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Introduction

In 1967, studying the possibility of minimally immersing complete submanifolds
into Euclidean cones, Omori [210] introduced an important analytical tool nowadays
called the Omori-Yau maximum principle. The underlying motivation is quite simple
and can be illustrated by the following elementary remark. Suppose that a C?-
function on a Riemannian manifold (M, (, )) attains a maximum at a point xo € M;
then, at that point,

Vu(xo) =0 and Hess(u)(xo) <0, (1)

where with the above notation we mean that the symmetric bilinear form
Hess(u)(xp) is negative semi-definite. In particular, if the attained maximum is
an absolute maximum for u, then

u* = supu = u(x).
M

However, what happens if u is bounded above, that is, u* < 400, but u™* is never
attained on M? It is not difficult to show (see, for instance, Sect. 2.1) that, if M = R™
with its canonical flat metric (, ), for any u € C*(R™) with u* < 400, one can
always find a sequence of points, call it {x;}, with the properties

ulxy) > u* — %; [Vu|(x) < %; Hess(u) (x) < %(, ) )

for each k € N (where N is the set of natural numbers).

On the other hand, it is a simple matter to give examples of manifolds where
this property fails. Restricting ourselves to the two-dimensional case for the ease of
computations, let us consider R? with a fixed origin 0 and with a metric expressed

XV



XVi Introduction

in polar coordinates (r, 8) € R?\ {o} = R* x S! (where S! is the circle of radius
1) in the form

(,)=dr’ +g(r)?do>,
where the function g € C* (RS‘ ) satisfies g(r) > 0 on R™ and

") r on [0, 1]
8(r) =
r(log Pyl erogn T o [10, +00)

for some constant & > 0. Here, and in what follows, we use the notation Rt =
(0, 400) and R;{ = [0, +00). The above metric extends smoothly to o, and its
sectional curvature, that is, its Gaussian curvature, is given in R? \ {0} by

g )
5(r()

~ —c?r(x)*[log r(x)]z(H'“)

Kx) =

as r(x) — +oo for some constant ¢ > 0. We define a function u(x) by setting

u(x) = /0 " (% /0 t g(s) ds) dt.

Then u is well defined, C? on R?, and it is bounded above since u > 0. However,
computing its Laplacian we find Au = 1, showing that the third of the requirements
in (2) cannot be fulfilled.

Our considerations point out the need to look for sufficient conditions to
guarantee the validity of (2). Omori, as the above examples suggest, focused his
attention on curvature conditions; he was able to answer positively to the problem
by imposing, besides completeness of the manifold, a constant lower bound on the
sectional curvature of (M, (, }).

A few years later, in 1975, the subject was taken up by S.-T. Yau, who modified
statement (2) to

1 1 1
u(xg) > u* — i [Vul(x) < A Au(xy) < z (3)

for each k € N. In this relaxed conclusion, to which, from now on, we will refer to as
the Omori-Yau maximum principle (OYMP for short), he substituted the requirement
on Hess(u) with the corresponding requirement on its trace Au. Considering this
new point of view, he provided a sufficient condition for the validity of (3) on
complete manifolds in terms of a lower bound on the Ricci curvature that, as it
is well known, is obtained by “tracing the curvature.” The motivation is loosely tied
to the fact that the sectional curvatures are responsible for bounding the Hessian of
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the (Riemannian) distance function from a fixed point, while the Ricci curvature,
for bounding its Laplacian.

Of course a lower bound on Ric is less restrictive than a lower bound on the
sectional curvature, and conclusion (3) is very often sufficient to solve interesting
geometrical problems, as it was immediately shown by Yau himself in [279] and
by Cheng and Yau in [81]. In particular we should mention Yau’s version of
Schwarz Lemma for holomorphic maps between Kihler manifolds that solved a
long-standing problem [281], as well as the solution of the Bernstein problem for
maximal spacelike hypersurfaces in the Lorentz-Minkowski space given by Cheng
and Yau in [82]. The beautiful initial results of Omori, Yau, and collaborators
opened the way to the use of the OYMP in Riemannian geometry.

It is also worth to consider Yau’s perspective under a more philosophical respect.
Indeed, from the point of view of the analyst, the classical maximum principle is
expressed in a different form; precisely, and for the sake of simplicity referring to
the Laplace-Beltrami operator (see, for instance, [233, p. 53]), let u € CZ(Q) for
some domain £2 C M. If u attains its maximum g at any point xo € 2 and Au > 0
on £2, then u = p in 2. In particular, if 2 is relatively compact, 32 # @ and
u € C°(£2), then supg, u = supyg, u. It is well known that the proof of this fact is
heavily based on property (1) and a famous trick of Hopf (see [233, 235]) consisting
in passing from the weak inequality Au > 0 to the strong inequality Av > 0 for an
appropriate auxiliary function v. Since the essential steps in the proof of the result
are the properties

supu = u(xp), |Vul(xg) =0, Aulxp) <0 4)
Q2

at xo, Yau calls (4) the (finite) maximum principle. This different “pointwise”
perspective also justifies the search for sufficient conditions guaranteeing the
validity of (3); note that, in fact, in this new version, we do not need u to satisfy, a
priori, a certain differential inequality like Au > 0 as before, and this, conceptually,
is a cornerstone. On the other hand, one could think to have lost the “localization”
point of view of the analyst. Basically this is not the case, as we shall explain and
prove in Chap. 3.

Having realized the above conceptual point, the OYMP became an important
tool in the study of the geometry, for instance, of submanifolds, harmonic maps,
conformal geometry, and elliptic equations. In the form given in (2) and (3), it rested,
respectively, on the assumptions

(i)"K > —B>, (if) Ric > —(m — 1)B? (5)
and completeness of (M, (, )). Here with MK and Ric, we denote the sectional

curvature of M and its Ricci tensor. Thus, a reasonable attempt to generalize the
principle was in trying to relax conditions (5) (i) or (5) (ii). This was achieved, to
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the best of our knowledge, in two independent papers, [78, 239]. In the latter (5) (ii),
for example, was replaced by

Ric > —(m — )G*(r), (©)

where G is in a class of functions displaying a certain behavior at infinity, for
instance,

N
G(t) =t]Jlog?(r). 1,
j=1

where log"” stands for the jth iterated logarithm. More importantly, the proof given
in [239] opened the way that led to a new observation: the key auxiliary function
y constructed in the proof to make the argument work did not need, in fact, to
come from a distance function on M. Since the behavior of the Laplacian (or of the
Hessian) of the latter is governed by curvature conditions, this observation frees us
from assumptions of the type (5) or (6) once we can provide y in some other way,
for instance, when f : M — N is an immersion, via the extrinsic geometry of M (see
Chap. 2 for a first example).

In the meanwhile, from a number of geometric applications, it became apparent
that the second condition in (2) or (3), that is,

IVul () < % )

along the sequence, was not always needed to reach the desired geometric conclu-
sions. This suggested the following simpleminded definition introduced in [225]: we
say that the weak maximum principle (WMP for short) holds on M for the operator
A if for each u € C?(M) with the property

u* =supu < +0o (8)
M

there exists a sequence {x;} C M such that
« 1 1
u(xg) > u” — e and  Au(x) < T 9)

The unexpected fact is that, as proved in [225], this property is equivalent to
stochastic completeness of the manifold or to uniqueness of the solutions of the
Cauchy problem for the heat equation (see [227] or [131] for more details in this
direction). This has a twofold feedback. On the one hand sufficient conditions to
provide stochastic completeness, such as the Khas’minskii test, can be used to
guarantee the validity of the WMP; on the other hand, we can use the WMP to
investigate probabilistic properties. From this new point of view, can we give simple
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sufficient conditions coming from geometry to insure the validity of stochastic
completeness? Of course the validity of the Omori-Yau maximum principle implies
that of the weak, but can we indeed provide genuine sufficient conditions weaker
than those guaranteeing the maximum principle in its full strength (2) or (3)? A
positive answer is given by the results presented at the end of Chap. 4: the validity
of the WMP is obtained under growth conditions on the volume of geodesic balls
of the manifold. This is certainly weaker than requiring curvature assumptions that
do imply volume growth but which are not implied by the latter. However, one
point is still open; that is, also in this case we need completeness of the manifold
(M, (. )). This condition is somehow natural for the OYMP; indeed, if we prove
its validity via the function y that we were talking about before, then two of the
conditions on y imply completeness of the metric (see Remark 2.5 and the proof of
Theorem 3.2). However, for the WMP its equivalence with stochastic completeness
reveals immediately its independence from the geodesic completeness of the metric.
For instance, R? \ {0} with its canonical Euclidean metric is certainly geodesically
incomplete, but it is stochastically complete.

As a final remark we note that, as in the case of the OYMP, the construction
of a function y satisfying Khas’minskii test can often be obtained, for instance, by
exploiting solutions of suitable differential inequalities or the extrinsic geometry in
case of an immersed manifold. This new point of view enabled Alias et al. [18] to
give a positive answer in case of proper immersions to two well-known conjectures
of Calabi on minimal submanifolds of Euclidean space; note that an earlier result in
this direction appears in [225].

In Riemannian geometry there are many other interesting and natural differential
operators besides that of Laplace and Beltrami. Just to mention a few, let us recall
the mean curvature operator, the operator associated to the Newton tensors in
the geometry of hypersurfaces, the X-Laplacian of generic (i.e., not necessarily
gradient) Ricci solitons, and so on. It is therefore quite legitimate to address the
problem of generalizing the maximum principles presented so far to a larger class
of operators. As expected, the nonlinear case is the most delicate. Yau’s original
proof or even the more recent approach in [43, 52] (the latter is in fact based on
a Euclidean argument presented in [227]) do not go through in this new setting to
prove the corresponding form of the OYMP, while the extension of the WMP turns
out to be simpler. However, both problems have been recently solved in [5]. The
family of operators L considered is as follows (in fact in Chap.4 we present an
enlarged class): L acts on, say, u € C>(M) by

Lu = div (qu|_l(p(|Vu|)T(Vu, -)ﬁ) — (X, Va). (10)

Here T is a generic symmetric, positive definite (or semi-definite) (0, 2)-tensor,
1. TM* — TM is the standard musical isomorphism, X a vector field on M, and
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¢ : Rf — R a function satisfying ¢ € C°(Rf) N C'(R™) and the structural
conditions

(1) ¢(0) = 0; (i) p(s) > 0 for s € RT;  (iii) ¢(s) < As’ onRT (11)

for some constants A, § > 0.

These operators with X = 0 have been considered for the WMP in a series of papers
by Pigola, Rigoli, and Setti, see, e.g., [226, 229] and also [245]. Note, for instance,
that for X = 0 and 7' = (, ), the choices

__ S _ ol
(p(s) - m or @(S) Sp )

respectively, give the mean curvature operator and the p-Laplacian; for ¢(s) = s
and X = (divT)*, we obtain the trace operator Tr (¢ o hess(u)), where hess(u), ¢ :
TM — TM are defined by

hess(u)(Y) = Hess(u)(Y, )",
1Y) = T(Y, )"

for every vector field Y on M.

So far we have always tacitly understood to consider the case u* = sup,, u <
+00; can we say something in case where u* = +oo but u has a controlled behavior
from above at infinity? In this case, for the WMP we have a positive answer under an
assumption relating the growth of u at infinity with that of the volume of geodesic
balls (and with § in (iii) above in case of a general operator). The importance of
this type of result is manifest: for instance, its use allows us to obtain a comparison
result for nonnegative solutions «# and v of a Yamabe-type equation of the form

Au+aX)u—bx)u® =0, o>1,

with b(x) > 0, under some mild conditions on the manifold, the coefficients a(x)
and b(x) and in the sole requirement

v) = Cir(0), ux) = Gr)",

with t > 0, for the behavior of u# and v at infinity. For details, see Theorem 5.5 of
[189] or [244] and also Sect. 4.3.1 and [4] for a similar equation. On the other hand,
the version of the OYMP when u#* = 400 remains in some sense an open question,
but see, for instance, Theorem 3.5.

Going back to the WMP for the Laplace-Beltrami operator A, we realize (see
Chap.2 for details) that a slightly stronger form of the principle is equivalent
to the usual notion of parabolicity. Somehow this explains why results related,
respectively, to stochastic completeness and recurrence, the probabilistic version
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of parabolicity that resembles each other in many circumstances. This observation
will enable us to extend the notion of parabolicity, in the form of a Liouville-type
result, to a new notion that we call strong parabolicity and which turns out to be
equivalent to the former for a large class of operators. After having introduced the
above analytical tools, to show their effectiveness, we dedicate the second part of
the book to some applications. We have chosen to concentrate on the geometry
of submanifolds, and in particular on that of hypersurfaces, but we also illustrate
their usefulness in dealing with some elliptic PDE problem and the geometry of
Ricci solitons. Further applications are given in the setting of Lorentzian geometry.
This material will be discussed more appropriately in a short while when we will
describe the content of the various chapters. We only like to underline that the results
presented are quite recent and belong to an active field of actual research; thus,
sometimes we comment with open questions and problems that to the best of our
present knowledge have not yet been completely answered or solved. In this sense
our work introduces the reader to active research topics, and we hope to provide
her/him with quite efficient technical tools to move toward their solutions and that
of other related geometric and analytic problems.

We now outline in some detail the content of the various chapters of the book,
pointing out that at the beginning of each one of them, the reader is guided by a
short initial introduction focusing on the various themes.

In Chap.1 we present a “crash course” in Riemannian geometry, with two
purposes: the first is to fix definitions and notation and to get the reader acquainted
with the formalism of the moving frame to perform computation by her-himself.
The material we present will be used in the subsequent chapters, especially in the
geometric applications. We like to mention that we also prove some properties of
“curvature” tensors (Weyl, Cotton, projective, etc.) and some commutation relations
of their covariant derivatives that are not easily available in the literature. We
end the chapter with some brief considerations on the Laplacian and Hessian
comparison theorems that constitute an essential tool in geometric analysis. A very
detailed exposition of these topics without the use of Jacobi fields, together with a
preliminary discussion on the cut locus of a point (and more generally on the focal
locus), can be found in the recent paper [44].

The second purpose concerns the aim of the book to be as self-contained
as possible, with the intent to quickly introduce the young reader to current
research topics. We feel that the material presented is certainly sufficient for the
understanding of the rest of the chapters, but we also hope that it will act as
a stimulus to deepen the knowledge of the subject on standard treatises such
as [73, 102, 156, 232] and so on. However, although we present the method of
the moving frame in some detail, and this certainly will be essential for some
computations (for instance, in Chap. 8), we shall also use freely Koszul formalism.
This is quite standard in the differential geometry community, and it will help
readers unwilling to spend some time to master a different formalism that is still
not so loved by many people but that is undeniably effective in many situations, as
we shall see.
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Chapter 2 introduces and motivates the OYMP and the WMP for the Laplacian
and the Hessian operators. We point out the mutual relations between the conditions
in (3), proving in particular Ekeland quasi-minimum principle in the form of
Proposition 2.2 that shall be used in this chapter and in Chap. 3 (note that some
similar form of Proposition 2.2 is well-known folklore in geometry, see also [227]).
Next we introduce the original statement of Omori and Yau for the maximum
principle and the generalized OYMP with an auxiliary function y satisfying the
conditions listed in Theorem 2.4; in this situation we assume y € C%(M), but we
show in Theorem 2.5 that y can be built starting from the distance function from a
fixed origin when (M, (, }) is complete. Here the point is delicate, since y is only
Lip,,.(M): to solve the problem we elaborate on a trick of Calabi [55]. However,
we also point out that since y is a solution of a certain differential inequality in
the Lip,,. sense, we can in fact use, in the case of the Laplacian, an alternative
way based on a comparison result proved in [227] (see Remark 2.8, following the
proof of Theorem 2.5, and Proposition 3.1 with Remark 3.9). This is an important
alternative that shall be used in the nonlinear case but in the C'(M) class, since
we need a strengthened version of Proposition 3.1 (see Theorem 3.9 in Chap. 3).
We also construct y from the extrinsic geometry of an immersed submanifold
f M — N under some mild geometrical restrictions, mainly on the mean curvature
of the immersion (another construction of a similar kind is given, for instance, in
Sect. 5.4 of Chap.5).

The further step is to introduce the WMP and its equivalence with stochastic
completeness and with other analytic properties; see Theorems 2.7 and 2.9. We then
discuss some properties and results related to stochastic completeness to show how
this equivalence can be used to prove them in a different and particularly simple way.
In Sect.2.4 we present two applications of stochastic completeness to a curvature
problem and a Liouville-type theorem (see, respectively, Theorems 2.17 and 2.18).

The chapter ends showing the relation between parabolicity of (M, (, )) and a
stronger form of the WMP. The observations presented here justify our extension of
the notion of parabolicity that we call strong parabolicity that will appear at the end
of Chap. 4.

Having provided some initial motivations in the simplest cases of the Laplace-
Beltrami operator and of the Hessian, in Chap. 3 we deal with some new forms of the
maximum principle both in the linear and nonlinear case. Motivated by the results
of Chap. 2, we present the weak and the Omori-Yau maximum principles with the
aid of an auxiliary function y (see, for instance, the statement of Theorem 3.1). In
the linear case, once we have chosen the class of operators as in (3.1), that is,

Lu = div(T(Vu, ) — (X, Vu),

we face fewer technical difficulties than in the nonlinear case, and guided by the
insights of Chap.2 we can extend, for example, Theorems 3.1 and 3.2 to the case
where y is the composition of the distance function from a fixed origin o in the
complete manifold (M, (, )) with an appropriate function, and, therefore, y is only
Lip,,.(M). It is worth to observe that, in proving Theorem 3.1 that corresponds to
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the WMP, we do not need any use of the Ekeland quasi-minimum principle: indeed,
in this case (M, (, )) need not even be geodesically complete. On the other hand,
Proposition 2.2 is needed in the proof of Theorem 3.2 for which first we show that
the metric is complete. This latter fact is implied by two of the conditions on y,
but, as a matter of fact, the validity of the Ekeland quasi-minimum principle for
a certain class of functions on a metric space implies completeness of the latter
and therefore, in our case, of the manifold (see Remark 2.1). As already observed
this fact is related to the first two properties in (3) for the validity of the OYMP.
However, see also the considerations after Example 2.2 in Chap.2. We complete
our discussion of the linear case by extending an L* a priori estimate that Cheng
and Yau [81] and Motomiya [199] (but the proof in the latter is incorrect) proved for
the Laplacian. In fact we deal with solutions u of differential inequalities of the type

o) [div (T(Vu, .)ﬁ) (X, vu>.] > o(u, | V). (12)

Without entering into further details, the main assumption on the right-hand side of
(12)is that f(#) = ¢(2,0) > O fort > 1 and F(?) = fatf(s) ds, a > 1, satisfying

€ L' (+00). (13)

1
V(1)

The alert reader will immediately recognize (13) as the classical Keller-Osserman
condition; in particular, it is a sharp condition for the validity of an L* upper bound
on u. We shall come back on this when describing a corresponding L°-estimate
in the nonlinear case. We note that the value of this type of estimate can be hardly
overestimated both in the geometric and analytic setting.

We then come to discuss the nonlinear case. Here the situation is much subtler,
and due to the type of operators we consider, that is,

Lu = div <|Vu|_l(p(|Vu|)T(Vu, -)ﬁ) — (X, V),

with ¢ as in (11), we restrict our attention to C! functions u; of course the
above operator has to be interpreted in the weak sense. The validity of the
corresponding maximum principles, weak and Omori- Yau, is obtained, respectively,
in Theorems 3.11 and 3.13 whose statements and proofs are similar to those of
Theorems 3.1 and 3.2. However, the analytical difficulties that we are now facing
with this large class of operators are definitely deeper. Thus, we devote an entire
section to a careful proof of the auxiliary analytical results in the form that we shall
need for our purposes (this part, Sect. 3.3.1, is based on Pucci and Serrin [234] and
Pucci et al. [236]). In fact the results we obtain are more general than what is strictly
needed. We do this for two reasons: the first is that these results are interesting in
their own and have a wide range of applicability; the second is that in the maximum
principle, we prove (see Theorem 3.10) there appears a somewhat dual form of (13).
In fact there are four conditions, which are intertwined and related to (13), that are
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responsible for the maximum principle, the compact support principle, and L™ a
priori estimates. This is partly clarified in [183, 236] and the very recent [45].

In Sect.4.1 of Chap.4, we prove an L* a priori estimate and a WMP under a
volume growth condition for geodesic balls. In this more general nonlinear case, to
obtain an upper bound for u, solution of a certain differential inequality of the form

Lu = div (qu|_l(p(|Vu|)T(Vu, -)ﬁ) > b(0)f (),

we need to impose the condition

lim inf @ >0

t—+oo 1%
for some o > &, where § is the structural constant in (11) (iii). This condition is
slightly stronger than the corresponding nonlinear Keller-Osserman requirement;
we feel that the latter should suffice, but this remains an open problem.

The next item is a proof of a controlled growth weak maximum principle,

meaning with this that a form of the WMP can be obtained even for an unbounded
u provided we have a control of the type

y u(x)
im sup
r(x)—>+o00 r(-x)g

< +00.

For the precise statement of the result, we refer to Theorem 4.4: to show its
usefulness we also give an application to Killing graphs.

As mentioned before we then localize the WMP to the family of open sets §2 of
M with 982 # @. For an operator as in (10), the principle becomes equivalent to: for
each 2 as above, f € C°(R) and v € Co(ﬁ) N CY(2) satisfying

{Lv >f(v) on £2,

Ssupo v < 400

we have either f(v) < 0 or sup, v = sup,, v. In particular: for each §2 as above,
BeRTandv e Co(ﬁ) N C'(2) satisfying

L > £,
v >f on (14)
Supo v < 400
we have
supv = sup v. (15)

2 a2
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This last formulation is in the vein of classical analysis, and it reveals extremely
powerful in applications (for its use in some geometric setting, see Chaps.5
and 7). This new form also justifies the introduction of a new concept, i.e., strong
parabolicity. We compare this with the usual one given as the validity of a Liouville-
type theorem; we also provide sufficient conditions for the validity of both. We end
the chapter with an application of Theorems 4.1 and 4.2 and of these last concepts
to generalize to our family of operators a result of Dancer and Du [97], which in the
parabolic case on R” is a consequence of the “hair trigger” effect of Aronson and
Weinberger [32]. In fact we improve on it even in the case of the Laplace-Beltrami
operator; this part is based on [226].

Chapter 5 is devoted to the applications of the material (mainly) of Chap. 4, to the
study of the geometry of submanifolds. In the first result, Theorem 5.1, we improve
on Omori [210] on the impossibility of immersing minimally a submanifold into
a nondegenerate cone of Euclidean space. Following Mari and Rigoli [181], we
then generalize this result to smooth maps ¢ : M — R" by providing a sharp upper
estimate for the width of the cone containing the image ¢ (M) in terms of the distance
of (M) to a certain hyperplane, the norm of the tension field of ¢ and its energy
density.

We then continue in this spirit and prove various (generalizations of) classi-
cal theorems on the impossibility of isometrically immerse given manifolds in
Euclidean space or in cones. As it is well known, this subject of investigation goes
back to Tompkins [264], Chern and Kuiper [86], Otsuki [215], and so on, up to
the work of Jorge and Koutrofiotis [154]. In fact we extend this latter result to
immersions into cones by providing again a sharp upper estimate of the width of
the cone.

The next step, suggested by one of Calabi’s conjecture on minimal hypersurfaces
in R", is to consider cylindrically bounded submanifolds (see Sect.5.4). Calabi’s
conjecture asserts that any complete nonflat minimal hypersurface in R” has
unbounded projection in every (n — 2)-dimensional subspace of R"; in this case we
can indeed fully appreciate the function theoretic form of the WMP. The function y
of Theorem 3.1, for instance, is constructed via the projection of the immersion on
the unbounded component of f(M) C R x Bg, where By stands for a geodesic ball
ofradiusRinN andf : M — R! x N (see Theorem 5.9, Corollary 5.8, and related
results in Sects. 5.4.1 and 5.4.2).

On the other hand, it is a well-known result of Ruh and Vilms [249], that the
Gauss map yy : M — G,(R") of an isometric immersion /' : M — R" is harmonic
if and only if f has parallel mean curvature. We study some consequences of this fact
with the aid of our analytic machinery (see, for instance, Theorems 5.11 and 5.12)

In Chap. 6 we focus our attention to the applications of these techniques to the
study of the geometry of hypersurfaces. In particular, we begin by considering
complete hypersurfaces immersed with constant mean curvature into Riemannian
space forms and deriving sharp estimates for the infimum and the supremum of
their scalar curvature, classifying the cases of equality. Similarly, we consider the
case of hypersurfaces with constant scalar curvature into Riemannian space forms;
this forces us to use the well-known differential operator introduced by Cheng
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and Yau [83] in order to give estimates on the second fundamental form. We
are able to characterize the cases of equality also in this situation. After this, to
extend our investigation to a larger class of Riemannian ambient spaces, it appears
convenient to consider manifolds with a sufficiently large family of complete
embedded constant mean curvature hypersurfaces. Such a family plays the role of
the umbilical hypersurfaces in space forms. A natural class of ambient manifolds
where this happens is that of warped products that are foliated by totally umbilical
leaves. In this setting, in Chap. 7 we derive higher-order mean curvature estimates
for complete immersed hypersurfaces X' and determine sufficient conditions in case
of constant higher-order mean curvatures to guarantee that if the image is contained
in a slab, then it is a leaf of the foliation. In doing so we need to consider quite
general operators that come from the Newton tensors and some appropriate linear
combinations of them. Finally, as an application of our localized form of the WMP,
we give height estimates for hypersurfaces in a product space, where the results
appear in a quite neat form.

In Chap. 8 we study Ricci solitons. Our emphasis is on generic Ricci solitons,
that is, Riemannian manifolds (M, (, )) for which there exist a constant A € R and
a vector field X satisfying

1
Ric +§$X(, ) = A(s )s

where Zx(, ) is the Lie derivative of the metric (, ) in the direction of X. When
X = Vf for some potential f, the above equation assumes the form

Ric 4+ Hess(f) = A{(, )

and the soliton is called a gradient Ricci soliton. The case of generic Ricci solitons
is quite heavy from the computational point of view, so that the first part of the
chapter is dedicated to various useful calculations. In the second part first we
analyze the validity of the weak and strong maximum principle for the operator
Ax = A — (X, V) and for the symmetric diffusion operator Ay = ¢/ div (e_f V) =
A — (Vf, V). In both cases the validity of the OYMP is granted by the structure
with no further assumptions besides that of completeness of (M, (, )). We combine
this fact with the a priori estimate of Theorem 3.6 to obtain, in Theorem 8.2, lower
and upper bounds for the infimum of the scalar curvature of the soliton; similarly,
in Theorem 8.3 we provide a lower bound for the supremum of the norm of the
traceless Ricci tensor. For further results we refer to [188].

The above results are then refined and further analyzed in the gradient case,
classifying in particular some classes of solitons (see [224]). We end the chapter
with a very recent result on generic Ricci solitons based on [68] for which we use a
sufficient condition for strong parabolicity given in Sect. 4.4.

The final chapter, Chap. 9, is devoted to some applications to spacelike hyper-
surfaces in Lorentzian spacetimes. After some basic preliminaries on their geom-
etry, we give a proof of the celebrated Bernstein-type theorem of Cheng and
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Yau [82], which states that the only complete maximal hypersurfaces in the
Lorentz-Minkowski space are the spacelike hyperplanes; this is followed by some
other related results. Next, using the corresponding comparison theorems for
the Lorentzian distance function, we extend our study to the case of spacelike
hypersurfaces in spacetimes obtaining sharp estimates for the mean curvature and
more generally for higher-order mean curvatures, of such hypersurfaces. We also
consider the case of spacelike hypersurfaces immersed into Lorentzian warped
product manifolds, called here generalized Robertson-Walker spacetimes, obtaining
in this context height estimates and rigidity results.

We conclude this introduction by underlining the important role of the interplay
between the analytic and geometric points of view. The OYMP and the WMP are
good examples of how this interplay can help in solving geometric problems with
the aid of analytic tools and how geometric problems force us to consider new
analytic open questions that are naturally posed by them. One of the aims of this
book is to clarify this relationship, trying to get to the core of the problems and, as a
consequence, to provide what we believe are among the most efficient tools to deal
with them.



Chapter 1
A Crash Course in Riemannian Geometry

This chapter is devoted to a quick review of some results in Riemannian geometry
using the moving frame formalism. While we assume basic knowledge of the
general subject as presented, for instance, in the standard references [51, 121, 156,
170, 171, 219, 272], several computations will be carried out in full detail in order
to acquaint the reader with notation.

After having introduced the notion of coframes and frames we describe the Levi-
Civita connection and curvature in terms of connection and curvature forms via E.
Cartan first and second structure equations.

Symmetries and various properties of the curvature tensors (Riem, Ric, Weyl,
Projective,...) are described at length together with a number of identities repeat-
edly used in the sequel. In particular we obtain some commutation rules for
covariant derivatives of functions and tensors up to a certain order, also with the
aim of pointing out the general procedure to determine them when needed in other
situations.

Next we give a description of the geometry of submanifolds and of hypersurfaces
with some attention to the case where the ambient space is a warped product; along
the way we obtain relevant formulas that will appear in Chaps. 6 and 8. We also
provide a brief introduction to the geometry of smooth maps between Riemannian
manifolds; in particular, we introduce the generalized second fundamental tensor.
The vanishing of its trace, the well-known “tension field”, characterizes harmonic
maps.

At the end of the chapter we describe some basic results on the Riemannian
distance function from a fixed reference point o € M; we briefly discuss the cut
locus of 0 and some of its properties. We then describe comparison results for the
Laplacian and the Hessian of the distance function, and for the volume of geodesic
balls in terms of bounds on the appropriate curvature.

Here and in the rest of the book all manifolds are assumed to be connected, unless
otherwise stated.
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2 1 A Crash Course in Riemannian Geometry

1.1 Moving Frames, Levi-Civita Connection Forms
and the First Structure Equation

Let (M, (, )) be a Riemannian manifold of dimension m = dim M with metric (, ).
Letp € M and let (U, ¢) be a local chart such thatp € U. Denote by x', ..., x" the
coordinate functions on U. Then, at any ¢ € U we have

(,)=gjdx ® v, (1.1)

where dx’ denotes the differential of the function x' and gij are the (local) compo-
nents of the metric defined by g;; = ( 9.2} InEq.(1.1), and throughout this book,

we adopt the Einstein summation convention over repeated indices. Applying in ¢
the Gram-Schmidt orthonormalization process we can find linear combinations of

the 1-forms dx’, that we will call 8, i = 1, ..., m, such that (1.1) takes the form
(,)=80®¢, (1.2)

where §;; is the Kronecker symbol. Since, as ¢ varies in U, the previous process gives
rise to coefficients that are C* functions of g, the set of 1-forms {6’} defines an
orthonormal system on U for the metric (, ), that is, a (local) orthonormal coframe.
It is usual to write

(.)=) (6

i=1

instead of (1.2). We also define the (local) dual orthonormal frame {e;}, i =
1,...,m, as the set of vector fields on U satisfying

B(e;) =6 (1.3)

(where 8,’ is just a suggestive way of writing the Kronecker symbol, reflecting the
position of the indices in the pairing of ¢/ and ¢;).

Proposition 1.1 Let {0} be a local orthonormal coframe defined on the open set
U C M; then on U there exist unique I-forms {9/’} i,j=1...,m, such that

do' = -6 N O (1.4)
and

0l + 6/ =0. (1.5)
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The forms 9/? are called the Levi-Civita connections forms associated to the
orthonormal coframe {#}.

Proof Assume the existence of the forms 9]? satisfying (1.4) and (1.5) and let us
determine their expression. Of course

i_ ipk
0]- = ajké’
for some aj‘:k € C*(U) and (1.5) is equivalent to

dy + al, = 0. (1.6)
The 2-forms df' can be written, for some (unique) coefficients b;k € C*®(U), as
i_ L o Sz i
do' = Ebjk@] A 6%, with by + by; = 0.
Since (1.4) must hold we have
Loii ok i nk j ik Lo iNgi A ok
Ebjké’f N0 = —ay 0" N0 = ayt/ A 0" = E(ajk —a)t’ N0
It follows that
bl = dj — aj,. (1.7)
Cyclic permutations of the indices i, j, k and the use of (1.6) and (1.7) yield
bl = df — d = —di; + af, (1.8)

and

Jo_ Jo_ i
by = aj; —ay = ay + Ajy- (1.9)

Adding (1.7) to (1.9) and subtracting (1.8) we obtain
i 1 i k J
dy = 3 (bj — by + b)), (1.10)

The previous relation determines the expression of the forms 9} and also proves
uniqueness. Now define

. 1 . i
@:?%—%+%W, (1.11)
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where the b ’s satisfy
bl + bj; = 0.
It is clear that
J 1 Jj k i 1 k Jj i
ay = 5 (g = bj; + biy) = =2 (bj — by + b)) = —aj.
thus (1.6) is met, and then the 9}’5 defined in (1.11) satisfy (1.5); it is also immediate

to verify that they satisfy (1.4). O
Equation (1.4), that is,

6’ = 0 A6,

is called the first structure equation. We shall see in a short while the geometric
meaning of (1.5).

1.2 Covariant Derivative of Tensor Fields, Connection
and Meaning of the First Structure Equation

A matrix notation is sometimes useful when performing computations with moving
frames. On the open set U let 6 be the (column) vector valued 1-form whose
components are (9',...,6™), and let y be the matrix of 1-forms (6;) on U. Then,

(1.5) becomes ’y = —y (where Ty denote the transpose of y), that is, y takes values
in the Lie algebra o(m) of skew-symmetric matrices, and the first structure equation
reads

do =—y 6.

We want to focus our attention on the change of {9;} while changing the orthonormal
coframe {6'}. First, we need a simple

Lemma 1.1 (Cartan’s Lemma) Let U C M be an open set of the Riemannian
manifold (M, {, )). Let {0} be a local basis of T* U, and assume that a set of 1-forms
{wi} on U, with A € A and where A is any set of indexes, satisfies ), a)i NG =0.
Then, there exist smooth functions bi,k on U such that

i _ i pk i gk
w), = bA’kQ and bx,k = bl’i,

that is, the matrix B = (bi k)f( is an m X m symmetric matrix.
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Proof We can write o} as o} = b’ ,0* for some smooth functions b , on U. Then
from ), w} A 6" = 0 we deduce

0= Z AN Z(bqu — bk )OF A O
i,k

i<k
which easily implies the thesis. O

In the next proposition we show how the Levi-Civita connection forms change when
the frame changes; we denote by O(m) the set of m x m orthogonal matrices.

Proposition 1.2 Let {e;} and {e;} be two orthonormal frames, respectively defined
on the open sets U and U with UN U # @, andletA : UNU — O(m) be a (smooth)
change of frames, that is,

G=ANe onUNU, ije{l,....m) (1.12)

(with a slight abuse of notation, we write € = eA, where e (resp. e) is the matrix
having e; (resp. ¢;) as i-th column). Then, the matrix y transforms according to

y=A""yA+A'dA, (1.13)
or, in components,
= AT)GA + (AT)dA; kel .. m}.

Proof We adopt _the matrix notation for simplicity. By (1.12) the corresponding
coframes {0'}, {6'} change according to

= (A_l);:@j or, in matrix notation, 6 = A~'6. (1.14)
Differentiating (1.14) and using the first structure equation we get
dI=dA™" A0 +A7'd0 = —ATTAAAT A — ATy A6, (1.15)
where
dA ) =-A"1daA™! (1.16)

follows differentiating the components of A™'A = I,,, I,, being the m x m identity
matrix. Again from the first structure equation

~ ~

df =7 A0 =-FAAT'0 = AT A6, (117
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Putting together (1.15) and (1.17) we get
JATTAO =AYy A0+ ATTdAAT A B,
hence multiplying by A on the right we get
(7-a"'ya—a"taa) no =o.

Define now B = (B)) = y —A~'yA —A7'dA. By Cartan’s Lemma 1.1, B} = b/, 6*
with b}k = b‘j; observe that B is skew-symmetric in the indices i and j: indeed,
it is easy to prove that both A~'yA and A~'dA are skew-symmetric by mere
computation, using that A~! = TA and Ty = —y. From the above we have the
symmetries

Y S R S S R |
bjk_ by = bki_bji_bij_ bkj_ bjk’

so that B vanishes identically, and this proves the proposition. O

Remark 1.1 'We observe en passant that the last part of the proof of Proposition 1.2
hides the deep reason beyond the fact that both A~'yA and A~'dA are indeed o(n)-
valued matrices of 1-forms. This reason is apparent for those with some familiarity
in Lie group theory: indeed, A~!yA is the composition of the o(m)-valued 1-form y
with the adjoint action

Ad(A™Y) € GL(o(m)),

and A~'dA is the pullback of the Maurer-Cartan form of O(n) via A : U — O(m).
We refer the interested reader to the beautiful book [256].

Starting from the Levi-Civita connection forms, we can define a covariant
derivative V on every tensor bundle. Let {e;}, {0’} be an orthonormal frame and
its dual coframe on the open set U. The connection V induced by the Levi-Civita
connection forms is defined by

Ve, =60 ®e, (1.18)

and, for every X, Y € X(U) (where X(U) is the set of smooth vector fields on the
open set U), f € C*°(U), by the rules

V(X+Y)=VX+VY, V(X)) =df X + fVX; (1.19)
the dual connection, still denoted with V, is given by the formula

Vo =0/ ® ¢
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(which follows imposing the condition VOi(e)) + 0'(Ve) = V(0i(e)) =
d (Qi (ej)) = 0; see below for the relation between the covariant derivative and the
differential of a function). The connection V is globally defined, and independent
pf the chosen frame {¢;}. Indeed, if ¢; = A]iej on the intersection of two open sets U,
U, then, using (1.13),

Ve, = V(4e)) = dA} @ e + AlBf @ e, = dAF ® (A7) + A} @ (A2

= [(A)dAY + A0k 0 = 0l ®7,

and the same for V@',

For a vector field X € X(M), which can be locally written as X = X'e;, the
covariant derivative VX is the tensor field of type (1, 1)

VX = (dX) ® e, + X'Ve; = (dX' + X)) Q ;.
Setting
Xj0" = dx' + X',

VX can be written as

VX = Xi0* ® e,

and X! is said to be the covariant derivative of the coefficient X'. If ¥ € X(M) we
define the covariant derivative of X in the direction of Y as the vector field

VyX = VX(Y),
which in components reads as
VyX = Xj0X(Y)e; = X[ Y*e,.

We also recall that the divergence of the vector field X € X(M) is the trace of VX,
that is,

divX = Tr(VX) = (VeX,e;) = X. (1.20)

For a 1-form w, which can be written locally as w = w;0', the covariant derivative
Vw is the tensor field of type (0, 2)

Vo = (dw) ® 0" + o; VO = (da)i - a)ﬂ[) ® 6.
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Setting
wid* = dw; — a)jG{,
it follows that Vw can be written as
Vo = wyb* @ 6.

If Y € X(M) we define the covariant derivative of @ in the direction of Y as the
1-form

Vyw = Vw(Y),
which in components reads as
Vyw = opf*(Y)0' = wy Y*0'.
The extension of V to a generic tensor field 7 is done via the Leibniz rule. We

recall that a fensor field of of type (r, s) is a law that assigns to each pointp € M a
multilinear map

s times
e e
T,: T;Mx---xT;MXTI,MX---XT[,M—>R,
——
r times

where T,M and T[’fM are, respectively, the tangent and the cotangent space of M at
p with the usual differentiability requirement with respect to the variable p (see for
instance [171]). Thus for a local orthonormal coframe {#*} with dual frame {e;} on
the open set U we have

T=T!""0'®. Q60 ¢ .. Q¢,.

The covariant derivative of T, VT, is then defined on U as the (r, s + 1) tensor field

VIy=T"70" 00" ®- 060 ®e¢; ®-- Q¢

where the coefficients are

010y k __ il...0r _ i1...Ir nh _ _ i]...0r h
ril---j.mke - dril--:is Thiz---j.ﬂjl El--:is—lhejs

hia...iy pi it eeir—1h iy
AT O + A T

We want to highlight the fact that, by the discussion above, the tensor field VT
is globally defined. We remark that the operator V so defined satisfies by definition
the Leibniz rule and other nice properties like the commutativity with the trace of
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any pair of indices. Indeed, one can verify that the previous definition matches the
“canonical” one usually given in terms of the Koszul formalism (see for example
[170, 219] and Remark 1.4 below).

Note also that, for a function u € C°° (M), the covariant derivative coincides with
the differential, i.e.

Vu =u;0 = du.
Indeed, by definition, thinking of « as a (0, 0)-tensor field,
u,,ﬁi = du;
from now we will simply write
du = ;6" (1.21)

Remark 1.2 The notation for the covariant derivative of a function may give rise
to some ambiguity; indeed, in the literature (and also in the rest of this book) Vu
often denotes the gradient of u, that is the vector field dual to the 1-form du: more
explicitly, Vu = (du)u, where { is the musical isomorphism * : T*M — TM (also
called sharp map) defined by

<(du)ﬁ, Y> = (Vu, Y) = du(Y) = Y(u),

for all Y € X(M). Note also that, in components, we have (Vu)' = 8’7(du)j =
8l u; = u;, that is, in an orthonormal frame, differential and gradient of a function
have the same coefficients with respect to the (dual) bases {9’} and {e;}. It is not
difficult to see that this turns to be true also when we “raise an index” or “lower an
index” for higher order tensors (see e.g. [170]): in a orthonormal frame, writing an
index “up” or “down” doesn’t change the numerical value of a component of a tensor
(note that this is in contrast with the case of a nonorthonormal frame, see again
[170]). In the rest of the book we choose to maintain the “correct” positions of the
indexes only to keep in mind the type of the tensors involved in our computations.

Remark 1.3 Since it will be used in the sequel (e.g. in Chap. 8), we recall here the
definition of divergence of a symmetric (0, 2)-tensor field. To this purpose, let Z be
a symmetric (0, 2)-tensor field, which locally can be written as Z = Z,-,-@f ® 0 =
Zj,-Hj ® 0. The divergence of Z, div Z, is the 1-form

divZ = Tr(VZH), (1.22)
where Z* is the (1, 1)-tensor obtained from Z by raising an index (since Z is

symmetric, the choice of the index is arbitrary) and the trace is with respect to
the “new” index induced by the covariant derivative and one of the “old” ones.
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In components we have Z* = Zi6/ ® ¢; = Z;0/ ® ¢; (by Remark 1.2), VZ# =
7,0 @0 e = Z; 0" ® ¢ ® e, thus

divZ = Z;,6/ = Z;,60/. (1.23)
Consider now the metric tensor (, ) (on the open set U)
(,)=680®¢.
Then
8u0* = ds; — 8;0! — 840! = —(0! + 6)).
Therefore V(, ) = 0 if and only if (1.5) holds. In other words, (1.5) expresses
the “compatibility” of the covariant derivative with the metric (equivalently, the
parallelism of the metric with respect to V).
We also observe that the validity of (1.4) is equivalent to the validity of
[X,Y] = VxY — VyX VX, YeXM) (1.24)
(where [ , ] is the Lie bracket and X(M) is the set of all smooth vector fields on M).
One refers to (1.24) as to the fact that the Levi-Civita connection is torsion-free.
Note that the left-hand side of (1.24) is independent of the choice of a metric on M.
Since the forsion of a generic (linear) connection V on M is the (1, 2) tensor field

Tor(X,Y) = Vx¥ — VyX — [X. Y],

this justifies the expression “torsion-free” used above. To prove the equivalence,
recall that the exterior differential of a 1-form 6 is intrinsically defined by

dO(X.Y) = X(O(Y)) — Y(O(X)) — O(IX.Y])  VX.Y € X(M): (1.25)
moreover, as a consequence of the definition of covariant derivative,
(Vx0)(Y) = Vx(8(Y)) — 6(VxY) = X(0(Y)) — 0(VxY), (1.26)
so that
X(6'(Y)) — 0/(VxY) = (Vx8)(¥) = —6i(X)0(Y),
that s,

X(Hi(Y)) + Hj(X)Hj(Y) = 0'(VxY).
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Then we compute (d@i + 9; A Qf) (X, Y), that is

do'(X.Y) + 6] A/ (X,Y) = X(6'(Y)) — Y(6'(X)) — 0'([X, Y])
+ 6/(X)/(Y) — 6](V)0' (X)
= X(0'(Y)) + 6/(X)¢' (V) = Y(0'(X)) — 6;(V)# (X)) — 6'(IX, Y])
= 0" (VxY — VyX — [X, Y])
= #'(Tor(X,Y)),
and the claim follows.

Remark 1.4 By the fundamental theorem of Riemannian geometry (see for instance
[170] or [219]), we deduce that the connection V coincides, as we said previously,
with the Levi-Civita connection of the metric (, ).

1.3 Lie Derivatives, the Second Structure Equation
and Curvature(s)

We now define the Lie derivative of Y in the direction of X to be %Y = [X, Y], so
that condition (1.24) can be written in the form

LY = VxY — VyX. (1.27)
Setting also
Zxf = X(f) (1.28)
forf € C°°(M), and
(Zxw)(Y) = Zx(w(Y)) — o(ZxY), (1.29)

if w is a 1-form, we can extend %y to a generic tensor field requiring R-linearity
and the validity of the Leibniz rule (see also [171, 219]). Using (1.26), we compute
the Lie derivative of the metric in the direction of X, Zx(, ) (note that the latter has
to be a covariant tensor of order 2, that is, a (0, 2)-tensor):

(L DY, Z) = ((LK%O)® O+ 60" ® (Z0))(Y,2) =
= 0'(Z)(Z0)(Y) + 0'(Y)(L0)(2) =
= 0'(2)[L(0'(Y)) — 0" (L) |+
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+0'(N)[ % (6'(2)) — 0'(%2)] =

= 0'(2)X(0'(Y)) — 6'(2)0'(VxY — VyX)+

+ 0" (Y)X(0'(Z)) — 6'(Y)0'(VxZ — VzX) =

= 0'(2)(Vx0)(Y) + 0" (V) (Vx0)(2)+

+ 01(2)0'(VyX) + 6/(Y)0'(V2X) =

= (Vx0' @ 0"+ 0" ® Vx0')(Y.Z) + (VyX.Z) + (Y, VzX) =
= (Vx(, DY, 2) +(VyX,Z) + (Y, VzX) =

= (VyX,Z) + (Y, VX),

where in the last equality we have used the fact that the metric is parallel with respect
to the Levi-Civita connection. Thus, we have proved the useful identity

(Zx (. DY, 2) = (VrX.Z) + (Y, VzX) (1.30)
forall X,Y,Z € X(M). Note that Eq. (1.30) in components reads as
(Sl i = (Ve X, €) + (er. Ve, X) = X] + X.. (1.31)

We also recall that a vector field X is said to be a Killing field if £x(, ) = 0.
It can be proved that the Lie derivative of Y in the direction of X has the following
geometric meaning (see e.g. [171]):

— ) Yo,0) — Y
(‘p—t)*Y(p,(p) = hn& M’
t—>

d
(HY), = — t

dt |,

where ¢, is the local flow generated by X and (¢;), is the push-forward. The
analogous applies to .Zxh, with h a generic tensor field (see also Chap.2 for the
special case of Zx(, )).

We now consider the second structure equation. With the above notations
we introduce a family of 2-forms, the curvature forms {@]’} associated to the

orthonormal coframe {6’} via the second structure equation
do! = —6] A 6] + 6, (1.32)
which in matrix notation becomes
dy =—y Ay + 0.
Because of (1.5) it follows immediately that

O+ 0 =0. (1.33)
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Using the basis {6 A 6/}1<;<j<n of the space of skew-symmetric 2-forms A%(U) on
the open set U, we may write

1
0] = ER;k,ek A (1.34)

for some coefficients R;kr € C* (V) satistying
Rjkt + R’tk =0. (1.35)
Furthermore, note that (1.33) implies
R, + Ry, = 0. (1.36)

We now show that the coefficients lekt are precisely the coefficients of the ((1, 3)-
version of the) Riemann curvature tensor R, that in global notation is defined by

RX,Y)Z = Vx(VyZ) — Vy(VxZ) — Vix 1/ Z VX, Y, ZeXM). (1.37)
Remark 1.5 Some authors choose the opposite convention, defining R(X,Y)Z =
Vy(VxZ) — Vx(VyZ) + Vix v Z.

Remark 1.6 To be clear, please note that in this special case the position of the
indexes in the coefficients R}, does not reflect the effective position of the entries:

in other words, we have R! i€ = R(ex, e/)e; instead of the expected formula R ki€ =
R(ej, ex)e; (see the dlscussmn below). This is due to historical reasons.

We write Ve, to abbreviate Ve;(e;). By definition, using properties (1.18), (1.19)
and (1.25) we argue that

R(ex, er)e; = Vi(Viej) — Vi(Viej) — Virse;
= V(0] (e)e,) — V(0] (er)e,) — 6] ([ex, ei])e;
= 0/ (e))Vier + ex(0] (e)))er — 6/ (ex) Vier
_et(ejr(ek))er - 9;([@“ ed)e;
= 0] (e 0] (er)e: + ex (0] (e)e; — 0] (ex)0}(e)e; — e(6] (ex))ei
—0([ex. e))e;
= (6i A Qj’)(ek, e)e; + d@;(ek, er)e;.

Therefore we deduce
(R(ex. eej. ei) = (dO] + 0] A 0]) (ex. e0), (1.38)

which proves our claim.
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Using (1.38) we then have
Ry, = Ol(er.e)) = (d6] + 6] A 6))(ex.e)) = (R(ex. e)ej. ;).
hence the (1, 3)-Riemann curvature tensor (1.37) can be written in components as
R=(R(er.e)ej e} ®0' @0 @ei =R, @60 @0 @ e (1.39)

The (0, 4)-version of R is defined by Riem(X,Y,Z, W) = (R(Z, W)Y, X), so that
its coefficients R, satisfy

Rijw = Riem(e;, ¢j, ex, ;) = (R(ex, e/)ej, e;) = R;kr

and
Riem = R;,0' ® ¢/ ® 6* ® 0. (1.40)

This shows that R;j;; is simply obtained performing the operation of lowering the
index i in the first position using the metric tensor:

Rij = 8irR;kt = le'kt’
Remark 1.7 We warn the reader that there is a number of different conventions for

the (0, 4)-Riemann curvature tensor (see the discussion in [170]).

Observe that, although the curvature tensor is everywhere defined, this is not true
for the curvature forms.

Proposition 1.3 The matrix of curvature 2-forms © = (@;) takes values in o(n)
and, if € = eA is a (local) change of orthonormal frame with A : U — O(n), then
O varies according to

6 =A""04 (1.41)

Proof First of all, (1.33) shows that ® is an o(n)-valued 2-form. Using the second
structure equation (1.32), (1.13) and (1.16) we get
O=dy+7AT=dA'yA+ATdA) + (A"'yA+A"dA) A (A"'yA + A71dA)
= (—ATTdAAA YA YA+ AT dyA — AT 'y AdA +d(A™Y)Y AdA + AT (y A p)A
FATIY AdA+ (ATTdAATY A YA+ ATVdA A ATAA
=A7'dy+yApA+dA T YAdA+ATIdANATAA
=AT'OA-AT'dAAT  NdA+ ATV dANATIAA = AT OA,

and this proves the proposition. O
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The Bianchi identities and the symmetries of the curvature tensor can be easily
deduced from the structure equations: indeed, as we already observed before, (1.33)
implies (1.36), that is

i J .
R;kt + Rikt =0
therefore we have the symmetries

Ry, =Rl = —RJ, (1.42)

(and the corresponding symmetries for the (0, 4) version). Differentiating the first
structure equations (1.4) and using (1.32) we deduce

0 =d(db") = —d(0] A0/) = —dO] A& + 6] AdE/
=0, AOF NG —Of A O — 6] A O A
=0'r0O),
that is, renaming indices,
0 A O =0. (1.43)

This identity goes under the name of first Bianchi identity. Using (1.34) and skew-
symmetrizing we obtain

0= Rj 0 A 0" A0 = (), — Riy + Ry — Riy + Riyy = Rig )0/ 1 0° 1 0.

Thus using (1.35) we deduce the first Bianchi identity in the classical form

Ry, +Rj,;+ R, =0  (equivalently: Ryy, + Risj + Rije = 0). (1.44)

Note that, more correctly, (1.44) should be called “Ricci identity”.
Remark 1.8 In global notation, for the (0, 4)-Riemann curvature tensor equation
(1.44) becomes
Riem(X,Y,Z, W) + Riem(X,Z, W, Y) 4+ Riem(X,W,Y,Z) =0
foreach X,Y,Z, W € X(M).

An important consequence of (1.42) and (1.44) (see also [102]) is the symmetry

Ry, =R}

ke (equivalently: Ry = Ruij). (1.45)
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Indeed, this is a consequence of the chain of equalities

Ry, = =R}, = R/, + R = —Rj, + R},
= (le,y + Rf}) + R}y = lezj + Rér + (=R — Riz)
= 2Ry; + Ry, — Ry = 2Ry + Ry, + Ry = 2Ry, — Ry,

Remark 1.9 The symmetries of the Riemann curvature tensor show that

Riem =R 0’ ® # ® 0" ® ' = Ry’ ® 0* © ¢/ ® 6' = Rjus0* @ 6" ® ' ® ¢,
(1.46)

that is, in global (Koszul) notation,

Riem (X, Y,Z, W)=Riem (W,Z,Y.X) = Riem (Z, W.X.Y) VX.Y,Z, W € X(M).
(1.47)

In order to obtain what is called the second Bianchi identity, which is deduced
differentiating the second structure equation, we first observe that, according to the
general rule for covariant differentiation of tensor fields, the coefficients R}, ; of the
covariant derivative of the (1, 3) curvature tensor R}ktGk ® 0' ® 6/ ® e; are given by

o ‘ Lo o o o
Ry, 0° = dRy, + Ry, — Ry,0; — Ry, 6, — Ry 0,. (1.48)

A

Note that the symmetries (1.35), (1.36), (1.44) and (1.45) hold for R;kt,m for instance

Ri

ikt s

— —Rip. (1.49)

Using (1.34) we now rewrite the second structure equations (1.32) in the form

. . 1.
dof = -6/ A 6] + ER}k,Q" NG (1.50)

We differentiate this equation and use the structure equations and (1.34) again to

obtain

it

. . | S 1 . 1 .
0 = dbj A 60! — 6] A db} — SR AN ER;k,dek AO' + 3R 0F A do'

. . . 1 .
= (=0 A0+ ODAO — O] A (—OL A+ O)) — 7R A 6% A 0

1 . |
ER}ktelk ANOIAG — ER}ktek NCNCA

+

1 i i pi i i
_E(dR;kt + R0/ — lerejl - leteli - Rjklerl) CAVNCI
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that is,

OEAO NG =0.

Ry, 0 ANO NG =Ry,

A

Therefore, skew-symmetrizing,

1 . . . . . . X
g( ‘;'kt,s - R;’ks,r + R}sk,r - R;’sr,k + R;ts,k - R;’tk,s)e A et A QS = O’

from which, using the symmetries (1.49), we deduce the second Bianchi identity in
its classical form

Ry + Ry + Ry, =0 (equivalently: Ry + Rjux + Ryjus = 0).  (1.51)

Remark 1.10 In global notation, for the (0, 4)-Riemann curvature tensor equation
(1.51) becomes

VRiem(X,Y,Z,W;T) + VRiem(X,Y,W,T;Z) + VRiem(X,Y,T,Z; W) =0

foreach X, Y,Z, W, T € X(M).

Remark 1.11 Using the matrix notation we have an equivalent form of the second
Bianchi identity:

dO =d(dy +yAy)=dy ANy —yAdy =
=Y A7y +OIAY =Y A(YAY+O)=O Ay -y A0,
which in components is
dO] = O A Of — O, A OF.

The Ricci tensor Ric is obtained from (1.40) by tracing either with respect to i
and k or, equivalently, due to the symmetries of the curvature tensor, with respect to
jandt. Thus

Ric =R;0' ® &/ (1.52)
with
Rij = Ryitj = Rk (1.53)

Note that, again because of the symmetries of the curvature tensor, R;; = R);. Indeed,

Rij = Ruxj = Ryjxi = Rji.
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Thus Ric is a symmetric (0, 2)-tensor field.
The scalar curvature S is defined as the trace of Ric, that is,

S = Rii = Ryiki. (1.54)

For the sake of clarity, when needed, we shall also use the notation MRic and S to
identify the underlying manifold M.

We now come to the sectional curvature K, (IT) of the 2-plane IT C T,M spanned
by the vectors u and v. It is defined by

Riem(u, v, u, v)

(u, u){v,v) — (u,v)2

K,(IT) = €R. (1.55)

It is not difficult to verify that the right-hand side of the above formula is in fact
independent of the chosen basis of I71. Clearly, if {u, v} is an orthonormal basis of
I, then

K,(IT) = Riem(u, v, u, v).

We note that a common notation, also used in the sequel, for the sectional curvature
of the plane IT spanned by u and v is

K,(IT) = K(u A v).

Again, when needed, we shall use also the notation K, (IT) and YK (u A v) to
identify the manifold. We shall now show that the sectional curvatures K,(IT)
defined in (1.55) completely determine the curvature tensor Riem,,.

First of all we note that, by its very definition, Riem satisfy the symmetry rela-
tions (1.35), (1.36), (1.44), (1.45) and (1.49). Considering Riem,, as a quadrilinear
map R = Riem,, : T,M xT,M x T,M xT,M — R, (1.35), (1.44) and (1.33) rewrites
in the form: for each u, v, z,w € T,M

R(u,v,z,w) + R(u, v, w,2) =0, (1.56)
R(u,v,z,w) + R(u,z,w,v) + R(u, w,v,2) =0, (1.57)

and
R(u,v,z,w) + R(v,u,z,w) = 0. (1.58)

Thus letting V be any real vector space, and considering two quadrilinear maps
R, T:V xV xVxV — R which satisfy (1.56)—(1.58), we claim that if for each
u,vev

R(u,v,u,v) = T(u,v,u,v) (1.59)
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then R = T. Thus in particular the sectional curvatures K,(IT), [T C T,M,
determine the entire tensor Riem,,. The proof of this claim can be found, for instance,
in Lemma 3.3 of do Carmo’s book [102].

We set

lu Av|? = (u,u) (v, v) — (u, v)?

and for u and v linearly dependent set K(u A v) = 0. Then for any pair of vectors
u, v using (1.55) we have

Riem(u, v, u,v) = |u A v|*K(u A v). (1.60)

Since the quadrilinear map Riem is determined by its values Riem(u, v, u, v) on
pairs of vectors, we expect the validity of a “polarization” formula. Indeed, one can
check the validity of the following:

Riem(w, z, u,v) = é {K(w+w) A +2)|+w) A@+2)

—K((+w) A (u+2)|(v+w) A (u+2)]?
—K@uA @+ 2)|un @+ 2>

—K@W A @~+w)vA w4+ w))?

—K@ZA @+ w)zA (u+w)|?

—KwA @ +2)wA @+ 2) (1.61)
+K@u A (v +w)|uA v+ w)?

+KW A GH+w)|v A E+w))

+K@EZA U +w)zA @+ w)?

+KW A (u+2)|w A (u+ 2)]?
+KuAZ)unz* + K@ Aaw)|o Aw?
—K@uAv)lunvf* =K@ Azl Az}

In particular, if for each 2-plane IT of T,M, K,,(IT) = C for some constant C, from
the above formula one deduces

Riem(u, v, z,w) = C {{u, z) (v, w) — (u, w){(v,2)}. (1.62)

An alternative way to prove (1.62) is to define Ry (u, v, z, w) as in the right-hand side
of (1.62); observing that R; satisfies (1.56)—(1.58), the validity of (1.62) follows by
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showing that for each u, v € T,M,
Riem(u, v, u,v) = R (u,v,u,v) = Clu A v|2,
which is exactly the definition of K,(/T) = C for each 2-plane I1.
The manifold (M, (, )) is said to have constant sectional curvature C if K,(IT) =

C for each p € M and for each 2-plane IT C T,M. This is equivalent, by (1.62), to
say that in any orthonormal coframe

Rijkt = C{Sikgjt - SitSjk}- (1.63)
We observe that if m = dim M > 3, then (M, (, )) has constant sectional curvature
under the milder requirement that K,,(/7) depends possibly only on p. This can be

easily seen. Indeed, for each p € M we have (1.63) for some function C = C(p) of
class C*°. Taking covariant derivatives and using ;;, = 0 we obtain

Rijuis = Cs{8iSjr — 8ibju}.
Using the second Bianchi identity (1.51) in its equivalent form
Rijirs + Rijisj + Rijsks = 0, (1.64)
we then have
0 = Ce{Subj — 8ibin} + CiddiuSjs — 8is0ji} + CiidisOjx — Sikdjs}-

Hence, for s = jand k # t # j # k (and the latter is possible because m > 3), from
the above we obtain

Cibit — Cidir = 0.
But i is still arbitrary, thus choosing i = ¢ we deduce
Gy =0.
Since this can be done for each k, we conclude that C = C(p) is a constant function
as desired.

In case dim M = 2 the result is of course false. In this case the Riemann curvature
always expresses in the form

Rijie = K(p){8i0jr — 8itSjx}
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where K (p) is the Gaussian curvature of the surface, which in general is nonconstant.
Note that, in this case,

1
K =Rpio=Ri1 =Rp= ES'

We observe that the previous result often goes under the name of Schur’s
theorem.

We are now going to show a similar fact that, in the recent literature, also goes
under the same name. First we recall that the manifold (M, (, }) ,m = dim M > 2,
is said to be Einstein if

Ric = A(, ) (1.65)

for some A € R. We observe that if m > 3 and (1.65) holds for some function
A = A(p) of class C*°, then A is constant. Indeed, tracing equation (1.65) we obtain

A== (1.66)
m

Next we trace the second Bianchi identity (1.64) with respect to the indices i and s
to get

Rijiri + Rijix + Rijir, = 0.
Since covariant derivatives commute with tracing
Rijiri = Rjrk — Rk, (1.67)

Rj; being the components of the Ricci tensor. Whence contracting again, this time
with respect to j and k, we obtain

Ritkei = Rir e — Ryt
that is
2Ry = Si (1.68)

(this equation is sometimes called Schur’s identity). Now because of (1.65) and
(1.66) we have

S
Ry = — 81([
m
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and using again the fact that the metric tensor is parallel, we deduce
Ry = — S8
m

Now tracing with respect to k and / we get

1

er’k = —S’[. (1.69)
m

Substituting into (1.68) yields

2
(— - 1) S, =0,
m

and we conclude that, if m > 3, the scalar curvature, and therefore A, is constant.

The above result in particular enables us to draw the following conclusion: if
m > 3, then (M, (, )) is Einstein if and only if the symmetric, (0, 2)-tensor called
the traceless Ricci tensor

S
T = Ric——{, ), (1.70)
m
with components
S
T; = R;; — —6;, 1.71
ij i 0 ( )

is identically zero.

1.4 Decompositions of the Curvature Tensor

In this section we give three decomposition of the Riemann curvature tensor that
shall be useful in the next chapters.

Let (M, (,)) be a Riemannian manifold and consider a pointwise conformal
deformation of the metric (, ), that is, a new metric on M of the form

(.)=¢*.). (1.72)

for some strictly positive smooth function ¢ on M. Denoting by Riem the curvature

tensor of the metric (, ) and with Riem that of the metric (, ), we want to
determine their relationship. Let {6} be a local orthonormal coframe on (M, (, ))
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—_—

with corresponding Levi-Civita connection forms {9; }. In the new metric (, )

o' = b’ (1.73)

—_—

is a local orthonormal coframe on (M, (, }). To determine the associated connection
forms one can use Proposition 1.1, but it is immediate to see directly that, if dp =
@,0', the 1-forms

~

b =6 + %ei- i (1.74)
’ %

are skew-symmetric and satisfy the first structure equations, thus they are the desired
connection forms relative to the coframe defined in (1.73). In order to determine
the curvature forms, we use the structure equations and the expression for the
components of the Hessian of ¢ (that is, the covariant derivative of the 1-form
dy); according to the general rule given in Sect. 1.5, if Vdp = ¢;60' ® 6/ then
the components ¢;; are given by

@it = do; — ¢.0!. (1.75)
Observe that
Pij = @ji- (1.76)

This can be easily seen as follows: we differentiate the equation dgp = ¢;0 and use
the first structure equations to get

0=dp: A0 + ¢d0 = (s + @i0F) A 0" — 0] A OF
= (pUGJ AN Qi
1 P
= E(@ij — @i A O,

hence the validity of (1.76). _
Going back to the curvature forms @; we have

S — g3t 31 A Bk
O, =db;+ 0, NO;

=d9;’+d(ﬂ)/\9"+(ﬂ)d9i—d(ﬂ)Aaf—(ﬂ)def+?07;A§jf
¢ ¢ ¢ ¢

. , 1 1 A
=—0, A0+ 0O + (;d@ - E(pk(p,ek) NG — ;@9,1 NCA
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1 1 k X i ok
—| —doi — S @pi0" | AN + —it A O
¢ ® ®
(9' + g ﬁek) A (ef + Yok ﬂef)
® ® ’ ¢ ¢
=0+ (@— ‘”f‘p")ekw' (@—2M) N TN
® @2 ® @2 >
that is,
O =0+ (% _ M) 5i6% n 0! — (ﬂ _ 2%) 56" 6" — PV 5i510% .
’ ® @2 ® @2 @2

Hence, skew-symmetrizing the coefficients and recalling the definition of the
curvature tensor, we obtain

2pi i Pik PPk i bit ¢j¢t !
¢’R, = R +(—— —)8—(— )5
'kt ikt 7 (,02 t ) QD
B (% B 2%%) 5 + (@ B 2%90:) 5 (1.77)
@? @ ?

@
_ Y

== (818) — 8i8)).

To get the relation between the two Ricci tensors, we trace the above with respect to
i and k. We have

o’y = Ry — (m - 2)‘”” +2(m— 2)‘”"” —(m~ 3>% ‘”""8’ (1.78)
Finally, a further tracing of (1.78) with respect to j and ¢ yields
2T M §0|2
p§S=85-— 2(m—1)——(m—1)( —4) (1.79)

where Ap = @y is the Laplacian of the function ¢ (see Sect. 1.5). Note that, for
m = 2, we have

<p2§= S—2Alogo,
that is, the well known formula relating the Gaussian curvatures of the two metrics

~ 1 1
K= EK—;Alogqo (1.80)
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(see [214]). In the general case, that is for m > 3, using (1.77) and (1.78) we are
able to detect a part of the curvature tensor which is naturally invariant with respect
to a pointwise conformal change of the metric. Indeed, from (1.78) we have

=2 (% = 225) = Ry~ (0= 925+ ) 5,
@ @2 @

and inserting into (1.77) gives

. 1 ~ o~ -~ . -
q02 (R;'kt — m (le84 - R]kS; + R,[S]l( - thgi))

i 1 ' i i j
= Ry, — — (Rud] = Rud] + Ru} — Ri8))

Ap 2 S
(222 + - 050 ) i - .

m—2

On the other hand, by (1.79)

A Vol|? 1 -
20 -9 5
© m—1
and we obtain
i 1 DS D Si D Si p o S iqj
( — (R,.k&; — Rub; + Ry, — Rirfs‘;’c) T(fg R MD)
; ! j i i j S igi_ sig

= Ry, — — (Rud] — Ry} + Ry} — Ri8]) + T

It follows, since &; = Le; is the dual of @, that the (1, 3)-tensor W called the Weyl
tensor and defined by

W= jkt9k®9t®9]®eu

with components

i
Wi =

1 ; ; ; ; S S
Ry = —— (Rub] — R} + RySi, — Rudl) + D=2 8 - 88,
is invariant under a conformal change of the metric. It is worth to note that the
corresponding (0, 4)-version of W, with (local) components Wiy, = ijt, is not

conformally invariant.
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As it can be seen by direct inspection, Wfk; has the same symmetries as Rjkt; that
is,

W]?kr =-W, = —W]?rk (equivalently: Wi, = —Wiwe = —Wiu) (1.81)
and

ik
e = W,

p (equivalently: Wiy, = Wiy). (1.82)

Furthermore, it satisfies the first Bianchi identity

Wi, + Wi+ Wi =0 (equivalently: Wi, + Wiy + Wig =0)  (1.83)
and, by inspection, we deduce that any of its traces is identically zero.

We have thus obtained a first decomposition of the curvature tensor, the one
using its totally trace-free part (i.e. the Weyl tensor), its “Ricci part” and its “scalar
curvature part”, that is (in (0, 4) form)

S

1
Rijie = Wit + —— (RixSjr — RiSir + RirSix — Rirdjr) — m—Dm=2)

(Bikbjr — 8irBjk)-
(1.84)

To write (1.84) in a global way we introduce the Kulkarni-Nomizu product between
two symmetric (0, 2)-tensors n and «, that we shall denote by 1 ® k. The latter is
the covariant (0, 4)-tensor of components

(1 © K) e = Mikkje — itk + Mjekix — NikKir- (1.85)

Using (1.85) it is easy to see that (1.84) is equivalent to

. S
RicOg— —————2 D g, (1.86)

1
Riem = W
em =W+ s 2m—1)(m—2)

where we have indicated the (0, 4)-version of the Weyl tensor with the same letter
w.

We observe that, for m = 3, W = 0: in fact in this case, because of (1.81) and
(1.82), the only possibly nonzero coefficients have to be of the type

W,ﬁk, (no sum over k)
for i # k # t. From (1.84) we have
Wi, = R}, + Ry (no sum over k).

However, since m = 3 and i # 1, R}, = —Rj; (no sum over k). Thus Wi,, = 0 (no
sum over k).
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Taking covariant derivatives of (1.84) we obtain

W;h ¢ R;ksr p— (Riks8js — Ris. 18k + Ry 8ix —
Sy
————————(6iSis — 8is6i1).
Fln D) oW

Thus taking the divergence with respect to the first index, that is,

and (1.68) we get

1

kat =

1
J 2Rtv t8jk

1
/kvt 2Rtk tSJV +

Sk
Ry s +

27

Rii8is)

Wt

Jks.t>

using (1.67)

—2st,k

Sy

L 5
T2 m—Dm-2""
ke em L e 1

ks T s, )

1 1 1 1 1

—Z(m—l

st,k

= Dm—2)""

1
- E)szsjk

Im—-3 S

and we can write

Z St
2m—2m—1*

(1.87)

where Cjy are the components of the Cotton tensor C, that is,

Cisk = Rjsk — Rjxs +

1
2(m—1)

(Ssajk -

Si8js). (1.88)

Note that from (1.87) and the symmetries of the Weyl tensor, we deduce that any of

the traces of C is zero,

Cisk = —Ciys

and Cjg + Cgy + Cijs = 0.

As far as the analogue of the second Bianchi identity for W is concerned, we

have the following

Lemma 1.2 (The Fake Second Bianchi Identity for W)

1
Wiges + Wi + Wijax = m(citlfgjk + Ciwdj + Cie$jt — Cjubix — Ciieir —

CitaSi1)-
(1.89)
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Proof We start taking the covariant derivative of (1.84):

1
Rij; = Wijes + — (Riks8jc — Rirs8j + RjrsSix — Rixi8ir)

S
— ————(8aSjr — 8ibix). 1.90
(m—l)(m—Z)( kOjt t]k) ( )
Permuting cyclically the last three indices, summing up and using (1.44) we deduce

= (Wies + Wier + W)

1
= [(Riks — Rix)8je + (Ris — Rie)Sji + (Rirk — Rix)Sj1]

T m=2
1
- m[(Rjk,l — Rix)8ie + (Rjts — Riva)Six + (Rjek — Rir) 8t
1
- m[sl(5ik5jt — 8i8ix) + Si(8ubk — Sudir) + Sk(SiuSjt — 8udir)].

Working with the identity R;jx — Rixj = Cyx + m(Sk&j — Sj8,~k), after some
manipulation we get (1.89). O

The importance of the Weyl and the Cotton tensors is pointed out by a classical
result. First recall that a Riemannian manifold (M, (, }) of dimension m > 2 is said
to be locally conformally flat if, for each p € M there exist an open set U > p and a
function ¢ € C*(U), ¢ > 0 on U such that the manifold (U, ¢*(, )) is flat.

We note that by a result of Korn [164] and Lichenstein [175], every 2-
dimensional Riemannian manifold is locally conformally flat. Therefore, the above
definition has full meaning only for m > 3. We have

Theorem 1.1 Let (M, (,)) be a Riemannian manifold, dimM = m > 3. A
necessary and sufficient condition for M to be locally conformally flat is that
C=0ifm=3
W=0ifm>3

This result is originally due to Weyl and Schouten; for a proof see [109].
Another way to interpret the Cotton tensor is as follows. Let

A=Ricm—5
= Ric— )

be the Schouten tensor of components

S

Al" = Ri‘ — —51
7 b 2(m _ 1) 7
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Clearly A is symmetric; hence taking covariant derivatives
Ajjk = Ajik
but for the last two indices one immediately verifies that
A —Aij = Cijr.

Hence we can think of the Cotton tensor as the obstruction for the Schouten
tensor to be a Codazzi tensor. Quite often the Schouten tensor is used to write the
decomposition of the Riemann tensor in a nice way; indeed, using (1.84) and (1.85),
one easily deduces a second decomposition of Riem, the one using its totally trace-
free part (i.e. the Weyl tensor) and its “Schouten part”, that is (in (0, 4) form)

1
Riem=W+ ——AD g, (1.91)
m—2

and componentwise
1
Rijie = Wi + - (A — AwSi + AjeSi — A - (1.92)

In what follows we shall not use the Schouten tensor; we thus refer the interested
reader to the treatise [41] for further information and results.

The third and final decomposition that we want to describe exploit the traceless
Ricci tensor 7 using (1.71) in (1.84) we deduce

S

1
Rijue = Wige + —— (TuSy — Tadie + T — Tubj) + —————
ijkt ijkt m_z( kOjt JjkOit jtOik tjk) m(m—l)

(BixBjr — Sitbjr).-
(1.93)

Using the notation for instance of Huisken [150], the previous equation can be
written in global form as

Riem =W+ U+ V, (1.94)

where the (0, 4)-tensors U and V have components, respectively,

Ui = (BixSjr — Sibjr). (1.95)

S
m(m—1)

and

1
Vi = — (T8je — TiSis + Tk — TS - (1.96)
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A simple check shows that W, U and V are mutually orthogonal:
WLlULYV, (1.97)
that is, in components,
Wit Uiike = Wiia Vije = Ujjie Vige = 0. (1.98)

An easy computation shows that for V we have

4 s2 4
IV = ——(|Ric - =) = ——|T? (1.99)
m—2 m m—2
and
Vige = Ty, (1.100)
while for U we have
2
Up=—=—_—5° 1.101
L (1.101)
and
S
Uijr = =853 (1.102)
m

the previous relations imply that

2 2

(m—1)(m— 2)S '
(1.103)

4
[Riem|> = |[W|* + |U|* + |V|* = |[W|* + m|Ric|2 -

Remark 1.12 Every (0,4)-tensor having the same symmetries of the Riemann
curvature tensor can be decomposed in three orthogonal parts as in (1.94): for
instance, if B is a (0, 4)-tensor such that its components By, satisfy

Bjjir = —Bjiiy = —Bijx = Baij,
we can write

B =By + B, + Bs,

where B; L B, 1 B3 and Bj is the “scalar” part, B, is the “traceless Ricci” part and
Bj is the “Weyl” part (that is, the totally trace-free part). The explicit expressions
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for By and B, are respectively, in components,

Blslx
B = mom—1) (8ix8r — 8idjx) (1.104)
and
1 lels
(B2) e = m(bikgjt — b8 + bjSix — biuSjx), b = Bisks — 751'/“
(1.105)

while for B; we have B; = B — B; — B».

We will use the third decomposition (and also Remark 1.12) in Chap. 8 to prove
a useful inequality (see Proposition 8.8).

