Loukas Grafakos

Classical
Fourier
Analysis

N Springer



Graduate Texts in Mathematics 249



Graduate Texts in Mathematics

Series Editors:

Sheldon Axler
San Francisco State University, San Francisco, CA, USA

Kenneth Ribet
University of California, Berkeley, CA, USA

Advisory Board:

Colin Adams, Williams College, Williamstown, MA, USA

Alejandro Adem, University of British Columbia, Vancouver, BC, Canada
Ruth Charney, Brandeis University, Waltham, MA, USA

Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA

Roger E. Howe, Yale University, New Haven, CT, USA

David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA
Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA

Jill Pipher, Brown University, Providence, RI, USA

Fadil Santosa, University of Minnesota, Minneapolis, MN, USA

Amie Wilkinson, University of Chicago, Chicago, IL, USA

Graduate Texts in Mathematics bridge the gap between passive study and creative
understanding, offering graduate-level introductions to advanced topics in mathe-
matics. The volumes are carefully written as teaching aids and highlight character-
istic features of the theory. Although these books are frequently used as textbooks

in graduate courses, they are also suitable for individual study.

For further volumes:
http://www.springer.com/series/136


http://www.springer.com/series/136

Loukas Grafakos

Classical Fourier Analysis

Third Edition

@ Springer



Loukas Grafakos
Department of Mathematics
University of Missouri
Columbia, MO, USA

ISSN 0072-5285 ISSN 2197-5612 (electronic)
ISBN 978-1-4939-1193-6 ISBN 978-1-4939-1194-3 (eBook)
DOI 10.1007/978-1-4939-1194-3

Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014946585
Mathematics Subject Classification (2010): 42Axx, 42Bxx

© Springer Science+Business Media New York 2000, 2008, 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

To Suzanne






Preface

The great response to the publication of my book Classical and Modern Fourier
Analysis in 2004 has been especially gratifying to me. I was delighted when Springer
offered to publish the second edition in 2008 in two volumes: Classical Fourier
Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. I am now elated
to have the opportunity to write the present third edition of these books, which
Springer has also kindly offered to publish. The third edition was born from my
desire to improve the exposition in several places, fix a few inaccuracies, and add
some new material. I have been very fortunate to receive several hundred e-mail
messages that helped me improve the proofs and locate mistakes and misprints in
the previous editions.

In this edition, I maintain the same style as in the previous ones. The proofs con-
tain details that unavoidably make the reading more cumbersome. Although it will
behoove many readers to skim through the more technical aspects of the presenta-
tion and concentrate on the flow of ideas, the fact that details are present will be
comforting to some. (This last sentence is based on my experience as a graduate
student.) Readers familiar with the second edition will notice that the chapter on
weights has been moved from the second volume to the first.

This first volume Classical Fourier Analysis is intended to serve as a text for
a one-semester course with prerequisites of measure theory, Lebesgue integration,
and complex variables. I am aware that this book contains significantly more ma-
terial than can be taught in a semester course; however, I hope that this additional
information will be useful to researchers. Based on my experience, the following list
of sections (or parts of them) could be taught in a semester without affecting the
logical coherence of the book: Sections 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 4.4,
45,5.1,5.2,5.3,5.5,5.6,6.1,6.2.

A long list of people have assisted me in the preparation of this book, but I remain
solely responsible for any misprints, mistakes, and omissions contained therein.
Please contact me directly (grafakosl@missouri.edu) if you have corrections or com-
ments. Any corrections to this edition will be posted to the website

http://math.missouri.edu/~loukas/FourierAnalysis.html
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which I plan to update regularly. I have prepared solutions to all of the exercises for
the present edition which will be available to instructors who teach a course out of
this book.

Athens, Greece, Loukas Grafakos
March 2014
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Chapter 1
L? Spaces and Interpolation

Many quantitative properties of functions are expressed in terms of their integra-
bility to a power. For this reason it is desirable to acquire a good understanding
of spaces of functions whose modulus to a power p is integrable. These are called
Lebesgue spaces and are denoted by L”. Although an in-depth study of Lebesgue
spaces falls outside the scope of this book, it seems appropriate to devote a chapter
to reviewing some of their fundamental properties.

The emphasis of this review is basic interpolation between Lebesgue spaces.
Many problems in Fourier analysis concern boundedness of operators on Lebesgue
spaces, and interpolation provides a framework that often simplifies this study. For
instance, in order to show that a linear operator maps L? to itself for all 1 < p < oo,
it is sufficient to show that it maps the (smaller) Lorentz space L?'! into the (larger)
Lorentz space LP* for the same range of p’s. Moreover, some further reductions can
be made in terms of the Lorentz space L”!. This and other considerations indicate
that interpolation is a powerful tool in the study of boundedness of operators.

Although we are mainly concerned with L” subspaces of Euclidean spaces, we
discuss in this chapter L” spaces of arbitrary measure spaces, since they represent
a useful general setting. Many results in the text require working with general mea-
sures instead of Lebesgue measure.

1.1 L? and Weak L?

A measure space is a set X equipped with a o-algebra of subsets of it and a function
U from the o-algebra to [0, 0] that satisfies pt(@) = 0 and

#( DIBJ) = .il“(Bf)
= =

for any sequence B; of pairwise disjoint elements of the o-algebra. The function u
is called a (positive) measure on X and elements of the c-algebra of X are called

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics 249, 1
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2 1 L? Spaces and Interpolation

measurable sets. Measure spaces will be assumed to be complete, i.e., subsets of
the o-algebra of measure zero also belong to the o-algebra. A measure space X is
called o-finite if there is a sequence of measurable subsets X, of it such that

and U (X,) < eo. A real-valued function f on a measure space is called measurable if
the set {x € X : f(x) > A} is measurable for all real numbers A. A complex-valued
function is measurable if and only if its real and imaginary parts are measurable. A
simple function is a finite linear combination of characteristic functions of measur-
able subsets of X; these subsets may have infinite measure. A finitely simple function

has the form
N
Y cixs
j=1

where N < oo, ¢; € C, and B; are pairwise disjoint measurable sets with u(B;) < eo.
If N = oo, this function will be called countably simple. Finitely simple functions
are exactly the integrable simple functions. Every nonnegative measurable function
is the pointwise limit of an increasing sequence of simple functions; if the space is
o-finite, these simple functions can be chosen to be finitely simple.

For 0 < p < e, LP(X, 1) denotes the set of all complex-valued p1-measurable
functions on X whose modulus to the pth power is integrable. L= (X, i) is the set of
all complex-valued p-measurable functions f on X such that for some B > 0, the set
{x:|f(x)] > B} has u-measure zero. Two functions in L” (X, 1) are considered equal
if they are equal p-almost everywhere. When 0 < p < oo finitely simple functions
are dense in LP(X, u). Within context and in the absence of ambiguity, LP (X, ) is
simply written as L”.

The notation L”(R") is reserved for the space LP(R",|-|), where | - | denotes n-
dimensional Lebesgue measure. Lebesgue measure on R” is also denoted by dx.
Other measures will be considered on the Borel 6-algebra of R, i.e., is the smallest
o-algebra that contains the closed subsets of R”. Measures on the ¢-algebra of Borel
measurable subsets are called Borel measures; such measures will be assumed to be
finite on compact subsets of R". A Borel measure y with @ (R") < oo is called a finite
Borel measure. A Borel measure on R” is called regular for all Borel measurable
sets £ we have

W(E) =inf{u(0): E € O, Oopen} =sup{u(K): K S E, K compact}.

The space L”(Z) equipped with counting measure is denoted by ¢7(Z) or simply £7.
For 0 < p < o, we define the L” norm of a function f (or quasi-norm if p < 1) by

1
P

e = ( flreor ane) un
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and for p = oo by
HfHLﬂX_’“) =ess.sup|f| =inf{B>0: pu({x: |f(x)|>B})=0}. (112

It is well known that Minkowski’s (or the triangle) inequality

|’f+gHLP(X,/,¢) < HfHLP(X,/.L) + ] LP(X ) (1.1.3)
holds for all f, g in LP = LP(X,u), whenever 1 < p < . Since in addition
I fllzr(x,u) = O implies that f =0 (u-a.e.), the L” spaces are normed linear spaces
for 1 < p <eo. For 0 < p < 1, inequality (1.1.3) is reversed when f, g > 0. However,

the following substitute of (1.1.3) holds:

i <27 (

and thus LP(X, i) is a quasi-normed linear space. See also Exercise 1.1.5. For all
0 < p < oo, it can be shown that every Cauchy sequence in LP (X, i) is convergent,
and hence the spaces L” (X, ) are complete. For the case 0 < p < 1 we refer to
Exercise 1.1.8. Therefore, the LP spaces are Banach spaces for 1 < p < oo and quasi—
Banach spaces for 0 < p < 1. For any p € (0, )\{1} we use the notation p’ = = L.
Moreover, we set 1’ = oo and o' = 1, so that p” = p for all p € (0,o0]. Holder’s
inequality says that for all p € [1, 0] and all measurable functions f,g on (X, 1) we
have

Hf—i—g‘ ’fHU’ (X.10) +HgHpru (1.1.4)

178l < 1] Nl

It is a well-known fact that the dual (L?)* of L? is isometric to L forall 1 < p < es.
Furthermore, the L” norm of a function can be obtained via duality when 1 < p < oo

as follows:
/ f gdu‘«
X

For the endpoint cases p = 1, p = oo, see Exercise 1.4.12 (a), (b).

HfHLF = Sup
llell, =1

1.1.1 The Distribution Function

Definition 1.1.1. For f a measurable function on X, the distribution function of f is
the function d defined on [0, ) as follows:

de(a) = p({xe X : |f(x)| > a}). (1.1.5)

The distribution function dy provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on R” and
each of its translates have the same distribution function. It follows from Definition
1.1.1 that dy is a decreasing function of ¢ (not necessarily strictly).
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A A
Jx) dr (@)
ap b —_—
B3 g
Bl e—
azt
Bl e—
0 E; E; E, x 0 a3 a a o

Fig. 1.1 The graph of a simple function f=Y3_; axxg, and its distribution function dy(ct). Here
Bj=Y;_ u(Ep).

Example 1.1.2. For pedagogical reasons we compute the distribution function dy of
a nonnegative simple function

N
f(x) - Z,laijj (x)’
j=

where the sets E; are pairwise disjointand a; > --- > ay > 0. If a > ay, then clearly
dy(a) = 0. However, if a; < o < ay then |f(x)| > o precisely when x € Ej, and in
general, if aj 11 < o < aj, then |f(x)| > « precisely when x € E; U--- UE;. Setting

j
Bj=Y uE),
k=1

for j€{1,...,N}, By =an+1 =0, and ap = o, we have

N

df(a) = Z BjX[ajH,aj) (a).
=0

Note that these formulas are valid even when p(E;) = oo for some i. Figure 1.1
presents an illustration of this example when N = 3 and p(E;) < oo for all ;.

Proposition 1.1.3. Let f and g be measurable functions on (X,1). Then for all
o, > 0 we have

(1) |g| < |f| u-a.e. implies that d, < dy;
(2) dey(0t) = dg(et/c|), for all c € C\{0};
(3) dprg(a+B) <dj(a) +dg(B);

(4) dg(af) < dj(a) +dg(B).
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Proof. The simple proofs are left to the reader. O

Knowledge of the distribution function d provides sufficient information to eval-
uate the L” norm of a function f precisely. We state and prove the following impor-
tant description of the L” norm in terms of the distribution function.

Proposition 1.1.4. Let (X, 1) be a o-finite measure space. Then for f in LP(X, 1),
0 < p < oo, we have

17, =p [ o ds(@de. (116

Moreover, for any increasing continuously differentiable function @ on [0,e0) with
©(0) = 0 and every measurable function f on X with @(|f]|) integrable on X, we
have

| otan= [ ¢'(e)ds(a)da. (117)
X 0
Proof. Indeed, we have
P/O o’ dg(a)da ZP/O 06”71/)(%{);: F>aydi(x)da
ol
=// pa? dadu(x)
JX JO
— [ 17l du)
X
=||7]

where in the second equality we used Fubini’s theorem, which requires the measure
space to be o-finite. This proves (1.1.6). Identity (1.1.7) follows similarly, replacing
the function a” by the more general function ¢ (o) which has similar properties. O

p
Lp>

Definition 1.1.5. For 0 < p < oo, the space weak LP (X, ) is defined as the set of
all u-measurable functions f such that

[flle =int{C>0:dp@) < S foran a>0} 1
= sup {yds(y)'"/": y>0} (1.1.9)

is finite. The space weak L= (X, i) is by definition L™ (X, ).

One should check that (1.1.9) and (1.1.8) are in fact equal. The weak L? spaces are
denoted by LP*°(X, u). Two functions in L”*°(X, ) are considered equal if they are
equal p-a.e. The notation L7 (R") is reserved for L»*(R",| - |). Using Proposition
1.1.3 (2), we can easily show that

&£ || e = K| F]] e (1.110)
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for any complex constant k. The analogue of (1.1.3) is

Hf+gHLPa°° < CP(Hf‘ e T HgHLPP") ) (1L.L11)

where ¢, = max(2, 21/p ), a fact that follows from Proposition 1.1.3 (3), taking both
o and f3 equal to ¢¢/2. We also have that

1l ey =0=F=0  poae. (1.1.12)

In view of (1.1.10), (1.1.11), and (1.1.12), L”* is a quasi-normed linear space for
0< p<oo.
The weak L? spaces are larger than the usual L? spaces. We have the following:

Proposition 1.1.6. For any 0 < p < oo and any f in LP (X, L) we have

£l < 1]
Hence the embedding LP (X, ) € LP>(X, 1) holds.

Lr-

Proof. This is just a trivial consequence of Chebyshev’s inequality:

(o)< [ P < 1.

Using (1.1.9) we obtain that || f||zre= < || f]|Lr- O

The inclusion L? € L7 is strict. For example, on R" with the usual Lebesgue

measure, let i(x) = |x\_%. Obviously, & is not in LP(R") but 4 is in LP**(R") with
1Al Lpe=(rry = vi/?. where v, is the measure of the unit ball of R”.

It is not immediate from their definition that the weak L” spaces are complete
with respect to the quasi-norm || - || .r=. The completeness of these spaces is proved
in Theorem 1.4.11, but it is also a consequence of Theorem 1.1.13, proved in this

section.

1.1.2 Convergence in Measure
Next we discuss some convergence notions. The following notion is important in
probability theory.

Definition 1.1.7. Let f, f,, n = 1,2,..., be measurable functions on the measure
space (X, ). The sequence f, is said to converge in measure to f if for all € > 0
there exists an ng € Z" such that

n>nyg = u({xeX: |fulx)—f(x)|>¢€}) <e. (1.1.13)
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Remark 1.1.8. The preceding definition is equivalent to the following statement:

Foralle >0 nlgrolo,u({x eX: |fulx)—f(x)]>¢€})=0. (1.1.14)

Clearly (1.1.14) implies (1.1.13). To see the converse given € > 0, pick 0 < § < €
and apply (1.1.13) for this §. There exists an ng € Z* such that

p{xeX: [fulx) = f(x)| > 8}) <6

holds for n > ng. Since

ufx e X |falx) = f(x)| > e}) Su({xeX: [fu(x) = f(¥)[ > }),

we conclude that
p{xeX: [fulx) = f(x)| > €}) <6

for all n > ng. Let n — oo to deduce that

limsupp({x € X : |fu(x) — f(x)| > €}) < . (1.1.15)

Since (1.1.15) holds for all 0 < & < &, (1.1.14) follows by letting 6 — 0.
Convergence in measure is a weaker notion than convergence in either L” or LP%,
0 < p < oo, as the following proposition indicates:

Proposition 1.1.9. Let 0 < p < oo and f,, f be in LP>=(X, ).

(1) If fn, f arein L? and f,, — f in L?, then f,, — f in L7,
(2) If fn — fin LP"™, then f, converges to f in measure.

Proof. Fix 0 < p < o. Proposition 1.1.6 gives that for all € > 0 we have

1
BrEX L~ 0] > eD < o [ 1= flPdn.

This shows that convergence in L” implies convergence in weak L”. The case p = oo
is tautological.

Given € > 0 find an ng such that for n > ng, we have
+1

= 1]

e = S ap(ix X |f,(0 ~ /(9] > ah)? <er

Taking ¢ = €, we conclude that convergence in L7 implies convergence in mea-
sure. (|

Example 1.1.10. Note that there is no general converse of statement (2) in the pre-
ceding proposition. Fix 0 < p < o and on [0, 1] define the functions

Jrj = kl/p)c(j—l

k

k>1,1<j<k

.
Z
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Consider the sequence {fi 1, f2,1, /2.2, f3,1, f32, f33,...}. Observe that

{x: fij(x) >0} = 1/k.
Therefore, f; ; converges to 0 in measure. Likewise, observe that
ool = supalfe: 7o) > a0 sup EZ 10 _
kd”m«v = Z‘i%aHx' Jiej(x) > a}[P > gfl) Kl/p -
which implies that f; ; does not converge to 0 in L”*.

It turns out that every sequence convergent in L”(X,u) or in LP*(X,u) has a
subsequence that converges a.e. to the same limit.

Theorem 1.1.11. Let f,, and f be complex-valued measurable functions on a mea-
sure space (X, W) and suppose that f, converges to f in measure. Then some subse-
quence of f, converges to f U-a.e.

Proof. Forall k=1,2,... choose inductively n; such that

p{xeX: |fu,(x)— f(x)]| >27*F) <27* (1.1.16)

and such that ny < np < --- < ny < ---. Define the sets

A= {xeX 1 |fy(x) = f(0)] > 27

Equation (1.1.16) implies that

u( U Ak) < i p(Ar) < i 27k =al=m (1.1.17)
k=m k=m k=m

forallm=1,2,3,.... It follows from (1.1.17) that

H(UAk) <1< oo, (1.1.18)

k=1

Using (1.1.17) and (1.1.18), we conclude that the sequence of the measures of the sets
{Uezim Ak} converges as m — oo to

u( NuU Ak> =0. (1.1.19)

m=1k=m

To finish the proof, observe that the null set in (1.1.19) contains the set of all x € X
for which f,, (x) does not converge to f(x). O

In many situations we are given a sequence of functions and we would like to
extract a convergent subsequence. One way to achieve this is via the next theorem,
which is a useful variant of Theorem 1.1.11. We first give a relevant definition.
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Definition 1.1.12. We say that a sequence of measurable functions { f,,} on the mea-
sure space (X, ) is Cauchy in measure if for every € > 0, there exists an ng € Z+
such that for n,m > ny we have

R EX: [fuld) = fulx)] > €}) <.

Theorem 1.1.13. Let (X, 1) be a measure space and let {f,} be a complex-valued
sequence on X that is Cauchy in measure. Then some subsequence of f,, converges
u-a.e.

Proof. The proof is very similar to that of Theorem 1.1.11. Forall k=1,2, ... choose
ny, inductively such that

X €X [ fr,(X) = fn, (0)] >27F}) <27F (1.1.20)
and such that n; <ny <--- <ng < ngyq < ---. Define
A= 1 eX : |fo (@) o, 0] > 274}
As shown in the proof of Theorem 1.1.11, (1.1.20) implies that

u( NuU Ak> =0. (1.1.21)

m=1k=m

For x ¢ Up_,,Ar and i > j > jo > m (and jo large enough) we have
i—1 il o L
[ o () = foy (O < Y 1oy () = fp ()| < Y270 <2177 <2l
I=j I=j

This implies that the sequence { fy, (x)}; is Cauchy for every x in the set (U;_,, Ax)¢
and therefore converges for all such x. We define a function

jl.ij?ofnj (.X) when x ¢ 02:1 U?:mAk >
0 when x € (=1 Urem Ak -

fx) =

Then f,;, — f almost everywhere. O

1.1.3 A First Glimpse at Interpolation

It is a useful fact that if a function f is in LP(X, i) and in L7(X, i), then it also lies
in L"(X, ) for all p < r < q. The usefulness of the spaces L™ can be seen from the
following sharpening of this statement:
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Proposition 1.1.14. Let 0 < p < g < oo and let f in LP>(X, 1) NLY*(X, 1), where
X is a o-finite measure space. Then f isin L' (X, ) for all p < r < g and

1_1 1_1
T g T
P q

T e ) 2 ) R SR
with the interpretation that 1 /o0 = 0.
Proof. Let us take first ¢ < 0. We know that
cym)gmm<”1§wwi§w), (1.123)
Set .
= (H;“§Z:>"p. (1.1.24)

We now estimate the L" norm of f. By (1.1.23), (1.1.24), and Proposition 1.1.4 we
have

I7

Zr(X’u') :r/o arildf(a)d(x
oo q
o [ ot (Wl M
oP ol

- / a7 ]

e [

Zmda+r/ma””*ﬂvﬂgwda (1.1.25)

—-p

:( S )(HfH DE A

-P 49—

Observe that the integrals converge, since r —p > 0 and r —g < 0.

The case g = oo is easier. Since d¢(a) = 0 for & > || f||z~ we need to use only
the inequality dy(ct) < &P || f||pe for & < || f]|z= in estimating the first integral in
(1.1.25). We obtain

1[Iz

which is nothing other than (1.1.22) when g = oo. This completes the proof. O

Note that (1.1.22) holds with constant 1 if L”>* and L?* are replaced by L” and
L9, respectively. It is often convenient to work with functions that are only locally in
some L? space. This leads to the following definition.

Definition 1.1.15. For 0 < p < o, the space LI (R",|-|) or simply L (R") is the
set of all Lebesgue-measurable functions f on R” that satisfy

o < s e I

AV@VM<W (1.1.26)
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for any compact subset K of R”. Functions that satisfy (1.1.26) with p = 1 are called
locally integrable functions on R”.

The union of all LP(R") spaces for 1 < p < o is contained in L} (R"). More
generally, for 0 < p < g < e we have the following:
LIRY) S 1 (RY) S LD (RY).

loc loc
Functions in LP(R") for 0 < p < 1 may not be locally integrable. For example,

take f(x) = [x| 7"~ %¥|xj<1, Which is in L”(R") when & > 0 and p < n/(n+ &), and
observe that f is not integrable over any open set in R” containing the origin.

Exercises

1.1.1. Suppose f and f, are measurable functions on (X, it). Prove that

(a) dy is right continuous on [0, o).

(b) If | f| <liminf, . |f,| p-a.e., then dy < liminf, . d,.

(©) If | fu| 1| f], then d, 1 dy.

[Hint: Part (a): Let ¢, be a decreasing sequence of positive numbers that tends to
zero. Show that dy(ag +1,) T ds(0p) using a convergence theorem. Part (b): Let
E={xeX: |f(x)|>a}landE,={xeX: |f(x)| > a}. Use that (", En) <
li;r_l)igfﬂ (En) and E € Up—; Mr_yw En p-a.e.]

1.1.2. (Hélder’s inequality) Let 0 < p, p1,...,px < oo, where k > 2, and let f; be in
LPi = LPi(X,u). Assume that

1 1 1

P D Pk

(a) Show that the product fj - - - f is in L” and that

Hfl'"kaLp < ||f1HLm "'kaHU’k'

(b) When no p; is infinite, show that if equality holds in part (a), then it must be the
case that ¢ | f1|"' = - - = ¢k fi|P* p-a.e. for some c; > 0.
(©)Let0<g<1and g = %. For r < 0 and g > 0 almost everywhere, define

lellr = |lg~! ”1]’1\ Show that if g is strictly positive y-a.e. and lies in L9 and f is
measurable such that fg belongs to L', we have

178l = 171 a8l

1.1.3. Let (X, 1t) be a measure space.
(a) If fisin LPo (X, u) for some pgy < oo, prove that

lim HfHLP = HfHL""'

p—reo
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(b) (Jensen’s inequality) Suppose that (t(X) = 1. Show that

111l > exp | toel9lauto)

forall 0 < p < oo.
(©) If u(X) =1and f is in some LP0 (X, u) for some py > 0, then

i =exe (o o) o))

p—0

with the interpretation e~ = 0.
[Hint: Part (a): If 0 < || f|z= < oo, use that || f||zr < |\f||2ﬂ7p°)/p|\f||zgép to obtain
limsup,, ., || fllzr < || f]lz=- Conversely, let Ey = {x € X : [f(x)[ > ¥|[f||r=} for yin

(0,1). Then p(Ey) > 0, [|llzro(z,) > 0, and [|flleo > (V=) ? "™ /pIIfHZ%FEy
hence liminf, e || f||zr > V|| fllz=. If || f||z= = o, set G,, = {|f| > n} and use that

1
1A lle = (1 fllzr(G,) = ni(Gy) 7 to obtain liminf), e[| f||Lr > n. Part (b) is a direct
consequence of Jensen’s inequality [y log|h|du < log( [y |h|dp). Part (c): Fix a
sequence 0 < p, < po such that p, | 0 and define

) = (W= 1) = - () - ).

Use that %(tp —1) }logt as p ] 0 for all # > 0. The Lebesgue monotone convergence

theorem yields [y h,du 1 [y hdu, hence [y ﬁ(|f|l”l —1)du | [ylog|f|du, where
the latter could be —eo. Use

exp( /. 1og|f|du> ( / |f|P"du>” < exp ( / Ijn(lf”"—l)du>

to complete the proof. }

1.1.4. Let a; be a sequence of positive reals. Show that
(2) (Z;'o:laj)e < 27:10?, forany 0 < 6 < 1.

() X7 161? < (Z? laj)e forany 1 < 0 < oo,
(C)<Z] la/) < N®- ]Z la when 1 < 0 < oo,
@Y a? <N'"8(T la,) ,when0< 0 <1.

1.1.5. Let { fj}ljyzl be a sequence of LP(X, i) functions.
(a) (Minkowski’s inequality) For 1 < p < oo show that

N N
I Zlf/HU < Zl 153l -
j= j=
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(b) (Reverse Minkowski inequality) For 0 < p <1 and f; > 0 prove that

N N
L il < 1 Al
j=1 j=1

(c) For 0 < p < 1 show that
N iy N
1550 <V X -
j= Jj=

1—
(d) The constant N N in part (c) is best possible.
[Hint: Part (c): Use Exercise 1.1.4 (c). Part (d): Take { fj}lj\':1 to be characteristic

functions of disjoint sets with the same measure.]

1.1.6. (a) (Minkowski’s integral inequality) Let (X,u) and (T,V) be two o-finite
measure spaces and let 1 < p < co. Show that for every nonnegative measurable
function F on the product space (X, ) x (T,v) we have

() F(xn)du(x))pdv(z)F <[l F(x,t)"dv(t)rdu(x),

(b) State and prove an analogous inequality when p = oo.

(c) Prove that when 0 < p < 1, then the preceding inequality is reversed.

(d) (Y. Sawano) Consider the example X = T = [0, 1], ¢t is counting measure, V is
Lebesgue measure, F(x,¢) = 1 when x = and zero otherwise. What is the relevance
of this example with the inequalities in (a) and (b)?

[Hint: Part (a) Split the power p as 1 + (p — 1) and apply Holder’s inequality with
exponents p and p’. Part (b) Let p — o on subsets of X with finite measure.]

1.1.7. Let fi,..., fy be in LP=(X, u).
(a) Prove that for 1 < p < o we have

N N
H _z:lfjHLm» SNZI ||fj||Lp,w'
= j=

(b) Show that for 0 < p < 1 we have

N LN
1Y Fillne <N Y N fill e
j=1 j=1
[Hint: Use that u({|fi +---+ fw| > a}) <X}, u({|fjl > a/N}) and Exercise
1.1.4 (a) and (¢).|

1.1.8. Let 0 < p < 0. Prove that L (X, i) is a complete quasi-normed space. This
means that every quasi-norm Cauchy sequence is quasi-norm convergent.
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[Him‘: Let f, be a Cauchy sequence in L”. Pass to a subsequence {n;}; such that
| fuwir = furllr <277 Then the series f = f,, + Yoo | (fn,., — fn;) converges in L]

1.1.9. Let (X, 1) be a measure space with (1(X) < oo. Suppose that a sequence of
measurable functions f,, on X converges to f -a.e. Prove that f, converges to f in
measure.

[Hint: Fore >0, {xeX: fu(x) = f0)}S U N {xeX: |fulr)— fx)] < e} ]

m=1n=m
1.1.10. Let f be a measurable function on (X, it) such such dy (o) < eo forall o > 0.

Fix ¥ > 0 and define fy = f x|~y and [V = f— fy = fX|5<y-
(a) Prove that

iy (o) = dr(a)  when o>,
LA de(y)  when o <7,

0 when a>vy,
de(oe) —ds(y)  when o<7.

(b) If f € LP(X, 1) then
175, = | @ 'ds(@)da+ v,

Y
1702, =r [ @ ap(@)da—y7dr ),

3
[ =p [ dr(@or do87y(5) + 47y ()

(¢) If f is in LP=(X,u) prove that f7 is in LI(X,u) for any g > p and fy is in
L1(X, u) for any g < p. Thus L C LP0 + P when 0 < pg < p < pj < oo,

1.1.11. Let (X, i) be a measure space and let E be a subset of X with p(E) < oo.
Assume that f is in L (X, ) for some 0 < p < oo.
(a) Show that for 0 < g < p we have

p 1-4 q
9d < = u(E)y 7r .-
Ll dne < L),
(b) Conclude that if @ (X) < ecand 0 < g < p, then
LP(X,p) SLP7(X, ) S LI(X, ).

[Hint: Part (a): Use u(EN{|f| > a}) < min (u(E),a || f]| Z’-“)']

1.1.12. (Normability of weak L? for p > 1) Let (X, 1) be a o-finite measure space
and let 0 < p < oo. Pick 0 < r < p and define

poo — rd bl
1ol =, et ([ 1s7an)’
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where the supremum is taken over all measurable subsets E of X of finite measure.
(a) Use Exercise 1.1.11 with ¢ = r to conclude that

17 1e < (525) 10re

for all fin LP>(X, ). (It is not needed that X be o-finite here).
(b) Prove that for all f in LP**(X, it) we have

e < A e

(Y. Oi) Notice that if X = {1,2}, u({1}) =1, u({2}) = oo, then X is not o-finite,
and verify that for the function f = 1 the preceding inequality fails.

(c) Show that L7 (X, i) is metrizable for all 0 < p < o, i.e., there is a metric on the
space that generates the same topology as the quasi-norm. Also show that L”**(X, i)
is normable when p > 1, i.e., there is a norm on the space equivalent to || - || zr.
(d) Use the characterization of the weak L” quasi-norm obtained in parts (a) and (b)
to prove Fatou’s lemma for this space: For all measurable functions g, on X we have

[[liminf g, |

e =C h,gglilng"”mw
for some constant C,, that depends only on p € (0,0).
[Hint: Part (b): Write X = Up_; Xi with p1(Xy) < o0 and take E = {|f] > a} NX;.|

1.1.13. Consider the N! functions on the line

NN
fGZZT

=iol

where o is a permutation of the set {1,2,...,N}.

(a) Show that each f5 satisfies || f5|| 1~ = 1.

(b) Show that || Locs, follpie =NI(1+ 5+ +4).

(c) Conclude that the space L' (R) is not normable (this means that || - ||;1. is not
equivalent to a norm).

(d) Use a similar argument to prove that L'**(R") is not normable by considering
the functions

N N"
Folwoertn) = X X Glay, o) Fie ) Hrtt gy (90

N

‘ul"lz

J

where o is a permutation of the set {1,2,...,N"} and 7 is a fixed injective map
from the set of all n-tuples of integers with coordinates 1 < j < N onto the set
{1,2,...,N"}. One may take

T(jla 7]")_11+N(]2_1)+N (]3_1)+ +Nn l( 1)

for instance.
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1.1.14. Let (X, 1) be a measure space and let s > 0.
(a) Let f be a measurable function on X. Show that if 0 < p < g < c we have

Lp=-

[ < s
If1<s -p

(b) Let f}, 1 < j <m, be measurable functions on X and let 0 < p < co. Show that

- p
| o I

(c) Conclude from part (b) that for 0 < p < 1 we have

max
1<j<m ‘fj

HfH' +f'”HLP°°— 1— ZHfJHLW'

The latter estimate is referred to as the p-normability of weak LP.
[Hint: Part (a): Use the distribution function. Part (c): First obtain the estimate

dfy et f(@) < p({[fit -+ fn|>a,max|f;| <a}) ermaxj \fj\(a)
for all o > 0 and then use part (b).]

1.1.15. (Holder’s inequality for weak spaces) Let f; be in LP/*” of a measure space
X where 0 < pj <eoand 1 < j <k Let

1 1 1
—= 4 —.
JZ 4| Pk

Prove that
[ /1 fi]

koL ok
_1 P
pe <0 7 [T T i
=1 7 j=I
[Hint: Take ||fj||;p;= = 1 for all j. Control dy,...s, (ct) by

p{lAl>o/si})+ -+ u{lfiot] >si-2/sk-1}) + L {1 fil > s6-1})
< (s1/a)Pt 4 (s2/51)7 4 A (se—1 /sk—2) PR 4 (1 /sp—1 )P
Set x; =s1/0, X =82/51,...,% = 1/s¢_1. Minimize x/" +~~-—|—x£" subject to the

constraint x; -+ -x; = 1/¢t.]

1.1.16. Let 0 < pg < p < p1 < o0 and let % == —|— - for some 6 € [0, 1]. Prove
the following:

17l < Al 1 11zer
[l < o= 11

LP1-=
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1.1.17. ([231]) Follow the steps below to prove the isoperimetric inequality. For
n>2 and 1 < j < n define the projection maps 7; : R* — R"~! by setting for
X=(X1,...,%),

nj(x) = ()61,...,.)(?j'_l,)cj'_~_1,...,)Cn)7

with the obvious interpretations when j =1 or j =n.
(a) For maps f; : R"~! — C prove that

n—1 (Rnfl ) .

n n
A(flv"'vfn) :/ H |fjoﬂj{dx§ H ||f/
R™ 5] j=1
(b) Let Q be a compact set with a rectifiable boundary in R” where n > 2. Show
that there is a constant ¢, independent of €2 such that
Q| <culoQrT,

where the expression |d Q| denotes the (n—1)-dimensional surface measure of the
boundary of Q.
[Hint: Part (a): Use induction starting with n = 2. For n > 3 write

Aftyesf) g/ POty ) fo (700 () [y - ot

Rn—1

S ||P||L%(R)171)an0ﬂ” Lnfl(Rnfl))

where P(xi,...,xp—1) = Jg |fi(mi(x)) - fum1(M—1(x))| dx,, and apply the induc-
tion hypothesis to the n — 1 functions

1

[/l;fj(nj(x»nldxn} m7

for j=1,...,n— 1, to obtain the required conclusion. Part (b): Specialize part (a) to
the case f; = Xnjlq) tO obtain

1 1
Q| < |m[Q]|=T - |m,[2]] 7

and then use that |7;[Q]| < $]0Q]]

1.2 Convolution and Approximate Identities

The notion of convolution can be defined on measure spaces endowed with a group
structure. It turns out that the most natural environment to define convolution is the
context of topological groups. Although the focus of this book is harmonic analysis
on Euclidean spaces, we develop the notion of convolution on general groups. This
allows us to study this concept on R", Z", and T", in a unified way. Moreover,
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since the basic properties of convolutions and approximate identities do not require
commutativity of the group operation, we may assume that the underlying groups
are not necessarily abelian. Thus, the results in this section can be also applied to
nonabelian structures such as the Heisenberg group.

1.2.1 Examples of Topological Groups

A topological group G is a Hausdorff topological space that is also a group with law

(x,y) — xy (1.2.1)

such that the maps (x,y) — xy and x — x~! are continuous. The identity element of

the group is the unique element e with the property xe = ex = x for all x € G. We
adopt the standard notation

AB={ab: acA,bc B}, Al'={a"':acA}

for subsets A and B of G. Note that (AB)~! = B~'A~!. Every topological group
G has an open basis at e consisting of symmetric neighborhoods, i.e., open sets U
satisfying U = U~!. A topological group is called locally compact if there is an
open set U containing the identity element such that U is compact. Then every point
in the group has an open neighborhood with compact closure.

Let G be a locally compact group. It is known that G possesses a positive measure
A on the Borel sets that is nonzero on all nonempty open sets, finite on compact sets,
and is left invariant, meaning that

A(tA) = A(A), (12.2)

for all measurable sets A and all 7 € G. Such a measure A is called a (left) Haar
measure on G. Similarly, G possesses a right Haar measure which is right invariant,
i.e., A(At) = A(A) for all measurable A € G and all t € G. For the existence of Haar
measure we refer to [152, §15] or [213, §16.3]. Furthermore, Haar measure is unique
up to positive multiplicative constants. If G is abelian then any left Haar measure on
G is a constant multiple of any given right Haar measure on G. A locally compact
group which is a countable union of compact subsets is a o-finite measure space
under left or right Haar measure. This is case for connected locally compact groups.

Example 1.2.1. The standard examples are provided by the spaces R" and Z" with
the usual topology and the usual addition of n-tuples. Another example is the space
T" = R"/Z" defined as follows:

T'=10,1)x---x[0,1)
—_——

n times
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with the usual topology and group law:

(x1y e esXn) + 15w 5¥0) = ((x1 +y1) mod 1,..., (x, +y,) mod1).

Example 1.2.2. Let G = R* = R\ {0} with group law the usual multiplication. It is
easy to verify that the measure A = dx/|x| is invariant under multiplicative transla-

tions, that is, p
bl x o dx
= @
/—oc. x| Jw |x|

for all £ in L'(G,u) and all t € R*. Therefore, dx/|x| is a Haar measure. [Taking
f=2xagives A(tA) = A(A).]

Example 1.2.3. Similarly, on the multiplicative group G = R", a Haar measure is
dx/x.

Example 1.2.4. Counting measure is a Haar measure on the group Z" with the usual
addition as group operation.

Example 1.2.5. The Heisenberg group H" is the set C" x R with the group operation

n
(Z1ye s Zny ) (Why ey Wiy 8) = (zl +w1,...,zn+wn,t+s+21m2z_;Wj).
=1

It can easily be seen that the identity element e of this group is 0 € C" x R and
(215-++,20,t) ' = (=21,...,—2u, —t). Topologically the Heisenberg group is identi-
fied with C" x R, and both left and right Haar measure on H" is Lebesgue measure.
The norm

Gt = | (L aP) 42|

Jj=1

introduces balls B, (x) = {y € H" : [y~ !x| < r} on the Heisenberg group that are quite
different from Euclidean balls. For x close to the origin, the balls B, (x) are not far
from being Euclidean, but for x far away from e = 0 they look like slanted truncated
cylinders. The Heisenberg group can be naturally identified as the boundary of the
unit ball in C"* and plays an important role in quantum mechanics.

1.2.2 Convolution

Throughout the rest of this section, we fix a locally compact group G and a left
invariant Haar measure A on G. We assume that G is a countable union of compact
subsets, hence the pair (G, ) forms a o-finite measure space. The spaces L” (G, 1)
and L7 (G, A) are simply denoted by L”(G) and L?*(G).
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Left invariance of A is equivalent to the fact that for all # € G and all nonnegative
measurable functions f on G we have

/ftx )dA (x /f )dA (x (1.2.3)

Equation (1.2.3) is a restatement of (1.2.2) if f is a characteristic function. Obviously
(1.2.3) also holds for f € L'(G) by linearity and approximation.
We are now ready to define the operation of convolution.

Definition 1.2.6. Let f, g be in L!(G). Define the convolution f * g by

(f+g)(x /f gy 'x)dA(y). (1.2.4)

For instance, if G = R" with the usual additive structure, then y_1

integral in (1.2.4) is written as

(re9 = [ 10)

Remark 1.2.7. The right-hand side of (1.2.4) is defined a.e., since the following
double integral converges absolutely:

= —y and the

[ [1rolso- 1ar)anw
= [ [1rolls0larc0an)
= '/C.;‘f(y)‘/;|g<yilx)|dl(x)dl(y)
= [0l [[lselartare) by (12.2)
G G

= 1 llzs(o gl ) < +oo-

The change of variables z = x~ !y yields that (1.2.4) is in fact equal to

(f+8)( / fxz)g dA(z), (1.2.5)

where the substitution of dA (y) by dA(z) is justified by left invariance.

Example 1.2.8. On R let f(x) = 1 when —1 < x <1 and zero otherwise. We see
that (f = f)(x) is equal to the length of the intersection of the intervals [—1,1] and
[x — 1,x+ 1]. It follows that (f * f)(x) = 2 — |x| for |x| < 2 and zero otherwise.
Observe that f * f is a smoother function than f. Similarly, we obtain that f x f * f
is a smoother function than f x f.

There is an analogous calculation when g is the characteristic function of the unit
disk B(0, 1) in R2. A simple computation gives
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(g+2)(x) =|B(0,1)NB(x,1)| :[” ik (2\/1—t2—\x\)dt

1
1= |

= 2arcsin (\/ 1— }‘|x|2> — x|/ 1= FIx[2

when x = (x1,x,) in R? satisfies |x| < 2, while (g* g)(x) = 0if |x| > 2.

A calculation similar to that in Remark 1.2.7 yields that
Hf*gHL](G) S ||f||L1(G)HgHL1(G)’ (1.2.6)

that is, the convolution of two integrable functions is also an integrable function
with L! norm less than or equal to the product of the L' norms.

Proposition 1.2.9. For all f, g, h in L' (G), the following properties are valid:

(1) f*(g*h) = (f*g)*h (associativity)
(2) fx(g+h)=fxg+fxhand (f+g)*h= f*h+gxh (distributivity)

Proof. The easy proofs are omitted. U

Proposition 1.2.9 implies that L' (G) is a (not necessarily commutative) Banach
algebra under the convolution product.

1.2.3 Basic Convolution Inequalities

The most fundamental inequality involving convolutions is the following.

Theorem 1.2.10. (Minkowski’s inequality) Let 1 < p < . For f in LP(G) and g in
L'(G) we have that g + f exists A-a.e. and satisfies

s * f o) < lgllor ) 1/1l2r- (1.2.7)

Proof. Estimate (1.2.7) follows directly from Exercise 1.1.6. Here we give a direct
proof. We may assume that 1 < p < oo, since the cases p = 1 and p = oo are simple.
We first show that the convolution |g| x| f]| exists A-a.e. Indeed,

(1811706 = [ 1760l aA ). (1.2

Apply Holder’s inequality in (1.2.8) with respect to the measure |g(y)|dA (y) to the
functions y +— f(y~'x) and 1 with exponents p and p’ = p/(p — 1), respectively. We
obtain

(el < ([ o oPeolare ) ( [lsmion)’ . azs)
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Taking L” norms of both sides of (1.2.9) we deduce
-1 -1 %
sl 11l < (el [, [ 176~ 07 lslano)aneo )
_ p—1 -1 7
= (lellz" [, [1r0- P areletilaro) )

= (HgHirl LI |f<x>|ﬂdx<x>|g<y>|dw)” by (1.2.3)

1
_ P
S GATA
= sl <

where the second equality follows by Fubini’s theorem. This shows that |g| | f| is
finite A-a.e. and satisfies (1.2.7); then g * f exists A-a.e. and also satisfies (1.2.7),
since [ £] < ||| O

Remark 1.2.11. Theorem 1.2.10 may fail for nonabelian groups if g * f is replaced
by f g in (1.2.7). Note, however, that if for all # € L (G) we have
Ao = (12.10)

where h(x) = h(x~1), then (1.2.7) holds when the quantity /g * f|| 1r(G) is replaced
by ||f * gllzr(c)- To see this, observe that if (1.2.10) holds, then we can use (1.2.5) to
conclude that if f in L”(G) and g in L' (G), then

Hf*gHLP(G) < ||gHL1(G)||fHLP(G)' (1.2.11)
If the left Haar measure satisfies
AA) =241 (1.2.12)
for all measurable A € G, then (1.2.10) holds and thus (1.2.11) is satisfied for all g in
L'(G) and f € LP(G). This is, for instance, the case for the Heisenberg group H”".

Minkowski’s inequality (1.2.11) is only a special case of Young’s inequality in
which the function g can be in any space L'(G) for 1 < r < eo,

Theorem 1.2.12. (Young’s inequality) Let 1 < p,q,r < oo satisfy

1 1
,_|_1:

l +—. (1.2.13)
q p T
Then for all f in L (G) and all g in L' (G) satisfying Hg 1r(G) = Hg 1r(G) We have
f* g exists A-a.e. and satisfies
Hf*gHLq(G) <lls U(G)Hf‘ LP(G)" (1.2.14)
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Proof. Young’s inequality is proved in a way similar to Minkowski’s inequality. We
do a suitable splitting of the product | f(y)||g(y~'x)| and apply Holder’s inequality.
Observe that when r < oo, the hypotheses on the indices imply that

1

. =1.

1 1 ror
P -
q P q9 D

Using Holder’s inequality with exponents ¥/, ¢, and p’, we obtain

[(1£1* gD ()] S/If(y)llg(y”X)ldl(y)

P

= L) (70110 019 lg0 )17 aA )

b ([ 1rorleborann ></|gy W )’
b ([ oo rare ) (/|gx Wra)’
(/|f WPl dA s ) i

where we used left invariance. Now take L7 norms (in x) and apply Fubini’s theorem

to deduce that
; ( / / |f<y>|p|g<y1x>|’dz<x>cm<y>)‘l’

fHLP<°°’

<||f

17118l 0 <

5
Lr

=||f
=g

Lr

using the hypothesis on g. This implies that |f| x |g| is finite A-a.e. and satisfies
(1.2.14); then f * g exists A-a.e. and also satisfies (1.2.14).

Finally, note that if r = oo, the assumptions on p and g imply that p = 1 and g = oo,
in which case the required inequality trivially holds. (]

We now give a version of Theorem 1.2.12 for weak L? spaces. Theorem 1.2.13 is
improved in Section 1.4.

Theorem 1.2.13. (Young’s inequality for weak type spaces) Let G be a locally com-
pact group with left Haar measure A that satisfies (1.2.12). Let 1 < p < o and
1 < gq,r < oo satisfy
1 1 1
—F+l=—-+-. (1.2.15)
q p r
Then there exists a constant Cp, 4 » > 0 such that for all f in LP(G) and g in L"*(G),
the convolution f * g exists A-a.e. and satisfies

118l o6y < Craarl|gll i) /] (1.2.16)

L/(G)
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Proof. As in the proofs of Theorems 1.2.10 and 1.2.12, we first obtain (1.2.16) for the
convolution of the absolute values of the functions. This implies that | f] x |g] < oo
A-a.e., and thus f * g exists A-a.e. and satisfies | * g| < |f] * |g|. We may therefore
assume that f, g > 0 A-a.e. The proof is based on a suitable splitting of the function
g. Let M be a positive real number to be chosen later. Define g1 = gX|gj<p and
82 = 8X|g|>m- In view of Exercise 1.1.10 (a) we have

0 ifa>M,
e, () = {dg(a) —dy (M) ifo <M, (1.2.17)
)

de(a) ifoe>M,

dg, (1) ={dg(M) o< (1.2.18)

Proposition 1.1.3 gives for all § > 0

dfeg(B) < dyug (B/2) +dpug, (B/2) (1.2.19)

and thus it suffices to estimate the distribution functions of f* g and f * g>. Since
g1 is the “small” part of g, itis in L* for any s > r. In fact, we have

/Ggl(x)sdl(x) :s/mas"dgl(oc)da
_ / —dy(M))da

M M
/ o g L,wdafs/ o d,(M)da
0 0

= Mg} M dy(M),

(1.2.20)

Cs—r Le=

when s < oo,
Similarly, since g, is the “large” part of g, it is in L' for any # < r, and

[ ety are = [ o dy(@)da
G 0
:t/OMaHd( )doH—t/ o ldy(ar) dax

gM'dg(M)th/ o | dex
M

L

<Ml

r

r—t

t
e

t— rH

(1.2.21)

e

Since 1/r =1/p' +1/q, it follows that 1 < r < p’. Select r = 1 and s = p’
Hoélder’s inequality and (1.2.20) give when p’ < oo

Mg

[(Fg) @) < 1]l llgill L < HfHL,,< , Lm)" (12.22)

—r
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and
|(f*g)@)| <[]
when p’ = oo, If p’ < o0 choose an M such that the right-hand side of (1.2.22) is equal

to B/2. If p’ = oo choose M such that the right-hand side of (1.2.23) is also equal to
B/2. That is, choose

oM (1.2.23)

M= (B7 27 rg A1 lgllie) /P
if p' <eocand M = B/(2||f]l;1) if p’ = co. For these choices of M we have that
dfeg, (B/2)=0.

Next by Theorem 1.2.10 and (1.2.21) with t = 1 we obtain

,
Lry 1

leng

Hf*gzﬂm < HfHLp||g2HL1 < Hf| an' (1.2.24)

For the value of M chosen, using (1.2.24) and Chebyshev’s inequality, we obtain

drvg(B) <dyeg,(B/2)
=< (sz*gZHLﬂﬁ_l)p
< @)\ fllM" |
=GB\ f20 Il

which is the required inequality. This proof gives that the constant C, , - blows up
like (r—1)"7/%asr — 1. 0

. o (1.2.25)
an(r_l) lﬁ 1)17

q
L)

Example 1.2.14. Theorem 1.2.13 may fail at some endpoints:

(1) r=Tland 1 <p =g <eo. OnRtake g(x) = 1/[x| and f = yo ;). Clearly, g is in
L' and fin L? for all 1 < p < oo, but the convolution of f and g is identically
equal to infinity on the interval [0, 1]. Therefore, (1.2.16) fails in this case.

(2) g=ocand 1 < r=p’ <oo.OnRlet f(x) = (|x|'/?log|x|)~" for |x| > 2 and zero
otherwise, and also let g(x) = |x|~!/". We see that (f % g)(x) = oo for |x| < .
Thus (1.2.16) fails in this case also.

(3) r =g =0 and p = 1. Then inequality (1.2.16) trivially holds.

1.2.4 Approximate Identities

We now introduce the notion of approximate identities. The Banach algebra L' (G)
may not have a unit element, that is, an element fj such that

foxf=f=f*fo (1.2.26)
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for all f € L'(G). In particular, this is the case when G = R; in fact, the only f; that
satisfies (1.2.26) for all f € L'(R) is not a function but the Dirac delta distribution,
introduced in Chapter 2. It is reasonable therefore to introduce the notion of approx-
imate unit or identity, a family of functions k. with the property k¢ x f — f in L' as
e—0.

Definition 1.2.15. An approximate identity (as € — 0) is a family of L' (G) functions
ke with the following three properties:

(i) There exists a constant ¢ > 0 such that [[ke[| 1 (g < ¢ forall € > 0.
(i) Joke(x)dA(x) =1 forall € > 0.

(iii) For any neighborhood V of the identity element e of the group G we have
Jye lke(x)|dA(x) — 0 as € — 0.

The construction of approximate identities on general locally compact groups G
is beyond the scope of this book and is omitted; see [152] for details. In this book we
are interested only in groups with Euclidean structure, where approximate identities
exist in abundance.

Sometimes we think of approximate identities as sequences {k, },. In this case
property (iii) holds as n — oo. It is best to visualize approximate identities as se-
quences of positive functions k,, that spike near 0 in such a way that the signed area
under the graph of each function remains constant (equal to one) but the support
shrinks to zero. See Figure 1.2.

Example 1.2.16. On R let P(x) = (x(x*+ 1))~ ! and P;(x) = e ' P(e~'x) for & > 0.

Since P and P have the same L! norm and

/er L gx= tim [arctan(x) —arctan(—x)| = (7/2) — (-7n/2) ==,

oo X241 X—3o0
property (ii) is satisfied. Property (iii) follows from the fact that

1/ 1 1 2
— —+——53 —dx=1——arctan(§/¢) — 0 as € — 0,
T Jjy>s € (x/€)>+1 T

for all 6 > 0. The function P; is called the Poisson kernel.

The Poisson kernel may be replaced by any integrable function of integral 1 as
the following example indicates.

Example 1.2.17. On R” let k(x) be an integrable function with integral one. Let
ke(x) = £7"k(£~'x). It is straightforward to see that k (x) is an approximate identity.
Property (iii) follows from the fact that

k dx—=0
/MZM\ (x)] dx

as € — 0 for 0 fixed.
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Fig. 1.2 The Fejér kernel Fs plotted on the interval [—%, %]

Example 1.2.18. On the circle group T' let

N . . 2
_ UL amije 1 (sin(m(N+1)r)
FN(t)_jZN(I_NH)e ! _N+1< sin(7t) ) ' (1:2.27)

To check the previous equality we use that
sin?(x) = (2— " —e72%) /4,

and we carry out the calculation. Fy is called the Fejér kernel. See Figure 1.2. To
see that the sequence { Fy } is an approximate identity, we check conditions (i), (ii),
and (iii) in Definition 1.2.15. Property (iii) follows from the expression giving Fy in
terms of sines, while property (i) follows from the expression giving Fy in terms of
exponentials. Property (ii) is identical to property (i), since Fy is nonnegative.

Next comes the basic theorem concerning approximate identities.

Theorem 1.2.19. Let ke be an approximate identity on a locally compact group G
with left Haar measure A.

(1) If f lies in LP(G) for 1 < p < o, then ke * f — fl|1r(c) — 0 as € = 0.

(2) Let f be a function in L*(G) that is uniformly continuous on a subset K of
G, in the sense that for all 6 > 0 there is a neighborhood V of the identity
element such that for all x € K and y € V we have |f(y~'x) — f(x)| < 8. Then
we have that ||ke * f — f|=(x) — O as € — O. In particular, if f is bounded and
continuous at a point xy € G, then (ke * f)(x0) — f(x0) as € = 0.

Proof. We start with the case 1 < p < co. We recall that continuous functions with
compact support are dense in L? of locally compact Hausdorff spaces equipped
with measures arising from nonnegative linear functionals; see [152, Theorem
12.10]. For a continuous function g supported in a compact set L we have we have
lg(h~1x) — g(x)|” < (2||g|l=)” 2w -1, for h in a relatively compact neighborhood
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W of the identity element e. By the Lebesgue dominated convergence theorem we
obtain

/|gh ) — g()|PdA(x) = (12.28)

as h — e. Now approximate a given f in L?(G) by a continuous function with com-
pact support g to deduce that

/|fh X) = F)|PdA(x) = as  hoe. (1.2.29)

Because of (1.2.29), given a § > 0 there exists a neighborhood V of e such that

S p
hevV = /G|f(h_1x)ff(x)|pdl(x) < (26) : (1.2.30)

where c is the constant that appears in Definition 1.2.15 (i). Since k. has integral one
for all € > 0, we have

(ke #.£)() = 1) = (ke <)) = £2) [ e()dA(y
(FO7%) = f(@) ke () dA ()
(FO™"%) = f@)ke(y)dA ()
+ [ 070 = F00)ke0) dA D).

ve

(1.2.31)

——

Now take L? norms in x in (1.2.31). In view of (1.2.30),

H [ (70710 = Feke () d2.)

Y L2(GdA()
< /VHf(y"x) ~ FO ey ke O dAG) - (1:2:32)
< [ Ske®ldr0) < 3,

while

provided we have that

07 = k) ar )|
‘ LA (G AR () (1.2.33)

< [ 2l kelar0) < 3

)

1)

] Jkelant) < GPEDE

(1.2.34)
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Choose g > 0 such that (1.2.34) is valid for € < gy by property (iii). Now (1.2.32)
and (1.2.33) imply the required conclusion.

The case p = o follows similarly. Let f be a bounded function on G that is
uniformly continuous on K. Given & > 0, there is a neighborhood V of e such that,
whenever y € V and x € K we have

5
FO %) — fx)] < o o (1.2.35)

where c is as in Definition 1.2.15 (i). By property (iii) in Definition 1.2.15, there is
an & > 0 such that for 0 < € < & we have

5
ke (y)|dA(y 1.2.36
/ el (”fHL"“ +1) (230

Using (1.2.35) and (1.2.36), we deduce that

sup| (ke * f) (x) — f(x)]

xekK
< / ko)l sup | £(3") ~ £ aAL) + [ kel suplf(7) ~ F()]dA ()
Ve xekK
0
<C + 2 fllz=(c) <

= 2¢ 4|l +1)

This shows that k¢ % f converge uniformly to f on K as € — 0. In particular, if
K = {x0} and f is bounded and continuous at xy, we have (kg * f)(x0) = f(x0). O

Remark 1.2.20. Observe that if Haar measure satisfies (1.2.12), then the conclusion
of Theorem 1.2.19 also holds for f k.

A simple modification in the proof of Theorem 1.2.19 yields the following vari-
ant, which presents a significant difference only when a = 0.

Theorem 1.2.21. Let k¢ be a family of functions on a locally compact group G that
satisfies properties (i) and (iii) of Definition 1.2.15 and also

/G ke (x) dA.(x) =

Jor some fixed a € C and for all € > 0. Let f € LP(G) for some 1 < p < oo,

(a) If 1 < p < oo, then ||ke * f —af || ) — 0 as € — 0.

(b) If p = oo and f is uniformly contznuous on a subset K of G, in the sense that
for any 8 > 0 there is a neighborhood V of the identity element of G such that
SUP,e SUPyey |f(y~1x) — f(x)| < &, then we have that ||ke * f — aflli=x) — 0
as € — 0.
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Exercises

1.2.1. Let G be a locally compact group and let f,g in L'(G) be supported in the
subsets A and B of G, respectively. Prove that f x g is supported in the algebraic
product set AB.

1.2.2. For a function f on a locally compact group G and 1 € G, let 'f(x) = f(tx)
and f'(x) = f(xt). Show that

frg="(f+g) and  fxg' =(fxg)
whenever f,g € L' (G), equipped with left Haar measure.

1.2.3. Let G be a locally compact group with left Haar measure. Let f € L?(G)
and § € L' (G), where 1 < p < oo; recall that g(x) = g(x ). For t,x € G, let
'g(x) = g(¢x). Show that for any &€ > 0 there exists a relatively compact symmet-
ric neighborhood of the origin U such that u € U implies [“g — g/, ) <€ and
therefore

[(f*8)(v) = (Fxg) W) < || f| €

whenever v_lw € U.

1.2.4. (a) Prove that compactly supported functions are dense in L” (R") for all 0 <
p < oo

(b) Show that smooth functions with compact support are dense in LP(R") for all
1 < p<oo.

[Hint: Part (b): Use Theorem 1.2.19 with k¢ (x) = € k(¢ ~'x) and k smooth and
compactly supported function.]

1.2.5. Show that a Haar measure A for the multiplicative group of all positive real

numbers is 4
0 t
M) = [0 T

t

1.2.6. Let G=R?\ {(0,y) : y € R} with group operation (x,y)(z,w) = (xz,xw+Y).
[Think of G as the group of all 2 x 2 matrices with bottom row (0, 1) and nonzero
top left entry.] Show that a left Haar measure on G is

Foo e dxdy
/ XA(xvy) 77

while a right Haar measure on G is

dxdy
x|

e =] [ e
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1.2.7. ([144], [145]) Use Theorem 1.2.10 to prove that

(/Om <i /Ox |f(t)|dt)de>;7 : % 11125 0.0y
</Om </xm |f(t)|dt)pdx>}’ =7 (/om |f(t)|"t"dt>p ,
when 1 < p <o,

[Hint: On the multiplicative group (R, %) consider the convolution of the function
1 _ 1 1

| f(x)[x# with the function x #' X[ .., and the convolution of the function | f(x) \xH?
1

with x» X(O7 l] ]

1.2.8. (G. H. Hardy) Let 0 < b < o0 and 1 < p < oo. Prove that

</om </o 4 “”””)px_b_l"x)}) < Z(/om |f(t)|"t"""1df); ,
avs 'f(t)'dtyxbld"y ([ |f(t)|pt”+b1df>}7.

[Hint: On the multiplicative group (R, %) consider the convolution of the function

|f(x) |x1_% with x_%x[lﬁoo) and of the function | f(x) |x1+% with x%x@’l] ]

1.2.9. On R" let T(f) = f * K, where K is a positive L' function and f is in L?,
1 < p < oo. Prove that the operator norm of T : L? — L? is equal to ||K]||,1.

[Hint: Clearly, || T||Lr—» < ||K||,1. Conversely, fix 0 < € < 1 and let N be a positive
integer. Let ¥y = Xp(o,v) and for any R > 0 let Kg = Kxp(o r)» where B(x,R) is the
ball of radius R centered at x. Observe that for |x| < (1 — €)N, we have B(0,N¢) €
B(x,N); thus [ga xn(x —y)Kne () dy = Jge Kne(y) dy = HKNE Then

ur

[|1K 2|7 - [[Knve * x| il’(B(O,(l—e)N
lawllz,  — || v

> || Kwe||2i (1 =€)

}p
Let N —> ﬁI‘St and then € — ().

1.2.10. On the multiplicative group (R, %) let T(f) = f*K, where K is a positive
L' function and fisin L?, 1 < p < oo, Prove that the operator norm of 7 : L? — LP
is equal to the L' norm of K. Deduce that the constants p/(p — 1) and p/b are sharp
in Exercises 1.2.7 and 1.2.8.

[Hint: Adapt the idea of Exercise 1.2.9 to this setting. |

1.2.11. Let Qi (t) = cx(1 —12)* for ¢ € [~1,1] and zero elsewhere, where ¢; is cho-
sen such that fl, Or(t)dt =1forallk=1,2,....
(a) Show that ¢; < V/k.
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(b) Use part (a) to show that {Qy } is an approximate identity on R as k — co.

(c) Given a continuous function f on R that vanishes outside the interval [—1, 1],
show that f * Oy converges to f uniformly on [—1,1] as k — .

(d) (Weierstrass) Prove that every continuous function on [—1,1] can be approxi-
mated uniformly by polynomials.

[Hint: Part (a): Estimate the integral |, f<k12 Ok (t)dt from below using the in-
equality (1 —>)k > 1 —kt? for |¢| < 1. Part (d): Consider the function g(t) =

FO = f(=1)=F(F(1) = £(=1))]

1.2.12. Show that the Laplace transform L(f)(x) = [5° f(¢)e *dt maps L*(0,) to
itself with norm at most /7.

[Hint: Consider convolution with the kernel /7e~" on the group L?((0,0), %)]

1.2.13. ([62]) Let F > 0, G > 0 be measurable functions on the sphere S~ ! and let
K > 0 be a measurable function on [—1, 1]. Prove that

Loy L FOG@K(®-0)d0d0 < CIFlss 1[Gl )

where 1 <p <o, 0-9=Y"_,0;¢;andC = [5.-1 K(6-¢)d ¢, which is independent
of 6. Moreover, show that C is the best possible constant in the preceding inequality.
Using duality, compute the norm of the linear operator

F(0)— o F(B)K(6-9)do

from L”(S"!) to itself.
[Hint: Observe that [gu 1 fgn1 F(0)G(9)K(6-¢)dd® is bounded by the quantity

1
p v
{Anl |: San(G)K(e(p)de] d(p} HGHU,(Snfl)-

Apply Holder’s inequality to the functions F and 1 with respect to the measure
K(6-¢)d6 to deduce that [y, 1 F(6)K(6 - ¢)d8 is controlled by

1/p

< [, F(0)K(®: (p)d@) Vp( SRACE (p)d@)

Use Fubini’s theorem to bound the latter by
1F s Gl gy [, K(8-9)do.

Note that equality is attained if and only if both F and G are constants.]
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1.3 Interpolation

The theory of interpolation of operators is vast and extensive. In this section we
are mainly concerned with a couple of basic interpolation results that appear in a
variety of applications and constitute the foundation of the field. These results are
the Marcinkiewicz interpolation theorem and the Riesz—Thorin interpolation theo-
rem. These theorems are traditionally proved using real and complex variables tech-
niques, respectively. A byproduct of the Riesz—Thorin interpolation theorem, Stein’s
theorem on interpolation of analytic families of operators, has also proved to be an
important and useful tool in many applications and is presented at the end of the
section.

We begin by setting up the background required to formulate the results of this
section. Let (X, 1) and (Y, v) be two measure spaces. Suppose we are given a linear
operator 7', initially defined on the set of simple functions on X, such that for all f
simple on X, T'(f) is a v-measurable functionon Y. Let 0 < p < e0and 0 < g < oo.
If there exists a constant C,, ; > 0 such that for all simple functions f on X we have

1T zar ) = Coall Al (13.1)

then by density, 7 admits a unique bounded extension from L? (X, u) to L4(Y, V).
This extension is also denoted by 7. Operators that map L to L? are called of strong
type (p,q) and operators that map L? to L% are called weak type (p,q).

1.3.1 Real Method: The Marcinkiewicz Interpolation Theorem

Definition 1.3.1. Let T be an operator defined on a linear space of complex-valued
measurable functions on a measure space (X, 1) and taking values in the set of all
complex-valued finite almost everywhere measurable functions on a measure space
(Y,v). Then T is called linear if for all f, g in the domain of T and all A € C we
have

T(f+8)=T(f)+T(e) and TAf)=AT(). (132
T is called sublinear if for all f, g in the domain of T and all A € C we have
T(f+I<ITNI+IT(Q)]  and  |TQASN]=I[AT()]- (1.3.3)
T is called quasi-linear if for all f, g in the domain of T and all A € C we have
TS+ <K(ITNI+IT())  and  |TAH|= AT (134
for some constant K > 0. Sublinearity is a special case of quasi-linearity.

For instance, T; and 75 are linear operators, then (|7} |? +|T3|P)!/? is sublinear if
p > 1 and quasi-linear if 0 < p < 1.
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Theorem 1.3.2. Let (X, 1) be a G-finite measure space, let (Y, V) be another mea-
sure space, and let 0 < py < p; < oo. Let T be a sublinear operator defined on
LX) +LPV(X) ={fo+ f1: [; €LPi(X;),j=0,1} and taking values in the space
of measurable functions on Y. Assume that there exist Ayg,A1 < oo such that

17N
17

sy <Al fll oy forall f €LP(X), (1.3.5)
ey Ay forall f € LPV(X). (1.3.6)

Then for all py < p < p1 and for all f in LP(X) we have the estimate

(]

LP(Y) SAHfHLp(X)v (1.3.7)

where ) 1
1 Py
1 1

1 2P Po P
A_Z( L, P >pA0”°”‘A1”°”1. (13.8)

|~ —
|~ —

p—po P1—P

Proof. Assume first that p; < eo. Fix f a function in L”(X) and o > 0. We split
f=fg+ f7 where f§ is in L0 and f* is in LP'. The splitting is obtained by
cutting | f] at height S for some § > 0 to be determined later. Set

arn _ Jfx)  for [f(x)]>ba,
Jo'l®) = {o for |f(x)| < a,
arn _ Jfx) for [f(x)]<ba,
S = {o for |f(x)] > o

It can be checked easily that f* (the unbounded part of f) is an LP0 function and
that f{* (the bounded part of f) is an L”! function. Indeed, since pg < p, we have

17511270 :/ @I dulx) < (8a)™ | f]17,
/1>

and similarly, since p < py,

LNz < )£
In view of the subadditivity property of T contained in (1.3.3) we obtain that

TN <ITUOHIT U

which implies

ey T(HWI>at S{yeY: |T(f5) ()| > a/2 Uiy eY: [T(f) ()] > a/2},

and therefore
dT(f)(OC) < dT(fé")(a/z) +dT(f1a)(OC/2) . (1.3.9)



1.3 Interpolation 35

Hypotheses (1.3.5) and (1.3.6) together with (1.3.9) now give

Ago g " . All’l o ;
ot | romane s S [ et

In view of the last estimate and Proposition 1.1.4, we obtain that

dr(f)(@) <

p o [* oplg o 0
[Tl < pao [artarm [ 1o du) e

s [Cartan [ (plrau) da

|f|<éa
11f()]
= pao [ e [F e ()

+ p(241) Pl/ 1 (x |P1/ a1 P dadp(x)
7l

240)
_ﬁap p0/|f IPLF PP dp(x)
241)
[(71117617 = / |£C) [P () [PPr d(x)

(@AY 1 AP,
a (P_PO 511’*1’()+])1—psl HfHLP’

and the convergence of the integrals in « is justified from pg < p < pj, while the
interchange of the integrals (Fubini’s theorem) uses the hypothesis that (X, 1) is a
o-finite measure space. We pick & > 0 such that

1
dP—po

(240)P° = (2418717
and observe that the last displayed constant is equal to the pth power of the constant
in (1.3.8). We have therefore proved the theorem when p; < oo.

We now consider the case p; = co. Write f = f + f¥, where

ary _ J S for [f(x)|> e,
fo' () _{o for [ f(x)] < yat,
wy [0 for <y
i {o for[(2) > 7a.

We have
1T - <Al - S A1y =a/2,
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provided we choose 7= (2A;) L. It follows that the set {y € Y: [T (f%)(y)| > &/2}
has measure zero. Therefore,

dr(p)(@) < dr(ge(e/2).

Since T maps LP0 to LPo* with norm at most Ay, it follows that

A0 £ Iz _ (240)

drgg(@/2) < =m0 = SR [ P du(). (310

Using (1.3.10) and Proposition 1.1.4, we obtain

Il =p [ @ 'drs(@)da

gp/o o dp(ga)(0t/2)dot

(24 )Po
< a? 1(70/ Po g do
<o @ G | OO )

241 f ()|
= pao [ e [T e dad ()

P(2A1)P=P0(2A0)P0
O [ dug).
This proves the theorem with constant
p % 1—P0o P
A_Z( ) A TAY . (1.3.11)
P—Do

Observe that when p; = oo, the constant in (1.3.11) coincides with that in (1.3.8). [

Remark 1.3.3. Notice that the proof of Theorem 1.3.2 only makes use of the subad-
ditivity property |T(f+g)| < |T(f)|+|T(g)| of T in hypothesis (1.3.3).

If T is a linear operator (instead of sublinear), then we can relax the hypotheses
of Theorem 1.3.2 by assuming that (1.3.5) and (1.3.6) hold for all simple functions
f on X. Then the functions f;* and f{* constructed in the proof are also simple, and
we conclude that (1.3.7) holds for all simple functions f on X. By density, T has a
unique extension on LP(X) that also satisfies (1.3.7).

1.3.2 Complex Method: The Riesz—Thorin Interpolation Theorem

The next interpolation theorem assumes stronger endpoint estimates, but yields a
more natural bound on the norm of the operator on the intermediate spaces. Unfor-
tunately, it is mostly applicable for linear operators and in some cases for sublinear
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operators (often via a linearization process) but it does not apply to quasi-linear
operators without some loss in the constant.

Recall that a simple function is called finitely simple if it is supported in a set
of finite measure. Finitely simple functions are dense in L”(X,u) for 0 < p < oo,
whenever (X, () is a o-finite measure space.

Theorem 1.3.4. Let (X, 1) and (Y, V) be two o-finite measure spaces. Let T be a
linear operator defined on the set of all finitely simple functions on X and taking
values in the set of measurable functions onY. Let 1 < po, p1,q0,q1 < o and assume
that

HT(f)Hqu < MOHfHLPo )

(1.3.12)
HT(f)Hqu SMle| 2
for all finitely simple functions f on X. Then for all 0 < 8 < 1 we have
1T 0 < Mo~ MY | f]] (13.13)
for all finitely simple functions f on X, where
1 1-6 6 1 1-6 6
p Po P1 q 40 q1

Consequently, when p < oo, by density, T has a unique bounded extension from
LP(X,u) to L1(Y,Vv) when p and q are as in (1.3.14).

Proof. Let
m
f = Z ake‘lakxAk
k=1

be a finitely simple function on X, where a; > 0, o are real, and A are pairwise
disjoint subsets of X with finite measure.
We need to control

17 gy =0 [ T(memave)|.

where the supremum is taken over all finitely simple functions g on Y with L7 norm
less than or equal to 1. Write

n
g=Y, bjelﬁjXB_,- ,
Jj=1

where b; > 0, B; are real, and B; are pairwise disjoint subsets of ¥ with finite v-
measure. Let

—La-p+L: ad 0@ =La-z+Z: (13.15)

P(z
@ Po Pi 40 q)
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For z in the closed strip § = {z € C: 0 < Rez < 1}, define

Za U, go= Y b9VPiyy (13.16)
j=1
and
= [ T(R0e0)av0).

Notice that fg = f and gg = f. By linearity we have
m n Q
=L X a0 | )0 0)av0).
Since ag,b; > 0, F is analytic in z, and the expression

/Y T(2a) () 28,() dV(5)

is a finite constant, being an absolutely convergent integral; this is seen by Holder’s
inequality with exponents g and g;, (or ¢; and ¢}) and (1.3.12).
By the disjointness of the sets A; we have (even when pg = o)

P
Po
LP >

illo = 117

. 2
since |af(”>| =a;", and by the disjointness of the B;’s we have (even when go = 1)

4

7
. —
8it 190 8 14>
/

‘i
since |bQ it) | = qo . Thus Holder’s inequality and the hypothesis give

|F(ll)| < ||T fil HLq0||gitHL‘16

<M0HﬁfHLPng”HLq6 (1.3.17)

= |72 Hgll

By similar calculations, which are valid even when p; = o and g; = 1, we have

P
[ frsiel [ o = (141125
and

/
lr+all 4 = llsll ;
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Also, in a way analogous to that we obtained (1.3.17) we deduce that

I
71 gHZ;,. (1.3.18)

[F(1+it)| < M|f]| 5

To finish the proof we will need the following lemma, known as Hadamard’s
three lines lemma.

Lemma 1.3.5. Let F be analytic in the open strip S = {z€ C: 0 <Re z < 1},
continuous and bounded on its closure, such that |F(z)| < By when Re z =0 and
|F(z)| < By when Re z = 1, for some 0 < By, By < co. Then |F(z)| < By ®B? when
Rez=20, forany0 <0 <1.

To prove the lemma we define analytic functions
G(x)=FR)BY B and  Gu(z) = G(g)e@ D"
for z in the unit strip S, for n = 1,2,.... Since F is bounded on S and
|By*B5| > min(1,By)min(1,B;) >0
for all z € S, we conclude that G is bounded by some constant M on S. Since
|G (x+iy)| < Me ™ /nel=1)/n < Me™/n ,

we deduce that G,(x + iy) converges to zero uniformly in 0 < x < 1 as |y| — oe.
Select y(n) > 0 such that for |y| > y(n), we have |G,(x+iy)| <1 for all x € [0, 1].
Also, the assumptions on F' imply that G is bounded by one on the two lines forming
the boundary of S. By the maximum principle we obtain that |G,(z)| < 1 for all z in
the rectangle [0, 1] x [—y(n),y(n)]; hence |G,(z)| < 1 everywhere in the closed strip.
Letting n — oo, we conclude that |G(z)| < 1 in the closed strip. Taking z = 0 + it we
deduce that
[F(6-+in)] < By~ *~"BY ™| = By °BY

whenever ¢ is real. This proves the required conclusion. (I

Returning to the proof of Theorem 1.3.4, we observe that F is analytic in the open
strip S and continuous on its closure. Also, F is bounded on the closed unit strip (by
some constant that depends on f and g). Therefore, (1.3.17), (1.3.18), and Lemma
1.3.5 give

/

4 » 4
' E 4 \° 1—6 1,6
lgll%) (Ml A28 el ) = M=o mf 1 el

when Rez = 6. Observe that P(6) = 0(0) = 1 and hence

P
)
P

()< (Mol

F(6)= [ T(/)gdv.
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Taking the supremum over all finitely simple functions g on Y with L9 norm less
than or equal to one, we conclude the proof of the theorem. (]

We now give an application of Theorem 1.3.4.

Example 1.3.6. One may prove Young’s inequality (Theorem 1.2.12) using the
Riesz—Thorin interpolation theorem (Theorem 1.3.4). Fix a function g in L" and
let T(f) = f*g. Since T : L' — L with norm at most ||g||;- and T : L” — L™ with
norm at most ||g||z-, Theorem 1.3.4 gives that T maps L? to L? with norm at most
the quantity ||g||%, ||gll}- ® = |lg|l.r, where

1 1-6 6 1 1-6 0

p 1 r q 00

Finally, observe that equations (1.3.19) give (1.2.13).

1.3.3 Interpolation of Analytic Families of Operators

Theorem 1.3.4 can be extended to the case in which the interpolated operators are
allowed to vary. In particular, if a family of operators depends analytically on a
parameter z, then the proof of this theorem can be adapted to work in this setting.

We describe the setup for this theorem. Let (X, i) and (¥, V) be o-finite measure
spaces. Suppose that for every z in the closed strip S = {z € C: 0 <Rez < 1} there
is an associated linear operator T, defined on the space of finitely simple functions
on X and taking values in the space of measurable functions on Y such that

/YITz(xA)xBIdv <oo (1.3.20)

whenever A and B are subsets of finite measure of X and Y, respectively. The family
{T.}; is said to be analytic if for all f,g finitely simple functions we have that the
function

z+—>/YTz(f)gdv (1.3.21)

is analytic in the open strip S = {z € C: 0 < Rez < 1} and continuous on its closure.
The analytic family {7}, is called of admissible growth if there is a constant Ty with
0 < 19 < 7 such that for finitely simple functions f on X and g on Y there is constant
C(f,g) such that

log < C(f,g)e"Nm (1.3.22)

| T gdv

for all z satisfying 0 < Rez < 1. Note that if there is ) € (0,7) such that for all
measurable subsets A of X and B of Y of finite measure there is a constant c(A, B)
such that

log < ¢(A,B) ™l (1.3.23)

/BTZ(ZA)dV
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then (1.3.22) holds for f = Y3 axxa, and ¢ = ¥} bjxs; and

M N
C(f,g) =log(MN)+ Y Y (c(Ax,B)) +|log|aibjl| ) -
k=1j=1

The extension of the Riesz—Thorin interpolation theorem is as follows.

