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Preface

This book is based on a one-semester course taught since 2002 at Instituto Superior
Técnico (Lisbon) to mathematics, physics and engineering students. Its aim is to
provide a quick introduction to differential geometry, including differential forms,
followed by the main ideas of Riemannian geometry (minimizing properties of
geodesics, completeness and curvature). Possible applications are given in the final
two chapters, which have themselves been independently used for one-semester
courses on geometric mechanics and general relativity. We hope that these will
give mathematics students a chance to appreciate the usefulness of Riemannian
geometry, and physics and engineering students an extra motivation to learn the
mathematical background.

It is assumed that readers have basic knowledge of linear algebra, multivariable
calculus and differential equations, as well as elementary notions of topology and
algebra. For their convenience (especially physics and engineering students), we
have summarized the main definitions and results from this background material at
the end of each chapter as needed.

To help readers test and consolidate their understanding, and also to introduce
important ideas and examples not treated in the main text, we have included more
than 330 exercises, of which around 140 are solved in Chap. 7 (the solutions to the
full set are available for instructors). We hope that this will make this book
suitable for self-study, while retaining a sufficient number of unsolved exercises to
pose a challenge.

We now give a short description of the contents of each chapter.
Chapter 1 discusses the basic concepts of differential geometry: differentiable

manifolds and maps, vector fields and the Lie bracket. In addition, we give a brief
overview of Lie groups and Lie group actions.

Chapter 2 is devoted to differential forms, covering the standard topics: wedge
product, pull-back, exterior derivative, integration and the Stokes theorem.

Riemannian manifolds are introduced in Chap. 3, where we treat the
Levi–Civita connection, minimizing properties of geodesics and the Hopf–Rinow
theorem.
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Chapter 4 addresses the notion of curvature. In particular, we use the powerful
computational method given by the Cartan structure equations to prove the
Gauss–Bonnet theorem. Constant curvature and isometric embeddings are also
discussed.

Chapter 5 gives an overview of geometric mechanics, including holonomic and
non-holonomic systems, Lagrangian and Hamiltonian mechanics, completely
integrable systems and reduction.

Chapter 6 treats general relativity, starting with a geometric introduction to
special relativity. The Einstein equation is motivated via the Cartan connection
formulation of Newtonian gravity, and the basic examples of the Schwarzschild
solution (including black holes) and cosmology are studied. We conclude with a
discussion of causality and the celebrated Hawking and Penrose singularity
theorems, which, although unusual in introductory texts, are very interesting
applications of Riemannian geometry.

Finally, we want to thank the many colleagues and students who read this text,
or parts of it, for their valuable comments and suggestions. Special thanks are due
to our colleague and friend Pedro Girão.
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Chapter 1
Differentiable Manifolds

In pure and applied mathematics, one often encounters spaces that locally look like
R

n , in the sense that they can be locally parameterized by n coordinates: for example,
the n-dimensional sphere Sn ⊂ R

n+1, or the set R
3 × SO(3) of configurations of a

rigid body. It may be expected that the basic tools of calculus can still be used in such
spaces; however, since there is, in general, no canonical choice of local coordinates,
special care must be taken when discussing concepts such as derivatives or integrals
whose definitions in R

n rely on the preferred Cartesian coordinates.
The precise definition of these spaces, called differentiable manifolds, and the

associated notions of differentiation, are the subject of this chapter. Although the
intuitive idea seems simple enough, and in fact dates back to Gauss and Riemann,
the formal definition was not given until 1936 (by Whitney).

The concept of spaces that locally look like R
n is formalized by the definition

of topological manifolds: topological spaces that are locally homeomorphic to R
n .

These are studied in Sect. 1.1, where several examples are discussed, particularly in
dimension 2 (surfaces).

Differentiable manifolds are defined in Sect. 1.2 as topological manifolds whose
changes of coordinates (maps from R

n to R
n) are smooth (C∞). This enables the

definition of differentiable functions as functions whose expressions in local coor-
dinates are smooth (Sect. 1.3), and tangent vectors as directional derivative operators
acting on real-valued differentiable functions (Sect. 1.4). Important examples of dif-
ferentiable maps, namely immersions and embeddings, are examined in Sect. 1.5.

Vector fields and their flows are the main topic of Sect. 1.6. A natural differential
operation between vector fields, called the Lie bracket, is defined; it measures the
non-commutativity of their flows and plays a central role in differential geometry.

Section1.7 is devoted to the important class of differentiable manifolds which are
also groups, the so-called Lie groups. It is shown that to each Lie group one can
associate a Lie algebra, i.e. a vector space equipped with a Lie bracket. Quotients
of manifolds by actions of Lie groups are also treated.

Orientability of a manifold (closely related to the intuitive notion of a surface
“having two sides”) and manifolds with boundary (generalizing the concept of
a surface bounded by a closed curve, or a volume bounded by a closed surface)

© Springer International Publishing Switzerland 2014
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2 1 Differentiable Manifolds

are studied in Sects. 1.8 and 1.9. Both these notions are necessary to formulate the
celebrated Stokes theorem, which will be proved in Chap.2.

1.1 Topological Manifolds

We will begin this section by studying spaces that are locally like R
n , meaning that

there exists a neighborhood around each point which is homeomorphic to an open
subset of R

n .

Definition 1.1 A topological manifold M of dimension n is a topological space
with the following properties:

(i) M is Hausdorff, that is, for each pair p1, p2 of distinct points of M there exist
neighborhoods V1, V2 of p1 and p2 such that V1 ∩ V2 = ∅.

(ii) Each point p ∈ M possesses a neighborhood V homeomorphic to an open
subset U of R

n .
(iii) M satisfies the second countability axiom, that is, M has a countable basis for

its topology.

Conditions (i) and (iii) are included in the definition to prevent the topology of
these spaces from being too strange. In particular, the Hausdorff axiom ensures that
the limit of a convergent sequence is unique. This, along with the second countability
axiom, guarantees the existence of partitions of unity (cf. Sect. 7.2 of Chap. 2), which,
as we will see, are a fundamental tool in differential geometry.

Remark 1.2 If the dimension of M is zero then M is a countable set equippedwith the
discrete topology (every subset of M is an open set). If dim M = 1, then M is locally
homeomorphic to an open interval; if dim M = 2, then it is locally homeomorphic
to an open disk etc.

Example 1.3

(1) Every open subset M of R
n with the subspace topology (that is, U ⊂ M is an

open set if and only if U = M ∩ V with V an open set of R
n) is a topological

manifold.
(2) (Circle) The circle

S1 =
{
(x, y) ∈ R

2 | x2 + y2 = 1
}

with the subspace topology is a topological manifold of dimension 1. Conditions
(i) and (iii) are inherited from the ambient space.Moreover, for each point p ∈ S1

there is at least one coordinate axis which is not parallel to the vector n p normal
to S1 at p. The projection on this axis is then a homeomorphism between a
(sufficiently small) neighborhood V of p and an interval in R.

http://dx.doi.org/10.1007/978-3-319-08666-8_2
http://dx.doi.org/10.1007/978-3-319-08666-8_2


1.1 Topological Manifolds 3

(a) (b)

(c)

Fig. 1.1 a S1; b S2; c Torus of revolution

(3) (2-sphere) The previous example can be easily generalized to show that the
2-sphere

S2 =
{
(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1
}

with the subspace topology is a topological manifold of dimension 2.
(4) (Torus of revolution) Again, as in the previous examples, we can show that the

surface of revolution obtained by revolving a circle around an axis that does not
intersect it is a topological manifold of dimension 2 (Fig. 1.1).

(5) The surface of a cube is a topological manifold (homeomorphic to S2).

Example 1.4 We can also obtain topological manifolds by identifying edges of cer-
tain polygons by means of homeomorphisms. The edges of a square, for instance,
can be identified in several ways (see Figs. 1.2 and 1.3):

(1) (Torus) The torus T 2 is the quotient of the unit square Q = [0, 1]2 ⊂ R
2 by the

equivalence relation

(x, y) ∼ (x + 1, y) ∼ (x, y + 1),

equipped with the quotient topology (cf. Sect. 1.10.1).
(2) (Klein bottle) The Klein bottle K 2 is the quotient of Q by the equivalence

relation
(x, y) ∼ (x + 1, y) ∼ (1 − x, y + 1).
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∼=

∼=

(a)

(b)

Fig. 1.2 a Torus (T 2); b Klein bottle (K 2)

∼

∼ ∼

Fig. 1.3 Projective plane (RP2)

(3) (Projective plane) The projective plane RP2 is the quotient of Q by the equiv-
alence relation

(x, y) ∼ (x + 1, 1 − y) ∼ (1 − x, y + 1).

Remark 1.5

(1) The only compact connected 1-dimensional topological manifold is the circle
S1 (see [Mil97]).

(2) The connected sum of two topological manifolds M and N is the topologi-
cal manifold M#N obtained by deleting an open set homeomorphic to a ball
on each manifold and gluing the boundaries, which must be homeomorphic
to spheres, by a homeomorphism (cf. Fig. 1.4). It can be shown that any com-
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∼

Fig. 1.4 Connected sum of two tori

∼

∼

(a)

(b)

Fig. 1.5 a Cylinder; b Möbius band

pact connected 2-dimensional topological manifold is homeomorphic either to
S2 or to connected sums of manifolds from Example 1.4 (see [Blo96, Mun00]).

If we do not identify all the edges of the square, we obtain a cylinder or a
Möbius band (cf. Fig. 1.5). These topological spaces are examples ofmanifolds with
boundary.

Definition 1.6 Consider the closed half space

H
n =

{(
x1, . . . , xn

)
∈ R

n | xn ≥ 0
}
.

A topological manifold with boundary is a Hausdorff space M , with a countable
basis of open sets, such that each point p ∈ M possesses a neighborhood V which
is homeomorphic either to an open subset U of H

n\∂H
n , or to an open subset U

of H
n , with the point p identified to a point in ∂H

n . The points of the first type are
called interior points, and the remaining are called boundary points.
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(a) (b)

Fig. 1.6 Möbius band inside a Klein bottle; b Real projective plane

∼∼

Fig. 1.7 Disk inside the real projective plane

The set of boundary points ∂M is called the boundary of M , and is a manifold
of dimension (n − 1).

Remark 1.7

1. Making a paper model of theMöbius band, we can easily verify that its boundary
is homeomorphic to a circle (not to two disjoint circles), and that it has only one
side (cf. Fig. 1.5).

2. Both the Klein bottle and the real projective plane contain Möbius bands
(cf. Fig. 1.6). Deleting this band on the projective plane, we obtain a disk
(cf. Fig. 1.7). In other words, we can glue a Möbius band to a disk along their
boundaries and obtain RP2.

Two topological manifolds are considered the same if they are homeomorphic.
For example, spheres of different radii in R

3 are homeomorphic, and so are the two
surfaces in Fig. 1.8. Indeed, the knotted torus can be obtained by cutting the torus
along a circle, knotting it and gluing it back again. An obvious homeomorphism is
then the onewhich takes each point on the initial torus to its final position after cutting
and gluing (however, this homeomorphism cannot be extended to a homeomorphism
of the ambient space R

3).

Exercise 1.8

(1) Which of the following sets (with the subspace topology) are topological mani-
folds?

(a) D2 = {
(x, y) ∈ R

2 | x2 + y2 < 1
}
;

(b) S2 \ {p} (p ∈ S2);



1.1 Topological Manifolds 7

∼

Fig. 1.8 Two homeomorphic topological manifolds

(c) S2 \ {p, q} (p, q ∈ S2, p �= q);
(d)

{
(x, y, z) ∈ R

3 | x2 + y2 = 1
}
;

(e)
{
(x, y, z) ∈ R

3 | x2 + y2 = z2
}
;

(2) Which of the manifolds above are homeomorphic?
(3) Show that the Klein bottle K 2 can be obtained by gluing two Möbius bands

together through a homeomorphism of the boundary.
(4) Show that:

(a) M#S2 = M for any 2-dimensional topological manifold M ;
(b) RP2#RP2 = K 2;
(c) RP2#T 2 = RP2#K 2.

(5) A triangulation of a 2-dimensional topological manifold M is a decomposition
of M in a finite number of triangles (i.e. subsets homeomorphic to triangles in
R
2) such that the intersection of any two triangles is either a common edge, a

common vertex or empty (it is possible to prove that such a triangulation always
exists). The Euler characteristic of M is

χ(M) := V − E + F,

where V , E and F are the number of vertices, edges and faces of a given trian-
gulation (it can be shown that this is well defined, i.e. does not depend on the
choice of triangulation). Show that:

(a) adding a vertex to a triangulation does not change χ(M);
(b) χ

(
S2
) = 2;

(c) χ
(
T 2
) = 0;

(d) χ
(
K 2
) = 0;

(e) χ
(
RP2

) = 1;
(f) χ(M#N ) = χ(M)+ χ(N )− 2.

1.2 Differentiable Manifolds

Recall that an n-dimensional topological manifold is a Hausdorff space with a count-
able basis of open sets such that each point possesses a neighborhood homeomorphic
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M

W

Uα Uβ

ϕα ϕβ

R
n

R
n

ϕ−1
β ◦ ϕα

ϕ−1
α ◦ ϕβ

Fig. 1.9 Parameterizations and overlap maps

to an open subset of R
n . Each pair (U,ϕ), where U is an open subset of R

n and
ϕ : U → ϕ(U ) ⊂ M is a homeomorphism of U to an open subset of M , is called a
parameterization. The inverse ϕ−1 is called a coordinate system or chart, and the
setϕ(U ) ⊂ M is called a coordinate neighborhood.When twocoordinate neighbor-
hoods overlap, we have formulas for the associated coordinate change (cf. Fig. 1.9).
The idea to obtain differentiable manifolds will be to choose a sub-collection of
parameterizations so that the coordinate changes are differentiable maps.

Definition 2.1 An n-dimensional differentiable or smooth manifold is a topolog-
ical manifold of dimension n and a family of parameterizations ϕα : Uα → M
defined on open sets Uα ⊂ R

n , such that:

(i) the coordinate neighborhoods cover M , that is,
⋃
α ϕα(Uα) = M ;

(ii) for each pair of indices α,β such that

W := ϕα(Uα) ∩ ϕβ(Uβ) �= ∅,

the overlap maps

ϕ−1
β ◦ ϕα : ϕ−1

α (W ) → ϕ−1
β (W )

ϕ−1
α ◦ ϕβ : ϕ−1

β (W ) → ϕ−1
α (W )

are C∞;
(iii) the family A = {(Uα,ϕα)} is maximal with respect to (i) and (i i), meaning

that if ϕ0 : U0 → M is a parameterization such that ϕ−1
0 ◦ ϕ and ϕ−1 ◦ ϕ0 are

C∞ for all ϕ in A, then (U0,ϕ0) is in A.
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Remark 2.2

(1) Any familyA = {(Uα,ϕα)} that satisfies (i) and (i i) is called aC∞-atlas for M .
IfA also satisfies (i i i) it is called amaximal atlas or a differentiable structure.

(2) Condition (i i i) is purely technical. Given any atlas A = {(Uα,ϕα)} on M ,
there is a unique maximal atlas Ã containing it. In fact, we can take the set
Ã of all parameterizations that satisfy (i i) with every parameterization on A.
Clearly A ⊂ Ã, and one can easily check that Ã satisfies (i) and (i i). Also, by
construction, Ã is maximal with respect to (i) and (i i). Two atlases are said to
be equivalent if they define the same differentiable structure.

(3) We could also have defined Ck-manifolds by requiring the coordinate changes
to be Ck-maps (a C0-manifold would then denote a topological manifold).

Example 2.3

(1) The spaceR
n with the usual topology defined by the Euclidean metric is a Haus-

dorff space and has a countable basis of open sets. If, for instance, we consider
a single parameterization (Rn, id), conditions (i) and (i i) of Definition 2.1 are
trivially satisfied andwe have an atlas forRn . Themaximal atlas that contains this
parameterization is usually called the standard differentiable structure onR

n .
We can of course consider other atlases. Take, for instance, the atlas defined by
the parameterization (Rn,ϕ) with ϕ(x) = Ax for a nonsingular (n × n)-matrix
A. It is an easy exercise to show that these two atlases are equivalent.

(2) It is possible for a manifold to possess non-equivalent atlases: consider the two
atlases {(R,ϕ1)} and {(R,ϕ2)} on R, where ϕ1(x) = x and ϕ2(x) = x3. As the
map ϕ−1

2 ◦ ϕ1 is not differentiable at the origin, these two atlases define differ-
ent (though, as we shall see, diffeomorphic) differentiable structures [cf. Exer-
cises2.5(4) and 3.2(6)].

(3) Every open subset V of a smooth manifold is a manifold of the same dimension.
Indeed, as V is a subset of M , its subspace topology is Hausdorff and admits a
countable basis of open sets. Moreover, if A = {(Uα,ϕα)} is an atlas for M and
we take the Uα for which ϕα(Uα) ∩ V �= ∅, it is easy to check that the family
of parameterizations Ã = {

(Ũα,ϕα|Ũα
)
}
, where Ũα = ϕ−1

α (V ), is an atlas for
V .

(4) Let Mn×n be the set of n × n matrices with real coefficients. Rearranging the
entries along one line, we see that this space is just R

n2 , and so it is a manifold.
By Example 3, we have that GL(n) = {A ∈ Mn×n | det A �= 0} is also a
manifold of dimension n2. In fact, the determinant is a continuous map from
Mn×n to R, and GL(n) is the preimage of the open set R\{0}.

(5) Let us consider the n-sphere

Sn =
{(

x1, . . . , xn+1
)

∈ R
n+1 |

(
x1
)2 + · · · +

(
xn+1

)2 = 1

}

and the maps
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ϕ+
i : U ⊂ R

n → Sn

(
x1, . . . , xn

)
�→

(
x1, . . . , xi−1, g

(
x1, . . . , xn

)
, xi , . . . , xn

)
,

ϕ−
i : U ⊂ R

n → Sn

(
x1, . . . , xn

)
�→

(
x1, . . . , xi−1,−g

(
x1, . . . , xn

)
, xi , . . . , xn

)
,

where

U =
{
(x1, . . . , xn

)
∈ R

n |
(

x1
)2 + · · · + (

xn)2 < 1}

and

g
(

x1, . . . , xn
)

=
(
1 −

(
x1
)2 − · · · − (

xn)2
) 1

2

.

Being a subset of R
n+1, the sphere (equipped with the subspace topology) is a

Hausdorff space and admits a countable basis of open sets. It is also easy to check

that the family
{(

U,ϕ+
i

)
,
(
U,ϕ−

i

)}n+1
i=1 is an atlas for Sn , and so this space is

a manifold of dimension n (the corresponding charts are just the projections on
the hyperplanes xi = 0).

(6) We can define an atlas for the surface of a cube Q ⊂ R
3 making it a smooth

manifold: Suppose the cube is centered at the origin and consider the map f :
Q → S2 defined by f (x) = x/‖x‖. Then, considering an atlas {(Uα,ϕα)} for
S2, the family {(Uα, f −1 ◦ ϕα)} defines an atlas for Q.

Remark 2.4 There exist topological manifolds which admit no differentiable struc-
tures at all. Indeed, Kervaire presented the first example (a 10-dimensional manifold)
in 1960 [Ker60], and Smale constructed another one (of dimension 12) soon after
[Sma60]. In 1956 Milnor [Mil07] had already given an example of a 8-manifold
which he believed not to admit a differentiable structure, but that was not proved
until 1965 (see [Nov65]).

Exercise 2.5

(1) Show that two atlases A1 and A2 for a smooth manifold are equivalent if and
only if A1 ∪ A2 is an atlas.

(2) Let M be a differentiable manifold. Show that a set V ⊂ M is open if and only
if ϕ−1

α (V ) is an open subset of R
n for every parameterization (Uα,ϕα) of a C∞

atlas.
(3) Show that the two atlases on R

n from Example2.3(1) are equivalent.
(4) Consider the two atlases on R from Example2.3(2), {(R,ϕ1)} and {(R,ϕ2)},

where ϕ1(x) = x and ϕ2(x) = x3. Show that ϕ−1
2 ◦ ϕ1 is not differentiable at

the origin. Conclude that the two atlases are not equivalent.
(5) Recall from elementary vector calculus that a surface S ⊂ R

3 is a set such
that, for each p ∈ S, there is a neighborhood Vp of p in R

3 and a C∞ map
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f p : Up → R (where Up is an open subset of R
2) such that S ∩ Vp is the graph

of z = f p(x, y), or x = f p(y, z), or y = f p(x, z). Show that S is a smooth
manifold of dimension 2.

(6) (Product manifold) Let {(Uα,ϕα)}, {(Vβ,ψβ)} be two atlases for two smooth
manifolds M and N . Show that the family {(Uα × Vβ,ϕα × ψβ)} is an atlas
for the product M × N . With the differentiable structure generated by this atlas,
M × N is called the product manifold of M and N .

(7) (Stereographic projection) Consider the n-sphere Sn with the subspace topology
and let N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) be the north and south poles.
The stereographic projection from N is the map πN : Sn\{N } → R

n which
takes a point p ∈ Sn\{N } to the intersection point of the line through N and
p with the hyperplane xn+1 = 0 (cf. Fig. 1.10). Similarly, the stereographic
projection from S is the map πS : Sn\{S} → R

n which takes a point p on
Sn\{S} to the intersection point of the line through S and p with the same
hyperplane. Check that {(Rn,π−1

N ), (Rn,π−1
S )} is an atlas for Sn . Show that this

atlas is equivalent to the atlas on Example2.3(5). The maximal atlas obtained
from these is called the standard differentiable structure on Sn .

(8) (Real projective space) The real projective space RPn is the set of lines through
the origin in R

n+1. This space can be defined as the quotient space of Sn by the
equivalence relation x ∼ −x that identifies a point to its antipodal point.

(a) Show that the quotient space RPn = Sn/ ∼ with the quotient topology
is a Hausdorff space and admits a countable basis of open sets. (Hint: Use

Proposition 10.2).
(b) Considering the atlas on Sn defined in Example2.3(5) and the canonical

projection π : Sn → RPn given by π(x) = [x], define an atlas for RPn .

(9) We can define an atlas on RPn in a different way by identifying it with the
quotient space ofR

n+1\{0} by the equivalence relation x ∼ λx , with λ ∈ R\{0}.
For that, consider the sets Vi = {[

x1, . . . , xn+1
] | xi �= 0

}
(corresponding to the

N

p

Sn

πN (p)

Fig. 1.10 Stereographic projection
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set of lines through the origin in R
n+1 that are not contained on the hyperplane

xi = 0) and the maps ϕi : R
n → Vi defined by

ϕi

(
x1, . . . , xn

)
=
[
x1, . . . , xi−1, 1, xi , . . . , xn

]
.

Show that:

(a) the family {(Rn,ϕi )} is an atlas for RPn ;
(b) this atlas defines the same differentiable structure as the atlas on Exer-

cise2.5(8).

(10) (A non-Hausdorff manifold) Let M be the disjoint union ofRwith a point p and
consider the maps fi : R → M (i = 1, 2) defined by fi (x) = x if x ∈ R\{0},
f1(0) = 0 and f2(0) = p. Show that:

(a) the maps f −1
i ◦ f j are differentiable on their domains;

(b) if we consider an atlas formed by {(R, f1), (R, f2)}, the corresponding
topology will not satisfy the Hausdorff axiom.

1.3 Differentiable Maps

In this book the words differentiable and smooth will be used to mean infinitely
differentiable (C∞).

Definition 3.1 Let M and N be two differentiable manifolds of dimension m and
n, respectively. A map f : M → N is said to be differentiable (or smooth, or C∞)
at a point p ∈ M if there exist parameterizations (U,ϕ) of M at p (i.e. p ∈ ϕ(U ))
and (V,ψ) of N at f (p), with f (ϕ(U )) ⊂ ψ(V ), such that the map

f̂ := ψ−1 ◦ f ◦ ϕ : U ⊂ R
m → R

n

is smooth (Fig. 1.11).
The map f is said to be differentiable on a subset of M if it is differentiable at

every point of this set.

As coordinate changes are smooth, this definition is independent of the parame-
terizations chosen at f (p) and p. The map f̂ := ψ−1 ◦ f ◦ ϕ : U ⊂ R

m → R
n is

called a local representation of f and is the expression of f on the local coordi-
nates defined by ϕ and ψ. The set of all smooth functions f : M → N is denoted
C∞(M, N ), and we will simply write C∞(M) for C∞(M,R).

A differentiable map f : M → N between two manifolds is continuous [cf.
Exercise3.2(2)]. Moreover, it is called a diffeomorphism if it is bijective and its
inverse f −1 : N → M is also differentiable. The differentiable manifolds M and
N will be considered the same if they are diffeomorphic, i.e. if there exists a dif-
feomorphism f : M → N . A map f is called a local diffeomorphism at a point
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M N

U V

f

f̂

R
m

R
n

ϕ ψ

Fig. 1.11 Local representation of a map between manifolds

p ∈ M if there are neighborhoods V of p and W of f (p) such that f |V : V → W
is a diffeomorphism.

For a long time it was thought that, up to a diffeomorphism, there was only one
differentiable structure for each topologicalmanifold (the two different differentiable
structures in Exercises2.5(4) and 3.2(6) are diffeomorphic—cf. Exercise3.2(6).
However, in 1956, Milnor [Mil56] presented examples of manifolds that were
homeomorphic but not diffeomorphic to S7. Later, Milnor and Kervaire [Mil59,
KM63] showed that more spheres of dimension greater than 7 admitted several dif-
ferentiable structures. For instance, S19 has 73 distinct smooth structures and S31

has 16, 931, 177. More recently, in 1982 and 1983, Freedman [Fre82] and Gompf
[Gom83] constructed examples of non-standard differentiable structures on R

4.

Exercise 3.2

(1) Prove that Definition 3.1 does not depend on the choice of parameterizations.
(2) Show that a differentiable map f : M → N between two smooth manifolds is

continuous.
(3) Show that if f : M1 → M2 and g : M2 → M3 are differentiable maps between

smooth manifolds M1, M2 and M3, then g ◦ f : M1 → M3 is also differentiable.
(4) Show that the antipodal map f : Sn → Sn , defined by f (x) = −x , is differ-

entiable.
(5) Using the stereographic projection from the north pole πN : S2 \ {N } → R

2

and identifying R
2 with the complex plane C, we can identify S2 with C ∪ {∞},

where ∞ is the so-called point at infinity. A Möbius transformation is a map
f : C ∪ {∞} → C ∪ {∞} of the form

f (z) = az + b

cz + d
,
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where a, b, c, d ∈ C satisfy ad − bc �= 0 and ∞ satisfies

α

∞ = 0,
α

0
= ∞

for any α ∈ C \ {0}. Show that any Möbius transformation f , seen as a map
f : S2 → S2, is a diffeomorphism. (Hint: Start by showing that any Möbius transformation is a

composition of transformations of the form g(z) = 1
z and h(z) = az + b).

(6) Consider again the two atlases on R from Example2.3(2) and Exercise2.5(4),
{(R,ϕ1)} and {(R,ϕ2)}, where ϕ1(x) = x and ϕ2(x) = x3. Show that:

(a) the identity map i : (R,ϕ1) → (R,ϕ2) is not a diffeomorphism;
(b) the map f : (R,ϕ1) → (R,ϕ2) defined by f (x) = x3 is a diffeomor-

phism (implying that although these two atlases define different differen-
tiable structures, they are diffeomorphic).

1.4 Tangent Space

Recall from elementary vector calculus that a vector v ∈ R
3 is said to be tangent to

a surface S ⊂ R
3 at a point p ∈ S if there exists a differentiable curve c : (−ε, ε) →

S ⊂ R
3 such that c(0) = p and ċ(0) = v [cf. Exercise2.5(5)]. The set Tp S of all

these vectors is a 2-dimensional vector space, called the tangent space to S at p,
and can be identified with the plane in R

3 which is tangent to S at p (Fig. 1.12).
To generalize this to an abstract n-dimensional manifold we need to find a descrip-

tion of v which does not involve the ambient Euclidean spaceR
3. To do so, we notice

that the components of v are

vi = d(xi ◦ c)

dt
(0),

where xi : R
3 → R is the i th coordinate function. If we ignore the ambient space,

xi : S → R is just a differentiable function, and

vi = v(xi ),

where, for any differentiable function f : S → R, we define

v( f ) := d( f ◦ c)

dt
(0).

This allows us to see v as an operator v : C∞(S) → R, and it is clear that this
operator completely determines the vector v. It is this new interpretation of tangent
vector that will be used to define tangent spaces for manifolds.
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S

v
p

TpS

Fig. 1.12 Tangent vector to a surface

Definition 4.1 Let c : (−ε, ε) → M be a differentiable curve on a smooth manifold
M . Consider the set C∞(p) of all functions f : M → R that are differentiable at
c(0) = p. The tangent vector to the curve c at p is the operator ċ(0) : C∞(p) → R

given by

ċ(0)( f ) = d( f ◦ c)

dt
(0).

A tangent vector to M at p is a tangent vector to some differentiable curve c :
(−ε, ε) → M with c(0) = p. The tangent space at p is the space Tp M of all
tangent vectors at p.

Choosing a parameterization ϕ : U ⊂ R
n → M around p, the curve c is given

in local coordinates by the curve in U

ĉ(t) :=
(
ϕ−1 ◦ c

)
(t) =

(
x1(t), . . . , xn(t)

)
,

and

ċ(0)( f ) = d( f ◦ c)

dt
(0) = d

dt

⎛
⎜⎝(

f̂︷ ︸︸ ︷
f ◦ ϕ) ◦ (

ĉ︷ ︸︸ ︷
ϕ−1 ◦ c)

⎞
⎟⎠

|t=0

=

= d

dt

(
f̂
(

x1(t), . . . , xn(t)
))

|t=0
=

n∑
i=1

∂ f̂

∂xi

(
ĉ(0)

) dxi

dt
(0) =

=
(

n∑
i=1

ẋ i (0)

(
∂

∂xi

)

ϕ−1(p)

)
( f̂ ).
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Hence we can write

ċ(0) =
n∑

i=1

ẋ i (0)

(
∂

∂xi

)

p
,

where
(

∂
∂xi

)
p
denotes the operator associated to the vector tangent to the curve ci

at p given in local coordinates by

ĉi (t) =
(

x1, . . . , xi−1, xi + t, xi+1, . . . , xn
)
,

with
(
x1, . . . , xn

) = ϕ−1(p).

Example 4.2 The map ψ : (0,π)× (−π,π) → S2 given by

ψ(θ,ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

parameterizes a neighborhood of the point (1, 0, 0) = ψ
(
π
2 , 0

)
. Consequently,(

∂
∂θ

)
(1,0,0)

= ċθ(0) and
(
∂
∂ϕ

)
(1,0,0)

= ċϕ(0), where

cθ(t) = ψ
(π
2

+ t, 0
)

= (cos t, 0,− sin t);
cϕ(t) = ψ

(π
2
, t
)

= (cos t, sin t, 0).

Note that, in the notation above,

ĉθ(t) =
(π
2

+ t, 0
)

and ĉϕ(t) =
(π
2
, t
)
.

Moreover, since cθ and cϕ are curves in R
3,
(
∂
∂θ

)
(1,0,0)

and
(
∂
∂ϕ

)
(1,0,0)

can be

identified with the vectors (0, 0,−1) and (0, 1, 0).

Proposition 4.3 The tangent space to M at p is an n-dimensional vector space.

Proof Consider a parameterization ϕ : U ⊂ R
n → M around p and take the vector

space generated by the operators
(

∂
∂xi

)
p
,

Dp := span

{(
∂

∂x1

)

p
, . . . ,

(
∂

∂xn

)

p

}
.

It is easy to show [cf. Exercise4.9(1)] that these operators are linearly independent.
Moreover, each tangent vector to M at p can be represented by a linear combination
of these operators, so the tangent space Tp M is a subset of Dp. We will now see that
Dp ⊂ Tp M . Let v ∈ Dp; then v can be written as
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v =
n∑

i=1

vi
(
∂

∂xi

)

p
.

If we consider the curve c : (−ε, ε) → M , defined by

c(t) = ϕ
(

x1 + v1t, . . . , xn + vnt
)

(where
(
x1, . . . , xn

) = ϕ−1(p)), then

ĉ(t) =
(

x1 + v1t, . . . , xn + vnt
)

and so ẋ i (0) = vi , implying that ċ(0) = v. Therefore v ∈ Tp M . �
Remark 4.4

(1) The basis

{(
∂
∂xi

)
p

}n

i=1
determined by the chosen parameterization around p is

called the associated basis to that parameterization.
(2) Note that the definition of tangent space at p only uses functions that are differ-

entiable on a neighborhood of p. Hence, if U is an open set of M containing p,
the tangent space TpU is naturally identified with Tp M .

If we consider the disjoint union of all tangent spaces Tp M at all points of M , we
obtain the space

T M =
⋃
p∈M

Tp M = {v ∈ Tp M | p ∈ M},

which admits a differentiable structure naturally determined by the one on M
[cf. Exercise4.9(8)]. With this differentiable structure, this space is called the tan-
gent bundle. Note that there is a natural projection π : T M → M which takes
v ∈ Tp M to p (cf. Sect. 1.10.3).

Now that we have defined tangent space, we can define the derivative at a point
p of a differentiable map f : M → N between smooth manifolds. We want this
derivative to be a linear transformation

(d f )p : Tp M → T f (p)N

of the corresponding tangent spaces, to be the usual derivative (Jacobian) of f when
M and N are Euclidean spaces, and to satisfy the chain rule.

Definition 4.5 Let f : M → N be a differentiable map between smooth manifolds.
For p ∈ M , the derivative of f at p is the map

(d f )p : Tp M → T f (p)N

v �→ d ( f ◦ c)

dt
(0),
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where c : (−ε, ε) → M is a curve satisfying c(0) = p and ċ(0) = v.

Proposition 4.6 The map (d f )p : Tp M → T f (p)N defined above is a linear trans-
formation that does not depend on the choice of the curve c.

Proof Let (U,ϕ) and (V,ψ) be two parameterizations around p and f (p) such
that f (ϕ(U )) ⊂ ψ(V ) (cf. Fig. 1.13). Consider a vector v ∈ Tp M and a curve
c : (−ε, ε) → M such that c(0) = p and ċ(0) = v. If, in local coordinates, the curve
c is given by

ĉ(t) :=
(
ϕ−1 ◦ c

)
(t) =

(
x1(t), . . . , xm(t)

)
,

and the curve γ := f ◦ c : (−ε, ε) → N is given by

γ̂(t) :=
(
ψ−1 ◦ γ

)
(t) =

(
ψ−1 ◦ f ◦ ϕ

) (
x1(t), . . . , xm(t)

)

=
(

y1(x(t)), . . . , yn(x(t))
)
,

then γ̇(0) is the tangent vector in T f (p)N given by

γ̇(0) =
n∑

i=1

d

dt

(
yi
(

x1(t), . . . , xm(t)
))

|t=0

(
∂

∂yi

)

f (p)

=
n∑

i=1

{
m∑

k=1

ẋ k(0)

(
∂yi

∂xk

)
(x(0))

}(
∂

∂yi

)

f (p)

=
n∑

i=1

{
m∑

k=1

vk
(
∂yi

∂xk

)
(x(0))

}(
∂

∂yi

)

f (p)
,

M N

U V

f

f̂

R
m R

n

ϕ ψ

c

ĉ

γ

γ̂

p
v

(df )p(v)

Fig. 1.13 Derivative of a differentiable map
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where the vk are the components of v in the basis associated to (U,ϕ). Hence γ̇(0)
does not depend on the choice of c, as long as ċ(0) = v. Moreover, the components
of w = (d f )p(v) in the basis associated to (V,ψ) are

wi =
m∑

j=1

∂yi

∂x j
v j ,

where
(
∂yi

∂x j

)
is an n × m matrix (the Jacobian matrix of the local representation

of f at ϕ−1(p)). Therefore, (d f )p : Tp M → T f (p)N is the linear transformation
which, on the basis associated to the parameterizations ϕ and ψ, is represented by
this matrix. �

Remark 4.7 The derivative (d f )p is sometimes called differential of f at p. Several
other notations are often used for d f , as for example f∗, D f , T f and f ′.

Example 4.8 Let ϕ : U ⊂ R
n → M be a parameterization around a point p ∈ M .

We can view ϕ as a differentiable map between two smooth manifolds and we can
compute its derivative at x = ϕ−1(p)

(dϕ)x : TxU → Tp M.

For v ∈ TxU ∼= R
n , the i th component of (dϕ)x (v) is

n∑
j=1

∂xi

∂x j
v j = vi

(where
(
∂xi

∂x j

)
is the identity matrix). Hence, (dϕ)x (v) is the vector in Tp M which,

in the basis

{(
∂
∂xi

)
p

}
associated to the parameterization ϕ, is represented by v.

Given a differentiable map f : M → N we can also define a global derivative
d f (also called push–forward and denoted f∗) between the corresponding tangent
bundles:

d f : T M → T N

Tp M � v �→ (d f )p(v) ∈ T f (p)N .

Exercise 4.9

(1) Show that the operators
(

∂
∂xi

)
p
are linearly independent.

(2) Let M be a smooth manifold, p a point in M and v a vector tangent to M at p.

Show that if v can be written as v = ∑n
i=1 ai

(
∂
∂xi

)
p
and v = ∑n

i=1 bi
(

∂
∂yi

)
p

for two basis associated to different parameterizations around p, then
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b j =
n∑

i=1

∂y j

∂xi
ai .

(3) Let M be an n-dimensional differentiable manifold and p ∈ M . Show that the
following sets can be canonically identified with Tp M (and therefore constitute
alternative definitions of the tangent space):

(a) Cp/ ∼, where Cp is the set of differentiable curves c : I ⊂ R → M such
that c(0) = p and ∼ is the equivalence relation defined by

c 1 ∼ c 2 ⇔ d

dt

(
ϕ−1 ◦ c1

)
(0) = d

dt

(
ϕ−1 ◦ c2

)
(0)

for some parameterization ϕ : U ⊂ R
n → M of a neighborhood of p.

(b) {(α, vα) | p ∈ ϕα(Uα) and vα ∈ R
n}/ ∼, where A = {(Uα,ϕα)} is the

differentiable structure and ∼ is the equivalence relation defined by

(α, vα) ∼ (β, vβ) ⇔ vβ = d
(
ϕ−1
β ◦ ϕα

)
ϕ−1
α (p)

(vα).

(4) (Chain rule) Let f : M → N and g : N → P be two differentiable maps. Then
g ◦ f : M → P is also differentiable [cf. Exercise3.2(3)]. Show that for p ∈ M ,

(d(g ◦ f ))p = (dg) f (p) ◦ (d f )p.

(5) Let φ : (0,+∞) × (0,π) × (0, 2π) → R
3 be the parameterization of U =

R
3 \ {(x, 0, z) | x ≥ 0 and z ∈ R} by spherical coordinates,

φ(r, θ,ϕ) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ).

Determine the Cartesian components of ∂
∂r ,

∂
∂θ and

∂
∂ϕ at each point of U .

(6) Compute the derivative (d f )N of the antipodal map f : Sn → Sn at the north
pole N .

(7) Let W be a coordinate neighborhood on M , let x : W → R
n be a coordinate

chart and consider a smooth function f : M → R. Show that for p ∈ W , the
derivative (d f )p is given by

(d f )p = ∂ f̂

∂x1
(x(p))

(
dx1

)
p

+ · · · + ∂ f̂

∂xn
(x(p))

(
dxn)

p ,

where f̂ := f ◦ x−1.
(8) (Tangent bundle) Let {(Uα,ϕα)} be a differentiable structure on M and consider

the maps
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�α : Uα × R
n → T M

(x, v) �→ (dϕα)x (v) ∈ Tϕα(x)M.

Show that the family {(Uα×R
n,�α)} defines a differentiable structure for T M .

Conclude that, with this differentiable structure, T M is a smooth manifold of
dimension 2 × dim M .

(9) Let f : M → N be a differentiable map between smooth manifolds. Show that:

(a) d f : T M → T N is also differentiable;
(b) if f : M → M is the identity map then d f : T M → T M is also the

identity;
(c) if f is a diffeomorphism then d f : T M → T N is also a diffeomorphism

and (d f )−1 = d f −1.

(10) Let M1,M2 be two differentiable manifolds and

π1 : M1 × M2 → M1

π2 : M1 × M2 → M2

the corresponding canonical projections.

(a) Show that dπ1 × dπ2 is a diffeomorphism between the tangent bundle
T (M1 × M2) and the product manifold T M1 × T M2.

(b) Show that if N is a smooth manifold and fi : N → Mi (i = 1, 2) are
differentiable maps, then d( f1 × f2) = d f1 × d f2.

1.5 Immersions and Embeddings

In this section we will study the local behavior of differentiable maps f : M → N
between smooth manifolds. We have already seen that f is said to be a local diffeo-
morphism at a point p ∈ M if dim M = dim N and f transforms a neighborhood
of p diffeomorphically onto a neighborhood of f (p). In this case, its derivative
(d f )p : Tp M → T f (p)N must necessarily be an isomorphism [cf. Exercise4.9(9)].
Conversely, if (d f )p is an isomorphism then the inverse function theorem implies
that f is a local diffeomorphism (cf. Sect. 1.10.4). Therefore, to check whether f
maps a neighborhood of p diffeomorphically onto a neighborhood of f (p), one just
has to check that the determinant of the local representation of (d f )p is nonzero.

When dim M < dim N , the best we can hope for is that (d f )p : Tp M → T f (p)N
is injective. The map f is then called an immersion at p. If f is an immersion at
every point in M , it is called an immersion. Locally, every immersion is (up to a
diffeomorphism) the canonical immersion of R

m into R
n (m < n) where a point(

x1, . . . , xm
)
is mapped to

(
x1, . . . , xm, 0, . . . , 0

)
. This result is known as the local

immersion theorem.
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Theorem 5.1 Let f : M → N be an immersion at p ∈ M. Then there exist local
coordinates around p and f (p) on which f is the canonical immersion.

Proof Let (U,ϕ) and (V,ψ) be parameterizations around p and q = f (p). Let
us assume for simplicity that ϕ(0) = p and ψ(0) = q. Since f is an immersion,
(d f̂ )0 : R

m → R
n is injective (where f̂ := ψ−1 ◦ f ◦ ϕ is the expression of f in

local coordinates). Hence we can assume (changing basis on R
n if necessary) that

this linear transformation is represented by the n × m matrix

⎛
⎝

Im×m

− − −
0

⎞
⎠ ,

where Im×m is the m × m identity matrix. Therefore, the map

F : U × R
n−m → R

n
(

x1, . . . , xn
)

�→ f̂
(

x1, . . . , xm
)

+
(
0, . . . , 0, xm+1, . . . , xn

)
,

has derivative (d F)0 : R
n → R

n given by the matrix

⎛
⎝

Im×m | 0
− − − + − − −

0 | I(n−m)×(n−m)

⎞
⎠ = In×n .

Applying the inverse function theorem, we conclude that F is a local diffeomorphism
at 0. This implies that ψ ◦ F is also a local diffeomorphism at 0, and so ψ ◦ F is
another parameterization of N around q. Denoting the canonical immersion of R

m

intoR
n by j , we have f̂ = F ◦ j ⇔ f = ψ◦ F ◦ j ◦ϕ−1, implying that the following

diagram commutes:

M ⊃ ϕ(Ũ )
f−→ (ψ ◦ F)(Ṽ ) ⊂ N

ϕ ↑ ↑ ψ ◦ F

R
m ⊃ Ũ

j−→ Ṽ ⊂ R
n

(for possibly smaller open sets Ũ ⊂ U and Ṽ ⊂ V ).Hence, on these newcoordinates,
f is the canonical immersion. �

Remark 5.2 As a consequence of the local immersion theorem, any immersion at a
point p ∈ M is an immersion on a neighborhood of p.

When an immersion f : M → N is also a homeomorphism onto its image
f (M) ⊂ N with its subspace topology, it is called an embedding. We leave as an
exercise to show that the local immersion theorem implies that, locally, any immer-
sion is an embedding.
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S

Fig. 1.14 Injective immersion which is not an embedding

Example 5.3

(1) The map f : R → R
2 given by f (t) = (

t2, t3
)
is not an immersion at t = 0.

(2) The map f : R → R
2 defined by f (t) = (cos t, sin 2t) is an immersion but it is

not an embedding (it is not injective).
(3) Let g : R → R be the function g(t) = 2 arctan(t)+π/2. If f is the map defined

in (5.3) then h := f ◦ g is an injective immersion which is not an embedding.
Indeed, the set S = h(R) in Fig. 1.14 is not the image of an embedding of R

into R
2. The arrows in the figure mean that the line approaches itself arbitrarily

close at the origin but never self-intersects. If we consider the usual topologies
on R and on R

2, the image of a bounded open set in R containing 0 is not an
open set in h(R) for the subspace topology, and so h−1 is not continuous.

(4) The map f : R → R
2 given by f (t) = (

et cos t, et sin t
)
is an embedding of R

into R
2.

If M ⊂ N and the inclusion map i : M ↪→ N is an embedding, M is said to be
a submanifold of N . Therefore, an embedding f : M → N maps M diffeomorphi-
cally onto a submanifold of N . Charts on f (M) are just restrictions of appropriately
chosen charts on N to f (M) [cf. Exercise5.9(3)].

A differentiable map f : M → N for which (d f )p is surjective is called a
submersion at p. Note that, in this case, we necessarily have m ≥ n. If f is a
submersion at every point in M it is called a submersion. Locally, every submersion
is the standard projection of R

m onto the first n factors.

Theorem 5.4 Let f : M → N be a submersion at p ∈ M. Then there exist local
coordinates around p and f (p) for which f is the standard projection.

Proof Let us consider parameterizations (U,ϕ) and (V,ψ) around p and f (p), such
that f (ϕ(U )) ⊂ ψ(V ), ϕ(0) = p and ψ(0) = f (p). In local coordinates f is given
by f̂ := ψ−1 ◦ f ◦ ϕ and, as (d f )p is surjective, (d f̂ )0 : R

m → R
n is a surjective

linear transformation. By a linear change of coordinates on R
n we may assume that

(d f̂ )0 = (
In×n | ∗ ). As in the proof of the local immersion theorem, we will use

an auxiliary map F that will allow us to use the inverse function theorem,
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F : U ⊂ R
m → R

m
(

x1, . . . , xm
)

�→
(

f̂
(

x1, . . . , xm
)
, xn+1, . . . , xm

)
.

Its derivative at 0 is the linear map given by

(d F)0 =
⎛
⎝

In×n | ∗
− − − + − − −

0 | I(m−n)×(m−n)

⎞
⎠ .

The inverse function theorem then implies that F is a local diffeomorphism at 0,
meaning that it maps some open neighborhood of this point Ũ ⊂ U , diffeomorphi-
cally onto an open set W of R

m containing 0. If π1 : R
m → R

n is the standard
projection onto the first n factors, we have π1 ◦ F = f̂ , and hence

f̂ ◦ F−1 = π1 : W → R
n .

Therefore, replacing ϕ by ϕ̃ := ϕ ◦ F−1, we obtain coordinates for which f is the
standard projection π1 onto the first n factors:

ψ−1 ◦ f ◦ ϕ̃ = ψ−1 ◦ f ◦ ϕ ◦ F−1 = f̂ ◦ F−1 = π1.

�

Remark 5.5 This result is often stated together with the local immersion theorem in
what is known as the rank theorem (see for instance [Boo03]).

Let f : M → N be a differentiablemap between smoothmanifolds of dimensions
m and n, respectively. A point p ∈ M is called a regular point of f if (d f )p is
surjective. A point q ∈ N is called a regular value of f if every point in f −1(q)
is a regular point. A point p ∈ M which is not regular is called a critical point of
f . The corresponding value f (p) is called a critical value. Note that if there exists
a regular value of f then m ≥ n. We can obtain differentiable manifolds by taking
inverse images of regular values.

Theorem 5.6 Let q ∈ N be a regular value of f : M → N and assume that the
level set L := f −1(q) = {p ∈ M | f (p) = q} is nonempty. Then L is a submanifold
of M and Tp L = ker(d f )p ⊂ Tp M for all p ∈ L.

Proof For each point p ∈ f −1(q), we choose parameterizations (U,ϕ) and (V,ψ)
around p and q for which f is the standard projection π1 onto the first n factors,
ϕ(0) = p and ψ(0) = q (cf. Theorem 5.4). We then construct a differentiable
structure for L := f −1(q) in the following way: take the sets U from each of these
parameterizations of M ; since f ◦ ϕ = ψ ◦ π1, we have
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ϕ−1
(

f −1(q)
)

= π−1
1

(
ψ−1(q)

)
= π−1

1 (0)

=
{(

0, . . . , 0, xn+1, . . . , xm
)

| xn+1, . . . , xm ∈ R

}
,

and so
Ũ := ϕ−1(L) =

{(
x1, . . . , xm

)
∈ U | x1 = · · · = xn = 0

}
;

hence, taking π2 : R
m → R

m−n , the standard projection onto the last m − n factors,
and j : R

m−n → R
m , the immersion given by

j
(

x1, . . . , xm−n
)

=
(
0, . . . , 0, x1, . . . , xm−n

)
,

the family {(π2(Ũ ),ϕ ◦ j)} is an atlas for L .
Moreover, the inclusion map i : L → M is an embedding. In fact, if A is an open

set in L contained in a coordinate neighborhood then

A = ϕ
((

R
n × (ϕ ◦ j)−1(A)

)
∩ U

)
∩ L

is an open set for the subspace topology on L .
We will now show that Tp L = ker (d f )p. For that, for each v ∈ Tp L , we consider

a curve c on L such that c(0) = p and ċ(0) = v. Then ( f ◦ c)(t) = q for every t
and so

d

dt
( f ◦ c) (0) = 0 ⇔ (d f )p ċ(0) = (d f )p v = 0,

implying that v ∈ ker (d f )p. As dim Tp L = dim
(
ker (d f )p

) = m − n, the result
follows. �

Given a differentiable manifold, we can ask ourselves if it can be embedded into
R

K for some K ∈ N. The following theorem, which was proved by Whitney in
[Whi44a, Whi44b] answers this question and is known as the Whitney embedding
theorem.

Theorem 5.7 (Whitney) Any smooth manifold M of dimension n can be embedded
in R

2n (and, provided that n > 1, immersed in R
2n−1). �

Remark 5.8 By theWhitney embedding theorem, any smoothmanifold M of dimen-
sion n is diffeomorphic to a submanifold of R

2n .

Exercise 5.9

(1) Show that any parameterization ϕ : U ⊂ R
m → M is an embedding of U into

M .
(2) Show that, locally, any immersion is an embedding, i.e. if f : M → N is an

immersion and p ∈ M , then there is an open set W ⊂ M containing p such that
f |W is an embedding.
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(3) Let N be a manifold. Show that M ⊂ N is a submanifold of N of dimension m
if and only if, for each p ∈ M , there is a coordinate system x : W → R

n around
p on N , for which M ∩ W is defined by the equations xm+1 = · · · = xn = 0.

(4) Consider the sphere

Sn =
{

x ∈ R
n+1 |

(
x1
)2 + · · · +

(
xn+1

)2 = 1

}
.

Show that Sn is an n-dimensional submanifold of R
n+1 and that

Tx Sn =
{
v ∈ R

n+1 | 〈x, v〉 = 0
}
,

where 〈·, ·〉 is the usual inner product on R
n .

(5) Let f : M → N be a differentiablemap between smoothmanifolds and consider
submanifolds V ⊂ M and W ⊂ N . Show that if f (V ) ⊂ W then f : V → W
is also a differentiable map.

(6) Let f : M → N be an injective immersion. Show that if M is compact then
f (M) is a submanifold of N .

1.6 Vector Fields

A vector field on a smooth manifold M is a map that to each point p ∈ M assigns a
vector tangent to M at p:

X : M → T M

p �→ X (p) := X p ∈ Tp M.

The vector field is said to be differentiable if this map is differentiable. The set of
all differentiable vector fields on M is denoted by X(M). Locally we have:

Proposition 6.1 Let W be a coordinate neighborhood on M (that is, W = ϕ(U )
for some parameterization ϕ : U → M), and let x := ϕ−1 : W → R

n be the
corresponding coordinate chart. Then a map X : W → T W is a differentiable
vector field on W if and only if,

X p = X1(p)

(
∂

∂x1

)

p
+ · · · + Xn(p)

(
∂

∂xn

)

p

for some differentiable functions Xi : W → R (i = 1, . . . , n).

Proof Let us consider the coordinate chart x = (
x1, . . . , xn

)
. As X p ∈ Tp M , we

have
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X p = X1(p)

(
∂

∂x1

)

p
+ · · · + Xn(p)

(
∂

∂xn

)

p

for some functions Xi : W → R. In the local chart associated with the parameteri-
zation (U × R

n, dϕ) of T M , the local representation of the map X is

X̂
(

x1, . . . , xn
)

=
(

x1, . . . , xn, X̂1
(

x1, . . . , xn
)
, . . . , X̂n

(
x1, . . . , xn

))
.

Therefore X is differentiable if and only if the functions X̂ i : U → R are differen-
tiable, i.e. if and only if the functions Xi : W → R are differentiable. �

A vector field X is differentiable if and only if, given any differentiable function
f : M → R, the function

X · f : M → R

p �→ X p · f := X p( f )

is also differentiable [cf. Exercise 6.11(1)]. This function X · f is called the direc-
tional derivative of f along X . Thus one can view X ∈ X(M) as a linear operator
X : C∞(M) → C∞(M).

Let us now take two vector fields X,Y ∈ X(M). In general, the operators X ◦ Y
and Y ◦ X will involve derivatives of order two, and will not correspond to vector
fields. However, the commutator X ◦ Y − Y ◦ X does define a vector field.

Proposition 6.2 Given two differentiable vector fields X,Y ∈ X(M) on a smooth
manifold M, there exists a unique differentiable vector field Z ∈ X(M) such that

Z · f = (X ◦ Y − Y ◦ X) · f

for every differentiable function f ∈ C∞(M).

Proof Considering a coordinate chart x : W ⊂ M → R
n , we have

X =
n∑

i=1

Xi ∂

∂xi
and Y =

n∑
i=1

Y i ∂

∂xi
.

Then,

(X ◦ Y − Y ◦ X) · f = X ·
(

n∑
i=1

Y i ∂ f̂

∂xi

)
− Y ·

(
n∑

i=1

Xi ∂ f̂

∂xi

)

=
n∑

i=1

((
X · Y i

) ∂ f̂

∂xi
−
(

Y · Xi
) ∂ f̂

∂xi

)
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+
n∑

i, j=1

(
X j Y i ∂2 f̂

∂x j∂xi
− Y j Xi ∂2 f̂

∂x j∂xi

)

=
(

n∑
i=1

(
X · Y i − Y · Xi

) ∂

∂xi

)
· f,

and so, at each point p ∈ W , one has ((X ◦ Y − Y ◦ X) · f ) (p) = Z p · f , where

Z p =
n∑

i=1

(
X · Y i − Y · Xi

)
(p)

(
∂

∂xi

)

p
.

Hence, the operator X ◦ Y − Y ◦ X defines a vector field. Note that this vector
field is differentiable, as (X ◦ Y − Y ◦ X) · f is smooth for every smooth function
f : M → R. �

The vector field Z is called the Lie bracket of X and Y , and is denoted by [X,Y ].
In local coordinates it is given by

[X,Y ] =
n∑

i=1

(
X · Y i − Y · Xi

) ∂

∂xi
. (1.1)

We say that two vector fields X,Y ∈ X(M) commute if [X,Y ] = 0. The Lie
bracket as has the following properties.

Proposition 6.3 Given X,Y, Z ∈ X(M), we have:

(i) Bilinearity: for any α,β ∈ R,

[αX + βY, Z ] = α[X, Z ] + β[Y, Z ]
[X,αY + βZ ] = α[X,Y ] + β[X, Z ];

(ii) Antisymmetry:
[X,Y ] = −[Y, X ];

(iii) Jacobi identity:

[[X,Y ], Z ] + [[Y, Z ], X ] + [[Z , X ],Y ] = 0;

(iv) Leibniz rule: For any f, g ∈ C∞(M),

[ f X, g Y ] = f g [X,Y ] + f (X · g)Y − g(Y · f )X.

Proof Exercise 6.11(2). �

The space X(M) of vector fields on M is a particular case of a Lie algebra:
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Definition 6.4 Avector space V equippedwith an antisymmetric bilinearmap [·, ·] :
V × V → V (called a Lie bracket) satisfying the Jacobi identity is called a Lie
algebra. A linear map F : V → W between Lie algebras is called a Lie algebra
homomorphism if F([v1, v2]) = [F(v1), F(v2)] for all v1, v2 ∈ V . If F is bijective
then it is called a Lie algebra isomorphism.

Given a vector field X ∈ X(M) and a diffeomorphism f : M → N between
smooth manifolds, we can naturally define a vector field on N using the derivative
of f . This vector field, the push-forward of X , is denoted by f∗ X and is defined in
the following way: given p ∈ M ,

( f∗ X) f (p) := (d f )p X p.

This makes the following diagram commute:

T M
d f→ T N

X ↑ ↑ f∗ X

M
f→ N

Let us now turn to the definition of an integral curve. If X ∈ X(M) is a smooth
vector field, an integral curve of X is a smooth curve c : (−ε, ε) → M such that
ċ(t) = Xc(t). If this curve has initial value c(0) = p, we denote it by cp and we say
that cp is an integral curve of X at p.

Considering a parameterization ϕ : U ⊂ R
n → M on M , the integral curve c

is locally given by ĉ := ϕ−1 ◦ c. Applying (dϕ−1)c(t) to both sides of the equation
defining c, we obtain ˙̂c(t) = X̂

(
ĉ(t)

)
,

where X̂ = dϕ−1 ◦ X ◦ ϕ is the local representation of X with respect to the para-
meterizations (U,ϕ) and (T U, dϕ) on M and on T M (cf. Fig. 1.15). This equation
is just a system of n ordinary differential equations:

dĉi

dt
(t) = X̂ i (ĉ(t)) , for i = 1, . . . , n. (1.2)

The (local) existence and uniqueness of integral curves is then determined by
the Picard–Lindelöf theorem of ordinary differential equations (see for example
[Arn92]), and we have

Theorem 6.5 Let M be a smooth manifold and let X ∈ X(M) be a smooth vector
field on M. Given p ∈ M, there exists an integral curve cp : I → M of X at
p (that is, ċp(t) = Xcp(t) for t ∈ I = (−ε, ε) and cp(0) = p). Moreover, this
curve is unique, meaning that any two such curves agree on the intersection of their
domains. �
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M

U

R
n

ϕ

c

ĉ

X

X̂

Fig. 1.15 Integral curves of a vector field

This integral curve, obtained by solving (1.2), depends smoothly on the initial
point p (see [Arn92]).

Theorem 6.6 Let X ∈ X(M). For each p ∈ M there exists a neighborhood W of
p, an interval I = (−ε, ε) and a mapping F : W × I → M such that:

(i) for a fixed q ∈ W the curve F(q, t), t ∈ I , is an integral curve of X at q, that
is, F(q, 0) = q and ∂F

∂t (q, t) = X F(q,t);
(ii) the map F is differentiable. �

The map F : W × I → M defined above is called the local flow of X at p. Let
us now fix t ∈ I and consider the map

ψt : W → M

q �→ F(q, t) = cq(t).

defined by the local flow. The following proposition then holds:

Proposition 6.7 The maps ψt : W → M above are local diffeomorphisms and
satisfy

(ψt ◦ ψs)(q) = ψt+s(q), (1.3)
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whenever t, s, t + s ∈ I and ψs(q) ∈ W .

Proof First we note that
dcq

dt
(t) = Xcq (t)

and so
d

dt
(cq(t + s)) = Xcq (t+s).

Hence, as cq(t +s)|t=0 = cq(s), the curve ccq (s)(t) is just cq(t +s), that is,ψt+s(q) =
ψt (ψs(q)). We can use this formula to extend ψt to ψs(W ) for all s ∈ I such that
t + s ∈ I . In particular, ψ−t is well defined on ψt (W ), and (ψ−t ◦ψt )(q) = ψ0(q) =
cq(0) = q for all q ∈ W . Thus the map ψ−t is the inverse of ψt , which consequently
is a local diffeomorphism (it maps W diffeomorphically onto its image). �

Acollection of diffeomorphisms {ψt : M → M}t∈I , where I = (−ε, ε), satisfying
(1.3) is called a local 1-parameter group of diffeomorphisms. When the interval of
definition I of cq is R, this local 1-parameter group of diffeomorphisms becomes a
group of diffeomorphisms. A vector field X whose local flow defines a 1-parameter
group of diffeomorphisms is said to be complete. This happens for instance when
the vector field X has compact support.

Theorem 6.8 If X ∈ X(M) is a smooth vector field with compact support then it is
complete.

Proof For each p ∈ M we can take a neighborhood W and an interval I = (−ε, ε)
such that the local flow of X at p, F(q, t) = cq(t), is defined on W × I . We
can therefore cover the support of X (which is compact) by a finite number of
such neighborhoods Wk and consider an interval I0 = (−ε0, ε0) contained in the
intersection of the corresponding intervals Ik . If q is not in supp(X), then Xq = 0 and
so cq(t) is trivially definedon I0.Hencewecan extend themap F to M×I0.Moreover,
condition (1.3) is true for each −ε0/2 < s, t < ε0/2, and we can again extend the
map F , this time to M × R. In fact, for any t ∈ R, we can write t = kε0/2 + s,
where k ∈ Z and 0 ≤ s < ε0/2, and define F(q, t) := Fk(F(q, s), ε0/2). �

Corollary 6.9 If M is compact then all smooth vector fields on M are complete. �

We finish this section with an important result.

Theorem 6.10 Let X1, X2 ∈ X(M) be two complete vector fields. Then their flows
ψ1,ψ2 commute (i.e. ψ1,t ◦ ψ2,s = ψ2,s ◦ ψ1,t for all s, t ∈ R) if and only if
[X1, X2] = 0.

Proof Exercise 6.11(13). �



32 1 Differentiable Manifolds

Exercise 6.11

(1) Let X : M → T M be a differentiable vector field on M and, for a smooth
function f : M → R, consider its directional derivative along X defined by

X · f : M → R

p �→ X p · f.

Show that:

(a) (X · f )(p) = (d f )p X p;
(b) the vector field X is smooth if and only if X · f is a differentiable function

for any smooth function f : M → R;
(c) the directional derivative satisfies the following properties: for f, g ∈

C∞(M) and α ∈ R,
(i) X · ( f + g) = X · f + X · g;
(ii) X · (α f ) = α(X · f );
(iii) X · ( f g) = f X · g + gX · f .

(2) Prove Proposition 6.3.
(3) Show that (R3,×) is a Lie algebra, where × is the cross product on R

3.
(4) Compute the flows of the vector fields X,Y, Z ∈ X(R2) defined by

X(x,y) = ∂

∂x
; Y(x,y) = x

∂

∂x
+ y

∂

∂y
; Z(x,y) = −y

∂

∂x
+ x

∂

∂y
.

(5) Let X1, X2, X3 ∈ X(R3) be the vector fields defined by

X1 = y
∂

∂z
− z

∂

∂y
, X2 = z

∂

∂x
− x

∂

∂z
, X3 = x

∂

∂y
− y

∂

∂x
,

where (x, y, z) are the usual Cartesian coordinates.

(a) Compute the Lie brackets [Xi , X j ] for i, j = 1, 2, 3.
(b) Show that span{X1, X2, X3} is a Lie subalgebra of X(R3), isomorphic to

(R3,×).
(c) Compute the flows ψ1,t ,ψ2,t ,ψ3,t of X1, X2, X3.
(d) Show that ψi, π2

◦ ψ j, π2
�= ψ j, π2

◦ ψi, π2
for i �= j .

(6) Give an example of a non-complete vector field.
(7) Let N be a differentiable manifold, M ⊂ N a submanifold and X,Y ∈ X(N )

vector fields tangent to M , i.e. such that X p,Yp ∈ Tp M for all p ∈ M . Show
that [X,Y ] is also tangent to M , and that its restriction to M coincides with the
Lie bracket of the restrictions of X and Y to M .

(8) Let f : M → N be a smooth map between manifolds. Two vector fields
X ∈ X(M) and Y ∈ X(N ) are said to be f -related (and we write Y = f∗ X ) if,
for each q ∈ N and p ∈ f −1(q) ⊂ M , we have (d f )p X p = Yq . Show that:
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(a) given f and X it is possible that no vector field Y is f -related to X ;
(b) the vector field X is f -related to Y if and only if, for any differentiable

function g defined on some open subset W of N , (Y · g) ◦ f = X · (g ◦ f )
on the inverse image f −1(W ) of the domain of g;

(c) for differentiable maps f : M → N and g : N → P between smooth
manifolds and vector fields X ∈ X(M),Y ∈ X(N ) and Z ∈ X(P), if X is
f -related to Y and Y is g-related to Z , then X is (g ◦ f )-related to Z .

(9) Let f : M → N be a diffeomorphism between smooth manifolds. Show that
f∗[X,Y ] = [ f∗ X, f∗Y ] for every X,Y ∈ X(M). Therefore, f∗ induces a Lie
algebra isomorphism between X(M) and X(N ).

(10) Let f : M → N be a differentiable map between smooth manifolds and
consider two vector fields X ∈ X(M) and Y ∈ X(N ). Show that:

(a) if the vector field Y is f -related to X then any integral curve of X is mapped
by f into an integral curve of Y ;

(b) the vector field Y is f -related to X if and only if the local flows FX and FY

satisfy f (FX (p, t)) = FY ( f (p), t) for all (t, p) for which both sides are
defined.

(11) (Lie derivative of a function) Given a vector field X ∈ X(M), we define the
Lie derivative of a smooth function f : M → R in the direction of X as

L X f (p) := d

dt
(( f ◦ ψt )(p))|t=0

,

where ψt = F(·, t), for F the local flow of X at p. Show that L X f = X · f ,
meaning that the Lie derivative of f in the direction of X is just the directional
derivative of f along X .

(12) (Lie derivative of a vector field) For two vector fields X,Y ∈ X(M) we define
the Lie derivative of Y in the direction of X as

L X Y := d

dt
((ψ−t )∗Y )

|t=0

,

where {ψt }t∈I is the local flow of X . Show that:

(a) L X Y = [X,Y ];
(b) L X [Y, Z ] = [L X Y, Z ] + [Y, L X Z ], for X,Y, Z ∈ X(M);
(c) L X ◦ LY − LY ◦ L X = L [X,Y ].

(13) Let X,Y ∈ X(M) be two complete vector fields with flows ψ,φ. Show that:

(a) given a diffeomorphism f : M → M , we have f∗ X = X if and only if
f ◦ ψt = ψt ◦ f for all t ∈ R;

(b) ψt ◦ φs = φs ◦ ψt for all s, t ∈ R if and only if [X,Y ] = 0.
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1.7 Lie Groups

A Lie group G is a smooth manifold which is at the same time a group, in such a
way that the group operations

G × G → G
(g, h) �→ gh

and
G → G
g �→ g−1

are differentiable maps (where we consider the standard differentiable structure of
the product on G × G – cf. Exercise2.5(6)).

Example 7.1

(1) (Rn,+) is trivially an abelian Lie group.
(2) The general linear group

GL(n) = {n × n invertible real matrices}

is the most basic example of a nontrivial Lie group. We have seen in Exam-
ple2.3(4) that it is a smooth manifold of dimension n2. Moreover, the group
multiplication is just the restriction to

GL(n)× GL(n)

of the usual multiplication of n × n matrices, whose coordinate functions are
quadratic polynomials; the inversion is just the restriction to GL(n) of the usual
inversion of nonsingular matrices which, by Cramer’s rule, is a mapwith rational
coordinate functions and nonzero denominators (only the determinant appears
on the denominator).

(3) The orthogonal group

O(n) = {A ∈ Mn×n | At A = I }

of orthogonal transformations of R
n is also a Lie group. We can show this by

considering the map f : A �→ At A from Mn×n ∼= R
n2 to the space Sn×n ∼=

R
1
2 n(n+1) of symmetric n×n matrices. Its derivative at a point A ∈ O(n), (d f )A,

is a surjective map from TAMn×n ∼= Mn×n onto T f (A)Sn×n ∼= Sn×n . Indeed,

(d f )A(B) = lim
h→0

f (A + h B)− f (A)

h

= lim
h→0

(A + h B)t (A + h B)− At A

h
= Bt A + At B,
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and any symmetricmatrix S can bewritten as Bt A+ At B with B = 1
2 (A

−1)t S =
1
2 AS. In particular, the identity I is a regular value of f and so, by Theorem 5.6,
we have that O(n) = f −1(I ) is a submanifold ofMn×n of dimension 1

2n(n−1).
Moreover, it is also a Lie group as the group multiplication and inversion are
restrictions of the same operations on GL(n) to O(n) (a submanifold) and have
values on O(n) [cf. Exercise5.9(5)].

(4) The map f : GL(n) → R given by f (A) = det A is differentiable, and the
level set f −1(1) is

SL(n) = {A ∈ Mn×n | det A = 1},

the special linear group. Again, the derivative of f is surjective at a point
A ∈ GL(n), making SL(n) into a Lie group. Indeed, it is easy to see that

(d f )I (B) = lim
h→0

det (I + h B)− det I

h
= tr B

implying that

(d f )A(B) = lim
h→0

det (A + h B)− det A

h

= lim
h→0

(det A) det
(
I + h A−1B

)− det A

h

= (det A) lim
h→0

det
(
I + h A−1B

)− 1

h

= (det A) (d f )I (A
−1B) = (det A) tr(A−1B).

Since det (A) = 1, for any k ∈ R, we can take the matrix B = k
n A to obtain

(d f )A(B) = tr
( k

n I
) = k. Therefore, (d f )A is surjective for every A ∈ SL(n),

and so 1 is a regular value of f . Consequently, SL(n) is a submanifold of
GL(n). As in the preceding example, the group multiplication and inversion are
differentiable, and so SL(n) is a Lie group.

(5) The map A �→ det A is a differentiable map from O(n) to {−1, 1}, and the level
set f −1(1) is

SO(n) = {A ∈ O(n) | det A = 1},

the special orthogonal group or the rotation group in R
n , which is then an

open subset of O(n), and therefore a Lie group of the same dimension.
(6) We can also consider the space Mn×n(C) of complex n × n matrices, and the

space GL(n,C) of complex n ×n invertible matrices. This is a Lie group of real
dimension 2n2. Moreover, similarly to what was done above for O(n), we can
take the group of unitary transformations on C

n ,
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U (n) = {A ∈ Mn×n(C) | A∗ A = I },

where A∗ is the adjoint of A. This group is a submanifold ofMn×n(C) ∼= C
n2 ∼=

R
2n2 , and a Lie group, called the unitary group. This can be seen from the fact

that I is a regular value of the map f : A �→ A∗ A from Mn×n(C) to the space
of self-adjoint matrices. As any element of Mn×n(C) can be uniquely written
as a sum of a self-adjoint with an anti-self-adjoint matrix, and the map A → i A
is an isomorphism from the space of self-adjoint matrices to the space of anti-
self-adjoint matrices, we conclude that these two spaces have real dimension
1
2 dimR Mn×n(C) = n2. Hence, dimU (n) = n2.

(7) The special unitary group

SU (n) = {A ∈ U (n) | det A = 1},

is also a Lie group now of dimension n2 − 1 (note that A �→ det (A) is now a
differentiable map from U (n) to S1).

As a Lie group G is, by definition, a manifold, we can consider the tangent space
at one of its points. In particular, the tangent space at the identity e is usually denoted
by

g := TeG.

For g ∈ G, we have the maps

Lg : G → G
h �→ g · h

and
Rg : G → G

h �→ h · g

which correspond to left multiplication and right multiplication by g.
A vector field on G is called left-invariant if (Lg)∗ X = X for every g ∈ G, that

is,
((Lg)∗ X)gh = Xgh or (d Lg)h Xh = Xgh,

for every g, h ∈ G. There is, of course, a vector space isomorphism between g and
the space of left-invariant vector fields on G that, to each V ∈ g, assigns the vector
field X V defined by

X V
g := (d Lg)eV,

for any g ∈ G. This vector field is left-invariant as

(d Lg)h X V
h = (d Lg)h(d Lh)eV = (d(Lg ◦ Lh))eV = (d Lgh)eV = X V

gh .

Note that, given a left-invariant vector field X , the corresponding element of g is Xe.
As the space XL(G) of left-invariant vector fields is closed under the Lie bracket of
vector fields (because, from Exercise 6.11(9) (Lg)∗[X,Y ] = [(Lg)∗ X, (Lg)∗Y ]),
it is a Lie subalgebra of the Lie algebra of vector fields (see Definition 6.4).
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The isomorphism XL(G) ∼= g then determines a Lie algebra structure on g. We
call g the Lie algebra of the Lie group G.

Example 7.2

(1) If G = GL(n), then gl(n) = TI GL(n) = Mn×n is the space of n × n matrices
with real coefficients, and the Lie bracket on gl(n) is the commutator of matrices

[A, B] = AB − B A.

In fact, if A, B ∈ gl(n) are two n × n matrices, the corresponding left-invariant
vector fields are given by

X A
g = (d Lg)I (A) =

∑
i,k, j

x ikak j ∂

∂xi j

X B
g = (d Lg)I (B) =

∑
i,k, j

x ikbk j ∂

∂xi j
,

where g ∈ GL(n) is a matrix with components xi j . The i j-component of
[X A, X B]g is given by X A

g · (X B)i j − X B
g · (X A)i j , i.e.

[X A, X B]i j (g) =
⎛
⎝∑

l,m,p

xlpa pm ∂

∂xlm

⎞
⎠
(∑

k

xikbk j

)

−
⎛
⎝∑

l,m,p

xlpbpm ∂

∂xlm

⎞
⎠
(∑

k

xikak j

)

=
∑

k,l,m,p

xlpa pmδilδkmbk j −
∑

k,l,m,p

xlpbpmδilδkmak j

=
∑
m,p

xip(a pmbmj − bpmamj )

=
∑

p

xip(AB − B A)pj

(where δi j = 1 if i = j and δi j = 0 if i �= j is the Kronecker symbol). Making
g = I , we obtain

[A, B] = [X A, X B]I = AB − B A.

FromExercise6.11(7) we see that this will always be the case when G is a matrix
group, that is, when G is a subgroup of GL(n) for some n.

(2) If G = O(n) then its Lie algebra is

o(n) = {A ∈ Mn×n | At + A = 0}.
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In fact, we have seen in Example7.1(3) that O(n) = f −1(I ), where the identity
I is a regular value of the map

f : Mn×n → Sn×n

A �→ At A.

Hence, o(n) = TI G = ker(d f )I = {A ∈ Mn×n | At + A = 0} is the space of
skew-symmetric matrices.

(3) If G = SL(n) then its Lie algebra is

sl(n) = {A ∈ Mn×n | trA = 0}.

In fact, we have seen in Example7.1(4) that SL(n) = f −1(1), where 1 is a
regular value of the map

f : Mn×n → R

A �→ det A.

Hence, sl(n) = TI G = ker(d f )I = {A ∈ Mn×n | tr A = 0} is the space of
traceless matrices.

(4) If G = SO(n) = {A ∈ O(n) | det A = 1}, then its Lie algebra is

so(n) = TI SO(n) = TI O(n) = o(n).

(5) Similarly to Example7.2(2), the Lie algebra of U (n) is

u(n) = {A ∈ Mn×n(C) | A∗ + A = 0},

the space of skew-hermitian matrices.
(6) To determine the Lie algebra of SU (n), we see that SU (n) is the level set f −1(1),

where f (A) = det A, and so

su(n) = ker(d f )I = {A ∈ u(n) | tr(A) = 0}.

We now study the flow of a left-invariant vector field.

Proposition 7.3 Let F be the local flow of a left-invariant vector field X at a point
h ∈ G. Then the mapψt defined by F (that is,ψt (g) = F(g, t)) satisfiesψt = Rψt (e).
Moreover, the flow of X is globally defined for all t ∈ R.

Proof For g ∈ G, Rψt (e)(g) = g · ψt (e) = Lg(ψt (e)). Hence,

Rψ0(e)(g) = g · e = g
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and

d

dt

(
Rψt (e)(g)

) = d

dt

(
Lg(ψt (e))

) = (d Lg)ψt (e)

(
d

dt
(ψt (e))

)

= (d Lg)ψt (e)
(
Xψt (e)

) = Xg·ψt (e)

= X Rψt (e)(g)
,

implying that Rψt (e)(g) = cg(t) = ψt (g) is the integral curve of X at g. Consequently,
if ψt (e) is defined for t ∈ (−ε, ε), then ψt (g) is defined for t ∈ (−ε, ε) and g ∈ G.
Moreover, condition (1.3) in Sect. 1.6 is true for each −ε/2 < s, t < ε/2 and we can
extend themap F toG×R as before: for any t ∈ R,wewrite t = kε/2+s where k ∈ Z

and 0 ≤ s < ε/2, and define F(g, t) := Fk(F(g, s), ε/2) = gF(e, s)Fk(e, ε/2). �
Remark 7.4 A homomorphism F : G1 → G2 between Lie groups is called a Lie
group homomorphism if, besides being a group homomorphism, it is also a differ-
entiable map. Since

ψt+s(e) = ψs(ψt (e)) = Rψs (e)ψt (e) = ψt (e) · ψs(e),

the integral curve t �→ ψt (e) defines a group homomorphism between (R,+) and
(G, ·).
Definition 7.5 The exponential map exp : g → G is the map that, to each V ∈ g,
assigns the value ψ1(e), where ψt is the flow of the left-invariant vector field X V .

Remark 7.6 If cg(t) is the integral curve of X at g and s ∈ R, it is easy to check
that cg(st) is the integral curve of s X at g. On the other hand, for V ∈ g one has
XsV = s X V . Consequently,

ψt (e) = ce(t) = ce(t · 1) = F(e, 1) = exp (tV ),

where F is the flow of t X V = XtV .

Example 7.7 If G is a group of matrices, then for A ∈ g,

exp A = eA =
∞∑

k=0

Ak

k! .

In fact, this series converges for any matrix A and the map h(t) = eAt satisfies

h(0) = e0 = I
dh

dt
(t) = eAt A = h(t)A.

Hence, h is the flow of X A at the identity (that is, h(t) = ψt (e)), and so exp A =
ψ1(e) = eA.
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Let now G be any group and M be any set. We say that G acts on M if there is
a homomorphism φ from G to the group of bijective mappings from M to M , or,
equivalently, writing

φ(g)(p) = A(g, p),

if there is a mapping A : G × M → M satisfying the following conditions:

(i) if e is the identity in G, then A(e, p) = p, ∀p ∈ M ;
(ii) if g, h ∈ G, then A(g, A(h, p)) = A(gh, p), ∀p ∈ M .

Usually we denote A(g, p) by g · p.

Example 7.8

(1) LetG be agroup and H ⊂ G a subgroup.Then H acts onG by leftmultiplication:
A(h, g) = h · g for h ∈ H , g ∈ G.

(2) GL(n) acts on R
n through A · x = Ax for A ∈ GL(n) and x ∈ R

n . The same
is true for any subgroup G ⊂ GL(n).

For each p ∈ M we can define the orbit of p as the set G · p := {g · p | g ∈ G}.
If G · p = {p} then p is called a fixed point of G. If there is a point p ∈ M whose
orbit is all of M (i.e. G · p = M), then the action is said to be transitive. Note that
when this happens, there is only one orbit and, for every p, q ∈ M with p �= q, there
is always an element of the group g ∈ G such that q = g · p. The manifold M is
then called a homogeneous space of G. The stabilizer (or isotropy subgroup) of a
point p ∈ M is the group

G p = {g ∈ G | g · p = p}.

The action is called free if all the stabilizers are trivial.
If G is a Lie group and M is a smooth manifold, we say that the action is smooth

if the map A : G × M → M is differentiable. In this case, the map p �→ g · p is a
diffeomorphism. We will always assume the action of a Lie group on a differentiable
manifold to be smooth. A smooth action is said to be proper if the map

G × M → M × M

(g, p) �→ (g · p, p)

is proper (recall that a map is called proper if the preimage of any compact set is
compact—cf. Sect. 1.10.5).

Remark 7.9 Note that a smooth action is proper if and only if, given two convergent
sequences {pn} and {gn · pn} in M , there exists a convergent subsequence {gnk } in
G. If G is compact this condition is always satisfied.

The orbits of the action of G on M are equivalence classes of the equivalence
relation ∼ given by p ∼ q ⇔ q ∈ G · p (cf. Sect. 1.10.1). For that reason, the
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quotient (topological) space M/∼ is usually called the orbit space of the action,
and denoted by M/G.

Proposition 7.10 If the action of a Lie group G on a differentiable manifold M is
proper, then the orbit space M/G is a Hausdorff space.

Proof The relation p ∼ q ⇔ q ∈ G · p is an open equivalence relation
(cf. Sect. 1.10.1). Indeed, since p �→ g · p is a homeomorphism, the set π−1(π(U )) =
{g · p | p ∈ U and g ∈ G} = ⋃

g∈G g · U is an open subset of M for any open set
U in M , meaning that π(U ) is open (here π : M → M/G is the quotient map).
Therefore we just have to show that the set

R = {(p, q) ∈ M × M | p ∼ q}

is closed (cf. Proposition 10.2). This follows from the fact that R is the image of the
map

G × M → M × M

(g, p) �→ (g · p, p)

which is continuous and proper, hence closed (cf. Sect. 1.10.5). �

Under certain conditions the orbit space M/G is naturally a differentiable mani-
fold.

Theorem 7.11 Let M be a differentiable manifold equipped with a free proper action
of a Lie group G. Then the orbit space M/G is naturally a differentiable manifold of
dimension dim M − dim G, and the quotient map π : M → M/G is a submersion.

Proof By the previous proposition, the quotient M/G is Hausdorff. Moreover, this
quotient satisfies the second countability axiom because M does so and the equiva-
lence relation defined by G is open. It remains to be shown that M/G has a natural
differentiable structure for which the quotient map is a submersion. We do this only
in the case of a discrete (i.e. zero-dimensional) Lie group (cf. Remark 1.2); the proof
for general Lie groups can be found in [DK99].

In our case, we just have to prove that for each point p ∈ M there exists a
neighborhood U � p such that g · U ∩ h · U = ∅ for g �= h. This guarantees that
each point [p] ∈ M/G has a neighborhood [U ] homeomorphic to U , which we
can assume to be a coordinate neighborhood. Since G acts by diffeomorphisms, the
differentiable structure defined in this way does not depend on the choice of p ∈ [p].
Since the charts of M/G are obtained from charts of M , the overlapmaps are smooth.
Therefore M/G has a natural differentiable structure for which π : M → M/G is a
local diffeomorphism (as the coordinate expression of π|U : U → [U ] is the identity
map).

Showing that g·U∩h·U = ∅ for g �= h is equivalent to showing that g·U∩U = ∅

for g �= e. Assume that this did not happen for any neighborhood U � p. Then there
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would exist a sequence of open sets Un � p with Un+1 ⊂ Un ,
⋂+∞

n=1 Un = {p} and
a sequence gn ∈ G \ {e} such that gn · Un ∩ Un �= ∅. Choose pn ∈ gn · Un ∩ Un .
Then pn = gn · qn for some qn ∈ Un . We have pn → p and qn → p. Since the
action is proper, gn admits a convergent subsequence gnk . Let g be its limit. Making
k → +∞ in qnk = gnk · pnk yields g · p = p, implying that g = e (the action is
free). Because G is discrete, we would then have gnk = e for sufficiently large k,
which is a contradiction. �

Example 7.12

(1) Let Sn =
{

x ∈ R
n+1 | ∑n

i=1

(
xi
)2 = 1

}
be equipped with the action of G =

Z2 = {−I, I } given by −I · x = −x (antipodal map). This action is proper and
free, and so the orbit space Sn/G is an n-dimensional manifold. This space is
the real projective space RPn [cf. Exercise2.5(8)].

(2) The group G = R\{0} acts on M = R
n+1\{0} bymultiplication: t ·x = t x . This

action is proper and free, and so M/G is a differentiable manifold of dimension
n (which is again RPn).

(3) Consider M = R
n equipped with an action of G = Z

n defined by:

(
k1, . . . , kn

)
·
(

x1, . . . , xn
)

=
(

x1 + k1, . . . , xn + kn
)
.

This action is proper and free, and so the quotient M/G is a manifold of dimen-
sion n. This space with the quotient differentiable structure defined in Theo-
rem 7.11 is called the n-torus and is denoted by T

n . It is diffeomorphic to the
product manifold S1 × · · · × S1 and, when n = 2, is diffeomorphic to the torus
of revolution in R

3.

Quotients by discrete group actions determine coverings of manifolds.

Definition 7.13 A smooth covering of a differentiable manifold B is a pair (M,π),
where M is a connected differentiable manifold, π : M → B is a surjective local
diffeomorphism, and, for each p ∈ B, there exists a connected neighborhood U of
p in B such that π−1(U ) is the union of disjoint open sets Uα ⊂ M (called slices),
and the restrictions πα of π to Uα are diffeomorphisms onto U . The map π is called
a covering map and M is called a covering manifold.

Remark 7.14

(1) It is clear that we must have dim M = dim B.
(2) Note that the collection of mutually disjoint open sets {Uα} must be countable

(M has a countable basis).
(3) The fibers π−1(p) ⊂ M have the discrete topology. Indeed, as each slice Uα

is open and intersects π−1(p) in exactly one point, this point is open in the
subspace topology.
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Example 7.15

(1) The map π : R → S1 given by

π(t) = (cos(2πt), sin(2πt))

is a smooth covering of S1. However, the restriction of this map to (0,+∞) is
a surjective local diffeomorphism which is not a covering map.

(2) The product of covering maps is clearly a covering map. Thus we can generalize
the above example and obtain a covering of T

n ∼= S1 × · · · × S1 by R
n .

(3) In Example7.12(1) we have a covering of RPn by Sn .

A diffeomorphism h : M → M , where M is a covering manifold, is called a deck
transformation (or covering transformation) if π ◦h = π, or, equivalently, if each
set π−1(p) is carried to itself by h. It can be shown that the group G of all covering
transformations is a discrete Lie group whose action on M is free and proper.

If the covering manifold M is simply connected (cf. Sect. 1.10.5), the covering is
said to be a universal covering. In this case, B is diffeomorphic to M/G. Moreover,
G is isomorphic to the fundamental group π1(B) of B (cf. Sect. 1.10.5).

The Lie theorem (see for instance [DK99]) states that for a given Lie algebra g
there exists a unique simply connected Lie group G̃ whose Lie algebra is g. If a Lie
group G also has g as its Lie algebra, then there exists a unique Lie group homo-
morphism π : G̃ → G which is a covering map. The group of deck transformations
is, in this case, simply ker(π), and hence G is diffeomorphic to G̃/ ker(π). In fact,
G is also isomorphic to G̃/ ker(π), which has a natural group structure (ker(π) is a
normal subgroup).

Example 7.16

(1) In the universal covering of S1 of Example7.15(1) the deck transformations are
translations hk : t �→ t + k by an integer k, and so the fundamental group of S1

is Z.
(2) Similarly, the deck transformations of the universal covering of T

n are transla-
tions by integer vectors [cf. Example7.15(2)], and so the fundamental group of
T

n is Z
n .

(3) In the universal covering of RPn from Example7.15(3), the only deck transfor-
mations are the identity and the antipodal map, and so the fundamental group of
RPn is Z2.

Exercise 7.17

(1) (a) Given two Lie groups G1,G2, show that G1 × G2 (the direct product of the
two groups) is a Lie group with the standard differentiable structure on the
product.

(b) The circle S1 can be identified with the set of complex numbers of absolute
value 1. Show that S1 is a Lie group and conclude that the n-torus T n ∼=
S1 × . . .× S1 is also a Lie group.
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(2) (a) Show that (Rn,+) is a Lie group, determine its Lie algebra and write an
expression for the exponential map.

(b) Prove that, if G is an abelian Lie group, then [V,W ] = 0 for all V,W ∈ g.
(3) We can identify each point in

H =
{
(x, y) ∈ R

2 | y > 0
}

with the invertible affine map h : R → R given by h(t) = yt + x . The set
of all such maps is a group under composition; consequently, our identification
induces a group structure on H .

(a) Show that the induced group operation is given by

(x, y) · (z, w) = (yz + x, yw),

and that H , with this group operation, is a Lie group.
(b) Show that the derivative of the left translation map L(x,y) : H → H at a

point (z, w) ∈ H is represented in the above coordinates by the matrix

(
d L(x,y)

)
(z,w) =

(
y 0
0 y

)
.

Conclude that the left-invariant vector field X V ∈ X(H) determined by the
vector

V = ξ
∂

∂x
+ η

∂

∂y
∈ h ≡ T(0,1)H (ξ, η ∈ R)

is given by

X V
(x,y) = ξy

∂

∂x
+ ηy

∂

∂y
.

(c) Given V,W ∈ h, compute [V,W ].
(d) Determine the flow of the vector field X V , and give an expression for the

exponential map exp : h → H .
(e) Confirm your results by first showing that H is the subgroup of GL(2)

formed by the matrices (
y x
0 1

)

with y > 0.

(4) Consider the group

SL(2) =
{(

a b
c d

)
| ad − bc = 1

}
,
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which we already know to be a 3-manifold. Making

a = p + q, d = p − q, b = r + s, c = r − s,

show that SL(2) is diffeomorphic to S1 × R
2.

(5) Give examples of matrices A, B ∈ gl(2) such that eA+B �= eAeB .
(6) For A ∈ gl(n), consider the differentiable map

h : R → R\{0}
t �→ det eAt

and show that:

(a) this map is a group homomorphism between (R,+) and
(R\{0}, ·);

(b) h′(0) = trA;
(c) det(eA) = etrA.

(7) (a) If A ∈ sl(2), show that there is a λ ∈ R ∪ iR such that

eA = cosh λ I + sinh λ

λ
A.

(b) Show that exp : sl(2) → SL(2) is not surjective.
(8) Consider the vector field X ∈ X(R2) defined by

X =
√

x2 + y2
∂

∂x
.

(a) Show that the flow of X defines a free action of R on M = R
2 \ {0}.

(b) Describe the topological quotient space M/R. Is the action above proper?

(9) Let M = S2 × S2 and consider the diagonal S1-action on M given by

eiθ · (u, v) =
(

eiθ · u, e2iθ · v
)
,

where, for u ∈ S2 ⊂ R
3 and eiβ ∈ S1, eiβ · u denotes the rotation of u by an

angle β around the z-axis.

(a) Determine the fixed points for this action.
(b) What are the possible nontrivial stabilizers?

(10) Let G be a Lie group and H a closed Lie subgroup, i.e. a subgroup of G which
is also a closed submanifold of G. Show that the action of H in G defined by
A(h, g) = h · g is free and proper.

(11) (Grassmannian) Consider the set H ⊂ GL(n) of invertible matrices of the
form
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(
A 0
C B

)
,

where A ∈ GL(k), B ∈ GL(n − k) and C ∈ M(n−k)×k .

(a) Show that H is a closed Lie subgroup of GL(n). Therefore H acts freely
and properly on GL(n) [cf. Exercise7.17(10)].

(b) Show that the quotient manifold

Gr(n, k) := GL(n)/H

can be identifiedwith the set of k-dimensional subspaces of R
n (in particular

Gr(n, 1) is just the projective space RPn−1).
(c) Themanifold Gr(n, k) is called theGrassmannian of k-planes inR

n .What
is its dimension?

(12) Let G and H be Lie groups and F : G → H a Lie group homomorphism.
Show that:

(a) (d F)e : g → h is a Lie algebra homomorphism;
(b) if (d F)e is an isomorphism then F is a local diffeomorphism;
(c) if F is a surjective local diffeomorphism then F is a covering map.

(13) (a) Show thatR·SU (2) is a four-dimensional real linear subspace ofM2×2(C),
closed under matrix multiplication, with basis

1 =
(
1 0
0 1

)
, i =

(
i 0
0 −i

)
,

j =
(

0 1
−1 0

)
, k =

(
0 i
i 0

)
,

satisfying i2 = j2 = k2 = i jk = −1. Therefore this space can be identi-
fied with the quaternions (cf. Sect. 1.10.1). Show that SU (2) can be iden-
tified with the quaternions of Euclidean norm equal to 1, and is therefore
diffeomorphic to S3.

(b) Show that if n ∈ R
3 is a unit vector, which we identify with a quaternion

with zero real part, then

exp

(
nθ

2

)
= 1 cos

(
θ

2

)
+ n sin

(
θ

2

)

is also a unit quaternion.
(c) Again identifying R

3 with quaternions with zero real part, show that the
map
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R
3 → R

3

v �→ exp

(
nθ

2

)
· v · exp

(
−nθ

2

)

is a rotation by an angle θ about the axis defined by n.
(d) Show that there exists a surjective homomorphism F : SU (2) → SO(3),

and use this to conclude that SU (2) is the universal covering of SO(3).
(e) What is the fundamental group of SO(3)?

1.8 Orientability

Let V be a finite dimensional vector space and consider two ordered bases β =
{b1, . . . , bn} and β′ = {b′

1, . . . , b′
n}. There is a unique linear transformation S :

V → V such that b′
i = S bi for every i = 1, . . . , n. We say that the two bases are

equivalent if det S > 0. This defines an equivalence relation that divides the set
of all ordered bases of V into two equivalence classes. An orientation for V is an
assignment of a positive sign to the elements of one equivalence class and a negative
sign to the elements of the other. The sign assigned to a basis is called its orientation
and the basis is said to be positively oriented or negatively oriented according to
its sign. It is clear that there are exactly two possible orientations for V .

Remark 8.1

(1) The ordering of the basis is very important. If we interchange the positions of two
basis vectors we obtain a different ordered basis with the opposite orientation.

(2) An orientation for a zero-dimensional vector space is just an assignment of a
sign +1 or −1.

(3) We call the standard orientation of R
n to the orientation that assigns a positive

sign to the standard ordered basis.

An isomorphism A : V → W between two oriented vector spaces carries equiva-
lent ordered bases ofV to equivalent ordered bases ofW . Hence, for any ordered basis
β, the sign of the image A β is either always the same as the sign of β or always the
opposite. In the first case, the isomorphism A is said to be orientation-preserving,
and in the latter it is called orientation reversing.

An orientation of a smooth manifold consists of a choice of orientations for all
tangent spaces Tp M . If dim M = n ≥ 1, these orientations have to fit together
smoothly, meaning that for each point p ∈ M there exists a parameterization (U,ϕ)
around p such that

(dϕ)x : R
n → Tϕ(x)M

preserves the standard orientation of R
n at each point x ∈ U .

Remark 8.2 If the dimension of M is zero, an orientation is just an assignment of a
sign (+1 or −1), called orientation number, to each point p ∈ M .
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Definition 8.3 A smooth manifold M is said to be orientable if it admits an orien-
tation.

Proposition 8.4 If a smooth manifold M is connected and orientable then it admits
precisely two orientations.

Proof We will show that the set of points where two orientations agree and the
set of points where they disagree are both open. Hence, one of them has to be M
and the other the empty set. Let p be a point in M and let (Uα,ϕα), (Uβ,ϕβ)
be two parameterizations centered at p such that dϕα is orientation-preserving for
the first orientation and dϕβ is orientation-preserving for the second. The map(

d(ϕ−1
β ◦ ϕα)

)
0

: R
n → R

n is either orientation-preserving (if the two orienta-

tions agree at p) or reversing. In the first case, it has positive determinant at 0, and

so, by continuity,
(

d(ϕ−1
β ◦ ϕα)

)
x
has positive determinant for x in a neighborhood

of 0, implying that the two orientations agree in a neighborhood of p. Similarly, if(
d(ϕ−1

β ◦ ϕα)
)
0
is orientation reversing, the determinant of

(
d(ϕ−1

β ◦ ϕα)
)

x
is neg-

ative in a neighborhood of 0, and so the two orientations disagree in a neighborhood
of p.

Let O be an orientation for M (i.e. a smooth choice of an orientation Op of Tp M
for each p ∈ M), and −O the opposite orientation (corresponding to taking the
opposite orientation −Op at each tangent space Tp M). If O ′ is another orientation
for M , then, for a given point p ∈ M , we know that O ′

p agrees either with Op or
with−Op (because a vector space has just two possible orientations). Consequently,
O ′ agrees with either O or −O on M . �

An alternative characterization of orientability is given by the following proposi-
tion.

Proposition 8.5 A smooth manifold M is orientable if and only if there exists an atlas
A = {(Uα,ϕα)} for which all the overlap mapsϕ−1

β ◦ϕα are orientation-preserving.

Proof Exercise 8.6(2) �

An oriented manifold is an orientable manifold together with a choice of an
orientation. A map f : M → N between two oriented manifolds with the same
dimension is said to be orientation-preserving if (d f )p is orientation-preserving at
all points p ∈ M , and orientation reversing if (d f )p is orientation reversing at all
points p ∈ M .

Exercise 8.6

(1) Prove that the relation of “being equivalent” between ordered bases of a finite
dimensional vector space described above is an equivalence relation.

(2) Show that a differentiable manifold M is orientable iff there exists an atlas
A = {(Uα,ϕα)} for which all the overlap maps ϕ−1

β ◦ ϕα are orientation-
preserving.
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(3) (a) Show that if a manifold M is covered by two coordinate neighborhoods V1
and V2 such that V1 ∩ V2 is connected, then M is orientable.

(b) Show that Sn is orientable.
(4) Let M be an oriented n-dimensional manifold and c : I → M a differentiable

curve. A smooth vector field along c is a differentiable map V : I → T M
such that V (t) ∈ Tc(t)M for all t ∈ I (cf. Sect. 3.2 in Chap.3). Show
that if V1, . . . , Vn : I → M are smooth vector fields along c such that
{V1(t), . . . , Vn(t)} is a basis of Tc(t)M for all t ∈ I then all these bases have the
same orientation.

(5) We can see the Möbius band as the 2-dimensional submanifold of R
3 given by

the image of the immersion g : (−1, 1)× R → R
3 defined by

g(t,ϕ) =
((

1 + t cos
(ϕ
2

))
cosϕ,

(
1 + t cos

(ϕ
2

))
sinϕ, t sin

(ϕ
2

))
.

Show that the Möbius band is not orientable.
(6) Let f : M → N be a diffeomorphism between two smooth manifolds. Show

that M is orientable if and only if N is orientable. If, in addition, both manifolds
are connected and oriented, and (d f )p : Tp M → T f (p)N preserves orientation
at one point p ∈ M , show that f is orientation-preserving.

(7) Let M and N be two oriented manifolds. We define an orientation on the
product manifold M × N (called product orientation) in the following way:
If α = {a1, . . . , am} and β = {b1, . . . , bn} are ordered bases of Tp M and
Tq N , we consider the ordered basis {(a1, 0), . . . , (am, 0), (0, b1), . . . , (0, bn)}
of T(p,q)(M × N ) ∼= Tp M × Tq N . We then define an orientation on this space
by setting the sign of this basis equal to the product of the signs of α and β.
Show that this orientation does not depend on the choice of α and β.

(8) Show that the tangent bundle T M is always orientable, even if M is not.
(9) (Orientable double covering) Let M be a non-orientable n-dimensional mani-

fold. For each point p ∈ M we consider the set Op of the (two) equivalence
classes of bases of Tp M . Let M be the set

M = {(p, Op) | p ∈ M, Op ∈ Op}.

Given a parameterization (U,ϕ) of M consider the maps ϕ : U → M defined
by

ϕ
(

x1, . . . , xn
)

=
(
ϕ
(

x1, . . . , xn
)
,

[(
∂

∂x1

)

ϕ(x)
, . . . ,

(
∂

∂xn

)

ϕ(x)

])
,

where x = (
x1, . . . , xn

) ∈ U and

[(
∂
∂x1

)
ϕ(x)

, . . . ,
(

∂
∂xn

)
ϕ(x)

]
represents the

equivalence class of the basis

{(
∂
∂x1

)
ϕ(x)

, . . . ,
(

∂
∂xn

)
ϕ(x)

}
of Tϕ(x)M .

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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(a) Show that these maps determine the structure of an orientable differentiable
manifold of dimension n on M .

(b) Consider the map π : M → M defined by π(p, Op) = p. Show that π is
differentiable and surjective. Moreover, show that, for each p ∈ M , there
exists a neighborhood V of p with π−1(V ) = W1 ∪ W2, where W1 and W2
are two disjoint open subsets of M , such that π restricted to Wi (i = 1, 2)
is a diffeomorphism onto V .

(c) Show that M is connected (M is therefore called the orientable double
covering of M).

(d) Let σ : M → M be the map defined by σ(p, Op) = (p,−Op), where
−Op represents the orientation of Tp M opposite to Op. Show that σ is
a diffeomorphism which reverses orientations satisfying π ◦ σ = π and
σ ◦ σ = id.

(e) Show that any simply connected manifold is orientable.

1.9 Manifolds with Boundary

Let us consider again the closed half space

H
n =

{(
x1, . . . , xn

)
∈ R

n | xn ≥ 0
}

with the topology induced by the usual topology of R
n . Recall that a map f :

U → R
m defined on an open set U ⊂ H

n is said to be differentiable if it is the
restriction toU of a differentiable map f̃ defined on an open subset ofR

n containing
U (cf. Sect. 1.10.2). In this case, the derivative (d f )p is defined to be (d f̃ )p. Note
that this derivative is independent of the extension used since any two extensions
have to agree on U .

Definition 9.1 A smooth n-manifold with boundary is a topological manifold with
boundary of dimension n and a family of parameterizations ϕα : Uα ⊂ H

n → M
(that is, homeomorphisms of open sets Uα of H

n onto open sets of M), such that:

(i) the coordinate neighborhoods cover M , meaning that
⋃
α ϕα(Uα) = M ;

(ii) for each pair of indices α, β such that

W := ϕα(Uα) ∩ ϕβ(Uβ) �= ∅,

the overlap maps

ϕ−1
β ◦ ϕα : ϕ−1

α (W ) → ϕ−1
β (W )

ϕ−1
α ◦ ϕβ : ϕ−1

β (W ) → ϕ−1
α (W )

are smooth;



1.9 Manifolds with Boundary 51

(iii) the family A = {(Uα,ϕα)} is maximal with respect to (i) and (i i), meaning
that, if ϕ0 : U0 → M is a parameterization such that ϕ0 ◦ ϕ−1 and ϕ−1 ◦ ϕ0
are C∞ for all ϕ in A, then ϕ0 is in A.

Recall that a point in M is said to be a boundary point if it is on the image of ∂H
n

under someparameterization (that is, if there is a parameterizationϕ : U ⊂ H
n → M

such that ϕ(x1, . . . , xn−1, 0) = p for some (x1, . . . , xn−1) ∈ R
n−1), and that the

set ∂M of all such points is called the boundary of M . Notice that differentiable
manifolds are particular cases of differentiable manifolds with boundary, for which
∂M = ∅.

Proposition 9.2 The boundary of a smooth n-manifold with boundary is a differen-
tiable manifold of dimension n − 1.

Proof Suppose that p is a boundary point of M (an n-manifold with boundary) and
choose a parameterization ϕα : Uα ⊂ H

n → M around p. Letting Vα := ϕα(Uα),
we claim that ϕα(∂Uα) = ∂Vα, where ∂Uα = Uα ∩ ∂H

n and ∂Vα = Vα ∩ ∂M .
By definition of boundary, we already know that ϕα(∂Uα) ⊂ ∂Vα, so we just have
to show that ∂Vα ⊂ ϕα(∂Uα). Let q ∈ ∂Vα and consider a parameterization ϕβ :
Uβ → Vα around q, mapping an open subset of H

n to an open subset of M and such
that q ∈ ϕβ(∂Uβ). If we show that ϕβ(∂Uβ) ⊂ ϕα(∂Uα) we are done. For that, we
prove that

(
ϕ−1
α ◦ ϕβ

)
(∂Uβ) ⊂ ∂Uα. Indeed, suppose that this mapϕ−1

α ◦ϕβ takes a
point x ∈ ∂Uβ to an interior point (in R

n) of Uα. As this map is a diffeomorphism, x
would be an interior point (in R

n) of Uβ . This, of course, contradicts the assumption
that x ∈ ∂Uβ . Hence,

(
ϕ−1
α ◦ ϕβ

)
(∂Uβ) ⊂ ∂Uα and so ϕβ(∂Uβ) ⊂ ϕα(∂Uα).

The map ϕα then restricts to a diffeomorphism from ∂Uα onto ∂Vα, where we
identify ∂Uα with an open subset of R

n−1. We obtain in this way a parameteri-
zation around p in ∂M , and it is easily seen that these parameterizations define a
differentiable structure on ∂M . �

Remark 9.3 In the above proof we saw that the definition of a boundary point does
not depend on the parameterization chosen, meaning that, if there exists a parameter-
ization around p such that p is an image of a point in ∂H

n , then any parameterization
around p maps a boundary point of H

n to p.

The definition of orientability can easily be extended to manifolds with boundary.
We then have the following result.

Proposition 9.4 Let M be an orientable manifold with boundary. Then ∂M is also
orientable.

Proof If M is orientable we can choose an atlas {(Uα,ϕα)} on M for which the
determinants of the derivatives of all overlap maps are positive. With this atlas we
can obtain an atlas {(∂Uα, ϕ̃α)} for ∂M in the way described in the proof of Propo-
sition 9.2. For any overlap map

(
ϕ−1
β ◦ ϕα

) (
x1, . . . , xn

)
=
(

y1
(

x1, . . . , xn
)
, . . . , yn

(
x1, . . . , xn

))
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we have
(
ϕ−1
β ◦ ϕα

) (
x1, . . . , xn−1, 0

)
=

=
(

y1
(

x1, . . . , xn−1, 0
)
, . . . , yn−1

(
x1, . . . , xn−1, 0

)
, 0
)

and
(
ϕ̃−1
β ◦ ϕ̃α

) (
x1, . . . , xn−1

)
=
(

y1
(

x1, . . . , xn−1, 0
)
, . . . , yn−1

(
x1, . . . , xn−1, 0

))
.

Consequently, denoting
(
x1, . . . , xn−1, 0

)
by (̃x, 0),

(
d
(
ϕ−1
β ◦ ϕα

))
(̃x,0)

=
⎛
⎜⎝

(
d
(
ϕ̃−1
β ◦ ϕ̃α

))
x̃

| ∗
− − − + − − −

0 | ∂yn

∂xn (̃x, 0)

⎞
⎟⎠

and so

det
(

d
(
ϕ−1
β ◦ ϕα

))
(̃x,0)

= ∂yn

∂xn (̃x, 0) det
(

d
(
ϕ̃−1
β ◦ ϕ̃α

))
x̃
.

However, fixing x1, · · · , xn−1, we have that yn is positive for positive values of xn

and is zero for xn = 0. Consequently, ∂yn

∂xn (̃x, 0) > 0, and so

det
(

d
(
ϕ̃−1
β ◦ ϕ̃α

))
x̃
> 0.

�

Hence, choosing an orientation on a manifold with boundary M induces an orien-
tation on the boundary ∂M . The convenient choice, called the induced orientation,
can be obtained in the following way. For p ∈ ∂M the tangent space Tp(∂M) is a
subspace of Tp M of codimension 1. As we have seen above, considering a coordi-
nate system x : W → R

n around p, we have xn(p) = 0 and
(
x1, . . . , xn−1

)
is a

coordinate system around p in ∂M . Setting n p := −
(

∂
∂xn

)
p
(called an outward

pointing vector at p), the induced orientation on ∂M is defined by assigning a pos-
itive sign to an ordered basis β of Tp(∂M) whenever the ordered basis {n p,β} of
Tp M is positive, and negative otherwise. Note that, since ∂yn

∂xn

(
ϕ−1(p)

)
> 0 (in the

above notation), the sign of the last component of n p does not depend on the choice
of coordinate system. In general, the induced orientation is not the one obtained from
the charts of M by simply dropping the last coordinate (in fact, it is (−1)n times this
orientation).
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Exercise 9.5

(1) Show with an example that the product of two manifolds with boundary is not
always a manifold with boundary.

(2) Let M be a manifold without boundary and N a manifold with boundary. Show
that the product M × N is a manifold with boundary. What is ∂(M × N )?

(3) Show that a diffeomorphism between two manifolds with boundary M and N
maps the boundary ∂M diffeomorphically onto ∂N .

1.10 Notes

1.10.1 Section 1.1

We begin by briefly reviewing the main concepts and results from general topology
that we will need (see [Mun00] for a detailed exposition).

(1) A topology on a set M is a collection T of subsets of M having the following
properties:

(i) the sets ∅ and M are in T ;
(ii) the union of the elements of any sub-collection of T is in T ;
(iii) the intersection of the elements of any finite sub-collection of T is in T .

A set M equipped with a topology T is called a topological space. We say
that a subset U ⊂ M is an open set of M if it belongs to the topology T . A
neighborhood of a point p ∈ M is simply an open set U ∈ T containing p. A
closed set F ⊂ M is a set whose complement M \ F is open. The interior int A
of a subset A ⊂ M is the largest open set contained in A, and its closure A is
the smallest closed set containing A. Finally, the subspace topology on A ⊂ M
is TA := {U ∩ A}U∈T .

(2) A topological space (M, T ) is said to be Hausdorff if for each pair of distinct
points p1, p2 ∈ M there exist neighborhoods U1,U2 of p1 and p2 such that
U1 ∩ U2 = ∅.

(3) A basis for a topology T on M is a collection B ⊂ T such that, for each point
p ∈ M and each open set U containing p, there exists a basis element B ∈ B
for which p ∈ B ⊂ U . If B is a basis for a topology T then any element of T
is a union of elements of B. A topological space (M, T ) is said to satisfy the
second countability axiom if T has a countable basis.

(4) A map f : M → N between two topological spaces is said to be continuous
if for each open set U ⊂ N the preimage f −1(U ) is an open subset of M .
A bijection f is called a homeomorphism if both f and its inverse f −1 are
continuous.

(5) An open cover for a topological space (M, T ) is a collection {Uα} ⊂ T such
that

⋃
α Uα = M . A subcover is a sub-collection {Vβ} ⊂ {Uα} which is still
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an open cover. A topological space is said to be compact if every open cover
admits a finite subcover. A subset A ⊂ M is said to be a compact subset if it
is a compact topological space for the subspace topology. It is easily seen that
continuous maps carry compact sets to compact sets.

(6) A topological space is said to be connected if the only subsets of M which
are simultaneously open and closed are ∅ and M . A subset A ⊂ M is said to
be a connected subset if it is a connected topological space for the subspace
topology. It is easily seen that continuousmaps carry connected sets to connected
sets.

(7) Let (M, T ) be a topological space. A sequence {pn} in M is said to converge
to p ∈ M if for each neighborhood V of p there exists an N ∈ N for which
pn ∈ V for n > N . If (M, T ) is Hausdorff, then a convergent sequence has a
unique limit. If in addition (M, T ) is second countable, then F ⊂ M is closed
if and only if every convergent sequence in F has limit in F , and K ⊂ M is
compact if and only if every sequence in K has a sublimit in K .

(8) If M and N are topological spaces, the set of all Cartesian products of open
subsets of M by open subsets of N is a basis for a topology on M × N , called
the product topology. Note that with this topology the canonical projections are
continuous maps.

(9) An equivalence relation ∼ on a set M is a relationwith the following properties:

(i) reflexivity: p ∼ p for every p ∈ M ;
(ii) symmetry: if p ∼ q then q ∼ p;
(iii) transitivity: if p ∼ q and q ∼ r then p ∼ r .

Given a point p ∈ M , we define the equivalence class of p as the set

[p] = {q ∈ M | q ∼ p}.

Note that p ∈ [p] by reflexivity.Whenever we have an equivalence relation∼ on
a set M , the corresponding set of equivalence classes is called thequotient space,
and is denoted by M/∼. There is a canonical projection π : M → M/∼, which
maps each element of M to its equivalence class. If M is a topological space,
we can define a topology on the quotient space (called the quotient topology)
by letting a subset V ⊂ M/∼ be open if and only if the set π−1(V ) is open
in M . The map π is then continuous for this topology. We will be interested in
knowing whether some quotient spaces are Hausdorff. For that, the following
definition will be helpful.

Definition 10.1 An equivalence relation ∼ on a topological space M is called
open if the map π : M → M/∼ is open, i.e. if for every open set U ⊂ M , the
set [U ] := π(U ) is open.

We then have

Proposition 10.2 Let ∼ be an open equivalence relation on M and let R =
{(p, q) ∈ M × M | p ∼ q}. Then the quotient space is Hausdorff if and only if
R is closed in M × M.
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Proof Assume that R is closed. Let [p], [q] ∈ M/∼ with [p] �= [q]. Then
p � q, and (p, q) /∈ R. As R is closed, there are open sets U, V containing
p, q, respectively, such that (U × V )∩ R = ∅. This implies that [U ]∩[V ] = ∅.
In fact, if there were a point [r ] ∈ [U ]∩[V ], then r would be equivalent to points
p′ ∈ U and q ′ ∈ V (that is p′ ∼ r and r ∼ q ′). Therefore wewould have p′ ∼ q ′
(implying that (p′, q ′) ∈ R), and so (U × V ) ∩ R would not be empty. Since
[U ] and [V ] are open (as ∼ is an open equivalence relation), we conclude that
M/∼ is Hausdorff.