We conclude this section by introducing another curvature tensor, the projective
curvature tensor P. In a local orthonormal coframe its components (in the (1, 3)
version) are given by

Py =Ry, — ﬁ(R}(Sj, —Ry4,). (1.106)
This tensor is invariant under projective transformations, that is, diffeomorphisms
of M onto M leaving geodesics invariant; with this we mean that if (, ) and m
are metrics whose Levi-Civita connection are projectively related (see for instance
[128, pp. 121-122]) then the two tensors P and P coincide. A simple computation
shows that if m = dim M > 3 then P = 0 if and only if (M, (, )) has constant
sectional curvature.

1.5 Commutation Rules

The aim of this section is to provide a number of commutation rules, also generically
called Ricci identities, for covariant derivatives. We will describe two cases:
functions and the curvature tensor. In doing so we will also implicitly describe
the general procedure to obtain them. We begin with the case that we have briefly
described in Sect. 1.4 for the function ¢, the stretching factor of two conformally

related metrics, ﬁ = ¢*(, ). Thus, letu € C®(M); if
du = u;0' (1.107)

for some smooth coefficients u;, the Hessian of u is defined as the (0, 2) tensor field
Hess(#) = Vdu of components u;; given by

M,:,'@j = dlzt,' — I/tkeik, (1108)
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that is,
Hess(u) = u;6/ ® 6" (1.109)
As we have already proved (for u = ¢ in (1.76))
Ujj = Uji, (1.110)

so that Hess(u) is a symmetric tensor. In global notation we have, for all X, Y €
X(M),

Hess(u)(X,Y) = (Vdu)(X,Y) = Y(X(u)) — (VyX) (1) = X(Y(u)) — (VxY)();
(1.111)

using (1.30) it is also possible to show that, equivalently,
1
Hess(u)(X. ¥) = 2 (Loul. DX 7). (1.112)

The Laplacian of u is, by definition, the trace of the Hessian, (more precisely, of
the (1, 1) version of the Hessian, see Sect. 1.9.1), that is,

Au = Tr(Hess(u)) = uj. (1.113)

The Laplacian of the function u can be defined, equivalently, as the divergence of its
gradient, that is

Au = div (Vu).

The third derivatives of u are defined, according to the general rule for the
derivative of the tensor Hess(u), by

ud* = duy — ugbf — uyb;. (1.114)

Remark 1.13 Note that, in case of functions, we use the notation u;; instead of u;; ¢
(and analogously for higher order derivatives).

Note that taking covariant derivative of (1.110) we have
Uik = Ujik- (1115)

To obtain the commutation rule of the last two indices we proceed as follows. We
differentiate (1.108) and we use the structure equations to get

duy A OF — ulﬂ,’( A% = —du, A O + w05 A 0 — u OF

ijt

1 .
—(u,ké’k + uké’,k) A 9; + Mkerk A 9{ — EukRk LN
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Thus,
(dui — ug0! — uy0) A 0% = —%M,R;ké?j A K,
and, by (1.114),
. X 1 ¢ &
upgt’ A 0" = —Eu,RijkGJ A 6.
Skew-symmetrizing we obtain
1 . I
E(uikj —u)’ AN O° = —Eu,RiijJ NAR
thus
wije = uigg + R}y = i + w,Ryy. (1.116)
Let us now consider the fourth order derivative of u. It is defined by
uij' = dugjp — ugi ) — ”ifkejt — w6 (1.117)
By (1.115), taking covariant derivative, we deduce
Uijkt = UWjiks- (1.118)
Similarly, taking covariant derivative of (1.116)
Ujiky = Uikje + Use Ryt + UsRiji - (1.119)

To obtain the commutation rule of the last two indices we differentiate both sides of
(1.114). We use the structure equations and (1.114) itself to arrive at

w0 A ok = —%(uszl,-,k + wiRjj) 60" A ok,
Skew-symmetrizing we then deduce
Wik = Uik + WiiRiiee + WirRyjir. (1.120)
We now determine some commutation relations for the second covariant deriva-
tives of the curvature tensor that we shall use later on. Recall that the coefficients of

the second covariant derivative of the (0, 4) curvature tensor Ry, ;s are given by

Rijr 150" = dRijkss — Ryjie 10 — Riska16; — Rijseab; — Rijes 1ty — Ry sy (1.121)
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Of course these coefficients satisfy the symmetry relations obtained by covariantly
derive those satisfied by the R;y;;’s; what we need to determine here is the relation
between the Ry s and the Ry . Towards this aim we rewrite (1.48) in the (0, 4)
form, that is,

0 = Rijurs0' — dRyi + Ryju6! + Rilktejl + Ryju0) + Ryuib),

and we differentiate it. Using the first and second structure equations together with
(1.34), we obtain

0 = dRyjxs A 0' — Rije 0! A 0°
+dRyjis A 0} — Ry A 05 + Ry )
+dRigs A 6] — R0} A 07 + Rie O]
+dRii A 0} — R0 A 0] + R;ji O,
+dRiju A 0! — R0 A 07 + RyjO!
= (dRijiss — Rijues05) N 0
+ Ry s0° + Ry + Riga0; + Riju0; + Ryjs;) A 6]

—Riu 0} A 07 + %lektRligv 08 A O”

+(Ritt.s0° + Ra6; + Risu6] + R0} + Rins07) A 6]

—Riub A 6] + %Rilk,RUgv AN

+(Ryjirs0° + Ryjin0; + Risuu; + Rijoe6] + Ryjis6,) A Gli

—Riju 0! A O + %RUZ,legveg A QY

+(Rijts0° + Ry + Risub! + Ry} + Rips6)) A 6]

—Rijub! A 0F + %R,,-szl,gv@g N

= (dRijs — Rijua 50} — Ryjus16; — Risks 16] — Rijsr 16} — Rijis.16;) A 0

+%(RliktRligv + RiieRijgv + RijiRikgv + RijiaRirgv)0° A 6°.

Hence, using (1.121), we have

1
Rijit0g0° A 0" = _E(lekrRligv + RinaRijgo + RijuRikgy + RijiRirgn)0% N 0"
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Skew-symmetrizing the left-hand side, we thus obtain
Rijktvg — Rijkr.gv = RijeRiivg + RieRijug + RijisRikvg + RijkiRirvg- (1.122)

Contracting with respect to i and k we obtain the corresponding commutation rules
for the second covariant derivative of the Ricci tensor

Rjt,vg - Rjt,gv = thngjl + R[jng[t. (1123)

It should now be clear how to proceed in the general case to determine
commutation relations when needed (note that some others for vector fields are
given in Sect. 8.1 of Chap. 8). For other commutation rules we refer the interested
reader to [70].

1.6 Some Formulas for Immersed Submanifolds

Let (N, (, )y) and M be respectively a Riemannian manifold and a manifold of
dimensions n and m, with m < n. Letf : M — N be an immersion and let (, ) =
S*(, )y be the metric induced on M by f, where f* denotes the pullback. If (, ),, is
a given Riemannian metric on M and f : M — N is an immersion we will say that f
is an isometric immersion if (, ), = (, ) =f*(, )n-

We fix the following indices convention:

1<ijk,...<m m+1<apB,y...<n 1=<a,b,c,...<n.

Let V C N be an open set, and let p € f~!'(V); up to reducing V, we can
assume that the connected component U of f~!(V) containing p is an embedded
submanifold in the domain of a local flat chart. Using the Gram-Schmidt procedure,
we can construct an orthonormal frame {E,} in a neighbourhood of f(U) such that
{E;} is a basis for fi(TU) (here fi denotes the pushforward by the map f). We call
this frame a Darboux frame along f, and we write {e;} for the basis of the tangent
space at U such that fi.e; = E; (where fi«e; is the pushforward of e; by the map f).
The dual {8} of a Darboux coframe is called a Darboux coframe along f. Note
that the definition of a Darboux (co)frame is equivalent to say that the vectors {E;}
(locally) span f,. TM, the image of TM through f in TN, while the vectors {E,} are
orthogonal to £, TM and span in fact the normal bundle TM+ (sometimes denoted
by NM), that is the set of (local) vector fields in N that are orthogonal to f, TM. A
simple but fundamental consequence of the choice of a Darboux frame is that

*0* =0, (1.124)

where f*6* is the pullback of 6 by the map f. Indeed, for every i, (f*6%)(e;) =
0% (fvei) = 6°(Ej) = 0.
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Let now {91;‘} be the Levi-Civita connection forms of N relative to {0“}. Pulling-
back on M the first structure equation of N, and using the properties of the pullback,
we have

1O = d(F*0°) = ~f*(05 A 0") = —(£*60) A (1*0").
Using (1.124) we obtain in particular that
d(f*0") = —(f6)) A (f*¢): (1.125)
moreover, we obviously have
£H(6;) + 170 =o.

thus by the uniqueness part in Proposition 1.1, we deduce that the f*@;’s are the
Levi-Civita connection forms of M.

To simplify the notation, from now on we shall omit the pullback, being clear
from the context where forms or tensors are considered. With such a convention
equation (1.124) becomes

6 =0 on M (1.126)

and for a Darboux coframe along f we have

()= (6 (1.127)
Moreover,
i +6/ =0 on M (1.128)
and
do' = -0/ N6’ (1.129)

To obtain further information we differentiate (1.126), use (1.129) and (1.126)
again to obtain

0=db* =67 NO'— 05 AOP = —67 A" (1.130)

Hence, from (1.130) and Cartan’s Lemma 1.1 there exist (locally defined) smooth
functions hf]‘ such that

07 = hie’ (1.131)
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and
hi; = hi;. (1.132)

We claim that the hf’s are the coefficients of the second fundamental tensor
Il : TM x TM — TM of the immersion. II is a (1, 2)-tensor along f (equivalently,
a section of T*M ® T*M ® TM~, viewing TM~ as a subset of the pullback bundle
f*TN; see e.g. [232]) which in the present setting is defined by

I =hi0'® ¢ ®E,. (1.133)

Indeed, recall that, if V, V are the Levi-Civita connection respectively on M and N,
by definition

(e;, ) = VE/(E) — Vej(es), (1.134)
therefore
(e, e)) = 0] (EDEq — 0 (e)Ex = 0} (E)Ex + 07 (E)Ea — 0] () Ex = 0} (E)Eq

(note that, following the convention introduced before, the pullback is omitted, and
fxe; = E;). From (1.134) we deduce

II(ei,ej) = h;;(@k(ei)Eot = h‘j);-Ea = ]’lg-Eav

and the claim is proved. One can also verify that II is globally defined, and
symmetric by (1.132). The mean curvature vector field is given by its normalized
trace, that is

1 1
H= —Tr(ll) = —h%E,.
m m

From now on, to simplify the writing, we shall use the notation H = %h‘;ea.
We have the following general definitions:

(1) if I, = O for p € M then the immersion is said to be geodesic at p, and totally
geodesic if I = 0 on M. We recall that the immersion is geodesic at p if and
only if every geodesic y of M starting at p is a geodesic of N at p, that is,
%()))(O) = 0, where p = y(0) and % is the covariant differentiation along a
curve (see for instance [102], Proposition 2.9 for details).

(2) anumbilic point p is a point of M where I, —(, ) ,®H,, = 0, and the immersion
is said to be fotally umbilical it 1 — (, ) @ H = 0 on M. Thus, if N is a space of
constant sectional curvature and the only eigenvalue is constant, M lies in some
(m + 1)-dimensional totally geodesic submanifold of N.
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(3) if H = 0 on M then the immersion is said to be minimal. This terminology
comes from the fact that such an immersion minimizes the volume in the
induced metric. More precisely, if f : M — N is minimal and £2 is a sufficiently
small domain with smooth boundary 942, then the volume of 2 in the induced
metric is less than or equal to the volume of any other submanifolds of M with
the same boundary.

If v is a globally defined unit normal vector field, the mean curvature in the
direction of v is

B = (H,v),.

If m + 1 = n and both the hypersurface M and N are orientable, we can choose
Darboux frames along f preserving orientations, that is, such that ! A --- A §7F1
and 0! A--- A O™ give the correct orientations, respectively, of N and M. In this case
the vector field E,,; dual to 7! on N is, when restricted to M, a global normal
vector field on M that we shall indicate with v. The mean curvature in the direction
of v is called the mean curvature of the immersed hypersurface and denoted by H.
In this latter case, with A = A, : TM — TM we shall indicate the Weingarten
operator, sometimes called shape operator, defined, foreach X,Y € T,M, by

(AX,Y) = (II(X, Y), v)ys (1.135)
componentwise this means that
m+1pi
A= hii+ 9 ® ej-

When there is no ambiguity, to simplify the notation we shall write /;; instead of
hg’“. In fact, often we shall not distinguish between A and the second fundamental
tensor in the direction of v, that is, the map (II(, ), v)y : TM x TM — R.

With this notation, the k-th mean curvatures of the hypersurface (in the direction

of v) are given by
-1
H, = ('Z) Sp (1.136)

where Sy = 1 and, for 1 < k < m, S is the k-th elementary symmetric function of
the eigenvalues of A (called also the principal curvatures of the hypersurface).

Remark 1.14 H, for k even is well defined also in case M is not orientable.

In particular H; = H is the mean curvature, H,, is the Gauss-Kronecker curvature
and H, is strictly related to the scalar curvature of M; indeed, this can be seen by
tracing Gauss equations that we are now going to introduce for general isometrically
immersed submanifolds f : M — N (see Eqgs. (1.139) and (1.142)).
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On M we consider the second structure equations
i ik i
do; = =0, A; +£2; (1.137)
with £2; the curvature forms of M

. 1,, i
Q= EMRJ.HGI‘ N (1.138)

We now relate the curvature of M with that of N; towards this aim let

1 a .
Of = 3 Ry 1 0

be the curvature forms of N. Pulling back the second structure equations of N to M
and using (1.126), (1.138) and (1.131) we obtain

i _ _piApk_pi o i
do; = -6 N0 — 0, N O + O
. 1,
= —0; NGO + 0 A 0 + ENRijGk N
Therefore, skew-symmetrizing in k and /
i1 i
Qf = 5 (ihfy — Highii + "Ry )6" 1 6"

and we deduce the Gauss equations

MRy = "Ry + hhG — hhS: (1.139)
in global notation we have, for each X, Y, Z, W € X(M),
MRX.V)Z. W) = "R(X.V)Z, W), — (I(X,Z), 1Y, W)), + (IL(X, W), 1L(Y, Z)) .
or, equivalently,

MRiem (X,Y,Z, W) = MRiem (X, Y, Z, W) + (II(X, Z),II[(Y, W)) y

For a hypersurface, if v is a local unit normal and A is the Weingarten operator in
the direction of v, the above rewrites as, for each X,Y,Z, W € X(M),

(MRX.V)Z.W) = "R(X.Y)Z, W), — (AX.Z)(AY, W) + (AX, W)(AY, Z).
(1.140)
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Tracing we have

Mg — Ng— 2MRic (v, v) + m*H? — |A)?, (1.141)
and this can be rewritten as

Mg = Ns — 2 Ric (v, v) + m(m — 1)H,. (1.142)

We now need to extend covariant differentiation to tensors along f. We do this
for II, a section of T*M ® T*M ® TM~, but analogous definitions can be promptly
given (and will be when needed) in different cases. Setting VII for the covariant
derivative of 11, a section of T*M ® T*M ® T*M ® TM~, its coefficients, h ., are
given by

a nk __ o ant ant B na
he 0% = dhl — h%0! — h20! + n63 (1.143)

(as we shall see below, the Hg’s are the connection forms of the Van der Waerden-
Bortolotti covariant derivative on TM J-). Thus we have, locally,

VII= K, 0" @ 60" @0 @ e,

note in particular the position of the new index, which is in the first position. As
before, from the symmetry relation (1.132) we deduce

hzk =ht

i k- (1.144)

To determine the commutation relations in the last two indices, we differentiate
(1.131), use (1.129) and the structure equations to obtain

0 = dff —d(h§0)
_ a j o Y D% _ JHo i apl k apnj
= =08 NG/ — 05 AOY + OF —dh A + 6] A 6* + K36 A 67
. . . 1 .
= 50 N 0% — 0% A O — dhy A O + il A 0F + VRGO A 6"

Thus, using (1.143), the above rewrites us

1y oo
(s + 5RO A 6" =0,

and skew-symmetrizing we obtain

he, = — VRS, (1.145)
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These commutation rules are known as the Codazzi equations; in global notation
they become, for each X, Y,Z € X(M) and for all section 1 of ™,

(VII(Y, X, Z), )y = (VIZ,X,Y), )y — "R(Y.2)X, n),.

We now briefly describe the Van der Waerden-Bortolotti covariant derivative in
the normal bundle M~ in the above formalism.

Given the immersion f : M — (N, (, ),) we have a well defined bundle on M,
the normal bundle TM=, that pointwise is the orthogonal complement of f T,M in
T,N. Given a Darboux coframe along f, we locally define a covariant derivative by
setting

De, = 95 ® eg.

{Gg} are called the connection forms and one verifies that this definition is
meaningful globally.

We let the curvature forms @g be defined via the second structure equations as
follows:

dog = —05 A eg + &4 (1.146)
and we set

1J_ o i i
@f = S Ry N

The J-Rl;lj’s are the components of the normal curvature tensor. Comparing (1.146)
with the pull back of the second structure equations of N, that is,

- ¥ i
dog —_93/\95 =07 nby + O3,
we deduce
o8 =07 A0 + 08
A simple computation similar to those presented above gives
Lp® NpY
Ry = Wihl — WEhG + VR . (1.147)
These equations are often called the Ricci equations.

Next formula (1.148), known as Simons’ formula, will be used in Chap. 6 (in the
special case of hypersurfaces, see Eq. (1.149)).

Proposition 1.4 Letf : M — (N, (, )y), with dimM = m and dimN = n, m < n,
be an isometric immersion, with second fundamental tensor 1. Then the following
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formula holds:

1
EA|11|2 = |V + h2h, ; — 285 Riaj + Wi Rija — hE Riajp p (1.148)

— h R Rige — GG R, + WERE MRy — Hh Raus; + WShhE G,
T Zhgh;hﬁjh{; — 2HEhSHH, — hEHE Rag + W Rapip,.

If M is a hypersurface, so that n = m + 1, the previous equation becomes

1
§A|H|2 = |V 4 mhiH;j — 2hi Rign+1), + hi Rijms1 (1.149)
— 1" Ritmt jomt 1y mt 1 — Pigha™Rigie — [T|* + hihi ™Ry
— hiihi"Rns 1yema ) + mHhighyhy.
Proof Since
2 _
[T|" = hihg
and
2 _ oo
(i )k = 2h2hE,
we have that

1
SAIP = <|H|2)kk = RS HE A RS g = VI BERS (1.150)

ij.k ij

(see also Lemma 8.4 in Chap. 8). We need to compute /7 . To this purpose, we first
observe that, by definition of covariant derivative,

— 0! — h& OF — KE 08 + h, 0. (1.151)

it ij.k

hg.,k,@’ = dh,

Differentiating Eq. (1.143) we deduce

A N0 —1 08 NO" = —di A0S —dOf —dhl A OF —hGdO) +dhl] A +hE 6.

Next we use the second structure equation, Eq.(1.151) and again (1.143) in the
previous relation, obtaining, after some manipulations,
o 1 k 1 o Mpt o Mpt BB o 1 BNpa 1 k
AN —E(hﬁ Riy + "Ry + hihy hf + i R |6 A 6"
(1.152)
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We now skew-symmetrize equation (1.152) and use Gauss equations (1.139),
deducing the commutation relation for the second covariant derivative of the second
fundamental tensor:
he g = By + HEVRY, + HENRY, — VR, (1.153)
+ e (hﬁhg — hﬁhﬁ) e (hﬁhf, - hﬁhﬁ)
+ 1 (s — Hns; ).
Renaming indices we can rewrite Eq. (1.153) in the form
he o = S+ SR, + hERL, — WGVRY, (1.154)
0 (Wl — ) + e (gl — )
o+l (s, — Hin).
From Codazzi equations (1.145) we deduce that
B = g — "R - (1.155)

Next we use (1.154), (1.155) and the symmetry A ;. = hj; ; in the previous relation,
obtaining the further commutation relation ‘

K2 = s + +hS R, + HERL, — WGVRY, (1.156)
s (il — gl )+ s (A, — i)
(s — Hn ) = “Ra VR
Tracing equation (1.156) with respect to k and / we deduce
he e = h s+ HHERE, + hVRY, — WGNRS, (1.157)
S G R A G )
+ il (W, — W) = “Roy i — "R

We need now to analyze the three terms "Ry, "R%, , and "Ry, .. For the first we have

"Rije = "Rugkc = "Rigja — "Rigjp = "Ry —"Rijp:
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with the same reasoning for the third we obtain
N N N N
Ry = "Rakikj = "Raij — "Rapip,
and for the second, using also the second Bianchi identity,
NRZ‘.,(J( = "Ruiiik = "Rivj — "Rija — "Riajis — “Rpajip + “Rpjuip-

Inserting the latter three relations in (1.157) and contracting with hg we finally
deduce

RS e = W i — 2h;]".NR,-a i+ hg.NR,-,,a — h;?;NRiajﬁ,ﬁ (1.158)

— hh2 R — h;‘hfh;;hﬁ + HEhENRy — KEhE g + h‘?éh“hfj.hfk

ij'tit ij'tit

+ 2hEhG Y, — 2REHS G, — W Ragi + hEMRapip ;.
which implies, together with (1.150), Eq.(1.148). To deduce Eq.(1.149) it is
sufficient to use the definition of the mean curvature H and to note that, in the case
of a hypersurface, the last four terms of Eq. (1.158) vanish. O

1.7 The Geometry of Smooth Maps

In this section we briefly describe the geometry of smooth maps between Rieman-
nian manifolds. The results we present will be used in particular in Chap. 5.

We let (M, (,),,) and (N,(,),y) be Riemannian manifolds of dimensions,
respectively, m and n. We fix the indices convention 1 < i,j, k,... < m and
1 < ab,c,... < n With {6}, {6} and {0}, {]} we shall respectively denote
local orthonormal coframes and corresponding Levi-Civita connection forms on the
opensets U C M and V C N. Let ¢ : M — N be a smooth map and suppose, from
now on, to have chosen the local coframes (frames) so that ¢ ~' (V) C U. We set

p*o = ¢l (1.159)

so that the differential of ¢, d¢, a section of the bundle T* M ®¢ ~' TN, can be written
as

dop = 0" @ E,, (1.160)

with {E,} the frame dual to the coframe w“.
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The energy density, e(¢) : M — R, of the map ¢ is then defined as % the square
of the Hilbert-Schmidt norm of dg, that is

1 1
= ~|do|* = —¢“", 1.161
e(p) 2| ol SV ¢ ( )

where the two sums run over the appropriate indices. Note that we also have

1
e(p) = ETW,)M@*((, )N (1.162)

as immediately verified. The covariant derivative Vdg of dg is called the general-
ized second fundamental tensor; locally we have

Vdp = ¢t/ ® 0' ® E,, (1.163)

]

where the coefficients ¢ are defined according to the rule

o0 = dgf — g6} + glo. (1.164)

Here, and from now on, in the last term we have omitted the pullback notation. Note
that

@i = i (1.165)
so that the tensor field (along ¢) Vde is symmetric. The validity of (1.165) can be
easily seen as it was done for (1.76) in the case of ¢ : M — R. Nevertheless, for the
sake of completeness, to obtain it simply take exterior differentiation of (1.159) and
use the structure equations of M and N to arrive at

(dof — @6} + ¢jwy) A0 = 0.
Thus from (1.164)
golf;GJ AO=0;

Skew-symmetrizing (or using Cartan’s lemma) we deduce the validity of (1.165).
The tension field t(¢) of ¢ is defined by

t(p) = Tr(y, Vde = ¢jiE,. (1.166)

Let £2 C M be a relatively compact domain and let Eq (@) be the energy functional
on §2, that is,

Eolp) = /9 (). (1.167)
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We recall that a smooth map ¢ : (M, (, ),,) = (N, {, )n) is harmonic if for each
relatively compact domain §£2 C M it is a stationary point of the energy functional
Ego 1 C*°(M,N) — R with respect to variations preserving ¢ on 92. It can be
verified that ¢ is harmonic if and only if 7(¢) = 0; for details we refer to [107].
Observe that, in case ¢ = f is an isometric immersion, it is immediate to see that

e(f) = % (1.168)
Vdf =11, (1.169)
o(f) = mH, (1.170)
Eq(f) = gvol(ﬂ). (1.171)

In particular, in this case f is harmonic if and only if f is a minimal immersion. This
little observation points out that the geometry of smooth maps generalizes that of
isometric immersions.

We shall be interested in the Bochner-Weitzenbock formula for the Laplacian of
|dp|?. To derive it we need the commutation relation for the covariant derivative
of Vdg that generalizes (1.116). First of all let (pgk be the coefficients of V(Vdy),
defined according to the rule

00" = dofi — oi0f — 0i6f + hoy. (1.172)
Because of (1.165) we have

<P,]k ‘P,,k (1.173)

We want now to relate ¢p, with ¢j.. Towards this aim we compute the exterior
derivative of (1.164) and use the structure equations on M and N to arrive at

0" A0 = -( Ry 0 0i 0! — R0k A 0.

Hence, skew-symmetrizing we obtain the desired commutation rule, that is

a a a c I a
Vi = Qg T NRyea®! </’k€0,d MRikj@r . (1.174)

We can now prove the next

Proposition 1.5 (Bochner-Weitzenbock Formula) In the above setting and with
the above notations

—Aldqol2 \Vdol” + of o + ¢ Ryeai i 0l + ¢ Rig). (1.175)
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Remark 1.15 For those that better like a more modern global notation

1 m
SAldgl* = [Vdo[ + (Ve(p).dg)y + ) [de("Ric(es, )¥). dp(en),
i=1

m

+ Y ("R(dg(er). do(ep)de(er). dp(e)))
ij=1

where {e;} is a local orthonormal frame on M, ¥ : T*M — TM is the musical
isomorphism (see Remark 1.2) and "R is the curvature tensor of N of type (1, 3)
according to Koszul definition.

Proof By definition |d¢|* = ¢f¢¢. Hence taking covariant derivatives

a. a

(@i'e)i = 2¢i'¢;
and
(@0 = 209§ + 200}
Tracing with respect to j and k (that is, in the metric (, },,) yields
1 2 2 a_a
§A|d§0| = |Vdo|” + ¢/ ¢jy.

Using the commutation rules (1.173) and (1.174) in the above gives formula (1.175).
O

Remark 1.16 Note that if u € C3(M), (1.175) gives the usual Bochner formula
1
§A|Vu|2 = | Hess(u)|* + (VAu, Vu) + M Ric(Vu, Vu). (1.176)
Suppose now that

M. () S V() S (L))

are smooth maps between Riemannian manifolds and set § = 1 o ¢. Then, with the
previous formalism, the following formula is easily verified

VdE = Vdy (d,de) + dy(Vdp). (1.177)

Indeed, let {9’}, {ei}, {*}, {E.}, {n*}, {ex} be local orthonormal coframes and
frames on M, N and P respectively (with i,j,... = 1,...,dimM, a,b,... =
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1,...dimN, a,B,... =1,... dim P). Then we can write
dp = 90’ ®E,.  dy = Yo’ ® o, dE =E0 @24
and
Vdp = ¢/ ® 0' Q Es,  Vdy = Y0 @ 0’ @&y, VdE = £76/ ® 0' ® &4
Now we compute
En* = £
= (Wop)'n" = ¢*(¥*n") = ¢*(¥5 o)
= (e"vi)e"o" = (¢ i)l = (Vi © 0)e]0".
so that
& = (0"vi)el = (V3 o 0)el- (1.178)

By definition of covariant derivative and using (1.178) we have
&0 = dgr —16F + & (£

= d[(e"vs)el] - (0 vi)elof + (¢* vl )ete™ (v )

= o* (@Yol + (o vi)dg! — (0" ui)elof + (0"l )elo™ (v )

= " (vio +veop — v (v i) )e! + (¢™vi) (@l + ol6} — i (¢*wh))

— (0 i) + (0"l oo™ (v 1)

= [¢* W) + (0" ve) (0™ w5) — (o™ vi) (¢ v n5) |t

+ (U5 et + 06! — i (o7 ol)) — (o™il + (o™i )ole™ (v )

= 9" (Vi )o@/t + o* (V5 et
from which we deduce

§ = (Wieiel + 0" (Uh)e; = (Vicoe)efel + (Vi o9)ey  (1.179)

and (1.177) now follows immediately.
Equation (1.177) in particular shows that

©(§) = Vdy (de(ei).do(e)) + dy (t(@)). (1.180)
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Incase P = R, thatis £ : M 4N i) R, (1.180) yields

AE = Hess(Y)(do(e;), dp(ei) + (VY. t(9)) . (1.181)

Also observe that in the special case N = P = R, so that ¥ : R — R, (1.177)
becomes the well-known formula

Hess(y o @) = ¥/(¢) Hess(p) + ¥ (¢)dep ® dg. (1.182)

Similarly, from (1.180) (or tracing (1.182)) we have

AW o) =V (9)Ap + ¥ (9)|Ve|*. (1.183)

We will use (1.177) in the next section.

1.8 Warped Products

We now describe some of the geometry of warped product spaces and of their
immersed hypersurfaces. This material will be used mainly in Chap. 7 (and Chap. 6).
Towards the end of the section we shall also give some examples and we shall
introduce model manifolds in the sense of Greene and Wu [129]; as we will see,
the latter are strict relatives of warped products and they will be repeatedly used all
over the book.

Let N = I x, P denote the p-warped product of the real interval
I € R, with 0 € [, and the Riemannian manifold (P, (, )p) of dimension
m. Thus N is the (m + 1)-dimensional manifold / x P endowed with the
metric

()= )y =77 (d?) + (pom)®)mr (. )p). (1.184)

where ¢ is a global parameter on I, p : I — R is a smooth function and 7; and
np are the projections on the two factors of the product. Since there will not be
any possibility of misunderstanding we will indicate the above metric with the
customary notation

(,)=d* + pt)*(, )p. (1.185)

We fix the indices convention 1 < ij,... < m, 1 < a,b,... <
m + 1. We let {6’} be a local orthonormal coframe on P with corre-
sponding Levi-Civita connection forms {0].’} and curvature forms {@;}, so
that ‘

. 1 .
CHE EPR‘ 0k A 6 (1.186)

jkt
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define the components of the curvature tensor of (P, (, )p). We introduce a local
orthonormal coframe {¢“} on N by setting

o' = p(nb', " =dr (1.187)

The corresponding connection and curvature forms are denoted respectively with
¢, and @;. Note that

1 ,
P =3 NRa ¢ A @l (1.188)
A repeated use of exterior differentiation and of the structure equations of
P, together with the characterization of the Levi-Civita connection forms,
gives

(p;‘ = ij
(1.189)
Oy = Pt =~
where 57 = (1) = %. Consequently,
k_ 2 ok i L @k
Q= —H 9" NP + O
(1.190)
O = (4 ) g = g g =l
From here and (1.187) we immediately deduce
NRiom+1ye = 0
MRt jont1ye = =58 (1.191)

P
NRijt = piz IFDRkjst - %2(8ksgjt - 8kt5jx)7

the remaining components being determined by the symmetries of the curvature
tensor. Thus, the components of the Ricci tensor are

"Ry = L Ry — (m = )47 + ) 8

P
NR(W,.H), =0 (1.192)
MRt 1ymt1y = —mE-.

o
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Therefore, using (1.187),

" /"

1 . )
NRic = PPRJ-M’ ® ¢ — [(m - + %}8;,(/)’ ® ¢ — m%q)’”“ ® " t!

i

" o
= IP7Ric—|:(m — ) + —:|,02(, )p —m—dt ® dt,
P P

that is,

/"

NRic = PRic —[(m — () + p”p]( p— m%dt ® d. (1.193)

In light of these relations we have that N is Einstein with YRic = —m&(, ) and
& € R, if and only if

FRy = ((m — D)+ 2 - m@@) 0280
o’ = &p.
Because of the second equation we can rewrite the first as
PRie = (m — 1) (0> — &Ep*)b1. (1.194)

We note that the general solution of p” = &p is explicitly given by

p() = p'(0)sn—s (1) + p(0)en_s (1), (1.195)
where
= sinh(y/=k1) if k <0,
sne(r) =4t ifk =0,
Jesin(Vikn) ifk >0,
and

cn, (t) = snl. (7).

Inserting (1.195) into (1.194) we obtain the next
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Lemma 1.3 Let (P, (, )p) be a Riemannian manifold of dimension m. Consider the
warped product manifold N = I x,IP where 0 € I C Rand p : I — R is a smooth
function. Then, N is Einstein with

NRic = —mé&(,), &£ €R,
if and only if
p(t) = p'(0)sn—g (1) + p(O)en—g (1), (1.196)
and (P, (, )p) is Einstein with
FRic = (m —1)(p'(0)> = £p(0)*)(, )p-

There is a natural foliation t € I — P, = {t} x P of N; the leaf P, here will be
called a slice. As a unit normal to P; we take 7 = % (note that we are identifying %
on [ with its lift on 7 x P). Then the local orthonormal coframe {¢“} when restricted
to IP; satisfies

e"t'=0 onP,

and it is therefore a Darboux coframe along the inclusion map i : P, <— N. We
m
compute the second fundamental tensor of the isometric immersion, being 2:(90")2

i=1

the metric (, )p on PP, Using (1.189) we have
0=dp""" =g Aol = A W)Sugp* A '
Thus the second fundamental tensor in the direction of —.7 is given by
A, = AN’ ® ¢~ (1.197)

Hence the inclusion i : P, < N is totally umbilical (and totally geodesic if 72(f) =
0) with constant mean curvature, in the direction of —.7, given by

o' (1)

() =H = .
O =H="0

m

1.
) times the

Since the k-th mean curvature (in the direction of —.7) is defined as (
k-th elementary symmetric function in the eigenvalues of A,, we have

!/ k
Hy = #%(1) = (‘;((;))) . 0<k<m. (1.198)
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Of course the curvature tensor of PP, is “the same” as that of (]P’, ()%, )P). This
can also be checked via Gauss equation: we have

1

"Ris = "Rijes + (1) (8Sjs — 8is8jx) = —— Rijis,
p(1)?
that is
P2 () "Ris = Rijes, (1.199)
from which we immediately deduce
p*(1) "Ry = "Ry (1.200)
and
o*(1) Bis = s, (1.201)

for the Ricci tensors and the scalar curvatures, respectively.
Note that the vector field .7 satisfies

_ PO +1 ' +1
T="—=6, " =9, . =9"" =0,
j ,O(l‘) j i m+1 m+1

as one can immediately compute by using the orthonormal coframe {¢“} in (1.187)
and the relative connection forms in (1.189); note that we can put the above in the
compact form

o' (1)
p(t)

Ty = (8 = 8 80)-

It follows immediately that
(b7, = o (5517 + 8 — 85 +80,,.) = 155,
so that, for each vector field X on I x, P,
Vx(p7) = p'X.
In other words § = p.7 satisfies
Vxé§ = ¥eX, (1.202)

for some smooth function ¢ and for each vector field X on I x, IP.
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We recall that a vector field £ satisfying Eq. (1.202) on a Riemannian manifold
(M, (,)) is called a closed conformal vector field. This terminology is justified by
the following two observations:

(1) & istrivially a conformal vector field, that is the local flow it generates preserves
the metric up to a multiplicative conformal factor. This is equivalent to say that
the Lie derivative of the metric in the direction of £ is a multiple of the metric
itself, as it can be immediately checked using definition (1.202) and formula
(1.30). Note also that the conformal factor is given by % divé.

2) Eu, the 1-form metrically dual to £, is closed, that is, déﬁ = 0. To see this
fix a local orthonormal coframe {#“} on M with corresponding Levi-Civita
connection forms {9,‘]‘} and dual frame {e,}. If £ = £%¢,, since we are working
in a orthonormal coframe we have £ = £99¢, that is (éﬁ)a = £ = £,. By using
the first structure equation we get

dg* = £,0° A 6",
Now Eq. (1.202) reads
§y = Ve

substitution into the above yields d&* = 0.

Closed conformal vector fields are the key to understand warped structures:
indeed, as observed by Montiel, if M is a Riemannian manifold with a nontrivial
closed conformal field, then it is locally isometric to a warped product with a
1-dimensional factor; furthermore, the isometry is global if M is complete and
simply connected (see [194] for details).

Letnow f : X' — N be an isometrically immersed hypersurface. On N = I x, P
we have the projection map n; : N — [ and we can consider the composition
h = m; of, often called the height function of the immersion. Later on we will be
interested in Hess(%), that we are now going to compute using the present formalism
and formula (1.177) that now reads in the form

Hess(h) = Hess(mty)(df, df) + (T, v)A, (1.203)

where I = % as before, v is a local unit normal vector to X' and A is the second
fundamental tensor in the direction of v. Towards this aim let {¢“} be a local
orthonormal coframe on N as above and fix a local orthonormal coframe {w*} on

Y. Then
) dt = 8;”“ a
hence

(), = 8+
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Thus
(nl)ab(ph = dSZH—l - 5;}714-1@5 = _quﬁ—l’

so that, using (1.189),

/

(T = %8,-k, (1.204)

the remaining coefficients being zero. Now
[Tt =flo’
and since the metric on X' expresses as ' ® ' we have
S = fLfF LI (1.205)
furthermore,
A= (Vdf,v) = "o ® *.

Using (1.203)—(1.205) we have
Hess(h) = %(h)(&ikﬁ/ﬁk)ws Qo' + (T, v)A
= %/(h)(gs, — e’ @ ' + (T, v)A.
Observing that dh = h*(df) = f*(n*df) = f""'w*, this can be written as
Hess(h) = %/(h)((, Vs —dh ® dh) + (T, v)A. (1.206)

Introducing & = (7, v), a similar reasoning shows that ® and 4 are related by
the formula

Vh= —Ov, (1.207)
which implies
|Vh]* =1 - 0% (1.208)

these formulas will be repeatedly used, e.g., in the study of the geometry of
hypersurfaces in warped products (see Chap. 7).



56 1 A Crash Course in Riemannian Geometry

Many classical spaces can be described as warped products. Let us consider
for instance pseudohyperbolic manifolds (see Tashiro [263]): they are obtained as
warped product spaces of the form R x, P, where the warping function p is a
positive solution, for some ¢ < 0, of the ordinary differential equation p” 4+ cp = 0
on R. Thus, either p(r) = cosh (y/=ct) or p(r) = eV~ (note that if P is Ricci
flat then R x, P is Einstein with negative Ricci curvature, and if PP is flat then
R x, P is a negatively curved space form). Tashiro terminology is due to the fact
that with suitable choices of the fiber we obtain representatives of the hyperbolic
space; to realize this (and for more details we refer to Montiel [194]), we look at
the hyperbolic space H" ! of constant sectional curvature —1 as a hypersphere in
the Lorentz-Minkowski space (see Sect.9.2 in Chap.9), precisely as a connected
component of the hyperquadric

{xe R72, (x,x), = —1},

where (, ), is the standard Lorentzian product in R"*2. If we fix a € R”*2 and
consider the closed conformal vector field on H" !

T, =a+ (a,x)x

Depending on the causal character of a we have different foliations of H”*!, and
hence different descriptions of it (or part of it) as a warped product: namely, if a
is lightlike the hyperbolic space is foliated by horospheres and it can be viewed as
R x R™; if a is spacelike the vector field T generates a foliation of H"*! by means
of totally geodesic hyperplanes and it can be represented as the warped product
R Xcosh; H™. In the last case, that is, when a is timelike, the hyperbolic space minus
a point (say o) is foliated by spheres and H” ! \ {0} can be described as the warped
product R Xgnn: S™, of course with metric

(,) = dr* + sinh®td#? on H"!\ {0},

where df? is the standard metric on S” of constant sectional curvature 1. Due to
the properties of the function sinhz at the origin, that is, (sinh N 0) = 0 for
k = 1,2,... and sinh0 = 0, (sinh)’(0) = 1, the metric above can be smoothly
extended also to the point o, giving rise to the usual metric of the hyperbolic space
of constant negative sectional curvature —1.

This latter structure is in fact a model in the sense of Greene and Wu [129],
according to the following

Definition 1.1 A model M, is a Riemannian manifold of dimension m > 2 with a
pole o such that its metric {, ) can be represented on M, \ {0} = (0,a) x S""!, for
some a € (0, +o¢], in the form

(.)=d’ +g(r)?do>, (1.209)
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where, as above, df? is the standard metric on S”"~! and g € C*([0,a)) satisfies
g>0on(0,a),g0)=0,g(0) =1andg?(0)=0fork=1,2,....

Note that the metric extends smoothly to M, and it is complete if and only if a =
+00.

Thus, for instance, R™ can be described as the model M, witha = 400, g(r) = r
while the hyperbolic space H"” can be viewed as a model as we did above. Let now
M, be given by M, \ {0} = (0, 7) x S"~! and metric (, ) = dr? + sin® rd6?; this
represents the standard punctured sphere , for instance at the North pole, as a model.

Clearly the geometry of M, outside the pole o is described as that of the
corresponding warped product, and the description can be easily extended to the
pole. We shall however only be interested in the following special formulas whose
proof is left to the interested reader. On the model M, we have

/
Hess(r) = g((’)) {(.)—dr®dr} on M,\ {o} (1.210)
g r
from which, tracing, we obtain
A
ar=m-1DE on M, \ (o). (1.211)
g(r)
Sometimes we will use also that
i
My =5 (1.212)
g
g//
M¢Ric (Vr, Vi) = —(m — 1), (1.213)
g
vol (0Br) = wnmg"™ ' (R), (1.214)
R
vol(Bg) = wp / g™ ' dr, (1.215)
0

where w,, is the volume of the unit sphere in R™ and where, from now on, By =
Br(0) denotes the geodesic ball of radius R centered at the chosen origin o of the
manifold, and dBg = 0Bg(0) its boundary.

Occasionally we will consider on a model also less regular (that is, nonsmooth)
metrics, for instance those obtained by requiring g € C%([0,a)), g > 0 on (0, a),
8(0) =0,8'(0) = 1.

The real usefulness of models consists basically in two of their aspects, which
are indeed interrelated. The first is that models, due to their structure, are very
manageable to provide simple examples and counterexamples. The second is that,
because of (1.212), given a function G(r) that we can think as a lower or an upper
bound for the sectional curvatures or for the Ricci tensor of a manifold, we can
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easily construct a model having that curvature by solving the Cauchy problem

g —G(rg=0
g(0) =0.¢'(0) =1

and guaranteeing the positivity of its solution at least on an interval (0, a) depending,
of course, on the behaviour of G(r). We will go back to this in Sect. 1.9.1, where we
shall deal with comparison results.

1.9 Comparison Results

We recall a few facts on the cut locus and the Riemannian distance function that will
be repeatedly used in the sequel, referring to Chavel’s book ([71] or [44] for proofs
and further details).

Let o be a point in the complete manifolds (M, (, }), and let y be a geodesic
issuing from o. It is known that y is locally minimizing. A point g in the image of
y is said to be a cut point for o along y if y minimizes the distance from o to g,
but ceases to be minimizing beyond g. The set of cut points of o along geodesic
emanating from o is the cut locus of o, and is denoted by cut(o). It turns out that
cut(o) is a closed set of measure zero with respect to the Riemannian measure, and
that the set D, = M \ cut(o) is an open starshaped domain, which is in fact the
maximal domain of the normal geodesic coordinates centered at o. At the tangent
space level, we say that v is in the tangent cut locus of o, Cut(0), if the geodesic y,
with initial velocity v minimizes distances for # € [0, 1] and does not minimize
distances for ¢+ > 1. Thus cut(o) is the image of Cut(o) under the exponential
map exp,, the set E, = {rv € T,M : v € Cut(0),0 < ¢t < 1}, is the maximal
starshaped domain with respect to 0 on which exp, is a diffeomorphism, and finally
D, = exp,(E,). Moreover if r(x) denotes the Riemannian distance function from o,
namely, r(x) = disty(x, 0) = |exp~'(x)|, then r(x) is smooth on D, \ {o}.

Following Bishop [48] we say that g is an ordinary cut point for o if there are two
or more minimizing geodesics joining o and g. Cut points which are not ordinary
are said to be singular.

Bishop proves that ordinary cut points are dense in cut(o) ([48], Main Theorem).
Since it is easily verified that the distance function r(x) is not C! at ordinary cut
points (see [48], Proposition), we deduce that if r(x) is smooth on the punctured
ball Bg(0) \ {0}, then Bg(0o) N cut(o) = 0.

We recall that, given p € M, the injectivity radius of p in M , inj,,(p), is given by
dist (p, cut(p)). Clearly in By, (» (p) \ {p} the distance function r(x) = dist (x, p) is
smooth. Later on we shall occasionally use regular balls: with this terminology
we mean a geodesic ball Bg(p) such that Bg(p) N cut(p) = @ and for which

1

max {O, SUPg, () K }7 < g, Where K are the sectional curvatures of M at points
of Bg(p). For more details we refer to [44].
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1.9.1 The Laplacian Comparison Theorem

Now we show how (1.116) is the starting point to derive the classical Laplacian
comparison theorem without using Jacobi fields. Fix a reference pointo in (M, (, }),
and let y be a minimizing geodesic parameterized by arclength issuing from o; we
adopt the standard notation y to denote the tangent vector of y. Note that, since y
is a geodesic, we have V;y = 0. We define a unit vector field Y L y along y by
parallel translation (see e.g. [170]); note that y(#) is an integral curve of Vr, that
is, y() = (Vr)(y(?)). To perform calculations we let {Gi } be a local orthonormal
coframe and {e;} its dual frame. Then
dr = r9’ and Y= Yjej.

By Gauss lemma (see for instance [102]) |Vr|2 = rir; = 1 and covariantly
differentiating we obtain

rirg = 0, j=1,...m. (1.216)
Therefore
Y/ riri = 0.
Differentiating again the latter equation and using the fact that Y is parallel yields
1Y+ ritic Y =0;
hence, if y = y*ey, since ryx = rji,
Fi Y'Y = —rra VY. (1.217)
Now in formula (1.116) we take u(x) = r(x) to deduce
iy VY = rgY'p Y = =Ry Y YR (1.218)
Thus, inserting (1.217) into (1.218), we get
VY'Y + rgra YYE = =Ry Y YR (1.219)
Now we define the (1, 1)-version of the Hessian, hess, as the tensor field of type
(1, 1) such that, if u is a sufficiently smooth function and X and Y are smooth vector

fields,

(hess (1)(X), Y) = Hess (u)(X, Y).



60 1 A Crash Course in Riemannian Geometry

Note that we can also write hess(u)(X) = Hess(u)(X, )ﬁ, see Remark 1.3. Thus we
have

hess(r)(Y) = VyVr,

so that

Hess (r)(Y, X) = (hess(r)(Y). X).
Having set

hess”(r)(Y) = hess(r) (hess(r)(Y)),
we define

Hess?(r)(Y.X) = (hess®(r)(Y). X).
Then, since V; Y = 0, (1.219) can be reinterpreted in the form
d
E(Hess Ny)Y,y) + Hessz(r)(y)(Y, Y)=—-K,(Y AY). (1.220)

Note that (1.216) rewrites as
hess(r)(Vr) = 0. (1.221)

We sum (1.220) over an orthonormal basis {Y'} (i = 2,...,m) of )'/J- (where )'/J- is
the orthogonal complement of y) and use (1.221) to get

%(Ar)(y) + |Hess (1> (y) = —Ric(Vr, V) (y). (1.222)

Thus, using Newton’s inequality

A 2
[Hess (0 = A7
m—1
we obtain
d A 2
—(Aroy) + % < —Ric(Vroy, Vroy). (1.223)

In the literature, Ric(Vr, Vr) is called the radial Ricci curvature.
It follows that, assuming

Ric(Vr,Vr) = —(m — 1)G(r) (1.224)
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for some function G € C°([0, +00)),

2
—(Aro y) + % < (m—1)G(). (1.225)

Now we recall that Ar = (,/g(r,u))” 108 (see for instance [71]), where ,/g is
the square root of the determinant of the metrlc in polar geodesic coordinates (r, u)
centered at 0. Also, /g = det9(r,u) where ¢(r,u) is the matrix solution of the
differential equation in u* C T,M

G" (r,u) + Z(r,u)4(r,u) = 0,
satisfying the initial conditions 4(0,u) = 0, ¥'(0,u) = Id, and Z(r,u) is the
composition of the curvature operator at exp, (ru) with parallel translation along the
geodesic y, () = exp,(tu) (see again [71, p. 114]). Thus
G(r,u) =rld4+0@¢?) and  9'(r,u) = Id+0(r)

and we conclude that
-1
Ar = log(det®) = Te@'9™") = 2~ 1 o). (1.226)
r

Hence, having set ¢(f) = Ar o y, using (1.225) and (1.226) and again the fact
that y is parameterized by arclength we deduce that, under assumption (1.224),

(t)+ w()2

< (m—-1G@),
(1.227)

—1
o) = mT +o0(l) as t—0F.

Of course, in order to make sense from the analytical point of view, (1.227) has to
be interpreted with the image of y inside of the domain D, of the normal geodesic
coordinates centered at o, or, in other words, outside the cut locus of 0. To analyze
(1.227) we now need two simple calculus lemmas.

Lemma 1.4 Let G € C°([0, +00)) and let ¢, ¥ € C*((0, +00)) N C'([0, +00)) be
solutions of the problems:

Vo' —Gp <0 Nv'—Gy =0
; 1.228
Do =0 Y w0 = 0, y(0) > 0. (1229
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If o(r) > 0 forr € (0,T) and ¥'(0) > ¢’(0), then ¥ (r) > 0in (0,T) and

(i/ < ﬂ, ¥ > @ on (0,T). (1.229)
Y

Proof Since ¥'(0) > 0, ¥ > 0 in a neighborhood of 0. We observe in passing that
if G is assumed to be nonnegative, then, integrating (1.228) (ii), we have

W@zW@+Awamh

so that v’ is positive in the interval where ¥ > 0, and we conclude that, in fact,
¥ > 0 on (0, +00). In the general case, where no assumption is made on the sign
of G, we let

B =sup{t:y¥ >0in (0,1)};
T =min{f,T}.

The function ¥'¢p — ¥¢’ € C°([0, +00)) vanishes in r = 0, and it satisfies
Wo—v¢) =yv"o—vye" 20

in (0, 7). Thus, ¥'¢ — ¥ ¢’ > 0 on [0, 7), and, dividing through by ¢, we deduce
that

%/ > %/ in (0, 7).

Integrating between € and r, with 0 < ¢ < r < 7, yields

p(r) < Ip(g)l/f()

and, since

e ¢0)
ve “ve ="

we conclude that in fact

@(r) = ¢(r) in [0, 7).

Since ¢ > 0 in (0, 7T) by assumption, this in turn forces 7 = T, for, otherwise,
T = B < T and we would have ¢(f) > 0, while, by continuity, ¥(8) = 0, a
contradiction. ]
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Lemma 1.5 Let G € CO(R(')") and let g; € C'((0,T;)), i = 1,2 be solutions of the
Riccati differential inequalities

2

gl —aG <0, (i) gh+2—aG>0 (1.230)
o

(i) g1 + =
satisfying the condition
ilh) = % +0(1) ast— 0F (1.231)

for some o > 0. Then Ty < T, and g(t) < g»(t) in (0, T}).
Proof Since g; = a~'g; satisfy the conditions in the statement with oz = 1, without
loss of generality we assume o = 1. Observe that the functions g;(s)—+ are bounded
and integrable in a neighborhood of s = 0, thus we define ¢; € Cz((O 7)) N
C'([0, T;)) on [0, T;), by setting

0i(t) = rehE=ds
Then ¢;(0) = 0, ¢; > 0 on (0, T;) and straightforward computations show that

@l (1) = gi(Ne@i(t). @l(0)=1

and

! < Go, on (0,Ty);

7> Gg,  on (0,T2).
An application of Lemma 1.4 shows that 7} < T, and g = Z—i < Z—é = gy on
(0, T1), as required. O

We are now ready to prove the next Laplacian comparison theorem, which is a
simplified (but sufficient for our purposes) version of that appearing in [183]:

Theorem 1.2 Let (M, (, )) be a complete manifold of dimension m > 2. Having
fixed a reference point o € M, let r(x) = disty(x, 0). Assume that the radial Ricci
curvature Ric(Vr, Vr) of M satisfies

Ric(Vr,Vr) > —(m — 1)G(r) (1.232)

for some nonnegative function G € C° (Rg’). Leth € CZ(R(')") be a solution of the
problem

W —Gh=>0

(1.233)
h0) =0, #(0)=1.
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Then the inequality

K (r(x))
h(r(x))

holds pointwise on M\ ({0} U cut(0)) and weakly on all of M.

Ar(x) < (m—1)

(1.234)

Proof Fix any x € M\({o}Ucut(o)) and let y : [0,]] — M be a minimizing
geodesic from o to x parameterized by arclength. We then arrive to (1.227), where
the differential inequality is in (0, /]. Since g = (m — 1)% satisfies

g+ &)21 > (m—1)G(t) on Rt (1.235)

and (1.231) with ¢ = m — 1, an application of Lemma 1.5 to (1.227) and (1.235)
gives

(1)

h(r)

@) < (m—1) in (0,1].

Thus, in particular, since y(I) = x and r(x) = |,

' (r(x))
h(r(x))”
showing the validity of (1.234) pointwise within the cut locus. It remains to show

the validity of (1.234) weakly in all of M, which is guaranteed by the following
Lemma. O

Ar(x) < (m—1)

Lemma 1.6 Set D, = M\ cut(o) and suppose that
Ar < a(r) pointwise on D,\{o}, (1.236)

for some a € C°((0, +00)). Let v € C2(R) be nonnegative and set u(x) = v(r(x))
on M. Suppose either

Hv <0 or (i) v > 0. (1.237)
Then we respectively have
@) Au>V"(r) + a(n)v'(r); (i) Au < V"(r) + a(r)v'(r) (1.238)

weakly on M.

Proof Let E, be the maximal star-shaped domain in 7,M on which exp, is a
diffeomorphism onto its image D,, so that we have cut(o) = d(exp,(E,)). Since
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E, is a star-shaped domain, we can exhaust E, by a family {E{",} of relatively

compact, star-shaped domains with smooth boundary such that Ez C E'tl. We
set D = exp,(E!) so that

D, c Di' and | JD) = D.,.

n

The fact that each E], is star-shaped implies
(Vr,v,) > 0 on 0D, (1.239)

where v, denotes the outward unit normal to dD’,. Now we assume the validity of
(1.237) (i). Since r € C*°(D}\{0}), computing we get

Au>v" + a(r)v’ pointwise on D\ {o}. (1.240)

Let 0 < ¢ € CX(M), where C>°(M) denotes the set of smooth function with
compact support on M. We claim that, for each n,

J

where &, — 0 as n — +o0. Since M = D, U cut(o) and cut(o) has measure 0,
inequality (1.238) (i) will follow by letting n — +o0. To prove the claim we fix
d > 0 small and we apply the second Green formula (see e.g. [71]) on D?\Bs(o) to
obtain

/ uldp = / oAu — / ((Vu,v,) —u(Vo,v,)), (1.241)
D\Bjs(0) D\Bjs(0) aDI\dBj;(0)

where v, is the outward unit normal to dD?\dBs(0). We note that, according to
(1.237) (i) and (1.239),

ulp > / W' + a(r)v)e + &,
Dy

7
o

(Vu,v,) =v'(r)(Vr,v,) <0 on dD’.

Using this, (1.239) and (1.241) we deduce

/ ulp > W+ a(r)v)e + &, + Is,
pr pr
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with

8,,:/ u(Vo,v,),
apn

k=/1 @A¢—@"+amunq—/ [V, va) = @(Vit, vy
Bs(0) E)

B (0)

Clearly, Is — 0 as § |, 0T; on the other hand, since ¢ € C>°(M) and cut(o) has
measure 0, using the divergence and Lebesgue theorems we see that, as n — 400,

o= [
D

This proves the claim and the validity of (1.238) (i). The case (1.237) (ii) and (1.238)
(i1) can be dealt with in a similar way. O

div(uVe) —>/ div(uVe) :/ div(uVe) = 0.
D, M

7
4

Remark 1.17 We note that, for the above proofs to work, it is not necessary that
(1.232) holds on the entire M: instead, for instance, if (1.232) is valid on Bg(0), then
(1.234) holds on Bg(0)\({o} U cut(o)) and weakly on Bg(0).

We derive here another consequence of the differential inequality (1.223).

Let D, = M\ cut(o) andx € D, \ {0o}. We set ¢ = Aroy,where y : [0, r(x)] -
M is a unit speed minimizing geodesic from o to x. Then inequality (1.223) can be
rewritten as

2
‘p(t)l FRic(7,7)(H) <0 on [0, r(0)]. (1.242)

¢'(n) +
o

Furthermore we know from (1.227) that
1 1 +
——op()=-4o0() asr—0". (1.243)
m—1 t

Defining

o) 1

u(t) = reh (Er=4) (1.244)

on [0, r(x)], u is well defined because of (1.243) and a simple computation using
(1.242) gives

oy Ric(.9)

m—1

u<0 on [0,r()]. (1.245)
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Next, we let & € C'([0, 7(x)]) be such that #(0) = 0 = h(r(x)). Since u > 0 on
(0, r(x)], the function hz% is well defined on (0, r(x)]. Differentiating, using (1.245)
and Young’s inequality we get

.. 2
(hZM_/)/ < _M}ﬂ — (”_/) /2 2hh,u_’
u m—1 u u
Ric (7. 7
<_ ic (y )’)h2+ (h/)z'

m—1

Fix ¢ > 0 sufficiently small; integration of the above inequality on [, r(x)] gives

u'(e) 2 Ric(7.7)

Since h(g) = As + o(¢) as € — 0T for some A € R, letting ¢ — 01 we obtain

r(x) R. . 0
/ (W)’ - Ric(7:7),2 - o, (1.246)
0

m—1

that is, minimizing geodesics are stable.

Note that the above inequality can be extended to any x € M using “Calabi trick”
(see Lemma 2.1 in Chap. 2). Indeed, suppose that x € cut(o); translating the origin
to o, = y(e) so that x & cut(o)¢), using the triangle inequality and, finally, taking
the limit as ¢ — 0, one checks that (1.246) holds also in this case.

Inequality (1.246) will be repeatedly used in Chap. 8.

1.9.2 The Bishop-Gromov Comparison Theorem

We now show how to get from the previous results a (somewhat generalized) version
of what is known in the literature as the Bishop-Gromov comparison theorem (see
also [44]). We recall that vol Bg(0) and vol dBg(0) denote the volume of the geodesic
ball Bg(0) and of its boundary dBg(0), respectively.

Theorem 1.3 Let (M, (, )) be a complete, m-dimensional Riemannian manifold
satisfying

Ric (Vr,Vr) > —(m — 1)G(r) on M (1.247)
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for some G € CO(RS'), G > 0, where r(x) = dist(x,0). Let h € CZ(R()") be the
nonnegative solution of the problem

W' — G(t)h =
G 0 (1.248)
h(0) =0, #(0) = 1.
Then, for almost every R > 0, the function
vol dBg(0)
—_— 1.249
h(R)ym1 ( )
is nonincreasing, and
vol 3Bg(0) < wuh(R)™ !, (1.250)
where w,, is the volume of the unit sphere in R™. Moreover,
1B
vol Br(o) (1.251)

fOR h(f)m=1 dt

is a nonincreasing function on R .

Since it will be used in the proof of Theorem 1.3, and also in the next chapters, we
first recall the useful coarea formula.

We denote by W'! (M) the Sobolev space consisting of functions in L' (M) with
(weak) gradient in L! (M). We also denote by 952" the t-level set (¢ € R) of a function
uonM,ie. 082 = {x € M|u(x) = t}. Following Schoen and Yau (see [252, p. 89])
we state the following

Proposition 1.6 Let M be a compact Riemannian manifold with boundary and u €
W'Y (M). For any nonnegative measurable function v on M the following formula

holds:
+o0 v
/ v :/ (/ —d(ru) dt, (1.252)
M —00 s} [Vul

where do, is the (m — 1)-dimensional Hausdorff measure of 052}".

For a proof see the classical [117]. Note that, in particular, if u(x) = r(x) =
disty (x, 0), Eq. (1.252) becomes Fubini’s formula

D
/ V= / (/ v) dt, (1.253)
M 0 9B,(0)

where D = sup,, r(x).
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Proof (of Theorem 1.3) In case o is a pole of M (see [129]) one integrates the
divergence of the radial vector field

X = h(r(x)) "t vr

on concentric balls Bg(0), and uses the divergence and Laplacian comparison the-
orems. However, in general, objects are nonsmooth and inequalities are interpreted
in the sense of distributions. Therefore, some extra care is needed. The Laplacian
comparison theorem asserts that

K (r(x))
h(r(x))

Ar(x) < (m—1) (1.254)

pointwise on the open, star-shaped, full measured set M\ cut(o) and weakly on all
of M. Thus, for each 0 < ¢ € Lip.(M),

W (r(x
—/(Vr, Vo) < (m—l)/ h((r((x))))w. (1.255)

For & > 0 fixed, consider the radial cut-off function

@:(x) = pe(r(x)h(r(x)) ™+, (1.256)

where, for 0 < s < R, p. is the piecewise linear function

0, if £ €[0,5)
=S ifte[s,s +¢)
pe(t) = 11, ifte[s+eR—e) (1.257)
L= if te[R—¢eR)
0, if € [R, +00).
Note that
—& s, s+e h/ _
Vo, = | Kook | Toste o WO L ymiig,,
€ h(r(x))

for almost all x € M, where y,, is the characteristic function of the annulus
B;(0)\B;(0). Therefore, using ¢, into (1.255) and simplifying, we get

1 1
! / W) < L / h(r() ",
€ JBr(0)\Bg—(0) € JB4(0)\Bs(0)
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Using the coarea formula (1.252) we deduce that
1k —m+1 1 fote —m+1
- vol(0B;(0)) h(t) dt < — vol(0B;(0)) h(r) dt
& JR—¢ & Js

and, letting ¢ | O,

vol(0Bg(0)) - vol(dB;(0))
h(R)m—l - h(s)m—l

(1.258)

for almost all 0 < s < R. Letting s — 0 and recalling that A(s) ~ s and vol(dBy) ~
""" as s — 0 (which can be deduced, for instance, integrating Eq. (1.226) on
a geodesic ball and using the divergence theorem and Gauss lemma), we conclude

that, for almost any R > 0,
vol dBg(0) < w,h(R)"".

To prove the second statement we note that, as observed in [74], for general real

valued functions f(#) > 0, g(t) > 0, if t % is decreasing, then t +> % is
0

decreasing. Indeed, since f/g is decreasing, if 0 < s < R

[rf el o= el o= [ Lo fs

whence

/Oxf/ORg=/0yf/0Sg+/Osf[Rgz/Osf/05g+/0sg[f=/oxg/ff.

In particular, applying this observation to (1.258) and using the coarea formula
(1.252) we deduce that

vol B;(0)
S>> ———————
Jo Ry dr

is decreasing, concluding the proof. O

Remark 1.18 The same argument will be applied in the proof of Proposition 8.10
on solitons.

To have a more precise idea of the estimates on vol dBg(0) and vol Bg(o) that
we can get via Theorem 1.3 we conclude with the following analytical result whose
proof can be found in [44]:
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Proposition 1.7 Assume h is a solution of
W' —B*(1 4+ r»)*?h =0
{h(O) =0, W0O)=1
for some constants B > 0 and § > —2. Set

B if §>-2

1+ 1+4B), if §=-2.

/

Then,

h/

ﬁ(r) <BA?(1 + o(1)) asr— +o0.
Moreover, there exists a constant C > 0 such that for r > 1

exp (%(1 + r)1+5/2) if§>0
h(r) < C{r%/*exp (%rIH/Z) if —2<8<0
i if § = 2.

1.9.3 The Hessian Comparison Theorem

For the sake of completeness we recall here the following Hessian comparison
theorem; our discussion follows closely the one in [44]. Recall that the radial
sectional curvature K,,; of a manifold is the sectional curvature of a 2-plane
containing Vr.

Theorem 1.4 Let (M, (, )) be a complete manifold of dimension m. Having fixed
a reference point o € M, let r(x) = disty(x,0), and let D, = M \ cut(o) be the
domain of the normal geodesic coordinates centered at o. Given G € C° (Rg’ ) let h
be the solution of the Cauchy problem

@ " —oh=0 or () TCh=0 (1.259)
hO) =0, K(0) =1, h0) =0, H(O)=1,

and let I = (0,Ry) € RT be the maximal interval where h is positive. If the radial
sectional curvature of M satisfies

Kug > —G(r(x)) on Bg,(0), (1.260)
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then

' (r(x))
h(r(x))

on (D, \ {0}) N Bgr(0) in the sense of quadratic forms, where h solves (i). On the
other hand, if

Hess (r)(x) < {(,)—dr®dr} (1.261)

Kiua < —G(r(x))  on Bg,(0), (1.262)
then
Hess () (x) > }; ((rr((;)))) () —dr®dr, (1.263)

on (D, \ {0}) N Br(0) in the sense of quadratic forms, where h solves (ii).

Remark 1.19 By taking traces in Theorem 1.4 we immediately obtain the corre-
sponding estimates for Ar. However, as we have seen in Theorem 1.2, the estimate
from above for the Laplacian of the distance function holds under the weaker
assumption that the radial Ricci curvature (and not the full radial sectional curvature)
is bounded from below by —(m — 1)G(r(x)). Furthermore the estimate in this latter
case can be extended, in weak form, to the entire manifold. This is not the case for
the above estimates on Hess (r).

To prove Theorem 1.4 we first need some results concerning comparison theory
for Riccati equations in the matrix-valued setting.

Let E be a finite dimensional vector space endowed with an inner product (, ) and
induced norm || - ||, and let S(E) be the space of self-adjoint linear endomorphism of
E. We say that A € S(E) satisfies A > 0 if A is positive semi-definite; analogously,
we say that A < B if B — A is positive semi-definite. We denote with I € S(E) the
identity transformation. The following comparison result is due to Eschenburg and
Heintze [114].

Theorem 1.5 Let R; : R(')" — S(E), i = 1,2, be smooth curves, and assume that
Ry < R,. For each i, let B; : (0,s;) — S(E) be a maximally defined solution of the
matrix Riccati equation

B, + B? =R,.

Suppose that U = B, — By can be continuously extended at s = 0 and U(0T) > 0.
Then

51 < s and By < B, on (0,s)).

Furthermore, d(s) = dimker U(s) is nonincreasing on (0,s1). In particular, if
B1(s) = By(5), then By = B, on (0,).
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Proof Set sy = min {sy, s} and observe that , on (0, sp), U = B, — Bj satisfies

S =R, —R >0
U=UX+XU+S,  where 2= (1.264)
X = —E(Bz +Bl).

We claim that X is bounded from above near s = 0. Indeed, by the Riccati equation
B! < R;, hence for every unit vector x € E the function 1;(s) = (B;(s)x,x) satisfies
n: < (Ri(s)x,x) < [|Ri(s)|]| < C, where the last inequality follows since R; is
bounded on [0, so]. Integrating on some [s,s] C (0, so),

ni(s) = —C(s—s) + n:i(5) = —Cs— ||Bi(5)

independently on x. Therefore, each B; is bounded from below as s — 0, and thus
there exists @ > 0 such that X < al near s = 0, as claimed. The solution U of (1.264)
can be computed via the method of the variation of constants. First, fix 5" € (0, s¢)
and consider the solution of the Cauchy problem

g =Xg

g6) =1
where I € S(E) is the identity. Then, g is nonsingular on (0, so): indeed, its inverse
is given by the function g satisfying g’ = —gX, g(s) = I. The general solution U of
(1.264) is thus

U=gVTg, (1.265)
where V : (0, s9) — S(E) is the general solution of

V/ — g—lS T(g—l).

Since S > 0, we deduce V' > 0. Hence, for every fixed x € E, (V(s)x, x) : (0, s0) —
R is nondecreasing. This shows that the pointwise limit (V(0)x, x) exists, possibly
infinite. We claim that (V(0)x, x) is finite, hence V(0) can be defined by polarization.

Furthermore, we shall show that V(0) > 0. Towards this aim, from (1.265) and
setting, for notational convenience, h = T(g_l),

(Vx,x) = <g_lU(Tg)_1x, x> = (U T(g_l)x, T(g_l)x) = (Uhx, hx), (1.266)
so that

(V. x)| < U] - ||l
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Since, by assumption, ||U|| is bounded as s — 0, to prove that |{Vx, x)| is bounded
in a neighbourhood of zero we shall show that so is the function f(s) = ||A(s)x]||>.
Note that, by its very definition and the properties of g, i’ = —Xh. Hence,

17 (s) = 2(h' (s)x. h(s)x) = =2(Xh(s)x, h(s)x) = —2af.

By Gronwall lemma, f cannot diverge as s — 0%, as required. As a consequence,
for every sy — 0 the set {yx} = {h(sx)x} C E is bounded. By compactness, up to a
subsequence y; — y, for some y € E. Therefore, by (1.266)

(V(0)x, x) = lim (V(si)x, x) = lim (U(s)y yi) = (U(0)y.y) = 0,

hence V(0) > 0. From V' > 0, we deduce V > 0, thus by (1.265) U > 0, as
desired. Since V is nonnegative and nondecreasing, so is dimker U(s) = d(s), and
this conclude the proof. O

Now, using the notation of Sect. 1.9, let p € D, and let y : [0,r(x)] — M be
the minimizing geodesic from o to p, so that r(y(s)) = s and Vroy = y for
every s. Fix a local orthonormal frame {¢;} around p, with dual coframe {9’}; then

y = Vr = rie;, dr = r;0' and differentiating |Vr|2 = r;r; = 1 we obtain (see
Eq.(1.216))
riri = 0, thatis  Hess(r)(Vr, ) = 0. (1.267)
A further covariant differentiation of (1.267) gives
rijkri + rijric = 0,
which can be rewritten using (1.115) and (1.116) as
0 = ryri + ryri = rigri + ryric = rigti + 1R + riri.

Contracting the above equation with two parallel vector fields X and Y along y and
perpendicular to Vr we get

0= ;fjkiXiYkri + XijrtriRtjik + rijrikXiYk;

in Koszul notation, and using the symmetries of the curvature tensor (see (1.45)),
the above relation reads

0 = (Vhess(r)(Vr, X, Y)) + (hess(r)(X), hess(r)(Y)) + (R(Vr,X)Y, Vr)
(1.268)

= (Vhess(r)(Vr,X,Y)) + (hess(r)(X), hess(r)(Y)) + (R(X,Vr)Vr,Y).
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(compare with Egs. (1.219) and (1.220)). Since hess(r) is self-adjoint, denoting with
R, the self-adjoint map

X+ R,(X) =R(X,Vr)Vr, (1.269)
and with a prime the covariant differentiation along y, (1.268) becomes
0 = (((hess(r))’ + (hess(r))* + R, )(X).Y) =0 (1.270)
for each X,Y € Vrt, parallel. Note that, by (1.267) and the properties of the
curvature tensor, both hess(r) and R, can be thought as endomorphisms of vrt.
Furthermore, for every unit vector X € vrt,
(Ry(X).X) = KX A Vr) = Kraa(X), (1.271)
that is, the sectional curvature of X A Vr. Since X and Y are arbitrary, we have
(hess(r))’ + (hess(r))* + R, = 0 (1.272)
as a section of End (VrJ-) along y. By parallel translation, we can identify the fibers
of the vector bundle VrL; indeed, if we consider an orthonormal basis {E;} C vt
of parallel vector fields along y, and we denote with B = (), R, = ((Ry)ij) the
representation of hess(r)y,. and R, in the basis {E;}, (1.272) becomes the matrix
Riccati equation

B +B*+R, =0. (1.273)

Taking into account the asymptotic relation for K = {o} (see [219]),
1

Hess(r) = —((, ) —dr®dr) + o(1) ass— 0",
s

and B satisfies

B +B>+R,=0 0,
TE R on (0.l (1.274)
B(s) =s'I+o0(l) ass—0t.
Now, assume either
() Kyga = —G(r) or (i) Kiga < —G(1),

for some G(r) € ol (}R(‘)F ) Henceforth, (i) (resp. (ii)) means that the inequality

K(IT)(x) = =G(r(x))
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(resp. <) holds for every 2-plane IT containing Vr. Then, by (1.271), respectively

)R, = ~G()I (i) Ry < ~G()L,

and by (1.273) this yields the following matrix Riccati inequalities:

. VB +B*<Gl,
case (i) :
B(s) =s'I+0(1) ass— 0t
VB +B*>GlI,
case (ii) :
B(s) =s'I4+0(1) ass— 0t.

Now, consider a solution 4 to

(1.275)

(1.276)

(1.277)

(1.278)

W —Gh=>0
- for (i),
h(0) =0, () =1
W' —Gh<0
- for (ii),
h(0) =0, K (0) =1
and assume that 4 is positive on some maximal interval I = (0, Ry). Setting B, =
(W' /h)I we have that
B, + B > Gl,
case (i) : n B =
Bu(s) =s ' 4+0(1) ass—0T;
B, + B2 < Gl,
case (ii) : T8 =
Buy(s) =s ' 4+0(1) ass—0T.

By the matrix Riccati comparison Theorem 1.5, B < Bj;, when (i) holds, and B > B;,

under assumption (ii). This yields the proof of Theorem 1.4.



Chapter 2
The Omori-Yau Maximum Principle

The aim of this chapter is to introduce the Omori-Yau and the weak maximum
principles. We begin with some analytical motivations of a general nature and we
then proceed to introduce the various concepts, results and related discussions. In
this process we follow a perspective quite different from the original approach
of Omori and Yau. Indeed, we introduce a function theoretic formulation of the
principle that does not tie it to curvature assumptions as in the pioneering works of
Omori [210] and Yau [279] (see for instance the statement of Theorem 2.4 below).
This formulation reaches a great advantage in applications as it will become crystal
clear from the geometric and analytic results contained in the subsequent chapters.
We then relax the original statement of the principle to obtain what we call the weak
maximum principle. This simple minded procedure, originally justified by some
geometric applications, leads to an unexpected bridge: the weak maximum principle
(for the Laplace-Beltrami operator A) on a possibly nongeodesically complete
manifold (M, (, }) is equivalent to stochastic completeness of the Brownian motion
(associated to A). This fact, beside the many applications, has a deep theoretical
value which however we do not exploit here. The introduction of the weak maximum
principle enables us also to shed light on the notion of parabolicity that we
present as a stronger version of the former. This well explain the often apparently
strange similarities between various phenomena linked, respectively, to stochastic
completeness and recurrence of the Brownian motion.

In Theorem 2.5 we give a sufficient condition for the validity of the Omori-Yau
maximum principle in terms of curvature conditions, thus involving the distance
function r from a fixed reference point 0 € M. We do this with the intent
to introduce, in this most simple case of the Hessian and the Laplace-Beltrami
operators, a technique to deal with the cut locus and with solutions in the weak
sense that we will address later on, when considering the very general family of
operators introduced in Chap. 3.
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2.1 Some Preliminary Considerations

Let u : [a,b] — R be a continuous function. Then u attains its maximum u™* at
some point xy € [a,b]. If xy € (a,b) and u has continuous second derivative in a
neighborhood of xy, then

(i) /'(xo) = 0 and (ii) u” (xy) < O. 2.1
It follows easily that, if u satisfies a differential inequality of the type
u’ (x) + g(x)u'(x) >0 (2.2)

on the open interval (a, b), where g is any bounded function, then either xy = a or
Xxo = b. Otherwise one would get

0 < " (x0) + g(x0)u' (xo) < 0.
Note, however, that if we relax (2.2) to the nonstrict inequality
u'(x) + g(u'(x) = 0 (2.3)

on (a, b), then the constant solutions u = ¢ are admitted, and for such a solution
the maximum is attained at any point in [a, b]. The content of the usual maximum
principle is the fact that this exception is the only possible, and it is stated in the
following form.

Theorem 2.1 Let u : [a,b] — R be a twice continuously differentiable function
satisfying

' (x) + g()u'(x) = 0

on (a,b), where g is any bounded function. Then, u cannot have an interior
maximum in (a, b), unless u is constant.