Theorem 1.3.7. Let T, be an analytic family of linear operators of admissible growth
defined on the space of finitely simple functions of a o-finite measure space (X, 1)
and taking values in the set of measurable functions of another o-finite measure
space (Y,v). Let 1 < po,p1,90,q1 < oo and suppose that My and M, are positive
functions on the real line such that for some T) with 0 < T; < T we have

sup e PllogM;(y) < oo (1.3.24)
—ooLy<+oo

for j=0,1. Fix 0 < 8 < 1 and define p,q by the equations

1 1-6 6 1 1-6 6
_1=0 8 e 121208 (13.25)
P Po P1 q q0 q1

Suppose that for all finitely simple functions f on X we have

Ty () |0 < Mo || £] o (13.26)
Ty ()| gor < MO)||£ ]l 11 - (13.27)

Then for all finitely simple functions f on X we have

1To (£)]0 < M(6)]||

o (1.3.28)

where for 0 <x <1

M(x):exp{sm(m) /:: LoshlogMO(t) N log M (1) ]dr}.

2 (mt)—cos(mx) =~ cosh(mt)+cos(mx)

Thus, by density, Ty has a unique bounded extension from LP (X, 1) to LY(Y, V) when
pand q are as in (1.3.25).

Note that in view of (1.3.24), the integral defining M (¢) converges absolutely. The
proof of the previous theorem is based on an extension of Lemma 1.3.5.

Lemma 1.3.8. Let F be analytic on the open strip S ={z€ C: 0 <Rez < 1} and
continuous on its closure such that for some A < oo and 0 < 19 < T we have

log |F (z)] < Ae®lm? (1.3.29)
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forall z € S. Then

sin(7x) /'°° { log|F (it +iy)| log|F(1+it+iy)| }dt}

F iy)| <
Pty < exp{ 2 cosh(zmt) —cos(mx)  cosh(mt) + cos(mx)

whenever 0 < x < 1, and y is real.
Assuming Lemma 1.3.8, we prove Theorem 1.3.7.

Proof. Fix 0 < 6 < 1 and finitely simple functions f on X and g on Y such that
I fllr = llgll# = 1. Note that since 0 < 8 < 1 we must have 1 < p,q < . Let

m n
.f = Z akelakxAk and 8= Z bjelﬁijj 5
k=1 Jj=1

where a; > 0,b; >0, oy, B ; are real, Ay are pairwise disjoint subsets of X with finite
measure, and B; are pairwise disjoint subsets of ¥ with finite measure for all &, ;.
Let P(z), Q(z) be as in (1.3.15) and f;, g; as in (1.3.16). Define for z € S

- / T.(f.) g.dv. (1.3.30)
Y

Linearity gives that
m n Q
=X L a0 [ 1) 5 20,09 v(),

and conditions (1.3.20) together with the fact that {7}, is an analytic family imply
that F(z) is a well-defined analytic function on the unit strip that extends continu-
ously to its boundary.

Since {73} is a family of admissible growth, (1.3.23) holds for some c(A,B;)
and 7 € (0,7) and this combined with the facts that

Zyr 4.9

+
@@ <a® " and 29 <

for all z with 0 < Re z < 1, implies (1.3.29) with 7 as in (1.3.23) and
m n / /
P P q q
A =log(mn) + ( (Ag, B, (——1——) log ay +(—+—) 10gb~>.
g ; po  pi | | % 9 [tog b

Thus F satisfies the hypotheses of Lemma 1.3.8. Moreover, the calculations in the
proof of Theorem 1.3.4 show that (even when pg = o0, gg =1, p1 =0, g1 = 1)

ql

1 fill oo = HfH,fg =1=|g|" wheny € R, (1.3.31)

Lz] Hgiy HL116
!

I

/

P
icsllon = 1715 =1 =118l = lsresll,g whenver. @332
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Holder’s inequality, (1.3.31), and the hypothesis (1.3.26) now give
[F(iy)| < HTiy(ﬁy)Hqu Hgin SMO(y)HﬁyHLPo HginLq{) = Mo(y)

for all y real. Similarly, (1.3.32), and (1.3.27) imply

/
L%

|F(1+iy)| < HTl+iy(fl+iy)HLq1 Hgl+in SMl(y)’|fl+iy“Lpl H81+in =M (y)

/ !
91 L9

for all y € R. These inequalities and the conclusion of Lemma 1.3.8 yield

IF(x)] < exp {sin(znx) /:’o LOShlogMo(t) N log M, (t) (mc)]dt} _ M)

(mt)—cos(mx)  cosh(mt)+cos

for all 0 < x < 1. But notice that
F(6) = / To(f) gdv. (13.33)
Y

Taking absolute values and the supremum over all finitely simple functions g on Y
with LY norm equal to one, we conclude the proof of (1.3.28) for finitely simple
functions f with L” norm one. Then (1.3.28) follows by replacing f by f/||f|lr- O

We end this section with the proof of Lemma 1.3.8.

Proof of Lemma 1.3.8. Recall the Poisson integral formula

Ulz) = - /MU(R oy K-p* i0 (1.3.34)
= — e —_— = pe o

Z o a |Re’¢fpe’9\2 (8 4 P )

which is valid for a harmonic function U defined on the unit disk D = {z: |z] < 1}
when |z] <R < 1. See [307, p. 258].

Consider now a subharmonic function u on D that is continuous on the circle
|| =R < 1. When U = u, the right side of (1.3.34) defines a harmonic function on
the set {z € C: |z] < R} that coincides with u on the circle |{| = R. The maximum
principle for subharmonic functions ([307, p. 362]) implies that for |z| < R < 1 we
have 5 )

1 +7r ; R —p .
- [ A _ i0
u(z) < o /_ﬂ u(Re )|Rei‘P —pei9|2d(p’ z=pe’. (1.3.35)
This is valid for all subharmonic functions u on D that are continuous on the circle
|| =Rwhenp <R< 1.
It is not difficult to verify that

h(é)%@(:’}fé)

is a conformal map from D onto the strip S = (0,1) x R. Indeed, i(1+§)/(1—§)
lies in the upper half-plane and the preceding complex logarithm is a well defined
holomorphic function that takes the upper half-plane onto the strip R x (0, 7). Since
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F o h is a holomorphic function on D, log|F o h| is a subharmonic function on D.
Applying (1.3.35) to the function z — log|F (h(z))|, we obtain

R2 _ p2
—2pRcos(0 — @)+ p?

1 4« )
log [F(h(2))| < 5 [ log|[F(h(Re")) 25 dg (1336)

when z = pe® and |z] = p < R. Observe that when |{| = 1 and { # +1, h({) has
real part zero or one. It follows from the hypothesis that

log [F(h(E))| < Ae®mA(©) — To’lm log(zﬁ)) L

Therefore, log |F (h())] is bounded by a multiple of |1+ ¢|~%/F|1 — {|~™/% which
is integrable over the set |{| = 1, since 7y < 7. Fix now z = pe'® with p < R and let
R — 11in (1.3.36). The Lebesgue dominated convergence theorem gives that

_ 1 [+ . 1-p?
i0 < iQ
log|F (h(pe'®))| < 275/7” log |F (h(e ))\1_2pcos(9_(p)+p2 de. (13.37)

Setting x = h(pe'®), we obtain that

e _ cos(mx) [ cos(mx) i)
e i 1+sin(mx)  \ 14 sin(mx) ’

pe® =h"'(x) =

from which it follows that p = (cos(7x))/(1 4+ sin(zx)) and 6 = —7/2 when 0 <
x < %, while p = —(cos(7x))/(1+sin(7x)) and 6 = 71/2 when § < x < 1. In either
case we easily deduce that

1-p? sin(7x)

1—-2pcos(8—@)+p2  1+cos(mx)sin(e)

Using this we write (1.3.37) as

1 (= sin(7x) ;
log |F(x)| < E./,n FF cos(ome sincg) OEIF (H€)) dg. (1.3.38)

We now change variables. On the interval [—7m,0) we use the change of variables
it = h(e'?) or, equivalently, ¢'? = — tanh(7t) — i sech(7t). Observe that as ¢ ranges
from —7 to 0, # ranges from +oo to —eo. Furthermore, d¢ = —msech(xr)dr. We
have

log|F (h(e'?))|dg

1 /0 sin(7x)

27 J—z 14 cos(mx)sin(@)

sin(7x)
log |F(it)|dt .
2/oo cosh(mt) — cos(mx) og|F (ir)]

(1.3.39)
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On the interval (0, 7t] we use the change of variables 1+ it = h(e'?) or, equivalently,
¢'? = —tanh(xt) + isech(rt). Observe that as @ ranges from O to 7, # ranges from
—oo to +o0. Furthermore, d@ = msech(xt) dr. Similarly, we obtain

log|F (h(e'?))|do

1 /” sin(7t)

21 Jo 1+ cos(xt)sin(g) (1.3.40)

sin(7x)
log|F(1+it)|dt.
2/«, cosh(7t) 4 cos(mx) og|F(1+)

Adding (1.3.39) and (1.3.40) and using (1.3.38) we conclude the proof when y = 0.
We now consider the case where y # 0. Fix y = 0 and define the function G(z) =

F(z+iy). Then G is analytic on the open strip S = {z € C: 0 <Rez < 1} and

continuous on its closure. Moreover, for some A < o0 and 0 < 1y < 7™ we have

log|G(z)| = log |F (z+iy)| < Ae®lmzhl < geTbl pTollmz]

for all z € S. Then the case y = 0 for G (with A replaced by Ae™P) yields

|G(x)|§exp{sin(rcx)/°° [ log |G (it)| N log|G(1+it)] ]dt},

2 J_w |cosh(mt)—cos(mx)  cosh(mt)+cos(mx)

which yields the required conclusion for any real y, since G(x) = F (x+iy), G(it) =
F(it+iy),and G(1+it) = F(1 +it +iy). O

Exercises

1.3.1. Generalize Theorem 1.3.2 to the situation in which T is quasi-subadditive,
that is, it satisfies for some K > 0,

T(f+ &) <K(TUNI+IT @),

for all f, g in the domain of T'. Prove that in this case, the constant A in (1.3.7) can
be taken to be K times the constant in (1.3.8).

1.3.2. Let (X,u), (Y,v) be two o-finite measure spaces. Let 1 < p < r < co and
suppose that 7' be a sublinear operator defined on the space LP0(X) + LP!(X) and
taking values in the space of measurable functions on Y. Assume that T maps L' (X)
to L1>(Y) with norm Ag and L (X) to L’"(Y) with norm A;. Let 0 < py < p; < oo.
Prove that 7 maps L? to LP with norm at most

1—
1-

rAl

~—
-

Sl

1—

Ay

==
‘\_

8(p—1)"

[Hint: First interpolate between L' and L” using Theorem 1.3.2 and then interpolate

between L5 and L" using Theorem 1.3.4.]
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1.3.3. Let 0 < pp < p < p; <o and let T be an operator as in Theorem 1.3.2 that
also satisfies

IT(HI<TfD),
forall f e LP0O P,
(a) If po =1 and p| = oo, prove that T maps L? to L” with norm at most
P vl

(b) More generally, if pg < p < oo, prove that the norm of 7' from L” to L” is at most

?

1
1+1 {B(P(H- 1,17—170)] ”App*OA‘*%O
po’(p—po)r—ro ] 70

where B(s,r) = [, x*~' (1 —x)'~" dx is the usual Beta function.
(c) When 0 < pg < p; < oo, then the norm of 7' from L? to L? is at most
bk -
pi=ptl 1 i 0
min % B(p_P07PO+1)+ P1—pP ])A%_ﬁA%_%.
0<A<1 0 !

==

(1—=A)Po APl

[Hint: The hypothesis |T(f)| < T(|f|) reduces matters to nonnegative functions.
Parts (a), (b): Given f > 0 and a > 0 write f = fy + f1, where fo = f — Aa/A;
when f > Ao /A; and zero otherwise. Here 0 < A < 1 to be chosen later. Then we
have that |[{|7(f)| > a}| < |{|T(fo)] > (1 —A)a}|. Part (c): Write f = fo + f1,
where fo = f — 8o when f > da and zero otherwise. Use that

HIT(N > o} <[IT (o)l > (1= A)a}[+ [{IT(/1)] > Lo}

and optimize over § > 0.]

1.34.Let 0 <7y,6 < m. Forevery z€S,, ={z€ C:a<Rez<b},letT, bea
family of linear operators defined on finetely simple functions on a o-finite measure
space (X, it) and taking values in another o-finite measure space (¥, V). Assume that
{T.} is an analytic on of S, in the sense of (1.3.21), continuous on its closure, and
that for all simple functions f on X and g on Y there is a constant Cy , < oo such that
forall z € S, p,

< Cp e/ t0-a)

tog| [ T:(gav

Let 1 < po,qo,p1,q1 < . Suppose that T;,;; maps L"°(X) to L9 (Y) with bound
My(y) and Tj;, maps LP!(X) to L9 (Y) with bound M (y), where

sup ¢~ Obl/(b=a) logMj(y) <eo, j=0,1.
—oo<y<eo
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Then for a <t < b, T; maps L”(X) to L4(Y), where

—_
S
4

71T

|
al=
S
4
-
|
Q

1.3.5. ([331]) On R” let x = (x1,...,x,) and |x| = (x3 +---+x2)'/2. Let

n—1

nTF(/”H—l)/“ 2rtis n1 I'(A+1)
Ky(x) = ————— e”“‘x‘ 1—s? A+t ds=———F/J 27|x|),
W0 =Ty L, ) e ()

where A is a complex number and J, A+ is the Bessel function of order A + 5. Let T},
be the operator given by convolution with K. Show that 7) maps L?(R") to itself
forReA > (n—1)|1 - E .

[Hznt. In view of the calculation of the Fourier transform of K, contained in Ap-
pendix B.5, we have that when Re A = 0, Tj, maps L?(R") to itself with norm 1. Us-
ing the estimates in Appendices B.6 and B.7, conclude that K, is integrable and thus
Ty, maps L' (R") to itself with an appropriate constant when Re A = (n —1)/2+§
(for & > 0). Then use Exercise 1.3.4.]

1.3.6. Observe that Theorem 1.3.7 yields the stronger conclusion

(D)l < M@ 1]l

forze S={z€ C:0<Rez< 1}, where for z=x+iy

M(Z):exp{sin(nx)/“’[ log My(t +) N logM, (t +y) ]dt}.

2 cosh(zmt) —cos(mx)  cosh(mt) + cos(mx)

1.3.7. ([380]) Let (X,u) and (Y,v) be two measure spaces with p(X) < oo and
v(Y) < oo. Let T be a countably subadditive operator that maps LP(X) to LP(Y)
for every 1 < p <2 with norm ||T||p—rr < A(p—1)"* for some fixed A, o > 0.
(Countably subadditive means that [T (¥; f;)| < ¥;|T(f;)| for all f; in LP(X) with
Y.; fj € LP.) Prove that for all f measurable on X we have

/|T )dv < 6A(1+v(Y [/|f logd | £)* dpt + Co + p(X)?

where Co = Yo, k%(2/3)K. This result provides an example of extrapolation.
[Hint: Write

f: foskv
k=0

where S; = {2F < |f] < 2!} when k > 1 and Sy = {|f| < 2}. Using Holder’s
inequality and the hypotheses on 7', obtain that

ITas)lav < 2av(r) e 2 u(s) e
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for k > 1. Note that for k > 1 we have v(Y)ﬁ < max(1, v(Y))% and consider the
cases ((Sg) > 3% and p(Sy) < 37%! when summing in k > 1. The term with
k = 0is easier.]

1.3.8. Prove that for 0 < x < 1 we have

sin(zx) [+ 1 _
2 ./700 cosh(7t) + cos(7x) -0
sin(7x) /*"" 1 f —1—x
2 —e cosh(7r) — cos(7mx) ’

and conclude that Lemma 1.3.8 reduces to Lemma 1.3.5 when the functions My(y)
and M| (y) are constant and assumption (1.3.29) is replaced by the stronger assump-
tion that F is bounded on S.

[Hint: In the first integral write cosh(7r) = 1(e™ +e~™). Then use the change of
variables s = ™|

1.3.9. Let (X, 1), (¥,Vv) be o-finite measure spaces, and let 0 < py < p; < . Let
T be a sublinear operator defined on the space L0(X) + LP!(X) and taking values
in the space of measurable functions on Y. Suppose 7 is a sublinear operator such
that maps L0 to L™ with constant Ag and L?! to L™ with constant A;. Prove T maps
LP to L™ with constant 2A(1]79A? where

1-6 6 1

Po pr P

1.4 Lorentz Spaces

Suppose that f is a measurable function on a measure space (X, it). It would be de-
sirable to have another function f* defined on [0,0) that is decreasing and equidis-
tributed with f. By this we mean

de(a) =ds(a) (1.4.1)

for all @ > 0. This is achieved via a simple construction discussed in this section.

1.4.1 Decreasing Rearrangements

Definition 1.4.1. Let f be a complex-valued function defined on X. The decreasing
rearrangement of f is the function f* defined on [0, ) by

fr(r)=inf{s>0: dp(s) <t} =inf{s >0: ds(s) <t}. (14.2)
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We adopt the convention inf() = oo, thus having f*(¢) = e whenever dy(ct) >t for
all ¢ > 0. Observe that f* is decreasing and supported in [0, u(X)].

Before we proceed with properties of the function f*, we work out three
examples.

A A
f(® SO
ap fr (| @
azt az - ‘_'
o & F % o5 5

Fig. 1.3 The graph of a simple function f(x) and its decreasing rearrangement f*(f).

Example 1.4.2. Consider the simple function of Example 1.1.2,
N
f(x) = Z (,lijj<X) )
j=1

where E; are pairwise disjoint sets of finite measure and a; > --- > ay > 0. We saw
in Example 1.1.2 that

N
df(a) = Z BjX[ajH,aj)(a) )
j=0

where

and ay;1 = Bp = 0 and ap = . Observe that for By <t < By, the smallest s > 0
with dy(s) <t 1is ay. Similarly, for By <t < By, the smallest s > 0 with dy(s) <t is
ay. Arguing this way, it is not difficult to see that

N
10 =Y ajxs; 5, (1)-
j=1

See Figure 1.3.
Example 1.4.3. On (R",dx) let

1

f(x)zm,

0<p<oo.
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A computation shows that

1 2 .
—-—1 fa<l,
ifa>1,
and therefore :
* HN=—
f () (t/vn)p/n+1

where v, is the volume of the unit ball in R”.

Example 1.4.4. Again on (R”,dx) let g(x) =1 — e . We can easily see that
de(at) =0if o > 1 and dy(cr) = oo if @ < 1. We conclude that g*(r) = 1 for all
t > 0. This example indicates that although quantitative information is preserved,
significant qualitative information is lost in passing from a function to its decreasing
rearrangement.

It is clear from the previous examples that f* is continuous from the right and
decreasing. The following are some properties of the function f*.

Proposition 1.4.5. For f, g, f, W-measurable, k € C, and 0 <t,s,t1,tr < oo we have
(1)  f*(df(e)) < oo whenever o > 0.
) di(f) <t
(3)  f*(t)>sifand only ift < dy(s); thatis, {t > 0: f*(t) > s} =[0,ds(s)).
(4) gl < |f| u-a.e. implies that g* < f* and |f|* = f*.
(5)  (kf)" = [k[f.
6) (f+g)(t+n)<f(t)+g(n)
(7) (Fo) (0 +) < ()8 o).
(8) £l 11| pea.e. implies f; 1 £
9) |f] < H},E,Eﬁ‘f"' w-a.e. implies f* < lirllgglffj.

(10)  f* is right continuous on [0,o).

(11)  Iff*(t) <oo,c >0, and u({|f| > f*(t)—c}) < oo, thent < pu({|f| > f*(t)}).
(12)  df=dp..
(13)  (|f1P)* = (f*)” when 0 < p < oo.

(14) /X|f|"du:/Omf*(t)"dtwhen0<p<oo.

(15) || £]] = £*(0).
(16)  supt?f*(t) = supa (ds(a))? for 0 < g < oo.

>0 a>0
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Proof. Property (1): The set A = {s > 0: dy(s) < ds(a)} contains o and thus
f*(df(a)) =infA < a.

Property (2): Let s, € {s >0: d¢(s) <t} be such thats, | f*(¢). Then d(s,) <t,
and the right continuity of d; (Exercise 1.1.1 (a)) implies that d¢(f*(z)) <t.

Property (3): If s < f*(t) =inf{u > 0: dy(u) <t},thens ¢ {u>0: ds(u) <t}
which gives dy(s) > t. Conversely, if for some t < dy(s) we had f*(r) < s, applying
dy and using property (2) would yield the contradiction d(s) < df(f*(t)) <t.

Properties (4) and (5) are left to the reader.

Properties (6) and (7): Let A = {s1 > 0: d¢(s1) <t1},B={s2>0: dy(s2) <02},
P={s>0:ds(s)<ti+n},and S={s>0: dri4(s) <ti+0}. ThenA+BCE S
andA-BC P;thus (f+g)* (1 +1) =infS < s;+s2 and (fg)*(t; +12) =infP < 5152
are valid for all s; € A and s, € B. Taking the infimum over all s; € A and s, € B
yields the conclusions.

Property (8): It follows from the definition of decreasing rearrangements that
< ;H < f* for all n. Let h = lim,, . f;; ; then obviously & < f*. Since f,; <A,
we have dy, (h(t)) < dy,(f;;(t)) <t, which implies, in view of Exercise 1.1.1 (c), that
dy(h(t)) <t by letting n — oo, It follows that f* < h, hence h = f*.

Property (9): Set F,, = infy,>, | fin| and h = liminf,_,e | ;| = sup,~ F. Since F, 1
h, property (8) yields that F* 1 h* as n — co. By hypothesis we have | f| < &, hence
f*<h*=sup, F}.Since F, < |f| form > n, it follows that F,* < f* for m > n; thus
F; <inf,>, f;. Putting these facts together, we obtain f* < h* <sup, inf,>, f;, =
liminf, e f;; .

Property (10): If f*(tp) = 0, then f*(¢#) = O for all r > #( and thus f* is right
continuous at fg. Suppose f*(f9) > 0. Pick o such that 0 < ot < f*(to) and let {t,};_,
be a sequence of real numbers decreasing to zero. The definition of f* yields that
d(f*(t0) — &) > 19. Since t, |. 0, there is an ng € Z* such that d¢(f* (1) — o) >
fo + 1, for all n > ny. Property (3) yields that for all n > ny we have f*(fp) — o <
f*(to+1,), and since the latter is at most f*(f), the right continuity of f* follows.

Property (11): The definition of f* yields that the set A, = {|f| > f*(t) — c¢/n}
has measure 11(A,) > . The sets A, form a decreasing sequence as n increases and
1(A1) < oo by assumption. Consequently, {|f| > f*(#)} = -, A, has measure
greater than or equal to 7.

Property (12): This is immediate for nonnegative simple functions in view of
Examples 1.1.2 and 1.4.2. For an arbitrary measurable function f, find a sequence of
nonnegative simple functions f;, such that f;, 1 |f| and apply (9).

Property (13): It follows from d|sp () = df(@'/P) = dy(a'/?) = d( gy (at) for
all o > 0.

Property (14): This is a consequence of property (12) and of Proposition 1.1.4.

Property (15): This is a restatement of (1.1.2).

Property (16): Given o > 0, without loss of generality we may assume d¢ (o) > 0.
Pick ¢ satisfying 0 < € < dy(c). Property (3) yields f*(ds(o) —€) > o, which
implies that

supr £ (1) > (dy(o) — €)°f"(dy(@) — €) > (dy(e) — )ar.

t>0
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We first let € — 0 and then take the supremum over all & > 0 to obtain one direction.
Conversely, given ¢ > 0, assume without loss of generality that f*(¢) > 0, and pick
€ such that 0 < & < f*(t). Property (3) yields d¢(f*(¢) — &) > t. This implies that
SUPgso O (dp (@) > (f*(1) —€)(ds(f*(1) —€))* > (f*(¢r) — €)r9. We firstlet & — 0
and then take the supremum over all # > 0 to obtain the opposite direction of the
claimed equality. (|

1.4.2 Lorentz Spaces

Having disposed of the basic properties of decreasing rearrangements of functions,
we proceed with the definition of the Lorentz spaces.

Definition 1.4.6. Given f a measurable function on a measure space (X, i) and

0 < p,g < oo, define
qd g
/1 t\4
</ (7 7)) t) if g < oo,
0

P4 = 1

supt? f*(r) if g=oo.
t>0

171

The set of all f with || f||zre < oo is denoted by L4 (X, i) and is called the Lorentz
space with indices p and g.

Asin L and in weak L?, two functions in LP4(X, ) are considered equal if they
are equal p-almost everywhere. Observe that the previous definition implies that
L™% = L=, LP** = weak L? in view of Proposition 1.4.5 (16) and that L = LP.

Remark 1.4.7. Observe that for all 0 < p,r < cc and 0 < g < oo we have

H|g‘r”mq = HgHZPW' (1.4.3)

On R” let 6%(f)(x) = f(ex), € > 0, be the dilation operator. It is straightforward
that dse (p) (@) = €7""ds(at) and (8°(f))*(t) = f*(€"t). It follows that Lorentz norms
satisfy the following dilation identity:

185 1w = &P\ f | s - (1.4.4)

Next, we calculate the Lorentz norms of a finitely simple function.

Example 1.4.8. Using the notation of Example 1.4.2, when 0 < p,q < o we have

p 3 I q R q 3
_ » » [ p P
£l e = (q) [alBl —|—a2(B2 _Bl)+"'+aN(BN_BN1)] .
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and also

171

1

— .RP

[pe = SUPp a;jBj .
I<j<N

Next, we calculate || f||z~¢ for the simple function f of Example 1.4.2. when
g < oo. It turns out that

1
_ q ﬁ q & 4q BN ‘ = o0
e = e (51 ) - ton (52) 4 (52 )] ==

since By = 0. We conclude that the only nonnegative simple function with finite L4
norm is the zero function. Given a general nonzero function g € L4 with 0 < g < oo,
there is a nonzero simple function s with 0 < s < g. Then s has infinite norm, and
therefore so does g. We deduce that L=7(X) = {0} when 0 < g < eo.

Proposition 1.4.9. For 0 < p < oo and 0 < g < oo, we have the identity

=
N
C\g
A
—
©”
S~—
==
R
Q
~__
3
=
(¢}
=
BN
A
8

HfHLP-q =¢7 (1.4.5)

1
Sups~qsdy(s)” when g = .

Proof. The case g = « is statement (16) in Proposition 1.4.5, and we may therefore
concentrate on the case g < oo. If f is the simple function of Example 1.1.2, then

N
df(s) = Z BJX[aj+l,aj) (S)
i=1

with the understanding that ay; = 0. Using the this formula and identity in Exam-
ple 1.4.8, we obtain the validity of (1.4.5) for simple functions. In general, given a
measurable function f, find a sequence of nonnegative simple functions such that
fuT|f] ae. Then dy, 1 dy (Exercise 1.1.1 (c)) and f,¥ T f* (Proposition 1.4.5 (8)).
Using the Lebesgue monotone convergence theorem we deduce (1.4.5). (]

Since LP? C LP*°, one may wonder whether these spaces are nested. The next
result shows that for any fixed p, the Lorentz spaces L”4 increase as the exponent g
increases.

Proposition 1.4.10. Suppose 0 < p < o0 and 0 < g < r < co. Then there exists a
constant cp. 4 r (Which depends on p, q, and r) such that

HfHLN < Cp,q,erHLp,w (1.4.6)

In other words, L9 is a subspace of LP".
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Proof. We may assume p < oo, since the case p = oo is trivial. We have
1/q
! d
1 q 1 s
g = {4 [ ot |
pJo §

" d 1/‘]
{Z/O [sl/pf*(S)]qu} since f™ is decreasing,

1/q
(&) 11l

Hence, taking the supremum over all # > 0, we obtain

IN

IN

1/q
£l pee < (Z) 171 e (14.7)
This establishes (1.4.6) in the case r = oo. Finally, when r < oo, we have
~ * — di /r r—q)/r r
1 = { [Twrror ;} D . e

Inequality (1.4.7) combined with (1.4.8) gives (1.4.6) with ¢, 4, = (q/p)(’_q)/’q. O

Unfortunately, the functionals || - ||zr« do not satisfy the triangle inequality. For
instance, consider the functions f(¢) = ¢ and g(¢t) = 1 — ¢ defined on [0, 1]. Then
fH(a) =g"(a) = (1 —a)xp,1(a). A simple calculation shows that the inequality
|\ f +gllra < || fl|lzra + [g]|Lra Would be equivalent to

P g Lla+1I(a/p)
g~ Il(q+1l+q/p)’

which fails in general. However, since for all # > 0 we have

(f+8)" (1) <[ (t/2)+8"(t/2),

the estimate
||f+gHLP~q < Cp:fi(Hwa + ||3HLM) ) (14.9)

where ¢, , = 2!/Pmax(1,2(179/4), is a consequence of (1.1.4). Also, if || f||zre = 0
then we must have f = 0 p-a.e. Therefore, LP+? is a quasi-normed space for all p,q
with 0 < p,q < . Is this space complete with respect to its quasi-norm? The next
theorem answers this question.

Theorem 1.4.11. Let (X, 1) be a measure space. Then for all 0 < p,q < oo, the
spaces LP4(X , 1) are complete with respect to their quasi-norm and they are there-
fore quasi-Banach spaces.
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Proof. We consider only the case p < oo. First we note that convergence in L9
implies convergence in measure. When g = oo, this is proved in Proposition 1.1.9.
When g < oo, in view of Proposition 1.4.5 (16) and (1.4.7), it follows that

1/q
supt'/? f*(1) = sup aud (@)1 < (Z) 1112

>0 a>0

for all f € L7, and from this it follows that convergence in L”*¢ implies convergence
in measure.

Now let {f,} be a Cauchy sequence in LP4. Then {f,} is Cauchy in measure,
and hence it has a subsequence { f,, } that converges almost everywhere to some f by
Theorem 1.1.13. Fix ko and apply property (9) in Proposition 1.4.5. Since |f — f"ko | =

1imy o0 | fr, — f,,k0 , it follows that

(f = foy )" () < Timinf(fre = frg )" (1)- (1.4.10)

Raise (1.4.10) to the power g, multiply by 14/P, integrate with respect to dr/t over
(0,00), and apply Fatou’s lemma to obtain

Hf—fnko 7,4 < li]gingfnk — fu, [ (1.4.11)

Now let kg — oo in (1.4.11) and use the fact that { f,,} is Cauchy to conclude that f,,
converges to f in LP4. It is a general fact that if a Cauchy sequence has a convergent
subsequence in a quasi-normed space, then the sequence is convergent to the same
limit. It follows that f,, converges to f in L?9. (|

Remark 1.4.12. It can be shown that the spaces L7 are normable when p, g are
bigger than 1; see Exercise 1.4.3. Therefore, these spaces can be normed to become
Banach spaces.

It is well known that finitely simple functions are dense in L” of any measure
space, when 0 < p < oo, It is natural to ask whether finitely simple functions are also
dense in LP*4. This is in fact the case when g # oo.

Theorem 1.4.13. Finitely simple functions are dense in LP4(X, 1) when 0 < g < oo.

Proof. Let f € LP4(X, ). Assume without loss of generality that f > 0. Since f
lies in LP9 C LP= we have u({f > €})"/Pe < ||f||Lra < oo for every € > 0 and
consequently for any A > 0, u({f > A}) is finite and tends to zero as A — eo. Thus
forevery n=1,2,3,..., there is an A, > 0 such that u({f > A, }) <27".

For eachn =1,2,3,... define the function

142", 4

Pn(x) = Z ﬁX{kZ*"<f§(k+1)2*"}%{2*”<f§A,,}-
k=0



56 1 L? Spaces and Interpolation

Then @, is supported in the set {27 < f <A, } which has finite 4 measure, thus ¢,
is finitely simple and satisfies

f)=27" < gu(x) < f(x)
foreveryx € {x € X : 27" < f(x) <A,}. It follows that
u{xeX: |f(x) —@u(x)|>27"}) <27"
which implies that (f — ¢,)*(¢) < 27" for ¢t > 27". Thus
(f—@,)"(t) =0 asn—oeand ¢@;(t) < f*(z) forallr>O0.

Since (f — @,)*(¢) < f*(¢), an application of the Lebesgue dominated convergence
theorem gives that ||@, — f||zre — 0 asn — oo, O

Remark 1.4.14. One may wonder whether simple functions are dense in L”*. This
turns out to be false for all 0 < p < co. However, countable linear combinations of
characteristic functions of sets with finite measure are dense in L7 (X, ). We call
such functions countably simple. See Exercise 1.4.4 for details.

1.4.3 Duals of Lorentz Spaces

Given a quasi-Banach space Z with norm || - ||z, its dual Z* is defined as the space
of all continuous linear functionals 7 on Z equipped with the norm

1]

L= sup [T()].

llxl| z=1

Observe that the dual of a quasi-Banach space is always a Banach space.

We are now considering the following question: What are the dual spaces (LP9)*
of L7497 The answer to this question presents some technical difficulties for general
measure spaces. In this exposition we restrict our attention to o-finite nonatomic
measure spaces, where the situation is simpler.

Definition 1.4.15. A measurable subset A of a measure space (X, ) is called an
atom if [L(A) > 0 and every measurable subset B of A has measure either equal to
zero or equal to 1 (A). A measure space (X, 1) is called nonatomic if it contains no
atoms. In other words, X is nonatomic if and only if for any A € X with u(A) > 0,
there exists a proper subset B & A with u(B) > 0 and u(A\ B) > 0.

For instance, R with Lebesgue measure is nonatomic, but any measure space
with counting measure is atomic. Nonatomic spaces have the property that every
measurable subset of them with strictly positive measure contains subsets of any
given measure smaller than the measure of the original subset. See Exercise 1.4.5.
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Theorem 1.4.16. Suppose that (X, L) is a nonatomic G-finite measure space. Then

@) (LP)* ={0}, when0 < p<1,0<g<oo,
(i) (LP)y* =L~ whenp=1,0<¢g<1,

(iii) (LP1)* ={0}, whenp=1,1<q<oo,

@iv) (LP9)" # {0}, when p =1, q =00,

v) (Lp’q)*:L/""’7 whenl <p<e, 0<g<l,
i) (LPays =174 when 1 < p <oo, 1< q<oo,
(vii) (LPA)* £ {0}, when 1 < p < oo, g =co,
(viii) (LP)* £ {0}, when p=q=oo.

Proof. Since X is o-finite, we have X = (Jy_; Kn, where Ky is an increasing se-
quence of sets with p(Ky) < eo. Let <7 be the o-algebra on which u is defined
and define @y = {ANKy: A € &}. Given T € (LP?)*, where 0 < p,q < oo, for
each N = 1,2,..., consider the measure oy(E) = T(xg) defined on <. Since oy
satisfies |on (E)| < (p/q)"/4||T||u(E)'/?, it follows that oy is absolutely continu-
ous with respect to u restricted on 7y. By the Radon—Nikodym theorem (see [153]
(19.36)), there exists a unique (up to a set of -measure zero) complex-valued mea-
surable function gy which satisfies [k |gn|du < oo such that

/KNfch = /KN gy fdu (1.4.12)

for all f in L'(Ky,.2y,0y). Since oy = Oy11 on &y, it follows that gy = g1
u-a.e. on Ky and hence there is a well-defined measurable function g on X that co-
incides with each gy on K. But the linear functionals f — T'(f) and f + |, Kky S dON
coincide on simple functions supported in Ky and therefore they must be equal on
L' (Ky, oy, on) NLP4 (X, 1) by density; consequently, (1.4.12) is also equal to T'( f)
for fin L' (Ky, <y, 0n) NLP9(X, ).

Note that if f € L™ (Ky, ), then f € L”4(Ky, 1) and also in L*(Ky, oy ), which is
contained in L' (Ky, @y, oy). It follows from (1.4.12) and the preceding discussion
that

T(f)= /ngdu (1.4.13)

for every f € L”(Ky). We have now proved that for every linear functional 7 on
LP4(X, 1) with 0 < p,q < oo there is a function g satisfying [k |g[du < o for all
N =1,2,... such that (1.4.13) holds for all f € L*(Ky).

We now examine each case (i)—(viii) separately.

(1) We consider the case 0 < p < 1. Let f =Y, a, X, be a finitely simple function
on X (which is taken to be countably simple when g = o). Since X is nonatomic,
we split each E, as a union of m disjoint sets E;,, j = 1,2,...,m, each having
measure m~ ' (L(E,). Let f; = ¥, anX;,,. We see that || fj]|re = m=VP|| f||ra. Now
if T € (LP)*, it follows that
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< XTI Y s

Let m — oo and use that p < 1 to obtain that 7 = 0.
(i) We now consider the case p = 1 and 0 < g < 1. Clearly, every h € L™ gives a
bounded linear functional on L', since

ra — HTHml l/pllfHU"’

[ < [l < Gl

Conversely, suppose that T € (L'9)* where ¢ < 1. The function g given in (1.4.13)
satisfies

[ au| = 170e) < [ owie)

for all E € Ky, and hence |g| < ¢~ /4||T|| u-a.e. on every Ky; see [307, Theorem
1.40 on p. 31] for a proof of this fact. It follows that ||g||z= < ¢~'/4||T|| and hence
(LY =L,

(iii) Let us now take p = 1, 1 < g < oo, and suppose that T € (L'9)*. Then

’ /X fgdu’ <ITI NIl e (1.4.14)

where g is the function in (1.4.13) and f € L*(Ky). We will show that g =0 a.e.
Suppose that |g| > 6 on some set Ey with (Eg) > 0. Then there exists N such that
W(E)NKy) > 0. Let f = §|g\’2xEomKthh§M, where & is a nonnegative function.
Then (1.4.14) implies for all & > 0 that

72nml| 1 iy < NI AR | 10y

Letting M — oo, we obtain that L'9(Ey N Ky) is contained in L'(Ey N Ky), but
since the reverse inclusion is always valid, these spaces must be equal. Since X
is nonatomic, this can’t happen; see Exercise 1.4.8 (d). Thus g =0 p-a.e.and 7 =0.

@iv) In the case p = 1, g = oo an interesting phenomenon appears. Since every
continuous linear functional on L' extends to a continuous linear functional on
L' for 1 < g < oo, it must necessarily vanish on all simple functions by part (iii).
However, (L1’°°)* contains nontrivial linear functionals; see [84], [85].

(v) We now take up the case 1 < p < e and 0 < g < 1. Using Exercise 1.4.1 (b)
and Proposition 1.4.10, we see that if f € LP9 and h € LP'* then

dt
t

[irna < [“eb o wo

< HfHU’-' ||hHLP'~°°
< CPv‘]||f||L1’=q||h||Ll"~°°;
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thus every h € L' gives rise to a bounded linear functional f — [hfdu on LP4
with norm at most C,, 4|%[|, ... Conversely, let T € (LP9)* where 1 < p < o and

0 < g < 1. Let g satisfy (1.4.13) for all f € L*(Ky). Taking f = §|g|’lxKNm{|g|>a}
for & > 0 and using that

[ rsau] <1
we obtain that
ap(ky N {lgl > o) < (p/g) |7 (Kn O {lg] > a})7
Divide by u(Ky N{|g| > oc})%, let N — oo, and take the supremum over ¢ > 0 to

obtain that |ig|,. < (p/q)"/4|T].
(vi) Using Exercise 1.4.1 (b) and Holder’s inequality, we obtain

foroan]< [0 0 0% <l
thus every ¢ € L' gives a bounded linear functional on LP¢ with norm at most
@l Conversely, let T be in (LP)*. By (1.4.13), T is given by integration
against a locally integrable function g. It remains to prove that g € L4 We let
gNM = 8 XKy Xjgl<m- Then (gy )" < g" forall M,N =1,2,... and (gnm)" 1 &" as
M N — o by Proposition 1.4.5 (4), (8).

For a bounded function f in LP4(X) we have

[ r @@= s | [ havwan
0 h: dy=dy | /X
= sup /th<Mgd.u‘
h'dh*df
" ke, T (it K <m)| (1.4.15)

< .suP T\ ([ 2k 11 <p ||

< sup HTH 1]

1
= ||TH HfHW,

where the first equality is a consequence of the fact that X is nonatomic (see Exercise
1.4.5 (d)). Using the result of Exercise 1.4.5 (b), pick a function f on X such that

o g ’ d
fo(t) = /,/2“, 1(8N,M)*(S)q71 £

)
S

(1.4.16)
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noting that the preceding integral converges since (gn.ur)*(s) < M Xjo u(ky) (5)- It

follows that f* < ¢4 M4 ="', which implies that f is bounded, and also that f* (t)=0
when ¢ > 2u(Ky), which implies that f is supported in a set of measure at most
2u(Ky); thus the function f defined in (1.4.16) is bounded and lies in L7 (X).

We have the following calculation regarding the L4 norm of f:

1
> g 0 ‘Lif] " /_ldS qdl q
= tr 2 q - -
Lpa (/0 P |:/t/2S, (gN7M) (S) s :| /

o 1 , 5 1.4.
<t (’@NM>o»q“) (140

t

171

C pq ||gNMH //<°°

which is a consequence of Hardy’s second inequality in Exercise 1.2.8 with b = ¢/ p.
Using (1.4.15) and (1.4.17) we deduce that

[ 70t @ < [T 10 < 7] ol 1419
On the other hand, we have
. 771 i1 ds
L7 O @z [T 57 e 07 S a0

;[ d
2/0 (evm)” (t)q/ “1as (1.4.19)

/2 N

= G (p.q)||enm| g

Lpl'q, .

Combining (1.4.18) and (1.4.19), and using the fact that [[gy n/|, s < °°, We obtain
vl < C(p,q)|IT|. Letting N,M — oo we deduce |[gl, 1 < C(p,q)||T]| and
this proves the reverse inequality required to complete case (vi).

(vii) For a complete characterization of this space, we refer to [83].

(viii) The dual of L™ = L** can be identified with the set of all bounded finitely
additive set functions; see [99]. O

Remark 1.4.17. Some parts of Theorem 1.4.16 are false if X is atomic. For instance,
the dual of ¢7(Z) contains ¢~ when 0 < p < 1 and thus it is not equal to {0}.

1.4.4 The Off-Diagonal Marcinkiewicz Interpolation Theorem

We now present the main result of this section, the off-diagonal extension of
Marcinkiewicz’s interpolation theorem (Theorem 1.3.2). For a measure space (X, 1),
let S(X) be the space of finitely simple functions on X and Sg (X) be the subset of
S(X) of functions of the form
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n .

Y 27

=m
where m < n are integers and A; are subsets of X of finite measure. The sets A; are
not required to be different nor disjoint; consequently, the sum of two elements in
S (X) also belong to S (X). We define Sz (X) = S5 (X) — S{ (X) be the space of
all functions of the form fi — f», where f1, f> lie in S§ (X) and So(X) be the space
of functions of the form i + ih;, where hy, hy lie in S{f”l (X).

An operator T defined on Sy(X) is called quasi-linear if there is a K > 1 such

that

ITAN =T and  [T(f+| <K(T(HI+IT (),
for all A € C and all functions f, g in So(X). If K = 1, then T is called sublinear.

Definition 1.4.18. Let T be a linear operator defined on the space of finitely simple
functions S(X) on a measure space (X, 1) and let 0 < p,g < co. We say that 7 is of
restricted weak type (p,q) if

7 (a) || e < Ce(A)'/P (1.4.20)

for all measurable subsets A of X with finite measure. Estimates of the form (1.4.20)
are called restricted weak type estimates.

It is important to observe that if an operator is of restricted weak type (po,qo) and
of restricted weak type (p1,q1), then it is of restricted weak type (p,q), where the
indices are as in (1.4.23). It will be a considerable effort to extend the latter estimate
to all functions in Sp(X). The next theorem addresses this extension.

Theorem 1.4.19. Let 0 < r < o0, 0 < pg # p1 < o0, and 0 < qo # q1 < = and let
(X, 1), (Y,v) be o-finite measure spaces. Let T be a quasi-linear operator defined
on the space of simple functions on X and taking values in the set of measurable
functions on Y. Assume that for some My, M| < oo the following restricted weak type
estimates hold:

17 (xa)|| Jage < Mopt(A)M/P0, (1.4.21)
1T (a)|| jore < My p(A)YP1 (1.4.22)

Jor all measurable subsets A of X with [1(A) < oo, Fix 0 < 6 < 1 and let

1 1-6 6 1 1-6 6
T B (14.23)
14 Po P q q0 q1

Then there exists a constant C«(po,qo, P1,q1,K,r,0) < o such that for all functions
fin So(X) we have

||T(f)HLqr S C*(P07407P1aCIl7K7r79)M(%_9M19HfHLP,r' (1424)
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Additionally, if 0 < p,r < oo and if T is linear (or sublinear with nonnegative val-
ues), then it admits a unique bounded extension from LP"(X) to L?"(Y, V) such that
(1.4.24) holds for all f in LP".

Before we give the proof of Theorem 1.4.19, we state and prove a lemma that is
interesting on its own.

Lemma 1.4.20. Let 0 < p < o and 0 < g < o and let (X,u), (Y,Vv) be o-finite
measure spaces. Let T be a quasi-linear operator defined on S(X) and taking values
in the set of measurable functions on Y. Suppose that there exists a constant M > 0
such that for all measurable subsets A of X of finite measure we have

17 Ga) [ e < Mu(A)7. (1.4.25)

Then for all oo with 0 < o < min(g, l(l)(égzzk

such that for all functions f in So(X) we have the estimate

) there exists a constant C(p,q,K,a) >0

T (Al o < C (P, 0, K, )M | f] . (1.4.26)

where

C(p,q. K, a) =285+ K3 (qqa> Y (1-27%) & (log2) % .
Proof. A function f in Sp(X) can be written as f = h; — hy + i(h3 — ha), where
hj are in S§(X). We write f = fi — fo+i(f3 — f4), where fi = max(h; — hy,0),
f» = max(—(h; —hy),0), f3 = max(h3 — hy4,0), and f4 = max(—(hs — h4),0). We
note that f; lie in Sg (X); indeed, if by =Y, Z’EXAK and hy =Y, Z’kak, where both
sums are finite, then

fl = Z 276%1% + Z (27[ - Zik)XAmBk .
£: AgN (U By )=0 (L.k): b<k, ApNBy#0

Since the second sum is equal to Zﬁ:(%l 27°Xa,nB,» We obtain that h € Sa“ (X).
Likewise we can show that f», f3, f4 lie in Sg (X). Moreover, we have f; < |f| and
Proposition 1.4.5(4), yields

||fjHL1’-°‘(X) < HfHLp,a(X)

for all j =1,2,3,4. Suppose now that (1.4.26) holds for functions in SJ (X) with
constant C’'(p, q, @) in place of C(p,q,K, ¢). By the quasi-linearity of T we have
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IT()lla=w) < K’

4
Y IT(f)l
=1

| 4
<K¥4'a Y IT(F)llra=r)
Jj=1

L9=(Y)

242
S K34 +‘1MC’(p,q,K,O£) ||f||LpAa(X)

which proves (1.4.26) for all f in So(X) with constant
2
C(p.g.K.0) =271 K°C'(p,q.0).

We now prove (1.4.26) for functions in S§ (X) with constant C'(p, g, o) in place
of C(p,q,K,a). It follows from the Aoki—Rolewicz theorem (Exercise 1.4.6) that for
allN € Z" and for all fi,..., fy in SJ (X) we have the pointwise inequality

1 1

N a N I
Gl <a( L) <e(Lree)’. ez
2

J=1

where 0 < a < ; and o satisfies the equation (2K)* = 2. The second inequality
in (1.4.27) is a simple consequence of the fact that o < a;. Fix o with

log2

O<op<oy=
%= log2K

and op <gq.

This ensures that the quasi-normed space L4/%* is normable when o < . In fact,
since Y is o-finite, Exercise 1.1.12 gives that the space L** is normable as long as
s > 1 and there is an equivalent norm ||| f|||zs= such that

N

17

o S MM e = 57 17 5

s—1

Next we claim that for any nonnegative function f in SJ (X) we have

1T (fxa)]| g <4 (q_ia)ﬁ(l o)k ()

Fxallp- (1.4.28)

To show this, we write [ = ):;?:m 27/ Xs;» where m < n are integers, S; are subsets of
X of finite measure for all j € {m,m+1,...,n}, u(Sy) # 0 and u(S,) # 0. Setting
Bj=S§;NA we have

faa=Y 27 xs

Jj=m

and 27" < || f xallze(x)-
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We use (1.4.27) once and (1.4.3) twice in the following argument. We have

Il <4 £ 2717 1)*

Jj=m

L4
n 1

::4‘ 2:2 T (g% "

Lq/ a,e0

o

n
<4 X2, |
j=m

L4/ o

1
o
Lq/“«*)
1
o
Lq/a~°°)

1

(L2l )"

j=m

IN

n
(L2
j=m

Sl

T (xs,)|"

n
(o
j=m

q—Qa

1

¢
<4(-L

(%

() w( E e mwnt)

Q
=
SQ
— — \_/
Q=

&
Q

1
< o _ h—a 7% 1
_4(—q_a) (1=2"%"aMu(A)r27",

using B; € A. Using that 27" < || fxal|r~ establishes (1.4.28).
We now apply (1.4.28) to obtain (1.4.26). For any f € Sg (X) we define measur-
able sets

Ay ={xeX: Y < |fx)] < 2 (1.4.29)
and we note that these sets are pairwise disjoint. We may write the finitely simple
function f as Z”,l a;jXe;, where 0 < a; <o, E CE,C--CE,and0< u(Ej) <oo

for j € {1,2,...,n}. Clearly, we have
f'= L aikone)
-

Thus, whent € (U(Ey), ), f*(t) vanishes, and whent € (0, u(E1)), f*(t) =L, a;

is a positive constant. So there exists N € Z* such that f*(2%) = 0 when k > N, and
that f*(2*) is a positive constant when k < —N. This also implies that A; = 0 if
|k| > N and thus we express

N
=Y fa.
k=N
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Proposition 1.4.5(2) implies u(Ay) < dp(f*(25+1)) <2KF1. Using (1.4.27) we obtain

N

Il <4 (kZNT(f%Am“)é

N 1

:4‘ Z T (f2a,)]
N

L4=(Y)

Nesreery

a

L4/%=(y)

N
<4| X imtae

1

Lq/a~°°(y)>
1

<4 (%) ' (ki,v H T2 Lq/wm) E

1

q @ N a ‘
§4<q_a> (kZNHT(fok)Lq,m(y))

16<qa>a(1 - _aM<Z W(Ag)» Hf%&“;;)

1

a)“’(lz—“)—éziM( y [f*(z"n“z"f‘)

<4 (kﬁN (exezsi|

Q-

a

IN

IN
—
(@)}
7N\
K
Q9

IN
(@)
7 N

9
R
N~
N
—
|
N
I}
—
|
R~
\S)

SIS

—
o

(0°]
)

N—

)
=
=

=
:

(X))

2

k-1 ¢

> ¥ YR |

k=—o0 2

=2 7 log2 Z 125927 .

k=—oo

This completes the proof of the required inequality for nonnegative functions in
S§ (X) with constant

2
o 2
Clpa.o=16( L) (120 w23 og2)

2
As noted, the constant in general is C(p,q,K, ) = PAND € C'(p,q, ). O
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We now proceed with the proof of Theorem 1.4.19.

Proof. We assume that pg < pj, since if pp > p; we may simply reverse the roles
of pg and p;. We first consider the case p1,r < oo. Lemma 1.4.20 implies that

7l <M %0
HT(f)HLW <M Hf”LPlv"“

for all f in So(X), where m = Jmin (qo,ql,@%ﬂr), M{y = C(po,qo,K,m)My,
M| =C(pi,q1,K,m)M;, and C(p,q,K, o) is as in (1.4.26).
Fix a function f in So(X). Split f = f' + f; as follows:

s [J@ WL @)
0 if | £(x)] < f(817),
s {0 > @,
W @< o),
where § is to be determined later and 7 is the following nonzero real number:
1 1 1_1
O e
p PP P
Using Exercise 1.1.10 we write
ds(v) when v > f*(8t7)
dp(v) = ' .
de(f*(017)) when v < f*(6t7)

dy(v) = 0 when v > f*(617)
I =N dp(v) —dp(£7(817))  whenv < £5(817).

Observe the following facts
v> 61" = (f)"(v) < inf{se (0,f"(8")]: dp(s) <v}
=inf{s € (0, f*(81")] : ds(f*(817)) <v}
— inf(0, £ (817)]
=0,

< 8t = (1) (v) < inf{s > f*(817) 1 dpu(s) < v}
= inf {s > f*(817) : ds(s) < v}
— inf{{s> 0: dp(s) <v}n (f*(6t”),oo)}
— £ ), since f*(v) = f*(817),
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v>68t" = (f,)"(v) =inf{s>0: ds(s) <v}
<inf{s>0: ds(s) <v} since dy, < dy
= f*(v),

v< 8" = (f;)"(v) = inf{s>0: dg(s) <v}
< fH(8t7), since f*(817) € {s>0: dy(s) <v}.
We summarize these observations in a couple of inequalities:

fis) ifo<s<ér?,
0 if s > 617,

(f)(s) < {

A8ty if0<s<or?,
(ft) ( ) {f*( ) if s > 817,

It follows from these inequalities that f lies in LP0™ and f; lies in L1 for all r > 0.
The quasi-linearity of the operator 7 and (1.4.9) imply

1T (A ar
= |[raT(r)(2)

L)

<Kl[e (1T () +IT () (@)

)

<K[e TS+ TS (D)o

ey T @l

< Kmax{1,2 ([T (5 sy + T (D) - (143D

<Ka (|l T(£)(5)

It follows from (1.4.30) that

1 1 1 1
toT(f)*(5) <29 sugs%T(f')*(s) < 2% My|| '] pom » (1.4.32)
s>
1 1
taT(f,) (%) <2 supsqlT(f,) (s) <29 My || fi|l prom (1.4.33)
s>0

for all > 0. Now use (1.4.32), (1.4.33), and the facts that

1 1 1
FT(F)(5) =17 W T(f) (4) < 19020 MY ]| o

1 1 1 1

o1
tT(f1) (5) =10 aen T(f1)*(5) <t D20 M| f'[|
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to estimate (1.4.31) by

1_4 | s R G

Kmax{1,27~"} |20 My |[r4~ 0 || f'|| pgm + 20 My (|12 || fi]] Ly m ,
Lr(d Lr(dy
which is the same as
1 1 _
Kmax{1,25 215 |1 75 HffHLpOm’rw (1434)
L tund o |y =24)

+ K max{1,27 }2‘11M1 | fo|| oy (1.4.35)

Lr(ﬂ

t

Next, we change variables u = ¢ in the L" quasi-norm in (1.4.34) to obtain

17() HfIHL”Om -
5 ds\ "
PP 11 u m m
I b ([ o)
|’)/|r 0 Lr(%)
1
577 Lo qm e s\ T
=< ||1 F(L T (/0 (sPo f*(s))"s po ps>
Y- P P
5*40
Po P
T

where the last inequality is a consequence of Hardy’s inequality:

(/0“’ (./oug(s) ?)p”b d;)i <? (l/()‘wg(u)”ub ‘Z‘)Il} (1.4.36)

with g(s) = f*(s)"s™/P0 >0, p=r/m>1and b = r/po—r/p > 0. See Exercise

1.2.8 for the proof of (1.4.36).
Likewise, change variables u = 61" in the L" quasi-norm of (1.4.35) to obtain

11
A A U

(1 m had m %
< S P7P1 u;*ﬂ |:/ f Sﬂé—k/ f*(s)msplds:|
|y| § u S Lr(%)
5 (P pl m_m
= ur f Mypr 7_|_/ (s sl’l
bk U/*ﬂ(%)
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Lrim(4)
1

5(;;I>{
<——
M
Lr/m(t/uu)}
1

,(,,L) . ) o
S \rm D1 m n A AN
Sw{m’|f’|yr+’m(/0 (f (u) ull) ub u) }

P1

11 L
5*(;*ﬁ) pi m
Y { - } ||fHum
mm|’y|r P [7]

where the last inequality above is Hardy’s inequality:

(/ </,g ds) b?) ,,(/g bd”) (1.4.37)

with g(s) = f*(s)"s™/P >0, p=r/m>1and b=r/p—r/p; > 0. See Exercise
1.2.8 for the proof of (1.4.37).

Combining these elements we deduce that given f in So(X), we have that the
expression in (1.4.34) plus the expression in (1.4.35) is at most

m__ m m. ds
uF f Msp1r —
s

il 1_1 L 1 —(A_L
Kmax{1,2:=1} [ 2 agsro s 201 (2)m M5
1 1 1 1
min |y|7 (55— 3)7 (5=

We choose & > 0 such that the two terms in the curly brackets above are equal. We
deduce that

171l

1-0 - [}
2Kmax{1,27 71} | 270 (ag)1=0 29 (BL)m (M)°

1
AR

I7(5) 1A

liar <

where 0 is as in (1.4.23), i.e.,

This proves (1.4.24) in the case p;,r < o with constant C.(po,qo,p1,41,K,r,0)
equal to

1-6 6 )
2Kmax{172%_1} 240 C(p07q07K7m)1792q1(%)%C(phqlvl(am)e
Lt L1\ 8 1 1,8 ’
mm|y|r (%*;) " (;*[T])’"

1 log2 L
where we recall that m = 3 min (qo,ql,k;%,%) and C(pj,q;,K,m) is as in Lemma

1.4.20.
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We now turn to the remaining cases p = oo or r = oo. The restriction r < oo can
be removed since Cx(po,qo, P1,491,K,r, 0) has a finite limit as r — oo and, moreover,
1 lzre = 1P £ | aegey = 167 (0 l=arje) = [ flleo= as r — oo and likewise
T (N)err = | T(f)||p= as r — oo; see Exercise 1.1.3 (a). The restriction p; < oo
can be removed as follows. Suppose that p; = . Then, since 0 € (0, 1) it follows
that p < co and we pick p» > p and py < o=. Itis easy to see T satisfies the restricted
weak type (p2,q2) estimate

1 1
supav({|T(xa)| > a})= <My "M p(A)72

a>0

where

- - 1
i __ L 2 __ (1.4.38)
Po © P2 q0 q1 q2

Using the result obtained when p; < oo with p, in place of p; we obtain that

1T ()| 4r < Celposdos p2. a2, K.rip)My P (My MOV |f |, (14.39)

for all functions f in So(X), where
1— 1 1— 1
ey P D pPLP_2 (1.4.40)
Po p2 P q90 92 4

Combining (1.4.38) and (1.4.40) and using (1.4.23) we deduce that 6 = p¢@ and
hence (1.4.39) yields (1.4.24) in the case where p; = oo. In this case we have

1— _
C*(P07¢I07°°75117K7r79) :C*(pan();][iiO(pv(To(p_'_%) 15K7ra%)7

where ¢ is any number satisfying 1 > ¢ > 1 — 22,

Finally, we address the last assertion of the theorem which claims that when
p,r < o and K = 1, the linear (or sublinear with nonnegative values) operator T
initially defined on finitely simple functions has a unique bounded extension from
LP7(X) to L?"(Y), which also satisfies (1.4.24) (with the same constant). To obtain
this conclusion, we will need to know that the space So(X) is dense in LP"(X)
whenever 0 < p,r < oo. This is proved in Proposition 1.4.21 below. Assuming this
proposition, we define the extension of 7 on LP"(X) as follows:

Given f in LP"(X) a sequence of functions f; in So(X) that converge to f in
LP"(X), notice that the linearity (or the sublinearity and the fact that 7(f) > 0 for
all fin Sp(X)) implies

IT(f;)=T(fi)l <|T(f;— fi)l-

Using the boundedness of T from LP"(X) to L%"(Y) we obtain that the sequence
{T(f;)}; is Cauchy in L?"(Y) and by the completeness of this space, it must con-
verge to a limit which we call T(f). We observe that 7(f) is independent of the
choice of the sequence {f;}; that converges to f in L”". Moreover, one can show
that T is linear (or sublinear with nonnegative values), 7 (f) coincides with T (f)
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on Sy(X) and T is bounded from LP"(X) to L (Y). Thus T is the unique bounded
extension of T on the entire space LP"(X). For details, see Exercise 1.4.17. (]

Proposition 1.4.21. For all 0 < p,r < oo the space So(X) is dense in LV (X).

Proof. Let f € LP"(X) and assume first that f > 0. Using (1.4.5) and the fact that
dy is decreasing on [0, o), we obtain for any n € Z*,

HfHan(x) = P/Ooo [df(s)%s}
o
z 1’/0 [dp(27")]

= 2 2 a2

rds

N
r
p

s lds

Sk

which implies that df(27") < co. Likewise, again in view of (1.4.5), we have

p2nr
r

r 2 r 1 r
Al 2 [ [dr) s ds = 22 ayam] 5,

which implies that lim,_,.d¢(2") = 0. Thus, for any n € Z*, there exists k, € N
such that
dr(2m) =p({xex: flx)>2M}) <2

LetE, = {x€X: 27" < f(x) < 2%} and note that yt (E,) < dy(27") < e for each
n € Z". We write fxg, in binary expansion, that is, fxg, (x) = 2177,{ dj(x)2,
where dj(x) =0 or 1. Let Bj = {x € E,, : dj(x) = 1}. Then, u(B;) < [.L( ) and
S XE, can be expressed as fxg, = Z;"__kn - 'xB

Set fo=Y}_ 4 2" Jxs;. It is obvious that f, € S§ (X) and f, < fxg, < f. Ob-
serve that when x € E,, we have

f) = falo)="Y 277y, <27,

jEnt]

and that when x ¢ E,, we have f,,(x) = 0 and f(x) > 2% or f(x) < 27" It follows
from these facts that

di—f, 2" =p(E.N{f—fu>27" ) +u(ESN{f—fu>27"}) <27".
Hence, for 27" <t < oo one has
(f=fa)' () S(f=f)"@7") =inf{s > 0: dfy,(s) 27"} <277

This implies that lim,,_e.(f — f;,)*(t) = 0 for all £ € (0, o). By Proposition 1.4.5 (5),
(6), we obtain for all # € (0,00)

(f = /)" () S F7(/2) + £ (1/2) <2f7(1/2).
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The Lebesgue dominated convergence theorem gives || f;, — f1|zrr(x) — 0 as n — oo
which yields the required conclusion for nonnegative functions f in LP"(X).

For a complex-valued function f € LP"(X), we write f = fi — fa +i(f3 — fa),
where f; are nonnegative functions in L”(X). By the preceding conclusion, there
exist sequences {f },cz+, j = 1,2,3,4, in Sg (X) such that £ — f; in LP"(X) as
n— oo, Set f, = fl — fi+i(f3 — fy). Using the fact that || - || p.r(x) is a quasi-norm
we obtain

4 .
Hf_f’lHLw(x) <C(p.r) Zl £ _fV'l]HLPJ(X)
]:

which tends to zero as n — oo. This completes the proof. O

Corollary 1.4.22. Let T be as in the statement of Theorem 1.4.19 and let 0 < py #~
p1 <ooand 0 < gy # q1 < oo If T is restricted weak type (po,qo) and (p1,q1) with
constants My and My, respectively, and for some 0 < 0 < 1 we have

1 1-6 6 1 1-6 6

P po P g g0 q

)

and p < q, then T satisfies the strong type estimate

HT(f)HLq < C(P0740717175117G)M(%ieMler’

o (1.4.41)

Jor all f in So(X). Moreover, if T is linear (or sublinear with nonnegative values),
then it has a unique bounded extension from LP (X, 1) to L1(Y,V) that satisfies es-

timate (1.4.41) for all f € LP(X) with the constant C(po,qo,p1,4q1,0) replaced by
C(Povqo,Pl»Cll,9)22/”max(1,21/p71)2.

Proof. Since 6 € (0,1) we must have p,q < 0. Take r = ¢ in Theorem 1.4.19 and
note that || f]|zr- < ||f|lzr since p < g = r; see Proposition 1.4.10. The last assertion
follows using Exercise 1.4.17. O

We now give examples to indicate why the assumptions py # p; and gg # qi
cannot be dropped in Theorem 1.4.19.

Example 1.4.23. Let X =Y =R and

T =2 ',

Then ot|{x: |T(xa)(x)| > a}|'/2 =2'/2|AN[0,1]| and thus T is of restricted weak
types (1,2) and (3,2). But observe that T does not map L> = L>? to L%?. Thus
Theorem 1.4.19 fails if the assumption gy # ¢ is dropped. The dual operator

S(f)(x) = 2.7 (x) /:wf(t)|t|*l/2dl
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satisfies ot {x: |S(xa)(x)| > a}|'/? < ¢|A|'/?> when g = 1 or 3, and thus it furnishes
an example of an operator of restricted weak types (2,1) and (2,3) that is not L?
bounded. Thus Theorem 1.4.19 fails if the assumption pg # p; is dropped.

As an application of Theorem 1.4.19, we give the following strengthening of
Theorem 1.2.13.
We end this chapter with a corollary of the proof of Theorem 1.4.19.

Corollary 1.4.24. Let 1 <r < oo, 1 < pg# p1 < oo, and 0 < go # q1 < o and let
(X, 1) and (Y, V) be o-finite measure spaces. Let T be a quasi-linear operator de-
fined on LPo (X ) + LP' (X)) and taking values in the set of measurable functions on'Y .
Assume that for some M{),M| < oo the following estimates hold for j =0, 1

N =) < M1 1]y (14.42)

Sor all functions f € LPi(X). Fix 0 < 0 < 1 and let

1 1-6 6 1 1-6 o
= +— and -= +=. (1.4.43)
I g 9

Then there exists a constant C«(po,qo, P1,q1,K,r,0) < o such that for all functions
fin LP(X) we have

7)) ||, 0r < C(Poq0, 1,1, K, 1.0) (M)~ (M})° | /]

Proof. Since LP(X) is contained in the sum L0 (X)) + LP1(X), the operator T is well
defined on L”(X). Hypothesis (1.4.42) implies that (1.4.30) holds for all f € LPi!.
Repeat the proof of Theorem 1.4.19 starting from (1.4.30) fixing a function f in
LP(X), m =1 and r = p. We obtain the required conclusion.

- (1.4.44)

Theorem 1.4.25. (Young’s inequality for weak type spaces) Let G be a locally com-
pact group with left Haar measure A that satisfies (1.2.12) for all measurable subsets
Aof G. Let 1 < p,q,r < oo satisfy

1 11
Sl=— -, (1.4.45)
q por

Then there exists a constant Bp, 4 > 0 such that for all f in LP(G) and g in L"*(G)
we have

(1.4.46)

Hf*gHLq(G) <Bpgrll L’>°"(G)HfHLP(G)'

Proof. We fix 1 < p,q < . Since p and g range in an open interval, we can find
pPo<p<pt,q <qg<gqi,and 0 < 0 < 1 such that (1.4.23) and (1.4.45) hold.
Let T(f) = f * g, defined for all functions f on G. By Theorem 1.2.13, T extends
to a bounded operator from L0 to L0 and from LP! to L. It follows from
the Corollary 1.4.24 that T extends to a bounded operator from L?(G) to LI(G).
Notice that since G is locally compact, (G, 1) is a o-finite measure space and for
this reason, we were able to apply Corollary 1.4.24. (I
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Exercises

1.4.1. (a) Let g be a nonnegative integrable function on a measure space (X, 1) and
let A be a measurable subset of X. Prove that

1(A)
/gdu S/ g (r)dr.
A 0

(b) (G. H. Hardy and J. E. Littlewood) For f and g measurable on a o-finite measure
space (X, i), prove that

/If x)| du(x) / [

Compare this result to the classical Hardy-Littlewood result asserting that for
aj,bj >0, the sum Y ;a;b; is greatest when both a; and b; are rearranged in de-
creasing order (for this see [148, p. 261]).

1.4.2. Let (X, ) be a measure space. Prove that if f € L90*°(X)NL9*(X) for some
0<go < gy <eo,then f €L (X) forall 0 <s<eand gy <gqg<gq.

1.4.3. ([164]) Given 0 < p,q < oo, fix an r = r(p,q) > O such that r < 1, r < g and
r < p.Let (X, 1) be a measure space. For # < p1(X) define

770 = s (g 1074 )"

while for t > p(X) (if u(X) < o) let

:( /If\ du>l/r.
e([orore)

(The function f** and the functional f — ||| f]|||Lr« depend on r.)

(a) Prove that the inequality (((f+g)™)(#))" < (f*™())" + (¢*(¢))" is valid for all
t > 0. Since r < g, conclude that the functional f — |||f]||],4 is subadditive and
hence it is a norm when » = 1 (this is possible only if p > 1).

(b) Show that for all f we have

Also define

1/r
a1 e < (525) Wi

(c) Conclude that LP4(X ) is metrizable and normable when 1 < p,g < eo.
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1.4.4. Show that on a measure space (X, 1) the set of countable linear combinations
of simple functions is dense in L7 (X).

(b) Prove that finitely simple functions are not dense in LP>*(R) for any 0 < p < .

[Hint: Part (b): Show that the function h(x) = x /Py cannot be approximated
in L”* by a sequence of finitely simple functions. Given a finitely simple function s
which is nonzero on a set A with |A| > 0, show that ||s — A||zp.= > SUPG 3 <|a|l/p A(ATP

e =1]

1.4.5. Let (X, 1) be a nonatomic measure space.

(@IfA) S A S X,0< (A]) <eo,and (Ag) <t < u(A;), show that there exists
an E; € Ay with u(E,) =t.

(b) Given a nonnegative continuous and decreasing function ¢ on [0,c) such that
¢(t) = 0 whenever t > 1(X), prove that there exists a measurable function f on X
with f*(¢) = @(¢) for all 7 > 0.

(c) Given A € X with 0 < (A) < e and g an integrable function on X, show that
there exists a subset A of X with f1(A) = u(A) such that

GV
/~ lgldu = / g (s)ds.
A 0
(d) If X is o-finite, f € L*(X), and g € L'(X), prove that

sup
h: dy=dy

/. hgdu‘ - [ reg s

where the supremum is taken over all functions 4 on X equidistributed with f.
[Hint: Part (a): Reduce matters to the situation in which Ag = @. Consider first the

case that for all A € X there exists a subset B of X satisfying % u(A) <u(B) <
% W(A). Then we can find subsets of A of measure in any arbitrarily small inter-
val, and by continuity the required conclusion follows. Next consider the case in
which there is a subset A} of X such that every B £ A; satisfies u(B) < % u(Ar)
or 1t(B) > 5 [1(A1). Without loss of generality, normalize  so that yt(A;) = 1. Let
1 = sup{p(C): C S Ay, u(C) < {5} and pick By C A; such that § it < pu(B) <
Ui. Set Ay = A\ B and define pp = sup{u(C): C S A, u(C) < %} Continue in
this way and define sets A} 2 Ay 2 A3 2 --- and numbers % > > Uy > Uz >
If C € Ay with 1(C) < {5, then CUB, € A, with u(CUB,) < < 3, and hence
by assumption we must have u(CUB,) < %. Conclude that 1 < % U, and that
w(A,) > % for all n = 1,2,.... Then the set () _; A, must be an atom. Part (b):
First show that when d is a simple right continuous decreasing function on [0,)
there exists a measurable f on X such that f* = d. For general continuous func-
tions, use approximation. Part (c¢): Lett = u(A) and define A = {x: |g(x)| > g*(t)}
and Ay = {x: |g(x)] > g*(t)}. Then A} S Ay and u(A;) <t < u(Az). Pick A such
that A, CA C A, an 1(A) =t = u(A) by part (a). Then Jigdu = [xgxzdu =

Jo (gxz) ds = ks @ g*(s)ds. Part (d): Reduce matters to functions f,g > 0. Let



76 1 L? Spaces and Interpolation

f= Z?’:l ajxa; where aj >az > --- >ay >0 and the A; are pairwise disjoint.

Write f as ley:lbijj’ thre b;= (aj —aj+1) and Bj =A;U---UA;. Pickgj as in

part (c). Then By € --- € By and the function f; = 21}/:1 bjxg. has the same distri-
J

bution function as f. It follows from part (c) that [y figdu = [y f*(s)g*(s) ds. The

case of a general f € L”(X) follows by approximation by finitely simple functions.]

1.4.6. ([7], [297]) Let K > 1 and let || - || be a nonnegative functional on a vector

space X that satisfies
[+l < K ([lxll +[1y1])

for all x,y € X. For a fixed o < 1 satisfying (2K)%* = 2 show that
[l - x| < A [+ ol )

for all n =1,2,... and all x1, x, ..., x,, in X. This inequality is referred to as the
Aoki-Rolewicz theorem.

[Hint: Quasi-linearity implies that [|x; + -+ 4 x, | < max;<j<,[(2K)’|x;]|] for all
X1,...,%, in X (use that K > 1). Define H : X — R by setting H(0) = 0 and
H(x) =2//%if 27=1 < ||x||* < 2/. Then ||x|| < H(x) < 2'/%||x]|| for all x € X. Prove by
induction that ||x; + - - - +x,||* < 2(H(x1)*+ -+ H(x,)%). Suppose that this state-
ment is true when n = m. To show its validity for n = m+ 1, without loss of general-
ity assume that ||x; || > |[x2|| > -+ > ||xm+1]]- Then H(xy) > H(x2) >+ -+ > H (X 41)-
Assume that all the H (x;)’s are distinct. Then since H(x;)* are distinct powers of 2,
they must satisfy H(x;)* <27/T1H(x;)%. Then

K 11
max (2K |

x4 x| <[ (2K)

g[ max  (2K)/H (x;)]"
<[ (2K)
=2H

max (2K 121/“2_j/aH(x1)]a
1<j<m+1

H(x;)*
<2(H(x ) +- +H(xm+l) )-

We now consider the case that H(x;) = H(x;1) for some 1 < j < m. Then for some
integer r we must have 2! < ||x;41 ]| < [|x;]|* < 2" and H(x;) = 2'/%. Next note
that

e e 1% < Kl I ) < K2 27%)% = 27+

This implies
H(xj+xj41)* <2 =27 42" = H(x;)* + H(xj11)%

Now apply the inductive hypothesis to xi,...,X;_1,Xj +Xj41,Xj+1,...,%, and use
the previous inequality to obtain the required conclusion.

1.4.7. (a) ([347]) Let (X, 1) and (Y, v) be measure spaces. Let Z be a Banach space
of complex-valued measurable functions on Y. Assume that Z is closed under abso-
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lute values and satisfies || f||z = ||| f]||z- Suppose that T is a linear operator defined
on the space of finitely simple functions on (X, 1) and taking values in Z. Suppose
that for some constant A > 0 the following restricted weak type estimate

1T (xe)||, < A(E)"/?

holds for some 0 < p < o and for all E measurable subsets of X of finite measure.
Show that for all finitely simply functions f on X we have

1T, <P Al ]| -

Consequently 7 has a bounded extension from L”! (X) to Z.
(b) ([172]) As an application of part (a) prove that for any U, V measurable subsets
of R" with |U|,|V| < e and any f measurable on U x V we have

1
2 1
(i ) < 31

[Hint: Part (a): Let f = 27:1 ajXE; >0,wherea; >ap > -+ >ay >0, /.L(Ej) < oo
pairwise disjoint. Let F; = EyU---UE}, By = 0, and B; = pu(F;) for j > 1. Write
f= Xl}le(aj —ajy1)Xr;, where ay;1 = 0. Then

TNl = N7

N

< Y (aj—aj)|T(xr)|l,
N

<AY (aj—aj)(u(F))'”
=1
N7

1 1
=AY (B - B
=0

-1
=p Al f
where the penultimate equality follows by a summation by parts; see Appendix F]

14.8. Let 0 < p,q, o, < oo. Alsolet 0 < g < ga < oo.

(a) Show that the function f,, g(t) = t*a(logt*l)713%[0787/3/@(1) lies in L74(R) if
and only if either p < 1/a or both p = 1/a and g > 1/ hold. Conclude that the
function 7 — /7 (logt_l)_l/ql)([O,e,p/q1 ) (¢) lies in LP92(R) but not in LP91 (R).
(b) Find a necessary and sufficient condition in terms of p,c, B for the function
8ap(t) = (1+1)"%(log(2+1)) P ¥ to lie in LPI(R).
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(c) Let y(t) be smooth decreasing function on [0,e0) and let F(x) = y(|x|) for x
in R, where |x| is the modulus of x. Show that F*(r) = f((t/v,)"/"), where v, is
the volume of the unit ball. Use this formula to construct examples showing that
LP41(R") G LP%2(R").

(d) On a general nonatomic measure space (X, L) prove that there does not exist a
constant C(p,q1,4q>) > 0 such that for all f in L”92(X) the following is valid:

171

P41 S C(PJ]IJIZ)HfHLn,qz .

[Hint: Parts (a), (b): Use that f, g and g, g are equal to their decreasing rearrange-
ments. Part (d): Use Exercise 1.4.5 (b) with @ (1) = g1 /.1/4, (1).]

1.4.9. ([346]) Let L? () denote the space of all measurable functions f on R” such
that ||f||fp(w) = [rn |f(X)|? 0(x) dx < oo, where 0 < @ < oo a.e. Let T be a sublinear
operator that maps L0 (ay) to L7 (w) and LP! (@) to L9 (w), where @y, 01, @
are positive functions and 1 < pg < p; < o0, 0 < gp, g1 < °°. Suppose that

1 1-6 6 1 1-6 6
= +—, - = +—.
Do Po P1 96 q0 q1
Slpe £po
Let Q9 = ;"' . Show that T maps L"® (Qg) — L1979 ().

1
[Hint: Define L(f) = (@ /@y)?1~" f and observe that for each 6 € [0,1], L maps

1
LPe (Qg) — LPo (@} @, 7°)71=70 ) isometrically. Then apply Corollary 1.4.24 to
the sublinear operator 7o L™!.]

1.4.10. ([185], [349]) Let A, be a sequence of positive numbers with ¥, A, < 1 and
Yo n log(i) = K < . Suppose all sequences are indexed by a fixed countable set.
(a) Let f, be a sequence of complex-valued functions in L' (X) with || f, || 1 < 1
uniformly in n. Prove that ¥, A, f, lies in L1 (X) with norm at most 2(K +2). (This
property is referred to as the logconvexity of L)

(b) Let T, be a sequence of sublinear operators that map L!(X) to L' (Y) with
norms ||7,||;1_,,1- < B uniformly in n. Use part (a) to prove that Y, 4,7, maps
L'(X) to L'*(Y) with norm at most 2B(K +2).

