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Preface

The theory of abelian groups is a branch of (abstract) algebra, which deals with
commutative groups, named after the Norwegian mathematician Niels H. Abel.
Curiously enough, it is rather independent of general group theory: its methods bear
only a slight resemblance to the non-commutative case. (However, there is a close
relationship to the theory of modules, especially over integral domains.)

This is my third book on abelian groups. My first book was published in 1958;
it was a reasonably comprehensive systematic summary of the theory at that time.
With the advent of homological methods and the explosion of the theory of torsion
groups, an extended version was needed that was published in 1970 and 1973. Even
two volumes could not claim any more a comprehensive status, but they seem to
have presented accurately the main streams in the theory. Today, after four decades
of developments and thousands of publications, it is hardly imaginable to have a
comparably complete volume. As a consequence, I had to scale down my goals. By
no means could I be content with just a broad introductory volume, so I had in mind
a monograph which goes much beyond being a mere introduction and concentrates
on most of the advanced ideas and methods of today’s research. I do hope that this
volume will provide a thorough and accurate picture of the current main trends in
abelian group theory.

The audience I have in mind with this book is anybody with a reasonable
mathematical maturity interested in algebra. My aim has been to make the material
accessible to a mathematician who would like to study abelian groups or who
is looking for particular results on abelian groups needed in his/her field of
specialization. I have made an effort to keep the exposition as self-contained as
possible, but I had to be satisfied with stating a few very important theorems without
proofs whenever the proofs would not fit in this volume. The specific prerequisites
are sound knowledge of the rudiments of abstract algebra, in particular, basic group
and ring theory. Also required is some exposure to category theory, topology, and set
theory. A few results where more advanced set theory is indispensable are included
for those who are willing to indulge in a bit more sophisticated set theory. In order to
fill the need of a reference source for experts, much additional information about the
topics discussed is included also in the “Notes” at the end of sections with reference
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to relevant publications. Many results discussed are collected from scattered articles
in the literature; some theorems appear here for the first time in a book.

The writing of such a book requires, inevitably, making tough choices on what
to include and what to leave out. I have tried to be selective so that the central ideas
stand out. My guiding principle has been to give preference to important methods
and typical results as well as to topics, which contain innovative ideas or which
I felt were particularly instructive. It is no secret that several flourishing areas of
module theory have their origin in abelian groups where the situation is often more
transparent—I have paid special attention to these results as well. As I have tried
to make the book more accessible for starters, generality is sometimes sacrificed in
favor of an easier proof. I have shied away from theorems with too technical proofs
unless the result, I believe, is theoretically or methodically extremely important. In
the selection of additional topics, the guide was my personal interest (which I view
as an indisputable privilege of authors).

In order to give a fair idea of the current main streams in abelian group theory, it
is impossible to ignore the numerous undecidable problems. Abelian group theory is
not only distinguished by its rich collection of satisfactory classification theorems,
but also for having an ample supply of interesting undecidable problems. Shelah’s
epoch-making proof of the undecidability of Whitehead’s problem in ZFC marked
the beginning of a new era in the theory of abelian groups with set-theoretical
methods assuming the leading role. The infusion of ideas from set theory created
as radical a change in the subject as Homological Algebra did a quarter of a century
before. Therefore, I had to take a more penetrating approach to set-theoretical
methods and to discuss undecidable problems as well, but I treat these fascinating
problems as interesting special cases of theoretical importance, rather than as a main
object of a systematic study. Though a short survey of set-theoretical background is
given, the reader is well advised to consult other sources.

I am a bit leisurely, primarily in the first half of the book, with the method of
presentation and the proofs in order to assist students who want to learn the subject
thoroughly. I have included a series of exercises at the end of each section. As is
customary, some of them are simple to test the reader’s comprehension, but the
majority give noteworthy extensions of the theory or sidelines to enrich the topics
studied in the same section. A student should conscientiously solve several exercises
to check how he/she commands the material. Serious attempts have been made to
provide ample examples to illustrate the theory. Good examples not only serve to
motivate the results, but also provide an explicit source of ideas for further research.

Past experience suggests that listing open problems is a good way of encouraging
young researchers to start thinking seriously on the subject. In view of this, I am
listing open problems at the end of each chapter, with a brief commentary if needed.
I have not given any serious thought to their solutions; so a lucky reader may find
quick answers to some of them.

This volume follows basically the same line of development as my previous
books on abelian groups. With the kind permission of the publishing company
Elsevier, I could include portions of my two volume book “Infinite Abelian Groups.”
The book was out of print by 1990, and at that time I was playing with the idea
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of revising it, but decided to join forces with my friend Luigi Salce to write a
monograph on modules over non-noetherian integral domains. When I felt ready to
get involved in working on a book on abelian groups, Hurricane Katrina interfered:
it forced us to leave our home for three-and-a-half years. It took me some time to
brace myself for such a big task as writing a book. When I realized that a mere
revision would not be satisfactory, I had no choice but to start working on a new
book.

The first two chapters of this volume are introductory, and the reader who is
knowledgeable in group theory will want to skip most of the sections very quickly.
For those who are not so familiar with more advanced set-theoretical methods, it
might help to read Sect. 4 carefully before proceeding further. The text starts in
earnest in Chapter 3, which provides a thorough discussion of direct sums of cyclic
groups. Chapter 4 is devoted to divisibility and injectivity, while Chapter 5 explores
pure subgroups along with basic subgroups. In Chapter 6, we introduce algebraically
compact groups motivated by purity and topological compactness.

In the next three chapters, we embark on the fundamental homological machinery
needed for abelian groups. The insight developed here is essential for the rest of the
book. We conclude Chapter 9 with the theory of cotorsion groups.

Armed with the powerful tools of homological algebra, we proceed to the next six
chapters, which form the backbone of the theory, exploring the structure of various
classes of abelian groups. The structure theory is a vast field of central importance
that is not easy to organize into a coherent scheme. Starting with torsion groups, we
first deal with p-groups that contain no elements of infinite height. Then we go on
to explore the Ulm-Zippin theory of countable p-groups leading to the highlights
of the impressive theory of totally projective p-groups. Chapters 12 and 13 provide
a large amount of material on torsion-free groups—an area that has shown great
advancement in the past quarter of century. We explore indecomposable groups,
slender groups, and vector groups. The discussion culminates in the proof of the
undecidability of the famous Whitehead problem. Chapter 14 serves as a broad
introduction to the fascinating theory of Butler groups. In Chapter 15, the main
results on mixed groups are presented.

The final three chapters deal with endomorphism rings, automorphism groups,
and the additive groups of rings. Some ideas are introduced that interact between
abelian groups and rings.

I stress that the reader should by no means take this book as a complete survey
of the present state of affairs in abelian group theory. A number of significant and
more advanced results in several areas of the theory, as well as a wealth of important
topics (like group algebras) are left out, not to mention topics like the more advanced
theory of finite and infinite rank torsion-free groups, as well as p-groups more
general than totally projective groups. In spite of all these, I sincerely hope that
the material discussed provides a significant amount of information that will open
up new and promising vistas in our subject.

As far as the bibliography is concerned, references are not provided beyond the
list of works quoted in the text and in the “Notes.” No reference is given to the
exercises. This self-imposed restriction was necessary in view of the vast literature
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on abelian groups. The reader who is interested in going beyond the contents of this
book should use the list of references as a guide to other sources. References outside
the theory of abelian groups are usually given in an abbreviated form embedded in
the “Notes.” The system of cross references is simple: lemmas, theorems etc. are
numbered in each chapter separately. Books are cited by letters in square brackets. I
have attempted to give credit to the results, and I apologize if I have made mistakes
or omissions.

A remark is in order about notational conventions. We are using the functional
notation for maps, thus ¢ (x), or simply ¢x, is the image of x under the map ¢.
Accordingly, the product ¢y of two maps is defined as (¢ ) (x) = ¢ (¥ (x)). This
is not a universally adopted convention in abelian group theory, but is predominant.
The “Table of Notations” should be consulted if symbols are not clear. I have
introduced new notation or terminology only in a few places where I found the
frequently used terms clumsy or confusing, or if a name was missing.

I am grateful to my friends and colleagues Lutz Striingmann, Luigi Salce,
Kulumani M. Rangaswamy, Claudia Metelli, Brendan Goldsmith, and Ulrich
Albrecht for their comments on portions of an earlier version of the manuscript.
I have greatly benefitted from the comments I received from them. I apologize for
the errors which remain in the text.

Metairie, Louisiana, USA Laszl6 Fuchs
March 27, 2015
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Pext(C, A): group of pure extensions of A by C
Bext(C,A), PBext(C, A): group of (pre)balanced extensions of A by C
Char A: character group of A in Pontryagin duality
Mult A: group of ring multiplications on A

Tra(G): trace of A in G

lim, lim: direct, inverse limit

— <

1(11_1112 first derived functor of inverse limit



Chapter 1
Fundamentals

Abstract The aim of this introductory chapter is twofold. First, to refresh the reader’s memory
about the basics before entering into the study of more serious topics. A fairly large portion of the
material can be found in standard textbooks on algebra. So, the reader may skip some or all of the
sections and turn to the appropriate places when needed. Secondly, we have to fix the fundamental
terminology to be used throughout this volume. In the 1950s, as in every rapidly developing field,
the terminology in abelian groups often varied from author to author. Slowly standardization took
place, and we will use here the widely accepted, the most familiar or the more appropriate names
for the concepts, with a couple of exceptions where new terminology is warranted.

The topics covered in this chapter include maps, diagrams, sets, categories. Most of the proofs
will be omitted as they are standard and available in textbooks.

For the comfort of the reader, especially, of those who look for references, we avoid the use of
abbreviations in the text as far as reasonable.

1 Basic Definitions

Throughout this book, ‘group’ will mean an additively written abelian group. That
is, a group is a set A satisfying the following conditions:

1. with every paira,b € A, an element a + b € A is associated, called the sum of a
and b;

. associative law: a + (b + ¢) = (@ + b) + cforalla,b,c € A;

. commutativelaw: a + b = b+ aforalla,b € A;

. there is an element 0, called zero, such that a + 0 = a for all a € A;

. to each a € A there exists an x € A satisfying a + x = 0; this is x = —a, the
inverse to a.

W B~ W N

Note that a group is never empty. The associative law enables us to write a sum
of more than two summands without parentheses, and due to the commutative law,
the terms of a sum may be permuted. We write a — b to mean a 4+ (—b), and —a — b
for the inverse of a 4+ b. The sum a + --- + a (n summands) is abbreviated as na
(called a multiple of a), and —a — - - - — a (n summands) as —na with n € N (where
N denotes the set of positive integers). A sum without terms is 0, thus Oa = 0 for all
a € A. Notice that we do not make distinction in the notation between the integer 0
and the group element 0.

The same symbol is used for a group and for the set of its elements. The order
of a group A is the cardinal number |A| of the set of its elements. According as |A|
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2 1 Fundamentals

is finite, countable, or uncountable, we call A a finite, countable or uncountable
group.

Subgroups A subset B of a group A is a subgroup if the elements of B
form a group under the same operation. A non-empty subset B of a group A is a
subgroup if and only if a,b € B impliesa + b € B and b € B implies —b € B, or
more simply, if and only if a,b € B implies @ — b € B. If A is a finite group and
B is a subgroup, then by Lagrange’s theorem |B| is a divisor of |A|. Every subgroup
of A contains the element 0, and the subgroup {0} consisting of the element 0 alone
is called the trivial subgroup of A (there being no danger of confusion, the trivial
subgroup will be denoted by 0 instead of {0}). A subgroup of A, different from A,
is said to be a proper subgroup. We shall use the following convention: B < A
will denote that B is a subgroup of A, while B < A will mean that B is a proper
subgroup. In contrast, whenever we wish to claim that X is merely a subset (resp. a
proper subset) of A, then we shall write X C A (resp. X C A).

The set-theoretic intersection B N C of two subgroups B, C of A is again a
subgroup. More generally, if {B;};c; is a family of subgroups of A, for any index
set 1, then their intersection B = N;¢/B; is likewise a subgroup of A. If I is the
empty set, then we agree that B = A. If the subgroups B and C satisfy BN C = 0,
we will say that B and C are disjoint. This terminology is not consistent with
the set-theoretical meaning of the word, but it is an accepted agreement that the
group-theoretical disjointness should mean that the subgroups have nothing else in
common other than what they ought to have.

If S is a subset of A, the symbol (S) will denote the subgroup of A generated
by S, i.e. the intersection of all subgroups of A that contain S. If S = {...,a;,...},
then we write (S) = (..., a;,...), or simply (S) = (a;);e;. This (S) consists of all
linear combinations (i.e., sums of the form) nja; + -+ + max (a; € S,n; € Z)
where k denotes a non-negative integer. We set () = 0. In case (S) = A, we say
that S is a generating system of A, and its elements are generators. If B, C are
subgroups of A, then the subgroup (B, C) they generate consists of the elements
b+ c (b € B,c € C). We may write, therefore, (B, C) = B + C. For a possibly
infinite collection of subgroups {B;};c; of A, the subgroup B they generate consists
of all finite sums b;, + --- + b;, with b;; € B;;; we shall then write B = > e Bi

A group (a), generated by a single element q, is called cyclic. The order of
this cyclic group is called the order of the element a; notation: o(a). The order
of an element can be a positive integer or the symbol co. If a is of finite order
n, then na = 0, so (a) = {0,a,...,(n — 1)a}, while if o(a) = oo, then
(a) = {0, %a,..., £na,...} (all different elements).

By a superfluous subgroup of a group A is meant a subgroup G < A such that
X + G = A holds for a subgroup X < A only if X = A, i.e. the elements of G
are superfluous in any generating system. Evidently, subgroups of a superfluous
subgroup are superfluous, and the sum of two superfluous subgroups is again
superfluous.
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Example 1.1.

(a) The only superfluous subgroup of the group Z of integers is the 0 subgroup. In fact, if nZ is
any non-zero subgroup and 1 < m € N satisfies ged(n,m) = 1, then mZ + nZ = 7Z, but
mZ # 7.

(b) In a cyclic group of prime power order, all proper subgroups are superfluous.

The set of all subgroups of a group A is partially ordered under the inclusion
relation. It is a lattice, where B N C and B + C are the lattice-operations ‘inf’
and ‘sup,” respectively, for subgroups B, C of A. This lattice L.(A) has a minimum
and a maximum element (0 and A), and satisfies the important modular law: for
subgroups B, C, D of A,

B+(CnND)y=B+C)ND provided B < D.

In fact, the inclusion relation < being obvious, we need only verify that every
d € (B + C) N D belongs to the subgroup on the left. We can write d = b + ¢
with b € B,c € C. Thus d — b = ¢ belongs to both D and C. Hence ¢ € C N D, and
d=b+ceB+(CND).

Factor Groups If B <Aanda € A,thena+B = {a+b| b € B} is called a coset
of A modulo B. Any element in a coset, also called a representative of the coset,
identifies the coset. The cosets of A mod B are pairwise disjoint, and A is their set-
theoretical union. Elements x,y € A are congruent (written x = y) mod B, if they
belong to the same coset mod B. A set consisting of exactly one representative from
each coset of A mod B is a complete set of representatives mod B. Its cardinality
is the index of B in A, denoted as |A : B|. If this cardinal number is finite, we call B
of finite index in A. If A is a finite group, then |A : B| = |A|/|B|.

The cosets of A mod B form a group A = A/B known as the factor group
(or quotient group) of A mod B. In this group, the sum of two elements C;, C;
(which are cosets in A) is defined as the coset consisting of the elements {c¢; +
¢y | c1 € Ci,cy € Gy} itis uniquely determined as the coset represented by any of
its elements. The zero of A is the coset B, and the inverse of a coset C is the coset
—C={-c|ce(}.

We shall frequently refer to the natural bijection between the subgroups of the
factor group A/B and the subgroups of A containing B. The elements of A contained
in elements of a subgroup C of A = A/B form a subgroup C of A containing B. On
the other hand, if B < C < A, then the cosets of A mod B containing only elements
from C form a subgroup C < A/B. This correspondence C <> C is a bijection, and
we may write C = C/B. Note that [C| = |C: B|and |A: C| = |A: C|.

The Torsion Subgroup If every element of a group A is of finite order, then A is
called a torsion (or periodic) group, while A is torsion-free if all its elements, with
the exception of 0 (which has order 1), are of infinite order. Mixed groups contain
both non-zero elements of finite order and elements of infinite order. By a primary
group or p-group is meant a group the orders of whose elements are powers of a
fixed prime p. An abelian group A has a unique p-Sylow subgroup A, for each prime
p: A, consists of all elements of A whose orders are powers of p.
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Theorem 1.2. In a group A, the set T of elements of finite order is a subgroup. T is
a torsion group and A/ T is torsion-free.

Proof. Since 0 € T, the set T is notempty. Ifa,b € T, i.e. ma = 0,nb = 0 for some
m,n € N, then mn(a —b) = 0,and soa — b € T. Thus T is a torsion subgroup. To
show that A/T is torsion-free, let a + T be a coset of finite order,i.e. m(a+T) C T
for some m € N. This means that ma € T, so n(ma) = 0 for some n € N. Thus a is
of finite order, i.e.a € T, and a + T = T is the zero of A/T. Consequently, A/T is
torsion-free. O

We shall call T the (maximal) torsion subgroup or the torsion part of A, and
we shall denote it by #(A) or rA. (If we refer to the torsion subgroup of A, then we
always mean the maximal torsion subgroup.)

The following notations are typical for abelian groups; they will be used all
the time without explanation. Given a group A and an integer n € N, define the
subgroups:

nA ={nalaecA} and An] ={a€A|na=0}

Thus b € nA if and only if the equation nx = b has a solution for x in A, and
¢ € A[n] exactly if o(c)|n. A fundamental concept is the pure subgroup. Purity will
be discussed in Chapter 5, here we just state the definition: a subgroup G of A is
a pure subgroup if nG = G N nA for every n € N, i.e. if whenever the equation
nx = g € G admits a solution in A for x, then it is also solvable in G.

Ulm Subgroups The first Ulm subgroup of A is defined as
A" = Nyen nA.

The second Ulm subgroup is A> = (A')!, etc. We shall also need the oth Ulm
subgroups for ordinals o’; these are defined transfinitely by the rules: A°*! = (A%)!,
and A? = Ng<,A° if p is a limit ordinal (see Sect.4). (We view A = A°%) The
Ulm length of A is the smallest cardinal 7 such that A”™"! = A" (which exists by
cardinality reason). The oth Ulm factor of A is the factor group

A(T :AU/AU+1.

Given a € A, the largest non-negative integer n for which the equation p"x = a
is solvable for x € A is said to be the p-height ,(a) of a. If this equation is solvable
for every integer n > 0, then a is of infinite p-height, /,(a) = oc. The element 0
is of infinite height at every prime. If it is completely clear from the context which
prime p is meant, then we may simply talk of the height of a and write i(a). (In
Chapter 11, we shall discuss transfinite heights.)

The socle s(A) of a group A is the set (actually the subgroup) of all the elements
a € A such that o(a) is a square-free integer. If s(A) = A, A is called an elementary
group. If A is a p-group, then s(A) = A[p].
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A subgroup E of A is essential if its intersection with any non-zero subgroup of
A is non-zero. It is easily checked that (i) E is essential in A if and only if it contains
the socle of A and A/E is torsion; (ii) the property of being an essential subgroup is
transitive; and (iii) the intersection of two essential subgroups is again an essential
subgroup.

% Notes. Theorem 1.2 is an elementary, but fundamental result. It means that a typical group
can be thought of as being a composite of a torsion and a torsion-free group. This, however, does
not reduce the theory of mixed groups to those of these constituents, since a major issue that
remains is to find out how they are glued together to form the mixed groups. It is hard to trace the
history of Theorem 1.2.

Generalizations of ‘torsion’ exist for modules, albeit not over all rings. If we mean by a ‘torsion’
element one whose annihilator in the ring is # 0, then the left Ore domains are exactly those rings
R for which in every left R-module M the torsion elements form a submodule 7 and M/T has
no torsion 7 0. There is an extensive literature on torsion theories in module categories, even in
additive categories; see, e.g., J. Golan’s book Torsion Theories (1986).

Exercises

(1) The associativity and commutativity laws can be combined into a single law:
(a+b)+c=a+ (c+b)foralla,b,ceA.
(2) (a) Let By, ..., B be subgroups of the group A, and let B = By N --- N By.
The index |A : B| is not larger than the product of the indices |A : B;|.
(b) The intersection of a finite number of subgroups of finite index is again a
subgroup of finite index.
(3) Let B, C be subgroups of A.

(a) For every a € A, the cosets a + B and a + (B + C) have non-zero
intersections with the same cosets mod C.

(b) A coset mod B contains exactly |[B : (B N C)| pairwise incongruent
elements mod C.

(4) (O. Ore) The group A has a common system of representatives mod two of its
subgroups, B and C, if and only if |B : (BN C)| = |C : (BN C)|. [Hint: for
necessity use Exercise 3; for sufficiency, divide the cosets mod B into blocks
mod (B + C), and define a bijective correspondence within the blocks.]

(5) (N.H. McCoy) (a) Let B, C, G be subgroups of A such that G is contained in
the set union B U C. Then either G < Bor G < C. [Hint: if b € (BN G) \ C,
thenc € CN Gimpliesb+c€ BN G,c € BNG.]

(b) The same fails for the set union of three subgroups.

(6) If n = pi'---p{ is the canonical representation of the integer n > 0, then
nA =plAN---NpkAandAln] = APl & - ® A]pl].

(7) (Honda) If B < Aandm € N, set m™'B = {a € A | ma € B}. Prove that
(a) m~'B is a subgroup of A containing B; (b) m~'0 = A[m]; (c) m~'mB =
B + A[m]; (d) m(m™'B) = BN mA; (¢) m~'n"'B = (mn)~'B where n € N.
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(8) A superfluous subgroup is contained in every maximal subgroup.

(9) (B.H. Neumann) Let a; + B; (i = 1,...,n) be cosets of subgroups B; of A
such that their set union is all of A. Then one of B; has finite index in A. [Hint:
induct on 7n.]

(10) Let B be a subgroup of A. (a) If B is torsion, then B < A. (b) If A/B is torsion-
free, then tA < B.

(11) Forevery n € N, we have n(tA) = t(nA).

(12) Prove the triangle inequality for the heights:

hp(a 4 b) > min{h,(a), h,(b)}

for the elements a, b of any group A. Equality holds if /,(a) # h,(b).
(13) (a) Prove the inclusion relations (BN C) + (BN D) < BN (C + D) and
B+ (CND)<(B+ C)N(B+ D) for subgroups B, C, D of a group A.
(b) Find examples where proper inclusions hold.

2 Maps and Diagrams

Homomorphisms Let A and B be arbitrary groups. A homomorphism

o: A — B (often denoted as A BN B) is a function that associates with every
element a € A a unique element b € B, written as «(a) = b (or simply as c¢a = b),
such that it preserves addition:

ala) + ap) = alay) + a(az) for all a;, a; € A.

A is the domain and B is the codomain or range of «. If there is no need to name
the homomorphism, then we write simply A — B.

A homomorphism « : A — B gives rise to two subgroups: Kero < A and
Ima < B. Kera is the kernel of «: the set of all ¢ € A with aa = 0, while
Im o, the image of «, consists of all b € B such that there is an a € A with
aa = b. The factor group B/ Im« is called the cokernel of «; notation: Coker «.
If Ine = B, then « is surjective or epic; we also say that it is an epimorphism.
If Kere = 0, o is said to be injective or monic; also, « is a monomorphism.
If both Ima = B and Kera = 0, then « is a bijection; in this case, it is called an
isomorphism. The groups A and B are isomorphic (denoted as A 2 B) if there is an
isomorphism & : A — B. Then the inverse map a~!: B — A exists, and is again an
isomorphism. Abstractly, no distinction is made between isomorphic groups, unless
they are distinct subgroups of the same larger group under consideration. If G is a
subgroup of both A and B, and if @ : A — B fixes the elements of G, then « is a
homomorphism over G.
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A homomorphism o with Ima = 0 is referred to as a zero homomorphism; it
will be denoted by 0. If A < B, then the map that assigns to every a € A itself may
be regarded as a homomorphism of A into B; it is called the injection or inclusion
map. The injection 0 — A is the unique homomorphism of the group 0 into A. If
a: A — Band C < A, then the restriction y = « | C has the domain C and
codomain B. In this case, « is viewed as an extension of y, written y < «.

Ifoayg < -+ < @, < ... is achain of extensions of maps (i.e., each map is an
extension of its predecessor), then U, ., is their ‘union.” This is a map from the
union of the domains of the «,, to the common codomain.

Leta: A — Band B: B — C be homomorphisms between groups; here, the
codomain of « is the same as the domain of 8. The composite map A — B — C,
called the product of « and B and denoted by B o « or simply by Ba, is a
homomorphism A — C (notice the order of factors!). Keep in mind that S« acts
according to the rule

(Ba)a = B(aa) forall a € A.

The associative law y(Ba) = (yB)a holds whenever the products S« and yf are
defined. « is right-cancellable (i.c. S = y« always implies § = y) exactly if o
is an epimorphism, and left-cancellable (¢ = «y always implies 8 = y) if and
only if it is a monomorphism. The product of two epimorphisms (monomorphisms)
is again one.

If ,8 : A — B are homomorphisms, then their sum « + B is again a
homomorphism A — B defined as

(¢ + Bla=aa+ Ba foralla € A.

Under this operation, the homomorphisms from A to B form an abelian group,
denoted as Hom(A, B) (to be studied in Chapter 7).

A homomorphism of A into itself is called an endomorphism, and an isomor-
phism with itself an automorphism. The endomorphisms of A form a ring End A,
called the endomorphism ring of A, and the automorphisms of A form a group
AutA, called the automorphism group of A (which is rarely commutative). The
identity automorphism 14 of A is the identity both in End A and in Aut A. A subgroup
of A that is carried into itself by every endomorphism (automorphism) of A is said
to be a fully invariant (characteristic) subgroup of A.

Both the sum and the intersection of fully invariant subgroups of A are fully
invariant in A. Thus the fully invariant subgroups of A form a sublattice in the lattice
L(A) of subgroups of A. If S is a subset of the group A, then we can talk about the
fully invariant subgroup generated by S: this is the intersection of all fully invariant
subgroups containing S, and coincides with the set of all sums of the images of
elements in (S) under endomorphisms of A.

Leta: A — B be a homomorphism, and set K = Ker«. The map a + K — aa
from the factor group A/K to Im« is an isomorphism. Thus Im« = A/K. The map
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A — A/K acting as a — a + K is called the natural or canonical homomorphism.
There is an important isomorphism

B/(BNC)= (B+C)/C if B,C <A,
known as the first isomorphism theorem by Emmy Noether. The natural isomor-
phismis b+ (BN C) — b+ Cforb € B.
If C < B < A, then there is an epimorphism A/C — A/B acting as a + C +—
a + B, whose kernel is B/C. This leads to the second isomorphism theorem:

A/B = (A/C)/(B/C) where C < B <A.

Exact Sequences A sequence of groups A; and homomorphisms «;;,

Ag =oAL A (k > 2),
is called an exact sequence if In¢; = Kerwo;y; fori = 1,...,k — 1. In particular,

the sequence 0 — A % Bis exact if and only if @ is monic, and B ﬁ) C —> 0is

exact if and only if f is epic. The exactness of 0 — A 5 B—0is equivalent to o
being an isomorphism. The most frequently used exact sequences are of the form

e O—>Ai>Bi>C—>O,

and are called short exact sequences; here, « is an injection of A in B such that § is
a surjective map with Im « as kernel. Whenever convenient, we may identify A with
the subgroup Im« of B, and C with the quotient group B/A; in other words, A can
be treated as a subgroup, and C as a factor group of B.

Another important exact sequence arises from an arbitrary group homomorphism
n: A — B. This is the sequence

O—>Kerni>A—n>Bi>Cokern—>O

where o denotes the embedding, and § the canonical map mod Im 7.

Diagrams The balance of this section is devoted to diagrams. Diagrams not
only assist us in understanding statements, but they also clarify proofs, and most
importantly, help intuition.

Roughly speaking, a diagram consists of capital letters, representing groups,
and arrows between certain pairs of capital letters, representing homomorphisms
between the corresponding groups. A diagram is commutative if we get the same
composite homomorphism no matter how we move along directed arrows on
different paths from one group to another group in the diagram. For instance, the
diagram
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is commutative exactly if the homomorphisms Bu and o of A into B’ are equal,
and the same holds for the homomorphisms yv and v’ of B into C’. Then the
equality of the homomorphisms yvu, v'Bu, v/’ is a simple consequence. In
diagrams, the identity map is often denoted by the sign of equality, as, e.g., in

A—23 B

T

AT C

This diagram is commutative exactly if y = fo.
The following two lemmas are dual to each other. In the proofs, the technique
with maps is instructive.

Lemma 2.1. A diagram

G
/g)l”]
0 A—>.p -2 . ¢

exactly if Bn = 0. In this case, ¢ : G — A is uniquely determined.

Proof. If such a ¢ exists, then n = a¢ implies fn = fag = 0¢ = 0, thus the
stated condition is necessary. Conversely, if fn = 0 holds, then Imn < Ker§f.
By the exactness of the row, ¢ is monic and Ker = Ima, so Imn < Ima.
Hence the map ¢ = a~'n : G — A is well defined and obviously satisfies a¢ = 7.
If ¢’ : G — A also satisfies a¢’ = 7, then a¢’ = a¢ implies ¢’ = ¢, since « is a
monomorphism. O

In order to save space, the two diagrams may be combined to a single one:
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0 ——A—>. B ¢

where the solid arrows represent given maps, while the broken arrow designates a
homomorphism to be “filled in.”

Lemma 2.2. A diagram

A, pB_", ¢ 0

7 o
|

G

with exact row can be completed by a map  : C — G so as to get a commutative
triangle exactly if na = 0. Such a  is unique.

Proof. 1f such a y exists, then from n = ¥ we obtain na = ¥Ba = Y0 = 0,
and the necessity is clear. Conversely, assume na = 0, and define ¢ : C — G as
follows. For ¢ € C set ¢ = nb with some b € B satisfying b = c. This is a good
definition, for if also ¥»' = cforb’ € B,then ¥’ — b € Ker B = Ima < Kern, so
nb’ = nb. Uniqueness follows from the surjectivity of j. |

Next, we prove a lemma that has several applications. In its proof, the preceding
lemmas are used without explicit reference.

Lemma 2.3. Suppose

0 A g o 0
it
0 A2, p_" 0

is a commutative diagram with exact rows. There exists a map ¢ : B — A making
the upper triangle commute (i.e., oo’ = ¢) if and only if there is a map p: C' — B
making the lower triangle commute (i.e., Bp = n).
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Proof. Ifo: B’ — A satisfies oo’ = ¢, then (Y —ao)a’ = agp—a¢p = 0 implies the
existence of a map p: C' — B such that p8’ = ¥ — ao. Hence from Bpg’ = By —
Bao = nB’ we obtain Bp = n. Conversely, if there is a map p: C' — B such that
Bp = n,then t =  — pf’ satisfies Bt = By — Bpp’ = nB’ —nB’ = 0. Therefore,
there isamap o : B — A with wo = 7. It satisfies aoa’ = Yo’ — pf'a’ = a¢, that
is, oo’ = ¢, as desired. O

The next two lemmas give us an opportunity to get acquainted with a simple, but
extremely useful technique, called diagram chasing. The first lemma is a prelude
to the second one.

Lemma 2.4. Suppose we are given a commutative square as the center square in
the diagram

0 — Kera A= A Cokera — 0
u’i ul Jv w v
0 — Kerg B p Coker  — 0

with exact rows. Then u induces a map ' : Kera — Ker B, and v induces a map
v': Coker @ — Coker 8 making the left and the right squares commute. |’ is monic
if sois u, and V' is epic if so is v.

Proof. The map u’ = p } Kera carries evidently Ker « into B. We have to check
that it lands in Ker 8. So we pick an a € Ker «, and want to show that pa € Ker g,
i.e. fua = 0. This is indeed true, since S = vo by the commutativity of the
central square, and «a = 0 by the choice of a. It is also clear that ' is monic if p
is monic.

A kind of dual argument applies to the other half of the claim. Let x € Coker«,
ie.xisacoseta’ +Ima (¢’ € A’). Then va’ 4 Im B is independent of the selection
of the representative a’ of the coset, because if @’ = a’ + aa for an a € A, then
va" = vd'+vaa = va'+Bua € va’+1Im B. It is immediate that the correspondence
d + Ima — vd 4 ImpB is a homomorphism v’ : Cokerae — Coker 8. If v is
epic, then for every coset b’ + Im 8 (b’ € B’) there exists an a’ € A’ such that
va’ = b’ + Im B, whence the surjectivity of v’ is evident. O

The Snake Lemma The next, forbiddingly looking diagram is not as formidable
as it appears at the first sight. The lemma provides us with a long exact sequence
that will have significant applications in later chapters.
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Lemma 2.5 (Snake Lemma or Kernel-Cokernel Sequence). Let

vy 5

Oo—— A —FH . B X, Cc —0
L= & L
0o ——— A v, B Y ¢ —— 0
l ! l
[ M2 v2

—— Cokera ———— Coker§ ———— Cokery —— 0

! ! !

0 0 0

be a commutative diagram, where the two middle rows and all the columns are
exact. Then there exist maps making the top and bottom rows exact, as well as a
map § : Kery — Cokera, called connecting homomorphism, making the long
sequence

0 — Kera — Ker 8 — Kery —8> Cokera — Coker 8 — Cokery — 0

exact.

Proof. To start with, note that the vertical maps from the kernels are viewed as
inclusions, while those into the cokernels as canonical epimorphisms.

First we define the connecting homomorphism §. Pick an element ¢ € Kery.
There is a b € B such that vb = ¢. As yc¢ = 0, we have v'8b = 0, which implies
that some a’ € A’ satisfies 'a’ = Bb. Define ¢ = a’ + Ima € Coker . It is urgent
to check that this is independent of the choice of b € B. This is easily done: another
choice b* = b + pux (x € A) leads to a* = d’ + ax which gives the same coset in
Cokera as @'

Since the maps i1, vy act like w, v, it is easily seen that the sequence of kernels
is exact. A similar comment settles the exactness of the sequence of the cokernels.
It remains to check exactness at Ker y and Coker «.

It is clear that the composite maps at these places are 0. Clearly, ¢ = 0 if and
only if @’ = «aa for some a € A. Then b = p'a’ = Bua, thus b — pa € Ker 8. As
¢ = vb = v(b — ua), the exactness at Ker y follows at once. Similarly, @’ + Ima €
Ker iy (@’ € A’) means that u'a’ € Im B, so there is a b € B with u’a’ = Bb. Then
vb = ¢ € Kery is mapped by § upon @’ + Ima. O
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The 5- and the 3 x 3-Lemma Finally, we state two more lemmas that are often
useful in applications. The direct proofs are rather technical and omitted. They can
be found, e.g., in Mac Lane [M], but they can also be derived from the Snake
Lemma.

Lemma 2.6 (The 5-Lemma). Suppose

Ay =2 Ay 2 Ay A s A

S S P T A

B, B1 B, B2 By Bs B, Ba Bs

is a commutative diagram with exact rows. Then

(a) if y1 is epic and y», y4 are monic, then y3 is monic;

(b) if ys is monic and y», y4 are epic, then ys is epic;

(c)if y1 is epic, ys is monic, and Yy,,ys are isomorphisms, then y3 is an
isomorphism. O

Lemma 2.7 (The 3 x 3-Lemma). Assume that the diagram

0 Ay B C1 0
All Hll lw
0 As @2 Bo Pz Co 0

A2 l nao J, luz

is commutative and has exact columns. If the first two rows or the last two rows are
exact, then all three rows are exact. O

% Notes. Only with the advance of category theory became the maps (homomorphisms)
between groups, and more generally, between algebraic systems, major players in algebra. Their
overall importance is manifest.

We will often draw diagrams to support proofs, though frequently, diagrams that can easily be
supplied by the reader will be skipped in order to save space. We will see that even simple minded
diagrams prove very effective in understanding claims, and can be extremely helpful in following
proofs. Readers are encouraged to draw diagrams whenever possible, and it is hoped that serious
students will fall into this useful habit.
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Exercises

(1) Assume o: A — Band 8: B— C. Prove that

(a) Ker o > Kera, and equality holds if § is a monomorphism;
(b) Im B < Im B, and equality holds if « is an epimorphism.

(2) Letagaino: A — Band 8: B— C.

(a) If B is a monomorphism, then « is monic, but 8 need not be monic.
(b) If Ba is an epimorphism, then f is, but « is not necessarily epic.

(3) For every group A and for every positive integer m there are exact sequences
0— Alm] > A —->mA —0and0 - mA - A — A/mA — 0.
(4) Suppose@: A — Band B’ < B.

(a) If we write o !B’ = {a € A | aa € B'}, then we have (¢~ 'B’) < B'.
(b) For A’ < A, the following is true: A’ < a~ ' (aA’).

(5) Letn € EndA and m € N. Then Kermn = m™! Kern.

(6) Let B and C be subgroups of A such that A = B+ C,and 8 : B — G,
y : C — G homomorphisms into the same group G. Thereisana: A — G
withe P B=pBanda | C =y if and only if § and y are equal on BN C.

(7) Forevery m € N, and for every fully invariant subgroup H of A, the subgroups
mH and H|[m] are likewise fully invariant in A.

(8) Full invariance is a transitive property: a fully invariant subgroup of a fully
invariant subgroup is fully invariant.

(9) (a) If H is a fully invariant subgroup of A, and 7 is an endomorphism of A, then
the correspondence a + H + na + H is an endomorphism of A/H.
(b) If H is fully invariant in A, and G/H is fully invariant in A/H, then G is
fully invariant in A.
(10) If H; (i € I) are fully invariant (characteristic) subgroups of A, then so are
miEIHi and Ziel Hl‘.

(11) Let0 - A B i) C — 0 be an exact sequence, and B’ < B. Then there

exist A’ < A and C' < C such that the sequence 0 — A’ Ny i) C -0
isexact wherea’ =« M A’and B’ =8 | B’
(12) (a) In a diagram

A 2 B
o E
0 c —2D

with exact row, an arrow ¢ : A — C can be filled in to make the diagram
commute if and only if Im Bo < Imy. Such a ¢ is unique.
(b) Formulate and prove the dual of (a).
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3 Fundamental Examples

Our next order of business is to get acquainted with the groups that we will meet all
the time in the sequel.

Cyclic Groups They have been defined above as groups that can be generated
by a single element: C = (c). A cyclic group can be finite or infinite.

The elements of an infinite cyclic group C generated by c are nc (all distinct)
with n running over the additive group Z of integers. C is isomorphic to Z, an
isomorphism is given by the correspondence nc +— n € Z. Thus all infinite cyclic
groups are isomorphic. Along with ¢, also —c can be a generator of C, but no other
element alone can generate C.

The list of elements of a cyclic group C = (c) of order m is: 0, ¢, 2c, . ..,

(m — 1)c. Because of mc = 0, we compute in C just as with the integers mod m.
Consequently, C is isomorphic to the additive group of residue classes of the integers
mod m; this group is Z/mZ. Thus all finite cyclic groups of the same order are
isomorphic; we shall use the notation Z(m). (In the literature, often Z,, is used,
though Z, is in conflict with the notation used for the localization of Z at p.) Along
with ¢, every kc with ged(k, m) = 1 can serve as a single generator of C, but only
these.

The simple abelian groups (0 is the only proper subgroup) are of prime order;
they are cyclic, isomorphic to Z/pZ for some prime p. They can be generated by
any element # 0.

Theorem 3.1. Subgroups of cyclic groups are cyclic.

Proof. Let C = (c) be any cyclic group, and B a subgroup in C. If B = 0, then B is
evidently cyclic, so for the rest of the proof we may assume that B # 0. Therefore,
there exists kc € B with kc # 0. Then also —kc € B, so B must contain multiples of
¢ with positive coefficients. Among such coefficients there is a minimal one, say, 7.
We are going to show that B = (nc). As nc € B, the inclusion (nc) < B is obvious.
To prove the reverse inclusion, let sc be an arbitrary element of B where s € Z.
Euclidean division yields s = gn + r with g,r € Z such that 0 < r < n. Now
rc = (s — gn)c = sc — g(nc) € B, whence the choice of n implies r = 0. Hence
sc = q(nc) € B, proving that B < (nc). |

An infinite cyclic group C = (c) has infinitely many subgroups; these are: (mc)
form = 0,1,2,.... The subgroups of a finite cyclic group C = (c) of order n are
{(mc) for positive divisors m of n.

Cocyclic Groups A cyclic group can be characterized as a group C containing
an element c such that every homomorphism ¢ : A — C (for any group A) with
c € Im ¢ is surjective. Dualizing this concept, we arrive at the definition of cocyclic
groups: C is cocyclic if there is an element ¢ € C such that any homomorphism
¢: C — A with ¢ ¢ Ker ¢ is monic. In this situation, ¢ is called a cogenerator of
C. Since every subgroup is the kernel of a suitable homomorphism, a cogenerator
¢ must belong to all non-zero subgroups of C. Hence the intersection of all
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non-zero subgroups of a cocyclic group C is not 0; this is the unique smallest non-
zero subgroup in C, it is a simple group generated by c. Conversely, if a group has a
unique smallest subgroup # 0, then the group is cocyclic, and any non-zero element
in the smallest subgroup is a cogenerator.

Example 3.2. A cyclic group C = {c) of prime power order p¥ is cocyclic, where any element of
order p is a cogenerator. This follows from the simple fact that the only subgroups of such a C are
those in the chain

0< (P le) <--- < {pc) < {c).

Let p denote a prime number. The p"th complex roots of unity, with #» running
over all integers > 0, form an infinite multiplicative group; in accordance with our
convention, we will switch to the additive notation. This group, called a quasi-cyclic
group or a group of type p*> (notation: Z(p°°)), can be defined as follows: it is
generated by elements ¢y, ¢, ..., ¢y, ... such that

pCl=O,pC2=Cl,...,an_H:Cn,... (I/ZEN)

Here o(c,) = p", and Z(p®°) is the union of the ascending chain of cyclic subgroups
(cn); these are the only non-zero proper subgroups of Z(p®°).

Theorem 3.3. A group C # 0 is cocyclic if and only if it is isomorphic to Z(p*) for
some prime p and for some k € N U {c0}.

Proof. Let ¢ be a cogenerator of C. Then (c) is the smallest subgroup # 0 of C, and
therefore ¢ must be of prime order p. Since c lies in every non-zero subgroup of C,
C cannot contain elements of infinite order, neither elements whose order contains
a prime factor # p, i.e. C is a p-group. As a basis of induction, assume that for an
integer n, C contains at most one subgroup C, of order p”, and this is cyclic, say,
C, = (cn), containing all elements of orders < p". This is evidently true for n = 1.
If A, B are subgroups of order p”+1 in C, then there are elements a € A \ C, and
b € B\ C,, and their orders must be p"!. We may pick a, b such that pa = ¢, = pb.
Hence p(a — b) = 0, s0 a — b = tc, for some t € Z. We conclude that a = b + tpb
and b = a — tpa, i.e. a € (b) and b € (a). Consequently, A = (a) = (b) = B is
cyclic, and is the only subgroup of order p"*! in C. Moreover, it must contain all
the elements of order < p"*!. Thus C is the union of an ascending chain of cyclic
groups of orders p”, so it must be of the form C = Z(p*) for some k < co. O

The proof also shows that all quasi-cyclic groups belonging to the same prime p
are isomorphic. Since the proper subgroups of Z(p>) are cyclic of type Z(p*), all
of its quotient groups # 0 are isomorphic to Z(p°).

Elementary p-Groups An elementary group is defined as a group the orders
of whose elements are square-free integers. We will see later on that such a group
decomposes into the direct sum of elementary p-groups, for different primes p.
Therefore, here we will focus our attention on elementary p-groups.
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In an elementary p-group A all the elements # 0 have order p, i.e. pa = 0 for all
a € A. This means that the integers that are congruent mod p operate the same way
on the elements of A, so that A can be viewed as a vector space over the prime field
Z./pZ of characteristic p. Hence A admits a basis {a;};e; and every element a € A
can be expressed uniquely as

a=nray +---+na, (r€l/pZ, ijel).

The cardinality of a basis is uniquely determined by the group: it is its dimension
as a Z/pZ-vector space. It is also determined by the order of the group.

Rational Groups Under addition, the rational numbers form a torsion-free
group, called the full rational group, denoted by Q. Like Z(p°), Q can also be
obtained as the union of an infinite ascending chain of cyclic groups, this time the
cyclic groups are infinite:

Z=(1) <2 <o (n™ < ...
Thus Q has a generating system {¢; = 1,¢2,..., ¢y, ...} such that
2C2=Cl, 3C3:C2, ey (n+1)Cn+1 =Cpy +v.-

It is easily seen that Q is locally cyclic in the sense that its finitely generated
subgroups are cyclic. In fact, every finite set of its elements is contained in some
(n!™1); therefore, the subgroup they generate is a subgroup of a cyclic group, so
itself cyclic. Q contains numerous proper subgroups that are not finitely generated,
as the group Z, of all rational numbers whose denominators are prime to the
prime p, or the group Q% of rational numbers whose denominators are powers
of p. The subgroups of Q, called rational groups, are the building bricks of torsion-
free groups, and as such they are of fundamental importance in the theory of
torsion-free groups; see Chapters 12—14.

Every proper factor group Q/A of Q (i.e., A # 0) is a torsion group, since
every non-zero rational number has a non-zero multiple in A. In particular, Q/Z
is isomorphic to the group of all complex roots of unity, an isomorphism being
given by the map r + Z > ¢*"™ (where r € Q, i = ~/—1I, and e is the base of
natural logarithm). We have Q/(r) =~ Q/Z for every rational number r # 0, while
Q/Zp) = Z(p™). (Z(p*°) is the p-Sylow subgroup of Q/Z.)

p-adic Integers The p-adic integers appear naturally on the scene in a variety of
ways; they play a substantial role in several branches of abelian group theory.

Let p be a prime, and Z, the ring of rational numbers whose denominators are
prime to p (this is the localization of Z at p, it is a discrete valuation ring). The non-
zero ideals in Z, are principal ideals generated by p* with k = 0, 1,.... If the set
of these ideals p*Z,) is declared to be a fundamental system of neighborhoods of 0,
then Z,) becomes a (Hausdorff) topological ring, and we may form its completion
Jp, in this topology (this completion process is described in more detail for groups
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in Sect. 7 in Chapter 2). J, is again a ring, called the ring of p-adic integers, whose
non-zero ideals are p"JP with k = 0,1,2,..., and which is complete (i.e., every
Cauchy sequence is convergent) in the topology defined by its ideals.

For all practical reasons, the elements of J, may be represented as power series
inp. Note that {0, 1, ..., p—1} is a complete set of representatives of Z,) mod pZ,),
and more generally, {0, p*, 2p%, ..., (p—1)p*} is a complete set of representatives of
P*Z ) mod p*t1Z . Leto € J,, and ay, ..., @y, ... a sequence in Z,) converging
to o (dropping to a subsequence, we may accelerate convergence, and assume
a, — o € p"J, for all n € N). Owing to the definition of convergence, almost
all a, belong to the same coset mod pZ,, say, to the one represented by some

so € {0,1,...,p — 1}. Almost all differences a, — so belong to the same coset of
PZyy mod p*Z,), say, to the one represented by s1p. So proceeding, o defines a
sequence So, S1p, - .., SpP", . .., which is the same for every sequence converging

to 0. Accordingly, we assign to o the (formal) infinite series
C=So4+s1ip+op 4 +spt+... (s, €4{0,1,...,p—1}).

Its partial sums b, = so + s;p + -+ + spp” (n = 0,1,2,...) form a Cauchy
sequence in Zy,) that converges to o in J, because 0 — b, € ka,, for n > k. From the
uniqueness of limits it follows that in this way different elements of J,, are associated
with different series, and since every infinite series so+s1p+---+s,p" +. .. defines
an elemento € J,, we may identify the elements of J, with the corresponding series.

Let us see how to compute in J,. If p = ro + rip + --- + r,p" + ... with
rm € {0,1,...,p — 1} is another p-adic integer, then the sum p + 0 = 1o + t;p +
---+1t,p" + ... and the product pc = vo +vip+---+v,p" + ... are computed as
follows: tg = ro + so — Lop, tn = ¥y + sy + a1 — £up and vy = roso — mep, v, =
108y +r1Sp—1+- - -+ rpso+mu—; —myp forn = 1,2, ... where the integers £,,, m,, are
uniquely determined by the rule that all of #,,, v, are integers in the set {0, ...,p—1}.
As to subtraction and division, note that if, e.g., so # 0, then the negative of ¢ is
—=@{p—s)p+@P—s1—1p+ (p—s—1)p*>+...,and the inverse 0! of o
exists if and only if 5o # O in which case it may be computed by using the inverse
rule of multiplication.

We shall denote by J,, both the ring and the group of the p-adic integers. Q; will
denote the field of quotients of J, (and its additive group); its elements are of the
form p_ka witho € J,, k € Z.

% Notes. It will perhaps be instructive to mention a few important applications of abelian
groups, in particular, to illustrate the groups in this section by pointing out a few applications
outside group theory.

The most widespread applications of abelian groups outside algebra are in algebraic topology
and algebraic geometry. A main step was the reinterpretation of Betti numbers as invariants of
finite groups. In algebra, the additive groups of rings and the unit groups of commutative rings
play a leading role, see Chapter 18. Elementary p-groups are the additive groups of fields of prime
characteristics. The case p = 2 plays a prominent role in computer theory as well as in coding
theory. Class groups of integral domains are abelian groups. As a matter of fact, L. Claborn [Pac.
J. Math. 18, 219-222 (1966)] proved that every abelian group occurs in this way.
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Exercises

(1) Neither Z(p®°) nor Q is finitely generated, and any finite subset of a generating
set of these groups can be dropped without spoiling the generating property.

(2) (a) Subgroups and quotient groups of locally cyclic groups are locally cyclic.
(b) The (multiplicative) group of complex roots of unity is locally cyclic.

(3) The additive group R of the real numbers is isomorphic to the multiplicative
group of the positive reals. [Hint: x — e*.]

(4) If B, C are subgroups of a cyclic group A, then A/B = A/C implies B = C.

(5) In a cocyclic group all subgroups are fully invariant.

(6) An elementary group of order p” contains exactly

@ =DE =D =D/ =D =D = 1)

different subgroups of order p' (t < r).

(7) Let A be a finite group. Suppose A has a set of subgroups, say By,...,B,
(n > 1), such that every non-zero element of A belongs to exactly one of the
B;. Show that A is an elementary p-group.

(8) A subgroup M of A is called maximal if ¥ < A and M < B < A implies
B=M.

(a) A subgroup is maximal if and only if its index is a prime number.

(b) The cyclic groups Z(p*) (k = 1,2,...) as well as J, have exactly
one maximal subgroup. Z has infinitely many maximal subgroups, while
neither Z(p®°) nor Q has any maximal subgroup.

(9) (a) The intersection of all maximal subgroups of A of the same prime index p
is equal to pA.
(b) The Frattini subgroup of A is defined as the intersection of all maximal
subgroups of A. Show that it is the intersection of the subgroups pA with
p running over all primes.
(c) Find the Frattini subgroups of Z(n), Z(p*°), Z, Q, Z), and J,.
(10) Prove the isomorphisms Q/Z,) = Z(p™), Zy /P "Ly = Zp"),J,/p", =
Z(p").
(11) (a) Let A be an infinite group all of whose proper subgroups are finite. Then
A = Z(p*) for some prime p.
(b) An infinite group B satisfying B/C = B for every proper subgroup C is
isomorphic to Z(p°) for some prime p.
(12) (a) Find the sum, product, and quotient of the 3-adic integersm =2+ 1-3 +
2:3241-3342.3% 4 andp=2+2-3+2-32+2-33+2.34+....
(b) Verifythat -1 = (p—-1)+@—-Dp+---+@—-Dp"+ ... inJ, for
every prime p (thus p = —1 in (a)).
(13) Prove that a p-adic integer 0 = so + s1p + -+ + s,p" + ... (where s, €
{0,...,p —1})is aunitin J, if and only if 59 7# 0.
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4 Sets

Since the publications of Baer [6] and Kulikov [1], set theory has played a significant
role in abelian group theory. Its importance catapulted with the epoch making paper
Shelah [1], and since that it has been impossible to study abelian groups thoroughly
without a working knowledge in the theory of sets.

First a word about classes and sets. We are going to deal with both of them
(though only rarely with classes), but we avoid trying to explain what they are, as
they are most fundamental concepts. We will assume that the reader has acquired a
working knowledge about classes and sets. It is of vital importance to distinguish
between them, the rule of thumb being that a set does have cardinality, while a
proper class (i.e., a class that is not a set) is too big to be measured by any cardinal;
e.g., all the abelian groups form a proper class.

ZFC Throughout we will take for granted the ZFC axioms of Set Theory, i.e.
the axioms of Zermelo-Fraenkel along with the Axiom of Choice. They formalize
the basic set-theoretical properties that mathematicians use every day without
mentioning them explicitly. We do not list these axioms, as we do not plan to
refer to any of them explicitly, and their exact forms will never be required.
So, we just accept them with the usual understanding that, if nothing is said,
then we work in a model of ZFC. However, occasionally, we will adjoin another
set-theoretical hypothesis consistent with ZFC as an additional axiom, like the
Continuum Hypothesis (CH), the Generalized Continuum Hypothesis (GCH), or
Godel’s Axiom of Constructibility (L). We recall that it was a major accomplishment
by P.J. Cohen to show that both CH and GCH are independent of ZFC, while K.
Godel proved that GCH (and hence CH) holds if L is assumed.

We will frequently refer to Zorn’s lemma (known to be equivalent to the Axiom
of Choice in ZFC) as a main tool in existence proofs. In order to formulate it, recall
the definition of a partially ordered set or, in short, a poset. This is a set P equipped
with a binary relation < such that a < a (reflexivity);a < band b < aimplya = b
(antisymmetry); a < b and b < c imply a < c (transitivity) for all a,b,c € P.
A subset C of Pis a chainifa,b € Cimpliesa < borb < a. Anelementu € P is
an upper bound for C if ¢ < u for all ¢ € C, and P is inductive if every chain in P
has an upper bound in P. An element a € P is maximal in P if a < x € P implies
a = x. (In contrast, a maximum element b € P is one that satisfies the stronger
relation: x < bforallx € P.)

Zorn’s Lemma. A partially ordered set that is inductive contains maximal
elements.

Thus, in the applications of this lemma, we need three checks: it is a set, it is
partially ordered, and finally, it is inductive.

If S is a subset (or a subgroup) of the group A, then a subgroup B < A that is
maximal with respect to the property BN S = & (BN S = 0) is called an S-high
subgroup. Its existence is guaranteed by Zorn’s lemma.
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Ordinals and Cardinals We assume the reader is familiar with the theory of
cardinals and ordinals. The cardinality of a set X will be denoted by |X|. If « is
a cardinal, kT will stand for the first cardinal strictly larger than «, and 2“ for
the cardinality of the set of all subsets of a set of cardinality x. We adhere to the
standard notation, and will use the symbol X, (Hebrew letter aleph) for the oth
infinite cardinal. In particular, X, stands for countable (strangely enough, X_; may
indicate finiteness), and 2% for the continuum. CH claims that 2% = R, and GCH
asserts that 2 = ™ for each infinite cardinal x. Addition and multiplication of
cardinals are trivialities: kK + A = kA = max{«, A} if at least one of «, A is infinite.

If convenient, we will view an ordinal p as the set of ordinals less than w, and
a cardinal number as an initial ordinal, i.e. an ordinal which is not equinumerous
with any smaller ordinal. The oth initial ordinal is denoted by w,; in particular, wg
(or just w) is the smallest infinite ordinal. If for an ordinal o and a cardinal x, we
write 0 < k or 0 € k, we mean that the cardinality of ¢ is less than «; in particular,
n < worn € o is another way of saying that n is a non-negative integer. The
notation X, (0 < k) means that the sets X,, are indexed by ordinals o less than k.
Addition and multiplication of ordinals are associative, but not commutative; we
will not need them except when decomposing an ordinal 0 = wo + n into segments
of length w; here, « is an ordinal, n > 0 an integer, both uniquely determined by o.
Note that 2w =242+ -+ +2 4+ -+ = w # w2 = w + o, the latter being the
second smallest limit ordinal.

An ordinal o is a successor ordinal if it is of the form 0 = p + 1 for some
ordinal p (called the immediate predecessor of o). If ¢ > 0 has no immediate
predecessor, it is called a limit ordinal. Every infinite cardinal « represents a limit
ordinal. The cofinality of o, cf o, is the smallest cardinal A (= initial ordinal) such
that there is a subset C in o whose cardinality is A and whose supremum is o,
sup C = 0. A cardinal « is called regular if cf k = k. Otherwise it is singular. For
every cardinal «, cf « is regular. For instance, the cardinals 8, for integers n > 0 are
regular, while X, is a singular cardinal with cf R, = w.

A consequence of Godel’s theorem is that it is consistent with ZFC that no regular
limit cardinal exists. On the other hand, it is not possible to prove that the hypothesis
of the existence of regular limit cardinals is consistent with ZFC.

Cubs and Stationary Sets Let « be an uncountable regular cardinal. A subset
C of k (i.e., a set of ordinals < «) is said to be unbounded if sup C = «, and closed
if X C Candsup X < k imply sup X € C. A cub is a closed unbounded subset
of k. A cub C in k is order-isomorphic to k, and so it can be reindexed by using all
the ordinals < «, i.e. it can be written as C = {f(c)}y<, for an order-preserving
bijection f: k — C. It is easily seen by using a routine back-and-forth argument:

Lemma 4.1. The intersection of two cubs in k is again a cub in k.
Proof. The proof is the same as for Lemma 4.3 below, so we may skip it. a

A subset E of a regular cardinal « is said to be stationary if it intersects every
cub in k. Actually, the intersection of a stationary set with a cub is again a stationary
set—this follows at once from Lemma 4.1. It is easily seen that a stationary subset
in ¥ must have cardinality k.
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It might be helpful to think of sets containing a cub as analogs of sets of measure
1, and stationary sets as analogs of sets of measure > 0.

Example 4.2.

(a) Cubs are obvious examples for stationary subsets.

(b) For a regular cardinal «, the set E of those limit ordinals in A > « that are cofinal with « is
a stationary subset of A. To show that E intersects every cub C in A, let i be the supremum
of a subset of cardinality « in C. Since « is regular, cf = k, and since k™ is regular,
<kt < A Hence u € CNE, and E is stationary in A.

Filtrations By a filtration of a set X of cardinality « (almost always uncount-
able regular) we mean a family {X,}q<, of subsets of X such that the following
holds:

(i) a < B implies X, < Xp (i.e., it is a well-ordered ascending chain);
(ii) |Xy| <k forall ¢ < k;
(i) Xp = U, 8 X, whenever 8 is a limit ordinal < « (we will refer to this by
saying that the chain of the X, is continuous or smooth);
i) X =, Xa-

It is a routine exercise in elementary set theory to show that such filtrations
always exist. Though a set has numerous filtrations, it ought to be emphasized that,
for uncountable regular cardinals, it really does not matter which filtration is chosen,
since we have:

Lemma 4.3. If k is an uncountable regular cardinal, and if {Xy}o<ic and {Yy}o<i
are two filtrations of the same set X of cardinality k, then

E=1{a<k|Xy =Yy

isacubink.

Proof. It is evident that the set E is closed in k. To prove that it is also unbounded,
note that for every member X, of the first filtration there is a member Yg of the
second filtration such that « < B and X, C Yg. To this Yz we can find an X,
such that 8 < «; and Yg C X,,. There is a Y, with oy < B and X,,, C Yp,.
In this way, we obtain an increasing sequence of ordinals ¢ < f < a1 < f; <

- < a, < B, < ... (@l < k) along with an increasing sequence of subsets,
Xy CYg C Xy CYg C---CX,, CYg, C...,such that the ordinal sup, .0, =
SUPy<oBn = v satisfies X, = |J,_, Xo, = U,<, Y8, = Y. This argument (which
is called a back-and-forth argument) establishes the existence of an index y such
that < y <« and y € E. Thus E is unbounded in «. O

Filters The set of subsets of a set X is called the power set of X, denoted P (X).
As mentioned above, its cardinality is 2X|. A filter D on a set X is a set of subsets
of X such that

(i) 2¢D, XeD,
(i) ifYeDandY C Z C X, then Z € D; and
(i) U,V € DimpliesU NV € D.
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The principal filter generated by an element x € X consists of all subsets of X that
contain x. If « is an infinite cardinal, we say that D is k-complete if the intersection
of any < « members of D also belongs to D; if this is not the case, we say the
filter is k-incomplete. An ultrafilter on X is a filter I/ such that for every subset
Y of X, either Y or its complement X \ Y belongs to /. An ultrafilter / on X may
be interpreted as a {0, 1}-valued, finitely additive measure u on the power set P(X)
where «(Y) = 1 (Y € X) means Y € Y. Ultrafilters are the maximal filters on X,
and every filter is contained in an ultrafilter.