The argument, due to Hopf, to prove Theorem 2.1 is a tricky way to pass from the
nonstrict inequality (2.3) to the strict inequality (2.2) for a new function v properly
related to u. Then one concludes with the aid of the previous discussion (see, for
instance, Theorem 1 on page 2 in the classical book of Protter and Weinberger
[233]). Thus, the core of the maximum principle indeed relies on u(xp) = u* and
conditions (i) and (ii) in (2.1).

Substituting [a,b] C R with a compact Riemannian manifold M without
boundary, for any given function u € C?(M), there exists a point x, € M such
that

(i) u(xo) = u*, (ii) |Vu(xo)| =0, and (iii) Au(xp) <0, 2.4)
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where u* = sup,, u < 400, or, more generally,
(i) u(xp) = u*, (i) |Vu(xo)| = 0, and (iii)” Hess (u)(xo) < 0, (2.5)
in the sense that
Hess (u)(xo)(v,v) <0 forallv e T M.

As we know from Chap. 1, V, A and Hess stand here, respectively, for the gradient,
the Laplacian and the Hessian operators on the Riemannian manifold (M, (, )).
Following Yau, the validity of either (2.4) or (2.5) on M is called the usual maximum
principle (equivalently, the finite maximum principle). To immediately point out
its importance let us recall the following typical application in the context of
classical surface theory, that is, the proof that every compact surface in R* has
an elliptic point, in other words, a point where the Gaussian curvature is positive
(see Corollary 5.1 and Proposition 5.1). In particular, no compact Riemannian
surface with nonpositive Gaussian curvature, for instance a minimal surface, can
be isometrically immersed into R3.

Obviously, when M is not compact it is not always possible, given a continuous
function u : M — R with u* = sup, u < 400, to find a point xy € M such
that u(xp) = u*. Nevertheless, if u : R — R is a twice continuously differentiable
function with u* < 400, then it is not difficult to realize the existence of a sequence
{xi}xen C R with the following properties:

@) ulx) > u* — %, (i) |/ (xp)| < %, and (iii) u” (x;) < %

for each k € N. More generally, given a twice continuously differentiable function
u:R" - R, m > 1, with u* < +00, there exists a sequence {x;}reny C R™ such
that

1 1 1
@) ul) > u* — A (1) [Vu(xp)| < A and (iii) Au(xg) < Z (2.6)
for each k € N. The main idea to prove this result goes back to Ahlfors [1] and even
earlier, and it consists in considering a family of functions each of which attains a
maximum at some point of R” and then apply the usual maximum principle. For
instance, to prove (2.6) we fix a sequence {&;} \ 0" and define
ui(x) = u(x) — 8i|x|2‘

Clearly, u; takes its absolute maximum at some point x; € R”, where

Vui(xi) =0 and Aui(xi) < 0.
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Since in R” we have V|x|> = 2x and A|x|> = 2m, we obtain
Vu(x;) = 2¢ex; 2.7
and
Au(x;) < 2me;. (2.8)
On the other hand,
u(x) = eilxl® = i) = ui(0) = u(0),
and therefore
gilal® < u(x) —u(0) <u* —u(©0) < C

for some positive constant C. It then follows that
C
[l </ —,
i

[Vu(x)| < 2+/Ce;. 2.9

which jointly with (2.7) implies

To conclude, fix k € N. Then, there exists a point y; € R such that

1
* —_——
u(ye) > u %

For every i € N we have

1
i) = u(x;) — &ilxil® = wive) = ulye) — eilyl* > u* — % &ilyel%,

that is,

1 1
u(x;)) > u* — T gilvel? + eilxi|* = u* — T eilvil? (2.10)

for every i € N. Choosing now i = i sufficiently large such that

1 1 1
g lvl* < o 2,/Cs;, < n and 2me;, < o
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from (2.10), (2.9) and (2.8) it follows, respectively, that
« 1 1 1
u(x;) >u" — A |Vu(x;,)| < e and Au(x;,) < A

Therefore, the choice x; = x;, completes the proof.
In the previous argument there are two important facts that need to be stressed.
The first is the equality

Alx|* = 2m,

which is tightly related to the geometry of R™. The second is the linearity of
the Laplacian operator for which we have been able to perform the following
computation:

Aup = Au— gr Alx|?.

Of course, it is possible to reformulate (2.6) on an m-dimensional Riemannian
manifold M. In this general context, it is not difficult to see that if the manifold
is, for instance, complete then for any smooth function u € C?(M) with u* < 400
one can always find a sequence of points {x; }reny C M satisfying (i) and (ii) in (2.6).
This is a direct consequence of the following general fact.

Proposition 2.1 Let M be a Riemannian manifold and let u € C*(M) be such that
u* < 4o0. Given ¢ > 0, lety € M satisfy u(y) > u* — & and suppose that the
closed ball m is compact. Then, there exists a point x € B.(y) with the following
properties

(i) u(x) = u(y), and (ii) |Vu(x)| < e.

For a geometric differential proof and the need of compactness of the closed ball
B:(y) see [227, Proposition 1.7]. Here we will provide a different argument.

In Proposition 2.1 the alert reader has certainly recognized a form of the Ekeland
quasi-minimum variational principle (of course written in the form of a quasi-
maximum principle). We give here a simple proof due to Crandall, as reported in
[110, p. 444].

Theorem 2.2 Let (M, d) be a complete metric space and u : M — R an upper
semicontinuous function with u* = supy,u < 4oo. Fix &,6 > O andlety € M
satisfy

uy) > u* —e. (2.11)

Then, there exists x € M such that

(i) d(x.y) =6,
(i) u(x) > u(y), and
(iii) for every z # x, u(z) < u(x) + 3d(x, 2).
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Proof We define a sequence {x,} C M as follows. We set xo = y and let us suppose
to have chosen x,,. Then either

for each z # x,, u(z) < u(x,) + gd(x,,,z), (2.12)
and in this case we set x,+| = X, or
there exists z # x, such that u(z) > u(x,) + gd(xn, 2). (2.13)
In this latter case we define
Sy =4z # x1u(2) = u(v) + (5.2}
Note that

u(x,) <supu < u* < +oo

n

and therefore

u(x,) —supu < 0.
Sll

We then choose x,+; € S, such that

1 1 1
u(xp4+1) = supu + —(u(x,) —supu) = —u(x,) + = supu. (2.14)
2 S, 2 2 s,

n

We now show that the sequence {x,} is a Cauchy sequence. First we observe that
if (2.12) holds for a certain no, then x, = x,, for each n > n¢ and the sequence is
clearly Cauchy. If this is not the case then (2.13) holds for each n. Then, according
to (2.13), we have

gd(xn,x,ﬂ_l) < u(xpp1) — u(xy) for each n. (2.15)

Let p > n. Summing up, using (2.14) and the triangle inequality, we get
€ € €
gd(xnsxp) = gd(xns xn+l) +oeee+ gd(xp—lsxp) = u(-xp) - M(xn)- (2.16)

Thus the sequence {u(x,)} C R is nondecreasing and bounded above by u*. It

follows that it converges and (2.16) yields that {x,} C M is a Cauchy sequence.
Completeness of (M, d) implies that x, — x € M as n — 4o00. We show

that x satisfies items (i)—(iii) in the statement of the theorem. Since u is upper
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semicontinuous and u(x,) is nondecreasing, we have

u(x) > limsupu(x,) = lim u(x,) > u(xo) = u(y),
n——+00 n—>+00

proving (ii).
To prove (i), we chose n = 0 in (2.16) and we use (2.11) to get

gd(y,xp) < u(y) —u(y) < u* —u(y) <e.
Therefore
d(y.x,) <6

and letting p — +o0o we deduce the validity of (i). Next, if (iii) were false there
would exist z # x such that

(@) > u(x) + gd(x, 2. 2.17)
Letting p — +o0 into (2.16) we obtain
2d(6,.%) < (o) = u(,) (2.18)
and therefore, using (2.17) and (2.18) we obtain
(@) = 1) + Sd(5.2) = ul) + (@) + D) = ulx) + d(6,.2),

that is, z € S, for each n.
On the other hand, from (2.14)

2u(xp41) — u(x,) > supu > u(z)
Sn

for each n, and, letting n — o0,
u(x,) > € and £ > u(z).
Since u is upper semicontinuous
u(x) = £ = u(z)

contradicting (2.17). |
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Remark 2.1 Often the conclusion of Theorem 2.2 is stated in the weaker form of
the validity of

() u(x) > u(y), and
Gij)  forevery z # x, u(z) < u(x) + &d(x, z).

It can be proved, see [126], that if this conclusion is true for each upper semicontin-
uous function u : M — R U {—o0}, u # —o0, on a metric space (M, d), then the
latter is necessarily complete.

We next provide, using Ekeland principle, that is Theorem 2.2, a proof of a
stronger form of the claim preceding Proposition 2.1.

Proposition 2.2 Let (M, (,)) be a complete manifold and u : M — R a C!
Sunction such that u* = supy,u < —+oo. Then, for every sequence {y,} C M
such that u(y,) — u* as n — +oo there exists a sequence {x,} C M with the
properties

(i) u(x,) — u*,
(ii) |Vu(x,)| — 0 and
(iii) d(xn,yn) — 0

asn — +o0.

Proof Foreachn € N, let ¢, = u* — u(y,) and 8, = \/e,. If &, = 0 we choose
X, = Yn, otherwise &, > 0 and by Theorem 2.2 there exists x;, such that

(D) uyn) < ulxn): (@) d(xn, yn) < &, (2.19)
and
forevery z # x,, u(2) < u(x,) + /ed(x,.z). (2.20)

Now fix v € T, M, |v] = 1,and let y : (—o,00) — M, a > 0, be the unit speed
geodesic such that y(0) = x, and y(0) = v. We can assume to have chosen «
so small that y realizes the distance between y(0) and any other of its points and
furthermore y(f) # y(0) for every t € (—a, ), t # 0. Let z = () so that from
(2.20) we get

u(y (1) —u(y(0)) < Vend(y(1). xn) = V/eult].
Since u € C'(M), from here it follows immediately that

(Vu(xa), v)| < Ve

for every v € T, M, |v| = 1, and therefore

IVu(x,)| < Ve (2.21)

Now, letting n — +00, &,, 8, — 0 and (i)—(iii) follow from (2.19) and (2.21). O
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Remark 2.2 Completeness of (M, (, }) cannot be avoided. Indeed, for M = R"\{0}
with the induced Euclidean metric, the function u(x) = ¢ ™ on M is such that
1 = sup,, u = limjy eI, while limyy 0 [Vu|(x) = 1. See also Remark 2.1.

The following example shows that in general there might be no sequences
satisfying all the three conditions in (2.6) at the same time, and points to the fact
that some geometric conditions on M need to be imposed in order to obtain the
validity of the whole (2.6). The choice of the dimension m = 2 is made to simplify
the writing.

Example 2.1 Let M, be the 2-dimensional model with metric given in polar
coordinates, outside the origin o, by

dr* + g(r)*db?, (2.22)

where d6? is the standard metric of S' and g € C®°(R{) is such that g(r) > 0 for
r > 0and

) r ifo<r<l,
g(r) =
r(log V)H“e’z(log DT > 3,

for some positive constant . As we observed in Sect. 1.7 of Chap. 1, the behaviour
of g near 0 guarantees that the metric (2.22) can be smoothly defined on all of M,.
Furthermore, observe also that this metric is obviously complete. Let

r 1 t
a(r) :/0 (%/0 g(s)ds) dt

and consider the function given by
u(x) = a(rx)).
Then, u € C>(M) and it satisfies
Au=d (r)Ar+d"(r) = 1.

Therefore, in this case property (iii) in (2.6) cannot hold; however, since ;& > 0, an
easy check shows that u* < +oo. It is worth pointing out that in this example the
Gaussian curvature K and the volume growth of the geodesic ball By = Bg(0) have
the asymptotic behaviours

g"(r)

K(r) = === ~ =2 (log UM as r — 400
8
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for some constant ¢ > 0, and
1 (14w
vol(Bg) ~ EeRz(logR) T as R — +o0.

Thus it seems reasonable to expect the failure of (2.6) in case of a fast divergence
of the curvature to —oo or in case of a strong growth of the volume of the geodesic
balls of exploding radius. The results of Chaps. 3 and 4, together with the subsequent
geometric applications, will point out a more intricate and subtle situation.

2.2 The Generalized Omori-Yau Maximum Principle

In [210] Omori proved that if (M, (, }) is a complete Riemannian manifold with
sectional curvature bounded from below, then for any smooth function u € C*(M)
with u* < 400 there exists a sequence of points {x; }xey C M satisfying

() ulxp) > u* — %, (i) |Vu(y)| < %, and (iii)” Hess (1) (x) < %(, ),
(2.23)

in the sense of quadratic forms, that is,
[T
Hess (u) (xx) (v, v) < %M forallv e T, M, v # 0.

Later on, Yau [279] (see also Cheng and Yau [81]) gave a version of this result
for complete Riemannian manifolds with Ricci curvature bounded from below,
replacing condition (iii)’ in (2.23) with condition (iii) in (2.6). For this reason, and
following the terminology introduced by Pigola et al. in [227], we state the following
definition.

Definition 2.1 Let (M, (, )) be a (not necessarily complete) Riemannian manifold.
The Omori-Yau maximum principle for the Laplacian is said to hold on M if for any
function u € C*(M) with u* = sup,, u < +oo there exists a sequence of points
{xi}keny C M satisfying

() ulxp) > u* — %, (i) |Vu(g)| < %, and (iii) Au(xy) < % (2.24)

for each k € N. Equivalently, for any function u € C?(M) with u, = infy; u > —00
there exists a sequence of points {x; }xey C M with the properties

() ulx) < ux + % (i) [Vu(x)| < % and (i) Au(x) > —% (2.25)
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for each k € N. In the case where the stronger statement (iii)’ in (2.23) concerning
the Hessian is satisfied, we say that the Omori-Yau maximum principle for the
Hessian holds on M.

With this terminology, the results given by Omori [210] and Yau [279] can be
stated as follows.

Theorem 2.3

(i) The Omori-Yau maximum principle for the Hessian holds on every complete
Riemannian manifold with sectional curvature bounded from below.

(ii) The Omori-Yau maximum principle for the Laplacian holds on every complete
Riemannian manifold with Ricci curvature bounded from below.

More generally, as observed by Pigola, Rigoli and Setti in [227], the validity of
the Omori- Yau maximum principle does not depend on curvature bounds as much as
one would expect. Actually, a condition to guarantee the validity of (2.24) or (2.23)
can be expressed in a function theoretic form. This is the content of a generalization
of Theorem 2.3 due to Pigola et al. [227, Theorem 1.9]. See also [239] for the
underlying ideas of the proof.

Recently, this latter result has been improved by Albanese et al. [5] to the
following

Theorem 2.4 The Omori-Yau maximum principle for the Laplacian holds on every
Riemannian manifold (M, { , )) admitting a C? function 'y : M — R satisfying the
following requirements:

(i) y(x) > 400 asx — oo;
(ii) |Vy| < G(y) outside a compact subset of M;
(iii) Ay < G(y) outside a compact subset of M,

with G € CY(R™), positive near infinity and such that
1
e ¢ L'(+00) and G'(f) > —A(logt + 1),

fort > 1 and some A > 0. An analogous statement holds for the case of the

Omori-Yau maximum principle for the Hessian, by replacing assumption (iii) above

with

(iii)’ Hess (y) < G(y){, ) (in the sense of quadratic forms) outside a compact
subset of M.

Remark 2.3 As observed in Theorem 3.5 of Chap. 3 the requirement u* < 400
for the validity of the maximum principle can be relaxed to u(x) = o(y(x)) as
X —> 00.
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Remark 2.4 Especially significant examples of functions G satisfying the condi-
tions in Theorem 2.4 are given by

N
G =t] Jlog? (). t > 1.,
j=1

where log" stands for the j-th iterated logarithm.

Remark 2.5 Tt is also worth pointing out that although in the statement of The-
orem 2.4 the manifold M is not required to be geodesically complete, the two
assumptions (i) and (ii) imply it. See the proof of Theorem 3.2.

Remark 2.6 The proof of Theorem 2.4 shows that one needs y to be C? only in a
neighborhood of certain points in a set Z and that one also needs the validity of (ii)
and (iii) or (iii)’ there. In the important situation where y is the composition of an
appropriate function with the Riemannian distance from a fixed reference point o,
this is the case if Z does not intersect the cut locus of 0. Otherwise, elaborating on a
trick of Calabi [55] one can solve the problem. We will consider this in Theorem 2.5
below. Note that in the case of the Laplacian, since we have an upper bound for Ar
which holds in the weak sense on the entire manifold we can also use a second
argument which is contained in the proof of Theorem 3.11 via the comparison
Theorem 3.5 of [236] or Proposition 3.1 below.

2.2.1 Two Significant Examples

Of course we expect that the most natural examples of functions y should be built
via the Hessian and Laplacian comparison theorems through the distance function r
to a fixed origin 0 € M. However, in general r is only Lipschitz on M. Fortunately
enough the result holds true also in this case as expressed in the next Theorem 2.5.
Its proof also yields the validity of Theorem 2.4, at least for A = 0, while forA > 0
see Remark 3.2 of Chap.3. We also observe that the technique we introduce here
will reveal basic in extending the maximum principle to more general operators. We
elaborate on an old idea of Calabi, [55], known as “Calabi trick”, contained in the
next

Lemma2.1 Letr : M — R(')" be the distance function from the point o in the
complete manifold (M, (, )). Suppose that r is not differentiable at q and let o :
[0, 1] = M be a unit speed geodesic such that a(0) = o, o () = qandwith | = r(q).
Fix ¢ > 0 sufficiently small and let o, = o (g). Then r:(x) = dist (x, 0,) is smooth
atq.

Proof The following argument is taken from Petersen’s book [219, p. 284]. By
contradiction suppose that r(x) is not smooth at g. Then it is well known (see for
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instance [219, Chap. 5]), that either

(1) there are (at least) two minimizing geodesics from o, to g
or
(ii) g is a critical value for exp,, , the exponential map at o.

In case (i) we would have a nonsmooth curve of length / from p to g, which is
not possible. Thus case (ii) must hold. To obtain a contradiction we show that this
implies that exp, has 0, = o(¢) as a critical value. Since ¢ is a critical value for
exp,, there exists a Jacobi field J : [¢,]] — TM along 0| such that J(¢) = 0,
J'(¢) # 0and J(I) = 0. Then, also J'(I) # 0 since J solves a second order linear
equation. Running backwards from g to o = o(¢) shows that exp, is critical at
o (¢). This contradicts the minimality of o : [0,]] — M. O

Theorem 2.5 Let (M, (, )) be a complete, noncompact, Riemannian manifold of
dimension m; let o € M be a reference point and denote by r(x) the Riemannian
distance function from o. Assume that the sectional curvature of M satisfies

MK (x) > —G*(r(x)), (2.26)
where G € CI(R(')") satisfies
() G(0) >0, (i) G'(t) =0, (iii) % ¢ L' (400). (2.27)

Then the Omori-Yau maximum principle for the Hessian holds on M.
If we only assume, instead of (2.26), that the Ricci curvature satisfies

Ric > —(m — DG*(r)(, ). (2.28)

then the Omori-Yau maximum principle for the Laplacian holds on M.
Remark 2.7 As it will become apparent from the proof, in case o € M is a pole (that
is, cut(o) = 0), (2.26) and (2.28) can be replaced, respectively, with

Kua(x) = =G (r(x), (2229)
and

Ric(Vr, Vr) > —(m — )G*(r). (2.30)

Here K..q is the radial sectional curvature of M, that is, the sectional curvature of
2-planes containing Vr. Observe that the last part of the theorem holds in the only
assumption (2.30) also in case o € M is not a pole; see Remark 2.8 below.

Proof (of Theorem 2.5) Let D, = M \ cut(o) be the domain of normal geodesic
coordinates centered at 0. On D,,, from (2.26) and the general Hessian comparison
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theorem, Theorem 1.4, we have

Hess (r) < ‘Z(L:)) (,)—dr®dr) (2.31)

where g(7) is the solution on Rg‘ of the Cauchy problem

g'(1) = G*(1g() =0 onRy,

2(0)=0, g0 =1. (2.32)

Observe that g > 0 and g’ > 0 on (0, +00). Actually, since g(0) = 0 it suffices
to prove that g’ > 0 on (0, +00). Suppose, to the contrary, that there exists a first
fo > 0 such that g'(fp) = 0. Thus on (0,#) we have g > 0 and g’ > 0. Then
g"(1) = G(1)>¢(r) = 0 on (0, 10), and

fo
¢ -¢©=0-1= [ gwir=o,
0
which is a contradiction. Letting

V() = ﬁ (e./’o’ G(s)ds _ 1) (2.33)

we have ¥ (0) = 0, ¥'(0) = 1 and

1 .
"_ _ / f() (s)ds
v — Gy = o) (Gz(t) + G/ (1)eh© >d) >0,

that is, ¥ is a subsolution of (2.32). By the Sturm comparison theorem

g _v'o _ ol G
g0 ~ ¥ oJaGods _ 1

Thus, for every v € T,M, we have

(2.34)

Jo@ Gs)ds
Hess (1) (¥) (1. v) < G(r(x)) — (10 = (Vre).0))

e./;;(x) G(s)ds __ 1
Now |v]? — (Vr(x), v)2 > 0; hence since G > 0 and G’ > 0

ef(;(x) G(s)ds
Hess (0()(0,v) < G() + D (0P = (vr). o)), @39)
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for, say, r(x) > 2. Define

! ds
p(1) = /O G61 D (2.36)
so that
’ _ 1 "
o (1) = —G(t s and ¢'(r) <0. (2.37)
Set

y(®) = @(r(x)) onM\B,
and note that
y(x) > +00 asx — 0o (2.38)

because ¢(f) — +oo as t — —+oo since 1/G ¢ L'(400). We also observe that,
from G ¢ L'(400), we have

oJo Gls)ds

0 < sup = A < +o0. (2.39)

=2 el Gwds _

Therefore, using (2.35), (2.37) and (2.39) we deduce that for each x € D, N (M \ B,)
andv € T\M

Hess(y)(x)(v, v) = ¢/ (r(x)) Hess(r) (x) (v, v) + ¢” (r(0)) (v, Vr(x))?
< A (1ol = (0. Vr)?).
that is,
Hess (y)(v,v) < Alv|>. (2.40)

Furthermore, observe that

1 1

VYl =Go7 D 6 =

A, (2.41)

up to choosing A in (2.40) sufficiently large. Let now u € C*>(M) with

u* = supu < +oo. (2.42)
M
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For a fixed n > 0 consider the sets

Ay ={xeM:ulx)>u*—n} (2.43)
and

B, ={xecA,: |Vulx)| < n}. (2.44)

Since (M, (, )) is complete, from Ekeland quasi-minimum principle (precisely,
Proposition 2.2), we deduce B, # ¢J. We have to show that

iélf Hess (1#)(x) <0 (2.45)

in the sense of symmetric bilinear forms. To prove (2.45) we reason by contradiction
and we suppose that there exists op > 0 such that for each x € B, there exists
v € T:M, |v| = 1, such that

Hess (u#)(x) (v, v) > 0p. (2.46)

First we observe that u* cannot be attained at any point xo € M, for otherwise
Xo € By and since Hess(u) (xo) has to be negative semi-definite we contradict (2.46).
We set

2 ={xeM:ykx) >t}

Then £2f = M \ §2; is closed and hence compact by (2.38). Define

*_

u

max u\x).
x€0f ()

Since u* is not attained on M and {£2} is a telescoping family exhausting M, there
exists a divergent sequence {;}jen C R such that

* *

up —u*  asj— +0oo, (2.47)

and 77 > O sufficiently large that uz, > u* —n/2 and 27, C M \ B,. In particular
(2.40) and (2.41) hold on £27, N D,.. Choose « such that u;l < a < u*. Because of
(2.47) we can find j sufficiently large such that T, = #; > T} and u?z > o. Then, we
select § > 0 small enough to have

a+8< M;z. (2.48)
For o > 0 define

Yo(x) = a +0o(yx) —Th).
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Then
Yo(x) =a foreveryx € 027,

and for o sufficiently small, from (2.40), (2.41) we have

Hess (y5)(x) = o Hess (y)(x) <0A <09 onD,N 2y, (2.49)
|Vys| =0|Vy| <oA <n onD,N$2r. (2.50)

On .QT1 \ .QT2
a<y;x)<a+o(Th—-T). (2.51)

Thus, choosing o > 0 sufficiently small that
o(T, —T) <4, (2.52)
we obtain
a<y;(x) <a+35 onf2p \ 2.
For x € 0827, yo(x) = & > uz, > u(x). Hence
(u—vs)(x) <0 onds2y,. (2.53)

Let x € 27, \ £27, be such that u(x) = u?z > o + §. Using (2.52) and (2.51) we
deduce

(u—ys)(x) > u;Z —a—o(T,—T) > u;Z —a—8>0.
Moreover, from (2.38) and u* < +o0, for T5 > T sufficiently large we have
(u—ys)(x) <0 on §27,. (2.54)
Therefore,

p= sup (u—ys)(x) >0

XE§1

is in fact a maximum attained at a point zy in the compact set 2, \ £27,. From (2.54)
we know that y(z0) > 7. Thus

u(z0) = Vo (20) + > Vo (20) > @ > uz, > u™ —1n/2
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and hence zo € A,N&27,. Next we have to distinguish two cases according to zg € D,
or not. If zg € D,, since zp is a maximum for u — y,, we get V(u — y5)(z0) = 0.
Using this fact we infer that zo € B, since, by (2.50),

[Vu(zo)| = [Vys(20)] <0A <.
Thus zo € B, N £27,. Again since 7o is a maximum for u — y,, we have
Hess (1)(z0) < Hess (Y5)(20)
and this, jointly with (2.49), yields
Hess (u)(z0) < 00(. )
in the sense of symmetric bilinear forms, contradicting (2.46). This concludes the
proof when zy € Dy.

In case zp & D, we reason as follows. Fix 0 < & < 1 sufficiently small so
that for the minimizing geodesic & parametrized by arclength and joining o with
20, the point o, = £(e) # zo and zo ¢ cut(o.). Thus, by Lemma 2.1, the function
re(x) = dist(x, 0,) is C? in a neighborhood of zo. By the triangle inequality,

r(x) <re(x) + ¢, (2.55)
equality holding at zo. With ¢ defined in (2.36), set

YE) = @(re(x) + &).
Since ¢ is increasing
y(x) = @(r(x)) < @(re(x) +€) = y*(x) (2.56)

and

¥Y(20) = v*(20)- (2.57)
Next, consider the function

Vo) = +0(y*(x) —Th).

Because of (2.56) and (2.57), in a neighborhood of zo we have

ux) — yo(x) < ux) — y,(x) < p,
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and
u(20) — ve(20) < u(zo) — Vo(z0) = 1.
Hence zy is also a local maximum for u(x) — y£(x). Therefore
Vu(zo) = Vyi(zo) (2.58)
and
Hess (1)(z0) < Hess (y£)(z0). (2.59)
From (2.58) we deduce

[Vu(z0)| = o|Vy*(zo)| = 0¢'(re(20) + &)|Vre(20)|
o

o
“Gr@+D —om =T

Since we already know that zo € A, we conclude that zo € B,. Now we analyze
(2.59). Because of (2.31), (2.55) and G’ > 0, we have

MK (x) > —G*(r(x)) = —G*(r.(x) + ).

Set G.(f) = G(t + ¢) and consider the Cauchy problem (2.32) with G, instead of G.
Again by the Hessian comparison theorem, on D,, we have

Hess (1) (x) < % z 8 () —dr. @ dr.).,

where

Yelt) = G;(O) (e 1),

Observing that zg € D,,, using (2.55) and (2.39), for v € T M, |v| = 1, we obtain

A

Hess (y°)(z0) (v, v) < ¢'(re(20) + &) Hess () (z0) (v, v)
1
G(re(z0) +€) + 1 Hess (r:)(z0) (v, v)

1
W Hess (7:)(z0) (v, v)

< 1 wg/(”s(zo) 2 2
< o) T T v G (0 = (T )
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1

= m G:(7:(20))

e JiECO) Gs+e)ds

(10F = (Vre(z),v)?)

X re(z0)
ef()l G(s+e)ds _ |

_ G(rs(zo) + 8) E-/;rS(Z())+S Gls)ds
© G(r(zo) + 1 efgrs(:())‘i‘s Cods _

- (0 = (Vo) o))

r(z0)
_ G(r(20)) ol Gls)ds , 2
G + —(Vr, ,
(r(ZO)) 1 e./’s"(m) G)ds _ | (|U| (Vre(z0), v) )

ef(;(zo) G(s)ds

- (IoF = (G- v)?)

e/ Glsyds _

IA

Av]?
Thus,
Hess (y7)(z0) (v, v) = o Hess (y*)(20) (v, v) < 0Av]* < oolv],

contradicting (2.46). The second part of the theorem, dealing with the Laplace-
Beltrami operator, can be proved in an analogous way under assumption (2.28).
O

Remark 2.8 As observed in Remark 2.7, the final conclusion of the theorem, that is,
the validity of the Omori-Yau maximum principle for the Laplacian, can be proved
under the relaxed assumption (2.30), even if o is not a pole. The argument is based on
a comparison procedure and it makes essential use of the validity of the differential
inequality

Y'(r)
v (r)

in the weak sense on all of M. Indeed, as in the proof above, we reason by
contradiction and we suppose that

Ar<(m-—1)

(2.60)

inf Au > oy (2.61)
BU

for some oy > 0. As above, we prove the existence of zyp € A, that is a point of
maximum for u — y,. Now note that if zy € cut(o), then we can prove, via the trick
of (2.58), that |Vu(zp)| < 7, so that zy € B,,. Otherwise, if zo ¢ cut(o) then zo € B,
trivially. Let

Z={x€M\§1:(u—ya)(x)zu}CBn.
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Since Z is compact and B, is open, there exists an open neighborhood Uz of Z
contained in B,. Pick any y € Z, fix 8 € (0,u) and call Zg, the connected
component of the set

e M\ 21 (u—y))x) > B}

containing y. Since f > 0,Zg, C M \@and we can also choose f sufficiently near
to u so that Zg , C B,,. Furthermore, Zg, is compact. Using (2.60), that presently
plays the role of (2.40), we have

Ay < A
in the weak sense on M. Using the latter and (2.61) we deduce
Ay, < 0A < oy,
and therefore
Auz 00> Ayy = Alys + B) (2.62)
in the weak sense on Zg ,. Moreover, on 0Zg,

u(x) = yo (x) + B,

and hence by Proposition 3.1 and Remark 3.9 in Chap. 3, u(x) < y,(x) + B on Zg,,.
However, aty € Zg

u(y) = ve ) + > v () + = u(y),

which is a contradiction.

Remark 2.9 A key point in the previous proof is to guarantee the existence of zp €
§T1 \ 27, where the function u — y,,; attains its positive maximum p. Towards this
end, inequality (2.54) is essential. However, we can guarantee the validity of the
latter under the assumptions that u(x) = o(y(x)) as x — oo, that is,

r(x)+1 ds
- i — , 2.63
ux) =o ( /0 G (s)) as r(x) - +oo ( )

which is clearly weaker than u* < 4-oc0. This observation will be used in geometric
applications.

Before proving the next result we recall the following notation: letf : M — N
be a map between two manifolds; then f(x) — oo as x — oo in M means that
for each compact set £2y C N there exists a compact §£2) C M such that, for each
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xeM\ 2y, f(x) € N\ R2y. Similarly forf : M — R and f(x) - +ooasx — oo
in M.

Theorem 2.6 Let f : M — N be an isometric immersion into a complete
Riemannian manifold N with mean curvature vector field H. Let oy € N and assume
that f(M) N cut(on) = @. Suppose that the radial sectional curvature of N with
respect to oy satisfies

YKra = =G (p), (2.64)
where p denotes the Riemannian distance function on N from the point oy, and
GyeC® (R(')" ) is a positive function satisfying

L 1 (+00)

— 00).

Gy

Define

! ds
on(1) :/0 —GN(s+ 0’

If the immersion is proper and there exists a positive G € C' (RS’) such that é g
L'(+00), G’ > 0 and

IH| < Glpn o pof), (2.65)
in the complement of a compact set in M, then the Omori-Yau maximum principle

for the Laplacian holds on M.

Proof Clearly we can suppose that M is not compact, otherwise there is nothing
to prove. Next, note that gy o p o f is C*(M) because of the assumptions, and that,
without loss of generality, we can suppose Gy nondecreasing with Gy (0) > 0. Now,
since ¢y is defined as in (2.36), the corresponding of (2.37) holds. Set

ds

p(f(x))
y(x) = (o 0 pof)(x) = /0 .

Then, since f is proper we have that f(x) — oo in N as x — oo in M. Hence, using
% ¢ L'(400), we deduce

y(x) > +o00 asx— oo in M.

Furthermore, with the aid of Gauss lemma,

1
IVy| = |oy(pof)] = Gior T =4 oM
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for some constant A > 0. Letting m = dimM, using (1.180) and (1.170), and
indicating with {e;} a local orthonormal frame on M, we have

m

YAy =y " Hess (gn © p)(df(e), df (¢:) + m(V(gy © p), H)
i=1

= 3 { ko) Hess () (df(e0). df (eD) + ¢i(p)d(p o /) e0))?)

i=1

+ mpy(p)(Vp. H).

By the Hessian comparison Theorem 1.4 and Eq.(2.34), having defined i as in
(2.33) with G replaced by Gy, we have,

W/(P) _ g./&oGN(S)dS
Hessip) = v(p) o dy = dp ® dp} = Gr (o) oJd Gr(9)ds _ |

As remarked,

{(, v —dp®dp}.

f(x) > o0 in N

as x — oo in M. Hence, noting that ¢}, < 0, proceeding as in Theorem 2.5, we can
choose A large enough and a compact set K C M such that

M A <A+LH on M\ K.
y = GN(O)| I \

Let now G be as in statement of the theorem; since
H| < G(y)

the function y satisfies the hypotheses of Theorem 2.4, therefore we have the validity
of the Omori-Yau maximum principle for the Laplacian on M. O

Remark 2.10 Similar extrinsic sufficient conditions for the validity of the Omori-
Yau maximum principle for the Laplacian are given in the proof of Theorem 5.9,
item (ii), in Chap. 5, and in Theorem 7.1 of Chap. 7.

2.3 Stochastic Completeness and the Weak Maximum
Principle

Let us recall that stochastic completeness is the property for a stochastic process to
have infinite (intrinsic) life time. In other words, the total probability of the particle
being found in the state space is constantly equal to 1. A classical analytic condition
to express stochastic completeness is as follows.
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Definition 2.2 A Riemannian manifold (M, (, }) is said to be stochastically com-
plete if for some (and hence, any) (x,7) € M x (0, +00)

/ px,y,ndy = 1, (2.66)
M

where p(x,y,f) is the (minimal) positive heat kernel of the Laplace-Beltrami
operator A, that is, the smallest positive fundamental solution of the heat equation
dp

1
— =-A M,
ot 2 pon

in the variables (x, 7) (the point y is considered as fixed), with initial data
p(y, ) =8, for t — 0T,

where §, is the Dirac delta centered at y.

Observe that p is smooth in (x,y,7) € Rt x M x M. Note also that in the above
definition the Riemannian manifold M is not assumed to be geodesically complete.
Indeed, following Dodziuk [104], one can construct a minimal heat kernel on an
arbitrary Riemannian manifold as the supremum of the Dirichlet heat kernels on
an exhausting sequence of relatively compact domains with smooth boundary. The
analytic condition expressed in (2.60) is equivalent to a number of other properties.
For instance, one has the following equivalent characterizations (for a proof, see
[131, Theorem 6.2] and also Theorem 2.14 below).

Theorem 2.7 Let (M, (,)) be a Riemannian manifold. Then the following are
equivalent:

(i) M is stochastically complete.
(ii) For every A > 0, the only nonnegative bounded C* solution of Au > Au on M

isu=0.
(iii) For every A > 0, the only nonnegative bounded C? solution of Au = Au on M
isu=0.
(iv) For every T > 0, the only bounded solution on M x (0,T) of the Cauchy
problem
u 1
Ul,—g+ =0 inthe Ll (M) sense
isu=0.

By way of example, on which we shall come back extensively in Sect. 2.5, recall
that a Riemannian manifold is said to be parabolic if every subharmonic function
on M which is bounded from above is constant, that is, Au > 0 and u* = sup,, u <
o0 implies that # = constant. In particular, every parabolic Riemannian manifold
clearly satisfies condition (ii) in Theorem 2.7 and hence it is stochastically complete.
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In [225], Pigola et al. found the following characterization of stochastic com-
pleteness.

Theorem 2.8 Let (M, (,)) be a Riemannian manifold. Then the following are
equivalent:

(i) M is stochastically complete.
(ii) For every function u € C*(M) with u* = sup,, u < +oo, and for every & > 0,

infAu <0
2

where 2, = {x € M : u(x) > u* — ¢&}.
(iii) For every function u € C*(M) with u* = sup,,u < —+oo there exists a
sequence of points {x,} C M satisfying

(i) u(xy) > u* — %, and (ii) Au(xy) < %

foreachk € N.

(iv) For every function u € C*(M) with u* = sup,,u < +00 and every f € C°(R),
if Au > f(u) on the subset 2, = {x € M : u(x) > u* — &}, for some ¢ > 0,
then f(u*) < 0.

Proof In an obvious way, (ii) implies (iii), simply by choosing ¢ = 1/k for each

k € N and taking x; € §21 such that Au(xz) < 1/k, since infe, , Au < 1/k. On the
other hand, (iii) clearly implies (iv). Indeed, x; € £2; if k is sufficiently large, so that

% > Au(xy) > f(uxe)),

and taking limits here yields f(u*) = limy— 400 f(1(xx)) < 0. Furthermore, (iv)
clearly implies condition (ii) in Theorem 2.7, and hence (i), simply by choosing
f(u) = Au.

Therefore, it only remains to prove that (i) implies (ii). To see this, we argue by
contradiction, and assume that there exists a function u € C*(M) with u* < 400
and such that, for some ¢ > 0,

inf Au > 2¢ > 0.
Qs

We let 2% = {x € M : Au(x) > c}, so that 2, C 2*. Having set A = /e, at each
x € £2* we have

Au(x) > ¢ > ¢+ Aulx) —u*) = Aux) + ¢ —u*),
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so that u + & — u* is a C2 subsolution of
Lu=Au—Au=0 (2.67)

on £2*. Since the constant function 0 is obviously a subsolution of equality (2.67)
on M, we see that u, = max{u + ¢ — u™, 0} is also a subsolution on M. Since
uis C?, u, belongs to "My n Wllo'f(M). Furthermore, u, # 0 and 0 < u, <
& < 4o0. Noting that any positive constant is a supersolution of (2.67), choosing
u4+ > ¢, and applying the monotone iteration scheme (see [240, Proposition 2.4] for
the formulation needed here) yields a smooth solution v of (2.67) on M such that
us < v < u4. Now, since u, does not vanish identically, the same holds for v, and

this contradicts condition (iii) in Theorem 2.7 and, equivalently, condition (i). |

Comparison with the Omori-Yau maximum principle for the Laplacian suggests
the following

Definition 2.3 Let M be a (not necessarily complete) Riemannian manifold. The
weak maximum principle is said to hold for the Laplacian on M if, for any function
u € C*(M) with u* = sup,, u < +0o0, there exists a sequence of points {x; }reny C M
satisfying

1 1
@) ulxg) > u* — o and (ii) Au(xy) < T
Analogously, the weak maximum principle for the Hessian is said to hold on M if,

for any function u € C?(M) having u* = sup,, u < +00, there exists a sequence of
points {x;}ren C M satisfying

@) ulxg) > u* — %, and (ii) Hess(u)(x) < %(, ).

The chain of equivalences described in Theorem 2.8 shows that this seemingly
simple minded definition is in fact surprisingly deep. First of all, the validity of the
Omori- Yau maximum principle immediately implies stochastic completeness. Thus,
for instance, by Theorem 2.5 and Remark 2.7, this is the case if

Ric(Vr,Vr) > —(m — 1)G*(r),
where G : R(')" — R(')" satisfies
G(r) ~ Cr(logr)(loglogr)--- asr — +o00
for some constant C > 0. Indeed, since the condition on Ric is expressed as an

inequality, we can always redefine G to satisfy also (i) and (ii) of (2.27) (note that
this formulation of the Omori-Yau maximum principle greatly improves on [279]).
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On the other hand, the function theoretic characterization of stochastic complete-
ness given in Theorem 2.8 often enables one to analyze consequences of the latter in
a simple way. This is the case, for instance, of the following straightforward proof
of a sufficient condition for stochastic completeness due to Khas’minskii [159] (see
[267] for a proof based on the standard argument). We remark that, as proved by
Mari and Valtorta in [182], condition (2.68) below is also necessary.

Theorem 2.9 Let (M, (. )) be a Riemannian manifold. If M supports a C? function
y such that y(x) — 400 as x — o0 and, for some positive constant A > 0,

Ay < Ay (2.68)

outside a compact subset of M, then M is stochastically complete.
Proof Note that by adding a constant to y we may assume without loss of generality
that y is everywhere positive and that (2.68) holds on the whole M. We will prove
that the weak maximum principle holds on M. To this end, let u be a C? function on
M with u* < +00, and assume by contradiction that condition (ii) in Theorem 2.8
does not hold. That is, there exists ¢ > 0 such that inf, Au > 0, where 2, = {x €
M : u(x) > u* — ¢}. Therefore, choosing

¢ < min {e, i(rzlfAu},
we have

Au> ¢ (2.69)

on the subset 2, = {x € M : u(x) > u* — ¢&'}. Let n < min{&’/2,&'/21} and let
X € M be such that

ux) > u* —n/2. (2.70)
Choose ¢ > 0 small enough that
cy(®) <n/2, (2.71)
and consider the function # — cy. Since y tends to 400 as x goes to oo in M and
u* < 400, the function u — cy attains its absolute maximum at some point xo € M.
We claim that
u(xg) > u* —¢'/2 and cAy(x) < &'/2. (2.72)

Indeed, by (2.70) and (2.71) we have

u(xo) — cy(xo) = u(®) —cy(®) > u* —n.
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Thus,
u(xo) > u(xo) —cy(xo) > u* —n>u*—¢'/2
and
cy(x0) < ulxo) —u* +n<n<é/22.

This proves (2.72). Therefore, xy € §2, and (2.69) holds at xy. But, recalling that
u — cy attains its absolute maximum at xy, and using (2.68) and (2.72), we have

0> A(u—cy)(x0) = Au(xg) — cAy(xp) > & — cAy(xo) > &'/2,

which is a contradiction. ]

Remark 2.11 One can indeed relax the regularity of y to y € C°(M\ K)N W,l{;c2 M\

K)) for some compact set K C M. See Theorem A in [229]. This fact will be used
in the proof of Theorem 2.12 below.

A minor modification of the above proof yields the following version of
Theorem 2.9 for the Hessian.

Theorem 2.10 Let (M, (,)) be a Riemannian manifold. If M supports a C>
function y such that y(x) — 400 as x — o0 and, for some positive constant
A > O, it satisfies the differential inequality

Hess (y) < Ay(.)

outside a compact subset of M (in the sense of quadratic forms), then the weak
maximum principle for the Hessian holds on M.

It is interesting to remark that the existence of a function y satisfying the
requirements in Theorem 2.9 does not force the manifold to be geodesically
complete. This should be compared with the observation after Remark 2.5. Contrary
to what happened there, in the present situation no conditions are imposed on the
gradient of the function y, and this allows one to find functions satisfying the due
requirements even on noncomplete manifolds, as in the following example.

Example 2.2 Let M be the geodesically incomplete Riemannian manifold given by
R™\{0}, with the usual Euclidean metric and m > 3. On M we consider the function

X" +1

2 2—m
y(X) = |X =+ (x = .

Clearly, y(x) — 400 as x — oo. Moreover, since for every x € R”\{0}

IVIx|?=1 and |x|Alx| =m—1,
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it follows that

Ay(x) = 2x|Alx] + 2 + @ — m)|x|'" " Alx| + (2 — m)(1 — m)|x| ™"
=2m+ 2—-—m)(m—D)x|™ -2 —-—m)y(m—1)|x|™",

that is,
Ay(x) =2m
on R™\{0}. Thus y satisfies the conditions in Theorem 2.9 and this shows that M =

R™\{0}, m > 3, is stochastically complete.

However, contrary to Theorem 2.9, the conditions on y in Theorem 2.10 imply
that (M, (, )) is complete, although we have no restrictions on Vy. This can be seen
as follows: suppose that

Hess (y) < Ay(,) (2.73)

is satisfied outside some compact set K C M. Without loss of generality we can
suppose A = l and thaty > Oon M \ K. Let £ : [0,]/) — M be a maximal geodesic
path parameterized by arclength; we need to show that / = 4-co. Towards this aim
note that £ has to be a divergent path, that is, it eventually leaves each fixed compact
set of M. Thus, there exists #o > 0 such that £(¢) ¢ K for each ¢ > 1,. Consider the
unit speed geodesic I" : [0,] —ty)) > M\ K, I'(t) = E(t+1y);seto =yol. A
computations using (2.73) shows that ¢ () satisfies

") <@  on[0,1—1). (2.74)
Furthermore,
p((I—19)") = +oo. (2.75)

On the other hand, using the classical Sturm comparison argument (see [44]), (2.74)
shows that the function

sinh(¢)¢’ (t) — cosh(t)e(f)

is nonincreasing. As a consequence
¢'(0)
40]

which, integrated, implies that ¢ cannot explode in finite time, contradicting (2.75).
The Khas’minskii test in Theorem 2.9 may be used to deduce conditions that
ensure the stochastic completeness of a Riemannian manifold. For instance, we may

< coth(?),
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apply it to the case where M is a radial model in the sense of Greene and Wu [129]

(see Definition 1.1 in Sect. 1.8).

Example 2.3 Let M, = R™ be the rotationally symmetric manifold with metric

given in polar coordinates on (0, +00) x S"~! by
dr* + g(r)*d6?,

where d6? is the standard metric on the unit sphere S"~! C R”
such that g(r) > 0 for r > 0, g’(0) = 1 and g®¥(0) = 0 for k

o eR™,
vol(3Bg) = wng" ' (R).

where w,, stands for the volume of the unit sphere S"1 of R™,

R
vol(Bg) = W / ¢" L (t)dr.
0

Define

_ _ "™ vol(B,)
v = voe) = [

r(x) t
:A (g$*lgmwu0“

g
g(r)’

Since forr > 0

Ar=(m—1)

it follows that

Ay =y'(nNAr+y"(r)
g'(r)
g(rym

g

= m=b RET

=1,

/rg(s)m_lds +1—-m—-1)
0

thatis, Ay = 1 on M,. Therefore, if

VO](BR) 1
vol(dBg) # L (F00).

and g € C®(RY) is
=0,1,2,.... Then,
as recalled in Sect. 1.8, denoting with Bg the geodesic ball of radius R centered at

and

AE@W%
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from Theorem 2.9 we deduce that M, is stochastically complete. On the other
hand, if

vol(Bg) .
————— € L' (+00),

vol(dBg) (+00)
then y is a bounded C? function on M, with Ay = 1, so that the weak maximum
principle does not hold on M,. In other words, M, is not stochastically complete.
We collect these observations in the following result.

Proposition 2.3 A model manifold M, is stochastically complete if and only if

VOI(BR) 1

It has been conjectured (see [131, 227]) that (2.76) is a sufficient condition for a
general complete manifold M to be stochastically complete. This conjecture has
been recently proved to be false by Béar and Bessa [36]. To date, the best volume
growth sufficient condition for stochastic completeness of a general complete
Riemannian manifold is due to Grigor’yan [130] (see also [131, Theorem 9.1]),
and it is expressed in the next.

Theorem 2.11 Let (M, (,)) be a complete Riemannian manifold. If, for some
reference point,

R

1

then M is stochastically complete.

Observe that condition (2.77) implies (2.76), the converse being generally false,
so that Grigor’yan condition is slightly stronger than the necessary and sufficient
condition for the stochastic completeness of model manifolds; to see this refer, for
instance, to Lemma 2.6 at the very end of the chapter. We also note that (2.77) is
implied, via the Bishop comparison theorem, by a lower bound on the radial Ricci
curvature of the type

Ric(Vr, Vr) > —(m — 1)G3(r),

where G : R(')" — RS’ is a nondecreasing function satisfying

1 1
GO & L (400),

a typical example of such G being G(r) = A+/1 + #* (see Theorem 1.3 together with
Proposition 1.7). Theorem 2.11 can be seen also as a consequence of Theorem 2.15
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below, recently proved in [227, Proposition 3.17]. In some sense the situation is
similar to what happen for parabolicity, see Remark 2.19 below. A clarification in
the present case would certainly be most welcome.

On the other hand, in order to prove stochastic completeness one can also use
comparison with a suitable model and the following theorem. For a version of this
result extended to a large class of operators on M we refer to [229].

Theorem 2.12 Let (M, (, )) be a complete Riemannian manifold of dimension m,
let 0 € M be a reference point and denote by r(x) the Riemannian distance function
fromo. Let g € COO(R(')") be such that g(t) > 0 fort > 0, g(0) = 0, g'(0) = 1 and
g®(0) = 0 fork = 1,2, ..., and consider the corresponding model manifold M,
of the same dimension m. Assume that

g'(r(x)
8(r(x))

holds on M\ ({o} U cut(o) U K) for some compact set K C M. If M, is stochastically
complete, then M is also stochastically complete.

Ar(x) < (m—1)

Proof From Proposition 2.3 we know that M, is stochastically complete if and only
if (2.76) holds and the latter is clearly equivalent to

g™ /ltg(s)m_lds ¢ L' (4+00). (2.78)

Fix A > 0; choose R sufficiently large that K C Bg = Bg(0), set

a(r) = A /R ' (g(z)l—'" /R t g(s)m_lds) dt on [R, 4+00), (2.79)

and define y (x) = a(r(x)) on M \ Bg. Note that since M, is stochastically complete
(2.78) holds and

y(x) > +00 asx — oo.

Next, according to the assumptions of the theorem, on M\ (cut(o) U Bg) we have

Jr)
i) * W)

Ay(x) =" (r(x) + Ar(n)e/ (r(x)) < " (r(x) + (m—1)

since &’ > 0. Using (2.79) we easily see that

Ay(x) < Ay(x) on M\(cut(o) U Bg). (2.80)
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Now we use a trick of Cheng and Yau [81] to show that (2.80) is satisfied in the
weak sense on M \ Bg. By Theorem 2.9 and Remark 2.11 this will be enough to
conclude that M is stochastically complete.

Towards this aim we consider an exhaustion {£2,} of M \ cut(o) by bounded
domains with smooth boundaries, star-shaped with respect to o. Let v be the outward
unit normal to d52,,. Denote by p(x) the distance function from x to 952, with the
convention that p(x) > 0 if x € £, and p(x) < 0 if x ¢ £2,. Thus p is the radial
coordinate for the Fermi coordinates relative to d£2, (see for instance [72]). By
Gauss lemma |Vp| = 1 and Vp = —v on 052,,. Let

2 ={xe 2,:pkx) > ¢}
for some ¢ > 0 sufficiently small and define the Lipschitz function

1, if x € £2¢;
Ye(x) = § px)/e, x € 2, \ 25 (2.81)
0, xeM\ 2,

Let ¢ € C°(M \ Bg), ¢ > 0. Since y satisfies (2.80) in (M \ Bg) N £2,, and
oY, € Wé'z((M \ Bg) N £2,) we have

1
[ oz @rvern==[ x| 92900

n

Therefore, by the coarea formula,
1 &
[ onev == [ Vo - [ [ (9n.00.
2 2 &€ Jo !
where 2! = {x € 2, : p(x) > t}. Letting ¢ — 0T, we get
woz= [ (Ve [ e
2, " 082,
Since £2,, is star-shaped with respect to 0 and &’ > 0 we deduce
(Vy, Vo) + Ayp) > 0.

2,

Now cut(o) has measure zero, and letting n — +o0o we finally obtain

/ (Vy, Vo) + Ayp) = 0,
M\BR

showing that (2.80) is satisfied in the weak sense on M \ Bg. O
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Remark 2.12 Considering that y(x) = a(r(x)), with &’ > 0, a proof analogous to
that of Theorem 2.5 applies here too.

As a consequence of Theorem 2.12 we have the following result extending
Varopoulos [267] (see also [149, 202]), which detects the maximum amount of
negative curvature that can be allowed without destroying stochastic completeness.

Theorem 2.13 Let (M, (, )) be a complete Riemannian manifold of dimension m,
let 0 € M be a fixed origin and denote by r(x) the Riemannian distance function
from o. Assume that the radial Ricci curvature satisfies

Ric(Vr, Vr) = —(m — 1)G*(r),

for some positive nondecreasing continuous function G with

cl; ¢ L' (+00). (2.82)

Then M is stochastically complete.

Proof Note that without loss of generality we can further suppose that G €
Cc* (R(‘)F) and GZ*+D(0) = 0fork = 0,1,2,.... We let g(¢) be the positive solution
of the Cauchy problem given by

¢ —G*1)g=0 onR},

) =0, g(0)=1. (2:83)

Observe that our assumptions on G imply that g (0) = 0 foreach k = 1,2,....
By the Laplacian comparison theorem (see Theorem 1.2), we have that

§'(r(x))
8(r(x))
on M\ ({0} U cut(0)). Therefore, by Theorem 2.12, it is enough to show that the

model M, is stochastically complete. From Proposition 2.3, this is equivalent to
show that

Ar(x) < (m—1)

vol(Bg)

1
—vol(BBR) &L (+0), (2.84)
with

vol(B) [y &" ' (s)ds
vol(@B,) g™ (1)
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Similarly to what we did in Theorem 2.5, Eq. (2.33), we define the function A(f) on
R(')" setting

h(t) = % (efé Glo)ds _ 1) .

Then 4 is a subsolution to the Cauchy problem (2.83), and by Sturm comparison
theorem we have

g _ W

gy ~ k()
Since
(1) el 6O g
=G()— ~ CG(1), ast— +o00o,
h(t) el GO gy — 1 ®

for some constant C > 0, we conclude that

g0 _
o) = 0

for some (other) constant C > 0, whenever ¢ is sufficiently large. Note that since
G(t) > 0, the function g(7) diverges to infinity as # — +oc0. Then, one shows (2.84)
using (2.82) and de 1’Hospital’s rule. O

It is clear that Theorem 2.8 also gives useful information on the study of bounded
above solutions of differential inequalities of the form Au > f(u). Indeed the
statement

(v) For every function f € C°(R) and every u € C*(M) with u* = sup,; u < +00
solving the differential inequality Au > f(u), we have f(u*) <0

is equivalent to any of the statements (i) to (iv) of that theorem. To see this simply
observe that (v) is clearly implied by (iii) and it implies (ii).

We are now going to extend our investigation to a more general class of
differential inequalities which includes those of the type Au > b(x)f (u). This in part
justifies the study of the class of operators that we introduce next. For a definitely
more compelling reason, see Chap. 8.

Let A, b, V be smooth functions on M with A, b > 0 and V > 0. We consider the
elliptic operator defined by

Lu = %(div (AVu) — Vu) ,u € C3(M). (2.85)

Then —L is a positive, symmetric operator on C°(M) C L*(M, b(x)dx), where dx
is the Riemannian volume element. For ease of notation, we use the same symbol L
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to denote the Friedrichs extension of L (note that L may fail to be essentially self-
adjoint on C2°(M), but it is so for instance in the important case where V = 0). The
following result is proved in Sect. 3 of [227, Theorem 3.11]. We refer to this paper
for the proof and a discussion on it and related results.

Theorem 2.14 Let (M, (, )) be a Riemannian manifold and let L = b™" (div(AV)
—V) where A, b,V are smooth functions with A,b > 0 and V > 0. Consider the
following statements:

(i) Ifu € C*(M) is such thatu > 0, u* < 400 and Lu > Au for some A > 0, then
u vanishes identically.
(ii) Ifu € C2(M) is such thatu > 0, u* < +o0 and Lu = Au for some A > 0, then
u vanishes identically.
(iii) For every u € C*(M) with u* < +o00 and every & > 0,

infLu <0

€

where 2, = {x € M : u(x) > u* — &}.
(iv) For every u € C>(M) with u* < 400 there exists a sequence {x;} C M such
that

1 1
u(xy) > u* — o Lu(x;) < T

foreveryk € N.
(v) Any nonnegative bounded solution u(x, t) of

Lu > %, onM x (0,T);
u(x,0%) =0, in the L}, (M, b(x)dx) sense
is identically zero.
(vi) Any nonnegative bounded solution u(x, t) of

PR

u(x,07) =0, inthe L' (M, b(x)dx) sense

loc

{ Luy=2% onM x (0,7T);

is identically zero.

Then, the following chain of implications holds under the additional assumption
specified on the corresponding dashed implication arrow

V) iv) «—— iii)

N
l \ 'V=0oru*>0
|

vi) ﬁ i) «—— i)

V=
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In particular, if V.= 0 all of the previous items but (v) are equivalent.

We note that actually the proof shows that in (i) and (ii) we may replace the condition
that u is C? with the weaker assumption that u € W,;>(M) and that the (in)equality
Lu = Au (> Au) holds in the weak sense.

We generalize the definition of the weak maximum principle for the class of
operators L = b~ (div(AV) — V) as follows.

Definition 2.4 Let (M, (, )) be a Riemannian manifold. We say that L satisfies the
weak maximum principle on M if for every u € C?(M) with u* < +oo there exists
a sequence {x;} C M such that

1 1
u(xy) > u* — o Lu(xy) < Z

for every k € N.

Incase V = 0 it follows easily from Theorem 2.14 that the weak maximum principle
for the operator L is equivalent to the validity of the following condition:

(vii) For every f € CO(R) and every u € C*(M) with u* < 400 solving the
differential inequality div(AVu) > b(x)f (1) we have f(u*) < 0.

One can find sufficient conditions for the validity of the weak maximum principle
for the operator L. For instance we have

Theorem 2.15 Let (M, (, )) be a complete Riemannian manifold, and assume that,
for some reference point,

rl=r
— 41! , 2.86
log vol B, #L(+o0) ( )

for some € R. Then, for every u € C*(M) with u* = supy, u < +oo, and for
every ¢ > 0, it holds

igf(l + N Au <0,

where 2, = {x € M : u(x) > u* —¢}.

Remark 2.13 Condition (2.86) implies i < 2. In case = 2, and as an application
of [260], (2.86) can be improved to

|
— 8" 1M (4o0). (2.87)
rlogvol B,

The proof of Theorem 2.15 elaborates on some ideas of Grigor’yan and, in
particular, uses heat equation techniques. Since this approach is different from that
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we shall follow in the sequel, we report here the argument taken from [227]. In fact
we shall prove the next more general

Theorem 2.16 Let (M, (, )) be a complete Riemannian manifold and let A, b, V be
smooth, A,b > 0, V > 0 and such that

b(x) > A(x) < Kr(x)” (2.88)

H .
e

on M \ Bg, for some Ry, H K > 0, y, i € R. Let u(x,t) € C°(M x (0,T)) for
some T > 0 be a nonnegative C? in the space variable x and C" in t solution of the
problem

div(AVu) — Vu > b(x)% on M x (0,T)]

ulsot =0,

(2.89)

where the initial data is considered in the L?

e (M, b(x)dx) sense. Assume that, for
every R > 1,

T
/ / A@)u(x, 1)* dxdt < P, (2.90)
0 JBx\B

e
where f is a positive function defined for r > 1 and such that
I—y—np
f@)
Then u vanishes identically in M x (0, T).

Remark 2.14 1f u is bounded and u|,_, o+ = 0 in the L} (M, b(x)dx) sense, then the
equality also holds in the L2 (M, b(x)dx) sense.

loc

¢ L' (+00). (2.91)

Remark 2.15 Theorem 2.16 generalizes results of Grigor’yan, see for instance [131,
Theorem 9.2].

The proof of Theorem 2.16 will follow immediately by combining the next two
lemmas.

Lemma 2.2 Let A,b > 0 on M and let f(t) be a positive nondecreasing function
defined for t > 1. Suppose that

H
b(x) > W for r(x) > 1 andsome H> 0, € R, (2.92)
r(x

Ax) < Kr(x)Y for r(x) > 1 andsome K >0,y € R. (2.93)
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Letu € CO(M x (0,T]), T > 0 be such that u|,_,o+ = 0 in the L2 (M, b(x)dx)
sense, and assume that, for every 0 < v < T, R > 1 and § satisfying
b R?
0 <8 < min { z, ( inf (x)) } (2.94)
Bap\Bg A(X) / 16f(2R)
we have
C2
/ u(x, 7)°b(x) < / u(x. T — 8)’b(x) + —. (2.95)
Br Bog R
for some absolute constant C > 0. If
T 1 (400) 2.96
L' (400), (2.96)
f(r)
thenu =0inM x (0, T)].
Proof We fix R > 1 and t € (0, T] and for each k € N we define
R = 2*R and & € (0, 7]
such that
b R?
so<|( int 2| _R (2.97)
Bory \Br, A(x) 16f(2Ry)
_ inf b(x) Rk+ 1
BRk_H\BRk A(x) ] 64f (Res1)”
We also define inductively a decreasing sequence {t;} setting
To = T, Tk+1 = Tk — (Sk. (298)
If 7 and 144 are positive, assumption (2.95) implies that
C2
/ b, ) < / bux. )’ + . (2.99)
Bry BRyy Ry

Indeed, choosing § = t; — T4+ we have

-0 =14
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08 = 5 < min(c (infy, o 20) K
an = Ok min |\ 7, {Inlg,, \Br, A(x) ) T67CRY)

(2.95). Since ul,_o+ = 0 inthe L (M, b(x)dx) sense, the same inequality continues
to hold, passing to the limit, even if 7;+; = 0, in which case we have

) as required for the validity of

/ b()u(x,0%)’ = 0. (2.100)
B,

Ri41
Thus, if we can show that the sequence t; can be chosen in such a way that t; = 0

for some finite , iterating (2.99) and using (2.100) we obtain

LS o
b(u(x,1)> < C?Y — < —.
/BR /; R} 2R?

Letting R — +o00, we deduce that u(-, ) = 0 and this holds for each = € (0, T];
thenu =0in M x (0, T].

Having fixed t € (0, T), the sequence {t;} in (2.98) will reach O for some finite
index k if

T=080+6 +...+ 6. (2.101)

Towards this end, note that if

= ) R
;(Bkk{gfklm PRy T (2.102)

then we may choose the sequence § in such a way that (2.97) holds for every k and

+o00
Z 5k = +o0.
k=0

Thus, by possibly making some & smaller, we can find k in such a way that (2.101)
holds.

Hence, it remains to prove that (2.102) is satisfied. Taking into account (2.92)
and (2.93), this amounts to showing that

— SRy
which in turn follows easily from (2.96) and the fact that f is nondecreasing. O

In the next result we see how to guarantee condition (2.95).
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Lemma 2.3 Let A, b and (M, (,)) be as in the previous Lemma. Let u(x,t) €
CO%(M x (0,T)), for some T > 0, be C? in the space variable x and C' in t, and
assume that it is a solution of

9
wdiv (AVu) > b(x)ua—I: on M x (0, ). (2.103)
Assume also that

T
/ / A@u(x, ) dxdt < ®  for R>> 1, (2.104)
0 BZR\B%R

where f is a positive function defined for r > 1. Then, for every 0 < t < T and for
every 8 satisfying

0<8<min(r ( inf M) R* ) (2.105)
N ’ Bax\Br A(X) / 16f(2R) ’ .
we have
C2
/ u(x, 7)*b(x) < / u(x. T —8)°b(x) + —. (2.106)
Bg Bar R

for each R > 1 and for some absolute constant C > 0.

Proof Let R > 1 be chosen so that (2.104) holds, and let n be a smooth cutoff
function satisfying

c
suppn S Bor, n=1on By O0=<n=1 [Vn =,

for a constant C > 0 independent of R. Let &(x, 1) be a Lipschitz function in the x
variable for each ¢ € [0, T] to be specified later. Consider the nonnegative function
nef e Lip,.(M); interpreting (2.103) in the weak sense we have

0
/ r)zefbu—u < —(/ 2nuetA(Vu, V) + n*uetA(VE, Vu) + n2e5A|Vu|2),
Bar ot Bar
from which, using the Cauchy-Schwarz inequality we deduce

9
/ nzefbua—”t‘ < 2/ n|uleEA|Vul| V| + n?|u|lfA|VE||Vu| — > A|Vul?.
Byr

Bog
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We now apply the elementary inequality
&? b
ab<7a +2 5 a,b>0,>0

to the first two integrand in the right-hand side to obtain, after some manipulations,

ad 1
/ e buss < 2/ AV + —/ n*u*ef A|VE| .
Bar ot Bag 2 Bar

Therefore, integrating the above inequality over [t — §, 7] and then integrating by
parts the left-hand side and rearranging we obtain

1
-/ fbu / / ( uznzef[ % + A|VE| :|+2u EA|V)? )
2 Bor t—8 J Bag

(2.107)
We now specify the function £. Let
0 if B
o(x) = e Br (2.108)
dist (x,0) — R otherwise,
and note that |[Vp| = 1 on M \ Bg. To simplify notation set
inf 20 (2.109)
arp = 1n .
Bar\Br A(x)
and observe that, since A, b > 0 on M, ag > 0. Finally define
—agp(x)’
7t = T e  ~ M - 85 ’
E(x, 1) PTCa on M x [t 7]
so that
E(x,t) <0 on M x [t —6,1] (2.110)
E(x,t) =0 on Bg x[t—6,1]. (2.111)
A simple computation that uses (2.109) shows that, on Bor \ Bg,
3
b—+A|V§| <0 Vtie[rt-4,1], (2.112)

ot
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and this holds on By as well, since £ vanishes identically there. Since p(x) > § on
BZR\B%Randt 4+ 86—t <2§fort € [t —4,t], we also have

CZRR2

S(—xvt) E - 168

on (BZR\B%R) x [t — 8, 1. 2.113)

Inserting (2.112) into (2.110), using the properties of n, (2.113), (2.110) and (2.111)
we obtain

1 , 1 , C2 ([T S
- | bxulx, )" < = b(xu(x,t —68)" + — AX)ute 1ev .
2 Bgr 2 Bor R =4 BZR\B%R

(2.114)

According to assumption (2.104), the second integral on the right-hand side is
bounded above by

/ e
b(X)u(x, 7 —8)" + —
Bor R?

and the required conclusion follows. O

For the sake of completeness, we end the section with some observations on the
difference of applicability between the weak maximum principles for the Laplacian
and for the full Hessian operator (for instance, see Theorem 5.7 and Corollary 5.6
of Chap.5). A first striking difference is pointed out by Proposition 2.4 below (see
Proposition 40 of [228]), which states that every Riemannian manifold satisfying
the weak maximum principle for the Hessian must be nonextendible (that is, non-
isometric to any proper open subset of another connected Riemannian manifold
(N, (,))). For example, for every Riemannian manifold M and p € M, M\{p} does
not satisfy the weak maximum principle for the Hessian.

Proposition 2.4 Suppose that (M, (, )) satisfies the weak maximum principle for
the Hessian. Then (M, (, }) is nonextendible.

Proof By contradiction, suppose the contrary and let p € dM, the boundary of M in
N. Define r(x) = disty (x, p). Next, fix 0 < R < injy(p) and letu € C*®°(N \ {p}) U
C°(N) be a radial nonincreasing function such that

e if r(x) < §

) = 0 if r(x) > R.

Clearly u € C*°(M) is bounded from above with
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A computation shows that
Hess(u)(Vr,Vr) > ¢ > ¢ K2

on™Bg/2(p) \ {p}. Since any sequence {x;} C M along which u attains its supremum
must be eventually contained in “Bg/»(p) \ {p}, we conclude that the weak maximum
principle for the Hessian is not satisfied on M, which is a contradiction. O

Since, by Theorem 2.5, geodesic completeness and a well-behaved sectional
curvature imply the full Omori-Yau maximum principle for the Hessian, one
might ask if, keeping a well-behaved sectional curvature and relaxing geodesic
completeness to the property of nonextendibility, one could prove the validity of
the weak maximum principle for the Hessian. This is false, as the following simple
counterexample shows. Consider the standard cone in the Euclidean space R? given
by

M = {x = (x1,x2,x3) # (0,0,0) : x3 = x% +x§}.

In polar coordinates (r,0), where r € Rt and 6 € [0,2n), the cone can be
parameterized as x; = rcos 6, x, = rsin6, x3 = r. Therefore, the induced metric
reads

ds* = 2dr* + *d6*;

this shows that the cone is trivially nonextendible as a Riemannian manifold
(every such extension N must contain only one point not in M, but the metric is
singular in r = 0). However, since M is a flat embedded hypersurface trivially
contained into a nondegenerate cone, because of Theorem 5.7 of Chap.5 the
weak maximum principle for the Hessian necessarily fails. Nevertheless, M is
stochastically complete; indeed, from the form of the metric we deduce that the
normal projection onto the hyperplane x3 = 0 gives a quasi-isometry between
M and R*\{(0,0)}, preserving divergent sequences and such that the derivatives
of the metric on M are controlled by those of R*\{(0,0)}. Therefore, stochastic
completeness follows applying a slight modification of Proposition 3.4 in [227]; see
also Proposition 4.1 of Chap. 4.

2.4 Two Applications of Stochastic Completeness

The aim of this section is to give and idea of the use of stochastic completeness via
the weak maximum principle, by showing the validity of some geometric results.
We begin by proving Theorem 2.17 below, see [187], that shall be used (but only in
the compact case originally due to Tachibana, [261]) in Remark 8.6 and in the proof
of Theorems 8.8 and 8.9 of Chap. 8.
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In order to state the result we need to introduce some terminology. In what
follows, the Riemannian manifold (M, (, )) is always supposed to have dimension
m > 3. Let

Riem = Rjf' ® 6/ ® 6* ® 6° (2.115)

denote the (0, 4)-type Riemann curvature tensor, with respect to a local orthonormal
coframe {6}. With % : A2(M) — A*(M) we denote the symmetric endomorphism
determined by Riem, that is, if " A 6/, 1 < i <j < m, is a local basis of A%(M)

o 1
RO A ) = Ryueb* A 0" = ERWG" N (2.116)
k<t

Then M is said to have a positive curvature operator if there exists a constant A > 0
such that all the eigenvalues of PR are bounded below by A. In other words, for any
w € A’2(M)

(Rw, w) > Ao (2.117)
It is worth to recall here some formulas and facts presented in Chap.1. In

conformally invariant form, the components of the Weyl and Cotton tensors are
respectively given by

. . 1 - ; i '
VV;klZ = R;ké - m(le(SJZ - Rjk(S; + ijgll( - RLZ(S{()
S S
- (8,8, = 8,8, 2.118
(m—l)(m—z)(” %) 119
and
1
Cisk = Rjsk — Rjs + m(ssgjk — Si8js). (2.119)

Here § is the scalar curvature and R;,  are the components of the covariant derivative
of the Ricci tensor. We recall that for m = 3, W = 0 always, while, by Theorem 1.1,
W = 0 form > 4 and C = 0 for m = 3 are equivalent to conformal flatness of the
manifold. Recall also that the (0, 4)-projective curvature tensor P (see Eq.(1.106)
for the (1, 3)-version), whose components in the local orthonormal coframe {6’} are
given by

1
Py = Rij — E(Riijt — Rybir). (2.120)
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is zero if and only if the manifold has constant sectional curvature. A simple
computation shows that

2
|P|?> = |Riem |* — —— | Ric |*. (2.121)
m—1
The next result is due to Lichnerowicz [175, p.10]; a general formulation
can be found in [53]. We present here a simple computational proof which is a
reorganization of the original one by Lichnerowicz. In the next Lemma we denote
by div Riem the 3-covariant tensor whose components are given by
(le Riem)jk, = R,:jk,','.
Lemma 2.4 With the above notations
ZAl Riem | =K + §|V Riem |* — | divRiem | + (RijxRjkr.r)i (2.122)
where K is the scalar function defined by
1
K = R,iRjuRjx: — ERijkrRijrerskt — 2R;jkRirks Rjnts (2.123)

Proof First we observe that

1 1 1 1
ZA| Riem |* = Z(l Riem |?), = ERWR,;M,” + E'V Riem |°. (2.124)

We now consider the commutation relations for the second covariant derivative of
the curvature tensor given in (1.122)

Rijke.st — Rijre ts = RijuiRyist + RinkeRyjst + RijreRikst + RijirRrgss. (2.125)
Tracing with respect to i and 7 we get
Rijke.si — Rijkeis = RijiiRrs + RirkeRyjsi + RijreRoksi + Rijir Rresis
multiplying both sides by R;j, and renaming the indices we deduce
RijtuRyjisir = RijuRojuari + K (2.126)
where K is the scalar function defined by

K = RijuRiR i + RijteRyriaRojis + RijteRyjriRotis + RijteRyjiorRois- (2.127)
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Now we observe that, using the symmetries of the curvature tensor and the second
Bianchi identity, we can write

1 1 1
RijiiRjte,ir = ERijkr(Rrjkr,i — Ryt j)r = ERijkr(Rktrj,i = Rygrij)r = ERijkrszkt,rr-
(2.128)
Moreover,
RiaRojkiri = (RijuRojia )i — RijeaiRrjks.r = (RijteRyjae,r)i — | div Riem |%. (2.129)

Inserting (2.128) and (2.129) into (2.126) and using (2.124) we get
1 |
ZA| Riem > = K + §|v Riem |* — | divRiem [ + (RjjuR ks, )i- (2.130)

Next, we show that K=K , so that (2.130) proves the validity of (2.122). Note that
the first terms in (2.123) and (2.127) are equal. For the remaining terms, we use
the first Bianchi identity, the symmetries of the Riemann curvature tensor and we
rename some of the indices to get

1 1
_ERijktRiijmkt = E(Rijkthistrskt - Rijkthjierskt) = Rijkterkthjix

and
Rijktstrthkis = RijktijrtRisrk = _RijkthjstRirks = _RijktRjrthirkSa
and finally
RijiRyjtrRyiis = RijtuRpjksRirst = —RIJtkR jysRirks = —RijiiRjrisRirks,
so that
RijiiRyjriRrkis + RijkeRsjir Rrtis = —2RijkeRirksRires,

which implies K = K. 0
Tachibana [261] has shown the validity of the following

Lemma 2.5 Let M have positive curvature operator SR, that is,

(Rw, w) > A|a)|2
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for some constant A > 0 and each @ € A*(M). Let K be the function defined in
(2.123) and P the projective curvature tensor. Then

A
K > E(m— 1)|P%. (2.131)

Remark 2.16 Note that Lemma 2.5 also holds if A is a positive function on M.
We are now ready to prove the next

Theorem 2.17 Let (M, (, )) be a stochastically complete Riemannian manifold of
dimension m > 3 with positive curvature operator and scalar curvature S. Assume
that either one of the following conditions is satisfied:

(i) Ric is parallel.
(ii) M is locally conformally flat and S is constant.

Then either | Riem |* = sup,, | Riem | = +00 or M has positive constant sectional
curvature. In particular; this is the case if M is Einstein.

Remark 2.17 Note that if (M, (, )) is also geodesically complete and | Riem |* <
+00, then M is compact by Myers theorem [203]. Observe also that conditions (i)
and (ii) are necessary for M to have constant sectional curvature.

