// physical laws, including
those of electromagnetism and mechanics, are covariant in «al/l inertial
frames of reference. Not only are the mathematical interrelations of phys-
ical laws preserved, but also the values associated with all physical con-
stants are identical in all inertial reference frames. Thus, the notion of an
absolute frame of reference is forever discarded, and the concept of invari-
ance is assumed for all of physics. The second postulate is a direct conse-
quence of Maxwell’s equations and a fact resulting from the
Michelson-Morley experiment. It is incompatible with the first postulate
under the Galilean transformation but totally compatible with the classical
principle of relativity under the Lorentz transformation, as well be seen
in the next chapter. For now, we will attempt to develop an understanding
of the physical implications of Einstein’s postulates, by considering some
simple and intuitive examples involving two identical luxury vans traveling
on a straight smooth road.

To elaborate on Einstein’s first postulate, consider that you are riding
in one of the vans at a constant velocity of 25 m/s due west. You lie back
in the captain’s chair against the headrest and feel very comfortable, not
experiencing and bumps or accelerations. In fact, if you slump down in
the chair and look far out at the horizon, you will not have any physical
sensation of motion. Now, let a second identical van, being driven by your
brother, approach you from behind at a uniform speed of 30 m/s relative
to the ground. When your brother’s van comes into view, you make some
measurements and conclude that he is traveling relative to you at 5 m/s
due west. On the other hand, if your brother measured your speed, he
would conclude that you are backing up toward him with a relative speed
of 5 m/s. You and your brother each determine that the other is moving
with a relative speed of 5 m/s, but you can not make physical measure-
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ments that would determine whether you are moving, he is moving, or
both of you are moving. This result is consistent with the classical princi-
ple of relativity and carries over to all possible physical measurements in
each van. Further, the results of an experiment performed on any physical
system on your van must yield identical numerical results to those ob-
tained by your brother, when he conducts the same experiment on an iden-
tical system in his van. For example, if you measure the frequency of
sound waves produced by your van’s horn to be 550 Hz, then your brother
would measure the fundamental frequency of sound from his van’s horn
to be 550 Hz. Also, you would measure the speed of light from your van’s
dome light to be 3 X 10® m/s (approximately) and your brother would ob-
tain the same result for the speed of light from his van’s dome light.

What about the situation where you measure the frequency of sound
produced by your brother’s horn and he measures the frequency of sound
from your horn? From the results of the classical Doppler effect in the last
chapter, you know the two frequency measurements will be dissimilar,
since your brother is approaching and you are receding from sound waves
in stationary air. The relative speed between the sound waves in air and
your brother would be v, + 30 m/s, while it would be v, — 25 m/s between
the sound in air and you. In this situation the transporting material
medium (air) for sound waves is another frame of reference in addition to
the reference frames of the two vans.

What about the situation where you measure the speed of light from
your brother’s headlights and he measures the speed of light from your
taillights? Unlike sound waves, light does not require any material medium
for its transmission, and you need only consider your frame of reference
and that of your brother. In this case the two vans are viewed as approach-
ing each other with a constant speed of # = 5 m/s. As such, common sense
dictates that the relative speed between you and the light from your
brother’s headlights would be ¢ + u and, likewise, between your brother
and the light from your taillights. Although this result is intuitive and in
agreement with Galilean relativity, it is not consistent with Einstein’s sec-
ond postulate. According to Einstein, you and your brother would meas-
ure the relative speed to be ¢ = 3 X 10® m/s, since the speed of light is
invariant and independent of the relative motion between the source and
observer. To emphasize this point, suppose your bother’s van is overtaking
you and at half the speed of light and after he passes, you flash your head-
lights at him (possibly to indicate to him that in your considered opinion
he is violating a traffic law). Einstein’s second postulate predicts that he
would measure the speed of light from your headlights to pass him at the
normal speed of ¢ = 3 X 10° m/s! In fact, he would observe the same speed
of light for that emitted from your headlights as you would observe, re-
gardless of his speed relative to you. Surely, you must find this hard to be-



2.2 Lengths Perpendicular to the Axis of Relative Motion

38

lieve and most remarkable. After all, does it not violate our notions of
common sense? Yet, every experimental examination of this phenomenon
verifies the truth of Einstein’s second postulate. Serious experimental ver-
ification of Einstein’s second postulate was not possible until the techno-
logical advances of the twenticth century. Perhaps because of this, the
invariance of light was not realized nor even seriously contemplated, until
Einstein published his work on relativity. It was his remarkable insight and
understanding that brought about an intellectual and philosophical revo-
lution and made man recognize the limitations of his dimensional experi-
ence. If natural phenomena exist that are conceptually beyond the grasp
of man’s reasoning—beyond deductive realization or physical verifica-
tion— then we must unshackle our imaginations and arrest our beliefs, if
we are to visualize the subtle laws of nature.

We will now deduce the basic results of Einstein’s special theory of
relativity from some gedanken experiments. As always, we consider two
frames of reference, S and S', to be separating from each other along their
common X-X" axis at the uniform speed u, after having coincided at time
t = t' = 0. Further, it is conceptually convenient to allow observers to exist
at many different spatial positions at the same instant in time in both the
S and S’ frame of reference. Thus, observers spatially separated and at rest
in a particular frame of reference can synchronize their clocks and simplify
their measurements of spatial and temporal intervals for a particle (or sys-
tem) traveling at a relativistic speed.

2.2 Lengths Perpendicular to the Axis
of Relative Motion

As a beginning to the development of Einsteinian relativity from the two
fundamental postulates, consider whether coordinate axes that are per-
pendicular to an axis of relative motion in one frame of reference will be
viewed by other inertial observers as being perpendicular. The gedanken
experiment for this query is depicted in Figure 2.1, where a meter stick is
aligned with the Y-Z plane in system S and another with the Y’-Z’ plane
in system S’. At the top of each meter stick is located a small plane mirror,
labeled M in system S and M’ in the S’ system, adjusted so the mirror sur-
faces face each other. At some instant in time, a beam of light is emitted
from M parallel to the X-axis at a distance y above it and in the direction
of the M’ mirror.

How does the beam of light appear to an observer in the S’ frame of
reference? For consistency with Einstein’s second postulate, he will view
the beam of light as traveling at the uniform speed ¢ and incident on his
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Figure 2.1

The reflection of a light
beam between two
plane mirrors set up
parallel to one another
in systems S and S’

X X'

s

M’ mirror at some distance y" above his X" -axis. When the beam of light
strikes the M’ mirror, the observer in S’ notices the beam of light is re-
flected upon its incident path concluding that the beam of light is parallel
to his X’-axis. This result is consistent with the initial requirements that
the X’-axis coincides with the X-axis and that the beam of light was ad-
justed to be parallel to the X-axis. An observer in system S will also notice
the beam of light to be reflected from M’ upon its incident path, in accor-
dance with Einstein’s first postulate. He concludes that the M’ mirror must
have been perpendicular to the beam of light and, thus, M’ must be par-
allel to his mirror M.

The conclusion that the two mirrors are parallel would also be ob-
tained by the observer in S’, if he were to initiate a beam of light from M’
parallel to his X" axis and in the direction of M. As yet we do not know if
y =)', but the observers in both reference frames conclude that the two
mirrors are parallel to one another and perpendicular to their common
X-X" axis. Since the mirrors are parallel, then so are the Y-Z and Y'-Z’
planes. Thus, in general, observers in different inertial frames of reference
see coordinate axes Y, Y', Z, Z' as being perpendicular to the X-X" axis.
Since our systems S and S’ coincided at time 7 = ¢’ = 0, in addition to
being perpendicular to the axis of relative motion Y'is parallel to Y’ and,
likewise, Z and Z’ are parallel. In general, this need not be true for inertial
systems that are not moving along a common axis; however, all inertial
observers having a common axis of relative motion will view any length
measurement made perpendicular to their common axis as being normal
to that axis.
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From the above discussion it is easy to argue that the distance of the
light beam above the X-X" axis is the same for observers in both systems
(i.e., y = »'). Obviously, since the light beam strikes M’ and is reflected
upon its incident path a distance y’ above the X’-axis, the value of y" meas-
ured in S’ must be the same as the value y measured in S. Suppose, how-
ever, that the light reflected from M’ strikes above the mirror M in system
S. An observer in the S frame of reference would surmise that his meter
stick was smaller than the meter stick in the S’ frame of reference. But,
according to Einstein’s first postulate, if an observer in S” were to send out
a beam of light from M’ parallel to the X-X" axis so as to be reflected from
M, he would conclude that /is meter sick was smaller than the meter stick
in system S. As illustrated in Figure 2.1, the two reflected rays for this hy-
pothetical case would necessarily cross. However, since light, propagating
at a constant velocity, travels in a straight line, parallel incident rays (in
our case they are coincident) are reflected from parallel plane mirrors such
that the reflected rays are parallel! Thus, there is a contradiction between
Einstein’s first and second postulates, which means that our initial suppo-
sition is in violation of nature’s law and, therefore, incorrect.

According to Einstein’s first postulate, any supposition made by an
observer in system S would necessarily be the same supposition made by
an observer in the S’ frame of reference. If the supposition violates any
known laws, like the first gedanken experiment or the fact that parallel
light rays never cross, then the supposition is wrong. An analogous argu-
ment shows the impossibility of a beam of light being emitted from M,
parallel to the X-X" axis, and reflected from M’ such as to return below
M. Consequently, the only possible conclusion is the one stated initially:
any length or coordinate measurement made perpendicular to the axis of rel-
ative motion has the same value for all inertial observers. This generalization
can be expressed as

Y=y Ay’ = Ay (2.1)

and 7=z Az = Az, (2.2)

which are two of the three Lorentz space-coordinate transformations.
Clearly, these are identical to the Galilean space transformations for the y,
y" and z, z’ coordinates. As yet, we do not know the relativistic spatial
transformation for the x, x’ coordinates and we should not, at this time,
make any assumptions regarding its form.
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Figure 2.2

The path of a vertical
pulse of light being re-
flected from a mirror in
S’, as viewed by ob-
serversin S’ and S.

2.3 Time Interval Comparisons

In this gedanken experiment, illustrated in Figure 2.2, we let the plane of
a mirror M’ be perpendicular to the Y’-axis at some distance Ay’ above
the origin of coordinates. An observer in S’ sends a light pulse up the Y’-
axis, where it is reflected upon its incident path by the mirror M’ and even-
tually absorbed at its point of origin O’. In accordance with Figure 2.2,
any S’ observer will measure the distance from O’ to M’ to be given by

, At 1 ,
Ay = c<7> = Lear, 2.3)

where At is defined as the time it takes the light pulse to travel from O’ to
M’ and back to O'.

Observers in the S frame of reference do not see the motion and path
of the light pulse in S’ as being vertical, since M’ (at rest relative to S') is
moving at a uniform speed u relative to their reference frame. Instead, they
observe the motion and path of the light pulse in S’ to be something like
the isosceles triangle depicted in Figure 2.2, where Az = ¢, — ¢, is the time
interval, according to S observers, for the light pulse to go from 4 to M’
to B. It should be obvious that, whereas S’ observers need only one clock
to measure the time interval A¢’, S observers need two clocks for their
measurement of the corresponding time interval Az. In system S,
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we need one clock at 4 and another at B, and since the two clocks are spa-
tially separated, it is essential that they be synchronized. Later, we will con-
sider a method by which clocks can be synchronized, but for now, we
simply assume the synchronization of clocks at 4 and B has been effected.
Clearly, At corresponds to the difference between the reading of the two
clocks at 4 and B in system S.

Viewing the left triangle of Figure 2.2 and invoking the Pythagorean
theorem, we have

(Ay)* + GuAl? = (zcAr),

which is easily solved for Ay in the form

Ay = %CAZ./I - B, (2.4)

where we have set

p=". (2.5)

Here, Ay is the vertical displacement of the mirror M’, as measured by
observers in system S. Now, using Equation 2.1 from the previous
gedanken experiment (Ay = Ay’) along with Equations 2.3 and 2.4, we
have

cAry1 - B = cAr. (2.6)

By defining
_ 1
v = 2.7
- p
and solving Equation 2.6 for A¢, we obtain
At = vyAt'. (2.8)

The result expressed by Equation 2.8 gives a comparison of time in-
tervals measured in two different inertial reference frames. The meaning
and implications of this result may need some elaboration. First, consider
that in the limit as u approaches ¢ in Equation 2.7 (remember B = u/c), v
approaches . However, for u << ¢, y approaches 1, and Equation 2.8 re-
duces to the Galilean transformation (Equation 1.29) in accordance with

Time Dilation
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the correspondence principle. Thus, the range of values for «y can be ex-
pressed as

I=y=o, 2.9)

which implies that A7 > A¢" in Equation 2.8 for u not small. That is, the
time interval Az measured between two events (emission and absorption
of the light pulse) occurring at spatially different positions in system S is
greater than the proper time A¢', which is the time interval measured in sys-
tem S’ between two events occurring at the same position. Because of the
factor y in Equation 2.8, At is greater than the proper time and is referred
to as a dilated time. Hence, the name time dilation that is normally associ-
ated with Equation 2.8.

It is important to keep in mind Einstein’s first postulate, because if
the experiment were performed in system S, observers in S" would con-
clude that A" = yAr. The significance of the time dilation result is that it
emphasizes how time interval measurements differ between inertial ob-
servers in relative motion, because of differing physical measurements. 4
time interval between two events is always shortest in a system where the
events occur at the same position and dilated by the factor v in all other in-
ertial systems. In solving problems associated with the time dilation equa-
tion, it is most convenient and less confusing to identify the proper time
as occurring in the primed system, with the dilated time then given by
Equation 2.8 for the unprimed inertial system. As the concept of time di-
lation is most incredible, a few examples will be presented in an attempt
to clarify the subtleties of the phenomenon.

If you believe the secret of eternal youth is in keeping on the move,
you are not far from wrong. In fact, time dilation predicts that if you have
a twin, your biological clocks will be different, if one twin is traveling uni-
formly at a relativistic speed (e.g., u > 0.4c¢) relative to the other. For ex-
ample, consider that at age twenty you take off in a rocket ship traveling
at 0.866 the speed of light. You leave behind a younger brother of age ten
and travel through space for twenty years (according to your clock). When
you return home, at age forty, you will find your kid brother to be fifty
years old! He will have aged by Az = 40 years, while you have aged by only
At =20 yrs. That is, time dilation gives

At = yAr' = (20 yrs)/ /1 — (.866¢/c) = 40 yrs.

As compared to your brother, your biological clock and aging process was
slowed by the time dilation effect. It should be emphasized that time dila-
tion is a real effect that applies not just to clocks but to time itself—time
flows at different rates to different inertial observers.
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Other time dilation effects have been observed in laboratories for the
lifetimes of radioactive particles. As a particular example, consider the
decay of unstable elementary particles called muons (or mu-mesons). A
muon is observed in a laboratory to decay into an electron in an average
time of 2.20 X 10° sec, after it comes into being. Normally, muons are
created in the upper atmosphere by cosmic ray particles and travel with a
uniform mean speed of 2.994 X 10* m/s = 0.9987¢ toward the earth’s sur-
face. In their lifetime, the muons should be able to travel a distance of

s = ult = (2.994 X 10° %)(2.20 X107 s) = 659 m,

according to the laws of classical kinematics. Since they are created at al-
titudes exceeding 6000 m, they should rarely reach the earth’s surface. But
they do reach the earth’s surface and in profusion—approximately 207
muons per square meter per second are detected at sea level.

The muon paradox is immediately resolved, if we take time dilation
into account. According to observers in the earth’s reference frame, the
muon’s proper mean lifetime is At' = 2.20 X 10~%s. The mean time that we
observe the muons in motion is a time dilated to the value

—6
A= yAr = 220X10°°s
I <0.9987c>2
C
= 431X 10 s.

Thus, according to Einstein’s postulates, the muons should (and do) travel
a mean distance of

Ax = uAt = (2994 X 10° %)(43.1 X 10°s) = 1.29 X 10* m

in our reference frame.

2.4 Lengths Parallel to the Axis
of Relative Motion

Consider the situation schematically illustrated in Figure 2.3, where ob-
servers in S’ have placed a mirror M’ perpendicular to their X’-axis at
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Figure 2.3

A horizontal pulse of
light being reflected
from a vertical mirror
in S', as viewed by ob-
servers in S.
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some distance Ax’ from the origin of their reference frame. In order to
measure the distance Ax’, they send out a light pulse from 4’ parallel to
the X’-axis such that it will be reflected by M’ back to A'. For generality
we will denote this distance by Ax’ and, thus, observers in S’ reason that

4 2Ax'
At'

c

where A¢’ is the time interval required for the light pulse to travel 4’ to
M’ and back to A'. Thus, the distance they measure between 4" and M’
is given by

Ax' = LcAt, (2.10)

where Az’ should be interpreted as a length measurement.

What do observers in system S measure, and how do they opera-
tionally perform the necessary measurements for the length in question?
First consider the motion of the light pulse from 4’ to M’ as viewed by
observers in the S-frame and depicted in Figure 2.4. Observers in system
S note the origination of the light pulse at point 4 at time 7. It propagates
to the right at the uniform speed ¢, while the mirror M’ moves to the right
uniformly at a speed u. At some later time 5, the observers in S will note
the light pulse striking the mirror M'. The two clocks in S record a time
difference of Az, = t; — t, and, thus, the light pulse must have traveled
the distance cAr,_ ;. With the distance from the origin of the Y’-axis to
the mirror M’ (as measured by S-observers) denoted by Ax, then Figure
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2.4 suggest that

Ax = (¢ — u)At,_p.
Thus, the time interval Az, is given by

Ax
c—u

Aty = 2.11)

Now, consider the motion of the light pulse from M’ back to the Y-
axis, as viewed by observers in system S. The situation, as depicted in Fig-
ure 2.5, suggests that the light pulse is reflected from M’ at point B at the
time 7. It then propagates to the left at the speed of light ¢, arriving at the
Y'-axis at point C and time t.. Of course, during the time interval
Aty = tc— tp, the S'-frame and mirror M’ were moving to the right with
constant speed u. In this case, the distance Ax in question is immediately
obtained from Figure 2.5 as

Ax = (¢ + u)Aty_.
Solving the above equation for the time interval Az, . gives

_ Ax
Atyc= 7 (2.12)

which is not the same as Az, ; as far as observers in system S are con-
cerned. These results also agree with classical common sense. That is, if

Figure 2.4

A horizontal pulse of
light propagating to-
wards a vertical mirror
in S', as viewed by ob-
servers in S.
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Figure 2.5

A horizontal pulse of
light being reflected
from a vertical mirror
in S’, as viewed by ob-
servers in S.
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the mirror and light pulse are traveling to the right, then the relative speed
between the light pulse and the mirror is ¢ — u and Equation 2.11 is im-
mediately obtained. On the other hand, if the mirror is moving to the right
while the light pulse is traveling to the left, then the relative speed of sep-
aration between the mirror and the light pulse is ¢ + «, which lead to Equa-
tion 2.12.

Let observers in S define the time interval Az as that time required
for the pulse of light in S’ to travel from 4’ to M’ and back to A4’, as
viewed in their reference frame.

Clearly, then

Ax Ax
At = Aty g+ Aty r = + )
ATB BC " ec—u c+u

which, when solved for Ax, yields

2
Ax = LeAr(1 - %) (2.13)
2 C2

Substitution of Equation 2.8 into Equation 2.13 gives
Ax = ~cAr'y(1 - B?), (2.14)

where Equation 2.5 has been utilized for 3. Now, from Equation 2.10 and
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2.14 we have the famous Lorentz-Fitzgerald length contraction equation
in the form

Ax = Ax' /1 — B?,

which simplifies to

Ax = 2%, (2.15)

by using the definition of y given by Equation 2.7. This equation describes
how length measurements made parallel to the axis of relative motion
compare between the two inertial frames of reference. In view of the result
in Equation 2.9, the length measurement obtained by S-observers on a
moving object is always less than the corresponding proper length measured
by S’-observers on the object at rest (i.e., Ax < Ax’), when u is not small
and the length of the object is parallel to the axis of relative motion. Since
Ax < AX', the terminology contraction is associated with Equation 2.15
and the name proper length is always associated with a length measured in
the rest frame of an object. For u << ¢ we have y = 1, and Equation 2.15
reduces to the Galilean transformation (Equation 1.26) in accordance with
the correspondence principle.

The length contraction phenomenon has also been verified in actual
laboratory experiments. For example, we can consider the muon paradox
by taking into account contracted displacements. From the point of view
of the muon, which is at rest relative to itself, it views the earth as traveling
toward it with a speed of u = 0.9987¢ for average time of Az = 2.20 X 10~°s.
Thus, the resulting displacement of the earth relative to the muon is

Ax = ulAt = 659 m,

which is a contracted length as measured by the muon. The proper length
(Ax' in the earth’s reference frame) would correspond to

_Ax
J1— B

Ax' = =1.29 X 10* m.

This result is in perfect agreement with that obtained by the time dilation
arguments, except for the interpretive meanings of Ax and Ax’ being re-
versed. Note that the primed variables still refer to proper time intervals

Length Contraction
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Figure 2.6

The synchronization of
two clocks at rest in
the S’ frame of refer-
ence, according to ob-
servers in system S'.

At" and length measurements Ax’, and the problem can be solved by Equa-
tions 2.8 and 2.15.

2.5 Simultaneity and Clock Synchronization

Consider the situation as depicted in the schematic of Figure 2.6, where
observers in S’ set up two identical clocks on the X’-axis that are spatially
separated by the distance Ax’. The origin of the S’ reference frame is lo-
cated at the midpoint between the clocks that are positioned at points 4’
and B'. A flash bulb at the origin of S’ is used to send out simultaneous
light pulses in the direction of 4" and B’ respectively, so that the clocks
can be started at the instant the light pulses strike. In this manner, ob-
servers in system S’ can be assured of their clocks being started at the
same instant in time (simultancously started) and thus synchronized for all
time.

The inquiry now is as to whether two events that appear to occur si-
multaneously to observers in S’ will be viewed as occurring simultaneously
to observers in S. Clearly, when the flash bulb goes off, light pulses are si-
multaneously propagating at the speed ¢ in the direction of 4" and B’. But
according to observers in S, A" is approaching a light pulse at the uniform
speed u, while B’ is receding from a light pulse at the speed u. As depicted
in Figure 2.7a, the observers in S notice the clock at 4’ being started at a
time ¢4, as recorded on their clock at position 4. But at that particular in-
stant in time, the observers in S do not notice the light pulse striking the

Y Y'(t)
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clock at B’, since the clock at B’ has been moving to the right at a constant
speed u. Instead, as suggested by Figure 2.7b, the clock at B" will be started
at a time later than ¢, = t, — t,, say ty = t; — t,, according to observers in
S. From Figure 2.7,

1Ax = (¢ + w)i,,

and observers in S conclude that the clock 4’ in S’ starts at time

whereas, the clock at B’ in S’ starts at a later time

Figure 2.7

The synchronization of
two clocks at rest in
the S’ frame of refer-
ence, according to ob-
servers in system S.
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Synchronization
Correction

l‘: .
B ec—u

We can call this discrepancy in time, as viewed only by observers in S on
events (the starting of the two clocks) occurring simultaneously in S’, a
synchronization correction term, 7,, and define it by

1 1
TSEI‘B—Z‘AZ%AX<C_M—C+M>- (2.16)

The algebraic simplification of Equation 2.16 gives the synchronization
correction as

~ Axu/c2.
1-p

(2.17)

T

S

Taking into account length contraction, as given by Equation 2.15, 7, can
be expressed in the more convenient form

_ Ax'ulc? . Ax'u
e — = 'y )

T E o

where the definition given in Equation 2.7 has been used in the last rep-
resentation. In Equation 2.18, Ax’ should be recognized as the proper dis-
tance between the two clocks in S’. It should also be noted that the
synchronization correction of Equation 2.18 is entirely different from the
previously discussed time dilation effect. Whereas synchronization is re-
lated to the nonuniqueness of simultaneity to different inertial observers,
time dilation has to do with differing time interval measurements between
two events by different inertial observers. For the meaning of the former,
consider clocks in both reference frames to be identical and initially started
at the same instant in time (say at the instant when both reference frames
were coincident), such that all clocks are initially synchronized. Later on
in time, we can say that all clocks in S are still synchronized and likewise
for all clocks in S’, but the clocks in S are no longer synchronized with the
clocks in S'. There is a synchronization correction resulting from the mo-
tion of separation between the two sets of clocks.

The form of Equation 2.18 can be varied to a still more convenient
one by taking out the time dilation effect. That is, since

(2.18)

At = yAr,
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we can write
T, = YT, (2.19)

where, in accordance with Equation 2.18,

T = . (2.20)

7, must be interpreted as the time discrepancy expected by observers in S
to exist between the two S’ clocks according to observers in S'! It should
be emphasized that from the point of view of the S frame of reference,
observers in S’ should see the clock at A’ leading to the clock at B’ by the
time T,; but, according to observers in S’, there is no time discrepancy be-
tween the two clocks in S’. Think about the meaning of this in relation to
Equation 2.19, when you consider the problems at the end of the chapter.

2.6 Time Dilation Paradox

According to Einstein’s first postulate, all inertial systems are equivalent
for the formulation of physical laws. This principle, combined with time
dilation considerations, means that observers in any one inertial system
will consider their own clocks to run faster than clocks in any other inertial
system. This presents an apparently paradoxical situation, since observers
in two different inertial systems view the other’s clocks as running slower.
As a particular case in point, consider Homer and Triper to be identical
twins. Homer remains on the earth (home), while Triper travels to a distant
planet and back at a relativistic speed. Because of time dilation, Homer
considers his biological clock as being faster than Triper’s and concludes
that he will be older than Triper when Triper returns from his voyage. But,
while Triper was traveling at a constant speed away from or toward the
earth, he regarded himself as stationary and the earth as moving. As such,
he would consider Homer’s clock to be slower than his and would expect
Homer to be younger than he is when he returns home. It is paradoxical
to Triper to find that Homer is older than he when he returns to earth.
The paradox arises from the seemingly symmetric roles played by the twins
as contrasted with their asymmetric aging.

To particularize this example, let planet P be 20 light years (abbrevi-
ated as c-yrs) from, and stationary with respect to, the earth. Further, let
the acceleration and deceleration times for Triper be negligible in compar-
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Figure 2.8
The aging of Triper as
viewed by Homer.

ison to his coasting times, where he has the uniform speed of 0.8¢. Actu-
ally, a detailed treatment of this problem would require the inclusion of
accelerating reference frames, a topic requiring the general theory of rela-
tivity. However, we will attempt to gain some insight into this problem by
using the synchronization disparity of moving clocks.

Consider the situation as depicted in Figure 2.8, where Triper is il-
lustrated in system S’ as either receding or approaching the earth at the
uniform speed of 0.8c. Homer considers himself at rest and calculates the
time required for Triper to go from the earth (E) to the planet (P) as

Since the return trip would take the same time, Az, _p = 25 yrs, then Homer
would age by

Aty = Atg_p + Atp_p = 50 yrs

during Triper’s voyage. But, according to Homer, Triper’s clock would reg-
ister a time change of only

Aty = Aty y1 — B* =(50yrs)(0.6) = 30 yrs.

Thus, Homer concludes that he will be 20 yrs older than his twin when
Triper returns from the voyage.

From Triper’s point of view, the distance from the earth to the planet
is contracted to the value

—— u = 0.8¢

©  Triper

()
' Homer

g
e Ax=20cyrs }
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as suggested by Figure 2.9. Here, of course, Triper considers himself in
the stationary system S and Homer in the moving system S’. Accordingly,
for u = 0.8¢ we have

and the total time required for his trip would be
Aty = Atg p + Atp g = 30 yrs,

which is exactly what Homer predicted for Triper’s time. But, the real prob-
lem is that Triper does not understand why Homer would age by 50 yrs.
After all, Triper considers himself at rest in his system and Homer to be
moving, which means that Homer’s clock measures proper time. Thus, for
30 yrs to pass on Triper’s clock, Homer’s clock should record only

Aty = Aty /1 — B> = (30 yrs)(0.6) = 18 yrs,

which is of course the real paradox.

To understand this apparent discrepancy, let there be a clock on the
Planet P that is synchronized with Homer’s clock on the earth E. To Triper
these clocks are unsynchronized by the amount.

Ax'u (20 c-yrs)(0.8¢)
Tl = = =16 yrs.
c’ c’

This means that when Triper is approaching the planet, the planet-clock
leads the earth-clock by 16 yrs. When Triper momentarily stops at P, he is
in the same reference system as the earth-planet system and observes the

Figure 2.9
The aging of Homer as
viewed by Triper
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E-clock and P-clock to be synchronized. This means that in the decelerat-
ing time required for Triper to slow down to a stop (assumed negligible
for Triper), the E-clock must have gained a time of 16 yrs. Of course, as
Triper is returning home, he is approaching the earth and the E-clock leads
the P-clock by 16 yrs, suggesting to Triper that the E-clock gained another
16 yrs while he was accelerating up to the 0.8c speed. When he lands on
earth, the P-clock is synchronized with the E-clock, indicating that the P-
clock gained 16 yrs while Triper was decelerating to a stop. When Triper
takes the total synchronization correction time into account, he realizes
that Homer must have aged by

Aty =18 yrs + 16 yrs +16 yrs = 50 yrs,

while he has aged by only 30 years. This result predicted by Einsteinian
relativity becomes nonparadoxical only when the asymmetric roles of the
twins is properly taken into account. Homer and Triper realize that the
one (Homer) who remains in an inertial frame will age more than the one
(Triper) who accelerates.