(c) Given 6 > 0 pick 0 < € < & and use the simple estimate

oo

“({szﬁnﬁl>a} Z 2 57!](;1 1)278”(1})
n=1

to obtain a simple proof of the statement in part (a) when A, =279 n=1,2,....
[Hint: Part (a): For fixed o > 0, write f, = u, + v, + w,, where u, = f,,xwg%,
Vp = f,,)(mb%, and w,, = fn%%<\fn\§ﬁ' Letu=Y,Au,, v=Y, Ay, and w =

Y Anwy. Clearly [u| < 7. Also {v # 0} € U, {|/a| > 55 }: hence pu({v # 0}) < 2
Finally,



1.4 Lorentz Spaces 79

/X|W|d“ = ZA/X |l g <1< se dut

< ;ln [ /a Z%)dfn(ﬁ)dﬁ - /O a/zdfn((x/Z)dB]

<K+1.

Using u({Ju-+ -+l > 0) < ({1 > o/21)-+ ({1 01+ (] > a/2))
educe the conclusion.

1.4.11. Let { f,, }, be a sequence of measurable functions on a measure space (X, it).
Let0 < g,s < oo
(a) Suppose that f,, > 0 for all n. Show that

[[timinf || o <liminf || £, -

(b) Let g, — g in L%* as n — 0. Show that || g, ||z — ||g||Les as n — eo.

1.4.12. (a) Suppose that X is a quasi-Banach space and let X* be its dual (which is
always a Banach space). Prove that for all 7 € X* we have

|

o= Sup [T
i<t

(b) Now suppose that X is a Banach space. Use the Hahn—Banach theorem to prove
that for every x € X we have

lxllx = sup [T (x)].
E *
I3+ <1
Observe that this result may fail for quasi-Banach spaces. For example, if X = L',
every linear functional on X* vanishes on the set of simple functions.

(¢) Let 1 < p < oo, X = LP1(Y), and X* = L"*(Y), where (Y,u) is nonatomic
o-finite measure space. Conclude that

171

Lp:l % Sup

~ sup

[Py
el

1.4.13. Let 0 < p,q < oo. Prove that any function in L”(X, 1) can be written as

oo
f= Z Cnfns

n=-—co
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where f, is a function bounded by 27l supported on a set of measure 2", and the
sequence {cy }y lies in ¢4 and satisfies

277 (1082) || {exhell i < [|F ]l pa < |[{erdel|,0 27 (log2)7

[Hint: Let ¢, = 2/7 f*(2"), A, = {x: f*2") < |f(x)| < £*(2"))}, and f, =
erlfon'}

1.4.14. (T Tao) Let 0 < p < 0,0 < y< 1,A,B >0, and let f be a measurable func-
tion on a measure space (X, ).

(a) Suppose that || f||zr= < A. Then for every measurable set E of finite measure
there exists a measurable subset E' of E with w(E") > yu(E) such that f is inte-
grable on E’ and

‘/fd“‘ﬁ(l—if)'/”Au(E)';-
El

(b) Suppose that (X, i) is a o-finite measure space and that f has the property that
for any measurable subset E of X with p1(E) < oo there is a measurable subset £ of
E with u(E’) > yu(E) such that f is integrable on E’ and

1

fdu’ <Bu(E)"7.
E/

Then we have that || f||zp < B4!/Py~11/2.
(c) Conclude that if (X, ) is a o-finite measure space then

- . ,1+l "
s s nt ) | [ ]
0<pu(E)<eo p(E')>Ju(E)
feL (E")

[Hint: Part (a): Take E' = E\ {|f| > A(1 - }/)_%,LL(E)_TI’}- Part (b): Write X =
U1 X, with p(X,) < eo. Given o > 0, note that the set {|f| > a} is contained in

{Ref>%}u{lmf>%}U{Ref<—%}u{lmf<—%}.

Let E, be any of the preceding four sets intersected with X,,, let E], be a subset of
it with measure at least y 1L (E,) as in the hypothesis. Then | [ fdp| > SYH(E),

from which it follows that au(E,,)l/ P < B2 y~ !, and letn — 00.]

1.4.15. Let T be a linear operator defined on the set of finitely simple functions on
a o-finite measure space (X, i) and taking values in the set of measurable functions
on a o-finite measure space (¥,v) and 7 be a linear operator defined on the set
of finitely simple functions on (Y,Vv) and taking values in the set of measurable
functions of (X, 1). Suppose that for all A subsets of X and B subsets of Y of finite
measure we have
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[ Gulave [ TGl <
JB JA

and that 7 and T" are related via the “transpose identity”

/T(XA)XBdVZ/Tt(XB)XAd“:A(AvB)-
Y X

Assume that whenever L(A,)+ V(B,) — 0 as n — o, we have A (A, B,) — 0. Sup-
pose that T and T are restricted weak type (1,1) operators, with constants C; and
C,, respectively. Show that, for all 1 < p < oo, T is of restricted weak type (p,p).
Precisely, show that there exists a constant K, such that

1

1 1 1
||T(XA)||LI’(Y) <K,C/C, "u(A)r

for all measurable subsets A of X with t(A) < eo.

[Hint: Suppose that Cijt(F) > C,v(E) and pick m so that Cyyt(F) ~ 2’”C2v( ).
Since T" is restricted weak type (1,1) there is an F’ F such that u(F') > Ju(F)
and |A(F',E)| < 2C,v(E). Find by induction sets F{/) C F\(F’ UF 7=1)
such that u(FU)) > l,u(F\(F’ ~UFUD)) and |A(FUVE)| < 2C2v( ), J=
1,2,...,m. Stop when F") = F\ (F'U---UFm-1) satlsﬁesClu( FM) <Cv(E).
Slnce T is restrlcted weak type (1,1) there is a subset E’ of E such that V(E’) >
IV(E) and [A(F™ E")| <2C u(F™) < 2C,v(E). Now write

m—1
AF,E)= Y AFY.E)+A(F™ E")+A(F™ E\E')
j=1

from which it follows that

Ciu(F)
A(FE)| <2CVv(E)|( 1+1 A(FE
ARE) < 26v(E) (1 +1og Gy T ) +IA(RLE)
where Fi = F (m) and Ey = E\ E'. Note that the first term in the sum above is

at most K, (Ciu(F F))/P(C,v(E))"/7" and that the identical estimate holds if the
roles of E and F are reversed. Also observe that u(Fy) < $u(F) and v(E;) <
1V(E). Continuing this process we find sets (F,,E,) with tt(F,11) < Ju(F,) and
V(Ey41) < $V(E,).Using A(F,,E,) — 0 as n — o we deduce that [A(F,E)| <

2K),(C11u(F))'/?(Cv(E)) /7. Considering the sets E; = EN{T(xr) > 0} and

1 1
E_=EN{T(xr) < 0}, obtain that [ |T(xr)|dv < 4K}, (Ciuu(F))? (Cov(E))”
for all F and E measurable sets of finite measure. Exercise 1.1.12 (a) with r = 1
yields that || T () |- < 4K, C)/7C/7 u(F)'/7.]

1.4.16. ([35]) Let 0 < pg < p1 <o and 0 < o, ,A, B < oo. Suppose that a family of
sublinear operators 7} is of restricted weak type (po, po) with constant A2** and
of restricted weak type (py,p1) with constant B28 for all k € Z. Show that there
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is a constant C = C(a., B, po, p1) such that Y,z T} is of restricted weak type (p, p)
with constant CA' 9B, where 6 = /(o + ) and

1 1-6 6
R + —.
p P P

[Hint: Estimate p({|T(x£)| > A}) by the sum Yoy, 1 ({|Tk(x£)| > cA2% k=K1 )y

Tieko L({|T(x£)| > cA2P'-%0)}) where ¢ is a suitable constant and 0 < @’ < a,
0 < B’ < B. Apply the restricted weak type (po, po) hypothesis on each term of the
first sum, the restricted weak type (p1,p1) hypothesis on each term of the second
sum, and choose k¢ to optimize the resulting expression.]

1.4.17. Let (X, 1), (¥, V) be measure spaces, 0 < p,r,q,s < o0 and 0 < B < oo. Sup-
pose that a sublinear operator 7 is defined on a dense subspace & of L”"(X), takes
values in the space of measurable functions of another measure space Y, and satisfies
T(f) > 0forall fin 2. Assume that

1T(@)]|,05 <Bll@]|

for all @ in 2. Prove that T admits a unique sublinear extension 7 on L (X) such
that

T 0 < Bl

forall f € LP"(X).

[Hint: Given f € LP"(X) find a sequence of functions ¢; in & such that ¢; — f in
LP". Use the inequality |T(¢@;) — T (k)| < |T(¢; — @x)|, to obtain that the sequence
{T(¢))}, is Cauchy in L7* and thus it has a unique limit 7'( ) which is independent
of the choice of sequence @;. Boundedness of T follows by density. To prove that T
is sublinear use that convergence in L?* implies convergence in measure and thus a
subsequence of T'(@;) converges v-a.e. to 7 (f). Also use Exercise 1.4.11.]

HISTORICAL NOTES

The modern theory of measure and integration was founded with the publication of Lebesgue’s
dissertation [214]; see also [215]. The theory of the Lebesgue integral reshaped the course of in-
tegration. The spaces L”([a,b]), | < p < oo, were first investigated by Riesz [290], who obtained
many important properties of them. A rigorous treatise of harmonic analysis on general groups
can be found in the book of Hewitt and Ross [152]. The best possible constant Cpy in Young’s
inequality |1/ + s (re) < Cparll Lo 18lsmeys 45 = £ 1, 1< p,g,r <o, was shown by
Beckner [21] to be Cpgr = (B,B,B,)", where B2 = pr(py- 1P,

Theorem 1.3.2 first appeared without proof in Marcinkiewicz’s brief note [240]. After his death
in World War II, this theorem seemed to have escaped attention until Zygmund reintroduced it
in [387]. This reference presents the more difficult off-diagonal version of the theorem, derived
by Zygmund. Stein and Weiss [347] strengthened Zygmund’s theorem by assuming that the initial
estimates are of restricted weak type whenever 1 < pg, p1,4qo,q1 < oo. The extension of this result
to the case 0 < po, p1,90,¢91 < 1 in Theorem 1.4.19 is due to the author. The critical Lemma 1.4.20
was suggested by Kalton. Improvements of these results, in particular, the appearance of the space
So(X) and the presence of the factor Mé_eM 19 in (1.4.24) appeared in Liang, Liu, and Yang [224].
Equivalence of restricted weak type (1,1) and weak type (1,1) properties for certain maximal
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multipliers was obtained by Moon [257]. The following partial converse of Theorem 1.2.13 is due
to Stepanov [351]: If a convolution operator maps L! (R") to L9*(R") for some 1 < g < oo then its
kernel must be in L?*.

The extrapolation result of Exercise 1.3.7 is due to Yano [380]; see also Zygmund [389, pp.
119-120] and the related work of Carro [56], Soria [330], and Tao [356].

The original version of Theorem 1.3.4 was proved by Riesz [293] in the context of bilinear
forms. This version is called the Riesz convexity theorem, since it says that the logarithm of the
function M(et, B) = infy | Yo Xis ajkxjyk‘ Hx||;}a ||y||;}l3 (where the infimum is taken over all

sequences {x;}_; in /% and {w i, in ¢'/By is a convex function of (o, ) in the triangle 0 <
o, <1, a+ B > 1. Riesz’s student Thorin [360] extended this triangle to the unit square 0 <
o, <1 and generalized this theorem by replacing the maximum of a bilinear form with the
maximum of the modulus of an entire function in many variables. After the end of World War I,
Thorin published his thesis [361], building the subject and giving a variety of applications. The
original proof of Thorin was rather long, but a few years later, Tamarkin and Zygmund [354] gave
a very elegant short proof using the maximum modulus principle in a more efficient way. Today,
this theorem is referred to as the Riesz—Thorin interpolation theorem.

Calderdn [42] elaborated the complex-variables proof of the Riesz—Thorin theorem into a gen-
eral method of interpolation between Banach spaces. The complex interpolation method can also be
defined for pairs of quasi-Banach spaces, although certain complications arise in this setting; how-
ever, the Riesz—Thorin theorem is true for pairs of L” spaces (with the “correct” geometric mean
constant) for all 0 < p < oo and also for Lorentz spaces. In this setting, duality cannot be used, but
a well-developed theory of analytic functions with values in quasi-Banach spaces is crucial. We
refer to the articles of Kalton [186] and [187] for details. Complex interpolation for sublinear maps
is also possible; see the article of Calderén and Zygmund [47]. Interpolation for analytic families
of operators (Theorem 1.3.7) is due to Stein [331]. The critical Lemma 1.3.8 used in the proof was
previously obtained by Hirschman [154].

The fact that nonatomic measure spaces contain subsets of all possible measures is classical.
An extension of this result to countably additive vector measures with values in finite-dimensional
Banach spaces was obtained by Lyapunov [236]; for a proof of this fact, see Diestel and Uhl [95,
p. 264]. The Aoki—Rolewicz theorem (Exercise 1.4.6) was proved independently by Aoki [7] and
Rolewicz [297]. For a proof of this fact and a variety of its uses in the context of quasi-Banach
spaces we refer to the book of Kalton, Peck, and Roberts [188].

Decreasing rearrangements of functions were introduced by Hardy and Littlewood [146]; the
authors attribute their motivation to understanding cricket averages. The L”¢ spaces were intro-
duced by Lorentz in [232] and in [233]. A general treatment of Lorentz spaces is given in the
article of Hunt [164]. The normability of the spaces LP? (which holds exactly when 1 < p < oo
and 1 < g < o) can be traced back to general principles obtained by Kolmogorov [199]. The in-
troduction of the function f**, which was used in Exercise 1.4.3, to explicitly define a norm on
the normable spaces LY is due to Calderdn [42]. These spaces appear as intermediate spaces in
the general interpolation theory of Calderdn [42] and in that of Lions and Peetre [225]. The latter
was pointed out by Peetre [275]. For a systematic study of the duals of Lorentz spaces we refer to
Cwikel [83] and Cwikel and Fefferman [84], [85]. An extension of the Marcinkiewicz interpolation
theorem to Lorentz spaces was obtained by Hunt [163]. Carro, Raposo, and Soria [57] provide a
comprehensive presentation of the theory of Lorentz spaces in the context of weighted inequali-
ties. For further topics on interpolation one may consult the books of Bennett and Sharpley [24],
Bergh and Lofstrom [25], Sadosky [309], Kislyakov and Kruglyak [194], and Chapter 5 in Stein
and Weiss [348].



Chapter 2

Maximal Functions, Fourier Transform,
and Distributions

We have already seen that the convolution of a function with a fixed density is a
smoothing operation that produces a certain average of the function. Averaging is an
important operation in analysis and naturally arises in many situations. The study of
averages of functions is better understood by the introduction of the maximal func-
tion which is defined as the largest average of a function over all balls containing a
fixed point. Maximal functions are used to obtain almost everywhere convergence
for certain integral averages and play an important role in this area, which is called
differentiation theory. Although maximal functions do not preserve qualitative in-
formation about the given functions, they maintain crucial quantitative information,
a fact of great importance in the subject of Fourier analysis.

Another important operation we study in this chapter is the Fourier transform,
the father of all oscillatory integrals. This is as fundamental to Fourier analysis as
marrow is to the human bone. It is a powerful transformation that carries a func-
tion from its spatial domain to its frequency domain. By doing this, it inverts the
function’s localization properties. If applied one more time, then magically repro-
duces the function composed with a reflection. It changes convolution to multipli-
cation, translation to modulation, and expanding dilation to shrinking dilation. Its
decay at infinity encodes information about the local smoothness of the function.
The study of the Fourier transform also motivates the launch of a thorough study
of general oscillatory integrals. We take a quick look at this topic with emphasis on
one-dimensional results.

Distributions suppy a mathematical framework for many operations that do not
exactly qualify to be called functions. These operations found their mathematical
place in the world of functionals applied to smooth functions (called test functions).
These functionals also introduced the correct interpretation for many physical ob-
jects, such as the Dirac delta function. Distributions have become an indispensable
tool in analysis and have enhanced our perspective.

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics 249, 85
DOI 10.1007/978-1-4939-1194-3_2, © Springer Science+Business Media New York 2014



86 2 Maximal Functions, Fourier Transform, and Distributions

2.1 Maximal Functions

Given a Lebesgue measurable subset A of R”, we denote by |A| its Lebesgue mea-
sure. For x € R" and r > 0, we denote by B(x, r) the open ball of radius r centered at
x. We also use the notation aB(x, 8) = B(x,ad), for a > 0, for the ball with the same
center and radius ad. Given 6 > 0 and f a locally integrable function on R”, let

1
b= [ o
sy 1= B8 ST

denote the average of |f| over the ball of radius 6 centered at x.

2.1.1 The Hardy-Littlewood Maximal Operator
Definition 2.1.1. Let f be a locally integrable function on R”. The function

1
M(f)(x) = sup Avg |f| = sup
§>0B(x,) 550 Vn0" Jly|<s

|f (x—y)ldy

is called the centered Hardy-Littlewood maximal function of f.

Obviously we have M(f) = M(|f]) > 0; thus the maximal function is a positive
operator. Information concerning cancellation of the function f is lost by passing
to M(f). We show later that M(f) pointwise controls f (i.e., M(f) > |f| almost
everywhere). Note that M maps L™ to itself, that is, we have

M= < 1]

Let us compute the Hardy-Littlewood maximal function of a specific function.

Example 2.1.2. On R, let f be the characteristic function of the interval [a,b]. For
x € (a,b), clearly M(f) = 1. For x > b, a simple calculation shows that the largest
average of f over all intervals (x — 8,x+ &) is obtained when § = x — a. Similarly,
when x < a, the largest average is obtained when & = b — x. Therefore,

(b—a)/2|x—b| whenx <a,
M(f)(x) =41 when x € (a,b),
(b—a)/2|x—aq] whenx > b.

Observe that M(f) has a jump at x = a and x = b equal to one-half that of f.

M is a sublinear operator, i.e., it satisfies M(f +g) < M(f) +M(g) and M(Af) =
|A|M(f) for all locally integrable functions f and g and all complex constants A. It
also has some interesting properties:
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If f is locally integrable, then by considering the average of f over the ball
B(x, |x| + R), which contains the ball B(0,R), we obtain

fB(o,R) |f)dy
M(f)(x) = WEETE (2.1.1)
for all x € R”, where v, is the volume of the unit ball in R”. An interesting conse-
quence of (2.1.1) is the following: suppose that f # 0 on a set of positive measure
E, then M(f) is not in L' (R"). In other words, if f is in L] .(R") and M(f) is in
L'(R"), then f = 0 a.e. To see this, integrate (2.1.1) over the ball R” to deduce that
If XBo,r)llz1 = 0 and thus f(x) = 0 for almost all x in the ball B(0,R). Since this is
valid for all R = 1,2, 3, ..., it follows that f = 0 a.e. in R".

Another remarkable locality property of M is that if M(f)(xo) = O for some xq in
R”, then f = 0 a.e. To see we take x = xo in (2.1.1) to deduce that || f X g)ll;1 =0
and as before we have that f = 0 a.e. on every ball centered at the origin, i.e., f =0
a.e.in R".

A related analogue of M(f) is its uncentered version M(f), defined as the supre-
mum of all averages of f over all open balls containing a given point.

Definition 2.1.3. The uncentered Hardy—Littlewood maximal function of f,

M(f)(x)= sup Avg|f],
6>0 B(y,0)
[y—x|<d

is defined as the supremum of the averages of |f| over all open balls B(y,d) that
contain the point x.

Clearly M(f) < M(f); in other words, M is a larger operator than M. However,
M(f) <2"M(f) and the boundedness properties of M are identical to those of M.

Example 2.1.4. On R, let f be the characteristic function of the interval I = [a,b].
For x € (a,b), clearly M(f)(x) = 1. For x > b, a calculation shows that the largest
average of f over all intervals (y — 8,y + 0) that contain x is obtained when 0 =
J(x—a) and y = J(x+a). Similarly, when x < a, the largest average is obtained

when 8 = 1(b—x) and y = 1(b+x). We conclude that

(b—a)/|x—b] whenx <a,
M(f)(x)=1q1 when x € (a,b),
(b—a)/|x—al whenx > b.

Observe that M does not have a jump at x = a and x = b and is in fact equal to the

function (1+ disﬁgf‘l) ) -

We are now ready to obtain some basic properties of maximal functions. We need
the following simple covering lemma.
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Lemma 2.1.5. Let {B;,B»,...,B} be a finite collection of open balls in R". Then
there exists a finite subcollection {Bj,,...,B;,} of pairwise disjoint balls such that

1
; |Bj,

Proof. Let us reindex the balls so that

k
>37"|JBil- (2.1.2)
i=1

|Bi| > [Ba| = -+ > |By|.

Let j; = 1. Having chosen jy, ja,..., ji, let jiy| be the least index s > j; such that
Ui B i 18 disjoint from B;. Since we have a finite number of balls, this process will
terminate, say after / steps. We have now selected pairwise disjoint balls Bj,,...,Bj,.
If some B,, was not selected, that is, m ¢ {ji,...,j;}, then B,, must intersect a
selected ball Bj, for some j, < m. Then B, has smaller size than B;, and we must
have B,, € 3B - This shows that the union of the unselected balls is contained in the
union of the triples of the selected balls. Therefore, the union of all balls is contained
in the union of the triples of the selected balls. Thus

k I i !
UBi g U 3lg]r S Z |3B]r‘ = 3” Z |B]r| )
i=1 r=1 r=1 r=1
and the required conclusion follows. U

It was noted earlier that M(f) and M(f) never map into L'. However, it is true
that these functions are in L™ when f is in L!. Operators that map L' to L' are
said to be weak type (1,1). The centered and uncentered maximal functions M and
M are of weak type (1,1) as shown in the next theorem.

Theorem 2.1.6. The uncentered and centered Hardy-Littlewood maximal operators
M and M map L'(R") to L'*(R") with constant at most 3" and also L (R") to
LP(R") for 1 < p < oo with constant at most 3"/Pp(p —1)~\. For any f € L'(R")
we also have 3
M(fy>a;|l < — dy. 213
(M=o} < [ ol (213)

Proof. We claim that the set Eq = {x € R" : M(f)(x) > a} is open. Indeed, for
X € Eq, there is an open ball B, that contains x such that the average of | f| over By
is strictly bigger than ¢. Then the uncentered maximal function of any other point
in B, is also bigger than ¢, and thus B, is contained in E. This proves that E is
open.

Let K be a compact subset of Ey. For each x € K there exists an open ball B,
containing the point x such that

/B |f(y)|dy > a|B,|. (2.1.4)
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Observe that B, C Ey for all x. By compactness there exists a finite subcover
{By,,...,By,} of K. Using Lemma 2.1.5 we find a subcollection of pairwise disjoint
balls ijl e ’B".iz such that (2.1.2) holds. Using (2.1.4) and (2.1.2) we obtain

k
K< |[UBs| <
i=1

lilel il/ 1Oy <% [ 10Ny,

since all the balls By; are disjoint and contained in E. Taking the supremum over
all compact K C Ey, and using the inner regularity of Lebesgue measure, we deduce
(2.1.3). We have now proved that M maps L' — L' with constant 3”. It is a trivial
fact that M maps L™ — L™ with constant 1. Since M is well defined and finite a.e.
on L' +L>, it is also on LP(R") for 1 < p < co. The Marcinkiewicz interpolation
theorem (Theorem 1.3.2) implies that M maps LP(R") to L”(R") for all 1 < p < eo.
Using Exercise 1.3.3, we obtain the following estimate for the operator norm of M
on L”(R"):

Sl

p3
p—1
Observe that a direct application of Theorem 1.3.2 would give the slightly worse
bound of 2(;27) 7 p3 . Finally the boundedness of M follows from that of M. [

]

(2.1.5)

LP—LP —

Remark 2.1.7. The previous proof gives a bound on the operator norm of M on
LP(R") that grows exponentially with the dimension. One may wonder whether this
bound could be improved to a better one that does not grow exponentially in the
dimension n, as n — oo, This is not possible; see Exercise 2.1.8.

Example 2.1.8. Let R > 0. Then we have

Rn 6n Rn

The lower estimate in (2.1.6), is an easy consequence of the fact that the ball
B(x,|x| + R) contains the ball B(0,R). For the upper estimate, we first consider the
case where |x| < 2R, when clearly M (xp(z))(x) < 1 < %. In the case where
|x| > 2R, if the balls B(x,r) and B(0,R) intersect, we must have that r > |x| — R. But
note that |x| —R > %(|x|+R), since |x| > 2R. We conclude that for |x| > 2R we have

|B(x,r)ﬁB(0,R)| Vv, R" R"
M(x X) Ssup—————— < sup = "
(XB(0.r)) (%) o |B(x,r)] rlx|—R Val" (%(\x|+R))

and thus the upper estimate in (2.1.6) holds since M(xp(.z)) < 2"M(Xp(0,r))- Thus
in both cases the upper estimate in (2.1.6) is valid.
Next we estimate M(M (xp(o.r)))(x)- First we write

R" -

(x| +R)" = < XB(0.R) Zf) R+2kR 7 XB(0,2%+1R)\B(0,2kR) -
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Using the upper estimate in (2.1.6) and the sublinearity of M, we obtain

R" > 1
M (HW’) (x) <M (xpo.r)(x) +1§6 WM(XB(O,Z"“R))(X)

6" R" il | 6" (2k+lR)n
< OF Ly L CC R
(R+ Ry * & 2% (o + 25 TR:
< Cylog(e+ |x|/R)
= (LR

where the last estimate follows by summing separately over k satisfying 241 < |x|/R
and 2¥*! > |x|/R. Note that the presence of the logarithm does not affect the L”
boundedness of this function when p > 1.

2.1.2 Control of Other Maximal Operators

We now study some properties of the Hardy-Littlewood maximal function. We
begin with a notational definition that we plan to use throughout this book.

Definition 2.1.9. Given a function g on R” and € > 0, we denote by g the following
function:

ge(x) =€ "g(e 'x). 2.1.7)

As observed in Example 1.2.17, if g is an integrable function with integral equal
to 1, then the family defined by (2.1.7) is an approximate identity. Therefore, convo-
lution with g¢ is an averaging operation. The Hardy—Littlewood maximal function
M(f) is obtained as the supremum of the averages of a function f with respect to
the dilates of the kernel k = v;! XB(0,1) in R"; here v, is the volume of the unit ball
B(0,1). Indeed, we have

M(f)(x) = sup

e>0 Vn€" JRr

= sup(|f] xke)(x).

>0

=m0 (3) v

€

Note that the function k = v, ! XB(0,1) has integral equal to 1, and convolving with k¢
is an averaging operation.

It turns out that the Hardy-Littlewood maximal function controls the averages of
a function with respect to any radially decreasing L' function. Recall that a function
f on R" is called radial if f(x) = f(y) whenever |x| = |y|. Note that a radial func-
tion f on R" has the form f(x) = ¢(|x|) for some function ¢ on R™. We have the
following result.
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Theorem 2.1.10. Let k > 0 be a function on [0,0) that is continuous except at a
finite number of points. Suppose that K(x) = k(|x|) is an integrable function on R"
that satisfies

K(x) > K(y), whenever |x| <|y|, (2.1.8)

i.e., k is decreasing. Then the following estimate is true:

sup(|f| < Ke) (x) < || K[ i M(f)(x) (2.1.9)

for all locally integrable functions f on R".

Proof. We prove (2.1.9) when K is radial, satisfies (2.1.8), and is compactly sup-
ported and continuous. When this case is established, select a sequence K of radial,
compactly supported, continuous functions that increase to K as j — co. This is pos-
sible, since the function k is continuous except at a finite number of points. If (2.1.9)
holds for each K, passing to the limit implies that (2.1.9) also holds for K. Next,
we observe that it suffices to prove (2.1.9) for x = 0. When this case is established,
replacing f(¢) by f(¢ 4 x) implies that (2.1.9) holds for all x.

Let us now fix a radial, continuous, and compactly supported function K with
support in the ball B(0, R), satisfying (2.1.8). Also fix an f € LloC and take x = 0. Let
e1 be the vector (1,0,0,...,0) on the unit sphere $"~!. Polar coordinates give

/|f )|Ke(—y)dy = / / F(r0)|Ke(re1)r" dO dr. (2.1.10)
Define functions

F() = [ 17Go)lde.

/F § 1dS

where d6 denotes surface measure on "' Using these functions, (2.1.10), and
integration by parts, we obtain

R
FOIKe)dy = [ F () Kelrer) dr
R" 0

— G(eR)Ke(eRe1) — G(0)Ke (0) — :R G(r)dKe (rey)

= / —K¢(rer)), (2.1.11)

where two of the integrals are of Lebesgue—Stieltjes type and we used our assump-
tions that G(0) =0, K¢ (0) < oo, G(€R) < oo, and K¢ (€Re;) = 0. Let v, be the volume
of the unit ball in R". Since

0= [ tds= [ 1)y <O,
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it follows that the expression in (2.1.11) is dominated by

M(f)(0)v, /0 " (—Ke(rer)) = M(£)(0) /0 "o Ke (rer ) dr

= M) O)|[K]|,-
Here we used integration by parts and the fact that the surface measure of the unit
sphere S"~! is equal to nv,,. See Appendix A.3. The theorem is now proved. U

Remark 2.1.11. Theorem 2.1.10 can be generalized as follows. If K is an L' function
on R” such that |K (x)| < ko(|x|) = Ko(x), where kg is a nonnegative decreasing func-
tion on [0, o0) that is continuous except at a finite number of points, then (2.1.9) holds
with ||K|| ;1 replaced by ||Ko||,1. Such a Ky is called a radial decreasing majorant of
K. This observation is formulated as the following corollary.

Corollary 2.1.12. If a function ¢ has an integrable radially decreasing majorant P,
then the estimate

Sugl(f*fpr)(X)\ <@l M) (%)
>
is valid for all locally integrable functions f on R".

Example 2.1.13. Let
Cn

Px) = ———v,
) (1+x[2)"5

where ¢, is a constant such that

P(x)dx=1.
RVl

The function P is called the Poisson kernel. We define L' dilates P, of the Poisson
kernel P by setting
P(x)=t"P(t 'x)

for t > 0. It is straightforward to verify that when n > 2,
dZ

ﬁPt'i_Zaszt =0,
=1

thatis, P;(x1,...,x,) is a harmonic function of the variables (x1,...,x,,t). Therefore,
for f € LP(R"), 1 < p < oo, the function

u(x,1) = (f*F)(x)

is harmonic in R%! and converges to f(x) in LP(dx) as t — 0, since {P; };>¢ is an
approximate identity. If we knew that f x P, converged to f a.e. as t — 0, then we
could say that u(x,t) solves the Dirichlet problem
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n
Ru+Y *u=0 on R™TL,
' ,Z’ / - (2.1.12)

u(x,0) = f(x) a.e.onR".

Solving the Dirichlet problem (2.1.12) motivates the study of the almost everywhere
convergence of the expressions f * F;.

Let us now compute the value of the constant c,. Denote by w),_; the surface area
of §"~!. Using polar coordinates, we obtain

1 dx

o e ()

/2
= Wy / (sin@)" 'do (r=tan@)
0

where we used the formula for @, in Appendix A.3 and an identity in Appendix
A.4. We conclude that |
()

ntl
2

Cp =
T

and that the Poisson kernel on R” is given by

=) 1
ntl ntl

r(
P() =
2T ()T

(2.1.13)

Theorem 2.1.10 implies that the solution of the Dirichlet problem (2.1.12) is point-
wise bounded by the Hardy-Littlewood maximal function of f.
2.1.3 Applications to Differentiation Theory

We continue this section by obtaining some applications of the boundedness of the
Hardy-Littlewood maximal function in differentiation theory.
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We now show that the weak type (1, 1) property of the Hardy-Littlewood max-
imal function implies almost everywhere convergence for a variety of families of
functions. We deduce this from the more general fact that a certain weak type prop-
erty for the supremum of a family of linear operators implies almost everywhere
convergence.

Here is our setup. Let (X, ), (¥, V) be measure spaces and let 0 < p < eo, 0 <
q < oo. Suppose that D is a dense subspace of L?(X, ). This means that for all
f € LPandall § > 0 there exists a g € D such that || f — g||z» < 0. Suppose that for
every € > 0, T; is a linear operator that maps L” (X, it) into a subspace of measurable
functions, which are defined everywhere on Y. For y € Y, define a sublinear operator

T(f)(v) = sup|Te (/) (v)] (2.1.14)

>0

and assume that 7, () is V- measurable for any f € LP (X, it). We have the following.

Theorem 2.1.14. Let 0 < p < o0, 0 < g < oo, and T and T, as previously. Suppose
that for some B > 0 and all f € LP(X) we have

17l < B (2.115)
and that for all f € D,
lim 7;(f) = 7(f) (2.116)

exists and is finite vV-a.e. (and defines a linear operator on D). Then for all func-
tions f in LP (X, 1) the limit (2.1.16) exists and is finite vV-a.e., and defines a linear
operator T on LP (X) (uniquely extending T defined on D) that satisfies

1Tl < BIA N (2117)
Sor all functions f in LP (X).
Proof. Given f in L”, we define the oscillation of f:

Oy (y) = limsuplimsup| T (f)(y) — To (f) (V)|

£—0 6—0

We would like to show that for all f € L” and & > 0,
v({yeY: Of(y)>6})=0. (2.1.18)

Once (2.1.18) is established, given f € L?(X), we obtain that O ¢(y) = 0 for v-almost
all y, which implies that T;(f)(y) is Cauchy for v-almost all y, and it therefore
converges v-a.e. to some T(f)(y) as € — 0. The operator T defined this way on
LP(X) is linear and extends T defined on D.

To approximate Oy we use density. Given 1) > 0, find a function g € D such that
|| f—gller <. Since T¢(g) — T(g) v-a.e, it follows that O, = 0 v-a.e. Using this
fact and the linearity of the T;’s, we conclude that

Of(y) < Og(y) + Op—4(y) = Of—g(v) v-ae.
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Now for any 6 > 0 we have

V{y€Y: 0s(y) >68}) <v({yeY: Or,(y) > 6})
<v({yeY:2T(f-g)y) >d})
< (2B[|f —s[,/9)"
< (2Bn/5)".

Letting 1 — 0, we deduce (2.1.18). We conclude that 7;(f) is a Cauchy sequence,
and hence it converges v-a.e. to some T(f). Since |T(f)| < |T.(f)|, the conclusion
(2.1.17) of the theorem follows easily. O

We now derive some applications. First we return to the issue of almost every-
where convergence of the expressions f * P, where P is the Poisson kernel.

Example 2.1.15. Fix | < p <~ and f € LP(R"). Let

resh) 1
P(x) =
TR
be the Poisson kernel on R” and let P (x) = £ P (£~ 'x). We deduce from the previ-
ous theorem that the family f * P, converges to f a.e. Let D be the set of all contin-
uous functions with compact support on R”. Since the family (P )¢~0 is an approx-
imate identity, Theorem 1.2.19 (2) implies that for f in D we have that [« P; — f
uniformly on compact subsets of R"” and hence pointwise everywhere. In view of
Theorem 2.1.10, the supremum of the family of linear operators T (f) = f * Pe is
controlled by the Hardy-Littlewood maximal function, and thus it maps L? to L?*
for 1 < p < oo. Theorem 2.1.14 now gives that f* P, converges to f a.e. forall f € L?.

Here is another application of Theorem 2.1.14. Exercise 2.1.10 contains other ap-
plications.

Corollary 2.1.16. (Lebesgue’s differentiation theorem) For any locally integrable
function f on R" we have

o -
lim ] /B o, TV = ) (2.1.19)

Jor almost all x in R". Consequently we have |f| < M(f) a.e. There is also an
analogous statement to (2.1.19) in which balls are replaced by cubes centered at x.
Precisely, for any locally integrable function f on R" we have

1

tim 5 [ FOV = 109 (2120

for almost all x in R".
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Proof. Since R" is the union of the balls B(0,N) for N = 1,2,3..., it suffices to
prove the required conclusion for almost all x inside a fixed ball B(0,N). Given a
locally integrable function f on R", consider the function fy = fXp(n+1)- Then
fn lies in L (R"). Let T; be the operator given with convolution with k., where
k=v,! XB(0,1) and 0 < & < 1. We know that the corresponding maximal operator T
is controlled by the centered Hardy—Littlewood maximal function M, which maps L!
to L. Tt is straightforward to verify that (2.1.19) holds for all continuous functions
f with compact support. Since this set of functions is dense in L!, and 7, maps L'
to L', Theorem 2.1.14 implies that (2.1.19) holds for all integrable functions on R”,
in particular for fy. But for 0 < & < 1 and x € B(0,N) we have fXp(¢) = fNXB(x¢)>
so it follows that

o o _
I B e = I ) PO = S0

for almost all x € R”, in particular for almost all x in B(0, N). But on this set fy = f,
so the required conclusion follows. The assertion that |f| < M(f) a.e. is an easy
consequence of (2.1.19) when the limit is replaced by a supremum.

Finally, with minor modifications, the proof can be adjusted to work for cubes in
place of balls. To prove (2.1.20), for f € L. _(R") we introduce the maximal operator

loc

1
Mcfx:sup—/ f(y)|dy.
(N =swpez [ 170
Then Exercise 2.1.3 yields that M, maps L' (R") to weak L' (R") and the preceding
proof with M, in place of M yields (2.1.20). (]

The following corollaries were inspired by Example 2.1.15.

Corollary 2.1.17. (Differentiation theorem for approximate identities) Let K be an
L' function on R" with integral 1 that has a continuous integrable radially decreas-
ing majorant. Then fxKe — f a.e.as € — 0forall f € LP(R"), 1 < p < co.

Proof. 1t follows from Example 1.2.17 that K, is an approximate identity. Theorem
1.2.19 now implies that f * K — f uniformly on compact sets when f is continuous.
Let D be the space of all continuous functions with compact support. Then f* K¢ —
fae. for f € D. It follows from Corollary 2.1.12 that T, (f) = supg~ | f * K¢| maps
L? to L™ for 1 < p < oo. Using Theorem 2.1.14, we conclude the proof of the
corollary.

O

Remark 2.1.18. Fix f € L”(R") for some 1 < p < eo. Theorem 1.2.19 implies that
f* K¢ converges to f in L” and hence some subsequence f* K, of f * K, converges
to f a.e. as n — oo, (&, — 0). Compare this result with Corollary 2.1.17, which gives
a.e. convergence for the whole family f * K, as € — 0.

Corollary 2.1.19. (Differentiation theorem for multiples of approximate identi-
ties) Let K be a function on R" that has an integrable radially decreasing majorant.
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Let a = [pn K(x)dx. Then for all f € LP(R") and 1 < p < oo, (f*K¢)(x) — af(x)
for almost all x € R" as € — 0.

Proof. Use Theorem 1.2.21 instead of Theorem 1.2.19 in the proof of Corollary
2.1.17. -

The following application of the Lebesgue differentiation theorem uses a simple
stopping-time argument. This is the sort of argument in which a selection procedure
stops when it is exhausted at a certain scale and is then repeated at the next scale. A
certain refinement of the following proposition is of fundamental importance in the
study of singular integrals given in Chapter 4.

Proposition 2.1.20. Given a nonnegative integrable function f on R" and o > 0,
there exists a collection of disjoint (possibly empty) open cubes Qj such that for
almost all x € (U; 0;)° we have f(x) < o and

o< L f)dt <2'a. (2.1.21)
|Qj | Q;

Proof. The proof provides an excellent paradigm of a stopping-time argument. Start
by decomposing R” as a union of cubes of equal size, whose interiors are disjoint,
and whose diameter is so large that |Q|~! Jo f(x)dx < a for every Q in this mesh.
This is possible since f is integrable and |Q|~! Jof(x)dx — 0 as [Q[ — . Call the
union of these cubes &j.

Divide each cube in the mesh into 2" congruent cubes by bisecting each of the
sides. Call the new collection of cubes &}. Select a cube Q in &) if

|la /Q fx)dx>a (2.1.22)

and call the set of all selected cubes .#]. Now subdivide each cube in & \ %} into
2" congruent cubes by bisecting each of the sides as before. Call this new collection
of cubes &. Repeat the same procedure and select a family of cubes . that satisfy
(2.1.22). Continue this way ad infinitum and call the cubes in (J;,_; .#, “selected.”
If O was selected, then there exists Q| in &,,_| containing Q that was not selected at
the (m — 1)th step for some m > 1. Therefore,

a1
‘Q1| 0

Now call F the closure of the complement of the union of all selected cubes. If
x € F, then there exists a sequence of cubes containing x whose diameter shrinks
down to zero such that the average of f over these cubes is less than or equal to «.
By Corollary 2.1.16, it follows that f(x) < a almost everywhere in F. This proves
the proposition. (]

Ot<|—;|/Qf(x)dx§2 fx)dx<2"c.

In the proof of Proposition 2.1.20 it was not crucial to assume that f was defined
on all R”, but only on a cube. We now give a local version of this result.
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Corollary 2.1.21. Let f > 0 be an integrable function over a cube Q in R" and let
o> ‘1@ fQ fdx. Then there exist disjoint (possibly empty) open subcubes Q; of Q

such that for almost all x € Q\ U;Qj we have f < a and (2.1.21) holds for all Q;.

Proof. The proof easily follows by a simple modification of Proposition 2.1.20 in
which R” is replaced by the fixed cube Q. To apply Corollary 2.1.16, we extend f to
be zero outside the cube Q. U

See Exercise 2.1.4 for an application of Proposition 2.1.20 involving maximal
functions.

Exercises

2.1.1. A positive Borel measure ¢ on R” is called inner regular if for any open
subset U of R" we have u(U) = sup{u(K) : K S U, K compact} and u is called
locally finite if 1 (B) < oo for all balls B.

(a) Let u be a positive inner regular locally finite measure on R” that satisfies the
following doubling condition: There exists a constant D(i) > 0 such that for all
x € R" and r > 0 we have

1(3B(x,r)) < D(u) u(B(x,r)).

For f € L\ .(R", 1) define the uncentered maximal function My (f) with respect to
by

M, (f)(x) =sup sup —————= fy)du(y).
,J( )( ) r>0 z:|z—x|<r u(B(z,r)) B(z,r) ( ) ( )
W(B(z,r))#0
Show that M, maps L'(R", i) to L'**(R",u) with constant at most D(u) and

D(u)r.

==

LP(R", 1) to itself with constant at most 2(%)
(b) Obtain as a consequence a differentiation theorem analogous to Corollary 2.1.16.
[Hint: Part (a): For f € L'(R", i) show that the set Eq = {M,(f) > o} is open.
Then use the argument of the proof of Theorem 2.1.6 and the inner regularity of ,u.]

2.1.2. On R consider the maximal function M, of Exercise 2.1.1.

(a) (W. H. Young) Prove the following covering lemma. Given a finite set .# of open
intervals in R, prove that there exist two subfamilies each consisting of pairwise dis-
joint intervals such that the union of the intervals in the original family is equal to the
union of the intervals of both subfamilies. Use this result to show that the maximal
function My, of Exercise 2.1.1 maps L' (i) — L'*(u) with constant at most 2.
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(b) ([134]) Prove that for any o-finite positive measure (1 on R, o > 0, and f €
Ll .(R, 1) we have

1 1
— du—u(A <—/ du— >aot).
g Ja—wa < g [l > o)
Use this result and part (a) to prove that for all o > 0 and all locally integrable f we
have

1 1/
M, < — du+— d
RIS > @)+ R > e < o [ Atk [l

and note that equality is obtained when ot = 1 and f(x) = |x| /7.
(c) Conclude that M, maps LP(u) to LP(p), 1 < p < eo, with bound at most the
unique positive solution A, of the equation

(p—1D)xP —pxP~'—1=0.
(d) ([136]) If u is the Lebesgue measure show that for 1 < p < oo we have

||MHLP~>L1’ =Ap,

where A, is the unique positive solution of the equation in part (c).

[Hint: Part (a): Select a subset ¢ of . with minimal cardinality such that | J;cyJ =
Uje 1. Part (d): One direction follows from part (c). Conversely, M(|x|~'/7)(1) =

1/p 1/p!
—ta ;:;’1, where  is the unique positive solution of the equation 777 ;:Tl =
y~!/P_ Conclude that M(|x|~'/P)(1) = A, and that M(|x|~'/?) = A,|x|~/P. Since

this function is not in L”, consider the family f¢ (x) = |x|~!/? min(|x| ¢, |x|¥), & > 0,

and show that M(fe)(x) > (1477 ") (1+9) 71 (4 + €)1 fe(x) for 0 < € < p']

2.1.3. Define the centered Hardy—Littlewood maximal function M, and the uncen-
tered Hardy-Littlewood maximal function M, using cubes with sides parallel to the
axes instead of balls in R”. Prove that

n n n n
1§M§2n, inzfﬁ M(7) SZ*, LnZ*S M) §277
M(f) n2 vy = M) T v onzvn ~ M(f) T v

where v, is the volume of the unit ball in R”. Conclude that M, and M, are weak
type (1,1) and they map L?(R") to LP(R") for 1 < p < oo,

2.1.4. (a) Prove the estimate:
n

R M)W > 20 < [ If0)lay

o

and conclude that M maps L? to LP* with norm at most 2-3"/? for 1 < p < oo.
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(b) Deduce that if flog™ (2|f|) is integrable over a ball B, then M(f) is integrable
over the same ball B.

(¢) ([375], [336]) Apply Proposition 2.1.20 to |f] and & > 0 and Exercise 2.1.3 to
show that with ¢, = 2" (n"/?v,)~! we have

—n

n. X C 2
e R MU0 > ena)| = % [ 1704y

(d) Suppose that f is integrable and supported in a ball B(0,p). Show that for x in
B(0,2p)\ B(0,p) we have M(f)(x) < M(f)(p?|x|~2x). Conclude that

/ oy MU (4 51) [ )

B(0,p)

and from this deduce a similar inequality for M(f).

(e) Suppose that f is integrable and supported in a ball B and that M(f) is integrable
over B. Let 29 = 2"|B|™"||f||1- Use part (b) to prove that flog™ (A, 'c,|f]) is inte-
grable over B.

[Hint: Part (a): Write f = f|fj>a + fX|f|<qa- Part (b): Show that M(fE) is inte-
grable over B, where E = {|f| > 1/2}. Part (c): Use Proposition 2.1.20. Part (d): Let
¥ = p2|x|~2x for some p < |x| < 2p. Show that for R > |x| — p, we have that

L@z [ i)l

B(x',R)

by showing that B(x,R)NB(0,p) C B(x',R). Part (e): For x ¢ 2B we have M(f)(x) <
o, hence [y M(f)(x)dx > [0 [{x € 2B: M(f)(x) > alt|do.]

2.1.5. (A. Kolmogorov) Let S be a sublinear operator that maps L! (R") to L' (R")
with norm B. Suppose that f € L' (R"). Prove that for any set A of finite Lebesgue
measure and for all 0 < g < 1 we have

/A|s<f><x>|‘1dx < (1—q) 'B2Al" || £])1),

and in particular, for the Hardy-Littlewood maximal operator,
[ M@ < (1= 3 A 1
[Him‘: Use the identity
st = [~qos | rea: S(r)w > allda

and estimate the last measure by min(|A[, 2 f]|1).]
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2.1.6. Let M;(f)(x) be the supremum of the averages of | f| over all rectangles with
sides parallel to the axes containing x. The operator M, is called the strong maximal
function.

(a) Prove that M; maps L?(R") to itself.

(b) Show that the operator norm of Mj is A7, where A, is as in Exercise 2.1.2 (c).
(c) Prove that M; is not weak type (1,1).

2.1.7. Prove that if

|@0xt, )| S AL e )78 (T ) 718

for some A,€ > 0,and @, (x) =t; -1 @t x1,... 1,7 x,), then the maximal

operator
f—= sup O|f*‘Pl1,--.7tn|

is pointwise controlled by the strong maximal function.

2.1.8. Prove that for any fixed 1 < p < o, the operator norm of M on L”(R") tends
to infinity as n — oo.

[Hint: Let fy be the characteristic function of the unit ball in R". Consider the aver-
ages |By| ™! [5 fody, where B, = B(}(|x| — |x|’l)‘j‘c—|, L(x| 4 |x|71)) for x| > 1.]
2.1.9. (a) In R? let My(f)(x) be the maximal function obtained by taking the supre-
mum of the averages of |f| over all rectangles (of arbitrary orientation) containing
x. Prove that My is not bounded on L”(R") for p < 2 and conclude that My is not
weak type (1,1).

(b) Let Moo (f)(x) be the maximal function obtained by taking the supremum of the
averages of | f| over all rectangles in R? of arbitrary orientation but fixed eccentricity
containing x. (The eccentricity of a rectangle is the ratio of its longer side to its
shorter side.) Using a covering lemma, show that My is weak type (1,1) with a
bound proportional to the square of the eccentricity.

(c) On R" define a maximal function by taking the supremum of the averages
of |f] over all products of intervals I; X - X I, containing a point x with || =
all|,...,|I,] = an)li| and ay,...,a, > 0 fixed. Show that this maximal function is
of weak type (1,1) with bound independent of the numbers ay, ..., a,.

[Hint: Part (b): Let b be the eccentricity. If two rectangles with the same eccentricity
intersect, then the smaller one is contained in the bigger one scaled 4b times. Then
use an argument similar to that in Lemma 2.1.5.]

2.1.10. (a) Let 0 < p,q < o and let X,Y be measure spaces. Suppose that 7 are
maps from L? (X) to L7(Y) satisfy |Te(f 4+ g)| < K(|Te (f)|+ |Te(g)|) forall € > 0
andall f,g € LP(X), and also limg_,o T (f) = 0 a.e. for all f in some dense subspace
D of L”(X). Assume furthermore that the maximal operator 7. (f) = supg~ ¢ | T (f)|
maps LP(X) to LY*°(Y). Prove that lim;_,0 Tz (f) = 0 a.e. for all f in LP(X).

(b) Use the result in part (a) to prove the following version of the Lebesgue differ-
entiation theorem: Let f € LP(R") for some 0 < p < o. Then for almost all x € R”
we have
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1 -
lim —/ —g(x)|Pdy=0,
A |B|.B\g(y) g(x)|"dy
B>x

where the limit is taken over all open balls B containing x and shrinking to {x}.
(c) Conclude that for any f in L}, (R") and for almost all x € R" we have

o [ f0)dy = 10,

lim
|B[—0 |B|
B>x

where the limit is taken over all open balls B containing x and shrinking to {x}.
[Hint: (a) Define an oscillation Of(y) = limsup,_ |T:(f)(y)|. For all f in LP(X)
and g € D we have that Of(y) < KO;_,4(y). Then use the argument in the proof of
Theorem 2.1.14. (b) Apply part (a) with

L0 = w0 (G e - swpra)

ZSBX

observing that 7,(f) = supg Te(f) < max(1,2¥) (1£] +M(|f\p)%). (c) Follows
from part (b) with p = 1. Note that part (b) can be proved without part (a) but using
part (c) as follows: for every rational number a there is a set E,, of Lebesgue measure
zero such that for x € R"\ E, we have limps, 5|0 ﬁ Jzle(y)—alP dy=|g(x)—al?,

since the function y — | f(y) —a|” is in L\ .(R"). By considering an enumeration of
the rationals, find a set of measure zero E such for x ¢ E the preceding limit exists
for all rationals a and by continuity for all real numbers «, in particular for a = g(x) ]

2.1.11. Let f be in L'(R). Define the right maximal function Mg (f) and the left
maximal function My (f) as follows:

M) = sup~ [ 1£(0)]dr,
>0 ¥ Jx—r
X+r

Mg(f)(x) = supl |f ()| dt.

>0 1 Jx

(a) Show that for all o > 0 and f € L'(R) we have

eeRaM(0 >l = [ 1rlar

{xER: Mp(f)(x) > a}| =

f(2)|dt.
o /{Mk(f>>a}| @

(b) Extend the definition of My (f) and Mg(f) for f € L?(R) for 1 < p < co. Show
that M;, and Mg map LP to L” with norm at most p/(p— 1) for all p with 1 < p < co.
(c) Construct examples to show that the operator norms of My and Mk on L”(R) are
exactly p/(p—1) for 1 < p < eo.
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(d) Prove that M = max (Mg, Mj).
(e) Let N = min(Mpg, M;,). Obtain the following consequence of part (a),

/M N = 1/m AP LEN(P ) dx,
(f) Use part (e) to prove that

p= DML - pllf] ;=71 <o

Lr

[Hint: (a) Write the set Eq = {Mg(f) > a} as a union of open intervals (a;,b;).
For each x in (aj,b;), let Ny = {s € R: [|f| > at(s—x)} N (x,b;]. Show that Ny is
nonempty and that supNy = b; for every x € (a;,b;). Conclude that fabjf' |f(0)|dt >
a(bj —aj), which implies that each a; is finite. For the reverse inequality use that
aj ¢ Eq. Part (d) is due to K. L. Phillips. (e) First obtain a version of the equality
with Mg in the place of M and M|, in the place of N. Then use that M(f)?+N(f)4 =
My (f)?+Mg(f) for all g. (f) Use that | f|N(f)P~" < J|f|P+ 5 N(f)?. This alter-

native proof of the result in Exercise 2.1.2(c) was suggested by J. Duoandikoetxea.}

2.1.12. A cube Q = [a12%, (a1 + 1)2%) x -+ x [@,2F, (a, +1)2K) on R” is called
dyadic if k, a1, ...,a, € Z. Observe that either two dyadic cubes are disjoint or one
contains the other. Define the dyadic maximal function

M P
dNE = [ £y

where the supremum is taken over all dyadic cubes Q containing x.
(a) Prove that M; maps L! to L' with constant at most one. Presicely, show that for
all ¢ >0 and f € L'(R") we have

n ., l
v eR": My()(0) >} < /{Md o T

(b) Conclude that M; maps L?(R") to itself with constant at most p/(p — 1).

2.1.13. Observe that the proof of Theorem 2.1.6 yields the estimate

MMU) > 1)1 <M > 11 [l

for A > 0 and f locally integrable. Use the result of Exercise 1.1.12(a) to prove that
the Hardy-Littlewood maximal operator M maps the space LP*(R") to itself for
1 <p<oo.
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2.1.14. Let K(x) = (1+]x|) "9 be defined on R”. Prove that there exists a constant
C,,.5 such that for all & > 0 we have the estimate

1
sup (1 Ke) () < Cug sup oz [ 170)]ay,

£>g £>¢) e

for all f locally integrable on R”".
[Hint: Apply only a minor modification to the proof of Theorem 2.1.10.]

2.2 The Schwartz Class and the Fourier Transform

In this section we introduce the single most important tool in harmonic analysis, the
Fourier transform. It is often the case that the Fourier transform is introduced as an
operation on L' functions. In this exposition we first define the Fourier transform
on a smaller class, the space of Schwartz functions, which turns out to be a very
natural environment. Once the basic properties of the Fourier transform are derived,
we extend its definition to other spaces of functions.

We begin with some preliminaries. Given x = (xi,...,x,) € R", we set |x| =
(xF+-- +x2)1/2. The partial derivative of a function f on R” with respect to the
Jjth variable x; is denoted by d;f while the mth partial derivative with respect to
the jth variable is denoted by 8}" f. The gradient of a function f is the vector Vf =
(A1 f,-..,0nf). A multi-index o is an ordered n-tuple of nonnegative integers. For
a multi-index & = (@i,...,a,), 0f denotes the derivative 9" --- 9% f. If a0 =
(ou,...,0,)is amulti-index, |a| = o) +- - -+ o, denotes its sizeand ot! = oy ! - - - !
denotes the product of the factorials of its entries. The number |¢t| indicates the fotal
order of differentiation of % f. The space of functions in R” all of whose derivatives
of order at most N € Z* are continuous is denoted by ¢V (R") and the space of all
infinitely differentiable functions on R" by € (R"). The space of ¢ functions with
compact support on R”" is denoted by %;°(R"). This space is nonempty; see Exercise
2.2.1(a).

For x € R" and @ = (a,...,0;) a multi-index, we set x* = x{' ---x% . Multi-
indices will be denoted by the letters a, 3,7,9,.... It is a simple fact to verify that

¥ < cpalx]1®, (2.2.1)
for some constant that depends on the dimension n and on «. In fact, ¢, o is
the maximum of the continuous function (x1,...,x,) — [x{*---x%| on the sphere
S ! = {x € R": |x| = 1}. The converse inequality in (2.2.1) fails. However, the
following substitute of the converse of (2.2.1) is of great use: for k € Z™ we have

< Cox Y AP (2.2.2)
|B|=k

for all x € R"\ {0}. To prove (2.2.2), take 1/C,  to be the minimum of the function

X Z P |
|B|=k
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on S"!; this minimum is positive since this function has no zeros on S"~ 1. A related
inequality is
(I+RDE <2 (1+Cu) Y P (2.2.3)
IBI<k

This follows from (2.2.2) for |x| > 1, while for |x| < 1 we note that the sum in (2.2.3)
is at least one since |x(00)| = 1.
We end the preliminaries by noting the validity of the one-dimensional Leibniz

rule ) .
dm m m d f dm— g
drm (f8) :kzz)<k)dtkdtmk’ (2.2.4)
for all ¥ functions f, g on R, and its multidimensional analogue
o= ¥ (5 ) () @ nere. 229
n

B<a

for f,g in €1%/(R") for some multi-index o, where the notation § < «a in (2.2.5)
means that 8 ranges over all multi-indices satisfying 0 < 8; < aj forall 1 < j <n.
We observe that identity (2.2.5) is easily deduced by repeated application of (2.2.4),
which in turn is obtained by induction.

2.2.1 The Class of Schwartz Functions

We now introduce the class of Schwartz functions on R"*. Roughly speaking, a func-
tion is Schwartz if it is smooth and all of its derivatives decay faster than the recip-
rocal of any polynomial at infinity. More precisely, we give the following definition.

Definition 2.2.1. A ¥* complex-valued function f on R” is called a Schwartz func-
tion if for every pair of multi-indices & and 3 there exists a positive constant Cy,_ B
such that

Pap(f) = sup [x*9P f(x)| = Cop < oo. (22:6)
xeR”
The quantities p, g(f) are called the Schwartz seminorms of f. The set of all
Schwartz functions on R" is denoted by .7 (R").

Example 2.2.2. The function e isin .7 (R") but e~ is not, since it fails to be
differentiable at the origin. The ¥ function g(x) = (14 |x|[*)™%, a > 0, is not in .#
since it decays only like the reciprocal of a fixed polynomial at infinity. The set of
all smooth functions with compact support, 4;°(R"), is contained in . (R").

Remark 2.2.3. If f; is in ./(R") and f; is in (R™), then the function of m + n
variables f1(x1,...,Xn) f2(Xnt1, - -« Xntm) is in (R If fisin . (R") and P(x)
is a polynomial of n variables, then P(x) f(x) is also in . (R"). If o is a multi-index
and f is in . (R"), then % f is in . (R"). Also note that
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fe SR < sup [0*(Pf(x))| < oo for all multi-indices a, 3.
xeR”

Remark 2.2.4. The following alternative characterization of Schwartz functions is
very useful. A € function f is in #(R") if and only if for all positive integers N
and all multi-indices o there exists a positive constant Cy y such that

[(0% ) (x)| < Con(1+|x]) 7N, (2.2.7)
The simple proofs are omitted. We now discuss convergence in . (R").

Definition 2.2.5. Let f;, f be in . (R") for k = 1,2,.... We say that the sequence
fi converges to f in .(R") if for all multi-indices ¢ and 8 we have

Pap(fi—f)=sup |x*(@P(f—F)x)| =0 as k- oo

xeR"

For instance, for any fixed xo € R", f(x+x0/k) — f(x) in . (R") for any f in
Z(R") as k — co.

This notion of convergence is compatible with a topology on .#(R") under which
the operations (f,g) — f+g, (a,f) — af, and f +— Jd*f are continuous for all
complex scalars a and multi-indices & (f,g € (R")). A subbasis for open sets
containing 0 in this topology is

{fes: paplf)<r},

for all &, B multi-indices and all » € Q™. Observe the following: If p, g(f) = 0, then
f=0. This means that .”(R") is a locally convex topological vector space equipped
with the family of seminorms p, g that separate points. We refer to Reed and Simon
[286] for the pertinent definitions. Since the origin in .(R") has a countable base,
this space is metrizable. In fact, the following is a metric on .#(R"):

:oo —; Pi(f—g)
4f:) ; 1+pi(f—g)’

where p; is an enumeration of all the seminorms py g, & and 8 multi-indices. One
may easily verify that . is complete with respect to the metric d. Indeed, a Cauchy
sequence {/,}; in .# would have to be Cauchy in L* and therefore it would con-
verge uniformly to some function 4. The same is true for the sequences {aﬁ hj};
and {x%h;(x)};, and the limits of these sequences can be shown to be the functions
9P h and x¥h(x), respectively. It follows that the sequence {/2;} converges to & in ..
Therefore, .7 (R") is a Fréchet space (complete metrizable locally convex space).

We note that convergence in .¥ is stronger than convergence in all L”. We have
the following.

Proposition 2.2.6. Let f, fi, k =1,2,3,..., be in S(R"). If fy — f in ./ then
fi = fin L? for all 0 < p < oo. Moreover, there exists a Cp, > 0 such that
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Haﬁf| o <Con Z Pop(f) (2.2.8)

o <[54 ]+1

for all f for which the right-hand side is finite.

Proof. Observe that when p < « we have

: . 1/p
19811l < [ [, 108 sopas [ o8 s+ o

1/p
< [wHaﬁfHZm + ( sup [x|"*! |3Bf(X)|”> /‘
[x]>1

x|>1

x|~ (D) dx}
< G (|97l + sup (11102 70D

The preceding inequality is also trivially valid when p = oo. Now set m = [ﬂ] +1

and use (2.2.2) to obtain !

sup |x["|9P f(x)| < sup Com Y K*Pf(x)| < Cum Y Pap(f)-

x|=1 [x[>1 |at|=m lot|<m

Conclusion (2.2.8) now follows immediately. This shows that convergence in .&
implies convergence in L”. t

We now show that the Schwartz class is closed under certain operations.

Proposition 2.2.7. Let f, g be in ¥ (R"). Then fg and f * g are in ¥ (R"). More-

over,
0%(fxg) =(9%f)xg=[f*(d%) (2.2.9)

for all multi-indices Q..

Proof. Fix f and g in .7 (R"). Let e; be the unit vector (0,...,1,...,0) with 1 in the
Jjth entry and zeros in all the other entries. Since

fOr+he;)—f(y)

A —(9;/)(y) =0 (2.2.10)

as h — 0, and since the expression in (2.2.10) is pointwise bounded by some constant
depending on f, the integral of the expression in (2.2.10) with respect to the measure
g(x —y)dy converges to zero as h — 0 by the Lebesgue dominated convergence
theorem. This proves (2.2.9) when o = (0,...,1,...,0). The general case follows by
repeating the previous argument and using induction.

We now show that the convolution of two functions in . is also in .. For each
N > 0 there is a constant Cy such that

Flx=y)gO)dy| <y [ (1) M1 +b) Yy, @2
R" R"
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Inserting the simple estimate
I+ =y <A+ )V A+ )N

in (2.2.11) we obtain that
()0 S Cu(1+I) ™ [ (1) dy =y (14 k).

This shows that f * g decays like (14 |x|)~ at infinity, but since N > 0 is arbitrary
it follows that f * g decays faster than the reciprocal of any polynomial.

Since d*(f xg) = (d*f) * g, replacing f by d*f in the previous argument, we
also conclude that all the derivatives of f x g decay faster than the reciprocal of any
polynomial at infinity. Using (2.2.7), we conclude that f* g is in .#. Finally, the fact
that fg is in . follows directly from Leibniz’s rule (2.2.5) and (2.2.7). [l

2.2.2 The Fourier Transform of a Schwartz Function

The Fourier transform is often introduced as an operation on L!. In that setting,
problems of convergence arise when certain manipulations of functions are per-
formed. Also, Fourier inversion requires the additional assumption that the Fourier
transform is in L!. Here we initially introduce the Fourier transform on the space
of Schwartz functions. The rapid decay of Schwartz functions at infinity allows us
to develop its fundamental properties without encountering any convergence prob-
lems. The Fourier transform is a homeomorphism of the Schwartz class and Fourier
inversion holds in it. For these reasons, this class is a natural environment for it.

For x = (x1,...,%,), ¥y = (¥1,---,yn) in R” we use the notation
n
X-y= Z)ijj.
j=1

Definition 2.2.8. Given f in .7 (R") we define
7&)= [ fxean.

We call fthe Fourier transform of f.

Example 2.2.9. If f(x) = e~ ™’ defined on R”, then F(&) = F(&). To prove this,
observe that the function

oo "
5 / eI gy sER,
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. o 2 L T
defined on the line is constant (and thus equal to ffw e ™" dr), since its derivative is

oo . +o g .
/ —27i(t + is)e U g = / ia(e*’f(’*“)Q)dt:o.

. . . . 2
Using this fact, we calculate the Fourier transform of the function t — ¢~ ™" on R
by completing the squares as follows:

o B N2 2 oo o a2 a2
/e =, thrdt:/e w(t+it) en(zr) dt = (/ e M dt e T =T ,
R R —oo

where T € R, and we used that

oo 5
/ e Tdt=r, (2.2.12)

a fact that can be found in Appendix A.l.

Remark 2.2.10. It follows from the definition of the Fourier transform that if f is in
& (R") and g is in . (R™), then

~

ety %0)8nt 15+ s X)) = f(E15--+,80)8(Ens 1y - Enm)s

where the first ~ denotes the Fourier transform on R**. In other words, the Fourier
transform preserves separation of variables. Combining this observation with the
result in Example 2.2.9, we conclude that the function f(x) = ¢~ ™” defined on R”
is equal to its Fourier transform.

We now continue with some properties of the Fourier transform. Before we do
this we introduce some notation. For a measurable function f on R”, x € R", and
a > 0 we define the translation, dilation, and reflection of f by

(P f)x) = flx—y)
(6°f)(x) = f(ax) (2.2.13)
fx) = f(=x)

Also recall the notation f, = a~"8'/“(f) introduced in Definition 2.1.9.

Proposition 2.2.11. Given f, gin (R"), y e R", b € C, a a multi-index, andt >0,
we have

() | Fll < Al
2) f+g=7+%
(3) bf=bf,
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4 F=F
5) f=f
(6) TF(E)=eEf(E),

(7) (5 F0))(E) = 2(F)(E),
8) (8'f)=1"8""F=(f).
(9)  (99f)7(8) = (2mi&)*f (&),
(10)  (9%F)(E) = ((—2min)*f(x))(&),

(11) fe.7,
(12) f+g=f8

~

(13) f/o\A(é) = f(A&), where A is an orthogonal matrix and & is a column vector.

Proof. Property (1) follows directly from Definition 2.2.8. Properties (2)—(5) are
trivial. Properties (6)—(8) require a suitable change of variables but they are omitted.
Property (9) is proved by integration by parts (which is justified by the rapid decay
of the integrands):

0%17°(&) = [ (@Ne < dx

= (1) [ ) (~2mig)%e 2 dy

~

= (2mig)* f(8).
To prove (10), let o« = ¢; = (0,...,1,...,0), where all entries are zero except for

the jth entry, which is 1. Since

o 2mix(Ethej) _ ,—2mix-E

p — (—2mixj)e 2"E 5 0 (2.2.14)

as h — 0 and the preceding function is bounded by C|x| for all 4 and &, the Lebesgue
dominated convergence theorem implies that the integral of the function in (2.2.14)
with respect to the measure f(x)dx converges to zero. This proves (10) for ¢ = e;.
For other a’s use induction. To prove (11) we use (9), (10), and (1) in the following
way:

~ 1B
5@ P9 = a0 ) - <

—~

27) 8]
Ezga [0%(P £ ()] < oo

—~
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Identity (12) follows from the following calculation:

Fra(8) = /n/,lf(x—y)g(y)efz“"x“fdydx
:/ Flx—y)g(y)e )6 o=2m0C gy
R? JR?
/ g(y)/ flx—y)e 2HD)E gy o 2m0C gy,
R" R"

~

= f()&(5),

where the application of Fubini’s theorem is justified by the absolute convergence
of the integrals. Finally, we prove (13). We have

FoA(E) = [ plaxe e ax
= [ e e ay
RV!

= |, S)e S dy

= | fy)e ™4edy
Rn
= f(A$),
where we used the change of variables y = Ax and the fact that | detA| = 1. ]

Corollary 2.2.12. The Fourier transform of a radial function is radial. Products and
convolutions of radial functions are radial.

Proof. Let &y, & in R" with |&;| = |&;|. Then for some orthogonal matrix A we have
A& = &,. Since f is radial, we have f = foA. Then

F(&) = f(A&) = foA(&) = f(&),

where we used (13) in Proposition 2.2.11 to justify the second equality. Products and
convolutions of radial functions are easily seen to be radial. O

2.2.3 The Inverse Fourier Transform and Fourier Inversion

We now define the inverse Fourier transform.

Definition 2.2.13. Given a Schwartz function f, we define

£@) = f(=x),
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for all x € R". The operation
v
f=rf
is called the inverse Fourier transform.

It is straightforward that the inverse Fourier transform shares the same properties
as the Fourier transform. One may want to list (and prove) properties for the inverse
Fourier transform analogous to those in Proposition 2.2.11.

We now investigate the relation between the Fourier transform and the inverse

Fourier transform. In the next theorem, we prove that one is the inverse operation of
the other. This property is referred to as Fourier inversion.

Theorem 2.2.14. Given f, g, and hin 7 (R"), we have
) [ fWewdr= [ Fstdx,

(2) (Fourier Inversion) ()" = f=(f")",

(3) (Parseval’s relation) /R” Fx)h(x)dx = /R" f(é)ﬁd'g’ ,

(4) (Plancherel’s identity) ||fHLz = ||fHL2 = ||vaL2’

5) [ rntdx= [ Fn@ax.

Proof. (1) follows immediately from the definition of the Fourier transform and
Fubini’s theorem. To prove (2) we use (1) with

§(8) = PG wleE

By Proposition 2.2.11 (7) and (8) and Example 2.2.9, we have that
1

2
—m(x—t)/€
= eyt

which is an approximate identity. Now (1) gives

e e bt gy = [ F(E)ePmiE 1T gg (2.2.15)
Ril RYl

Now let € — 01in (2.2.15). The left-hand side of (2.2.15) converges to f(¢) uniformly
on compact sets by Theorem 1.2.19. The right-hand side of (2.2.15) converges to
(f)V(¢) as € — 0 by the Lebesgue dominated convergence theorem. We conclude
that (f)v = f on R". Replacing f by fNand using the result just proved, we conclude
that (fV)" = f.

Note that if g = 7, then Proposition 2.2.11 (5) and identity (2) imply that g = A.
Then (3) follows from (1) by expressing /4 in terms of g. Identity (4) is a trivial
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consequence of (3). (Sometimes the polarized identity (3) is also referred to as
Plancherel’s identity.) Finally, (5) easily follows from (1) and (2) with g = h. [l

Next we have the following simple corollary of Theorem 2.2.14.

Corollary 2.2.15. The Fourier transform is a homeomorphism from ¥ (R") onto
itself.

Proof. The continuity of the Fourier transform (and its inverse) follows from Exer-
cise 2.2.2, while Fourier inversion yields that this map is bijective. (]

2.2.4 The Fourier Transform on L' + L?

We have defined the Fourier transform on .#(R"). We now extend this definition to
the space L' (R") +L*(R").
We begin by observing that the Fourier transform given in Definition 2.2.8,

~

F&) = [ flx)e ™ adx,
R}'l

makes sense as a convergent integral for functions f € L'(R"). This allows us to
extend the definition of the Fourier transform on L!. Moreover, this operator satisfies
properties (1)—(8) as well as (12) and (13) in Proposition 2.2.11, with f, g integrable.
We also define the inverse Fourier transform on L' by setting f(x) = f(—x) for
f € L'(R") and we note that analogous properties hold for it. One problem in this
generality is that when f is integrable, one may not necessarily have (j?)v = fae.
This inversion is possible when fis also integrable; see Exercise 2.2.6.

The integral defining the Fourier transform does not converge absolutely for func-
tions in LZ(R"); however, the Fourier transform has a natural definition in this space
accompanied by an elegant theory. In view of the result in Exercise 2.2.8, the Fourier
transform is an L? isometry on L' N L2, which is a dense subspace of L. By density,
there is a unique bounded extension of the Fourier transform on L?. Let us denote
this extension by .%. Then .% is also an isometry on 1% ie.,

17Oz = 141l.2

for all f € L?(R"), and any sequence of functions fy € L' (R") NL?(R") converging
to a given f in L?(R") satisfies

17w —Z(f)],2 — 0. (2.2.16)

as N — oo. In particular, the sequence of functions fy(x) = f(x) x|« <y yields that

() = (x)e 2708 dx 2.2.17)

[x|<N
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converges to .Z (f)(E) in L* as N — oo. If f is both integrable and square inte-
grable, the expressions in (2.2.17) also converge to f(é) pointwise Also, in view of
Theorem 1.1.11 and (2.2.16), there is a subsequence of fN that converges to Z(f)
pointwise a.e. Consequently, for f in L' (R") N L?(R") the expressions fand .Z(f)
coincide pointwise a.e. For this reason we often adopt the notation f to denote the
Fourier transform of functions f in L? as well.

In a similar fashion, we let .#’ be the isometry on L?(R") that extends the op-
erator f +— fY, which is an I? isometry on L' N L2; the last statement follows
by adapting the result of Exercise 2.2.8 to the inverse Fourier transform. Since
¢V (x) = ¢(—x) for @ in the Schwartz class, which is dense in L? (Exercise 2.2.5),
it follows that .%’(f)(x) = .Z (f)(—x) for all f € L? and almost all x € R". The
operators . and .%' are L*-isometries that satisfy .7’ 0.% = .7 0.%' =1d on the
Schwartz space. By density this identity also holds for L? functions and implies that
7 and .7 are injective and surjective mappings from L to itself; consequently, .7’
coincides with the inverse operator .% ~! of .% : L?> — L?, and Fourier inversion

f=F o F(f)=FoF (f) ae.

holds on L?.

Having set down the basic facts concerning the action of the Fourier transform
on L' and L?, we extend its definition on L” for 1 < p < 2. Given a function f in
LP(R"), with 1 < p < 2, we define f = fi + f>, where f; € L'(R"), f, € L*(R"),
and f = fi + f2; we may take, for instance, fi = fX|s>1 and f> = f¥|s<i- The
definition of fis independent of the choice of f; and fa, forif fi + f2 = hy + hy for
f1,/’l1 € L (Rn) and fz,hz S LZ(R") we have f1 =h —f2 € L (R”) ﬂLz(R")
Since these functions are equal on L! (R”) ﬁLZ(R”) their Fourler transforms are
also equal, and we obtain f1 h1 = hz — fz, which yields f1 + = h1 +hy. We
have the following result concerning the action of the Fourier transform on L?.

Proposition 2.2.16. (Hausdorff-Young inequality) For every function f in LP(R")
we have the estimate

171

= HfHLP

whenever 1 < p < 2.

Proof. This follows easily from Theorem 1.3.4. Interpolate between the estimates
17 llz= < [Ifl1 (Proposition 2.2.11 (1)) and |72 < ||l to obtain |, <
I f]l». We conclude that the Fourier transform is a bounded operator from L” (R")
to L” (R™) with norm at most 1 when 1 < p < 2. O

Next, we are concerned with the behavior of the Fourier transform at infinity.

Proposition 2.2.17. (Riemann-Lebesgue lemma) For a function f in L'(R") we
have that N
If(E)—0 as  |g] = e
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Proof. Consider the function x|, ; on R. A simple computation gives

. b " 6727ri.§a_6727ri<§b
X[a,b](é):/a e " édx:T7

which tends to zero as |§| — oo. Likewise, if g =[]}_, Xja; ;) o0 R", then

jl
n efzm'éju/- _ e*Zﬂi(‘;jbj

27'[1'51'

8(6) =

J=1

Givena & = (§i,...,&,) # 0, there is jjo such that |§j,| > |£|/y/n. Then

n efzn'i.ﬁjaj _efzm‘éjb/- 2\/ﬁ
SoiE <5 sup [](bj—a))
j=1 7”6] 7'E|§‘ 1<jo<n j£j,

which also tends to zero as || — oo in R".

Given a general integrable function f on R" and € > 0, there is a simple function
h, which is a finite linear combination of characteristic functions of rectangles (like
g), such that || f — h|[;1 < §. Then there is an M is such that for |§| > M we have

(&) < §. It follows that

&N < 17E) ~hE) + N < [1f =l +RE) < S+,

provided |€| > M. This implies that | f(&)| — 0 as |&] — co.

A different proof can be given by taking the function % in the preceding paragraph
to be a Schwartz function and using that Schwartz functions are dense in L' (R");
see Exercise 2.2.5 about the last assertion. |

We end this section with an example that illustrates some of the practical uses of
the Fourier transform.

Example 2.2.18. We would like to find a Schwartz function f(x1,x2,x3) on R? that
satisfies the partial differential equation

F(x) + 029303 £ (x) + A £ (x) + 03 f(x) = & I,

Taking the Fourier transform on both sides of this identity and using Proposition
2.2.11 (2), (9) and the result of Example 2.2.9, we obtain

~

(é) |:1 + (271?1'&1)2(27131'52)2(27”53)4 +4i(27£i§1)2 + (27{i§2)7:| _ e,ng'z .