Conversely, let us assume that M/∼ is Hausdorff. If (p, q) /∈ R, then p � q
and [p] �= [q], implying the existence of open sets Ũ , Ṽ ⊂ M/∼ containing
[p] and [q], such that Ũ ∩ Ṽ = ∅. The sets U := π−1(Ũ ) and V := π−1(Ṽ )
are open in M and (U × V ) ∩ R = ∅. In fact, if that was not so, there would
exist points p′ ∈ U and q ′ ∈ V such that p′ ∼ q ′. Then we would have
[p′] = [q ′], contradicting the fact that Ũ ∩ Ṽ = ∅ (as [p′] ∈ π(U ) = Ũ and
[q ′] ∈ π(V ) = Ṽ ). Since (p, q) ∈ U × V ⊂ (M × M) \ R and U × V is open,
we conclude that (M × M) \ R is open, and hence R is closed. �

1.10.2 Section 1.2

(1) Let us begin by reviewing some facts about differentiability of maps on R
n .

A function f : U → R defined on an open subset U of R
n is said to be

continuously differentiable on U if all partial derivatives ∂ f
∂x1
, . . . ,

∂ f
∂xn exist

and are continuous on U . In this book, the words differentiable and smooth will

be used to mean infinitely differentiable, that is, all partial derivatives ∂k f
∂xi1 ···∂xik

exist and are continuous onU . Similarly, amap f : U → R
m , defined on an open

subset ofR
n , is said to be differentiable or smooth if all coordinate functions f i

have the same property, that is, if they all possess continuous partial derivatives
of all orders. If the map f is differentiable on U , its derivative at each point of
U is the linear map D f : R

n → R
m represented in the canonical bases of R

n

and R
m by the Jacobian matrix

D f =

⎡
⎢⎢⎣

∂ f 1

∂x1
· · · ∂ f 1

∂xn

...
...

∂ f m

∂x1
· · · ∂ f m

∂xn

⎤
⎥⎥⎦ .

A map f : A → R
m defined on an arbitrary set A ⊂ R

n (not necessarily
open) is said to be differentiable on A is there exists an open set U ⊃ A and a
differentiable map f̃ : U → R

m such that f = f̃ |A.
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1.10.3 Section 1.4

(1) Let E , B and F be smooth manifolds and π : E → B a differentiable map. Then
π : E → B is called a fiber bundle with basis B, total space E and fiber F if

(i) the map π is surjective;
(ii) there is a covering of B by open sets {Uα} and diffeomorphisms ψα :

π−1(Uα) → Uα × F such that for every b ∈ Uα we have ψα(π−1(b)) =
{b} × F .

1.10.4 Section 1.5

(1) (The Inverse function theorem) Let f : U ⊂ R
n → R

n be a smooth function
and p ∈ U such that (d f )p is a linear isomorphism. Then there exists an open
subset V ⊂ U containing p such that f |V : V → f (V ) is a diffeomorphism.
Moreover,

(d( f |V )−1) f (q) = ((d( f |V ))q)−1

for all q ∈ V .

1.10.5 Section 1.7

(1) A group is a set G equipped with a binary operation · : G × G → G satisfying:

(i) Associativity: g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G;
(ii) Existence of identity: There exists an element e ∈ G such that e · g =

g · e = g for all g ∈ G;
(iii) Existence of inverses:For all g ∈ G there exists g−1 ∈ G such that g·g−1 =

g−1 · g = e.

If the group operation is commutative, meaning that g1 · g2 = g2 · g1 for all
g1, g2 ∈ G, the group is said to be abelian. A subset H ⊂ G is said to be a
subgroup of G if the restriction of · to H × H is a binary operation on H , and
H with this operation is a group. A subgroup H ⊂ G is said to be normal if
ghg−1 ∈ H for all g ∈ G, h ∈ H . A map f : G → H between two groups G
and H is said to be a group homomorphism if f (g1 · g2) = f (g1) · f (g2) for
all g1, g2 ∈ G. An isomorphism is a bijective homomorphism. The kernel of a
group homomorphism f : G → H is the subset ker( f ) = {g ∈ G | f (g) = e},
and is easily seen to be a normal subgroup of G.

(2) Let M and N be topological manifolds. A map f : M → N is called proper
if the preimage f −1(K ) of any compact set K ⊂ N is compact. If f is also
continuous then f is closed, i.e. f maps closed sets to closed sets. To see this,
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let F ⊂ M be a closed set, and consider a convergent sequence {qn} in f (F)
with qn → q. It is easily seen that the closure K of the set {qn | n ∈ N} is
compact, and since f is proper, then so is f −1(K ). For each n ∈ N choose
pn ∈ F such that f (pn) = qn . Then pn ∈ f −1(K ), and so {pn} must have a
sublimit p ∈ F (since F is closed). If {pnk } is a subsequence which converges
to p we have qnk = f (pnk ) → f (p) (because f is continuous). Therefore
q = f (p) ∈ f (F), and f (F) is closed.

(3) Let f, g : X → Y be two continuous maps between topological spaces and let
I = [0, 1]. We say that f is homotopic to g if there exists a continuous map
H : I × X → Y such that H(0, x) = f (x) and H(1, x) = g(x) for every
x ∈ X . This map is called a homotopy.

Homotopy of maps forms an equivalence relation in the set of continuous maps
between X and Y . As an application, let us fix a base point p on a manifold M
and consider the homotopy classes of continuous maps f : I → M such that
f (0) = f (1) = p (these maps are called loops based at p), with the additional
restriction that H(t, 0) = H(t, 1) = p for all t ∈ I . This set of homotopy classes
is called the fundamental group of M relative to the base point p, and is denoted
by π1(M, p). Among its elements there is the class of the constant loop based
at p, given by f (t) = p for every t ∈ I . Note that the set π1(M, p) is indeed
a group with operation ∗ (composition of loops) defined by [ f ] ∗ [g] := [h],
where h : I → M is given by

h(t) =
{

f (2t) if t ∈ [0, 12 ]
g(2t − 1) if t ∈ [ 12 , 1]

.

The identity element of this group is the equivalence class of the constant loop
based at p.

If M is connected and this is the only class in π1(M, p), M is said to be simply
connected. This means that every loop through p can be continuously deformed
to the constant loop. This property does not depend on the choice of point p, and
is equivalent to the condition that any closed pathmay be continuously deformed
to a constant loop in M .

(4) Quaternions are a generalization of the complex numbers introduced by Hamil-
ton in 1843, when he considered numbers of the form a + bi + cj + dk with
a, b, c, d ∈ R and

i2 = j2 = k2 = i jk = −1.

Formally, the set H of quaternions is simply R
4 with

1 = (1, 0, 0, 0)

i = (0, 1, 0, 0)

j = (0, 0, 1, 0)
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k = (0, 0, 0, 1)

and the bilinear associative product defined by the Hamilton formulas (and the
assumption that 1 is the identity).With these definitions,H is a division ring, that
is, (H \ {0}, ·) is a (non-commutative) group and multiplication is distributive
with respect to addition.

The real part of a quaternion a + bi + cj + ik is a, whereas its vector part is
bi +cj +dk. Quaternions with zero vector part are identified with real numbers,
while quaternions with zero real part are identified with vectors inR

3. The norm
of a quaternion is the usual Euclidean norm.

1.10.6 Bibliographical Notes

The material in this chapter is completely standard, and can be found in almost
any book on differential geometry (e.g. [Boo03, dC93, GHL04]). Immersions and
embeddings are the starting point ofdifferential topology, which is studied in [GP73,
Mil97]. Lie groups and Lie algebras are a huge field of mathematics, to which we
could not do justice. See for instance [BtD03, DK99, War83]. More details on the
fundamental group and covering spaces can be found for instance in [Mun00].
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Chapter 2
Differential Forms

This chapter discusses integration on differentiable manifolds. Because there is no
canonical choice of local coordinates, there is no natural notion of volume, and so
only objects with appropriate transformation properties under coordinate changes
can be integrated. These objects, called differential forms, were introduced by Élie
Cartan in 1899; they come equipped with natural algebraic and differential opera-
tions, making them a fundamental tool of differential geometry.

Besides their role in integration, differential forms occur in many other places in
differential geometry and physics: for instance, they can be used as a very efficient
device for computing the curvature of Riemannian (Chap.4) or Lorentzian (Chap.6)
manifolds; to formulate Hamiltonian mechanics (Chap.5); or to write Maxwell’s
equations of electromagnetism in a compact and elegant form.

The algebraic structure of differential forms is set up in Sect. 2.1, which reviews
the notions of tensors and tensor product, and introduces alternating tensors and
their exterior product.

Tensor fields, which are natural generalizations of vector fields, are discussed
in Sect. 2.2, where a new operation, the pull-back of a covariant tensor field by a
smooth map, is defined. Differential forms are introduced in Sect. 2.3 as fields of
alternating tensors, along with their exterior derivative. Important ideas which will
not be central to the remainder of this book, such as the Poincaré lemma, de Rham
cohomology or the Lie derivative, are discussed in the exercises.

The integral of a differential form on a smooth manifold in defined in Sect. 2.4.
This makes use of another basic tool of differential geometry, namely the existence
of partitions of unity.

The celebrated Stokes theorem, generalizing the fundamental theorems of vector
calculus (Green’s theorem, the divergence theorem and the classical Stokes theorem
for vector fields) is proved in Sect. 2.5. Some of its consequences, such as invariance
by homotopy of the integral of closed forms, or Brouwer’s fixed point theorem,
are explored in the exercises.

Finally, Sect. 2.6 studies the relation between orientability and the existence of
special differential forms, called volume forms, which can be used to define a notion
of volume on orientable manifolds.
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2.1 Tensors

Let V be an n-dimensional vector space. A k-tensor on V is a real multilinear
function (meaning linear in each variable) defined on the product V × · · · × V of k
copies of V . The set of all k-tensors is itself a vector space and is usually denoted by
T k(V ∗).

Example 1.1

(1) The space of 1-tensors T 1(V ∗) is equal to V ∗, the dual space of V , that is, the
space of real-valued linear functions on V .

(2) The usual inner product on R
n is an example of a 2-tensor.

(3) The determinant is an n-tensor on R
n .

Given a k-tensor T and an m-tensor S, we define their tensor product as the
(k + m)-tensor T ⊗ S given by

T ⊗ S(v1, . . . , vk, vk+1, . . . , vk+m) := T (v1, . . . , vk) · S(vk+1, . . . , vk+m).

This operation is bilinear and associative, but not commutative [cf. Exercise1.15(1)].

Proposition 1.2 If {T1, . . . , Tn} is a basis for T 1(V ∗) = V ∗ (the dual space of V ),
then the set {Ti1 ⊗· · ·⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} is a basis of T k(V ∗), and therefore
dim T k(V ∗) = nk.

Proof We will first show that the elements of this set are linearly independent. If

T :=
∑

i1,...,ik

ai1...ik Ti1 ⊗ · · · ⊗ Tik = 0,

then, taking the basis {v1, . . . , vn} of V dual to {T1, . . . , Tn}, meaning that Ti (v j ) =
δi j (cf. Sect. 2.7.1), we have T (v j1 , . . . , v jk ) = a j1... jk = 0 for every 1 ≤
j1, . . . , jk ≤ n.

To show that {Ti1 ⊗ · · · ⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} spans T k(V ∗), we take any
element T ∈ T k(V ∗) and consider the k-tensor S defined by

S :=
∑

i1,...,ik

T (vi1 , . . . , vik )Ti1 ⊗ · · · ⊗ Tik .

Clearly, S(vi1 , . . . , vik ) = T (vi1 , . . . , vik ) for every 1 ≤ i1, . . . , ik ≤ n, and so, by
linearity, S = T . �

If we consider k-tensors on V ∗, instead of V , we obtain the space T k(V ) (note that
(V ∗)∗ = V , as shown in Sect. 2.7.1). These tensors are called contravariant tensors
on V , while the elements of T k(V ∗) are called covariant tensors on V . Note that
the contravariant tensors on V are the covariant tensors on V ∗. The words covariant
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and contravariant are related to the transformation behavior of the tensor components
under a change of basis in V , as explained in Sect. 2.7.1.

We can also consider mixed (k,m)-tensors on V , that is, multilinear functions
defined on the product V × · · · × V × V ∗ × · · · × V ∗ of k copies of V and m copies
of V ∗. A (k,m)-tensor is then k times covariant and m times contravariant on V .
The space of all (k,m)-tensors on V is denoted by T k,m(V ∗, V ).

Remark 1.3

(1) We can identify the space T 1,1(V ∗, V ) with the space of linear maps from V to
V . Indeed, for each element T ∈ T 1,1(V ∗, V ), we define the linear map from
V to V , given by v �→ T (v, ·). Note that T (v, ·) : V ∗ → R is a linear function
on V ∗, that is, an element of (V ∗)∗ = V .

(2) Generalizing the above definition of tensor product to tensors defined on
different vector spaces, we can define the spaces T k(V ∗) ⊗ T m(W ∗) gener-
ated by the tensor products of elements of T k(V ∗) by elements of T m(W ∗).
Note that T k,m(V ∗, V ) = T k(V ∗)⊗ T m(V ). We leave it as an exercise to find
a basis for this space.

A tensor is called alternating if, like the determinant, it changes sign every time
two of its variables are interchanged, that is, if

T (v1, . . . , vi , . . . , v j , . . . , vk) = −T (v1, . . . , v j , . . . , vi , . . . , vk).

The space of all alternating k-tensors is a vector subspace �k(V ∗) of T k(V ∗).
Note that, for any alternating k-tensor T , we have T (v1, . . . , vk) = 0 if vi = v j for
some i �= j .

Example 1.4

(1) All 1-tensors are trivially alternating, that is, �1(V ∗) = T 1(V ∗) = V ∗.
(2) The determinant is an alternating n-tensor on R

n .

Consider now Sk , the group of all possible permutations of {1, . . . , k}. If σ ∈ Sk ,
we set σ(v1, . . . , vk) = (vσ(1), . . . , vσ(k)). Given a k-tensor T ∈ T k(V ∗) we can
define a new alternating k-tensor, called Alt(T ), in the following way:

Alt(T ) := 1

k!
∑
σ∈Sk

(sgn σ) (T ◦ σ),

where sgn σ is +1 or −1 according to whether σ is an even or an odd permutation.
We leave it as an exercise to show that Alt(T ) is in fact alternating.

Example 1.5 If T ∈ T 3(V ∗),

Alt(T )(v1, v2, v3) = 1
6 (T (v1, v2, v3)+ T (v3, v1, v2)+ T (v2, v3, v1)

−T (v1, v3, v2)− T (v2, v1, v3)− T (v3, v2, v1)) .
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We will now define the wedge product between alternating tensors: if T ∈
�k(V ∗) and S ∈ �m(V ∗), then T ∧ S ∈ �k+m(V ∗) is given by

T ∧ S := (k + m)!
k! m! Alt(T ⊗ S).

Example 1.6 If T, S ∈ �1(V ∗) = V ∗, then

T ∧ S = 2 Alt(T ⊗ S) = T ⊗ S − S ⊗ T,

implying that T ∧ S = −S ∧ T and T ∧ T = 0.

It is easy to verify that this product is bilinear. To prove associativity we need the
following proposition.

Proposition 1.7

(i) Let T ∈ T k(V ∗) and S ∈ T m(V ∗). If Alt(T ) = 0 then

Alt(T ⊗ S) = Alt(S ⊗ T ) = 0;

(ii) Alt(Alt(T ⊗ S)⊗ R) = Alt(T ⊗ S ⊗ R) = Alt(T ⊗ Alt(S ⊗ R)).

Proof

(i) Let us consider

(k + m)! Alt(T ⊗ S)(v1, . . . , vk+m) =
=

∑
σ∈Sk+m

(sgn σ) T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)).

Taking the subgroup G of Sk+m formed by the permutations of {1, . . . , k + m}
that leave k + 1, . . . , k + m fixed, we have

∑
σ∈G

(sgn σ)T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)) =

=
(∑
σ∈G

(sgn σ)T (vσ(1), . . . , vσ(k))

)
S(vk+1, . . . , vk+m)

= k! (Alt(T )⊗ S) (v1, . . . , vk+m) = 0.

Then, sinceG decomposes Sk+m into disjoint right cosetsG ·σ̃ := {σσ̃ | σ ∈ G},
and for each coset
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∑
σ∈G ·̃σ

(sgn σ)(T ⊗ S)(vσ(1), . . . , vσ(k+m)) =

= (sgn σ̃)
∑
σ∈G

(sgn σ) (T ⊗ S)(vσ(̃σ(1)), . . . , vσ(̃σ(k+m)))

= (sgn σ̃)k! (Alt(T )⊗ S)(vσ̃(1), . . . , vσ̃(k+m)) = 0,

we have that Alt(T ⊗ S) = 0. Similarly, we prove that Alt(S ⊗ T ) = 0.
(ii) By linearity of the operator Alt and the fact that Alt ◦Alt = Alt

[cf. Exercise1.15(3)], we have

Alt(Alt(S ⊗ R)− S ⊗ R) = 0.

Hence, by (i),

0 = Alt(T ⊗ (Alt(S ⊗ R)− S ⊗ R))

= Alt(T ⊗ Alt(S ⊗ R))− Alt(T ⊗ S ⊗ R),

and the result follows. �

Using these properties we can show the following.

Proposition 1.8 (T ∧ S) ∧ R = T ∧ (S ∧ R).

Proof By Proposition 1.7, for T ∈ �k(V ∗), S ∈ �m(V ∗) and R ∈ �l(V ∗), we have

(T ∧ S) ∧ R = (k + m + l)!
(k + m)! l! Alt((T ∧ S)⊗ R)

= (k + m + l)!
k! m! l! Alt(T ⊗ S ⊗ R)

and

T ∧ (S ∧ R) = (k + m + l)!
k! (m + l)! Alt(T ⊗ (S ∧ R))

= (k + m + l)!
k! m! l! Alt(T ⊗ S ⊗ R). �

We can now prove the following theorem.

Theorem 1.9 If {T1, . . . , Tn} is a basis for V ∗, then the set

{Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n}
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is a basis for �k(V ∗), and

dim�k(V ∗) =
(

n
k

)
= n!

k!(n − k)! .

Proof Let T ∈ �k(V ∗) ⊂ T k(V ∗). By Proposition 1.2,

T =
∑

i1,...,ik

ai1...ik Ti1 ⊗ · · · ⊗ Tik

and, since T is alternating,

T = Alt(T ) =
∑

i1,...,ik

ai1···ik Alt(Ti1 ⊗ · · · ⊗ Tik ).

We can show by induction that Alt(Ti1 ⊗· · ·⊗ Tik ) = 1
k! Ti1 ∧ Ti2 ∧· · ·∧ Tik . Indeed,

for k = 1, the result is trivially true, and, assuming it is true for k basis tensors, we
have, by Proposition 1.7, that

Alt(Ti1 ⊗ · · · ⊗ Tik+1) = Alt(Alt(Ti1 ⊗ · · · ⊗ Tik )⊗ Tik+1)

= k!
(k + 1)! Alt(Ti1 ⊗ · · · ⊗ Tik ) ∧ Tik+1

= 1

(k + 1)! Ti1 ∧ Ti2 ∧ · · · ∧ Tik+1 .

Hence,

T = 1

k!
∑

i1,...,ik

ai1...ik Ti1 ∧ Ti2 ∧ · · · ∧ Tik .

However, the tensors Ti1 ∧ · · · ∧ Tik are not linearly independent. Indeed, due to
anticommutativity, if two sequences (i1, . . . ik) and ( j1, . . . jk) differ only in their
orderings, then Ti1 ∧ · · · ∧ Tik = ±Tj1 ∧ · · · ∧ Tjk . In addition, if any two of the
indices are equal, then Ti1 ∧ · · · ∧ Tik = 0. Hence, we can avoid repeating terms by
considering only increasing index sequences:

T =
∑

i1<···<ik

bi1...ik Ti1 ∧ · · · ∧ Tik

and so the set {Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n} spans �k(V ∗). Moreover,
the elements of this set are linearly independent. Indeed, if

0 = T =
∑

i1<···<ik

bi1...ik Ti1 ∧ · · · ∧ Tik ,
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then, taking a basis {v1, . . . , vn} of V dual to {T1, . . . , Tn} and an increasing index
sequence ( j1, . . . , jk), we have

0 = T (v j1 , . . . , v jk )= k!
∑

i1<···<ik

bi1...ik Alt(Ti1 ⊗ · · · ⊗ Tik )(v j1, . . . , v jk )

=
∑

i1<···<ik

bi1...ik

∑
σ∈Sk

(sgn σ) Ti1(v jσ(1) ) · · · Tik (v jσ(k) ).

Since (i1, . . . , ik) and ( j1, . . . , jk) are both increasing, the only term of the second
sum that may be different from zero is the one for which σ = id. Consequently,

0 = T (v j1 , . . . , v jk ) = b j1... jk .

�

The following result is clear from the anticommutativity shown in Example1.6.

Proposition 1.10 If T ∈ �k(V ∗) and S ∈ �m(V ∗), then

T ∧ S = (−1)km S ∧ T .

Proof Exercise1.15(4) �

Remark 1.11

(1) Another consequence of Theorem 1.9 is that dim(�n(V ∗)) = 1. Hence, if
V = R

n , any alternating n-tensor in R
n is a multiple of the determinant.

(2) It is also clear that �k(V ∗) = 0 if k > n. Moreover, the set �0(V ∗) is defined
to be equal to R (identified with the set of constant functions on V ).

A linear transformation F : V → W induces a linear transformation F∗ :
T k(W ∗) → T k(V ∗) defined by

(F∗T )(v1, . . . , vk) = T (F(v1), . . . , F(vk)).

This map has the following properties.

Proposition 1.12 Let V,W, Z be vector spaces, let F : V → W and H : W → Z
be linear maps, and let T ∈ T k(W ∗) and S ∈ T m(W ∗). We have:

(1) F∗(T ⊗ S) = (F∗T )⊗ (F∗S);
(2) If T is alternating then so is F∗T ;
(3) F∗(T ∧ S) = (F∗T ) ∧ (F∗S);
(4) (F ◦ H)∗ = H∗ ◦ F∗.
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Proof Exercise1.15(5) �

Another important fact about alternating tensors is the following.

Theorem 1.13 Let F : V → V be a linear map and let T ∈ �n(V ∗). Then
F∗T = (det A)T , where A is any matrix representing F.

Proof As�n(V ∗) is 1-dimensional and F∗ is a linear map, F∗ is just multiplication
by some constant C . Let us consider an isomorphism H between V and R

n . Then,
H∗ det is an alternating n-tensor in V , and so F∗H∗ det = C H∗ det. Hence

(H−1)∗F∗H∗ det = C det ⇔ (H ◦ F ◦ H−1)∗ det = C det ⇔ A∗ det = C det,

where A is the matrix representation of F induced by H . Taking the standard basis
in R

n , {e1, . . . , en}, we have

A∗ det (e1, . . . , en) = C det(e1, . . . , en) = C,

and so
det (Ae1, . . . , Aen) = C,

implying that C = det A. �

Remark 1.14 By the above theorem, if T ∈ �n(V ∗) and T �= 0, then two or-
dered basis {v1, . . . , vn} and {w1, . . . , wn} are equivalently oriented if and only if
T (v1, . . . , vn) and T (w1, . . . , wn) have the same sign.

Exercise 1.15

(1) Show that the tensor product is bilinear and associative but not commutative.
(2) Find a basis for the space T k,m(V ∗, V ) of mixed (k,m)-tensors.
(3) If T ∈ T k(V ∗), show that

(a) Alt(T ) is an alternating tensor;
(b) if T is alternating then Alt(T ) = T ;
(c) Alt(Alt(T )) = Alt(T ).

(4) Prove Proposition 1.10.
(5) Prove Proposition 1.12.
(6) Let T1, . . . , Tk ∈ V ∗. Show that

(T1 ∧ · · · ∧ Tk)(v1, . . . , vk) = det [Ti (v j )].

(7) Show that Let T1, . . . , Tk ∈ �1(V ∗) = V ∗ are linearly independent if and only
if T1 ∧ · · · ∧ Tk �= 0.



2.1 Tensors 69

(8) Let T ∈ �k(V ∗) and let v ∈ V . We define contraction of T by v, ι(v)T , as the
(k − 1)-tensor given by

(ι(v)T )(v1, . . . , vk−1) = T (v, v1, . . . , vk−1).

Show that:

(a) ι(v1)(ι(v2)T ) = −ι(v2)(ι(v1)T );
(b) if T ∈ �k(V ∗) and S ∈ �m(V ∗) then

ι(v)(T ∧ S) = (ι(v)T ) ∧ S + (−1)k T ∧ (ι(v)S).

2.2 Tensor Fields

The definition of a vector field can be generalized to tensor fields of general type.
For that, we denote by T ∗

p M the dual of the tangent space Tp M at a point p in M
(usually called the cotangent space to M at p).

Definition 2.1 A (k,m)-tensor field is a map that to each point p ∈ M assigns a
tensor T ∈ T k,m(T ∗

p M, Tp M).

Example 2.2 A vector field is a (0, 1)-tensor field (or a 1-contravariant tensor field),
that is, a map that to each point p ∈ M assigns the 1-contravariant tensor X p ∈ Tp M .

Example 2.3 Let f : M → R be a differentiable function. We can define a (1, 0)-
tensor field d f which carries each point p ∈ M to (d f )p, where

(d f )p : Tp M → R

is the derivative of f at p. This tensor field is called the differential of f . For
any v ∈ Tp M we have (d f )p(v) = v · f (the directional derivative of f at p
along the vector v). Considering a coordinate system x : W → R

n , we can write

v =∑n
i=1 vi

(
∂
∂xi

)
p
, and so

(d f )p(v) =
∑

i

vi ∂ f̂

∂xi
(x(p)),

where f̂ = f ◦ x−1. Taking the coordinate functions xi : W → R, we can obtain
1-forms dxi defined on W . These satisfy

(dxi )p

((
∂

∂x j

)

p

)
= δi j
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and so they form a basis of each cotangent space T ∗
p M , dual to the coordinate

basis

{(
∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

}
of Tp M . Hence, any (1, 0)-tensor field on W can be

written as ω = ∑
i ωi dxi , where ωi : W → R is such that ωi (p) = ωp

((
∂
∂xi

)
p

)
.

In particular, d f can be written in the usual way

(d f )p =
n∑

i=1

∂ f̂

∂xi
(x(p))(dxi )p.

Remark 2.4 Similarly to what was done for the tangent bundle, we can consider the
disjoint union of all cotangent spaces and obtain the manifold

T ∗M =
⋃
p∈M

T ∗
p M

called the cotangent bundle of M . Note that a (1, 0)-tensor field is just a map from
M to T ∗M defined by

p �→ ωp ∈ T ∗
p M.

This construction can be easily generalized for arbitrary tensor fields.

The space of (k,m)-tensor fields is clearly a vector space, since linear combina-
tions of (k,m)-tensors are still (k,m)-tensors. If W is a coordinate neighborhood

of M , we know that
{
(dxi )p

}
is a basis for T ∗

p M and that

{(
∂
∂xi

)
p

}
is a basis for

Tp M . Hence, the value of a (k,m)-tensor field T at a point p ∈ W can be written as
the tensor

Tp =
∑

a j1··· jm
i1···ik

(p)(dxi1)p ⊗ · · · ⊗ (dxik )p ⊗
(

∂

∂x j1

)

p
⊗ · · · ⊗

(
∂

∂x jm

)

p

where the a j1... jm
i1...ik

: W → R are functions which at each p ∈ W give us the
components of Tp relative to these bases of T ∗

p M and Tp M . Just as we did with
vector fields, we say that a tensor field is differentiable if all these functions are
differentiable for all coordinate systems of the maximal atlas. Again, we only need
to consider the coordinate systems of an atlas, since all overlapmaps are differentiable
[cf. Exercise2.8(1)].

Example 2.5 The differential of a smooth function f : M → R is clearly a differen-

tiable (1, 0)-tensor field, since its components ∂ f̂
∂xi ◦ x on a given coordinate system

x : W → R
n are smooth.

An important operation on covariant tensors is the pull-back by a smooth map.
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Definition 2.6 Let f : M → N be a differentiable map between smooth manifolds.
Then, each differentiable k-covariant tensor field T on N defines a k-covariant tensor
field f ∗T on M in the following way:

( f ∗T )p(v1, . . . , vk) = T f (p)((d f )pv1, . . . , (d f )pvk),

for v1, . . . , vk ∈ Tp M .

Remark 2.7 Notice that ( f ∗T )p is just the image of T f (p) by the linear map (d f )∗p :
T k(T ∗

f (p)N ) → T k(T ∗
p M) induced by (d f )p : Tp M → T f (p)N (cf. Sect. 2.1).

Therefore the properties f ∗(αT + βS) = α( f ∗T ) + β( f ∗S) and f ∗(T ⊗ S) =
( f ∗T )⊗ ( f ∗S) hold for all α,β ∈ R and all appropriate covariant tensor fields T, S.
We will see in Exercise2.8(2) that the pull-back of a differentiable covariant tensor
field is still a differentiable covariant tensor field.

Exercise 2.8

(1) Find the relation between coordinate functions of a tensor field in two overlap-
ping coordinate systems.

(2) Show that the pull-back of a differentiable covariant tensor field is still a differ-
entiable covariant tensor field.

(3) (Lie derivative of a tensor field) Given a vector field X ∈ X(M), we define the
Lie derivative of a k-covariant tensor field T along X as

L X T := d

dt
(ψt

∗T )
|t=0

,

where ψt = F(·, t) with F the local flow of X at p.

(a) Show that

L X (T (Y1, . . . ,Yk)) = (L X T )(Y1, . . . ,Yk)

+ T (L X Y1, . . . ,Yk)+ . . .+ T (Y1, . . . , L X Yk),

i.e. show that

X · (T (Y1, . . . ,Yk)) = (L X T )(Y1, . . . ,Yk)

+ T ([X,Y1], . . . ,Yk)+ . . .+ T (Y1, . . . , [X,Yk]),

for all vector fields Y1, . . . ,Yk [cf. Exercises6.11(11) and 6.11(12) in
Chap.1].

(b) How would you define the Lie derivative of a (k,m)-tensor field?

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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2.3 Differential Forms

Fields of alternating tensors are very important objects called forms.

Definition 3.1 Let M be a smooth manifold. A form of degree k (or k-form) on M
is a field of alternating k-tensors defined on M , that is, a map ω that, to each point
p ∈ M , assigns an element ωp ∈ �k(T ∗

p M).

The space of k-forms on M is clearly a vector space. By Theorem 1.9, given a
coordinate system x : W → R

n , any k-form on W can be written as

ω =
∑

I

ωI dx I

where I = (i1, . . . , ik) denotes any increasing index sequence of integers in
{1, . . . , n}, dx I is the form dxi1 ∧ · · · ∧ dxik , and the ωI are functions defined
on W . It is easy to check that the components of ω in the basis {dxi1 ⊗ · · · ⊗ dxik }
are ±ωI . Therefore ω is a differentiable (k, 0)-tensor (in which case it is called a
differential form) if the functions ωI are smooth for all coordinate systems of the
maximal atlas. The set of differential k-forms on M is represented by�k(M). From
now on we will use the word “form” to mean a differential form.

Given a smooth map f : M → N between differentiable manifolds, we can
induce formson M from formson N using the pull-backoperation (cf.Definition2.6),
since the pull-back of a field of alternating tensors is still a field of alternating tensors.

Remark 3.2 If g : N → R is a 0-form, that is, a function, the pull-back is defined
as f ∗g = g ◦ f .

It is easy to verify that the pull-back of forms satisfies the following properties.

Proposition 3.3 Let f : M → N be a differentiable map and α,β forms on N.
Then,

(i) f ∗(α+ β) = f ∗α+ f ∗β;
(ii) f ∗(gα) = (g ◦ f ) f ∗α = ( f ∗g)( f ∗α) for any function g ∈ C∞(N );

(iii) f ∗(α ∧ β) = ( f ∗α) ∧ ( f ∗β);
(iv) g∗( f ∗α) = ( f ◦ g)∗α for any map g ∈ C∞(L ,M), where L is a differentiable

manifold.

Proof Exercise3.8(1) �

Example 3.4 If f : M → N is differentiable and we consider coordinate systems
x : V → R

m , y : W → R
n respectively on M and N , we have yi = f̂ i (x1, . . . , xm)

for i = 1, . . . , n and f̂ = y◦ f ◦x−1 the local representation of f . Ifω =∑I ωI dy I

is a k-form on W , then by Proposition 3.3,
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f ∗ω = f ∗
(∑

I

ωI dy I

)
=
∑

I

( f ∗ωI )( f ∗dy I ) =
∑

I

(ωI ◦ f )( f ∗dyi1)∧ · · · ∧ ( f ∗dyik ).

Moreover, for v ∈ Tp M ,

( f ∗(dyi ))p(v) = (dyi ) f (p)((d f )pv) =
(

d(yi ◦ f )
)

p
(v),

that is, f ∗(dyi ) = d(yi ◦ f ). Hence,

f ∗ω =
∑

I

(ωI ◦ f ) d(yi1 ◦ f ) ∧ · · · ∧ d(yik ◦ f )

=
∑

I

(ωI ◦ f ) d( f̂ i1 ◦ x) ∧ · · · ∧ d( f̂ ik ◦ x).

If k = dim M = dim N = n, then the pull-back f ∗ω can easily be computed from
Theorem 1.13, according to which

( f ∗(dy1 ∧ · · · ∧ dyn))p = det (d f̂ )x(p)(dx1 ∧ · · · ∧ dxn)p. (2.1)

Given any form ω on M and a parameterization ϕ : U → M , we can consider
the pull-back of ω by ϕ and obtain a form defined on the open set U , called the local
representation of ω on that parameterization.

Example 3.5 Let x : W → R
n be a coordinate system on a smooth manifold M and

consider the 1-form dxi defined on W . The pull-back ϕ∗dxi by the corresponding
parameterization ϕ := x−1 is a 1-form on an open subset U of R

n satisfying

(ϕ∗dxi )x (v) = (ϕ∗dxi )x

⎛
⎝

n∑
j=1

v j
(

∂

∂x j

)

x

⎞
⎠ = (dxi )p

⎛
⎝

n∑
j=1

v j (dϕ)x

(
∂

∂x j

)

x

⎞
⎠

= (dxi )p

⎛
⎝

n∑
j=1

v j
(

∂

∂x j

)

p

⎞
⎠ = vi = (dxi )x (v),

for x ∈ U , p = ϕ(x) and v = ∑n
j=1 v j

(
∂
∂x j

)
x

∈ TxU . Hence, just as we had(
∂
∂xi

)
p

= (dϕ)x
(

∂
∂xi

)
x
, we now have (dxi )x = ϕ∗(dxi )p, and so (dxi )p is the

1-form in W whose local representation on U is (dxi )x .

If ω = ∑
I ωI dx I is a k-form defined on an open subset of R

n , we define a
(k + 1)-form called exterior derivative of ω as

dω :=
∑

I

dωI ∧ dx I .
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Example 3.6 Consider the form ω = − y
x2+y2 dx + x

x2+y2 dy defined on R
2\{0}.

Then,

dω = d

(
− y

x2 + y2

)
∧ dx + d

(
x

x2 + y2

)
∧ dy

= y2 − x2

(x2 + y2)2
dy ∧ dx + y2 − x2

(x2 + y2)2
dx ∧ dy = 0.

The exterior derivative satisfies the following properties:

Proposition 3.7 If α,ω,ω1,ω2 are forms on R
n, then

(i) d(ω1 + ω2) = dω1 + dω2;
(ii) if ω is k-form, d(ω ∧ α) = dω ∧ α+ (−1)kω ∧ dα;

(iii) d(dω) = 0;
(iv) if f : R

m → R
n is smooth, d( f ∗ω) = f ∗(dω).

Proof Property (i) is obvious. Using (i), it is enough to prove (i i) for ω = aI dx I

and α = bJ dx J :

d(ω ∧ α) = d(aI bJ dx I ∧ dx J ) = d(aI bJ ) ∧ dx I ∧ dx J

= (bJ daI + aI dbJ ) ∧ dx I ∧ dx J

= bJ daI ∧ dx I ∧ dx J + aI dbJ ∧ dx I ∧ dx J

= dω ∧ α+ (−1)kaI dx I ∧ dbJ ∧ dx J

= dω ∧ α+ (−1)kω ∧ dα.

Again, to prove (i i i), it is enough to consider forms ω = aI dx I . Since

dω = daI ∧ dx I =
n∑

i=1

∂aI

∂xi
dxi ∧ dx I ,

we have

d(dω) =
n∑

j=1

n∑
i=1

∂2aI

∂x j∂xi
dx j ∧ dxi ∧ dx I

=
n∑

i=1

∑
j<i

(
∂2aI

∂x j∂xi
− ∂2aI

∂xi∂x j

)
dx j ∧ dxi ∧ dx I = 0.

To prove (iv), we first consider a 0-form g:

f ∗(dg) = f ∗
(

n∑
i=1

∂g

∂xi
dxi

)
=

n∑
i=1

(
∂g

∂xi
◦ f

)
d f i =

n∑
i, j=1

((
∂g

∂xi
◦ f

)
∂ f i

∂x j

)
dx j
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=
n∑

j=1

∂(g ◦ f )

∂x j
dx j = d(g ◦ f ) = d( f ∗g).

Then, if ω = aI dx I , we have

d( f ∗ω) = d(( f ∗aI )d f I ) = d( f ∗aI ) ∧ d f I + ( f ∗aI )d(d f I ) = d( f ∗aI ) ∧ d f I

= ( f ∗daI
) ∧ ( f ∗dx I ) = f ∗(daI ∧ dx I ) = f ∗(dω)

(where d f I denotes the form d f i1 ∧ · · · ∧ d f ik ), and the result follows. �

Suppose now that ω is a differential k-form on a smooth manifold M . We define
the (k + 1)-form dω as the smooth form that is locally represented by dωα for each
parameterization ϕα : Uα → M , where ωα := ϕ∗

αω is the local representation of ω,
that is, dω = (ϕ−1

α )∗(dωα) on ϕα(U ). Given another parameterization ϕβ : Uβ →
M such that W := ϕα(Uα) ∩ ϕβ(Uβ) �= ∅, it is easy to verify that

(ϕ−1
α ◦ ϕβ)∗ωα = ωβ .

Setting f equal to ϕ−1
α ◦ ϕβ , we have

f ∗(dωα) = d( f ∗ωα) = dωβ .

Consequently,

(ϕ−1
β )∗dωβ = (ϕ−1

β )∗ f ∗(dωα)

= ( f ◦ ϕ−1
β )∗(dωα)

= (ϕ−1
α )∗(dωα),

and so the two definitions agree on the overlapping set W . Therefore dω is well
defined. We leave it as an exercise to show that the exterior derivative defined for
forms on smooth manifolds also satisfies the properties of Proposition 3.7.

Exercise 3.8

(1) Prove Proposition 3.3.
(2) (Exterior derivative) Let M be a smooth manifold. Given a k-form ω in M we

can define its exterior derivative dω without using local coordinates: given k +1
vector fields X1, . . . , Xk+1 ∈ X(M),

dω(X1, . . . , Xk+1) :=
k+1∑
i=1

(−1)i−1Xi · ω(X1, . . . , X̂i , . . . , Xk+1)

+
∑
i< j

(−1)i+ jω([Xi , X j ], X1, . . . , X̂i , . . . , X̂ j , . . . , Xk+1),



76 2 Differential Forms

where the hat indicates an omitted variable.

(a) Show that dω defined above is in fact a (k + 1)-form in M , that is,
(i) dω(X1, . . . , Xi + Yi , . . . , Xk+1) =

dω(X1, . . . , Xi , . . . , Xk+1)+ dω(X1, . . . ,Yi , . . . , Xk+1);
(ii) dω(X1, . . . , f X j , . . . , Xk+1)= f dω(X1, . . . , Xk+1) for any differen-

tiable function f ;
(iii) dω is alternating;
(iv) dω(X1, . . . , Xk+1)(p) depends only on (X1)p, . . . , (Xk+1)p.

(b) Let x : W → R
n be a coordinate system of M and let ω = ∑

I aI dxi1 ∧
· · · ∧ dxik be the expression of ω in these coordinates (where the aI are
smooth functions). Show that the local expression of dω is the same as the
one used in the local definition of exterior derivative, that is,

dω =
∑

I

daI ∧ dxi1 ∧ · · · ∧ dxik .

(3) Show that the exterior derivative defined for forms on smooth manifolds satisfies
the properties of Proposition 3.7.

(4) Show that:

(a) if ω = f 1dx + f 2dy + f 3dz is a 1-form on R
3 then

dω = g1dy ∧ dz + g2dz ∧ dx + g3dx ∧ dy,

where (g1, g2, g3) = curl( f 1, f 2, f 3);
(b) if ω = f 1dy ∧ dz + f 2dz ∧ dx + f 3dx ∧ dy is a 2-form on R

3, then

dω = div( f 1, f 2, f 3) dx ∧ dy ∧ dz.

(5) (De Rham cohomology) A k-form ω is called closed if dω = 0. If it exists a
(k − 1)-form β such that ω = dβ then ω is called exact. Note that every exact
form is closed. Let Zk be the set of all closed k-forms on M and define a relation
between forms on Zk as follows: α ∼ β if and only if they differ by an exact
form, that is, if β − α = dθ for some (k − 1)-form θ.

(a) Show that this relation is an equivalence relation.
(b) Let Hk(M) be the corresponding set of equivalence classes (called the k-

dimensional de Rham cohomology space of M). Show that addition and
scalar multiplication of forms define indeed a vector space structure on
Hk(M).

(c) Let f : M → N be a smooth map. Show that:
(i) the pull-back f ∗ carries closed forms to closed forms and exact forms

to exact forms;
(ii) if α ∼ β on N then f ∗α ∼ f ∗β on M ;



2.3 Differential Forms 77

(iii) f ∗ induces a linear map on cohomology f � : Hk(N ) → Hk(M)
naturally defined by f �[ω] = [ f ∗ω];

(iv) if g : L → M is another smooth map, then ( f ◦ g)� = g� ◦ f �.
(d) Show that the dimension of H0(M) is equal to the number of connected

components of M .
(e) Show that Hk(M) = 0 for every k > dim M .

(6) Let M be a manifold of dimension n, let U be an open subset of R
n and let ω be

a k-form on R × U . Writing ω as

ω = dt ∧
∑

I

aI dx I +
∑

J

bJ dx J ,

where I = (i1, . . . , ik−1) and J = ( j1, . . . , jk) are increasing index sequences,
(x1, . . . , xn) are coordinates in U and t is the coordinate in R, consider the
operator Q defined by

Q(ω)(t,x) =
∑

I

(∫ t

t0
aI ds

)
dx I ,

which transforms k-forms ω in R × U into (k − 1)-forms.

(a) Let f : V → U be a diffeomorphism between open subsets of R
n . Show

that the induced diffeomorphism f̃ := id× f : R × V → R × U satisfies

f̃ ∗ ◦ Q = Q ◦ f̃ ∗.

(b) Using (a), construct an operator Q which carries k-forms on R × M into
(k − 1)-forms and, for any diffeomorphism f : M → N , the induced
diffeomorphism f̃ := id× f : R× M → R× N satisfies f̃ ∗ ◦Q = Q◦ f̃ ∗.
Show that this operator is linear.

(c) Considering the operatorQdefined in (b) and the inclusion it0 : M → R×M
of M at the “level” t0, defined by it0(p) = (t0, p), show that ω − π∗i∗t0ω =
dQω + Qdω, where π : R × M → M is the projection on M .

(d) Show that the maps π� : Hk(M) → Hk(R × M) and i�t0 : Hk(R × M) →
H(M) are inverses of each other (and so Hk(M) is isomorphic to Hk(R ×
M)).

(e) Use (d) to show that, for k > 0 and n > 0, every closed k-form in R
n is

exact, that is, Hk(Rn) = 0 if k > 0.
(f) Use (d) to show that, if f, g : M → N are two smoothly homotopic

maps between smooth manifolds (meaning that there exists a smooth map
H : R × M → N such that H(t0, p) = f (p) and H(t1, p) = g(p) for
some fixed t0, t1 ∈ R), then f � = g�.

(g) We say that M is contractible if the identity map id : M → M is smoothly
homotopic to a constant map. Show that R

n is contractible.
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(h) (Poincaré lemma) Let M be a contractible smoothmanifold. Show that every
closed form on M is exact, that is, Hk(M) = 0 for all k > 0.
(Remark: This exercise is based on an exercise in [GP73]).

(7) (Lie derivative of a differential form) Given a vector field X ∈ X(M), we define
the Lie derivative of a form ω along X as

L Xω := d

dt
(ψt

∗ω)
|t=0

,

where ψt = F(·, t) with F the local flow of X at p [cf. Exercise2.8(3)]. Show
that the Lie derivative satisfies the following properties:

(a) L X (ω1 ∧ ω2) = (L Xω1) ∧ ω2 + ω1 ∧ (L Xω2);
(b) d(L Xω) = L X (dω);
(c) Cartan formula: L Xω = ι(X)dω + d(ι(X)ω);
(d) L X (ι(Y )ω) = ι(L X Y )ω + ι(Y )L Xω

[cf. Exercise6.11(12) on Chap.1 and Exercise1.15(8)].

2.4 Integration on Manifolds

Before we see how to integrate differential forms on manifolds, we will start by
studying the R

n case. For that let us consider an n-form ω defined on an open subset
U of R

n . We already know that ω can be written as

ωx = a(x) dx1 ∧ · · · ∧ dxn,

where a : U → R is a smooth function. The support of ω is, by definition, the
closure of the set where ω �= 0 that is,

suppω = {x ∈ Rn | ωx �= 0}.

We will assume that this set is compact (in which case ω is said to be compactly
supported). We define

∫

U
ω =

∫

U
a(x) dx1 ∧ · · · ∧ dxn :=

∫

U
a(x) dx1 · · · dxn,

where the integral on the right is a multiple integral on a subset ofR
n . This definition

is almost well-behaved with respect to changes of variables in R
n . Indeed, if

f : V → U is a diffeomorphism of open sets of R
n , we have from (2.1) that

f ∗ω = (a ◦ f )(det d f )dy1 ∧ · · · ∧ dyn,

http://dx.doi.org/10.1007/978-3-319-08666-8_2
http://dx.doi.org/10.1007/978-3-319-08666-8_1
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and so ∫

V
f ∗ω =

∫

V
(a ◦ f )(det d f )dy1 · · · dyn .

If f is orientation-preserving, then det (d f ) > 0, and the integral on the right is, by
the change of variables theorem for multiple integrals in R

n (cf. Sect. 2.7.2), equal to∫
U ω. For this reason, we will only consider orientable manifolds when integrating
forms on manifolds. Moreover, we will also assume that suppω is always compact
to avoid convergence problems.

Let M be an oriented manifold, and let A = {(Uα,ϕα)} be an atlas whose
parameterizations are orientation-preserving. Suppose that suppω is contained in
some coordinate neighborhood Wα = ϕα(Uα). Then we define

∫

M
ω :=

∫

Uα

ϕ∗
αω =

∫

Uα

ωα.

Note that this does not depend on the choice of coordinate neighborhood: if suppω is
contained in some other coordinate neighborhood Wβ = ϕβ(Uβ), then ωβ = f ∗ωα,
where f := ϕ−1

α ◦ ϕβ is orientation-preserving, and hence

∫

Uβ

ωβ =
∫

Uβ

f ∗ωα =
∫

Uα

ωα.

Todefine the integral in the general caseweuse apartition of unity (cf. Sect. 2.7.2)
subordinate to the cover {Wα} of M , i.e. a family of differentiable functions on M ,
{ρi }i∈I , such that:

(i) for every point p ∈ M , there exists a neighborhood V of p such that V ∩
supp ρi = ∅ except for a finite number of ρi ;

(ii) for every point p ∈ M ,
∑

i∈I ρi (p) = 1;
(iii) 0 ≤ ρi ≤ 1 and supp ρi ⊂ Wαi for some element Wαi of the cover.

Because of property (i), suppω (being compact) intersects the supports of only
finitely many ρi . Hence we can assume that I is finite, and then

ω =
(∑

i∈I

ρi

)
ω =

∑
i∈I

ρiω =
∑
i∈I

ωi

with ωi := ρiω and suppωi ⊂ Wαi . Consequently we define:

∫

M
ω :=

∑
i∈I

∫

M
ωi =

∑
i∈I

∫

Uαi

ϕ∗
αi
ωi .
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Remark 4.1

(1) When suppω is contained in one coordinate neighborhoodW , the twodefinitions
above agree. Indeed,

∫

M
ω =

∫

W
ω =

∫

W

∑
i∈I

ωi =
∫

U
ϕ∗
(∑

i∈I

ωi

)

=
∫

U

∑
i∈I

ϕ∗ωi =
∑
i∈I

∫

U
ϕ∗ωi =

∑
i∈I

∫

M
ωi ,

where we used the linearity of the pull-back and of integration on R
n .

(2) The definition of integral is independent of the choice of partition of unity and
the choice of cover. Indeed, if {ρ̃ j } j∈J is another partition of unity subordinate
to another cover {W̃β} compatible with the same orientation, we have by (1)

∑
i∈I

∫

M
ρiω =

∑
i∈I

∑
j∈J

∫

M
ρ̃ jρiω

and ∑
j∈J

∫

M
ρ̃ jω =

∑
j∈J

∑
i∈I

∫

M
ρi ρ̃ jω.

(3) It is also easy to verify the linearity of the integral, that is,

∫

M
aω1 + bω2 = a

∫

M
ω1 + b

∫

M
ω2.

for a, b ∈ R and ω1,ω2 two n-forms on M .
(4) The definition of integral can easily be extended to oriented manifolds with

boundary.

Exercise 4.2

(1) Let M be an n-dimensional differentiable manifold. A subset N ⊂ M is said
to have zero measure if the sets ϕ−1

α (N ) ⊂ Uα have zero measure for every
parameterization ϕα : Uα → M in the maximal atlas.

(a) Prove that in order to show that N ⊂ M has zero measure it suffices to check
that the sets ϕ−1

α (N ) ⊂ Uα have zero measure for the parameterizations in
an arbitrary atlas.

(b) Suppose that M is oriented. Let ω ∈ �n(M) be compactly supported and let
W = ϕ(U ) be a coordinate neighborhood such that M\W has zeromeasure.
Show that ∫

M
ω =

∫

U
ϕ∗ω,
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where the integral on the right-hand side is defined as above and always
exists.

(2) Let x, y, z be the restrictions of the Cartesian coordinate functions in R
3 to S2,

oriented so that {(1, 0, 0); (0, 1, 0)} is a positively oriented basis of T(0,0,1)S2,
and consider the 2-form

ω = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy ∈ �2(S2).

Compute the integral
∫

S2
ω

using the parameterizations corresponding to

(a) spherical coordinates;
(b) stereographic projection.

(3) Consider the manifolds

S3 =
{
(x, y, z, w) ∈ R

4 | x2 + y2 + z2 + w2 = 2
}

;
T 2 =

{
(x, y, z, w) ∈ R

4 | x2 + y2 = z2 + w2 = 1
}
.

The submanifold T 2 ⊂ S3 splits S3 into two connected components. Let M be
one of these components and let ω be the 3-form

ω = zdx ∧ dy ∧ dw − xdy ∧ dz ∧ dw.

Compute the two possible values of
∫

M ω.
(4) Let M and N be n-dimensional manifolds, f : M → N an orientation-

preserving diffeomorphism and ω ∈ �n(N ) a compactly supported form.
Prove that

∫

N
ω =

∫

M
f ∗ω.

2.5 Stokes Theorem

In this section we will prove a very important theorem.

Theorem 5.1 (Stokes) Let M be an n-dimensional oriented smooth manifold with
boundary, let ω be a (n − 1)-differential form on M with compact support, and let
i : ∂M → M be the inclusion of the boundary ∂M in M. Then
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∫

∂M
i∗ω =

∫

M
dω,

where we consider ∂M with the induced orientation (cf. Sect.9 in Chap.1).

Proof Let us take a partition of unity {ρi }i∈I subordinate to an open cover of M
by coordinate neighborhoods compatible with the orientation. Then ω =∑i∈I ρiω,
where we can assume I to be finite (ω is compactly supported), and hence

dω = d
∑
i∈I

ρiω =
∑
i∈I

d(ρiω).

By linearity of the integral we then have,

∫

M
dω =

∑
i∈I

∫

M
d(ρiω) and

∫

∂M
i∗ω =

∑
i∈I

∫

∂M
i∗(ρiω).

Hence, to prove this theorem, it is enough to consider the case where suppω is
contained inside one coordinate neighborhood of the cover. Let us then consider an
(n − 1)-form ω with compact support contained in a coordinate neighborhood W .
Let ϕ : U → W be the corresponding parameterization, where we can assume U
to be bounded (supp(ϕ∗ω) is compact). Then, the representation of ω on U can be
written as

ϕ∗ω =
n∑

j=1

a j dx1 ∧ · · · ∧ dx j−1 ∧ dx j+1 ∧ · · · ∧ dxn,

(where each a j : U → R is a C∞-function), and

ϕ∗dω = dϕ∗ω =
n∑

j=1

(−1) j−1 ∂a j

∂x j
dx1 ∧ · · · ∧ dxn .

The functions a j can be extended to C∞-functions on H
n by letting

a j (x
1, · · · , xn) =

{
a j (x1, · · · , xn) if (x1, . . . , xn) ∈ U

0 if (x1, . . . , xn) ∈ H
n\U.

If W ∩ ∂M = ∅, then i∗ω = 0. Moreover, if we consider a rectangle I in H

containing U defined by equations b j ≤ x j ≤ c j ( j = 1, . . . , n), we have

∫

M
dω =

∫

U

⎛
⎝

n∑
j=1

(−1) j−1 ∂a j

∂x j

⎞
⎠ dx1 · · · dxn =

n∑
j=1

(−1) j−1
∫

I

∂a j

∂x j
dx1 · · · dxn

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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=
n∑

j=1

(−1) j−1
∫

Rn−1

(∫ c j

b j

∂a j

∂x j
dx j

)
dx1 · · · dx j−1dx j+1 · · · dxn

=
n∑

j=1

(−1) j−1
∫

Rn−1

(
a j (x

1, . . . , x j−1, c j , x j+1, . . . , xn)−

−a j (x
1, . . . , x j−1, b j , x j+1, . . . , xn)

)
dx1 · · · dx j−1dx j+1 · · · dxn = 0,

where we used the Fubini theorem (cf. Sect. 2.7.3), the fundamental theorem of
Calculus and the fact that the a j are zero outside U . We conclude that, in this case,∫
∂M i∗ω = ∫M dω = 0.
If, on the other hand, W ∩ ∂M �= ∅ we take a rectangle I containing U now

defined by the equations b j ≤ x j ≤ c j for j = 1, . . . , n − 1, and 0 ≤ xn ≤ cn .
Then, as in the preceding case, we have

∫

M
dω =

∫

U

⎛
⎝

n∑
j=1

(−1) j−1 ∂a j

∂x j

⎞
⎠ dx1 · · · dxn =

n∑
j=1

(−1) j−1
∫

I

∂a j

∂x j
dx1 · · · dxn

= 0 + (−1)n−1
∫

Rn−1

(∫ cn

0

∂an

∂xn
dxn

)
dx1 · · · dxn−1

= (−1)n−1
∫

Rn−1

(
an(x

1, . . . , xn−1, cn)− an(x
1, . . . , xn−1, 0)

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1
an(x

1, . . . , xn−1, 0) dx1 . . . dxn−1.

To compute
∫
∂M i∗ω we need to consider a parameterization ϕ̃ of ∂M defined on

an open subset of R
n−1 which preserves the standard orientation on R

n−1 when we
consider the induced orientation on ∂M . For that, we can for instance consider the set

Ũ = {(x1, . . . , xn−1) ∈ R
n−1 | ((−1)n x1, x2, . . . , xn−1, 0) ∈ U }

and the parameterization ϕ̃ : Ũ :→ ∂M given by

ϕ̃(x1, . . . , xn−1) := ϕ
(
(−1)n x1, x2, . . . , xn−1, 0

)
.

Recall that the orientation on∂M obtained fromϕ by just dropping the last coordinate
is (−1)n times the induced orientation on ∂M (cf. Sect. 9 in Chap.1). Therefore
ϕ̃ gives the correct orientation. The local expression of i : ∂M → M on these
coordinates (î : Ũ → U such that î = ϕ−1 ◦ i ◦ ϕ̃) is given by

î(x1, . . . , xn−1) =
(
(−1)n x1, x2, . . . , xn−1, 0

)
.

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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Hence,

∫

∂M
i∗ω =

∫

Ũ
ϕ̃∗i∗ω =

∫

Ũ
(i ◦ ϕ̃)∗ω =

∫

Ũ
(ϕ ◦ î)∗ω =

∫

Ũ
î∗ϕ∗ω.

Moreover,

î∗ϕ∗ω = î∗
n∑

j=1

a j dx1 ∧ · · · ∧ dx j−1 ∧ dx j+1 ∧ · · · ∧ dxn

=
n∑

j=1

(a j ◦ î) dî1 ∧ · · · ∧ dî j−1 ∧ dî j+1 ∧ · · · ∧ dîn

= (−1)n(an ◦ î) dx1 ∧ · · · ∧ dxn−1,

since dî1 = (−1)ndx1, dîn = 0 and dî j = dx j , for j �= 1 and j �= n. Consequently,

∫

∂M
i∗ω = (−1)n

∫

Ũ
(an ◦ î) dx1 · · · dxn−1

= (−1)n
∫

Ũ
an

(
(−1)n x1, x2, . . . , xn−1, 0

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1
an(x

1, x2, . . . , xn−1, 0) dx1 · · · dxn−1 =
∫

M
dω

(where we have used the change of variables theorem). �

Remark 5.2 If M is an oriented n-dimensional differentiable manifold (that is, a
manifold with boundary ∂M = ∅), it is clear from the proof of the Stokes theorem
that ∫

M
dω = 0

for any (n − 1)-differential form ω on M with compact support. This can be viewed
as a particular case of the Stokes theorem if we define the integral over the empty
set to be zero.

Exercise 5.3

(1) Use the Stokes theorem to confirm the result of Exercise4.2(3).
(2) (Homotopy invariance of the integral) Recall that twomaps f0, f1 : M → N are

said to be smoothly homotopic if there exists a differentiablemap H : R×M →
N such that H(0, p) = f0(p) and H(1, p) = f1(p) [cf. Exercise3.8(6)]. If M
is a compact oriented manifold of dimension n and ω is a closed n-form on N ,
show that ∫

M
f ∗
0 ω =

∫

M
f ∗
1 ω.
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(3) (a) Let X ∈ X(Sn) be a vector field with no zeros. Show that

H(t, p) = cos(πt)p + sin(πt)
X p

‖X p‖
is a smooth homotopy between the identity map and the antipodal map,
where we make use of the identification

X p ∈ Tp Sn ⊂ TpR
n+1 ∼= R

n+1.

(b) Using the Stokes theorem, show that

∫

Sn
ω > 0,

where

ω =
n+1∑
i=1

(−1)i+1xi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

and Sn = ∂{x ∈ R
n+1 | ‖x‖ ≤ 1} has the orientation induced by the

standard orientation of R
n+1.

(c) Show that if n is even then X cannot exist. What about when n is odd?
(4) (Degree of a map) Let M , N be compact, connected oriented manifolds of

dimension n, and let f : M → N be a smooth map. It can be shown that there
exists a real number deg( f ) (called the degree of f ) such that, for any n-form
ω ∈ �n(N ), ∫

M
f ∗ω = deg( f )

∫

N
ω.

(a) Show that if f is not surjective then deg( f ) = 0.
(b) Show that if f is an orientation-preserving diffeomorphism then deg( f ) =

1, and that if f is an orientation-reversing diffeomorphism then deg( f )=−1.
(c) Let f : M → N be surjective and let q ∈ N be a regular value of f .

Show that f −1(q) is a finite set and that there exists a neighborhood W of
q in N such that f −1(W ) is a disjoint union of opens sets Vi of M with
f |Vi : Vi → W a diffeomorphism.

(d) Admitting the existence of a regular value of f , show that deg( f ) is an
integer. (Remark: The Sard theorem guarantees that the set of critical values of a differentiable map f

between manifolds with the same dimension has zero measure, which in turn guarantees the existence of a

regular value of f ).
(e) Given n ∈ N, indicate a smooth map f : S1 → S1 of degree n.
(f) Show that homotopic maps have the same degree.
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(g) Let f : Sn → Sn be an orientation-preserving diffeomorphism if n is even,
or an orientation-reversing diffeomorphism if n is odd. Prove that f has a
fixed point, that is, a point p ∈ Sn such that f (p) = p. (Hint: Show that if f had

no fixed points then it would be possible to construct an homotopy between f and the antipodal map).

2.6 Orientation and Volume Forms

In this section we will study the relation between orientation and differential forms.

Definition 6.1 A volume form (or volume element) on a manifold M of dimension
n is an n-form ω such that ωp �= 0 for all p ∈ M .

The existence of a volume form is equivalent to M being orientable.

Proposition 6.2 A manifold M of dimension n is orientable if and only if there exists
a volume form on M.

Proof Let ω be a volume form on M , and consider an atlas {(Uα,ϕα)}. We can
assume without loss of generality that the open sets Uα are connected. We will
construct a new atlas from this onewhose overlapmaps have derivatives with positive
determinant. Indeed, considering the representation of ω on one of these open sets
Uα ⊂ R

n , we have

ϕ∗
αω = aαdx1α ∧ · · · ∧ dxn

α,

where the function aα cannot vanish, and hence must have a fixed sign. If aα is
positive, we keep the corresponding parameterization. If not, we construct a new
parameterization by composing ϕα with the map

(x1, . . . , xn) �→ (−x1, x2, . . . , xn).

Clearly, in these new coordinates, the new function aα is positive. Repeating this for
all coordinate neighborhoods we obtain a new atlas for which all the functions aα
are positive, which we will also denote by {(Uα,ϕα)}. Moreover, whenever W :=
ϕα(Uα) ∩ ϕβ(Uβ) �= ∅, we have ωα = (ϕ−1

β ◦ ϕα)∗ωβ . Hence,

aαdx1α ∧ · · · ∧ dxn
α = (ϕ−1

β ◦ ϕα)∗(aβ dx1β ∧ · · · ∧ dxn
β)

= (aβ ◦ ϕ−1
β ◦ ϕα)(det(d(ϕ−1

β ◦ ϕα))) dx1α ∧ · · · ∧ dxn
α

and so det(d(ϕ−1
β ◦ ϕα)) > 0. We conclude that M is orientable.

Conversely, if M is orientable, we consider an atlas {(Uα,ϕα)} for which the
overlap maps ϕ−1

β ◦ ϕα are such that det d(ϕ−1
β ◦ ϕα) > 0. Taking a partition
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of unity {ρi }i∈I subordinate to the cover of M by the corresponding coordinate
neighborhoods, we may define the forms

ωi := ρi dx1i ∧ · · · ∧ dxn
i

with suppωi = supp ρi ⊂ ϕαi (Uαi ). Extending these forms to M by making them
zero outside supp ρi , we may define the form ω := ∑

i∈I ωi . Clearly ω is a well-
defined n-form on M so we just need to show that ωp �= 0 for all p ∈ M . Let p
be a point in M . There is an i ∈ I such that ρi (p) > 0, and so there exist linearly
independent vectors v1, . . . , vn ∈ Tp M such that (ωi )p(v1, . . . , vn) > 0. Moreover,
for all other j ∈ I\{i} we have (ω j )p(v1, . . . , vn) ≥ 0. Indeed, if p /∈ ϕα j (Uα j ),
then (ω j )p(v1, . . . , vn) = 0. On the other hand, if p ∈ ϕα j (Uα j ), then by (2.1)

dx1j ∧ · · · ∧ dxn
j = det(d(ϕ−1

α j
◦ ϕαi ))dx1i ∧ · · · ∧ dxn

i

and hence

(ω j )p(v1, . . . , vn) = ρ j (p)

ρi (p)
(det(d(ϕ−1

α j
◦ ϕαi )))(ωi )p(v1, . . . , vn) ≥ 0.

Consequently, ωp(v1, . . . , vn) > 0, and so ω is a volume form. �

Remark 6.3 Sometimes we call a volume form an orientation. In this case the orien-
tation on M is the one for which a basis {v1, . . . , vn} of Tp M is positive if and only
if ωp(v1, . . . , vn) > 0.

If we fix a volume form ω ∈ �n(M) on an orientable manifold M , we can define
the integral of any compactly supported function f ∈ C∞(M,R) as

∫

M
f :=

∫

M
f ω

(where the orientation of M is determined by ω). If M is compact, we define its
volume to be

vol(M) :=
∫

M
1 =

∫

M
ω.

Exercise 6.4

(1) Show that M × N is orientable if and only if both M and N are orientable.
(2) Let M be a compact oriented manifold with volume element ω ∈ �n(M). Prove

that if f > 0 then
∫

M f ω > 0. (Remark: In particular, the volume of a compact manifold is always

positive).
(3) Let M be a compact orientable manifold of dimension n, and let ω be an (n−1)-

form in M .

(a) Show that there exists a point p ∈ M for which (dω)p = 0.
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(b) Prove that there exists no immersion f : S1 → R of the unit circle into R.

(4) Let f : Sn → Sn be the antipodal map. Recall that the n-dimensional projective
space is the differential manifoldRPn = Sn/Z2, where the groupZ2 = {1,−1}
acts on Sn through 1 · x = x and (−1) · x = f (x). Let π : Sn → RPn be the
natural projection.

(a) Prove that ω ∈ �k(Sn) is of the form ω = π∗θ for some θ ∈ �k(RPn) if
and only if f ∗ω = ω.

(b) Show that RPn is orientable if and only if n is odd, and that in this case,

∫

Sn
π∗θ = 2

∫

RPn
θ.

(c) Show that for n even the sphere Sn is the orientable double covering of RPn

[cf. Exercise8.6(9) in Chap.1].

(5) Let M be a compact orientedmanifold with boundary andω ∈ �n(M) a volume
element. The divergence of a vector field X ∈ X(M) is the function div(X)
such that

L Xω = (div(X))ω

[cf. Exercise3.8(7)]. Show that

∫

M
div(X) =

∫

∂M
ι(X)ω.

(6) (Brouwer fixed point theorem)

(a) Let M be an n-dimensional compact orientable manifold with boundary
∂M �= ∅. Show that there exists no smooth map f : M → ∂M satisfying
f |∂M = id.

(b) Prove the Brouwer fixed point theorem: Any smooth map g : B → B of
the closed ball B := {x ∈ R

n | ‖x‖ ≤ 1} to itself has a fixed point, that is,
a point p ∈ B such that g(p) = p. (Hint: For each point x ∈ B, consider the ray rx starting

at g(x) and passing through x . There is only one point f (x) different from g(x) on rx ∩ ∂B. Consider the

map f : B → ∂B).

2.7 Notes

2.7.1 Section 2.1

(1) Given a finite dimensional vector space V we define its dual space as the space
of linear functionals on V .

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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Proposition 7.1 If {v1, . . . , vn} is a basis for V then there is a unique basis
{T1, . . . , Tn} of V ∗ dual to {v1, . . . , vn}, that is, such that Ti (v j ) = δi j .

Proof By linearity, the equations Ti (v j ) = δi j define a unique set of functionals
Ti ∈ V ∗. Indeed, for any v ∈ V , we have v =∑n

j=1 a j v j and so

Ti (v) =
n∑

j=1

a j Ti (v j ) =
n∑

j=1

a jδi j = ai .

Moreover, these uniquely defined functionals are linearly independent. In fact,
if

T :=
n∑

i=1

bi Ti = 0,

then, for each j = 1, . . . , n, we have

0 = T (v j ) =
n∑

i=1

bi Ti (v j ) = b j .

To show that {T1, . . . , Tn} generates V ∗, we take any S ∈ V ∗ and set bi := S(vi ).
Then, defining T :=∑n

i=1 bi Ti , we see that S(v j ) = T (v j ) for all j = 1, . . . , n.
Since {v1, . . . , vn} is a basis for V , we have S = T . �
Moreover, if {v1, . . . , vn} is a basis for V and {T1, . . . , Tn} is its dual basis, then,
for any v =∑ a j v j ∈ V and T =∑ bi Ti ∈ V ∗, we have

T (v) =
n∑

j=i

bi Ti (v) =
n∑

i, j=1

a j bi Ti (v j ) =
n∑

i, j=1

a j biδi j =
n∑

i=1

ai bi .

If we now consider a linear functional F on V ∗, that is, an element of (V ∗)∗, we
have F(T ) = T (v0) for some fixed vector v0 ∈ V . Indeed, let {v1, . . . , vn} be
a basis for V and let {T1, . . . , Tn} be its dual basis. Then if T = ∑n

i=1 bi Ti ,
we have F(T ) = ∑n

i=1 bi F(Ti ). Denoting the values F(Ti ) by ai , we get
F(T ) = ∑n

i=1 ai bi = T (v0) for v0 = ∑n
i=1 ai vi . This establishes a one-to-

one correspondence between (V ∗)∗ and V , and allows us to view V as the space
of linear functionals on V ∗. For v ∈ V and T ∈ V ∗, we write v(T ) = T (v).

(2) Changing from a basis {v1, . . . , vn} to a new basis {v′
1, . . . , v′

n} in V , we obtain
a change of basis matrix S, whose j th column is the vector of coordinates of
the new basis vector v′

j in the old basis. We can then write the symbolic matrix
equation

(v′
1, . . . , v′

n) = (v1, . . . , vn)S.

The coordinate (column) vectors a and b of a vector v ∈ V (a contravariant
1-tensor on V ) with respect to the old basis and to the new basis are related by
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b =
⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ = S−1

⎛
⎜⎝

a1
...

an

⎞
⎟⎠ = S−1a,

since we must have (v′
1, . . . , v′

n)b = (v1, . . . , vn)a = (v′
1, . . . , v′

n)S
−1a. On the

other hand, if {T1, . . . , Tn} and {T ′
1, . . . , T ′

n} are the dual bases of {v1, . . . , vn}
and {v′

1, . . . , v′
n}, we have
⎛
⎜⎝

T1
...

Tn

⎞
⎟⎠ (v1, . . . , vn) =

⎛
⎜⎝

T ′
1
...

T ′
n

⎞
⎟⎠(v′

1, . . . , v′
n

) = I

(where, in the symbolic matrix multiplication above, each coordinate is obtained
by applying the covectors to the vectors). Hence,

⎛
⎜⎝

T1
...

Tn

⎞
⎟⎠(v′

1, . . . , v′
n

)
S−1 = I ⇔ S−1

⎛
⎜⎝

T1
...

Tn

⎞
⎟⎠(v′

1, . . . , v′
n

) = I,

implying that
⎛
⎜⎝

T ′
1
...

T ′
n

⎞
⎟⎠ = S−1

⎛
⎜⎝

T1
...

Tn

⎞
⎟⎠ .

The coordinate (row) vectors a = (a1, . . . , an) and b = (b1, . . . , bn) of a
1-tensor T ∈ V ∗ (a covariant 1-tensor on V ) with respect to the old basis
{T1, . . . , Tn} and to the new basis {T ′

1, . . . , T ′
n} are related by

a

⎛
⎜⎝

T1
...

Tn

⎞
⎟⎠ = b

⎛
⎜⎝

T ′
1
...

T ′
n

⎞
⎟⎠ ⇔ aS

⎛
⎜⎝

T ′
1
...

T ′
n

⎞
⎟⎠ = b

⎛
⎜⎝

T ′
1
...

T ′
n

⎞
⎟⎠

and so b = aS. Note that the coordinate vectors of the covariant 1-tensors on V
transform like the basis vectors of V (that is, by means of the matrix S) whereas
the coordinate vectors of the contravariant 1-tensors on V transform by means
of the inverse of this matrix. This is the origin of the terms “covariant” and
“contravariant”.
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2.7.2 Section 2.4

(1) (Change of variables theorem) Let U, V ⊂ R
n be open sets, let g : U → V be

a diffeomorphism and let f : V → R be an integrable function. Then

∫

V
f =

∫

U
( f ◦ g)| det dg|.

(2) To define smooth objects on manifolds it is often useful to define them first
on coordinate neighborhoods and then glue the pieces together by means of a
partition of unity.

Theorem 7.1 Let M be a smooth manifold and V an open cover of M. Then
there is a family of differentiable functions on M, {ρi }i∈I , such that:

(i) for every point p ∈ M, there exists a neighborhood U of p such that
U ∩ supp ρi = ∅ except for a finite number of ρi ;

(ii) for every point p ∈ M,
∑

i∈I ρi (p) = 1;
(iii) 0 ≤ ρi ≤ 1 and supp ρi ⊂ V for some element V ∈ V .

Remark 7.2 This collection ρi of smooth functions is called partition of unity
subordinate to the cover V .

Proof Let us first assume that M is compact. For every point p ∈ M we consider
a coordinate neighborhood Wp = ϕp(Up) around p contained in an element Vp

of V , such that ϕp(0) = p and B3(0) ⊂ Up (where B3(0) denotes the ball of
radius 3 around 0). Then we consider the C∞-functions (cf. Fig. 2.1)

x

λ

h

1 2

Fig. 2.1 Graphs of the functions λ and h
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λ : R → R

x �→
{

e
1

(x−1)(x−2) if 1 < x < 2
0 otherwise

,

h : R → R

x �→
∫ 2

x λ(t) dt∫ 2
1 λ(t) dt

,

β : R
n → R

x �→ h(‖x‖) .

Notice that h is a decreasing function with values 0 ≤ h(x) ≤ 1, equal to zero
for x ≥ 2 and equal to 1 for x ≤ 1. Hence, we can consider bump functions
γp : M → [0, 1] defined by

γp(q) =
⎧⎨
⎩
β(ϕ−1

p (q)) if q ∈ ϕp(Up)

0 otherwise.

Then supp γp = ϕp(B2(0)) ⊂ ϕp(B3(0)) ⊂ Wp is contained inside an element
Vp of the cover. Moreover, {ϕp(B1(0))}p∈M is an open cover of M and so we
can consider a finite subcover {ϕpi (B1(0))}k

i=1 such that M = ∪k
i=1ϕpi (B1(0)).

Finally we take the functions

ρi = γpi∑k
j=1 γp j

.

Note that
∑k

j=1 γp j (q) �= 0 since q is necessarily contained inside some
ϕpi (B1(0)) and so γi (q) �= 0. Moreover, 0 ≤ ρi ≤ 1,

∑
ρi = 1 and

supp ρi = supp γpi ⊂ Vpi .
If M is not compact we can use a compact exhaustion, that is, a sequence

{Ki }i∈N of compact subsets of M such that Ki ⊂ int Ki+1 and M = ∪∞
i=1Ki .

The partition of unity is then obtained as follows. The family {ϕp(B1(0))}p∈M

is a cover of K1, so we can consider a finite subcover of K1,
{
ϕp1(B1(0)), . . . ,ϕpk1

(B1(0))
}
.

By induction, we obtain a finite number of points such that
{
ϕpi

1
(B1(0)), . . . ,ϕpi

ki
(B1(0))

}
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covers Ki\ int Ki−1 (a compact set). Then, for each i , we consider the corre-
sponding bump functions

γpi
1
, . . . , γpi

ki
: M → [0, 1].

Note that γp1i + · · · + γpi
ki
> 0 for every q ∈ Ki \ int Ki−1 (as there is always

one of these functions which is different from zero). As in the compact case, we
can choose these bump functions so that supp γpi

j
is contained in some element

of V . We will also choose them so that supp γpi
j
⊂ ∫ Ki+1 \ Ki−2 (an open set).

Hence, {γpi
j
}i∈N,1≤ j≤ki is locally finite, meaning that, given a point p ∈ M ,

there exists an open neighborhood V of p such that only a finite number of these
functions is different from zero in V . Consequently, the sum

∑∞
i=1
∑ki

j=1 γpi
j
is

a positive, differentiable function on M . Finally, making

ρi
j =

γpi
j∑∞

i=1
∑ki

j=1 γpi
j

,

we obtain the desired partition of unity (subordinate to V). �

Remark 7.3 Compact exhaustions always exist on manifolds. In fact, if U is a
bounded open set of R

n , one can easily construct a compact exhaustion {Ki }i∈N
for U by setting

Ki =
{

x ∈ U | dist(x, ∂U ) ≥ 1

n

}
.

If M is a differentiable manifold, one can always take a countable atlas A =
{(U j ,ϕ j )} j∈N such that eachU j is a bounded open set, thus admitting a compact

exhaustion {K j
i }i∈N. Therefore

⎧⎨
⎩
⋃

i+ j=l

ϕ j

(
K j

i

)
⎫⎬
⎭

l∈N

is a compact exhaustion of M .

2.7.3 Section 2.5

(Fubini theorem)Let A ⊂ R
n and B ⊂ R

m be compact intervals and let f : A×B →
R be a continuous function. Then
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∫

A×B
f =

∫

A

(∫

B
f (x, y)dy1 · · · dym

)
dx1 · · · dxn

=
∫

B

(∫

A
f (x, y)dx1 · · · dxn

)
dy1 · · · dym .

2.7.4 Bibliographical Notes

The material in this chapter can be found in most books on differential geometry
(e.g. [Boo03, GHL04]). A text entirely dedicated to differential forms and their
applications is [dC94]. The study of de Rham cohomology leads to a beautiful and
powerful theory, whose details can be found for instance in [BT82].
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Chapter 3
Riemannian Manifolds

The metric properties of R
n (distances and angles) are determined by the canonical

Cartesian coordinates. In a general differentiablemanifold, however, there are no such
preferred coordinates; to define distances and angles one must add more structure by
choosing a special 2-tensor field, called a Riemannian metric (much in the same
way as a volume form must be selected to determine a notion of volume). This
idea was introduced by Riemann in his 1854 habilitation lecture “On the hypotheses
which underlie geometry”, following the discovery (around 1830) of non-Euclidean
geometry byGauss, Bolyai and Lobachevsky (in fact, it wasGausswho suggested the
subject of Riemann’s lecture). It proved to be an extremely fruitful concept, having
led, among other things, to the development of Einstein’s general theory of relativity.

This chapter initiates the study of Riemannian geometry. Section3.1 introduces
Riemannian metrics as tensor fields determining an inner product at each tangent
space. This naturally leads to a number of concepts, such as the length of a vector
(or a curve), the angle between two vectors, the Riemannian volume form (which
assigns unit volume to any orthonormal basis) and the gradient of a function.

Section3.2 discusses differentiation of vector fields. This concept also requires in-
troducing some additional structure, called an affine connection, since vector fields
on a differentiable manifold do not have preferred Cartesian components to be differ-
entiated. It provides a notionofparallelismof vectors along curves, and consequently
of geodesics, that is, curves whose tangent vector is parallel. Riemannian manifolds
come equipped with a special affine connection, called the Levi-Civita connection
(Sect. 3.3), whose geodesics have distance-minimizing properties (Sect. 3.4). This is
in line with the intuitive idea that the shortest distance route between two points is
one that does not turn.

Finally, the Hopf-Rinow theorem, relating the properties of a Riemannian man-
ifold as a metric space to the properties of its geodesics, is proved in Sect. 3.5. This
theorem completely characterizes the important class of complete Riemannian man-
ifolds.

© Springer International Publishing Switzerland 2014
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DOI 10.1007/978-3-319-08666-8_3
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3.1 Riemannian Manifolds

To define Riemannian manifolds we must first take a closer look at 2-tensors.

Definition 1.1 A tensor g ∈ T 2(T ∗
p M) is said to be

(i) symmetric if g(v,w) = g(w, v) for all v,w ∈ Tp M ;
(ii) nondegenerate if g(v,w) = 0 for all w ∈ Tp M implies v = 0;
(iii) positive definite if g(v, v) > 0 for all v ∈ Tp M \ {0}.
A covariant 2-tensor field g is said to be symmetric, nondegenerate or positive

definite if gp is symmetric, nondegenerate or positive definite for all p ∈ M . If
x : V → R

n is a local chart, we have

g =
n∑

i, j=1

gi j dxi ⊗ dx j

in V , where

gi j = g

(
∂

∂xi
,
∂

∂x j

)
.

It is easy to see that g is symmetric, nondegenerate or positive definite if and only if
the matrix (gi j ) has these properties [see Exercise1.10(1)].

Definition 1.2 A Riemannian metric on a smooth manifold M is a symmetric
positive definite smooth covariant 2-tensor field g. A smooth manifold M equipped
with a Riemannian metric g is called a Riemannian manifold, and is denoted by
(M, g).

A Riemannian metric is therefore a smooth assignment of an inner product to
each tangent space. It is usual to write

gp(v,w) = 〈v,w〉p.

Example 1.3 (Euclidean n-space) It should be clear that M = R
n and

g =
n∑

i=1

dxi ⊗ dxi

define a Riemannian manifold.

Proposition 1.4 Let (N , g) be a Riemannian manifold and f : M → N an immer-
sion. Then f ∗g is a Riemannian metric in M (called the induced metric).

Proof We just have to prove that f ∗g is symmetric and positive definite. Let p ∈ M
and v,w ∈ Tp M . Since g is symmetric,
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( f ∗g)p(v,w) = g f (p)((d f )pv, (d f )pw) = g f (p)((d f )pw, (d f )pv) = ( f ∗g)p(w, v).

On the other hand, it is clear that ( f ∗g)p(v, v) ≥ 0, and

( f ∗g)p(v, v) = 0 ⇒ g f (p)((d f )pv, (d f )pv) = 0 ⇒ (d f )pv = 0 ⇒ v = 0

(as (d f )p is injective). �

In particular, any submanifold M of a Riemannian manifold (N , g) is itself a
Riemannian manifold. Notice that, in this case, the induced metric at each point p ∈
M is just the restriction of gp to Tp M ⊂ Tp N . Since R

n is a Riemannian manifold
(cf. Example 1.3), we see that any submanifold of R

n is a Riemannian manifold. The
Whitney theorem then implies that any manifold admits a Riemannian metric.

It was proved in 1954 by John Nash [Nas56] that any compact n-dimensional
Riemannian manifold can be isometrically embedded in R

N for N = n(3n+11)
2 (that

is, embedded in such a way that its metric is induced by the Euclidean metric of
R

N ). Gromov [GR70] later proved that one can take N = (n+2)(n+3)
2 . Notice that, for

n = 2,Nash’s result gives an isometric embedding of any compact surface inR
17, and

Gromov’s in R
10. In fact, Gromov has further showed that any surface isometrically

embeds in R
5. This result cannot be improved, as the real projective plane with the

standard metric [see Exercise1.10(3)] cannot be isometrically embedded into R
4.

Example 1.5 The standard metric on

Sn = {x ∈ R
n+1 | ‖x‖ = 1}

is the metric induced on Sn by the Euclidean metric on R
n+1. A parameterization of

the open set
U = {x ∈ Sn | xn+1 > 0}

is for instance

ϕ(x1, . . . , xn) =
(

x1, . . . , xn,
√
1 − (x1)2 − · · · − (xn)2

)
,

and the corresponding coefficients of the metric tensor are

gi j =
〈
∂ϕ

∂xi
,
∂ϕ

∂x j

〉
= δi j + xi x j

1 − (x1)2 − · · · − (xn)2
.

Two Riemannian manifolds will be regarded as the same if they are isometric.

Definition 1.6 Let (M, g) and (N , h) be Riemannian manifolds. A diffeomorphism
f : M → N is said to be an isometry if f ∗h = g. Similarly, a local diffeomorphism
f : M → N is said to be a local isometry if f ∗h = g.
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A Riemannian metric allows us to compute the length ‖v‖ = 〈v, v〉 1
2 of any

vector v ∈ T M (as well as the angle between two vectors with the same base point).
Therefore we can measure the length of curves.

Definition 1.7 If (M, 〈·, ·〉) is a Riemannian manifold and c : [a, b] → M is a
differentiable curve, the length of c is

l(c) =
b∫

a

‖ċ(t)‖dt.

The length of a curve segment does not depend on the parameterization [see
Exercise1.10(5)].

Recall that if M is an orientable n-dimensional manifold then it possesses volume
elements, that is, differential forms ω ∈ �n(M) such that ωp �= 0 for all p ∈ M .
Clearly, there are as many volume elements as differentiable functions f ∈ C∞(M)
without zeros.

Definition 1.8 If (M, g) is an orientable Riemannian manifold, ω ∈ �n(M) is said
to be a Riemannian volume element if

ωp(v1, . . . , vn) = ±1

for any orthonormal basis {v1, . . . , vn} of Tp M and all p ∈ M .

Notice that if M is connected there exist exactly twoRiemannian volume elements
(one for each choice of orientation). Moreover, if ω is a Riemannian volume element
and x : V → R is a chart compatible with the orientation induced by ω, one has

ω = f dx1 ∧ . . . ∧ dxn

for some positive function

f = ω

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

If S is the matrix whose columns are the components of ∂
∂x1
, . . . , ∂

∂xn on some
orthonormal basis with the same orientation, we have

f = det S =
(
det

(
S2

)) 1
2 = (

det
(
St S

)) 1
2 = (

det(gi j )
) 1
2

since clearly St S is thematrixwhose (i, j)th entry is the inner product g
(
∂
∂xi ,

∂
∂x j

)
=

gi j .
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A Riemannian metric 〈·, ·〉 on M determines a linear isomorphism�g : Tp M →
T ∗

p M for all p ∈ M defined by�g(v)(w) = 〈v,w〉 for all v,w ∈ Tp M . This extends
to an isomorphism between X(M) and �1(M). In particular, we have

Definition 1.9 Let (M, g) be a Riemannian manifold and f : M → R a smooth
function. The gradient of f is the vector field grad f associated to the 1-form d f
through the isomorphism determined by g.

Exercise 1.10

(1) Let g = ∑n
i, j = 1 gi j dxi ⊗ dx j ∈ T 2(T ∗

p M). Show that:

(a) g is symmetric if and only if gi j = g j i (i, j = 1, . . . , n);
(b) g is nondegenerate if and only if det(gi j ) �= 0;
(c) g is positive definite if and only if (gi j ) is a positive definite matrix;
(d) if g is nondegenerate, the map �g : Tp M → T ∗

p M given by �g(v)(w) =
g(v,w) for all v,w ∈ Tp M is a linear isomorphism;

(e) if g is positive definite then g is nondegenerate.

(2) Prove that any differentiable manifold admits a Riemannian structure without
invoking the Whitney theorem. (Hint: Use partitions of unity).

(3) (a) Let (M, g) be a Riemannian manifold and let G be a discrete Lie group
acting freely and properly on M by isometries. Show that M/G has a natural
Riemannian structure (called the quotient structure).

(b) How would you define the flat square metric on the n-torus T n = R
n/Zn?

(c) How would you define the standard metric on the real projective n-space
RPn = Sn/Z2?

(4) Recall that given a Lie group G and x ∈ G, the left translation by x is the
diffeomorphism Lx : G → G given by Lx (y) = xy for all y ∈ G. ARiemannian
metric g on G is said to be left-invariant if Lx is an isometry for all x ∈ G.
Show that:

(a) g(·, ·) ≡ 〈·, ·〉 is left-invariant if and only if

〈v,w〉x = 〈(
d Lx−1

)
x v,

(
d Lx−1

)
x w

〉
e

for all x ∈ G and v,w ∈ Tx G, where e ∈ G is the identity and 〈·, ·〉e is an
inner product on the Lie algebra g = TeG;

(b) the standard metric on S3 ∼= SU (2) is left-invariant;
(c) the metric induced on O(n) by the Euclidean metric of Mn×n ∼= R

n2 is
left-invariant.

(5) We say that a differentiable curve γ : [α, β] → M is obtained from the curve
c : [a, b] → M by reparameterization if there exists a smooth bijection f :
[α, β] → [a, b] (the reparameterization) such that γ = c ◦ f . Show that if γ is
obtained from c by reparameterization then l(γ ) = l(c).

(6) Let (M, g) be a Riemannian manifold and f ∈ C∞(M). Show that if a ∈ R is
a regular value of f then grad( f ) is orthogonal to the submanifold f −1(a).
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3.2 Affine Connections

If X and Y are vector fields in Euclidean space, we can define the directional deriv-
ative ∇X Y of Y along X . This definition, however, uses the existence of Cartesian
coordinates, which no longer holds in a general manifold. To overcome this difficulty
we must introduce more structure:

Definition 2.1 Let M be a differentiable manifold. An affine connection on M is a
map ∇ : X(M)× X(M) → X(M) such that

(i) ∇ f X+gY Z = f ∇X Z + g∇Y Z;
(ii) ∇X (Y + Z) = ∇X Y + ∇X Z;
(iii) ∇X ( f Y ) = (X · f )Y + f ∇X Y

for all X,Y, Z ∈ X(M) and f, g ∈ C∞(M,R) (we write ∇X Y := ∇(X,Y )).

The vector field ∇X Y is sometimes known as the covariant derivative of Y
along X .

Proposition 2.2 Let ∇ be an affine connection on M, let X,Y ∈ X(M) and p ∈ M.
Then (∇X Y )p ∈ Tp M depends only on X p and on the values of Y along a curve
tangent to X at p. Moreover, if x : W → R

n are local coordinates on some open set
W ⊂ M and

X =
n∑

i=1

Xi ∂

∂xi
, Y =

n∑
i=1

Y i ∂

∂xi

on this set, we have

∇X Y =
n∑

i=1

⎛
⎝X · Y i +

n∑
j,k=1

�i
jk X j Y k

⎞
⎠ ∂

∂xi
(3.1)

where the n3 differentiable functions �i
jk : W → R, called the Christoffel symbols,

are defined by

∇ ∂

∂x j

∂

∂xk
=

n∑
i=1

�i
jk
∂

∂xi
. (3.2)

Proof It is easy to show that an affine connection is local, that is, if X,Y ∈ X(M)
coincide with X̃ , Ỹ ∈ X(M) in some open set W ⊂ M then ∇X Y = ∇X̃ Ỹ on W
[see Exercise2.6(1)]. Consequently, we can compute ∇X Y for vector fields X,Y
defined on W only. Let W be a coordinate neighborhood for the local coordinates x :
W → R

n , and define the Christoffel symbols associated with these local coordinates
through (3.2). Writing out

∇X Y = ∇(∑n
i=1 Xi ∂

∂xi

)
⎛
⎝

n∑
j=1

Y j ∂

∂x j

⎞
⎠
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and using the properties listed in definition (2.1) yields (3.1). This formula shows
that (∇X Y )p depends only on Xi (p),Y i (p) and (X · Y i )(p). Moreover, Xi (p) and
Y i (p) depend only on X p and Yp, and (X · Y i )(p) = d

dt Y i (c(t))|t=0 depends only
on the values of Y i (or Y ) along a curve c whose tangent vector at p = c(0) is X p.

�

Remark 2.3 Locally, an affine connection is uniquely determined by specifying its
Christoffel symbols on a coordinate neighborhood. However, the choices of Christof-
fel symbols on different charts are not independent, as the covariant derivative must
agree on the overlap.

A vector field defined along a differentiable curve c : I → M is a differentiable
map V : I → T M such that V (t) ∈ Tc(t)M for all t ∈ I . An obvious example is
the tangent vector ċ(t). If V is a vector field defined along the differentiable curve
c : I → M with ċ �= 0, its covariant derivative along c is the vector field defined
along c given by

DV

dt
(t) := ∇ċ(t)V = (∇X Y )c(t)

for any vector fields X,Y ∈ X(M) such that Xc(t) = ċ(t) and Yc(s) = V (s) with
s ∈ (t − ε, t + ε) for some ε > 0. Note that if ċ(t) �= 0 such extensions always exist.
Proposition 2.2 guarantees that (∇X Y )c(t) does not depend on the choice of X,Y . In
fact, if in local coordinates x : W → R

n we have xi (t) := xi (c(t)) and

V (t) =
n∑

i=1

V i (t)

(
∂

∂xi

)

c(t)
,

then

DV

dt
(t) =

n∑
i=1

⎛
⎝V̇ i (t)+

n∑
j,k=1

�i
jk(c(t))ẋ

j (t)V k(t)

⎞
⎠

(
∂

∂xi

)

c(t)
.

Definition 2.4 A vector field V defined along a curve c : I → M is said to be
parallel along c if

DV

dt
(t) = 0

for all t ∈ I . The curve c is called a geodesic of the connection ∇ if ċ is parallel
along c, i.e. if

Dċ

dt
(t) = 0

for all t ∈ I .

In local coordinates x : W → R
n , the condition for V to be parallel along c is

written as
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V̇ i +
n∑

j,k=1

�i
jk ẋ j V k = 0 (i = 1, . . . , n). (3.3)

This is a system of first-order linear ODEs for the components of V . By the Picard–
Lindelöf theorem, together with the global existence theorem for linear ODEs
[Arn92], given a curve c : I → M , a point p ∈ c(I ) and a vector v ∈ Tp M ,
there exists a unique vector field V : I → T M parallel along c such that V (0) = v,
which is called the parallel transport of v along c.

Moreover, the geodesic equations are

ẍ i +
n∑

j,k=1

�i
jk ẋ j ẋ k = 0 (i = 1, . . . , n). (3.4)

This is a system of second-order (nonlinear) ODEs for the coordinates of c(t). There-
fore the Picard–Lindelöf theorem implies that, given a point p ∈ M and a vector
v ∈ Tp M , there exists a unique geodesic c : I → M , defined on a maximal open
interval I such that 0 ∈ I , satisfying c(0) = p and ċ(0) = v.

We will now define the torsion of an affine connection ∇. For that, we note that,
in local coordinates x : W → R

n , we have

∇X Y − ∇Y X =
n∑

i=1

⎛
⎝X · Y i − Y · Xi +

n∑
j,k=1

�i
jk

(
X j Y k − Y j Xk

)⎞
⎠ ∂

∂xi

= [X,Y ] +
n∑

i, j,k=1

(
�i

jk − �i
k j

)
X j Y k ∂

∂xi
.

Definition 2.5 The torsion operator of a connection ∇ on M is the operator T :
X(M)× X(M) → X(M) given by

T (X,Y ) = ∇X Y − ∇Y X − [X,Y ],

for all X,Y ∈ X(M). The connection is said to be symmetric if T = 0.

The local expression of T (X,Y ) makes it clear that T (X,Y )p depends linearly
on X p and Yp. In other words, T is the (2, 1)-tensor field on M given in local
coordinates by

T =
n∑

i, j,k=1

(
�i

jk − �i
k j

)
dx j ⊗ dxk ⊗ ∂

∂xi

(recall from Remark1.3 in Chap.2 that any (2, 1)-tensor T ∈ T 2,1(V ∗, V ) is
naturally identified with a bilinear map �T : V ∗ × V ∗ → V ∼= V ∗∗ through
�T (v,w)(α) := T (v,w, α) for all v,w ∈ V, α ∈ V ∗).

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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Notice that the connection is symmetric if and only if ∇X Y − ∇Y X = [X,Y ]
for all X,Y ∈ X(M). In local coordinates, the condition for the connection to be
symmetric is

�i
jk = �i

k j (i, j, k = 1, . . . , n)

(hence the name).

Exercise 2.6

(1) (a) Show that if X,Y ∈ X(M) coincide with X̃ , Ỹ ∈ X(M) in some open set
W ⊂ M then ∇X Y = ∇X̃ Ỹ on W . (Hint: Use bump functions with support contained on W

and the properties listed in definition 2.1).
(b) Obtain the local coordinate expression (3.1) for ∇X Y .
(c) Obtain the local coordinate Eq. (3.3) for the parallel transport law.
(d) Obtain the local coordinate Eq. (3.4) for the geodesics of the connection ∇.

(2) Determine all affine connections on R
n . Of these, determine the connections

whose geodesics are straight lines c(t) = at + b (with a, b ∈ R
n).

(3) Let ∇ be an affine connection on M . If ω ∈ �1(M) and X ∈ X(M), we define
the covariant derivative of ω along X , ∇Xω ∈ �1(M), by

∇Xω(Y ) = X · (ω(Y ))− ω(∇X Y )

for all Y ∈ X(M).

(a) Show that this formula defines indeed a 1-form, i.e. show that (∇Xω(Y )) (p)
is a linear function of Yp.

(b) Show that
(i) ∇ f X+gYω = f ∇Xω + g∇Yω;
(ii) ∇X (ω + η) = ∇Xω + ∇Xη;
(iii) ∇X ( f ω) = (X · f )ω + f ∇Xω

for all X,Y ∈ X(M), f, g ∈ C∞(M) and ω, η ∈ �1(M).
(c) Let x : W → R

n be local coordinates on an open set W ⊂ M , and take

ω =
n∑

i=1

ωi dxi .

Show that

∇Xω =
n∑

i=1

⎛
⎝X · ωi −

n∑
j,k=1

�k
ji X jωk

⎞
⎠ dxi .

(d) Define the covariant derivative ∇X T for an arbitrary tensor field T in M ,
and write its expression in local coordinates.
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3.3 Levi-Civita Connection

In the case of a Riemannian manifold, there is a particular choice of connection,
called the Levi-Civita connection, with special geometric properties.

Definition 3.1 A connection ∇ in a Riemannian manifold (M, 〈·, ·〉) is said to be
compatible with the metric if

X · 〈Y, Z〉 = 〈∇X Y, Z〉 + 〈Y,∇X Z〉

for all X,Y, Z ∈ X(M).

If ∇ is compatible with the metric, then the inner product of two vector fields V1
and V2, parallel along a curve, is constant along the curve:

d

dt
〈V1(t), V2(t)〉 = 〈∇ċ(t)V1(t), V2(t)

〉 + 〈
V1(t),∇ċ(t)V2(t)

〉 = 0.

In particular, parallel transport preserves lengths of vectors and angles between vec-
tors. Therefore, if c : I → M is a geodesic, then ‖ċ(t)‖ = k is constant. If a ∈ I ,
the length s of the geodesic between a and t is

s =
∫ t

a
‖ċ(v)‖ dv =

∫ t

a
k dv = k(t − a).

In other words, t is an affine function of the arclength s (and is therefore called an
affine parameter). In particular, this shows that the parameters of two geodesics
with the same image are affine functions of each other).

Theorem 3.2 (Levi–Civita) If (M, 〈·, ·〉) is a Riemannian manifold then there exists
a unique connection ∇ on M which is symmetric and compatible with 〈·, ·〉. In local
coordinates (x1, . . . , xn), the Christoffel symbols for this connection are

�i
jk = 1

2

n∑
l=1

gil
(
∂gkl

∂x j
+ ∂g jl

∂xk
− ∂g jk

∂xl

)
(3.5)

where
(
gi j

) = (
gi j

)−1
.

Proof Let X,Y, Z ∈ X(M). If the Levi-Civita connection exists then we must have

X · 〈Y, Z〉 = 〈∇X Y, Z〉 + 〈Y,∇X Z〉;
Y · 〈X, Z〉 = 〈∇Y X, Z〉 + 〈X,∇Y Z〉;

−Z · 〈X,Y 〉 = −〈∇Z X,Y 〉 − 〈X,∇Z Y 〉,
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as ∇ is compatible with the metric. Moreover, since ∇ is symmetric, we must also
have

−〈[X, Z ],Y 〉 = −〈∇X Z ,Y 〉 + 〈∇Z X,Y 〉;
−〈[Y, Z ], X〉 = −〈∇Y Z , X〉 + 〈∇Z Y, X〉;

〈[X,Y ], Z〉 = 〈∇X Y, Z〉 − 〈∇Y X, Z〉.

Adding these six equalities, we obtain the Koszul formula

2〈∇X Y, Z〉 = X · 〈Y, Z〉 + Y · 〈X, Z〉 − Z · 〈X,Y 〉
− 〈[X, Z ],Y 〉 − 〈[Y, Z ], X〉 + 〈[X,Y ], Z〉.

Since 〈·, ·〉 is nondegenerate and Z is arbitrary, this formula determines ∇X Y . Thus,
if the Levi-Civita connection exists, it must be unique.

To prove existence, we define ∇X Y through the Koszul formula. It is not difficult
to show that this indeed defines a connection [cf. Exercise3.3(1)]. Also, using this
formula, we obtain

2〈∇X Y − ∇Y X, Z〉 = 2〈∇X Y, Z〉 − 2〈∇Y X, Z〉 = 2〈[X,Y ], Z〉

for all X,Y, Z ∈ X(M), and hence ∇ is symmetric. Finally, again using the Koszul
formula, we have

2〈∇X Y, Z〉 + 2〈Y,∇X Z〉 = 2X · 〈Y, Z〉

and therefore the connection defined by this formula is compatible with the metric.
Choosing local coordinates (x1, . . . , xn), we have

[
∂

∂xi
,
∂

∂x j

]
= 0 and

〈
∂

∂xi
,
∂

∂x j

〉
= gi j .

Therefore the Koszul formula yields

2

〈
∇ ∂

∂x j

∂

∂xk
,
∂

∂xl

〉
= ∂

∂x j
· gkl + ∂

∂xk
· g jl − ∂

∂xl
· g jk

⇔
〈

n∑
i=1

�i
jk
∂

∂xi
,
∂

∂xl

〉
= 1

2

(
∂gkl

∂x j
+ ∂g jl

∂xk
− ∂g jk

∂xl

)

⇔
n∑

i=1

gil�
i
jk = 1

2

(
∂gkl

∂x j
+ ∂g jl

∂xk
− ∂g jk

∂xl

)
.

This linear system is easily solved to give (3.5). �
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Exercise 3.3

(1) Show that the Koszul formula defines a connection.
(2) We introduce in R

3, with the usual Euclidean metric 〈·, ·〉, the connection ∇
defined in Cartesian coordinates (x1, x2, x3) by

�i
jk = ωεi jk,

where ω : R
3 → R is a smooth function and

εi jk =
⎧⎨
⎩

+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 otherwise.

Show that:

(a) ∇ is compatible with 〈·, ·〉;
(b) the geodesics of ∇ are straight lines;
(c) the torsion of ∇ is not zero in all points where ω �= 0 (therefore ∇ is not the

Levi-Civita connection unless ω ≡ 0);
(d) the parallel transport equation is

V̇ i +
3∑

j,k=1

ωεi jk ẋ j V k = 0 ⇔ V̇ + ω(ẋ × V ) = 0

(where × is the cross product in R
3); therefore, a vector parallel along a

straight line rotates about it with angular velocity −ωẋ .

(3) Let (M, g) and (N , g̃) be isometric Riemannian manifolds with Levi-Civita
connections ∇ and ∇̃, and let f : M → N be an isometry. Show that:

(a) f∗∇X Y = ∇̃ f∗ X f∗Y for all X,Y ∈ X(M);
(b) if c : I → M is a geodesic then f ◦ c : I → N is also a geodesic.

(4) Consider the usual local coordinates (θ, ϕ) in S2 ⊂ R
3 defined by the parame-

terization φ : (0, π)× (0, 2π) → R
3 given by

φ(θ, ϕ) = (sin θ cosϕ, sin θ sin ϕ, cos θ).

(a) Using these coordinates, determine the expression of the Riemannian metric
induced on S2 by the Euclidean metric of R

3.
(b) Compute the Christoffel symbols for the Levi-Civita connection in these

coordinates.
(c) Show that the equator is the image of a geodesic.
(d) Show that any rotation about an axis through the origin in R

3 induces an
isometry of S2.
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(e) Show that the images of geodesics of S2 are great circles.
(f) Find a geodesic triangle (i.e. a trianglewhose sides are images of geodesics)

whose internal angles add up to 3π
2 .

(g) Let c : R → S2 be given by c(t) = (sin θ0 cos t, sin θ0 sin t, cos θ0), where
θ0 ∈ (

0, π2
)
(therefore c is not a geodesic). Let V be a vector field parallel

along c such that V (0) = ∂
∂θ

( ∂
∂θ

is well defined at (sin θ0, 0, cos θ0) by
continuity). Compute the angle by which V is rotated when it returns to the
initial point. (Remark: The angle you have computed is exactly the angle by which the oscillation

plane of the Foucault pendulum rotates during a day in a place at latitude π2 − θ0, as it tries to remain fixed

with respect to the stars on a rotating Earth).
(h) Use this result to prove that no open set U ⊂ S2 is isometric to an open set

W ⊂ R
2 with the Euclidean metric.

(i) Given a geodesic c : R → R
2 of R

2 with the Euclidean metric and a point
p /∈ c(R), there exists a unique geodesic c̃ : R → R

2 (up to reparameter-
ization) such that p ∈ c̃(R) and c(R) ∩ c̃(R) = ∅ (parallel postulate). Is
this true in S2?

(5) Recall that identifying each point in

H = {(x, y) ∈ R
2 | y > 0}

with the invertible affine map h : R → R given by h(t) = yt + x induces a Lie
group structure on H [cf. Exercise 7.17(3) in Chap.1].

(a) Show that the left-invariant metric induced by the Euclidean inner product
dx ⊗ dx + dy ⊗ dy in h = T(0,1)H is

g = 1

y2
(dx ⊗ dx + dy ⊗ dy)

[cf. Exercise 1.10(4)]. (Remark: H endowed with this metric is called the hyperbolic plane).
(b) Compute the Christoffel symbols of the Levi-Civita connection in the coor-

dinates (x, y).
(c) Show that the curves α, β : R → H given in these coordinates by

α(t) = (
0, et)

β(t) =
(
tanh t,

1

cosh t

)

are geodesics. What are the sets α(R) and β(R)?
(d) Determine all images of geodesics.
(e) Show that, given twopoints p, q ∈ H , there exists a unique geodesic through

them (up to reparameterization).

http://dx.doi.org/10.1007/978-3-319-08666-8_1


108 3 Riemannian Manifolds

(f) Give examples of connected Riemannian manifolds containing two points
through which there are (i) infinitely many geodesics (up to reparameteri-
zation); (ii) no geodesics.

(g) Show that no open set U ⊂ H is isometric to an open set V ⊂ R
2 with

the Euclidean metric. (Hint: Show that in any neighborhood of any point p ∈ H there is always a

geodesic quadrilateral whose internal angles add up to less than 2π).
(h) Does the parallel postulate hold in the hyperbolic plane?

(6) Let (M, 〈·, ·〉) be a Riemannian manifold with Levi-Civita connection ∇̃, and
let (N , 〈〈·, ·〉〉) be a submanifold with the induced metric and Levi-Civita
connection ∇.

(a) Show that
∇X Y = (∇̃X̃ Ỹ

)�

for all X,Y ∈ X(N ), where X̃ , Ỹ are any extensions of X,Y to X(M)
and � : T M |N → T N is the orthogonal projection.

(b) Use this result to indicate curves that are, and curves that are not, geodesics
of the following surfaces in R

3:
(i) the sphere S2;
(ii) the torus of revolution;
(iii) the surface of a cone;
(iv) a general surface of revolution.

(c) Show that if two surfaces in R
3 are tangent along a curve, then the parallel

transport of vectors along this curve in both surfaces coincides.
(d) Use this result to compute the angle�θ by which a vector V is rotated when

it is parallel transported along a circle on the sphere. (Hint: Consider the cone which

is tangent to the sphere along the circle (cf. Fig. 3.1); notice that the cone minus a ray through the vertex is

isometric to an open set of the Euclidean plane).

(7) Let (M, g) be a Riemannian manifold with Levi-Civita connection∇. Show that
g is parallel along any curve, i.e. show that

∇Xg = 0

for all X ∈ X(M) [cf. Exercise2.6(3)].
(8) Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇, and let

ψt : M → M be a 1-parameter group of isometries. The vector field X ∈ X(M)
defined by

X p := d

dt |t=0

ψt (p)

is called the Killing vector field associated to ψt . Show that:

(a) L Xg = 0 [cf. Exercise2.8(3)];
(b) X satisfies 〈∇Y X, Z〉 + 〈∇Z X,Y 〉 = 0 for all vector fields Y, Z ∈ X(M);

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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V0

V0

V0

V

V

Δ θ

Fig. 3.1 Parallel transport along a circle on the sphere

(c) if c : I → M is a geodesic then
〈
ċ(t), Xc(t)

〉
is constant.

(9) Recall that if M is an oriented differential manifold with volume element ω ∈
�n(M), the divergence of X is the function div(X) such that

L Xω = (div(X))ω

[cf. Exercise 6.4(5) in Chap.2]. Suppose that M has a Riemannian metric and
that ω is a Riemannian volume element.Show that at each point p ∈ M ,

div(X) =
n∑

i=1

〈∇Yi X,Yi 〉,

where {Y1, . . . ,Yn} is an orthonormal basis of Tp M and ∇ is the Levi-Civita
connection.

3.4 Minimizing Properties of Geodesics

Let M be a differentiable manifold with an affine connection ∇. As we saw in
Sect. 3.2, given a point p ∈ M and a tangent vector v ∈ Tp M , there exists a unique
geodesic cv : I → M , defined on a maximal open interval I ⊂ R, such that
0 ∈ I , cv(0) = p and ċv(0) = v. Consider now the curve γ : J → M defined by
γ (t) = cv(at), where a ∈ R and J is the inverse image of I by the map t �→ at . We
have

γ̇ (t) = aċv(at),

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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M

Tp M

v

p

expp (v )

Fig. 3.2 The exponential map

and consequently
∇γ̇ γ̇ = ∇aċv (aċv) = a2∇ċv ċv = 0.

Thus γ is also a geodesic. Since γ (0) = cv(0) = p and γ̇ (0) = aċv(0) = av, we
see that γ is the unique geodesic with initial velocity av ∈ Tp M (that is, γ = cav).
Therefore, we have cav(t) = cv(at) for all t ∈ I . This property is sometimes referred
to as thehomogeneity of geodesics. Notice thatwe canmake the interval J arbitrarily
large by making a sufficiently small. If 1 ∈ I , we define expp(v) = cv(1). By
homogeneity of geodesics, we can define expp(v) for v in some open neighborhood
U of the origin in Tp M . The map expp : U ⊂ Tp M → M thus obtained is called
the exponential map at p (Fig. 3.2).

Proposition 4.1 There exists an open set U ⊂ Tp M containing the origin such that
expp : U → M is a diffeomorphism onto some open set V ⊂ M containing p
(called a normal neighborhood).

Proof The exponential map is clearly differentiable as a consequence of the smooth
dependence of the solution of an ODE on its initial data (cf. [Arn92]). If v ∈ Tp M
is such that expp(v) is defined, we have, by homogeneity, that expp(tv) = ctv(1) =
cv(t). Consequently,

(
d expp

)
0
v = d

dt
expp(tv)|t=0 = d

dt
cv(t)|t=0 = v.
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We conclude that
(
d expp

)
0

: T0(Tp M) ∼= Tp M → Tp M is the identity map. By the
inverse function theorem, expp is then a diffeomorphism of some open neighborhood
U of 0 ∈ Tp M onto some open set V ⊂ M containing p = expp(0). �

Example 4.2 Consider the Levi-Civita connection in S2 with the standard metric,
and let p ∈ S2. Then expp(v) is well defined for all v ∈ Tp S2, but it is not a
diffeomorphism, as it is clearly not injective. However, its restriction to the open ball
Bπ (0) ⊂ Tp S2 is a diffeomorphism onto S2 \ {−p}.

Now let (M, 〈·, ·〉) be a Riemannian manifold and ∇ its Levi-Civita connection.
Since 〈·, ·〉 defines an inner product in Tp M , we can think of Tp M as the Euclidean
n-space R

n . Let E be the vector field defined on Tp M \ {0} by

Ev = v

‖v‖ ,

and define X := (expp)∗E on V \ {p}, where V ⊂ M is a normal neighborhood.
We have

Xexpp(v)
= (

d expp

)
v

Ev = d

dt
expp

(
v + t

v

‖v‖
)

|t=0

= d

dt
cv

(
1 + t

‖v‖
)

|t=0

= 1

‖v‖ ċv(1).

Since ‖ċv(1)‖ = ‖ċv(0)‖ = ‖v‖, we see that Xexpp(v)
is the unit tangent vector to

the geodesic cv . In particular, X must satisfy

∇X X = 0.