Inaccessible and Measurable Cardinals A cardinal A is said to be (strongly)
inaccessible if it is a regular uncountable cardinal such that k < A implies 2 < A.
(It is thus a limit cardinal as well; in the presence of GCH, it is nothing else than a
regular limit cardinal.)

A weakly compact cardinal « is inaccessible, and has the property that, for every
k-complete Boolean lattice B of subsets of a set of cardinality «, every «-complete
filter on B extends to a x-complete ultrafilter on B. (It seems there is no simple
way to define weak compactness.) A characteristic property of weak compactness
is displayed in Lemma 4.6.

A cardinal A is called measurable if there is a non-principal R;-complete
ultrafilter on A. Equivalently, a set X of cardinality A admits a countably additive
measure . which assumes only the values 0 and 1, and which satisfies u(X) = 1 and
1 (x) = 0 for all singletons {x} C X. It is straightforward to see that if a cardinal is
measurable, then so are all larger cardinals, and if there exists a measurable cardinal
at all, then there is a smallest one. Assuming V = L (see next), no measurable
cardinal exists.

Constructible Universe The constructible universe is a model of set theory
obtained from ZFC by adjoining Godel’s Axiom of Constructibility. This axiom
does not allow us to form all subsets of an already existing set, but only those which
can be defined in terms of a selection principle. This model is denoted by L, and
if we assume the Axiom of Constructibility, then we can indicate this briefly by
writing V = L (V being the standard notation for the model we work in). Godel
proved that V =L is consistent with ZFC.

An important consequence of Godel’s axiom is the Diamond Principle; see R.
Jensen [Ann. Math. Logic 4, 229-308 (1972)].

Diamond Principle <. Let k be an uncountable regular cardinal, and E a
stationary subset of k. Given a filtration {Xy }o <« of a set X of cardinality k, there is
a family {Sy}ocE of sets such that S, C Xy, and for any subset Y of X, the set

Ey={a €E|YNX, =5S,}

is a stationary subset of k.



24 1 Fundamentals

This is an amazing prediction principle: it says that no matter how we choose a
subset Y, Y will meet stationarily many times the preassigned subsets X,, exactly in
the predicted subsets S, .

From the stated form of this principle we can derive another version of <>; the
following proof is standard. (x between sets denotes cartesian product.)

Lemma 4.4. () Let E be a stationary subset of an uncountable regular cardinal
K, and {Xy o< a filtration of a set X of cardinality k. Let Y be any countable set.
There is a family {gq }qcr Of functions

8o i Xog & Y XXy
such that, for any function g : X — Y x X, the set
EgZ{OZEE|g TXa=ga}

is stationary in k.

Proof. Define X' = X x Y x X and X], = Xy X ¥ x X, (@ < k), and apply the
Diamond Principle to this filtration of X’ to conclude the existence of subsets S, of
Xy X Y x X, (o € E) with the property stated above. If for an «, S, is the graph of
a function X, — Y x X,, then define g, to be this function. Otherwise, define g, to
be any function X, — Y x X, whatsoever.

Now pick any function g: X — Y x X, and let S denote its graph viewed as a
subset of X x Y x X. From the Diamond Principle we obtain that the set E, of a’s
with g | X, = g, is stationary in «, as desired. O

Another result of Jensen’s which will be needed is as follows.

Lemma 4.5 (V = L). Let k be a regular cardinal which is not weakly compact.
There exists a stationary subset E of k which consists of limit ordinals cofinal with
w such that, for every limit ordinal A < k, the set A N E is not stationary in A. O

In contrast, for weakly compact cardinals the following lemma holds.

Lemma 4.6. Let k be a weakly compact cardinal, and E a stationary subset of k.
There is a regular cardinal A < k such that the set . N E is stationary in A. O

We now consider another set-theoretic hypothesis which is not a consequence of,
but is consistent with, ZFC (but inconsistent with V = L). In order to formulate it,
we require a couple of definitions.

Let P be a partially ordered set under a binary relation <. We say the elements
p,q € P have an upper bound if some r € P satisfies bothp < rand g < r.
A subset D of P is directed (upwards) if every pair of elements of D has an upper
bound in D. A subset C of P is cofinal in P if for every p € P thereis a ¢ € C such
thatp <c.

Martin’s Axiom (MA). Let P be a partially ordered set such that every subset
of P no two elements of which have an upper bound in P is countable (this is called
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the countable antichain condition). For every family {C;}ic; of cofinal subsets of
P (where |I| < 2%) there is a directed subset D of P that intersects every Ci;.

R. Solovay and S. Tenenbaum [Ann. Math. 94, 201-245 (1971)] proved that MA
is consistent with ZFC and the negation of the Continuum Hypothesis (— CH), i.e.
ZFC+MA + (R < 2%0) is consistent (provided so is ZFC).

% Notes. The above incomplete notes on set theory are intended to recap needed facts only,
not to serve as a systematic introduction. For more details, see, e.g., Eklof [5]. Let us point out for
information that in some cases Martin’s Axiom is not a strong enough hypothesis to prove a result;
a stronger version is Shelah’s Proper Forcing Axiom (not to be used in this volume). A powerful
prediction principle, called Black Box, was developed by Shelah; for an algebraic version, see
Gobel-Wallutis [1].

For convenience, we will often assume V = L even if the Diamond Principle or something
weaker would suffice.

Exercises

(1) Let A be a group of cardinality k > 8. The set of finitely generated subgroups
of A has cardinality «.

(2) Let B, X be subgroups of A. There exists a subgroup C of A such that (i) B < C;
() CNX=BNX;@{i)ifC<C <AandC'NX=BNX,then C = C.

(3) Let H be a fully invariant subgroup of A, and S a subset of A such that
HNS = @. There exists a fully invariant subgroup G of A that is maximal
with respect to the properties: (i) H < G; (i) GN S = &.

(4) Assume <, for an uncountable regular «, and let E be a stationary subset of k.
For sets X, Y of cardinality « with filtrations {X, }o <, and {Y¥, },<, there exists
aset {fy : Xo = Yy }a<x of functions such that for any function f : X — Y, the
set{d € E|f | X = fy} is stationary in .

5 Families of Subgroups

In several occasions we will need a collection of subgroups to characterize a group
property or to prove a theorem. The simplest example for such a collection is an
ascending chain of subgroups indexed by the natural numbers, like

0=Ap<AI<---<A,<...

whose union is the group A, i.e. A = U,<,A,.

Transfinite Chains A more general version is a transfinite sequence or chain

0=A) <A < ---<A; <... (0 <1)
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of subgroups, indexed by the ordinals less than an ordinal 7, which is called the
length of the chain. Here we usually assume that the chain is continuous or smooth
to mean that A, = U,-;A, holds for limit ordinals o < 7 (so that there is no hole
in the chain). In this case we talk about a smooth or a continuous well-ordered
ascending chain.

In the preceding section, we have introduced set filtrations. More often, we shall
deal with group filtrations. The definition is the same: for an infinite cardinal «, by
a «k-filtration of a group A is meant a smooth chain {A, }, <, of subgroups with
union A, subject to the condition that |A,| < « for all ¢ < k. The k-filtrations are
especially useful for uncountable regular cardinals «. In this case, Lemma 4.3 is
applicable, i.e. the intersection of two k-filtrations is again one.

Sometimes we shall need a pure «-filtration, where the subgroups are assumed
to be pure subgroups.

G- and H-Families We will encounter collections of subgroups that are no
longer linearly ordered. Their significance is greatly enhanced by the fact that they
are not only useful in some proofs, but also instrumental in characterizing groups
with certain properties. Following P. Hill, we define various families of subgroups.

Letk = R, (v > —1). (Recall R_; is to be interpreted as ‘finite.”) By an H(k)-
family of subgroups of A is meant a collection H of subgroups of A satisfying the
following conditions:

H;. 0,A e H;

H,. # is closed under unions, i.e. A; € #H (i € I) implies ) ., A; € H for any index
set /;

Hs. if C € H, and X is any subset of A of cardinality < k, then there is a subgroup
B € H that contains both C and X, and is such that |B/C| < k.

It is easily checked that in the presence of Hj, it suffices to assume Hj only for
C=0.

A G(k)-family G is defined similarly with H, replaced by the following weaker
condition:

G,. G is closed under unions of chains.

Obviously, every H(«)-family is a G(x)-family, but the converse fails in general,
see Example 5.2 below. Sometimes we will need the rank versions of these families
(for the definition of rank, see Sect.4 in Chapter 3). H*(k)- and G*(k)-families
are defined similarly for torsion-free groups A: in these cases the subgroups in the
families are required to be pure subgroups (Sect. 1 in Chapter 5) and in condition
Hj;, ‘rank’ is to be used in place of ‘cardinality.’

Example 5.1. Let X be a generating system of A. If we let ¥ run over all subsets of X, then the
subgroups (Y) generated by the Y form an H(8,)-family of subgroups.

Example 5.2. This example relies on the concept of pure subgroup. We claim that every torsion-
free group A has a G(R,)-family of pure subgroups. In fact, select a maximal independent set X in
A, and for a subset Y of X, let Ay denote the smallest pure subgroup of A that contains Y. Then the
set of all Ay is a G(Ny)-family. However, this is in general not an H(R)-family, since the sum of
pure subgroups need not be pure.
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We shall see that the existence of families of subgroups of various kinds has a
strong influence on the group structure. Actually, it works in both directions: a global
property of groups may turn out to be equivalent to having a family of a certain kind
of subgroups.

A notable special case is when the group A (of cardinality «) happens to be a
direct sum of subgroups. If A = @,/ A; (JAi] < k) is a direct sum decomposition
(see Sect. 1 in Chapter 2), then the standard way of defining an H(k)-family of
summands in A is to consider the set of all partial summands in this decomposition:
Bj = @,y A; with J ranging over all subsets of /.

In the next proof, we use again a back-and-forth argument.

Lemma 5.3. For an uncountable regular k, the intersection of at most k families of
H(x)- or G(k)-families of subgroups is again a family of the same kind.

Proof. We give a detailed proof for the intersection of two H(k)-families, the
general case follows the same pattern. Let ; and #, denote two H («)-families of
subgroups of A, and let H be their intersection. Conditions H; and H, are evidently
satisfied for H, so we proceed to the verification of H3. Given any B € H and a set
X with |X| < «, we can find a B; € H; such that BU X < Bj and |B;/B| < «,
and then a C; € H; such that By < C; and |C;/B| < k. Continuing, there is a
B, € H; satisfying C; < B; and |B,/B| < «, and then again a C, € H; with
B, < C; and |C,/B| < «k, etc. We obtain an increasing sequence of subgroups
B<B <C <:--+-<B,<C, <... where B, € Hy and C, € H,. If we
set C = U,~, Bn = U, -, Cn. then it is clear that C € H, and we also have the
required |C/B| < k. |

Summands of Families The following lemma deals with families in direct
summands.

Lemma 5.4. Assume A = B & C has an H(k)-family A of subgroups (k > Ry).
Then the B-components B’ of those A’ € A which decompose as A’ = B' & C’ with
C' < C form an H(k)-family B of subgroups in B.

Proof. We prove that the set BB of the B-components of the groups A’ satisfies H.
Let By € B and X a subset of B of cardinality < «. There are Ay € A such that
Ay = By @ Cp with Cy < C,and A; € Asuchthat A UX C A; and |A;/Ay| < k.
There are subgroups B; < B,C; < Csuchthat By < B;,Cy < C1,A; < B; & C;
with |By/By| < «,|C1/Co| < k. We can now find A, € A with By & C; < A, and
|A2/A1| < k. Proceeding in a similar fashion, we obtain sequences A, € A, B, < B,
and C, < C (n < w) with the following properties:

A, =B, ®C, <Apy, |An+l/An| =< k.

Then A’ = U,A, € A will satisfy A’ = (A’ N B) ® (A’ N C), whence A’ N B € B is
immediate. To complete the proof, we note that ByUX € A’NB and |(A'NB)/By| <
|A"/Ao| < k. O
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If k is an infinite cardinal, and if we have a G(k)-family G of subgroups, then it is
easy to extract from it a k-filtration. The procedure is obvious: we start with Ag = 0,
and if we have A, € G, then for A, 4+ we pick any B € G with |B/A,| < k, and take
unions at limit ordinals. We have to reach the whole group for obvious cardinality
reason.

H-Family from a Chain The following ingenious lemma also holds when the
group G is torsion-free and ‘cardinality’ is replaced by ‘rank.’

Theorem 5.5 (Hill [16]). Suppose the group G is the union of a smooth chain
0=Gy<G1<--<Gy<... (x < 1) (1.1)
of subgroups such that for eacha + 1 < t,
Got1 = Gy + Aq

holds for some subgroup A, of cardinality < k = R, where v > —1. Then G
admits an H(x)-family C of subgroups such that every C € C has a smooth chain
of subgroups Cg with union C whose factors are isomorphic to factors in the chain
(1.1), and satisfy Cg+1 = Cp + Aq for some a0 < T.

If the groups G, are pure in G, then the members of C can be chosen to be pure.

Proof. To start with, observe that hypotheses imply Gg = ), _ pAq forall g <t
Thus each g € G is contained in the sum of a finite number of A,. A subset S of ¢
will be called blocked if every § € S satisfies

GgNAg < Y A,

a€Sa<f

For a blocked subset S of 7, we will set G(S) = ZaeS Ay, and claim that
C = {G(S) | S ablocked subset in 7}

is a desired H («)-family in G. The proof is completed in several steps.

1° Unions of blocked subsets of T are blocked. Let S; (i € I) be blocked subsets
of 7, and B € (J,; Si. Then B € S; for some j € I, and Gg N Ap is evidently
contained in the sum of the A, for o < B with all & € S, and a fortiori with all
@ € Ues Sic

2° A subset of T of cardinality < k is contained in a blocked subset of T of cardina-
lity < k. By 1°, it suffices to verify this for a single 8 < t. We induct on S.
If B = 0, then the claim is true, as {0} is evidently a blocked subset of 7. The
subgroup Gg NAg is of cardinality < «, so it contains a generating set {g; | i € I}
with |I| < k. The a;’s are in Gg, so each is contained in a finite sum of the A,’s
with @ < B. By induction, there is a blocked subset S’ C 7 such that |§'| < «,
and all the g; are contained in G(S’). There is no loss of generality in assuming
that S’ C B, since otherwise S’ can be replaced by the blocked subset S’ N B. To
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show that S = S’ U{B} is a blocked subset of 7, it suffices to check the definition
for B. G(S') contains all the a;, hence it contains Gg N Ag as well.

3° C is an H(x)-family of subgroups in G. Obviously, both @ and t are blocked
subsets of 7. Since Y_,¢; G(Si) = G (U, Si) holds for blocked subsets S; C T,
C is closed under arbitrary unions. If X is a subset of G of cardinality < «, then
there is a blocked subset S C 7 such that |S| < k, X C G(S), where G(S) has
cardinality < k.

4° G(S) has chains as desired. Let S be a blocked subset of 7, and form the chain
Cp = X yesq<pAa forall B € S. This is a smooth chain of subgroups of C =

G(S) with union C. As GgNAg < Yyesqep Au < Gp implies (ZQES,M Aa) N
Ag = Gg N Ag, we clearly have

Cp+1/Cp = Z Aqy / Z Ay | = Ap/(Gg NAg) = Gpy1/Gp.

a€S,a<p a€S,a<f

The second part of the claim is clear.

5° The G(S) are pure in G if the Gy are pure in G. Let g € G(S), thus g = a,, +
s dg, withaaj € Ay where oy < --+ < o in S. If nx = g for some n € Z
and x € G, then by purity x € Gy, 41 can be assumed, so let x = y + by,
withy € Gy, by, € Ay,. Hence ny = nx — nby, = ao, + - + ao, — nby,, 0O
Aoy, —nbo, € Gy NAg, <) pesqen Aa- Weobtainny € 3 cc . Ay, Whence
an induction on the largest index oy implies that we may pick y € G(S); then
x € G(S) as well. |

Almost Disjoint Subsets The following two lemmas will be needed in later
proofs. They deal with the existence of almost disjoint sets. Two infinite sets are
called almost disjoint if their intersection is finite. In the following lemmas, the
symbol € stands for the initial ordinal of the power 2.

Lemma 5.6. There is a set {S; | 0 € Q} of countable sets S, that are pairwise
almost disjoint.

Proof. For an irrational real number r let S, be a sequence of rational numbers with
limit . It is clear that S, N S, is finite whenever r # s. O

The following generalization of Lemma 5.6 will be needed in Sect.6 in
Chapter 13. We state it without proof.

Lemma 5.7 (W. Sierpinski). Let k be an infinite cardinal. There exists a set C of
subsets of Kk such that

(1) |X| = k foreach X € C;
() fX #YinC, then | X NY| < k; and
(iii) |C] > «. |
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For the proof of Proposition 8.7 in Chapter 14, almost disjoint sets seems
insufficient, a collection of disjoint sets is needed. We establish the existence of two
collections X and ¥’ (both of the power of the continuum) of subsets of a countable
set S, such that for each fixed 0 < Q, {S,; N S; | p < 2} is a collection of almost
disjoint sets, where Sy € X, S; ey

Lemma 5.8 (Dugas-Thomé [1]). Given a countably infinite set S, there exist two
families,

Y ={S|0o<Q} ad T =1{S |0 <Ql

of almost disjoint subsets of S such that

0 UU<Q So = Sand UU<Q Se =S,
(i) for all o, p < 2, the intersection Sy N S;) is infinite.

Proof. For n < w, let F, denote the set of all functions f from the set n =
{0.1....,n—1} to the set {0, 1}. Evidently, the set S = | J,,_,, (1 X F,,) is countable.
For amap ¢ : @ — {0, 1}, we define

Sy ={(n,¢ | n) | n <o}

Then the set ¥ = {Sy | ¢ : @ — {0, 1}} is an almost disjoint family of countable
subsets of S; its size is 280,

Next we select an almost disjoint family {7, | 0 < 2} of subsets of w (see
Lemma 5.6), and define the countable sets

Sy = {(.f) I n €Ty f € Fy}.
Then for o # p € Q, the intersection
Se NS, ={nf)|neTs.feFN{@nf)|nelyfeF,}=
={nf)IneTs NT,.f € Fu}
has to be finite, because T, NT), is a finite set. Hence X' = {S/ | o < Q} is an almost
disjoint family of countable subsets of S. On the other hand, for any ¢ : © — {0, 1}
and any o < €2, the intersection
SN, ={@.¢ M) [ n<o}nN{@f)|nel,.feF}=
={(.¢ tn)|neTls}

18 infinite. O
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% Notes. A word of warning is in order. We follow the customary definitions for the H(k)-
and G(k)-families which do not confirm with the usual practice involving a cardinal « (that would
be < k rather than our < k).

Hill prefers to use the term Axiom-3 family for a G(R)-family; the name is chosen to remind
that having such a family is a condition that is weaker than, but similar to, the first and the second
axioms of countability hypotheses widely used in topology.

Exercises

(1) Give a detailed proof of Lemma 5.3 for the intersection of x families.

(2) A group of cardinality k™ has a «-filtration.

(3) If {A;}o <« is a k-filtration of A, and C is a cub in « (an infinite cardinal), then
{As}sec is also a k-filtration of A.

(4) Let B be a subgroup in A. If B has a G(k)-family B of subgroups, then there is
a G(k)-family Ain A suchthat B={BNX | X € A}.

(5) Suppose o : A — B is an epimorphism.

(a) aAis an H(x)-family in B if A is an H(x)-family of subgroups in A.
(b) If B has a G(k)- (or H(x)-)family B of subgroups, then there is a G(k)-
(H(x)-)family A in A such that v A = B.

(6) Prove Lemma 5.6 as follows: each S, (7 is a positive real number) is a set of
lattice points in the first quarter of the plane. For r, we let S, consist of the
lattice points whose distances from the line y = rx are less than 1.

6 Categories of Abelian Groups

In the theory of abelian groups it is often convenient and more suggestive to express
situations in the categorical language. In fact, categories and functors appear to be
the right unifying concepts, and the categorical point of view frequently provides
a better understanding. We survey some basic facts on categories and exhibit some
important concepts connected to them, confining ourselves to those that will be
needed in this volume. We are not borrowing sophisticated results from category
theory, we mostly use it as an appropriate language.

Categories A category C is a class of objects A,B,C,... and morphisms
(sometimes called arrows) «, 8, , . .. satisfying the following axioms:

C1. With each ordered pair of objects, A,B € C, there is associated a set
Morph, (A, B) (or simply Morph(A, B)) of morphisms in C such that every
morphism in C belongs to exactly one Morph(A, B). In case « € Morph(A, B),
we write o : A — B and call « a map from A to B. A is the domain and B the
range or codomain of .

C2. Composition. With @ € Morph(A, B) and 8 € Morph(B’, C) there is associated
a unique element in Morph(A, C), called their product S« if and only if
B=PH.
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C3. Identity. For every object A, there is a morphism 14 € Morph(A,A), the
identity morphism of A, such that 1y = « and g 14 = B provided the
products are defined.

C4. Associativity. Whenever the products are defined, the composition is associa-

tive: y(Ba) = (yf)a.

One verifies at once that the identity 1, is uniquely determined by the object A.
Hence there is a bijection between the objects A and the identities 14. In view of
this, categories can be (and often are) defined in terms of morphisms only.

Two objects, A, C € C, are said to be isomorphic if there exist morphisms, « :
A — Cand y: C — A, such that yao = 14 and oy = 1. Manifestly, isomorphism
is an equivalence relation in C.

In the category Ab of abelian groups, the objects are the abelian groups, and the
morphisms are the homomorphisms between them. In particular, Morph(A, B) =
Hom(A, B) (see Chapter 7), and the identities are the identity automorphisms of the
groups.

The category D is a subcategory of C if the objects of D are objects in C, and
the morphisms of D are morphisms in C. D is a full subcategory of C if it is a
subcategory with Morphy (A, B) = Morph,(A, B) for all A, B € D. The cartesian
product C x D of two categories consists of the objects (C, D) and morphisms (y, §)
with C,y € C, and D, § € D, where the morphisms act coordinate-wise.

Functors If C and D are categories, then a covariant functor ¥ : C — D
assigns to each object A € C an object F'(A) € D, and to each morphismo: A — B
a morphism F(«): F(A) — F(B) such that

(i) if a product Bu is defined in C, then F(B)F(«) is defined in D and F(B«a) =
F(B)F (),

(ii) F carries the identity 14 to the identity 1r(4).

Thus a covariant functor preserves domains, codomains, products, and identities.
The identity functor 1¢, defined by 1¢(A) = A, 1¢(o) = o forall A, € C,is a
covariant functor of C into itself. A contravariant functor G : C — D is defined
similarly by reversing arrows: it assigns an object G(A) € D to every object A € C,
and a morphism G(«) : G(B) — G(A) to every morphism o : A — B. It is subject
to the conditions: G(14) = 1gw), G(Ba) = G(a)G(B) for o, B € C whenever Bo
is defined. The unqualified term ‘functor’ will mean ‘covariant functor.’

Example 6.1. Lett: Ab — T be the functor on the category of abelian groups to the subcategory

T of torsion abelian groups such that for A € Ab, #(A) is the torsion subgroup of A, and for
a:A— Bin Ab, t(x) = a | t(A): t(A) — t(B).

Example 6.2. For a positive integer n, let the functor M, : Ab — Ab assign to A € Ab the
subgroup nA, and to «: A — B the induced homomorphism « } nA: nA — nB.
Example 6.3.

(a) Let B, be the full subcategory of Ab consisting of the n-bounded groups for a fixed n € N.
F: Ab — B, is a functor assigning to A € Ab the subgroup A[n] € B,, and to @ : A — B the
restriction & } Aln].
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(b) We get another functor G: Ab — B, by letting G(A) = A/nA and G(«) : a+nA — aa+nB
fore :A — B.

Example 6.4. In this example, F is the full subcategory of Ab that consists of the torsion-free
groups. The functor F: Ab — F assigns to a group A the factor group A/#(A), andto: A — B
the induced map F(«): a + t(A) = aa + t(B).

Suppose C, D, £ are categories, and F: C — D, G: D — & are functors. The
composite GF is a functor from C to £ where GF(A) = G(F(A)) and GF(x) =
G(F(x)) forall A,a € C. Clearly, GF is covariant if both F' and G are covariant or
both are contravariant, and is contravariant if one of F, G is covariant and the other
is contravariant.

‘We shall have occasions to consider functors in several variables, covariant in
some of their variables, and contravariant in others. For instance, if C,D, £ are
categories, then a bifunctor F: C x D — &, covariant in C and contravariant in
D, assigns to each pair (C,D) € C x D of objects an object F(C,D) € &, and
to each paira : A — C,B8: B — D of morphisms ¢ € C,8 € D a morphism
F(a,B): F(A,D) — F(C, B) in £ such that

F(ya,88) = F(y, B)F(a,8) and F(l¢,1p) = 1rcp) (1.2)

whenever ya, 88 are defined. The quintessence of these relations is made clear in
the commutativity of the diagram

F(a,1p)
—

F(A, D) F(C, D)

F(1A7ﬁ)l lF(lcﬂ)

F(A,B) 212, po )

In the theory of abelian groups, one encounters almost exclusively additive
functors, i.e. functors F satisfying F(« + B) = F(«) + F(B) for all morphisms
a, B whenever « + 8 is defined. For an additive functor F, one always has F(0) = 0
where 0 stands for the zero group or for the zero homomorphism. Also F(na) =
nF(a) holds for every n € Z.

Exact Sequences One of the fundamental questions concerning functors in
abelian groups is to find out how they behave for subgroups and quotient groups.
This is most efficiently studied in terms of exact sequences. If F is a covariant func-

tor from a subcategory C of Ab into the category D, and if 0 — ALBi)C —-0

is an exact sequence in C, then F is called left or right exact according as

F(o) F(B) F(a) F(B)
0 > F(A)—>F(B)—>F(C)  or  F(A)—>F(B)—>F(C) - 0
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is exact in D; F is exact if it is both left and right exact. For a contravariant F, the
displayed sequences are replaced by

F(B) F(a) F(B) F(a)
0 — F(CO)—SF(B)—SF(A) and  F(C)—SF(B)—sF(A) — 0,

respectively. Subfunctors of the identity (assigning a subgroup to every group) are
always left exact, while quotient functors (assigning some factor group) are right
exact.

Assume F and G are covariant functors C — D. By a natural transformation
® : F — G is meant a function assigning to each object A € C a morphism
®,: F(A) - G(A) in D in such a way that for all morphisms & : A — B in C,
the following diagram in D commutes:

FA) 2 By

q)AJ, (I>B

(B)

=

2
Q
E

Q

In this case, we also say that ®, is a natural morphism from F(A) to G(A). If &, is
a bijection (isomorphism) for every A € C, then & is called a natural equivalence
(natural isomorphism). (It is important to understand that natural isomorphism is
far more than just an isomorphism between two groups: it is an individual case of a
functorial isomorphism.)

In general, two categories, C and D, are called equivalent if there are functors
F:C — Dand G: D — C such that FG is naturally equivalent to 1p, and GF is
naturally equivalent to 1¢.

Example 6.5. The skeleton of a category C is the category S such that (i) S is a full subcategory
of C; (ii) every object A € C is isomorphic to a unique object S € S. The embedding functor
F: S+ §from S into C, and the assignment functor G: A > S define an equivalence between C
and S.

In particular, if we select an abelian group from each isomorphy class in .Ab, then the full
subcategory whose objects are the selected groups is a skeleton of Ab.

Example 6.6. For a fixed group G, the assignments Fg: G @ A — A and (y, ) > o for all A, &
in Ab and y € End G define a functor. Furthermore, each homomorphism ¢ : G — H between
groups gives rise to a natural transformation ®: Fg — Fpy.

Anticipating the functor Hom that will be discussed in Chapter 7, we can explain
what we mean by adjoint functors.

Let A and C be two categories, and F: A — C, G: C — A functors between
them. The functors are called adjoint (more precisely, F is the left adjoint of G, and
G is the right adjoint to F) if we have

Hom (A, G(C)) =~ Home(F(A),C) VA€ A, CeC, (1.3)

where the isomorphism is natural both in A and in C.
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Example 6.7. Consider the categories .Ab and B, of abelian groups and n-bounded abelian groups,
respectively. Define F : Ab +— B, via A = A/nA (canonical map) and G : B, — Ab via
G: C[n] = C (injection). Then F is the left adjoint of G as is demonstrated by Hom(A, C[n]) =
Hom(A/rA, C).

% Notes. Category theory is the product of the twentieth century, initiated by S. Eilenberg and
S. Mac Lane. The revolutionary new idea was to shift the emphasis from the objects (like groups,
rings, etc.) to the maps between them, and instead of focusing on one particular object, the entire
class of similar objects became the subject of study. This point of view has proved very fruitful, it
has penetrated into many branches of mathematics. The category of abelian groups has been under
strict scrutiny of category theorists.

Functorial subgroups were studied by B. Charles. Let F': Ab — Ab be a functor such that (i)
F(A) < A, and (ii) if ¢ : A — B is a morphism in Ab, then F(¢) = ¢ | F(A), for all groups A.
Then F(A) is a functorial subgroup of A. Nunke calls such a functor subfunctor of the identity;
he develops a more extensive theory. The torsion subgroup and its p-components are prototypes of
functorial subgroups.

Exercises

(1) Both the torsion groups and the torsion-free groups form a subcategory in .Ab.
The same holds for p-groups.

(2) A category with a single object is essentially a monoid (i.e., a semigroup with
identity) of morphisms.

(3) Give a detailed proof of our claim that the cartesian product of two categories
is again a category.

(4) Prove that the following is a category: the objects are commutative squares of

the form
A1 A2
| |
A3 Ay

where A; are groups. The morphisms are quadruples (o1, &, @3, a4) of group
maps (o; : A; — B;) making all the arising squares between the objects
commutative.

(5) The composite of two natural transformations is again one. Does this composi-
tion obey the associative law?

(6) Prove that, for an integer n > 0, F: A — A/nA with F(«): a + nA — aa + nB
for o: A — B is a functor from Ab to B3,.

(7) We get a functor U: Ab — Ab by assigning the Ulm subgroup A! to a group
A, and the restrictions to the Ulm subgroups of the homomorphisms.

(8) The equivalence of categories is a reflexive, symmetric, and transitive relation.
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7 Linear Topologies

In abelian groups, topology can be introduced in various ways which are natural
in one sense or another. The importance of certain topologies will be evident from
subsequent developments, especially when completeness will be discussed.

Linear Topologies The most important topologies on groups to be considered
here are the linear topologies; this means that there is a base (fundamental system)
of neighborhoods about 0 which consists of subgroups such that all the cosets of
these subgroups form a base of open sets for the topology. A more formal definition
for linear topologies can be given as follows.

Let u be a filter in the lattice L(A) of all subgroups of A. u defines a topology on
A, if we declare the set of subgroups U € u to be a base of open neighborhoods
about 0, and for every a € A, the cosets a + U (U € u) as a base of open
neighborhoods of a. Since the intersection of two cosets, a + U and b + V, is either
vacuous or a coset mod U NV (this subgroup also belongs to u whenever U, V € u),
all open sets will be unions of cosets a + U with a € A, U € u. The continuity
of the group operations is obvious from the simple observation thatx —y € a + U
implies (x + U) — (y + U) € a + U. Thus A is always a topological group under
the arising topology, which may be called the u-topology of A; (A, u) will denote A
as a topological group equipped with the u-topology.

Note the following simple facts on u-topologies.

(A) The u-topology on a group A is discrete exactly if {0} € u, indiscrete if u =
{A}, and Hausdorff if and only if (1) ,¢, U = 0.

(B) Open subgroups are closed. Indeed, the complement of an open subgroup B is
open as the union of the open cosets a + B (a ¢ B).

(C) If the u-topology of A is Hausdorff, then it makes A into a 0-dimensional
topological group. In fact, the subgroups U € u are by (B) both open and closed.

(D) The closure of a subgroup B of A in the u-topology of A is given by the formula
B™ = (yeu(B + V).

Some topologies satisfy the first axiom of countability, i.e. there is a countable
base of neighborhoods about 0. If {U,, | n < w} is such a system of neighborhoods,
then {Up N ---N U, | n < w} is also one; thus, in this case we may assume without
loss of generality that the sequence of the U, is decreasing. These topologies—
if Hausdorff—are exactly the metrizable linear topologies; in fact, a metric can
be introduced by setting ||a|| = ¢™" (e denotes the base of the natural logarithm)
whenever a € A belongs to Uy, \ U,,+1.

The u-topology is considered finer than the v-topology, and the v-topology
coarser than the u-topology, if v . C u. Thus the discrete topology is the finest,
and the indiscrete topology is the coarsest of all topologies on any group.

A compact group is a topological group whose topology is compact.

The following special topologies are significant, especially the Z-adic topology
that will be used constantly. In Examples 7.1-7.4, every group homomorphism is
continuous.
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Example 7.1. The Z-adic topology on a group A is defined by letting {nA | n € N} be a base of
neighborhoods about 0. This is a u-topology, where u consists of all U < A such that A/U is a
bounded group. This topology is Hausdorff if and only if the first Ulm subgroup A! of A vanishes.
A subgroup G of A is closed exactly if the first Ulm subgroup of A/G is 0.

Example 7.2. Tn the p-adic topology (for a prime p) the subgroups p*A (k < w) are declared
to form a base of neighborhoods about 0. This is likewise a u-topology, with u consisting of all
U < A such that A/U is a bounded p-group.

Example 7.3. In order to define the Priifer topology, we choose the filter u to consist of all U < A
such that A/U satisfies the minimum condition on subgroups (see Sect.5 in Chapter 4). This is
always a Hausdorft topology in which all subgroups are closed.

Example 7.4. 1In the finite index topology, the subgroups of finite indices constitute a base of
neighborhoods of 0; equivalently, u consists of the subgroups of finite indices in A. This is coarser
than both the Z-adic and the Priifer topologies.

Example 7.5. The following groups are usually viewed as being equipped with the interval
topology (which is not a linear topology): the multiplicative group T of complex numbers of
absolute value 1, and the additive group R of reals.

Let (A, u) be a topological group, and B a subgroup of A. The induced topology
on B has the subgroups BNU with U € u as a base of neighborhoods of 0. There is an
induced topology on the factor group A/B as well, where the subgroups (B + U)/B
with U € u are the neighborhoods of B/B. This topology is Hausdorff if and only if
B is closed, and discrete when B is open.

We will need later the following simple lemma.

Lemma 7.6. Assume (A, ) is a Hausdorff topological group, and B is a subgroup
of A. If mB = 0 for some 0 # m € Z, then also mB~ = 0 for the closure B~ of B in
the u-topology of A.

Proof. Forana € A,a € B~ means thata € B+ U forall U € u. Then ma € mU <
U, thus ma € Nyey U = 0. O

If {(A;,u;) | i € I} is a family of topological groups, then their cartesian product
[TA; is usually equipped with the product (Tychonoff) topology; this is a linear
topology (provided all u; are linear) in which a base u of the neighborhoods of 0
consists of all subgroups of the form [[X; where X; € w; such that X; = A; for
almostall i € 1.

A homomorphism ¢ : A — C between two topological groups is a group
homomorphism that is at the same time continuous in the topological sense, i.e.
for every open set V about 0 € C there is an open neighborhood U of 0 € A such
that ¢(U) < V. A topological isomorphism ¢ is a group isomorphism such that
both ¢ and ¢! are continuous.

Groups and Hausdorff Topology We now prove a theorem showing that all
infinite abelian groups can be equipped with a non-discrete Hausdorff topology.
The result is of theoretical importance, no use will be made of it in the sequel.

Theorem 7.7 (Kertész—Szele [1]). Every infinite abelian group can be made into
a non-discrete Hausdorff topological group.
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Proof. (We need some simple facts that will be proved only later on.) The
Priifer topology makes an infinite abelian group A into a Hausdorff topological
group. This is a discrete topology if and only if A itself satisfies the minimum
condition on subgroups. Then by Theorem 5.3 in Chapter 4, such an A, if
infinite, contains a subgroup Z(p*°) for some p. The embedding of this subgroup
in the multiplicative group of complex numbers of absolute value 1 induces a
non-discrete (non-linear) topology on Z(p°°), and by translations one obtains a non-
discrete topology on A. |

Functorial Topologies Following Charles [3], we introduce functorial topolo-
gies. A functorial topology is defined in terms of a functor 7 on the category
Ab of abelian groups to the category £ of (linearly) topologized abelian groups
such that T'(A) is the group A furnished with a linear topology and T(¢) = ¢
for every homomorphism ¢ : A — B in .A. (The main point is that a functorial
topology assigns a topology to every group A such that all group homomorphisms
are continuous.) In this sense, all of our examples above (with the exception of the
last one) are functorial topologies.

A general method of obtaining a functorial linear topology is to choose an
arbitrary class X of groups and to declare, for each group A, the subgroups Ker ¢
taken for all ¢ : A — X € X as a subbase of neighborhoods of 0 € A. The discrete
groups in the arising topology T'(X) are exactly the subgroups of finite direct sums
of groups in &X'. Thus if we assume, to start with, that X" is closed under taking finite
direct sums and subgroups, then different choices of X define different functorial
topologies.

It should be pointed out that there are functorial linear topologies which are not
obtainable in the indicate way by using an appropriate class X'. The large subgroup
topology of a p-group (Sects. 2-3 in Chapter 10) is an example for such a functorial
topology.

% Notes. It is an interesting question as to which groups can carry certain special kind of

topology. Minimal and maximal functorial topologies, e.g., were studied by Boyer—Mader [1] and
by Fay—Walls [1].

Exercises

(1) The u-topology is finer than the v-topology on a group A if and only if the
identity map (A, u) — (A, v) is continuous.

(2) In alinear topology, a subgroup is closed if and only if it is the intersection of
open subgroups. [Hint: use (D).]

(3) The sum of two closed subgroups is again closed.

(4) Prove that (a) the Priifer topology is always Hausdorff; (b) every subgroup is
closed.

(5) Let G be a closed subgroup in a linear topology of A. If A/G satisfies the
minimum condition on subgroups, then G is open.
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(6) The group J, is compact both in the finite index and in the p-adic topologies.
(7) Let B be a closed subgroup of the topological group A. Prove that

(a) the canonical map A — A/B is an open, continuous homomorphism
(as usual, A/B is furnished with the induced topology);

(b) A/B s discrete if and only if B is open in A;

(c) if ¢ : A — C is an open, continuous epimorphism between topological
groups, then the topological isomorphism A/ Ker ¢ = C holds.

(8) The topology T(X) on a group A (see above) is Hausdorff if and only if
homomorphisms from A into groups in X’ separate points (i.e., for each 0 #
a € Athereare X € X and ¢: A — X with ¢pa # 0).

(9) Let u be a linear topology of the group A whose first Ulm subgroup A! = 0.
All subgroups of A are closed in u if and only if u is finer than the finite index
topology.

8 Modules

Numerous theorems on abelian groups can be generalized, mutatis mutandis, to
unital modules over principal ideal domains, even over Dedekind domains. Some
results admit generalizations to modules over all integral domains, or possibly to
arbitrary associative rings. It is a delicate question to find the natural boundaries of
the validity of a particular theorem, i.e. to describe the largest class of rings over
which the theorem in question is still valid—discussion of problems like this is
beyond our present aim. But we cannot avoid modules completely: those over the
ring J,, of p-adic integers naturally appear in the scene in a variety of ways. Nolens
volens, we have to deal with them.

Modules Let R be an associative ring with identity 1, and M an abelian group
such that

(i) with » € R and a € M there is associated an element ra € M,
(ii) r(a+b)=ra+rbforallre R,a,b e M,
(iii) (r+s)a=ra+ saforallr,s € R,a € M:
@iv) (rs)a = r(sa) forall r,s € Rand a € M,
(v) la=aforalla e M.

In this case, M is said to be a left R-module or a left module over R. A right module
is defined similarly, with the elements of R acting on the right (the crucial difference
is in postulate (iv) which tells us which factor in a product is to be applied first). If
R is commutative, no distinction is necessary between left and right R-modules.

A submodule N of a left R-module M is a subset that is an R-module under the
operations of M, i.e. a subgroup of M such that rN < N for all r € R. In this case,
the factor group M /N becomes an R-module, where r(a + N) = ra + N for cosets
a+ N and for r € R.
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For two R-modules, M and N, an R-homomorphism is a group homomorphism
¢ : M — N that respects multiplication by elements r € R, i.e. ¢ (ra) = r¢(a) for
all r € R and a € M. The meaning of R-isomorphism, etc. should be obvious.

Example 8.1.

(a) If R is a field, then an R-module is just an R-vector space. In abelian group theory, vector
spaces over the prime fields (Q and Z/pZ) are ubiquitous.

(b) If R is the ring Z of integers, then every abelian group A can be viewed as a Z-module under
the natural definition of multiplication of @ € A by n € Z: na is the nth multiple of a.

Occasionally, we will deal with p-local groups. These are exactly those groups
in which the elements are uniquely divisible by every prime # p. They are genuine
Zpy-modules, i.e., modules over the localization of Z at the prime p. The torsion
subgroup #(A) of a p-local group A is a p-group and A/t(A) is g-divisible torsion-
free for all primes g # p.

Example 8.2.
(a) The group J, is p-local, and so is the additive group of Z,).
(b) For any group A, the tensor product A ® Z,) is a p-local group.
p-adic Modules Let us say a few words about modules over the rings Z,)
and J,,. The following observation will be used frequently.

Lemma 8.3. Every p-group is, in a natural way, a module over the ring J, of the
p-adic integers.

Proof. If m = so+sip+sp>+--+s,p"+--- € Jy,andif a € Ais of order p”, then
— 2 n—1y, : "

wa = (So+s1p+s2p°+-+++s,—1p"" " )ais the natural definition. The element on the

right does not change if we use a longer partial sum for 7. The module properties

are pretty clear. O

Modules over J, are called p-adic modules. For any group A, J, ® A is a p-adic
module, and a = 1 ® a (a € A) is the canonical map ¢ : A — J, ® A. ¢ is
universal for A in the sense that if M is any p-adic module and o : A — M any
homomorphism, then there is a unique J,-map v : J, ® A — M such that @ = {¢.

% Notes. Though several theorems in abelian group theory can be phrased more naturally as

statements on modules over integral domains, or just over Z,) or J,, we hesitate to enter unexplored

territory, and will phrase the results to abelian groups only. In this way, inevitably some flavor
is lost, but strict limitations had to be honored. The only exceptions will be cases when p-adic
modules will emerge naturally.

Exercises

(1) For any ring R, the cyclic left R-module Ra is R-isomorphic left annihilator
Anna of a.

(2) For a submodule N of an R-module M, Anna < Ann(a + N) foralla € M.

(3) If R is an integral domain, then the elements a of an R-module M with
Anna # 0 form a submodule in M (called the torsion submodule).

(4) Every torsion group is a module over the completion 7 of Z in the Z-adic
topology. This ring is the cartesian product of the rings J,, for all primes p.
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(5) Let S — R be a ring homomorphism preserving identities. Then every
R-module M becomes an S-module via sa = ¢ (s)a fora € M.

Problems to Chapter 1

PROBLEM 1.1. Characterize the lattices of fully invariant subgroups of torsion-
free groups.

PROBLEM 1.2. What are the singular submodules of A over its endomorphism
ring EndA?



Chapter 2
Direct Sums and Direct Products

Abstract The concept of direct sum is of utmost importance for the theory. This is mostly due
to two facts: first, if we succeed in decomposing a group into a direct sum, then it can be studied
by investigating the summands separately, which are, in numerous cases, simpler to deal with. We
shall see that almost all structure theorems in abelian group theory involve, explicitly or implicitly,
some direct decomposition. Secondly, new groups can be constructed as direct sums of known or
previously constructed groups.

Accordingly, there are two ways of approaching direct sums: an internal and an external way.
Both will be discussed here along with their basic features. The external construction leads to the
unrestricted direct sum, called direct (or cartesian) product, which will also play a prominent role
in our future discussions. We present interesting results reflecting the fundamental differences in
the behavior of direct sums and products in the infinite case. Pull-back and push-out diagrams will
also be dealt with.

Important concepts are the direct and inverse limits that we shall use on several occasions. The
final section of this chapter discusses completions in linear topologies.

A reader who is well versed in group theory can skip much of this chapter.

1 Direct Sums and Direct Products

Internal Direct Sum Let B, C be subgroups of the group A, and assume they

satisfy
(i) B+ C=A;and
(i) BNC =0.

Condition (i) tells us that every element a € A can be written as a = b + ¢ with
b € B,c € C, while (ii) implies that such b, ¢ are unique. For, if a = b’ + ¢’ with
b € B¢ € C,thenb—b' = —c € BNC = 0. We will refer to b, ¢ as the
coordinates of a (in the given direct sum decomposition of A). In this case we write
A = B ® C, and call A the (internal) direct sum of its subgroups B and C. (Recall
that if (ii) is satisfied, we say that B and C are disjoint.)

Let B; (i € I) be a set of subgroups in A subject to the following conditions:

(i) Y ;e; Bi = A, i.e. the subgroups B; combined generate A; and
(i) foreveryie [,B;NY ., B; = 0.

© Springer International Publishing Switzerland 2015 43
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Again, (i) means that every element a € A can be written as a finite sum a =
by, + -+ + b;, with b,-j belonging to different components B, while (ii) states that
such an expression is unique. We then write

A=B ®---®B, or A = @1 B;

according as the index set is finite or infinite. We call these direct decompositions
of the group A, and the B; (direct) summands of A. f A = B & C, C
is a complementary summand or a complement to B. A is called (directly)
indecomposable if A = B @ C implies that either B =0 or C = 0.

Leta € A =B® C, and write a = b + c with b € B, ¢ € C. The maps

n:A—B, p:A— C givenbyrmw:a—b, p:ar—c

are surjective maps; they can also be regarded as endomorphisms of A. They satisfy
b =b, mc =0, pc =c, pb =0as well as ma + pa = a, thus

nt=m pt=p pr=0=mp, wHp=p+7=Il4 2.1)

If we mean by a projection an idempotent endomorphism, and by orthogonal
endomorphisms those with 0 products (in both orders), then (2.1) may be expressed
by saying that a direct decomposition A = B @ C defines a pair of orthogonal pro-
Jjections with sum 14. Conversely, any pair 7, p of endomorphisms satisfying (2.1)
yields a direct decomposition A = wA @ pA. In fact, idempotency and orthogonality
imply that any element common to wA and pA must be both reproduced and
annihilated by 7 and p, so 1A N pA = 0, while 7 + p = 14 guarantees that
A 4+ pA = A.

If A is the direct sum of several subgroups, A = @®;¢s B;, the decomposition can
also be described in terms of pairwise orthogonal projections. The ith projection
m;: A — B, assigns to the element a = b; + --- + b;, the term b; € B; (which can
very well be 0). Then we have:

(a) mim; = 0 or 7; according as i # jor i = j;
(b) forevery a € A, almost all of ;a are 0, and ) _,; ma = a.

Conversely, if {7; | i € I} is a set of endomorphisms of A satisfying (a) and (b), then
A is the direct sum of the subgroups m;A.
Some of the most useful properties of direct sums are listed as follows:

(A) If A = B&® C, then C = A/B. Thus the complement of B in A is unique up to
isomorphism.

B) If A = B® C, and if G is a subgroup of A containing B, then we have
G=B®(GNO).

) IfaeA=BdC,andifa = b+c (b € B,c € C), then 0o(a) =
lem {o(b), o(c)} provided both orders are finite. Otherwise, o(a) = oo.

(D) IfA = @i B and if C; < B; foreach i, then ) . C; = &, C..
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(E) If A = ®; B;, where each B; is a direct sum B; = @; Cj;, then A = @; ®; Cj;.
This is a refinement of the given decomposition of A. Conversely, if A =
P @j C,'j, then A = ®D; B,’ where B,’ = @j C,]

(F) If in the exact sequence 0 — BLALC — 0, Ima is a summand of A,
then A = B @ C. In this case, we say that the exact sequence is splitting.
Any map y : C — A satisfying By = 1¢ is called a splitting map; then
A = Ker 8 @ Imy. Of course, there is another map: §: A — B with o = 1p
indicating splitting: A = Im o & Ker 6.

Two direct decompositions of A,A = @; B; and A = @; C; are called isomorphic
if there is a bijection between the two sets of components, B; and C;, such that
corresponding components are isomorphic.

We now prove a fundamental result.

Lemma 1.1. Let C = (c) be a finite cyclic group where o(c) = m = pi' -+ - pi* with
different primes p;. Then C has a decomposition into a direct sum

C=(c)® &) (olc) =p;)
with uniquely determined summands.

Proof. Define m; = mp; " and ¢; = m;c (i = 1,...,k). Then the m; are relatively
prime, so there are s; € Z such that sym; + - -+ sgmy = 1. Thenc = symjc+---+
sgmge = s1¢1 + « -+ + sgcx shows that the ¢; generate C. Clearly, (¢;) is of order p}',
so disjoint from {(cy, ..., ¢i—1, Ci+1, - - - , k) Which has order m;. Hence we conclude
that C = (c1) ® -+ D (cx)-

The uniqueness of the summands (c;) (but not of the generators c;) follows from
the fact that (c;) is the only subgroup of C that contains all the elements whose
orders are powers of p;. O

Decomposition of Torsion Groups One of the most important applications of
direct sums is the following theorem that plays a fundamental role in abelian group
theory.

Theorem 1.2. A torsion group A is the direct sum of p-groups A, belonging to
different primes p:

A=®,A,.
The A, are uniquely determined by A.

Proof. Given A, let A, consist of all a € A whose orders are powers of the prime p.
Since 0 € A,, A, isnotempty.If a,b € A,i.e. p"a = 0 = p"b for integers m, n > 0,
then p"*"(a — b) = 0,s0 a — b € A,, and A,, is a subgroup of A. If py, ..., py are
primes # p, then A, N (4, +---+A,,) = 0, since every element of A, +--- + A,
is annihilated by a product of powers of p1, ..., pr. Thus the A, generate their direct
sum in A; it must be all of A, as it is obvious in view of Lemma 1.1.



46 2 Direct Sums and Direct Products

If A = &, B, is another decomposition of A into p-groups B, with different
primes p, then by the definition of the A, we have B, < A, for each p. If we had
B, < A, for some p, then &,B, could not equal A. o

The subgroups A, are called the primary components or the p-components
of A. They are, as is seen from the definition, fully invariant in A. If A is not
torsion, then the p-components 7), of its torsion part 7 = fA may be referred
to as the p-components of A. (In this case, however, T, need not be a summand
of A.) Theorem 1.2 is of utmost importance as it makes it possible to reduce the
structure theory of torsion groups to primary groups.

Example 1.3. The group QQ/Z is isomorphic to the multiplicative group of all complex numbers
that are nth roots of unity for some integer n > 0. It is a torsion group whose p-component is
Z(p™>®) (this corresponds to the subgroup of all p¥th roots of unity (k = 0, 1,2, ...)). Hence

Q/Z = &, Z(p™).

Another crucial direct sum decomposition is a trivial consequence of a vector
space theorem.

Theorem 1.4. An elementary group is a direct sum of cyclic groups of prime orders.

Proof. By Theorem 1.2 only p-groups need to be considered. An elementary p-
group is a Z/pZ-vector space, and as such it is the direct sum of one-dimensional
spaces, i.e. of groups of order p. O

External Direct Sum While the internal direct sum serves to break a group into
smaller pieces, in case of external direct sums we glue together groups to create a
new larger group.

We start with two unrelated groups, B and C, and construct a new group A that is
the direct sum of two subgroups B’ and C’, such that B’ =~ B, C' = C. The set of all
pairs (b, c) with b € B, ¢ € C forms a group A under the rules:

(a) (bl,Cl) = (bz,Cz) if and only if bl = bz,Cl = Cp,
(b) (by,c1) + (ba, ) = (b + b2, c1 + ¢2).

Then B = {(b,0) | b € B} =~ B, C = {(0,¢) | ¢ € C} =~ C under
the correspondences b +— (b,0),c +— (0,c); they are subgroups of A such that
A = B’ ® C’ (internal direct sum). If we think of B, C being identified with B’, C’
under the indicated mappings, then we may also write A = B @ C, and call A the
external direct sum of B and C. (We write A = B @ C to say that A is a direct sum
of two subgroups isomorphic to B and C.)

Direct Products A vector (..., b;,...) overthe set {B;};c; of groups has exactly
one coordinate b; from B;, viz. in the ith position, for each i € /. Such a vector can
also be interpreted as a function f defined over I such that f(i) = b; € B; for every
i € I. Equality and addition of vectors are defined coordinate-wise (for functions,
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we would say point-wise). In this way, the set of all vectors becomes a group C,
called the direct product or the cartesian product of the groups B;; in notation:

c=]]s-

i€l

The correspondence p; : b; +— (...,0,b;,0,...,0,...) where b; is the ith
coordinate and O’s are everywhere else, is an isomorphism of B; with a subgroup
B! of C. The groups B! (i € I) generate their direct sum B in C which consists of
all vectors with finite support, where support means supp ¢ = {i € I | ¢; # 0} if
¢=(...,ci,...) € C.Bis the external direct sum of the B;, B = @;¢/B;. Clearly,
B = C whenever [ is finite.

For a group A, and for a set I, AD = @,c; A will denote the direct sum of |
copies of A, and the symbol A’ = [],.;A will stand for the direct product of |/|
copies of A. The corresponding notations A®) and A for a cardinal x should be
clear.

The external direct sums and direct products can also be described in terms of
systems of maps. The functions

pg: b (b,0), pc:c+— (0,¢c), mp: (b,c) > b, nc: (b,c)—c

are called the (coordinate) injection and projection maps, respectively. They
satisfy

ngpp = 1p, mcpc = 1¢, mppc = 0 = mcpp, pprp + pcnc = 1pgc.

For an arbitrary number of components B; (i € I), we have injections p; and
projections 7; satisfying

B C=[]B-5B;

i€l

where p;b; = (...,0,5;,0,...), m(...,bj,...,b;,...) = b; satisfy the conditions:
(i) mjp; = 1p, or 0 according as i = jor i # j; and (ii) D _,; pimi = 1¢ (formally).
Similarly for an infinite direct sum @;¢;B;, in which case any given element is
annihilated by almost all 7;.

The following ‘universal’ properties are crucial.

Theorem 1.5. Let 8;: B; — A (i € I) denote arbitrary homomorphisms, and p;
B; — ®¢; B; the injection maps. There is a unique homomorphism ¢: @;e; B; —> A
such that B; = ¢p; for every i.

Proof. Write b € @ B; in the form b = pymb + -+ + p,m,b where the m;
are the projection maps of the direct sum. It is immediately checked that ¢pb =
pimib+ -+ + Bumub € A defines a homomorphism ¢ : @;e; B; — A with 8; = ¢p;.
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If ¢’ is another such map, then (¢ — ¢’)p; = 0 for each i, so (¢ — ¢')b vanishes for
allb € @i By, ie. ¢ = ¢/. O

Theorem 1.6. Let o;: A — B; (i € I) denote homomorphisms and 7;: [ [;e; Bi —
B; the projection maps. There exists a unique map ¥ : A — [[;e; Bi such that
o; = my foreachi € 1.

Proof. Define y(a) = (...,a,...) € [l Bi- This is obviously a homomor-
phism satisfying o; = 7;%. If also ¥’ has the same property, then 7; (¥ — ¥')a = 0
forall a € A, thus (¥ — ¥")a = 0. This means ¥ = . O

A notational agreement: if «;: A; — B; (i € I) are homomorphisms, then ®;¢; ;
will denote the map @;c;A; — @D;er B; that carries the ith coordinates to the ith
coordinates as given by «;. The map ]_[iel o ]_[iel A — ]_[iel B; has similar
meaning.

For a group G, the diagonal map Ag : G — [][G (arbitrary number of
components) acts as Ag : g — (...,8...,4,...), and the codiagonal map
VGI ®G — Gas VGI (,gl,) g Zigi'

Subdirect Products Among the subgroups of the direct product, the subdirect
products are most important. A group G is a subdirect product of the groups
B, (i € I) if it is a subgroup of the direct product A = [, B; such that 7;G = B;
for all projections m; : A — B;. This means that for every b; € B;, G contains
at least one vector whose ith coordinate is exactly b;. If K; = Ker(s; | G), then
Nier Ki = 0. Conversely, if K; are subgroups of a group G such that N;e; K; = 0,
then G is a subdirect product of the factor groups G/K;, via

g»—)(...,g+Ki,...)€H(G/Ki) where g € G.

i€l
If the index set [ is finite, then we also say that we have a subdirect sum.
Lemma 1.7 (Lo$). Every group is a subdirect product of cocyclic groups.

Proof. For every non-zero a in group A, let K, be a subgroup of A maximal without a
(argue with Zorn). Thus every subgroup of A that properly contains K, also contains
a, i.e. the coset a + K, is a cogenerator in A/K,, so this factor group is cocyclic.
Since Nox4eaKs = 0, it follows that A is a subdirect product of the cocyclic groups
A/K,. O

There are numerous subdirect products contained in a direct product of groups,
but there is no complete survey of them. The only exception is the case of subdirect
sums of two groups.

Let G be a subdirect sum of B and C. The elements b € B with (b,0) € G form a
subgroup By < B and the elements ¢ € C with (0, c¢) € G form a subgroup Cy < C.
It is straightforward to check that the correspondence b + By — ¢ + Cy whenever
(b, ¢) € G is an isomorphism of B/By with C/Cy. Thus G consists of those (b, ¢) €
B & C for which the canonical epimorphisms B — B/By and C — C/Cy map b
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and ¢ upon corresponding cosets. The groups By and Cy are called the kernels of the
subdirect sum. Conversely, if we are given the groups B, C along with epimorphisms
B:B — F,y: C — F for some group F, then the elements (b,c) € B & C with
Bb = yc form a group G that is a subdirect sum of B and C. It is easy to verify the
isomorphisms

G/B()EC, G/C()%B, B/B()EG/(B()@C())%C/C().

We mention that the subdirect sum G in the preceding paragraph may also be

obtained as a pull-back of the maps f,y where BLB/BO ~ C/ C0<y—C. See
Exercise 3 in Sect. 3.)

Let K be an ideal in the Boolean lattice of all subsets of 7; then the K-product
[ 1k Ai is the set of all vectors in [ [;c; A; whose supports belong to K. The «-product
[1:; Ai consists of vectors with support < k.

Ultraproducts The following construction is based on the notion of filters. Let /
be an infinite index set and F a filter on the subsets of /. The filtered direct product
of groups A; (i € ) is a subgroup of the direct product A = [[,; A; consisting of all
vectorsa = (..., a;,...) € A for which the null-setn(a) = {iel|a; =0} € F. It
is routine to check that this is in fact a (pure) subgroup of A, which we shall denote
as [ ]2, Ai. The factor group

F
[Ta/7 =1]a/ l_L.E]Ai

i€l i€l

is called the reduced product with respect to F. Thus a,b € [],¢; A; are equal in
[lie; Ai/ F exactly if supp (a —b) € F.

The most important special case is when F is an ultrafilter /. Then [[,, Ai;/U
is called the ultraproduct of the A;. If I/ is a principal ultrafilter, i.e. it consists of
those subsets of / that contain a fixed j € I, then [ |4, A; = [],c, Ai where J = I\ {j}.
In this case, the ultraproduct is just A;. Therefore, only ultraproducts with respect to
non-principal ultrafilters are of real interest.

Example 1.8. The filter F that consists of all subsets of / with finite complements is non-principal,
and ]_[,]; 1 A; contains the direct sum @;¢; A;.

% Notes. A noteworthy generalization of direct powers, studied by Balzerzyk [3], Eda [1],
relies on a complete Boolean lattice B with 0 as smallest and 1 as largest element. By the Boolean
power A® of the group A is meant the set of functions f: A — B such that (i) f(a) A f(b) = 0 if
a# binA, and (i) \/ e, f(a) = 1. The sum f + g of two functions is defined via

(f + 8)(@) = Vamety (F() A g()

for all possible x,y € A satisfying x + y = a. In case B is the power-set of a set /, then the
elements f € A® are in a bijective correspondence with the elements f € A such that f(a) =
{i € I|f(i) = a} € Bwhere a € A.

The primary decomposition Theorem 1.2 is of central importance in abelian group theory. Its
roots are in elementary number theory; this kind of decomposition was used by C.F. Gauss. In its
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complete, final form is due to Frobenius—Stickelberger [1]. The result generalizes straightforwardly
to torsion modules over Dedekind domains.

In contrast to Theorem 1.2, Theorem 1.4 easily generalizes to arbitrary modules: if a module
is the union of simple submodules, then it is a direct sum of simple modules (it is then called
semi-simple). Semi-simple modules may be characterized by the property that every submodule is
a direct summand.

The result on the subdirect sum of two groups is due to R. Remak; he dealt with finite,
not necessarily commutative groups. Ultraproducts have profound implications in various areas,
especially in model theory. See Eklof [1] for their structure.