Let p(&) = p(&1,&2,&3) be the polynomial inside the square brackets. We observe
that p(&) has no real zeros and we may therefore write

&) =™ pE) ! = )= (e pE) ™) ().
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In general, let

PE)= ) Co&”

|la[<N

be a polynomial in R” with constant complex coefficients Cy indexed by multi-
indices o. If P(2mi&) has no real zeros, and u is in .%(R"), then the partial differ-

ential equation
PO)f=Y, Cud®f=u
loe|<N

is solved as before to give
~ 1\ V
f=uE)perig) )"
Since P(27i&) has no real zeros and u € . (R"), the function

a(&)P(2mi&)”!

is smooth and therefore a Schwartz function. Then f is also in . (R") by Proposition
2.2.11 (11).

Exercises

2.2.1. (a) Construct a Schwartz function supported in the unit ball of R”.

(b) Construct a ¢;°(R") function equal to 1 on the annulus 1 < |x| < 2 and vanishing
off the annulus 1/2 < |x| < 4.

(c) Construct a nonnegative nonzero Schwartz function f on R" whose Fourier
transform is nonnegative and compactly supported.

[Hint: Part (a): Try the construction in dimension one first using the 4 function
n(x) = e~ /% for x > 0 and N (x) = 0 for x < 0. Part (c): Take f = |¢ * 0|2, where ¢
is odd, real-valued, and compactly supported; here ¢ (x) = ¢(—x).]

222 If fi, f € . (R") and fi — f in.(R"), then fi — fand fY — f" in . (R").

2.2.3. Find the spectrum (i.e., the set of all eigenvalues of the Fourier transform),
that is, all complex numbers A for which there exist nonzero functions f such that

f=Af.

[Hint: Apply the Fourier transform three times to the preceding identity. Consider

. 2 2 2 .
the functions xe ™", (a +bx?)e ™", and (cx +dx>)e™™" for suitable a,b,c,d to
show that all fourth roots of unity are indeed eigenvalues of the Fourier transform.]

2.2.4. Use the idea of the proof of Proposition 2.2.7 to show that if the functions f,
g defined on R” satisfy |f(x)| < A(1+ |x|)™™ and |g(x)| < B(1 +|x|)~™" for some
M N > n, then
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[(f % g)(x)| ABC(1+[x|)~F,
where L = min(N,M) and C = C(N,M) > 0.

2.2.5. Show that 6;°(R") is dense on L”(R") for 0 < p < oo but not for p = oo
[Hint: Use a smooth approximate identity when p > 1. Reduce the case p < 1 to

pzl.]

2.2.6. (a) Prove that if f € L', then fis uniformly continuous on R".
(b) Prove that for f,g € L' (R") we have

| g di= [ Feay.
R" R"

(c) Take g(x) = g e e 1 gy (b) and let € — 0 to prove that if f and fare both
in L', then (f)" = f a.e. This fact is called Fourier inversion on L'.

2.2.7. (a) Prove that if a function f in L' (R") N L*(R") is continuous at 0, then

lim [ f(x)e ™ dx = £(0).

e—0 JRn

(b) Let f € L' (R") N L=(R") be continuous at zero and satisfy f > 0. Show that f
is in L! and conclude that Fourier inversion holds at zero f(0) = || f]|,i, and also
f=(f) ae. in general.

[Hint: Part (a): Let g(x) = e~7ed in Exercise 2.2.6(b) and use Theorem 1.2.19 2).]

2.2.8. Given f in L' (R") N L?(R"), without appealing to density, prove that
||fHL2 = ||fHL2'

[Hint: Let h = f % ?, where f(x) = f(—x) and the bar indicates complex conjuga-

tion. Then i € L' (R")NL>(R"), h = |f|*> > 0, and h is continuous at zero. Exercise
2.2.7(b) yields || 717, = [[al| = h(0) = /Rn f@)f(=x)dx = £]72]

2.2.9. (a) Prove that for all 0 < € <t < o we have
‘o
/ sin(e) dé’ <4.
e &

(b) If fis an odd L! function on the line, conclude that for all # > € > 0 we have

[P ae] <ol

(c) Let g(&) be a continuous odd function that is equal to 1/1log(&) for & > 2. Show
that there does not exist an L' function whose Fourier transform is g.
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2.2.10. Let f be in L' (R). Prove that

/;:of<x—f) dx = :jf(u)du

[Hint: For x € (—e0,0) use the change of variables u =x— 1 orx= 1 (u— V4 +u?).
1 (u+va+u?)]

For x € (0,0) use the change of variables u = x — | orx =

=

2.2.11. (a) Use Exercise 2.2.10 with f(x) = e~ to obtain the subordination
identity

_ 1 /°° o2 dy

2t y—t*/y

=— e —, where ¢ > 0.
NZ3 vy

(b) Set t = 7|x| and integrate with respect to ¢~ 2%i¢"

*dx to prove that

n+1
=T L
( T (1+1EDT

This calculation gives the Fourier transform of the Poisson kernel.

2.212. Let 1 < p < oo and let p’ be its dual index.
(a) Prove that Schwartz functions f on the line satisfy the estimate

1A= < 201l 17 N

(b) Prove that all Schwartz functions f on R” satisfy the estimate

IAE-< X 1ol 10l

jo+Bl=n

where the sum is taken over all pairs of multi-indices @ and 8 whose sum has size n.
[Hint: Part (a): Write f(x)? = [, 4 f(t)?dt.]

2.2.13. The uncertainty principle says that the position and the momentum of a
particle cannot be simultaneously localized. Prove the following inequality, which
presents a quantitative version of this principle:

By = 42 g | [ wvitrorpa] | [ 16—mireraz]

n yeR”

where f is a Schwartz function on R” (or an L? function with sufficient decay at
infinity).
[Hint: Let y be in R”. Start with

1 "
1912 = 7 o T OT0 K, 533
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integrate by parts, apply the Cauchy—Schwarz inequality, Plancherel’s identity, and

the identity }.}_; |9; (&) 2 — 472|E|2|f(&)[* for all & € R™. Then replace f(x) by
f(x)eZm'xz_]

2.2.14. Let —o < @ < 5 < B < +-o0. Prove the validity of the following inequality:

B—n/2 n/2—o

lll1 ey < € 12, E e 151200 S

for some constant C = C(n, &, B) independent of g.
[Hint: First prove [|g||1 < Cl|]x|%g(x)|| 2 + ] x| g(x)||,2 and then replace g(x) by
g(Ax) for some suitable A > 0.]

2.3 The Class of Tempered Distributions

The fundamental idea of the theory of distributions is that it is generally easier to
work with linear functionals acting on spaces of “nice” functions than to work with
“bad” functions directly. The set of “nice” functions we consider is closed under
the basic operations in analysis, and these operations are extended to distributions
by duality. This wonderful interpretation has proved to be an indispensable tool that
has clarified many situations in analysis.

2.3.1 Spaces of Test Functions

We recall the space %;°(R") of all smooth functions with compact support, and
& (R") of all smooth functions on R”. We are mainly interested in the three spaces
of “nice” functions on R” that are nested as follows:

% (R") C #(R") C €= (R").

Here .7 (R") is the space of Schwartz functions introduced in Section 2.2.
Definition 2.3.1. We define convergence of sequences in these spaces. We say that
fi = fin€” <= fi,f€F” and lim sup |d%(fi — f)(x)]|=0
k—ro0 lx|<N
V o multi-indices and all N = 1,2,....
femr find = fi.f € and lim sup [x0P (fi — f)(x)| =0

*xeR"
Y o, B multi-indices.
fi—= fin€y < fi,f €%y, support(fi) C B for all k, B compact,
and lim ||0%(fi — f)|| .~ = 0 V & multi-indices.
k—yo0



120 2 Maximal Functions, Fourier Transform, and Distributions

It follows that convergence in ;;°(R") implies convergence in .~ (R"), which in
turn implies convergence in ¢ (R").

Example 2.3.2. Let ¢ be a nonzero 4;° function on R. We call such functions
smooth bumps. Define the sequence of smooth bumps ¢ (x) = @(x — k)/k. Then
¢r(x) does not converge to zero in 6;°(R), even though ¢ (and all of its deriva-
tives) converge to zero uniformly. Furthermore, we see that ¢ does not converge to
any function in . (R). Clearly ¢, — 0 in €~ (R).

The space ¢ (R") is equipped with the family of seminorms

Pan(f) = sup [(9%/)(x), 23.1)

l¥|<N

where o ranges over all multi-indices and N ranges over Z". It can be shown that
%> (R") is complete with respect to this countable family of seminorms, i.e., it is a
Fréchet space. However, it is true that €;°(R") is not complete with respect to the
topology generated by this family of seminorms.

The topology of €;;° given in Definition 2.3.1 is the inductive limit topology, and
under this topology it is complete. Indeed, letting 6;°(B(0,k)) be the space of all
smooth functions with support in B(0, k), then 6;°(R") is equal to | J;_ 6;°(B(0,k))
and each space €;°(B(0,k)) is complete with respect to the topology generated by
the family of seminorms pg y; hence so is 6;°(R"). Nevertheless, ¢;°(R") is not
metrizable. Details on the topologies of these spaces can be found in [286].

2.3.2 Spaces of Functionals on Test Functions

The dual spaces (i.e., the spaces of continuous linear functionals on the sets of test
functions) we introduced is denoted by

(45 (R") = 7'(R"),
(7 (R")) =.7"(R"),
(¢7(R")" = &'(R").

By definition of the topologies on the dual spaces, we have

=T in?2 < T,Tc2 andTi(f)— T(f) forall f €65 .
T,—»T inY <— T,Te andTi(f)— T(f)foral fe.7.
T —~T iné& < T,Te& andTi(f) = T(f)forall feE™.

The dual spaces are nested as follows:

&'(R") C.7'(R") C 7' (R").
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Definition 2.3.3. Elements of the space 2'(R") are called distributions. Elements of
' (R") are called tempered distributions. Elements of the space &’(R") are called
distributions with compact support.

Before we discuss some examples, we give alternative characterizations of distri-
butions, which are very useful from the practical point of view. The action of a
distribution u on a test function f is represented in either one of the following two
ways:

(u,f) = u(f).

Proposition 2.3.4. (a) A linear functional u on 65°(R") is a distribution if and only
if for every compact K C R", there exist C > 0 and an integer m such that

[(u.f)| <C Z 10 f|| = forall f € € with support in K. (2.3.2)

o <m

(b) A linear functional u on . (R") is a tempered distribution if and only if there
exist C > 0 and k, m integers such that

[(u, )] <C Y pap(f), forall fe SR (2.3.3)

|a\§m
IBI<k

(c) A linear functional u on €*(R") is a distribution with compact support if and
only if there exist C > 0 and N, m integers such that

(u.f)] <C Y Pan(f),  forall f€€=(R"). (2.3.4)

|Oc\§m
The seminorms py g and Pan are defined in (2.2.6) and (2.3.1), respectively.

Proof. We prove only (2.3.3), since the proofs of (2.3.2) and (2.3.4) are similar. It is
clear that (2.3.3) implies continuity of u. Conversely, it was pointed out in Section
2.2 that the family of sets {f € /(R"): py g(f) < 0}, where &, B are multi-
indices and & > 0, forms a subbasis for the topology of .. Thus if u is a continuous
functional on ., there exist integers k, m and a § > 0 such that

laf <m, |B] <k, and pap(f) <& = [(u,f)| <1. (2.3.5)
We see that (2.3.3) follows from (2.3.5) with C =1/9. U

Examples 2.3.5. We now discuss some important examples.

1. The Dirac mass at the origin &. This is defined for ¢ € € (R") by

(80, 9) = 9(0).
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We claim that & is in &”. To see this we observe that if @z — @ in € then
<60, (pk> — <50, (P>. The Dirac mass at a point a € R”" is defined similarly by

<6a7 (P> = (p(a)

2. Some functions g can be thought of as distributions via the identification g — Ly,
where Ly is the functional

Le(0)= [ o(x)g()dx.

Here are some examples: The function 1 is in .¥’ but not in &”. Compactly sup-
ported integrable functions are in &”. The function e™” is in 2’ but not in ..

3. Functions in LllOC are distributions. To see this, first observe that if g € Llloc, then
the integral

L) = [ o(g(dx

is well defined for all ¢ € 2 and satisfies |Ly(@)| < ([x |g(x)|dx)]|@]| = for all
smooth functions ¢ supported in the compact set K.

4. Functions in L?, 1 < p < oo, are tempered distributions, but may not in &” unless
they have compact support.

5. Any finite Borel measure u is a tempered distribution via the identification

Lu(9) = [ 0(x)du(x).

To see this, observe that ¢, — ¢ in .~/ implies that Ly, (¢x) — Ly (¢). Finite Borel
measures may not be distributions with compact support.

6. Every function g that satisfies |g(x)| < C(1+ |x|)¥, for some real number k, is a
tempered distribution. To see this, observe that

Lo(9)] < sup (1+ @0l [ (1 ),
x€R? R

where m > n+k and the expression sup,cg» (14 |x|)”|@(x)| is bounded by a finite
sum of Schwartz seminorms pg g ().

7. The function log|x| is a tempered distribution; indeed for any ¢ € #(R"), the
integral of ¢@(x)log|x| is bounded by a finite number of Schwartz seminorms of
@. More generally, any function that is integrable on a ball |x| < M and for some
C > 0 satisfies |g(x)| < C(1 4 |x|)¥ for |x| > M, is a tempered distribution.

8. Here is an example of a compactly supported distribution on R that is neither a
locally integrable function nor a finite Borel measure:

. g dx . dx
(u, ) = lim [ ()~ =lim (@(x) —9(0)—-
e<[x|<l e<rl<1

We have that [(u,@)| < 2¢'[|;=(—1,1)) and notice that ||@'||;=(_1,1}) is @ Pan
seminorm of ¢.
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2.3.3 The Space of Tempered Distributions

Having set down the basic definitions of distributions, we now focus our study on the
space of tempered distributions. These distributions are the most useful in harmonic
analysis. The main reason for this is that the subject is concerned with boundedness
of translation-invariant operators, and every such bounded operator from L” (R") to
L7(R") is given by convolution with a tempered distribution. This fact is shown in
Section 2.5.

Suppose that f and g are Schwartz functions and ¢ a multi-index. Integrating by
parts | o] times, we obtain

0" N@s@dr= (1) [ fx)(@%)x)dx. (2.3.6)

If we wanted to define the derivative of a tempered distribution u, we would have to
give a definition that extends the definition of the derivative of the function and that
satisfies (2.3.6) for g in ./ and f € . if the integrals in (2.3.6) are interpreted as
actions of distributions on functions. We simply use equation (2.3.6) to define the
derivative of a distribution.

Definition 2.3.6. Let u € .’ and o a multi-index. Define

(9%, f) = (—1)/*(u,0%f). (2.3.7)

If u is a function, the derivatives of u in the sense of distributions are called distri-
butional derivatives.

In view of Theorem 2.2.14, it is natural to give the following:

Definition 2.3.7. Let u € .%’. We define the Fourier transform # and the inverse
Fourier transform 1" of a tempered distribution u by

(@ fy=(uf)y and  (u’,f)=(uf"), 23.8)
for all fin.”.

Example 2.3.8. We observe that go = 1. More generally, for any multi-index o we
have

(9%8)" = (2mix)®.

To see this, observe that for all f € . we have

((9980)", f) = (98, f)
(—1)l(8, 9%F)
(-

(-

(&, ((—2mix)* f(x)")
1)/¥((=2mix)* £(x))" (0)
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= (-1 / (—2mix)* f(x) dx
JR”?
= / (2mix)* f(x)dx.
Rn

This calculation indicates that (%*&)” can be identified with the function (27ix)%.

Example 2.3.9. Recall that for xg € R", &, (f) = (8y,,f) = f(x0). Then

o~ ~

(8esh) = (89,h) =h(xo) = [ h(x)e ™ dx,  he.#(R"),
R}‘l

—~

that is, &y, can be identified with the function x — e 270 T particular, 8y = 1.

Example 2.3.10. The function ¢ is not in .7/ (R") and therefore its Fourier trans-
form is not defined as a distribution. However, the Fourier transform of any locally
integrable function with polynomial growth at infinity is defined as a tempered dis-
tribution.

Now observe that the following are true whenever f, g are in ..

g r—0)dx = [ glx+n)f(x)dx,

R”

glax)f(x)dx = (x)a " f(a"'x)dx, (2.3.9)

8
R)l R’l

gx)f(x)dx = - g(x)f(x)dx,

8
R”

for all € R" and a > 0. Recall now the definitions of 7/, ¢, and ~ given in (2.2.13).
Motivated by (2.3.9), we give the following:

Definition 2.3.11. The translation t'u, the dilation 6%u, and the reflection u of a
tempered distribution u are defined as follows:

(Tu, f) = (u, 7' f), (2.3.10)
(8%, f) = (u,a"8Y°f), (2.3.11)
(i, f) = {u,f), (23.12)

for all+ € R" and a > 0. Let A be an invertible matrix. The composition of a distri-
bution u with an invertible matrix A is the distribution

(i, ) = |det Al (u, 0" ), 2.3.13)

where A (x) = @(A1x).
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It is easy to see that the operations of translation, dilation, reflection, and differ-
entiation are continuous on tempered distributions.

Example 2.3.12. The Dirac mass at the origin & is equal to its reflection, while
040y = a"8y. Also, T°8y = O, for any x € R".

Now observe that for f, g, and & in . we have

/ (h*g)(x)f(x)dx = / 2() (o f)(x) dix. (2.3.14)
R R

Motivated by (2.3.14), we define the convolution of a function with a tempered dis-
tribution as follows:

Definition 2.3.13. Let u € .’ and h € .. Define the convolution / * u by

(hxu,f)=(uhxf), fe. (2.3.15)
Example 2.3.14. Let u = §,, and f € . Then f * , is the function x — f(x —xo),
for when h € ., we have

(f 5 81y = (85, T ) = (F ) (x0) = /R F(x—xo)h(x) dx.

It follows that convolution with & is the identity operator.
We now define the product of a function and a distribution.

Definition 2.3.15. Let u € %’ and let h be a € function that has at most polynomial
growth at infinity and the same is true for all of its derivatives. This means that for
all « it satisfies |(9%h)(x)| < Cq(1+ |x|)*@ for some Cq, ke > 0. Then define the
product hu of h and u by

(hu, f) = (u,hf), fes. (2.3.16)

Note that 2 f is in .# and thus (2.3.16) is well defined. The product of an arbitrary
€ function with a tempered distribution is not defined.

We observe that if a function g is supported in a set K, then for all f € 6" (K*)
we have

o/ (8(x)dx=0. (2.3.17)

Moreover, the support of g is the intersection of all closed sets K with the property
(2.3.17) for all f in €;°(K¢). Motivated by the preceding observation we give the
following:

Definition 2.3.16. Let u be in Z'(R"). The support of u (suppu) is the intersection
of all closed sets K with the property

9%y (R"),  suppp CR'\K = (u,9)=0. (2.3.18)
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Distributions with compact support are exactly those whose support (as defined
in the previous definition) is a compact set. To prove this assertion, we start with a
distribution u with compact support as defined in Definition 2.3.3. Then there exist
C,N,m > 0 such that (2.3.4) holds. For a ¥* function f whose support is contained
in B(0,N)¢, the expression on the right in (2.3.4) vanishes and we must therefore
have (u, f) = 0. This shows that the support of u is contained in B(0,N) hence it is
bounded, and since it is already closed (as an intersection of closed sets), it must be
compact. Conversely, if the support of u as defined in Definition 2.3.16 is a compact
set, then there exists an N > 0 such that suppu is contained in B(0,N). We take a
smooth function 7 that is equal to 1 on B(0,N) and vanishes off B(0,N + 1). Then
for h € € the support of (1 — 1) does not meet the support of u, and we must have

(u,h) = (u,hn) + (u,h(1 =) ) = (u,hn) .

The distribution u can be thought of as an element of &” by defining for f € € (R")

(u.f) = (u.fn)-

Taking m to be the integer that corresponds to the compact set K = B(0,N+1)
in (2.3.2), and using that the L™ norm of d%(fn) is controlled by a finite sum of
seminorms Po n-+1(f) with |ot| < m, we obtain the validity of (2.3.4) for f € €.

Example 2.3.17. The support of the Dirac mass at x is the set {xo}.
Along the same lines, we give the following definition:

Definition 2.3.18. We say that a distribution « in 2’ (R") coincides with the function
h on an open set 2 if

(w.f)= [ f@Rx)dx  forall fin GG (Q). (2.3.19)

When (2.3.19) occurs we often say that u agrees with & away from Q°.

This definition implies that the support of the distribution u — & is contained in
the set Q°.

Example 2.3.19. The distribution |x|? 4 Ou, + Ouy, Where ay, ap are in R”, coincides
with the function |x|?> on any open set not containing the points a; and ay. Also, the
distribution in Example 2.3.5 (8) coincides with the function x~! Xx<1 away from
the origin in the real line.

Having ended the streak of definitions regarding operations with distributions,
we now discuss properties of convolutions and Fourier transforms.
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Theorem 2.3.20. [fu € .’ and ¢ € ., then Q xu is a € function and

(@xu)(x) = (u, ")

for all x € R". Moreover, for all multi-indices o there exist constants Cy, ko > 0
such that

|0%(¢ #10) (x)] < Cor(1+ |x])*.

Furthermore, if u has compact support, then @ xu is a Schwartz function.

Proof. Let y be in Z(R"). We have
(@ruy) =(u.@xy)
—u( [, 7o)

—u (/ (@R w) dy) (2.3.20)

= A” <M,Ty(:6>1//(y)dy,

where the last step is justified by the continuity of u and by the fact that the Riemann
sums of the inner integral in (2.3.20) converge to that integral in the topology of .7,
a fact that will be justified later. This calculation identifies the function ¢ * u as

(@+u)(x) = (u,T°9). (2.3.21)

We now show that (¢ *u)(x) is a € function. Let ¢; = (0,...,1,...,0) with 1
in the jth entry and zero elsewhere. Then

—hej (o xu)(x) — su)(x ~hej (@) — TQ ~
AP (), (THEBCF) g

by the continuity of u and the fact that (77" (1*¢) — @) /h tends to 9;7°¢ =
7%(dj@) in .7 as h — 0; see Exercise 2.3.5 (a). The same calculation for higher-order
derivatives shows that @ xu € ¢ and that 97(@ xu) = (d"¢@) xu for all multi-indices
7. It follows from (2.3.3) that for some C, m, and k we have

0%(p+u)(x)| <C Y sup 7T (9% P ¢)(y)|
|y|<mYyER"
IBI<k

—C Y sup |(x+9)7(0%PG)(y)] (2.3.22)
|yl<mY€ER"
IBI<k

<Cu Y sup (1+ 3"+ [y")(@*F @) (),
|B|<kYER"

and this clearly implies that d% (¢ % u) grows at most polynomially at infinity.
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We now indicate why @ * u is Schwartz whenever u has compact support. Apply-
ing estimate (2.3.4) to the function y — ¢@(x —y) yields that

(@ =) | = @xu)(x)| <C ) sup |97 p(x—y)]

\a|§m|}"§N
for some constants C,m, N. Since for |x| > 2N we have
105 @(x—y)| < Cam(1+x—y)) ™ < Capn(1+|x)) 7,

it follows that ¢ * u decays rapidly at infinity. Since (@ xu) = (87 ) * u, the same
argument yields that all the derivatives of ¢ *u decay rapidly at infinity; hence @ *u
is a Schwartz function. Incidentally, this argument actually shows that any Schwartz
seminorm of ¢  u is controlled by a finite sum of Schwartz seminorms of ¢.

We now return to the point left open concerning the convergence of the Riemann
sums in (2.3.20) in the topology of ./ (R"). For each N = 1,2,..., consider a parti-
tion of [—N,N]" into (2N?)" cubes Q,, of side length 1/N and let y,, be the center
of each Q,,. For multi-indices «, 3, we must show that

(@)
Dy = Y KOG =)W Om)|Qul — [ ¥*OGx—y)W(r)dy

m=1

converges to zero in L”(R") as N — oo. We have

3%OPHx = Y)Y ()| O] — /Q 9P G(x—y)y(y)dy

m

-/, (v —ym) - V(P P(x—)w)(&)dy

for some & = y+ 6(y,, —y), where 6 € [0, 1]. Distributing the gradient to both fac-
tors, we see that the last integrand is at most

CM\G\@ 1 !
N (L= M2 2+ 1§DV

for M large (pick M > 2|at|), which in turn is at most

Vo M\Oﬂlﬁ ! ! M\d\@ ! !

< ,
N (1+ M2 2+]&)M2 N (14 [x)M/2 (1 +|y[)M/2

since [y| < €|+ 0|y —ym| <|&|++/n/N < |E|+1 for N > \/n. Inserting the estimate
obtained for the integrand in the last displayed integral, we obtain

+
1+ |x]) L [y)M72

x|l d ~
pal< Gt [ gt | Weehvola.
[-N.N)" ([(=N.N]")e
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But the second integral in the preceding expression is bounded by

/ C///lxl\a\ dy C///|x||zx\ / dy
(T o=y DM (T DM ™ (14 )M/ (DM
([=N.NJ")¢ ([=N.NJ")¢

Using these estimates it is now easy to see that limy_,e SUp,cgn |[Dn(x)| =0. O

Next we have the following important result regarding distributions with compact
support:

Theorem 2.3.21. If u is in &' (R"), then i is a real analytic function on R". In par-
ticular, wis a € function. Furthermore, i and all of its derivatives have polynomial
growth at infinity. Moreover, u has a holomorphic extension on C".

Proof. Given a distribution u with compact support and a polynomial p(&), the ac-
tion of u on the € function & — p(& e~ "¢ is a well defined function of x, which
we denote by u(p(-)e 2"*()). Here x is an element of R” but the same assertion
is valid if x = (x1,...,x,) € R" is replaced by z = (z1,...,2,) € C". In this case we
define the dot product of § and z via § -z =Y &zk.

It is straightforward to verify that the function of z = (z1,...,2,)

F(2) = u(e 2007

defined on C" is holomorphic, in fact entire. Indeed, the continuity and linearity of
u and the fact that (e~ 25" —1)/h — —2mi&; in €< (R") as h — 0, h € C, imply
that F' is holomorphic in every variable and its derivative with respect to z; is the
action of the distribution u to the ¥’ function

£ s (—2mikj)e PTim1 5
By induction it follows that for all multi-indices & we have
o5t 0% F = u((~2mi())%e P EA ).,

Since F is entire, its restriction on R”, i.e., F(x1,...,x,), where x; = Rezj, is real

analytic. Also, an easy calculation using (2.3.4) and Leibniz’s rule yield that the

restriction of F on R” and all of its derivatives have polynomial growth at infinity.
Now for f in . (R") we have

<ﬁ7f>=<u,f>=u< f(x)e‘z”"""’idx>= fx)ule ™ 0)ax,
RV! RV!

provided we can justify the passage of u inside the integral. The reason for this
is that the Riemann sums of the integral of f(x)e 2% over R” converge to it in
the topology of €, and thus the linear functional u can be interchanged with the
integral. We conclude that the tempered distribution i can be identified with the real
analytic function x — F(x) whose derivatives have polynomial growth at infinity.
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To justify the fact concerning the convergence of the Riemann sums, we argue as
in the proof of the previous theorem. For each N = 1,2,..., consider a partition of
[~N,N]" into (2N?)" cubes Q,, of side length 1/N and let y,, be the center of each
Q). For a multi-index « let

(2N?)"

Z Fom)( 27l'iym)ae_2my’"'£|Qm\ 7/ f(x)(fZEix)ae_zmx"g dx.
Rn

We must show that for every M > 0, supg|<y |[Dn(&)| converges to zero as N — oo
Setting g(x) = f(x)(—2mix)*, we write

(2N%)"

Z / n 727riym-§ _g( ) 72mx§ dx+/ g(x)efbtix“g' dx.

([=N,NJ?)

Using the mean value theorem, we bound the absolute value of the expression inside
the square brackets by

(Vstam)] + 2712 lg(en)) % < LD ISD Vi

for some point z,, in the cube Q,,. Since

Z / Ge(+16) <C(14M) <
(14 |zm|)¥

for [§] < M, it follows that sup|g| <y [Dn(E)| — 0 as N — oo O

Next we give a proposition that extends the properties of the Fourier transform to
tempered distributions.

Proposition 2.3.22. Given u, v in /'(R"), fj,f € 7, y € R", b a complex scalar,
o a multi-index, and a > 0, we have

(1) utv=0ia+v,

(2) bu = bii,

(3) Iffj— fins, thenﬁ—)finyandifuj%uine?’, then u; — win ",
(4) (u)"= ()

(5) (Tu) = e ™40,

(6) (&7 u)"= ',

(7) (8°u)"= (@)y =a "8 '@,

(8) (9%u)"= (2mi&)%u

(9) 0%u=((—2mix)* u)A,
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(10) (@)" =u,

(11) fru=fu,

(12) fu=f+@,

(13) (Leibniz’s rule) 7' (fu) = Y’y () (aff)(a;"*ku), mezZr,

(14) (Leibniz’s rule) 0%(fu) = Z;‘ZO RED DU (%‘) (‘;‘,:)(87’]‘)(8“’714),

(15) If u, u € LP(R") and wy — u in LP (1 < p < o), then u; — u in ' (R").
Therefore, convergence in . implies convergence in LP, which in turn implies
convergence in ' (R").

Proof. All the statements can be proved easily using duality and the corresponding
statements for Schwartz functions. ]

We continue with an application of Theorem 2.3.21.

Proposition 2.3.23. Given u € ' (R"), there exists a sequence of €;° functions fi
such that fi — u in the sense of tempered distributions; in particular, 65’ (R") is

dense in ' (R").

Proof. Fix a function in €;°(R") with @(x) = 1 in a neighborhood of the origin.
Let ¢ (x) = 8'/¥()(x) = @(x/k). It follows from Exercise 2.3.5 (b) that for u €
' (R"), @ — u in ' By Proposition 2.3.22 (3), we have that the map u —
(grur)" is continuous on .’ (R"). Now Theorem 2.3.21 gives that (¢i1)" is a €
function and therefore @;(@it)" is in 6;°(R"). As observed, @; (i)Y — (@) in
' when k is fixed and J — oo. Exercise 2.3.5 (c) gives that the diagonal sequence
(@ f)" converges to f in .7 as k — oo for all f € .. Using duality and Exercise
2.2.2, we conclude that the sequence of €;° functions @y (@it)¥ converges to u in
" as k — oo, O

Exercises

2.3.1. Show that a positive measure u that satisfies

dp(x)
e T e <+

for some k > 0, can be identified with a tempered distribution. Show that if we think
of Lebesgue measure as a tempered distribution, then it coincides with the constant
function 1 also interpreted as a tempered distribution.

23.2.Let ¢,f € Z(R"), and for € > 0 let @(x) = € "@(e 'x). Prove that
Qe *x f — b fin .7, where b is the integral of ¢@.
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2.3.3. Prove that for alla > 0, u € ./(R"), and f € . (R") we have
(8°f) % (6%u) =a "6%(f *u).

2.3.4. (a) Prove that the derivative of x[, ;| is 0, — p-

(b) Compute 9;x5(0,1) On R>.

(c) Compute the Fourier transforms of the locally integrable functions sinx and cos x.
(d) Prove that the derivative of the distribution log |x| € .#”(R) is the distribution

dx
o

u(g)=lim [ o

£—0
e<[x|

2.3.5.Let f € (R") and let ¢ € 6;° be identically equal to 1 in a neighborhood
of the origin. Define @ (x) = ¢@(x/k) as in the proof of Proposition 2.3.23.

(a) Prove that (T f — f)/h — 9, f in .7 as h — 0.

(b) Prove that @ f — fin . as k — oo. R

() Prove that the sequence @ (@ f)" converges to f in . as k — oo.

2.3.6. Use Theorem 2.3.21 to show that there does not exist a nonzero %;;° function
whose Fourier transform is also a ‘55" function.

2.3.7. Let f € LP(R") for some 1 < p < oo. Show that the sequence of functions
av(®) = [ e Ea
B(O.N)

converges to f in .7,

2.3.8. Let (cx)rezn be a sequence that satisfies |ci| < A(1+ |k|)M for all k and some
fixed M and A > 0. Let §; denote Dirac mass at the integer k. Show that the sequence
of distributions

Y, cde

k|<N

converges to some tempered distribution u in ./ (R") as N — 0. Also show that &
is the . limit of the sequence of functions

(€)=Y cre Sk,

k=N

2.3.9. A distribution in ./ (R") is called homogeneous of degree y € C if for all
A >0 and for all ¢ € .(R") we have

(u, 51(p> =A7"""(u,0).

(a) Prove that this definition agrees with the usual definition for functions.
(b) Show that &y is homogeneous of degree —n.
(¢) Prove that if u is homogeneous of degree ¥, then d%u is homogeneous of degree

v—laf.
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(d) Show that u is homogeneous of degree ¥ if and only if & is homogeneous of
degree —n —7.

2.3.10. (a) Show that the functions "™ and e~ converge to zero in .#’ and &’ as
n — oo. Conclude that multiplication of distributions is not a continuous operation
even when it is defined.

(b) What is the limit of /(1 +n[x|>)~" in Z'(R) as n — ?

2.3.11. (S. Bernstein) Let f be a bounded function on R” with fsupported in the
ball B(0,R). Prove that for all multi-indices o there exist constants Cy, , (depending
only on o and on the dimension 7) such that

19% 1l = CounR™ || ] -

[Hint: Write f = f xhy g, where h is a Schwartz function A in R" whose Fourier
transform is equal to one on the ball B(0, 1) and vanishes outside the ball B(0,2).]

2.3.12. Let ® be a ¢y’ function that is equal to 1 in B(0,1) and let O be a ¢
function that is equal to 1 in a neighborhood of infinity and equal to zero in a neigh-
borhood of the origin. Prove the following.

(a) For all u in .’ (R") we have

~ v

(cb(é/z’v)ﬁ) —u in ' (R") as N — o,
(b) For all u in ./ (R") we have

(@(5/2N)L7>v—>0 in 7' (R") as N — oo.

2.3.13. Prove that there exists a function in L? for 2 < p < oo whose distributional
Fourier transform is not a locally integrable function.
[Hint: Assume the converse. Then for all f € LP(R"), f is locally integrable and

hence the map f — £ is a well defined linear operator from L?(R") to L' (B(0,M))
for all M > 0 G.e. [|f][z1(pom) < oo for all f € LP(R")). Use the closed graph
theorem to deduce that ||J?||L1(B(0,M)) < Cu|lf |l (rny for some Cyy < . To violate
this inequality whenever p > 2, take fiy(x) = (1 +iN)~"/2e=71+N)"'* and let
N — oo, noting that fy(&) = e’”"’:‘z(”w).}

2.4 More About Distributions and the Fourier Transform

In this section we discuss further properties of distributions and Fourier transforms
and bring up certain connections that arise between harmonic analysis and partial
differential equations.
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2.4.1 Distributions Supported at a Point

We begin with the following characterization of distributions supported at a single
point.

Proposition 2.4.1. Ifu € ' (R") is supported in the singleton {xo}, then there exists
an integer k and complex numbers ay, such that

u= Z aqd%8y,.

o <k

Proof. Without loss of generality we may assume that xo = 0. By (2.3.3) we have
that for some C, m, and k,

(. f)|<C Y sup x*(@Pf)(x)]  forall fe.7(R").
|| <m*€R"
1Bl <k

We now prove that if ¢ € . satisfies
(0%9)(0)=0 for all |a| <k, 2.4.)

then (u,@) = 0. To see this, fix a ¢ satisfying (2.4.1) and let {(x) be a smooth
function on R” that is equal to 1 when |x| > 2 and equal to zero for |x| < 1. Let
£%(x) = €(x/€). Then, using (2.4.1) and the continuity of the derivatives of ¢ at the
origin, it is not hard to show that p, g(£¢¢ — @) — 0 as € — 0 for all [ot| < m and
|B| < k. Then

[(u,@)] < [(u,C5@) [+ |(u. 50— 9)| <O+C Y pop(C0—9) =0

| <m
IBl<k

as € — 0. This proves our assertion.
Now let f € (R"). Let  be a 6;;° function on R” that is equal to 1 in a neigh-
borhood of the origin. Write

flx)= n(X)( ) %x“ +h(x)) +(1—n(x)f(x), (2.4.2)

|| <k
where h(x) = O(x*"1) as |x| — 0. Then nh satisfies (2.4.1) and hence (u,nh) =0
by the claim. Also,
(u, (1=m)f)) =0

by our hypothesis. Applying u to both sides of (2.4.2), we obtain

wry=Y YO o0 = Y ag(@@8)(f).

|
o<k & la[<k

with ag = (—1)%lu(x®n (x))/a!. This proves the proposition. O
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An immediate consequence is the following result.

Corollary 2.4.2. Let u € /"(R"). If W is supported in the singleton {&}, then u is
a finite linear combination of functions (—2mi&)*e*™5%0, where a is a multi-index.
In particular, if u is supported at the origin, then u is a polynomial.

Proof. Proposition 2.4.1 gives that # is a linear combination of derivatives of Dirac
masses at &. Then Proposition 2.3.22 (8) yields the required conclusion. (]

2.4.2 The Laplacian

The Laplacian A is a partial differential operator acting on tempered distributions
on R" as follows:

Au) = Z 8]2u.
=1

Solutions of Laplace’s equation A (u) = 0 are called harmonic distributions. We have
the following:

Corollary 2.4.3. Let u € ./ (R") satisfy A(u) = 0. Then u is a polynomial.

—

Proof. Taking Fourier transforms, we obtain that A () = 0. Therefore,
—4m*|EPR=0 in.7".

This implies that i is supported at the origin, and by Corollary 2.4.2 it follows that
u must be polynomial. O

Liouville’s classical theorem that every bounded harmonic function must be con-
stant is a consequence of Corollary 2.4.3. See Exercise 2.4.2.

Next we would like to compute the fundamental solutions of Laplace’s equation
in R”. A distribution is called a fundamental solution of a partial differential operator
L if we have L(u) = &. The following result gives the fundamental solution of the
Laplacian.

Proposition 2.4.4. For n > 3 we have

2 n/2
A(xP™) =—(n—2) F(Z 7 &, (2.4.3)
while for n =2,
A(log|x]) =2ndy. 24.4)

Proof. We use Green’s identity

u v

[ Gaw-uawar= [ (v55-ugt)as
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where Q is an open set in R" with smooth boundary and dv/dv denotes the
derivative of v with respect to the outer unit normal vector. Take 2 = R"\ B(0, €),
v=|x[>"",and u = f a €5 (R") function in the previous identity. The normal deriva-
tive of f(r0) is the derivative with respect to the radial variable r. Observe that
A(|x|>7") = 0 for x # 0. We obtain

2—n
st ra=- [ (&5 g00? ae. eas)

|x|>€
6]=¢

where d0 denotes surface measure on the sphere |6 = €. Now observe two things:
first, that for some C = C(f) we have

’/ afde‘ <ce" !
jo|= Or
second, that

/‘9‘7£f(r6)81*”d0 — @,—1.£(0)

as € — 0. Letting € — 0 in (2.4.5), we obtain that

lim A(F)(x)|x]> " dx = —(n—2)@,_1 £(0),
£—0 ‘X|>€
which implies (2.4.3) in view of the formula for @,_; given in Appendix A.3.
The proof of (2.4.4) is identical. The only difference is that the quantity 9>~ /dr
in (2.4.5) is replaced by dlogr/dr. O

2.4.3 Homogeneous Distributions

The fundamental solutions of the Laplacian are locally integrable functions on R”
and also homogeneous of degree 2 —n when n > 3. Since homogeneous distribu-
tions often arise in applications, it is desirable to pursue their study. Here we do not
undertake such a study in depth, but we discuss a few important examples.

Our first goal is to understand the action of the distribution |¢|* on R" when
Rez < —n. Let us consider first the case n = 1. The tempered distribution

ve9) = [ o0y

is well-defined when Rez > —1. But we can extend the definition for all z with
Rez > —3 and z # —1 by rewriting it as

9= [ W (00) - 00) - 19 @) i+ 2100), @40
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and noting that for all ¢ € .(R) we have

//||

[ 0)] < =5 107 = + -
T 243 2+

thus w, € .#”/(R). Subtracting the Taylor polynomial of degree 3 centered at zero
from ¢(z) instead of the linear one, as in (2.4.6), allows us to extend the definition
for Rez > —5 and Rez ¢ {—1,—3}. Subtracting higher order Taylor polynomials
allows us to extend the definition of w, for all z € C except at the negative odd
integers. To be able to include the points z=—1,—3,—5,—7,... we need to multiply
w, by an entire function that has simple zeros at all the negative odd integers to be
able to eliminate the simple poles at these points. Such a function is I (”1 ) . This
discussion leads to the following definition.

Definition 2.4.5. For z € C we define a distribution u, as follows:

(uz, f) = X[ f (x) dx (2.4.7)

re ( +n )
Clearly the u,’s coincide with the locally integrable functions
R (5)

when Rez > —n and the definition makes sense only for that range of z’s. It follows
from its definition that u, is a homogeneous distribution of degree z.

We would like to extend the definition of u, for z € C. Let Re z > —n first. Fix N
to be a positive integer. Given f € . (R"), write the integral in (2.4.7) as follows:

s 3%£)(0) 4
T - I, e

2 |o|<N

ztn
2

U Z
+ ) T O [ e

The preceding expression is equal to

9“NO) ol 1

la|<N

Z Z (aaf)(o)x“\x|zdx.

gy O

ztn

+ /| %f(xﬂxwx

aaf T ! o z+n—1
+ Y S r(z ")/rzo/snfl(’”e) 1 drde |

|a| <N
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where we switched to polar coordinates in the penultimate integral. Now set

ztn

b _ T 1 0% 46 ! ‘OCH»VHLZfld
(m,2) = F(Zg")a §n—1 0 4 4

wn L 0%de

al Sn—1

T2
r(&*) laf+z+n

where o = (a,...,0Q,) is a multi-index. These coefficients are zero when at least
one ¢; is odd. Consider now the case that all the «;’s are even; then || is also even.
The function I'(35") has simple poles at the points

z=-n, z=—(n+2), z=—(n+4), and so on;
see Appendix A.5. These poles cancel exactly the poles of the function
72+ (o] +z4+n)7"

at z= —n — |ot| when || is an even integer in [0, N]. We therefore have

(. f) = /| Ll Y b a,) (—1)#(3%8,, £)

x>1 I'( 7 ) la|<N
in (aaf)(()) (2.4.8)
T2 a p
—|—/x|<11_(25”) {f(X)_|az<:Na! X }|x| dx.

Both integrals converge absolutely when Re z > —N —n — 1, since the expression
inside the curly brackets above is bounded by a constant multiple of |[x|N*!, and
the resulting function of z in (2.4.8) is a well defined analytic function in the range
Rez>-N—-n—-1.

Since N was arbitrary, (i, f) has an analytic extension to all of C. Therefore,
u; is a distribution-valued entire function of z, i.e., for all ¢ € #(R"), the function
z+ (uz, @) is entire.

Next we would like to calculate the Fourier transform of u,. We know by Exercise
2.3.9 that u; is a homogeneous distribution of degree —n — z. The choice of constant
in the definition of u#, was made to justify the following result:

Theorem 2.4.6. For all z € C we have it; = u_,_,.

Proof. The idea of the proof is straightforward. First we show that for a certain range
of z’s we have

[ 18R =) [ W oo, 249)
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for some fixed constant C(n,z) and all ¢ € .(R"). Next we pick a specific ¢ to
evaluate the constant C(n,z). Then we use analytic continuation to extend the va-
lidity of (2.4.9) for all z’s. Use polar coordinates by setting & = p@ and x = r6 in
(2.4.9). We have

1., lera6)a
- / T prine / B /S L 9(re) ( /S B e_2”i’p(9"">dq0> 46"V drdp
—/ (/ u(rp)pH ldp) (/ 0 re)dG) Ly
—C(nz)/ - </ (pr@)d@)r” dr
Cln,z / PR

where we set

o, (t) = /S nile_z”"’(e"p)dqoz Snile_z””(‘pl)dqo, (2.4.10)

Cln,2) = /0 (1) dr @2.411)

and the second equality in (2.4.10) is a consequence of rotational invariance. It re-
mains to prove that the integral in (2.4.11) converges for some range of z’s.
If n =1, then

o1(t) = /SO e 9 g = 2T 1 2T — D cos(2mr)

and the integral in (2.4.11) converges conditionally for —1 < Re z < 0.

Let us therefore assume that n > 2. Since |0, (¢)| < @,—1, the integral converges
near zero when —n < Re z. Let us study the behavior of 6,(¢) for ¢ large. Using the
formula in Appendix D.2 and the definition of Bessel functions in Appendix B.1, we
write

ds n—2
= 2 J,._
— Cnt J% (2mt),

for some constant ¢,. Since n > 2 we have when n—2 > —1/2. Then the asymptotics
for Bessel functions (Appendix B.7) apply and yield |, (¢)| < ct~*=1)/2 for t > 1.
Splitting the integral in (2.4.11) in # < 1 and ¢ > 1 and using the corresponding
estimates, we notice that it converges absolutely on [0,1] when Rez > —n and on
[1,00) whenRez+n—1—"71 < —1.

We have now proved that when —n < Re z < —

1 . _
Gn(t):a)n—2/1ezmm( 1—s2)"?

"+1 and n > 2 we have

it; =C(n,2)u—_n—
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. . 2
for some constant C(n, z) that we wish to compute. Insert the function @(x) = e~ "1
in (2.4.9). Example 2.2.9 gives that this function is equal to its Fourier transform.
Use polar coordinates to write

° o
(anl/ prn=lemar dr:C(n,z)a)n,l/ prin e gy
0 0

Change variables s = 77> and use the definition of the gamma function to obtain
that

I a

r(-3) =3
It follows that iz; = u_,,_, for the range of z’s considered.

At this point observe that for every f € . (R"), the function z +— (it; —u_,_,, f)
is entire and vanishes for —n < Rez < —n + 1/2. Therefore, it must vanish every-
where and the theorem is proved. U

C(I’Z,Z) =

Homogeneous distributions were introduced in Exercise 2.3.9. We already saw
that the Dirac mass on R” is a homogeneous distribution of degree —n. There is
another important example of a homogeneous distributions of degree —n, which we
now discuss.

Let 2 be an integrable function on the sphere §"~! with integral zero. Define a
tempered distribution W, on R” by setting

. Q(x/|x])
Wa, f) = lim ——— f(x)dx. 2.4.12
Wa.f)=lim | —pp 1@ (2:4.12)
We check that Wg is a well defined tempered distribution on R”. Indeed, since
Q(x/|x|)/|x|" has integral zero over all annuli centered at the origin, we obtain

Q(x/ ) Qx/ )

W, = |l _— —¢(0))d _— d
(Wag)| = |tim [ 2 o) —p0)as+ [ D gy

192 (x/[x])]| ( )/ 192 (x/[x])]
< ||V - ——d ——d
> H (PHL /\x\gl ] 1 X+ xseulg x| | (x)] PTG X

<Cl|Vol =Ry +C2 X loCx| [l 2]] g1y

o<1

for suitable constants C; and C; in view of (2.2.2).

One can verify that Wo € /(R") is a homogeneous distribution of degree —n
just like the Dirac mass at the origin. It is an interesting fact that all homogeneous
distributions on R” of degree —n that coincide with a smooth function away from
the origin arise in this way. We have the following result.

Proposition 2.4.7. Suppose that m is a € function on R"\ {0} that is homogeneous
of degree zero. Then there exist a scalar b and a € function  on 8"~ with integral
zero such that

m' =b&+Wq, (2.4.13)

where Wq denotes the distribution defined in (2.4.12).



2.4 More About Distributions and the Fourier Transform 141

To prove this result we need the following proposition, whose proof we postpone
until the end of this section.

Proposition 2.4.8. Suppose that u is a € function on R\ {0} that is homogeneous
of degree 7 € C. Then W is a € function on R"\ {0}.

We now prove Proposition 2.4.7 using Proposition 2.4.8.

Proof. Let a be the integral of the smooth function m over 8”~!. The function m —a
is homogeneous of degree zero and thus locally integrable on R”; hence it can be
thought of as a tempered distribution that we call & (the Fourier transform of a
tempered distribution u). Since # is a € function on R"\ {0}, Proposition 2.4.8
implies that u is also a € function on R”\ {0}. Let 2 be the restriction of u on
S"~!. Then  is a well defined > function on S"~!. Since u is a homogeneous
function of degree —n that coincides with the smooth function £ on §"~!, it follows
that u(x) = Q(x/|x|)/|x|" for x in R"\ {0}.

We show that £ has mean value zero over S"!. Pick a nonnegative, radial,
smooth, and nonzero function y on R” supported in the annulus 1 < |x| < 2. Switch-
ing to polar coordinates, we write

(u,y) = /’lMw(x)dxch,/swlﬂ(e)de,

x|
(wy) = @0) = [ &) -a)¥&)as=c, [
and thus Q has mean value zero over S"~! (since cy #0).
We can now legitimately define the distribution Wq, which coincides with the
function Q(x/|x|)/|x|" on R"\ {0}. But the distribution u also coincides with this
function on R"\ {0}. It follows that u — Wy, is supported at the origin. Proposition
2.4.1 now gives that u — Wq is a sum of derivatives of Dirac masses. Since both
distributions are homogeneous of degree —n, it follows that

(m(6)—a)d6 =0,

n

u—Wq =cdy.

Butu= (m—a)’ =m’ —ad&, and thus m" = (c+a)& + Wq. This proves the propo-
sition. 0

We now turn to the proof of Proposition 2.4.8.

Proof. Let u € .’ be homogeneous of degree z and 4 on R"\ {0}. We need to
show that i is € away from the origin. We prove that @7is €™ for all M. Fix M € Z*
and let o be any multi-index such that

lot| >n+M+Rez. (2.4.14)
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Pick a € function ¢ on R” that is equal to 1 when |x| > 2 and equal to zero for
|x| < 1. Write up = (1 — ¢)u and u.. = @u. Then

0% = 9%y + 0%Uoo and thus @:@)—i—@,

where the operations are performed in the sense of distributions. Since ug is com-
pactly supported, Theorem 2.3.21 implies that d%ug is . Now Leibniz’s rule gives
that

0% = v+ @0%u,

where v is a smooth function supported in the annulus 1 < |x| < 2. Then v is

¢ and we need to show only that m is M. The function @d%u is ac-
tually €, and by the homogeneity of d%u (Exercise 2.3.9 (c)) we obtain that
(0%u)(x) = |x|~1*+2(d%u) (x/|x|). Since @ is supported away from zero, it follows

that C
lp(x)(9%u) (x)| < (11 )@ Rez

for some Cy > 0. It is now straightforward to see that if a function satisfies (2.4.15),
then its Fourier transfo/rm\ is M whenever (2.4.14) is satisfied. See Exercise 2.4.1.
yg concludE_t\hat 0%u., is a ¥ function whenever (2.4.14) is satisfied; thus so
is d%u. Since d%u(&) = (2mi&)*u(&), we deduce smoothness for i away from the
origin. Let & # 0. Pick a neighborhood V of § such that for 17 in V we have ; # 0
for some j € {1,...,n}. Consider the multi-index (0,...,|[,...,0) with |a| in the
jth coordinate and zeros elsewhere. Then (27in;) *li(n) is a M function on V,

and thus so is #(n), since we can divide by njl.a‘. We conclude that #(&) is €™ on

R"\ {0}. Since M is arbitrary, the conclusion follows. O

(2.4.15)

We end this section with an example that illustrates the usefulness of some of the
ideas discussed in this section.

Example 2.4.9. Let 1 be a smooth radial function on R” that is equal to 1 on the
set |x| > 1/2 and vanishes on the set |x| < 1/4. Fix z € C satisfy 0 < Rez < n. Let
g= (n(x)|x|%)" be the distributional Fourier transform of 7 (x)|x| ~¢. We show that
g is a function that decays faster than ||~ at infinity (for sufficiently large positive
number N) and that

7 ()

8(8) - )

is a ¥ function on R”. This example indicates the interplay between the smooth-
ness of a function and the decay of its Fourier transform. The smoothness of the
function 1 (x)|x| % near zero has as a consequence the rapid decay of g near infinity,
while the slow decay of 7 (x)|x| % at infinity reflects the lack of smoothness of g(&)
at zero, in view of the moderate blowup |E|Re<" as || — 0.

£ (2.4.16)
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To show that g is a function we write it as g = (|x| %) + ((n(x) — 1)|x ’Z)A and
we observe that the first term is a function, since 0 < Rez < n. Using Theorem 2.4.6
we write

_mtrey)

8(8) = G

where ¢(&) = ((n(x) — 1)\x\’Z)A(§) is a € function, since it is the Fourier trans-
form of a compactly supported integrable function. This proves that g is a function
and that the difference in (2.4.16) is €.

Finally, we assert that every derivative of g satisfies [07g(&)| < Cyn|&| N for all
sufficiently large positive integers N when & # 0. Indeed, fix a multi-index y and
write d7g(&) = (|x|7*n (x)(=2mix)")"(&). It follows that

(47715 )V[075(&)] = (A" (Ix*n (x)(—2mix)")) " (&)

for all N € Z*, where A is the Laplacian in the x variable. Using Leibniz’s rule
we distribute AV to the product. If a derivative falls on 7, we obtain a compactly
supported smooth function, hence integrable. If all derivatives fall on |x| %x?, then
we obtain a term that decays like |x| RezHY1=2N at infinity, which is also integrable
if N is sufficiently large. Thus the function |&[*¥|d7g(&)| is equal to the Fourier
transform of an L! function, hence it is bounded, when 2N > n—Rez+ 17l-

"+ 0(8),

Exercises

2.4.1. Suppose that a function f satisfies the estimate

C

If()] < W»

forsomeC>0andN>n+l.Thenfis‘fM forall M € Z+ with 1 <M < N —n.

2.4.2. Use Corollary 2.4.3 to prove Liouville’s theorem that every bounded har-
monic function on R” must be a constant. Derive as a consequence the fundamental
theorem of algebra, stating that every polynomial on C must have a complex root.

2.4.3. Prove that ¢* is not in ./(R) but that e*¢’ is in .#’(R).

2.4.4. Show that the Schwartz function x — sech (7x), x € R, coincides with its
Fourier transform.

[Hint: Integrate the function €* over the rectangular contour with corners (—R,0),
(R,0), (R,ir), and (—R,i7).]

2.4.5. ([174]) Construct an uncountable family of linearly independent Schwartz
functions f, such that |f,| = |f5| and |f,| = | /3| for all f, and f}, in the family.
[Hint: Let w be a smooth nonzero function whose Fourier transform is supported
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in the interval [—1/2,1/2] and let ¢ be a real-valued smooth nonconstant periodic
function with period 1. Then take £, (x) = w(x)e'?*~% for a € R.]

2.4.6. Let P, be the Poisson kernel defined in (2.1.13). Prove that for f € L”(R"),
1 < p < oo, the function
(6,y) = (B f)(x)

is a harmonic function on R'ﬁl. Use the Fourier transform and Exercise 2.2.11 to
prove that (P, % P,,)(x) = Py, 4y, (x) for all x € R™.

2.4.7. (a) For a fixed xo € S !, show that the function

is harmonic on R"\ {xo}.
(b) For fixed xg € S"~!, prove that the family of functions 8 — v(rxp;8),0 < r <1,
defined on the sphere satisfies

linll/ees’ﬂ v(rxp;0)d6 =0
LT ST

uniformly in xo. The function v(rxp; 0) is called the Poisson kernel for the sphere.

(c) Show that
1 1
- 2/ — _ge=1
(anl( ‘X‘ ) g1 |x—9|"

for all |x| < 1.
(d) Let f be a continuous function on S"~!. Prove that the function

u(x) = — (1= [ 16 g

O sl |x— 8|

solves the Dirichlet problem A(u) =0 on |x| < 1 with boundary values u = f on
S"~1, in the sense lim,+; u(rxo) = f(xo) when |xo| = 1.
[H int: Part (c): Apply the mean value property over spheres to the harmonic function

3o (1= 2Lyl ely — &7
2.4.8. Fix n € Z" with n > 2 and a real number A, 0 < A < n. Also fix 1 € §” and

yeR™M
(a) Prove that

g e PO
L g=nl*ag=2 e

(b) Prove that

r
P
R" n—=x
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[Him‘: Part (a): See Appendix D.4 Part (b): Use the stereographic projection in
Appendix D.6.]

2.4.9. Prove the following beta integral identity:

dt B nF(” a‘)F(”;”)F(%) n—a—a
I8 ey i@ () (- aka)y P

where 0 < oy, 0p < n, a; + oy > n.
[Hint: Reduce to the case y = 0, interpret the integral as a convolution, and use
Theorem 2.4.6.]

2.4.10. (a) Prove that if a continuous integrable function f on R” (n > 2) is constant
on the spheres rS§"! for all r > 0, then so is its Fourier transform.

(b) If a continuous integrable function on R" (n > 3) is constant on all (n—2)-
dimensional spheres orthogonal to e; = (1,0, ...,0), then its Fourier transform has
the same property.

2.4.11. ([137]) Suppose that 0 < d;,d>,ds < n satisty d| + ds + d3 = 2n. Prove that
for any distinct x,y,z € R"” we have the identity

b=l ey =z =]
. n

=nt ( []——525 )=y " "y — g2 |z — xS
(I

[Him‘: Reduce matters to the case that z = 0 and y = e;. Then take the Fourier
transform in x and use that the function h(f) = |t — e, |~ |t| ™ satisfies h(E) =
h(Agzé) for all & # 0, where A is an orthogonal matrix with Aze; = &/|&].]

2.4.12. (a) Integrate the function ¢ over the contour consisting of the three pieces
Pi={x+i0: 0<x<R}, P,={Re®: 0<60<Z} andPs={re's: 0<r<R}
(with the proper orientation) to obtain the Fresnel integral identity:

fim [ dy = V271 4j).

R—e J0
(b) Use the result in part (a) to show that the Fourier transform of the function et
in R" is equal to ¢! ¥ e~ i7E P,
[Hzm‘ Part (a): On P, we have e ~R?sin(26) <e~
to 0. Part (b): Try first n = 1.]

ip .
789 and the integral over P> tends
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2.5 Convolution Operators on L” Spaces and Multipliers

In this section we study the class of operators that commute with translations. We
prove in this section that bounded operators that commute with translations must be
of convolution type. Convolution operators arise in many situations, and we would
like to know under what circumstances they are bounded between L” spaces.

2.5.1 Operators That Commute with Translations

Definition 2.5.1. A vector space X of measurable functions on R" is called closed
under translations if for f € X we have 7°(f) € X for all z€ R". Let X and Y be
vector spaces of measurable functions on R” that are closed under translations. Let
also T be an operator from X to Y. We say that T commutes with translations or is
translation-invariant if

T(7(f)) =(T(f))
forall f € X and all y € R".

It is straightforward to see that convolution operators commute with translations,
ie., (f*g) = 7(f) * g whenever the convolution is defined. One of the goals of
this section is to prove the converse: every bounded linear operator that commutes
with translations is of convolution type. We have the following:

Theorem 2.5.2. Let 1 < p,q < oo and suppose T is a bounded linear operator from
LP(R") to L1(R") that commutes with translations. Then there exists a unique tem-
pered distribution w such that

T(f)=fxw ae. forall f € &

A very important point to make is that if p = oo, the restriction of 7 on .¥ does
not uniquely determine 7 on the entire L™; see Example 2.5.9 and the comments
preceding it about this. The theorem is a consequence of the following two results:

Lemma 2.5.3. Under the hypotheses of Theorem 2.5.2 and for f € . (R"), the dis-
tributional derivatives of T (f) are L1 functions that satisfy

(T (f)) =T(d%f),  for all multi-indices o. (2.5.1)

Lemma 2.5.4. Let 1 < g < oo and let h € LY(R"). If all distributional derivatives
d%h are also in LY, then h is almost everywhere equal to a continuous function H
satisfying

H(0)| <Crg Y, [|0%]|,,- (2.5.2)

lot| <n+1
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Proof. Assuming Lemmas 2.5.3 and 2.5.4, we prove Theorem 2.5.2.
Given f € .(R"), by Lemmas 2.5.3 and 2.5.4, there is a continuous function H
such that 7(f) = H a.e. and such that

HOI<Cug Y, (9T,

la|<n+1

holds. Define a linear functional u on . by setting

(u, f) = H(0).

This functional is well-defined, for, if there is another continuous function G such
that G = T(f) a.e., then G = H a.e. and since both functions are continuous, it
follows that H = G everywhere and thus H(0) = G(0).

By (2.5.1), (2.5.2), and the boundedness of 7', we have

()< Cg X 19T,

|o|<n+1

<G Y TN

lot| <n+1

SC’MIHT|LP—>L‘7 Z HaafHLP

|oo|<n+1

< C;’JIHTHLPHL‘I Z Pra(f),
yI<[t ]+
lot| <n+1

where the last estimate uses (2.2.8). This implies that u is in .%#’. We now set w = i
and we claim that for all x € R” we have

(u, 7% f) = H(x). (2.5.3)

Assuming (2.5.3) we prove that T(f) = f*w for f € .. To see this, by Theorem
2.3.20 and by the translation invariance of T, for a given f € .7 (R") we have

(frw)(x) = (@7 f ) = (u, 0 f) = H(x) = T(f) (%),

where the last equality holds for almost all x, by the definition of H. Thus f*w =
T(f) a.e., as claimed. The uniqueness of w follows from the simple observation that
if fxw=fxw forall f e .7(R"),thenw=w'.

We now turn to the proof of (2.5.3). Given f € .(R") and x € R" and let H,
be the continuous function such that H, = T(77*f). We show that H,(0) = H(x).
Indeed, we have

(T N)) =1 T)G)

Hy(y)

T(f)(x+y)=H(x+y)=1"H(y),
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where the equality 7'(f)(x+y) = H(x+y) holds a.e. in y. Thus the continuous
functions H, and T7*H are equal a.e. and thus they must be everywhere equal,
in particular, when y = 0. This proves that H,(0) = H(x), which is a restatement
of (2.5.3). O

‘We now return to Lemmas 2.5.3 and 2.5.4. We begin with Lemma 2.5.3.

Proof. Consider first the multi-index a = (0,...,1,...,0), where 1 is in the jth
entry and O is elsewhere. Let ¢; = (0,...,1,...,0), where 1 is in the jth entry and
zero elsewhere. We have

y+he;)— thej —
T D= gy [ g (L ) yay - 25
since both of these expressions are equal to

/n o0y) T(HO- he?}/l') —T(HO)

R”

dy
and T commutes with translations. We will let # — O in both sides of (2.5.4). We

write N '
00H) =00 _ ("5, ey

from which it follows that for || < 1/2 we have

<P(y+hej)—¢(y)‘</l Cudt </1 Cudt — _  Cy
h o (I+ly+hte; )™ = Jo (1+y|=3M ~ (Iy[+ D"

The integrand on the left-hand side of (2.5.4) is bounded by the integrable function
IT(f)(»)|Chy(ly| +1)~™ and converges to T (f)(y) d;¢(y) as h — 0. The Lebesgue
dominated convergence theorem yields that the integral on the left-hand side of
(2.5.4) converges to

T(f)»)dje(y)dy. (2.5.5)

Rn
Moreover, for a Schwartz function f we have

he —
PRI _ 1), ey,

which converges to d;f(y) pointwise as 4 — 0 and is bounded by C}, (1 + |y|) ™ for
|h| < 1/2 by an argument similar to the preceding one for ¢ in place of f. Thus

i (f)— f

- —d;f inLPash—0, (2.5.6)
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by the Lebesgue dominated convergence theorem. The boundedness of T from L”
to LY yields that

hej _
T (T(Z)f> —T(9;f) inLfash— 0, (2.5.7)

Since ¢ € L7, by Holder’s inequality, the right-hand side of (2.5.4) converges to

[, 90T @) dy

as h — 0. This limit is equal to (2.5.5) and the required conclusion follows for ¢ =
(0,...,0,1,0,...,0). The general case follows by induction on |c|. O

We now prove Lemma 2.5.4.

Proof. Let R > 1. Fix a 6" function ¢ that is equal to 1 in the ball |x| < R and
equal to zero when |x| > 2R. Since & is in LI(R"), it follows that @gh is in L' (R").

We show that (pRh is also in L'. We begin with the inequality

1< C(1+x])~ D Y |(—2mix)?], (2.5.8)

lot|<n+1
which is just a restatement of (2.2.3). Now multiply (2.5.8) by |6R\h(x)| to obtain

orh(x)| < Cu(1+]x)"*D) Y |(—27ix) * orh(x)]

|a|<n+1
Co(1+ )~ Y [[(0%(@rh)"||,-
[ot|<n+1
< Ga(L+ )™)Y [[9%(grh)||
[or|<n+1
< Cu(2"R) T (14 [x) "D Y (0% (grh)|
|o|<n+1
<CnR(1+|xD (n1) Z ||8“h||Lq,
lot| <n+1

where we used Leibniz’s rule (Proposition 2.3.22 (14)) and the fact that all deriva-
tives of g are pointwise bounded by constants depending on R.
Integrate the previously displayed inequality with respect to x to obtain

@] < Con X (3], <o 259

|o|<n+1

Therefore, Fourier inversion holds for ¢gh (see Exercise 2.2.6). This implies that
@Qrh is equal a.e. to a continuous function, namely the inverse Fourier transform of
its Fourier transform. Since @g = 1 on the ball B(0,R), we conclude that 4 is a.e.
equal to a continuous function in this ball. Since R > 0 was arbitrary, it follows that
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his a.e. equal to a continuous function on R”, which we denote by H. Finally, (2.5.2)
is a direct consequence of (2.5.9) with R = 1, since |H(0)| < ||@1A]| 1. O

2.5.2 The Transpose and the Adjoint of a Linear Operator

We briefly discuss the notions of the transpose and the adjoint of a linear operator.
We first recall real and complex inner products. For f,g measurable functions on
R”, we define the complex inner product

(rlg)= [, F@)sCdx.

whenever the integral converges absolutely. We reserve the notation
(fg)= [ F@gtodx

for the real inner product on L*>(R") and also for the action of a distribution f on
a test function g. (This notation also makes sense when a distribution f coincides
with a function.)

Let 1 < p,g < eo. For a bounded linear operator T from L” (X, ) to L(Y,v) we
denote by T* its adjoint operator defined by

<T(f>|g>=/YT(f)§dv=/XfTT@du=<f|T*(g)> (2.5.10)

for fin L”(X, ) and g in L4 (Y, V) (or in a dense subspace of it). We also define the
transpose of T as the unique operator 7" that satisfies

(T(f).) = [ T gdr= [ FT(9)dx= (£.T'(9))

forall f € LP(X,u) and all g € L7 (Y, V).
If T is an integral operator of the form

TN = [ K)70)du0),

then 7* and T’ are also integral operators with kernels K*(x,y) = K(y,x) and
K'(x,y) = K(y,x), respectively. If T has the form T(f) = (fm)", that is, it is given
by multiplication on the Fourier transform by a (complex-valued) function m(&),

then T* is given by multiplication on the Fourier transform by the function m(§).
Indeed for f,g in . (R") we have
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-

= f)gdx
= [ T(f) ga¢
:/ fmgde
S AC

A similar argument (using Theorem 2.2.14 (5)) gives that if T is given by multipli-
cation on the Fourier transform by the function m(&), then T is given by multipli-
cation on the Fourier transform by the function m(—&). Since the complex-valued
functions m(&) and m(—&) may be different, the operators 7* and 7' may be dif-
ferent in general. Also, if m(&) is real-valued, then T is self-adjoint (i.e., T = T*)
while if m(&) is even, then T is self-transpose (ie., T =T").

2.5.3 The Spaces .#"1(R")

Definition 2.5.5. Given 1 < p, g < oo, we denote by .#74(R") the set of all bounded
linear operators from L? (R") to L?(R") that commute with translations.

By Theorem 2.5.2 we have that every T in .#?4 is given by convolution with a
tempered distribution. We introduce a norm on .#7+¢ by setting

HTH///M = ||THLP%L‘17

that is, the norm of T in .#7 is the operator norm of T as an operator from L to
L9, Tt is a known fact that under this norm, .#?+4 is a complete normed space (i.e.,
a Banach space).

Next we show that when p > g the set .#7*9 consists of only one element, namely
the zero operator T = 0. This means that the only interesting classes of operators
arise when p < q.

Theorem 2.5.6. .79 = {0} whenever 1 < q < p < oo,

Proof. Let f be a nonzero %;;” function and let & € R". We have

1T () + T, = 1T )+ Pl < NN oo 17" )

Now let || — oo and use Exercise 2.5.1. We conclude that

1 1
24 ||T(f)HL‘1 S ||THL1”—>L‘12]7 HfHLP’

which is impossible if ¢ < p unless T is the zero operator. O
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Next we have a theorem concerning the duals of the spaces .Z”4(R").

Theorem 2.5.7. Let | < p < g<ooand T € MP4(R"). Then T can be defined on
L4 (R™), coinciding with its previous definition on the subspace LP(R") N LY (R") of
LP(R"), so that it maps LY (R") to L” (R") with norm

= |||

2.5.11)

{ ’ r | | 14 —Lv' LP—1d"

In other words, we have the following isometric identification of spaces:
v (R") = .#"9(R").

Proof. We first observe thatif T : L? — L4 is given by convolution with u € ., then
! / =

the adjoint operator 7* : LY — L is given by convolution with # € .%’. Indeed, for

f,g € 7 (R") we have

[T (g)dx = | T(f)gdx
RYI Ril

= [ (f*u)gdx
l.{ll

=/ f(g*u)dx
JR7

:/ fgxudx.
Rn

Therefore 7* is given by convolution with # when applied to Schwartz functions.
Next we observe the validity of the identity

fri=(f *u), fes. (2.5.12)

It remains to show that 7' (convolution with «) and 7* (convolution with ﬁ) map LY
to L? with the same norm. But this easily follows from (2.5.12), which implies that

||f*§”LP/ H?*MHLI’/

WAl 17l

for all nonzero Schwartz functions f. We conclude that

||T*HL¢1/~>LP/ = ||T||L‘1l~)[ﬁ,
and therefore
HTHU’HM = ”T”Lq’_)Lp"
This establishes the claimed assertion. O

We next focus attention on the spaces .Z”4(R") whenever p = g. These spaces
are of particular interest, since they include the singular integral operators, which
we study in Chapter 5.
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2.5.4 Characterizations of .#"' (R") and .#**(R")

It would be desirable to have a characterization of the spaces .Z7' in terms of
properties of the convolving distribution. Unfortunately, this is unknown at present
(it is not clear whether it is possible) except for certain cases.

Theorem 2.5.8. An operator T is in .4 ' (R") if and only if it is given by convo-
lution with a finite Borel (complex-valued) measure. In this case, the norm of the
operator is equal to the total variation of the measure.

Proof. If T is given with convolution with a finite Borel measure y, then clearly T
maps L' toitself and ||T||,1_,;1 < ||1t]|.z» where ||it]|z is the total variation of .
Conversely, let T be an operator bounded from L! to L' that commutes with trans-
lations. By Theorem 2.5.2, T is given by convolution with a tempered distribution
u. Let
2
felx) = g mW/El

Since the functions f. are uniformly bounded in L', it follows from the boundedness
of T that fe * u are also uniformly bounded in L'. Since L' is naturally embedded in
the space of finite Borel measures, which is the dual of the space %o of continuous
functions that tend to zero at infinity, we obtain that the family f¢ * u lies in a fixed
multiple of the unit ball of &;,. By the Banach—Alaoglu theorem, this is a weak™
compact set. Therefore, some subsequence of f; * u converges in the weak™ topology
to a measure (1. That is, for some & — 0 and all g € %p0(R") we have

lim g
k—oo JR?

0o+ dx = [ glo)dua(v). (2.5.13)
We claim that u = u. To see this, fix g € .%. Equation (2.5.13) implies that
(, fo %8) = (u, fo, * g) = (W,8)
as k — oo. Exercise 2.3.2 gives that g * f, converges to g in .. Therefore,
<u,f€k *g> — <u,g>.

It follows from (2.5.13) that (u,g) = (U, g), and since g was arbitrary, u = .
Next, (2.5.13) implies that for all g € $yo we have

/., g)duto

< HgHL” Sl}‘{prSk*”HLl < HgHL”HTHLlﬂLl' (2.5.14)

The Riesz representation theorem gives that the norm of the functional

g | g(x)du(x)
Rl‘l

on %o is exactly ||u|| . It follows from (2.5.14) that ||T'||,1_,,1 > ||| Since the
reverse inequality is obvious, we conclude that |7 || 1,1 = || 1|z - O



154 2 Maximal Functions, Fourier Transform, and Distributions

Let u be a finite Borel measure. The operator & — h+ 1 maps LP(R") to itself
for all 1 < p < oo; hence .#!+! (R") can be identified with a subspace of .= (R").
But there exist bounded linear operators @ on L™ that commute with translations
for which there does not exist a finite Borel measure ( such that ®@(h) = h« u for
all h € L*(R"). The following example captures such a behavior.

Example 2.5.9. Let (X, || - ||~) be the space of all complex-valued bounded func-
tions on the real line such that
1 /R
D(f)= lim — t)dt
(f) = lim = | S(0)

exists. Then @ is a bounded linear functional on X with norm 1 and has a bounded
extension @ on L* with norm 1, by the Hahn—Banach theorem. We may view @
as a bounded linear operator from L*(R) to the space of constant functions, which
is contained in L*(R). We note that @& commutes with translations, since for all
f€L”(R) and x € R we have

where the last two equalities follow from the fact that for L™ functions f the expres-
sion %f(f(f(t—x) — f())dt is bounded by %Hf”p when R > |x| and thus tends to
zero as R — oo, If &(@) = @ * u for some u € .#/(R") and all ¢ € .(R"), since @
vanishes on .#, the uniqueness in Theoren}v 2.5.2 yields that u = 0. Hence, if there
existed a finite Borel measure 1 such that @(h) = hx p all h € L™, in particular we
would have 0 = @(¢) = @ u for all ¢ € .7, hence p would be the zero measure.
But obviously, this is not the case, since @ is not the zero operator on X.

We now study the case p = 2. We have the following theorem:

Theorem 2.5.10. An operator T is in .#**>(R") if and only if it is given by convo-
lution with some u € .¥' whose Fourier transform u is an L™ function. In this case
the norm of T : L* — L? is equal to |it|1~.

Proof. 1If u € L™, Plancherel’s theorem gives

I suPar= [ (FEm&)Pag < all |7
therefore, ||T||;2_,;2 < |/it]|, and hence T is in .#>2(R™").

Now suppose that T € .#>*(R") is given by convolution with a tempered distri-
bution u. We show that & is a bounded function. For R > 0 let ¢z be a 4;;° function
supported inside the ball B(0,2R) and equal to one on the ball B(0,R). The product
of the function @g with the distribution # is @git = ((@g)" *u)"= T(@p )", which
is an L? function. Since the L? function @i coincides with the distribution # on
the set B(0,R), it follows that & is in L?(B(0,R)) for all R > 0 and therefore it is
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in L2 . If £ € L(R") has compact support, the function f# is in L?, and therefore

Plancherel’s theorem and the boundedness of T give

[ rwaePax= [ [T @Pa <TG [ 17wPd.

We conclude that for all bounded functions with compact support f we have

[T WP @) P2 0.

JR"

Taking f(x1,...,%,) = (2r) "/ ITj=1 X[-r.n(x;) for r > 0 and using Corollary 2.1.16,

we obtain that || T”éaLZ — |i#(x)|? > 0 for almost all x. Hence s in L* and |||z~ <
IIT|l;2_;2. Combining this with the estimate ||T||;2_,;2 < ||u]|z~, Which holds if
u e L™, we deduce that ||T||;2_,;2 = ||u]|z=- O

2.5.5 The Space of Fourier Multipliers .#,(R")

We have now characterized all convolution operators that map L? to L?. Suppose
now that 7 is in .#ZPP, where 1 < p < 2. As discussed in Theorem 2.5.7, T also
maps L¥ to L” . Since p <2< p,by Theorem 1.3.4, it follows that T also maps L?
to L2. Thus T is given by convolution with a tempered distribution whose Fourier
transform is a bounded function.

Definition 2.5.11. Given 1 < p < e, we denote by .#Z,(R") the space of all bounded
functions m on R” such that the operator

Tu(f)=(fm)", fe,

is bounded on L”(R") (or is initially defined in a dense subspace of L”(R") and has
a bounded extension on the whole space). The norm of m in .#,(R") is defined by

(2.5.15)

HmHﬂp = |Tonll o -

Definition 2.5.11 implies that m € .#,, if and only if T,, € .#?"7. Elements of
the space .#), are called L? multipliers or L? Fourier multipliers. It follows from
Theorem 2.5.10 that .5, the set of all L2 multipliers, is L. Theorem 2.5.8 implies
that ./ (R") is the set of the Fourier transforms of finite Borel measures that is
usually denoted by .# (R"). Theorem 2.5.7 states that a bounded function m is an
L? multiplier if and only if it is an LY multiplier, and in this case

Il g, =llmll 4, T <p<eo.
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It is a consequence of Theorem 1.3.4 that the normed spaces .#), are nested, that is,
for 1 < p < g <2 we have

M C My S My S My =L,

Moreover, if m € .#), and 1 < p <2 < p/, Theorem 1.3.4 gives

<||Tm

HT’"HLZﬂL2 - = HTm

(2.5.16)

1 1
Ui 1Tl e = Tl

since 1/2=(1/2)/p+ (1/2)/p’. Theorem 1.3.4 also gives that

mll. 4, < llmll.,

whenever 1 < g < p <2. Thus the .#),’s form an increasing family of spaces as p
increases from 1 to 2.

Example 2.5.12. The function m(&) = ¢2™&? is an L” multiplier for all b € R",
since the corresponding operator T;, () (x) = f(x+b) is bounded on L? (R"). Clearly

Iml|.z, = 1.

Proposition 2.5.13. For 1 < p < e, the normed space (M, || - ||.4,) is a Banach
space. Furthermore, .#), is closed under pointwise multiplication and is a Banach
algebra.