Proof First of all we observe that under anyone of the conditions (i) or (ii), we have
divRiem = 0. For (i) use (1.67); while for (ii) we note that, from (1.67) and (2.119),

Rijtk,i = Cjkt + (StSjk - Sijt)a

1
2(m—1)

and from the constancy of S and the local conformal flatness we have Rz, = 0.
Furthermore, in case (i) | Ric |? is obviously constant, while in case (ii) by the usual
decomposition (2.118) of the Riemann curvature tensor we immediately deduce

m—2 1
Ric|? = —|Riem |> + ————§2. 2.132
| Ric | 2 | Riem | +2(m_1) ( )

Equation (2.122), together with (2.131), (2.121) and div Riem = 0, yields

1 A A 2
—A|Riem |* > =(m — 1)|P|* = =(m—1) [ |Riem|* — ——|Ric|*}.
4 2 2 m—1

(2.133)

In case (i), since |Ric|? is constant, if |Riem|* < +o0, applying the weak
maximum principle gives

2

[Ric|> onM,
m—1

| Riem |*> <
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and (2.121) implies |P| = 0. In case (ii), using (1.103),

1 A A m 52

—A|Riem|* > —(m—|P]* = =(m—1) | =——|Riem | - ———

2 | Riem |© > 2(m )|P| 2(m )(2(m_1)| iem | (m—l)z)
(2.134)

and again, if |Riem |* < +o0, since S is constant, applying the weak maximum
principle we have

2 2
—S
m(m—1)

which, from (2.121) implies |P| = 0. O

| Riem | <

We give here a second application of stochastic completeness. Let L be a
symmetric diffusion operator, of the type Lu = A~! div(AVu) for some A € C*(M),
A > 0. We are interested in the following problem: if u € C>(M),

Lu>0 onM,

and u € L'(M, Adx), is it true that u is constant? More generally, one could ask for
u € LP(M,Adx) for some p > 1. Sometimes positive results in this direction are
called L”-type Liouville results. The case p = 400 corresponds to the usual notion
of parabolicity that we will consider in the next Sect. 2.5.

While in case u € L’ (M, Adx), with p > 1, and u(xp) > 0 for some xg € M we
have a positive answer (see for instance [243] for a result on general operators that
does not cover the present case, but whose proof can be adapted to the purpose), the
case p = 1 requires some “extra conditions” as shown by the following example.

Example 2.4 Consider the complete manifold given by an m-dimensional model
M, with polar coordinates (r, ) on RT x S™~! as in Definition 1.1 of Chap. 1. We
choose

g(ry=r on]0,1].

Define
a(r) = /0 o) /0 o(s)"™ dsdt

and set

u(x) = a(rx)). (2.135)



126 2 The Omori-Yau Maximum Principle

Then u(x) is nonconstant and the computation we did in Example 2.1 shows that u
satisfies

Au=1 onM,. (2.136)

Let A(x) = A(r(x)) for some positive function A € C I(Rg' ) with A'(r) = 0. Since
g > 0on R, using (2.136) we have

A'(r) [y " (s)ds

Lu=A"1div(AVu) = 1 + —=
Ay g"'(n)

>0

on M,. Let now ¢ > 0 and choose g such that

1 1/(m—1)
g(r) = -
(;’10(0’14"€(r)e’1"g1+ (’))

for r >> 1. With this choice, from the definition of (r), we have

I+e
a(r) ~ Cee T agr — oo,

and

C
/ U ————— as R — +o0, (2.137)
0B Rlog ™ (R)

for some constant C > 0. Thus, if we require that
A(r) > A>0 asr— +oo,

then

CcA
UA ~ 1 Iterpn asR — —+00,
0Bx Rlog ™" (R)

and being ¢ > 0, u € L'(M, Adx).

In the next result the role of the “extra condition” is played by L-stochastic
completeness.

Theorem 2.18 Let (M, (,)) be a complete, L-stochastically complete manifold
with L = A~ div(AV ) for some A € C*(M), A > 0. Let u € C*(M) N L' (M, Adx)
and suppose that u is a nonnegative, L-superharmonic function on M. Then u is
constant.

Proof We reason by contradiction and we assume the existence of a nonconstant
u>0,ue C?(M)NL"(M,Adx), such that Lu < 0. By the usual maximum principle
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it follows that, since u # 0, u > 0 on M. We denote by G* the Green kernel of L.
Fix yo € M and observe that G%, (x) = G"(x, yo) is L-harmonic on M\ {yo}. We now
show that there exists a compact set K and a constant C > 0 such that yy € K and

Gl <Cu onM\K. (2.138)

Since the singularity of G, in yo is Adx-integrable and u € L'(M, Adx), the above
inequality yields
L 1
Gy, € L' (M, Adx). (2.139)
To show (2.138) we fix an exhaustion {§2;} of M by relatively compact domains

with smooth boundaries and with the property that B.(yy) C £2, for some ¢ > 0
sufficiently small. Let %kL be the Green kernel in £2;, so that %kL satisfies

LGE =0 on$2
> 2.140
9, =0 ondg ( )
and recall that
Gy () = lim G (). x# . (2.141)

locally uniformly (see [71]). Fix C > supyg Gfo. Then, up to choosing k
sufficiently large

C> g,fyo (x) forx € dB.(yo).

Thus, there exists a constant A > 0 sufficiently small such that, for k > 1,

k%,fyo(x) <u(x) forx e dB:(yg).
Note that this is possible since # > 0 on M. Because of (2.140) we also have

/\%ﬁ,o (x) <u(x) onds%.

By the usual maximum principle we then deduce

AGE () < u(x)  on 24\ Be(o).
Taking K = §k0 for some fixed k¢ sufficiently large and using (2.141) we then get
(2.138).

Since yo € M was fixed arbitrarily, we have obtained

L 1
Gy(x) € L'(M.Adx) foreachy e M.
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Using this fact we define

v(y) = /M GL(x)A(x)dx.

Clearly, v > 0 and Lv = —1. Thus the weak maximum principle for the operator L
cannot hold on M, and therefore M is not L-stochastically complete. Contradiction.
O

Is there any other “natural” condition that could replace L-stochastic complete-
ness in the above result? See [206, 243] for some results in this direction.

2.5 Parabolicity

The aim of this section is to show that the usual notion of parabolicity can be thought
as a stronger version of the weak maximum principle. We recall that, according to
the well known “Liouville-type” property, we have

Definition 2.5 A manifold (M, (, )) is parabolic if there are no nonconstant
bounded above, C?(M), subharmonic functions on it.

Let us for the moment enlarge the above definition to functions u € C(M) N
Wllo’c2 (M). In this case, if @ € R is any constant, then

w(x) = max {u(x), o}

is still subharmonic, in the weak sense, anytime u is so. This can be easily seen,
but in any case we refer to Proposition 4.3 of Chap. 4 where we prove this fact in
a greater generality. Thus, in the enlarged class of functions C*(M) N Wllo’f (M), the
above definition is equivalent to:

foreach u € CO(M) N Wllo’f_(M), the properties Au>0 and 0 <u <u* < +o00

imply that u is constant. (2.142)

Now suppose that the property in Definition 2.5 holds for u € C?(M) and assume
by contradiction that for some v € C°(M)N Wllo’f (M) we have that v is a nonconstant
bounded above solution of Av > 0 on M. By adding a constant we can in fact

suppose that

vx = infv < 0 < supv = v*.
M M

It follows that, if G > 0, G # 0 is a smooth function with compact support contained
in the set {x € M : v(x) < 0}, then y_ = max {v, 0} is a nonnegative, nonconstant,
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C*(M) N W)*(M) solution of

loc
Ay- > Gx)y-.
Now a sufficiently large positive constant y4 satisfies y— < y4 and

Ayy < G(X)y+.

Hence by the sub-supersolution method (see for instance [31, 240, 250]) we
conclude that the equation

Au = G(x)u

has a C>(M) (even smooth) solution u satisfying 0 < y_ < u < y4 so that u is a
bounded above C2 (M) solution of Au > 0 which is nonconstant, contradicting the
validity of Definition 2.5. Thus we have proven that if the property of Definition 2.5
holds for C?(M) functions then it holds for C°(M)N Wllo’f (M) functions, the converse
being of course trivially true.

Now note that if (2.142) holds in the class C?>(M) and not in the class C°(M) N
W,l{;c2 (M), then similarly to what we have done above we can construct a nonconstant
C*(M) function v satisfying (2.142), contradiction. In other words, (2.142) is
equivalent to

foreach u € CZ(M) the properties Au >0 and 0 <u <u* < +o00

imply that u is constant.

Clearly the latter is similar to the requirement of stochastic completeness expressed
in Theorem 2.7 (ii); in fact it is formally the same for A = 0. This suggests that
(2.142) is equivalent to any one of the following properties:

foreach u e CZ(M), u* < +00, u nonconstant on M and for each y < u*,

inf Au < 0, (2.143)

Y
where £2, = {x € M : u(x) > y};
foreach u € CZ(M), u* < +00, u nonconstant on M, there exists {x;} C M

1
such that u(x;) > u™ — o Au(x) <0 VkeN. (2.144)
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It is clear that (2.143) and (2.144) are equivalent, but while obviously (2.144)
cannot be expressed in a weak form, when u € C°(M) N Wllo’f(M), (2.143) can be
interpreted in a weak sense as

there exist ¢ > 0 and ¥ € C2°(M), ¥ > 0,y # 0, such that

—/M(Vu,Vl/f) S—S/Ml/f.

Furthermore, it is not hard to show that (2.143) is equivalent to its weak
formulation as we described above, that we call (2.143)-weak. Indeed, suppose the
validity of (2.143) and that, by contradiction, there exists u € C°(M) N Wllo’f(M),
u* < +o0, u nonconstant such that for each ¢ > 0 and for each ¥ € C*(M),

v =0,y #0,
—/M(Vu,le) > —s/Mw.

Letting & |, 07 this means
Au>0 on M

in the weak sense. Thus, as above we can construct a nonconstant v € C%(M),
v* < 400, such that Av > 0 on M; in particular, for any y < v*,

inf Av > 0,

14

contradicting the validity of (2.143). The other implication is trivial.
Our next step is contained in

Theorem 2.19 Properties (2.142) and (2.143) are equivalent in the functional class
c’'ann Wl’z(M), and therefore in the class C*(M).

loc

Proof Clearly (2.143)-weak implies (2.142). Viceversa assume (2.142) and let u €
(M) N Wllo’cz(M) satisfy u* < 400, u nonconstant and by contradiction suppose
that, for some y < u*,

Au>0 on £2;

in the weak sense. Pick 0 < ¢ < u™ — 7 and define

v@):rmm{u@yy+-§}

Then v € CO(M) N W)2(M) is a bounded above subharmonic function on M and

loc

thus by (2.142), which is equivalent to the property in Definition 2.5 on C%(M) N
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W.2(M), we have that v is constant on M. Since 254: #0andv = uon 254
we conclude that u is constant on QH%’ contradiction. O

There is a further characterization of parabolicity which expresses in the form of
a (classical weak) maximum principle (see for instance Theorem 8.1 in [125]). The
original result for surfaces is due to Ahlfors (see Theorem 6 C in [2]).

Theorem 2.20 The manifold (M, (, )) is parabolic if and only if for each open set
2 C M with 02 # 0 and for each v € C° (.Q) N Wllocz(.Q) satisfying

Av >0 on £2
Sup v < 00 (2.145)
Q
we have
Supv = sup v. (2.146)
2 R

Proof First assume that (M, (, )) is parabolic and by contradiction suppose that
there exist 2 C M, 352 # @ open and v € C°($2) N W, 2(£2) satisfying (2.145) but
for which

sup v > sup v.
2 a2

Choose ¢ > 0 sufficiently small that

supv > supv + ¢,
Q 002

and consider the open set
2, = {xe 2 :vx) > supv—e} #* .
2
Then £2, C §2 and therefore

max{v(x),supv —8} on §2
2

u(x) =
supv—e on M\ §2
2

defines a CO(M) N Wllo’cz(M) solution of Au > 0 on M. Furthermore, sup,, u =
sup, v < +o00. Since (M, (, )) is parabolic we have that u is constant; since £2, #

@, u = sup, v — ¢ on §2, contradicting the definition of the latter.
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Viceversa, assume the validity of (2.146) and by contradiction suppose that
(M, (. )) is not parabolic. Then there exists a nonconstant function u € C°(M) N
W2 (M) satisfying

Au>0 onM
u* = supu < +oo. (2.147)
M

Choose y < u* and let £2,, as in (2.143). Since u is nonconstant, then, up to choosing
y sufficiently close to u*, 952, # . Because of the validity of (2.145) with v =
Uiz, on 2 = §2,, from (2.146) we deduce

u* =supv = supv =y,
2, a2,

contradiction. ]

Remark 2.18 The first part of the proof of the previous theorem is based on the
important fact that, for the Laplace-Beltrami operator A, the supremum of two
subsolutions or at least of a subsolution with a constant is still a subsolution. As
far as we know, this fact does not generalize to the entire class of operators we shall
consider later on; hence the need for a proof based on a different argument. Let us
go back to the reasoning in the first part of the proof and observe that, without loss
of generality, by adding a positive constant we can suppose sup, v > 0. We now
choose & > 0 small enough that £2,, C £2. Clearly

2. C 2.
Let ¢ € C°°(M) be a cut-off function such that
p=1 on 2,, ¢=0 on 2\ 2
and define

¢(x)v(x) on £

uE) = 0 on M\ L.

Then u € C'(M) N Wllo’f(M) and u* = sup, v < +o0. Furthermore, on the upper
level set £2, C §2 we have
Au = Av > 0.

To obtain a contradiction using (2.143) for functions u € C*(M) N W,l{;c2 (M) which
are not constant we have to show that £2, is a upper level set for u. Towards this aim
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we observe that we can choose ¢ > 0 sufficiently small so that

y =supv —¢& > 0.
2

We let
2, ={xeM:ulx >y}

we claim that £2, = £2,. Indeed, let x € £2; then v(x) > y > 0 and since ¢(x) = 1
on 2, u(x) = (x)v(x) = v(x) > y. Thusx € £2,, or, in other words, £2, C £2,.
Suppose now that x € §2,; since y > 0, by the definition of u we deduce that x € £2
and v(x) > 0. Thus

v(x) > @(x)v(x) = u(x) >y =supv —¢;
Q2

in other words, x € §2,. Thus
Au>0 on £2,,

contradicting (2.143).

This argument will be used in Chap.4, where we shall deal with the notion
of “parabolicity” for a very general class of operators. Furthermore, in view of
the results we shall present there, it is worth to recall, in the present particularly
simple setting, at least one sufficient condition for parabolicity of the Laplacian
on a complete, noncompact manifold. Towards this aim we follow the classical
path used in potential theory of relating parabolicity with capacity. For a wealth
of information see the survey article by Grigor’yan [131]. Note however that this
approach does not extend in general to nonlinear operators (see Sect. 4.4 in Chap. 4),
with the exception of operators strictly related to the p-Laplacian. For this latter case
we refer the interested reader to the comprehensive monograph [142].

First we recall the following

Definition 2.6 Let £2 and K be respectively an open and a compact set in M such
that K C 2. Define the capacity of K in §2, cap(K, §2), by setting

K.2)= inf Vol|*
(k. @)= int [ [P

where

D(K,2)={p € CX(2):0<¢ < 1and ¢ = 1 in a neighborhood of K}.
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If K is relatively compact in £2 we set
cap(K, 2) = cap(K, 2),
and finally, in case £2 = M we simply set

cap(K) = cap(K,M).

In fact, where needed, we can substitute the space D(K, £2) in the definition
above with

L(K,2) = {¢ € Lip,,.(M) : supppp C 2,0 <¢ < land¢ = 1 on K}.
(2.148)

We have the following result (see Theorem 5.1 in [131]).

Theorem 2.21 Let (M, (,)) be a Riemannian manifold. Then A is parabolic on M
if and only if for each compact set K, cap(K) = 0.

Given for granted the proof of Theorem 2.21 we establish the following estimates
that will enable us to provide a “volume growth”-type sufficient condition for the
parabolicity of A.

Theorem 2.22 Let (M, (,)) be a complete Riemannian manifold and 0 < s < R.
Then we have the following estimates

L / i P=s 4 (2.149)
cap(Bs,Br) — 2 J, vol(B,) — vol(By) P '

and
1 kR a
> / b__ (2.150)
cap(B;, Br) s Vol(0B,)
In particular,
! >1/+°° =S d (2.151)
cap(By) — 2J,  vol(B,) — vol(By) """ '
and
1 +o0 d,O
> _ 2.152
cap(B;) — [ vol(0B,) ( )

Proof Using the definition of capacity

cap(By, Be) = inf /|w|2,
MEL(EqBR) Bgr
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where L(By, Bg) is defined in (2.148). To prove (2.149) we fix & > 0 and we show
that we can find u € L(B;, Bg) such that

R t—s !
Vul> <2 dr) . 2.153
AR (/ Vol(B,) —vol(B,) + ) @139

Towards this aim we let g € Lip(Rg' ) be such that

g=1lonJ0,s)and g = 0 on (R, +00). (2.154)

We set p(y) = disty(y,0), 0 € M a fixed origin, and we define u = g o p. From
Gauss lemma |Vu| = |g’(p)|, and therefore

R
[ = [ WP = [ @Pvoles,dp. 2.155)

We now choose

R t—s
glp) = a/p vol(B,) — vol(B;) + sdt on [s. K]

with
-1

([ s d 2.156
a= ([ vol(B;) — vol(By) + ¢ ) ' (2.156)

Observe that g(s) = 1 and g(R) = 0, so that (2.155) can be verified. Furthermore,

p—s
vol(B,) — vol(B;) + ¢

g(p) = —a on [s, R].

Substituting into (2.154) and using (vol(B,))’ = vol(dB,) by the coarea formula,
together with (2.156), we have

R (p — 5)*vol(dB,)
2 2 P
i Vul” = a / (vol(B,) — vol(B,) el

2 K 2 1 '
- /s. (p=5) (VOl(Bp) — vol(By) + a) dp

2 (p—>s)° R 2 /R p—s
= — Y42 dp < 2a.
“ vol(B,,) — vol(By) + ¢ i +2d ¢ Vvol(B,) — vol(By) + ¢ p=2d

This gives (2.153).
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We now prove (2.150). Towards this aim we start from (2.155) but we choose g
in a different way. Letting (2.154) to hold, we set

©) /R dt
= a —_—_—
8 . Vol(3B,) + ¢

with

R dt -

so that g(s) = 1 and g(R) = 0. Since

a

/ -
§(p) = vol(3B,) + &’

substituting into (2.155) and using (2.157) we obtain

R R
/ Vuf? = & vol(dB,) _dp < a2/ dp .
Br s (vol(dB,) + ¢) s Vvol(dB,) + ¢

and (2.150) follows at once. O

Estimates (2.151) and (2.152) together with Theorem 2.21 can be used to obtain
the next sufficient conditions for parabolicity.

Theorem 2.23 Let (M, (,)) be a complete Riemannian manifold and suppose that,
for some fixed origin o, either

1

or

1

Then A is parabolic on M.
Proof Assume (2.158) holds. Then from (2.151)

+o0 p—S _1_
cap(Bs)fz(/S Vol(B,) —vol(B) ¥ ) -0

Now if K is any compact set, by the Hopf-Rinow theorem there exists s > 0
sufficiently large such that K C B,. But clearly, from the definition of capacity,
cap(K) < cap(B;) = 0. Applying Theorem 2.21 we get the desired conclusion.
Similarly for (2.159). O
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Remark 2.19 Condition (2.159) does not imply, in general, condition (2.158); see
for instance [148]. While (2.159) is necessary and sufficient for a model manifold
M, to be parabolic, in some instances (2.158) is also necessary. This is the case, by
a result of Varopoulos [266], when Ric > 0 on the complete manifold (M, (, )).

On the other hand (2.158) implies (2.159). This is an immediate consequence of

the following

Lemma 2.6 Let (M, (,)) be a complete manifold, h € C°(M), h > 0, and set

v(r) = /B, h,
V() = /mh.

Fix s > 0 and let R > s. Then, for each § > 0,

R f—s 1/6 R 1 1/8
/(W) ‘”EC[ (v’(t)) .

for some constant C > 0 independent of R. In particular

so that

N 1\ /8
(%) ¢ L'(400) implies (v’(t)) ¢ L'(+00).

Proof Fix ¢ > 0 and set

v = | (h+e).

B;

From the coarea formula

VLt = /BB (h + ¢).

(2.160)

(2.161)

Applying Holder’s inequalities with conjugate exponents 1 + § and 1 + 1/§ we

obtain

Ry \/3 R g\ Va+d g
/S‘(vg(t)) dl‘fC(/s (Ug([)> Us([)dt) (/S‘ (vé(t))l/tﬁ

)5/(1+8>

(2.162)
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Integrating by parts the first integral in the right-hand side of the above inequality
we have

Ry o\1T1/8 , 3 (R_S)H-l/(S Ry \1T1/8
[(G5) =S rasa [(55)

R/ g\ 1H1/8
oo () e

and therefore, substituting into (2.162),

R r—s 1/8 s
[(ve(t)) dr = (1+9) /(v/(t))1/5 (2.163)

By Lebesgue theorem as ¢ — 0, v, and v, decrease, respectively, to v and v’.
Inequality (2.160) then follows by applying the monotone convergence theorem to
both members of (2.163). Since

1/8 1/8

r— 1 t

5 s (L) fores o2,
v(f) 2178 \ v ()

it is clear that (2.161) follows from (2.160). O

The following result will be used in the 2-dimensional case in Chap. 9.

Theorem 2.24 Let M be a Riemannian manifold of dimension m and let Bgr(p) be
relatively compact in M. Let u € C*(Bg(p)) satisfy

ulAu >0 (2.164)
on Bg(p). Then, forr € [0,R),
4 2
Br(p) fr vol (0B;) Br(p)

Furthermore, if p(x) = dist (x, p) and
Ric (Vp, Vp) > —(m — 1)G(p) (2.166)

on Br(p) then (2.165) yields, for r € [0, R),

4wy,
/ ulAu < L sup u? (2.167)
Br(p) s At Bep)
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where w,, is the volume of the unit sphere in R™, provided that the solution h of the
Cauchy problem

{h” —GMHh=0 on [0, R), (2.168)

h(0) = 0, K'(0) = 1

is positive on (0, R).

Proof Let { € D(B,, Bg), where the latter is as in Definition 2.6. Integrating the
divergence of the vector field W = ¢?uVu and applying Cauchy-Schwarz and
Young’s inequalities we obtain

/ &(1Vuf + udu) 52/ ;u(vg,vu)g/ §2|Vu|2+4/ Ve[
Br(p) Br(p) Br(p) )

Br

Hence, using uAu > 0,

/ ulu < / ¢*ulu < 4 sup u2/ Vel (2.169)
Br(p) Br(p) Br(p) Br(p)

Taking the infimum on ¢ € D(B,, Bg) we deduce

/ ulu < 4cap (Bg, B,) sup u.
Br(p) Br(p)

Thus, using inequality (2.150) from here we infer (2.165). As for (2.167) simply
observe that, by the Bishop-Gromov comparison Theorem 1.3 we have

vol (0B,) < w,h(t)™ !,

so that the latter follows at once from (2.165). O



Chapter 3
New Forms of the Maximum Principle

In the previous chapter we described the Omori-Yau maximum principle for the
Laplace-Beltrami operator A, giving some analytical motivations, and later we
introduced the weak maximum principle, illustrating its deep equivalence with
stochastic completeness. Furthermore, to show the power and effectiveness of
these tools when applied to some specific problem, we gave a few applications to
geometry. The aim of the present chapter is to extend the investigation to a much
more general class of differential operators containing those that naturally appear
when dealing with the geometry of submanifolds or, more generally, in tackling
some analytical problems on complete manifolds: for instance, the p-Laplacian,
the (generalized) mean curvature operator, trace operators, and so on. In doing so
we give sufficient conditions for the validity of two types of maximum principles
corresponding, respectively, to the Omori-Yau and to the weak maximum principle.
In this chapter we focus our attention on conditions that basically require the
existence of a function, indicated throughout with y, whose existence is, in many
instances, guaranteed by the geometry of the problem. First we deal with the linear
case, that presents less analytical difficulties, and we conclude our discussion by
providing a first a priori estimate; again by way of example, we show its use
in a geometric problem. Note that in the next chapter we will provide a second
type of sufficient condition for the validity of the weak maximum principle when
the operator is in divergence form, basically in terms of the volume growth of
geodesic balls with a fixed center on M. Clearly, this kind of condition is very
mild and immediately implied by suitable curvature assumptions. We then move
to the nonlinear case, where the analytical difficulties that we have to face are
definitely deeper; for this reason and for an intrinsic interest, we devote an entire
subsection to a careful proof of a general form of some auxiliary analytical results
that we shall need for our purposes. We finally prove our general nonlinear results
in Theorems 3.11 and 3.13, concluding the chapter.
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3.1 New Forms of the Weak and Omori-Yau Maximum
Principles

Motivated by the discussion and the examples in the previous chapter we now prove
a weak maximum principle, Theorem 3.1, an Omori-Yau type maximum principle,
Theorem 3.2, and further related results for a large class of linear differential
operators of geometrical interest. We shall deal with nonlinear operators in Sect. 3.3.

To describe our first result let 7 be a symmetric positive semi-definite (0, 2)-
tensor field on M and X a vector field. We set L = L x to denote the differential
operator acting, say, on u € C>(M) by

Lu = div(T(Vu, )*) — (X, Vu) = Tr(z o hess(u)) + divT(Vu) — (X, Vu) (3.1

where ! is the musical isomorphism, Tr is the trace and ¢ and hess(u) are the
endomorphisms of TM corresponding, respectively, to T and Hess(u).
For instance if T = (, ) and X is a vector field on M for u € C*>(M) we have

Lu = Au— (X, Vu) (3.2)

and L coincides with the X-Laplacian, denoted by Ay, used in the study of general
soliton structures, see [188] and also Chap.8; in particular if X = Vf then
L = Ay is the f-Laplacian, appearing also as the natural symmetric diffusion
operator in the study of the weighted Riemannian manifold (M, (, ), e/ dx), [132]
(see Chap. 8 for applications to solitons theory). If T = p(x)(, ) for some p €
C'(M),p > 0 on M, and X = 0, then g(x)L is (at least on the set where ¢ is
positive) a typical (nonsymmetric) diffusion operator. On the other hand, if T is
as above and X = (divT)", then for u € C*(M), Lu becomes the trace operator

Lu = Tr(t o hess(u)); 3.3)

we will deal with trace operators especially in Chaps.6 and 7 in a geometric
context.

Theorem 3.1 Let (M, (, )) be a Riemannian manifold and L be as above. Let
g(x) € C°(M), q(x) > 0 and suppose that

q(x) > 0 outside a compact set. (3.4

Let y € C*(M) be such that

(i) yx) —> 400 as x — 0o, )
(ii) q(x)Ly(x) < B outside a compact set
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for some constant B > 0. If u € C*(M) and u* < o0, then there exists a sequence
{xx} C M with the properties

(Dulx) > u* — %, and (i) g(xp) Lu(xy) < % (3.5)

foreach k € N.

If the conclusion of the theorem holds on M we shall say that the g-weak maximum
principle for the operator L holds on (M, ( , )). Clearly if ¢ = 1, or more generally ¢
is a positive constant, we shall say that the weak maximum principle for the operator
Lholds on (M, {, })). Obviously, if the g-weak maximum principle holds for L and
0 < g(x) < g(x), g(x) satisfying (3.4), then the g-weak maximum principle for the
operator L also holds.

Remark 3.1 We underline that when g(x) is bounded between two positive con-
stants the validity of the weak maximum principle is equivalent to that of the g-weak
maximum principle. In fact it is easy to see that when ¢ is bounded from below by a
positive constant, then the g-weak maximum principle implies the weak maximum
principle, while the converse occurs when ¢(x) is bounded from above.

Remark 3.2 We stress that the Riemannian manifold M is not assumed to be
geodesically complete. This matches with the fact that for L = A and g(x) = 1,
conditions (I") (i), (ii) are exactly the Khas’minski conditions that we have
considered before in Sect.2.3 of Chap.2. In fact, as we shall show below in the
next subsection, condition (ii) in (/") can be substituted, for instance, by

(il g(x)Ly(x) < G(y(x)) outside a compact subset of M D

where G € C'(R™") is nonnegative and satisfies
(i) & ¢L'(+o0); (i) G'(1) = —A(logr+ 1), (3.6)
for t+ > 1 and some constant A > 0. For instance, the functions G(f) =1,

G(t)=tlogt, t >> 1, G(f) = tlogtloglogt, t+ > 1, and so on, satisfy (i) and
(ii) in (3.6) with A = 0.

The “Omori-Yau” type version of Theorem 3.1 is as follows.

Theorem 3.2 Let (M, , )) be a Riemannian manifold and L be as above. Let
q(x) € C*(M), g(x) > 0 and suppose

q(x) > 0 outside a compact set. 3.7
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Let y € C*(M) be such that

(i) yx) —> 400 asx— oo,
(ii) q(x)Ly < B outside a compact subset of M, (I'p)
(iii) |Vy| <B  outside a compact subset of M

for some constant B > 0. If u € C>(M) and u* < +oc then there exists a sequence
{xx} C M with the properties

(i) u(xy) > u* — %, (i) q(xx) Lu(xy) < %, and (iii) |Vu(xy)| < % (3.8)

foreach k € N.

If the conclusion of the theorem holds we shall say that the g-Omori-Yau maximum
principle for the operator L holds on (M, (., }).

Remark 3.3 Also in this case conditions (ii) and (iii) in (I 3) can be replaced by the
apparently weaker requirement

(f?’/ g(x)Ly < G(y) (Ty)
(i) |Vy| =G(y)

outside a compact subset of M, where G € C! (Rg' ) is a positive function satisfying
(3.6) (1), (&)

We observe that when (M, (, }) is a complete, noncompact Riemannian mani-
fold a special candidate for y, in both Theorems 3.1 and 3.2, is some composition of
an at least C? function with the distance r(x) from a fixed origin 0 € M. Of course
r(x) is smooth only outside {0} U cut(o), where cut(o) is the cut locus of o, but, as
we have seen in Theorem 2.5, this problem can be bypassed by elaborating on the
old trick of Calabi [55]. In fact, a proof similar to that of Theorem 2.5 holds true.
A different way is to understand the differential inequality involving the considered
composition with r(x) and the operator L only in the weak-Lip sense, and apply
Theorem 5.3 of [236] or Theorem 3.9 together with Remark 3.10 below, instead
of Proposition 3.1 in Remark 2.8. We underline that the same arguments, via the
comparison principle of Theorem 5.3 in [236], also shows thatif y € C'(M) satisfies
(I'p) (1), (iii), and is a classical weak solution of (/) (ii), then Theorem 3.2 is still
valid. The same, of course, applies to Theorem 3.1 (and to the regularity of u),
where however we need to make the further requirement % € L}OC (M) [see the proof
of Theorem 3.11, inequality (3.174)].

As a further step, given T and X as above, we introduce the operator H = Hrx
acting on u € C>(M) by

Hu = Hyxu = T(hess(u)-,-) + (divT — X") ® du,
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where " : TM — TM* is the inverse of the musical isomorphism . Observe that
Lu = Tr(Hu). The above theorems admit then the following general versions.

Theorem 3.3 Let (M, (, )) be a Riemannian manifold and H = Hyx be as above.
Let g(x) € C°(M), g(x) > 0 and suppose that

q(x) > 0 outside a compact set. 3.9

Let y € C*(M) be such that

(i) yx) > 400 asx— oo,

T
(ii) qHy@)(v.v) < BJ|? to

for some constant B > 0 and for every x € M\ K, for some compact K C M, and for
everyv € TM. Ifu € C*(M) and u* < 00, then there exists a sequence {x;} C M
with the properties

(D)ul) > u* — %, and (i) q(x)Hu(xy)(v,v) < %|v|2 (3.10)

foreach k € N and everyv € Ty, M,v # 0.

Theorem 3.4 Let (M, (, }) be a Riemannian manifold and H = Hr x be as above.
Let g(x) € C°(M), q(x) > 0 and suppose that

q(x) > 0 outside a compact set. (3.11)

Lety € C2(M) be such that

(i) yx)—> 400 asx — oo,
(ii) q(x)Hy(x)(v,v) < BJv], (I)
(iii) |Vy(®)| =B

for some constant B > 0, for every x € M \ K, for some compact K C M, and for
everyv € TM. Ifu € C*(M) and u* < 00, then there exists a sequence {x;} C M
with the properties

() ) > u* = . (i) gG)HuCs)(0.v) < Lol and [Vu(w)] < ¢
(3.12)

foreach k € N and everyv € Ty, M,v # 0.
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Similar to what happens in Theorems 3.1 and 3.2, condition (ii) in (I'¢) and
conditions (ii) and (iii) in (/' p) can be substituted, respectively, by

(i) g@)Hy®)(v,v) < G(y)v? (I'c)

and

(i) gWHy(®)(v.v) < G(y)|vf

) (I'p)
(i) |Vy| = G(y)

outside a compact subset of M, where G € C' (Rg' ) is a positive function satisfying
(3.6).

Observe now that Theorem 2.4 is just a particular case of Theorems 3.2 and 3.4
with g(x) = 1 and L = A.

3.1.1 Proof of Theorem 3.1 and Related Results

In this section we give a proof of Theorem 3.1 and of some companion results.
Proof (of Theorem 3.1) We fix n > 0 and let

Ay={xeM: ux)>u"—n}. (3.13)
We claim that

inf {g(x)Lu(x)} < 0. (3.14)

Note that (3.14) is equivalent to conclusion (3.5) of the theorem.
We reason by contradiction and we suppose that

q(x)Lu(x) > 09 > 0 onA,. (3.15)
First we observe that u* cannot be attained at any point xy € M, for otherwise
X0 € Ay, Vu(xp) = 0, and Lu(xo) reduces to Lu(xq) = Tr(t o hess(u))(xo), so that,

since T is positive semi-definite, g(xo)Lu(xp) < O contradicting (3.15).
Next we let

2i={xeM: yx) >1t}, (3.16)
and define

u = sup u(x). (3.17)

x€0f
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Clearly £2f is closed; we show that it is also compact. In fact, by (I") (i) there exists
a compact set K; such that y(x) > ¢ for every x ¢ K. In other words, £2¢ C K, and
hence it is compact. In particular, u] = max,eqoe u(x).

Since u* is not attained in M and {.Qf } is a telescoping exhaustion of M, we find
a divergent sequence {#;} C Ry such that

*

u;‘ —u* asj— +oo, (3.18)

and we can choose T > 0 sufficiently large in such a way that

W >t — g (3.19)

Furthermore we can also suppose to have chosen T sufficiently large that g(x) > 0
and (I") (ii) holds on §27,. We now choose « such that u7, < o < u*. Because of
(3.18) we can find j sufficiently large that

T, = 5> T, and M7*'2 > . (3.20)

We select 7 > 0 small enough that

o+ 77 < u. (3.21)
For o € (0, 09) we define
Yo¥) =a +o(y —Th). (3.22)
We note that
Ys(x) =« forevery x € 0027,, (3.23)
and
q(x)Lys(x) = oq(x)Ly(x) < oB <oy on §27, (3.24)

up to have chosen o sufficiently small.
Since on £27, \ 27, we have

a<y;(x) <a+o(T,—T) (3.25)
we can choose o € (0, 0y) sufficiently small, so that

o(T,—T)) <7 (3.26)
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and then
a<y;(x)<a+7n on £\ 2y, (3.27)
For any such o, on 0§27, we have
YoX) = a > up > u(x), (3.28)
so that
(u—ys)(x) <0 ondS2y,. (3.29)
Furthermore, if ¥ € 27, \ §27, is such that
u® = uy, >a+7
then
(—=ve)® = ur, —a—0(Ta=T1) > up, —a =7 >0
by (3.21) and (3.26). Finally, (I") (i) and the fact that ™ < +o00 imply
(u—ys)(x) <0 on 27, (3.30)
for T3 > T sufficiently large. Therefore,

= sup (u—ys)(x) >0,

XGﬁTl

and it is in fact a positive maximum attained at a certain point zy in the compact
set 27, \ £27,. In particular, V(u — y,)(z0) = 0 and L(u — ¥5)(z0) reduces to Tr(t o
hess(u— y,))(z0). Therefore, since T is positive semi-definite we have that Lu(zg) <
Lys (z0).

By (3.29) we know that y(z9) > T;. Therefore, at zyp we have

u(20) = Yo (20) + i > Yo (z0) > & > uy, > u™ — g, (3.31)

and hence zo € A; N §27,. In particular g(zo) > 0 and (I") (ii) holds at zo. From
(3.15) we obtain

0 < 09 < q(z0)Lu(z) < q(z0)Lys(z0) < 0B < 0o, (3.32)

that is, the desired contradiction. O
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We observe that we can relax the assumption in Theorem 3.1 on the boundedness
of the function u from above to a control of « at infinity via the function y. This is
the content of the next result.

Theorem 3.5 Let (M, (, )) be a Riemannian manifold and L = Ly x be as above.
Let g(x) € CO(M), g(x) > 0 and suppose that

q(x) > 0 outside a compact set. (3.33)

Let y € C*(M) be such that

(i) yx) —> 400 as x — 0o, )
(ii) qx)Ly(x) < B outside a compact set
for some constant B > 0. Ifu € C*(M) and
u(x) = o(y(x)) asx— oo, (3.34)

then for each t such that
2. =xeM:ux)>t}#0
we have

inflg(x)Lux)} = 0.

Proof Of course we consider here the case u* = +o00. We reason by contradiction
as in the proof of Theorem 3.1 and we suppose the validity of (3.15) on £2,. Next
we proceed as in the above proof (obviously in this case u™* is not attained on M) to
arrive to (3.18) that now takes the form

u;‘ — 400 asj — oo, (3.35)

and we choose 71 > 0 sufficiently large in such a way that (3.19) now becomes
up, > 2t (3.36)
Furthermore we can suppose to have chosen 7 sufficiently large that g(x) > 0 and
(I") (ii) holds on §27,. We choose « such that o > u;l. Because of (3.35) we can

find j sufficiently large that

T, = 5> T, and I/t;(-z > . (3.37)



150 3 New Forms of the Maximum Principle

We then proceed up to (3.30) which is now true on §27, for 73 sufficiently large
since, due to condition (3.34), the function

(= 7)) = ya(i - 1)(x>:
Yo

becomes negative on §27,, for T3 sufficiently large.
The rest of the proof is as Theorem 3.1. O

We now show the validity of Remark 3.2. Thus we assume (I") (if)’ with G and
A > 0 asin (3.6). We set

! ds
‘P(f)Z/tO m (3.38)

on [y, +00) for some 7y > 0. Note that, by (3.6) (i), ¢(f) — +00 as t — +o0.
Thus, defining ¥ = ¢(y), (I") (i) implies that

7(x) = +00 asx — oo. (3.39)
Next, using that
L(p(w)) = ¢'w)Lu + ¢" (u)T(Vu, Vu),
a computation gives

q(x)Ly(x)
G(y(x) + Ay(x) logy (x)
_G'y(®) + A0 +logy(x))
(G(y(x) + Ay (x) log y (x))*

q()Ly(x) =

q)T(Vy (). Vy ()

outside a sufficiently large compact set. Since T(Vy, Vy) > 0, g(x) > 0 and (3.6)
(if) holds, we deduce

Sy < gLy (x)
1LY = COE) + Ay (o) log 7 S

if y(x) is sufficiently large. Thus, from (I") (ii))’ and G > 0 we finally obtain
q(x)Ly(x) < B (3.41)
outside a compact set. Then (3.39) and (3.41) show the validity of (I") (i), (i) for

the function y. This finishes the proof of Remark 3.2 and also points out further
possible extensions of condition (3.6) (ii).
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Regarding Theorem 3.5, if we substitute () (ii) with (I") (if)’, G satisfying (3.6),
then condition (3.34) has to be replaced by

y() ds
= _ . 3.42
u(x) =o /0 GO) T AsTogs as x — 0o ( )

Thus for instance if G(f) = 1, so that we can choose A = 0, (I") (i)’ is g(x)Ly (x) <
y(x) but (3.42) becomes u(x) = o(log y(x)) as x — 0o, showing a balancing effect
between the two conditions.

Proof (of Theorem 3.3) For a proof of Theorem 3.3 we proceed as in the proof of
Theorem 3.1 letting

Ay ={xeM:ulx)>u*—n} (3.43)
We claim that for every ¢ > 0 there exists x € A, such that
qg(x)Hu(x)(v,v) < ¢

for each v € T,M with |v| = 1. By contradiction, suppose that there exists oy > 0
such that, for every x € A, there exists v € T,M, |v| = 1, such that

q(x)Hu(x)(v,v) > 0y. (3.44)

Now we follow the argument of the proof of Theorem 3.1 up to Eq. (3.24), which is
now replaced by

qx)Hys(x)(v,v) = oq(x)Hy(x)(v,v) < oB <oy on 27, (3.45)

up to have chosen o sufficiently small. We then proceed up to the existence of a
certain point zo in the compact set 27, \ §2r, where the function u — Y, attains its
positive maximum. In particular, V(u — y,)(z0) = 0 and H(u — y,)(z0) reduces to

H(u — y5)(z0)(v,v) = T(hess(u — y5)(z0)v,v) foreveryv € T, ;M.

Therefore, since 7T is positive semi-definite we have

Hu(z) (v, v) < Hys(20) (v, v)

forevery v € T,)M.

Proceeding as in the proof of Theorem 3.1, we deduce that zp € A, N £27,. In
particular g(zo) > 0 and (I') (ii)’ holds at zg. On the other hand, from (3.44) we
have

0 <00 < q(z0)Hu(z0) (v, V) < q(20)HY5(20)(V,v) < 0B < 00, (3.46)

giving the desired contradiction. O
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3.1.2 Proof of Theorem 3.2 and Some Related Results

We follow the notation of the previous section to give a proof of Theorem 3.2.

Proof (of Theorem 3.2) We first observe that, although it is not required in the
statement of the theorem, the two assumptions (I'g) (i) and (iii) imply that the
manifold M is geodesically complete. To see this, let ¢ : [0,£) — M be any
divergent path parameterized by arc-length, that is, as in the previous chapter, a
path that eventually lies outside any compact subset of M. From (I'p) (iii) we have
that |[Vy| < B outside a compact subset K of M. We set h(f) = y(c(¢)) on [, £),
where fy has been chosen so that ¢(f) ¢ K for all fy < ¢t < £. Then, for every

t € [ty, £) we have
t
/ H (s)ds
fo

Since ¢ is divergent, then ¢(f) — oo ast — £, so that h(t) — +ooast — £~
because of assumption (I'g) (i). Therefore, letting t — £~ in the inequality above,
we conclude that £ = +o00. This shows that divergent paths in M have infinite
length. In other words, the metric on M is complete.

As in the proof of Theorem 3.1 we fix > 0 but, instead of the set A, of (3.13),
we now consider the set

|h(2) = h(10)| =

< / IV (c(s))lds < Bt — 1),

B, ={xeM: u(x)>u*—nand|Vulx)| <n}. (3.47)

Since the manifold is complete, by applying Ekeland quasi-minimum principle (see
Proposition 2.2) we deduce that B, # @. We claim that

iLr?lf{q(x)Lu(X)} <0. (3.48)

Note that (3.48) is equivalent to conclusion (3.8) of Theorem 3.2. We reason by
contradiction and suppose that

q(x)Lu(x) > 09 > 0 on By, (3.49)

Now the proof follows the pattern of that of Theorem 3.1 with the choice of T, such
that also (1) (iii) holds on £27,, with £2; as in (3.16). We observe that in this case

Yo(x) =« forevery x € 0827, (3.50)
q(x)Lys(x) = 0q(x)Ly(x) < 0B <0y on 2y, (3.51)

and
IVYe()| = o|Vy(x)| <oB <n on £, (3.52)

up to have chosen o sufficiently small.
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Therefore, we find a point zy € §T1 \ £27, where u— y,; attains a positive absolute
maximum j. As in the proof of Theorem 3.1, zo € £27, and at zop we have

u(z0) > ¥o(20) > a > uz, > u* — g > u* —; (3.53)

furthermore
[Vu(zo)| = [Vyo(20)| = 0|Vy(z0)| 0B <1, (3.54)
by our choice of 0. Thus zg € B, N §27, and a contradiction is achieved as at the end

of the proof of Theorem 3.1. O

We note that the validity of Remark 3.3 is immediate. Indeed defining ¥ = ¢(y)
as in the previous subsection, conditions (I'p) (i), (if) are satisfied for ; as for
condition (I'p) (iif), using (I'p) (iii)’ and G > 0, we have

V7| = [V _ G)
G(y) +Aylogy = G(y) + Aylogy —

(3.55)

outside a compact set. Thus, we also have the validity of (I'p) (iii) for 7.

As already pointed out in Theorem 2.5, on a complete manifold (M, (, )) a
naturale candidate for y is some composition of the distance function r(x) from
a fixed origin o with an appropriate real function say, ¢, under some curvature
conditions. As we know the technical difficulty arising from this choice is related to
the lack of smoothness; this forces us to introduce a reasoning in some way similar
to approaching the problem via viscosity solutions.

We omit the details of the proof of Theorem 3.4, which follows similarly from
the proof of Theorem 3.2.

3.2 An A Priori Estimate

A typical application of Theorem 3.2 is the following a priori estimate. Note that
condition (3.59) below coincides (for f = F) with the Keller-Osserman condition
for the Laplace-Beltrami operator (see [183]) showing that in this type of results
what really matters is the structure, in this case linear, of the differential operator.
We observe that we shall also give an a priori estimate in the nonlinear case, but the
latter is definitely more complicated to prove (see Sect.4.1).

Theorem 3.6 Assume on (M, {, )) the validity of the g-maximum principle for the
operator L = Ly x and suppose that

g@T(,) <C(,) (3.56)
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for some C > 0. Let u € C*(M) be a solution of the differential inequality
q()Lu > ¢(u,[Vul) (3.57)

with ¢ (t,y) continuous in t, C* in'y and such that
82
a—yf(t, y) = 0. (3.58)

Set f(t) = ¢(t,0). Then a sufficient condition to guarantee

u* =supu < +0o
M

is the existence of a continuous function F positive on [a, +00) for some a € R,
satisfying the following

t —1/2
( / F(s)ds) € L'(4+00), (3.59)
) f;F(s)ds
e T oo
.S
1r1n+12ofm >0 (3.61)

and

(fat F(s)ds)_l/2 d¢

ltgnigf Ta—y(z‘, 0) > —oo0. (3.62)
Furthermore, in this case, we have
f*) <0. (3.63)

Proof Following the proof of Theorem 1.31 in [227] we choose g € C?(R) to be
increasing from 1 to 2 on (—oo, a + 1) and defined by

gl = L+2 on [a+1,400).
at1 (f° F(r)dr)l/2
Observe that
F
g = Wt)d)m and ¢'(1) = —¥g’(z)3 <0 (3.64)
s)ds
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on (a + 1, +00). We reason by contradiction and assume that u* = +o0. Since g is
increasing,

1 1 1

W s sro)

By applying the g-maximum principle for L to 1/g, there exists a sequence {x;} C M
such that

. L
A 2w~ 5100 (369
or equivalently
k—ljlfoo u(xy) = o0, (3.66)
1 g ) 1
‘Vﬁ(xk) = W|V“(xk)| <z (3.67)
and finally
1 1 _ 8 (u(x))
< Q(xk)L(@)(xk) = q(x) %—WLM(XU-F (3.68)

( 2¢'(u(x))* g (u(x))

g(u(x))? g(u(xk))z)T(Vu(xk), Vu(xy))

for each k € N. Because of (3.66), we can suppose that the sequence {x;} satisfies

u(x;) > a+ 1, so that (3.64) holds along the sequence u(x;). Multiplying (3.68) by

¢ ()
0 g )

and using (3.57), we obtain

¢ (u(x)’ I )
AVu@l) <
SGue)) g e | * - V) = e Pl )

(3.69)

2g' (u(xe))* g (u(x))?
* (g(u(xk»ﬂg"(u(xk)n T )’ ) 2T (Vula), Vulxr))
Since g > 1, then 1/g> < 1/g and

g’ (u(x))? &)’
8(u(x))?|g" ()| ~ gulxe))|g” (ulxe))|’
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On the other hand, by (3.56) we also have
q)T(Vu(x), Vu(a)) < C|Vulx)|*.

Using these two facts in (3.69), jointly with (3.67), yields

g (u(x))? g (u(x))? ( 1 ZC) C
ulxy), |[Vu(x < —_ 4+ = _.
elue) g e o Vel = o oo \k T e ) T e

Next, we use Taylor formula with respect to y centered at (u(x;),0) and (3.58) to
deduce

0
@uxe). [Vu(x]) = f(ulx) + a—f(u(x/c), 0)[Vu(xo)|.

so that

g (u(x)3f (u(x)) - g (u(xp))? (l E) c
) " )] TS slg o] \k T ) T C70

where

A = mind 0. 222 (uix). 0) g (ulw)? }
k dy

8(u(x))?|g" (u(xe))|

In what follows, we always assume that ¢ is taken sufficiently large. Observe that we
have

§W  _ UeFWd2 [ F(s)ds

sOlg"Ol —~ gOF () e ([ F(s)ds)!/2F (1)’
and
t—a—1
g > —( T
so that

§W o JaF6)ds
glg"®l — (1)

for some positive constant C. Therefore, using (3.60) we deduce

s >,

/ 2
lim sup g (u(x0)) < 400,

koo &(u(xi))|8" (u(xr))]




3.2 An A Priori Estimate 157

and then
! 2 1 2C C
tim sup —— & L4) (— + —2) == (3.71)
k—>+oo §(U(x))|g" )| \k Kk k
On the other hand,

g0 (1) >0 [0

20’0 g0*F@) ~ F()

for some ¢ > 0, since sup,, g < 400 by (3.59). Therefore, using (3.61) we have

lim inf 8’ (u(x0)f (u(xe))

. 3.72
N e a0 g )] G.72)

Finally, observe that

2 0 E0 ] (8_¢> <f;F<s>ds>”2)
y

00l ~ g0 \ oy "0 Fw

whence, using sup,, g < 400 and (3.62), we get

L g’
lim inf (a—y“’ °>m) T

Thus,

liminfA; = 0. (3.73)

k—+00

Therefore, taking k — +o0 in (3.70) and using (3.71)—(3.73) we obtain the desired
contradiction.

As for the conclusion f(u*) < 0, we note that if ¢ were continuous in both
variables, then to reach the desired conclusion it would be enough to apply the g-
maximum principle to u to get a sequence {y;} with limu(y;) = u*, lim |Vu(y;)| =
0 and

L > qORLu) = Pl [Va(s)),

Thus, taking the limit as k — +o00 we would get f(1*) < 0. Otherwise, in our more
general assumptions, we can argue in the following way. We re-define the function
g(?) at the very beginning of the proof in such a way that it changes concavity
only once at the point T = min{u*,a} — 1. We emphasize that with this choice
g” < 0on (T, +00). We now proceed as in the proof of the first part of the Theorem,
applying the g-maximum principle to the function 1/g(u), and get the existence of
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a sequence {x;} as before, with g’ (u(x;)) < 0 if k is sufficiently large. That is all
we need to arrive at (3.70). Taking the limit in the latter for k — +o00 and using
limy s 400 u(xx) = u* < 400, we conclude that f(#*) < 0. O

As an application, we shall now combine Theorems 3.6 and 2.5 to deal with the
following problem.

Let M be an m-dimensional manifold with m > 3 and let / be a given symmetric
(0,2)-tensor field on M. Can h be realized as the Ricci tensor of some metric (, )
on M?

Of course there are natural obstructions to the existence of (, ) solving

Ric(y = h. (3.74)

For instance, if M is compact and Ric ) is positive definite then the first Betti
number of M has to be zero as proved by Bochner [49]. Again by a result of
Myers [203], if the lowest eigenvalue of Ric( ) is bounded below by a positive
constant and (M, (, )) is complete, then it is compact and has finite fundamental
group. A similar obstruction exists also when Ric y is possibly negative; for details
see [44]. Hamilton [133] has proved that any compact 3-dimensional manifold
with positive Ricci curvature is diffeomorphic to a 3-manifolds with constant
positive sectional curvature. Schoen and Yau [251] have proved that a complete,
noncompact, 3-dimensional manifold with positive Ricci tensor is diffeomorphic
to R3.

In case h is positive definite, and therefore gives rise to a metric on M, we are
going to present an obstruction to the existence of (, ) satisfying (3.74) which is
obtained via a special harmonic map.

Lemma 3.1 Let (M, (,)) be a Riemannian manifold and let (-,-) be a second
metric on M such that

Ric(y = (). (3.75)

Let g : (M(,))) = (M, (,)) be the identity map. Then ¢ is harmonic.
Proof In the notation of Sect. 1.7 of Chap. 1 we let {6}, {6} and {w'}, {w/} be

local orthonormal coframes with corresponding Levi-Civita connections forms,
respectively, on (M, (, }) and (M, (, )). Let

o' = (pf@j. (3.76)
Then, using (3.75), we deduce

Rj = ¢igj. (3.77)

Taking covariant derivatives

Rijx = ¢p9) + 9;0j
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from which we also deduce
Rivi = ¢jipi + 9ipu
and
Rij = @jpi + ¢i9y-
Using the symmetry relations (pfj = gojfi, we immediately obtain
Rijx — Rji + Rixj = Z‘P,'t‘/?,'tk~

We now trace in the metric (, ) with respect to the indices j and k and recall Schur’s
identities (1.68)

2Ry x = S,
S the scalar curvature of (, ), to deduce
</’ir€01tck =0.

But ¢ is a diffeomorphism and thus (¢}) is an invertible matrix, from which we infer
@i, = 0, that is, ¢ is harmonic. O

Note that, from the proof of Lemma 3.1, precisely from Eq. (3.77), we also have

S = |de|>. (3.78)

In particular, if A stands for the Laplacian operator of (M, (, }), then AS can be
obtained via the Bochner-Weitzenbock formula (1.175) that, since ¢ is harmonic,

reads

1 Da a c a_a
348 = [Vdo|* + Ry 9]0 0i0] + Ruel'¢l,

where R and R denote, respectively, the curvature tensors in the metrics (, ) and (, )
on M. Again, because of (3.77), from the above we deduce

1 ~ : .
EAS = |Vdg|* + R}, .00 vie] + | Ric( ) 7 - (3.79)

To interpret the middle term in the above formula, and similarly to what has been
done at the beginning of Sect. 2.4, we will introduce a second curvature operator,
that we shall indicate with )%, now acting on symmetric (0, 2)-tensors. Let

Riem = R,'jkga)i R ® vt ® w*
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denote the (0, 4)-type Riemann curvature tensor of (M, (, )), with respect to the
local orthonormal coframe {w'}. Let o € S?>(M) be a symmetric (0, 2)-tensor

o =o' Qo (3.80)
with a;; = aj;. Then
R(a) = Ry’ ® o (3.81)

It is immediate to VEI'ify thg N is well defined. Furthermore, since R satisfies the
symmetry relations Ry = Rygij, R(a) € S*(M) and we have an endomorphism

R S2(M) — S2(M).

Even more, since R also satisfies Ejkg = _kjikli’ given to Sz(M) the obvious inner
product induced by (, ), that we shall indicate with the same notation, we have that
¢ is self-adjoint. Indeed, for o, B € S?>(M) we have

(o, R(B)) = C(j[’]\éj[[kﬁik = —Otjzﬁijzkﬂik = —Oéjzmkijﬂik
= @ RuiiBic = R Bic = (R(@), B).

In particular, i is diagonalizable on S?(M).
To simplify the writing let g = (, ). Setting ({;) = ((,0;')_1 with (p; as in (3.76),
we have ‘ ‘

g=()=¢tlo' o

We define a new symmetric (0, 2)-tensor g~ ! as the tensor whose coefficients in the

local orthonormal basis {w'} are given by the coefficient of the inverse of the matrix
(€3€7). It is immediate to verify that the latter is the matrix (*@!). Thus

g = plplot @ o',
It follows that
~(R(s™).87") = Rusac {9 9105
thus (3.79) can be written as
1 2 f o1y o1 : 2
EAS: |Vdp|"— (R ), g )+|RIC(,)|(’). (3.82)

Hence, if A(x) is the maximum of the eigenvalues of 3 at x, we have

1 1 — .
548> |Vde|* — Ax)(g~".g7") + | Ric( ) I

= |Vdg|* + (1 — A()|Ric() [{ -
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On the other hand,
SZ
: 2
[Ric(y [ = ot
so that, if A(x) < 1 on M, we finally arrive to the differential inequality

1 1
EAS > |Vde* + —(1 — A(x))S>. (3.83)
m

We are now ready to prove the following

Theorem 3.7 Let (, ) be a Riemannian metric on M and let A(x) be the largest
eigenvalue of the curvature operator of (, ) acting on symmetric (0, 2)-tensors at
x € M. Assume that

sup A(x) < 1. (3.84)
M

Then there is no complete metric {, ) on M such that

RiC(’) = (, )

Proof Suppose by contradiction the existence of a complete metric (, ) on M
satisfying the above requirements. Then, from (3.84) and (3.83) there exists C > 0
such that

AS>CS? on M. (3.85)

By the completeness of the metric (, ) and the positivity of its Ricci tensor, we have
the validity of the Omori-Yau maximum principle for A on (M, (, }). Therefore by
Theorem 3.6 we conclude that S = 0; this contradicts the fact that.S = Tr( y(, ) > 0
onM. O

Remark 3.4 Theorem 3.7 improves on DeTurck and Koiso [100] and Delanog [99].

3.3 The Nonlinear Case

In this section we will introduce an extension of Theorems 3.1 and 3.2 to the
nonlinear case. Since solutions of PDE’s involving the type of operators we shall
consider are not, in general, even for constant coefficients, of class C2, it will be
more appropriate to work, from the very beginning, in the weak setting (think for
instance of the p-Laplace operator with p £ 2, p > 1).

We let A : RT—R and we define ¢(f) = tA(t). The next assumptions will be
crucial to apply the version of Theorems 5.2 and 5.4 of [236] that we present below
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in Theorems 3.8 and 3.10:

(Al) AeC'(RT).

(A2) () ¢'(1) > 0onR™T, (i) p(t)—0 as t—0T.

(T1) T is a positive definite, symmetric, 2-covariant tensor field on M.
(T2) Forevery x € M and for every & € T.M, & # 0, the bilinear form

A'(€D)
&

is symmetric and positive definite. Here © denotes the symmetric tensor product.

(6. )OTE. ) +AIEDT(.)

Note that the above requirements are not mutually independent. Indeed the bilinear
form in (T2) is automatically symmetric when 7" does. Furthermore, if we write it
in terms of @, being positive definite means that for every x € M and for every
EveTl M Ev#D0,

(s - £0) p(£)
|W(¢%D wE) ot + ST >0

In particular, the choice v = & shows that
¢ () >0 on RT,

that is, requirement (i) in (A2). Requirement (T2) is in fact equivalent to (i) in (A2)
incase T = t(x)(, ) is a “pointwise conformal” deformation of the metric for some
smooth function #(x) > 0 on M. Indeed, in this case (T2) reduces to

L 2, (8D
|§I2¢(|SI)I(X)(E,U) MTE

for every x € M and for every §,v € T:M, £, v # 0.
Having fixed a vector field X on M, we define the operator L = Ly rx

1) (JoPIEP = (£.0)*) > 0

Lu = div (A(|Vu|)T(Vu,)*) — (X, Vu) (3.86)

acting on C' (M), where ! : T*M—>TM denotes the musical isomorphism. Of course,
the above operator L has to be understood in the appropriate weak sense.

L gives rise to various familiar operators. For instance, choosing T = (, ) and
X = 0 we have

1. Foro(t) =, p>1,
Lu = div (|Vu|p_2Vu)

is the usual p-Laplacian. Of course the case p = 2 yields the usual Laplace-
Beltrami operator.
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2. For ¢(f) = t/~/1 + > the operator

. Vu
Ly = div| ———
V1+|Vul|?
is the usual mean curvature operator.

We let, as in the linear case, g(x) € C°(M), g(x) > 0, be such that, for some
compact K C M, g(x) > 0 on M \ K. However, since our setting now is that of
solutions in the weak sense, for technical reasons (see for instance (3.173) in the
proof of Theorem 3.11 below) we need the local integrability of 1/g also inside K.
Thus, when needed, we will also assume

1
7S L. (M). Q

This fact was already pointed out after Remark 3.3 of the linear case whenever we
deal with functions # on M which are merely of class C'.

3.3.1 Analytic Preliminaries

The aim of this section is to prove the comparison and the strong maximum
principles that we will need later for C! or even Lip,,, solutions. However, instead
of proving them just as needed, we present these two results in a more general form
involving a function f satisfying some, accordingly to the results we are presenting,
of the following conditions:

F1) feC(Ry):
(F2) f is positive on some interval (0, §) with 0 < § < 4-o00;
(F3) f(0) = 0 and f is nondecreasing on some interval (0, §) with 0 < § < +o0.

This choice is motivated mainly by two reasons: first, the results in this general form
are useful in many different applications; second, in the maximum principle, when
f # 0, it appears a condition on f which is somehow dual to the Keller-Osserman
condition given in the linear case in (3.59). We shall briefly comment on this later
in Sect. 4.1 of Chap. 4.

We begin by proving an auxiliary lemma; recall that, given a smooth curve c :
[0, 1] — M, a vector field X; along ¢ is smooth map X : [0, 1] — TM such that
X; € Tc(t)M .
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Lemma 3.2 Assume (Al) and let T be a (0, 2)-tensor field on M. Let Vu, Vv €
TM, for some x € M, be such that X, = tVu + (1 — t)Vv # 0 for each t € [0, 1].
Then at x we have

(A(IVu)T(Vu, ) — A(IVo)T(Vv, )*, Vu — V) =

A (X,
/ ( l()I(ltl)(X,,Vu—Vv)T(X,,Vu—Vv)+A(|X,|)T(Vu—Vv,Vu—Vv)) dr.
0 t

Proof Let ¢ : [0,1] — M be the constant curve c¢(f) = x for all + € [0, 1], and
consider the vector field X; along ¢ givenby X, = tVu+ (1 —1)Vv # 0. To simplify
notations we set Y = Vu — Vu. Let {¢;} be a local orthonormal frame at x satisfying
Vegei(x) = 0 foralli,j = 1,...,m. Using the latter, jointly with the properties of
covariant differentiation D/dt along the curve, the fact that ¢ = 0 on [0, 1], and
X; # 0 on [0, 1] by assumption, we have

d
dt

AGDTE 1) = (SAMDT()EY) = (DAXDT (G e)er )

L ADTC8 ) e 7)

AWXD Dy Xyen 1)

=T(X;, e
(X, e) X, ‘i

FAQXD S (T06, ) (61, )

A(IX,
- (X, m%(xt, Y)(ei, )

LA en ) ((v&mT)(X,, ey + 70X, ei))

A'(1Xi])
|Xi]

Then the result follows immediately by integration. O

= T(th Y) (Xl‘s Y)

+A(XT(Y,Y).

We are now ready to prove the following

Theorem 3.8 Assume (Al), (T1), (T2), (F1) and (F3). Let X b_e a vector field on M
and 2 C M be a relatively compact domain. Let u,v € C°(2) N C'(2) be weak
solutions of

div (A(\Vu)T(Vu, )*) — (X, Vu) — f(u) <0 in L2, (3.87)

div (A(IVo)T(Vv, )) — (X, Vv) —f(v) = 0 in £2, (3.88)
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respectively, with v < § for § as in (F3). Assume that

[Vu| 4+ |Vv| >0 on 2, (3.89)
and
either |Vu| <bor |Vv| <b in$2 (3.90)
for some b > 0. If
u>v onads2 3.91)

then u > v on £2.
Remark 3.5 We underline the essential requirement (F3).

Proof We reason by contradiction and, setting w = u — v, we suppose that

§ = —infw > 0. (3.92)

Next, fora € [g/2, &) we let w, = w + a and set
Y, =1{xe€ 2 :w,(x) <0}

Of course X, C §2 and therefore X, is relatively compact. Next there exists 0 <
d < 2b such that

|Vu| + |Vv| > 4d  on Xz D X, (3.93)

Indeed, fg/z C 2 and |Vu| + |Vv| > 0 by assumption (3.89). We now claim that
we can choose a sufficiently close to £ so that for each 7 € [0, 1]

[tVu+ (1 —-1)Vv| >d on X, (3.94)
and
|Vul,|Vv| <b on X,. (3.95)
To prove the claim, observe that the set
E={xeR :wkx)=-8}C X,

since a € [g/2,¢); furthermore E # @ because of (3.91). The points of E are
absolute minima for w and thus

Vu=Vv onE.
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We observe that, because of (3.90), w(x) > —& on 2. Hence, forx € ¥,
—& <wx) < —a,
and choosing a sufficiently close to &, by continuity,
|[Vu—Vv| <d onX,.
In particular, for such values of a, since by (3.93)
max{|Vul, |[Vv|} > 2d on X,
for all 7 € [0, 1] we have
[tVu 4+ (1 — 1)Vv| = max{|Vu|, |Vv|} — |Vu—Vv| >d on X,

that is, (3.94). To prove (3.95) consider, without loss of generality, the case |Vv| < b
on £2 in (3.90). Define

b = sup |Vv|.
252

Since fg/z C 2 and |Vv| < bon £2, we have b < b, and if we choose a sufficiently
close to &, then also |Vu — Vv| < b — b in X,. It follows that

[Vu| < |Vv| + |[Vu—Vv| <b inX,,
that is, (3.95).

Hence, setting X; = tVu + (1 — )V, then for all a € [a, &) with a sufficiently
close to &, we have

d<|X;| <2b onlX,.

This fact, (T2) and the compactness of X imply the existence of a constant A > 0,
independent of a and ¢, such that

A'(1X.)
|Xi]

(X;, Vu — VO)T(X;, Vu—V)+A(|X,|) T (Vu—Vv, Vu—Vv) > A|Vu—Vo|?

(3.96)
on X, forall a € [a, &) and for all t € [0, 1].



3.3 The Nonlinear Case 167

We now extend w, to be 0 outside X, and we use this nonpositive function as a
test function. We have

/ (A(VuDT(Vu, -)* = A(IVOT(Vv, ), Vw,)

a

< / (Vo = Vi, + [ () =) (3.97)

Using (3.96), the fact that since w, < 0 on X, both u and v are strictly less than §
of (F3), Lemma 3.2 and Vw, = Vu — Vv on X, we have

A/ Wu—Vsz/GCYVv—VWWWSpr| |Vwa[Wal.
a a Z‘(l

that is,
k/lvmﬁfn/|vmmm, (3.98)
o o
with A and 7 positive constants independent of a € [a, ). We define
Iy={xefR:a—c<wux)<0}C X,
and observe that
Y, \I,=E.

Hence Vw, = 0in X, \ I,. From (3.98) we then deduce

A/ |Vwa|2 < n/ [Vwg||Wal.
Iy Iy

Applying Holder’s inequality to the right-hand side of the above, we obtain

A / Wl < (1) / vl (3.99)

Note that this is possible since A '[Fa [Vw,|? # 0 for each a € [a, &). Indeed, as we
have already observed

A o —A/ Vwal
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Now consider the isoperimetric constant

[5, Vel

0<S8x, = i
‘peH(l)(Ea)vfﬂ?_éO ”go”L’”/(Ea)

(3.100)

with m’ the Holder conjugate of m (see [141]). Note that w, € Wé’z(Ea) andw, # 0.
Therefore, using again Holder’s inequality

2
0< (/ |Vwa|) §vol(2a)/ |Vwg|?.
oA Za

To finish the proof, first we consider the case m > 3. We apply (3.99), and Holder
and Sobolev inequalities to obtain

m—2

(2) vocrp ( /F a |w¢,|n?"’z) e (%)Z/F il

Since |wg,| # 0 on I, for a € [a, £) we have
) _9 2 _5 2
GY vor= (575) = (57ss) >0

Letting @ — a and noting that I, — @, from the above we obtain the desired
contradiction.
When m = 2 we proceed from (3.99) as above with —=5 replaced by any fixed

exponent g > 1. O
Remark 3.6
(i) Of course (3.98) is true also in case supg |X| = 0 and the proof follows.

However, in this case, the argument simplifies; indeed, we have

IV < /2 (F(v) —F@)wa <O,

Xa
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and therefore Vw = O on X,. Let y € E and let U, be the connected component
of X, containing y. Note that w = —a on dU, (# @). On the other hand w(y) =
—¢& and w is constant on Uy, contradicting the fact that a € [¢/2, &).

(ii) A further observation is that we can substitute the term (X, Vu) + f(«) in (3.87)
with a general B(x, u, Vu) with the property that

B(x,u,§) < ko(|]) +f(u) (3.101)

forx e M, u € R(‘)F and |§] < 1, for some k > 0 and f satisfying (F1),
(F3), provided (A2) (i) holds. This is essential for the very general form of
Theorem 3.10 below; to see this note that the right-hand side of inequality (3.97)
now becomes

/Z {klp(IVo]) —o(IVuD] + f(v) = f () }wa

and
1
e(IVu)) — (Vo) = /0 @' (X))(IVu| — |Vv|) < n|Vu— V|

with 7 = maxp, 24 ¢’ > 0. This allows us to obtain (3.98) again.

Remark 3.7 The reasoning in the proof of the theorem above shows that £2 can
be any domain, that is, not necessarily relatively compact, if we add to (3.91) the
further requirement

limsup (u(x) —v(x)) >0 (3.102)

XER,r(x)—>+00
and the condition sup, |X| < 4oc. The above condition (3.102) on u and v will be
also considered in Proposition 3.1 that follows.

For our needs we will use a simplified form of the comparison principle like that
expressed in the next result and in Theorem 3.9 below.

Proposition 3.1 Assume (Al), (A2). Let 2 C M be a domain and suppose that
u,v € Co(ﬁ) N CY($2) satisfy

(i) div (A(|Vu|)Vu) > div (A(|Vv|)Vv) weakly on $2

(3.103)
(i)u < v on 982 and limsup,cq ,(1)—»4o0 (U(X) — V(X)) <0,

where the last condition only appears in case 2 is unbounded. Then u < v on £2.



170 3 New Forms of the Maximum Principle

Remark 3.8 The proof of the proposition is much simpler and direct than that of
Theorem 3.8. This is due to the fact that inequality (3.96), requiring X; # 0 V¢ €
[0, 1], can now be avoided because the tensor T coincides with the metric. This will
be clear in the argument below.

Proof Setw = v—u in §2 and by contradiction assume that there exists y € £2 such
that w(y) < 0. Fix ¢ > 0 sufficiently small so that w(y) + ¢ < 0. By assumption
(3.103) (ii), w > 0 on 042 and “at infinity”; it follows that w, = min{w + ¢,0} is a
nonpositive Lipschitz function with compact support in §2. By the meaning of weak
solution of (3.103) (i), taking —w, as a test function we get

/ h <0, (3.104)
Q
where we have set

h = (A(|Vv|)Vv — A(|Vu]) Vi, Vi)

- <|Vv|_1(p(|Vv|)Vv — |V (| Vu|) Va, Vw£>.

Clearly = 0 on the set {x € 2 :w(x) + & = 0}. On the other hand, on
{x e 2:wkx) +e<0},

h = [p(IVv]) = o(IVuD][IVv] = [Vul]

+[|Vvl_1¢(IVvl) + |VM|_1<P(|V“|)][|V“||VU| — (Vu, Vv)].

Whence, using Cauchy-Schwarz inequality and (A2), that also implies ¢(7) > 0 for
t > 0, we obtain

h>0 a.e.in £2.

From this and (3.104) it follows that 2 = 0 a. e. in §2, which in turn forces Vw, = 0
a.e.in £2. This shows that w, = w+ e =w(y) + e <0Osothatv —u =w < —¢in
§2 contradicting (3.103) (ii). O

Remark 3.9 The same proof works also in case u and v, solutions of (3.103) (i), are
in C°(£2) N Lip,,, (£2).

We now give a version of Proposition 3.1 in case T is not the metric. The proof
introduces a further point of view resting on the distributional divergence of a vector
field. Since this approach will also be used later on, for instance in the proofs of
Theorems 4.4, 4.1 and 4.2, it seems rewarding to introduce it here. See however
Remark 3.10 below.
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To prove our result we need a second version of Lemma 3.2, but first let us
introduce the next function. Fix x € M, § € T.M and consider

8x.k - (TxM \ {O}) g R(_)F

defined by

e () = T(¢(Ivl)v’g)'
|v]

Since

|lgee ()] < ITLe(lvDIE],
the validity of (A2) (ii) implies that
ge(v) =0 asv—0.
This allows us to define g, ¢ : .M — RS’ continuously by setting g ¢(0) = 0.
Next we strengthen (A2) to
(A2) (1) ¢'(f) > 0 on R™, (ii) p(1)—0 as r—07T, (iii) @ e L'(0™).
Observe that (i) and (ii) imply ¢'(¢) € L' (0"). We are now ready to state

Lemma 3.3 Assume the validity of (Al), (A2)’ and define g.¢ forx e M, § € T.M
as above. Let Vu, Vv € TyM and set X; = tVu + (1 — t)Vu for t € [0, 1]. Suppose
that |Vu| + |Vv| > 0 and let T be a (0, 2)-tensor field on M. Then at x we have

h(x) = &x,Vu—Vu (VM) - gx,Vu—VU(VU)

1
- / { PUXD 1 G — Vo, Vu — Vo)
0 X

o(1X:])

+
Xl

(d(lX;l) -~ )(X,, Vu— Vo)T(X,, Vi — Vv) | dt.

X °
(3.105)

Furthermore, if (T1) and (T2) hold, then h(x) > 0 and h(x) = 0 if and only if
Vu = V.

Proof If X; # 0 on [0, 1] the result coincides with Lemma 3.2. Thus suppose there
exists fy € [0, 1] with X,; = 0. Note that #, is unique. The cases , = 0 and #p = 1
are simpler, so let us assume 7y € (0, 1). Let / be the integrand in (3.105). For ¢ > 0
sufficiently small, integrating on the intervals [0, fo — €] and [ty + ¢, 1] we get

th—e 1
/ 1dt +/+ 1dt =g vu—vv(Xiy—e) —2x. vu—vo (V) + 8. vievo (Vi) =2 Vi o (Xigte) -
0 to+e
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By the continuity of g,¢, its linearity in £ and since X;, = 0, the right-hand side

of the above converges to h(x) as ¢ — 0 and the left-hand side converges to fol I
because of (A2)’.

Under the validity of (T1) and (T2), the fact that 4(x) > 0 and #(x) = 0 if and
only if Vu = Vv follows immediately from (3.105). O

Theorem 3.9 Assume (Al), (A2)’, (T1), (T12) and let 2 C M be a relatively
compact domain. Let u, v € CO(Q) N C'(2) satisfy

div (A(|Vu|)T(Vu, )Ii) > div (A(|Vv|)T(Vv, )Ii) weakly on 2

(3.106)
u<v on 052.
Thenu < v on £2.
Proof Clearly it suffices to prove that for each ¢ > 0 we have
u<v4+e onSf2. (3.107)

Towards this aim fix ¢ > 0 and let £2 be an open set with smooth boundary such
that

O ={xef: ux)>vk +e CCRcc .

Note that to construct £2 we can choose a smooth nonnegative function z such that
z=lon®andz=0onM\ 2.1Ifc € (4—11, %) is a regular value of z (which exists

by Sard’s theorem) we may set £2 = {x € £2 : z(x) > c}. Let « € C'(R) be such
thata(r) = 0if t < sand o/ (r) > 0if t > &, so that a(z) > 0 fort > &. Let W be the
vector field defined by

W=a(-— v)[|Vu|‘1qo(|Vu|)T(Vu, )F = Vo™ o (IVoT(Vv. )“]; (3.108)

note that W continuously extends to all of §2 whenever Vu or Vv are zero.
Furghermore, note that, by the definition of & on £2, W = 0 in a neighbourhood
of £2. Using (3.106) we have

divW = a(u— u){div (|Vu|_1<p(|Vu|)T(Vu, )ﬁ) _div (|Vv|_1<p(|Vv|)T(Vv, )ﬁ)}
o (u— v)T(|Vu|_1(p(|Vu|)Vu — Vo o(|Vu]) Vv, Vi — W),
so that

divw > o (u— v)T(|Vu|_l(p(|Vu|)Vu — Vo' (|Vo|) Vo, Vi — Vv) on £2.
(3.109)
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Denote by p the distance function from 952, with the convention that px) > 0ifx e

2 and p(x) < 0if x & £2, so that p is the radial coordinate in the Fermi coordinates
(see also Chap. 2, Sect. 2.3) with respect to d52. By Gauss lemma, |Vp| = 1. Let

2, ={xe:px) >y}

and let v, be the Lipschitz function defined by

1 if x € 2,
Uy ()4 1p) if xe 2\ K2,
0 if x & 2.