Review of Derived Equations

A listing of the derived equations in this chapter is presented below, along
with new defined units and symbols. Not included are the well-known defi-
nitions of kinematics.

EINSTEIN’S POSTULATES

1. Classical Principle of Relativity
2. Invariance of the Speed of Light

DEFINED UNITS

c-yrs Distance
SPECIAL SYMBOLS
_u
P=c
_ 1
Y=
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DERIVED EQUATIONS

At = yAr Time Dialation

Ax = Ax Length Contraction

T, = Ax'y Synchronization Correction
c

2.1 Find the value of vy for u = (0.84)"c, u = 0.6¢, u = 0.8¢, and u =
0.866c¢.

Solution:
From Equations 2.5 and 2.7 we have
’Y . ;’
v1—u¥c?
so direct substitution for u gives
J1-084 o016 04 2
J1-036 Y064 08 4
v = 1 _ 1 _ 1 _ §’
J1-064 036 06 3
PR S B B
J1-075 V025 05

2.2 Express vy as a series, using the binomial expansion.
Answer: y=1+ 1>+ ip* + ...

2.3 Two inertial systems are receding from one another at a uniform speed
of 0.6¢. In one system a sprinter runs 200 m in 20 s, according to his stop-
watch. If the path of the sprinter is perpendicular to the axis of relative
motion between the two systems, how far did the sprinter run and how
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long did it take him, according to observers in the other inertial system?

Solution:
Given u =0.6¢, Az’ =200m, At' = 20s, and Az = Az’ = 200 m, ac-
cording to Equation 2.2. With B = u/c = 0.6, -y can be computed with
Equation 2.7,

’

|

1-p
and Equation 2.8 immediately yields
At =yAr' = (2)(20s) = 255s.

2.4 Consider Problem 2.3 for the situation where the path of the sprinter
is parallel to the axis of relative motion between the two systems.

Answer: 160 m, 25 s
2.5 An observer moves at 0.8c¢ parallel to the edge of a cube having a

proper volume of 15° cm®. What does the observer measure for the volume
of the cube?

Solution:
Withu=0.8c >y =15/3,Ay = Ay’ = 15cm, Az = Az’ = 15 cm, and
Ax' = 15cm,
AX_%__IScng m
Y 5/3

Accordingly, the volume measured by the observer is
V = AxAyAz = (9 cm)(15 cm)(15 cm) = 2025 cm’.

2.6 Two inertial systems are uniformly separating at a speed of exactly
V0.84c¢. In one system a jogger runs a mile (1609m) in 6 min along the
axis of relative motion. How far in meters does he run and how long does
it take, to observers in the other system?

Answer: 643.6 m, 15 min
2.7 Consider two inertial systems separating at the uniform speed of 3¢/5.

If a rod is parallel to the axis of relative motion and measures 1.5 m in its
system, what is its length to observers in the other system?

Solution:
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Using u = 3¢/5 — vy =5/4 and the proper length as Ax" = 1.5 m,

2.8 The proper mean lifetime of mr-mesons with a speed of 0.90c¢ is 2.6 X
107 s. Compute their average lifetime as measured in a laboratory and
the average distance they would travel before decaying.

Answer: 6.0 X 107 %s, 16 m

2.9 A meterstick moves parallel to its length with a uniform speed of
0.6¢, relative to an observer. Compute the length of the meter stick as
measured by the observer and the time it takes for the meter stick to pass
him.

Solution:
Withu = 0.6¢c > vy = 5/4 and Ax’ = | m,
Ax = Ax" _1m _ 0.8 m,
Y 5/4
Ar = B V! ~44%X107°s.

u (0.6)(3 X 10® m/s)

2.10 Two inertial systems are separating at the uniform rate of 0.6¢. If in
one system a particle is observed to move parallel to the axis of relative
motion between the two systems at a speed of 0.1¢ for 2 X 10> s, how far
does the particle move, according to observers in the other system?

Answer: 480 m

2.11 How long must a satellite orbit the earth at the uniform rate of 6,711
mi/hr before its clock loses one second by comparison with an earth clock?

Solution:
With knowledge of u = 6,711 mi/hr = 3 X 10° m/s and At — At =1
s, we need to find A¢'. Since
At — At = yAt' — At = At'(y — 1),
the proper time can be expressed as

_Ar A" 1s
v —1 v —1
Unfortunately, since u is very small compared to the speed of light, y

in the last expression is very nearly one. To avoid this difficulty, we
use the result obtained in Problem 2.2,

At
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1
~1+ =p°
Y 28

and substitute into the previous expression to obtain

A = 11—;2 = 2u—cj(1 ).
2

Using ¢ = 3 X 10* m/s and the value for u gives

At =2 X 10"s = 634 yrs.

2.12 What must be the relative speed of separation between two inertial
observers, if their time interval measurements are to differ by ten percent?
That is, for (Ar — At')/At" = 0.10, find u.

Answer: 0.417¢

2.13 What must be the relative speed of separation between two inertial
systems, for a length measurement to be contracted to 0.90 of its proper
length?

Solution:
For this situation

Ax = 0.90Ax’ — A;“ = 0.90Ax".

Therefore, from the definition y we have

Yy1—=p =090 —>1-p*=0.81—p>=0.19.
Since B = u/c, u = 0.436¢.

2.14 A flying saucer passes a rocket ship traveling at 0.8c and the alien
adjusts his clock to coincide with the rocket pilot’s watch. Twenty minutes
later, according to the alien, the flying saucer passes a space station that is
stationary with respect to the rocket ship. What is the distance in meters
between the rocket ship and the space station, according to (a) the alien
and (b) the pilot of the rocket ship?

Answer: 2.88 X 10" m, 4.80 X 10" m
2.15 Consider the situation described in Section 2.5, with the distance

between A’ and B" in S’ as 100 c-min. With u = 0.6¢, compute the distance
between the clocks at A" and B’, as measured by observers in system S.
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Further, if stopwatches in S are started at the instant the flashbulb in S’
goes off, show that a stopwatch in S reads 25 min when the light flash
reaches 4’ and another reads 100 min when the light flash reaches B’.

Solution:
With u = 0.6¢ — y = 5/4 and the proper length given as Ax’ = 100 c¢-
min, then
Ax = Ax’ _ 100.cmin _ 80 c-min,
Y 5/4
1
LAy .
¢, = 2 _ 40 cmin _ 56 min .,
c+u 1.6¢
1
7Ax .
(=2 =40cmin _ 50 i
c—u 0.4c

2.16 According to observers in system S of Problem 2.15, how much time
elapses between the activation of the two clocks in S’? How much time do
they expect to have elapsed on the clock at 4’ in S, when the B’ clock is
activated?

Answer: 75 min, 60 min

2.17 Two explosions, separated by a distance of 200 c-min in space, occur
simultaneously to an earth observer. How much time elapses between the
two explosions, according to aliens traveling at 0.8c parallel to a line con-
necting the two events?

Solution:

With proper distance between the explosions being measured by the
earth observer, we have Ax" = 200 ¢-min and u = 0.8¢ — vy = 5/3.
Thus, the aliens see the explosions occurring a distance of

apart, during the time interval

T, — 5

Ax'u _ (5) (200 ccmin)(0.8¢c) 800 .
= (—) = —— min
C

3 c?

2.18 How much time will the aliens of Problem 2.17 expect to have
elapsed, on an earth clock, between the occurrence of the two explosions?
Is this time interval equal to that measured by the earth observer?
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Answer: 160 min, No

2.19 Two inertial systems are uniformly separating at a speed of 0.8¢. A
gun fired in one system is equidistant from two observers in that system.
Both observers hear the shot 6 s after it was fired and each raises a flag. If
the speed of sound in that system is 300 m/s, how much time elapses be-
tween the occurrence of the two events (raising the flags), according to
observers in the other system?

Solution:

In this problem we know u = 0.8¢ — vy = 5/3, At' = 65, and v, = 300
m/s. The question is answered by finding T,, which requires that we
first compute Ax’. Accordingly,

A = vl At = (300 %)(6 s) = 1800 m,

which results in
Ax’ = 3600 m
Ax'u _ /5\ (3600 m)(0.8¢c)

7 (—) ~16 X 10 s.
c? 3/(3 X 10% m/s)(c)

2.20 Consider the situation described for Homer and Triper in Section
2.6, with u = 0.6¢ and the distance between the earth and planet 9 ¢-yrs.
How many years will Homer and Triper age, during Triper’s voyage?

Answer: 30 yrs, 24 yrs
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CHAPTER 3

Transformations of Relativistic Kinematics

A galaxy cluster in the foreground with lensed galax.ies in
the background displaying varying degrees of redshift.

The velocity of light forms the upper limit of velocities for all mate-
rial bodies. ... The simple mechanical law of adding and subtracting
velocities is no longer valid or, more precisely, is only approximately
valid for small velocities, but not for those near the velocity of light.
A.EINSTEIN AND L. INFIELD, The Evolution of Physics (1938)

Introduction

The initial consideration of Einsteinian relativity in the preceding chapter
was based totally on two fundamental postulates and basic physical rea-
soning (logic) applied to several gedanken experiments. The results ob-
tained for time dilation and length contraction were in stark contrast to
the time interval (A7 = At¢’) and length measurement (Ax = Ax’) trans-
formation equations predicted by Galilean relativity in Chapter 1. It was
demonstrated, however, that these two relativistic effects reduced exactly
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to their classical counterparts under the correspondence principle, and we
can expect any extensions of Einsteinian relativity in kinematics and dy-
namics to reduce to their corresponding classical transformation, when
the relative speed between two inertial systems is small compared to the
speed of light.

Since the classical time interval and length measurement transforma-
tion equations were a direct consequence of the Galilean space-time co-
ordinate transformations, Equations 1.25a and 1.25d, then the results of
the last chapter clearly illustrate the inconsistency of the Galilean trans-
formations with the basic postulates of Einstein’s special theory of rela-
tivity. As such, we need a new set of space-time coordinate transformation
equations capable of relating the position and time variables x, y, z, and ¢
of an event measured in one coordinate system with the coordinates x’,
y',z',and ¢’ of the same event as measured in another system, when there
is uniform relative motion between the two systems. The correct spatial
transformations are obtained in the next section by incorporating the
length contraction effect with physical arguments similar to those pre-
sented in Section 1.3. The relativistic temporal transformation equation
is then directly obtained from either the spatial transformations or by
qualitative arguments combining time dilation and synchronization phe-
nomena. After the relativistic coordinate transformations are fully devel-
oped and compared with the corresponding classical transformations, the
relativistic kinematic transformation equations for velocity and accelera-
tion are derived from first principles in a manner similar to that presented
in Chapter 1. Finally, the relativistic Doppler effect for transverse electro-
magnetic waves is considered using arguments analogous to those pre-
sented in the development of the classical Doppler effect for sound waves.

3.1 Relativistic Spatial Transformations

To develop the relativistic spatial transformation equations, we consider
two inertial systems S and S’ to be separating from one another at a con-
stant speed u along their common X-X" axis. As always, we allow that the
origins of S and S’ coincided at time ¢ = ' = 0 and that identical clocks
in both systems were started simultaneously at that instant. To avoid any
conflict with the concept of simultaneity, the spatial coordinates of the
clocks in both systems should be identical (x = x’, y = ', and z = z’) at
the instant = ¢/ = 0, so that we are comparing two clocks at the same
point in space. Now, consider a particle moving about in space being
viewed by observers in both systems S and S’. The immediate problem is
to deduce the relation between the S-coordinates (x, y, and z) and S’-co-
ordinates (x’, y’, and z') of the particle’s position at an instant ¢ > 0 in
time. From the results given by Equations 2.1 and 2.2, we know the rela-
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tions y = y’ and z = z’ are valid for all of time. This suggests that the phys-
ical considerations for the particle being viewed can be simplified by al-
lowing y =y’ =0and z = z’ = 0 at some instant > 0 in time. Accordingly,
Figure 3.1 depicts the position of the particle on the X-X' axis at point P
in system S and at point P’ in system S’. The relation between the coordi-
nates x and x’ will obviously depend on the frame of reference assumed,
so each point of view will be considered separately.

The point of view of observers in system S is illustrated in Figure
3.1a by length measurements given below the X-X" axis. The particle’s
nonzero space-time coordinates are denoted as x and ¢, where the coordi-
nate ¢ represents the time that has elapsed on a clock in system S after the
two systems coincided. Consequently, observers in S would measure the
distance of separation between their origin O and the origin O’ as uz, while
the distance between O’ and P’ would be viewed as being contracted to
the value x'/v. Thus, from Figure 3.1a observers in S conclude that

X' =y (x —ut), (3.1a)
Y=y, (3.1b)
z' =z, (3.1¢)
Y Y
0 0’ P
| x’ = AX
ut | T
(a) !
Y Y
0 0’ P
- ‘ : o= X' X
ut i X
(b) -

S— S’

Figure 3.1

The spacial x-coordi-
nate transformations
from (a) Sto S’ and
(b)S'to S.
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S"—=S

are the correct set of relativistic transformation equations for spatial co-
ordinates, where the latter two were previously obtained and noted as
Equations 2.1 and 2.2, respectively. These equations constitute part of
what is commonly called the Lorentz transformation, with the other part
being the relativistic relation between ¢" and ¢. They were first derived by
H. A. Lorentz; however, it was not until a number of years later that their
real significance was fully understood and explained by Einstein. Since vy
=~ 1 in the limit of small «, these relativistic transformations reduce exactly
to the Galilean transformation given by Equations 1.24a through 1.24c.

Observers in system S’ can also deduce a set of spatial transformation
equations, as suggested by the geometry given in Figure 3.1b. At that in-
stant in time ¢ > 0 when the particle is on the X" axis, observers in S’ view
the distance from O’ to P’ as x', the distance from O’ to O as ut’, and the
distance from O to P as contracted to the value x/vy. Accordingly, their spa-
tial transformation equations are of the form

x=v(x"+ut), (3.2a)
y=y, (3.2b)
z=17z, (3.2¢)

It should be noted that these equations are just the inverse of Equations
3.1a to 3.1c, which can be obtained from the first set by replacing primed
with unprimed variables and vise versa, and by replacing u with —u. Again,
these equations reduce to the ordinary classical transformations, Equa-
tions 1.25a to 1.25¢ , when the relative speed of separation u between S
and S’ is small compared to the speed of light ¢. To complete our discus-
sion of the space-time Lorentz transformation, the next section considers
the manner in which time coordinates in S and S’ transform.

3.2 Relativistic Temporal Transformations

The correct relativistic relation between the time coordinates 7 and ¢' of
systems S and S’ is easily obtained by direct qualitative arguments com-
bining the effects of time dilation and synchronization. Since all clocks in
both systems were simultaneously set to the value of zero, at that instant
when the two systems coincided, then all clocks in both systems are ini-
tially synchronized. However, after that instant the clocks in system S are
no longer synchronized with the clocks in system S’ (recall Section 2.5), be-
cause of the relativistic motion between the two systems. Now consider a
stationary clock in system S’ to be located at point P in system S, at that
instant in time when the particle is on the X-X" axis. The clock in S" at P’
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is unsynchronized with the clock in S at P by the amount 7,. Further, any
time measurement made in S” will correspond to a dilated time in system
S. Combining these arguments with the fact that T, = (7))gieq SUgZESES that
a time measurement of 7 in system S corresponds to a time measurement
of ' in S’ being increased by the amount 7, and the resulting total time
being dilated. That is,

1= (" + T))ditatea
or t=vy(t +1)). (3.3)

Substitution of Equation 2.20 into Equation 3.3, with Ax’ being replaced
appropriately with x’, gives the more fundamental result

r=vy (f + ’;“) (3.4)

This is the correct relativistic time coordinate transformation equation that
constitutes the other part of the inverse Lorentz transformation referred to
in the previous section. It gives the relation between the measurement of
the time coordinate of an event occurring in S’ to the corresponding meas-
urement made on the same event occurring in S by an observer in system
S’. From the point of view of an observer in system S, the time coordinate
transformation is of the form

=y (z - Xij) (3.5)

c

and is just the inverse of the relation expressed by Equation 3.4. These re-
sults are clearly different from the classical results given by Equations
1.25d and 1.24d, respectively; however, they obviously reduce to their clas-
sical counterparts in the limit that u is small compared to the speed of
light c.

The relativistic time transformation equations, obtained above by
qualitative arguments, can be easily derived by combining Equations 3.1a
and 3.2a. From the point of view of an observer in system S, we desire a
relativistic equation for ¢’ in terms of unprimed coordinates x and ¢. This
is directly accomplished by solving Equations 3.1a and 3.2a simultane-
ously to eliminate the variable x’. That is, substitution of Equation 3.1a
into Equation 3.2a gives

x =y[y & — ut)+ ut')

= v*(x — ut) + yut',

S"—S

S>>
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which can be solved for ¢' in terms of x and ¢ as

A S
t i (x — ut)
- x
=yt + i "
=y (t + Lz ﬁ)
uy
x(1
= _|_ bl .
v+l ) a0
From Equations 2.5 and 2.7
1
RS - —1 (3.7)
1 — u’lc?
thus 1/ is simply given by
iV o u’

With Equation 3.8 substituted into Equation 3.6 we have

x/ u’
r=oy r+ Y= 1|
' y[t M( c2>]

which immediately reduces to the result given by Equation 3.5,

= <t - %) (3.5)

The result expressed by Equation 3.4 is obtained by a similar procedure,
that is, Equation 3.2a is solved for x and substitution into Equation 3.1a,
and the resulting equation solved for ¢ in terms of ¢' and x'.

3.3 Comparison of Classical and Relativistic
Transformations
The relativistic space-time coordinate transformations have been developed

in the previous two sections from fundamental considerations. These re-
lations are known as the Lorentz or Einstein transformations and will be
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S'>S
Coordinate Transformations

Lorentz-Einstein Galileo-Newton
x=vy(x"+ ut) x =x"+ ut'
y=y y=y
z=7 ) z=7

D XU L
t=x (z + c—z) t=t

tabulated below in a concise and informative manner and compared with
the analogous Galilean transformations of classical mechanics.

Consider the occurrence of a single event in space and allow coordi-
nate measurements to be made by an observer in system S and, likewise,
by an observer in S’. The Lorentz transformation representing how an ob-
server in S’ relates his coordinates (x’, y', z’ and ¢') of the event to the S
coordinates (x, y, z, and 7) of the same event, is compared with the
Galilean transformation in Table 3.1. Although it should be obvious from
our discussion of Einsteinian relativity, it merits emphasizing that it is the
relativistic Lorentz transformations that are uniquely compatible with Ein-
stein’s postulates and, therefore, supersede the classical Galilean transfor-
mations. Another important observation is that for u << ¢, y = 1, and the
relativistic (Lorentzian-Einsteinian) equations reduce exactly to the clas-
sical (Galilean-Newtonian) transformations.

As indicated in the derivational sections, the inverse transformation
equations to those presented in Table 3.1 are easily obtained by replacing
unprimed coordinates with primed coordinates and vise versa, and by sub-
stituting —u for u. That is,

x—>x" while x"—x, y—y while y —y
z—> z while z' — z, t—t while ¢ — ¢t

uUu—">-—u.

Table 3.2 illustrates the results of applying these operations, thus giving
the coordinate equations for the transformation of measurements on an
event from S to S’. As before, the inverse Lorentz transformation equa-
tions reduce exactly to the inverse Galilean transformations for u << c.
The equations in Tables 3.1 and 3.2 represent the most fundamental
transformations allowable by nature for problems involving the relative
motion of inertial systems. It should be noted that these transformations
are universally applicable in inertial systems; whereas the Galilean-New-
tonian transformations are only good approximations to physical reality

TABLE 3.1

A comparison of the
relativistic and classical
space-time coordinate
equations for the trans-
formation of measure-
ments from S’ to S.
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TABLE 3.2

A comparison of the
relativistic and classical
space-time coordinate
equations for the trans-
formation of measure-
ments from S to S'.

S—> 8
Coordinate Transformations
Lorentz-Einstein Galileo-Newton
x'=y(x — ul) x'=x—ut
y =y y =y
7=z 7 =g
t/ _ (Z _ ﬂ) [’ =7
= g/ 2

when u << ¢. Unlike the Galilean-Newtonian transformations and classi-
cal mechanics, the Lorentzian-Einsteinian transformations predict an
upper limit for the speed of a particle or system. This results from the

mathematical form of y = 1 /v1 — u¥/c? being real for u << ¢ and imag-
inary for u > c. Consequently, for vy imaginary the transformation equa-
tions have no physical interpretation, and thus ¢ must be viewed as the
upper limit for the speed of any physical entity. Furthermore, it should be
emphasized that this speed limitation in nature is entirely consistent with
Einstein’s first postulate that required all inertial systems to be equivalent
with respect to physical measurements. Otherwise, for # > ¢ an event, and
the coordinate measurements associated with it, would be real and observ-
able in one inertial system but imaginary or unobservable in another.

An appreciation and understanding of the Lorentz transformation
equations are best attained by an application of theses relations to basic
problems. Having available two sets of transformation equations tends to
be confusing to beginning students, until it is realized that the two sets are
in essence the same equations. Since all space-time coordinate variables
for both systems S and S’ are contained in each set of transformations,
knowledge of either set should be sufficient for solving any physical prob-
lem. To be specific, suppose you know the values of x’, #' and u and wish
to find the values of x and ¢. Certainly, the easiest approach would be to
employ the Lorentz equations of Table 3.1; however, those in Table 3.2
will suffice. You need only replace x’, ¢’, u, and vy in the first and last equa-
tion with their known values, and then solve the resulting equations si-
multaneously for x and ¢. The results for x and ¢ obtained by this
procedure will be identical to those predicted by the equations of Table
3.1. To prove part of this last statement, we need only solve the equation

for r =
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substitute into the equation

u CZ
_W(_wy
u C2 u
_ox X
_—— T —
yu U

for x to obtain
x=vy(x"+ut).

In a similar manner the equation

t=y<t'+xczu>

is directly derived from the Lorentz relations for x" and ¢’ given in Table
3.2. The important point to remember in using the Lorentz transformation
is that proper time and proper length measurements were originally asso-
ciated with the S’ system, where the experiment of interest was always con-
sidered to be stationary. Although it may be unnecessary, it tends to be
more convenient and less confusing to identify proper time and proper
length measurements with the S’ system. The following examples should
help clarify this point and further decrease any confusion surrounding the
two sets of transformations.

Imagine two events as occurring at the same position in a frame of
reference at two different instances in time. Using the Lorentz time coor-
dinate transformation equation, show that in any other frame of reference,
the time interval between the events is greater than the proper time by the
factor +y. In this problem, we choose S’ as the system where the two events
occur at the same position at instants ¢ and #;. Thus, with

X —xi=x"—>Ax"=0
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and the S’ — S (Table 3.1) Lorentz time transformation

!
t=’y<t’+ x;/t>’
c

we immediately obtain

At (At 4 M) = AL
C

which is the time dilation result given by Equation 2.8. This same result
can be obtained using the S — S’ space-time transformations (Table 3.2)

in the form
x' =y (x —ut) = Ax' =y (Ax — ulr), (3.92)
=y (t ~ x—i‘) — A’ = <At Ax;‘) (3.9b)
* c

Again, with proper time being defined in system S’, Ax" = 0 and Equation
3.9a gives

Ax = uAr. (3.10)

Now, substitution of Equation3.10 into Equation 3.9b gives the expected
time dilation equation, that is

AF —7<At Atu)
2
=’yA[<l—u—2>
c
_ YA Ar
vy

It should now be apparent that either set of Lorentz transformations
can be utilized with equivalent and relative ease in solving physical prob-
lems. The results obtained by either set will be correct and entirely consis-
tent with the point of view assumed. In the above example, we knew
At’" = t; — t; would be the proper time interval and that At = ¢, — ¢, would
be a dilated time interval, since we allowed S’ to be the system where the
two events occurred at the same position. If we had assumed S to be the
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system where x; = x, for two events, then ¢, — ¢, would be the proper time
and t5 — t{ would be dilated by the factor vy, as the equation

At = yAt

would be directly obtained by either set of Lorentz transformations.
Length contraction is also directly obtained from the Lorentz transforma-
tions, and is considered, along with other examples, in the problems at the
end of the chapter.

3.4 Relativistic Velocity Transformations

In the last section we observed that the Lorentz transformation equations
predict an upper limit for the speed of a particle. This result is also pre-
dicted by the relativistic transformation equations for velocity compo-
nents, which will be derived by the same mathematical procedure used in
obtaining the Galilean velocity transformations in Chapter 1. We consider
a particle moving in a rectilinear path with constant velocity and being
viewed by observers in two inertial systems S and S’. In system S the par-
ticle is observed to be at position x;, y;, and z, at time #, and at x,, y,, and
z, at time 7,, while in system S’ the initial coordinates of the particle are
denoted as x{, yi, z{, and #{ and the final coordinates as x3, y5, z5, and 7.
The relativistic velocity transformations can be derived from the Lorentz
space-time transformation by using the definition of either average velocity
or instantaneous velocity, and each derivation will be considered separately.

To observers at rest in system S, the x-component of average velocity
is defined as the ratio of displacement x, — x, to the corresponding time
interval ¢, — ¢,. But the position x, of the particle at time ¢, in S corre-
sponds to the position

xXi =y (x; — uty) (3.11)
at time
[ = 'y(tl - %) (3.12)

in system S’, according to the Lorentz transformation of Table 3.2. Like-
wise, the particle’s position x, at time 7, in S corresponds to position

X3 =y (X — uty) (3.13)
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S-S’

at the instant in time
XU
= y<t2 - %) (3.14)

in S’, according to measurements made by observers in system S. Sub-
tracting Equation 3.11 from Equation 3.13 gives the horizontal displace-
ment of the particle in S’ as

Ax" = y(Ax — ulr), (3.15)
which occurs during the time interval

AP =y (At - A’Z”) (3.16)
C

obtained by subtracting Equation 3.12 from Equation 3.14. The particle’s
x-component of average velocity in system S’ is measured by observers in
S to be

g, = Ax Ul _ZAZ’ (3.17)
At [ 6 XU
C2

which is obtained by dividing Equation 3.15 by Equation 3.16 and using
the definition

v = A‘x,.
) At

(3.18)

As the x-component of average velocity observed in S is simply
Ux = Ax/At, division of the numerator and denominator of Equation 3.17
by At gives the relation between U, and U. as

= Ux — U .
v . (3.19)

C2

This is the relativistic velocity transformation equation for the motion of
a particle parallel to the common X-X" axis, as measured by observers in
system S. The relativistic transformations for the y and z components of
velocity are easily obtained by this same procedure. It is obvious from the
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Lorentz transformation of Table 3.2 that during the time interval Az the
particle’s displacements parallel to the y and z axes in S are related to its
displacements in system S’ by the equations

Ay = Ay and Az = Az

Division of these relations by Equation 3.16 immediately yields

U, =— (3.20a)

and U= —s (3.20b)

where the definition of average velocity for each of the spatial coordinates
had been appropriately utilized.

The velocity-component transformations given by Equations 3.19,
3.20a, and 3.20b were derived by using the definition of average velocity.
However, similar relations (with average velocities replaced by instanta-
neous velocities) are obtainable by employing the definition of instanta-
neous velocity, after taking the differential of each Lorentz transformation
equation in Table 3.2. The results obtained are

v, == (3.21a)
1_
CZ
v,/
o =2 (3.21b)
’ V.U
1_
CZ
,  uly
o = (3.21¢)
1_
C2

which are identical to the previous transformations with average velocities
being replaced by instantaneous velocities. To illustrate the procedure used
in obtaining these results, we ill derive the inverse velocity transformation
equations by adopting the point of view of observers in system S’. The
derivation is based on the idea that for any inertial system S or S’, instan-
taneous velocity is defined at the ratio of an infinitesimal displacement to

S-S’

S—>¥§

S—S

S—> S’

S— ¢S’
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the corresponding infinitesimal time interval dt or dt’, in the limit that the
time interval goes to zero. Accordingly, we differentiate the coordinates
of Table 3.1 to obtain

dx = y(dx' + udt"), (3.22a)

dy =dy’, (3.22b)

dz = dz’, (3.22¢)

dt = (dt’ + d"j‘). (3.22d)
c

From the definition of instantaneous velocity, we have for the infinitesimal
displacements in S’

, dx’

v, = —>dx' = v, dt,
dt
! dy,_)dl /dl,/
v, = =vldt',
oodr ( ’
!
v’ Ed—zl—>dz’=vgdt’,
dt

which upon substitution into Equations 3.22 a-d give

dx = y(v. + u) dt’', (3.23a)

dy = vdt’, (3.23b)

dz = vldt', (3.23¢)

dt =y (1 + sz”> dr'. (3.23d)
c

Using the same definition for instantaneous velocity in system S (v, =
dxldt, v, = dyldt, and v. = dz/dt) we divide the equations for dx, dy, and
dz by the equation for df and immediately obtain

v, +u
S"— S (3.24a) v, = ———
viu
1+
CZ
vl
S’ S (3.24b) b, = '/7 :
vlu
1+
C2
V!
S’ >S (3.24c) e /7
U. U
1+ v
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These velocity component transformations are the inverse of those given
in Equations 3.21 a-c and contain quantities measured by observers in sys-
tem S’.