Exercises

(1) Let B, C be subgroups of A, and B @ C their external direct sum. There is an
exactsequence0 - BNC—-B®C—- B+ C— 0.

(2) Determine when the direct product of infinitely many torsion groups is again a
torsion group.

3) If0 — Aii>Biﬂ>Ci — 0 are exact sequences for i € I, then so are

0- oA e iec >0 and 0— nAi@]—[Bl»@i]—[q 0.

(4) If G is a subdirect sumof Band C,thenB+ G=B® C =G + C.

(5) Let B, C be subgroups of A such that BN C = 0. If (B + C)/C is a summand
of A/C, then B is a summand of A.

(6) (a) The subdirect sum of Z(p™) and Z(p") (0 < m < n) with kernels Z(p™ )

and Z(p"¥) is isomorphic to Z(p") & Z(p" ).
(b) The subdirect sum of Z(p°°) and Z(p>°) with kernels Z(p™) and Z(p") (0 <
m < n) is isomorphic to Z(p*>°) & Z(p™).

(7) A group A is called subdirectly irreducible if in any representation of A as a
subdirect product of groups A;, one of the coordinate projections 7;: A — A;
is an isomorphism. Prove that A is subdirectly irreducible if and only if it is
cocyclic.

2 Direct Summands

Direct Summands In this section, we collect a few criteria for a subgroup to be
a summand. We start with the most frequently used criterion.

Lemma 2.1. A subgroup B of A is a summand of A if and only if A has an
idempotent endomorphism m satisfying tA = B; equivalently, the injection B — A
followed by w: A — B is the identity 15 of B.
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Proof. If A = B @ C, then the projection 7 on the first summand, viewed as an
element of End A, is as desired. Conversely, if 7 is an idempotent endomorphism,
thenA = 7A @ (1 — m)A. O

Putting it in a different way, lemma states that B is a summand of A exactly if the
identity map of B extends to an endomorphism A — B.

If B is a summand of A, then the complementary summand is unique up to
isomorphisms (recall: it is = A/B), but it is far from being unique as a subgroup.
The following result explains how to obtain from one complement all the other
complements.

Lemma 2.2. Let A = B & C be a direct decomposition with projections B,y. If
also A = B & Cy with projections By, yo, then, for some endomorphism 6 of A, we
have

Bo =B+ BoOy, Yo =y — BOy. (2.2)

Conversely, if the maps Bo, yo are of the form (2.2), then A = B @ poA.

Proof. 1f we are given the two direct decompositions, then let & = y —yy. Then B <
Kerf0,s060 = 08+0y = 0y.Ifa =b+c = bo+co withb, by € B,c € C, ¢ € Cy,
then 0a = ¢ —co = byp—b € B, thus 6 = 6. Hence yp =y — 0 = y — B0y and
Bo=la—rvo=B+y—vo=pB+poy.

Conversely, if o, yo are obtained from 8, y as given in (2.2) with any 6 € EndA,
then Bo + yo = 14, B2 = Bo, ¥¢ = 70, and Boyo = yofo = 0. Thus A = oA & yoA
where foA = BA = B. O

If B is a central idempotent (commutes with all endomorphisms), then
Bo = B+ 0By = B and yy = y. Thus the complements cannot be changed
(they are fully invariant in A).

In general, a subgroup of a direct sum does not decompose along the summands.
However, there is an important exceptional case.

Lemma 2.3. [fA = B&® C, and if G is a fully invariant subgroup of A, then
G=(GNB)® (GNO).

Proof. Let B,y be the projections attached to the given direct sum. By full
invariance, both G and yG are subgroups of G. Evidently, G and yG generate a
direct sum in A, and since 8 + y = 14, we have G = G @ yG. Since G < GNB
and yG < G N C, and proper inclusion is out of question, we have G = GN B and
yG=GnNC. O

The following is a useful lemma.
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Lemma 2.4 (Kaplansky [K]). If the factor group A/B is a direct sum: A/B =
@ier (A;/B), and if B is a direct summand in every A;, say, A; = B ® C;, then B is a
summand of A. More precisely,

A=B®& (i C).

Proof. 1Tt is clear that the groups B and the C; generate A. Assume that b 4 c¢; +
-4+ c, =0forsomeb € Band¢; € C; (j = 1,...,n). Passing mod B, we obtain
(¢t +B) 4 -+ + (cx + B) = B, whence the given direct sum forces ¢; € B for every
J-Thus ¢; € C;N B = 0, and hence also b = 0. Consequently, B and the C; generate
their direct sum in A. O

Summands of Large Direct Sums The following theorem has several applica-
tions in the study of properties inherited by summands.

Theorem 2.5 (Kaplansky [2]). Summands of a direct sum of countable groups are
also direct sums of countable groups.

Proof. Let A = ®@ie;A; = B @ C where each summand A; is countable. Pick any
summand A;, a generating system {a;};e; of Ay, and write a; = b; + ¢; (b;€B,
¢j € C). Note that each b; and each c; has but a finite number of non-zero coordinates
in the direct sum A = @;A;. Collecting all the A; that contain at least one non-
zero coordinate of some b; or c¢;, and then forming their direct sum, we obtain
a countable direct summand X; of A. Next, we repeat the same process with X
replacing A;: select a generating system for X; and collect all the A; which have
non-zero coordinates of the B- and C-coordinates of the generators, to obtain a
larger countable summand X, of A. Continuing the same way, we get a chain
X <X, <-.-<X, <... of countable summands of A whose union is a countable
summand A; such that A; = (BNA;) & (CNA)).

A smooth chain of summands S, of A is defined as follows. Each S, is a direct
sum of some A;. Set Sy = 0. If S, is defined for an ordinal ¢ and S, < A, then
pick an A; not in S, and let Sp4; = S, + A; (where A; is obtained by repeating
the above process for A; using components not in S, ). For limit ordinals o we set
So = Up<o S,. It is evident that for some ordinal 7 < |A| we will reach §; = A.Itis
also clear that S, 4+ /S, is countable, and every S, is a direct sum of a subset of the A;
suchthat S, = (BN S,;) ®(CNS,) forall o < t. Setting BNSy4+1 = (BNSy) & By,
it is clear that the B, are countable and generate their direct sum in B. Since the B,
together generate B, we have B = @, By, as claimed. O
Example 2.6. Let G be any countable group, and A = @,.,, G, where G, = G for each 0. If

A = B @ C, then both B and C are direct sums of countable groups (not necessarily isomorphic
to G).

% Notes. Kaplansky’s Theorem 2.5 holds for countably generated modules over arbitrary
rings. It has been extended to «-generated modules by C. Walker [2] for any infinite cardinal «.



2 Direct Summands 53
Exercises

(1) (Gritzer) Let B be a subgroup of A, and C a B-high subgroup in A. Then
A=B®Cifandonlyifpa =b+c(a € A,b € B,c € C) for a prime p
implies b € pB.

(2) Suppose C < B < A. Prove that

(a) if B is a summand of A, then B/C is a summand of A/C;
(b) if C is a summand of A and B/C is a summand of A/C, then B is a
summand of A.

(3) Let B be a summand of A, and let {r; | i € I} be the set of all projections of
A onto B. These projections form a semigroup such that 7;77; = 7;.

(4) A group A has no summand isomorphic to itself if and only if one-sided units
in its endomorphism ring End A are twosided.

(5) Let n denote an endomorphism of A.

(a) If, for some n, Im 77’”’1 = Im n", then Ker 0" 4+ Imn" = A.
(b) If, for some n, Ker n"*! = Ker ", then Ker " N Im " = 0.

(6) Assume A =B@® C=B @& (C,andletf: A — B, : A — B’ denote the
projections in the given decompositions. Then B =~ B’ if and only if there are
¢,y € EndA such that ¢y = § and ¢ = 8.

(7) (a) (Gritzer—Schmidt) Let B be a direct summand of A. The intersections of

all the complements of B in A is the maximal fully invariant subgroup of
A that is disjoint from B. [Hint: Lemma 2.2.]

(b) A complement to a direct summand of A is unique if and only if it is fully
invariant in A.

(8) Call a subgroup G of A projection-invariant if G < G for every projection
7 of A onto a summand. Prove that: (a) G is projection-invariant in A if and
only if #G = G N 7 A for all projections r; (b) intersections of projection-
invariant subgroups are projection-invariant, and so are subgroups generated
by projection-invariant subgroups; (c) Lemma 2.2 holds for projection-
invariant G; (d) a projection-invariant summand is a fully invariant subgroup.

(9) (Kulikov) A direct decomposition A = @;¢;A; has a common refinement with
every direct decomposition of A if and only if every A; is projection-invariant.

(10) (Fuchs) B < A is an absolute direct summand of A if A = B & C for every
B-high subgroup C. (a) Prove that B is an absolute direct summand if and
only if it is either injective (see Chapter 4) or A/B is a torsion group whose
p-component is annihilated by p* whenever B \ pB contains an element of
order p¥. (b) Find all absolute direct summands of a bounded group.

(11) (Irwin—Walker) Let A = ®;c;A; and B; < A; for each i. If C; is B;-high in
A;, then &®; C; is P; Bl-hlgh inA.

(12) (Enochs) Let A be a p-groupand A = B® C = B’ @ ' direct decompositions
of A such that B[p] = B'[p]. Then A = B& C’ = B’ & C. [Hint: use induction
of the order of a € Ato showa € B® C'.]
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(13) (C. Walker) Generalize Theorem 2.5 to larger cardinalities x: summands of
direct sums of k-generated groups are of the same kind.

(14) A supplement subgroup S to some C < A is defined to be minimal with
respect to the property A = C 4 S. § has this property if and only if S N Cis
superfluous in A. [Hint: use the modular law in both directions.]

3 Pull-Back and Push-Out Diagrams

Pull-Backs With the aid of direct sums, we can describe two important methods
in constructing certain commutative diagrams.

Theorem 3.1. Given the homomorphisms a: A — C and 8 : B — C, there exists
a group G, unique up to isomorphism, along with homomorphismsy : G — A, § :
G — B, such that the diagram

G ——

d J=
B¢

is commutative, and if

G’V—/>

s

B

B —— C

is any commutative diagram, then there exists a unique homomorphism ¢: G' — G

such that yp = y' and §¢p = §'.

Proof. Givena, 8, define G as the subgroup of the direct sum A @ B consisting of all
pairs (a,b) (a € A, b € B) suchthatoa = b, andlet y: (a,b) — a, §: (a,b) — b.
This makes the first diagram commutative.

If the second diagram is commutative, then define ¢ : G — G as ¢g =
(y'g,8'g)) for g’ € G'; here (y'g’.8'¢’) € G, since ay’ = B&'. Evidently, y¢pg’ =
y'g  and §¢pg’ = §'g’ for every g’ € G'. It is easy to see that Kery = (0, Ker 8) and
Keré = (Kera,0). Therefore, if ¢’ : G — G also satisfies y¢' = y’, §¢' = &,
then y(¢p —¢’) = 0 = 5(¢p — ¢’), and so Im(¢p — ¢’) < Kery N Ker$ = 0. Hence
¢ — ¢’ = 0, thus ¢ is unique.

The uniqueness of G can be verified by considering a Gy with the same prop-
erties. Then by what has already been shown, there are unique maps ¢ : G — Gy,
¢o : Go — G with the indicated properties. Then ¢o¢ : G — G is a unique map
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(if applied to the case G’ = G), so it must be the identity; the same holds for
¢¢’: Go — Gy, whence the uniqueness of G is manifest. O

Push-Outs The group G of the preceding theorem is called the pull-back of the
maps « and B. Our next task is to prove the dual, where the group H will be called
the push-out of « and S.

Theorem 3.2. Assume thata: C — A, : C — B are homomorphisms. There exist
a group H, unique up to isomorphism, and homomorphisms y: A — H, §: B — H,
such that the diagram

c —25 A

a |

BLH

is commutative, and for every commutative diagram

c -2 A

T

B(S—/)H/

there is a unique homomorphism  : H — H' satisfying Wy = y' and y§ = §'.

Proof. Starting with «, 8, define H as the factor group of A@ B modulo the subgroup
X ={(xc,—Bc)|ceC}.Lety:ar> (a,0)+X,8: b (0,b)+ X (a € A,b € B)
be the maps induced by the injections. Then yac = §fc¢ for every ¢ € C assures the
commutativity of the first diagram.

If the second diagram is commutative, then we let ¥ : (a,b) + X +— y'a +
8’b € H'. One can readily check that this definition is independent of the chosen
representative (a, b) of the coset, and moreover, it satisfies ¥y = y’ and ¥§ = §'.
The uniqueness follows from the simple fact that Imy and Im§ generate H, and
therefore, if 'y = y’,%'§ = §' for some ' : H — H’, then ( — ')y =0 =
(¥ — )8 implies that ¢ — ¢ maps the whole of H upon 0. An argument similar to
the one at the end of the proof of the preceding theorem establishes the uniqueness
of H. O

The following observations are of importance.

(a) If in the pull-back diagram, o is monic, then so is §; if « is epic, so is 6. In
view of the uniqueness of the pull-back diagram, it is enough to prove the claim
for the group G as constructed in the proof above. That Kerae = 0 implies
Ker§ = 0is immediately seen from the proof. Furthermore, if « is epic, then to
every b € B there is an a € A such that «a = Bb, and so § is also epic.
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(b) If in the push-out diagram, o is monic, then so is §; if « is epic, so is 6.
Again, we need only show this for H as defined above. Now clearly Ker§ = 0
whenever Kera = 0. If « is epic, then to every a € A there is a ¢ € C with
oc = a, and so § maps b + Bc upon (0,b + Bc) + X = (a,b) + X. Hence § is
epic as well.

Exercises

(1) If B = 0 in the pull-back diagram above, then G = Kera.

(2) (a) If C = 0 in the pull-back diagram, then G = A & B.
(b) If C = 0in the push-out diagram, then H =~ A @ B.

(3) If both «, B are surjective in the pull-back diagram, then G is a subdirect sum
of A and B with kernels Ker o, Ker 8.

(4) The pull-back diagram above is a push-out diagram (for y, §) exactly if the map
V(e @ B): A @ B — Cis surjective.

(5) If in the diagram

Ay As As
! ! l
By Ba B3

each of the two squares is a pull-back, then the outer rectangle is also a pull-
back.

(6) Formulate and prove the dual of the preceding exercise for push-outs.

(7) Using the notations of the above pull-back and push-out diagrams, the
sequences0 > G —->A@B—-C—-0and0 - C—-A@B— H — 0 (with
the obvious maps) are exact.

4 Direct Limits

Direct Systems Let {A; (i € I)} be a system of groups where the index set [ is
partially ordered and directed (upwards) in the sense that to each pair i, € I, there
isa k € I such that both i < k and j < k. Suppose that for every pair i,j € I with
i < Jj, there is a homomorphism 7} : A; — A; (called connecting map) subject to
the conditions:

(i) 7} is the identity map of A; for all i € I; and
(i) ifi <j < kinl, then nl.krri’ = gk

it
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In this case, A = {A; (i € I); n{ } is called a direct system. (If the index set is w,
then it suffices to specify only 7"*! for all n < w, because the other 7" are then
determined by rule (ii).) By the direct or injective limit, or colimit of 2 is meant a

group A« such that

(a) there are maps m;: A; — Ay such that 7; = ]Tj]f{ holds for all i <j;
(b) if G is any group, and p;: A; — G (i € I) are maps satisfying p; = p;m;] for all
i <j, then there is a unique map «: Ay — G such that p; = am; foralli € I.

We write: Ay, = li_r)n,el A;, and call the maps 7;: A; — A, canonical.
1

Theorem 4.1. A direct system A = {A; (i € I); J'rl/} of groups has a limit, unique
up to isomorphism.

Proof. We form the direct sum A = @;A;, and consider the subgroup B < A
generated by the elements a; — Jrfai for all @; € A; and for all i < jin I. Our
claim is that A/B = A is the direct limit of 2.

The elements of A/B are cosets of the form a;, + --- + a;, + B with a;; € A;. If
i € Iis such that iy,...,i, are all < i, then this coset is nfl aj +---+ niinai,l + B,
sinceail +---+ain —]Tl-ilail —---—n;;lain = (ail —ﬂiilail) + -+ (ain —n;;lain) € B.
Thus every element in A/B can be written as a; + B for some a; € A;. In particular,
B consists of all finite sums of the form b = a;, + - -+ + a;, with a;; € A;, for which
there is an i € I such that iy, ...,i, < iand niilail 4+t niinain =0.

Consider the maps 7;: A; — A/B acting as a; — a; + B. They obviously satisfy
7 = mim! (i < j). If Gis any group as stated in (b), then define « : A/B — G
by a(a; + B) = pia;. Owing to p; = p; i‘, this definition is independent of the
choice of the coset representative, and since « is evidently additive, « is a genuine
homomorphism. It satisfies p; = a7, for all i € I, as required. If &’: A/B — G also
satisfies p; = o'm; foralli € I, then (¢ —«’)7; = O foreach i € I, thus o — ' sends
every a; +B = m;a; t0 0,i.e. « = o’. It follows that A/B is a limit of the given direct
system, so we can write A, = A/B.

To show that A, is unique up to isomorphism, suppose that also Ay shares
properties (a)—(b). Then there exist unique maps o : Ax — Ap and op: Ag — Ay as
required by (b). Also, apx: A — A and ooty : Ag — Ay are unique, so they are the
identity maps. Consequently, Ag = Ax. O

We now list some of the most useful properties of direct limits.

(A) Ay is the set union of the subgroups w;A; (i € I). .

(B) If mia; = O for some a; € A,, then there is a j > i such that Jr{ai = 0. Indeed,
if m;a; = 0, then g; € B, and the proof above establishes this claim.

(C) If every w! is a monic map, then all the 7r; are monomorphisms. This follows
from (B).

(D) If J is a cofinal subset of I, then the system restricted to J has the same direct
limit: lim A; = lim A;. In fact, if the first group is A’/B’, then a; + B’ >

—>J —>I

a;j + B is an isomorphism of A’/B’ with A/B.
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Example 4.2. Let {A; (i € I)} be the collection of all subgroups of a group A where the index set
1 is partially ordered by the rule: i < jif and only if A; < A;. Let ] : A; — A; denote the injection
map for i < j. Then A = {A; (i € I); 7!} is a direct system with limit A.

Example 4.3. If we admit only finitely generated subgroups of A in the direct system 2( = {A; (i €

I); nJ, } with the injection maps 7, the direct limit is still A. In the special case where A is arbitrary
torsion-free, we get A as the direct limit of finitely generated free groups.

Example 4.4. Let A = @;e; C; be a direct sum. Let i range over the set / of finite subsets of J, so
thati < kin/ means that i is a subset of k. If we define A; = ®;¢; C; foralli € I, and 71,-" A —> Ag
to be the obvious inclusion map, then we get a direct system whose limit is A.

Maps Between Direct Systems We consider homomorphisms between direct
limits that are induced by homomorphisms between direct systems. If 2l = {A; (i €
I); 7/} and B = {B; (i € I); pl} are direct systems with the same index set /, then
by a homomorphism ® : 2l — B we mean a set of homomorphisms ® = {¢, :
A; — B; | i € I} such that the diagrams

7rJ
A — s A

W e

J
P!
B, — B,

commute for all i <jinl.

Lemma 4.5. If © is a homomorphism between the direct systems 2l and ‘B, then

there exists a unique morphism @4 : A, = limA; — By = lim B; making all the
. — —

diagrams

A, _m A,
@l ld)*
B, —2 B,

commute (m;, p; denote the canonical morphisms). ®. is an epimorphism
(monomorphism) if all the ¢; are epimorphisms (monomorphisms).

Proof. Since the maps p;¢;: A; — B satisfy the condition quﬁjn{ = p,-pfq&i = pipi
for every pair i < j, the existence of a unique homomorphism @, : Ax — B such
that p;¢p; = P m; for each i € I is guaranteed. This proves the first assertion.

If all the ¢; are epic, then the subgroups p;B; = p;¢;A; cover By, so @, must
be epic. If all the ¢; are monic, then pick an a € Ker ®.. There is j € I such that
a = mja; for some a; € A;. Hence pj¢ja; = Pumja; = Pya = 0, and so by (B)
we have a k > j with pf¢;a; = 0. But pi¢; = ¢y} and ¢ is monic, so 7fa; = 0,
whence mja; = 0 anda = 0. o
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We now move to three direct systems: 2, B as above, and a third one, € =
{C; (i € I); 0!}, all with the same directed index set /. If ®: 2 — Band V: B — €

. oi Vi
are homomorphisms between them such that the sequence 0 - A;—>B;—>C; — 0
is exact for each i € I, then we say that the sequence

P v
0—>A—B—C >0 2.3)
is exact. It is an important fact that direct limits of exact sequences is exact. More
precisely,

Theorem 4.6. Let 2, B, € be direct systems over the same index set I, and ®: A —
B and V¥ : B — &€ homomorphisms between them. If the sequence (2.3) is exact,
then the sequence

Dy . Wy .
0—> Ay =limA,— B, = limB;,—C4x =1mC; — 0
1 1 1

of direct limits is likewise exact.

Proof. Exactness at A, and Cy is guaranteed by Lemma 4.5, so we prove exactness
only at B«. By Lemma 4.5, the diagram

0 A, =2 B g 0
s l Pi l lt‘h‘,
0 A, 2. p T 0

is commutative for alli € I. If a € A, then ;a; = a for some a; € A;, so YV, Dya =
VU, O.mia; = Vepipia; = o;yi¢ia; = 0. Next let b € Ker .. For some b; € B;,
we have p;b; = b, whence 0;Y/;b; = W«p;b; = Wib = 0. There exists j € I with
olyib; = 0, thus ¥;b; = Y;plb; = 0. Since the top row in the diagram is exact,
there is an a; € A; with ¢;a; = b;. Setting a = m;a;, we arrive at ®xa = Pymja; =
pidia; = pj,o{bi = pib; = b, 1.e. b € Im P4, and the bottom row is exactat B,. 0O

Exercises

(1) Show that li_n)ln Z(p") = Z(p*), using inclusion maps.

(2) LetA, = Z (n < w) with n"*!: A, — A, multiplication by n. Prove that
lim A, = Q.
—>n X

(3) If every 7] is an onto map, then all the 7; are epimorphisms.

(4) A group is locally cyclic if and only if it is a direct limit of cyclic groups.
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(5) (a) Let Ay be the limit of the direct system A = {A; (i € I); JTZ}, and a € A,.
There exist aj € I and an a; € A; such that mja; = a and o(a;) = o(a).
(b) Direct limit of torsion (torsion-free) groups is again torsion (torsion-free).

(6) If G is finitely generated, and «: G — A, (notations as above), then there exist
ajelandana;: G — Ajsuchthat o = 7ja;.

7)) A ={A; (Gl JTii} and B = {B; (i € I); pf} are direct systems of groups,
thenA DB = {A; BB, (i € I); 7Tl-i &) sz: } is likewise a direct system whose direct
limit is the direct sum of the direct limits of 2 and ‘B.

(8) What is wrong with the following argument? Because of Theorem 4.6, the
sequence 0 — Z(p*>°) — Z(p*>*°) — Z({p>) — 0 must be exact, since it can
be obtained as the direct limit of the exact sequences 0 — Z(p™) — Z(p*") —
Z(@P™) — 0 (m € N).

5 Inverse Limits

Inverse Systems Inverse limits are dual to direct limits: we just reverse the
arrows.

Assume {A; | i € I} is a collection of groups, indexed by a poset I, and for
each pair i,j € I of indices with i < j there is given a connecting homomorphism
Jr{ :Aj — A; such that

(i) m! is the identity map of A; for all i € I; and
T . ik k
Gi) ifi<j< klnl,thenn{nj = nf.
In this case, A = {A; (i € I); 7rl." } is called an inverse system. By the inverse or
projective limit, or simply limit, of this inverse system is meant a group A* such
that

(a) there are maps 7;: A* — A; such that 7; = Jr{nj forall i <j;and
(b) if G is any group with maps p;: G — A; (i € I) subject to p; = 7! p; fori <,
then there is a unique map ¢: G — A* satisfying p; = 7;¢ foralli € I.

We write: A* = 1<i£l'el A;, and call the maps 7;: A* — A; canonical.
1

Theorem 5.1. An inverse system 2 = {A; (i € I); n{} of groups has a limit, unique
up to isomorphism.

Proof. Consider the subgroup A* in the direct product A = [,; A; that consists of
all vectorsa = (..., a;,...) whose coordinates satisfy ]T{Llj = g; for all i <. This
is in fact a subgroup as is seen immediately. The projection maps 7;: a — a; satisfy
7; = 7!, so (a) holds for A*.

To verify (b), let G be a group as stated in (b), and for g € G define ¢ : g —
(...,pig -..) € [I; Ai. Owing to the condition p; = 7 p;, we have ¢pg € A*.
Clearly, ¢ : G — A™* satisfies p; = m;¢ for all i € I. If p; = m;¢p’ holds also
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for ¢’ : G — A*, then m;(¢ — ¢’) = 0 for all i, so every coordinate projection of
(¢p —¢)Gis 0, hence ¢p = ¢’.

In order to establish the uniqueness of A*, we can mimic the argument at the end
of the last paragraph almost word-by-word. O

It is worthwhile noting the following properties of inverse limits.

(A) Iflis directed, and if in the inverse system A = {A; (i € I); Jrf} all connecting
maps 7'[{ are monomorphisms, then so are all the ;. In fact, assume a € A* is
such that m;a = 0. Given j € I, there is a k € I with i,j < k. Then nikzrka =
m;a = 0, whence ni" monic implies ma = 0. Therefore, mja = njknka =0
for all j € I, and so a = 0. (Exercise 5 will show that, in general, the same
fails for epimorphisms.)

B) If I is directed, and if J is a cofinal directed subset in I, then we have
lim_A; =lim_ A;.
<—i€l <«—j€eJ

(C) A* is the intersection of kernels of certain endomorphisms of | |; A;. For, every
pair i < jin I defines an endomorphism

9,;;:(...,a,-,...,aj,...)»—>(...,a,-—nqu,...,aj,...).

Comparing this with the proof of Theorem 5.1, it becomes evident that
A* = ﬂigj Ker 91/

(D) Ifall the groups in the inverse system 2l = {A; (i € I); J'rl/} are Hausdorff topo-
logical groups and the connecting maps w! are continuous homomorphisms,
then the inverse limit A* is a closed subgroup of [ |, A; (which is equipped with
the product topology), and the canonical maps 7;: A* — A; are continuous.
Indeed, then the endomorphisms 6 in (C) are continuous, so their kernels as
well as the intersection of the kernels are closed subgroups. A* carries the
topology inherited from [ ], A;, so the continuity of the 7; is obvious.

Example 5.2. Let A = [],e; By be the direct product of the groups B, . Let I denote the set of all
ﬁnite_ subsets of J, partially ordered by inclusion. For i € I, set A; = @,¢; By, and for i < j in 1
let 7] be the projection map A; — A;. This gives rise to an inverse system 2 = {4; (i € I); 7}.
We now claim: A* = l(iLnEIA,- = A. To prove this, let ; : A* — A; be the ith canonical map,
and p; : A — A; the ith projection map. By definition, there is a unique map ¢ : A — A*
such that 7,0 = p;. If pa = 0 for some a € A, then p,a = mipa = O foralli € I, so ¢ is
monic. If a* = (...,a;,...,4q;,...) € A*, then write a; = by, + +++ + by, With by, € By, if

i = {oy,...,a}. If i < j, then by the choice of n{ , the B,-coordinates of a; are identical with

the corresponding coordinates of a;, so a* defines a unique (..., b,,...) € A. A glance at the
definition of ¢ in the proof of Theorem 5.1 shows that ¢ (..., b, ...) = a™, so ¢ is epic as well.

Example 5.3. Let C, = (c,) be cyclic groups of order p" (n € N), and define maps n,’,’Jrl :
Cy+1 —> C, induced by ¢,+1 +> ¢,. Now € = {C, (n € N); 7"} is an inverse system, and our
claim is that C* = l(in . Co=J, If m,: C* — C, is the canonical map, and if we define

pn : J, = C, via p,(1) = c¢,, then by definition there is a unique map ¢ : J, — C* such
that m,0 = p, for all n € N. Since only 0 € J, can belong to all Ker p,, Ker¢ = 0 is clear.
Now let ¢ = (by,..., by,...) € C* with b, = k¢, (k, € Z); by the choice of JT;"H we have

kn+1 = k, mod p", so there is a p-adic integer o such that ¢ = k, mod p" for all n. We conclude
that p,0 = b,, and ¢ must be epic.
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Example 5.4 (The Intersection of Subgroups is an Inverse Limit). Let {A; | i € I} denote a set of
subgroups of a group A closed under finite intersections. We partially order / by reverse inclusion.

The groups A;, along with the injection maps nlj 1 Aj > A; (i <)), form an inverse system. Its
inverse limit will be N;e; A;, because only the constant vectors in [ [;c; A; can belong to the inverse
limit A*.

Maps Between Inverse Systems Assume 2 = {A; (i € I); Jrl’ } and B =
{B; (i € I); p}} are inverse systems, indexed by the same poset /. A homomorphism
D: A - Bisaset{p;: A; — B; (i € I)} of homomorphisms subject to the
requirement that all diagrams of the form

7'rJ
Aj — Az

ol e

Bj e i

be commutative for all i < j.

Lemma 5.5. If®: A — *B is a homomorphism between inverse systems, then there

exists a unique map ®*: A* =lim__ A; — B* =lim__ B; such that, for everyi € I,
. <—i€l <«—i€el

the diagram

A*LAL‘

vl e

B* -2 . B

commutes (with canonical maps m;, p;). ®* is monic, if so are the ¢;.

Proof. The homomorphisms ¢; (i € I) induce a homomorphism ¢ = IT¢: :
[1,A; = TI; Bi- The commutativity of the diagram before the lemma shows that
ifa =(..,a,...) € A*, then ¢a € B*, hence we can define ®* : A* — B* as
the restriction of ¢. With this ®* we have ¢;mia = ¢ia; = p;P*a, establishing the
commutativity of the diagram. If also ®y: A* — B* makes the diagram commute
for every i, then p;(®* — ®y) = O for every i, thus O* = D

Finally, if all the ¢; are monic, and if ®*a = 0 for some a € A*, then ¢;m;a =
pi®*a = 0 implies 7;a = 0 for every i, whence a = 0. O

For the inverse limits of exact sequences, we have a somewhat weaker result than
for direct limits.

Theorem 5.6. Assume A = {A; (i € I); 7/},B = {B; (i € I); pl}, and € =
{C; (i € I); o]} are inverse systems over the same index set I. Let ®: % — B and

W : B — € be homomorphisms. If the sequence 0 — AigBiﬁ)Ci — 0 is exact
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for every i € I, then the sequence

0— A* = l(iLnAii)B* = LiLnBii)C* =limC; (2.4)

of inverse limits is likewise exact.

Proof. Exactness at A* follows from Lemma 5.5. From the definition of ®*, W* it is
evident that U*®* = 0. If 7;, p;, 0; denote the canonical maps, then by Lemma 5.5
the diagram

0 A* B* cr

s

—
®
—
—
Q

is commutative for each i € I. In order to show the exactness of the top row at B*,
let b € Ker W*. In view of ¥;p;b = 0;¥*b = 0 and the exactness of the bottom
row, for every i € [ there is an a; € A; satisfying ¢;a; = p;b. Forj > i, q&,-nfaj =
p{quaj = p{pjb = pib = ¢;a;, whence Jr{aj = a; as ¢; is monic. We infer that
a=(..,a,...,qj,...) €A* For this a we have p;®*a = ¢;mja = ¢;a; = p;b for
every i, so ®*a = b. O

Exercise 5 will show that, in general, Theorem 5.6 cannot be improved by putting
— 0 at the end of the exact sequence (2.4). A noteworthy special case when the exact
sequence of inverse limits is exact is as follows.

Proposition 5.7. If in Theorem 5.6 we specialize: 2 = {A, (n < w); 7"}, B =
{B, (n < w); p"t1}, € = {C, (n < w); 0"}, and assume that all the maps 7!
are epic, then the sequence of inverse limits is exact:

0> A* =1limA,—B* =1limB,—C* =1imC, — 0
Proof. Letc* = (co,...,Cyn,...) represent an element of C*. We now construct by

induction an element b* = (by,...,b,,...) € B* such that U*b* = c*. As ¢ is
surjective, there is by € By with Y¥oby = cp. Suppose that, for some n < w, we
have found b; € B; for all i < n such that ¥;b; = ¢; and ,of_lbi = b;—1. Choose any
b, € B,y mapped upon c¢,41 by ¥,y1. Then b, — pi ') | = ¢,a, for some
ay € Ap. If ayq1 € Apqr is such that 7" a, | = a, (which exists by hypothesis),
then b;H_l + @n+1an+1 € By is our choice for the next coordinate b,,41 in b*. It is

clear that then b* € B* is as desired. O

Derived Functor of Znv The inverse systems of abelian groups (with a fixed
index set /) and the morphisms between them form a category Znv(I). The functor
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Inv(Il) — Ab assigning to an inverse system its inverse limit is left-exact. Since
its right-exactness fails in general, the inverse limit functor has a derived functor,
denoted lim'. This is especially interesting in case the index set is @ when the
inverse system looks like

Y1 Y2 Yn VYn+41 Yn+2
Codc . e e,

Then lim! C,, 22 Coker ¢ where
<—n

I//Z(...,Cn,...)I—)(...,Cn—)/n+1cn+1,...).

denotes the Eilenberg map v : [[,_, C. — [],-, Cu: see Jensen [Je], as well
as Schochet [1]. The functor lim' will be discussed later in Proposition 6.9 in
Chapter 9. We just point out here that, for an exact sequence of inverse systems
in Proposition 5.7, there is an exact sequence

0 — limA, — limB, — limC, — lim'A, — lim'B,, — lim'C, — 0.
<— <— <~ <~ <~ <—

n n n n n n

. . no_oo n (D!
Example 5.8. Consider the inverse system {Z;n!} : L<—UL<—... <7 <«—
Z<— ... The Eilenberg map Y carries the vector (ko,..., kn,...) (k, € Z) to the vector

(ko — k1, k1 —2ka, ... . ky— (n+ 1)!ky41, ... ). This vector is divisible modulo @ Z (which group
is in Ker v/), so Coker v is divisible. An easy argument shows that the cokernel is torsion-free and
its cardinality is the continuum, hence l(igl1 {Z;n} = Q™.

Example 5.9. We now consider three inverse systems: {Z, p} : Ay L VL L 17,1}
1 1 1 b4 b g
Z«—7<«—1ZT<«—...,and {Z/p"Z, n}: 0«—7Z/pZ<—717/p*Z<— ... (with canonical maps 7).

They fit into the exact sequence
0—>{Z,p} > {Z, 1} > {Z/p"Z, 7} — 0

of inverse systems. The l(iLn—l}I_n1 exact sequence (see above) yields the exact sequence 0 — Z —

H 1 sl

limZ/p"Z — lim' {Z, p} — 0, whence
: ~ ~ NN
lim'{Z, p} = J,/Z = Q™.

% Notes. The so-called Mittag-Leffler condition (not stated) is a most useful sufficient
criterion to guarantee that — 0 can be put at the end of (2.4). See Jensen [Je].

Exercises

1) IfA =1{A; (@ € I); rrij} and B = {B; (i € I); p{} are inverse systems, then
ADB ={A; ®B; (i € I); &/ & pl} is again an inverse system. Its limit is the
direct sum of the limits of 2 and 8.
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(2) Let C, = {c,) be cyclic of order n, and for n|m let =)' : C,, — C, be the
homomorphism induced by ¢,, — c¢,. Then € = {C, (n € N); n'} is an
inverse system where N is partially ordered by the divisibility relation. Show
that lim € =[], J,.

(3) Let A, = Z(p*™), and let 7! : Z(p*>®) — Z(p™) be the multiplication by
p. Then the inverse limit of the inverse system 2 = {4, (n € N); n"t1} is
isomorphic to the group of all p-adic numbers.

(4) The inverse limit of torsion-free groups is torsion-free, but the inverse limit of
torsion groups need not be torsion.

(5) LetB, = (b,) = Zand ) : by, +— b, foralln < minN. Let C, = (c,) =
Z(p"™) and P : ¢,y > ¢, for n < m. Show that

(@) B ={B, (n e N);x)"} and € = {C, (n € N); p'} are inverse systems, and
the epimorphisms ¢, : b, — c,(n € N) define a map ®: B — €.

(b) The induced homomorphism ®* : B* — C* between the inverse limits is
not epic. [Hint: Z — J,.]

(6) The inverse limit of splitting exact sequences need not be exact.
(7) Let 2 = {A, (n < w); "'} be an inverse system where the maps 7! are
epimorphisms, but not isomorphisms. Then the inverse limit A* has cardinality

at least the continuum.

6 Direct Products vs. Direct Sums

One aspect of direct products that deserves special attention is related to their
homomorphisms. There is a remarkable contrast between homomorphisms from
a direct sum and from a direct product: those from direct sums are completely
determined by their restrictions to the components, but not much can be said about
homomorphisms from a direct product, except when either the components or the
target groups satisfy restrictive conditions. A most fascinating result is concerned
with homomorphisms of direct products into direct sums—this is the case that we
wish to explore here. What is a surprising, if not recondite, phenomenon about it is
that it works only up to the first measurable cardinal.

Before entering into the discussion, a simple remark might be helpful on infinite
sums in direct products A = [,¢; A;. Infinite sums .., x; do make sense when the
terms are vectors x; = (..., aj,...) (a; € A;) such that, for each i € /, only a finite
number of ith coordinates a; # 0. (Actually, Y ¢, x; is then a convergent sum in
the product topology.)

Example 6.1. Let A = [],, A, be a countable product. Then x = )
element of A if x, = (0, ..., 0, @, Anpt1, . ..) (an € A;) (n zeros).

n<w Xn 18 @ well-defined

Maps from Direct Product into Direct Sum We start with a special case which
has independent interest. (‘Reduced’ means no divisible subgroup # 0, and C! =
Nuen nC denotes the first Ulm subgroup of C.)
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Theorem 6.2 (Chase [1], Ivanov [5]). Let A = ]_[i<w A; denote a countable
product of groups, and ¢ : A — C = @jey C; a homomorphism into the direct
sum of reduced groups C;. Then there exist integers m > 0, k, as well as a finite
subset Jy C J such that

¢(mBk) = (@iEJo CI) + (@je] Cil)’

where By = [ [;<;-,, Ai (summand of A).

Proof. Let ¢;: A — C; denote the map ¢ followed by the jth coordinate projection.
Assume the claim is false. Then we can find inductively an increasing sequence
1=my<m <--- <my < ... of integers, a sequence of elements b, € myBy, and
indices ji € J such that

mk|mk+1, ¢jk(b() =0forf <k and ¢jk (bk) ¢ mk+1Cjk

for all k < w. Indeed, if, for some k < w, we have by, m; and j,; for all £ < k at hand
as required, then ji4; will be selected as an index not in Uy<x(supp ¢ (b¢)) such that
iy (Mt 1Bi+1) % Npen nCj, ., for some proper multiple my.; of my; this can be
done, since otherwise the claim would be true. Only a finite number of b; have non-
zero coordinates in any A;, therefore, the infinite sum a = Zk <o Pi 1s a well-defined
element in A. Consider

¢ia = ¢, _be) = ¢, D bo) + i (bo) + ¢, (Y bo),

l<w <k k<l<w

and observe that in the last sum the first term is 0, and the third term is contained in
mi+1C;,, but the second term is not. Since ¢a has a finite support in C, this equation
can hold only for a finite number of indices k—an obvious contradiction. O

We state the following theorem for p-groups that involves transfinite heights; its
proof runs parallel to the preceding one.

Theorem 6.3 (Zimmermann-Huisgen [1]). Ler A = [],_,A; be a countable
product of p-groups, and ¢ : A — C = @jey C; a homomorphism into the direct
sum of reduced p-groups C;. Given a limit ordinal T, there exist an integer k < w,
an ordinal 0 < t, and a finite subset Jo C J such that

¢@° [ A4) = ®jen C) + (@jes p°C)). O

k<i<w

The Measurable Cardinal Phenomenon If we wish to extend the preceding
results to uncountable direct products, then we are confronted with an unusual
phenomenon. There is a natural boundary to the extension: the first measurable
cardinal. The reader who wishes to avoid the following delicate set-theoretical
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arguments can safely assume that there are no such cardinals in our model of ZFC,
and jump to Theorem 6.5.

Recall that a cardinal « is measurable if a set X of cardinality « admits a
countably additive measure p such that p assumes only two values: 0 and 1, and
satisfies p(X) = 1, while ({x}) = 0 for all x € X. Here ‘countably additive’ means
that if X; (i < w) are pairwise disjoint subsets of X, then u (U< X;) = Y, #(X).

Let f be a function B — G where B = 2% is the Boolean lattice of all subsets
of a set X, and G # 0 is a group. We will say f is a G-valued measure on X if it
satisfies the following conditions:

(1) f({x}) = 0O for every singleton {x} € B;
(ii) if V C U are subsets of X, then f(U) = 0 implies f(V) = 0;
(iii) if U, V are disjoint subsets of X, then f(U U V) = f(U) + f(V);
@iv) if U; (i < w) are pairwise disjoint subsets of X, then there is n € N such that
fUicowU) = f(Uo) +---+ f(Uy) and f(U;) = O forall i > n.

We call f non-trivial if f(X) # 0. The following striking argument is due to J.
Los.

Lemma 6.4. If a non-trivial group-valued measure exists on the subsets of the set
X, then |X| is a measurable cardinal.

Proof. Assume f : 2X — G is a non-trivial G-valued measure on X, G # 0 any
group. We show that then there exists a non-trivial countably additive {0, 1}-valued
measure on X.

Consider all subsets U C X such that f(U) = 0. From (i)—(iv) we conclude that
these U form a countably additive ideal I in the Boolean lattice B of all subsets of
X. It is readily checked that f induces a countably additive G-valued measure f on
the Boolean quotient B/I. Let U, ..., U, ... be pairwise disjoint elements in B/IL.
We can find representatives U; C X of the U; which are still pairwise disjoint. By
condition (iv), f(U;) # 0 can hold only for a finite set of indices #; in other words,
B/1 is a finite Boolean lattice. Thus B/I has but a finite number of atoms, and on
them £ is not 0. Hence we derive a {0, 1}-valued measure 1’ on B/I by selecting an
atom in B/I and define u/(U) to be 1 or 0 according as U does or does not contain
the selected atom. In the obvious manner, u gives rise to a {0, 1}-valued measure u
on B, showing that the set X is measurable. O

It is remarkable that Theorems 6.2 and 6.3 generalize to larger products provided
that the cardinality of the set of components is not measurable.

Theorem 6.5 (Dugas—Zimmermann-Huisgen [1]). Let A = l_[ielAi be a direct
product, and ¢ : A — C = ®je; C; a homomorphism where the C; are reduced
groups. If || is not a measurable cardinal, then there are an integer m # 0 and
finite subsets Iy < 1,Jy < J such that

¢ (m l—[ A) = Bjes, C) + (Bjey Cfl)‘
iGI\I()
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Proof. Consider the set S of all subsets S of I such that for the productAs = [];c5Ai
the statement of the theorem holds (i.e., if I is replaced by S). Evidently, if S € S,
then all subsets of S also belong to S. Furthermore, S is not only closed under
finite unions (which is evident), but also under countable unions. In fact, if
Sy € S (k < w) are pairwise disjoint subsets, then, for some n < @ we have
Un<k<o Sk € S—this follows by applying Theorem 6.2 to the countable product
¢ [ico (T lies, 4) = C.

Once this has been established, in order to complete the proof it suffices to repeat
the arguments in £.o§’ theorem to conclude that if the claim fails, then / must be
measurable. O

Example 6.6. To show that the last theorem may indeed fail for a measurable index set /, let each
A; denote a copy of the X-cyclic p-group B = @;,, Z(p¥), and let C = B. To define ¢: A — B,
pickana = (...,a;...) € A = [[,¢;Ai. a has only countably many different coordinates (as
elements of B), so the supports of the equal ones give rise to a countable partition of / into disjoint
subsets, exactly one of which has measure 1, and the rest have measure 0. If b € B is the element
for which the support is of measure 1, then we set ¢ (a) = b. It is easy to see that this gives rise to
a well-defined homomorphism. It violates the conclusion of Theorem 6.5: m Im ¢ is not contained
in any finite direct sum of cyclic groups in C, for any integer m > 0.

The proof of Theorem 6.5 also applies to verify:

Theorem 6.7 (Zimmermann-Huisgen [1]). Let A = [[,c; Ai be a product of
p-groups, and ¢ : A — C = ®jey C; a homomorphism where the C; are reduced
p-groups. Given a limit ordinal p, if |I| = k is not measurable, then there exist an
ordinal 6 < p, as well as finite subsets Iy C I,Jo C J, such that

(" [ 4) < ®jes C)+(®jes p°C)). u
iEI\I()

% Notes. The peculiar behavior of homomorphisms from a countable direct product into an
infinite direct sum was noticed by Chase [1]. The same phenomenon of larger direct products was
observed by Dugas—Zimmermann-Huisgen [1] up to the first measurable cardinal (just as in the
case of slender groups). By using 8;-complete ultrafilters, Eda [1] gave a generalization to all
cardinals; see Lemma 2.13 in Chapter 13.

Ivanov [1] proves various theorems on so-called Fuchs-44 groups with respect to a class 2,
which is closed under extensions, submodules, and direct products. G is such a group if for every
¢: G —> B;gA; with A; € 2, there are m € N and a finite subset J C [ such that ¢ (mG) <
Dics Ai.

Exercises

(1) The group A = [[ien Z(p*) has no unbounded X-cyclic p-group as an
epimorphic image.
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(2) Let A = Z* where « is not measurable, and F a free group. Show that the image
of every homomorphism A — F is finitely generated.

(3) (Keef) Let A; (i € I) be an infinite set of unbounded separable p-groups. There
is no epimorphism [[,c; Ai = ®ic/A;.

7 Completeness in Linear Topologies

Groups that are complete in some linear topology are very special. Therefore, we
examine completeness and the completion processes.

Linear Topologies Assume that a linear topology is defined on the group A in
terms of a filter u in the lattice L.(A) of subgroups of A. The subgroups U € u form a
base of open neighborhoods about 0; we label them by a directed index set /, so that
i <jfori,j € Imeansthat U; > U;. Thus I as a (directed) poset is dual-isomorphic
to a subset of u (which has the natural order relation by inclusion).

By a net in A we mean a set {a;};c; of elements in A, indexed always by I. A net
is said to converge to a limit a € A if to every i € [ there is aj € [ such that

ay —a € U; for all k > j.

If A is Hausdorff in the topology, then limits are unique; if, however, A fails to
be Hausdorff, then limits are determined only up to mod N;U;. The classical proof
applies to show that a subgroup B of A is closed in the topology if and only if it
contains the limits of convergent nets whose elements belong to B.

A net {a;};cs is a Cauchy net if to any given i € I, there is aj € I such that

ay—ay € U; whenever k, £ > j.

Since the U; are subgroups, a; —aj, ag —a; € U; implies ay—ay € U;, for the Cauchy
character of a net it suffices to require that ay —a; € U; for all k > j. Clearly, cofinal
subnets of a Cauchy net are again Cauchy nets, and such a subnet converges if and
only if the larger net also converges; moreover, the limits are then the same. To
facilitate discussion and to simplify notation, we shall concentrate without loss of
generality on Cauchy nets {b;};c; which are neat in the sense that, for every i € I,
by — b; € U; holds for k > i (i.e.,j = i can be chosen). If a neat Cauchy net {b;};es
converges to a limit b € A, then it converges neatly: by — b € U; for all k > i. In
a group whose topology satisfies the first axiom of countability, Cauchy sequences
{a, | n < w} satistying a, 4| — a, € U, for all n € N are neat.

Topological Completeness A group A is said to be complete in a topology if
it is Hausdorff, and every (neat) Cauchy net in A has a limit in A. Observe that we
mean by complete groups only Hausdorff groups.
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Lemma 7.1. A subgroup of a complete group is closed if and only if it is complete
in the induced topology.

Proof. Let G be a subgroup in the complete group C. First assume G is closed in C,
and {g;};e; is a Cauchy net in G (in the inherited topology). The net is Cauchy in C
too, so it converges to a limit ¢ € C which must be in G, since G is closed. Thus G
is complete. Conversely, suppose G is complete in the induced topology, and ¢ € C
is the limit of a Cauchy net {g;};,; with g; € G. It is a Cauchy net in G as well, so
has a limit in G, which cannot be anything else than c. Thus G is closed in C. O

In the next result the countability hypothesis is essential.

Lemma 7.2. Let B be a closed subgroup of a complete group A that satisfies the
first axiom of countability. Then the factor group A/B is complete in the induced

topology.

Proof. Since B is closed, A/B is Hausdorff. Consider a base of neighborhoods about
0in A such that Uy > --- > U, > ... with Nyeny U, = 0. Let {a,, + B | m € N}
be a Cauchy sequence in A/B; without loss of generality, we assume that it is neat,
i.e. a1 —am + B C U, + B. We want to lift this Cauchy sequence to a Cauchy
sequence {c,, | m € N} in A. Let ¢; = ay, and assume that ¢y, ...,c, € A have
already been chosen such that ¢; € a; + Band ¢; —¢j—1 € U;—; fori = 2,...,m.
Then a4 — ¢ = uy, + b, for some u,,, € Uy, b, € B, and set c-1 = apt1—by €
am+1 + B to have ¢, +1 — ¢y € Uy If lim{c,,} = a € A, then a + B is the limit of
the sequence {a,, + B | m € N} in A/B. O

Recall that if {A; | j € J} is a family of groups, each equipped with a linear
topology, say, defined by the filter u; in L(4;), then the direct product A* = [] jes Aj
is given the product (Tychonoff) topology: a subbase of neighborhoods of 0
consists of the subgroups nj_l Uj; where 1j: A* — A, is the jth coordinate projection,
and Uj; € u;. The product topology is again linear, and the 7; are continuous, open
homomorphisms. The direct sum A = @®je; A; is a dense subgroup of A*.

We should also mention the box topology on the direct product; this topology is
used, e.g., when the components are viewed in the Z-adic topology, and we want
to have this topology on their direct product. We now assume that the same poset /
serves to index a base of neighborhoods about 0 in each A;. If {U;; < A; | i € I} is
a base in the topology of A; (where U; < Uy whenever k < iinl), then the box
topology on A* = ]_[je ;A is defined to have the subgroups

Ui:nti (iel

jeJ

as a base of neighborhoods about 0. The box topology on A* satisfies the first
countability hypothesis if all the A; do. The inclusion U; < 7; lU], for all j shows
that the box topology is finer than the product topology. Hence the projections 7;
are continuous in the box topology as well.



7 Completeness in Linear Topologies 71

Example 7.3. Actually, there are several methods of furnishing a direct product with a linear
topology. E.g., let G = ]_[je 1A; be a product, and F a filter on the index set /. For each X € F we
form the subgroup

Vi={g=(...an..) €[4 |n(e) € X}

JEI

(where n(g) = {j € I | a; = 0} denotes the null-set of g), and declare the subgroups Vx (X € F)
as a base of neighborhoods about 0. This linear topology is Hausdorff if and only if F is a free
filter, i.e. Nxc r X = .

Example 7.4. Choose the filter of subsets of / with finite complements. Then the topology defined
in Example 7.3 is the product topology. If A; (i € I) are non-trivial groups in the discrete topology,
then [ ; A; is complete in the product topology. The direct sum @A, is dense in the direct product.

Completions The rest of this section is devoted to the completion of groups in
linear topologies. There are two important completion processes: one is via Cauchy
nets, and another is by using inverse limits. We will employ the second method
which fits better to linear topologies.

Let A be a group with linear topology (not necessarily Hausdorff), and {U; | i € I}
a base of neighborhoods of 0, with [ a directed index set: i < j in [ if and only if
U; > U,. Define the groups C; = A/U;, and for j > i in I, the homomorphisms
n’ C; — Civian): a + Uj — a + U,. The limit of the arising inverse system

={C; (i el Jr’ } will be denoted by A: it is furnished with the topology inherited
from the product topology of [] C;. Thus, if 7r; denotes the ith projection ]_[ C — G,
then a subbase of neighborhoods of 0 inAis given by the subgroups U =AN 7;10.
Evidently, 64 : a +— (...,a+ U;,...) € Aisa homomorphism A — A which is
continuous and open, and 6,U; = 6,4A N f]i holds for each i € I. It is clear that
Ker 6, is the intersection of all U;.

Lemma 7.5. For every group A with a linear topology, the group A is complete in
the induced topology, and the image of the map 6 : A — A is a dense subgroup of A.

Proof. Leta=(...,a; +U;,...) € A, and let U,- C Abean open set. As 64q; lies
in the f],--neighborhood of a, 044 is dense in A. Therefore, to prove completeness,
we need only verify the convergence of Cauchy nets in 644 to elements of A. A neat
Cauchy net in 64A is the image of a neat Cauchy net {b;};e; in A. We claim that
b= (..,bi+U,...)is the limit of {#ab;}ic;. First, b € A, since 7(b; + U;) =
bj+U; = bi + U, for j > i. Secondly, the ith coordinate of 4b; — bis 0, so it belongs
to the open set U;. O

Observe that the completion is always Hausdorff, and 6, : A — A is monic if and
only if A had a Hausdorff topology to start with.

Lemma 7.6. If ¢ is a continuous homomorphism of the group A into a complete
group C, then there is a unique continuous homomorphism ¢ : A — C such that

P04 = ¢.
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Proof. Let {a; | i € I} be a Cauchy net in A converging to the element a € A.
Continuity implies that {¢a; | i € I} is a Cauchy netin C.If ¢ € C s its limit, then
the only possible way of defining a continuous $istolet ¢: a > c. The rest of the
claim is straightforward. O

From this lemma it also follows that the completion A of A is unique up to
topological isomorphism. Also, 64 : A — A is a natural map, forifp : A — C
is a continuous homomorphism, then the diagram

A2 .

W e

A2 &

commutes where ¢ is the map whose existence was established in Lemma 7.6.

Our main interest lies in the Z-adic topology, and in completions in that topology.
Therefore, if we say that ‘a group is complete,” then we always mean completeness
in the Z-adic or p-adic topology (whichever is obvious), unless stated otherwise.
Furthermore, we shall use the special notation A for the completion of A in the
Z-adic topology.

In the next theorem we refer to linear compactness; see Sect. 3 in Chapter 6.

Theorem 7.7. Let A be any group.

(1) Its completion in the Z-adic (p-adic) topology carries the Z-adic (p-adic)
topology.
(ii) Its completion in the finite index topology has a compact topology.
(iii) Its completion in the Priifer topology carries a linearly compact topology.

Proof. (i) Let A= 1(i11neNA /nA, or, equivalently, A= LiilneN A/n!A whenever
we consider the collection of subgroups U, = n!A (n € N) as a decreasing
sequence of neighborhoods about 0. The elements in the induced U, have nth
coordinates 0, and it is easy to see that the conditions on the coordinates of
elements on A imply that all the ith coordinates in U, are 0 for i < n, while all
those for i > n are divisible by n!. This means that U, = n!A.

(ii) In the finite index topology, the groups A/U; are finite, so they are compact.
Thus the product [ [; A/ U; is compact, and the inverse limit A= LiilieIA /U; as
a closed subgroup is also compact.

(iii) The proof is similar to the one in (ii), using the linear compactness of A/U; in
the Priifer case.

Example 78. Let A = @,,A, be furnished with the topology where the subgroups
= @i<n<wA, form a base of neighborhoods about 0. The completion of A in this topology is
the direct product []

n<w
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If the topology fails to satisfy the first axiom of countability, then completeness
may occur in an unexpected situation. This is demonstrated by the following
example where, for a limit ordinal A, the p*-topology of a p-group A is defined
by declaring the subgroups p°A (o < A) as a base of neighborhoods of 0.

Example 7.9. Suppose A is a limit ordinal not cofinal with w, and let A, (6 < 1) be p-groups
such that A, has length o. Then the A, are discrete (and hence complete) in the p*-topology.
Consequently, A* = [],., A, is complete in the p*-topology which is now the box topology on
A™ (cf. Exercise 2).

Strangely enough, A = @, .; A, is complete in the p*-topology. To prove this, we show that A
is closed in A*. Assume the contrary, i.e. thereisx = (...,d,,...) € A* \ A in the closure of A.
We can find a sequence 0] < :++ < 0, < ... of ordinals with a,, # 0. Letsupo, = ¢’ < A and

y € Asuchthatx—y € p“/ [1,<; As. Then x and y have equal coordinates in every A p Withp <o’
which contradicts the fact that x has infinitely many and y only finitely many non-zero coordinates
for p < o’.

Z-adic Completeness Direct products of complete groups are complete in the
product topology. We wish to point out the following result on the Z-adic topology.

Lemma 7.10. A direct product is complete in the Z-adic topology if and only if
every component is complete in its Z-adic topology.

Proof. Summands inherit Z-adic topology and completeness. Conversely, assume
every A;in G = ]_[je ,A; is Z-adically complete and {g; | i € I} is a neat Cauchy net
in G. Then {m;g; | i € I} is a neat Cauchy net in A;, and if a; € A; is the limit of this
net, then g € G with mjg = g; is the limit of {g; | i € I}. O

% Notes. While the completion in the Priifer topology may be viewed as a ‘linear compact-
ification,” completion in the finite index topology is not at all compactification. The latter process
kills the first Ulm subgroup of the group, so it is an embedding only for groups that are Hausdorft in
the finite index topology. A genuine ‘compactification’ can be accomplished by the so-called Stone
compactification. This is the process of embedding A in the group Hom(Hom(A, T), T), where T

denotes the circle group R/Z (the inner Hom is furnished with the discrete topology, and the outer
with the compact-open topology).

Exercises

(1) (a) The completions of the groups A and A/ N U; are the same.
(b) A and A/A! have the same Z-adic completion.

(2) A direct product is complete in the box topology if and only if every component
is complete.

(3) Every compact (linearly compact) group is complete in its topology.

(4) The direct product of discrete groups is Hausdorff and complete in every
u-topology where u is a free filter.

(5) The inverse limit of complete groups is complete. (Careful with the topology.)

(6) Compare the completions of a group in the finite index and in the Priifer
topologies.
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Problems to Chapter 2

PROBLEM 2.1 (J. Dauns). Suppose A has the property that every summand B of
A has a decomposition B = B| @ B, with B = B,. Isthen A = A @ A?

PROBLEM 2.2. Study the Boolean powers A® of a group A.
Cf. Balcerzyk [3], and especially, Eda [2].

PROBLEM 2.3. Represent a p-group A as a direct limit A = h_r)n A[p"]. How

does the structure of A change if the connecting monomorphisms A[p"] — A[p" 1]
are modified?

PROBLEM 2.4. Suppose ¢ : A = [[A; —> C = ]_[<R‘ C; is a homomorphism of
a product into an N;-product. Can we say something about where the image must
be contained (like Theorem 6.5)?



Chapter 3
Direct Sums of Cyclic Groups

Abstract The study of important classes of abelian groups begins in this chapter. Not counting
the finite and finitely generated groups, the class of direct sums of cyclic groups is perhaps the best
understood class.

We give a fairly detailed account of free abelian groups, and discuss the presentation of groups
via generators and defining relations. Several sections are devoted to direct sums of cyclic groups
(called X-cyclic groups); these groups share most useful properties, and can easily be characterized
by cardinal invariants. We present a few criteria for such groups, and establish several remarkable
results, e.g. Kulikov’s theorem that passage to subgroups preserves X-cyclicity. We draw attention
to the method of smooth chains, which became the most important tool in the theory, and provides
basic machinery for several results to come.

We shall cover some of the aspects of almost free groups, but shall not pursue their theory
farther, due to the sophisticated set-theoretical arguments required.

In this chapter, in a number of proofs we have to use purity, so readers should be familiar with
the fundamental results on pure subgroups (in Chapter 5) before studying the second part of this
chapter.

1 Freeness and Projectivity

Free Abelian Groups By a free (abelian) group is meant a direct sum of
infinite cyclic groups. If these cyclic groups are generated by the elements x; (i € 1),
then the free group will be

F = ®ies (xi).
The set {x;};e; is a basis of F. The elements of F are linear combinations
g=mx; +--+mx,  (k=0) (3.1)
with different x; and non-zero integers n;. In view of the definition of direct sums,
two such linear combinations represent the same element of F exactly if they differ

at most in the order of the terms. Addition is performed in the obvious way by
adding the coefficients of the same x;.
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We can define F formally by starting with a set X = {x;};e; of symbols, called
a free set of generators, and declaring F as the set of all formal expressions (3.1)
under the mentioned equality and addition. We say that F is the free group on the
set X.

Example 1.1. An immediate example for a free group is the multiplicative group of positive
rational numbers. The prime numbers form a free set of generators.

Needless to say, F is, up to isomorphism, uniquely determined by the cardinal
number k = |I| of the index set /. Thus we are justified to write F. for the free group
with k free generators. k is also called the rank of the free group F, in symbols,
rk F = « (for the discussion of rank, see Sect. 4).