For ε > 0 such that Bε(0) ⊂ U := exp−1
p (V ), we define the normal ball with center

p and radius ε as the open set Bε(p) := expp(Bε(0)), and the normal sphere of
radius ε centered at p as the compact submanifold Sε(p) := expp(∂Bε(0)). We will
now prove that X is (and hence the geodesics through p are) orthogonal to normal
spheres. For that, we choose a local parameterization ϕ : W ⊂ R

n−1 → Sn−1 ⊂
Tp M , and use it to define a parameterization ϕ̃ : (0,+∞)× W → Tp M through

ϕ̃(r, θ1, . . . , θn−1) = rϕ(θ1, . . . , θn−1)

(hence (r, θ1, . . . , θn−1) are spherical coordinates on Tp M). Notice that

∂

∂r
= E,

since

Eϕ̃(r,θ) = Erϕ(θ) = ϕ(θ) = ∂ϕ̃

∂r
(r, θ),
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and so

X = (expp)∗
∂

∂r
. (3.6)

Since ∂
∂θ i is tangent to {r = ε}, the vector fields

Yi := (expp)∗
∂

∂θ i
(3.7)

are tangent to Sε(p). Notice also that
∥∥∥ ∂
∂θ i

∥∥∥ =
∥∥∥ ∂ϕ̃

∂θ i

∥∥∥ = r
∥∥∥ ∂ϕ

∂θ i

∥∥∥ is proportional to

r , and consequently ∂
∂θ i → 0 as r → 0, implying that (Yi )q → 0p as q → p. Since

expp is a local diffeomorphism, the vector fields X and Yi are linearly independent
at each point. Also,

[X,Yi ] =
[
(expp)∗

∂

∂r
, (expp)∗

∂

∂θ i

]
= (expp)∗

[
∂

∂r
,
∂

∂θ i

]
= 0

[cf. Exercise 6.11(9) in Chap.1], or, since the Levi-Civita connection is symmetric,

∇X Yi = ∇Yi X.

To prove that X is orthogonal to the normal spheres Sε(p), we show that X is
orthogonal to each of the vector fields Yi . In fact, since ∇X X = 0 and ‖X‖ = 1, we
have

X · 〈X,Yi 〉 = 〈∇X X,Yi 〉 + 〈X,∇X Yi 〉 = 〈X,∇Yi X〉 = 1

2
Yi · 〈X, X〉 = 0,

and hence 〈X,Yi 〉 is constant along each geodesic through p. Consequently,

〈X,Yi 〉(expp v) =
〈
Xexpp(v)

, (Yi )expp(v)

〉
= lim

t→0

〈
Xexpp(tv), (Yi )expp(tv)

〉
= 0

(as ‖X‖ = 1 and (Yi )q → 0p as q → p), and so every geodesic through p is
orthogonal to all normal spheres centered at p. Using this we obtain the following
result.

Proposition 4.3 Let γ : [0, 1] → M be a differentiable curve such that γ (0) = p
and γ (1) ∈ Sε(p), where Sε(p) is a normal sphere. Then l(γ ) ≥ ε, and l(γ ) = ε if
and only if γ is a reparameterized geodesic.

Proof We can assume that γ (t) �= p for all t ∈ (0, 1), since otherwise we could
easily construct a curve γ̃ : [0, 1] → M with γ̃ (0) = p, γ̃ (1) = γ (1) ∈ Sε(p) and
l(γ̃ ) < l(γ ). For the same reason, we can assume that γ ([0, 1)) ⊂ Bε(p). We can
then write

γ (t) := expp(r(t)n(t)),

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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where r(t) ∈ (0, ε] and n(t) ∈ Sn−1 are well defined for t ∈ (0, 1]. Note that r(t)
can be extended to [0, 1] as a smooth function. Then

γ̇ (t) = (expp)∗ (ṙ(t)n(t)+ r(t)ṅ(t)) .

Since 〈n(t), n(t)〉 = 1, we have 〈ṅ(t), n(t)〉 = 0, and consequently ṅ(t) is tangent
to ∂Br(t)(0). Noticing that n(t) = (

∂
∂r

)
r(t)n(t), we conclude that

γ̇ (t) = ṙ(t)Xγ (t) + Y (t),

where X = (expp)∗ ∂
∂r and Y (t) = r(t)(expp)∗ṅ(t) is tangent to Sr(t)(p), and hence

orthogonal to Xγ (t). Consequently,

l(γ ) =
∫ 1

0

〈
ṙ(t)Xγ (t) + Y (t), ṙ(t)Xγ (t) + Y (t)

〉 1
2 dt

=
∫ 1

0

(
ṙ(t)2 + ‖Y (t)‖2

) 1
2

dt

≥
∫ 1

0
ṙ(t)dt = r(1)− r(0) = ε.

It should be clear that l(γ ) = ε if and only if ‖Y (t)‖ ≡ 0 and ṙ(t) ≥ 0 for all t ∈
[0, 1]. In this case, ṅ(t) = 0 (implying that n is constant), and γ (t) = expp(r(t)n) =
cr(t)n(1) = cn(r(t)) is, up to reparameterization, the geodesic through p with initial
condition n ∈ Tp M . �

Definition 4.4 A piecewise differentiable curve is a continuous map c : [a, b] →
M such that the restriction of c to [ti−1, ti ] is differentiable for i = 1, . . . , n, where
a = t0 < t1 < · · · < tn−1 < tn = b. We say that c connects p ∈ M to q ∈ M if
c(a) = p and c(b) = q.

The definition of length of a piecewise differentiable curve offers no difficulties.
It should also be clear that Proposition 4.3 easily extends to piecewise differentiable
curves, if we now allow for piecewise differentiable reparameterizations. Using this
extended version of Proposition 4.3 as well as the properties of the exponential map
and the invariance of length under reparameterization, one easily shows the following
result.

Theorem 4.5 Let (M, 〈·, ·〉) be a Riemannian manifold, p ∈ M and Bε(p) a normal
ball centered at p. Then, for each point q ∈ Bε(p), there exists a geodesic c : I → M
connecting p to q. Moreover, if γ : J → M is any other piecewise differentiable
curve connecting p to q, then l(γ ) ≥ l(c), and l(γ ) = l(c) if and only if γ is a
reparameterization of c. �

Conversely, we have
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Theorem 4.6 Let (M, 〈·, ·〉) be a Riemannian manifold and p, q ∈ M. If c : I → M
is a piecewise differentiable curve connecting p to q and l(c) ≤ l(γ ) for any piece-
wise differentiable curve γ : J → M connecting p to q then c is a reparameterized
geodesic.

Proof To prove this theorem, we need the following definition.

Definition 4.7 A normal neighborhood V ⊂ M is called a totally normal neigh-
borhood if there exists ε > 0 such that V ⊂ Bε(p) for all p ∈ V .

We will now prove that totally normal neighborhoods always exist. To do
so, we recall that local coordinates (x1, . . . , xn) on M yield local coordinates
(x1, . . . , xn, v1, . . . , vn) on T M labeling the vector

v1
∂

∂x1
+ · · · + vn ∂

∂xn
.

The geodesic equations,

ẍ i +
n∑

j,k=1

�i
jk ẋ j ẋ k = 0 (i = 1, . . . , n),

correspond to the system of first-order ODEs

{
ẋ i = vi

v̇i = −∑n
j,k=1 �

i
jkv

jvk (i = 1, . . . , n).

These equations define the local flow of the vector field X ∈ X(T M) given in local
coordinates by

X =
n∑

i=1

vi ∂

∂xi
−

n∑
i, j,k=1

�i
jkv

jvk ∂

∂vi
,

called the geodesic flow. As it was seen in Chap.1, for each point v ∈ T M there
exists an open neighborhood W ⊂ T M and an open interval I ⊂ R containing 0
such that the local flow F : W × I → T M of X is well defined. In particular, for
each point p ∈ M we can choose an open neighborhood U containing p and ε > 0
such that the geodesic flow is well defined in W × I with

W = {v ∈ Tq M | q ∈ U, ‖v‖ < ε}.

Using homogeneity of geodesics, we can make the interval I as large as we want
by making ε sufficiently small. Therefore, for ε small enough we can define a map
G : W → M × M by G(v) := (q, expq(v)). Since expq(0) = q, the matrix

representation of (dG)0 in the above local coordinates is

(
I 0
I I

)
, and hence G is a

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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local diffeomorphism.ReducingU and ε if necessary,we can therefore assume thatG
is a diffeomorphism onto its image G(W ), which contains the point (p, p) = G(0p).
Choosing an open neighborhood V of p such that V × V ⊂ G(W ), it is clear that V
is a totally normal neighborhood: for each point q ∈ V we have {q}×expq(Bε(0)) =
G(W ) ∩ ({q} × M) ⊃ {q} × V , that is, expq(Bε(0)) ⊃ V .

Notice that given any two points p, q in a totally normal neighborhood V , there
exists a geodesic c : I → M connecting p to q such that any other piecewise
differentiable curve γ : J → M connecting p to q satisfies l(γ ) ≥ l(c) (and
l(γ ) = l(c) if and only if γ is a reparameterization of c). The proof of Theorem 4.6
is now an immediate consequence of the following observation: if c : I → M is a
piecewise differentiable curve connecting p to q such that l(c) ≤ l(γ ) for any curve
γ : J → M connecting p to q, then c must be a reparameterized geodesic in each
totally normal neighborhood it intersects. �

Exercise 4.8

(1) Let (M, g) be a Riemannian manifold and f : M → R a smooth function. Show
that if ‖ grad( f )‖ ≡ 1 then the integral curves of grad( f ) are geodesics, using:

(a) the definition of geodesic;
(b) the minimizing properties of geodesics.

(2) Let M be a Riemannianmanifold and∇ the Levi–Civita connection on M . Given
p ∈ M and a basis {v1, . . . , vn} for Tp M , we consider the parameterization
ϕ : U ⊂ R

n → M of a normal neighborhood given by

ϕ(x1, . . . , xn) = expp(x
1v1 + · · · + xnvn)

(the local coordinates (x1, . . . , xn) are called normal coordinates).
Show that:

(a) in these coordinates, �i
jk(p) = 0 (Hint: Consider the geodesic equation);

(b) if {v1, . . . , vn} is an orthonormal basis then gi j (p) = δi j .

(3) Let G be a Lie group endowed with a bi-invariant Riemannian metric (i.e.
such that Lg and Rg are isometries for all g ∈ G), and let i : G → G be the
diffeomorphism defined by i(g) = g−1.

(a) Compute (di)e and show that

(di)g = (
d Rg−1

)
e
(di)e

(
d Lg−1

)
g

for all g ∈ G. Conclude that i is an isometry.
(b) Let v ∈ g = TeG and cv be the geodesic satisfying cv(0) = e and ċv(0) = v.

Show that if t is sufficiently small then cv(−t) = (cv(t))−1. Conclude that
cv is defined in R and satisfies cv(t + s) = cv(t)cv(s) for all t, s ∈ R. (Hint:

Recall that any two points in a totally normal neighborhood are connected by a unique geodesic in that

neighborhood).
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(c) Show that the geodesics of G are the integral curves of left-invariant vector
fields, and that the maps exp (the Lie group exponential) and expe (the
geodesic exponential at the identity) coincide.

(d) Let ∇ be the Levi-Civita connection of the bi-invariant metric and X,Y two
left-invariant vector fields. Show that

∇X Y = 1

2
[X,Y ].

(e) Check that the left-invariant metrics Exercise1.10(4) are actually
bi-invariant.

(f) Show that any compact Lie group admits a bi-invariant metric. (Hint: Take the

average of a left-invariant metric over all right translations).

(4) Use Theorem 4.6 to prove that if f : M → N is an isometry and c : I → M is
a geodesic then f ◦ c : I → N is also a geodesic.

(5) Let f : M → M be an isometry whose set of fixed points is a connected
1-dimensional submanifold N ⊂ M . Show that N is the image of a geodesic.

(6) Let (M, 〈·, ·〉) be a Riemannian manifold whose geodesics can be extended for
all values of their parameters, and let p ∈ M .

(a) Let X and Yi be the vector fields defined on a normal ball centered at p as
in (3.6) and (3.7). Show that Yi satisfies the Jacobi equation

∇X∇X Yi = R(X,Yi )X,

where R : X(M)× X(M)× X(M) → X(M), defined by

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ]Z ,

is called the curvature operator (cf. Chap.4). (Remark: It can be shown that

(R(X, Y )Z)p depends only on X p , Yp , Z p).
(b) Consider a geodesic c : R → M parameterized by the arclength such that

c(0) = p. A vector field Y along c is called a Jacobi field if it satisfies the
Jacobi equation along c,

D2Y

dt2
= R(ċ,Y ) ċ.

Show that Y is a Jacobi field with Y (0) = 0 if and only if

Y (t) = ∂

∂s
expp(tv(s))|s=0

with v : (−ε, ε) → Tp M satisfying v(0) = ċ(0).

http://dx.doi.org/10.1007/978-3-319-08666-8_4
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(c) A point q ∈ M is said to be conjugate to p if it is a critical value of expp.
Show that q is conjugate to p if and only if there exists a nonzero Jacobi
field Y along a geodesic c connecting p = c(0) to q = c(b) such that
Y (0) = Y (b) = 0. Conclude that if q is conjugate to p then p is conjugate
to q.

(d) The manifold M is said to have nonpositive curvature if 〈R(X,Y )X,Y 〉 ≥
0 for all X,Y ∈ X(M). Show that for such a manifold no two points are
conjugate.

(e) Given a geodesic c : I → M parameterized by the arclength such that
c(0) = p, let tc be the supremum of the set of values of t such that c is the
minimizing curve connecting p to c(t) (hence tc > 0). The cut locus of p is
defined to be the set of all points of the form c(tc) for tc < +∞. Determine
the cut locus of a given point p ∈ M when M is:
(i) the torus T n with the flat square metric;
(ii) the sphere Sn with the standard metric;
(iii) the projective space RPn with the standard metric.
Check in these examples that any point in the cut locus is either conjugate to
p or joined to p by two geodesics with the same length but different images.
(Remark: This is a general property of the cut locus—see [dC93] or [GHL04] for a proof).

3.5 Hopf-Rinow Theorem

Let (M, g) be aRiemannianmanifold. The existence of totally normal neighborhoods
implies that it is always possible to connect two sufficiently close points p, q ∈ M
by a minimizing geodesic. We now address the same question globally.

Example 5.1

(1) Given two distinct points p, q ∈ R
n there exists a unique (up to reparameteri-

zation) geodesic for the Euclidean metric connecting them.
(2) Given two distinct points p, q ∈ Sn there exist at least two geodesics for the

standardmetric connecting themwhich are not reparameterizations of each other.
(3) If p �= 0 then there exists no geodesic for the Euclidean metric in R

n \ {0}
connecting p to −p.

In many cases (for example in R
n \ {0}) there exist geodesics which cannot be

extended for all values of its parameter. In other words, expp(v) is not defined for
all v ∈ Tp M .

Definition 5.2 A Riemannian manifold (M, 〈·, ·〉) is said to be geodesically com-
plete if, for every point p ∈ M , the map expp is defined in Tp M .

There exists another notion of completeness of a connected Riemannianmanifold,
coming from the fact that any such manifold is naturally a metric space.
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Definition 5.3 Let (M, 〈·, ·〉) be a connected Riemannian manifold and p, q ∈ M .
The distance between p and q is defined as

d(p, q) = inf{l(γ ) | γ is a piecewise differentiable curve connecting p to q}.

Notice that if there exists a minimizing geodesic c connecting p to q then
d(p, q) = l(c). The function d : M × M → [0,+∞) is indeed a distance, as
stated in the following proposition.

Proposition 5.4 (M, d) is a metric space, that is, d satisfies:

(i) Positivity: d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q;
(ii) Symmetry: d(p, q) = d(q, p);

(iii) Triangle inequality: d(p, r) ≤ d(p, q)+ d(q, r),

for all p, q, r ∈ M. The metric space topology induced on M coincides with the
topology of M as a differentiable manifold.

Proof Exercise5.8(1). �

Thereforewe can discuss the completeness of M as ametric space (that is, whether
Cauchy sequences converge). The fact that completeness and geodesic completeness
are equivalent is the content of the following theorem.

Theorem 5.5 (Hopf-Rinow) Let (M, 〈·, ·〉) be a connected Riemannian manifold
and p ∈ M. The following assertions are equivalent:

(i) M is geodesically complete;
(ii) (M, d) is a complete metric space;

(iii) expp is defined in Tp M.

Moreover, if (M, 〈·, ·〉) is geodesically complete then for all q ∈ M there exists a
geodesic c connecting p to q with l(c) = d(p, q).

Proof It is clear that (i) ⇒ (i i i).

We begin by showing that if (i i i) holds then for all q ∈ M there exists a geodesic
c connecting p to q with l(c) = d(p, q). Let d(p, q) = ρ. If ρ = 0 then q = p and
there is nothing to prove. If ρ > 0, let ε ∈ (0, ρ) be such that Sε(p) is a normal sphere
(which is a compact submanifold of M). The continuous function x �→ d(x, q) will
then have a minimum point x0 ∈ Sε(p). Moreover, x0 = expp(εv), where ‖v‖ = 1.
Let us consider the geodesic cv(t) = expp(tv). We will show that q = cv(ρ). For
that, we consider the set

A = {t ∈ [0, ρ] | d(cv(t), q) = ρ − t}.

Since themap t �→ d(cv(t), q) is continuous, A is a closed set. Moreover, A �= ∅,
as clearly 0 ∈ A. We will now show that no point t0 ∈ [0, ρ) can be the maximum of
A, which implies that the maximum of A must be ρ (hence d(cv(ρ), q) = 0, that is,
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Fig. 3.3 Proof of the Hopf-Rinow theorem

cv(ρ) = q, and so cv connects p to q and l(cv) = ρ). Let t0 ∈ A ∩ [0, ρ), r = cv(t0)
and δ ∈ (0, ρ − t0) such that Sδ(r) is a normal sphere. Let y0 be a minimum point
of the continuous function y �→ d(y, q) on the compact set Sδ(r) (Fig 3.3). We will
show that y0 = cv(t0 + δ). In fact, we have

ρ − t0 = d(r, q) = δ + min
y∈Sδ(r)

d(y, q) = δ + d(y0, q),

and so
d(y0, q) = ρ − t0 − δ. (3.8)

The triangle inequality then implies that

d(p, y0) ≥ d(p, q)− d(y0, q) = ρ − (ρ − t0 − δ) = t0 + δ,

and, since the piecewise differentiable curve which connects p to r through cv and
r to y0 through a geodesic has length t0 + δ, we conclude that this is a minimizing
curve, hence a (reparameterized) geodesic. Thus, as promised, y0 = cv(t0 + δ).
Consequently, Eq. (3.8) can be written as

d(cv(t0 + δ), q) = ρ − (t0 + δ),

implying that t0 + δ ∈ A, and so t0 cannot be the maximum of A.
We can now prove that (i i i) ⇒ (i i). To do so, we begin by showing that any

bounded closed subset K ⊂ M is compact. Indeed, if K is bounded then K ⊂ BR(p)
for some R > 0, where
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BR(p) = {q ∈ M | d(p, q) < R}.

As we have seen, p can be connected to any point in BR(p) by a geodesic of length

smaller than R, and so BR(p) ⊂ expp

(
BR(0)

)
. Since expp : Tp M → M is

continuous and BR(0) is compact, the set expp

(
BR(0)

)
is also compact. Therefore

K is a closed subset of a compact set, hence compact. Now, if {pn} is a Cauchy
sequence in M , then its closure is bounded, hence compact. Thus {pn} must have a
convergent subsequence, and therefore must itself converge.

Finally, we show that (i i) ⇒ (i). Let c be a geodesic defined for t < t0, which we
can assume without loss of generality to be normalized, that is, ‖ċ(t)‖ = 1. Let {tn}
be an increasing sequence of real numbers converging to t0. Since d(c(tm), c(tn)) ≤
|tm − tn|, we see that {c(tn)} is a Cauchy sequence. As we are assuming M to be
complete, we conclude that c(tn) → p ∈ M , and it is easily seen that c(t) → p as
t → t0. Let Bε(p) be a normal ball centered at p. Then c can be extended past t0 in
this normal ball. �

Corollary 5.6 If M is compact then M is geodesically complete.

Proof Any compact metric space is complete. �

Corollary 5.7 If M is a closed connected submanifold of a complete connected
Riemannian manifold with the induced metric then M is complete.

Proof Let M be a closed connected submanifold of a complete connected Rie-
mannian manifold N . Let d be the distance determined by the metric on N , and
let d∗ be the distance determined by the induced metric on M . Then d ≤ d∗, as any
curve on M is also a curve on N . Let {pn} be a Cauchy sequence on (M, d∗). Then
{pn} is a Cauchy sequence on (N , d), and consequently converges in N to a point
p ∈ M (as N is complete and M is closed). Since the topology of M is induced by
the topology of N , we conclude that pn → p on M . �

Exercise 5.8

(1) Prove Proposition 5.4.
(2) Consider R

2 \ {(x, 0) | −3 ≤ x ≤ 3} with the Euclidean metric. Determine
B7(0, 4).

(3) (a) Prove that a connected Riemannian manifold is complete if and only if the
compact sets are the closed bounded sets.

(b) Give an example of a connected Riemannian manifold containing a non-
compact closed bounded set.

(4) A Riemannian manifold (M, 〈·, ·〉) is said to be homogeneous if, given any two
points p, q ∈ M , there exists an isometry f : M → M such that f (p) = q.
Show that:

(a) any homogeneous Riemannian manifold is complete;
(b) if G is a Lie group admitting a bi-invariant metric [cf. Exercise4.8(3)] then

the exponential map exp : g → G is surjective;
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(c) SL(2,R) does not admit a bi-invariant metric.

(5) Let (M, g) be a complete Riemannian manifold. Show that:

(a) (Ambrose theorem) if (N , h) is a Riemannian manifold and f : M → N is
a local isometry then f is a covering map;

(b) there exist surjective local isometries which are not covering maps;
(c) (Cartan–Hadamard theorem) if (M, g) has nonpositive curvature [cf. Exer-

cise4.8(6)] then for each point p ∈ M the exponential map expp : Tp M →
M is a covering map. (Remark: In particular, if M is simply connected then M must be diffeo-

morphic to R
n).

3.6 Notes

3.6.1 Section 3.5

In this section we use several definitions and results about metric spaces, which we
now discuss. A metric space is a pair (M, d), where M is a set and d : M × M →
[0,+∞) is a map satisfying the properties enumerated in Proposition 5.4. The set

Bε(p) = {q ∈ M | d(p, q) < ε}

is called the open ball with center p and radius ε. The family of all such balls is a
basis for a Hausdorff topology on M , called the metric topology. Notice that in this
topology pn → p if and only if d(pn, p) → 0. Although a metric space (M, d) is
not necessarily second countable, it is still true that F ⊂ M is closed if and only if
every convergent sequence in F has limit in F , and K ⊂ M is compact if and only
if every sequence in K has a sublimit in K .

A sequence {pn} in M is said to be a Cauchy sequence if for all ε > 0 there exists
N ∈ N such that d(pn, pm) < ε for all m, n > N . It is easily seen that all convergent
sequences are Cauchy sequences. The converse, however, is not necessarily true (but
if a Cauchy sequence has a convergent subsequence then it must converge). A metric
space is said to be complete if all its Cauchy sequences converge. A closed subset
of a complete metric space is itself complete.

A set is said to be bounded if it is a subset of some ball. For instance, the set of all
terms of a Cauchy sequence is bounded. It is easily shown that if K ⊂ M is compact
then K must be bounded and closed (but the converse is not necessarily true). A
compact metric space is necessarily complete.
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3.6.2 Bibliographical Notes

The material in this chapter can be found in most books on Riemannian geometry
(e.g. [Boo03, dC93, GHL04]). For more details on general affine connections, see
[KN96]. Bi-invariant metrics on a Lie group are examples of symmetric spaces,
whose beautiful theory is studied for instance in [Hel01].
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Chapter 4
Curvature

The local geometry of a general Riemannian manifold differs from the flat geometry
of the Euclidean space R

n : for example, the internal angles of a geodesic triangle in
the 2-sphere S2 (with the standard metric) always add up to more than π. A mea-
sure of this difference is provided by the notion of curvature, introduced by Gauss
in his 1827 paper “General investigations of curved surfaces”, and generalized to
arbitrary Riemannian manifolds by Riemann himself (in 1854). It can appear under
many guises: the rate of deviation of geodesics, the degree of non-commutativity of
covariant derivatives along different vector fields, the difference between the sum of
the internal angles of a geodesic triangle and π, or the angle by which a vector is
rotated when parallel-transported along a closed curve.

This chapter addresses the various characterizations and properties of curvature.
Section4.1 introduces the curvature operator of a general affine connection, and,
for Riemannian manifolds, the equivalent (more geometric) notion of sectional cur-
vature. The Ricci curvature tensor and the scalar curvature, obtained from the
curvature tensor by contraction, are also defined. These quantities are fundamental
in general relativity to formulate Einstein’s equation (Chap.6).

Section4.2 establishes the Cartan structure equations, a powerful
computational method which employs differential forms to calculate the curvature.
These equations are used in Sect. 4.3 to prove the Gauss–Bonnet theorem, relating
the curvature of a compact surface to its topology. This theorem provides a simple
example of how the curvature of a complete Riemannian manifold can constrain its
topology.

Complete Riemannian manifolds with constant curvature are discussed in
Sect. 4.4. These provide important examples of curved geometries, including the
negatively curved non-Euclidean geometry of Gauss, Bolyai and Lobachevsky.

Finally, the relation between the curvature of a Riemannian manifold and the
curvature of a submanifold (with the induced metric) is studied in Sect. 4.5. This
generalizes Gauss’s investigations of curved surfaces, including his celebrated
Theorema Egregium.
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4.1 Curvature

As we saw in Exercise3.3(4) of Chap. 3, no open set of the 2-sphere S2 with the
standard metric is isometric to an open set of the Euclidean plane. The geometric
object that locally distinguishes these two Riemannian manifolds is the so-called
curvature operator, which appears in many other situations [cf. Exercise4.8(6) in
Chap.3].

Definition 1.1 The curvature R of a connection ∇ is a correspondence that to each
pair of vector fields X,Y ∈ X(M) associates the map R(X,Y ) : X(M) → X(M)
defined by

R(X,Y )Z = ∇X ∇Y Z − ∇Y ∇X Z − ∇[X,Y ] Z .

Hence, R is a way of measuring the non-commutativity of the connection.
We leave it as an exercise to show that this defines a (3, 1)-tensor (called theRiemann
tensor), since

(i) R ( f X1 + gX2,Y ) Z = f R (X1,Y ) Z + gR (X2,Y ) Z ,
(ii) R(X, f Y1 + gY2)Z = f R(X,Y1)Z + gR(X,Y2)Z ,
(iii) R(X,Y )( f Z1 + gZ2) = f R(X,Y )Z1 + gR(X,Y )Z2,

for all vector fields X, X1, X2,Y,Y1,Y2, Z , Z1, Z2 ∈ X(M) and all smooth
functions f, g ∈ C∞(M) [cf. Exercise1.12(1)]. Choosing a coordinate system
x : V → R

n on M , this tensor can be locally written as

R =
n∑

i, j,k,l=1

R l
i jk dxi ⊗ dx j ⊗ dxk ⊗ ∂

∂xl
,

where each coefficient R l
i jk is the l-coordinate of the vector field R

(
∂
∂xi ,

∂
∂x j

)
∂
∂xk ,

that is,

R

(
∂

∂xi
,
∂

∂x j

)
∂

∂xk
=

n∑
l=1

R l
i jk

∂

∂xl
.

Using the fact that
[
∂
∂xi ,

∂
∂x j

]
= 0, we have

R

(
∂

∂xi
,
∂

∂x j

)
∂

∂xk
= ∇ ∂

∂xi
∇ ∂

∂x j

∂

∂xk
− ∇ ∂

∂x j
∇ ∂

∂xi

∂

∂xk

= ∇ ∂
∂xi

(
n∑

m=1

�m
jk

∂

∂xm

)
− ∇ ∂

∂x j

(
n∑

m=1

�m
ik

∂

∂xm

)

=
n∑

m=1

(
∂

∂xi
· �m

jk − ∂

∂x j
· �m

ik

)
∂

∂xm
+

n∑
l,m=1

(
�m

jk�
l
im − �m

ik�
l
jm

) ∂

∂xl

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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=
n∑

l=1

(
∂�l

jk

∂xi
− ∂�l

ik

∂x j
+

n∑
m=1

�m
jk�

l
im −

n∑
m=1

�m
ik�

l
jm

)
∂

∂xl
,

and so

R l
i jk = ∂�l

jk

∂xi
− ∂�l

ik

∂x j
+

n∑
m=1

�m
jk�

l
im −

n∑
m=1

�m
ik�

l
jm .

Example 1.2 Consider M = R
n with the Euclidean metric and the corresponding

Levi–Civita connection (that is, with Christoffel symbols �k
i j ≡ 0). Then R l

i jk = 0,
and the curvature R is zero. Thus, we can also interpret the curvature as a measure of
howmuch a connection on a given manifold differs from the Levi–Civita connection
of the Euclidean space.

When the connection is symmetric (as in the case of the Levi–Civita connection),
the tensor R satisfies the so-called Bianchi identity.

Proposition 1.3 (Bianchi identity) If M is a manifold with a symmetric connection
then the associated curvature satisfies

R(X,Y )Z + R(Y, Z)X + R(Z , X)Y = 0.

Proof This property is a direct consequence of the Jacobi identity of vector fields.
Indeed,

R(X,Y )Z + R(Y, Z)X + R(Z , X)Y

= ∇X ∇Y Z − ∇Y ∇X Z − ∇[X,Y ] Z + ∇Y ∇Z X − ∇Z ∇Y X − ∇[Y,Z ] X

+ ∇Z ∇X Y − ∇X ∇Z Y − ∇[Z ,X ] Y

= ∇X (∇Y Z − ∇Z Y )+ ∇Y (∇Z X − ∇X Z)+ ∇Z (∇X Y − ∇Y X)

− ∇[X,Y ] Z − ∇[Y,Z ] X − ∇[Z ,X ] Y,

and so, since the connection is symmetric, we have

R(X,Y )Z + R(Y, Z)X + R(Z , X)Y

= ∇X [Y, Z ] + ∇Y [Z , X ] + ∇Z [X,Y ] − ∇[Y,Z ] X − ∇[Z ,X ] Y − ∇[X,Y ] Z

= [X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = 0. �

We will assume from this point on that (M, g) is a Riemannian manifold and ∇
its Levi–Civita connection. We can define a new covariant 4-tensor, known as the
curvature tensor:

R(X,Y, Z ,W ) := g(R(X,Y )Z ,W ).
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Notice that because the metric is nondegenerate the curvature tensor contains the
same information as the Riemann tensor. Again, choosing a coordinate system
x : V → R

n on M , we can write this tensor as

R(X,Y, Z ,W ) =
⎛
⎝

n∑
i, j,k,l=1

Ri jkl dxi ⊗ dx j ⊗ dxk ⊗ dxl

⎞
⎠ (X,Y, Z ,W )

where

Ri jkl = g

(
R

(
∂

∂xi
,
∂

∂x j

)
∂

∂xk
,
∂

∂xl

)
= g

( n∑
m=1

R m
i jk

∂

∂xm ,
∂

∂xl

)
=

n∑
m=1

R m
i jk gml .

This tensor satisfies the following symmetry properties.

Proposition 1.4 If X,Y, Z ,W are vector fields in M and ∇ is the Levi–Civita con-
nection, then

(i) R(X,Y, Z ,W )+ R(Y, Z , X,W )+ R(Z , X,Y,W ) = 0;
(ii) R(X,Y, Z ,W ) = −R(Y, X, Z ,W );

(iii) R(X,Y, Z ,W ) = −R(X,Y,W, Z);
(iv) R(X,Y, Z ,W ) = R(Z ,W, X,Y ).

Proof Property (i) is an immediate consequence of theBianchi identity, and property
(i i) holds trivially.

Property (i i i) is equivalent to showing that R(X,Y, Z , Z) = 0. Indeed, if (i i i)
holds then clearly R(X,Y, Z , Z) = 0. Conversely, if this is true, we have

R(X,Y, Z + W, Z + W ) = 0 ⇔ R(X,Y, Z ,W )+ R(X,Y,W, Z) = 0.

Now, using the fact that the Levi–Civita connection is compatible with the metric,
we have

X · 〈∇Y Z , Z〉 = 〈∇X ∇Y Z , Z〉 + 〈∇Y Z ,∇X Z〉

and

[X,Y ] · 〈Z , Z〉 = 2
〈∇[X,Y ] Z , Z

〉
.

Hence,

R(X,Y, Z , Z) = 〈∇X ∇Y Z , Z〉 − 〈∇Y ∇X Z , Z〉 − 〈∇[X,Y ] Z , Z〉
= X · 〈∇Y Z , Z〉 − 〈∇Y Z ,∇X Z〉 − Y · 〈∇X Z , Z〉

+〈∇X Z ,∇Y Z〉 − 1

2
[X,Y ] · 〈Z , Z〉
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= 1

2
X · (Y · 〈Z , Z〉)− 1

2
Y · (X · 〈Z , Z〉)− 1

2
[X,Y ] · 〈Z , Z〉

= 1

2
[X,Y ] · 〈Z , Z〉 − 1

2
[X,Y ] · 〈Z , Z〉 = 0.

To show (iv), we use (i) to get

R(X,Y, Z ,W ) + R(Y, Z , X,W ) + R(Z , X,Y,W ) = 0
R(Y, Z ,W, X) + R(Z ,W,Y, X) + R(W,Y, Z , X) = 0
R(Z ,W, X,Y ) + R(W, X, Z ,Y ) + R(X, Z ,W,Y ) = 0
R(W, X,Y, Z) + R(X,Y,W, Z) + R(Y,W, X, Z) = 0

and so, adding these and using (i i i), we have

R(Z , X,Y,W )+ R(W,Y, Z , X)+ R(X, Z ,W,Y )+ R(Y,W, X, Z) = 0.

Using (i i) and (i i i), we obtain

2R(Z , X,Y,W )− 2R(Y,W, Z , X) = 0. �
An equivalent way of encoding the information about the curvature of a

Riemannian manifold is by considering the following definition.

Definition 1.5 Let � be a 2-dimensional subspace of Tp M and let X p,Yp be two
linearly independent elements of�. Then, the sectional curvature of� is defined as

K (�) := − R(X p,Yp, X p,Yp)

‖X p‖2‖Yp‖2 − 〈X p,Yp〉2 .

Note that ‖X p‖2‖Yp‖2 − 〈X p,Yp〉2 is the square of the area of the
parallelogram in Tp M spanned by X p,Yp, and so the above definition of sectional
curvature does not depend on the choice of the linearly independent vectors X p,Yp.
Indeed,whenwe change the basis on�, both R(X p,Yp, X p,Yp) and ‖X p‖2‖Yp‖2−
〈X p,Yp〉2 change by the square of the determinant of the change of basis matrix
[cf. Exercise1.12(4)]. We will now see that knowing the sectional curvature of every
section of Tp M completely determines the curvature tensor on this space.

Proposition 1.6 The Riemannian curvature tensor at p is uniquely determined by
the values of the sectional curvatures of sections (that is, 2-dimensional subspaces)
of Tp M.

Proof Let us consider two covariant 4-tensors R1, R2 on Tp M satisfying the
symmetry properties of Proposition 1.4. Then the tensor T := R1 − R2 also satisfies
these symmetry properties. We will see that, if the values R1(X p,Yp, X p,Yp) and
R2(X p,Yp, X p,Yp) agree for every X p,Yp ∈ Tp M (that is, ifT(X p,Yp, X p,Yp)=0
for every X p,Yp ∈ Tp M), then R1 = R2 (that is, T ≡ 0). Indeed, for all vectors
X p,Yp, Z p ∈ Tp M , we have



128 4 Curvature

0 = T (X p + Z p,Yp, X p + Z p,Yp) = T (X p,Yp, Z p,Yp)+ T (Z p,Yp, X p,Yp)

= 2T (X p,Yp, Z p,Yp),

and so

0 = T (X p,Yp + Wp, Z p,Yp + Wp) = T (X p,Yp, Z p,Wp)+ T (X p,Wp, Z p,Yp)

= T (Z p,Wp, X p,Yp)− T (Wp, X p, Z p,Yp),

that is, T (Z p,Wp, X p,Yp) = T (Wp, X p, Z p,Yp). Hence T is invariant by cyclic
permutations of the first three elements and so, by the Bianchi identity, we have
3T (X p,Yp, Z p,Wp) = 0. �

A Riemannian manifold is called isotropic at a point p ∈ M if its sectional
curvature is a constant K p for every section � ⊂ Tp M . Moreover, it is called
isotropic if it is isotropic at all points. Note that every 2-dimensional manifold is
trivially isotropic. Its sectional curvature K (p) := K p is called theGauss curvature.

Remark 1.7 As we will see later, the Gauss curvature measures how much the
local geometry of the surface differs from the geometry of the Euclidean plane. For
instance, its integral over a disk D on the surface gives the angle by which a vector
is rotated when parallel-transported around the boundary of D [cf. Exercise2.8(7)].
Alternatively, its integral over the interior of a geodesic triangle � is equal to the
difference between the sum of the inner angles of � and π [cf. Exercise3.6(6)]. We
will also see that the sectional curvature of an n-dimensional Riemannian manifold
is actually the Gauss curvature of special 2-dimensional submanifolds, formed by
the geodesics tangent to the sections [cf. Exercise5.7(5)].

Proposition 1.8 If M is isotropic at p and x : V → R
n is a coordinate system

around p, then the coefficients of the Riemannian curvature tensor at p are given by

Ri jkl(p) = −K p(gik g jl − gil g jk).

Proof We first define a covariant 4-tensor A on Tp M as

A :=
n∑

i, j,k,l=1

−K p( gik g jl − gil g jk) dxi ⊗ dx j ⊗ dxk ⊗ dxl .

We leave it as an exercise to check that A satisfies the symmetry properties of
Proposition 1.4. Moreover,

A(X p,Yp, X p,Yp) =
n∑

i, j,k,l=1

−K p( gik g jl − gil g jk) Xi
p Y j

p Xk
p Y l

p

= −K p

(
〈X p, X p〉〈Yp,Yp〉 − 〈X p,Yp〉2

)
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= R(X p,Yp, X p,Yp),

and so we conclude from Proposition 1.6 that A = R. �

Definition 1.9 A Riemannian manifold is called a manifold of constant curvature
if it is isotropic and K p is the same at all points of M .

Example 1.10 The Euclidean space is a manifold of constant curvature K p ≡ 0. We
will see the complete classification of (complete, connected) manifolds of constant
curvature in Sect. 4.4.

Another geometric object, very important in general relativity, is the so-called
Ricci tensor.

Definition 1.11 TheRicci curvature tensor is the covariant 2-tensor locally defined
as

Ric(X,Y ) :=
n∑

k=1

dxk
(

R

(
∂

∂xk
, X

)
Y

)
.

The above definition is independent of the choice of coordinates. Indeed, we
can see Ricp(X p,Yp) as the trace of the linear map from Tp M to Tp M given by
Z p 
→ R(Z p, X p)Yp, hence independent of the choice of basis. Moreover, this
tensor is symmetric. In fact, choosing an orthonormal basis {E1, . . . , En} of Tp M
we have

Ricp(X p,Yp) =
n∑

k=1

〈
R(Ek, X p)Yp, Ek

〉 =
n∑

k=1

R(Ek, X p,Yp, Ek)

=
n∑

k=1

R(Yp, Ek, Ek, X p) =
n∑

k=1

R(Ek,Yp, X p, Ek)

= Ricp(Yp, X p).

Locally, we can write

Ric =
n∑

i, j=1

Ri j dxi ⊗ dx j

where the coefficients Ri j are given by

Ri j := Ric

(
∂

∂xi
,
∂

∂x j

)
=

n∑
k=1

dxk
(

R

(
∂

∂xk
,
∂

∂xi

)
∂

∂x j

)
=

n∑
k=1

R k
ki j ,

that is, Ri j = ∑n
k=1 R k

ki j .
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Incidentally, note that we obtained a (2, 0)-tensor from a (3, 1)-tensor. This is an
example of a general procedure called contraction, where we obtain a (k−1,m−1)-
tensor from a (k,m)-tensor. To do so, we choose two indices on the components of
the (k,m)-tensor, one covariant and other contravariant, set them equal and then sum
over them, thus obtaining the components of a (k −1,m −1)-tensor. On the example
of the Ricci tensor, we took the (3, 1)-tensor R̃ defined by the curvature,

R̃(X,Y, Z ,ω) = ω(R(X,Y )Z),

chose the first covariant index and the first contravariant index, set them equal and
summed over them:

Ric(X,Y ) =
n∑

k=1

R̃

(
∂

∂xk
, X,Y, dxk

)
.

Similarly, we can use contraction to obtain a function (0-tensor) from the Ricci
tensor (a covariant 2-tensor). For that, we first need to define a new (1, 1)-tensor field
T using the metric,

T (X,ω) := Ric(X,Y ),

where Y is such that ω(Z) = 〈Y, Z〉 for every vector field Z . Then, we set the
covariant index equal to the contravariant one and add, obtaining a function S : M →
R called the scalar curvature. Locally, choosing a coordinate system x : V → R

n ,
we have

S(p) :=
n∑

k=1

T

(
∂

∂xk
, dxk

)
=

n∑
k=1

Ric

(
∂

∂xk
,Yk

)
,

where, for every vector field Z on V ,

Zk = dxk(Z) = 〈Z ,Yk〉 =
n∑

i, j=1

gi j Z i Y j
k .

Therefore, we must have Y j
k = g jk (where (gi j ) = (gi j )

−1), and hence Yk =∑n
i=1 g

ik ∂
∂xi . We conclude that the scalar curvature is locally given by

S(p) =
n∑

k=1

Ric

(
∂

∂xk
,

n∑
i=1

gik ∂

∂xi

)
=

n∑
i,k=1

Rkig
ik =

n∑
i,k=1

gik Rik .

(since Ric is symmetric).
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Exercise 1.12

(1) (a) Show that the curvature operator satisfies
(i) R( f X1 + gX2,Y )Z = f R(X1,Y )Z + gR(X2,Y )Z ;
(ii) R(X, f Y1 + gY2)Z = f R(X,Y1)Z + gR(X,Y2)Z ;
(iii) R(X, Y )( f Z1 + gZ2) = f R(X,Y )Z1 + gR(X,Y )Z2,
for all vector fields X, X1, X2,Y,Y1,Y2, Z , Z1, Z2 ∈ X(M) and smooth
functions f, g ∈ C∞(M).

(b) Show that (R(X,Y )Z)p ∈ Tp M depends only on X p,Yp, Z p. Conclude
that R defines a (3, 1)-tensor. (Hint: Choose local coordinates around p ∈ M).

(2) Let (M, g) be an n-dimensional Riemannian manifold and p ∈ M . Show that if
(x1, . . . , xn) are normal coordinates centered at p [cf. Exercise4.8(2) inChap.3]
then

Ri jkl(p) = 1

2

(
∂2g jl

∂xi∂xk
− ∂2gil

∂x j∂xk
− ∂2g jk

∂xi∂xl
+ ∂2gik

∂x j∂xl

)
(p).

(3) Recall that if G is a Lie group endowed with a bi-invariant Riemannian metric,
∇ is the Levi–Civita connection and X,Y are two left-invariant vector fields
then

∇X Y = 1

2
[X,Y ]

[cf. Exercise4.8(3) in Chap.3]. Show that if Z is also left-invariant, then

R(X,Y )Z = 1

4
[Z , [X,Y ]].

(4) Show that ‖X p‖2‖Yp‖2 − 〈X p,Yp〉2 gives us the square of the area of the
parallelogram in Tp M spanned by X p,Yp. Conclude that the sectional curvature
does not depend on the choice of the linearly independent vectors X p,Yp, that
is, whenwe change the basis on�, both R(X p,Yp, X p,Yp) and ‖X p‖2‖Yp‖2−
〈X p,Yp〉2 change by the square of the determinant of the change of basis matrix.

(5) Show that Ric is the only independent contraction of the curvature tensor:
choosing any other two indices and contracting, one either gets ±Ric or 0.

(6) Let M be a 3-dimensional Riemannian manifold. Show that the curvature tensor
is entirely determined by the Ricci tensor.

(7) Let (M, g) be an n-dimensional isotropic Riemannian manifold with sectional
curvature K . Show that Ric = (n − 1)Kg and S = n(n − 1)K .

(8) Let g1, g2 be two Riemannian metrics on a manifold M such that g1 = ρg2, for
some constant ρ > 0. Show that:

(a) the corresponding sectional curvatures K1 and K2 satisfy K1(�) = ρ−1K2(�)

for any 2-dimensional section of a tangent space of M ;

http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_3


132 4 Curvature

(b) the corresponding Ricci curvature tensors satisfy Ric1 = Ric2;
(c) the corresponding scalar curvatures satisfy S1 = ρ−1S2.

(9) If ∇ is not the Levi–Civita connection can we still define the Ricci curvature
tensor Ric? Is it necessarily symmetric?

4.2 Cartan Structure Equations

In this section we will reformulate the properties of the Levi–Civita connection and
of the Riemannian curvature tensor in terms of differential forms. For that we will
take an open subset V of M where we have defined a field of frames {X1, . . . , Xn},
that is, a set of n vector fields that, at each point p of V , form a basis for Tp M (for
example, we can take a coordinate neighborhood V and the vector fields Xi = ∂

∂xi ;
however, in general, the Xi are not associated to a coordinate system). Then we
consider a field of dual coframes, that is, 1-forms {ω1, . . . ,ωn} on V such that
ωi (X j ) = δi j . Note that, at each point p ∈ V , {ω1

p, . . . ,ω
n
p} is a basis for T ∗

p M .
From the properties of a connection, in order to define∇X Y we just have to establish
the values of

∇Xi X j =
n∑

k=1

�k
i j Xk,

where �k
i j is defined as the kth component of the vector field ∇Xi X j on the basis

{Xi }n
i=1. Note that if the Xi are not associated to a coordinate system then the �k

i j
cannot be computed using formula (9), and, in general, they are not even symmetric
in the indices i, j [cf. Exercise2.8(1)]. Given the values of the �k

i j on V , we can

define 1-forms ωk
j ( j, k = 1, . . . , n) in the following way:

ωk
j :=

n∑
i=1

�k
i jω

i . (4.1)

Conversely, given these forms, we can obtain the values of �k
i j through

�k
i j = ωk

j (Xi ).

The connection is then completely determined from these forms: given two vector
fields X = ∑n

i=1 ai Xi and Y = ∑n
i=1 bi Xi , we have

∇X X j = ∇∑n
i=1 ai Xi

X j =
n∑

i=1

ai∇Xi X j =
n∑

i,k=1

ai �k
i j Xk (4.2)

=
n∑

i,k=1

ai ωk
j (Xi ) Xk =

n∑
k=1

ωk
j (X) Xk
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and hence

∇X Y = ∇X

(
n∑

i=1

bi Xi

)
=

n∑
i=1

(
(X · bi )Xi + bi∇X Xi

)
(4.3)

=
n∑

j=1

(
X · b j +

n∑
i=1

biω
j
i (X)

)
X j .

Note that the values of the forms ωk
j at X are the components of ∇X X j relative to

the field of frames, that is,

ωi
j (X) = ωi (∇X X j

)
. (4.4)

Theωk
j are called the connection forms. For the Levi–Civita connection, these forms

cannot be arbitrary. Indeed, they have to satisfy certain equations corresponding to
the properties of symmetry and compatibility with the metric.

Theorem 2.1 (Cartan) Let V be an open subset of a Riemannian manifold M on
which we have defined a field of frames {X1, . . . , Xn}. Let {ω1, . . . ,ωn} be the corre-
sponding field of coframes. Then the connection forms of the Levi–Civita connection
are the unique solution of the equations

(i) dωi = ∑n
j=1 ω

j ∧ ωi
j ,

(ii) dgi j = ∑n
k=1(gk j ω

k
i + gki ω

k
j ),

where gi j = 〈Xi , X j 〉.
Proof We begin by showing that the Levi–Civita connection forms, defined by
(4.1), satisfy (i) and (i i). For this, we will use the following property of 1-forms
[cf. Exercise3.8(2) of Chap.2]:

dω(X,Y ) = X · (ω(Y ))− Y · (ω(X))− ω([X,Y ]).

We have

∇Y X = ∇Y

⎛
⎝

n∑
j=1

ω j (X)X j

⎞
⎠ =

n∑
j=1

(
Y · ω j (X) X j + ω j (X)∇Y X j

)
,

which implies

ωi (∇Y X) = Y · ωi (X)+
n∑

j=1

ω j (X)ωi (∇Y X j ). (4.5)

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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Using (4.4) and (4.5), we have

⎛
⎝

n∑
j=1

ω j ∧ ωi
j

⎞
⎠ (X,Y ) =

n∑
j=1

(
ω j (X)ωi

j (Y )− ω j (Y )ωi
j (X)

)

=
n∑

j=1

(
ω j (X)ωi (∇Y X j )− ω j (Y )ωi (∇X X j )

)

= ωi (∇Y X)− Y · (ωi (X))− ωi (∇X Y )+ X · (ωi (Y )),

and so
⎛
⎝dωi −

n∑
j=1

ω j ∧ ωi
j

⎞
⎠ (X,Y )

= X · (ωi (Y ))− Y · (ωi (X))− ωi ([X,Y ])−
⎛
⎝

n∑
j=1

ω j ∧ ωi
j

⎞
⎠ (X,Y )

= ωi (∇X Y − ∇Y X − [X,Y ]) = 0.

Note that equation (i) is equivalent to symmetry of the connection. To show that (i i)
holds, we notice that

dgi j (Y ) = Y · 〈Xi , X j 〉,

and that, on the other hand,

(
n∑

k=1

gk j ω
k
i + gki ω

k
j

)
(Y ) =

n∑
k=1

gk j ω
k
i (Y )+ gki ω

k
j (Y )

=
〈

n∑
k=1

ωk
i (Y ) Xk, X j

〉
+

〈
n∑

k=1

ωk
j (Y ) Xk, Xi

〉

= 〈∇Y Xi , X j 〉 + 〈∇Y X j , Xi 〉.

Hence, equation (i i) is equivalent to

Y · 〈Xi , X j 〉 = 〈∇Y Xi , X j 〉 + 〈Xi ,∇Y X j 〉,

for every i, j , that is, it is equivalent to compatibility with the metric
[cf. Exercise2.8(2)]. We conclude that the Levi–Civita connection forms satisfy
(i) and (i i).

To prove unicity, we take 1-forms ω j
i (i, j = 1, . . . , n) satisfying (i) and (i i).

Using (4.2) and (4.3), we can define a connection,which is necessarily symmetric and
compatible with the metric. By uniqueness of the Levi–Civita connection, we have
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uniqueness of the set of forms ω j
i satisfying (i) and (i i) (note that each connection

determines a unique set of n2 connection forms and vice versa). �

Remark 2.2 Given a field of frames on some open set, we can perform
Gram–Schmidt orthogonalization to obtain a smooth field of orthonormal frames
{E1, . . . , En}. Then, as gi j = 〈Ei , E j 〉 = δi j , equations (i) and (i i) above become

(i) dωi = ∑n
j=1 ω

j ∧ ωi
j ,

(ii) ω j
i + ωi

j = 0.

In addition to connection forms, we can also define curvature forms. Again we
consider an open subset V of M wherewe have a field of frames {X1, . . . , Xn} (hence
a corresponding field of dual coframes {ω1, . . . ,ωn}). We then define 2-forms �l

k
(k, l = 1, . . . , n) by

�l
k(X,Y ) := ωl(R(X,Y )Xk),

for all vector fields X,Y in V (i.e. R(X,Y )Xk = ∑n
l=1�

l
k(X,Y )Xl ). Using the

basis {ωi ∧ ω j }i< j for 2-forms, we have

�l
k =

∑
i< j

�l
k(Xi , X j )ω

i ∧ ω j =
∑
i< j

ωl(R(Xi , X j )Xk)ω
i ∧ ω j

=
∑
i< j

R l
i jk ωi ∧ ω j = 1

2

n∑
i, j=1

R l
i jk ωi ∧ ω j ,

where the R l
i jk are the coefficients of the curvature relative to these frames:

R(Xi , X j )Xk =
n∑

l=1

R l
i jk Xl .

The curvature forms satisfy the following equation.

Proposition 2.3 In the above notation,

(iii) � j
i = dω j

i − ∑n
k=1 ω

k
i ∧ ω

j
k , for every i, j = 1, . . . , n.

Proof We will show that

R(X,Y )Xi =
n∑

j=1

�
j
i (X,Y )X j =

n∑
j=1

((
dω j

i −
n∑

k=1

ωk
i ∧ ω

j
k

)
(X,Y )

)
X j .

Indeed,

R(X,Y )Xi = ∇X ∇Y Xi − ∇Y ∇X Xi − ∇[X,Y ] Xi
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= ∇X

(
n∑

k=1

ωk
i (Y )Xk

)
− ∇Y

(
n∑

k=1

ωk
i (X)Xk

)
−

n∑
k=1

ωk
i ([X,Y ])Xk

=
n∑

k=1

(
X · (ωk

i (Y ))− Y · (ωk
i (X))− ωk

i ([X,Y ])
)

Xk+

+
n∑

k=1

ωk
i (Y )∇X Xk −

n∑
k=1

ωk
i (X)∇Y Xk

=
n∑

k=1

dωk
i (X,Y )Xk +

n∑
k, j=1

(
ωk

i (Y )ω
j
k (X) X j − ωk

i (X)ω
j
k (Y ) X j

)

=
n∑

j=1

(
dω j

i (X,Y )−
n∑

k=1

(ωk
i ∧ ω

j
k )(X,Y )

)
X j . �

Equations (i), (i i) and (i i i) are known as the Cartan structure equations. We list
these equations below, as well as the main definitions.

(i) dωi = ∑n
j=1 ω

j ∧ ωi
j ,

(ii) dgi j = ∑n
k=1(gk j ω

k
i + gki ω

k
j ),

(iii) dω j
i = �

j
i + ∑n

k=1 ω
k
i ∧ ω

j
k ,

where ωi (X j ) = δi j , ωk
j = ∑n

i=1 �
k
i jω

i and � j
i = ∑

k<l R j
kli ωk ∧ ωl .

Remark 2.4 If we consider a field of orthonormal frames {E1, . . . , En}, the above
equations become:

(i) dωi = ∑n
j=1 ω

j ∧ ωi
j ,

(ii) ω j
i + ωi

j = 0,

(iii) dω j
i = �

j
i + ∑n

k=1 ω
k
i ∧ ω

j
k (and so � j

i +�i
j = 0).

Example 2.5 For a field of orthonormal frames in R
n with the Euclidean metric,

the curvature forms must vanish (as R = 0), and we obtain the following structure
equations:

(i) dωi = ∑n
j=1 ω

j ∧ ωi
j ,

(ii) ω j
i + ωi

j = 0,

(iii) dω j
i = ∑n

k=1 ω
k
i ∧ ω

j
k .

To finish this section, we will consider in detail the special case of a 2-dimensional
Riemannian manifold. In this case, the structure equations for a field of orthonormal
frames are particularly simple: equation (i i) implies that there is only one indepen-
dent connection form (ω1

1 = ω2
2 = 0 and ω1

2 = −ω2
1), which can be computed from

equation (i):
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dω1 = −ω2 ∧ ω2
1;

dω2 = ω1 ∧ ω2
1 .

Equation (i i i) then yields that there is only one independent curvature form
�2

1 = dω2
1. This form is closely related to the Gauss curvature of the manifold.

Proposition 2.6 If M is a 2-dimensional manifold, then for an orthonormal frame
we have�2

1 = −Kω1 ∧ω2, where the function K is the Gauss curvature of M (that
is, its sectional curvature).

Proof Let p be a point in M and let us choose an open set containing p where we
have defined a field of orthonormal frames {E1, E2}. Then

K = −R(E1, E2, E1, E2) = −R1212,

and consequently

�2
1 = �2

1(E1, E2)ω
1 ∧ ω2 = ω2(R(E1, E2)E1)ω

1 ∧ ω2

= 〈R(E1, E2)E1, E2〉ω1 ∧ ω2 = R1212 ω
1 ∧ ω2 = −K ω1 ∧ ω2. �

Note that K does not depend on the choice of the field of frames, since it is a
sectional curvature (cf. Definition 1.5), and, since ω1 ∧ ω2 is a Riemannian volume
form, neither does the curvature form (up to a sign). However, the connection forms
do. Let {E1, E2}, {F1, F2} be two fields of orthonormal frames on an open subset V
of M . Then (

F1 F2
) = (

E1 E2
)

S

where S : V → O(2) has values in the orthogonal group of 2 × 2 matrices. Note
that S has one of the following two forms

S =
(

a −b
b a

)
or S =

(
a b
b −a

)
,

where a, b : V → R are such that a2 + b2 = 1. The determinant of S is then
±1 depending on whether the two frames have the same orientation. We have the
following proposition.

Proposition 2.7 If {E1, E2} and {F1, F2} have the same orientation then, denoting
by ω2

1 and ω2
1 the corresponding connection forms, we have ω2

1 − ω2
1 = σ, where

σ := a db − b da.

Proof Denoting by {ω1,ω2} and {ω1,ω2} the fields of dual coframes corresponding
to {E1, E2} and {F1, F2}, we define the column vectors of 1-forms
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ω :=
(
ω1

ω2

)
and ω :=

(
ω1

ω2

)

and the matrices of 1-forms

A :=
(

0 −ω2
1

ω2
1 0

)
and Ā :=

(
0 −ω2

1
ω2
1 0

)
.

The relation between the frames can be written as

ω = S−1ω ⇔ ω = S ω

(cf. Sect. 2.7.1 in Chap.2), and the Cartan structure equations as

dω = −A ∧ ω and dω = − Ā ∧ ω.

Therefore

dω = S dω + d S ∧ ω = −S Ā ∧ ω + d S ∧ S−1ω

= −S Ā ∧ S−1ω + d S ∧ S−1ω = −
(

S ĀS−1 − d S S−1
)

∧ ω,

and unicity of solutions of the Cartan structure equations implies

A = S ĀS−1 − d SS−1.

Writing this out in full one obtains

(
0 −ω2

1
ω2
1 0

)
=

(
0 −ω2

1
ω2
1 0

)
−

(
a da + b db b da − a db
a db − b da a da + b db

)
,

and the result follows (we also obtain a da + b db = 0, which is clear from
det S = a2 + b2 = 1). �

Let us now give a geometric interpretation of σ := a db − b da. Locally, we can
define at each point p ∈ M the angle θ(p) between (E1)p and (F1)p. Then the
change of basis matrix S has the form

(
a −b
b a

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Hence,

σ = a db − b da = cos θ d (sin θ)− sin θ d (cos θ)

= cos2 θ dθ + sin2 θ dθ = dθ.

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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Therefore, integrating σ along a curve yields the angle by which F1 rotates with
respect to E1 along the curve.

In particular, notice that σ is closed. This is also clear from

dσ = d ω2
1 − dω2

1 = −K ω1 ∧ ω2 + Kω1 ∧ ω2 = 0

(ω1 ∧ ω2 = ω1 ∧ ω2 since the two fields of frames have the same orientation).
We can use the connection form ω2

1 to define the geodesic curvature of a curve
on an oriented Riemannian 2-manifold M . Let c : I → M be a smooth curve in
M parameterized by its arclength s (hence ‖ċ(s)‖ = 1). Let V be a neighborhood
of a point c(s) in this curve where we have a field of orthonormal frames {E1, E2}
satisfying (E1)c(s) = ċ(s). Note that it is always possible to consider such a field of
frames: we start by extending the vector field ċ(s) to a unit vector field E1 defined
on a neighborhood of c(s), and then consider a unit vector field E2 orthogonal to the
first, such that {E1, E2} is positively oriented. Since

∇E1 E1 = ω1
1(E1)E1 + ω2

1(E1)E2 = ω2
1(E1)E2,

the covariant acceleration of c is

∇ċ(s)ċ(s) = ∇E1(s)E1(s) = ω2
1(E1(s))E2(s).

We define the geodesic curvature of the curve c to be

kg(s) := ω2
1(E1(s))

(thus |kg(s)| = ‖∇ċ(s)ċ(s)‖). It is a measure of how much the curve fails to be a
geodesic at c(s). In particular, c is a geodesic if and only if its geodesic curvature
vanishes.

Exercise 2.8

(1) Let {X1, . . . , Xn} be a field of frames on an open set V of aRiemannianmanifold
(M, 〈·, ·〉) with Levi–Civita connection ∇. The associated structure functions
Ck

i j are defined by

[Xi , X j ] =
n∑

k=1

Ck
i j Xk .

Show that:

(a) Ci
jk = �i

jk − �i
k j ;

(b) �i
jk = 1

2

∑n
l=1 g

il
(
X j · gkl + Xk · g jl − Xl · g jk

)

+ 1
2Ci

jk − 1
2

∑n
l,m=1 g

il
(
g jmCm

kl + gkmCm
jl

)
;

(c) dωi + 1
2

∑n
j,k=1 Ci

jkω
j ∧ ωk = 0, where {ω1, . . . ,ωn} is the field of dual

coframes.
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(2) Let {X1, . . . , Xn} be a field of frames on an open set V of aRiemannianmanifold
(M, 〈·, ·〉). Show that a connection ∇ on M is compatible with the metric on V
if and only if

Xk · 〈Xi , X j 〉 = 〈∇Xk Xi , X j 〉 + 〈Xi ,∇Xk X j 〉

for all i, j, k.
(3) Compute the Gauss curvature of:

(a) the sphere S2 with the standard metric;
(b) the hyperbolic plane, i.e. the upper half-plane

H = {(x, y) ∈ R
2 | y > 0}

with the metric

g = 1

y2
(dx ⊗ dx + dy ⊗ dy)

[cf. Exercise3.3(5) of Chap.3].

(4) Determine all surfaces of revolution with constant Gauss curvature.
(5) Let M be the image of the parameterization ϕ : (0,+∞)× R → R

3 given by

ϕ(u, v) = (u cos v, u sin v, v),

and let N be the image of the parameterizationψ : (0,+∞)×R → R
3 given by

ψ(u, v) = (u cos v, u sin v, log u).

Consider in both M and N the Riemannian metric induced by the Euclidean
metric of R

3. Show that the map f : M → N defined by

f (ϕ(u, v)) = ψ(u, v)

preserves the Gauss curvature but is not a local isometry.
(6) Consider the metric

g = A2(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dϕ⊗ dϕ

on M = I × S2, where r is a local coordinate on I ⊂ R and (θ,ϕ) are spherical
local coordinates on S2.

(a) Compute the Ricci tensor and the scalar curvature of this metric.

(b) What happens when A(r) = (1−r2)− 1
2 (that is, when M is locally isometric

to S3)?

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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(c) And when A(r) = (1 + r2)− 1
2 (that is, when M is locally isometric to the

hyperbolic 3-space)?
(d) For which functions A(r) is the scalar curvature constant?

(7) Let M be an oriented Riemannian 2-manifold and let p be a point in M . Let D
be a neighborhood of p in M homeomorphic to a disc, with a smooth boundary
∂D. Consider a point q ∈ ∂D and a unit vector Xq ∈ Tq M . Let X be the
parallel transport of Xq along ∂D in the positive direction. When X returns
to q it makes an angle �θ with the initial vector Xq . Using fields of positively
oriented orthonormal frames {E1, E2} and {F1, F2} such that F1 = X , show that

�θ =
∫

D
K .

Conclude that the Gauss curvature of M at p satisfies

K (p) = lim
D→p

�θ

vol(D)
.

(8) Compute the geodesic curvature of a positively oriented circle on:

(a) R
2 with the Euclidean metric and the usual orientation;

(b) S2 with the usual metric and orientation.

(9) Let c be a smooth curve on an oriented 2-manifold M as in the definition of
geodesic curvature. Let X be a vector field parallel along c and let θ be the angle
between X and ċ(s) along c in the given orientation. Show that the geodesic
curvature of c, kg , is equal to dθ

ds . (Hint: Consider two fields of orthonormal frames {E1, E2} and
{F1, F2} positively oriented such that E1 = X‖X‖ and F1 = ċ).

4.3 Gauss–Bonnet Theorem

Wewill now use theCartan structure equations to prove theGauss–Bonnet theorem,
relating the curvature of a compact surface to its topology. Let M be a compact,
oriented, 2-dimensional manifold and X a vector field on M .

Definition 3.1 A point p ∈ M is said to be a singular point of X if X p = 0. A
singular point is said to be an isolated singularity if there exists a neighborhood
V ⊂ M of p such that p is the only singular point of X in V .

Since M is compact, if all the singularities of X are isolated then they are in finite
number (as otherwise they would accumulate on a non-isolated singularity).

To each isolated singularity p ∈ V of X ∈ X(M) one can associate an integer
number, called the index of X at p, as follows:

(i) fix a Riemannian metric in M ;
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(ii) choose a positively oriented orthonormal frame {F1, F2}, defined on V \{p},
such that

F1 = X

‖X‖ ,

let {ω1,ω2} be the dual coframe and let ω2
1 be the corresponding connection

form;
(iii) possibly shrinking V , choose a positively oriented orthonormal frame {E1, E2},

defined on V , with dual coframe {ω1,ω2} and connection form ω2
1;

(iv) take a neighborhood D of p in V , homeomorphic to a disc, with a smooth
boundary ∂D, endowed with the induced orientation, and define the index Ip

of X at p as

2π Ip =
∫

∂D
σ,

where σ := ω2
1 − ω2

1 is the form in Proposition 2.7.

Recall that σ satisfies σ = dθ, where θ is the angle between E1 and F1. Therefore
Ip must be an integer. Intuitively, the index of a vector field X measures the number
of times that X rotates as one goes around the singularity anticlockwise, counted
positively if X itself rotates anticlockwise, and negatively otherwise.

Example 3.2 In M = R
2 the following vector fields have isolated singularities at

the origin with the indicated indices (cf. Fig. 4.1):

(1) X(x,y) = (x, y) has index 1;
(2) Y(x,y) = (−y, x) has index 1;
(3) Z(x,y) = (y, x) has index −1;
(4) W(x,y) = (x,−y) has index −1.

We will now check that the index is well defined. We begin by observing that,
since σ is closed, Ip does not depend on the choice of D. Indeed, the boundaries
of any two such discs are necessarily homotopic [cf. Exercise5.3(2) in Chap.2].
Next we prove that Ip does not depend on the choice of the frame {E1, E2}. More
precisely, we will show that

Ip = lim
r→0

1

2π

∫

Sr (p)
ω2
1,

where Sr (p) is the normal sphere of radius r centered at p. Indeed, if r1 > r2 > 0
are radii of normal spheres, one has

∫

Sr1 (p)
ω2
1 −

∫

Sr2 (p)
ω2
1 =

∫

�12

d ω2
1 = −

∫

�12

Kω1 ∧ ω2 = −
∫

�12

K , (4.6)

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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(1) (2)

(3) (4)

θ
E1 = ∂

∂x

F1 = X
X F1 = Y

Y

F1 = Z
Z F1 = W

W

Fig. 4.1 Computing the indices of the vector fields X , Y , Z and W

where �12 = Br1(p) \ Br2(p). Since K is continuous, we see that

(∫

Sr1 (p)
ω2
1 −

∫

Sr2 (p)
ω2
1

)
−→ 0

as r1 → 0. Therefore, if {rn} is a decreasing sequence of positive numbers converging
to zero, the sequence

{∫

Srn (p)
ω2
1

}

is a Cauchy sequence, and therefore converges. Let

I p := lim
r→0

1

2π

∫

Sr (p)
ω2
1.
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Taking the limit as r2 → 0 in (4.6) one obtains

∫

Sr1 (p)
ω2
1−2π I p = −

∫

Br1 (p)
K = −

∫

Br1 (p)
Kω1∧ω2 =

∫

Br1 (p)
dω2

1 =
∫

Sr1 (p)
ω2
1,

and hence

2π Ip =
∫

Sr1 (p)
σ =

∫

Sr1 (p)
ω2
1 − ω2

1 = 2π I p.

Finally, we show that Ip does not depend on the choice of Riemannian metric.
Indeed, if 〈·, ·〉0, 〈·, ·〉1 are two Riemannian metrics on M , it is easy to check that

〈·, ·〉t := (1 − t)〈·, ·〉0 + t〈·, ·〉1
is also a Riemannianmetric on M , and that the index Ip(t) computed using themetric
〈·, ·〉t is a continuous function of t [cf. Exercise3.6(1)]. Since Ip(t) is an integer for
all t ∈ [0, 1], we conclude that Ip(0) = Ip(1).

Therefore Ip depends only on the vector field X ∈ X(M). We are now ready to
state the Gauss–Bonnet theorem:

Theorem 3.3 (Gauss–Bonnet) Let M be a compact, oriented, 2-dimensional man-
ifold and let X be a vector field in M with isolated singularities p1, . . . , pk. Then

∫

M
K = 2π

k∑
i=1

Ipi (4.7)

for any Riemannian metric on M, where K is the Gauss curvature.

Proof We consider the positively oriented orthonormal frame {F1, F2}, with

F1 = X

‖X‖ ,

defined on M\∪k
i=1 {pi }, with dual coframe {ω1,ω2} and connection form ω2

1. For
r > 0 sufficiently small, we take Bi := Br (pi ) such that Bi ∩ B j = ∅ for i �= j and
note that

∫

M\∪k
i=1Bi

K =
∫

M\∪k
i=1Bi

K ω1 ∧ ω2 = −
∫

M\∪k
i=1Bi

d ω2
1

=
∫

∪k
i=1∂Bi

ω2
1 =

k∑
i=1

∫

∂Bi

ω2
1,
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where the ∂Bi have the orientation induced by the orientation of Bi . Taking the limit
as r → 0 one obtains

∫

M
K = 2π

k∑
i=1

Ipi . �

Remark 3.4

(1) Since the right-hand side of (4.7) does not depend on the metric, we conclude
that

∫
M K is the same for all Riemannian metrics on M .

(2) Since the left-hand side of (4.7) does not depend on the vector field X , we
conclude that χ(M) := ∑k

i=1 Ipi is the same for all vector fields on M with
isolated singularities. This is the so-called Euler characteristic of M .

(3) Recall that a triangulation of M is a decomposition of M in a finite number of
triangles (i.e. images of Euclidean triangles by parameterizations) such that the
intersection of any two triangles is either a common edge, a common vertex or
empty (it is possible to prove that such a triangulation always exists). Given a
triangulation, one can construct a vector field X with the following properties
(cf. Fig. 4.2):

(a) each vertex is a singularity which is a sink, that is,

X = −x
∂

∂x
− y

∂

∂y

for certain local coordinates (x, y) centered at the singularity;

Fig. 4.2 Vector field associated to a triangulation
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(b) the interior of each 2-dimensional face contains exactly one singularity
which is a source, that is

X = x
∂

∂x
+ y

∂

∂y

for certain local coordinates (x, y) centered at the singularity;
(c) each edge is formed by integral curves of the vector field and contains exactly

one singularity which is not a vertex.

It is easy to see that all singularities are isolated, that the singularities at the
vertices and 2-dimensional faces have index 1 and that the singularities at the
edges have index −1. Therefore,

χ(M) = V − E + F,

where V is the number of vertices, E is the number of edges and F is the number
of 2-dimensional faces on any triangulation. This is the definition we used in
Exercise1.8(5) of Chap. 1.

Example 3.5

(1) Choosing the standard metric in S2, we have

χ(S2) = 1

2π

∫

S2
1 = 1

2π
vol(S2) = 2.

From this we can derive a number of conclusions:

(a) there is no zero curvature metric on S2, for this would imply χ(S2) = 0;
(b) there is no vector field on S2 without singularities, as this would also imply

χ(S2) = 0;
(c) for any triangulation of S2, one has V − E + F = 2. In particular, this

proves Euler’s formula for convex polyhedra with triangular 2-dimensional
faces, as these clearly yield triangulations of S2.

(2) As we will see in Sect. 4.4, the torus T 2 has a zero curvature metric, and hence
χ(T 2) = 0. This can also be seen from the fact that there exist vector fields on
T 2 without singularities.

Exercise 3.6

(1) Show that if 〈·, ·〉0, 〈·, ·〉1 are two Riemannian metrics on M then

〈·, ·〉t := (1 − t)〈·, ·〉0 + t〈·, ·〉1
is also a Riemannian metric on M , and that the index Ip(t) computed using the
metric 〈·, ·〉t is a continuous function of t .

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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(2) (Gauss–Bonnet theorem for non-orientable manifolds) Let (M, g) be a compact,
non-orientable, 2-dimensional Riemannian manifold and let π : M → M be its
orientable double covering [cf. Exercise8.6(9) in Chap.1]. Show that:

(a) χ(M) = 2χ(M);
(b) K = π∗K , where K is the Gauss curvature of the Riemannian metric g :=

π∗g on M ;

(c) 2πχ(M) = 1
2

∫

M
K .

(Remark: Even though M is not orientable, we can still define the integral of a function f on M through∫

M
f = 1

2

∫

M
π∗ f ; with this definition, the Gauss–Bonnet theorem holds for non-orientable Riemannian

2-manifolds).

(3) (Gauss–Bonnet theorem for manifolds with boundary) Let M be a compact,
oriented, 2-dimensional manifold with boundary and let X be a vector field in
M transverse to ∂M (i.e. such that X p �∈ Tp∂M for all p ∈ ∂M), with isolated
singularities p1, . . . , pk ∈ M\∂M . Prove that

∫

M
K +

∫

∂M
kg = 2π

k∑
i=1

Ipi

for any Riemannian metric on M , where K is the Gauss curvature of M and kg
is the geodesic curvature of ∂M .

(4) Let (M, g) be a compact orientable 2-dimensional Riemannian manifold, with
positive Gauss curvature. Show that any two non-self-intersecting closed geo-
desics must intersect each other.

(5) Let M be a differentiable manifold and f : M → R a smooth function.

(a) (Hessian) Let p ∈ M be a critical point of f (i.e. (d f )p = 0). The Hessian
of f at p is the map (H f )p : Tp M × Tp M → R given by

(H f )p(v,w) = ∂2

∂t∂s |s=t=0

( f ◦ γ)(s, t),

where γ : U ⊂ R
2 → M is such that γ(0, 0) = p, ∂γ∂s (0, 0) = v and

∂γ
∂t (0, 0) = w. Show that (H f )p is a well-defined symmetric 2-tensor.

(b) (Morse theorem) If (H f )p is nondegenerate then p is called a nondegener-
ate critical point. Assume that M is compact and f is a Morse function,
i.e. all its critical points are nondegenerate. Prove that there are only a finite
number of critical points. Moreover, show that if M is 2-dimensional then

χ(M) = m − s + n,

where m, n and s are the numbers of maxima, minima and saddle points
respectively. (Hint: Choose a Riemannian metric on M and consider the vector field X := grad f ).

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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(6) Let (M, g) be a 2-dimensional Riemannian manifold and � ⊂ M a geodesic
triangle, i.e. an open set homeomorphic to an Euclidean triangle whose sides
are images of geodesic arcs. Let α,β, γ be the inner angles of�, i.e. the angles
between the geodesics at the intersection points contained in ∂�. Prove that for
small enough � one has

α+ β + γ = π +
∫

�

K ,

where K is the Gauss curvature of M , using:

(a) the fact that
∫
�

K is the angle by which a vector parallel-transported once
around ∂� rotates;

(b) the Gauss–Bonnet theorem for manifolds with boundary.
(Remark: We can use this result to give another geometric interpretation of the Gauss curvature: K (p) =
lim�→p

α+β+γ−π
vol(�) ).

(7) Let (M, g) be a simply connected 2-dimensional Riemannian manifold with
nonpositive Gauss curvature. Show that any two geodesics intersect at most in
one point. (Hint: Note that if two geodesics intersected in more than one point then there would exist a

geodesic biangle, i.e. an open set homeomorphic to a disc whose boundary is formed by the images of two

geodesic arcs).

4.4 Manifolds of Constant Curvature

Recall that a manifold is said to have constant curvature if all sectional curvatures
at all points have the same constant value K . There is an easy way to identify these
manifolds using their curvature forms.

Lemma 4.1 If M is a manifold of constant curvature K , then, around each point
p ∈ M, all curvature forms � j

i satisfy

�
j
i = −Kωi ∧ ω j , (4.8)

where {ω1, . . . ,ωn} is any field of orthonormal coframes defined on a neighborhood
of p. Conversely, if on a neighborhood of each point of M there is a field of orthonor-
mal frames {E1, . . . , En} such that the corresponding field of coframes {ω1, . . . ,ωn}
satisfies (4.8) for some constant K , then M has constant curvature K .

Proof If M has constant curvature K then

�
j
i =

∑
k<l

�
j
i (Ek, El)ω

k ∧ ωl =
∑
k<l

ω j (R(Ek, El)Ei )ω
k ∧ ωl

=
∑
k<l

〈R(Ek, El)Ei , E j 〉ωk ∧ ωl =
∑
k<l

Rkli j ω
k ∧ ωl
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= −
∑
k<l

K (δkiδl j − δk jδli )ω
k ∧ ωl = −Kωi ∧ ω j .

Conversely, let us assume that there is a constant K such that on a neighborhood of
each point p ∈ M we have � j

i = −Kωi ∧ ω j . Then, for every section � of the
tangent space Tp M , the corresponding sectional curvature is given by

K (�) = −R(X,Y, X,Y )

where X,Y are two linearly independent vectors spanning � (which we assume to
span a parallelogram of unit area). Using the field of orthonormal frames around p,
we have X = ∑n

i=1 Xi Ei and Y = ∑n
i=1 Y i Ei and so,

K (�) = −
n∑

i, j,k,l=1

Xi Y j XkY l R(Ei , E j , Ek, El)

= −
n∑

i, j,k,l=1

Xi Y j XkY l �l
k(Ei , E j )

= K
n∑

i, j,k,l=1

Xi Y j XkY l ωk ∧ ωl(Ei , E j )

= K
n∑

i, j,k,l=1

Xi Y j XkY l
(
ωk(Ei )ω

l(E j )− ωk(E j )ω
l(Ei )

)

= K
n∑

i, j,k,l=1

Xi Y j XkY l(δikδ jl − δ jkδil)

= K
(
‖X‖2 ‖Y‖2 − 〈X,Y 〉2

)
= K . �

Let us now see an example of how we can use this lemma.

Example 4.2 The n-dimensional hyperbolic space of radius a > 0, Hn(a), is the
open half-space

{(x1, . . . xn) ∈ R
n | xn > 0}

equipped with the Riemannian metric

gi j (x) = a2

(xn)2
δi j .

This Riemannian manifold has constant sectional curvature K = − 1
a2
. Indeed, using

the above lemma, we will show that on Hn(a) there is a field of orthonormal frames
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{E1, . . . , En} whose dual field of coframes {ω1, . . . ,ωn} satisfies

�
j
i = −Kωi ∧ ω j (4.9)

for K = − 1
a2
. For that, let us consider the natural coordinate system x : Hn(a) → R

n

and the corresponding field of coordinate frames {X1, . . . , Xn}with Xi = ∂
∂xi

. Since

〈Xi , X j 〉 = a2

(xn)2
δi j ,

we obtain a field of orthonormal frames {E1, . . . , En} with Ei = xn

a Xi , and the
corresponding dual field of coframes {ω1, . . . ,ωn} where ωi = a

xn dxi . Then

dωi = a

(xn)2
dxi ∧ dxn = 1

a
ωi ∧ ωn =

n∑
j=1

ω j ∧
(

−1

a
δ jnω

i
)
,

and so, using the structure equations

dωi =
n∑

j=1

ω j ∧ ωi
j

ω
j
i + ωi

j = 0,

we can guess that the connection forms are given by ωi
j = 1

a (δinω
j −δ jnω

i ). Indeed,
we can easily verify that these forms satisfy the above structure equations, and hence
must be the connection forms by unicity of solution of these equations. With these
forms it is now easy to compute the curvature forms � j

i using the third structure
equation

dω j
i =

n∑
k=1

ωk
i ∧ ω

j
k +�

j
i .

We have

dω j
i = d

(
1

a
(δ jnω

i − δinω
j )

)
= 1

a2 (δ jnω
i ∧ ωn − δinω

j ∧ ωn)

and

n∑
k=1

ωk
i ∧ ω

j
k = 1

a2

n∑
k=1

(δknω
i − δinω

k) ∧ (δ jnω
k − δknω

j )
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= 1

a2

n∑
k=1

(δknδ jnω
i ∧ ωk − δknω

i ∧ ω j + δinδknω
k ∧ ω j )

= 1

a2 (δ jnω
i ∧ ωn − ωi ∧ ω j + δinω

n ∧ ω j ),

and so,

�
j
i = dω j

i −
n∑

k=1

ωk
i ∧ ω

j
k = 1

a2ω
i ∧ ω j .

We conclude that K = − 1
a2
.

The Euclidean spacesR
n have constant curvature equal to zero. Moreover, we can

easily see that the spheres Sn(r) ⊂ R
n+1 of radius r have constant curvature equal

to 1
r2

[cf. Exercise5.7(2)]. Therefore we have examples of manifolds with arbitrary
constant negative (Hn(a)), zero (Rn) or positive (Sn(r)) curvature in any dimension.
Note that all these examples are simply connected and are geodesically complete.
Indeed, the images of the geodesics of the Euclidean space R

n are straight lines,
Sn(r) is compact and the images of the geodesics of Hn(a) are either half circles
perpendicular to the plane xn = 0 and centered on this plane, or vertical half lines
starting at the plane xn = 0 [cf. Exercise4.7(4)].

Every simply connected geodesically complete manifold of constant curvature is
isometric to one of these examples, as is stated in the following theorem. In general, if
the manifold is not simply connected (but still geodesically complete), it is isometric
to the quotient of one of the above examples by a free and proper action of a discrete
subgroup of the group of isometries (it can be proved that the group of isometries of
a Riemannian manifold is always a Lie group).

Theorem 4.3 (Killing-Hopf) Let M be a connected, geodesically complete
n-dimensional Riemannian manifold with constant curvature K .

(1) If M is simply connected then it is isometric to one of the following: Sn
(

1√
K

)

if K > 0, R
n if K = 0, or Hn

(
1√−K

)
if K < 0.

(2) If M is not simply connected then M is isometric to a quotient M̃/�, where M̃
is one of the above simply connected manifolds and � is a nontrivial discrete
subgroup of the group of isometries of M̃ acting properly and freely on M̃.

Proof The proof of this theorem can be found in [dC93]. Here we just give the
proof in the case when M is simply connected, n = 2 and K = 0. In this case,
the Cartan–Hadamard theorem [cf. Exercise5.8(5) in Chap.3] implies that given
p ∈ M the map expp : Tp M → M is a diffeomorphism. Let {E1, E2} be a global
orthonormal frame on M (obtained by orthonormalizing the frame associated to
global Cartesian coordinates). Since K = 0, the corresponding connection form ω2

1
satisfies dω2

1 = 0, and so by the Poincaré Lemma [cf. Exercise3.8(5) in Chap.2]
we have ω2

1 = d f for some smooth function f ∈ C∞(M). Let {F1, F2} be the

http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_2
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orthonormal framewith the same orientation as {E1, E2} such that the angle between
E1 and F1 is θ = − f . Then its connection form ω2

1 satisfies ω
2
1 = ω2

1 + dθ = 0, that
is, ∇F1 F1 = ∇F1 F2 = ∇F2 F1 = ∇F2 F2 = 0. We conclude that [F1, F2] = 0, and
so, by Theorem 6.10 in Chap.1, their flows commute. We can then introduce local
coordinates (x, y) in M by using the parameterization

ϕ(x, y) = ψ1,x ◦ ψ2,x (p)

(where ψ1,ψ2 are the flows of F1, F2). Using ∂
∂x = F1 and ∂

∂y = F2, it is easily

shown that ϕ(x, y) = expp

(
x(F1)p + y(F2)p

)
, and so (x, y) are actually global

coordinates. Since in these coordinates the metric is written

g = dx ⊗ dx + dy ⊗ dy,

we conclude that M is isometric to R
2. �

Example 4.4 Let M̃ = R
2. Then the subgroup of isometries� cannot contain isome-

tries with fixed points (since it acts freely). Hence � can only contain translations
and gliding reflections (that is, reflections followed by a translation in the direction
of the reflection axis). Moreover, � is generated by at most two elements, one of
which may be assumed to be a translation [cf. Exercise4.7(6)]. Therefore we have:

(1) if � is generated by one translation, then the resulting surface will be a cylinder;
(2) if � is generated by two translations we obtain a torus;
(3) if � is generated by a gliding reflection we obtain a Möbius band;
(4) if � is generated by a translation and a gliding reflection we obtain a Klein

bottle.

These are all the possible examples of geodesically complete Euclidean surfaces
(2-dimensional manifolds of constant zero curvature).

Example 4.5 The group of orientation-preserving isometries of the hyperbolic plane
H2 is P SL(2,R) = SL(2,R)/{± id}, acting on H2 through

(
a b
c d

)
· z := az + b

cz + d
,

wherewemake the identificationR
2 ∼= C [cf. Exercise4.7(8) and Sect. 4.6.1]. To find

orientable hyperbolic surfaces, that is, surfaces with constant curvature K = −1, we
have to find discrete subgroups � of P SL(2,R) acting properly and freely on H2.
Here there are many more possibilities. As an example, we can consider the group
� = 〈 f 〉 generated by the translation f (z) = z +2π. The resulting surface is known
as a pseudosphere and is homeomorphic to a cylinder (cf. Fig. 4.3). However, the
width of the end where y → +∞ converges to zero, while the width of the end
where y → 0 converges to +∞. Its height towards both ends is infinite. Note that
this surface has geodesics which transversely auto-intersect a finite number of times
(cf. Fig. 4.4).

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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−2π 0 2π 4π

∼=

Fig. 4.3 Pseudosphere

− 2π 0 2π 4π

Fig. 4.4 Trajectories of geodesics on the pseudosphere

Other examples can be obtained by considering hyperbolic polygons (bounded by
geodesics) and identifying their sides through isometries. For instance, the surface
in Fig. 4.5b is obtained by identifying the sides of the polygon in Fig. 4.5a through
the isometries g(z) = z + 2 and h(z) = z

2z+1 . Choosing other polygons it is possi-
ble to obtain compact hyperbolic surfaces. In fact, there exist compact hyperbolic
surfaces homeomorphic to any topological 2-manifold with negative Euler character-
istic (the Gauss–Bonnet theorem does not allow non-negative Euler characteristics
in this case).

Example 4.6 TofindRiemannianmanifolds of constant positive curvaturewehave to
find discrete subgroups of isometries of the sphere that act properly and freely. Let us
consider the case where K = 1. Then � ⊂ O(n + 1) [cf. Exercise4.7(11)]. Since it
must act freely on Sn , no element of �\{id} can have 1 as an eigenvalue. We will see
that, when n is even, Sn and RPn are the only geodesically complete manifolds of
constant curvature 1. Indeed, if A ∈ �, then A is an orthogonal (n+1)×(n+1)matrix
and so all its eigenvalues have absolute value equal to 1. Moreover, its characteristic
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− 1 0 1

∼=

(a)
(b)

Fig. 4.5 a Hyperbolic polygon, b Thrice-punctured sphere

polynomial has odd degree (n+1), and so it has a real root, equal to±1.Consequently,
A2 has 1 as an eigenvalue, and so it has to be the identity. Hence, A = A−1 = At ,
and so A is symmetric, implying that all its eigenvalues are real. The eigenvalues of
A are then either all equal to 1 (if A = id) or all equal to−1, in which case A = − id.
We conclude that � = {± id} implying that our manifold is either Sn or RPn . If n is
odd there are other possibilities, which are classified in [Wol78].

Exercise 4.7

(1) Show that the metric of Hn(a) is a left-invariant metric for the Lie group
structure induced by identifying (x1, . . . , xn) ∈ Hn(a) with the affine map
g : R

n−1 → R
n−1 given by

g(t1, . . . , tn−1) = xn(t1, . . . , tn−1)+ (x1, . . . , xn−1).

(2) Prove that if the forms ωi in a field of orthonormal coframes satisfy dωi =
α ∧ ωi (with α a 1-form), then the connection forms ω j

i are given by ω j
i =

α(Ei )ω
j − α(E j )ω

i = −ωi
j . Use this to confirm the results in Example 4.2.

(3) Let K be a real number and let ρ = 1 + ( K
4 )

∑n
i=1(x

i )2. Show that, for the
Riemannian metric defined on R

n by

gi j (p) = 1

ρ2
δi j ,

the sectional curvature is constant equal to K .
(4) Show that any isometry of the Euclidean space R

n which preserves the
coordinate function xn is an isometry of Hn(a). Use this fact to determine
all the geodesics of Hn(a).

(5) (Schur theorem) Let M be a connected isotropic Riemannian manifold of
dimension n ≥ 3. Show that M has constant curvature. (Hint: Use the structure

equations to show that d K = 0).
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(6) To complete the details in Example 4.4, show that:

(a) the isometries of R
2 with no fixed points are either translations or gliding

reflections;
(b) any discrete group of isometries ofR2 acting properly and freely is generated

by at most two elements, one of which may be assumed to be a translation.

(7) Let f, g : R
2 → R

2 be the isometries

f (x, y) = (−x, y + 1) and g(x, y) = (x + 1, y)

(thus f is a gliding reflection and g is a translation). Check that R
2/〈 f 〉 is

homeomorphic to a Möbius band (without boundary), and that R
2/〈 f, g〉 is

homeomorphic to a Klein bottle.
(8) Let H2 be the hyperbolic plane. Show that:

(a) the formula

(
a b
c d

)
· z := az + b

cz + d
(ad − bc = 1)

defines an action of P SL(2,R) := SL(2,R)/{± id} on H2 by orientation-
preserving isometries;

(b) for any two geodesics c1, c2 : R → H2, parameterized by the arclength,
there exists g ∈ P SL(2,R) such that c1(s) = g · c2(s) for all s ∈ R;

(c) given z1, z2, z3, z4 ∈ H2 with d(z1, z2) = d(z3, z4), there exists g ∈
P SL(2,R) such that g · z1 = z3 and g · z2 = z4;

(d) an orientation-preserving isometry of H2 with two fixed points must be the
identity. Conclude that all orientation-preserving isometries are of the form
f (z) = g · z for some g ∈ P SL(2,R).

(9) Check that the isometries g(z) = z + 2 and h(z) = z
2z+1 of the hyperbolic

plane in Example 4.5 identify the sides of the hyperbolic polygon in Fig. 4.5.
(10) A tractrix is the curve described parametrically by

{
x = u − tanh u

y = sech u
(u > 0)

(its name derives from the property that the distance between any point in the
curve and the x-axis along the tangent is constant equal to 1). Show that the
surface of revolution generated by rotating a tractrix about the x-axis (trac-
troid) has constant Gauss curvature K = −1. Determine an open subset of the
pseudosphere isometric to the tractroid. (Remark: The tractroid is not geodesically complete;

in fact, it was proved by Hilbert in 1901 that any surface of constant negative curvature embedded in Euclidean

3-space must be incomplete).
(11) Show that the group of isometries of Sn is O(n + 1).



156 4 Curvature

(12) Let G be a compact Lie group of dimension 2. Show that:

(a) G is orientable;
(b) χ(G) = 0;
(c) any left-invariant metric on G has constant curvature;
(d) G is the 2-torus T 2.

4.5 Isometric Immersions

Many Riemannian manifolds arise as submanifolds of other Riemannian manifolds,
by taking the induced metric (e.g. Sn ⊂ R

n+1). In this section, we will analyze how
the curvatures of the two manifolds are related.

Let f : N → M be an immersion of an n-manifold N on an m-manifold M . We
know from Sect. 4.5 of Chap.1 that for each point p ∈ N there is a neighborhood
V ⊂ N of p where f is an embedding onto its image. Hence f (V ) is a submanifold
of M . To simplify notation, we will identify V with f (V ), and proceed as if f were
the inclusionmap. Let 〈·, ·〉 be a Riemannianmetric on M and let 〈〈·, ·〉〉 be themetric
induced on N by f (which is therefore called an isometric immersion). For every
p ∈ V , the tangent space Tp M can be decomposed as

Tp M = Tp N ⊕ (Tp N )⊥.

Therefore, every element v of Tp M can be written uniquely as v = v� + v⊥, where
v� ∈ Tp N is the tangential part of v and v⊥ ∈ (Tp N )⊥ is the normal part of v. Let
∇̃ and ∇ be the Levi–Civita connections of (M, 〈·, ·〉) and (N , 〈〈·, ·〉〉), respectively.
Let X,Y be two vector fields in V ⊂ N and let X̃ , Ỹ be two extensions of X,Y to a
neighborhood W ⊂ M of V . Using the Koszul formula, we can easily check that

∇X Y = (∇̃X̃ Ỹ
)�

[cf. Exercise3.3(6) in Chap.3]. We define the second fundamental form of N as

B(X,Y ) := ∇̃X̃ Ỹ − ∇X Y.

Note that thismap is well defined, that is, it does not depend on the extensions X̃ , Ỹ of
X,Y [cf. Exercise5.7(1)]. Moreover, it is bilinear, symmetric, and, for each p ∈ V ,
B(X,Y )p ∈ (Tp N )⊥ depends only on the values of X p and Yp.

Using the second fundamental form, we can define, for each vector n p ∈ (Tp N )⊥,
a symmetric bilinear map Hn p : Tp N × Tp N → R through

Hn p (X p,Yp) = 〈B(X p,Yp), n p〉.

http://dx.doi.org/10.1007/978-3-319-08666-8_1
http://dx.doi.org/10.1007/978-3-319-08666-8_3
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The corresponding quadratic form is often called the second fundamental form of
f at p along the vector n p.
Finally, since Hn p is bilinear, there exists a linear map Sn p : Tp N → Tp N

satisfying

〈〈Sn p (X p),Yp〉〉 = Hn p (X p,Yp) = 〈B(X p,Yp), n p〉

for all X p,Yp ∈ Tp N . It is easy to check that this linear map is given by

Sn p (X p) = −(∇̃X̃ n)�p ,

where n is a local extension of n p normal to N . Indeed, since 〈Ỹ , n〉 = 0 on N and
X̃ is tangent to N , we have on N

〈〈Sn(X),Y 〉〉 = 〈B(X,Y ), n〉 = 〈∇̃X̃ Ỹ − ∇X Y, n〉
= 〈∇̃X̃ Ỹ , n〉 = X̃ · 〈Ỹ , n〉 − 〈Ỹ , ∇̃X̃ n〉
= 〈−∇̃X̃ n, Ỹ 〉 = 〈〈−(∇̃X̃ n)�,Y 〉〉.

Therefore

〈〈Sn p (X p),Yp〉〉 = 〈〈−(∇̃X̃ n)�p ,Yp〉〉

for all Yp ∈ Tp N .

Example 5.1 Let N be a hypersurface in M , i.e. let dim N = n and dim M =
n + 1. Consider a point p ∈ V (a neighborhood of N where f is an embedding),
and a unit vector n p normal to N at p. As the linear map Sn p : Tp N → Tp N
is symmetric, there exists an orthonormal basis of Tp N formed by eigenvectors
{(E1)p, . . . , (En)p} (calledprincipal directions at p) corresponding to the set of real
eigenvalues λ1, . . . ,λn of Sn p (called principal curvatures at p). The determinant
of the map Sn p (equal to the product λ1 · · ·λn) is called the Gauss curvature of f

and H := 1
n tr Sn p = 1

n (λ1 + · · · + λn) is called the mean curvature of f . When
n = 2 and M = R

3 with the Euclidean metric, the Gauss curvature of f is in fact
the Gauss curvature of N as defined in Sect. 4.1 (cf. Example 5.5).

Example 5.2 If, in the above example, M = R
n+1 with the Euclidean metric, we

can define the Gauss map g : V ⊂ N → Sn , with values on the unit sphere,
which, to each point p ∈ V , assigns the normal unit vector n p. Since n p is normal to
Tp N , we can identify the tangent spaces Tp N and Tg(p)Sn and obtain a well-defined
map (dg)p : Tp N → Tp N . Choosing a curve c : I → N with c(0) = p and
ċ(0) = X p ∈ Tp N , we have

(dg)p(X p) = d

dt
(g ◦ c)|t=0 = d

dt
nc(t)|t=0

= (∇̃ċn)p ,
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where we used the fact ∇̃ is the Levi–Civita connection for the Euclidean metric.
However, since ‖n‖ = 1, we have

0 = ċ(t) · 〈n, n〉 = 2〈∇̃ċ n, n〉,

implying that

(dg)p(X p) = (∇̃ċ n)p = (∇̃ċ n)�p = −Sn p (X p).

We conclude that the derivative of the Gauss map at p is (dg)p = −Sn p .

Let us now relate the curvatures of N and M .

Proposition 5.3 Let p be a point in N, let X p and Yp be two linearly independent
vectors in Tp N ⊂ Tp M and let � ⊂ Tp N ⊂ Tp M be the 2-dimensional subspace
generated by these vectors. Let K N (�) and K M (�) denote the corresponding sec-
tional curvatures in N and M, respectively. Then

K N (�)− K M (�) = 〈B(X p, X p), B(Yp,Yp)〉 − ‖B(X p,Yp)‖2
‖X p‖2‖Yp‖2 − 〈X p,Yp〉2 .

Proof Observing that the right-hand side depends only on�, we can assume,without
loss of generality, that {X p,Yp} is orthonormal. Let X,Y be local extensions of
X p,Yp, defined on a neighborhood of p in N and tangent to N , also orthonormal.
Let X̃ , Ỹ be extensions of X,Y to a neighborhood of p in M . Moreover, consider a
field of frames {E1, . . . , En+k}, also defined on a neighborhood of p in M , such that
E1, . . . , En are tangent to N with E1 = X and E2 = Y on N , and En+1, . . . , En+k

are normal to N (n + k = m). Then, since B(X,Y ) is normal to N ,

B(X,Y ) =
k∑

i=1

〈B(X,Y ), En+i 〉 En+i =
k∑

i=1

HEn+i (X,Y ) En+i .

On the other hand,

K N (�)− K M (�) = − RN (X p,Yp, X p,Yp)+ RM (X̃ p, Ỹp, X̃ p, Ỹp)

= 〈(−∇X ∇Y X + ∇Y ∇X X + ∇[X,Y ] X

+ ∇̃X̃ ∇̃Ỹ X̃ − ∇̃Ỹ ∇̃X̃ X̃ − ∇̃[X̃ ,Ỹ ] X̃)p,Yp〉
= 〈(−∇X ∇Y X + ∇Y ∇X X + ∇̃X̃ ∇̃Ỹ X̃ − ∇̃Ỹ ∇̃X̃ X̃)p,Yp〉,

where we have used the fact that ∇̃[X̃ ,Ỹ ] X̃ − ∇[X,Y ] X is normal to N
[cf. Exercise5.7(1)]. However, since on N
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∇̃Ỹ ∇̃X̃ X̃ = ∇̃Ỹ (B(X, X)+ ∇X X) = ∇̃Ỹ

(
k∑

i=1

HEn+i (X, X)En+i + ∇X X

)

=
k∑

i=1

(
HEn+i (X, X)∇̃Ỹ En+i + Ỹ · (HEn+i (X, X))En+i

) + ∇̃Ỹ ∇X X,

we have

〈∇̃Ỹ ∇̃X̃ X̃ , Y 〉 =
k∑

i=1

HEn+i (X, X)〈∇̃Ỹ En+i ,Y 〉 + 〈∇̃Ỹ ∇X X,Y 〉.

Moreover,

0 = Ỹ · 〈En+i ,Y 〉 = 〈∇̃Ỹ En+i ,Y 〉 + 〈En+i , ∇̃Ỹ Y 〉
= 〈∇̃Ỹ En+i ,Y 〉 + 〈En+i , B(Y,Y )+ ∇Y Y 〉
= 〈∇̃Ỹ En+i ,Y 〉 + 〈En+i , B(Y,Y )〉
= 〈∇̃Ỹ En+i ,Y 〉 + HEn+i (Y,Y ),

and so

〈∇̃Ỹ ∇̃X̃ X̃ , Y 〉 = −
k∑

i=1

HEn+i (X, X)HEn+i (Y,Y )+ 〈∇̃Ỹ ∇X X,Y 〉

= −
k∑

i=1

HEn+i (X, X)HEn+i (Y,Y )+ 〈∇Y ∇X X,Y 〉.

Similarly, we can conclude that

〈∇̃X̃ ∇̃Ỹ X̃ ,Y 〉 = −
k∑

i=1

HEn+i (X,Y )HEn+i (X,Y )+ 〈∇X ∇Y X,Y 〉,

and then

K N (�)− K M (�)

=
k∑

i=1

(
−(HEn+i (X p,Yp))

2 + HEn+i (X p, X p)HEn+i (Yp,Yp)
)

= −‖B(X p,Yp)‖2 + 〈B(X p, X p), B(Yp,Yp)〉. �

Example 5.4 Again in the case of a hypersurface N , we choose an orthonor-
mal basis {(E1)p, . . . , (En)p} of Tp N formed by eigenvectors of Sn p , where
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n p ∈ (Tp N )⊥. Hence, considering a section � of Tp N generated by two of these
vectors (Ei )p, (E j )p, and using B(X p,Yp) = 〈〈Sn p (X p),Yp〉〉n p, we have

K N (�)−K M (�)

= −‖B((Ei )p, (E j )p)‖2 + 〈B((Ei )p, (Ei )p), B((E j )p, (E j )p)〉
= −〈〈Sn p ((Ei )p), (E j )p〉〉2+ 〈〈Sn p ((Ei )p), (Ei )p〉〉〈〈Sn p ((E j )p), (E j )p〉〉
= λiλ j .

Example 5.5 In the special case where N is a 2-manifold, and M = R
3 with the

Euclidean metric, we have K M ≡ 0 and hence K N (p) = λ1λ2, as promised in
Example 5.1. Therefore, although λ1 and λ2 depend on the immersion, their product
depends only on the intrinsic geometry of N . Gauss was so pleased by this discovery
that he called it his Theorema Egregium (‘remarkable theorem’).

Let us now study in detail the particular case where N is a hypersurface in M =
R

n+1 with the Euclidean metric. Let c : I → N be a curve in N parameterized
by arc length s and such that c(0) = p and ċ(0) = X p ∈ Tp N . We will identify
this curve c with the curve f ◦ c in R

n+1. Considering the Gauss map g : V → Sn

defined on a neighborhood V of p in N , we take the curve n(s) := (g ◦ c)(s) in Sn .
Since ∇̃ is the Levi–Civita connection corresponding to the Euclidean metric in R

3,
we have 〈∇̃ċ ċ, n〉 = 〈c̈, n〉. On the other hand,

〈∇̃ċ ċ, n〉 = 〈B(ċ, ċ)+ ∇ċ ċ, n〉 = 〈B(ċ, ċ), n〉 = Hn(ċ, ċ).

Hence, at s = 0, Hg(p)(X p, X p) = 〈c̈(0), n p〉. This value kn p := 〈c̈(0), n p〉 is
called the normal curvature of c at p. Since kn p is equal to Hg(p)(X p, X p), it does
not depend on the curve, but only on its initial velocity. Because Hg(p)(X p, X p) =
〈〈Sg(p)(X p), X p〉〉, the critical values of these curvatures subject to ‖X p‖ = 1 are
equal toλ1, . . . ,λn , and are called the principal curvatures. This is why in Example
5.1 we also called the eigenvalues of Sn p principal curvatures. The Gauss curvature
of f is then equal to the product of the principal curvatures, K = λ1 . . .λn . As the
normal curvature does not depend on the choice of curve tangent to X p at p, we can
choose c to take values on the 2-plane generated by X p and n p. Then c̈(0) is parallel
to the normal vector n p, and

|kn| = |〈c̈(0), n〉| = ‖c̈(0)‖ = kc,

where kc := ‖c̈(0)‖ is the so-called curvature of the curve c at c(0). The same
formula holds if c is a geodesic of N [cf. Exercise5.7(6)].

Example 5.6 Let us consider the following three surfaces: the 2-sphere, the cylinder
and the saddle surface z = xy.

(1) Let p be any point on the sphere. Intuitively, all points of this surface are on the
same side of the tangent plane at p, implying that both principal curvatures have
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the same sign (depending on the chosen orientation), and consequently that the
Gauss curvature is positive at all points.

(2) If p is any point on the cylinder, one of the principal curvatures is zero (the
maximum or the minimum, depending on the chosen orientation), and so the
Gauss curvature is zero at all points.

(3) Finally, if p is a point on the saddle surface z = xy then the principal curvatures
at p have opposite signs, and so the Gauss curvature is negative.

Exercise 5.7

(1) Let M be a Riemannian manifold with Levi–Civita connection ∇̃, and let N be
a submanifold endowed with the induced metric and Levi–Civita connection ∇.
Let X̃ , Ỹ ∈ X(M) be local extensions of X,Y ∈ X(N ). Recall that the second
fundamental form of the inclusion of N in M is the map B : Tp N × Tp N →
(Tp N )⊥ defined at each point p ∈ N by

B(X,Y ) := ∇̃X̃ Ỹ − ∇X Y.

Show that:

(a) B(X,Y ) does not depend on the choice of the extensions X̃ , Ỹ ;
(b) B(X,Y ) is orthogonal to N ;
(c) B is symmetric, i.e. B(X,Y ) = B(Y, X);
(d) B is bilinear;
(e) B(X,Y )p depends only on the values of X p and Yp;
(f) ∇̃[X̃ ,Ỹ ] X̃ − ∇[X,Y ] X is orthogonal to N .

(2) Let Sn(r) ⊂ R
n+1 be the n dimensional sphere of radius r .

(a) Choosing at each point the outward pointing normal unit vector, what is the
Gauss map of this inclusion?

(b) What are the eigenvalues of its derivative?
(c) Show that all sectional curvatures are equal to 1

r2
(so Sn(r) has constant

curvature 1
r2
).

(3) Let (M, 〈·, ·〉) be a Riemannian manifold. A submanifold N ⊂ M is said to be
totally geodesic if the the geodesics of N are geodesics of M . Show that:

(a) N is totally geodesic if and only if B ≡ 0,where B is the second fundamental
form of N ;

(b) if N is the set of fixed points of an isometry then N is totally geodesic. Use
this result to give examples of totally geodesic submanifolds of R

n , Sn and
Hn .

(4) Let N be a hypersurface inR
n+1 and let p be a point in N . Show that if K (p) �= 0

then

|K (p)| = lim
D→p

vol(g(D))

vol(D)
,
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where g : V ⊂ N → Sn is the Gauss map and D is a neighborhood of p whose
diameter tends to zero.

(5) Let (M, 〈·, ·〉) be a Riemannian manifold, p a point in M and � a section
of Tp M . For Bε(p) := expp(Bε(0)) a normal ball around p consider the set
Np := expp(Bε(0) ∩�). Show that:

(a) the set Np is a 2-dimensional submanifold of M formed by the segments of
geodesics in Bε(p) which are tangent to� at p;

(b) if in Np we use themetric induced by themetric in M , the sectional curvature
K M (�) is equal to the Gauss curvature of the 2-manifold Np.

(6) Let (M, 〈·, ·〉) be a Riemannian manifold with Levi–Civita connection ∇̃ and
let N be a hypersurface in M . The geodesic curvature of a curve c : I ⊂
R → M , parameterized by arclength, is kg(s) = ‖∇̃ċ(s)ċ(s)‖. Show that the
absolute values of the principal curvatures are the geodesic curvatures (in M)
of the geodesics of N tangent to the principal directions. (Remark: In the case of an

oriented 2-dimensional Riemannian manifold, kg is taken to be positive or negative according to the orientation

of {ċ(s), ∇̃ċ(s) ċ(s)}—cf. Sect. 4.2).
(7) Use the Gauss map to compute the Gauss curvature of the following surfaces in

R
3:

(a) the paraboloid z = 1
2

(
x2 + y2

)
;

(b) the saddle surface z = xy.

(8) (Surfaces of revolution) Consider the map f : R × (0, 2π) → R
3 given by

f (s, θ) = (h(s) cos θ, h(s) sin θ, g(s))

with h > 0 and g smooth maps such that

(h′(s))2 + (g′(s))2 = 1.

The image of f is the surface of revolution S with axis Oz, obtained by rotating
the curve α(s) = (h(s), g(s)), parameterized by the arclength s, around that
axis.

(a) Show that f is an immersion.

(b) Show that fs := (d f )
(
∂
∂s

)
and fθ := (d f )( ∂∂θ ) are orthogonal.

(c) Determine theGaussmap and compute thematrix of the second fundamental
form of S associated to the frame {Es, Eθ}, where Es := fs and Eθ :=
1

‖ fθ‖ fθ.

(d) Compute the mean curvature H and the Gauss curvature K of S.
(e) Using these results, give examples of surfaces of revolution with:

(1) K ≡ 0;
(2) K ≡ 1;
(3) K ≡ −1;



4.6 Notes 163

(4) H ≡ 0 (not a plane).
(Remark: Surfaces with constant zero mean curvature are called minimal surfaces; it can be proved

that if a compact surface with boundary has minimum area among all surfaces with the same boundary

then it must be a minimal surface).

4.6 Notes

4.6.1 Section 4.4

The isometries of the hyperbolic plane are examples of linear fractional transfor-
mations (or Möbius transformations), i.e. maps f : C → C given by

f (z) = az + b

cz + d
,

with a, b, c, d ∈ C satisfying ad − bc �= 0. It is easy to see that each of these
transformations is a composition of the following types of transformations:

(1) translations: z 
→ z + b;
(2) rotations: z 
→ az, |a| = 1;
(3) homotheties: z 
→ r z, r > 0;
(4) inversions: z 
→ 1/z,

and so it is clear that they carry straight lines and circles to either straight lines or
circles.

The special values f (∞) = a
c and f (− d

c ) = ∞ can be introduced as limits for
z → ∞ and z → −d/c, and so, using the stereographic projection, we can see f
as a map from the sphere to itself. Noting that both straight lines and circles in the
plane correspond to circles in the sphere, we can say that a Möbius transformation,
seen as a map on the sphere, carries circles into circles.

4.6.2 Bibliographical Notes

The material in this chapter can be found in most books on Riemannian geome-
try (e.g. [Boo03, dC93, GHL04]). The proof of the Gauss–Bonnet theorem (due to
S. Chern) follows [dC93, CCL00] closely. See [KN96, Jos02] to see how this theo-
rem fits within the general theory of characteristic classes of fiber bundles. A more
elementary discussion of isometric immersions of surfaces in R

3 (including a proof
of the Gauss–Bonnet theorem) can be found in [dC76, Mor98].
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Chapter 5
Geometric Mechanics

Mechanics, the science of motion, was basically started by Galileo and his
revolutionary empirical approach. The first precise mathematical formulation was
laid down by Newton in the Philosophiae Naturalis Principia Mathematica, first
published in 1687, which contained, among many other things, an explanation for
the elliptical orbits of the planets around the Sun. Newton’s ideas were developed
and extended by a number of mathematicians, including Euler, Lagrange, Laplace,
Jacobi, Poisson andHamilton.Celestialmechanics, in particular, reached an exquisite
level of precision: the 1846 discovery of planet Neptune, for instance, was triggered
by the need to explain a mismatch between the observed orbit of planet Uranus and
its theoretical prediction.

This chapter uses Riemannian geometry to give a geometric formulation of
Newtonian mechanics. As explained in Sect. 5.1, this is made possible by the fact
that the kinetic energy of any mechanical system yields a Riemannian metric on
its configuration space, that is, the differentiable manifold whose points represent
the possible configurations of the system. Section5.2 describes how holonomic con-
straints, which force the system to move along submanifolds of the configuration
space, yield nontrivial mechanical systems. A particularly important example of this,
the rigid body, is studied in detail in Sect. 5.3. Non-holonomic constraints, which
restrict velocities rather than configurations, are considered in Sect. 5.4.

Section5.5 presents the Lagrangian formulation of mechanics, where the
trajectories are obtained as curves extremizing the action integral. Also treated is
the Noether theorem, which associates conservation laws to symmetries. The dual
Hamiltonian formulation of mechanics, where the trajectories are obtained from
special flows in the cotangent bundle, is described in Sect. 5.6, and used in Sect. 5.7 to
formulate the theory of completely integrable systems, whose dynamics are partic-
ularly simple. Section5.8 generalizes the Hamiltonian formalism to symplectic and
Poisson manifolds, and discusses reduction of these manifolds under appropriate
symmetries.

© Springer International Publishing Switzerland 2014
L. Godinho and J. Natário, An Introduction to Riemannian Geometry, Universitext,
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5.1 Mechanical Systems

In mechanics one studies the motions of particles or systems of particles subject to
known forces.

Example 1.1 The motion of a single particle in n-dimensional space is described by
a curve x : I ⊂ R → R

n . It is generally assumed that the force acting on the particle
depends only on its position and velocity. Newton’s Second Law requires that the
particle’s motion satisfies the second-order ordinary differential equation

mẍ = F(x, ẋ),

where F : Rn×R
n → R

n is the force actingon theparticle and m > 0 is the particle’s
mass. Therefore the solutions of this equation describe the possible motions of the
particle.