The two sets of relativistic velocity transformation equations have a
surprising and interesting result in common. With respect to the axis of
relative motion, a transverse component of velocity in one system is de-
pendent on both the corresponding transverse and longitudinal compo-
nents of velocity in the other system. Further, both sets of transformations
reduce exactly to their classical counterparts under the correspondence
principle. For example, in Equations 3.21 and 3.24

1 ~ 1
C2

and 1+v"u%1
C2

for u << ¢. Consequently, both Equations 3.21a and 3.24a reduce to

!

V.= U, — U,

which is exactly the classical or Galilean transformation equation given
by Equation 1.30a or Equation 1.31a. It is also interesting to note that un-
like the Galilean transformations, none of the relativistic velocity trans-
formations are invariant. This is a direct result of the dilation of time in
Einsteinian relativity.

To illustrate the consistency between Einstein’s second postulate and
the above results, consider a situation where a particle moves along the
X'-axis with a speed c relative to S’ (i.e., v. = ¢). The problem is to calcu-
late the particle’s speed relative to observers in system S. According to the
classical view, the particle’s speed relative to S is v, = ¢ + u—it has a speed
exceeding the speed of light as far as observers in S are concerned. How-
ever, according to Einstein and Equation 3.24a

_ctu
1+
C2

c+u

%(c + u)

That is, if observers in S measure a particle’s speed to be ¢, then observers
in system S will also measure ¢ for the speed of the particle, irrespective
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of the speed of separation between the inertial reference frames S and S’.
The result is totally compatible with Einstein’s postulates and it tends to
suggest that particle velocities can not exceed the speed of light.

As another example of the application of Einstein’s velocity addition
formula, Equation 3.24a, consider three inertial reference frames separat-
ing from one another along a common axis of relative motion. Let S’ be
moving to the right of S with a speed relative to S of u = 3c¢/4. Allow the
third system S” to be moving to the right of S’ with a speed u’ = 3¢/4 rel-
ative to S’. Now, consider a particle to be moving parallel to the axis of
relative motion with a speed v} = 3¢/4, as measured by observers in S".
The problem is to obtain the speed of the particle v,, as measured by ob-
servers in system S. Clearly, observers in S’ obtain

A
Ur = "ot
1+U"”
C2
3, 3¢
_4 4
1+
16
6c
_ 4 _24
25 25
16

)
25) \4
<& + E)C
100 100)" _ 171
72 172"

1+ -2
100
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The result of this example suggests that a particle’s speed can be viewed as
approaching the speed of light, but it can never really attain the exact speed
¢. By comparison with the previous example, if a particle’s speed is exactly
¢, as measured by any inertial observer, then its speed is ¢ according to all
inertial observers. The difference between these two conclusions is subtle,
but an important one to keep in mind!

3.5 Relativistic Acceleration Transformations

To complete our kinematical considerations, we need to develop the ap-
propriate transformation equations for acceleration components in Ein-
steinian relativity. Frequently, you may hear a statement that the special
theory of relativity is incapable of considering the acceleration of particles.
Clearly this is a misconception, since we can surely consider the Lorentzian
spatial coordinate transformations and all of their time derivatives. It is
only a special and restrictive class of problems that deal with rectilinear
motion and constant velocity. The more general problem is concerned with
a particle moving about in space and exhibiting curvilinear motion, which
necessarily requires the particle to have a nonzero acceleration.

The derivational procedure for obtaining the relativistic acceleration
transformations is based on the definition of instantaneous acceleration as
being the ratio of an infinitesimal change in velocity to the corresponding
time interval. To simplify the mathematics of this section, we introduce

a=1--" (3.25a)
c
and note that
~1
% - "CZ“ o2, (3.25b)

Using these relations, the differential of Equation 3.21a becomes

d _
dv, = =[(v, — Ndt
v dt[(v u)o '
-1
=lao ' + (v, — u)do‘ ]dt
dt
=la, " + (v, — u) axzu ofz] dt
c
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S-S’

aul _
= [axa + (v, — u)—z] o ’dt
c

v,a,U aul
= [ax - + (v, — u)—] o dt
2 CZ

o

2
= ax<1 - u_2> o 2dt
Cc
=2 . (3.26)
Yo

Since in system S’, a/, = dv;/dt’, then Equation 3.26 can be divided by the
differential of Equation 3.5 in the form

dr' =~ (1 \ U’f‘)dr = yadt (3.27)
(4

to easily obtain the transformation equation for the x-component of ac-
celeration as

a, = —- (3.28a)

By using similar reasoning to that above, we can derive the y-component
of acceleration by differentiating Equation 3.21b:

| =

dv, == (v,y'a')dt

!
y

"

t
do’!

dt

a,y ot + vy ]dt

—-1,,-1 vya.u -1,.-2
ay o +——y a"|d
C

v,a, U
LT -
c

a,oa +

v o dt

2

va,u val
a, — +
c c

a, — (v,a, — vyax)%]y‘la'zdt.
¢
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Again, dividing this relation for the differential velocity by the expression
for differential time (Equation 3.27), we obtain

u
a, — (Uxa,v_ U.va)r)i

a, = — . (3.28b)

Yo

Of course, the relativistic transformation equation for the z-component
of acceleration is identical to Equation 3.28b, except for the y-subscripts
being replaced by z-subscripts:

u
a. — (Uxa: N Uzax>72
al = — (3.28¢)

v

For the inverse acceleration transformations we obtain

!

a

! =3
0 = §<1+”X2”> =1 (3.292)
'Yk C 'Y\alk
li li i !’ M
a, +(via, —via,)—
a4 = g (3.29b)
Y 2 13
Yo
a. + (via. —via, )Y
a = 7, (3.29¢)
,YZ(XIS

Whereas the Galilean-Newtonian acceleration transformations
(Equations 1.32 a-c) were invariant, acceleration is certainly not invariant
in Einsteinian relativity. Not only are the acceleration transformations
mathematically intimidating, but the transverse components transform dif-
ferently than the longitudinal component. Interestingly, however, they do
reduce exactly to their classical counterparts under the correspondence
principle.

3.6 Relativistic Frequency Transformations

To complete our discussion on relativistic kinematics, we will develop the
transformation equations for the frequency and wavelength of electromag-
netic waves. Unlike sound waves considered in the classical Doppler effect,
electromagnetic waves (x-rays, visible light, etc.) do not require a physical

MR

S—»¥§

S"—S

S"—S

S"—S
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Invariance of Light

Figure 3.2

An emitter E’ of elec-
tromagnetic waves re-
ceding from a detector
(receiver) R at a uni-
form speed u.

medium for their propagation. Further, all electromagnetic waves in free
space travel at the speed of light and obey the basic relation

c=Av=\"V. (3.30)

This equation reflects the requirement of Einstein’s second postulate that
the product of wavelength and frequency of an electromagnetic wave be
equal to the universal constant c for all inertial observers. Clearly, the val-
ues of A and v measured by observers in system S need not be identical to
N\ and v’ measured in S’; however, Equation 3.30 must always be valid.

The relativistic transformation equations for the frequency and wave-
length of electromagnetic waves are easily derived by using arguments sim-
ilar to those presented for the classical Doppler effect. By analogy with
the fist case considered there, our relativistic gedanken experiment con-
siders an emitter E' of monochromatic light waves to be positioned at the
origin of coordinates in system S’, and a receiver or detector to be located
at the origin of system S. The first situation to be considered is depicted
in Figure 3.2, where the emitter and detector are receding from each other
with a uniform speed u. The schematic represents the point of view for
observers in inertial system S, who are at rest relative to themselves and
view system S’ as receding. Accordingly, a time interval Az = ¢, — ¢, is re-
quired for the first electromagnetic wave emitted by E’ to travel the dis-
tance cAr to reach R. As illustrated in Figure 3.2, system S’ has receded
through the distance uA¢ during the time of wave emission At. With x being
the distance between R and E’ at the instant 7, when R first detects a wave,
then the wavelength measured by an observer in system S is

X
=X, 3.31

N (3.31)

Y Y'(t)) Y'(t3)
!
_>i u —- 1]
RITLTTTT T T T RITTT Ie £x
cAt i ult
x
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where N is the number of waves perceived eventually by R. Solving Equa-
tion 3.30a for v and using Equation 3.31 gives

(3.32)

cN
vzi
X

for the frequency as measured by an observer in system S. From the geom-
etry of Figure 3.2

x = (c +u)At, (3.33)
which allows Equation 3.32 to take form

N

V= (3.34)
Ar (1 + ulc)
Since N=N =v'Ar (3.35)
and B = u/c, the Equation 3.34 becomes
, = VAL (3.36)
Ar(1+B)

Up to this point our derivation has been exactly like the first case
considered for the classical Doppler effect leading to Equation 1.43; how-
ever, in Einsteinian relativity Az # A¢'. Since the first and last wave emitted
by E’ occurred at the same position in S’ at instants ¢{ and 75, respectively,
then the time interval Az" must be recognized as the proper time in our
equation. Thus, taking time dilation (Equation 2.8) into account allows
our frequency transformation to be expressed as

v/

=Y . 3.37
’ y(1+B) (337

The wavelength transformation is directly obtained from this result by re-
alizing that v = ¢/x and v' = ¢/\’ from Equation 3.30:

A= Nvy(l+B). (3.38)
These two equations represent the relativistic Doppler effect of electro-

magnetic waves for receding systems. Except for the presence of vy in these
equations, the results are of the same form as the classical Doppler effect

Receding Case

Receding Case
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given by Equations 1.43 and 1.44. This difference in form is solely precip-
itated by the absence of absolute time in Einsteinian relativity.

There is yet another significant difference between the classical and
relativistic Doppler effects. In our classical considerations we had two sep-
arate cases for the situation where S and S’ were receding from each other.
The second case (Equation 1.50) was the inverse of the first obtained by
allowing

! !’

VoV vVov u—-—u (3.39)

Performing these operations on Equations 3.37 gives

v=v'y(l —B), (3.40)

which corresponds to the situation where the emitter E’ is stationary in S’
and the receiver R in S is viewed as receding from observers in S’ with the
uniform speed u. Unlike the classical effect, where the two equations
(Equations 1.43 and 1.50) predicted different physical phenomena, Equa-
tion 3.40 can be shown to reduce exactly to Equation 3.37. That is,

v=vy(-B)
v'(1-p)
N
Vy1-By1-B
JT-BJITB
v'y1l—
J1+B
v/T-BJ/1+8B
SR/ B
F
1+pB

!

v

:v(1+B)'

Whereas in Galilean relativity there are two frequency transformation
equations required for the complete description of sound waves perceived
by observers in receding inertial systems, there is only one such equation
predicted by Einsteinian relativity for electromagnetic waves. This partic-



3.6 Relativistic Frequency Transformations

84

ular difference is not due to the absence of absolute time in the latter the-
ory, but, rather, by the absence of a material medium being required in na-
ture for the propagation of electromagnetic waves.

Before considering the situation where the emitter and receiver ap-
proach one another, let us look at the phenomenological implications of
Equation 3.37 and 3.38. For u relativisticy > 1 and B < 1, which means
that

vl +B)> 1. (3.41)

Consequently, in Equations 3.37 and 3.38

!

v<v and A> N\, (3.42)
respectively. Since blue light has a shorter wavelength (A, = 4.7 X 10" m)
than red light (\, = 6.7 X 10~" m), this phenomena is referred to as a red
shift because A > \". When an emitter of electromagnetic waves is receding
from a detector, the shift toward longer wavelengths is called a red shift.
As an example of this phenomenon, consider a distant star to be receding
from the earth at a speed of 3¢/5. If the star emits electromagnetic radia-
tion of 3.3 X 1077 m, then observers on the earth will measure the wave-
length of the incident waves to be

N=Ny(l+B)=(33%10" m) G) (1 + %) — 66 %107 m.

In this example the waves have been shifted from the ultraviolet to the red
wavelength region of the electromagnetic spectrum. Frequently, electro-
magnetic wavelengths are specified in Angstrom units, where an Angstrom
unit is simply defined by

A=10"m. (3.43)

What about the case where a distant star is approaching the earth with
a uniform speed u relative to the earth? We might expect the wave pulses
to be bunched together thus giving rise to a blue shift. To quantitatively de-
velop the appropriate relativistic frequency and wavelength transforma-
tions, consider the situation as depicted in Figure 3.3. As before, let the
emitter E’ be at the origin of coordinates of the S’ system and the receiver
R be at the coordinate origin of system S. As viewed by observers in S, a
time interval At is required for the first wave pulse emitted by E’ to reach
the receiver R. During this time E’ has moved a distance uAt closer to R.

Angstrom Unit
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Figure 3.3

An emitter E' of elec-
tromagnetic waves ap-
proaching a detector
(receiver) R at a uni-
form speed u.

Approaching Case

Approaching Case
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Hence, the total number of waves N', emitted by E’ in the elapsed time
At, will be bunched together in the distance x, as illustrated in Figure 3.3.
But comparing this situation with the one previously discussed, we find
that Equations 3.31 and 3.32 are still valid. But now

x = (¢ — u)At, (3.44)
as seen from the geometry of Figure 3.3, and Equation 3.32 becomes

- N
Y At (1 — ulc) (3.45)

Substitution of Equation 3.35 into Equation 3.45 results in

p = _ VAL (3.46)
Ar(1—B)
and after time dilation is properly accounted for, we have
p=—2 . (3.47)

v(1-8)

Utilization of Equation 3.30 transforms Equation 3.47 from the domain
of frequencies to that of wavelengths, resulting in

A =Nvy(l - B). (3.48)

Since y (1 — B) is less than one for u < ¢, then A <\’ and we have what is
called a blue shift. Also, it should be observed that Equations 3.47 and
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3.48 are just the inverse of Equations 3.37 and 3.38, respectively, with u
being replaced by —u (B replaced by —p). If you were to consider this case
from the point of view of observers in S’, who view themselves at rest and
system S to be approaching, the frequency transformation obtained is of
the form

v=vvy(l + B). (3.49)

This result is easily deduced by performing the operations given in Equa-
tion 3.39 on Equation 3.47. However, it can readily be shown that this re-
sult reduces exactly to Equation 3.47, by using arguments similar to those
presented following Equation 3.40. It is important to note that only two
frequency transformation equations (Equations 3.37 and 3.47) are re-
quired for the complete description of the relativistic Doppler effect for
electromagnetic waves; whereas, four such equations are required to de-
scribe the classical Doppler effect for sound waves.

Review of Derived Equations

A listing of the derived Lorentz-Einstein transformation equations is pre-
sented below, along with the transformations for the frequency and wave-
length of electromagnetic waves. Only the coordinate, velocity, and
acceleration equations for the transformation of measurements on an
event from S’ to S are listed, as the inverse transformations are easily ob-
tained by replacing unprimed variables with primed variable and vise
versa, and by substituting —u for u. The velocity transformations can be
derived by employing the definition of either average or instantaneous ve-
locity with the space-time coordinate transformations.

LORENTZ-EINSTEIN TRANSFORMATIONS (8" — S)

Space-Time Transformations
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Velocity Transformations

U, U
o' =1+ xz
C
a,
a, =
,YSa!3

RELATIVISTIC FREQUENCY TRANSFORMATIONS

c=Av=M\" Invariance of Light
_ v
vy(1+B) L Receding Cases
AN=Nvy(l+B))
b=V
y1-8) | Approaching Cases
A=N~vy(l— B)J
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3.1 Consider inertial systems S and S’ to be separating along their com-
mon X-X" axis at the uniform speed of 3¢/5. If an observer in S’ views an
exploding flashbulb to occur 60 m from his origin of coordinates along
the X’-axis at a time reading of 8 X 10~* s, what are the horizontal and
time coordinates of the event according to an observer in system S?

Solution:
With x’ = 60m, ¢’ =8 X 10%s, and 3¢/5 — y = 5/4, we obtain the
x-coordinate from Equation 3.2a,
x =vy(x"+ ut")
=3 3
4 5
and the time coordinate from Equation 3.4,

'’
r=v ¢+ XU
2
c

[60 m+2(3%10°0)(8 x 107 s)] ~—93m,

5

5 (60 m)(3/5)
4

-~ =25X10"s.
3 X 10% m/s

8 X107 %s

3.2 Observers in system S measure the horizontal coordinate of an event
to be 50 m at a time reading 2 X 10~’. What are the horizontal and time
coordinates of the event to observers in S’, if the uniform speed of sepa-
ration between S and S’ is 3¢/5?

Answer: x' =17.5m,t =125X107"s

3.3 Consider measuring the length of an object moving relative to your
reference frame by measuring the positions of each end x, and x, at the
same instant in time. Using the Lorentz spatial coordinate transformation
given by Equation 3.1a, show that the length you measure is smaller than
the object’s proper length.

Solution:
The proper length of an object is always measured in a frame of ref-
erence, say S’, in which the object is at rest. With u being the speed
of the object and system S’ relative to S, then from Equation 3.1a we
have

xi=vy(q —ut) and  x;=vy(x; — ub).

Since t, = t, > Az = 0 in system S, Ax" = x} — x| s

Ax" =y (Ax — uMO) = yAx.
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Because y > 1, the proper length Ax" = x} —x{ in S is greater than
the length Ax = x, — x, you measure.

3.4 Do Problem 3.3 using Lorentz coordinate transformations given by
Equations 3.2a and 3.4. You might wish to review Section 3.3 for a similar
problem concerning time dilation.

Xy — X
Y

Answer: x, — x;, =

3.5 Two clocks, positioned in system S” at x’, = 25 m and x; = 75 m,
record the same time ¢, for the occurrence of an event. What is the differ-

ence in time between the two clocks in S’, according to observers in system
S, if u = 3¢/5?

Solution:
With Ax' = x; — x,, =50m, ¢, = t; = t),and u = 3¢/5 > v = 5/4,
the Lorentz transformation gives

Xy U XpU
ZA=y<t(§ + 22> and tB=y<t{, +—32 )

c

Subtracting ¢, from ¢, and substituting the data gives

At =ty —t, = y(O + A‘x2”>
C
ol
= é — =125 X10"s,
4/ 3 % 108 =

where Ax'u/c? is recognized as the quantity 7, of Chapter 2.

3.6 Keeping in mind the physical coordinates associated with the event
of Problem 3.2, if a second event occurs at 10 m, 3 X 1077 s as measured
in system S, what is the time interval between the events measured by ob-
servers in system S’?

Answer: At =225X1077s

3.7 Derive the time transformation equation t = «y (' + x'u/c*) by using
Equations 3.1a and 3.2a.

Solution:
Substitution of Equation 3.2a,

x=vy(x"+ut),
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into Equation 3.1a,
x' =y (x —ur),
allows for the elimination of x:
X' =y [y(x" + ut") — ut]
= vix' +~y*ut’ — yut.

This result can be solved for 7 in terms of ¢ and x’ as

1 2.0 ! 2 !
t=— — X'+~ ut
W(vx x'+ yut')

yx'x ,
Y
e
Yu

x' 1
A ’+_1—_
vY|? u( ,yz}
|+ 1-1-%
K u c2>
_ , o x'u
_Fy<t+cz>'

3.8 Derive the S" — S time coordinate transformation equation by using
Equations 3.1a and 3.5.

!
Answer: 1=~ (z’ + M)
c2

3.9 Observers in one inertial system measure the coordinates of two
events and determine that they are separated in space and time by 1500 m
and 7 X 107 s, while observers in a second inertial system measure the
two events to be separated by 5 X 10~°s. Find the relative speed of sepa-
ration between the two systems.

Solution:

From the obvious dilation of time in the given data, we consider the
second system to be moving relative to the first with an unknown
speed u. Consequently, the data given can be identified as Ax =
1500m, Ar =7 X 107%s, and At’ = 5 X 10°°s. Using Equation 3.5 in
the form (Note: B = u/c)

A
At = y(Az - iB>
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direct substitution of the physical data gives

(1500 m)B
3 X 10%m/s
—vy(7X10°s—B5%x10°s)

5X10°s=v|7X10"°%s —

or, more simply
=v(—5PB).
Squaring this equation and using the definition of vy gives
50B% — 708 + 24 =0,

which can be solved for B using the general solution for a quadratic
equation given in Appendix A. Section A.5. Accordingly

_ —(=70) = /70* — (4)(50)(24)

7 (2)(50)
_ 70 + /2900 — 4800
100

_ 70 %10
100

and the two answers to this problem are # = 0.8¢ and u = 0.6¢.

=0.8 or 0.6,

3.10 What must be the uniform speed of separation between two inertial
systems, if in one system observers determine that two events are separated
in space and time by 900 m and 1.8 X 107 s, respectively, while in the
other system the two events occur simultaneously?

Answer: u=0.6¢

3.11 An alien in a flying saucer passes an astronaut in a space station at
0.6¢. Two-thirds second after the flying saucer passes, the astronaut ob-
serves a particle 3 X 10°® m away moving in the same direction as the
saucer. One second after the first observation, the astronaut notes the par-
ticle to be 5 X 10* m away. What are the particle’s space-time coordinates
for each position according to the alien?

Solution:

With the space station being identified as system S and the flying
saucer as S’, then the physical data are denoted as x, = 3 X 10* m, ¢,
= (2/3)s, x, =5 X 10%, ¢, = (5/3)s, and u = 0.6¢ = 1.8 X 10°m/s — vy
= 5/4. Using the Lorentz transformations from S — S’ of Table 3.2,
we have
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x; =vy(x — ut)
- §[3 X 10° m — (18 X 10° ™) (2 s)]
4 s/ \3
- 2(3 ~12) X 10° m = 2.25 X 10° m,

Xy = Y(xz - Wz)
[5 X 10° m — (18 X 10° 1) <§ s)]
s/ \3

9]

T4

=§(5—3)X108m=2.5><108m,

, xNu
nh = 'Y(tl "4 _2>

5[2 (3 X10% m) (0.6)]
= — | — S —_
413 3 X 10% m/s
“52-06)s-5(L)s- L
4\3 4\15 12
XU
f=v(n-5)
[5 (5% 10% m) (0.6)]
= Z g —
3 3X10% m/s

SUAR EIR
=—1)s==(Z)s==s5s.
3 4\3 6

3.12 Referring to Problem 3.11, find the particle’s x-component of ve-
locity as measured by (a) the astronaut and (b) the alien

Answer: v, =2 X 108", v. =" X 10%%

3.13 Two spaceships are receding from each other at a uniform speed and
in line with the earth. If the speed of each spaceship is 0.8c¢ relative to the
earth, find the speed of one relative to the other.

Solution:

The three systems in this problem can be identified in a simple man-
ner. The earth is considered to be system S, and the spaceship that is
receding from the earth is taken as system S’. Thus, its velocity relative
to the earth is u = 0.8¢, and the other spaceship must be approaching
the earth with a velocity v, = — 0.8¢. The problem now becomes one
of finding v by using the appropriate velocity transformation equa-
tion. That is
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, U, —u
Vs = vU
1 _ X
C2
_ —0.8¢c — 0.8¢
[1 —(—0.8) (0.8)]
—16¢c _ 1l.6¢

T 11064 164

3.14 Two spaceships are observed to have the same speed relative to the
earth. If they are in line with the earth and approaching each other at a
uniform speed of 1.2¢/1.36, what is the velocity of each relative to the
earth?

Answer: u=0.6c,v,=—0.6¢

3.15 If a beam of light moves along the Y’-axis in system S’, find (a) the
components of velocity and (b) the magnitude of velocity for the light
beam, as measured by observers in system S.

Solution:

With the data v; = v = 0 and v, = ¢, then from the Lorentz velocity
transformations we have

!

v, tu 04+ u

U, = =u,
viuw  1+0
1+ —
c
vy chy ¢
Uy: ) — = —>
viyu 1+0 v
1+ —
c
vl hy Ok
v, = = :O
viu 1+0
1+ —
c

for the components of velocity observed in system S. The magnitude
of the velocity is given by

v=Jul +v; + vl

= Ju+=—+0
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3.16 Systems S and S’ are separating uniformly at a speed of 0.8¢. Ob-
servers in S’ view a particle moving in the positive Y’ direction, and at one
instant the particle’s instantaneous speed is measured to be 0.6¢. If the
particle accelerates in the positive Y’ direction to a speed of 0.8¢ in six
seconds, what is the particle’s acceleration to observers in system S?

9

Answer: a=a,= 25 X 107 %
S

3.17 Derive the wavelength transformation equation for the case of E’
receding from R, by expressing the distances in Figure 3.2 in terms of
wavelength.

Solution:
From Figure 3.2 we have

x = cAt + ult,
where each term can be related to wavelength as follows:
x = AN =\N',
cAt = N'v' At =\"v' (yA?') =y\N'N',

ulAt = yult' = yuﬁl =yu Y - =Yy\N'N'B.
v c/\
With these equalities substituted into the first equation above, we ob-

tain
AN = y\N'N' +y\N'N'B,
which reduces to the familiar wavelength equation
AN=Nvy(1+B).

3.18 Starting with Equation 3.49, show that Equation 3.47 is obtained

_I)/

Answer: v =————
y(1-B)

3.19 If a distant galaxy is approaching the earth at a uniform speed of
0.6¢, what is the ratio of v’ to v?

Solution:
Since u = 0.6¢, B = 3/5 and vy = 5/4. From the blue shift frequency
transformation equation
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we immediately obtain

-9

:§<%>:1.
4\5) 2

3.20 A distant galaxy is receding from the earth uniformly at a speed of
0.8c. If the wavelength of electromagnetic radiation received by the earth
measures 6600 A, what is the wavelength of the emitted radiation?

Answer: N = 2200 A

3.21 How fast must you move toward light of proper wavelength 6400 A
for it to appear to have a wavelength of 3200 A?

Solution:

This problem corresponds to a blue shift phenomenon with A = 3200
Aand \' = 6400 A. From the wavelength transformation (Equation

3.48)

A=Nvy (=B
and the fact that \/N" = 1/2, we obtain

| =

1—
1+

™

g

Squaring this equation gives

y(1-B)=

1-p
J1— B

1_17B
4 1+
which can be simplified to
1, B
4 4 B
and solved for 3:
54 5 5

3.22 If a distant galaxy is receding from the earth such that the emitted
radiation wavelength is shifted by a factor of two, what is the speed of the

galaxy relative to the earth?

Answer: u=3/5¢
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CHAPTER 4

Transformations of Relativistic Dynamics

Having been accelerated to nearly the speed of light, Lead ions collide at
the Large Hadron Collider particle accelerator

The most important result of a general character to which
the special theory has led is concerned with the conception
of mass. Before the advent of relativity, physics recognized
two conservation laws of fundamental importance, namely,
the law of the conservation of energy and the law of the
conservation of mass; these two fundamental laws appeared
to be quite independent of each other. By means of the
theory of relativity they have been united into one law.
A.EINSTEIN, Relativity (1961)

Introduction

The discussion of classical and Einsteinian relativity in the previous chap-
ters illustrates how fundamental physical quantities, such as space-time
coordinates, velocity, and acceleration, depend on the inertial system in
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which they are measured. In our investigation of relativistic dynamics, we
will find how the mass, energy, and momentum of a body depend on the
relativistic speed existing between the body and an inertial observer. We
will also find it necessary to redefine basic quantities like total energy and
kinetic energy, since their classical definitions are limited and become in-
valid for bodies traveling at relativistic speeds. However, these new rela-
tionships will reduce to their classical counterparts under the
correspondence principle.

Up to this point, gedanken experiments have been viewed by ob-
servers in two different inertial systems, such that measurements of phys-
ical quantities in each system could be compared in obtaining
transformation equations. The results obtained from this theoretical ap-
proach are most useful in that any physical quantity in kinematics can be
transformed correctly from one inertial system to another by the appro-
priate use of the associated transformations. This same theoretical ap-
proach will be initially utilized herein to obtain a relativistic mass
equation. For the most part, however, transformation equations per se are
not obtained in our consideration of relativistic dynamics. Instead, equa-
tions for mass, force, energy, and momentum are developed that are ap-
propriate for any particular inertial system. The derivations for relativistic
force, energy and momentum employ the fundamental defining equations
of these quantities from classical mechanics, with a relativistic mass rela-
tion being appropriately incorporated. This allows for a logical develop-
ment of these concepts in Einsteinian relativity, while capitalizing on our
knowledge of the fundamentals of classical physics.

The classical conservation principles of energy and momentum are
employed in obtaining new relativistic relationships, and the appropriate-
ness of these conservation principles in special relativity is also investi-
gated. As will be seen, conservation of momentum is assumed in both
classical and relativistic mechanics; however, the classical conservation of
energy principle becomes a mass-energy conservation principle in Einstein-
ian relativity. Our discussion of relativistic dynamics is concluded with a
straight forward development of momentum and energy transformation
equations for two inertial systems S and S'.

4.1 Relativistic Mass

It is of immediate interest to study the behavior of mass within the frame-
work of Einstein’s special theory of relativity. Unfortunately, we have a
rather limited knowledge of mass and gravity, so a direct and logical de-
velopment of the properties of a massive body moving at a relativistic
speed is not available. Instead, we employ the fundamental conservation
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principle for linear momentum to deduce a relativistic mass relation for an
isolated inertial system. As before, we will consider two inertial systems S
and S’ to be separating from each other along their common X-X" axis at
a uniform relative speed u and consider a gedanken experiment being
viewed by observers in both systems.