Note that, since W vanjshes in a neighbourhood of 8[}, for each y > 0 sufficiently
small W vanishes off £2, and by definition of weak divergence we have

/N Y, divWw = —/N (W, wa) = —l /~ (W, Vp)=0. (3.110)
2 2 Y Jo\e,

Thus, using (3.109),
/~ o (1 — v)T(|Vu|_l(p(|Vu|)Vu — VooV |) Vo, Vu — Vv) <o0.
2
By Lemma 3.3
h= T(|Vu|_lq0(|Vu|)Vu — Vo] (| V|) Vo, Vi — Vv) > 0.
Thus
/ o' (u—v)h <0.
C]
Since &’(u —v) > 0on ® and h > 0 if Vu # Vv we deduce that Vu = Vv on O,

but then # — v is constant on each connected component of &. Since u = v + € on
052 this contradicts the definition of &. O

Remark 3.10 The above proof extends to the case where u# and v are only Lipschitz
in £2. Note that by Lemma 1.16 in [142] the conclusion Vu = Vv a.e. impliesu = v
on every connected component of ©.

We now consider a solution # > 0 of the differential inequality
div (A(|Vu|)T(Vu, )ﬁ) —F(u) <0, (.111)

where f satisfies (F1), while A and T are as before.
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We say that the strong maximum principle holds for (3.111) in a relatively
compact domain §2 if for any solution u € C'(£2), u > 0, the existence of xy € 2
such that u(xp) = 0 implies u = 0 in §2. Before stating the theorem we define on
R/ the function

H(f) = tp(r) —/0 o(s) ds. (3.112)

Note that H is strictly increasing on R*: indeed, let 0 < tg < t1, then using (A2) we
have

ne(t) — toplio) > (1 — 0)p(n) > / () ds.

fo

In particular H(f) > 0 on R™ and H(+00) < +o0. Note that the case H(+00) <

t

+o00 can indeed happen (for instance with ¢(f) = W)' With f satisfying (F2) on
(0, &) we define

F(t) = /0 " 1(s) ds: (3.113)

thus F(¢) is positive for ¢+ > 0 sufficiently small and F(0) = 0. Hence, for t € R™
sufficiently small the function H~'(F(t)) is well defined and the requirement

1
—— ¢ L'(0" 3.114
) G
is meaningful.

Although we will use Theorem 3.10 below only for f = 0, we consider here the
more general case for its relation to condition (3.114) as we briefly explain.
Recall that, given the differential inequality

div (A(|Vu|)T(Vu, )ﬁ) > f(u)

u>0

in 2 = M \ K for some compact set K of M, we say that the compact support
principle (CSP for short) holds for it if the condition #(x) — 0 as x — oo implies
that # has compact support in 2.

As proved in [236], a necessary condition for this to happen is the validity, in the
above notation, of

1 Lo+
TED) e L'(07). (3.115)
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This requirement can be, in some sense, thought as “dual” to the Keller-Osserman
condition

1 1
—H—I(F(t)) €L (+0).

Loosely speaking, and as already pointed out in Theorem 3.6, the failure of the
latter is strictly related to the existence of unbounded positive solutions on M of the
differential inequality

div (A(|Vu|)T(Vu, )ﬁ) > f(u).

Similarly, the failure of (3.115), in other words, the validity of (3.114), yields the
validity of the maximum principle in Theorem 3.10 below, which in turn allows
us to construct counterexamples (see [236]) to the CSP. A full clarification of the
mutual relation between these conditions is still open, although some progress has
been made in [45].

Theorem 3.10 Assume (Al), (A2), (T1) and (T2). Let 2 C M be a relatively
compact domain and let u € C'($2) be a solution of
div (A(|Vu|)T(Vu, )ﬁ) —B(x,u,Vu) <0 in £,
u>0in 2

(3.116)

with B(x, u, Vu) < ko(|Vul) + f(u) for some k > 0. Then, for the strong maximum
principle to hold, it is sufficient that either f = 0 on [0, u) for some > 0 or that f
satisfies (F3) and (3.114).

Remark 3.11 1If f satisfies (F3) but f % 0 on [0, ] for some p > 0, then f > 0 on
(0, u] for some pu > 0 because of (F3), hence (F2) holds and (3.114) is meaningful.

Remark 3.12 If k = 0 then (A2) is not needed.

The proof of Theorem 3.10 is based on the original idea of Hopf [144] to compare
the solution u of (3.116) with an appropriate function v to obtain a contradiction
in case u violates the strong maximum principle in §2. However, since we are
dealing with nonlinear operators of a very general type, the construction of v is quite
delicate. Thus, in order to prove the theorem, we first need to establish a number of
auxiliary results. We begin with the next

Lemma 3.4 Assume (F1), (F3). If t > 1 and (3.114) holds then

1

1o+
FGFD) gL'(0%). (3.117)

Proof Leto € [0, 1]; since, by (F3), f is nondecreasing for ¢ € [0, §], we have

af(o1) < of ().
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It follows that

/Oorf(x) dx = a/otf(as) ds < U/()tf(s) ds.

that is,
F(ot) < oF(y). (3.118)

Choose 0 = 1; then
1
rF(—) <F@), O0<i<l.
T

But H7! is increasing and thus

1 1
HA (D) — HF@)

Fix ¢ > 0 small and a > ¢ sufficiently small. Then

. /i‘ dx / . / dt
s H'@F()  Jo H'(eF(L) ~ Je HT'(F(1)
Letting ¢ | 01 we obtain (3.117). O

The following result will reveal essential in what follows because it guarantees
w/(T) > 0 for a C'([0, T])-solution of problem (3.120) below.

Note that, under assumption (A2) (ii), for technical reasons we extend the
definition of ¢ to a continuous function on R, still called ¢, by setting ¢(f) =
—@(—t) for t < 0. Clearly ¢(0) = 0. From (A2) (i) we also have t¢(r) > 0 for

t#0.

Lemma 3.5 Let T > 0, assume (A2) and let ¢ be as above. Let
g€ C%(0,T)), ¢>0in (0,7). (3.119)

Then any C'-weak solution w = w(t) of

§ [sgn w(O][g(De ' (1))] > 0 in (0,T), (3.120)

w(0) =0, w(T) =m >0,

where sgn is the signum function, that is,

sgnt = |_;‘ 170
0 ift=0,
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is such that
w>0, w>0 in(0,T). (3.121)
Even more, there exists ty € [0, T) with the property that
w=0 in[0,50], w>0, w >0 in (t,T) (3.122)

and if w € C'((0, T)) then

w/(T) > 0. (3.123)

Proof We claim w > 0 in [0, T]. Otherwise there exist 0 < fy < t; < T such that
w(ty) = wt1) = 0and w < 0 on (to, t;). We use

V) = gw(t) if t € [to, 1],

0 otherwise

as a test function. Since ¥ () < 0, (3.120) gives
t
[ awetw o oa <o
to

Now, for p # 0, ¢(p)p > 0, thus from (3.119) we deduce that the integrand is
nonnegative. Therefore, necessarily w = 0 on [fp, #;]. It follows that w = 0 on
[to, t1]. This contradiction proves the claim.

Now let

J={re(0,7):w() >0}.

Obviously, J # @ since w(0) = 0 and w(T) > 0, and J is open in (0, T) since
w € C'((0,7)). Letty = infJ € [0, T); then w = 01in [0, #], since we already know
that w > 0in [0, T]. Next, for any fixed ¢ € (¢, T) necessarily there exists t; € (fo, t)
such that w'(#;) > 0. Integrating (3.120) on [t1, ], and recalling that w > 0 on (0, T),
because of (3.119) and (A2) (i), that is, ¢ increasing on R*, we get

a@e (W ®) = q(t)e(w (1)) > 0,
so that w > 0 on (t,T) and (3.123) holds in case w € C!((0,T)). Now by
integration w > 0 in (%, T), completing the proof of (3.122). O

Our next step is to solve the following singular two-point boundary value
problem:

[a@)p W )] — q(Of w(®)) = 0 in (0, ),

(3.124)
w(0) =0, w(T) =m > 0.
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Here we assume
g€ C([0,T]), ¢ >0on [0,7T] (3.125)

and we set

= minq(?), = maxq(f).
g0 = ming(n). na q(1)

We have
Proposition 3.2 Let (3.125), (F1), (F3), (A1), (A2) hold.

(i) Let ¢(4+00) = +00. Then problem (3.124) admits a C'-weak solution with the
properties

we C'([0,T]), ¢(w) e C'([0.T]), w > 0. (3.126)
Moreover we have
w(T) >0 (3.127)

and
oo < ¢~ (%[Tf(m) + w(?)]) (3.128)

where f(m) = max[o, f(t). In particular
w <1 (3.129)

ifm> 0and T > 0 are sufficiently small.
(ii) If p(4+00) = w < 400 letm € (0,8), 0 < T < 1 be such that

LT+ (7))

—|T — . 3.130
LT +e(F)] <o (3.130)
Then the conclusion of part (i) continues to hold.

Remark 3.13 Note that we could relax (F3) to f nonnegative on [0, ) for some
§>0.

Proof Note that, for p < 0, ¢(p) = —¢(—p); this definition does not affect the
generality, since the ultimate solution w satisfies w' > 0. It is also convenient to
redefine f so that f(r) = f(m) for t > m and to set f(r) = 0 for t < 0. Again this
will not affect the conclusion of the proposition, since clearly any ultimate solution
with w’ > 0O satisfies 0 < w < m.
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Case (i). Let

= a|TFm) + (%) | (3.131)
and
1 =10, 1]
To show existence we shall use Browder’s version of the Leray-Schauder Theorem

(see Theorem 11.6 of [125]). Towards this aim we let X be the Banach space X =
C°([0, T]) with the sup norm || ||oo. Let .# : X — X be defined by

T T
Fw)(H) =m— / o (%[u - / G(Df (w(0)) er s, (3132)

t € [0,T], where i = pu(w) € I is chosen in such a way that
F(w)(0) =0. (3.133)

Such a choice of u is possible and in fact unique; indeed, for any fixed w € X and
u € I we have

_J_C(_m) q(t) dt < L[ _/ q(0)f (w(1)) dr} < — (3.134)
q0 0 ( ) s qO

hence .% (w) is well defined for each p € I. Moreover, for 1 = 0 we see that, for
allwe X,

F(w)(0) = m.
On the other hand, for © = u, for allw € X we find

Zw)(0) = m

[ (o) + s i [ Tq(t)f(W(r))erds
<o [[o (o)) =0

since ¢! is increasing and [q1 Tf (m) — fXT q(@)f(w(r)) dt] > (. Now, the integral
on the right-hand side of (3.132) is a strictly increasing function of u for w fixed; it
is therefore clear that there exists a unique i € [ such that (3.133) holds true. Next
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we define the homotopy 57 : X x [0, 1] — X by setting

T 1 T
A, 0) () = om— / w—l(@[ua—a / q(r)f(w(r))dr])ds, (3.135)

where (1, = u(w, o) € I is chosen in such a way that
I (w,0)(0) = 0. (3.136)

Proceeding as above we see that i, exists and is unique, and the mapping .7 is well
defined. By construction any fixed point w, = .7 (w,,0) is of class C' ([0, 7]), has
the property that ¢(w’) € C'([0, T]) and it is a C'-weak solution of the problem

[406 (v, )] = 0a()f (we () = 0 in [0.7], (3.137)

wo (0) = 0, wo(T) = om. '
Note that with our new definition of f, w, satisfies the differential inequality in
(3.120). Thus, by Lemma 3.5, a fixed point w = 5 (w, 1) satisfies w,w’ > 0 and so
is a solution of (3.124) satisfying (3.126) and (3.127).

It remains to show that such a fixed point w = w; exists. We begin by verifying
the first step to apply Leray-Schauder’s Theorem. When o = 0, then clearly u, = 0
and therefore, for allw € X, 5 (w, 0)(f) = 0, that is, 57(-, 0) maps X into the single
point 0 € X = C°([0, T]). We now show that ;# : X x [0, 1] — X is compact and
continuous. Let (wy, 0x) be a bounded sequence in X x [0, 1]. Clearly u, € I;
therefore, using the fact that 0 < f(r) < f(m) for every ¢ > 0 together with (3.134)
we deduce that

1" (Wi, 0%)lloo < C',

where

r T
c :max{@/ q(t)dt,go—l(ﬂ)}. (3.138)
q0 Jo q0

Since C’ is independent of k, by Ascoli-Arzela theorem .7 maps bounded
sequences into relatively compact sequences in X.

To show that .7 is continuous on X x [0, 1] let {(w;, 0;)} C X [0, 1] be such that
wj = w, 0; — 0. Then, in (3.135), 0,/ (w;) — of (w), o;h — oh since the modified
function f is continuous on R (here we use the condition f(0) = 0). We need to
show that pL(Wj, oj) — u(w, o). By contradiction suppose this is not the case; then,
for some subsequence still called {(w;, 0;)}, we have

Wi = pn(wj.0)) = i # p = pw,o).
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From (3.136) we deduce

T T
0=y [ o7 (G|m=a [ awrosenac])as

s

+ /0 Lo (é [ﬂ —o / L@ (o) dr]) s,

and letting j — +o0,

0 =y {o7! (3] —o S aorone) ar))
! (}1 [u —o [T q(@)f (w(1)) d‘C:I)} ds. (3.139)

But ¢! is monotone increasing, so the integrand is either everywhere positive or
negative contradicting (3.139).

To apply the Leray-Schauder Theorem it is now enough to show that there is a
constant A > 0 such that

IWlleo < A forevery(w,0) € X x[0,1] with J€(w,0) = w. (3.140)

Towards this aim let (w, o) be as in (3.140). As observed above, since w' > 0,
Wlloo = w(T) = om < m and we can choose A = m.

The Leray-Schauder Theorem can therefore be applied and the mapping & (w) =
€ (w, 1) has a fixed point w € X which is the required solution of (3.124). That
(3.126), (3.127) hold has already been noted. To prove (3.128) consider (3.132)
evaluated at a fixed point w. From (3.134) and p € I we have

T
W) = F w0 = ¢! (%[u - / (D (r(©) er

¢! (%) =9 [%(Tf(m) + w(?))}

and (3.128) follows at once.

Case (ii). The argument is the same as before, except that in (3.134) the right-
hand side, £, is now less than w because of (3.130). Thus, .# is well defined on X
and the rest of the proof remains unchanged. O

Proposition 3.3 Assume (3.125), (F1), (Al), (A2) and suppose additionally that
either f(t) = 0 on (0, u) for some u > 0, or that (F2) and (3.114) hold. Then the
solution w of the problem (3.124) given in Proposition 3.2 has the further properties

w(t)>0 in (0,T);  w(f)>0 in[0,T]. (3.141)
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Proof Case (i). Let f = 0 on (0, ;) for some p > 0. Then, from (3.124),

[a@)e(W )] =0

at least for # near 0. Hence for ¢ sufficiently small

a(e (W (1) = q(0)p(w'(0))

is constant. We claim that w/(0) > 0. Indeed suppose the contrary; then, since ¢!

is increasing and ¢ ' (0) = 0, we would have w'(f) = 0 for ¢ sufficiently small and
then, by continuation, for ¢ € [0, 7], contradicting the boundary condition w(T) =
m > 0. Hence w/(0) > 0 so that, in the second part of Lemma 3.5, 7, = 0 and it
therefore follows that w/(¢) > 0in [0, 7] and w > 0 in (0, T] as required.

Case (ii). Let (3.114) hold. Because of (3.126) p(w') € C'([0,T]). We also
already know that w/(0) > 0 and 0 < w < m. If we show that w/(0) > 0 then
the conclusion follows as before. Hence, let w be a solution of

[g@)p W )] = q(Of w() <0 on (0.7),

(3.142)
w0) =0, w(T)=m=>0, w=>0

with (W) € C'([0, T]). Suppose that f(u) > 0 for u > 0. If w(0) = 0 we claim
that

1 Lo+
TEG) e L'(07). (3.143)

Proving this yields a contradiction with (3.114), so that w/(0) > 0 and the
proposition is proved. Towards this aim we need the following auxiliary

Lemma 3.6 Assume the validity of (Al), (A2), (F1), (F3) and that
geCY([0,T]), g>0 on[0,T] (3.144)

holds. Then, for each weak solution w € C' ([0, T]) of

[g@e W )] — gOf w(®)) <0 on (0,T),

(3.145)
w(0) =0, 0<w(T) <u, w=>=0o0n(0,T)

for which w'(0) = 0 and p(w') € C'((0,T)), for F as in (3.113) we have

H(W (1)) < B@OF(w(1)) on (0,T), (3.146)
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where

qe6) [° )
=1 - dr ) . 3.147
B(1) +sil[lol,),]( 102 /0 q(r)dr . ( )

In particular, if ¢ > 0, (3.146) implies
H(w’(t)) < F(w(?)). (3.148)

Proof Note that (3.148) follows from (3.146) since by definition B(f) = 1if ¢’ > 0.
Denote by E the energy function associated to H, that is,

E(t) = H(W (1)) — Fw(D)). (3.149)

Since by assumption ¢(w’) € C'((0, T)), we claim that H(w') € C'((0, T)) and we
have

(H(W)) =w®(e(W®)) on (0, 7). (3.150)

Indeed, note that by Stieltjes formula (see [257]) H can be written as

p p v(p)
Ho) = [ o ds= [Csdo) = [ @ar
so that
oW (1)
H(W (1) :/0 o (1) dr.

Thus H(w') € C'((0,7)) and (3.150) follows by differentiation. Therefore from
(3.150) and (3.145) one deduces

q' (1) ( /)W/

E() =w[ (@) ~fon] = =% ol

on (0,7)

since by assumption w’ > 0 on (0,7) and ¢ > O on (0,7). Next welet0 < ¢t < T
and we integrate on (0, 7). Using w(0) = w'(0) = 0 we deduce

HWﬁngﬂmm—Azgpmeu (3.151)

We claim that

o (W (MM/ q(s) ds. (3.152)
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Indeed, integrating the differential inequality in (3.145) on [0, ¢] and using again
w(0) = w/(0) = 0 we get

1 t
(WD) = 70 ) q(s)f (w(s)) ds.

Now, since w(r) € [0,68], w > 0 and f is nondecreasing on [0, §] by (F3), we have
f(w(s)) < f(w()) for s < t that immediately yields (3.152). Using (3.151) we thus
deduce

HW () < Fow()) — / q(()) (W)W ds
fF(w(t))+/O ( q((s))fp( ’)) w ds
< Fvo) + [ ( O [ )dr) Fonw ds
= B(O)F(w(1)),
proving (3.146). O

We now go back to the proof of (3.143). From the second line of (3.142) we infer the
existence of ty € [0, T) such that w(f) = 0 on [0, o], while w > O on (ty, T]. If 1, = 0
then w' (o) = 0 by our assumption, otherwise if 7o > 0 then w(f) = w/(f) = 0
since wis C!. Let 1, € (o, T] and set

_ _ _q/(S) s )
p=py =1+ s (<408 [qar) -

let § be as in (F3). Then, there exists t; € (fo, ;) such that n; = w(#;) > 0 satisfies

and F(Bn;) < H(+00). (3.153)

| =

np <

We now apply Lemma 3.6 on the interval [z, #;] with the new function defined on
[t0, 1],

- q'(s)
50 =1+ w (<48 [(aear)

Since clearly B(f) < B(t) we obtain

H(w' (1) = BOF(w(0) = BOF(w(r)) < BF(w(1)).
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Observe that B > 1, so that applying (3.118) of Lemma 3.4 with o = % we get
BF(w(1)) = F(Bw(1)),

hence
H(W (1)) < FBw(®) on (t0.0),
therefore, using (3.153),
w' (1) < H ' (F(Bw(1))) on (to,1).

Recalling that f(¢) > 0 for ¢t € (0,6) and thus F(t) > 0 for ¢ € (0, §), integration
yields

Bn, d— / f w (l‘) dt B(t p ) < 100
o HT'(F() H- 1(F(Br)) HY(F@w@)) ~
as required to show the validity of (3.143). O
We are now ready for the

Proof (of Theorem 3.10) Here we extend the definition of ¢ to a continuous function
on R by setting ¢(0) = 0 and ¢(f) = —¢(—f) for t < 0. Of course continuity is due
to (A2). We begin by constructing an auxiliary function. Towards this aim we fix an
origin o € §2 and R > 0 sufficiently small so that

Er = Bg(0) \Bg (0) C 2\ cut(o).

The choice of o will be done at the end of the proof. Since Er is compact, there
exists I > 0 such that K,,; > —I"? on Eg and by (T'1) there exist constants & > 0,
0 < A < A such that

A<TX,X)< A, |divT)(X)|<a foreveryxe€ Eg, X € T:M, |X| = 1.

(3.154)
Letting hess(r) and 1 : TM — TM be defined as in Chap. 1, that is

hess(r)(Y) = Hess(r)(Y,-)", #(¥) = T(Y,-)",

a computation shows that if v = w(r) is radial, then for the operator in (3.116) we
have

dw(AqquTaw,ﬁ)—quvm)—f@)zzxvnvwﬂwway (3.155)
+ [(div T)(Vr) + Tr (¢ o hess(r))]o (W)
— k(W) —f(w).
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Letting g(r) = I sinh(I'r), using K.,y > —I'? and the Hessian comparison
theorem, that is Theorem 1.4, we immediately see that at x

g max Ay < (m— 1)g’(r)

Tr (o hess(r)) < (m—1) o) & g(r)

A, (3.156)

where the A, are the eigenvalues of 7. Now we use the extended definition of ¢ on
R to observe that, if w < 0, then ¢(w") < 0; hence using (3.154) we obtain

(divT) (V)W) > ap(w). (3.157)

Putting together (3.156) and (3.157) and the fact that —k @ (|w'|) = k(W) we get

—kp(|w'])+[(div T)(Vr) + Tr ( o hess(r)]p(w') > |:I( +a+ (m— l)é;((:)) A]¢(w/).
(3.158)

Using (3.158) into (3.155) we obtain

div (A(|Vv|)T(Vv, -)ﬁ) — (X, Vo) —f(v) = T(Vr, VP)[pw)]’ (3.159)

g'(r)
g(r)

+ [K +o+ (m—1) A]w(w’) —f(w).
Thus, using (3.154) and (F3), the right-hand side is nonnegative if w satisfies

AMow)] + (K ot (m— 1)§A)<p(w/) —fw) = 0in [£,R],

(3.160)
0<w<d§, w<0in [g,R],
We set
1 r g/
£(r) = exp —/ [k +a+ m—1)=()Aldt];
A(m—1) Jx g
then (3.160) can be written as
m—1 N _ pm—1 : R
AEremn] = e () = 0'in [£,R], .
0<w<d§, w<0in [%,R].
Thus, if w solves (3.161), then v(r) = w(r(x)) solves
div (A(VODT(Vo, ) = k(IVo]) = f(v) = 0 in Ex 5162

0<wv<$, (Vuv,Vr) <0 in Eg.
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In fact, for technical reasons that shall be apparent below, we also need
—1<(Vv,Vr) <0 in Eg, (3.163)
which is a strengthening of the second in (3.162) and that corresponds to
/ . R
—1<w <0 in E’R . (3.164)
To solve (3.161), (3.163) we set
m—1 R
gy =L""((R—1), te[0,T], T= 7 (3.165)
We observe that, without loss of generality, we can suppose A < 1 so that % > 1

and from (3.114) and Lemma 3.4 we deduce

1

L(nt+
H_l(%F(t)) ¢L (0 )

We can therefore apply Proposition 3.3 to guarantee the existence of a solution z =
z(¢) of the problem

Mg@0e@)] = q(0)f (z) = 0 in [0, 7],
7200=0, 0<z(T)=a <4,
z>01in (0,7], Z(¢) > 0in [0, T],

wherea and 7 = § are chosen so small that

max T
,0 = ﬂl:_ maxf(s) “+ (p(
ming 7 g | A [0.4

a

T):| < @(+00).

Set r = R — t and define w(r) = z(¢). Then w satisfies (3.161) with w(R) = 0,

w(%) = a, w(r) > 0in (§,R], w(r) < 0in [, R]. In particular 0 < w < a < §

since a € (0, §). Furthermore, by (3.128) of Proposition 3.2,
W lloo < 07" (p).
Thus, up to choosing a € (0, §) and R sufficiently small we can suppose that

[Wlloo <1
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so that w satisfies (3.164). It follows that v(x) = w(r(x)) is a C'-solution of (3.162),
(3.163) and moreover

v(x) =a on aBg(o), v(x) =0 on 9dBg(0). (3.166)

To finish the proof of the theorem we now reason by contradiction and we suppose
the existence of a C'-solution in £2 of (3.116) and of xy € £2 such that u(xp) = 0
but u # 0 in £2. Let

QT ={xe 2 ukx) >0,
thenxo € 027 N 2 # @. We let x; € 27 be such that
dist (x1, 9927 < dist (x, 082).

Let B(x;) be the largest geodesic ball centered at x; and contained in 27; thenu > 0
in B(x;), while u(x) = 0 for some x € dB(x;) N §2. Let v be the exterior unit normal
to dB(x;) at x; since X is an absolute minimum for u in 2 we have

(Vu,v) = 0. (3.167)

We shall contradict (3.167). Towards this aim we fix y € B(x;) and R < inj,(y)
sufficiently small that Bg(y) C B(x1), u < 6 on Bg(y) and X € dBg(y). Note that,
since R < inj,,(y), the distance function from y is smooth outside y in Br(y). We
construct v to solve (3.162), (3.163) in Egx C Bg(y) by choosing a € (0, §) in the
above construction so small that also

v(x) <u(x) on 8B§(y).

Note that v = 0 on dBg(y) while u > 0 on dBg(y). Next we note that [Vu|+ |Vv| >
0 and |Vv| < 1 in Ek. Since u satisfies (3.116) in Eg, from Theorem 3.8 we have

u>v on Eg. (3.168)

Now v(x) = Vr(x), with r() = dist(,y), so that (V(u —v),v)(x) < 0 and by
(3.163)

(Vu, v)(®) < (Vu,v)() <0, (3.169)

contradicting (3.167). O

Remark 3.14 To obtain (3.168) we used Theorem 3.8 in its generality, since on Eg
we had to compare u and v, u > v on dEp, solutions respectively of

div (A(|Vu|)T(Vu, -)ﬁ) < B(x,u, Vi) < kp(|Val) + ()
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and
div (A(VODT(Vv. ) = ko (Vo) + /().

However, if k = 0 and (A2)’ and (F3) hold, the above inequalities can be used as
follows. By contradiction suppose (3.168) false so that

D ={xeEg:ux) <vx)} #0.
Then D C Eg and u = v on dD. Furthermore, because of (F3),
div (A(Vu)T(Vu, ) = f(u) < f(v) < divA(IVoIT(Vo, )

on D. By Theorem 3.9 we have u > v on D, contradiction. Thus the validity of
(3.168).

Note that, in this case, by Remark 3.10, we can assume u € Lip,,. (M), definitely
relaxing the regularity assumption on u in Theorem 3.10.

3.3.2 The Maximum Principle

In what follows we recall that g(x) € C°(M), g(x) > 0 and we suppose that g(x) > 0
outside a compact set K. The further assumption

1
. L} (M) Q

is in force throughout this section. The differential operator L is the one given in
(3.86).
Next, we introduce the following Khas’minskii type condition.

Definition 3.1 We say that the (¢-SK) condition holds if there exists a telescoping
exhaustion of relatively compact open sets {X};en such that K C X, fj C X
for every j and, for any pair 2, = X, £2, = Xj,, with j; < j», and for each ¢ > 0,
there exists y € CO(M \ £,) N C'(M \ 2,) with the following properties:

(i) y =0o0n 082y,
(i) y >0onM\ £2,,
(iii) y <eon 2\ £24,
(iv) y(x)— 4 oo when x—o0,
(v) q(x)Ly <esonM\ 2.
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Since property (v) has to be interpreted in the weak sense we mean that

Ly < - weakly on M\ 2},
q(x)
that is, for all € C(M \ ), ¥ > 0,

[ B (Auww(wvvf) XY+ fw) - 0.
M\$2, q

Of course we expect the (q-SK) condition in Definition 3.1 to be equivalent in the
linear case to the weak form of (/") of Theorem 3.1, which obviously reads as
follows:

Definition 3.2 We say that the (g-KL) condition holds if there exist a compact set
H D K and a function y € C'(M) with the following properties:

(G)  y(x)— + oo when x—o0,
(Gj) ¢g(x)Ly < Bon M \ H for some constant B, in the weak sense.

Obviously, the (q-SK) condition implies the (q-KL) condition simply by choosing
H = £2,, setting 7 = y on M \ £2, and extending it on £2, to be of class C' on M.

We shall prove the equivalence of the two conditions in the linear case after the
proof of Theorem 3.11. Note that the (q-SK) Khas’minskii type condition is not only
sufficient for the validity of the g-weak maximum principle but indeed equivalent in
some cases (see [182]).

Before stating Theorem 3.11 we recall that for an operator L, a function g(x) > 0
on an open set 2 C M and u € C'(£2) the inequality

igf{q(x)Lu(x)} <0 (3.170)
holds in the weak sense if for each e > 0

e
- [ AT vy + Vi < [ Loy
2 2 q(x)
for some ¢ € C°(£2), ¥ > 0, ¢ # 0.
We are now ready to state the nonlinear version of Theorem 3.1.

Theorem 3.11 Let (M, (, )) be a Riemannian manifold, let L be as above (that is,
as in (3.86)), with (Al), (A2)’, (T1), (T2) holding. Let q(x) € C°(M), q(x) > 0,
suppose that q(x) > 0 outside some compact set K C M and that q satisfies (Q).
Assume the validity of (q-SK). If u € C' (M) and u* = sup,, u < +oo then for each
n>0

inf{q(x)Lu(x)} < 0 (3.171)
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holds in the weak sense, where
Ay ={xeM:ulx)>u*—n} (3.172)

Remark 3.15 Here u € Lip,,. (M) suffices, as noted in the course of the proof.

Similarly to what we did in the linear case, if the conclusion of the theorem holds we
shall say that the g-weak maximum principle for the operator L holds on (M, (, )).

Proof We argue by contradiction and we suppose that for some n > 0 there exists
&o > 0 such that

&
Lu> -

~qx)

holds weakly on A, that is, for each v € C°(A,), ¥ > 0,
/ (A(qul)T(Vu, V) + (X, Vu)y + @w) <o. (3.173)
Ay q

Note that since in general A, ¢ M \ K assumption (Q) is here essential.
First we observe that u* cannot be attained at any point xo € M. Otherwise
Xo € Ay and, because of (3.173), on the open set A, it holds weakly

Lu> %, (3.174)

Now, at xo, Vu(xg) = 0. Choose a small geodesic ball Bg(xg) C A, such that
—% < (X,Vu) < % on Bg(xo), where go = supg, .,y g > 0. From (3.174), on
Bgr(xo) we have

div (A(Vu)T(Tu, ) = (X, Vu) + % > ;—;0 >0,

By Remark 3.14 and Theorem 3.10 with f = 0, k = 0 and (so that u may be only
Lip,,. (M) ) we deduce that u = u* on Bg(xp), contradicting (3.174).

Next we let X; be the telescoping sequence of relatively compact open domains
of condition (q-SK) in Definition 3.1. Given u* — g, there exists X, such that

n

ub =supu>u*——.

J1 —_ 2
i

We set £2; = X;, and define

— ¥
up =u; .
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Note that, since u* is not attained on M
* n * *
w——<uy <u. (3.175)
2
We can therefore fix « so that
uy <o <u®. (3.176)

Since @ > uf, there exists X, with j, > ji such that, setting £2, = X},, uj =
SUPp, U = MaXg, U, We have

2,C 2,
and furthermore
uy <o <uy <u*. (3.177)
We fix 1 > 0 so small that
o+ <us (3.178)
and
i < €. (3.179)

We apply the (q-SK) condition with the choice ¢ = 77 and §2; and £2 as above to
obtain the existence of y € CO(M\ £21) NC'(M\ £2,) satisfying the properties listed
in Definition 3.1. We introduce the function

ox) =a+ y). (3.180)
Then
o(x) = aon d€2,, (3.181)
a<o(x) <a+ions\ 2, (3.182)
o(x) > 4ooasx — oo, (3.183)

and, since Vo = Vy, Lo = Ly and by (v) of Definition 3.1

g(x)Lo < 7 in the weak sense on M \ £2;. (3.184)
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Next, we consider the function u — 0. Because of (3.181) and (3.176), we have
for every x € 02

(u—0)x) =ulx)—a <uj —a <0. (3.185)

Since u} = maxg, u and .Qz is compact, u5 is attained at some X € 5_22. Note that
X ¢ £2 because otherwise

ul > u(x) = uj,
contradicting (3.177). Thus X € £2, \ £2;. By (3.178) we have
u(x) > o + 1.
Thus, by (3.182) and (3.178), we deduce
u—0o)x) =u; —0(X) >u; —a—17>0. (3.186)
Finally, (3.183) implies the existence of Xy, £ > j,, such that
u—o)x) <O0onM\ Xy. (3.187)
Because of (3.185)—(3.187) the function u — o attains an absolute maximum
@ > 0atacertain point zo € Xy \ 21 C M \ £2;. At z9, by (3.176) and (3.175), we
have
u(z0) = 0(20) + 1 > 0(@) = @+ Y(@) Z @ > uf > ut— 2,

2

and hence 7o € A,,. It follows that
E={xeM\Q :(u-0)x) =pu}CA, (3.188)

Since A, is open there exists a neighborhood Uz of & contained in A,. Pick any
y € &, fix B € (0, u) and call 54, the connected component of the set

(xeM\ 2 :(u—0)x) > B}
containing y. Since > 0,
E,g’yC 2{\5_21 CM\Qly

and we can also choose f sufficiently near to u so that E:',g,y C A,. Furthermore,
EHpgy is compact. Because of (3.184), (3.179) and (3.173), on &, we have

q()Lu(x) = g0 > q(x)Ly (x)



194 3 New Forms of the Maximum Principle

in the weak sense. Furthermore,
u(x) =o(x)+p ond&s,.
Hence by Theorem 3.9 (so that here it suffices u € Lip,,. (M))
u(x) <o(x)+pB onZg,.
This contradicts the fact that y € &g ,, indeed,

uy)=oy) +u>o00() +p

since i > B. This completes the proof of Theorem 3.11. O

We now prove that for a linear operator the (q-KL) condition implies the (q-SK)
condition.

Towards this aim observe that since L is linear, A(f) = 1 or equivalently p(r) = t.
Thus, once (T1) is satisfied, assumptions (A1), (A2) and (T2) are also satisfied. Now
assume (q-KL) and fix a strictly increasing divergent sequence {7;} " +oo. With
the notation in Definition 3.2, let

Yi={xeM:ykx) <T.

Obviously, each X; is open and because of (j) in (q-KL) one immediately verifies
that Z_Jj = {x € M : y(x) < T;} is compact. For the same reason we can suppose to
have chosen T sufficiently large that K C H C X;. Furthermore Z_Jj C Y41 and
again by (j) in (q-KL), {X';} is a telescoping exhaustion. Consider any pair

21 =%, =xeM:yx) <T;}
and
@ =5, =lxeM: () < Ty}

with j, > jj, and choose ¢ > 0. Let o € (0,0¢) and define y : M \ 2, — Rg’ by
setting

y() = o (y(x) = Tj).

Then

(i) y(x) = 0forevery x € 0§2;,
(i) y(x) >0ifxe M\ 2) ={xeM:j(x) > T},
(iii) on 2\ 21 ={xeM:T; <ykx) <T;,} wehave y(x) < o(Tj, —T;) and
hence, up to have chosen oy sufficiently small, y(x) < e on £2; \ €21,
(iv) y(x)— + oo when x— o0, because of (j),



3.3 The Nonlinear Case 195

(v) on M \ £, by the linearity of L and (jj),

q)Ly = q()L(o(y = T;)) = qx)oly <oB <&

and up to have chosen oy sufficiently small.

It is worth giving some examples where the (q-SK) condition is satisfied. For
the sake of simplicity we limit ourselves to the case 7 = (, ) and X = 0. Let
(M, (,)) be a complete, noncompact Riemannian manifold of dimension m > 2.
Let 0 € M be a fixed reference point, denote by r(x) the Riemannian distance from
o and suppose that

Ric(Vr, Vr) > —(m — 1)G(r)? (3.189)
for some positive nondecreasing function G(r) € CO(RS' ), G(r) > 0, with 1/G ¢

L'(+00). Similarly to what has been done in Sect. 2.2.1 and for the same v defined
there in (2.33), by the Laplacian comparison theorem we have

Ar < (m— 1)%0) (3.190)

weakly on M for r > Ry > O sufficiently large. Let A(r) and the corresponding
@(t) = tA(7) satisfy (A1), (A2) and assume that

() <CP  on R(')" for some C,§ > 0. (A3)

Note that (A3) implies (A2)’ (iii).
Suppose now that the function g(x) € C°(M), g(x) > 0, satisfies

q(x) < O(r(x)) (3.191)

outside a compact set K C M, for some nonincreasing continuous function ® :
RS — R* with the property that

O(1) < BG*™'(1) (3.192)
for + > 1, some constant B > 0 and § as in (A3). Note that if § > 1, (3.192) is
automatically satisfied.

Fix 0 > 0 and R > Ry such that K C Bg, the geodesic ball of radius R centered
at 0. On [R, 4-00) define the function

¥ (r) = /R o (oh(r)) dt, (3.193)
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where

t Iﬁm_l(S)
O(s)

W) = ' () /R

Note that, since ¢ : Rg‘ — [0,¢(+00)) =1 C Rg‘ increasingly, the inverse
function ¢! : [ — R(‘)F does indeed exist. Furthermore, in order that y, be well
defined when ¢(+00) < 400, we need that for every 7 € [R, +00)

oh(t) el. (3.194)
Towards this end we note that
1// /0 G(s)ds
for some constant C > 0. Then
W) < —— ') / Pl s)ds < —— (3.196)
- O(t) =~ O(1G(r) ’

fort > 1 and some C > 0. The assumption

1
lim sup ——
oG

is therefore enough to guarantee that A(f) is bounded above. By choosing o
sufficiently small, say 0 < o < 0y, we obtain the validity of (3.194) so that (3.193)
is well defined on [R, +00).
We now set y(x) = yo(r(x)) forx € M \ Bg and note that

(i) y=0o0n 8BR,_

(i) y >0onM \ Bg,

Moreover, having fixed & > 0 and a second geodesic ball Bz with R > R, since
¢ '(t) - 0ast — OF, up to choosing o > 0 sufficiently small we also have

Xo(r) < eif R <r <R, so that

(ili) ¥ < eonBj\ Bg,

On the other hand, since 1/G & L (+00), to prove that
(iv) y(x)— + oo when x—00

it suffices to show that

¢\ (h(r) = % fort > 1
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for some constant C > 0. Equivalently, that there exists a constant C > 0 such that
h(t~) .
¢
4 (Gm)

Without loss of generality we can suppose G(f) — +o00 as t — +o00. By the
structural condition (A3) on ¢ we have

¢\ .0
“\6o) = "ewr

fors > 1. (3.197)

1
o

so that
Ho__AG)
() 0
with
t o .m—1
At = G@)° /R I//Tb;s)ds
and

B(1) = CCoy™ ().
Note that both A(r) and B(r) diverge to +00 as t — +o00. Hence,

A1)
B'(1)’

LA
lim inf —= > lim inf
t—>+00 B(t) t—>+00

A computation that uses G’ > 0, ©@ > 0 and (3.192) shows that

AW G

B'(1) ~ BCCHm— 1) 58"

> 1,

and since ¥’ (1) /¥ (f) ~ G(f) as t = +00, we can choose C > 0 sufficiently small
that

A
lim inf > —,
t—+oo B'(t) ~ o

proving the validity of (3.197)
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Clearly, by definition, y,(7) is nondecreasing and satisfies x, (1) = ¢~ (oh(?)),
that is, ¢ (. (t)) = oh(r). Therefore

Vy = x,(nVr, |Vy|=x,(r) and @(|Vy|) = oh(r).

Since

pon 1 v’
(1) = o0 (m— 1)J(l)h(l),

a computation using (3.190) and (3.191) gives

Ly = div (|Vy|_lq0(|Vy|)Vy) =div(ch(r)Vr) = Uh/(r)|Vr|2 + oh(r)Ar

+ oh(r) (Ar—(m— 1)%0)) = @CEV) =< % (3.198)

o
_%

if r > R. That is,
(v) g(x)Ly <o onM \ Bg

outside the cut locus and weakly on all of M \ By as it can be easily proved.

It is now clear how to satisfy the requirements of the (q-SK) condition in
Definition 3.1 by choosing a telescoping exhaustion {Bgr}jen.

Summarizing we have proved the following

Theorem 3.12 Let (M, (, )) be a complete Riemannian manifold satisfying (3.189)
Sfor some G € CO(R(')"), G > 0on RS‘, é ¢ L'(+00). Let A(t) and ¢(t) = tA(t)
satisfy (Al), (A2), (A3), ¢ € C'(M), ¢ > 0, qg(x) > 0 outside a compact set K.
Furthermore assume that, for some nonincreasing function © : ]R(')" — Rg‘ ,qx) <
O(r(x)) on M\ K and, if § < 1, O() < BG()’~" for some B > 0, with § the
coefficient appearing in (A3). Finally suppose limsup,_, ., m < 4o00. Let L
be the operator acting on u € C'(M) by

Lu = divA(|Vu|)Vu.
If u* < 400 then for each n > 0
infg(x)Lu <0
AW

holds in the weak sense, where Ay is as in (3.172).

Here we introduce another example where the (q-SK) condition is satisfied with
T = (, ) and arbitrary X. Let (M, (, )), o € M be as above and follow the same
notation. Suppose, as in the previous example, that

Ric(Vr, Vr) > —(m — 1)G(r)? (3.199)
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with G satisfying the requirements in (3.189). We know that, for the same function
Y of (2.33) in Sect. 2.2.1,

Ar < (m— 1)%0) < CG(r) (3.200)

weakly on M for r > Ry > 0O sufficiently large and some C > 0.
Suppose now that the function g(x) € C°(M), g(x) > 0, satisfies

1

q(x) < o) T X (3.201)

outside a compact set K C M. We fix o > 0 and R > Ry such that K C Bg, then we
define the function

y(x) =0o(r(x) —R) forx e M\ Bg. (3.202)

Obviously,

i y=0on BBR,_
(i) y > 0on M \ Bg,

Then, having fixed ¢ > 0 and a second geodesic ball B with R > R, up to choosing
o > 0 sufficiently small we also have

(iii) y < eonBy\ Bg.
Moreover, since M is complete
@iv) y(x)— + oo when x—o00.

Finally, a direct computation using (3.200) and (3.201) gives

Ly = div (IVy|"'e(IVy)Vy) — (X, Vy) = div(p(0)Vr) — o (X, Vr)
=@p(0)Ar — o (X, Vr) < ¢(0)CG(r) + o|X|

€
= &G + X)) = ——

q(x)

if » > R, up to choosing o > 0 sufficiently small, since ¢(0) — 0 as 6 — 07; in
other words,

(V) q()Ly < eonM \ By

outside the cut locus cut(o) and weakly on all of M \ B, as it can be easily proved. It
is now clear how to satisfy the requirements of the (q-SK) condition in Definition 3.1
by choosing a telescoping exhaustion {Bg4}jen.
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For the next result we define the (q-SKV ) condition as the (q-SK) condition with
the added requirement

(vi) |Vy| <eonM\ £2;.

Theorem 3.13 Let (M, (, )) be a Riemannian manifold and let L be as in (3.86),
with (Al), (A2)’, (T1), (T2) holding. Let q(x) € C°(M), g(x) > 0; suppose g(x) > 0
outside some compact set K C M and that q satisfy (Q). Assume the validity of
(q-SKV). If u € C'(M) and u* = sup,, u < 400 then for each n > 0

inf{g(x)Lu()} <0 (3.203)

holds in the weak sense, where
B,={xeM:u(x)>u*—n and |Vu(x)| <n}.

Proof First of all note that the validity of (q-SKV) implies, once we fix arbitrarily
a pair £2; C §2, , an ¢ > 0 and a corresponding y, that the metric is geodesically
complete. Indeed, let ¢ : [0,£) — M be any divergent path parametrized by arc-
length. Thus ¢ lies eventually outside any compact subset of M. From (vi), |[Vy| < &
outside the compact subset £2,. We set i(f) = y(¢(1)) on o, £), where y has been
chosen so that ¢(r) ¢ §2, forall 1y < t < £. Then, for every ¢ € [to, £) we have

/to t K (s)ds

Since ¢ is divergent, then ¢(f) — oo ast — £, so that h(t) — +ooast — £~
because of (iv). Therefore, letting + — £~ in the inequality above, we conclude that
£ = 4o00. This shows that divergent paths in M have infinite length and in other
words, that the metric is complete.

Since the metric is complete, we can apply Ekeland quasi-minimum principle to
deduce that B, # @ and therefore that the infimum in (3.203) is meaningful.

Now we proceed as in the proof of Theorem 3.11 substituting, as in the linear
case, the subset A, with the smaller open set B,,. We need to show that the compact
set &' defined in (3.188) satisfies & C B;,. Because of (3.178) it is enough to prove
that for every z € &,

|h(2) — h(10)| =

< / Vy(c(s))lds < et — 1o).

[Vu(z)| < n. (3.204)

But z is a point of absolute maximum for (u — ') and z € M \ §2;, hence using (vi)
of (q-SKV),

Vu@@)| = [Vo@)| = [Vy ()] <e.
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thus & C B, and the rest of the proof is now exactly as at the end of Theorem 3.11.
This finishes the proof of Theorem 3.13. O

Remark 3.16 Here the assumption u € C'(M) enables us to express B, in a easy
form. Compare with the remark after the statement of Theorem 3.11, where we can
suppose u only in Lip,,, (M).

Suppose now that L is linear; we have an analog condition (q-KL), that is, (q-
KLV), adding

(i)  |IVyl < BonM \ H, for some constant B > 0 and H C M compact.

It is immediate to show that this condition and linearity of L imply (q-KSV).



Chapter 4
Sufficient Conditions for the Validity
of the Weak Maximum Principle

As anticipated in the final part of the introduction to Chap. 3, the aim of this chapter
is to prove the validity of the weak maximum principle for a large class of operators
under the sole assumption of a controlled volume growth of geodesic balls related to
the structure of the operator “at infinity”. In doing so, we provide a second a priori
estimate for solutions of certain differential inequalities, that, as an application given
at the end of the chapter, enables us to generalize a Liouville-type result due, for
the case of the Laplacian, to Dancer and Du [97] (see also the previous work by
Aronson and Weinberger [32]). We also localize the principle to the family of the
open sets with nonempty boundary of the manifold. This new formulation reminds
of the (weak form of the) maximum principle as it appears, for instance, in the
classical books by Protter and Weinberger [233], Gilbarg and Trudinger [125], or
in the more recent work by Pucci and Serrin [235]. We underline its importance by
giving an analytical application to the uniqueness problem for the positive solutions
of certain Lichnerowicz-type equations.

Section 4.2 is devoted to the proof of a controlled growth weak maximum
principle, that is, we allow the function u to be not necessarily bounded above but
with a certain growth controlled by a power of the distance function from a fixed
origin.

Finally, the observations and the discussion in Chap. 2 on parabolicity suggest us
to introduce a new notion, that we call strong parabolicity, for which we give some
sufficient conditions for its validity. We note that, for a large class of operators, the
usual notion of parabolicity, in the sense of a Liouville-type result, is equivalent
to strong parabolicity. Effectiveness of the latter will appear, for instance, when
dealing with generic Ricci solitons in Chap. 8. A word of warning: in the proofs of
various results that follow we define vector fields (typically called W) that are only
continuous, and we then apply the divergence theorem. This procedure is intended
to better explain the underlying argument of the proof; having done this it then
becomes an easy matter to provide a proof for the general continuous case either
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using the weak formulation of the divergence theorem or simply following the weak
formulation of the problem from the very beginning (see for instance [243]).

4.1 Volume Growth Conditions and Another A Priori
Estimate

In this section we prove the validity of the weak maximum principle for a large class
of operators under the sole assumption of a controlled volume growth for geodesic
balls related to the structure of the operator “at infinity” as in condition (4.2) (iii)
below.

Let T be a (0, 2) symmetric tensor field on M. Assume that 7T satisfies

T_(r) < T(X.X) < T4 (1) @.1)

for each X € T.M, |X| = 1, x € 0B, (where B, is, as usual, the geodesic ball
of radius r centered at a fixed origin 0o € M) and some T+ € C()(RaL ). Let ¢ :
M xR} — R{ be such that ¢(, 1) € CO(M) foreacht € R}, o(x, ) € CO(R{) N
C'(R™T) for each x € M, and

() o(x,0) =0, for each x € M;
(i) @(x,1) > 0 on R, for each x € M; 4.2)
(i) p(x, 1) <A@, onM xRt

for some 8§ > 0 and A(x) € C°(M), A(x) > 0 on M.

Set
T (r), if0<§ <1,
nn={ 0L (4.3)
T_(r) 2 T4(r) 2 ,if 6 > 1.
and
O(r) = 1}(1)3{( Ts(s). 4.4)
Define the operator L = L, 7 by setting, for each u € C2(M),
1 » ;
Lu = ——div (|Vu| o(x, |Vu|)T(Vu, ) ) . 4.5)

A(x)

We are now ready to prove the next
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Theorem 4.1 Let (M(,)) be a complete Riemannian manifold and ¢, T be as
above. Assume T_(r) > 0 on RT and let © be as in (4.4). Let b(x) € C'(M)
satisfy

b(x) > 4.6)

1
0(r(x))

where Q : R(')" — Rt is continuous and nondecreasing. Given f € C°(R), assume
that u € CY(M) satisfies u* < 400 and

Lu = b()f () @7
on the upper level set

2, =82, ={xeM:ulx) >y} (4.8)
for some y < u*. If

oMo _

L SR 49
and
liminfwlog A(x) ) < +o0, (4.10)
r—>+o00 r1+8 B,

then f(u*) < 0.

Remark 4.1 As it will be clear from the proof below, if 0 < § < 1 we can relax the
assumption 7_(r) > 0 to 7—(r) > 0.

Proof First of all, we note that if (4.7) holds on £2, then it holds on §2,/ for each
y <y’ < u*. Next, we assume by contradiction that f(«*) > 0. By continuity of
f and by increasing y if necessary, we may suppose that f(x) > C > 0 on §2,, and
that u satisfies

Lu >

on £,

B
O(r(x))

for some B > 0 that, without loss of generality we can suppose to be 1. Fix 0 < n <
1. By choosing y sufficiently close to u™, we may also suppose that

F:y—u*+nzg>0,
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thus, having defined v = u — u* + 1, we have
vt =supv =1, £ =2,

with the obvious meaning of the notation. Furthermore,

1 v
vam On.QF. (411)

Choose R > 0large enough that, for r > R, B,N§2}. # @; fix { > 1 to be determined
later, and let ¥ : M — [0, 1] be a smooth cut-off function such that

0y =1 on B
(i) v =0, on M\ By; (4.12)
(iii) |[Vy | < SLy'/s,

for some constant Cy = Cy(¢) > 0 and r > R. Note that the latter requirement (iii)
is possible because { > 1. Next,let A : R — Rg‘ be a C' function such that

A#)=0 on(—o0o, '], M® >0 onR. (4.13)
Fix o > 2 to be determined later, and consider the vector field W defined by
W = ¥ A ()" Vo e, [VU)T(Vo, ) on 25 (4.14)

and W = 0 outside. Note that in fact W = 0 off By, N §2}.. For the ease of notation
we set

T = T(Vv, Vv)
R

From (4.1) and the assumptions of the theorem

0<T_(r) <T,. (4.15)
Furthermore,
T(Vv, Vv) T(Vy, V)
IT(Vv, Vy)| < \/ vor |Vv|\/ SAMAE TY2TY? (0| Vo [V,
that is,

IT(Vv, V)| < T)2TY? (1) V| V| (4.16)



4.1 Volume Growth Conditions and Another A Priori Estimate 207

and
[Volpx. Vo)) = A0 ™ e, Vo) 2. 4.17)
Using these facts, A’ > 0 and inequality (4.11) we now compute div W. We have

Aw)
o(r)

a—1 _
+A(x—)1/51ﬂ2al(v)va 2o(x, | Vo)) T,

divw > y2 A (v)v*! — 20y A () p(x, |V1)|)|V1//|T$/2Ti_/2

Since W is compactly supported, integrating and applying the divergence theorem,
we obtain

[ a5 < 1) [ @y e o) T,

+2a/1/f2“—lx(v)va—l<p(x,|Vv|)|v1/f|T,}/2T1+/2.

We apply to the second integral on the right-hand side the inequality

P b
ab<a?C + 2 ab>o,
p  qo1

withp =1+ 1/8,g =1+ § and o > 0 chosen in such a way that the first integral
on the right-hand side cancels out. Indeed, we have

/wzm(v)v“”% < (4.18)

T - - (148)/2
W/A(x)whx 1 SA(U)UD[ 1+8|VW|1+8T1()1 8)/2T+

with o satisfying

14+68)(a—1)
200) T8 — ( 7
(200) /7 = 22—
so that
1 28+188a8

(1+8)0™  (@— i1 +5)0 "

(4.19)
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Now, since ¥ is supported on B,, and Q is nondecreasing, Q(r(x)) < Q(2r) on the
support of ¥ and the left-hand side of (4.18) is bounded from below by

o@rn™! / YA () v TA(x). (4.20)

On the other hand, since

§
( ¢ ) 528f0ra22,
oa—1
from (4.19) we have the estimate

1
m < C(®)a

with
928+1g8

s Y

C@) =
independent of « > 2. Furthermore, using (4.12) (iii), we may write

- _ _ _ _ _ Co
Y21 g 148 = 26 HDI=1/0) (= 1E |7 ) 145 < 2= (+8)(1=1/0) e

Finally, recalling that 7_(r(x)) < T,(x) < T4+(r(x)), we see that

T, ()12 < T:Ll_g)/z(r(x)), if0<é <1
! =) 7092 (r(x)), if 8 > 1.

and therefore,
=9/ (x)Tﬂ_l"L‘g)/2 (r(x)) < Ts(r(x)) < ©2r) onBy,. 4.21)
Thus, the right-hand side of (4.18) is estimated from above by

CoC(8)
rl+5

a®(2r) /A(x)lﬂz"_(l""g)(l—l/f) v (x).

Now, we choose ¢ > 1 close enough to 1 that 2 — (1 + 8)(1 — 1/¢) > 0, and
we apply Holder’s inequality with conjugate exponents o/ (o — 1) and « to estimate
from above this last expression with

a—1 1

Coﬁ(f)a@(y) (/A(x)wZava—lA(v)) « (/A(x)wZa—(l+8)(l—l/§)ava—l+8ak(v))a’
p
(4.22)
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Using (4.20) and (4.22) into (4.18) we have

00r)™! f AWY A () <

a=1 1

@ (/A(x)wza—(l+5)(1—1/§)ava—1+5ak(v))7

a

a0 [awvutio)

that is,

/A(x)lﬂzava_l)t(v) < (Cfﬁ(f)a@(Zr)Q(Zr))a/A(X)l/fza_(l+5)(l_l/§)ava_l+5ak(v)’

Recalling that ¥ = 1 on B,, ¥ = 0on M \ By, and that /2 < v < n on £2}. when
A(v) > 0, we deduce that

/ AWA©) < (z<“—1’/°'n“‘°‘)/“—cﬁﬁ(f )“@(”)Q(Zr)n(“‘”/“”)a / AWA).
, By,

Hence
/B A@)A(v) < (%a@(Zr}Q(Zr}ng) /B A@)A(v), (4.23)
with
C1 = 2CoC(8).
We now set
rl+8
@ =)= = Genoant

Note that, for r sufficiently large, « = «(r) > 2, so that we can rewrite (4.23) as

1 ﬁ e c-)élr)zgzr)
/A(x)k(v) < (—) / AX)A(v), 4.24)
Br 2 BZr

for each r > R. Note that C is independent of r and . We now need the following

Lemmad4.1 Let G,F : [R, —i—oo)—)R(')" be nondecreasing functions such that for
some constants 0 < A < 1 and B,0 > 0,

0
G(r) < ABF@ G(2r), for each r > R. (4.25)
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Then there exists a constant S = S(0) > 0 such that for each r > 2R

F(er ) log G(r) > &;) log G(R) + SBlog(—-). (4.26)
r r A

Proof Letrg = R and r;, = 2kr,. Then, for each r < 2r, there exists k such that
re < r < ry+1. Applying inequality (4.25) k-times, we obtain

o
G(ry) < A°% °F<Zv> G(ry). 4.27)

Using the definition of r; and the fact that F' is nondecreasing, we estimate

k—1 2} k—1 r 1— 2—k9 }’0
Z 0 szG — k+1 —0 > S
=0 F(Z}’j) F(Z}’k 1) F(Zrk_l) 20 —_ 1 - F(r)

with § = 279/(2% — 1). Substituting into (4.27), recalling that 0 < A < 1 and that
G is nondecreasing, we conclude that

0
G(ry) < APFOG(r).

Hence (4.26) follows by taking logarithms. O

We apply Lemma 4.1 with G(r) = [, A(A(v), 0 =1+8,A=1/2,B = = —n7s,
F(r) = Q(r)®(r) to deduce the existence of a constant S = S(§) > 0 such that for
eachr > 2R

0(nNe(r) OLIOR s _
Tlog/B,‘A(x)A(v) > =5l /BRA(x))L(v) + 2 Slogi N

Now we choose A in such a way that supA = 1. Letting r— + oo in (4.28) and
using (4.9) we obtain

NG I
imi

r—>+oo 1+8

N
A(x) > —n%log?2,
/B, (x)—4c1'7 og

with S and C| independent of 7. Letting n—07 we contradict (4.10). This completes
the proof of the theorem. O

Remark 4.2 'We note that a minor change of the above argument allows us to replace
assumption (4.10) with

limint 2020

inf = A@)|ulP < 400 (4.29)
r— B,

for some p > 0.
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We now give an a priori estimate similar, in some sense, to that given in The-
orem 3.6. In other words, we prove that, under appropriate assumptions, solutions
of Lu > b(x)f (u) are necessarily bounded above. Again, as in Theorem 3.6, a key
role is played by an assumption implying the Keller-Osserman condition for these
general operators. We shall discuss this after the proof of Theorem 4.3.

Remark 4.3 Let A, ¢, f, b, O, T and ® be as in Theorem 4.1 and assume that
u € C'(M) is such that us = infyyu > —oo and it satisfies Lu < —b(x)f (1) on
the set £2," = {x € M : u(x) < y} forsome y > uy. If (4.9) and (4.10) [or (4.9) and
(4.29)] hold, then f(ux) < 0. Indeed, it suffices to note that the function v = —u is
bounded above, v* = —u, and v satisfies Lv > b(x)g(v) with g(t) = f(—1). In the
assumptions of Theorem 4.1, g(v*) = f(us) < 0.

Theorem 4.2 Let ¢,b,Q,A, T and O be as in Theorem 4.1 and assume that u €
C" (M) satisfies

Lu > b(x)f (1) (4.30)

on the set 2, = {x € M : u(x) > y} for some y < u* < +o0, where f is a
continuous function on R such that

iminf2 = 0 4.31)

t—>—400

for some 0 > 8. If (4.10) [or (4.29)] holds, then u is bounded above.

Proof Assume by contradiction that u is not bounded above, so that the set
2, ={xeM:ulx >y}
is nonempty for each y > 0. By increasing y, if necessary, we may assume that

f(®) = Bt° for some B > 0 if t > y. For the ease of notation, we let B = 1 so that
on £2,

1
Lu=Lyru= i div (|Vul o (x, [Vu)T(Vu, )*) > b(x)u®,
X

weakly, that is, for each Y € C°(£2,), ¥ > 0,
/ (IVul " o (x, [Vu) T(Vu, Vf) + b(x)u’A(x)y) < 0.
‘QV

Clearly we may also assume that b(x) is bounded above. Let R > 0 be large enough
that 2, NBgr # @. Let A : R — R(‘)F be a C', nondecreasing function such that
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A(t) = Ofort < y; fix § > 1 satisfying

1+6 1
1—0_5(1—§)>0 4.32)

and, as in the proof of Theorem 4.1, choose a C* cut-off function = ¢, : M —
[0, 1] such that, for r > R

()Y = 1 on Bg; (i))¥ = 0on M \ By (iii)|V¥| < %wl/f (4.33)

for some constant Cy = Cy(§) > 0. Finally, fix « > max{l 4+ §,20} and B > O to
be determined later. Consider the vector field W defined by

W = ¢ L)’ |Vu| " o (x, |Vu) T (Vu, )?

on £2, and W = 0 everywhere else. Note that the properties of A and ¥ imply that
W vanishes off B, N £2,. Proceeding as in the proof of Theorem 4.1, we estimate

divW > y 2 wu’Ph)A) + A(xi)l/‘g YA (. |Vu)) 0T,

—ay Al p(x, [Vul) VY | T, T,
where T+ are defined in (4.1) and

T(Vu,Vu)
T, = —
|Vul?

Next we apply to the second term of the right-hand side of the inequality above
the following inequality

P b
ab<e”a—+—

p— qﬂ a5b>07
p g

withp =148, g = (1 + §)/8, and with & > 0 chosen in such a way that the last
term of the right-hand side cancels out, that is,

Sl H1/8 — 8 ¢
1+68
Inserting the resulting inequality in the above estimate, we obtain
divW > A (u)u’ TPb(x)A(x)
58

§
% (% a—1-5 B8 (1—=8) )2 (148)/2 1+
(1+5y+8(ﬁ) AP A T, T TV
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Next, we integrate, apply the divergence theorem, and recall that W has compact
support to obtain

[ VAW HA)

58

s
o i _
< —(1 e (E) a/wo‘ ! Sk(u)uﬂHT,ﬁl 8)/2T$+8)/2|V10|1+8A(x).

(4.34)

Multiplying and dividing by b(x)'/? in the integral on the right-hand side, and
applying Holder’s inequality with conjugate exponents p and ¢, yields

/wa—l—&/\(u)uﬂ+8Tl§l—5)/2Tg_l+5)/2|Vw|l+8A(x) <

1/p
( / w“b(x)x(mu“”A(x))

a2 (1Y .
x / AP YOI R P S (W) )

provided

a—(1+8)1—-1/&)qg > 0. (4.35)
B+o
B+6

the above inequality is equal to the integral on the left-hand side of (4.34). Thus,
inserting into the latter and simplifying, we obtain

Choosing p = > 1 since 0 > §, the first integral on the right-hand side of

o o+ $ al+8 !

Lo (199109
X/wa—(l+8)(1—1/$)qk(M)b(x)l—quﬁl—S)q/ZTi )a/ (1/,1/5) A(x).

Since u > y on §2, and ¥ = 1 on B,,

yh+o / BWAMAG) < / VAW HA).
B,
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On the other hand, using (4.33) (ii), (iii) and the fact that v is supported on B,,, we

have
§° ) )’
((1+8)1+8 (E) “) *

\V/ (14+8)q
/ Yo =179 ) () ()1 =T D21 +Da/2 (t//:/ﬁsl) AGX)

145\ 4

1—8

8 a\ att T2 T

Y e b(x)A(u)A(x).
= (1 + 81+ ('3) 0w P T0 /Bzr (DA (A(x)

We insert these two latter inequalities into (4.36); we use b(x) > Q(r(x))~" with Q
nondecreasing and the validity of (similar to (4.21) in the proof of Theorem 4.1)

T, T () < Ts(r() < O 4.37)
on B,,, and
_p+to
1= o—34
to obtain
PN
C OQ2rnoQr) [« o
[ porwae < (wT (%) a) [, peorwa.
(4.38)

with C = C(8, Cy) > 0. Now we choose

1 1448

_ _ .06 r
e=Ft+o= 1" Ganoan

so that (4.32) implies that (4.35) holds. Moreover, because of (4.9), « — 400 as
r — +o00. Hence, for r sufficiently large % < 2. It follows that, for such values of
r, (4.38) gives

o—8  1+5

1\ 6= aGnoEn
/ b(x)A()A(x) < (5) / b(x)A()A(x). (4.39)
Br BZr
We let

G() = /B bWAMAR)

r
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and

F(r) = 0(nNQ(r)

defined on [R, +00) for some R sufficiently large such that (4.39) holds for r > R.
Then

BEx)

1\ e
G(r) < (5) G(2r)

with
yo—S

Then by Lemma 4.1, there exists a constant S > 0 such that, for each r > 2R

® ®
Q(:Ls(r) log /B P WAR) > %Mg /B DOMWAR) + ST log2,

To reach the desired contradiction, we choose A satisfying supA = ﬁ
Supyy

that b(x)A(u) < 1. Taking r going to 400 in the above and using (4.9) we deduce
GG

lim in
r—>+o00 r1 +34

> 0 so

log/ A(x) > SBlog?2.
Br

This contradicts (4.10) by choosing y sufficiently large in the expression (4.40)
of I'. O

As a simple application of Theorems 4.1 and 4.2 we have

Theorem 4.3 Let (M, (, )) be a complete Riemannian manifold of dimension m >
3 with nonnegative scalar curvature S(x). Fix an origin o and let r(x) = dist (x, 0).
Let K(x) € C°°(M) be nonpositive and such that

C
Kx) <-— Sfor r(x) > 1 (4.41)
r(x)t
and some constants C > 0, u € R. Assume
. . .logvolB,
liminf ——— < 4-o0. (4.42)

r—too IR

Then there are no conformal deformations of the metric to a new metric with scalar
curvature K (x).
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Proof By contradiction suppose it is possible to find a conformal deformations of
the metric to a new metric with scalar curvature K (x); then (and here we use m > 3),
setting ¢ = ui=z in Eq. (1.79), there exists u > 0, smooth solution on M of the
(standard) Yamabe equation

cmAu — S(x)u + K(x)u%% =0.

Herec,, = Z—:é and the pointwise conformal deformation (, ) of (, ) having scalar

curvature K (x) is m =y (, ). By Proposition 3.10 of [189] and the subsequent
remark, there exist R > 0 sufficiently large, K(x) € C*°(M), a constant C; > 0 and
a C*° (M) positive function v such that
()K(x) <0 on M, (i)K(x) = CK(x) on M)\ Bg
and v solves
~ m—+2
cmAv —S(x)v + K(x)vm—2 =0 on M.
Hence, since S(x) > 0,

~ m+
CnAv > —K(x)vﬁ on M.

Because of (i), (ii) and assumption (4.41),

= 2
—Kx)> ——— onM
()= (1 + r(x)*
for some constant C, > 0. It follows that
(& m
A 3 = on M.

Since (4.42) holds and ’:ﬂ% > 1, we can apply Theorem 4.2 to deduce v* < 4o0.
By Theorem 4.1 we then have v = 0, contradiction. O

We briefly comment on condition (4.31) and its relation with the Keller-
Osserman condition . The latter historically was introduced independently by Keller
[157] and Osserman [213] analyzing the differential inequality

Au > f(u) on R™. (4.43)

Letting, for f(f) > 0 on R, f(0) = 0,

F(r) = /0 £(s)ds, (4.44)



4.2 A Controlled Growth Weak Maximum Principle 217

the Keller-Osserman condition for (4.43) expresses as

€ L' (+00). (4.45)

1
V(%)

It is well known that if (4.45) is satisfied, then there are no nonnegative solutions of
(4.43) on R™ besides the trivial # = 0. On the contrary, if (4.45) fails then (4.43)
admits positive solutions on R” exploding at infinity. We note that (4.45) coincides
with (3.59) (for F = f in the notation there). Indeed, (4.45) implies, by Theorem 3.6,
boundedness of u and then the weak maximum principle for A on R” yields f(u*) <
0, so that u = 0.

The Keller-Osserman condition can be generalized to other operators, and for
instance, for those considered in Sect. 3.3.1, it becomes

1 1
H(FQ) € L (+00), (4.46)

where H is the function defined in (3.112) for the operator
div (A(|Vu|) Vi) = div (|Vu|_lq0(|Vu|)Vu).

For the operator L in (4.30) of Theorem 4.2, condition (4.31) implies the correspond-
ing Keller-Osserman condition of the type (4.46) as explained in detail in [183].

While in the linear case of Theorem 3.6 we have been able to use directly the
Keller-Osserman condition to obtain an a priori upper bound, in the nonlinear case
the matter becomes quite complicate and it remains an open problem to replace
a condition like (4.31) with the corresponding Keller-Osserman condition that it
implies.

4.2 A Controlled Growth Weak Maximum Principle

The aim of this section is to prove a weak maximum principle type result when the
function u is not necessary bounded above.

Theorem 4.4 Let (M, (,)) be a complete Riemannian manifold, let o be a reference
point in M, and let r(x) be the distance function from o. Let T be a symmetric (0, 2)
tensor field. Assume that, for some positive continuous functions T_ and T defined
on ]R(')" , the tensor T satisfies the following bound

0<T_(r) < T(X.X) < Ty (r) (4.47)

for every X € T\M, |X| = 1, and every x € dB,, where B, denotes the geodesic ball
of radius r centered at 0. Let ¢ : M X R(')" — R(')" be such that ¢(,1) € C°(M) for
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everyt € RT, o(x, ) € CO(R(')") N CY(RT) for every x € M, and

(1) p(x,0) = 0
for every x € M,
@) e(x,£) >0 on R
for every x € M, and

(iii) p(x, 1) < AP

on M x RY for some § > 0 and A(x) € C'(M), A(x) > 0 on M. Furthermore,

assume that

o T-(rx)) 1 1

W TL () AP S
for some X > 0. Given o, u € R we let
n=u+(—1(1+79)
and we assume that
>0, o—n>0.

Let u € C' (M) be a function such that

N u(x)
u = limsup

< +400.
r(x)—>+o0 F(X)?

Suppose that for some function f € C*°(M)

. log [y T4 (e
lim inf —=% —~—
R—>+o00 Ro—1

Define

Lu= L,y = div(e™|Vu| " o(x, |Vu)T(Vu, )),

where ¥ denotes the musical isomorphism. For y € R suppose that the set

2, ={xeM:ulx >y}

=dy < +00.

(4.48)

(4.49)

(4.50)

4.51)

(4.52)

(4.53)

(4.54)
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is nonempty. Then

0 ifo = 0;

(1) ! . ’

1(121f %Lu(x) < { Xdymax{i, 0¥ (c —n)'*%, ifo > 0and n < 0;
v AN Ydymax{it, 0¥c% (0 — ), ifo > 0and n > 0;

(4.55)

Proof We begin observing that if a is any constant and u, = u + a, then
Lu, = Lu
and
2, ={xeM:u,x)>y+a}

Furthermore, if ¢ > 0 then &, = &, and if 0 = 0 then &, = & + a. So in order to
estimate

(L4 ()"

)

we may replace u with a suitable translate u,. Next, fix b > max{i, 0}. It is easy to
see that there exists a constant a such that

Ug(X)
—————<b on M 4.56
I+ @) (350
and u,(xg) > O for some xo € M. This is obvious if u is bounded above and in
particular, due to (4.51) if 0 = 0. On the oth_er hand, if u is not bounded above, and
therefore o > 0, then by (4.51) there exists R > 0 such that

u(x)
————— <b on M\Bjy,
(I + 0y’ Vo
and it is clear that there exists @ € R such that u,(xp) > 0 for some xy € BR and
(li"r((’?))a < b on Bj and on all of M. We will assume that a constant a has been
selected in such a way that (4.56) holds. In accordance to the observation made
above, we are going to replace u with u, and, for the ease of notation, we suppress

the subscript a. Furthermore, if y; < y and

(L4 r(x))”

B Ty 0=

then

. (I +r(x)*
inf ————

Gy W=D
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so that, without loss of generality, we may suppose y > 0. Next, let

K = jnf LE 0"

) )

and suppose K > 0, otherwise there is nothing to prove. In this case u is nonconstant
on any component of £2, and

(1 + r(x)*
T4 (r(x))

We fix 8 € (1/2,1) and we choose Ry > 0 large enough that Bg, N 2, # @ and
|Vu| # 0 onit. Given R > Ry we let ¥ € C*°(M) be a cutoff function such that

Lu(x) >K >0 on &, (4.57)

C
0<vy <1, =1 on Bgr, ¥ =0 on M\Bg, |V1ﬂ|§m (4.58)

for some constant C > 0. Let also A € C!(R) and F(v, r) € C'(R?) be such that
0<A<1, A=0o0n (—oo0,y], A>0, A’ >0o0n (y, +00) (4.59)
and
F(v,r) >0, %(v, r) <0on Rf xRy . (4.60)
Finally we let W be the vector field defined on £2, by
W =y A F (v, e |Vu| " o(x, [Vu)T(Vu, )7, (4.61)
where v is given by
v=a(l+r°—u (4.62)

and o > b is a constant so that v > 0 on £2,. Indeed, according to (4.56) and the
assumption y > 0, so that u > 0 on £2,, we have

(@—b)1+r° <v=<a(l+r° on 2, (4.63)
Note that W vanishes on d(£2, N Bg) and it extends to a continuous vector field on
the whole of M by defining it to be zero in the complement of £2, N Bg.

We now compute the divergence of W. Note that, from (iii), we have

100, 1) > A@) o, 't on M x R(')". (4.64)
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Furthermore, from the properties (4.47) of T,

|T(Vu, Vv)| < /T(Vu, Vu)/T(Vv, Vv) < T4 (r(x))|Vu||Vo|. (4.65)
We compute

e/ divw = v A(u)F(v, r)Lu
+(1+ S)wgk(u)F(v, r)|Vu|_l<p(x, [Vul)T(Vu, Vi)
+y ! PN W) F (v, r)|Vu| " o(x, |Vu)T(Vu, Vi)

+1/f1+5A(u)3—F(v, | Vul o, [Vu)T(Vu, Vv)

+¢1+5/\(u) (v N Vu| " o(x, |Vu)T(Vu, Vr)

A%

w‘”x(u)F(v, DK+ )T (r)
—(1+ Y AWF (v, Ne(x, [Vul) T+ (1) V|
+1/f1+‘3x(u)gi:(v, | Vu| o, [Vu)T(Vu, ao (1 + r)° Vi — Vi)

Y AW . IVHl e, VU TV V),

where to obtain the last inequality we have used (4.47), (4.57), (4.59), (4.62) and
(4.65). Using now (4.47), (4.60) and (4.64) we obtain

eldiviv > —(1 + S)wgk(u)F(v, e, |Vu|)T+ ()| V|
+Y AW F(, K 4+ 1) Ty (1)

) I 0. Pt [Vul) VI T-()
+ao(l+r)°! l+8)k(u) (v P |Vu| " o(x, |Vul)T(Vu, Vr)

+w‘+ﬁx(u)5(v, M| Vu| o, [Vu)T(Vu, Vr)

> —(1 + )Y AWF (v, r)p(x, |Vu) T4 ()| VY|
+y AW F (v, VK + 1) T4 (r)

+Y A )‘—( )’ )qu(x |Vul) +18
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AREIY (D) g—I:(v,r) ac (1 + 1~ \Vu| " o, [Vu)T(Vu, Vr)
oF )
+y A (u )‘ mww Lo(x, |Vu|)T(Vu, Vr).
Therefore,
efdiviv = —(1 + VP AW)F (v, Ne(x, [Vu|) T4 (r) | V|
+y ! A () g—f(v,r) B(x,Vu,r), (4.66)
where
B(x,Vu,r) = _)(138(,0()6 |Vul)! T8 4 %K(l + ) TRTL(r) (4.67)
v ’
Ew,r)
+ (m —ao(l + r)”_l) [Vu| "L o(x, [Vul)T(Vu, Vr).
Using (4.48) we obtain
B(x,Vu,r) > (ﬁqp(x, [Vu|)! T8 E F(( ))|K(1 + r)_“) Ti(r)  (4.68)
30 W

JoF

5 (v.7r) o—1 -1

+|\ o —ao(dl+r |Vul " o(x, |Vu)T(Vu, Vr).
|5 .7

Next, we consider different cases.
Case I: n < 0. We choose

F(v,r) = e VU™
where g > 0 is a constant that will be specified later. From (4.62), (4.63), (4.50) and

o > 0 we obtain

oF
Br v, V)

—ac(14+7r)°""'>—a(c—n1+r°"on 2, (4.69)

and

F(v r)

5(1 + ). (4.70)
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We also note that
IVul " o (x, [Vul)T(Vu, Vr) < o(x, |Vul) T4 (r).