Proof. 1t suffices to consider the case 1 < p < 2. It is straightforward that if my, m;
are in .#, and b € C then m; +mjy and bm, are also in .#,,. Observe that mm; is
the multiplier that corresponds to the operator T, T, = Tin,m, and thus

lmamal| g, =\ Tl < ] g, [Im2] g,

This proves that .#,, is an algebra. To show that .#), is a complete normed space,
consider a Cauchy sequence m; in .#),. It follows from (2.5.16) that m is Cauchy in
L™, and hence it converges to some bounded function m in the L™ norm; moreover
all the m; are a.e. bounded by some constant C uniformly in j. We have to show that
m e M. Fix f € /. We have

T, (N0 = [ FEmi@e™Edg = [ FEm(E)eEdg =T,()()

R”

a.e. by the Lebesgue dominated convergence theorem, since C |f| is an integrable
upper bound of all integrands on the left in the preceding expression. Since {m;}
is a Cauchy sequence in .#Z),, it is bounded in .#),, and thus sup; ||m;||4, < +eo. An
application of Fatou’s lemma yields that

/H|Tm(f)\pdx: liminf |T,,, (f)|? dx

R? jﬁoc

< liminf [ [T, (f)[" dx
J—roo R~
P

< lijrgiorclf|‘mj”;/p||f||m’
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which implies that m € .#),. This argument shows that if m; € .#,, and m; — m
uniformly, then m is in .#), and satisfies

mll., <liminffm;].q, -
Apply this inequality to my —m; in place of m; and my — m in place of m, for some

fixed k. We obtain
[m —m||_z, Slijrgglmek—ij///p (2.5.17)

for each k. Given € > 0, by the Cauchy criterion, there is an N such that for j .k > N
we have ||my —m|| 4, < €. Using (2.5.17) we conclude that ||my —m|| 4, < € when
k > N, thus my, converges to m in ///,,.

This proves that .#, is a Banach space. (]

The following proposition summarizes some simple properties of multipliers.

Proposition 2.5.14. For allm € .#),, 1 < p < oo, x € R", and h > 0 we have

(GOl L P (25.18)
18" e, = llmll.s, 25.19)
1ll_g, = llmll.s;,
e ml| , = ] g,
[|moAl| "y = [|m|| w,  Alsanorthogonal matrix
Proof. See Exercise 2.5.2. (I

Example 2.5.15. We show that for —eo<a<b <o we have || X(4.4)[.2, = | Xj0,1] .2,
Indeed, using (2.5.18) we obtain that || x(.4/ll.2, = [IX/0,5—a)ll.#, » and the latter is
equal to [|¥(0,1][|.z, in view of (2.5.19). The fact that we have || x[o,1)[|., < o for all
I < p < oo is shown in Chapter 5.

We continue with the following interesting result.

Theorem 2.5.16. Suppose that m(&,n) € #,(R"™™), where 1 < p < co. Then for
almost every & € R" the function n — m(&,n) is in A4,(R™), with

(&g ey < Nl e

Proof. Since m lies in L™ (R"™™), it follows by Fubini’s theorem that for almost all
& € R”, the function n — m(&,n) lies in L=(R™) and

(&, | =gy < (2] = i - (2.5.20)
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Fix f1, g1 in Z(R") and f3, g2 in .(R™). Define the functions (fi ® f2)(x,y) =
f1(x)f2(y) when x € R" and y € R™. For all & for which (2.5.20) is satisfied define

ME) = [ (& )7) ) ) dy= [ m(Em)pam)e (n)an

and observe that

| MO)R) 10

- | [ MOR@ @z

= //Rﬁmm(&n)@(&vn)(&®g2)v(§,n)d§dn‘

= [ AR e @ g2) )

IN

Filleo 2110 81l g2l

[l e
In view of the identity

o~

/,l (M()A) (%) g1(x)dx],

H(M()J/C\I)VHL,, = Ssup

il <1

it follows that, for the & that satisfy (2.5.20), M(&) lies in ., (R") with

1M1 ey < 1], s 721l 821

Since ||M||1 < [|M||.4, for almost all & € R", we obtain

Al el @520

o 07(E R 0) 21| = M(E) < ] g g

which of course implies the required conclusion, by taking the supremum over all
. / .
&> in LP with norm at most 1. (]

Example 2.5.17. (The cone multiplier) On R"*! define the function

A
ml(élw-'ﬁéiﬂrl)(lw) 5 l>07

n+1 n

where the plus sign indicates that mj; = 0 if the expression inside the parentheses is
negative. The multiplier m, is called the cone multiplier with parameter A. If my, is
in .#,(R"*1), then the function by (&) = (1 — |€|?)* defined on R” is in ., (R").
Indeed, by Theorem 2.5.16 we have that for some &, = h, by ({1 /h,..., &, /h) is in
A ,(R") and hence so is by by property (2.5.19).
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Exercises

2.5.1. Prove that if f € LY(R") and 0 < g < oo, then
’|Th(f)+f’|Lq_>21/quHLq as |h| — co.

2.5.2. Prove Proposition 2.5.14. Also prove that if 5;” is a dilation operator in the
Jjth variable (for instance 5{” f(x) = f(hix1,x2,...,x,)), then

67"+ &m| g, = ]y,

2.5.3. Let m € .#,(R") where 1 < p < co.
(a) If v is a function on R” whose inverse Fourier transform is an integrable func-
tion, then prove that

lwmll g, < 1" [l llmll, -

(b) If yis in L' (R"), then prove that

lw=mll g, < l[wll.illml g,

2.5.4. Fix a multi-index 7.
(a) Prove that the map T'(f) = f * 978 maps . continuously into ..

(b) Prove that when 1/p—1/q # |y|/n, T does not extend to an element of the space
P,

2.5.5. Let Ky(x) = |x| "7, where 0 < ¥ < n. Use Theorem 1.4.25 to show that the
operator

T(f)=f+Ky, fe,

extends to a bounded operator in .Z 79 (R"), where 1 /p—1/g=7/n,1 < p < q < oo
This provides an example of a nontrivial operator in .#?4(R") when p < g.

2.5.6. (a) Use the ideas of the proof of Proposition 2.5.13 to show that if m; € .#,,
1 <p <o, |mjll.g, <Cforall j=1,2,...,and mj — m a.e., then m € ./, and

]l ey < liminf ;] g < C-

(b) Prove that if m € .#,, 1 < p < e, and the limit mo(&) = l%im m(& /R) exists for
—»00

all § € R”, then my is a radial function in .2, (R") and satisfies [[mol|.z, < [|m||.,-
(c) If m € .#,(R) has left and right limits at the origin, then prove that

HmH%p(R) > max (|m(04)|,[m(0-)|).
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(d) Suppose that for some 1 < p < oo, m; € .#,(R") for all 0 <t < 0. Prove that

J Il <= = m(@)= [ m(&)F <.

2.5.7. Let 1 < p < oo and suppose that m € .#,(R") satisfies |m(&)| > ¢ (1+&])™N
for some ¢,N > 0. Prove that the operator T (f) = (fm~1)" satisfies | T(f)|r >
cpl| fllep forall f e 7 (R"), where ¢, = ||m||j/[lp

2.5.8. (a) Prove that if m € L™(R") satisfies m" > 0, then for all 1 < p < o we have

mll g, = llm“1l..-

(b) (L. Colzani and E. Laeng) On the real line let

-1 for£>0 ~ Jmin(§ -1,0) for& >0
ml(é){l for £ <0, mz(é){max(ﬁ—&—l,o) for &€ < 0.

Prove that
] = [mal]

forall 1 < p < oo.
[Hint: Part (a): Use Exercise 1.2.9. Part (b): Use part (a) to show that ||m2ml_1 ., =

1. Deduce that |[m2||.z, < |[m1l|.4,. For the converse use Exercise 2.5.6 (©).]

2.5.9. ([94]) Let 1 < p < o0 and 0 < A < oo. Prove that the following are equivalent:
(a) The operator f +— Y,,czn amf(x —m) is bounded on L? (R") with norm A.

(b) The .#,, norm of the function ¥.,,cz» ame 2™~ is exactly A.

(c) The operator given by convolution with the sequence {ay, } is bounded on ¢ (Z")
with norm A.

2.5.10. ([177]) Let m(&) in .#,(R") be supported in [0, 1]". Then the periodic ex-
tension of m in R”,

M(E) =Y, mE—k),

kezn
is also in ., (R").

2.5.11. Suppose that u is a € function on R”\ {0} that is homogeneous of degree
—n+it, T € R. Prove that the operator given by convolution with « maps L?(R") to
L*(R™).

2.5.12. ([142]) Let m; € L"(R") and m; € L’ (R") for some 2 < r < o. Prove that

ml*mgE///p(R")When%—%:%andl§p§2.

[Hint: Prove that the trilinear operator (my,my, f)— ((my * mz)f)v is bounded from
L>x L[> x L' — L' and L* x L' x L> — L?. Apply trilinear complex interpolation
(Corollary 7.2.11 in [131]) to deduce the required conclusion for 1 < p < 2.}
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2.5.13. Show that the function e/l is an L? Fourier multiplier on R” if and only if
p=2.

[Hint: By Exercise 2.4.12 the inverse Fourier transform of ei‘5|2 is in L*, thus the
operator f (f(é)ei”mz)v maps L' to L*. Since this operator also maps L* to L?,
it should map L? to L” forall 1 <p< 2.]

2.6 Oscillatory Integrals

Oscillatory integrals have played an important role in harmonic analysis from its
outset. The Fourier transform is the prototype of oscillatory integrals and provides
the simplest example of a nontrivial phase, a linear function of the variable of in-
tegration. More complicated phases naturally appear in the subject; for instance,
Bessel functions provide examples of oscillatory integrals in which the phase is a
sinusoidal function.

In this section we take a quick look at oscillatory integrals. We mostly concentrate
on one-dimensional results, which already require some significant analysis. We
examine only a very simple higher-dimensional situation. Our analysis here is far
from adequate.

Definition 2.6.1. An oscillatory integral is an expression of the form
() = / AWy (x) dx, 2.6.1)
Rn

where A is a positive real number, ¢ is a real-valued function on R" called the
phase, and y is a complex-valued and smooth integrable function on R", which is
often taken to have compact support.

2.6.1 Phases with No Critical Points

We begin by studying the simplest possible one-dimensional case. Suppose that ¢
and y are smooth functions on the real line such that supp y is a closed interval and

¢'(x)#0  forall x € supp y.

Since ¢’ has no zeros, it must be either strictly positive or strictly negative every-
where on the support of . It follows that ¢ is monotonic on the support of y and
we are allowed to change variables

u=@(x)
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in (2.6.1). Then dx = (¢'(x)) ~'du = (¢~')'(u) du, where ¢! is the inverse function
of ¢. We transform the integral in (2.6.1) into

[ e wio w)ie™!) wdu 262)

and we note that the function 8 (u) = w(¢~'(u))(¢~")’(u) is smooth and has com-
pact support on R. We therefore interpret the integral in (2.6.1) as 5(71 /2m), where
6 is the Fourier transform of 6. Since 6 is a smooth function with compact support,
it follows that the integral in (2.6.2) has rapid decay as A — co.

A quick way to see that the expression 8(—A /27) has decay of order A~ for all
N > 0as A tends to o is the following. Write

iAu _ L ﬂ (eilu)
(iA)N duN

and integrate by parts N times to express the integral in (2.6.2) as

G ALID)
(i/l)N/R el

from which the assertion follows. Hence
1(A)] = |8(=A/2m)| < CyA TN, (2.6.3)

where Cy = ||0™) |1, which depends on derivatives of ¢ and .
We now turn to a higher-dimensional analogue of this situation.

Definition 2.6.2. We say that a point x is a critical point of a phase function ¢ if

V(p()C()) = (81([)()60), e ,&n(p(X())) =0.

Example 2.6.3. Let £ € R"\ {0}. Then the phase functions ¢@; (x) =x-&, @2(x) =
¢% have no critical points, while the phase function @3(x) = |x|> —x- & has one
critical point at xg = 3&.

The next result concerns the behavior of oscillatory integrals whose phase func-
tions have no critical points.

Proposition 2.6.4. Suppose that y is a compactly supported smooth function on R"
and that ¢ is a real-valued €* function on R" that has no critical points on the
support of W. Then the oscillatory integral

I(A) = / ) e* W) yr(x) dx (2.6.4)

obeys a bound of the form |I(1)| < CyA™N for all A > 1 and all N > 0, where Cy
depends on N and on @ and .
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Proof. Since the case n = 1 has already been discussed, we concentrate on dimen-
sions n > 2. For each y in the support of y there is a unit vector 8, such that

6,-Vo(y) = [Voy)l.

By the continuity of V¢ there is a small neighborhood B(y, ry) of y such that for all
x € B(y,ry) we have

1
6, Vo(x) > 5 [Vo()| > 0.

Cover the support of y by a finite number of balls B(y;,ry;), j = 1,...,m, and pick
¢ =min; |V@(y;)|; we have

0y, Vo(x) >c>0 (2.6.5)

forall x € B(y;,ry;) and j=1,...,m.

Next we find a smooth partition of unity of R” such that each member §; of the
partition is supported in some ball B(y;, ryj) or lies outside the support of y. We
therefore write

1) =Y [ M0y(g ) dr, (2:6.6)
k

where the sum contains only a finite number of indices, since only a finite number
of the {,’s meet the support of . It suffices to show that every term in the sum in
(2.6.6) has rapid decay in A as A — oo.

To this end, we fix a k and we pick a j such that the support of W is contained
in some ball B(y;,ry;). We find unit vectors 6y, 5,...,8y, », such that the system
{6y,,6y,2,...,8y, 4} is an orthonormal basis of R". Let e; be the unit (column)
vector on R” whose jth coordinate is one and whose remaining coordinates are zero.
We find an orthogonal matrix R such that R'e; = Oyj and we introduce the change
of variables u =y;+ R(x —y;) in the integral

L) = [ AIpG 0 dx.

The map x — u = (u1,...,u,) is a rotation that fixes y; and preserves the ball

B(yj,ry;). Defining @(x) = ¢°(u), w(x) = y°(u), §(x) = & (u), under this new
coordinate system we write

zk(/m)_/K{/RJW("W(M,...,un)z_:,f(ul,...,un)dul}duz.--dun, 2.6.7)

where K is a compact subset of R" !, Since R is an orthogonal matrix, R 1=FR,
and the change of variables x = y; 4+ R'(u —y;) implies that

or
8141

= first column of ' = firstrow of R = R'e; = 6y, .
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Thus for all x € B(y;,r;) we have

de°(u)  Je(y;+R (u—y;)) ox .
F e =Vo(x) i Vo(x)-6y, >c>0

in view of condition (2.6.5). This lower estimate is valid for all u € B(yj,ry,), and

therefore the inner integral inside the curly brackets in (2.6.7) is at most CyA ™" by
estimate (2.6.3). Integrating over K results in the same conclusion for /(1) defined
in (2.6.4). O

2.6.2 Sublevel Set Estimates and the Van der Corput Lemma

We discuss a sharp decay estimate for one-dimensional oscillatory integrals. This
estimate is obtained as a consequence of delicate size estimates for the Lebesgue
measures of the sublevel sets {|u| < o} for a function u. In what follows, u¥) denotes
the kth derivative of a function u(¢) defined on R, and €* the space of all functions
whose kth derivative exists and is continuous.

Lemma 2.6.5. Let k > 1 and suppose that ay, . .. ,a; are distinct real numbers. Let
a=min(a;) and b=max(a;) and let f be a real-valued €*~" function on |a,b] that
is €% on (a,b). Then there exists a point y in (a,b) such that

k
Y enflam) = F9 ),
m=0

k
where ¢y = (—1)*k! TT (a7 —am) ™.
&

Proof. Suppose we could find a polynomial py (x) = ZI?ZO b jx/ such that the function
¢(x) = f(x) = pe(x) (2.6.8)

satisfies @(a,;) = 0 for all 0 < m < k. Since the a ; are distinct, we apply Rolle’s
theorem & times to find a point y in (a,b) such that

FO) = kb

The existence of a polynomial p; such that (2.6.8) is satisfied is equivalent to the
existence of a solution to the matrix equation
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aé ag_l ... A ] bk f(ao)
ad a7t .oa 1 br—1 Sflay)
Cl]]g_l a’,ﬁj el Al 1 b1 f(ak_l)
ai a’,i_l ceooar 1 bo flax)

The determinant of the square matrix on the left is called the Vandermonde deter-
minant and is equal to

k=1 &
IT I1 (ac—aj) #0.
(=0 j=(+1

Since the a; are distinct, it follows that the system has a unique solution. Using
Cramer’s rule, we solve this system to obtain

k—1 k
1 I (ar—ay)

k [Z;O j=i+1
_ _1\ym m Jj#Fm
b= X (1" lan)
"= [T II (ar—ay)
(=0 j=(+1
k k
= Z (=1)"f(am) H(a[; —am)*l (_1)kim-
m=0 (=0
{#m
The required conclusion now follows with ¢, as claimed. U

Lemma 2.6.6. Let E be a measurable subset of R with finite nonzero Lebesgue mea-
sure and let k € 2. Then there exist ay, . .. ,ay in E such that for all £ =0,1,... k

we have
k

[Tla; - arl = (1E]/2¢)". (2.6.9)
Jj=0
J#t

Proof. Given a measurable set E with finite measure, pick a compact subset E’ of

E such that |[E \ E'| < 8, for some & > 0. For x € R define T (x) = |(—c0,x) NE’|.
Then T enjoys the distance-decreasing property

T(x) =T ()] < |x—yl

for all x,y € E'; consequently, by the intermediate value theorem, T is a surjective
map from E’ to [0,|E’|]. Let a; be points in E’ such that T'(a;) = £|E'| for j =

0,1,...,k. For k an even integer, we have
[Tles el = T2 L] = F12 e = T (2 e
a;—ay| > ‘7E —CIE) > ‘7—f’E - (—) E',
=0 =0 k k 720 kK 2 o\ k
J#t J#L j#k

and it is easily shown that ((k/2)!)’k* > (2¢)*.
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For k an odd integer we have

H|a,—ae\>n(k|E|——

1#/ ./

k+1

—c|EF,

k .
J
ZH\%
IL

while the last product is at least
12 Sly2k+i .
2.2 2 U s )R,
{k Kk } 2w =20

We have therefore proved (2.6.9) with E’ replacing E. Since |[E\ E'| < 8 and § > 0
is arbitrarily small, the required conclusion follows. (]

The following is the main result of this section.

Proposition 2.6.7. (a) Let u be a real-valued €* function, k € Z7, that satisfies
u® (1) > 1 for all t € R. Then the following estimate is valid for all o > 0:

1 1

{reR: [ut) <a}| < (2e)((k+1))Eak. (2.6.10)

(b) Let —oo < a < b < oo, For all k > 2, for every real-valued €* function u on the
line that satisfies u'®) (t) > 1 for all t € [a,b), and every A € R\ {0} we have:

b
/ ) gy
a

(c) If k =1, u/(¢) is monotonic on (a,b), and u'(t) > 1 for all t € (a,b), then for all
nonzero real numbers A we have

< 12Kk|A| R 2.6.11)

b
’/ M Oarl <3(A7". (2.6.12)
a
Proof. Part (a): Let E = {r € R: |u(t)| < a}. If |E| is nonzero, then by Lemma
2.6.6 there exist ag,ay,...,a; in E such that for all £ we have
|E[F < (2e "H aj—ay). (2.6.13)
o

Lemma 2.6.5 implies that there exists y € (min aj,maxa j) such that

k
u® (y ) k! Z u(am) [ (ae —am) ™" (2.6.14)
- [;r(r)z
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Using (2.6.13), we obtain that the expression on the right in (2.6.14) is in absolute
value at most

(k+1)! max |u(a;)| (2e)*|E|™* < (k+ 1)1 (2¢)* |E|7F,
0<j<k

since a; € E. The bound u¥)(r) > 1 now implies
E[f < (k+1)!(2¢)

as claimed. This proves (2.6.10).
Part (b): We now take k > 2 and we split the interval (a,b) in (2.6.11) into the
sets

Rlz{te( b): [ ()] < B},
= {re(ab): W' ()| > B},

for some parameter 3 to be chosen momentarily. The function v = u’ satisfies
v&=D' > 1 and k — 1 > 1. It follows from part (a) that

’ / idu(t dl

To obtain the corresponding estimate over R, we note that if uk) > 1, then the set
{|«'| > B} is the union of at most 2k — 2 intervals on each of which ' is monotone.
Let (c,d) be one of these intervals on which u’ is monotone. Then #’ has a fixed sign
on (c,d) and we have

d
/ Jhut) gy
c

<|Ry| < 2e (k)71 BET < 6k BT .

d . 1
_ idu(t)\’/
/C () i

d . | Y 1 |e
ilu(r) _ - -
/c MO (3 t)) ‘”‘* A W@~ W

idu(d)  yidu(c)

where we use the monotonicity of 1/u/(r) in moving the absolute value from inside
the integral to outside. It follows that

/ idu(t )dl
Ry

6k
~IAIB
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Choosing B = |A|~*~1D/* to optimize and adding the corresponding estimates for
R, and R,, we deduce the claimed estimate (2.6.11).

Part (c): Repeat the argument in part (b) setting § = 1 and replacing the interval
(c,d) by (a,b). O

Corollary 2.6.8. Let (a,b), u(t), A > 0, and k be as in Proposition 2.6.7. Then for
any function y on (a,b) with an integrable derivative and k > 2, we have

b
/e'}”‘(t)l[/(t)dt

<12klvkhwwﬂ+1AbW/@ﬂdﬂ.

We also have

b,
/etlu(t)lll(t)dt

a

<Mﬁ[ww+LﬁﬂmmL

when k =1 and u' is monotonic on (a,b).

Proof. Set
X
Pl = [ et ar
a

and use integration by parts to write

b b
[ Myt ar = Fo)wo) - [ Fow @ ar.
The conclusion easily follows. O

Example 2.6.9. The Bessel function of order m is defined as

J 7i n irsin —im@de
n(r) = )y € e .

Here we take both r and m to be real numbers, and we suppose that m > — %; we refer
to Appendix B for an introduction to Bessel functions and their basic properties.

We use Corollary 2.6.8 to calculate the decay of the Bessel function J,,(r) as
r — oo, Set

9(6) = sin(6)

and note that ¢’(8) vanishes only at 6 = 7/2 and 37 /2 inside the interval [0,27] and
that ¢”(7/2) = —1, while ¢”(37/2) = 1. We now write 1 = y; + y» + y3, where
Y is smooth and compactly supported in a small neighborhood of 7/2, and v, is
smooth and compactly supported in a small neighborhood of 37/2. For j = 1,2,
Corollary 2.6.8 yields

2T .
/ elrsm(G) (l//j(G)e”me)dG < Cmr71/2
0
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for some constant C, while the corresponding integral containing Y3 has arbitrary
decay in r in view of estimate (2.6.3) (or Proposition 2.6.4 when n = 1).
Exercises

2.6.1. Suppose that u is a real-valued %* function defined on the line that satisfies
[u®) (£)| > ¢o > 0 for some k > 2 and all ¢ € (a,b). Prove that for A € R\ {0} we

have .
/ ) gy
a

and that the same conclusion is valid when k = 1, provided «’ is monotonic.

<12k (Aco) ™k

2.6.2. Show that if %’ is not monotonic in part (c) of Proposition 2.6.7, then the
conclusion may fail.

[Him‘: Let @(¢) be a real-valued smooth function that is equal to 2¢ on intervals
[27k+ &, 27 (k+ %) — &] and equal to 7 on intervals 27 (k+ 1) + &, 27 (k+1) — &,
where 0 < k < N, for some N € Z™. Show that the absolute value of the integral of
¢'®") over the interval [g9,27(N + 1) — &y] tends to infinity as N — .

2.6.3. Prove that the dependence on k of the constant in part (b) of Proposition 2.6.7
is indeed linear.
[Hint: Take u(r) =t /k! over the interval (0,k!).]

2.6.4. Follow the steps below to give an alternative proof of part (b) of Proposition
2.6.7. Assume that the statement is known for some k > 2 and some constant C(k)
for all intervals [a,b] and all €* functions satisfying u®) > 1 on [a,b]. Fix a €**!
function u such that u**!) > 1 on an interval [a,b]. Let ¢ be the unique point at
which the function «) attains its minimum in [a, b].

(a) If u®(¢) = 0, then for all § > 0 we have u¥)(r) > & in the complement of the
interval (¢ — 6,c+ &) and derive the bound

b .
/ellu(l)dt

Ja

<2C(k)(A8) VK425,

(b) If u®)(c) # 0, then we must have ¢ € {a,b}. Obtain the bound

b
/ Shult) gy
a

(c) Choose a suitable d to optimize and deduce the validity of the statement for k+ 1
with C(k+ 1) = 2C(k) +2, hence C(k) = 3 -2k~ 2k — 2, since C(1) = 3.

2.6.5. (a) Prove that for some constant C and all A € R and € € (0, 1) we have

o dt
/ el}t[ “@b
e<|t|<1 t

<Ck)(A8) k48,

<C.
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(b) Prove that for some C' < oo, all A € R, k> 0, and € € (0,1) we have

gk dt
/ ez/ltit “r
e<|r|<1 t

(c) Show that there is a constant C” such that for any 0 < € < N < oo, for all &;,&,
in R, and for all integers k > 2, we have

/ QG5 tEsh) 45
e<|s|<N s

[Hint: Part (a): For || small use the inequality |¢*" — 1| < |Az|. If |A| is large,
split the domains of integration into the regions |t| < |A|~! and |t| > |A|~! and use
integration by parts in the second case. Part (b): Write

<C.

< C//

P k -k .
e:()Ltit ) _ 1 _ ei)Lt et ezlt
t t t

and use part (a). Part (c): When & = &, = 0 it is trivial. If & = 0, &; # 0, change
variables t = &;s and then split the domain of integration into the sets |¢| < 1 and
|f| > 1. In the interval over the set || < 1 apply part (b) and over the set |t > 1 use
integration by parts. In the case & # 0, change variables = |&|'/%s and split the
domain of integration into the sets [¢| > 1 and |¢| < 1. When |¢| < 1 use part (b) and

k 1k gk
in the case |t| > 1 use Corollary 2.6.8, noting that %W =k!>1]

2.6.6. (a) Show that for all @ > 0 and A > 0 the following is valid:

al .
/ ezl logt dt
0

(b) Prove that there is a constant ¢ > 0 such that for all » > A > 10 we have

b
/ ezltlogt dt
0

[Hint: Part (b): Consider the intervals (0,8) and [8,b) for some 8. Apply Proposi-
tion 2.6.7 with k = 1 on one of these intervals and with k = 2 on the other. Then
choose a suitable & ]

<a.

c
< .
~ AlogA

2.6.7. Show that there is a constant C < oo such that for all nonintegers Y > 1 and
C
< —

all A,b > 1 we have
b
irt?
dt .
/0 R Y

[Hint: On the interval (0,8) apply Proposition 2.6.7 with k = [y] + 1 and on the
interval (8,b) with k = [y]. Then optimize by choosing § = 1~1/7.]
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HISTORICAL NOTES

The one-dimensional maximal function originated in the work of Hardy and Littlewood [146].
Its n-dimensional analogue was introduced by Wiener [375], who used Lemma 2.1.5, a variant of
the Vitali covering lemma, to derive its L” boundedness. One may consult the books of de Guzman
[92], [93] for extensions and other variants of such covering lemmas. The actual covering lemma
proved by Vitali [368] says that if a family of closed cubes in R" has the property that for every point
x € A CR" there exists a sequence of cubes in the family that tends to x, then it is always possible
to extract a sequence of pairwise disjoint cubes E; from the family such that |A\ ; E;| = 0. We
refer to Saks [310] for details and extensions of this theorem.

The class Llog L was introduced by Zygmund to give a sufficient condition on the local integra-
bility of the Hardy-Littlewood maximal operator. The necessity of this condition was observed by
Stein [336]. Stein [341] also showed that the LP(R") norm of the centered Hardy-Littlewood max-
imal operator )M is bounded above by some dimension-free constant; see also Stein and Stromberg
[345]. Analogous results for maximal operators associated with convex bodies are contained in
Bourgain [35], Carbery [51], and Miiller [263]. Bourgain [37] showed the the Hardy-Littlewood
maximal operator associated with cubes is bounded on L”(R") with dimension-free bounds when
p > 1. Aldaz [2] studied the corresponding weak type (1,1) bounds and proved that they grow
to infinity with the dimension; the constant was improved by Aubrun [15]. The situation for the
uncentered maximal operator M on L? is different, since given any 1 < p < o there exists C, > 1
such that || M||1p(re)—r(rr) > C}, (see Exercise 2.1.8 for a value of such a constant C), and also the
article of Grafakos and Montgomery-Smith [136] for a larger value).

The centered maximal function M, with respect to a general inner regular locally finite posi-
tive measure u on R” is bounded on L?(R", ) without the additional hypothesis that the measure
is doubling; see Fefferman [117]. The proof of this result requires the following covering lemma,
obtained by Besicovitch [27]: Given any family of closed balls whose centers form a bounded sub-
set of R”, there exists an at most countable subfamily of balls that covers the set of centers and has
bounded overlap, i.e., no point in R” belongs to more than a finite number (depending on the dimen-
sion) of the balls in the subfamily. A similar version of this lemma was obtained independently by
Morse [258]. See also Ziemer [385] for an alternative formulation. The uncentered maximal opera-
tor My, of Exercise 2.1.1 may not be weak type (1,1) if the measure y is nondoubling, as shown by
Sjdgren [323]; related positive weak type (1,1) results are contained in the article of Vargas [365].
The precise value of the operator norm of the uncentered Hardy—Littlewood maximal function on
L?(R) was shown by Grafakos and Montgomery-Smith [136] to be the unique positive solution of
the equation (p — 1)x” — px”~1 — 1 = 0. This constant raised to the power 7 is the operator norm
of the strong maximal function M; on LP(R") for 1 < p < co. The best weak type (1,1) constant
for the centered Hardy-Littlewood maximal operator was shown by Melas [248] to be the largest
root of the quadratic equation 12x> —22x 45 = 0. The strong maximal operator M; is not weak
type (1, 1), but it satisfies the substitute inequality dy, () (@) < C [ga %’:)‘(1 +log™ @)’H dx.
This result is due to Jessen, Marcinkiewicz, and Zygmund [176], but a geometric proof of it was
obtained by Cérdoba and Fefferman [73].

The basic facts about the Fourier transform go back to Fourier [119]. The theory of distributions
was developed by Schwartz [314], [315]. For a concise introduction to the theory of distributions
we refer to Hormander [160] and Yosida [382]. Homogeneous distributions were considered by
Riesz [295] in the study of the Cauchy problem in partial differential equations, although some
earlier accounts are found in the work of Hadamard. They were later systematically studied by
Gelfand and Silov [126], [127]. References on the uncertainty principle include the articles of
Fefferman [114] and Folland and Sitaram [118]. The best possible constant B), in the Hausdorff—

Young inequality HfHU/ ®) < By || fllzr(rr) When 1 < p <2 was shown by Beckner [21] to be

B, = (pl/p(p’)‘l/”/)"/z. This best constant was previously obtained by Babenko [16] in the case
when p’ is an even integer.

A nice treatise of the spaces .7 is found in Hormander [159]. This reference also con-
tains Theorem 2.5.6, which is due to him. Theorem 2.5.16 is due to de Leeuw [94], but the proof
presented here is taken from Jodeit [178]. De Leeuw’s result in Exercise 2.5.9 says that periodic
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elements of .#,(R") can be isometrically identified with elements of ./ (T"), the latter being the
space of all multipliers on ¢ (Z"). The hint in Exercise 2.5.13 was suggested by M. Peloso.

Parts (b) and (c) of Proposition 2.6.7 are due to van der Corput [364] and are referred to in
the literature as van der Corput’s lemma. The refinement in part (a) was subsequently obtained by
Arhipov, Karachuba, and Cubarikov [8]. The treatment of these results in the text is based on the
article of Carbery, Christ, and Wright [53], which also investigates higher-dimensional analogues
of the theory. Precise asymptotics can be obtained for a variety of oscillatory integrals via the
method of stationary phase; see Hormander [160]. References on oscillatory integrals include the
books of Titchmarsh [362], Erdélyi [107], Zygmund [388], [389], Stein [344], and Sogge [328].
The latter provides a treatment of Fourier integral operators.



Chapter 3
Fourier Series

Principles of Fourier series go back to ancient times. The attempts of the Pythagorean
school to explain musical harmony in terms of whole numbers embrace early ele-
ments of a trigonometric nature. The theory of epicycles in the Almagest of Ptolemy,
based on work related to the circles of Appolonius, contains ideas of astronomical
periodicities that we would interpret today as harmonic analysis. Early studies of
acoustical and optical phenomena, as well as periodic astronomical and geophysical
occurrences, provided a stimulus in the physical sciences toward the rigorous study
of expansions of periodic functions. This study is carefully pursued in this chapter.

The modern theory of Fourier series begins with attempts to solve boundary
value problems using trigonometric functions. The work of d’Alembert, Bernoulli,
Euler, and Clairaut on the vibrating string led to the belief that it might be possible
to represent arbitrary periodic functions as sums of sines and cosines. Fourier an-
nounced belief in this possibility in his solution of the problem of heat distribution
in spatial bodies (in particular, for the cube T?) by expanding an arbitrary function
of three variables as a triple sine series. Fourier’s approach, although heuristic, was
appealing and eventually attracted attention. It was carefully studied and further de-
veloped by many scientists, but most notably by Laplace and Dirichlet, who were
the first to investigate the validity of the representation of a function in terms of its
Fourier series. This is the main topic of study in this chapter.

3.1 Fourier Coefficients

We discuss some basic facts of Fourier analysis on the torus T”. Throughout this
chapter, n denotes the dimension, i.e., a fixed positive integer.

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics 249, 173
DOI 10.1007/978-1-4939-1194-3_3, © Springer Science+Business Media New York 2014
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3.1.1 The n-Torus T"

The n-torus T" is the cube [0,1]" with opposite sides identified. This means that
the points (x,...,0,...,x,) and (x1,...,1,...,x,) are identified whenever 0 and 1
appear in the same coordinate. A more precise definition can be given as follows:
We say that x,y in R" are equivalent and we write

X

y (3.1.1)

if x—y € Z". Here Z" is the additive subgroup of all points in R"” with integer
coordinates. It is a simple fact that = is an equivalence relation that partitions R”
into equivalence classes. The n-torus T” is then defined as the set R" /Z" of all such
equivalence classes. When n = 1, this set can be geometrically viewed as a circle
by bending the line segment [0, 1] so that its endpoints are brought together. When
n = 2, the identification brings together the left and right sides of the unit square
[0, 1]2 as well as the top and bottom sides. The resulting figure is a two-dimensional
manifold embedded in R? that looks like a donut. See Figure 3.1.

A3

\

X1

Fig. 3.1 The graph of the
two-dimensional torus TZ.

The n-torus is an additive group. The identity element of the group is 0, which
of course coincides with every e; = (0,...,0,1,0,...,0). To avoid multiple appear-
ances of the identity element in the group, we often think of the n-torus as the
set [—1/2,1/2]". Since the group T” is additive, the inverse of an element x € T"
is denoted by —x. For example, —(1/3,1/4) = (2/3,3/4) on T2, or, equivalently,
—(1/3,1/4)—(2/3,3/4) € 7°.

The n-torus T” can also be thought of as the following subset of C”,

{(¥™1 ... &™) e C" 2 (x1,...,%,) € [0,1]"}, (3.1.2)

in a way analogous to which the unit interval [0, 1] can be thought of as the unit
circle in C once 1 and 0 are identified.

Functions on T" are functions f on R” that satisfy f(x+m) = f(x) for all x € R"
and m € Z". Such functions are called 1-periodic in every coordinate. Haar mea-
sure on the n-torus is the restriction of n-dimensional Lebesgue measure to the set
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T" = [0,1]". This measure is still denoted by dx, while the measure of a set A C T”"
is denoted by |A|. Translation invariance of Lebesgue measure and the periodicity
of functions on T” imply that for all integrable functions f on T", we have

f(x)dxz/ f(x)dxz/ f(x)dx (3.1.3)
™ [_1/271/2]’1 [a1,1+a1]><~~><[a,,,1+an]

for any real numbers ay,...,a,. In view of periodicity, integration by parts on the
torus does not produce boundary terms; given f, g continuously differentiable func-
tions on T" we have

0, (3)8(0)dx == [ og(0) 1),

Tﬂ
Elements of Z" are denoted by m = (my,...,my,). For m € Z", we define the rotal
size of m to be the number |m| = (m} 4 - +m2)'/2. Recall that for x = (xi,...,x,)

andy = (y1,...,y,) in R,
x'y:x1y1+"'+xnyn

denotes the usual dot product. Finally, for x € T", |x| denotes the usual Euclidean
norm of x. If we identify T" with [—1/2,1/2]", then |x| can be interpreted as the
distance of the element x from the origin, and then we have 0 < |x| < /n/2 for all
xe T

Multi-indices are elements of (Z* U {0})". For a multi-index o = (¢, .., ),
we denote the partial derivative 9" ---9% f by d%f. The spaces €*(T") of con-
tinuously differentiable functions of order k, where k € Z, are defined as the sets
of functions ¢ for which d%*@ exist and are continuous for all |a| < k. When k =0
we set €°(T") = €(T") to be the space of continuous functions on T". The space
€= (T") of infinitely differentiable functions on T" is the union of all the € (T").
All of these spaces are contained in L”(T"), which are nested, with L' (T") being
the largest.

3.1.2 Fourier Coefficients

Definition 3.1.1. For a complex-valued function f in L' (T") and m in Z", we define

f(m) = /T flaye Py, (3.1.4)

We call f(m) the mth Fourier coefficient of f. We note that f(é) is not defined for
& e R"\ Z", since the function x — e~ 28X s not 1-periodic in any coordinate and
therefore not well defined on T". For a finite Borel measure pt on T" and m € Z" the
expression

f(m) = / e 2FmE gy (3.1.5)
Tn

is called the mth Fourier coefficient of L.
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The Fourier series of f atx € T" is the series

Y flm)emim=. (3.1.6)

meZ"

It is not clear at present in which sense and for which x € T" (3.1.6) converges. The
study of convergence of Fourier series is the main topic of study in this chapter.

We quickly recall the notation we introduced in Chapter 2. We denote by f the
complex conjugate of the function £, by f the function f(x) = f(—x), and by 7¥(f)
the function 77(f)(x) = f(x—y) for all y € T". We mention some elementary prop-
erties of Fourier coefficients.

Proposition 3.1.2. Let f, g be in L' (T"). Then for all m,k € Z"', A € C, y € T", and
all multi-indices o we have

(1) F+g(m)=f(m)+gm),
(2) Af(m)=Af(m),
(3) F(m)=F(~m),

@) 7 (m)=F(-m),

(5) ©(f)(m) = f(m)e2mim,
(6) (2™ £)~(m) = f(m—k),
(7) fO)= | flx)dx

8 f 1 Y
(8) sup ()| < |11l oy

(9) Frg(m)= f(m)g(m),
(10) 9% f(m) = (27im)®*f(m), whenever f € €*.

Proof. The proof of properties (1)-(10) is rather easy and is left to the reader. We
only sketch the proof of (9). We have

Frgm) = [ [ flxy)gly)e e dy dx — Fmglom),

where the interchange of integrals is justified by the absolute convergence of the
integrals and Fubini’s theorem. O

Remark 3.1.3. The Fourier coefficients have the following property. For a function
Jf1 on T" and a function f> on T"2, the tensor function

(fi® f2)(x1,x2) = fi(x1) f2(x2)



3.1 Fourier Coefficients 177

is a periodic function on T"1*2 whose Fourier coefficients are

~

F1 @ falmi,my) = fi(my) fa(ma), (3.1.7)
for all m; € Z" and m, € 2.
Definition 3.1.4. A trigonometric polynomial on T" is a function of the form

P(x)=Y ane™™™, (3.1.8)

meZ"

where {a,, } mezn is a finitely supported sequence in Z". The degree of P is the largest
number |g;|+ - - -+ |gx| such that a, is nonzero, where g = (g1, ..,¢,). Observe that
in view of the orthonormality of the exponentials we have for all m € Z"

~

P(m)=ay.

Example 3.1.5. If the sequence {a,, } , has only one nonzero term, then the trigono-
metric polynomial of Definition 3.1.4 reduces to a trigonometric monomial, which

has the form
P(x) = a2 +amm)

for some ¢ = (q1,...,q,) € Z" and a € C.

Let

Z am emex Z P 2n'im-x

|m|<N |m|<N

be a trigonometric polynomial on T” and let i be a finite Borel measure on T”. Then
we have

(Pxp)(x) = /T Y P(m)e™™ N du(y)= Y P(m)i(m)e*™™*.  (3.19)

|m|<N [m|<N

In particular, if f is an integrable function on T" we have

(P f)(x) / ) Y Pm)™ e dy =Y P(m)f(m)e*™™*. (3.1.10)

|m|<N |m|<N

This implies that the partial sums

Z f(m)ezmm-x
Im|<N
of the Fourier series of f in (3.1.6) can be obtained by convolving f with the function
Dy(x)= Y &*mim=. (3.1.11)
|m|<N

This function is called the Dirichlet kernel.
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3.1.3 The Dirichlet and Fejér Kernels

Definition 3.1.6. Let 0 < R < oo, The square Dirichlet kernel on T" is the function

Di(x)= Y &mm. (3.1.12)

meZl
\mj\SR

The circular (or spherical) Dirichlet kernel on T" is the function

Di(x)=Y) &, (3.1.13)

melZ’
|m|<R

In dimension n = 1 these functions coincide and are denoted by
Dg(x) = Dg(x) = Dp(x).

This function is called the Dirichlet kernel and coincides with Dy(x) in (3.1.11)
when N <R<N+1and N € Z"U{0}; see Figure 3.2.

JaNEWA\ JANEVAN
/0. _/ -o. \/5.2 \_/0-4 \L

-2t

Fig. 3.2 The graph of the Dirichlet kernel Ds plotted on the interval [—1/2,1/2].

Both the square and circular (or spherical) Dirichlet kernels are trigonomet-
ric polynomials. The square Dirichlet kernel on T” is equal to a product of one-
dimensional Dirichlet kernels, that is,

D;‘e(xl,...,xn) :DR(X1)~“DR()C"). (3114)
We have the following two equivalent ways to write the Dirichlet kernel Dy:

sin((2N + 1) 7x)

D _ 27imex _
V() Z ¢ sin(7x)

|m|<N

, (3.1.15)
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for x € [0, 1]. To verify the validity of (3.1.15), we write

627ri(2N+1)x -1 ezm(N+1)x _ o 2miNx sin((2N—|— l)ﬂ'x)

AT | i (gi _pmmix) sin(7x)

e2mm-x _ e72me

|m|<N
It follows that for R € RT U {0} we have

sin(mx(2[R] + 1)) .

Dr(x) = sin(7x)

(3.1.16)

It is reasonable to ask whether the family {Dg}g~o forms an approximate identity
as R — oo. Using (3.1.15) we see that each Dy is integrable over [—1/2,1/2] and
has integral equal to 1. But it follows from Exercise 3.1.5 that ||Dgl|;1 ~ logR as
R — oo, and therefore property (i) in Definition 1.2.15 fails for Dg. We conclude
that the family {Dg}g~o is not an approximate identity on T', which significantly
complicates the study of Fourier series. Consequently, the family {D}}z~0 is not an
approximate identity on T", since ||Dg||,1(r1) = (logR)". The same is true for the

family of circular (or spherical) Dirichlet kernels {B?e} r>0- Although this is harder
to prove, it will be a consequence of the results in Section 4.2.

A typical situation encountered in analysis is that the means of a sequence behave
better than the original sequence. This fact led Cesaro and independently Fejér to
consider the arithmetic means of the Dirichlet kernel in dimension 1, that is, the
expressions

Fy(x) = [Do(x) + Dy (x) + Da(x) + -+ Dy(x)]. (3.1.17)

N+1

The expression in (3.1.17) is in fact equal to the Fejér kernel given in Example 1.2.18.
We have the following identity concerning the kernel Fj.

Proposition 3.1.7. For every nonnegative integer N the identity holds

N : 2
_ UL\ omije 1 (sin(m(N+1)x)
Fyn(x) = j;N <1 Nai > >Tx — NTi ( () ) (3.1.18)

forall x € T'. Thus Fy(m) =1 — 1\‘/L+|1 if |m| < N and zero otherwise.

Proof. The fact that the expression in (3.1.17) is equal to the middle term in (3.1.18)
is a consequence of the trivial calculation:

| N #{kEZZ|j|§k§N}e2m'jx.

)C 2mjx
N+1/5 N+1 Zom);k ‘EN N+1

To Verify the second equality in (3.1.18) we use the simple geometric series identity
Lbr e N = 1500

to write for x # 0
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N omije eZﬂi(N+l)x -1 - eiﬂ(N+1)x em’(N—H)x _e—m'(N-'rl)x .
j; ¢ T T a7 am Py -
from which it follows that
i |j‘6271'ijx — Li <ei7[Nx Sln(ﬂ:(N'i‘ 1).X)> . (3119)
= 2mi dx sin(7x)
Likewise we prove that
_Zl ‘j|€2ﬂijx — 7Li (e—iﬂNx Sln(ﬂ(N+ 1)X)) . (3120)
el 27mi dx sin(7x)
Adding (3.1.19) and (3.1.20) we deduce
Z /]2 = 1.d (sin(zNx) §in(n(N+ 1)x) . (3.121)
T dx sin(7x)

ljI<N

Multiplying (3.1.21) by — 527 and adding Dy (x) we obtain

5 (1 gl ) e - SUEEN 0 L (g SO

= sin(7x) T dx (N +1)sin(7x)

Writing the preceding expression on the right as

(N+1)sin(m(N+1)x) cos(nNx) sin(7x) + (N+1) cos(n(N+1)x) sin(Nx) sin(7x)
(N+1)sin?(7x)

1 4 L sin(nNx) sin(7(N+1)x) } sin(mx) — { sin(7Nx) sin(7(N+1)x) } 7 cos(7x)
o (N-+1)sin?(mx)

)

computing the derivative of the expression in the curly brackets, and simplifying,
we finally obtain that

N . . 2
i (LI P L CESIE)
= N+1 N+1 sin(7x)
This proves the second identity in (3.1.18). ]

Definition 3.1.8. Let N be a nonnegative integer. The function Fy on T' given by
(3.1.22) is called the Fejér kernel.

The Fejér kernel Fy; on T" is defined as the product of the 1-dimensional Fejér
kernels, or as the average of the product of the Dirichlet kernels in each variable,
precisely, Fy\(x) = Fy(x) and
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F N Xlyeees X H F N Xj ]

:jI;Il(NH Y Dy xj>

(N+11 Z Z Dk| x1 Dkn (xn) .

Note that F}; is a trigonometric polynomial of degree nN.

Remark 3.1.9. Using the identities for Fy in (3.1.18), we may write for all N > 0

|m | ]\ 2zim.
Fir,oxm) = Y <1— O (R L (3.1.23)
= N+1 N+1

|mj|§N
1 A sin(m(N+Dx;) )
 (N+1)n ]l;ll ( sin(7x;) ) ’ (3.124)

thus Fjj > 0. Observe that FjJ'(x) = 1 for all x € T" and that F}(0) = (N+1)".

Proposition 3.1.10. The family of Fejér kernels {F}j}5_, is an approximate identity
on T".

Proof. Since F{} > 0 we have that ||F{||;1 = [p Fjdx. Also [p. Ffjdx = 1, in view
of identity (3.1.23). Thus properties (i) and (ii) of approximate identities (according
to Definition 1.2.15) hold. To prove property (iii) of the definition we make use of

identity (3.1.24). Using the fact that 1 < S Il T < % when |f| < Z, we obtain

Fy(x) < ! min (N 1) |x] ! 2< ! ﬁ—zmin N+1, Ly
MY =N+ [sin(zx)| '[sin(zx)] ) ~N+1 4 "]

when |x| < J. This implies that for § > 0 we have

2 dx 1 1

1
F dx < —— < —0
./5<|x<2 ) dx < N+14 s<iw<t [wo[* ~ 482N +1

—_

as N — oo, In higher dimensions, given x = (xi,...,x,) € [—1/2,1/2]" with |x| > 0,
thereisa j € {1,...,n} such that |x;| > §//n and thus

n
1
,,F"d</ )d /F Ydxg < 0.
R T Y N i

[x|>8 k#j

This proves the claim. U
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Exercises

3.1.1. Identify T' with [~1/2,1/2] and let () be an integrable function on T".
(a) If h(r) > 0 is even, show that /2(m) is real and |h( )| < 7(0) for all m € Z.

(b) If A(r) is odd and h(t) > 0 on [0,1/2), then i/2(m) is real and |[h(m)| < imh(1)
for all m € Z.

3.1.2. Suppose that % is a periodic integrable function on [—1/2,1/2) with integral
zero. Define another periodic function H on T by setting

Compute H(m) in terms of i(m) for m € Z.

3.1.3. Suppose that {g¢ }¢~0 is an approximate identity on R" as € — 0 and let

Ge(x) = Z ge(x+20).
ez

Show that the family {G¢ }¢~ is an approximate identity on T".
3.1.4. On T! define the de la Vallée Poussin kernel
VN()C) =2FN+1 (x) — FN()C) .

(a) Show that the sequence Vy is an approximate identity.
(b) Prove that Vy(m) = 1 when |m| < N+ 1, and Vy(m) = 0 when |m| > 2N +2.

3.1.5. (a) Show that for all [t| < 7 we have

——l<1-Z.

’ 1 1 2
sin(t) ¢ b2

(b) Let Dy be the Dirichlet kernel on T'. Prove that for N € Z* we have

3

Conclude that the numbers ||Dy/||;1 grow logarithmically as N — oo and therefore

the family {Dy}%_, is not an approximate identity on T'. The numbers ||Dy||1,
=1,2,... are called the Lebesgue constants.

[Hmt Part (a): Show that the derivative of Sm( 7~ 1'is nonnegative on (0, 2], or

4
w2

Tl —

t
equivalently prove that tan(z )sm( ) > t? on (0, Z1; this is a consequence of the in-

equality +/sin(¢)tan(r) > 2( = Sm tan( >) = 2tan( ) >t. Part (b): Replace Dy (¢)

((2N+1)mr)
by sin = TT

and estimate the difference using part (a).]



3.2 Reproduction of Functions from Their Fourier Coefficients 183

3.1.6. Let Dy be the Dirichlet kernel on T!. Prove that for all 1 < p < oo there exist
two constants Cp,c, > 0 such that

ep N+ 1)V < ||IDy ]|, < Cp 2N +1)VP

Lr

[Hint: Consider the two closest zeros of Dy near the origin and split the integral
into the intervals thus obtained.}

3.1.7. The Poisson kernel on T” is the function

|1 [mn| 27im-x
Prlv-wrn(x) = Z rl T ! € l

mezZr
and is defined for 0 < ry,...,r, < 1. Prove that P, ,, can be written as
27r _
P R 1+ r/ X B n 1 T
T yeeest X], 5K 1 27[le - 1 2 ) ; 2
—rje =i 1= 2rjcos(27mx;) + 7

and conclude that P, _,(x) is an approximate identity as r 1 1.

3.2 Reproduction of Functions from Their Fourier Coefficients

We can obtain very interesting results using the Fejér kernel.

Proposition 3.2.1. The set of trigonometric polynomials is dense in L (T") for 1 <
p < oo,

Proof. Given f in LP(T") for 1 < p < oo, consider f * Fy. Clearly f* Fy} is also a
trigonometric polynomial. In view of Theorem 1.2.19 (1), f * Fy; converges to f in
LP as N — oo. (]

Corollary 3.2.2. (Weierstrass approximation theorem for trigonometric polyno-
mials) Every continuous function on the torus is a uniform limit of trigonometric
polynomials.

Proof. Since f is continuous on T”, which is a compact set, Theorem 1.2.19 (2)
gives that f* Fy converges uniformly to f as N — co. But f * Fy is a trigonomet-
ric polynomial, and so we conclude that every continuous function on T" can be
uniformly approximated by trigonometric polynomials. (|

3.2.1 Partial sums and Fourier inversion

We now define the partial sums of Fourier series.



184 3 Fourier Series

Definition 3.2.3. Let R > 0 and N € Z" U {0}. The expressions

(FDp) = ¥ Flmens
IﬁfléR

are called the square partial sums of the Fourier series of f. Then the expressions

(f DR = ¥, flmper™m
meZ"
Im|<R
are called the circular (or spherical) partial sums of the Fourier series of f. The
expressions

(A E© = Y (IM)...(1M)f(m)62mm~x

meZ"
[mj|<N

are called the square Cesaro means (or square Fejér means) of f.
Finally, for R > 0 the expressions

(Fx B2 (x) = %(1 _ |’Z> Flmye2min

S
m[<R

are called the circular Cesaro means (or circular Fejér means) of f.

Observe that f IS}? is equal to the average of the expressions f * B:’ in the
following sense:
] R ]
(Fx B0 =5 [ (7 DY
This is analogous to the fact that the Fejér kernel Fy is the average of the Dirichlet
kernels Dy, Dy,...,Dy.

A fundamental problem is in what sense the partial sums of the Fourier series
converge back to the function as R — oo or N — oo, This problem is of central im-
portance in harmonic analysis and is in part investigated in this chapter.

‘We now ask the question whether the Fourier coefficients uniquely determine the
function. The answer is affirmative and simple.

Proposition 3.2.4. If f,g € L'(T") satisfy f(m) = g(m) for all m in Z", then
f=gae.

Proof. By linearity of the problem, it suffices to assume that g = 0. If f(m) =0
for all m € Z", Definition 3.2.3 implies that F}j « f = 0 for all N € Z™. In view of

Proposition 3.1.10, the sequence {F}j}ycz+ is an approximate identity as N — oo.
Therefore,

I = F x|y =0

as N — oo; hence || f||,1 = 0, from which we conclude that f =0 a.e. O



3.2 Reproduction of Functions from Their Fourier Coefficients 185
A useful consequence of the result just proved is the following.

Proposition 3.2.5. (Fourier inversion) Suppose that f € L'(T") and that

Y 1f(m)| <.
meZr
Then R
fx) =Y fmemm  ae, (3.2.1)

meZm

and therefore f is almost everywhere equal to a continuous function.

Proof. 1t is straightforward to check that both functions in (3.2.1) are well defined
and have the same Fourier coefficients. Therefore, they must be almost everywhere
equal by Proposition 3.2.4. Moreover, the function on the right in (3.2.1) is every-
where continuous. (]

3.2.2 Fourier series of square summable functions

Let H be a separable Hilbert space with complex inner product (-|-). Recall that
a subset E of H is called orthonormal if (f|g) =0 for all f, g in E with f # g,
while (f|f) =1 for all f in E. A complete orthonormal system is a subset of H
having the additional property that the only vector orthogonal to all of its elements
is the zero vector. We summarize basic properties about orthonormal systems in the
proposition below (see [307]).

Proposition 3.2.6. Let H be a separable Hilbert space and let { @y }rez be an or-
thonormal system in H. Then the following are equivalent:

(1) { @i }ez is a complete orthonormal system.

(2) For every f € H we have

12 =X 1/ 100

keZ

(3) For every f € H we have

f=1m Y (flod)ex,

N—oo k<N
where the series converges in H.

Now consider the Hilbert space space L?(T") with inner product

(r1g)= [ F@)s(0ar.
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Let ¢, be the sequence of functions & — e2™imE indexed by m € Z". The orthonor-
mality of the sequence {¢,,} is a consequence of the following simple but crucial
identity:

/ 2T DRl e — 1 whenm =k,
Jo.1" 0 whenm#k.

~

The completeness of the sequence {@,} is also evident. Since (f| @) = f(m) for
all f € L*(T"), it follows from Proposition 3.2.4 that if { f|¢,,) = 0 for all m € Z",
then f =0 ae.

The next result is a consequence of Proposition 3.2.6.

Proposition 3.2.7. The following are valid for f,g € Lz(T”):
(1) (Plancherel’s identity)

2= X 17
meZn

(2) The function f(t) is a.e. equal to the L*(T") limit of the sequence

lim Y Flm)emimt.
M_wo\m|§M

(3) (Parseval’s relation)

[ s@di = ¥ Fm)lm).

meZ

(4) The map f s {f(m)}mezr is an isometry from L*(T") onto (%
(5) For all k € Z" we have

fstk)="Y fmgk—m)=Y Flk—m)g(m).

meZ meZn

Proof. (1) and (2) follow from the corresponding statements in Proposition 3.2.6.
Notice that both sides of (3) converge by the Cauchy-Schwarz inequality. Parseval’s
relation (3) follows from polarization. By this we mean the following procedure.
First replace f by f + g in (1) and expand the squares to obtain

1£1% + 1g]12 +2Re (| ) =IIf + g%
=) |F(m) +g(m)|?

meZ’
=Y IfmPP+ Y 1gm)P+2Re Y. f(m)g(m)
meZ meZ meZ

and from this it follows that the real parts of the expressions in (3) are equal. Next
replace f by f+ig in (1) and expand the squares. Using Re (—iw) = Imw we obtain
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1£1% + llgll% +21m (£ | g) =I|f + g%
=Y |f(m)+ig(m)]*

mezn
=Y Fm)P+ Y [gm)*+2m Y f(m)g(m),
meZl" mezZn mezr

and thus the imaginary parts of the expressions in (3) are equal. Thus (3) holds.
Next we prove (4). We already know that the map f — {f(m)} ez is an injective
isometry. It remains to show that it is onto. Given a square summable sequence
{am }mezn of complex numbers, define

v t) — Z ameznim.

lm|<N

Observe that fy is a Cauchy sequence in L>(T") and it therefore converges to some
f € L*(T"). Then we have f(m) = a,, for all m € Z". Finally, (5) is a consequence
of (3) and Proposition 3.1.2 (6) and (3). [l

3.2.3 The Poisson Summation Formula

We end this section with an important result that connects Fourier analysis on the
torus with Fourier analysis on R". Suppose that f is an integrable function on R”
and let f be its Fourier transform. Restrict f on Z" and form the “Fourier series”
(assuming that it converges)

Z J/c\(m)eZﬂ.'im-x.

meZ"

What does this series represent? Since the preceding function is 1-periodic in every
variable, it follows that it cannot be equal to f, unless f is itself periodic. However,
it should not come as a surprise that it is in fact equal to the periodization of f
on R”. In other words, the Fourier expansion of a function on R” reproduces the
periodization of the function.

Theorem 3.2.8. (Poisson summation formula) Let | be a continuous function on
R” which satisfies for some C,8 > 0 and for all x € R"

FE) <O+ ) °
and whose Fourier transform frestricted on 71" satisfies

Y |f(m)| < oo (3.2.2)

meZ
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Then for all x € R" we have

Y fm)e™mr =Y flx+k), (3.2.3)

meZn keZ"

and in particular

Y fm) =Y fk)

meZ" keZ"

Proof. Define a 1-periodic function on T" by setting

= Z flx+k).

keZr

Itis straightforward to verify that || F || 1o 1) = [ fll 1 (e} thus F lies in L'(T"). We
prove that the sequence of the Fourier Coefﬁments of F commdes with the restriction
of the Fourier transform of f on Z". This follows from the calculation

/ fo-i—k —2mmxdx
T

" kezn

Z fx+k —2mmxd
keZ"

Z / 727rim~xdx
keZl 7 Z

— —2mim-x
= Js f(x)e dx

in which the interchange of the sum and the integral is justified by the Weierstrass
M-test of uniform convergence of series, since

yo oy G e G
WS (L4 [k+x|)m8 = & (1+/n+ |k +x])+8 = & (1+ [k[)r+d

where we used |k + x| > |k| — |x| > |k| — y/n. This calculation also shows that F is
the sum of a uniformly convergent series of continuous functions on [0, 1]", thus
it is itself continuous. It follows that (3.2.2) holds with |F(m)| in place of |f(m)|
Hence, Proposition 3.2.5 applies, and given the fact that F' is continuous, it yields
conclusion (3.2.3) for all x € T" and, by periodicity, for all x € R". ]

Example 3.2.9. We have seen earlier (Exercise 2.2.11) that the following identity
gives the Fourier transform of the Poisson kernel in R":

n+1
) 03 P G S
T (11 1EP)T
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The Poisson summation formula yields the identity

r ﬂ) e n

m1 AT Y, e e (3.24)
T2 kezr (1+ )2 mezr
which implies
r) 1 o
2 =Y, e (3.2.5)
T e 1+ k2T ez

It follows from (3.2.4) that

N S A R S S |
24 k) e\t en)’
kezm o} (€2 + k%) 2 7 ) mezn

from which we obtain the identity

1

1 1( &'t 5 1
— = lim - ~amelm| _ ) 3.2.6
k[T el—%e(r(";l)méne o (3.2.6)

keZm {0}

The limit in (3.2.6) can be easily calculated in dimension 1 using that

(1+e—25 1> n?
limo [ /=~ ) =

550 0 \1—e 26§ 3’
and this yields
y 1_z
k2 3

k#£0
Also, in dimension 1, from (3.2.5) we obtain the related identity
1 Z —2m|m| _ ] +672n

Zi—n —.
k€Z1+k2 meZ 1_6 o

Example 3.2.10. Let 0 < Re o < n. We introduce a smooth function (&) which is
equal to 1 on the ball |£] < 1 and vanishes outside the ball |£| < 2. We investigate
the behavior as x — 0 of the expression

eme~x

=% (%)

when x € [—1, 1)\ {0}. As in Example 2.4.9, let 1) be a smooth radial function on

R” that is equal to 1 outside the ball B(0,1/2) and vanishes on the ball B(0,1/4)

and define
=m(&)E[*)™

lim
R0

meZm\{0} [m]
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Let ®s(x) = 6 "P(x/5). The Poisson summation formula (Theorem 3.2.8) gives

eZﬂik~x ~(k n (k)e27rik-x ~ [k
() = AN
i ?(z) = 5, "5 2(x)

keZr

= (gxPr)x)+ Y, (gxPir)(x+m).
meZ"\ {0}

keZ"\{0}

It was shown in Example 2.4.9 that g(y) decays faster than the reciprocal of any
polynomial at infinity and is equal to x“’%F(”’zo‘)F(%)’l [y|*~" + h(y), where h
is a smooth function on R”. Since x # 0, it follows that g is smooth in a small rela-
tively compact neighborhood of x and, since {®, /R} R>0 1S an approximate identity,
Theorem 1.2.19 (2) yields that (g* @y /g )(x) — g(x) as R — . Assume for a moment
that

lim Y (gxPyp)(x+m)= Y  lim(gx D) (x+m). (3.2.7)
R czm {0} mezm {0} K7

Since x + m does not vanish for any m € Z" \ {0}, the function g is smooth in a
relatively compact neighborhood of x +m, and thus (g * @y /g)(x +m) — g(x+m)
as R — oo. Consequently, the sum on the right in (3.2.7) is equal to

Z glx+m).
meZ"\{0}
We conclude that
2;im-x __ 71:0‘*%1" n—a
lim ¢ a (I)(ﬂ) :#Ma "+ h(x),
R_’”mezn\{o} |m| R F(j)

where hy is a € function on [—%, %)” given by

hi(t)=h(t)+ Y. g(t+m).
meZm {0}

We now explain the passage of the limit inside the sum in (3.2.7). This is a con-
sequence of the Lebesgue dominated convergence theorem, provided we know that

C

for some constant C independent of R > 1 and of m. Indeed, the expression on the
left of this inequality is bounded by I + 11, where

R}’l
1=C¢, / x+m—y* " —— 4

me \x+m—y\§2\/ﬁ| ) (1+RJy|)>+2 Y
11 = C, / ! il d
T meyiz2yi (L m— )22 (1 RJy[) 22 @
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In 7 we have
L+RIy| > Rlx+m| —Rlx+m—y| > R|m| — 3R\/n—2R\/n > 3R|m|,
hence
1< Cl R 2272 < G glmf 2,

In 1T we use
(1+ e +m—=y)" (14 RIy[)" > (14 |m])™+!

while the term left produces a convergent integral, which is uniformly bounded in
R > 1. This proves (3.2.8).

Exercises

3.2.1. On T! let P be a trigonometric polynomial of degree N > 0. Show that P has
at most 2N zeros. Construct a trigonometric polynomial with exactly 2N zeros.

3.2.2. (Hausdorff-Young inequality) Prove that when f € LP(T"), 1 < p <2, the
sequence of Fourier coefficients of f is in £7' (Z") and

-~ N 1/p
(2 17ml) ™ <1l
mezZ"
Also observe that 1 is the best constant in the preceding inequality.

3.2.3. Use without proof that there exists a constant C > 0 such that for all t € R we
have

<CVN, N=234,...,

N . .
Z etklogkezkt
k=2

to construct an example of a continuous function g on T! with

Y [g(m)|? = oo

meZ

for all g < 2. Thus the Hausdorff—Young inequality of Exercise 3.2.2 fails for p > 2.

. . oo iklogk
[Hlnt Consider g(x) = Zk:z W

see Zygmund [388, Theorem (4.7) p. 199].]

e?™k*For a proof of the previous estimate,

3.2.4. (S. Bernstein) Let P(x) be a trigonometric polynomial of degree N on T!.
Prove that | P'||» < 47N||P|| .
[Hint: Prove first that P’ (x) /27iN is equal to

((6727171'N(-)P)* FNfl)(x) eZﬂTiNx _ ((e2m'N(-)P)* FNfl) (X) efzm‘Nx

and then take L™ norms.]
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3.2.5. (Fejér and F. Riesz) Let P(E) =YY axe*™*S be a trigonometric polyno-
mial on T' of degree N such that P(&) > 0 for all £. Prove that there exists a trigono-
metric polynomial Q(&) of the form Y'_ bye?™*S such that P(€) = |Q(&)[>.

[Hinz: Since P > 0 the complex-variable polynomial R(z) = YV v must
satisfy R(z) = z?VR(1/Z), and thus it must have N zeros inside the unit circle and
the other N outside. Therefore we may write R(z) = an [T}, (z — zx)™*(z — 1/Z¢)"
for some 0 < |zx| < 1 and r > 1 with ¥'3_, rx = N. Then take z = ¢2% |

3.2.6. Let g be a function on R” that satisfies |g(x)| + |g(x)] < C(1+ |x|)~"~9 for
some C, 8 > 0 and all x € R". Prove that

WY gm o)) = Y (Yoo

meZl kez" A
for any x,oc € R" and A > 0.

3.2.7. Verify the following identity when 0 < r < 1 and x € R”

n+1 1 1
r 2 ) 2 log T ylml g2mim-x
+ .

In the special case n = 1 and x € R we have

1 ﬁlog% B I—r
T (logd)2 4 [x—k2 1—2rcos(2mx) +12"

[Hint: Use identity (3.2.4) and Exercise 3.1.7 when n = 1.

3.2.8. Let y€ Rand A > 0. Show that

Z cos(2mky)  mcosh(2QmA(y—[y]— %))
& Ak A sinh(7A)
[Hint: Use Exercise 3.2.6 when n = 1 with x =0, & = —¥A, g(x) = 3 1= and sum

in m}

3.3 Decay of Fourier Coefficients

In this section we investigate the interplay between the smoothness of a function and
the decay of its Fourier coefficients.
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3.3.1 Decay of Fourier Coefficients of Arbitrary Integrable
Functions

We begin with the classical result asserting that the Fourier coefficients of any inte-
grable function tend to zero at infinity. One should compare the following proposi-
tion with Proposition 2.2.17.

Proposition 3.3.1. (Riemann—Lebesgue lemma) Given a function f in L' (T"), we

~

have that | f(m)| — 0 as |m| — oe.

Proof. Given f € L'(T") and € > 0, let P be a trigonometric polynomial such that
Ilf — Pl < e.If |m| > degree (P), then P(m) = 0 and thus

|Fm)| = F(m)— P(m)| < || £ —P|, <e.

~

This proves that | f(m)| — 0 as |m| — eo. O

Several questions are naturally raised. How fast can the Fourier coefficients of an
L' function tend to zero? Does additional smoothness of the function imply faster
decay of the Fourier coefficients? Can such a decay be quantitatively expressed in
terms of the smoothness of the function?

We answer the first question. Fourier coefficients of an L' function may tend to
zero arbitrarily slowly, that is, slower than any given rate of decay. To achieve this,
we need the following two lemmas.

Lemma 3.3.2. Given a sequence of positive real numbers {a,}_, that tends to
zero as m — oo, there exists a sequence {c}_, that satisfies

Cm = G, cmd 0, and  cpi2+cm > 20mr1 (3.3.1)
forallm=0,1,.... A sequence {c,};,_ that satisfies (3.3.1) is called convex.

Proof. Let ky = 0 and suppose that a,, < M for all m > 0. Find k; > ko such that
for m > k; we have a,, < M/2. Now find k, > k; + @ such that for m > k, we

have a,, < M /4. Next find k3 > k» + @ such that for m > k3 we have a,, < M/8.
Continue inductively in this way and construct a subsequence kg < k; < ky < --- of
the integers such that for m > k; | we have a,, < 2-/-IM and kjv1>kj+ ik
for j > 1. Join the points (ko,2M), (ki,M), (ko,M/2), (k3,M/4),... by straight
lines and note that by the choice of the sequence {k j};c:o the resulting piecewise
linear function % is convex on [0,c0). Define ¢,, = h(m) and observe that the se-
quence {cy };r_ satisfies the required properties. Exercise 3.3.1 contains an alterna-

tive proof.
O

Lemma 3.3.3. Given a convex decreasing sequence {c,,}_, of positive real num-
bers satisfying limy,_s. ¢;, = 0 and a fixed integer s > 0, we have that
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=)

Z (V—I— 1)(Cr+s + Cris+2 — 2cr+s+l) =Cs- (3.3.2)
r=0

Proof. We begin by observing the validity of the telescoping sum

N
r+1)(crprs+ Crogan — 2Cr1541
ZE)( )( r+s r+s+ r+s+ ) (3.3.3)
=5 — (N+1)(CopN+1 = CstN+2) — CsiN41 -
To show that the last expression tends to c; as N — oo, we take M = [%] and we use

convexity (Cop+j—Corbtjt1 = CotMtj41—Cspm+j42) 10 obtain

Cs+M+1 — Cs+N+2 = Cs+M+1 — Cs+M+2
+ CsM+2 — Cs+M+3
FCstN+1 — CsN+2
> (N =M+ 1)(cs+N+1 = CsN+2)

N+1
2 T(CS+N+1 —csin42) > 0.

The preceding calculation implies that (N + 1)(cs+n+1 — Cs+n+2) tends to zero as
N — o and thus the expression in (3.3.3) converges to ¢y as N — oo, O

The proof of Lemma 3.3.3 appears more natural after examining Exercise 3.3.3(a).
We now state the theorem we alluded to earlier.

Theorem 3.3.4. Let (dy,)mezr be a sequence of positive real numbers with d, — 0
as |m| — oo. Then there exists a function f € L'(T") such that f(m) > d for all
m € Z. In other words, given any rate of decay, there exists an integrable function
on the torus whose Fourier coefficients have slower rate of decay.

Proof. We are given a sequence of positive numbers {a,, }cz that converges to zero
as |m| — oo and we would like to find an integrable function on T! with f(m) > ay,
for all m € Z. Apply Lemma 3.3.2 to the sequence {ay, + a_m }m>0 to find a convex
sequence {cm tm>0 that dominates {ay, +a_m }m>0 and decreases to zero as m —» oo.
Extend ¢, for m < 0 by setting ¢,y = ¢}, Now define

=

F@) =Y (+1)(cj+cjra—2ci41)F(x), (3.3.4)
j=0

where F; is the (one-dimensional) Fejér kernel. The convexity of the sequence ¢,
and the positivity of the Fejér kernel imply that f > 0. Lemma 3.3.3 with s = 0 gives
that

oo

Zb(j—f—1)(cj+cj+2—2cj+1)HFjHL1 = < oo, (3.3.5)
J=
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since ||Fj||;1 = 1 for all j. Therefore (3.3.4) defines an integrable function f on T'.
We now compute the Fourier coefficients of f. Since the series in (3.3.4) converges
in L', for m € Z we have

8

f(m)

. (j+ 1)(cj+cjunr—2¢j51)F;(m)

J

[
s &

G+ D(ej+ejr2—=2¢j41) ( - ]|:n-|1> (3.3.6)

j=m|

oo

Z(r+ 1)(cr+\m\ + Criiml+2 — Zcr+\m\+l)
r=0

= Clm| = Cm>

where we used Lemma 3.3.3 with s = |m].
Let us now extend this result on T”. Let (d,;)meczr be a positive sequence with
dy, — 0 as [m| — oo. By Exercise 3.3.2, there exists a positive sequence (a;) jez With

fr, .. ,xn) = fx1) - f(xn),

~

where f is the function previously constructed when n = 1 so that f(m) > a,. It can
be seen easily using (3.1.7) that £ (m) > d,,. O

3.3.2 Decay of Fourier Coefficients of Smooth Functions

We next study the decay of the Fourier coefficients of functions that possess a cer-
tain amount of smoothness. In this section we see that the decay of the Fourier
coefficients reflects the smoothness of the function in a rather precise quantitative
way. Conversely, one can infer some information about the smoothness of a function
from the decay of its Fourier coefficients.

Definition 3.3.5. Given 0 < vy < 1 and f a function on T”, define the homogeneous
Lipschitz seminorm of order y of f by

|[f(x+h) — f(x)]
Iy, = sup LR
Y xheT" ||
h#0
and define the homogeneous Lipschitz space of order 7y as

Ay(T") = {f : T" = C with || f]|; <o}

Functions in AV(T") are called homogeneous Lipschitz functions of order 7.

There is an analogous definition for the inhomogeneous norm.
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Definition 3.3.6. For 0 < ¥ < 1 and f a function on T", define the inhomogeneous
Lipschitz norm of order y of f by

[f(x+h) = fx

11, = N1+ sup LRI )

h#0
Also define the inhomogeneous Lipschitz space of order 7y as
A(T") ={f : T" = C with /][, <oo}.
Functions in Ay(T") are called inhomogeneous Lipschitz functions of order 7.

Remark 3.3.7. Functions in both spaces Ay(T") and AY(TH) are obviously contin-
uous and therefore bounded. Moreover, the functional || - |4, is a norm on A(T").
The positive functional || - || ; satisfies the triangle inequality, but it does not satisfy
7
the property | f||; =0 = f =0 required to be a norm. It is therefore a semi-
v
norm on A,(T"). However, if we identify functions whose difference is a constant,

we form a space of the equivalence classes A,(T")/{constants} on which || - || Ay is
a norm.

Remark 3.3.8. We already observed that elements of /'\Y(T”) are continuous and
thus bounded. Therefore, Ay(T") C L=(T") in the set-theoretic sense. However, the
norm inequality || f||= < C||f]| A, for all f € Ay fails for all constants C. For exam-
ple, take f = N +sin(27mx;) on T" and let N — oo to see that this is the case.

The following theorem indicates how the smoothness of a function is reflected
by the decay of its Fourier coefficients.

Theorem 3.3.9. Let s € Z with s > 0.
(a) Suppose that 0% f exist and are integrable for all |ot| < s. Then

, max [9%f (m)|

f(m)| < (\/ﬁ) o= m+0, (3.3.7)

2w |m|$

and thus

[f(m)[(1+|m[*) =0
as |m| — eo. In particular this holds when f lies in €*(T"). )
(b) Suppose that d* f exist for all |a| < s and whenever || =s, 9% f are in Ay(T")
Jor some 0 <y < 1. Then

~ (Jayr X 0715,

[Flm)] < Qrp2H Pt

m#0. (3.3.8)
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Proof. Fix m € Z"\ {0} and pick a j such that |m;| = sup; 4, [m|. Then clearly
mj # 0. Integrating by parts s times with respect to the variable x;, we obtain

e—2mx'm

f_ax, (339
(—2mim;)s

Flm) = Tnf(X)e_z”i"""dx:(—l)s / (971)(x)

n

where the boundary terms all vanish because of the periodicity of the integrand.
Taking absolute values and using |m| < \/n|m;j|, we obtain assertion (3 3.7).

We now turn to the second part of the theorem. Let ¢; = (0,...,1,...,0) be the
element of the torus T” whose jth coordinate is one and all the others are zero. A
simple change of variables together with the fact that ¢™ = —1 gives that

/T"(aff )(x)e P dx = — / (9}F)(x— ) 250 .

which implies that

i 1 €j —2mix-m
L @inwe 2 max =2 | [031)(0 - (@)= 5))e 2 d,
Now use the estimate

1931114,

(@31)0) = @D = 5| < sy

and identity (3.3.9) to conclude the proof of (3.3.8). O
The following is an immediate consequence.

Corollary 3.3.10. Let s € Z with s > 0.
(a) Suppose that % f exist and are integrable for all || < s. Then for some constant
Cn,s We have

max (|| f1]1, max|q— [|0%I|1)
(1+|m])*

f(m)] < ey (3.3.10)

(b) Suppose that 9% f exist for all |ot| < s and whenever |a| = s, d* f are in /\y(T”)
for some 0 <y < 1. Then for some constant cihs we have

ma (|| 1] max g %] 4,)

(1 |m])s+7

[f(m)| < ¢, 3.3.11)
Remark 3.3.11. The conclusions of Theorem 3.3.9 and Corollary 3.3.10 are also
valid when y = 1. In this case the spaces Ay should be replaced by the space Lip1
equipped with the seminorm

_ [fx+h) = fO)]
[l = sup L =L,

h£0
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There is a slight lack of uniformity in the notation here, since in the theory of Lips-
chitz spaces the notation A; is usually reserved for the space with seminorm

R k) =270
1, = sue, ] '

h#£0

The following proposition provides a partial converse to Theorem 3.3.9. We
denote below by [[s]] the largest integer strictly less than a given real number s.
Then [[s]] is equal to the integer part [s] of s, unless s is an integer, in which case

)= 5] - 1.