Consider two identical massive bodies to be approaching each other
on a collision course at a constant speed parallel to the X-X" axis, as illus-
trated in Figure 4.1a. Let observers in system S’ measure the speed of each
body before the collision to be u, with m| moving in the positive x'-direc-
tion and m; traveling in the negative x'-direction. Further, allow the bodies
to have a perfectly inelastic collision, such that observers in S’ will view the
combined mass m| + mj, = 2m’' to be at rest relative to S’ after the collision
(see Figure 4.1b). We denote the velocities of m| and m5 in S’ as

Uiy = U, (4.1)
U = U, (4.2) ¢ Before Impact
v, = vl =0l =0l =0 (4.3)
Y Y’
U et
(a) Before impact
v’lx u v’2x: —u
X', X
Y Y’
U ~——
Figure 4.1
(b) After impact g

A perfectly inelastic
collision of two identi-
- cal bodies of mass m|
vy=0 = m) traveling in op-
posite directions with
identical speeds, ac-

cording to observers in
XX system S’

e iR ]
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before the collision and as

After Impact v,=v,=v.=0
after the collision.
The physical data measured in S’ can now be transformed to system
S, where observers consider themselves at rest and S’ to be moving in the
positive x-direction with a speed u. To observers in system S, the situation
before and after impact is similar to that depicted in Figures 4.2a and 4.2b.
The velocity of each body can be obtained using the relativistic velocity
component transformations given by Equations 3.24a, 3.24b, and 3.24c.
Accordingly, we obtain
v, tu
U, = ,
v, U
1+ =
CZ
_utu
uu
1+
Y Y’
[
(a) Before impact
_ _2u =0
Uix= 1+Bz U2x
(a) XX
Y Y’ Y’
i
L
i (b) After impact
Figure 4.2 !
The perfectly inelastic ! Uy =u
collision of two massive |
bodies before (a) and i
after (b) impact, ac- i
cording to observers in !
system S. (b) !

X X'
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__u - (4.5) Before Impact
1+ B
vy tu
UZX - ,
|4 ot
CZ
_ ~u +u
—u)u
1+ ( 2)
c
2" O petore Impact
efore Impac
Uy = U, = Uy = U, = 0 4.7) P

for the velocity components of m; and m, before the collision. After the
collision, the two masses are viewed in S as stuck together with a total
mass

M=m, +m, (4.8)
and velocity components
v. +u
v, = 2
1+ o o
C2
_ O+u
0
4 O
C2
=u, (4.9)

—— (4'10)} After Impact

At this point we invoke the conservation of linear momentum principle,
which says total linear momentum before impact must equal total linear
momentum after impact. Since the y and z components of velocity are
zero before (Equation 4.7) and after (Equation 4.10) impact, we are only
concerned with the translational momentum in the x-direction. Thus, in
system S the conservation of momentum can be expressed by

myv,, + myv,, = Mv.,, (4.11)

where M is defined by Equation 4.8. Substitution from Equation 4.6, 4.8,
and 4.9 allows the momentum equation to be expressed as

m,, = (m, + myu. (4.12) Momentum Conservation
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Momentum Conservation

It is now convenient to generalize the result expressed by Equation
4.12 and to simplify the symbolic notation. From Equation 4.6, it is ap-
parent that mass m1, is at rest in system S before the collision. We adopt
the convention that the rest or inertial mass of a body be denoted as m,
and, like proper length and proper time, allow it to be defined as that mass
measured in a frame of reference in which the body is at rest. With this con-
vention for m,, there is no longer any need for the subscript on 1, and,
consequently, we have

m, = m, (4.13a)
m, = m,. (4.13b)

Although the two masses are identical in S’, they are viewed differently in
system S in that m, is at rest and m is a relativistic mass, since it is in a state
of uniform relative motion (Equation 4.5). To generalize Equation 4.12 we
need only recognize that the velocity of m (m, originally) before the colli-
sion corresponds to a speed in the positive x-direction of

v = \/vfx + v, +vul =u,, (4.14)

where Equation 4.7 has been used in obtaining the last equality. Again,
there is no need for the subscript on v,, so with

V) =V, =0 (4.15)
and the identities of Equations 4.13a and 4.13b, Equations 4.12 becomes
mv = (m + my)u. (4.16)

Even though Equation 4.16 is expressed as a scalar equation in terms of
speeds v and u, it is equivalent to the vector equation expressed in terms
of velocities v and u, since the directions of v and u are identical. For this
reason we will refer to v and u as velocities, with the directions being un-
derstood to be in the positive x-direction. With this understanding, the
velocity of m before the collision, as given by Equation 4.5, can be rewrit-
ten, with v,, being replaced by v, as

p— 2M .
1+ p?

v 4.17)

Referring to Equations 4.16 and 4.17, it is obvious that the relativistic
mass m can be expressed in terms of the rest mass m, and v, the velocity
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of m relative to m,, by solving the two equations simultancously to elimi-
nate u. To do so, we first solve Equation 4.16 for m/m, as

m_ B (4.18)
my U _ B
c
Likewise, Equation 4.17 can be expressed in terms of {3 as
2
v_ 2B (4.19)
¢ 1+p

and these last two equations can now be combined to eliminate 3 and
hence also u. The idea is to solve Equation 4.19 for 8 and substitute into
Equation 4.18. From Equation 4.19 we obtain a guadratic equation in
terms of {3,

BZ—%BH:O, (4.20)

which has the solution

= % / (4.21)

Since B — 0 for u << c, then the negative sign must clearly be chosen in
Equation 4.21 with the result being

- v(%)(l -
:S< \/T) 4.22)

Momentum Conservation
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Relativistic Mass

By analogy with the definition of y

1
T —— 27
1 -4
CZ
we define
- 1
= —— (4.23)
v
c?

and immediately rewrite Equation 4.22 as

B==-(1—-T7. (4.24)

|0

Now, substitution of this expression for B into the conservation of mo-
mentum equation (Equation 4.18) gives

Cri_ 11
m_ o170
my U_Cr_ pa

=~ U(l r

1-T!

2

LRy

C2

-1
T2+ T
=T
)
=T.

This result can be rewritten in the more symmetrical form
m = I'my, (4.25)

which is Einstein’s relativistic mass equation. Since I" > 1 for v relativistic,
then

m > m.
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That is, the mass of a body is not invariant in Einsteinian relativity, but
will be observed to increase when the body is in a state of motion. For v
<< ¢, this increase in mass is very small (I' = 1) and m = m,, which is ex-
actly why we do not observe this phenomenon in everyday experiences.
This result also explains why it is impossible to accelerate a body up to or
beyond the speed of light ¢. As the body is accelerated toward the speed
of light, its mass continuously increases and the externally applied accel-
erating force becomes less and less effective. At a speed very close to ¢, the
mass of the body tends toward infinity, which would require an infinite ex-
ternal force for additional acceleration. Hence, acceleration of a body up
to or beyond the speed of light is impossible by any finite force.

4.2 Relativistic Force

Frequently, in classical mechanics Newton’s second law of motion is rep-
resented by

F = ma, m # m(t), (1.17)
instead of the more general defining equation

dp
dt

F

(1.16)

Often, the application of either equation to a problem will give the correct
answer, since the mass of a body or a system of bodies is usually constant
and independent of time in Newtonian dynamics. This is not the situation
in relativistic dynamics, however, as the mass of an accelerating body ex-
periences a dilation that is time dependent. This is immediately apparent
from the relativistic mass equation, since the mass of a body is dependent
on speed, which is ever changing for an accelerating body. From these ar-
guments, it should be clear that F = ma = I'mya is not valid in relativistic
dynamics. The defining equation of Newton’s second law is, however, ap-
plicable in relativistic dynamics and can be expressed as

_dp _ d(mv)

Cdr dt
m@ + Vd—m
dt dt

dar
ma + vm,—
" ar

Newton’s Second Law
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Relativistic Force

Relativistic Force

or more fundamentally as

F =T'mya + moV%~ (4.26)

A relativistic relationship that is analogous to the classical F = ma
can be derived by using Newton’s second law as expressed by Equation
4.26. The derivation can be greatly simplified by considering a body to be
in a state of rectilinear motion and uniform acceleration, as viewed by ob-
servers in inertial system S. Under these conditions, Newton’s second law
can be expressed as

: (4.27)

where n is a unit vector in the direction of the momentum. It should be
noted that we are considering a special case where the force, velocity, mo-
mentum, and acceleration vectors are all in the same direction. Substitut-
ing for linear momentum (p = mv), Equation 4.27 becomes

F= admv
dv

dm
dv

= ma + va

’

which from Equation 4.25 is rewritten as

F=Tma + mﬂva;lg- (4.28)
U

This result is also easily obtained from Equation 4.26, with n representing
the assumed common direction for v and a, that is

dl’ dv
F = (Tma + mpdL
< Mo T ) dt)n

= <Fm0a + mova£> n.
dv
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Further, Equation 4.28 for the relativistic force is easily reduced in form
by obtaining the derivative of I" with respect to velocity. That is, differen-
tiating Equation 4.23 yields

-8 2
dv 2 2 c?

- L, (4.29)

o

which upon substitution into Equation 4.28 gives

2

F =I'mya + F3mov—2a
c

Thus, for a body in rectilinear motion, the net accelerating force is given
by

F = I’ mya = [Pma. (4.30) Relativistic Force

This result is analogous to the classical equation F = ma and in fact re-
duces to it as I' — 1. Although this result is limited to a special class of
problems, it will prove useful for derivations in the next section.

4.3 Relativistic Kinetic and Total Energy

The work-energy theorem of classical mechanics states that the work done
on a body is equivalent to its change in kinetic energy. Accordingly, if a
body is at rest with inertial mass m,, then the work done in accelerating it
to a uniform velocity v is equivalent to its final kinetic energy 7. For this
situation the derivation of the body’s relativistic kinetic energy can be sim-
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Infinitesimal Work

Relativistic Kinetic
Energy

plified and previous results utilized, if we allow the net external force doing
the work to be in the same direction as the body’s displacement. This al-
lows the work equation

dW=F-dr (1.20)
to be written as
dT = Fdr (4.31)

since # = 0° and cos 6 from the dot product becomes one. As the body is
in rectilinear motion, the magnitude of the force expressed by Equation
4.30 can be substituted into Equation 4.31 and simplified as

dT = Tmadr

= m,[Pvdv. (4.32)

This result is amenable to integration by parts; however, a further simpli-
fication is attained by solving Equation 4.29 for

Zdl = TP dv
so that Equation 4.32 becomes
dT = myc*dl (4.33)

This result represents the relativistic kinetic energy in differential form,
which can be integrated once the limits of integration have been decided.
In our present consideration, where work is done on a body initially at
rest (v, = 0, v, = v), we need only recognize that for v, =0, 7, = O and I,
= 1. Thus, from Equation 4.33 we have

T I
f democ2f dT (4.34)
0 1
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which immediately yields

T =m,*(T — 1) (4.35)
for the relativistic kinetic energy. This result has several interesting inter-
pretations and is perfectly general and applicable in spite of our initial sim-
plifying assumptions.

Under the correspondence principle the relativistic kinetic energy must
reduce exactly to the classical kinetic energy. This is easily demonstrated
by expanding I' in Equation 4.35 by use of the binomial expansion

(x+yp)=x"+nx"1y+ - (4.36)
given in Appendix A, to obtain
1v’
Fr=1+=-=—; V<< c. (4.37)
2 ¢?

With this relation for I' (remember v << ¢ and only the first couple of
terms are significant) Equation 4.35 becomes

2 )
2

=m0’ (1.22)

T = moc2<1 -

N[ —
o

in agreement with classical mechanics. For a body moving at a relativistic
speed, the error arising from using 4myv* for T'is only 0.75 percent for v
= (.1¢ but nearly 69 percent when v = 0.9¢, for example

T — %mov2 . %mov2
T T
L
mye? (I' = 1)
%(v/c)2
=1-
r—1
~(0.81)
=1- ~ 0.69
1.3

A more interesting consequence of Equation 4.35 becomes evident
by rewriting it in the form

Relativistic Kinetic
Energy

Binomial Expan-
sion

Classical Kinetic
Energy
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Rest Energy

Relativistic Total Energy

Relativistic Kinetic
Energy

Relativistic Total Energy

T = T'myc® — myc® = mc® — myc?. (4.38)

Both terms on the right-hand side of this equation have, necessarily, di-
mensions of energy and they represent an energy-mass equivalence that
are symbolically identified as

E, = myc?, (4.39)
E = mc~. (440)

The interpretation of these quantities is straightforward in that for a body
at rest with inertial mass m,, E, must correspond to its rest energy, while
E corresponds to its total relativistic energy. For a body at rest, kinetic en-
ergy, represented by

T=E-—E, (4.41a)
must be zero and E, given by
E=E+T (4.41b)

must equal E,. Amazingly, a body at rest possesses energy myc* according
to Einsteinian relativity. Equation 4.41a is practically always used as the
fundamental equation for relativistic kinetic energy instead of Equation
4.35, since it is conceptually much simpler and logically much more direct.
Further, the relativistic energy defined by Equation 4.40 is recognized as
the total energy of a body from Equation 4.41b.

These results are surprising and have absolutely no counterpart in
classical physics. The energy mass equivalence represented by Equation
4.40 is the single most important result of Einstein’s special theory of rel-
ativity. It gives the energy equivalence of a 1 kg mass to be on the order
of ¢® or 9 X 10" J. Consequently, even an extremely small mass has a rel-
atively large energy equivalence. As an example, assuming the average
caloric intake per person per day to be 3200 kcal, then the energy con-
sumed per day by ten million people has a mass equivalence of approxi-
mately one and a half grams:

(4.186 X 10° J/kcal)

C2

= (3200 kcal) (10 people)
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_ 1340 X 10" ]
9 X 10" m?%s?
= 1489 X 10 ke ~15 g.

Another interesting result is easily obtained from Equation 4.33. If a
body has an initial velocity v, = v, and final velocity v, = v,, then integra-
tion of Equation 4.33 gives

o 2

T, =T, = mye(I', = 1)
= rzmocz - rlmocz
= chz - m162

= (m, — m,) c*.
The result can be symbolically represented as
AT = Amc* = AE, (4.42)

where the last equality (AT = AE) is obvious from Equation 4.41. Conse-
quently, any change in the kinetic or total energy of a body results in a cor-
responding change in its mass. Indeed, hot water has more mass than the
same amount of cold water, and so forth. The reason we do not observe
these changes in everyday experiences is because Am is very small as com-
pared to the change in energy and, furthermore, commonly encountered
values of AFE are relatively small.

It needs to be emphasized that the concept of total energy in Ein-
steinian relativity differs from that of classical mechanics in that the for-
mer does not include potential energy V. The conservation of energy
principle in a broader sense is, however, still valid in relativistic dynamics,
provided the rest energy of a body or system of bodies is taken into ac-
count. The principle now becomes one of mass-energy conservation, which
is represented as

E,+ T+ V = CONSTANT (4.43)

for an isolated inertial system.

4.4 Relativistic Momentum

An expression for the relativistic momentum of a body is easily obtained
from the classical definition of momentum and the equations representing

Mass-Energy
Conservation
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Linear Momentum

Relativistic Momentum

Energy of Photons

relativistic mass and energy. That is,

p =mv (1.15)
_ Imycv

or more simply

p="Y (4.44)
C

One interesting interpretation of Equation 4.44 is for electromagnetic
radiation (e.g., x-rays, y-rays, visible light, etc.), since it propagates through
free space at the speed c. In this case v = ¢ and the total energy of a quan-
tum of radiation is given by

E = pc (4.45)

The result suggests a particle-like behavior for electromagnetic waves,
which was originally proposed by Einstein in 1905. In explaining the p/o-
toelectric effect (see Chapter 6, Section 6.6), he postulated that electro-
magnetic radiation consisted of quanta of light-energy in the form of
fundamental particles, later called photons, that propagate at the speed of
light. This particle-like behavior of light will be the topic of considerable
discussion in Chapter 6 as well as in the next section.

Another very useful relationship between momentum and energy can
be obtained from either the relativistic energy (Equation 4.40) or relativistic
mass (Equation 4.25) equations. From the former we have

E = mCZ = FM()CZ = FE(),
which, when squared, gives

E*=TE}
Ej

2
v
==
c
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_ K
2
1 — V4
m’?
2
= 0 N
2C2
1_p
E2

where the definitions of momentum and relativistic energy have been uti-
lized. The last equality, solved for E?, gives

E* = E}+ p*c, (4.406)

which in Section 4.6 will be shown to be an invariant relationship to all in-
ertial observers. At this time, however, additional insight into the proper-
ties of a particle traveling at the speed of light (i.e., a photon) can be
obtained by combining Equations 4.45 and 4.46. Clearly, since for a pho-
ton E = pc (Equation 4.45), the Equation 4.46 gives E, = 0, which means
m, = 0 for a photon. That is, a body traveling at the speed of light must
have a zero rest mass and, conversely, a particle of zero rest must be trav-
eling at the speed of light. This result of Einsteinian relativity yields con-
siderable insight into the behavior of particles and waves in nature, which
was not fully appreciated nor understood for nearly two decades after Ein-
stein’s published work. His theory clearly predicts that particles having a
nonzero rest mass can never be accelerated to the speed of light, while en-
tities in nature traveling at such a speed must necessarily have a zero rest
mass. This relativistic view is in sharp contrast to the predictions of clas-
sical physics, but, as will be seen, it is the correct one and accurately de-
scribes the properties of photons.

4.5 Energy and Inertial Mass Revisited

The results of the last section were totally surprising to the physics com-
munity of the early twentieth century; however, Equation 4.45 was known
from classical electromagnetism for well over thirty years (see Chapter 6,
Section 6.4) before the publication of Einstein’s theory. We will utilize that
equation and the concept of a photon as an elementary particle or quantum
of electromagnetic radiation to re-derive the energy-mass relationship, by
considering a gedanken experiment originally developed by Einstein in
1906.

Energy-Momentum
Invariant
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Figure 4.3

The emission of pho-
tons of equivalent mass
m from the right-hand
sphere, the recoil of
the dumbbell with ve-
locity u, and the final
absorption of the pho-
tons by the left-hand
sphere.

Consider two identical spheres, each of mass AM, separated a dis-
tance L by a rod of negligible mass. This dumbbell system is assumed to be
isolated from its surroundings and initially stationary with its center of
mass (C.M.) located midway between the spheres on their common axis.
At some instant in time a burst of photons is emitted from the right-hand
sphere and propagates toward the left-hand sphere, as illustrated in Figure
4.3. If we think of these photons as possessing an equivalent mass m, then
the radiant energy associated with the photons is

E = pc, (4.45)
according to Equation 4.45. Assuming conservation of momentum to be
valid, then the momentum of the photons to the left, p, is just equal to

the momentum of the dumbbell system to the right, (M — m)u, where m
is the assumed mass equivalent of the emitted radiation. Thus,

p=(M—mu (4.47)

and Equation 4.45 becomes
E=(M — muc. (4.48)
If Ar is the time required for the photons to travel from the right-hand

sphere to the left-hand sphere, then from the postulate of the constancy
of the speed of light

Af = : (4.49)

M

=

=\

|

|
Photons emitted |
|
|
|
|
|
|

—pe U — U

%L+Ax
M-m

1
2

Photons absorbed
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where the recoil distance Ax of the dumbbell system has been taken into
account. Accordingly, the average speed of the dumbbell is just

ﬁ: cAx

, 4.50
At L — Ax ( )

u =

which upon substitution into Equation 4.48 gives

(M — m)c*Ax
L — Ax
(M — m)c?

(% N 1>m02. (4.51)

Since the sum of all mass moments on one side of the C.M. point must
equal the sum of all mass moments on the other side (by definition of the
center of mass), then

(M +m) (AL — Ax) = AM — m) AL + Av). (4.52a)

Solving this equation for L/Ax,

L _M (4.52b)
Ax m

and substituting into Equation 4.51 immediately gives
E = mc*. (4.40)

Although this equation has been obtained by a derivation that differs
somewhat from Einstein’s, the resulting implications are the same and are
in agreement with the interpretations of Equation 4.40. The interpretation
here, however, is that the sphere emitting electromagnetic radiation experi-
ences an inertial mass decrease of E/c?, while the other sphere’s inertial
mass increases by the amount E/c* upon absorption of the radiation. Thus,

Energy-Mass
Equivalence
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any change in the energy AE of a body results in a corresponding change
in its inertial mass Am in accordance with Equation 4.42.

4.6 Relativistic Momentum and Energy
Transformations

The previous discussions of this chapter have been primarily concerned
with the view of Einsteinian dynamics in one inertial system; however, it
is desirable to transform momentum and energy measurements of a par-
ticle from one inertial system to another. Linear momentum has already
been defined as the product of mass and velocity, so in system S the mo-
mentum of a particle is

p=mv = Imy, (4.53a)
while in system S’ it is denoted as

p =m'v = 'myy. (4.53b)

Clearly, these are vector equations and can be expressed in terms of Carte-
sian components as

p=pi+pi+tpk (4.54a)
and p' =pi +pli +pk. (4.54b)

The immediate problem is to find out how these components of mo-
mentum transform between two inertial systems S and S’, when they are
separating from each other at a constant speed u.

Consider a particle to be moving about in space and time with a ve-
locity v measured in system S and v’ measured in S’. In this context the
velocity of the particle, as measured by observers in either system, need
not be parallel to the common axis of relative motion between the two
systems. According to observers in S, the particle has a longitudinal com-
ponent of momentum given by

Dx = MUy,

which, upon substitution of Equations 4.25 and 3.24a, can be expanded
to the form

o+
po=Tm= "1 (4.55)

vl U
1+

CZ
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It will be shown that

— =l", (4.56)
UL U
1+
C2
where for observers in system S’
L 1
N=s —— (4.57)
U’ 2
1 —4
c2

by analogy with the definition given by Equation 4.23. To obtain this re-
sult, consider the expansion of 1 — v/c?,

2 ! 2
U; v, tu
1_ 2:1_ ( I) 2
c U, U
c2<1+ )
CZ

_ ¢t c?
vl u\?
<1 " c? >

= : (4.58)

where Equation 3.24a has been used. From Equations 3.24b, 3.24c, and
2.7 we have
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S"—S

which upon subtraction from Equation 4.58 and rearrangement gives

!

viu 2
C2

= , (4.59)
2 12 2
(-5 (=5)0-5)
c? c? c?
where the fundamental relations
vl = vl 4 v+ Ul (4.60a)
vi=0v?2+ v'{,z + v'? (4.60b)

have been used. Now, taking the square root of Equation 4.59 and using
the defining equations for I', I'’, and vy gives

r = ’YF’(l + szl'l)’
c

which is equivalent to Equation 4.56. Using this result (actually Equation
4.56) allows the x-component of momentum, given by Equation 4.55, to
be expressed in the more compact form

pe =vyI'my(vy +u)=ym'(vy + u)
or more simply

pe=v(p: + mhu). (4.61)
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In a similar manner the transformations for the transverse components
of momentum are easily obtained. For example,

pyEmU,V

which from Equation 4.53b yields

Dy =D, (4.62) S"—>S
and similarly

p-=p:. (4.63) S'—S
Equations 4.61, 4.62, and 4.63 represent the relativistic momentum-com-

ponent transformations from system S’ to system S; whereas, the inverse
transformations are given by

Px =Y (p. — mu) (4.642)
Py =D, (4.64b); S— S’
pl=p. (4.64¢)

Frequently, the transformation for the longitudinal component of
momentum is expressed in terms of energy. This is easily accomplished
with Equations 4.61 and 4.64a by realizing that Einstein’s energy-mass
equivalence relationship is valid for any inertial system. That is, to ob-
servers in S

E = mc* =I'myc? = T'E,, (4.65a)

while to observers in system S’
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S"—S

S—>¥§

S"—=S

E/ — erZ
= I"myc?
=1"E, (4.65b)

for a particle having an inertial mass m,. Consequently, Equations 4.61
and 4.64a can be expressed as

po=v(pt + ) (4.66)
and p. =v(px - Eﬁ’) (4.67)
C

which will prove useful in our next consideration.

To obtain the relativistic transformation for £ and E’, it is convenient
to capitalize on the results expressed by Equations 4.66 and 4.67. If we
desire an equation for E in terms of primed quantities p, and E’, then p.
must be eliminated between the two equations. Thus, substitution of Equa-
tion 4.66 into Equation 4.67 gives

s

’ ’ E,M EM
pXZVL%px+ 2)— -
& &

which can be solved for the term involving E as

v°E'u

Evyu , ,
—=Yp Tt 3 L

X X

Multiplying both sides of this equation by ¢*/yu gives

. c? L’
Ez’yp +yE’—p
Yu

! pfl(cz -2

=y |E+— 0=y

Because y 2 = 1 — u?/c?, the energy transformation equation for S’ to S be-
comes

E=~(E + pu) (4.68)
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while the inverse transformation is given by
E' =~ (E — pu). (4.69)

This last expression is directly obtained in a similar manner by substituting
p- from Equation 4.67 directly into Equation 4.66 and solving for E'.

In this and previous sections it was clear that momentum and energy
of a particle depend on the observer, and in general these quantities have
different measured values for different inertial observers. Equation 4.46
solved in the form

E2 _p2C2 £ E(Z)

suggests that if F, for a particle is to have the same value to all inertial
observers, then the particle’s energy squared minus the square of the prod-
uct of its momentum and the speed of light must be an invariant to all in-
ertial observers. To verify this observation, we need only substitute
Equation 4.69, 4.67, and 4.64c into the expression E'? — p’?c* to obtain

Eg — Erz _ p/zcz
=E"?—(pi? +p* +pl?)c

2
:E’2—72<px—£?> Cz_pyzcz_pzzcz
C

Eu\?
=v(E — pauy — vz(px - ?> = pjct—pic?
2.,2

E
=72<E2+p3u2—p,?cz— " )—pfcz—pfcz

2 2
e 1) (1= )] e
:Ez_pzcz_pzcz_pzcz

X y z
= E? — p2c?.

Thus, although our other relativistic transformations for momentum, en-
ergy, mass, and force are not invariant, Equation 4.46,

E? = E} + p*c?, (4.46)

S-S

Energy-Momentum
Invariant
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represents a particular invariant combination of energy and momentum
on which all inertial observers are in agreement.

Special relativity has profoundly altered our world view and raised a
host of philosophical and scientific questions. Its exhaustively verified cor-
rectness suggests that we have been presumptuous in defining nature’s laws
to be consistent with our common sense. We should examine our funda-
mental view with the aim of removing inherent, prejudicious concepts,
since we are three-dimensional creatures in, at least, a four-dimensional
world. In particular, the concept of a semi-infinite time axis should be re-
examined and our understanding of gravity (mass) could stand much im-
provement. At any rate, the developmental logic of special relativity
illustrates the need to liberate our reasoning from physical prejudices and
to rely only on pure logic within any carefully defined hypothetical frame-
work. We may not be able to answer all the questions today, but we now
know how, and perhaps where, to begin looking for at least some of the
answers.

Review of Derived Equations

A listing of the fundamental and derived equations of relativistic dynam-
ics is presented below, along with the transformation equations for rela-
tivistic energy and momentum. Also included are the newly defined special
symbols of this chapter.

SPECIAL SYMBOLS
o
Y=
L
C2
r=-1 =T
= 4ol
c? c?
=1
o
C2
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DERIVED EQUATIONS

=I'mya + mova£
dv

=Imya
dT = Fdr = m,c*dl’
T =myc*(I' = 1)

T=E-E,
E, = my®
E=mc
p=mv
_ Ev
C2
E=pc

E = E} + p’c?

Relativistic Mass

Newton's Second Law

Relativistic Force

Relativistic Kinetic Energy

Rest Energy
Relativistic Total Energy
Classical Linear Momentum

Photon Energy
Energy-Momentum Invariant

Relativistic Momentum Transformations

s'— S
p.=vy(p, + mh)
, E'u
=v<px + C2>
py=D
p.=p

S-S
pe =y (p, — mu)
ot
C2
P =Dy
p. = p-

Relativistic Energy Transformations

E=~v(E"+ pu)

E' =~ (E+ pu)

4.1 Combining Equations 4.16 and 4.17, show that the ratio of m to m,
is given by m/m, = (1 + B>)/(1 — B>).
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Solution:
Solving Equation 4.16,

mv = (m + my)u,
for m/m, and substituting Equation 4.17,

_ 2u
U = )
1+p°

immediately yields

3
<

|
<

<

—Uu

1

+

BZ
1
2 —
1+ p?
. 1+ p
2—-(1+p)

4.2 Starting with Equation 4.17 and using the result of Problem 4.1, show
that 1 — v¥/c* = m{/m* and that Equation 4.25 for the relativistic mass is
obtained.

Answer: T =" = I'm,
m

1-g
4.3 A particle of rest mass 1.60 X 10~% kg moves with a speed of 0.6¢
relative to some inertial system. Find its relativistic mass and momentum.

Solution:

With m, = 1.60 X 107 kg and v = 3¢/5 — I' = 5/4 substituted di-
rectly into Equation 4.25,

m = I'm,,

the relativistic mass is

m =

R

(1.60 X 10 kg) = 2.00 X 10~ kg,
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and the relativistic momentum is just

— — -29 3 g M
p=mv=(2.0X10 kg)§<3><10 ?)

=3.60 %10 kg - %

4.4 A particle of relativistic mass 1.80 X 10~% kg is moving with a con-
stant speed of 3¢/5. Find its relativistic momentum and rest mass.