Inserting (4.69) and (4.70) into (4.68) and using (4.49) we deduce

B, Vi, 1) > [ﬁw, V) g B e
—a(o =1+ 0" o, |Vu)] T4 (r). (4.71)
At this point we need to estimate the right-hand side of (4.71) so to have
B(x, Vu,r) > Ap(x, |[Vu) ' TVT L (r) 4.72)

for some positive constant A independent of Vu, r and x. For this purpose we use
the next lemma whose proof is a calculus exercise.

Lemma 4.2 Let §, 0, B, w be positive constants and letf be the function defined on
]R(')" by f(s) = ws'tV/% — Bs + o. Then the inequality f(s) > As'*'/% holds on Rg’
provided

8ﬁl+l/5
<W—-— -
(1 +8)1+1/8Q1/8

Applying Lemma 4.2 with s = ¢(x, | Vu|) and x fixed, it is easy to verify that (4.71)
holds independently of x if we can choose a positive A such that

1 1/8§ _ o)) I+1/8
Ao L aVseo—m) @
»1/3 (1 + 8)1+1/5K1/s
Note that the above is independent of » = r(x). Thus, if ¢ € (0, 1) and we choose

'K(1 4 8§)'+° 11—t
q= and A = ——
288(06(0— 77))1+8 Y1/

4.74)

then A > 0 and it satisfies (4.73).
We insert (4.72) and the expression for dF/dv into (4.66) to obtain

el diviv > —(1 + 8§)Y* M) F (v, N (x, [Vu) T4 (r) | VY|
+g AP L) (1 + HTTE(, Ne(x, |Vu) TV, (r).
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We integrate this inequality on £2, N B, apply the divergence theorem and recall
that W vanishes on d(£2, N Bg) to obtain

qA

YA+ ) TTEQ, e, | Vul) YT (r)e
1438 Jo,ng

< / VA @, N, [Vu) T (DT e
2,NBg

Write
YIAW)F (v, Ne(x, [Vu) T+ ()| Vyle™ = gi1g
with
g1 = A@FE.NTL ()™ V(1 + T e ™/
and

82 = EF©. AT ()™ PP p(x, [VuD)(1 4+ 1) 7T/,

Applying Holder’s inequality with conjugate exponents 1 + § and 1 + 1/§ to the
integral on the right-hand side we obtain

/ YIAWF (v, N, |Vul) T4 (r)|Vile™
£2,NBg
™
5(/ A(u)F(v,r)T+(r)|w|‘+8(1+r)”5e‘f) x
2,NBg

=S
( / AF (0, AT ()Y e, [Vu) 5 (1 + r>—"e—f) ,
2,NBg

and, after some simplification, from the above we get

1+6
( qA ) / wH_SA(M)(l 4 r)—ﬂF(v, r.)(p(x7 |VM|)1+1/5T+(r)e_f
1+6 2,NBy

< / AWF. (1 + )P VYT (e
2,NBg
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Let R > 2Ry; then 6R > R/2 > R, and using the properties of A and ¢ we deduce

A 146
E= (q—) [ 3@F@.e V) et @3
1+6 2,NBg,
< C'"™ (A 4+ OR)P[(1 — A)R]TITD / F(v,NT4(r)e.
£2,N(Br\Bor)

Using (4.63) for v and the expression of F on £2, N (Bg \ Bar)
F(U, r) < e—q(a—b)(l-{—OR)"*”’

thus from (4.75)

E < CA‘RS"_I_Se_q(“_b)(l+9R)0_”/ T+(V)e_f
Br

for some constant C > 0. Now observe that, since |Vu| # 0 on £2, N Bg,, E > 0.
From assumption (4.52), for every fixed d > dj there exists a strictly increasing
sequence R; /' +o0o with Ry > 2R, and such that

log / Ty (r)e” <dR]; (4.76)
BR](
and from the above inequality with R = R; we obtain

0 < E < CR)"™' P ema@b1+oR)"™ / Ty(r)e”

BRk

A~ 11— o—n _
< CR,‘E” 1 b’ede —q(a—b)(14+6Ry)° n’

where the constant C > 0 is independent of k. In order for this inequality to hold for
every k, we must have

d> (¢ —b)go°™m,
whence, letting 6 — 1,
d > (a—Db)g.

We set « = b, with t+ > 1, and we insert the choice (4.74) of g in the above
inequality, solve with respect to K, and let ¢ ' 1 to obtain
858 (18

K < EdbS(O' — ﬂ)1+8m:.
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Therefore, minimizing with respect to ¢ > 1 and letting d — dy, b — max{i, 0},
we have

K < Xdymax{i, 0} (o — n)' .
In other words,

g L0

Lu < ¥d, i, 0¥ (o — )9, 4.77
I e u < Xdomax{i,0}° (o — 1) 4.77)

This finishes the proof when o > 0 and n < 0.
For 0 = 0 [and necessarily n < 0 by (4.50)] we can improve the above estimate
as follows. We apply (4.77) to the function u — & on the set

xeM:ux)—a>y—u} =8,

observing that u— i = 0and that Lu = L(u — 1), to obtain

1 I
inf ﬂLu <
2 T4(r)

A

Case II: n > 0 [and necessarily o > 0 by (4.50)]. We choose

—qulo—n/a

F(v,r)=F@v) =e

where ¢ > 0 is a constant to be specified later. Noting that the exponent of v is
positive by (4.50), a computation yields

°- nv_”/"F(v) <0,

oF
%(U, r) =9
while clearly, 0F /dr = 0.

Using estimate (4.68), recalling that by (4.63) v > («¢—b)(1+r)° and proceeding
as in Case I, we estimate

1
B(x,Vu,r) > [mq)(x, [Vul)' 1% —ao (1 + r)°Lo(x, [Vul)

4%
q(c —n)

According to Lemma 4.2, for every r > 0 fixed, the right-hand side of the above
inequality is bounded from below by A (x, |Vu|)'*/3T, (r) provided

(@ —b)"°K(1 + r)(”_l)(1+8):| Ty(r). (4.78)

1 q1/85(060)1+1/8(0—7])1/8

A= TS (1 + 8)1T1/8(Ka) /5 (o — b)n/Go)

4.79)
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Since the right-hand side of the above inequality is independent of r, for every such
A we have B(x, Vu,r) > Ap(x, |Vu)' TV/T, (r). In particular, if € (0, 1) and we
choose

_ UKo (14 8)'"(a—b)"° 1-7

dA=—" 4.80
S5 (ao) o —n) S8 (4.50)

then A > 0 and it satisfies (4.79). Substituting into (4.66), and using the expression
for dF /dv, we deduce that

el divw > —(1 + 8)Y* A F()g(x, |Vu) T+ (r) |V

O‘ —_—
7L Ay AT F @) (. [Vu) T ).

We now proceed as in Case I, repeating, with minor adaptations, the arguments that
lead to (4.75), to conclude instead that

0<E= / AW F)p(x, |Vu) ' TVT (e (4.81)
y NBrg

< E(1 + 0RYP[(1 — )R+ / F)T+ (e,
Qy ﬂ(BRk \BGRk)

where C is a constant independent of k and 6. Using the inequality
F(v) < o~ 4@=b) T (14+0R)7T
valid on £2, N (Bg, \ Ber,), and (4.76), we conclude that for every k we have
0<E< éRin—l—SEdRT”—q(a—b)(”—”)/"(1+9Rk)”—'i'
Again, this forces
d > g(a —b)en/ogon,
Therefore, setting o = th, with t > 1, letting 6 ' 1, inserting the value of ¢ given

by (4.80), solving with respect to K and letting T 7 1, d \( do, b \( max{it, 0}, we
obtain

50)5(0 _ 77) tl+5 .
(1+8Hs -1’

K < Ydymax{i, 0}8(

whence, again minimizing with respect to t > 1, we conclude that

K < Xdymax{ir,0}°c° (o — 7).
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In other words,

1 i
inf uLu < Xdymax{i, 0}°6% (0 — ).
2, T4(r)

This finishes the proof when n > 0. O

To see how one can use Theorem 4.4 let us consider the following geometric
setting.

Let (N, (, )) be a (m + 1)-dimensional Riemannian manifold endowed with a
nonsingular Killing vector field Y with complete flow lines such that the orthogonal
distribution D : N — TN, that is

D:x—>D,={velN:(Y,v)=0} CT\N

is integrable. It is not difficult to verify that the (maximal) integral leaves of D are
totally geodesic hypersurfaces in N [95]. In particular, if N is complete, then any
leaf is complete. We fix an integral leaf M; the flow @ : R x M — N generated
by Y takes isometrically M = M to the leaf M; = ¢;(M,) for any s € R, where
¢s = D(s,-). Then, given u € C*°(M), the Killing graph I',, associated to u is the
hypersurface

I,-M—N
given by
Iyix — @ (u(x), x).

One can show (see for instance [95]) that the Killing graph I', has mean curvature
H if and only if u satisfies the equation

) (Vu) <Vy Vu>
div(— | - (=%, —) = mH, (4.82)
w 2y W
where
=" (4.83)
y'x - bl .
Y ()|

W) =\ y) + |Vu)]? (4.84)

and the mean curvature H is computed with respect to the orientation given by the
normal

p = %()/Y— @, (Vu)). (4.85)
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Note that the operators div and V are on M with the metric induced by the inclusion
M = My — N.

In the special case of a product N = R x M, with (M, (, )) a Riemannian
manifold, indicating with s the (global) coordinate on R we can choose ¥ = %
sothat |Y| = 1 and

D(s,x) = (s5,x).
In this case, for the Killing graph
I, :x— (ux),x),

Eq. (4.82) reduces to the well-known mean curvature equation

) Vu
div| ——— | = mH. (4.86)

V1 + | Vul?

When N is complete, we fix an origin 0 € M = M, and set r(x) = disty (x, 0).
We have (see [24])

Theorem 4.5 Let N be a complete Riemannian manifold endowed with a complete
nonsingular Killing field Y and let M be an integral leaf of the Killing foliation.
Assume that

sup Y] < 400 (4.87)
M
and
Io Y
lim infM =0 (4.88)

R—>+o0 R2C

for some 0 < o < 2. Then, any constant mean curvature Killing graph I,(x) =
D (u(x),x), x € M, lying between the graphs I's+p(x) = @ (E£Pr(x)°, x) outside a
compact set of M, for some B > 0, is minimal.

Proof We note that for the Killing graph I', we have the validity of (4.82) for some
constant H. Passing to —u if necessary, we may assume that H > 0. Now observe
that since N is complete then M is complete. To apply Theorem 4.4 we choose T
to be the metric on M so that 7_ and T4 are both identically equal to 1, we let
f =log./y = —log|Y| and we define

t

Vyo + 2

plx, 1) =
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Then ¢ clearly satisfies (i) and (ii) of Theorem 4.4 and since y(x) > 0 for each x,
px,)eC® (Rg’) NncC! (R+) for each x € M. Furthermore, since

1
y(x)

it satisfies (iii) with the choices § = 1, A(x) = |Y(x)|. Thus assumption (4.87)
guarantees the validity of (4.48). Since I', lies between the graphs I, +g we have

p(x,1) < f,

. . u(x)
u = limsup < B < +oo.
r(x)—>—+oo0 T(X)?

We now let n = 2(0 — 1) and observe that
o>0, oc—n=2—0>0.

Furthermore, (4.88) corresponds to (4.52) with dy = 0. Next we choose any ¢ such
that

2 ={xeM:ulkx) >} #9.

By applying Theorem 4.4 we have

. . . (Vu Vy Vu
O0>infLlu=infJdiv| — | —(—,— )} = H
2 2; w 2y W

so that H = 0. ]

We note that condition (4.88) cannot be relaxed. Indeed, consider the case
N =RxH" Y = %, s the coordinate on R and M = H" the hyperbolic
space of constant sectional curvature —1. Then, realizing the metric of H" in polar
coordinates (r,#) € RT x S"! as

(,) = dr* + sinh® rdf?,

where d? is the canonical metric on S"~!, we have

(m—1)R

vol Bg ~ Ce as R - +o0

for some constant C > 0. Since |Y| = 1 we have

+00 if o € (1,2),
Cim—1) ifo=1,
0 if 0 €[0,1).

Io Y
liminf—ngRl | _
R—>+oo R2—0
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Now, for any H € (0, m=1 ], the smooth function

m

r(x sahl—m 4 o1
u(o) = / ) sinh' =" (1) f; mH sinh™~" (s) ds i
0

{1-—sinhzﬂ—'"”(t)(fo’mHsinhm-'l(s)ars)z}7

defines an entire graph on H" with constant mean curvature H. Furthermore, u(x) ~
r(x) as r(x) — +o00, which means that the graph lies between the graphs ¥ +2(x) =
(£2r(x), x) outside a compact set of H™.

Remark 4.4 The problem of the existence of a Killing graph with nonzero constant
mean curvature H is related to the value of the (appropriately weighted) Cheeger’s
constant of the leaf M of the Killing foliation. This is explained in detail in [24].

4.3 An Equivalent Open Form of the Weak Maximum
Principle

The aim of this section, partially based on the recent [28], is to present another
form of the weak maximum principle which turns out to be very useful in geometric
applications. We focus our attention on the general class of operators that have been
defined in Sect. 4.2 (see Eq. (4.53), with f = 0) and that we consider, for instance,
in [5, 24]. For the sake of completeness, and for the ease of reading, we recall the
definition once more.

We let T be a symmetric, 2-covariant tensor field on a Riemannian manifold
(M, (. )). Assume that, for some continuous functions 7_ and 7+ on RJ , the tensor
T satisfies the following bounds

0<T_(r) <T(Y,Y) < Ts(r) (4.89)
foreachY € T\M, |Y| = 1, and every x € dB,, where B, denotes the geodesic ball of
radius r centered at an origin 0. Let ¢ : M x Rf — R be such that ¢(, 1) € C°(M)
foreacht € R, o(x, ) € C°(R) N C'(R™T) for each x € M and

(1) ¢(x,0) = 0 for every x € M;

(ii) ¢(x,t) > 0on M x RT; (4.90)

(iii) @(x, 1) < A(x)® on M x R
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for some § > 0 and A(x) € C°(M), A(x) > 0. Let X be a vector field on M. For
u € C'(M) we define

Lu= Ly rxu = div (|Vu| " o(x, [Vu)T(Vu, )*) — (X, Vu) (4.91)

in the weak sense, where ! : T*M — TM denotes the musical isomorphism.

Remark 4.5 Note that the left-hand side inequality in (4.89) and requirement (ii) in
(4.90) are ellipticity conditions for the operator L. As a matter of fact properties
(4.89) and (4.90) will not be used in proving the equivalence in Theorem 4.6
below. On the other hand, they are basic in looking for sufficient conditions
to guarantee that the property expressed in Definition 4.1 below holds on the
manifold we are considering. In fact, when ¢(x,f) = t it is enough to consider
u € Lip,,.(M); the more restrictive u € C'(M) enables us to deal with the nonlinear
case. Furthermore, for those theorems giving sufficient conditions in terms of the
volume growth of geodesic balls we can enlarge the class of admissible solutions
to C°(M) N Wit (M). This is due to the fact that the argument of proof for these

loc
results is based only on the notion of weak solution.

In what follows we recall the next concept introduced immediately after the
statement of Theorem 3.1 in Chap. 3. Let ¢(x) € C°(M), g(x) > 0.

Definition 4.1 We say that the g-WMP (the g-weak maximum principle) holds on
M for the operator L in (4.91) if, for each u € C'(M) with u* = sup,, u < +oo and
for each y € R with y < u*, we have

inf{g(x)Lu} < 0 (4.92)

in the weak sense, where
2, ={xeM:ulx >y} (4.93)

Note that (4.92) in the weak sense expresses as follows: for every ¢ > 0

—/Qy (IVul o (x, |Vu)T(Vu, V) + (X, Vu)y) < /Qy ﬁw, (4.94)

for some ¥ € C°(£2,), ¥ > 0, ¥ # 0. In case g(x) is a positive constant we will
simply say that L satisfies the WMP (the weak maximum principle).

Of course Remark 3.1 applies.
We observe that, from an analytic point of view, the usual form of the maximum
principle loosely states that, for a certain operator, say L, if u satisfies for instance

Lu>0
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on a region £2, then

supu = supu
2 a2

(see Chap. 10 in [125] for a good reference). In the previous chapters we took on
Yau’s point of view based on the observation that if a C>-function u attains its
maximum at xy, then

Vu(xg) =0, Au(xp) <0,

and we formulated our form of the maximum principle accordingly to the Omori-
Yau philosophy; see for instance Theorems 2.4 and 3.2. As we will see in a
shortwhile, with the next result we basically go back to the original point of view, at
least for the weak maximum principle.

We remark that the various assumptions on ¢ and 7 given in the definition of
Ly 1 x will be very marginally used in some of the forthcoming results. In fact in the
next theorem we will only use the property Lu = L(u + a) for any constant a € R.

Theorem 4.6 The q-WMP holds on M for the operator L if and only if the open
q-WMP holds on M, that is, for each f € C°(R), for each open set 2 C M with
92 # 0, and for each v € C°(2) N CY(2) satisfying

(i) g(x)Lv > f(v) on £2;

(4.95)
(ii) supy v < 400,
we have that either
SuUpv = sup v (4.96)
Q2 Ele;
or
f(supv) <0. (4.97)
Q2

Remark 4.6 Observe that the g-WMP on M for the operator L is also equivalent
to the following dual statement: The g-WMP holds on M for the operator L if and
only if for each f € C°(R), for each open set 2 C M with 382 # @, and for each
v e C%(R2) N C! () satisfying

(i) g(x)Lv < f(v) on £2;
(4.98)
(ii) infg v > —o0,
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we have that either

infv = infv (4.99)
2 a2
or
f(infv) = 0. (4.100)

Proof (of Theorem 4.6) Assume that the g-WMP holds for the operator L on M and
let f, v and §2 be as in the statement of the theorem. Suppose that (4.96) is not
satisfied, that is

supv > supv. (4.101)
2 a2
Fix & > 0 sufficiently small that
supv —2e > supv + 2¢ (4.102)
2 a2
and define
Uy = {x € 2 :v(x) >supv — 2¢}. (4.103)
Q2

Note that U,, # @. Moreover, for every x € U,, from (4. 102) one has

v(x) > supv —2¢ > supv + 2& > supv,
2 2 a2

so that x € £2. That is, U, C £2, and therefore
va C U2s CvZa C .Q,
where U, obviously is defined in a way similar to (4.103).

By adding, if necessary, a positive constant to v, we can suppose that sup, v >
2¢ and we let y = supp v — & > 0. Next we choose a smooth cut-off function
¥ : M — [0, 1] such that

Yv=1lonU, and ¢ =0onM)\ U,
and we define
Y(x)v(x) on £2,

u(x) = (4.104)
OonM\ £2.
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Then u € C'(M), u* < +o00 and
Lu=Lv onU,. (4.105)
We claim that

2, ={xeM:ux)>y}=U,={xe2:v(x) >y =supv —e&}. (4.106)
Q

Clearly it suffices to show that 2, C U,. For every x € §2,, one has u(x) > y > 0.
In particular, by (4.104), it follows that x € £2 and v(x) > 0, so that

v(x) > Y (x)v(x) = u(x) >y =supv —e&.
Q

Since x € §2, this means that x € U,.
Now for any constant a € R, L(v + a) = Lv, thus using (4.105) and (4.95) we
deduce

Lu=L(v+a)=Lv> Lf(v) on £2,.
q(x)

In other words
qg(x)Lu > f(v) on$2,.

Applying the g-WMP to u we infer

0= i(Ilef{q(X)Lu} > lgyff ().

But £2, = U, and thus, letting ¢ — 0" and using continuity of f we obtain (4.97).

For the converse, assume the validity of the open g-WMP for L. We reason by
contradiction and we suppose that the g-WMP is false. Then, there exists u € C' (M)
with u* < 400, and y < u* such that

B = infig(x)Luj > 0. (4.107)

This implies that u is nonconstant and therefore, since f is increasing with y, up to
choosing y sufficiently near to u™*, we can suppose that

02, ={xeM:ulkx) =y} #0.
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Set £2 = §2,, and v = u|g. Because of (4.107) and u* < 400 we have

g(x)Lv = B on £2,
(4.108)
Sup, v = u* < 4o00.

Since f(v) = B > 0, alternative (4.97) cannot occur. However alternative (4.96)
cannot occur either because

supv = u* >y = supv.
e} a2

This yields the desired contradiction. O

Remark 4.7 Note that the above proof works for any of the choices of the functional
classes of the solutions that we have been considering in Remark 4.5. Of course in
Definition 4.1 we have to enlarge the functional class accordingly.

A careful reading of the above proof yields the validity of the following form of
the theorem useful in applications.

Theorem 4.7 The q-WMP holds on M for the operator L if and only if for each
B € R, for each open set 2 C M with 382 # @, and for each v € C°(2)NC'(R2)

satisfying

(i) g(x)Lv = B on £2;
(4.109)
(ii) supo v < +o00,

we have

supv = supv. (4.110)
) a2

The following fact seems worth mentioning; it extends Proposition 3.4 in [225]
to general operators.

Proposition 4.1 Let (M, (, )),) and (N, (, )y) be noncompact Riemannian mani-
folds, and assume that there exist compact sets A C M and B C N and a Riemannian
isometry f : M\ A — N \ B which preserves divergent sequences in the ambient
spaces, that is, {x;} diverges in M if and only if {f(xx)} diverges in N. Let X be a
vector field on M, T a symmetric (0,2) tensor field on M satisfying (4.89) and ¢
as in (4.90) that define the differential operator L, 1 x on M; let Y, S,y be with the
same properties on N and define the differential operator Ly sy on N. Assume that

Y=£X, S=AT, v.0 =9 ').0
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on N \ B. Then the WMP holds on M for the operator Ly 1 x if and only if the WMP
holds on N for the operator Ly sy.

Observe that the condition that {x;} diverges in M if and only if {f (x;)} diverges in
N makes sense for any divergent sequence in M even if f is not globally defined on
M because the sequence eventually leaves the compact set A.

Proof Suppose that the WMP holds on M for the operator L, 7x. Let v € C'(N)
with v* < +o00. Without loss of generality we may assume that v* is not attained
and strictly positive. Consider K|, K, be two relatively compact domains in M such
that A € K; € K; C K. Choose a smooth cutoff function A : M — [0, 1] satisfying
A=0onKk;, A =1o0nM )\ K, and define a function u € C'(M) by

y— JA@of). on M\ A; (4.111)
0, on A.

We claim that v* = u* and that u* is not attained. By construction v* < u*. On
the other hand, let {y,} be a sequence in N such that v(y,) / v*. Since v does
not attain v* the sequence {y,} is divergent, therefore for k sufficiently large y, lies
outside B. By the assumption on f, {X;} = {f~'(¥,)} is a divergent sequence in
M. Thus u(X) = A(X)(v o f(xx)) = v(y,) for k sufficiently large, showing that
u(xy) /" v*, and v* = u*. Furthermore, u* is not attained, indeed, u(x) = 0 on A,
and u(x) < v(f(x)) < v* = u* on M \ A, hence u does not attain u*, as claimed.
Therefore, we can fix y < v* sufficiently close to v* such that

Ty ={eN:v0@) >y} CN\ (BUf(K2\A4))

and consider f71(X,) = {x e M\ A: (vof)(x) > y}.
Since v* = u* > 0 we can suppose that y > 0 and it follows that

2, ={xeM:ux)>y}={xeM\A: A(x)(vof)(x) > y}.
In particular (v o f)(x) > y so that £2, € f~1(X,).

_ The validity of the WMP on M, yields that, for each ¢ > 0 there exist some
Y € C(£2,), ¥ > 0, 3# 0such that

/ eV :f e > _f (|Vu|_1g0(x,|Vu|)T(Vu, V) + (X, w)J/)
FU(z,) 2, 2

14

= —/ (1Vul™ (e, [VuDT (Vi V) + (X, Vi)
i)

= [ v @or DI 0 Ve TV e . VG os )

Y

[ {wor o i o).

Y
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Butfory € X, f~'(y) € M \ K> hence
u(f~' ) = W HU' (1)) = v():
g=vof " €CP(Z).¢20.0#0;
Xof '=Yand T(V(uof™"), V@) = S(Vv, V).

Therefore, being f an isometry,

/ 6% > — / (Vo' Y. [Vo)S(Vo. V) + (Y. Vu)).

Zy Zy

This proves that the WMP holds for the operator Ly sy on N.

Repeating the same argument with M and N interchanged shows that if the WMP
holds in N, so it holds in M (note thatf~! : N\ B — M\ A is a Riemannian isometry
which maps divergent sequences to divergent sequences). O

4.3.1 A First Application to PDE’s

The open form of the weak maximum principle will be applied in the sequel in some
geometric context. However, it seems interesting to present here a uniqueness result
for positive solutions of certain PDE’s obtained via its use.

Towards this aim we recall that a Lichnerowicz-type equation is a PDE of the
form

Au+ a(@)u — b(x)u’ + c(x)u* =0 (4.112)

for some a(x), b(x), c(x) continuous on the Riemannian manifold (M, (, }). Here
o > l and v < 1, so that the latter can be negative too. For the sake of simplicity
we consider positive C2-solutions of (4.112) on an open set 2 C M, possibly with
boundary.

Equations of the type of (4.112) arise in the analysis of the Einstein field
equations in General Relativity, in the initial data set for the nonlinear wave system,
and the coefficients a(x), b(x), c(x) have a precise physical meaning. In particular,
in some models b(x) and c¢(x) are, respectively, positive and nonnegative. This fact
will somehow justify our assumptions in Theorem 4.8 below. For details we refer to
[4, 90, 174] and the references therein.

Our uniqueness result will be an immediate consequence of the following
comparison theorem (see [4]). We recall that, given a vector field X on M, Ay,
the X-Laplacian, is the operator Axu = Au — (X, Vu), with, say, u € C>(M); see
also Sect.3.1.
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Theorem 4.8 Let (M, {, )) be a complete manifold, a(x), b(x), c(x) € C*(M), X a
vector field on M, o, T € R be such that o > 1 and t < 1. Let §2 be a relatively
compact open set in M. Assume

@ bx)>0 on M\ £2; ({H)c(x) =0 on M\ £2; (4.113)
@) s}t;p ab_(fc);) < +00; (ii) sup % < 400, (4.114)

where a_ denotes the negative part of a. Let u,v € C? (M \ m NCOM\ ) be
positive solutions of

Axu + a(x)u — b(x)u® + c(x)u* >0

(4.115)
Axv + a(x)v — b(x)v? 4+ c(x)v* <0
on M \ 2 satisfying
(i) liminfv(x) > 0, (i) limsup u(x) < +o0 (4.116)
*—>00 X—>00
and
0< 13r!12fu < u(x) <v(x) on 052. 4.117)
Assume the validity of the %-WMPfor the operator Ax on M \ 2. Then
u(x) < v(x) on M\ £2. (4.118)

Remark 4.8 As it will be clear from the proof, in case 0 < t < 1 assumption
(4.114) (ii) can be dropped. Furthermore, if £2 = @ assumption (4.117) is empty.

Proof To simplify the writing set L for Ay = A—(X, V); furthermore, without loss
of generality observe that we can suppose that M \ §2 is connected. From positivity
of v, (4.116) (i), (ii) and (4.117) there exist constants Cy, C; > 0 such that

v(x) > Cy, u(x) <C, on M\ £2. 4.119)

We set

&= sup (g)

M\
From the assumptions on u, v and (4.119) it follows that & satisfies

0 <& < +o0. (4.120)
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Clearly if £ < 1 then u < v on M \ §2. By contradiction assume that £ > 1 and
define

w=u—E§&v;

then w < 0 on M\ £2. It is a simple matter to realize, using (4.120) and the definition
of &, that

supw = 0. (4.121)
M\2
We now use (4.115) to compute
Lw > —a(@)w + b(0)[u” — (§v)°] — c()[u” — (§v)°] (4.122)

+ b(x)gv[(gv)”—l . vf’—l] + c(x)gv[vf—l - (gv)f—l].
We let

ou’~(x) if u(x) = &v(x)

h(x) = o u(x) tg_l d if
-5 Jevo roif u(x) < §v)

and similarly, for T # 0,

—tu 1 (x) if u(x) = &v(x)

u(x) r—1 .
—EU(X)T—u(x) £0(0) 7 hdr if u(x) < Ev(x).

In case T = 0, choose j(x) = 0. Observe that 4 and j are continuous on M \ §2 and
h is nonnegative. Using / and j and observing that —a(x)w > a_(x)w, from (4.122)
we obtain
Lw > [a—(x) + b(x)h(x) + c(x)j(x)]w (4.123)
+bgv| ) ™ — v+ e@gv[ v - g0 .
Let
22, = {xeM\ﬁ: w(x) > —1}.

Since u is bounded above on M \ £2, there exists a constant C > 0 such that

v(x) = é(u(x) —wx)) < é(C +1) (4.124)
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on 2_;. Using the definition of / and j, from the mean value theorem for integrals
we deduce

—1

h(x) =oy) ' j(x) = =1y}

for some y, = yp(x) and y; = y;(x) in the range [u(x), £v(x)]. Since u(x) and v(x)
are bounded above on £2_,

max {A(x),j(x)} < C (4.125)

on §2_, for some constant C > 0. Next we recall that b(x) > 0 on M \ £2 to rewrite
(4.123) in the form

1 o [a-® c(x) .
%Lw > [ () + h(x) + %J+(x)i|w

+ Sv[(év)"_l — v”_l] + %Ev[vt_l - (Sv)r_l].

Since w < 0, (4.113), (4.114) and (4.125) imply

a—(x) c(x)
[ b0Y) + h(x) + @]+(x):|w > Cw

for some constant C > 0 on §2_;. For further use we observe here that when 0 <
T < 1,j4+(x) = 0 so that in this case assumption (4.114) (ii) is not needed to obtain
this last inequality. Thus

ﬁm > Cw+ g0 60 -] + % o[ = 0]

on §2_;. Recalling the elementary inequalities

gas —b'>sbY(a—b) fors<O0ands>1 (4.126)

a—b>sa"'(a—b) for0<s<]1,
with a, b > 0, coming from the mean value theorem for integrals, we conclude that

Lz Ot (o — DE T E 1 4 (1) S E T

b(x) b(x) &'

on £2_;. Now we use the fact that ¢ < 1, v is bounded from below by a positive
constant, (4.113), (4.114) (ii) to get [again if 0 < 7 < 1 we do not need (4.114) (ii)]

1
Fx)Lw >Cw+B on 24,
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for some constants B, C > 0. Finally we choose 0 < ¢ < 1 sufficiently small that

1
Cw>—=B
2
on
Q. ={xeM\2:wkx)>—¢} C 2,

and 0§2_, C M \ 2. Therefore

1 1
— Iw>-B>0 on 2. (4.127)
b(x) 2

Furthermore, note that

w(x) < min{—e¢, (1 — g)%n v} <0

on §£2_.. As a consequence sup;, w < 0, while sup, w = 0. Applying the

open form of the [%-weak maximum principle to (4.127) we obtain the desired
contradiction. O

As an immediate consequence we obtain the following uniqueness result.

Corollary 4.1 In the assumptions of Theorem 4.8 the equation
Axu + a(xX)u —b(x)u’ + c(x)u* =0 on M\ 2

admits at most a unique positive solution u € CZ(M\E) N CO(M\ 2) with
assigned boundary data on 082 and satisfying

Ci<u(x)<C, onM\R (4.128)

for some constants Cy, C, > 0 provided that the %-weak maximum principle holds
on M for the operator Ay.

4.4 Strong Parabolicity

In Sect. 2.5 of Chap.2 we briefly discussed parabolicity for the Laplace-Beltrami
operator A showing that it is equivalent to a stronger form of the weak maximum
principle for A. Motivated by this observation, here we introduce a stronger notion
of parabolicity and indicate when this is equivalent to the usual one that we specify
in Definition 4.3 below. In doing so we follow [28]. We begin with the next
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Definition 4.2 We say that the operator L = L, 7 x defined in (4.91) of Sect. 4.3 is
strongly parabolic on M if for each nonconstant u € C' (M) with u* < +o0 and for
each y € R with y < u* we have

inf{Lu} < 0 (4.129)
‘QV

in the weak sense, where, as usual, £2, = {x € M : u(x) > y}.

Recall that the strict inequality (4.129) in the weak sense means that for some £ > 0

-,

for some ¥ € C°(£2,), ¥ >0,y #0.
It is immediate to compare this definition with the more familiar

(IVu| ' o(x, [Vu)T(Vu, Vip) + (X, Vu)y) < —/ ey, (4.130)

14 QV

Definition 4.3 We say that the operator L = L, 7 x is parabolic on M if each u €
C'(M) with u* < 400 and satisfying Lu > 0 on M is constant.

It is clear that strong parabolicity of L implies parabolicity. The converse is also
true if we enlarge the functional class of u to Lip,,. (M) or C°(M) N Wllo’C1 +‘g(M) and
we assume the validity of the following proposition:

Proposition 4.2 For every open set 2 C M, if u € Lip,,.(2) oru € C°(2) N
Wit (82) satisfies Lu > 0 on §2 then, for each fixed a € R, the function v(x) =

loc
max{u(x), o} satisfies Lv > 0 on §2.

Indeed, we have

Theorem 4.9 Let (M, (, )) be a Riemannian manifold and L = L,1x be an
operator as in (4.91). Assume the validity of Proposition 4.2. Then L is strongly
parabolic on M if and only if L is parabolic.

Proof We only have to show that parabolicity implies strong parabolicity. We reason
by contradiction and we assume the existence of a nonconstant u with u* < +o00
and y € R, y < u™* such that

Lu>0

on £2,.
¥
Up to increasing y we may assume 02, # @, because otherwise §2, = M and
the result is immediate. Consider the function

max{u(x),y + ”*T_y} on £2,,
v(x) =
Y+ "*T_y onM\ £2,.
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Then v* = u* < 400 and, because of Proposition 4.2 (on $2,)
Lv>0 on M.

By Definition 4.3 v is the constant y + "*T_y < u* = v*, contradiction. O
A large class of operators satisfies Proposition 4.2. For instance

Proposition 4.3 Let (M, (, )) be a Riemannian manifold and L = L, 1x be an
operator as in (4.91), with T a symmetric, positive semi-definite (0, 2)-tensor field
on M. Define A(x,t) = t'o(x,t) on M x RT and suppose that, for each x € M,
A(x, ) is nondecreasing on R*. Then Proposition 4.2 holds.

Proof Since, for any B € R, u + B is still a solution of Lv > 0 if u is so, in
Proposition 4.2 we can suppose « = 0. In this case v(x) = max{u(x), 0} = u(x),
so that it remains to show that Luy > 0 on M. Towards this end we fix ¥ € C°(M),
¥ > 0, and we recall that Lu > 0 yields

/ (ACx, |Vu)T(Vu, Vi) + (X, Vu)yr) <O0. (4.131)
M
We let ¢ > 0 and we set

ue = Vi + s, %:%(Hui)w.

&

Observe that V, is still an admissible test function for Lu > 0. Furthermore, since

u
Vu, = —Vu, we have
&

u, — |u|, Vu, — sign(u)Vu, andy, — %(1 + signu) ¥
as & — 0T. A computation shows that
T(Vu,, Vi) = T(Vu, V(ulw)) — %(ug — ®)T(Vu, V),
so that, since T is positive semi-definite,
T((Vue, V) = T(Vit. V).
e

From this last inequality it follows immediately

T(V(”S ;r “, VI//) < T(Vu, V)
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on the other hand

U +u
2

‘V( )

1
= ~(1+ =5)|Vu| < |Vu]
2 Ug

so that, using the above and the fact that A(x, ) is nondecreasing on R we deduce

U, +u
2

A(x, IV( )|)T(V(“£—;““), vw) <A@ |Vu)T(Vu, V). (4.132)

Now , by the definition of subsolution for u, we have

/ (A, [Vu)T(Vae, V) + (X, Va)v) <0,
M

and therefore, using (4.132)

/ (A(x, V@ vy 4 ix, wm) <0,
M

Letting ¢ — 0™ and using Fatou’s lemma we deduce

/M ACe Vs NT(Viee, Vi) + (X, Vg )y) < 0.

that is, u4 is also a subsolution. O

In particular, for the trace operator
Lu = Tr(r o hess(u)) = div(T(Vu, -)*) — (divT, Vi)

the assumptions of Proposition 4.3 are satisfied. Thus, for trace operators strong
parabolicity and parabolicity coincide.

Note that the function A(f) = #~2 is decreasing for I < p < 2, however
Proposition 4.2 still holds; in fact, it holds for the more general class of operators

Lysu = ediv(e™ |VulP~2Vu) = diV(|VM|p_2VM) — (Vf, Vu),

with p € (1,+00) and f € C*°(M) a potential function. This is proved, with a
nontrivial argument, in Lemma 7.1 of [46].
The same happens for the mean curvature operator

. Vu
Ly = div] ——|.
V1+|Vul?

Further results in this direction are contained in Lemma 1.3 of [229], in Lemma 3.1
of [6] and in the original work of Le [169].
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As expected we have the following open version of strong parabolicity for the
operator L. Since the proof is very similar to that of Theorem 4.6, we leave it to the
interested reader.

Theorem 4.10 The strong parabolicity of the operator L as in Definition 4.2 is
equivalent to the following open strong parabolicity: for each f € C°(R), for each
open set 2 C M with 32 # @ and for each v € C°(2) N C'(2), nonconstant and
satisfying

Lv > f(v) on £2,

(4.133)
Sup, v < 400
we have that either
SuUpv = sup v (4.134)
Q 2
or, for each e > 0
ilrjlff(v) <0 (4.135)

where

U ={xe 2:v(x) >supv —e&}.
Q2

Remark 4.9 Note the minor, but essential, difference between conclusion (4.135) of
Theorem 4.10 and (4.97) of Theorem 4.6.

As a consequence of Theorem 4.10 we deduce that, if the operator L is strongly
parabolic on M, then for each open set £2 C M with 92 # ¢ and for each
nonconstant v € C%(£2) N C'(£2), satisfying

Lv >0on §2,
(4.136)
Supo v < 400
we have
supv = sup v. (4.137)

2 a2

Interestingly enough, also the converse is true; that is, calling this latter property
Ahlfors parabolicity (see Ahlfors-Sario [2], Theorem 6C), in strict analogy with
Theorem 4.7 we have

Theorem 4.11 The operator L is strongly parabolic on M if and only if it is Ahlfors
parabolic.
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Proof We only need to prove that Ahlfors parabolicity implies strong parabolicity.
We reason by contradiction and we suppose the existence of a nonconstant u €
C'(M) with u* < +ooandof y € R, y < u* such thatinfe, Lu > 0, that i,

Lu>0 on§$2,.

Since u is nonconstant, by possibly increasing y we can suppose 92, # 9. Let
v = u|§y so that, for 2 = £2,,v € C°(2) N C'(£2), v is nonconstant on £2 and it
satisfies (4.136). Then, by (4.137),

u* =supv = supv = y
2 a0

contradiction. O

We now need sufficient conditions to guarantee both strong parabolicity and
parabolicity for the operator L on (M, (, )). We begin by considering the linear
case; in this case the result is obtained by a minor modification of the proof of
Theorem 3.1.

Theorem 4.12 Let (M, (, )) be a Riemannian manifold and let L = Lrx be the
operator
Lu = div(T(Vu, )*) — (X, Vu).

Assume the existence of y € C*(M) such that

y(x) = 400 as x — 00,

Ly <0ifX=0o0rLy<0ifX#0
outside a compact set. Then L is strongly parabolic in Lip,,.(M) if X = 0, in C*(M)
ifX#0.
Proof Let X = 0. We reason by contradiction and we assume the existence of a
nonconstant u € Lip,,.(M) with u* < 400 and of n > 0 such that

Lu>0 on $2,={xeM:ulx)>u"—n} (4.138)

First we observe that u* cannot be attained at any point xo € M, for otherwise
Xo € £2, and by the strong maximum principle for the linear operator L = Lrx,
Theorem 3.10, and the final observation in Remark 3.14, we have that u is constantly
equal to u* on the connected component of £2, containing xo. From this and the
connectedness of M it follows easily that u is constant on M, contradiction. The
rest of the proof proceeds similarly to that of Theorem 3.1, up to inequality (3.30),
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having only to substitute (3.24) with
Ly, =oLy <0 on $27, (4.139)
due to the assumptions on y. To finish the proof we now argue as follows. We let

w= sup (u—y,)x) >0; (4.140)

X€§T1

M 1s in fact a positive maximum attained at some point zp in the compact set §T1 \
§2r,. Thus

Y={xeQy:(u—ys;)x) =u}#0.

Furthermore, fory € X,

u(y) = Yo () + 1t > Vo) = +0(y() = T1) > o > uf, >u*_g,

so that

X C

and, by (4.140), ¥ C 571 \ £27, and therefore X' is compact. Hence, there exists an
open neighbourhood Xy of ¥, such that Xy C £2,. Fixy € ¥ and 8 € (0, 1) and
call Xz, the connected component of the set

{x € Q2 (u—yo)(x) > B}

containing y. We can choose § sufficiently close to u so that fﬂ,y C £, N Q27,.
Note that, since 8 > 0, fﬂ,y is compact. Because of (4.139) and (4.138),

Lu>0>0Ly =Ly, on X,

in the weak sense. Furthermore, u(x) = y,(x) + 8 on 0Xg,. By Proposition 3.1,
u(x) < yo(x) + g on fﬂ,y. However, y € Xz, and we have

u® =vs() +u>v()+

by our choice of 8, contradiction.

If X # 0 we suppose u in (4.138) to be of class C?(M). We still can claim that
u* cannot be attained at any point xo € M. We do this again applying Theorem 3.10
because L is linear and B(x,u, Vu) = (X, Vu) < |X||Vu| < sup|X||Vu|, where
we can always suppose sup |X| < 400 up to restricting our reasoning on a small,
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therefore with compact closure, ball centered at xo. Now in (4.139) we have
Ly, =oLy <0 on $27,
and, having detected zg € §T1 \ 2, as above we have
0 < Lu(zo) < Lys(20) = 0Ly (20) <0,

contradiction. O

Note that to apply Theorem 3.10 in case X # 0 we need the crucial estimate for
(X, Vu) with ¢(r) = ¢. This is not possible if ¢ is nonlinear. This fact will limit us
to the case X = 0 in the nonlinear case.

To take care of the latter first we need to modify Definition 3.1 to the following
new Khas’minskif type condition. Here the operator L is

Lu = div (|Vu|_lq0(|Vu|)T(Vu, )ﬁ),

with the validity of (A1), (A2), (T1), (T2) (see Sect. 3.3 in Chap. 3).

Definition 4.4 We say that the nonlinear strong parabolicity condition holds if
there exists a telescoping exhaustion of relatively compact open sets {X};en such
that fj C Xjy1 for every j and, for any pair £2; = X, £, = X},, with j; < jo,
and for each ¢ > 0, there exists y € CO(M \ £2,) N C3(M \ £2,) if X # 0 and
Lip,,. (M \ £2,) if X = 0 with the following properties:

(i) y =0o0n 082y,
(i) y >0onM\ £2,,
(iii) y <eon 2\ £24,
(iv) y(x)— 4 oo when x—o0,
(v) Ly <0onM\ 2.

We are now ready to state

Theorem 4.13 Let (M, {, }) be a Riemannian manifold and let L be as above acting
on Lip,,. (M). Assume the validity of the nonlinear strong parabolicity condition.
Then L is strongly parabolic on M in the class Lip,,. (M).

Remark 4.10 The proof of Theorem 4.13 is a simple adaptation of the proof of
Theorem 3.11. The only delicate points are

(i) to show that u* cannot be attained at xy € M,
(i) the comparison between u and y at the end of the proof.

Since X = 0, for (i) we apply Theorem 3.10 with Remark 3.14, while for (ii) we
apply Theorem 3.9.

The next is a sufficient condition, definitely more satisfactory, for parabolicity.
However, also here we have limitations; indeed the vector field X is of the special
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form X = Vf. This is in order to be able to express the differential operator L
basically in divergence form.

Theorem 4.14 Let (M, (, )) be a complete Riemannian manifold, o € M a fixed
origin and r(x) = disty(x,0). Let L = L, 7y be the operator defined, for u €
C'(M), by

Lu = ¢ div (e—f|vu|—1<p(x, |Vu|)T(Vu, )ﬁ)

and suppose that, for some T_, T € ol (R(')"),

0<T_(r) <TY,Y) <T+(r) (4.141)
foreveryY € TiM, |Y| = 1, and every x € 0B,, where B, denotes the geodesic ball
of radius r centered at o. Let ¢ : M X R(')" — R(')" be such that ¢(,1) € C°(M) for
everyt € R(')", o(x,) € CO(R(')") N CY(RT) for every x € M, and

(i) ¢(x,0) =0, for every x € M;
(i) @(x,1) > 0, onM x RT; (4.142)
(iii) @(x,1) < AX)¥, on M x RY,

for some § > 0 and A(x) € C°(M), A(x) > 0 on M. Furthermore, assume that

T_(rx)) 1 1 4,143
W T o) A~ ar @14

for some Cy > 0. If
! - ¢ L'(+00) (4.144)

(T+ ® [y, e_f) ’

then L is parabolic on M.

Remark 4.11 Note that in general Proposition 4.2 does not hold here, so that L may
not be strongly parabolic on M.

Remark 4.12 Note that in case T = (, ), f = 0 and ¢(x,f) = 1, Theorem 4.14
reduces to the second case of Theorem 2.23. However, the proof here is not based
on a capacity argument, which is definitely nonapplicable because of the possible
“strongly” nonlinear nature of the differential operator.

The proof is based on the following approach (see [243]):
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Lemma 4.3 In the assumptions of Theorem 4.14, let k € C°(R) and let u be a
nonconstant C' (M) solution of the differential inequality

Lu > |Vu| " o(x, |Vu)T(Vu, Vi) (1) (4.145)

on M. Assume that there exist functions « € C'(I) and B € C°(I) defined on an
interval I D u(M) such that

a(u) >0, (4.146)
o' (u) + k(wa(u) > Bu) >0 (4.147)

on M. Then, there exist Ry > 0 depending only on u and a constant C > 0
independent of a and B, such that, for any r > R > Ry

-1 r 1+6\ —5\ 8
u)o(x u u re > e r o () ) 8)
(/B,ﬂ( o e, |Vul) [ Val T (1) ) =c( [ (/3 ) ).

(4.148)

Proof We consider the vector field
Z = a()e™ |Vul " o(x, |Vu|)T(Vu, -)*. (4.149)

We compute the distributional divergence of Z and we use our assumptions on «, 8
and (4.145) to obtain

divZ > (o (u) + «(u)oe(u))e ™ [Vu| " o (x, |Vu)T(Vu, Vu)
> Bw)e™ |VulLo(x, |Vu|)T(Vu, Vu).

Using (4.141) we immediately get
divZ > B(u)e™|Vulo(x, |Vu|)T_(r). (4.150)

Integrating over B, and applying the divergence theorem gives

/(Z,Vr)e_fz Bw)|Vulp(x, |Vu|)T—(r)e™ . (4.151)
9B,

B;

On the other hand, using Cauchy-Schwarz inequality and (4.141), we have

/ (Z,Vred < Ty (1) / a(u)e(x, |Vul)e™. (4.152)
d0B; 9B;
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We observe that assumption (4.142) (iii) on ¢ implies
_1 1+1
1o(x, 1) = A(x) S p(x, 1) 73, (4.153)
Hence,

(W, VU T4 (e
< A 2@ T+
B BT T_(r)™H

8 8 8

e ((Vulp(e, |Vul)) e gy TR T_ () 7.

Thus, applying Holder’s inequality with conjugate exponents p = 1 + § and ¢ =
I+ % we obtain

/ (Z,Vr)e_fE/ a(w)o(x, |Vul) Ty (H)e™ (4.154)
B, 9B,

O{(u)1+8 T+(t)1+8 » ﬁ
= (/aB,A(x) By Ty ) )

( /3 Vulo(x. [Vl BGu) T <r>e—f) "
We set
G(R) = / BT ()| Vulp(x. [Valye™ (4.155)

and we observe that, since u is nonconstant, there exists Ry > 0 sufficiently large
such that, for any R > Ry, it holds that G(R) > 0. Using the coarea formula and
putting together (4.151) and (4.154) we obtain

a(u)'*? Ty (R)°
B T_(RP

GR)' < G’(R)( / A(x) T+ (R)e™ )8 (4.156)

for R > Ry. In particular the term between parenthesis of the above inequality is
positive and we can rewrite (4.156) in the form

Ty (R o't _f)‘é G'(R)
( /a BRA(x) & T.(R) T < SR (4.157)

on [Ry, +00). Hence, using (4.143),

1

1 a(u)'t? 4\ - G'(R)
o ( T ) =GRt
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Thus, integrating on [R, r] with Ry < R < r, we deduce

1

r 8 _%
G(R)™F > GR) ™ — G+ > : L /R (“é’g): T+(t)e_f) dr.
o

We then obtain (4.148) with C = (8°C,) ™. O

Proof (of Theorem 4.14) Let ¢ > 0 and set a(f) = €, B(f) = Le%". Hence (4.146),
(4.147) are satisfied with k = 0. If u is a solution of Lu > 0 which is nonconstant
and with u* = sup,, u < 400, applying (4.148) of Lemma 4.3 for r > R > Ry we
have

1
£ Ty e VDIV alT(e 7 (159
8
- /’ dt 1
R (faB, T, (t)§e_f) b
Letting r — +o00 and using (4.144) we obtain the desired contradiction. O

Remark 4.13 By a simple modification of the above proof we see that we can
replace assumption (4.144) of the theorem with

1
(T+ (0) 35, ute™ ) v

¢ L' (+00),

provided u is nonnegative and ¢ > §. The case ¢ = § requires extra care and some
further assumption; for instance see Theorem C in [243].

A minor variation in the proof of Lemma 4.3 yields the following alternative
statement of Theorem 4.14.

Theorem 4.15 Let (M, (, )) be a complete Riemannian manifold, o € M a fixed
origin and r(x) = disty(x,0). Let L = L, 1y be the operator defined, for u €
C'(M), by

Lu = ¢ div (e_f|Vu|_1q0(x, |Vu|)T(Vu, )Ii)

and suppose that, for some T_, T, € C° (R(')" )

0<T_(r) <T(Y.Y) < Ty(r) (4.159)



254 4 Sufficient Conditions for the Validity of the Weak Maximum Principle

foreveryY € TuM, |Y| = 1, and every x € 0B,, where B, denotes the geodesic ball
of radius r centered at o, and with the further assumption T_(r) > 0 if § > 1, with
8 asin (4.161). Define

T4 (n) ifo<é =<1,
Ts(r) = T ()DL (A2 55 1. (4.160)

Let ¢ : M x Rg’ — Rg’ be such that ¢(,t) € C°(M) for every t € Rg’, o, ) €
CO(RS') N C'(RY) for every x € M, and

(i) ¢(x,0) =0, for every x € M;
(i) (x,1) > 0, on M x RT; (4.161)
(iii) @(x, 1) < A, on M x R,

for some § > 0 and A(x) € C'(M), A(x) > 0 on M. If
1
(Tg © fo, A(x)e—f)

75 ¢ L' (+00) (4.162)

then L is parabolic on M.

Observe that in this new formulation the infimum of 7_(r) can be 0 and if § < 1
T_(r) could even be O for some r € RYF: in other words, L could even be
semi-elliptic. Both cases were excluded by assumptions and (4.141), (4.143) in
Theorem 4.14. On the other hand, the definition of Ts(r) is not symmetric with
respect to the choice of the parameter §.

4.5 A Liouville-Type Theorem

The aim of this section is to provide a proof for the Liouville-type result given in
Theorem 4.19. In doing so we comment on the various assumptions and we compare
with a previous result of Dancer and Du [97] which, in turn, generalizes to the
elliptic case a consequence in the pioneering work of Aronson and Weinberger [32].
In order to properly comment on the various assumptions we briefly sketch the above
mentioned results.

Let us consider the semilinear diffusion equation

9
a_”t’ = Au+f(u)  on Rf xR”, (4.163)
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which arises in population biology and chemical reaction theory. In [32] Aronson
and Weinberger showed that if f satisfies

feC(RY), £(0) =0=F(a). f(t) > 0 on (0,a), f(t) <0 on (a,+00)

(4.164)
for some a > 0 and
t
lim inf f()z > 0, (4.165)
=0t pHTu

then a “hair trigger” effect takes place, and any nonidentically zero solution u(x, f)
of (4.163) with values in [0, ¢] is such that

li H =
e =0

uniformly in x € R™. Moreover, the exponent of ¢ in (4.165) is sharp in the sense
that the hair trigger effect fails if 1 4 % is replaced by any larger o.

As a consequence one deduces a Liouville result for the elliptic problem
associated to (4.163), that is,

Au+f(u) = 0. (4.166)

Precisely, any solution u of (4.166) on R™ with values in [0, a] is constant and
identically equal to O or a.

As for the sharpness of the exponent 1 + in (4.165), in order that this type of
Liouville result holds it was shown by Dancer [96] that, if m > 2 and 0 > l
one can find a function f € C'(R) satisfying (4.164) and f(f) > ct° for t — O+
such that (4.166) has a positive solution u with 0 < u < a which tends to zero at
infinity. In a subsequent work, Du and Guo [105] analyzed the case of the p-Laplace
operator and conjectured that, if m > p, then the sharp exponent should be given
by Serrin’s exponent 0 = mm(‘"—__pl) (which reduces to 0 = - in the case of the
Laplace-Beltrami operator).

The conjecture was proved correct by Dancer and Du [97], using results of
Bidaut-Véron and Pohozaev [47] and Serrin and Zou [255]. Here is their result.

Theorem 4.16 (Dancer and Du) Let f € C° (RS‘ ) and locally quasi monotone.
Assume that f satisfies (4.164) for some a > 0. Let p > 1 and, if m > p, assume
furthermore that there exist € > 0 and C > 0 such that

f(t)=Ctt on (0,¢) (4.167)

where

EeRT ifm=p and&e(O,%

1 if m> p. (4.168)
-p
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Let b(x) € CO(R™) satisfy 0 < C; < b(x) < Cy < 400 on R™. Then any solution
of

div (|W|P—2vu) +bf) =0 on R" (4.169)

satisfying 0 < u < a is constant (and identically equal to either 0 or a).

We recall that f is said to be locally quasi monotone on R(')" if for any bounded
interval [er, B] C RS’ there exists a continuous increasing function 4 such that f(s) +
h(s) is nondecreasing in [o, B].

As remarked in [97], the range of values of & in (4.168) for inequality (4.167)
is sharp. Furthermore, it follows from the condition that f(s) < O for s > a that
any globally bounded nonnegative solution of (4.169) satisfies 0 < u < a, and if in
addition f satisfies a condition of the type

lim inf—f(?t) >0 (4.170)

t—>—400

for some 0 > p — 1, then any nonnegative solution of (4.169) is in fact globally
bounded (see [105]).

The result we shall present below is an extension of these achievements in various
directions, and to better compare with the above theorem we consider the following
version that can be immediately obtained from Theorem 4.19 below. Here, as usual,
@(t) = tA(¢) and we suppose the validity of

(Al) A e C'(RY)
(A2) () ¢'(r) >0onR™, (ii) () - 0ast — 0T,
(A3) ¢(1) < CP onRT for some C,8 > 0.

In this setting we have

Theorem 4.17 Let (M, (, )) be a complete manifold, A and ¢ be as above and
satisfying (Al)—(A3). Let f € CO(R(')") satisfy (4.164) for some a > 0 and (4.170)
for some o > max {1,8}; let also b(x) € C°(M) and suppose that

for some C > 0and 0 < u < 1+ 6. Let u be a nonnegative solution of
div(A(|Vu|)Vu) + b(x)f (u) =0 on M. (4.172)
Assume that

lim inf 108 0L B

lim inf — 0, (4.173)
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and if
wol0B € L'(400) (4.174)
assume furthermore that
f(n=ct, 0<r«1 (4.175)
for some & > 0 and C > 0. Finally, if
£ >34, (4.176)
suppose also that
u(x) > Cr(x)™%,  r(x) > 1 4.177)
for some 0 > 0, C > 0 and that
Jiminf —08YOLBR (4.178)

R—+o00 Rl+8—0(f—8+£)—u

for some ¢ > 0. Then u is constant and identically equal to 0 or a.

We observe that, by way of example, it is not difficult to see that condition (4.173)
may hold independently of the validity of (4.174). More elaborate arguments allow
to construct model manifolds such that

1

and yet vol B grows arbitrarily fast, as recalled in Remark 2.19. In particular (4.179)
does not imply neither (4.173) nor (4.178).

As for condition (4.177), it has no counterpart in the result of Dancer and Du, but
in fact is automatically satisfied in the situation they consider; it is necessary in our
more general setting. We will come back to this in a shortwhile.

Now suppose M = R” and A(t) = "~2, p > 1, so that in our Theorem 4.17 we
consider the case of the p-Laplacian on R™ as in Dancer and Du. Assumption (4.170)
is common and needed to guarantee that u > 0 is bounded above and satisfies 0 <
u < a on R™; thus we concentrate on the remaining assumptions. In the Euclidean
space R™, (4.173) is automatically true since 0 < u < 1 4+ § (Dancer and Du case
has u = 0). Since § = p — 1 for the p-Laplacian, (4.174) becomes

€ L'(+00)

m—1

Rr—1
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which is the case for m > p. Hence for m = p we do not require, contrary to Dancer
and Du, the validity of (4.167). For m > p in (4.175) we require (4.167) but, if
& < p — 1, no further assumption is needed. We have to see what happens for the
m(p—1)

ki m_p
priori lower bounds for nonnegative solutions of A,u = 0. Let us consider here the
more general case of nonnegative solutions of

range £ € [p —1 ] considered in [97]. Towards this aim we need to find a
div (A(|Vu|)Vu) < 0. (4.180)

As above we let p(f) = tA(f); we prove
Lemma 4.4 Let ¢ € C°(R}) N C'(RY) satisfy

() @(0) = 0; (i) p(t) > 0 on RT (4.181)
and assume that ¢ is strictly increasing in [0, &) for some ¢ > 0 and that
o(t) ~ Cot*  ast— 0" (4.182)

for some Cy,¢ > 0. Let g € C' (Rg’) be such that g(0) = 0, g(r) > 0 on RT,
g (t) > 0 fort > 1 and suppose that, for some m > 1,

()T e L (+00). (4.183)

Fix R,H > 0. Then there exists B > 0 such that, having denoted with  :
[0, 9(g)) — [0, &) the local inverse of @, the function o defined by

+o0
a(r) = / v (Bg(H)' ™) dt (4.184)

is defined and C? on [R, 4+00) and satisfies

N+ (m—DEp(')) =0
p(l']) + (m = Do) 4.185)
a(r) <a(R)=D < H, d'(r) <0 for r > R.
Furthermore,
1/ rtoo 1
o(r) ~ (C—) / g(t)” T dt as r - +oo. (4.186)
0 r

In particular, if

/
lim sup g—(r) < 400,
r—>+o0o0 8
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then there exists C > 0 such that
a(r) = Ce() T for r>R, (4.187)

and if

/
g—(r) is eventually decreasing ,
8

g(r)

g (r)g(r)_% for r = R. (4.188)

a(r)>C

Proof Note that, since g is eventually increasing and g(t)_m%1 is integrable at
infinity, g(f) — 400 as t — +o0. In particular, for B > 0 sufficiently small,
Bg(t)~™=1 < ¢(e) for every t > R. Furthermore, it follows from (4.182) that

1/¢
Y(t) ~ (CLO) ast — 07 so that

B I/Z m—1
¥ (Bg()~" V) ~ (F) g®)” T ast— 0" (4.189)
0

and the integral in (4.184) is well defined for each » > R. It is clear that « is 2,
decreasing, and, by choosing a smaller B if necessary, it can be arranged that a(r) <
H on [R, +00). A computation shows that « satisfies (4.185); it follows from (4.189)

that o satisfies also (4.186). Finally, if % < nfort > R, the integrand in (4.186) is
bounded from below by

1 _m—1_
Eg(t) =),

and (4.187) follows by integration recalling that g(f) — +o00 as t — +00. A similar
reasoning proves that if %(t) is eventually decreasing then (4.188) holds. O

Proposition 4.4 Let ¢ and g satisfy the conditions listed in Lemma 4.4, and assume
/

Ar < (m— 1)%@) (4.190)

pointwise in the complement of the cut locus of the fixed origin o. Let u be a
nonnegative C' solution of

div (A(|Vu|)Vu) < 0. 4.191)
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Then, there exist constants C and R > 0 such that
+o00 —1
u(x) > C/ g(t)y” T dt on M\ Bg. (4.192)
r(x)
Furthermore, if

/
lim sup g—(r) < 400,
r—>+oo §

then there exists C > 0 such that

u(x) > Cg(r(x)) T when x € M\ By, (4.193)
and if
g/
= s eventually decreasing
then
u(x) > C g/(r(x)) g(r(x))_% where x € M \ Bg. (4.194)
g'(r(x))

Proof Fix R > 0 so that g’(r) > 0 on (R, +00) and choose B > 0 small enough
that the function o defined in (4.184) satisfies the conditions of the statement of
Lemma 4.4 with H = infyp, u. Set v(x) = a(r(x)). It follows from (4.185) and
(4.190) that the inequality

div (A(IVv)) Vo) = —p(||) — ¢ (|’ |) Ar (4.195)
= —p((a/]) = n=DTo(lo’]) =0

holds pointwise in the complement of the cut locus of o and, similarly to what we
did for instance in Lemma 1.6 by adapting an argument of Yau [280], weakly on M.
Thus

div (A(|Vv|)Vv) > div(A(|Vu|)Vu) onM \ Bg

(4.196)
v <u onoBg.

We claim _that u > v on M \ Bg. Indeed, otherwise, there would exist n > 0 and
Xo € M \ Bg such that u(xp) < v(xg) — 1. Thus the set

Ay ={xeM\Bg:ux) <vx) —n}
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would be open, nonempty, and xo € A, € A, € M \ Bg. Since v(x) — 0 as
r(x) — 400 while u is positive on M, Zn is bounded; thus completeness of M
implies that it is compact. Since # = v — 71 on dA, by Proposition 3.1, we have
u > v —nonA, and therefore u(xo) > v(xo) — 1, contradicting the definition of
and xo. Now the required lower estimates follow from Lemma 4.4. O

Corollary 4.2 Let (M, (, )) be a complete m-dimensional Riemannian manifold
with a fixed origin o and r(x) = dist (x, 0). Assume that the radial Ricci curvature
satisfies

Ric (Vr, Vr) > —(m — 1)G*(r) (4.197)
for some positive function G € C! (RS’) such that

(1) infp+ g—; > —00

(if) limsup,_, o, G(r) < 400

(iii) G(r) & L' (+00)
(iv) e TPl GOD ¢ [1(4o0)

(4.198)

with ¢ as in Lemma 4.4, for some Dy > 0. Let ¢ be as in Lemma 4.4 and for
o(t) = tA(t) let u be a nonnegative, nonidentically zero solution of

div(A(|Vu)Vu) <0 on M.
Then, there exist constants C > 0 and D > Dy such that
u(x) > Ce™ TP 6, (4.199)
If G is assumed to be nonincreasing then
u(x) > CG™ (r(x))e~ TP 6 ds, (4.200)

Proof We set

_ 1 Dfor G(s)ds __
$0) = 560 {e 1}‘

As we already know, see (2.33), using the Laplacian comparison Theorem, for D >
0 sufficiently large we have

g'(r)

Arf(m—l)g(r)
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pointwise in the complement of the cut locus of o and weakly on M. Note that
(4.198) (iii) implies g(r) — 400 as r — 400, and

g'(r)

g(r)

We choose D > Dy so that, by (4.198) (iv), condition (4.183) of Lemma 4.4 holds,
and applying Proposition 4.4 we deduce that, for some H > 0,

~ DG(r) asr— 4o0.

m— m— r(x) o
u(r) = Hg(r()) "7 > Ce™ "7 PR 00

which can be improved to

u(x) > CG(r(x))—%e—’"T_lDfo’(") Gls)ds

if G is nonincreasing. O

Note that if (M, (, )) is R™ with its flat metric we have Ar = ’"T_l so that the
inequality Ar < (m — 1)% holds if g(r) = rP with D > 1 and we deduce that
nonnegative solutions of

Apu =<0
satisfy the bound
u@) = Cr T i m>p (4.201)

for some C > 0, while, if m < p, for every n > 0 there exists C = C(n) > 0 such
that

u(x) > Cr". (4.202)

Inserting (4.201) in the statement of Theorem 4.17 with § = p — 1 and © = 0 we
see that condition (4.178) becomes

L. mlogr
liminf ————— < 400
r—>+00 P =T E—ptlite)

for some ¢ > 0. It follows that in this case Theorem 4.17 is applicable provided

O<$<M’
m-—p
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which should be compared with the range

m(p —1)
m—p

0<§é=<

obtained by Dancer and Du.
Note that Corollary 4.2 can be applied to obtain lower bounds for u(x) in other
BZ

situations, for instance when G?(r) = s which corresponds to a geometric

behaviour borderline between the Euclidean and the non-Euclidean case. For ¢ as

in the statement of Lemma 4.4, having chosen D > —£_ one can show that any

m—1
nonnegative solution of
div(A(|Vu|)Vu) <0

satisfies the bound

l_l)(mfl)
u(x) > Cr £

for some C > 0.
In Theorem 4.2 above we proved, under some assumptions, that if u € C! (M)
satisfies

Lu = b(x)f (u)
onaset£2, = {xeM:u(x)>y}#0, and

t
lim inf& >0
——o00 (&

for some & > § then u* < 4o00. We are now going to look for an a priori lower
bound.

Theorem 4.18 Let ¢, b, O, T and O satisfy the assumptions of Theorem 4.1 with
A(x) = A a positive constant, ¢ independent of x and T satisfying (T2). Let f €
C°(R) and assume thatu € C' (M) is a nonnegative and nonidentically zero solution

of
Lu = div <|Vu|_lq0(|Vu|)T(Vu, .)ﬁ) < —b()f () (4.203)
on the set

2y ={xeM:ulx) < yo} (4.204)
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for some Yo > usx = infyy u. If

f()=CEf ast— 0" forsome £ <6, (4.205)
and either
O 1 1B,
lim o 20O 0gvolBr (4.206)
r—>+o00 pl+d
or
.. 0B »
{lglglgofrlT/Br lul” < +o0 (4.207)

holds for some p > 0, then uy > 0.

Proof Observe that, by the strong maximum principle of Theorem 3.10, u is strictly
positive on M. We assume by contradiction that ux = 0, so that u satisfies (4.203)
on £2, for any 0 < y < yp. Observe that in this case by £2,, we denote the set
£2, = {x € M : u(x) < y}. Fix such a y in such a way that, for t € (0, y),

f@ > Bt

for some constant B > 0. It follows that

—Lu >

= omn"

For the ease of notation we may suppose that B = 1. Similarly to what we did in
the proof of Theorem 4.1, we let A : R — R be a C! function such that A(r) = 0 if
t>y,A(t) >0ifr <y and A’ < 0. Choose R > 0 large enough that Bg N £2,, # @
and, for r > R, let ¥ = vy, be a smooth cutoff function with ¥ = lon B,, = 0
off By, and |Vy| < %01//% for some ¢y and I" > 1 independent of r. Finally we let
W be the vector field defined by

§ on £2,.

W = —vA)u P |Vu| " o(|Vu)T(Vu, )?, (4.208)

where «, B > 0 are constants to be determined later. Using, as in the proof of
1
Theorem 4.1, A’ < 0, [Vu| '@ (|Vu|) = A= Vop(|Vu|)'T5, T, = TY%Y0 5 0 and

IVul®
IT(Vu, V)| < Tu/>T?|Vu|| V| we estimate

B

2 VT e (Vup T, (4.209)

divW > A(w)yebx)ut P +

— ay T AP (| Vul)|[Vy | TV 2TV,
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Now we argue as in the proof of Theorem 4.1 and we estimate the last term on the
right-hand side using the inequality

oPal pa

ab < —) a,b>0
p olq

withp =14+ 1/8, g =1 4+ § and with

o = [B(1 +8)/(A3a8) ]+

chosen in such a way as to cancel the second term.
Indeed, using [Vy/| < Ly /T we obtain

ay " AwyuPo(|Vul)| vy T2 TY
- (aix(u)ﬁu‘ﬁ‘iwiwqwm)

B @ 111
x (a-‘u\(u)éu‘qﬂw‘lT; "TilVgH)

IA

%A(u)u—ﬂ—lwwuwn”i

8 8 14§ ;
o 5 C s— n —5 148
—B (1+8)(1—
+A(E) T 1+8)L(u)u pe U+ (1=4) 7,3 T .
Setting C; = WCéH and inserting in (4.209) we have

—5 148

§
disz/\(u)wb(x)uf—ﬁ—cl(%) 1+8)L(u)u5 Bya—+9)(1=4) 7T T,” .

Integrating this inequality, applying the divergence theorem and observing that W is
compactly supported we deduce

146

/A(u)l// b(x)ug p < Cl( ) 1+8/ Yo (1+8)(1- F)A,(M)MS BT, _ST T

provided o — (1 + 8)(1 - %) > 0. Furthermore note that the constant Cj is
independent of «, 8, r. Since Q(r) is nondecreasing and b(x) > m from the
above we obtain

0@2r)~ /A(u)wuf B <c1( ) r1+s/ YD) ) (P 5T 5T
(4.210)
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Next we estimate the integral on the right-hand side of (4.210). We let p and g be
conjugate exponents, so that

1=5 148
/ wa—(l+8)(l—%)k(u)u8—ﬂ]~u 2 T+2
M

o o 1=5 1448
S/1;4'WEA(M)‘%Mg_ﬁwa_(l_Hg)(l_%)A(M)éTu2 T+2

1

<t [ vl
148

1=5
> %/ I//oz—(l+5)(1—%)<1A(M)TM2 4T+2 61} ’
M

==

provided

a—(1 +8)(1—%)q20. (4.211)

We choose p = % > 1, by the assumption & < §. It follows that the first integral
above is equal to the integral on the left-hand side of (4.210). Thus, we insert into
(4.210), we simplify, we use the definition of @, (4.21) and the properties of ¥ to

obtain

Auwuf=F <
Br

o\ oenoern |’
a5) “e f 2w

provided the validity of (4.211). Since

_Bp—§
q= —8—$

if we choose
B=oaté

condition (4.211) becomes

1> (1 +8)(1 —%)/(5—&),
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which holds provided I” is sufficiently close to 1. Now, since u < y on 2,, u*~# >

, % < 1. We therefore deduce

O2r)Q(2r)) 7

y§=P for B > &; furthermore

hence choosing

1 rl+8
o= — —(6-§)

20, eenoen

we get

1 r1+8
1\ 26.6=5),5=¢ Bm0E)
/ Au) < (_) 20, (5—8)y / A ().
Br 2 BZr

Now the proof proceeds as at the end of the proof of Theorem 4.1 in either one of

the assumptions (4.206) or (4.207).

We are now ready to state our Liouville-type result.

O

Theorem 4.19 Let ¢, T, Ts and © be as in the statement of Theorem 4.18 and

suppose that
O) <Cr’
for some v > 0. Let u € C' (M) be a nonnegative solution of
Lyru=—b(x)f(u) on M,

where b € C°(M) is such that

C
b(x) > m on M

(4.212)

(4.213)

(4.214)

for some C > 0and0 < u < 1+4+6, andf € CO(R(')") satisfies f(0) = f(a) = 0,

f(@®) > 0o0n(0,a), f(t) <0in (a, +00) for some a > 0, and

t
lim inf —f(—) >0
t—>—400

(4.215)
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for some 0 > max {1, §}. Assume that

inf7_ > 0,
Ry

liminf log vol B,
Gy < T

and, if

(T4 (r) vol (3B,)) "% e L' (+00)
assume furthermore that

f=>cét, 0<r«l
for some & > 0 and C > 0. Finally, if
£>9¢

suppose also that

u(x) > Cr(x)_e Sfor r(x) > 1

for some 0 > 0, C > 0, and that

Jim inf 28 VoL B,

AL e T s S

for some € > 0. Then u is constant and identically equal to 0 or a.

(4.216)

(4.217)

(4.218)

(4.219)

(4.220)

(4.221)

(4.222)

Remark 4.14 Defining Ts(r) as in (4.160), the theorem holds getting rid of (4.216)

and substituting (4.218) with

(Ts(r) vol (3B,)) /% € L' (+00).

Proof (of Theorem 4.19) We set u* = sup,,; u and u, = infy,; u. Next we divide the

argument into several steps.

Step 1.  Assumption (4.215) gives

—f(@t) > Cr°

for t > 1, some constant C > 0 and o > max {1, §}. Putting this together with
(4.214), 0 < @ < 1 + § and the volume growth condition (4.217) yields, by
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Theorem 4.2, u* < +o00. Note that the same conclusion holds if we assume that
condition (4.217) is replaced by condition (4.29).

Step 2. Since u is bounded above and (4.217) holds, Theorem 4.1 implies that
—f(u*) < 0 so that, by the properties of f, u* € [0,a] and 0 < u < aon M. It
follows that

L,7u <0 on M. (4.223)

Again, the same conclusion holds if we assume condition (4.29)instead of
4.217).
Step 3. If

(T4 (r)vol (3B,))™"° & L' (+00),

using (4.216), by Theorem 4.14 the manifold (M, (, )) is L, r-parabolic and
therefore u > 0 together with (4.223) implies that u is constant. Since b(x) > 0
on M and f vanishes only in 0 and a, it follows from (4.213) that either u = 0 or
u=a.

Step4. If
(T4 (r) vol (3B,))™"? € L' (+00),

then the manifold (M, (, )) is not necessarily L, r-parabolic and further analysis
is required. First we note that 0 < u. < a; then by Theorem 4.1 and Remark 4.3
we have f(ux) < 0. Thus, us is either O or a. In the latter case we have u, =
u* = a, sothatu = q; if ux = u* = 0 again u is constant, ¥ = 0. Thus the only
case to consider is ux = 0 and 0 < u* < a. To show that this cannot happen it is

enough to show that under our assumptions uy > 0.

Now, since u satisfies (4.223) and it does not vanish identically by the strong
maximum principle, Theorem 3.10, u is strictly positive on M. If (4.219) holds and
& < & we apply Theorem 4.18 to conclude that u, > 0. Otherwise, that is, if £ > &,
we observe that u is a solution of

Lyru = =b(x)f ()
with
F) = fau—E  and B(x) = b(ouE e
According to (4.221) and (4.214) we have

b(x) > C(1 + r(x)) #0E—+e)
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and the required conclusion follows from (4.222) and a further application of

Theorem 4.18. O

Remark 4.15 As pointed out in the proof, assumption (4.217) can be substituted
with condition (4.29) of Remark 4.2.



Chapter 5
Miscellany Results for Submanifolds

This chapter is basically devoted to miscellany applications of the results presented
in Chaps. 3 and 4. We show how, with the aid of various forms of the maximum
principle, we can improve on some classical results. In fact we begin with some
introductory considerations to motivate a nonimmersibility result for a manifold M
into cones of the Euclidean space due to Omori [210] and of which we provide
an improved version in Theorem 5.1. We recall that, in the cited work of Omori,
we have the first appearance of what is now known in the literature as the Omori-
Yau maximum principle. We then continue our investigation by establishing a
quantitative estimate, according to the results presented in [181], for the width of the
cone of R” containing the image of M under a smooth map, see Theorem 5.2. Later,
we elaborate on some old result of Jorge and Koutroufiotis [154], (see Theorem 5.6)
and we provide a “quantitative” version for immersions into a cone with the aid of
the WMP for the Hessian (see Theorem 5.7). With the help of this result and of
the theory of flat bilinear forms we are able to consider also the case where M is a
Kihler manifold in Corollary 5.7.