It will prove advantageous to make the following generalization:

Definition 1.2 A mechanical system is a triple (M, 〈·, ·〉,F), where:
(i) M is a differentiable manifold, called the configuration space;
(ii) 〈·, ·〉 is a Riemannian metric on M yielding the mass operator μ : T M →

T ∗M , defined by

μ(v)(w) = 〈v,w〉

for all v,w ∈ Tp M and p ∈ M ;
(iii) F : T M → T ∗M is a differentiable map satisfying F(Tp M) ⊂ T ∗p M for all

p ∈ M , called the external force.

A motion of the mechanical system is a solution c : I ⊂ R → M of the Newton
equation

μ

(
Dċ

dt

)
= F(ċ).

Remark 1.3 In particular, the geodesics of a Riemannian manifold (M, 〈·, ·〉) are the
motions of the mechanical system (M, 〈·, ·〉, 0) (describing a free particle on M).

Example 1.4 For the mechanical system comprising a single particle moving in n-
dimensional space, the configuration space is clearly R

n . If we set

〈〈v,w〉〉 := m 〈v,w〉

for all v,w ∈ R
n , where 〈·, ·〉 is the Euclidean inner product in R

n , then the Levi–
Civita connection of 〈〈·, ·〉〉 will still be the trivial connection, and
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Dẋ

dt
= ẍ .

Setting

F(x, v)(w) := 〈F(x, v), w〉 (5.1)

for all v,w ∈ R
n , we see that

μ

(
Dẋ

dt

)
= F(x, ẋ)⇔ μ

(
Dẋ

dt

)
(v) = F(x, ẋ)(v) for all v ∈ R

n

⇔ m 〈ẍ, v〉 = 〈F(x, ẋ), v〉 for all v ∈ R
n

⇔ mẍ = F(x, ẋ).

Hence the motions of the particle are the motions of the mechanical system
(Rn, 〈〈·, ·〉〉,F) with F defined by (5.1).

Definition 1.5 Let (M, 〈·, ·〉,F) be a mechanical system. The external force F is
said to be:

(i) positional if F(v) depends only on π(v), where π : T M → M is the natural
projection;

(ii) conservative if there exists U : M → R such that F(v) = −(dU )π(v) for all
v ∈ T M (the function U is called the potential energy).

Remark 1.6 In particular any conservative force is positional. A mechanical system
whose exterior force is conservative is called a conservative mechanical system.

Definition 1.7 Let (M, 〈·, ·〉,F) be a mechanical system. The kinetic energy is the
differentiable map K : T M → R given by

K (v) = 1

2
〈v, v〉

for all v ∈ T M .

Example 1.8 For the mechanical system comprising a single particle moving in n-
dimensional space, one has

K (v) := 1

2
m 〈v, v〉.

Theorem 1.9 (Conservation of energy) In a conservative mechanical system
(M, 〈·, ·〉,−dU ), the mechanical energy E(t) = K (ċ(t)) + U (c(t)) is constant
along any motion c : I ⊂ R → M.
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Proof

d E

dt
(t) = d

dt

(
1

2
〈ċ(t), ċ(t)〉 +U (c(t))

)
=
〈

Dċ

dt
(t), ċ(t)

〉
+ (dU )c(t)ċ(t)

= μ
(

Dċ

dt

)
(ċ)− F(ċ)(ċ) = 0. �

A particularly simple example of a conservative mechanical system is
(M, 〈·, ·〉, 0), whose motions are the geodesics of (M, 〈·, ·〉). In fact, the motions
of any conservative system can be suitably reinterpreted as the geodesics of a certain
metric.

Definition 1.10 Let (M, 〈·, ·〉,−dU ) be a conservative mechanical system and h ∈
R such that

Mh := {p ∈ M | U (p) < h} 	= ∅.

The Jacobi metric on the manifold Mh is given by

〈〈v,w〉〉 := 2 [h −U (p)] 〈v,w〉

for all v,w ∈ Tp Mh and p ∈ Mh .

Theorem 1.11 (Jacobi) The motions of a conservative mechanical system
(M, 〈·, ·〉,−dU ) with mechanical energy h are, up to reparameterization, geodesics
of the Jacobi metric on Mh.

Proof We shall need the two following lemmas, whose proofs are left as exercises.

Lemma 1.12 Let (M, 〈·, ·〉) be a Riemannian manifold with Levi–Civita connection
∇ and let 〈〈·, ·〉〉 = e2ρ〈·, ·〉 be a metric conformally related to 〈·, ·〉 (where ρ ∈
C∞(M)). Then the Levi–Civita connection ∇̃ of 〈〈·, ·〉〉 is given by

∇̃X Y = ∇X Y + dρ(X)Y + dρ(Y )X − 〈X,Y 〉 grad ρ

for all X,Y ∈ X(M) (where the gradient is taken with respect to 〈·, ·〉). �

Lemma 1.13 A curve c : I ⊂ R → M is a reparameterized geodesic of a Rie-
mannian manifold (M, 〈·, ·〉) if and only if it satisfies

Dċ

dt
= f (t) ċ

for some differentiable function f : I → R. �

We now prove the Jacobi theorem. Let c : I ⊂ R → M be a motion of
(M, 〈·, ·〉,−dU ) with mechanical energy h. Then Lemma1.12 yields
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D̃ċ

dt
= Dċ

dt
+ 2dρ(ċ) ċ − 〈ċ, ċ〉 grad ρ,

where D̃
dt is the covariant derivative along c with respect to the Jacobi metric and

e2ρ = 2(h −U ). The Newton equation yields

μ

(
Dċ

dt

)
= −dU ⇔ Dċ

dt
= − gradU = e2ρ grad ρ,

and by conservation of energy

〈ċ, ċ〉 = 2K = 2(h −U ) = e2ρ.

Consequently we have

D̃ċ

dt
= 2dρ(ċ) ċ,

which by Lemma1.13 means that c is a reparameterized geodesic of the Jacobi
metric. �

A very useful expression for writing the Newton equation in local coordinates is
the following.

Proposition 1.14 Let (M, 〈·, ·〉,F) be a mechanical system. If (x1, . . . , xn) are
local coordinates on M and (x1, . . . , xn, v1, . . . , vn) are the local coordinates
induced on T M then

μ

(
Dċ

dt
(t)

)
=

n∑
i=1

[
d

dt

(
∂K

∂vi (x(t), ẋ(t))

)
− ∂K

∂xi (x(t), ẋ(t))

]
dxi .

In particular, if F = −dU is conservative then the equations of motion are

d

dt

(
∂K

∂vi (x(t), ẋ(t))

)
− ∂K

∂xi (x(t), ẋ(t)) = − ∂U

∂xi
(x(t))

(i = 1, . . . , n).

Proof Exercise1.16(8). �

Example 1.15

(1) (Particle in a central field) Consider a particle ofmassm > 0moving inR
2 under

the influence of a conservative force whose potential energy U depends only on
the distance r = √

x2 + y2 to the origin, U = u(r). The equations of motion
are most easily solved when written in polar coordinates (r, θ), defined by
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{
x = r cos θ

y = r sin θ
.

Since

dx = cos θdr − r sin θdθ,

dy = sin θdr + r cos θdθ,

it is easily seen that the Euclidean metric is written in these coordinates as

〈·, ·〉 = dx ⊗ dx + dy ⊗ dy = dr ⊗ dr + r2dθ ⊗ dθ,

and hence

K
(
r, θ, vr , vθ

) = 1

2
m
[(
vr )2 + r2

(
vθ
)2]

.

Therefore we have

∂K

∂vr
= mvr ,

∂K

∂vθ
= mr2vθ ,

∂K

∂r
= mr

(
vθ
)2
,
∂K

∂θ
= 0,

and consequently the Newton equations are written

d

dt
(mṙ)− mr θ̇2 = − u′(r),

d

dt

(
mr2θ̇

)
= 0.

Notice that the angular momentum

pθ := mr2θ̇

is constant along the motion. This conservation law can be traced back to the
fact that neither K nor U depend on θ .

(2) (Christoffel symbols for the 2-sphere) The metric for the 2-sphere S2 ⊂ R
3 is

written as
〈·, ·〉 = dθ ⊗ dθ + sin2 θ dϕ ⊗ dϕ

in the usual local coordinates (θ, ϕ) defined by the parameterization

φ(θ, ϕ) = (sin θ cosϕ, sin θ sin ϕ, cos θ)

[cf. Exercise3.3(4) in Chap.3]. A quick way to obtain the Christoffel symbols
in this coordinate system is to write out the Newton equations for a free particle
(of mass m = 1, say) on S2. We have

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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K
(
θ, ϕ, vθ , vϕ

) = 1

2

[(
vθ
)2 + sin2 θ

(
vϕ
)2]

and hence

∂K

∂vθ
= vθ , ∂K

∂vϕ
= sin2 θ vϕ,

∂K

∂θ
= sin θ cos θ

(
vϕ
)2
,
∂K

∂ϕ
= 0.

Consequently the Newton equations are written

d

dt

(
θ̇
)− sin θ cos θ ϕ̇2 = 0⇔ θ̈ − sin θ cos θ ϕ̇2 = 0,

d

dt

(
sin2 θϕ̇

)
= 0⇔ ϕ̈ + 2 cot θ θ̇ ϕ̇ = 0.

Since these must be the equations for a geodesic on S2, by comparing with the
geodesic equations

ẍ i +
2∑

j,k=1
�i

jk ẋ j ẋ k = 0 (i = 1, 2),

one immediately reads off the nonvanishing Christoffel symbols:

�θϕϕ = − sin θ cos θ, �
ϕ
θϕ = �ϕϕθ = cot θ.

Exercise 1.16

(1) Generalize Examples1.1, 1.4, and 1.8 to a system of k particles moving in R
n .

(2) Let (M, 〈·, ·〉,F) be a mechanical system. Show that the Newton equation
defines a flow on T M , generated by the vector field X ∈ X(T M) whose local
expression is

X = vi ∂

∂xi
+
⎛
⎝

n∑
j=1

gi j (x)Fj (x, v)−
n∑

j,k=1
�i

jk(x)v
jvk

⎞
⎠ ∂

∂vi
,

where (x1, . . . , xn) are local coordinates on M , (x1, . . . , xn, v1, . . . , vn) are
the local coordinates induced on T M , and

F =
n∑

i=1
Fi (x, v)dxi

on these coordinates. What are the fixed points of this flow?
(3) (Harmonic oscillator) The harmonic oscillator (in appropriate units) is the

conservative mechanical system (R, dx ⊗ dx,−dU ), where U : R → R is
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given by

U (x) := 1

2
ω2x2.

(a) Write the equation of motion and its general solution.
(b) Friction can be included in this model by considering the external force

F
(

u
d

dx

)
= −dU − 2ku dx

(where k > 0 is a constant). Write the equation of motion of this new
mechanical system and its general solution.

(c) Generalize (a) to the n-dimensional harmonic oscillator, whose potential
energy U : Rn → R is given by

U (x1, . . . , xn) := 1

2
ω2
((

x1
)2 + · · · + (xn)2

)
.

(4) Consider the conservative mechanical system (R, dx⊗dx,−dU ). Show that:

(a) the flow determined by the Newton equation on T R ∼= R
2 is generated by

the vector field

X = v ∂
∂x
−U ′(x) ∂

∂v
∈ X(R2);

(b) the fixed points of the flow are the points of the form (x0, 0), where x0 is a
critical point of U ;

(c) if x0 is a maximum of U with U ′′(x0) < 0 then (x0, 0) is an unstable fixed
point;

(d) if x0 is a minimum ofU withU ′′(x0) > 0 then (x0, 0) is a stable fixed point,
with arbitrarily small neighborhoods formed by periodic orbits.

(e) the periods of these orbits converge to 2πU ′′(x0)−
1
2 as they approach (x0, 0);

(f) locally, any conservativemechanical system (M, 〈·, ·〉,−dU )withdim M =
1 is of the form above.

(5) Prove Lemma1.12. (Hint: Use the Koszul formula).
(6) Prove Lemma1.13.
(7) If (M, 〈·, ·〉) is a compact Riemannian manifold, it is known that there exists a

nontrivial periodic geodesic. Use this fact to show that if M is compact then any
conservative mechanical system (M, 〈·, ·〉,−dU ) admits a nontrivial periodic
motion.

(8) Prove Proposition1.14.
(9) Recall that the hyperbolic plane is the upper half plane

H =
{
(x, y) ∈ R

2 | y > 0
}
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with the Riemannian metric

〈·, ·〉 = 1

y2
(dx ⊗ dx + dy ⊗ dy)

[cf. Exercise3.3(5) inChap.3].UseProposition1.14 to compute theChristoffel
symbols for the Levi–Civita connection of (H, 〈·, ·〉) in the coordinates (x, y).

(10) (Kepler problem) The Kepler problem (in appropriate units) consists in deter-
mining the motion of a particle of mass m = 1 in the central potential

U = −1

r
.

(a) Show that the equations of motion can be integrated to

r2θ̇ = pθ ,

ṙ2

2
+ pθ 2

2r2
− 1

r
= E,

where E and pθ are integration constants.
(b) Use these equations to show that u = 1

r satisfies the linear ODE

d2u

dθ2
+ u = 1

pθ 2
.

(c) Assuming that the pericenter (i.e. the point in the particle’s orbit closer to
the center of attraction r = 0) occurs at θ = 0, show that the equation of
the particle’s trajectory is

r = pθ 2

1+ ε cos θ ,

where

ε =
√
1+ 2pθ 2E .

(Remark: This is the equation of a conic section with eccentricity ε in polar coordinates).
(d) Characterize all geodesics of R

2 \ {(0, 0)} with the Riemannian metric

〈·, ·〉 = 1√
x2 + y2

(dx ⊗ dx + dy ⊗ dy) .

Show that this manifold is isometric to the surface of a cone with aperture π3 .

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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5.2 Holonomic Constraints

Many mechanical systems involve particles or systems of particles whose positions
are constrained (for example, a simple pendulum, a particle moving on a given
surface, or a rigid system of particles connected by massless rods). To account for
these we introduce the following definition:

Definition 2.1 A holonomic constraint on a mechanical system (M, 〈·, ·〉,F) is a
submanifold N ⊂ M with dim N < dim M . A curve c : I ⊂ R → M is said to be
compatible with N if c(t) ∈ N for all t ∈ I .

Example 2.2

(1) A particle of mass m > 0 moving in R
2 subject to a constant gravitational accel-

eration g is modeled by the mechanical system (R2, 〈〈·, ·〉〉,−mg dy), where

〈〈v,w〉〉 := m 〈v,w〉

(〈·, ·〉 being the Euclidean inner product onR
2). A simple pendulum is obtained

by connecting the particle to a fixed pivoting point by an ideal massless rod of
length l > 0 (cf. Fig. 5.1). Assuming the pivoting point to be the origin, this
corresponds to the holonomic constraint

N = {(x, y) ∈ R
2 | x2 + y2 = l2}

(diffeomorphic to S1).
(2) Similarly, a particle of mass m > 0 moving in R

3 subject to a constant gravita-
tional acceleration g ismodeled by themechanical system (R3, 〈〈·, ·〉〉,−mg dz),
where

〈〈v,w〉〉 := m 〈v,w〉

θ l

m

Fig. 5.1 Simple pendulum
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(〈·, ·〉 being the Euclidean inner product on R
3). Requiring the particle to move

on a surface of equation z = f (x, y) yields the holonomic constraint

N = {(x, y, z) ∈ R
3 | z = f (x, y)}.

(3) A system of k particles of masses m1, . . . ,mk moving freely in R
3 is model-led

by the mechanical system (R3k, 〈〈·, ·〉〉, 0), where

〈〈(v1, . . . , vk), (w1, . . . , wk)〉〉 :=
k∑

i=1
mi 〈vi , wi 〉

(〈·, ·〉 being the Euclidean inner product on R
3). A rigid body is obtained by

connecting all particles by idealmassless rods, and corresponds to the holonomic
constraint

N =
{
(x1, . . . , xk) ∈ R

3k | ‖xi − x j‖ = di j for 1 ≤ i < j ≤ k
}
.

If at least three particles are not collinear, N is easily seen to be diffeomorphic
to R

3 × O(3).

Keeping the particles on the holonomic constraint requires an additional external
force (provided by the rods or by the surface in the examples above).

Definition 2.3 A reaction force on a mechanical system with holonomic constraint
(M, 〈·, ·〉,F , N ) is a map R : T N → T ∗M satisfying R(Tp N ) ⊂ T ∗p M for all
p ∈ N such that, for each v ∈ T N , there is a solution c : I ⊂ R → N of the
generalized Newton equation

μ

(
Dċ

dt

)
= (F +R)(ċ)

with initial condition ċ(0) = v.
For any holonomic constraint there exist in general infinite possible choices of

reaction forces. The following definition yields a particularly useful criterion for
selecting reaction forces.

Definition 2.4 A reaction force in a mechanical system with holonomic constraint
(M, 〈·, ·〉,F , N ) is said to be perfect, or to satisfy the d’Alembert principle, if

μ−1 (R(v)) ∈ (Tp N )⊥

for all v ∈ Tp N and p ∈ N .

Remark 2.5 The variation of the kinetic energy of a solution of the generalized
Newton equation is
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d K

dt
=
〈

Dċ

dt
, ċ

〉
= F(ċ)(ċ)+R(ċ)(ċ) = F(ċ)(ċ)+

〈
μ−1(R(ċ)), ċ

〉
.

Therefore, a reaction force is perfect if and only if it neither creates nor dissipates
energy along any motion compatible with the constraint.

Example 2.6 In each of the examples above, requiring the reaction force to be perfect
amounts to the following assumptions.

(1) Simple pendulum : The force transmitted by the rod is purely radial (i.e. there
is no damping);

(2) Particle on a surface : The force exerted by the surface is orthogonal to it (i.e. the
surface is frictionless);

(3) Rigid body : The cohesive forces do not dissipate energy.

The next result establishes the existence and uniqueness of perfect reaction forces.

Theorem 2.7 Given any mechanical system with holonomic constraint
(M, 〈·, ·〉,F , N ), there exists a unique reaction force R : T N → T ∗M satisfying
the d’Alembert principle. The solutions of the generalized Newton equation

μ

(
Dċ

dt

)
= (F +R)(ċ)

are exactly the motions of the mechanical system (N , 〈〈·, ·〉〉,FN ), where 〈〈·, ·〉〉 is
the metric induced on N by 〈·, ·〉 and FN is the restriction of F to N. In particular,
if F = −dU is conservative then FN = −d (U |N ).
Proof Recall from Sect. 4.5 of Chap.4 that if ∇̃ is the Levi–Civita connection of
(M, 〈·, ·〉) and ∇ is the Levi–Civita connection of (N , 〈〈·, ·〉〉) then

∇X Y = (∇̃X̃ Ỹ
)�

for all X,Y ∈ X(N ), where X̃ , Ỹ are any extensions of X,Y to X(M) (as usual,
v = v� + v⊥ designates the unique decomposition arising from the splitting
Tp M = Tp N ⊕ (Tp N )⊥ for each p ∈ N ). Moreover, the second fundamental
form of N ,

B(X,Y ) = ∇̃X̃ Ỹ −∇X Y = (∇̃X̃ Ỹ
)⊥
,

is well defined, and B(X,Y )p ∈ (Tp N )⊥ is a symmetric bilinear function of X p,Yp

for all p ∈ N .

Assume that a perfect reaction forceR exists; then the solutions of the generalized
Newton equation satisfy

∇̃ċ ċ = μ−1(F(ċ))+ μ−1(R(ċ)).

http://dx.doi.org/10.1007/978-3-319-08666-8_4
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Since by hypothesisμ−1R is orthogonal to N , the component of this equation tangent
to N yields

∇ċ ċ = μ−1N (FN (ċ))

(where μN : T N → T ∗N is the mass operator on N ) as for any v ∈ T N one has

〈〈(
μ−1(F(ċ))

)�
, v

〉〉
=
〈
μ−1(F(ċ)), v

〉
= F(ċ)(v) = FN (ċ)(v) =

〈〈
μ−1N (FN (ċ)), v

〉〉
.

Hence c is a motion of (N , 〈〈·, ·〉〉,FN ).

On the other hand, the component of the generalized Newton equation orthogonal
to N yields

B(ċ, ċ) =
(
μ−1(F(ċ))

)⊥ + μ−1(R(ċ)).

Therefore, if R exists then it must satisfy

R(v) = μ(B(v, v))− μ
[(
μ−1(F(v))

)⊥]
(5.2)

for all v ∈ T N . This proves uniqueness.

To prove existence, define R through (5.2), which certainly guarantees that
μ−1 (R(v)) ∈ (Tp N )⊥ for all v ∈ Tp N and p ∈ N . Given v ∈ T N , let
c : I ⊂ R → N be the motion of the mechanical system (N , 〈〈·, ·〉〉,FN ) with
initial condition v. Then

∇̃ċ ċ = ∇ċ ċ + B(ċ, ċ) = μ−1N (FN (ċ))+
(
μ−1(F(ċ))

)⊥ + μ−1(R(ċ))

=
(
μ−1(F(ċ))

)� +
(
μ−1(F(ċ))

)⊥ + μ−1(R(ċ)) = μ−1(F(ċ))+ μ−1(R(ċ)).
�

Example 2.8 To write the equation of motion of a simple pendulum with a per-
fect reaction force, we parameterize the holonomic constraint N using the map
ϕ : (−π, π)→ R

2 defined by

ϕ(θ) = (l sin θ,−l cos θ)

(so that θ = 0 labels the stable equilibrium position, cf. Fig. 5.1). We have

d

dθ
= dx

dθ

∂

∂x
+ dy

dθ

∂

∂y
= l cos θ

∂

∂x
+ l sin θ

∂

∂y
,
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and hence the kinetic energy of the pendulum is

K

(
v

d

dθ

)
= 1

2
m

〈
vl cos θ

∂

∂x
+ vl sin θ

∂

∂y
, vl cos θ

∂

∂x
+ vl sin θ

∂

∂y

〉

= 1

2
ml2v2.

On the other hand, the potential energy is given by

U (x, y) = mgy,

and hence its restriction to N has the local expression

U (θ) = −mgl cos θ.

Consequently the equation of motion is

d

dt

(
∂K

∂v

(
θ, θ̇

))− ∂K

∂θ

(
θ, θ̇

) = −∂U

∂θ
(θ)

⇔ d

dt

(
ml2θ̇

)
= −mgl sin θ

⇔ θ̈ = −g

l
sin θ.

Notice that we did not have to compute the reaction force.

Exercise 2.9

(1) Use spherical coordinates to write the equations of motion for the spherical
pendulum of length l, i.e. a particle of mass m > 0 moving in R

3 subject to a
constant gravitational acceleration g and the holonomic constraint

N =
{
(x, y, z) ∈ R

3 | x2 + y2 + z2 = l2
}
.

Which parallels of N are possible trajectories of the particle?
(2) Write the equations of motion for a particle moving on a frictionless surface

of revolution with equation z = f (r) (where r = √
x2 + y2) under a constant

gravitational acceleration g.
(3) Write and solve the equations of motion for a free dumbbell, i.e. a system of two

particles of masses m1 and m2 connected by a massless rod of length l, moving
in:

(a) R
2;

(b) R
3.

(Hint: Use the coordinates of the center of mass, i.e. the point along the rod at a distance
m2

m1+m2
l from

m1).
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θ

ϕ

l1

m1

l2

m2

Fig. 5.2 Double pendulum

(4) The double pendulum of lengths l1, l2 is the mechanical system defined by
two particles of masses m1,m2 moving in R

2 subject to a constant gravitational
acceleration g and the holonomic constraint

N =
{
(x1, x2) ∈ R

4 | ‖x1‖ = l1 and ‖x1 − x2‖ = l2
}
.

(diffeomorphic to the 2-torus T 2).

(a) Write the equations of motion for the double pendulum using the
parameterization φ : (−π, π)× (−π, π)→ N given by

φ(θ, ϕ) = (l1 sin θ,−l1 cos θ, l1 sin θ+l2 sin ϕ,−l1 cos θ−l2 cosϕ)

(cf. Fig. 5.2).
(b) Linearize the equations of motion around θ = ϕ = 0. Look for solutions of

the linearized equations satisfying ϕ = kθ , with k ∈ R constant (normal
modes). What are the periods of the ensuing oscillations?

5.3 Rigid Body

Recall that a rigid body is a system of k particles of masses m1, . . . ,mk connected
by massless rods in such a way that their mutual distances remain constant. If in
addition we assume that a given particle is fixed (at the origin, say) then we obtain
the holonomic constraint
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N =
{
(x1, . . . , xk) ∈ R

3k | x1 = 0 and ‖xi − x j‖ = di j for 1 ≤ i < j ≤ k
}
.

If at least three particles are not collinear, this manifold is diffeomorphic to O(3).
In fact, if we fix a point (ξ1, . . . , ξk) in N then any other point in N is of the form
(Sξ1, . . . , Sξk) for a unique S ∈ O(3). A motion in N can therefore be specified
by a curve S : I ⊂ R → O(3). The trajectory in R

3 of the particle with mass mi

will be given by the curve Sξi : I ⊂ R → R
3, whose velocity is Ṡξi (where we

use O(3) ⊂ M3×3(R) ∼= R
9 to identify TS O(3) with an appropriate subspace of

M3×3(R)). Therefore the kinetic energy of the system along the motion will be

K = 1

2

n∑
i=1

mi
〈
Ṡξi , Ṡξi

〉
,

where 〈·, ·〉 is the Euclidean inner product on R
3.

Now O(3), and hence N , has two diffeomorphic connected components, corre-
sponding to matrices of positive or negative determinant. Since any motion neces-
sarily occurs in one connected component, we can take our configuration space to
be simply SO(3). To account for continuum rigid bodies, we make the following
generalization:

Definition 3.1 A rigid body with a fixed point is any mechanical system of the
form (SO(3), 〈〈·, ·〉〉,F), with

〈〈V,W 〉〉 :=
∫

R3

〈V ξ,Wξ 〉 dm

for all V,W ∈ TS SO(3) and all S ∈ SO(3), where 〈·, ·〉 is the usual Euclidean inner
product on R

3 and m (called the mass distribution of the reference configuration)
is a positive finite measure on R

3, not supported on any straight line through the
origin, and satisfying

∫
R3 ‖ξ‖2dm < +∞.

Example 3.2

(1) The rigid body composed by k particles of masses m1, . . . ,mk corresponds to
the measure

m =
k∑

i=1
miδξi ,

where δξi is the Dirac delta centered at the point ξi ∈ R
3.

(2) A continuum rigid body with (say) compactly supported integrable density func-
tion ρ : R3 → [0,+∞) is described by the measure m defined on the Lebesgue
σ -algebra by



5.3 Rigid Body 181

m(A) :=
∫

A

ρ(ξ)d3ξ.

Remark 3.3 The rotational motion of a general rigid body can in many cases be
reduced to the motion of a rigid body with a fixed point [cf. Exercise3.20(2)]. Unless
otherwise stated, from this point onwards we will take “rigid body” to mean “rigid
body with a fixed point”.

Proposition 3.4 The metric 〈〈·, ·〉〉 defined on SO(3) by a rigid body is
left-invariant, that is, any left translation is an isometry.

Proof Since left multiplication by a fixed matrix R ∈ SO(3) is a linear map L R :
M3×3(R) → M3×3(R), we have (d L R)S V = RV ∈ TRS SO(3) for any V ∈
TS SO(3). Consequently,

〈〈
(d L R)S V, (d L R)S W

〉〉 = 〈〈RV, RW 〉〉 =
∫

R3

〈RV ξ, RWξ 〉 dm

=
∫

R3

〈V ξ,Wξ 〉 dm = 〈〈V,W 〉〉

(as R ∈ SO(3) preserves the Euclidean inner product). �

Therefore there exist atmost asmany rigid bodies as inner products on so(3) ∼= R
3,

i.e. as real symmetric positive definite 3×3matrices [cf. Exercise1.10(4) in Chap.3].
In fact, we shall see that any rigid body can be specified by 3 positive numbers.

Proposition 3.5 The metric 〈〈·, ·〉〉 defined on SO(3) by a rigid body is given by

〈〈V,W 〉〉 = tr
(
V J W t) ,

where

Ji j =
∫

R3

ξ iξ j dm.

Proof We just have to notice that

〈〈V,W 〉〉 =
∫

R3

3∑
i=1

⎛
⎝

3∑
j=1

Vi jξ
j

⎞
⎠
(

3∑
k=1

Wikξ
k

)
dm

=
3∑

i, j,k=1
Vi j Wik

∫

R3

ξ jξ k dm =
3∑

i, j,k=1
Vi j J jk Wik .

�

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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Proposition 3.6 If S : I ⊂ R → SO(3) is a curve and ∇ is the Levi–Civita
connection on (SO(3), 〈〈·, ·〉〉) then

〈〈∇Ṡ Ṡ, V
〉〉 =

∫

R3

〈
S̈ξ, V ξ

〉
dm

for any V ∈ TS SO(3).

Proof We consider first the case in which the rigid body is non-planar, i.e. m is
not supported in any plane through the origin. In this case, the metric 〈〈·, ·〉〉 can be
extended to a flat metric on M3×3(R) ∼= R

9 by the same formula

〈〈〈V,W 〉〉〉 =
∫

R3

〈V ξ,Wξ 〉 dm

for all V,W ∈ TSM3×3(R) and all S ∈ M3×3(R). Indeed, this formula clearly
defines a symmetric 2-tensor onM3×3(R). To check positive definiteness, we notice
that if V ∈ TSM3×3(R) is nonzero then its kernel is contained on a plane through the
origin. Therefore, the continuous function 〈V ξ, V ξ 〉 is positive on a set of positive
measure, and hence

〈〈〈V, V 〉〉〉 =
∫

R3

〈V ξ, V ξ 〉 dm > 0.

This metric is easily seen to be flat, as the components of the metric on the natural
coordinates of M3×3(R) are the constant coefficients Ji j . Therefore all Christoffel
symbols vanish on these coordinates, and the corresponding Levi–Civita connection
∇̃ is the trivial connection. If S : I ⊂ R → M3×3(R) is a curve then

∇̃Ṡ Ṡ = S̈.

Since 〈〈·, ·〉〉 is the metric induced on SO(3) by 〈〈〈·, ·〉〉〉, we see that for any curve
S : I ⊂ R → SO(3) one has

∇Ṡ Ṡ = (∇̃Ṡ Ṡ
)� = S̈�,

and hence 〈〈∇Ṡ Ṡ, V
〉〉 =

〈〈
S̈�, V

〉〉
= 〈〈〈

S̈, V
〉〉〉 =

∫

R3

〈
S̈ξ, V ξ

〉
dm

for any V ∈ TS SO(3).
For planar rigid bodies the formula can by obtained by a limiting procedure

[cf. Exercise3.20(3)]. �
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Wecanuse this result to determine the geodesics of (SO(3), 〈〈·, ·〉〉).A remarkable
shortcut (whose precise nature will be discussed in Sect. 5.5) can be obtained by
introducing the following quantity.

Definition 3.7 The angular momentum of a rigid body whose motion is described
by S : I ⊂ R → SO(3) is the vector

p(t) :=
∫

R3

[
(S(t)ξ)× (Ṡ(t)ξ)] dm

(where × is the usual cross product on R
3).

Theorem 3.8 If S : I ⊂ R → SO(3) is a geodesic of (SO(3), 〈〈·, ·〉〉) then p(t) is
constant.

Proof We have

ṗ =
∫

R3

[(
Ṡξ
)× (Ṡξ)+ (Sξ)× (S̈ξ)] dm =

∫

R3

[
(Sξ)× (S̈ξ)] dm.

Take any v ∈ R
3. Then

〈Sv, ṗ〉 =
〈

Sv,
∫

R3

[
(Sξ)× (S̈ξ)] dm

〉
=
∫

R3

〈
Sv, (Sξ)× (S̈ξ)〉 dm

=
∫

R3

〈
S̈ξ, (Sv)× (Sξ)〉 dm =

∫

R3

〈
S̈ξ, S(v × ξ)〉 dm,

where we have used the invariance of 〈·, ·× ·〉 ≡ det(·, ·, ·) under even permutations
of its arguments and the fact that the cross product is equivariant under multiplication
by S ∈ SO(3).

To complete the proof we will need the following lemma, whose proof is left as
an exercise.

Lemma 3.9 There exists a linear isomorphism � : so(3)→ R
3 such that

Aξ = �(A)× ξ

for all ξ ∈ R
3 and A ∈ so(3). Moreover, �([A, B]) = �(A) × �(B) for

all A, B ∈ so(3) (that is, � is a Lie algebra isomorphism between so(3) and
(R3,×)). �

Returning to the proof, let V ∈ so(3) be such that �(V ) = v. Then SV ∈
TS SO(3) and
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〈Sv, ṗ〉 =
∫

R3

〈
S̈ξ, SV ξ

〉
dm = 〈〈∇Ṡ Ṡ, SV

〉〉 = 0

(as S : I ⊂ R → SO(3) is a geodesic). Since v ∈ R
3 is arbitrary, we see that ṗ = 0

along the motion. �
If S : I ⊂ R → SO(3) is a curve then Ṡ = S A for some A ∈ so(3). Let us define

� := �(A). Then

p =
∫

R3

[(Sξ)× (S Aξ)] dm =
∫

R3

S [ξ × (Aξ)] dm

= S
∫

R3

[ξ × (�× ξ)] dm.

This suggests the following definition.

Definition 3.10 The linear operator I : R3 → R
3 defined as

I (v) :=
∫

R3

[ξ × (v × ξ)] dm

is called the rigid body’s moment of inertia tensor.

Proposition 3.11 The moment of inertia tensor of any given rigid body is a sym-
metric positive definite linear operator, and the corresponding kinetic energy map
K : T SO(3)→ R is given by

K (V ) = 1

2
〈〈V, V 〉〉 = 1

2
〈〈S A, S A〉〉 = 1

2
〈I�,�〉,

for all V ∈ TS SO(3) and all S ∈ SO(3), where V = S A and � = �(A).
Proof We start by checking that I is symmetric:

〈Iv,w〉 =
〈∫

R3

[ξ × (v × ξ)] dm, w

〉
=
∫

R3

〈ξ × (v × ξ), w〉 dm

=
∫

R3

〈v × ξ,w × ξ 〉 dm = 〈v, Iw〉 .

In particular we have

〈I�,�〉 =
∫

R3

〈�× ξ,�× ξ 〉 dm =
∫

R3

〈Aξ, Aξ 〉 dm
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=
∫

R3

〈S Aξ, S Aξ 〉 dm = 2K (V ).

The positive definiteness of I is an immediate consequence of this formula. �

Corollary 3.12 Given any rigid body there exist three positive numbers I1, I2, I3
(principal moments of inertia) and an orthonormal basis of R

3, {e1, e2, e3} (prin-
cipal axes), such that I ei = Ii ei (i = 1, 2, 3). �

The principal moments of inertia are the three positive numbers which completely
specify the rigid body (as they determine the inertia tensor, which in turn yields the
kinetic energy). To compute these numbers we must compute the eigenvalues of a
matrix representation of the inertia tensor.

Proposition 3.13 The matrix representation of the inertia tensor in the canonical
basis of R

3 is

⎛
⎜⎜⎜⎜⎝

∫
R3(y2 + z2) dm − ∫

R3 xy dm − ∫
R3 xz dm

− ∫
R3 xy dm

∫
R3(x2 + z2) dm − ∫

R3 yz dm

− ∫
R3 xz dm − ∫

R3 yz dm
∫
R3(x2 + y2) dm

⎞
⎟⎟⎟⎟⎠
.

Proof Let {u1, u2, u3} be the canonical basis of R
3. Then

Ii j =
〈
I ui , u j

〉 =
∫

R3

〈
ξ × (ui × ξ) , u j

〉
dm.

Using the vector identity

u × (v × w) = 〈u, w〉v − 〈u, v〉w

for all u, v, w ∈ R
3, we have

Ii j =
∫

R3

〈
‖ξ‖2ui − 〈ξ, ui 〉ξ, u j

〉
dm =

∫

R3

(
‖ξ‖2δi j − ξ iξ j

)
dm. �

We can now write the equations for the geodesics of (SO(3), 〈〈·, ·〉〉), that is, the
equations ofmotion of a rigid body in the absence of external forces. Thismechanical
system is commonly known as the Euler top.

Proposition 3.14 The equations of motion of the Euler top are given by the Euler
equations

I �̇ = (I�)×�.
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Proof We just have to notice that

p = SI�.

Therefore

0 = ṗ = Ṡ I�+ SI �̇ = S AI�+ SI �̇ = S
(
�× (I�)+ I �̇

)
. �

Remark 3.15 Any point ξ ∈ R
3 in the rigid body traverses a curve x(t) = S(t)ξ

with velocity

ẋ = Ṡξ = S Aξ = S(�× ξ) = (S�)× (Sξ) = (S�)× x .

Therefore ω := S� is the rigid body’s instantaneous angular velocity: at each
instant, the rigid body rotates about the axis determined by ω with angular speed
‖ω‖. Consequently,� is the angular velocity as seen in the (accelerated) rigid body’s
rest frame (cf. Fig. 5.3).

In the basis {e1, e2, e3} of the principal axes, the Euler equations are written
⎧⎪⎨
⎪⎩

I1�̇1 = (I2 − I3)�2�3

I2�̇2 = (I3 − I1)�3�1

I3�̇3 = (I1 − I2)�1�2

.

Since I is positive definite (hence invertible),we can change variables to P := I�.
Notice that p = S P , i.e. P is the (constant) angular momentum vector as seen in
rigid body’s rest frame. In these new variables, the Euler equations are written

Ṗ = P ×
(

I−1P
)
.

In the basis {e1, e2, e3} of the principal axes, these are

Ω(t)

ω(t)
S(t)

Fig. 5.3 Angular velocities
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ṗ1 =
(
1

I3
− 1

I2

)
P2P3

Ṗ2 =
(
1

I1
− 1

I3

)
P3P1

Ṗ3 =
(
1

I2
− 1

I1

)
P1P2

.

Proposition 3.16 If I1 > I2 > I3, the stationary points of the Euler equations are
given by

P = λei (λ ∈ R, i = 1, 2, 3),

and are stable for i = 1, 3 and unstable for i = 2.

Proof Since there are no external forces, the kinetic energy K , given by

2K = 〈I�,�〉 =
〈
P, I−1P

〉
=
(
P1
)2

I1
+
(
P2
)2

I2
+
(
P3
)2

I3
,

is conserved. This means that the flow defined by the Euler equations is along ellip-
soids with semiaxes of lengths

√
2K I1 >

√
2K I2 >

√
2K I3. On the other hand,

since p is constant along the motion, we have a second conserved quantity,

e1

e2

e3

Fig. 5.4 Integral curves of the Euler equations



188 5 Geometric Mechanics

‖p‖2 = ‖P‖2 =
(

P1
)2 +

(
P2
)2 +

(
P3
)2
.

Therefore the flow is along spheres. The integral curves on a particular sphere can
be found by intersecting it with the ellipsoids corresponding to different values of
K , as shown in Fig. 5.4. �

Remark 3.17 Since � = I−1P , Proposition3.16 is still true if we replace P with
�. The equilibrium points represent rotations about the principal axes with constant
angular speed, as they satisfy � = Ii P , and hence ω = Ii p is constant. If the rigid
body is placed in a rotation state close to a rotation about the axes e1 or e3, P will
remain close to these axes, and hence Se1 or Se3 will remain close to the fixed vector
p. On the other hand, if the rigid body is placed in a rotation state close to a rotation
about the axis e2, then P will drift away from e2 (approaching −e2 before returning
to e2), and hence Se2 will drift away from the fixed vector p (approaching−p before
returning to p). This can be illustrated by throwing a rigid body (say a brick) in the
air, as its rotational motion about the center of mass is that of a rigid body with
a fixed point [cf. Exercise3.20(2)]. When rotating about the smaller or the larger
axis [i.e. the principal axes corresponding to the larger or the smaller moments of
inertia—cf. Exercise3.20(6)] it performs a stable rotation, but when rotating about
the middle axis it flips in midair.

e1

e2

e3

ex

ey

ez
θ

ϕ ψ

nodal line horizontal plane

Fig. 5.5 Euler angles
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If the rigid body is not free, one must use parameterizations of SO(3).

Definition 3.18 The Euler angles correspond to the local coordinates (θ, ϕ, ψ) :
SO(3)→ (0, π)× (0, 2π)× (0, 2π) defined by

S(θ, ϕ, ψ) =
⎛
⎝
cosϕ − sin ϕ 0
sin ϕ cosϕ 0
0 0 1

⎞
⎠
⎛
⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠
⎛
⎝
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎞
⎠ .

The geometric interpretation of the Euler angles is sketched in Fig. 5.5: if the rota-
tion carries the canonical basis

{
ex , ey, ez

}
to a new orthonormal basis {e1, e2, e3},

then θ is the angle between e3 and ez , ϕ is the angle between the line of intersection
of the planes spanned by {e1, e2} and

{
ex , ey

}
(called the nodal line) and the x-axis,

and ψ is the angle between e1 and the nodal line.
The general expression of the kinetic energy in the local coordinates of T SO(3)

associated to the Euler angles is quite complicated; here we present it only in the
simpler case I1 = I2.

Proposition 3.19 If I1 = I2 then the kinetic energy of a rigid body in the local
coordinates (θ, ϕ, ψ, vθ , vϕ, vψ) of T SO(3) is given by

K = I1
2

((
vθ
)2 + (vϕ)2 sin2 θ

)
+ I3

2

(
vψ + vϕ cos θ)2 .

Proof Exercise3.20(13). �

A famous model which can be studied using this expression is the so-called
Lagrange top, corresponding to an axisymmetric rigid body in a constant gravity
field g. The potential energy for the corresponding mechanical system is

U := g

∫

R3

〈Sξ, ez〉 dm = Mg
〈
Sξ, ez

〉
,

where M = m(R3) is the total mass and

ξ := 1

M

∫

R3

ξ dm

is the position of the center of mass in the rigid body’s frame. By axisymmetry, the
center of mass satisfies ξ = le3 for some l ∈ R, and so

U = Mgl cos θ.
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Exercise 3.20

(1) Show that the bilinear form 〈〈·, ·〉〉 defined on SO(3) by a rigid body is indeed
a Riemannian metric.

(2) A general rigid body (i.e. with no fixed points) is any mechanical system of
the form (R3 × SO(3), 〈〈〈·, ·〉〉〉,F), with

〈〈〈(v, V ), (w,W )〉〉〉 :=
∫

R3

〈v + V ξ,w +Wξ 〉 dm

for all (v, V ), (w,W ) ∈ T(x,S)R3 × SO(3) and (x, S) ∈ R
3 × SO(3), where

〈·, ·〉 is the usual Euclidean inner product on R
3 and m is a positive finite

measure onR
3 not supported on any straight line and satisfying

∫
R3 ‖ξ‖2dm <

+∞.

(a) Show that one can always translate m in such a way that

∫

R3

ξ dm = 0

(i.e. the center of mass of the reference configuration is placed at the origin).
(b) Show that for this choice the kinetic energy of the rigid body is

K (v, V ) = 1

2
M〈v, v〉 + 1

2
〈〈V, V 〉〉,

where M = m(R3) is the total mass of the rigid body and 〈〈·, ·〉〉 is the
metric for the rigid body (with a fixed point) determined by m.

(c) Assume that there exists a differentiable function F : R3 → R
3 such that

F(x, S, v, V )(w,W ) =
∫

R3

〈F(x + Sξ), w +Wξ 〉 dm.

Show that, if ∫

R3

(Sξ)× F(x + Sξ) dm = 0

for all (x, S) ∈ R
3× SO(3), then the projection of any motion on SO(3) is

a geodesic of (SO(3), 〈〈·, ·〉〉).
(d) Describe the motion of a rigid body falling in a constant gravitational field,

for which F = −gez is constant.

(3) Prove Proposition3.6 for a planar rigid body. (Hint: Include the planar rigid body in a smooth

one-parameter family of non-planar rigid bodies).
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(4) Prove Lemma3.9.
(5) Show that I1 ≤ I2 + I3 (and cyclic permutations). When is I1 = I2 + I3?
(6) Determine the principal axes and the corresponding principal moments of iner-

tia of:

(a) a homogeneous rectangular parallelepiped with mass M , sides 2a, 2b, 2c ∈
R
+ and centered at the origin;

(b) a homogeneous (solid) ellipsoid with mass M , semiaxes a, b, c ∈ R
+ and

centered at the origin. (Hint: Use the coordinate change (x, y, z) = (au, bv, cw)).

(7) A symmetry of a rigid body is an isometry S ∈ O(3) which preserves the
mass distribution (i.e. m(S A) = m(A) for any measurable set A ⊂ R

3). Show
that:

(a) SI St = I , where I is the matrix representation of the inertia tensor;
(b) if S is a reflection in a plane then there exists a principal axis orthogonal to

the reflection plane;
(c) if S is a nontrivial rotation about an axis then that axis is principal;
(d) if moreover the rotation is not by π then all axes orthogonal to the rotation

axis are principal.

(8) Consider a rigid body satisfying I1 = I2. Use the Euler equations to show that:

(a) the angular velocity satisfies

ω̇ = 1

I1
p × ω;

(b) if I1 = I2 = I3 then the rigid body rotates about a fixed axis with constant
angular speed (i.e. ω is constant);

(c) if I1 = I2 	= I3 then ω precesses (i.e. rotates) about p with angular velocity

ωpr := p

I1
.

(9) Many asteroids have irregular shapes, and hence satisfy I1 < I2 < I3. To
a very good approximation, their rotational motion about the center of mass
is described by the Euler equations. Over very long periods of time, however,
their small interactionswith the Sun and other planetary bodies tend to decrease
their kinetic energy while conserving their angular momentum.Which rotation
state do asteroids approach?

(10) Due to its rotation, the Earth is not a perfect sphere, but an oblate spheroid;
therefore its moments of inertia are not quite equal, satisfying approximately

I1 = I2 	= I3;
I3 − I1

I1
� 1

306
.
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The Earth’s rotation axis is very close to e3, but precesses around it (Chandler
precession). Find the period of this precession (in the Earth’s frame).

(11) Consider a rigid bodywhosemotion is described by the curve S : R → SO(3),
and let� be the corresponding angular velocity. Consider a particle with mass
m whose motion in the rigid body’s frame is given by the curve ξ : R → R

3.
Let f be the external force on the particle, so that its equation of motion is

m
d2

dt2
(Sξ) = f.

(a) Show that the equation of motion can be written as

mξ̈ = F − m�× (�× ξ)− 2m�× ξ̇ − m�̇× ξ

where f = SF . (The terms following F are the so-called inertial forces,
and are known, respectively, as the centrifugal force, theCoriolis force and
the Euler force).

(b) Show that if the rigid body is a homogeneous sphere rotating freely (like the
Earth, for instance) then the Euler force vanishes. Why must a long range
gun in the Northern hemisphere be aimed at the left of the target?

(12) (Poinsot theorem) The inertia ellipsoid of a rigid body with moment of inertia
tensor I is the set

E =
{
ξ ∈ R

3 | 〈I ξ, ξ 〉 = 1
}
.

Show that the inertia ellipsoid of a freely moving rigid body rolls without
slipping on a fixed plane orthogonal to p (that is, the contact point has zero
velocity at each instant). (Hint: Show that any point S(t)ξ(t) where the ellipsoid is tangent to a plane

orthogonal to p satisfies S(t)ξ(t) = ± 1√
2K
ω(t)).

(13) Prove Proposition3.19. (Hint: Notice that symmetry demands that the expression for K must not

depend neither on ϕ nor on ψ).
(14) Consider the Lagrange top.

(a) Write the equations of motion and determine the equilibrium points.
(b) Show that there exist solutions such that θ , ϕ̇ and ψ̇ are constant, which in

the limit |ϕ̇| � |ψ̇ | (fast top) satisfy

ϕ̇ � Mgl

I3ψ̇
.

(15) (Precession of the equinoxes) Due to its rotation, the Earth is not a perfect
sphere, but an oblate ellipsoid; therefore its moments of inertia are not quite
equal, satisfying approximately
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I1 = I2 	= I3;
I3 − I1

I1
� 1

306

[cf. Exercise3.20(10)].As a consequence, the combined gravitational attraction
of theMoon and the Sun disturbs the Earth’s rotation motion. This perturbation
can be approximately modeled by the potential energy U : SO(3)→ R given
in the Euler angles (θ, ϕ, ψ) by

U = −�
2

2
(I3 − I1) cos

2 θ,

where
2π

�
� 168 days.

(a) Write the equations of motion and determine the equilibrium points.
(b) Show that there exist solutions such that θ , ϕ̇ and ψ̇ are constant, which in

the limit |ϕ̇| � |ψ̇ | (as is the case with the Earth) satisfy

ϕ̇ � −�
2(I3 − I1) cos θ

I3ψ̇
.

Given that for the Earth θ � 23◦, determine the approximate value of the
period of ϕ(t).

(16) (Pseudo-rigid body) Recall that the (non planar) rigid bodymetric is the restric-
tion to SO(3) of the flat metric on GL(3) given by

〈〈V,W 〉〉 = tr
(
V J W t) ,

where

Ji j =
∫

R3

ξ iξ j dm.

(a) What are the geodesics of the Levi–Civita connection for this metric? Is
(GL(3), 〈〈·, ·〉〉) geodesically complete?

(b) The Euler equation and the continuity equation for an incompressible
fluid with velocity field u : R × R

3 → R
3 and pressure p : R × R

3 → R

are

∂u

∂t
+ (u · ∇)u = −∇ p,

∇ · u = 0,
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where

∇ =
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

is the usual operator of vector calculus.

Given a geodesic S : R → GL(3), we define

x(t, ξ) = S(t)ξ,

u(t, x) = Ṡ(t)ξ = Ṡ(t)S−1(t)x .

Show that the velocity field u satisfies the Euler equation (with p = 0), but
not the continuity equation.

(c) Let f : GL(3)→ R be given by f (S) = det S. Show that

∂ f

∂Si j
= cof(S)i j

(where cof(S) is the matrix of the cofactors of S), and consequently

d f

dt
= (det S) tr

(
ṠS−1

)
.

So the continuity equation is satisfied if we impose the constraint det S(t) =
1.

(d) Show that the holonomic constraint SL(3) ⊂ GL(3) satisfies thed’Alembert
principle if and only if

{
μ
(
S̈
) = λ(t)d f

det S = 1.

Assuming that J is invertible, show that the equation of motion can be
rewritten as

S̈ = λ
(

S−1
)t

J−1.

(e) Show that the geodesics of (SL(3), 〈〈·, ·〉〉) yield solutions of the Euler
equation with

p = −λ
2

xt
(

S−1
)t

J−1S−1x

which also satisfy the continuity equation.
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(Remark: More generally, it is possible to interpret the Euler equation on an open set U ⊂ R
n as a

mechanical system on the group of diffeomorphisms of U (which is an infinite-dimensional Lie group); the

continuity equation imposes the holonomic constraint corresponding to the subgroup of volume-preserving

diffeomorphisms, and the pressure is the perfect reaction force associated to this constraint).

5.4 Non-holonomic Constraints

Some mechanical systems are subject to constraints which force the motions to
proceed in certain admissible directions. To handle such constraints we must first
introduce the corresponding geometric concept.

Definition 4.1 A distribution � of dimension m on a differentiable manifold M is
a choice of anm-dimensional subspace�p ⊂ Tp M for each p ∈ M . The distribution
is said to be differentiable if for all p ∈ M there exists a neighborhood U � p and
vector fields X1, . . . , Xm ∈ X(U ) such that

�q = span
{
(X1)q , . . . , (Xm)q

}

for all q ∈ U .

Equivalently, � is differentiable if for all p ∈ M there exists a neighborhood
U � p and 1-forms ω1, . . . , ωn−m ∈ �1(U ) such that

�q = ker
(
ω1
)

q
∩ · · · ∩ ker

(
ωn−m)

q

for all p ∈ U [cf. Exercise4.15(1)]. We will assume from this point on that all
distributions are differentiable.

Definition 4.2 A non-holonomic constraint on a mechanical system (M, 〈·, ·〉,F)
is a distribution � on M . A curve c : I ⊂ R → M is said to be compatible with �
if ċ(t) ∈ �c(t) for all t ∈ I .

Example 4.3

(1) (Wheel rolling without slipping) Consider a vertical wheel of radius R rolling
without slipping on a plane.Assuming that themotion takes place along a straight
line, we can parameterize any position of the wheel by the position x of the
contact point and the angle θ between a fixed radius of the wheel and the radius
containing the contact point (cf. Fig. 5.6); hence the configuration space isR×S1.

If the wheel is to rotate without slipping, we must require that ẋ = Rθ̇ along
any motion; this is equivalent to requiring that the motion be compatible with
the distribution defined on R× S1 by the vector field
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θ

x

O

Fig. 5.6 Wheel rolling without slipping

X = R
∂

∂x
+ ∂

∂θ
,

or, equivalently, by the kernel of the 1-form

ω = dx − Rdθ.

(2) (Ice skate) A simple model for an ice skate is provided by a line segment which
can either move along itself or rotate about its middle point. The position of the
skate can be specified by the Cartesian coordinates (x, y) of the middle point
and the angle θ between the skate and the x-axis (cf. Fig. 5.7); hence the config-
uration space is R

2 × S1.

If the skate can onlymove along itself,wemust require that (ẋ, ẏ) be proportional
to (cos θ, sin θ); this is equivalent to requiring that themotion be compatiblewith
the distribution defined on R

2 × S1 by the vector fields

X = cos θ
∂

∂x
+ sin θ

∂

∂y
, Y = ∂

∂θ
,

θ x

y

Fig. 5.7 Ice skate
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or, equivalently, by the kernel of the 1-form

ω = − sin θdx + cos θdy.

One may wonder whether there exists any connection between holonomic and
non-holonomic constraints. To answer this question, we must make a small digres-
sion.

Definition 4.4 A foliation of dimension m on an n-dimensional differentiable man-
ifold M is a family F = {Lα}α∈A of subsets of M (called leaves) satisfying:

(1) M = ∪α∈A Lα;
(2) Lα ∩ Lβ = ∅ if α 	= β;
(3) each leaf Lα is pathwise connected, that is, if p, q ∈ Lα then there exists a

continuous curve c : [0, 1] → Lα such that c(0) = p and c(1) = q;
(4) for each point p ∈ M there exists an open set U � p and local coordinates

(x1, . . . , xn) : U → R
n such that the connected components of the intersec-

tions of the leaves with U are the level sets of (xm+1, . . . , xn) : U → R
n−m .

Remark 4.5 The coordinates (x1, . . . , xm) provide local coordinates on the leaves,
which are therefore images of injective immersions. In particular, the leaves have
well-defined m-dimensional tangent spaces at each point, and consequently any foli-
ation of dimension m defines an m-dimensional distribution. Notice, however, that
in general the leaves are not (embedded) submanifolds of M [cf. Exercise4.15(2)].

Definition 4.6 An m-dimensional distribution � on a differential manifold M is
said to be integrable if there exists an m-dimensional foliation F = {Lα}α∈A on M
such that

�p = Tp L p

for all p ∈ M , where L p is the leaf containing p. The leaves of F are called the
integral submanifolds of the distribution.

Integrable distributions are particularly simple. For instance, the set of points
q ∈ M which are accessible from a given point p ∈ M by a curve compatible
with the distribution is simply the leaf L p through p. If the leaves are embedded
submanifolds, then an integrable non-holonomic restriction reduces to a family of
holonomic restrictions. For this reason, an integrable distribution is sometimes called
a semi-holonomic constraint, whereas a non-integrable distribution is called a true
non-holonomic constraint.

It is therefore important to have a criterion for identifying integrable distributions.

Definition 4.7 Let� be a distribution on a differentiable manifold M . A vector field
X ∈ X(M) is said to be compatible with� if X p ∈ �p for all p ∈ M . We denote by
X(�) the linear subspace of X(M) formed by all vector fields which are compatible
with �.
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Theorem 4.8 (Frobenius) A distribution � is integrable if and only if X,Y ∈
X(�)⇒ [X,Y ] ∈ X(�).

Proof The proof of this theorem can be found in [War83] [see Exercise4.15(3) for
the “only if” part]. �

If� is locally given by m vector fields X1, . . . , Xm , then to check integrability it
suffices to check whether [Xi , X j ] =∑m

k=1 Ck
i j Xk for locally defined functions Ck

i j
[cf. Exercise4.15(4)]. The next proposition provides an alternative criterion.

Proposition 4.9 An m-dimensional distribution� on an n-manifold M is integrable
if and only if

dωi ∧ ω1 ∧ · · · ∧ ωn−m = 0 (i = 1, . . . , n − m)

for all locally defined sets of differential forms
{
ω1, . . . , ωn−m

}
whose kernels deter-

mine �.

Proof Exercise4.15(5). �

Since the condition of the Frobenius theorem is local, this condition needs to be
checked only for sets of differential forms whose domains form an open cover of M .

Example 4.10

(1) (Wheel rolling without slipping) Recall that in this case the constraint is given
by the kernel of the 1-form

ω = dx − Rdθ.

Since dω = 0, we see that this is a semi-holonomic constraint, corresponding
to an integrable distribution. The leaves of the distribution are the submanifolds
with equation x = x0 + Rθ .

(2) (Ice skate) Recall that in this case the constraint is given by the kernel of the
1-form

ω = − sin θdx + cos θdy.

Since

dω ∧ ω = (− cos θdθ ∧ dx − sin θdθ ∧ dy) ∧ (− sin θdx + cos θdy)

= −dθ ∧ dx ∧ dy 	= 0,

we see that this is a true non-holonomic constraint.

In a Riemannian manifold (M, 〈·, ·〉), any distribution� determines an orthogo-
nal distribution �⊥, given by

�⊥p =
(
�p
)⊥ ⊂ Tp M.
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Hence we have two orthogonal projections � : T M → � and ⊥ : T M → �⊥. The
set of all external forces F : T M → T ∗M satisfying

F (v) = F
(
v�
)

for all v ∈ T M is denoted by F� .

Definition 4.11 A reaction force on a mechanical systemwith non-holonomic con-
straints (M, 〈·, ·〉,F , �) is a forceR ∈ F� such that the solutions of the generalized
Newton equation

μ

(
Dċ

dt

)
= (F +R)(ċ)

with initial condition in � are compatible with �. The reaction force is said to be
perfect, or to satisfy the d’Alembert principle, if

μ−1(R(v)) ∈ �⊥p
for all v ∈ Tp M, p ∈ M .

Just like in the holonomic case, a reaction force is perfect if and only if it neither
creates nor dissipates energy along any motion compatible with the constraint.

Theorem 4.12 Given a mechanical system with non-holonomic constraints
(M, 〈·, ·〉,F , �), there exists a unique reaction force R ∈ F� satisfying the
d’Alembert principle.

Proof We define the second fundamental form of the distribution � at a point
p ∈ M as the map B : Tp M ×�p → �⊥p given by

B(v,w) = (∇X Y )⊥ ,

where X ∈ X(M) and Y ∈ X(�) satisfy X p = v and Yp = w. To check that B is
well defined, let {Z1, . . . , Zn} be a local orthonormal frame such that {Z1, . . . , Zm}
is a basis for � and {Zm+1, . . . , Zn} is a basis for �⊥. Then

∇X Y = ∇X

(
m∑

i=1
Y i Zi

)
=

m∑
i=1

⎛
⎝(X · Y i )Zi +

n∑
j,k=1

�k
ji X j Y i Zk

⎞
⎠ ,

where the functions �k
i j are defined by

∇Zi Z j =
n∑

k=1
�k

i j Zk .
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Consequently,

B(v,w) = (∇X Y )⊥ =
n∑

i=1

m∑
j=1

n∑
k=m+1

�k
i j X i Y j Zk

depends only on v = X p and w = Yp, and is a bilinear map. Incidentally, the
restriction of B to �p ×�p is symmetric for all p ∈ M if and only if

�k
i j = �k

ji ⇔
〈∇Zi Z j , Zk

〉 = 〈∇Z j Zi , Zk
〉⇔ 〈[

Zi , Z j
]
, Zk

〉 = 0

for all i, j = 1, . . . ,m and all k = m + 1, . . . , n, i.e. if and only if � is integrable.
In this case, B is, of course, the second fundamental form of the leaves.

Let us assume that R exists. Then any motion c : I ⊂ R → M with initial
condition on � is compatible with � and satisfies

Dċ

dt
= μ−1 (F(ċ))+ μ−1(R(ċ)).

The projection of this equation on �⊥ yields

B(ċ, ċ) =
(
μ−1(F(ċ))

)⊥ + μ−1(R(ċ))

(recall that Dċ
dt = ∇ċ ċ). Therefore, if R exists then it must be given by

R(v) = μ (B(v, v))− μ
((
μ−1(F(v))

)⊥)

for any v ∈ �, and by R(v) = R
(
v�
)
for any v ∈ T M (as R ∈ F�). This proves

the uniqueness of R.
To prove existence, we just have to show that for this choice of R the solutions

of the generalized Newton equation with initial condition on � are compatible with
�. Consider the system

{
ċ =∑m

i=1 vi Zi
Dċ
dt = μ−1(F(ċ))−

(
μ−1(F(ċ))

)⊥ + B(ċ, ċ)
. (5.3)

When written in local coordinates, this is a system of first-order ODEs with n + m
unknowns x1(t), . . . , xn(t), v1(t), . . . , vm(t). Since the second equation is just

Dċ

dt
=
(
μ−1(F(ċ))

)� +
(

Dċ

dt

)⊥
⇔
(

Dċ

dt

)�
=
(
μ−1(F(ċ))

)�
,
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we see that this equation has only m nonvanishing components in the local frame
{Z1, . . . , Zn}. Therefore, (5.3) is a system of (n + m) first-order ODEs on n + m
unknowns, and has a unique local solution for any initial condition. If ċ(0) ∈ �c(0),
we can always choose v1(0), . . . , vm(0) such that

ċ(0) =
m∑

i=1
vi (0) (Zi )c(0) .

The solution of (5.3) with initial condition (x1(0), . . . , xn(0), v1(0), . . . , vm(0))
must then, by uniqueness, be the solution of

Dċ

dt
= μ−1(F(ċ))+ μ−1(R(ċ))

with initial condition ċ(0). On the other hand, it is, by construction, compatible
with �. �

Example 4.13 (Wheel rolling without slipping) Recall that in this case the constraint
is given by the kernel of the 1-form

ω = dx − Rdθ.

Since μ−1R is orthogonal to the constraint for a perfect reaction force R, the con-
straint must be in the kernel of R, and hence R = λω for some smooth function
λ : T M → R.

If the kinetic energy of the wheel is

K = M

2

(
vx)2 + I

2

(
vθ
)2

then

μ

(
Dċ

dt

)
= Mẍdx + I θ̈dθ.

Just tomake thingsmore interesting, consider a constant gravitational acceleration
g and suppose that the plane on which the wheel rolls makes an angle α with respect
to the horizontal (Fig. 5.8), so that there exists a conservative force with potential
energy

U = Mgx sin α.

The equation of motion is therefore

μ

(
Dċ

dt

)
= −dU +R(ċ)⇔ Mẍdx + I θ̈dθ = −Mg sin α dx + λdx − λRdθ.



202 5 Geometric Mechanics

θ
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O

Fig. 5.8 Wheel rolling without slipping on an inclined plane

The motion of the wheel will be given by a solution of this equation which also
satisfies the constraint equation, i.e. a solution of the system of ODEs

⎧⎪⎨
⎪⎩

Mẍ = −Mg sin α + λ
I θ̈ = −Rλ

ẋ = Rθ̇

.

This system is easily solved to yield

⎧⎪⎨
⎪⎩

x(t) = x0 + v0t − γ
2 t2

θ(t) = θ0 + v0
R t − γ

2R t2

λ = Iγ
R2

where

γ = g sin α

1+ I
M R2

and x0, v0, θ0 are integration constants.
Physically, the reaction force can be interpreted as a friction force exerted by the

plane on the wheel. This force opposes the translational motion of the wheel but
accelerates its spinning motion. Therefore, contrary to intuition, there is no dissipa-
tion of energy: all the translational kinetic energy lost by the wheel is restored as
rotational kinetic energy.

A perfect reaction force guarantees, as one would expect, conservation of energy.

Theorem 4.14 Let (M, 〈·, ·〉,−dU, �) be a conservative mechanical system with
non-holonomic constraints. If the reaction force R satisfies the d’Alembert principle
then the mechanical energy E := K + U is constant along any motion with initial
condition in �.
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Proof Exercise4.15(7). �
Exercise 4.15

(1) Show that an m-dimensional distribution � on an n-manifold M is differen-
tiable if and only if for all p ∈ M there exists a neighborhood U � p and
1-forms ω1, . . . , ωn−m ∈ �1(U ) such that

�q = ker
(
ω1
)

q
∩ · · · ∩ ker

(
ωn−m)

q

for all q ∈ U .
(2) Show that the foliation

F =
{
(x, y) ∈ R

2 | y = √2x + α
}
α∈R

of R
2 induces a foliation F ′ on T 2 = R

2/Z2 whose leaves are not (embedded)
submanifolds.

(3) Let � be an integrable distribution. Show that X,Y ∈ X(�) ⇒ [X,Y ] ∈
X(�).

(4) Using the Frobenius theorem show that an m-dimensional distribution � is
integrable if and only if each local basis of vector fields {X1, . . . , Xm} satisfies
[Xi , X j ] = ∑m

k=1 Ck
i j Xk for locally defined functions Ck

i j . (Remark: Since the

condition of the Frobenius theorem is local, this condition needs to be checked only for local bases whose

domains form an open cover of M).
(5) Prove Proposition4.9. (Hint: Recall from Exercise3.8(2) in Chap.2 that dω(X, Y ) = X · ω(Y )− Y ·

ω(X)− ω([X, Y ]) for any ω ∈ �1(M) and X, Y ∈ X(M)).
(6) Let M be an n-dimensional differentiable manifold with an affine connection

∇. Show that the parallel transport of vectors is determined by a distribution
� on T M , which is integrable if and only if the curvature of ∇ vanishes.

(7) Prove Theorem4.14.
(8) (Ice skate) Recall that our model for an ice skate is given by the non-holonomic

constraint� defined on R
2× S1 by the kernel of the 1-form ω = − sin θdx +

cos θdy.

(a) Show that the ice skate can access all points in the configuration space:
given two points p, q ∈ R

2 × S1 there exists a piecewise smooth curve
c : [0, 1] → R

2 × S1 compatible with � such that c(0) = p and c(1) = q.
Why does this show that � is non-integrable?

(b) Assuming that the kinetic energy of the skate is

K = M

2

((
vx)2 + (vy)2)+ I

2

(
vθ
)2

and that the reaction force is perfect, show that the skatemoveswith constant
speed along straight lines or circles. What is the physical interpretation of
the reaction force?

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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(c) Determine the motion of the skate moving on an inclined plane, i.e. subject
to a potential energy U = Mg sin α x .

(9) Consider a vertical wheel of radius R moving on a plane.

(a) Show that the non-holonomic constraint corresponding to the condition of
rolling without slipping or sliding is the distribution determined on the con-
figuration space R

2 × S1 × S1 by the 1-forms

ω1 = dx − R cosϕ dψ, ω2 = dy − R sin ϕ dψ,

where (x, y, ψ, ϕ) are the local coordinates indicated in Fig. 5.9.
(b) Assuming that the kinetic energy of the wheel is

K = M

2

((
vx)2 + (vy)2)+ I

2

(
vψ
)2 + J

2

(
vϕ
)2

and that the reaction force is perfect, show that thewheelmoveswith constant
speed along straight lines or circles. What is the physical interpretation of
the reaction force?

(c) Determine the motion of the vertical wheel moving on an inclined plane,
i.e. subject to a potential energy U = Mg sin α x .

(10) Consider a sphere of radius R and mass M rolling without slipping on a plane.

(a) Show that the condition of rolling without slipping is

ẋ = Rωy, ẏ = −Rωx ,

where (x, y) are the Cartesian coordinates of the contact point on the plane
and ω is the angular velocity of the sphere.

(b) Show that if the sphere’s mass is symmetrically distributed then its kinetic
energy is

K = M

2

(
ẋ2 + ẏ2

)
+ I

2
〈ω,ω〉,

where I is the sphere’s moment of inertia and 〈·, ·〉 is the Euclidean inner
product.

(c) Using ω as coordinates on the fibers of T SO(3), show that

Dċ

dt
= ẍ

∂

∂x
+ ÿ

∂

∂y
+ ω̇.

(Hint: Recall from Exercise4.8(3) in Chap.3 that the integral curves of left-invariant vector fields on a Lie

group with a bi-invariant metric are geodesics).
(d) Since we are identifying the fibers of T SO(3) with R

3, we can use the
Euclidean inner product to also identify the fibers of T ∗SO(3) with R

3.

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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ϕ
ψ

x

y

z

O

R

Fig. 5.9 Vertical wheel on a plane

Show that under this identification the non-holonomic constraint yielding
the condition of rolling without slipping is the distribution determined by
the kernels of the 1-forms

θ x := dx − R ey, θ y := dy + R ex

(where
{
ex , ey, ez

}
is the canonical basis of R

3). Is this distribution inte-
grable? (Hint: Show that any two points of R2 × SO(3) can be connected by a piecewise smooth curve

compatible with the distribution).
(e) Show that the sphere moves along straight lines with constant speed and

constant angular velocity orthogonal to its motion.
(f) Determine the motion of the sphere moving on an inclined plane, i.e. subject

to a potential energy U = Mg sin α x .

(11) (The golfer dilemma) Show that the center of a symmetric sphere of radius
R, mass M and moment of inertia I rolling without slipping inside a vertical
cylinder of radius R + a moves with constant angular velocity with respect
to the axis of the cylinder while oscillating up and down with a frequency√

I
I+M R2 times the frequency of the angular motion.
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5.5 Lagrangian Mechanics

Let M be a differentiable manifold, p, q ∈ M and a, b ∈ R such that a < b. Let us
denote by C the set of differentiable curves c : [a, b] → M such that c(a) = p and
c(b) = q.

Definition 5.1 ALagrangian function on M is a differentiable map L : T M → R.
The action determined by L on C is the map S : C → R given by

S(c) :=
b∫

a

L (ċ(t)) dt.

We can look for the global minima (or maxima) of the action by considering
curves on C.

Definition 5.2 A variation of c ∈ C is amap γ : (−ε, ε)→ C (for some ε > 0) such
that γ (0) = c and the map γ̃ : (−ε, ε)× [a, b] → M given by γ̃ (s, t) := γ (s)(t) is
differentiable. The curve c is said to be a critical point of the action if

d

ds |s=0
S(γ (s)) = 0

for any variation γ of c.

Notice that the global minima (or maxima) of S must certainly be attained at
critical points. However, a critical point is not necessarily a point of minimum (or
maximum). It turns out that the critical points of the action are solutions of second-
order ODEs.

Theorem 5.3 The curve c ∈ C is a critical point of the action determined by the
Lagrangian L : T M → R if and only if it satisfies the Euler–Lagrange equations

d

dt

(
∂L

∂vi (x(t), ẋ(t))

)
− ∂L

∂xi (x(t), ẋ(t)) = 0 (i = 1, . . . , n)

for any local chart (x1, . . . , xn) on M, where (x1, . . . , xn, v1, . . . , vn) is the corre-
sponding local chart induced on T M.

Proof Assume first that the image of c is contained on the domain of a local chart
(x1, . . . , xn). Let γ : (−ε, ε)→ C be a variation of c. Setting x(s, t) := (x ◦γ̃ )(s, t),
we have

S(γ (s)) =
b∫

a

L

(
x(s, t),

∂x

∂t
(s, t)

)
dt,
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and hence

d

ds |s=0
S(γ (s)) =

b∫

a

n∑
i=1

∂L

∂xi

(
x(0, t),

∂x

∂t
(0, t)

)
∂xi

∂s
(0, t) dt

+
b∫

a

n∑
i=1

∂L

∂vi

(
x(0, t),

∂x

∂t
(0, t)

)
∂2xi

∂s∂t
(0, t) dt.

Differentiating the relations x(s, a) = x(p), x(s, b) = x(q) with respect to s one
obtains

∂x

∂s
(0, a) = ∂x

∂s
(0, b) = 0.

Consequently, the second integral above can be integrated by parts to yield

−
b∫

a

n∑
i=1

d

dt

(
∂L

∂vi

(
x(0, t),

∂x

∂t
(0, t)

))
∂xi

∂s
(0, t) dt,

and hence

d

ds |s=0
S(γ (s)) =

b∫

a

n∑
i=1

(
∂L

∂xi (x(t), ẋ(t))− d

dt

(
∂L

∂vi (x(t), ẋ(t))

))
wi (t) dt,

where we have set x(t) := (x ◦ c)(t) and w(t) := ∂x
∂s (0, t). This shows that if c

satisfies the Euler–Lagrange equations then c is a critical point of the action.
To show the converse, we notice that any smooth function w : [a, b] → R

n

satisfying w(a) = w(b) = 0 determines a variation γ : (−ε, ε)→ C given in local
coordinates by x(s, t) = x(t) + sw(t), satisfying ∂x

∂s (0, t) = w(t). In particular, if
ρ : [a, b] → R is a smooth positive function with ρ(a) = ρ(b) = 0, we can take

wi (t) := ρ(t)
(
∂L

∂xi (x(t), ẋ(t))− d

dt

(
∂L

∂vi (x(t), ẋ(t))

))
.

Therefore if c is a critical point of the action we must have

b∫

a

n∑
i=1

(
∂L

∂xi (x(t), ẋ(t))− d

dt

(
∂L

∂vi (x(t), ẋ(t))

))2

ρ(t) dt = 0,

and hence c must satisfy the Euler–Lagrange equations.
The general case (in which the image of c is not contained in the domain of the

local chart) is left as an exercise. �
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Corollary 5.4 The motions of any conservative mechanical system
(M, 〈·, ·〉,−dU ) are the critical points of the action determined by the Lagrangian
L := K −U. �

Therefore we can find motions of conservative systems by looking for minima,
say, of the action. This variational approach is often very useful.

The energy conservation in a conservative system is, in fact, a particular case of
a more general conservation law, which holds for any Lagrangian. Before we state
it we need the following definitions.

Definition 5.5 The fiber derivative of a Lagrangian function L : T M → R at
v ∈ Tp M is the linear map (FL)v : Tp M → R given by

(FL)v(w) := d

dt |t=0
L(v + tw)

for all w ∈ Tp M .

Definition 5.6 If L : T M → R is a Lagrangian function then its associated Hamil-
tonian function H : T M → R is defined as

H(v) := (FL)v(v)− L(v).

Theorem 5.7 The Hamiltonian function is constant along the solutions of the Euler–
Lagrange equations.

Proof In local coordinates we have

H(x, v) =
n∑

i=1
vi ∂L

∂vi
(x, v)− L(x, v).

Consequently, if c : I ⊂ R → M is a solution of the Euler–Lagrange equations,
given in local coordinates by x = x(t), then

d

dt
(H(ċ(t))) = d

dt

(
n∑

i=1
ẋ i (t)

∂L

∂vi
(x(t), ẋ(t))− L(x(t), ẋ(t))

)

=
n∑

i, j=1
ẍ i (t)

∂L

∂vi
(x(t), ẋ(t))+

n∑
i=1

ẋ i (t)
d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)

−
n∑

i=1
ẋ i (t)

∂L

∂xi
(x(t), ẋ(t))−

n∑
i=1

ẍ i (t)
∂L

∂vi
(x(t), ẋ(t)) = 0.

�
Example 5.8 If (M, 〈·, ·〉,−dU ) is a conservative mechanical system then its
motions are the solutions of the Euler–Lagrange equations for the Lagrangian
L : T M → R given by
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L(v) = 1

2
〈v, v〉 −U (π(v))

(where π : T M → M is the canonical projection). Clearly,

(FL)v(w) = 1

2

d

dt |t=0
〈v + tw, v + tw〉 = 〈v,w〉,

and hence

H(v) = 〈v, v〉 − 1

2
〈v, v〉 +U (π(v)) = 1

2
〈v, v〉 +U (π(v))

is the mechanical energy.

The Lagrangian formulation is particularly useful for exploring the relation
between symmetry and conservation laws.

Definition 5.9 Let G be a Lie group acting on a manifold M . The Lagrangian L :
T M → R is said to be G-invariant if

L
(
(dg)pv

) = L(v)

for all v ∈ Tp M , p ∈ M and g ∈ G (where g : M → M is the map p �→ g · p).

We will now show that if a Lagrangian is G-invariant then to each element V ∈ g
there corresponds a conserved quantity. To do so, we need the following definitions.

Definition 5.10 Let G be a Lie group acting on a manifold M . The infinitesimal
action of V ∈ g on M is the vector field X V ∈ X(M) defined as

X V
p :=

d

dt |t=0
(exp(tV ) · p) = (

d Ap
)

e V,

where Ap : G → M is the map Ap(g) = g · p.

Theorem 5.11 (Noether) Let G be a Lie group acting on a manifold M. If L :
T M → R is G-invariant then J V : T M → R defined as J V (v) := (FL)v

(
X V
)

is
constant along the solutions of the Euler–Lagrange equations for all V ∈ g.

Proof Choose local coordinates (x1, . . . , xn) on M and let (y1, . . . , ym) be local
coordinates centered at e ∈ G. Let A : G × M → M be the action of G on M ,
written in these local coordinates as

(
A1
(

x1, . . . , xn, y1, . . . , ym
)
, . . . , An

(
x1, . . . , xn, y1, . . . , ym

))
.

Then the infinitesimal action of V =∑m
a=1 V a ∂

∂ya has components
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Xi (x) =
m∑

a=1

∂Ai

∂ya
(x, 0)V a .

Since L is G-invariant, we have

L

(
A1(x, y), . . . , An(x, y),

n∑
i=1

∂A1

∂xi
(x, y)vi , . . . ,

n∑
i=1

∂An

∂xi
(x, y)vi

)

= L
(

x1, . . . , xn, v1, . . . , vn
)
.

Setting y = y(t) in the above identity, where
(
y1(t), . . . , ym(t)

)
is the expression of

the curve exp(tV ) in local coordinates, and differentiating with respect to t at t = 0,
we obtain

n∑
i=1

m∑
a=1

∂L

∂xi
(x, v)

∂Ai

∂ya
(x, 0)V a +

n∑
i, j=1

m∑
a=1

∂L

∂vi
(x, v)

∂2Ai

∂ya∂x j
(x, 0)v j V a = 0

⇔
n∑

i=1

∂L

∂xi
(x, v)Xi (x)+

n∑
i, j=1

∂L

∂vi
(x, v)

∂Xi

∂x j
(x)v j = 0.

In these coordinates,

J V (x, v) =
n∑

i=1

∂L

∂vi
(x, v)Xi (x).

Therefore, if c : I ⊂ R → M is a solution of the Euler–Lagrange equations, given
in local coordinates by x = x(t), we have

d

dt

(
J V (ċ(t))

)
= d

dt

(
n∑

i=1

∂L

∂vi
(x(t), ẋ(t))Xi (x(t))

)

=
n∑

i=1

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
Xi (x(t))+

n∑
i, j=1

∂L

∂vi
(x(t), ẋ(t))

∂Xi

∂x j
(x(t))ẋ j (t)

=
n∑

i=1

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
Xi (x(t))−

n∑
i=1

∂L

∂xi
(x(t), ẋ(t))Xi (x(t)) = 0.

�

Remark 5.12 Notice that the map g � V �→ X V ∈ X(M) is linear. Since (FL)v is
also linear, we can see J V as a linear map g � V �→ J V ∈ C∞(T M). Therefore the
Noether theorem yields m = dim g independent conserved quantities.

Example 5.13 Consider a conservative mechanical system consisting of k particles
with masses m1, . . . ,mk moving in R

3 under a potential energy U : R
3k → R

which depends only on the distances between them. The motions of the system
are the solutions of the Euler–Lagrange equations obtained from the Lagrangian
L : T R

3k → R given by
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L(x1, . . . , xk, v1, . . . , vk) = 1

2

k∑
i=1

mi 〈vi , vi 〉 −U (x1, . . . , xk).

This Lagrangian is clearly SO(3)-invariant, where the action of SO(3) on R
3k is

defined through
S · (x1, . . . , xk) = (Sx1, . . . , Sxk).

The infinitesimal action of V ∈ so(3) is the vector field

X V
(x1,...,xk )

= (V x1, . . . , V xk) = (�(V )× x1, . . . , �(V )× xk),

where � : so(3)→ R
3 is the isomorphism in Lemma3.9. On the other hand,

(FL)(v1,...,vk )(w1, . . . , wk) =
k∑

i=1
mi 〈vi , wi 〉.

Therefore, the Noether theorem guarantees that the quantity

J V =
k∑

i=1
mi 〈ẋi ,�(V )× xi 〉 =

k∑
i=1

mi 〈�(V ), xi × ẋi 〉 =
〈
�(V ),

k∑
i=1

mi xi × ẋi

〉

is conserved along the motion of the system for any V ∈ so(3). In other words, the
system’s total angular momentum

Q :=
k∑

i=1
mi xi × ẋi

is conserved.

Exercise 5.14

(1) Complete the proof of Theorem5.3.
(2) Let (M, 〈·, ·〉) be a Riemannian manifold. Show that the critical points of the

arclength, i.e. of the action determined by the Lagrangian L : T M → R given
by

L(v) = 〈v, v〉 12

(where we must restrict the action to curves with nonvanishing velocity) are
reparameterized geodesics.

(3) (Brachistochrone curve) A particle with mass m moves on a curve y = y(x)
under the action of a constant gravitational field, corresponding to the potential
energy U = mgy. The curve satisfies y(0) = y(d) = 0 and y(x) < 0 for
0 < x < d.
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(a) Assuming that the particle is set free at the origin with zero velocity, show
that its speed at each point is

v = √−2gy,

and that therefore the travel time between the origin and point (d, 0) is

S = (2g)− 1
2

d∫

0

(
1+ y′2

) 1
2
(−y)−

1
2 dx,

where y′ = dy
dx .

(b) Show that the curve y = y(x) which corresponds to the minimum travel
time satisfies the differential equation

d

dx

[(
1+ y′2

)
y
]
= 0.

(c) Check that the solution of this equation satisfying y(0) = y(d) = 0 is given
parametrically by {

x = Rθ − R sin θ

y = −R + R cos θ

where d = 2πR. (Remark: This curve is called a cycloid, because it is the curved traced out by a

point on a circle which rolls without slipping on the xx-axis).

(4) (Charged particle in a stationary electromagnetic field) The motion of a particle
with mass m > 0 and charge e ∈ R in a stationary electromagnetic field is
determined by the Lagrangian L : T R

3 → R given by

L = 1

2
m〈v, v〉 + e〈A, v〉 − e�,

where 〈·, ·〉 is the Euclidean inner product,� ∈ C∞(R3) is the electric potential
and A ∈ X(R3) is the magnetic vector potential.

(a) Show that the equations of motion are

mẍ = eE + eẋ × B,

where E = − grad� is the electric field and B = curl A is the magnetic
field.

(b) Write an expression for the Hamiltonian function and use the equations of
motion to check that it is constant along any motion.
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(5) (Restricted 3-body problem) Consider two gravitating particles moving in
circular orbit around their common center of mass. We choose our units so
that the masses of the particles are 0 < μ < 1 and 1− μ, the distance between
them is 1 and the orbital angular velocity is also 1. Identifying the plane of the
orbit withR

2, with the center of mass at the origin, we can choose fixed positions
p1 = (1−μ, 0) and p2 = (−μ, 0) for the particles in the rotating frame where
they are at rest.

(a) Use Exercise3.20(11) to show that in this frame the equations of motion of
a third particle with negligible mass m moving in the plane of the orbit are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ = Fx

m
+ x + 2 ẏ

ÿ = Fy

m
+ y − 2ẋ

,

where
(
Fx , Fy

)
is the force on m as measured in the rotating frame.

(b) Assume that the only forces on m are the gravitational forces produced by
μ and 1− μ, so that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fx

m
= − μ

r13
(x − 1+ μ)− 1− μ

r23
(x + μ)

Fy

m
= − μ

r13
y − 1− μ

r23
y = 0

,

where r1, r2 : R2 → R are the Euclidean distances to p1, p2. Show that the
equations of motion are the Euler–Lagrange equations for the Lagrangian
L : T

(
R
2 \ {p1, p2}

)→ R given by

L
(
x, y, vx , vy) = 1

2

((
vx)2 + (vy)2)+ xvy − yvx

+ 1

2

(
x2 + y2

)
+ μ

r1
+ 1− μ

r2
.

(c) Find the Hamiltonian function. (Remark: The fact that this function remains constant gives

the so-called Tisserand criterion for identifying the same comet before and after a close encounter with

Jupiter).
(d) Compute the equilibrium points (i.e. the points corresponding to stationary

solutions) which are not on the x-axis. How many equilibrium points are
there in the x-axis?

(e) Show that the linearization of the system around the equilibrium points not
in the x-axis is
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̈ − 2η̇ = 3

4
ξ ± 3

√
3

4
(1− 2μ)η

η̈ + 2ξ̇ = ±3
√
3

4
(1− 2μ)ξ + 9

4
η

,

and show that these equilibrium points are unstable for

1

2

(
1−

√
69

9

)
< μ <

1

2

(
1+

√
69

9

)
.

(6) Consider the mechanical system in Example5.13.

(a) Use the Noether theorem to prove that the total linear momentum

P :=
k∑

i=1
mi ẋi

is conserved along the motion.
(b) Show that the system’s center of mass, defined as the point

X =
∑k

i=1 mi xi∑k
i=1 mi

,

moves with constant velocity.

(7) Generalize Example5.13 to the case in which the particles move in an arbitrary
Riemannian manifold (M, 〈·, ·〉), by showing that given any Killing vector field
X ∈ X(M) [cf. Exercise3.3(8) in Chap.3] the quantity

J X =
k∑

i=1
mi 〈ċi , X〉

is conserved, where ci : I ⊂ R → M is the motion of the particle with mass
mi .

(8) Consider the action of SO(3) on itself by left multiplication.

(a) Show that the infinitesimal action of B ∈ so(3) is the right-invariant vector
field determined by B.

(b) Use the Noether theorem to show that the angular momentum of the free
rigid body is constant.

(9) Consider a satellite equipped with a small rotor, i.e. a cylinder which can spin
freely about its axis. When the rotor is locked the satellite can be modeled by a
free rigid bodywith inertia tensor I . The rotor’s axis passes through the satellite’s

http://dx.doi.org/10.1007/978-3-319-08666-8_3


5.5 Lagrangian Mechanics 215

center of mass, and its direction is given by the unit vector e. The rotor’s mass
is symmetrically distributed around the axis, producing a moment of inertia J .

(a) Show that the configuration space for the satellite with unlocked rotor is the
Lie group SO(3)× S1, and that its motion is a geodesic of the left-invariant
metric corresponding to the kinetic energy

K = 1

2
〈I�,�〉 + 1

2
J� 2 + J� 〈�, e〉,

where the� ∈ R
3 is the satellite’s angular velocity as seen on the satellite’s

frame and � ∈ R is the rotor’s angular speed around its axis.
(b) Use the Noether theorem to show that l = J (� + 〈�, e〉) ∈ R and p =

S(I� + J�e) ∈ R
3 are conserved along the motion of the satellite with

unlocked rotor, where S : R → SO(3) describes the satellite’s orientation.

5.6 Hamiltonian Mechanics

We will now see that under certain conditions it is possible to study the Euler–
Lagrange equations as a flow on the cotangent bundle with special geometric prop-
erties.

Let M be an n-dimensional manifold. The set

T M ⊕ T ∗M :=
⋃

q∈M

Tq M × T ∗q M

has an obvious differentiable structure: if (x1, . . . , xn) are local coordinates on M
then (x1, . . . , xn, v1, . . . , vn, p1, . . . , pn) are the local coordinates on T M ⊕ T ∗M
which label the pair (v, ω) ∈ Tq M × T ∗q M , where

v =
n∑

i=1
vi ∂

∂xi
, ω =

n∑
i=1

pi dxi ,

and q ∈ M is the point with coordinates (x1, . . . , xn). For this differentiable struc-
ture, the maps π1 : T M ⊕ T ∗M → T M and π2 : T M ⊕ T ∗M → T ∗M given by
π1(v, ω) = v and π2(v, ω) = ω are submersions.

Definition 6.1 The extended Hamiltonian function corresponding to a Lagrangian
L : T M → R is the map H̃ : T M ⊕ T ∗M → R given by

H̃(v, ω) := ω(v)− L(v).
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In local coordinates, we have

H̃
(

x1, . . . , xn, v1, . . . , vn, p1, . . . , pn

)
=

n∑
i=1

piv
i−L

(
x1, . . . , xn, v1, . . . , vn

)
,

and hence

d H̃ =
n∑

i=1

(
pi − ∂L

∂vi

)
dvi +

n∑
i=1

vi dpi −
n∑

i=1

∂L

∂xi
dxi .

Thus any critical point of any restriction of H̃ to a submanifold of the form Tq M×{ω}
(for fixed q ∈ M and ω ∈ T ∗q M) must satisfy

pi = ∂L

∂vi

(
x1, . . . , xn, v1, . . . , vn

)
(i = 1, . . . , n).

It follows that the set of all such critical points is naturally a 2n-dimensional sub-
manifold S ⊂ T M ⊕ T ∗M such that π1|S : S → T M is a diffeomorphism. If
π2|S : S → T ∗M is also a diffeomorphism then the Lagrangian is said to be
hyper-regular. In this case, π2|S ◦ π1|S−1 : T M → T ∗M is a fiber-preserving
diffeomorphism, called the Legendre transformation.

Given a hyper-regular Lagrangian, we can use the maps π1|S and π2|S to make the
identifications T M ∼= S ∼= T ∗M . Since the Hamiltonian function H : T M → R is
clearly related to the extended Hamiltonian function through H = H̃ ◦ π1|S−1, we
can under these identifications simply write H = H̃ |S . Therefore

d H =
n∑

i=1
vi dpi −

n∑
i=1

∂L

∂xi
dxi

(here we must think of
(
x1, . . . , xn, v1, . . . , vn, p1, . . . , pn

)
as local functions on

S such that both
(
x1, . . . , xn, v1, . . . , vn

)
and

(
x1, . . . , xn, p1, . . . , pn

)
are local

coordinates). On the other hand, thinking of H as a function on the cotangent bundle,
we obtain

d H =
n∑

i=1

∂H

∂xi
dxi +

n∑
i=1

∂H

∂pi
dpi .

Therefore we must have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂H

∂xi
= − ∂L

∂xi

∂H

∂pi
= vi

(i = 1, . . . , n),
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where the partial derivatives of the Hamiltonian must be computed with respect
to the local coordinates

(
x1, . . . , xn, p1, . . . , pn

)
and the partial derivatives of the

Lagrangian must be computed with respect to the local coordinates(
x1, . . . , xn, v1, . . . , vn

)
.

Proposition 6.2 The Euler–Lagrange equations for a hyper-regular Lagrangian L :
T M → R define a flow on T M. This flow is carried by the Legendre transformation
to the flow defined on T ∗M by the Hamilton equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ i = ∂H

∂pi

ṗi = −∂H

∂xi

(i = 1, . . . , n).

Proof The Euler–Lagrange equations can be cast as a system of first-order ordinary
differential equations on T M as follows.

⎧⎪⎪⎨
⎪⎪⎩

ẋ i = vi

d

dt

(
∂L

∂vi

)
= ∂L

∂xi

(i = 1, . . . , n).

Since on S one has

pi = ∂L

∂vi
, vi = ∂H

∂pi
,

∂L

∂xi
= −∂H

∂xi
,

we see that this system reduces to the Hamilton equations in the local coordinates(
x1, . . . , xn, p1, . . . , pn

)
. Since the Hamilton equations clearly define a flow on

T ∗M , the Euler–Lagrange equations must define a flow on T M . �

Example 6.3 The Lagrangian for a conservative mechanical system (M, 〈·, ·〉,
−dU ) is written in local coordinates as

L
(

x1, . . . , xn, v1, . . . , vn
)
= 1

2

n∑
i, j=1

gi j

(
x1, . . . , xn

)
viv j −U

(
x1, . . . , xn

)
.

The Legendre transformation is given in these coordinates by

pi = ∂L

∂vi
=

n∑
j=1

gi jv
j (i = 1, . . . , n),

and is indeed a fiber-preserving diffeomorphism, whose inverse is given by
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vi =
n∑

j=1
gi j p j (i = 1, . . . , n).

As a function on the tangent bundle, the Hamiltonian is (cf. Example5.8)

H = 1

2

n∑
i, j=1

gi jv
iv j +U.

Using the Legendre transformation, we can see the Hamiltonian as the following
function on the cotangent bundle.

H = 1

2

n∑
i, j,k,l=1

gi jg
ik pkg

jl pl +U = 1

2

n∑
k,l=1

gkl pk pl +U.

Therefore the Hamilton equations for a conservative mechanical system are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ i =
n∑

j=1
gi j p j

ṗi = −1

2

n∑
k,l=1

∂gkl

∂xi
pk pl − ∂U

∂xi

(i = 1, . . . , n).

The flow defined by the Hamilton equations has remarkable geometric properties,
which are better understood by introducing the following definition.

Definition 6.4 The canonical symplectic potential (or Liouville form) is the 1-
form θ ∈ �1(T ∗M) given by

θα(v) := α ((dπ)α(v))

for all v ∈ Tα(T ∗M) and all α ∈ T ∗M , where π : T ∗M → M is the natural
projection. The canonical symplectic form on T ∗M is the 2-form ω ∈ �2(T ∗M)
given by ω = dθ .

In local coordinates, we have

π
(

x1, . . . , xn, p1, . . . , pn

)
=
(

x1, . . . , xn
)

and

v =
n∑

i=1
dxi (v)

∂

∂xi
+

n∑
i=1

dpi (v)
∂

∂pi
.
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Consequently,

(dπ)α(v) =
n∑

i=1
dxi (v)

∂

∂xi
,

and hence

θα(v) = α ((dπ)α(v)) =
n∑

i=1
pi dxi

⎛
⎝

n∑
j=1

dx j (v)
∂

∂x j

⎞
⎠ =

n∑
i=1

pi dxi (v).

We conclude that

θ =
n∑

i=1
pi dxi ,

and consequently

ω =
n∑

i=1
dpi ∧ dxi .

Proposition 6.5 The canonical symplectic form ω is closed (dω = 0) and nonde-
generate. Moreover,ωn = ω∧· · ·∧ω is a volume form (in particular T ∗M is always
orientable, even if M itself is not).

Proof Exercise6.15(1). �

Recall from Exercise1.15(8) in Chap.2 that if v ∈ Tp M then ι(v)ω ∈ T ∗p M is
the covector given by

(ι(v)ω) (w) = ω(v,w)

for all w ∈ Tp M . Therefore the first statement in Proposition6.5 is equivalent to
saying that the map Tp M � v �→ ι(v)ω ∈ T ∗p M is a linear isomorphism for all
p ∈ M .

The key to the geometric meaning of the Hamilton equations is contained in the
following result.

Proposition 6.6 The Hamilton equations are the equations for the flow of the vector
field X H satisfying

ι(X H )ω = −d H.

Proof The Hamilton equations yield the flow of the vector field

X H =
n∑

i=1

(
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi

)
.

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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Therefore

ι(X H )ω = ι(X H )

n∑
i=1

(
dpi ⊗ dxi − dxi ⊗ dpi

)

=
n∑

i=1

(
−∂H

∂xi
dxi − ∂H

∂pi
dpi

)
= −d H.

�

Remark 6.7 Notice that H completely determines X H , as ω is nondegenerate. By
analogy with the Riemannian case, −X H is sometimes called the symplectic gra-
dient of H . The vector field X H is usually referred to as the Hamiltonian vector
field determined by H .

Definition 6.8 The Hamiltonian flow generated by F ∈ C∞(T ∗M) is the flow of
the unique vector field X F ∈ X(T ∗M) such that

ι(X F )ω = −d F.

The flow determined on T ∗M by a hyper-regular Lagrangian is therefore a partic-
ular case of a Hamiltonian flow (in which the generating function is the Hamiltonian
function). We will now discuss the geometric properties of general Hamiltonian
flows, starting with the Hamiltonian version of energy conservation.

Proposition 6.9 Hamiltonian flows preserve their generating functions.

Proof We have

X F · F = d F(X F ) = (−ι(X F )ω) (X F ) = −ω(X F , X F ) = 0,

as ω is alternating. �

Proposition 6.10 Hamiltonian flows preserve the canonical symplectic form: if ψt :
T ∗M → T ∗M is a Hamiltonian flow then ψt

∗ω = ω.

Proof Let F ∈ C∞(T ∗M) be the function whose Hamiltonian flow is ψt . Recall
from Exercise3.8(7) in Chap. 2 that the Lie derivative of ω along X F ∈ X(T ∗M),

L X Fω =
d

dt |t=0
ψt
∗ω,

can be computed by the Cartan formula:

L X Fω = ι(X F )dω + d(ι(X F )ω) = d(−d F) = 0.

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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Therefore

d

dt
ψt
∗ω = d

ds |s=0
(ψt+s)

∗ω = d

ds |s=0
(ψs ◦ ψt )

∗ω = d

ds |s=0
ψt
∗(ψs

∗ω)

= ψt
∗ d

ds |s=0
ψs
∗ω = ψt

∗L X Fω = 0.

We conclude that

ψt
∗ω = (ψ0)

∗ω = ω. �

Theorem 6.11 (Liouville) Hamiltonian flows preserve the integral with respect to
the symplectic volume form: if ψt : T ∗M → T ∗M is a Hamiltonian flow and
F ∈ C∞(T ∗M) is a compactly supported function then

∫

T ∗M

F ◦ ψt =
∫

T ∗M

F.

Proof This is a simple consequence of the fact that ψt preserves the symplectic
volume form, since

ψt
∗(ωn) = (ψt

∗ω)n = ωn .

Therefore
∫

T ∗M

F ◦ ψt =
∫

T ∗M

(F ◦ ψt )ω
n =

∫

T ∗M

(F ◦ ψt )ψt
∗(ωn)

=
∫

T ∗M

ψt
∗(Fωn) =

∫

T ∗M

Fωn =
∫

T ∗M

F

[cf. Exercise4.2(4) in Chap.2]. �

Theorem 6.12 (Poincaré recurrence)Letψt : T ∗M → T ∗M be a Hamiltonian flow
and K ⊂ T ∗M a compact set invariant under ψt . Then for each open set U ⊂ K
and each T > 0 there exist α ∈ U and t ≥ T such that ψt (α) ∈ U.

Proof Let F ∈ C∞(T ∗M) be a compactly supported smooth function with values in
[0, 1] such that F(α) = 1 for all α ∈ K (this is easily constructed using, for instance,
a partition of unity). Let G ∈ C∞(T ∗M) be a smooth function with values in [0, 1]
and compact support contained in U such that

∫

T ∗M

G > 0.

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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Consider the open sets Un := ψnT (U ). If these sets were all disjoint then one could
define functions G̃ N ∈ C∞(M) for each N ∈ N as

G̃ N (α) =
{
(G ◦ ψ−nT )(α) if α ∈ Un and n ≤ N

0 otherwise
.

These functions would have compact support contained in K (K is invariant under
ψt ) and values in [0, 1], and hence would satisfy G̃ N ≤ F . Therefore we would have

∫

T ∗M

F ≥
∫

T ∗M

G̃ N =
N∑

n=1

∫

T ∗M

G ◦ ψ−nT = N
∫

T ∗M

G

for all N ∈ N, which is absurd. We conclude that there must exist m, n ∈ N (with,
say, n > m) such that

Um ∩Un 	= ∅ ⇔ ψmT (U ) ∩ ψnT (U ) 	= ∅ ⇔ U ∩ ψ(n−m)T (U ) 	= ∅.

Choosing t = (n−m)T and α ∈ ψ−t (U ∩ψt (U )) = ψ−t (U )∩U yields the result.
�

We can use the symplectic structure of the cotangent bundle to define a new binary
operation on the set of differentiable functions on T ∗M .

Definition 6.13 The Poisson bracket of two differentiable functions F,G ∈
C∞(T ∗M) is {F,G} := X F · G.

Proposition 6.14 (C∞(T ∗M), {·, ·}) is a Lie algebra, and the map that associates
to a function F ∈ C∞(T ∗M) its Hamiltonian vector field X F ∈ X(T ∗M) is a Lie
algebra homomorphism, i.e.

(i) {F,G} = −{G, F};
(ii) {αF + βG, H} = α{F, H} + β{G, H};

(iii) {F, {G, H}} + {G, {H, F}} + {H, {F,G}} = 0;
(iv) X{F,G} = [X F , XG ]
for any F,G, H ∈ C∞(T ∗M) and any α, β ∈ R.

Proof We have

{F,G} = X F · G = dG(X F ) = (−ι(XG)ω)(X F )

= −ω(XG , X F ) = ω(X F , XG),

which proves the anti-symmetry and bilinearity of the Poisson bracket. On the other
hand,
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ι(X{F,G})ω = −d{F,G} = −d(X F · G) = −d(dG(X F )) = −d(ι(X F )dG)

= −L X F dG = L X F (ι(XG)ω) = ι(L X F XG)ω + ι(XG)L X Fω

= ι([X F , XG ])ω

[cf. Exercise3.8(7) in Chap.2]. Since ω is nondegenerate, we have

X{F,G} = [X F , XG ].

Finally,

{F, {G, H}} + {G, {H, F}} + {H, {F,G}}
= {F, XG · H} − {G, X F · H} − X{F,G} · H

= X F · (XG · H)− XG · (X F · H)− [X F , XG ] · H = 0. �

Exercise 6.15

(1) Prove Proposition6.5.
(2) Let (M, 〈·, ·〉)be aRiemannianmanifold,α ∈ �1(M) a 1-formandU ∈ C∞(M)

a differentiable function.

(a) Show that the Euler–Lagrange equations for the Lagrangian L : T M → R

given by

L(v) = 1

2
〈v, v〉 + ι(v)αp −U (p)

for v ∈ Tp M yield the motions of the mechanical system (M, 〈·, ·〉,F),
where

F(v) = −(dU )p − ι(v)(dα)p

for v ∈ Tp M .
(b) Show that themechanical energy E = K+U is conserved along themotions

of (M, 〈·, ·〉,F) (which is therefore called a conservative mechanical sys-
tem with magnetic term).

(c) Show that L is hyper-regular and compute the Legendre transformation.
(d) Find the Hamiltonian H : T ∗M → R and write the Hamilton equations.

(3) Let c > 0 be a positive number, representing the speed of light, and consider
the open set U := {v ∈ T R

n | ‖v‖ < c}, where ‖ · ‖ is the Euclidean norm.
The motion of a free relativistic particle of mass m > 0 is determined by the
Lagrangian L : U → R given by

L(v) := −mc2

√
1− ‖v‖

2

c2
.

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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(a) Show that L is hyper-regular and compute the Legendre transformation.
(b) Find the Hamiltonian H : T ∗Rn → R and write the Hamilton equations.

(4) Show that in the Poincaré recurrence theorem the set of points α ∈ U such that
ψt (α) ∈ U for some t ≥ T is dense in U . (Remark: It can be shown that this set has full

measure).
(5) Let (M, 〈·, ·〉) be a compact Riemannian manifold. Show that for each normal

ball B ⊂ M and each T > 0 there exist geodesics c : R → M with ‖ċ(t)‖ = 1
such that c(0) ∈ B and c(t) ∈ B for some t ≥ T .

(6) Let
(
x1, . . . , xn, p1, . . . , pn

)
be the usual local coordinates on T ∗M . Compute

Xxi , X pi ,
{

xi , x j
}
,
{

pi , p j
}
and

{
pi , x j

}
.

(7) Show that the Poisson bracket satisfies the Leibniz rule

{F,G H} = {F,G}H + {F, H}G

for all F,G, H ∈ C∞(T ∗M).

5.7 Completely Integrable Systems

We now concentrate on studying the Hamiltonian flow of a Hamiltonian function
H ∈ C∞(T ∗M). We already know that H is constant along its Hamiltonian flow,
so that it suffices to study this flow along the level sets of H . This can be further
simplified if there exist additional nontrivial functions F ∈ C∞(T ∗M) such that

X H · F = 0⇔ {H, F} = 0.

Definition 7.1 A function F ∈ C∞(T ∗M) is said to be a first integral of H if
{H, F} = 0.

In general, there is no reason to expect that there should exist nontrivial first
integrals other than H itself. In the special cases when these exist, they often satisfy
additional conditions.

Definition 7.2 The functions F1, . . . , Fm ∈ C∞(T ∗M) are said to be

(i) in involution if {Fi , Fj } = 0 (i, j = 1, . . . ,m);
(ii) independent at α ∈ T ∗M if (d F1)α , . . . , (d Fm)α ∈ T ∗α (T ∗M) are linearly

independent covectors.

Proposition 7.3 If F1, . . . , Fm ∈ C∞(T ∗M) are in involution and are independent
at some point α ∈ T ∗M then m ≤ n.

Proof Exercise7.17(2). �

The maximal case m = n is especially interesting.
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Definition 7.4 The Hamiltonian H is said to be completely integrable if there exist
n first integrals F1, . . . , Fn in involution which are independent on a dense open set
U ⊂ T ∗M .

Example 7.5

(1) If M is 1-dimensional and d H 	= 0 on a dense open set of T ∗M then H is
completely integrable.

(2) (Particle in a central field) Recall Example1.15 where a particle of mass m > 0
moves in a central field. The corresponding Lagrangian function is

L
(
r, θ, vr , vθ

) = 1

2
m
[(
vr )2 + r2

(
vθ
)2]− u(r),

and so the Legendre transformation is given by

pr = ∂L

∂vr
= mvr and pr = ∂L

∂vθ
= mr2vθ .

The Hamiltonian function is then

H (r, θ, pr , pθ ) = pr
2

2m
+ pθ 2

2mr2
+ u(r).

By the Hamilton equations,

ṗθ = −∂H

∂θ
= 0,

and hence pθ is a first integral. Since

d H =
(
− pθ 2

mr3
+ u′(r)

)
dr + pr

m
dpr + pθ

mr2
dpθ ,

we see that d H and dpθ are independent on the dense open set of T ∗R2 formed
by the points whose polar coordinates (r, θ, pr , pθ ) are well defined and do not
satisfy

u′(r)− pθ 2

mr3
= pr = 0

(i.e. are not on a circular orbit – cf. Exercise7.17(4). Therefore this Hamiltonian
is completely integrable.

Proposition 7.6 Let H be a completely integrable Hamiltonian with first integrals
F1, . . . , Fn in involution, independent in the dense open set U ⊂ T ∗M, and such
that X F1 , . . . , X Fn are complete on U. Then each nonempty level set

L f := {α ∈ U | F1(α) = f1, . . . , Fn(α) = fn}
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is a submanifold of dimension n, invariant for the Hamiltonian flow of H, admitting
a locally free action of R

n which is transitive on each connected component.

Proof All points in U are regular points of the map F : U → R
n given by

F(α) = (F1(α), . . . , Fn(α)); therefore all nonempty level sets L f := F−1( f )
are submanifolds of dimension n.

Since X H · Fi = 0 for i = 1, . . . , n, the level sets L f are invariant for the flow
of X H . In addition, we have X Fi · Fj = {Fi , Fj } = 0, and hence these level sets
are invariant for the flow of X Fi . Moreover, these flows commute, as [X Fi , X Fj ] =
X{Fi ,Fj } = 0 (cf. Theorem6.10 in Chap.1).

Consider the map A : Rn × L f → L f given by

A(t1, . . . , tn, α) = (ψ1,t1 ◦ · · · ◦ ψn,tn )(α),

where ψi,t : L f → L f is the flow of X Fi . Since these flows commute, this map
defines an action of R

n on L f . On the other hand, for each α ∈ L f , the map
Aα : Rn → L f givenby Aα(t1, . . . , tn) = A(t1, . . . , tn, α) is a local diffeomorphism
at the origin, as

(d Aα)0 (ei ) = d

dt |t=0
ψi,t (α) =

(
X Fi

)
α

and the vector fields X Fi are linearly independent. Therefore the action is locally
free (that is, for each point α ∈ L f there exists an open neighborhood U ⊂ R

n of
0 such that A(t, α) 	= α for all t ∈ U \ {0}), meaning that the isotropy groups are
discrete. Also, the action is locally transitive (i.e. each point α ∈ L f admits an open
neighborhood V ⊂ L f such that every β ∈ V is of the form β = A(t, α) for some
t ∈ R

n), and hence transitive on each connected component (for given α ∈ L f both
the set of points β ∈ L f which are of the form β = A(t, α) for some t ∈ R

n and the
set of points which are not are open). �

The isotropy subgroups of the action above are discrete subgroups ofR
n . We next

describe the structure of such subgroups.

Proposition 7.7 Let � be a discrete subgroup of R
n. Then there exist k ∈

{0, 1, . . . , n} linearly independent vectors e1, . . . , ek such that �= spanZ
{e1, . . . , ek}.
Proof If � = {0} then we are done. If not, let e ∈ � \ {0}. Since � is discrete, the set

� ∩ {λe | 0 < λ ≤ 1}

is finite (and nonempty). Let e1 be the element in this set which is closest to 0. Then

� ∩ spanR{e} = spanZ{e1}

(for otherwise e1 would not be the element in this set closest to 0). If � = spanZ{e1}
then we are done. If not, let e ∈ � \ spanZ{e1}. Then the set

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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e

e1

e2

Fig. 5.10 Proof of Proposition7.7

� ∩ {λe + λ1e1 | 0 < λ, λ1 ≤ 1}
is finite (and nonempty). Let e2 be the element in this set which is closest to

spanR{e1} (Fig. 5.10). Then

� ∩ spanR{e, e1} = spanZ{e1, e2}.

Iterating this procedure yields the result. �

Proposition 7.8 Let Lαf be the connected component of α ∈ L f . Then Lαf is diffeo-

morphic to T k×R
n−k , where k is the number of generators of the isotropy subgroup

�α . In particular, if Lαf is compact then it is diffeomorphic to the n-dimensional torus
T n.

Proof Since the action A : R
n × Lαf → Lαf is transitive, the local diffeomorphism

Aα : R
n → Lαf is surjective. On the other hand, because �α is discrete, the action

of �α on R
n by translation is free and proper, and we can form the quotient R

n/�α ,
which is clearly diffeomorphic to T k×R

n−k . Finally, it is easily seen that Aα induces
a diffeomorphism R

n/�α ∼= Lαf . �

We are now in position to understand the Hamiltonian flow on a completely
integrable system. For that we need the following definition (cf. Fig. 5.11).

Definition 7.9 A linear flow on the torus T n = R
n/Zn is the projection of the flow

ψt : Rn → R
n given by

ψt (x) = x + νt.

The frequencies of the linear flow are the components ν1, . . . , νn of ν.
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x

ν

ψt(x)

Fig. 5.11 Linear flow on the 2-torus

Theorem 7.10 (Arnold–Liouville) Let H be a completely integrable Hamiltonian
with n first integrals F1, . . . , Fn ∈ C∞(T ∗M) in involution, independent on the
dense open set U ⊂ T ∗M. If the connected components of the level sets of the map
(F1, . . . , Fn) : U → R

n are compact then they are n-dimensional tori, invariant for
the flow of X H . The flow of X H on these tori is a linear flow (for an appropriate
choice of coordinates).

Proof Since the connected components of the level sets of (F1, . . . , Fn) are compact,
the vector fields X Fi are complete. All that remains to be seen is that the flow of X H

on the invariant tori is a linear flow. It is clear that the flow of each X Fi is linear in
the coordinates given by Proposition7.8. Since X H is tangent to the invariant tori,
we have X H =∑n

i=1 f i X Fi for certain functions f i . Now

0 = X{Fi ,H} = [X Fi , X H ] =
n∑

j=1
(X Fi · f j )X Fj ,

and hence each function f i is constant on the invariant torus. We conclude that the
flow of X H is linear. �

We next explore in detail the properties of linear flows on the torus.

Definition 7.11 Letψt : T n → T n be a linear flow. The time average of a function
f ∈ C∞(T n) along ψt is the map

f (x) := lim
T→+∞

1

T

T∫

0

f (ψt (x))dt

(defined on the set of points x ∈ T n where the limit exists).
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Definition 7.12 The frequencies ν ∈ R
n of a linear flow ψt : T n → T n are said

to be independent if they are linearly independent over Q, i.e. if 〈k, ν〉 	= 0 for all
k ∈ Z

n \ {0}.
Theorem 7.13 (Birkhoff ergodicity) If the frequencies ν ∈ R

n of a linear flow
ψt : T n → T n are independent then the time average of any function f ∈ C∞(T n)

exists for all x ∈ T n and

f (x) =
∫

T n

f.