Answer: p =324 X102 kg m/s,m, = 1.44 X 10 ¥ kg

4.5 Find the rest energy, relativistic total energy, and relativistic kinetic
energy for the particle of Problem 4.3.

Solution:

At this point we know m, = 1.60 X 10"* kg, v = 3¢/5,T = 5/4, m =
2.00 X 107* kg, p = 3.60 X 107" kg - m/s and we need to find E,, E,
and T. Direct substitution into Equation 4.39, 4.40, and 4.41a gives

2
E, = myc? = (1.60 X 10 kg) (9 X 101 %) —144%10727,
S

E = me>=TE, = 2 (144 X102 1) = 1.80 X 102 J,

T=E—E=(.80—-144)X10%J=36X10""1T.
4.6 Find the rest energy, total energy, and relativistic kinetic energy for
the particle of Problem 4.4.
Answer:

E, =130 X102, E=1.62X102), T=324X10""1]

4.7 Express the answers to Problem 4.5 in units of MeV, where M = 10°
and 1 eV =1.60 X 107" J. Verify that the total energy in MeV is also given
by Equation 4.46.

Solution:
For the conversion units we have
E, = (1.44 X 107 J) <¢) =9 MeV,
160 X 107 J
E = (180 %10 7) <¢) ~11.25 MeV,
1.60 X 107 J
_ ~13 1eV _
T =(36X107"1J) (—) =225 MeV.
160 X 107 J
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Now, using Equation 4.46,
E* = E} + p°c,

direct substitution yields

E? = (9 MeV) + [(3.60 X 102 (3 X 10) J <le\/>]
1.6 X107 7]
= (9 MeV)’ + (6.75 MeV ).
Thus, the total energy is given by
E=11.25MeV.

4.8 Find the percentage of error arising from using the classical definition
of kinetic energy (T = 4m,v?) instead of the relativistic definition for a
particle traveling at 3¢/5.

Answer: 28 percent
4.9 Show that the percentage of error arising from using the classical

definition of momentum (p = m,v) instead of the relativistic momentum
is 20 percent for a particle traveling at 3¢/5.

Solution:
With v = 3¢/5 — I' = 5/4, we have

p—my _my
p p
=1 MyU
I'myv
=1—l=1—é20.20.
r 5

4.10 Derive Equation 4.46 by starting with Equation 4.25.

Answer: E* = E} + p*c?
4.11 What is the momentum for a particle of rest energy 0.513 MeV and
total energy 0.855 MeV?

Solution:
Linear momentum can be expressed in terms of E, = 0.513 MeV and
E =0.855 MeV using Equation 4.46 in the form

p= c
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Thus, direct substitution of E, and E gives
37 MeV
c

MeV .
c

p =+/0.855>—0.51 = 0.684

4.12 Find the speed of the particle described in Problem 4.11.

Answer: v =0.800c¢

4.13 A particle of rest energy 3 MeV has a total energy of 5 MeV. Find
the particle’s speed v and momentum p.

Solution:
We need an expression for v in terms of £ and E,. Squaring both sides
of the Equation

and solving for v gives

_4
__C’
5

where E, = 3 MeV and E = 5 MeV have been substituted. The mo-
mentum p is now easily obtained by realizing that

. __Fv
p—mv——z

c
(5 MeV)(4cl5) 4 Mev
- ~ — o

This approach offers an alternative to that used in Problems 4.11 and
4.12.

4.14 How much energy in terms of E, would be required to accelerate a
particle of mass m, from rest to a speed of 0.8¢?
2

Answer: T = §E0
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4.15 Two particles separated by a massless spring are forced closer to-
gether by a compressive force doing 18 J of work on the system. What is
the change in mass of the system in units of kilograms?

Solution:
We know AE = 18 J and need to find Am. From Equation 4.42 we have
Am=8E 18] 5100 kg,
c? m?
9 X 10" =
SZ

4.16 If a particle of rest energy E, is traveling at a speed of 0.6¢, how
much energy in terms of FE, is needed to increase its speed to 0.8¢?
5

Answer: E,— E = —FE
12

4.17 At what fraction of the speed of light must a particle travel so that
its total energy is just double its rest energy?

Solution:
Under the condition
E =2E,
we substitute I'E, for E and obtain
=2,

Substituting from Equation 4.23 for I" and squaring gives

1 A 4.
v
1=
which is easily solved for
2
U =2 —u=0866c.
c

4.18 At what fraction of the speed of light must a particle travel to have
a kinetic energy that is exactly double its rest energy?

Answer: v =0.9248¢

4.19 Observers in system S’ measure the speed of a 1.60 X 10~ kg par-
ticle traveling parallel to their X"-axis to be 0.6¢. If the relative speed be-
tween S and S’ 1s 0.8¢, what do observers in S measure for the momentum
of the particle?
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Solution:
We know m, = 1.60 X 107 kg, v. = v’ = 0.6c > I = 5/4, and u =
0.8¢ — vy = 5/3 and need to find p,. From Equation 4.66 we have

, E'u
px=Y<px > >’
C

which is expressible in terms of the given information as
E
P=Y <F’mov’ + F%”)
C
=y (M"myv" + I"myu)
=~y["m, (V" + u).
Now, direct substitution yields
Dy = <§> G) my(0.6¢ + 0.8¢)

) (16.0 X 10 kg) (i‘é)

%) (16.0 X 107 kg) (3 X 10° m/s)
-2 gy M
5)(7) (4 X 1072 kg g )
=14 X102 kg - %
Actually, this problem could have been solved more directly by using
Equation 4.66, since we had already calculated its momentum and

energy for an inertial system in Problems 4.3 and 4.5, respectively.

4.20 In Problem 4.19, what do observers in system S measure for the par-
ticle’s total energy?

Answer: E =444 X 10727
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CHAPTER 5

Quantization of Matter

An experiment showing the path of single electrons
passing through liquid helium.

Atoms of the different chemical elements are different aggregations of
atoms [particles] of the same kind... Thus on this view we have in the
cathode rays matter in a new state, a state in which the subdivision of
matter is carried very much further than in the ordinary gaseous state: a
state in which all matter—that is, matter derived from different sources
such as hydrogen, oxygen, etc—is of one and the same kind; this matter
being the substance from which all the chemical elements are built up.

J. L THOMSON, Philosophical Magazine 44,293 (1897)

Introduction

The study of Einstein’s special theory of relativity has expanded and com-
pletely altered our fundamental view of nature from that suggested by
classical mechanics. It is important to realize that our new perception of
the concepts of length, mass, time, and energy resulted from essentially
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one new basic postulate of nature (the invariance of the speed of light)
and an application of classical mechanics to fundamental physical consid-
erations of macroscopic phenomena. Additional deviations from classical
physics and insights of microscopic phenomena will be detailed in this and
the next few chapters, as we consider other theoretical and experimental
contributions to modern physics. The method of inquiry is similar to that
utilized in the study of Einsteinian relativity, in that a few new fundamen-
tal postulates of nature are combined with well known principles of clas-
sical mechanics and electromagnetic theory to produce a new nonclassical
view of nature on the microscopic level.

The immediate objective of this chapter is to study the quantization
of matter, a concept that suggests matter is composed of basic constituents
or minute particles. After a brief review of the evolution and scientific ac-
ceptance of this atomic view, the qualitative physical properties of an elec-
tron will be investigated. This is immediately followed by a study of the
early measurements and estimates of the specific charge (e/m,), absolute
charge, mass, and size of an electron. The emphasis of these discussions
is not on the actual experiments and analyses performed by physicists in
obtaining these early estimates. Instead, the logical application of basic
principles of classical physics is emphasized in the development of rela-
tionships capable of predicting theses fundamental physical properties of
an electron. Further, a limited discussion of the modern model of the atom
and nucleus is presented, followed by theoretical considerations for the
mass, size, and binding energy of an atom. As a number of fundamental
relationships of classical electromagnetic theory will be utilized in this
chapter, a review of the basic equations, SI units, defined units, and con-
ventional symbols presented in a general physics textbook might prove
beneficial.

5.1 Historical Perspective

The concept of matter being quantized (i.e., discrete) was suggested as early
as the fifth century B.C. by Greek philosopher Democritus. This view,
however, was mostly disregarded for nearly two thousand years by scien-
tists in favor of the Aristotelian philosophy that consider space and matter
as being continuous. Serious theoretical support for the atomic view of
matter by Pierre Gassendi, Robert Hooke, and Isaac Newton appeared in
the middle and latter part of the seventeenth century. These efforts, how-
ever, were essentially ignored for nearly another hundred years, before ini-
tial experimental evidence from quantitative chemistry was available in
support of the quantization of matter.

Of the many scientists involved in the development of quantitative
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chemistry at the turn of the nineteenth century, the more noteworthy in-
clude chemists Antoine Lavoisier, J. L. Proust, John Dalton, J. L. Gay-
Lussac, and the Italian physicist Amedeo Avogadro. The work of these
individuals clearly established that basic substances participate in chemical
reactions in discrete or quantized entities. Their efforts led to the definition
of chemical elements and the concept of atomic masses (originally called
atomic weights). In fact Dalton suggested each element was composed of
physically and chemically identically azoms and that these atoms were dif-
ferent from the atoms of any other element. He also introduced the con-
cept of atomic masses; however, it was Avogadro who provided the best
rationale for finding atomic masses by way of his hypothesis that at the
same temperature and pressure equal volumes of gases contain the same
number of particles. He was also the first to recognize that two or more
atoms could combine to form what he called a molecule, a concept that
was not fully understood until the development of quantum mechanics in
the twentieth century. His hypothesis is of fundamental importance to
physics and physical chemistry in that it predicts the number of atoms or
molecules in one mole of a substance (any element or compound) as being
exactly equal to a number N,, called Avogadro’s constant. Although the
absolute magnitude of N, was not known for more than fifty years after
Avogadro’s hypothesis, knowledge of its existence was sufficient and of
primary importance in the development of relative atomic masses for the
chemical elements. In the last section of this chapter Avogadro’s hypoth-
esis and the value of N, will be utilized in calculating the absolute mass
and size of an atom.

An enormous amount of evidence for the quantization of matter was
provided by the advent and development of kinetic theory in the nine-
teenth century, which was complementary to and independent of the view
suggested by quantitative chemistry. Kinetic theory arises from the appli-
cation of Newtonian mechanics to a gas considered as a system consisting
of a very large number of identical particles. These particles are imagined
to exist in a state of random motion and have elastic collisions with one
another and the gas container. This large and very elegant subject was the
first microscopic model of matter describing the physical properties of a
gas. It was initially developed in part by Daniel Bernoulli In 1738; however,
the major contributions and development occurred in the nineteenth cen-
tury and were brought about notably by J. P. Joule, R. J. Clausius, J. C.
Maxwell, L. Boltzmann, and J. W. Gibbs. Although kinetic theory per se
is not germane to our immediate objectives, it is appropriate to acknowl-
edge its contribution to the atomic view of nature. Many of the results of
kinetic theory will be independently developed and discussed later in this
textbook, when we consider the fundamental principles and physical ap-
plications of statistical mechanics.
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Figure 5.1

A simple Geissler dis-
charge tube containing
two electrodes.

One other contribution supporting the atomic view of matter came
from the law of electrolysis developed by Michael Faraday in 1833. By al-
lowing electricity to flow though electrolytic solutions and observing the
components of the solution being liberated at the electrodes, Faraday was
able to predict the existence of a discrete unit of electrical charge. His work
supported not only the quantization of matter, but also the quantization
of electrical charge. This discreteness in nature was later confirmed by ex-
perimental investigation of cathode and canal rays, which led to measure-
ments of the elemental electrical charge in nature and measurements of
atomic masses, respectively. The qualitative physical properties of cathode
rays is the topic of discussion in the next section, while canal rays will be
considered in some detail in Section 5.6.

5.2 Cathode Rays

During the second half of the nineteenth century considerable scientific
effort was devoted to the investigation of electrical discharge through rar-
efied gases. In 1853 a Frenchman by the name of Masson discharged an
electrical spark through a rarefied gas and found that the glass tube con-
taining the gas was filled with a bright glow, instead of the normal spark
as observed in air. A few years later the German glass blower Heinrich
Geissler manufactured a number of these gaseous discharge tubes and
sold them to scientists around the world. The Geissler tube, as illustrated
in Figure 5.1, essentially contained an anode and cathode electrode em-
bedded in a partially evacuated glass tube. As the internal pressure to the
tube is further decreased, the electrical discharge through the rarefied gas
undergoes a number of different phases, as was reported by W. Crookes,
Faraday, and others. At a pressure of roughly 0.01 mm of Hg a glow dis-
charge is produced, as the entire tube tends to glow with a faint greenish
light. The initial explanation was that invisible rays, called cathode rays,
emanating from the cathode electrode would strike the walls of the tube
and cause a florescence of the glass. The existence of these invisible cath-
ode rays caused considerable investigatory excitement in the scientific com-
munity during the remainder of the nineteenth century.

- A
@ Discharge tube @
. i S i/
Anode Cathode
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Cathode rays

Cathode

@ Shadow

It can be easily demonstrated that the rays travel from the cathode to
the anode in a straight line by using a discharge tube similar to that of
Figure 5.2, where the dashed lines represent the rays emanating from a
point source. A greenish fluorescence is observed where the rays strike the
glass, while the glass in the shadow of the object remains dark. Since the
shadow is distinctive and always on the side opposite the cathode, the rays
must be traveling in straight lines and emanating from the cathode elec-
trode. This 1869 discovery of the rectilinear propagation of cathode rays
is credited to Johann W. Hittorf. One year later William Crookes demon-
strated that cathode rays have energy and momentum by using a modified
discharge tube similar to the one depicted in Figure 5.3. Here, the rays
strike a frictionless pinwheel causing it to rotate in a counterclockwise
fashion. That the rays are emanating from the cathode is also verifiable,
since a reversal of the electrical polarity on the electrodes results in a clock-
wise rotation of the pinwheel. Because of the motion of the pinwheel
Crookes concluded that cathode rays consisted of invisible particles pos-
sessing both mass and velocity and, consequently, momentum muv and ki-
netic energy Amuv?.

Cathode rays were found to be negatively charged particles by Jean
Perrin in 1895. A simple demonstration of this is illustrated in Figure 5.4,
where a beam of cathode rays is created by a pinhole placed close to the
cathode electrode. With the magnetic field on and directed info the plane
of the page, the beam of rays is observed to cause fluorescence around re-
gion B. Without the magnetic field the region of fluorescence is around
point A, while fluorescence is observed to occur at B’, when the direction
of the field is reversed. With these results noted, and application of the /eft-

/ Cathode

Pinwheel

Figure 5.2

A Crookes demonstra-
tion tube illustrating
the rectilinear propaga-
tion of cathode rays.

Figure 5.3
Demonstration of en-
ergy and momentum
possessed by cathode
rays.
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Figure 5.4
Demonstration of the
negative charge associ-
ated with cathode rays.

Lorentz Equation

B-reversed
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hand rule shows cathode rays to be negatively charged particles. Recall that
the left-hand rule is based on the famous Lorentz force equation of general
physics.

F; = qv X B, (5.1)

where F is the force experienced by a body having an electrical charge ¢
traveling with a velocity v though an external B field. For negatively
charged particles the vector form of this equation suggest that the thumb,
first, and second finger of the left hand can represent the directions of F,,
v, and B, respectively. Thus, with the magnetic filed directed as depicted
in Figure 5.4, negatively charged particles will experience an acceleration
due to the force F; as they traverse the magnetic field and, subsequently,
be deviated from their initial rectilinear path to a point like B at the end
of the tube.

5.3 Measurement of the Specific Charge e/m,
of Electrons

At this time cathode rays were understood to consist of particles of some
unknown mass and negative electrical charge. In 1897 J. J. Thomson suc-
cessfully determined the charge-to-mass ratio of cathode particles by using
a highly evacuated discharge tube. Although he used different gases in the
discharge tube and different cathode metals, he always obtained the same
value for the charge-to-mass ratio of the cathode particles. Calling these
particles cathode corpuscles, Thomson properly concluded that they were
common to all metals and different from the chemical atoms. He suggested
a revolutionary new model for electrical neutral atoms as consisting of
negatively electrified corpuscles that can be liberated from an atom by elec-
trical forces. These corpuscles were later called electrons (a term first in-
troduced by G. J. Stoney in 1874 to describe the charge carried by and ion)
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and recognized as possessing a quantized charge and as being fundamental
constituents of all atoms.

Thomson’s insight on the nature of electricity resulted from experi-
ments using a highly evacuated discharge tube similar to the one depicted
in Figure 5.5. The electrons emanating from the cathode electrode C are
strongly affected by the potential difference between the cathode and
anode electrodes. This potential difference is not uniformly distributed be-
tween the electrodes, however, as roughly 0.95 of the potential drop is con-
centrated very close to and in front (within approximately 1 cm) of the
cathode. Consequently, assuming the cathode metal C to be small and ap-
proximating a point, the emanating electrons are radially accelerated and
travel in straight lines away from the cathode. Some of these electrons will
pass through the apertures A, and A4, of Figure 5.5 and become a highly
collimated beam of particles, which travel rectilinearly at nearly a constant
speed v, along the axis of the tube. In this manner the apparatus creates
a thin beam of electrons, which can pass through a region where a uniform
electric field E (created by a parallel plate capacitor) coexists and is direc-
tionally perpendicular to a uniform magnetic field B (created by
Helmholtz coils). In the absence of the electric and magnetic fields, the
rectilinearly propagating electrons will strike the end of the tube at point
R, as illustrated in Figure 5.5. The existence of the magnetic B field alone
causes the beam of electrons to be deflected to position B on the fluores-
cent end of the tube, while the electric E filed existing alone results in a
deflection of the beam to point E. Using the apparatus of Figure 5.5, a
number of different methods and analyses will be described below for
measuring the specific charge elm, of electrons, where e and m, are the con-
ventional symbols used to represent the electrical charge and rest mass,
respectively, of electrons. In all considerations the electric and magnetic
fields are assumed to be uniform within a rather well-defined geometric
region and zero outside this region. Further, we ignore as insignificant the
gravitational force acting on electrons and the interaction of their electric
fields, as they pass though the discharge tube.

B “only”

E “only”

Figure 5.5
Experimental discharge
tube measuring e/m,
for electrons.



136 Ch. 5 Quantization of Matter

Electric Field Intensity

Speed of Electrons

Speed of Electrons

Thomson knew the cathode electrons had a nearly uniform speed v., be-
fore entering the coexisting E and B fields, since in the absence of these
fields the beam of electrons produced a well-defined fluorescent spot on
the end of the tube. A value of v, can be determined by considering the
electric E and magnetic B fields of the Thomson apparatus to be activated.
Further, the magnitudes and directions of the E and B fields are adjusted
such that the beam of particles is undeflected upon passing through the
geometrical region where the fields coexist. With this adjustment of the
apparatus, the particles will not experience any net external accelerating
force, as they pass through the coexisting E and B fields. Consequently, in
that region of the tube the upward magnetic force F, on the particles must
be equal in magnitude to the downward electric force F,

Fy=Fy. (5.2)

An equality for Fj is directly obtained from Equations 5.1 as
Fy; = ev.B, (5.3)
with ¢ and v being replace by e and v, respectively. The cross product v X
B in Equation 5.1 reduces to that given in Equation 5.3, since the velocity
of the electrons is everywhere perpendicular to the magnetic field in Figure

5.5. An expression for F of Equation 5.2 is also easily obtained by recall-
ing the defining equation for electric field intensity,

F
E=". 5.4
7 (5.4)

Replacing ¢ with e, this definition gives
F, = ¢E, (5.5)

which when substituted along with Equation 5.3 into Equation 5.2 gives
E

=—. 5.6

V=5 (5.6)

The values for E and B in this expression are easily determined by knowing
the geometry of the capacitor and Helmholtz coils and by taking readings
of the voltmeter and ammeter associated with each. For example, the par-
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allel plate capacitor has a uniform electric field intensity given by

E:

Q‘|,\<

; (5.7) Parallel Plate Capacitor

where V. is the potential drop (read from a voltmeter) across the capacitor
plates and d is the plate separation distance. Although the acceleration of
the cathode electrons from rest to the speed v, is accomplished by the
nonuniform electric field between the electrodes, Equation 5.6 allows the
determination of v,, from knowledge of well-defined and uniform electric
and magnetic fields. The approximate value of v,, is also important to
know, as we must decide whether classical physics or Einsteinian relativity
is more appropriate in our derivations for the e/m, ratio of electrons.
Thomson found v, to be on the order of 1/10 the speed of light, which
means classical physics can be safely employed in the analyses (e.g., see
example of kinetic energy preceding Equation 4.38).

Analysis of e/m, Using the B-field Deflection of Electrons

Up to this point in our deliberation of Thomson’s experiment, a beam of
cathode electrons has been allowed to pass undeflected through a region
of coexisting E and B fields. Now, if the electric field E is deactivated, the
path of cathode electrons is depicted in Figure 5.6 as being uniformly
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deflected by the magnetic B field and as being rectilinear beyond the field.
The uniform deflection of an electron in this magnetic field alone results
from it experiencing an accelerating force F, which is everywhere perpen-
dicular to the electron’s velocity v (e.g. vy, v,, and v, of Figure 5.6) and the
magnetic induction B. In this situation the electron will traverse the mag-
netic filed in a circular path of radius r in a plane perpendicular to the B
field. Although the velocity of the electron undergoes a directional change
due to the accelerating force Fj, the electron’s speed is constant as it trav-
erses the magnetic field. Consequently, the accelerating force is of constant
magnitude F, as given by Equation 5.3, and changing direction. Further,
under these conditions Fj is recognized as being a centripetal force F.,
which is given by

E. = : (CRY)

From this centripetal force expression and Equation 5.3 we obtain

m,v;

r

’

ev,B =

where m and v in Equation 5.8 have been replaced by m, and v,, respec-
tively. Thus,

: (5.9)

SIES

€
m,

where m, is the rest mass of an electron and r is the radius of the arc de-
picted in Figure 5.6. This equation can be further modified by substitution
from Equation 5.6 to obtain

e _ E
m, }"Bz

(5.10)

which gives the specific charge of electrons in terms of directly measurable
quantities B, E, and r. Although this equation differs (because of our
analysis) somewhat from that used by Thomson, it has an advantage of
simplicity in derivational steps and form. Thomson measured values for
elm, in the range 0.7 X 10" C/kg to 2 X 10" C/kg, whereas the more recent
accepted value is
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€~ 1758806 x 10" . (5.11)
m, kg

Since the value of e in coulombs (C) is necessarily micro in size, the value
given for e/m, portends the rest mass of an electron in kilograms (kg) must
be extremely small.

Analysis of e/m, Using the Cathode-Anode Potential

Equation 5.10 is somewhat inhibiting to use for the determination of the
charge-to-mass ratio of electrons, since the radius » of the circular arc of
Figure 5.6 is usually difficult to accurately measure. An equation involving
e/m, for the electrons can be obtained in terms of easily measurable vari-
ables by considering the work done on the cathode electrons by the im-
pressed electric field between the cathode and anode electrodes. Assuming
the liberation energy required to free the electrons from the cathode metal
is negligibly small, then the work done by the electric field on the electrons
goes into kinetic energy. From the definition of electrical potential,

% , (5.12)

w
q
it follows that the work done on the electrons of charge e is related to the
potential drop V" between the electrodes as

W= eV, (5.13)

where V'is read directly from the apparatus voltmeter. Since the electrons
of mass m, have a zero initial velocity after being liberated from the cath-
ode, the apparatus collimates and the electric field of the electrodes accel-
erates the electrons to a final horizontal velocity of v,. Thus, the work
done by the accelerating potential is just

W =-mu!, (5.14)

which upon substitution into Equation 5.13 gives

2

v
X 5.15
v (5.15)

e
m,

\S]

Electrical Potential
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Charge to Mass Ratio

Figure 5.7

The affect of a uniform
E field on cathode
electrons.

With the coexisting E and B fields of the apparatus adjusted such that the
cathode electrons are undeviated from their rectilinear path, v, is given by
Equation 5.6 and Equation 5.15 becomes

E2
2VB?

e
m (5.16)
for the charge to mass ratio of the electrons. The advantage of Equation
5.16 over Equation 5.10 is the ease and reliability of accurately measuring
the values of the parameters B, E, and V. Further, by using this equation

to determine the specific charge of electrons, there is no need to consider
a magnetic deflection of the cathode rays.

Analysis of e/m, Using the E-field Deflection of Electrons

It was fortunate that the electrons were of equal mass, charge, and nearly
equal velocities v, before passing through Thomson’s coexisting electric
and magnetic fields. The uniformity of v, for the electrons can be verified
by comparing the value of e/m, obtained from another analysis with that
predicted by Equation 5.16. In this instance the B field is deactivated so
the path of the electrons is dependent on only the uniform E field. The af-
fect of the electric field alone on the beam of cathode electrons is depicted
in Figure 5.7, where the direction of the E field has been reversed from
that of Figure 5.5 for illustration purposes. The electrons of identical
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mass m, enter the E field with a zero y-component of velocity. Because of
their electrically charged state they are accelerated in the positive y-direc-
tion by the capacitor’s uniform E field, such that they emerge from the ca-
pacitor with independent and uniform components of velocity v, and v,.
Unlike the accelerating force Fy due to the magnetic field alone, the cath-
ode electrons now experience an accelerating force F that is constant in
both magnitude and direction. Consequently, the electrons experience a
uniform vertical acceleration a, due to the electric field, while their hori-
zontal component of velocity v, that is perpendicular to E remains totally
unchanged. For a uniform vertical acceleration a,, the electrons vertical
displacement due to the electric field only is given by classical kinematics
as

0
W=+ car = ar, (5.17)

where ¢, is the time required for the electrons to traverse the E field as given
by

h="1 (5.18)

The acceleration in the y-direction due to the E field is simply expressed
from Newton’s second law of motion (see Equation 1.17) for m # m(t) by

E

e

: (5.19)

S|
m

3

where Equation 5.5 has been utilized in obtaining the second equality.
Clearly, substitution of Equations 5.18 and 5.19 into Equation 5.17 yields

=N

S
=

w="_ (5.20)

c
=

for the electric field deflection of the cathode electrons. As the electrons
emerge from the E field of the parallel plate capacitor, they have a constant
speed of v, in the y-direction, which portends their vertical displacement
¥, as they traverse the horizontal distance x, at the constant speed v,. In
this case the vertical displacement is given by

V2 = Uy, (5.21)
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where the time involved is simply
L=—- (5.22)

Since the defining equation for average acceleration allows
0
v, =¥, + at,

then from Equation 5.18 and 5.19 we have

SIS
Sz

(5.23)

=
I

e

Now, substitution of Equations 5.22 and 5.23 into Equation 5.21 yields

eEx x,
» =

— (5.24)

Consequently, from Equations 5.20 and 5.24 the total deflection of the
electrons is just

y=ytp=—(ln+x), (5.25)
m,

or more simply

E
e n (5.26)

m. x,BZGX, + x2>

by using Equation 5.6 for v,. This equation could be reduced further in
terms of easily measurable physical parameters by using Equation 5.7 (E
= V./d). The point is that Equation 5.26 is but another analysis for the
electron’s charge-to-mass ratio using the Thomson apparatus. The results
obtained by this equation should compare favorably with those predicted
by Equation 5.16, if the electrons enter the E field with very nearly equal
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velocities v,. It is also interesting to note that a deflection analysis very sim-
ilar to the one just presented could be made for the situation where the E
field is turned off instead of the B field. It is left to the reader to verify
that when the deflection due to the E field alone is equated to the deflection
due to the B field alone, Equation 5.6 is directly obtained.

The physical principles and analyses associated with the Thomson-
like discharge tube are very important to students of physics and engi-
neering, as a number of current electronic instruments utilize cathode ray
tubes. For example, modern oscilloscopes use electric fields to deflect the
cathode electrons, while television tubes utilize magnetic filed deflection of
electrons. Also, a diverging electron beam can be focused by a magnetic
field applied along the axis of the beam using a solenoid, which is of con-
siderable importance in the design and construction of electron micro-
scopes.

5.4 Measurement of the Charge of an Electron

Although Thomson’s investigation of cathode rays did not establish all
electrons as having identical charges and rest masses, he is attributed with
the discovery of the electron. Thomson realized it was possible for the
electrons to differ slightly in mass and electrical charge in such a way as
to preserve their charge-to-mass ratio. Consequently, it was necessary to
measure either the mass or the charge of electrons to determine if either
was quantized. Because of the suspected extremely small mass of the elec-
tron and the difficulty anticipated in determining it, researchers opted for
measurements of the electron’s charge. Experiments initiated by J. J.
Thomson and J. S. Townsend and later modified by J. J. Thomson and H.
A. Wilson were eventually refined by Robert A. Millikan, who in 1909
made the first successful determination of the electronic charge e. Mil-
likan’s research provided entirely independent evidence for the quantization
of electrical charge and allowed for the accurate determination of the elec-
tron’s rest mass m, (utilizing Thomson’s e/m, result), Avogadro’s number
N, (see Section 5.7), and atomic masses.

Basic to Millikan’s experimental apparatus was an air filled parallel
plate capacitor, wherein minute oil drops were illuminated and viewed with
a microscope. The oil droplets are normally produced by an atomizer,
which will result in some droplets being electrically charged by nozzle fric-
tion of the atomizer, or they could be charged by external irradiation by
x-rays or a radioactive material. Because of the retarding force of fluid
friction on an oil droplet moving in air, a droplet quickly attains a uniform
velocity called its terminal velocity, when acted upon by an accelerating
force due to gravity or an external electric field. The terminal velocity v,
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Figure 5.8

The dynamics of oil
drop motion between
(a) uncharged and (b)
charged capacitor
plates.

of a negatively charged droplet falling in the gravitational field and the
droplet’s terminal velocity v, attained when the electric field of the capac-
itor is activated are determined by means of a scale in the eyepiece of the
microscope. With measured values for the terminal velocities and the value
of the uniform electric field, the total electrical charge of the droplet can
be determined.