A good portion of the chapter deals with cylindrically bounded submanifolds
that are strictly related to a famous conjecture of Calabi [56] of which we prove the
validity under some very mild additional assumptions (for instance see Theorem 5.9
and Corollary 5.8). As it is well known, this conjecture in its original formulation
is false, see [155, 205]. The chapter ends with some consequences on the geometry
of the Gauss map for submanifolds of Euclidean space with parallel mean curvature
vector, where we use the well known result of Ruh and Vilms on the harmonicity
of the Gauss map. In particular we give a sufficient condition for a parallel mean
curvature immersion of M in R” to be minimal and we analyze the size of its image
under the Gauss map respectively in Theorems 5.11 and 5.12.

In the very final section we deal with an application of the open form of the
WMP.

© Springer International Publishing Switzerland 2016 271
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5.1 Immersions into Nondegenerate Cones in Euclidean
Space

A typical application of the usual maximum principle for compact submanifolds
in Euclidean space is the proof of the fact that every compact surface in R3 has
an elliptic point, that is, a point where the Gaussian curvature is positive. As a
consequence, we have the well known classical fact expressed in the next

Corollary 5.1 No compact Riemannian surface with everywhere nonpositive Gaus-
sian curvature can be isometrically immersed in R3.

More generally, by applying the usual maximum principle we can also prove the
following

Proposition 5.1 Letf : M — R" be an isometric immersion of a compact manifold.
Then there exists a point xo € M and a normal vector £ € T, M~* such that the
second fundamental form at xo with respect to & is positive definite.

Proof To see this, given f consider the smooth function # : M — R defined by
u(x) = %l f(x)]?. With the notation of Sect. 1.6 of Chap. 1, supposing dimM = m,
we now compute Hess(u). Thus let {#“} be a Darboux frame along f, so that 0 = 0
on M and let {9,?} be the corresponding Levi-Civita connection forms. We have

du = (df .f) = (ei.f)0",
so that
ui = (ei.f). (5.1)
Then

wi® = du; — w0 = (de;.f) + (ei, df) — (e, f)6]
= 0/ (ex.f) + B {ea- /)& + (e )0 — (er. )0}
= (hi{ea.f) + 8;)0'.

It follows that

Hess(u) = (. )y + (1. ).f) = (. )y + (I ).fH) (5.2)

Since M is compact, there exists a point xo € M at which u attains its maximum
u* > 0, and by the usual maximum principle we have

(i) u(xo) = u* > 0, (i) Vu(xo) = 0, and (iii)’ Hess(u)(xo) <0, (5.3)
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in the sense that
Hess(u)(x0)(v,v) <0 forallv € Ty, M.

By (5.1), conditions (i) and (ii) mean that f(xo) = f(xo)* # 0 is a normal vector at
the point xo. Then, by (5.2) and choosing £ = —f(xo)*, condition (iii)’ yields

(v, v).€) = |v]?

for every v € T,,M. This proves the Proposition. O

As a consequence, no compact Riemannian manifold M can be isometrically
immersed as a minimal submanifold into an Euclidean space R"; in other words,
there exists no minimal compact submanifold of Euclidean space.

Motivated by this fact, in [210], and as the first application of the Omori-Yau
maximum principle, Omori proved that for every complete Riemannian manifold
M with sectional curvature bounded from below for which there exists an isometric
immersion f : M — R”" with f(M) contained into a nondegenerate cone of R",
there exists a point xo € M and a normal vector £ € T,,M* such that the second
fundamental form at x, with respect to £ is positive definite. In particular, no
complete Riemannian manifold M with sectional curvature bounded from below
can be isometrically immersed as a minimal submanifold into a nondegenerate cone
of R".

Here by a nondegenerate cone of R" we mean the following. Fix an origino € R"
and a unit vector { € S"71. We set €, ¢ (shortly, €) to denote the nondegenerate
cone of R” with vertex o, direction ¢ and width 8 € (0, 7 /2), that is,

Gorp =C = {peR"\{o}:<p_0 ,E>Zcos€}.

lp — ol

By nondegenerate we mean that it is strictly smaller than a half-space.

Following essentially the proof given by Omori, we can derive the following
stronger result (for a weaker form using the Omori-Yau maximum principle see
[227, Theorem 1.28]).

Theorem 5.1 Let M be a Riemannian manifold of dimension m, which satisfies the
weak maximum principle for the Laplacian. Then M does not admit an isometric,
minimal immersion into any nondegenerate cone of some Euclidean space R".

Proof We reason by contradiction and assume that there exists an isometric,
minimal immersion f : M — R" with f(M) contained in a nondegenerate cone
of R”. We may assume without loss of generality that the vertex of the cone is the
origin 0 € R", so that there exists ¢ € S""! and 6 € (0, /2) such that

{(f®).8)

W > cosf onM. 5.4)
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For each x € M, let f(x) denote the orthogonal projection of f(x) onto the hyperplane
orthogonal to ¢; that is,

A

) = f(x) — (f(x), 0)E,
so that
FOP = 1f @) = (f®). )™ (5.5)

It follows that

(f(0),£)* = cos” 01f (> = (£(x),£)* = cos” 0| f(x)|” + cos” 0(f(x), £)°
> (f(x).¢)* —cos” 0] f(x)* = 0. (5.6)

We let 0 < ¢ < - cos 6 and define

V2
ue(x) = 14 2|f @ — (f(x).£)

for every x € M. Then, independently of ¢, one has
us(x) <1 onM. 5.7

Indeed, (5.7) is equivalent to

V1+&f@)P <1+ (f().2).

that is,
(f(0), 0 = If W+ 2(f(x),¢) = 0. (5.8)
Now, since (f(x), ¢) > 0 and €2 < cos? 6, by (5.6) we have
(F(0.0)* = E1F WP + 2(f(%).£) = (F(x).£)* = cos” 0| f(x)* = 0.

hence the validity of (5.8).
Fix a point xo € M and define

. ={xeM:u(x)>u.(xp)} # 0,

so that on §2, we have

V1421702 > ue(xo) + (f(x). )
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and

(f(x), ) = cos O] f(x)].

Using these inequalities we get

VIFE@E = |1+ (V0P + (0.07)
> {1+ &2[f(0)? = ue(xo) + cos 0] f(x))| (5.9)

on £2,. Next, we set
Q27F = {x e Q1 u.(x) + cos O] f(x)] Z 0},

so that for every x € £2 we have

Ol < —e(x0) _ (f(x0). &) — v/ 1 + €2|f(x0) |2 - (f(xo)@)’

cos 0 cos 8 ~  cosf

independently of . On the other hand, for x € 2.7 and squaring (5.9) we see that
I+ f @ = (ue(xo) + cos O1f @)’
that is,
(cos2 0 — 82) |£(x)|* 4 2 cos Oue (x0) | f(x)| + u?(x0) — 1 < 0.

Therefore, for x € 21,

—cos Ou,(xo) + /cos2 6 — &2 + c2u?(xo)
@) < kel

_ )l + YT+ i) (5.10)

cos 0

Since 0 < &2 < %cos2 0 and (f(x0),¢) > 0, we have

wi(x0) = (f(x0).£)* + 1+ &2|f(x0) > = 2(f (x0). £) /1 + 2| (x0)|?

COS

2
> ireor,

< (fx). 0 + 1+
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which, jointly with (5.10), implies that for every x € £+

|f@)] < C(x0, ¢, 0), (5.11)

for a certain constant C(xg,{,6) > 0 independent of e. This shows that |f] is
bounded on £2,, independently of ¢ € (O, % cos 9).
Let us now consider the function u : M — R given by

u(x) = ug(x) — us(xo)-

By (5.7) we have

u(x) < 1—u(x0) = 14 (f(x0).£) — /1 + &2|f (x0)]> < (f(x0). 8)

for every x € M, so that u is bounded above on M, independently of €. Observe that u
is nonnegative exactly on the set £2, and u(xp) = 0. Using the formalism introduced
in Sect. 1.6 we now compute Au. From the very definition of u,, using (5.5) we have

ne(x) = \/ e[ 1F @ = (7. 0] = (/0).0).

Now we let {8} be a Darboux frame along f, so that 8 = 0 on M, and let {9;} be
the corresponding Levi-Civita connection forms. Then

LU =207 01 )
Jr e - 007

g2

= (e ()0 + i) = (7.5) er 010"
\/ L[l - (.07

du = du, = —(df,¢) +

Hence,

82

= tewf) = (£-0)ler. 20} — (er.
et - 0r]

in particular,

2 2
V=V =T+ ———— (T = (£.0¢7) = =T+ ———.

1+l Y1+

(5.12)
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It follows that

j k
Mijgj = dui — u;ﬁi

4 _
= M N TN D o, ) (£.0) e 030"

J( i - r.07))

g2

\/ eI - (.07

{08 (e f) + (er. ex) 0 + 0% (ea . f) — (ex. {)ler, 0)OF — (f.£)(0Fer. C)}
— 0f(ex. £) — 0% (ea. £)

+

82

- {0 (er.f) — OF(f. ). £)} + 0K {ex. )
\/ L+ eI = (1.0

g4

=1~ ~({e12f) = (. Oer ) ewnf) = (£ O)len O 1O/
\/ (1417 - . 07])

g2

T (85— ey EMein £0) 10/ + [islea ) — e 016V,
\/ eI = (£.0)]

thus
4
5 = = (/) = - e ) () = (-8} 1)
(1 + 82‘f‘ )
82
e (81— (e e )
1+ sz‘f‘
+ hij{ea.f) — hj{ea. §)
and

84 2 2

S S— £ T2
- 7 +——(n- + m(H, ), (5.13)
(1 + &2|f|2)3/2 y m(m 1€ %) + m(H, n)
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with

n=—tt+

Using (5.12) into (5.13) one gets

2 2T 2

e M (=]
Vi+ele el

VaP_ 22T )

m(H, n).

— +
14+ e A+EIFP)
In particular, if the immersion is minimal then H = 0 and we have
L v me’ (=P 2e2¢T.7T)
u = - S .
Jiealie  Jieale e 0P

Observe that

A (5.14)

me? (=P 22T
Jeoge reege QD
o me (| R (A
T Jiaege AR a+2lfP)
me? 82|§T|2 |é—T _ 82]?T|2 84|fAT|2

= - 4+ — — =
fege (+elfD) - a+elf)  a+elfp)
2 m 2( m )
>l —-1| 2| —-—-1],
/1+ e2|fP2 V1i+e|fP

where we have used the facts that [¢ T |2 < 1, |fT|? < |f|> and |f|*> < |f|?, which hold
at every x € M. Using this in (5.14), one obtains

v 2
Aut \VuP > dut —04 S (L 1) (5.15)

Jirege  \VIEelE



5.2 Maps into Nondegenerate Cones in Euclidean Space 279

on M. Recall now that |f] is bounded on £2,, independently of ¢, that is (5.11) holds;
therefore, on £2, one has

2| —— 1 >82(L—1),
(m -\t
and choosing ¢ < v/m? — 1/C we have from here and from (5.15) that

Au+|Vu|2282(\/#—1)>0

on £2,. Thus, setting w = ¢, from the above we immediately obtain

Aw = w(Au + |Vu|?) > &2 ( 1) won £2,. (5.16)

m
1+ e2C?
Since u* = sup,, u < 400, w* < +o0 and by the weak maximum principle, there

exists a sequence of points {x;} C M such that

() wixg) > w* — %, and (i) Aw(x;) < %

for each k € N. Since u(x;) — ™ and u < 0 outside of £2,, we can assume without
loss of generality that x; € £2,. Hence, using (5.16) we get

1>A()>2( " 1)()>2( " 1)>o

- WX, & —_—— — WX, & —_— — .

k e Ty e Y= \hree

Finally, letting k — +o0 in this inequality we obtain a contradiction. o

As an application of Theorems 5.1 and 2.6 we immediately obtain the following
[227, Corollary 1.29].

Corollary 5.2 A complete Riemannian manifold M does not admit a proper,
isometric, minimal immersion into any nondegenerate cone of some Euclidean
space R".

5.2 Maps into Nondegenerate Cones in Euclidean Space

Related to the results of the previous section, in the recent paper [181] Mari
and Rigoli consider smooth maps ¢ : M — R”" with image contained into a
nondegenerate cone and, under quite general assumptions on M, they provide a
lower bound for the width of the cone in terms of the energy, the tension of the map ¢
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and a metric parameter. As an application of their results, they recover and/or extend
some well-known results about harmonic maps, minimal and isometric immersions.

From the previous section we recall that, given the Euclidean space R” with its
flat canonical metric (, ), having fixed an origin 0 € R”" and a unit vector { € §"!,
we set G, ¢ 9, shortly ¢, to denote the nondegenerate cone with vertex in o, direction
¢ and width 6, 6 € (0, 7/2), that is,

¢ = {z e R"\{o} : ( S ,g) > cos(e)}. (5.17)

|z — ol

Let (M, (,)) be a connected, m-dimensional, m > 2, Riemannian manifold, and let

¢ (M.() — R.(.))

be a smooth map. We indicate with |dg|? the square of the Hilbert-Schmidt norm
of the differential dg (in other words, twice the energy density of ¢) and with 7(¢)
the tension field of ¢. Recall, see Sect. 1.7, that in case ¢ is an isometric immersion,
|dp|?> = m and t(p) = mH, where H is the mean curvature vector. We fix an origin
q € M and we consider the distance function from ¢, r(x) = d(x, q). We set By for
the geodesic ball with radius R centered at q.

To state the next theorems, given n > 0, we define

Ay = sup {gazvl—aZ}, (5.18)

(Ea)eA

where A = {£,a0) e R2:0 < £ < 1,0 <o <min{l,n/1—£}}.
The constant A, can be easily computed, but the actual value is irrelevant for our
purposes. Note also that A, is a nondecreasing function of 7.

Theorem 5.2 Let M be a connected, noncompact m-dimensional Riemannian
manifold, and let

¢ (M.() — R.(.))

be a map of class C* such that |de(x)|> > 0 on M. Consider the elliptic operator
L = |dg| 2 A, and assume that M is L-stochastically complete. Let € = 6,9 be a
cone with vertex at o € R"\@(M), let 7ty be the hyperplane orthogonal to { passing
through o and let d(ry, o(M)) be the Euclidean distance between this hyperplane
and p(M).

If (M) is contained in €, then

1 lz(p)l
cosf < \/A—ld(ng,qo(M)) s;p[ EE ] (5.19)
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In case ¢ is an isometric immersion, we can replace A} with A,, in (5.19) obtaining
a sharper estimate.

In the next remarks we comment on the content of the theorem.

Remark 5.1 Note that, in case

i) =

and d(mg, p(M)) = 0, that is, ¢ (M) “gathers around the origin 0”, as we shall see in
the proof, we have no restriction on 6.

Remark 5.2 For the condition that L = |dg| ™ A generates a conservative diffusion,
that is, L is stochastically complete, as in the case of A-stochastic completeness, no
geodesic completeness of M is required. On the other hand, if M is complete, L-
stochastic completeness has been analyzed in Chap. 3, for instance in Theorem 2.15.
See also previous work of Grigor’yan [131], Sturm [260] and Pigola et al. [227]. In
particular, by Theorem 2.15, if there exist C > 0, i € R such that

ldp(x)|* = ﬁ on M (5.20)
and
pln !
Tog(Vol(B,)) ¢ L' (400), (5.21)
then the weak maximum principle holds for L = |dp|2A. It is worth to observe

that (5.21) implies & < 2, but no restriction on nonnegativity of p is needed. As
already observed in Remark 2.13 in case u = 2, an application of [260] leads to
slightly improving (5.21) to

logr 1
rlog(Vol(B,)) 7 L (09
Remark 5.3 Due to the form of (5.19), we cannot expect the result to be significant
when ¢(M) is far from 7, in the following sense: for every M, ¢ and ¢ satisfying
the assumptions of Theorem 5.2, and for every k > 0, we can consider the map
¢k = ¢ + k¢. Then d(my, px(M)) = d(sre, o(M)) + k, while the other parameters in
the right-hand side of (5.19) remain unchanged. Therefore, for k sufficiently large
inequality (5.19) becomes meaningless unless 7(¢) = 0. On the contrary, we show
with a simple example that, when d(m;, ¢(M)) is very small, (5.19) is sharp in the
following sense: for every fixed hyperplane 7¢, and for every origin o € ¢, there
exists a family of maps ¢4, d > 0 representing d(m¢, ¢4(M)), such that, if we denote
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by 6, the width of the nondegenerate tangent cone containing ¢,(M),

cos? 6,

7 >C when d— 07T,

for some constant C > 0. Indeed, for every fixed d > 0 consider the hypersurface
@q : R™ — R given by the graph ¢(x) = (x, |x|> + d), with the induced metric.
Indicating with 7r; the hyperplane x,,4.1 = 0, we have by standard calculations

2m + 8(m — 1)|x|?

2 _
EYEDEE and |dy4|" =m

IT(pa)| =
Therefore sup,, |7(¢a)|/|d¢a|* = 2. Moreover, for the tangent cone passing through
the origin

4d
1+4d’

cos’ 6y =

thus, since d = d(m¢, pa(M)), we reach the desired conclusion.

Proof (of Theorem 5.2) First of all we observe that
d(re p(M) = inf (p(x,). ),

and that the right-hand side of (5.19) is invariant under homothetic transformations
of R". We choose o as the origin of global coordinates, and for the ease of notation
we set

b =cosf be(0,1).
Furthermore, for future use, note that ¢(M) C % implies
(p(x),C) = blpx)| >0 forevery x € M. (5.22)

Next, we reason by contradiction and we suppose that (5.19) is false. Therefore,
there exists x, € M such that

[z(p))]

TP 2
dooF | <MY

(0. ¢) sup |

XEM

By definition, and the fact that the inequality is strict, we can find

£e(0,1) , ae(O,ﬂ)
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such that

[t
(o). 0 sup [F2500 | < (5 VT =)

thus

(0(x0), O]t ()| < (éazvl - ()zz)bz|d<,o(x)|2 for each x € M. (5.23)

For the ease of notation we set T = (¢(x,), ) > 0 and a = bw; the last relation
becomes

2 /b2 — a2
Tt (px))| < gClTa|d<p(x)|2 foreach x € M. (5.24)
Note also that
a€ (0,by1— S) C (0, D). (5.25)

Now, we define the following function:
u(x) = VT2 + 2lp)]? — (p(x). 0). (5.26)
and we note that, by construction, u(x,) > 0. We first claim that
u<T onM. 5.27)
Indeed, an algebraic manipulation shows that (5.27) is equivalent to
(), ¢)> +2T(p(x),§) =l >0 onM.
On the other hand, using (5.22), since a < b the left-hand side of the above
inequality is bounded from below by (b> — a?)|¢(x)|> > 0 and the claim is proved.
We now consider the closed nonempty set:
2, ={xeM : ulx) > u(x,)}.
Using (5.22) and the definition of §2, we deduce:
VT2 + @le)P = ble@)] + u(x,). (5.28)
Since u(x,) > 0 by construction, we can square inequality (5.28) to obtain

(b* — a)|p)[* + 2bu(x,)|(x)| + u(x,)* — T* < 0. (5.29)
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Since (b*> — a*) > 0, the left-hand side of the above inequality is a quadratic
polynomial in |@(x)| with two distinct roots o~ < 0 < a4 [use Cartesio rule
and (5.27)], where the roots o+ are given by

ay = [b? - az]_l{ + /(b — a®)T? + a?u(x,)? — bu(x(,)};

therefore, (5.29) implies

o) < [p2—a?]”" {\/(b2 " AT + dulx,)? — bu(xo)} on2,.  (5.30)

We then use the elementary inequality +/1 + 2 < 1+ 7 on RS’ to deduce

[p* — az]_l {\/(b2 —a?)T? + a?u(x,)? — bu(x,,)}

_au(x,) b2 —a®)T?  bu(x,)

R —a? a?u(x,)? b2 —a?
au(x,) |+ T~ b? —a? bu(x,)

b2 —a? au(x,) b? —a?

_ T u(x,)

SV —a2 b+a

and thus (5.30) together with u(x,) > 0 yields

T
lp()| < Tpa e on Q,. (5.31)

To compute Au, we fix a local orthonormal frame {e;} and its dual coframe {6'}.
Then, writing du = u;6', a simple computation shows that

U = wldgen. ) (dep(ei), ), (5.32)

VTP + @l

and taking the covariant derivative we have Vdu = u;6' ® 6/, where

__d'{de(e). p)(do(e).¢)
’ (T2 + g )

(Vdo(e;, ej)7 ¢)

+a2(Vd<p(e,~, ej), @) + a*(dg(e;),dp(e;))

VTP + @l
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Tracing the above expression we get

S |d<p| 1 52 “ )
Au = __—E: ,do(e; 5.33
u= (| v St(p) + |¢| PN = i=1(¢ ple)”  (5.33)

on M, where we have defined

Cl2 X
=500 = L 530
VT? + a*lp(x)|
Note that, by (5.22),
‘I - ;‘ <S2—2pS+1, (5.35)
and that
m wz ldo(e)* = lo||de|*:
Z ¢.dg(c:))? P (5.36)

1
lp|* = E|<p|2|d<p|2 if ¢ is isometric.

The possibility, for the isometric case, of substituting A; with A,, in (5.19) depends
only on the above difference. Since the next passages are the same, we carry on with
the general case. Substituting (5.35), (5.36) in (5.33) it follows that

|do|* s >
Au> —|t()|VS?2—=2bS+ 1+ S - |do|. (5.37)
ol T2 + a?|p|?

We now restrict our estimates on the right-hand side of (5.37) on £2,. Then, (5.31)
holds and from (5.24) we obtain

t@)| _tVP - g g ES
|dgl? Tb VTP + a2, ~ TP+l el

Inserting this inequality into (5.37) we have

2 d 2 SZ
Au> %[1 —EVS—2bS+ 1 —2]. (5.38)
JTE + 2P a

We want to find a strictly positive lower bound for (1 — £+/S2 — 2bS + 1 — §?/a?)
on £2,. Since 1 — 2bS + S? represents a convex parabola and since S is increasing
in the variable |¢| on [0, @4y, its maximum is attained either in O or in @,,4,. Since



286 5 Miscellany Results for Submanifolds

S(O) =0, S(‘pmax) = Clz/b > 0 we have

2
S(Pmar)® — 2bS(@mar) +1 =1 + az(Z—z - 2) <1=5(0)*—2bS0) + 1,

thus we can roughly bound as follows:
s? a’
I—S\/SZ—2bS+1—a—2 > I—E—ﬁ

and the right-hand side of the above inequality is strictly positive since a €
(0,b+/1 — &). Therefore, (5.38) together with (5.31) yield

612 a2
Lu=|do|2Au> —— [1 —E— —2} >§  on2, (5.39)
VT2 + djg)? b

for some 6 > 0.
There are now two possibilities:

(i) x, is an absolute maximum for u on M. By assumption |d¢(x,)|*> > 0, and the
finite form of the maximum principle yields Au(x,) < 0, so that Lu(x,) < 0.
Since x, € £2, (5.39) immediately gives a contradiction.

(i) Int(£2,) = {x € M : u(x) > u(x,)} # 9. In this case, since u(x) is bounded
above on M, it is enough to evaluate inequality (5.39) along a sequence {x}
realizing the weak maximum principle for L, that is u(x;) > u* —1/k, Lu(x;) <
1/k. Note that this sequence eventually lies in Int(£2,).

O
As an immediate consequence of Theorem 5.2, we recover Atsuji’s result [33]:

Corollary 5.3 Let ¢ : (M,(,)) — R" be harmonic and such that |dp|*> > C
for some positive constant C. If M is stochastically complete, then (M) cannot be
contained in any nondegenerate cone of R". In particular, a stochastically complete
manifold cannot be minimally immersed into a nondegenerate cone of R".

Proof If M is stochastically complete and |dp|> > C, then, as we have already
observed in Remark 3.1, it is straightforward to deduce that M is L-stochastically
complete, where L = |dp| 2 A. Indeed, for every u € C*(M) with u* < 400, along
the sequence {x;} realizing the weak maximum principle for A we have also

Lu(x) = |do(x)| 7> Aulx) < o
The result follows setting 7(¢) = 0 in Theorem 5.2. O

Note that even the statement of [33] in its full generality requires |dg|> > C > 0,
an assumption that can be overcome by the weighted requirements (5.20), (5.21).
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Furthermore, in case &t = 0 we can replace stochastic completeness and the uniform
control from below in (5.20) with the properness of ¢.

Corollary 5.4 Let (M, (,)) be a Riemannian manifold. Then, there does not exist
any proper harmonic map ¢ : M — R", such that |de(x)| > 0 on M and (M) is
contained into a nondegenerate cone of R".

Proof From (5.31) in the proof of Theorem 5.2 we deduce that ¢(£2,) is bounded,
hence ¢(£2,) is compact. The properness assumption implies that ¢! (¢(£2,)) is
compact, thus §2, is compact. Therefore, it is enough to use the finite form of the
maximum principle in (5.39). O

Remark 5.4 1t is a well known open problem to deal with the case 6 = /2,
that is, when the cone degenerates to a half-space and the dimension m is greater
than 2. When m = 2, n = 3, by Hoffman-Meeks’ half-space theorem [146] the
only properly embedded minimal surfaces in a half-space are affine planes. On
the contrary, if m > 3 there exist properly embedded minimal hypersurfaces even
contained between two parallel hyperplanes (the so called generalized catenoids).
It is still an open problem to find sufficient conditions on M, ¢ in order to have a
Hoffman-Meeks’ type result, and it seems quite difficult to adapt the methods of the
proof of (5.2) for this purpose. In fact the recent literature on the problem is quite
vast. We cite only the paper by Mazet [190], dealing with constant mean curvature
surfaces, and the result of Rosenberg et al. [247], contained in the next

Theorem 5.3 Let P be a complete, parabolic manifold and let N = Rt x P with the
product metric. Assume that the sectional curvatures of P are bounded between two
given constants. Let f : X — R xP be a properly immersed minimal hypersurface.
Then f(X) C {c} x P for some c € RT.

We will consider some related results in Chap. 7.

The next application of Theorem 5.2 has a topological flavor. This result, which is
interesting when ¢ is not proper, ensures that some kind of “patological” gathering
around points of ¢(M)\¢(M) does not occur when the map is sufficiently well
behaved. To make the corollary more transparent, we state it using the sufficient
conditions (5.20) and (5.21). First we introduce the following

Definition 5.1 Let .7 be a convex subset of R”. A point p € .7 is called an n-
corner of . if it is the vertex of a nondegenerate cone containing ..

Corollary 5.5 Let (M, (,)) be a complete Riemannian manifold and let ¢ : M —
R" be a map of class C*. Suppose that (5.20) holds, and that

1@ =

oo forr(x) > 1, (5.40)

for some C > 0and nw € R as in (5.20). Assume also that (5.21) holds. Then, the
convex envelope Conv(¢(M)) contains no n-corners.
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Proof We reason by contradiction and let p € Conv(¢(M)) be an n-corner. If p €
Conv(p(M))\@(M) fix a small ball around p contained in R"\¢(M), and cut the
corner transversally with an hyperplane sufficiently near to p; it is immediate to see
that in this way we produce a convex set containing ¢(M) and strictly smaller than
Conv(p(M)), contradiction.

Suppose now p € ¢(M), and let x € M such that ¢(x) = p. Consider the map
dg); by assumption, there exists a direction v € T, M such that |dg|,v| # 0, thus by
continuity we can take a curve

yi(—g,e)>M , y0O)=x , p0)=v

with & small such that |dg), ;) (¥ (¢))| # 0 on (—s, €). Therefore, g oy is an immersed
curve in R”, and this fact contradicts the assumption that p is an n-corner.

If p € o(M)\@(M), choose m; as the hyperplane orthogonal to the direction of the
cone and passing through p. It follows that d(¢(M), ;) = 0. By (5.20) and (5.40),
we argue that |t(¢)|/|dp|> is bounded above on M. By Remark 5.2, (5.20)
and (5.21) ensure that M is L-stochastically complete, where L = |dp|2A. By
Theorem 5.2 we conclude the validity of (5.19) which gives 6 = /2, contradiction.
O

5.3 Bounded Submanifolds and Jorge-Koutroufiotis Type
Results

Given complete Riemannian manifolds M and N of dimensions respectively m and
n, of m < n, the isometric immersion problem asks whether there exists an isometric
immersion f : M — N. When N = R”", the Euclidean space, the isometric
problem is answered by the Nash embedding theorem [207], which asserts that
there is an isometric embedding f : M — R” provided the codimension n — m
is sufficiently large. However, for sufficiently low codimension, meaning here that
n—m < m — 1, the existence of isometric immersions imposes strong restrictions
on the curvatures and the answer in general depends on the geometries of M and
N. For instance, it is a classical fact that no compact Riemannian surface with
nonpositive Gaussian curvature everywhere can be isometrically immersed in R
(Corollary 5.1), while the famous Hilbert-Efimov theorem [108, 143] says that no
complete Riemannian surface having negative Gaussian curvature K < —§2 < 0 can
be isometrically immersed in R3. For higher dimensions, a theorem of Tompkins
[264] states that a compact, flat, m-dimensional Riemannian manifold cannot be
isometrically immersed in R?"~!. Tompkins theorem was later extended by Chern
and Kuiper [86] (for dimensions m = 2, 3) and by Otsuki [215] (for any dimension
m) in the following way (see also [92, Sect. 3.1]).

Theorem 5.4 Letf : M — R" be an isometric immersion of a compact Riemannian
m-manifold M into the Euclidean space R", with n < 2m — 1. Then the sectional
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curvatures of M satisfy

supK > 0.
M

In particular, if M is a compact Riemannian manifold of dimension m with
nonpositive sectional curvatures, then M cannot be isometrically immersed into any
Euclidean space R” withn < 2m — 1.

One of the basic tools for the proof of Theorem 5.4, as well as for the proof of
other results in this and the next section, is the following algebraic result, known as
Otsuki lemma [215].

Lemma 5.1 Let B : RF x R — RY, with g < k — 1, be a symmetric bilinear
form satisfying B(v,v) # 0 for every v # 0. Then there exist linearly independent
vectors v, w such that

B(,v) = B(w,w) and PBv,w)=0. (5.41)

Proof First, we extend f8 to a complex bilinear symmetric form B€ : Ck x C* — C?
and we consider the equation 8(z,z) = 0, which is equivalent to the following
system of ¢ quadratic equations in C

BT (z.2)=0....5(2) =0. (5.42)

Since g < k, (5.42) has a nonzero solution z. Note that z ¢ R* because 8 never
vanishes. Thus z = v 4 iw with w # 0. On the other hand,

0= B%(z2) = B(v,v) = B(w, w) + 2if (v, w)

and therefore the validity of (5.41).
Next we observe that if there exists two vectors v, w satisfying (5.41) and at least
one of the two, say v, is nonzero, then they are linearly independent. Indeed,

B(av + bw, av + bw) = (a* + b*)B(v,v) and B(v,v) # 0.

|

Proof (of Theorem 5.4) Recall that if f : M — R” is an isometric immersion of
a compact Riemannian manifold into R”, by Proposition 5.1 there exists a point
Xo € M and a normal vector § € T,,M~* such that the second fundamental form at
xo with respect to £ is positive definite. In particular,

(I (v, v),§) # 0

forevery v € T,,M, v # 0, where Il : T, ,M x T(;M — T, ,M~* denotes the second
fundamental tensor at xo; hence I, (v, v) # O for each v € T,y M, v # 0. Observe
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that T,,M and T,,M~ are real vector spaces of dimensions respectively m and n —m
with n —m < m — 1. Therefore, by applying Otsuki lemma to II,, we know that
there exist linearly independent vectors v, w € Ty,M such that

1L, (v, v) = IL,,(w,w) and IL(v,w) = 0.
Then by Gauss equations we conclude that

supMK > MK(U Aw) = (on(vv U),HXO(W, w)) — |on(vvw)|2
M [o2[w]? — (v, w)?
_ 1L, (v, v)|?
o w]? = (v.w)?

> 0.

O

Theorem 5.4 was subsequently extended in a series of papers by O’Neill [211],
Stiel [259] and Moore [196]. Their results can be summarized in the following
theorem.

Theorem 5.5 Letf : M — N be an isometric immersion of a compact Riemannian
manifold M into a Cartan-Hadamard manifold N, respectively of dimensions m and
n, with n < 2m — 1. Then the sectional curvatures of M and N satisfy

supMK > inf VK.
M N
We recall here that a Cartan-Hadamard manifold is a simply connected, complete,
Riemannian manifold with nonpositive sectional curvatures.

Theorem 5.5 was improved by Jorge and Koutroufiotis in [154] to bounded,
complete submanifolds with scalar curvature bounded from below, and in the
version presented by Pigola, Rigoli and Setti in [227, Theorem 1.15] to complete
submanifolds with scalar curvature satisfying

2

k
YMS(x) = —B03 () [ [ [log"(em ) | » omx) > 1 (5.43)

J=1

for some constant B > 0, some integer k > 1, where gy, is the distance function
on M to a fixed point and log? is the j-th iterate of the logarithm (see also [92,
Sect. 3.2]). Specifically, their result states as follows (see [227, Theorem 1.15]).

Theorem 5.6 Let M and N be complete Riemannian manifolds of dimensions m
and n, respectively, withn < 2m — 1 and let f : M — N be an isometric immersion
with f(M) C “Bg(p), where "Bg(p) denotes a geodesic ball of N centered at a point
p € N and of radius R. Assume that the radial sectional curvature “K,,q along the
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radial geodesics issuing from p satisfies
"Kraa < b in "Br(p)

and 0 < R < min{injy(p), 7w/2~/b}, where we replace w/2~/b by +o00 if b < 0. If
the scalar curvature of M satisfies (5.43), then

supMK > C2(r) + inf Nk, (5.44)
M Br(p)

where

Vbcot(+/b1) ifb>0and0 <t < 7/2~/b,
Cp(t) = 1/t ifb=0andt> 0, (5.45)
/—bcoth(v/—bt) ifb<O0andt> 0.
Remark 5.5 1t is worth pointing out that the estimates in Theorem 5.6 are sharp.
Indeed, if N is one of the standard model manifolds of a simply connected space

form of constant sectional curvature b and M is a geodesic sphere of radius r in N,
then equality in (5.44) is achieved.

For a proof of Theorem 5.6, which is a somewhat simplified version of the original
arguments by Jorge and Koutroufiotis in [154], see [227]. We shall however prove
the next result related to Theorem 5.6, see [181]. This will provide an application of
the weak maximum principle for the Hessian.

Theorem 5.7 Let f : M — R" be an isometric immersion into a nondegenerate
cone € = 6,0 of an m-dimensional manifold satisfying the weak maximum
principle for the Hessian. Assume the codimension restriction

O<n—m<m (5.46)
and suppose that the sectional curvature of M satisfy

Mg < 42 on M (5.47)

for some constant y > 0. Then

cosf < Jd(m. f(M))Al, (5.48)
1

where Ay is as in (5.18).
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Proof We follow the proof of Theorem 5.2 verbatim replacing (5.23) with
(f(x0). 0)x < ((a>VT=a?)p? (5.49)

for some £ € (0,1),« € (0, /1 — £); then we replace (5.24) with

2 /bz_ 2
Ty < S"T" (5.50)

and arrive up to inequality (5.31) included. Next, we fix x € §2, and we let
X,Y € T:M be orthonormal vectors spanning the 2-plane 7. From Gauss equations
and (5.47) we have

(IL(X. X). IL(Y, V) = [IL(X. ) * = "K(r) < 1, (5.51)

where Il is the second fundamental tensor at x. Since 0 < n — m < m, by Otsuki
lemma Lemma 5.1, it follows that there exists a unit vector W € T, M such that

hence, from (5.50) and (5.31) we deduce

2.2 _ 2 2 2
LW, wy| < 9V e fa < fa . (5.52)
b VI + a5, VT2 + @l f(x)P

Next, we let y : [0,¢) — M, ¢ > 0, be the geodesic characterized by the initial data
y0)y=x,  y0)=W.
Call s € [0, &) the arc-length parameter and define the function
g:[0.e) > R g(s) = u(y(s)).
with u defined in (5.26), that is,
u(x) = V1T + 2 f()? = (f(x). ).

A simple computation, using the fact that f is an isometric immersion, gives:

3

() = (—— ()~ LILG 7)) + WSO (553)

S
IF )l Wl alf(p)P
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where S, not to be confused with the scalar curvature S, has the expression in (5.34),
evaluated, with the notation there, at x = y(s). Since

=t 1S o2 @O < R = 1P

Setting S, = S(y(0)), evaluating at s = 0 we deduce
aZ _ SZ
g"(0) > —|IL(W, W)|,/S2—2bS, + | + ——2—. (5.54)

T+ a?|f(y)P?

Inserting (5.52) into (5.54) we get

2 SZ
e [1-& 1+ 53— 265,- 2| (5.55)
VT? +a|f(y))? a

Proceeding as in the proof of Theorem 5.2, since a € (0,b+/1 — &) C (0,b)

g"(0) >

2 2 2 /02 — 2 a2
00 P PRI P Ll VR Y S
£0)2 \/T2+a2|f(y)|2[ b2] - bT (=5 b2] ~

where § is independent of x € £2, and W.

On the other hand, a standard computation using the fact that y is a geodesic and
the definition of the Hessian of a function, gives g”(0) = Hess, (u)(W, W). Putting
together the last two inequalities we obtain

Hess(u) (x)(W, W) > § > 0. (5.56)

If x, is an absolute maximum of u, then from (5.56) we immediately contradict the
finite maximum principle, otherwise

Int(£2,) = {x e M : u(x) > u(x,)} # 9 (5.57)
and (5.56) gives
inf  sup Hess(u)(x)(Y,Y) >8>0, (5.58)
x€Int(£2,) YeT.M
Y| =1

contradicting the validity of the weak maximum principle for the Hessian operator
since the function u in bounded above on M. This completes the proof of
Theorem 5.7. O
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As a consequence of Theorem 5.7, we get the following corollaries: the former
generalizes results of Tompkins [264], Chern-Kuiper [86] and Jorge-Koutroufiotis
[154], whereas the latter improves on Theorem 8.3 of [92].

Corollary 5.6 Let (M, {(,)) be a complete m-dimensional Riemannian manifold
with sectional curvature satisfying

2

k
—B* (1 +r(®?) | [ Jlog" r(x) | <"k, <0, (5.59)

J=1

for some B > 0, some integer k > 1 and where log(j) stands for the j-iterated
logarithm. Then, M cannot be isometrically immersed into a nondegenerate cone of
R2m—l.

Proof By (5.59), using Theorem 2.5 we have the validity of the weak maximum
principle for the Hessian. The result follows immediately setting y = O and n =
2m — 1 in Theorem 5.7. O

In the next result we use the theory of flat bilinear forms introduced by Moore
[197, 198] as an outgrowth of E. Cartan’s theory of exteriorly orthogonal quadratic
forms [62, 63]. See the book of Dajczer [92], for a sound presentation.

Corollary 5.7 Let (M, (, ),J) be a Kdhler manifold of real dimension 2m such that
the weak maximum principle holds for the Hessian. Then M cannot be isometrically
immersed into a nondegenerate cone of R3 1.

Proof The proof follows the same lines as in [92], so we only sketch it. By
contradiction, assume the existence of an isometric immersion f of M into a
nondegenerate cone 6,9 C R3>=!, From the assumptions, since the codimension
is m — 1 < m, for every x € M the theory of flat bilinear forms ensure the existence
of a vector Z € T,M, with |Z| = 1 and such that II(JZ, JZ) = —1I(Z, Z). We define
u, §2, as in Theorem 5.7. Expression (5.53) gives at every point x, and for every
XeTM, |X|=1

Hess (1)) (X0 = ffx)|f(x) LK, X)) + ﬁ(l - f,—j)-

This calculation is independent from the value of a € (0, b). If a is chosen to be
sufficiently small that §?/a®> < § < 1 (note that, by definition, on £2, it holds
S = O(a®) and S/|f| > a*/T), evaluating along a sequence {x;} satisfying the weak
maximum principle for the Hessian we deduce, for k sufficiently large,

| f(ik)lf () — & I (Xk, X)) < Hess(uz)(xk)(Xk,Xk) _ Wffkﬂ(l —%)
1—%0—&<o

(

< —
Tk
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for every X, € T, M, |Xi| = 1. This fact contradicts the existence of Z. O

Remark 5.6 As we know from Theorem 2.5, inequality (5.59) provides a sharp
sufficient condition for the Omori-Yau maximum principle to hold for the Hessian.
As far as we know, it is an open problem to obtain other general sufficient conditions
ensuring the validity of the weak maximum principle for the Hessian.

5.4 Cylindrically Bounded Submanifolds

5.4.1 Sectional Curvature Estimates

In this section we will introduce an extension of Theorem 5.6, recently given by
Alfas et al. [20], to the case of complete cylindrically bounded submanifolds of
a Riemannian product R® x P, where P is a complete Riemannian manifold of
dimension n — £. In this context, an isometric immersion f : M — R xPofa
Riemannian manifold M is said to be cylindrically bounded if there exists "Bz (p),
a geodesic ball of PP centered at a point p € P with radius R > 0, such that
f(M) C R x "Bg(p).

The main result in [20] deals with the sectional curvature of cylindrically
bounded submanifolds and it can be stated as follows (see [20, Theorem 4]).

Theorem 5.8 Let M and P be complete Riemannian manifolds respectively of
dimensions m and n — £, withn + £ < 2m— 1. Letf : M — R X P be a
cylindrically bounded isometric immersion with f(M) C R x "Br(p). Assume
that the radial sectional curvature "K,,q along the radial geodesics issuing from
p satisfies "K,qq < b in 'Bg(p) and 0 < R < min{injy(p), w/2+/b}, where we
replace 7w/2+/b by +00 if b < 0. Assume that either

(i) the scalar curvature of M satisfies (5.43), or

(ii) the immersion f : M — R® x P is proper and

sup 1| < o (p), (5.60)
F7H@OR Bi(0) X PBr(p))

where 11 is the second fundamental tensor of the immersion and o : ]R(')" —RTisa
positive function satisfying % & L' (+00). Then

supYK > CX(R) + inf 'K, (5.61)
M

B, (p)

where Cy(R) is defined in (5.45).

Remark 5.7 Tt is worth pointing out that the codimension restriction n+ £ < 2m—1
cannot be relaxed. Actually, together with the bound m < n — 1, it implies that
n—4{ >3 and m > £ + 2. In particular, for n = 3 we have that £ = 0, and therefore
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F(M) C "Br(p). In fact, the flat cylinder R x S'(R) C Rx ®’Bpr(0), with0 < R < R,
shows that the restriction 2m — 1 > n + £ is necessary.

On the other hand, estimate (5.61) is sharp. Indeed, foreveryn > 3and{ <n—3
we can choose [P to be one of the standard model manifolds of a simply connected
space form of constant sectional curvature b and consider M = R’ x 9By (p), where
"Bz (p) is a geodesic sphere of radius R in PP. Take f: M — R’ x FB(p) to be the
canonical isometric immersion, with 0 < R < R. Then, sup,, MK is the constant
sectional curvature of the geodesic sphere "By (p) C PP, which is given by

b/sin*(v/DR) if5>0and 0 < R < 7/2/b,
1/R? ifb=0and R > 0,
—b/sinh>(v/—=bR) ifb<0andR > 0.

In particular, observe that

supMK = C,%(i?) +b.
M

Since in this case PK = b, then, for every 0 < R < R, we have

supMK = C,%(i?) +b>CHR) + i%fPK,
M

which shows that estimate (5.61) is sharp.

We also refer the reader to [20] for several applications of Theorem 5.8 as well
as for an interesting improvement of the condition on the growth of the rate of the
norm of the second fundamental tensor in (5.60) for the case of hypersurfaces (see
Theorem 7 in [20]).

Remark 5.8 It should be observed that Hasanis and Koutroufiotis [138] established
similar sectional curvature estimates for cylindrically bounded submanifolds of the
Euclidean space R”, with scalar curvature bounded below. In a slightly more general
situation, Giménez [127] established sectional curvature estimates for submanifolds
with scalar curvature bounded below immersed in a tubular neighborhood of certain,
(P-submanifolds), embedded submanifolds of Hadamard manifolds. Theorem 5.8,
besides extending Hasanis and Koutroufiotis results to a larger class of submani-
folds, can be easily adapted to reproduce Giménez'’s result.

For the proof of the main result in this section, Theorem 5.8, we will need the
Hessian comparison result in Theorem 1.4 for the Riemannian manifold PP, in the
particular case where PK..a < b. Thus, following the notation in Theorem 1.4, one
has

(@)
h(®)

= Gp(1),
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so that

Hess pp > Cy(pp) ((.) — dpp ® dpp) . (5.62)

in the sense of symmetric bilinear forms, where pp = distp (, p) and Hess stands
for the Hessian operator on P.
Now we are ready for the

Proof (of Theorem 5.8) (i) Let ¢, () be the function given by

1 —cos(+v/b1) ifb>0and0 <1< m/2+/b,
$p(t) = 172 if »=0and > 0,
cosh(v—bt) ifb<Oandt> 0.

For later use note that ¢; () > 0 on the domain of definition. Set 7p : RixP — P
for the projection on the second factor. We define the function # : M — R by setting

u = ¢p(pp) o (mp o f).

Note that, since wp(f(M)) C PBr(p), u* = supyu < ¢p(R) < +o00. Now the
idea of the proof is similar to the idea of Jorge and Koutroufiotis in [154]. We
will apply the Omori-Yau maximum principle for the Hessian to the function u
in order to control the second fundamental form of the immersion restricted to
certain subspaces of the tangent space and apply Otsuki lemma in the estimate of
the sectional curvature.

To show the validity of the Omori-Yau maximum principle we may suppose that
supMK < +4o00. Otherwise the estimate in (5.61) is trivially satisfied. In this case,
since the scalar curvature is an average of sectional curvatures from (5.43) it follows
that

2

k
YK raa(x) = —B03, () | [ Jlog” (em(®)) | - om() > 1, (5.63)
j=1

for some positive constant B> 0, where K, denotes the radial sectional curvature
of M. According to Theorem 2.5, this curvature decay and completeness of M suffice
to conclude that the Omori-Yau maximum principle for the Hessian holds on M.
Therefore, there exists a sequence of points {x;} in M with the properties

() u(x) > u* — %, (i) |[Vu(xp)| < %, and (iii)’ Hess(u)(x;) < %(, Y. (5.64)
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To compute Hess(u) we use formula (1.177). For x € M, setting z = 7p(f(x))
we have

Hess(u)(x) = Hess (¢5(0r))(2)(d(e o f), d(7tp © f)) + (Vo (pp), V(g © f) (x))p.
(5.65)

where, to clarify the writing, Hess and V denote respectively the Hessian and the
gradient operator on P. Now, since f is an isometric immersion, indicating with II
its second fundamental tensor,

Vd(mp o f) = Vdmp(df, df) + drp(11(, )) = drp(1I(, )), (5.66)

where the last equality is due to the fact that 7p, as immediately verified, is
totally geodesic. We now estimate the term Hess (¢5(pop))(2)(d(mwp o f), d(zp o f)).
By Egs. (5.62), (1.182) and ¢, > 0 we have
Hess (¢5(0r)) (2)(d(e o f), d(7e 0 f))

= ¢,(pr)(z) Hess (pp)(d(e o f), d(7e 0 f))

+ ¢, (pp)(2)(dpp @ dpp)(d(mp o f). d(mp o f))

> ¢, (o) (@) Cp(pp(2)) {{d(mp o f), d(p o f))p

—dpp ® dpp(d(p o f),d(mp o f))}

+ ¢ (pr) (2) (dpp ® dpp)(d(e o f), d(p o f)).

Taking into account that ¢, satisfies the differential equation
¢, — Co()gy, =0,

the above inequality simplifies to

Hess (¢ (pp)) (2)(d(7p o f), d(7p o f))
> ¢, (pp)(2)Cy(pp(2)){d(p 0 f), d(7tp © f))p. (5.67)

Inserting (5.66) and (5.67) into (5.65) yields
Hess(u)(x) > ¢,(0p)(2)Cp(pr(2)) (d(p o f). d(7p 0 f))p

+(Vu(pp) (2), drp (11, )} (5.68)

in the sense of symmetric bilinear forms. Now, since m > £ + 2, for each x € M we
can choose a subspace V, C T, M of a fixed dimension dim V, > m—£ (> 2) such that
df(Vy) L Ty»RY, having canonically decomposed Ty (R® x P) as Ty R @ Ty P.
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Thus, for each (say) v € T, f(x)Re, (df (Vy), v)gescp = 0. In particular, for X, € V,,

(e 0 df)(X:)|p = |df (X) [t - (5.69)
Evaluating (5.68) in such an X = X, and using (5.69) and Gauss lemma, we get
Hess(u)(x)(X, X) > ¢, (op(2)) Cp (pp () df (Xo) [re s
+ ¢4 (pp(2)(V pp. drp (1(X, X)),

> 630 (@) | Co(pr @) IXTE, — dmeaon s

From this inequality and (5.64) (iii)’ we obtain, for each x;, X € V,,, zx = To(feu))?
and s, = s(x;), where s(x) = pp (7p(f(x1))),

X2
% > Hess(u) (x) (X, X) > ¢,§(sk){Cb(sk)|X|12w - ‘d”p(uxk(x,x)) ‘P}’

hence

ldre (I, (X. X))y = {cbm) - IXE,.

1
kepy (k) %
and finally

2

1
|HXk(X’X)|]R['X]P’ Z {Cb(sk) — W} |X|M
b

Now consider f,,: Vy, x Vy, = T M Llcr (Rl X IP’), the restriction of the second
fundamental tensor II,, to V,,. We have that

dimT M+ =n—m<m—L£—1<dimV, —1

since 2m — 1 > n + £, and therefore we can apply Lemma 5.1 to 8,, to conclude that
there exist linearly independent vectors Xi, Y, € V,, such that

O(Xe, X)) = Yy, Yy) and  II(X, Yy) = 0;
furthermore, without loss of generality we can suppose |Xi| > |Yi| = 1. We will now
compare the sectional curvature YK (X, A Y;) in M of the plane spanned by X; and

Y,, with the sectional curvature RxPg (X; A Yp) in R x P of the same plane. Observe
that, since X;, Y, € V,, L TRY,

ROXPE (X, A V) = PK(Xe A Vo).
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Then, by Gauss equations we have

MR (X, A Y3 = BK (X A Y2 = MK (X A Y — BB (X, A YY)
(X, X0) 1LY, V) — (X, )|
Xk 2 Yi]? = (Xi, Yi)?

LG (|H(Xk,xk)|)2
T OIXPIYE T X

2

= (C”(Sk) B k¢,:<sk>)

Thus

2

supMK — inf FK > (Cb(sk) — . (5.70)
)

1
M PBr(p k¢[;(sk))
Observe that u* = ¢,(s*), where s* = sup,, s and sy — s* < R. Therefore, letting
k — oo we have that

supK — inf K > C2(s*) = CX(R).
M PBr(P)

This finishes the proof of item (i) in Theorem 5.8.

Remark 5.9 1t is interesting to realize that in the proof of item (i) of Theorem 5.8
we have used only the weak maximum principle for the Hessian, since condition (ii)
in (5.64) is unnecessary.

(i1) In this case, we cannot apply directly the Omori-Yau maximum principle for
the Hessian, but we may apply parts of the proof of its version given in [227,
Theorem 1.9] by Pigola, Rigoli and Setti. It is worth pointing out that their approach
in [227] is different from the one presented in Chap. 3.

Consider again the function u : M — R given by u = ¢,(pp) o (7wp o f); as we
already know, u™ = sup,, u < ¢»(R). Let y : M — ]R(;" be defined by

bWl g
V() = exp (/0 FS))

where y(x) = mpe (f(x)). Since f is proper and 7p(f(M)) C *Bg(p), we have |y(x)| —
+00 as x — oo, and since 1 ¢ L' (+00), ¥ (x) — 400 as x — oo.
We let xo € M with 7p(f(x)) # p and set

u(x) — u(xo) + 1
e

u(x) =
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Thus u(x9) > 0 and since u™ < ¢,(R) < +o0 and ¥ (x) — 400 as x — oo, we have
that limsup,_, o, ux(x) < 0. Hence u; attains a positive absolute maximum at a point
x¢ € M. In this way, we produce a sequence {x;} C M. We begin by showing that

lim sup u(x) = u*. (5.71)

k——+o00
To prove this, assume by contradiction that there exists a point x € M such that
u(x) > u(xy) + 8

for some § > 0 and for each k > k, sufficiently large. If {x;} lies in a compact subset
of M, then up to passing to a subsequence, {x;} — x so that

u(x) > u(x) + 8 > u(x).
On the other hand, since for every k

u(x) — u(xo) + 1
V() 1k

u(x) —u(x) +1
y@VE

ur () = > (%) =

letting k — 400 we deduce that
u(x) —u(x) + 1 = lim w(x) > lim  w®) = @) —ulx) + 1,
k——+o0 k——+o00
showing that
u(x) > u(x),
which is a contradiction. In the case where {x;} does not lie in any compact subset
of M then, using ¥ (x;) — +o0 as k — +oo on a subsequence, and for each k such
that ¥ (x;) > ¥ (%), we have

u(x) — u(xo) + 1 - u(x) —ulxo) +1+6
YRk ¥ (o) VK

Uy (5C) = > Uy (xk),

contradicting the definition of x;. This proves (5.71) and, by passing to a subse-
quence if necessary, we may assume that

im  u(x) = u®.
k——+o00

Now consider first the case where x; — oo as k — —+oo. Since u; attains a
positive maximum at x; we have Vi (x;) = 0 and Hess(u;) (xx) (X, X) < 0 for every
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X € T, M. This yields

Vi) = %wm) (5.72)

and

u(x) — u(xo) + 1

1 1
K0 (o) (He”(‘”)(xk” (E )w )"‘/’w‘”z 3
(5.73)

Hess(u) (xi) =

_ ula) —ulxo) +1

=< K () Hess(vy) (xx)-

We now estimate the right-hand side of the above inequality from above. Since

Y (x) = ¢(y) where y = y(x) = 7z (f(x)) and £(y) = exp(/fy"' ds/o (s)), from (1.182)
we have

Hess(y)(x) (X, X) = % Hess({) () (d(z: o f)(X), d(mge 0 f)(X))
+(FVE(y), Vd(ge of)(X. X)) (5.74)

for every vector X € T.M, where BV and ® Hess denote, respectively, the gradient
and the Hessian operators on R¢. Observe also that

R¢ _ ;(J’) R¢
VEQ) = SV
and therefore
vy = L0 gy (5.75)
a(lyl)

Thus, for every X € T,M such that d(zpe o f)(X) = 0 from (5.74) it follows that

V() g V(%)
H X, X) = Vly|, Vd(mge o f)(X, X X
essNEX) = S (VI V(s 0 (X)) = — 3 EEs I ).
Therefore, by (5.60) we obtain
1 Hess V() (X, X) < < LX) _ < X (5.76)

¥ (x) o(ly®l ~

for every X € T.M with d(sge o f)(X) = 0.
As in the proof of item (i), since m > £ + 2, we may choose for each x, € M a
subspace V,, C T, M with dimV,, > m —{ > 2 and such that df (V,,) L TR!. Then,
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d(mrge o f)(X) = 0 for every X € V,,, and from (5.73) and (5.76) we get

u(x) — u(xo) + 1

Hess(u) (x) (X, X) < kv (xx)

Hess(¥) () (X, X) <

¢h(’”) +1 |X|2,
k

for every X € V,,. Moreover, using the Hessian comparison theorem, we also have
Hess (1) (x) (X, X) = ¢;(s) (Co(s)|X]* — |II(X, X)) (5.77)
for every X € V,,, since d(mge o f)(X) = X. Therefore, we obtain

—gf’b(r]){ 1 [X[? = Hess (1) () (X, X) = ¢;(si0) (Co(s)1X[* — [T, (X. X))

for every x; and every X € V,,, where zx = wp(f(xx)) and s = s(xx) = pp(zx). Hence

L, (X, X)| = (cb(sk) _ g0+ 1) IXP.

ke (sk)

Reasoning now as in the last part of the proof of item (i), there exist linearly
independent vectors Xy, Y € V,, such that, by Gauss equations,

2 2
MEX A YY) — KX A Y)) = (%) > (Cb(sk) - %)
b

From here we obtain

ép(R) + 1)2

sup¥K — inf TK > (c sp) — ————, 5.78
p K=z »(Sk) o0 (5.78)

M PBr(p

and letting k — oo we conclude that

sup¥K — inf K > C2(s*) > CX(R).
M B, (p)

where s* = sup,, s, u* = ¢p(s*) and s; — s* <R.

To finish the proof of (ii), we need to consider the case where the sequence {x;} C
M remains in a compact set. In that case, passing to a subsequence if necessary, we
may assume that x; — xoc € M and u attains its absolute maximum at xoo. Thus
Hess (1) (xo0)(X, X) < 0 for all X € T, .M. In particular, it follows from (5.77) that
forevery X € V,_,

0 > Hess(u) (oo ) (X. X) = ¢} (500) (C(500)1X]* — Loy (X, X)) .
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where soo = pp(7p(f(xs0))). Therefore
e (X, X)| = Cpls00) XTI,

By applying Lemma 5.1 t0 B : Vi, X Vioy — TxooM* C T(R" x P), the restriction
of the second fundamental form II, _ to V,_, and reasoning as in the last part of the

proof of (i), we have that there exist linearly independent vectors Xoc, Yoo € Vio,
such that, by Gauss equations,

(X0, Xoo) |

2
2
Xl ) > Cy(Sc0)-

MK X0+ Yoo) — "K(Xoo. Yoo) = (
Thus, we conclude that

supK — inf 'K > C}(sc0) > C3(R). (5.79)
M B, (p)

5.4.2 Mean Curvature Estimates and Stochastic Completeness

The Calabi problem in its original form, presented by Calabi [56] and promoted by
Chern [84] about the same time, consisted of two conjectures on Euclidean minimal
hypersurfaces. The first conjecture is that any complete minimal hypersurface of R”
must be unbounded. The second and more ambitious conjecture asserted that any
complete, nonflat, minimal hypersurface in R” has unbounded projections in every
(n — 2)-dimensional subspace.

Both conjectures turned out to be false for immersed surfaces in R3. First Jorge
and Xavier [155] exhibit a nonflat complete minimal surface lying between two
parallel planes. Later on Nadirashvili [205] constructed a complete minimal surface
inside a round ball in R3. On the other hand, it was recently shown by Colding and
Minicozzi [91] that both conjectures hold for minimal surfaces which are embedded
in R3 with finite topology. Their work involves the close relation between the Calabi
conjectures and properness of the immersion.

It is worth pointing out that the immersed counterexamples to Calabi’s conjec-
tures discussed above are not proper. Hence, as observed in [18], it is natural to ask
if any possible higher dimensional counterexample to Calabi’s second conjecture
must be nonproper.

In the special case of minimal immersion, it follows from the main results of
Alias, Bessa and Dajczer in [18] that a complete hypersurface of R", n > 3,
with bounded projection in a two dimensional subspace cannot be proper [18,
Corollary 1] (see Corollary 5.8 below). On the other hand, as another application
of the method in [18], one can also generalize the results by Markvorsen [184]
and Bessa and Montenegro [42] about stochastic incompleteness of minimal
submanifolds to submanifolds of bounded mean curvature.
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In this section we will introduce the main result in [18], which deals with the
mean curvature of cylindrically bounded submanifolds and can be stated as follows
(see [18, Theorem 1]).

Theorem 5.9 Let M and P be complete Riemannian manifolds of dimensions m and
n — £ respectively, withm > £ + 1. Let f : M — R® x P be a cylindrically bounded
isometric immersion with f(M) C R x PBg(p). Assume that the radial sectional
curvature "K,.q along the radial geodesics issuing from p satisfies "K,qq < b in
PBr(p) and 0 < R < min{injy(p), m/2~/b}, where we replace w/2~/b by +oc if
b <.

(i) If

(mn: 9 Cp(R),

sup [H| <
M

then M is stochastically incomplete.
(ii) If the immersion f : M — R" x P is proper, then

=0 ®).
m

sup [H| >
M

In particular, for Euclidean hypersurfaces one has the following consequence.

Corollary 5.8 Letf: M — R" be a complete hypersurface with mean curvature H.
Iff(M) C R"2 x RZBR(O) and supy, |H| < 1/(n — 1)R, then f cannot be proper.

Therefore, a complete minimal hypersurface of R”, n > 3, with bounded projection
in a two-dimensional subspace cannot be proper. Related to this, Sa Earp and Rosen-
berg proved earlier [106] the weaker fact that a complete minimal hypersurface of
R" with bounded projection in an (n — 1)-dimensional subspace cannot be proper.
As an application of Corollary 5.8, it follows that any possible counterexample M to
the higher dimensional second Calabi conjecture (with n > 4) must be nonproper,
since it should satisfy

F(M) C R2 x B 7Br(o) € R"2 x B'Bg(0).

In other words, the second Calabi conjecture is true for proper immersions when
n>4.

Remark 5.10 Observe that the assumption on the bound of the mean curvature in
Corollary 5.8 cannot be weakened since 1/(n — 1)R is the mean curvature of the
cylinder R"~2 x S!'(R). On the other hand, Martin and Morales [186] constructed
examples of complete minimal surfaces properly immersed in the interior of a
cylinder R x RZBR(O). By the above result these surfaces cannot be proper in R3.

Proof (of Theorem 5.9)
(i) Suppose that M is stochastically complete or, equivalently, that the weak
maximum principle holds on M (see Theorem 2.8). As in the proof of (i) in



306 5 Miscellany Results for Submanifolds

Theorem 5.8, let u = ¢p(pp) o (wp of), where ¢, pp and wp are defined at the
beginning of that proof. Since 7p(f(M)) C *Br(p), we have that u* = sup,,u <
¢»(R) < +00. The idea of the proof is to apply the weak maximum principle to the
function u.

Let x € M and let {ey, ..., e,} be an orthonormal basis for 7,M. Proceeding as
in the proof of Theorem 5.8 (i), and using the same notation, we have

Y Hess(u)(x)(ei, ;) = ¢4(s) Y Hess (pp) (2) (d(e o f)(e:), (e o f) (i)
i=1 i=1

(5.80)

2
P

+ Co(5)93() Y (Vo d(z o ) @)

+ m}(5){Vpe. dr(1D) .
where s = pp(z) and z = 7p(f(x)). Therefore, by the Hessian comparison theorem,
that is, using (5.62) we have

Y Hess(p) (2)(d(re o f)(e:), d(p o f) (i)

i=1

> Cp(s)

> [|d(mp o el = (Vpe.d(re of)(e,-)ﬂ} .

i=1

From here and (5.80) we obtain

Au(x) =) Hess(u)(x) (e, e:) = §()Co(s) ) ld (e o f)(en)?

i=1 i=1

+ m}(s)(Vpe (2). drs(H))

> ¢,(5)Co(s) Y ld(mp o f)(e)|* — mepy(s) sup [H|

i=1

Moreover, since m = Y, |d(mwp o f)(e:)|* + |d(mrge o f)(e:)|*, we have

Au(x) > ¢>£(s){ (m —£)Cp(s) — mszl\lxzp |H|} .

Since the weak maximum principle holds on M and u* < ¢,(R) < +o0, there
exists a sequence of points {x;} C M satistying

@) ulxy) > u* — % and (ii) Au(xy) < %
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Then, setting s; = s(x;) we deduce
1 /
A > Au(x) > ¢, (si) | (m —£)Cp(sy) —msup H]| ).
M

Finally, since limi— o0 ¢}, (s) > 0, letting k — oo we have

(m—10)

sup [H| = Co(R).
M

This finishes the proof of item (i) in Theorem 5.9.

(ii) After item (i), it suffices to prove that the weak maximum principle holds
on M. Indeed, we will show something stronger, namely, the validity of the Omori-
Yau maximum principle. According to Theorem 2.4, it is enough to find a function
y:M— R(‘)F satisfying all the three requirements (i)—(iii) of the Theorem itself.

Since f is proper and f(M) C R’ x PBg(p), the function y(x) = |y(x)|, where
y(x) = mRe(f(x)), satisfies y(x) — +o00 as x — oo. Moreover, outside of a compact
set, we now have

£ 0
VY@ < [FEVEyl = *VDll = 1.

Therefore, y satisfies conditions (i) and (ii). Let us now check that the validity of
(iii).

To compute Ay, that is, the Laplacian of y(x) = pre(mre(f(x))), we proceed
similarly to what we did before: fixed an orthonormal frame {e¢;}, i = 1,...,m, on
M we have

Ay = DS el o). dlnse o) (e) + m(Vpse. dge (D)

> ld(re o f) (e = (%z, d(rrge of)(ei)f}

1
PrE (i3 i=1

+ m<vaz , dTrRe (H)>R‘f'

We may assume that

sup m|H|(x) < 400,
M

otherwise, sup,, |[H| = 400 and there is nothing to prove. Hence, from the above
we have

m

Ay(x) < o ®

+ m[H|(x) < A
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outside a compact set for some constant A sufficiently large. Summing up, the
function y : M — Ry satisfies all the three requirements in Theorem 2.4 and
therefore the Omori-Yau maximum principle for the Laplacian holds on M. The
result then follows from (i). O

5.5 Consequences on the Gauss Map of Submanifolds
of Euclidean Space

The same kind of problems can be considered also for smooth maps ¢ : M — N
with (M, g) and (N, h) generic Riemannian manifolds. For a general N not splitting
into a product of the type N; x N,, it only makes sense to consider the case
where (M) is bounded in N. We recall the following notion already mentioned
in Sect. 1.9.

Definition 5.2 A geodesic ball Br(q) C (N, h) is called a regular ball if it is
contained in the complement of the cut locus of ¢ and, denoting with VK, the
supremum of the sectional curvatures of N at p, we have

T
max{0, sup NKI,}I/2 < —.
PEBR(q) 2R

In particular, if Bg(g) is a regular ball the distance function p(y) = distgy ) (v, g) is
smooth on Bz(q) \ {g} .

Remark 5.11 Since the injectivity radius of any point p is positive, regular balls
do always exist. Strictly speaking in what follows we are only interested in the
smoothness of p(y). However, the nontrivial result of [118] contained in Lemma 5.2
below, and that will be essential in Theorem 5.11, is stated in terms of regular
geodesic balls. This justifies our choice.

Next result, in case of an isometric immersion into a Euclidean ball, yields the
validity of the first Calabi conjecture if (M, g) is stochastically complete. We need
the following extended form, proved in [225], in the proof of Theorem 5.11 below.
The argument is quite elementary.

Proposition 5.2 Let (M, g) be a stochastically complete manifold and ¢ : M —
(N, h) a smooth map with image ¢ (M) contained in a regular geodesic ball Bg(q)
of N. Suppose that

NK < b on Br(q) (5.81)

for some b € R. Furthermore, assume that

lT(p)] < 0 (5.82)
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for some 1y € R, where t(¢) is the tension field of the map ¢. Then, having set
= inf .
e=in e(p) (5.83)

we have

(i) R=> \/LE arctan(2\/5te—0), ifb>0;

(i) R>2% ifb = 0; (5.84)

7’

1 e .
(iii) R> J—_fbarctanh(Zx/—b%), ifb <0.

Remark 5.12 For the definition of 7(¢) see Sect. 1.7 of Chap. 1.

Proof We limit ourselves to the case b < 0, the other cases being similar. Let p(y) =
distv 5 (v, g). By the Hessian comparison theorem and (5.81) we have

Hess(p) > ~/—b coth(v/—bp)(h — dp ® dp). (5.85)

To simplify the writing let b = —1 and set
! h
u= —coshpog.
5 pog

Then, if m = dim M, by the composition law (1.181) of the Laplacian,

Au='Y " Hess(; cosh p)(dp(e). dp(e)) +d(5 cosh p)(x(p))

i=1
where {¢;},i = 1,...,m,is alocal orthonormal frame on M. From (5.85) we deduce
Au > (2e(p) + tanh(p o )A(Vp, t(@))) u. (5.86)
Since u > 1/2 and
—tanh(R)7o < tanh(p o 9)h(Vp, 7(9)).

using Cauchy-Schwarz inequality we obtain

1
Au = 2(e — 5 tanh(R)mo)u (5.87)
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Since u < % cosh(R), applying the weak maximum principle to (5.87) we obtain

1
e— 3 tanh(R)7y < 0,

which is equivalent to the validity of (5.84) (iii). O

Now we will consider an isometric immersion f : M — R”" together with its
Gauss map yr : M — G,(R")), from M into the Grassmann manifold of m-
planes through the origin of R”, where m = dim M. Since we shall need to perform
some computations, we next describe the Riemannian geometry of G,,(R") with
its canonical metric. Towards this aim we consider the usual action of the (proper)
rotation group SO(n) on R”. This action induces an action on G,,(R") which is

clearly transitive. We let {¢1, ..., &,} be the canonical basis of R" and we fix as an
origin of G,,(R") the point 0 = span{ey, ..., &n}, that is, the m-dimensional vector
space generated by ¢, ..., ¢,. The isotropy subgroup of the action of SO(n) on

G,»(R") fixing the origin o is the subgroup SO,(n)) given by
SO,(n) = diag(A, B) (5.88)

with A € O(m), B € O(n — m) and detA - detB = 1. We can thus realize G,,(R") as
the homogeneous space

SO(n)/S0O,(n).
We fix the indices convention
1<ab,...<n, 1<ij,...<m m+1<ap,...<n

To describe the Riemannian structure of G,,(R") we let {6} be the Maurer-Cartan
forms of SO(n) and let o be a local section of the principal fiber bundle

§0,(n)
xS0 "2 G,.(RM,

where 7 : A — span{Ay,...,A,}, with A;, i = 1,..., n the columns of the matrix
A. In what follows, throughout this paragraph we shall omit the pullback notation.
Since a change of local section is of the type

Qv

=0-K, K:UCG,R") — SO,(n),

U C G,,(R") open, from the transformation law of the Maurer-Cartan form of SO(n)
(see [152]) given by

67'ds =545 = "K("odo)K + "KdK = K~ (0" 'do)K + K 'dK,
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we immediately see that the quadratic form

ds* = Z(eﬁ)z (5.89)

o

is independent of the choice of o and therefore defines a metric on G,,(R") with
local orthonormal coframe given by the forms

(pot,i — 90{

i

with 1 <i<m, m+1<a<n. (5.90)

The corresponding Levi-Civita connection forms are

g = 630! + 6163, (5.91)

as they can be easily found by following the procedure in Proposition 1.1 or simply
guessed by the Maurer-Cartan equations df; = —8¢ A 67 on SO(n), verifying that
they satisfy Egs. (1.4) and (1.5).

In a way analogous to what we have done for the Grassmannian, we describe R”
as the homogeneous space

R" = R" x SO(n)/SO,(n), (5.92)

where the semidirect product R” x SO(n) is the group of (proper) rigid motions of
R and SO(n) is the isotropy group at the origin 0 € R”. We denote by

SO(n)
7 R x SO(n) =5 R” (5.93)

the projection of the principal bundle, that is, 7; : (x,A) — x. Let { be a local
section of (5.93) and let {6, 6y} be the Maurer-Cartan forms of R" x SO(n). The
quadratic form

(e =) (6 onR" (5.94)

a

is independent of the choice of ¢ and defines the Euclidean metric of R". The
corresponding Levi-Civita connection forms are

{6,3}. (5.95)
We let F : R" x SO(n) — SO(n) be the map

F:(xA) — A. (5.96)
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Given the isometric immersion f : M — R” and the Darboux frame (f, ¢) along f,
where e = {e1, ..., e, €mi1,...,en}, the Gauss map yy : M — G, (R") is defined
by

yr(p) = span,fei, ... en} (5.97)

in such a way that the following diagram is commutative:

R" x SO(n) —E— SO(n)

/WJ &

R'«—— UcM —2 Gn(RM)

7 (5.98)

For later use we shall reprove here the well known result of Ruh and Vilms [249].

Theorem 5.10 Let f : M — R" be an isometric immersion. Then f has parallel
mean curvature vector if and only if vy : M — G,,(R") is a harmonic map.

Proof Recall that, with respect to a Darboux frame, (f, e), along f, the coefficients
of the second fundamental tensor II are given by 4 where

0F =m0/, hG = .
Using the commutativity of the diagram (5.98) we obtain
yf*fp“’i =0 = h;@j, (5.99)
so that, with our notation (see Chap. 1),
)" = h. (5.100)

We then compute the generalized second fundamental tensor of y; according
to (5.100). We have

50" = dyp)f = 6] + )]s

= dif — 0! + hf (830] + 8165)

_ 1o pk
= hiz 0",
From Codazzi equations
o __ 0 __ o
b = M. = i
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so that
o _
i = M = higs-

In other words, t(yr) = 0 if and only if VH = 0. O

Let G} (R") be the Grassmann manifold of oriented m-planes in R”", so that
GHR") = SO(n)/SO(n) x SO(n — m). Having fixed ¢ € G} (R"), a geodesic
ball Bg(g) is regular if

R 7 ifn—m=1;
<Y 2 ifn—m> 1.

242’

(5.101)

To describe a regular geodesic ball in algebraic terms is far from being trivial. The
next result is due to Fischer-Colbrie [118], and we refer to her paper for the proof.

Lemma 5.2 Let A,,(R") be the algebra of m-multivectors of R" with inner product
(,) induced by the usual inner product of R". Consider the Pliicker embedding
P GIHR") = A, (RY

associating to the oriented plane I1 € G} (R") spanned by the oriented orthonormal
vectors ey, . .., e, the unit m-vector ey A\ --- N e,,. Let R > 0 be as in (5.101) and
define

Br(q) = {M € G, (R") : (IT.q) = cos" (R/ /m)}.

Then $Br(q) is contained in the regular geodesic ball Br(q).
We are now ready to prove

Theorem 5.11 Let f : M — R”" be an isometric immersion of a stochastically
complete oriented manifold of dimension m into R" with parallel mean curvature
vector. Suppose there exists a decomposable m-vector q such that for each x € M

{yr(x), q) > cos™(R/«/m)

with R as in (5.101). Then f is minimal.
Remark 5.13 For a previous version of the result see [153].
Proof From the Ruh-Vilms theorem, Theorem 5.10, yr is harmonic. Thus, for any

‘L'0>0

lT(yp)| < 7.



314 5 Miscellany Results for Submanifolds

Because of Lemma 5.2,

yr(M) C Br(q)

with Bg(q) a geodesic regular ball in G} (R"). Because of Proposition 5.2

%tanR, ifn—m=1;

infe(yy) < { % .
M 2—ﬁtan(\/§R), ifn—m>1.
In both cases, due to the arbitrariness of 7y we deduce
i?/lfe(yf) =0. (5.102)
On the other hand,

yidsh) =) (") =) (he)’

with respect to an oriented Darboux frame (f, ¢) along f. Thus making explicit the
computations, with the help of Gauss equations, we obtain

¥ (ds’) = —Ricy + m(IL H).
Tracing the above with respect to the metric g of M induced by f, we obtain
2e(yy) = —S + m?[H|%.
A further application of Gauss equation yields
12 = m*|H> - S.

Hence, from (5.102) we deduce

iﬁf|H|2 =0.
But
H]? < [1IJ?
and since |H| is constant it follows that H = 0. O

Let us consider again the Pliicker embedding & : G} (R") — A, (R"). We

recall that
dimA,,(R") = (”)
m



5.5 Consequences on the Gauss Map of Submanifolds of Euclidean Space 315

so that the unit sphere in A,,(R") has dimension d = (r’;) — I and it will be indicated
by S?. Identifying an oriented m-plane of R” with a unitary m-multivector we may
think of y; as a map with values in S?. Having fixed an oriented m-plane IT with

oriented orthonormal basis {v, . .., v, } we define the angle © between [T and yy(x)
via

cos® = (Vi A= AUp,e1 A+ Aep) (5.103)
where {e;}, i = 1,...,m is the part of the oriented Darboux frame (f, ¢) along f

tangent to M at x.