Proposition 3.3.12. Let s > 0 and suppose that f is an integrable function on the
torus with R
Fm)| < 1+ |y~ (3.3.12)

Jor allm € Z". Then f has partial derivatives of all orders |a| < [[s]], and for 0 <
y <s—[[s]], 9% f € Ay for all multi-indices o satisfying |ot| = [[s]].

Proof. Since f has an absolutely convergent Fourier series, Proposition 3.2.5 gives
that R
fx) =Y flmyemm, (3.3.13)
meZn

for almost all x € T".

Suppose that a series g = ¥, g satisfies ¥, [|0P g |1~ < oo for all |B| < M. Then
the function g is in € and 9P g =¥, 9P g,,; indeed this can be proved by induction
on the degree of the multi-index, since for all || < M — 1 we have

m(?ﬁg(x—&—tej) Zl Pl gm(x+tej) — 8ﬁgm(x)
t—0 1 t—0 1
= Z&,aﬁ g(x)

where the passage of the limit inside the sum is due to the Lebesgue dominated con-
vergence theorem, which can be applied using the uniform convergence of ¥, 9 J-&ﬁ g
via the mean value theorem.

Using the preceding observation, the function f in (3.3.13) is %]l (T") and

(0%)() = Y, Flm)(2im)eim

meZ"

for all multi-indices (@, ..., a,) with |a| < [[s]], since

Y F(m) sup |(27im)*e* ™ ™| < oo,
meZ" xeT?

which holds because of (3.3.12).
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Now suppose that |a| = [[s]] and that 0 < y < s — [[s]]. Then

(%) (x+ 1) = (U)W = Y, Flm)(2mim)*emxm (27t —1) |

mezZ

<@m)b) Y fmfls) c

meZ"

<c2@n)nl”,

217 @2m)Y || "m|"
(L [ml)rts

where we used the relation [[s]] +7y—s—n < —n to conclude the convergence of the
series and the fact that

|627rim-h _ 1| < min(27275|m| ‘h|) < 217}/(273))/‘7”|y|h|y'

Next we recall the definition of functions of bounded variation.

Definition 3.3.13. A measurable function f on T! is said to be of bounded variation
if it is defined everywhere and

M
Var(f):sup{2|f(xj)—f(xj,1)|: 0=1xp <x <"'<XM=1} < oo,
j=1

where the supremum is taken over all partitions of the interval [0, 1]. The expression
Var(f) is called the total variation of f. The class of functions of bounded variation
on T' is denoted by BV (T?!).

Examples of functions of bounded variation can be constructed as follows: given
f1, f> nonnegative integrable functions on [0, 1] with

./O.]fl(t)dt:/olfz(t)dt,

then the periodic function

s = [ fiyar— [ o,

defined on[0, 1], is of bounded variation. Analogous examples can be constructed
when fi and f, are replaced by nonnegative finite Borel measures on [0, 1].

Every function of bounded variation can be represented as the difference of two
(not necessarily strictly) increasing functions and thus it has a finite derivative at
almost every point. Moreover, for functions of bounded variation, the Lebesgue—
Stieltjes integral with respect to d f is well defined.



200 3 Fourier Series
Proposition 3.3.14. If f is in BV (T"), then

S Vag)
Flm)| <

whenever m # 0.

Proof. Integration by parts gives

. o i o 2mimx
== - L d = / d 5
L e e
where the boundary terms vanish because of periodicity. The conclusion follows
from the fact that the norm of the measure d f is the total variation of f. [l

The following chart (Table 3.1) summarizes the decay of Fourier coefficients in
terms of scales of spaces measuring the smoothness of the functions. Recall that
for g > 0, f(m) = o(Jm|~) means that |f(m)||m|? — 0 as |m| — o and f(m) =
O(|m|~%) means that | f(m)| < C|m|~4 when |m| is large. In this chart, we denote by
&*7(T") the space of all * functions on T", all of whose derivatives of total order

s lie in Ay(T"), for some 0 < y < 1.

SPACE SEQUENCE OF FOURIER COEFFICIENTS
LT(T") o(1)

Lr(T") )

L2 (Tn) ZZ(Zn)
Ay(T") O(|m| ")
BV(T") o(jm|™")
D) o([m| 1)
GI(T") O(lm ")
260 o([m[?)
1T o(lm[ > 7)
(1) o([m| )

¢ (T") o(lm[™) forall N > 0

Table 3.1 Interconnection between smoothness of functions and decay of their Fourier coeffi-
cients. Wetake 0 < y<land 1 < p <2.

3.3.3 Functions with Absolutely Summable Fourier Coefficients

Decay for the Fourier coefficients can also be indirectly deduced from knowledge
about the summability of these coefficients. The simplest kind of summability is in
the sense of ¢!. It is therefore natural to consider the class of functions on the torus
whose Fourier coefficients form an absolutely summable series.
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Definition 3.3.15. An integrable function f on the torus is said to have an absolutely
convergent Fourier series if

Y 1fm)] < +ee.

meZ

We denote by A(T") the space of all integrable functions on the torus T" whose
Fourier series are absolutely convergent. We then introduce a norm on A(T") by

setting R
HfHA(T”) = Zz' |f(m)
meZ’

In view of Proposition 3.2.5, every function f in A(T") can be changed on a set of
measure zero to be made continuous and under this modification, Fourier inversion

_ Z f(m)eZEim-x

meZ

holds for all x € T". Thus functions in A(T") are continuous and bounded. More-
over, Theorem 3.3.9 yields that every function in " (T") whose partial derivatives
of order n are in Ay, ¥ > 0, must lie in A(T"). The following theorem gives us a
significantly better sufficient condition for a function to be in A(T").

Theorem 3.3.16. Suppose f is a given function in /2 (T") and that all partial
derivatives of order [5] of f lie in AY(T”)for some y with 5 —[5] <y < 1. Then f
lies in A(T") and

HfHA ™) = )|+C(” 7) sup. ||8“fHA (Tn)?

lal=[3]
where C(n,y) is a constant depending on n and Y.

Proof. Foreach ¢ =0,1,2,..., let

S =

R 1/2
( If(m)|2> .
20<|m|<2t+1

We begin by writing
£ Loy = 1€ \+Z Y 1fm)] <O |+@222Sg, (3.3.14)
020 <|m| <241

where we used the Cauchy-Schwarz inequality and the fact that there are at most
2" points in Z" inside the open ball B(0,2¢*1), for some dimensional constant c,.

Notice that for a multi-index m = (my,...,m,) satisfying 2¢ < |m| < 2/*! and for
jin {1,...,n} such that |m;| = sup, [m;| we have
mj| W|

Z 5

(3.3.15)

1
20 = Vi

3
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For 1 < j < n, let e; be the element of R" with zero entries except for the jth
coordinate, which is 1, and define

h=2"""2e;. (3.3.16)

Using the elementary fact that |t| < & = |e — 1| > 2|t|/7, we obtain

— -2 2 [2mm; m
‘e2mm h | | 27im ;2™ 1| > = ‘ 22+2}| — M 7 (3.3.17)
T
h 2m)| hich is al ¢ . 2wm;| - amatl
whenever S~ < 7, which is always true since == < =745

‘We now have

n
ss=Y Y IfmP
J=1 2t <Jm|<2f+1
|m j|=supy [my|
4 27im-h, " 27mim |2[ﬂ]
Z Yo 1P f(m )|2712
= 2[<‘m|<2é+l ‘ /|
|m j|=supy my|

I’l[ ] 4 im~['i /n\
a5 L Tty — 12102 f (m) P

2752[ 2 1meZ"

— 2 23] ZH n/Z]f +hf) [n/ZJin2
<2l ZH n/Z]f +hé) [n/Z]inw

<2750 sup HBO‘fH Z|h[|27
|o]=[5]

C 2 20[3)-2ty sup ||8°‘fHA ,
|a|=[5]

where we used (3.3.17), (3.3.15), and (3.3.16). We conclude that

S, SC’/LVZ—[([%HY 5 SluI[) ||aocfHAy

which inserted in (3.3.14) yields the desired conclusion since y > 5 — [5]. O

Exercises

3.3.1. Given a sequence {a,};_ of positive numbers such that a,, — 0 as n — oo,
find a nonnegative integrable function 4 on [0, 1] such that
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1
/ (D)™ dt > ap,.
0

Use this result to deduce a different proof of Lemma 3.3.2.
[Hint: Try h=e ¥ (supa; — sup aj)(k+2)x kst 1].}

k=0 j>k J>k+1 k+27
3.3.2. Prove that given a positive sequence {d }mezr With dpy — 0 as |m| — oo,
there exists a positive sequence {a;} jcz With a,, - - a, > dim,,..m, and a; — 0 as
|j] = ee.

3.3.3. (a) Use the idea of the proof of Lemma 3.3.3 to prove that if a twice contin-
uously differentiable function f > 0 is defined on (0,0) and satisfies f’(x) <0 and
f"(x) >0 for all x > 0, then lim,_,e xf” (x) = 0.

(b) Suppose that a continuously differentiable function g is defined on (0,e) and
satisfies g > 0, g’ <0, and [ g(x) dx < 0. Prove that

lim xg(x) = 0.

X—ro0

3.3.4. Prove that for 0 < y < § < 1 we have Hf”/iy <Cuys

il 4, for all functions

f and thus /\5 is a subspace of Ay.

3.3.5. Suppose that f is a differentiable function on T! whose derivative f’ is in
L?(T"). Prove that f € A(T") and that

Loy
1 llaary < 111 +g(§of )1z
J

3.3.6. (a) Prove that the product of two functions in A(T") is also in A(T") and that

HngA(T”) S HfHA(T”)HgHA(T”)'

(b) Prove that the convolution of two square integrable functions on T" always gives
a function in A(T").

3.3.7. Fix 0 < a < 1 and define f on T! by setting

flx) = Z o—ak 2mizkx

k=0

Prove that the function f lies in Aqg (T'). Conclude that there does not exist positive
B > o such that for all f in Ag(T") we have sup,,.z [m|P|f(m)| < ee.

[Hint: For h # 0 pick N € Z such that 2V || > 1 > 2¥~1|a|. To estimate the differ-
ence | f(x+h) — f(x)], consider the cases k < N and k > N + 1 in the sum.]
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3.3.8. Use without proof that there exists a constant C > 0 such that

N . .
Z ezk logkezkt
k=2

sup <CVN, N=2734,...,

teR

to prove that the function

is in A, /2(T") but not in A(T"). Conclude that the restriction s > 1/2 in Theorem
3.3.16 is sharp.
[Hint: Estimate the difference |g(x+ h) — g(x)| using the summation by parts iden-

tity in Appendix F, taking sums of the sequence e/¥108k 27k
2mikh ]

and differences of the
e

sequence

3.3.9. Show that there exist sequences {a, }mezn that tend to zero as |m| — oo for
which there do not exist functions f in L' (T") with f(m) = a,, for all m.

[Hint: Suppose the contrary. Then the open mapping theorem would imply the in-
equality || f{[z1 ) < A||f||gw<zn) for some A > 0. To contradict it, fix a smooth
nonzero function 4 equal to 1 on B(0, 1) and supported in B(0, ). For b > 0 de-
fine g,(x) = h(x)e’”“*”’)"“2 and extend g;, to a 1-periodic function in each variable
on R”. Use that g,(m) = [ h(y)(1+ ib) /2~ 5" gy and let b — oo in the
inequality [|gp||z1 (pn) < Al [|¢=(zn) to obtain a contradiction. ]

3.4 Pointwise Convergence of Fourier Series

In this section we are concerned with the pointwise convergence of the square partial
sums and the Fejér means of a function defined on the torus.

3.4.1 Pointwise Convergence of the Fejér Means

We saw in Section 3.1 that the Fejér kernel is an approximate identity. This implies
that the Fejér (or Cesaro) means of an L? function f on T" converge to it in L? for any
1 < p < eo. Moreover, if f is continuous at x, then the means (F}} * f)(xo) converge
to f(xp) as N — oo in view of Theorem 1.2.19 (2). Although this is a satisfactory
result, it is natural to ask what happens for more general functions.
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Using properties of the Fejér kernel, we obtain the following one-dimensional
result regarding the convergence of the Fejér means:

Theorem 3.4.1. (Fejér) If a function f in L'(T") has left and right limits at a point
Xo, denoted by f(xo—) and f(xo+), respectively, then

%(f(xo-k)-&-f(m—)) as N —oo. (3.4.1)

(Fn*f)(x0) =
In particular, this is the case for functions of bounded variation.
Proof. Let us identify T' with [—1/2,1/2]. Given € > 0, find § € (0,1/2) such that

’f(xo +1)+flxo—1)  flxot+)+f(xo—)

0<t<o
<t<6 = 3 3

‘ <e. (342

Using the second expression for Fy in (3.1.18), we can find an Ny > 0 such that for
N > Ny we have

Si“<”(N+1)’)>2< L1 e (43

1
sup Fy(t)=—— sup ( . e —
§<i<j N+1 s<i<}) sin(7t) N+ 1sin*(n§)
We now have
(Fn * f)(x0) — f(x0+) / Fy(t) (f(xo+1) — f(xo+)) dt ,

(Fnv*f)(x0) = f(xo—) = | Fn(t)(f(x0—1) — f(xo—))dt.

T!

Averaging these two identities and using that the integrand is even, we obtain

(Fy = £)(x0) = w

/ X X0 — X X0—

(3.4.4)

We split the integral in (3.4.4) into two pieces, the integral over [0, §) and the inte-
gral over [8,1/2]. By (3.4.2), the integral over [0, 0) is controlled by € [1 Fy(r) dt =
€. Also (3.4.3) gives that for N > Ny

‘/Sl/zFN(Z)(f(xo—f);f(XoJrf) f(xo—);rf(onr))d['

(||f o)+ 1= flxo)|| 1) = ge(f1x0),

where ¢(f,xo) is a constant depending on f and xo. We have now proved that given
€ > 0 there exists an Ny such that for N > Ny the second expression in (3.4.4) is
bounded by 2€ (¢(f,xo) + 1). This proves the required conclusion.
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Functions of bounded variation can be written as differences of increasing func-
tions, and since increasing functions have left and right limits everywhere, (3.4.1)
holds for these functions. (]

We continue with an elementary but very useful application of the preceding
result.

Proposition 3.4.2. Let xo € T' and let f be a complex-valued function on T'. Sup-
pose that the left and right limits of [ exist as x — xo and that the partial sums
(Dirichlet means) (Dy * f)(xo) converge. Then

(D F)(x0) = 5 (Fro) + F(30-))
as N — oo,
Proof. If (D * f)(x0) — L(x0) as N — oo, then

(i )(ag) = DD OUD Tt DU SIO0)

as N — oo But (Fy * f)(x0) — 3 (f(x0+) + f(x0—)) as N — o in view of Theorem
3.4.1. We conclude that

L) = 5 (Ft) + F(x0-))

Thus (Dy * f)(x0) — %(f(xo+) +f(xo—)) as N — oo, O

This theorem is quite useful when we have a priori knowledge that the Fourier
series converges. For instance, consider the following example.

Example 3.4.3. On (—1/2,1/2) let £(t) =t and f(1/2) = f(—1/2) = 1000. Then
f is discontinuous at the point —1/2 = 1/2 but it has left and right limits at this
point:

1 1
lim )= —= lim f(t)==.
Jim SO == lim S0 =

(3.4.5)

~ . i(fl)m ~

Moreover f(m) = =—— when m # 0 and f(0) = 0 by Exercise 3.4.1 (a). It is not
hard to see that the series

. 1

i (_l)m i i eme()H»j)

(Dyf)x)=5= ) ~——&™m=_— (3.4.6)
2T o fmey ™ 2 olmey M
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converges for every x € (—1/2,1/2). Indeed, by Appendix F, (3.4.6) equals

i1y 2im(x+1) —2mim(x+1)
L5 (@t _zamr)

L Zl i(e2ﬂim(x+%)7e—27rim(x+%)) 1 71
2w = k+1 &

which has a limit as N — oo, since the geometric sums

1 _ o E2mi(N+1)(x+3)

N
Z +2mim(. x+ -1
— 1 _ et2milx+})

are bounded above independently of N when x € (—1/2,1/2). We conclude that

. 2mim(x+3) in(2 1
f(x) =x= lim — ) e lim sin@am(x+3))

0<im<N m N—oo 2nm

0<|m|<N

whenever |x| < 1/2. Moreover, we have that

(Dy+£)(1/2) = im Loy Yoy,

=% 2T o _fmj<n

which is the average of the left and right limits in (3.4.5) as Proposition 3.4.2 states.
Exercise 3.4.2 contains other applications of this sort.

3.4.2 Almost Everywhere Convergence of the Fejér Means

We have seen that the Fejér means of a relatively nice function (such as of bounded
variation) converge everywhere. What can we say about the Fejér means of a general
integrable function? Since the Fejér kernel is an approximate identity that satisfies
good estimates, the following result should not come as a surprise.

Theorem 3.4.4. (a) For f € L'(T"), let

H(f) = sup |f*Fyl.

NeZ+

Then 7 maps L' (T") to L' (T") and LP(T") to itself for 1 < p < oo.
(b) For any function f € L'(T"), we have as N — o

(Fyxf)—f a.e.

Proof. 1t is an elementary fact that [ < Z = |sint| > 2|¢|; see Appendix E.
1 1]

Using this fact and the expression (3.1.18) we obtain for all ¢ in [—5, 5],
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1 2

TN+
N+l
=7

sin(w(N +1)t)
sin(7t)

sin(w(N +1)1)
(N+1)t

N+l (5, ]
< - e
=73 mm(”’(NH)zﬂ)
7 N+l

2 T+ (N+ 122

|E (1)]

2

For t € R let us set (t) = (1+¢|*)~! and @¢(t) = L¢(%) for € > 0. For x =
(x1,...,%,) € R" and € > 0 we also set

P(x) = @(x1)-- o)

and @ (x) = ¢ "® (e~ 'x). Then for [t| <  we have |Fy(t)| < %z(pg(t) with € =
(N+1)~!, and fory € [, 3]" we have

2

IFi0) < (%) ®ely),  with e=(N+1)"".

Now let f be an integrable function on T” and let f; denote its periodic extension

on R". For x € [—1,1]" we have

H(f)(x) = sup

N>0

2 yn b -y)|d
<5y [ 120Ul lay 54

< 5"sup - |De(v)| [(foxo)(x—y)|dy

>0

=5"9 (foxo)(x),

where Q is the cube [—1,1]" and ¢ is the operator defined on integrable functions
on R" by
9 (h) = sup |h| * D .
>0
If we can show that ¥ maps L' (R") to L'**(R"), the corresponding conclusion for
¢ on T" would follow from the fact 57(f) < 5"9(foxo) proved in (3.4.7) and the
sequence of inequalities

1Py < 51 G020 oy < 5" CloZlisey = ey
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Moreover, the L” conclusion about .5# follows from the weak type (1, 1) result and
the trivial L™ inequality, in view of the Marcinkiewicz interpolation theorem (The-
orem 1.3.2). The required weak type (1,1) estimate for ¢ on R" is a consequence of
Lemma 3.4.5. Modulo the proof of this lemma, part (a) of the theorem is proved.
To prove the statement in part (b) observe that for f € € (T"), which is a dense
subspace of L', we have Fyj * f — f uniformly on T" as N — oo, since the sequence
{Fy}x is an approximate identity. Since by part (a), 7 maps L' (T") to L'=(T"),
Theorem 2.1.14 yields that for f € L'(T"), F{ x f — f a.e. O

We now prove the weak type (1, 1) boundedness of ¢ used earlier.

Lemma 3.4.5. Let ®(x1,...,x,) = (1+ |x1|?) 7 - (14 |x,]?) " and for € > 0 let
D, (x) = £7"P (e~ 'x). Then the maximal operator

G(f) = sup|f]+ Pe

e>0
maps L' (R") to L**(R").

Proof. LetIy=[—1,1]and [y = {t e R: 2°"" < |¢| <2} fork=1,2,.... Also, let
I be the convex hull of I, that is, the interval [—2" , 2"]. For a, ..., a, fixed positive
numbers, let M, . 4, be the maximal operator obtained by averaging a function on
R” over all products of closed intervals J; X --- X J,, containing a given point with

|J1| :2“2|J2‘ = ...:2""|Jn|,

In view of Exercise 2.1.9(c), we have that M,, . ,, maps L' to L' with some con-
stant independent of the a;’s. (This is due to the nice doubling property of this family
of rectangles.) For a fixed € > 0 we estimate the expression

|f(—ey)|dy
+31) - (1+y2)

@O = [, 5

Split R" into n! regions of the form |y; | > --- > |y;,|, where {ji,...,jn} is a per-
mutation of the set {1,...,n} and y = (y1,...,y,). By symmetry, we examine the
region % where |yj| > -+ > |y,|. Then for some constant C > 0 we have

F(=ey)ldy 3 ki) [
/ﬁ2(1+y1) S Z 22 /Ikl /Ik,,lf( €y)|dyg, --dyr,

(I4yn) — i

and the last expression is trivially controlled by the corresponding expression, where
the I;;’s are replaced by the I;’s. This, in turn, is controlled by

o ki ky—1

Y Yo Y Ot IM -, ((0). (34.8)

K1=0/kr=0 k=0
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Now set s, = k1 —ka,...,s, = k; — ky, observe that s; > 0, use that

o~ (kitethn) < 2*%‘2*% o]

)

and change the indices of summation to estimate the expression in (3.4.8) by

c’ Z Z ZZ’TZ’E-~-2’%M52,,_,,sn(f)(0).

=0s5,=0 sp=0

Argue similarly for the remaining regions |y; | > --- > |y;,|. Finally, translate to an
arbitrary point x to obtain the estimate

(P f)(x |<C””'Z 22 B 2TRM,, ().

sp=0 Sp=

Now take the supremum over all € > 0 and use the fact that the maximal functions
5, map L' to L' uniformly in s, ... s, as well as the result of Exercise 1.4.10
to obtam the desired conclusion for 4. t

3.4.3 Pointwise Divergence of the Dirichlet Means

We now pass to the more difficult question of convergence of the square partial sums
of a Fourier series. It is natural to start our investigation with the class of continuous
functions. Do the partial sums of the Fourier series of continuous functions converge
pointwise? The following simple proposition warns about the behavior of partial
sums.

Proposition 3.4.6. (a) (duBois Reymond) There exists a continuous function f on
T! whose partial sums diverge at a point. Precisely, for some point xo € T' we have

limsup Z F(m)e¥0m| = oo
N—reo meZ
mj|<N

(b) There exists a continuous function F on T" and xo € T' such that the sequence

= o0

lim sup F(m)ezm(xoml Fxomy Xy

N—yoo

meZ
mj|<N

forall x5,...,%y, in T'.
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Proof. The proof of part (b) is obtained by considering the continuous function
F(x1,...,x,) = f(x1), where f is as in part (a). Then we have

(FxDY)(x1,...,x,) = (f*Dn)(x1)

and thus the square partial sums of F diverge on the (n — 1)-dimensional plane
{ (X052, -+, Xn) = X2, ,%, € TLL

We now prove part (a) using functional analysis. For a constructive proof, see
Exercise 3.4.7. Let C(T") be the Banach space of all continuous functions on the
circle equipped with the L norm. Consider the continuous linear functionals

f = In(f) = (Dn+£)(0)

on C(T!) for N =1,2,.... We show that the norms of the Ty’s on C(T') converge to
infinity as N — 0. To see this, given any integer N > 100, let @y (x) be a continuous
even function on [—1,1] that is bounded by 1 and is equal to the sign of Dy/(x)
except at small intervals of length (2N 4 1)~2 around the 2N + 1 zeros of Dy. Call
the union of all these intervals By and set Ay = [—%, 3]\ By. Then

/ |DN(x)|dx+‘/ on(x)Dy(x)dx| <2|By|(2N +1) = 2.
By By

Using this estimate we obtain

Tl 2 o) =, Prt-oav(oyi

> /AN |DN(x)|dx— ’/BNDN(X)(pN(x)dx

_ /Tl | Dy (x)] dx — ‘/BNDN()C)(pN(x)dx
4 N1

ol ?

It follows that the norms of the linear functionals 7y are not uniformly bounded. The
uniform boundedness principle now implies the existence of a function f € C(T!)
and of a sequence N; — oo such that

_/BN |Dn (x) | dx

T, (f)] = o

as j — oo. The Fourier series of this f diverges at xo = 0. U
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3.4.4 Pointwise Convergence of the Dirichlet Means

We have seen that continuous functions may have divergent Fourier series. How
about Lipschitz continuous functions? As it turns out, there is a more general condi-
tion that implies convergence for the Fourier series of functions that satisfy a certain
integrability condition.

Theorem 3.4.7. (Dini) Let f be an integrable function on T', let ty be a point on T!
Jor which f(to) is defined and assume that

/ fett0) = fw)l 4 . (349
<1 7|

Then (D% * f)(to) — f(to) as N — co.
(Tonelli) Let f be an integrable function on T" and let a = (ay,...,a,) € T". If f is
defined at a and

/‘. |<l.../ |<1|f(x_|_a)_f(a)dx”..-d.x1<oo, (3410)
x1|<5 x| <L

e -+« |xal
then we have (D} * f)(a) — f(a) as N — oo.

Proof. Since the one-dimensional result is contained in the multidimensional one,
we prove the latter. Replacing f(x) by f(x+a)— f(a), we may assume that a = 0
and f(a) = 0. Using identities (3.1.15) and (3.1.14), we can write

(2N—|— l)ﬂ:xj)

n = - - Sin( e
(DN*f)(0>—/Tnf( ’“),Ul Sin(mx) e (3.4.11)

1 (sin(ZNnxj) cos(mx;)

= | f0]]

+ cos(2N7rxj)) dx,---dxy .
JTn =1

sin(7x;)

Expand out the product to express the integrand as a sum of terms of the form

{f(—x)HW}Hsm(anxj) [T cosNax),  (3412)

el sin(7x; el ke{12,. 03\

where [ is a subset of {1,2,...,n}; here we use the convention that the product over

an empty set of indices is 1. The function f; inside the curly brackets in (3.4.12)
is integrable on [f%, %)" except possibly in a neighborhood of the origin, since
|sin(7x;)| > 2[x;| when |x;| < 1. But condition (3.4.10) with @ = 0 and f(a) =0
guarantees that f; is also integrable in a neighborhood of the origin. Expressing the

sines and cosines in (3.4.12) in terms of exponentials, we obtain that the integral of
(3.4.12) over [7%7 %)" is a finite linear combination of Fourier coefficients of f; at

the points (£N,...,£N) € Z". Applying Lemma 3.3.1 yields that the expression in
(3.4.11) tends to zero as N — oo, [l
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The following are consequences of this test.

Corollary 3.4.8. (a) (Riemann’s principle of localization) Let f be an integrable
function on T' that vanishes on an open interval I. Then Dy * f converges to zero
on the interval I.

(b) Let a = (ai,...,a,) € T" and suppose that an integrable function f on T" is
constant on the cross

{x=(x1,...,%0) €T": |xj—aj| < 8; forsome j},
where 0 < 6; < 1/2 are fixed. Then (D}, * f)(a) — f(a) as N — oo.

Proof. (a) Letty € 1. If f vanishes on /, condition (3.4.9) holds, since the function
t— f(t+19) — f(to) vanishes on —fo + I, which is an interval containing the origin,
and is integrable outside —#o -+ I. Thus (Dy * f)(t9) — f(t9) = 0 for every #p € I.
(b) We need to show that the function

[f(x+a)— f(a)|

e -+

is integrable over T = [—1/2,1/2)". The integral of this function over T" is equal
to its integral over the region

S={(x1,...,x0) €T": |xx| > & forall k},

since f(x+a)— f(a) vanishes whenever |x;| < §; for some j € {1,2,...,n}. Buton
S we have that
[fx+a)—fla)| _ |f(x+a)—f(a)
el T 86y

and this function is integrable over S, since f is. We deduce that (3.4.10) holds. [
Corollary 3.4.9. Let a € T" and suppose that f € L' (T") satisfies
[f(x) = fa)| < Clxr —ar|* -+ [y — an|™

for some C,€; > 0 and for all x € T". Then the square partial sums (D}, * f)(a)
converge to f(a).

Proof. Note that condition (3.4.10) holds. O

Corollary 3.4.10. (Dirichlet) If f is defined on T' and is a differentiable function
at a point a in T', then (Dy * f)(a) — f(a).

Proof. There exists a 6 > 0 (say less than 1/2) such that |f(x) — f(a)|/|x — a] is
bounded by |f'(a)| + 1 for |x —a| < 8. Also |f(x) — f(a)|/|x — a| is bounded by
| f(x) — f(a)|/6 when |x —a| > . It follows that condition (3.4.9) holds. O
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Exercises

3.4.1. Identify T! with [~1/2,1/2) and fix 0 < b < 1/2. Prove the following:

(a) The mth Fourier coefficient of the function x is ig;r): when m # 0 and 0 when
m=0.

(b) The mth Fourier coefficient of the function ¥ p) is %me) when m # 0 and
2b when m = 0.

(¢) The mth Fourier coefficient of the function (1 — %) s % when m # 0

and b when m = 0.
(d) The mth Fourier coefficient of the function |x| is — 2m2n2 + §m2> > when m # 0

and % when m = 0.
(e) The mth Fourier coefficient of the function x? is % when m # 0 and ﬁ

when m = 0. o
(f) The mth Fourier coefficient of the function cosh(27mx) is (11]’1)12 31“7?”
(g) The mth Fourier coefficient of the function sinh(27x) is % %
3.4.2. Use Exercise 3.4.1 and Proposition 3.4.2 to prove that
y 1 o y 1
=, (2k+4-1)2 4 keZ {0} kK3
(_1)k+1 _ 71.2 Z (—l)k - 27
weroy K 6 [+l ef—eT

3.4.3. Let M > N be given positive integers.
(a) For f € L'(T"), prove the following identity:

(D * £)(3) = A Fur )0~ 1 (B )

M+1 Jj ~ . .,
TM-N (1_M|+|1>f(1)ezw'
N<|jl<M

(b) (G. H. Hardy) Suppose that a function f on T' satisfies the following condition:
for any € > O there exists an a > 1 and a ky > O such that for all kK > ky we have

Y fml<e.

k<|m|<[ak]|

Use part (a) to prove that if (Fy * f)(x) converges (uniformly) to A(x) as N — oo,
then (Dy * f)(x) also converges (uniformly) to A(x) as N — oo.
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3.4.4. Use Proposition 3.4.2 to show that for 0 < b < % we have

N
. sin(2zbm) 2ribm _ 1 2%.
Noveo &= mm 2

m#0
[Hint: Use Exercise 3.4.1(b).]

3.4.5. Let f be an integrable function on T" and g be a bounded function on T"
and let K be a compact subset of T". Consider the family .% = {f,,: w € K}, where
Sfw(x) = f(x—w)g(x) for all x € T". Prove that the Riemann-Lebesgue lemma holds
uniformly for the family .%. This means that given € > O there exists an Ny(K) > 0

such that for [m| > Ny we have | f,,(m)| < & for all w € K.

3.4.6. Prove the following version of Corollary 3.4.8 (b). Suppose that a function f
on T" is constant on the cross U = {(x1,...,x,) € T": |x; —a;| < & for some j},
for some 6 < 1/2. Then D}, * f converges to f(a) uniformly on compact subsets of
the box W = {(x1,...,x,) € T": |x;| < forall j}.

[Hint: Use Exercise 3.4.5.}

3.4.7. Follow the steps given to obtain a constructive proof of the existence of a
continuous function whose Fourier series diverges at a point. Identify T! with [0,1)
and define

g(x) = —2mi(x—1/2).
(a) Prove that g(m) = 1/m when m # 0 and zero otherwise.
(b) Prove that for all nonnegative integers M and N we have

. . 1 .
((eZmN(-)(g*DN)) *DM> (x) — eZme Z 782mrx
1<|rj<n "

when M > 2N and

. . 1 ...
((eZMN(-)(g *DN)) *DM) (x) _ eZme Z 762mrx
—N<r<M-N T
r#0
when M < 2N. Conclude that there exists a constant C > 0 such that for all M, N,
and x % 0 we have

|(e2”iN(')(g*DN)) * Dy (x)| < £

x|

(c) Show that there exists a constant C; > O such that

1 .
sup sup |(g*DN)(x)| = sup sup —PM < C) < oo,

N>0 xeT! N>0 xeT!

1<|<n ’
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(d) Let A4, = 1+ ¢ Define
o | Zﬂllkx
Z ¢ (g Dy ) )

and prove that f is continuous on T' and that its Fourier series converges at every
x#0, but hmsupMﬁw |(f*Dp)(0)| =

[Hmt Take M = e with m — oo. The mequahty in part (b) follows by summation
by parts.]

3.5 A Tauberian theorem and Functions of Bounded Variation

The relation between the partial sums of a Fourier series and the Fejér means is a
particular situation of a relation between sequences of complex numbers and their
arithmetic means. Given a sequence {a};_, of complex numbers, we denote its
partial sums by

Sy =ai+---+ayn

for N > 0, and its arithmetic or Cesaro means by

N

N+1—k
N—HZk N+1 (+ )k

ON =

A classical result says that if sy — L as N — oo, then oy — L as N — oo. The converse
is not true, as the example a; = (—1)F indicates. But in a particular situation the
reverse implication holds.

3.5.1 A Tauberian theorem

We have the following result concerning the convergence of {s;};°, as a conse-
quence of that of {oy}7_,.

Theorem 3.5.1. (a) Suppose that for a sequence {ax}y_, of complex numbers we
have that oy — L as N — o and that |kay| <M < o for all k =0,1,2,.... Then
S — L as k — oo,

(b) Let X be a nonempty set. Suppose that for a sequence {ay(x)}y_, of complex-
valued functions on X we have that oy(x) — L(x) uniformly in x € X as N — oo
and that Supy~qsup,cy |kag(x)| < M < co. Then s (x) — L(x) uniformly in x € X as
k — oo,
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Proof. We prove part (b), noting that the proof of part (a) is subsumed in that of (b).
For 0 < k < m < o we have

m
(m+1)o,(x) — (k+ 1)op(x) — Z (m+1—jaj(x)
j=k+1
m k m
=Y (m+1—j)aj(x)= Y (k+1=j)aj(x)— Y (m+1—j)a;(x)
Jj=0 j=0 j=k+1
k
=(m—k)Y a;(x)
j=0
=(m—k)sg(x).
Therefore we have
m+1 k+1 1 i .
mo'm(x) ek <>_fk'—k (m+1— jlaj(x) = sk(x)
Jj=k+1
and thus
m+1 m+1 Z 1 1
— - — - e ia:x). 1
s1(x) = 01(x) = - (0 (1) — 0k (1)) m_kakzﬂ(] g Jdai®). G
Notice that
L 1 1 m d L 1 —k
Z (7'_ )S/ i_ Z 7:]0gm—7m . (3.5.2)
N o m+l kot gmymtl kK m+1

Now fix € > 0 such that € < 1. For each k € Z pick an my € {k,k+1,...,2k} such

that ¢ — 1+ €. Then 'rzk—f,i converges to € ' + 1 as k — oo, hence it is bounded by
some constant C. Then (3.5.1) and (3.5.2) with my; in place of m yield

sup|sk(x)—ok(x)| < Cesup |0y, (x) — Ok (x)| +M k
xeX xeX

k+1[1 my mk—k
0g — —
kK m+1

Taking the limsup,_,., in the preceding inequality and using that

limsup sup |G, (x) — ox(x)| =0,
k—oo  xeX

which is a consequence of the hypothesis that oy (and thus o), ) converges to L
uniformly, we obtain

1
limsup sup |s¢(x) — op(x)| <M [(1+E)log(1+8)—1 .

k—oo  x€X
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In view of the Taylor expansion

1 1
1og(1+e):e—§£2+§s3—--- =e+0(e),

which is valid for 0 < € < 1, we conclude that

limsup sup [ (x) — op(x)| < Mce
k—roo  x€X

for some absolute constant ¢ > 0. Since € > 0 was arbitrary, we finally deduce that
sk (x) converges uniformly to the same limit as o (x), which is L(x). O

Corollary 3.5.2. Suppose that a function f on T! is continuous and there is a con-
stant M > 0 such that | f (m)| < M|m|~! for all m € Z*+ \ {0}. Then the Fourier series
of f converges uniformly to f. In particular, if f is a continuous function of bounded
variation on the circle, then f Dy — f uniformly on T' as N — oo,

Proof. The Fejér means {Fy}y_, are an approximate identity on T" (Proposition

3.1.10) and so Fy * f converge uniformly to f on T! as N — o in view of Theorem

1.2.19 (2). Moreover, we have |m||f(m)| < M for all m € Z. It follows from Theorem
3.5.1 that Dy * f converges uniformly to f. R

If, additionally, f is a function of bounded variation, then |m||f(m)| < 5 Var(f),

d

as shown in Proposition 3.3.14. Then the claimed conclusion follows.

3.5.2 The sine integral function

We examine a few useful properties of the antiderivative of sin(z) /z.

Definition 3.5.3. For 0 < x < o define the sine integral function

Si(x) = /0 ’ Smt(t) dt. (35.3)

Integrating by parts we write

Si(x):/ol Sint(t) dr + —50) +cos(1)—/x&(t)dt,

X 1 12

from which it follows that the limit of Si(x) as x — o exists and is equal to

‘I sin(t o0 t
limSi(x):/ wdt—l—cos(])—/ Cosz()dz.
X—poo Jo t J1 t
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To precisely evaluate the limit of Si(x) as x — oo we write

Si((V+ 1)) ﬂ/% sin((2N + 1))
Tt
(2N +1) 7 1 1
- /2 sin(@N+ )mt) +7r/251n((2N+1)m){ }dt
sin(7t) 0 mt sin(mr)

1 L @N+D)rmit __ ,—(2N+1)mit
T (2 T [2e e 1 1
=— [ Dy(t)dt+ = — = dt
2 /_5 wlr)di+ 3 /_; 2i {m sin(m)} ’

which converges to /240 as N — o, in view of the Riemann-Lebesgue lemma
(Proposition 3.3.1), since the function inside the curly brackets is integrable over the
circle. We conclude that lim,_,e Si(x) = /2.

Note that Si’ vanishes at nw, n =0,1,2,... and Si’(n7) = (—1)"/nx. Conse-
quently, Si(x) has local maxima at the points 7, 37, 57, ... and local minima at the
points 27, 47, 67, .... Moreover, it is increasing on the intervals [2k7, (2k + 1) 7]
and decreasing on [(2k+ 1)7, (2k+2)x], k=0,1,2,.... Also, observe that

Si(37t)—Si(7r):/2ﬂ sin(t) dt+/2”smt(’:ﬂ”>dt=/2”sin(t)<l—l> dt <0

T t T T t t4m

and likewise we can prove the remaining inequalities in the sequence

Si(m) > Si(3m) > Si(5m) > Si(Tm) > -+ > g

Similarly, one can show that

Si(2m) < Si(4w) < Si(6w) <

] N

Hence Si(7) is the absolute maximum of Si(x) on [0,c0), while 0 is the absolute
minimum of Si(x) on [0,e0); Si(7) is the absolute minimum of Si(x) on [7, ).

3.5.3 Further properties of functions of bounded variation

Next we have the following theorem concerning functions of bounded variation.
Recall that functions of bounded variation are differences of increasing functions
and thus have left and right limits at every point.

Theorem 3.5.4. Let 0 < § < 1/2. Suppose that f is an integrable function on T!
which is of bounded variation on the neighborhood [ty — 8,ty + 8| of the point

to € TL. Then
f(to+) + f(to— ).

11m (f*DN)( 0) = 5
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Proof. We write W for the neighborhood (-4, 8) of 0, F (1) = w , and
Ly, = 7f<[0+);f(t°_>. We have

(F+Dw)0) = [ £ —0Dx(0)dr = [ fo+0Dy@)ar,

hence, averaging yields

(f*DN)(IO) :/l.q f(to_t);—f(to_’_t)DN(t)dt:/rl EO(I>DN(l)dt.

Therefore we have
(f*Dn)(to) — Ly = /W (Fi (1) _Lto)DN(t)dt+/l,l\W (Fio (1) — Liy) Dy (1) dt

and since in the second integral |¢| > &, the Riemann-Lebesgue lemma shows that
the second term is o(1), i.e., it tends to zero as N — oo. We now show that the first
integral also goes to zero. We write

/W (Fo (1) — Ly ) Dy(r) dr = / (Eo(t)—L,O)Sin((zA:r—:_lmt)dt (3.5.4)
+/ F, (1) (Sm(lm)—;t) sin((2N + 1)m) dr |

1
sin(mr)

follows from the Riemann-Lebesgue lemma that the second term is o(1) as N — eo.
Consequently,

but since the function % — ) remains bounded on [— %, %] (Exercise 3.1.5 (a)), it

(FeDw)li0) Ly = 1 [ (o= 1) LD gy o1

as N — oo. To prove the required conclusion, it will suffice to show that
2 8 in((2N + 1)t
;/ (F,O(t)—L,O)Mdt—)O (355)
0

as N — oo. Let Si(t) be as defined in (3.5.3). We express the integral in (3.5.5) as
I
/ (Fo(t) — Ly) ST (2N + 1)) dt (3.5.6)
0
Integrating by parts we obtain that (3.5.6) is equal to

(Fy(6—) — Ly )Si((2N +1)78) — /OﬁSi((ZN—i— 1)) dF, (1) (3.5.7)
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Letting N — oo and using the Lebesgue dominated convergence theorem, we con-
clude that (3.5.7) converges to

)
(Fol(6-)~L)5 = [ ZdFy(0) = (Fy(6-)~Ly) 5 = (Fy (=)~ Fy(04)) 5 =0

\S]

noticing that L;, = F;(0+). O

Next, we obtain an explicit bound for the partial sums of functions of bounded
variation. Let Si(r) be as in (3.5.3).

Theorem 3.5.5. Suppose that f is a function of bounded variation on the circle T'.
Then the partial sums of the Fourier series of f are uniformly bounded, in particular,
we have

sup sup |(/+Dw)(0)] < (1 2 +8i(m)) |/ e= +SimVar(f). G5

toE€T! NeZ+

Proof. We take § = 1/2 in the proof of the preceding theorem. For a point £y € T',
let F () = w We have that

(oDl = [ o) L+ D)

+/ (Sm )—;_[) sin((2N + 1)) dt

S E’ <l- % when || < % (Exercise 3.1.5 (a)), we obtain that the

dt
(3.5.9)

Using that ]

second integral in (3.5.9) is bounded by (1 — 2)||f||~. Integrating by parts as in the
proof of the preceding theorem, we express the first integral in (3.5.9) as

1
Fy(L)Si(2N + 1)xh) —/2 Si(2N + D)) dF, (1), (3.5.10)

0
which is bounded (in absolute value) by || f||z=Si(7) + Si()Var(f). Assertion
(3.5.8) now follows. O

3.5.4 Gibbs phenomenon

It is not reasonable to expect that the Fourier series of a discontinuous function
converges uniformly in a neighborhood of a discontinuity. The lack of uniformity in
the convergence can be measured in terms of the worst jump, called the overshoot.
The exact form of nonuniform convergence is illustrated in the following example:
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Example 3.5.6. Consider the function

L _¢ when0<t§l

2
h(t)=40 when t =0 (3.5.11)
—1—t when—}<r<0.
Clearly A(¢) is a function of bounded variation and is continuous except at the point
t = 0 at which it has a jump discontinuity. Since 4 is an odd function, its Fourier

coefficients are

h(m) = 1/2h —2mimt gy — _0j 2 ' in(2zwmt)dt = i
= t t=— 5 —t t)dt = —
(m) /,1/2 (£)e l/o (2 )sin ) 2mm

when m # 0 and Z(O) = 0. The partial sums of the Fourier series of /4 are

(h b )( ) i eZﬂ:imt
* Dy _—
S EIRL
m#0
Notice that d
]’l*DN Z emel )—1
|m|<N
m#0
Then, if we define d(s) = Sin;m) — %, we can write
/’l * DN / DN —1lds
2N +1
_ —H—/ sm(( ' +1)7s) s
0 sin(7s)
(CN+ 1)z
:—t+/ d(s)sin((2N + 1) ms) ds+/ Smﬁ&ds
s

Notice that d(s) is continuous at zero and d(0) = 0, while lim,_, @ = Zithusdisa

differentiable function on [0, 3] and @' (0) = Z. Moreover, lim,_,od’(s) = d’(0), thus
d is continuously differentiable on [0, %] Additionally both d and d’ are nonnegative
and increasing on [0, %], thus d' < %; see the hint of Exercise 3.1.5. It follows that

~ cos((2N +1)mt) /d’ cos cos((2N + 1)ms)

ot
d(s)sin((2N + 1 d
./0 (s)sin((2N + 1)ms)ds = N1 D Nt D
1
and the preceding expression is bounded in absolute value by (d—z) + %

d’(%) ) 1
T
We deduce that

T 2N+1"

N 1 ["sin((2N +1)7s)
s

(h*Dy)(t) = — ds+0(

2N+1)7
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1_1

where 0(#) is a function bounded by - 55—

SN . Consequently,

1 Ntz g
(h*DN)(t):—t—i-f/ wds—kO(
T Jo S

2N+1)'

Hence for 1 € (0, —%] we have limy_,(h* Dy)(t) = —1 + %% = % —t as expected.
Analogously for ¢ € [—1,0) we have limy_,o(7* Dy)(t) = —3 — . Also for t = 0,
limy_se(h * Dy)(0) = 0. Thus the Fourier series of & at zero converges to the “fair”
value of the average of #(0+) and ~(0—) which happens to be #(0) = 0.

To quantitatively estimate the nonuniformity of the convergence of (h* Dy)(t)
we note that

(2N+1)7t gin(s
(h*DN)(t)—(%—t):%/o " %()ds—%—I—O( ! )

Thus forall N =1,2,... andz € (O,%] we have

; -1
Si(m) 1 1 1 < 08949... 4+ T

Dy (8) — h(t) < - .
(e Dy)(1) = hlt) < == =5+ o og 7 < IN+1

Also, for any sequence ty — 0+ we have

limsup [(hDy) (tv) — h(ty)] < Si;”) - % = .08949..., (3.5.12)
N—oo

while if for each N we consider the value zy = 1/(2N + 1), we obtain that

Si 1
limsup [(h+ Dy)(ty) — hty)] = i) 1 ogosg. .. (3.5.13)
N—oo T 2
0.6
0.4
0.2
012 04I4

Fig. 3.3 The partial sums (D4 )(t) showing the overshoot of approximately 9% of the jump of
h at zero.
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The quantity .08949... is called the overshoot of the partial sums of the Fourier
series of the function / in a neighborhood of zero. See Figure 3.3.

We now examine the preceding phenomenon in the setting of functions of
bounded variation. These functions can be written as a differences of two increasing
functions, so they have countable sets of discontinuities. Suppose we are given a
function f € L (Tl) of bounded variation, and for the sake of simplicity, let us con-
sider the situation where it has exactly one discontinuity, say at the point #y € T'.
Consider the function / defined in (3.5.11) and define

folt) = (f(to—O-)—f(to—))h(t—to)—l—w when 1 # 1o, (3.5.14)
° f(to) when ¢ = . -

Now the function f — fj is of bounded variation and is also continuous and satisfies
(f — fo)(t9) = 0. In view of Corollary 3.5.2, the Fourier series of f — fy converges
uniformly to f — fy and so the lack of uniformity of the convergence of the partial
sums of f is due to the presence of fj.

We express these observations as a theorem.

Theorem 3.5.7. (a) Let h be defined in (3.5.11). Then the set of accumulation points
of sets of the form {(h+Dy)(tn) }nez+, where ty € [0,1/2], is the interval

[0,542)] — [0,0.58949...].

T

In particular if ty — O such that Nty — %, then

lim (h*Dy)(ty) = S12 = 0.58949 . ...

N—so0 T

(b) Let f be a function of bounded variation on the circle with a single discontinuity
at the point ty, such that f(to+) — f(to—) > 0. Then the set of accumulation points
of sets of the form {(f *Dy)(tn) } nez+, where ty € [to,t0+ 8], for some 8 > 0, is the
interval

f(fo+)42rf(10*) ’ f(loH;f(fo*) + @ (f(t0+) 7f(t0,))} )
In particular if ty — to+ such that N(ty —to) — %, then
lim (f+Dy)(tn) = Hurtl e fom) S (f(10+) — f(t0—))

Proof. (a) Since h >0 on (0,3] and (h*Dy)(t) — 5 —t for 0 <t < 3 we have
that all accumulation points of sequences (h* Dy)(fy) are nonnegative. We showed

in (3.5.12) that all accumulation points of sequences (i Dy)(ty) — h(ty) are at

most @ — %; but A(ty) < %, when #y € [0, %], hence all accumulation points of
sequences (h* Dy)(ty) are at most @ and thus contained in [0, Sigr”)]. Also, 0 is
attained as the accumulation point of (4% Dy)(0) and the number @ is attained as

the accumulation point of the sequence (A% Dy) (ﬁ) as shown in (3.5.13); notice
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that the same assertion is valid for any other sequence #y — O such that Nty — %

Now, since the functions (h « Dy)(t) are continuous, given any c in [0, Si(x )} there
is a t), between 0 and 2N T such that (h* Dy)(ty) = c for all N; this shows that
the set of accumulation points of sequences of the form {(f * Dy)(ty) }ycz+ is the
interval [0, S’SI”)].

(b) To examine the behavior of f* Dy near the point of a single jump discon-
tinuity 7o of f, we reduce matters to the preceding situation as alluded earlier, by
introducing the function fy defined in (3.5.14). Then for a sequence fy converging
to 79 from the right we have

(f *Dn)(tn)
= (f—fo)*Dn(z, )JF(f(t0+)*f(tof))(h*DN)(thto)er
= (f(to+) — f(r0— ){h*DN)(lN*to)*h(l‘th())]

F(flto+) = Flto—))hltn —to) + (f — fo) % Dy (ty) + Lot T =)

Applying limsup,_,., and using (3.5.12), we obtain as N — oo

limsup(f *Dy)(ty) < (f(to+) — f(to _))(Si;ﬂ _%+%)+M7

N—roo

where we used the following consequence of Theorem 3.5.4

limsup (f — fo) *Dn(ty) = (f — fo)(t0) =

N—yoo

This shows that all accumulation points of sequences of the form {(f*Dy)(tn) } yez+
are at most (f(fo+) — f(to—)) Silm) 4 $(f(to+) + f(to—)). Also, since all accumu-

lation points of sequences (h *DEN)(IN) are nonnegative, when #y lies to the right
of fo, it follows from the identity f = (f — fo) + fo and (3.5.14) that all accumula-
tion points of {(f*Dy)(tn)}nez+ are at least 3 (f(fo+) + f(to—)). As in part (a)
the intermediate value theorem implies that every point in the interval having the

aforementioned endpoints is also an accumulation point for the sequence at hand. [

Exercises

3.5.1. Let Si(¢) be the sine function as defined in (3.5.3).
(a) Prove that |7 — Si(7)| < %
(b) Show that Si(Nt) — 7 uniformly in ¢ € [§,o0) for any § > 0.

3.5.2. Show that the sine integral function has the following expansion
(_ 1 )kx2k+]
‘(2k4+1) 2k+ 1)1

[ ngk

Si(x) =
k
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3.5.3. Let L% (T') be the space of all differentiable functions on T! whose deriva-
tives are integrable. Obtain the inclusions L} (T') C BV(T!) C L=(T") as follows:
(@ If f € LI(T"), then Var(f) < ||f'|| 1.

(O)If f € BV(T'), then | /]| < Var(f) +[£(0)].

3.54. (a) Leta; >0, sy = Zsz_N ay, and oy = N+L1(Go + -+ 4 on). Suppose that
oy — L < o0 as N — oo, Prove that sy — L as N — oo.

(b) Apply the preceding result to show that if a complex-valued function / on T!is
continuous in a neighborhood of 0 and k(m) > 0 for all m € Z, then h(0) > 0 and
Yz h(m) = h(0) < oo; i.e., the partial sums of the Fourier series of 4 converge at
zero.

355. Lethe LY(T!), o € T',and 0 < § < 1/2.
(a) Show that (h*Dy)(fy) — L as N — o if and only if

8 (h(to—t)+h(tg+1) sin(Mt)
Al /)

dt=0.
2 t 0

lim
M—oo

(b) Conclude that if an integrable function  on T' satisfies

/5 |h(to — 1) +h(tg+1) —2L| i < o

0 t

then (h*Dy)(to) — L as N — oo.
(c) In particular, if there are constants C, 3 > 0 with § < 1 such that for all r with
0 <t < & we have

|h(to — 1) + h(tg+1) — 2h(ty)| < CiP

then (h *DN)(I()) — h(to) as N —» oo,
(d) If h is an odd function, then (h*Dy)(0) — 0 as N — oo,

3.5.6. Let f € L'(T") and suppose that (a,b) is an interval in T'!. Then we have

b b
lim (f*DN)(t)dt:/af(t)dt.

N—eo Jq

[Hint: Use Theorems 3.5.4 and 3.5.5 and the fact that the operator f — f* Dy is
self-adjoint. |

3.6 Lacunary Series and Sidon Sets

Lacunary series provide examples of 1-periodic functions on the line that possess
certain remarkable properties.
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3.6.1 Definition and Basic Properties of Lacunary Series

We begin by defining lacunary sequences.

Definition 3.6.1. A sequence of positive integers A = {A;};"_, is called lacunary if
there exists a constant A > 1 such that A > AA; forallk € Z™.

Examples of lacunary sequences are provided by exponential sequences, such as
A = 2K 3K 4K . Observe that polynomial sequences such as A, = 1+ k> are not
lacunary. Note that lacunary sequences tend to infinity as k — oo.

An important observation about lacunary sequences is the following: for any
m, kg € Z" we have

1< m—2Qg| <(1—-A DAy = mgA. (3.6.1)

Indeed, to prove this assertion, notice that the closest numbers to lko among of the
terms of the sequence {A;}7’_, are Ay 41 and Ay, (the latter only if ky > 1) and
thus if j > ko we have

‘lj_xko‘ > 2'k()Jrl _A'k() ZAlkO _z’ko = (A_ l)z’ko > (1 _Ail)z’kov

while if j < ko

=(1 _A_l)z'ko'

0

1
|Aj = Aigl > Aay — Aag—1 > Ay — X)Lk

Thus (3.6.1) follows.
We begin with the following result.

Proposition 3.6.2. Let {A}7_| be a lacunary sequence and let f be an integrable
function on the circle that is differentiable at a point and has Fourier coefficients

~ {am whenm = Ay, (3.62)

0 when m # A

Then we have

~

lim f(Ad)Ae = 0.

k— o0

Proof. Applying translation, we may assume that the point at which f is differen-
tiable is the origin. Replacing f by the 1-periodic function
sin(27t)

2

g(t) = f(t) = f(0)cos(2mr) — £(0)

~

we may assume that £(0) = f(0) = 0. (We have g(m) = f(m) for |m| > 2 and thus
the final conclusion for f is equivalent to that for g.)
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Using (3.6.1) and (3.6.2), we obtain that for any m € Z we have
1< |m—X| <(1—A"Y% = f(m)=0. (3.6.3)
Let [t] denote the integer part of 7. Given € > 0, pick a positive integer ko such that
if [(1—A~")Ag,] = 2N, then Ny % < €, and
sup x‘ <e. (3.6.4)
x|<N, *

The expression in (3.6.4) can be made arbitrarily small, since f is differentiable at
the origin. Now take an integer k with k > kg and set 2N = [min(A — 1,1 —A~") 4],
which is of course at least 2Np. Using (3.6.3), we obtain that for any trigonometric
polynomial Ky of degree 2N with Ky (0) = 1 we have

Fow) = /\;c|<i F0) Ky (x)e 2 gy (3.6.5)

We take Ky = (Fy/||Fx||;2)?, where Fy is the Fejér kernel. Using (3.1.18), we obtain
first the identity

N , 2
2 7] IN2N+1) N
F = l-—) =14+-——L > 3.6.6
Il = £ (1) <1+ RN e
and also the estimate 5
1 1
Fyv(x)? < —— 3.6.7
W) (N+14x2) , (3.6.7)
which is valid for |x| < 1/2. In view of (3.6.6) and (3.6.7), we have the estimate
311
K < —— . 3.6.8
V) < 1535 1 (368)

We now use (3.6.5) to obtain

Mf (M) = Ak ‘ FO)Kn(x)e ™M dx = Il + I + I,

x\g%

where

Io=X F)Ky (x)e 24 dx,

x| <N~

I =X , f(0)Ky (x)e M5 dx,
N-l<|x|<N" %
=N F)Ky (x)e 27 M g

1
N™a<|x<]
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Since ||Kn||;1 = 1, it follows that

f(x)

X

(2N+1)e
~ min(A—1,1-A"1H)N”’

A
| < 25 sup
[x|<N—1

which can be made arbitrarily small if € is small. Also, using (3.6.8), we obtain
3
sup

f(x) / dx _ 3l f(x)
T TR
16N3 1 N<i<nt P S 16N P,

2
| < — —
[x[<N"4 lx|<N~4

)

X X

which, as observed, is bounded by a constant multiple of €. Finally, using again
(3.6.8), we obtain

3 3 3¢
3
215 T ft e 1S 1 110 < S 7
It follows that for all k£ > ky we have
A f )l < I+ IR+ < C(f) e

for some fixed constant C(f). This proves the required conclusion. (]

Corollary 3.6.3. (Weierstrass) There exists a continuous function on the circle that
is nowhere differentiable.

Proof. Consider the 1-periodic function

f(t) = Z ok p2midtt
k=0
Since this series converges absolutely and uniformly, f is a continuous function. If f
were differentiable at a point, then by Proposition 3.6.2 we would have that 3 £(3%)
tends to zero as k — oo. Since f (3") =2"¥ for k > 0, this is not the case. Therefore, f

is nowhere differentiable. The real and imaginary parts of this function are displayed
in Figure 3.4. O

3.6.2 Equivalence of L” Norms of Lacunary Series

We now turn to one of the most important properties of lacunary series, equivalence
of their norms. It is a remarkable result that lacunary Fourier series have comparable
L? norms for 1 < p < oo. More precisely, we have the following theorem:

Theorem 3.6.4. Let 1 <A < Ay < A3 < --- be a lacunary sequence with constant
A>1.8et A={A: k€ Z"}. Then forall 1 < p < oo, there exists a constant Cp,(A)

such that for all f € L'(T"), with f(k) = 0, when k € Z.\ A we have



230 3 Fourier Series

2

1
1

0.5

/\h[\ Ale\ rA\vm M/\
—ofa V-0 Y2 VoY b4 0.2 0.4
-1
-2
Fig. 3.4 The graph of the real and imaginary parts of the function f(r) = Y1, 2~k e2midht,
HfHLP(Tl) < CP(A)HfHLl(T1)~ (3.6.9)

Moreover, the converse inequality to (3.6.9) is valid, and thus all LP norms of lacu-
nary Fourier series are equivalent for 1 < p < o,

Proof. We suppose initially that f € L>(T') and f is nonzero. We define

N
fv@) =Y F(A)emhix. (3.6.10)

=1

Given 2 < p < oo, we pick an integer m with 2m > p and we also pick a positive
integer r such that A” > m. Then we can write fy as a sum of » functions ¢y, s =
1,2,...,r, where each ¢, has Fourier coefficients that vanish except possibly on the
lacunary set

{Maris : k€ ZTU{0}} = {1, o, s, .- 3

It is a simple fact that the sequence { }« is lacunary with constant A”. Then we
have

[lorra= X @) 6,80 Bl

1<t seerjomsk ] ek <N

Wy R =i F
We claim that if gj, +---+ W;, = fy, + -+ L, then
max(ij,, ..., Mj,) = max(t, ..., t,) -
Indeed, if max(u;,,..., ), ) > max(Uy,,...,t,), then
max (W, ..., L) < iy + -+ Hi,, < mmax (U, ..., M) -

But since
A’max(ukl g ,[.lkm) S max(,ujl,. .. ,,Ujm) s
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it would follow that A” < m, which contradicts our choice of r. Likewise, we elimi-
nate the case max(i;,,..., M, ) < max(U,,...,H,). We conclude that these num-
bers are equal. We can now continue the same reasoning using induction to conclude
thatif u;, +---+u;, = t, +-- -+ U, then

{:ukﬂ"’hu“km} :{bu“jl”“’“jm}’

Using this fact in the evaluation of the previous multiple sum, we obtain

[Ho00Pmar= Y - ¥ 18P 18: 000 = (o22)"

=l jm=1

which implies that || @]|;2n = ||@s]|;2 for all s € {1,2,...,r}. Then we have

r 1 r 1
HmMﬂﬂmMmﬁﬁ(;WM@OZ=W{;WM@Y=¢Whmu

since the functions @y are orthogonal in L2. Since r can be chosen to be [log am|+ 1
and m can be taken to be [£] + 1, we have now established the inequality

1A%l o ey < cp@fvll 2ys P22, (3.6.11)

with ¢, (A) = \/1 + [log, ([5]41)] for every fy of the form (3.6.10).

To replace fy by f in (3.6.11), we recall our assumption that f € L?(T'). We
observe that fy — f in L? and thus fy ; tends to f a.e. for some subsequence. Then
Fatou’s lemma and (3.6.11) imply for 1 < p < oo

1 1
[ 1 dx = [ timint i, (017 dx
0 0 J— ’

< timint [y, ()
<yl liminf | 1
Iz
We conclude that
Iy < @l zeays P2 (3.6.12)

By interpolation we obtain

2
3

1l = 1501 < (oga3)+ )23 51
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We are assuming that 0 < || f]|;2 < o and the preceding inequality implies that
7l < (G043 + )l G613
Finally an easy consequence of Holder’s inequality is that
Al < Iy 1<p<2 G614
Combining (3.6.12) and (3.6.14) with (3.6.13) yields (3.6.9) with
Cp(A) =cp(A)([logs 3] +1)

for all 1 < p < oo under the hypothesis that f(k) = 0 for all k € Z'\ A and the
additional assumption that f € L2. R

We now extend the result to f € L'(T"). Given f € L'(T!) with f(k) = 0 when
k € Z\ A, consider the functions f x Fy;, where F)y is the Fejér kernel and M € 7",
Then f * Fyy lie in L2, f % Fy converge to £ in L' and in L?, and f % Fy; (k) = 0 when
k € Z\ A. The inequality

Hf*FMHLp(Tl) < CP(A)Hf*FMHLl(Tl) (3.6.15)

holds since f * Fy lie in L?, so letting M — oo yields (3.6.9). (]

Theorem 3.6.4 describes the equivalence of the L” norms of lacunary Fourier
series for p < co. The question that remains is whether there is a similar charac-
terization for the L™ norms of lacunary Fourier series. Such a characterization is
investigated below. Before we state and prove this theorem, we need a classical tool,
referred to as a Riesz product.

Definition 3.6.5. A Riesz product is a function of the form

N
=[] (1+ajcos(2mAx+2my;)), (3.6.16)
j=1

where N is a positive integer, A} < Ay < --- < Ay is a lacunary sequence of positive
integers, a; are real numbers in [—1,1], and y; € [0, 1].

We make a few observations about Riesz products. A simple calculation gives
that if Py j(x) = 1+a;cos(2mwA;x +27y;), then

1 when m =0,
1 . 2«iy; =A;
- aje’™i  whenm= A
o J e i 3.6.17
N,]( ) %aje’zmyf when m = —lj, ( )
0 when m ¢ {0} U7 {4;, —4;}.

Assume that the constant A associated with the lacunary sequence A} <Ay <--- <Ay
satisfies A > 3. Then each integer m has at most one representation as a sum
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m=¢gA +--+enly,

where €; € {—1,1,0}; see Exercise 3.6.1. We now calculate the Fourier coefficients
of the Riesz product defined in (3.6.16). For a fixed integer b, let us denote by §, the
sequence of integers that is equal to 1 at b and zero otherwise. Then, using (3.6.17),
we obtain that -

Py =6+ %ajEZEin(S;Lj + %ajefhriyj 5,%, ,

and thus i’; is the N-fold convolution of these functions. Using that &, * 8, = 0,15,
we obtain

1 when m = 0,
Py(m) = Hljy:1 %ajez’”'g-iyf when m = ):1]\-7:1 €jA; and 21]\_’:1 lgj| >0,
0 otherwise.

It follows that Py (Aj) =0 since for j > N +1, A; cannot be expressed as a linear
combination of Ay,. .., Ay with coefficients in {=1,0}. Also Py(};) = 3a;e*™% for
1 <k <N, since each A i is written umquely as0- A+ +0- A4 + 1 Ak Hence
when A > 3 we have that Py (A) = 1a;e®™% when 1 < k <N and Py(A) =0 for
k>N+1.

Next, we discuss an important property of Riesz products. Suppose that for some
m € Z we have Py(m) # 0. We write m = Z]:l €;A; uniquely with €; € {—1,0,1}.
Let k be the largest integer less than or equal to N such that & # 0. Then we have

A A 1 Ak

BT =2 36l
A"1+ +A—Al_A% a1 GO

|lm| = 2| S A4+ + Ay <

Another important property of the Riesz product is that since Py > 0 we have
I1Pvlp1 = /Tle(t)dt =Py(0)=1.

We recall the space A(T!) of all functions with absolutely summable Fourier
coefficients normed with the ¢! norm of the coefficients.

Theorem 3.6.6. Let 1 < A <Ay < A3 < --- be a lacunary sequence of integers with
constant A > 1. Set A = {Ay : k € Z'}. Then there exists a constant C(A) such that

for all f € L(T) with f(k) = 0 when k € Z\ A we have

1 Laerry = X 1F R < CAf ] o) - (3.6.19)
keA

Proof. Let us assume first that A > 3. Also fix £ € L*(T!). We consider the Riesz
product

':]2

Py(x) =[] (1+cos(2wAx+277;)),

1

J
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where 7; is chosen to satisfy the identity |7 (A i) = AT f(A ;). In view of Parseval’s
relation and of the fact that || Py||,1 = 1 we obtain

ZPN ‘ ‘/PN

meZ

x| < ||l (3.6.20)

and the sum in (3.6.20) isAﬁnite, since the Fourier co/e\fﬁcients of I/’;; form a finitely
supported sequence. But f(m) =0 for m ¢ A, while Py(A;) = $*™¥ for 1 < j <N
since A > 3, and moreover, f’; (Aj) =0 for j > N+1, as observed earlier. Thus
(3.6.20) reduces to

&~
3 L 17 =

N

L 3700 < -

Letting N — oo, we deduce that }77 |f(lj)| < 2| f|lz=, which proves (3.6.19) when
A>3
We now consider the case A < 3. We fix 1 <A < 3 and we pick a positive integer

r such that | |
A" >3 d — <1l 3.6.21
> an 1 < 2 ( )
This is possible, since (A" — 1)1 — 0 as r — oo.
For each s € {1,...,r}, define the sequences A} = A, (4_1), indexed by k =
1,2,3,... and observe that 7Lk+1> > A"Af for all k =1,2,...; ie., each such se-

quence is lacunary with constant A”. We consider the Riesz product

N
(1+cos(2nAlx+27y)),
k:l

where ¥; is defined via the identity |f(l,f )| = 2% f(?t,g ).

Using (3.6.18) we obtain that, if m € Z is such that I/’i(m) # 0, then there exists
ake{l,2...,N} such that

[Im] = 44| <

k
AT —1"
This combined with (3.6.21) yields
=48] < (1= 5 )2z
A
Using (3.6.1) we obtain that either m = £A; or |m| ¢ A. Thus we have

{meZt: Py(m)#0} S{A],A,..., AL }UA®.
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This observation, the fact that fis supported in A, and Parseval’s relation yield

Y, ?’E(m)f(m)‘ = ‘ /0 P ()7 () dx

meZ

<||fll-- (3-622)

N
Y RAF(A)
k=1

Since ﬁ;(lk‘) = %62711‘}'2 for 1 <k <N, (3.6.22) reduces to

1 &
Y 1FAD < ] - -
2k:l

Letting N — o gives

L 17Dl <27,
e

Summing over s in the set {1,2,...,r}, we obtain the required conclusion with
C(A) = 2r and note that r can be taken to be [max (log, 2=, logz A)] +2. O

Corollary 3.6.7. Let A = {A : k € Z*} be a lacunary set and let f be a bounded
Sfunction on the circle that satisfies f(k) =0 when k € Z\ A. Then f is almost ev-
erywhere equal to the absolutely (and uniformly) convergent series

) =Y Flk)ermike a.e. (3.6.23)

keA

and thus it is almost everywhere equal to a continuous function.

~

Proof. Tt follows from Theorem 3.6.6 that if f(k) = 0 when k € Z\ A, then we have
that f € A(T'). Applying the inversion result in Proposition 3.2.5 we obtain that f is
almost everywhere equal to a continuous function and that (3.6.23) holds for almost
allxc T O

3.6.3 Sidon sets

Given a subset E of the integers, we denote by 4z the space of all continuous func-
tions on T! such that

-~

meZ\E = f(m)=0. (3.6.24)

It is straightforward that €% is a closed subspace of all bounded functions on the
circle T! with the standard L* norm.

Definition 3.6.8. A set of integers E is called a Sidon set if every function in 6z has
an absolutely convergent Fourier series.

There are several characterizations of Sidon sets. We state them below.

Proposition 3.6.9. The following assertions are equivalent for a subset E of Z.
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(1) There is a constant K such that for all trigonometric polynomials P with P
supported in E we have

Y |P(m)| < K|P|-
meZ

(2) There exists a constant K such that
171l zy < KAy

for every bounded function f on T' with fsupported inE.

(3) Every function f in 6 has an absolutely convergent Fourier series; i.e., E is a
Sidon set.

(4) For every bounded function b on E there is a finite Borel measure y on T' such
that i(m) = b(m) for allm € E.

(5) For every function b on Z with the property b(m) — 0 as m — oo, there is a
function g € L'(T") such that g(m) = b(m) for all m € E.

Proof. Suppose that (1) holds. Given f in L*(T") with fis supported in E, write

(FeF) () = fN(l L) Fmeren,

- N+1

where Fy is the Fejér kernel. These are trigonometric polynomials whose Fourier
coefficients vanish on Z \ E. Applying (1) we obtain

[m] )
)y |Fm)| < K| £ % F| -
= ( N+1 L
Letting N — oo we obtain (2).

It is trivial that (2) implies (3).

If (3) holds, then the map f +— f is a linear bijection from %% to ¢! (E). Moreover
its inverse mapping f — f is continuous, since

<Y |f(k)] = ||fAHz1(Z)
kez

HfHLm T!) < sup ‘ Zf o2kt

t€[0,1] ' kecZ

By the open mapping theorem, it follows that f +— fis a continuous mapping, which
proves the existence of a constant K such that (1) holds.

We have now proved the equivalence of (1), (2), and (3).

We show that (2) implies (4). If E is a Sidon set and if b is a bounded function
on E, say ||b||# < 1, then the mapping

fr Y F(m)b(m)

meE
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is a bounded linear functional on %z with norm at most K. By the Hanh-Banach
theorem this functional admits an extension to %’(T!) with the same norm. Hence
there is a measure [, whose total variation ||¢t|| does not exceed K, such that

Y Fmbm) = [ f)due).

mekE

Taking f(t) = ™™ in (2) we obtain i (m) = b(m) for all m € E.

If (4) holds and b(m) — 0 as |m| — oo, using Lemma 3.3.2 there is a con-
vex sequence c(m) such that c¢(m) > 0, c¢(m) — 0 as |m| — oo, ¢(—m) = c(m),
and |b(m)| < c(m) for all m € Z. By (4), there is a finite Borel measure p with
H(m) = b(m)/c(m) forall m € E.

By Theorem 3.3.4, there is a function g in L' (T!) such that g(m) = c(m) for all
m € Z. Then b(m) = g(m)fi(m) for all m € E. Since f = g is in L', we have
b(m) = f(m) for all m € E, and thus (4) implies (5).

Finally, if (5) holds, we show (3). Given f € ‘@;, we show that for an arbi-
trary sequence d,, tending to zero, we have Y,z |f(m)d,| < oo; this implies that
Yonez | f(m)| < oo. Given a sequence d,, — 0, pick a function g in L' such that

~

g(m)f(m) =|f(m)||dn| for all m € E by assumption (5). Then the series

Y gm)f(m)=Y frg(m) (3.6.25)

meZ meZ

has nonnegative terms and the function f x g is continuous, thus Fy * (f * g)(0) —
(f*g)(0) as N — oo. It follows that Dy  (f * g)(0) — (f * g)(0), thus the series in
(3.6.25) converges (see Exercise 3.5.4) and hence ¥,,,cz | f(m)dy| < . O
Example 3.6.10. Every lacunary set is a Sidon set. Indeed, suppose that E is a lacu-

nary set with constant A. If f is a continuous function which satisfies (3.6.24), then
Theorem 3.6.6 gives that

Y 17 m)] < C@A)]|f]],~ < o

meA

hence f has an absolutely convergent Fourier series.

Example 3.6.11. There exist subsets of Z that are not Sidon. For example, Z \ {0}
is not a Sidon set. See Exercise 3.6.7.

Exercises

3.6.1. Suppose that 0 < A} < Ay < --- < Ay is a lacunary sequence of integers
with constant A > 3. Prove that for every integer m there exists at most one N-tuple
(e1,...,ev) with each €; € {—1,1,0} such that

m=¢gA+- - +eyiy.
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[Him‘: Suppose there exist two such N-tuples. Pick the largest k such that the coeffi-
cients of Ay are different.]

3.6.2. Is the sequence A; = [e(logk)z] ,k=2,3,4,... lacunary?

3.6.3. Leta; >0 forall k€ Z' and 1 < p < oo. Show that there exist constants
Cp, ¢, such that for all N € Z" we have

cp(N\akI (/ ’Zaezmzx

k=1

1

x> <cC (i \ak|2)7

k=1

while
Z |a] -

3.6.4. Suppose that 0 < A; < A, < --- is alacunary sequence and let f be a bounded
function on the circle that satisfies f(m) =0 whenever m € Z\ {A1, 42, ... }. Suppose

also that
|f(t) — £(0)]

sup ' Z ak62m2 X
x€[0,1] 'k

forsome 0 < o < 1. R

(a) Prove that there is a constant C such that | f(Ax)| < CBA, % forall k > 1.

(b) Prove that f € Ay (T).

[Hint: Let 2N = [(1 —A~")A] and let Ky be as in the proof of Proposition 3.6.2.
Write

o) = [ ()= £(0)e MKy () d

J]x|<N1

[ )= FO)e TRy () d
JNTI<|x|<5

Use that ||Ky||;; = 1 and also the estimate (3.6.7). Part (b): Use the estimate in
part (a).]

3.6.5. Let f be an integrable function on the circle whose Fourier coefficients van-
ish outside a lacunary set A = {4, A,,43, ... }. Suppose that f vanishes identically
in a small neighborhood of the origin. Show that f is in €= (T"!).

[Hint: Let 2N = [(1 —A~")A] and let Ky be as in the proof of Proposition 3.6.2.
Write

Fh) = F(x)e > MKy (x) dx
xl<}
and use estimate (3.6.7) to obtain that f is in %2. Continue by induction.]
3.6.6. Let 1 < a,b < . Consider the 1-periodic function

f(x) _ i afkeZm‘bkx'

k=0
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Prove that the following statements are equivalent:
(a) f is differentiable at a point.

db<a.

(c) f is differentiable everywhere.

3.6.7. Use the example in Proposition 3.4.6 (a) to show that Z\ {qy,...,q.} is not
a Sidon set for any finite subset {gy,...,qz} of the integers.

3.6.8. Let 0 < 6 < 1. Let E be a subset of the integers such that for any sequence
of complex numbers {d,, }meg With |d,,| = 1 there is a finite Borel measure i on T!
such that

|[b(m) —dp| <1-6

for all m € E. Show that E is a Sidon set. R R N
[Hint: Given f be in €% define d, via the identity dy,f(m) = |f(m)| if f(m) #
0, otherwise set dy, = 1. For the measure u given by the hypothesis, notice that
Re (fi(m)f(m)) > &|f(m)| for all m € Z.]

HISTORICAL NOTES

Trigonometric series in one dimension were first considered in the study of the vibrating string
problem and are implicitly contained in the work of d’Alembert, D. Bernoulli, Clairaut, and Euler.
The analogous problem for vibrating higher-dimensional bodies naturally suggested the use of mul-
tiple trigonometric series. However, it was the work of Fourier on steady-state heat conduction that
inspired the subsequent systematic development of such series. Fourier announced his results in
1811, although his classical book Théorie de la chaleur was published in 1822. This book contains
several examples of heuristic use of trigonometric expansions and motivated other mathematicians
to carefully study such expansions. The systematic development of the theory of Fourier series
began by Dirichlet [96], who studied the pointwise convergence of the Fourier series of piecewise
monotonic functions via the use of the kernel Dy, today called the Dirichlet kernel.

The fact that the Fourier series of a continuous function can diverge was first observed by
DuBois Reymond in 1873. The Riemann-Lebesgue lemma was first proved by Riemann in his
memoir on trigonometric series (appeared between 1850 and 1860). It carries Lebesgue’s name
today because Lebesgue later extended it to his notion of integral. The rebuilding of the theory
of Fourier series based on Lebesgue’s integral was mainly achieved by de la Vallée-Poussin and
Fatou.

Theorem 3.3.16 was obtained by Bernstein [26] in dimension n = 1. Higher-dimensional ana-
logues of the Hardy-Littlewood series of Exercise 3.3.8 were studied by Wainger [370]. These
series can be used to produce examples indicating that the restriction s > a +n/2 in Bernstein’s
theorem is sharp even in higher dimensions. Part (b) of Theorem 3.4.4 is due to Lebesgue when
n =1 and Marcinkiewicz and Zygmund [243] when n = 2. Marcinkiewicz and Zygmund’s proof
also extends to higher dimensions. The proof given here is based on Lemma 3.4.5 proved by Stein
[342] in a different context. The proof of Lemma 3.4.5 presented here was suggested by T. Tao.