Proof Since T n = R
n/Zn , the differentiable functions on the torus arise from

periodic differentiable functions on R
n , which can be expanded as uniformly con-

vergent Fourier series. Therefore it suffices to show that the theorem holds for
f (x) = e2π i〈k,x〉 with k ∈ Z

n .
If k = 0 then both sides of the equality are 1, and the theorem holds.
If k 	= 0 that the right-hand side of the equality is zero, whereas the left-hand side

is

f (x) = lim
T→+∞

1

T

T∫

0

e2π i〈k,x+νt〉dt

= lim
T→+∞

1

T
e2π i〈k,x〉 e2π i〈k,ν〉T − 1

2π i〈k, ν〉 = 0

(where we used the fact that 〈k, ν〉 	= 0). �
Corollary 7.14 If the frequencies of a linear flow ψt : T n → T n are independent
then {ψt (x) | t ≥ 0} is dense on the torus for all x ∈ T n.

Proof If {ψt (x) | t ≥ 0} were not dense then it would not intersect an open set
U ⊂ T n . Therefore any nonnegative function f ∈ C∞(T n) with nonempty support
contained in U would satisfy f (x) = 0 and

∫
T n f > 0, contradicting the Birkhoff

ergodicity theorem. �
Corollary 7.15 If the frequencies of a linear flow ψt : T n → T n are independent
and n ≥ 2 then ψt (x) is not periodic. �
Remark 7.16 The qualitative behavior of the Hamiltonian flow generated by com-
pletely integrable Hamiltonians is completely understood. Complete integrability
is however a very strong condition, not satisfied by generic Hamiltonians. The
Kolmogorov–Arnold–Moser (KAM) theorem guarantees a small measure of
genericity by establishing that a large fraction of the invariant tori of a completely
integrable Hamiltonians survives under small perturbations of the Hamiltonian, the
flow on these tori remaining linear with the same frequencies. On the other hand,
many invariant tori, including those whose frequencies are not independent (reso-
nant tori), are typically destroyed.
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Exercise 7.17

(1) Show that if F,G ∈ C∞(T ∗M) are first integrals, then {F,G} is also a first
integral.

(2) Prove Proposition7.3.
(3) Consider a surface of revolution M ⊂ R

3 given in cylindrical coordinates
(r, θ, z) by

r = f (z),

where f : (a, b)→ (0,+∞) is differentiable.
(a) Show that the geodesics of M are the critical points of the action determined

by the Lagrangian L : T M → R given in local coordinates by

L
(
θ, z, vθ , vz) = 1

2

(
( f (z))2

(
vθ
)2 +

(
( f ′(z))2 + 1

)
(vz)2

)
.

(b) Show that the curves given in local coordinates by θ = constant or f ′(z) = 0
are images of geodesics.

(c) Compute the Legendre transformation, show that L is hyper-regular and
write an expression in local coordinates for theHamiltonian H : T ∗M → R.

(d) Show that H is completely integrable.
(e) Show that the projection on M of the invariant set

L(E,l) := H−1(E) ∩ pθ
−1(l)

(E, l > 0) is given in local coordinates by

f (z) ≥ l√
2E
.

Use this fact to conclude that if f has a strict local maximum at z = z0
then the geodesic whose image is z = z0 is stable, i.e. geodesics with initial
condition close to the point in T M with coordinates (θ0, z0, 1, 0) stay close
to the curve z = z0.

(4) Recall from Example7.5 that a particle of mass m > 0 moving in a central field
is described by the completely integrable Hamiltonian function

H (r, θ, pr , pθ ) = pr
2

2m
+ pθ 2

2mr2
+ u(r).

(a) Show that there exist circular orbits of radius r0 whenever u′(r0) ≥ 0.
(b) Verify that the set of points where d H and dpθ are not independent is the

union of these circular orbits.
(c) Show that the projection of the invariant set
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L(E,l) := H−1(E) ∩ pθ
−1(l)

on R
2 is given in local coordinates by

u(r)+ l2

2mr2
≤ E .

(d) Conclude that if u′(r0) ≥ 0 and

u′′(r0)+ 3u′(r0)
r0

> 0

then the circular orbit of radius r0 is stable.

(5) In general relativity, the motion of a particle in the gravitational field of a point
mass M > 0 is given by the Lagrangian L : T U → R written in cylindrical
coordinates (u, r, θ) as

L = −1

2

(
1− 2M

r

) (
vu)2 + 1

2

(
1− 2M

r

)−1 (
vr )2 + 1

2
r2
(
vθ
)2
,

where U ⊂ R
3 is the open set given by r > 2M (the coordinate u is called the

time coordinate, and in general is different from the proper time of the particle,
i.e. the parameter t of the curve).

(a) Show that L is hyper-regular and compute the corresponding Hamiltonian
H : T ∗U → R.

(b) Show that H is completely integrable.
(c) Show that there exist circular orbits of any radius r0 > 2M , with H < 0 for

r0 > 3M , H = 0 for r0 = 3M and H > 0 for r0 < 3M . (Remark: The orbits

with H > 0 are not physical, since they correspond to speeds greater than the speed of light; the orbits with

H = 0 can only be achieved by massless particles, which move at the speed of light).
(d) Show that the set of points where d H , dpu and dpθ are not independent

(and pu 	= 0) is the union of these circular orbits.
(e) Show that the projection of the invariant cylinder

L(E,k,l) := H−1(E) ∩ pu
−1(k) ∩ pθ

−1(l)

on U is given in local coordinates by

l2

r2
−
(
1− 2M

r

)−1
k2 ≤ 2E .

(f) Conclude that if r0 > 6M then the circular orbit of radius r0 is stable.
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(6) Recall that the Lagrange top is the mechanical system determined by the
Lagrangian L : T SO(3)→ R given in local coordinates by

L = I1
2

((
vθ
)2 + (vϕ)2 sin2 θ

)
+ I3

2

(
vψ + vϕ cos θ)2 − Mgl cos θ,

where (θ, ϕ, ψ) are the Euler angles, M is the top’s mass and l is the distance
from the fixed point to the center of mass.

(a) Compute the Legendre transformation, show that L is hyper-regular and
write an expression in local coordinates for the Hamiltonian H : T ∗SO(3)
→ R.

(b) Prove that H is completely integrable.
(c) Show that the solutions found in Exercise3.20(14) are stable for |ϕ̇| � |ψ̇ |

if |ψ̇ | is large enough.
(7) Show that the the Euler top with I1 < I2 < I3 defines a completely integrable

Hamiltonian on T ∗SO(3).
(8) Consider the sequence formed by the first digit of the decimal expansion of each

of the integers 2n for n ∈ N0:

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, . . .

The purpose of this exercise is to answer the following question: is there a 7 in
this sequence?

(a) Show that if ν ∈ R \Q then

lim
n→+∞

1

n + 1

n∑
k=0

e2π iνk = 0.

(b) Prove the following discrete version of the Birkhoff ergodicity theorem: if a
differentiable function f : R → R is periodic with period 1 and ν ∈ R \Q

then for all x ∈ R

lim
n→+∞

1

n + 1

n∑
k=0

f (x + νk) =
1∫

0

f (x)dx .

(c) Show that log 2 is an irrational multiple of log 10.
(d) Is there a 7 in the sequence above?
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5.8 Symmetry and Reduction

The symplectic structure on the cotangent bundle can be generalized to arbitrary
manifolds.

Definition 8.1 A symplectic manifold is a pair (M, ω), where M is a differentiable
manifold and ω ∈ �2(M) is nondegenerate and closed.

Example 8.2 If M is an orientable surface and ω ∈ �2(M) is a volume form on
M then (M, ω) is a symplectic manifold. In fact, ω is necessarily nondegenerate (if
ι(v)ω = 0 for some nonvanishing v ∈ Tp M then ωp = 0), and dω = 0 trivially.

All definitions and results of Sects. 5.6 and 5.7 (Hamiltonian flow and its proper-
ties, Liouville and Poincaré recurrence theorems, Poisson bracket, completely inte-
grable systems and the Arnold–Liouville theorem) are readily extended to arbitrary
symplecticmanifolds. In fact, all symplecticmanifolds are locally the same (i.e. there
is no symplectic analogue of the curvature), as we now show.

Theorem 8.3 (Darboux) Let (M, ω) be a symplectic manifold and p ∈ M. Then
there exist local coordinates (x1, . . . , xn, p1, . . . , pn) around p such that

ω =
n∑

i=1
dpi ∧ dxi

(in particular the dimension of M is necessarily even).

Proof We begin by observing that ω is of the form above if and only if {xi , x j } =
{pi , p j } = 0 and {pi , x j } = δi j for i, j = 1, . . . , n [cf. Exercise8.23(2)].

Clearly we must have m := dim M ≥ 2 (otherwise ω = 0 would be degen-
erate). Let P ∈ C∞(M) be a function with (d P)p 	= 0, let X P be the corre-
sponding Hamiltonian vector field and let T ⊂ M be a hypersurface not tangent
to (X P )p (cf. Fig. 5.12). Then X P is not tangent to T on some neighborhood V of
p. Possibly reducing V , we can define a smooth function Q on V by the condi-
tion that ψ−Q(q)(q) ∈ T for each q ∈ V , where ψt is the flow of X P . Notice that
T ∩ V = Q−1(0), implying that X Q is tangent to T , and so {(X P )p, (X Q)p} is a
linearly independent set. This means that {(d P)p, (d Q)p} is linearly independent,
and so, reducing V if necessary, (P, Q) can be extended to a system of local coor-
dinates around p. If m = 2 then we are done, because (Q, P) are local coordinates
and {P, Q} = X P · Q = 1.

If m > 2 then, since X P is not tangent to T , the level set P−1(P(p)) intersects
T on a (m− 2)-dimensional manifold S ⊂ T . Since {P, Q} = 1, we have X Q · P =
{Q, P} = −1, and so X Q is not tangent to S. If q ∈ S and {v1, . . . , vm−2} is a basis
for Tq S then {(X P )q , (X Q)q , v1, . . . , vm−2} is a basis for Tq M . Moreover, we have
ω(X P , vi ) = −d P(vi ) = 0 (as P is constant in S), and similarly ω(X Q, vi ) =
−d Q(vi ) = 0. We conclude that the matrix

(
ω(vi , v j )

)
must be nonsingular, that
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T

S

XP

p

q

ψ −Q(q)(q)

Fig. 5.12 Proof of the Darboux theorem

is, i∗ω must be nondegenerate, where i : S → V is the inclusion map. Since
di∗ω = i∗dω = 0, we see that (S, i∗ω) is a symplectic manifold. Given any function
F ∈ C∞(S), we can extend it to T by making it constant along the flow of X Q , and
then to V by making it constant along the flow of X P . Since [X P , X Q] = X{P,Q} =
X1 = 0, the flows of X P and X Q commute, and so this extension can be done in the
reverse order. Consequently, the extended function (which we still call F) satisfies
{P, F} = X P · F = 0 and {Q, F} = X Q · F = 0, that is, X F · P = {F, P} = 0 and
X F · Q = {F, Q} = 0. This implies that X F is tangent to S, and so X F coincides on
S with the Hamiltonian vector field determined by F on (S, i∗ω). In the same way,
the Poisson bracket {F,G} of the extensions to V of two functions F,G ∈ C∞(S)
satisfies

X P · {F,G} = {P, {F,G}} = {{P, F},G} + {F, {P,G}} = {0,G} + {F, 0} = 0,

and similarly X Q · {F,G} = 0, implying that {F,G} is the extension of the Poison
bracket on (S, i∗ω). Therefore, if the Darboux theorem holds for (S, i∗ω), meaning
that we have m − 2 = 2n − 2 and local coordinates (x1, . . . , xn−1, p1, . . . , pn−1)
with {xi , x j } = {pi , p j } = 0 and {pi , x j } = δi j for i, j = 1, . . . , n − 1, then,
making xn = Q and pn = P , we have the result for (M, ω). �

In fact, to have Hamiltonian flows all that is required is the existence of a Poisson
bracket. This suggests a further generalization.

Definition 8.4 A Poisson manifold is a pair (M, {·, ·}), where M is a differentiable
manifold and {·, ·}, called thePoisson bracket, is a Lie bracket onC∞(M) satisfying
the Leibniz rule, that is,

(i) {F,G} = −{G, F};
(ii) {αF + βG, H} = α{F, H} + β{F, H};
(iii) {F, {G, H}} + {G, {H, F}} + {H, {F,G}} = 0;
(iv) {F,G H} = {F,G}H + {F, H}G
for any α, β ∈ R and F,G, H ∈ C∞(M).
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Example 8.5

(1) Any symplectic manifold (M, ω) is naturally a Poisson manifold (M, {·, ·})
[cf. Exercise6.15(7)].

(2) Any smooth manifold M can be given a Poisson structure, namely the trivial
Poisson bracket {·, ·} := 0. This is not true for symplectic structures, even if M
is even-dimensional [cf. Exercise8.23(2)].

(3) If 〈·, ·〉 is the Euclidean inner product on R
3 then the formula

{F,G}(x) := 〈x, grad F × grad G〉

defines a nontrivial Poisson bracket on R
3 (cf. Example8.22).

The bilinearity and Leibniz rule properties of the Poisson bracket imply that {F, ·}
is a derivation (hence a vector field) for any F ∈ C∞(M). This allows us to define
Hamiltonian flows.

Definition 8.6 If (M, {·, ·}) is a Poissonmanifold and F ∈ C∞(M) then theHamil-
tonian vector field generated by F is the vector field X F ∈ X(M) such that

X F · G = {F,G}

for any function G ∈ C∞(M).

Proposition 8.7 The map C∞(M) � F �→ X F ∈ X(M) is a Lie algebra homo-
morphism between (C∞(M), {·, ·}) and (X(M), [·, ·]), that is,

(i) XαF+βG = αX F + βXG;
(ii) X{F,G} = [X F , XG ]
for all α, β ∈ R and F,G, H ∈ C∞(M).

Proof Property (i) is immediate from the bilinearity of the Poisson bracket. Property
(ii) arises from the Jacobi identity, as

X{F,G} · H = {{F,G}, H} = {F, {G, H}} − {G, {F, H}}
= X F · (XG · H)− XG · (X F · H)

= [X F , XG ] · H

for any F,G, H ∈ C∞(M). �

The functions in the kernel of the homomorphism F �→ X F are called theCasimir
functions, and are simply the functions F ∈ C∞(M) that Poisson commute with all
other functions, that is, such that {F,G} = 0 for allG ∈ C∞(M). Notice that Casimir
functions are constant along anyHamiltonian flow. The image of the homomorphism
F �→ X F is the set of Hamiltonian vector fields, which in particular forms a Lie
subalgebra of (X(M), [·, ·]).
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Example 8.8

(1) If (M, ω) is a symplecticmanifold then theCasimir functions are just the (locally)
constant functions.

(2) If {·, ·} := 0 is the trivial Poisson bracket on a smooth manifold M then any
function is a Casimir function, and the only Hamiltonian vector field is the zero
field.

(3) If {·, ·} is the Poisson bracket defined on R
3 by the formula

{F,G}(x) := 〈x, grad F × grad G〉

then C(x) := ‖x‖2 is a Casimir function, as gradC = 2x and so

{C, F}(x) = 2〈x, x × grad F〉 = 2〈grad F, x × x〉 = 0

for any smooth function F ∈ C∞(R3). It follows that the Hamiltonian vector
fields are necessarily tangent to the spheres of constant C (and in particular must
vanish at the origin).

Since the Poisson bracket can be written as

{F,G} = X F · G = dG(X F ) = −d F(XG),

we see that {F,G}(p) is a linear function of both (d F)p and (dG)p. Therefore the
Poisson bracket determines a bilinear map Bp : T ∗p M × T ∗p M → R for all p ∈ M .

Definition 8.9 The antisymmetric (0, 2)-tensor field B satisfying

{F,G} = B(d F, dG)

is called the Poisson bivector.

Using the identification Tp M ∼= (T ∗p M)∗, we have

X F (dG) = dG(X F ) = X F · G = {F,G} = B(d F, dG) = (ι(d F)B)(dG),

where the contraction of a covector with the Poisson bivector is defined in the same
way as the contraction of a vector with an alternating tensor [cf. Exercise1.15(8)] in
Chap.2). Therefore we have

X F = ι(d F)B,

and so the set of all possible values of Hamiltonian vector fields at a given point
p ∈ M is exactly the range of the map T ∗p M � ω �→ ι(ω)B ∈ Tp M .

Theorem 8.10 (Kirillov) Let (M, {·, ·}) be a Poisson manifold such that the rank of
the map T ∗p M � ω �→ ι(ω)B ∈ Tp M is constant (as a function of p ∈ M). Then M
is foliated by symplectic submanifolds (S, ωS) (called symplectic leaves) such that

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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{F,G}(p) = {F |S,G|S}(p)

for all p ∈ M, where S is the leaf containing p.

Proof Since the rank r of themap T ∗p M � ω �→ ι(ω)B ∈ Tp M is constant, the range
�p of this map has dimension r for all p ∈ M , and so determines a distribution �
of dimension r in M . By construction, all Hamiltonian vector fields are compatible
with this distribution, and it is clear that for each p ∈ M there exist F1, . . . , Fr ∈
C∞(M) such that � is spanned by X F1 , . . . , X Fr on a neighborhood of p. Since
[X Fi , X Fj ] = X{Fi ,Fj } for i, j = 1, . . . , r , the distribution� is integrable, and so M
is foliated by r -dimensional leaves S with Tp S = �p for all p ∈ S. If ω, η ∈ T ∗p M
then B(ω, η) = η(ι(ω)B) = −ω(ι(η)B) depends only on the restrictions of η and
ω to�p, that is, B restricts to�∗p×�∗p. Moreover, this restriction is nondegenerate,
since the map �∗p � η �→ ι(η)B ∈ �p is surjective. It is then easy to check that
the Poisson bracket determined in each leaf S by the restriction of B to T ∗S × T ∗S
arises from a symplectic form on S [cf. Exercise8.23(4)]. �

Remark 8.11 Kirillov’s theorem still holds in the general case, where the rank of
the map T ∗p M � ω �→ ι(ω)B ∈ Tp M is not necessarily constant. In this case the
symplectic leaves do not necessarily have the same dimension, and form what is
called a singular foliation.

Example 8.12

(1) If (M, ω) is a symplectic manifold then there is only one symplectic leaf (M
itself).

(2) If {·, ·} := 0 is the trivial Poisson bracket on a smooth manifold M then the
Poisson bivector vanishes identically and the symplectic leaves are the zero-
dimensional points.

(3) If {·, ·} is the Poisson bracket defined on R
3 by the formula

{F,G}(x) := 〈x, grad F × grad G〉

then the Poisson bivector at x ∈ R
3 is given by

B(v,w) = 〈x, v × w〉 = 〈w, x × v〉

for any v,w ∈ R
3, where we use the Euclidean inner product 〈·, ·〉 to make the

identification (R3)∗ ∼= R
3. Therefore at x ∈ R

3 we have

ι(v)B = x × v,

and so the range of B at x is the tangent space to the sphere Sx of radius ‖x‖ cen-
tered at the origin. The symplectic leaves are therefore the spheres Sx (including
the origin, which is a singular leaf), and if x 	= 0 the symplectic form on Sx is
given by
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ω(v,w) = 1

‖x‖2 〈x, v × w〉

for v,w ∈ Tx Sx (that is, ω is 1
‖x‖ times the standard volume form). Indeed, if

F ∈ C∞(R3) and v ∈ Tx Sx then we have

ω(X F , v) = 1

‖x‖2 〈x, X F × v〉 = 1

‖x‖2 〈v, x × (ι(grad F)B)〉

= 1

‖x‖2 〈v, x × (x × grad F)〉

= 1

‖x‖2
〈
v, 〈x, grad F〉x − ‖x‖2 grad F

〉

= −〈v, grad F〉 = −d F(v).

Next we consider the geometric properties of Hamiltonian flows, that is, flows
generated by Hamiltonian vector fields. Just like in the symplectic case, we have a
Hamiltonian version of energy conservation.

Proposition 8.13 Hamiltonian flows preserve their generating functions.

Proof If F ∈ C∞(M) then

X F · F = {F, F} = −{F, F} = 0. �
Recall that in the symplectic caseHamiltonian flows preserve the symplectic form.

To obtain the analogue of this property in Poisson geometry we make the following
definition.

Definition 8.14 A Poisson map f : M → N between two Poisson manifolds
(M, {·, ·}) and (N , {·, ·}) is a differentiable map such that

{F,G} ◦ f = {F ◦ f,G ◦ f }

for all F,G ∈ C∞(N ).

As one would expect, Poisson maps preserve Hamiltonian flows.

Proposition 8.15 If (M, {·, ·}) and (N , {·, ·}) are Poisson manifolds, f : M → N
is a Poisson map and F ∈ C∞(N ) then

f∗X F◦ f = X F .

Proof We just have to notice that given G ∈ C∞(N ) we have

( f∗X F◦ f ) · G = X F◦ f · (G ◦ f ) = {F ◦ f,G ◦ f } = {F,G} = X F · G. �
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Finally, we show that Hamiltonian flows preserve the Poisson bracket.

Proposition 8.16 Hamiltonian flows are Poisson maps.

Proof Let ψt : M → M be the Hamiltonian flow generated by the function F ∈
C∞(M). If G ∈ C∞(M) is another function we have

d

dt
(G ◦ ψt ) = d

dt
(ψt

∗G) = d

ds |s=0
((ψt+s)

∗G) = d

ds |s=0
((ψt ◦ ψs)

∗G)

= d

ds |s=0
(ψs

∗(ψt
∗G)) = X F · (ψt

∗G) = {F, ψt
∗G}.

Given G, H ∈ C∞(M), let Kt ∈ C∞(M) be the function

Kt := {G, H} ◦ ψt − {G ◦ ψt , H ◦ ψt } = ψt
∗{G, H} − {ψt

∗G, ψt
∗H}.

Clearly K0 = 0. Since the Poisson bracket is bilinear, we have

d

dt
Kt = d

dt
(ψt

∗{G, H})−
{

d

dt
(ψt

∗G), ψt
∗H

}
−
{
ψt
∗G,

d

dt
(ψt

∗H)

}

= X F · (ψt
∗{G, H})− {{F, ψt

∗G}, ψt
∗H} − {ψt

∗G, {F, ψt
∗H}}

= X F · (ψt
∗{G, H})− {F, {ψt

∗G, ψt
∗H}} = X F · Kt .

Regarding Kt as a function K defined on I × M , where I ⊂ R is the interval of
definition of ψt , we see that it satisfies

{(
∂
∂t − X F

) · K = 0

K (0, p) = 0 for all p ∈ M
.

Integrating from {0}×M along the integral curves of ∂
∂t −X F we then obtain Kt = 0

for all t ∈ I . �
We are now ready to discuss symmetry and reduction.

Definition 8.17 Let G be a Lie group acting on a Poisson manifold (M, {·, ·}). The
action is said to be:

(1) Poisson if for each g ∈ G the map Ag : M → M given by Ag(p) := g · p is a
Poisson map;

(2) Hamiltonian if for each V ∈ g there exists a function J (V ) ∈ C∞(M) such that
the infinitesimal action X V is the Hamiltonian vector field generated by J (V ),
that is, X V = X J (V ).

If G is connected then Proposition8.16 guarantees that a Hamiltonian action is
Poisson [cf. Exercise8.23(6)]. Notice that because X V is a linear function of V we
can take J (V ) to be a linear function of V , and thus think of J as a map J : M → g∗.
This map is called the momentum map for the action.
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Theorem 8.18 (Noether, Hamiltonian version) If the action of the Lie group G on
the Poisson manifold (M, {·, ·}) is Hamiltonian with momentum map J : M → g∗
and H ∈ C∞(M) is G-invariant then J is constant along the Hamiltonian flow of
H.

Proof Since H is G-invariant we have for any V ∈ g

X V · H = 0⇔ X J (V ) · H = 0⇔ {J (V ), H} = 0⇔ X H · J (V ) = 0. �

Example 8.19 The relation between the Hamiltonian and the Lagrangian versions
of the Noether theorem is made clear by the following important example. Let M
be a differentiable manifold, and let G be a Lie group acting on M . We can lift this
action to the symplectic (hence Poisson) manifold T ∗M by the formula

g · α = A∗
g−1α

for all α ∈ T ∗M , where Ag : M → M is given by Ag(p) = g · p for all p ∈ M . It
is easy to check that this formula indeed defines an action of G on T ∗M , mapping
each cotangent space T ∗p M to T ∗g·p M .

Let (x1, . . . , xn)be local coordinates on M and let (x1, . . . , xn, p1, . . . , pn)be the
corresponding local coordinates on T ∗M . Let (y1, . . . , ym) be local coordinates on
G centered at the identity e ∈ G such that (−y1, . . . ,−ym) parameterizes the inverse
of the element parameterized by (y1, . . . , ym) (this can be easily accomplished by
using the exponential map). If in these coordinates the action A : G × M → M of
G on M is given by

(A1(x1, . . . , xn, y1, . . . , ym), . . . , An(x1, . . . , xn, y1, . . . , ym))

then we have

A∗
g−1

(
n∑

i=1
pi dxi

)
=

n∑
i, j=1

pi
∂Ai

∂x j
(x,−y)dx j ,

and so the lift of the action of G to T ∗M is written
(

A1(x, y), . . . , An(x, y),
n∑

i=1

∂Ai

∂x1
(x,−y)pi , . . . ,

n∑
i=1

∂Ai

∂xn
(x,−y)pi

)
.

Therefore the infinitesimal action of V :=∑m
a=1 V a ∂

∂ya on T ∗M is

n∑
i=1

Xi (x)
∂

∂xi
−

n∑
i, j=1

∂X j

∂xi
(x)p j

∂

∂pi
=

n∑
i=1

∂ J

∂pi

∂

∂xi
−

n∑
i=1

∂ J

∂xi

∂

∂pi
,
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where

Xi (x) =
m∑

a=1

∂Ai

∂ya
(x, 0)V a

are the components of the infinitesimal action of V on M and

J =
n∑

i=1
Xi (x)pi .

We conclude that the lift of the action of G to T ∗M is Hamiltonian with momentum
map J : T ∗M → g∗ given by

J (α)(V ) = α(X V ),

where X V ∈ X(M) is the infinitesimal action of V on M . Notice that J (V ) is
exactly the image by the Legendre transformation of the conserved quantity J V in
the Lagrangian version of the Noether theorem.

Theorem 8.20 (Poisson reduction) If the action of G on (M, {·, ·}) is free, proper
and Poisson then M/G is naturally a Poisson manifold (identifying C∞(M/G) with
the G-invariant functions in C∞(M)), and the natural projection π : M → M/G is
a Poisson map. In particular,π carries the Hamiltonian flow of G-invariant functions
on M to the Hamiltonian flow of the corresponding functions in M/G.

Proof We just have to observe that the if the action is Poisson then the Poisson
bracket of G-invariant functions is G-invariant. �

If G is a Lie group then G acts on G by left multiplication, and the lift of this
action to T ∗G is free, proper and Hamiltonian. If moreover G is connected then the
action is Poisson, and we have the following result.

Theorem 8.21 (Lie–Poisson reduction) If G is a connected Lie group then the quo-
tient Poisson bracket on T ∗G/G � g∗ is given by

{F, H}(μ) := μ([d F, d H ])

for all F, H ∈ C∞(g∗), where d F, d H ∈ g∗∗ � g. If (p1, . . . , pm) are linear
coordinates on g∗ corresponding to the basis {ω1, . . . , ωm} then

{F, H} =
m∑

a,b,c=1
paCa

bc
∂F

∂pb

∂H

∂pc
,

where Ca
bc are the structure constants associated to the dual basis {X1, . . . , Xm}

of g.



242 5 Geometric Mechanics

Proof If we think of {ω1, . . . , ωm} as left-invariant 1-forms on G then the canonical
symplectic potential on T ∗G is

θ =
m∑

a=1
paω

a,

(for simplicity we identify ωa and π∗ωa , where π : T ∗G → G is the natural
projection). Now from Exercise2.8(1) in Chap. 4 we know that

dωa = −1

2

m∑
b,c=1

Ca
bc ω

b ∧ ωc,

and so the canonical symplectic form is

ω = dθ =
m∑
a

dpa ∧ ωa − 1

2

m∑
a,b,c=1

paCa
bc ω

b ∧ ωc

=
m∑
a

dpa ⊗ ωa −
m∑
a

ωa ⊗ dpa −
m∑

a,b,c=1
paCa

bc ω
b ⊗ ωc.

If F ∈ C∞(T ∗G) isG-invariant then it onlydependson the coordinates (p1, . . . , pm)

along the fibers, and so

d F =
m∑

a=1

∂F

∂pa
dpa .

Setting

X F :=
m∑

a=1
ξa Xa +

m∑
a=1

ηa
∂

∂pa
,

where {X1, . . . , Xm} is the dual basis of g, we then have

ι(X F )ω = −
m∑

a=1
ξadpa −

m∑
a,b,c=1

paCa
bc ξ

bωc +
m∑

a=1
ηaω

a .

From ι(X F )ω = −d F we then obtain

X F =
m∑

a=1

∂F

∂pa
Xa +

m∑
a,b,c=1

paCa
bc
∂F

∂pb

∂

∂pc
,

implying that if H ∈ C∞(T ∗G) is also G-invariant then

http://dx.doi.org/10.1007/978-3-319-08666-8_4
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{F, H} = X F · H =
m∑

a,b,c=1
paCa

bc
∂F

∂pb

∂H

∂pc
.

Notice that as covectors on g∗ we have dpa = Xa , and so, by definition of the
structure functions Ca

bc,

{F, H} =
m∑

a,b,c=1
paω

a([Xb, Xc]) ∂F

∂pb

∂H

∂pc
=

m∑
a,b,c=1

paω
a
([

∂F

∂pb
Xb,

∂H

∂pc
Xc

])

=
m∑
a

paω
a([d F, d H ]). �

Example 8.22 Lie–Poisson reduction on T ∗SO(3) yields the Poisson bracket

{F,G}(x) := 〈x,∇F ×∇G〉

on so(3)∗ ∼= (R3)∗ ∼= R
3, where we used Lemma3.9 to identify so(3) with (R3,×)

and the Euclidean inner product 〈·, ·〉 to make (R3)∗ ∼= R
3.

Exercise 8.23

(1) Consider the symplectic structure on

S2 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1}

determined by the usual volume form. Compute the Hamiltonian flow gener-
ated by the function H(x, y, z) = z.

(2) Let (M, ω) be a symplectic manifold. Show that:

(a) ω =∑n
i=1 dpi ∧ dxi if and only if {xi , x j } = {pi , p j } = 0 and {pi , x j } =

δi j for i, j = 1, . . . , n;
(b) M is orientable;
(c) if M is compact then ω cannot be exact. (Remark: In particular if M is compact and

all closed 2-forms on M are exact then M does not admit a symplectic structure; this is the case for all

even-dimensional spheres S2n with n > 1).

(3) Let (M, 〈·, ·〉) be a Riemannian manifold, α ∈ �1(M) a 1-form and U ∈
C∞(M) a differentiable function.

(a) Show that ω̃ := ω + π∗dα is a symplectic form on T ∗M , where ω is the
canonical symplectic form and π : T ∗M → M is the natural projection (ω̃
is called a canonical symplectic form with magnetic term).

(b) Show that the Hamiltonian flow generated by a function H̃ ∈ C∞(T ∗M)
with respect to the symplectic form ω̃ is given by the equations
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ i = ∂ H̃

∂pi

ṗi = −∂ H̃

∂xi
+

n∑
j=1

(
∂α j

∂xi
− ∂αi

∂x j

)
ẋ j

.

(c) The map F : T ∗M → T ∗M given by

F(ξ) := ξ − αp

for ξ ∈ T ∗p M is a fiber-preserving diffeomorphism. Show that F carries the
Hamiltonian flow defined in Exercise6.15(2) to the Hamiltonian flow of H̃
with respect to the symplectic form ω̃, where

H̃(ξ) := 1

2
〈ξ, ξ 〉 +U (p)

for ξ ∈ T ∗p M . (Remark: Since the projections of the two flows on M coincide, we see that the

magnetic term can be introduced by changing either the Lagrangian or the symplectic form).

(4) Let (M, {·, ·}) be a Poisson manifold, B the Poisson bivector and (x1, . . . , xn)

local coordinates on M . Show that:

(a) B can be written in these local coordinates as

B =
n∑

i, j=1
Bi j ∂

∂xi
⊗ ∂

∂x j
,

where Bi j = {xi , x j } for i, j = 1, . . . , n;
(b) the Hamiltonian vector field generated by F ∈ C∞(M) can be written as

X F =
p∑

i, j=1
Bi j ∂F

∂xi

∂

∂x j
;

(c) the components of B must satisfy

n∑
l=1

(
Bil ∂B jk

∂xl
+ B jl ∂Bki

∂xl
+ Bkl ∂Bi j

∂xl

)
= 0

for all i, j, k = 1, . . . , n;
(d) if {·, ·} arises from a symplectic form ω then (Bi j ) = −(ωi j )

−1;
(e) if B is nondegenerate then it arises from a symplectic form.
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(5) (Action-angle coordinates) Let (M, ω) be a symplectic manifold and F =
(F1, . . . , Fn) : M → R

n a set of independent first integrals in involution,
with compact level sets (n-tori). Choose an invariant torus T0, a point α ∈ T0,
and an n-dimensional submanifold N ⊂ M transverse to T0 at α (that is,
TαM = TαT ⊕TαN ). We fix the the coordinates x = (x1, . . . , xn) determined
on each invariant torus T close to T0 by the identification T ∼= R

n/Zn (which
arises from the R

n-action associated to F) by setting x = 0 on N . In this way
we obtain local coordinates (x, F) in a neighborhood of T . Show that:

(a) In these coordinates the components of the Poisson bivector are

(B) =
⎛
⎝

∗ | −At

−−− + −−−
A | 0

⎞
⎠ ,

and so the components of the symplectic form are

(ω) =
⎛
⎝

0 | −A−1
−−− + −−−
(A−1)t | ∗

⎞
⎠ ,

where A = A(F) is the matrix A = (ai j ) defined by

X Fi =
n∑

j=1
ai j

∂

∂x j
;

(b) it is possible to choose new coordinates J = J (F) such that {Ji , x j } = δi j ;
(c) {xi , x j } is a function of J only;
(d) it is possible to choose new coordinates y = x+ z(J ) such that {yi , y j } = 0

and {Ji , y j } = δi j ;
(e) there exists a 1-form θ in a neighborhood of T0 such that ω = dθ , and

Ji =
∮
γi
θ , where γi is the projection of the yi -axis on each invariant torus

T ∼= R
n/Zn .

(Hint: You will need to use the Poincaré Lemma – cf. Exercise3.8(6) in Chap. 2).

(6) Let G be a connected Lie group and U ⊂ G a neighborhood of the identity.
Show that:

(a) G = ∪+∞n=1U n , where U n = {g1 · · · · · gn | g1, . . . , gn ∈ U };
(b) if G acts on a Poisson manifold (M, {·, ·}) and the action is Hamiltonian

then it is Poisson.

(7) Let G be a connected Lie group with a free, proper, Hamiltonian action on a
Poisson manifold (M, {·, ·}), and let H ∈ C∞(M) be G-invariant. Show that if
p ∈ M/G is a fixed point of π∗X H ∈ X(M/G) (where π : M → M/G is the

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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quotient map) then the flow of X H on π−1(p) is given by orbits of 1-parameter
subgroups of G.

(8) The Lie group SO(2) � S1 acts on M = R
2 \ {(0, 0)} through

eiϕ · (r, θ) = (r, θ + ϕ),

where (r, θ) are polar coordinates on M and θ, ϕ should be understood
mod 2π .

(a) Write an expression for the infinitesimal action X V ∈ X(M) of V ∈ so(2) ∼=
R.

(b) Determine the momentum map for the lift of this action to the cotangent
bundle.

(c) Write an expression for the Poisson bivector of T ∗M with the canonical
symplectic structure in the usual coordinates (r, θ, pr , pθ ).

(d) Calculate thePoissonbivector of thePoissonmanifold Q := T ∗M/SO(2) �
R
3. What are the symplectic leaves of this manifold? Give an example of a

nonconstant Casimir function.
(e) Consider the Hamiltonian H : T ∗Q → R given by

H(r, θ, pr , pθ ) = pr
2

2
+ pθ 2

2r2
+ u(r).

Show that H is SO(2)-invariant, and determine its Hamiltonian flow on the
reduced Poisson manifold Q.

(f) Use the Noether theorem to obtain a quantity conserved by the Hamiltonian
flow of H on T ∗M .

(9) Recall that the upper half plane H = {(x, y) ∈ R
2 | y > 0} has a Lie group

structure, given by the operation

(x, y) · (z, w) := (yz + x, yw),

and that the hyperbolic plane corresponds to the left-invariant metric

g := 1

y2
(dx ⊗ dx + dy ⊗ dy)

on H [cf. Exercise7.17(3) in Chap.1 and Exercise3.3(5) in Chap. 3]. The
geodesics are therefore determined by the Hamiltonian function K : T ∗H →
R given by

K (x, y, px , py) = y2

2

(
px

2 + p2y
)
.

(a) Determine the lift to T ∗H of the action of H on itself by left translation,
and check that it preserves the Hamiltonian K .

http://dx.doi.org/10.1007/978-3-319-08666-8_1
http://dx.doi.org/10.1007/978-3-319-08666-8_3
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(b) Show that the functions

F(x, y, px , py) = ypx and G(x, y, px , py) = ypy

are also H -invariant, and use this to obtain the quotient Poisson structure on
T ∗H/H . Is this a symplectic manifold?

(c) Write an expression for the momentum map for the action of H on T ∗H ,
and use it to obtain a nontrivial first integral I of the geodesic equations.
Show that the projection on H of a geodesic for which K = E , px = l and
I = m satisfies the equation

l2x2 + l2y2 − 2lmx + m2 = 2E .

Assuming l 	= 0, what are these curves?

(10) Recall that theEuler top is themechanical systemdeterminedby theLagrangian
L : T SO(3)→ R given by

L = 1

2
〈I�,�〉,

where � are the left-invariant coordinates on the fibers resulting from the
identifications

TS SO(3) = d L S(so(3)) ∼= so(3) ∼= R
3.

(a) Show that if we use the Euclidean inner product 〈·, ·〉 to identify (R3)∗ with
R
3 then the Legendre transformation is written

P = I�,

where P are the corresponding left-invariant coordinates on T ∗SO(3).
(b) Write the Hamilton equations on the reduced Poisson manifold T ∗SO(3)/

SO(3) ∼= R
3. What are the symplectic leaves? Give an example of a non-

constant Casimir function.
(c) Compute the momentummap for the lift to T ∗SO(3) of the action of SO(3)

on itself by left translation.

(11) Let (P1, P2, P3) be the usual left-invariant coordinates on the fibers of
T ∗SO(3), and consider the functions (�1, �2, �3) defined through

γ = S�

for each S ∈ SO(3), where γ ∈ R
3 is a fixed vector. Show that for i, j =

1, 2, 3:
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(a) {Pi , P j } =∑3
k=1 εi jk Pk ;

(b) {�i , � j } = 0;
(c) {Pi , � j } =∑3

k=1 εi jk�
k ,

where

εi jk =
⎧⎨
⎩
+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 otherwise.

(Hint: Show that �̇ = � × � along any motion of the Euler top, where � is the angular velocity in the Euler

top’s frame, and regard (Pi )2
2 as the limit of the Euler top Hamiltonian when Ii = 1 and I j →+∞ for j 	= i).

(12) If in Exercise8.23(11) we set γ = gez , where g is the (constant) gravitational
acceleration, then the motion of a rigid body (with a fixed point) of mass M
and moment of inertia I , whose center of mass has position vector L ∈ R

3 in
its frame, is given by the Hamiltonian flow of

H = 1

2
〈P, I−1P〉 + M〈γ, SL〉.

(a) Show that H is S1-invariant for the lift to T ∗SO(3) of the action of S1 on
SO(3) determined by eiθ · S = Rθ S, where

Rθ :=
⎛
⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠

(corresponding to rotations about the z-axis).
(b) Determine the momentum map for this action.
(c) Show that the functions P and � are S1-invariant, and that the Poisson

bracket on the quotient manifold T ∗SO(3)/S1 ∼= (SO(3)/S1) × R
3 ∼=

S2 × R
3 is determined by the Poisson brackets of these functions.

(d) Use the functions P and � to write the equations of motion on the quotient,
and give an example of a nonconstant Casimir function.

5.9 Notes

5.9.1 Section 5.1

Throughout this chapter, starting at the exercises of Sect. 5.1, we need several defi-
nitions and facts related to stability of fixed points of vector fields in R

n (refer for
instance to [Arn92, GH02] for additional details). In order to study nonlinear systems



5.9 Notes 249

{
ẋ = f (x)

x(0) = x0
(x ∈ R

n) (5.4)

one usually starts by finding the zeros of f , called fixed points, equilibria or sta-
tionary solutions. A fixed point x is called stable if for each neighborhood U of x
there exists another (possibly smaller) neighborhood V of x such that if x0 ∈ V then
x(t) ∈ U for each t > 0 where the solution is defined. The behavior of solutions
near x can, in many situations, be studied by linearizing (5.4) at x and analyzing the
resulting (linear) system

{
ξ̇ = Aξ

ξ(0) = ξ0 (ξ ∈ R
n) (5.5)

where A := (d f )x . This linear system has a global solution

ξ(ξ0, t) = et Aξ0,

where et A can be seen as a map from R
n to R

n defining the flow of the vector field
Aξ . If we put A in the Jordan canonical form then it is clear that this flow has the
following invariant subspaces:

Es := span{v1, . . . , vns } (stable subspace);
Eu := span{u1, . . . , unu } (unstable subspace);
Ec := span{w1, . . . , wnc } (center subspace),

where v1, . . . , vns are the ns generalized eigenvectors corresponding to eigenvalues
with negative real part, u1, . . . , unu are the nu generalized eigenvectors correspond-
ing to eigenvalues with positive real part, and w1, . . . , wns are the nc generalized
eigenvectors corresponding to eigenvalues with zero real part. If Ec = ∅ then x is
called a hyperbolic or nondegenerate fixed point of f . In this case the Hartman–
Grobman theorem tells us that there exists a homeomorphism from a neighborhood
of x in R

n to a neighborhood of 0 in R
n which takes the orbits of the non-linear flow

of (5.4) to those of the linear flow et A of (5.5). The asymptotic behavior of solutions
near x , and consequently its stability type, is then determined by the eigenvalues λ
of A.

5.9.2 Bibliographical Notes

The material in this chapter follows [Oli02],[Arn97] closely. There are of course
many other excellent books on mechanics, both traditional [GPS02] and geometric
[AM78, MR99]. Non-holonomic systems (including control theory) are treated in
greater detail in [Blo03, BL05]. For more information on completely integrable
systems see [CB97, Aud96].
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Chapter 6
Relativity

This chapter studies one of the most important applications of Riemannian
geometry: the theory of general relativity. This theory, which ultimately superseded
the classicalmechanics ofGalileo andNewton, arose from the seemingly paradoxical
experimental fact that the speed of light is the same for every observer, independently
of their state of motion. In 1905, after a period of great confusion, Einstein came up
with an explanation that was as simple as it was radical: time intervals and length
measurements are not the same for all observers, but instead depend on their state
of motion. In 1908, Minkowski gave a geometric formulation of Einstein’s theory
by introducing a pseudo-inner product in the four-dimensional spacetime R

4. While
initially resisting this “excessive mathematization” of his theory, Einstein soon real-
ized that curving spacetime was actually the key to understanding gravity. In 1915,
after a long struggle with the mathematics of Riemannian geometry, he was able to
arrive at a complete formulation of the general theory of relativity. The predictions
of his theory were first confirmed in 1919 by a British solar eclipse expedition, led by
Eddington, and have since been verified in every experimental test ever attempted.

To smooth the transition from classical mechanics to relativity, Sect. 6.1 discusses
Galileo spacetime, the geometric structure underlying Newtonianmechanics, which
hinges on the existence of arbitrarily fast motions. If, however, a maximum speed is
assumed to exist, then itmust be replaced byMinkowski spacetime, whose geometry
is studied in special relativity (Sect. 6.2).

Section6.3 shows how to include Newtonian gravity in Galileo spacetime by
introducing the symmetric Cartan connection. Trying to generalize this procedure
leads to general Lorentzian manifolds satisfying the Einstein field equation, of
which Minkowski spacetime is the simplest example (Sect. 6.4).

Other simple solutions are analyzed in the subsequent sections: theSchwarzschild
solution, modeling the gravitational field outside spherically symmetric bodies or
black holes (Sect. 6.5), and the Friedmann–Lemaître–Robertson–Walker models
of cosmology, describing the behavior of the universe as a whole (Sect. 6.6).

Finally, Sect. 6.7 discusses of the causal structureof aLorentzmanifold, in prepa-
ration for the proof of the celebrated singularity theorems of Hawking (Sect. 6.8)
and Penrose (Sect. 6.9).
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6.1 Galileo Spacetime

The set of all physical occurrences can be modeled as a connected 4-dimensional
manifold M , which we call spacetime, and whose points we refer to as events.We
assume that M is diffeomorphic to R

4, and that there exists a special class of dif-
feomorphisms x : M → R

4, called inertial frames.An inertial frame yields global
coordinates (x0, x1, x2, x3) = (t, x, y, z). We call the coordinate t : M → R the
time functionassociated to a given inertial frame. Two events p, q ∈ M are said to be
simultaneouson that frame if t (p) = t (q). The level functions of the time function
are therefore called simultaneity hypersurfaces. The distancebetween two simul-
taneous events p, q ∈ M is given by

d(p, q) =
√√√√ 3∑

i=1

(
xi (p)− xi (q)

)2
.

The motion of a particle is modeled by a smooth curve c : I → M such that
dt (ċ) �= 0. A special class of motions is formed by the motions of free particles, i.e.
particles which are not acted upon by any external force. The special property that
inertial frames have to satisfy is that the motions of free particles are always repre-
sented by straight lines. In other words, free particles move with constant velocity
relative to inertial frames (Newton’s law of inertia). In particular, motions of parti-
cles at rest in an inertial frame are motions of free particles.

Inertial frames are not unique: if x : M → R
4 is an inertial frame and T :

R
4 → R

4 is an invertible affine transformation then T ◦ x is another inertial frame.
In fact, any two inertial frames must be related by such an affine transformation
[cf. Exercise1.1(3)].

The Galileo spacetime,which underlies Newtonian mechanics, is obtained by
further requiring that inertial frames should:

(1) agree on the time interval between any two events (and hence on whether two
given events are simultaneous);

(2) agree on the distance between simultaneous events.

Therefore, up to translations and reflections, all coordinate transformations
between inertial frames belong to the Galileo group Gal(4), the group of linear
orientation-preserving maps which preserve time functions and the Euclidean struc-
tures of the simultaneity hypersurfaces.

When analyzing problems inwhich only one space dimension is important, we can
use a simpler 2-dimensionalGalileo spacetime. If (t, x) are the spacetime coordinates
associated to an inertial frame and T ∈ Gal(2) is a Galileo change of basis to a new
inertial frame with global coordinates (t ′, x ′), then
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∂

∂t ′
:= T

(
∂

∂t

)
= ∂

∂t
+ v

∂

∂x

∂

∂x ′ := T

(
∂

∂x

)
= ∂

∂x

with v ∈ R, since we must have t = t ′, and so

dt

(
∂

∂t ′

)
= dt ′

(
∂

∂t ′

)
= 1,

and we want the orientation-preserving map T to be an isometry of the simultaneity
hypersurface {t = 0} ≡ {t ′ = 0}. The change of basis matrix is then

S =
(
1 0
v 1

)
,

with inverse
S−1 =

(
1 0

−v 1

)
.

Therefore the corresponding coordinate transformation is

{
t ′ = t

x ′ = x − vt
(v ∈ R)

(Galileo transformation), and hence the new frame is moving with velocity v with
respect to the old one (as the curve x ′ = 0 is the curve x = vt). Notice that S−1 is
obtained from S simply by reversing the sign of v, as one would expect, as the old
frame must be moving relative to the new one with velocity −v. We shall call this
observation the relativity principle.

Exercise 1.1

(1) (Lucas problem) By the late 19th century there existed a regular transatlantic
service between Le Havre and New York. Every day at noon (GMT) a transat-
lantic ship would depart Le Havre and another one would depart New York. The
journey took exactly seven days, so that arrival would also take place at noon
(GMT). Therefore, a transatlantic ship traveling from Le Havre to New York
would meet a transatlantic ship just arriving from New York at departure, and
another one just leaving New York on arrival. Besides these, how many other
ships would it meet? At what times? What was the total number of ships needed
for this service? (Hint: Represent the ships’ motions as curves in a 2-dimensional Galileo spacetime).

(2) Check that free particles move with constant velocity relative to inertial frames.
(3) Let f : R

n → R
n (n ≥ 2) be a bijection that takes straight lines to straight lines.

Show that f must be an affine function, i.e. that

f (x) = Ax + b
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for all x ∈ R
n , where A ∈ GL(n,R) and b ∈ R

n .
(4) Prove that theGalileo groupGal(4) is the subset ofGL(4,R) formedbymatrices

of the form (
1 0
v R

)

where v ∈ R
3 and R ∈ SO(3). Conclude that Gal(4) is isomorphic to the group

of orientation-preserving isometries of the Euclidean 3-space R
3.

(5) Show that Gal(2) is a subgroup of Gal(4).

6.2 Special Relativity

The Galileo spacetime requirement that all inertial observers should agree on the
time interval between two events is intimately connected with the possibility of
synchronizing clocks in different frames using signals of arbitrarily high speeds.
Experience reveals that this is actually impossible. Instead, there appears to exist
a maximum propagation speed, the speed of light (approximately 300,000 km/s),
which is the same at all events and in all directions. A more accurate requirement is
then that any two inertial frames should

(1′) agree on whether a given particle is moving at the speed of light.

Notice that we no longer require that different inertial frames should agree on the
time interval between two events, or even on whether two given events are simulta-
neous. However, we still require that any two inertial frames should

(2′) agree on the distance between events which are simultaneous in both frames.

It is convenient to choose units such that the speed of light is 1 (for instance
measuring time in years and distance in light-years). Fix a particular inertial frame
with coordinates (x0, x1, x2, x3). A free particle moving at the speed of light on an
inertial frame x : R

4 → R will be a straight line whose tangent vector

v = v0
∂

∂x0
+ v1

∂

∂x1
+ v2

∂

∂x2
+ v3

∂

∂x3

must satisfy
(v0)2 = (v1)2 + (v2)2 + (v3)2, (6.1)

so that the distance traveled equals the elapsed time. In other words, v must satisfy
〈v, v〉 = 0, where

〈v,w〉 := −v0w0 + v1w1 + v2w2 + v3w3 =
3∑

μ,ν=0

ημνv
μwν,
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with (ημν) = diag(−1, 1, 1, 1). Notice that 〈·, ·〉 is a symmetric nondegenerate tensor
which is not positive definite; we call it the Minkowski (pseudo) inner product.
The coordinate basis {

∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

}

is an orthonormal basis for this inner product [cf. Exercise2.2(1)], as

〈
∂

∂xμ
,
∂

∂xν

〉
= ημν

(μ, ν = 0, 1, 2, 3).
Since we used a particular inertial frame to define the Minkowski inner product,

we must now check that it is well defined (i.e. it is independent of the inertial frame
we chose to define it). Let (x0′, x1′, x2′, x3′) be the coordinates associated to another
inertial frame. The analogue of (6.1) on the new inertial frame implies that the vectors

∂

∂x0′ ± ∂

∂xi ′

(i = 1, 2, 3) must be tangent to a motion at the speed of light. By assumption (1′),
given a motion of a free particle at the speed of light, all inertial observers must agree
that the particle is moving at this (maximum) speed. Therefore we must have

〈
∂

∂x0′ ± ∂

∂xi ′ ,
∂

∂x0′ ± ∂

∂xi ′

〉
= 0.

This implies that

〈
∂

∂x0′ ,
∂

∂x0′

〉
= −

〈
∂

∂xi ′ ,
∂

∂xi ′

〉
;

〈
∂

∂x0′ ,
∂

∂xi ′

〉
= 0.

Similarly, we must have

〈√
2
∂

∂x0′ + ∂

∂xi ′ + ∂

∂x j ′ ,
√
2
∂

∂x0′ + ∂

∂xi ′ + ∂

∂x j ′

〉
= 0

(i �= j), and hence 〈
∂

∂xi ′ ,
∂

∂x j ′

〉
= 0.



256 6 Relativity

Since 〈·, ·〉 is nondegenerate, we conclude that there must exist k �= 0 such that

〈
∂

∂xμ′ ,
∂

∂xν ′

〉
= kημν

(μ, ν = 0, 1, 2, 3).
The simultaneity hypersurfaces {x0 = const.} and {x0′ = const.} are 3-planes in

R
4. If they are parallel, they will coincide for appropriate values of the constants;

otherwise, they must intersect along 2-planes of events which are simultaneous in
both frames. In either case there exist events which are simultaneous in both frames.
Let v �= 0 be a vector connecting two such events. Then dx0(v) = dx0′(v) = 0, and
hence

v =
3∑

i=1

vi ∂

∂xi
=

3∑
i=1

vi ′ ∂

∂xi ′ .

By assumption (2′), we must have

3∑
i=1

(
vi
)2 =

3∑
i=1

(
vi ′)2 .

Consequently, from

3∑
i=1

(
vi
)2 = 〈v, v〉 =

〈
3∑

i=1

vi ′ ∂

∂xi ′ ,
3∑

i=1

vi ′ ∂

∂xi ′

〉
= k

3∑
i=1

(
vi ′)2 ,

we conclude that we must have k = 1. Therefore the coordinate basis
{

∂

∂x0′ ,
∂

∂x1′ ,
∂

∂x2′ ,
∂

∂x3′

}

must also be an orthonormal basis. In particular, this means that the Minkowski
inner product 〈·, ·〉 is well defined (i.e. it is independent of the inertial frame we
choose to define it), and that we can identify inertial frames with orthonormal bases
of (R4, 〈·, ·〉).
Definition 2.1 (R4, 〈·, ·〉) is said to be the Minkowski spacetime. The length of a
vector v ∈ R

4 is |v| = |〈v, v〉| 12 .
The study of the geometry of Minkowski spacetime is usually called special

relativity.A vector v ∈ R
4 is said to be:

(1) timelike if 〈v, v〉 < 0; in this case, there exists an inertial frame (x0′, x1′, x2′, x3′)
such that

v = |v| ∂

∂x0′
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p

null vector

timelike future-pointing vector

spacelike vector

∂
∂ 

∂
∂

∂
∂y

x

t

Fig. 6.1 Minkowski geometry (traditionally represented with the t-axis pointing upwards)

[cf. Exercise2.2(1)], and consequently any two events p and p + v occur on the
same spatial location in this frame, separated by a time interval |v|;

(2) spacelike if 〈v, v〉 > 0; in this case, there exists an inertial frame (x0 ′, x1′, x2 ′, x3′)
such that

v = |v| ∂

∂x1′

[cf. Exercise2.2(1)], and consequently any two events p and p + v occur simul-
taneously in this frame, a distance |v| apart;

(3) lightlike, or null, if 〈v, v〉 = 0; in this case any two events p and p + v are
connected by a motion at the speed of light in any inertial frame.

The set of all null vectors is called the light cone, and it is in a way the structure
that replaces the absolute simultaneity hypersurfaces of Galileo spacetime. It is the
boundary of the set of all timelike vectors, which has two connected components; we
represent by C(v) the connected component that contains a given timelike vector v.
A time orientation forMinkowski spacetime is a choice of one of these components,
whose elements are said to be future-pointing; this is easily extended to nonzero
null vectors (Fig. 6.1).

An inertial frame (x0, x1, x2, x3) determines a time orientation, namely that for

which the future-pointing timelike vectors are the elements of C
(

∂
∂x0

)
. Up to trans-

lations and reflections, all coordinate transformations between inertial frames belong
to the (proper) Lorentz group SO0(3, 1), the group of linear maps which preserve
orientation, time orientation and theMinkowski inner product (hence the light cone).

A curve c : I ⊂ R → R
4 is said to be timelike if 〈ċ, ċ〉 < 0. Timelike curves

represent motions of particles with nonzero mass, since only for these curves it is
possible to find an inertial frame in which the particle is instantaneously at rest.
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In other words, massive particles must always move at less than the speed of light
[cf. Exercise2.2(13)]. The proper time measured by the particle between events
c(a) and c(b) is

τ (c) :=
b∫

a

|ċ(s)|ds.

When analyzing problems in which only one space dimension is important, we
can use a simpler 2-dimensional Minkowski spacetime. If (t, x) are the spacetime
coordinates associated to an inertial frame and T ∈ SO0(1, 1) is a Lorentzian change
of basis to a new inertial frame with global coordinates (t ′, x ′), we must have

∂

∂t ′
:= T

(
∂

∂t

)
= cosh u

∂

∂t
+ sinh u

∂

∂x

∂

∂x ′ := T

(
∂

∂x

)
= sinh u

∂

∂t
+ cosh u

∂

∂x

with u ∈ R [cf. Exercise2.2(3)]. The change of basis matrix is

S =
(
cosh u sinh u
sinh u cosh u

)
,

with inverse

S−1 =
(

cosh u − sinh u
− sinh u cosh u

)
.

Therefore the corresponding coordinate transformation is

{
t ′ = t cosh u − x sinh u

x ′ = x cosh u − t sinh u

(Lorentz transformation), and hence the new frame is moving with velocity
v = tanh u with respect to the old one (as the curve x ′ = 0 is the curve x = vt ;
notice that |v| < 1). The matrix S−1 is obtained from S simply by reversing the sign
of u, or, equivalently, of v; therefore, the relativity principle still holds for Lorentz
transformations.

Moreover, since

⎧⎨
⎩
cosh u = (

1 − v2
)− 1

2

sinh u = v
(
1 − v2

)− 1
2
,

one can also write the Lorentz transformation as
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⎧⎨
⎩

t ′ = (1 − v2
)− 1

2 t − v
(
1 − v2

)− 1
2 x

x ′ = (1 − v2
)− 1

2 x − v
(
1 − v2

)− 1
2 t.

In everyday life situations, we deal with frames whose relative speed is much smaller
that the speedof light, |v| 
 1, andwith events forwhich |x | 
 |t | (distances traveled
by particles in one second are much smaller that 300,000 km). An approximate
expression for the Lorentz transformations in these situations is then

{
t ′ = t

x ′ = x − vt

which is just a Galileo transformation. In other words, the Galileo group is a conve-
nient low-speed approximation of the Lorentz group.

Suppose that two distinct events p and q occur in the same spatial location in the
inertial frame (t ′, x ′),

q − p = �t ′ ∂
∂t ′

= �t ′ cosh u
∂

∂t
+�t ′ sinh u

∂

∂x
= �t

∂

∂t
+�x

∂

∂x
.

We see that the time separation between the two events in a different inertial frame
(t, x) is bigger,

�t = �t ′ cosh u > �t ′.

Loosely speaking,moving clocks run slowerwhen compared to stationary ones (time
dilation).

If, on the other hand, two distinct events p and q occur simultaneously in the
inertial frame (t ′, x ′),

q − p = �x ′ ∂
∂x ′ = �x ′ sinh u

∂

∂t
+�x ′ cosh u

∂

∂x
= �t

∂

∂t
+�x

∂

∂x
,

then they will not be simultaneous in the inertial frame (t, x), where the time differ-
ence between them is

�t = �x ′ sinh u �= 0

(relativity of simultaneity).
Finally, consider two particles at rest in the inertial frame (t ′, x ′). Their motions

are the lines x ′ = x ′
0 and x ′ = x ′

0 + l ′. In the inertial frame (t, x), these lines have
equations

x = x ′
0

cosh u
+ vt and x = x ′

0 + l ′

cosh u
+ vt,

which describe motions of particles moving with velocity v and separated by a
distance
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l = l ′

cosh u
< l ′.

Loosely speaking, moving objects shrink in the direction of their motion (length
contraction).

Exercise 2.2

(1) Let 〈·, ·〉 be a nondegenerate symmetric 2-tensor on n-dimensional vector space
V . Show that there always exists an orthonormal basis {v1, . . . , vn}, i.e. a basis
such that 〈vi , v j 〉 = εi j , where εi i = ±1 and εi j = 0 for i �= j . Moreover,
show that s =∑n

i=1 εi i (known as the signature of 〈·, ·〉) does not depend on
the choice of orthonormal basis.

(2) Consider the Minkowski inner product 〈·, ·〉 on R
4 with the standard time

orientation.

(a) Let v ∈ R
4 be timelike and future-pointing. Show that:

(i) if w ∈ R
4 is timelike or null and future-pointing then 〈v,w〉 < 0;

(ii) if w ∈ R
4 is timelike or null and future-pointing then v+w is timelike

and future-pointing;
(iii) {v}⊥ := {w ∈ R

4 | 〈v,w〉 = 0} is a hyperplane containing only
spacelike vectors (and the zero vector).

(b) Let v ∈ R
4 be null and future-pointing. Show that:

(i) if w ∈ R
4 is timelike or null and future-pointing then 〈v,w〉 ≤ 0, with

equality if and only if w = λv for some λ > 0;
(ii) if w ∈ R

4 is timelike or null and future-pointing then v+w is timelike
or null and future-pointing, being null if and only if w = λv for some
λ > 0;

(iii) {v}⊥ is a hyperplane containing only spacelike and null vectors, all of
which are multiples of v.

(c) Let v ∈ R
4 be spacelike. Show that {v}⊥ is a hyperplane containing timelike,

null and spacelike vectors.

(3) Show that if (t, x) are the spacetime coordinates associated to an inertial frame
and T ∈ SO0(1, 1) is a Lorentzian change of basis to a new inertial frame with
global coordinates (t ′, x ′), we must have

∂

∂t ′
= T

(
∂

∂t

)
= cosh u

∂

∂t
+ sinh u

∂

∂x

∂

∂x ′ = T

(
∂

∂x

)
= sinh u

∂

∂t
+ cosh u

∂

∂x

for some u ∈ R.
(4) (Twin paradox) Twins Alice and Bob part on their 20th birthday: while Alice

stays on the Earth (which is approximately an inertial frame), Bob leaves at
80% of the speed of light towards Planet X, 8 light-years away from the Earth,
which he therefore reaches 10 years later (as measured in the Earth’s frame).
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After a short stay, Bob returns to the Earth, again at 80% of the speed of light.
Consequently, Alice is 40 years old when they meet again.

(a) How old is Bob at this meeting?
(b) How do you explain the asymmetry in the twins’ ages? Notice that, from

Bob’s point of view, he is the one who is stationary, while the the Earth
moves away and back again.

(c) Imagine that each twin has a very powerful telescope. What does each of
them see? In particular, how much time elapses for each of them as they see
their twin experiencing one year?
(Hint: Notice that light rays are represented by null lines, i.e. lines whose tangent vector is null; therefore, if

event p in Alice’s history is seen by Bob at event q then there must exist a future-directed null line connecting

p to q).

(5) (Car and garage paradox) A 5-meter long car moves at 80% of light speed
towards a 4-meter long garage with doors at both ends.

(a) Compute the length of the car in the garage’s frame, and show that if the
garage doors are closed at the right time the car will be completely inside
the garage for a few moments.

(b) Compute the garage’s length in the car’s frame, and show that in this frame
the car is never completely inside the garage. How do you explain this
apparent contradiction?

(6) Let (t ′, x ′) be an inertial frame moving with velocity v with respect to the
inertial frame (t, x). Prove the velocity addition formula: if a particle moves
with velocity w′ in the frame (t ′, x ′), the particle’s velocity in the frame (t, x)
is

w = w′ + v

1 + w′v
.

What happens when w′ = ±1?
(7) (Hyperbolic angle)

(a) Show that

(i) so(1, 1) =
{(

0 u
u 0

)
| u ∈ R

}
;

(ii) exp

(
0 u
u 0

)
=
(
cosh u sinh u
sinh u cosh u

)
:= S(u);

(iii) S(u)S(u′) = S(u + u′).
(b) Consider the Minkowski inner product 〈·, ·〉 on R

2 with a given time ori-
entation. If v,w ∈ R

2 are unit timelike future-pointing vectors then there
exists a unique u ∈ R such that w = S(u)v (which we call the hyperbolic
angle between v and w). Show that:
(i) |u| is the length of the curve formed by all unit timelike vectors between

v and w;
(ii) 1

2 |u| is the area of the region swept by the position vector of the curve
above;

(iii) hyperbolic angles are additive;
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Fig. 6.2 Doppler effect

(iv) the velocity addition formula of Exercise2.2(6) is simply the formula
for the hyperbolic tangent of a sum.

(8) (Generalized twin paradox) Let p, q ∈ R
4 be two events connected by a

timelike straight line l. Show that the proper time between p and q measured
along l is bigger than the proper time between p and q measured along any
other timelike curve connecting these two events. In other words, if an inertial
observer and a (necessarily) accelerated observer separate at a given event and
are rejoined at a later event, then the inertial observer always measures a bigger
(proper) time interval between the two events. In particular, prove the reversed
triangle inequality: if v,w ∈ R

4 are timelike vectors with w ∈ C(v) then
|v + w| ≥ |v| + |w|.

(9) (Doppler effect) Use the spacetime diagram in Fig. 6.2 to show that an observer
moving with velocity v away from a source of light of period T measures the
period to be

T ′ = T

√
1 + v

1 − v
.

(Remark: This effect allows astronomers to measure the radial velocity of stars and galaxies relative to the

Earth).
(10) (Aberration) Suppose that the position in the sky of the star Sirius makes an

angle θ with the x-axis of a given inertial observer. Show that the angle θ′
measured by a second inertial observer moving with velocity v = tanh u along
the x-axis of the first observer satisfies

tan θ′ = sin θ

cosh u cos θ + sinh u
.
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(11) Minkowski geometry can be used in many contexts. For instance, let l = R
∂
∂t

represent the motion of an observer at rest in the atmosphere and choose units
such that the speed of sound is 1.

(a) Let τ : R
4 → R the map such that τ (p) is the t coordinate of the event

in which the observer hears the sound generated at p. Show that the level
surfaces of τ are the conical surfaces

τ−1(t0) =
{

p ∈ R
4 | t0

∂

∂t
− p is null and future-pointing

}
.

(b) Show that c : I → R
4 represents the motion of a supersonic particle iff

〈
ċ,
∂

∂t

〉
�= 0 and 〈ċ, ċ〉 > 0.

(c) Argue that the observer hears a sonic boomwhenever c is tangent to a surface
τ = constant. Assuming that c is a straight line, what does the observer hear
before and after the boom?

(12) Let c : R → R
4 be the motion of a particle in Minkowski spacetime parame-

terized by the proper time τ .

(a) Show that
〈ċ, ċ〉 = −1

and
〈ċ, c̈〉 = 0.

Conclude that c̈ is the particle’s acceleration as measured in the particle’s
instantaneous rest frame, i.e. in the inertial frame (t, x, y, z) for which
ċ = ∂

∂t . For this reason, c̈ is called the particle’s proper acceleration, and
|c̈| is interpreted as the acceleration measured by the particle.

(b) Compute the particle’s motion assuming that it is moving along the x-axis
and measures a constant acceleration |c̈| = a.

(c) Consider a spaceship launched from the Earth towards the center of the
Galaxy (at a distance of 30,000 light-years) with a = g, where g represents
the gravitational acceleration at the surface of the Earth. Using the fact that
g � 1 year−1 in units such that c = 1, compute the proper time measured
aboard the spaceship for this journey. How long would the journey take as
measured from the Earth?

(13) (The faster-than-light missile) While conducting a surveillance mission on
the home planet of the wicked Klingons, the Enterprise uncovers their evil
plan to build a faster-than-light missile and attack the Earth, 12 light-years
away. Captain Kirk immediately orders the Enterprise back to the Earth at
its top speed ( 1213 of the speed of light), and at the same time sends out a
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Fig. 6.3 Faster-than-light missile

radio warning. Unfortunately, it is too late: eleven years later (as measured by
them), the Klingons launch their missile, moving at 12 times the speed of light.
Therefore the radio warning, traveling at the speed of light, reaches the Earth at
the same time as the missile, twelve years after its emission, and the Enterprise
arrives at the ruins of the Earth one year later.

(a) How long does the Enterprise’s trip take according to its crew?
(b) On the Earth’s frame, let (0, 0) be the (t, x) coordinates of the event in which

the Enterprise sends the radio warning, (11, 0) the coordinates of the mis-
sile’s launch, (12, 12) the coordinates of the Earth’s destruction and (13, 12)
the coordinates of the Enterprise’s arrival at the Earth’s ruins (cf. Fig. 6.3).
Compute the (t ′, x ′) coordinates of the same events on the Enterprise’s
frame.

(c) Plot the motions of the Enterprise, the Klingon planet, the Earth, the radio
signal and the missile on the Enterprise’s frame. Does the missile motion
according to the Enterprise crew make sense?

(Remark: This exercise is based on an exercise in [TW92]).
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6.3 The Cartan Connection

Let (x0, x1, x2, x3) = (t, x, y, z) be an inertial frame on Galileo spacetime, which
we can therefore identify with R

4. Recall that Newtonian gravity is described by
a gravitational potential � : R

4 → R. This potential determines the motions of
free-falling particles through

d2xi

dt2
= − ∂�

∂xi

(i = 1, 2, 3), and is, in turn, determined by the matter density function ρ : R
4 → R

through the Poisson equation

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 4πρ

(we are using units in which Newton’s universal gravitation constant G is set equal
to 1). The vacuum Poisson equation (corresponding to the case in which all matter
is concentrated on singularities of the gravitational potential) is the well-known
Laplace equation

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 0.

Notice that the equation of motion is the same for all particles, regardless of
their mass. This observation, dating back to Galileo, was made into the so-called
equivalence principle by Einstein. It implies that a gravitational field determines
special curves on Galileo spacetime, namely the motions of free-falling particles.
These curves are the geodesics of a symmetric connection, known as the Cartan
connection, defined through the nonvanishing Christoffel symbols

�i
00 = ∂�

∂xi
(i = 1, 2, 3)

[cf. Exercise3.1(1)], corresponding to the nonvanishing connection forms

ωi
0 = ∂�

∂xi
dt.

It is easy to check that the Cartan structure equations

�μν = dωμν +
3∑

α=0

ωμα ∧ ωαν

still hold for arbitrary symmetric connections, and hence we have the nonvanishing
curvature forms
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�i
0 =

3∑
j=1

∂2�

∂x j∂xi
dx j ∧ dt.

The Ricci curvature tensor of this connection is

Ric =
(
∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2

)
dt ⊗ dt

[cf. Exercise3.1(2)], and hence the Poisson equation can be written as

Ric = 4πρ dt ⊗ dt.

In particular, the Laplace equation can be written as

Ric = 0.

Exercise 3.1

(1) Check that themotions of free-falling particles are indeed geodesics of theCartan
connection. What other geodesics are there? How would you interpret them?

(2) Check the formula for the Ricci curvature tensor of the Cartan connection.
(3) Show that the Cartan connection ∇ is compatible with Galileo structure, i.e.

show that:

(a) ∇X dt = 0 for all X ∈ X(R4) [cf. Exercise 2.6(3) in Chap.3];
(b) if E, F ∈ X(R4) are tangent to the simultaneity hypersurfaces and parallel

along some curve c : R → R
4, then 〈E, F〉 is constant.

(4) Show that if the Cartan connection has nonzero curvature then it is not the Levi–
Civita connection of any pseudo-Riemannian metric on R

4 (cf. Sect. 6.4).

6.4 General Relativity

Gravity can be introduced in Newtonian mechanics through the symmetric Cartan
connection, which preserves Galileo spacetime structure. A natural idea for introduc-
ing gravity in special relativity is then to search for symmetric connections preserving
the Minkowski inner product. To formalize this, we introduce the following defini-
tion.

Definition 4.1 A pseudo-Riemannian manifold is a pair (M, g), where M is a
connected n-dimensional differentiablemanifold and g is a symmetric nondegenerate
differentiable 2-tensor field (g is said to be a pseudo-Riemannian metric in M). The
signature of a pseudo-Riemannian manifold is just the signature of g at any tangent

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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space. A Lorentzian manifold is a pseudo-Riemannian manifold with signature
n − 2 [that is, (gμν) = diag(−1, 1, . . . , 1) for appropriate orthonormal frames].

The Minkowski spacetime (R4, 〈·, ·〉) is obviously a Lorentzian manifold. The
proof of the Levi–Civita theorem uses the non-degeneracy of the metric, not its posi-
tivity. Therefore, the theorem still holds for pseudo-Riemannian manifolds. In other
words, given a pseudo-Riemannian manifold (M, g) there exists a unique symmetric
connection ∇ which is compatible with g (given by the Koszul formula). Therefore
there exists just one symmetric connection preserving the Minkowski metric, which
is the trivial connection (obtained in Cartesian coordinates by taking all Christof-
fel symbols equal to zero). Notice that the geodesics of this connection are straight
lines, corresponding to motions of free particles, which in particular do not feel any
gravitational field.

To introduce gravity through a symmetric connection we must therefore consider
more general 4-dimensional Lorentzian manifolds, which we will still call space-
times. These are no longer required to be diffeomorphic to R

4, nor to have inertial
charts. The study of the geometry of these spacetimes is usually called general
relativity.

Each spacetime comes equipped with its unique Levi–Civita connection, and
hence with its geodesics. If c : I ⊂ R → M is a geodesic, then 〈ċ, ċ〉 is constant, as

d

ds
〈ċ(s), ċ(s)〉 = 2

〈
Dċ

ds
(s), ċ(s)

〉
= 0.

A geodesic is called timelike, null, or spacelike according to whether 〈ċ, ċ〉 < 0,
〈ċ, ċ〉 = 0 or 〈ċ, ċ〉 > 0 (i.e. according to whether its tangent vector is timelike,
spacelike or null). By analogy with the Cartan connection, we will take timelike
geodesics to represent the free-falling motions of massive particles. This ensures
that the equivalence principle holds. Null geodesics will be taken to represent the
motions of light rays.

In general, any curve c : I ⊂ R → M is said to be timelike if 〈ċ, ċ〉 < 0. In this
case, c represents the motion of a particle with nonzero mass (which is accelerating
unless c is a geodesic). The proper time measured by the particle between events
c(a) and c(b) is

τ (c) =
∫ b

a
|ċ(s)|ds,

where |v| = |〈v, v〉| 12 for any v ∈ T M .
To select physically relevant spacetimes we must impose some sort of constraint.

By analogy with the formulation of the Laplace equation in terms of the Cartan
connection, we make the following definition.

Definition 4.2 The Lorentzian manifold (M, g) is said to be a vacuum solution of
the Einstein field equation if its Levi–Civita connection satisfies Ric = 0.
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The general Einstein field equation is

Ric − S

2
g = 8πE,

where S = ∑3
μ,ν=0 g

μνRμν is the scalar curvature and E is the so-called energy-
momentum tensor of the matter content of the spacetime. The simplest example of
a matter model is that of a pressureless perfect fluid, which is described by a rest
density function ρ ∈ C∞(M) and a unit velocity vector field U ∈ X(M) (whose
integral lines are the motions of the fluid particles). The energy-momentum tensor
for this matter model is

E = ρ ν ⊗ ν,

where ν ∈ �1(M) is the 1-form associated to U by the metric g.
The Einstein field equation can be rewritten as

Ric = 8πT,

where

T := E − 1

2

⎛
⎝

3∑
μ,ν=0

gμνEμν

⎞
⎠ g

is the reduced energy-momentum tensor [cf. Exercise4.3(2)]. For a pressureless
perfect fluid, the reduced energy-momentum tensor is

T = ρ

(
ν ⊗ ν + 1

2
g

)
,

and so Einstein field equation is

Ric = 4πρ(2ν ⊗ ν + g)

(compare this with the Poisson equation in terms of the Cartan connection).
It turns out that spacetimes satisfying the Einstein field equation for appropriate

choices of T model astronomical phenomena with great accuracy.

Exercise 4.3

(1) Show that the signature of a pseudo-Riemannianmanifold (M, g) is well defined,
i.e. show that the signature of gp ∈ T 2(Tp M) does not depend on p ∈ M .

(2) Show that:

(a) the Einstein field equation can be rewritten as

Ric = 8πT ;
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(b) the reduced energy-momentum tensor for a pressureless perfect fluid with
rest density ρ and unit velocity 1-form ν is

T = ρ

(
ν ⊗ ν + 1

2
g

)
.

(3) Let (M, g) be a pseudo-Riemannian manifold and f : N → M an immersion.
Show that f ∗g is not necessarily a pseudo-Riemannian metric on N .

(4) Let (M, g) be the (n + 1)-dimensional Minkowski spacetime, i.e. M = R
n+1

and
g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + · · · + dxn ⊗ dxn .

Let i : N → M be the inclusion map, where

N := {v ∈ M | 〈v, v〉 = −1 and v0 > 0}.

Show that (N , i∗g) is the n-dimensional hyperbolic space Hn .
(5) (Fermi–Walker transport)Let c : I ⊂ R → R

4 be a timelike curve inMinkowski
space parameterized by the proper time, U := ċ the tangent unit vector and
A := c̈ the proper acceleration. A vector field V : I → R

4 is said to be Fermi–
Walker transported along c if

DV

dτ
= 〈V, A〉U − 〈V,U 〉A.

(a) Show that U is Fermi–Walker transported along c.
(b) Show that if V and W are Fermi–Walker transported along c then 〈V,W 〉

is constant.
(c) If 〈V,U 〉 = 0 then V is tangent at U to the submanifold

N := {v ∈ R
4 | 〈v, v〉 = −1 and v0 > 0},

which is isometric to the hyperbolic 3-space [cf. Exercise4.3(4)]. Show
that, in this case, V is Fermi–Walker transported if and only if it is parallel
transported along U : I → N .

(d) Assume that c describes a circular motion with constant speed v. Let V be
a Fermi–Walker transported vector field, tangent to the plane of the motion,
such that 〈V,U 〉 = 0. Compute the angle by which V rotates (or precesses)
after one revolution.
(Remark: It is possible to prove that the angular momentum vector of a spinning particle is Fermi–Walker

transported along its motion and orthogonal to it; the above precession, which has been observed for spinning

particles such as electrons, is called the Thomas precession).

(6) (Twin paradox on a cylinder) The quotient of Minkowski spacetime by the
discrete isometry group generated by the translation ξ(t, x, y, z) = (t, x +
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8, y, z) is a (flat) vacuum solution of the Einstein field equation. Assume that the
Earth’s motion is represented by the line x = y = z = 0, and that once again
Bob departs at 80% of the speed of light along the x-axis, leaving his twin sister
Alice on the Earth, on their 20th birthday [cf. Exercise2.2(5)]. Because of the
topology of space, the two twins meet again after 10 years (as measured on the
Earth), without Bob ever having accelerated.

(a) Compute the age of each twin in their meeting.
(b) From Bob’s viewpoint, it is the Earth which moves away from him. How do

you explain the asymmetry in the twins’ ages?

(7) (Rotating frame)

(a) Show that the metric of Minkowski spacetime can be written as

g = − dt ⊗ dt + dr ⊗ dr + r2dθ ⊗ dθ + dz ⊗ dz

by using cylindrical coordinates (r, θ, z) in R
3.

(b) Let ω > 0 and consider the coordinate change given by θ = θ′ + ωt . Show
that in these coordinates the metric is written as

g = − (1 − ω2r2)dt ⊗ dt + ωr2dt ⊗ dθ′ + ωr2dθ′ ⊗ dt

+ dr ⊗ dr + r2dθ′ ⊗ dθ′ + dz ⊗ dz.

(c) Show that in the region U = {r < 1
ω } the coordinate curves of constant

(r, θ′, z) are timelike curves corresponding to (accelerated) observers rotat-
ing rigidly with respect to the inertial observers of constant (r, θ, z).

(d) The set of the rotating observers is a 3-dimensional smooth manifold� with
local coordinates (r, θ′, z), and there exists a natural projection π : U → �.
We introduce a Riemannian metric h on� as follows: if v,w ∈ Tπ(p)� then

h(v,w) = g
(
v†, w†

)
,

where, for each u ∈ Tπ(p)�, the vector u† ∈ TpU satisfies

(dπ)p u† = u and g

(
u†,

(
∂

∂t

)

p

)
= 0.

Show that h is well defined and

h = dr ⊗ dr + r2

1 − ω2r2
dθ′ ⊗ dθ′ + dz ⊗ dz.
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(Remark: This is the metric resulting from local distance measurements between the rotating observers;

Einstein used the fact that this metric has curvature to argue for the need to use non-Euclidean geometry in

the relativistic description of gravity).
(e) The image of a curve c : I ⊂ R → U consists of simultaneous events from

the point of view of the rotating observers if ċ is orthogonal to ∂
∂t at each

point. Show that this is equivalent to requiring that α(ċ) = 0, where

α = dt − ωr2

1 − ω2r2
dθ′.

In particular, show that, in general, synchronization of the rotating observers’
clocks around closed paths leads to inconsistencies.
(Remark: This is the so-called Sagnac effect; it must be taken into account when synchronizing the very

precise atomic clocks on the GPS system ground stations, because of the Earth’s rotation).

(8) (Static spacetime) Let (�, h) be a 3-dimensional Riemannian manifold and con-
sider the 4-dimensional Lorentzianmanifold (M, g) determined by M := R×�
and

g := −e2 (� ◦π)dt ⊗ dt + π∗h,

where t is the usual coordinate in R, π : M → � is the natural projection and
� : � → R is a smooth function.

(a) Let c : I ⊂ R → M be a timelike geodesic parameterized by the proper
time, and γ := π ◦ c. Show that

Dγ̇

dτ
= (1 + h(γ̇, γ̇))G,

where G = − grad(�) is the vector field associated to −d� by h and can
be thought of as the gravitational field. Show that this equation implies that
the quantity

E2 := (1 + h(γ̇, γ̇))e2�

is a constant of motion.
(b) Let c : I ⊂ R → M be a null geodesic, c̃ its reparameterization by the

coordinate time t , and γ̃ := π ◦ c̃. Show that γ̃ is a geodesic of the Fermat
metric

l := e−2 (� ◦π)h.

(Hint: Use Lemma 1.12 in Chap.5).
(c) Show that the vacuum Einstein field equation for g is equivalent to

div G = h(G,G);
Ric = ∇d�+ d�⊗ d�,

http://dx.doi.org/10.1007/978-3-319-08666-8_5
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where div G is the divergence of G, Ric and ∇ are the Ricci curvature
and the Levi–Civita connection of h, and ∇d� is the tensor defined by
(∇d�)(X, Y ) := (∇X d�) (Y ) for all X,Y ∈ X(�) [cf. Exercises 2.6(3).
and 3.3(9). in Chap.3].

6.5 The Schwarzschild Solution

The vacuumEinstein field equation is nonlinear, and hencemuch harder to solve than
the Laplace equation. One of the first solutions to be discovered was the so-called
Schwarzschild solution, which can be obtained from the simplifying hypotheses of
time independence and spherical symmetry, i.e. by looking for solutions of the form

g = −A2(r)dt ⊗ dt + B2(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

for unknown positive smooth functions A, B : R → R. Notice that this expression
reduces to the Minkowski metric in spherical coordinates for A ≡ B ≡ 1).

It is easily seen that theCartan structure equations still hold for pseudo-Riemannian
manifolds. We have

g = −ω0 ⊗ ω0 + ωr ⊗ ωr + ωθ ⊗ ωθ + ωϕ ⊗ ωϕ

with

ω0 = A(r)dt;
ωr = B(r)dr;
ωθ = rdθ;
ωϕ = r sin θdϕ,

and hence {ω0,ωr ,ωθ,ωϕ} is an orthonormal coframe. The first structure equations,

dωμ =
3∑

ν=0

ων ∧ ωμν ;

dgμν =
3∑

α=0

gμαω
α
ν + gναω

α
μ ,

which on an orthonormal frame are written as

dωμ =
3∑

ν=0

ων ∧ ωμν ;

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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ω0
0 =ωi

i = 0;
ω0

i =ωi
0;

ωi
j = − ω

j
i

(i, j = 1, 2, 3), together with

dω0 = A′

B
ωr ∧ dt;

dωr = 0;
dωθ = 1

B
ωr ∧ dθ;

dωϕ = sin θ

B
ωr ∧ dϕ+ cos θ ωθ ∧ dϕ,

yield the nonvanishing connection forms

ω0
r =ωr

0 = A′

B
dt;

ωθr = − ωr
θ = 1

B
dθ;

ωϕr = − ωr
ϕ = sin θ

B
dϕ;

ω
ϕ
θ = − ωθϕ = cos θdϕ.

The curvature forms can be computed from the second structure equations

�μν = dωμν +
3∑

α=0

ωμα ∧ ωαν ,

and are found to be

�0
r =�r

0 = A′′B − A′ B ′

AB3 ωr ∧ ω0;

�0
θ =�θ0 = A′

r AB2 ω
θ ∧ ω0;

�0
ϕ =�ϕ0 = A′

r AB2 ω
ϕ ∧ ω0;

�θr = −�r
θ = B ′

r B3 ω
θ ∧ ωr ;

�ϕr = −�r
ϕ = B ′

r B3 ω
ϕ ∧ ωr ;
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�
ϕ
θ = −�θϕ = B2 − 1

r2B2 ωϕ ∧ ωθ.

Thus the components of the curvature tensor on the orthonormal frame can be
read off from the curvature forms using

�μν =
∑
α<β

R μ
αβν ω

α ∧ ωβ .

and can in turn be used to compute the components of the Ricci curvature tensor Ric
on the same frame. The nonvanishing components of Ric on this frame turn out to
be

R00 = A′′ B − A′B ′

AB3 + 2A′

r AB2 ;

Rrr = − A′′ B − A′ B ′

AB3 + 2B ′

r B3 ;

Rθθ = Rϕϕ = − A′

r AB2 + B ′

r B3 + B2 − 1

r2B2 .

Thus the vacuumEinstein field equation Ric = 0 is equivalent to the ODE system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′′

A
− A′ B ′

AB
+ 2A′

r A
= 0

A′′

A
− A′ B ′

AB
− 2B ′

r B
= 0

A′

A
− B ′

B
− B2 − 1

r
= 0

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′

A
+ B ′

B
= 0

(
A′

A

)′
+ 2

(
A′

A

)2

+ 2A′

r A
= 0

2B ′

B
+ B2 − 1

r
= 0

.

The last equation can be immediately solved to yield

B =
(
1 − 2m

r

)− 1
2

,

where m ∈ R is an integration constant. The first equation implies that A = α
B for

some constant α > 0. By rescaling the time coordinate t we can assume that α = 1.
Finally, it is easily checked that the second ODE is identically satisfied. Therefore
there exists a one-parameter family of solutions of the vacuumEinstein field equation
of the form we sought, given by
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g = −
(
1 − 2m

r

)
dt ⊗ dt +

(
1 − 2m

r

)−1

dr ⊗ dr (6.2)

+ r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ.

To interpret this family of solutions, we compute the proper acceleration [cf. Exer-
cise2.2(12)] of the stationary observers, whose motions are the integral curves
of ∂

∂t . If {E0, Er , Eθ, Eϕ} is the orthonormal frame obtained by normalizing{
∂
∂t ,

∂
∂r ,

∂
∂θ ,

∂
∂ϕ

}
(hence dual to {ω0,ωr ,ωθ,ωϕ}), we have

∇E0 E0 =
3∑

μ=0

ω
μ
0 (E0)Eμ = ωr

0(E0)Er = A′

AB
ω0(E0)Er = m

r2

(
1 − 2m

r

)− 1
2

Er .

Therefore, each stationary observer is accelerating with a proper acceleration

G(r) = m

r2

(
1 − 2m

r

)− 1
2

away from the origin, to prevent falling towards it. In other words, they are expe-
riencing a gravitational field of intensity G(r), directed towards the origin. Since
G(r) approaches, for large values of r , the familiar acceleration m/r2 of the New-
tonian gravitational field generated by a point particle of mass m, we interpret the
Schwarzschild solution as the general relativistic field of a point particle of mass
m. Accordingly, we will assume that m > 0 (notice that m = 0 corresponds to
Minkowski spacetime).

When obtaining the Schwarzschild solution we assumed A(r) > 0, and hence
r > 2m. However, it is easy to check that (6.2) is also a solution of the Einstein
vacuum field equation for r < 2m. Notice that the coordinate system (t, r, θ,ϕ) is
singular at r = 2m, and hence covers only the two disconnected open sets {r > 2m}
and {r < 2m}. Both these sets are geodesically incomplete, as for instance radial
timelike or null geodesics cannot be extended as they approach r = 0 or r = 2m
[cf. Exercise5.1(7)]. While this is to be expected for r = 0, as the curvature blows
up along geodesics approaching this limit, this is not the case for r = 2m. It turns
out that it is possible to fit these two open sets together to obtain a solution of the
Einstein vacuum field equation regular at r = 2m. To do so, we introduce the so-
called Painlevé time coordinate

t ′ = t +
∫ √

2m

r

(
1 − 2m

r

)−1

dr.

In the coordinate system (t ′, r, θ,ϕ), the Schwarzschild metric is written
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g = −dt ′ ⊗ dt ′ +
(

dr +
√
2m

r
dt ′
)

⊗
(

dr +
√
2m

r
dt ′
)

+ r2dθ⊗ dθ+ r2 sin2 θdϕ⊗ dϕ.

This expression is nonsingular at r = 2m, and is a solution of the Einstein vacuum
field equation for {r > 2m} and {r < 2m}. By continuity, it must be a solution also
at r = 2m.

The submanifold r = 2m is called the event horizon, and is ruled by null geo-
desics. This is easily seen from the fact that ∂

∂t ′ = ∂
∂t becomes null at r = 2m, and

hence its integral curves are (reparameterizations of) null geodesics.
The causal properties of the Schwarzschild spacetime are best understood by

studying the light cones, i.e. the set of tangent null vectors at each point. For instance,
radial null vectors v = v0 ∂

∂t ′ + vr ∂
∂r satisfy

−
(
v0
)2 +

(
vr +

√
2m

r
v0

)2

= 0 ⇔ vr =
(

±1 −
√
2m

r

)
v0.

For r � 2m we obtain approximately the usual light cones of Minkowski spacetime.
As r approaches 2m, however, the light cones “tip over” towards the origin, becoming
tangent to the event horizon at r = 2m (cf. Fig. 6.4). Since the tangent vector to a
timelike curve must be inside the light cone, we see that no particle which crosses
the event horizon can ever leave the region r = 2m (which for this reason is called a
black hole). Once inside the black hole, the light cones tip over even more, forcing
the particle into the singularity r = 0.

t

r

r = 2m

Fig. 6.4 Light cones in Painlevé coordinates
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Notice that the Schwarzschild solution in Painlevé coordinates is still not geo-
desically complete at the event horizon, as radial timelike and null geodesics are
incomplete to the past as they approach r = 2m [cf. Exercise5.1(7)]. Physically, this
is not important: black holes are thought to form through the collapse of (approxi-
mately) spherical stars, whose surface follows a radial timelike curve in the spacetime
diagram of Fig. 6.4. Since only outside the star is there vacuum, the Schwarzschild
solution is expected to hold only above this curve, thereby removing the region of
r = 2m leading to incompleteness. Nevertheless, it is possible to glue two copies
of the Schwarzschild spacetime in Painlevé coordinates to obtain a solution of the
vacuum Einstein field equation which is geodesically incomplete only at the two
copies of r = 0. This solution, known as the Kruskal extension, contains a black
hole and its time-reversed version, known as a white hole.

For some time it was thought that the curvature singularity at r = 0 was an artifact
of the high symmetry of Schwarzschild spacetime, and that more realistic models of
collapsing stars would be singularity-free. Hawking and Penrose proved that this is
not the case: once the collapse has begun, no matter how asymmetric, nothing can
prevent a singularity from forming (cf. Sects. 6.8 and 6.9).

Exercise 5.1

(1) Let (M, g) be a 2-dimensional Lorentzian manifold.

(a) Consider an orthonormal frame {E0, E1} on an open set U ⊂ M , with
associated coframe {ω0,ω1}. Check that the Cartan structure equations are

ω0
1 =ω1

0;
dω0 =ω1 ∧ ω0

1;
dω1 =ω0 ∧ ω0

1;
�0

1 = dω0
1 .

(b) Let {F0, F1} be another orthonormal frame such that F0 ∈ C(E0), with
associated coframe {ω0,ω1} and connection formω0

1. Show thatσ = ω0
1−ω0

1
is given locally by σ = du, where u is the hyperbolic angle between F0 and
E0 [cf. Exercise2.2(7)].

(c) Consider a triangle� ⊂ U whose sides are timelike geodesics, and let α, β
and γ be the hyperbolic angles between them (cf. Fig. 6.5). Show that

γ = α+ β −
∫

�

�0
1,

where, following the usual convention for spacetime diagrams, we orient U
so that {E0, E1} is negative.

(d) Provide a physical interpretation for the formula above in the case in which
(M, g) is a totally geodesic submanifold of the Schwarzschild spacetime
obtained by fixing (θ,ϕ) [cf. Exercise 5.7(3) in Chap.4].

http://dx.doi.org/10.1007/978-3-319-08666-8_4
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Fig. 6.5 Timelike geodesic
triangle

α

β

γ

(2) Consider the Schwarzschild spacetime with local coordinates (t, r, θ,ϕ). An
equatorial circular curve is a curve given in these coordinates by (t (τ ), r(τ ),
θ(τ ),ϕ(τ )) with ṙ(τ ) ≡ 0 and θ(τ ) ≡ π

2 .

(a) Show that the conditions for such a curve to be a timelike geodesic parame-
terized by its proper time are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẗ = 0

ϕ̈ = 0

r ϕ̇2 = m
r2

ṫ2(
1 − 3m

r

)
ṫ2 = 1

.

Conclude that massive particles can orbit the central mass in circular orbits
for all r > 3m.

(b) Show that there exists an equatorial circular null geodesic for r = 3m. What
does a stationary observer placed at r = 3m, θ = π

2 see as he looks along
the direction of this null geodesic?

(c) The angular momentum vector of a free-falling spinning particle is parallel-
transported along its motion, and orthogonal to it [cf. Exercise4.3(5)]. Con-
sider a spinning particle on a circular orbit around a pointlike mass m. Show
that the angular momentum vector precesses by an angle
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δ = 2π

(
1 −

(
1 − 3m

r

) 1
2
)
,

after one revolution, if initially aligned with the radial direction.
(Remark: The above precession, which has been observed for spinning quartz spheres in orbit around the

Earth during the Gravity Probe B experiment, is called the geodesic precession).

(3) (Gravitational redshift) We consider again the Schwarzschild spacetime with
local coordinates (t, r, θ,ϕ).

(a) Show that the proper time interval �τ measured by a stationary observer
between two events on his history is

�τ =
(
1 − 2m

r

) 1
2

�t,

where�t is the difference between the time coordinates of the two events.
(Remark: This effect has been measured experimentally; loosely speaking, gravity delays time).

(b) Show that if (t (s), r(s), θ(s),ϕ(s)) is a geodesic then so is (t (s)+�t, r(s), θ(s),ϕ(s))

for any �t ∈ R.
(c) Use the spacetime diagram in Fig. 6.6 to show that if a stationary observer

at r = r0 measures a light signal to have period T , a stationary observer at

t

r

r0 r1

T

T

Fig. 6.6 Gravitational redshift
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r = r1 measures a period

T ′ = T

√√√√1 − 2m
r1

1 − 2m
r0

for the same signal.
(Remark: This gravitational redshift has been measured experimentally, confirming that spacetime must be

curved – in Minkowski spacetime one would necessarily have T = T ′).

(4) Let (M, g) be the region r > 2m of the Schwarzschild solutionwith the Schwarz-
schild metric. The set of all stationary observers in M is a 3-dimensional smooth
manifold � with local coordinates (r, θ,ϕ), and there exists a natural projec-
tion π : M → �. We introduce a Riemannian metric h on � as follows: if
v,w ∈ Tπ(p)� then

h(v,w) = g
(
v†, w†

)
,

where, for each u ∈ Tπ(p)�, the vector u† ∈ TpU satisfies

(dπ)p u† = u and g

(
u†,

(
∂

∂t

)

p

)
= 0

[cf. Exercise4.3(7)].

(a) Show that h is well defined and

h =
(
1 − 2m

r

)−1

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ.

(b) Show that h is not flat, but has zero scalar curvature.
(c) Show that the equatorial plane θ = π

2 is isometric to the revolution surface
generated by the curve z(r) = √

8m(r − 2m)when rotated around the z-axis
(cf. Fig. 6.7).

Fig. 6.7 Surface of revolution isometric to the equatorial plane
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(Remark: This is the metric resulting from local distance measurements between the stationary observers;

loosely speaking, gravity deforms space).

(5) In this exercise we study in detail the timelike and null geodesics of the Schwarz-
schild spacetime. We start by observing that the submanifold θ = π

2 is totally
geodesic [cf. Exercise 5.7(3) in Chap.4]. By adequately choosing the angular
coordinates (θ,ϕ), one can always assume that the initial condition of the geo-
desic is tangent to this submanifold; hence it suffices to study the timelike and
null geodesics of the 3-dimensional Lorentzian manifold (M, g), where

g = −
(
1 − 2m

r

)
dt ⊗ dt +

(
1 − 2m

r

)−1

dr ⊗ dr + r2dϕ⊗ dϕ.

(a) Show that ∂
∂t and

∂
∂ϕ are Killing fields [cf. Exercise 3.3(8) in Chap.3].

(b) Conclude that the equations for a curve c : R → M to be a future-directed
geodesic (parameterized by proper time if timelike) can be written as

⎧⎪⎪⎨
⎪⎪⎩

g(ċ, ċ) = −σ
g
(
∂
∂t , ċ

)
= −E

g
(
∂
∂ϕ , ċ

)
= L

⇔

⎧⎪⎪⎨
⎪⎪⎩

ṙ2 = E2 −
(
σ + L2

r2

) (
1 − 2m

r

)
(
1 − 2m

r

)
ṫ = E

r2ϕ̇ = L

where E > 0 and L are integration constants, σ = 1 for timelike geodesics
and σ = 0 for null geodesics.

(c) Show that if L �= 0 then u = 1
r satisfies

d2u

dϕ2 + u = mσ

L2 + 3mu2.

(d) For situations where relativistic corrections are small one has mu 
 1, and
hence the approximate equation

d2u

dϕ2 + u = m

L2

holds for timelike geodesics. Show that the solution to this equation is the
conic section given in polar coordinates by

u = m

L2 (1 + ε cos(ϕ− ϕ0)),

where the integration constants ε ≥ 0 and ϕ0 are the eccentricity and the
argument of the pericenter.

(e) Show that for ε 
 1 this approximate solution satisfies

http://dx.doi.org/10.1007/978-3-319-08666-8_4
http://dx.doi.org/10.1007/978-3-319-08666-8_3
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u2 � 2m

L2 u − m2

L4 .

Argue that timelike geodesics close to circular orbits where relativistic cor-
rections are small yield approximate solutions of the equation

d2u

dϕ2 +
(
1 − 6m2

L2

)
u = m

L2

(
1 − 3m2

L2

)
,

and hence the pericenter advances by approximately

6πm

r

radians per revolution.
(Remark: The first success of general relativity was due to this effect, which explained the anomalous

precession of Mercury’s perihelion—43 arcseconds per century).
(f) Show that if one neglects relativistic corrections then null geodesics satisfy

d2u

dϕ2 + u = 0.

Show that the solution to this equation is the equation for a straight line in
polar coordinates,

u = 1

b
sin(ϕ− ϕ0),

where the integration constants b > 0 and ϕ0 are the impact parameter
(distance of closest approach to the center) and the angle between the line
and the x-axis.

(g) Assume that mu 
 1. Let us include relativistic corrections by looking for
approximate solutions of the form

u = 1

b

(
sinϕ+ m

b
v
)

(where we take ϕ0 = 0 for simplicity). Show that v is an approximate
solution of the equation

d2v

dϕ2 + v = 3 sin2 ϕ,

and hence u is approximately given by

u = 1

b

(
sinϕ+ m

b

(
3

2
+ 1

2
cos(2ϕ)+ α cosϕ+ β sinϕ

))
,
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where α and β are integration constants.
(h) Show that for the incoming part of the null geodesic (ϕ � 0) one approxi-

mately has

u = 0 ⇔ ϕ = −m

b
(2 + α) .

Similarly, show that for the outgoing part of the null geodesic (ϕ � π) one
approximately has

u = 0 ⇔ ϕ = π + m

b
(2 − α) .

Conclude that ϕ varies by approximately

�ϕ = π + 4m

b

radians along its path, and hence the null geodesic is deflected towards the
center by approximately

4m

b

radians.
(Remark: The measurement of this deflection of light by the Sun—1.75 arcseconds—was the first experi-

mental confirmation of general relativity, and made Einstein a global celebrity overnight).

(6) (Birkhoff theorem) Prove that the only Ricci-flat Lorentzian metric given in local
coordinates (t, r, θ,ϕ) by

g = A2(t, r)dt ⊗ dt + B2(t, r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

is the Schwarzschild metric. Loosely speaking, spherically symmetric mass
configurations do not radiate.

(7) (a) Show that the radial timelike or null geodesics in the regions {r > 2m}
and {r < 2m} of the Schwarzschild spacetime cannot be extended as they
approach r = 0 or r = 2m.

(b) Show that the radial timelike or null geodesics in the Painlevé extension of
the Schwarzschild spacetime can be extended to the future, but not to the
past, as they approach r = 2m.

(c) Show that radial observers satisfying

dr

dt ′
= −

√
2m

r

in the Painlevé coordinates are free-falling, and that t ′ is their proper time.
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(d) What does a stationary observer see as a particle falls into a black hole?
(8) Show that an observer who crosses the horizon will hit the singularity in a proper

time interval �τ ≤ πm.

6.6 Cosmology

Cosmology studies the behavior of the universe as a whole. Experimental observa-
tions (chiefly that of the cosmic background radiation) suggest that space is isotropic
at the Earth’s location. Assuming the Copernican principle that the Earth’s loca-
tion in the universe is not in any way special, we take an isotropic (hence constant
curvature) 3-dimensional Riemannian manifold (�, h) as our model of space. We
can always find local coordinates (r, θ,ϕ) on � such that

h = a2
(

1

1 − kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)
,

where a > 0 is the “radius” of space and k = −1, 0, 1 according to whether the cur-
vature is negative, zero or positive [cf. Exercise6.1(1)]. Allowing for the possibility
that the “radius” of space may be varying in time, we take our model of the universe
to be (M, g), where M = R ×� and

g = −dt ⊗ dt + a2(t)

(
1

1 − kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)
.

These are the so-called Friedmann–Lemaître–Robertson–Walker (FLRW) mod-
els of cosmology.

One can easily compute the Ricci curvature for the metric g. We have

g = −ω0 ⊗ ω0 + ωr ⊗ ωr + ωθ ⊗ ωθ + ωϕ ⊗ ωϕ

with

ω0 = dt;

ωr = a(t)
(
1 − kr2

)− 1
2

dr;
ωθ = a(t)rdθ;
ωϕ = a(t)r sin θdϕ,

and hence {ω0,ωr ,ωθ,ωϕ} is an orthonormal coframe. The first structure equations
yield
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ω0
r = ωr

0 = ȧ
(
1 − kr2

)− 1
2

dr;
ω0
θ = ωθ0 = ȧrdθ;
ω0
ϕ = ω

ϕ
0 = ȧr sin θdϕ;

ωθr = −ωr
θ =

(
1 − kr2

) 1
2

dθ;

ωϕr = −ωr
ϕ =

(
1 − kr2

) 1
2
sin θdϕ;

ω
ϕ
θ = −ωθϕ = cos θdϕ.

The curvature forms can be computed from the second structure equations, and
are found to be

�0
r = �r

0 = ä

a
ω0 ∧ ωr ;

�0
θ = �θ0 = ä

a
ω0 ∧ ωθ;

�0
ϕ = �

ϕ
0 = ä

a
ω0 ∧ ωϕ;

�θr = −�r
θ =

(
k

a2 + ȧ2

a2

)
ωθ ∧ ωr ;

�ϕr = −�r
ϕ =

(
k

a2 + ȧ2

a2

)
ωϕ ∧ ωr ;

�
ϕ
θ = −�θϕ =

(
k

a2 + ȧ2

a2

)
ωϕ ∧ ωθ.

The components of the curvature tensor on the orthonormal frame can be read
off from the curvature forms, and can in turn be used to compute the components of
the Ricci curvature tensor Ric on the same frame. The nonvanishing components of
Ric on this frame turn out to be

R00 = −3ä

a
;

Rrr = Rθθ = Rϕϕ = ä

a
+ 2ȧ2

a2 + 2k

a2 .

At very large scales, galaxies and clusters of galaxies are expected to behave as
particles of a pressureless fluid, which we take to be our matter model. By isotropy,
the average spatial motion of the galaxies must vanish, and hence their unit velocity
vector field must be ∂

∂t (corresponding to the 1-form −dt). Therefore the Einstein
field equation is

Ric = 4πρ(2dt ⊗ dt + g),
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which is equivalent to the ODE system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−3ä

a
= 4πρ

ä

a
+ 2ȧ2

a2 + 2k

a2 = 4πρ

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ä + ȧ2

2a
+ k

2a
= 0

ρ = − 3ä

4πa

.

The first equation allows us to determine the function a(t), and the second yields
ρ (which in particular must be a function of the t coordinate only; this is to be taken to
mean that the average density of matter at cosmological scales is spatially constant).
On the other hand, the quantity

4πρa3

3
= −äa2

is constant, since

d

dt

(
−äa2

)
= d

dt

(
aȧ2

2
+ ka

2

)
= aȧä + ȧ3

2
+ kȧ

2
= 0.

Hence we have
ä = − α

a2

for some integration constant α (we take α > 0 so that ρ > 0). Substituting in the
equation for a(t) we get the first-order ODE

ȧ2

2
− α

a
= −k

2
.

This can be used to show that a(t) is bounded if and only if k = 1 [cf. Exercise6.1(4)].
Moreover, in all cases a(t) vanishes (and hence ȧ(t), ä(t) and ρ(t) blow up) for some
value of t , usually taken to be t = 0. This singularity is called the big bang of the
solution defined for t > 0. It was once thought to be a consequence of the high
degree of symmetry of the FLRW models. Hawking and Penrose, however, showed
that the big bang is actually a generic feature of cosmological models (cf. Sects. 6.8
and 6.9).

The function

H(t) = ȧ

a

is (somewhat confusingly) called the Hubble constant. It is easy to see from the
above equations that

H2 + k

a2 = 8π

3
ρ.
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Therefore, in these models one has k = −1, k = 0 or k = 1 according to whether the
average density ρ of the universe is smaller than, equal to or bigger than the so-called
critical density

ρc = 3H2

8π
.

These models were the standard models for cosmology for a long time. Currently,
however, things are thought to be slightly more complicated [cf. Exercise6.1(7)].

Exercise 6.1

(1) Show that the Riemannian metric h given in local coordinates (r, θ,ϕ) by

h = a2
(

1

1 − kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)

has constant curvature K = k
a2
.

(2) The motions of galaxies and groups of galaxies in the FLRW models are the
integral curves of ∂

∂t . Show that these are timelike geodesics, and that the time
coordinate t is the proper time of such observers.

(3) Consider two galaxies in a FLRWmodel, whose spatial locations can be assumed
to be r = 0 and (r, θ,ϕ) = (r1, θ1,ϕ1). Show that:

(a) the spatial distance d(t) between the two galaxies along the spatial Rie-
mannian manifold of constant t satisfies the Hubble law

ḋ = Hd,

where H = ȧ/a is the Hubble constant;
(b) the family (reparameterized) null geodesics connecting the first galaxy to

the second galaxy can be written as

(t, r, θ,ϕ) = (t (r, t0), r, θ1,ϕ1) (0 < r < r1),

where (t (r, t0)) is the solution of

⎧⎪⎪⎨
⎪⎪⎩

dt

dr
= a(t)√

1 − kr2

t (0, t0) = t0

;

(c)
∂t

∂t0
(r1, t0) = a(t1)

a(t0)
, where t1 = t (r1, t0).

(Remark: This means that light emitted by the first galaxy with period T is measured by the second galaxy

to have period T ′ = a(t1)
a(t0)

T ).
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(4) Recall that in an FLRW model the “radius” of space, a(t), evolves according to
the ODE

ȧ2

2
− α

a
= −k

2
⇒ ä = − α

a2 .

Show that:

(a) a(t) vanishes in finite time (assume that this happens at t = 0);
(b) if k = −1 or k = 0 then the solution can be extended to all values of t > 0;
(c) if k = 1 then the solution cannot be extended past t = 2πα (big crunch);
(d) if k = 1 then no observer can circumnavigate the universe, no matter how

fast he moves;
(e) the solution can be given parametrically by:

(i) k = 1: {
a = α(1 − cos u)

t = α(u − sin u)
;

(ii) k = 0: {
a = α

2 u2

t = α
6 u3 ;

(iii) k = −1: {
a = α(cosh u − 1)

t = α(sinh u − u)
.

(5) Show that the FLRW model with k = 1 is isometric to the hypersurface with
equation √

x2 + y2 + z2 + w2 = 2α− t2

8α

in the 5-dimensional Minkowski spacetime (R5, g) with metric

g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz + dw ⊗ dw.

(6) (A model of collapse) Show that the radius of a spherical shell r = r0 in a
FLRWmodel changes with proper time in exactly the same fashion as the radius
of a radially free-falling spherical shell in a Schwarzschild spacetime of mass
parameter m moving with energy parameter E [cf. Exercise5.1(5)], provided
that {

m = αr03

E2 − 1 = −kr02
.
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Therefore these two spacetimes can be matched along the 3-dimensional hyper-
surface determined by the spherical shell’s motion to yield a model of collapsing
matter. Can you give a physical interpretation of this model?

(7) Show that if we allow for a cosmological constant � ∈ R, i.e. for an Einstein
equation of the form

Ric = 4πρ(2ν ⊗ ν + g)+�g

then the equations for the FLRW models become

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ȧ2

2
− α

a
− �

6
a2 = −k

2

4π

3
a3ρ = α

.

Analyze the possible behaviors of the function a(t).
(Remark: It is currently thought that there indeed exists a positive cosmological constant, also known as dark

energy. The model favored by experimental observations seems to be k = 0, � > 0).
(8) Consider the 5-dimensional Minkowski spacetime (R5, g) with metric

g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz + dw ⊗ dw.

Show that the induced metric on each of the following hypersurfaces determines
FLRW models with the indicated parameters.

(a) Einstein universe: the “cylinder” of equation

x2 + y2 + z2 + w2 = 1

�
,

satisfies k = 1, � > 0 and ρ = �
4π .

(b) de Sitter universe: the “sphere” of equation

−t2 + x2 + y2 + z2 + w2 = 3

�

satisfies k = 1, � > 0 and ρ = 0.

(9) A light signal emitted with period T and received with period T ′ is said to have
suffered a redshift

z = T ′

T
− 1

[so that in the case of the Doppler effect one has z � v for small velocities,
cf. Exercise2.2(9)]. If the light is emitted by a galaxy at r = 0 at time t = t0
and received by a galaxy at r = r1 at time t = t1 then its redshift is
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z = a(t1)

a(t0)
− 1

[cf. Exercise6.1(3)]. This light is spread over a sphere of radius R = a(t1)r1,
and so its brightness is inversely proportional to R2. Compute R as a function
of z for the following FLRW models:

(a) Milne universe (k = −1, α = � = 0), for which a(t) = t ;
(b) Flat de Sitter universe (k = α = 0, � = 3H2), for which a(t) = eHt ;
(c) Einstein–de Sitter universe (k = � = 0, α = 2/9t12), for which a(t) =

(t/t1)2/3.
(Remark: The brightness of distant galaxies is further reduced by a factor of (1 + z)2, since each photon

has frequency, hence energy, (1+ z) times smaller at reception, and the rate of detection of photons is (1+ z)

times smaller than the rate of emission; with this correction, R can be deduced from the observed brightness

for galaxies of known luminosity, and the correct FLRW model chosen as the one whose curve R = R(z)

best fits observations).

6.7 Causality

In this section we will study the causal features of spacetimes. This is a subject
which has no parallel in Riemannian geometry, where the metric is positive definite.
Although we will focus on 4-dimensional Lorentzian manifolds, the discussion can
be easily generalized to any dimension n ≥ 2.

A spacetime (M, g) is said to be time-orientable if there exists a vector field
X ∈ X(M) such that 〈X, X〉 < 0. In this case, we can define a time orientation on
each tangent space Tp M (which is, of course, isometric to Minkowski spacetime)
by choosing the timelike vectors in the connected component C(X p) to be future-
pointing.