Theorem 1.2. The free groups F, and F, are isomorphic exactly if the cardinals k
and A are equal.

Proof. We need only verify the ‘only if” part of the assertion. Observe that if F is
a free group with free generators x; (i € I), then an element (3.1) of F belongs to
pF if and only if p|ny, ..., p|n. Hence, if p is a prime, then F/pF is a vector space
over the prime field Z/pZ of characteristic p with basis {x; + pF}e, and so its
cardinality is p!'l or |I| according as [ is finite or infinite. Thus |F/pF| completely
determines |I|. O

The Universal Property Free groups enjoy a universal property formulated in
the next theorem which is frequently used for the definition of free groups.

Theorem 1.3 (Universal Property of Free Groups). Let X be a free set of
generators of the free group F. Any function f : X — A of X into any group A
extends uniquely to a homomorphism ¢ : F — A. This property characterizes free
sets of generators, and hence free groups.

Proof. Write X = {x;};es, and f(x;) = a; € A. There is only one way f can be
extended to a homomorphism ¢ : F' — A, namely, by letting

og = dp(nixy, + - + mx;) = ma;, + -+ + ma,.

(The main point is that the uniqueness of (3.1) guarantees that ¢ is well defined.) It
is immediate that ¢ preserves addition.

To verify the second part, assume that a subset X of a group F has the stated
property. Let G be a free group with a free set ¥ = {y;}ie; of generators, where
the index set is the same as for X. By hypothesis, the correspondence f : x; — y;
extends to a homomorphism ¢ : F — G; this cannot be anything else than the
map nix; + -+ 4+ mx;, = ny, + -+ ngyi. ¢ is injective, because the linear
combination of the y; is 0 only in the trivial case. ¢ is obviously surjective, and so it
is an isomorphism. O

Mapping X onto a generating system of a given group, we arrive at the following
result which indicates that the group Z is a generator of the category Ab (‘generator’
in the sense used in category theory).
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Corollary 1.4. Every group with at most k generators is an epimorphic image of a
free group with k generators. O

Consequently, every group A can be embedded in a short exact sequence

O—)H—)FLA—)O,

where F is free group, and H = Ker ¢. (We will see shortly that H is likewise free.)
This is called a free resolution of A. It is far from being unique, because both F' and
¢ can be chosen in many ways.

If k is an infinite cardinal, then F has 2* subsets, and hence at most 2* subgroups
and factor groups. We conclude that there exist at most 2“ pairwise non-isomorphic
groups of cardinality < k. (We will learn in Corollary 3.8 in Chapter 11, that 2 is
the precise number.)

The next two theorems are fundamental, they are quoted most frequently.

Theorem 1.5. Suppose that B is a subgroup of a group A such that A/B is a free
group. Then B is a summand of A, i.e., A = B ® C for a subgroup C = A/B.

Proof. That only free factor groups can share the stated property will follow
from Theorem 1.7. In order to show that free groups do have this property,
by Lemma 2.4 in Chapter 2, it suffices to verify the claim for A/B = Z only, say
A/B = {(a + B) with a € A. The elements of A/B are the cosets n(a + B) =
na + B (n € Z) (all different). Hence A = B & (a) is immediate. O

This theorem can also be phrased by saying that an exact sequence 0 — B —
A — F — 0 with a free group F is necessarily splitting.

Subgroups of Free Groups In the next theorem we study the subgroups of free
abelian groups. Recall the famous result in group theory that subgroups of (non-
commutative) free groups are again free. For abelian groups the situation is the
same. To prove this, we use a well ordering of the index set.

Theorem 1.6. Subgroups of free groups are free.

Proof. Let F be a free group on the set X, which we now assume to be well ordered,
say X = {x;}o<; for some ordinal 7. Thus F = @,<, (x,). For ¢ < 7, define
Fys = ®p<s (xp), and set G, = G N F, for a subgroup G < F. Clearly, G, =
Go+1 N Fy,80 Got1/Gy = (Gy+1 + Fo)/Fs. The last factor group is a subgroup
of Fo41/Fs = (x4), thus either G,41 = G, or G,+1/G, is an infinite cyclic group.
From Theorem 1.5 we conclude that G,4+1 = G, & (g,) for some g, € G4
(which is 0 if Go4; = Gy). It follows that the elements g, generate the direct sum
@s<: (go) in G. This must be all of G, since G is the union of the G, (0 < 7). O
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Projectivity Call a group P projective if every diagram

P
A
0 A~ . ¢ 0

with exact row can be completed by a suitable homomorphism ¢ : P — Btoa
commutative diagram, i.e. B = ¢. We then say: ¢ is lifted to .

Theorem 1.7. A group is projective if and only if it is free.

Proof. Let B: B — C be a surjective map, and F a free group with a homomorphism
¢ : F — C. For each x; in a free set X = {x;};,c; of generators of F, we pick
an element b; € B such that 8b; = ¢x,—this is possible, 8 being epic. Owing
to Theorem 1.3, the correspondence x; > b; (i € I) extends to a homomorphism
¥ : F — B. The maps S and ¢ are equal on the generators of F, so Sy = ¢, and
F is projective.

Next, let P be a projective group, and B : F — P an epimorphism, F a free
group. By definition, the identity map 1p: P — P can be lifted toamap ¢ : P — F,
i.e. BY = 1p. Thus ¥ P is a summand of F, so a free group by Theorem 1.6. The
isomorphism P 2 v P completes the proof. O

Thus ‘free’ and ‘projective’ have the same meaning for abelian groups. There-
fore, free resolutions may also be called projective resolutions.

Projective Cover The projective cover of a group A is defined as a projective
group P with a surjective map 7 : P — A such that Ker 7 is a superfluous subgroup
of P. Projective covers are duals of injective hulls (to be discussed in Chapter 4), but
in contrast to their dual counterparts, they rarely exist.

Example 1.8. (a) The cyclic group Z(p) has no projective cover. If it had one, Z would be a good
candidate, but then the kernel would not be superfluous.

(b) However, Z(p) regarded as a Zg)-module does have a projective cover, since pZ, is
superfluous in Z).

Theorem 1.9. A group has a projective cover if and only if it is free.

Proof. We show that the zero-group is the only superfluous subgroup of a free
group F. If H # 0 is a subgroup in F, then there is a prime p with H £ pF (since
N, pF = 0). Evidently, (H + pF)/pF # 0 is a summand of the Z/pZ-vector space
F/pF, say, with complement G/pF for some pF < G < F.Then G+ H = F where
G is a proper subgroup of F, so H cannot be superfluous. O

Defining Relations We shall discuss briefly the method of defining a group
in terms of generators and relations. Though this is well known from general
group theory, in the commutative case there are simplifications worthwhile to be
pointed out.
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Let {a;}ics be a set of generators of a group A, and 6 : F — A an epimorphism
from a free group F = @;er (x;) such that Ox; = a; for each i € I. Ker 6 consists of
those linear combinations mx;, + --- 4+ myx; € F with integral coefficients m; for
which ma;, + -+ + mia;, = 0 holds in A. These equalities are called the defining
relations relative to the generating system {a;}e;.

It follows that the group A is completely determined by giving a set {a;};e; of
generators along with the set of all defining relations:

A= (a; (i € D| mpa;, + -+ mya;, =0 (j €J)) (3.2)

(since we are dealing exclusively with abelian groups, the commutativity relations
are not listed). Indeed, if (3.2) is given, then A is defined as the factor group
F/H, where F is a free group on the free set {x;};c; of generators, and H is the
subgroup of F, generated by the elements mjx;, + --- + myx; for all j € J.
The relations between the given generators of A are exactly those which are listed
in (3.2), and their consequences. (The emphasis is on the non-existence of more
relations.) Equation (3.2) is said to be a presentation of A.

Example 1.10. A presentation of a free group F with free generators {x;},c; is given as
F = (x; (i € I) | @) (there are no relations between the generators). Of course, there are numerous
other presentations; e.g. Z = (x,y | 2x — 3y = 0).

Example 1.11. The group C = (x | nx = 0) for n € N is cyclic of order n.

% Notes. The material on free groups is fundamental, and will be used in the future without
explicit reference. Though in homological algebra, projectivity is predominant, in abelian group
theory freeness seems to prevail. Fortunately, for abelian groups, freeness and projectivity are
equivalent, while for modules, the projectives are exactly the direct summands of free modules.
Projective modules are rarely free; they are free over principal ideal domains (but not even over
Dedekind domains that are not PID), and over local rings (Kaplansky [2]).

Theorem 1.6 holds for modules over left principal ideal domains. Submodules of projectives
are again projective if and only if the ring is left hereditary, i.e., all left ideals are projective.
Theorem 1.2 holds over commutative rings or under the hypothesis that at least one of k and A
is infinite. There exist, however, rings R such that all free R-modules # 0 with finite sets of
generators are isomorphic. It is perhaps worthwhile pointing out that every R-module is free if and
only if R is a field, and every R-module is projective exactly if R is a semi-simple artinian ring.
The property that all R-modules have projective covers characterizes the perfect rings, introduced
by H. Bass.

Hausen [6] defines a group P k-projective for an infinite cardinal « if it has the projective
property with respect to all exact sequences 0 — A — B — C — 0 with |C| < k. She establishes
various properties of k-projective groups, e.g. P is k-projective if and only if, for every subgroup
G with |P/G| < «, there is a summand H of P such that G < H and G/H is a free group.

Exercises

(1) Let F be a free group on n free generators. If n elements ay, . . . , a, € F generate
F, then this set is a basis of F.
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(2) Prove the following converse of Theorem 1.5: a group F is free if it has the
property that whenever B < A and A/B = F, then B is a summand of A.

(3) Give a presentation of Z(p°), and one of Q.

(4) Let A be presented by a set of generators and defining relations, and assume
that the set of generators is the union of two disjoint subsets, {b;};c; and {c;};es,
such that each of the defining relations contains only generators from the same
subset. Then A = B @ C, where B is generated by the b;, and C by the c;.

(5) Let A be presented by a set of generators and defining relations, and B by
a subset of these generators and defining relations. Show that letting the
generators of B correspond to themselves qua generators of A induces a
homomorphism B — A.

(6) For every set of generators, there is a minimal set of defining relations relative
to these generators (i.e., no relation can be omitted). [Hint: Theorem 1.6.]

(7) Let0 > A — AZLA;,, — 0 be an exact sequence, and ¢;: F; —> A; (i = 1,3)
epimorphisms where F; are free. If ¢ : F3 — A, is such that «yy = ¢3, then
¢1 @ Y: F| ® F3 — A is epic, and its kernel is Ker ¢ & Ker ¢3.

(8) Let0 —» F; — F, — -+ — F, — 0 be an exact sequence of finitely generated
free groups. Prove the equality Y ;_,(—1)*rk F = 0.

(9) Assume {A, | n € Z} is a set of groups. Verify the existence of free groups
F, (n € Z) and a long sequence

Op—2 Op—1 on Un+1
. — F —F, —F4+ —...

such that o,—0t, = 0 and Keroy,,/ Ime,,—1 = A, for every n € Z.

2 Finite and Finitely Generated Groups

We turn our attention to groups with a finite number of generators. First, we discuss
finite groups separately. Though this is a special case of the general theory of finitely
generated groups (to be developed independently), a short, direct approach to the
theory of finite groups is not without merit.

Finite Groups We start with a simple lemma.

Lemma 2.1. Let A be a p-group that contains an element g of maximal order p* for
an integer k > 0. Then (g) is a direct summand of A.

Proof. If A is infinite, then use Zorn’s lemma to argue that there is a subgroup B of A
maximal with respect to the property BN {g) = 0. To show that A* = (g) ® B equals
A, by way of contradiction assume that some a € A does not belong to A*. Replacing
a by p'a if necessary, we may also suppose that pa € A*, i.e. pa = mg + b for some
m € Z,b € B. By the maximality of the order of g, we have p*~'mg + p*~'b =
pfa = 0. Hence p*~'mg = 0, so m must be divisible by p, say, m = pm’. Then
d =a—m'g ¢ A* satisfies pa’ = b. By the maximal choice of B, (B, a’) N {g) # 0,
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thus 0 # ra’ +b' = sg forsome r, s € Z, b’ € B. This can happen only if (r,p) = 1,
since pa’ € B. But then pd’, ra’ € A* implies ' € A*, a contradiction. O

Fundamental Theorem on Finite Abelian Groups The first structure theorem
in the history of group theory was the famous Basis Theorem on finite abelian
groups.

Theorem 2.2 (Frobenius—Stickelberger [1]). A finite group is the direct sum of a
finite number of cyclic groups of prime power orders.

Proof. Thanks to Theorem 1.2 in Chapter 2, the proof reduces at once to p-groups.
In a finite p-group A # 0, we select an element g of maximal order. By the preceding
lemma, A = (g) @ B for some subgroup B. Since B has a smaller order than A, a
trivial induction completes the proof. O

There is a uniqueness theorem attached to the preceding result. Again, it suffices
to state it for p-groups.

Theorem 2.3. Two direct decompositions of a finite p-group A into cyclic groups
are isomorphic.

Proof. In a direct decomposition of A collect the cyclic summands of equal orders
into a single summand to obtain a courser decomposition A = By & - - - @ By where
each B; is 0 or a direct sum of cyclic groups of fixed order p’. Evidently, p*~'A =
p*71B; is the socle of By, it is an elementary p-group, its dimension (as a Z/pZ-
vector space) tells us the number of cyclic components in By. As this socle depends
only on A, the number of cyclic summands of order p* is independent of the choice
of the direct sum representation of A. In general, p"'A[p] = p"™'Bi[p] ® --- @
' Bi[p] modulo p'A[p] = p'Biyilp] ® -+ ® p'Bilp] is a Z/pZ-vector space =
p"~!B;[p] whose dimension is equal to the number of cyclic summands (of order p’)
in B;. The same argument shows that this dimension is independent of the choice of
the selected direct decomposition of A. O

Finitely Generated Groups We proceed to the discussion of finitely generated
groups. We start with a preliminary lemma.

Lemma 2.4 (Rado [1]). AssumeA = (ay,...,a), andny, ..., n; are integers such
that ged{ny, ..., n} = 1. Then there exist elements by, . .., by € A such that

A= {(by,...,b) with by = njay + - - - + niay.

Proof. We inductonn = |ny|+---4 |ng|. If n = 1, then let by = =£a; for any i, and
the claim is evident. Next let n > 1. Then at least two of the n; are different from
0, say, |n;| > |nz| > 0. Since either |n; + ny| < |ny| or |ny — ny| < |ny|, we have
|n1 £ny| 4 |na| +- - -4 |nk| < nfor one of the two signs. gcd{n; ny, ny, ..., m} =1
and the induction hypothesis imply that A = (ay, ..., a) = (a1, a2 Fay, ..., a) =
(b1, ...,by) with by = (ny £ m)ay + na(ax F ay) + nzaz + -+ - + meaxy = may +
<o 4 nrag. O
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The main result on finitely generated groups is our next theorem which is
regarded as the first major result in the abstract structure theory of infinite abelian
groups. It plays an important role in several applications.

Theorem 2.5. The following conditions on a group A are equivalent:

(1) A is finitely generated;
(ii) A is the direct sum of a finite number of cyclic groups;
(iii) the subgroups of A satisfy the maximum condition.

Proof. (i) = (ii) assume A is finitely generated, and a minimal generating set of A
contains k elements. Pick such a set with k generators, say, ay, ..., ar, with the
additional property that a; has minimal order, i.e. no other set of k generators
contains an element of smaller order. If k = 1, then A = (a;), and we are done.
So let k > 1, and as a basis of induction, assume that B = (as, ..., q) is a direct
sum of cyclic groups. Thus it suffices to verify that A = (a;) & B, which will follow
if we can show that (a;) N B = 0.

By the choice of k, we have o(a;) > 1. Working toward a contradiction, suppose
that (a1) N B # 0, i.e. ma; = mpas + -+ + mpay # 0 with 0 < my < o(ay).
Let d = ged{my,...,m}, and write m; = dn;. Then ged{ny,...,n} = 1, and
from Lemma 2.4 we conclude that A = (ay,...,a;) = (b1,...,br) with by =
—nja; + mpay + -+ + mpag. Here db; = 0, thus o(b) < o(a,), contradicting the
choice of a;. Thus {a;) N B = 0.

(ii) = (iii) Let A = {(a1) & --- D (a). If k = 1, then A is cyclic, and every non-
zero subgroup is of finite index in A. Hence the subgroups satisfy the maximum
condition. (iii) will follow by a trivial induction if we can show that A = B & C has
the maximum condition on subgroups whenever both B and C share this property. If
A; <.-- <A, <...isanascending chain of subgroupsin A, thenA N B <.+ <
A, NB < ... isonein B, so from some index m on, all A, N B are equal to A,, N B.
Forn > mwehaveA,/(AnNB) = A,/(A,NB) = (A,+B)/B < A/B = C, whence
we conclude that from a certain index ¢t > m on all factor groups A,/(A,, N B), and
hence all subgroups A;, are equal.

(iii) = (i) The set S of all finitely generated subgroups of A is not empty, so by
hypothesis (iii) A contains a maximal finitely generated subgroup G. For any a € A,
(G, a) is still finitely generated. Hence (G,a) = G, thus A = G, and A is finitely
generated. O

Let us point out two immediate consequences of Theorem 2.5. First, every finitely
generated group is the direct sum of a finite group and a finitely generated free
group (follows from (ii)). Secondly, subgroups of finitely generated groups are
again finitely generated (follows from (iii)).

The most essential part of the preceding theorem is the first implication. We give
another quick proof, reducing it to Theorem 2.2. If we can show that A/T is free
(T = t(A)), then A =~ T & A/T by Theorem 1.5, and we are done. Thus, it is
enough to consider A = (ay, ..., a,) torsion-free. To start the induction on n, there
is nothing to prove if n = 1, since then A = Z trivially. Let U/{a,) denote the
torsion subgroup of A/({a,). Then A/ U is torsion-free and has a smaller number of
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generators, so it is free. Hence A = U & A/U (again by Theorem 1.5), where U is
a finitely generated group isomorphic to a subgroup of @, so it is cyclic.

Stacked Basis Theorem A third proof of Theorem 2.5 is based on the following
theorem which is of considerable interest in its own right (see the more general The-
orem 6.5). We say {a;};es is a basis of A if A = @;¢f (a;).

Theorem 2.6. If H is a subgroup of the free group F of finite rank k, then F and H
have ‘stacked bases:’

F={a)® - ®{a) and H= (b)) D - D (by)
such that there are non-negative integers my, . . . , my, satisfying
bi=maa; (i=1,...,k) and mi—|m; (=2,...,k).

Proof. We select a free basis {xi, ..., x;} of F with the following extremal property:
H contains an element by = njx; +- - - + ngx; with a minimal positive coefficient ;.
In other words, for another basis of F, or for another permutation of the basis
elements, or for other elements of H, the leading positive coefficient is never less
than n;.

The first observation is that ny|n; (i = 2,...,k). For, if n; = gqiny + ri (g;,1; €
7,0 < r; < np), then we can write by = nya; + rax; + -+ - + rix; where {a; =
X1 + qax2 + -+ + qrXx, X2, ..., Xy is @ new basis of F. By the special choice of
{x1,...,x}, we must have r, = --- = r = 0. The same argument shows that if
b = s1x; + -+ + sixi (5; € Z) is any element of H, then s; = gn; for some g € Z.
Hence b — gb; € (x3) @ --- @ (xx) = F). We conclude that F has a decomposition
F = (a1) & F) such that H = (b,) & H;, where by = nja; and H; < F. Using
induction hypothesis for the pair Hy, F, we infer that F has a basis {ay, ..., a;} and
H has a basis {by, ..., by} such that b; = m;a; for some non-negative integers m;.

It remains to establish the divisibility relation m;|m, (the others will follow by
induction). Write m, = tm; + r with t,r € Z,0 < r < my. Then {a = a; +
ta,ap, . ..,a} is a new basis of F, in terms of which we have b; + b, = mja; +
(tmy 4 r)a; = mya + ra, € H. The minimality of m; = n; implies r = 0. O

With the aid of Theorem 2.6, we can reprove the implication (i) = (ii)
in Theorem 2.5. If A is generated by k elements, then A =~ F/H, where F is a
free group on a set of k elements. Choosing stacked bases for F and H, as described
in Theorem 2.6, we obtain

A= (ar)/(mar) @ --- ® (ax)/(meay).
Consequently, A is the direct sum of cyclic groups: the ith summand is cyclic of

order m; if m; > 0, and infinite cyclic if m; = 0. The numbers m; are called
elementary divisors.
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Fundamental Theorem on Finitely Generated Groups Of course, the num-
bers m; in Theorem 2.6 are not necessarily prime powers, but we can decompose
the finite summands into direct sums of cyclic groups of prime power orders. Cyclic
groups of prime power orders are indecomposable (and so are the infinite cyclic
groups), so we can claim the fundamental theorem:

Theorem 2.7 (Fundamental Theorem on Finitely Generated Abelian Groups).
A finitely generated group is the direct sum of finitely many indecomposable cyclic
groups, each of which is of prime power order or infinite cyclic. O

Whenever one has a direct decomposition, then the standard question is: to what
extent is the decomposition unique? This question is fully answered in the following
theorem.

Theorem 2.8. Any two direct decompositions of a finitely generated group into
indecomposable cyclic groups are isomorphic.

Proof. 1f A is finitely generated, then by Theorem 2.7 A = tA @ F where F =
A/tA is finitely generated free. Both summands are uniquely determined by A up to
isomorphism. Theorems 2.3 and 1.2 guarantee the uniqueness of the decompositions
of the summands, whence the claim is evident. O

Invariants Thus in the decompositions of a finitely generated group A, the
orders of the indecomposable cyclic summands (but not the summands themselves)
are uniquely determined. These orders are referred to as the invariants of A.
For instance, the invariants of A =~ Z ® Z & Z & Z(p) ® Z(p*) ® Z(¢*) &
Z(q*) (with primes p,q) are: 00,00, 00,p,p%,q>,q>. We also say: A is of type
(00,00,00,p,p%, 4%, ¢°).

Consequently, with every finitely generated group A, a finite system of symbols
oo and prime powers is associated. Not only is it uniquely determined by A, but
it also determines A up to isomorphism, i.e. two finitely generated groups are
isomorphic if and only if they have the same system of invariants (maybe in
different orders)—this fact is expressed by saying that this is a complete system
of invariants. Moreover, these invariants are independent in the sense that, for an
arbitrary choice of a finite system of symbols co and prime powers, there exists a
finitely generated group exactly with this system of invariants (this is obvious).

Example 2.9. Let C(m) denote the multiplicative group of those residue classes of integers modulo
the integer m = p{' -+ p* (canonical form) which are relatively prime to m. Its order is given by
Euler’s totient function ¢(m). Elementary number theory tells us that

(@) C(m) is the direct product of the groups C(p;') fori =1, ..., k;

(b) for odd primes p, C(p") is cyclic of order p(p") = p" —p"™1;

(c) C(4)is cyclic of order 2, while C(2") (r > 3) is of type (2,2"72).

Kaplansky’s Test Problems In his famous little red book [K], Kaplansky raises
the question about criteria for satisfactory structure theorems. He lists two test
problems that such theorems must pass in order to qualify ‘satisfactory.” These are:
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Test Problem 1. If the group G is isomorphic to a direct summand of H, and H is
isomorphic to a direct summand of G, are then G and H isomorphic?
Test Problem II. If G ® G =~ H @ H, are G and H isomorphic?

Evidently, the structure theorem on finitely generated groups passes the test with
flying colors: both answers are easy ‘yes.” However, some of the theorems that will
be discussed later on will fail one or both test problems.

% Notes. Whenever it seems instructive or interesting, we shall make historical remarks that
are intended to give a sense of the way in which the subject has developed, but are in no way a
comprehensive survey of the relevant contributions. As far as the fundamental theorem on finite
abelian groups is concerned, it is not clear how far back in time one needs to go to trace its origin.
It was F.C. Gauss who established a decomposition in number theory reminiscent to it. That time
the concept of a group was unknown, it took a long time to formulate and to prove the fundamental
theorem in the present form; see Frobenius—Stickelberger [1]. The theorem on finitely generated
groups may be credited to H.J.S. Smith [Phil. Trans. 151, 293-326 (1861)]. He reduced matrices
with integral entries to canonical form that bears his name.

This is the first time we encounter a structure theorem, so a few comments are in order. Such
a theorem (on any class of algebraic systems) is supposed to be in terms of easily recognizable
invariants, like natural numbers, cardinal or ordinal numbers, but they can be matrices with integral
entries, etc. ‘Invariants’ mean by definition that they are exactly the same for isomorphic objects.
A set of invariants is complete if we can reconstruct from it the object within the class by using
a method typical for the class (for finitely generated groups, this method consists in forming the
direct sum of cyclic groups with the given invariants as orders). Finally, independence means
that the system of invariants can be chosen arbitrarily, i.e. without additional restriction (in this
case, arbitrary prime powers and the sign oo, each with arbitrary multiplicities). The system
of invariants for finitely generated groups is most satisfactory, it has served as a prototype for
structure theorems in algebra.

The Kaplansky test problems have been discussed for various classes, mostly with negative
answers. de Groot modified Test Problem I by asking the isomorphy of G and H if G has a summand
G| = H and H has a summand H; = G such that, in addition, G/G| = H/H, is also satisfied.

There are numerous generalizations of the theorems in this section. Kaplansky [J. Indian Math.
Soc. 24, 279-281 (1960)] proved that, for integral domains R, the torsion parts of finitely generated
R-modules are summands exactly if R is a Priifer domain. There is an extensive literature on
commutative rings over which finitely generated torsion modules are X-cyclic. Unless the ring is
left noetherian, finitely generated left modules are different from finitely presented ones which are
somewhat better manageable. Finitely presented R-modules are X-cyclic if and only if R is an
elementary divisor ring, i.e., every matrix over R can be brought to a diagonal form by left and
right multiplications by unimodular matrices (Kaplansky [Trans. Amer. Math. Soc. 66, 464-491
(1949)]). In this case, Theorem 2.6 still holds true.

Exercises

(1) A group is finite if and only if its subgroups satisfy both the maximum and the
minimum conditions.
(2) A finite group A is cyclic exactly if |A[p]| < p for every prime p.
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(3) (a) If the integer m divides the order of the finite group A, then A has both a
subgroup and a factor group of order m.
(b) (G. Frobenius) In a finite p-group, the number of subgroups of a fixed order
(dividing the order of the group) is = 1 mod p.

(4) A group is isomorphic to a subgroup of the finite group A if and only if it is
isomorphic to a factor group of A.

(5) The number of non-isomorphic groups of order m = p|' --- p;* (canonical form
of m) is equal to P(ry) - - - P(r¢), where P(r) stands for the number of partitions
of r into positive integers.

(6) If A, B are finite groups such that, for every integer m, they contain the same
number of elements of order m, then A =~ B.

(7) A set {aj,...,a;} of generators of a finite group is a basis if and only if
the product o(ay)---o(ax) is minimal among the products of orders for all
generating sets.

(8) In a finitely generated group, every generating set contains a finite set of
generators.

(9) (a) The sum of all the elements of a finite group A is 0, unless A contains just

one element a of order 2, in which case the sum is equal to this a.
(b) From (a) derive Wilson’s congruence (p — 1)! = —1 mod p, p a prime.

(10) Let A, B be finitely generated groups. There is a group C such that both A
and B have summands isomorphic to C, and every group that is isomorphic
to summands of both A and B is isomorphic to a summand of C.

(11) Any set of pairwise non-isomorphic finite (finitely generated) groups has
cardinality < Ry.

(12) (Cohn, Honda, E. Walker) Finitely generated groups A have the cancellation
property: A@B = A@C implies B = C, orequivalently,if G = A|®B = A,HC
with A| = A =~ A,, then B = C. [Hint: enough for A| = (a) cyclic of order co
or prime power p”.]

(13) If A and B are finitely generated groups, and if each is isomorphic to a subgroup
of the other, then A =~ B.

(14) A surjective endomorphism of a finitely generated group is an automorphism.

3 Factorization of Finite Groups

In most cases, the fundamental theorem is instrumental in solving problems related
to finite abelian groups. However, there are notable exceptions where it seems the
fundamental theorem is totally irrelevant. One of these is Hajos’ theorem on the
‘factorization’ of finite abelian groups.

The problem goes back to a famous conjecture by H. Minkowski in 1896 on tiling
the n-dimensional Euclidean space by n-dimensional cubes. If the space is filled
gapless such that no two cubes have common interior points, then it was conjectured
that there exist cubes sharing n— 1-dimensional faces. The conjecture was rephrased
as an abelian group-theoretical problem, and solved in this form by G. Hajés. We
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discuss briefly this celebrated result. The proof involves group rings, and therefore
at some point we have to switch to the multiplicative notation. It is reasonable to do
this right away.

Thus in this section, all groups are finite, written multiplicatively. Accordingly, 1
will denote the identity element of groups.

Direct Products of Subsets If Sy, ..., S are non-empty subsets of a multiplica-
tive group G, then we say that G is a direct product of these subsets, in notation,

G = S1X...x8, (3.3)

if each element g € G can be written uniquely as g = 51 - ... s with s; € §;. This
definition is in line with the definition of direct sum of subgroups. We will call the
components S; factors of G, and (3.3) a factorization of G. We obviously have

(A) The cardinality of a factor is a divisor of the group order.

(B) Every subgroup H of G is a factor: G = HXS if S is a complete set of
representatives mod H.

(C) A factor S; can be replaced by gS; with any g € G. For this reason, there is no
loss of generality in assuming that each factor contains 1 € G.

Periodic and Cyclic Subsets A subset P is called periodic and a non-unitg € G
a period of P if gP = P. Subgroups are trivially periodic. If g is a period, then so
are the elements 7 1 of (g). In this case, P is the set union of certain cosets mod (g).

Lemma 3.1. If G = (a) is cyclic of order p", and G = SXT, then either S or T is
periodic.

Proof. Set § = {a™,...,d"}, T = {a™,...,a™} (n;;m; > 0) and form the
polynomials S(z) = 2" + --- + 2%, T(z) =" + -+ + ™ (with indeterminate z).
Hypothesis implies

ST =14z4+22+--+2Z""" modz —1.

It follows that S(z)T'(z) is divisible by the p"th cyclotomic polynomial ®,(z) =
n—1

142" + .-+ ="' This polynomial is known to be irreducible over Q, so
one of the factors, say, S(z) is divisible by ®,(z). Hence we conclude that " isa
period of S. O

Our main concern is with factors that are cyclic subsets in the sense that they are
of the form

[a, = {l.a,...,a" 1} 2 <n<o(a)

for some a € G. We need two preliminary lemmas.

Lemma 3.2 (Hajos [1]). A cyclic subset is periodic if and only if it is a group.
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Proof. Let P = [a], be periodic with period g € G, so P = (g)xS for some S C G
where 1 € S may be assumed. Evidently, g = ' for some ¢ € N, and P contains
l,a,...,a', the powers of @', as well as their cosets mod (a'). This means (a) C P,
so P is a (cyclic) group. O

Lemma 3.3 (Hajos [1]). A cyclic subset C can be written as a direct product of
cyclic subsets of prime orders such that C is a subgroup if and only if one of the
factor cyclic subsets is a subgroup.

Proof. Suppose C = [c],, and let n = p; ---py, a product of primes. It is an easy
computation to show that

[C]n — [C]Pl k[cpl]pzk . >‘<[cp1~..Pk—l]pk.

If C is a subgroup, i.e. if ¢" = 1, then the last factor is also a subgroup. For the
converse, we show that if C = (a)xS for some 1 # a € C, S C C, then C has to be
a subgroup. In fact, a is then a period of C, and the claim follows from Lemma 3.2.

O

Hajos’ Theorem We can now state the main theorem.

Theorem 3.4 (Hajos [11). If a finite group G is the direct product of cyclic subsets,
G = [a1]n X ... X[ak]n»

then one of the factors is a subgroup.

Proof. In view of Lemma 3.3, for the proof we may assume that the orders n; of
the factors are primes p;. Suppose [ax],, is not a subgroup, i.e. @} # 1. Then from
ar,G = G we derive that

[ar]p % - . X[ax—1]pey - @ = [ar]p X -« X[@r—1]pey (3.4)

that is, the product on the right is periodic with period a{*. Delete as many factors
as possible until no more factor can be omitted without violating the periodicity
of the product. Let a € G denote a period of a shortest periodic subset P =
[ai]p, % ... X[an]p, -

Consider the subgroup H = (ay,...,a;) of G. As P is a factor of G, it is also a
factor of H, thus |P| divides |H|, i.e. p1---p | |H|. If we can show that |H| is the
product of not more than % primes, then P = H will follow. We will then have a
similar direct product decomposition for H, a group of smaller order, so observing
that the case & = 1 is trivial, an obvious induction will complete the proof.

It remains to substantiate the claim concerning the order of the subgroup H. We
interrupt the proof to verify a lemma that will do the job.

The Crucial Lemma The crux of the problem is to find a proper statement,
more general than actually needed for the proof, that will allow an induction to
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complete the proof. We need the group ring Z[G] to formulate such a lemma. Z[G]
consists of elements of the form

r=mg +---+mge (gi€G,mel) 3.5

which we add and multiply according to the usual rules, respecting the multiplica-
tion rules in G.

In what follows we will assume that the expression of r is canonical, i.e. all the
g are different, and all m; # 0. With this in mind, we go on to define (r) as the
subgroup of G generated by the elements g; in (3.5), and denote by 7 (x) the number
of prime factors in the order of (r). Finally, the symbol a will have double meaning:
foran a € G, itis either 1 + a + --- + a”~! for a prime p, or | — a. Thus a € Z[G]
and (a) = (a).

Lemma 3.5 (Hajos [1]). Assume that the equation
ra;---qp =0 3.6)

holds in the group ring Z|G], where a; € G, t € Z|[G]. If no factor a; can be deleted
without violating the validity of the equation, then

(a0, — () <k 3.7

Proof. We begin with the verification in case k = 1. Thus we have 7 (r a) = 0 with
non-zero factors, and what we wish to prove amounts to a € (r). If a = 1 — q, then
r = ag, which implies that there are b1, b, € G in the normal form of ¢ such that
by = ab,. Hence a € (¢) in this case. If a = 1 + a + --- + a”~! for some prime p,
then by multiplication by 1 —a we get ¢(1 —a”) = 0, whence a” € (¢). On the other
hand, fromx(a+---+a”~!) = —r we conclude that b; = a'b, for some by, b, € (1)
and 1 <i <p—1.Thus also &’ € (x), and therefore a € (¢).

We continue with inductiononn = w(a;)+---+m(a;). Ilf n = 1,thenk = 1, and
we are done. Assuming k > 2, we rewrite (3.6) in the form (ra; ---aj)aj41---ar = 0
for j < k, and apply the induction hypothesis to obtain

m((xay---a), qg1,...,0) —mw(a---a) <k—j (1 <j<k).
The index of the subgroup ((ra; -+~ a;), dj41,...,6) in {r,a1...,a;, ay1,
..., a) evidently divides the index of (ra;---a;) in (r,ay,...a) (cf. Exercise 1).
Hence, from the last inequality we get

n(;valv---7ak)_n(xsals---saj)<k—j (1§]<k) (38)
If w(aj) = 1forallj < k, then clearly 7 (x,a;,...,a—1) — 7(x) < k—1, along

with (3.8) forj = k — 1 yields (3.7). If, e.g., w(ax) > 2, then by multiplication by
1—arorbyl+a;+ -+ ai_l for some prime p, we can replace the factor a; by
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ap = 1 —ag with 1 < mw(ag) = m(ax) — 1. After deleting superfluous factors «;, and
renumbering, we get

rap,...aap =20 O0O<l<k-1)

where no factor can be omitted, not even the last one. By induction hypothesis,
(g, ay,...,07,00) — 7w(r) < £.Incase £ = 0, we have 7(r,a9) — 7(r) = 0, and
ap € {p), thus 7 (x, ax) — 7 (r) < 1. This, together with (3.8) for j = k — 1, leads
to (3.7).If £ > 1, then manifestly 7 (¢, ay, ..., a;)—m(r) < £, hence along with (3.8)
for j = £ it yields the desired (3.7). O

Resuming the proof of Theorem 3.4, we rewrite (3.4) (after deleting superfluous
factors) as an equation in Z[G]:

al---ah'(l—a)zo

where a; = 1 +a;+---+d"~ (i = 1,....h). Applying Lemma 3.5 to the case
r = 1, we obtain n(ay,...,ap,a) = n(ay,...,a5,a) < h, and a fortiori
w(ay,...,ay) < h. As pointed out above, this completes the proof. O

Example 3.6 (Hajés). Theorem 3.4 may fail if the factors are not cyclic. This is shown by the
following examples.

(a) Let G = (a) x (b) x {c) be a direct product of cyclic groups where a, b, ¢ are generators of
orders 4, 4, 2, respectively. Then

G = {1,a}x{1,b}x{1,a%, ab?, a’b*, c, a’bc, a*b’c, b*c}.
(b) Let G = (a) x (b) x (c) where all the generators a, b, c are of order 4. Then
G = {1, a}x{1,b}x{1, }x{1, a®b, b*c, *a, a*b>, b*>, P, a*b* P}

% Notes. The proof above is based on the original proof by Haj6s [1] with essential
simplifications due to L. Rédei and T. Szele. Various modified versions of the problem have been
considered. One version requires the factors to be simulated subsets: a subset S of a group is
simulated if it is obtainable from a subgroup by replacing an element by an arbitrary group element.
There is an extensive literature on this difficult subject, most advanced papers are written recently
by A.D. Sands and S. Szabé. There are remarkable connections to tessellations.

It is hard to understand why so far no evidence of a link has been found between the
fundamental theorem on finite abelian groups and the Hajds theorem. Such a link would probably
avoid group rings, but it seems doubtful we could have found our way through without making use
of them.

A generalized, still unsolved version of Minkowski’s conjecture was formulated by O.H. Keller.
Its algebraized version says that if G = SX[aj],, X + - + X[ag],, With a subset S C G, then one of the
elements a;'i equals slsz_l for some s, 5, € S.
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Exercises

All groups are finite, written multiplicatively.

(1) If A, B, C are finite index subgroups of the group G, and B < C, then [AC : AB]
divides [C : B].

(2) If in a group G, the subset P = [a],x[b], (a,b € G) is periodic with different
primes p, g, then one of the factors is a subgroup.

(3) (Sands) Let G be cyclic of order 8. Find G = SXT such that none of S, T can
be replaced by a subgroup. [Hint: (a) = {1,a*}x{1,a,a* a’}.]

(4) (de Bruijn) A subset S of a cyclic group of order n is periodic if and only if
there is a proper divisor d of n such that S(z) (defined above in Lemma 3.1) is
divisible by the polynomial f(z) = (z" — 1)(z¢ — 1)~

(5) Assume G is a finite group of one of the types (2, 2, 2), (2,2%), (2,2, 3), (2.3, 3),
3, 3?), (3,3,3). If G = SXT for subsets S, T, then S or T is periodic. [Hint: S
or T contains 2 or 3 elements.]

(6) (de Bruijn) Let G be an elementary 2-group with generators ay, az, as, by,

b,, b3. None of the factors is periodic in the factorization

G = {1, aiaszb1, axa3, a1azb1, by, a1ara3bs, a1biby, arazbi by}

{1,a1, a2, a1az, b3, azbs, b1b3, azb1 bs}.

(7) (de Bruijn) Let G = (a) be cyclic of order 72. It factorizes into two
non-periodic subsets: {1,a8,a16,a18,a26,a34} and {alg,a54,a24,a60,a48,a12,
a7, a%, a%, a®, .

4 Linear Independence and Rank

Motivated by linear independence and dimension in vector spaces, we are in search
for corresponding notions in groups.

Linear Independence Linear independence in groups can be defined in two
inequivalent ways: one permits only elements of infinite order to be in the system,
while the other makes no such restriction, and as a result, it is useful for torsion
and mixed groups as well. With that said, we proceed to introduce the more useful
version.

A set {ay, ..., ar} of non-zero elements in a group is called linearly indepen-
dent, or briefly, independent if

niay + -+ may =0 (n; € Z) implies nja; = --- = may = 0. 3.9
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More explicitly, this means that n; = 0if o(a;) = oo and o(a;)|n; if 0(a;) is finite. By
definition, O is not allowed to be in an independent system. An infinite family L of
group elements is (linearly) independent if every finite subset of L is independent.
Thus independence is by definition a property of finite character.

Lemma 4.1. A subset L = {a;}ic; (0 ¢ L) of a group is independent if and only if
(L) = ®ier (ai). (3.10)

Proof. If L is independent, then the intersection of the cyclic group (a;) with the
subgroup generated by L \ {a;} is necessarily 0; hence, (L) is the direct sum of
the (a;) for i € I. Conversely, if (3.10) holds, then a linear combination n;a;, +
-+« + ma;, = 0 (with different i;,...,i € I) can hold only in the trivial way:
nia;, = -+ = ma; = 0. O

An element g € A is said to depend on a subset L of A if there is a dependence
relation

0#ng=ma +--+ma.  (n,n €Z) (3.11)

for some elements a; € L. Thus g depends on L exactly if (g) N (L) # 0. A subset
K depends on L if every element of K depends on L.

Every element ¢ in an independent system can be replaced, without violating
independence, by a non-zero multiple ma. Therefore, by replacing elements of finite
order by multiples of prime power order, from every independent system we can get
one in which each element is either of infinite or of prime power order.

An independent system M in A is maximal if there is no independent system
in A that properly contains M. Every element # 0 of A depends on a maximal
independent system. By Zorn’s Lemma, every independent system is contained in a
maximal one. Moreover, if the original system contained only elements of infinite
or prime power orders, then a maximal one containing it can also be chosen to have
this property.

Lemma 4.2. An independent system is maximal if and only if it generates an
essential subgroup.

Proof. Tt suffices to observe that a non-zero element ¢ € A depends on an
independent system M if and only if (a) N (M) # 0. O

Rank of a Group By the rank rk(A) of a group A is meant the cardinal number
of a maximal independent system containing only elements of infinite and prime
power orders. If we consider only independent systems with elements of infinite
order (of orders that are powers of a fixed prime p) which are maximal with respect
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to this property, then the cardinality of the system is called the torsion-free rank
rko(A) (p-rank rk,(A)) of A. From the definitions it is evident that the equation

rk(A4) = rko(4) + Y _ rk,(A) (3.12)
p

holds with p running over all primes. Obviously, rk(A) = 0 means A = 0.
At this point the natural question is: how unique are these various ranks? In order
to legitimize them, we need to show:

Theorem 4.3. The ranks tk(A), 1ko(A), 1k, (A) of a group A are invariants of A.

Proof. It suffices to prove that rko(A) and rk,(A) are independent of the choice of
the maximal independent system defining them.

It is routine to check that rkg(A) = rk(A/tA). As a consequence, in proving the
invariance of rky(A), we may assume without loss of generality that A is a torsion-
free group. Let {ay, ...,ax} and {by, ..., b¢} be two maximal independent systems
in A. Then there are integers m, m;, n, n; with m, n # 0 such that ma; = Zf=1 mj;b;

_ ¥k
and nb; = ) _,_, njia;. Hence

k 12
mna; = E E ninypap

h=1 j=1

where the corresponding coefficients on both sides must be equal. This means that
the product of matrices ||n;| - [|mj,| is a scalar matrix mnEy (Ey denotes the k x k
identity matrix). This is impossible if k < £, thus k > £ must hold. For reasons
of symmetry, k = £ follows, i.e. equivalent finite independent systems contain the
same number of elements. This tells us that rkyg(A) is well defined whenever it is
finite.

If rko(A) is infinite, then we show that rko(A) = |A| (A is still torsion-free). The
inequality < is obvious. To prove the converse, we choose a maximal independent
system L = {a;};c;. For every 0 # g € A, there is n € N such that ng € (L), and if
ng = ng’ (¢’ € A), then g = g’. Hence we conclude that |A| < |L|®y = |L|.

Turning to the ranks rk,(A), it is clear that rk,(A) = rk(7,) where T,, denotes
the p-component of T = tA. Hence it is enough to verify the claim for p-groups
A. Now if {a;}ic; is a maximal independent system, then so is {p"""'a;};,c; where
p" = o(a;). Therefore, rk,(A) is the same as the rank of the socle s(A). The socle
is a Z/pZ-vector space, its dimension is obviously the same as its rank as a group.
The uniqueness of the vector space dimension implies the uniqueness of rk(s(A4)) =
rk,(A). O
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There is another important cardinal invariant associated with groups. This is the
dimension of the Z/pZ-vector space A/(tA + pA) which we shall call the p-corank
of A, and will be denoted as

rk? (A) = dimA/(tA + pA).

We will see later that this is the rank of the torsion-free part of p-basic subgroups
of A.

% Notes. The torsion-free rank of A is often defined as the dimension of the Q-vector space
Q ® A (then the uniqueness of rky(A) follows from that of the vector space dimension). The rank
as we use here has been generalized to modules, called Goldie dimension.

Exercises

(1) Show that rk(Q) = 1,1k(Q/Z) = Ry, and 1k(J,) = 2% for each prime p.

(2) Prove that tk(A) = 1 exactly if A is isomorphic to a subgroup of Q or to a
subgroup of Z(p®°) for some prime p.

(3) Let B be a subgroup of A. Prove that: (i) rk(B) < rk(A); (ii) rk(A) < rk(B) +
rk(A/B); (iii) rko(A) = rko(B) + rko(A/B).

(4) The non-zero subgroups B; (i € I) of A generate their direct sum in A if and
only if every subset L = {b;};c; with one b; # 0 from each B; is independent.

(5) A group of rank k¥ > R has 2 different subgroups.

S Direct Sums of Cyclic Groups

The simplest kinds of infinitely generated groups are the direct sums of cyclic
groups. These groups admit a satisfactory classification as we shall see below. We
will feel fortunate if we are able to prove that certain groups under consideration are
direct sums of cyclic groups.

For brevity, a direct sum of cyclic groups will be called a X-cyclic group.

Kulikov’s Theorem A X-cyclic p-group contains no elements # 0 of infinite
height. However, the absence of elements of infinite height does not ensure that a
p-group is X-cyclic. We are looking for criteria under which a p-group is X-cyclic.

Theorem 5.1 (Kulikov [1]). A p-group A is X-cyclic if and only if it is the union of
a countable ascending chain of subgroups,

Ay<A <--- <A, =< ..., (3.13)

such that the heights of elements # 0 in A, (computed in A) are bounded.
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Proof. The stated condition is necessary: if A is a X-cyclic p-group, then in a
decomposition, collect the cyclic summands of the same order p”, for every n. If
we denote their direct sum by B, then the subgroups A, = B ® - ® B, (n < w)
(with bound n — 1 on the heights) satisfy the stated condition.

For the proof of sufficiency, suppose that the chain (3.13) is as stated. Since
we may adjoin the trivial subgroup to the beginning of the chain (3.13) and repeat
subgroups without violating the hypothesis, it is clear that there is no loss of
generality in assuming that n—1 is a bound for the heights in A, thatis, A,Np"A = 0
for every n < w.

Accordingly, we consider the set of all chains0 = Cy < C; <---<C, < ... of
subgroups of A such that

A, <C, and C,Np"A=0 foreveryn < w.

Define the chain of the C, to be less than or equal to the chain of the B, if and only
if C, < B, for all n < w. The set of all such chains in A is non-empty and is easily
seen to be inductive, so Zorn’s lemma applies to conclude that there exists a chain
0=Gy<G; <--- <G, <... thatis maximal in the sense defined. Needless to
say, A = J,-, Gn-

The group G, contains only elements of order < p", so G, Np"~'A is in the socle
of G,. Select a Z/ pZ-vector space basis L, of G, ﬂp”_lA, and set L = U,,.,L,. For
every ¢; € L of h(c;) = n; choose an a; € A such that p"ia; = ¢;. The claim is that
A= (...,aq;,...) = ®;{a) is equal to A.

First we show that (L) = A[p]. Since evidently (L,) = G, N p" 'A, all the
elements # 0 in (L,) are of height exactly n — 1, so the (L,) generate their direct
sum, (L) = @,<,(L,). Assume, as a basis of induction on k, that Gi[p] = (L;) &

- ® (L;). Let a € Giy1[p] \ Gr. By maximality, (Gy,a) N p*A # 0, thus 0 #
g +ra = b € p*A with some g € Gi,r € Z, where r = 1 may be assumed.
Therefore, g + a € Gyy1 N p*A = (L;41), thus a and hence Gy [p] is contained in
(L1) & --- & (Lg+1). Consequently, (L) = A[p] follows.

Assume that, for some n € N, we have proved that every element of A of order
< p" belongs to A’; for n = 1, this was done in the preceding paragraph. Pick an
a € A of order p"*! (n > 1). Then p"a € (L), so we have p"a = myc| + -+ + mycy
with some ¢; € L,m; € Z. Letcy,...,c, be of height > n,and ¢, 1, ..., ¢, of height
< n. Then in the equation

pla—micy — - —mCy = M1 Cryr + 00+ mecy

the left-hand side is of height > n, while the right-hand side is contained in G,—;;

so both sides are 0. If we write mjc; = p”m;aj ( <r),thena—mia; —---—mla,
is of order < p", so it is contained in A’ by induction hypothesis. Hence a € A’ as
well. O

Priifer’s Theorems As corollaries we obtain the following two important,
frequently quoted results.
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Theorem 5.2 (Priifer [1], Baer [1]). A bounded group is Z-cyclic.

Proof. If A is bounded, then it can have but a finite number of non-zero
p-components A,. These components are also bounded, so we can apply Theo-
rem 5.1 with all subgroups in (3.13) equal A,, to conclude that each A, is Z-cyclic.

O

Theorem 5.3 (Priifer [1]). A countable p-group is X-cyclic if and only if it
contains no elements # 0 of infinite height.

Proof. Only the ‘if’ part requires a verification. Suppose A is a countable p-group

without elements of infinite height. If {ay, ..., an, ...} is a generating set of A, then
A is the union of its finite subgroups A, = (ao, . .., a,) (n < w), where the heights
of the elements are obviously bounded. The claim follows from Theorem 5.1. O

The following example shows that countability is an essential hypothesis in
Theorem 5.3.

Example 5.4 (Kurosh). Let A be the torsion part of the direct product of the cyclic groups
Z(p),...,Z@"),.... Then A is a p-group of the power of the continuum, without elements of
infinite height (by the way, each Z(p") is a summand of A). Assume, by way of contradiction,
that A is X-cyclic, say, A = @,<, B, where B, is a direct sum of cyclic groups of fixed order
p". Consider the socles S, = @,<i<, " 'B;; they form, with increasing n, an infinite properly
descending chain such that S, consists of those elements of A[p] which are of heights > n — 1.
Clearly,

a=(c1,...,Cn,...) €A[p] (cn € Z(p™))

is of height > n — 1 if and only if ¢; = --- = ¢,—; = 0. This shows that each factor group
Su/Su+1 (n = 1,2, ...) is of order p. Hence B,[p] = S,/S,+1 implies that the B, are finite, and
so0 A is countable, a contradiction. An R;-generated pure subgroup of A containing the direct sum
@, Z(n) yields an example of smallest cardinality.

A quicker counterexample is available if we make use of the isomorphism of basic subgroups:
no uncountable p-group with countable basic subgroup is X-cyclic.

Kulikov’s criterion can be generalized to arbitrary cardinalities as follows (we
make use of purity which will be discussed in Chapter 5).

Theorem 5.5 (Hill [13]). A p-group A is X-cyclic if it is the union of an ascending
chain (3.13) of Z-cyclic pure subgroups A, (n < w).

Proof. For countable A, sufficiency is easy: list the generators in a sequence:
ap,az,...,ay,....1f0 = By < By <--- < B;is a chain of finite pure subgroups
of A such that ay,...,a; € B; for all j < i, then choose a finite summand B, of
an A, containing both B; and a;4; such an n must exist. Then B; as a bounded pure
subgroup is a summand of A, and A = U, B;. Since B;y; = B; @ C; for some
Ci <A, wegetA = Pien Ci.

The proof for the uncountable case is the exact analog of Theorem 7.5; we leave
the details to the reader. ]

Isomorphy of Decompositions Though a group may have several decompo-
sitions into a direct sum of cyclic groups, one can establish a strong uniqueness
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statement, just as in the finitely generated case. (Actually, one can prove more: the
Krull-Schmidt property holds for ¥-cyclic groups.)

Theorem 5.6. Any two direct decompositions of a group into direct sums of infinite
cyclic groups and cyclic groups of prime power orders are isomorphic.

Proof. First assume that A is a p-group. Collecting the cyclic summands of the same
order, we get a decomposition A = @,, B, where B, is a direct sum of cyclic
groups of the same order p”. As in Example 5.4, we can argue that B,[p] = S,,/S,+1
where S, is the set of elements of heights > n — 1 in A[p]. The latter group is
independent of the representation of A as direct sum of cyclic p-groups, and the
dimension of S,/S,+1 as a Z/pZ-vector space determines the number of cyclic
summands of order p” in any decomposition of A as a £-cyclic group.

In the general case, A = B@ C where B is a X-cyclic torsion group and C is a free
group. Then both B and C have unique decompositions (rk C being well defined),
so the same holds for A. O

Subgroups of X -Cyclic Groups It is extremely important and most useful that
the property of being X-cyclic is inherited by subgroups.

Theorem 5.7 (Kulikov [2]). Subgroups of X-cyclic groups are again X-cyclic.

Proof. First we dispose of the case when the group A is a p-group. By Theorem 5.1,
A is the union of an ascending chainAg < A; < .-+ <A, < ... of subgroups, where
the heights of elements of A, are bounded, say, k, is a bound in A,. A subgroup B is
the union of the chain

A)NB<A NB=<.---<A,NB<...

where the heights of elements of A, N B, computed in B, do not exceed k,,. By virtue
of Theorem 5.1, B is X-cyclic.

Turning to the general case, let A be an arbitrary X-cyclic group, and B a
subgroup of A. Clearly, tB = B N A, and so

B/tB=B/(BNtA) = (B+1tA)/tA < A/tA,

where A/tA is a free group. By Theorem 1.6, B/tB is free, whence Theorem 1.5

implies that B = tB @ C for some free subgroup C of B. By what has been shown in

the preceding paragraph, ¢B is a direct sum of cyclic p-groups. Thus B is ¥-cyclic.
0

Corollary 5.8 (Kulikov [2]). Any two direct decompositions of a Z-cyclic group
have isomorphic refinements.

Proof. In view of Theorem 5.7, each summand is X-cyclic. Replacing each
summand by a direct sum of cyclic groups of orders co or prime power, we arrive at
refinements that are isomorphic, as is guaranteed by Theorem 5.6. O

The next lemma provides information about pure subgroups in free groups.
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Lemma 5.9. (a) A finite rank pure subgroup of a free group is a summand.
(b) (Erdés [1]) A pure subgroup H of a free group F contains a summand of F
whose rank is the same as the rank of H.

Proof. (a) A finite rank pure subgroup H is contained in a finitely generated
summand of the free group F. Then F/H is finitely generated and torsion-free,
so a free group. Therefore, H is a summand of F.

(b) If H is of finite rank, then it is a summand of F, and we are done. So assume that
H is of infinite rank x. Let B = {b, | @ < k} be a basis of F, and consider finite
subsets B; of B such that (B;) N H # 0. Select a maximal pairwise disjoint set S
of such subsets B;, and a non-zero 4; in each (B;) N H. Then the pure subgroup
(hi)+ is a summand of (B;), and hence K = @®(h;), is a summand of F, and so
of H. Write F = (S) @ G where G is generated by the basis elements not in any
member of S. Now G N H # 0 is impossible, because then the basis elements
b, occurring in a linear combination of a non-zero element in this intersection
form a finite subset disjoint from every finite subset in S—this contradicts the
maximality of S. Therefore, G N H = 0. Manifestly, the cardinality of the set of
all basis elements b, occurring in members of S is the same as the cardinality
of S. Hence G N H = 0 implies that tk K = rk(S) = rk F/G > rkH = «.

0

% Notes. Various properties of X-cyclic groups have been investigated that are shared by
larger classes of groups. The name of Fuchs-5-group is used in the literature for a group in which
every infinite set is contained in a direct summand of the same cardinality. Trivial examples for such
groups are direct sums of countable groups. Hill [8] proved that for every uncountable cardinal «
there exist p-groups with this property that need not be direct sums of countable groups. The
existence of non-free R-separable torsion-free groups shows that not all torsion-free Fuchs-5-
groups are direct sums of countable subgroups.

Exercises

(1) For a group A, the following conditions are equivalent: (a) A is elementary;
(b) every subgroup of A is a summand; (c) A is torsion with trivial Frattini
subgroup; (d) A contains no proper essential subgroup.

(2) The direct product of ¥ > R, copies of the cyclic group Z(p*) is a direct sum
of 2¢ copies of Z(p¥).

(3) Let A, B be X-cyclic groups.

(a) A A =~ B® Bimplies A = B.
(b) A®0) =~ B®) fajls to imply A = B even if A, B are finitely generated.

(4) Let A be a countable direct sum of cyclic groups of order p?, and B =~ A @
Z(p). The isomorphy classes of subgroups (and factor groups) of A are equal
to those of B, but A % B.
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(5) (Dlab)

(a) Let A be a bounded p-group, and S = {a;};c; a subset of A such that the
cosets a; + pA (i € I) generate A/pA. Then S generates A.

(b) Every generating set of a bounded p-group contains a minimal generating
set (i.e. no generator can be omitted).

(6) (Szele) Improve on Example 5.4 by exhibiting an example of cardinality X;.
(7) Let B = @®ren Z(pY).

(a) Every countable p-group is an epimorphic image of B.
(b) Each p-group of infinite cardinality k is an epic image of B*).

(8) A is T-cyclic if it contains a X-cyclic subgroup G such that A/G is bounded.

(9) (Dieudonné [1]) Let G be a p-group that contains a subgroup A such that G/A
is X-cyclic. Suppose that A is the unionof achainAg <A; <--- <A, < ...
such that the heights of elements of A,, computed in G, are bounded. Then G
is X-cyclic.

(10) Let A,G be p-groups, and assume C < A with X-cyclic A/C. If the
homomorphism ¢ : C — G does not decrease heights, then it extends
to a homomorphism A — G. [Hint: if p"a € C, there is g € G with
$(p'a) = p"g.]

(11) An equational class or variety of groups is a class of groups that is closed
under isomorphism, the formations of subgroups, epic images, and direct
products. Prove that the following is a complete list of equational classes
of abelian groups:

(a) the class of all abelian groups;
(b) for every positive integer n, the class of n-bounded abelian groups.

6 Equivalent Presentations

This section is concerned with special kind of presentations. First, X-cyclic groups
will be considered.

Presentation with Stacked Basis We say that the group A has a presentation

with stacked bases if there is a short exact sequence 0 - H — F i>A — 0 where
F = ®jer (x;) is a free group and H = @;¢s (nix;) is a free subgroup with n; > 0
(see Theorem 2.6).

An obvious necessary condition for a group to be presented with stacked bases
is that it be a X-cyclic group. Kaplansky raised the question whether or not every
presentation of a X-cyclic group is with stacked bases. The affirmative answer was
given by Cohen—Gluck [1]. In our treatment we follow closely their argument.
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As a first step, we reduce the proof of the theorem to the torsion case. This is one
of the rare situations when the discussion for torsion groups cannot be delegated to

p-groups.

Lemma 6.1 (Cohen-Gluck [1]). Let F be a free group and A = B & C any group
with a free summand C. Given an epimorphism ¢: F — A, F admits a decomposition
F=F, & F; such that ¢ (F,) = Band F, =~ C.

Proof. Let y: A — C denote the projection along B. Then F = F| @ F, with
F; =Kery¢ and F, = Imy¢ = C. The inclusion B < ¢pF| cannot be proper. O

Next, we reduce the proof to the countable case; this is a main step, supported
primarily by a straightforward back-and-forth argument.

Lemma 6.2 (Cohen-Gluck [1]). Suppose 0 — H — F1>A — 0 is an exact
sequence, and both F and A are direct sums of countable groups. Then there exist
(‘matching’) direct decompositions

F=®,«Fs and A=@s A (3.14)

for some ordinal T such that, for eacho < 1,

(i) F is countable; and
(11) ¢)FU =A,.

Proof. There is nothing to prove if A is countable, so suppose A is uncountable.
Let F = @1 G and A = ®jey Bj be decompositions with countable summands.
For any k € I, there is a countable subset Yy of J such that ¢G; < @jey, Bj and a
countable subset Xg of I such that ®jey, B < ¢(Diex, Gi). Arguing the same way
repeatedly, we obtain countable ascending chains of countable subsets Xy C -+ C
X, C...andYy C---CY, C...ofIandJ, respectively, satisfying

Djev, Bj < ¢(Diex, Gi) < Djev, 1, B (n < w).

If Iy and Jy denote the unions of the X, and the Y,, respectively, then let Fy =
@ier, Gi and Ag = Djey, B;. They are clearly countably generated summands of F
and A, respectively, such that ¢ Fy = Ay.