Abel proved that if an infinite series } ;" ,ax converges and has sum L, then the power series
f(x) = X5 garx* converges for x| < 1 and tends to L as x — 1—. The converse of this theorem
under the additional assumption that kay — 0 as k — oo was proved by Tauber [358]. Hardy [143]
extended Tauber’s result (Theorem 3.5.1) for Cesaro summability under the weaker assumption that
the sequence kay, is bounded. Jordan [180] studied of functions of bounded variation and proved
Theorem 3.5.4. The existence of a continuous function which is nowhere differentiable (Corollary
3.6.3) was first published in 1872 by K. Weierstrass, although earlier findings of such functions
were published later. The exposition on Sidon sets is taken from the classical article of Rudin
[305], which also contains Exercise 3.6.8.



240 3 Fourier Series

The Gibbs phenomenon (a version of Theorem 3.5.7) was discovered by Wilbraham [376] and
rediscovered by Gibbs [128]; this phenomenon describes the particular way in which the Fourier
sums of a piecewise continuously differentiable periodic function have large oscillations and over-
shoot at the jump discontinuity of the function. Bocher [29] gave a detailed mathematical analysis
of that overshoot, which he called the “Gibbs phenomenon”.

The main references for trigonometric series are the books of Bary [20] and Zygmund [388],
[389]. Other references for one-dimensional Fourier series include the books of Edwards [106],
Dym and McKean [105], Katznelson [190], Korner [202], Pinsky [283], and the first eight chapters
in Torchinsky [363]. The reader may also consult the book of Krantz [203] for a historical intro-
duction to the subject of Fourier series. A review of the heritage and continuing significance of
Fourier Analysis is written by Kahane [182].

A classical treatment of multiple Fourier series can be found in the last chapter of Bochner’s
book [32] and in parts of his other book [31]. Other references include the last chapter in Zygmund
[389], the books of Yanushauskas [381] (in Russian) and Zhizhiashvili [384], the last chapter in
Stein and Weiss [348], and the article of Alimov, Ashurov, and Pulatov in [3]. A brief survey article
on the subject was written by Ash [11]. More extensive expositions were written by Shapiro [320],
Igari [171], and Zhizhiashvili [383]. A short note on the history of Fourier series was written by
Zygmund [390]. The book of Shapiro [321] contains a very detailed study of Fourier series in
several variables as well as applications of this theory.



Chapter 4
Topics on Fourier Series

In this chapter we go deeper into the theory of Fourier series and we study topics
such as convergence in norm and the conjugate function, divergence of Fourier se-
ries and Bochner—Riesz summability. We also study transference of multipliers on
the torus and of maximal multipliers. This is a powerful technique that allows one
to infer results concerning Fourier series from corresponding results about Fourier
integrals and vice versa.

We also take a quick look at applications of Fourier series such as the isoperti-
metric inequality problem, the distribution of lattice points in a ball, and the heat
equation. The power of Fourier series techniques manifests itself in the study of
these problems which represent only a small part of the wide and vast range of ap-
plications of the subject known today.

4.1 Convergence in Norm, Conjugate Function,
and Bochner-Riesz Means

In this section we address the following fundamental question: Do Fourier series
converge in norm? We begin with some abstract necessary and sufficient conditions
that guarantee such a convergence. In one dimension, we are able to reduce matters
to the study of the so-called conjugate function on the circle, a sister operator of
the Hilbert transform, which is the center of study of the next chapter. In higher
dimensions the situation is more complicated, but we are able to give a positive
answer in the case of square summability.

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics 249, 241
DOI 10.1007/978-1-4939-1194-3_4, © Springer Science+Business Media New York 2014
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4.1.1 Equivalent Formulations of Convergence in Norm

The question we pose is for which indices p, with 1 < p < oo, we have

1D} f = Fllpomy =0 asN = e, @.L.1)

and similarly for the circular Dirichlet kernel Doj’(, We tackle this question by looking
at an equivalent formulation of it.

Theorem 4.1.1. For R > 0 and m € Z", let a(m,R) be complex numbers such that

(i) For every R > 0 there is a qg such that a(m,R) = 0 if |m| > gg.
(ii) There is an My < oo such that |a(m,R)| < My for all m € Z" and all R > 0.
(iii) For eachm € Z"", the limit of a(m,R) exists as R — oo and limg_.. a(m,R) = ay.

Let 1 < p <oo. For f € LP(T") and x € T" define

Sr(f)x) = Y a(m,R)f(m)e™m

meZ"

noting that the sum is well defined because of (i). Also, for h € €~ (T") define

A(h)(x) =Y awh(m)e*™™=.
meZn

Then for all f € LP(T") the sequence Sg(f) converges in LP as R — oo if and only if
there exists a constant K < oo such that

sup ||S&||,,» ;. » <K (4.1.2)
R>0

Furthermore, if (4.1.2) holds, then for the same constant K we have

sup M <K, (4.1.3)
et [l

and then A extends to a bounded operator A Sfrom LP(T") to itself; moreover, for
every f € LP(T") we have that Sg(f) — A(f) in LP as R — oo.

Proof. If Sg(f) converges in L?, then ||Sg(f)||» < Cy for some constant Cy that
depends on f € L”(T"). Moreover, each Sg is a bounded operator from L?(T") to
itself with norm at most #{m € Z" : |m| < qr} My. Thus {Sg}r>0 is a family of L?-
bounded linear operators that satisfy supg- ||Sr(f)||z» < Cy for each f € LP(T").
The uniform boundedness theorem applies and yields that the operator norms of Sg
from L? to L? are bounded uniformly in R. This proves (4.1.2).

Conversely, assume (4.1.2). For h € €=(T"), we have that

1%1_1,3010 Z a<m’R)h(m)827rim~x _ Z amh(m)eZJ'cim~x
meZ meZl
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in view of property (ii) and of the Lebesgue dominated convergence theorem, since
Y mezn |[h(m)| < eo. Fatou’s lemma now gives

40, = | im S|, < timine ()

R—o00 R—o0

o < K[,

hence (4.1.3) holds. Thus A extends to a bounded operatorg on LP(T") by density.
We show that for all f € LP(T") we have Sg(f) — A(f) in L? as R — oo. Fix

f in LP(T") and let € > 0 be given. Pick a trigonometric polynomial P satisfying

Ilf — P||lLr < €. Let d be the degree of P. Then there is an Ry > 0 such that for all

R > Ry we have

|a(m, R) — ay| |P(m)| <
- | <d

since a(m,R) — ay, for every m with |m;| + - - -+ |m,| < d. We deduce that

|Sk(P) —A(P)]

< ||Sk(P) —A(P)||

< Y la(mR) = an|[P(m)]
|my|4-+|my| <d

<€,

Lr

whenever R > Ry. Then

1Se(F) =AW < 1SR —=Sk(P)||,, + |Sr(P)—A(P)]| ,» + [|A(P)=A(f))|
<Ke+e+Ke=(2K+1)e

Lr

for R > Ry. This proves that Sg(f) converges to A(f) in L” as R — co. O

The most interesting situation arises, of course, when a(m,R) — a,, = 1 for all
m € Z". In this case A (and A) is the identity operator, and thus we expect the oper-
ators Sg(f) to converge back to f as R — oo. We should keep in mind the following
three examples:
(a) The sequence a(m,R) =1 when |m;| <R forall j € {1,2,...,n} and zero other-
wise, in which case the operator Sg of Theorem 4.1.1 is

Sr(f) = f*Dg: (4.1.4)

(b) The sequence a(m,R) = 1 when |m| < R and zero otherwise, in which case the
Sk of Theorem 4.1.1 is

] ]

Sk(f) = f* Dk (4.1.5)

(c) The sequence a(m,R) = (1 — ‘%2

)i, for some a > 0, in which case we denote
SR by B%.
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Definition 4.1.2. The Bochner—Riesz operator or Bochner—Riesz means of order
o > 0 is the operator

BENW = X (118" Fmyemins 4.1.6)
meZ
|m|<R

defined on integrable functions f on T".

Corollary 4.1.3. Let 1 < p <ooand ot > 0. Let Sg and §R beasin(4.14) and (4.1.5),
respectively, and let Bf be the Bochner—Riesz means as defined in (4.1.6). Then

v feLlr(T"), I%LI{}OHD;%*f_f’ =0 — ZE%HSRHUaLP < o,

!

Vel (T, lim || Dixf £, =0 s0p |kl p < =

HL!’HLI’ <o

VfeL!(T), lim |[Bi«f—f|,=0 << sup ||BE
R—oo R>0
Example 4.1.4. We investigate the one-dimensional case in some detail. We take
n =1, and we define a(m,N) =1 for all —N < m < N, and zero otherwise. Then
Sn(f) = §N( f) = Dy = f, where Dy is the Dirichlet kernel. Clearly, the expressions
ISy ||lz»—z» are bounded above by the L! norm of Dy, but this estimation yields a
bound that blows up as N — co. We later show, via a more delicate argument, that
the expressions ||Sy||Lr—r» are uniformly bounded in N when 1 < p < oo,
This reasoning, however, allows us to deduce that for some function g € L!(T!),
Sy(g) may not converge in L'. This is also a consequence of the proof of Theorem
4.2.1; see (4.2.13). Note that since the Fejér kernel Fj; has L! norm 1, we have

1Swl1 g = Jfim [[Dw * Fual| 3 = [Dw]] .-

This implies that the expressions ||Sx||;1_,;1 are not uniformly bounded in N, and
therefore Corollary 4.1.3 gives that for some fy € L!(T"), Sy(fy) does not converge
to foin L.

Although the partial sums of Fourier series fail to convergence in L' (T"), it is a
consequence of Plancherel’s theorem that they converge in L?(T"). More precisely,
if £ € L?>(T"), then

1Dy« f=fl[= X |Fm)P =0

|m|>N

as N — oo and the same result is true for D}, * f and for B,%‘ x f; for the latter, we
apply Theorem 4.1.1, noting that

2\ @
(%)
R +

and thus supg- || B |22 < 1.

2
Fm)P< Y 1Fm))? =17

mezZ"

[EAGIFESY

meZ
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Motivated by the preceding discussion for p = 2, it is natural to pose the follow-
ing question. Can 2 be replaced by p # 2 in the preceding results? This question has
an affirmative answer in dimension one for Dy. In higher dimensions an interesting
dichotomy appears. As a consequence of the one-dimensional result, the square par-
tial sums D}, * f converge in L” to a given f in L”(T"), but for the circular partial
sums this may not be the case.

We begin the discussion with the one-dimensional situation.

Definition 4.1.5. For f € €= (T") define the conjugate function f by

fx)=—=i Y sgn(m)f(m)e*™™,

meZ!

where sgn(m) = 1 form > 0, —1 for m < 0, and 0 for m = 0. Also define the Riesz
projections P and P_ by

PN = X Fm)em, “.17)
m=1
,1 N )
P (f)(x) = ; f(m)emim. (4.1.8)

Observe that f = Py (f) + P_(f)+ f(0), while f = —iP, (f) +iP_(f), when f
is in = (T"). Consequently, one has

1 N (N
P(f)= §(f+lf) - Ef(o) (4.1.9)
and therefore the L” boundedness of the operator f — fis equivalent to that of the
operator f — Py (f), since the identity and the operator f — f(0) are obviously
L? bounded. Clearly, these statements are also valid for the other Riesz projection
f > P_(f). The following is a consequence of Theorem 4.1.1.

Proposition 4.1.6. Let 1 < p < o. Then the expressions Sy(f) = Dy * f converge to
fin LP(T") as N — o if and only if there exists a constant Cp > 0 such that for all
smooth functions f on T" we have || f o1ty < Cpl| fllper1)-

Proof. In view of Corollary 4.1.3, the fact that for all f € LP(T"), Sy(f) — fin L?
as N — oo is equivalent to the uniform (in N) L? boundedness of Sy.
We note the validity of the identity

2N

N
o 2MiNx Z (f(')eZNiN(~))’\(m)e2nimx _ Z J?(m)ezmmx.
m=—N

m=0

Since multiplication by exponentials does not affect L” norms, this identity implies
that the norm of the operator Sy(f) = Dy * f from L? to L? is equal to that of the
operator
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2N A
Sn(g)(x) =Y g(m)e*™™
m=0
from L? to L?. Therefore,
0B [$v] 10 < 22 <= SUp Skl <= 4.1.10)

and both of these statements are equivalent to the fact that for all f € LP(T!),
Sn(f)— finLP as N — oo,

We have already observed that the L boundedness of the conjugate function is
equivalent to that of P;. Therefore, it suffices to show that the L” boundedness of
P, is equivalent to the uniform L? boundedness of S),.

Suppose first that supy~ || Sy || Lr— 1 < . Theorem 4.1.1 applied to the sequence
a(m,R) = 1 for 0 <m < R and a(m, R) = 0 otherwise gives that the operator A(f) =
P, (f)+ £(0) is bounded on L”(T"). Hence so is P;..

Conversely, suppose that P, extends to a bounded operator from L (T"!) to itself.
For all & in € (T") we can write

oo

Sy()(x) = Y h(m)e ™ — Y h(m)e?™™
m=0 m=2N+1
— Z ;l\(m)ebrimx —I—II;(O) _ 2mi(2N)x Z E(m+2N)e2”i””‘
m=1 m=1
= Py (1)(x) = NP, (72 ENOR) 4 7(0).
This identity implies that
sup [[Sy (/)| < (2[|P+] +1)|7]] “.111)
N>0 Lr — LP—LP P

for all f smooth, and by density for all f € LP(T!). Note that S, is well defined on
LP(T!). Thus the operators Sy, are uniformly bounded on L”(T").

Thus the uniform L? boundedness of Sy is equivalent to the uniform L” bound-
edness of Sjv, which is equivalent to the L” boundedness of P;, which in turn is
equivalent to the L” boundedness of the conjugate function. O

4.1.2 The L? Boundedness of the Conjugate Function

We know now that convergence of Fourier series in L? is equivalent to the L” bound-
edness of the conjugate function or either of the two Riesz projections. It is natural
to ask whether these operators are L” bounded.
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Theorem 4.1.7. Given 1 < p < oo, there is a constant A, > 0 such that for all f in
€= (T") we have

11> < ApllA - (4.1.12)

Thus the operator f +— ]7 has a bounded extension on LP(T') that also satisfies
(4.1.12).

Consequently, the Fourier series of L? functions on the circle converge back to
the functions in the L” norm for 1 < p < oo,

Proof. In proving the inequality (4.1.12), we make the following reductions:
(a) We assume that f is trigonometric polynomial.

(b) We assume that f(0) =0

(c) We assume that f is real valued.

=

Since f is a real-valued function, we have that f(—m) = f(m) for all m, and since
7(0) =0, we can write

- Z f met il f(_m) —2mimt _ yRe | — i Z f p2mimt 7
m=

which implies that fis also real-valued (see also Exercise 4.1.4(b)). Therefore the
polynomial f +if contains only positive frequencies. Thus for k € Z™ we have

| o+ if0)*dr =0

Expanding the 2k power and taking real parts, we obtain

3 1 (3 [ Forisea=o.

j=0 2j

where we used that f is real-valued. Therefore,

171 < X (55) [, For2irca

< % (5 IFA

J=1

by applying Holder’s inequality with exponents 2k/ (2k 2j) and 2k/(2j) to the jth
term of the sum. Dividing the last inequality by || f||?4 721> We obtain

W<Z(>ﬁ“f (4.1.13)
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where R = HfHsz/HfHLZk. If R > O satisfies (4.1.13), then R < Cy;, where Cy is the
largest real root of the polynomial g(t) = t2* — YX_, (%’;)t”"zj . (Since g(0) < 0 and

lim;_,o. g(#) = oo, g has at least one real root.) We conclude that if f satisfies (a), (b),
and (c), then we have for all k = 1,2,...

112 < okl | £] 2 - (4.1.14)

We now remove assumptions (a), (b), and (c). We first _remove assumption (c).
Given a complex-valued trigonometric polynomial f with f(0) = 0, we write

N N S N S
-y miji _ y Ci+C—j omije| | . y Cj—C—j omijt

t) = cie = Ee— +1 — . €

@ j=—N ! =N 2 =N 2

(with ¢op = 0) and we note that the expressions inside the square brackets are real-
valued trigonometric polynomials. Thus we can express f as P+ iQ, where P and
Q are real-valued trigonometric polynomials, and applying (4.1.14) to P and Q we
obtain the inequality

17,20 = 2G4 /1] (41.15)

for all trigonometric polynomials f with £(0) = 0.

Next, we remove the assumption that £(0) = 0. We write f = (f — £(0)) + £(0),
we observe that the conjugate function of a constant is zero, and we apply (4.1.15)
to obtain

1702 < 26301 = 7O < 260 (1] + 1710 ] <41 ] o

Since trigonometric polynomials are dense in L7, it follows that the operator f — f
has a bounded extension on L* that satisfies (4.1.12) for all f € L?*, and in particular
for all f € €=(T).

Every real number p > 2 lies in an interval of the form [2k,2k + 2], for some
k € Z". Theorem 1.3.4 gives that for all 2 < p < oo there is a constant A, such that

(4.1.16)

171 < Apl 7]

when f is a simple function. Thus the conjugate function has a bounded extension
on L? that satisfies (4.1.16) when p > 2.

To extend this result for p < 2 we use duality. We observe that the adjoint operator
of f+ fis f + —f. Indeed, for f,g in €=(T') we have

(flg) =Y —isgn(m)f(m) — Y F(m)—isgn(m)g(m) = —(f|3).

mez meZ

Lr

By duality, estimate (4.1.16) is also valid for 1 < p <2 with constantA, =A,. U

We extend the preceding result to higher dimensions.
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Theorem 4.1.8. Let 1 < p < oo and f € LP(T"). Then D}, * f converges to f in LP
as N — oo,

Proof. As a consequence of Corollary 4.1.3, Proposition 4.1.6, and Theorem 4.1.7,
it suffices to show that for all f trigonometric polynomials on T" we have

1 1
fv‘i%/o /0 (Dl £) ()| iy g < K| ][ 3 -

Obviously, this inequality is valid in dimension n = 1. We extend it by induction
to all dimensions. We assume that it is valid in dimension n — 1 and we prove it in
dimension .

Letx’ = (x2,...,x,) € T"~!. For a fixed trigonometric polynomial f, and for fixed
N >0and x' € T""!, define a trigonometric polynomial &N, On T! by setting

ovet) = ¥ |
m €L Limy|,...,|my| <N

eZn'im’-x'f’-\(m] ’ml):| p2mimixy

where m’ = (my,...,m,). Then we have

gN,x’(xl) _ Z eZJrim/~x/|: Z eZi‘cimlxl‘]’c\(m17m/):|

[ma |y, |mp | <N my€Z
= Z e27rim’~x’ [/ f(xl7y/)e2nim’~y’dy/:|
Tn—1
g~
— Z eme X fx1 (m/)
|mZ‘7~~~~,‘mn‘§N
= (DX/_I * fry )(x,)’

where fi, is the trigonometric polynomial of n — 1 variables defined by f, (x') =
f(x1,x"). We also have that

(D * gy )(x1) = (D + f) (x1,x") .
Combining this information, we write
1
L [ @k ) anay
T™-1J0
1
= [ [ 10xgw) ) duax
™1 .Jo
. 1
SKP/ / g (x1)|” dxy dx’
™1 J0 y

1
:Kp/o /rn—l |(D1"\f1 *fxl)(x/)‘pdx/dxl
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1
< KPK(n—l)p/ / |fx1 (x/)|pdxldx1
-1 .J0
:KanfHZP(T")’

where the penultimate inequality follows from the induction hypothesis. U

4.1.3 Bochner—Riesz Summability

In dimension 1 the Fejér means of an integrable function are better behaved than the
Dirichlet means. We investigate whether there is a similar phenomenon in higher
dimensions. Recall that the circular (or spherical) partial sums of the Fourier series
of f are given by .

(f*DR)x) = Y flm)er™m,

meZ"
[m|<R

where R > 0. Taking the averages of these expressions, we obtain

& [ b= ¥ (-

meZ"
|m|<R

~

(m)e*™™™ = B (f)(x),

and we call these expressions the circular Cesaro means (or circular Fejér means)
of f.1It turns out that the circular Cesaro means of integrable functions on T2 always
converge in L', but in dimension 3, this may fail. Theorem 4.2.5 gives an example of
an integrable function f on T? whose circular Cesaro means diverge a.e. However,
we show below that this is not the case if the circular Cesaro means of a function f
in L' (T?3) are replaced by the only slightly different-looking means

Y (1) fmyens,

meZ"
Im|<R
for some € > 0. This discussion suggests that the preceding expressions behave bet-
ter as € increases, but for a fixed € they get worse as the dimension increases. The
need to understand the behavior of these operators for different values of ov > 0 led
to introduction of the operators By given in Definition 4.1.2.
The family of operators By forms a natural “spherical” analogue of the Cesaro—
Fejér sums. It turns out that there is no significant difference in the behavior of

2
these means if the expression ( - %)a in (4.1.6) is replaced by the expression
( — I%‘) . see Exercise 4.3.1. The advantage of the quadratic expression in (4.1.6)

is that it has an easily computable kernel and yields the elegant reproducing formula

o o (a+1) aPol 2B
By (f) = NCEOREDL: /( ) <R2) BP(f)dr, (4.1.17)
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which precisely quantifies the way in which B is smoother than Bg when a > 3.
Identity (4.1.17) also says that when a > 3, the operator B (f) is an average of the

operators BE (f), 0 < r < R, with respect to a certain density.

Note that the Bochner—Riesz means of order zero coincide with the circular (or
spherical) Dirichlet means, and, as we have seen, these converge in LZ(T”). We
address an analogous question on L”(T") for p # 2.

Proposition 4.1.9. Let | < p < o and f € LP(T"). Then the Bochner-Riesz means
BX(f) converge to f in LP(T") as R — e when ot > (n—1) |7 — f‘ Moreover, if f

is continuous on T" and a¢ > —, then BE(f) converges to f uniformly as R — oo
Proof. For z € C with Rez > 0, consider the function
2
m(&) = (1-1&)%

defined for £ in R". Note that ||m;]||;~ = 1. Using an identity proved in Appendix
B.5, we have that

(z+1)J24:(27]y])
OV

(m2)" (y) = K*(y) = (4.1.18)

where y € R" and Jy is the Bessel function of order v. The estimates in Appendices
B.6 and B.7 imply that there is a constant C(Re V) such that

1

Iy (r)] < C(Rev)e' OVl (1 4 7)=2

whenever Re v > 0. This yields that if Rez > % then there is a constant C'(¢) such
that the function K* obeys the estimate

K (y)] gc’(g+Rez)e1°|lmzl (14 [y]) " Re"7) (4.1.19)

and hence it lies in L' (R"). Using identity (3.1.10), whenever Re z > %, we define
for an integrable function f on T” and x € T" the operator

By(f)(x) = Y m(5)F(0)F™ = (f+L*R) (x),

where L is a function whose sequence of Fourier coefficients is {mz(£)} tezn.
But the function LR can be precisely identified. By the Poisson summation for-
mula (Theorem 3.2.8), which applies since both K,(x) and m_(x) are bounded by a
constant multiple of (1 + |x|)~"~¢ for some & > 0, we have

LZR Z m % 2mix-k —R" Z KZ x+€) )
keZ" leZn
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for all x € T". We show that the family {L*R}z~ is an approximate identity on T"
when Rez > %; on this see the related Exercise 3.1.3. Obviously, using (4.1.19) we
have that

/ LR (x)| dxe = / IK*(y)| dy = C"(n,Rez)e'?Mm < oo (4.1.20)
™" R”
for some constant C”(n,Rez), and also
| R@ar= [ KG)dy=m(0)=1
n RV!

for all R > 0 when Rez > % Moreover, for § < % using (4.1.19) we have

Cu; 1
n—1

/ LR ()| dx < — 2 o0,
d<sup; Ixjl<t RRez="7~ d<sup; xjl<t (czn |x+€|”+Resz

thus the integral of L>R over [—1/2,1/2]"\ [~8, 8]" tends to zero as R — oo.
Using Theorem 1.2.19, we obtain these conclusions for Rez > ”—51:

(a) For f € L'(T"), B4(f) converge to fin L! as R — oo,
(b) For f continuous on T, B;(f) converge to f uniformly as R — co.

We turn to the corresponding results for 1 < p < co. We have that
— 2
Rez> 25t = sup||Bi |11 rmy = €' (m,Re2)e M d1.21)

Rez=0 = sup||Bg|| 20y, 12(my = I:lli= = 1. (4.1.22)
R>0

The family of operators f — By (f) is of admissible growth for all Rez > 0, since
for all measurable subsets A, B of T" we have

Y a(km(k)xsk) < ), 1<GR",
kezr k<R

|, B

thus condition (1.3.23) holds. Moreover, hypothesis (1.3.24) of Theorem 1.3.7 holds
in view of (4.1.21) and (4.1.22). Applying Theorem 1.3.7 (or rather Exercise 1.3.4 in
which the strip [0, 1] x R is replaced by the more general strip [a,b] X R) we obtain
that when ¢ =Rez > (n— 1)|% — 1|, we have

oo,

2 1B e e <

Finally, using Corollary 4.1.3, we deduce that B (f) — f in L"(T") as R — oo for
all f e LP(T"). O

The preceding result is sharp in the case p = 1 (Theorem 4.2.5). For this rea-
son, the number o = (n— 1) /2 is referred to as the crifical index of Bochner—Riesz
summability.
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Exercises
4.1.1. If f € €=(T"), then show that D}, * f and DO”N * f converge to f uniformly
and in L? for 1 < p < oo,
4.1.2. Prove that

1Pl 202ty = IP-l2eeny 2y = IWllzeeny 20y = 1,
where W(f) = fis the conjugate function on the circle. Moreover, show that the
mappings f +— W(f)+ £(0) and f — W(f) — £(0) are isometries on L*(T").

4.1.3. Let —o < a; < b; < +oo for 1 < j < n. Consider the rectangular projection
operator defined on € (T") by

P(f) (X) = Z f(m)62ﬂi(m1xl+...+mnxn> '

aj<m;j<b;

Prove that when 1 < p < oo, P extends to a bounded operator from L?(T") to itself
with bounds independent of the a;,b;.
[Hint: Express P in terms of the Riesz projection P..]

4.1.4. Let P,(t) be the Poisson kernel on T! as defined in Exercise 3.1.7. For 0 <
r < 1, define the conjugate Poisson kernel Q,(t) on the circle by

foo A
Q,(t)=—i Y, sgn(m) plml g2mimt
m—=—co
(a) For 0 < r < 1, prove the identity

2rsin(2mt)

(1) = 1—2rcos(2mt) +r2"

(b) Prove that f(¢) = lim,_,1(Q, * f)(t) whenever f is smooth. Conclude that if f is
real-valued, then so is f.
(c) Let f € L'(T"). Prove that the function

2 (Pox f) (1) +i(Qr % ) (1)

is analytic in z = re?™" on the open unit disc {z € C: |z] < 1}.

(d) Let f € L'(T"). Conclude that the functions z +— (P * £)(t) and z +— (Q, * f)(t)
are conjugate harmonic functions of z = re*™" in the region |z| < 1. The term con-
jugate Poisson kernel stems from this property.
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4.1.5. Let f be in Aa(Tl) for some 0 < o < 1. Prove that the conjugate function f
is well defined and can be written as

f(x) = lim f(x—1t)cot(mt)dt
e-0Je<t|<1/2

/\tlg/z (f(x—1) = f(x)) cot(mt)dr.

[Him‘: Use part (b) of Exercise 4.1.4 and the fact that O, has integral zero over the
circle to write (f*Q,)(x) = ((f — f(x)) * Q) (x), allowing use of the Lebesgue
dominated convergence theorem.

4.1.6. Suppose that f is a real-valued function on T! with |f| < 1and 0 <A < 7/2.

(a) Prove that
7 1
AF@) g < .
/rl ¢ ' cos(A)

(b) Conclude that for 0 < A < /2 we have

AT 2
MO gy <
/rle dt_cos(l)'

[Hint: Part (a): Consider the analytic function F(z) on the disk |z| < 1 defined by
F(z) = —i(P.% £)(8) + (Qr % £)(8), where z = re*™®_ Then Re e** () is harmonic
and its average over the circle |z| = r is equal to its value at the origin, which is
cos(Af(0)) < 1.Let r1 1 and use that for z = 2% on the circle we have Re ¢*/'(2) >

MW cos(A).]

4.1.7. Prove that for 0 < o < 1 there is a constant Cy, such that
1 i rry < Call All g -
[Hint: Using Exercise 4.1.5, for |h| < 1/10 write flx+h)— f(x) as
/ (F(x—1) = Flx+ ) cot(n(t +h)) dt
le[<5|A|
/ ) — £(x)) cot(mr) dr
t\<5|h|
/ — 1) = £(x)) (cot(m(t +h)) — cot(mr)) d
|h|<\z|<1/2
() = flx+h) / cot(m(t +h))d.
S|h<[f<1/2

You may use the fact that cot(nt) = % + b(t), where b(t) is a bounded function
when |r| < 1/2. The case |h| > 1/10 is easy.
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4.1.8. The beta function is defined in Appendix A.2. Derive the identity

oL Sapip g
t_B(oz—,B,B—H)/o(t *PPa

2 .
and show that the function Kg (x) = ¥j,u <z (1 - %) % 2mimx satisfies (4.1.17).

rz—\m|2
R2

2
[Hint: Taket=1— % and change variables s =

in the displayed identity.]

4.2 A. E. Divergence of Fourier Series and Bochner-Riesz means

We saw in Proposition 3.4.6 that the Fourier series of a continuous function may
diverge at a point. As expected, the situation can only get worse as the functions
get worse. In this section we present an example, due to A. N. Kolmogorov, of an
integrable function on T! whose Fourier series diverges almost everywhere. We also
prove an analogous result for the Bochner—Riesz means at the critical index.

4.2.1 Divergence of Fourier Series of Integrable Functions

It is natural to start our investigation with the case n = 1. We begin with the follow-
ing important result:

Theorem 4.2.1. There exists an integrable function on the circle T' whose Fourier
series diverges almost everywhere.

Proof. The proof of this theorem is a bit involved, and we need a sequence of lem-
mas, which we prove first.

Lemma 4.2.2. (Kronecker) Suppose that N € " and
{x1,%2,...,xn,1}

is a linearly independent set over the rationals. Then for any € > 0 and any complex
numbers z1,22,...,zy with |z;| = 1, there exists an integer L € Z such that

|e2”’b‘/ —zjl<e forall 1< j<N.

Proof. Suppose that the assertion claimed is false. Then there is an € > 0 and com-
plex numbers z; = €0 j=1,...,N, with0 < 0; < 1, such that

{m(xy,...,xn) mEZ}ﬂB((61,...,9N),8) =0,
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where B((91 yeees ON), 8) denotes a neighborhood in TV of radius & centered at the
point (6y,...,0y). Pick a smooth, nonzero, and nonnegative function f on TV sup-
ported in B((6y,...,6y),€). Then f(m(xy,...,xy)) =0 for all m € Z, but

= /TN f(y)dy > 0. @.2.1)

Set x = (x1,...,xy). Then we have
0= le_l MZ Z J’c\ 27:1/ -mx
M
m=0 m=0 ZN

g

R . 1 ZmM([x)il
=f0)+ Y f(f)<Meezm(e-x)_1>'

teZN\{0}

Note that e27i(¢%) — | # 0because £ -x = {1x] + -+ Lyxy ¢ Z, since by assumption
the set {xy,x2,...,xn, 1} is linearly independent over the rationals. Observe that

1 e27tiM([~x) -1

_ A 27im({-x)
)M e2mi(lx) _ =) Z T

tends to 0 as M — oo for every fixed ¢ € ZN and is bounded uniformly in M by
| £(£)| which satisfies }yczn | f(€)] < oo. Using the Lebesgue dominated convergence
theorem, we obtain that

0=70)+1m Y (é)( L 1>
= + m 77){
M*)OOZEZN\{O} M eZm(Z )_1

. N ) 1 2miM(lx) _

rezmqoy M
= f(0)+0
which contradicts (4.2.1). Therefore the claimed L exists. [l

Lemma 4.2.3. There exists a positive constant ¢ > 0 such that given any integer
N > 2 there exists a positive measure iy on T' with uy(T"') = 1 such that

Z v (k 2’””“' > clogN (4.2.2)
k=—L

sup |(tn * Dr) (x)| = sup
L>1 L>1

for almost all x € T' (c is a fixed constant).
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Proof. Given irrational real numbers xi,...,xy such that the set {x;,...,xy,1} is
linearly independent over the rationals, we define Q[xj,...,xy] to be the field exten-
sion of Q consisting of all linear combinations of the form go + g1x1 + - - - + gnxn,
where ¢; are rational numbers. Obviously Q[xi,...,xy] is a countable set. Fix
N > 100 and choose points x; as follows:

1 2 3 N-1
0 — £ S 2 1 423
<X1<N<XQ<N<X3<N< < N <y < ( )
and such that x; ¢ Q, x2 ¢ Q[x1], ..., xy € Q[x1,...,xy—1]. Then obviously the set
{x1,...,xn,1} is linearly independent over the rationals. Let

Ey={x€[0,1]: {x—x,...,x—xy,1} is linearly independent over Q}

and observe that every x in [0,1]\ Q[xj,...,xy] belongs to Ey. Indeed, if x ¢ Ey,
then there are rational numbers ¢g; such that

qo+q1(x—x1)+ - +gn(x—xy) = 0.

Then g =g+ +¢gn #0, since {x,...,xy, 1} are linearly independent over Q. It
follows that

x=—q 'qo+q ' qxi+--+q "gnan,

thus x € Qxy,...,xy]. We conclude that Ey has full measure.
Next, we define the probability measure
1 i
=—3 &,
N=

where 6xj are Dirac delta masses at the points x;. For this measure we have

Z ( Ze 2mkxj)627rikx

L

Z lj;](k)eZR'ikx’ —

k=L

(4.2.4)

Im [ezm(ug)(xﬁj)} sgn(sin(m(x—x;)))

[sin(7(x —x;))]

)

where the signum function is defined as sgna = 1 for a > 0, —1 for a < 0, and zero
ifa=0. By Lemma 4.2.2, for all x € Ey there exists an L € Z™ such that

|627tiL(X—Xj) _ie—zm%("_xl')sgn(sin(ﬂ(x Xj )| < l
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which can be equivalently written as

‘ezm(u%)(“‘*xﬂsgn(sin(n(x—xj))) —il < % 4.2.5)

It follows from (4.2.5) that

; 1
Im [ez’“(LJr%)(x_"-/)] sgn(sin(w(x—x;))) > 5
Combining this with the result of the calculation in (4.2.4), we obtain that

- 27ikx I 1 S
T (k)27 s >
Z Hn(k)e ‘> ZNJg’1 |sin(mw(x —x;))| ~ ; |x — x]|

k=L

But for every x € [0,1), there exists a jo such that x € [xj,xjy41). It follows from
(4.2.3) that |x —x;| < C(]j — jo| + 1)N ™!, and thus

L

> c'NlogN .
b —x;]

Thus for every x € Ey there exists an L € Z* such that

|DL*.UN |—

Z Un ( 2””"" > clogN,
k=L

which proves the required conclusion since Ey is a set of measure 1. U

Lemma 4.2.4. For each 0 < M < oo there exists a trigonometric polynomial gy and
a measurable subset Ay of T with measure |Ay| > 1—2"M such that ||gy|| ;1 = 1,
and such that

>2oM, (4.2.6)

inf sup| Dy xgy)(x |7 inf sup Z gar (k)&

XEAM L>1 XEAYM L>1

Proof. Given an M € Z*, we pick an integer N(M) such that clogN(M) > 2M+2,
where c is as in (4.2.2), and we also pick the measure [y (), which satisfies (4.2.2).
By Fatou’s lemma we have

=[{xeT": supl(DL*HN ))(x)| > 2"

:|U{xeT1: sup |(Dj* Unary) (x )| > 2"+
L>1 1<j<L

= o I KT supy < (Dt ) ()] 22023 4X

< liminf|[{x € T': sup [(D;* yqu))(x)| >2%2}],
Lo 1<j<L
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and thus we can find a positive integer L(M) such that the set

Ay={xeT": sup |(Dpxpuyu)(x)| >2""2}
I<L<L(M)

has measure greater than 1 — 2", We pick a positive integer K (M) such that

sup || Fxu) *Dj = Dj| ;. < 1,
1<j<L(M)

where Fx is the Fejér kernel. This is possible, since the Fejér kernel is an approx-
imate identity and {D; : 1 < j < L(M)} is a finite family of continuous functions.
Then we define gy = Uy () * Fi(ar)- Since Uy py) is a probability measure, we obtain

(D gu) (x) = (D * tian)) ()| < [P Figary = D[ o < 1

forallxe€[0,1]and 1 < j <L(M).But given x € Ay there exists an Lin {1,...,L(M)}
such that |(Dg * ty ) (x)| > 272 and for this L we have

|(Dr* gm)(x)| > [(Dr* tyary) (x)] — 1 > M2 | > M+ 5 oM

Therefore, (4.2.6) is satisfied for this gy and Ay. Since Ly is a nonnegative measure
and Fyy) is nonnegative and has L' norm 1, we have that

gl = [l any * Fxan [l = v | || Fxon | =1,
showing that gy, has L! norm equal to one. U

We now have the tools needed to construct an example of a function whose
Fourier series diverges almost everywhere. The example is given as a series of func-
tions whose behavior worsens as its index becomes bigger. The function we wish to
construct is a sum of the form

g=Y €gu;, 4.2.7)
j=1

for a choice of sequences €; — 0 and M; — oo, where gy are as in Lemma 4.2.4.
Let us be specific. First, we set dy = 1 and for N > 1

dn = 1rgrlsagx]vdegree (gm,), (4.2.8)

where gy is the trigonometric polynomial of Lemma 4.2.4. We set &g = My = 1.
Assume that we have defined €; and M; for all 1 < j < N for some N > 2. We set

en=2"3dy_1)"! (4.2.9)
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and then we pick My such that
MV > (2N pdy_y +1)ey!. (4.2.10)

This defines gy and My for a given positive integer N, provided €; and M are known
for all j < N. This way we define €y and My for all natural numbers N.

We observe that the selections of €; and M; force the inequalities £; < 27/ and
dj <dj, forall j > 1. Since each 8m; has L! norm 1 and €; <27/, the function g
in (4.2.7) is integrable and has L! norm at most 1.

For a given j > 1 and x € AMj, by Lemma 4.2.4 there exists an L > 1 such that

|(Dr *gMj)(x)| > 2Mj Set
k =k(x) =min(L,d;).
Then we have

|[(Dix8) (x)| = & (D * gu, ) (x)] -, Y. &l(Dixgu,) ()] = Y&l (Dicx gu, ) (x)-
<s<j s>

We make the following observations:

) [(Dexgu,)(x)] = (DL *gu,) (x)] > 2.
(i) [(De*gu,) ()] = |(Diin(as ) * &1,) ()] < || Drmingary || = < 3ds, when's < .

(iii) |(Dk*ng)( )| = [(Dmin (ds .k *gM) ()] < ||Dmin dj,L) ||L” <3dj, when s > j.

In these estimates we have used that k = min(L, d <2m-+1<3m, and

that

Dr * ng = Dmin(r,ds) * ng ’

which follows easily by examining the corresponding Fourier coefficients.
Using the estimates in (i), (ii), and (iii), for a fixed x € Ap; and k = k(x) we obtain

[(Dixg)(x)| > €2" =3 Y &d,—3Y &d;. (4.2.11)

1<s<j §>j

Our selection of €; and M; now ensures that (4.2.11) is a large number. In fact, we

have
3Y ed;j=Y 27%dj(d,—1) ' <) 27 <1

s> s> s>

and
3 Y &di<3di ) &<di ) 27(d1)" <dj.

1<s<j 1<s<j 1<s<j
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Therefore, the expression in (4.2.11) is at least £j2M-i —dj1—12> 27 1t follows that
for every j > 1 and every x € Ay, there exists a k = k(x) € Z such that

|(Dicxg)(x)] 227

We conclude that for every r > 1 and x € |J Ay,

j=r

sup| (D ) (x)] > 2/ > 2", (4.2.12)
k>1

since x belongs to some AMj with j > r. For given r > 1, Lemma 4.2.4 yields that
1> ’ UAM.’ > Timinf|Ay, | > Tim (1—27M7) = 1.
e

Then the set o -
A= ﬂ UAMj
r=0j=r

has measure 1, since it is a countable intersection of subsets of T! of full measure.
In view of (4.2.12) we have that for all x in A

sup|(Dyxg)(x)| > sup2” =0 (4.2.13)
k>1 r>1
and thus the required conclusion follows. (]

4.2.2 Divergence of Bochner—Riesz Means of Integrable Functions

We now turn to the corresponding n-dimensional problem for spherical summability
of Fourier series. The situation here is quite similar at the critical index o = ”%1

Theorem 4.2.5. Let n > 1. There exists an integrable function f on T" such that

_ImPN
Z ( R? )
meZ"

|m|<R

a5l .
lim sup BR2 (f) (x) = lim sup (m)eanm~x — oo

R—yo0 R—oo

for almost all x € T". Furthermore, such a function can be constructed such that it
is supported in an arbitrarily small given neighborhood of the origin.

We will need a couple of lemmas.

Lemma 4.2.6. Let n > 2. The complement of the set
S={xeR": {1}U{|x—m|: m € Z"} is linearly independent over Q}

has n-dimensional Lebesgue measure zero.
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Proof. Recall that a function g defined on an open subset Q2 of R” is called real
analytic if for every point xp in £ there is a ball B(xp, €) is contained in £ and there
exist coefficients cg(xo) such that g(x) = Y.gcg(xo)(x —x0)P for all |x—xo| < &,
where the sum is taken over all multiindices. We will need two facts about real
analytic functions. First, the function x — |x| is real analytic on R"\ {0}. Indeed,
given xq # 0, for [x —xp| < |xo|/3 we have that

|x—xo\2 X0
o +2(x—x0) | |2<1
This allows us to write
lx — xo|? X0 \2
x| =|xo (1+7+2x—xo —)
o] = bl (1-+ 50 2 —0) 0
> 1/2> |x —xo|? Xo \k
= |xg (7—1—2 X —Xo —) )
| '%(k ET T

which is a power series of the form Y5 cg (xo)(x —x0)B.

Secondly, we need the fact that a real analytic function defined on an open con-
nected subset of R” cannot vanish on a set of positive measure, unless it is identically
equal to zero; a proof of this in dimension one and an outline of the proof in higher
dimensions is contained in [205].

We return to the proof of the lemma which requires us to show that S has full
measure in R”. Indeed, if x € R"\ S, then there exist k € Z", my,...mg €Z", and

40,41, - - -, qx nonzero rational numbers such that
k
qo+ Y qjlx—mj| =0. (4.2.14)
j=1

Since the function
k

Y= qo+ Y qjly—mj|
j=1

is nonzero and real analytic on R" \ Z", it must vanish only on a set of Lebesgue

measure zero. Therefore, there exists a set Ap, .. m; qo.q1,...s
zero such that (4.2.14) holds exactly when x is in this set. Then

Rn \S g U U U Aml,m,mk,qo,ql,m,qk7

k=1my,...m€Z" qo.q1....,qr€Q

from which it follows that R" \ S has Lebesgue measure zero. (]
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Let us denote the Bochner—Riesz kernel by

Kg(x) _ Z (1 - %)0‘6271'%%

Im|<R
when x € T". We need the following lemma regarding Ky':

Lemma 4.2.7. Let n > 2. For almost every x € T" we have

n—1
limsup |Kgp* (x)] =oo.
R—yo0
It is noteworthy to compare the result of this lemma with the analogous one-
dimensional statement
limsup |Dg(x)| = o
R—oo

for the Dirichlet kernel, which holds exactly when x = 0. Thus the uniform ill be-

n—1
havior of the kernel KR2 reflects in some sense its lack of localization.

Proof. Fix n > 2 and fix xo € ([—~1/2,1/2)"\ {0}) NS, where S is as in Lemma
4.2.6. Using (4.1.18) and the Poisson summation formula (Theorem 3.2.8), for each
o> % we obtain the identity

ra+1) , « J21a(27R|xo—m])

K¢ X0) = -
RO0) =R L = Rig )

(4.2.15)

and the sum converges absolutely because of the asymptotics for the Bessel func-
tions in Appendix B.8. The term with m = 0 in the sum in (4.2.15) is a finite constant
since by Appendix B.6 the function

Iy a2R]Y])

e

is smooth and therefore bounded. But for m # 0 in (4.2.15) we have |[m — x| > 1/2.
The asymptotics in Appendix B.8 imply that for R > 2 we have

e2iR|xg—m| ,~i5 (5+a)—if + e 2miRxo—m| 4i % (5+0)+i ]

T/ R|xo —m|

+O((Rlxo—ml) )

Jua(27R|xo —m|) =

forall o > “51. We insert this expression in (4.2.15), we multiply by e*™*X for some
A real, and then we average in R from 1 to T, for some T > 10. We obtain
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1 T :
T K& (x0)e*™ R dR
1
= I'(o+1) A TR+ xo—m|) "5 —a g p
T ezmio} IXO*mI% T,
F(5+o)+if
+F((X+1) i3 (3+a)i 1 2mR(7L [xo— m\ e R (4.2.16)
meZm\{0} |xo—m| e T

I 1 1 1 (T
FRACAD) Y of————— )= [ R R
E(x n+3 T
mezn {0} \|xo —m| 2 !

I'(a+1) /T Ju1o(27R|x0|)
7 T (Rixo))i

ZﬂilRRn dR .

Assume that we are able to pass the limit as o — “51+ through the sums and
integrals in the preceding identity; we justify this step momentarﬂy Then we obtain

] T h—1 )
7/ Ke® )R
el k(2=
NG ORI (e Ll AT
T meZm {0} lxo—m|" T Ji
| iz 2n—1 i T
(" Sl .
71'% meZm {0} |x0 m| T /1 (4.2.17)
LTCE) y 0(1> T
7T ety \o—mPFT)T )R
1
+F(:‘§})/TJ (ZER‘XODeM“RR”dR.
o T ) (Rlxo)"~ 2

We now justify the passage of the limit in ¢ inside the sums and the integrals in
(4.2.16) to obtain (4.2.17). First, when |m| < R < T and a > “5~, the mean value
theorem gives

2\ o P\
1— emeO'm (1= eanxo-m
R2 R2
- ((x n— 1) |m|? %1 1
— - )
= 2 R2 & P

R2

< ((x—n_l) sup t 7 1og

0<r<1
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—1
thus K (xo) converges to K, Z (x0) uniformly in R € [1,T] as & — "5 and therefore
the 1ntegral over [1,7T] of the former converges to the integral over [1, 7] of the latter.
Next, an integration by parts shows that the integral

/T 2miR(A+|xp— m\ 770! dR

1

is bounded by a constant multiple of (A 4 [xo —m|) !, which makes the first infinite
sum in (4.2.16) converge absolutely and uniformly in o > %5+, thus one may pass

the limit in & inside the sum. Also, the integral
/ 2mR(7L [xp— m\ 7706 dR
1

is bounded by a constant multiple of (A — |xo — m|)~! whenever A is not in the set
A ={lxo—m|: meZ"} ={A,A2,A3,... },

where 0 < A; <Ay < A3 < ---. Thus for A ¢ Ay, the preceding argument explains
the passage of the limit in ¢ inside the second infinite sum in (4.2.16). If A happens
to be in Ay, then there is at most one mg # 0, such that A = [xo —mo| and the
second sum in (4.2.16) restricted to m € Z" \ {0,mo} converges absolutely, while
for the single term with m = my, letting o0 — %—i— is trivial. Finally, for the term
involving the Bessel function J, 1 the passage of the limit in ¢« inside the integral

is straightforward since the function

is continuous on the compact set ["5-,
(4.2.17).

There are four terms to the right of (4.2.17) and we observe that if A # +|xg — my|
for any mo € Z", then all these terms converge to zero as T — oo. This assertion
is trivial for the first three of these four terms, while for the last we assume that
T > |xo|~!. We split the integral

5] x [1,T]. This completes the proof of

rJ, 1 (27Rlxl)
- / AR R R (4.2.18)

(R |x0| )t
as a sum of the integral over [1,|xo|~'], which obviously converges to zero as T — oo

by Appendix B.6, and of the integral over [|xo|~!,T]. For the latter, we use the
asymptotics in Appendix B.8 to write

. T 2n—1N - . ST 2=
e2mR\x0|eﬂ%(”T)fl% +6727UR‘XO‘€I%< " )+z%

7[\/R|)C0‘

5,y (nRlx)) = +O((Rlxo])2).

n
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The part of the integral in (4.2.18) over [|xo|~!, 7] corresponding to 0((R|x0|)’%)
grows like log(7T'|xo|) which divided by T obviously tends to zero. The part of the
integral in (4.2.18) over [ |xo| ™!, T] corresponding to the main term is

T A . T el
/ 2R |x0)) =5 () —iF 4 2miR(A~|xol) oi5 (5D +T gp
Ixol 1

1
T 7t\/|xol

which tends to zero as T — oo by an integration by parts, since A # |xo| because we
are considering the case where A # +|xo — m| for any m € Z".
Now consider the case where A = =£|xo — my| for some mg € Z". In this case the
expression to the right in (4.2.17) converges to
D5 =G p(el) oY
't |xo — mp|” o' |xo—mo|"

as T — oo. Next observe that

= 1
Zﬁ , (4.2.19)

J=1

We have now shown that

,1,2| n lf)u - ﬂ,j,
1 T -1 il T 2 J
Jim / KT (xo)e™Mdr = 0 A £4A,  (4.220)
e 1 1 )
F(nz )e_[% .
- fA=—-A;
ny%*l A./' ! ]

Since x lies in S, the set {1} U{A;,A42,43,...} is linearly independent over the
rationals and thus no expression of the form £4;, & --- £ A, is equal to an integer.
It follows from this fact and (4.2.20) that

1 nt N e 1B 2kt | oIS p—2midjt p(g) N o1
lim — K (x0) [1 + dt = —= —.
T—oT J1 JIJI 2 ﬂTTl FZ’I )“jr'l
Suppose we had that
sup\KT(x0)| <Ay <oo.
R>1
F(n+l )
Then, setting ¢, = —2—, we would have
T 2
N T e 27:1/1 it —2miljt
1 1 ol e ' +elTe 4
b 2
J=177 Jj=1
T a1 N —i% 2midt | L% ,—2midjt
=limsup— [ [K, * (x0)[]] 144 - teze dt
T—5e0 1 i=1 2
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) 1 e*i%eZm'}th _i_ei%e*zn'iljl
§AXOhmsup? H [1+ 5 dt
T—o0 1 j=1

= Axo )

which contradicts (4.2.19) by letting N — oo. Here, once again, we used the fact
that no expression of the form +A; & ---+4;; is equal to an integer and thus the
preceding limsup is a limit and is equal to 1, since the integral of all the exponentials
produces another exponential which remains bounded.

We deduce that supg- |K (x0)| = oo for every point xg € SN [—1,1)"\ {0}

and this concludes the proof of Lemma 4.2.7.

Proof. We now prove Theorem 4.2.5. This part of the proof is similar to the proof

of Theorem 4.2.1. Lemma 4.2.7 says that the means B;Tl (8o)(x), where & is the
Dirac mass at 0, do not converge for almost all x € T". Our goal is to replace this
Dirac mass by a series of integrable functions on T" that have a peak at the origin.

Let us fix a nonnegative €™ radial function @ on R” that is supported in the unit
ball || < 1 and has integral equal to 1. We set

~

Pe()= Y @)= ) P(em)e™ ",

meZl meZ"

where the identity is valid because of the Poisson summation formula. It follows that
the mth Fourier coefficient of ¢, is ®(em). Therefore, we have the estimate

a5l C, Cy
sup sup [Bi? (@¢)(x)| < Y [@(em)| < ) —. (4221

x€T" R>0 meZn mezn (1+8|m|)n+1 e

For any k > 1, we construct measurable subsets Ej of T" with |E;| > 1 — k, a se-
quence of positive numbers Ry < Ry < ---, with Ry 1 oo, and two sequences of posi-
tive numbers & J 0 and J; | O such that & § Y for all k and

sup |By” (22 (¢e, — 0y, )( )‘Zk for x € Ey. (4.2.22)
R<Ry,

Wepick E1 =0,R; =1,and &y =y = 1. Let k > 1 and suppose that we have selected
E;, R}, ¥, and €; for all 1 < j <k — 1 such that (4.2.22) is satisfied. We construct
Ek, Ry, T, and & such that (4.2.22) is satisfied with j = k. We begin by choosing .
Let B be a constant such that

[@(x) = P(y)| < Blx—y|
for all x,y € R". Define 7; such that

By, Y |ml=1. (4.2.23)

Im| <Ry
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Then define
k—1
Ar=C27 "+ G Y 27 (7 + 1),
j=1

where C,, is the constant in (4.2.21), and observe that in view of (4.2.21) we have

n—1

sup sup BRT( 2k, + Z 27 (g, — q)yj)>(x)‘ < Ag. (4.2.24)
x€T*R>0

Let & be the Dirac mass at the origin in T". Since by Fatou’s lemma and Lemma
4.2.77 we have

n—1
liminf {xeT": sup |By? (50)(x)‘>2k(Ak+k+2)H:

R/ —eo 0<R<R'

there exists an R, > max(Ry_1,k) such that the set

E, = {xe T": sup

n—1
By (2—"50)()6)\ > Ap+k+ 2}
O0<R<Ry

has measure at least 1 — E Note that since Ry is increasing and tends to infinity,
(4.2.23) yields that ¥ is decreasing and tends to zero.
‘We now choose €&, such that & < Y, & < &-—1, and that

sup sup2 4B (80)() B’ (9)(W] < ¥ 2(1-25) 7 |1 - m)| < 1.

x€T" R<Ry |m| <Ry

This is possible, since for a fixed Ry, the preceding sum tends to zero as & — O.
Then for x € E} we have

inf sup 2~ |B 7 (@) (X)| > Ax+k+1. (4.2.25)
YEEL R<Ry

The inductive selection of the parameters can be schematically described as follows:
(%1, Re—1,Ex—1, €1} = % = Ay = {Re, Ex} = & = {W%.Ri, Ex, &}

Observe that the construction of Y, gives for all s > k4 1 the estimate

sup sup By (e, — @) < Y [@(em) — b (ym)|

x€T" R<Ry |m‘§Rk

<B(x-&) Y, Iml

[m| <Ry

<By Y, |ml

Im| <Ry

<BYir ), Iml=1,

|m|<Ry

(4.2.26)

using (4.2.23) and the fact that the sequence ¥ is decreasing.
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We now prove (4.2.22). For x € T" write

(iz (@e, — (p%)():B;g( 2” (Pyk"'zz (e, — ‘Pys))(x)

JrBR% (Z_k(pgk) ( )

B (X 2700 00) ).

s=k+1

from which it follows that

—1 —1
T 2= > T 2*1{
sup By (2 (pe=01)) ()] = sup (B (2794) ()
oup B 2( 2 <Pyk+Z2 we.y—wyy))(x)
Cap B (Y 2
up B (S%l (9e—2)) ()|

In view of (4.2.25), (4.2.24), and (4.2.26) for all x € E, we obtain

sup |By? (22 (9e, — 0y )( )’z(Ak+k+1)—Akf Y 27>k,
R<R; s=k+1

which clearly implies (4.2.22). Setting
Z (Pe, —y) € (1",

we deduce that supg. ‘B% (f)(x)| > k for all x in ;> E,, and thus

sup‘B% (x)’ =0
R>0

for all x in
NUs-
k=1r=k
Since this set has full measure in T”, the required conclusion follows.
By taking &; arbitrarily small (instead of picking & = 1), we force f to be sup-
ported in an arbitrarily small neighborhood of the origin. O

The previous argument shows that the Bochner-Riesz means B are badly be-
haved on L' (T") when a = % It follows that the “rougher” spherical Dirichlet

means D07V % f (which correspond to o = 0) are also ill behaved on L'(T"). See
Exercise 4.2.2.
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Exercises

4.2.1. Using Theorem 4.2.1 construct a function F on T” such that

= o

limsup |(Dy * F)(x1,. .. ,Xn)

N—oo
for almost all (xy,...,x,) € T".

4.2.2. For any 0 < & < o0 and R > 0 consider the Bochner—Riesz kernel

K§(x) = Z (1 - I%Z)aezmm-x'

|m|<R
Use Exercise 4.1.8 to obtain that if for some x¢ € T" we have

limsup |[Kg (x0)| < oo,
R—oo

then for all B > o we have
sup|K£ (x0)] < oo.
R>0

Conclude that whenever 0 < a < ”2;1, the Bochner—Riesz means of order o of

the function f constructed in the proof of Theorem 4.2.5, in particular the circu-
lar (spherical) Dirichlet means of this function, diverge a.e.

4.2.3. (a) Show that for M, N positive integers we have

Fy(x) for M <N,

PP =) By + sy £ K for b > .

(b) Prove that for some constant ¢ > 0 we have
' Z |k| eZnikx
Tl

as N — oo,

k<N
[Hint: Part (b): Show that for x € [—1, 1] we have

dx > cNlogN

| ‘Z [k| ¥ = (N +1)(D(x) — Fv (x))
k|I<N

and use the result of Exercise 3.1.5.}
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4.2.4. Given the integrable functions

=)

A0 = Y 27 (), iiz ), xeT!,

j=0

show that || fi * Dn||;1 — o0 and || f2 x Dy/[;1 — 0 as N — oo.

[Hint: Let M; = 22 or Mj = 2% depending on the situation. For fixed N let jy
be the least integer j such that M; > N. Then for j > jy + 1 we have M; > MJZ»N >

N?% > 2N +1, hence AA/;’I;IY > % Split the summation indices into the sets j > jy and
J < jn. Conclude that || fi * Dy/||;1 and || f> * Dy||,1 tend to infinity as N — oo using
Exercise 4.2.3.}

4.3 Multipliers, Transference, and Almost Everywhere
Convergence

In Chapter 2 we saw that bounded operators from L”(R") to L7(R") that commute
with translations are given by convolution with tempered distributions on R”. In par-
ticular, when p = ¢, these tempered distributions have bounded Fourier transforms,
called Fourier multipliers. Convolution operators that commute with translations
can also be defined on the torus. These lead to Fourier multipliers on the torus.

4.3.1 Multipliers on the Torus

In analogy with the nonperiodic case, we could identify convolution operators on T”"
with appropriate distributions on the torus; see Exercise 4.3.2 for an introduction to
this topic. However, it is simpler to avoid this point of view and consider the study
of multipliers directly, bypassing the discussion of distributions on the torus.

For h € T" we define the translation operator T acting on a periodic function
f as follows: T (f)(x) = f(x — h) for x € T". We say that a linear operator 7" act-
ing on functions on the torus commutes with translations if for all h € T" we have
(T (f))(x) = T(z"f)(x) for almost all x € T".

Theorem 4.3.1. Suppose that T is a linear operator that commutes with translations
and maps LP(T") to L1(T") for some 1 < p,q < o. Then there exists a bounded
sequence {am }mezrn such that

T(f)x)= Y. anf(m)e?™™* 4.3.0)

meZ
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forall f € €=(T"). Moreover, we have

[Ham} |- < (17|

LP—L9 "

Proof. Consider the functions e,,(x) = ¢*** defined on T" for m in Z". Since
T commutes with translations, for every & € T" there is a subset Fj, of T" of full
measure such that

T(em)(x—h) = T("(em)) (x) = €T () (x)

for every x € Fy,. Note that

/Tn [{heT": x€ F}|dx = / /T X{(hx)eTxT: xep,y dhdx

- /I‘n N\ x{<h7x)€Tn><T”: xXEF,} dxdh

_ / Faldh =1,
Tll

Therefore there exists an xy € T" such that |{h € T" : xo € F;}| = 1. It follows that
for almost all & € T" we have T (e,) (xo — 1) = e 2®™"T (e,,)(x0). Replacing xo —
by x, we obtain

T(em)(x) _ eZﬂ,’im.x (e—2ﬂim-x0T(em)(xO)) — amem(X) (432)

for almost all x € T", where we set a,, = e >™"~0T (e,,)(xo), for m € Z". Taking L9
norms in (4.3.2), we deduce |a,,| = ||T (em)||ze <||T||zr— 14, and thus a,, is bounded.
Moreover, since T (e,;) = apyen, for all m in Z", it follows that (4.3.1) holds for all
trigonometric polynomials. By density this extends to all f € ¥ (T") and the theo-
rem is proved. ]

Definition 4.3.2. Let 1 < p,q < . We call a bounded sequence {ay}meczn an
(LP,L9) multiplier if the corresponding operator given by (4.3.1) maps LP(T")
to LY(T"). If p = g, (LP,LP) multipliers are simply called L? multipliers. When
1 < p < oo, the space of all L” multipliers on T" is denoted by .#,(Z"). This no-

~.

tation follows the convention that .#,(G) denote the space of L” multipliers on

LP(G), where G is a locally compact group and G is its dual group. The norm of
an element {a,,} in .#,(Z") is the norm of the operator T given by (4.3.1) from
LP(T") to itself. This norm is denoted by ||{an}|| , -

My

We now examine some special cases. We begin with the case p = g = 2. As
expected, it turns out that .4, (Z") = (= (Z").

Theorem 4.3.3. A linear operator T that commutes with translations maps L*(T")
to itself if and only if there exists a sequence {ay }mezn in €°(Z") such that

T()x)= Y anf(m)e?™m* (4.3.3)

meZ"

for all f € €=(T"). Moreover, in this case we have ||T|| 2> = |[{am}m]| -
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Proof. The existence of such a sequence is guaranteed by Theorem 4.3.1, which also
gives ||{am tmlle= <||T|;2_, 2. Conversely, any operator of the form (4.3.3) satisfies

1T = T lanf ) < [{ambnll= E 1P

and thus |||\ ;2_2 < [[{a@m}m]|e= =

We continue with the case p = g = 1. Recall the definition of a finite Borel mea-
sure on T”. Given such a measure U, its Fourier coefficients are defined by

w(m) :/ e 2mm gy (x), meZ".

Clearly, all the Fourier coefficients of the measure i are bounded by the total vari-
ation ||p|| of u. See Exercise 4.3.3 for basic properties of Fourier transforms of
distributions on the torus.

Theorem 4.3.4. A linear operator T that commutes with translations maps L' (T")
to itself if and only if there exists a finite Borel measure [L on the torus such that

T(f)(x)= Y [(m)f(m)e*mm= (4.3.4)
mezZ"
Jorall f € €=(T"). Moreover, in this case we have ||T||;1_,1 = ||it||- In other words,

M (L") is the set of all sequences given by Fourier coefficients of finite Borel mea-
sures on T".

Proof. Fix f € L'(T"). If (4.3.4) is valid, then T(f)(m) = £ (m)fi(m) for all m € Z".

But Exercise 4.3.3 gives that fx t(m) = f(m)li(m) for all m € Z"; therefore, the

integrable functions f * u and T(f) have the same Fourier coefficients, and they

must be equal. Thus T(f) = f * i, which implies that 7 is bounded on L' and

1T e < TRlHAl

To prove the converse direction, we suppose that T commutes with translations

and maps L' (T") to itself. We recall the Poisson kernel P, defined on T”, which can
be expressed in the following two ways:

. T ﬂ) e

P, (x) _ e—27r\m|£e2mm~x _ ’12
mEZZ" 717%

>0 (4.3.5)

mezn (14 522)"5

1
for all x € T”, in view of the identity obtained in (3.2.4). The preceding identity says
that P. > 0; hence, || Pe||1 = Jpn Pe(x) dx. Integrating the first series in (4.3.5) over
T" we conclude that ||Pe ]|, (rn) = 1. The boundedness of T now gives

1T el ony < 17

) ||Ll (T" —L!
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for all € > 0. The Banach—Alaoglu theorem implies that there exist a sequence €; | 0
and a finite Borel measure ( on T” such that T(ng) tends to u weakly as j — oo.
This means that for all continuous functions g on T” we have

lim [ g(x)T(Pe,)(x)dx = /T g(x)du(x). 4.3.6)

jﬁoo "

It follows from (4.3.6) that for all g continuous on T" we have

|, san

< sup 7 (Bep) s < 17 ool

Since, by the Riesz representation theorem we have that the norm of the linear func-
tional

g [ sdu)
on the space of continuous functions € (T") is ||i]|, it follows that

el <||T) - 4.3.7)

It remains to prove that 7' has the form given in (4.3.4). By Theorem 4.3.1 we have
that there exists a bounded sequence {am} on Z" such that (4.3.1) is satisfied. Taking
glx)= e~ 27k 5 (4.3.6) and using the representation for 7 in (4.3.1), we obtain

A = [ 2y

_ 111’1’1 672mk~x Z amefZ7'(€j|m\eZ7tlm~xdx
J— JTH mezn

_ hm Z / e—2mk‘xame—277:£j\m|e2mm~xdx
J= megn /T

—27e;

= lim gre Wl = ay .

Joreo
This proves assertion (4.3.4). It follows from (4.3.4) that T(f) = f* u and thus
1Tl < ||t]]- This fact combined with (4.3.7) gives ||T||1_1 = [|1t]]- O

Remark 4.3.5. It is not hard to see that most basic properties of the space .#,(R")
of L? Fourier multipliers on R”" are also valid for .#,(Z"). In particular, .#,(Z") is
a closed subspace of ¢*(Z") and thus a Banach space itself. Moreover, sums, scalar
multiples, and products of elements of .#,(Z") are also in .#,(Z"), which makes
this space a Banach algebra. As in the nonperiodic case, we also have .#,(Z") =
My (") when 1 < p < co,



4.3 Multipliers, Transference, and A. E. Convergence 275

4.3.2 Transference of Multipliers

It is clear by now that multipliers on L!(T") and L' (R") are very similar, and the
same is true for L?(T") and L?(R"). These similarities became obvious when we
characterized L' and L? multipliers on both R” and T”. So far, it is not known if a
nontrivial characterization of .#,(R") exists, but we might ask whether this space is
related to .#,(Z"). There are several connections of this type and there are general
ways to produce multipliers on the torus from multipliers on R"” and vice versa.
General methods of this sort are called transference of multipliers.
We begin with a useful definition.

Definition 4.3.6. Let 7o € R". A bounded function b on R” is called regulated at the

point ty if
1
lim — /H (b(t() —1) —b(to)) dt=0. (4.3.8)
1|<e

e—0 "
The function b is called regulated if it is regulated at every fy € R".

Clearly, if 1y is a Lebesgue point of b, then b is regulated at #g. In particular, this
is the case if b is continuous at fy. If b(fp) = 0, condition (4.3.8) also holds when
b(ty —t) = —b(tp +1t) whenever |¢t| < € for some € > 0; for instance the function
b(t) = —isgn (¢t — o) has this property.

An example of a regulated function is the following modification of the charac-
teristic function of the cube [—1,1]"

1 when all |x;| < 1,

~ 2k=mif (x1,...,%,) belongs to some k-dimensional

A1 (X15 0 Xn) = n
face of the boundary of [—1,1]",

0 when some |x;| > 1,
with the understanding that points are zero-dimensional.
The first transference result we discuss is the following.

Theorem 4.3.7. Suppose that b is a regulated function at every point m € Z* and
that b lies in #,(R") for some 1 < p < co. Then the sequence {b(m)}nczn is in
Mp(L") and moreover,

H {b(m) }mezr

iy < 1l -

If b is regulated everywhere, then for all R > 0 the sequences {b(m/R)}nczn are
in M,(Z") and we have

Zli% H{b(m/R)}mEZ" ||k/ﬂp(Z") < Hb”///p(R”) .
The second conclusion of the theorem is a consequence of the first, since for a

given R > 0 the function b(& /R) is regulated on Z" and has the same .#,(R") norm
as b(&). Before we prove this result, we state and prove a couple of lemmas.
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Lemma 4.3.8. Suppose that the function b on R" is regulated at the point xo. Let
Ke(x) = e e ™/eP for £ > 0. Then we have that (b*Ke)(x0) = b(xp) as € = 0.

Proof. For r > 0 define the function

Fo(r) = rl /\, <r(b(x0—t)—b(xo))dt:r1n /0 ' /S (b0 —s8) ~b(xn)) dOs™ds.

Let 7 > 0. Since b is regulated at xq there is a 8 > 0 such that for r < § we have
|Fx,(r)| <n.Fix such a § and write

(b= Ke)ao) ~b(ao) = [ (b0 ) ~blro))Ke(o)dy = AT +45,

where
Af= [, (b0 =) = blxo)) Ker)dy
and
A = e 5(b(xo—)’)—b(xo))Ks(Y))dy
6 1

/s /S,,f1 (b(xo —r8) = b(xo))r"dr

0
- / 1R () dr
For our given n > 0 there is an & > 0 such that for € < & we have

1A° |<2||b||Lw/ e ™Pay <.

>0
|J|Zg

Via an integration by parts A can be written as

1 2 5y /)2
5] = |8"Fy (8) gre ™0/ —02m | e I R (1) dr

n d/¢€
1‘*}0(5)%e7”(6/8)2 +27r/0 r"HFxO(sr)efmzdr

d/e
= |1[7"0(6)|*€7ﬂ<5/£> + suPa \Fxo(Sr)\ZﬂT/ Pl g
0<r<g

< |Fx0 |Cn+ sup |Fyy(r )|Cn
0<r<é

S (Cn +Cn)r' )

where we set C, = sup,>0t”e’7”2 and C), =27 [y #+1e=™ dr_ Then for € < & we
have |(b* K¢ )(xo — b(x0)| < (Cy+C,+1)n, thus (b*K¢)(x0) — b(xo) as € — 0.0



4.3 Multipliers, Transference, and A. E. Convergence 277

Lemma 4.3.9. Let T be the operator on R" whose multiplier is b(&), and let S be
the operator on T" whose multiplier is the sequence {b(m)}mczr. Assume that b(&)
is regulated at every point & = m € Z". Suppose that P and Q are trigonometric
polynomials on T" and let L¢(x) = e el forx € R" and € > 0. Then the following
identity is valid whenever o, >0and a+ 3 = 1:

im &3 / T(PLeq)(x)Q(x) Lep () dx = [ S(P)(x)Q(x)dx. 4.3.9)
e—0 ™

Proof. It suffices to prove the required assertion for P(x) = e¥mx and Q(x) =
e¥mikx | m e 2", since the general case follows from this case by linearity. In view
of Parseval’s relation (Proposition 3.2.7 (3)), we have

o {b(m) when k = m, 43.10)

Q(x)dx=Y b(r)P(r)
" SP)x e rEZZn Y 0 when k # m.

On the other hand, using the identity in Theorem 2.2.14 (3), we obtain

=&t [ bE)(ea) BT (o)t g

\5*»1\2 _ ‘é’k‘z
Sea e T 6B dé. (4.3.11)

~(cap) [ b(E)e"

Now if m =k, since o + 8 = 1, the expression in (4.3.11) is equal to

(eap)~* /R b(é)e—x'i;’z‘z dé (4.3.12)

which tends to b(m) in view of Lemma 4.3.8, since b is regulated at every point
meZ".

We now consider the case m # k in (4.3.11). Since |m — k| > 1, then every & in
R" must satisfy either |§ —m| > 1/2 or |§ — k| > 1/2. Therefore, the expression in
(4.3.11) is controlled by

(S

(eaB)”

e - —mf?
[ b e T g b(E)e e T w dE ),
E—m]>} 6>

2 =2
which is in turn controlled by

T

I8l (aigeiﬁ +B7%67W) )
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which tends to zero as € — 0. This proves that the expression in (4.3.10) is equal
to the limit of the expression in (4.3.11) as € — 0. This completes the proof of
Lemma 4.3.9 (]

Proof (Theorem 4.3.7). We are assuming that T maps L” (R") to itself and we need
to show that S maps L?(T") to itself. We prove this using duality. For P and Q
trigonometric polynomials, using Lemma 4.3.9, we have

S(P)(x)Q(x) dx

Tn

-0

lim &2 ./R" T(PLg/,,)(x)Q(x)LS/p/ (x)dx

<Moo limsup‘(:%HPLE/A OLe/p|| 1w
£—0

LP(R")

L
7

1
n P n / 4
= ||THU_>LP limsup (gz/Rn|P(x)|pe—8ﬂ|x2 dx) <£2/RHQ(X)|pe—snx2 dx)l

£—0

L
7

il (e (ot as)”

provided for all continuous 1-periodic functions g on R we have that

lime? g(x)e*”\"‘zdx :/ g(x)dx. (4.3.13)
£—0 R® ™

Assuming (4.3.13) for the moment, we take the supremum over all trigonometric

polynomials Q on T" with L” norm at most 1 to obtain that S maps L” (T") to itself

with norm at most || T'||z»—r», yielding the required conclusion.

We now prove (4.3.13). Use the Poisson summation formula to write the left-hand
side of (4.3.13) as

g3 Z/ g(x—k)eigﬂ‘xfk‘zdx = / g(x)e? Y ek gy
kezn T " keZn

_ (%) Z efn\k|2/862m'x-kdx
T keZn

= g(x)dx+Ag,
Tﬂ
where ,
A <l X e 0
|k|>1
as € — 0. This completes the proof of Theorem 4.3.7. U

We now obtain a converse of Theorem 4.3.7. If (&) is a bounded function on R”
and the sequence {b(m)}nezy is in .4, (Z"), then we cannot necessarily obtain that
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bisin .#,(R"), since such a conclusion would depend on the values of b on the in-
teger lattice, which is a set of measure zero. However, a converse can be formulated
if we assume that for all R > 0, the sequences {b(m/R)}ncz are in .#,(Z") uni-
formly in R. Then we obtain that (& /R) is in .#,(R") uniformly in R > 0, which is
equivalent to saying that b € .#,(R"), since dilations of multipliers on R” do not af-
fect their norms (see Proposition 2.5.14). These remarks can be precisely expressed
in the following theorem.

Theorem 4.3.10. Suppose that b(&) is a bounded function defined on R" which is
Riemann integrable over any cube. Suppose that the sequences {b('g)}mez» are in
Mp(ZL") uniformly in R > 0 for some 1 < p < co. Then b is in M, (R") and we have

121,y < s0p [|{ (7 Imezr | g, ) 43.14)

Proof. Suppose that f and g are smooth functions with compact support on R”.
Then there is an Ry > 0 such that for R > Ry, the functions x — f(Rx) and x — g(Rx)
are supported in [—1/2,1/2]". We define periodic functions

= Z f(R(x—k)) and Gg(x Z g(R

keZn keZn

on T". Observe that the mth Fourier coefficient of Fy is Fg(m) = R~ f(m/R) and
that of Gg is Ggr(m) = R™"g(m/R).
Now for R > Ry we have

Y b(m/R)f(m/R)g(m/R) Volume (% + [0, £]") (4.3.15)
meZ"
~ R X bl /R G|
meZ"
= R”/ ( Y b(m/R)I/ﬁ\g(m)ezmm'x) Gr(x)dx
™ meZ"
<R”||{b m/R) }'”H///,, 7" FRHLP(T”) GRHLP’(T")
= ;‘i%‘!‘{b m/R) ez (///,,(Z”)RHHFRHLP(R”) |GRHL!'/(R”)
= ]Seli%H{b(m/R>}mEZ"H,//p(zn) |f] LP(RM) 8| L’ (RY)* (4.3.16)

Since b is bounded and Riemann integrable over any cube in R", the function
b(E)f(&)g(&) is Riemann integrable over R”. The expressions in (4.3.15) are sums
associated with the partition {[%, “£1)"},,cz» of R" which tend to

~

b(&)f(8)8(8)dE

R”
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as R — oo by the definition of the Riemann integral. We deduce that the absolute
value of

| BT EREE = [ () ()5l dx

is bounded by the expression in (4.3.16). This proves the theorem via duality. U

4.3.3 Applications of Transference

Having established two main transference theorems, we turn to an application.
Corollary 4.3.11. Let 1 < p < oo, f € LP(T"), and a > 0. Then
(a) || Dy x f — f|
(b) ||D7e *f—f”Lp(T,,) — 0as R — o if and only if xp,1) € #,(R").
(c) ||BE(f) - f| r(rmy — 0as R — eo if and only if (1-|E)% € 4,(R").

Loy = 0as R — oo if and only if X_1 1 € M ,(R").

Proof. First observe that in view of Corollary 4.1.3, the assertions on the left in (a),
(b), and (c) are equivalent to the statements

IS;;I())HDﬁ*fHM(Tn) < CPHfHLP(T")’
IS;;%HD%*JCHLP(T") < CI’HfHu'(T")’

;li%“Bg(f)”U(T") < CPHfHLP(T")’

for some constant 0 < C,, < oo and all f in LP(T"). These statements can be
rephrased as

su _11n(m/R) }nezn ny <9,
R>I())H{X[ 1,1] ( / )} eZ Mp(ZN)
su m/R) }mezn ny <<,
R>P0H{%3(o71)( /R)ymez My (T
su l—mRzo‘m n by <o
R>18H{( [m/R[") ¥ Y mez My(2r)

If these statements hold, then Theorem 4.3.10 gives that the functions ¥y i (&),
Zoo)(€): and (1= |E)? Tie in .7, (R").

To prove the converse implication, for any given R' € R* \ {|m| : m € Z"}, the
functions Y[y 1(§ /R'), Xp(0,1(§ /R') are Riemann integrable over R" and are reg-
ulated (actually continuous) at every point in Z". Moreover, the function (1 — ||*)%
is continuous, regulated, and Riemann integrable over R”. Then the hypotheses of
Theorem 4.3.7 are satisfied and its conclusion yields that

{x= 1,112 (m/R ) ez

Mp(ZM) SH%[—1,1]n My (4.3.17)
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0.0y (/R Ve | 4 iz <llxson g, - (4.3.18)

sup [{(1 = m/RI*)EYnez | g, amy <1 =1 %]

Notice that the first and second estimates are uniform in R’, so one may insert a
supremum over R’ € R™\ {|m|: m € Z"} in (4.3.17) and (4.3.18). To replace R’ by a
general R € Z™ simply notice that for any R > 0 there isan R € R™ \ {|m|: m € Z"}
such that . .