Assume that (M, g) is time-oriented (i.e. time-orientable with a definite choice of
time orientation). A timelike curve c : I ⊂ R → M is said to be future-directed if ċ
is future-pointing. The chronological future of p ∈ M is the set I +(p) of all points
to which p can be connected by a future-directed timelike curve. A future-directed
causal curve is a curve c : I ⊂ R → M such that ċ is timelike or null and future-
pointing (if nonzero). The causal future of p ∈ M is the set J+(p) of all points to
which p can be connected by a future-directed causal curve. Notice that I +(p) is
simply the set of all events which are accessible to a particle with nonzero mass at
p, whereas J+(p) is the set of events which can be causally influenced by p (as this
causal influence cannot propagate faster than the speed of light). Analogously, the
chronological past of p ∈ M is the set I −(p) of all points which can be connected
to p by a future-directed timelike curve, and the causal past of p ∈ M is the set
J−(p) of all points which can be connected to p by a future-directed causal curve.

In general, the chronological and causal pasts and futures can be quite complicated
sets, because of global features of the spacetime. Locally, however, causal properties
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are similar to those of Minkowski spacetime. More precisely, we have the following
statement:

Proposition 7.1 Let (M, g) be a time-oriented spacetime. Then each point p0 ∈ M
has an open neighborhood V ⊂ M such that the spacetime (V, g) obtained by
restricting g to V satisfies:

(1) V is a normal neighborhood of each of its points, and given p, q ∈ V there
exists a unique geodesic (up to reparameterization) joining p to q (i.e. V is
geodesically convex);

(2) q ∈ I +(p) if and only if there exists a future-directed timelike geodesic connect-
ing p to q;

(3) J+(p) = I +(p);
(4) q ∈ J+(p) \ I +(p) if and only if there exists a future-directed null geodesic

connecting p to q.

Proof Let U be a normal neighborhood of p0 and choose normal coordinates
(x0, x1, x2, x3) on U , given by the parameterization

ϕ(x0, x1, x2, x3) = expp0(x
0v0 + x1v1 + x2v2 + x3v3),

where {v0, v1, v2, v3} is a basis of Tp0(M) [cf. Exercise 4.8(2) in Chap.3]. Let D :
U → R be the differentiable function

D(p) :=
3∑

α=0

(
xα(p)

)2
,

and let us define for each ε > 0 the set

Bε := {p ∈ U | D(p) < ε},

which for sufficiently small ε is diffeomorphic to an open ball in Tp0 M . Assume, for
simplicity, that U is of this form.

Let us show that there exists ρ > 0 such that if c : I ⊂ R → Bρ is a geodesic
then all critical points of D(t) := D(c(t)) are strict local minima. In fact, setting
xμ(t) := xμ(c(t)), we have

Ḋ(t) = 2
3∑

α=0

xα(t)ẋα(t);

D̈(t) = 2
3∑

α=0

(
ẋα(t)

)2 + 2
3∑

α=0

xα(t)ẍα(t)

= 2
3∑

μ,ν=0

(
δμν −

3∑
α=0

�αμν(c(t))x
α(t)

)
ẋμ(t)ẋν(t),

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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and for ρ sufficiently small the matrix

δμν −
3∑

α=0

�αμνxα

is positive definite on Bρ.
Consider the map F : W ⊂ T M → M × M , defined on some open neighborhood

W of 0 ∈ Tp0 M by
F(v) = (π(v), exp(v)).

As we saw in the Riemannian case (cf. Chap.3, Sect. 3.4), this map is a local dif-
feomorphism at 0 ∈ Tp0 M . Choosing δ > 0 sufficiently small and reducing W , we
can assume that F maps W diffeomorphically to Bδ × Bδ , and that exp(tv) ∈ Bρ for
all t ∈ [0, 1] and v ∈ W (as otherwise it would be possible to construct a sequence
vn → 0 ∈ Tp0 M such that exp(vn) �→ p0).

Finally, set V = Bδ . If p, q ∈ V and v = F−1(p, q), then c(t) = expp(tv) is a
geodesic connecting p to q whose image is contained in Bρ. If its image were not
contained in V , there would necessarily exist a point of local maximum of D(t),
which cannot occur. Therefore, there is a geodesic in V connecting p to q. Since
expp is a diffeomorphism onto V , this geodesic is unique (up to reparameterization).
This proves (1).

To prove assertion (2), we start by noticing that if there exists a future-directed
timelike geodesic connecting p to q then it is obvious that q ∈ I +(p). Suppose now
that q ∈ I +(p); then there exists a future-directed timelike curve c : [0, 1] → V
such that c(0) = p and c(1) = q. Choose normal coordinates (x0, x1, x2, x3) given
by the parameterization

ϕ(x0, x1, x2, x3) = expp(x
0E0 + x1E1 + x2E2 + x3E3),

where {E0, E1, E2, E3} is an orthonormal basis of Tp M with E0 timelike and future-
pointing. These are global coordinates in V , since F : W → V × V is a diffeomor-
phism. Defining

Wp(q) := −
(

x0(q)
)2 +

(
x1(q)

)2 +
(

x2(q)
)2 +

(
x3(q)

)2

=
3∑

μ,ν=0

ημνxμ(q)xν(q),

with (ημν) = diag(−1, 1, 1, 1), we have to show that Wp(q) < 0. Let
Wp(t) := Wp(c(t)). Since xμ(p) = 0 (μ = 0, 1, 2, 3), we have Wp(0) = 0.
Setting xμ(t) := xμ(c(t)), we obtain

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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Ẇp(t) = 2
3∑

μ,ν=0

ημνxμ(t)ẋν(t);

Ẅp(t) = 2
3∑

μ,ν=0

ημνxμ(t)ẍν(t)+ 2
3∑

μ,ν=0

ημν ẋμ(t)ẋν(t),

and consequently (recalling that
(
d expp

)
0

= id)

Ẇp(0) = 0;
Ẅp(0) = 2〈ċ(0), ċ(0)〉 < 0.

Therefore there exists ε > 0 such that Wp(t) < 0 for t ∈ (0, ε).
Using the same ideas as in the Riemannian case (cf. Chap. 3, Sect. 3.4), it is easy

to prove that the level surfaces of Wp are orthogonal to the geodesics through p.
Therefore, if cv(t) = expp(tv) is the geodesic with initial condition v ∈ Tp M , we
have

(grad Wp)cv(1) = a(v)ċv(1),

where the gradient of a function is defined as in theRiemannian case (notice, however,
that in the Lorentzian case a smooth function f decreases along the direction of
grad f if grad f is timelike). Now

〈
(grad Wp)cv(t), ċv(t)

〉 = d

dt
Wp(cv(t)) = d

dt
Wp(ctv(1))

= d

dt

(
t2Wp(cv(1))

)
= 2tWp(cv(1)),

and hence 〈
(grad Wp)cv(1), ċv(1)

〉 = 2Wp(cv(1)).

On the other hand,

〈
(grad Wp)cv(1), ċv(1)

〉 = 〈a(v)ċv(1), ċv(1)〉
= a(v)〈v, v〉 = a(v)Wp(cv(1)).

We conclude that a(v) = 2, and therefore

(grad Wp)cv(1) = 2ċv(1).

Consequently, grad Wp is tangent to geodesics through p, being future-pointing on
future-directed geodesics.

Suppose that Wp(t) < 0. Then
(
grad Wp

)
c(t) is timelike future-pointing, and so

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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Ẇ (t) =
〈(
grad Wp

)
c(t) , ċ(t)

〉
< 0,

as ċ(t) is also timelike future-pointing [cf. Exercise2.2(2)]. We conclude that we
must have Wp(t) < 0 for all t ∈ [0, 1]. In particular, Wp(q) = Wp(1) < 0, and
hence there exists a future-directed timelike geodesic connecting p to q.

To prove assertion (3), let us see first that I +(p) ⊂ J+(p). If q ∈ I +(p), then q is
the limit of a sequence of points qn ∈ I +(p). By (2), qn = expp(vn)with vn ∈ Tp M
timelike future-pointing. Since expp is a diffeomorphism, vn converges to a causal
future-pointing vector v ∈ Tp M , and so q = expp(v) can be reached from p by a

future-directed causal geodesic. The converse inclusion J+(p) ⊂ I +(p) holds in
general (cf. Proposition 7.2).

Finally, (4) is obvious from (3) and the fact that expp is a diffeomorphism onto
V . �

This local behavior can be used to prove the following global result.

Proposition 7.2 Let (M, g) be a time-oriented spacetime and p ∈ M. Then:

(1) I +(p) is open;
(2) J+(p) ⊂ I +(p);
(3) I +(p) = int J+(p)
(4) if r ∈ J+(p) and q ∈ I +(r) then q ∈ I +(p);
(5) if r ∈ I +(p) and q ∈ J+(r) then q ∈ I +(p).

Proof Exercise7.10(2). �

The generalized twin paradox [cf. Exercise2.2(8)] also holds locally for general
spacetimes. More precisely, we have the following statement:

Proposition 7.3 Let (M, g) be a time-oriented spacetime, p0 ∈ M and V ⊂ M
a geodesically convex open neighborhood of p0. The spacetime (V, g) obtained by
restricting g to V satisfies the following property: if p, q ∈ V with q ∈ I +(p), c is
the timelike geodesic connecting p to q and γ is any timelike curve connecting p to
q, then τ (γ) ≤ τ (c), with equality if and only if γ is a reparameterization of c.

Proof Any timelike curve γ : [0, 1] → V satisfying γ(0) = p, γ(1) = q can be
written as

γ(t) = expp(r(t)n(t)),

for t ∈ [0, 1], where r(t) ≥ 0 and 〈n(t), n(t)〉 = −1. We have

γ̇(t) = (expp)∗ (ṙ(t)n(t)+ r(t)ṅ(t)) .

Since 〈n(t), n(t)〉 = −1, we have 〈ṅ(t), n(t)〉 = 0, and consequently ṅ(t) is tangent
to the level surfaces of the function v �→ 〈v, v〉. We conclude that

γ̇(t) = ṙ(t)Xγ(t) + Y (t),
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where X is the unit tangent vector field to timelike geodesics through p and
Y (t) = r(t)(expp)∗ṅ(t) is tangent to the level surfaces of Wp (hence orthogonal
to Xγ(t)). Consequently,

τ (γ) =
1∫

0

∣∣〈ṙ(t)Xγ(t) + Y (t), ṙ(t)Xγ(t) + Y (t)
〉∣∣ 12 dt

=
1∫

0

(
ṙ(t)2 − |Y (t)|2

) 1
2

dt

≤
1∫

0

ṙ(t)dt = r(1) = τ (c),

where we have used the facts that γ is timelike, ṙ(t) > 0 for all t ∈ [0, 1] (as γ̇ is
future-pointing) and τ (c) = r(1) (as q = expp(r(1)n(1))). It should be clear that
τ (γ) = τ (c) if and only if |Y (t)| ≡ 0 ⇔ Y (t) ≡ 0 (Y (t) is spacelike or zero) for
all t ∈ [0, 1], implying that n is constant. In this case, γ(t) = expp(r(t)n) is, up to
reparameterization, the geodesic through p with initial condition n ∈ Tp M . �

There is also a local property characterizing null geodesics.

Proposition 7.4 Let (M, g) be a time-oriented spacetime, p0 ∈ M and V ⊂ M
a geodesically convex open neighborhood of p0. The spacetime (V, g) obtained by
restricting g to V satisfies the following property: if for p, q ∈ V there exists a
future-directed null geodesic c connecting p to q and γ is a causal curve connecting
p to q then γ is a reparameterization of c.

Proof Since p and q are connected by a null geodesic, we conclude from Proposi-
tion 7.1 that q ∈ J+(p) \ I +(p). Let γ : [0, 1] → V be a causal curve connecting p
to q. Thenwemust have γ(t) ∈ J+(p)\ I +(p) for all t ∈ [0, 1], since γ(t0) ∈ I +(p)
implies γ(t) ∈ I +(p) for all t > t0 (see Proposition 7.2). Consequently, we have

〈(
grad Wp

)
γ(t) , γ̇(t)

〉
= 0,

where Wp was defined in the proof of Proposition 7.1. The formula

(grad Wp)cv(1) = 2ċv(1),

whichwas proved for timelike geodesics cv with initial condition v ∈ Tp M , must also
hold for null geodesics (by continuity).Hence grad Wp is tangent to the null geodesics
ruling J+(p) \ I +(p) and future-pointing. Since γ̇(t) is also future-pointing, we
conclude that γ̇ is proportional to grad Wp [cf. Exercise2.2(8)], and therefore γ must
be a reparameterization of a null geodesic (which must be c). �
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Corollary 7.5 Let (M, g) be a time-oriented spacetime and p ∈ M. If q ∈ J+
(p) \ I +(p) then any future-directed causal curve connecting p to q must be a
reparameterized null geodesic. �

For physical applications, it is important to require that the spacetime satisfies rea-
sonable causality conditions. The simplest of these conditions excludes time travel,
i.e. the possibility of a particle returning to an event in its past history.

Definition 7.6 A spacetime (M, g) is said to satisfy the chronology condition if it
does not contain closed timelike curves.

This condition is violated by compact spacetimes:

Proposition 7.7 Any compact spacetime (M, g) contains closed timelike curves.

Proof Taking if necessary the time-orientable double covering [cf. Exercise7.10(1)],
we can assume that (M, g) is time-oriented. Since I +(p) is an open set for any
p ∈ M , it is clear that {I +(p)}p∈M is an open cover of M . If M is compact, we
can obtain a finite subcover {I +(p1), . . . , I +(pN )}. Now if p1 ∈ I +(pi ) for i �= 1
then I +(p1) ⊂ I +(pi ), and we can exclude I +(p1) from the subcover. Therefore,
we can assume without loss of generality that p1 ∈ I +(p1), and hence there exists
a closed timelike curve starting and ending at p1. �

A stronger restriction on the causal behavior of the spacetime is the following:

Definition 7.8 A spacetime (M, g) is said to be stably causal if there exists a global
time function, i.e. a smooth function t : M → R such that grad(t) is timelike.

In particular, a stably causal spacetime is time-orientable. We choose the time
orientation defined by − grad(t), so that t increases along future-directed time-
like curves. Notice that this implies that no closed timelike curves can exist,
i.e. any stably causal spacetime satisfies the chronology condition. In fact, any small
perturbation of a stably causal spacetime still satisfies the chronology condition
[cf. Exercise7.10(4)].

Let (M, g) be a time-oriented spacetime. A smooth future-directed causal curve
c : (a, b) → M (with possibly a = −∞ or b = +∞) is said to be future-
inextendible if limt→b c(t) does not exist. The definition of a past-inextendible
causal curve is analogous. The future domain of dependence of S ⊂ M is the set
D+(S) of all events p ∈ M such that any past-inextendible causal curve starting at p
intersects S. Therefore any causal influence on an event p ∈ D+(S) had to register
somewhere in S, and one can expect that what happens at p can be predicted from
data on S. Similarly, the past domain of dependence of S is the set D−(S) of all
events p ∈ M such that any future-inextendible causal curve starting at p intersects
S. Therefore any causal influence of an event p ∈ D−(S) will register somewhere
in S, and one can expect that what happened at p can be retrodicted from data on S.
The domain of dependence of S is simply the set D(S) = D+(S) ∪ D−(S).

Let (M, g) be a stably causal spacetime with time function t : M → R. The level
sets Sa = t−1(a) are said to be Cauchy hypersurfaces if D(Sa) = M . Spacetimes
for which this happens have particularly good causal properties.
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Definition 7.9 A stably causal spacetime possessing a time function whose level
sets are Cauchy hypersurfaces is said to be globally hyperbolic.

Notice that the future and past domains of dependence of the Cauchy hypersur-
faces Sa are D+(Sa) = t−1([a,+∞)) and D−(Sa) = t−1((−∞, a]).
Exercise 7.10

(1) (Time-orientable double covering) Using ideas similar to those of Exer-
cise 8.6(9) in Chap.1, show that if (M, g) is a non-time-orientable Lorentzian
manifold then there exists a time-orientable double covering, i.e. a time-
orientable Lorentzian manifold (M, g) and a local isometry π : M → M such
that every point in M has two preimages by π. Use this to conclude that the
only compact surfaces which admit a Lorentzian metric are the torus T 2 and
the Klein bottle K 2.

(2) Let (M, g) be a time-oriented spacetime and p ∈ M . Show that:

(a) I +(p) is open;
(b) J+(p) is not necessarily closed;
(c) J+(p) ⊂ I +(p);
(d) I +(p) = int J+(p)
(e) if r ∈ J+(p) and q ∈ I +(r) then q ∈ I +(p);
(f) if r ∈ I +(p) and q ∈ J+(r) then q ∈ I +(p);
(g) it may happen that I +(p) = M .

(3) Consider the 3-dimensional Minkowski spacetime (R3, g), where

g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy.

Let c : R → R
3 be the curve c(t) = (t, cos t, sin t). Show that although ċ(t) is

null for all t ∈ R we have c(t) ∈ I +(c(0)) for all t > 0. What kind of motion
does this curve represent?

(4) Let (M, g) be a stably causal spacetime and h an arbitrary symmetric (2, 0)-
tensor field with compact support. Show that for sufficiently small |ε| the tensor
field gε := g + εh is still a Lorentzian metric on M , and (M, gε) satisfies the
chronology condition.

(5) Let (M, g) be the quotient of the 2-dimensional Minkowski spacetime by the
discrete group of isometries generated by the map f (t, x) = (t + 1, x + 1).
Show that (M, g) satisfies the chronology condition, but there exist arbitrarily
small perturbations of (M, g) [in the sense of Exercise7.10(4)] which do not.

(6) Let (M, g) be a time-oriented spacetime and S ⊂ M . Show that:

(a) S ⊂ D+(S);
(b) D+(S) is not necessarily open;
(c) D+(S) is not necessarily closed.

(7) Let (M, g) be the 2-dimensional spacetime obtained by removing the positive
x-semi-axis of Minkowski 2-dimensional spacetime (cf. Fig. 6.8). Show that:

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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Fig. 6.8 Stably causal but not globally hyperbolic spacetime

(a) (M, g) is stably causal but not globally hyperbolic;
(b) there exist points p, q ∈ M such that J+(p) ∩ J−(q) is not compact;
(c) there exist points p, q ∈ M with q ∈ I +(p) such that the supremum of the

lengths of timelike curves connecting p to q is not attained by any timelike
curve.

(8) Let (�, h) be a 3-dimensional Riemannian manifold. Show that the spacetime
(M, g) = (R ×�,−dt ⊗ dt + h) is globally hyperbolic if and only if (�, h)
is complete.

(9) Show that the following spacetimes are globally hyperbolic:

(a) the Minkowski spacetime;
(b) the FLRW spacetimes;
(c) the region {r > 2m} of Schwarzschild spacetime;
(d) the region {r < 2m} of Schwarzschild spacetime.

(10) Let (M, g) be a global hyperbolic spacetimewithCauchy hypersurface S. Show
that M is diffeomorphic to R × S.

6.8 Hawking Singularity Theorem

Aswe have seen in Sects. 6.5 and 6.6, both the Schwarzschild solution and the FLRW
cosmological models display singularities, beyondwhich timelike and null geodesics
cannot be continued.

Definition 8.1 A spacetime (M, g) is said to be singular if it is not geodesically
complete.

It was once thought that the examples above were singular due to their high degree
of symmetry, and that more realistic spacetimes would be nonsingular. Following
Hawking and Penrose [Pen65, Haw67, HP70], we will show that this is not the case:
any sufficiently small perturbation of these solutions will still be singular.
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The question of whether a given Riemannian manifold is geodesically complete
is settled by the Hopf–Rinow theorem. Unfortunately, this theorem does not hold
in Lorentzian geometry (essentially because one cannot use the metric to define a
distance function). For instance, compact manifolds are not necessarily geodesically
complete [cf. Exercise8.12(1)], and the exponential map is not necessarily surjective
in geodesically complete manifolds [cf. Exercise8.12(2)].

Let (M, g) be a globally hyperbolic spacetime and S a Cauchy hypersurface with
future-pointing unit normal vector field n. Let cp be the timelike geodesic with initial
condition n p for each point p ∈ S. We define a smooth map exp : U → M on an
open set U ⊂ R × S containing {0} × S as exp(t, p) = cp(t).

Definition 8.2 The critical values of exp are said to be conjugate points to S.

Loosely speaking, conjugate points are points where geodesics starting orthogo-
nally at nearby points of S intersect.

Let q = exp(t0, p) be a point not conjugate to S, and let (x1, x2, x3) be local
coordinates on S around p . Then (t, x1, x2, x3) are local coordinates on some open
set V � q. Since ∂

∂t is the unit tangent field to the geodesics orthogonal to S, we

have g00 =
〈
∂
∂t ,

∂
∂t

〉
= −1. On the other hand, we have

∂g0i

∂t
= ∂

∂t

〈
∂

∂t
,
∂

∂xi

〉
=
〈
∂

∂t
,∇ ∂

∂t

∂

∂xi

〉

=
〈
∂

∂t
,∇ ∂

∂xi

∂

∂t

〉
= 1

2

∂

∂xi

〈
∂

∂t
,
∂

∂t

〉
= 0

for i = 1, 2, 3, and, since g0i = 0 on S, we have g0i = 0 on V . Therefore the
surfaces of constant t are orthogonal to the geodesics tangent to ∂

∂t . For this reason,
(t, x1, x2, x3) is said to be a synchronized coordinate system. On this coordinate
system we have

g = −dt ⊗ dt +
3∑

i, j=1

γi j dxi ⊗ dx j ,

where the functions

γi j :=
〈
∂

∂xi
,
∂

∂x j

〉

form a positive definite matrix. Since the vector fields ∂
∂xi can always be defined

along cp, the matrix (γi j ) is also well defined along cp, even at points where the
synchronized coordinate system breaks down, i.e. at points which are conjugate to
S. These are the points for which γ(t) := det

(
γi j (t)

)
vanishes, since only then will{

∂
∂t ,

∂
∂x1
, ∂
∂x2
, ∂
∂x3

}
fail to be linearly independent. (In fact the vector fields ∂

∂xi are

Jacobi fields along cp—see Exercise 4.8(6) in Chap.3).

http://dx.doi.org/10.1007/978-3-319-08666-8_3


300 6 Relativity

It is easy to see that

�0
00 = �i

00 = 0 and �i
0 j =

3∑
k=1

γikβk j ,

where (γi j ) = (γi j )
−1 and βi j = 1

2
∂γi j
∂t [cf. Exercise8.12(4)]. Consequently,

R00 =
3∑

i=1

R i
i00 =

3∑
i=1

⎛
⎝∂�

i
00

∂xi
− ∂�i

i0

∂t
+

3∑
j=1

�
j
00�

i
i j −

3∑
j=1

�
j
i0�

i
0 j

⎞
⎠

= − ∂

∂t

⎛
⎝

3∑
i, j=1

γi jβi j

⎞
⎠−

3∑
i, j,k,l=1

γ jkγilβkiβl j .

(cf. Chap. 4, Sect. 6.1). The quantity

θ :=
3∑

i, j=1

γi jβi j

appearing in this expression is called the expansion of the synchronized observers,
and has an important geometric meaning:

θ = 1

2
tr

(
(γi j )

−1 ∂

∂t
(γi j )

)
= 1

2

∂

∂t
log γ = ∂

∂t
log γ

1
2 .

Here we have used the formula

(log(det A))′ = tr
(

A−1A′)

which holds for any smooth matrix function A : R → GL(n) [cf. Example 7.1(4) in
Chap.1]. Therefore the expansion yields the variation of the 3-dimensional volume
element measured by synchronized observers. More importantly for our purposes,
we see that a singularity of the expansion indicates a zero of γ, i.e. a conjugate point
to S.

Definition 8.3 A spacetime (M, g) is said to satisfy the strong energy condition if
Ric(V, V ) ≥ 0 for any timelike vector field V ∈ X(M).

By the Einstein equation, this is equivalent to requiring that the reduced energy-
momentum tensor T satisfies T (V, V ) ≥ 0 for any timelike vector field V ∈ X(M).
In the case of a pressureless fluid with rest density function ρ ∈ C∞(M) and unit
velocity vector field U ∈ X(M), this requirement becomes

http://dx.doi.org/10.1007/978-3-319-08666-8_4
http://dx.doi.org/10.1007/978-3-319-08666-8_1
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ρ

(
〈U, V 〉2 + 1

2
〈V, V 〉

)
≥ 0,

or, since the term in brackets is always positive [cf. Exercis8.12(5)], simply ρ ≥ 0.
For more complicated matter models, the strong energy condition produces equally
reasonable restrictions.

Proposition 8.4 Let (M, g) be a globally hyperbolic spacetime satisfying the strong
energy condition, S ⊂ M a Cauchy hypersurface and p ∈ S a point where θ = θ0 <
0. Then the geodesic cp contains at least a point conjugate to S, at a distance of at
most − 3

θ0
to the future of S (assuming that it can be extended that far).

Proof Since (M, g) satisfies the strong energy condition, we have R00 = Ric(
∂
∂t ,

∂
∂t

)
≥ 0 on any synchronized frame. Consequently,

∂θ

∂t
+

3∑
i, j,k,l=1

γ jkγilβkiβl j ≤ 0

on such a frame. Choosing an orthonormal basis (where γi j = δi j ) and using the
inequality

(tr A)2 ≤ n tr(At A),

which holds for square n × n matrices (as a simple consequence of the Cauchy–
Schwarz inequality), it is easy to show that

3∑
i, j,k,l=1

γ jkγilβkiβl j =
3∑

i, j=1

β j iβi j = tr
(
(βi j )(βi j )

t) ≥ 1

3
θ2.

Consequently θ must satisfy
∂θ

∂t
+ 1

3
θ2 ≤ 0.

Integrating this inequality yields

1

θ
≥ 1

θ0
+ t

3
,

and hence θ must blow up at a value of t no greater than − 3
θ0
. �

Proposition 8.5 Let (M, g) be a globally hyperbolic spacetime, S a Cauchy hyper-
surface, p ∈ M and c a timelike geodesic through p orthogonal to S. If there exists
a conjugate point between S and p then c does not maximize length (among the
timelike curves connecting S to p).
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Fig. 6.9 Proof of Proposition 8.5

Proof Wewill offer only a sketch of the proof. Let q be the first conjugate point along
c between S and p. Then we can use a synchronized coordinate system around the
portion of c between S and q. Since q is conjugate to S, there exists another geodesic
c̃, orthogonal to S, with the same length t (q), which (approximately) intersects c at
q. Let V be a geodesically convex neighborhood of q, let r ∈ V be a point along c̃
between S and q, and let s ∈ V be a point along c between q and p (cf. Fig. 6.9).
Then the piecewise smooth timelike curve obtained by following c̃ between S and
r , the unique geodesic in V between r and s, and c between s and p, connects S to
p and has strictly bigger length than c (by the generalized twin paradox). This curve
can be easily smoothed while retaining bigger length than c. �

Proposition 8.6 Let (M, g) be a globally hyperbolic spacetime, S a Cauchy hyper-
surface and p ∈ D+(S). Then D+(S) ∩ J−(p) is compact.

Proof Let us define a simple neighborhood U ⊂ M to be a geodesically convex
open set diffeomorphic to an open ball whose boundary is a compact submanifold of
a larger geodesically convex open set (therefore ∂U is diffeomorphic to S3 and U is
compact). It is clear that simple neighborhoods form a basis for the topology of M .
Also, it is easy to show that any open cover {Vα}α∈A has a countable, locally finite
refinement {Un}n∈N by simple neighborhoods [cf. Exercise8.12(7)].

If A = D+(S)∩ J−(p) were not compact, there would exist a countable, locally
finite open cover {Un}n∈N of A by simple neighborhoods not admitting any finite
subcover. Take qn ∈ A ∩ Un such that qm �= qn for m �= n. The sequence {qn}n∈N
cannot have accumulation points, since any point in M has a neighborhood intersect-
ing only finite simple neighborhoods Un . In particular, each simple neighborhood
Un contains only a finite number of points in the sequence (as U n is compact).

Set p1 = p. Since p1 ∈ A, we have p1 ∈ Un1 for some n1 ∈ N. Let qn �∈ Un1 .
Since qn ∈ J−(p1), there exists a future-directed causal curve cn connecting qn to
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p = p1

p2

p3

Un1

Un2

Fig. 6.10 Proof of Proposition 8.6

p1. This curve will necessarily intersect ∂Un1 . Let r1,n be an intersection point. Since
Un1 contains only a finite number of points in the sequence {qn}n∈N, there will exist
infinite intersection points r1,n . As ∂Un1 is compact, these will accumulate to some
point p2 ∈ ∂Un1 (cf. Fig. 6.10).

Because U n1 is contained in a geodesically convex open set V , which can be
chosen so that v �→ (π(v), exp(v)) is a diffeomorphism onto V × V , we have p2 ∈
J−(p1): if γ1,n is the unique causal geodesic connecting p1 to r1,n , parameterized by
the global time function t : M → R, then the subsequence of {γ1,n} corresponding to
a convergent subsequence of {r1,n} will converge to a causal geodesic γ1 connecting
p1 to p2. If S = t−1(0) then we have t (r1,n) ≥ 0, implying that t (p2) ≥ 0 and hence
p2 ∈ A. Since p2 �∈ Un1 , there must exist n2 ∈ N such that p2 ∈ Un2 .

Since Un2 contains only a finite number of points in the sequence {qn}n∈N, an
infinite number of curves cn must intersect ∂Un2 to the past of r1,n . Let r2,n be the
intersection points. As ∂Un2 is compact, {r2,n} must accumulate to some point p3 ∈
∂Un2 . Because U n2 is contained in a geodesically convex open set, p3 ∈ J−(p2):
if γ2,n is the unique causal geodesic connecting r1,n to r2,n , parameterized by the
global time function, then the subsequence of {γ2,n} corresponding to convergent
subsequences of both {r1,n} and {r2,n} will converge to a causal geodesic connecting
p2 to p3. Since J−(p2) ⊂ J−(p1) and t (r2,n) ≥ 0 ⇒ t (p3) ≥ 0, we have p3 ∈ A.

Iterating the procedure above, we can construct a sequence {pi }i∈N of points in
A satisfying pi ∈ Uni with ni �= n j if i �= j , such that pi is connected to pi+1 by a
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causal geodesic γi . It is clear that γi cannot intersect S, for t (pi+1) > t (pi+2) ≥ 0.
On the other hand, the piecewise smooth causal curve obtained by joining the curves
γi can easily be smoothed into a past-directed causal curve starting at p1 which does
not intersect S. Finally, such a curve is inextendible: it cannot converge to any point,
as {pi }i∈N cannot accumulate. But since p1 ∈ D+(S), this curve would have to
intersect S. Therefore A must be compact. �
Corollary 8.7 Let (M, g) be a globally hyperbolic spacetime and p, q ∈ M. Then

(i) J+(p) is closed;
(ii) J+(p) ∩ J−(q) is compact.

Proof Exercise8.12(8). �
Proposition 8.6 is a key ingredient in establishing the following fundamental

result.

Theorem 8.8 Let (M, g) be a globally hyperbolic spacetime with Cauchy hyper-
surface S, and p ∈ D+(S). Then, among all timelike curves connecting p to S,
there exists a timelike curve with maximal length. This curve is a timelike geodesic,
orthogonal to S.

Proof Consider the set T (S, p) of all timelike curves connecting S to p. Since
we can always use the global time function t : M → R as a parameter, these
curves are determined by their images, which are compact subsets of the compact set
A = D+(S) ∩ J−(p). As is well known (cf. [Mun00]), the set C(A) of all compact
subsets of A is a compact metric space for the Hausdorff metric dH , defined as
follows: if d : M × M → R is a metric yielding the topology of M ,

dH (K , L) = inf{ε > 0 | K ⊂ Uε(L) and L ⊂ Uε(K )},

where Uε(K ) is a ε-neighborhood of K for the metric d. Therefore, the closure
C(S, p) := T (S, p) is a compact subset of C(A). It is not difficult to show that
C(S, p) can be identified with the set of continuous causal curves connecting S to
p (a continuous curve c : [0, t (p)] → M is said to be causal if c(t2) ∈ J+(c(t1))
whenever t2 > t1).

The length function τ : T (S, p) → R is defined by

τ (c) :=
t (p)∫

0

|ċ(t)|dt.

This function is upper semicontinuous, i.e. continuous for the topology

O = {(−∞, a) | −∞ ≤ a ≤ +∞}

in R. Indeed, let c ∈ T (S, p) be parameterized by its arclength u. For a sufficiently
small ε > 0, the function u can be extended to the ε-neighborhood Uε(c) in such a
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p

cγ

S u = 0

u = τ(c)

Uε(c)

Fig. 6.11 Proof of Theorem 8.8

way that its level hypersurfaces are spacelike and orthogonal to c, that is, − grad u is
timelike and coincides with ċ on c (cf. Fig. 6.11). If γ ∈ T (S, p) is in the open ball
Bε(c) ⊂ C(A) for the Hausdorff metric dH then we can use u as a parameter, thus
obtaining

du(γ̇) = 1 ⇔ 〈γ̇, grad u〉 = 1.

Therefore γ̇ can be decomposed as

γ̇ = 1

〈grad u, grad u〉 grad u + X,

where X is spacelike and orthogonal to grad u, and so

|γ̇| =
∣∣∣∣

1

〈grad u, grad u〉 + 〈X, X〉
∣∣∣∣
1
2

.

Given δ > 0, we can choose ε > 0 sufficiently small so that

− 1

〈grad u, grad u〉 <
(
1 + δ

2τ (c)

)2

on the ε-neighborhood Uε(c) (as 〈grad u, grad u〉 = −1 along c). We have
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τ (γ) =
t (p)∫

0

∣∣∣∣
dγ

dt

∣∣∣∣ dt =
t (p)∫

0

|γ̇|du

dt
dt =

τ (c)∫

u(γ∩S)

|γ̇| du,

where we have to allow for the fact that c is not necessarily orthogonal to S, and so
the initial point of γ is not necessarily at u = 0 (cf. Fig. 6.11). Consequently,

τ (γ) =
τ (c)∫

u(γ∩S)

∣∣∣∣−
1

〈grad u, grad u〉 − 〈X, X〉
∣∣∣∣
1
2

du

<

τ (c)∫

u(γ∩S)

(
1 + δ

2τ (c)

)
du =

(
1 + δ

2τ (c)

)
(τ (c)− u(γ ∩ S)) .

Choosing ε sufficiently small so that

|u| <
(

1

τ (c)
+ 2

δ

)−1

on S ∩ Uε(c), we obtain τ (γ) < τ (c)+ δ, proving upper semicontinuity in T (S, p).
As a consequence, the length function can be extended to C(S, p) through

τ (c) = lim
ε→0

sup{τ (γ) | γ ∈ Bε(c) ∩ T (S, p)}

(as for ε > 0 sufficiently small the supremum will be finite). Also, it is clear that if
c ∈ T (S, p) then the upper semicontinuity of the length forces the two definitions
of τ (c) to coincide. The extension of the length function to C(S, p) is trivially upper
semicontinuous: given c ∈ C(S, p) and δ > 0, let ε > 0 be such that τ (γ) < τ (c)+ δ

2
for any γ ∈ B2ε(c) ∩ T (S, p). Then it is clear that τ (c′) ≤ τ (c)+ δ

2 < τ (c)+ δ for
any c′ ∈ Bε(c).

Finally, we notice that the compact sets of R for the topology O are the sets
with a maximum. Therefore, the length function attains a maximum at some point
c ∈ C(S, p). All that remains to be seen is that the maximum is also attained at a
smooth timelike curve γ. To do so, cover c with finitely many geodesically convex
neighborhoods and choose points p1, . . . , pk in c such that p1 ∈ S, pk = p and the
portion of c between pi−1 and pi is contained in a geodesically convex neighborhood
for all i = 2, . . . , k. It is clear that there exists a sequence cn ∈ T (S, p) such that
cn → c and τ (cn) → τ (c). Let ti = t (pi ) and pi,n be the intersection of cn with
t−1(ti ). Replace cn by the sectionally geodesic curve γn obtained by joining pi−1,n to
pi,n in the corresponding geodesically convex neighborhood. Then τ (γn) ≥ τ (cn),
and therefore τ (γn) → τ (c). Since each sequence pi,n converges to pi , γn converges
to the sectionally geodesic curve γ obtained by joining pi−1 to pi (i = 2, . . . , k),
and it is clear that τ (γn) → τ (γ) = τ (c). Therefore γ is a point of maximum for the
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length. Finally, we notice that γ must be smooth at the points pi , for otherwise we
could increase its length by using the generalized twin paradox. Therefore γ must
be a timelike geodesic. Using a synchronized coordinate system around γ(0), it is
clear that γ must be orthogonal to S, for otherwise it would be possible to increase
its length. �

We have now all the necessary ingredients to prove the Hawking singularity
theorem:

Theorem 8.9 (Hawking) Let (M, g) be a globally hyperbolic spacetime satisfying
the strong energy condition, and suppose that the expansion satisfies θ ≤ θ0 < 0 on
a Cauchy hypersurface S. Then (M, g) is singular.

Proof We will show that no future-directed timelike geodesic orthogonal to S can
be extended to proper time greater than τ0 = − 3

θ0
to the future of S. Suppose

that this was not so. Then there would exist a future-directed timelike geodesic c
orthogonal to S, parameterized by proper time, defined in an interval [0, τ0 + ε]
for some ε > 0. Let p = c(τ0 + ε). According to Theorem 8.8, there would exist a
timelike geodesic γ withmaximal length connecting S to p, orthogonal to S. Because
τ (c) = τ0 +ε, we would necessarily have τ (γ) ≥ τ0 +ε. Proposition 8.4 guarantees
that γ would develop a conjugate point at a distance of at most τ0 to the future of S,
and Proposition 8.5 states that γ would cease to be maximizing beyond this point.
Therefore we arrive at a contradiction. �

Remark 8.10 It should be clear that (M, g) is singular if the condition θ ≤ θ0 < 0
on a Cauchy hypersurface S is replaced by the condition θ ≥ θ0 > 0 on S. In this
case, no past-directed timelike geodesic orthogonal to S can be extended to proper
time greater than τ0 = 3

θ0
to the past of S.

Example 8.11

(1) The FLRW models are globally hyperbolic [cf. Exercise7.10(9)], and satisfy the
strong energy condition (as ρ > 0). Moreover,

βi j = ȧ

a
γi j ⇒ θ = 3ȧ

a
.

Assume that the model is expanding at time t0. Then θ = θ0 = 3ȧ(t0)
a(t0)

> 0 on
the Cauchy hypersurface S = {t = t0}, and hence Theorem 8.9 guarantees that
this model is singular to the past of S (i.e. there exists a big bang). Moreover,
Theorem 8.9 implies that this singularity is generic: any sufficiently small pertur-
bation of an expanding FLRWmodel satisfying the strong energy condition will
also be singular. Loosely speaking, any expanding universe must have begun at
a big bang.

(2) The region {r < 2m} of the Schwarzschild solution is globally hyperbolic
[cf. Exercise7.10(9)], and satisfies the strong energy condition (as Ric = 0).
The metric can be written in this region as



308 6 Relativity

g = −dτ ⊗ dτ +
(
2m

r
− 1

)
dt ⊗ dt + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ,

where

τ =
2m∫

r

(
2m

u
− 1

)− 1
2

du.

Therefore the inside of the black hole can be pictured as a cylinderR× S2 whose
shape is evolving in time. As r → 0, the S2 contracts to a singularity, with the
t-direction expanding. Since

3∑
i, j=1

βi j dxi ⊗ dx j = dr

dτ

(
− m

r2
dt ⊗ dt + rdθ ⊗ dθ + r sin2 θdϕ⊗ dϕ

)
,

we have

θ =
(
2m

r
− 1

)− 1
2
(
2

r
− 3m

r2

)
.

Therefore we have θ = θ0 < 0 on any Cauchy hypersurface S = {r = r0} with
r0 <

3m
2 , and hence Theorem 8.9 guarantees that the Schwarzschild solution is

singular to the future of S. Moreover, Theorem 8.9 implies that this singularity
is generic: any sufficiently small perturbation of the Schwarzschild solution
satisfying the strong energy condition will also be singular. Loosely speaking,
once the collapse has advanced long enough, nothing can prevent the formation
of a singularity.

Exercise 8.12

(1) (Clifton–Pohl torus) Consider the Lorentzian metric

g := 1

u2 + v2
(du ⊗ dv + dv ⊗ du)

on M = R
2 \{0}. The Lie group Z acts freely and properly on M by isometries

through
n · (u, v) = (2nu, 2nv),

and this determines a Lorentzian metric g on M = M/Z ∼= T 2. Show that
(M, g) is not geodesically complete (although M is compact).
(Hint: Look for null geodesics with v ≡ 0).

(2) (2-dimensional Anti-de Sitter universe)ConsiderR3 with the pseudo-Riemannian
metric

g = −du ⊗ du − dv ⊗ dv + dw ⊗ dw,

and let (M, g) be the universal covering of the submanifold
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t

x

(−π, 0)

(π, 0)

π
2−π

2

Fig. 6.12 The exponential map is not surjective in the 2-dimensional Anti-de Sitter universe

H = {(u, v, w) ∈ R
3 | u2 + v2 − w2 = 1)}

with the induced metric. Show that:

(a) a model for (M, g) is M = R × (−π
2 ,

π
2

)
and

g = 1

cos2 x
(−dt ⊗ dt + dx ⊗ dx)

(Fig. 6.12; hence (M, g) is not globally hyperbolic);
(b) (M, g) is geodesically complete, but expp is not surjective for any p ∈ M

(Hint: Notice that each isometry of (R3, g) determines an isometry of (M, g));
(c) there exist points p, q ∈ M connected by arbitrarily long timelike curves

[cf. Exercise8.12(10)].

(3) By analogy with Exercise 3.3(5) in Chap.3, we can define a left-invariant
Lorentzian metric on the Lie group H = R × R

+ of Exercise 7.17(3) in
Chap.1 as

g := 1

x2
(−dt ⊗ dt + dx ⊗ dx).

http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_1
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Show that this metric is not geodesically complete. (Remark: This cannot happen in

Riemannian geometry – cf. Exercise 5.8(4) in Chap.3).
(4) Show that the Christoffel symbols for the metric

g = −dt ⊗ dt +
3∑

i, j=1

γi j dxi ⊗ dx j ,

satisfy

�0
00 = �i

00 = 0 and �i
0 j =

3∑
k=1

γikβk j ,

where (γi j ) = (γi j )
−1 and βi j = 1

2
∂γi j
∂t .

(5) Show that if U is a unit timelike vector field and V is any timelike vector field
then 〈U, V 〉2 + 1

2 〈V, V 〉 is a positive function.
(6) Show that a spacetime (M, g) whose matter content is a pressureless fluid

with rest density function ρ ∈ C∞(M) and a cosmological constant � ∈ R

[cf. Exercise6.1(7)] satisfies the strong energy condition if and only if ρ ≥ 0
and ρ ≥ �

4π .
(7) Let (M, g) be a spacetime. Show that any open cover {Vα}α∈A has a countable,

locally finite refinement {Un}n∈N by simple neighborhoods (i.e. ∪n∈NUn =
∪α∈AVα, for each n ∈ N there exists α ∈ A such that Un ⊂ Vα, and each point
p ∈ M has a neighborhood which intersects only finite simple neighborhoods
Un).

(8) Prove Corollary 8.7.
(9) Let (M, g) be a globally hyperbolic spacetime, t : M → R a global time

function, S = t−1(0) a Cauchy hypersurface, p ∈ D+(S) and A = D+(S) ∩
J−(p). Show that the closure C(S, p) := T (S, p) in the space C(A) of all
compact subsets of A with the Hausdorff metric can be identified with the set
of continuous causal curves connecting S to p (parameterized by t).

(10) Let (M, g) be a globally hyperbolic spacetime and p, q ∈ M with q ∈ I +(p).
Show that among all timelike curves connecting p to q there exists a timelike
curve with maximal length, which is a timelike geodesic.

(11) Consider two events p and q on Schwarzschild spacetime corresponding to
the beginning and the end of a complete circular orbit of radius r [cf. Exer-
cise5.1(2)]. Show that the corresponding timelike geodesic is not maximal.

(12) (Myers theorem) Use ideas similar to those leading to the proof of Theorem 8.9
to prove the Myers theorem: if (M, 〈·, ·〉) is a complete Riemannian manifold
whoseRicci curvature satisfies Ric(X, X) ≥ ε〈X, X〉 for some ε > 0 then M is
compact. Can these ideas be used to prove a singularity theorem in Riemannian
geometry?

(13) Explain why the Hawking singularity theorem does not apply to each of the
following spacetimes:

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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(a) Minkowski spacetime;
(b) Einstein universe [cf. Exercise6.1(8)];
(c) de Sitter universe [cf. Exercise6.1(8)];
(d) 2-dimensional Anti-de Sitter universe [cf. Exercise8.12(2)].

6.9 Penrose Singularity Theorem

Let (M, g) be a globally hyperbolic spacetime, S a Cauchy hypersurface with future-
pointing unit normal vector field n, and� ⊂ S a compact 2-dimensional submanifold
with unit normal vector field ν in S. Let cp be the null geodesic with initial condition
n p + νp for each point p ∈ �. We define a smooth map exp : (−ε, ε) × � → M
for some ε > 0 as exp(r, p) = cp(r).

Definition 9.1 The critical values of exp are said to be conjugate points to �.

Loosely speaking, conjugate points are points where geodesics starting orthogo-
nally at nearby points of � intersect [see also Exercise 4.8(6) in Chap. 3].

Let q = exp(r0, p) be a point not conjugate to�. If ϕ is a local parameterization
of � around p, then we can construct a system of local coordinates (u, r, x2, x3) on
some open set V � q by using the map

(u, r, x2, x3) �→ exp(r,ψu(ϕ(x
2, x3))),

where ψu is the flow along the timelike geodesics orthogonal to S and the map
exp : (−ε, ε)× ψu(�) → M is defined as above.

Since ∂
∂r is tangent to null geodesics, we have grr =

〈
∂
∂r ,

∂
∂r

〉
= 0. On the other

hand, we have

∂grμ

∂r
= ∂

∂r

〈
∂

∂r
,
∂

∂xμ

〉
=
〈
∂

∂r
,∇ ∂

∂r

∂

∂xμ

〉

=
〈
∂

∂r
,∇ ∂

∂xμ

∂

∂r

〉
= 1

2

∂

∂xμ

〈
∂

∂r
,
∂

∂r

〉
= 0,

for μ = 0, 1, 2, 3. Since gru = −1 and gr2 = gr3 = 0 on ψu(�), we have gru = −1
and gr2 = gr3 = 0 on V . Therefore the metric is written in this coordinate system as

g = αdu ⊗ du − du ⊗ dr − dr ⊗ du +
3∑

i=2

βi

(
du ⊗ dxi + dxi ⊗ du

)
+

3∑
i, j=2

γi j dxi ⊗ dx j .

http://dx.doi.org/10.1007/978-3-319-08666-8_3


312 6 Relativity

Since

det

⎛
⎜⎜⎝
α −1 β2 β3
−1 0 0 0
β2 0 γ22 γ23
β3 0 γ32 γ33

⎞
⎟⎟⎠ = − det

(
γ22 γ23
γ32 γ33

)
,

we see that the functions

γi j :=
〈
∂

∂xi
,
∂

∂x j

〉

form a positive definite matrix, and so g induces a Riemannian metric on the
2-dimensional surfaces exp(r,ψu(�)), which are then spacelike. Since the vector
fields ∂

∂xi can always be defined along cp, the matrix (γi j ) is also well defined along
cp, even at points where the coordinate system breaks down, i.e. at points which are
conjugate to �. These are the points for which γ := det

(
γi j
)
vanishes, since only

then will
{
∂
∂u ,

∂
∂r ,

∂
∂x2
, ∂
∂x3

}
fail to be linearly independent. (In fact the vector fields

∂
∂xi are Jacobi fields along cp – see Exercise 4.8(6) in Chap. 3).

It is easy to see that

�u
ur = �u

rr = �u
ri = �r

rr = �i
rr = 0 and �i

r j =
3∑

k=2

γikβk j ,

where (γi j ) = (γi j )
−1 and βi j = 1

2
∂γi j
∂r [cf. Exercise9.9(1)]. Consequently,

Rrr = R u
urr +

3∑
i=2

R i
irr =

3∑
i=2

⎛
⎝−∂�i

ir

∂r
−

3∑
j=2

�
j
ir�

i
r j

⎞
⎠

= − ∂

∂r

⎛
⎝

3∑
i, j=2

γi jβi j

⎞
⎠−

3∑
i, j,k,l=2

γ jkγilβkiβl j .

(cf. Chap. 4, Sect. 4.1). The quantity

θ :=
3∑

i, j=2

γi jβi j

appearing in this expression is called the expansion of the null geodesics, and has
an important geometric meaning:

θ = 1

2
tr

(
(γi j )

−1 ∂

∂r
(γi j )

)
= 1

2

∂

∂r
log γ = ∂

∂r
log γ

1
2 ,

http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_4
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where γ := det
(
γi j
)
. Therefore the expansion yields the variation of the area element

of the spacelike 2-dimensional surfaces exp(r,ψu(�)). More importantly for our
purposes, we see that a singularity of the expansion indicates a zero of γ, i.e. a
conjugate point to ψu(�).

Definition 9.2 A spacetime (M, g) is said to satisfy the null energy condition if
Ric(V, V ) ≥ 0 for any null vector field V ∈ X(M).

It is easily seen that this condition is implied by (but weaker than) the strong
energy condition. By the Einstein equation, it is equivalent to requiring that the
reduced energy-momentum tensor T satisfies T (V, V ) ≥ 0 for any null vector field
V ∈ X(M). In the case of a pressureless fluid with rest density function ρ ∈ C∞(M)
and unit velocity vector field U ∈ X(M), this requirement becomes

ρ 〈U, V 〉2 ≥ 0 ⇔ ρ ≥ 0.

For more complicated matter models, the null energy condition produces equally
reasonable restrictions.

Proposition 9.3 Let (M, g) be a globally hyperbolic spacetime satisfying the null
energy condition, S ⊂ M a Cauchy hypersurface, � ⊂ S a compact 2-dimensional
submanifold with unit normal vector fieldν in S and p ∈ � a point where θ = θ0 < 0.
Then the null geodesic cp contains at least a point conjugate to �, at an affine
parameter distance of at most − 2

θ0
to the future of � (assuming that it can be

extended that far).

Proof Since (M, g) satisfies thenull energy condition,wehave Rrr = Ric
(
∂
∂r ,

∂
∂r

)
≥

0. Consequently,

∂θ

∂r
+

3∑
i, j,k,l=2

γ jkγilβkiβl j ≤ 0.

Choosing an orthonormal basis (where γi j = δi j ), and using the inequality

(tr A)2 ≤ n tr(At A)

for square n × n matrices, it is easy to show that

3∑
i, j,k,l=2

γ jkγilβkiβl j =
3∑

i, j=2

β j iβi j = tr
(
(βi j )(βi j )

t) ≥ 1

2
θ2.

Consequently θ must satisfy
∂θ

∂r
+ 1

2
θ2 ≤ 0.
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Integrating this inequality yields

1

θ
≥ 1

θ0
+ r

2
,

and hence θ must blow up at a value of r no greater than − 2
θ0
. �

We define the chronological future and the causal future of the compact surface
� as

I +(�) =
⋃
p∈�

I +(p) and J+(�) =
⋃
p∈�

J+(p)

(with similar definitions for the chronological past and the causal past of �).
It is clear that I +(�), being the union of open sets, is itself open, and also that
J+(�) ⊂ I +(�) and I +(�) = int J+(�). On the other hand, it is easy to generalize
Proposition 8.6 (and consequently Corollary 8.7) to the corresponding statements
with compact surfaces replacing points [cf. Exercise9.9(2)]. In particular, J+(�) is
closed. Therefore

∂ J+(�) = ∂ I +(�) = J+(�) \ I +(�),

and so, by a straightforward generalization ofCorollary 7.5, every point in this bound-
ary can be reached from a point in � by a future-directed null geodesic. Moreover,
this geodesic must be orthogonal to �. Indeed, at � we have

∂

∂u
= n and

∂

∂r
= n + ν,

and so the metric takes the form

g = −du ⊗ du − du ⊗ dr − dr ⊗ du +
3∑

i, j=2

γi j dxi ⊗ dx j .

If c : I ⊂ R → M is a future-directed null geodesic with c(0) ∈ �, its initial tangent
vector

ċ(0) = u̇
∂

∂u
+ ṙ

∂

∂r
+

3∑
i=2

ẋ i ∂

∂xi
= (u̇ + ṙ)n + ṙν +

3∑
i=2

ẋ i ∂

∂xi

must satisfy

u̇(u̇ + 2ṙ) =
3∑

i, j=2

γi j ẋ i ẋ j .
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Since c is future-directed we must have u̇ + ṙ > 0. On the other hand, by choosing
the unit normal to � on S to be either ν or −ν, we can assume ṙ ≥ 0. If c is not
orthogonal to � we then have

3∑
i, j=2

γi j ẋ i ẋ j > 0 ⇒ u̇(u̇ + 2ṙ) > 0 ⇒ u̇ > 0.

Now the region where u > 0 and r ≥ 0 is clearly a subset of I +(�), since its points
can be reached from� by a sectionally smooth curve composed of an arc of timelike
geodesic and an arc of null geodesic. Therefore, we see that if c is not orthogonal to
� then c(t) ∈ I +(�) for all t > 0.

Even future-directed null geodesics orthogonal to� may eventually enter I +(�).
A sufficient condition for this to happen is given in the following result.

Proposition 9.4 Let (M, g) be a globally hyperbolic spacetime, S a Cauchy hyper-
surface with future-pointing unit normal vector field n, � ⊂ S a compact 2-
dimensional submanifold with unit normal vector field ν in S, p ∈ �, cp the null
geodesic through p with initial condition n p + νp and q = cp(r) for some r > 0. If
cp has a conjugate point between p and q then q ∈ I +(�).

Proof We will offer only a sketch of the proof. Let s be the first conjugate point
along cp between p and q. Since q is conjugate to p, there exists another null
geodesic γ starting at � which (approximately) intersects cp at s. The piecewise
smooth null curve obtained by following γ between � and s, and cp between s and
q is a causal curve but not a null geodesic. This curve can be easily smoothed while
remaining causal and nongeodesic, and so by the generalization of Corollary 7.5 we
have q ∈ I +(�) (see Fig. 6.13). �

Definition 9.5 Let (M, g) be a globally hyperbolic spacetime and S a Cauchy hyper-
surface with future-pointing unit normal vector field n. A compact 2-dimensional
submanifold � ⊂ S with unit normal vector field ν in S is said to be trapped if the
expansions θ+ and θ− of the null geodesics with initial conditions n + ν and n − ν
are both negative everywhere on �.

We have now all the necessary ingredients to prove the Penrose singularity theorem.

Theorem 9.6 (Penrose) Let (M, g) be a connected globally hyperbolic spacetime
with a noncompact Cauchy hypersurface S, satisfying the null energy condition. If
S contains a trapped surface � then (M, g) is singular.

Proof Let t : M → R be a global time function such that S = t−1(0). The integral
curves of grad t , being timelike, intersect S exactly once, and ∂ I +(�) at most once.
This defines a continuous injective map π : ∂ I +(�) → S, whose image is open.
Indeed, if q = π(p), then all points in some neighborhood of q are images of points
in ∂ I +(�), as otherwise there would be a sequence qn ∈ S with qn → q such that
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p

q

s

S

Σ

γ

cp

Fig. 6.13 Proof of Proposition 9.4

the integral curves of grad t through qn would not intersect ∂ I +(�). Letting rn be
the intersections of these curves with the Cauchy hypersurface t−1(t (r)), for some
point r to the future of p along the integral line of grad t , we would have rn → r , and
so rn ∈ I +(�) for sufficiently large n (as I +(�) is open), leading to a contradiction.

Since � is trapped (and compact), there exists θ0 < 0 such that the expansions
θ+ and θ− of the null geodesics orthogonal to � both satisfy θ+, θ− ≤ θ0. We will
show that there exists a future-directed null geodesic orthogonal to � which cannot
be extended to an affine parameter greater than r0 = − 2

θ0
to the future of�. Suppose

that this was not so. Then, according to Proposition 9.3, any null geodesic orthogonal
to � would have a conjugate point at an affine parameter distance of at most r0 to
the future of�, after which it would be in I +(�), by Proposition 9.4. Consequently,
∂ I +(�) would be a (closed) subset of the compact set

exp+([0, r0] ×�) ∪ exp−([0, r0] ×�)

(where exp+ and exp− refer to the exponentialmap constructed using the unit normals
ν and −ν), hence compact. Therefore the image of π would also be compact, hence
closed as well as open. Since M , and therefore S, are connected, the image of π
would be S, which would then be homeomorphic to ∂ I +(�). But S is noncompact
by hypothesis, and we reach a contradiction. �

Remark 9.7 It should be clear that (M, g) is singular if the condition of existence
of a trapped surface is replaced by the condition of existence of an anti-trapped
surface, that is, a compact surface� ⊂ S such that the expansions of null geodesics
orthogonal to � are both positive. In this case, there exists a past-directed null
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geodesic orthogonal to � which cannot be extended to an affine parameter time
greater than r0 = 2

θ0
to the past of �.

Example 9.8

(1) The region {r < 2m} of the Schwarzschild solution is globally hyperbolic
[cf. Exercise7.10(9)], and satisfies the null energy condition (as Ric = 0).
Since r (or −r ) is clearly a time function (depending on the choice of time ori-
entation), it must increase (or decrease) along any future-pointing null geodesic,
and therefore any sphere � of constant (t, r) is anti-trapped (or trapped). Since
any Cauchy hypersurface is diffeomorphic to R × S2, hence noncompact, we
conclude from Theorem 9.6 that the Schwarzschild solution is singular to past
(or future) of �. Moreover, Theorem 8.9 implies that this singularity is generic:
any sufficiently small perturbation of the Schwarzschild solution satisfying the
null energy condition will also be singular. Loosely speaking, once the collapse
has advanced long enough, nothing can prevent the formation of a singularity.

(2) The FLRW models are globally hyperbolic [cf. Exercise 7.10(9)], and satisfy
the null energy condition (as ρ > 0). Moreover, radial null geodesics satisfy

dr

dt
= ±1

a

√
1 − kr2.

Therefore, if we start with a sphere� of constant (t, r) and follow the orthogonal
null geodesics along the directionof increasingor decreasing r ,weobtain spheres
whose radii ar satisfy

d

dt
(ar) = ȧr + aṙ = ȧr ±

√
1 − kr2.

Assume that the model is expanding, with the big bang at t = 0, and spatially
noncompact (in particular k �= 1). Then, for sufficiently small t > 0, the sphere
� is anti-trapped, and hence Theorem 9.6 guarantees that this model is singular
to the past of� (i.e. there exists a big bang). Moreover, Theorem 9.6 implies that
this singularity is generic: any sufficiently small perturbation of an expanding,
spatially noncompact FLRWmodel satisfying the null energy condition will also
be singular. Loosely speaking, any expanding universe must have begun at a big
bang.

Exercise 9.9

(1) Show that the Christoffel symbols for the metric

g = αdu ⊗ du − du ⊗ dr − dr ⊗ du +
3∑

i=2

βi

(
du ⊗ dxi + dxi ⊗ du

)

+
3∑

i, j=2

γi j dxi ⊗ dx j
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satisfy

�u
ur = �u

rr = �u
ri = �r

rr = �i
ur = �i

rr = 0 and �i
r j =

3∑
k=2

γikβk j ,

where (γi j ) = (γi j )
−1 and βi j = 1

2
∂γi j
∂r .

(2) Let (M, g) be a globally hyperbolic spacetime with Cauchy hypersurfaces S0
and S1 satisfying S1 ⊂ D+(S0), and � ⊂ S1 a compact surface. Show that:

(a) D+(S0) ∩ J−(�) is compact;
(b) J−(�) is closed.

(3) Explain why the Penrose singularity theorem does not apply to each of the
following spacetimes:

(a) Minkowski spacetime;
(b) Einstein universe [cf. Exercise6.1(8)];
(c) de Sitter universe [cf. Exercise6.1(8)];
(d) 2-dimensional Anti-de Sitter universe [cf. Exercise8.12(2)].

6.10 Notes

6.10.1 Bibliographical Notes

There are many excellent texts on general relativity, usually containing also the rele-
vant differential and Lorentzian geometry. These range from introductory [Sch02] to
more advanced [Wal84] to encyclopedic [MTW73]. Amoremathematically oriented
treatment can be found in [BEE96, O’N83] ([GHL04] also contains a brief glance
at pseudo-Riemannian geometry). For more information on special relativity and
the Lorentz group see [Nab92, Oli02]. Causality and the singularity theorems are
treated in greater detail in [Pen87, HE95, Nab88], and in the original papers [Pen65,
Haw67, HP70].
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Chapter 7
Solutions to Selected Exercises

7.1 Chapter 1

7.1.1 Section 1.1

(1) In all these examples conditions (i) and (iii) in the definition of a topological
manifold are inherited from the ambient space, and so we just have to worry
about (ii).

(a) D2 is an open subset of R
2 so it is trivially a topological 2-manifold.

(b) M = S2\{p} is a topological manifold of dimension 2. Treating R
2 as the

complex plane, and assuming without loss of generality that p is the north
pole of the sphere, we obtain a simple homeomorphism ϕ : R2 ∼= C→ M
by taking

ϕ(z) =
(

2x

1+ |z|2 ,
2y

1+ |z|2 ,
|z|2 − 1

1+ |z|2
)

where z = x + i y. The inverse of this map is called the stereographic
projection [cf. Exercise 2.5(7)].

(c) N = S2\{p, q} is also a topological 2-manifold. We can assume, without
loss of generality, that p and q are the north and south poles of the sphere and
then ϕ defined in (b) is a homeomorphism between the open set R

2\{0} ∼=
C\{0} and N .

(d) The cylinder V = {(x, y) ∈ R
3 | x2 + y2 = 1} is a topological 2-manifold.

For each point p := (x, y, z) ∈ V we take the normal vector n := (x, y, 0)
and consider a plane generated by two coordinate axis that are not parallel
to n. Then there is a neighborhood of p in V homeomorphic to its projection
on this plane.

(e) The cone S := {(x, y) | x2+ y2 = z2} is not a topological manifold. If that
were the case, there would exist a connected open set W in S, containing
the origin, homeomorphic to an open subset U ⊂ R

2. Then W\{0} would
© Springer International Publishing Switzerland 2014
L. Godinho and J. Natário, An Introduction to Riemannian Geometry, Universitext,
DOI 10.1007/978-3-319-08666-8_7
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b
b

b

a1 a1

a1a1

a2

a2a2

a2

∼=

Fig. 7.1 Klein bottle with a Möbius band deleted

be homeomorphic to U\{q} (where q is the preimage of the origin). But
W\{0} is disconnected, while U\{q} is connected, and hence they cannot
be homeomorphic.

(3) It is easy to show that the Klein bottle with a Möbius band deleted is again
homeomorphic to a Möbius band (see Fig. 7.1).

(5) (a) If the new vertex is on a face, then it must be connected to the three vertices
of that face. In doing this, the number of vertices has increased by 1, the
number of edges has increased by 3 and the number of faces has increased
by 2 (as one face has been divided into three faces). Therefore V − E + F
has changed by 1− 3+ 2 = 0. If the new vertex is on an edge, then it must
be connected to the two vertices opposite to that edge. In doing this, the
number of vertices has increased by 1, the number of edges has increased by
3 (as two new edges have been created and one edge has been divided into
two) and the number of faces has increased by 2 (as two faces have been
divided into four faces). Again, V − E + F does not change.

(b) For the triangulation of S2 determined by the tetrahedron, one has V = 4,
E = 6 and F = 4, and so χ(S2) = 4− 6+ 4 = 2.

(c) A decomposition of T 2 into triangles can be obtained by adding a diagonal
to the square whose sides are identified. This is not exactly a triangulation
(because the intersection of the two triangles consists of all three edges), but
it can be turned into one by adding vertices, and so, by (a), it can be used to
compute the Euler characteristic. Allowing for the identifications, we have
V = 1, E = 3, F = 2, and so χ(T 2) = 1− 3+ 2 = 0.

(d) Same as for T 2.
(e) Same as for T 2, except that now the identifications yield V = 2, and so

χ(RP2) = 2− 3+ 2 = 1.
(f) Consider triangulations of M and N . Deleting a triangle on each surface and

identifying their edges yields M#N with a triangulation. Since 3 vertices get
identified, the total number of vertices goes down by 3, and the same is true
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for the total number of edges. The total number of faces goes down by two,
corresponding to the two faces which were deleted. Therefore χ(M#N ) =
χ(M)+ χ(N )− 2.

7.1.2 Section 1.2

(4) (ϕ−12 ◦ϕ1)(x) = x
1
3 , which is not differentiable at the origin. By Exercise 2.5(1),

the two atlases are not equivalent, as {(R,ϕ1), (R,ϕ2)} is not an atlas.
(7) Let us write the point p ∈ Sn ⊂ R

n+1 as p = (x, xn+1), with x ∈ R
n and

xn+1 ∈ R. The line through N and p is given parametrically by

c(t) = (t x, 1+ t (xn+1 − 1)),

and intersects the hyperplane xn+1 = 0 at t = 1
1−xn+1 . Therefore,

y = πN (p) = x

1− xn+1 .

The squared norm of this equation yields

‖y‖2 = ‖x‖2
(1− xn+1)2

= 1− (xn+1)2

(1− xn+1)2
= 1+ xn+1

1− xn+1

(where we have used ‖p‖2 = ‖x‖2 + (xn+1)2 = 1); equivalently,

xn+1 = ‖y‖2 − 1

‖y‖2 + 1
.

Therefore the relation between x and y can be written as

x = 2y

1+ ‖y‖2 ,

and consequently

p = πN
−1(y) =

(
2y

1+ ‖y‖2 ,
‖y‖2 − 1

‖y‖2 + 1

)
.

Analogously, we have

y = πS(p) = x

1+ xn+1

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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and

p = πS
−1(y) =

(
2y

1+ ‖y‖2 ,
1− ‖y‖2
1+ ‖y‖2

)
.

Thus the map πS ◦ πN
−1, which maps πN (Sn\{N , S}) = R

n\{0} to
πS(Sn\{N , S}) = R

n\{0}, is given by

πS ◦ πN
−1(y) = y

‖y‖2 ,

and hence is differentiable on its domain. The same is true for

πN ◦ πS
−1(y) = y

‖y‖2 .

Therefore {(Rn,π−1N ), (Rn,π−1S )} is an atlas for Sn .

To see that this atlas is equivalent to the atlas on Example 2.3(5). we have
to compute πN ◦ ϕ+i , πN ◦ ϕ−i , πS ◦ ϕ+i , πS ◦ ϕ−i and their inverses for
i = 1, . . . , n + 1. There are essentially two different cases, corresponding to
i = n + 1 and i �= n + 1. As an example, we have

πN ◦ ϕ+n+1(x) = πN (x, g(x)) = x

1− g(x) =
x

1− (1− ‖x‖2) 12
,

which is differentiable on its domain U\{0}. The other case is done similarly.
(9) (a) It is clear that RPn =⋃n+1

1=1 Vi . Moreover, if ϕi (x1, . . . , xn) ∈ Vj then

ϕi (x
1, . . . , xn) = [x1, . . . , x j , . . . , xi−1, 1, xi , . . . , xn]

=
[

x1

x j
, . . . , 1, . . . ,

xi−1

x j
,
1

x j
,

xi

x j
, . . . ,

xn

x j

]
,

and hence

ϕ−1j ◦ ϕi (x
1, . . . , xn) =

(
x1

x j
, . . . ,

xi−1

x j
,
1

x j
,

xi

x j
, . . . ,

xn

x j

)

is differentiable on its domain.
(b) The quotients

(
R

n+1\{0}) /∼ and Sn/∼ are in bijection because any line
through the origin in R

n+1 intersects Sn in two antipodal points. The two
topologies are also the same, because an open set of R

n+1\{0} formed by
lines through the origin intersects Sn on an open set. To check that the two
atlases are equivalent we need to check that the maps ϕ j

−1 ◦ (π ◦ ϕ+i ) and
their inverses are differentiable for i, j = 1, . . . , n + 1. As an example, we
have

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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ϕn+1−1 ◦ (π ◦ ϕ+n+1)(x) = ϕn+1−1(π(x, g(x))) = ϕn+1−1([x, g(x)])
= ϕn+1−1

([
x

g(x)
, 1

])
= x

g(x)
,

which is differentiable on its domain U . The other cases are done similarly.

7.1.3 Section 1.3

(2) Given an open set W in N we want to show that f −1(W ) ⊂ M is open. By
Exercise 2.5(2), we just need to show that, for every parameterization (U,ϕ) of
M , the set Ũ := ϕ−1 (

f −1(W )
) ⊂ R

m is open (with m = dim M). Considering
an atlas {(Vβ,ψβ)} for N , we have

Ũ = ϕ−1
(

f −1(W )
)
= ϕ−1

⎛
⎝⋃

β

f −1(W ∩ ψβ(Vβ))
⎞
⎠

=
⋃
β

ϕ−1
(

f −1
(
ψβ

(
ψ−1β (W )

)))

=
⋃
β

(ψ−1β ◦ f ◦ ϕ)−1
(
ψ−1β (W )

)
.

Since W is open we know that ψ−1β (W ) is an open set in R
n (n = dim N ). Then,

since the map ψ−1β ◦ f ◦ ϕ is C∞ and hence continuous, the set (ψ−1β ◦ f ◦
ϕ)−1

(
ψ−1β (W )

)
is also open, implying that Ũ is open.

(4) We use the atlas {(Rn,π−1N ), (Rn,π−1S )} for Sn [cf. Exercise 2.5(7)]. To check
that f is differentiable we must show that the four maps πN ◦ f ◦πN

−1, πS ◦ f ◦
πN
−1,πN ◦ f ◦πS

−1 andπS◦ f ◦πS
−1 are differentiable. Since f (S) = N , we see

that the first map is defined on πN ( f −1(πN
−1(Rn))) = πN ( f −1(Sn\{N })) =

πN (Sn\{S}) = R
n\{0} (wherewehave slightly abused the notation in the interest

of clarity). We have

πN ◦ f ◦ πN
−1(y) = πN ◦ f

(
2y

1+ ‖y‖2 ,
‖y‖2 − 1

‖y‖2 + 1

)

= πN

(
− 2y

1+ ‖y‖2 ,
1− ‖y‖2
‖y‖2 + 1

)
= − y

‖y‖2 ,

which is differentiable on R
n\{0}. The other three maps are similarly shown to

be differentiable on their domains.

http://dx.doi.org/10.1007/978-3-319-08666-8_2
http://dx.doi.org/10.1007/978-3-319-08666-8_2
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(6) (a) The identity map is not a diffeomorphism because îd(x) := ϕ−12 ◦ id ◦
ϕ1(x) = x

1
3 is not differentiable at the origin.

(b) The map f is a diffeomorphism since f̂ := ϕ−12 ◦ f ◦ϕ1 = id and f̂ −1 :=
ϕ−11 ◦ f −1 ◦ ϕ2 = id are C∞.

7.1.4 Section 1.4

(1) Consider a parameterization ϕ : U ⊂ R
n → M around p and take the operators(

∂
∂xi

)
p
defined in the text. If

∑n
i=1 αi

(
∂
∂xi

)
p
= 0 for some α1, . . . ,αn ∈ R

then (
n∑

i=1
αi

(
∂

∂xi

)

p

)
( f ) = 0

for every function f : M → R differentiable at p. If, in particular, we take the
coordinate functions of ϕ−1, i.e. the functions f j := (ϕ−1) j : ϕ(U )→ R, then
f̂ j (x1, . . . , xn) = x j and so

0 =
(

n∑
i=1

αi
(
∂

∂xi

)

p

)
( f j ) =

n∑
i=1

αi
(
∂x j

∂xi

)
(ϕ−1(p)) = α j ,

implying that the α j are all equal to 0.
(4) Let v ∈ Tp M be given by v = ċ(0) for some curve c : (−ε, ε)→ M . Then

(d(g ◦ f ))p(v) = d

dt

∣∣∣∣
t=0

(g ◦ f )(c(t))

= d

dt

∣∣∣∣
t=0

g(( f ◦ c)(t)) = (dg) f (p)(w),

where w ∈ T f (p)N is the tangent vector to the differentiable curve ( f ◦ c) :
(−ε, ε)→ N at t = 0, i.e.

w = d

dt

∣∣∣∣
t=0

f (c(t)) = (d f )p(v).

Therefore
(d(g ◦ f ))p(v) = (dg) f (p)((d f )p(v))

for all v ∈ Tp M .
(6) Identifying TN Sn and TS Sn with the subspace of R

n+1 given by xn+1 = 0, we
have
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(d f )N (v) = d

dt

∣∣∣∣
t=0

f (c(t)) = d

dt

∣∣∣∣
t=0

(−c(t)) = −ċ(0) = −v

(where c : (−ε, ε)→ Sn satisfies ċ(0) = v), i.e. (d f )N is simply multiplication
by −1. Alternatively, using the parameterizations (Rn,πS

−1) and (Rn,πN
−1)

at N and S, we have

f̂ (y) = πN ◦ f ◦ πS
−1(y) = πN ◦ f

(
2y

1+ ‖y‖2 ,
1− ‖y‖2
1+ ‖y‖2

)

= πN

(
− 2y

1+ ‖y‖2 ,
‖y‖2 − 1

1+ ‖y‖2
)
= −y.

The Jacobian matrix of this map at πS(N ) = 0 is (d f̂ )0 = − id. Therefore if
y are the local coordinates corresponding to the first parameterization and z are
the local coordinates corresponding to the second parameterization, we have

(d f )N

(
v1

∂

∂y1
+ · · · + vn ∂

∂yn

)
= −v1 ∂

∂z1
− · · · − vn ∂

∂zn
.

(7) Let c : (−ε, ε)→ W be a curve in W ⊂ M such that c(0) = p and let v := ċ(0).
Then on the coordinate chart x : W → R

n ,

(d f )pv = d( f ◦ c)

dt
(0) =

n∑
i=1

ẋ i (0)
∂ f̂

∂xi
(x(p)),

where in local coordinates we write ĉ(t) = (x1(t), . . . , xn(t)). On the other
hand,

(dx j )pv = d(x j ◦ c)

dt
(0) =

n∑
i=1

ẋ i (0)
∂x j

∂xi
(x(p)) = ẋ j (0)

and the result follows.
(8) Clearly ⋃

α

�α(Uα × R
n) =

⋃
p ∈⋃

αϕα(Uα)

Tp M = TM.

Moreover, the topology defined on TM by these parameterizations is easily seen
to beHausdorff and second countable. Finally, forW = �α(Uα)∩�β(Uβ) �= ∅,
the overlap maps

�−1β ◦�α : �−1α (W )→ �−1β (W )

and
�−1α ◦�β : �−1β (W )→ �−1α (W )
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are given by

(�−1β ◦�α)(x, v) =
(
(ϕ−1β ◦ ϕα)(x), (d(ϕ−1β ◦ ϕα))x (v)

)

and
(�−1α ◦�β)(x, v) =

(
(ϕ−1α ◦ ϕβ)(x), (d(ϕ−1α ◦ ϕβ))x (v)

)

and so they are differentiable (In the formulae above we use the standard iden-
tification TxR

n ∼= R
n).

7.1.5 Section 1.5

(3) If M is a submanifold of N of dimension m then the inclusion map i : M ↪→ N
is an embedding. In particular, the map i is an immersion and then, by the local
immersion theorem, for every point p ∈ W there are parameterizations (U,ϕ)
and (V,ψ) around p on M and f (p) on N for which

î(x1, . . . , xm):= (ψ−1 ◦ i ◦ ϕ)(x1, . . . , xm)= (x1, . . . , xm , 0, . . . , 0)∈ R
n .

Taking an open set W ⊂ N contained inψ((U×R
n−m)∩V ) and the coordinate

system x : W → R
n given by x = ψ−1, we have

M ∩W = {q ∈ W | xm+1(q) = · · · = xn(q) = 0}.

Conversely, if for every p ∈ M there is a coordinate system x p : Wp → R
n

around p on N such that

M ∩Wp = {q ∈ Wp | xm+1
p (q) = · · · = xn

p(q) = 0},

then, taking the standard projection π onto the first m factors, the map

x̃ p : M ∩Wp → R
m := π ◦ x p

is a coordinate system around p on M for the subspace topology on M . Indeed,
x̃ p is a homeomorphism onto its image:

(i) if A is an open subset of x̃ p(M ∩ Wp) then (A × R
n−m) ∩ x p(Wp) is an

open subset of x p(Wp) and so x̃−1p (A) = x−1p ((A×R
n−m)∩ x p(Wp))∩M

is an open set of M for the subspace topology;
(ii) if B is an open subset of M ∩Wp then there is an open set of N , B ′ ⊂ Wp

such that B = B ′ ∩ M and so

x̃ p(B) = π
(

x p(B
′) ∩ {x ∈ R

n | xm+1 = · · · = xn = 0}
)
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is an open subset of R
m .

Moreover, {(̃x p(Wp), x̃−1p )}p∈M forms an atlas for M : if, for instance, L :=
Wp ∩Wq ∩ M �= ∅ and f p,q := xq ◦ x−1p : x p(Wp ∩Wq)→ xq(Wp ∩Wq) is
the corresponding overlap map on N , then the overlap map on M

x̃q ◦ x̃−1p : x̃ p(L)→ x̃q(L)

is given by

(̃xq ◦ x̃−1p )(x1, . . . , xm) = π( f p,q(x
1, . . . , xm, 0, . . . , 0)).

It is clear from the choice of coordinates that the inclusion map is an embedding.
(4) Consider the map f : Rn+1→ R given by

f (x1, . . . , xn) = (x1)2 + · · · + (xn+1)2.

Its derivative
(d f )x = 2x1dx1 + · · · + 2xn+1dxn+1

is clearly injective for x �= 0, as it is represented by the nonvanishing matrix

(
2x1 | · · · | 2xn+1)

.

Therefore, 1 is a regular value of f , and so Sn = f −1(1) is an n-dimensional
manifold (cf. Theorem 5.6). Moreover, we have

Tx Sn = ker(d f )x = {v ∈ TxR
n+1 | (d f )x (v) = 0}

= {v ∈ R
n+1 | x1v1 + · · · + xn+1vn+1 = 0}

= {v ∈ R
n+1 | 〈x, v〉 = 0},

where we have used the identification TxR
n+1 ∼= R

n+1.
(5) Let i : V → M be the inclusion map. Then f ◦ i : V → N is differentiable.

For each point p ∈ W let x p : Up → R
n (n = dim N ) be a local chart on N

such that
W ∩Up = {q ∈ Up | xk+1

p (q) = · · · = xn
p(q) = 0},

where k = dim W [cf. Exercise 5.9(3)]. The maps x̃ p : W ∩Up → R
k defined

by x̃ p(q) := (x1p(q), . . . , xk
p(q)) are local charts defining an atlas for W . Hence,

for every p ∈ W the maps

x̃ p ◦ f ◦ i : ( f ◦ i)−1
(
W ∩Up

)→ R
k

are differentiable, implying that f : V → W is differentiable.

http://dx.doi.org/10.1007/978-3-319-08666-8_5
http://dx.doi.org/10.1007/978-3-319-08666-8_5
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7.1.6 Section 1.6

(2) Let X,Y, Z ∈ X(M).

(a) Let α,β ∈ R. Then

[αX + βY, Z ] = (αX + βY ) ◦ Z − Z ◦ (αX + βY )

= α(X ◦ Z − Z ◦ X)+ β(Y ◦ Z − Z ◦ Y )

= α[X, Z ] + β[Y, Z ].

Similarly, [X,αY + βZ ] = α[X,Y ] + β[X, Z ].
(b) We have

[X,Y ] = X ◦ Y − Y ◦ X = −(Y ◦ X − X ◦ Y ) = −[Y, X ].

(c) The Jacobi identity can be proved as follows:

[[X,Y ], Z ] + [[Y, Z ], X ] + [[Z , X ],Y ]
= (X ◦ Y − Y ◦ X) ◦ Z − Z ◦ (X ◦ Y − Y ◦ X)

+ (Y ◦ Z − Z ◦ Y ) ◦ X − X ◦ (Y ◦ Z − Z ◦ Y )

+ (Z ◦ X − X ◦ Z) ◦ Y − Y ◦ (Z ◦ X − X ◦ Z) = 0.

(d) Let f, g ∈ C∞(M). Then,

[ f X, gY ] = ( f X) ◦ (gY )− (gY ) ◦ ( f X)

= f gX ◦ Y + f (X · g)Y − g f Y ◦ X − g(Y · f )X

= f g[X,Y ] + f (X · g)Y − g(Y · f )X,

where we used Exercise 6.11(1).

(5) (a) Let f : R3→ R be a smooth function.

[X1, X2] · f = (X1 ◦ X2 − X2 ◦ X1) · f

= X1 ·
(

z
∂ f

∂x
− x

∂ f

∂z

)
− X2 ·

(
y
∂ f

∂z
− z

∂ f

∂y

)

= y
∂ f

∂x
− x

∂ f

∂y
= −X3 · f

and so [X1, X2] = −X3. Similarly, we conclude that [X1, X3] = X2 and
[X2, X3] = −X1.

(b) Let V := span{X1, X2, X3}. From (a) we know that the Lie bracket
determines a bilinear map [·, ·] : V × V → V so we conclude that
V = span{X1, X2, X3} is a Lie subalgebra of X(R3). To show that it is

http://dx.doi.org/10.1007/978-3-319-08666-8_6
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isomorphic to (R3,×) we will use that map F : V → R
3 given by

F(a1X1 + a2X2 + a3X3) = (a1,−a2, a3).

This map is clearly bijective so we just have to show that it is also a Lie
algebra homomorphism. For that we see that

F([X1, X2]) = F(−X3) = (0, 0,−1) = (1, 0, 0)× (0,−1, 0) = F(X1)× F(X2);
F([X1, X3]) = F(X2) = (0,−1, 0) = (1, 0, 0)× (0, 0, 1) = F(X1)× F(X3);
F([X2, X3]) = F(−X1) = (−1, 0, 0) = (0,−1, 0)× (0, 0, 1) = F(X2)× F(X3).

(c) Let q ∈ R
3. We know that ψ1,t (q) is an integral curve of X1 at q. Hence,

dψ1,t (q)

dt
= (X1)ψ1,t (q) and ψ1,0(q) = q.

Consequently,

ψ̇1
1,t (q) = X1

1(ψ1,t (q)) = 0;
ψ̇2
1,t (q) = X2

1(ψ1,t (q)) = −ψ3
1,t (q);

ψ̇3
1,t (q) = X3

1(ψ1,t (q)) = ψ2
1,t (q).

Hence, ψ1
1,t = C , ψ̈2

1,t = −ψ̇3
1,t = −ψ2

1,t , and so

ψ2
1,t = A cos t + B sin t and ψ3

1,t = A sin t − B cos t,

where A, B and C are functions of q = (x, y, z). Since ψ1,0(x, y, z) =
(x, y, z) we have C = x , A = y and B = −z and we conclude that

ψ1,t (x, y, z) = (x, y cos t − z sin t, y sin t + z cos t) .

Similarly, we see that

ψ2,t (x, y, z) = (x cos t + z sin t, y,−x sin t + z cos t)

and
ψ3,t (x, y, z) = (x cos t − y sin t, x sin t + y cos t, z) .

(d) We will show that ψ1, π2
◦ ψ2, π2

�= ψ2, π2
◦ ψ1, π2

. The other combinations are
similar.

(
ψ1, π2

◦ ψ2, π2

)
(x, y, z) = ψ1, π2

(z, y,−x) = (z, x, y)

while
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(
ψ2, π2

◦ ψ1, π2

)
(x, y, z) = ψ2, π2

(x,−z, y) = (y,−z,−x).

(6) Let X ∈ X(R) be given by X = x2 d
dx . The equation defining its integral

curves is
ẋ = x2

and so the integral curve at x0 ∈ R is cx0(t) = − 1
t+C , where C is a function

of x0. Since cx0(0) = − 1
C , we conclude that C = − 1

x0
, implying that the

local flow of X at y is the map

F : W × (−ε, ε)→ R

(x, t) �→ x

1− t x
,

where W = (a, b) is an open interval containing y. For instance if a > 0,
the local flow can only be extended to W × (−∞, 1b ). We conclude that X
is not a complete vector field since we can never extend the local flow to
R× R.

(10) (a) If c : I → M is an integral curve of X then ċ(t) = Xc(t) for all t ∈ I .
Therefore, the curve γ : I → N defined by γ(t) := f (c(t)) satisfies

γ̇(t) = (d f )c(t)ċ(t) = (d f )c(t)Xc(t) = Y f (c(t)) = Yγ(t),

i.e. γ is an integral curve of Y .
(b) We just showed that if X and Y are f -related then f (FX (p, t)) =

FY ( f (p), t) for all (p, t) ∈ M × R for which both sides are defined.
On the other hand, if this relation holds then differentiating at t = 0 yields
(d f )p X p = Y f (p) for each p ∈ M .

(12) (a) We have

(L X Y )p = d

dt

(
(dψ−t )ψt (p)Yψt (p)

)
|t=0
,

and hence

(L X Y )p · f = d

dt

(
Yψt (p) · ( f ◦ ψ−t )

)
|t=0

for any differentiable function f ∈ C∞(M). Let us define

H(v, v) := Yψv(p) · ( f ◦ ψ−v).

We have
∂H

∂v
(0, 0) = d

dv
(Yψv(p) · f )

|v=0
= d

dv
(Y · f )(ψv(p))|v=0

= (X · (Y · f ))(p)
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and

∂H

∂v
(0, 0) = d

dv
(Yp · ( f ◦ ψ−v))|v=0 = Yp ·

(
d

dv
( f ◦ ψ−v)|v=0

)

= Yp · (−X · f ) = −(Y · (X · f ))(p).

Consequently,

(L X Y )p · f = d

dt
(H(t, t))

|t=0
= ∂H

∂v
(0, 0)+ ∂H

∂v
(0, 0)

= (X · (Y · f )− Y · (X · f ))(p) = [X,Y ]p · f

for anydifferentiable function f ∈ C∞(M), implying that L X Y = [X,Y ].
(b) We have

L X [Y, Z ] = d

dt
((ψ−t )∗[Y, Z ])

|t=0
= d

dt

[
(ψ−t )∗Y, (ψ−t )∗Z

]
|t=0

=
[

d

dt
((ψ−t )∗Y )|t=0

, Z

]
+

[
Y,

d

dt
((ψ−t )∗Z)

|t=0

]

= [L X Y, Z ] + [Y, L X Z ].

Notice that using (a) this formula can be written as

[X, [Y, Z ]] = [[X,Y ], Z ] + [Y, [X, Z ]]

(i.e. it is just the Jacobi identity).
(c) We have

L X (LY Z) = [X, [Y, Z ]] and LY (L X Z) = [Y, [X, Z ]].

Therefore,

(L X ◦ LY − LY ◦ L X )Z = [X, [Y, Z ]] − [Y, [X, Z ]]
= [X, [Y, Z ]] + [Y, [Z , X ]]
= −[Z , [X,Y ]] = [[X,Y ], Z ] = L [X,Y ]Z ,

where we have used the Jacobi identity.
(13) (a) This is an immediate consequence of Exercise 6.11(10).

(b) If ψt ◦φs = φs ◦ψt for all s, t ∈ R then, by (a), (ψt )∗Y = Y for all t ∈ R.
Therefore,

[X,Y ] = L X Y = d

dt
((ψ−t )∗Y )|t=0

= d

dt
(Y )
|t=0
= 0.

http://dx.doi.org/10.1007/978-3-319-08666-8_6
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If, on the other hand, [X,Y ] = 0 then

d

dt
((ψt )∗Y ) = d

dε
((ψt+ε)∗Y )|ε=0

= d

dε
((ψt )∗(ψε)∗Y )|ε=0

= (ψt )∗
d

dε
((ψε)∗Y )|ε=0

= −(ψt )∗L X Y = 0.

Since (ψ0)∗Y = Y , we conclude that (ψt )∗Y = Y for all t ∈ R. Therefore
ψt ◦ φs = φs ◦ ψt for all s, t ∈ R.

7.1.7 Section 1.7

(3) (a) Given two affine maps g(t) = yt + x and h(t) = wt + z, we have

(g ◦ h)(t) = g(h(t)) = g(wt + z) = ywt + yz + x .

Therefore the group operation is given by

(x, y) · (z,w) = (yz + x, yw).

The identity element is clearly e = (0, 1) (corresponding to the identity
map), and hence

(z,w) = (x, y)−1 ⇔ (yz + x, yw) = (0, 1)
⇔ (z,w) =

(
− x

y
,
1

y

)
.

Therefore the maps H × H � (g, h) �→ g · h ∈ H and H � g �→ g−1 ∈ H
are smooth, and hence H is a Lie group.

(b) Because
L(x,y)(z,w) = (yz + x, yw),

the matrix representation of (d L(x,y))(z,w) is

(d L(x,y))(z,w) =
(

y 0
0 y

)
.

Therefore X V
(x,y) has components

(
y 0
0 y

) (
ξ
η

)
=

(
yξ
yη

)
.
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(c) If

V = ξ ∂
∂x
+ η ∂

∂y
and W = ζ ∂

∂x
+ ω ∂

∂y

then
[

X V , X W
]
=

[
ξy

∂

∂x
+ ηy

∂

∂y
, ζ y

∂

∂x
+ ωy

∂

∂y

]

= (ηζ − ωξ)y ∂

∂x
.

Therefore

[V,W ] =
[

X V , X W
]
(0,1)
= (ηζ − ωξ) ∂

∂x
.

(d) The flow of X V is given by the solution of the system of ODEs

{
ẋ = ξy

ẏ = ηy

which is {
x = x0 + y0ξ(eηt−1)

η

y = y0eηt

for η �= 0 and {
x = x0 + y0ξt

y = y0

for η = 0. The exponential map is obtained by setting (x0, y0) = e = (0, 1)
and t = 1:

exp(V ) =
(
ξ(eη − 1)

η
, eη

)

for η �= 0 and
exp(V ) = (ξ, 1)

for η = 0.
(e) The multiplication of two such matrices is

(
y x
0 1

) (
w z
0 1

)
=

(
yw yz + x
0 1

)
,

which reproduces the group operation on H . Therefore H can be identified
with the corresponding subgroup of GL(2). A curve c : (−ε, ε)→ H with
c(0) = I is then given by
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c(t) =
(

y(t) x(t)
0 1

)

with x(0) = 0 and y(0) = 1, and its derivative at t = 0 is

ċ(0) =
(

ẏ(0) ẋ(0)
0 0

)
.

We conclude that h can be identified with the vector space of matrices of
the form (

η ξ
0 0

)
.

The Lie bracket must then be given by

[(
η ξ
0 0

)
,

(
ω ζ
0 0

)]
=

(
η ξ
0 0

) (
ω ζ
0 0

)
−

(
ω ζ
0 0

) (
η ξ
0 0

)

=
(
0 ηζ − ωξ
0 0

)
,

which agrees with (c). Moreover, the exponential map must be given by

exp

(
η ξ
0 0

)
=
+∞∑
k=0

1

k!
(
η ξ
0 0

)k

=
(
1 0
0 1

)
+

(
η ξ
0 0

)
+ 1

2

(
η2 ηξ
0 0

)
+ · · · ,

yielding

exp

(
η ξ
0 0

)
=

(
eη ξ(eη−1)

η

0 1

)

for η �= 0 and

exp

(
η ξ
0 0

)
=

(
1 ξ
0 1

)
,

for η = 0, which agrees with (d).
(6) (a) Clearly h(R) = R\{0} and

h(x + y) = det eA(x+y) = det (eAx eAy)

= (det eAx )(det eAy) = h(x) · h(y).

(b) Note that h(t) = f (eAt ) where f : GL(n) → R is given by f (B) =
det(B). Hence, since (eAt )′ = AeAt , we have, by Example 7.1(4), that

http://dx.doi.org/10.1007/978-3-319-08666-8_7
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h′(0) = (d f )I (A) = tr(A).

(c) Again using Example 7.1.4 we have

h′(t) = (d f )eAt (AeAt ) = det (eAt ) tr (e−At AeAt ) = h(t) tr(A).

Hence, h(t) = ketr(A) t for a constant k ∈ R. Since we know that h(0) =
det I = 1 we conclude that h(t) = etr(A) t and so det(eA) = h(1) = etr(A).

(12) (a) Let V ∈ g. We begin by showing that X V is F-related to X (d F)eV [cf.
Exercise 6.11(8)]. Indeed,

(d F)gX V
g = (d F)g(d Lg)eV = d(F ◦ Lg)eV

= d(L F(g) ◦ F)eV = (d L F(g))e(d F)eV

= X (d F)eV
F(g) ,

where F ◦ Lg = L F(g) ◦ F follows from the fact that F is a Lie group
homomorphism.
Let V,W ∈ g. Then

(d F)e[V,W ] = (d F)e[X V , X W ]e = (F∗[X V , X W ])e
= [F∗X V , F∗X W ]e = [X (d F)eV , X (d F)eW ]e
= [(d F)eV, (d F)eW ].

Here we have used the result of Exercise 6.11(9), which is easily extended
to arbitrary differentiable maps.

(b) Given g ∈ G we have F = L F(g) ◦ F ◦ Lg−1 . Consequently,

(d F)g = (d L F(g))e ◦ (d F)e ◦ (d Lg−1)g.

Since the left multiplication map is a diffeomorphism, we conclude that if
(d F)e is an isomorphism then (d F)g is an isomorphism for any g ∈ G. The
inverse function theorem then guarantees that F is a local diffeomorphism.

(c) Let U � e be an open set such that the restriction of F to U is a
diffeomorphism onto F(U ). Then for any g ∈ G the restriction of
F = L F(g)◦F ◦Lg−1 to Lg(U ) is a diffeomorphism onto its image. More-
over, it is easily seen that F−1(F(Lg(U ))) = Lg(F−1(F(U ))). Therefore
we just have to check that F−1(F(U )) is a disjoint union of open sets dif-
feomorphic to F(U ). Now F(h) ∈ F(U ) if and only if F(h) = F(h0) for
some h0 ∈ U , i.e. if and only if hh0

−1 = g ∈ ker(F). We conclude that

F−1(F(U )) =
⋃

g∈ker(F)
Lg(U ).

http://dx.doi.org/10.1007/978-3-319-08666-8_6
http://dx.doi.org/10.1007/978-3-319-08666-8_6
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On the other hand, the open sets Lg(U ) are clearly disjoint, because if
g ∈ ker(F) and h0 ∈ U then F(gh0) = F(h0), and hence gh0 can only
be on U (where F is injective) if g = e.

7.1.8 Section 1.8

(2) Let us assume that M is orientable and let us fix an orientation on M . Then, for
each p ∈ M , there exists a parameterization (U,ϕ) around p such that (dϕ)x
preserves the standard orientation of R

n at each point x ∈ U . Taking the atlas A
formed by these parameterizationswe have that the overlapmaps are orientation-
preserving and det d(ϕ−1β ◦ ϕα) > 0 on W := ϕα(Uα) ∩ ϕβ(Uβ) for every
(Uα,ϕα), (Uβ,ϕβ) ∈ A. Conversely, if there exists an atlas A for which the
overlapmaps are orientation-preserving, thenwe can choose an orientation on M
in the following way. For each p ∈ M we take a parameterization (U,ϕ) ∈ A
around p and we assign a positive sign to the ordered bases of Tp M that are
equivalent to the ordered basis {(dϕ)x ei }ni=1, where x := ϕ−1(p) and {ei }ni=1
is the standard basis of R

n . This choice of orientation does not depend on the
parameterization ϕ as all overlap maps are orientation-preserving.

(4) Let t0 ∈ I and let (U,ϕ) be a parameterization around c(t0) such that (dϕ)x
is orientation-preserving for all x ∈ U . In the corresponding local coordinates
x := ϕ−1 we have

Vi (t) =
n∑

j=1
V j

i (t)

(
∂

∂x j

)

c(t)
,

where the functions V j
i : J → R, defined on a neighborhood J ⊂ I of t0, are

smooth. Therefore the map d : J → R defined by d(t) = det(V j
i (t)) is also

smooth. Moreover, since {V1(t0), . . . , Vn(t0)} is a basis of Tc(t0)M , we either
have d(t0) > 0 or d(t0) < 0. Consequently, we will also have d(t) > 0 or
d(t) < 0 for t in a neighborhood of t0 in J . We conclude that the set of points
t ∈ I where {V1(t), . . . , Vn(t)} has positive orientation is an open subset of I ,
and so is the set of points where {V1(t), . . . , Vn(t)} has negative orientation.
Since I is connected (it is an interval), we conclude that {V1(t), . . . , Vn(t)} has
either positive orientation for all t ∈ I or negative orientation for all t ∈ I .

(5) Let c : [0, 2π] → M be the curve defined on the Möbius band M by

c(ϕ) := g(0,ϕ) = (cosϕ, sinϕ, 0),

and consider the smooth vector fields along c defined by

V1(ϕ) = ∂g

∂t
(0,ϕ) =

(
cos

(ϕ
2

)
cosϕ, cos

(ϕ
2

)
sinϕ, sin

(ϕ
2

))
;

V2(ϕ) = ∂g

∂ϕ
(0,ϕ) = (− sinϕ, cosϕ, 0).
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Since
‖V1(ϕ)‖ = ‖V2(ϕ)‖ = 1 and 〈V1(ϕ), V2(ϕ)〉 = 0

for all ϕ ∈ [0, 2π], these vector fields form a basis of Tc(ϕ)M for all ϕ ∈ [0, 2π].
Moreover, since c(0) = c(2π) = (1, 0, 0), we know that

{V1(0), V2(0)} = {(1, 0, 0); (0, 1, 0)}

and
{V1(2π), V2(2π)} = {(−1, 0, 0); (0, 1, 0)}

are two bases for T(1,0,0)M . However, the change-of-basis matrix from the first
basis to the second basis,

S =
(−1 0

0 1

)
,

has negative determinant. Therefore M cannot be orientable.
(9) (a) We begin with the observation that for each parameterization (U,ϕ) of M

there exists a parameterization (Ũ , ϕ̃)which induces the opposite orientation
on Tp M for every p ∈ ϕ(U ) (one just has to reverse the order of two of the
variables in R

n).
The maps ϕ : U → M define a topology on M , given by the basis

{ϕ(U ) | (U,ϕ) is a parameterization of M}.

That this is indeed a basis for a topology and that such topology is Hausdorff
and second countable follows from the fact that

{ϕ(U ) | (U,ϕ) is a parameterization of M}

is a basis for the topology of M with the same properties.

Given two parameterizations (U,ϕ) and (V,ψ) of M , the map ψ
−1 ◦ ϕ is

defined on the image by ϕ−1 of the connected components of ϕ(U )∩ψ(V )
where the orientations induced by ϕ and ψ agree. Therefore ψ

−1 ◦ ϕ is not

only differentiable (ψ
−1 ◦ ϕ = ψ−1 ◦ ϕ on the points where it is defined)

but also orientation-preserving. We conclude that

{(U,ϕ) | (U,ϕ) is a parameterization of M}

is an atlas for M whose overlap maps are orientation-preserving. Therefore
M is an orientable n-dimensional manifold [cf. Exercise 8.6(2)].

(b) This is immediate from the fact that, for the parameterizations above, ϕ−1 ◦
π ◦ ϕ is the identity map and from the above observation that for each
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parameterization (U,ϕ) of M there exists a parameterization (Ũ , ϕ̃) which
induces the opposite orientation on Tp M for every p ∈ ϕ(U ).

(c) If W is a connected component of M then π : W → M is still a covering
map. Therefore the fibers π−1(p) ⊂ W can either have one point or two
points. In the former case π : W → M is a diffeomorphism and M would
be orientable (because W is). Since this is not the case, we conclude that
W = M , and so M is connected.

(d) The identities π ◦ σ = π and σ ◦ σ = σ are immediate. That σ is a diffeo-
morphism is clear from π ◦ σ = π and π being a local diffeomorphism.

(e) This is immediate from the fact that the only covering map admitted by a
simply connected manifold is the trivial covering map.

7.1.9 Section 1.9

(2) Let A = {(Uα,ϕα)} and B = {(Vβ,ψβ)} be atlases respectively for M and N .
Note that, since M is a manifold without boundary and N is a manifold with
boundary, the setsUα are open subsets ofRm while the setsVβ are open subsets of
H

n (wherem = dim M and n = dim N ).Wewill show that {(Uα×Vβ,ϕα×ψβ)}
is an atlas for the product manifold M × N and that this set is a manifold with
boundary. Indeed,

(a) the sets Uα × Vβ are open subsets of R
m ×H

n ∼= H
m+n ;

(b) the sets ϕα(Uα)× ψβ(Vβ) are open subsets of M × N ;
(c) the maps θα,β := ϕα × ψβ : Uα × Vβ → M × N are homeomorphisms;
(d) for W := θα1,β1(Uα1 × Vβ1)

⋂
θα2,β2(Uα2 × Vβ2) �= ∅ the overlap maps

θ−1α1,β1 ◦ θα2,β2 : θ−1α2,β2(W )→ θ−1α1,β1(W )

are differentiable since

(θ−1α1,β1 ◦ θα2,β2)(p, q) = θ−1α1,β1(ϕα2(p),ψβ2(q))
=

(
(ϕ−1α1 ◦ ϕα2)(p), (ψ−1β1 ◦ ψβ2)(q)

)

and ϕ−1α1 ◦ ϕα2 and ψ−1β1 ◦ ψβ2 are differentiable;
(e) we have

⋃
α,β

θα,β(Uα × Vβ) =
⋃
α,β

ϕα(Uα)× ψβ(Vβ) = M × N .

We will now show that ∂(M × N ) = M × ∂N . For that we see that (p, q) ∈
∂(M × N ) if and only if there is a pair (α,β) for which
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(p, q) ∈ θα,β
(
∂H

m+n ∩ (Uα × Vβ)
)

= θα,β
({(x, y) ∈ (Uα × Vβ) | yn = 0})

= θα,β
(
Uα × (Vβ ∩ ∂H

n)
) = ϕα(Uα)× ψβ(Vβ ∩ ∂H

n).

Hence, (p, q) ∈ ∂(M × N ) if and only if (p, q) ∈ M × ∂N and we conclude
that ∂(M × N ) = M × ∂N .

7.2 Chapter 2

7.2.1 Section 2.1

(3) Let T ∈ T k(V ∗).

(a) Consider the tensor Alt(T ) := 1
k!

∑
σ∈Sk

(sgn σ)(T ◦ σ). Then, if σ0 is a
permutation that interchanges two indices and keeps the others fixed, we
have

Alt(T ) ◦ σ0 = 1

k!
∑
σ∈Sk

(sgn σ)(T ◦ σ ◦ σ0)

= 1

k! (sgn σ0)
∑
σ∈Sk

(sgn(σ ◦ σ0))(T ◦ (σ ◦ σ0))

= 1

k! (sgn σ0)
∑
τ∈Sk

(sgn τ )(T ◦ τ )

= (sgn σ0)Alt(T ) = −Alt(T )

and we conclude that Alt(T ) is an alternating tensor.
(b) If T is alternating then T ◦ σ = (sgn σ)T for any permutation σ ∈ Sk .

Hence,

Alt(T ) = 1

k!
∑
σ∈Sk

(sgn σ)(T ◦ σ) = 1

k!
∑
σ∈Sk

(sgn σ)2T = T,

where we used the fact that Sk has k! elements.
(c) Since we know from (a) that Alt(T ) is an alternating tensor we conclude

from (b) that Alt(Alt(T )) = Alt(T ).

(4) Let {T1, . . . , Tn} be a basis of V ∗. We have

T =
∑

i1<...<ik

ai1...ik Ti1 ∧ . . . ∧ Tik
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and
S =

∑
j1<...< jm

b j1... jm Tj1 ∧ . . . ∧ Tjm .

Therefore

T ∧ S =
∑

i1 < . . . < ik

j1 < . . . < jm

ai1...ik b j1... jm Ti1 ∧ . . . ∧ Tik ∧ Tj1 ∧ . . . ∧ Tjm

=
∑

i1 < . . . < ik

j1 < . . . < jm

ai1...ik b j1... jm (−1)k Tj1 ∧ Ti1 ∧ . . . ∧ Tik ∧ Tj2 ∧ . . . ∧ Tjm

=
∑

i1 < . . . < ik

j1 < . . . < jm

ai1...ik b j1... jm (−1)km Tj1 ∧ . . . ∧ Tjm ∧ Ti1 ∧ . . . ∧ Tik

= (−1)km S ∧ T .

(5) (1) If v1, . . . , vk+m ∈ V then

(
F∗(T ⊗ S)

)
(v1, . . . , vk+m) = (T ⊗ S)(F(v1), . . . , F(vk+m))

= T (F(v1), . . . , F(vk))S(F(vk+1), . . . , F(vk+m))

= (F∗T (v1, . . . , vk))(F
∗S(vk+1, . . . , vk+m))

= ((F∗T )⊗ (F∗S))(v1, . . . , vk+m).

(2) Obvious.
(3) If v1, . . . , vk+m ∈ V then

(
F∗(T ∧ S)

)
(v1, . . . , vk+m) = (T ∧ S)(F(v1), . . . , F(vk+m))

= (k + m)!
k!m! (Alt(T ⊗ S))(F(v1), . . . , F(vk+m))

= 1

k!m!
∑

σ∈Sk+m

(sgn σ)(T ⊗ S)(F(vσ(1)), . . . , F(vσ(k+m)))

= 1

k!m!
∑

σ∈Sk+m

(sgn σ)(F∗(T ⊗ S))(vσ(1), . . . , vσ(k+m))

= 1

k!m!
∑

σ∈Sk+m

(sgn σ)((F∗T )⊗ (F∗S))(vσ(1), . . . , vσ(k+m))

= (k + m)!
k!m! (Alt((F∗T )⊗ (F∗S)))(v1, . . . , vk+m)

= ((F∗T ) ∧ (F∗S))(v1, . . . , vk+m).
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(4) If v1, . . . , vk ∈ V then

(
(H ◦ F)∗(T )

)
(v1, . . . , vk) = T (H(F(v1)), . . . , H(F(vk)))

= (H∗T ) (F(v1), . . . , F(vk)) =
(
F∗(H∗T )

)
(v1, . . . , vk).

7.2.2 Section 2.2

(3) (a) We have

L X (T (Y1, . . . , Yk))(p) = d

dt
(T (Y1, . . . ,Yk)(ψt (p)))|t=0

= d

dt

(
Tψt (p)

(
(Y1)ψt (p) , . . . , (Yk)ψt (p)

))
|t=0

= d

dt

(
(ψt
∗T )p

(
(dψ−t )ψt (p) (Y1)ψt (p) , . . . , (dψ−t )ψt (p) (Yk)ψt (p)

))
|t=0

= (L X T )(Y1, . . . ,Yk)(p)+ T (L X Y1, . . . , Yk)(p)+ . . .+ T (Y1, . . . , L X Yk)(p).

(b) A possible definition is to set

(L X T )(Y1, . . . ,Yk,ω
1, . . . ,ωk) = L X (T (Y1, . . . ,Yk,ω

1, . . . ,ωk))

− T (L X Y1, . . . ,Yk,ω
1, . . . ,ωk)− · · · − T (Y1, . . . , L X Yk,ω

1, . . . ,ωk)

− T (Y1, . . . ,Yk, L Xω
1, . . . ,ωk)− · · · − T (Y1, . . . ,Yk,ω

1, . . . , L Xω
k)

for all vector fields Y1, . . . ,Yk and all 1-tensor fields ω1, . . . ,ωk .

7.2.3 Section 2.3

(1) Property (i) is trivially true, and property (iii) is an immediate consequence of
Proposition 1.12. To prove (ii), we notice that given p ∈ M and v1, . . . , vk ∈
Tp M we have

( f ∗(gα))p(v1, . . . , vk) = (gα) f (p)((d f )pv1, . . . , (d f )pvk)

= g( f (p))α f (p)((d f )pv1, . . . , (d f )pvk)

= (g ◦ f )(p)( f ∗α)p(v1, . . . , vk) = (( f ∗g)( f ∗α))p(v1, . . . , vk).

Finally, (iv) follows from

(g∗ f ∗α)p(v1, . . . , vk) = ( f ∗α)g(p)((dg)pv1, . . . , (dg)pvk)

= α f (g(p))((d f )g(p)(dg)pv1, . . . , (d f )g(p)(dg)pvk)

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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= α( f ◦g)(p)((d( f ◦ g))pv1, . . . , (d( f ◦ g))pvk)

= (( f ◦ g)∗α)p(v1, . . . , vk).

(3) Let M be a smooth manifold.

(i) d(ω1 + ω2) is the form locally represented by d(ω1 + ω2)α for each para-
meterization ϕα : Uα → M . Moreover, since

(ω1 + ω2)α = ϕ∗α(ω1 + ω2) = ϕ∗αω1 + ϕ∗αω2 = (ω1)α + (ω2)α
we have, by Proposition 3.7(i) that

d(ω1 + ω2)α = d((ω1)α + (ω2)α) = d(ω1)α + d(ω2)α
= ϕ∗αdω1 + ϕ∗αdω2 = ϕ∗α(dω1 + dω2)

and we conclude that d(ω1 + ω2) = dω1 + dω2.
(ii) Let ω be a k-form. Then, d(ω ∧ γ) is the form locally represented by

d(ω∧ γ)α for each parameterization ϕα : Uα → M . Moreover, by Propo-
sition 3.3(iii)

(ω ∧ γ)α = ϕ∗α(ω ∧ γ) = ϕ∗αω ∧ ϕ∗αγ = ωα ∧ γα.

Hence, by Proposition 3.7(ii),

d(ω ∧ γ)α = d(ωα ∧ γα) = dωα ∧ γα + (−1)kωα ∧ dγα

= ϕ∗α(dω) ∧ ϕ∗αγ + (−1)kϕ∗αω ∧ ϕ∗α(dγ)
= ϕ∗α(dω ∧ γ + (−1)kω ∧ dγ) = (dω ∧ γ + (−1)kω ∧ dγ)α

and the result follows.
(iii) The form d(dω) is locally represented by d(dω)α = d(dωα) for each para-

meterization ϕα : Uα → M . Since d(dωα) = 0 by Proposition 3.7(iii),
we conclude that d(dω) = 0.

(iv) Let f : M → N be a smooth map between two manifolds. Let ω be a form
on N . Then d( f ∗ω) is the form locally represented by d( f ∗ω)α for each
parameterization ϕα : Uα → M . Moreover, by Proposition 3.3(iv),

( f ∗ω)α = ϕ∗α( f ∗ω) = ( f ◦ ϕα)∗ω,

and so
d( f ∗ω)α = d(( f ◦ ϕα)∗ω).

On the other hand, f ∗(dω) is the form locally represented by

http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_3


7.2 Chapter 2 345

ϕ∗α( f ∗(dω)) = ( f ◦ ϕα)∗(dω)

for each parameterization ϕα : Uα → M . Now, if ψβ : V → N is a
parameterization of N then we have on ψβ(V )

dω = (ψ−1β )∗dωβ = (ψ−1β )∗d(ψ∗βω),

and so by Proposition 3.7

ϕ∗α( f ∗(dω)) = ( f ◦ ϕα)∗(ψ−1β )∗dωβ = (ψ−1β ◦ f ◦ ϕα)∗dωβ
= d((ψ−1β ◦ f ◦ ϕα)∗ωβ) = d(( f ◦ ϕα)∗(ψ−1β )∗ωβ)
= d(( f ◦ ϕα)∗ω)

on ϕ−1α ( f −1(ψβ(V ))). Since ψβ : V → N is arbitrary, the result follows.

(6) (a) We have

f̃ ∗ω = dt ∧
∑

I

(aI ◦ f̃ ) d f I +
∑

J

(bJ ◦ f̃ ) d f J ,

and hence

Q( f̃ ∗ω) =
∑

I

⎛
⎝

t∫

t0

(aI ◦ f̃ ) ds

⎞
⎠ d f I .

On the other hand, since f̃ is the identity on the first coordinate, precompo-
sition with f̃ commutes with integration with respect to t . Therefore

f̃ ∗(Q(ω)) =
∑

I

⎛
⎝

⎛
⎝

t∫

t0

aI ds

⎞
⎠ ◦ f̃

⎞
⎠ d f I

=
∑

I

⎛
⎝

t∫

t0

(aI ◦ f̃ ) ds

⎞
⎠ d f I = Q( f̃ ∗ω).

(b) Each parameterization ϕ : U → M yields a parameterization ϕ̃ : R ×
U → R × M through ϕ̃ = id×ϕ. Given a k-form ω ∈ �k(R × M)
we then define Q(ω) ∈ �k−1(R × M) as the (k − 1)-form whose local
representation associated to the parameterization ϕ̃α is (Q(ω))α = Q(ωα).
e Q(ω) = (

ϕ̃−1α
)∗
(Q(ωα)) on R × ϕα(Uα). To check that this definition

is consistent consider another parameterization ϕβ : Uβ → M such that
W := ϕα(Uα) ∩ ϕβ(Uβ) �= ∅. Let f : ϕ−1α (W ) → ϕ−1β (W ) be the

diffeomorphism given by f = ϕ−1β ◦ ϕα. Then on R×W we have

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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(
ϕ̃−1α

)∗
(Q(ωα)) =

(
ϕ̃−1α

)∗ (
Q

(
f̃ ∗ωβ

)) =
(
ϕ̃−1α

)∗ (
f̃ ∗(Q(ωβ))

)

=
(

f̃ ◦ ϕ̃−1α
)∗ (

Q(ωβ)
) =

(
ϕ̃−1β

)∗ (
Q(ωβ)

)
.