The physical fundamentals of the Millikan oil drop experiment are
depicted in Figure 5.8. Since the charge of a droplet results from an excess
or a deficient number of electrons, it is desirable to observe a droplet hav-
ing the smallest electrical charge. Such a droplet is easily selected by ob-
serving the response of all droplets to the external electric field of the
capacitor. With the electric field applied as in Figure 5.8b, uncharged
droplets will be observed to fall under the influence of gravity, positively
charged droplets (those deficient in electrons) will fall due to the electric
and gravitational fields, and negatively charged droplets will rise under the
accelerating force of the electric field. Since rerminal velocities are attained
very rapidly by the droplets, the slowest rising droplet would have the
smallest number of excess electrons. Selecting this droplet and deactivating
the electric field, the droplet would be observed to fa// under the influence
of gravity, as depicted in Figure 5.8a. When its uniform terminal velocity
v, 1s attained, the net external force acting on the droplet is zero. Thus, we
have from Figure 5.8a
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F,= F,+F, (5.27)

where F, is the downward gravitational force (weight of the droplet), F is
the buoyant force of the air, and F, is the retarding force of fluid friction.
Assuming the droplet to be a small sphere, F, is given by Stokes’ law as

F, = 6mrmu, (5.28)

for a spherical droplet of radius » moving through a homogenous resisting
medium (air) of viscosity coefficient . Combining Equations 5.27 and
5.28, we obtain

F, — Fy = 6mrmu,, (5.29)
where v, has already been defined as the terminal velocity of the droplet
due to the gravitational field only, as determined from measurements of
displacement and time.

When the electric field of the parallel plate capacitor is activated, we
have the situation depicted in Figure 5.8b. The negatively charged oil
droplet will rise due to the accelerating force F,; given by Equation 5.5.
Again, when the terminal velocity v, is attained, the net external force act-
ing on the droplet is zero, and from Figure 5.8b we have

F.+ F,=F,+F,. (5.30)

In this equation the force due to the electric field £ is given by combining
Equations 5.5 and 5.7,

V.
F; =qFE = QE’
and F, is given by Stokes’ law as
F, = 6mmuy,

where v, is the terminal velocity of the droplet under the influence of the
uniform E field. Substituting these two equalities into Equation 5.30 and
solving for the charge on the oil droplet gives

q = (F — Fy + 6mmug),

<l

Stokes’ Law

E Field OFF

E Field ON
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which can be further reduce by Equation 5.29 to the form

_ 6mmd
V.

q (v, + vg). (5.31)

Once the radius r of the oil drop is determined, the electrical charge to the
droplet is easily calculable by using Equation 5.31.

An expression for the radius of the droplet is obtainable from Equa-
tion 5.29, by realizing that F, is the weight of the droplet and Fj is the
weight of the volume of air displaced by the droplet. Since weight, as given
by Equation 1.18, is the product of a mass and the acceleration of gravity
g, then with m, being the mass of the oil droplet and m, being the mass of
the air displaced by the droplet, we have

F,=mg (5.32a)
and Fy=m,g. (5.32b)

Further, from the definition of mass density,
p=-—: (5.33)

and the equation for the volume of a sphere of radius r,

V= %171’3, (5.34)
we obtain
_4
m, = gq'rr Po (5.35a)
_4
and m, = gwr Pa- (5.35b)

Now, substitution of Equations 5.32 and 5.35 into 5.29 yields

4
gq'rr3g(p0 = p.) = 6TMU,,

which is easily solved for the radius of the droplet in the form
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no, )]”2. (5.36)

. 3[
2g(p, = Pa

In this equation p, and p, represent the mass density of the oil and air, re-
spectively, which are normally known or easily measured quantities. As a
point of interest, Millikan obtained an experimental correction to Stokes’
law, which effectively results in a correction factor to Equation 5.36. Thus,
the best value for the charge of an oil droplet is obtained by calculating
the radius of the droplet using Equation 5.36 and employing Millikan’s
correction factor before using Equation 5.31. The point of interest, how-
ever, is that Millikan was able to directly calculate the minute charge on
an oil droplet from basic experimental data, which is easily visualized by
combining Equations 5.36 and 5.31 to obtain

18mmd nu,
q —

1/2

v, + Ug). 5.37
V. 2g(po—pa)] T8 &30

With the relationship given by Equation 5.37, an experimenter can
measure the value of v, for a particular oil droplet in the absence of the E
field, then a number of values for v, can be determined for the same
droplet with the E field activated. Since the charge on the droplet will
change over time, due to a loss or gain in electrons, the different values
measured for v, will result in a set of values for ¢ when they are separately
substituted into Equation 5.37. Now, if the electron charge is always
unique and discrete, the difference ¢, — ¢, between any two different neg-
ative changes of the set will always be an integral multiple of the charge
of an electron e. Although Millikan personally conduced or supervised
measurements on hundreds of droplets, he always found the electrical
charge on a droplet to be an integral multiple of one electrical charge,
which he proposed as the fundamental unit of electrical charge. Thus, elec-
tron charge is quantized, having a currently accepted value of

e=1.60219 X 107 C (5.38)

to six significant figures. Clearly, any one electron is just like every other
electron, having a definite rest mass m, and a quantized charge e. The rest
mass of an electron is now immediately calculable by combining the results
of Thomson and Millikan. That is,

e _ 160219 X107 C
elm, 1.758806 X 10" C/kg

m, =

Droplet Radius

Droplet Charge

Electron Charge
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from Equations 5.11 and 5.38, which will give the rest mass of an electron
as

m, = 9.10953 X 10 kg (5.39)

to six significant figures. The values for e and m, have been verified many
times by numerous experimentalists, with more recent measurements to
eight significant figures.

A new unit of energy commonly used in modern physics is now de-
finable in terms of the electron charge e. The work done in accelerating a
particle of charge e through a potential difference V'is given by Equation
5.13. The work done on the particle goes into kinetic energy and this en-
ergy is independent of the mass of the particle, according to Equation
5.13. Since many calculations in modern physics involve electrons and
other elementary particles being accelerated through a potential difference,
it is convenient to compute kinetic energy in terms of a new unit of energy,
called the electron volt and abbreviated eV. One eV is defined as the kinetic
energy received by any particle of charge e that is accelerated through a po-
tential difference of one volt. Thus, in accordance with this definition and
Equation 5.13, we have

leV = 1.60219 X 107197, (5.40)

where the abbreviation J for Joule represents the defined unit of energy in
the SI system.

5.5 Determination of the Size of an Electron

Just as no direct method of measuring the electron’s mass or charge exists,
none are available for determining its size. A rough idea of the electron’s
physical volume can be approximated by considering its mass as being
electromagnetic in nature. Since Einsteinian relativity gives the proportion-
ality between mass and energy as

EO = mOCZ’ (439)
then the electron’s mass may be considered as a manifestation of the energy

associated with its electrostatic charge. These considerations suggest that
the work done in assembling the charge of an electron may be thought
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~

8

of as representative of its Einsteinian rest energy. It must be emphasized
that these ideas in the construction of a theoretical model are at best only
approximate, and should not be taken literally. None the less, assuming
the electron to be a sphere of radius r, as illustrated in Figure 5.9, then its
assemblage of total charge e may be thought of as consisting of a large
number N of minute negative charges ¢ that have been brought from in-
finity up to the electron’s sphere. Clearly,

N = (5.41)

ESTRN

and the work done in bringing the first imaginary and negligibly small
charge ¢ from infinity up to the electron’s sphere is

lef"Fc-dr=o. (5.42)
The work W, is zero since the Coulombic force defined by

o=k (5.43)

is necessarily zero (i.e., F = k(0)g/r* = 0). In brining up the second charge
g the charge on the electron is g, thus the Coulombic force is F = kqql/r?
and the resulting work is

A n k

e

(5.44)

The first negative sign in Equation 5.44 is necessary since F is oppositely
directed to dr, which results in cos 180° = —1 from the scalar product of
the two vectors. In a similar fashion it is easily verified that

W3:2W2, W4:3W2,"', WN:(N_ l)W2 (545)

Figure 5.9

The assemblage of an
electron from N nega-
tive charges q.

Coulomb’s Law
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Thus, the total work done in assembling the N minute charges ¢ on the
electron’s sphere of radius r, is

Wiorac =W+ W, + W, + - - + W,
Z(O+l+2+3+~-'+N—1)VVZ
kq*

L

N(N -1

, (5.46)

A

with the last equality coming from Equation 5.44 and the obvious series
identity. This result may be further reduced to

2

Nqu2 ke
2r, 2r,

P

: (5.47)

WFOTAL

by considering N >> 1 and using Equation 5.41. Now, equating Equations
4.39 and 5.47,

and solving for the radius of an electron gives

ke?
2m,c?

: (5.48)

r;:

where m, has been substituted for m1, in Equation 4.39. With k, defined in
terms of the permittivity of free space ¢, by

k= yr— (5.49)
0
and the speed of light ¢ having values of
. 2
k = 8.98755 x 10° VM, (5.50)
CZ
¢ =2.99792 X 108% (5.51)

substituted along with the values for ¢ and m, (Equations 5.38 and 5.39,
respectively) into Equation 5.48, we obtain
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r, = 140898 X 10" m (5.52)

for the radius of an electron.

It should be emphasized that the value given by Equation 5.52 for
the radius of an electron is only correct within its order of magnitude. Our
value differs somewhat from other determinations for the size of an elec-
tron (e.g., magnetic field calculations for the energy of an accelerated elec-
tron, x-ray scattering experiments, etc.), but it is a reasonable one to use
until a more precise value is obtained. Further, even though Equation 5.48
represents only an approximation to the size of an electron, it clearly sug-
gests a surprising inverse proportionality between the radius of an electron
and its mass. This implies that any attempt at reducing the size of the elec-
tron, by close packing of the electrostatic charge, will result in an increase
in the electron’s mass, because of the extra work required against the re-
pulsive Coulombic forces arising from the spatial distribution of the elec-
tron’s charge.

5.6 Canal Rays and Thomson’s Mass Spectrograph

During the experimental investigations of cathode rays, E. Goldstein ob-
served in 1886 rays propagating in the opposite direction foward the cath-
ode electrode. He designed a special discharge tube (schematically
illustrated in Figure 5.10) to isolate these rays, which were originally called
canal rays. Shortly after J. J. Thomson’s determination of the specific
charge of electrons in 1897, W. Wien deflected a beam of canal rays by a
magnetic field and concluded that they consisted of positively charged par-
ticles. Since that time, they have been found to be positively charged atoms
of different masses, having a much smaller charge-to-mass ratio than elec-
trons.

The processes taking place in the Goldstein discharge tube that result
in the origin of canal rays are best explained by using the modern model

Gas
/ B
@ -+ + -+ \
Gl Gl ) Q- Q——--
Anode P SN S / /
|
Cathode electrons ( Canal Fluorescent
particles screen
Cathode

Electron’s Radius

Figure 5.10

A discharge tube illus-
trating the existence of
canal rays.
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Figure 5.11

A Schematic of J.|.
Thomson'’s mass spec-
trograph.

of an atom, which is briefly presented in the next section. Referring to Fig-
ure 5.10, as the cathode electrons move toward the anode, they occasion-
ally have an inelastic collision with the atoms and molecules of the residual
gas in the tube. In this manner some atoms and molecules are ionized (lose
an electron) and are thus attracted (accelerated) toward the cathode elec-
trode. Between the cathode and anode, there exist both electrons and pos-
itively charged atoms moving in opposite directions toward the anode and
cathode, respectively. Of the many positively charged particles striking the
cathode, those passing through the small aperture A represent the ob-
served canal rays. When these canal ray particles strike the fluorescent
screen at the end of the tube, tiny flashes of light, called scintillations, are
produced.

In 1911 J. J. Thomson took advantage of the properties of canal rays
in developing the mass spectrograph, which is depicted schematically in
Figure 5.11. A small amount of gas is injected between the cathode and
anode of the apparatus and the inelastic collusions between the cathode
and anode of the apparatus and the inelastic collisions between the
gaseous atoms and electrons result in the observed canal rays. After being
accelerated to the cathode electrode, these positively charged particles pass
through a region where a B field and an E field coexist parallel to one an-
other. If the gas in the apparatus contains only one type of atom, then a
single parabolic curve will be observed on the florescent screen or photo-
graphic plate. Particles ionized close to the anode will be greatly acceler-
ated while traveling toward the cathode and, being under the deflecting
fields’ influence for a short time, their rectilinear paths will be only slightly
bent by the external E and B fields to a point like 4 on the screen. On the
other hand, particles ionized fairly close to the cathode are only slightly
accelerated by the electric field between the anode and cathode. These par-
ticles clearly remain longer in the deflecting E and B fields, and thus their
rectilinear paths are bent considerably to a point like C on the screen.

Heavy particles

Light particles

Cathode Fluorescent screen or photographic plate
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If there are different types of atoms in the gas, different curves will be
recorded on the screen or photographic plate, each parabola correspon-
ding to one particular type of atom or molecule. From knowledge of the
values for the E and B fields, and the assumption that each canal particle
possesses a unit positive charge because of being singly ionized, it is a rel-
atively simple manner, as detailed below, to calculate the mass of the atoms
producing each parabola.

Unlike Thomson’s charge-to-mass ratio analysis presented in Section
5.3, where electrons were accelerated only along the y-axis, the positively
charged atoms comprising canal rays are deflected in the positive y-direc-
tion due to the E field, while simultaneously being accelerated in the pos-
itive z-direction by the coexisting B field. Assuming the fields to be
uniform and of length x,, as depicted in Figure 5.11, the analysis here is
similar to the on detailed in Section 5.3.

The total deflection in the y-direction due to the E field is given by
the derivation

0o,
y=yty= (At jan) o

= %aytf + a,tt,

2
1 X XX
=-a,— + a,—
2 2 2
U Uy

= 9%t ), (5.53)
which is in essence the same derivation present previously. Taking into ac-

count that the acceleration a, is due to the E field (see Equation 5.19), then
Equation 5.53 becomes

qEx
y=—7 (3% + %) (5.54)

mv;

This result is identical to that of Equation 5.25, except for the presence of
¢ and m instead of e and m,. In this consideration for a singly ionized atom,
the magnitude of ¢ is identical to e and m is the mass of the atom in kilo-
grams.

Although the deflection of the ionized atoms in the positive z-direc-
tion is a bit more complicated than the y-direction deflection, it may be
handled in a similar fashion. From Section 5.3 we know the magnetic field
exerts and accelerating force F; on a charge particle that is uniform in mag-
nitude and changing in direction. These properties of F are easily observed
in Figure 5.6, where the displacement of the particle due to the B field is

E Field Deflection
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indicated as y,. Imagining y, = z,, y, = z,, and B = —B in Figure 5.6, then
the displacement z, is expressible in terms of x, and r. This is easily ac-
complished by using the Pythagorean theorem on the right triangle of
sides r — z and x, and hypotenuse r in Figure 5.6. Accordingly,

= —z)+ xi,
which when solved for r gives

Cxitz o

) << x. 5.55
2z 2z Z X ( )

r

The approximation in Equation 5.55 is good if the displacement z, is very
small compared with the length of the B field (i.e., z;, << x,). Another ex-
pression for the radius of the circular arc traversed by the particle in the
B field is obtained by realizing the accelerating force F; is a centripetal
force. Thus, from Equations 5.3 and 5.8 we have

2

muv;
qu,B = ,
which when solved for r gives
muv
= . 5.56
= (5.:56)

As the radius r is difficult to measure, we eliminate r from Equations 5.55
and 5.56 to obtain

_ qBx}

(5.57)

Z] - N
2mu,

Consequently, for small B field deflections of the particle, the circular path
approximates the parabolic path given by Equation 5.57. Interestingly, the
small deflection approximation is equivalent to approximating the acceler-
ating force F by a constant force in both magnitude and direction. This is
easily realized by applying kinematics for uniform acceleration to the prob-
lem. That is,

0 L
7= ]Zo‘zfl + gaztl
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_axt
20}
Bt

2mu?

_ qu.Bx}

2mu?

_ gBx}

’

2mu,

Which is an identical result to that given by Equation 5.57.
From the above discussion it is clear that assuming the B field deflec-
tion of the canal ray particle to be very small compared with the length x;,
of the field, the force F, can be considered as constant in both magnitude
and direction. Thus, the accelerating force F,, which is normal to the plane
of Figure 5.11, can be incorporated in our analysis by the same method
as that used earlier for F . Clearly, the total displacement in the z-direction
is just
z=z+t 2z =

—(%xl + x2>, (5.58)

which is identical to Equation 5.53 except for the presence of a. instead
of a,. Now, however, the acceleration due to the B field is given by

3|

B sin 0
_qubsmnb (5.59)

NQ
|

m

where the Lorentz force equation (Equation 5.1) has been used in obtain-
ing the second equality. Under the assumption of small B field deflections,
the angle 6 between v = v, and B is always very nearly 90°. Consequently,
Equation 5.59 reduces to

_qu.B

a4 =) (5.60)
which when substituted into Equation 5.58 yields
qBx;
- miyl (%x‘ + Xz)' (5.61) B Field Deflection
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Mass of Atom

Proton Rest Mass

Now, solving Equation 5.61 for v,, substituting into Equation 5.54, and
solving the resultant equation for the mass m of the canal particles yields

"= qﬁfz (bx + ).

(5.62)
This equation allows for the determination of the mass or ¢/m ratio of an
atom or molecule of the residual gas in the Thomson apparatus in terms
of easily measurable physical quantities. The equation is clearly that of a
parabola, since z* is proportional to y. Taking ¢ to be the absolute magni-
tude of the electronic charge, the smallest value of m would be for the /y-
drogen ion (or proton). The hydrogen ion mass m, was found to be
approximately 1836m,, which means electrons contribute very little to the
mass of atoms.

5.7 Modern Model of an Atom

The first information concerning the existence of the atomic nucleus re-
sulted from the discovery of radioactive atoms. Radioactivity simply refers
to the disintegration or decay of one atom into another. It was originally
discovered by H. Becquerel in 1896 when he observed radiation emitting
from a uranium salt. It was later found that radioactive rays subjected to
a transverse magnetic field split into three rays, classified by E. Rutherford
as a-, B-, and y-rays. The physical properties of these rays are quite dif-
ferent: a-rays are helium nuclei, B-rays consist of high speed electrons,
and +y-rays are very short wavelength electromagnetic radiation. It should
be mentioned that y-rays are very similar to x-rays, which were discovered
in the year 1895 by W. K. Roentgen, but with grater penetrating power.
The scattering of radioactive rays and x-rays, when used to bombard nu-
clei, has resulted in a wealth of information about the atom.

It is beneficial at this point to introduce some new terminology and
the basic model of an atom and its constituents. An atom of any chemical
element can be thought of as containing nucleons in the nucleus, with elec-
trons encircling the nucleus in some naturally fixed energy levels. Nucleons
are defined as being either positively charged particles, called protons, or
electrically neutral particles, called neutrons. Although the proton was not
named unto 1920 by E. Rutherford, it was easily observed in the Thomson
parabola apparatus as a hydrogen ion. The proton has a rest mass of

m, = 1.67265 X 102 kg (5.63)
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and an electrical charge of
g, = 1.60219 x 107" C. (5.64)

It should be noted that the electrical charge of a proton is identical in mag-
nitude to the charge of an electron, except it is electrically positive. Its
mass, however, is mysteriously larger than the mass of an electron by a
factor of 1836,

= 1836.

m, 1.67265% 1077 kg
M, 9.10953 X 107! kg

The neutron, on the other hand, has a rest mass of
m, = 1.67495 X 10~*" kg, (5.65)

which is larger than the combined masses of the proton and the electron.
The existence of the neutron was postulated as early as 1920 by Ruther-
ford; however, it was not identified until 1932 by J. Chadwick.

Although there are a number of other subatomic particles that are of
interest in nuclear physics (e.g., the antielectron or positron, antiproton,
neutrino, antineutrino, etc.), our purposes will be completely served by
considering electrons, protons, and neutrons as the basic constituents of
an atom. A normal atom of any chemical element will be taken as one that
has the same number of electrons as protons and is thus electrically neu-
tral. Any process by which an atom /oses an electron is called ionization.
An atom can be singly ionized, doubly ionized, and so forth by losing one,
two, and so forth electrons, respectively. Some atoms have an affinity for
more than their normal number of electrons. For our purposes such atoms
will be referred to as being singly or doubly countervailed, if they gain one
or two additional electrons, respectively. Further, a molecule is simply
taken to be a combination of two or more elemental chemical atoms.

It is convenient at this point to define a few other terms that are com-
monly referenced in the study of atomic structure. The atomic number Z
is the number ascribed to an element that specifies its position in a periodic
table by defining the number of protons in that normal atom. The atomic
mass number A specifies the combined number of neutrons and protons in
a nucleus and is often referred to as the nucleon number. Consequently,
the neutron number N may be defined by N = 4 — Z. To summarize the
above,

Proton Charge

Neutron Rest Mass
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Z = Atomic Number
= number of protons in the nucleus
= number of electrons in the atom;
A = Mass Number or Nucleon Number
= number of nucleons in the nucleus;
N = Neutron Number
= number of neutrons in the nucleus
=A—-Z

The nuclide for a species of atom is characterized by the constitution
of its nucleus and hence by the values of the 4 and Z numbers. It is nor-
mally denoted by ZS, where S represents the chemical symbol for the par-
ticular element. Measuring g/m for atoms by the parabola method,
Thomson realized as early as 1912 that atoms of different mass could be-
long to the same chemical element. Aroms having identical electronic con-
figurations but differing in the number of neutrons in the nucleus were later
names isotopes by F. Soddy and are recognized as nuclides of identical Z
by different N numbers. Thus, for Z = 1 the isotopes of hydrogen are de-
noted by the nuclides {H for hydrogen, {H (or iD) for deuterium, and 1H
(or 3T) for tritium. In the year 1933 K. T. Bainbridge developed a high
precision mass spectrograph and discovered what are now commonly
called isobars. These are atoms having essentially the same mass but differ-
ing in their electronic configuration and thus belonging to different chem-
ical elements. That is, isobars are nuclides of identical A but different Z
and, consequently, N numbers (e.g., {H and 3He). Further, nuclides having
identical N but different Z numbers, such as H and 3He, are classified as
isotones. The common terms defined above are restated for emphasis as
follows:

Nuclide = Nuclear configuration characterized by 4 and Z,
Isotopes = Nuclides of identical Z but different A4,
Isobars = Nuclides of identical 4 but different Z,
Isotones = Nuclides of identical N but different Z.

The atomic number Z, the mass number A, the number of isotopes, and
the relative abundance of isotopes in nature for the chemical elements are
listed in Appendix C. This constitutes only a partial list of isotopes, as
well over 1000 nuclides have been identified as either stable or radioactive.

5.8 Specific and Molal Atomic Masses

In most textbooks the table of Appendix C includes a listing of either
atomic masses or atomic weights. These two quantities are different by defi-



5.8 Specific and Molal Atomic Mass 159

nition and need to be carefully considered. Originally, the mass of an in-
dividual atom (or molecule) was completely unknown. However, Avo-
gadro’s hypothesis provided the rationale for the comparison of the masses
of equal numbers of different kinds of atoms (or molecules). As the hy-
drogen atom was the least massive of all chemical atoms, its mass was ar-
bitrarily taken as one. Then, the mass of a given volume of hydrogen gas
could be compared with the mass of an equal volume of another gas, both
at the same temperature and pressure, to obtain relative masses for other
atoms (and molecules). The basis for assigning relative masses changed
from hydrogen to oxygen and more recently to carbon. Currently, the basic
unit for relative masses is called the unified atomic mass unit u, or amu. It
is defined to be exactly 1/12 the mass of the most common isotope of car-
bon, '¢C, and has a value to six significant figures of

u=1.66057 x 10 kg. (5.66)

This equation should be regarded as nothing more than a conversion factor
between the mass unit kg and the new mass unit u. Thus, in atomic mass
units the electron has a mass of

9.10953 X 10" kg
m, =
1.66057 X 102" kg/u
= 5.48579 X 10~ u,

while the rest masses of the proton and neutron are

m, = 1.00727 u,
m, = 1.00866 u.

Frequently, we will employ the notation m, to denote the mass (1.66057
X 10~* kg) of the atomic mass unit. When compared to the mass m, of an
electron, m, is nearly 1823 times larger, which means that the hydrogen
atom (being essentially 1837 times larger than m,) is slightly larger than
m,. It should also be obvious from the above considerations that m, is very
nearly equal to the mass of a proton m, and to the mass of a neutron m,,.
These comparisons are significant, as the mass of an atom is essentially
dependent on its constitution of nucleons. Consequently, with u (or m,)
taken as the basis, relative atomic (and molecular) masses will be very
nearly equal to integers, with that of the hydrogen atom being close to
unity.

It is important to emphasize that relative atomic (and molecular)
masses are dimensionless quantities. With this in mind, let us now make

Atomic Mass Unit
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Relative Atomic Mass

Relative Atomic Mass

the distinction between atomic weight and atomic mass. The chemical
atomic weight can be defined as the average mass of all the isotopes of an
element, weighted according to their relative abundance in nature, in atomic
mass units. Although this average relative mass is useful in chemistry, the
study of physics requires knowledge of the absolute mass of atoms and
their nuclei. With m, representing the absolute mass of an atom, including
its Z electrons, and m, being the mass of the unified atomic mass unit,
then we can define the relative atomic mass of an atom, denoted by (AM),
as the ratio of m, and m,,

(AM), = % (5.67)

u

Clearly, this definition of atomic mass compares the mass of an electrically
neutral atom with m, and is, consequently, a relative and dimensionless
quantity. It is sometimes loosely referred to as the specific atomic mass,
by analogy with the definitions of specific heat, specific thermal capacity,
specific internal energy, and so forth in thermal physics.

A listing of relative atomic masses for neutral atoms of all stable and
many radioactive nuclides is given in the table of Appendix C. It should
be noted that the atomic mass listed for each isotope is nearly equal to the
corresponding atomic mass number A. The reason for this is easily under-
stood by considering an atom of any isotope as consisting of a number
of electrons N,, a number of protons N,, and a number of neutrons N,.
Accordingly, Equation 5.67 could be interpreted as

m,

(AM), =

_ N,m, + N,m, + N,m,

m,

__ N,m, + N,m,

~ B

~ N, + N,

=Z+(A-2)=A, (5.68)

where m,, m,, and m, have been considered as nearly equal in magnitude
and much greater than m,. The second equality is indicated as an approx-
imation because the nuclear binding energy (discussed in Section 5.9) has
been ignored. Further, it should be noted that chemical atomic weights
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have been given for each element in the table of Appendix B, which are
easily calculated from the table of Appendix C using the relative atomic
mass and the relative abundance datum for the stable isotopes of each
chemical element.

We have already discussed the basic importance of Avogadro’s hy-
pothesis in the assignment of atomic masses. The Avogadro constant N,
is also integrally related to atomic mass and the value of m,. To see this
relationship consider the definition of a mole as being the amount of a sub-
stance (gas, liquid, or solid) whose actual number of particles (atoms or mol-
ecules) is exactly equivalent to N,. Accordingly, the defining equation for
the number of moles n of a substance is

N

n : (5.69)

=

0

where N is the total number of particles (atoms or molecules) and N, is
the Avogadro constant given by

N, = 6.022045 X 10* mole . (5.70)
If the total mass M of a substance is known to be
M = m,N, (5.71)
then Equation 5.69 can be expressed as

M .

(5.72)

n =

Since m, is the absolute mass of a particular atom, then the denominator
m,N, of this equation must represent the total mass of one mole of such
atoms. Denoting the product m,N, by the symbol .,

M=m,N,, (5.73)
and using Equation 5.67 we obtain

M = (AM)m,N,
= (AM),(1.00000 X 10~* kg/mol)
= (AM), - grams/mole, (5.74)

Number of Moles

Avogadro Constant

Total Mass

Molal Atomic Mass

Molal Atomic Mass
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Number of Moles

where values for m, (Equation 5.66) and N, (Equation 5.70) have been
used in obtaining the second equality. Clearly, the absolute mass of one
mole of a substance .l is equivalent to the relative atomic mass in units of
gramsimole. The quantity Jl, defined by Equation 5.73, could be called
the gram atomic mass, but we shall call it the molal atomic mass. From the
first and last equality in Equation 5.74, it is clear that

/mol
N{) = g .

" (5.75)

Thus, in the sense of this equation Avogadro’s number N, is the reciprocal
of the unified atomic mass unit u. If m, in Equation 5.73 referred to the
mass of a molecule, then Jl would be interpreted as the molal molecular
mass. The point, however, is that the molal mass (or molecular) mass is the
absolute mass of one mole of atoms (or molecular) mass in grams. Because
the atomic masses are very nearly equal to the atomic mass numbers in
the table of Appendix C, essentially 2 g of hydrogen represents a mole of
H,, 32 g of oxygen constitutes a mole of O,, and 18 g of water represents
a mole of H,O.