Assume that we have already found, for some ordinal o, smooth chains of subsets
Ihc---Ccl,C---ClyandJy C --- CJ, C - CJs(p <0)ofland/J,
respectively, such that forall p+1 < o, the sets I,41 \ I, and J,11\J, are countable,
and the groups F, = e, ,\1, Gio Ap = Bjey, 1\, Bj satisty (D<o F)) =
@ <o Ap. Using a back-and-forth argument, we adjoin to /, and J, countable subsets
U and V, respectively, such that putting I,4, = I, U U and J,41 = J, UV,
condition (ii) will be satisfied for F(’H_1 = @jecv Gi, As+1 = @jev B;. We repeat
this argument transfinitely until the index sets I and J are exhausted, where—as
usual—at limit ordinals we take unions of the previously selected subsets. Finally,
we get decompositions satisfying ¢ (D<o F;)) = @p<c Apforallo < 7.
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These are not yet decompositions we are looking for, we still have to modify
them to obtain ones satisfying (i)—(ii). Suppose that we have found F, to satisfy
¢F, = A, forall p < 0. Consider the diagram

14 EEEE Dp<o Ap

where § denotes the projection with kernel A,. Since the map in the bottom row is
surjective and F, is a free group, we can find a map 1 making the diagram commute.
Clearly, F, = {x — ¥x | x € F_} is isomorphic to F.. Furthermore, ¢ (x — ¥x) =
¢x—px = px—38¢x € A, shows that pF, < A,. This inclusion cannot be proper,
thus ¢F; = As. AS ®ps F, ® F, = P <o F),, we may replace F/, by F,; for each
o < t inductively, to obtain ¢F, = A, forall o < t. O

The Torsion Case We are now prepared to tackle the torsion case. The starting
point is a preliminary lemma (valid for arbitrary groups).

Lemma 6.3. Let F = F| & F, be a free group, and ¢p: F — A = A} ® A, an
epimorphism such that Ay < ¢F,. Then in the given direct decomposition, F» can
be replaced by some G < F satisfying ¢G < A,.

Moreover, if F' is a summand of Fy with §F' < A,, then G can be chosen so as
to contain F'.

Proof. Let m: A — A; denote the projection with kernel A,. The projectivity of F»
guarantees the existence of p making the square

F, s By

‘| o

Al@AQ L) A1

commutative. Setting G = (1 — p)F», evidently 7¢pG = n(¢p — ¢pp)F, = 0. We
conclude that F; @ F, = F; @G, establishing the first claim. For the rest, it is enough
to observe that the map p can be chosen so as to act trivially on the summand F’. O

The following lemma is a crucial ingredient in the proof of Theorem 6.5 to
guarantee that no generator of F is left out in the successive decompositions.
Theorem 6.2 permits us to confine ourselves to countable groups.
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Lemma 6.4. Let0 — H — F1>A — 0 be a presentation of a X-cyclic torsion
group A, F a countable free group. If Ay is a finitely generated summand of A, then
there are direct decompositions

F=F®F, and H=HNF,)® HNF,)

such that

(a) F is finitely generated and ¢ F, contains Ay, and
(b) A=¢F & ¢F,.

Proof. Write A = Ay @ A where Aj is the complement of A in a direct
decomposition of A into cyclic groups of prime power orders. Apply Lemma 6.3
to this decomposition to get F' = Fy @ G, with ¢G, < A’O.

Choose a summand A, < ¢ G, of Aj, say Aj = A DA, with finitely generated A;.
Again by Lemma 6.3, we argue that ¢ Fy < Ayg @ A; may be assumed. In this way,
we obtain a decompositionA = Ao @A | A,, where Ay < ¢pFyand A, < ¢G,. That
Ay = (A1 N@Fy) + (A N Gy) should be clear. Assuming that the cyclic summands
in A are decomposed into their p-components, for any p, either ¢ Fy or ¢ G, contains
an element of A| of maximal p-power order; this generates a summand C of A;. If
C is contained in ¢ F), then write A} = C & By, and with the aid of Lemma 6.3 we
can change G, to a summand G such that ¢ G has trivial projection on Ag @ C = By,
and at the same time replace Ay by By, and A by B to obtain A = By @ B| @ A,.

We continue in a similar fashion, next adjoining a summand of B; to A,, etc.
After a finite number of steps, we arrive at a decomposition F = F| @ F», satisfying
(i) and (ii). O

The Stacked Basis Theorem Equipped with these lemmas, we are well pre-
pared for the proof of the main result. We keep the same notation.

Theorem 6.5 (Cohen—Gluck [1]). Every presentation of a X-cyclic group has
stacked bases.

Proof. In view of Lemma 6.1 and 6.2, the proof can be reduced to the case, in
which A is a countable X-cyclic torsion group. Then F can also be assumed to
be countable, say F = ®;en (x;). We will be done if we reduce the problem to
the finitely generated case, because then a simple reference to Theorem 2.6 will
complete the proof.

By the preceding lemma, there is a decomposition F = F; @ F, such that F;
is finitely generated, xo € Fy, and H = (H N F1) @ (H N Fyp). Next, F admits
a decomposition F = Fy; @ F,; where F»; is finitely generated, contains F; and
x1, and H splits accordingly. Continuing in the same way, we obtain an ascending
chain Fi; < F,; < ... of summands of F, for which H N F,; is a summand
of H. The union of the F,; must be all of F. If we define A,(n < w) via Ag = 0,
Fo=F,—11®AandletB, = HNA,, then F = §,.,A, and H = ®,,B, are
decompositions into finitely generated summands such that A, and B,, are stacked.
The reduction to the finitely generated case has been accomplished, and the proof is
completed. O
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Equivalent Presentations of Torsion-Free Groups The last theorem asserts
that every presentation of a 3-cyclic group is equivalent to one with stacked bases
in the sense made precise by the following definition.

Let F, F’ be free groups, H, H subgroups such that F//H =~ F'/H’. We say
that F/H and F'/H' are equivalent presentations of A =~ F/H if there is an
isomorphism £ : F — F’ carrying H onto H'.

In general, not much can be said about the situations when two presentations of
a group have to be equivalent. However, the case of torsion-free groups provides an
interesting, though not so easy positive example.

First of all, note that an obvious necessary condition for the equivalence of two
presentations F/H and F'/H’ of A is that tk F = rk F’ and rk H = rk H'. Our next
purpose will be to show that, if A is torsion-free, then the sole conditiontk H = rk H’
will be enough to ensure the equivalence of the presentations F/H and F'/H'.

We require an interesting preliminary lemma.

Lemma 6.6 (Erdos [1]). Let F be a free group, and H a pure subgroup of F. F has
a basis which is a complete set of representatives mod H if and only if |F/H| = tk H.

Proof. If F has such a basis B = {b, | o < «} with (only) by contained in H, then
by the purity of H, B must be infinite, and obviously |F//H| = |B| = rk F. For each
by € B there is a unique bg € B such that b, + bg € H.If by, = bg, then 2b, € H,
s0 by = by, by purity. The elements b, + bg (by 7# bg) and by form a basis of a
summand of F contained in H. Hence |B| < rk H, and necessity is established.

Turning to the proof of the sufficiency, suppose |F/H| = rk H. From Lemma 5.9
we derive that H contains a summand G of F such that tk G = |F/H|. Choose a basis
Y = {y;} of G, and extend it to a basis B = {b, | o < «} of F. Well-order B in such a
way that the elements of Y precede the rest of the basis elements in B. Each element
h € H can be written uniquely as a linear combination i = t1by, +- - -+1t;b, (t; € Z)
with non-zero terms such that a; < -+ < o. To simplify our wording, we will say
that the ordinal o is associated with h. If among the elements & € H associated
with the same o there is one, say /', with |f;| = 1, then in the basis B the element
b, can be replaced by #’, without violating the basis character of the set. In doing
so for all possible ordinals ; inductively, ¥ remains unchanged, and the new basis
(which we continue denoting by B) will have the additional property thatif 7 € H is
associated with o, and in the expression for 4 the coefficient of b, is 1 in absolute
value, then necessarily b,, = £h € H.

Split the basis B into two disjoint subsets, B = B'UB”, suchthat Y < B’ = BNH.
We keep B”, but change B’ in order to obtain a basis B* of F which is a complete
set of representatives mod H, as desired.

First, observe that different elements b, and bg of B” must belong to different
cosets mod H. Indeed, otherwise h = b, — bg € H is associated with either b, or
bg, so either b, € H or bg € H, which is impossible, B” being disjoint from H. Of
course, there are cosets mod H which do not intersect B”. Since B C H implies that
each coset mod H is represented by an element of the subgroup (B”), for each coset
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mod H disjoint from B” we can choose a representative x; € (B”). Thus B” UX (with
X = {x; | i € I} for some index set /) is a complete set of representatives mod H.
Next we show that |[X| = |B’|. On one hand, rkH = |F/H| = |Y| < |B/| <1k F
implies |B'| = rk F = |F/H|. On the other hand, let b, be the first element of B” in
the chosen well-ordering of B. No two of the elements of the form b, —b,, (b, € B")
belong to the same coset mod H, and none of these is congruent mod H to a bg € B”
(again, otherwise b, — b, — bg € H would be associated with either b, or bg, etc.).
Thus there are at least |B”| many cosets of H which do not intersect B”; hence,
|B”| < |X| follows. This together with |B”| 4 |X| = rk F yields |X| = rk F. Hence
|B’| = |X], so there is a bijection between the set of elements {b;} of B’ and the set
of cosets {x; + H} (where we have the corresponding elements carrying the same
index i). If in the basis B, b; € B’ will be replaced by b; + x;, then we obtain a new
basis B* of F which is at the same time a complete set of representatives mod H. O

We are now able to verify the main result mentioned earlier.

Theorem 6.7 (Erdds [1]). Two presentations, F/H and F'/H', of a torsion-free
group are equivalent if and only if itk H = tk H'.

Proof. To verify sufficiency, suppose tk H = rk H’; as noted above, this implies
rtk F = rk F’. We prove more than stated, viz. we show that every isomorphism
¥ : F/H — F'/H' is induced by an isomorphism ¢ : F — F’ carrying H onto H'.

Since A is torsion-free, both H and H’ are pure. Ignoring the trivial case, we may
suppose that rk H is infinite. We distinguish three cases.

CaseI: tkH = |A|. Then the same is true for rk H'. In view of Lemma 6.6,
there exist a basis B of F and a basis B’ of F’ which are complete sets of
representatives mod H and mod H’, respectively. The correspondence B — B’
which maps b € B upon b’ € B’ if and only if ¥ maps the coset b + H upon
b’ + H' extends uniquely to an isomorphism ¢ : F — F’ under which H' is the
image of H. Thus the two presentations are equivalent.

Case II: tk H > |A|. Let G be a free group whose rank is rk H. Replace F by F & G
and F' by F’ & G, but keep H and H'. Application of Case [ to A @ G implies
the existence of an isomorphism ¢ : F & G — F' & G with ¢H = H' inducing
¥. It is self-evident that pF = F.

Case III: tkH < |A|. There is a decomposition F = F; @ F, such that H < F}
and tfkH = tkFy < tkF, = |A|. Thus A = F;/H & F,, and ¢ yields a
similar decomposition A’ = F|/H’ @ F). Case I guarantees the existence of
an isomorphism F; — F| mapping H upon H'; this along with F, — F}
(restriction of ¥) yields an isomorphism ¢: F — F’. O

% Notes. Hill-Megibben [4] furnished another proof of Theorem 6.5 as a corollary to a more

general result which they proved on equivalent presentations of arbitrary abelian groups. F/H and
F’'/H’ are equivalent presentations if and only if, for each prime p,

dim(H + pF)/pF = dim(H" + pF’)/pF’.
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For Dedekind domain, A.I. Generalov and M.V. Zheludev [St. Petersburg Math. J. 7, 619-661
(1996)] characterized equivalent presentations. No such study is available for larger classes of
domains, but several special cases have been investigated.

Various generalizations of the stacked basis theorem may be found in the literature. Let us
mention Ould-Beddi—Striingmann [1] where homogeneous completely decomposable groups are
considered. Osofsky [1] studied a kind of dual to the stacked basis theorem. She proved that if
H is a subgroup of a free group F such that F/H is p"-bounded, then for every decomposition
F/H = @ C; with cyclic groups C; there is a decomposition F = @ F; such that C; = F;/(HNF;).

Cutler-Irwin—Pfaendtner—Snabb [1] have a nice generalization of Lemma 6.6. They show that
a pure subgroup H in a X-cyclic group G contains a summand K of G such that rky(K) = rko(H)
and 1k, (K) = rk,(H) for each p. See Lemma 6.12 in Chapter 5, for the torsion case.

Exercises

(1) (Erd6s) Let H be a subgroup of a group G such that G/H is torsion-free. There
is a generating system of G which is a complete set of representatives mod H if
and only if |H| < |G/H|. [Hint: Lemma 6.2 with a presentation of G.]

(2) (Hill-Megibben) If A = F/H is a presentation of an infinite group such that F
is free and tk F > |A|, then there is a direct decomposition F = F; @ F such
thatrk F; = |A| and F, < H.

(3) Let Hy < --- < H, < ... be a countable ascending chain of summands of a
free group F.

(a) The union H = U,,,, H, need not be a summand of F.
(b) H contains a summand of F whose rank is Y _ rk(H,). [Hint: H is pure
in F, and apply Exercise 1.]

n<w

(4) (Erdds) Let A = @ier A; be a direct sum of torsion-free groups. If F is a free
group and ¢ : F — A is an epimorphism, then there is a decomposition F =
®ijes Fi such that ¢ : F; — A, for each i € I. [Hint: represent A; = F;/H| such
that ) ,, rk(H!) < rk(Ker ¢), and apply Lemma 6.6.]

7 Chains of Free Groups

We are looking for criteria for a group to be free, especially when the union of a
chain of free subgroups is again free. In this section and in the next one, we have to
use frequently purity to be discussed in Chapter 5.

Pontryagin’s Criterion In a few cases useful criteria for freeness can be
established. The one which is most often used works for countable torsion-free
groups.
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Theorem 7.1 (Pontryagin [1]). A countable torsion-free group is free if and only if
each of its finite rank subgroups is free. Equivalently, for every n € N, the subgroups
of rank < n satisfy the maximum condition.

Proof. Because of Theorem 1.6, necessity is evident. For sufficiency, let A =
{ao, - .. ,ay,,...) be a countable torsion-free group all of whose subgroups of finite
rank are free. Define Ag = 0,4, = (ag,...,a,—1)« (n € N) (the purification of
{(ao,...,ay—1) in A). ThenrkA, < n and rkA, 4+, < rkA, + 1. Therefore, either A
is of finite rank—in which case there is nothing to prove—or there is a subsequence
B, of the A,,, such that rk B, = n, and A is the union of the strictly ascending chain
0=By<B; <-+<B, <....Now B,+/B, is torsion-free of rank 1 and finitely
generated, thus B,+1/B, = Z. From Theorem 1.5 we obtain B,+| = B, & (b,) for
some b, € A. This shows that the elements by, by, ..., b,,... generate the direct
sum @, <, {b,), whence A = D, -, (b,) is immediate.

By Theorem 1.6, the second formulation is equivalent to the first one. O

Corollary 7.2. Suppose 0 = Gy < Gy < --- < G, < ... is a chain of countable
free groups such that each G, is pure in the union G of the chain. Then G is free.

Proof. A finite rank subgroup of G is contained in some G, so it is free. The claim
is immediate from Theorem 7.1. O

If we have a chain like in Corollary 7.2 with the G, as summands in a larger
group F, the union G need not be a summand of F.

Example 7.3. Let G be a free group that is the union of a countable chain of infinite rank
summands Gy < G| < -+ < G; < .... Our claim is that there exists a countable free group
F containing G such that each G; is, but G is not a summand of F.

Let0 > H — F/ — Q — 0 be a presentation of Q with countable free F’. Let H, (n < )
be a chain of finite rank summands of the free group H with union H. Then F’/H,, is free for all
n < w. Next, pick free groups Fy = Gy and F; = G;/G;—; (i > 1). It is evident that

GEH®®i<w F,' and Gn an®®n§i<w F,' (n<a))

Finally, we embed G in a free group F = F’ @ @®;.,, F; imitating the embedding of H in F’ and
keeping the G; fixed. This F is as desired.

The Eklof-Shelah Criterion The following lemmas provide us with versatile
criteria for a group to be free.

Lemma 7.4. Let, for some ordinal t,
0=Ap<A| < <Ay <... (o<71) (3.15)

be a smooth chain of pure subgroups of a group A such that A = | J,_, Aq. If, for
each o < t, the factor group As41/A is free, then A is free.

Proof. In view of the stated condition, A,+; = A, ® B, for each 0 < t, for a
suitable subgroup B, of A;+ Theorem 1.5. If X, denotes a basis of B, then the set
union X = | J__, X, is a basis for A. ]

o0<T
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We can now verify the Eklof—Shelah criterion which provides a necessary and
sufficient condition for freeness.

Theorem 7.5 (Eklof-Shelah). Let k be an uncountable regular cardinal, and
assume 0 = Ay < A < -+ < Ay < ...(0 < k) is a smooth chain of pure
subgroups of a group A such that

(i) all the A, are free groups of cardinality < k, and
i) A=, Ao
Then A is free if and only if the set

E={o <« |3p> o0 suchthatA,/As isnotfree}

is not stationary in k.

Proof. Suppose A is free. Consider a filtration {B, };<, of A with summands. The
set C of indices o of those subgroups A, which appear in the filtration {B, }s< is
acub in k, s0 {A; },ec provides a filtration of A with summands. We see that A/A,
is free for all 0 € C, and so C does not intersect the set E. This proves that E is not
stationary.

Conversely, assume that £ is not stationary. Then there is a cub C C « which
does not intersect E. Evidently, {A, },ec is still a filtration of A. Relabeling, we have
a filtration {A, }, <, where all factor groups A,+1/A, are free. By Lemma 7.4, A is
free. O

Remark. For future applications we point out that both Lemma 7.4 and Theo-
rem 7.5 hold for p-groups A, if ‘free’ is replaced throughout by ‘X-cyclic.” The
proofs are the same with obvious changes.

The next lemma teaches us how to create from a short chain of direct sums with
large factor groups a long chain with small factor groups. (The main interest is in
the torsion-free case, but no such restriction is needed.)

Lemma 7.6. Assume
0=Gy<G<---<G,< ...

is a chain of groups that are pure in the union G = U<, G,, where each G, is a
direct sum of countable groups. Then there is a smooth chain

0=Ap<A| < <Ay <... (o<71) (3.16)

of pure subgroups A, of G such that

(1) Ay NG, is a summand of G,, for everyn < w and o < t; and
(ii) As+1/As (0 + 1 < 1) is countable and the union of an ascending chain of pure
subgroups, isomorphic to summands of G, (n < w).
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Proof. We start choosing a fixed direct decomposition of each G, into countable
summands, and define an H(Ry)-family #, of summands of G, to consist of all
direct sums of subsets of components in the chosen decomposition. We break the
proof into three steps.

Step 1. The collection
Gy ={A € H, | A+ G is pure in G, for eachi < n}

is a G(Ro)-family of subgroups of G,,.

All that we have to check is that G, satisfies the countability condition for a
G(Rp)-family, since the other conditions are obvious. Let A € G,, and Hj a
countable subgroup of G,. Suppose that we already have a chain A = By <
By < -+ < By, of subgroups in H, such that

1. A+ Hy < By;

2. Bj11/Bjis countable for all j < m; and in addition,

3. for each j < m and for each i < n, (Bj+1 + Gi)/(A + G;) contains a
purification of (B; + G;)/(A + G;) in G,/ (A + G)).

To find a next member B, of the chain, for each i < n, let V; C G,
be a countable set that—along with (B,, + G;)/(A + G;)—generates a pure
subgroup in G,/(A + G;). Thus H,+; = Ui < Vi is likewise a countable
set. Consequently, there is a B,,+1 € H, such that B,, + H,+1 C B+ and
B, +1/B,y, is countable. Then, for each i < n, (B,,+1 + G;)/(A + G;) contains
the purification of (B, + G;)/(A+ G;) in G, /(A + G;). The union B of the chain
of the B,, for all m < w is a member of H,,, B/A is evidently countable, and our
construction guarantees that (B + G;)/(A + G;) is pure in G, /(A + G;). Thus
B + Gjispurein G, i.e. B € G,.
Step 2. The family

B={A<G|ANG, € G,foreachn < w}

is a G(Ro)-family of subgroups in G.

Again, only the countability condition requires a proof. Since there are but
countably many indices n to deal with, a similar back-and-forth argument (@
times) suffices to ensure that for each A € B, there exists an A’ € B such that
A’/A is countable, as needed.

Step 3. At this point we know that B is a G(Ry)-family satisfying (i), so we can
extract a smooth chain (3.16) of pure subgroups with countable factor groups.
Evidently, the group Ay, +1/As is the union of the ascending chain of groups
[As + (G, N As+1)]/As = (G, N As+1)/(G, N Ay) (n < w), all summands of
G, in the chosen direct decomposition. O
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Hill’s Criterion The following result is a far-reaching generalization of Pon-
tryagin’s theorem.

Theorem 7.7 (Hill [9]). The union G of a countable ascending chain
0=Gy<G<--- <G, < ...

of pure subgroups, each of which is free, is a free group.

Proof. The given chain can be replaced by a chain of the A, as stated in Lemma 7.6.
Apply Corollary 7.2 to the factor groups As+1/As to conclude that they are free.
A simple reference to Theorem 7.5 completes the proof. O

It should be pointed out that this theorem fails to hold for longer chains, as is
shown by Theorem 8.6 below.

Before we go on, we would like to mention an important consequence of Hill’s
theorem. This is a special case of Shelah’s compactness theorem 9.2 for limit
ordinals cofinal with w.

Corollary 7.8 (Hill [21]). Suppose A is an infinite cardinal whose cofinality is w.
A group of cardinality A is free provided that all of its subgroups of cardinalities
< A are free.

Proof. Evidently, a group of cardinality A is the union of a countable ascending
chain of pure subgroups whose cardinalities are < A. By hypothesis, each of these
is free, so the claim follows right away from Theorem 7.7. O

Another criterion worthwhile recording is the following. (Observe the difference
between Theorem 7.5 and Lemma 7.9.)

Lemma 7.9 (Eklof [5]). Let k be a regular cardinal, and
0=Ap <A1 < - <A, < <A, =A (3.17)

a smooth chain of free groups such that A /A, is free whenever p is a successor
ordinal and p < o < k. If the set

E = {A < k| A limit ordinal, Ay41/A) not free}

is not stationary in K, then A is a free group, and so is A/A, for every successor
ordinal p.

Proof. Suppose E is not stationary, i.e. there is a cub C C « that does not
intersect E. Those A, whose indices belong to C form a chain like (3.17); we may
assume that (3.17) is this subchain. In this chain, A,4/A, is free for all o < «,
so Theorem 7.5 implies that A is free. The second claim follows by applying the
resultto A/A,. |
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When Torsion-Free has to Be Free A rather remarkable feature of free groups
was discovered by Griffith [5]. A torsion-free group containing a free subgroup with
bounded factor group is easily seen to be again free, and interestingly, the same
conclusion can be reached under much weaker conditions on the factor group. The
following theorem is a slightly modified version of Griffith’s theorem.

Theorem 7.10. Let A be a torsion-free group, and F a free subgroup of A. IfA/F is
a p-group that admits an H(Ro)-family of subgroups such that all the factor groups
in H(Ry) are reduced, then A is free (and = F).

Proof. 1If A is of finite rank, then hypothesis implies A/F is a reduced p-group of
finite rank, so it is finite (cp. Theorem 5.3). As a finitely generated torsion-free
group, A is free.

Next assume F is of countable rank, and write F' = ®,,-,, Z, with Z, = Z. For
n < w,setF, = ®i<,Z; and A, = (F,),. Manifestly, A,/F, = A,/(A, N F) =
(A,+F)/F < A/F, which shows that A,/ F,, is reduced, and hence it must be a finite
p-group. Therefore, A, is free of finite rank by the preceding paragraph. Hence A
is the union of a countable ascending chain {A,},<, of pure free subgroups, and
by Corollary 7.2 we conclude that A itself is free.

Turning to the uncountable case, set F = @;¢; Z; with Z; = 7Z, and for the
p-group T = A/F, select an H(Ry)-family H as stated. As T is reduced, and A
is torsion-free, every non-zero element of A is divisible but by a finite number of
integers. We are going to define by transfinite induction a smooth chain @ = Iy C
Iy Cc---Cl, C---CI; =1 of subsets of I such that for all ¢ < 7, we have

@) [lo+1\I5] <R, and
(b) (As + F)/F (which is == A, /F,) is a subgroup 7, € H, where F, = ®iej, Z;
and A, = (F,),.

Suppose o is an ordinal such that, for all p < o, the subsets I, have been selected as
required. If o is a limit ordinal, then we set I, = U, I,, as is forced by continuity.
In this case, (b) will be satisfied, since H is closed under unions. If 0 = p + 1 and
I, # I, pickany i € I \ I,. Note that (A, + F)/F = T, is a subgroup of countable
index in C;/F where C, = (A, + Z;), + F, so there is a subgroup B; < A such that
C\/F < Bi/F € H and |B;/C;| < Ro. There is a countable subset J; C I\ I, for
which (A, ® ®jes, Z;), + F contains B;. We keep repeating this process, to define
an ascending chain of countable subsets J,, of I \ I,, along with subgroups C, and
B, of A (forn < w)suchthat C{ < By < C, < B, <....If weset

I(T = Ip U Un<a)~]na Fa = @jela Zja and A(T = (F(T)xu
then U, ,C,/F = U,<, B,/F will be a subgroup T, € H, and (a)-(b) will be
satisfied for this 0. The factor group A, /A, is torsion-free and countable; it contains

(A, + F5)/A, as a free subgroup such that the factor group is isomorphic to

As/(Ap+F5) =Ac/[Ac NAp+F)] = (A +F) /Ay + F) =T, /T,
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which is a countable reduced p-group. Therefore, we can apply the countable case
to derive that A, /A, is a free group. Hence the chain of the A, (0 < 1) has free
factor groups, thus their union A is a free group. O

Example 7.11. Reduced totally projective p-groups (Sect. 6 in Chapter 11) admit an H(R)-family
as stated in the theorem. However, no uncountable p-group with countable basic subgroups has
such a family.

The Summand Intersection Property We say that a group A has the summand
intersection property if the intersection of two summands in A is likewise a
summand of A. If the same holds for infinite intersections as well, then we refer
to it as the strong summand intersection property. Needless to say, this property
is shared by very special groups only. We are looking for free groups with this

property.

Proposition 7.12 (Kaplansky [K], Wilson [1]). All free groups have the summand
intersection property. A free group has the strong summand intersection property if
and only if it is countable.

Proof. Let F be a free group, and F = B; @ C; (i = 1,2) direct decompositions.
Then F/(B; N By) is isomorphic to a subgroup of the free group F/By & F/B;, so
is itself free. Hence By N B, is a summand of F.

If F is a countable free group, then the same argument with countable summands
leads to a countable factor group contained in a product of countable free groups
F/B;. Theorem 8.2 below implies that this factor group is free, so the intersection
of countably many summands is a summand.

Finally, suppose |F| > R;. Let A be a torsion-free, non-free group of cardinality
Ni,and ¢: F — A a homomorphism that is a bijection between a basis {b, | 0 < k}
of F and the elements of A. Select homomorphisms ¢; : F — A with cyclic images
whose kernels C; are summands of F' containing K = Ker ¢. This can be done such
that the intersection N;e; C; = K. But K cannot be a summand, since F/K is not
free. O

% Notes. In this section, we have collected the most useful results on free groups. They have
fascinating features, no wonder that their theory attracted so many researchers. For criteria on the
existence of a basis, we refer to Kertész [1], Fuchs [1]. In view of the very useful chain criteria of
freeness, basis criteria are hardly used.

The summand intersection property for free groups was observed by Kaplansky [K]. More
on this property can be found in Wilson [1], Arnold—Hausen [1], Albrecht-Hausen [1]. Hausen
[9] proved that A?) has the summand intersection property if End A is a PID. This property was
investigated by Kamalov [1] for non-free groups, and by Chekhlov [2] for torsion groups.

Exercises

(1) A countable group is X-cyclic if and only if every finite set of its elements is
contained in a finitely generated direct summand.
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(2) (a) A subset {a;};es of a torsion-free group A is a basis of A if and only if it is a
minimal generating system such that, for every finite subset {ay, ..., a,}, if
a € Adependson {ay,...,a,},thena € {(ay,...,a,).
(b) The same with “minimal generating system” replaced by “maximal inde-
pendent subset.”

(3) In any presentation of Z®, there are continuously many generators and
continuously many relations.

(4) (Danchev) In a p-group A, the p®A-high subgroups are X-cyclic if and only if
A[p] is the union of an ascending chain T, (n < w) such that the finite heights
in 7T, are bounded.

(5) The summand intersection property is inherited by summands.

(6) (Wilson) A torsion group has the summand intersection property if and only if
each of its p-components is either cocyclic or elementary.

(7) (Wilson, Hausen) A has the summand intersection property if and only if for
every direct decomposition A = B @ C, the kernel of any map B — Cis a
summand of A.

8 Almost Free Groups

Almost free groups are those (necessarily) torsion-free groups in which all
subgroups of smaller sizes are free. More precisely, for an infinite cardinal k, we say
that a group A is «-free if every subgroup of A whose rank is < « is free [AG]. The
problem of finding the cardinals « for which there exist «-free groups that fail to be
kt-free was raised in [IAG]. As it turns out, it is an intricate problem, requiring
sophisticated machinery from set theory. It has been studied extensively, and a
significant amount of information has already been gained, but still much remains
to be done. Here we aim simply at giving a taste of the subject. The objective is to
understand how close almost free groups are to being free.

k-Free Groups Since purification does not increase rank, it is clear that if A is
k-free, then every subgroup of rank < k is contained in a pure free subgroup of the
same rank. Thus the collection € of pure free subgroups of rank < « is witness for
k-freeness. In view of Theorem 7.7, € is closed under taking unions of countable
chains.

Example 8.1. 1In this new terminology, Pontryagin’s theorem 7.1 can be rephrased by saying that
a countable Ry-free group is free.

(A) If k < A are infinite cardinals, then A-free implies k-free. In particular, free
groups are trivially x-free for every cardinal «.

(B) Subgroups and direct sums of k-free groups are k-free.

(C) Extension of a k-free group by a k-free group is k-free. More generally, we
have:
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D) Let 0 = Ag < -+ < Ay < +-+ < Ay = A be a smooth chain of groups such
that all the factor groups As+1/As are k-free. Then A is also k-free. In fact,
let X be a pure subgroup of A with |X| < «. Then in the smooth chain X N A,
(0 < 1) each factor group (X N Ay+1)/(X N Ay ) is torsion-free of cardinality
< k, and therefore it is isomorphic to the free subgroup (Ay +(XNAs+1))/As <
As+1/As. An appeal to Lemma 7.4 completes the proof.

The Baer—Specker Group The next theorem is concerned with a prototype for
R -freeness; actually, the group is of major interest.

Theorem 8.2 (Baer [6], Specker [1]). The direct product of infinitely many infinite
cyclic groups is R-free, but not free.

Proof. Write A = [],; {a;), where I is an infinite set, and (a;) = Z for each i.
The first step in the proof is to show that every finite subset {x;,...,x,} C A is
contained in a finitely generated direct summand of A whose complement is a direct
product of infinite cyclic groups.

We inducton m. If m = 1 and x; # 0, thenx; = (...,na;,...) withn; € Z. If
there is an index j € [ such that |n;| = 1, then the jth component (a;) in the direct
product can be replaced by (x;),i.e. A = (x1) @ A;, where A; is the set of elements
with vanishing jth coordinate, so it is also a product of infinite cyclic groups. If the
minimum # of the |n;| with n; # 0 is greater than 1, then setting n; = g;n + r; with
qi,ri € 2,0 < r; < n,definey; = (...,qiai,...),y2 = (...,ra;,...) € A s0
that x; = ny; 4+ y,. There must be an index j € I with |g;| = 1 and r; = 0, thus
A = (y1) @ Aj, where y, € A; with coefficients 0 < r; < n. By induction on #,
Aj has a finitely generated summand B’ containing y», and so (y;) @ B’ is a finitely
generated summand of A containing x; such that it has a direct product of infinite
cyclic groups as a complement.

Assume that m > 1, and A = B @ C where B is finitely generated containing
{x1,...,xXm=1}, and C is a direct product of copies of Z. Setting x,, = b + ¢
(b € B, ¢ € C) and embedding ¢ in a finitely generated summand C’ of C, we
obtain a finitely generated summand B & C’ of A, containing {xi,...,x,}, again
with a complement that is a direct product of infinite cyclic groups.

The next step is to show that A is R;-free. Let G be a countable subgroup of
A. A maximal independent set of a finite rank subgroup G’ of G is contained in a
finitely generated summand B of A, so by torsion-freeness, G’ < B. Thus G’ is free,
and Theorem 7.1 implies that G is free.

It remains to prove that A itself is not free. We exhibit a non-free subgroup of A.
Let p be any prime, and H the subgroup of A’ = []._, {a;) (a summand of A) that
consists of all vectors b = (ngag,niay,...,na;,...) such that, for every integer
k > 0, almost all coefficients n; are divisible by pk . Manifestly, H contains the direct
sum S = @i, (a;), and has cardinality 2%, Since each coset of H mod pH can be
represented by some element of S, H/pH cannot be uncountable. If H were free, we
would have |H/pH| = |H|, so H cannot be free. O

The countable direct product of infinite cyclic groups, i.e. the group Z®, is often
called the Baer-Specker group.
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An immediate consequence is the following result that shows that in countable
groups free summands can be collected into a single summand.

Corollary 8.3 (K. Stein). A countable torsion-free group A can be decomposed as
A = F @& N where F is a free group, and N has no free factor group. N is uniquely
determined by A.

Proof. Define N as the intersection of the kernels of all homomorphisms n: A — Z.
Then A/N is isomorphic to a countable subgroup of the direct product ]_[,7 Z, so it
is free in view of Theorem 8.2. N is then a summand of A, and we have A = F & N
with F free. From the definition of N it is evident that N cannot have a non-trivial
map into Z. O

The next two examples show that there exist very large Ri-free groups A such
that Hom(A, Z) = 0, and it may also happen that an X;-free group is isomorphic to
the countable direct sum and to the countable direct product of itself.

Example 8.4 (G. Reid [1]). Let x > N; be a non-measurable cardinal, and N the subgroup of
Z* consisting of vectors with countable support. Then A = Z¥/N is R;-free. To see this, let
b, + N (n < w) be a list of elements in a countable subgroup F of A. Clearly, each b, has
uncountable support, and each sum b; + b; is equal to some b; modulo a countable index set. Thus
if we change the representatives b, by dropping all the indices in these countably many index sets,
then the new representatives form a subgroup F’ = F. By Theorem 8.2, F” is free, so A is R;-free.

A homomorphism ¢ : A — Z may be viewed as a map ¢™ : Z* — Z such that ¢™(N) = 0.
By Theorem 2.8 in Chapter 13, ¢* = 0, which means Hom(4, Z) = 0.

Example 8.5. There exists an R;-free group which is not free and isomorphic both to the direct
sum of countably many copies of itself, and to the direct product of countable many copies of itself.
See Proposition 4.9 in Chapter 13.

Strongly «-Free The study of almost free groups brings a stronger version of
k-freeness into the picture. Let k be a regular cardinal. A group A is said to be
strongly «-free if every subgroup of cardinality < k is contained in a free subgroup
C of cardinality < « such that A/C is k-free. Evidently, free groups are strongly
k-free for any cardinal k.

It is not obvious that if x < A are infinite cardinals, then strongly A-free implies
strongly «x-free, but it is true. In fact, if a subgroup B of cardinality < « is contained
in a free subgroup C of cardinality < A with A-free A/C, then B is contained in
a summand C’ of C of cardinality < k. Because of (C), A/C’ is k-free, being an
extension of the free group C/C’ by the x-free group A/C.

The fine nuance between strongly «-free and just plainly x-free groups can be
better understood if we compare filtrations.

Lemma 8.6 (Eklof-Mekler [EM]). Let A be a group of cardinality k, where k is
an uncountable regular cardinal.

(a) A is k-free exactly if it has a filtration {A, | 0 < k} with free subgroups A, of
cardinality < k.

(b) A is strongly k-free if and only if it admits a filtration {A, | 0 < Kk} with free
subgroups A, of cardinality < k such that, for all 0 < © < k, the factor groups
Ar41/A+1 are free.
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Proof. (a) Since every subgroup of cardinality < « is contained in some member
of a k-filtration, the stated condition evidently implies the x-freeness of A.
Conversely, if A is k-free, then the subgroups in any «-filtration of A are free.

(b) For sufficiency, it is enough to observe that the stated condition is equivalent to
that A is «-free, and for every A, 1, the factor group A/A,+ is k-free. To prove
the converse, assume A is strongly «-free, and {a, | 0 < «} is a well-ordered
list of elements of A. We construct a filtration {A, | 0 < k} of A as desired, with
the additional property that a, € A, for all p < o < k. Suppose that, for some
o < k, we have a chain {4, | p < o} satisfying the requisite properties. Choose
for A, a subgroup of cardinality < « that contains both A, and a, such that
A/As+1 is k-free. Then the factor groups A, +1/Aq+ are free for all t > o, and
by the k-freeness of A, A, 4 is free. ]

Observe that in (b) we have not said anything about the freeness of the factor
groups A, /A, at limit ordinals o.

Lemma 8.7. The Baer-Specker group P = ZX° is not strongly R, -free.

Proof. We prove that the direct sum § = Z®) is not contained in any countable
subgroup G with R;-free P/G. Anticipating theorems that we will prove later on,
the proof is quick. Corollary 1.12 in Chapter 6 asserts that P/S is algebraically
compact, thus for every intermediate pure subgroup S < G < P, the factor
group P/G is torsion-free and algebraically compact (see Lemma 8.1 in Chapter 9).
Therefore, it contains a subgroup isomorphic to either Q or J, for some prime p,
and consequently, P/G can never be R;-free. O

Uncountable Chains If we wish to consider chains of free groups of cofinality
exceeding w, then we are confronted with a more complicated situation. In order
to guarantee that the union of long chains of free groups will again be free, it is
necessary to impose restrictions on the factors in the chain. A typical result is as
follows.

Theorem 8.8 (Fuchs—Rangaswamy [4]). Suppose « is an uncountable regular
cardinal, and 0 = Fy < F; < -+ < F; < ... (0 < k) is a smooth chain of
groups such that, for every o < k,

(a) Fy is free of cardinality < k, and
(b) Fy is a pure subgroup of Fs41.

(1) The union F of the chain is free provided the set
S =1{o <« |3p > o suchthat F,/Fy is not k-free}
is not stationary in K.

(ii) If all |F,| < Kk, and S is stationary in k, then F is k-free, but not free.

Proof. The proof is similar to the one in Lemma 7.6, but the construction of the
G(k)-families becomes complicated at limit ordinals. The details are too long to be
reproduced here. O
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Large Almost Free Non-free Groups We next prove that in the constructible
universe, there exist large «-free groups that are not free.

Theorem 8.9 (Gregory [1]). Assume V = L. For every uncountable regular
cardinal k that is not weakly compact, there exists a k-free group of cardinality
K which is not free.

Proof. Let E be a stationary subset of k that consists of limit ordinals cofinal with
w; see Lemma 4.5 in Chapter 1. Suppose for a moment that we have succeeded in
constructing a group F as the union of a smooth chain of subgroups F, (0 < k)
satisfying the following conditions for all o < p < «:

(1) Fy is free of cardinality |o| - Ro;
(ii) if 0 € E, then the quotient F,, 4/ F, is not free;
(iii) if o ¢ E, then F,/Fy is free of cardinality |p] - Ro.

Then F is of cardinality « and k-free. Working toward contradiction, suppose F is
free. Then there exists a cub C C « such that F,/F, is free for each pair 0 < p
in C. For such a pair of indices, the exact sequence 0 — Foy1/Fs — F,/F; —
F,/Fs4+1 — 0 must split because of (iii). This means that F, | /F; must be free for
o € EN C, contrary to (ii).

It remains to construct a smooth chain of groups F, (0 < k) with the listed
properties. Starting with Fy free of rank Xy, we proceed to define F, (o > 0) via
transfinite induction as follows. Assume that ¢ is an ordinal < k such that the groups
F, (p < o) have already been constructed, and they satisfy conditions (i)—(iii) up
to 0. To define F,; we distinguish three cases.

Case 1. If o is a limit ordinal, then we have no choice: F, = Up<a F,.Since ENo is
not stationary in 0 Lemma 4.5 in Chapter 1, (iii) allows us to apply Theorem 7.5
to claim that F, is free. Hence conditions (i)—(iii) hold for all ordinals < o.

Case2. If o = p+ 1 and p ¢ E, then we simply let F, = F, & X where X is a
countable free group.

Case 3. The critical case is when 0 = p + 1 and p € E. In view of the choice
of E, we have cf p = w, so p is the supremum of an increasing sequence of
non-limit ordinals py < p; < -+ < p, < ... (n < w). Consider the chain
F, <---<F, < ... of free groups whose union is the free group F,. We
are in the situation of Example 7.3, and so we can define F,4; such that the
F,, (n < ) are, but F, is not a summand of F, 4. With this choice, (i)—(iii)
will be satisfied by all ordinals < o. O

For cardinals 8, (n > 1), the existence of a stationary E of property Lemma 4.5
in Chapter 1 can be established without the hypothesis V = L, therefore we can state:

Corollary 8.10 (Eklof [2], Griffith [7], Hill [13]). For every integer n > 1, there
is a non-free R, -free group of cardinality R,,. O

The X-Cyclic Case Several results proved above carry over to torsion and
mixed groups provided we can interpret freeness in an appropriate way. This can
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be done by introducing «-cyclic groups meaning that every subgroup of cardinality
< Kk is X-cyclic.
A proof similar to Theorem 8.9 applies to verify:

Corollary 8.11 (EKlof [2]). If x is an uncountable regular cardinal that is not
weakly compact, then there exist k-cyclic torsion groups of cardinality k that are
not %-cyclic.

For every n > 0, there are R,-cyclic torsion groups of cardinality R, which are
not %-cyclic.

Proof. Obvious modification to Theorem 8.9 is that ‘free’ should be replaced by
‘Y-cyclic,” ‘k-free’ by ‘k-cyclic,” and purity should be assumed throughout. In place
of Example 7.3, a modified example should be referred to where a pure-projective
resolution of Z(p°) is used. O

Mittag-Leffler Groups Most recently, a lot of attention has been devoted
to Mittag-Leffler modules. In the group case, a satisfactory characterization is
available. In the definition, we need tensor products: M is a Mittag-Leffler group
if for every collection {A;};e; of groups, the natural map

p:M[]A—]][M®a)

i€l i€l

givenby p(x® (...,ai,...)) = (..., x®a;,...) ismonic (x € M,a; € A)).

Example 8.12. (a) Cyclic groups are Mittag-Leffler. This is trivial for Z, and follows for
M = Z(n) from the fact that both the domain and the image of ¢ are then isomorphic to

Hiel (Ai/nA;).
(b) The Priifer group H,+; (of length @ + 1) is not Mittag-Leffler. The natural map H,1; ®
Lo Z@") = [1,<0, Ho+1 ® Z(p") is not monic. (See the proof of Theorem 8.14.)

Lemma 8.13 (M. Raynaud, L. Gruson). The class of Mittag-Leffler groups is
closed under taking pure subgroups, pure extensions and arbitrary direct products.

Proof. Starting with a pure-exact sequence 0 —> M’ — M — M” — 0, we form

the commutative diagram

0 —— MeJ[Ai —— M4 ——— M'®[]4i —— 0

o | o] K%

0 —— [[M®4;) —— [IIM®A) —— [[M'"®A) —— 0

with pure-exact rows (see Corollary 3.7 in Chapter 5). Evidently, if ¢ is monic, then
so is ¢’. If both ¢’ and ¢” are monic, then Lemma 2.6 in Chapter 1 (or a simple
diagram-chasing) shows that ¢ has to be monic as well. Finally, for direct products,
the claim will be a simple consequence of Theorem 8.14 and Exercise 1. O

It is not difficult to characterize Mittag-Leffler groups.
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Theorem 8.14 (Raynaud—Gruson). A group is Mittag-Leffler if and only if it is
R;-cyclic.

Proof. We start the proof by showing that M is Mittag-Leffler if and only if each
of its countable pure subgroups is Mittag-Leffler. One direction the claim follows
from Lemma 8.13.

For the converse, assume ¢ maps Z;l=l(.x]' ® bj) (xj € M, bj € [[A)) to 0. Then
by Lemma 1.12 in Chapter 8 and by the remark after it, the same sum vanishes in
¢(M' ® [[A)) for a countable pure subgroup M’ < M containing the x;’s. Hence
M cannot be Mittag-Leffler if its countable pure subgroups are not, but it is if its
countable pure subgroups are Mittag-Leffler.

It remains to prove that countable Mittag-Leffler groups are 3-cyclic. Suppose
N is a countable p-group which has elements # 0 of infinite p-heights. Clearly, all
non-zero elements of [ [, (N ® Z(p")) have finite p-heights. However, [ [,y Z(P")
has summands = J,, so N ® [[,eny Z(p") has summands = N ® J, = N with
elements of infinite heights. Thus N is not Mittag-Leffler. A countable Mittag-
Leffler group must therefore have separable p-components, so its torsion subgroup
is X-cyclic.

Next, let M be of finite torsion-free rank n > 0 such that M/tM is not finitely
generated. Then M contains a subgroup N such that N/tM = Z" and M/N is an
infinite torsion group. First assume M /N is reduced. Then it is X-cyclic of the form
DBicw Z(pf") with k; € N, where the p; are not necessarily different primes, but each
prime may occur at most n times. We tensor the exact sequence

0> NZMOZ" - M — iy Z(p) — 0

withA =[] ; Z(p;j) where p; varies over the (infinitely many) different primes in the
set of the p;. In the long exact sequence connecting Tor and ®, the map Tor(N,A) —
Tor(M,A) is an isomorphism as N, M share the same torsion subgroup, thus the
induced sequence

0 = Tor(®ieow Z(p), A) (M B L) @A - M QA — ...

is exact. We calculate: Tor(D;<, Z(pf" ),A) = ®; Z(p;), and note that this Tor is sent
by the connecting map § into Z" ® A. Therefore, M ® A must contain an image of the
divisible group A/ &; Z(p;). But [ [;(M ® Z(p)) is reduced, thus M ® [ [; Z(p;) —
]_[j(M ® Z(p;)) is not monic. Such an M cannot be Mittag-Leffler.

A similar proof applies to show that M cannot be Mittag-Leffler if M /tM contains
arank 1 pure subgroup that is p-divisible for some prime p (in this case, we tensor
with A = [],en Z(P")). The conclusion is that if M is Mittag-Leffler, then the
finite rank pure subgroups of M/tM are free, i.e. M/tM is free if it is countable
by Theorem 7.1. Therefore, a countable Mittag-Leffler group is X-cyclic. O

% Notes. The Baer—Specker group has been investigated from various points of view, it is an

excellent source of ideas. We point out that, among others, Blass—Irwin have several interesting
papers on this group and its subgroups. In their paper [2], several interesting subgroups are dealt



8 Almost Free Groups 119

with. In the other paper [1], a core class for 8 -freeness is discussed: a well-defined class of non-
free WR;-free groups of cardinality ®; such that every non-free N;-free group of cardinality R,
contains a subgroup from the class. Another interesting result is the existence of indecomposable
R -free groups by Palyutin [1] (under CH) which was generalized to rigid X;-free groups of
cardinality 8, by Gobel-Shelah [2].

Eda [4] shows that a group is N;-free if and only if it is contained in Z® for some
Boolean lattice B. To illustrate the importance of X, -freeness, we also mention several topological
connections. L. Pontryagin proved that a connected compact abelian group G is locally connected
exactly if its character group Char G is N -free, and J. Dixmier showed that it is arcwise connected
if and only if Ext(Char G,Z) = 0 (which is stronger than ®,-freeness). We also point out that
for a compact connected group G, the nth homotopy group 7,(G) = 0 for all n > 1, while
71(G) = Hom(Char G, Z) is always R;-free.

That R,-free groups need not be R,+-free was proved by Hill, Griffith, and then by Eklof.
Mekler-Shelah [2] study regular cardinals « for which x-free implies strongly «-free or x +-free.
Gregory [1] proved in L the most interesting Theorem 8.9. Assuming V = L, Rychkov [3] proves
that for each uncountable regular, not weakly compact cardinal «, there exist p-groups A of final
rank k such that every subgroup C of cardinality < « is contained in a ¥-cyclic direct summand
of cardinality |C|Ro, but A itself is not Z-cyclic, not even the direct sum of two subgroups of final
ranks «.

Mittag-Leffler modules were introduced by M. Raynaud and L. Gruson [Invent. Math. 13, 1-89
(1971)].

Exercises

(1) (a) A direct product of X;-free groups is NX;-free.
(b) The same may fail for larger cardinals.
(c) Derive from Theorem 8.14 that a direct product of Mittag-Leffler groups is
Mittag-Leffler.

(2) In a free group F, a subgroup G of cardinality < « for which F/G is k-free is a
summand.

(3) An extension of a free group by a strongly «-free group is strongly k-free.

(4) Let A be a direct product of infinite cyclic groups, and B the subgroup of A
whose elements are the vectors with countable support. B is R;-free, but not
free.

(5) In the Baer—Specker group A = [],cy {ex), let D denote the Z-adic closure of
S = @y (ex). Prove that D consists of all vectors x = Y myey such that, for
every n € N, n divides almost all m.

(6) Is it possible to define Mittag-Leffler groups by using only countable index
sets 1?7

(7) If M is Mittag-Leffler, then so is M /N for every finitely generated subgroup N
of M.
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9 Shelah’s Singular Compactness Theorem

The question as to when k-free implies « ™ -free turns out to be extremely compli-
cated for regular cardinals « (see Magidor—Shelah [1]). As far as singular cardinals
are concerned, the same question can be fully answered; this is shown by the next
theorem, a most powerful result.

The following lemma will be required in the proof of Theorem 9.2.

Lemma 9.1 (Eklof-Mekler [EM]). If« is a regular cardinal, then a k™ -free group
is strongly k-free.

Proof. By way of contradiction, assume that A is x *-free, but not strongly «-free.
This means that A contains a subgroup B of cardinality < k« which is not contained
in any subgroup of A of cardinality < k with k-free factor group. Set Cy = B,
and let C; be a pure subgroup of A of cardinality < « that contains Cy such that
C1/Cy is not free. Repeat this with C; in the role of C to obtain C,, and continue
this process transfinitely up to « steps, taking unions at limit ordinals. We get a

chain Cp < C; < -+ < C; < ... (0 < k) where none of the factor groups
Cy+1/Cy is free. The union C = Ua - Co has cardinality «, and is not free because
of Theorem 7.5. This contradicts the x *-freeness of A. |

Theorem 9.2 (Shelah [1]). For a singular cardinal A, a A-free group of cardinality
A is free.

Proof. Suppose A is A-free of cardinality A. Let {x, | v < cf(1)} be a smooth
increasing sequence of cardinals > cf(4) with A as supremum, and {A, | v < cf(4)}
a smooth chain of pure subgroups of A with union A such that |A,| = k,. Set

P, ={B <A||B| <k, and A/Bis k} —free}.

Since A is A-free for all k < A, by Lemma 9.1 it is strongly A-free for all k < A
(including limit ordinals < A); thus, every subgroup of A of cardinality < «,, is
contained in a member of P,. For all v < cf(1), define subgroups B, (k < w) and
subsets X, (k < w) such that

(i) Byx € Py (v <cf(Q), k < w);
(ii) X, is a basis of B,x (v < cf(L), k < w);
(iii) A, <Byoy<Byy<:--+<By<...andX,0 CX,; C---C X,x C ... foreach
v < cf(A);
@iv) By =< (ka N Xv-H,k—l) foreach v < Cf(l), 0<k<w;
(v) for a limit ordinal it < cf(1), X, is the union of a chain of subsets Y, (v)
where | Y, (V)| =k, (v < ), and Y,k (v) C By forall v < p.

The construction is by induction on «. In the first step, we define the subgroups
B,y (v < cf(1)) recursively on v. Let Byy be any member of P, that contains Ay. If,
for some p < cf(4), the B, have been defined for all v < , then pick B,,o € P,

such that it contains A, + Y, _ " B,; this can be done in view of the cardinality
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hypotheses. We are led to a well-ordered ascending chain Byg < Bjg < -+ < Byp <
... (that need not be smooth) where B, has cardinality «,,. Choose any basis X,
for B,. For limit ordinals v, represent X, as the union of a chain of subsets Y,,o(0)
where Y,,o(0) has cardinality k, (00 < V).

The next step is to define B, along with X, after all B,;, X,; (and Y, ;(0") only for
limit ordinals v) have been defined for all j < k and for all v < cf(A), and By, Xy,
and Y, (o) forall v < p. Choose B,x € P, so as to satisfy (iv), and to contain all of
the following: (a) B, x—1; (b) By for all v < u; and (c) the sets Y, ;1 (p) for limit
ordinals v > . As By, x— is a summand of B, we can select a basis X,;; of B,; that
contains X, 1. If u happens to be a limit ordinal, we choose the Y, (v) (v < )
so as to satisfy (v). An easy cardinality argument convinces us that this can be done
in view of the hypothesis that k,, > cf(1). It is obvious that conditions (i)—(v) are
satisfied.

We claim that the subgroups B, = | J,,, Buk (v < cf(1)) form a smooth chain
By < By <--- < B, <... (v <cf(d)) with free factor groups B, +/B,. Observe
that if x is a limit ordinal, then in view of

By = JBu = JXw) = J Jrum) < |J U Bur = |J B,

k<w k<w k<wv<p k<wv<p V<[

the chain of the B, is continuous. Since (iv) implies that B, is generated by B, N
Xy+1 (where X, = U, Xvk), Bu+1/B, is indeed free. By Theorem 7.5, the group
A =, B, is free. i

In Chapter 14, a more general form of the Singular Compactness Theorem will
be needed (for Butler groups); we state it here for groups without proof. This
axiomatic form is due to Eklof-Mekler [EM], generalizing W. Hodges’ version
[Algebra Universalis 12, 205-220 (1981)].

Assume F is a class of groups such that 0 € F, and for each G € F, there is
given a family B(G) of sets of subgroups of G. We say that G is ‘free’ it G € F
and ‘B is a ‘basis’ of G if ‘B € B(G). The subgroups B € B are called ‘free’ factors
of G.

For a fixed infinite cardinal u, the following properties (i)-(v) are required for
every ‘free’ group G, and for every ‘basis’ *B of G.

(i) B is closed under unions of chains.

(i) If B € *B and g € G, then there is a C € B that contains both B and g, and is
such that |C| < |B| + u.

(iii) Every B € B is ‘free’ (i.e., ‘free’ factors are ‘free’); and moreover, the set
{Ce®B|C<B}= | Bisa ‘basis’ for B.

(iv) If B is a ‘free’ factor of G, then for every ‘basis’ B’ of B, there exists a ‘basis’
B of G such that B8’ = 9B | B.

(v) Suppose B, (0 < k) is a smooth chain of ‘free’ subgroups of G with ‘bases’
B, satisfying B, | B, = B, forall 0 < p < « (in particular, B, € B,).
Then the union B = | J,,_, B, is a ‘free’ subgroup of G such that | J,_, B, is
a ‘basis’ of B.

o0 <K o <K
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Theorem 9.3. Suppose that the class F of groups satisfies conditions (i)-(v) for
cardinal |, and the cardinality A of the group G € F is a singular cardinal > L.
G is ‘free’ if, for every cardinal k < A, there is a family C, of subgroups of G of
cardinality k satisfying the following conditions:

(a) Cy is a subclass of F;

(b) Cy is closed under unions of chains of lengths < k;

(c) every subset of G of cardinality < k is contained in a subgroup that belongs
to Cy. |

% Notes. Hill [13] showed that 8,-free groups of cardinality N, are free, defeating the
conjecture that k-free never implies k T-free. In a subsequent paper, he proved the same for
R, -free groups. Based on these results, Shelah conjectured and proved the general theorem on
singular cardinals. (The term ‘compact’ is designated in the sense used in logic, not as in topology:
properties of small substructures imply the same for the entire structure.)

Various generalizations of the compactness theorem are available in the literature which we do
not wish to review here. Let us point out that Hodges [loc.cit.] published an interesting proof of
the singular compactness theorem, based on Shelah’s ideas. The «-Shelah game on a group A (for
a regular cardinal «) is introduced; it is played by two players. The players take turns to choose
subgroups of A of cardinalities < « to build an increasing chain {B, },<., of subgroups. The players
know what subgroups have been chosen at previous steps. B, is chosen by player I if n is even and
by player II if n is odd. Player II wins if for every odd integer n, B, is a free summand of B, ,,
otherwise player I is the winner. The «-Shelah game is determinate in the sense that one of the
players has a winning strategy. It is then shown that player I has no winning strategy, so player
II wins. Being a ‘free summand’ is used in a more general sense in order to obtain a singular
compactness result more general than our Theorem 9.3.

Exercises

(1) LetA be a p-group of singular cardinality A. If all subgroups of A of cardinalities
< A are X-cyclic, then A too is X-cyclic. [Hint: the A-free vector space A[p] is
free.]

(2) Let A be a group of singular cardinality A. If A is A-cyclic, then it is X-cyclic.

10 Groups with Discrete Norm

Normed vector spaces play a most important role in functional analysis. In abelian
group theory, the idea of an integer-valued (more generally, a discrete) norm leads
to an interesting characterization of free groups—a result that has several important
applications.
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Discrete Norm A norm on a group A is a function || ... ||: A — R such that

(i) ||al|| = 0foralla € A;and || a || = 0 exactly if a = 0;
) la+bl <llal+|b]forallab e A;
(iii) || ma || = |m|.| a || for each m € Z and a € A.
Anorm ||...| is called discrete if it also satisfies:
(iv) there is a real number € > O such that || a || > € forall 0 # a € A.
(Requirement (iv) is a priori less than demanding that the norms be always
integers.) We record the following elementary facts.

(A) A group with a norm has to be torsion-free. This follows at once from
properties (i) and (iii).

B) If|...| is a (discrete) norm, then so is r| ... || for every positive r € R.

(C) Subgroups inherit the norm function. Discreteness is inherited as well.

(D) A norm || ... | on a torsion-free group extends uniquely to a norm on its
divisible hull (for divisible hull, see Sect. 2 in Chapter 4). Needless to say,
an extended norm is never discrete.

Example 10.1. A free abelian group F admits a discrete norm. In fact, if {;};c; is a free basis of
F, then

I Zniei” = Z |7 (n; € Z)

defines a discrete norm on F. Another way of furnishing F with a discrete norm is by setting

Il Zniei” = max |n;|.

It would be futile to look for other groups as examples, because—as is shown by
the theorem below—only the free groups admit discrete norms.
The discussion starts with the finite rank case.

Lemma 10.2 (Lawrence [1], Zorzitto [1]). A finite rank torsion-free group with
discrete norm is free.

Proof. Let A be torsion-free of finite rank with a discrete norm || .. . ||. By induction
on the rank, we prove that A is free.

Without loss of generality, we may assume that || a || > 1 for all non-zero a € A,
and that there is an xo € A whose norm is < 3/2. Under this hypothesis on the norm,
X is evidently not divisible in A by any integer > 1, hence the cyclic subgroup (x¢)
must be pure in A. Therefore, if A is of rank 1, then (xp) is all of A.

Let A be of rank n + 1, and assume the claim holds for groups of rank n > 1.
Starting with xy, pick a maximal independent set {x¢,x1,...,x,} in A. The factor
group A* = A/(xo) is torsion-free of rank n. It is straightforward to check that one
can define a norm p in A* by setting

plrixt + - A raxy) = [rf - x4 Il -l xall
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where the coefficients r; are rational numbers, and stars indicate cosets mod (xg).
Supposing A* is not free, induction hypothesis implies that A* cannot have a discrete
norm, so some coset y* = sixj + -+ + 5,x; (5; € Q) has a norm < 1/4. There is
an a € A such that a = soxp + s1x1 + - - - + s,x, for some sy € Q. By adding to a an
integral multiple of x if necessary, we can assume that |so| < 1/2. But then

lFall < Tsol - %o [l + [sil -l 20 | -+ fsul - 2 || < 1/2-3/24+1/4 =1,

a contradiction. Thus A*, and hence A, is free. O
Free Groups and Discrete Norm We can now verify the main result.

Theorem 10.3 (Steprans [1]). A group admits a discrete norm if and only if it is
free.

Proof. In view of our example above, it is enough to show that a group A with a
discrete norm || ... | is free. We induct on the rank x of A. The preceding lemma
settles the case if « is finite, so assume that « is an infinite cardinal, and that the
claim holds for groups of rank < «. If k = Ry, then finite rank subgroups are free,
so Pontryagin’s theorem 7.1 implies that A is free.