To see that f̃ ∗ ◦ Q = Q ◦ f̃ ∗ at a given point (t, p) ∈ R × M consider
parameterizations ϕ : U → M and ψ : V → N around p and f (p), and
let f̂ = ψ−1 ◦ f ◦ ϕ be the corresponding local representation of f . Then
at p we have

f̃ ∗(Q(ω)) = f̃ ∗
(
ψ̃−1

)∗ (
Q

(
ψ̃∗ω

)) =
(
ψ̃−1 ◦ f̃

)∗ (
Q

(
ψ̃∗ω

))

=
(˜̂f ◦ ϕ̃−1

)∗ (
Q

(
ψ̃∗ω

)) =
(
ϕ̃−1

)∗ ˜̂f ∗ (
Q

(
ψ̃∗ω

))

=
(
ϕ̃−1

)∗ (
Q

(˜̂f ∗ (
ψ̃∗ω

)))
=

(
ϕ̃−1

)∗ (
Q

((
ψ̃ ◦ ˜̂f

)∗
ω

))

=
(
ϕ̃−1

)∗ (
Q

((
f̃ ◦ ϕ̃)∗

ω
))
=

(
ϕ̃−1

)∗ (
Q

(
ϕ̃∗ f̃ ∗ω

))

= Q
(

f̃ ∗ω
)
.

The linearity ofQ on M is similarly obtained from the linearity of Q on R
n .

(c) Notice that in local coordinates the formula for Q reduces to the formula in
R

n . If
ω = dt ∧

∑
I

aI (t, x) dx I +
∑

J

bJ (t, x) dx J

we have
i∗t0ω =

∑
J

bJ (t0, x) dx J

(dt0 = 0 as t0 is constant), and π∗i∗t0ω is given by the same expression.
Consequently

ω − π∗i∗t0ω = dt ∧
∑

I

aI (t, x) dx I +
∑

J

(bJ (t, x)− bJ (t0, x)) dx J .

On the other hand,

d(Q(ω)) = dt ∧
∑

I

aI (t, x) dx I +
∑

I

∑
i

⎛
⎝

t∫

t0

∂aI

∂xi
ds

⎞
⎠ dxi ∧ dx I

and
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dω = −dt ∧
∑

I

∑
i

∂aI

∂xi
dxi ∧ dx I

+ dt ∧
∑

J

∂bJ

∂t
dx J +

∑
J

∑
i

∂bJ

∂xi
dxi ∧ dx J ,

leading to

Q(dω) = −
∑

I

∑
i

⎛
⎝

t∫

t0

∂aI

∂xi
ds

⎞
⎠ dxi ∧ dx I +

∑
J

⎛
⎝

t∫

t0

∂bJ

∂s
ds

⎞
⎠ dx J .

Consequently,

d(Q(ω))+Q(dω) = dt ∧
∑

I

aI (t, x) dx I +
∑

J

(b(t, x)− b(t0, x)) dx J

= ω − π∗i∗t0ω.

(d) Since π ◦ it0 = idM , we have i∗t0 ◦ π∗ = id and hence i�t0 ◦ π� = id. On the
other hand, if ω is closed then

ω − π∗i∗t0ω = d(Q(ω)),

meaning that ω and π∗i∗t0ω are in the same cohomology class. Therefore

π� ◦ i�t0 = id.
(e) By (d), Hk(Rn) = Hk(Rn−1) = . . . = Hk(R). Now we know that

Hk(R) = 0 for all k > 1. On the other hand, any 1-form on R is nec-
essarily exact, since

a(t) dt = d

⎛
⎝

t∫

0

a(s) ds

⎞
⎠ .

We conclude that H1(R) = 0. Therefore Hk(Rn) = 0 for all k > 0.
(f) We have f = H ◦ it0 and g = H ◦ it1 , and therefore f � = i�t0 ◦ H � and

g� = i�t1 ◦ H �. Now i�t0 = i�t1 , as they are both the inverse map to π�.
Consequently f � = g�.

(g) The map H : R × R
n → R

n given by H(t, x) = (1 − t)x is clearly a
homotopy between the identity map f (x) = H(0, x) = x and the constant
map g(x) = H(1, x) = 0.

(h) Since M is contractible, the identity map id : M → M is smoothly homo-
topic to a constant map g : M → M , and hence id� = g�. Using local
coordinates, it is immediate to check that if ω ∈ �k(M) is a k-form with
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k > 0 then g∗ω = 0, implying that g� : Hk(M) → Hk(M) is the zero
map. But g� = id� is the identity map on Hk(M), and hence we must have
Hk(M) = 0.

(7) (a) We have

L X (ω1 ∧ ω2) = d

dt
(ψt
∗(ω1 ∧ ω2))|t=0 =

d

dt
((ψt

∗ω1) ∧ (ψt
∗ω2))|t=0

=
(

d

dt
(ψt
∗ω1)|t=0

)
∧ ω2 + ω1 ∧

(
d

dt
(ψt
∗ω2)|t=0

)

= (L Xω1) ∧ ω2 + ω1 ∧ (L Xω2)

(where we have used the fact that the wedge product is bilinear).
(b) Similarly,

L X (dω) = d

dt
(ψt
∗(dω))

|t=0
= d

dt
(d(ψt

∗ω))
|t=0

= d

(
d

dt
(ψt
∗ω)
|t=0

)
= d(L Xω)

(where we have used the fact that the exterior derivative is linear).
(c) We will prove this formula by induction. We start with the case when

ω = f dg for smooth functions f, g ∈ �0(M). In this case we can use
the properties proved above to obtain

L Xω = (L X f )dg + f d(L Xg) = (X · f )dg + f d(X · g).

On the other hand,

ι(X)dω + d(ι(X)ω) = ι(X)(d f ∧ dg)+ d( f (X · g))
= ι(X)(d f ⊗ dg − dg ⊗ d f )+ (X · g)d f + f d(X · g)
= (X · f )dg − (X · g)d f + (X · g)d f + f d(X · g)
= L Xω.

Next we prove that if the Cartan formula holds for ω and η then it holds for
ω ∧ η. Since locally any form can be obtained by taking wedge products of
1-forms of the type f dg, this will complete the proof. If ω is a k-form, we
have

ι(X)d(ω ∧ η)+ d(ι(X)(ω ∧ η))
= ι(X)(dω ∧ η + (−1)kω ∧ dη)+ d((ι(X)ω) ∧ η + (−1)kω ∧ (ι(X)η))
= (ι(X)dω) ∧ η + (−1)k+1dω ∧ (ι(X)η)+ (−1)k(ι(X)ω) ∧ dη + ω ∧ (ι(X)dη)
+ d(ι(X)ω) ∧ η + (−1)k−1(ι(X)ω) ∧ dη + (−1)kdω ∧ (ι(X)η)+ ω ∧ d(ι(X)η)
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= (ι(X)dω) ∧ η + ω ∧ (ι(X)dη)+ d(ι(X)ω) ∧ η + ω ∧ d(ι(X)η)

= (L Xω) ∧ η + ω ∧ (L Xη) = L X (ω ∧ η)

(where we have used Exercise 1.15(8)).
(d) We begin by noticing that

(
ψt
∗(ι(Y )ω)

)
p (v1, . . . , vk) = (ι(Y )ω)ψt (p)((dψt )pv1, . . . , (dψt )pvk)

= ωψt (p)(Yψt (p), (dψt )pv1, . . . , (dψt )pvk)

= ωψt (p)((dψt )p(dψ−t )ψt (p)Yψt (p), (dψt )pv1, . . . , (dψt )pvk)

= (
ψt
∗ω

)
p ((dψ−t )ψt (p)Yψt (p), v1, . . . , vk)

i.e.
ψt
∗(ι(Y )ω) = ι((ψ−t )∗Y )(ψt

∗ω).

Taking the derivative with respect to t at t = 0 and using the fact that the
contraction is a bilinear operation yields the result.

7.2.4 Section 2.4

(3) T 2 divides S3 into two connected components

M1 := {(x, y, z,w) ∈ S3 | x2 + y2 < 1}

and
M2 := {(x, y, z,w) ∈ S3 | x2 + y2 > 1}.

Let us consider the parameterizations ϕi : Ui → Mi (i = 1, 2) defined by

ϕi (r, v, v) = (r cos v, r sin v,
√
2− r2 cos v,

√
2− r2 sin v)

on U1 := (0, 1) × (0, 2π) × (0, 2π) and U2 := (1,
√
2) × (0, 2π) × (0, 2π).

Then,

ϕ∗i dx = cos v dr − r sin v dv

ϕ∗i dy = sin v dr + r cos v dv

ϕ∗i dz = − r√
2− r2

cos v dr −
√
2− r2 sin v dv

ϕ∗i dw = − r√
2− r2

sin v dr +
√
2− r2 cos v dv

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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and so ϕ∗i ω = (r(2− r2) cos2 v− r3 cos2 v) dr ∧dv∧dv. Hence, since the sets
M1\ϕ1(U1) and M2\ϕ2(U2) have measure zero we have

∫

M1

ω = ±
∫

U1

ϕ∗1ω = ±
1∫

0

2π∫

0

2π∫

0

(r(2− r2) cos2 v − r3 cos2 v) dvdvdr = ±π2

∫

M2

ω = ±
∫

U2

ϕ∗2ω = ±
√
2∫

1

2π∫

0

2π∫

0

(r(2− r2) cos2 v − r3 cos2 v) dvdvdr = ∓π2,

where the ± signs depend on the choice of orientation.
(4) Let us consider an atlas {(Uα,ϕα)} of orientation-preserving parameterizations

on M . Then, since f is an orientation-preserving diffeomorphism {(Uα, f ◦ϕα)}
is an atlas of orientation-preserving parameterizations on N . Let {ρi }i∈I be a
partition of unity subordinate to the cover {W̃α} of N where W̃α := ( f ◦ϕα)(Uα).
Sinceω is compactly supportedwe can assume that I is finite.Hence, considering
the forms ωi := ρiω, we have

∫

N

ω :=
∑
i∈I

∫

N

ωi =
∑
i∈I

∫

Uαi

( f ◦ ϕαi )
∗ωi .

Now

( f ◦ ϕαi )
∗ωi = ( f ◦ ϕαi )

∗(ρiω) = (( f ◦ ϕαi )
∗ρi )(( f ◦ ϕαi )

∗ω)
= (ρi ◦ f ◦ ϕαi )(ϕ

∗
αi
( f ∗ω)) = ϕ∗αi

((ρi ◦ f ) f ∗ω).

Moreover, {ρi ◦ f }i∈I is clearly a partition of unity subordinate to the cover {Wα}
of M where Wα := ϕα(Uα). Hence,

∫

N

ω =
∑
i∈I

∫

Uαi

( f ◦ ϕαi )
∗ωi =

∑
i∈I

∫

Uαi

ϕ∗αi
((ρi ◦ f ) f ∗ω)

=
∑
i∈I

∫

Uαi

ϕ∗αi
( f ∗ω)i =

∫

M

f ∗ω.

7.2.5 Section 2.5

(1) First we note that the form ω is exact. Indeed, ω = dα with α = xz dy ∧ dw.
Then, denoting by M1 and M2 the two connected components of S3\T 2, we
have T 2 = ∂M1 = ∂M2 and so, by the Stokes theorem,
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∫

M1

ω =
∫

M1

dα =
∫

T 2

i∗1α,

where i1 : ∂M1→ M1 is the inclusion map and T 2 is equipped with the induced
orientation. Similarly, ∫

M2

ω =
∫

M2

dα =
∫

T 2

i∗2α,

where i2 : ∂M2 → M2 is the inclusion map and T 2 is equipped with the induced
orientation. Note that this orientation on T 2 is the opposite of the one induced
by the orientation of M1.
To compute these integrals we consider the parameterization ϕ : U → T 2

defined by
ϕ(v, v) = (cos v, sin v, cos v, sin v)

on U := (0, 2π)× (0, 2π). Then,

ϕ∗(i∗j dx) = − sin v dv, ϕ∗(i∗j dy) = cos v dv,

ϕ∗(i∗j dz) = − sin v dv, ϕ∗(i∗j dw) = cos v dv,

( j = 1, 2), and so ϕ∗(i∗jα) = cos2 v cos2 v dv ∧ dv. Hence, since the set

T 2\ϕ(U ) has measure zero, we have

∫

T2

i∗1α = ±
∫

U

ϕ∗(i∗1α) = ±
2π∫

0

2π∫

0

cos2 v cos2 v dvdv = ±π2

∫

T 2

i∗2α = ∓
∫

U

ϕ∗(i∗2α) = ∓
2π∫

0

2π∫

0

cos2 v cos2 v dvdv = ∓π2,

where the ± signs depend on the choice of orientation on S3. Note that the sum
of the two integrals is zero. This is not surprising since

∫

M1

ω +
∫

M2

ω =
∫

S3

ω =
∫

S3

dα =
∫

∂S3

i∗α = 0

as ∂S3 = ∅ (here we used the fact that T 2 has measure zero in S3).
(3) (a) Under this identification, we have

〈p, X p〉 = 0
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for all p ∈ Sn , where 〈·, ·〉 is the Euclidean inner product inR
n+1. Therefore,

‖H(t, p)‖2 = cos2(πt)‖p‖2 + sin2(πt) = 1,

and H indeed maps R × Sn to Sn . Moreover, H is clearly smooth and
H(0, p) = p and H(1, p) = −p for all p ∈ Sn . Therefore H is a smooth
homotopy between the identity map and the antipodal map. Geometrically,
for fixed p ∈ Sn the curve H(t, p) traverses half of the great circle tangent
to X p at p.

(b) We have
dω = (n + 1)dx1 ∧ · · · ∧ dxn+1.

If Bn+1 := {x ∈ R
n+1 | ‖x‖ ≤ 1}, we have by the Stokes theorem that

∫

Sn

ω =
∫

Bn+1

dω = (n + 1)
∫

Bn+1

dx1 ∧ · · · ∧ dxn+1

= (n + 1)
∫

Bn+1

dx1 · · · dxn+1 > 0.

(c) Suppose that X exists. Then the antipodal map f : Sn → Sn is homotopic
to the identity map. Now it is very easy to check that f ∗ω = (−1)n+1ω.
Since ω is closed in Sn (it is an n-form), we have by Exercise 5.3(2). that

∫

Sn

ω =
∫

Sn

f ∗ω = (−1)n+1
∫

Sn

ω.

As
∫

Sn ω > 0, we must have (−1)n+1 = 1, and so n must be odd. For odd n
there exist vector fields X ∈ X(Sn) with no zeros. An example is the vector
field given by

X(x1,...,xn+1) = (−x2, x1, . . . ,−xn+1, xn),

which is indeed tangent to Sn (〈x, Xx 〉 = 0) and does not vanish on Sn

(‖Xx‖ = ‖x‖ = 1).

7.2.6 Section 2.6

(4) (a) If ω ∈ �k(Sn) satisfies ω = π∗θ for some θ ∈ �k(RPn) then

f ∗ω = f ∗(π∗θ) = (π ◦ f )∗θ = π∗θ = ω.

http://dx.doi.org/10.1007/978-3-319-08666-8_5
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Conversely, assume that ω ∈ �k(Sn) satisfies f ∗ω = ω. Then for each open
set U ⊂ Sn such that π|U is a diffeomorphism we define θU ∈ �k(π(U )) as
θU := (π|U−1)∗ω. We now show that if p ∈ π(U ) ∩ π(V ), for some other
open set V ⊂ Sn such that π|V is a diffeomorphism, then (θU )p = (θV )p.
Indeed,we haveπ−1(p) = {p1, p2} for some p1, p2 ∈ S2 with p2 = f (p1).
Assume, without loss of generality, that p1 ∈ U . Then either p1 ∈ V or
p2 ∈ V . If p1 ∈ V then π|U and π|V agree on a neighborhood of p1, and
so do θU and θV on the image of this neighborhood (which contains p). If
p2 ∈ V , then π|U = π|V ◦ f on a neighborhood of p1, and hence

π|U−1 = f −1 ◦ π|V −1 = f ◦ π|V −1

on this neighborhood. Therefore,

θU = ( f ◦ π|V −1)∗ω = (π|V −1)∗ f ∗ω = (π|V −1)∗ω = θV

on the image of this neighborhood (and in particular at p). We conclude that
θU = θV on π(U ) ∩ π(V ), which shows that there exists θ ∈ �k(RPn)

such that θU = θ|π(U ) for each U . Finally, since ω|U = π|U ∗θU for each U ,
we have ω = π∗θ.

(b) It is easy to check that

ω =
n+1∑
i=1
(−1)i+1xi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

is a volume form for Sn [cf. Exercise 5.3(3)]. Indeed, if v1, . . . , vn ∈ R
n+1

are n linearly independent vectors tangent to Sn at x then

ω(v1, . . . , vn) =
n+1∑
i=1
(−1)i+1xi

∣∣∣∣∣∣
v11 . . . v

i−1
1 vi+1

1 . . . vn+1
1

. . . . . . . . . . . . . . . . . .

v1n . . . v
i−1
n vi+1

n . . . vn+1
n

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

x1 . . . xn+1
v11 . . . v

n+1
1

. . . . . . . . .

v1n . . . v
n+1
n

∣∣∣∣∣∣∣∣
�= 0,

as {x, v1, . . . , vn} is a basis of R
n+1. Since

f ∗ω = (−1)n+1ω,

we see that for odd n we have ω = π∗θ for some θ ∈ �n(RPn), which
must be a volume form (as π is a local diffeomorphism). Therefore RPn

is orientable for odd n. Assume now that n is even. If RPn was orientable,

http://dx.doi.org/10.1007/978-3-319-08666-8_5


354 7 Solutions to Selected Exercises

there would exist a volume form θ ∈ �n(RPn). Then ω̃ := π∗θ would be a
volume form for Sn satisfying f ∗ω̃ = ω̃. Since ω is also a volume form for
Sn , we would have ω̃ = gω for a nonvanishing function g ∈ C∞(Sn). But,
since f ∗ω = −ω, this function would have to satisfy g ◦ f = −g, i.e. it
would have to assume opposite signs at antipodal points, and hence would
have to vanish at some point. We conclude that RPn is not orientable for
even n. Finally, let n be odd and let U ⊂ Sn be an open hemisphere. Then
π|U is a diffeomorphism and RPn\π(U ) has zero measure. Therefore

∫

Sn

π∗θ =
∫

U

π∗θ +
∫

f (U )

π∗θ =
∫

U

π∗θ +
∫

U

f ∗π∗θ

= 2
∫

U

π∗θ = 2
∫

RPn

θ.

(c) Consider the orientation on Sn defined by the volume form ω of (b). If R̃Pn

is the orientable double covering of RPn [cf. Exercise 8.6(9) in Chap. 1],
we define g : Sn → R̃Pn as

g(p) = (π(p), [(dπ)pv1, . . . , (dπ)pvn]),
where {v1, . . . , vn} is a positive basis of Tp Sn . Using the fact that for even n
we have f ∗ω = −ω, i.e. f reverses orientations, it is now very easy to show
that g is a diffeomorphism such that π̃ ◦ g = π, where π̃ : R̃Pn → RPn is
the natural projection.

(6) (a) Let ω ∈ �n−1(∂M) be a volume form for ∂M compatible with the induced
orientation. Since ∂M is compact (because M is) we have

∫

∂M

ω > 0.

If f existed it would satisfy f ◦ i = id, where i : ∂M → M is the inclusion
map. Then, using the Stokes theorem, we would have

∫

∂M

ω =
∫

∂M

( f ◦ i)∗ω =
∫

∂M

i∗ f ∗ω =
∫

M

d f ∗ω

=
∫

M

f ∗dω =
∫

M

f ∗0 = 0

(dω = 0 as it is an n-form on the (n − 1)-dimensional manifold ∂M).
Therefore f cannot exist.

(b) Assume that there existed a differentiable map g : B → B without fixed
points. Then for each x ∈ B there would exist a unique ray rx starting at g(x)

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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x

rx

g(x)

f(x)

B

∂B

Fig. 7.2 Construction of the map f : B → ∂B

and passing through x , and clearly rx\{g(x)}would intersect ∂B in a unique
point f (x) (cf. Fig. 7.2). The map f : B → ∂B would be differentiable,
since

f (x) = g(x)+ t (x)
x − g(x)
‖x − g(x)‖

where t (x) is the unique positive root of the equation

‖ f (x)‖2 = 1⇔ t2 + 2t
〈x, g(x)〉 − ‖g(x)‖2
‖x − g(x)‖ + ‖g(x)‖2 = 1.

Moreover, we would have f|∂B = id. Since by (a) the map f cannot exist,
neither can g.

7.3 Chapter 3

7.3.1 Section 3.1

(3) (a) In this case the natural projection map π : M → M/G is a covering
map (hence a local diffeomorphism). For each point r ∈ M/G we can
select a point p ∈ π−1(r) and a neighborhood U � p such that π|U is a
diffeomorphism onto its image. We then define a metric h on π(U ) through
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h := ((π|U )−1)∗g. To show that this definition does not depend on the choice
of p we notice that any other point q ∈ π−1(r) is of the form q = f (p),
where f : M → M is an isometry corresponding to the action by some
element of G. Now V := f (U ) is a neighborhood of q such that π|V is a
diffeomorphism, and π|U = π|V ◦ f . Therefore

((π|U )−1)∗g = ( f −1 ◦ (π|V )−1)∗g = ((π|V )−1)∗( f −1)∗g
= ((π|V )−1)∗g,

since f (and therefore f −1) is an isometry.
(b) We can define the flat square metric on T n = R

n/Zn by applying the
procedure above to the case when (M, g) is R

n with the Euclidean metric
and Z

n acts on R
n by translations (which are isometries of the Euclidean

metric). In particular, the local geometry of T n is indistinguishable from
the local geometry of R

n . We have vol(T n) = 1, since, if U := (0, 1)n

then π|U : U → T n is a diffeomorphism which covers T n except for a zero
measure set. Note that each choice of basis for R

n determines an action of
Z

n by translations by integer multiples of the basis vectors, whose quotient
is diffeomorphic to T n . The metrics obtained on T n from these actions are
in general different (in particular the corresponding volumes of T n do not
have to be 1).

(c) We can define the standard metric on RPn = Sn/Z2 by applying the pro-
cedure above to the case when (M, g) is Sn with the standard metric and
Z2 acts on Sn by the antipodal map (which is an isometry of the standard
metric). In particular, the local geometry of RPn is indistinguishable from
the local geometry of Sn . Notice also that vol(RPn) = 1

2 vol(S
n), since if

U is a hemisphere then π|U : U → RPn is a diffeomorphism which covers
RPn except for a zero measure set.

(4) (a) If g is left-invariant, then we must have

〈v,w〉x = 〈
(
d Lx−1

)
x v,

(
d Lx−1

)
x w〉e

for all x ∈ G and all v,w ∈ Tx G. Thus we just have to show that this
formula indeed defines a left-invariant metric on G. It is easy to check that
the smoothness of the map

G × G � (x, y) �→ x−1y = Lx−1 y ∈ G

implies the smoothness of the map

G × T G � (x, v) �→ (
d Lx−1

)
x v ∈ T G,

and that therefore the formula above defines a smooth tensor field g on G.
It should also be clear that g is symmetric and positive definite. All that
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remains to be proved is that g is left-invariant, that is,

〈(d L y
)

x v,
(
d L y

)
x w〉yx = 〈v,w〉x

for all v,w ∈ Tx G and all x, y ∈ G. Indeed we have

〈(
d L y

)
x v,

(
d L y

)
x w

〉
yx

=
〈(

d L(yx)−1
)

yx

(
d L y

)
x v,

(
d L(yx)−1

)
yx

(
d L y

)
x w

〉
e

=
〈(

d
(
Lx−1y−1 ◦ L y

))
x
v,

(
d

(
Lx−1y−1 ◦ L y

))
x
w

〉
e

= 〈(
d Lx−1

)
x v,

(
d Lx−1

)
x w

〉
e
= 〈v,w〉x .

Thus any inner product on the Lie algebra g = TeG determines a left-
invariant metric on G.

(b) Recall that every quaternion q ∈ RSU (2) can be written as

q = a1+ bi + cj + dk

with a, b, c, d ∈ R, where 1, i, j, k ∈ SU (2) are given in Exercise 7.17(13)
of Chap. 1, and that SU (2) is the set of quaternions of Euclidean length 1.
Given the identities i2 = j2 = k2 = i jk = −1, is easy to check that

qq∗ = q∗q = (a2 + b2 + c2 + d2)1.

Furthermore, using this basis to identify RSU (2) with R
4, we can write the

Euclidean inner product as

〈q1, q2〉 = Re(q1q∗2 ) = Re(q∗1q2),

where Re(q) = a. If v ∈ SU (2) is a unit quaternion, that is, v∗v = 1, then

〈vq1, vq2〉 = Re(q∗1v∗vq2) = Re(q∗1q2) = 〈q1, q2〉.

Therefore multiplication by unit quaternions preserves the Euclidean inner
product. Restricting to vectors tangent to SU (2) we conclude that the stan-
dard metric on SU (2) is left-invariant.

(c) The Euclidean inner product on Mn×n ∼= R
n2 is given by

〈A, B〉 = tr(ABt ).

Therefore, if S ∈ O(n) then

〈S A, SB〉 = tr(S ABt St ) = tr(St S ABt ) = tr(ABt ) = 〈A, B〉.

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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Restricting to vectors tangent to O(n) we conclude that the metric induced
on O(n) by the Euclidean metric of Mn×n ∼= R

n2 is left-invariant.

7.3.2 Section 3.2

(1) (a) Let p ∈ W and ρ ∈ C∞(M) a bump function satisfying svpp ρ ⊂ W and
ρ(p) > 0. Thus we have

ρX = ρX̃ and ρY = ρỸ .

Using the properties of an affine connection we obtain

∇ρX (ρY ) = ρ(ρ∇X Y + (X · ρ)Y )

and similarly
∇ρX̃ (ρỸ ) = ρ(ρ∇X̃ Ỹ + (X̃ · ρ)Ỹ ).

Equating the two expressions yields

ρ∇X Y + (X · ρ)Y = ρ∇X̃ Ỹ + (X̃ · ρ)Ỹ ,

which at p reads

ρ(p)(∇X Y )p + (X p · ρ)Yp = ρ(p)(∇X̃ Ỹ )p + (X̃ p · ρ)Ỹp.

Since p ∈ W , we have X p = X̃ p and Yp = Ỹp. Therefore

ρ(p)(∇X Y )p = ρ(p)(∇X̃ Ỹ )p ⇔ (∇X Y )p = (∇X̃ Ỹ )p,

where we’ve used the fact that ρ(p) > 0. Since p ∈ W is arbitrary, we
conclude that ∇X Y = ∇X̃ Ỹ on W .

(b) We have

∇X Y = ∇X

(
n∑

i=1
Y i ∂

∂xi

)
=

n∑
i=1
(X · Y i )

∂

∂xi
+

n∑
i=1

Y i∇X
∂

∂xi

=
n∑

i=1
(X · Y i )

∂

∂xi
+

n∑
k=1

Y k∇(∑n
j=1 X j ∂

∂x j

) ∂

∂xk

=
n∑

i=1
(X · Y i )

∂

∂xi
+

n∑
j,k=1

X j Y k∇ ∂

∂x j

∂

∂xk
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=
n∑

i=1
(X · Y i )

∂

∂xi
+

n∑
i, j,k=1

X j Y k�i
jk
∂

∂xi
.

(c) Using

ċ(t) =
n∑

i=1
ẋ i (t)

(
∂

∂xi

)

c(t)
and V (t) =

n∑
i=1

V i (t)

(
∂

∂xi

)

c(t)

we obtain

DV

dt
(t) = ∇ċ(t)V =

n∑
i=1

⎛
⎝ċ(t) · V i (t)+

n∑
j,k=1

�i
jk(c(t))ẋ

j (t)V k(t)

⎞
⎠

(
∂

∂xi

)

c(t)

=
n∑

i=1

⎛
⎝V̇ i (t)+

n∑
j,k=1

�i
jk(c(t))ẋ

j (t)V k(t)

⎞
⎠

(
∂

∂xi

)

c(t)
.

Therefore the coordinate equations for the parallel transport law are

V̇ i (t)+
n∑

j,k=1
�i

jk(c(t))ẋ
j (t)V k(t) = 0 (i = 1, . . . , n).

(d) Using (7) in the case when V = ċ, i.e. V i (t) = ẋ i (t), yields

ẍ i (t)+
n∑

j,k=1
�i

jk(c(t))ẋ
j (t)ẋ k(t) = 0 (i = 1, . . . , n).

(3) (a) Let X,Y, Z ∈ X(M) and f, g ∈ C∞(M). Then

(∇X ω)( f Y + g Z) = X · (ω( f Y + g Z))− ω(∇X ( f Y + g Z))

= X · ( f ω(Y )+ g ω(Z))− ω( f∇X Y + (X · f )Y + g∇X Z + (X · g)Z)
= (X · f )ω(Y )+ (X · g)ω(Z)+ f (X · (ω(Y ))− ω(∇X Y ))

+ g(X · (ω(Z))− ω(∇X Z))− (X · f )ω(Y )− (X · g)ω(Z)
= ( f∇Xω)(Y )+ g(∇Xω)(Z).

(b) (i) We have

(∇ f X+gY ω)(Z) = ( f X + gY ) · (ω(Z))− ω(∇ f X+gY Z)

= f X · (ω(Z))+ gY · (ω(Z))− f ω(∇X Z)− gω(∇Y Z)

= f (∇Xω + g∇Yω)(Z);
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(ii) Also,

(∇X (ω + η))(Y ) = X · ((ω + η)(Y ))− (ω + η)(∇X Y )

= X · (ω(Y ))+ X · (η(Y ))− ω(∇X Y )− η(∇X Y )

= (∇Xω +∇Xη)(Y );

(iii) Finally,

(∇X ( f ω))(Y ) = X · ( f ω(Y ))− f ω(∇X Y )

= (X · f )ω(Y )+ f (X · (ω(Y ))− ω(∇X Y ))

= ((X · f )ω + f∇Xω)(Y ).

(c) In these coordinates we have

∇Xω(Y ) = X · (ω(Y ))− ω(∇X Y )

= X ·
⎛
⎝

n∑
i=1

ωi dxi (Y )

⎞
⎠− ω

⎛
⎝

n∑
i=1

⎛
⎝X · Y i +

n∑
j,k=1

�i
jk X j Y k

⎞
⎠ ∂

∂xi

⎞
⎠

= X ·
⎛
⎝

n∑
i=1

ωi Y i

⎞
⎠−

n∑
i=1

ωi (X · Y i )−
n∑

i, j,k=1
�i

jk X j Y kωi

=
n∑

i=1
(X · ωi )Y

i −
n∑

i=1

⎛
⎝

n∑
j,k=1

�k
ji X jωk

⎞
⎠ Y i

=
⎛
⎝

n∑
i=1

⎛
⎝X · ωi −

n∑
j,k=1

�k
ji X jωk

⎞
⎠ dxi

⎞
⎠ (Y ).

(d) Let X be a vector field and T a (k,m)-tensor field. Then we define

∇X T (X1, . . . , Xk, θ
1, . . . , θm) := X · (T (X1, . . . , Xk, θ

1, . . . , θm))

− T (∇X X1, . . . , Xk, θ
1, . . . , θm)− · · · − T (X1, . . . ,∇X Xk, θ

1, . . . , θm)

− T (X1, . . . , Xk,∇Xθ
1, . . . , θm)− · · · − T (X1, . . . , Xk, θ

1, . . . ,∇Xθ
m)

for all X1, . . . , Xk ∈ X(M) and θ1, . . . , θm ∈ �1(M). Notice that this
definition generalizes the definition for 1-forms, and coincideswith the usual
definition in the case when T is a vector field. A similar calculation to the
one for 1-forms yields
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∇X T =
n∑

i1,··· ,ik , j1,··· , jm=1

⎛
⎝X · T j1··· jm

i1···ik
−

n∑
r,s=1

�s
ri1

Xr T j1··· jm
si2···ik

− · · ·

−
n∑

r,s=1
�s

rik
Xr T j1··· jm

i1···ik−1s +
n∑

r,s=1
�

j1
rs Xr T s j2··· jm

i1···ik
+ · · ·

+
n∑

r,s=1
�

jm
rs Xr T

j1··· jk−1s
i1···ik

⎞
⎠ dxi1 ⊗ · · · ⊗ dxik ⊗ ∂

∂x j1
⊗ · · · ⊗ ∂

∂x jm
.

7.3.3 Section 3.3

(3) (a) Using the fact that f is an isometry and using the Koszul formula we have

2〈 f∗∇X Y, f∗Z〉 f (p) = 2〈∇X Y, Z〉p = X p · 〈Y, Z〉 + Yp · 〈Z , X〉
− Z p · 〈X, Y 〉 − 〈[Y, Z ], X〉p − 〈[X, Z ], Y 〉p − 〈[Y, X ], Z〉p .

On the other hand,

2〈∇̃ f∗X f∗Y, f∗Z〉 f (p) = ( f∗X) f (p) · 〈 f∗Y, f∗Z〉 + ( f∗Y ) f (p) · 〈 f∗Z , f∗X〉
− ( f∗Z) f (p) · 〈 f∗X, f∗Y 〉 − 〈[ f∗Y, f∗Z ], f∗X〉 f (p)

− 〈[ f∗X, f∗Z ], f∗Y 〉 f (p) − 〈[ f∗Y, f∗X ], f∗Z〉 f (p)

= X p · (〈 f∗Y, f∗Z〉 ◦ f )+ Yp · (〈 f∗Z , f∗X〉 ◦ f )

− Z p · (〈 f∗X, f∗Y 〉 ◦ f )− 〈 f∗[Y, Z ], f∗X〉 f (p)

− 〈 f∗[X, Z ], f∗Y 〉 f (p) − 〈 f∗[Y, X ], f∗Z〉 f (p)

= X p · 〈Y, Z〉 + Yp · 〈Z , X〉 − Z p · 〈X, Y 〉 − 〈[Y, Z ], X〉p
− 〈[X, Z ], Y 〉p − 〈[Y, X ], Z〉p = 2〈 f∗∇X Y, f∗Z〉 f (p).

(b) Let c : I → M be a geodesic and consider the map c̃ := f ◦ c : I → N .
Then, since

˙̃c(t) = d( f ◦ c)

dt
= (d f )c(t)ċ,

we have

∇̃˙̃c ˙̃c = ∇̃(d f )c(t)ċ
(
(d f )c(t)ċ

) (a)= (d f )c(t) (∇ċ ċ) = 0,

and we conclude that c̃ is a geodesic in N .
(4) (a) Since ∂

∂θ is the tangent vector to the curve in S2 obtained by varying θ while
holding ϕ constant, we have

∂

∂θ
= ∂φ

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ)
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and therefore

gθθ =
〈
∂

∂θ
,
∂

∂θ

〉
= 1.

Similarly,
∂

∂ϕ
= ∂φ

∂ϕ
= (− sin θ sinϕ, sin θ cosϕ, 0)

and hence

gϕϕ =
〈
∂

∂ϕ
,
∂

∂ϕ

〉
= sin2 θ;

gθϕ = gϕθ =
〈
∂

∂θ
,
∂

∂ϕ

〉
= 0.

We conclude that the metric induced on S2 by the Euclidean metric of R
3

is given by
g = dθ ⊗ dθ + sin2 θdϕ⊗ dϕ.

(b) We have

(gi j ) =
(
gθθ gθϕ
gϕθ gϕϕ

)
=

(
1 0
0 sin2 θ

)

and hence

(gi j ) = (gi j )
−1 =

(
1 0
0 1

sin2 θ

)
.

The Christoffel symbols can be easily computed from these matrices. For
instance

�θϕϕ =
1

2

2∑
i=1

gθi
(
∂gϕi

∂ϕ
+ ∂gϕi

∂ϕ
− ∂gϕϕ

∂xi

)

= 1

2
gθθ

(
0+ 0− ∂

(
sin2 θ

)

∂θ

)
= − sin θ cos θ.

Only three of the eight Christoffel symbols are nonzero: the one computed
above and

�
ϕ
θϕ = �ϕϕθ = cot θ.

(c) The geodesic equations are
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Fig. 7.3 Geodesic triangle on S2 with three right angles

θ̈ +
2∑

i, j=1
�θi j ẋ i ẋ j = 0⇔ θ̈ − sin θ cos θ ϕ̇2 = 0;

ϕ̈+
2∑

i, j=1
�
ϕ
i j ẋ i ẋ j = 0⇔ ϕ̈+ 2 cot θ θ̇ϕ̇ = 0.

The curve c given in coordinates by ĉ(t) = (θ(t),ϕ(t)) = (
π
2 , t

)
is clearly

a solution of these equations. Therefore the equator θ = π
2 is the image of

a geodesic.
(d) Any rotation about an axis through the origin in R

3 is an isometry of R
3

which preserves S2. Since we are considering the metric in S2 induced by
the Euclidean metric on R

3, it is clear that such a rotation will determine an
isometry of S2.

(e) Given a point p ∈ S2 and a vector v ∈ Tp S2, there exists a rotation R : R3→
R
3 such that R(p) = (1, 0, 0) and R(v) = (0, 1, 0). The geodesic with

these initial conditions is clearly the curve c given in coordinates by ĉ(t) =
(θ(t),ϕ(t)) = (

π
2 , t

)
, whose image is the equator. By Exercise 3.3(3), the

geodesic with initial condition v ∈ Tp S2 must be R−1 ◦ c. Since the image
of c is the intersection of S2 with the plane z = 0, the image of R−1 ◦ c is
the intersection of S2 with some plane through the origin, i.e. a great circle.

(f) For example the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1)
(cf. Fig. 7.3).

(g) The equations for parallel transport are

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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V̇ θ +
2∑

i, j=1
�θi j ẋ i V j = 0⇔ V̇ θ + �θϕϕV ϕ = 0

⇔ V̇ θ − sin θ0 cos θ0V ϕ = 0

(since ϕ̇ = 1 along c) and

V̇ ϕ +
2∑

i, j=1
�
ϕ
i j ẋ i V j = 0⇔ V̇ ϕ + �ϕϕθV θ = 0

⇔ V̇ ϕ + cot θ0V θ = 0

(since ϕ̇ = 1 along c). These equations imply

V̈ θ + cos2 θ0V θ = 0⇔ V θ = A cos((cos θ0)t)+ B sin((cos θ0)t)

where A, B ∈ R are constants, and hence

V ϕ = 1

sin θ0 cos θ0
V̇ θ = − A

sin θ0
sin((cos θ0)t)+ B

sin θ0
cos((cos θ0)t).

The initial condition is V θ(0) = 1, V ϕ(0) = 0, implying A = 1, B = 0,
and thus

V θ = cos((cos θ0)t);
V ϕ = − 1

sin θ0
sin((cos θ0)t).

Note that in particular

〈V (t), V (t)〉 = (V θ)2 + sin2 θ0(V
ϕ)2 = 1.

Thus the angle α between V (0) and V (2π) is given by

cosα = 〈V (0), V (2π)〉 = V θ(2π) = cos(2π cos θ0),

that is
α = 2π cos θ0 or α = 2π(1− cos θ0)

(depending on which angle one chooses to measure).
(h) Using the fact that anypoint on S2 canbe carried to (0, 0, 1)by an appropriate

isometry, we just have to show that no open neighborhood U ⊂ S2 of
(1, 0, 0) is isometric to an open set V ⊂ R

2 with the Euclidean metric. Now
any such neighborhood contains the image of a curve c(t) as given in (g)
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(for θ0 > 0 sufficiently small). If U were isometric to W , the Levi–Civita
connection on U would be the trivial connection, and hence the parallel
vector field V (t) in (g) would satisfy V (0) = V (2π). Since this is not true
for any θ0 ∈ (0, π2 ), U cannot be isometric to W .

(i) The parallel postulate does not hold in S2 because the images of any two
geodesics either coincide or intersect in exactly two points.

(5) (a) As we saw in Exercise 1.10(4), we must have

〈v,w〉(x,y) =
〈(

d L(x,y)−1
)
(x,y)

v,
(
d L(x,y)−1

)
(x,y)

w
〉
e

for all (x, y) ∈ H and v,w ∈ T(x,y)H . From Exercise 7.17(3) in Chap. 1
we know that (

d L(x,y)
)
(z,w) =

(
y 0
0 y

)

and

(x, y)−1 =
(
− x

y
,
1

y

)
.

Therefore we have
〈
vx ∂

∂x
+ vy ∂

∂y
,wx ∂

∂x
+ wy ∂

∂y

〉

(x,y)

=
〈
1

y
vx ∂

∂x
+ 1

y
vy ∂

∂y
,
1

y
wx ∂

∂x
+ 1

y
wy ∂

∂y

〉

(0,1)

= 1

y2

〈
vx ∂

∂x
+ vy ∂

∂y
,wx ∂

∂x
+ wy ∂

∂y

〉

(0,1)

= 1

y2
(
vxwx + vywy)

,

that is

g = 1

y2
(dx ⊗ dx + dy ⊗ dy).

(b) We have

(gi j ) =
(
gxx gxy

gyx gyy

)
=

(
1
y2

0

0 1
y2

)

and hence

(gi j ) = (gi j )
−1 =

(
y2 0
0 y2

)
.

The Christoffel symbols can be easily computed from these matrices. For
instance

http://dx.doi.org/10.1007/978-3-319-08666-8_1
http://dx.doi.org/10.1007/978-3-319-08666-8_1
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�x
xy =

1

2

2∑
i=1

gxi
(
∂gyi

∂x
+ ∂gxi

∂y
− ∂gxy

∂xi

)

= 1

2
gxx

(
0+ ∂

∂y

(
1

y2

)
− 0

)
= −1

y
.

Only four of the eight Christoffel symbols are nonvanishing: the one calcu-
lated above and

�x
yx = −�y

xx = �y
yy = −1

y
.

(c) The geodesic equations are

ẍ +
2∑

i, j=1
�x

i j ẋ i ẋ j = 0⇔ ẍ − 2

y
ẋ ẏ = 0;

ÿ +
2∑

i, j=1
�

y
i j ẋ i ẋ j = 0⇔ ÿ + 1

y
ẋ2 − 1

y
ẏ2 = 0.

One can check that the curves α and β satisfy these equations by direct
substitution. Also, it is clear that α(R) is the positive y-axis. Since

tanh2 t + 1

cosh2 t
= 1,

we see that β(R) is the intersection of the unit circle with H .
(d) By Exercise 3.3(3), isometries carry images of geodesics to images of geo-

desics. Since the metric on H is left-invariant, any left translation is an
isometry. In particular,

L(a,1)(x, y) = (x + a, y)

and
L(0,b)(x, y) = (bx, by)

are isometries for all a ∈ R and b > 0. We conclude that all vertical half-
lines and all semicircles centered on the x-axis are images of geodesics
of H (cf. Fig. 7.4). On the other hand, given p ∈ H and v ∈ Tp H , v is
always tangent to one of these. Indeed, if v is vertical then it is tangent to the
vertical half-line through p. If v is not vertical, it is tangent to the semicircle
centered at the intersection of the x-axis with the line orthogonal to v at
p (cf. Fig. 7.4). Therefore the image of the geodesic with initial condition
v ∈ Tp M is either a vertical half-line or a semicircle centered on the x-axis.

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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(a) (b)

(c) (d)

pp

p

q

v

Fig. 7.4 a Geodesics of the hyperbolic plane and violation of the parallel postulate. b Geodesic
tangent to a vector. c Geodesic through two points. d Internal angles of a geodesic quadrilateral

(e) If p and q are on the same vertical half-line then there is no semicircle
centered on the x-axis containing p and q. If p and q are not on the same
vertical half-line then there exists a unique semicircle centered on the x-
axis containing p and q, whose center is the intersection of the x-axis with
the perpendicular bisector of the line segment with endpoints p and q (cf.
Fig. 7.4).

(f) On the sphere S2 there are infinite geodesics which are not reparameteriza-
tions of each other going through any two antipodal points. On R

2\{0} with
the usual Euclidean metric there is no geodesic connecting the points (1, 0)
and (−1, 0).

(g) Since the metric for the hyperbolic plane is a function times the Euclid-
ean metric, the angles measured using both metrics are equal. Consider the
geodesic quadrilateral formed by two vertical half-lines and two distinct
semicircles centered at the intersection of one of the half-lines with the
x-axis (cf. Fig. 7.4). It is easy to check that the internal angles of this quadri-
lateral add up to less than 2π. Now every open set U ⊂ H contains one
such quadrilateral. If U were isometric to V ⊂ R

2 then the internal angles
of the quadrilateral would have to add up to exactly 2π. We conclude that
U cannot be isometric to V .

(h) The parallel postulate does not hold in the hyperbolic plane. Instead, it is
easy to see that given a geodesic c : R → H and a point p �∈ c(R) there
exist an infinite number of geodesics (up to reparameterization) c̃ : R→ H
such that p ∈ c̃(R) and c(R) ∩ c̃(R) = ∅ (cf. Fig. 7.4).

(6) (a) We start by noticing that if p ∈ N then (∇̃X̃ Ỹ )p depends only on X̃ p = X p

and on the values of Ỹ along a curve tangent to X p, which may therefore be
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chosen to be a curve on N . Since Ỹ = Y on N , we conclude that ∇̃X̃ Ỹ |N
depends only on X and Y . Let us define ∇ : X(N )× X(N )→ X(N ) by

∇X Y = (∇̃X̃ Ỹ
)�
.

We shall prove that ∇ is the Levi–Civita connection on N . The fact that
∇ defines an affine connection on N follows from the fact that ∇̃ is an
affine connection on M and from the linearity of the orthogonal projection
� : T M |N → T N . On the other hand, given X,Y, Z ∈ X(N ) we have

X · 〈〈Y, Z〉〉 = X̃ · 〈Ỹ , Z̃〉 = 〈∇̃X̃ Ỹ , Z̃〉 + 〈Ỹ , ∇̃X̃ Z̃〉
= 〈(∇̃X̃ Ỹ )�, Z̃〉 + 〈Ỹ , (∇̃X̃ Z̃)�〉
= 〈〈∇X Y, Z〉〉 + 〈〈Y,∇X Z〉〉,

where we used the fact that if v ∈ Tp N then 〈v,w〉 = 〈v,w�〉 for all
w ∈ Tp M . Therefore ∇ is compatible with the induced metric. Finally,

∇X Y −∇Y X = (∇̃X̃ Ỹ
)� − (∇̃Ỹ X̃

)�

= (∇̃X̃ Ỹ − ∇̃Ỹ X̃
)� = [X̃ , Ỹ ]� = [X,Y ],

where we used the fact that [X̃ , Ỹ ] = [X,Y ] on N [cf. Exercise 6.11(7)
in Chap. 1]. Therefore ∇ is symmetric, and hence it is the Levi–Civita
connection on 〈〈·, ·〉〉.

(b) If (M, 〈·, ·〉) is R
3 with the Euclidean metric, N ⊂ R

3 is a surface and
c : I → N is a curve we have

∇ċ ċ = (∇̃ċ ċ
)� = c̈�.

Therefore c is a geodesic of N if and only if its acceleration is orthogonal
to N . Assume that c is also a curve on a plane L which is orthogonal to N
(i.e. Tp L is orthogonal to Tp N for each p ∈ L ∩ N ). Then both ċ(t) and
c̈(t) are contained in Tc(t)L . Since Tc(t)L ∩ Tc(t)N = Rċ(t), we see that in
this case c̈� is a multiple of ċ. Finally, if we parameterize c by the arclength,
we have

〈ċ, ċ〉 = 1⇒ 〈c̈, ċ〉 = 0⇒ c̈� = 0.

We conclude that any curve c, parameterized by the arclength, with image
on L ∩ N is a geodesic of N . Similarly, it is not difficult to show that if L
is not orthogonal to N and c̈ does not vanish then c is not a geodesic of N .
These considerations make the following results obvious.
(i) On the sphere S2, any great circle (i.e. any intersection of S2 with a plane

containing the origin) is the image of a geodesic. Any circle which is

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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not a great circle (i.e. any intersection of S2 with a plane which does
not contain the origin) is not the image of a geodesic.

(ii) Any intersection of the torus of revolution with a plane of symmetry
(i.e. a plane such that reflection with respect to that plane leaves the
torus invariant) is the image of a geodesic [see also Exercise 4.8(5)].
Any intersection of the torus of revolution with a plane which is not a
plane of symmetry is not the image of a geodesic.

(iii) The generators of the cone are images of geodesics (this could also be
seen from the fact that they are already geodesics of R

3). The circles
obtained by intersecting the cone with planes perpendicular to its axis
are not images of geodesics.

(iv) The intersections of any surface of revolution with any plane containing
the axis of revolution are images of geodesics. Notice that this includes
all cases above.

(c) This is immediate from the fact that

∇ċ V = (∇̃ċ V
)� = V̇�

depends only on the operator �, which will be the same for both surfaces if
they are tangent along the curve c.

(d) A parameterization of the cone is ϕ : (0,+∞)× (0, 2π)→ R
3 given by

ϕ(r, θ) = (r cos θ, r sin θ, r cot α)

whereα is the angle between the generators and the axis. The inducedmetric
can then be found to be

g = 1

sin2 α
dr ⊗ dr + r2dθ ⊗ dθ.

Defining new coordinates

{
r ′ := r

sinα

θ′ := θ sinα

we have
g = dr ′ ⊗ dr ′ + r ′2dθ′ ⊗ dθ′,

implying that the cone minus a generator is isometric to the open set of
R
2 given by θ′ ∈ (0, 2π sinα). In particular, as suggested in the figure,

parallel transport once around the cone will lead to an angle 2π(1− sinα)
between the initial and the final vectors. Now if the circle on the sphere is
parameterized by

http://dx.doi.org/10.1007/978-3-319-08666-8_4
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α

θ0

Fig. 7.5 Relation between α and θ0

c(t) = (sin θ0 cos t, sin θ0 sin t, cos θ0)

then by elementary geometry the cone tangent to the sphere along c satisfies
α = π

2 − θ0 (cf. Fig. 7.5). Therefore the angle between the initial and the
final vectors is 2π(1− cos θ0) [cf. Exercise 3.3(4)].

7.3.4 Section 3.4

(3) (a) Let v ∈ g = TeG. Then,

(di)ev = d

dt
i(exp(tv))|t=0 =

d

dt
(exp(tv))−1|t=0

= d

dt
(exp(−tv))|t=0 = −v

(where exp is the Lie group exponential map), and so (di)e = − id. More-
over, for g ∈ G,

i(g) = g−1 = (h−1g)−1h−1 = (Rh−1 ◦ i ◦ Lh−1)(g),

implying that

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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(di)g = (d Rh−1)(h−1g)−1(di)h−1g(d Lh−1)g

for every h ∈ G. Taking h = g we obtain

(di)g = (d Rg−1)e(di)e(d Lg−1)g.

Hence, for v,w ∈ TgG,

〈(di)gv, (di)gw〉 = 〈(d Rg−1)e(di)e(d Lg−1)gv, (d Rg−1)e(di)e(d Lg−1)gw〉
= 〈(di)e(d Lg−1)gv, (di)e(d Lg−1)gw〉
= 〈−(d Lg−1)gv,−(d Lg−1)gw〉 = 〈v,w〉

where we used the fact that Rg−1 and Lg−1 are isometries.
(b) Let c̃ := (cv)−1 = i ◦ cv . Then, from (a), we have c̃(0) = e and ˙̃c(0) = −v,

implying that (cv)−1(t) = c−v(t) is the geodesic through e with initial
velocity−v. On the other hand, if γ(t) := cv(−t), we have γ(0) = cv(0) =
e and γ̇(0) = −v, and so γ(t) = c−v(t). We conclude that (cv)−1(t) =
cv(−t). Now let I := (a, b) be the maximal open interval (such that 0 ∈ I )
where cv is defined, and consider a fixed t0 ∈ I such that 0 < t0 < ε, where
ε > 0 is such that expe(Bε(0)) is a normal ball. Then γ(t) := cv(t0)cv(t) is
also a geodesic (since Lcv(t0) is an isometry) defined in I , satisfying

γ(−t0) = cv(t0)cv(−t0) = cv(t0)(cv(t0))
−1 = e

and γ(0) = cv(t0). Since e and cv(t0) are joined by two geodesics of length
t0‖v‖ < ε, these two geodesics must coincide, and so γ(t) = cv(t0 + t) for
all t ∈ I where both sides are defined. If b < +∞ then γ would extend
cv outside I , which is impossible. Moreover, since cv(−t) = (cv(t))−1, we
conclude that a = −∞, and so cv is defined for all t ∈ R. As

cv(t0 + t) = γ(t) = cv(t0)cv(t)

for every t, t0 ∈ R such that |t0| < ε, given s ∈ R and choosing m > 0 such
that | s

m | < ε, we have

cv(s + t) = cv
(m

m
s + t

)
= cv

( s

m

)
cv

(
m − 1

m
s + t

)

= · · · = cv
( s

m

)
· · · cv

( s

m

)
cv(t) = cv(s)cv(t).

(c) Let v ∈ g and consider the geodesics cv : I → G such that cv(0) = e. Let
X be a left-invariant vector field such that Xe = v. Then, since cv(s + t) =
cv(s)cv(t), we have



372 7 Solutions to Selected Exercises

ċv(s) = d

dt
cv(s + t)|t=0 =

d

dt
(cv(s)cv(t))|t=0

= (d Lcv(s))cv(0)ċv(0) = (d Lcv(s))ev = Xcv(s).

We conclude that cv is an integral curve of X with cv(0) = e. On the other
hand, since Lg is an isometry, all geodesics of G are the images by left
translations of geodesics through e. Moreover, since

(Lg ◦ cv)(0) = gcv(0) = g

and

d

dt
(Lg ◦ cv)(t)|t=0 = (d Lg)eċv(0) = (d Lg)ev = Xg,

we conclude that all geodesics are integral curves of left-invariant vector
fields. Finally, we have

expe(v) = cv(1) = exp(v).

(d) Let X be a left-invariant vector field. Then∇X X = 0 since its integral curves
are geodesics. Hence, if X and Y are two left-invariant vector fields, we have

0 = ∇X+Y (X + Y ) = ∇X Y +∇Y X = 2∇X Y − [X,Y ],

where we used the symmetry of the Levi–Civita connection.
(e) To check that the standard metric in S3 ∼= SU (2) is also right-invariant, we

notice that if v ∈ SU (2) is a unit quaternion, that is, v∗v = 1, then

〈q1v, q2v〉 = Re(q1vv
∗q∗2 ) = Re(q1q∗2 ) = 〈q1, q2〉.

To check that the metric induced on O(n) by the Euclidean metric of
Mn×n ∼= R

n2 is also right-invariant, we notice that if S ∈ O(n) then

〈AS, BS〉 = tr(ASSt Bt ) = tr(ABt ) = 〈A, B〉.

(f) Let G be an n-dimensional compact Lie group and let 〈·, ·〉 be a left-invariant
metric on G. Given v,w ∈ TgG define

〈〈v,w〉〉 =
∫

G

f,

where the integral is taken with respect to the (left-invariant) Riemannian
volume element and f : G → R is the function
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f (h) = 〈(d Rh)gv, (d Rh)gw〉.

It is immediate to show that 〈〈·, ·〉〉 defines a Riemannian metric on G (pos-
itivity follows from f > 0 when v = w �= 0). On the other hand, it is
left-invariant, since

〈
(d Rh)kg(d Lk)gv, (d Rh)kg(d Lk)gw

〉

= 〈(d(Rh ◦ Lk))gv, (d(Rh ◦ Lk))gw〉
= 〈(d(Lk ◦ Rh))gv, (d(Lk ◦ Rh))gw〉
= 〈(d Lk)gh(d Rh)gv, (d Lk)gh(d Rh)gw〉
= 〈(d Rh)gv, (d Rh)gw〉,

and so by integration

〈〈(d Lk)gv, (d Lk)gw〉〉 = 〈〈v,w〉〉.

Finally, it is right-invariant because

〈
(d Rh)gk(d Rk)gv, (d Rh)gk(d Rk)gw

〉

= 〈(d(Rh ◦ Rk))gv, (d(Rh ◦ Rk))gw〉
= 〈(d Rkh)gv, (d Rkh)gw〉 = f (kh),

and so

〈〈(d Rk)gv, (d Rk)gw〉〉 =
∫

G

f ◦ Lk =
∫

G

f = 〈〈v,w〉〉

(as the volume element is left-invariant).
(6) (a) We have

R(X,Yi )X = ∇X∇Yi X −∇Yi∇X X −∇[X,Yi ]X.

Since X and Yi satisfy ∇X X = 0 and [X,Yi ] = 0, we obtain

R(X,Yi )X = ∇X∇Yi X = ∇X ([Yi , X ] + ∇X Yi ) = ∇X∇X Yi .

(b) Let

Y (t) := ∂

∂s
expp(tv(s))|s=0

with v : (−ε, ε)→ Tp M satisfying v(0) = ċ(0). Since

expp(tv(0)) = expp(t ċ(0)) = c(t),
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we see that Y is a vector field along c. Moreover, we have expp(0v(s)) = p,
implying that Y (0) = 0. If {ċ(t0),Y (t0)} is linearly independent then we
can extend (t, s) to a system of local coordinates in a neighborhood of
c(t0) and use (a) to show that Y satisfies the Jacobi equation along c in a
neighborhood of t0. We will now show that either the set D ⊂ R of points
t0 where {ċ(t0),Y (t0)} is linearly dependent has empty interior (and then Y
satisfies the Jacobi equation along c by continuity) orY (t) = βt ċ(t) for some
β ∈ R (which is also a solution of the Jacobi equation, as R(X, X)X = 0).
Indeed, assume that D has nonempty interior, and let (a, b) be a connected
component of the interior. Then we have Y (t) = f (t)ċ(t) for some function
f : (a, b) → R, implying that DY

dt (t) = ḟ (t)ċ(t). Since D is closed, if
b were finite then Y would be a solution of the Jacobi equation along c
on some an open interval with infimum b, satisfying Y (b) = αċ(b) and
DY
dt (b) = βċ(b) (with α := f (b), β := ḟ (b)). Since

Ỹ (t) := (α+ β(t − b))ċ(t)

is also a solution with Ỹ (b) = αċ(b), DỸ
dt (b) = βċ(b), the Picard–Lindelöf

theorem would imply Y (t) = Ỹ (t) on this interval, and hence b would
not be the supremum of the connected component (because Ỹ (t) and ċ(t)
are linearly dependent). We conclude that b = +∞. Similarly we have
a = −∞, i.e. D = R. Now the formula for Y (t) can be written as

Y (t) = (d expp)t ċ(0)(t v̇(0)),

and so

v̇(0) = lim
t→0

1

t
Y (t) = lim

t→0

f (t)

t
ċ(t) = βċ(0) = βv(0),

where

β = lim
t→0

f (t)

t
.

Also, notice that Y (t) depends only on v(0) and v̇(0). Therefore we may
choose for instance v(s) = (1+ sβ)v(0), in which case

expp(tv(s)) = expp((1+ sβ)tv(0)) = c((1+ sβ)t)

and hence Y (t) = βt ċ(t).
Conversely, given a solution Y (t) of the Jacobi equation along c with Y (0) =
0, choose

Ỹ (t) = ∂

∂s
expp(t (v0 + sw0))|s=0

,
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where v0 = ċ(0) and w0 = DY
dt (0). Then Ỹ (0) = 0. Moreover, using the

fact that the Christoffel symbols for normal coordinates vanish at the origin,
it is easily seen that

DỸ

dt
(0) = w0 = DY

dt
(0).

Since, as we saw above, Ỹ (t) is also a solution of the Jacobi equation along
t , by the Picard–Lindelöf theorem we conclude that Ỹ (t) = Y (t) for all
t ∈ R.

(c) This is immediate from the formula

Y (t) = (d expp)t ċ(0)(t v̇(0)).

for a Jacobi field.
(d) From the Jacobi equation we obtain

d2

dt2

(
‖Y (t)‖2

)
= 2

d

dt

〈
DY

dt
(t),Y (t)

〉

= 2

〈
D2Y

dt2
(t),Y (t)

〉
+ 2

〈
DY

dt
(t),

DY

dt
(t)

〉

= 2 〈R(ċ(t),Y (t))ċ(t),Y (t)〉 + 2

∥∥∥∥
DY

dt
(t)

∥∥∥∥
2

≥ 0.

Moreover, it is clear that this derivative is strictly positive in a neighborhood
of t = 0, since DY

dt (0) �= 0 (otherwise Y ≡ 0). Therefore Y (t) can only
have one zero (for t = 0).

(e) (i) Regarding T n as [0, 1]n with the usual identifications on the (n − 1)-
dimensional faces, the cut locus of the point p = ( 1

2 , . . . ,
1
2

)
is exactly

the union of the (n − 1)-dimensional faces. Each point in these faces
can be reached from p by at least two geodesics with the same length
but different images.

(ii) The cut locus of p ∈ Sn is formed by the antipodal point −p, which is
clearly conjugate to p.

(iii) Regarding RPn as the northern hemisphere of Sn with antipodal iden-
tification of the equator, the cut locus of the north pole is exactly the
equator. Each point on the equator can be reached from the north pole
by exactly two geodesics with the same length but different images.

7.3.5 Section 3.5

(1) To prove Proposition 5.4 we start by checking that d is a distance:

http://dx.doi.org/10.1007/978-3-319-08666-8_5
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(i) Since d(p, q) is the infimum of a set of nonnegative numbers, it is clear that
d(p, q) ≥ 0. Also, it is immediate to check that d(p, p) = 0. Let Bε(p)
be a normal ball and let q �= p. If q �∈ Bε(p) then d(p, q) ≥ ε > 0. If
q ∈ Bε(p) then d(p, q) = ‖expp

−1(q)‖ > 0. Therefore d(p, q) = 0 if and
only if p = q.

(ii) If γ : [a, b] → M is a piecewise differentiable curve connecting p to q then
γ̃ : [a, b] → M defined by γ̃(t) = γ(a+b− t) is a piecewise differentiable
curve connecting q to p, with the same length. Therefore d(p, q) = d(q, p).

(iii) To each pair of piecewise differentiable curves γ1 and γ2 connecting p to
q and q to r we can easily associate a piecewise differentiable curve γ
connecting p to r such that l(γ) = l(γ1) + l(γ2). Taking the infimum we
obtain d(p, r) ≤ d(p, q)+ d(q, r).

To see that themetric topology induced on M is the usual topologywe notice that
the normal balls are a basis for the metric space topology, formed by open sets
of the usual topology. On the other hand, let U ⊂ M be an open set of the usual
topology and let p ∈ U . If Bε(p) is a normal ball, then expp

−1(U ∩ Bε(p)) is
an open set of Tp M containing the origin, and hence it contains Bδ(0) for some
δ > 0, implying that Bδ(p) ⊂ U . This shows that the normal balls are also a
basis for the usual topology, and hence the two topologies coincide.

(2) The set B7(0, 4) is represented in Fig. 7.6. The larger circle has radius 7 and the
smaller circles have radius 2.

(5) (a) Since f is a local isometry, it is a local diffeomorphism. To show that it is a
covering map we just have to show that it is surjective and that for each point
q ∈ N there exists a neighborhood U � q such that f −1(U ) is a disjoint
union of open sets diffeomorphic by f to U . Because (M, g) is complete
and f takes geodesics to geodesics, it is clear that (N , h) is complete and
that f is surjective. Let q ∈ N be an arbitrary point and choose U := Bε(q)
to be a normal ball (for ε > 0 sufficiently small). Then

f −1(U ) = ∪p∈ f −1(q)Bε(p),

and f is clearly a diffeomorphismwhen restricted to Bε(p) (because f takes
geodesics through p to geodesics through q, and so in normal coordinates
it is just the identity). Finally, if p1, p2 ∈ f −1(q) with p1 �= p2 then
Bε(p1)∩Bε(p2) = ∅, because the intersection points have to be equidistant
from p1 and p2 (and so cannot form an open set).

(b) The map f : (0,+∞) → S1 given by f (t) = eit is a surjective local
isometry (for the usual metrics) which is not a covering map: the point
1 ∈ S1 does not admit any neighborhood U such that f −1(U ) is a disjoint
union of open sets diffeomorphic by f to U .

(c) If (M, g) has nonpositive curvature then by Exercise 4.8(6) the exponential
map expp : Tp M → M has no critical points, that is, it is a local diffeo-
morphism. Consider the Riemannian metric h := expp

∗g on Tp M . This
choice makes expp a local isometry which takes lines through the origin to

http://dx.doi.org/10.1007/978-3-319-08666-8_4
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x

y

3−3

(0,4)

Fig. 7.6 B7(0, 4) on R
2\{(x, 0) | −3 ≤ x ≤ 3}

geodesics through p. Since these geodesics are defined for all values of the
parameter, we conclude that exp0 : T0Tp M → Tp M is well defined for all
v ∈ T0Tp M , and so (Tp M, h) is complete. By (a), expp is then a covering
map.

7.4 Chapter 4

7.4.1 Section 4.1

(1) (a) (i) It suffices to prove that R satisfies

R(X1 + X2,Y )Z = R(X1,Y )Z + R(X2,Y )Z

and
R( f X,Y )Z = f R(X,Y )Z

for all X, X1, X2,Y, Z ∈ X(M) and f ∈ C∞(M). The first identity is
trivially true. To prove the second, we notice that [ f X,Y ] = f [X,Y ]−
(Y · f )X , and hence

R( f X,Y )Z = ∇ f X∇Y Z − ∇Y∇ f X Z −∇[ f X,Y ]Z
= f∇X∇Y Z −∇Y ( f∇X Z)−∇ f [X,Y ]−(Y · f )X Z

= f∇X∇Y Z − f∇Y∇X Z − (Y · f )∇X Z

− f∇[X,Y ]Z + (Y · f )∇X Z
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= f (∇X∇Y Z −∇Y∇X Z − ∇[X,Y ]Z) = f R(X,Y )Z .

(ii) Analogous to (i).
(iii) Again it suffices to show that R satisfies

R(X,Y )(Z1 + Z2) = R(X,Y )Z1 + R(X,Y )Z2

and
R(X,Y )( f Z) = f R(X,Y )Z

for all X,Y, Z1, Z2, Z ∈ X(M) and f ∈ C∞(M). The first identity is
trivially true. The second follows from

R(X,Y )( f Z) = ∇X∇Y ( f Z)− ∇Y∇X ( f Z)−∇[X,Y ]( f Z)

= ∇X ( f∇Y Z)+ ∇X ((Y · f )Z)− ∇Y ( f∇X Z)

− ∇Y ((X · f )Z)− f∇[X,Y ]Z − ([X,Y ] · f )Z

= f∇X∇Y Z + (X · f )∇Y Z + (Y · f )∇X Z

+ (X · (Y · f ))Z − f∇Y∇X Z − (Y · f )∇X Z

− (X · f )∇Y Z − (Y · (X · f ))Z − f∇[X,Y ]Z
− ([X,Y ] · f )Z

= f (∇X∇Y Z − ∇Y∇X Z −∇[X,Y ]Z)
+ (X · (Y · f )− Y · (X · f ))Z − ([X,Y ] · f )Z

= f R(X,Y )Z .

(b) If x : V → R
n are local coordinates around p ∈ M , we have

R(X, Y )Z = R

⎛
⎝

n∑
i=1

Xi ∂

∂xi
,

n∑
j=1

Y j ∂

∂x j

⎞
⎠

⎛
⎝

n∑
k=1

Zk ∂

∂xk

⎞
⎠

=
n∑

i, j,k=1
Xi Y j Zk R

(
∂

∂xi
,
∂

∂x j

)
∂

∂xk
=

n∑
i, j,k,l=1

Xi Y j Zk R l
i jk

∂

∂xl
.

Therefore

(R(X,Y )Z)p =
n∑

i, j,k, j=1
Xi (p)Y j (p)Zk(p)R l

i jk (p)

(
∂

∂xl

)

p

depends only on X p,Yp, Z p. Moreover, this dependence is linear, and hence
R defines a (3, 1)-tensor.

(4) Let (X1
p, X2

p) and (Y
1
p ,Y 2

p) be the components of X p and Yp on an orthonormal
basis of the plane generated by these two vectors. Then the square of the area of
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the parallelogram spanned by X p,Yp is

∣∣∣∣
X1

p Y 1
p

X2
p Y 2

p

∣∣∣∣
2

= (X1
pY 2

p − X2
pY 1

p)
2

= (X1
p)

2(Y 2
p)

2 + (X2
p)

2(Y 1
p)

2 − 2X1
p X2

pY 1
pY 2

p .

On the other hand, we have

‖X p‖2‖Yp‖2 − 〈X p,Yp〉2

=
(
(X1

p)
2 + (X2

p)
2
) (
(Y 1

p)
2 + (Y 2

p)
2
)
−

(
X1

pY 1
p + X2

pY 2
p

)2

= (X1
p)

2(Y 2
p)

2 + (X2
p)

2(Y 1
p)

2 − 2X1
p X2

pY 1
pY 2

p .

If Z p,Wp is another basis for the plane generated by X p,Yp, their components
on the orthonormal basis satisfy

(
Z1

p W 1
p

Z2
p W 2

p

)
=

(
X1

p Y 1
p

X2
p Y 2

p

)
S,

where S is the change of basis matrix, and therefore

∣∣∣∣
Z1

p W 1
p

Z2
p W 2

p

∣∣∣∣
2

= (det S)2
∣∣∣∣
X1

p Y 1
p

X2
p Y 2

p

∣∣∣∣
2

.

Finally, we have

R(Z p,Wp, Z p,Wp) = R(S11X p + S21Yp, S12X p + S22Yp, S11X p

+ S21Yp, S12X p + S22Yp)

= (S11S22S11S22 − S11S22S21S12 − S21S12S11S22
+ S21S12S21S12)R(X p,Yp, X p,Yp)

= (S11S22 − S12S21)
2R(X p,Yp, X p,Yp)

= (det S)2R(X p,Yp, X p,Yp).

(8) (a) First we note that the corresponding Levi–Civita connections, ∇1 and ∇2,
coincide. Indeed, by the Koszul formula,

2〈∇1
X Y, Z〉1 = X · 〈Y, Z〉1 + Y · 〈X, Z〉1 − Z · 〈X,Y 〉1

− 〈[X, Z ],Y 〉1 − 〈[Y, Z ], X〉1 + 〈[X,Y ], Z〉1
= 2ρ〈∇2

X Y, Z〉2,
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and so 2ρ〈∇1
X Y, Z〉2 = 2ρ〈∇2

X Y, Z〉2 for every vector fields X,Y, Z ∈
X(M), implying that ∇1

X Y = ∇2
X Y . Hence,

R1(X,Y, Z ,W ) = 〈R1(X,Y )Z ,W 〉1 = 〈R2(X,Y )Z ,W 〉1
= ρ〈R2(X,Y )Z ,W 〉2 = ρR2(X,Y, Z ,W )

and so for any 2-dimensional section � of a tangent space of M we have,

K1(�) = − R1(X,Y, X,Y )

‖X‖21‖Y‖21 − 〈X,Y 〉21
= − ρR2(X,Y, X,Y )

ρ2(‖X‖22‖Y‖22 − 〈X,Y 〉22)
= ρ−1K2(�).

(b) We have

(R1)i j =
n∑

k=1
(R1)

k
ki j =

n∑
k=1
(R2)

k
ki j = (R2)i j

and so Ric1 = Ric2.
(c) Since (g1)i j = ρ(g2)i j implies (g1)i j = ρ−1(g2)i j , we have

S1(p) =
n∑

i, j=1
(R1)i j (g1)

i j = ρ−1
n∑

i, j=1
(R2)i j (g2)

i j = ρ−1S2(p).

7.4.2 Section 4.2

(3) (a) Let us take the usual local coordinates on S2 ⊂ R
3 defined by the parame-

terization φ : (0,π)× (0, 2π)→ R
3 given by

φ(θ,ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ).

Consider the field of frames {X1, X2} where

X1 := ∂

∂θ
and X2 := ∂

∂ϕ
.

Then

〈X1, X1〉 = 1, 〈X1, X2〉 = 0 and 〈X2, X2〉 = sin2 θ,
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and so a field of orthonormal frames {E1, E2} is given by E1 := X1 and
E2 := 1

sin θ X2, and {ω1,ω2}, with ω1 := dθ and ω2 := sin θdϕ, is its
associated field of dual coframes. Moreover,

dω1 = 0 and dω2 = cos θ dθ ∧ dϕ = cot θ ω1 ∧ ω2.

The first Cartan structure equations,

dω1 = ω2 ∧ ω1
2 and dω2 = ω1 ∧ ω2

1,

imply that
dω1(E1, E2) = −ω1

2(E1) = ω2
1(E1)

and
dω2(E1, E2) = ω2

1(E2).

Therefore the connection form ω2
1 is given by

ω2
1 = dω1(E1, E2)ω

1 + dω2(E1, E2)ω
2 = cot θ ω2 = cos θ dϕ.

Hence dω2
1 = − sin θ dθ ∧ dϕ = −ω1 ∧ ω2, and we conclude from

Proposition 2.6 that the Gauss curvature of S2 is K = 1.
(b) Let us consider on H the field of frames {X1, X2} where

X1 := ∂

∂x
and X2 := ∂

∂y
.

Then

〈X1, X1〉 = 1

y2
, 〈X1, X2〉 = 0 and 〈X2, X2〉 = 1

y2
,

and so {E1, E2} given by E1 := y X1 and E2 := y X2 is a field of orthonor-
mal frames and {ω1,ω2}, with ω1 := 1

y dx and ω2 := 1
y dy, is the associated

field of dual coframes. Moreover,

dω1 = 1

y2
dx ∧ dy = ω1 ∧ ω2 and dω2 = 0,

and so the connection form ω2
1 is given by

ω2
1 = dω1(E1, E2)ω

1 + dω2(E1, E2)ω
2 = ω1.

Hence dω2
1 = 1

y2
dx∧dy = ω1∧ω2, and we conclude from Proposition 2.6

that the Gauss curvature of H is K = −1.
(6) (a) An orthonormal coframe is given by

http://dx.doi.org/10.1007/978-3-319-08666-8_2
http://dx.doi.org/10.1007/978-3-319-08666-8_2
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ωr = A(r)dr, ωθ = rdθ and ωϕ = r sin θdϕ.

From the Cartan structure equations we obtain

dωr = 0 = ωθ ∧ ωr
θ + ωϕ ∧ ωr

ϕ;
dωθ = dr ∧ dθ = ωr ∧ ωθr + ωϕ ∧ ωθϕ;
dωϕ = sin θ dr ∧ dϕ+ r cos θ dθ ∧ dϕ = ωr ∧ ωϕr + ωθ ∧ ωϕθ ,

from which one readily guesses that

ωθr = −ωr
θ =

1

A
dθ;

ωϕr = −ωr
ϕ =

sin θ

A
dϕ;

ω
ϕ
θ = −ωθϕ = cos θdϕ.

The curvature forms are given by

�θr = dωθr − ωϕr ∧ ωθϕ = −
A′
A2 dr ∧ dθ = − A′

r A3 ω
r ∧ ωθ;

�
ϕ
r = dωϕr − ωθr ∧ ωϕθ = −

A′ sin θ
A2 dr ∧ dϕ = − A′

r A3 ω
r ∧ ωϕ;

�
ϕ
θ = dωϕθ − ωr

θ ∧ ωϕr =
(
sin θ

A2 − sin θ

)
dθ ∧ dϕ = 1

r2

(
1

A2 − 1

)
ωθ ∧ ωϕ,

and hence the nonvanishing components of the curvature tensor on this
orthonormal frame are

R θ
rθr = �θr (Er , Eθ) = − A′

r A3 ;

R ϕ
rϕr = �ϕr (Er , Eϕ) = − A′

r A3 ;

R ϕ
θϕθ = �ϕθ (Eθ, Eϕ) = 1

r2

(
1

A2 − 1

)

(plus the components related to these by symmetries). We conclude that the
components of the Ricci tensor on this orthonormal frame are
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Rrr = R θ
θrr + R ϕ

ϕrr =
2A′

r A3 ;

Rθθ = R r
rθθ + R ϕ

ϕθθ =
A′

r A3 −
1

r2

(
1

A2 − 1

)
;

Rϕϕ = R r
rϕϕ + R θ

θϕϕ =
A′

r A3 −
1

r2

(
1

A2 − 1

)
.

The scalar curvature is then

S = Rrr + Rθθ + Rϕϕ = 4A′

r A3 −
2

r2

(
1

A2 − 1

)
.

(b) In this case we have Rrr = Rθθ = Rϕϕ = 2, i.e. Ric = 2g, and hence
S = 6.

(c) In this case we have Rrr = Rθθ = Rϕϕ = −2, i.e. Ric = −2g, and hence
S = −6.

(d) We have to solve the differential equation

4A′

r A3 −
2

r2

(
1

A2 − 1

)
= S

for constant S. This equation can be written as

−2A′r
A3 +

1

A2 = 1− Sr2

2
⇔

( r

A2

)′ = 1− Sr2

2
,

which has the immediate solution

A(r) =
(
1− Sr2

6
+ C

r

)− 1
2

(where C ∈ R is an integration constant).
(7) Defining fields of positive orthonormal frames {E1, E2} and {F1, F2} such that
{E1, E2} is well defined on D and F1 = X , we have by Proposition 2.7

�θ =
∫

∂D

σ =
∫

∂D

ω2
1 − ω2

1 .

Since X is parallel-transported along ∂D, we have

∇ċ F1 = 0⇔ ω2
1(ċ) = 0⇔ c∗ω2

1 = 0.

We conclude that

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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�θ = −
∫

∂D

ω2
1 = −

∫

D

dω2
1 =

∫

D

Kω1 ∧ ω2 =
∫

D

K ,

where we have used the Stokes theorem. The formula for K (p) as a limit can be
obtained by standard arguments.

(9) Considering two fields of orthonormal frames {E1, E2} and {F1, F2} positively
oriented such that E1 = X

‖X‖ and F1 = ċ, we have

dθ

ds
(s) = dθ(ċ(s)) = ω2

1(ċ(s))− ω2
1(ċ(s)) = ω2

1(F1) = kg(s),

where we used the fact that

∇ċ E1 = 0⇔ ω2
1(ċ(s)) = 0.

7.4.3 Section 4.3

(1) Clearly 〈·, ·〉t is bilinear, symmetric and satisfies 〈v, v〉t ≥ 0.Moreover, 〈v, v〉t =
0 if and only if

(1− t)‖v‖20 + t‖v‖21 = 0,

that is, if and only if ‖v‖20 = ‖v‖21 = 0, and so v = 0. To see that the function
Ip(t) is continuous we consider the positive orthonormal frame {F1,t , F2,t }with
respect to the metric 〈·, ·〉t such that

F1,t = X

‖X‖t
.

Then

(ω1)t := ‖X‖t

‖X‖1 (ω
1)1

is continuous with respect to t . Since F2,t , d(ω1)t and d(ω2)t change continu-
ously with t , so does

(ω2
1)t = d(ω1)t (F1,t , F2,t )(ω

1)t + d(ω2)t (F1,t , F2,t )(ω
2)t ,

and consequently Ip(t).
(5) (a) Let x = (x1, . . . , xn) be local coordinates centered at p and f̂ := f ◦ x−1

the expression of f in these local coordinates. Since p is a critical point
we have

∂ f̂

∂xi
(0, . . . , 0) = 0.
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Now
∂

∂s
( f ◦ γ) =

n∑
i=1

∂ f̂

∂xi

∂γi

∂s

(where γi := xi ◦ γ), and hence

∂2

∂t∂s
( f ◦ γ) =

n∑
i, j=1

∂2 f̂

∂xi∂x j

∂γi

∂s

∂γ j

∂t
+

n∑
i=1

∂ f̂

∂xi

∂2γi

∂t∂s
.

Setting (s, t) = (0, 0) we obtain

(H f )p(v,w) =
n∑

i, j=1

∂2 f̂

∂xi x j
(0, . . . , 0)viw j ,

which shows that (H f )p is indeed a symmetric 2-tensor. Since it depends
only on the components of v and w, we see that it is well defined (i.e. inde-
pendent of the choice of the map γ).

(b) In local coordinates x = (x1, . . . , xn) centered at a particular critical point
p ∈ M we have

f̂ (x1, . . . , xn) = f (p)+
n∑

i, j=1

1

2
Hi j xi x j + o(‖x‖2)

where f̂ := f ◦ x−1 and

Hi j := ∂2 f̂

∂xi x j
(0, . . . , 0)

are the components of the Hessian, and so

∂ f̂

∂xi
(x1, . . . , xn) =

n∑
j=1

Hi j x j + o(‖x‖)

Since the Hessian is nondegenerate, the matrix (Hi j ) is invertible, and hence
there exists a neighborhood of p where p is the only critical point of f . We
conclude that the critical points of f are isolated, and since M is compact,
there can only be a finite number of them (otherwise they would accumulate
on a non-isolated critical point). Since (Hi j ) is symmetric and nondegener-
ate, there exists a linear change of coordinates which reduces it to a diagonal
matrix of the form diag(1, . . . , 1,−1, . . . ,−1). If M is 2-dimensional then
the possibilities are diag(1, 1) (inwhich case p is aminimum), diag(−1,−1)
(in which case p is a maximum), and diag(1,−1) (in which case p is a
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saddle point). Choosing a Riemannian metric on M which coincides with
the Euclidean metric in these coordinates in a neighborhood of each critical
point, we see that close to p

grad f = (x1 + o(‖x‖)) ∂

∂x1
+ (x2 + o(‖x‖)) ∂

∂x2

if p is a minimum,

grad f = (−x1 + o(‖x‖)) ∂

∂x1
+ (−x2 + o(‖x‖)) ∂

∂x2

if p is a maximum, and

grad f = (x1 + o(‖x‖)) ∂

∂x1
+ (−x2 + o(‖x‖)) ∂

∂x2

if p is a saddle point. From Example 3.2 we see that grad f has index 1 at p
if p is a maximum or a minimum and index−1 if p is a saddle point. Since
the zeros of grad f are precisely the critical points of f , we obtain

χ(M) = m − s + n.

(6) Note that although ∂� is not a smooth manifold we can approximate it by a
sequence of smooth manifolds by “rounding the corners” and then take the limit.
In what follows we shall therefore treat ∂� as if it were a smooth manifold.

(a) Let us consider a vector field V parallel along ∂�. Since the edges of �
are geodesics, the tangent vector to ∂� rotates with respect to V only at the
vertices, by a total amount of

(π − α)+ (π − β)+ (π − γ).

This must be equal to 2π minus the angle by which V rotates. Therefore we
have

3π − α− β − γ = 2π −
∫

�

K .

(b) We just saw that the tangent vector to ∂� rotates with respect to a parallel
vector V by a total amount of

∫

∂�

kg = (π − α)+ (π − β)+ (π − γ).

By the Gauss–Bonnet theorem for manifolds with boundary, we have

http://dx.doi.org/10.1007/978-3-319-08666-8_3
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3π − α− β − γ +
∫

�

K = 2πχ(�).

Since � is homeomorphic to a disk, we have χ(�) = 1, which proves the
result.

7.4.4 Section 4.4

(6) (a) The group of isometries of R
2 is

I so(R2) = {Ax + b | A ∈ O(2), b ∈ R
2}.

Identifying R
2 with the complex plane C, we can write any orientation-

preserving element f ∈ I so(R2) as f (z) = eiθz + b, with θ ∈ R and
b ∈ C. The fixed points of f are given by

f (z) = z ⇔
(
1− eiθ

)
z = b,

and hence f has no fixed points if and only if eiθ = 1, i.e. if and only if f
is a translation. On the other hand, we can write any orientation-reversing
element g ∈ I so(R2) as g(z) = eiθz + b, with θ ∈ R and b ∈ C. For
instance, a gliding reflection along the real axis is given by h(z) = z + ξ
(with ξ ∈ R). Let r(z) = ei θ2 z be the rotation by θ

2 and let t (z) = z + iη
(with η ∈ R) be the translation by iη ∈ iR. Then

(r ◦ h ◦ t ◦ r−1)(z) = ei θ2

(
e−i θ2 z + iη + ξ

)
= eiθz + ei θ2 (ξ − iη)

is a gliding reflection (with axis of slope tan θ
2 at a distance |η| from the

origin). Since this map is equal to g for ξ, η satisfying

ξ + iη = ei θ2 b,

we conclude that any orientation-reversing isometry ofR
2 is a gliding reflec-

tion. These obviously do not have fixed points as long as the translation along

the reflection axis is nonzero, that is, as long as e−i θ2 b �∈ iR.
(b) Let � be a discrete group of I so(R2) acting properly and freely on R

2.
Hence, � can only contain translations and gliding reflections.

Suppose first that � only contains translations and let t1 ∈ � be a transla-
tion in � such that t1(0) has minimum length (it exists since the action of
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� is proper). Then the group �1 := 〈t1〉 ⊂ � generated by t1 contains all
translations of � with the same direction as t1. Indeed, if t is a translation in
�\�1 with the same direction as t1 then, taking m ∈ Z for which tm

1 is the
element of �1 with tm

1 (0) closest to t (0), the length of t−1tm
1 (0) is smaller

than the length of t1(0), contradicting our initial assumption.

If �1 �= � then let t2 ∈ �\�1 be such that t2(0) has minimum length. Then
t1 and t2 generate a lattice in R

2 and � = 〈t1, t2〉. Indeed, if there were an
element t in �\〈t1, t2〉 then, taking m, n ∈ Z for which tm

1 tn
2 (0) is closest

to t (0), the length of t−1tm
1 tn

2 (0) would either be smaller than the length of
t1(0) or the length of t2(0).

If � contains gliding reflections then let g ∈ � be a gliding reflection such
that g2(0) has minimum length (it exists since the action of � is proper). If
�1 := 〈g〉 �= � then �\�1 contains translations (if g1 ∈ �\�1 is a gliding
reflection then g−1g1 is a translation in�\�1). Let t ∈ �\�1 be a translation
such that t (0) has minimal length (it exists since the action of � is proper).
By a suitable choice of coordinates we can assume that g(z) = z + ξ with
ξ ∈ R. Let t (z) = z + b with b = α+ iβ ∈ C (where α,β ∈ R). Then

(g−1 ◦ t ◦ g)(z) = g−1(z + ξ + b) = z + b,

and we conclude that � contains the translations by b and b, and hence
by 2α and 2iβ. Since g2(0) = 2ξ has minimal length, it is easy to check
that 2α must be an integer multiple of ξ, as otherwise it would be possible
to construct a gliding reflection g̃ with |̃g2(0)| < |g2(0)|. Since t (0) has
minimal length, we see that α must be either 0, ± ξ

2 or ±ξ; however, it
cannot be ± ξ

2 , as in that case � would contain the reflection z �→ z, and it
cannot be±ξ, as in that case � would contain the reflection z �→ z+ iβ. We
conclude that t is the translation by iβ, and hence the orbit of 0 ∈ R

2 under
〈g, t〉 is the same as its orbit by the group generated by the translations by ξ
and iβ. A similar argument to the one above shows that � = 〈g, t〉.

(7) To determine R
2/〈 f 〉 we start by noticing that each point in the open half-

plane {(x, y) ∈ R
2 | x < 0} is equivalent to a point in the open half-plane

{(x, y) ∈ R
2 | x > 0}. On the other hand, we have

f 2(x, y) = f ( f (x, y)) = f (−x, y + 1) = (x, y + 2).

Therefore any point in R
2 is equivalent to a point in the strip

S = {(x, y) ∈ R
2 | x ≥ 0 and 0 ≤ y ≤ 2},

and hence R
2/〈 f 〉 is homeomorphic to S/ ∼, where the equivalence relation ∼

is defined on S by
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(x, 0) ∼ (x, 2) and (0, y) ∼ (0, y + 1).

Now S/ ∼ is clearly homeomorphic to the semi-infinite cylinder

C = {(x, y, z) ∈ R
3 | x2 + y2 = 1 and z ≥ 0}

quotiented by the identification (x, y, 0) ∼ (−x,−y, 0) on the boundary
(cf. Fig. 7.7). This, in turn, is clearly homeomorphic to a projective plane minus
a closed disk, which is homeomorphic to aMöbius band (without the boundary).

To determine R
2/〈 f, g〉, we notice that any point of R

2 will be equivalent to a
point in the rectangle R = [0, 1] × [0, 2]. Moreover, since

g( f (x, y)) = g(−x, y + 1) = (1− x, y + 1),

we see that actually any point in R
2 is equivalent to a point in the square

Q = [0, 1] × [0, 1]. Therefore R
2/〈 f, g〉 is homeomorphic to Q/ ∼, where

the equivalence relation ∼ is defined on Q by

(0, y) ∼ (1, y) and (x, 0) ∼ (1− x, 1).

This is precisely a Klein bottle.
(8) (a) First note that the map

f (z) := az + b

cz + d

satisfies f ′(z) = 1
(cz+d)2

and Im( f (z)) = y
|cz+d|2 , where z = x + iy.

Then, we easily check that g maps H2 onto itself and that, for f (z) =
v(x, y)+ iv(x, y),

x

y

C

S ∼=

Fig. 7.7 R
2/〈 f 〉
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( f ∗g)z
(
∂

∂x
,
∂

∂x

)
= g f (z)

(
f∗
∂

∂x
, f∗

∂

∂x

)

= g f (z)

(
∂v

∂x

∂

∂x
+ ∂v

∂x

∂

∂y
,
∂v

∂x

∂

∂x
+ ∂v

∂x

∂

∂y

)

= g f (z)

(
∂v

∂x

∂

∂x
− ∂v

∂y

∂

∂y
,
∂v

∂x

∂

∂x
− ∂v

∂y

∂

∂y

)

= 1

v2

((
∂v

∂x

)2

+
(
∂v

∂y

)2
)
= 1

v2
| f ′(z)|2

= 1

y2
= gp

(
∂

∂x
,
∂

∂x

)
,

where we used the Cauchy–Riemann equations for f (see for instance
[Ahl79]). Similarly, we can see that

( f ∗g)p

(
∂

∂x
,
∂

∂y

)
= 0 and ( f ∗g)p

(
∂

∂y
,
∂

∂y

)
= 1

y2

and so f is an isometry of H2. Moreover, det(d f ) = | f ′(z)|2 > 0 and so
f is orientation-preserving.

(b) Recall that an isometry maps geodesics to geodesics. Hence, if we prove
that given two points p, q ∈ H2 and two unit vectors v,w respectively at p
and q there exists g ∈ P SL(2,R) such that g(p) = q and (dg)pv = w we
are done (here we also denoted by g the map given by g(z) = g · z). For that
we first see that the orbit of i is all of H2. Indeed, given any z0 = x0 + iy0
with y0 > 0, the map fz0(z) := y0z + x0, corresponding to the matrix

⎛
⎜⎝
√

y0
x0√
y0

0 1√
y0

⎞
⎟⎠ ∈ P SL(2,R),

takes i to z0. In addition, the maps rθ : H2 → H2 corresponding to the
matrices ⎛

⎝
cos θ sin θ

− sin θ cos θ

⎞
⎠ ∈ P SL(2,R)

fix i (i.e. rθ(i) = i for every θ) and are transitive on vectors at i , since

(drθ)i =
⎛
⎝
cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

⎞
⎠
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(they act as SO(2) on Ti H2). Hence the map g = fq ◦ rθ ◦ f −1p , where
θ is such that (drθ)i (d f −1p )pv = (d f −1q )qw, takes p to q and is such that
(dg)pv = w.

(c) This is an immediate consequence of (b).
(d) Let f : H2 → H2 be an orientation-preserving isometry. If f has two

fixed points then it must fix the geodesic through them. Let z be a point in
this geodesic and choose a positive orthonormal frame {E1, E2} ∈ Tz H2

with E1 tangent to the geodesic. Then (d f )z E1 = E1, and, since f is an
orientation-preserving isometry, (d f )z E2 = E2. We conclude that (d f )z
must be the identity, and so f fixes all geodesics through z, that is, f is the
identity map.

Now let f : H2 → H2 be any orientation-preserving isometry, choose two
points z1, z2 ∈ H2 and let g be the element of P SL(2,R) such that g(z1) =
f (z1) and g(z2) = f (z2), given by (c). Then f ◦ g−1 is an orientation-
preserving isometry with two fixed points, and so it must be the identity,
that is, f = g.

7.4.5 Section 4.5

(1) (a) This is clear from the fact that
(∇̃X̃ Ỹ

)
|N depends only on X̃ |N = X and

Ỹ|N = Y .
(b) This is also immediate from the fact that

B(X,Y ) = ∇̃X̃ Ỹ − (∇̃X̃ Ỹ
)� = (∇̃X̃ Ỹ

)⊥
.

(c) By Exercise 6.11(7) in Chap. 1 we know that [X̃ , Ỹ ] is tangent to N . There-
fore

B(X,Y )− B(Y, X) = (∇̃X̃ Ỹ
)⊥ − (∇̃Ỹ X̃

)⊥ = [X̃ , Ỹ ]⊥ = 0.

(d) Let f be a function on N and let f̃ be any extension of f to M . Then

B( f X,Y ) =
(
∇̃ f̃ X̃ Ỹ

)⊥ = f̃
(∇̃X̃ Ỹ

)⊥ = f B(X,Y ),

and, by symmetry,
B(X, f Y ) = f B(X,Y ).

Moreover, it is clear that

B(X + Y, Z) = B(X, Z)+ B(Y, Z)

http://dx.doi.org/10.1007/978-3-319-08666-8_1
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and
B(X,Y + Z) = B(X,Y )+ B(X, Z).

(e) If x : V → R
n are local coordinates around p ∈ M , we have

B(X,Y ) = B

⎛
⎝

n∑
i=1

Xi ∂

∂xi
,

n∑
j=1

Y j ∂

∂x j

⎞
⎠ =

n∑
i, j=1

Xi Y j B

(
∂

∂xi
,
∂

∂x j

)
.

Therefore

B(X,Y )p =
n∑

i, j=1
Xi (p)Y j (p)B

(
∂

∂xi
,
∂

∂x j

)

p

depends only on X p,Yp .
(f) From Exercise 6.11(7) in Chap. 1 it is clear that [X̃ , Ỹ ] is an extension of
[X,Y ]. Therefore

∇̃[X̃ ,Ỹ ] X̃ −∇[X,Y ]X = B([X,Y ], X)

is orthogonal to N .
(4) Let g : D ⊂ N → Sn be the Gauss map defined on a neighborhood D of p.

Since det(dg)p = (−1)n det(Sn p ) = (−1)n K (p) �= 0, we may assume that g is
a diffeomorphism on D. If ω is the standard volume form of Sn , we have

vol(g(D)) =
∫

g(D)

ω =
∣∣∣∣∣∣

∫

D

g∗ω

∣∣∣∣∣∣

(as g may be orientation reversing). If {v1, . . . , vn} is an orthonormal basis for
Tq N ∼= Tg(q)Sn with q ∈ D then

g∗ω(v1, . . . , vn) = ω((dg)q v1, . . . , (dg)q vn)

= det(dg)q ω(v1, . . . , vn) = det(dg)q ,

and hence g∗ω = det(dg)ωN on D (where ωN is the volume element of N ). We
conclude that

vol(g(D)) =
∣∣∣∣∣∣

∫

D

det(dg)

∣∣∣∣∣∣
=

∫

D

| det(dg)| =
∫

D

|K |

(as det(dg) does not change sign on D). The result then follows by the mean
value theorem:

http://dx.doi.org/10.1007/978-3-319-08666-8_6
http://dx.doi.org/10.1007/978-3-319-08666-8_1
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|K (p)| = lim
D→p

∫
D
|K |

vol(D)
= lim

D→p

vol(g(D))

vol(D)
.

(5) (a) The ball Bε(p) is covered by geodesics of length ε that start at p, defined
by cv(t) := expp(tv), with 0 ≤ t ≤ ε and ‖v‖ = 1. Hence, Np :=
expp(Bε ∩ �) is formed by the geodesics in Bε(p) that are tangent to �.
Let us choose an orthonormal basis {(E1)p, . . . , (En)p} of Tp M such that
{(E1)p, (E2)p} is a basis of�. Choosing normal coordinates

ϕ(x1, . . . , xn) = expp

(
n∑

i=1
xi (Ei )p

)
,

we have
Np = {q ∈ Bε(p) | x3(q) = · · · = xn(q) = 0}.

We conclude from Exercise 5.9(3) in Chap. 1 that Np is a 2-dimensional
submanifold of M .

(b) From Exercise 4.8(2) in Chap. 3 we know that normal coordinates satisfy

(
∇̃ ∂

∂xi

∂

∂x j

)

p
= 0

for i, j = 1, . . . , n, where ∇̃ is the Levi–Civita connection of M . Conse-
quently,

B

((
∂

∂xi

)

p
,

(
∂

∂x j

)

p

)
=

(
∇̃ ∂

∂xi

∂

∂x j

)⊥
p
= 0,

for i, j = 1, 2, and hence the second fundamental form of Np vanishes at
p. From Proposition 5.3 we then have

K Np (�) = K M (�).

(6) Let c : I → N be a geodesic in N parameterized by arc length and tangent at a
point c(s) to the principal direction (Ei )c(s) (a unit eigenvector of Snc(s)). Then
the geodesic curvature (in M) of c is given by

kg(s) = ‖∇̃ċ(s)ċ(s)‖ = ‖B(ċ(s), ċ(s))−∇ċ(s)ċ(s)‖
= ‖B(ċ(s), ċ(s))‖ = |〈〈Snc(s) (ċ(s)), ċ(s)〉〉|
= |〈〈Snc(s) ((Ei )c(s)), (Ei )c(s)〉〉| = |λi |.

(7) (a) A parameterization of the paraboloid is, for instance, the map ϕ : R2 → R
3

given by

http://dx.doi.org/10.1007/978-3-319-08666-8_1
http://dx.doi.org/10.1007/978-3-319-08666-8_3
http://dx.doi.org/10.1007/978-3-319-08666-8_5
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ϕ(v, v) =
(
v, v,

1

2
(v2 + v2)

)
.

The tangent space to the paraboloid at ϕ(v, v) is generated by

∂ϕ

∂v
= (1, 0, v) and

∂ϕ

∂v
= (0, 1, v),

and a normal vector is

∂ϕ

∂v
× ∂ϕ

∂v
= (−v,−v, 1).

A possible choice for the Gauss map is therefore

g(v, v) = (v, v,−1)√
1+ v2 + v2 .

Notice that the image of the paraboloid by this map is contained in the
southern hemisphere of S2, where we can again use the two first coordinate
functions ofR3 as coordinates. In these coordinates, theGaussmap is simply
written

ĝ(v, v) = (v, v)√
1+ v2 + v2 ,

and its derivative is represented by the Jacobian matrix

d ĝ =
(
(1+ v2)(1+ v2 + v2)− 3

2 −vv(1+ v2 + v2)− 3
2

−vv(1+ v2 + v2)− 3
2 (1+ v2)(1+ v2 + v2)− 3

2

)
.

We conclude that the Gauss curvature of the paraboloid is

K = det(dg) = (1+ v2 + v2)−2.

(b) A parameterization of the saddle surface is, for instance, the map ϕ : R2 →
R
2 given by

ϕ(v, v) = (v, v, vv) .

The tangent space to the saddle surface at ϕ(v, v) is generated by

∂ϕ

∂v
= (1, 0, v) and

∂ϕ

∂v
= (0, 1, v),

and a normal vector is

∂ϕ

∂v
× ∂ϕ

∂v
= (−v,−v, 1).
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A possible choice for the Gauss map is therefore

g(v, v) = (v, v,−1)√
1+ v2 + v2 .

Notice that the image of the saddle surface by this map is contained in the
southern hemisphere of S2, where we can again use the two first coordinate
functions ofR3 as coordinates. In these coordinates, theGaussmap is simply
written

ĝ(v, v) = (v, v)√
1+ v2 + v2 ,

and its derivative is represented by the Jacobian matrix

d ĝ =
(
−vv(1+ v2 + v2)− 3

2 (1+ v2)(1+ v2 + v2)− 3
2

(1+ v2)(1+ v2 + v2)− 3
2 −vv(1+ v2 + v2)− 3

2

)
.

We conclude that the Gauss curvature of the saddle surface is

K = det(dg) = −(1+ v2 + v2)−2.

7.5 Chapter 5

7.5.1 Section 5.1

(5) The Koszul formula yields

2〈〈∇̃X Y, Z〉〉 = X · 〈〈Y, Z〉〉 + Y · 〈〈X, Z〉〉 − Z · 〈〈X,Y 〉〉
− 〈〈[X, Z ],Y 〉〉 − 〈〈[Y, Z ], X〉〉 + 〈〈[X,Y ], Z〉〉.

Noting that for instance

X · 〈〈Y, Z〉〉 = X ·
(

e2ρ〈Y, Z〉
)
= e2ρX · 〈Y, Z〉 + 2dρ(X)e2ρ〈Y, Z〉,

it should be clear that

2〈〈∇̃X Y, Z〉〉 = 2e2ρ〈∇X Y, Z〉 + 2dρ(X)e2ρ〈Y, Z〉
+ 2dρ(Y )e2ρ〈X, Z〉 − 2dρ(Z)e2ρ〈X,Y 〉
= 2〈〈∇X Y, Z〉〉 + 2〈〈dρ(X)Y, Z〉〉
+ 2〈〈dρ(Y )X, Z〉〉 − 2e2ρ〈grad ρ, Z〉〈X,Y 〉.
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Since
e2ρ〈grad ρ, Z〉 = 〈〈grad ρ, Z〉〉

and Z is arbitrary we obtain

∇̃X Y = ∇X Y + dρ(X)Y + dρ(Y )X − 〈X,Y 〉 grad ρ.

(6) Let s : I → J be a diffeomorphism and γ : J → M the reparameterization of
c : I → M defined by

c(t) := γ(s(t)).

We have

ċ(t) = γ̇(s(t))ds

dt
(t) (7.29)

and consequently

∇ċ ċ = ∇ċ

(
ds

dt
γ̇

)
=

(
d2s

dt2

)
γ̇ +

(
ds

dt

)
∇ ds

dt γ̇
γ̇

= d

dt

(
log

∣∣∣∣
ds

dt

∣∣∣∣
)

ċ +
(

ds

dt

)2

∇γ̇ γ̇

Therefore, if c is a reparameterization of a geodesic γ, then c satisfies

∇ċ ċ = f (t)ċ

with

f (t) = d

dt

(
log

∣∣∣∣
ds

dt

∣∣∣∣
)
.

On the other hand, if c satisfies (7.29), then the reparameterization γ of c deter-
mined by

s(t) =
∫

exp

(∫
f (t)dt

)
dt

is a geodesic.
(8) Recall that the local coordinates (x1, . . . , xn, v1, . . . , vn) on T M parameterize

the vector
n∑

i=1
vi ∂

∂xi

which is tangent to M at the point with coordinates (x1, . . . , xn). Therefore, we
have
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K (x1, . . . , xn, v1, . . . , vn) = 1

2

n∑
i, j=1

gi j (x
1, . . . , xn)viv j ,

where

gi j =
〈
∂

∂xi
,
∂

∂x j

〉

are the components of the metric in this coordinate system. Consequently,

∂K

∂vi
=

n∑
j=1

gi jv
j

and hence
∂K

∂vi (x(t), ẋ(t)) =
n∑

j=1
gi j (x(t))ẋ

j (t),

leading to

d

dt

(
∂K

∂vi (x(t), ẋ(t))

)
=

n∑
j=1

gi j (x(t))ẍ
j (t)+

n∑
j,k=1

∂gi j

∂xk
(x(t))ẋ k(t)ẋ j (t).

Moreover,
∂K

∂xi
= 1

2

n∑
j,k=1

∂g jk

∂xi
v jvk,

and hence
∂K

∂xi (x(t), ẋ(t)) = 1

2

n∑
j,k=1

∂g jk

∂xi
(x(t))ẋ j (t)ẋ k(t).

We conclude that

d

dt

(
∂K

∂vi (x(t), ẋ(t))

)
− ∂K

∂xi (x(t), ẋ(t)) =
n∑

j=1
gi j (x(t))ẍ

j (t)

+
n∑

j,k=1

(
∂gi j

∂xk
(x(t))− 1

2

∂g jk

∂xi
(x(t))

)
ẋ j (t)ẋ k(t).

On the other hand, if v,w ∈ Tp M are written as

v =
n∑

i=1
vi ∂

∂xi
, w =

n∑
i=1

wi ∂

∂xi
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then we have

μ(v)(w) =
n∑

i, j=1
gi jv

iw j =
n∑

i, j=1
gi jv

i dx j (w),

and hence

μ(v) =
n∑

i, j=1
gi jv

i dx j =
n∑

i, j=1
gi jv

j dxi .

Therefore

μ

(
Dċ

dt
(t)

)
=

n∑
i, j=1

gi j (x(t))

⎛
⎝ẍ j (t)+

n∑
k,l=1

�
j
kl(x(t))ẋ

k(t)ẋ l(t)

⎞
⎠ dxi .

Since

n∑
j=1

gi j�
j
kl =

1

2

n∑
j,m=1

gi j g
jm

(
∂gml

∂xk
+ ∂gmk

∂xl
− ∂gkl

∂xm

)

= 1

2

(
∂gil

∂xk
+ ∂gik

∂xl
− ∂gkl

∂xi

)
,

we have

n∑
j,k,l=1

gi j (x(t))�
j
kl(x(t))ẋ

k(t)ẋ l(t)

= 1

2

n∑
k,l=1

(
∂gil

∂xk
(x(t))+ ∂gik

∂xl
(x(t))− ∂gkl

∂xi
(x(t))

)
ẋ k(t)ẋ l(t)

=
n∑

j,k=1

(
∂gi j

∂xk
(x(t))− 1

2

∂g jk

∂xi
(x(t))

)
ẋ j (t)ẋ k(t),

which completes the proof.

7.5.2 Section 5.2

(4) (a) The position of the particle m1 is

(x1, y1) = l1(sin θ,− cos θ).



7.5 Chapter 5 399

Its velocity is therefore

(ẋ1, ẏ1) = l1θ̇(cos θ, sin θ),

yielding the kinetic energy

K1 = 1

2
m1l1

2θ̇2.

Analogously, the position of the particle m2 is

(x2, y2) = l1(sin θ,− cos θ)+ l2(sinϕ,− cosϕ),

and its velocity is

(ẋ2, ẏ2) = l1θ̇(cos θ, sin θ)+ l2ϕ̇(cosϕ, sinϕ),

corresponding to the kinetic energy

K2 = 1

2
m2l1

2θ̇2 + 1

2
m2l2

2ϕ̇2 + m2l1l2 cos(θ − ϕ)θ̇ϕ̇.

The kinetic energy map K : T N → R is then given in local coordinates by

K = 1

2
(m1 + m2)l1

2(vθ)2 + 1

2
m2l2

2(vϕ)2 + m2l1l2 cos(θ − ϕ)vθvϕ.

Since the potential energy is clearly

U = m1gy1 + m2gy2 = −(m1 + m2)gl1 cos θ − m2gl2 cosϕ,

the equations of motion are

(m1 + m2)l1
2θ̈ + m2l1l2 cos(θ − ϕ)ϕ̈
+ m2l1l2 sin(θ − ϕ)ϕ̇2 = −(m1 + m2)gl1 sin θ

and

m2l2
2ϕ̈+ m2l1l2 cos(θ − ϕ)θ̈ − m2l1l2 sin(θ − ϕ)θ̇2

= −m2gl2 sinϕ.

(b) The linearized equations are

(m1 + m2)l1
2θ̈ + m2l1l2ϕ̈ = −(m1 + m2)gl1θ



400 7 Solutions to Selected Exercises

and
m2l2

2ϕ̈+ m2l1l2θ̈ = −m2gl2ϕ.

Solutions of these equations satisfying ϕ = kθ must simultaneously solve

(
m1l1

2 + m2l1
2 + km2l1l2

)
θ̈ = −(m1 + m2)gl1θ

and (
km2l2

2 + m2l1l2
)
θ̈ = −km2gl2θ.

Therefore k must satisfy

∣∣∣∣
(m1 + m2)l12 + km2l1l2 (m1 + m2)gl1

km2l22 + m2l1l2 km2gl2

∣∣∣∣ = 0,

that is

k = l2 − l1 ±
√
(l2 − l1)2 + 4μl1l2
2μl2

,

where
μ = m2

m1 + m2
∈ (0, 1).

Notice that k has two possible values, one positive and one negative, corre-
sponding to the two pendulums oscillating in phase or in opposition of phase.

From the first linearized equation of motion it is clear that the period of the
oscillations is

2π

√
l1 + kμl2

g
= 2π

√
l1 + l2 ±

√
(l2 − l1)2 + 4μl1l2
2g

.

Notice that the period is longer when the two pendulums oscillate in phase,
and shorter when they oscillate out of phase.

7.5.3 Section 5.3

(3) Assume without loss of generality that m is supported in the plane ξ3 = 0, and
consider the measure

mε := m + εδe3 + εδ−e3 .

Since this measure is not supported on a plane, the covariant acceleration ∇ε
Ṡ

Ṡ
determined by the left-invariant metric
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〈〈V,W 〉〉ε :=
∫

R3

〈V ξ,Wξ〉 dmε

satisfies

〈〈∇ε
Ṡ

Ṡ, V 〉〉ε =
∫

R3

〈S̈ξ, V ξ〉 dmε.

Now

〈〈V,W 〉〉ε =
∫

R3

〈V ξ,Wξ〉 dm + 2ε〈V e3,W e3〉

converges to the left-invariant metric

〈〈V,W 〉〉 =
∫

R3

〈V ξ,Wξ〉 dm

as ε→ 0, and therefore ∇ε
Ṡ

Ṡ converges to the covariant acceleration ∇Ṡ Ṡ deter-
mined by 〈〈·, ·〉〉. Hence

〈〈∇Ṡ Ṡ, V 〉〉 = lim
ε→0
〈〈∇ε

Ṡ
Ṡ, V 〉〉ε = lim

ε→0

∫

R3

〈S̈ξ, V ξ〉 dmε

= lim
ε→0

⎛
⎜⎝

∫

R3

〈S̈ξ, V ξ〉 dm + 2ε〈S̈e3, V e3〉
⎞
⎟⎠ =

∫

R3

〈S̈ξ, V ξ〉 dm.

(4) Since so(3) = {A ∈ gl(3) | A+ At = 0} is the space of 3× 3 skew-symmetric
matrices, we can define the map � : so(3)→ R

3 that, given

A =
⎛
⎝

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎞
⎠ ∈ so(3),

yields
�(A) = (a1, a2, a3).

The map � is clearly a linear isomorphism and it is easy to check that the Lie
bracket on so(3) is identified with the exterior product, i.e.

�([A, B]) = �(AB − B A) = �(A)×�(B).

Moreover, given ξ ∈ R
3, we have
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Aξ =
⎛
⎝

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎞
⎠

⎛
⎝
ξ1

ξ2

ξ3

⎞
⎠ =

⎛
⎝

a2ξ3 − a3ξ2

a3ξ1 − a1ξ3

a1ξ2 − a2ξ1

⎞
⎠

= (a1, a2, a3)× ξ = �(A)× ξ.

(7) (a) We have

(SI St )v = S(I (Stv)) = S
∫

R3

[ξ × (Stv × ξ)]dm

=
∫

R3

S[ξ × (Stv × ξ)]dm

=
∫

R3

[(Sξ)× (v × (Sξ))]dm

=
∫

R3

[ξ × (v × ξ))]dm = Iv,

where we used the fact that S preserves the mass distribution to change
variables.

(b) Let v be a nonzero vector orthogonal to the reflection plane. Then Sv = −v.
Moreover,

S(Iv) = SI (St S)v = (SI St )Sv = I Sv = −Iv,

implying that Iv is parallel to v and so there exists a principal axis with the
direction of v.

(c) Let v be a vector with the direction of the rotation axis. Then Sv = Stv = v.
Moreover,

St (Iv) = St (SI St )v = I Stv = Iv,

implying that Iv is also fixed by St and consequently by S. Hence Iv has
the same direction as v and so the rotation axis is principal.

(d) Let v be again a vector with the direction of the rotation axis. Then, if w is
a vector perpendicular to v, we know that Stw is also perpendicular to v.
Moreover, if w is an eigenvector of I with eigenvalue α (i.e. if Iw = αw)
we have

I (Stw) = (St S)I Stw = St (SI St )w = St Iw = αStw

and so Stw is also an eigenvector of I associated to α. Considering a basis
{e1, e2, e3} of R

3 formed by principal axes so that e1 is parallel to v, we
have that if S is not a rotation by π then St e2 is also an eigenvector for the
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eigenvalue I2, independent of e2 and perpendicular to e1. Hence, the I2-
eigenspace contains span {e2, e3}. Consequently, every vector orthogonal to
v is an I2-eigenvector and so all axes orthogonal to the axis of rotation are
principal.