One of the most useful relationships for solving problems is obtained
by combining Equations 5.69, 5.72, and 5.73 to obtain

=z

(5.76)

S
I
Z|=

This allows for the determination of any one of the three quantities n, N,
or M by knowing ecither one of the other two. For example the mass of a
hydrogen atom is easily found by realizing N = 1 and M = m,, and using
the second equality of this equation,

My 1007825 g
N,  6.022045 X 10%
= 1.673559 X 10> g.

my =

Alternatively, Equation 5.67 could be used with identical results. That is,

my :(AM)Hmu
= (1.007825)(1.6605655 X 10~ kg)
=1.673559 X 10 * g.
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The number of moles n or the number of particles N (atoms or molecules)
in a known mass of a substance is also easily computed using Equation
5.76. For example, 1 g (exactly) of hydrogen gas contains

(1 2)(6.022045 X 10* mol™")
1.007825 g/mol
= 5975288 X 10*

atoms, which represents

_ 5975288 X 10®
6.022045 X 10%/mol
= 0.9922357 mol

or ny = —

My
_ lg
~ 1.007825 g/mol
= 0.9922358 mol.

The last two answers differ by rounding-off errors.

5.9 Size and Binding Energy of an Atom

The size of a particular atom can be estimated from knowing its molal
atomic mass and a few other fundamental physical relations. To be more
specific, the volume of space occupied by an atom ¥, is simply the volume
of one mole of such atoms V, divided by N,

V, = (5.77)

2=
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Radius of an Atom

From the definition of mass density we obtain

, (5.78)

where the mass of one mole M, has been identified as equivalent to Jd,
(see Equation 5.76) in the second equality. If, further, V, is imagined to be
a sphere of radius r,

then from Equation 5.78 we obtain

1/3
r = (43‘M;‘V> (5.79)
qutI [

for the radius of an atom. Using carbon '?C as an example, with (. =
12.0 g/mol and pc = 2.25 g/cm® from Appendix B, Equation 5.79 gives

(3)(12.0 g/mol)
41 (2.25 g/em?)(6.02 X 10*/mol)
=128 X107 m.

Consequently, the radius of a carbon atom is approximately one angstrom
(1 A = 107" m), which is enormous compared with the radius of the elec-
tron (r, = 107" m) computed previously in Section 5.5. Further, the proton
radius is estimated to be roughly 107> m and recent estimates of the nu-
clear radius, ry, place an upward limit of about 10~"*m for the more mas-
sive nuclear radius. Our picture of the atom from these estimates reveals
it to be largely empty, with the volume of the atom to the volume of the

nucleus being
Vi <r>3
Vi Ty
~ <1.28 X 107" m>3

107 % m

~2.10 X 10" (5.80)
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for carbon. Thus, a collapse of atomic structure would result in an increase
in the mass density of matter by a factor of roughly 10", Such a collapse
of atomic structure is postulated for white dwarf and neutron stars, where
1 cm® of such matter would weigh several million tons on the surface of
the Earth. For example, a collapse of carbon atoms would result in a mass
density pl given roughly by

~ (2.25 g/ecm?®)(2.10 X 10"?) = 4.73 X 10" g/cm’.

Consequently, one cubic centimeter of such atoms would have a weight
on Earth of

F,=mg = piVg

- (4.73 X 1012 i}) (1 cm?) <98O %)
cm S

~ 464 X 10 dy = (4.64 X 10" dy) <2.248 X 10~ clTb>
y

~1.04 X 10" Ib = (1.04 X 10'° Ib) < I ton )

1X10°%1Ib
=520 X 10° tons.

As a last consideration of the data in the table of Appendix C and
using the accuracy of other constants from the inside cover, note that the
mass of the hydrogen atom |H given by

my = (AM),m,
= (1.007825)(1.6605655 X 10~*" kg)
=1.673559 X 10 *kg (5.81)

is exactly the sum of the proton and electron masses

m, + m, = (16726485 X 1072 kg) + (9.109534 x 10~ kg)

= 1.673559 X 1077 kg, (5.82)

within the degree of accuracy assumed. For deuterium 7D, however, the
atomic mass,
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Nuclear Binding Energy

mp = (2.014102)(1.6605655 X 1072 k)
= 3.344548 X 107 kg,

is not the same as the sum of the proton mass m,, the neutron mass m,,
and the electron mass m,:

m, + m, + m, = 3.348513 X 107 kg.
This difference or loss in mass

AM = 3.965000 X 107 kg

between the free particles and the bound particles goes into the binding en-
ergy of the atom, as given by Einstein’s formula (Equation 4.40)

E, = AMc?
= (3.965000 X 10 kg)(2.997925 X 10* m/s)*

_3.563565 X 10" ]
1.062189 X 107" J/eV

— 2224185 X 10° eV
— 2224185 MeV. (5.83)

As we shall see in Chapter 7, the binding energy of the electron is on the
order of 10 eV, thus the result given by Equation 5.83 is essentially the
binding energy of the nucleons, often called the nuclear binding energy and
denoted as B,. Using the same symbolic notation as in the derivation of
Equation 5.68, By can be expressed as

By = (N,m, + N,m, + N,m, — m,)c’
= (N,m, + N,m,)c* + N,m,c* — m,c’

=Z(m, + m,)c* + (A = Z)m,c*> — m,c?, (5.84)

where for a normal atom N, = N, = Z. But from comparing the results
of Equations 5.81 and 5.82, we can replace m, + m, with essentially the
mass of the hydrogen atom m1,; and obtain

By = Zmyc* + (A — Z)m,c* — m,c* (5.85)
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for the nuclear binding energy of any atom of mass m, having Z protons.
In this equation m; and m, would be calculated using either Equation 5.67
or Equation 5.73. That is,

my = (AM),m, = ) (5.86)

N,

where Jly is simply the molal atomic mass of hydrogen.

Review of Fundamental and Derived Equations
A listing of the fundamental and derived equations of this chapter is pre-

sented below, along with new defined units, terms, and symbols. Not in-
cluded are the well-known definitions and derived equations of kinematics.

FUNDAMENTAL EQUATIONS — CLASSICAL PHYSICS

vV = %Trr3 Volume of a Sphere
p = M Mass Density

%
F =ma, m#m(t) Newton's Second Law
F, = mg Weight

2

E = m;) Centripetal Force
F, = 6mmu Stokes' Law
W= |F-dr Work
T = %mv2 Kinetic Energy

k
F = ng Coulomb's Law

r

F; - .
E =— Electric Field Intensity
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y=W

q

V.
E:7

d
F,=qv XB
_ N
n=-—

N,

Electric Potential

Parallel Plate Capacitor

Lorentz Force Equation

Number of Moles

FUNDAMENTAL EQUATIONS — MODERN PHYSICS

DEFINED UNITS

eV =1.60219 X 10777

u=1.66057 X 10~ kg

Energy — Mass Equivalence

Relative Atomic Mass
Molal Atomic Mass

Number of Moles

Electron Volt

Unified Atomic Mass Unit

MODERN PHYSICS SYMBOLS

Z = Atomic Mass

A = Mass Number

N = Neutron Number
48 = Nuclide

DERIVED EQUATIONS

Thomson’s e/m, Apparatus

|4

v, =

S

Speed of Electrons <— E and B Fields
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e _ E
n, }’32
e _ _E
m,  2VB?
eEx?
’ 2m,v?
eExx,
W= p
m,v?

Millikan’s Oil Drop Experiment

F, — Fy = 6mrmu,
Fp.=F,— Fp+ 6mrmug

_ 6mmd

q (v, + vr)

¢

4
F,= gwrSpog

F,= 4W3pag

3
v 1/2
st o)
2g(p, — Pu)

Size of an Electron

ke?

2m,c?

’;:

Thomson’s Mass Spectrograph

Specific Charge < B Field only

Specific Charge < Cathode Potential

E Field Displacement

Displacement Beyond E Field

Specific Charge < E Field Only

E Field OFF
E Field ON

Droplet Charge

Droplet Weight

Droplet Buoyant Force

Droplet Radius

Electron’s Radius

E Field Defection
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qBx, /, . .
2= (0 + x) B Field Deflection
x,B*
m = ZlE (%xl + x2> Mass of Ionized Atom
z

Relative and Molal Atomic Mass

(AM), = A
M = (AM), - g/mol

Relative Atomic Mass

Molal Atomic Mass

Size of Atom

3M 1/3
™ <4ﬂpNn>

Nuclear Binding Energy

Radius of an Atom

By = Zmyc® + (A — Z)ym,* — m,c*

5.1 If the accelerating potential between the cathode and anode of Thom-
son’s e/m, apparatus is 182.2 V, what uniform velocity v, will the electrons
acquire before entering the coexisting E and B fields? Assume accuracy to
three significant figures and derive the appropriate equation.

Solution:

With knowledge of V= 182.2V, v, is easily obtained by realizing the
work done on the electron by the electric field, W = eV, goes into ki-
netic energy. That is,

eV = 3mus,

which is identical to Equation 5.15. Solving this equation for v,, and
substituting the known quantities yields

zev 1/2
“ =)

m,

- l2(1.60 X107 C) (182.2 V)]
91.1 X 10 kg
=8.00 X 10° m/s.
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5.2 An electron is accelerated from rest by an electrical potential V. If the
velocity squared of the electron is 32 X 10" m?/s* derive the equation for
J and find its value.

Answer: V=911V

5.3 Electrons are directed through a region where uniform B and E fields
coexist such that the path of the electrons is not altered. The uniform E
field is established by a parallel plate capacitor having a 5 cm plate sepa-
ration distance and the capacitor is connected to a 50 V battery. If B = 2
X 107° Wb/m? (tesla), derive the equation and calculate the value for v,.

Solution:
With V., =50V,d=5X10"m, B=2 X 107> Wb/m? and F, = ¢E
equated to Fz = ev, B sin 90° we obtain

1%
dB

_E _
v, == =
B
_ 50 V
(5% 1072 m)(2 X 10~° Wb/m?)
=5X%X10°m/s.

5.4 Electrons with a speed of 1.60 X 10" m/s enter a uniform B field at
right angles to the induction lines. If B = 4.555 X 10~* Wb/m?, derive the
equation for the radius of the electrons circular path and calculate its
value.

Answer: r=2X10"2m

5.5 If a beam of electrons, moving with a speed of 2 X 107 m/s, enters a
uniform B field at right angles to the lines of force and describes a circular
path with a 30 cm radius, what is the magnetic induction? Derive the ap-
propriate equation for B before substituting the physical data.

Solution:
Given v, =2 X 10’m/s, = 90°, and r = 3 X 10! m, how do we find
B? Since Fy = F., then

m,;

ev,B sin 6 =

bl

which yields

P—

er sin 0
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As sin 90° = 1, substitution of the physical data yields

5 (911X 107" kg) (2 X 107 m/s)
(1.60 X 107" C) (0.3 m)
=3.80 X 10~* Wb/m>.

5.6 Electrons with 6.396404 X 10* eV kinetic energy enter a uniform mag-
netic field at 65.6378° with respect to the induction lines. If the magnetic
induction is 6.24146 X 10° T, derive the equation and find the value for
the radius of the electrons circular arc?

Answer: r=0.15m

5.7 A parallel plate capacitor 25 cm long with a 5 cm separation between
the plates is connected to a 91.1 V battery. If an electron enters this field
with a velocity of 2 X 10° cm/s at an angle of 90° to the E field, how far
will the electron be deviated from its original rectilinear path immediately
after passing through the electric field?

Solution:

The physical data givenis x = 0.25m,d = 0.05m, V. =91.0V, v, =
2 X 10" m/s, and 6 = 90°, and we want to find the displacement y, of
the electron due to only the E field. The derivation starting with
Equation 5.17 and ending with Equation 5.20 is appropriate for this
problem. That is, with v,, = 0, we have

_ 1 2 _ 1 7E 5
y=ah =t

eEr e(VId)i
2m, B 2m,
e(V.1d)(x/v,)?

2m,

eVxt
B 2m,dv;
(160 X107 C)(91.1 V)(0.25 m)’
(9.1 X 10°* kg)(0.05 m)(2 X 107 m/s)?
=25X107?m=2.5cm.

5.8 Let the electron of Problem 5.7 travel a horizontal distance of 80 cm after
exiting the E field. Derive the equation and calculate its additional vertical deflec-
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tion y,.

Answer: y, =16 cm

5.9 A parallel plate capacitor 25 cm long with a 5 cm separation between
the plates is connected to 182.2 V. If electrons enter this capacitor at right
angles to the E field and are deviated by y;, = 5 cm from their original rec-
tilinear path after passing through the capacitor, what is their original hor-
izontal speed v,? Further, if these electrons travel a horizontal distance of
80 cm after exiting the E field, what additional vertical defection y, will
they experience?

Solution:

For the first part of this problem we know x;, = 0.25 m, d = 0.05 m,
V,=182.2V, 0 =90° and y, = 0.05 m, and we want to find v,. From
Problem 5.7 we have

eV
- 9
2m,dv?

N

which when solved for v, yields

eVXZ 172
U,( — eVl
" <2medyl)

[(1.60 X 107 C)(182.2 V)(0.25 m)* |2
- [2(91.1 X 1072 kg)(0.05 m)(0.05 m)
=[(16)(25)(10'?) m¥s?]"?

=2 X107 m/s.

For the second part of this problem we have additional knowledge
of x, = 0.80 m and we want to find y,. From Problem 5.8 or Equa-
tions 5.7 and 5.24 we have

ev.xx,

=
m,dv?

(16 X 1072 C)(182.2 V)(25 X 10~> m)(80 X 10> m)
(91.1 X 107* kg)(5 X 1072 m)(4 X 10" m*s?)
= (16)(2)(10*)m = 0.32 m.

5.10 Verify that Equation 5.6 is directly obtained for an undeflected elec-
tron passing through the Thomson e/m, apparatus, by equating the deflec-
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tion of the electron due to the E field alone to the deflection due to the B
field alone.

Answer: v, = E/B

5.11 An electron traveling at 8 X 10° m/s enters that region of the Thom-
son e/m, apparatus where the E and B fields coexist and are adjusted to be
counter balancing. The E field is created by a parallel plate capacitor con-
nected to a 91.1 V battery and having a 6.4 cm plate separation. If the E
field is deactivated, what is the radius of the electron’s circular arc through
the counter balancing magnetic field?

Solution:

In this problem we know v, = 8 X 10°m/s, V. =91.1V, d = 0.064 m,
and 0 = 90°, and we need to find r. By equating F; and F. (i.e., ev.B
sin 0 = m,v%/r), we obtain

m, U,
b
eB

since sin 90° = 1. Also, with F, = F, giving

ev,.B=¢ckE
we have
V.
B = E_ % ,
V. du,

where Equation 5.7 has been used for E. Now, substitution of this
expression for B into our radius equation yields
m,dv;
= o
(91.1 X 107** kg)(0.064 m)(64 X 10" m?/s?)
(1.60 X 107" C)(91.1 V)
=0.256 m = 25.6 cm.

r

5.12 Consider the situation described in Problem 5.11 only now allow the
counter balancing B field to be deactivated instead of the E field. If the
electron is deflected vertically by 5 cm while traversing the E field of the
capacitor, how long is the capacitor and what is the vertical speed acquired
by the electron?

Answer: x,; = 16.cm, v, = 5 X 10° m/s
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5.13 In the Millikan oil-drop experiment consider a droplet having ter-
minal velocity to fall 0.240 cm in 18 s with the E field deactivated. Find
the radius of the droplet for p, = 891 kg/m®, and m = 1.80 X 10 °kg/m - s.

Solution:
With Ay = 2.40 X 107’ m and Az = 18 s, v, is found to be

A —4
b, =2 = w = (4/3) X 10™* m/s.

Now, suppressing the units and substituting the physical data into
Equation 5.36 (which should be derived from first principles) gives

SR T
2g(po = Pa)
_, (1.80 X 1075)(4/3) X 104}”2
2(9.80)(890)
= 111X 10°° m.

5.14 If the droplet in Problem 5.13 experiences terminal velocity of 1.11
X 107> m/s when the E field is activated, what is the charge on the droplet?
Allow the E field to be established by a parallel plate capacitor having 1.5
cm plate separation being connected to a 169.56 V battery.

Answer: ¢ = 30e

5.15 The atomic mass of cobalt (Co) is 58.9332. Find the mass in grams
of one Co atom using the definition of atomic mass and the definition of
a mole.

Solution:
From Equation 5.67 we have
rnCO = (AM)ComU
= (58.9332)(1.6605655 X 1072 g)
=0.78624 X 107> g,

while from Equation 5.76 (n = N/N, = M/.l), we obtain the same re-
sult for N = 1 and M = m,. That is,

M,

N,
589332 g/mol
6.022045 X 102 /mol
= 978624 X 10 g.

Mgy =
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5.16 The atomic mass of the most abundant isotope of copper (Cu) is
62.9296. How many atoms are there in exactly one gram of Cu and how
many moles are represented by this mass?

Answer:  N¢, = 9.56950 X 10*, n¢, = 1.58908 X 10~* mol

5.17 What is the mass in grams of exactly 3.5 moles of carbon (C) and
how many atoms does this amount represent?

Solution:
We know ne = 3.5 moles and Jl- = 12.0000 g/mol, and we want to
find M. and Nc. Since n = M/, then
M = ncll ¢
= (3.50000)(12.0000 g)
= 42.0000 g.

Further, since n = N/N, we have
Ne = neN,
= (3.500000)(6.022045 X 10*)
= 2.107716 X 10*.

5.18 How many atoms are there in a 15 kg bar consisting of 70 percent
Cu and 30 percent Zn by mass?

Answer: N = 1.42869 X 10%*

5.19 A massive bar of 10* atoms is composed of 70 percent Cu (AM =
62.93) atoms and 30 percent Fe (AM = 55.94) atoms. What is the mass of
the bar?

Solution:
With N = 10%, N, = 7 X 10%, and N, = 3 X 10%, the mass M of
the bar is given by
M = M., + M.,
— NCu‘/m“Cu + NFe‘/M“Fe
N, N,

= (0.7 Mg, + 0.3.M5) %

0

=[0.7(62.93 g/mol) + 0.3(55.94 g/mol)]

Z|=
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= (44.05 g/mol + 16.78 g/mol)%

o

~ (60.83 g/mol) (10*°)
6.022045 X 10%/mol
=1.010 X 10* g = 10.10 ke.

5.20 A beam of doubly ionized Zn atoms (AM = 63.9) enter the electric
field of a 16.6 m long parallel plate capacitor, which has a separation dis-
tance between the plates of 8 cm. The Zn atoms enter the capacitor with
a horizontal speed of 2 X 107 m/s at right angles to the existing E field. If
the capacitor is connected to a 63.9 V battery, how far vertically will the
Zn atoms be deviated from their original rectilinear path after passing
through the E field?

Answer:  y=28.30X10"*m

5.21 A beam of triply ionized Zn (AM = 63.9) atoms, moving with a speed
1.60 X 10" m/s, enters a uniform field of 4.98 X 10~'* Wb/m? magnitude
at an angle of 30° with respect to the magnetic flux lines. What is the radius
of the circular arc described by the beam?

Solution:

The given information includes (AM),, = 63.9, v = 1.60 X 10" m/s,
B =498 X 107" Wb/m?, # = 30°, and ¢ = 3e, and we need to find
the radius r described by the beam of ionized Zn atoms as it traverses
the B field. Since F. = F we have

My, v>

= quB sin 0,

which allows r to be described by

My, U

" 4B sin6
_ (AM),,mp
3eB sin 0
(63.9)(1.66 X 1072")(1.60 X 107)
3(1.06 X 107"°)(4.98 X 1074)(0.500)
— 142 X 10" m.

5.22 Derive the equation and find the nuclear binding energy B, of a car-
bon atom in MeV?

Answer: By = 92.16484 MeV
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5.23 Derive the equation and find the radius of a copper atom, using the
data of Appendix B.

Solution:
Assuming an atom to be a sphere of radius r,, then we approximate
its volume as V, = (4/3) mr, from which

Now, using Mc, = 63.546 g and pc, = 8.96 g/em’ from Appendix B,
direct substitution yields
3M 1/3
I’éu — ( Cu )
4TrpCu]Vo

3(63.546 o) 13
[4(3.1417)(8.96 a/em?)(6.02 X 107)
= (2.81 X 10" * cm?)"”
=141X10%cm =141X10" m.

5.24 Consider Thomson’s mass spectrograph where a B field of 4.15 X
107° Wb/m? is antiparallel to a coexisting E field. Assume doubly ionized
atoms are accelerated through the distance x; = 24 cm and then travel x,
= 88 cm farther at a uniform speed before striking a fluorescent screen. If
the y-deflection data associated with the E field yields v, = 2 X 10° m/s
and the total z-displacement is 24 cm, what is the mass of the ions?

Answer: m = 6.64 X 10" kg
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CHAPTER 6

Quantization of Electromagnetic Radiation

own university

Double-slit interference revealing single photons building up the pattern over time.

Are not gross Bodies and Light convertible into one
another, and may not Bodies receive much of their
activity from the Particles of Light which enter their
Composition?

. NEWTON, Opticks (1730)

Introduction

In the seventeenth century there were two conflicting views concerning the
nature of electromagnetic radiation (often referred to as simply light).
Newton and his followers believed light consisted of very small and fast
moving elastic particles called corpuscles. This view satisfactorily ac-
counted for the law of reflection in geometrical optics, as the angle of inci-
dence is equal to the angle of reflection for perfectly elastic bodies and light
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rays being reflected from a plane surface. The theory also predicted the
law of refraction, allowing corpuscles of light to be attracted toward a
transparent material medium (e.g., air, water, glass, etc.), with a resulting
increase in their component of velocity that was perpendicular to the
medium’s surface. Accordingly, Newton’s corpuscular theory predicted the
speed of light to be greater in a transparent material medium than in free
space and its direction of propagation to be bent toward the normal. The
other view by Christian Huygens regarded light as being composed of
waves, which also explained the reflection and refraction of light. Accord-
ing to this theory, light waves would also be bent toward the normal upon
entering a transparent material medium, but the speed of wave propaga-
tion in the medium would be less than its speed in free space. The debate
surrounding these two different theories continued until the middle of the
nineteenth century, when the French physicists A. H. Fizeau in 1849 and
J. B. Foucault in 1850 measured the speed of light in air and water, respec-
tively. Their results of the speed of light in air (Fizeau) being greater than
the speed of light in water (Foucault) confirmed Huygens’ wave theory,
completely negating Newton’s corpuscular view.

The wave nature of electromagnetic radiation was well established
and almost universally accepted by the end of the nineteenth century.
However, the particle view was once again to gain support, as the result
of a fundamentally new interpretation of electromagnetic radiation initi-
ated by Max Planck in 1900 and later modified by Einstein in 1905. Planck
assumed atoms to be capable of absorbing and emitting quanta of elec-
tromagnetic energy, by considering atoms as tiny electromagnetic oscilla-
tors having allowed energy states that are quantized in nature. Planck’s
quantization of energy for atoms was generalized by Einstein to be a fun-
damental property of electromagnetic radiation and not just a special
property of atoms. In 1905 Einstein explained the photoelectric effect by
assuming electromagnetic radiation to behave as if its energy was concen-
trated into discrete bundles or packets, called quanta or more commonly
photons. Later in 1923 A. H. Compton provided evidence that photons un-
dergo particle-like collisions with atoms, by considering the energy and
lincar momentum of a beam of x-rays to be concentrated in photons. In
general, physicists were most reluctant to accept the quantum explanations
of the photoelectric and Compton effects, because of the apparent con-
tradiction to the successful wave theory. In fact, for many years after Ein-
stein’s successful explanation of the photoelectric effect, Planck considered
light as propagating though space as an clectromagnetic wave and Ein-
stein’s photon concept as being wholly untenable.

Although the major objective of this chapter is to illuminate the par-
ticle-like behavior of electromagnetic radiation, we begin with a review of
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the classical properties and generation of electromagnetic waves. The wave
properties of electromagnetic radiation are further illustrated by energy
considerations and Bragg reflection (actually diffraction) of x-rays. We
then emphasize two experiments where the quantum or particle-like nature
of light dominates its wave nature, by a discussion of the photoelectric ef-
fect and the Compton effect. The failure of classical wave theory to explain
the former phenomenon and the success of Einstein’s photon concept are
fully detailed in one section. Finally, an alternative derivation for the rel-
ativistic Doppler effect is presented, which demonstrates the consistency
between the photon quantization hypothesis and Einstein’s special theory
of relativity. This chapter illustrates that electromagnetic radiation appears
to possess a dual personality, behaving at times like waves and at other
times like particles. This dual-like behavior of radiation, later recognized
to be a general characteristic of all physical entities, is neither explainable
by classical physics nor by the old quantum theory being presented in Chap-
ters 5 through 7. It is, however, satisfactory reconciled with the aid of the
theory of quantum mechanics and will be discussed in considerable detail
in Chapter 8.

6.1 Properties and Origin of
Electromagnetic Waves

The wavelength spectrum of electromagnetic radiation, illustrated in Table
6.1, consists of radiation ranging from vy-rays of wavelength 10~ m to
long waves of wavelength 10° m. The ranges indicated for the differently
named bands of radiation are only approximate, as there is considerable
overlapping presented in Table 6.1. It is of interest to note that visible

Name of Radiation Wavelength Range (m)
v-Rays 107 —107"°
x-Rays 107" —1078
Ultraviolet 10°%—10""

Visible 107—-10°
Infrared 10°¢—10*
Heat 10°—10"
Microwaves 102—10
Radio Waves 10 — 10°

Long Waves 10° — 10°

TABLE 6.1
The approximate

wavelength spectrum

of electromagnetic
waves.
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Angstrom Unit

red
orange
yellow
green
blue
violet

Index of Refraction

light waves represent only a very small slice of the total spectrum. The
wavelength in angstrom units,

A=10"m,

of each color of visible light corresponding to the approximate center of
each color band is

N, = 6600 A,
A, = 6100 A,
A\, = 5800 A,
A, = 5500 A,
A, = 4700 A,
N, = 4100 A.

As pointed out previously in Chapter 3, all electromagnetic radiation prop-
agates in free space (vacuum) at the speed of light

c=299792 x 10* 2 = 3 x 10* 2, (5.51)
S S

and obeys the wave equation
c=\v (3.30)

where A is the wavelength and v is the frequency of a particular radiation.
From this wave equation it is obvious that a short wavelength corresponds
to a high frequency and a long wavelength to a low frequency. Further,
the speed of light in air is very nearly the same as its speed in free space,
but its speed in other optically dense media is slower. Consequently, the
ratio of the speed of light ¢ in free space to the speed of light v in a trans-
parent material medium is always greater than one (e.g., approximately
4/3 for water and 3/2 for glass) and is defined as the index of refraction,

(6.1)

c
n —
v
The classical concept of an electromagnetic wave is, as its name im-
plies, a combination of a varying electric field and a varying magnetic field

propagating through space at the speed c. To better understand the prop-
erties of the electric and magnetic fields associated with an electromagnetic
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Figure 6.1

The electric field lines
of force associated
with (a), a stationary
and (b), an accelerating
positive charge Q.

wave, we will discuss, qualitatively, how the origin of radiation is ultimately
an accelerated electric charge. First, however, consider the small positive
electric charge at rest in Figure 6.1a, where the electric field is depicted by
imaginary lines of force extending radically from the charge. Each line of
force gives the direction of the electric field E and the Coulombic force Fc
on a very small positive test charge ¢ placed at any point along the line.
This is in total agreement with the definition of electric field intensity given
by

E= v (5.4) Electric Field Intensity

where the magnitude of Fc is defined by Coulomb’s law as

F. = k— (5.43) Coulomb’s Law
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in terms of the distance r between the charges. It should be emphasized
that although we restrict our discussion to lines of force in a plane, they
extend radially in all directions of real space. Further, if the charge QO were
moving with a small uniform velocity in the plane of the figure, the asso-
ciated lines of force would be the same as depicted in Figure 6.1a. Now,
however, in accordance with Ampere’s law the electric current is sur-
rounded by a concentric magnetic field B, whose lines of force are normal
(perpendicular) to the plane of Figure 6.1a. For these imaginary electric
and magnetic fields, a tangent constructed at any point on an electric or
magnetic /ine of force would give the direction of the electric E field or
magnetic B field, respectively, at that point.

A major point of the above discussion is that steady electric and mag-
netic fields are associated with steady electric currents. Clearly, an electro-
magnetic wave cannot be produced by any steady electric current. It is
suggested, however, that an electric and a magnetic wave can be produced
by a varying or alternating electric current. Such a current can be thought
of as resulting from an oscillating electric charge, which necessarily re-
quires a periodic acceleration of the charge. Before discussing the more
general case of an electric charge undergoing periodic motion, we first
consider a charge undergoing a single acceleration. A positive electric
charge Q is depicted in Figure 6.1b as experiencing a rapid acceleration
from point 4 to point O. Let the acceleration from A to O require a time
At, and a time Az, elapse after the charge reaches position O. After the
time At, + Az, has elapsed, the original electric field lines of force about O
at position A4 are depicted in Figure 6.1b beyond the arc R, R/, which is
drawn about point A4 with the radius ¢(Az, + Atz,). The uniform lines of
force about Q between point O and the arc R,R}, which is drawn with the
radius cAt,, represent the uniform lines of force of Q at position O during
the time Az,. The lines of force during the acceleration time Az, of Q are,
consequently, represented by the connecting wavy lines between the arcs
RoR), and R, R),. The form of these wavy lines of force will depend upon
the exact kind of acceleration experienced by Q between points 4 and O.