Next, let ¥ be an uncountable regular cardinal, and 0 = Ap < A] < -+ < Ay <
... (0 < k) a smooth chain of pure subgroups of the group A such that the A, are
of cardinality < «, and A = |, _, A,. By induction hypothesis, the subgroups A,
are free. Consider the set

o <K

E ={o <« |3p> osuchthatA,/A, is not free},

and suppose E is a stationary set in . Without loss of generality, we may assume
that p = o + 1 in the definition of E by thinning out the chain. For each o € E,
pick elements x,, (where 7 runs over a suitable index set) such that {x,, + A, }; is a
maximal independent set of A, 4+1/A,. As above, define a norm p, in Ay41/A, by
setting

1o (Y roe(ior +A0)) = Y roel - || Xoe

T

where the coefficients r,, are rational numbers, and of course, all sums are finite.
Since Ay+1/As has cardinality < « and is not free, the norm p, cannot be discrete.
Thus there is a coset y, + A, with norm < %, say, Yo = ZT SorXor + 2o for some
Zg INAgy.

For convenience, we assume that the underlying set of A consists of all ordinals
< k, and A, (0 € E) is just the set of ordinals < o. Then the correspondence
Y 1 0 — z, is a regressive function from E into x. Fodor’s theorem (Jech [J])
implies that there exist a z € A and a stationary subset E’ of E such that ¥ (0) = z
forallo € E'.
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Choose different o, p € E’ such that y, # y, whose cosets have norm < % We
then have

e = Yol = 10 soexor +2) = O spuxp + )| <
T v
<D lsoel -l o 14+ D Isoul - o | = 120 06 + Ao) + 100 +Ap) < 1,
T v

a contradiction. We conclude that E is not stationary, and hence Theorem 7.5 implies
that A is free.

To complete the proof for singular cardinals «, it suffices to refer to Shelah’s
singular compactness theorem 9.2. O

Corollaries To underscore the significance of this result, we record a few
applications of this theorem.

Let A be an arbitrary group, and X an index set. The set of all functionsf: X — A
such that f assumes but a finite number of distinct values in A is a subgroup B(X, A)
of the cartesian power AX. In case A = Z, this subgroup consists of the bounded
integer-valued functions on X.

Theorem 10.4 (Specker [1], Nobeling [1]). The group B(X,Z) of bounded func-
tions on any set X into 7. is a free abelian group.

Proof. For the application of Theorem 10.3 all that we have to note is that the group
B(X, Z) carries a discrete norm. In fact, the norm of a functionf € B(X, Z) is defined
as the maximum of the absolute values of integers in the range of f. O

An immediate corollary is a far-reaching generalization.

Corollary 10.5 (Kaup-Kleane [1]). The group of all finite-valued functions on a
set X into any group A is a direct sum of copies of A.

Proof. In view of the last theorem, it suffices to verify the isomorphism B(X,A) =
A ® B(X,Z). Let hy denote the characteristic function of the subset Y of X, i.e.
hy(x) = 1 or 0 according as x € Y or not. Every f € B(X,A) can be written as

f = aihy, + -+ aihy, (a; € A)

for some k and disjoint subsets Y1, ..., ¥; of X. If the characteristic functions Ay are
viewed as elements of B(X, Z), then f can be identified with the element a; ® hy, +
<o 4 ap ® hy, of A® B(X,Z). |

An interesting corollary is concerned with continuous functions on a compact
space. J. de Groot considered the group C(X, Z) of all continuous functions from a
topological space X into the discrete group of the integers Z. Of special interest is
the case in which X is a compact space. In this case, a continuous function from X
to Z is finite-valued, i.e. C(X, Z) is a subgroup of B(X, Z). As such it is free:



126 3 Direct Sums of Cyclic Groups

Corollary 10.6 (de Groot). The group of all continuous functions from a compact
space into the discrete group of the integers is free. O

Yamabe [1] considered, for groups A, bilinear, positive definite functions f :
A x A — Z. Note that such a function f defines a discrete norm as usual via || a || =

v/ f(a,a) fora € A. This leads us to

Corollary 10.7. If A is a group such that there is a bilinear, positive definite
function f from A X A into the integers 7, then A has to be a free group. O

% Notes. This section is a typical example how a difficult question can sometimes be
rephrased to an easier one by making it more general. Specker [1] could prove only under the CH
that the group of bounded sequences of the integers is free. Nobeling [1] succeeded in solving the
more general problem on bounded functions of integers by induction on what he called Specker
groups. Bergman [1] provided another proof by establishing an even more general theorem on
commutative torsion-free rings generated by idempotents. Finally, the powerful theorem on groups
with discrete norm was proved. It is due to Steprans [1] who proved it after Lawrence [1], Zorzitto
[1] settled the countable case. As shown above, this result has important applications.

Hill [14] found an interesting generalization of Bergman’s version by dropping the condition of
torsion-freeness: the additive group of a commutative ring generated by idempotents is X-cyclic.

Exercises

(1) Find a discrete norm on a free group of rank R, that is not a multiple of any of
examples in Example 10.1.

(2) Let P = ZX and B = B(X, Z) for an infinite set X. Show that P/B is divisible.
[Hint: fora € P,n € N find ¢ € P witha = nc + b with b € B.]

(3) (Nobeling) Recalling that every element f € B(X,A) can be written as f =
aihy,+---+axhy,(a; € A) for some k and disjoint subsets Y1, ..., Yz of X, call a
subgroup S of B(X,A) a Specker group if f € S implies that Ahy,, ..., Ahy, are
contained in S. Prove that the following conditions are equivalent for a subgroup
Sof B(X, Z):

(a) Sisa Specker group;
(b) f € S implies hy where Y denotes the support of f;
(c) S is a pure subgroup and a subring in ZX. [Hint: (a) < (b) < (c).]

(4) The intersection of Specker subgroups in B(X, Z) is again a Specker group.

(5) If S is a Specker subgroup in B(X,7Z) and Y C X, then Shy is also a Specker
group.

(6) (Bergman) Let R be a commutative ring with identity whose additive group
R™ is torsion-free. If R is generated as a ring by a set E of idempotents, then
R™ is a free group. It can be freely generated by idempotents that are products
of elements of E. [Hint: assume E is a multiplicative semigroup, well-order its
elements and show that the elements of E which are not linear combinations of
preceding elements of E in the ordering form a basis of R .]
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11 Quasi-Projectivity

Another fundamental concept in this circle of ideas is that of quasi-projectivity. It
is a natural generalization of projectivity where the projective property is required
only with respect to the group itself (so ‘self-projective’ would probably be a better
name).

Quasi-Projective Groups Thus, a group P is called quasi-projective if
for every exact sequence with P in the middle and for every homomorphism
¢:P—>P/G

0o——G6G —2>~p -2, pG——0

there exists an endomorphism 6 of P making the triangle commute: B0 = ¢. Free
groups are quasi-projective, but not only these.

Example 11.1. (a) All cyclic groups are quasi-projective.
(b) Elementary groups are quasi-projective.

A few properties that are worth noting are as follows.

(A) Summands of quasi-projective groups are quasi-projective. If P = X @ Y and
G < X, then for any homomorphism ¢ : X — X/G, the map ¢ & 1y: P —
X/GeY =P/Gliftstoad: P — P,and 0 | X is a desired endomorphism
of X.

(B) A torsion group P = ®, P, is quasi-projective if and only if its p-components
P, are. Necessity follows from (A), and sufficiency is straightforward.

(C) Factor groups modulo fully invariant subgroups inherit quasi-projectivity. To
see this, let S be fully invariant in the quasi-projective group P,and : P/S — X
an epimorphism. If ¢ : P/S — X is any map and y : P — P/S is the canonical
homomorphism, then by the quasi-projectivity of P, there is amap 6 : P — P
such that Y0 = ¢y.

P 2 p/s

Since S is fully invariant in P, 6 induces a map 6’ : P/S — P/S such that
y0 = 6’y. y can be canceled in S0’y = ¢y, thus 86’ = ¢.

(D) Let G be a subgroup of a quasi-projective P such that P/G is isomorphic to a
summand A of P. Then G is a summand of P. Leta: A — Pand p: P — A be
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the canonical injection and projection maps, respectively. If 8: A — P/G is an
isomorphism, and y : P — P/G is the canonical map, then by quasi-projectivity
there is a 6 : P — P rendering the diagram

p -

0 lﬁ

p - pP/G

commutative. Define the homomorphism § : P/G — P as § = Oaf~!; then
y8 = y0aB~"! = Bpaf~' = 1p/;. This means that the exact sequence 0 —
G — P-L>P/G — 0/ splitting.

(E) Let G be a subgroup of the quasi-projective group P such that there is an
epimorphism p: G — P. Then K = Ker p is a summand of G. Leta: G/K — P
be the isomorphism induced by p. We have an injection 8 : P — P/K with
Im B = G/K and Ba = 1¢/k. By quasi-projectivity, there is a 6 : P — P such
that y6 = B where y : P — P/K denotes the canonical map. We argue that
6(P) < y~'(G/K) = G.Now § = a: G/K — G satisfies y§ = 1k, thus

0—->K— G—y>G/K ~ P — 0 is a splitting exact sequence.

Structure of Quasi-Projective Groups A complete classification of quasi-
projective groups can be given in terms of cardinal invariants, based on the following
theorem.

Theorem 11.2 (Fuchs—Rangaswamy [2]). A group is quasi-projective if and only
if either

(i) it is a free group; or
(ii) it is a torsion group such that each of its p-components is a direct sum of cyclic
groups of fixed order p*r.

Proof. Free groups F are obviously quasi-projective, and (C) implies that the groups
F/nF are also quasi-projective for every n € N. By (B), the same holds for the direct
sum @ (F /p* F) with different primes p. As F/p*F is a direct sum of cyclic groups
of fixed order p*, the sufficiency follows.

Conversely, assume P is quasi-projective. If P is torsion, then it cannot have
a summand Z(p*>°), because by (A) this summand would be quasi-projective, so
by (D) it would contain every Z(p") as a summand—this is impossible. Thus P is
reduced. It cannot have a summand of the form C = Z(p") & Z(p™) with n > m,
since there is an epimorphism Z(p") — Z(p™) whose kernel is not a summand of C
(cp. (D)). Therefore, the p-components of P are bounded by some p* with no cyclic
summands of different orders. Hence (ii) holds for P if torsion.

If P is torsion-free, then let F be a free subgroup of P generated by a maximal
independent set, so that P/F is a torsion group. Let y : P — P/F denote the natural
map. We distinguish two cases according as P is of finite or infinite rank. If rk P is
finite, then for every map ¢ : P — P/F thereisa 6 : P — P with ¢ = 0y, and
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for different ¢ we have different 6. If P/F were infinite, then it had continuously
many automorphisms (see Sect. 2 in Chapter 17, Exercise 3), so there would be this
many choices for ¢. But a finite rank P has only countably many endomorphisms.
Thus P/F must be finite, P is finitely generated, so P is finitely generated free. If
rk P is infinite, then we can find a surjective map F — P, and (E) shows that P is
isomorphic to a summand of F, so it is free.

Finally, suppose P is mixed. (C) implies that P/tP is quasi-projective, so free:
P = tP & F with F a free group. If none of the summands is O, then there is
an epimorphism F — C < tP, C cyclic, whose kernel is not a summand of F,
contradicting (D). Thus P cannot be mixed. |

% Notes. The listed properties of quasi-projectivity were borrowed from the pioneering paper
L. Wu-J.P. Jans [III. J. Math. 11, 439-448 (1967)], and from Fuchs—Rangaswamy [2]. The majority
of the results (e.g., Theorem 11.2 is an exception) are valid for modules as well.

Exercises

(1) Describe the complete set of cardinal invariants attached to a quasi-projective
group.

(2) P% is quasi-projective for every cardinal k whenever P is quasi-projective.

(3) (a) Suppose P = @®,<,P, where the P, are fully invariant in P. P is quasi-

projective if and only if every P, is quasi-projective.

(b) Claim (a) may fail if the summands are not fully invariant.

(4) Fully invariant subgroups inherit quasi-projectivity.

(5) Only quasi-projective groups admit quasi-projective covers.

(6) Let G < P, P a quasi-projective group. Then | End P/G| < | End P|.

Problems to Chapter 3

PROBLEM 3.1. Characterize almost free groups in which the intersection of two
direct summands is again a summand.

PROBLEM 3.2. For which ordinals o do there exist (strongly) N,-free groups
that are not (strongly) 8, -free?

PROBLEM 3.3 (IRWIN). Is there a core class of X;-free groups? That is, a small
collection of X;-free groups, each of cardinality 8;, such that every R;-free group
contains a member of this class.

Cf. Blass—Irwin [1].

PROBLEM 3.4. Let A be the free lattice-ordered group generated by the partially
ordered group G. Relate A to G as groups.



Chapter 4
Divisibility and Injectivity

Abstract Most perfect objects in the category of abelian groups are those groups in which we
can also ‘divide:” for every element a and for every positive integer n, the equation nx = a has a
(not necessarily unique) solution for x in the group. These objects are the divisible groups which
are universal in the sense that every group can be embedded as a subgroup in a suitable divisible

group.

The divisible groups form one of the most important classes of abelian groups. In our
presentation, we focus on their most prominent properties, many of them may serve as their
characterization. Their outstanding feature is that they coincide with the injective groups, and
as such they are direct summands in every group containing them as subgroups. Moreover, they
constitute a class in which the groups admit a satisfactory characterization in terms of cardinal
invariants.

The concluding topic for this chapter is concerned with a remarkable duality between maximum
and minimum conditions on subgroups.

1 Divisibility

Since multiplication of group elements by integers makes sense, it is natural to
consider divisibility of group elements by integers. Divisibility offers a great deal of
information on how an element fits in the group.

Divisibility of Elements We shall say that the element a of the group A is
divisible by n € N, in symbols: n|a, if the equation

nx=a (a€A) 4.1

is solvable for x in A, i.e., there exists a b € A such that nb = a. Evidently, (4.1) is
solvable if and only if a € nA.
We list some elementary consequences of the definition.

(a) If x = b is a solution to (4.1), then the coset b + A[n] is the set of all solutions
of (4.1).

(b) If A is torsion-free, then (4.1) has at most one solution.

(c) If ged{n,o0(a)} = 1, then (4.1) is solvable. For if r,s € Z are such that nr +
o(a)s = 1, then x = ra satisfies nx = nra = nra + o(a)sa = a.

© Springer International Publishing Switzerland 2015 131
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(d) m|a and n|a imply lcm{m, n}|a. Indeed, if r, s satisfy mr+ns = d = ged{m, n},
and if b,c € A are such that mb = a = nc, then (Ilcm{m, n})(rc + sb) =
mnd~"(rc + sb) = md~'ra + nd~'sa = a.

(e) nla and n|b with a, b € A imply n|(a £ b).

(f) If A = B @ C is a direct sum, then nla = b + ¢ (b € B,c € C) if and only if
both n|b in B and n|c in C. The same holds for infinite direct sums and direct
products.

(g) Ifa: A — Bis ahomomorphism, then n|a in A implies n|ab in B.

(h) If p is a prime, then p¥|a is equivalent to k < h,(a).

Divisibility of Groups A group D is called divisible if
n|ld foralld € Dandall0 # n € Z.

Thus D is divisible exactly if nD = D for every integer n # 0.

Example 1.1. The groups 0, Q, Q/Z, Z(p®°), R are divisible groups, but no non-zero cyclic
group is divisible.

A most useful criterion of divisibility is our next lemma.

Lemma 1.2. A group D is divisible if and only if every homomorphism & : Z. — D
can be extended to a homomorphismn: Q — D.

Proof. Let & be a homomorphism of Z into the divisible group D. We think of Q
as the union of the chain (1) < ((2))7!) < --- < ((»)™') < ... of infinite cyclic
groups. The element £(1) = d, € D is divisible by 2, so there is a d, € D with
2d, = di, and we can extend £ to & : {(2))™') — D by letting £((2)7") = d>.
If we have an extension &, : ((n!)™') — D with &,((n!)™") = d,, then we select a
dn+1 € D satistying (n + 1)d,+1 = d,, and define £&,4+1(((n + D)!))™!) = d,41 to
extend &,. At the end of this stepwise process we arrive at a desired homomorphism
n: Q — D (whose restriction to ((n!)~!) equals &,).

Conversely, assume that the group D has the indicated property, and pick any
d € D. There is a homomorphism & : Z — D with £(1) = d. By hypothesis, £ can
be extended to a map 1: Q — D. Then the element n(n~") satisfies nn(n~!) = d,
establishing the divisibility of d. O

A group D is said to be p-divisible (p a prime) if p*D = D for every positive
integer k. Since p*D = p---pD, it is obvious that p-divisibility is implied by pD =
D, i.e. every element of D is divisible by p. Then every element is of infinite p-height
in D.

(A) A group is divisible if and only if it is p-divisible for every prime p. Indeed,
if pD = D for every prime p and n = pp; - - px with primes p;, then nD =
pip2-piD =pi---pp1D=---=pD=D.

(B) A p-group is divisible if and only if it is p-divisible. In view of (c), for a p-group
A we always have gA = A whenever the primes p, g are different.

(C) A p-group D is divisible exactly if every element of order p is of infinite height.
Only sufficiency requires a proof. So assume every element of order p is of
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infinite height, and let @ € D be of order p*. We induct on k to prove that
pla. For k = 1, the claim is included in the hypothesis, so assume & > 1.
By hypothesis, p*~'a has infinite height, thus p*~'a = p*b for some b € D.
Since o(a — pb) < p*~!, we have p|a — pb by induction hypothesis, whence
pla, indeed.

(D) Epimorphic images of a divisible group are divisible. This is an immediate
consequence of (g) above.

(E) A direct sum (direct product) of groups is divisible if and only if each
component is divisible. This follows at once from (f).

(F) If D; (i € I) are divisible subgroups of A, then so is their sum )_;c; D;. This is
evident in view of (e).

An immediate consequence is that the sum of all divisible subgroups of a group
is again divisible, so we have the following result:

Lemma 1.3. Every group A contains a maximal divisible subgroup D. D contains
all divisible subgroups of A. O

Groups that contain no divisible subgroups other than 0 are called reduced.

Embedding in Divisible Groups Recall that free groups are universal in the
sense that every group is an epic image of a suitable free group. The next result
shows that divisible groups have the dual universal property.

Theorem 1.4. Every group can be embedded as a subgroup in a divisible group.

Proof. The infinite cyclic group Z can be embedded in a divisible group, namely,
in Q. Hence every free group can be embedded in a direct sum of copies of QQ, which
is a divisible group. Now if A is an arbitrary group, then A = F/H for some free
group F and a subgroup H of F. If we embed F in a divisible group D, then A will
be isomorphic to the subgroup F/H of the divisible group D/H. O

It follows that, for every group A, there is an exact sequence
0>A—>D—->E—0

with D and (hence) E divisible.

% Notes. There is no need to emphasize the relevance of divisibility in the theory of abelian
groups: the reader will soon observe that a very large number of theorems rely on this concept. (In
early literature, divisible groups were called complete groups.)

Exercises

(1) The additive group of any field of characteristic O is divisible.
(2) The factor group J,/Z is divisible.
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(3) A group is divisible exactly if it satisfies one of the following conditions:

(a) it has no finite epimorphic image # 0;
(b) it has no maximal subgroups (it coincides with its own Frattini sub-
group).

(4) If {a;}:cs is a generating set (or a maximal independent set) in a group D, and
if nja; in D for every i € I and every n € N, then D is divisible.

(5) A direct sum (direct product) of groups is reduced if and only if every
component is reduced.

(6) Let 0 = A — B — C — 0 be an exact sequence. If both A and C are
divisible (p-divisible), then so is B; if both are reduced, then B is also reduced.

(7) The maximal divisible subgroup of a torsion-free group coincides with the
first Ulm subgroup of the group.

(8) Let A be the direct product, and B the direct sum of the groups B, (n < w).
A/B is a divisible group if and only if, for every prime p, pB, = B, holds for
almost all 7.

(9) Direct limits of divisible groups are divisible.

(10) (Szé&lpal) Assume A is a group such that all non-zero factor groups of A are
isomorphic to A. Show that A = Z(p) or A = Z(p™>) for some p.

(11) Using Hom and Ext, show that (a) D is divisible if and only if Ext(Q/Z, D) =
0; (b) A is reduced if and only if Hom(Q, A) = 0.

2 Injective Groups

Injective groups are dual to projective groups; they are defined by dualizing the
definition of projectivity.

Injectivity A group D is said to be injective if, for every diagram

00— B —25 A C —— 0

ls o

D

with exact rows and a homomorphism & : B — D, there is a homomorphism
n: A — D making the triangle commute: noe = §&. If B is identified with its
image in A, then the injectivity of D can be interpreted as the extensibility of any
homomorphism &£ : B — D to a homomorphism of any group A containing B into D.

Our next purpose is to show that the injective groups are precisely the divisible
groups.
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Theorem 2.1 (Baer [8]). A group is injective if and only if it is divisible.

Proof. That an injective group is divisible follows at once from Lemma 1.2. In order
to verify the converse, let D be a divisible group, and £ : B — D a homomorphism
from a subgroup B of the group A. Consider all groups G between B and A, such
that £ has an extension 6 : G — D. The set S of all pairs (G, ) is partially ordered
by setting

(G,0) <(G',0") ifandonlyif G<G andf =06 }G.

S is not empty, since (B, £) € S, and is inductive, since every chain (G;, 6;) (i € I)
has an upper bound in S, viz. (G,0) where G = | J,; Gi and 6 = J,; ;. By
Zorn’s lemma, there exists a maximal pair (G, 6p) in S. We claim: Gy = A.

By way of contradiction, suppose Gy < A.If a € A\ Gy is such that na = g € Gy
for some n € N, then choose a minimal such n. By the divisibility of D, some d € D
satisfies nd = 6pg. It is straightforward to check that

x + ka v Opx + kd (xe Gp, 0<k<n)

is a genuine homomorphism of (Gy, a) into D. If na ¢ Gy for all n € N, then the
correspondence x + ka — Gox + kd (x € Gy) is a homomorphism for any choice of
d € D (no restriction on k € Z). In either case, Gy < A contradicts the maximality
of (Gy, 6y). Hence 6y: A — D is a desired extension of £. O

Baer’s Criterion From the proof we derive the famous Baer criterion for
injectivity (whose real importance lies in the fact that its analogue holds for modules
over any ring):

Corollary 2.2. A group D is injective if and only if, for each n € N, every
homomorphism Zn — D extends to a homomorphism Z. — D.

Proof. A careful analysis of the preceding proof shows that the only place where
the injectivity of D was needed was to assure the existence of a d € D. The same
conclusion can be reached if we extend the map Zn — D given by n +— 6yg to
Z, — D, and pick d as the image of 1. O

Another simple result is a trivial consequence of Theorem 2.1 and Corollary 2.2,
but it is important enough to record it as a corollary.

Corollary 2.3. Epic images of injective groups are injective. O

The Summand Property We are now able to show that injective (divisible)
subgroups are always summands.

Corollary 2.4 (Baer [8]). A divisible subgroup D of a group A is a summand, A =
D & C for some subgroup C of A. Here C can be chosen so as to contain any
preassigned subgroup B of A with D N B = 0. (Thus D-high subgroups are always
summands.)
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Proof. By Theorem 2.1, the identity map 1p: D — D extends to a homomorphism
n: A — D. Therefore, A = D @ Kern. If D N B = 0, then the same argument
implies that the map D @ B — D which is the identity on D and trivial on B extends
toann: A — D. Then evidently, B < Ker 7. O

Given a group A, consider the subgroup generated by all divisible subgroups of A.
From Sect. 1(F) we know that D is divisible, it is the maximal divisible subgroup
of A. By Corollary 2.4, A = D @ C, where evidently, the summand C has to be
reduced. We thus have the first part of

Theorem 2.5. Every group A is the direct sum of a divisible group D and a reduced
group C,

A=Do®C.

D is a uniquely determined subgroup of A, C is unique up to isomorphism.

Proof. To verity the second claim, it is clear that if A = D @ C with D divisible and
C reduced, then D ought to be the unique maximal divisible subgroup of A. Hence
D is unique, and a complement is as always unique up to isomorphism. O

A consequence of the last theorem is that a problem on abelian groups can be
often reduced to those on divisible and reduced groups.
We now summarize as a main result:

Theorem 2.6. For a group, the following conditions are equivalent:
(1) it is divisible;
(ii) it is injective;
(iii) it is a direct summand in every group containing it.
Proof. We had proved earlier the implications (i) < (ii) = (iii), so only (iii) = (i)

is needed to complete the proof. Let D satisfy (iii). Theorem 1.4 shows that D < E
for a divisible group E. Then (iii) implies D is a summand of E, so (i) follows. O

Injective Hulls Theorems 1.4 and 2.1 guarantee that every group can be
embedded in an injective group. This important fact can be considerably improved
by establishing the existence of a minimal embedding.

A minimal divisible (injective) group containing the group A is called a divisible
hull or injective hull of A, it will be denoted as E(A). The main result on injective
hulls is as follows.

Theorem 2.7. Any injective group containing A contains an injective hull of A. The
injective hull of A is unique up to isomorphism over A.

Proof. Let E be an injective group containing A. There exists a subgroup C of E
maximal with respect to the property AN C = 0. For each ¢y € C and prime p, there
isx € Esuchthatpx = ¢cp € C.If x ¢ C,thenc+kx =a # 0 (c € C,a € A)
for some k € Z prime to p. Then pc 4 kcyp = pa must be 0, which shows that kc,
and hence ¢y is divisible by p in C. That is, C is divisible. By Corollary 2.4, we can
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write E = C @ D with A < D. Clearly, D is divisible, and by the maximality of
C, D cannot have any proper summand still containing A. Therefore, D is minimal
divisible containing A, and by the choice of C, A is essential in D.

If Dy and D, are two minimal injective groups containing A, then because of
Theorem 2.1, the identity map 14 of A extends to a homomorphism ¢ : D; — D».
Since ¢D; is divisible containing A, we have A < ¢D; < D,. By the minimality
of D, the last < must be equality. Now ¢|4 = 14 implies Ker¢ N A = 0 which
means that ¢ is monic. Hence ¢ is an isomorphism between D; and D, leaving A
element-wise fixed. O

An important consequence of the preceding proof is

Corollary 2.8. An injective group E containing A is an injective hull of A if and
only if A is an essential subgroup in E. O

Example 2.9.

(a) The injective hull of a torsion-free group A is its divisible hull; it can also be obtained as
Q®A.

(b) In order to get the injective hull of a p-group A with basic subgroup B = @®;e;(b;), embed
each (b;) in a quasi-cyclic group C;, and form A+ Y _,;; C;. (Check that this group is divisible,
and A is essential in it.)

Quasi-Injectivity We now embark upon a noteworthy generalization of injec-
tivity. A group A is called quasi-injective if every homomorphism of every

subgroup into A extends to an endomorphism of A.

(A) Summands of quasi-injective groups are again quasi-injective.

(B) Powers of a quasi-injective group are quasi-injective.

(C) A torsion group A is quasi-injective if and only if all of its p-components A, are
quasi-injective.

(D) Neither direct sums nor direct products of quasi-injective groups are necessarily
quasi-injective (this is trivial from Theorem 2.11).

Theorem 2.10 (Johnson—-Wong). A group is quasi-injective if and only if it is a
fully invariant subgroup of its injective hull.

Proof. First assume A is fully invariant in an injective group E, and let ¢: B — A
where B < A. By injectivity, ¢ extends to an endomorphism : E — E which—by
full invariance—must map A into itself.

Conversely, let A be quasi-injective, and n an endomorphism of the injective hull
E of A. The subgroup B = {a € A | na € A} is mapped by 7 into A, so 1 extends
toamapy: A — A If (n—y¥)a € Aforana € A, then na € A, soa € B. Thus
(n—v)ANA = 0, whence (n — ¥)A = 0 by the essential character of A. This
means that n } A = ¥, and so n(A) < A, indeed. O

From full invariance it follows that if £ = E| @ E, is a direct decomposition
of the injective hull of a quasi-injective group A, then A has a corresponding
decomposition: A = (AN E}) & (AN Ey).

A consequence of the last lemma is that every group A admits a quasi-injective
hull: a smallest quasi-injective group containing A as a subgroup. This is simply
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the fully invariant subgroup generated by A in the injective hull E(A) of A.
This characterization of quasi-injective groups enables us to prove the following
structural result on them.

Theorem 2.11 (Kil’p [1]). A group is quasi-injective exactly if it either injective
or is a torsion group whose p-components are direct sums of isomorphic cocyclic
groups.

Proof. If A is a group as stated, then it is immediately seen that it is fully invariant
in its injective hull.

Conversely, let A be a quasi-injective group, and E its injective hull. If A contains
an element a of infinite order, then for every b € E there is a map ¢ : (a) — E
with ¢a = b, so the only fully invariant subgroup of E containing a is E itself. Thus
A = E in this case. If A is a torsion group, then its p-components A, are likewise
quasi-injective, so fully invariant in their injective hulls E,. The latter group is a
direct sum of copies of Z(p™>) (see Theorem 3.1), and its non-zero fully invariant
subgroups are the direct sums of copies of a fixed subgroup Z(p*) of Z(p>°), where
ke Nork = oo. O

More on Quasi-Injectivity Quasi-injective groups have several remarkable
properties which led to various generalizations of quasi-injectivity in module
categories (for abelian groups some of them coincide with quasi-injectivity). We
mention a few interesting facts for illustration.

Proposition 2.12. A quasi-injective group has the following properties:

(i) it is a CS-group: high subgroups are summands;
(il) itis an extending group: every subgroup is contained as an essential subgroup
in a direct summand;
(iii) a subgroup that is isomorphic to a summand is itself a summand,;
(iv) if B, C are summands and BN C = 0, then B & C is also a summand.

Proof. (i) < (ii) is routine.

(i) Let G be a subgroup of the quasi-injective group A, and let E; denote the
injective hull of G in the injective hull E of A. Then E = E| @ E, holds for
some E, < E,and A = (AN E;) ® (AN E,). Clearly, G is essential in the
first summand of A.

(iii) Let H be a subgroup, and G a summand of A with inverse isomorphisms
y: G — H,B: H— G.Now B followed by the injection map G — A
extends to an endomorphism oo : A — A. If this is followed by the projection
A — G and then by y, then the composite is 15. As this extends to A — H,
H is a summand.

(iv) LetA = B®B and 7 : A — B’ the projection. Then B® C = B® 7 C where
7 | Cis an isomorphism. By (iii), 7 C is a summand of A and hence of B'. It
follows B @ C is a summand of A. O
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% Notes. The true significance of injectivity of groups lies not only in its extremely important
role in the theory of abelian groups, but also in the fact that it admits generalizations to modules
over any ring such that most of its relevant features carry over to the general case. The injective
property was discovered by Baer [8]. He also proved that for the injectivity of a left R-module M,
it is necessary and sufficient that every homomorphism from every left ideal L of R into M extends
to an R-homomorphism R — M. This extensibility property, with L restricted to principal left
ideals generated by non-zero divisors, is perhaps the most convenient way to define divisible R-
modules. It is then immediately clear that an injective module is necessarily divisible. For modules
over integral domains, the coincidence of injectivity and divisibility characterizes the Dedekind
domains (see Cartan—Eilenberg [CE]). For torsion-free modules over Ore domains divisibility
always implies injectivity.

Mishina [3] calls a group A weakly injective if every endomorphism of every subgroup extends
to an endomorphism of A. Besides quasi-injective groups, only the groups of the form A = D @ R
have this property where D is torsion divisible and R is a rational group.

Epimorphic images of injective left R-modules are again injective if and only if R is left
hereditary (left ideals are projective); an integral domain is hereditary exactly if it is Dedekind.
Note that the semi-simple artinian rings are characterized by the property that all modules over
them are injective.

It is an easy exercise to show that over left noetherian rings every left module contains a
maximal injective submodule. This is not necessarily a uniquely determined submodule, unless the
ring is, in addition, left hereditary. E. Matlis [Pac. J. Math. 8, 511-528 (1958)] and Z. Papp [Publ.
Math. Debrecen 6, 311-327 (1959)] proved that every injective module over a left noetherian ring
R is a direct sum of directly indecomposable ones. If, in addition, R is commutative, then the
indecomposable injective R-modules are in a one-to-one correspondence with the prime ideals P
of R, namely, they are the injective hulls of R/P (for R = Z take P = (0) or (p)); cf. Matlis
[loc. cit.]. It is remarkable that direct sums (and direct limits) of injective left modules are again
injective if and only if the ring is left noetherian.

Before the term ‘essential extension’ was generally accepted, some authors were using
‘algebraic extension’ instead. Szele [3] developed a theory of ‘algebraic’ and ‘transcendental’
extensions of groups, modeled after field theory, where ‘algebraic’ meant ‘essential,” while
‘transcendental’” was used for ‘non-essential’ extensions. He established the analogue of algebraic
closure (injective hull) a few years before the Eckman—Schopf paper on the existence of injective
hulls was published.

Quasi-injectivity was introduced by R.E. Johnson and E.T. Wong [J. London Math. Soc. 36,
260-268 (1961)]. As far as generalizations of quasi-injectivity are concerned, interested readers
are referred to the monographs S.H. Mohamed and B.J. Miiller, Continuous and Discrete Modules,
London Math. Soc. Lecture Notes 17 (1990), and N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer,
Extending Modules, Pitman Research Notes 313 (1994).

Exercises

(1) (Kertész) A group is divisible if and only if it is the endomorphic image of
every group containing it.

(2) If A = @i B, then E(A) = @,¢; E(B;) where E(x) stands for the injective
hull.

(3) Every automorphism of a subgroup A of an injective group D is induced by
an automorphism of D.

(4) A direct sum of copies of Z(p®°) is injective as a J,-module as well.
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(5) Let A be a torsion-free group, and E the set of all pairs (a,m) € A x Z with
m # 0 subject to

(a) (a,m) = (b, n) if and only if mb = na,
(b) (a,m) + (b,n) = (na + mb, mn).

Show that E is a divisible hull of the image of A under the map a — (a, 1).
(6) If C is a subgroup of the group B such that B/C is isomorphic to a subgroup
H of G, then there exists a group A containing B such that A/C = G.
(7) Given A and integer n > 0, there exists an essential extension C of A such
that A = nC. Is C unique up to isomorphism (over A)?
(8) (a) (Charles, Khabbaz) A subgroup A of a divisible group D is the inter-
section of divisible subgroups of D if and only if, for every prime p,
Alp] = D[p] implies pA = A.
(b) (Bergman) Every group is the intersection of divisible subgroups in a
suitable divisible group. [Hint: push-out of two different injective hulls.]
(9) (Szele) Let B be a subgroup of A. Call an a € A of infinite or prime power
order algebraic over B if a = 0 or (@) N B # 0. A is algebraic over B if
every a € A is algebraic over B.

(a) A is algebraic over B if and only if B is an essential subgroup of A.

(b) A is a maximal algebraic extension of B exactly if A = E(B).

(c) Derive Theorem 2.1 from the existence of maximal algebraic extensions
inE.

(10) The group A == Z(p?) @ Z(p) is a CS-group, but not quasi-injective.

3 Structure Theorem on Divisible Groups

Structure of Divisible Groups The groups Q and Z(p°°) were among our first
examples for divisible groups. The main theorem of this section will show that there
are no divisible groups other than the direct sums of copies of Q and Z(p*°) with
various primes p.

Theorem 3.1. A divisible group D is the direct sum of groups each of which is
isomorphic either to the additive group Q of rational numbers and or to a quasi-
cyclic group Z(p™) :

D= (®Q) & b (@sz(poo))

The cardinal numbers k, k, (for every prime p) form a complete and independent
system of invariants for D.

Proof. The torsion part T = tD of D is divisible, so by Corollary 2.4 it is a
summand: D = T @ E, where E is torsion-free and divisible. The p-components
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T, of T = &, T, are divisible, so it suffices to show that T}, is a direct sum of copies
of Z(p*°), and E is a direct sum of copies of Q.

Owing to divisibility, for each a € 7T, we can find a sequence a =
ap,ai,az,...,ay, ... in T, such that pa,+| = a, forn = 0,1,.... Thus every
element embeds in a subgroup = Z(p°). Consider the set S of subgroups B; in
T, that are direct sums of subgroups = Z(p), and partially order S by declaring
B; < B;if B; is a summand of B;. Use Zorn’s lemma to argue that 7, contains a
maximal B € S. Such a B is injective, so T, = B® C. If C # 0, then it must contain
a subgroup == Z(p*°), contradicting the maximal choice of B. Hence T, = B, and
T, is a direct sum of copies of Z(p>°). The proof for E is similar, making use of the
embeddability of every element in a subgroup = Q.

To show that the cardinal numbers of the summands Q and Z(p°°) do not depend
on the special choice of the decompositions, it is enough to note that these cardinals
are exactly the ranks rko (D) and rk, (D), which are uniquely determined by D. They
do form a complete system of invariants for D, since if given rko(D) = « and
1k, (D) = «,, we can uniquely reconstruct D as a direct sum of « copies of Q and
Kk, copies of Z(p®°) for each prime p. Moreover, that these cardinals can be chosen
arbitrarily is obvious. O

Note that Corollary 2.8 implies that
tko(E(A)) = 1ko(A) and r1k,(E(A)) = rk,(A) for every prime p.

Consequently, the structure of the divisible hull E(A) of A is completely determined
by the ranks of A.

Example 3.2. The additive group R of the real numbers is a torsion-free divisible group of the
power of the continuum 2% Hence R == @, Q, where k = 20,

Example 3.3. The multiplicative group of the positive real numbers is a torsion-free divisible
group of the power of the continuum 2. It is isomorphic to R under the correspondence
r=logr.

Example 3.4. The multiplicative group R* of the non-zero real numbers is the direct product of
the group in Example 3.3 and the multiplicative cyclic group { — 1) = Z(2).

Example 3.5. The multiplicative group T of complex numbers of absolute value 1, the circle
group, is isomorphic to R/Z, the (additive) group of reals mod 1. The torsion subgroup is = Q/Z,
so the p-components are quasi-cyclic p-groups. Therefore,

R/Z = @, Z(p™) & (&« Q)
where again x = 2%,

Example 3.6. The multiplicative group C* of all complex numbers 7 0 is the direct product of
the circle group and the multiplicative group of the positive real numbers. It is isomorphic to its
subgroup: the circle group.

Cogenerators A group C is called a cogenerator of the category .Ab of abelian
groups if every abelian group is contained in a suitable direct product of copies of
C, or, equivalently, every non-zero abelian group has a non-trivial homomorphism
into C.
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Theorem 3.7. A group is a cogenerator of Ab if and only if it has a summand
isomorphic to Q/Z. Thus Q/Z is the minimal cogenerator of the category Ab.

Proof. Every non-trivial homomorphic image of a quasi-cyclic group is isomorphic
to the group itself, so any cogenerator C must contain Z(p°) for each prime p.
These Z(p°) generate their direct sum in any group. Such a direct sum is = Q/Z,
an injective group, so a summand of C.

Conversely, any group A # 0 has a non-trivial homomorphism into Q/Z. For,
0 # a € A implies (pa) < (a) for some prime p, and then the cyclic group (a) can
be mapped upon the cyclic subgroup (c) of order p in Z(p®°) via a +> c. This map
extends to a homomorphism of A — Q/Z. O

It is an important fact that the endomorphism rings of injective groups are very
special. We do not discuss them here, because later we will learn more about these
rings. We refer to Theorem 4.3 in Chapter 16.

Exercises

(1) Find the cardinal invariants for the following groups: (a) the direct product of
Kk copies of Z(p®°); (b) the direct product of k copies of Q/Z; (c) the direct
product of « copies of R/Z; here k denotes an infinite cardinal.

(2) Any two direct decompositions of a divisible group have isomorphic
refinements.

(3) If A, B are divisible groups, each containing a subgroup isomorphic to the
other, then A =~ B.

(4) If A is divisible, and B is a group such that A @ A =~ B @ B, then B =~ A.

(5) Find minimal cogenerators for the following categories: (a) torsion-free
groups; (b) torsion groups; (c) p-groups.

(6) (Szele) A group contains no two distinct isomorphic subgroups if and only if
it is isomorphic to a subgroup of Q/Z.

(7) (Kertész) Let A be a p-group in which the heights of elements of finite heights
are bounded by an integer m > 0. Then A is the direct sum of cocyclic groups.
[Hint: p™A is divisible.]

(8) (a) (E. Walker) Any torsion-free group of infinite rank is a subdirect sum of

copies of the group Q.
(b) An unbounded p-group is a subdirect sum of quasi-cyclic groups.
(9) (a) For every infinite cardinal «, there is a group U, of cardinality x which
contains an isomorphic copy of every group of cardinality < .
(b) In the set of groups U, with the indicated property there is one that is
isomorphic to a summand of every other one.
(10) (W.R. Scott) An infinite group A is a Jénsson group if every proper subgroup
has cardinality < |A|. Prove that A is a Jonsson group if and only if A =~
Z(p®>°) for some prime p. [Hint: it is indecomposable, divisible, torsion.]
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(11) A group is hopfian if its surjective endomorphisms are automorphisms; it is
cohopfian if its injective endomorphisms are automorphisms. Show that the
only hopfian-cohopfian torsion-free groups are the finite direct sums of Q. (It
is difficult to construct an infinite hopfian-cohopfian p-group.)

4 Systems of Equations

By the definition of divisible groups D, all ‘linear’ equations of the formnx = d € D
with positive integers n are solvable for x in D. It is natural to raise the question
of solvability of systems of linear equations in D. We are going to show that all
consistent systems of linear equations are solvable in any divisible group.

Systems of Linear Equations By a system of equations over a group A is
meant a set of equations

Y ompxi=a;  (a €A i€l (4.2)
jeJ

where the coefficients n;; are integers such that, for any fixed i € /, almost all n; = 0;
here, {x;}e; is a set of unknowns, while /, J are index sets of arbitrary cardinalities.
Equation (4.2) is a homogeneous system if a¢; = 0 for all i € I. We say that
x; = g € A(j € J) is a solution to (4.2) if Eq. (4.2) are satisfied in A whenever
the x; are replaced by the g;. Sometimes, it is convenient to view a solution
xj=g €A(j€J)asanelement(...,gj,...) in the direct product A’.

For the solvability of the system (4.2), a trivial necessary condition is that it
be consistent in the sense that, if a linear combination of the left sides of some
equations vanishes (i.e., the coefficients of all the unknowns are 0), then it equals
0 € A when the corresponding right-hand sides are substituted. Following Kertész,
we give another, more versatile interpretation of the consistency and solvability of
systems of equations.

The left members of the equations in (4.2) may be thought of as elements of
the free group F on the set {x;};c; of unknowns. Let H denote the subgroup of F
generated by the left hand sides of the equations in (4.2). It is readily checked that
the correspondence

Y nmpga (el (4.3)

jer

induces a homomorphism : H — A if and only if every representation of 0 as a
linear combination of the left-hand sides is mapped by 1 upon 0, i.e. if the system is
consistent in the sense above. Accordingly, we call (4.2) a consistent system if (4.3)
extends to a homomorphism  : H — A.
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Clearly, two consistent systems define the same pair (H,7) exactly if the
equations of either system are linear combinations of the equations of the other
system, i.e. if the two systems of equations are equivalent. Thus a consistent system
(or any of its equivalent systems) may be viewed as a pair (H, n), where H is a
subgroup of the free group F on the set of unknowns, and 7 is a homomorphism
H— A

Solvability of Systems of Equations Manifestly, x; = g; € A (j € J)isa
solution of (4.2) if and only if the correspondence

X gj GeJ) 4.4)

extends to a homomorphism y : F — A whose restriction to H is 1. Moreover, the
extensions y : F — A of n: H — A are in a bijective correspondence with the
solutions of (4.2), so we may use the notation (F, y) for a solution of (4.2).

Theorem 4.1 (Gacsalyi [1]). Every consistent system of equations over A is
solvable in A if and only if A is an injective group.

Proof. The necessity is evident, since a single equation nx = a € A with n # 0 is
a consistent system. Turning to the proof of sufficiency, let (H, n) be a consistent
system of equations over a divisible group A. By Theorem 2.1, n extends to a
homomorphism y: F' — A, that is, a solution exists. O

Consistency being a property of finite character, we conclude at once:

Corollary 4.2 (Gacsalyi [1]). A system of equations over an injective group D is
solvable in D if and only if every finite subsystem has a solution in D. O

It is worthwhile mentioning the following characterization of summands in terms
of solvability of equations.

Proposition 4.3 (Gacsalyi [1]). A subgroup B of a group A is a direct summand
exactly if every system of equations over B that is solvable in A can also be solved
in B.

Proof. If B is a summand, say, A = B @ C, then the B-coordinates of a solution in
A provide a solution in B.

Conversely, assume that any system over B is solvable in B whenever it has a
solution in A. For each coset u of A mod B, select a representative a(u) € A, and
consider the system

Xy + Xy — Xygp = a(u) + a(v) —a(u+v) €B forall u,v € A/B.

By hypothesis, it has a solution x,, = b(u) € B. Then the representatives a(u) — b(u)
of the cosets u form a subgroup C of A, and A = B @ C. O
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% Notes. The idea of considering systems of equations over a group was suggested by Szele
whose student Gacsdlyi developed the theory in two papers. Generalizations to modules are due to
Kertész who published several papers on the subject, starting with [Publ. Math. Debrecen 4, 79-86
(1955)].

Exercises

(1) A system of equations over a group A is consistent if and only if it is solvable
in some group containing A.

(2) A system of equations over an injective group contains maximal solvable
subsystems.

(3) Prove that, for any prime p, the equation system

2
x1—-po=L x—px3=1,...,x—px+1=1,...

over Z is not solvable in Z, though each of its finite subsystems is solvable.

(4) A homogeneous system (H,0) over an arbitrary group A admits a non-trivial
solution in A if and only if there exists a non-zero homomorphism¢: F/H — A
(notation as above). The maps ¢ are in a bijective correspondence with the non-
trivial solutions of the system.

(5) A homogeneous system of n equations with n 4+ 1 unknowns over any group
A # 0 always has a non-trivial solution in A.

5 Finitely Cogenerated Groups

We turn our attention to a concept dual to finite generation.

Finite Cogeneration A set C of non-zero elements in a group A is called
a set of cogenerators if, every non-zero subgroup of A contains an element of
C. Equivalently, for any group G, and for any homomorphism ¢ : A — G,
C N Ker ¢ = & implies that ¢ is monic.

Example 5.1. For a set C of cogenerators, the subgroup (C) is an essential subgroup in A, and the
set of elements in an essential subgroup with O omitted is always a set of cogenerators.

Example 5.2. In a cocyclic group Z(p*) (k € N U 00), a generator of its minimal subgroup Z(p)
is a singleton cogenerator of this group.

A group is finitely cogenerated if it has a finite set of cogenerators. The
following theorem is an analogue of Theorem 2.5 in Chapter 3, and points out a
beautiful duality between maximum and minimum conditions.
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Theorem 5.3 (Priifer [1], Kurosh [1], Yahya [1]). For a group A, the following
conditions are equivalent:

(i) A is finitely cogenerated;

(ii) A is an essential extension of a finite group;

(iii) A is torsion of finite rank;

(iv) A is a direct sum of a finite number of cocyclic groups;
(v) the subgroups of A satisfy the minimum condition.

Proof. (i) = (ii) By hypothesis, A has a finite set C of cogenerators. A cannot have
elements « of infinite order, for otherwise we could select a cyclic subgroup in {(a)
disjoint from C. Thus the elements in C are of finite order, whence (C) is finite.
A must be an essential extension of {C), so (ii) follows.

(ii) <> (iii) is straightforward.

(i) = (iv) Let A be an essential extension of a finite subgroup B. It follows that
A is a torsion group with a finite number of non-zero p-components, and in order
to prove (iv), we may without loss of generality assume that A is a p-group. Write
A = D @ F where D is divisible and F reduced. As A[p] = B]p] is finite, there is
a bound p™ for the heights of elements in F[p], whence p"+'F = 0 follows, i.e. F
is finite. Both D and F are direct sums of cocyclic groups, their number ought to be
finite, due to the finiteness of the socle.

(iv) = (v) Observe that if A is quasi-cyclic, then it enjoys the minimum condition
on subgroups. To complete the proof, we show that if A = U @ V and both of U, V
have the minimum condition of subgroups, then the same holds for A. If B; >
B, > .-+ > B, > ... is a descending chain of subgroups in A, then in the chain
BiNU=>B,NU=>--->B,NU > ... there is a minimal member, say B, N U.
Then the chain B,/ (B,NU) = B,/(B,NU) = (B,+U)/U <A/U = Vforn>m
also contains a minimal member, say B;/(B,, N U). Then B, is minimal in the given
chain.

Finally, (v) = (i). The minimum condition is inherited by subgroups, so A cannot
contain elements of infinite order, neither can the socle of A be infinite. Thus the
socle contains a finite set of cogenerators. O

From the equivalence of (i) and (v) we infer that factor groups of finitely
cogenerated groups are again finitely cogenerated. Observe that (ii) is equivalent
to the finiteness of the socle in a torsion group.

Countable Number of Subgroups The groups in Theorem 5.3 have but
countably many subgroups. There are only few other groups with this special

property.

Proposition 5.4 (Rychkov—Fomin [1]). A group A has fewer than continuously
many subgroups if and only if it is an extension of a finitely generated group by
a finite rank divisible subgroup of Q/7Z. Then the set of subgroups is countable.

Proof. It is an easy exercise to show that finitely generated groups and finite rank
subgroups of Q/Z have but a countable number of subgroups. A proof like (iv)
= (v) above shows that this remains true for their extensions.
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For the converse, observe that a group of infinite rank has at least 2% subgroups,
since different subsets of a maximal independent set generate different subgroups.
Thus, if A has less than 2% subgroups, then rk A is finite. A maximal independent
set in such an A generates a finitely generated subgroup F. The factor group A/F
is torsion, it must also be of finite rank, so it satisfies the minimum condition on
subgroups (Theorem 5.3); if its finite part is included in F, then A/F is divisible of
finite rank. The group Z(p™) @ Z(p) has 2% subgroups, so A/F < Q/Z. O

The Priifer Topology As another application of Theorem 5.3, we show:

Proposition 5.5. Let S be a finite subset in the group A, and B a subgroup of A
maximal disjoint from S. Then A/B satisfies the minimum condition for subgroups.
If|S| = 1, then A/B is cocyclic.

Proof. Every subgroup of A that contains B properly must intersect S, i.e., every
non-zero subgroup of A/B contains one of the cosets s + B with s € S. Hence A/B
is finitely cogenerated, and a reference to Theorem 5.3 completes the proof. O

Recall that the Priifer topology of a group A is defined by declaring those
subgroups U of A as a base of open neighborhoods of 0 for which A/U satisfies
the minimum condition on subgroups. The preceding proposition is nothing else
than asserting that the Priifer topology is always Hausdorff.

% Notes. While groups with maximum condition on subgroups are quite familiar to many
mathematicians, because they have numerous applications, groups with minimum condition are
often ignored due to their limited occurrence.

Exercises

(1) Let0 - A - B — C — 0 be an exact sequence of groups. B satisfies the
minimum condition on subgroups if and only if so do A and C.

(2) An endomorphism 7 of a group with minimum condition is an automorphism if
and only if Kern = 0.

(3) If A has minimum condition on subgroups, andif A@ B =~ A @ C, then B = C.

(4) If A has the minimum condition on subgroups and the group B satisfies A A =
B ® B,then B =~ A.

(5) If A is finitely cogenerated, then a minimal set of cogenerators is contained in
the socle of A.

(6) (Kulikov) Suppose A is a direct sum of cocyclic groups.

(a) Every summand of A is likewise a direct sum of cocyclic groups.
(b) Any two direct decompositions of A have isomorphic refinements.

(7) (de Groot) Let A and B be direct sums of cocyclic groups. If each is isomorphic
to a pure subgroup of the other, then A = B.
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(8) A group satisfies the minimum condition on fully invariant subgroups exactly if
it is a direct sum of groups Q, Z(p°) for finitely many different primes p, and
a bounded group.

Problems to Chapter 4

PROBLEM 4.1. Call A endo-divisible if every E-homomorphism L — A from a
principal left ideal L of E = End A extends to E — A. Which groups are endo-
divisible?

PROBLEM 4.2. Characterize the quasi-injective hull of a p-group over its endo-
morphism ring.



Chapter 5
Purity and Basic Subgroups

Abstract In this chapter, we are going to discuss a basic concept: pure subgroup. This concept
has been one of the most fertile notions in the theory since its inception in a paper by the
pioneer H. Priifer. The relevance of purity in abelian group theory, and later in module theory, has
tremendously grown with time. While abelian groups have been major motivation for a number of
theorems in category theory, purity has served as a prototype for relative homological algebra, and
has played a significant role in model theory as well.

Pure subgroups, and their localized version: p-pure subgroups, are often used as a weakened
notion of summands. In contrast to summands, most groups admit a sufficient supply of pure
subgroups: every infinite set of elements embeds in a pure subgroup of the same cardinality. They
are instrumental in several results that furnish us with criteria for a summand.

Every group contains, for every prime p, a p-pure subgroup, called p-basic subgroup, that is (if
not zero) a direct sum of infinite cyclic groups and cyclic p-groups. Basic subgroups are unique up
to isomorphism, and store relevant information about the containing group. Basic subgroups were
introduced by Kulikov for p-groups, and occupy a center stage in the theory of these groups.

1 Purity

Pure Subgroups A subgroup G of a group A is called pure if the equation
nx = g € G (n € N) is solvable for x in G whenever it is solvable in A. This
amounts to saying that G is pure in A if, for any g € G, n|g in A implies n|g in G.
As n|g in G means g € nG, we see that G is pure in A if and only if

nG =GNnA for every n € N. 5.1

Thus purity means that the divisibility properties of the elements in G by integers
are the same whether computed in A or in G.

If we equip A and a pure subgroup G with their Z-adic topologies, then (5.1)
implies that the topology of G inherited from A is equal to its own Z-adic topology
(but the converse fails).

We will often need the concept of p-purity for a prime p. A subgroup G of A is
p-pure if

PG =G npra for every k € N, 5.2)
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or, in other words, the finite p-heights of elements in G are the same as (i.e., not less
than) in A. Again, it follows that the induced p-adic topology on G coincides with
its own p-adic topology.

We pause for a moment to clarify the connection between purity and p-purity.
Our claim is that G is pure in A if and only if it is p-pure in A for every prime p.
This is trivial one way, so assume that G is p-pure for every p. If n = p'---p}* is
the canonical representation of n € N, then nG = p'GN---NpG = (GNpi'A)N
-+ N (G N pfA) = G N nA. Hence G is pure in A if and only if G, pure in A,
holds for every localization. Thus in a p-group, purity and p-purity are equivalent.

Example 1.1. The direct sum A = @;¢; A, is always pure in the direct product A = [[;; A;.

Example 1.2. Rational groups (i.e., subgroups of @Q) and cocyclic groups contain no pure
subgroups other than 0 and themselves.

Basic Properties of Purity Next, we assemble several useful facts concerning
pure subgroups.

(A) Direct summands are pure subgroups. In particular, 0 and A itself are pure
subgroups of A.

(B) The torsion part of a mixed group and its p-components are pure subgroups.

(C) A subgroup of a divisible group is pure if and only if it is divisible (and hence
a summand).

(D) IfA/G is torsion-free, then G is pure in A. In fact, na = g € G (n € N) with
a € Aimpliesa € G.

(E) IfAis a p-group, and if the elements of order p of a subgroup G have the same
finite heights in G as in A, then G is pure in A. We use induction on the order
to verify that if g € G is divisible by p* in A, then also p*|g in G. For g € G of
order p, this being true by hypothesis, assume that the claim holds for elements
g € G of orders < p" where n > 2. If o(g) = p", and if some a € A satisfies
pka = g, then by induction hypothesis there is an & € G such that p*T'h = pg.
Now pkh — g is either 0 or of order p, and p*(h — a) = p*h — g. By induction
hypothesis, p*g’ = p*h — g for some g’ € G, whence p*(h — g’) = g with
h — g’ € G. Thus the height of g is not smaller in G than in A.

(F) If G is a pure subgroup of a p-group A such that G[p] = Alp], then G = A.
Again, we use induction on the order to prove that every a € A belongs to
G. Let o(a) = p" (n > 2), thus p""'a € A[p] = G|p]. Owing to purity,
p"'g = p"'a for some g € G. Here o(g — a) < n — 1, so by induction
g—acG,soalsoa € G.

(G) In torsion-free groups, intersection of pure subgroups is again pure. As a
matter of fact, an equation nx = g has at most one solution in A; therefore,
if it is solvable in A, then its unique solution belongs to every pure subgroup
containing g.

In view of this, in a torsion-free group A, for every subset S C A, there
exists a minimal pure subgroup containing S. This is the intersection of all
pure subgroups containing S; our notation for this subgroup is (S),.. It may be
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called the pure subgroup generated by S. It is easy to check that (S),./(S) is
precisely the torsion subgroup in A/(S).

(H) Purity is an inductive property: the union of a chain of pure subgroups is pure.
For, if G is the union of a chain G; < --- < G, < ... of pure subgroups, and
if nx = g € G is solvable in A, then it is solvable in G, for every index o with
g € G,. It is a fortiori solvable in G.

The following theorem is of utmost importance, it lists the most frequently
needed properties of purity.

Theorem 1.3 (Priifer [2]). Let B, C be subgroups of the group A such that C <
B < A. We then have:

(1) if C is pure in A, then it is pure in B;
(ii) if C is pure in B and B is pure in A, then C is pure in A;
(iii) if B is pure in A, then B/C is pure in A/ C;
(iv) if C is pure in A and B/ C is pure in A/ C, then B is pure in A.

Proof.

(i) is obvious.

(i1) Under the stated hypotheses,nC = CNnB = CN(BNnrA) = (CNB)NnA =
C N nA forevery n € N.

(iii) follows from the equalities n(B/C) = (nB + C)/C = [(B N nA) + C]/C =
[BN (A + C)]/C = B/CNn(A/C) (we used the modular law).

(iv) Assuming the stated hypotheses, let na = b € B for some a € Aandn € N.
Then n(a + C) = b 4+ C whence hypothesis implies that there is a &’ € B such
that n(b’ + C) = b + C, i.e. nb’ = b + ¢ for a suitable ¢ € C. In view of the
purity of C, from n(b’ —a) = ¢ we get a ¢’ € C satisfying nc’ = c. It only
remains to check that ¥’ — ¢’ € Band n(b’' — ¢’) = b. O

Thus (iii) and (iv) combined claim that the natural correspondence between
subgroups of A/C and subgroups of A containing the pure subgroup C preserves

purity.

Lemma 1.4. Let B be a pure subgroup of A. If B is torsion-free and A/ B is torsion,
then B is a summand of A.

Proof. If T denotes the torsion subgroup of A, then B @ T is an essential subgroup
in A. We claim that it is all of A. For every a € A \ T there is an integer n > 0 such
that na = b + t with b € B, t € T. For some m > 0 we have mt = 0, so mna = mb.
By purity, some b’ € B satisfies mna = mnb’. Thena—b' € Tanda€e B+ T. 0O

Embedding in Pure Subgroup A fundamental property of purity is stated in
the following theorem.

Theorem 1.5 (Szele). Every finite subgroup can be embedded in a countable pure
subgroup, and every subgroup of infinite cardinality in a pure subgroup of the same
power.
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Proof. Let B be a subgroup of A of cardinality . Consider all equations nx = b for
alln € Nand all b € B that are solvable in x € A. For each such equation, we adjoin
a solution a,;, € A to B in order to obtain a subgroup B; < A in which all these
equations are solvable; thus, By = (B, a,; (V n, b)). We repeat this precess with B
in place of B to get a subgroup B, in which all equations with right members in
B are solvable whenever they admit a solution in A. Thus proceeding, we form the
union G of the chain B < By <--- <B,, <... (m < w). This G must be pure in A,
since every equation nx = g € G thatis solvable in A is solvable in B+ if g € B,,.
As far as the size of G is concerned, it is clear that |G| < kR, whence both parts of
our claim follow. O

For torsion-free groups, (G) above gives a more powerful statement: there is a
minimal pure subgroup containing a given subgroup—a pure subgroup of the same
rank. However, in torsion and mixed groups, it is unpredictable if there is a minimal
pure subgroup containing a subgroup.

Example 1.6. Let A = ®,., (a,) where o(a,) = p?", and consider the subgroup L =
®,<w (aon + paz,+1). Suppose there is a minimal pure subgroup C containing L. Clearly,
p4"+1a2,,+1 € Lip], thus p4"+1c2,,+1 = p4”+1a2n+1 for some c,4+1 € C, so we have
aon+p(az+1—ca+1) € C. Hill-Megibben [1] prove that any minimal pure subgroup C containing
a subgroup L must satisfy p”C[p] < L[p] for some m € N. Therefore, if 4n — 1 > m, then
P ay, + p*(az41 — caut1) € P"Clp] < Llp). Tt follows that p*~'a,, € L[p] which is clearly
impossible. Thus no such C exists.