(13) Since the kinetic energy will not depend on ϕ or ψ, we can assume without
loss of generality that ϕ = ψ = 0. For this choice, the velocity of a curve on
SO(3) is given in terms of the Euler angles by

Ṡ = ϕ̇
⎛
⎝
0 −1 0
1 0 0
0 0 0

⎞
⎠

⎛
⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠+ θ̇

⎛
⎝
0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ

⎞
⎠

+ ψ̇
⎛
⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠

⎛
⎝
0 −1 0
1 0 0
0 0 0

⎞
⎠ ,

and hence

A = S−1 Ṡ = ϕ̇
⎛
⎝

0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0

⎞
⎠+ θ̇

⎛
⎝
0 0 0
0 0 −1
0 1 0

⎞
⎠+ ψ̇

⎛
⎝
0 −1 0
1 0 0
0 0 0

⎞
⎠ ,

corresponding to

� = ϕ̇(cos θe3 + sin θe2)+ θ̇e1 + ψ̇e3 = θ̇e1 + ϕ̇ sin θe2 + (ϕ̇ cos θ + ψ̇)e3.

The kinetic energy is therefore

K = 1

2
〈I�,�〉 = I1

2

(
θ̇2 + ϕ̇2 sin2 θ

)
+ I3

2

(
ϕ̇ cos θ + ψ̇)2

.

(14) (a) Using U = Mgl cos θ one readily obtains the equations of motion:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

(
I1θ̇

)− I1 sin θ cos θϕ̇
2 + I3 sin θϕ̇

(
ϕ̇ cos θ + ψ̇) = Mgl sin θ

d

dt

(
I1ϕ̇ sin2 θ + I3 cos θ

(
ϕ̇ cos θ + ψ̇))

= 0

d

dt

(
I3

(
ϕ̇ cos θ + ψ̇)) = 0

.

The equilibrium points are obtained by setting θ̇ ≡ ϕ̇ ≡ ψ̇ ≡ 0 in the
equations, and are given by the condition sin θ = 0 (assuming l �= 0).
These correspond to the top being at rest in a vertical position (possibly
upside-down).
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(b) It is easy to see that one can solve the equations of motion by setting θ, ϕ̇
and ψ̇ constant, provided that these constants satisfy

−I1 sin θ cos θϕ̇
2 + I3 sin θϕ̇

(
ϕ̇ cos θ + ψ̇) = Mgl sin θ.

If |ϕ̇|  |ψ̇|, these conditions can approximately be written as

I3 sin θϕ̇ψ̇ " Mgl sin θ⇔ ϕ̇ " Mgl

I3ψ̇
.

7.5.4 Section 5.4

(3) Let 	 be an integrable distribution. Then for every p ∈ M there exists an open
set U around p and local coordinates (x1, . . . , xn) : U → R

n such that the
connected components of the intersection of the leaves with U are the level sets
of (xm+1, . . . , xn) : U → R

n−m . Hence, if X,Y ∈ X(	) then

X =
m∑

i=1
Xi ∂

∂xi
, Y =

m∑
i=1

Y i ∂

∂xi

on U . Consequently,

[X,Y ] =
m∑

i=1
(X · Y i − Y · Xi )

∂

∂xi

on U . Since U is arbitrary, we see that [X,Y ] ∈ X(U ).
(5) Locally it is always possible to complete {ω1, . . . ,ωn−m} to a local coframe
{θ1, . . . , θm,ω1, . . . ,ωn−m}. Let {X1, . . . , Xm,Y1, . . . ,Yn−m} be the dual local
frame, so that 	 is locally given by {X1, . . . , Xm}. We have

dωi (X j , Xk) = X j · ωi (Xk)− Xk · ωi (X j )− ωi ([X j , Xk])
= −ωi ([X j , Xk]),

and therefore the distribution will be integrable if and only if

dωi (X j , Xk) = 0

for all i = 1, . . . , n − m and j, k = 1, . . . ,m. Writing

dωi =
m∑

j,k=1
ai

jkθ
j ∧ θk +

m∑
j=1

n−m∑
k=1

bi
jkθ

j ∧ ωk +
n−m∑
j,k=1

ci
jkω

j ∧ ωk,
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we have
dωi (X j , Xk) = ai

jk,

and hence the integrability condition is equivalent to requiring that the functions
ai

jk vanish. Since

dωi ∧ ω1 ∧ · · · ∧ ωn−m =
m∑

j,k=1
ai

jkθ
j ∧ θk ∧ ω1 ∧ . . . ∧ ωn−m,

this is the same as requiring that

dωi ∧ ω1 ∧ · · · ∧ ωn−m = 0

(assuming m ≥ 2; for m = 1 both this condition and the integrability conditions
are trivially satisfied).

(7) We have

d E

dt
= d

dt

(
1

2
〈ċ(t), ċ(t)〉 +U (c(t))

)
=

〈
Dċ

dt
(t), ċ(t)

〉
+ (dU )c(t)(ċ(t))

= μ
(

Dċ

dt

)
(ċ)− F(ċ)(ċ) = R(ċ)(ċ) = 0,

since for a perfect reaction force

R(ċ)(ċ) =
〈
μ−1(R(ċ)), ċ

〉
= 0.

(8) (a) Given two points p = (x0, y0, θ0) and q = (x1, y1, θ1) in R
2× S1 consider

the curve c : [0, 1] → R
2 × S1 given by

c(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x0, y0, 3(θL − θ0) t + θ0) , if t ∈ [0, 13 ]

(x0 + (3t − 1)(x1 − x0), y0 + (3t − 1)(y1 − y0), θL ) , if t ∈ [ 13 , 23 ]

(x1, y1, (3t − 2)(θ1 − θL )+ θL ) , if t ∈ [ 23 , 1],

where

(cos θL , sin θL) = (x1 − x0, y1 − y0)√
(x1 − x0)2 + (y1 − y0)2

if (x0, y0) �= (x1, y1), and θL = θ0 otherwise. Clearly c is continuous,
piecewise smooth, c(0) = p and c(1) = q. Moreover,
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ċ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3(θL − θ0)Y, if t ∈ (0, 13 )

3
√
(x1 − x0)2 + (y1 − y0)2 X, if t ∈ ( 13 , 23 )

3(θ1 − θL)Y, if t ∈ ( 23 , 1)

with

X = cos θL
∂

∂x
+ sin θL

∂

∂y
and Y = ∂

∂θ
,

and so c is compatible with 	. The set of points accessible from p by a
compatible curve is therefore R

2 × S1, and so 	 cannot be integrable (if
	 were integrable any compatible curve would be restricted to an integral
submanifold).

(b) Since the kinetic energy is given by

K = M

2

(
(vx )2 + (vy)2

)
+ I

2
(vθ)2

we have

∂K

∂x
= ∂K

∂y
= ∂K

∂θ
= 0,

∂K

∂vx
= Mvx ,

∂K

∂vy
= Mvy,

∂K

∂vθ
= Ivθ,

and so

μ

(
Dċ

dt

)
= Mẍdx + M ÿdy + I θ̈dθ.

Moreover, since the reaction force is perfect, we have

R = λω = −λ sin θdx + λ cos θdy.

The motion of the ice skate is then given by a solution of the equation of
motion

μ

(
Dċ

dt

)
= R(ċ)

which also satisfies the constraint that (ẋ, ẏ) is proportional to (cos θ, sin θ),
i.e. it is a solution of the system of ODEs

⎧⎪⎪⎨
⎪⎪⎩

Mẍ = −λ sin θ
M ÿ = λ cos θ
θ̈ = 0
ẏ cos θ − ẋ sin θ = 0.
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Hence θ(t) = θ0 + kt for some constant k ∈ R.

If k �= 0, differentiating ẏ cos θ − ẋ sin θ = 0 yields

ÿ = ẍ tan θ + k

cos2 θ
ẋ ⇔ λ

M
cos θ = ẍ tan θ + k

cos2 θ
ẋ

⇔ −cos θ

sin θ
ẍ = ẍ tan θ + k

cos2 θ
ẋ ⇔ ẍ

ẋ
= −k tan θ.

Then log |ẋ | = log | cos θ| + constant, yielding

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = r sin(θ0 + kt)+ A0

y(t) = −r cos(θ0 + kt)+ B0

θ(t) = θ0 + kt

λ = Mk2r,

where r, A0, B0, θ0, k are integration constants. Notice that

(x(t)− A0)
2 + (y(t)− B0)

2 = r2

and so c(t) traces out a circle of center (A0, B0) ∈ R
2 and radius |r | with

constant speed |kr |. The reaction force can be interpreted as a friction force
which does not allow the ice skate to slide sideways, forcing its trajectory
to curve.
If k = 0, differentiating ẏ cos θ − ẋ sin θ = 0 yields

ÿ cos θ0 − ẍ sin θ0 = 0⇔ λ

M
= 0,

and so ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = l cos θ0 t + x0

y(t) = l sin θ0 t + y0

θ(t) = θ0
λ = 0,

where x0, y0, θ0, l are integration constants. Notice that in this case c(t)
traces out a straight line through (x0, y0) of slope tan θ0 with constant speed
|l|. Since the ice skate is sliding along its length, the reaction force vanishes
in this case.
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(c) The equation of motion is now

μ

(
Dċ

dt

)
= −dU +R(ċ)

⇔ Mẍdx + M ÿdy + I θ̈dθ = −Mg sinαdx − λ sin θdx + λ cos θdy.

The motion of the ice skate is then given by a solution of this equation that
also satisfies the constraint equation, i.e. a solution of the system of ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mẍ = −Mg sinα− λ sin θ

M ÿ = λ cos θ

θ̈ = 0

ẏ cos θ − ẋ sin θ = 0.

Hence θ(t) = θ0 + kt for some constant k ∈ R. If k �= 0, differentiating
ẏ cos θ − ẋ sin θ = 0 yields

ÿ = ẍ tan θ + k

cos2 θ
ẋ ⇔ λ

M
cos θ = ẍ tan θ + k

cos2 θ
ẋ .

From the first equation of the system of ODEs we obtain

λ

M
= −g sinα

sin θ
− 1

sin θ
ẍ,

and so, substituting above,

−cos θ

sin θ
(g sinα+ ẍ) = ẍ tan θ + k

cos2 θ
ẋ,

implying that
ẍ

cos θ
+ k

sin θ

cos2 θ
ẋ = −g sinα cos θ

or, equivalently, that

d

dt

(
ẋ

cos θ

)
= −g sinα cos θ.

Hence
ẋ = −g

k
sinα sin θ cos θ + l cos θ
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for some integration constant l ∈ R, and

ẏ = −g
k
sinα sin2 θ + l sin θ.

Differentiating this last equation yields

ÿ = (kl − 2g sinα sin θ) cos θ

and so
λ = M(kl − 2g sinα sin θ).

We then obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = g
4k2

sinα cos(2(θ0 + kt))+ l
k sin(θ0 + kt)+ A0

y(t) = − g
2k sinα

(
t − 1

2k sin(2(θ + kt))
)− l

k cos(θ0 + kt)+ B0

θ(t) = θ0 + kt

λ = M (kl − 2g sinα sin(θ0 + kt)) ,

where θ0, k, l, A0, B0 are integration constants. It is interesting to notice that
unlike what one might expect x(t) remains bounded, whereas y(t) grows
linearly.

If k = 0 then, again differentiating ẏ cos θ − ẋ sin θ = 0, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = − g
2 sinα cos2 θ0 t2 + l cos θ0 t + x0

y(t) = − g
2 sinα sin θ0 cos θ0 t2 + l sin θ0t + y0

θ(t) = θ0
λ = −Mg sinα sin θ0,

where θ0, l, x0, y0 are integration constants. As one would expect, the
motion in this case is uniformly accelerated with acceleration g sinα cos θ0.

7.5.5 Section 5.5

(1) If c ∈ C is a critical point of the action, (U, x1, . . . , xn) is a local chart
and t ∈ (a, b) is such that c(t) ∈ U then we can find ε > 0 such that
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c([t − ε, t + ε]) ⊂ U . Considering variations which coincide with c outside
[t−ε, t+ε], we conclude that cmust satisfy theEuler–Lagrange equations on this
local chart in the time interval (t−ε, t+ε). Hence any critical point of the action
must satisfy the Euler–Lagrange equations on the local chart (U, x1, . . . , xn) for
all t ∈ (a, b) such that c(t) ∈ U .

Conversely, suppose that c ∈ C satisfies the Euler–Lagrange equations on any
local chart. We introduce an auxiliary Riemannian metric on M and consider
normal balls with center at the points of c([a, b]). Because c([a, b]) is compact,
we can choose such balls such that the infimum of their radii is positive (consider
an open cover of c([a, b]) by totally normal neighborhoods). Using the fact that
the length of c is necessarily finite, we can choose a finite number of these
balls (which are coordinate charts for the normal coordinates), B1, . . . , BN , and
points t1, . . . , tN−1, with a < t1 < · · · < tN−1 < b, such that c(a) ∈ B1,
c(b) ∈ BN and

c(ti ) ∈ Bi ∩ Bi+1 (i = 1, . . . , N − 1).

For an arbitrary variation γ given by γ̃ : (−ε, ε) × [a, b] → M , we have,
repeating the calculation in the proof of Theorem 5.3,

d

ds |s=0

ti∫

ti−1

L(γ(s))dt = (FL)ċ(ti )

(
∂γ̃

∂s
(0, ti )

)
− (FL)ċ(ti−1)

(
∂γ̃

∂s
(0, ti−1)

)

for i = 2, . . . , N −1, where we used the fact that c satisfies the Euler–Lagrange
equations on Bi . Analogously,

d

ds |s=0

t1∫

a

L(γ(s))dt = (FL)ċ(t1)

(
∂γ̃

∂s
(0, t1)

)

and

d

ds |s=0

b∫

tN−1

L(γ(s))dt = −(FL)ċ(tN−1)

(
∂γ̃

∂s
(0, tN−1)

)
.

Adding these formulae we finally obtain

d

ds |s=0

b∫

a

L(γ(s))dt = 0.

(5) (a) If we identifyR
2 with the z = 0 plane inR

3 then the rotating frame’s angular
velocity is � = ez . According to Exercise 3.20(11), the third particle’s
equations of motion are

http://dx.doi.org/10.1007/978-3-319-08666-8_5
http://dx.doi.org/10.1007/978-3-319-08666-8_3


7.5 Chapter 5 411

m(ẍ, ÿ, z̈) = (Fx , Fy, Fz)− m�× (�× (x, y, z))

− 2m�× (ẋ, ẏ, ż)− m�̇× (x, y, z)

= (Fx , Fy, Fz)+ m(x, y, 0)− 2m(−ẏ, ẋ, 0).

The first two components of this equation are precisely

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ = Fx

m
+ x + 2 ẏ

ÿ = Fy

m
+ y − 2ẋ

.

(The third component is mz̈ = Fz , and thus requires Fz = 0 for a particle
moving in the orbital plane).

(b) First note that

r1 =
(
(x − 1+ μ)2 + y2

) 1
2

and r2 =
(
(x + μ)2 + y2

) 1
2
.

Hence,

∂L

∂x
= vy + x − μ

r13
(x − 1+ μ)− 1− μ

r23
(x + μ) and

∂L

∂y
= −vx + y − μ

r13
y − 1− μ

r23
y.

Moreover,
∂L

∂vx
= vx − y and

∂L

∂vy
= vy + x,

and so

d

dt

(
∂L

∂vx
(x, y, ẋ, ẏ)

)
= ẍ − ẏ and

d

dt

(
∂L

∂vy
(x, y, ẋ, ẏ)

)
= ÿ + ẋ .

Hence the Euler–Lagrange equations are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ − 2 ẏ = x − μ

r13
(x − 1+ μ)− 1− μ

r23
(x + μ)

ÿ + 2ẋ = y − μ

r13
y − 1− μ

r23
y

,
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which are exactly the equations of motion in the rotating frame.
(c) The Hamiltonian function is

H = vx ∂L

∂vx
+ vy ∂L

∂vy
− L

= 1

2

(
(vx )2 + (vy)2

)
− 1

2
(x2 + y2)− μ

r1
− 1− μ

r2
.

(d) Let us nowfind the equilibriumpoints, i.e. constant solutions of the equations
of motion. Since in this case we have

ẋ = ẍ = ẏ = ÿ = 0,

we obtain
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − μ

r13
(x − 1+ μ)− 1− μ

r23
(x + μ) = 0

y

(
1− μ

r13
− 1− μ

r23

)
= 0

.

If y �= 0 we obtain from the second equation that

1− μ

r13
− 1− μ

r23
= 0.

Rewriting the first equation as

x

(
1− μ

r13
− 1− μ

r23

)
+ μ(1− μ)

(
1

r13
− 1

r23

)
= 0

and using the second equation we get that r1 = r2 = 1 at the equilibrium
point, which in turn satisfies the first equation.Hencewe have an equilibrium

point ( 12 − μ,
√
3
2 ) with y > 0 and another equilibrium point ( 12 − μ,−

√
3
2 )

with y < 0. Note that these two points are equidistant from the two massive
particles.
If y = 0 then the equilibrium points are given by the critical points of the
function

U (x) = 1

2
x2 + μ

|x + 1− μ| +
1− μ
|x + μ| .

Since

U ′′(x) = 1+ 2μ

|x + 1− μ|3 +
2(1− μ)
|x + μ|3 > 0,
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and
lim

x→±∞U (x) = lim
x→μ

U (x) = lim
x→μ−1U (x) = +∞,

we see that U has exactly three critical points, which are local minima, one
in each interval (−∞, 1− μ), (1− μ,μ) and (μ,+∞).

(e) To linearize the system we make the substitution

{
x = 1

2 − μ+ ξ
y = ±

√
3
2 + η

and notice that at the equilibrium points

∂r1
∂x
= x − 1+ μ

r1
= −1

2
; ∂r1

∂y
= y

r1
= ±
√
3

2
;

∂r2
∂x
= x + μ

r2
= 1

2
; ∂r2

∂y
= y

r2
= ±
√
3

2
,

so that
1

r13
= 1+ 3

2
ξ ∓ 3

√
3

2
η + · · ·

and
1

r23
= 1− 3

2
ξ ∓ 3

√
3

2
η + · · · .

Substituting on the equations of motion yields the linearized system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ̈ − 2η̇ = −μ
(
3

2
ξ ∓ 3

√
3

2
η

) (
−1

2

)
− (1− μ)

(
−3

2
ξ ∓ 3

√
3

2
η

) (
1

2

)

η̈ + 2ξ̇ = −μ
(
3

2
ξ ∓ 3

√
3

2
η

) (
±
√
3

2

)
− (1− μ)

(
−3

2
ξ ∓ 3

√
3

2
η

) (
±
√
3

2

)

or, equivalently,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̈ − 2η̇ = 3

4
ξ ± 3

√
3

4
(1− 2μ)η

η̈ + 2ξ̇ = ±3
√
3

4
(1− 2μ)ξ + 9

4
η

.

The matrix of corresponding linear first-order system is
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A =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1
3
4 ± 3

√
3

4 (1− 2μ) 0 2

± 3
√
3

4 (1− 2μ) 9
4 −2 0

⎤
⎥⎥⎥⎦ ,

and has characteristic polynomial

det(A − λI ) = λ4 + λ2 + 27

4
μ(1− μ).

The roots of this polynomial satisfy

λ2 = −1±
√
1− 27μ(1− μ)

2
,

and so at least one will have a positive real part unless they are all pure
imaginary. So the equilibrium point is unstable exactly when

1− 27μ(1− μ) < 0⇔ 1−
√
69
9

2
< μ <

1+
√
69
9

2
.

(8) (a) Given S ∈ SO(3) we have

d

dt |t=0
exp(t B)S = BS = (d RS)I B =

(
X B

)
S

where X B is the right-invariant vector field determined by B.
(b) The Lagrangian for the free rigid body is

L(V ) = 1

2
〈〈V, V 〉〉

and is clearly SO(3)-invariant (because 〈〈·, ·〉〉 is). Since

(FL)V (W ) = 〈〈V,W 〉〉,

The Noether theorem guarantees that the quantity

J B = (FL)Ṡ(X
B) = 〈〈Ṡ, BS〉〉 = 〈〈S A, BS〉〉

is conserved along the motions of the system for any B ∈ so(3), where as
usual we have written Ṡ = S A. Setting� = �(A) and	 = �(B), we have

J B =
∫

R3

〈S Aξ, BSξ〉 dm =
∫

R3

〈S(�× ξ),	 × (Sξ)〉 dm
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=
∫

R3

〈�× ξ, (St	)× ξ〉 dm =
∫

R3

〈(St	), ξ × (�× ξ)〉 dm

=
〈

St	,

∫

R3

[ξ × (�× ξ)] dm

〉
= 〈St	, P〉 = 〈	, S P〉.

Since B, and thus 	, is arbitrary, we conclude that the vector p = S P is
conserved.

7.5.6 Section 5.6

(1) Let us consider the canonical symplectic form on T ∗M given in local coordinates
(x1, . . . , xn, p1, . . . , pn) by

ω =
n∑

j=1
dp j ∧ dx j .

This form is clearly closed. To show that it is nondegenerate at α ∈ T ∗M let us
consider a vector v ∈ Tα(T ∗M) such that ω(v,w) = 0 for everyw ∈ Tα(T ∗M).
Then, writing

v =
n∑

j=1
a j ∂

∂x j
+ b j

∂

∂ p j

and setting w := ∂
∂ pi

for i ∈ {1, . . . , n}, we obtain

0 = ω(v,w) =
n∑

j=1
(dp j ⊗ dx j − dx j ⊗ dp j )

(
v,

∂

∂ pi

)
= −ai .

If, instead, we use w := ∂
∂xi for i ∈ {1, . . . , n}, we get

0 = ω(v,w) =
n∑

j=1
(dp j ⊗ dx j − dx j ⊗ dp j )

(
v,

∂

∂xi

)
= bi .

We conclude that v = 0, and hence ω is nondegenerate. Finally, the form

ωn = ω ∧ · · · ∧ ω =
⎛
⎝

n∑
j=1

dp j ∧ dx j

⎞
⎠ ∧ · · · ∧

⎛
⎝

n∑
j=1

dp j ∧ dx j

⎞
⎠
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= n! dp1 ∧ dx1 ∧ · · · ∧ dpn ∧ dxn =
= n! (−1) n(n−1)

2 dp1 ∧ · · · ∧ dpn ∧ dx1 ∧ · · · ∧ dxn �= 0

is a volume form on T ∗M .
(2) (a) In local coordinates we have

L(x1, . . . , xn, v1, . . . , vn) = 1

2

n∑
i, j=1

gi j (x
1, . . . , xn)viv j

+
n∑

i=1
αi (x

1, . . . , xn)vi −U (x1, . . . , xn) = K + C −U

where α =∑n
i=1 αi dxi and C =∑n

i=1 αiv
i . Now we know that

μ

(
Dċ

dt
(t)

)
+ (dU )c(t)

is given in local coordinates by

n∑
i=1

[
d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
− ∂K

∂xi
(x(t), ẋ(t))

]
dxi +

n∑
i=1

∂U

∂xi
(x(t))dxi .

Moreover,

n∑
i=1

[
d

dt

(
∂C

∂vi
(x(t), ẋ(t))

)
− ∂C

∂xi
(x(t), ẋ(t))

]
dxi

=
n∑

i=1

⎡
⎣ d

dt
(αi (x(t)))−

n∑
j=1

∂α j

∂xi
(x(t))ẋ j (t)

⎤
⎦ dxi

=
n∑

i=1

⎡
⎣

n∑
j=1

(
∂αi

∂x j
(x(t))− ∂α j

∂xi
(x(t))

)
ẋ j (t)

⎤
⎦ dxi ,

and so ι(ċ(t))dα is given in local coordinates by

n∑
i=1

[
d

dt

(
∂C

∂vi
(x(t), ẋ(t))

)
− ∂C

∂xi
(x(t), ẋ(t))

]
dxi .

Then the Euler–Lagrange equations are equivalent to
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n∑
i=1

[
d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
− ∂L

∂xi
(x(t), ẋ(t))

]
dxi = 0

⇔
n∑

i=1

[
d

dt

(
∂(K + C)

∂vi
(x(t), ẋ(t))

)

−∂(K + C)

∂xi
(x(t), ẋ(t))+ ∂U

∂xi
(x(t))

]
dxi = 0

⇔ μ

(
Dċ

dt
(t)

)
+ ι(ċ(t))+ dα(dU )c(t) = 0,

and the result follows.
(b) We have

d E

dt
(t) = d

dt

(
1

2
〈ċ(t), ċ(t)〉 +U (c(t))

)
=

〈
Dċ

dt
(t), ċ(t)

〉
+ (dU )c(t)(ċ(t))

= μ
(

Dċ

dt

)
(ċ)+ dU (ċ) = −ι(ċ)dα(ċ) = −dα(ċ, ċ) = 0.

(c) In local coordinates, the Legendre transformation is given by

pi = ∂L

∂vi
=

n∑
j=1

gi jv
j + αi (i = 1, . . . , n),

and can be readily inverted:

vi =
n∑

j=1
gi j (p j − α j ) (i = 1, . . . , n).

This shows that the Lagrangian is hyper-regular.
(d) As a function on the tangent bundle, the Hamiltonian is

H =
n∑

i=1
vi ∂L

∂vi
− L =

n∑
i, j=1

gi jv
iv j +

n∑
i=1

αiv
i − L = 1

2

n∑
i, j=1

gi jv
iv j +U.

Therefore, as a function on the cotangent bundle, it is given by

H = 1

2

n∑
i, j,k,l=1

gi jg
ikg jl(pk − αk)(pl − αl)+U

= 1

2

n∑
i, j=1

gi j (pi − αi )(p j − α j )+U,
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and the Hamilton equations are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ i =
n∑

j=1
gi j (p j − α j )

ṗi = −1

2

n∑
k,l=1

∂gkl

∂xi
(pk − αk)(pl − αl )+

n∑
k,l=1

gkl ∂αk

∂xi
(pl − αl )− ∂U

∂xi

.

(4) If the set of points p ∈ U such that ψt (p) ∈ U for some t ≥ T were not dense
in U then there would exist an open set V ⊂ U such that ψt (V ) ∩ U = ∅ for
all t ≥ T . But the Poincaré recurrence theorem applied to V would guarantee
the existence of a point p ∈ V such that ψt (p) ∈ V ⊂ U for some t ≥ T , and
hence p ∈ ψt (V ) ∩U .

(5) The geodesic flow corresponds to the Hamiltonian given in local coordinates by

H(x1, . . . , xn, p1, . . . , pn) = 1

2

n∑
i, j=1

gi j (x1, . . . , xn)pi p j .

It is easily seen that the (conserved) value of H is just 12‖ċ(t)‖2 for each geodesic
c : R→ M given by the flow. Since M is compact, the set K = H−1([ 18 , 12 ]) is
also compact, as it is diffeomorphic to

{
v ∈ T M | 1

2
≤ ‖v‖ ≤ 1

}
.

Consider the open set

U =
{
α ∈ T ∗M | 1

8
< H(α) <

1

2
and π(α) ∈ B

}
⊂ K .

By the Poincaré recurrence theorem there exists α ∈ U such that ψt1(α) ∈ U
for t1 ≥ T . Now the projection of ψt (α) on M is a geodesic γ(t) such that
γ(0) ∈ B and γ(t1) ∈ B. Moreover, ‖γ̇(t)‖ = k for some 1

2 < k < 1. Therefore
c(t) := γ(t/k) is a geodesic with ‖ċ(t)‖ = 1 which satisfies c(0) ∈ B and
c(t1/k) ∈ B, i.e. c(t) ∈ B for some t > T .

7.5.7 Section 5.7

(2) Let F1, . . . , Fm ∈ C∞(T ∗M) be in involution and independent at some point
α ∈ T ∗M and let X F1, . . . , X Fm be the corresponding Hamiltonian vector fields.
Then, at α, the vectors (X Fi )α ∈ Tα(T ∗M) are linearly independent. Indeed, if
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m∑
i=1

ai (X Fi )α = 0

for some a1, . . . , am ∈ R, then

0 = ι
(

m∑
i=1

ai (X Fi )α

)
ωα =

m∑
i=1

ai ι
(
(X Fi )α

)
ωα = −

m∑
i=1

ai (d Fi )α

and so a1 = · · · = am = 0 since (d F1)α, . . . , (d Fm)α are linearly independent.
On the other hand, we have

ωα
(
(X Fi )α, (X Fj )α

) = {Fi , Fj }(α) = 0. (7.30)

Let us take the m-dimensional space W = span{(X F1)α, . . . , (X Fm )α} and its
symplectic orthogonal

Wω = {w ∈ Tα(T
∗M) | ωα(v,w) = 0 for all v ∈ W }.

Then
2n = dim Tα(T

∗M) = dim W + dim Wω.

Indeed, if we consider the map

� : Tα(T
∗M)→ W ∗

v �→ (ι(v)ωα)|W

we can easily see that ker� = Wω and im� = W ∗ (since any element in W ∗
can be extended to an element in T ∗α (T ∗M) and the map v �→ ι(v)ωα is an
isomorphism between Tα(T ∗M) and T ∗α (T ∗M)). Hence,

2n = dim Tα(T
∗M) = dim Wω + dim W ∗ = dim Wω + dim W.

Since, on the other hand, we clearly have W ⊂ Wω by (7.30), we conclude that

2n = dim Wω + dim W ≥ 2 dim W = 2m

and so n ≥ m.
(3) (a) We know that the geodesics of M are the critical points of the action deter-

mined by L = 1
2 〈v, v〉, where 〈·, ·〉 is the metric induced in M by the

Euclidean metric of R
3. If i : M → R

3 is the standard inclusion, we have

i∗g = i∗(dx ⊗ dx + dy ⊗ dy + dz ⊗ dz)

= ( f (z))2dθ ⊗ dθ + (( f ′(z))2 + 1)dz ⊗ dz,
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since
x = f (z) cos θ and y = f (z) sin θ,

and so

i∗dx = d( f (z) cos θ) = − f (z) sin θdθ + f ′(z) cos θdz

and
i∗dy = d( f (z) sin θ) = f (z) cos θdθ + f ′(z) sin θdz.

Therefore theLagrangian for the geodesics of M , given by the kinetic energy,
is

L(θ, z, vθ, vz) = 1

2

(
( f (z))2(vθ)2 +

(
( f ′(z))2 + 1

)
(vz)2

)
.

(b) Since

∂L

∂vθ
= ( f (z))2vθ,

∂L

∂vz
= (( f ′(z))2 + 1)vz,

∂L

∂θ
= 0,

∂L

∂z
= f (z) f ′(z)(vθ)2 + f ′(z) f ′′(z)(vz)2,

the Euler–Lagrange equations are

⎧⎨
⎩

f (z)θ̈ + 2 f ′(z)θ̇ż = 0

(( f ′(z))2 + 1)z̈ + f ′(z) f ′′(z)ż2 − f (z) f ′(z)θ̇2 = 0.

If θ̇ = 0 then the first Euler–Lagrange equation is trivially satisfied. More-
over, the second equation becomes

z̈

ż
+ f ′(z) f ′′(z)
( f ′(z))2 + 1

ż = 0

and then
d

dt

(
log ż + 1

2
log(( f ′(z))2 + 1)

)
= 0.

Hence,
(( f ′(z))2 + 1)1/2 ż = k

for some positive integration constant k and so
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d

dt

⎛
⎝

z∫

z0

(( f ′(s))2 + 1)1/2 ds

⎞
⎠ = k.

Noting that

G(z) =
z∫

z0

(( f ′(s))2 + 1)1/2 ds

is an increasing function of z (since (( f ′(s))2+1)1/2 is positive), and hence
injective, we obtain the trajectory given in local coordinates by

⎧⎨
⎩
θ(t) = θ0,

z(t) = G−1(kt)

for some constant θ0 ∈ R.
On the other hand if the trajectory satisfies f ′(z(t)) = 0 the Euler–Lagrange
equations become

θ̈ = 0 and z̈ = 0.

Hence, θ = θ0 + kt and z(t) = z0 + lt for some integration constants k, l.
Since we need f ′(z(t)) = 0, if f is not a constant function we get l = 0
and z(t) = z0, where z0 is a critical point of f , and we obtain trajectories

θ = θ0 + kt and z(t) = z0.

If f is a constant function (that is if S is a cylinder) then any trajectory
satisfying θ = θ0 + kt and z(t) = z0 + lt is a solution.

(c) The Legendre transformation is given in these coordinates by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pθ = ∂L

∂vθ
= ( f (z))2 vθ

pz = ∂L

∂vz
= (( f ′(z))2 + 1) vz

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vθ = pθ
( f (z))2

vz = pz

( f ′(z))2 + 1
.

Since it is clearly invertible, L is hyper-regular. The Hamiltonian function
is then

H(θ, z, pθ, pz) = pθv
θ + pzv

z − L = pθ2

( f (z))2
+ pz

2

( f ′(z))2 + 1
− L

= pθ2

2( f (z))2
+ pz

2

2(( f ′(z))2 + 1)
.
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(d) By the Hamilton equations,

ṗθ = −∂H

∂θ
= 0

and hence pθ is a first integral. Now

d H = pθ
( f (z))2

dpθ + pz

( f ′(z))2 + 1
dpz

−
[

f ′(z)pθ2

( f (z))3
+ f ′(z) f ′′(z)pz

2

(( f ′(z))2 + 1)2

]
dz

and hence d H and dpθ are linearly independent on the dense open set of
T ∗M formed by the points whose coordinates (z, θ) are well defined and do
not satisfy

pz = f ′(z)
[

pθ2

( f (z))3
+ f ′′(z)pz

2

(( f ′(z))2 + 1)2

]
= 0.

Thus they are independent for instance whenever pz �= 0, i.e. outside a
3-dimensional submanifold, and so H and pθ are independent on a dense
open set.

(e) The equations for this level set are pθ = l and

H = E ⇔ l2

( f (z))2
+ p2z
( f ′(z))2 + 1

= 2E

⇔ p2z
( f ′(z))2 + 1

= 2E − l2

( f (z))2
.

These can be solved for pz on the set of points for which the right-hand side
is nonnegative, i.e. for

f (z) ≥ l√
2E
.

If f has a strict local maximum at z = z0 then the projections of invariant
level sets L(E,l) close to the geodesic with image z = z0 will be sets of
the form zmin ≤ z ≤ zmax , with zmin, zmax close to z0 and satisfying
zmin < z0 < zmax . Thus geodesics with initial condition close to a vector
tangent to z = z0 will remain close to z = z0, meaning that this geodesic is
stable.
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7.5.8 Section 5.8

(2) (a) If ω = ∑n
i=1 dpi ∧ dxi then we saw in Exercise 6.15(6) that {xi , x j } =

{pi , p j } = 0 and {pi , x j } = δi j for i, j = 1, . . . , n. On the other hand, if
this latter condition holds then

Xxi =
n∑

i=1

(
{xi , x j } ∂

∂x j
+ {xi , p j } ∂

∂ p j

)
= − ∂

∂ pi

and

X pi =
n∑

i=1

(
{pi , x j } ∂

∂x j
+ {pi , p j } ∂

∂ p j

)
= ∂

∂xi
,

implying that

ω

(
∂

∂xi
,
∂

∂x j

)
= ω(X pi , X p j ) = {pi , p j } = 0;

ω

(
∂

∂ pi
,
∂

∂ p j

)
= ω(Xxi , Xx j ) = {xi , x j } = 0;

ω

(
∂

∂ pi
,
∂

∂x j

)
= −ω(Xxi , X p j ) = −{xi , p j } = δi j ,

and so ω =∑n
i=1 dpi ∧ dxi .

(b) It is immediate from the Darboux theorem and Exercise 6.15(1) that ωn =
ω ∧ · · · ∧ ω is a volume form on S.

(c) Assume that S is compact. If ω = dθ then ωn = d(θ ∧ ω ∧ · · · ∧ ω) (as
dω = 0), and so by the Stokes theorem we have

∫

S

ωn =
∫

S

d(θ ∧ ω ∧ · · · ∧ ω) = 0,

which is a contradiction.
(4) (a) We have

Bi j = B(dxi , dx j ) = {xi , x j }

for i, j = 1, . . . , n.
(b) If F,G ∈ C∞(M) then

X F · G = {F,G} = B(d F, dG) =
n∑

i, j=1
Bi j ∂F

∂xi

∂G

∂x j

http://dx.doi.org/10.1007/978-3-319-08666-8_6
http://dx.doi.org/10.1007/978-3-319-08666-8_6
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=
⎛
⎝

n∑
i, j=1

Bi j ∂F

∂xi

∂

∂x j

⎞
⎠ · G.

(c) From the Jacobi identity we have

{xi , {x j , xk}} + {x j , {xk, xi }} + {xk, {xi , x j }} = 0

⇔ {xi , B jk} + {x j , Bki } + {xk, Bi j } = 0

⇔ Xxi · B jk + Xx j · Bki + Xxk · Bi j = 0

for i, j, k = 1, . . . , n. Noticing that

Xxi =
n∑

l=1
Bil ∂

∂xl

we obtain

n∑
l=1

(
Bil ∂B jk

∂xl
+ B jl ∂Bki

∂xl
+ Bkl ∂Bi j

∂xl

)
= 0.

(d) The definition of the Hamiltonian vector field X F on a symplectic manifold
(M,ω) can be written in local coordinates as

ι(X F )ω = −d F ⇔
n∑

i, j=1
Xi

Fωi j dxi ⊗ dx j = −
n∑

i=1

∂F

∂xi
dxi .

Using the antisymmetry of (ωi j ) we then have

n∑
j=1

ωi j X j
F =

∂F

∂xi
⇔ Xi

F =
n∑

j=1
ωi j ∂F

∂x j

where (ωi j ) := (ωi j )−1. Since by (b)

Xi
F =

n∑
j=1

B ji ∂F

∂x j
= −

n∑
j=1

Bi j ∂F

∂x j

we must have (Bi j ) = −(ωi j ) = −(ωi j )
−1.

(e) If B is nondegenerate then we can define a linear isomorphism� : T ∗p M →
Tp M for each p ∈ M through

�(ω)(η) = B(ω, η)
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for all ω, η ∈ T ∗p M . In local coordinates, we have

�(ω)(η) =
n∑

i, j=1
Bi jωiη j =

n∑
i, j=1

Bi jωi
∂

∂x j
(η),

that is,

�(ω) =
n∑

i, j=1
Bi jωi

∂

∂x j
.

We can then define a 2-form ω ∈ �2(M) through

ω(v,w) = B(�−1(v),�−1(w))

for all v,w ∈ Tp M . Setting (Bi j ) := (Bi j )−1, we can write ω in local
coordinates as

ω(v,w) =
n∑

i, j,k,l=1
Bi j (−Bikv

k)(−B jlv
l)

=
n∑

k,l=1
Blkv

kvl = −
n∑

i, j=1
Bi jv

iv j ,

that is, (ωi j ) = −(Bi j )
−1. This shows that ω determines the same Poisson

bracket as B and is nondegenerate. To show that it is closed we notice that

n∑
i, j,k,l=1

Bpi Bq j Brk Bil ∂B jk

∂xl
= −

n∑
j,k=1

Bq j
∂B jk

∂x p
Bkr = ∂Bqr

∂x p

for p, q, r = 1, . . . , n, and so, multiplying the formula in (c) by Bpi Bq j Brk

and summing over i, j, k we have

∂Bqr

∂x p
+ ∂Br p

∂xq
+ ∂Bpq

∂xr
= 0.

This is equivalent to

n∑
i, j,k=1

(
∂ω jk

∂xi
+ ∂ωki

∂x j
+ ∂ωi j

∂xk

)
dxi ⊗ dx j ⊗ dxk = 0,

or, noticing that the expression in brackets is antisymmetric in each pair of
indices, to
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n∑
i, j,k=1

∂ω jk

∂xi
dxi ∧ dx j ∧ dxk = 0⇔ dω = 0.

(9) (a) From the expression of the group operation it is clear that

(x, y)−1 =
(
− x

y
,
1

y

)
,

and so

L(a,b)−1(x, y) =
( x

b
− a

b
,

y

b

)
.

Therefore, by Example 5.4, the lift of the action of H on itself to T ∗H is
given by

(a, b) · (px dx + pydy) = (
L(a,b)−1

)∗
(px dx + pydy)

= px

b
dx + py

b
dy,

which can be written in local coordinates as

(a, b) · (x, y, px , py) =
(

bx + a, by,
px

b
,

py

b

)
.

Since

K
(

bx + a, by,
px

b
,

py

b

)
= b2y2

2

(
px

2

b2
+ p2y

b2

)
= K (x, y, px , py),

we see that K is H -invariant.
(b) The functions F and G are H -invariant as

F
(

bx + a, by,
px

b
,

py

b

)
= by

px

b
= ypx = F(x, y, px , py)

and

G
(

bx + a, by,
px

b
,

py

b

)
= by

py

b
= ypy = G(x, y, px , py).

These functions are coordinates on the quotient manifold T ∗H/H (they are
the components on a left-invariant basis), and so the Poisson structure of the
quotient is determined by

http://dx.doi.org/10.1007/978-3-319-08666-8_5
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{F,G} = X F · G = ∂F

∂ px

∂G

∂x
+ ∂F

∂ py

∂G

∂y
− ∂F

∂x

∂G

∂ px
− ∂F

∂y

∂G

∂ py

= −px y = −F.

The Poisson bivector on the quotient is therefore

B = {F,G} ∂
∂F
⊗ ∂

∂G
+ {G, F} ∂

∂G
⊗ ∂

∂F

= −F
∂

∂F
⊗ ∂

∂G
+ F

∂

∂G
⊗ ∂

∂F
.

Since B vanishes for F = 0, the quotient T ∗H/H is not a symplectic
manifold.

(c) Differentiating the expression

L(a,b)(x, y) = (bx + a, by)

along a curve (a(t), b(t)) through the identity e = (0, 1), it is readily seen
that the infinitesimal action of V = α ∂

∂x + β ∂
∂y ∈ h is

X V = (α+ βx)
∂

∂x
+ βy

∂

∂y
.

From Example 5.4, the momentum map for the action of H on T ∗H is the
map J : T ∗H → h∗ given by

J (px dx + pydy)(V ) = (px dx + pydy)(X V ) = (α+ βx)px + βypy .

Since K is H -invariant, J is constant along the Hamiltonian flow of K , and
so, choosing α = 0 and β = 1, we obtain the nontrivial first integral

I (x, y, px , py) = xpx + ypy

for the Hamiltonian flow of K (in addition to the obvious first integrals K
and px ). A geodesic for which K = E , px = l and I = m then satisfies

y2
(

px
2 + p2y

)
= 2E ⇔ y2l2 + (m − xl)2 = 2E,

which for l �= 0 is the equation of a circle centered on the x-axis.

http://dx.doi.org/10.1007/978-3-319-08666-8_5
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t

x

Le Havre   NewYork

Fig. 7.8 Spacetime diagram for the Lucas problem

7.6 Chapter 6

7.6.1 Section 6.1

(1) The solution becomes trivialwhen one represents the transatlantic ships’motions
as curves in a 2-dimensional Galileo spacetime (cf. Fig. 7.8). Thus, each transat-
lantic ship would meet 13 others when at sea, at midnight and at noon of every
day of its voyage. Allowing one day at the arrival port for unloading, refueling
and reloading, it would be possible to run this service with 15 transatlantic ships.



7.6 Chapter 6 429

(3) By composing with an appropriate translation we can assume without loss of
generality that f maps the origin to the origin. Therefore we just have to prove
that f is linear.
We start by noticing that f maps 2-planes to 2-planes bijectively. Indeed, take
any 2-plane� ⊂ R

n and consider 3 straight lines on�which intersect pairwise.
Then their images must also be straight lines which intersect pairwise, and hence
define a 2-plane�′. Any straight line contained on� intersects at least 2 of the
3 pairwise intersecting lines, and hence so does its image, which is therefore
contained in �′. We conclude that f (�) ⊂ �′. The same argument shows that
f −1(�′) ⊂ �, and hence f is a surjection of � onto �′. Since it must be
injective, it is a bijection.
Consider the restriction of f to a 2-plane�. Since it is bijective, it must take par-
allel lines to parallel lines. Therefore it takes parallelograms to parallelograms.
Since f maps the origin to the origin, we see that f (v+w) = f (v)+ f (w) for
any two vectors v,w ∈ R

n .
Finally, consider two parallel lines on � and draw the parallel line which is
equidistant from both. Any parallelogram with two sides on the two initial lines
will have diagonals which intersect on a point of the third line. Because f is a
bijection and preserves parallel lines, the same will be true for the image. We
conclude that f maps equidistant parallel lines to equidistant parallel lines. We
can easily use this fact to show that f is continuous on each 2-plane. Since it is
additive, it must be linear.

7.6.2 Section 6.2

(1) Since 〈·, ·〉 is nondegenerate there exist vectors v,w ∈ V such that 〈v,w〉 �= 0.
Moreover, there is a vector ṽ ∈ V such that 〈̃v, ṽ〉 �= 0. Indeed, even if 〈v, v〉 =
〈w,w〉 = 0 we can take ṽ := v + w and then

〈v + w, v + w〉 = 2〈v,w〉 �= 0.

We will now show the existence of an orthonormal basis by induction in n, the
dimension of V . If n = 1 we take w ∈ V such that 〈w,w〉 �= 0 and define

v1 := w

|w| ,

where |w| := |〈w,w〉| 12 . Clearly 〈v1, v1〉 = ±1 and {v1} is the required ortho-
normal basis.
If n > 1 we again take w ∈ V such that 〈w,w〉 �= 0 and let
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v1 := w

|w| .

IfW is the orthogonal complement inV of the space spanned by v1 then dim W =
n− 1, v1 �∈ W and the restriction of 〈·, ·〉 to W is symmetric and nondegenerate.
We can apply the induction hypothesis and obtain a basis {v2, . . . , vn} of W
such that 〈vi , v j 〉 = 0 if i �= j and 〈vi , vi 〉 = ±1 for i = 2, . . . , n. Therefore
{v1, . . . , vn} is the desired basis of V .
To show that the signature of 〈·, ·〉 does not depend on the choice of orthonormal
basis we note that it can be invariantly defined as the dimension of a maximal
subspace of V where 〈·, ·〉 is positive definite minus the dimension of a maximal
subspace of V where 〈·, ·〉 is negative definite.

(2) Fix inertial coordinates (x0, x1, x2, x3). Then

v =
3∑

i=0
vi ∂

∂xi
and w =

3∑
i=0

wi ∂

∂xi
.

(a) (i) Since v is timelike and future-pointing we have

〈v, v〉 = −(v0)2 +
3∑

i=1
(vi )2 < 0 and v0 > 0.

Similarly, since w is timelike or null and future-pointing we have

〈w,w〉 = −(w0)2 +
3∑

i=1
(wi )2 ≤ 0 and w0 > 0.

Then by the Cauchy–Schwarz inequality

〈v,w〉 = −v0w0 +
3∑

i=1
viwi

≤ −v0w0 +
(

3∑
i=1
(vi )2

) 1
2

(
3∑

i=1
(wi )2

) 1
2

< −v0w0 + |v0||w0| = 0.

(ii) Since
〈v + w, v + w〉 = 〈v, v〉 + 2〈v,w〉 + 〈w,w〉

and 〈v, v〉 < 0, 〈w,w〉 ≤ 0 and 〈v,w〉 < 0 (from (i)), we conclude that
〈v + w, v + w〉 < 0. Moreover,
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(v + w)0 = v0 + w0 > 0

and so v + w is also future-pointing.
(iii) From (i) we conclude that if 〈v,w〉 = 0 then w cannot be timelike nor

null (except for the zero vector).
(b) (i) Since v is null and future-pointing we have (v0)2 = ∑3

i=1(vi )2 and
v0 > 0. Moreover, since w is timelike or null and future-pointing, we

have (
∑3

i=1(wi )2)
1
2 ≤ w0 and w0 > 0. Then by the Cauchy–Schwarz

inequality

〈v,w〉 = −v0w0 +
3∑

i=1
viwi

≤ −v0w0 +
(

3∑
i=1
(vi )2

) 1
2

(
3∑

i=1
(wi )2

) 1
2

≤ −v0w0 + |v0||w0| = 0.

Moreover, equality holds if and only if

3∑
i=1

viwi =
(

3∑
i=1
(vi )2

) 1
2

(
3∑

i=1
(wi )2

) 1
2

and (
3∑

i=1
(wi )2

) 1
2

= w0.

Hence equality holds if and only if wi = λvi with λ > 0 and

w0 = λ
(

3∑
i=1
(vi )2

) 1
2

= λv0.

(ii) Since
〈v + w, v + w〉 = 2〈v,w〉 + 〈w,w〉

and 〈w,w〉 ≤ 0 and 〈v,w〉 ≤ 0 (from (i)), we conclude that 〈v+w, v+
w〉 ≤ 0. Moreover, equality holds if and only if 〈v,w〉 = 〈w,w〉 = 0,
that is, if and only if w = λv with λ > 0. Clearly in all cases v + w is
future-pointing.

(iii) From (i) we conclude that if 〈v,w〉 = 0 then w cannot be timelike, and
if w is null then it is a multiple of v.
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(c) Since v is spacelike we must have A :=∑3
i=1(vi )2 > (v0)2 ≥ 0. Then the

vector w := (A, v0v1, v0v2, v0v3) is timelike and is such that 〈v,w〉 = 0.
Moreover, one of v1, v2, v3 must be different from zero. Assuming, without
loss of generality, that v1 �= 0, the vector w̃ = (0,−v2, v1, 0) is spacelike
and satisfies 〈v, w̃〉 = 0. Moreover, 〈w, w̃〉 = 0, and so

〈aw + bw̃, aw + bw̃〉 = a2〈w,w〉 + b2〈w̃, w̃〉.

Since w is timelike w̃ is spacelike, this can be made to vanish for nonzero a
and b.

(4) (a) Let us use years and light-years as our time and length units. On the Earth’s
frame, the motion of the Earth is the timelike line x = 0, whereas the motion
of PlanetX is the timelike line x = 8. Ifwe choose t = 0 so that the departure
of Bob is the event (0, 0), then Bob’s arrival at Planet X is the event (10, 8),
and the reunion of the twins the event (20, 0). The motion of Bob is the
broken line connecting these events, and hence the time measured by Bob
between his departure and his return is

|(10, 8)− (0, 0)| + |(20, 0)− (10, 8)| = |(10, 8)| + |(10,−8)|
=

√
102 − 82 +

√
102 − (−8)2 = 6+ 6 = 12.

Therefore Bob is 20+ 12 = 32 years old when he meets Alice again.
(b) Although Bob can indeed claim that in his frame it is Alice who is moving,

his frame is not an inertial frame, as he must accelerate at event (10, 8) to
reverse his velocity. Therefore one cannot use the Minkowski geometry in
Bob’s frame.

(c) At event (10, 8), Bob is receiving light that left the Earth at t = 2. Therefore,
in the 6 years it takes him to get to Planet X, Bob sees only 2 years of
Alice’s life (cf. Fig. 7.9).Consequently, he seesAlicemoving in slowmotion,
3 slower than normal. In the 6 years of the return trip, Bob will see the
remaining 18 years experienced by Alice until they meet again, and hence
he will see her moving in fast motion, 3 times faster than normal.
On the other hand, light emitted at event (10, 8) doesn’t reach Alice until
t = 18 (cf. Fig. 7.9). Therefore she spends 18 years seeing the 6 years of
Bob’s trip towards Planet X, and hence sees him moving in slow motion,
3 times slower than normal. In the remaining 2 years, Alice will see the 6
years of the return trip, and will thus see Bob moving in fast motion, 3 times
faster than normal.

(13) (a) According to its crew, the Enterprise’s trip lasts

|(13, 12)| =
√
132 − 122 = √25 = 5 years.
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tt

xx(0,0) (0,0)

(10,8)(10,8)

(20,0)(20,0)

Earth Earth Planet XPlanetX

Fig. 7.9 Twin paradox

(b) The Enterprise’s frame moves with velocity v = 12
13 with respect to the

Earth. Consequently,
√
1− v2 = 5

13 , and hence

⎧⎨
⎩

t ′ = (
1− v2)− 1

2 t − v (
1− v2)− 1

2 x = 13
5 t − 12

5 x

x ′ = (
1− v2)− 1

2 x − v (
1− v2)− 1

2 t = 13
5 x − 12

5 t
.

Therefore in the Enterprise’s frame the radio signal is sent at event (0, 0),
the missile is launched at event (28.6,−26.4), the Earth is destroyed at
event (2.4, 2.4) and the Enterprise arrives at the Earth’s ruins at event
(5, 0) (as it had to be).

(c) Figure 7.10 shows a plot of these events on the Enterprise’s frame. The
sequence of events is surreal: the Earth explodes without any reason at
t ′ = 2.4; the faster-than-light missile jumps intact from the explosion and
travels backwards in the direction of the Klingon planet, where an exact
replica is being built; the two missiles vanish simultaneously at t ′ = 28.6,
in the event that should be the cause of the Earth’s destruction, much
after the Enterprise has arrived at the Earth’s ruins. This illustrates the
absurdities that one can get if faster-than-light speeds are allowed.

7.6.3 Section 6.3

(2) From the expression �μν = ∑
α<β R μ

αβν ω
α ∧ ωβ of the curvature forms we

conclude that the nonvanishing components of the Riemann tensor are
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t

x

Earth

Earth’s destruction

Earth’s ruins

Klingon planet
Enterprise arrives

missile launched

radio warning sent

Fig. 7.10 Sequence of events on the Enterprise’s frame

R i
j00 = −R i

0 j0 =
∂2�

∂x j∂xi

(i, j = 1, 2, 3). Therefore the only nonzero coefficient of the Ricci curvature
tensor is

R00 =
3∑

i=1
R i

i00 =
3∑

i=1

∂2�

∂(xi )2
.

(4) The nonvanishing components of the Riemann tensor for the Cartan connection
are

R i
j00 = −R i

0 j0 =
∂�

∂xi∂x j

(i, j = 1, 2, 3). If the Cartan connection were the Levi–Civita connection for
a pseudo-Riemannian metric on R

4 then the nonvanishing components of the
curvature tensor would be

R j00μ = −R0 j0μ =
3∑

i=1
gμi

∂�

∂xi∂x j

where (gμν) is thematrix of themetric. The symmetryproperty R j00μ = −R j0μ0,
which still holds for pseudo-Riemannian metrics, would then imply that the
curvature tensor is actually zero (because R j0μ0 = 0), meaning that the Riemann
tensor is also zero. Therefore if the curvature of the Cartan connection is not zero
then it cannot be the Levi–Civita connection of any pseudo-Riemannian metric.
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7.6.4 Section 6.4

(1) Let p be a point in Mn . The signature of gp is the signature of the quadratic
form Q p(v) = gp(v, v) defined on Tp M . This quadratic form is represented in
local coordinates x : V ⊂ M → R

n by a matrix A(x) = (gi j (x)). The entries
of this matrix are continuous functions of x , implying that its eigenvalues are
also continuous functions of x . Indeed, they are the roots of the characteristic
polynomial of A(x), whose coefficients are continuous functions of the entries
of A(x). Since the eigenvalues of A(x) can never be zero (as g is nondegenerate,
implying that A(x) is invertible) and M is connected, their signs cannot change
and so the result follows.

(2) (a) In any given coordinate system we have

Ric − S

2
g = 8πE ⇔ Rμν − S

2
gμν = 8πEμν

(μ, ν = 0, 1, 2, 3). Multiplying by the inverse of the metric matrix, gμν , and
summing over μ and ν yields

S − S

2
· 4 = 8π

3∑
μ,ν=0

gμνEμν ⇔ S = −8π
3∑

μ,ν=0
gμνEμν .

Therefore Einstein’s field equation can be written as

Ric = 8πE − 4π

⎛
⎝

3∑
μ,ν=0

gμνEμν

⎞
⎠ g = 8πT .

(b) We just have to notice that, since ν is timelike and unit,

3∑
μ,ν=0

gμνEμν = ρ 〈ν, ν〉 = −ρ.

(7) (a) This is immediate from the fact that the expression of the Euclidean metric
dx ⊗ dx + dy ⊗ dy + dz ⊗ dz in cylindrical coordinates (r, θ, z) is dr ⊗
dr + r2dθ ⊗ dθ + dz ⊗ dz.

(b) We just have to notice that

dθ ⊗ dθ = (dθ′ + ωdt)⊗ (dθ′ + ωdt)

= dθ′ ⊗ dθ′ + ω2dt ⊗ dt + ωdt ⊗ dθ′ + ωdθ′ ⊗ dt.

(c) For r < 1
ω one has (in the new coordinate system (t, r, θ′, z))
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〈
∂

∂t
,
∂

∂t

〉
= −1+ ω2r2 < 0,

and so the curves of constant (r, θ′, z) are timelike curves. Since along these
curves r and z are constant but θ = θ′ + ωt , with θ′ constant, it is clear that
they correspond to observers who are rotating rigidly with angular velocity
ω relative to the inertial observers of constant (r, θ, z).

(d) If we use local coordinates (t, r, θ′, z) on U and (r, θ′, z) on 	 then the
projection map is locally represented by the map π̂(t, r, θ′, z) = (r, θ′, z).
Therefore if

v = vr ∂

∂r
+ vθ′ ∂

∂θ′
+ vz ∂

∂z

then

v† = v0 ∂
∂t
+ vr ∂

∂r
+ vθ′ ∂

∂θ′
+ vz ∂

∂z

for some v0 ∈ R. Now
〈
∂

∂t
, v†

〉
= −(1− ω2r2)v0 + ωr2vθ

′
,

and so we must have

v0 = ωr2

1− ω2r2
vθ
′
.

Consequently

〈v†,w†〉 = −(1− ω2r2)v0w0 + ωr2
(
v0wθ

′ + vθ′w0
)

+ vrwr + r2vθ
′
wθ
′ + vzwz

= vrwr + r2

1− ω2r2
vθ
′
wθ
′ + vzwz .

Notice that this does not depend on the choice of the vectors v† and w†

projecting to v and w.
(e) As was shown in (d), the condition for a vector w to be orthogonal to ∂

∂t is

w0 = ωr2

1− ω2r2
wθ
′ ⇔ dt (w) = ωr2

1− ω2r2
dθ′(w)⇔ α(w) = 0.

Therefore the curve c consists of simultaneous events if and only ifα(ċ) = 0.
If γ : [0, 1] → 	 is a closed curve, and c : [0, 1] → U is a curve consisting
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of simultaneous events such that π ◦ c = γ, then

t (c(1))− t (c(0)) =
1∫

0

dt (ċ) =
1∫

0

ωr2

1− ω2r2
dθ′(ċ)

=
1∫

0

ωr2

1− ω2r2
dθ′(γ̇).

Since

d

(
ωr2

1− ω2r2
dθ′

)
= 2ωr

(1− ω2r2)2
dr ∧ dθ′ �= 0,

we see that in general t (c(1)) �= t (c(0)). Therefore, if the rotating observers
synchronize clocks around a closed path, they will conclude that the initial
clock is not synchronized with itself.

7.6.5 Section 6.5

(2) (a) Let {E0, Er , Eθ, Eϕ} be the orthonormal frame dual to the orthonormal
coframe {ω0,ωr ,ωθ,ωϕ}, that is

E0 = 1

A

∂

∂t
, Er = 1

B

∂

∂r
,

Eθ = 1

r

∂

∂θ
, Eϕ = 1

r sin θ

∂

∂ϕ
.

Then, since

ċ = ṫ
∂

∂t
+ ϕ̇ ∂

∂ϕ
= ṫ AE0 + ϕ̇r Eϕ

(sin θ = 1), we have

∇ċ ċ = 0⇔ d

dτ
(ṫ A)E0 + ṫ A∇ċ E0 + d

dτ
(ϕ̇r)Eϕ + ϕ̇r∇ċ Eϕ = 0.

Moreover,
∇ċ E0 = ṫ A∇E0 E0 + ϕ̇r∇Eϕ E0

and
∇ċ Eϕ = ṫ A∇E0 Eϕ + ϕ̇r∇Eϕ Eϕ.
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Since

∇E0 E0 =
3∑

μ=0
ω
μ
0 (E0)Eμ = ωr

0(E0)Er = A′

AB
Er = A′Er ,

∇E0 Eϕ =
3∑

μ=0
ωμϕ(E0)Eμ = 0,

∇Eϕ E0 =
3∑

μ=0
ω
μ
0 (Eϕ)Eμ = 0,

∇Eϕ Eϕ =
3∑

μ=0
ωμϕ(Eϕ)Eμ = ωr

ϕ(Eϕ)Er = − 1

Br
Er ,

we have

∇ċ E0 = ṫ AA′Er and ∇ċ Eϕ = − ϕ̇
B

Er ,

and so the geodesic equation becomes

ẗ AE0 + (ṫ2A2A′ − ϕ̇2r

B
)Er + ϕ̈r Eϕ = 0,

or, equivalently,

⎧⎨
⎩

ẗ = 0
ϕ̈ = 0

ṫ2A2A′ = ϕ̇2r
B ⇔ AA′ ṫ2 = ϕ̇2r ⇔ m

r2
ṫ2 = ϕ̇2r.

Finally, since we must have 〈ċ, ċ〉 = −1, we obtain

−
(
1− 2m

r

)
ṫ2 + r2ϕ̇2 = −1⇔

(
1− 2m

r
− m

r

)
ṫ2 = 1

⇔
(
1− 3m

r

)
ṫ2 = 1.

(b) From the last equation above we see that for r = 3m we have 〈ċ, ċ〉 = 0, and
we get an equatorial circular null geodesic. A stationary observer placed on
this circular light ray would see it as a straight line, with infinite images of
himself placed at regular spacings (equal to 2πr ), corresponding to light rays
completing an integer number of orbits before reaching his eyes. Different
images would be images of the observer at different times.

(c) Let V = V 0E0+V r Er +V θEθ+V ϕEϕ be the angular momentum vector
field of a free-falling spinning particle on a circular orbit around a pointlike
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mass m. Since this vector field is orthogonal to the motion we conclude that

− ṫ AV 0 + ϕ̇r V ϕ = 0. (7.31)

From the fact that this vector field is parallel-transported along its motion
we have

∇ċV = 0⇔dV 0

dτ
E0 + V 0∇ċ E0 + dV r

dτ
Er + V r∇ċ Er

+ dV θ

dτ
Eθ + V θ∇ċ Eθ + dV ϕ

dτ
Eϕ + V ϕ∇ċ Eϕ = 0.

Since

∇E0 Er =
3∑

μ=0
ωμr (E0)Eμ = ω0

r (E0)E0 = A′E0,

∇E0 Eθ =
3∑

μ=0
ω
μ
θ (E0)Eμ = 0,

∇Eϕ Er =
3∑

μ=0
ωμr (Eϕ)Eμ = ωϕr (Eϕ)Eϕ =

1

r B
Eϕ,

∇Eϕ Eθ =
3∑

μ=0
ω
μ
θ (Eϕ)Eμ = 0,

we have

∇ċ Er = ṫ A∇E0 Er + ϕ̇r∇Eϕ Er = ṫ AA′E0 + ϕ̇

B
Eϕ,

∇ċ Eθ = ṫ A∇E0 Eθ + ϕ̇r∇Eϕ Eθ = 0,

and so we obtain

dV 0

dτ
= −ṫ AA′V r , (7.32)

dV r

dτ
= −ṫ AA′V 0 + ϕ̇

B
V ϕ,

dV θ

dτ
= 0, (7.33)

dV ϕ

dτ
= − ϕ̇

B
V r .

Substituting (7.31) in (7.32) yields
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dV r

dτ
= ϕ̇V ϕ

(
1

B
− A′r

)
= B

(
1− 3m

r

)
ϕ̇V ϕ, (7.34)

and so, from (7.33) and (7.34), we get

dV r

dϕ
= dV r

dτ

1

ϕ̇
= B

(
1− 3m

r

)
V ϕ,

dV ϕ

dϕ
= dV ϕ

dτ

1

ϕ̇
= −V r

B
.

Hence,
d2V ϕ

dϕ2 = −
1

B

dV r

dϕ
= −

(
1− 3m

r

)
V ϕ,

implying that

V ϕ(ϕ) = α cos

(√
1− 3m

r
ϕ

)
+ β sin

(√
1− 3m

r
ϕ

)

and

V r (ϕ) = −B
dV ϕ

dϕ

= −B

√
1− 3m

r

(
−α sin

(√
1− 3m

r
ϕ

)
+ β cos

(√
1− 3m

r
ϕ

))
.

Since the vector field V is initially aligned with the radial direction we have
V ϕ(0) = V θ(0) = V 0(0) = 0, implying that V θ ≡ 0, and

V ϕ(ϕ) = β sin
(√

1− 3m

r
ϕ

)
,

V r (ϕ) = −Bβ

√
1− 3m

r
cos

(√
1− 3m

r
ϕ

)
,

V 0(ϕ) = ϕ̇r

ṫ A
V ϕ(ϕ) = ϕ̇r

ṫ A
β sin

(√
1− 3m

r
ϕ

)
.

Hence,

V (0) = −βB

√
1− 3m

r
Xr ,
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V (2π) = ϕ̇r

ṫ A
β sin

(
2π

√
1− 3m

r

)
X0

− βB

√
1− 3m

r
cos

(
2π

√
1− 3m

r

)
Xr + β sin

(
2π

√
1− 3m

r

)
Xϕ,

and so, since

〈V (0), V (2π)〉 = β2B2
(
1− 3m

r

)
cos

(
2π

√
1− 3m

r

)

and

|V (0)|2 = β2B2
(
1− 3m

r

)
= |V (2π)|2,

we get

cos(δ) = 〈V (0), V (2π)〉
|V (0)| |V (2π)| = cos

(
2π

√
1− 3m

r

)
,

where δ is the angle between the two vectors V (0) and V (2π) (after one
revolution). Choosing β < 0, so that initially V has the same direction as
Er , one easily checks that δ > 0, and so

δ = 2π − 2π

(
1− 3m

r

) 1
2

.

(7) (a) From Exercise 5.1(5) we see that radial (θ̇ = ϕ̇ = 0) timelike or null
geodesics satisfy {

ṙ2 = E2 − σ (
1− 2m

r

)
(
1− 2m

r

)
ṫ = E

where E is an integration constant, σ = 1 for timelike geodesics and σ = 0
for null geodesics. In either case, geodesics satisfying r(0) = r0 cannot be
extended beyond the values of the affine parameter

λ(2m) = λ(2m)− λ(r0) =
2m∫

r0

dλ

dr
dr =

2m∫

r0

dr

ṙ

or

λ(0) = λ(0)− λ(r0) =
0∫

r0

dλ

dr
dr =

0∫

r0

dr

ṙ
,

http://dx.doi.org/10.1007/978-3-319-08666-8_5
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that is,

±
2m∫

r0

√
rdr√

(E2 − σ)r + 2mσ
or ±

0∫

r0

√
rdr√

(E2 − σ)r + 2mσ

(± is the sign of ṙ ). Since both these integrals are clearly finite, the geodesics
are necessarily incomplete. Notice that

2m∫

r0

dt

dr
dr =

2m∫

r0

ṫ

ṙ
dr =

2m∫

r0

Er
3
2 dr

(r − 2m)
√
(E2 − σ)r + 2mσ

diverges, implying that t diverges as r → 2m for all geodesics satisfying
E �= 0 (E = 0 can only happen for the timelike geodesics in the region
{r < 2m} with constant t).

(b) We already know that r → 2m for a finite value of the affine parameter.
From the definition of the Painlevé time coordinate we see that it approaches

2m∫

r0

dt ′

dr
dr =

2m∫

r0

dt

dr
dr +

2m∫

r0

√
2mr

r − 2m
dr

= ±
2m∫

r0

Er
3
2 dr

(r − 2m)
√
(E2 − σ)r + 2mσ

+
2m∫

r0

√
2mr

r − 2m
dr

=
2m∫

r0

√
2mr

√
(E2 − σ)r + 2mσ ± Er

3
2

(r − 2m)
√
(E2 − σ)r + 2mσ

dr,

as r → 2m (± is the sign of ṙ ). Consider the geodesics in the region
{r > 2m}, and choose E > 0, corresponding to ṫ > 0. Then the Painlevé
time coordinate t ′ diverges for ṙ > 0, and converges for ṙ < 0. Therefore
ingoing geodesics can be extended past r = 2m, but not outgoing ones. In
other words, radial timelike and null geodesics are asymptotic to r = 2m
in the past (with t ′ diverging for a finite value of the affine parameter), but
cross this hypersurface in the future.

(c) Since
∂

∂t ′
= ∂t

∂t ′
∂

∂t
+ ∂r

∂t ′
∂

∂r
= ∂

∂t
,

we see that ∂
∂t ′ is still a Killing vector field. Therefore the equations for a

radial curve c : R → M to be a future-directed timelike geodesic can be
written as
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{
g( ∂∂t ′ , ċ) = −E

g(ċ, ċ) = −1 ⇔

⎧⎪⎪⎨
⎪⎪⎩

ṫ ′ −
√

2m
r

(
ṙ +

√
2m
r ṫ ′

)
= E

ṫ ′2 −
(

ṙ +
√

2m
r ṫ ′

)2

= 1
.

Therefore radial curves satisfying

dr

dt ′
= −

√
2m

r
⇔ ṙ +

√
2m

r
ṫ ′ = 0

are future-directed timelike geodesics as long as

ṫ ′ = E = 1.

In particular this implies that the Painlevé time coordinate t ′ coincides with
the proper time along these curves.

(d) The light received by the stationary observer corresponds to outgoing null
geodesics. As we saw in (b), these geodesics cannot cross the horizon, and
hence accumulate along it, as shown in Fig. 7.11. Consequently, all of them
intersect the curve representing the falling particle. This means that the
stationary observer sees the particle forever, moving slower and slower, and
increasingly redshifted.

7.6.6 Section 6.6

(3) (a) The distance between the two galaxies is clearly d(t) = a(t)x , where

x =
r1∫

0

dr√
1− kr2

.

Therefore

ḋ = ȧx = ȧ

a
ax = Hd.

(b) The tangent vector to these curves is

ċ = ṫ
∂

∂t
+ ∂

∂r
,

which is null if and only if
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r

t r = 2M

Fig. 7.11 Stationary observer watching a particle fall through the event horizon

−ṫ2 + a2(t)

1− kr2
= 0⇔ ṫ = ± a(t)√

1− kr2
.

We must choose the positive sign for null geodesics connecting the first
galaxy to the second galaxy. Therefore

ċ = a(t)√
1− kr2

∂

∂t
+ ∂

∂r
= a(t)√

1− kr2
(E0 + Er ).

Since we have

ω0
r = ωr

0 =
ȧ

a
ωr ,

we see that
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∇E0+Er (E0 + Er ) = ωr
0(E0 + Er )Er + ω0

r (E0 + Er )E0

= ȧ

a
(E0 + Er ).

Therefore E0 + Er is tangent to a reparameterized geodesic, and conse-
quently so is ċ.

(c) Differentiating the equation for dt
dr we obtain

dt ′

dr
= ȧ(t)t ′√

1− kr2
= ȧ(t)

a(t)

dt

dr
t ′,

where t ′ = ∂t
∂t0

. Integrating yields

r1∫

0

1

t ′
dt ′

dr
dr =

r1∫

0

ȧ(t)

a(t)

dt

dr
dr ⇔ log(t ′(r1)) = log

(
a(t1)

a(t0)

)
.

(8) Using spherical coordinates, the metric for the 4-dimensional Minkowski space-
time is written

g = −dt ⊗ dt + dr ⊗ dr + r2h,

where h is the standard metric in S3.

(a) The equation for the “cylinder” is r2 = 1


, and the inducedmetric is therefore

gEinstein = −dt ⊗ dt + 1



h.

This is the metric for a FLRW model with k = 1 and a(t) = 1√


. In this

case,
ȧ2

2
− α

a
− 


6
a2 = −α√
− 1

6
= −1

2

if α = 1
3
√


[cf. Exercise 6.1(7)]. We conclude that this metric satisfies the

Einstein equation with cosmological constant
 > 0 for a pressureless fluid
with density

ρ = 3α

4πa3 =



4π
.

(b) The equation for the “sphere” is −t2 + r2 = 3


, and is solved by

⎧⎪⎪⎨
⎪⎪⎩

t =
√

3



sinh

(√


3 τ

)

r =
√

3



cosh

(√


3 τ

) .

http://dx.doi.org/10.1007/978-3-319-08666-8_6
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The induced metric is therefore

gdeSitter = −dτ ⊗ dτ + 3



cosh2

(√



3
τ

)
h.

This is themetric for aFLRWmodelwith k = 1and a(τ ) =
√

3



cosh

(√


3 τ

)
.

In this case,
ȧ2

2
− α

a
− 


6
a2 = −1

2
− α

a
= −1

2

if α = 0. We conclude that this metric satisfies the Einstein equation with
cosmological constant 
 > 0 for a pressureless fluid with density ρ = 0.

(9) (a) From Exercise 6.1(3) we know that the null geodesic connecting the two
galaxies can be found by solving the differential equation

dt

dr
= t√

1+ r2
.

This equation is separable, and can be integrated to give

t1∫

t0

dt

t
=

r1∫

0

dr√
1+ r2

⇔ log

(
t1
t0

)
= arcsinh(r1)

⇔ r1 = sinh(log(1+ z)) = 1

2

(
1+ z − 1

1+ z

)
.

Therefore

R = t1r1 = t1
z2 + 2z

2+ 2z
.

(b) In this case we must solve
dt

dr
= eHt ,

and so
t1∫

t0

e−Ht dt =
r1∫

0

dr ⇔ r1 = 1

H

(
e−Ht0 − e−Ht1

)
.

Therefore
R = eHt1r1 = z

H
.
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(c) In this case we must solve

dt

dr
=

(
t

t1

) 2
3

,

and so

t1∫

t0

(
t

t1

)− 2
3

dt =
r1∫

0

dr ⇔

r1 = 3t1
2
3

(
t1

1
3 − t0

1
3

)
= 3t1

(
1− (1+ z)−

1
2

)
.

Therefore
R = r1 = 3t1

(
1− (1+ z)−

1
2

)
.

7.6.7 Section 6.7

(2) (a) Take q ∈ I+(p). Then there exists a future-directed timelike curve c :
[0, 1] → M connecting p toq. LetV be ageodesically convexneighborhood
of q as in Proposition 7.1, and take s ∈ (0, 1) such that c([s, 1]) ⊂ V .
The chronological future I+(r, V ) of the point r := c(s) with respect to
the spacetime (V, g) is clearly an open set (image of an open set by the
exponential map) satisfying q ∈ I+(r, V ) ⊂ I+(p). Therefore q is an
interior point of I+(p). Since q is arbitrary, I+(p) is open.

(b) Let M be R
2 with the point (1, 1) deleted. If p is the origin then I+(p) is

the Minkowski cone

I+(p) = {(t, x) ∈ R
2 | t > |x |}.

However, no point in the line t = x with t > 1 can be reached from p by a
causal curve. Hence,

J+(p) = I+(p) ∪ {(t,−t) ∈ R
2 | t ≥ 0} ∪ {(t, t) ∈ R

2 | 0 < t < 1}

is not closed.
(c) Let q ∈ J+(p). Then there is a future-directed causal curve c : [0, 1] → M

connecting p to q. Let T be a future-directed timelike vector field parallel
along c, and γ : [0, 1]×(−ε, ε)→ M a smoothmap such that γ(0, t) = c(t)
and

∂γ

∂s
(0, t) = tTc(t).



448 7 Solutions to Selected Exercises

Setting

γ′ = ∂γ

∂s
= γ∗ ∂

∂s
and γ̇ = ∂γ

∂t
= γ∗ ∂

∂t

we have

∇γ′ γ̇ −∇γ̇γ′ = γ∗
[
∂γ

∂s
,
∂γ

∂t

]
= 0.

Therefore

∂

∂s |s=0
〈γ̇, γ̇〉 = 2〈∇γ′ γ̇, γ̇〉|s=0 = 2〈∇γ̇γ′, γ̇〉|s=0

= 2〈∇ċ(tTc(t)), ċ〉 = 2〈Tc(t), ċ〉 < 0,

and so γ(s, t) is timelike and future-directed for small positive s. Therefore

q = lim
s→0+

γ(s, 1) ∈ I+(p).

(d) Clearly I+(p) ⊂ int J+(p). To see that int J+(p) ⊂ I+(p) let q ∈
int J+(p). Taking a geodesically convex neighborhood V of q with V ⊂
J+(p) it is easily seen that there exists a point r ∈ J+(p)which can be con-
nected to q by a future-directed timelike curve. If rn ∈ I+(p) is a sequence
with rn → r we have rn ∈ I−(q) (hence q ∈ I+(rn)) for sufficiently large
n. Thus q ∈ I+(p).

(e) It is clear that I+(r) is an open subset of J+(p). Therefore I+(r) is an open
subset of int J+(p) = I+(p).

(f) This is equivalent to proving that if r ∈ J−(q) and p ∈ I−(r) then p ∈
I−(q), which is done as above.

(g) If M is the quotient of theMinkowski 2-dimensional spacetime by the group
of isometries generated by f (t, x) = (t + 1, x) then I+(p) = M for any
point p ∈ M .

(4) Take local coordinates around each point p ∈ K := svpp h. By continuity,
the matrix of the components of gε in these coordinates, (gμν + εhμν), has one
negative and three positive eigenvalues for ε ∈ (−εp, εp) in some neighborhood
Vp of p. Since {Vp}p∈K is an open cover of K , we can take a finite subcover
{Vp1 , . . . , VpN }. If ε0 = min{εp1 , . . . , εpN }, then it is clear that gε is a Lorentzian
metric for |ε| < ε0.
Let t : M → R be a global time function for g. Since K is compact, we have on
K

g(grad t, grad t) ≤ −δ

for some δ > 0. Consider the map f : (−ε0, ε0)× K → R given by

f (ε, p) = gε
((
gradε t

)
p ,

(
gradε t

)
p

)
,
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where gradε is the gradient with respect to the metric gε. This map is clearly
continuous and satisfies

f (0, p) ≤ −δ

for all p ∈ K . Therefore there exists ε1 ∈ (o, ε0) such that

f (ε, p) < 0

for |ε| < ε1 and p ∈ K . We conclude that if |ε| < ε1 then t is still a global time
function for gε, and so (M, gε) satisfies the chronology condition.

(6) (a) Trivial.
(b) Taking for instance S = {0} × [−1, 1] in Minkowski 2-dimensional space-

time, we have that D+(S) is the closed triangle with vertices (0,−1), (0, 1)
and (1, 0), and hence is not open.

(c) Taking for instance S = {0} × (−1, 1) in Minkowski 2-dimensional space-
time, we have that D+(S) is the union of S with the open triangle with
vertices (0,−1), (0, 1) and (1, 0), and hence is not closed.

(8) Assume first that (	, h) is complete. Let c : I → M be an inextendible causal
curve. Since t is clearly a time function we can assume without loss of generality
that c is parameterized by t . Therefore c(t) = (t, γ(t)) with γ : I → 	. The
fact that c is timelike is equivalent to

h(γ̇, γ̇) ≤ 1.

Let tn ∈ I be an increasing bounded sequencewith limit t0. If d is theRiemannian
distance on 	 and n > m then

d(γ(tn), γ(tm)) =
tn∫

tm

(h(γ̇, γ̇))
1
2 dt ≤ tn − tm .

Thus {γ(tn)} is a Cauchy sequence, which must converge, implying that there
exists limt→t0 γ(t). Since c is inextendible,we conclude that I cannot be bounded
above. By a similar argument it cannot be bounded below, and hence I = R. We
conclude that every inextendible causal curve intersects every level set of t , and
hence (M, g) is globally hyperbolic.
Assume now that (	, h) is not complete, but (M, g) is globally hyperbolic.
Let γ : I → 	 be a geodesic parameterized by arclength which cannot be
extended for t ≥ 0. Then c(t) = (t0 + t, γ(t)) is a future inextendible causal
curve contained in the region where t < t0. Since the integral curves of ∂

∂t are
timelike, any Cauchy surface S ⊂ M is a graph

S = {(t, p) ∈ M | t = f (p)}
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of some smooth function f : 	 → R. The projection d : I → S of c on
S, given by d(t) = ( f (γ(t)), γ(t)), is necessarily spacelike, and so satisfies
ḟ 2 < h(γ̇, γ̇) = 1 (where f (t) := f (γ(t))). This implies that the limit f0 :=
limt→0 f (t) exists. As | ḟ | < 1, we then have f (t) > f0 + t for all t < 0.
Choosing t0 = f0− 1, we guarantee that c and d do not intersect, that is, c does
not intersect S. Therefore we reach a contradiction, meaning that (M, g) cannot
be globally hyperbolic.

(10) Let t : M → R be a time function whose level sets are Cauchy surfaces. Since
grad t does not vanish, t cannot have maxima or minima, and so its range must
be an open interval I ⊂ R. If f : I → R is a diffeomorphism then f ◦ t is also
a time function whose level sets are Cauchy surfaces, and so we can assume
I = R. Define

X := grad t

〈grad t, grad t〉 ,

so that
X · t = 〈X, grad t〉 = 1.

Since X is timelike, its integral curves must cross all level sets of the time
function t (as (M, g) is globally hyperbolic), and thus X is complete. If ψt

is the flow of X then it is easy to check that F : R × S → M defined by
F(t, p) = ψt (p) is a diffeomorphism.

7.6.8 Section 6.8

(1) The only non-vanishing Christoffel symbols on (M, g) are

�vvv = −
2v

v2 + v2 and �vvv = −
2v

v2 + v2 .

Hence the geodesics equations are

v̈ − 2v

v2 + v2 v̇
2 = 0

and

v̈ − 2v

v2 + v2 v̇
2 = 0.

Taking for instance v ≡ 0 we obtain

v̈

v̇
= 2

v̇

v
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and so
v̇ = −av2,

implying that

v(t) = 1

at + b

for some constants a, b ∈ R. Therefore, the curve

c(t) :=
(

1

at + b
, 0

)

is a null geodesic through the point c(0) = ( 1b , 0). If for instance b > 0 and
a < 0 this geodesic is defined for t < − b

a . The image of this geodesic is

{(v, 0) | v > 0}

and so this curve is inextendible in M . We conclude that M (and consequently
M) is not geodesically complete.

(7) Clearly, simple neighborhoods form a basis for the topology of M , and so for
every open cover {Vα}α∈A there is a refinement {Uβ}β∈B by simple neighbor-
hoods, i.e. ⋃

α∈A

Vα =
⋃
β∈B

Uβ

and for each β ∈ B there exists α ∈ A such that Uβ ⊂ Vα.
Let us assumefirst that V :=⋃

α∈A Vα is compact. Then there is a finite subcover
{Uβi }ki=1 such that

V =
k⋃

i=1
Uβi .

Clearly {Uβi }ki=1 is a countable locally finite refinement of the open cover
{Vα}α∈A by simple neighborhoods.

If V is not compact we can use a compact exhaustion, that is a sequence {Ki }i∈N
of compact subsets of V such that Ki ⊂ Ki+1 and M = ∪∞i=1Ki (see Remark 7.4
in Chap. 2). The family {Uβ}β∈B is a cover of K1 so we can consider a finite
subcover of K1

{Uβ1, . . . ,Uβk1
}.

By induction, we obtain a finite collection of neighborhoods

{Uβi
1
, . . . ,Uβi

ki
}

http://dx.doi.org/10.1007/978-3-319-08666-8_2
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that covers Ki\ int Ki−1 (a compact set). Note that, by taking smaller simple
neighborhoods if necessary, we can assume that

ki⋃
j=1

Uβi
j
⊂ int Ki+1\Ki−2

and so the countable cover {Uβi
j
}i∈N, 1≤ j≤ki is locally finite and the result fol-

lows.
(8) First note that a similar argument to that of Proposition 8.6 shows that D−(S)∩

J+(p) is compact.

(i) Consider a sequence of points qn ∈ J+(p) converging to a point q ∈ M ,
and let S be a Cauchy surface with t (S) > t (q) (where t : M → R is the
global time function of M), so that q ∈ D−(S). Then for sufficiently large
n ∈ N we have qn ∈ A := D−(S) ∩ J+(p), and so, since A is compact,
q ∈ A ⊂ J+(p).

(ii) First note that (i) holds for J−(q), that is, J−(q) is closed for any q ∈ M .
Hence the set B := J+(p) ∩ J−(q) is closed. Taking a Cauchy surface S
such that t (S) = t (q), we have that B is a closed subset of the compact set
D−(S) ∩ J+(p), implying that it is itself a compact set.

(9) Let γ ∈ C(S, p). Then there exists a sequence γn ∈ T (S, p) such that γn → γ.
We begin by showing that γ intersects each level set Sa := t−1(a) for 0 ≤ a ≤
t (p). Indeed, if γ ∩ Sa = ∅ then, since γ is compact and Sa closed, the distance
between them would be greater than some ε > 0. But since each γn intersects
Sa we would have dH (γ, γn) > ε, a contradiction. A similar argument shows
that γ cannot intersect Sa for a < 0 or a > t (p).
It is easy to check that the map πa : C(S, p)→ C(Sa) given by πa(c) = c∩ Sa

is a continuous map (here C(Sa) is the set of all compact subsets of Sa with the
Hausdorff metric). Therefore πa(γn) → πa(γ). Since each πa(γn) is a point,
πa(γ) is also a point, and so γ can be thought of as a map γ : [0, t (p)] → M .
To see that γ is a causal curve we notice that if 0 ≤ a < b ≤ t (p) we have
γn(a) → γ(a) and γn(b) → γ(b) with γn(b) ∈ I+(γn(a)). If q ∈ I−(γ(a))
then, for sufficiently large n, γn(a) ∈ I+(q), and hence γn(b) ∈ I+(q). It
follows that γ(b) ∈ I+(q) = J+(q) (recall that J+(q) ⊂ I+(q) is closed),
and hence q ∈ J−(γ(b)). Taking a sequence of points qn ∈ I−(γ(a)) with
qn → γ(a), we conclude that γ(a) ∈ J−(γ(b)).
Finally, γ must be continuous: if an ∈ [0, t (p)] is an increasing sequence with
limit a ∈ [0, t (p)] then γ(an) → γ(a), for otherwise there would exist a sub-
sequence bn with γ(bn)→ q ∈ Sa , and we would have γ(bn) �∈ J−(γ(a)) for
sufficiently large n.

(12) Let p ∈ M and take a normal sphere S = Sδ(p). Because (M, g) is complete,
we can define the map exp : R × S → M using the outward-pointing unit
normal, and M = Bδ(p)∪exp(R×S). Since S is compact,we have θ ≤ θ0 on S
for some θ0 > 0. Exactly the same calculation as in the proof of Proposition 8.4
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shows that
∂θ

∂t
+ 1

n − 1
θ2 ≤ −ε,

where n = dim M . In particular,

∂θ

∂t
≤ −ε,

and hence θ ≤ −1 for some t ≤ 1+θ0
ε along any geodesic (note that the line

θ = −εt + θ0 crosses the line θ = −1 at t = 1+θ0
ε ). From that point on we

have
∂θ

∂t
+ 1

n − 1
θ2 ≤ 0⇒ 1

θ
≥ t

n − 1
− 1.

We conclude that each outward-directed geodesic orthogonal to S reaches a
conjugate point in arclength at most

1+ θ0
ε
+ n − 1,

where it ceases to be minimizing. Thus all points in M are closer to p than

δ + 1+ θ0
ε
+ n − 1,

meaning that M is bounded and hence compact.

Notice that in the Riemannian setting no contradictions are obtained: all points
on a geodesic past the conjugate point can be reached from S by a geodesic
which is shorter (not longer, as in the Lorentzian case), and hence hasn’t
necessarily reached a conjugate point itself. Thus the proof of the singularity
theorem does not work in Riemannian geometry.

(13) (a) Minkowski spacetime does not contain a Cauchy hypersurface whose
expansion satisfies θ ≤ θ0 < 0.

(b) The Einstein universe does not contain a Cauchy hypersurface whose
expansion satisfies θ ≤ θ0 < 0

(c) The de Sitter universe does not satisfy the strong energy condition
[cf. Exercise 8.12(6)].

(d) The 2-dimensional anti-de Sitter spacetime is not globally hyperbolic;
notice, however, that any globally hyperbolic open subset of this spacetime
is geodesically incomplete.
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7.6.9 Section 6.9

(1) It is easily seen that

(gμν) =

⎛
⎜⎜⎝
α −1 β2 β3
−1 0 0 0
β2 0 γ22 γ23
β3 0 γ32 γ33

⎞
⎟⎟⎠

−1

=

⎛
⎜⎜⎝

0 −1 0 0
−1 δ β2 β3

0 β2 γ22 γ23

0 β3 γ32 γ33

⎞
⎟⎟⎠ ,

where βi = ∑3
j=2 γi jβ j and δ = ∑3

i=2 βiβ
i − α. Consequently, we have for

instance

�vvr =
1

2

3∑
α=0

gvα
(
∂grα

∂v
+ ∂gvα

∂r
− ∂gvr

∂xα

)

= −1

2

(
∂grr

∂v
+ ∂gvr

∂r
− ∂gvr

∂r

)
= 0,

and similarly �vrr = �vri = �r
rr = �i

rr = 0. Finally,

�i
r j =

1

2

3∑
α=0

giα
(
∂g jα

∂r
+ ∂grα

∂x j
− ∂gr j

∂xα

)

= 1

2
βi

(
∂gv j

∂r
+ ∂gvr

∂x j
− ∂gr j

∂v

)
+ 1

2

3∑
k=2

γik
(
∂g jk

∂r
+ ∂grk

∂x j
− ∂gr j

∂xk

)

= 1

2

3∑
k=2

γik ∂γ jk

∂r
=

3∑
k=2

γikβk j .

(3) (a) Minkowski spacetime does not contain trapped surfaces.
(b) The Einstein universe has compact Cauchy hypersurfaces.
(c) The de Sitter universe has compact Cauchy hypersurfaces.
(d) The 2-dimensional anti-de Sitter spacetime is not globally hyperbolic; notice

however that any globally hyperbolic open subset of this spacetime is geo-
desically incomplete.
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174
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D
D’Alembert principle, 175, 199
Darboux theorem, 233
Dark energy, 289
De Rham cohomology, 76
De Sitter universe, 289, 310, 318
Deck transformation, 43
Deflection of light, 282
Degree of a map, 85
Density

critical, 286
function, 180
of matter, 265
rest, 268

Derivative
covariant, 100, 101, 103
directional, 27, 32, 100
exterior, 73, 75
of a differentiable map, 17

Diffeomorphism, 12
group, 31
local, 12

Differentiable
action, 40
curve, 14
distribution, 195, 203
form, 72
infinitely, 12, 55
manifold, 8
manifold with boundary, 50
map, 12, 55
structure, 9
tensor field, 70
vector field, 26

Differential
form, see Form
of a function, 69
of a map, 19

Directional derivative, 27, 32, 100
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Discrete group, 41
Distance

between simultaneous events, 252
on a connected Riemannian manifold,
118

Distribution, 195
differentiable, 195, 203
integrable, 197, 198, 203
orthogonal, 198

Divergence
of a vector field, 88, 109

Domain of dependence, 296, 297
future, 296
past, 296

Doppler effect, 262
Double covering

orientable, 49
time-orientable, 297

Double pendulum, 179
Dual

basis, 89
space, 62, 88

Dumbbell, 178

E
Einstein, 251
Einstein field equation, 267
Einstein universe, 289, 310, 318
Einstein–de Sitter universe, 290
Electric

field, 212
potential, 212

Embedding, 22, 25
Energy

conservation, 167, 202, 208
kinetic, 167
mechanical, 167
potential, 167

Energy-momentum tensor, 268
Enterprise, 263
Equations of structure, 136
Equilibrium point, 249
Equinox precession, 192
Equivalence

class, 54
of atlases, 9
of bases, 47
principle, 265, 267
relation, 54

Euclidean
space, 96, 125, 136, 151
surface, 152, 155

Euler, 165
Euler angles, 189
Euler characteristic, 7, 145–147

of a Lie group, 156
of the sphere, 146
of the torus, 146

Euler equations, 185
for an incompressible fluid, 193

Euler force, 192
Euler top, 185
Euler–Lagrange equations, 206
Event, 252

horizon, 275
simultaneity, 252

Exact form, 76
Expansion, 300, 312
Exponential map

on a Lie group, 39, 116
on a Riemannian manifold, 110, 116

Extended Hamiltonian function, 215
Exterior derivative, 73, 75
External force, 166

conservative, 167
positional, 167

F
Fermat metric, 271
Fermi–Walker transport, 269
Fiber

bundle, 56
derivative, 208

Field
central, 169, 225, 230
electric, 212
electromagnetic, 212
magnetic, 212
of dual coframes, 132
of frames, 132
tensor, 69
vector, 26

First integral, 224
Fixed point, 40, 249

hyperbolic, 249
nondegenerate, 249
stable, 249

Flow
commuting, 31
geodesic, 115
Hamiltonian, 220
linear, 227
of a left-invariant vector field, 38
of a vector field, 30
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Fluid
incompressible, 193
perfect, 268

Foliation, 197
leaf, 197
singular, 237

Force
centrifugal, 192
conservative, 167
Coriolis, 192
Euler, 192
external, 166
inertial, 192
positional, 167
reaction, 175, 199

Form, 72
closed, 76
compactly supported, 78
connection, 133
covariant derivative, 103
curvature, 135
differentiable, 72
exact, 76
Lie derivative, 78
Liouville, 218
local representation, 73
pull-back, 72
symplectic, 218
volume, 86

Foucault pendulum, 107
Frame

field of, 132
inertial, 252
orthonormal, 135
rest, 263
rotating, 270

Free
action, 40
particle, 166, 252

Freedman, 13
Friedmann–Lemaître–Robertson–Walker

model, 283, 287, 288, 298, 307,
317

with a cosmological constant, 288
Frobenius theorem, 198
Fubini theorem, 93
Function

bump, 92
compactly supported, 87
continuously differentiable, 55
differential, 69
extended Hamiltonian, 215
Hamiltonian, 208

infinitely differentiable, 55
Morse, 147
upper semicontinuous, 304
Casimir, 235

Fundamental group, 43, 57
Future

causal, 290, 294, 314
chronological, 290, 294, 314
domain of dependence, 296

Future-directed
causal curve, 290
timelike curve, 290

Future-inextendible causal curve, 296
Future-pointing vector, 257, 260

G
Galileo, 165, 251
Galileo group, 252
Galileo spacetime, 252
Galileo transformation, 253
Gauss, 1, 95, 123, 160
Gauss curvature, 128, 141, 148, 160–162

of an isometric embedding, 157
Gauss map, 157
Gauss–Bonnet theorem, 144

for manifolds with boundary, 147
for non-orientable manifolds, 147

General linear group, 34
General relativity, 267
Geodesic, 101

biangle, 148
completeness, 118
curvature, 139, 141, 162
flow, 115
homogeneity, 110
maximizing, 304, 310
minimizing, 114
null, 267, 295
of a bi-invariant metric, 116
of the hyperbolic plane, 107
of the hyperbolic space, 154
of the Schwarzschild spacetime, 279
precession, 278
reparameterized, 168, 211
spacelike, 267
timelike, 267
triangle, 107, 148, 277

Geodesically convex neighborhood, 291
Global time function, 296
Globally hyperbolic spacetime, 296, 298
Golfer dilemma, 205
Gompf, 13
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Gradient, 99
symplectic, 220

Grassmannian, 45
Gravitational

collapse, 288
potential, 265
redshift, 278

Gromov, 97
Group, 56

abelian, 56
action, 40
fundamental, 43, 57
Galileo, 252
general linear, 34
homomorphism, 56
isomorphism, 56
Lie, 34
Lorentz, 257
orthogonal, 34
rotation, 35
special linear, 35
special orthogonal, 35, 180
special unitary, 36
unitary, 36

H
Half space, 5, 50
Hamilton, 165
Hamilton equations, 217
Hamiltonian

completely integrable, 225
extended function, 215
flow, 220
function, 208
vector field, 220, 235
action, 239

Harmonic
oscillator, 171

Hartman–Grobman theorem, 249
Hausdorff metric, 304
Hausdorff space, 2, 53
Hawking, 277, 286, 298
Hawking theorem, 307
Hessian, 147
Hilbert, 155
Holonomic constraint, 174
Homeomorphism, 53
Homogeneity of geodesics, 110
Homogeneous

Riemannian manifold, 120
space, 40

Homomorphism

of groups, 56
of Lie algebras, 29, 222

Homotopy, 57
invariance, 84
smooth, 77, 84

Hopf-Rinow theorem, 118
Hubble constant, 286
Hubble law, 287
Hyper-regular Lagrangian, 216
Hyperbolic

angle, 261, 277
plane, 107, 140, 152, 155, 173
space, 141, 149, 154, 269
surface, 152
fixed point, 249

Hypersurface, 157
Cauchy, 296, 298
simultaneity, 252

I
Ice skate, 196, 198, 203
Immersion, 21, 25

canonical, 21
isometric, 156

Impact parameter, 281
Incompressible fluid

continuity equation, 193
Euler equation, 193

Independence
of frequencies, 229
of functions, 224

Index of a singularity, 141
Induced

metric, 96
orientation, 52, 82

Inertia
ellipsoid, 192
moment of, 184, 185, 191
Newton’s law of, 252

Inertial
force, 192
frame, 252
observer, 254, 262

Infinitely differentiable, 12
function, 55

Infinitesimal action, 209
Inner product, 96
Instantaneous rest frame, 263
Integrable

distribution, 197, 198, 203
Hamiltonian, 225

Integral
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curve, 29
of a compactly supported form, 79
of a compactly supported function, 87
submanifold, 197

Interior
of a set, 53
point on a manifold with boundary, 5

Inverse function theorem, 56
Involution of functions, 224
Isometric immersion, 156
Isometry, 97, 106

group, 151
of the Euclidean plane, 152, 155
of the hyperbolic plane, 152, 155
of the sphere, 106, 153, 155
subgroup, 151

Isomorphism
of groups, 56
of Lie algebras, 29

Isotropic Riemannian manifold, 128, 131
Isotropy subgroup, 40, 226

J
Jacobi, 165
Jacobi equation, 116
Jacobi field, 117
Jacobi identity, 28
Jacobi metric, 168
Jacobi theorem, 168
Jacobian matrix, 55

K
KAM theorem, 229
Kepler problem, 173
Kernel of a group homomorphism, 56
Kervaire, 10, 13
Killing vector field, 108
Killing-Hopf theorem, 151
Kinetic energy, 167
Kirillov theorem, 236
Klein bottle, 3, 6, 155, 297
Koszul formula, 105
Kronecker symbol, 37
Kruskal extension, 276

L
Lagrange, 165
Lagrange top, 189, 192, 232
Lagrangian, 206

G-invariant, 209
action determined by, 206

hyper-regular, 216
Laplace, 165
Laplace equation, 265
Leaf

of a foliation, 197
symplectic, 236

Left-invariant
metric, 99, 181
vector field, 36, 38

Legendre transformation, 216
Leibniz rule, 28, 224, 234
Length

contraction, 259
of a differentiable curve, 98
of a piecewise differentiable curve, 114
of a vector, 98
of a vector in Minkowski spacetime, 256

Levi–Civita connection, 104
of a bi-invariant metric, 116
of the hyperbolic plane, 107, 173
of the sphere, 106, 170

Levi–Civita theorem, 104
Lie algebra, 29, 222

homomorphism, 29, 222
isomorphism, 29
of a Lie group, 37
of the general linear group, 37
of the orthogonal group, 38
of the special linear group, 38
of the special orthogonal group, 38, 183
of the special unitary group, 38
of the unitary group, 38
of vector fields on a manifold, 28

Lie bracket, 28
Lie derivative

of a form, 78
of a function, 33
of a tensor field, 71
of a vector field, 33

Lie group, 34
bi-invariant metric, 116
Euler characteristic, 156
exponential map, 39, 116
homomorphism, 39
left-invariant metric, 99, 181
left-invariant vector field, 36, 38
of isometries, 151

Lie theorem, 43
Light

cone, 257, 275
deflection, 282

Lightlike, see null
Linear
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flow, 227
momentum, 214

Linear fractional transformations, 163
Liouville form, 218
Liouville theorem, 221
Lobachevsky, 95, 123
Local

diffeomorphism, 12
isometry, 97

Local immersion theorem, 21
Local representation

of a form, 73
of a map, 12

Loop, 57
Lorentz group, 257
Lorentz transformation, 258
Lorentzian manifold, 266
Lucas problem, 253

M
Möbius band, 5, 6, 49, 155
Möbius transformation, 13, 163
Magnetic

field, 212
vector potential, 212

Manifold
contractible, 77
covering, 42
differentiable, 8
isotropic, 128, 131
Lorentzian, 266
of constant curvature, 129, 148, 282
orientable, 47, 86
oriented, 48
Poisson, 234
product, 11
pseudo-Riemannian, 266
Riemannian, 96
simply connected, 57
symplectic, 233
with boundary, 5, 50
topological, 2

Map
affine, 44, 107, 154
continuity, 53
covering, 42
degree, 85
derivative, 55
differentiable, 12, 55
differential, 19
exponential, 39, 110, 116
Gauss, 157

homotopy, 57
orientation reversing, 48
orientation-preserving, 48
antipodal, 13
momentum, 239
Poisson, 238

Mass
center of, 178, 189, 214
distribution, 180
of the Schwarzschild solution, 275
operator, 166

Matrix
change of basis, 89
commutator, 37
exponential, 39
group, 39
Jacobian, 55

Matter density function, 265
Maximal atlas, 9
Mean curvature, 157
Mechanical energy, 167
Mechanical system, 166

conservative, 167
conservative with magnetic term, 223
motion, 166

Metric
bi-invariant, 116
conformally related, 168
Fermat, 271
Hausdorff, 304
induced, 96
Jacobi, 168
left-invariant, 99, 181
Minkowski, 255
pseudo-Riemannian, 266
quotient, 99
Riemannian, 96

Metric space, 121
completeness, 121
topology, 121

Milne universe, 289
Milnor, 10, 13
Minimal surface, 163
Minkowski, 251
Minkowski metric, 255
Minkowski spacetime, 256, 298, 310, 318
Mixed tensor, 63
Moment of inertia

principal, 185, 191
tensor, 184, 185

Momentum
angular, 170, 183, 211, 214
linear, 214
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map, 239
Morse function, 147
Morse theorem, 147
Motion

of a mechanical system, 166
periodic, 172

Myers theorem, 310

N
Nash, 97
Neighborhood, 53

coordinate, 8
geodesically convex, 291
normal, 110
simple, 302

Newton, 165, 251
Newton equation, 166, 169

for a conservative system, 169
generalized, 175, 199

Newton’s law of inertia, 252
Newton’s second law, 166
Nodal line, 189
Noether theorem, 209

Hamiltonian version, 240
Non-holonomic constraint, 195
Nondegenerate

2-tensor, 96
critical point, 147
fixed point, 249

Normal
ball, 112
coordinates, 115, 291
curvature, 160
modes, 179
neighborhood, 110
sphere, 112
subgroup, 56

Null
geodesic, 267, 295
vector, 257, 260

O
Observer

in a rotating frame, 270
inertial, 254, 262
stationary, 274

Open
ball, 121
cover, 53
equivalence relation, 54
set, 53

Orbit, 173
circular, 230, 231, 277, 278, 280, 310
of a group action, 40
periodic, 172
space, 41

Orientable
double covering, 49
manifold, 47, 86

Orientation
induced on the boundary, 52, 82
number, 47
of a basis, 47
of a manifold, 47, 87
of a vector space, 47
time, 257

Orientation reversing
linear map, 47
map, 48

Orientation-preserving
linear map, 47
map, 48

Oriented manifold, 48
Orthogonal

distribution, 198
group, 34

Orthonormal
basis, 259
field of coframes, 148
field of frames, 135

P
Painlevé time coordinate, 275, 282
Paradox

car and garage, 261
twin, 260, 262, 269, 294

Parallel
postulate, 107, 108
transport, 102, 107, 108

Parameter
affine, 104
impact, 281

Parameterization, 8
Particle

free, 166, 252
in a central field, 169, 225, 230
in an electromagnetic field, 212
on a surface, 175, 176

Partition of unity, 79, 91
Past

causal, 290, 294, 314
chronological, 290, 294, 314
domain of dependence, 296
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Past-inextendible causal curve, 296
Pathwise connected space, 197
Pendulum

double, 179
Foucault, 107
simple, 174, 176, 177
spherical, 178

Penrose, 277, 286, 298
Penrose theorem, 315
Perfect

fluid, 268
reaction force, 175, 176, 199

Pericenter, 173
Perihelion precession, 280
Periodic

motion, 172
orbit, 172

Picard–Lindelöf theorem, 29, 102
Piecewise differentiable curve, 114
Poincaré recurrence theorem, 221, 224
Poincaré lemma, 78
Poinsot theorem, 192
Poisson, 165
Poisson action, 239
Poisson bivector, 236
Poisson bracket, 222, 234
Poisson equation, 265
Poisson manifold, 234
Poisson map, 238
Polar coordinates, 169
Positional force, 167
Positive definite

2-tensor, 96
linear operator, 184

Potential
electric, 212
energy, 167
gravitational, 265
magnetic, 212

Precession
Chandler, 192
geodesic, 278
of Mercury’s perihelion, 280
of the angular velocity, 191
of the equinoxes, 192
Thomas, 269

Principal
axis, 185, 191
curvature, 157, 160
direction, 157
moment of inertia, 185, 191

Principle
Copernican, 282

equivalence, 265, 267
relativity, 253

Product
manifold, 11
orientation, 49
topology, 54

Projection
bundle map, 17
stereographic, 11, 13

Projective
plane, 3, 4, 6
space, 11, 42, 88

Proper
acceleration, 263
action, 40
map, 40, 56
time, 231, 257, 267

Pseudo-Riemannian
manifold, 266
metric, 266

Pseudo-rigid body, 193
Pseudosphere, 152
Pull-back

of a covariant tensor, 70
of a form, 72

Push–forward
of a vector field, 29

Push-forward, 19

Q
Quaternions, 46, 57
Quotient

metric, 99
space, 54
topology, 54

R
Rank theorem, 24
Reaction force, 175, 199

perfect, 175, 176, 199
Redshift

Doppler, 262
gravitational, 278

Regular
point, 24
value, 24

Relativity
general, 267
of simultaneity, 259
principle, 253
special, 256
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Reparameterization, 99, 168, 211
Resonant torus, 229
Rest

density, 268
frame, 263

Restricted 3-body problem, 213
Reversed triangle inequality, 262
Ricci tensor, 129, 266, 310
Riemann, 1, 95, 123
Riemann tensor, 124
Riemannian manifold, 96

complete, 118, 298
homogeneous, 120
isotropic, 128, 131
of constant curvature, 129, 148, 282
volume element, 98

Riemannian metric, 96
Rigid body, 175, 176, 179

general, 190
mass distribution, 180
symmetry, 191
with a fixed point, 180

Rotating frame, 270
Rotation group, 35

S
Sagnac effect, 271
Sard theorem, 85
Scalar curvature, 130
Schur theorem, 154
Schwarzschild solution, 272, 298, 307, 317

geodesic, 279
mass, 275

Second countability axiom, 2, 53
Second fundamental form, 156, 161

of a distribution, 199
along a normal vector, 156

Sectional curvature, 127, 162
Semi-holonomic constraint, 197
Sequence

Cauchy, 121
convergence, 54

Signature, 259, 266, 268
Simple

neighborhood, 302
pendulum, 174, 176, 177

Simply connected
covering manifold, 43
manifold, 57

Simultaneity
hypersurface, 252
of events, 252

relativity of, 259
Singular

point, 141
spacetime, 298
foliation, 237

Singularity
index, 141
isolated, 141

Smale, 10
Smooth, see differentiable
Spacelike

geodesic, 267
vector, 257, 260

Spacetime, 252, 267
chronological, 296, 297
Friedmann–Lemaître–Robertson–
Walker, 283, 287, 288, 298, 307, 317

Galileo, 252
globally hyperbolic, 296, 298
Minkowski, 256, 298, 310, 318
Schwarzschild, 272, 298, 307, 317
singular, 298
stably causal, 296, 297
static, 271
time-orientable, 290
time-oriented, 290

Special linear group, 35
Special orthogonal group, 35, 180
Special relativity, 256
Special unitary group, 36
Sphere, 3, 9, 26, 140

curvature, 151, 161
Euler characteristic, 146
isometry, 106, 153, 155
Levi–Civita connection, 106, 170
normal, 112
parallel transport, 107, 108
rolling without slipping, 204
standard differentiable structure, 11
standard metric, 97, 106
symplectic structure, 243

Spherical pendulum, 178
Stabilizer, 40
Stable fixed point, 249
Stably causal spacetime, 296, 297
Standard

differentiable structure on RPn , 11
differentiable structure on R

n , 9
differentiable structure on Sn , 11
metric on RPn , 99
metric on S2, 106
metric on Sn , 97

Static spacetime, 271
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Stationary
observer, 274
solution, 249

Stereographic projection, 11, 13
Stokes theorem, 81
Strong energy condition, 300, 309, 313
Structure

differentiable, 9
equations, 136
functions, 139

Subcover, 53
Subgroup, 56

isotropy, 40, 226
normal, 56

Submanifold, 23, 26
integral, 197

Submersion, 23
Subspace topology, 53
Support of a form, 78
Surface, 10

anti-trapped, 316
Euclidean, 152, 155
hyperbolic, 152
minimal, 163
of revolution, 140, 162, 178, 230
trapped, 315

Symmetric
2-tensor, 96
connection, 102

Symmetry
of a distance function, 118
of a rigid body, 191

Symplectic
canonical potential, 218
gradient, 220
manifold, 233
leaf, 236

Symplectic form
canonical, 218
canonical with magnetic term, 243
on the sphere, 243

Synchronized coordinate system, 299

T
Tangent

bundle, 17, 20, 49
space, 15, 20
vector, 15

Tensor, 62
alternating, 63
contraction, 130
contraction by a vector, 68

contravariant, 62
covariant, 62
curvature, 125
energy-momentum, 268
mixed, 63
product, 62
Ricci, 129, 310
Riemann, 124
Poisson, 236

Tensor field, 69
covariant derivative, 103
Lie derivative, 71

Theorema Egregium, 160
Thomas precession, 269
Time

average, 228
coordinate, 231
dilation, 259
function, 252, 296
orientation, 257
Painlevé coordinate, 275, 282
proper, 231, 257, 267

Time-orientable
double covering, 297
spacetime, 290

Time-oriented spacetime, 290
Timelike

curve, 257, 267
geodesic, 267
vector, 256, 260

Tisserand criterion, 213
Topological

manifold with boundary, 5
space, 53
manifold, 2

Topology, 53
basis, 53
metric, 121
product, 54
subspace, 53

Torsion, 102
Torus, 3, 42, 297

Clifton–Pohl, 308
Euler characteristic, 146
flat square metric, 99
of revolution, 3
resonant, 229

Totally geodesic submanifold, 161
Totally normal neighborhood, 114
Tractrix, 155
Tractroid, 155
Transitive action, 40
Transverse vector field, 147
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Trapped surface, 315
Triangle inequality, 118

reversed, 262
Triangulation, 7, 145
True non-holonomic constraint, 197
Twin paradox, 260

generalized, 262, 294
on a cylinder, 269

U
Unitary group, 36
Universal covering, 43
Universe, 282

anti-de Sitter, 308, 310, 318
de Sitter, 289, 310, 318
Einstein, 289, 310, 318
Einstein–de Sitter, 290
Milne, 289

Upper semicontinuous function, 304

V
Variation of a curve, 206
Vector

future-pointing, 257, 260
length, 98
lightlike, see null
null, 257, 260
spacelike, 257, 260
tangent, 15
timelike, 256, 260

Vector field, 26
f -related, 32
along a curve, 101
commutator, 27
commuting, 28, 31
compatible with a distribution, 197

complete, 31
covariant derivative, 100
divergence, 88, 109
flow, 30
Hamiltonian, 220, 235
Jacobi, 117
Killing, 108
left-invariant, 36, 38
Lie algebra, 28
Lie derivative, 33
on a submanifold, 32
parallel along a curve, 101
push-forward, 29
singular point, 141
transverse, 147
velocity, 268

Velocity
addition formula, 261
angular, 186
vector field, 268

Volume
form, 86
of a compact manifold, 87

Volume element, 86
Riemannian, 98

W
Wedge product, 64
Wheel rolling without slipping, 195, 198,

201, 204
White hole, 276
Whitney, 1
Whitney theorem, 25, 97

Z
Zero measure set, 80
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