Definition 5.3 We shall say that y;(x) is contained in the open spherical cap Cg, (V)
centered at V. = v; A -+ A vy, with radius ®p, 0 < &y < r if and only if

cos ® > cos . (5.104)
yr(x) will be contained in the closure Cg, (V) if and only if
cos ® > cos O. (5.105)

In the proof of Theorem 5.12 below we shall need the following computational
result.

Lemma 5.3 Let f : M — R" be an isometric immersion of an oriented m-
dimensional manifold with associated Gauss map vy : M — S C A,,(R"). Fix
V=u A Av, € S?a unit m-multivector. Set vr(x) = e1 A+ Aey foran
oriented Darboux frame (f, e) along f, and define

u(x) = (yr(x), V), (5.106)

so that —1 < u < 1. Iff has parallel mean curvature vector then

Au < -] (u _JHemm =D g u2) : (5.107)

n—m

where 11 is the second fundamental tensor of f.

Proof Let {6} be a local, oriented Darboux coframe along f. We use the index
convention fixed above. Then

u=-{egN---Ney,V) (5.108)

and therefore if hg are the coefficients of the second fundamental tensor of /' we
have

6 = h3o/. (5.109)
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Differentiating (5.108) we obtain

(e A---Adei N+ ANey, V)

Ms ||Ms

(1) Nea Aer Ae A8 A A, VIIE = 16,
1

1

where, as usual, the symbol ~ means omitted. Indicating with uj the coefficients of
Hess(u), that is,

ujk@k = duj — qu.",
after an elementary but tedious computation using Codazzi equations we have

m
Ltjkgk =d (Z(_l)i_l(ea ANELA - AG A=A e, V)h;?]{)

i=1

m
- (Z(—l)"‘(ea AN A& A Aey, V) f;c) 6f
=1

= [(-D"~ lhuk(ea/\el/\-~~/\@i/\---/\em,V)
—(=D)"T B (e Aer A NG A Ay, V)
+Z( 1)i(— l)hghﬁ(eaAeﬁAelA---AétA---Aé,-A---Aem,V)
t<i
+Y (D7 (= l)hghﬁ(eaAeﬁAelA---Aé,-A---Aé,A---Aem,V)]9"

>i

Now the fact that H is parallel is equivalent to
Wy =0

which, by Codazzi equations, turns out to be equivalent to /g;; = 0. Tracing uj with
respect to j and k and using the above we obtain

Au+|12u = ZZ Z(—l)i_'_t[h?;(hg(—h%(hg(](ea/\elg/\61/\"‘/\2,/\”‘/\&/\”‘/\6,,,, V).
a<f t<i

(5.110)
Next we set

0 =" (1) hghl, — H G ap (5.111)

a<f t<i
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with

A

Lopi = (€a NegAEr N~ NG N NE&NA---Ney, V). (5.112)

To estimate Q from above we modify an idea of Reilly [241]. First of all we apply
Cauchy-Schwarz inequality to obtain

DB LA A B e (5.113)

a<p t<i a<p t<i

To bound from above the term

DD L

a<f t<i

we simply observe that, since V is a unit m-multivector

Y i <1-0? (5.114)

a<f t<i

To estimate from above the remaining term in (5.113) we recall the following
algebraic result due to Chern et al. [87].

Lemma 5.4 Let C = (cj) and D = (dj) be symmetric n x n matrices. Then

2
YD Ceidi—cdi) | <20 HQ_diy). (5.115)
ij k.t

ik j

In other words, if we set |C| to denote the Hilbert-Schmidt norm of the n x n matrix
C, we have

|CD — DC|* < 2|C*|D|*.

. _ 2 . .
Proof Observing that |C|* = |T 1CT| for every orthogonal n x n matrix T, without
loss of generality we may assume that D, for instance, is a diagonal matrix, with entries
di,...,d,. An easy computation now shows that

D —DCP =" (c5)*(di — ).

i]
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Since (di — dj)2 < 2(d,~ + dj)2 we deduce

€D —DCP =Y (cy) (di = ) = D 2(ey)(di + )’

i#j ij
<2/ () (Zdz) =2|CP|D?
iF#j
and the lemma follows. O

Next, we fix the indices « and . Using the previous lemma we obtain
1
DVl = B = 5 3 Mk = Wk < D 0 (k) = 0PI,
1<i i ik ik
where we have set

I = (I, e,).

From the previous inequality we deduce

DI A A A RS S SR (5.116)

a<p t<i a<f

On the other hand, Newton’s inequalities give

2
- —m—1 |2 —m—1
2 —n—m 2(n—m)

a<f

From (5.115) we finally obtain

n—m
DI A _2(—)|II|4 (5.117)
a<f t<i

Putting together (5.117), (5.114), (5.113) yields

0< ,/%unwl—uz. (5.118)

Using (5.118) together with (5.110) we obtain (5.107). O

We are now ready to state our result (see [239] for another version).
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Theorem 5.12 Letf : M — R" be a complete, oriented, m-dimensional isometric
immersion with parallel mean curvature vector H. Assume that the scalar curvature
S(x) of M satisfies

B
2 2_ =
S(x) < m2[H]| TR (5.119)

for some B > 0 and 0 < u < 2. Suppose furthermore that

log volB,
liminf —2027 & 4 oo, (5.120)

r—+o0  pIH

Then yy(M) is not contained in any closed spherical cap in sG)-1 ¢ A (R of

radius
2n—m—1
O < arccos ,/M. (5.121)
3n—3m—2

Proof Given a unit multivector V = v; A -+ A v, we set

u= (V)
By Lemma 5.3
Au = =b(X)f (u)
where we have set
b(x) = [ (x)

and

flu) =u— M«/l 2.

n—m

Since b(x) = |II|?(x) = m?|H|*> — S(x), from (5.119) we see that

b(x) > 5 > 0onM.
(I + r(x))*

Since u is clearly bounded from below, it follows from Theorem 4.1 that f(u+) < 0.
Solving the inequality one obtains

[2(n—m—1)
Us S\ 57—
3n—3m—2

as required. O
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5.6 An Application of the Open Weak Maximum Principle

We now perform a computation similar to what we did to obtain Eq. (1.180).
Suppose that M and N are manifolds with poles, respectively oy and oy. Let
om(y) = distar(),) (0,om) and py(z) = diSt(N,(,)N) (z,0n). We consider an
isometric immersion

f: X —>MXxN.

Letting 7y, and mry be the two canonical projections of the product manifold onto its
factors, we want to compute Au and Av, where u and v are respectively given by

u=@y(pm)omyof, v =gn(pny) oy Of,

with @, on - R(')" — R smooth functions to be chosen later. Of course it will
be enough to compute, for instance, the first. Towards this aim we recall that
from (1.181) we have

s=dimX¥
Au= )" Hess (pu(pm))(d(y o f)(e), d(tu 0 f)(er) + ("Vou (o), T(as o ).
i=1

(5.122)

where {e;} is a local orthonormal frame on X. We therefore need to compute
d(my o f) and t(mpy of). In order to do this we fix the index convention 1 <
iLj,...<s=dmX, 1 <qa,p,... <m=dmM, 1 <a,b,... <n=dimN. We
can apply formula (1.180) again, but for our purposes we need to make explicit the
terms appearing in it. Thus it is in fact worth to redo the computation. Towards this
aim we let

O A0 ted. 3 {vE ] dead {0 () B

be local orthonormal coframes, with corresponding Levi-Civita connection forms
and dual frames, respectively on X', M and N; computations follow the same
formalism of Sect. 1.7 in Chap. 1. Recall that, for the product manifold structure on
M x N, {y*, »} form a local orthonormal coframe, with corresponding connection
forms (pg = 1//2‘, o =¢i =0, ¢, = w;; now

n;;wo( — Ip.a’
so that

(tm 0 N)FO" = (mty 0 f)* Y = f*(mpy®) = f*y* = f9,
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while
Ty’ =0,
implying
(mm 0 f)f = 0.
It follows that
d(my of) = f7'0" ® eq.
We now compute 7 (s of), for my of : ¥ — M. We have
(mu 0 )07 = df* —f20F + £l wg = 120,
while
(my of)l‘.;@j =0.
Hence,

t(my of) = fij €a-
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(5.123)

(5.124)

For later use (see Theorem 5.13) we note that, setting f*w® = f{6', since f is an

isometric immersion we have

2 2

d(ry o /) + ld(n 0 /)P = Ziaa(ff) + (ff) =5 =dim ¥.

We now insert (5.124) and (5.123) into (5.122) to obtain

Au= 3" Hess (pu(on) (fewfen) + D ("Vou(on). fie).

io,B io

Similarly

Av = Z Hess (on(pn) (f*Ea. f7Ep) + Z ("Von(pn).fLEd)-

io,B io
Again, since f is an isometric immersion,

sH = fleq + f{E,

(5.125)

(5.126)

(5.127)

where H is the mean curvature of the immersion. Then the last term in the right-hand

side of (5.126) and (5.127) can be written respectively in the form

(" om(om).sH) and ("Voy(on). sH).

(5.128)
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We are now ready to prove the following lemma, extending some previous result of
Dierkes [101]. This calculation has been performed also by de Lira and Medeiros
[98].

Lemma 5.5 Let M, N be complete manifolds with poles respectively oy and oy and
distance functions py, py as above. Assume

MK a() = —Gu(on(y))  and  Kea(z) < —Gy(on(2)). (5.129)

Let gy and gy be respectively the positive (if any) solutions on RY of the Cauchy
problems

gn(0) — Gn()gn(t) =0 on ]R(')"

ggﬁ//j(f) —Gu(gu() =0 on ]R(')"
gn(0) =0, gy(0) =1

gn(0) =0, g,(0) =1

and define the functions

P 14
om(p) = / gm(s)ds, on(p) = / gn(s) ds. (5.130)
0 0

Letf : ¥ — M x N be an isometric immersion of an s-dimensional manifold X
into the product manifold M x N and, setting my, 7wn for the canonical projections
of M x N onto its factors, define

u = ou(pm)omy of, v = gn(py) oy o f. (5.131)
Then
Au < gy (o (w0 f)) Yy 1d(m o ) (e + s("Vou (o). H),

Av = gh(py(my o)) Yoie, ld(my o f) (e’ + s(™Von(py). H),, -
(5.132)

where {e;} is a local orthonormal frame on X.
Proof By the Hessian comparison theorem, Theorem 1.4, we have

gy(om)
gm(om)

in the sense of symmetric bilinear forms. Then by (1.168) and the definition (5.130)
of gy we deduce

Hess (om) =

s ) — dpm ® dpu

Hess (o (pm)) = gy (om) (. Jas-
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Substituting this expression in (5.126) and using (5.128) we obtain

Au < gly(pu) Y (i o f)(e) | + s("Vorr(on). H), -
i=1
Similarly one obtains the second of (5.132). O

Remark 5.14 One can give bounds on Gy, and Gy to guarantee that gy and gy be
positive on RT. A detailed discussion on this can be found for instance in [44].

Since here we are interested only in showing an application of the open form of
the weak maximum principle, we limit ourselves to the simplest case where Gy =
Gy = 0. We prove the following

Theorem 5.13 Let M and N be manifolds with poles oy and oy and dimensions m
and n respectively. Assume that their radial sectional curvatures satisfy YKq > 0
and NKq < 0. Consider M x N with the product metric and the real function

o = e}y o ) + (o} o )

defined on M x N, with i € (W’rzs, O) and where the integers s and m satisfy s >
m. Let f : ¥ — M x N be an s-dimensional, stochastically complete, minimal
submanifold and 2 C X an open set with 082 # @ such that, for some A € RS’,
f(02) C{(y,z2) e M xN:0(y,z) = A} (5.133)
and o o f is bounded above on §2. Then
f(2) C{(r.z) eM x N :0(y,z) < A}. (5.134)

Proof On X we consider the function w = o o f. Specializing (5.132) to this case
we have

aw= 1S G o Nl + 3 Gy o f)(en

i=1 i=1
and therefore, by (5.125),

Aw = s+ (= Dld(u o f)*:
but

(o f)* < m
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so that we finally obtain
Aw>s+m(u—1) >0, (5.135)

where the last strict inequality is due to our choice of the parameter . We now
reason by contradiction and we suppose that (5.134) is not satisfied. This means
that there exists at least a point xo € §2 such that w(xg) = o(f(x0)) > A. Note
that, by (5.133), w(x) = (0 of)(x) = A for each x € 952. Therefore, sup;o w <
w(xg) < sup, w. By Theorem 4.6, that is, the open form of the weak maximum
principle, we necessarily have

s+m(u—1)=<0,

a contradiction. O



Chapter 6
Applications to Hypersurfaces

The chapter begins with some introductory considerations on surfaces with constant
mean curvature into 3-dimensional space forms based on, by now classical,
works of Klotz, Osserman, Hoffman, Tribuzy. .. with the purpose to motivate their
appropriate extensions to the higher dimensional case. In particular, we analyze
their classification, lower and upper estimates on the Gaussian curvature and their
relative sharpness. The proofs of these classical results do strongly depend on the
conformal structure of the surfaces motivating the need of an alternative approach
in higher dimensions. Following Alias and Garcia-Martinez [14, 15] we provide
new arguments based on the maximum principle. See for instance the proofs of
Theorems 6.4 and 6.5 below. We also provide a further approach based on the
principal curvature theorem (Theorem 6.7) of Smyth and Xavier [258].

We then focus our attention on the constant scalar curvature case with the aid
of the well-known Cheng and Yau operator [J (that is, the differential operator
associated to the first Newton operator of a 2-sided hypersurface). The main result is
given in Theorem 6.10. Proceeding we introduce, in some detail, the general Newton
operators and briefly discuss the ellipticity of the associated differential operators.
These material will be used also, for instance, in Chap.7. In order to achieve a
proof of Theorem 6.10 we Taylor an appropriate form of the Omori-Yau maximum
principle for trace operators under curvature assumptions, see Theorem 6.13. Its
proof follows the lines of that of Theorem 2.5, but we decided to report here some
details because of the existence of the cut locus.

In Sect. 6.3 we consider hypersurfaces X~ whose image is contained into a non-
degenerate Euclidean cone. Motivated by the results of Chap.5 we give a lower
bound estimate for supy, |Hy+1|/Hk, Hx the k-th mean curvature, in terms of the
width of the cone.

In the final section of the chapter we give the same type of estimates but in
case the image of ¥ is contained in a regular geodesic ball of a generic complete
Riemannian manifold N.

© Springer International Publishing Switzerland 2016 325
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6.1 Constant Mean Curvature Hypersurfaces in Space
Forms

In a classical paper, Klotz and Osserman [160] characterized totally umbilical
spheres and circular cylinders as the only complete surfaces immersed into the
Euclidean 3-space R* with constant mean curvature H # 0 and whose Gaussian
curvature does not change sign. Later on, Hoffman [145] and Tribuzy [265] gave an
extension of that result to the case of surfaces with constant mean curvature in the
Euclidean 3-sphere S and in the hyperbolic space H?, respectively. Specifically,
putting together the results of these authors in a single statement, one gets the
following result (see also [76, Proposition 3.3]).

Theorem 6.1 Let X be a complete surface immersed into a 3-dimensional space
form with constant mean curvature H. If its Gaussian curvature K does not change
sign, then X' is either a totally umbilical surface or K = 0 and

(a) X is a circular cylinder R x S'(r) C R3, r > 0,
(b) X isaflattorus S'(vV1 =) xSl(r) c S}, 0<r <1,
(c) X is a hyperbolic cylinder H'(—+/1 + r2) x S'(r) C H?, r > 0.

As a nice application of Theorem 6.1, one gets the following consequence for the
infimum of the Gaussian curvature of X.

Theorem 6.2 Let X be a complete surface immersed into a 3-dimensional space
form with constant mean curvature H such that H> + ¢ > 0, where ¢ denotes the
constant sectional curvature of the ambient space (c = 0, 1, —1). Then either

(i) infy K = H>+c and X isa totally umbilical surface, or
(ii) infy K < 0, with equality if and only if

(a) X is a circular cylinder R x S'(r) C R3, r > 0,
(b) X isaflat torusS' (V1 —r2) xS'(r) c S}, 0<r<1,
(c) X is a hyperbolic cylinder H'(—v/1 + r2) x S'(r) C H?, r > 0.

Actually, it follows from the Gauss equation of the surface that K < H? + ¢ on
XY, with equality at the umbilical points of X'. Therefore, infy K < H? + ¢ with
equality if and only if X' is totally umbilical. This proves part (i). Moreover, if
infy K < H? + c then it must be infs K < 0 necessarily. Otherwise, one would
have K > infy K > 0 which is not possible by Theorem 6.1, since the nontotally
umbilical surfaces in (a), (b) and (c) are all flat. This shows that infy, K < 0. Finally,
if equality holds, infy K = 0, then K > 0 and the result follows from Theorem 6.1.

As another nice application of Theorem 6.1, one also gets the following
consequence for the supremum of the Gaussian curvature of .
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Theorem 6.3 Let X be a complete surface immersed into a 3-dimensional space
form with constant mean curvature H. Then either

(i) sups K = H*> + ¢, or
(ii) 0 <supy K < H* + ¢, with equality sups. K = 0 if and only if

(a) X is a circular cylinder R x S'(r) C R, r > 0,
(b) X isaflattorusS'(V1 —r) xS'(r) c S*, 0<r<1,
(c) X is a hyperbolic cylinder H'(—+/1 + r2) x S'(r) C H3, r > 0.

In fact, one knows from the Gauss equation of the surface that supy. K < H? + c.
Moreover, if supy. K < H? + c then it must be supy K > 0 necessarily. Otherwise,
if one assumes that supy, K < 0 then it would follow that K < supy K < 0 which is
not possible by Theorem 6.1, since the nontotally umbilical surfaces in (a), (b) and
(c) are all flat. This shows that either supx K = H? + c or 0 < supy. K < H? + c.
Finally, if equality supy, K = 0 holds, then K < 0 and the result follows again from
Theorem 6.1.

Rotational surfaces show that the estimates in Theorems 6.2 and 6.3 are sharp.
For instance, let us consider the Delaunay rotational surfaces in the Euclidean space.
For a given constant H # 0, we may consider the family of unduloids in R3 with
constant mean curvature H, which are given by the following parametrization

(s,0) — (xp(s),yp(s) cos 0, yp(s)sinB), (s,0) € R x[0,27],

where 0 < B < 1 and

s 1 + Bsin (2HY)
xp(s) = ,
0 +/1+ B2+ 2Bsin (2H1)

/1 + B2 + 2Bsin (2Hs)
2|H]|

ye(s) =

(see [158] for the details). The first fundamental form of these surfaces is ds> +
yz(s)2d6? and the Gaussian curvature is then

ye(s) 4H?B(B + sin (2Hs))(1 + Bsin (2Hs))
Cys(s) (1 + B2 + 2Bsin(2Hs))?

KB(S, 9) = KB(S) =
Therefore, for these examples we have
infKpg =———<0
¥ —

and
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Then, for a given ¢ > 0 there exists 0 < B < 1 such that infy Kg = —& < 0,
showing that the estimate infy K < 0 in Theorem 6.2 is sharp. On the other hand,
for a given ¢ > 0 one may also find By, B, € (0, 1) such that supy. Kz, = ¢ and
sups. Kp, = H? — &, respectively, showing that the estimate 0 < supy. K < H? in
Theorem 6.3 is also sharp (with ¢ = 0).

It is worth pointing out that the proof of Theorem 6.1 (and hence Theorems 6.2
and 6.3) strongly depends on the conformal structure of the 2-dimensional surface
X', and cannot be extended to higher dimensions. Our objective in this section is
to introduce extensions of Theorems 6.2 and 6.3 to the case of m-dimensional
hypersurfaces, m > 3, using an alternative approach by Alias and Garcia-Martinez
which is based on the maximum principles.

Specifically, we will prove the following extension of Theorem 6.2 (see [14,
Theorem 3]).

Theorem 6.4 Let X be a stochastically complete hypersurface immersed into an
(m + 1)-dimensional space form, m > 3, with constant mean curvature H such that
H? + ¢ > 0, where ¢ denotes the constant sectional curvature of the ambient space
(c =0,1,—1). If S stands for the scalar curvature of X, then

(i) either
inf$ = m(m—1)(c+ H?)
and X is a totally umbilical hypersurface,
(ii) or

inf§ < By (6.1)

where

~ -2
By = % (Z(m — )¢ + mH? + |H|/m?*H? + 4(m — 1)c) .
(6.2)

Moreover, the equality infg § = B;\H\,C holds and this infimum is attained at
some point of X if and only if X' is a (stochastically complete) open piece of

(a) a circular cylinder R x S"™'(r) c R"*!, r > 0,
(b) a minimal Clifford torus Sk(\/k/_m) x §"k(/(m—k)/m) C S"T1, with
k = 1,....m — 1, or a constant mean curvature torus S'(~/1 —r2) x
Sy € S™FL with0 < r < \/(m—1)/m,
(c) a hyperbolic cylinder H'(—+/1 + 12) x S"~'(r) c H™*!, r > 0.
In the particular case that X' is complete, we obtain the following consequence
(see [14, Corollary 4]).
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Corollary 6.1 Let X be a complete hypersurface immersed into an (m + 1)-
dimensional space form, m > 3, with constant mean curvature H such that

H? + ¢ > 0, where ¢ denotes the constant sectional curvature of the ambient space
(c=0,1,—1). Then

(i) either

inf$ = m(m—1)(c+ H?)

and X is a totally umbilical hypersurface,
(ii) or

infS < By,
1g = DlH|c

Moreover; the equality infy S = B\‘H‘,C holds and this infimum is attained at
some point of X' if and only if X' is

(a) a circular cylinder R x S"~'(r) C R"*!, r > 0,

(b) a minimal Clifford torus S*(\/k/m) x S"~*(\/(m —k)/m) C S"*!, with
k = 1,...,m — 1, or a constant mean curvature torus S'(~/1 —r?) x
Sy € S™L with0 < r < \/(m—1)/m,

(¢c) a hyperbolic cylinder H'(—+/1 + 12) x S" () Cc H"*!, r > 0.

On the other hand, Theorem 6.3 admits the following extension to the m-
dimensional case (see [15, Theorem 6]).

Theorem 6.5 Let X be a hypersurface immersed into an (m+1)-dimensional space
form, m > 3, with constant mean curvature H and with two distinct principal
curvatures, one of them being simple. Assume that the Omori-Yau maximum
principle holds on X, and let ¢ denote the constant sectional curvature of the
ambient space (c = 0,1, —1).

(i) IfH? + ¢ > 0 then

By < supS < m(m—1)(c+ Hz),
b))

By = % (Z(m — Ve +mH* — |H|/m*H? + 4(m — 1)c) .
(6.3)

(ii) IfH2 + ¢ < 0 (necessarily with c = —1) then either

supS = m(m — 1)(—1 + H?)
z
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or4(m—1)/m*> < H* < 1 and

By~ <supS < By < m(m—1)(=1+ H?),
)

where 1’3?|H|,C is given by (6.2).
Moreover, the equality supy S = By . holds and this supremum is attained at some
point of X' if and only if X is an open piece of

(a) a circular cylinder R~ x S'(r) c R"*!, r > 0,
(b) a constant mean curvature torus S'(v/1 —r2) x S*71(r) C S™FL, with r >

V(m—=1)/m,

(c) a hyperbolic cylinder H" ™' (—+/1 4+ r2) x S'(r) C H"T!, with either r =
1//mm—=2)if H*> = 1, 0r 0 < r < 1//m(m —2) in the case H> > 1,
or1//m(m—2) <r <1/m—2inthe case H* < 1.

In particular, when X' is properly immersed, we have the following result (see
[14, Theorem 41]).

Corollary 6.2 Let X be a hypersurface which is properly immersed into an (m—+1)-
dimensional space form, m > 3, with constant mean curvature H and with two
distinct principal curvatures, one of them being simple.

(i) IfH2 + ¢ > 0 then

Bjc <supS < m(m—1)(c + H?).
P

(ii) If H* + ¢ < 0 (necessarily with c = —1) then either

supS = m(m — 1)(—1 + H?)
b

ord(m—1)/m* < H* < 1and

Bjy—1 < supS < By~ < m(m—1)(=1 + H?).
s

Moreover, the equality supy S = By . holds and this supremum is attained at some
point of X' if and only if X is

(a) a circular cylinder R~ x S'(r) c R"*!, r > 0,
(b) a constant mean curvature torus S'(v/1 —r2) x S"7'(r) C S™*L, with r >

V(m—=1)/m,

(c) a hyperbolic cylinder H" ™' (—+/1 4+ r2) x S'(r) C H"T!, with either r =
1//mm—=2)if H*> = 1, 0r 0 < r < 1//m(m —2) in the case H> > 1,
or1//m(m—2) <r <1/m—2inthe case H* < 1.
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Remark 6.1 Regarding the condition of having two distinct principal curvatures, it
is well known, since the pioneering work of Otsuki [215], that if both principal
curvatures have multiplicity greater than 1, then the distributions of the space
of principal vectors corresponding to each principal curvature are completely
integrable and each principal curvature is constant on each of the integral leaves
of the corresponding distribution. In particular, if the mean curvature is constant,
then the two principal curvatures are also constant and the hypersurface is an
isoparametric hypersurface with exactly two constant principal curvatures, with
multiplicities k and m — k, and 1 < k < m — 1. Then, by the classical results
on isoparametric hypersurfaces in Riemannian space forms [64, 172, 253] the
hypersurface must be an open piece of one of the three following standard product
embeddings: R* x S¥(r) ¢ R"™! with r > 0, if ¢ = 0; S*(v/1 —r2) x S"*(r) C
S" with0 < r < 1,if ¢ = 1; and H*(—+/1 4+ 2) xS"*(r) ¢ H"*! with r > 0, if
¢ = —1. Therefore, under the condition of having two distinct principal curvatures,
the interesting case for studying constant mean curvature hypersurfaces is the case
where one of the principal curvatures is simple, that is, with multiplicity 1.

In [273], Wei studied complete hypersurfaces in the Euclidean sphere with
constant mean curvature and with two distinct principal curvartures, one of them
being simple, deriving a characterization of the tori S'(v/1 — r2) x S"~!(r) in terms
of the behavior of the squared norm of the second fundamental form (see also
[140] for a previous corresponding result for the case of minimal hypersurfaces
in S"*! given by Hasanis et al.). It is worth pointing out that the estimates
in Corollary 6.1 for the infimum of the scalar curvature [equivalently, for the
supremum of the squared norm of the second fundamental form, see (6.10) below]
and in Corollary 6.2 for the supremum of the scalar curvature [equivalently, for the
infimum of the squared norm of the second fundamental form, see (6.11) below],
when written in terms of the second fundamental form, are equivalent to Wei’s
estimates, with the advantage that the new approach here works for hypersurfaces
in every Riemannian space form and that the estimate in Corollary 6.1 does not
need the condition of having two distinct principal curvatures. We also refer the
readers to [79, 139, 217] or [270] for other previous results about minimal compact
hypersurfaces with two distinct principal curvatures in the Euclidean sphere S"*1.

6.1.1 Proof of the Main Results

Let ¥ be an oriented hypersurface isometrically immersed into an (m + 1)-
dimensional Riemannian space form of constant sectional curvature ¢ = 0, 1, —1,
and denote by A : X(X) — X(X) its second fundamental form (with respect to
a globally defined normal unit vector field v) and by H its mean curvature, H =
(1/m) Tr(A). In the general m-dimensional case, instead of the scalar curvature, it
will be more appropriate to deal with the so called traceless second fundamental
form of the hypersurface, which is given by @ = A—HI, where I denotes the identity
operator on X(X). Observe that Tr(®) = 0 and |®|*> = Tr(P?) = |A|> —mH? > 0,
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with equality if and only if X' is totally umbilical. For that reason, @ is also called
the total umbilicity tensor of X
As is well known, the curvature tensor R of the hypersurface is given by Gauss
equations, which can be written both in term of A as
RX,Y)Z = c(—(X,2)Y + (Y. Z)X) — (AX, Z)AY + (AY,Z)AX (6.4)

and in terms of @ as

RXX.Y)Z = (c + H)(—(X,2)Y + (Y, Z)X) — (DX, Z)DY + (@Y, Z)PX
+H(—(®X,2)Y + (Y, Z)PX — (X, Z)DY + (@Y, Z)X)  (6.5)

forX,Y,Z € X(X). In particular, the Ricci and the scalar curvatures of X' are given,
respectively, by

Ric(X,Y) = (m — 1)c(X.Y)+mH(AX,Y) — (AX,AY)
= (m—1)(c+ H)(X.Y)+ (m—2)H(PX,Y) — (DX, DY), (6.6)

forX,Y € X(X), and
S =m(m—1)R =m(m—1)c+m*H>—|A]> = m(m—1)(c+H?) —|®]>. (6.7)

Here, and in what follows, with R we indicate the normalized scalar curvature.
From (6.7) we obtain the identities

m’H? = |A|> + m(m — 1)(R — ¢), (6.8)
and
P = " AR — n— DR~ ) = mOm — DH —mm~ DR—0).  (69)
In particular, if H is constant it follows from here that

inf§ = m(m — 1)(c + H?) —sup |®|? (6.10)
X

and

sup S = m(m — 1)(c+H2)—ir21f|d>|2. (6.11)
P

For the proof of the main results we will use the following Simons type formula
for the Laplace-Beltrami operator of |A|%.



6.1 Constant Mean Curvature Hypersurfaces in Space Forms 333

Lemma 6.1 Let X be a hypersurface immersed into an (m + 1)-dimensional
Riemannian space form (with constant sectional curvature c) and let A stand for
its second fundamental form. Then

1
§A|A|2 = |VA|® + mTr(A o hess H) — cm®H? + (cm — |A]*)|A|* + mH Tr(A®)
(6.12)

where VA : X(X) x X(X) — X(X) denotes the covariant differential of A,
VA(X,Y) = (VyA)X = Vy(AX) — A(VyX), X.Y € X().

Formula (6.12) follows from the more general formula (1.149) in the particular
case where the ambient space has constant sectional curvature c. For the sake
of completeness, we include here another derivation of it, following Nomizu and
Smyth [208].

Proof A standard tensor computation implies that
1 2 _ 1 2
§A|A| = §A<A’A) = |VA|” + (A, AA). (6.13)

Here AA : X(X) — X(X) is the rough Laplacian,

AAX) = Te(VPAX, ) = Y VAKX, i, €),

i=1

where {e, ..., ey} is a local orthonormal frame on X. Recall that VA is symmetric
by the Codazzi equation of the hypersurface and, hence, V?A is also symmetric in
its two first variables,

V2AKX,Y,Z) = V?A(Y,X,Z), X.Y,ZeX(X).

With respect to the symmetries of VA in the other variables, it is not difficult to see
that

V2A(X.Y,Z) = V?A(X.Z.Y) + R(Z, Y)AX — A(R(Z, Y)X).

Thus, using Gauss Eq. (6.4) it follows from here that

AAX) = Z (V2A(ei, €1, X) + R(ei, X)Ae; — A(R(ei, X)e;)) (6.14)
i=1

= Tr(Vx(VA)) — cmHX + (cm — |A|)AX + mHA’X
= mVxVH — emHX + (cm — |A|)AX + mHA?X,
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where we have used the facts that trace commutes with Vy and that Tr(VA) = mVH
because of Codazzi equations (1.145) (see Remark 6.2 below). Therefore, by (6.13)
we conclude that

1 m
5A|A|2 = |VAP +m) (V. VH.Ae:) — c®H* + (cm — |AP)|A]* + mH Tr(A%)

i=1

= |VA]> + mTr(A o hess H) — em*H?* + (cm — |A|?)|A|* + mH Tr(A®).

O

Remark 6.2 For a hypersurface X' isometrically immersed into a general (m + 1)-
dimensional Riemannian manifold N, Codazzi equation (1.145) is equivalent, in
Koszul notation, to

(VyA)X — (VxA)Y = (R(X, Y)v) (6.15)
forevery X, Y € X(X'), where A denotes the Weingarten operator with respect to v.
Therefore in general, and using the fact that V, A is self-adjoint, we have for every
XeX(X)
(VeA)er X) = ((VoA)X, e)) = ((VxA)ei, ei) + ("R(X, e)v, e),

so that

(Tr(VA).X) = > (Vo A)es, X)

NE

i=1

m

(VxA)ei,ei) + ) ("R(X, e)v. &)
1 i=1

Tr(VxA) — MRic(X, v)
Vx(TrA) — MRic(X, v)
= m(VH,X) — "Ric(X, v).

Il
M=

In particular, it is enough for N to be Einstein to have Tr(VA) = mVH.

When the mean curvature H is constant, then V@ = VA and A|®|?> = AJA|?,
and one can rewrite (6.12) in terms of @ as follows.

Corollary 6.3 Let X a be hypersurface immersed into an (m + 1)-dimensional
Riemannian space form (with constant sectional curvature c) and let @ stand for its
total umbilicity tensor. If the mean curvature H is constant, then

1
§A|q5|2 = VO > + mHTr(®?) — |@)*(|®|* — m(c + H?)), (6.16)
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where V@ : X(X) x X(X') — X(X) denotes the covariant differential of &,
Vo(X,Y) = (Vyd)X = Vy(PX) — D(VyX), X,Y € X(X).

We will also need the following auxiliary result, known as Okumura’s lemma,
which can be found in [209] and [8, Lemma 2.6].

Lemma 6.2 Letay,...,a, be real numbers such that Z:"zl a; = 0. Then

2 m 3/2 m ) m 3/2
_ (m—2) (Z aiz) < ai3 < (m—2) (Z aiz) '
vm(m—1) \{Z i=1 vm(m—1) \{Z
Moreover, equality holds in the right-hand (respectively, left-hand) side if and only
if (m — 1) of the a;’s are nonpositive (respectively, nonnegative) and equal.

Proof To simplify the notation, let us define Z:’;l ai2 = b? > 0; we have thus to
prove that

3 < (m—2) b,

. - vm@m—1)

We follow the proof of [8, Lemma 2.6]. If b = 0 we have nothing to prove, so we
can assume b > 0. Now we exploit the method of Lagrange’s multipliers to find
the critical point of the function F = Y """, a} with the constraints ) i, a; = 0
and > a? = b* > 0. A simple computation shows that the critical points are
solutions of a quadratic equation of the form

2 bz_
X —pux—— =20,
m

where 1 is a real constant. Since the solutions of previous equation are given by

pE L pu?+ 2p?
Xpo= —"
i 2
it follows that (after reordering if necessary) the critical points are given by
ag=a=...=a,=x+>0, a1 =ap2=...=a, =x-<0.

Evaluating F and the constraints at critical points gives

prs + (m—phx_ =0,
pGy)® + (m—p)(x-)? = b,
p(xy)’ + (m—p)(x-)* = F;
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this implies that

()2 = 2Ly,
mp
p 2
)y =—L i
m(m — p)
F = [(m _p)x+ + Ex_:lbz = [x+ — £x+ — £|x_|]l72.
m m m m

Since F decreases as p increases, F reaches its maximum F,,,, for p = 1, and we
have, using previous equations,

(m—2) e

vm(m—1) ’
(m—2)

while the symmetry of F implies that the minimum F,,;, is equal to — NOTEE O

Frax = (x+)3 + (m — 1)()(_)3 =

We are now ready to give the proof of the first main result of this chapter.

Proof (of Theorem 6.4) Since Tr(®) = 0, we may use Lemma 6.2 to estimate
Tr(®?) as follows

(m—2)
vm(m—1)

| Tr(@%)] < P,

and then

m(m —2)
vm(m—1)

mH Tr(®?) > —m|H|| Tr(P%)| > — |H||®].

Using this in (6.16), we find

1 m(m — 2)
—Al®)? > |[VO|) — ———|H||®|® — |®|*(|®|* — m(c + H?
2||I|\/mllllll(ll ( )
> —|D Py (| D)), (6.17)
where
-2
P\H\,c(x):xz—i- mim —2) |H|x—m(c+H2).

vm(m—1)
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Observe that, since H> + ¢ > 0, the polynomial P\ .(x) has a unique positive root
given by

Jm
Q| e = —F/——
24/m—1

If supy, |@| = 400, then by (6.10) we have infx § = —o0, so that (6.1) holds
trivially and there is nothing to prove. If supy |®| < +o0, then by applying the
weak maximum principle to the function |®|> we know that there exists {x;}rex in
X' such that

(\/mzH2 +4(m—1)c— (m —2)|H|) .

lim |®@|(x;) = sup|®|, and A|P|[*(xx) < 1/k,
k—00 b))

which jointly with (6.17) implies
1/k> AlPP () = =2| @ (0 Py o (|9 ().
Taking limits here, we get 0 > —2(supy. |®|)*P|y).(supy |®|), that is

(sup | ®[)* Py} (sup | P]) = 0.
b b

It follows from here that either supy |®| = 0 or supy || > 0 and then
Py c(supy |@]) > 0. In the former case, which by (6.10) is equivalent to

ing = m(m — 1)(c + H?),

it means that |@| = 0 and the hypersurface is totally umbilical. In the latter, it must
be supy |@| > a}p) which by (6.10) is equivalent to inequality (6.1) since

inf S = m(m— 1)(c + H?) — sup D> < m(m—1)(c + H*) — oy . = Bl

Moreover, assume that equality infy S = EH\,C holds; equivalently, supy, |®| =
|- In that case, Py (|®]) < 0 on X, which jointly with (6.17) implies that
|®|? is a subharmonic function on X. Therefore, if there exists a point x, € X at
which this supremum is attained, then |®|? is a subharmonic function on X which
attains its supremum at some point of X' and, by the strong maximum principle
for the Laplace-Beltrami operator, it must be constant, |®| = constant = o).
Thus, (6.17) becomes trivially an equality,

1
§A|<P|2 = 0= —|®] Py (D))
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From here we obtain that V& = VA = 0, that is, the second fundamental form
of the hypersurface is parallel. If H = 0 (which can occur only when ¢ = 1)
then by a classical local rigidity result by Lawson [168, Proposition 1] we know
that X is an open piece of a minimal Clifford torus of the form SF(\/k/m) x
S k(/(m—k)y/m) C S™!, with k = 1,...,m — 1, which trivially satisfies
|®| = constant = ag; = +/m. If H # 0 then from the equality in (6.17) we
also obtain the equality in Okumura’s lemma (Lemma 6.2), which implies that
the hypersurface has exactly two constant principal curvatures, with multiplicities
(m — 1) and 1. Then, by the classical results on isoparametric hypersurfaces of
Riemannian space forms [64, 172, 253] we know that X' must be an open piece of
one of the three following standard product embeddings:

(@ R™ ! xS'(r) c R™*orR x §"7'(r) Cc R"! with r > 0, if ¢ = 0;

(b) S'(V1—=r2) xS" ' (r) c ", with0 < r < 1,if c = 1;and

(c) H" ' (=14 r?) x S'(r) ¢ H"*!, with 0 < r < 1//m(m — 2) (recall that
H?> > —c=1),or H'(—+/1 4+ 12) x S"1(r) c H"*!, with » > 0, if c = —1.

Obviously, in all the examples above |@| = constant and
S = m(m—1)(c + H*) — |®|* = constant.

A detailed analysis of the value of the constant S for these examples shows that
whenc = 0then S =0 < E\‘ )0 for the standard products R™=! x S'(r), whereas
S = m*(m—2)H*/(m—1) = 1/9\|H|,0 for the standard products R x §”~!(r), with
r > 0. On the other hand, when ¢ = 1 we can see that

_ m(m 2)
2(m—1)

for the standard products S'(v/1 — 2) x S"~!(r) if r > /(m — 1) /m, whereas

(2(m — 1)+ mH? — |H|/m2H? + 4(m — 1)) < By,

S =By,

if 0 < r < /(m— 1)/m. Finally, when ¢ = —1 we have that

_ m(m 2)

" 2m—1) (=20m = 1) + mH? — |H|/nPH? = 4(n = 1)) < B -

for the standard products H" ' (—+/1 + r2) x S'(r), in the case where 0 < r <

1/+/m(m — 2), whereas
S = B

for the standard products H'(—+/1 + r2) x §"~!(r), with r > 0. For the details, see
Appendix A in [14]. This finishes the proof of Theorem 6.4. O
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Proof (of Corollary 6.1) Obviously, if supy, || = +o0, then by (6.10) we have
infy § = —oo, so that (6.1) holds trivially and there is nothing to prove. If
supy, |@| < 400, then we can estimate

H(®X,X) > —|H||(®X, X)| > —|H||®||X|> > —|H| sup |®[|X ",
)

and

(@X, dX) < |®2X|* < (sgpl@l)ZIXF,

for X € X(X). Then, by (6.6) we obtain for every X € X(X),
Ric(X,X) = (m — 1)(c + H)|X|* + (m — 2)H(PX, X) — (PX, PX)

> (<m— D(c + H?) — (m — 2)|H] sup | &| — <sup|a>|>2) XP.
) )

Therefore, if supy, |@| < 400 then the Ricci curvature of X' is bounded from below
by the constant

C = (m—1)(c+ H*) — (m—2)|H|sup|®| — (sup |D])*.
) X

Since X' is complete, by Theorem 2.3 the classical Omori-Yau maximum principle
holds on ¥ and the result follows directly from Theorem 6.4. O

Remark 6.3 Let us recall from Theorem 2.7 that every parabolic Riemannian
manifold is stochastically complete. Therefore, Theorem 6.4 remains valid for
parabolic hypersurfaces, with the advantage that if X' is assumed to be parabolic,
then it is not necessary to assume that the infimum of S is attained at some point of
X in order to conclude the characterization of the equality infy § = B\‘H\,C [14,
Corollary 6]. Indeed, if X' is parabolic and the equality infy § = B\|H|,C holds,
then we have supy |®| = o)y| . which implies that Py (|@]) < 0 on X. Then,
from (6.17) we have that |®|? is a subharmonic function on ¥ which is bounded
from above. Since X is parabolic, it must be constant, |®| = constant = oy, .. The
proof then finishes as in Theorem 6.4.

For the proof of Theorem 6.5, we will also need the following auxiliary result,
which can be found in [15] (see also [22, Lemma 8]).

Lemma 6.3 Let X' be an m-dimensional Riemannian manifold and consider T :
X(XY) — X(X) a symmetric tensor on X with two distinct eigenvalues, one of them
being simple, such that Tr(T) = 0 and its covariant differential VT is symmetric.
Then

m—+2

IVT|? = T|V|T||2. (6.18)
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Proof Letus denote by A and u the two eigenvalues of T, with multiplicities (m—1)
and 1, respectively. Observe that A and u are smooth functions on X' with u =
—(m—1)A, and

T2 = m(m — 1)A2. (6.19)

Let Dy and D, denote, respectively, the smooth distributions of the eigenspace
corresponding to each eigenvalue. It then follows from the fact that 7 and VT are
symmetric that D) = DIJ; and D, is an involutive distribution, that is, [X, Y] € D,
for every X,Y € D,. This implies that X(1) = 0 for every X € D,. Actually, if
X,Y € D), then VT (X,Y) = VT(Y,X) implies that

YMX—-XA)Y =AX,Y]-T(X,Y]) =0.
Since dim(D)) = m — 1 > 2, this yields X(A) = 0 for every X € D,, and hence
X(pn) = 0forevery X € D;.
Let {ey, ..., ey} be a local orthonormal frame on X' diagonalizing the tensor 7,
so that T'(e;) = Ae; forevery 1 <i <m—1and T(e,,) = pey. In particular,

VA =en(A)en, and  |VA)? = en(1)>. (6.20)

Then, denoting by T, g, = (VT (eq. ep), €,), we have that

VTP = ) [VT(eq. )] = Z 24,
a,f=1 apy=1
= Z Tjk—‘r_z ij+Tzzm\1+Tr%ll\/)
ij.k=1 ij=1

m—1
+Z zmm+T3um+Tr%lml)+T31mm
i=1

From the symmetries of 7 and VT we know that T, g, = Ty g and Ty g, = Tpa.y,
respectively, forevery 1 < o, B, y < m, which in turns yields Ty g, = Ty,,. Using
this, we may write

m—1 m—1 m—1

|VT|2 Z 1k+32 lJm+3Z 1mm+Tr%me

ijk=1 ij=1
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We claim that

Tijx =0 forevery 1 <i,jk <m—1,

Tijm =0 forevery 1 <i,j<m—1,i#j,

Tiim = em(A) forevery 1 <i<m-—1, (6.21)
Timm =0 forevery 1 <i<m—1,and

Tnmm = —(m — ey (R).

The proof of (6.21) is a straightforward computation using the symmetries of Ty, g,
and (6.20). Therefore, by (6.19) and (6.20) we conclude that

m—1

VT =33 en(A)’ + (m—1)’en(A)’ = (m—1)(m+2)[VA]* = mTHIVITIIZ-

|

Proof (of Theorem 6.5) Since Tr(®) = 0 and X has two distinct principal curva-

tures with multiplicities m — 1 and 1, it then follows that |®| is a positive smooth
function on X, |@| > 0, and

Tr@h) =+ =2 pp.

vm(m —1)

Besides, V@ = VA is symmetric by Codazzi equation, and by Lemma 6.3 we also
have that

m—+2

[Vo|? = T|V|qr>||2. (6.22)
Therefore, using (6.16) we obtain that
@1410] = sAl0P ~[V|o|]
= 2vielp ;’%H@P B DP — m(c + H)

IA

2 -2
2190|242
m

vm(m—1)

2
= EIVI@II2 — 21 Qpu (| P)),

H||®* — |2 P(1®* — m(c + H?))
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where
-2
0o =2 = 22D ke (e + HP).
Vvm(m—1)
That is,
2 2 2
[P1A|®] = —VIPI]" = [@1" Q. (|P]. (6.23)

Applying the Omori-Yau maximum principle to the function |@| we know that
there exists {x; }ren in X such that

lim |@|(xx) = inf|P|, |V|®|(x)| < 1/k and A|DP|(xx) > —1/k,
k—00 )
which jointly with (6.23) implies

L 110) < 1) A9 1) = VIl ~ (@ (x0) (1 2]5))
2

< W - |¢|2(xk)Q|H|,C(|®|(xk))'

Letting kK — oo here, we get

. 2 .
(inf |91)*Qy (inf |]) < 0.

It follows from here that either infy |@| = 0, which by (6.11) is equivalent to
sups. S = m(m — 1)(c + H?), orinfy |®| > 0 and then Q) .(infs |®|) < 0.

Observe that when H> + ¢ > 0 the polynomial Qjy|.(x) has a unique positive
root given by

N%((m —2)|H| + mPH + 4(m = D)e).

Therefore in this case Qy.(infs |®]) < 0 means that infy |®| < By ., which
by (6.11) is equivalent to

IB\H\,C =

sup S > m(m—1)(c + H*) = B . = Bij.c-
u ,

On the other hand, when H? + ¢ = 0 and ¢ = 0, then H = 0 and Qg o(x) = x°
so that Qg o(infx |[@]) > O for every infy |@| > 0. Therefore, in this case it must
be infy |®| = 0 = Boo and supz S = 0 = Bgy. In the case H> + ¢ = 0 and
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¢ = —1, then |H| = 1 and Q; _;(x) has a unique positive root given by ;| =
m(m — 2)/ /m(m — 1). Therefore in this case Q1 _; (infx |@|) < 0 means also that
infy |@| < B1.—1, which by (6.11) is equivalent to

sup S > —,3%,_1 =B_.
X

In the case H? + ¢ < 0 (with ¢ = —1 necessarily) the polynomial Olj—1(x) >0
for every x € R if H?> < 4(m — 1)/m?. Therefore, if infs |@| > 0 (or, equivalently,
supy. § < m(m — 1)(—1 + H?)) it must be necessarily 4(m — 1)/m?> < H> < 1. In
this case, the polynomial Q| —; (x) has two positive roots (which in fact becomes a
double root when H> = 4(m — 1)/m?) given by

3 — N _ 202 _ _
Biu—1 = 2\/m((m 2)|H| — Vm?H?> — 4(m — 1))
and

N%((m —2)|H| + Vm2H? — 4(m — 1)).

Therefore, in this case Q|| —; (infy |@[) < 0 means that

Bl -1 =

B\H\,—l = ir21f|45| < Bluj—1,
which by (6.11) is equivalent to
Bipj—1 = mim— 1) (=1 + H?) — By, _, < sgpS
< m(m—1)(=1+H*) = By | = Bjyj—1.

This finishes the proof of the first part of Theorem 6.5.

Let us now see what happens when the equality supy § = By, holds and
this supremum is attained at a point xo € Y. Equivalently, by (6.11), the equality
infy |®| = By holds and this infimum is attained at a point xy € X In that case,
|®@| > Bu and, therefore, Oy (|P|) > 0 on X. Observe that

1 1
Alog|®| = —A|®| —

] W|V|<p||2. (6.24)

From (6.23) we have

1

_A|cp| <

2
7| < W|V|¢||2_Q‘H‘,C(|¢|)7
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which jointly with (6.24) gives

(m—2) 2
Alog|®| < — V|®||© — (|®
og|9] =~ IVIPIE - Q2D
(m—2)
= - Viog| |’ - Qo).
That is,
(m—2)
Alog|®| + [Vlog|®|[* < —Qu (| P]).

m

Thus, since Q|| .(|@|) > 0 on X, we obtain that

-2
Alog |®| + (m=2)
m

|Vlog|®||> <0 on X.

Therefore, since there exists a point xo € X at which the infimum of log |®| is
attained then, by applying a strong maximum principle for the operator

L) = du+ P2
m
we conclude that log |®| is constant on X, and hence |®| = By, is also constant.
Since the mean curvature H is constant and X' has two distinct principal curvatures,
then they are necessarily constant and X' is an isoparametric hypersurface with
exactly two constant principal curvatures, with multiplicities (m — 1) and 1. Then,
by the classical results on isoparametric hypersurfaces of Riemannian space forms
[64, 172, 253] we conclude that X must be an open piece of one of the three
following standard product embeddings:

(@) R ! xS'(r) cR" 1 orR x "7 '(r) c R"! with r > 0, if c = 0;

(b) SY(V1—r2) x §"1(r) c S"1, with0 < r < 1,if ¢ = 1; and

(c) H"™ (=14 r2) xS'(r) c H" or H' (—+/1 + r2) x "1 (r) ¢ H™*!, with
r>0,ifc=-1.

As in the proof of Theorem 6.4, the proof then finishes by doing a detailed analysis
of the value of the constant S for these examples. For further details, see [15]. O

For the proof of Corollary 6.2 simply recall that the Omori-Yau maximum
principle holds for every constant mean curvature hypersurface which is properly
immersed into a Riemannian space form (Theorem 2.6).
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6.1.2 Alternative Approaches to Corollary 6.2

In this section, we introduce alternative approaches to a version of Corollary 6.2
for the more general case of complete hypersurfaces in Euclidean space and in the
Euclidean sphere. Observe that our more general version in Theorem 6.5 holds true
for hypersurfaces satisfying the Omori- Yau maximum principle, which, in principle,
does not imply completeness of the hypersurface.

First of all, for the case of hypersurfaces in Euclidean space (¢ = 0), Corollary 6.2
states that if X is a properly immersed hypersurface in R”*! (m > 3) with constant
mean curvature H and with two distinct principal curvatures, one of them being
simple, then

supS > 0.
z

Moreover, the equality supy, S = 0 holds and this supremum is attained at some
point of ¥ if and only if X is a circular cylinder R"™! x S!'(r) c R™!, with
r = 1/m|H| > 0. Using an argument based on the so called principal curvature
theorem, by Smyth and Xavier [258] and which we recall below, one can prove the
following result, under the more general notion of completeness.

Theorem 6.6 Let X be a complete hypersurface in R (m > 3) with constant
mean curvature H and with two distinct principal curvatures, one of them being
simple. Then

supS > 0.
x

Moreover, the equality sups. S = 0 holds if and only X' is either a circular cylinder
R™ x St(r) € R™, with r = 1/m|H| > 0, if H # 0, or a higher dimensional
catenoid, if H = 0.

Theorem 6.7 (Principal Curvature Theorem) Let X be a complete immersed
orientable hypersurface in R"! | which is not a hyperplane, with second funda-
mental form A. Let A C R be the set of nonzero values assumed by the eigenvalues
of A, and set AT = ANRE. Then

(i) If AT and A~ are both nonempty, then inf AT = sup A~ = 0.
(ii) If AT or A~ is empty, then the closure of A is connected.

Proof (of Theorem 6.6) Let A and u be the two distinct principal curvatures of X
with multiplicities (m — 1) and 1, respectively. Observe that A and p are smooth
functions on X with mH = (m — 1)A + w and |A|?> = (m — 1)A?> + u>. From the
Gauss equation (6.7) (with ¢ = 0) we find

S =m*H? — |A|> = —m(m — DA% + 2m(m — 1)AH
=m(m—1)AQH — ). (6.25)
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Let A C R be the set of nonzero values assumed by A and p, and set AT = ANRE,
If supy. S = —72 < 0, then S < —72 < 0 and thus, by (6.25),

2

A2—2HL— ———— >0.
m(m—1)

Observe that, independently of the value of H, the polynomial x*> — 2Hx —
72/m(m — 1) has a positive root, given by

/ 2
H H2+ —— >0,
+ + m(m—1) ~

and a negative root, given by

72
H—-  |H?+ — <0.
m(m—1)
Therefore, either
2
A>H+ |H*+ ——— >0 (6.26)
m(m—1)
or
72
A<H- [H>+ —— <0. (6.27)
m(m—1)

In the first case, by (6.26) we also have

2
w=mH—(m—-1)A < H—(m—l)\/l_% <H-—\[H + m(m—1)

In the second case, by (6.27) we also have

2
‘ < 0.
72 72
= mH—(m—)A>H+m—1),[H? + — s Hy |2+ —" >0
m(m—1) m(m—1)

Therefore, in any case we have that A™ and A~ are both nonempty, with

2
infA*>H+ |+ —— >0
m(m—1)
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and

72

—m(m ) < 0.

supA” <H— [H?>+

which contradicts the principal curvature theorem. As a consequence, it must be
supy S > 0.

Suppose now that supy, S = 0. If H = 0, since X' is a minimal hypersurface in
R™*! with two distinct principal curvatures, one of them being simple, we know by
a result due to do Carmo and Dajczer [103, Corollary 4.4] that X is part of a higher
dimensional catenoid. But ¥ being complete and the higher dimensional catenoid
being simply connected (because m > 3), X' is the catenoid (for further details,
see the last part of the proof of Theorem 3.1 by Tam and Zhou in [262]). Observe
also that the scalar curvature of a higher dimensional catenoid in R”*! is given by

S = —m(m — 1)A% < 0 and it does satisfy supy S = 0, since sups. S < 0 cannot
happen.
On the other hand, if supy S = 0 and H # 0 (say H > 0) by (6.25) we have
AQRH - 1) <0.
This implies that either
A=<0 (6.28)

or

A>2H > 0. (6.29)

Observe that the second case cannot happen. Actually, if (6.29) holds, then we would
also have

uw=mH-—(m—-1A<—-(m—2)H <0,

which contradicts again the principal curvature theorem, since inf A* > 2H > 0
and sup A~ < —(m—2)H < 0. Therefore, it must hold necessarily (6.28) and hence

u=mH—(m-—1)A>mH > 0.

This implies that inf AT > mH > 0 and hence, again by the principal curvature
theorem, A~ must be empty, which means that A = constant = 0. Hence,
W = constant = mH > 0 is also constant and, by the classical results on
isoparametric hypersurfaces in Euclidean space [172, 253], we conclude that X' is a
circular cylinder R”~! x S'(r) ¢ R"*!, with r = 1/mH > 0. O
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On the other hand, our estimate in Corollary 6.2 for the supremum of the scalar
curvature, when written in terms of the squared norm of the second fundamental
form, is equivalent to Wei’s estimate in [273, Theorem 1.2]. Therefore, using Wei’s
results one can also derive the following result, under the more general notion of
completeness.

Theorem 6.8 Let X be a complete hypersurface in S"T! (m > 3) with constant
mean curvature H and with two distinct principal curvatures, one of them being
simple. Then

SupS = Bia1 = % (2(m 1) + mH? — |H|/m?H? + 4(m — 1)) .

Moreover, the equality supy, S = By holds if and only X is a constant mean

curvature torus S'(v/'1 — r2) x " 1(r) C S", with radius r > \/m —1/m.

6.2 Constant Scalar Curvature Hypersurfaces

In this section we consider the geometry of complete constant scalar curvature
hypersurfaces into space forms. The first results in this direction were obtained in
the seminal paper by Cheng and Yau [83], where they introduced an appropriate
differential operator, denoted by [, for studying such hypersurfaces. When the
ambient space is the Euclidean sphere S"*!, they showed that the only compact
hypersurfaces in S"*! with constant normalized scalar curvature R > 1 and non-
negative sectional curvature are either totally umbilical or isometric to a Riemannian
product S¥(v/1 — 12) x §"7*(r) € "*!, 1 < k < m — 1. On the other hand, for the
Euclidean space they also proved that the only complete noncompact hypersurfaces
in R™*! with constant normalized scalar curvature R > 0 and nonnegative sectional
curvature are generalized cylinders of the form R" % x Sk(r) c R™1, 1 < k <
m — 1. Since then, a number of papers appeared on the subject establishing rigidity
results for such hypersurfaces under various assumptions (for instance, to quote a
few, see [173, 271, 274] and the references therein). Here we state the following
result (see [25, Theorem 1]) with the aid of a form of the Omori-Yau maximum
principle for the Cheng and Yau operator [ given in Theorem 6.12.

Theorem 6.9 Let X be a complete oriented hypersurface isometrically immersed
into the Euclidean sphere St m > 3, with constant (normalized) scalar curvature
R satisfying R > 1. In the case where R = 1, assume further that the mean curvature
function H does not change sign. Let @ stand for the total umbilicity tensor of the
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immersion. Then
(i) either supy |®|> = 0 and X is a totally umbilical hypersurface,

(ii) or

m(m — 1)R?
(m—2)(mR—(m—2))

sup [@* > a1 (R) = 0.
z

Moreover, if R > 1 the equality supy. |®|*> = a1 (R) holds and this supremum is
attained at some point of X if and only if X is a torus S'(v'1 —r2) x S"71(r) C
S" with 0 < r = /(m —2)/mR < \/(m —2)/m.

Equivalently, using (6.9) one can also state Theorem 6.9 either in terms of the
squared norm of the second fundamental form |A|? or in terms of H?. In terms of
|A|?, (i) and (ii) become

(i) either sups. |A|> = m(R — 1) and X is a totally umbilical hypersurface,
(i) or

mR — (m —2) m—2
-2 mR — (m—2)"

sup|A]* = Cp(R) = (m—1)
X

On the other hand, in terms of H?, (i) and (ii) become

(i) either supy. H*> = R — 1 and X is a totally umbilical hypersurface,
(ii) or

—2m—1) +

1 mR — (m—2) m—2
H? > — = 2 _m=s )\
Sgp ~m? ((m ) m—2 mR—(m—Z))

Our approach here allows us to consider in general the case of hypersurfaces
with constant scalar curvature in Riemannian space forms and to state the following
result for the Euclidean and hyperbolic cases (see [25, Theorem 2]).

Theorem 6.10 Let X' be a complete oriented hypersurface isometrically immersed
into an (m+ 1)-dimensional form (¢ =0, —1, and m > 3) with constant (normalized)
scalar curvature R satisfying R > 0. Let & stand for the total umbilicity tensor of
the immersion. Then

(i) either supy |®|> = 0 and X is a totally umbilical hypersurface,
(ii) or

m(m — 1)R?

> 0.
(m—2)(mR— (m—2)c)

sup |d>|2 > ape(R) =
b))
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Moreover, the equality sup s |®|* = a,,.(R) holds and this supremum is attained at
some point of X' if and only if

(a) ¢ =0and X is a circular cylinder R x S"™'(r) ¢ R"+1,
(b) ¢ = —1 and X is a hyperbolic cylinder H'(—+/1 + r2) x S"1(r) C H"*!,

where r = \/(m —2)/mR > 0.

As in Theorem 6.9, we may also state Theorem 6.10 either in terms of |A|? or in
terms of H2. In the former, (i) and (ii) become

(i) either sups. |A|> = m(R — ¢) and X is a totally umbilical hypersurface,

(ii) or

mR — (m—2)c (m —2)c?
m—2 mR — (m —2)c’

sup|A|? > Cpe(R) = (m—1)
)

while in the latter they become

(i) either sups. H> = R — c and X is a totally umbilical hypersurface,
(i) or

) 1 MR — (m—2)c (m—2)c?

Finally, our approach allows also to state the following result where, under the
assumption of [-parabolicity, we are able to improve the characterization of the
equality supy |@|?> = oy, (R), since there is no need to assume that the supremum
is attained at any point (see [25, Theorem 3]).

Theorem 6.11 Let X' be a complete oriented hypersurface isometrically immersed
into an (m + 1)-dimensional form (c =0, 1, —1, and m > 3) with constant (normal-
ized) scalar curvature R satisfying R > c and R > 0. In the case where ¢ = 1 and
R =1, assume further that the mean curvature function H does not change sign.
Let @ stand for the total umbilicity tensor of the immersion and assume that the
hypersurface is not totally umbilical. If ¥ is O-parabolic, then

m(m — 1)R? 0
m—2)(mR—(m=2)0)

sup [®1* > o (R) =
z

with equality if and only if

(a) ¢ = 0and X is a circular cylinder R x S"™'(r) c R™+1,
(b) ¢ =1and X is a torus S' (V1 —r?) x S"~1(r) Cc S"+1,
(c) ¢ = —1and X is a hyperbolic cylinder H' (—v/1 + r2) x S"~'(r) c H"t!,

where r = \/(m —2)/mR > 0.
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6.2.1 Hypersurfaces and Newton Operators

The proof of our results for constant scalar curvature hypersurfaces in space forms is
based on an Omori- Yau maximum principle for the Cheng and Yau operator O. This
operator is, in fact, the first (or, better, the second) of a series of second order linear
differential operators which can be defined for hypersurfaces in general Riemannian
ambient spaces. Since we will make use of these operators in the remaining sections
of this chapter, as well as in Chap. 7, we describe them in detail here.

Consider, in general, a two-sided hypersurface X' isometrically immersed into
an (m + 1)-dimensional Riemannian manifold N and let A denote the second
fundamental form of the hypersurface with respect to a globally defined unit normal
field v. Recall that the k-mean curvatures of the hypersurface are given by

—1
m
H; = r Sk,

where Sy = 1 and, for k = 1,...,m, S is the k-th elementary symmetric function
of the principal curvatures k1, . .., k,, of the hypersurface, that is,

Sk = ox(K1, ... k) = E Kip -+ Kip, 1 <k<m.

i <-<ig

In particular, when k = 1, H| is the usual mean curvature H of X~. We also observe
that

|A|> = m*H* — m(m — 1)H,. (6.30)

Observe also that the characteristic polynomial of A can be written in terms of the
H; as

det(t] — A) = Z(—l)k (’Z) Hi ", (6.31)
k=0

The Newton operators P, : X(X) — X(X) associated to the hypersurface are
defined inductively by Py = I and

P,=S8SI—AoP—, 1<k<m.

Equivalently,

P = (’Z)Hu— (km 1)HHA Foo o (=D AR 4 (—1)kAR,
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In particular, by the Cayley-Hamilton theorem and (6.31) we have P,, = 0. Observe
that the Newton operators Py are all self-adjoint operators which commute with the
shape operator A. Even more, if {e1, ..., e,} is an orthonormal frame on 7, X’ which
diagonalizes A,, with A, (e;) = «;(p)e;, then

(Pr)p(er) = pir(ple (6.32)

where

Pk = D Kk

it << i
It follows from here that foreach k,0 <k <m—1,
Tr(Py) = (m — k)Si = ciHy (6.33)
and

Tr(A o Pr) = (k + 1)Si+1 = ckHi+1, (6.34)

o = (m—k) (’Z) (k + 1)<k+1)

Associated to each Newton operator P; one has the second order linear differen-
tial operator L; : C*(X) — C(X) fork = 0,1,...,m — 1, given by

where

Li(u) = Tr(Py o hess u).

In particular Ly = A is the Laplace-Beltrami operator, while L; = [J is nothing but
the Cheng and Yau operator.
Observe that

m

Li(u) = Tr(Pyohess u) = Y _(Pi(Ve,Vu). e;)
=1

=) (Ve Vu, Pile))) = Z Veuen Vit €;) = Tr(hess u o Py),
i=1 i=1
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where {e, ..., ey} is a (local) orthonormal frame on X. Moreover, we have

m

div(Pe(Vu) = Y ((VePO)(Vu), e)) + Z Pi(Ve,Vu), ;)

i=1

= (divPy, Vu) + Li(u),

where the divergence of P, on X' is given by

divP, = Tr(VPy) = Y (Ve Pr)(er).

i=1
That is,
Li(u) = Tr(Py o hess u) = div(Pr(Vu)) — (divPy, Vu). (6.35)

Remark 6.4 From Eq. (6.35), we conclude that the operator Ly is elliptic (respec-
tively, semi-elliptic) if, and only if, Py is positive definite (respectively, positive
semi-definite). We observe that Ly = A is always elliptic. In this respect, it is
worth pointing out that the ellipticity of the operator L; = [ is guaranteed by the
assumption H, > 0. Indeed, if this happens the mean curvature does not vanish on
XY, because of the basic inequality H12 > H,. Therefore, we can choose the normal
unit vector v on X' so that H; > 0. Furthermore

2H2 ZK +m(m—1)H2>/<
j=1

foreveryi = 1,...,m, and then the eigenvalues of P; satisfy w;; = mH; —x; > 0
for every i (see, for instance, Lemma 3.10 in [111]). This shows ellipticity of .
Regarding the operator L; when j > 2, a natural hypothesis to guarantee ellipticity
is the existence of an elliptic point in X, that is, a point x € X' at which the second
fundamental form A is positive definite (with respect to the appropriate orientation).
In fact, it follows from the proof of [37, Proposition 3.2] that if ¥ has an elliptic
point and Hy 1 # 0 on X, then each L;, 1 < j < k s elliptic.

On the other hand, the divergence of the Newton operators are given in the
following result (see also Lemma 3.1 in [23], paying attention to the different
convention for the sign of *R).

Lemma 6.4 Letf : ¥ — N be an isometrically immersed hypersurface into an
(m—+1)-dimensional Riemannian manifold N. Let ey, . . ., ey, be a local orthonormal
frame on X and v be a local unit normal. Then

k—1 m

wPOX, ei) = —D* I R(ei, AT X) v, Pe :
D A(VePOX. &) =D > (=D I(R(er A X, Prey) (6.36)
i=1

j=0 i=1
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for every vector field X € X(X), where A is the Weingarten operator in the direction
of v.

Proof We will prove Eq. (6.36) by induction on k, 1 < k < m — 1. Using Codazzi
equations (1.145) [see also (6.15)] and the definition of P; it is not difficult to prove
that this is true for k = 1. Actually, since P; = S;/ — A we have

(Vo PDX = ei(SD)X — (VaA)X = ei(S)X — (VxA)e; + (Riei X)v) |,

with T denoting the part tangential to X. Then,

D (Ve PDX. ei) = (VS1.X) = Tr(VxA) + > (("R(ei, X)v. ;)
i=1

i=1

= Z((NR(ei,X)v, ei),
i=1

since Tr(VxA) = VxTr(A) = (VSy,X). Thus assume that the equation holds for
k — 1. Then, from the very definition of the Newton operator Py = Si/ — P,—j 0 A it
follows that

(Ve,P)X = €i(S)X — (Ve Pr—1)AX — Pr1 ((V,A)X),
from which we deduce
(Ve P)X, ei) = ei(Si)(X, i) — (Ve Pr—1)AX, ;) — ((V,,A)X, Pr—1€:).
Using again Codazzi equations in the last term of the above equation we have
(Ve A)X, Prores) = ((VxA)ei, Proie;) — ("R(ei, X)v, Prie;)

and then

D {(VePOX. &) = (VSi. X) = > (Ve Pio1)AX, )
i=1 i=1

m

— Z ((VXA)ei,Pk—let) + Z (NR(ei,X)U,Pk_1€i>
i=1 i=1

= (VS X Z (Ve Pr—1)AX, e;) —

i=1

TI'((VxA) o Pk—l) + Z (NR(ei,X)U,Pk_1€i>.
i=1
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We claim that
TI'((VXA) ] Pk—l) = (VSk,X> (637)

Using (6.37) and the induction hypothesis we conclude from here that

m

(Ve Pro)AX. e) + Y ("R(ei. X)v. Pi_ie;)
i=1 i=1

INgE

Zm: (Ve,Pk)X el = -
i=1

>~

m

2
==Y Y (=D R(ei, A X)v, Prey)
=0

j i=1

3

+ ) (*R(ei, X)v, Pr_rei)

—_

k—1 m
=YY (DR A TX), Pe).
j=0 i=1

that is, (6.36). It remains to prove (6.37). We will prove it by performing the
computations in a local orthonormal frame on X that diagonalizes A. It is worth
pointing out that such a frame does not always exist in the smooth category;
problems occur when the multiplicity of the principal curvatures changes (also
the principal curvatures are not necessarily everywhere differentiable). For this
reason, we will work on the subset Xy of X' consisting of points at which the
number of distinct principal curvatures is locally constant. Let us recall that X is
an open dense subset of ¥, and in every connected component of X, the principal
curvatures form mutually distinct smooth principal curvature functions and, for such
a principal curvature «, the assignment p = V() (p) defines a smooth distribution,
where V,(,)(p) C T,X denotes the eigenspace associated to «(p) (see for instance
Paragraph 16.10 in [41]). Therefore, for every p € X there exists a local smooth
orthonormal frame defined on a neighbourhood of p that diagonalizes A, that is ,
{e1,...,en} are such that Ae; = «;e;, with each «; smooth. In this case,

(VxA)ei = X(k)ei + Y _ (ki — k)] (X)e;.
i

where, as usual, a)l] X) = (Vxei, ej). Observe also that for every i
Pr—i(ei) = fik—1€; (6.38)

with

Mik—1 = E Kiy =+ Kig—y -

it <o <ig—t i
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Then, by (6.38) we have

Tr(VxAo Pr_y) = Z Wik—1X (ki)

i=1

= ZX(K:') Z Kip * o Kig—
i=1

i1 <=<if—1 ,L:,';éi

This proves (6.37) on X, and by continuity, on X O

In particular, when the ambient space has constant sectional curvature one has
divP; = 0 forevery 0 < k < m — 1 and (6.35) reduces to

Ly (u) = Tr(Py o hess u) = div(Py(Vu)). (6.39)

6.2.2 Some Preliminary Results

Let ¥ be an oriented hypersurface isometrically immersed into an (m + 1)-
dimensional space form with curvature ¢, and let P = P; denote its first Newton
operator. That is, P : X(X) — X(X) is the operator given by P = mHI — A.
Recall that P is also a self-adjoint linear operator which commutes with A, and
Tr(P) = m(m — 1)H. For u € C?(X) set

Ou = Liu = Tr(P o hess u) = div(P(Vu)). (6.40)

As we already know, [0 defines a second order differential operator which, in
general, is not elliptic. It is clear from the definition that OJ is elliptic if and only
if P is positive definite. Note that

O(uv) = ulv + vOu + 2(P(Vu), Vv)

for every u,v € C>(X). The operator [J arises naturally as the linearized operator
of the scalar curvature for normal variations of the hypersurface (see for instance
[242]). The following lemma will be essential for our computations.

Lemma 6.5 Let X' be an oriented isometrically immersed hypersurface into an
(m + 1)-dimensional space form with curvature c. Then

m(m—1)

O(mH) = AR+ |VAP? —m?|VH|* 4+ mH Tr(A%) — |A|* + mc(|A|? —mH?).
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In particular, if X has constant scalar curvature
O(mH) = |VA|? — m?|VH|> + mH Tr(A) — |A|* + mc(JA|]> = mH?).  (6.41)
Proof 1t follows from (6.40) that
Ou = mH Tr(hess u) — Tr(A o hess u) = mHAu — Tr(A o hess u).
Setting u = mH here we have
OmH) = mHA(mH) — mTr(A o hess H)

1
= EA(mZHZ) — m?|VH|* — m Tr(A o hess H).

From the identity (6.8) and Simons formula (6.12) we have

1 -1 1
EA(mzHZ) —mTr(A ohess H) = %AR + §A|A|2 — mTr(A o hess H)
m(m—1)

= —— AR+ |VA|> + mH Tr(A%)

—|A|* + mc(JA]> — mH?).
Therefore we conclude from here that

—1
O(mH) = %AR—%|VA|2—m2|VH|2+mHTr(A3)—|A|4+mc(|A|2—mH2).

Finally, (6.41) follows at once since R is constant. O
Lemma 6.6 Let ¥ be an oriented isometrically immersed hypersurface into an
(m + 1)-dimensional space form with curvature c. Assume that the mean curvature
function H does not change sign, so that, without loss of generality, we may assume
H > 0on X. Let p— and jLy be, respectively, the minimum and the maximum of the
eigenvalues of P at every pointp € X. IfR > con X' (resp., R > c on X'), then
u— >0 (resp., u— >0)
and

U+ < 2mH (resp., p+ < 2mH).

Proof We follow the same argument as in the proof of Lemma 4.2 in [58].
From (6.8), if R > ¢ we have

m’H* = |A]*> + m(m — 1)(R — ¢) > |A|*.
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Thus, indicating with k1, . . . , k,, the principal curvatures of the hypersurface, we get
—mH <k;<mH, i=1,...,m.
Therefore, for every i
0<mH—«x; <2mH.
But u; = mH — «k; are precisely the eigenvalues of the operator P = mHI — A. In

particular, u— > 0 and p4 < 2mH. Similarly if R > c. O

Remark 6.5 Observe that if R > ¢ on X, it follows from (6.8) that H does not
vanish. Thus, connectedness of X' implies that H does not change sign. Moreover,
Lemma 6.6 implies that when R > ¢ the operator O is elliptic.

For the proof of our main computational result (see Lemma 6.8 below) we will
need the following auxiliary result, which can be found in [9, Lemma 4.1] (see also
[58, Lemma 2.5]).

Lemma 6.7 Let X be an isometrically immersed hypersurface into an (m +
1)-dimensional space form with curvature c, and assume that X has constant
(normalized) scalar curvature R > c. Then

|[VA|? > m?|VH|>. (6.42)

Proof Since we are assuming that R is constant, from (6.8) we get V]A|]>? =
V(m*H?) = 2m*>HVH and

|VIA)?|? = 4m*H?|VH|?. (6.43)
Following the notation and the formalism of Sects. 1.5 and 1.6, we have

m

Al = ihz, IVA]> = Xm: Wy and |VIAP? = 42,": > hihije
k=1

ij=1 ijk=1 ij=1

Therefore, using Cauchy-Schwarz inequality, we obtain

AAPIVAP =4 > | | D0 my
ij=1 ijk=1

2
m

> 4> | D hihi
k=1

ij=1

= |VIAP]> = 4m*H?|VH[?,
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which jointly with (6.8) gives
|AP|VA|? > m*|AP|VH|* + m*(m — 1)(R — ¢)|VH|. (6.44)
In particular, if R > ¢ we have
AP(VAP* = m?|VH[?) = 0. (6.45)
Let Xy = {x € ¥ : |A|>(x) = 0}. Itis clear from (6.45) that
IVA*(x) > m?|VH|? (x) (6.46)

for every x € X'\ X, and, by continuity, for every x € X \ int(Xy). Therefore, if
int(Xy) = 0@ inequality (6.46) holds true for every x € X. On the other hand, if
int(Xy) # @ then VH = 0 and VA = 0 on int(X)), and inequality (6.46) holds
trivially also on int(Xy). O

Lemma 6.8 Let X be an oriented isometrically immersed hypersurface into an
(m 4 1)-dimensional space form with curvature c, and assume that X has constant
(normalized) scalar curvature R > c. In the case where R > c, choose the
orientation such that H > 0 on X. In the case where R = c, assume further that the
mean curvature function H does not change sign, and choose the orientation such
that H > 0 on X. Then

SO(P) = ———— [0 POu(@) VP T mim— DR—  (647)
m(m—1)

where

Or(x) = —(m—=2)x> = (m—2)x/x> + m(m — 1)(R—c¢) + m(m— 1)R.