A subgroup C of A is purifiable if there exists a pure subgroup G < A containing
C such that A has no pure subgroup containing C and properly contained in G. There
is no satisfactory characterization of purifiable subgroups. We state a relevant result
without proof.

Theorem 1.7 (Hill-Megibben [1]). A p-group A has the property that all of its
subgroups are purifiable if and only if A = B ® D, where B is a bounded and D is a
divisible group. O

It is useful to keep in mind that groups admit pure Ry-filtrations:

Proposition 1.8. For every pure subgroup G of A, there is a smooth chain G =
Gy <Gy <+ <Gy <+ < Gy = A of pure subgroups for some ordinal T such
that each G,41/Gy is countable.

Proof. To obtain G, 41 from G,, choose G,+1/G, as a countable pure subgroup of
A/Ggs (Theorem 1.5). O

A word on purity in p-adic modules. Since p-adic modules are g-divisible for
every prime g # p, purity is the same as p-purity. (p-purity in the p-adic sense is the
same as in groups.)

Neat Subgroups There exist several concepts related to purity that deserve
mentioning, besides the isotype subgroups that will be discussed in Chapters 11
and 15.
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Honda [1] introduced a widely used generalization of purity. He called a
subgroup N of A a neat subgroup if, for every prime p, the solvability of the equation
px = b € N in A implies that it is also solvable in N. Equivalently, if

pN =NNpA for every prime p.

In torsion-free groups neatness does not offer anything new: it coincides with purity
(Exercise 12). However, for torsion groups the situation is different.

Example 1.9. Here is a simple example of a neat subgroup that is not pure. Let A = (u) @ (v)
where o(u) = p3,0(v) = p. The subgroup N = (pu + v) satisfies pN = N N pA, however,
0= p?N < N N p*A = (p?u).

The importance of neatness lies in the following basic fact.
Lemma 1.10 (Honda [3]). High subgroups are neat.

Proof. Let B be a C-high subgroup of A, and pa = b € B (a € A).Ifa ¢ B,
then (B,a) N C # 0, so there is a non-zero ¢ € C with b’ + ka = c for some
0 < k < pand b’ € B. Then both pa and ka belong to B & C, thus a = by + ¢, for
some by € B,cy € C. Hence b = pa = pby + pcp along with BN C = 0 implies
pa = pby, so pby = b. O

k-Purity We mention quickly another generalization of purity that involves
higher cardinalities. Let « be an infinite cardinal. A subgroup B of A is called x-pure
if B is a summand in every subgroup C of A that contains B such that |C/B| < «.
Using Theorem 2.12 below, it is an easy exercise to check that Ry-purity is the same
as purity.

Example 1.11. Let F be a free group with an epimorphism ¢ : F — Q. Then Ker ¢ is Ry-pure,
but not R;-pure in F.

Example 1.12. Let F be a free group, and H a subgroup such that F/H is an R;-free, but not a
free group (e.g., the Baer—Specker group). Then H is R;-pure in F, but it is not a summand.

Example 1.13. Let H be a pure subgroup of a X-cyclic p-group F. Assume that F/H is of
cardinality 8 and has no elements of infinite heights, but it is not X-cyclic. Then H is 8 -pure in
F, but not a summand. (Use Theorem 2.9.)

% Notes. Purity was introduced by Priifer in his seminal paper [2] under the name
‘Servanzuntergruppe’ (serving subgroup); it played an important role already in his papers. The
early literature followed this terminology, until the term ‘pure’ was firmly established on the
initiative of Kaplansky who adopted this simpler term from a paper by J. Braconnier.

The question of finding a minimal pure subgroup containing a given subgroup attracted several
researchers. Benabdallah—Okuyama [1] introduce new invariants all of which vanish for purifiable
subgroups. Both purifiability and its generalizations have been studied extensively by Okuyama;
interested readers are advised to consult his papers [1], [2], where several new concepts were
introduced. Pierce [2] characterizes and classifies centers of purity in p-groups; these are defined
as subgroups C such that every C-high subgroup is pure.

The idea of k-purity is credited to Gacsdlyi [1]. The search for cardinals « for which «-purity
implies « T -purity is still on. Janakiraman—Rangaswamy [1] discuss strong purity: C is strongly
pure in A if for every ¢ € C, there is a homomorphism ¢ : A — C such that ¢(c) = c.
Finitely generated and finite rank torsion-free strongly pure subgroups are summands. For a further
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generalization of purity, we refer to C. Walker [1], Nunke [5], B. Stenstr6m [J. Algebra 8, 352-361
(1968)]. There are a number of papers in the Russian literature on so-called w-purity, introduced
by Mishina and Skornyakov. Honda’s neat subgroups generated a great deal of interest, even their
homological aspects were explored.

Exercises

(1) Neither the sum nor the intersection of direct summands need be a pure
subgroup.

(2) If Gis pure in A, then nG is pure in nA for every n € N.

(3) If G is a pure subgroup in each member of a chain By < --- < B; < ..., then
it is pure in their union B = U; B,.

(4) If BN C and B + C are pure subgroups of A, then so are B and C.

(5) A pure subgroup that is essential in A cannot be a proper subgroup.

(6) If Gis purein A, then so is tA + G.

(7) Let G be a pure subgroup of A. Then:

(a) G' = GNA' (first Ulm subgroups);
(b) (G+A")/A'is purein A/A';
(¢) G<A'ifand only if G is divisible.

(8) Let B be a pure subgroup of A, and S a subset of A such that BNS = &. There
exists a pure subgroup C of A containing B and maximal with respect to the
property CN S = &.

(9) A group is pure in every group containing it as a subgroup if and only if it is
divisible.

(10) (a) Describe the groups in which every subgroup is pure.
(b) Find the torsion groups in which every pure subgroup is a summand.
(11) Give an example of a non-pure subgroup such that its own Z-adic topology is
the same as the relative Z-adic topology.
(12) (Honda)

(a) In torsion-free groups, neatness coincides with purity.

(b) Neatness is an inductive property.

(c) If N is neat in A, and if either N or A/N is an elementary p-group, then N
is a summand of A.

(13) A group A has no neat subgroups other than 0 and A if and only if rk(A) = 1.
(14) (a) Let E denote an injective hull of A. A subgroup B is neat in A if and only
if B = A N D for a divisible subgroup D of E.
(b) Every subgroup C of A can be embedded in a neat subgroup of A which is
minimal neat containing C.
(15) (Rangaswamy) A subgroup G in A is the intersection of neat subgroups of A
if and only if A[p] £ G whenever (A/G)[p] # 0.
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(16) (Irwin) Let H be an A! -high subgroup of A. Prove that:

(a) H ispurein A. [Hint: choose n minimal with p"x = b € H solvable in A,
but not in H, and consider A' N (H, p"~'a) where p"a = b.]
(b) A/H is the divisible hull of (A' @ H)/H = A'.

(17) (V = L) For every infinite cardinal 8, that is not compact, there is an
example of an R;-pure subgroup that is not X, -pure. [Hint: Theorem 8.9
in Chapter 3.]

2 Theorems on Pure Subgroups

The results of this section are fundamental, especially for p-groups.

The Summand Property We find important criteria under which a pure
subgroup becomes a summand.

Lemma 2.1 (Szele [4]). Suppose that B is a subgroup of A such that B is a direct
sum of cyclic groups of the same order p*. The following are equivalent:

(a) B is a pure (p-pure) subgroup of A;
(b) B satisfies BN p*A = 0;
(c) B is a direct summand of A.

Proof. (a) = (b) If B is p-pure in A, then B N p™A = p"B for every m € N. The
choice m = k yields pkB = 0. Thus (b) follows from (a).

(b) = (c) Assuming (b), let C be maximal in A with respect to the properties
pkA < Cand CNB = 0. We show that A = B@ C.If thereisana € Anotin B&® C,
then there is also one with pa € B& C, so pa = b+ c withb € B,c € C. Then
P'b + p*~lc = p*a € C implies p*~'b = 0. By the assumption on the structure
of B, there is a b’ € B satisfying pb’ = b. The maximal choice of C guarantees that
the subgroup (C, @ — b') must contain a non-zero by € B, thus by = ¢’ + m(a — b')
for some ¢’ € C,m € Z. Since BN C = 0 and p(a — b') = ¢ € C, we must have
(m,p) = 1. But then both m(a — ') = by — ¢’ and p(a — b') = carein B&® C, so
a—b € B® C,anda € B® C follows.

(c) = (a) is trivial. |

The following two corollaries are used frequently.

Corollary 2.2 (Priifer [2], Kulikov [1]). Every element of order p and of finite
p-height can be embedded in a cyclic summand of the group.

Proof. 1f a € A is of order p and of height k < oo, then let p*b = a for some b € A.
Then (b) is pure of order p**!, and Lemma 2.1 applies. O

Corollary 2.3 (Kulikov [1]). If a group contains non-zero elements of finite order,
then it has a cocylic direct summand.
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Proof. 1f the group contains a quasi-cyclic group Z(p*°) for some prime p, then this
is a direct summand. If it does not contain any quasi-cyclic subgroup, but it contains
elements of order p, then it must also contain one of finite height; cf. (E). The claim
follows from Corollary 2.2. O

Another corollary worthwhile recording is as follows.

Corollary 2.4 (Kulikov [1]). A directly indecomposable group is either cocyclic
or torsion-free.

Proof. By Corollary 2.3 there are no indecomposable mixed groups, and the only
indecomposable torsion groups are the cocyclic groups. O

Bounded Pure Subgroups We now proceed to show that certain pure sub-
groups are necessarily summands.

Theorem 2.5 (Priifer [2], Kulikov [1]). A bounded pure subgroup is a direct
summand.

Proof. 1f B is abounded group, then Lemma 2.1 allows us to decompose B = B &C
where B is a direct sum of cyclic groups of the same order p*, and the bound for C
is less than the bound for B. If B is pure in A, then so is B;, and Lemma 2.1 implies
that A = By @ A forsome Ay < A.ThenB =B, ® C; withC;, = BNA; = C.
Here C; is pure in A, and by induction, C; is a summand of A, and hence B is
one of A. ]

Corollary 2.6 (Khabbaz [2]). p"A-high subgroups (n € N) of a group A are
summands.

Proof. We show that a p"A-high subgroup B is a bounded pure subgroup. Since
p"B < BNp"A = 0, Bis abounded p-group. By induction, we prove that BN p"A <
pkB for integers k with 0 < k < n. This being trivially true for k = 0, assume it is
true for some k where 0 < k < n.Letb = p**la £ 0 (b € B,a € A). If p*a € B,
then by induction hypothesis p*a = p*b’ for some b’ € B, and then b = pkt1p/. If
pka ¢ B, then (B, p*a) contains a non-zero element ' + p*a € p"A, where b’ € B
is also in p*A, so b’ € p*B as well. Now b’ = p"d’ — p*a for an @’ € A, and
hence b = p**tla = p"tla’ — pb’, where the term p"*'a’ has to vanish because of
BN p'A =0.Thus b = —pb’ € p**'B. O

Corollary 2.7 (Erdélyi [1]). A p-subgroup embeds in a bounded summand if and
only if the heights of its elements (computed in the containing group) are bounded.

Proof. The necessity being obvious, suppose that p™ is an upper bound for the
heights in the subgroup B of A. There is a p” ' A-high subgroup C such that B < C.
Invoke the preceding corollary to conclude that C is a summand of A. O

Cosets of Pure Subgroups Here is another characterization of purity.

Lemma 2.8 (Priifer [1]). A subgroup B of A is pure if and only if every coset of A
modulo B can be represented by an element that has the same order as the coset.
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Proof. Let B be pure in A, and a € A \ B. If the order of the coset a + B is infinite,
then every element in the coset has infinite order. If the order of a + Bis n < oo,
then na € B, so purity implies that nb = na for some b € B. Then a — b(€ a + B)
is of order < n, so of order n.

Conversely, if the stated condition holds, and if na = b € B for some a € A, then
choose b’ € Bsuch that o(a—b") = o(a+B). Thenn(a—b') = 0,and nb’ = na = b
establishes the purity of B in A. O

We arrive at another important result:

Theorem 2.9 (Kulikov [1]). If B is a pure subgroup of A such that A/B is a direct
sum of cyclic groups, then B is a summand of A.

Proof. In view of Lemma 2.4 in Chapter 2, it is enough to deal with the case of
cyclic A/B. By Lemma 2.8, we can select a representative ¢ € A in a generating
coset a + B such that o(a) = o(a 4+ B). Then (B,a) = A and BN (a) = 0, so that
A =B® (a). O

In particular, a pure subgroup of finite index is a summand.

Theorem 2.10. For a subgroup B of a group A the following conditions are
equivalent:

(i) BispureinA;
(ii) B/nB is a direct summand of A/nB for every n € N;
(iii) B is a direct summand of n~'B.

Proof. (i) < (ii) If (i) holds, then from Theorem 1.3(iii) we infer that B/nB is pure
in A/nB. Hence (ii) follows at once from Theorem 2.5. Conversely, suppose (ii),
and let na = b € B witha € A,n € N. There is a subgroup C < A such that
A/nB=B/nB® C/nB,soa =b"+ cwithd' € B,c € C. Thenb = na = nb’ + nc
implies nc = b —nb’ € C N B = nB, whence b € nB follows.

(i) < (iii) If B is pure in A, then the boundedness of n~'B /B implies (iii) because
of Theorem 5.2 in Chapter 3 and Theorem 2.9. Conversely, assume again na =
b € B witha € A,n € N. By hypothesis, n"!B = B @ C for some C < A, where
obviously nC < BNC = 0. Sincea € n~'B, wehave a = b’ 4c withb’ € B,c € C.
But then nb’ = nb’ + nc = na = b, establishing purity. O

By making use of Theorem 2.9, we can verify the analog of Theorem 7.5 in
Chapter 3 for X-cyclic torsion groups.

Theorem 2.11. Suppose 0 = Ayp < A} < -+ < Ay < ... (0 < k) with an
uncountable regular cardinal k is a smooth chain of pure subgroups of a p-group A
such that

(1) the A, are X-cyclic of cardinality < k, and
i) A=, Ao
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Then A is X-cyclic if and only if the set
E={o <« |3p>o0 suchthatA,/As isnot X-cyclic}

is not stationary in K.
Proof. See the proof of Theorem 7.5 in Chapter 3. O

Solvability of Finite Systems Pure subgroups B of A were defined in terms of
the solvability of single equations nx = b € B with one unknown. Proposition 4.3
in Chapter 4 shows that the same may fail for systems of equations with infinitely
many unknowns. However, if we restrict ourselves to equations with a finite number
of unknowns only, then we get the following result.

Theorem 2.12 (Priifer [1]). Let
niaxy + 0+ nipxm = by (biEB,nijEZ,iEI)

be a system of equations with a finite number of unknowns, xi, ..., Xy, over a pure
subgroup B of A. If it has a solution in A, then it is solvable also in B.

Proof. Letx;=a; (j=1,...,m)beasolutioninA. (B,ay,...,a,)/B is X-cyclic,
so owing to Theorem 2.10, B is a summand of C = (B, ay, ..., a,), say, C = B&C'.
The B-coordinates of the a; provide a solution in B. o

% Notes. Theorems 2.5 and 2.9 are most essential results on pure subgroups, they are
indispensable and will be used throughout without reference to them. Generalization of purity to
modules over arbitrary (associative) rings was given by P. Cohn, using property in Theorem 2.12
with a finite number of equations. In the theory of modules over integral domains, a weaker version,
the so-called ‘relative divisibility’ turned out to be most useful; this concept is due to Warfield [Pac.
J. Math. 28, 699-719 (1969)]. This adheres to the above definition of purity with ring elements
replacing integers.

Exercises

(1) If a reduced p-group contains elements of arbitrarily large orders, then it also
has cyclic summands of arbitrarily large orders.

(2) Let A be a bounded p-group, and B a subgroup of A[p]. A has a direct summand
C such that C[p] = B.

(3) If G is a pure subgroup of A = B & C such that G N C is essential both in G
andin C,thenA = B & G.

(4) Call a group A pure-simple if it contains no pure subgroups other than 0 and
A. Prove that A is pure-simple if and only if it isomorphic to a subgroup of Q
or Z(p®°) for some prime p.

(5) A group satisfies the maximum [minimum] condition on pure subgroups if
and only if it is of finite rank.



3 Pure-Exact Sequences 159

(6) (Cutler, E. Walker) If the groups A and G satisfy nA = nG for some n € N,
then there exist groups A’ and G’ such that A @ A’ =~ G & G’ withnA’ =0 =
nG’. [Hint: find maximal n-bounded subgroups.]

(7) If nA = @®,¢;C; is a direct decomposition, then there exist subgroups B; such
that A = @iEIBi with nB,- = C,'.

(8) If B is a pure subgroup of A, then (A/B)[n] = A[n]/B]n] for every n € N.

(9) (Kulikov) Suppose a € A is an element of smallest finite order in the coset
a + pA. Then (a) is a summand of A.

(10) (Mader) Let A be an infinite p-group such that |[A/p"A| < |A| for some n € N.
Then A contains a p"-bounded summand of cardinality |A|.

(11) The closure C™~ of a pure subgroup C of A (in the Z-adic topology) is pure if
and only if (A/C)" is a divisible group.

(12) Let B & C be a pure subgroup in a reduced torsion-free group A. Then the
closures B, C™ in the Z-adic topology of A are still disjoint, and B~ @ C™ is
pure in A.

(13) (Gobel-Goldsmith) In every group # 0, the set of all proper pure subgroups
contains a maximal member. [Hint: argue separately for torsion-free groups.]

(14) A group is called absolutely pure if it is a pure subgroup in any group in
which it is contained as a subgroup. Show that D is absolutely pure if and only
if it is divisible.

(15) A subgroup B is k-pure in A if and only if every system of equations over B
with less than « unknowns is solvable in B whenever it admits a solution in A.
[Hint: Theorem 2.12.]

(16) A subgroup G of a group A can be embedded in an R,-pure subgroup of
cardinality < |G|®, where p = ¢ — 1 or ¢ according as ¢ is a successor
or a limit ordinal. [Hint: argue as in Theorem 1.5 and preceding exercise.]

3 Pure-Exact Sequences
Pure-Exactness A short exact sequence

0= A-%B 00 (5.3)

is said to be pure-exact if Im« is a pure subgroup of B. It is p-pure-exact if Im o
is p-pure in B.

To simplify notation, in the next theorem we shall use the same letter for
homomorphisms and for maps that they induce.

Theorem 3.1. An exact sequence (5.3) is pure-exact if and only if it satisfies one
(and hence all) of the following equivalent conditions:

(a) 0— nAimBi)nC — 0 is exact for everyn € N;

(b) 0 — A/nA#B/nBi)C/nC — 0 is exact for every n;
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(¢c) 0> A[n]gB[n]i)C[n] — 0 is exact for every n;
(d 0— A/A[n]gB/B[n]i)C/C[n] — 0 is exact for every n.
Moreover, the sequences (b) and (c) are splitting exact.

Proof. We prove only (a) and (c), because then (b) and (d) will follow from the
3 x 3-lemma. That the compositions of & and  are 0 throughout is evident.

(a) Itis clear that, for all n, & is monic if and only if it is monic in (5.3). Ker 8 is
oA N nB which is a(rA) if and only if (5.3) is exact at B. Finally, for all n, § is
epic exactly it is epic in (5.3).

(c) Again, for all n, & is monic if and only if it is monic in (5.3), and B is epic for
every n exactly if every element of order # is the image of an element of order
n in B. Ker f is equal to «(nA) if and only if (5.3) is exact at B.

The last claim follows straightforwardly by showing that (b) and (c) are pure-
exact and the groups are bounded. O

The next theorem characterizes pure-exact sequences in terms of their injective
and projective properties.

Theorem 3.2. An exact sequence (5.3) is pure-exact if and only if the finite cyclic
groups have the injective property relative to it if and only if the finite cyclic groups
have the projective property relative to it.

Proof. We prove the claim only for injectivity, a dual proof applies to projectivity.
Let¢: A — H be ahomomorphism into a cyclic group H; without loss of generality
we may assume ¢ is epic. The existence of a : B — H with Yo = ¢ is equivalent
to the extensibility of the isomorphism A/ Ker¢ =~ H to amap B — H, i.e. to
the fact that «(A/ Ker ¢) is a summand of B/« Ker¢. An appeal to Theorem 3.1
completes the proof. O

Direct Limits and Purity We turn our attention to the behavior of pure-exact
sequences towards direct limits. Interestingly, direct limits of pure-exact sequences
are again pure-exact.

Theorem3.3. Let A = {A; (i € In:7m}, B = (B, (i € I):p)} and € =
{C; (i € I);0!} be direct systems of groups, and let ® : A — B,V : B — €
be homomorphisms between them such that, for every i € I, the sequence 0 —

@i Vi .
Ai—>B;i—>C; — 0 is pure-exact. Then the sequence

0= Ay5B,25C, — 0 (5.4)

of direct limits is likewise pure-exact.

Proof. In view of Theorem 4.6 in Chapter 2, we need only check the purity of
D, (Ax) in B«. Let nb = ®yafora € Ax, b € By, and for some n € N. Then there
are a; € A;,b; € B; for some i € [ such that m;a; = a, p;b; = b for the canonical
maps ;. A; = A, pi i Bi — Bs. Because of the commutativity of the diagram
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in Theorem 4.6 in Chapter 2, we have p;nb; = ®.ma; = pip;a;, whence we get
pi(nb; — ¢ia;) = 0, and so pl(nb; — ¢a;) = 0 for some index j > i. Therefore,
nplb; = plia; = ¢jmla;, and since plb; € Bj, wla; € A, the pure-exactness for
index j implies that ¢jnajf = ¢;mla; for some ajf € A;. Apply p;, and observe that
pi¢; = Pu7j to obtain n®ya’ = Dya witha' = njajf € A,. O

Next we point out a most interesting connection of purity with splitting exact
sequences; this is another convincing evidence that purity is a very natural concept.

Theorem 3.4. A sequence is pure-exact if and only if it is the direct limit of splitting
exact sequences.

Proof. That the direct limit of splitting exact sequences is pure-exact follows at once

from the preceding theorem. To verify the converse, assume 0 — Ai>B—ﬁ>C —
0 is a pure-exact sequence, and {C; (i € I)} is the family of finitely generated
subgroups of C; here, I is a poset where i < j means C; < C;. Ifo{ 1 C; — Cjisthe
injection map for i < j, then we may view C as the direct limit of the direct system
€ = {C; (i € I);0!}. It follows that B is the direct limit of the direct system B =
(B, = B7IC; (i € I); p{} where pf stands for the injection map B; — B;. Finally, we
letA={A, =A(iel); JTii = 14}. Then « and B induce homomorphisms A — B

B
and 8 — € such that all the sequences 0 — Aii>Bi—>Ci — 0 are pure-exact;
they are actually splitting because of Theorem 2.9. It is obvious that the direct limit
of these splitting exact sequences is the exact sequence we started with. O

The last theorem can be applied to derive a useful corollary.

Corollary 3.5 (Yahya [1]). Suppose F is a covariant additive functor Ab — Ab
that commutes with direct limits. Then F carries a short pure-exact sequence into a
pure-exact sequence.

Proof. In view of Theorem 3.4, a pure-exact sequence 0 - A —- B — C — O can
be represented as the direct limit of splitting exact sequences. Applying F to these
sequences, we get a direct system of splitting exact sequences whose limit will be
the pure-exact sequence 0 — F(A) — F(B) — F(C) — 0. O

Tensor Products and Purity We hesitate to include in this section results on
tensor product (and on Hom), because we have not as yet defined these functors.
But these results are essential for purity, and we feel it is reasonable to discuss them
here. First, we rephrase part of Theorem 3.1 in terms of functors.

Corollary 3.6. The exact sequence (5.3) is pure-exact if and only if one (and hence
both) of the following sequences is exact for every n:

(@) 0 — Z(n) ® A—">7Z(n) ® B—>7n) ® C — 0;
(b)) 0 — Hom(Z(n),A)i) Hom(Z(n), B)i> Hom(Z(n),C) — 0.
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Proof. The proof is immediate, all that we have to observe is that both Z(n) ® G =~
G/nG and Hom(Z(n), G) = G[n] are natural isomorphisms for every group G; see
Sect. 1(B) in Chapter 8 and Example 1.2 in Chapter 7. O

The next corollary is an important result on purity, it is intimately related to the
foregoing discussions.

Corollary 3.7. An exact sequence (5.3) is pure-exact if and only if, for every group
G, the induced sequence

16®
05604 % 6B cac 0

is exact. It is even pure-exact, if so is (5.3).

Proof. Suppose (5.3) is an exact sequence. The exactness of the tensored sequence
holds for finitely generated groups G, as is shown in Corollary 3.6(a). By The-
orem 3.3, exactness is preserved under taking direct limits. Since tensor product
commutes with direct limits, the claim also holds for direct limits of finitely
generated groups, so also for any G. The converse is a consequence of Corollary 3.6
if we choose G as finite cyclic groups. Purity follows from Corollary 3.5 at
once. O

% Notes. The results above show that purity has several remarkable characterizations.
Several mathematicians noticed almost simultaneously that pure-exact sequences are exactly the
direct limits of splitting exact sequences, this being true also in the module-theoretic version.
Interestingly, for the generalization of purity to modules, the results of this section continue to
hold mutatis mutandis. For integral domains, see, e.g., Fuchs—Salce, Modules over non-Noetherian
Domains (2001).

In general, pure submodules of injective left R-modules need not be injective; they are always
injective exactly if R is left noetherian. The von Neumann regular rings can be characterized as
rings over which all exact sequences are pure-exact.

Exercises

(1) Show that (5.3) is pure-exact if and only if the induced sequence
0 — Hom(A, Z(n)) — Hom(B, Z(n)) — Hom(C, Z(n)) — 0

is exact for every n € N. [Hint: Hom(G, Z(n)).]

(2) If C is a pure subgroup of the p-group A, then A[p]/C[p] = (A/C)[p].

(3) If (5.3) is a pure-exact sequence, then the sequence 0 — tA — tB — tC — 0
of torsion subgroups is exact.

(4) Suppose (5.3) is pure-exact. The sequences 0 — A' — B' — C' — 0 of first
Ulm subgroups and 0 — A/A' — B/B' — C/C' — 0 of first Ulm factors
need not be exact; but if one is exact, then so is the other.
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(5) Let & denote a class of exact sequences.

(a) The class of groups that enjoy the injective property with respect to every
member of £ is closed under taking direct products and summands.

(b) The same for ‘projective’ in place of ‘injective,” but change ‘direct product’
to ‘direct sum.’

4 Pure-Projectivity and Pure-Injectivity

In Theorem 3.2 the pure-exact sequences were characterized by properties that the
finite cyclic groups have the projective as well as the injective property relative to
them. Our next goal is to find all groups that have the projective, resp. the injective
property relative to all pure-exact sequences.

Pure-Projective Groups A group P is called pure-projective if it enjoys the
projective property relative to the class of pure-exact sequences; i.e., if every
diagram

0 ——A—>. B c_— 9

with pure-exact row can be completed by a map v : P — B such that 8y = ¢.

Example 4.1. All cyclic groups are pure-projective: Z is because it is projective, and all finite
cyclic groups because of Theorem 3.2. Hence all ¥-cyclic groups are pure-projective.

In order to find all pure-projective groups, we prove a lemma (which can be
interpreted as the existence theorem on pure-projective resolutions; we say: there
are enough pure-projectives).

Lemma 4.2. Every group A can be embedded in a pure-exact sequence
0—B—P-5A—0 (5.5)

where P is 3-cyclic (hence B as well).

Proof. Foreverya € A, let (c,) = (a) be a cyclic group, and define P = D,eq (c4)-
Leta: P - Aactviaw: c, — aforall a € A. This is a well-defined epimorphism,
and if we set B = Ker«, then we get the exact sequence (5.5). B is pure in P, since
by construction, every coset mod B is represented by an element of the same order
(cf. Lemma 2.8). Kerov = B is also X-cyclic, since it is a subgroup in a X-cyclic
group (Theorem 5.7 in Chapter 3). O
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Theorem 4.3 (Maranda [1]). A group is pure-projective if and only if it is
Y-cyclic.

Proof. Theorem 3.2 implies that X-cyclic groups are pure-projective.

Conversely, assume that A is a pure-projective group. By Lemma 4.2, there exists
a pure-exact sequence (5.5) with X-cyclic P. By pure-projectivity, there is a map
a: A — P such that no = 14. This means, A is isomorphic to a summand of P, and
hence it is X-cyclic. O

Pure-Injective Groups Turning to the dual concept, a group H is defined to be
pure-injective if it has the injective property relative to all pure-exact sequences. In
other words, any diagram

with pure-exact row can be completed with a map ¥ : B — H such that Yo = ¢.
As we shall see, the theory of pure-injective groups can be incorporated in the theory
of algebraically compact groups, so here we restrict ourselves to a few elementary
results. For more information, we refer to Sect. 4 in Chapter 6.

Example 4.4. Injective groups are trivially pure-injective, and so are all the cocyclic groups (cf.
Theorem 3.2).

Example 4.5. The group J, is pure-injective. This will follow from Theorem 1.2 in Chapter 6 as
J,, is a compact group.

The next lemma provides pure-injective resolutions (so there are enough pure-
injectives).

Lemma 4.6 (Lo$ [1]). Every group can be embedded as a pure subgroup in a direct
product of cocyclic groups.

Proof. Let {H; (i € I)} be the set of all cocyclic factor groups of the group A, and set
H = [];e; Hi. The canonical maps 1,: A — H; induce a homomorphism n: A — H
which must be an embedding, since every non-zero a € A is excluded from the
kernel of some 7, (see Proposition 5.5 in Chapter 4). To verify the purity of Impn
in H, we show that if a € A is such that a ¢ p"A, then also na ¢ p"H. Let C be
a subgroup of A maximal with respect to the properties p"A < C and a ¢ C. Then
by Proposition 5.5 in Chapter 4 A/C is cocyclic, and since it is bounded, it must be
cyclic of order p* for some k < n. Thus A/C = H; for some i, where n;a is of height
k — 1, so that na € p"H is impossible. O
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Theorem 4.7.

(a) A group is pure-injective if and only if it is a summand of a direct product of
cocyclic groups.
(b) Every group embeds as a pure subgroup in a pure-injective group.

Proof.

(a) A straightforward argument shows that any injective property is preserved by
taking direct products or passing to summand, so for the ‘if” part it is enough
to show that cocyclic groups are pure-injective. This is obvious for quasi-cyclic
groups (they are injective), and this also holds for finite cyclic groups as is clear
from Theorem 3.2.

On the other hand, if A is pure-injective, then by Lemma 4.6 A embeds as a
pure subgroup in a direct product H of cocyclic groups. By pure-injectivity, the
identity map 14 factors through H — A, which shows that A is a summand of H.
(b) Combine Lemma 4.6 and (a). |

Pure-essential extensions and pure-injective hulls will be discussed in Sect. 4 in
Chapter 6.

% Notes. Pure-projectivity and pure-injectivity were studied by Maranda [1]. Over any ring
(commutative or not), the pure-projective left modules are the summands of direct sums of finitely
presented left modules. Hence it is easy to conclude that all cyclic left modules are pure-projective
if and only if the ring is left noetherian. There is an extensive literature on pure-injective modules,
they play an important role also in model theory.

Quasi-pure-projectivity and -injectivity have also been discussed in several publications. (In
the definition of the latter imitate pure-injectivity with H = B above.) See, e.g., Reid [4], and the
literature cited there. Cf. also Chekhlov [2], and the survey Chekhlov—Krylov [1].

Exercises

(1) Give an example for a pure-injective group that is not a product of cocyclic
groups (only a summand of such a group). [Hint: torsion-free.]

(2) Define p-pure-projectivity and p-pure-injectivity, and show that there are
enough p-pure-projective and p-pure-injective groups.

(3) There are enough neat-projective and neat-injective groups.

(4) If G and H are pure-injective groups such that each of them is isomorphic to a
pure subgroup of the other, then G = H. [Hint: G = H ®A, H =~ G & B implies
that G contains a pure subgroup == A®0) @ &) ]

(5) (C. Walker) Let « denote a non-limit cardinal. A group is «-pure-projective if
and only if it is (a summand of) a direct sum of groups of cardinalities < «.

(6) A homomorphism « : A — B is called pure if both Kero is pure in A and
Ima is pure in B. Groups with pure homomorphisms as morphisms form a
subcategory of .Ab which has enough projectives and injectives.
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5 Basic Subgroups

p-Independence LetA be an arbitrary group, and p any prime which will be kept
fixed in this section. A set {a;};e; of non-zero elements of A is called p-independent
if, for every finite subset {ay, . . ., a;} and for every positive integer r,

niay + -+ mag € p"'A  (ma; #0,n; € Z) implies p'|n; i=1,...,k).

Thus, by definition, p-independence is of finite character, thus every p-independent
system can be extended to a maximal one. These maximal systems are of special
interest.

(A) A p-independent system is an independent set. For, if {ai,...,a;} is
p-independent, and if nja; + --- + map = 0 with n;a; # 0, then definition
guarantees that p”|n; holds for all » > 0, which is impossible. Thus the
subgroup generated by a p-independent set {a;};es is Bier (a;).

(B) A subgroup generated by a p-independent system is p-pure. Let C be the
subgroup generated by the p-independent system {a;};c;. Assume ¢ € CNp’A,
ie.c = may + -+ + ma; € p"A with ma; # 0,n; € Z. By p-independence,
we have n; = p"m; for suitable m; € Z. This shows that ¢ = p"(mja; + --- +
myay) € p"C.

(C) Ifa € A belongs to a p-independent system, then o(a) is either oo or p* for
some £ > 1. For, if o(a) = m and p’ is the highest power of p that divides m,
then pta € p’A for every r > 0. Therefore, p’|p for all r, unless p‘a = 0.

(D) If an independent set containing only elements of infinite and p-power orders
generates a p-pure subgroup, then it is p-independent. Let {a;};c; be such an
independent set in A, and C = (...,a;,...) = @ier{a). f ma; + --- +
nya; € p"A with n;a; # 0, then by p-purity we have nya; + -+ + map =
p'(ma; + --- + mpay) for some m; € Z. On account of independence, we
infer that n;a; = p"m;a; fori = 1, ..., k. Hence the hypothesis on the orders
of the elements a; implies p"|n;.

p-Basic Subgroups By a p-basic subgroup B of A we mean a subgroup of A
that satisfies the following three conditions:

(i) Bis adirect sum of cyclic p-groups and infinite cyclic groups;
(ii) Bis p-purein A;
(iii) A/B is p-divisible.
Thus B has a basis which we will call a p-basis of A.

Evidently, A is a p-basic subgroup of itself if and only if (i) holds for A, and O is a
p-basic subgroup of A if and only if A is p-divisible. If A is equipped with the p-adic
topology, then conditions (i)—(iii) imply that B is Hausdorff in its p-adic topology
that is the same as the p-adic topology inherited from A, and furthermore, B is dense
in A.
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Lemma 5.1. A set of group elements is a p-basis if and only if it is a maximal
p-independent system.

Proof. Suppose {a;}ic; is a p-basis in the group A. Its p-independence follows from
(i)—(ii) and (D). (iii) implies that for 0 # g € A there is a relation of the form
g +may + -+ + mag € pA with n; € Z. This shows that adjoining g, the given set
would loose its p-independence.

Conversely, let {a;};c; denote a maximal p-independent system in A, and B the
subgroup it generates. By (A), this system is independent, so (i) follows at once
from (C). Since (B) implies (ii), only (iii) remains to be verified.

Let g € A\ B. By maximality, there is a dependence relation nog + nja; + - -+
niax € p"A with nja; # 0 (n; € Z) such that p” does not divide ny. If 0(g) = p,
then necessarily ged{ng, p} = 1, and g is divisible by p mod B. We induct on ¢ to
show that if o(g) = p’, then g is divisible by p mod B. Let p* denote the highest
power of p that divides ng. Evidently, s < r and n; = p*m; for some m; € Z and
for all i. Thus p*(mog + mya; + -+ + mgay) = p"a for some a € A. The element
g =mog—p "Sa+may + - -+ may has order dividing p*(< p'), so the induction
hypothesis implies that g’ is divisible by p mod B. As r — s > 1, the same must be
true for mpg, and so for g. For a g of infinite order, it suffices to point out that o(g’)
is a power of p, so g/, and hence g, is divisible by p mod B. O

Theorem 5.2 (Kulikov [2], Fuchs [11]). Every group contains p-basic subgroups,
for every prime p.

Proof. Maximal p-independent systems exist in every group. By Lemma 5.1, each
of them generates a p-basic subgroup. O

Example 5.3. 1In a divisible group, 0 is the only p-basic subgroup, for every p.

Example 5.4. The cyclic subgroup generated by 1 in J, is a p-basic subgroup of J,. For primes
q # p. the g-basic subgroups are 0.

Example 5.5. Let A = @22,(a,) where (a,) = Z(p"). Then A is a p-basic subgroup of itself.
But A is not its only p-basic subgroup; e.g., B = @°2,(a, — pa,+1) is another p-basic subgroup,

properly contained in A.

Example 5.6 (Kulikov [2]). Let B = @:;2,B, where B, is a direct sum of cyclic groups == Z(p").
Then B is a p-basic subgroup of the torsion part B of the direct product A = ]_[,?il B,. Observe
that B consists of all vectors ¢ = (by,...,by,...) with b, € B, such that there is an integer k
with p¥b, = 0 for every n, while B contains only the vectors with almost all b, = 0. Conditions
(1) and (ii) in the definition of basic subgroups are clearly satisfied. The same is true for (iii), as
c—(by+ -+ b)=(0,...,0,bt1,bt2,...) must be divisible by p in view of p*b, = 0 and
o(by) = p".

Example 5.7. Consider the Priifer group H,4;. This group is generated by the elements
a, (n < w) subject to the defining relations pay = 0, p"a, = ap (n > 1). B = ®,en{ay — pan+1)
is a basic subgroup, and H,, /B == Z(p®°).

Example 5.8. In the Baer—Specker group A = Z°, the subgroup B of bounded vectors is a free
pure subgroup (Theorem 10.4 in Chapter 3). Moreover, A/B is divisible, because for every a € A,
for each prime p there is a b € B such that pla — b. In fact, such a b can be chosen to have all
coordinates from the set {0, 1,...,p — 1}. Consequently, B is a p-basic subgroup of A for every
prime p.
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Let B be a p-basic subgroup of A. We collect the cyclic summands of the same
order in a direct decomposition of B, and form their direct sums to obtain

B=By®B ®---®B,®... (5.6)

where By denotes the direct sum of the infinite cyclic summands, while B, forn > 1
is the direct sum of the cyclic summands of order p". Clearly, B; @ --- @ B, is a
summand in B, and hence it is pure in A, so it is a bounded summand of A, for
every n:

A=B @ DB, DA,
We are going to show that A, can be chosen as
A, = B: + p"A  where B: =By®B+1PBi2 ... 6.7

so that A, = B4+ @ A, for all n € N. In fact, (iii) above guarantees that, for any
given n, each a € A is of the forma = b + p"c (b € B,c € A), thus By, ..., By, B}
and p"A together generate A. If a € B} +p"A is also contained in B; & - - @ B, then
froma = b + p"c with b € B}, c € A we conclude that p"c € B.ButB; & --- ® B,
is p"-bounded, thus p”c € B;;. Consequently,a € By N (B ®---® B,) = 0,and A,
can be chosen as stated. Thus A, = B,+1 @ A,+1, in fact.

Theorem 5.9 (Baer [1], Boyer [1]). For a subgroup B in (5.6) of A to be a p-basic
subgroup it is necessary and sufficient that

(a) By is pure in A; and
(b) foreveryn < w,A=B1 ®---® B, ® (B + p"A) with B}, in (5.7).

Proof. It remains to verify sufficiency. Let B = @<, B, satisfy (a)-(b). Then B is
obviously X-cyclic and p-pure in A. To prove that A/B is p-divisible, write a € A
in the forma = by + -+ + b, + ¢ + p‘g with b; € B;, ¢ € B}, g € A. Then
a+ B = pFg + B = p*(g + B), whence p*|a + B. Thus A/B is p-divisible. O

p-Basic in Torsion-Free Groups Let us have a closer look at two important
special cases: when A is torsion-free and when A is a p-group.

If A is torsion-free, then its p-basic subgroups are free groups. Even if A is not
free, it may very well happen that a free subgroup B is p-basic for every prime p.
This is the case when A/B is torsion-free divisible. An example is the Baer-Specker
group; see Example 5.8.

By the way, it is rather easy to construct a p-basic subgroup B in a torsion-free
group A. Select a basis a; + pA (a; € A,i € I) in the vector space A/pA. We
claim that B = ®;es{a;) is a p-basic subgroup of A. To see that the a; are p-pure-
independent, suppose that nja; + --- + nrax € p"A for some r > 0 where n; € Z.
Since divisibility by p is unique in A, we may assume that not all of the n; are
divisible by p. Then nja; + - -- + ma; € pA, and omitting the terms n;a; with p|n;
we would get a non-trivial dependence relation for the a; + pA. The maximality
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of the p-pure-independent set {a;};c; follows from the isomorphism B/pB =~ A/pA
induced by the embedding B — A (cp. Sect. 6(B)).

Basic Subgroups in p-Groups p-basic subgroups play a significantly more
important role in torsion groups than in torsion-free or mixed groups. Of course,
in the torsion case, the focus is on p-groups. If A is a p-group, then its only non-
trivial g-basic subgroup for a prime ¢ is when g = p. In this case, we simply say
‘basic subgroup’ to mean ‘p-basic subgroup.’

In order to better understand this concept, we mention here two different ways
of obtaining basic subgroups in p-groups. One is based on using maximal bounded
summands, and the other relies on the socle.

Proposition 5.10 (Szele [5]). A X-cyclic subgroup B = @2, B, of a p-group A,
where B, is a direct sum of cyclic groups of order p", is a basic subgroup if and only
if, for everyn > 0, By @ -+ @ B, is a maximal p"-bounded summand of A, i.e. a
P"A-high subgroup of A.

Proof. 1f B is basic in A, then (using the above notation) A, = B} + p"A contains no
elements of order p and of height < n, hence A, has no cyclic summands of order
<p'ie B & - @ B, is a maximal p"-bounded summand of A. Conversely, if B
satisfies the stated condition, then (i) and (ii) in the definition of p-basic subgroups
are obvious. If A/B were not divisible, then by Corollary 2.3 it would have a cyclic
summand C/B = (c+ B) = Z(p™) for some m > 0. By Theorem 2.9, C = B® (c),
and clearly, C is pure in A. But then By @ --- & B,, & (c) would be a larger p™-
bounded summand of A. The last claim is evident in view of Corollary 2.6. O

Proposition 5.11 (Charles [2]). Let B = ®°2,B, be a subgroup of a p-group
A, where B, denotes a direct sum of cyclic groups of order p". A necessary and
sufficient condition for B to be a basic subgroup of A is that we have

P"Alp] = Buyi1lp] ® p" T Alp] for everyn € N. (5.8)

Proof. Necessity is a consequence of the equality A, = B,+1 @® A,+1 (notation as
above) once we observe that A, [p] = p"A[p]; this equality follows by examining the
socles of the B; and B};. To prove the converse, suppose (5.8) for all n € N. Then
Alp] = Bi[p] ® --- ® B,y1[p] ® p"'A[p], and it is clear that a p"*'-bounded pure
subgroup larger than By @ - - - @ B, would intersect p"*'A[p], so the claim follows
from Proposition 5.10. O

A basic subgroup isomorphic to B = @2, Z(p") is often called the standard
basic subgroup.

Subgroups of Basic Subgroups The next theorem characterizes the subgroups
of basic subgroups. The analogy with Kulikov’s Theorem 5.1 in Chapter 3 is
apparent.
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Theorem 5.12 (Kovacs [1]). A subgroup C of a p-group A is contained in a basic
subgroup of A if and only if C is the union of an ascending chain

0=C=<C<---<(C, =...

of subgroups such that the heights of elements in C, (computed in A) are bounded
for everyn > 0.

Proof. If the subgroup C is contained in a basic subgroup B = @2, B,, where
B, =~ @ Z(p"), then the subgroups C, = C N (B; & --- ® B,) satisfy the stated
condition.

To prove sufficiency, we may assume without loss of generality that C,Np"A = 0
(we may adjoin or delete members in the chain). Consider ascending chains 0 =
Gy < G; <--- <G, < ... of subgroups of A subject to the following conditions:

C, <G, and G,Np"A=0VneN.

We introduce a partial order in the set of all such chains in the obvious manner: a
chain of the G, is < than the chain of the G/, if G,, < G/, for eachn € N. Then Zorn’s
lemma ensures the existence of a maximal chain which we will denote (without
danger of confusion) again by G,.

We claim that the union B = U2, G, for a maximal chain is a basic subgroup
of A. The main step in the proof is to show that G, is p"A-high in A. If we
show this, then we can finish the proof quickly by referring to Khabbaz’s theorem
(Corollary 2.6) that G, is a summand of A, clearly a maximal p”-bounded one, so
Szele’s theorem (Proposition 5.10) applies.

By way of contradiction, suppose that there is an @ € A such that, for some
n>0,a¢ G, pa € G, satisfies (G,,a) N p"A = 0. By the maximal choice of the
chain, there is m > n + 1 with (G,,,a) N p™A # 0, and it is safe to assume that
m = n+ 1. Thus, g,.41 +a = p"Tlc # 0 for some g,+1 € G,+1.c € A. Hence
Pgut1 + pa = p"T2c € G4y NP"TIA = 0 implies pg,+1 = —pa € G,. Now
gnt+1 ¢ Gy, for otherwise g,+1 + a = p"*lc € (G,,a) N p"A = 0, a contradiction.
Then G, being maximal in G, with respect to being disjoint from p”A, we argue
that there is a g, € G, such that g, + g, = p"d # 0 for some d € A. But then
a—g, = p"c—p'd € (G,,a)Np"A = Oimpliesa = g, € G,, acontradiction. O

Corollary 5.13. Let A be the torsion part of the direct product [ |,c; Ai of p-groups
A;. Suppose B; = @2 By, is a basic subgroup of A; where B;, = @ Z(p") for each
n € N, and for eachi € 1. Then

o0
B= @nzl B, with B, = ]—Lel B,

is a basic subgroup of A.

Proof. Forevery n > 0, we have A; = B;; @ - - ® B;, ® A;, where the last summand
has no cyclic summand of order < p". Hence we obtainA = B; @---® B, ®A, with
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A, as the torsion part of ]_[l.e 1 Ain. Itis clear that A, cannot have any cyclic summand
of order < p”". An appeal to Proposition 5.10 concludes the proof. O

Quasi-Basis The existence of basic subgroups makes it possible to find a simple
generating set in p-groups (that will be used later on).
Let B denote a basic subgroup in a p-group A. We write

B = ®jes (@) and A/B = @je; C; where C; = Z(p™).

If C}" is generated by the cosets ¢, (n € N) such thatpc;."1 =0, pcj";l_H =, (neN),
then by the purity of B in A, we can pick a representative c;, € A of each c;l such
that o(cj,) = o(c;l). The c;, satisfy the relations

pcii =0, pcjpy1 = cju—bj, (n€N)

where bj, € B is necessarily of order < p”. We now consider the set {a; (i € I),
cjn (j € J,n € N)}, called a quasi-basis of A. It satisfies:

Proposition 5.14 (Fuchs [2]). If {a;, cjn} is a quasi-basis of the p-group A, then
every x € A can be written in the form

X = 810i + o Skl + Gy + o F InCny,

with distinct indices, where s;,t; € Z and every t; is prime to p. This form is unique
for the given quasi-basis in the sense that the terms sa; and tcj, are determined by Xx.

Proof. Given x € A, we first write the coset x* = x + B as

* __ *
X = tlcjlnl

+t tnC with ged{t;, p} = 1.

Then x—(ti1¢jyn, + + -+tnCj,n,) € Bisequal to alinear combination sya;, +- - -+ska;, .
That all this is done with uniquely determined terms is obvious. O

A frequently quoted corollary is the following (cp. also Theorem 3.2 in
Chapter 10).

Corollary 5.15 (Kulikov [3]). A basic subgroup B of a reduced p-group A satisfies
Al < |BI™.

Proof. Using the notation we developed for quasi-basis, we observe that if for
indices j # k, the equality b;, = by, were true for all n € N, then the differences
¢jn—Ckn (n € N) would generate a divisible subgroup in A. Therefore, the cardinality
of a reduced A cannot exceed the cardinality of the set of sequences {b;, },en Which
is |B|®. O
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% Notes. Priifer [1] proves that every countable p-group contains a subgroup satisfying
conditions (i)—(iii) listed for basic subgroups. Also, Baer used a basic subgroup in a very special
situation, but failed to recognize its potential. It was Kulikov [2] who developed the theory of basic
subgroups for p-groups of arbitrary cardinalities. Szele should be given the credit for recognizing
their utmost importance and popularizing them. It is hard to think of the theory of p-groups without
basic subgroups.

The material of this section is based on two papers: the pioneering article by Kulikov [2] where
basic subgroups of arbitrary p-groups were introduced, and a wealth of details about them was
published, and a paper by the author Fuchs [11] where the p-basic subgroups were defined for
every group. p-basic subgroups turn out to enjoy several properties of basic subgroups in p-groups
without any need for localizing the groups. A major difference is that Szele’s Theorem 6.10 fails in
general. Kulikov also developed a theory of basic submodules over the localization Z, of Z at a
prime p and over J, (which actually covers all discrete valuation domains). Further generalization
(to arbitrary valuation domains) we refer to Fuchs—Salce, Modules over non-Noetherian Domains
(Amer. Math. Soc., 2001).

Global basic subgroups (without reference to any prime) in torsion-free groups were investi-
gated in several papers by Blass—Irwin. B is basic in the torsion-free group A if it is a free pure
subgroup, and A/B is divisible. Of course, it is too much to demand from a torsion-free group
to contain such a subgroup, but if it does contain one, then it may contain many, all of them
isomorphic. Dugas-Irwin [2] prove that a strongly ®;-free group of cardinality 8; has such a basic
subgroup.

Mutzbauer—Toubassi [1] construct a quasi-basis that has additional properties.

Exercises

(1) If B; is a p-basic subgroup in A; for i € I, then &; B; is p-basic in @; A;.

(2) If B is p-basic in A, then for every integer m, mB is p-basic in mA.

(3) A subgroup C of A is p-pure in A if and only if a p-basic subgroup of C is
p-pure in A.

(4) Let C, (n < w) be pure cyclic subgroups of different orders in the p-group A.
The subgroup they generate is pure in A and is their direct sum.

(5) Let A be areduced p-group.

(a) p"Alp] is an essential subgroup of A, = B} + p"A in (5.6).
(b) The subgroup A, is an absolute direct summand in A.

(6) (a) Let A be a p-group without elements of infinite height. A countable
subgroup of A can be embedded in a basic subgroup of A.

(b) This fails in general for uncountable subgroups.

(7) (E. Walker) Generalize Corollary 5.15 as follows: If A is a reduced group, and
if B is dense in A, then |A| < |B|®0.

(8) (Irwin) If A is a p-group with elements of infinite height, then every A'-high
subgroup contains a basic subgroup of A.

(9) (Kaplansky, Bourbaki) Call {ay, ..., a;} pure-independent if mx = nja; +
o+ may with x € A, m,n; € Z implies m|n;a; fori = 1,..., k. An infinite
set is pure-independent if every finite subset has this property.
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(a) A set is pure-independent if and only if it is independent and generates a
pure subgroup.

(b) A pure-independent set is contained in a maximal one.

(c) A pure-independent set S is maximal if and only if A/(S) is divisible.

(d) In a p-group A, a maximal pure-independent set is a p-basis.

(10) Define neat-independence, and analyze its properties.

6 Theorems on p-Basic Subgroups

In this section we prove a number of useful results on p-basic subgroups. We start
with elementary properties most of which have been established by Kulikov for
p-groups; they immediately extend to the general case.

Throughout the first part of this section, A will denote an arbitrary group, and B
a p-basic subgroup of A, p any prime.

Results on Basic Subgroups

(A) A = B + p"A for every n € N. This is an immediate consequence of the p-
divisibility of A/B.

(B) For every integer n > 0, there is a natural isomorphism B/p"B =~ A/p"A. By
(A) and the first isomorphism theorem, we have A/p"A = (B + p"A)/p"A =
B/(B N p"A) = B/p"B. We have used the equality B N p"A = p"B that holds
because of the p-purity of B in A.

(C) For every integern > 0, p"A/p"B = A/B is a natural isomorphism. The proof
is similar to (B).

(D) Let C be a p-pure subgroup of A. A p-basic subgroup B of C is a summand of a
suitable p-basic subgroup of A. All that we have to do is to extend a p-basis of
C to one of A.

(E) Transitivity: a p-basic subgroup C of a p-basic subgroup B of A is p-basic in A.
The only non-trivial part is that A/ C is p-divisible, but this follows at once from
the p-divisibility of B/C and A/B.

(F) Let Ay = A/A" be the Oth Ulm factor of the p-group A. Then the image B’ of
a basic subgroup B of A under the canonical homomorphism ¢ : A — Ay is
a basic subgroup of Ay. Moreover, ¢ | B is an isomorphism B — B'. Since
BN A! = 0is obvious, ¢ | B is an isomorphism, so B is X-cyclic. B pure in
A implies ¢B pure in ¢A (Theorem 1.3). Finally, ¢pA/¢B is p-divisible, since
dA/PB = (AJA")/[(B + A")/A'] = A/(B + A') is an epic image of the p-
divisible group A/B.

(G) Let B be a p-basic subgroup of a group A that has no p-divisible subgroup # 0.
If x,n are endomorphisms of A such that y | B =n | B, then y = n. The
kernel of y — n contains B, hence Im(y — 7) is an epic image of A/B, and as
such it is p-divisible, so 0.
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H) IfCy <--- < C, < ... isan ascending chain of basic subgroups of a p-group,
then the union C = U,, C, is also a basic subgroup. Everything is easy to
check, except that C is also 2-cyclic. But this follows at once from Theorem 5.5
in Chapter 3.

(J) Our results carry over to Z,)- and J,-modules. The only difference is that in the
definition of basic subgroups instead of Z, Zy), resp. J, is to be used.

Basic Subgroups are Isomorphic A most relevant question is to what extent
p-basic subgroups are unique. We will show that, though they are, in general, not
unique as subgroups, they are still all isomorphic.

First of all we point out that in general a group contains infinitely many different
p-basic subgroups.

Lemma 6.1. Let A = @2, (ay), where either o(a,) = prrwithky < -+ < ky <

. or o(a,) = oo for every n. Then A contains a proper p-basic subgroup.
Proof. Define b, = a, — pkﬂ+1_kﬂan+1 forn = 1,2,..., where we can use any
increasing sequence for the k, in case the a, are of infinite order. A straightforward
calculation shows that {b,},en is a p-independent system, and the subgroup B =
®°2, (b,) they generate does not contain a;. Since A/B is p-divisible (generated by
the cosets a, + B for all n), B is p-basic in A. |

Thus, if A is a p-group with an unbounded basic subgroup B, then Lemma 6.1
allows us to get a proper basic subgroup B’ of B, which will be also basic in A; see
(E). In this way, we can form an infinite descending chain B > B’ > B” > ... of
basic subgroups. However, we have:

Theorem 6.2 (Kulikov [2], Fuchs [11]). For every prime p, all p-basic subgroups
of a group are isomorphic.

Proof. Suppose B = @52 B, (where By = ®7Z,B, = @& Z(p")) is p-basic in A.
The number of cyclic summands in B, (n > 0) is equal to the number of cyclic
summands of order p" in B/p*B for every k > n. Since B/p"B =~ A/p"A by (B),
this number is determined by A, i.e. is independent of the choice of the p-basic
subgroup B.

It remains to prove that also By is unique up to isomorphism. First we show that
pBy = By N (T + pA) where T = tA. The inclusion < being obvious, let by €
ByN (T + pA), thus by = ¢ + pa with ¢ € T, a € A. By changing a, we may assume
o(c) = p’ for some p’; then p"by = p"'a € By, so p"by = p"'b for some b € B,.
By the torsion-freeness of By, we obtain by = pb € By, proving the reverse inclusion
>. We now infer By/pBy = Bo/[Bo N (T + pA)] = (Bo + T + pA)/(T + pA) =
A/(T + pA) where we have used the inclusion relation By + T+ pA > B + pA = A.
Consequently, the rank of By which is obviously equal to the rank of By/pBy does
not depend on the choice of B. O

A consequence of this theorem is that the p-basic subgroups provide most
valuable invariants for the group. More precisely, it B = @2,B, with
By = & Z,B, = &, Z(p") is a p-basic subgroup of A, then the sequence
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Ko, K1s---,Kp, ... of cardinal numbers yields a system of invariants for A. For every
prime p, A has such a collection. However, in general, the set of these invariants
(even if taken for all p) is far from being a complete system of invariants (but—as
we shall see—they completely determine the pure-injective hull of A).

If A happens to be a p-group, then «p = 0, and only the invariants for the same
prime p are of interest. In this case, the invariant k,, (n > 1) is the n — Ist UK-
invariant f,_; (A) = p"~'A[p]/p"A[p] of A. To substantiate this claim, note that «,, =
dim B, [p] and (in the notation of Sect.5) p"~'A[p] = A,_i[p] = B.[p] ® A.[p] =
Bu[p] @ p"Alp].

In which groups is a p-basic subgroup unique? We answer this question for p-
groups, and delegate the general problem to the exercises.

Lemma 6.3 (Kulikov [2]). A p-group has a unique basic subgroup if and only if it
either bounded or divisible.

Proof. 1f a p-group A is bounded, then the only basic subgroup of A is itself, while
if A is divisible, then its only basic subgroup is 0. On the other hand, if A has
an unbounded basic subgroup, then—as was pointed out above—it has an infinite
descending chain of basic submodules. The only remaining case is when A is a direct
sum of a bounded group B and a divisible group D, both non-zero. In this case, a
cyclic summand (b) of B can be replaced by (b + d) with d € D[p] to obtain a basic
subgroup different from B. O

Basic Subgroups in p-Adic Modules We wish to state without repetition of
proofs that the results in this section above carry over to p-adic modules. (As
a matter of fact, they hold for modules over discrete valuation domains.) In the
definition of basic subgroup, Z is usually replaced by Z,) or J,,.

Basic Subgroups in p-Groups In the rest of this section, we confine our
attention to p-groups.

Let A denote an unbounded reduced p-group. For any basic subgroup B of A,
the factor group A/B is divisible, so a direct sum of quasi-cyclic groups Z(p*°), the
number rk(A/B) of such summands is an invariant of A/B. However, this number is
not an invariant for A.

The set of cardinal numbers rk(A/B), taken for all basic subgroups B of A,
contains a minimal cardinal, and we may select a basic subgroup B, for which
rk(A/B,) is minimal. Such a B, will be called an upper basic subgroup of
A. If tk(A/B,) is infinite, then B, contains infinitely many different upper basic
subgroups.

The following is a key example (already mentioned in Example 5.7). It is the
Priifer group of length w 4 1, the simplest reduced p-group with elements of infinite
height. Here we use it to show that rk(A/B,) = 1 (and hence rk(A/B,) = k for any
k € N) is a possibility for reduced p-groups A.

Example 6.4 (Priifer [1]). LetA = H,41 = {(ao,ai, ..., a,, ...) where the generators are subject
to the defining relations

— — 2 — n _
pap =0, pay =ayg p°a, = ap, ..., p'ay =ao, ....
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Manifestly, o(a,) < p"T' for each n. If C = Z(p°®) is defined as in Sect. 3 in Chapter 1, then the
correspondence a, > ¢,4+1 (n < w) gives rise to an epimorphism A — C (relations in A hold for
the images in C), showing that o(a,) > p"T'. Since ay # 0 is of infinite height, A is not S-cyclic
(but A/{ag) is X-cyclic: the cosets of a, (n > 1) form a basis). a € A may be written in the form
a=tyay + tya; + -+ + tya, with0 <ty < pand 0 < t; < p' (i = 1,...,n) for some n. In case
t,a, 7 0, the correspondence ag, ay,...,a,—; —> 0 and a, —> ¢| extends to a homomorphism
¢: A — C such that ¢a # 0; this shows that @ = 0 if and only if tyag = tja; = --- = t,a, = 0.
It is now routine to show that A! = (ay) and {a; — pay, ..., a, — pa,+1,...} is a p-basis of A.
The subgroup B generated by this p-basis is an upper basic subgroup, since clearly A/B == Z(p°°).
Thus rk(A/B) = 1.
The direct sum of k copies of H,,+, yields an example where rk(A/B,) = k.

Final Rank Szele [5] defines the final rank of a p-group A as the infimum of
the cardinals tk(p"A) with n < w:

fin rk(A) = inf rk(p"A).
n<w

Often it is inconvenient to work with p-groups whose ranks are larger than their
final ranks. There is a remedy:

Lemma 6.5 (Szele [5]). A reduced p-group A decomposes as A = C ® A’ where C
is bounded and rk A’ = fin rk A’ = fin 1k A.