Dg*f=Dyxf and Dgxf=Dpxf

for any f € LP(T"). Then using (4.3.17) we obtain

Ise‘iPOHDﬁ*fHLP :IselipoHD% * £, :;&%HD??/ o < -1 (//Z,,HfHLP
and likewise for Bﬁ O

4.3.4 Transference of Maximal Multipliers

We now prove a theorem concerning maximal multipliers analogous to Theorems
4.3.7 and 4.3.10. This enables us to reduce problems related to almost everywhere
convergence of Fourier series on the torus to problems of boundedness of maximal
operators on R”.

Let b be a bounded function defined on all of R". For R > 0, we introduce the
multiplier operators

SpR(F)(x) = Y b(m/R)F (m)e*™™* (4.3.19)
mezZr
TorlH) = [ BIE/RFE)E™dE, (43.20)

initially defined for smooth functions with compact support f on R"” and smooth
functions F on T".
We introduce the maximal operators

My(F)(x) = sup |S6.1(F) ()], 4.3.21)
No(f)(x) = sup Ty () ()], (43.22)

defined for smooth functions F on T" and smooth functions with compact support
fonR" Let 7(b)(€) = b(€ —y) be a translation operator defined for y € R”. We
have the following result concerning these operators.

Theorem 4.3.12. Let b be a function defined on R". Suppose that b is bounded,
regulated, Riemann integrable over any cube, and assume that for all & € R" the
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function t — b(E /t) has only countably many discontinuities on RT. Let 1 < p < oo
and C,, < oo, and suppose that b lies in #,(R"). Let M}, and N}, be as in (4.3.21)
and (4.3.22). Then the following assertions are equivalent:

1M ()| oy < CollBl] g, [1F 1 ) Fee™(T), (4323
HNb(f)HLP(R") < CPHbH/z,,HfHLp(Rn)v [ ety (RY). (4.3.24)
Proof. Let F ={t1,...,4} be a finite subset of R*. We prove the claimed equiva-

lences for the maximal operators

M7 (G)(x) = sup Sy, (G)(x)],

teF

Ny (9)(x) = tsell§|Tb,t(g)(X)|,

with constants that are uniform in the finite set .%. Then Mf; may be viewed as
an operator defined on the dense subspace ™ (T") of L”(T") and taking values in
LP(T",0=(.7)), which is the dual space of L” (T, ' (.7 )). Likewise, N;7 is defined
on the dense subspace 6;°(R") of L”(R") and takes values in L”(R", {*(.%)), which
is the dual space of L (R",¢' (.7)). Using duality, with respect to the complex inner
product, estimates (4.3.23) and (4.3.24) are equivalent to the pair of inequalities

B Nt k

X G £ ()00 <Gl g | 5 g 329
BN ‘

[ & )jzzlb(tj)fj@)d&‘ <Collll g el | 5 1 ey 4320

where g, f; € €5°(R"), and G,F; € €~(T"). In proving the equivalence of (4.3.25)
and (4.3.26), by density, we work with smooth functions with compact support g, f;
and trigonometric polynomials G, F;j.

Suppose that (4.3.25) holds and let fi,..., fr,g be smooth functions with com-
pact support on R”. Then there is an Ry > 0 such that for R > R the functions
Fjr(x) = fj(Rx) and Gg(x) = g(Rx) are supported in [—1/2,1/2]" and thus they
can be viewed as functions on T” once they are periodized. Also, the mth Fourier
coefficient of Fj g is IFJ\R(m) = R’”fj(m/R) and that of G is C/};g(m) =R"g(m/R).
Since b lies in .#,(R") we have

HbH//p(Rn> = zlilé)) H{b(m/R)}meZ" (%p(zn)

in view of Theorems 4.3.7 and 4.3.10, which are both applicable in view of the
hypotheses of b.
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As in the proof of Theorem 4.3.10, for R > Ry we have

Y Zb m/Rt;) f;(m/R)g(m/R) Volume (% 4-[0, k1" (4.3.27)
meZ j
'Y me/m Fir(m )é\(m)'
meZl j
< n .
_CPHbH///pR ]:21|F o () G (T7)
k
=Cpllbll.a, || Y 1] ( H)Hg”LP(R")v
j=1

where we applied (4.3.25) in the first inequality above for the function & — b(& /R),
which has the same ., norm as b.

Since b is bounded and Riemann integrable over any cube in R", the functions
b(&/tj) fi(£)g;(&) are Riemann integrable over R”. Realizing the limit of the partial
sums in (4.3.27) when R — o as a Riemann integral, we obtain

" i b6 /1) (& @48 | <G, ol | ]kzl 0], e

and thus we showed that (4.3.25) implies (4.3.26).

We now turn to the converse. Assume that (4.3.26) holds. We will prove (4.3.25)
for trigonometric polynomials and then by density we extend it to all " functions
on T". Expressing g in terms of g in (4.3.26) and taking the supremum in (4.3.26)
over all ¢;° functions g with L” norm 1 we deduce that

Let Py,...,P, and Q be trigonometric polynomials on T”. Set L¢(x) =
Since b is regulated at every point in R"”, Lemma 4.3.9 gives

o Xr(E)neemcae] < clbl | L], @22
=1 J

2
e—7r£|x| )

y zé<m>b<m/rj>ﬁj<m>\

meZn j=1

lim e / . ( /R f@«é)b(é/memé*dé)Q(x)Ls/,,@)dx
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< Cpl|b]l.z, limsup [eg QLs/pHLp(Rn)}
e—0

k
j:Zl |PjL8/P, | LY (R™)

1

e p—emiii®y )P}
I Y T

_n_

= Cp||b|., limsup [821”
e—0

k
( |Pj|)L£/p’
j=1

:CprH‘///p

k
;|Pj| o eIl
where we used Holder’s inequality and (4.3.28) in the only inequality above and
(4.3.13) in the last equality. Thus we obtain that (4.3.26) implies (4.3.25), and this
completes the equivalence of boundedness of M, l‘;j and Nf.

We now prove the claimed equivalence for the operators M, and N,. We first
show that if M;” is bounded on (€ (T"),|| - ||1») with bound independent of the
finite set %, then M, is bounded on (€ (T"), || - ||zr).

For each § € R”, let A; be the null subset of R* such that 7 — b(& /1) is contin-
uous on R™\ A¢. We fix a function F in 4" (T"), and we note that for each x € T"
the function

t—Sp(F)(x) = Y b(m/t)F(m)e*™ ™~ (4.3.29)
meZn
is continuous on the set R™ \ U,,cz» Am. We pick a countable dense subset D' of
R\ Uppezn Am. and we let D = D' U,z App. Then D is a countable set and the
Lebesgue monotone convergence theorem gives that

|sup b (F)1] = lim ||, (F) |y < CollBllst | F |y (43.30)

Lr(T7)

where .7} is an increasing sequence of finite sets whose union is D. Using that the
function in (4.3.29) is continuous on R™ \ D, we conclude that the supremum over
t € D in (4.3.30) can be replaced by the supremum over t € Z+ (Exercise 4.3.7).

Assume now that N;” is bounded on (%;°(R"), | - ||z») with bound independent
of the finite set .. We show that N}, is bounded on (%;°(R"),|| - ||z»). Let f be in
%€, (R"). We have that the map

(= T = [ ENFEE™E =11 [ HEF1E)EE g 3331

JRr JR"

is a continuous function on R" since f is continuous. Thus the estimate

LR (4.3.32)

1590 75 ()L ey < ol 1]

teD
for a countable dense subset D of Rt (such as D = Q%) can be easily extended by
replacing the supremum over D by the supremum over R™. And estimate (4.3.32)
for D = Q™ follows from the corresponding estimate on finite sets via the Lebesgue
monotone convergence theorem. O
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Remark 4.3.13. Under the hypotheses of Theorem 4.3.12, the following two in-
equalities are also equivalent:

5G| powamy < CollENl, |G| ooy Ge?™(T"),  (4.333)

[N ()| pom ey < CpllBll.t, 181l r (e g € 65 (R"), (4334
with C), < C, < C(n, p)C,, for some other constant C(, p). Indeed, Exercise 1.4.12

gives that the pair of inequalities (4.3.33) and (4.3.34) is equivalent to the pair of
inequalities

Z| ,|H @339

Lr Tn

k ~
Y. 3. Fimblon/t) )| < G114, |6

meZ j=1

k o~ PR
y j<é>b<s/r,->§<é>dé] < 1bll gl

. (4.3.36)

Z il
=

L7 1(RY)

where L'+! is the Lorentz space and fi € €;°(R") and Fj € €=(T").

Now (4.3.36) follows from (4.3.35) just like (4.3.26) follows from (4.3.25) with
the only exception being that Holder’s inequality for L? and LY is replaced by
Holder’s inequality for LP and L' and we use that ||g||zr= < ||g||z». Conversely,
assuming (4.3.36), in order to prove (4.3.35) it will suffice to know that

(L 10) ey =00 £ 21

For this we refer to Exercise 4.3.6.

n
sup €%
O<e<l

. 4.3.37
Lq‘rl(T") ( 33 )

4.3.5 Applications to Almost Everywhere Convergence

As an application of the preceding results, we relate the almost everywhere conver-
gence of Fourier series of functions on T! with the almost everywhere convergence
of Fourier integrals of functions on R. In this subsection we show that the following
two results are equivalent:

Theorem 4.3.14. For every 1 < p < oo there exists a finite constant C,, such that for
all F € €=(T") we have

Theorem 4.3.15. For every 1 < p < oo there exists a finite constant Cy, such that for
all f € €5°(R) we have

;§£+|F*DN|HLP <G|, (4.3.38)

1€ () || oy < Coll Fllrimy (4.3.39)
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where

CaN@ =l [ ey

R>0

is the Carleson operator.
As a consequence of Theorem 4.3.14, we obtain that for any F € L? (T' ), we have

li a 2mimx __
dim Z F(m)e F(x)
m[<N

for almost every x € [0, 1].

Theorem 4.3.14 can be proved directly, but we do not pursue this here. Instead,
we show the equivalence of the two theorems and refer the interested reader to [131],
which contains the proof of Theorem 4.3.15.

We observe that both operators F +— €, (F) = supy~¢ |F * Dy| and f — €..(f)
are sublinear and take nonnegative values. Thus they satisfy the inequalities

G (F) = (G)| S C(F=G)  [Cu(f) = Chn(8)| S Cos(f — 8)

for all F,G in €*(T') and f,g in %;°(R). Then, by density (see the argument in
the proof of Theorem 1.4.19 or Exercise 1.4.17), they admit bounded extensions to
LP(T') and L”(R), respectively, so that (4.3.38) and (4.3.39) hold for all F € L”(T")
and f € LP(R).

Next, we discuss the details of the transference argument that claims the equiva-
lence of Theorems 4.3.14 and 4.3.15.

Consider the following function defined on R:

1 when |x| < 1,
b(x)=q1/2  when [x| =1, (4.3.40)
0 when |x| > 1.

Then b is bounded and Riemann integrable over any interval, and is easily seen to
be regulated; also, given any x € R, the function 7 — b(x/¢) is discontinuous only
forr € {x,—x}.

Let Sp g be as in (4.3.19), where b is defined in (4.3.40). We note that inequality
(4.3.38) is equivalent to

J
Hls;i%|sb,;e(F)| Hu <C||F|, (4.3.41)

for all F € €(T"), where {Dg}g~o is the family of Dirichlet kernels as defined in
(3.1.16), depending on the continuous parameter R. Indeed, we have
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Z\m|§[R] f(m)ezmmx ifR¢ZT,

Sp.r(F)(x) = e ik (4.3.42)
(Day+ F)(x) + LR “; (=R)e itReZ"

Since supR>0\f(iR)| < ||F|lr < ||F]|ee, it follows that if (4.3.38) holds, then
(4.3.41) also holds with C;, =Cp+1.

The only hypothesis of Theorem 4.3.12 missing is that b lies in .#,(R). We
obtain this from the fact that supg. [[6(-/R)||.4,(z) < °° via Theorem 4.3.10, since

supl|F + Dipp = 51 1Dy < GF (43.43)

where the last estimate follows from Proposition 4.1.6, Theorem 4.1.7, and Corollary
4.1.3. The preceding equality is due to the fact that Dg = Dr4¢ whenever 0 < € < 1.

Now all hypotheses of Theorem 4.3.12 are valid. As a consequence we obtain the
equivalence of the boundedness of the the maximal operator

Np(f)(x) = G (f)(x) = sup

R>0

R ‘
[ F@etay
-R
on L?(R) and of

My(F)(x) = sup

Y, Fmeemp() ‘ = sup 5, (F) (3]

meZ

on LP(T"). But in view of (4.3.42) and of the fact that supg- o |F (£R)| < ||F||1». the
L” boundedness of M, is equivalent to the L” boundedness of %, on L”(T"). This
discussion concludes the equivalence of Theorems 4.3.14 and 4.3.15.

4.3.6 Almost Everywhere Convergence of Square Dirichlet Means

The extension of Theorem 4.3.14 to higher dimensions is a rather straightforward
consequence of the one-dimensional result.

Theorem 4.3.16. For every 1 < p < oo, there exists a finite constant Cp, , such that
forall f € LP(T") we have

Dn < C 4344
H;L;%\ N f] () = P~”Hf||LI’(T") ( )
and consequently N )

im Y 7(m)e s = f(x)

N—ee meZ
mj|<N

Jor almost every x € T" and f € LP(T").
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Proof. We prove Theorem 4.3.16 when n = 2. Fix a p with 1 < p < oo. Since the
Riesz projection P, is bounded on L7 (T') (Theorem 4.1.7 and identity (4.1.9)), ap-
plying Theorem 4.3.10 with b(§) = X0, We obtain that that the function ¥ .
is in ., (R). It follows that the characteristic function of the half-space &; > 0 in
R? lies in ,///p(Rz). Since rotations and translations of multipliers preserve their
M, norms (Proposition 2.5.14), it follows that the characteristic function of any half
space created by a line in R? lies in .7, ,,(Rz) with a fixed norm. The product of three
multipliers is a multiplier (Proposition 2.5.13); thus the characteristic function of the
triangle T created by the lines & = & — §, & = —& — 4, & = L+ § lies also in
M ,(R?) with norm independent of L € Z™. The regulated function

1 f(él,éz)ET\
0 if(&,6)¢T
o(&,&) =13 if(&,&) €aT\{(0,— )(L+§7L+%),(—L—%’L+}1)}
g f(él,éz)e{(wz,u )s(—L—3,L+3)}
1 if(&,.&)=1(0,—1)

is a.e. equal to the characteristic function of 7. Thus Theorem 4.3.7 gives that the
restriction of & on Z2, i.e., the sequence {@m, my }m, m, defined by @, m, = 1 when
|mi| < |ma| < L and zero otherwise, lies in ///p(ZZ) with norm independent of L in

Z. This means that for some constant B, we have the following inequality for all f
in LP(T?):

Je

where B, is independent of L € Z*. There is also a a version of (4.3.45), proved
similarly, in which |m;| < |my| is replaced by the strict inequality |m;| < |my|.
Now let 1 < p < oo, L€ Z", and f € LP(T?). For fixed x; € T! define

N . p
Z Z f(m17m2)62m(m1x1+m2x2) dxrdx) < BngHZp(

myeZlZ me’l
[ma| <L |my|<|my]

) (4.3.45)

fol (X2) = Z [ Z f(ml’mz)e2mm1x1] p2mimaxy _ Z xLl (m2)62m'm2x2

my€Z my€L my€ZL
[ma| <L [my|<|my| [ma|<L

and for fixed x, € T! define

sz(xl) _ Z |: Z f(ml’mz)eZﬂimzxz] eZm'mlxl _ Z /Z\z(ml)eZﬂ:imlxl'

my€EL my€L myEL
[my|<L  |my|<|my| |my|<L
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We have
/\ . . P
E Sf(my ,mz)ezmmm XM s dix

/Tl /T‘ 0NCL |m1\<N\m2\<N
<P~ 1/ /
T! JT! 0<N<L

+ sup
0<N<L

p

Z f(ml ’m2)82mmlx1] e27rim2x2

[ma| <N [m||<m2

Z ]?(ml 7m2)ezmm2x2} ezmmlxl

lm1|<N |:m2<|m1

=r-! {/ / sup | DN>|<f)C (x2) ’pd)del
T! JT! 0<N<L

+/ / sup ‘(DN*fzz)(xl)‘pdxldxz}
T! JT! 0<N<L

< or-1 {/ / sup |(DN>|<foI)(x2)|pdx2dx1
Tl T1 N€Z+

// sup DN*fL (x1 | dxldxz}
T! TlN 7+

<oiep [ ] Ukl dda+2riep [ R dads
T! JT! T! JT!
p
<2yl

P
dxl dXQ

where we used Theorem 4.3.14 in the penultimate inequality and estimate (4.3.45)
in the last inequality. Since the last estimate we obtained is independent of L € Z,
letting L — oo and applying Fatou’s lemma, we obtain the conclusion (4.3.44) for
n = 2. When n > 3 the idea of the proof is similar, but the notation a bit more
cumbersome. (]

Exercises

4.3.1. Let o > 0. Prove that the function (1 —|£[?)% is in .#,(R") if and only if the
function (1 —|&|)¥ is in .#,(R").
[Hint: Use that smooth functions with compact support lie in ./, ,,(R").]

4.3.2. The purpose of this exercise is to introduce distributions on the torus. The
set of test functions on the torus is € (T") equipped with the following topology.
Given f;, f in €= (T"), we say that f; — f in €= (T") if

0% 7a“f||Lm(T,,> -0 asj—oo, Va.
Under this notion of convergence, ¢ (T") is a topological vector space with topol-
ogy induced by the family of seminorms pg (@) = sup,cy« [(d%f)(x)|, where o
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ranges over all multi-indices. The dual space of ¢ (T") under this topology is the
set of all distributions on T” and is denoted by 2’(T"). The definition implies that
for uj and u in 2'(T") we have u; — u in 2'(T") if and only if

<”jvf> - <’47f> as j — oo forall f € € (T").

The following operations can be defined on elements of 2'(T"): differentiation (as
in Definition 2.3.6), translation and reflection (as in Definition 2.3.11), convolution
with a > function (as in Definition 2.3.13), multiplication by a €* function (as
in Definition 2.3.15), the support of a distribution (as in Definition 2.3.16). Use the
same ideas as in R" to prove the following: B

(a) Prove that if u € 2'(T") and f € €= (T"), then (f *u)(x) = (u,7(f)) isa €=
function.

(b) In contrast to R”, the convolution of two distributions on T” can be defined. For
u,v € 2'(T") and f € €=(T") define

<u*v,f> = <u,f>k\7>.

Check that convolution of distributions on 2'(T") is associative, commutative, and
distributive.
() Prove the analogue of Proposition 2.3.23, i.e., that €*°(T") is dense in 2’ (T").

4.3.3. For u € 2'(T") and m € Z" define the Fourier coefficient #(m) by

@(m) = u(e 2™ mC)) = (u,e27m ()Y

<

Prove properties (1), (2), (4), (5), (6), (8), (9), (11), and (12) of Proposition 2.3.22
regarding the Fourier coefficients of distributions on the circle. Moreover, prove that
for any u, v in 2'(T") we have (u*v)"~(m) = u(m)v(m). In particular, this is valid
for finite Borel measures.

4.3.4. Let u be a finite Borel measure on R” and let v be the periodization of p,
that is, v is a measure on T" defined by

v(a) =) u(A+m)

meZ

for all measurable subsets A of T”. Prove that the restriction of the Fourier transform
of 1 on Z" coincides with the sequence of the Fourier coefficients of the measure v.

4.3.5. Let v, be the volume of the unit ball in R” and e¢; = (1,0, ...,0). Prove that

lim — / dx— 1
i d<1dx==.
=0 V€ Jjx—ey|<e Axi<1 2
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Conclude that the function

1 when |x] < 1,
ZBo,1)(*) =4 1/2  when |x[ =1,
0 when |x| > 1

is regulated.

4.3.6. Let Ls(x) = ¢~ €l” be defined for £ > 0 and x € R" and let 1 < q < oo.
Prove that there is a constant C(n,q) < e such that for any 1-periodic continuous
function g on R” we have

sup €% ||ng/qHLq,1<Rn) < C(”:Q)Hg”LqJ(T") .
O<e<l1

[Hint: Reduce matters to the situation where g =Y 1 czn Xx+£, Where E is a measur-
able subset of [—1/2,1/2)". Express the L% norm of gL, /q in terms of its distribu-
tion function and for 0 < A < 1 estimate the measure

{Lesg > A3 U (k+E)|= ‘B(O, (%log%)%)ﬂ U (k+E)’
k

(/0 keZ"

by G (v+ (L log 1))y E|]

4.3.7. Let 0 < Cy < oo. Suppose that {f; },cg+ is a family of measurable functions
on a measure space X that satisfies

HSUP‘MHLP <G
teF

for every finite subset F of R™.
(a) Suppose that for each x € X, the function # — f;(x) is continuous. Show that

Lr S CO'

|| suplf;]]
t>0
(b) Prove that for any # > 0 there is a measurable function ﬁ on X that is a.e. equal
to f; such that

H sup ‘ffmu’ <Go.
teR*

[Him‘: Part (a): Notice that in view of the Lebesgue monotone convergence theo-
rem, we have || sup;eq |f1] ||Lp < Cp. Also, for each x € X we have sup,cq|fi(x)| =
sup;cgr+ | fi(x)| by continuity. Part (b): Let a = sup || sup,cf | fi|||r < Co, where the
supremum is taken over all finite subsets ' of R. Pick an increasing sequence of
finite sets F, such that || sup,c |fi|l|r — a as n — oo. Let g = sup, sup,c, | f;| and
note that ||g||z» = a. Then for any s € R we have
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| max(| £l sup £} <a.
teF;, Lr

This implies || max(|fs],g)|l.r < a=||g|zr, so that |f;| < g a.e. for all s € R. |
4.3.8. (E. Prestini) Show that for f € L*>(T?) we have that

Z J'c\(ml7m2)627ri(m1x1+m2x2) —>f(X],X2)
[mi| <N
|m2\§N2

for almost all (x,x;) in T2.
[Hint: Use the splitting f(m1,mz) = f(m; 12) Xy <y 2 S (00,02) Xy 5y 2
and apply the idea of the proof of Theorem 4.3.16.]

4.4 Applications to Geometry and Partial Differential Equations

In this section we discuss two applications of Fourier series. The first concerns a
classical result in planar geometry and the other the heat equation.

4.4.1 The Isoperimetric Inequality

Suppose we are given a closed positively oriented nonself intersecting ¢’ curve C
in the (x,y) plane of length L that encloses a region R of area A. The curve can be
described in terms of its parametric equations x = x(¢) and y = y(¢), where ¢ € [0, 1].
Since the curve is closed, we have (x(0),y(0)) = (x(1),y(1)) and the ¢! functions
x(t),y(t) can be thought of as 1-periodic functions on the circle. The perimeter L of
the curve is given by the equation

1

L= [ Jwwr+ly@pa

0
while the area of the region R enclosed by the curve is equal to
A :// 1dxdy
(-3)
= —=—=—| —%)dxd
// 9x 2 ay 2]
=5 fcxdy —vydx

=1 [xo@ —apwar,

where we made use of Green’s theorem in the third equality above.
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A €' curve y(t) is regular if /(1) # O for all £. We have the following result
relating the perimeter and the enclosed area of a region enclosed by a closed %!
curve.

Theorem 4.4.1. Given a closed, positively oriented, nonself intersecting, regular,
€' planar curve of length L that encloses a region of area A, we have that

A<IL*/4n (4.4.1)

with equality holding if and only if the curve is a circle.

Proof. Assume that the curve has parametric equations x = x(¢), y=y(¢),0 <t < 1.
We may assume that the curve has constant speed, i.e., it satisfies

W@+ ()P =L

for all t € [0, 1]. This is achieved via the reparametrization of the curve in terms of
the inverse function s~!(¢) = ¥(t) of the normalized arc length function

0 = [ W@R+ R

Since |(xX/(¢),Y'(t))| # 0, 1 — s(t) is a one-to-one and onto continuous map from
[0,1] to [0,1]. Then the curve ¢ — (x(y(¢)),y(y(¢))) has constant speed, since

RO+ o)y op = EE O DL OF

So we can replace the map (x(¢),y(¢)) by (x(y(¢)),y(y(¢))) which produces the same
curve. Let

f(t) = x(1) +iy(r)
for r € [0,1]. Then in view of the preceding discussion, we may assume that the
function f(¢) = x(r) +iy(¢) satisfies |f'(¢)| = L for all ¢ € [0, 1].
Under the assumption |f”(¢)| = L for all 7 € [0, 1], we now show that (4.4.1) holds,
with equality if and only if f(t) = coe*™" + C for some co,Co € C with |co| = 2.
To prove this claim we argue as follows:

A _%Im lf’(l)md’
0

1 1 — =<
:fmﬁfmumfﬂwﬂ

1 —~
<ifr-Fo),

L1 ,
< EEHJC HL2

L2
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establishing (4.4.1), but we need to explain why the inequality

~ 1
1f=FO)2 < ?Hf/HLZ (4.4.2)
is valid. Indeed, we have

"(t) = Z 277:imf(m)62m’m

meZ

where the series converges in L?. Thus we have

1

||f’HLz=2n[Z|mf<m>|2rzzn[ Y |fm |2] 2|l f—FO) . 443
meZ

meZ\{0}

which proves (4.4.2).

Now suppose that equality holds in (4.4.1), then we must have equality in (4.4.2)
and thus in (4.4.3), which implies that f(m) = 0 when |m| > 2; hence for all 7 € [0, 1]
we must have

£(t) = ce®™ + e 4 £(0) (4.4.4)

where ¢, ¢’ are complex numbers. But since || f7||;2 = L, it follows that
7 (je? +1e'?) = L, (4.4.5)

and since |f’(¢)| = L for all t € [0, 1], it follows that
L2 2, |02 7 2midt
(E) = |e +|c'[2 = 2Re [cc’e?™] (4.4.6)
for all 7 € [0, 1]. Combining (4.4.5) and (4.4.6) we obtain

Re [cc'e®™] = 0. (4.4.7)

Insertlng t=0and=1/8in (4.4.7) and using that Im (iz) = —Rez, we deduce that
Recc’ = Imcec’ = 0. This implies that either ¢ or ¢’ is zero. In either case (4.4.4) and
(4.4.5) imply that f(¢) is a circle of radius L/27 centered at the point f(0). O

4.4.2 The Heat Equation with Periodic Boundary Condition

Let k > 0 be a fixed quantity. Consider the partial differential equation

n 2
5 Z 2 t€(0,0), x€R”, (4.4.8)
= J
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which is called the heat equation. Assume that there is an initial condition
F(0,x) = f(x) xeR" (4.4.9)

for a given €’ function f on R” which is assumed to be 1-periodic in every variable.
We would like to find a continuous function F(¢,x) on [0,0) x R” which is €
on (0,c0) x R such that
F(t,x+e;)=F(t,x)

forallz>0andalle; = (0,...,0,1,0,...,0), so that F solves the equation (4.4.8).

The function F(z,x) represents the temperature of a body at time ¢ > 0 at the
location (xj,...,x,). Since the initial temperature f is 1-periodic in each variable,
we expect F (z,-) to also be periodic in each variable. For example, F (¢,x) is a good
model for the temperature of the torus {(e*1,... 2™ ) : x; € R} at time ¢ > 0,
given that its temperature at time # = 0 is f(x). When n = 1, F(¢,x) models the
temperature of a infinitesimally thin ring, thought of as the unit circle, at time ¢ > 0
at the location *™,

Let us suppose there is a continuous function F(z,x) on [0,e0) x R" which is €™
on (0,00) x R" that solves the equation (4.4.8) and satisfies F(f,x+e;) = F(t,x)
for all x € R" and ¢ > 0. Denote by ¢, (t) the Fourier coefficient of the function
x+— F(t,x) defined by

cm(t) = [ F(t,x)e ™My,
™"

Then ¢,,(¢) is a continuous function on [0, ) since F is continuous in the variable
t. For the same reason, ¢, is a smooth function on (0,0) whose jth derivative is
given by

d’ 9/

—cCcplt) = _

a7 n®) ™ Ot

for any j = 1,2,.... Using equation (4.4.8) we obtain that

F(t,x) e 2mm= gy

2] , 02 .
(1) = /n EF(LX) e 2 gy = - kﬁF(t,x) e 2mmE gy — 472 |m) ke, (),

where the last identity is due to an integration by parts in which the boundary terms
cancel each other in view of the periodicity of the integrand in x. Also ¢,,(0) = f(m).
The ordinary differential equation ¢/, (t) = —4m?|m|*kc,(t) with initial condition
cm(0) = f(m) is easily solved by separating the variables

dep (1)
cm(t)

= —47?|m|kdr , (4.4.10)

yielding the solution

~

Cm (t) _ f(m)ef47r2|m\2kt.
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We may therefore define the function

Flt,)= Y fm)e 4% mPh 2mims 4.4.11)

meZ"

on [0,0) X R" and observe the following:

(a) F is continuous on [0,e0) x R” and €* on (0,) x R".
(b) F satisfies the heat equation (4.4.8) and the initial condition (4.4.9).
(c) F is 1-periodic in each of the last n variables.

These statements can be easily proved by passing the differentiation inside the
sum, in view of the rapid convergence of the series in (4.4.11) due to the fact that
the periodic function f is €= (R"). Furthermore, F is unique with properties (a),
(b), and (c), since any other function G(x,¢) with these properties is derived in the
preceding way, and so it has to be equal to F(x,?).

Definition 4.4.2. Define the heat kernel

H[(X): Z ef4zr2\m\2kt62n'im-x

meZ

for ¢ > 0. Notice that the series defining H; is absolutely convergent for any ¢ > 0.
The importance of the heat kernel lies in the fact that one can express the solution
F(x,1) of (4.4.8) in terms of the convolution F(x,1) = (f * H;)(x).

We summarize these facts in the following proposition.

Proposition 4.4.3. Let k > 0 be fixed and let [ be in €=(R"). Assume that f is
1-periodic function in each variable. Then the heat equation

.%F(x,t) =kAF(x,1) t € (0,0), x€R" (4.4.12)

under the initial condition
F(0,x) = f(x) xeR" (4.4.13)

has a unique solution which is continuous on [0,00) x R" and € on (0,00) x R"
given by
Flxt) = (f+H)(x)= Y flm)e 4 Im 2mimx, (4.4.14)

meZ’

Proof. Since f is €, the series in (4.4.14) is rapidly convergent in m and thus it
gives a continuous function on [0, o) x R". Moreover, the series can be differentiated
term by term in the variable ¢ > 0, and thus it produces a % function on (0,0) x R".
By Fourier inversion (Proposition 3.2.5), F satisfies the initial condition (4.4.13).
Finally, to verify (4.4.12), we simply notice that
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9 D o o
F(x.t) = - —4n=|m|*kt 2mim-x
gt &) mg a1/ me ¢
— 47’k Y fm)e TPk 2 i x
meZ
2 2
=k Z f(m)e—mzlm\zh(%+m+§7>ezmm.x
mezn X1 Xn
9 9? - 202 .
= k<7 4 — f(m)efzm m] kt j2mim-x
2 2 )mé
82
- k%F(x,t),

where the rapid convergence of the series in m makes it possible to pass the differ-
entiations in and out of the sum. Finally, to show uniqueness, assume that there is
another solution G(t,x), continuous on [0,0) x R"” and > on (0,) x R”", that can
be expanded in Fourier series as follows:

G(t,x) = Z cm(t)ezmm'x.

meZ"

Conditions (4.4.12) and the rapid decay of the coefficients ¢,,(¢) yield the ordinary

differential equation (4.4.10) with initial condition ¢,,(0) = f(m), which has the
solution ¢, (¢) = f(m)e““’z""'zk’. Thus G = F on [0,00) x R". O

It is important to observe that the family {H; },~0 is an approximate identity on
T!. Indeed, the Poisson summation formula (Theorem 3.2.8) and the fact that the
inverse Fourier transform of e=47 KI5 jg o= hl*/4k /(2v/mkt)" [Example 2.2.9 and
Proposition 2.2.11 (8)] yield that for all x € [0, 1]" we have

x4
4k,

— 1 -
Hy(x) = 2v/k)" fezie

This identity implies that H, (x) > 0 for all 7 > 0 and that

I

_ = _ 2
Hz(x)dx:/n a :rkt)ne 4ktdx:/ne W ax =1

T

for all # > 0 and that

v 2
H,(u)duS/ %efmdx:/ e ™ gy
<ul x| =8 (2V7ke) 25

which tends to zero as t — 0 for any § > 0 in view of the Lebesgue differentiation
theorem. Thus properties (i), (ii), and (iii) of approximate identities hold.

As a consequence, we have that ||F(t,-) — f||p(r) — 0ast — 0 for 1 < p <o
and F(z,-) converges to f uniformly on T"; see Theorem 1.2.19.
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Exercises

4.4.1. Let f,F be as in Proposition 4.4.3. Prove that the total heat on the torus
remains constant in time by showing that for all # > 0 we have

/TnF(t,x)dx: Anf(x)dx.

Moreover, show that the temperature at any fixed point x € T" on the torus tends to
the average initial temperature, i.e., it satisfies

lim F(r0) = [ £0)dy
4.4.2. Derive the following property of the heat kernel,
H; «Hs = Ht+s
for all £,s > 0.

4.4.3. Consider the heat equation on [0,e) x R

d 02
8t u(x,t) = ) u(x,t)

. oL 2,
without a boundary condition. Show that u = 2¢ 4 x* and u(t,x) = e~9" /%, as well
as constant functions, are solutions of this equation. Prove that the set of solutions
is a vector space over the field of complex numbers C.

4.4.4. Suppose that a square-integrable function g(x) on R” is supported in a cube
[—A,A]" for some A > 0. Then we have the following representation:

g(x) = 2A / g 727”'2/% dy) i X[-AA]" >

mEZ"
where the series converges in L?

4.4.5. This exercise provides an application of Fourier series in complex analysis.
Let z € C\ Z. Consider the function h;(x) = cos(27zx) defined on [—3, 1] extended
periodically on the entire line [notice /,(—1) = h.(1)].

(a) Compute the Fourier coefficients of 4.

(b) Obtain a Fourier series expansion of /&, noticing that it is a Lipschitz function.
(c) Plug in x = 1/2 to prove that

1 oo
tﬂ' — .
cot(mz) +7fmZ"1Z2*m




4.5 Applications to Number theory and Ergodic theory 299

4.5 Applications to Number theory and Ergodic theory

In this section we discuss three applications of Fourier series techniques to number
theory and ergodic theory.

4.5.1 Evaluation of the Riemann Zeta Function at even Natural
numbers

Definition 4.5.1. We define the Bernoulli polynomials {By};_, on [0, 1] recursively
as follows:
Bo (x) =1

B;((x) = kBy_1(x)
fork=1,2,..., and
1
/ Bi(x)dx=0.
0

In view of this definition we find the first few polynomials By (x) = x — %, By (x) =
X2 —x+ %, B3(x) = x— %xz + %x, etc. Unlike orthogonal polynomials, the Bernoulli
polynomials have the remarkable property that their number of zeros in the unit
interval does not increase as the degree of the polynomials increases; in fact all
Bernoulli polynomials have at most three zeros in [0, 1].

Notice that for £ > 2 we have

Be(1) — By (0) = /OIB;(x)dx:k/OIBk_l(x)dx: 0,

thus we may think of these polynomials as functions on the circle T'. We extend the
Bernoulli polynomials to the whole line periodically by setting By (x+{) = By (x) for
x € ]0,1]. We now compute the Fourier coefficients of B;. We have

—~ 1 o 0 ifm=0
Bim) = [ (1~ e 2”""'dr={ L
2mim .

Therefore, using Corollary 3.4.10, we can write

1 .
B (x) _ Z o i emex
mz0 2mim

where the series converges at every x € (0,1).
We have the following result concerning the Fourier expansion of the Bernoulli
polynomials.
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Theorem 4.5.2. For each k > 2 we have

L omims 4.5.1)

By (x) = —k! W )

meZ\{0}

where the series converges absolutely and uniformly on [0,1]. When k = 1 we have

Bix)=— Y, L omim (4.5.2)

meZnjo} 2wim
Jorall x € (0,1) and the series converges conditionally.

Proof. We have already proved (4.5.2) and we focus attention to the case k > 2. As
a consequence of B, = kBj_; we obtain

Bk(x):k/o By (t)dt +Cy.

Using the property that By has integral zero over [0, 1] we evaluate the constant Cy.

We have
1 X
0 :/ |:k/ Bk_l(t)dt+Ck]dx
0 0
1 1
Zk/ (/ dx)Bkl(t)dl+Ck
0 Jt
1
= 7/{/ tBy_1(t)dt + Cy.
0
Thus

1
Cy :k/ tBr_1(t)dt.
0

The Fourier series of By(x) can be obtained by integrating the one for By_;(x)
for all £ > 2 by induction via the identity

X 1
Bi(x) = k /0 B (t)di +k /O 1By (1) dr (4.5.3)

Indeed, assume that (4.5.1) holds for some k > 2. Then using (4.5.3) we obtain

Bu)= [ 1im ¥ e K= DY i / ' lim y k=Dt i
0 N 22y (2mim)k-1 0 N A2 (2mim)k-1
m#0 m£0
! k=1 o ! k—1)! 5.
= lim Z _k(.iz_lezmmtdt_ hm/ ¢ Z k(.iz_lebnmtdt
N=eJo =y (2mim) Nowo =y (2mim)

m#0 m#0
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— — lim k! e2mimx _ lim k! {t eZ}timt:|t1
Noeo 12y Qrim)k1 2mim Noeo 20 Qrim)cT | 2mim |,_,
miozﬂlmx m0
B _k’W;’O (2mim)k

Passing the limit from inside the integral to outside is allowed due to the uniform
convergence of the series when k > 3. In the case k = 2, one may use Exercise 3.5.6
which says that for all [a,5] € T' and g integrable functions over [a, b] one has
b b b
lim [ (g Dw)(0)dr = / lim (g% Dy) (1) di = / a(t)dr.
a N—e a

N—oo

This argument proves identity (4.5.1) for all £ > 2 by induction and concludes the
proof. (]

We recall the following definition from number theory.

Definition 4.5.3. For s > 1 we define

N“,_\

called the Riemann zeta function.

We use the Fourier expansions of the Bernoulli polynomials to obtain the values
of the Riemann zeta function for integers. When k is an even integer, identity (4.5.1)
can also be written as

k cos(27nx)
Bi(x)=2(-1)'*2 k'Z Q)

and inserting x = 0 yields

i 1 B (0) (2m)*

R YO e 70

The polynomial Bj(x) = x — 1/2 has rational coefficients and thus so do all the By
by a straightforward inductive argument that uses the identity (4.5.3). Thus B, (0) is
a rational number for all £ > 1. We conclude that

By (0)(27)%™

£ (2m) = ey (4.5.4)

which is a rational multiple of (2717)2’", hence transcendental, since 7 is a transcen-

dental number. We have therefore obtained the following.
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Corollary 4.5.4. (Euler) The value of the Riemann zeta function {(2m), m =
1,2,..., is equal to a rational multiple of (2m)*"; hence it is a transcendental
number.

The corresponding statement for odd integers remains unresolved in general, as
of this writing.

4.5.2 Equidistributed sequences

Here we discuss Weyl’s theorem on equidistributed sequences.

Definition 4.5.5. A sequence {a; };._, with values in T" is called equidistributed if
for every cube Q in T we have

#lk: 0<k<N-1

N—oo N

Theorem 4.5.6. The following statements are equivalent:
(a) The sequence {ay}7_, is equidistributed.
(b) For every smooth function f on T" we have that

1N71
lim — ag) = x)dx.
my LS = [ 5

N—oo N

(c) For every m € 7'\ {0} we have

1 N-1 i
lim — e MM — (),
v

N—oo

Proof. We first prove the equivalence of (a) and (b). We begin by observing that
(b) is a restatement of (a) if f = xp and Q is a cube in T". Thus, if (a) holds,
then (b) holds for all step functions, i.e., finite linear combinations of characteristic
functions of cubes. We prove that (a) implies (b) for smooth functions. Given a
smooth function f on T" and given € > 0, by the uniform continuity of f, there is a
step function g = Y/ ¢; g, (c; € C and Q; are cubes in T") such that || f — g||r~ <
%. Since g is a finite linear combination of step functions, there is an Ny such that
for N > Ny we have

1! €
5 L st [ stas| <5
Since
[ x)dn— [ s)ax| <7 =gl <
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and

lN 1
\ <l —gli- <

Zgak —*Zfak

it follows that for N > Ny we have

X s [ s

k=0

<e,

thus (b) holds.
To prove that (b) implies (a) given a cube Q in T" pick two smooth functions g
and & such that
0<h<xo<g

and such that g is equal to 1 on Q and vanishes off (1+ €)Q while % is equal to 1 on
(1 — €)Q and vanishes off Q. Observe that

Qe [ hwar<|ol< [ swdr<iol+ae

for some ¢, > 0. Since

lN—l 1N1
Nzh(ak <—Z%Qak <—Zgak
k=0

the sandwich theorem implies that
1 N=1 1 N=l
0] —ene < liminf = k:ZOxQ(ak) < limsup k:ZOxQ(ak) <|0|+cne

Since € > 0 was arbitrary the conclusion follows.
The implication (b) = (c) is trivial.
We now prove that (¢) = (b).
Given a smooth function f on T" we write

1y RS TR - ~ 1A,
N Z flap) = N Z Z f(m)e ™% = £(0)+ Z f(m) <N Z e mm‘ak)'
k=0 k=0 meZ" mezn\{o} k=0

Because of the rapid decay of the Fourier coefficients of f we can pass the limit as
N — oo inside the sum in m. It follows that

lim — Z Slag) f(x)dx.

N*)oo ™
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Example 4.5.7. The sequence {kv/2— [kv/2]}7_, is equidistributed on T'. We check
this by verifying condition (c) of Theorem 4.5.6. Indeed if m € Z\ {0} then

& 27iN(my/2
lim Y V2V _ iy It BN
NoeN S N—oo N g2mi(mv2) _ 1 )

since m+/2 is never a rational and thus the denominator never vanishes.
Naturally, the same conclusion is valid for any other irrational number in place

of V2.

Example 4.5.8. We examine the sequence of the first digits of powers of 2. Consider
the following sequence of numbers defined form =1,2,...

d,, = first digit of 2.

For instance we have dy =2,d, =4,d3 =8,dy =1,ds =3,....
Fix an integer k € {1,2,3,4,5,6,7,8,9}. We would like to find the frequency in
which k appears as a first digit of 2™, precisely, we would like to compute

. #{me{l,2,...,N}: d,=k}
lim .
N—oo N

The crucial observation is that the first digit of 2™ is equal to k if and only if there is
a nonnegative integer s such that

K10° <27 < (k+1)10°,
Taking logarithms with base 10 we obtain
s+log (k) <mlog 2 < s+log;o(k+1),
but since 0 < logo(k) and log;o(k+ 1) < 1, taking fractional parts we obtain that
s = [mlog(2]

and that
logo(k) < mlogj2 —[mlog,2] <logjo(k+1).

Since the number log,;2 is irrational, it follows from Example 4.5.7 that the
sequence

{mlog;y2—[mlog)y2]}"_

is equidistributed in [0, 1). Using Definition 4.5.5 in dimension n = 1 with

Q = [a,b] = [logo(k),log;o(k+1)]
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we obtain that

#{me{1,2,....N}: dn=k}
Ng:o N

= logyo(k+ 1) —logo(k) = logyo(1+ 7).

This gives the frequency in which k appears as first digit of 2”*. Notice that

9 9
Zloglo(l—l— Z logo(k+1) —10g10(k)) 1,

as expected, and that the digit with the highest frequency that appears first in a
term of the sequence {1,2,4,8,16,32,64,...} is 1, while the one with the lowest
frequency is 9.

4.5.3 The Number of Lattice Points inside a Ball

Points in Z" are called lattice points. In this subsection we obtain the number of
lattice points N(R) inside a closed ball of radius R in R”" centered at the origin,
precisely, we compute the asymptotic behavior of

N(R) = [B(O,R)NZ"|

as R — oo. We denote by v, the volume of the closed unit ball in R". We have the
following result.

Theorem 4.5.9. Let n > 2. If N(R) is the number of lattice points inside the closed
ball of radius R centered at zero in R", then we have that

N(R) = v,R" + O(R"i71),

as R — oo,
Proof. Let B be the closed unit ball in R" and yp its characteristic function. Using
the result in Appendix B.5 we have x3(&) = %ﬂi‘) Now in view of the behavior

of the Bessel function given in Appendix B.6 for || < 5- we have J, 22r|E]) <

Cl&|2. Also for [E] > 5= we have Jup (27| E]) < C|§\_%, in view of the result in
Appendix B.7. Consequently, there is a constant C,, such that for all £ € R” we have

Z5(E)| < Cu(1+1]E) "

Fix a smooth nonnegative radial function § supported in |x| < % with integral
equal to 1 and define §;(x) = é (%) for € > 0. For 0 < € < {5, define functions

_x &) * Ce
Ve = Xa+£)p* Ce-

I\)
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These functions are even, hence their Fourier transforms are real-valued. We observe
that

®*(x) =1 when x| <1—¢ and &*(x) =0 when |x| > 1. (4.5.5)

Indeed, we have

S0 = [t yp0)Lelx—)dy

= X _

7/\y|<17% ¢ —Y)dy

— &
For [x| <1—¢ 5| <L—1,s0|f—r|<t—14L=1_1for|s| <, whichmeans

¢e(x):/ L CE=ydy= [ Cndi=1
b<g—2 <}
F0r|x|217‘%—)42%—%4-%:%,50
@8()():/ . lg(g—y)dy:(),
|y|§3_2

proving (4.5.5). Likewise one can show that
PE&(x) =1 when |x| <1 and W¢(x)=0 when |x| > 1+¢€. (4.5.6)
Next we claim that
|PE(E)]+|PEE) < Cun(1+1ED T (1+ele)™ @57

for every £ € R" and N a large positive number. Indeed to show (4.5.7) for ¢ we
write

D2(&)| = |70 _35)s(E)C (Ee)]
< (1-5)C(1+E](1-5)""F [ (Ee)] (4.5.8)
<Cun(1+E)"F (1+elg) Y

since { € S (R)and 0 < € < %. The proof for ¥¢ is completely similar.
We now notice that for R > 0, m € Z"\ {0}, and x € [0, 1]" we have

1+ |m+x|R <1+ (vn+|m|)R <2/n(1+|m|R).
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This implies that for € < 1/10 we have
Y R'(1+Rm)""F (1+eRm)™N
meZm\{0}

gC’/ Y R'(1+Rjm+x)
011" mezr\ {0}y

_ n+l

T (14&R|m+x|) Ndx

< C’/ R'(1+RJx))~" (1+&R|x|) Vdx
RYl
<Cle™'T, (4.5.9)

where the proof of (4.5.9) is easily deduced by considering the cases (a) x| < R™!
which yields a constant, (b) R~ < |x| < (Re)~! which yields a constant multiple of
8’%, and (c) (Re)~! < |x| which also produces a constant multiple of e "7 if we
pick N > ”T_l

Using (4.5.5) and the Poisson summation formula we write

Y (R = Y (%)

mezr mezr
=R'Q(0)+ Y R'®F(Rm)
meZm\ {0}
> vR'(1—e)'—Coy Y, R'(1+Rm)~"3 (1+&Rm|) ™Y
meZm\ {0}

/ _n-l
> R —nv,R'e —C, e~ 7,

where we used that (1 —¢g)" > 1 —ne, (4.5.8), and (4.5.9). Now pick € such that
eR' = "7 , or equivalently € = R to deduce the estimate

N(R) > v,R" — O(R"i71)

as R — oo,
Finally, making use of (4.5.6), and via a similar argument we write

Y as() < ¥ P =REEO0) + Y RPE(Rm)
meZn mezn meZ"\{0}
vaR'(14+€)"+Cyy Y, R'(1+R|m|)
meZM\ {0}
n—1

< VvR"+v,2"R'e+Cynye™ T .

_ntl
2

IN

(1+&R|m|)™

The same choice of £ = R™#31 , yields the upper estimate for N(R).
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Combining the upper and lower estimates for N(R) we obtain
N(R) = v,R" + O(R"5+1),
as R — oo, (]

Exercise 4.5.8 contains an application of Theorem 4.5.9.

Exercises

4.5.1. Prove that for all x € [0, 1] we have

> sin(2mjx) (1)t (2m)2n
Y = Bonr1(x).-
j 2 (2m+1)!

4.5.2. Show that for all z € C with |z] < 1 we have

mzeot(mz) =1-2)° 22k +2).
k=0

[Him‘: Use the result of Exercise 4.4.5.]

4.5.3. Suppose that a pointx = (x1,...,x,) € [0, 1]" has the property that m-x is irra-
tional for all m € Z"\ {0}. Show that the sequence { (kx; — [kx1], ..., kx, — [kx,]) } 7o
is equidistributed in T".

4.5.4. ([191]) Let N(x,R) be the number of lattice points inside the closed ball of
radius R > O centered at x € R". Show that

/ IN(x,R) = v,R" | dx = O(R"")
Tn

as R — oo, where v,, is the volume of the unit ball on R".

4.5.5. (Minkowski) Let S be an open convex symmetric set in R” and assume that
the Fourier transform of its characteristic function satisfies the decay estimate

(&) <c+]E) "

(This is the case if the boundary of S has nonzero Gaussian curvature.) Assume that
|S| > 2". Prove that S contains at least one lattice point other than the origin.
[Hint: Assume the contrary, set f = Is* Xls and apply the Poisson summation

formula to f to prove that £(0) > £(0).]
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4.5.6. For t € [0, ) let
N(t)=#{meZ": |m| <t}.

Let 0 =ry <r; <ry <--- be the sequence all of numbers r for which there exist
m € Z" such that [m| = r.

(a) Observe that N is right continuous and constant on intervals of the form [r i T ).
(b) Show that the distributional derivative of N is the measure

u@)=#{meZ": \m =t},
defined via the identity (i, ) = Y7 o#{m € Z": [m| =r;} ¢(r;).
4.5.7. Let f € €'((0,)), and let 0 < a < b < 0. Derive the identity

b b
Yl = [ F0dNG) = FONE) ~ f@N(@) ~ [ 7 NG dx

meZ’
a<|m|<b

where N is defined in Exercise 4.5.6 and [ f f(t)dN(t) is the Riemann-Stieltjes in-
tegral of f with respect to N.

4.58.LetneZt and 0 < A < oo.
(a) Prove that for k € Z* U {0} we have

i€’ —iwn e LO(a D25t
mx A1) Z—(n-1)

meZl
a<|m|<b

forall 0 < a < b < o with b — a < 1, where m,_; is the volume of "~ .

(b) Show that when A >n — % +1 , the limit

lim eilm|

7
R g o ™
Im|<R

exists.
(c) Prove, however, that whenn — 1 — 2= < A <n—1, the limit in part (b) does not
exist.

[Hint: Use Exercise 4.5.7 and Theorem 4.5.9. Part (b): For R > 1 use the identity

R—3]-1 . .
t|m\ [ I ] eilm| ilm|
2 (5 #) 5 &

meZ”\{O} k=0 meZ" meZ’
lm|<R ket <|m| <k+3 [R—1]+4<|m|<R

Notice that the main term in the first sum on the right is telescoping. Part (c): Show

that limg—eo Y ez {0} | | /1 does not tend to zero. }
R<|m|<R+1
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HISTORICAL NOTES

The boundedness of the conjugate function on the circle (Theorem 4.1.7) and, hence, the L”
convergence of one-dimensional Fourier series was announced by Riesz in [292], but its proof ap-
peared a little later in [293]. The proof of Theorem 4.1.7 in the text is attributed to S. Bochner.
Luzin’s conjecture [235] on almost everywhere convergence of the Fourier series of continuous
functions was announced in 1913 and settled by Carleson [54] in 1965 for the more general class
of square summable functions (Theorem 4.3.14). Carleson’s theorem was later extended by Hunt
[165] for the class of L? functions for all 1 < p < oo (Theorem 4.3.15). Sj6lin [325] sharpened
this result by showing that the Fourier series of functions f with |f|(log™ |f])(log™ log™ | f|) in-
tegrable over T! converge almost everywhere. Antonov [5] improved Sjolin’s result by extend-
ing it to functions f with |f|(log™ |f|)(log™ log"log™ |f]|) integrable over T'. One should also
consult the related results of Soria [330] and Arias de Reyna [9]. The book [10] of Arias de
Reyna contains a historically motivated comprehensive study of topics related to the Carleson—
Hunt theorem. Counterexamples due to Konyagin [200] show that Fourier series of functions f

with |f](log* |f|)% (log™ log™ \f\)*%*g integrable over T! may diverge when & > 0. Examples of
continuous functions whose Fourier series diverge exactly on given sets of measure zero are given
in Katznelson [189] and Kahane and Katznelson [183].

The extension of the Carleson—Hunt theorem to higher dimensions for square summability of
Fourier series (Theorem 4.3.16) is a rather straightforward consequence of the one-dimensional
result and was independently obtained by Fefferman [112], Sjolin [325], and Tevzadze [359]. An
example showing that the circular partial sums of a Fourier series may not converge in L? (T") for
n > 2 and p # 2 was obtained by Fefferman [113]. This example also shows that there exist L”
functions on T" for n > 2 whose circular partial sums do not converge almost everywhere when
1 < p < 2. Indeed, if the opposite happened, then the maximal operator f — supy~q |D(n,N) * f]|
would have to be finite a.e. for all f € LP(T"), and by Stein’s theorem [335] it would have to be of
weak type (p, p) for some 1 < p < 2. But this would contradict Fefferman’s counterexample on L!
for some p < p; < 2. On the other hand, almost everywhere is valid for the square partial sums of
functions f with |f|(log™ | f])"(log™ log*log™ |f|) integrable over T", as shown by Antonov [6];
see also Sjolin and Soria [327].

The development of the complex methods in the study of Fourier series was pioneered by
the Russian school, especially Luzin and his students Kolmogorov, Menshov, and Privalov. The
existence of an integrable function on T! whose Fourier series diverges almost everywhere (The-
orem 4.2.1) is due to Kolmogorov [195]. An example of an integrable function whose Fourier
series diverges everywhere was also produced by Kolmogorov [198] three years later. Localiza-
tion of the Bochner-Riesz means at the critical exponent o = % fails for L! functions on T"
(see Bochner [30]) but holds for functions f such that |f|log™ |f| is integrable over T" (see Stein
[333]). The latter article also contains the L” boundedness of the maximal Bochner—Riesz oper-
ator supp-q |Bg(f)| for 1 < p <eo when a > |%—%| Proposition 4.1.9 is due to Stein [331] and
Theorem 4.2.5 is also due to Stein [335]. The technique that involves the points for which the set
{]x—m|: m € Z"} is linearly independent over the rationals was introduced by Bochner [30].

Transference of regulated multipliers originated in the article of de Leeuw [94]. The methods
of transference in Section 4.3 were beautifully placed into the framework of a general theory by
Coifman and Weiss [70]. The key Lemma 4.3.8 is attributed to G. Weiss. Transference of maximal
multipliers (Theorem 4.3.12) was first obtained by Kenig and Tomas [192] and later elaborated by
Asmar, Berkson, and Gillespie [12], [13].

Paraphrasing Pappus of Alexandria, bees know than a hexagon will hold more honey than a
triangle or square of the same length, but people claim a greater share of wisdom knowing that the
circle of a given length holds the maximum area among all geometric shapes of equal perimeter.
This reflection captures the isoperimetric inequality, which was first recorded by Pappus in the
fourth century A.D. and was credited it to Zenodorus (second century B.C.). Archimedes also
studied the problem, but his work on the subject, like the original writings of Zenodorus, has been
lost. Rigorous modern-day proofs of this inequality can be traced to J. Steiner, K. Weierstrass, and



4.5 Applications to Number theory and Ergodic theory 311

F. Edler, whose methods are based in geometry and calculus. The proof in the text is due to A.
Hurwitz. On the history of the isoperimetric inequality see [322].

The mean square error for lattice points (Exercise 4.5.4) is due to Kendall [191] while the more
delicate pointwise asymptotic formula of Theorem 4.5.9 was obtained by Landau [212]. Using
Landau’s formula Pinsky, Stanton, and Trapa [284] showed that the spherical partial sums of the
Fourier series of the characteristic function of a sufficiently small ball in T” converge at the center
of the ball if and only if the dimension n is strictly less than three; this property is valid for the
characteristic function of any ball as shown in Pinsky [283].



Chapter 5
Singular Integrals of Convolution Type

The topic of singular integrals is motivated by its intimate connection with some of
the most important problems in Fourier analysis, such as that of the convergence of
Fourier series. As we have seen, the L” boundedness of the conjugate function on
the circle is equivalent to the LP convergence of Fourier series of L” functions. And
since the Hilbert transform on the real line provides an analogue of the conjugate
function on the circle, it is deeply connected with the L” convergence of Fourier
integrals. It also appears in the theory of harmonic functions on the upper half space
and has so many remarkable properties that deserve a careful investigation. The
Hilbert transform is the prototype of all singular integrals and provides inspiration
for subsequent development of the subject.

Historically, the theory of the Hilbert transform depended on techniques of com-
plex analysis. With the development of the Calderén—Zygmund school, and the
extension of one-dimensional theory to higher dimensions, real-variable methods
slowly replaced complex analysis. The higher-dimensional framework proved to be
flexible enough for generalizations and led to the introduction of singular integrals
in other areas of mathematics. Singular integrals are nowadays intimately connected
with partial differential equations, operator theory, several complex variables, and
other fields. In this chapter we study singular integrals given by convolution with
tempered distributions. We call such operators singular integrals of convolution

type.
5.1 The Hilbert Transform and the Riesz Transforms

We begin the investigation of singular integrals with a careful study of the Hilbert
transform which provides inspiration for the subsequent development of the theory.

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics 249, 313
DOI 10.1007/978-1-4939-1194-3_5, © Springer Science+Business Media New York 2014
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5.1.1 Definition and Basic Properties of the Hilbert Transform

There are several equivalent ways to introduce the Hilbert transform; in this ex-
position we first define it as a convolution operator with a certain principal value
distribution, but we later discuss other equivalent definitions.

We begin by defining a distribution W in .#’(R) as follows:

_ 1. o) L[ el
(Wo,9) = = lim dx+ /‘X‘Zl dx, (5.1.1)

T e-0Je<|x|<l X T X

for @ in .(R). The function 1/x integrated over [—1,—¢€|{J[g, 1] has mean value
zero, and we may replace ¢(x) by ¢@(x) — ¢(0) in the first integral in (5.1.1). Since
(¢(x) — (0))x~ ! is controlled by ||¢’||z, it follows that the limit in (5.1.1) exists.
To see that Wy is indeed in .’ (R), we note that the estimate

2 2
[(Wo.0)| < Zl1/[l,- + 7 suplxe(x)] (5.1.2)

is valid. This says that Wy € .7’ (R).

Definition 5.1.1. The truncated Hilbert transform (at height €) of a function f in
LP(R), 1 < p < oo, is defined by

@y =t [ L=V, 1 f0)
HOP =2 [ F S Ray= [ Pan 519

The Hilbert transform of ¢ € .7 (R) is defined by

H(9)(x) = (Wox9)(x) = lim H)(¢) (). (5.1.4)

e—0

Observe that H'€)(f) is well defined for all f € L?, 1 < p < oo. This follows from
Holder’s inequality, since 1/x is integrable to the power p’ on the set |x| > €.
For Schwartz functions ¢, the integral

+oo _
o(x—y) dy

—oo

may not converge absolutely for any real number x, but is defined as a limit of the
absolutely convergent integrals

/ <P(x*y)dy’
Mze Y

as € — 0. Such limits are called principal value integrals and are denoted by the
letters p.v. Using this notation, the Hilbert transform of a Schwartz function ¢ is

1 o (x — 1 oo
H(p)(x) = EP'V'LOO (,D(xyy)dy: =PV ;D(_y)))dy. (5.1.5)
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Remark 5.1.2. We extend the definition of the Hilbert transform to a bigger class
of functions. Suppose that f is an integrable function on R that satisfies a Holder
condition near every point x; that is, for any x € R there are C, > 0 and &, > 0 such
that

() = £(0)] < Culr— ]

whenever |y —x| < d,. Then we write

1 "
Honw -5 [ Dol [P
e<|x—y|< [x—y|>8¢
_1 fO) 1@ 4, L o),
T X=Y T xX—y
e<|x—y|<by [x—y|>0x

Both integrals converge absolutely; hence the limit of H(€) () (x) exists as € — 0.

Fig. 5.1 The graph of the
function H(xg) when E is
a union of three disjoint
intervals J; UJy UJ3.

Example 5.1.3. For the characteristic function ¥, ; of an interval [a,b] we show

that | | |
X—da
H(Xjap))(x) = _ log b (5.1.6)

Let us verify this identity. Pick € < min(Jx — a|,|x — b|). To show (5.1.6) consider
the three cases 0 < x—b, x—a < 0, and x — b < 0 < x — a. In the first two cases,
(5.1.6) follows immediately. In the third case we have

1. x—a £
H(X[a,b])(x)—ng%(log| c | log |x_b|), (5.17)



316 5 Singular Integrals of Convolution Type

which yields (5.1.6). Observe that the cancellation of € in (5.1.7) reflects the fact
that 1/x has integral zero on symmetric intervals € < |x| < c. Note that H (Y[, ;) (x)
blows up logarithmically in x near the points a and b and decays like |x|~! as x — co.
See Figure 5.1.

Example 5.1.4. Let log™ x = logx when x > 1 and zero otherwise. Observe that the
calculation in the previous example actually gives

1 |x —a
—logt —————— h, b,
7% max(e, [x—b]) whenx =
1 —b
H(8>(X[a,b])(x) = ——log+L when x < a,
T max(€, |x —al)
1 —al 1 —b
—log+M——log+M when a < x < b.

T &€ T

We now give an alternative characterization of the Hilbert transform using the
Fourier transform. To achieve this we need to compute the Fourier transform of the
distribution Wy defined in (5.1.1). Fix a Schwartz function ¢ on R. Then

(W0, 0) = (W0, ) (5.1.8)
1 o696
=i e P E

_ l : —2mixé ﬁ
B nélgg)/ézgpe/ Plx)e da &

. _ dé
-1 L 27ixé
s%/R(P( />|¢\>e é}d
_ i i a1,
= é‘B}) R(p(x) B gz\5|2881n(2m€) Z ]

= iig(l)/R(p(x) _(%isgnx) /271[82@2 s1n(|x|§)§} X. (5.1.9)

Here we used the signum function

+1  whenx >0,
sgnx =40 when x =0, (5.1.10)
—1 whenx<O.

Using the results (a) and (b) in Exercise 5.1.1 we obtain that the integrals inside the
square brackets in (5.1.9) are uniformly bounded by 8 and converge to 27 = 7 as
€ — 0, whenever x # 0. These observations make possible the use of the Lebesgue
dominated convergence theorem that allows the passage of the limit inside the inte-
gral in (5.1.9). We obtain that

(Wo, ) = /R(p(x)(—isgn (x)) dx. (5.1.11)
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This implies that .
Wo(€) = —isgné&. (5.1.12)

In particular, identity (5.1.12) says that ﬁ/\o is a (bounded) function.
We now use identity (5.1.12) to write

H(f)(x) = (f(&)(~isgn&))” (x). (5.113)

This formula can be used to give an alternative definition of the Hilbert transform.
An immediate consequence of (5.1.13) is that

1H 2 = 1]z (5.1.14)

that is, H is an isometry on L?(R). Moreover, H satisfies
H?>=HH =1, (5.1.15)

where I is the identity operator. Equation (5.1.15) is a simple consequence of the
fact that (—isgn&)? = —1. The adjoint operator H* of H is uniquely defined via the
identity

(1) = [ SHEdx= [ H(F)gdx= (' (/) g).

and we can easily obtain that H* has multiplier —isgn& = isgn&. We conclude that
H* = —H. Likewise, we obtain H' = —H.

5.1.2 Connections with Analytic Functions

We now investigate connections of the Hilbert transform with the Poisson kernel.
Recall the definition of the Poisson kernel P, given in Example 1.2.17. Then for a
real-valued function f in LP(R), 1 < p < oo, we have

y [t ()
P, == ———dt, 5.1.16
BN =2 [ iy (5..16)
and the integral in (5.1.16) converges absolutely by Holder’s inequality, since the
function ¢+ ((x — )% +y*) "' is in L” (R) whenever y > 0.
Let Re z and Im z denote the real and imaginary parts of a complex number z.
Observe that

(P % f)(x) = Re (i/+wf(t)dt> —Re (i +°°f(’)dt> :

TJ)w X—t+iy TJ)w 7—t



318 5 Singular Integrals of Convolution Type

where z = x + iy. The function

i. +wmdt

F =
f(Z> TJ)-w Z—t

defined on
R: ={z=x+iy: y>0}

is analytic, since its d /dZ derivative is zero. The real part of Fy(x+iy) is (P, * f)(x).
The imaginary part of Fy(x+iy) is

it f) L f) -
fm <n/w xtJriydt> ‘E/,m mdf—<f*Qy)<x>,

where Q) is called the conjugate Poisson kernel and is given by

1 x

=——. 5.1.17
T x4 y? G417

Oy(x)

The function uy + ivy is analytic and thus us(x+iy) = (f*P,)(x) and v, (x+iy) =
(f *Qy)(x) are conjugate harmonic functions. Since the family P,, y > 0, is an ap-
proximate identity, it follows from Theorem 1.2.19 that P, * f — f in L”(R) as y — 0.
The following question therefore arises: What is the limit of f * O, as y — 07 The
next result addresses this question.

Theorem 5.1.5. Let | < p < oo, For any f € LP(R) we have
fx0e—HE(f) =0 (5.L18)

in L? and almost everywhere as € — 0. Moreover, for ¢ in .7 (R) we have

e
Fp(x+iy) = %/_m )H_(pi(;)_tdt — @(x) +iH()(x) (5.1.19)

asy — 0+ forallx e R

Proof. We see that

@1 [ T a= Ly,

T Jjt|>e t

where Y, (x) = e 'y(e7'x) and

t 1

ST T 7 Whenlt‘ZI,

w(t) =4 7H (5.1.20)
m when II‘ < 1.
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Note that y is integrable over the line and has integral zero. Furthermore, the inte-
grable function

w(r) = P Whenlr > 1, (5.1.21)
1 when |f| < 1,

is a radially decreasing majorant of Wy, i.e., it is even, decreasing on [0,), and
satisfies |y| < W. It follows from Theorem 1.2.21 (with a = 0) that f* Y — 0 in
L?. Also Corollary 2.1.19 (with a = 0) implies that f * W — 0 almost everywhere
as € — 0.

Assertion (5.1.19) is a consequence of (5.1.18), the discussion preceding Theorem
5.1.5, and the observation that H(€) (@) converges to H(¢) pointwise everywhere as
e—=0. (]

Remark 5.1.6. We will show later that for f € L?(R), 1 < p < o, the expressions
H'E)(f) converge a.e. (and also in L” when p > 1) to a function H(f). This will
be a consequence of Theorem 5.1.12 (or Corollary 5.3.6 when p = 1), combined
with Theorem 2.1.14 and the observation that for Schwartz functions ¢, H'®)(¢)
converge to H(¢p) as € — 0. The linear operator H defined in this way extends the
Hilbert transform H initially defined on Schwartz functions and will still be denoted
by H. Thus for f € L?(R), 1 < p < oo, one has

lim f«Q, =H(f) ae.

=0

This convergence is also valid in L in view of the preceding observations and The-
orem 5.1.5.

5.1.3 L? Boundedness of the Hilbert Transform

As a consequence of the result in Exercise 5.1.4 and of the fact that
xS%(ex—efx), x>0,

we obtain that

2 |E
{x: [H(xe) ()] > o} < 5%7 a>0, (5.1.22)

for all subsets E of the real line of finite measure. Theorem 1.4.19 with pp = go =1
and p; = g1 = 2 now implies that H is bounded on L? for 1 < p < 2. Duality gives
that H* = —H is bounded on L? for 2 < p < e and hence so is H.

We give another proof of the boundedness of the Hilbert transform H on L”(R),
which has the advantage that it gives the best possible constant in the resulting norm
inequality when p is a power of 2.
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Theorem 5.1.7. For all 1 < p < oo, there exists a positive constant C, such that

1HO . < CollF ]

for all fin 7 (R). Moreover, the constant C,, satisfies C, < 2p for 2 < p < oo and
C, <2p/(p—1) for 1 < p <2. Therefore, the Hilbert transform H admits an exten-
sion to a bounded operator on L” (R) when 1 < p < oo,

Proof. The proof we give is based on the interesting identity

H(f)* = f*+2H(fH(f)), (5.1.23)

which is valid whenever f is a real-valued Schwartz function. We prove (5.1.23) in
two different ways. First we consider the analytic function

defined on the upper half space. We compute its square. Fix z € C with Rez > 0 and
f areal-valued Schwartz function. Then for € > 0 we have

B = () [ ) 20
(l)/ /f(: <_, Zi >dtd /ft—t dtds

()/f ) et <>/f >+

[t—s|>¢ \t s|>€

// dtds
Z—t '

\l s|<e

Letting € — 0 and passing the limit inside the integral by the Lebesgue dominated
convergence theorem, we deduce

Ff(z)zzi%/RMdt. (5.1.24)

z—t
We now let Imz — 0+ in (5.1.24) and use (5.1.19) in Theorem 5.1.5. We obtain
P H(P+2fH(f) = (f+iH(f) =i(2fH(F)+iH (2fH(F)) )

and equating the real parts we deduce (5.1.23).
To give an alternative proof of (5.1.23) we take Fourier transforms. Let

m(&) = —isgnk
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be the symbol of the Hilbert transform. We have

(
+2m(E)(F*H())(E)
[ FnF(e—m)dn +2m( /f JF(E—mm(mydn  (5125)

FMF(E—mydn+2m() [ Ff(E—mm(E—m)dn. 5126

~

SHE)+2H(FH())]™

Averaging (5.1.25) and (5.1.26) we obtain

F(E)+2HHNE) = [ F)FE =m)[1+m(E) (m(m) +m(E —m))]an.

But the last displayed expression is equal to

| FFE = mm(mm(& —m)dn = (H(F)+ HT))(E)
in view of the identity

m(mm(c —n) = 1+m(&)m(n) +m(S)m(& —n),
which is valid for all (§,17) € R?\ {(0,0)} for the function m(&) = —isgn&.
Having established (5.1.23), we can easily obtain L” bounds for H when p = 2*
is a power of 2. We already know that H is bounded on L? with norm one when
p = 2% and k = 1. Suppose that H is bounded on L” with bound ¢, for p = 2* for
some k € Z™. Then for a nonzero real-valued function f in 6> we have
1 1
2 1
< (Il + 260l FH (]| ) ?
2 1
< (M1fzr +2en |1l 2o [H (] 20)*
Since ||H(f)||;2» < oo, wWe obtain that

(HH(f)Hm> o DM
£l 2 "Nl 2

IH)||,20 = |H()?

| ’ L2

If follows that
[[H ()] 20

17120

and from this we conclude that H is bounded on L*? with bound

c2p Scp—h/c%,—kl. (5.1.27)

<cptyfeptl,
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This completes the induction. We have proved that H maps L? to L” when p = 2k,
k=1,2,.... Interpolation now gives that H maps L” to L? for all p > 2. Since
H* = —H, duality gives that H is also bounded on L? for 1 < p <2.

The previous proof of the boundedness of the Hilbert transform provides us with
some useful information about the norm of this operator on L?(R). Let us begin
with the identity

X 2
coti =cotx+ v/ 1-+cot°x,

valid for 0 < x < 7. If ¢, < cot %, then (5.1.27) gives that

5 T , T T
cp < cpt+ cp—i—lgcot%—i— l+cot5=cot2.2p,

and since 1 = cot§ = cot 55, we obtain by induction that the numbers cot% are

indeed bounds for the norm of H on L? when p = 2%, k = 1,2,.... Duality now
gives that the numbers cot zip, = tan % are bounds for the norm of H on L” when

k . .
p= 2,3—_, k=1,2,.... These bounds allow us to derive good estimates for the norm

|H||zp—rr as p — 1 and p — oo. Indeed, since cot% < p when p > 2, the Riesz—
Thorin interpolation theorem gives that ||H||zr—z» < 2p for 2 < p < e and by du-
ality ||H||pr—rr < % for 1 < p < 2. This completes the proof which is worth
comparing with that of Theorem 4.1.7. (I

Remark 5.1.8. The numbers cot% for 2 < p < = and tan% for 1 < p <2 are
indeed equal to the norms of the Hilbert transform A on L”(R). This requires a
more delicate argument; see Exercise 5.1.12.

Remark 5.1.9. We may wonder what happens when p = 1 or p = 0. The Hilbert
transform of |, ;) computed in Example 5.1.3 is easily seen to be unbounded and not
integrable, since it behaves like 1/|x| as x — oo. This behavior near infinity suggests
that the Hilbert transform may map L' to L', This is indeed the case, but this will
not be shown until Section 5.3.

We now introduce the maximal Hilbert transform.

Definition 5.1.10. The maximal Hilbert transform is the operator

HO(f)(x) = sup [HE(f)(x)| (5.1.28)

>0

defined for all £ in L”, 1 < p < oo. For such f, H'®) (f) is well defined as a convergent
integral by Holder’s inequality. Hence H*)(f) makes sense for f € L”(R), although
for some values of x, H*) (f)(x) may be infinite.

Example 5.1.11. Using the result of Example 5.1.4, we obtain that

1
T

x—dl
(6]
Sx—p]

1 . (5.1.29)

HY) (00) (x) =
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We see that in general, H*)(f)(x) # |H(f)(x)| by taking f to be the characteristic
function of the union of two disjoint closed intervals.

The definition of H gives that H'€) (f) converges pointwise to H(f) whenever f
lies in ;°(R). If we have the estimate ||[H)(f)||z» < Cp||f||z» for f € LP(R), The-
orem 2.1.14 yields that H'®)(f) converges to H(f) a.e. as € — O for any f € L”. This
almost everywhere limit provides a way to describe H(f) for general f € LP(R).
Note that Theorem 5.1.7 implies only that H has a (unique) bounded extension on
LP, but it does not provide a way to describe H(f) when f is a general L? function.

The next theorem is a simple consequence of these ideas.

Theorem 5.1.12. There exists a constant C such that for all 1 < p < o we have

| (5], < Cmax (p. (p— 1)) £]

. (5.1.30)

Moreover, for all f in LP(R), H®)(f) converges to H(f) a.e. and in L.

Proof. Another proof of this theorem is given in Theorem 4.2.4 in [131] in which
the asserted bound is improved.

Recall the kernels P and Q¢ defined in (5.1.16) and (5.1.17). Fix 1 < p < e and
suppose momentarily that

fxQe =H(f)*Pe, €>0, (5.1.31)

holds whenever f is an L? function. Then we have

HE(f) = HE (f) — f+ Qe +H(f) *Pe. (5.132)
Using the identity
1
HE(f)(x) = (f % Qe)(x) = ——/ fx—1)we(t)dr, (5.1.33)
T JR
where y is as in (5.1.20), and applying Corollary 2.1.12, we obtain the estimate
1
su1t0>|H(8>(f)(X) ~ (£ Q)| <[] MA@, (5.1.34)
€>

where W is as in (5.1.21) and M is the Hardy-Littlewood maximal function. In view
of (5.1.32) and (5.1.34), we obtain for f € L”(R") that

[HE(F) @) < ||| M) () +MH()) (). (5.1.35)

It follows immediately from (5.1.35) that H (*) is LP bounded with norm at most
Cmax (p, (p— 1)_2).
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We now turn to the proof of (5.1.31). It suffices to prove (5.1.31) for Schwartz
functions since, given f € L there is a sequence ¢; € . such that || f — ¢;||.» — 0
as j — oo and P, Q¢ lie in L. Taking Fourier transforms, we see that (5.1.31) is a
consequence of the identity

((—isgn&)e 2760 (x) = %xzil . (5.1.36)
To prove (5.1.36) we write
(isang)e ) () = [ el isang ) a
) /  sin(2mx&) d&
_ 7/ € sin(x€) dE (5.1.37)
=f/0°°<e~E ) sin(x¢) d&
=2 || (%) cos(at) dg

= —% [— 1 +x/0 et Sin(xé)dé} (5.1.38)

and we equate (5.1.38) and (5.1.37).

The statement in the theorem about the almost everywhere convergence of
H®)(f) to H(f) is a consequence of (5.1.30), of the fact that the alleged conver-
gence holds for Schwartz functions, and of Theorem 2.1.14. Finally, the L” conver-
gence follows from the almost everywhere convergence and the Lebesgue dominated
convergence theorem in view of the validity of (5.1.35). O

5.1.4 The Riesz Transforms

We now study an n-dimensional analogue of the Hilbert transform. It turns out that
there exist n operators in R”, called the Riesz transforms, with properties analogous
to those of the Hilbert transform on R.

To define the Riesz transforms, we first introduce tempered distributions W; on
R”, for 1 < j < n, as follows. For ¢ € #(R"), let

I-v(n—H)

Yj
‘/‘/» = 1 d
< }7(P> T erl 81%0/|y\ze |y|”+1 (P(y) y

One should check that indeed W; € ./(R"). Observe that the normalization of W;
is similar to that of the Poisson kernel.
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Definition 5.1.13. For 1 < j <n, the jth Riesz transform of f is given by convolution
with the distribution W}, that is,

Ri(F)®) = (FWw) = TCE) 0)d 