The acceleration of an electric charge is accompanied by changes in
the uniform lines of force (e.g., the wavy lines of force in Figure 6.1b) and
these changes propagate away from the accelerated charge at the speed of
light ¢. In this manner an accelerated electric charge produces a pulse of
electromagnetic radiation. This pulse of radiation can be better under-
stood by considering Figure 6.2a, where a wavy line of force normal to
AO in Figure 6.1b is enlarged. At point P, on this line of force a tangent
is constructed, which gives the actual direction of the electric E field at
point P,. The vector E can be regarded as the resultant of a transverse field
E, and a field E, that would be associated with the charge at rest. If tan-
gents at a number of points along the wavy line of force were constructed,
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oy

(a) Electric field line distorted
by linear acceleration.

(b) Electric field pulse propa-

m T gating at speed c.

8

(¢) Electromagnetic pulse con-

and magnetic field lines.

we would obtain the various transverse components depicted in Figure
6.2b. This is clearly not a wave but merely a pulse consisting of transverse
electric field vectors. A similar analysis of the magnetic B field associated
with the accelerated charge Q of Figure 6.1 would yield a magnetic field
pulse that is in phase and perpendicular to the electric field pulse. Thus, as
illustrated in Figure 6.2c, an electric charge undergoing a linear accelera-
tion produces a pulse of electromagnetic radiation having electric and
magnetic field components that are perpendicular to one another and their
direction of propagation.

If the electric charge in Figure 6.1 is forced to oscillate with simple
periodic motion, electromagnetic waves are produced like the one illus-
trated in Figure 6.3. This wave results from the electric field line of force
that is perpendicular to and in the same plane as the oscillating electric
charge and is depicted at an instant in time. It is recognized as a transverse

Figure 6.2
The construction of an
electromagnetic pulse

sisting of transverse electric from an accelerated

electric charge line of
force.



186 Ch. 6 Quantization of Electromagnetic Radiation

E-Field Vector

Wave Number

B-Field Vector

Angular Frequency

wave, since the alternating electric and magnetic field vectors are at right
angles to the direction of propagation. Because the fields are acknowl-
edged to consist of only transverse vectors, the t-subscript has been
dropped from E and B in this figure. Since the alternating electric field vec-
tors at all points in the wave are parallel, the wave is said to be polarized
or more specifically, plane polarized. The plane of vibration, which is com-
monly called the plane of polarization, is defined by the direction of po-
larization (the Y-axis) and the direction of propagation (the X-axis). It is
important to realize, however, that the wavy lines of Figure 6.3 simply de-
pict the strengths of the electric and magnetic field vectors and that nothing
is vibrating in the electromagnetic wave. The direction of the alternating
magnetic field is interrelated with the electric field in that it must be normal
to the plane of polarization. Consequently, the three vectors E, B, and ¢
constitute a set of mutually orthogonal vectors, where the direction of
propagation is given by E X B.

A quantitative description of the electric and magnetic field compo-
nents of a plane-polarized electromagnetic wave propagating in the x-di-
rection should now be rather obvious. In Figure 6.3, E, = E. = 0 and the
sinusoidal form of E, is dependent on only x and . Thus, we postulate the
electric field vector E by the equation

E = E, sin (kx — wt)j, (6.2)

where E,, is the maximum amplitude and k is the wave number defined by

k==T (6.3)

In a similar manner, since B, = B, = 0 and B. = B.(x, ?) in Figure 6.3, we
postulate the magnetic field vector B to be of the form

B = B, sin (kx — w?)k, (6.4)

with the symbol B, representing the maximum amplitude. The symbol w
in Equations 6.2 and 6.4 represents the angular speed, which is often called
the angular (or circular) frequency because of the relationship

® = 2. (6.5)

It is interesting to note that from Equations 3.30, 6.3, and 6.5 the speed
of propagation c is equal to the ratio of w and &,
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c=w =2 my = (6.6)
21

=€

There are a couple of points that are important to realize about
Equations 6.2 and 6.4 in relationship to Figure 6.3. The first point is that
the E and B field components of the electromagnetic wave are in phase
with each other in space and time. This can be visualized by realizing that
as time goes on the entire field structure of Figure 6.3 moves along as a
unit at the speed c. If the wave moves past a point in space, however, the
electric and magnetic fields at that point change in phase every instant, with
both E and B attaining their maximum or minimum at the same point in
space and at the same instant in time. The second point to be realized is
that Figure 6.3 represents a plot of E versus the position coordinate x at
a constant value of time, say ¢t = ¢, = 0. Thus E(x, ¢,) has a sinusoidal de-
pendence on x with a wavelength N = 2w/k. Likewise, if x is held constant,
say x = x, = 0, a plot of E(x,, t) versus ¢ would look like Figure 6.3, with
the X-axis being replaced by a #-axis. In this case, the period of oscillation
(instead of wavelength) would be given by 7= 1/v = 27/w.

Before leaving this section, it should be emphasized that the qualita-
tive discussion of the origin of electromagnetic waves has been concerned
with only those waves produced by linear acceleration of an electric charge.
However, electromagnetic radiation occurs whenever an electric charge is
accelerated, irrespectively of the manner in which it is accelerated. For ex-
ample, a charge in uniform circular motion experiences centripetal accel-
eration that produces a circularly polarized electromagnetic wave. Such
waves are commonly produced by a synchrotron, which imparts very high

Figure 6.3

An electromagnetic
plane polarized mono-
chromatic traveling
wave, with the trans-
verse E-field vectors in
the XY plane.



188 Ch. 6 Quantization of Electromagnetic Radiation

Maxwell’s Equation

Del Operator

speeds to charged particles by a high-frequency electric field combined
with a low-frequency magnetic field. As a last point of interest, we can
infer from this section that the frequency of an electromagnetic wave pro-
duced by an accelerating charge depends on the frequency of oscillation
of that charge. Conversely, an electric charge, say the electrons in a receiv-
ing antenna, will be accelerated by the forces they encounter from passing
electromagnetic waves. The frequency of the resulting alternating current
will then depend on the frequency of the incident electromagnetic waves.

6.2 Intensity, Pressure, and Power
of Electromagnetic VWaves

The laws of electricity, magnetism, optics, and the propagation of electro-
magnetic waves were well understood by 1864 and completely contained
in a set of four partial differential equations—known as Maxwell’s equa-
tions. Although it would not serve our objectives to develop James Clark
Maxwell’s electrodynamics, one of his equations in differential form,
namely

oB

XE=-—
y ot

, (6.7)

will be briefly utilized. This equation is normally derived in general physics
starting with Faraday’s law of induction and invoking the calculus of
Stokes’ formula. The inverted delta symbol V, as given in Appendix A Sec-
tion A.9, is called the del operator and defined by

3. 0..0
=9 i+ 9 549 6.8
VeEn Tyl T ©8

The curly dees in the expression d/dx are, as you may well know, simply
interpreted as the partial derivative with respect to x. We need only consider
the operational nature of Equations 6.7 and 6.8 and their application to
the plane-polarized electromagnetic wave of the previous section. That is,
direct substitution of Equations 6.2 and 6.4 into Equation 6.7 gives

E, k cos (kx — wt)k = —B,(—w) cos (kx — wr)k. (6.9)

The left-hand side of this equation is directly obtained from the cur/ of E
(i.e., V X E), when it is realized that for E = E(x, 7) the partials with respect
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to y and z become identically zero, and the remaining term, (9E/dx) (i X j),
gives a vector pointing in the k-direction (i.e., i X j = k). Equation 6.9 im-
mediately reduces to

E, = cB, (6.10)

by substitution from Equation 6.6. Further, considering only the magni-
tudes of E and B given in Equations 6.2 and 6.4, the ratio of these two
equations gives

oo | by
& |

which combines with Equation 6.10 to give
E=cB (6.11)

for the instantaneous magnitudes of E and B. Thus taking into account
the vector properties of E, B, and ¢ we obtain

E=B Xe. (6.12) Plane Waves

The results given by Equations 6.10 to 6.12 show the interdependence
of the electric and magnetic field vectors, and they will prove most useful
in developing equations for the energy transported by an electromagnetic
wave. Usually, the energy transmitted in a radiation field by an electro-
magnetic wave is specified in terms of the intensity, which can be simply
thought of as energy per unit area per unit of time. More specifically, in-
tensity is the energy per unit time transmitted across a unit area that is nor-
mal to the direction of propagation of a wave. It can be calculated using the
Poynting vector S, which is defined in general physics by the equation

S = L E XB (6.13) Poynting Vector

Ko

The quantity p, in this equation is called the permeability constant, which
has the defined value (exactly) of

Mo = 4m X 1077 % (6.14) Permeability Constant
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Magnetic Induction

Instantaneous Intensity

Energy Density

Radiation Pressure

The units of S are easily obtained by realizing that E has units of N/C =
N/A - s, since it is defined as a force per unit charge, and B has the defined
unit of a tesla (T). Thinking of B as being defined as a force F; per unit
magnetic pole m' of units A - m,

Fy

!

m

B

: (6.15)

then T = N/A - m. Consequently, the units of S are given by

S—»Aiz N N =

N
N A-sA-m m-*s
N

— m
m-s m
] W
= = )
m’s m?’

as expected for a quantity representing energy per unit time per unit area.
It should also be realized that the magnitude of S divided by the speed of
light ¢ would give the amount of radiant energy per unit volume of space,
which is called the energy density. That is, using the symbol € to represent
electromagnetic wave energy to distinguish it from particle energy, S could
be thought of as

~

S : (6.16)

c1
A dt

where A represents the unit surface area. Now, since the electromagnetic
wave is propagating in the x-direction with a speed ¢ = dx/dt, then

f=f7<L>=f7=7. (6.17a)
¢ Adt\dxidi) Adx av

Frequently, the ratio of S to c is called the radiation pressure, since

QU
m

o[t
Il
N
=

SN e i Lo
&

(6.17b)
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and pressure is recognized as force per unit area. Equations 6.17b gives
the radiation pressure for a totally absorbed wave; whereas a totally re-
flected wave undergoes a change of momentum that is fwice as great, and
consequently, the resulting pressure is 2.5/c.

It should be emphasized that the Poynting vector, as defined by Equa-
tion 6.13, is perfectly applicable to any kind of electromagnetic radiation.
For the plane-polarized monochromatic traveling wave given by Equations
6.2 and 6.4, the instantaneous value of S is given by

1

Mo

S = — E,B, sin® (kx — 0)i, (6.18)

which is seen to point in the direction of wave propagation as expected.
In terms of the magnitudes of S, E, and B we have

EB
S = ) 6.19
Mo ( )
which from Equation 6.12 can be rewritten as
£ 6.20
S=— .
y: (6.20)

This equation (actually, all of the equations involving S) represents the in-
stantaneous rate of energy flow per unit area, which is characterized at a
point in space at a particular instant in time. Normally in optics, the in-
tensity of radiation is taken as the time-averaged value of S at a particular
point. With 7, representing the intensity of electromagnetic radiation and
() representing a time average, we have

L=(S). (6.21)

Thus, from the last two equations, the intensity of a plane-polarized elec-
tromagnetic wave is

&)
Ro€

L (6.22)

As a final expression for the intensity of our electromagnetic wave,
Equation 6.22 is less than satisfying. We need to establish a definition for

Instantaneous Intensity

Time Average Intensity
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Time Average

Time Average Intensity

time-averaging and then evaluate <E”>. The time average of any function
of time f{(z) over one complete cycle can be defined as

_1 ("
<f(H>= 7 ﬁ fadr, (6.23)

where T represents the period of one complete cycle of oscillation. Since
T = 27w/w and E = E, sin(kx — i) for the plane polarized-electromag-
netic wave, then at the point x = x, = 0 we have

27w
<E>= 2 p f sin? wf dr. (6.24)
27T 0

The integral of Equation 6.24 can be easily handled by changing the vari-
able of integration. That is, with 6 = wt, df = d8/w, and the limits of in-
tegration are given by t = 0 — 6 = 0 and 1 = 2w/w — 6 = 2w. Thus,
Equation 6.24 becomes

E2 2w
<E> =" f sin” 0 do
21 0

= i J% (1 = % cos29>d6

2

27T 0

E'2 2m 2m
Z—m<fd6—fcos20d6>
4w \Jy 0

EZ
=4—m(21'r—0)

I
EZ
2

, (6.25)

where a few math identities of Appendix A have been utilized. Finally,
substitution of Equation 6.25 into Equation 6.22 yields

EZ
[=_" (6.26)
20C

for the wave intensity over one cycle for plane-polarized electromagnetic
radiation.

There are two major points of Equation 6.26 that should be fully re-
alized. The first is that intensity is directly proportional to the square of the
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amplitude, which is a general property of all waves. The second point is
that the time-average power dissipated perpendicularly to a particular unit
area A is given by 1.4 or

Em A

20C

<P> =

: (6.27)

6.3 Diffraction of Electromagnetic Waves

When two waves collide in a region of space, the collision is quite dissimilar
from one involving two particles in that the two waves combine according
to the principle of linear superposition (see Chapter 8, Section 8.5), then
each wave emerges from the collision with its original physical character-
istics unchanged. This particular property of waves produces the phenom-
enon known as interference, which is commonly demonstrated in general
physics by a resonance experiment using sound waves or by double-slit and
diffraction grating experiments using visible light. We generally observe
interference when two or more waves of the same type and similar physical
properties (i.e., amplitude, frequency, and phase) enter the same region of
space at the same time. Conversely, if interference is observed, like in a dif-
fraction experiment, it indicates a wave-like phenomenon. This is an im-
portant point to emphasize, as later (in Chapter 8, Section 8.4) we will see
how electrons exhibit wave-like behavior in a diffraction experiment. For
now, however, we will concentrate on how x-rays were first demonstrated
to consist of electromagnetic waves by an experiment involving diffraction.

The interference of electromagnetic radiation is easily demonstrated
for visible light using a mechanically constructed diffraction grating. This
is because the line-spacing d(= 3 pm) of the grating is only a few times
larger than the wavelength of visible light, A, = 0.5 pm. For x-rays,
however, it is impossible to mechanically produce a grating having d = \, ...,
as the wavelength of x-rays (Table 6.1) is on the order of 107" m. It was
suggested by Max von Laue in 1912 that the atoms in a crystal might serve
as a three-dimensional grating for x-rays, since the atomic spacing was
known to be on the order of an angstrom. Atomic spacing is easily deter-
mined from knowledge of atomic masses and the mass density for a par-
ticular crystal. For example, consider the periodic array of atoms
illustrated in Figure 6.4 for common salt (NaCl), which has a simple struc-
ture called face-centered cubic. In the primitive cell, illustrated by the
shaded region in the figure, there are eight lattice points, one at each corner
of the cube of edge a. These lattice points locate the positions of the Na
ions and Cl ions, which are indicated by either black or colored circles.

Time Average Power
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Figure 6.4

The space lattice of a
face-centered cubic
crystal, where the pri-
mative cell is illustrated
by a shaded cube.

Looking at the lattice point in the geometrical center of the figure, we note
that it is shared by the eight adjoining cells. Thus, there is only one lattice
point per primitive cell in the face-centered cubic structure. This also
means that the mass of the eight atoms (four Na and four Cl) in a primitive
cell of NaCl is the sum of the individual masses divided by eight. Thus,
the mass density of NaCl can be expressed as

M

Pract = %

_ (4my, + 4ma)/8

a3

S (6.28)
2a°

where @’ is just the volume of the primitive cell. The quantities my, and mc,
are easily determined by using Equation 5.67 and the atomic masses of
Na and Cl given in the table of Appendix C. That is, for the one common
isotope of Na we have

mNa = (AM)Narn'u
= (22.9898)(1.6605655 X 10~ kg)
= 3.81761 X 10 kg, (6.29a)

while for the two naturally occurring isotopes of Cl

me = [(34.9689)(0.7577) + (36.9659)(0.2423)] m,
= (35.4528)(1.6605655 X 10~ kg)
= 5.8872 X 10> kg. (6.28b)
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Now, with the mass density of NaCl being 2.18 X 10° kg/m?, substitution

into Equation 6.28 gives

_ (mNa + ma)l/3
a = e —
2pNac1

9.70 X 107 kg

1/3
- [2(2.18 X 10° kg/m3)]

= (223 X107 m’)"

=2.81X107" m.

(6.30)

Clearly, this value for the atomic spacing of NaCl is on the order of an x-
ray wavelength, so Max von Laue’s suggestion to use crystals as diffraction
gratings appears to be reasonable and applicable.

In 1913 William L. Bragg presented a simplistic analysis of the dif-
fraction of x-rays by crystalline solids. Bragg considered the constructive
interference of x-rays could result from the scattering of waves from two
adjacent atoms lying in separate but parallel planes, which are now re-
ferred to as Bragg planes. Figure 6.5a illustrates two sets of Bragg planes

i
& N\
W\WAY

a. Bragg planes

Figure 6.5

T

A face-centered cubic
crystal illustrating (a),
two sets of Bragg
planes and (b), Bragg

b. Bragg scattering

scattering from succes-
sive planes.
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Bragg’s Law

for a face-centered cubic crystal, although there are many other possible
sets that could be drawn. Figure 6.5b depicts the Bragg scattering of a
beam of x-rays from two successive planes of atomic spacing d. Although
each plane scatters part of the incident beam in random directions, a small
fraction of the beam, depicted by two solid rays, is specularly (angle of in-
cidence is equal to angle of reflection) reflected from the Bragg planes at an
angle 0. The two parallel scattered rays will interfere constructively, if their
paths differ by an integral number of wavelengths. That is, the path dif-
ference between the two rays must be n\ for monochromatic waves, where
n =1, 2, 3, and so forth. Since the bottom ray travels a distance of 2d sin
0 further than the rop ray, the condition for constructive interference of
specularly scattered waves is satisfied if

2d sin 6 = n\. (6.31)

This equation is known as Bragg’s law for x-ray diffraction. Because of the
condition of specular scattering, it is often, though incorrectly, referred to
as Bragg reflection. The x-ray diffraction experiments by Laue and Bragg
confirmed two presumptions made by turn-of-the-century physicists: that
x-rays consist of electromagnetic waves, and that crystals contain atoms in
a periodic array.

The theory of waves and its applications in physical optics is a broad
and interesting subject that we have barely touched in these three sections.
Our discussions have been totally concerned with the wave-like behavior
of electromagnetic radiation. We now turn our attention to the theory and
experiments that suggest radiation as having additional properties in na-
ture that are particle-like. Our understanding of wave properties and the
associated theory will, however, be most useful in the following sections
and chapters.

6.4 Energy and Momentum of
Electromagnetic Radiation

Although the transmission of energy by electromagnetic waves is well
known and common to everyday experiences (e.g., the energy transmitted
to a closed car on a sunny day), less known is that electromagnetic waves
transport momentum. In this section we will derive a relationship between
the energy € and momentum p, of an electromagnetic wave and see how,
in a sense, it suggests a particle-like behavior for radiation. This relation-
ship will be developed by capitalizing on previously established wave prop-
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erties and fundamental physical relationships. In particular, consider a
plane-polarized electromagnetic wave traveling in the x-direction to be in-
cident on a positively charged particle at rest. The charged particle will
initially experience a force

F, = ¢qEj.

due to the electric field component of the incident wave, and undergo an
acceleration in the positive y-direction. Once the particle starts moving,
however, it experiences and additional force

F;=qvXB

due to the magnetic field component of the wave. Since initially v in this
expression is in the positive y-direction and B is in the positive z-direction
(i.e., B = Bk), then according to the right-hand rule the particle will un-
dergo an additional acceleration in the positive x-direction. Consequently,
a positively charged particle at rest will have a contribution to its velocity
of v,j from the electric field and v.i from the magnetic field components
of the incident electromagnetic wave. Realizing that v, and v, are rapidly
varying with time, due to the alternating electric and magnetic field vectors
of the wave, we can say that very quickly after the particle is exposed to
the radiation it has an instantanecous velocity given by

d
V=0t o= %i + d—’:j (6.32)

The acceleration of the particle is now governed by the total force
F =g¢E + gv X B, (6.33)

where v is given by Equation 6.32. Combining these two equations and re-
alizing that E = Ej and B = Bk we immediately obtain

F = gEj + q(vi + v,j) X Bk
= qu + qva(_j) + quBi,
which can be expressed more simply as

F = qu,Bi + q(E — v, B)j. (6.34)
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In this form, the components of force are casily recognized as
F.=qu,B, (6.35)

and F,=q(E — v.B). (6.36)

The components of force given by the last two equations can now be uti-

lized to obtain an expression for the momentum transferred to the charged
particle by invoking Newton’s second law,

dp

Newton’s Second Law F=2, (1.16)
dt
in terms of x- and y- components,
dpx dpy
Fi+ Fj=—i+ —j 6.37
A+ Ej=—rit — (6.37)

From Equations 6.36 and 6.37 the infinitesimal y-component of momen-
tum is just
dp, = F,dt
= q(E — vB)dt

dx
= gEdt — gB==dt
q q dr

= gEdt — qBdx. (6.38)

Integrating over one complete cycle after substitution from Equation 6.2
and 6.4 gives

Py
py= f dp,
0

27/ o 2mlk
= qE,,,f sin(kx — ot)dt — quf sin(kx — ot)dx
0 0

2/ w 2w/k

= —quf sin(wt)dt — quf sin(kx)dx = 0. (6.39)
0 0

The two integrals in the second equality can be evaluated by using sin(kx
— wt) = sin kx cos wt — sin w? cos kx or, as illustrated, by letting x = Xx,
= () in the first integral and ¢ = ¢, = 0 in the second integral. With the latter,
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they obviously go to zero, since cos 2 — cos 0 = 1 — 1 = 0 is obtained in
both cases. In a similar manner Equations 6.35 and 6.37 give

Py
f dp, = fodt
0

= f qu,Bdt

A foydy,
0

where the last integral is just over dy, as B = B(x, t). Thus, we obtain

P« =qBy (6.40)
for the x-component of momentum. Since p = p.i + p,j, then

p = ¢Byi (6.41)

for the total momentum transferred to the charged particle by one com-
plete cycle of the electromagnetic wave. Actually, this result is valid for
any number of complete cycles of the wave, as the two integrals involving
the sine function still vanish. Further, even though E and B reverse direc-
tion during every cycle of the wave, with F, averaging to zero, the net force
F. on the particle in the x-direction does not average to zero over one cycle
and its direction remains constant.

By itself, Equation 6.41 is not particularly important, unless we
choose a value for ¢ and estimate values for B and y. However, it can be
combined with an expression for energy to obtain a significant result.
From the definitions of instantaneous power,

: (6.42)

and work (Equation 1.20), the energy W of the electromagnetic radiation
is given by

aw =F-v, (6.43)

Time Average
Momentum

Instantaneous Power
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Time Average Energy

Energy-Momentum
of an Electromagnetic
Wave

where F and v are given by Equations 6.34 and 6.32. Thus,

dW . . . .
= lav.Bi+ a(E = vB)i] - [vii + v,j]

= qu,v,B + q(E — v,B)v,
= qEv,. (6.44)

Now, treating the differentials algebraically we obtain

dy
dwW = qE — dt
dt
= dE dy, (6.45)

which when integrated over one cycle,

fEdW=quydy,
0 0

gives

qEy. (6.46)

m
Il

since £ = ¢B (Equation 6.11), substitution into Equation 6.46 along with
the magnitude of Equation 6.41 yields

€= pc. (6.47)

This result is most significant in its interpretation that as a charged
particle absorbs radiant energy € in the time 2wlw, the linear momentum p
transferred to the particle in the same time is €/c. We have in essence de-
scribed a perfectly inelastic collision between the incident electromagnetic
radiation and the charged particle. This is very analogous to an inelastic
collision between two particles that are very dissimilar in mass. If one par-
ticle of mass M is stationary and the other of mass m << M is incident
with kinetic energy T = "Amu?, then effectively the momentum p = 27/v
is transferred to the mass M + m = M during a perfectly inelastic collu-
sion. In this sense, the electromagnetic wave is exhibiting a particle-like
behavior. Aside from this analogy, our result is totally consistent with Ein-
steinian relativity (Chapter 4, Section 4.5), since the energy of a particle
with zero rest mass traveling at the speed ¢ is given by E = pc. Interestingly,
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Maxwell knew of this energy-momentum relationship (Equation 6.47) for
electromagnetic waves for well over thirty years before the development
of the special theory of relativity. However, he was so entrenched with his
differential equations of wave theory that he totally overlooked any par-
ticle-like behavior of electromagnetic radiation.

6.5 Photoelectric Effect

Although the wave nature of light characterized by interference, diffrac-
tion, and polarization was supported by overwhelming evidence prior to
the twentieth century, classical physics recognized that a quantum of ¢lec-
tromagnetic radiation possessed momentum. Einstein’s special theory of
relativity (Chapter 4, Section 4.4) also acknowledged a quanta of light en-
ergy now called a photon, as possessing energy and momentum; however,
the theory predicted that a photon, necessarily, has a zero rest mass and
cannot be accelerated. These latter characteristics are not normally asso-
ciated with a particle, such as an electron, since it can be accelerated and
we can determine its mass, size, charge, and kinetic energy.

The classical wave nature of light is displaced by a quantum or parti-
cle behavior in a phenomenon known as the photoelectric effect, where a
satisfactory explanation assumes a single photon to interact directly with
an electron. A basic description of the photoelectric effect is the ejection
of electrons from a metal surface that is irradiated by electromagnetic radi-
ation. In general photoelectrons are produced by most metals when ex-
posed to ultraviolet light. If visible light is incident on the alkali metals
(lithium, sodium, potassium, rubidium, and cesium), the production of
photoelectrons is observed. The photoelectron phenomenon was first ob-
served by Heinrich Hertz in 1887 and later by W. Hallwachs in 1888.
Hallwachs observed that ultraviolet light neutralized a negatively charged
metal, whereas a positively charge body was unaffected by irradiation.

In 1898 J. J. Thomson and Philip Lenard observed the photoelectric
phenomenon by experimental apparatus similar to that shown schemati-
cally in Figure 6.6. Electromagnetic radiation from the light source S
causes electrically charged particles to be liberated at the cathode metal
C. The deflection of these particles by a magnetic field and the determi-
nation of their specific charge by the methods described in Chapter 5, Sec-
tion 5.3, identified the particles as electrons. Such electrons are called
photoelectrons in reference to their source of excitation. If an electrical
potential is impressed across the cathode and anode electrodes, then any
photoelectrons produced at C will migrate to A as the result of Coulombic
forces of attraction by A and repulsion by C. Any photoelectron current
produced is measured by a micro-ammeter w-A. Further, as indicated in
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Figure 6.6

An illustrative
schematic of an experi-
mental system for
measurements of the
photoelectric effect.

Light source

®

=
bl

@I

the schematic, the amount and polarity of the impressed voltage is con-
trolled by a variable resistor R and a switching arrangement, respectively,
and measured by a voltmeter V. As will be presently discussed, various
types of measurements can be made using this apparatus. First, however,
we will adopt the following symbolic notation that will be utilized through-
out the remainder of our discussion of this phenomenon:

1, = photoelectron current,

V' = impressed electrical potential,

I, = intensity of the electromagnetic radiation,
v = frequency of the electromagnetic radiation,
C = cathode metal material.

A plot of I, versus Vis illustrated in Figure 6.7a, where the physical
measurements involved varying ¥ and measuring /, while /,, v, and, C were
maintained constant. Since an impressed negative voltage tends to keep
photoelectrons from reaching A, then V' = —V/, the so called stopping po-
tential, is the electrical potential required to stop the most energetic pho-
toelectrons. Clearly, the most energetic photoelectrons would normally be
the surface electrons of C, since once liberated these electrons would not
loose kinetic energy by way of atomic collisions within the metal before
escaping from the cathode surface. It follows that the maximum kinetic
energy of a photoelectron is given by

Tmax = eK’ (6.48)
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where e is the magnitude of an electron charge. It should also be observed
in Figure 6.7a that for a small positive voltage impressed across C and A,
the saturation current is attained, as all the photoelectrons produced reach
A. Allowing the light intensity 7, to vary results in the graph illustrated in
Figure 6.7b. The surprising result illustrated here is that ¥, and conse-
quently T.,.., is independent of the intensity (brightness) of the incident elec-
tromagnetic radiation. If the frequency of the incident light is altered, the
value of V, would be affected but T, would still be independent of the
light intensity. A similar statement could also be made for the data if C
was changed.

If V, v, and C are held constant and /. is allowed to vary, it is possible
to realize more directly how the photocurrent /, is dependent on the in-
tensity of the incident light. A representative plot of this data is illustrated
in Figure 6.8a. Obviously, the rate at which photoelectrons are emitted
from the cathode metal is directly proportional to the intensity of light in-
cident on it, other variables being held constant. A change in v or C results
in the slope of the graph being changed. Another interesting result is ob-
served when the photocurrent 7, is measured while allowing the electro-
magnetic wave frequency v to vary, as depicted in Figure 6.8b. Here, two
different cathode materials are used with similar results. There appears to
exist in nature a minimum frequency, v,, for incident electromagnetic

Figure 6.7

(a), A plot of photocur-
rent I, versus V for con-
stant I, v,and C. (b), A
plot of I, versus V for
two values of I, with v
and C constant.
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Figure 6.8

(a), A plot of photocur-
rent I, versus /. for con-
stant V,v,and C. (b), A

plot of photocurrent |,

versus v for constant V
and /..
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