Proof. We use the same notations as above. If rk(p™A) is equal to the final rank of
A, then decompose A = B1 ®---®B,, ®A,, where C = B; & -+ @ B,, is a maximal
p"-bounded summand, and p”'C = 0. Then p”"A = p™A,,, andA = CH A, is a
desired decomposition. O

Lower Basic Subgroups Resuming the question of factor groups A/B modulo
basic subgroups B, it is clear that there is an upper bound for the ranks rk(A/B): they
cannot exceed rk A. Hence there is a least upper bound for the ranks rk(A/B); this
is easy to describe. Property (C) above guarantees that rk(A/B) = rk(p"A/p"B) <
rk(p"A), so that always rk(A/B) < finrk(A). Call a basic subgroup B, lower if it
satisfies tk(A/By) = fin tk(A). Its existence is established in:

Proposition 6.6 (Fuchs [2]). Every basic subgroup of a p-group contains a lower
basic subgroup.

Proof. Let A be a reduced p-group. If finrk(A) is finite, then finrk(B) is also finite,
in which case it must be 0 as B is Z-cyclic. Then B is bounded, it is the unique basic
subgroup, so it is a lower basic.

Next assume k = finrk(A) is infinite. If a basic subgroup B is not lower, then
rk(A/B) = tk(p"A/p"B) < k < rk(p"A) implies rk(p"B) = rk(p"A). This equality
means that the cardinality of the cyclic summands (¢;) of order > p” in B is at least
Kk, for every integer n. If this is the case, then we may decompose B into a direct
sum of groups C;, where each C; is an unbounded X-cyclic group, and j runs over
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an index set J of cardinality k. We quote Lemma 6.1 to argue that each C; contains
properly a basic subgroup B; < C;. The direct sum B' = @jey B; is evidently a
basic subgroup of B, and hence of A. This B’ is lower, because by construction

tk(A/B') > tk(B/B') = }_c; tk(C;/B)) > k. O

Another property of basic subgroups is featured in the next lemma.

Lemma 6.7. Let A be a reduced p-group, and B a basic subgroup of a subgroup G
of A. If B < p° A for some ordinal o, then also G < p°A.

Proof. A/B is viewed as an extension of p°A/B by A/p°A. The latter group
is reduced, so every divisible subgroup of A/B, in particular G/B, ought to be
contained in p°A/B. O

Szele’s Theorem The next result provides a good illustration of how isomor-
phism properties between a p-group and its basic subgroup are applied in practice.

Lemma 6.8 (Fuchs [3]). If the group G is an epimorphic image of the p-group A,
then every basic subgroup of G is an epimorphic image of every basic subgroup

of A.

Proof. The restriction of an epimorphism ¢ : A — G to p"A is an epimorphism
¢ 1 P"A — p"G which induces the epic map ¢, : p"A/p"T'A — p"G/p"tG.
Owing to (B), p"A/p"T'A = p"B/p"'B and p"G/p"T'G = p"C/p"T'C are natural
isomorphisms (B, C denote the basic subgroups). Take into account that p"B/p"*'B
is a direct sum of groups of order p, where the number of summands equals the
number of summands in B that are of order > p"+1, and the same holds for C.
The existence of an epimorphism p"B/p"T'B — p"C/p"T!C implies an inequality
between the cardinalities of sets of components of order > p"*! in B and in C,
for every n. Considering that both B and C are X-cyclic groups, this suffices to
guarantee the existence of a desired epimorphism (argument with cardinalities is
needed). |

Incidentally, this theorem leads us to a very interesting corollary about X-cyclic
groups that are epic images of a p-group.

Corollary 6.9 (Szele [5]). Ifa X-cyclic group is an epimorphic image of a p-group
A, then it is an epic image of every basic subgroup of A.

Proof. Apply Lemma 6.8 with G = C. O

While we are still on this theme, let us reveal another piece of information on
basic subgroups of p-groups: a most surprising feature. (We reproduce Szele’s proof,
a shorter proof can be given by using large subgroups (Sect. 2 in Chapter 10.)

Theorem 6.10 (Szele [5]). In a p-group, basic subgroups are endomorphic images.
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Proof. Lemma 6.5 above allows us to reduce the proof to the case when
fintkA = rk A = k. Let ® denote the set of cyclic summands (b;) of a basic
subgroup B in an arbitrary, but fixed decomposition. We define a functionf: ® — ©
subject to the following conditions:

(i) f is one-to-one; and
(ii) if f: (b;) — (bj) and 0(b;) = Pl o(bj) = phi, then ki > 2k;.

By the choice of «, for every k € N, ® contains k summands of order > p", so such
a function f does exist. Once we have such an f, define a surjective endomorphism
x of B as follows:

(a) xbj = b; whenever f: (b;) — (b;);
(b) xbj = 0if (bj) ¢ Imf.

We now extend y to a homomorphism n: A — B. If a € A is of order pF,
then decompose A = By @ -+ @& B, & A, with n > 2k. Write a = b + ¢ with
beB ®--®B,c <A, and define na = yb. This definition is independent of
the choice of n (provided n > 2k), for the By-coordinate of a in the decomposition
A =B ®---® B, ® Ay is divisible by p*~* and therefore it is carried into 0 by y
whenever £ > 2k. That n preserves sums is evident, so it is an endomorphism of A
with image B. O
Example 6.11. Let B, = (b,) = Z(p") and B = @2, B,. Define A as the torsion subgroup of
the direct product ]_[Sil B,. With the notation of the preceding proof, we let f : (b,) —> (b2,),
so the map y : B — B is defined by setting x(b2,) = b, and y(by,—;) = O for all n. If a =
(ar,..., ay, ...) (a, € By) is of order p”, then na = Zfil x(a,) which is actually a finite sum,
because y(a,) = 0 for all n > 2r.

¥ -Cyclic Summands Contained in Basic Subgroups We continue this section
with an interesting feature of basic subgroups. First, a preliminary lemma.

Lemma 6.12 (Cutler-Irwin [1]). Let G be a pure subgroup of final rank «
contained in the X-cyclic p-group F. Then G contains a summand of F that has
final rank k.

Proof. Decompose the socle F[p] = @<, V, where all the non-zero elements of V,
are of height n, and set V,, = ®jey, (vni). For each n < w, we select a maximal set
of disjoint finite subsets S,; C {v,; | i € I,} such that ((S,) + p"T'F) NG # 0.
For each S, pick s,; € G which is a linear combination of elements in S,; plus an
element of greater height. If g,; € G satisfies p"g,; = s,, then it is clear that the set
of all such g,; for a fixed n generates a summand G, of F’ contained in G. These G,
are clearly independent, so H = @,«, G, < G is a summand of F.

In order to prove that fin rk H = «k, observe that F[p] = S @ T where S is
generated by the set union of all selected S,;, and T is generated by all v,; notin S.
Evidently, T N G = 0 by the maximal choice of the set of the S,;. Hence the final
rank of H cannot be less than «. O

Theorem 6.13 (Cutler-Irwin [1]). Ifa p-group A contains a X-cyclic summand of
final rank k, then every basic subgroup of A contains such a summand of A.
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Proof. Assume A = F @ G where F is a X-cyclic p-group of final rank «, and
B = ®,en B, is a basic subgroup of A; here, B, = & Z(p"). Observe that the
subgroup (B; @ --- @ B,) + G is a summand of A for each n, and therefore their
union B + G is pure in A. Hence (B + G)/G is a pure subgroup of the X-cyclic
group A/G; moreover, it must be a basic subgroup, since the density of B in A is
preserved mod G. This means that (B + G)/G =~ A/G by the uniqueness of basic
subgroups up to isomorphism. By Lemma 6.12, there is a summand (H + G)/G of
A/G contained in (B+ G)/G of final rank k. The generators of the cyclic summands
in H may be chosen to belong to B. O

Starred p-Groups Not much, but still something can be said about reduced p-
groups whose basic subgroups have the same cardinality as the group; these groups
are called starred (Khabbaz [1]). It is pretty clear that this property is preserved by
arbitrary direct sums, but not necessarily by summands.

A kind of converse to Theorem 6.13 holds for starred p-groups.

Theorem 6.14 (Khabbaz [1]). Suppose that A is a starred p-group. Then A has a
3-cyclic summand of cardinality |A|.

Proof. First assume A! = 0. The countable case being trivial (since then A itself is
X-cyclic), let k = |A| = |B| > Ry where B = &®,B, with B, = &®,,Z(p"). There
is no loss of generality in assuming that A is a subgroup of its torsion-completion B
(Sect. 3 in Chapter 10), so every a € A\ B may be viewed as a vector (by,...,b,,...)
with infinitely many non-zero coordinates. If k, = « for some n, there is nothing to
prove: B, is a sought-after summand. Thus, for the rest of the proof we may assume
that k,, < k for each n and Zn K, = Kk, 1.e. k 1s a limit cardinal.

A moment reflection shows that there exists a sequence ng < -+ < n; < ...
satisfying k,, < -+ < kn, < ... with ), k,, = k.Let X be a set of representatives
of the cosets mod B; evidently |X| < «. Let X = U,;.,X; be a partition of X such
that |X;| < «,,. Each x € X is represented by an infinite vector with nth coordinate in
B,, and it is clear that no harm is done if we change a finite number of coordinates.
Taking advantage of this freedom, we may assume that all the jth coordinates of
every x € X; are O whenever j < n;. Since the k;’s are increasing, it follows that each
By, has a summand Bl’. 11 of cardinality «; that contains all the B, ,-coordinates
of the x € X, so its complement C; in B, has cardinality «;+,. Then C = &, C;
is a X-cyclic summand of A of cardinality «, its complement is generated by the B/
along with X and the B,, with n # n,.

IfA' # 0, thenlet ¢ : A — A/A' be the canonical map. What has been proved
can be applied to ¢(A) with basic subgroup ¢(B) =~ B to find a decomposition
#(A) = C' ® G/A" where C' is Z-cyclic of cardinality |A|. Then G is pure in A and
A/G =~ (' is Z-cyclic, so G is a summand of A whose complement is a summand
of the desired kind. O

% Notes. The role played by basic subgroups in p-groups is absolutely fundamental; their
various characterizations enable us to view them from different angles. The existence of lower and
upper basic subgroups shows that it is impossible to find a standard location for basic subgroups.
Basic subgroups are crucial in the study of torsion-complete and algebraically compact groups.
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So far no relevant application has been found for Szele’s theorem which is a rather unexpected
result on basic subgroups. But it was instrumental in leading Pierce to the definition of small
homomorphisms. Keef [3] has an interesting, more general version of Theorem 6.10: for any
sequence of p-groups G, (n < w), there is an epimorphism ¢ : t([[,,.,, G1) = ®n<w G-

Exercises

(1) Let B denote a p-basic subgroup of A. For every n > 0, we have

(@) (A/B)[p] = Alp]/Blpl;

() (p"A/p"B)lp] = p"Alp]/p"Blp);

(c) p"Alp] = p"Blp] + p"t'Alp];

(d) p"t'Blp] = p"Blp] N p"T'Alp];

(e) p"Blpl/p"t'Blp] = p"Alp]/p"T'Alp].

(2) If B is a p-basic subgroup of A, then for all integers n, k > 0, we have p"A =
pnB + pn+kA andpnB/pn+kB o~ pnA/pn+kA.

(3) Let C be a p-pure subgroup of A, and {a;};e; a p-basis of C. Furthermore, let
{bj + C};jes be a p-basis of A/C such that o(b;) = o(b; + C) for each j € J.
Then {a;, bj}ic1 jes is a p-basis of A.

(4) Let0 - A — G — C — 0 be a p-pure-exact sequence, and B4, B¢ p-basic
subgroups of A, C. There is a p-basic subgroup Bg of G such that with the
induced mappings the sequence 0 — By — Bg — B¢ — 0 is splitting exact.
[Hint: Exercise 3.]

(5) In a p-group A, the intersection of all basic subgroups is either A or 0.

(6) (Khabbaz—Walker, Hill) If the p-group A has infinitely many basic subgroups,
then it has |A|!?l different basic subgroups.

(7) Let « be a cardinal satisfying tk(A/B,) < k < rk(A/By) for an upper and a
lower basic subgroup B, By of a p-group A. There exists a basic subgroup B
in A with rk(A/B) = «.

(8) Suppose A is the torsion part of []°2, (a,) where o(a,) = p". Then every
basic subgroup of A is both upper and lower.

(9) A p-group A with A' = 0 has a decomposition A = C @ A’ where C is
¥-cyclic, and every basic subgroup of A is both upper and lower.

(10) Let B be a basic subgroup of the p-group A, and G fully invariant in A. Then
G N Bis basic in G.

(11) (Irwin—Keef) If the p-group A = G @ H has a X-cyclic summand of final rank
Ry, then either G or H has such a summand. [Hint: the direct sum of their basic
subgroups has such a summand; use isomorphic refinement.]

(12) (Nunke) Let A be a reduced p-group. A basic subgroup B of A satisfies |B| =
|A| if and only if |C| = |A| for every dense subgroup C of A.

(13) Let A be a reduced starred p-group. Every subgroup of A is an endomorphic
image of A. [Hint: Theorem 6.10.]
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(14) (Szele) Every p-group of cardinality < « (infinite cardinal) is an epic image
of the p-group A if and only if ¥ < finrk(B) holds for its basic subgroup B.

Problems to Chapter 5

PROBLEM 5.1. For which cardinals « is there a universal p-group for purity? We
mean a p-group U, of cardinality of « such that every p-group of cardinality < «
embeds in U, as a pure subgroup. The same question for torsion-free groups.

PROBLEM 5.2. For which ordinals o are there R, -pure subgroups that fail to be
Ry 41-pure?

The answer is affirmative for isolated ordinals o up to the first inaccessible cardinal.

PROBLEM 5.3. What are the special features of the subgroups of A that are pure
End A-modules? (Purity in the module sense a la P. Cohn.)

Cf. Turmanov [1].

PROBLEM 5.4. Describe the pure-injective hull of a group over its own endo-
morphism ring.

See Vinsonhaler—Wickless [2] for injectivity.

PROBLEM 5.5. Study the pure-projective and pure-injective dimensions over the
endomorphism ring.



Chapter 6
Algebraically Compact Groups

Abstract In the preceding chapter we have encountered groups that were summands in every
group containing them as pure subgroups: the pure-injective groups. In this chapter, we collect a
large amount of additional information about these groups. Interestingly, these are precisely the
summands of groups admitting a compact group topology, and the reduced ones are nothing else
than the groups complete in the Z-adic topology. From Sect. 4 in Chapter 5 we know that every
group can be embedded as a pure subgroup in a pure-injective (i.e., in an algebraically compact)
group, and here we show that the significance of this embedding is enhanced by the fact that
minimal embeddings exist and are unique up to isomorphism. Thus the theory of algebraically
compact groups runs, in many respects, parallel to the theory of injective groups, a fact that was
first pointed out by Maranda [1].

The theory of algebraically compact groups is quite satisfactory: these groups admit complete
characterization by cardinal invariants. We shall often meet algebraically compact groups in
subsequent discussions.

We close this chapter with the discussion of the exchange property. This is a remarkable, but
rather rare phenomenon. Groups with this property show the best behavior as summands.

1 Algebraic Compactness

A group is called algebraically compact if it is (algebraically) a summand of a
group that admits a compact group topology. Evidently, this property is inherited by
summands and direct products.

Example 1.1. As the circle group T is compact, its summand Q/Z is algebraically compact. Direct
products of copies of a finite group are compact groups, thus their summands: the bounded groups
are also algebraically compact.

Characterizations of Algebraic Compactness It is convenient to start the
discussion with the main characterizations of algebraic compactness. The
equivalence of (b) with (e) has already been observed in Theorem 4.7 in Chapter 5.

Theorem 1.2 (Balcerzyk [1], L.o$ [1], Maranda [1]). The following conditions on
a group A are equivalent:

(a) A is a summand in every group which contains it as a pure subgroup;
(b) A is a summand of a direct product of cocyclic groups;
(c) A is algebraically compact;
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(d) a system of equations over A is solvable in A provided that each of its finite
subsystems has a solution in A;
(e) A is pure-injective.

Proof. (a) = (b) By Lemma 4.6 in Chapter 5, A can be embedded as a pure
subgroup in a direct product of cocyclic groups. Hence it is clear that (a)
implies (b).

(b) = (c) Since the direct product of compact groups is compact in the product
topology, and since the property of being a summand is transitive, (c) will be
established as soon as we can show that cocyclic groups share property (c).
But this is evident, since the cyclic groups Z(p¥) (k < oco) are compact in the
discrete topology, while the quasi-cyclic groups Z(p®°) are summands of the
circle group T = R/Z (the reals mod 1) which is a well-known compact group.

(c) = (d) Consider the system

Z,-EJ gy =a; €A (i€l (6.1)

of linear equations where n; € Z such that, for a fixed i, almost all the
coefficients n;; are 0, and suppose that every finite subsystem is solvable in A. By
hypothesis (c), for some group B, the group C = A @ B admits a compact group
topology. We may equally well view our system (6.1) to be over C, and finitely
solvable in C. A solution of the ith equation can be regarded as an element
(....cj,...) in the cartesian power C’ such thatx; = ¢; € C (j € J) satisfies the
ith equation. The set of all solutions to the ith equation is thus a subset X; of the
compact space C’; moreover, it is a closed subset, since it is defined in terms
of an equation. The hypothesis that every finite subsystem of (6.1) is solvable
in C amounts to the condition that every finite set of the X; (i € ) has a non-
empty intersection. By the compactness of C’, the intersection Nje; X; is not
vacuous. This means that the entire system (6.1) admits a solution in C. The
A-coordinates of a solution yield a solution of (6.1) in A.

(d) = (e) Let B denote a pure subgroup of C, and n: B — A. Let {c;}je; be a
generating system of C mod B, and

Zn,-jcjzb,-eB (n,-jEZ,iEI)
jel

the list of all the relations between these ¢; and elements of B. We pass to the
corresponding system

Znijx, =nbicA (i€l (6.2)

jeJ

of equations. A finite subsystem of (6.2) contains but a finite number of
unknowns x;,,...,x; explicitly. By purity, B is a direct summand of B’ =
(B,cj,...,c;), B = B @& C' (cf. Theorem 2.9 in Chapter 5), and the images
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of the B-coordinates of ¢;,, ..., ¢j, under 7 yield a solution in A. Consequently,
(6.2) satisfies the hypotheses of (d), so we can infer that there is a solution
Xx; = a; € A (j € J) of the entire system (6.2). The correspondence ¢; — q;
gives rise to an extension of 7 to a morphism C — A, establishing (e).

(e) = (a) Let A be a pure-injective group contained as a pure subgroup in a group
G. Owing to pure-injectivity, the identity map 14 : A — A can be factored as
A — G — A. Thus A is a direct summand of G. O

The reduction of conditions (a), (d), and (e) to the countable case will be useful
in the sequel.

Corollary 1.3. We have (a) < (), (d) < (d), and (e) < (¢'), where

(@) A is a summand in every group G in which it is a pure subgroup with G/A
countable;

(d') every countable system of equations over A is solvable in A provided that each
of its finite subsystems has a solution in A;

(e') A is injective with respect to pure-exact sequences 0 - B — C — C/B — 0
with countable C/B.

Proof. We give a proof for (¢/) = (e), and leave the rest to the reader (Exercise 4).
In order to extend a map n: B — A to C — A if C/B is uncountable, we take a pure
No-filtration B/B < C;/B < --- < C;/B < ... of C/B (with subgroups C, < C).
Since C; is pure in C, 41 of countable index, once we have a map 1, : C, — A, this
can be extended to the next level. As always, at limit ordinals we take the union of
maps already defined. O

For a reduced group, condition Theorem 1.2 (b) can be refined:

Corollary 1.4. A reduced algebraically compact group is a summand of a direct
product of cyclic p-groups. Its first Ulm subgroup is 0.

Proof. If A is reduced algebraically compact, then for some group B,A®B = DOE
where D is the direct product of quasi-cyclic groups, while E is a direct product of
finite cyclic groups. D is the divisible part, so fully invariant; thus, D = (A N D) &
(BN D) where the first summand must vanish. Thus D < BandA@ (B/D) ~ E. O

From Theorem 1.2(b) we derive
Corollary 1.5. Reduced algebraically compact groups are Z-modules.

Proof. Take into account that group summands of reduced Z-modules are also
Z-module summands. O

Example 1.6. The group J, of the p-adic integers is compact in the p-adic topology (so it is
algebraically compact). Since J,, is the inverse limit of the cyclic groups Z(p*) for k = 1,2,..., it
is contained in the group [, Z(p*) which is compact in the product topology. The inverse limit
is a closed subgroup in the product, so the compactness of J, is immediate.

Example 1.7 (Fuchs [IAG]). The additive group of an injective module M over any ring R
is algebraically compact. Indeed, if D is the divisible hull of M as an abelian group, then M
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is a submodule and hence a summand of the injective R-module Homgz(R, D) which is by
Theorem 2.11 in Chapter 7 algebraically compact.

Example 1.8. The group Z is not algebraically compact. Perhaps the easiest way to see it is to
point out that Z is not a Z-module.

For the sake of easy reference we formulate the following immediate conse-
quence of (b) or (c) in Theorem 1.2.

Corollary 1.9. A direct product of groups is algebraically compact if and only if
every component is algebraically compact. O

Combining Lemma 4.6 in Chapter 5 with the theorem above, we conclude:

Corollary 1.10. Every group can be embedded as a pure subgroup in an alge-
braically compact group. O

We will see in Theorem 4.2 below that there is a minimal such algebraically
compact group.

Algebraically Compact Factor Groups Next, we will show that algebraically
compact groups are abundant among quotient groups of direct products.

Let G; (i € I) be a family of groups with an arbitrary index set /, and let K denote
an ideal in the Boolean lattice 2’ of all subsets of 7. K* will stand for the o-ideal
generated by K, i.e. it consists of countable unions of subsets in K. (It is easy to
see that these are exactly the countable unions of pairwise disjoint subsets from K.)
Our concern is the relation between K- and K*-products (for definition, see Sect. 1
in Chapter 2).

Theorem 1.11 (Fuchs [13]). If K and K* are defined as above, then the factor
group

A=JJaG/]]G 6.3)
K* K

is algebraically compact for any collection of groups G; (i € I).

Proof. Ignoring a trivial case, assume K # K*. In view of Theorem 1.2 and
Corollary 1.3, it suffices to establish a solution in A for the system

o0
Zk:l e =a4 €A (ng €Z, j<w) (6.4)

with a countable number of unknowns and equations, under the hypothesis that
every finite subsystem of (6.4) admits a solution in A. Here g; € [] ¢+ G;, and bars
denote cosets mod [ [ ¢ G;.

Let x; = ¢}’ € A be a solution of the system consisting of the first m equations,
with the understanding that the value 0 is assigned to the unknowns not occurring
explicitly in these equations. The representatives a;, c;' € [|x- G; in the cosets
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aj, ¢, respectively, are such that 0 is always chosen as a representative of the coset 0.
All the supports s(a;) belong to K*, and so does their union ¥ = Uj < S(aj).
We now move to the system

Yo mw=qe[[G (<o) 6.5)

K*

Plugging x; = ¢}’ in the equations with indices j < m, the set Y, of indices i € |
for which the ith coordinates of ), njc}' and g; differ forj = 0,1, ..., m certainly
belongs to K. There is no difficulty in constructing subsets X, (m < ) so as to
satisfy

Xo=Yo, Xi 2V \ Yo, ... Xu 2V, \(YoU---UY,1),...,

subject to the condition | J,,_, Xn = YU Yo U---UY,U....

Now the proof can easily be completed. Set b, = (..., ck,...), where ¢y is
the ith coordinate of ¢! if i € X,,, and O otherwise. Clearly, b; € K*. As the ith
coordinate of ), njby agrees with the ith coordinate of g; for all i € X,, (j < m), it
follows that x;, = by € A (k € N) is a solution of the system (6.4). O

There is a special case that is particularly worth mentioning. This is when the
index set I is countable, and K is the ideal consisting of all finite subsets of 1. Then
K* = I, and we get a most interesting corollary.

Corollary 1.12 (Balcerzyk [2], Hulanicki [3]). For any countable family of
groups G, (n = 1,2,...) the factor group

o0 o0
[T6./Da.
n=1 n=1

is algebraically compact. O

On the basis of this result it would be tempting to conjecture that direct
products modulo direct sums are always algebraically compact. It turns out that
Corollary 1.12 is true only for countable index sets (see Notes).

A proof similar to the one in Theorem 1.11 yields:

Theorem 1.13. [f{A; |i € I} is a set of groups, and F is an w-complete ultrafilter
on the index set I, then the ultraproduct [ |;c; Ai/ F is algebraically compact. O

Large Products Mod Direct Sum For uncountable index sets /, the factor groups
[lic;Ai/ ®ier A; are only exceptionally algebraically compact. As observed by
Gobel-Rychkov—Wald [1], a weaker conclusion may be drawn which we prove
in the next theorem (in an equivalent form). We start with the observation that all
torsion epic images of an algebraically compact group are of the form B & D, with
bounded B and divisible D. The easiest way to prove this is to refer to Corollary 3.5.
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Theorem 1.14. For a non-measurable index set I and any groups A;, every reduced
torsion epic image of the factor group [ |;c; Ai/ ®ier A; is bounded.

Proof. Let ¢ : A* = [[,c;Ai/ ®ier Ai — T, where T is a reduced torsion group.
Im¢ = T may be assumed. We consider ¢ as a homomorphism of the product
that vanishes on @A;. If Im¢ is unbounded, then the image of ¢ followed by an
epimorphism ¥ of T onto its basic subgroup B Theorem 6.10 in Chapter 5 is still
unbounded. In this situation, in the application of Theorem 6.5 in Chapter 2 we
can ignore I and Jy, and conclude that there is an m € N such that m Im(y¢) is
contained in the Ulm subgroup B! = 0. Hence Im(v/¢) is bounded, and so is Im ¢.

0

N;-Algebraic Compactness It seems reasonable to consider generalizations
of algebraic compactness for higher cardinalities. N;-algebraic compactness was
studied by Megibben [6]. He proved that this concept does not yield anything new.
However, for higher cardinalities the situation is different, though it does not seem
to be too interesting. Here we wish to discuss only the X, case. In the proof, we need
a couple of results to be proved later, in particular, the characterization of algebraic
compactness from Proposition 5.8 in Chapter 9.

A group M is said to be R -algebraically compact if it has the injective property
relative to all X;-pure-exact sequences. Equivalently, it is a summand in every group
in which it is contained as an NX;-pure subgroup. All algebraically compact groups
are evidently X;-algebraically compact.

In the proof of the next theorem, the following simple fact is needed from set
theory. For an infinite cardinal A there is a cardinal ¥ > A such that x < k™0(= 2¥).
(For instance, k = )_,_, k; is such a cardinal if ko = A and x;4; = 2% for all i; see
note after Proposition 7.10 in Chapter 10.)

Theorem 1.15 (Megibben [6]). A group is Ry-algebraically compact if and only if
it is algebraically compact.

Proof. By Proposition 5.8 in Chapter 9, for the algebraic compactness of a group G,
it suffices to show that Ext(Q, G) = 0 and Pext(Q/Z, G) = 0 hold for G. We start
the proof by showing that an R;-algebraically compact group G satisfies

(1) Ext(F,G) = 0 for all R;-free groups F; and
(i) Pext(T, G) = 0O for all separable torsion groups 7.

To prove (i), observe that if G is ¥;-algebraically compact, and if 0 - G - A —
F — 0 is an exact sequence with ®-free F, then the sequence has to split, being
N -pure-exact. The argument for (ii) is entirely similar with a pure-exact sequence.

Now suppose G is R;-algebraically compact. Choose a cardinal k > |G| such
that k < k™. Let F be the Z-adic closure of the free group Fy = Z® in the direct
product Z*. F is ®-free and has cardinality «®°. Thus F/F, = B,x Q. We obtain
the induced exact sequence

G* =~ Hom(Fy, G) — Ext(F/Fy, G) — Ext(F,G) = 0.
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Here |G*| = 2, while | Ext(F/Fy, G)| = [ ]~ | Ext(Q, G)| is either O or is at least
2™ The latter alternative is impossible, proving Ext(Q, G) = 0.

The proof for Pext(Q/Z, G) = 0 is exactly the same, using embedding in torsion
completion. O

% Notes. The problem of describing the algebraic structure of compact abelian groups led
Kaplansky [K] to the discovery of algebraically compact groups as summands (in the algebraic
sense) of compact groups. A different line of investigation started with L.oS [1, 2], who considered
groups that were summands in every group containing them as pure subgroups. Balcerzyk [1]
noticed that the classes discussed by Kaplansky and Los were identical. The study of pure-
injectivity as an analogue of injectivity was initiated by Maranda [1].

Los [1] considers abstract ‘limits’ (not in the topological sense), called w,-limits, and shows
that a group admits such a limit if and only if it is algebraically compact.

The theory of pure-injective modules over general rings was developed by Warfield [Pac. J.
Math. 28, 699-720 (1969)] based on P. Cohn’s definition of purity. Lot of information is available
about the structure of pure-injective modules, especially over particular rings.

Numerous papers deal with factor groups of direct products modulo direct sums. Gerstner [1]
shows that Z¥ /Z*) is never algebraically compact if « is uncountable. Rychkov [1] proves that the
factor group [ [;e; Gi/ ®ies G is algebraically compact if and only if, with the exception of at most
countably many indices i, all the G; are algebraically compact. Dugas—Gaobel [1] studies such factor
groups more generally, using filters of the index set. Franzen [1] discusses when the factor group
of a filter-product modulo another filter-product is algebraically compact. Gébel-Rychkov—Wald
[1] show that if I has non-measurable cardinality, then A = [[;c; Ai/ @ier A; is always a Fuchs-

44-group (see Notes to Sect. 6 in Chapter 2). Wald [1] studies the quotients ]—I(“ ) A;/ ]_[(K) A; for
cardinals ¢t > « (only vectors with supports < p (resp. < k) are taken).

Exercises

(1) (a) Al is the divisible part of an algebraically compact group A.

(b) A group is algebraically compact if and only if it is the direct sum of an
injective group and a reduced algebraically compact group.

(2) (Sasiada) A group A is algebraically compact if it is a summand in every
group G in which it is a pure subgroup such that G/A = Q or Z(p*°).

(3) (a) A pure subgroup C of an algebraically compact group A is algebraically

compact provided A/ C is reduced.
(b) A group A need not be algebraically compact even if both the subgroup
C and the factor group A/C are algebraically compact.

(4) Complete the proof of Corollary 1.3.

(5) The obvious map A — [[,cnA/nA @ E is an embedding of A as a pure
subgroup in an algebraically compact group; here, E stands for the injective
hull of A.

(6) (a) Show that A is isomorphic to a pure subgroup of the algebraically

compact group A® /A®0)_ [Hint: consider the diagonal in A™ ]
(b) Every group A can be embedded as a pure subgroup in an algebraically
compact group of cardinality < |A|¥0.
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(7) Prove that Z% /Z®0) ~ (Q & Z)™.

(8) Let G, (n =1,2,...) be reduced groups such that there is no integer m > 0
satisfying mG,, = 0 for almost all n. The factor group [[, G,/ ®, G, is not
reduced.

(9) (Baumslag-Blackburn) Let G, (n = 1,2, ...) be reduced groups. &,G, is a
summand of ]_[n G, if and only if mG,, = 0 holds for some m > 0 and for
almost all n. [Hint: for necessity see preceding exercise.]

(10) Let H denote the subgroup of [[,; G; consisting of elements with countable
support. Prove that H/ ®; G; is a summand of [[; Gi/ &; Gi.
(11) (a) If A is pure-injective, then for every cardinal «, the codiagonal homo-
morphism V: A®) — A extends to a homomorphism: A* — A.
(b) If A has this extension property for some infinite cardinal k > |A|, then
it is pure-injective.
(12) A group G is Rj-algebraically compact if and only if every system of
equations over G is solvable in G whenever every countable subsystem has a
solution in G.

2 Complete Groups

In this section we examine more closely the groups that are complete in their Z-adic
or p-adic topologies. This will not be a new class: we shall see that these groups
coincide with the reduced algebraically compact groups. (Recall that according to
our agreement, only Hausdorff groups will be called complete.)

Example 2.1. The groups that are discrete in their Z-adic topologies, i.e. the bounded groups, are
evidently complete.

Example 2.2. The group J, of p-adic integers is (reduced and compact, and hence) complete in its
p-adic topology.

To simplify terminology, we agree that in the absence of firm indication to the
contrary, complete group means a group that is complete in its Z-adic topology (in
p-groups, this is identical to the p-adic topology).

Properties of Complete Groups We start with a simple observation.

Lemma 2.3. A group A that is complete in its p-adic topology is a J,-module, and
is complete also in the Z-adic topology. It satisfies gA = A for all primes q # p.

Proof. Recall that such an A is in a natural way a J,-module: if a € A and 7 =
So+sipp+-o+sup"+---€J, (0 <s, <p),then

soa, (so +sip)a, ..., (so+sip+---+s,p"a, ...
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is a Cauchy sequence in A, hence it converges to a limit in A which we define as ma.
qJ, = J, implies gA = A for all primes ¢ # p. As a consequence, the p-adic and
the Z-adic topologies are identical on A. O

In a similar fashion, we can prove that every group that is complete in the Z-adic
topology is a Z-module.

Recall that groups that are J,-modules were called p-adic groups. p-adic groups
have basic subgroups, unique up to isomorphism.

Theorem 2.4. (i) A complete p-adic group is the completion of any of its basic
subgroups.
(i) A X-cyclic p-group is basic in its completion.
(iii)) Two complete p-adic groups are isomorphic if and only if their basic sub-
groups are isomorphic.

Proof. (i) This follows from the fact that a basic subgroup is dense and the
induced topology on it is the same as its p-adic topology.

(i) is clear from (i).

(iii) One way the claim is trivial. Conversely, a complete p-adic group is deter-
mined by a basic subgroup. O

Completeness and Algebraic Compactness The principal result on complete
groups is the following theorem, which is essentially due to Kaplansky [K].

Theorem 2.5. A group is complete in its Z-adic topology if and only if it is a
reduced algebraically compact group.

Proof. Assume A is reduced and algebraically compact. Owing to Corollary 1.4, A is
a summand of a direct product of cyclic groups Z(p*). Each component is complete
in its Z-adic topology, so the same holds for the summands of their direct product
(see Lemma 7.10 in Chapter 2).

Conversely, suppose that A is complete in its Z-adic topology and is pure in the
group G. If G! = 0, then we expand G to its completion G; this contains G, and
hence also A as a pure subgroup. A basic subgroup B’ of A is a summand of a basic
subgroup B = B’ ® B” of G, whence G = B'® B’ = A@® B”. Thus A is a summand
of G, too. If G' # 0, then factoring out G, the image of A remains pure in G/G',
s0 (A + G')/G' = A is a summand of G/G'. AsA N G' = 0, A is a summand of
G. Consequently, A is algebraically compact. O

Since the Z-adic topology on A induces a topology on a subgroup B of A that
is coarser than the Z-adic topology of B, we combine the preceding theorem with
Lemma 7.2 in Chapter 2 to derive at once:

Corollary 2.6. Let A be a reduced algebraically compact group, and B a subgroup
such that (A/B)" = 0. Then both B and A/B are algebraically compact. O

Another noteworthy observation is the following.

Corollary 2.7. If 0 is an endomorphism of a complete group A, then both Ker 0
and Im 6 are complete groups.
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Proof. Apply the preceding corollary to B = Ker#, and note that A/ Ker 6 is
complete by virtue of Lemma 7.2 in Chapter 2. O

Lemma 2.8 (Kaplansky [K]). Let G be a pure subgroup of a complete group C.
Then the Z-adic closure of G in C is a summand of C. In particular, a pure closed
subgroup is a summand.

Proof. A basic subgroup B’ of G extends to a basic subgroup B = B’ @ B” of C.
Then C = B’ ® B” by Theorem 2.4, where G < B’. Thus B’ is the closure of G in C.
]

Completions We turn our attention to the completion process. In the next result
we expand Theorem 7.7(1) in Chapter 2.

Theorem 2.9. For any group A, the inverse limit
A= l(gl(A /nA)

with the connecting maps a + knA +— a+nA (a € A; n,k € N) is a complete group.
The canonical map

Ha:at—> (...,a+nA,...) €A

has Al for its kernel, and an isomorphic copy of A /A" for its image. j14(A) is pure
in A, and the factor group A/ ua(A) is divisible.

Proof. Since the factor groups A/nA are bounded, and hence complete, [ [(A/nA)
is complete, and its pure closed subgroup (the inverse limit) is complete by
Lemma 2.8. Clearly, ua = 0 amounts to a € nA for every n, whence Ker u = Al
andImpu = AJA' . Ifb = (..., b, + nA,...) (b, € A) satisfies mb = pa for some
a € Aand m € N, then mb,, — a € nA for every n, in particular, for n = m, whence
a € mA, and the purity of A in A follows. To prove that A /1A is divisible, we show
that every b = (...,b, + nA,...) (b, € A) is divisible by every m € N mod pA.
Since m|b,, — by, for each k € N, we have m|13 — Wby, in fact. O

An immediate consequence of the preceding theorem is the inequality
Al < |A™, (6.6)

which is evident in view of A <[], A/nA. 5

The group A is called the Z-adic completion of A. The map p4 : A — Ais
natural in the categorical sense, so the correspondence A +— A is functorial. Indeed,
we have

Proposition 2.10. Every homomorphism o :A — B induces a unique Z-
homomorphism & : A — B making the diagram
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A—2- B

na | [

ALB

commute.
Proof. The proof is given in the comments after Lemma 7.6 in Chapter 2. O

We hasten to point out that the completion functor: A +— A is a pure-exact
functor in the sense that it carries short pure-exact sequences into pure-exact
sequences. Moreover, a stronger result holds:

Theorem 2.11. If 0 — Ai>Bi>C — 0 is a pure-exact sequence, then the
induced sequence

0 A0 6.7)

of completions is splitting exact.

Proof. 1f the given sequence is pure-exact, then the induced sequence 0 — A/nA —
B/nB — C/nC — 0 is exact for every n; see Theorem 3.1 in Chapter 5. The
completion functor (as inverse limit) is left-exact (Theorem 5.6 in Chapter 2), so for
the exactness of (2) it suffices to show that f is a surjective map. By Lemma 7.2 in
Chapter 2 Im ,3 is complete and contains B as a dense subgroup, so necessarily
ImpB = C. What remains to be proved is only the purity of Im@ in B. The map
a+A' > aa+ B carries A/A" onto a pure subgroup of B/B', which along with the
purity of pg(B) in B shows that puz(cA) is pure in B. In view of Ko = Qjis and
the divisibility of &A/@u(A), we infer that @A must be pure in B. The algebraic
compactness of A implies the splitting. O

Corollary 2.12. Under the canonical map jia: A — A, a p-basic subgroup of A
maps upon a p-basic subgroup of A.

Proof. Since Kerp = A', Sect. 6(F) in Chapter 5 implies that ;& maps p-basic
subgroups of A isomorphically upon p-basic subgroups of nuA. Owing to the
divisibility of A/ ;A and the purity of /1A in A, the claim follows. O

Example 2.13. The p-adic (as well as the Z-adic) completion of Z,) is J,, and the Z-adic
completion of Z is ]—L, J,, with p running over all primes.

Example 2.14. The Z-adic completion of @, Z(p) is ]_[p Z(p).

Example 2.15. Let B = @, B, where B, = @ Z(p") with an arbitrary number of components.
The p-adic (Z-adic) completion of B is C, where C/B denotes the divisible part of the factor group

(T, B.)/B.
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Direct Decompositions of Complete Groups We focus our attention on infinite
direct decompositions of complete groups. We start with a lemma that has its own
interest.

Lemma 2.16. Assume that the complete group C is contained in the direct sum
A = ®ic1 A; of groups with A} = 0 for every i. Then there is an integer m > 0 such
that mC is contained in the direct sum of a finite number of the A;.

Proof. 1f the conclusion fails, then there exist an increasing sequence of integers,
mp < .-+ < m; < ... with m;lm;y;, and groups H;, each being a direct sum of
finitely many A;, such that the H; generate their direct sum in A and

ijﬂ@j];;llHk <ijﬂ@j];:1Hk G=12,...).

Pick an element ¢; in the right, which is not contained in the left side. Evidently,
¢j—1 has 0, while ¢; has a non-zero coordinate in H;. Thus the Cauchy sequence
c1,...,Cj,+++ € C cannot have a limit in A. O

We can now state:

Theorem 2.17. If C = @®;¢; C; is a direct decomposition of a complete group, then
all the groups C; are complete, and there exists an integer m > 0 such that mC; = 0
for almost all i.

Proof. The first claim is evident, while the second one is an immediate consequence
of Lemma 2.16. O

% Notes. The theory of complete groups is due to Kaplansky [K]; he gives credit to L.
Fleischer for the torsion-free case. That complete groups can be characterized by their basic
subgroups is a consequence of Theorem 2.4, and will also follow from the next section where
this question is settled for algebraically compact groups.

Groups complete in the Priifer topology are extremely important: they are the linearly compact
groups. They will be discussed in the next section.

Exercises

(1) Letm > 0 be an integer. A is complete if and only if mA is complete.

(2) The direct product of groups C; is complete if and only if each C; is complete.

(3) (@ A=A §---BA, thenA =A, §--- B A,.
(b) This fails in general for infinite direct sums.

(@) ]_[p Z(p) cannot be written as an infinite direct sum of non-zero groups.

(5) A complete torsion-free group may have decompositions into the direct sum of
any finite number of summands, but never into the direct sum of infinitely many
NON-Zero groups.
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(6) Let B be a p-basic subgroup of a group A that is complete in its p-adic topology.
Every homomorphism ¢ : B — C extends uniquely to a homomorphism ¢* :
A — C provided that C is complete in the p-adic topology.
(7) (a) The inverse limit of reduced algebraically compact groups is again alge-
braically compact.
(b) The same is not true in general for non-reduced algebraically compact
groups.

3 The Structure of Algebraically Compact Groups

Having got acquainted with several remarkable properties of algebraically compact
groups, most of which may even serve as a characterization, it is time to have a closer
look at their structure. The main theorem will tell us that they have a satisfactory
structure theorem: they admit a complete and independent set of cardinal invariants.

p-adic Algebraically Compact Groups Since an algebraically compact group
is a direct sum of an injective group (which can be characterized by invariants
(Theorem 3.1 in Chapter 4)) and a reduced algebraically compact group, we may
restrict our considerations to the reduced case. We state a lemma that is essentially
the same as Theorem 2.4.

Lemma 3.1. Let A, be complete in its p-adic topology, and let B, denote a p-basic
subgroup of A,. Then A, = Bp, and the correspondence A, < B, is a bijection
between groups that are complete in the p-adic topology and groups that can be
p-basic subgroups. O

The Structure Theorem We are prepared for the proof of the structure theorem
on algebraically compact groups.

Theorem 3.2 (Kaplansky [K]). A reduced algebraically compact group A is of the
form

A=T]A,. (6.8)
p

where for each prime p, A, is a uniquely determined p-adic algebraically compact
group. The invariants of the p-basic subgroups of A serve as a complete and
independent set of invariants of A.

Proof. Let A be reduced and algebraically compact. Then, for a suitable B,A® B =
C is a direct product of cyclic p-groups (see Corollary 1.4). Collect the components
Z(p*) belonging to the same prime p, and form their direct product C,. The C, are
fully invariant in C, hence C, = A, & B, withA, = AN C,, B, = BN C,, thus
Cc=11,C =11,4,®Il, By Theclosure of A" = &, A, in C must contain [[, A,
because of the divisibility of ([],A,)/A". A is closed in C, whence the inclusion
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]_[p A, < A is immediate. Analogously, we have ]_[p B, < B, and consequently,
C =[1,A, &[], By implies [[,A, = A, [[, B, = B. As a direct summand of a
complete group, A, must be complete in its Z-adic topology, which is now identical
with its p-adic topology.

Finally, the uniqueness of the components A, in (6.8) follows at once from
the equality A, = Ny, ¢*A (k = 1,2,...), where ¢ denotes primes. This is a
consequence of the relations gA, = A, and Nkg*A, = 0. o

The group A, in the preceding theorem is called the p-adic component of the
algebraically compact group A. As is shown in Lemma 2.3, it is a J,-module.

Let us emphasize that owing to the theorem, groups A, that are complete in
their p-adic topologies can be totally characterized by the invariants of their p-basic
subgroups B, i.e. by the cardinal numbers «y and «,, (n = 1,2, ...) of the sets of
components == Z, resp. of Z(p") in a direct decomposition of B,. This countable set
of invariants is complete: they determine A, up to isomorphism, and, in addition,
this set is independent: it can be chosen arbitrarily. More explicitly,

Ap = Bp = p-adic completion of @y, Z & (Do Sy, Z(P")).

Example 3.3. (a) We prove that 7 = ]—L, Jy,. It is a reduced torsion-free algebraically compact

group, so by the structure theorem it is the product of copies of J,. Since Z/ pZ = Z/pZ
(inverse limit), each J, occurs exactly once in the product.

(b) Let k denote an infinite cardinal. Then J; is isomorphic to the p-adic completion of a direct
sum of 2 copies of J,. For, it is a torsion-free p-adic algebraically compact group whose
p-basic subgroups have the same rank as J; /pJ; = Z(p)*© = @xZ(p).

Example 3.4. Let k, (n = 1,2,...) be arbitrary cardinals. Then the p-adic completion of A =
2| ®,, Z(p") is the subgroup of C = [[S2,[@,, Z(p")] which contains A and corresponds to
the divisible part of C/A.

Corollaries to the Structure Theorem The structure theorem allows us to derive
the following useful corollaries.

Corollary 3.5. A reduced torsion group is algebraically compact if and only if it is
bounded.

Proof. Bounded groups are algebraically compact. It is evident that, in a decompo-
sition (6.8) of a reduced torsion group A, only a finite number of A, # 0 may occur.
If the basic subgroup B, is unbounded, then B, would contain elements of infinite
order. Thus the p-basic subgroups of our A must be bounded. Then A, = B, and
the claim follows. O

Corollary 3.6 (Kaplansky [K]).
(i) Every reduced algebraically compact group # 0 contains a summand isomor-
phic to Z(p*) (k = 1,2,...) orto J,, for some prime p.

(ii) The indecomposable algebraically compact groups are the following:
Z(p") (k < 00) and J,, for all primes p, and Q.
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Proof. (i) If A is algebraically compact and reduced, and if p is a prime with
Ap, # 0, then a p-basic subgroup B, of A, contains either a finite cyclic
summand Z(p*) or a summand = Z. It follows that Bp contains a pure subgroup
= Z(p*) or = J,. These are summands, as they are algebraically compact.

(i1) This is immediate from (i). O

Example 3.7. The group P = [[,ey {a,) (Where o(a,) = p") is algebraically compact, being a
product of algebraically compact groups. The completion B of the pure subgroup B = ®,cy {a,)
is a summand of P such that P/B is torsion-free, reduced, and algebraically compact. As P/pP =
@40 Z(p), while B/pB = B/pB is countable, it follows that P/B is the p-adic completion of a free
group of rank 2% (or of @,x, Jp).

By the way, it is easy to find a direct summand = J, in P. E.g., the vector x = (aj, ..., ap,...)
generates a J,-submodule J,x == J, whose purity (as a group or as a module) is obvious. Hence
Jpx is a summand of P.

Linear Compactness We now consider briefly linearly compact groups. A lin-
early compact group is a group A with a linear topology such that if a collection
aj + A; (j € J) of cosets modulo closed subgroups A; has the finite intersection
property (i.e., any finite number of them have a non-void intersection), then the
intersection of all of them is not empty.

We make the following observations that are derived from the theory of
topological groups (some follow from results proved here).

(a) A subgroup of a linearly compact group is linearly compact in the induced
topology if and only if it is closed.

(b) The image of a linearly compact group under a continuous homomorphism is
again linearly compact.

(c) Direct products of linearly compact groups are linearly compact.

(d) Inverse limits of linearly compact groups are linearly compact.

(e) A reduced linearly compact group is complete in its topology.

(f) A group which is compact in a linear topology is linearly compact.

Groups that are linearly compact in the discrete topology admit a complete
classification.

Lemma 3.8 (Leptin, Schoneborn). A group is linearly compact in the discrete
topology if and only if it satisfies the minimum condition on subgroups.

Proof. Assume A is linearly compact in the discrete topology; then so is every
subgroup of A. A does not contain elements of infinite order, for Z is not linearly
compact: if 7 = so+s1p+syp*+. .. is a non-rational p-adic integer, then the closed
cosets (so+s1p+-+++5,—1p" 1) +p"Z (n € N) have no elements in common. Thus
A is torsion. Choose a basis {b;};e; for its socle S with each b; of prime order, and let
By be the subgroup generated by all b; with j # k. The cosets by + By (k € J) have
the finite intersection property, but the intersection of all of them is empty unless
J is a finite set. Hence S is finite which is equivalent to the minimum condition on
subgroups (see Theorem 5.3 in Chapter 4).

Conversely, if A satisfies the minimum condition, and if the cosets a; + A; (i € I)
have the finite intersection property, then there is a minimal finite intersection
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A;, N---NA;, . Itfollows that the intersection of all a;+A; is equal to the intersection
of the cosets corresponding to this minimal intersection, and so it is not empty. 0O

It follows that if A is any linearly compact group, and if U is an open subgroup
of A, then A/ U satisfies the minimum condition on subgroups. In fact, A/ U is then
linearly compact in the discrete topology.

Theorem 3.9. A group is linearly compact if and only if it is an inverse limit of
groups with minimum condition on subgroups.

Proof. The ‘if’ part is an immediate consequence of Lemma 3.8 and (d). To prove
the ‘only if’ part, assume A linearly compact, and let the subgroups U; (i € I)
form a fundamental system of neighborhoods about 0. Without loss of generality,
the system of the U; may be assumed to be closed under finite intersections. A/ U; is
discrete and linearly compact, so it satisfies the minimum condition, for every i € 1.
The groups A/U; with the natural maps p,: a + U; + a + U; (for U; < U)) form
an inverse system whose inverse limit must be A, since the image of A under the
natural map is a dense subgroup of the inverse limit, and by (a), the image must be
the whole inverse limit. O

Finally we verify:
Corollary 3.10. Linearly compact groups are algebraically compact.

Proof. We show that a linearly compact group A satisfies Theorem 1.2(d). A solu-
tion of the ith equation in the system Ziel ngx; = a; € A(i € I)is a coset of a
closed subgroup C; of A’. The system is finitely solvable if these cosets have the
finite intersection property. Linear compactness implies that the system is solvable.

O

Example 3.11. J, is linearly compact in the p-adic topology. Jy, is linearly compact in the finite
index topology, for every cardinal «.

Example 3.12. The additive group Q;‘ of the p-adic numbers is the inverse limit of groups Z(p°°);
it is linearly compact in the Priifer topology.

% Notes. Kaplansky [K] gives a full description of algebraically compact groups. The theory
of algebraically compact modules contains several remarkable generalizations of the group case
and much more. See, e.g., Zimmermann-Huisgen—Zimmermann [1], Fuchs—Salce’s book Modules
over non-Noetherian Domains, 2001.

Eklof-Mekler [1] investigates the structure of ultraproducts of abelian groups and proves inter
alia that over an w-incomplete ultrafilter they are algebraically compact.

Exercises

(1) A countable algebraically compact group is the direct sum of a divisible group
and a bounded group.
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(2) The group R of reals admits infinitely many different linearly compact
topologies.

(3) In an algebraically compact group, a finite set of elements is contained in a
summand that is a finite direct sum of Q, cocyclic groups, and copies of J, for
various primes p.

(4) Determine the invariants of the algebraically compact group [[]°2; Z(p")]*
where « is an infinite cardinal.

(5) (Leptin) A group with a linear topology is linearly compact if and only if it
is complete in this topology, and the factor groups modulo open subgroups
satisfy the minimum condition. [Hint: (e).]

(6) If A, B are algebraically compact groups such that A@A =~ B@ B, then A =~ B.

(7) If A and B are algebraically compact groups, each isomorphic to a pure
subgroup of the other, then A = B. [Hint: Theorem 3.2.]

(8) J, has the cancellation property: if A, B are groups such that A® J, = B® J,,
then A = B. [Hint: reduce the proof to reduced torsion-free groups.]

(9) (Balcerzyk) Prove that ZN/Z™ = D @ [],A,, where D is a Q-vector space
of dimension 2%, and A, is the p-adic completion of @,x, J,. [Hint: the group
ZN )/ (pZN 4 Z™) has cardinality 2%.]

(10) Are quasi-injective groups algebraically compact?
(11) The direct sum @y, Z(p") for any fixed n € N is algebraically compact, but it
cannot be linearly compact under any linear topology.

4 Pure-Injective Hulls

The striking analogy between injective and pure-injective groups can be pushed
further by pointing out the analogue of the injective hull.

Pure-Essential Extensions We first introduce the following notation. For a pure
subgroup G of A, K(G, A) will denote the set of all subgroups H < A such that

(i) GNH = 0;and
(i) (G+ H)/H ispurein A/H.

Since (i) implies G + H = G @ H, condition (ii) amounts to the fact that if
nx = g+ h (n € N) with g € G, h € H is solvable for x in A, then g is divisible by
n in G. Hence the set K(G, A) is closed under taking subgroups. The purity of G in
A assures that 0 € K(G,A), so K(G,A) is never empty.

Moreover, the set K(G, A) is inductive. To prove this, let H; (i € I) be a chain of
subgroups in K(G, A), and H their union. H obviously satisfies (i). Suppose nx =
g+h(geG,heH)issolvable in A. For some i € I, h € H; € K(G,A) whence
g €nG,andso H € K(G,A).

Following Maranda [1], we call a group A a pure-essential extension of its pure
subgroup G, and G a pure-essential subgroup of A, if K(G,A) = {0}. Ais a
maximal pure-essential extension of G if it is a pure-essential extension, but no
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group properly containing A is a pure-essential extension of G. It is easily checked
thatif A; (i € ) is a chain of pure-essential extensions of G, then A = U,¢/A; is also
a pure-essential extension of G.

Lemma 4.1. Suppose C is a pure-essential extension of G, and A an algebraically
compact group containing G as a pure subgroup. Then the identity map 1¢ extends
to an embedding ¢ : C — A.

Proof. Due to the pure-injectivity of A, the existence of an extension ¢p: C — A of
15 is evident. Since G is pure in ¢ C, we have Ker ¢ € K(G, C). By pure-essentiality,
K(G, C) = {0}, establishing our claim. O

Pure-Injective Hulls A is a pure-injective hull of G if it is a minimal pure-
injective group containing G as a pure subgroup. To prove the existence of such
a hull, we need a few important facts on pure-essential extensions.

Theorem 4.2 (Maranda [1]).

(i) Every pure-essential extension of a group G is contained in a maximal pure-
essential extension of G.
(i) A is a maximal pure-essential extension of G if and only if it is a pure-injective
hull of G.
(iii) Every group G has a pure-injective hull, unique up to isomorphism over G.
Every pure-injective group containing G as a pure subgroup contains a pure-
injective hull of G.

Proof. (i) There exists a pure-injective group H containing G as a pure sub-
group Theorem 4.7 in Chapter 5. From Lemma 4.1 we derive that every
pure-essential extension of G must have cardinality < |H|. Therefore, the non-
isomorphic pure-essential extensions of G form a set, so it only remains to
appeal to Zorn’s lemma to get a maximal member containing any given one.

(i) Let A be a maximal pure-essential extension of G, and C a pure-injective
group containing G as a pure subgroup. Select a maximal member M in the set
K(G, C).Passing mod M, we obtain G = (G+M)/M < (A+M)/M < C/M.
By the maximal choice of M, (G + M)/M is pure-essential in C/M. As G is
pure-essential in A, we must have ANM = 0,s0A =~ (A + M)/M. Therefore,
(A+ M)/M = C/M by the maximality of A, whence C = A @ M, so A
is pure-injective. To see that it is minimal pure-injective, assume that A’ is a
pure-injective group with G < A’ < A. By Lemma 4.1, the identity 15 extends
to a monomorphism ¢ : A — A’. Then ¢A is also a maximal pure-essential
extension of G, and since A < A, pA = A is the only possibility. Hence
A’ = A is indeed minimal.

With the same notations, there is a map ¢ : A — C which is the identity
on G; it has to be monic on A (see Lemma 4.1). By the preceding paragraph,
A, and hence @A, is pure-injective, so A = C provided C is minimal. This
means that C is a maximal pure-essential extension of G.

(iii) The statements (i) and (ii) guarantee the existence of a pure-injective hull A
for every group G. If A" is any pure-injective group containing G as a pure
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subgroup, then the identity map 1 can be extended to a monomorphism ¢ :
A — A’. If A’ happens to be also minimal, then necessarily A = A’. Thus ¢
is then an isomorphism. O

We next prove a useful criterion for the pure-injective hull.

Lemma 4.3. A pure-injective group A containing G as a pure subgroup is the pure-
injective hull of G exactly if

(@) the maximal divisible subgroup of A is the injective hull of G'; and
(b) the factor group A/G is divisible.

Proof. First, assume A is a pure-injective hull of G. Write A = D @ C with D
divisible and C complete. In view of the purity of G in A,

G'=n.nG=0n,(GNnA)=GNA' =GnD.

Since every non-zero summand of D must intersect G, D has to be an injective
hull of G'. Define E < A such that E/G is the first Ulm subgroup of A/G. Then
E=D@®(CNE),and C/(CNE) = (C+E)/E = A/E = (A/G)/(E/G) has
trivial Ulm subgroup. Thus C N E is closed in C, so it is complete. Consequently, E
is pure-injective containing G, so E = A by minimality. Hence A/G coincides with
its own Ulm subgroup, which means that it is divisible.

To prove sufficiency, assume (a) and (b) hold for the pure-injective A containing
G as a pure subgroup. There is a pure-injective hull E of G contained in A. From the
first part of the proof it follows that E/G is divisible, so E is pure in A, and hence it
is a summand. It cannot be a proper summand, so A = E. O

It is now easy to describe how to obtain the pure-injective hull of a group.

Theorem 4.4. The pure-injective hull of a group G is isomorphic to the direct sum
of the injective hull of G' and the completion G of G.

Proof. Let D denote the injective hull of G', and let ¢ : G — D be an extension
of the inclusion map G' — D. If u: G — G stands for the canonical map, then
consider the map ¥ : G — D @ G which is the composite of the diagonal map
G — G & G followed by ¢ @ ju. The purity of 4G in G guarantees that Im v is pure
in D @ G. From Lemma 4.3 the assertion follows at once. O

The last theorem makes it possible to determine the complete system of invariants
for the pure-injective hull of a group G in terms of certain invariants of G;
cf. Theorem 3.1 in Chapter 4 and Theorem 3.2.

Pure-Essential is Not Transitive The analogy of ‘essential” with ‘pure-essential’
subgroups breaks down when transitivity is considered.

Lemma 4.5 (Fuchs-Salce-Zanardo [1]).

(i) The property of being a “pure-essential extension” is not transitive.
(ii) However, it is transitive for p-local groups.
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Proof. (i) Let B = @yen Z(p"), a S-cyclic group. Since B/B contains copies of
Q, it is easy to find a subgroup C of B such that C/B = Z,) where g # p is
a prime. Manifestly, B is pure-essential in C, since B is not a summand in C,
and C/B is torsion-free of rank 1. By Theorem 4.4, C is pure-essential in its
Z-adic completion which is C=B® J4 (see Theorem 2.11). However, B is not
pure-essential in C‘, since it is contained in its first summand.

(i) The arguments in the proof of Lemma 4.3 can be applied to show that a pure
subgroup G of a p-local group A is pure-essential if and only if (a) G' is essential
in A', and (b) A/G is p-divisible. Since properties (a) and (b) are transitive, the
claim follows. O

% Notes. Every module over any ring admits a pure-injective hull, unique up to isomorphism.
However, pure-injective hulls cannot be obtained in general via completion. There is an extensive
theory of pure-injectivity that started to develop following the pattern of groups. Pure-injective
modules admit indecomposable summands, so that their structure is considerably simpler to study.

Pure-injective hulls may compete in significance with injective hulls. They play important roles
in the structure theory of modules over arbitrary rings, not to mention their relevance in model
theory. As illustration, let us refer to the interesting result by G. Sabbagh [C.R. Acad. Sci. Paris,
271, A909-A912 (1970)] which states that for any ring R, an R-module is elementarily equivalent
to its pure-injective hull. Thus the elementary theory of modules is reduced at once to the case of
pure-injective modules.

Exercises

(1) If A is a pure-essential extension of G, and if B is a pure subgroup of A
containing G, then B is a pure-essential extension of G.

(2) Prove thatif Gis pureinA, H < A',and HN G = 0, then H € K(G,A).

(3) Let A be a p-group and B its basic subgroup.

(a) K(B,A) is the set of all subgroups of A'.
(b) B is pure-essential in A if and only if A! = 0.

(4) If C is a pure-essential extension of G, and C/G is not divisible, then there is a
pure-essential extension C’ of G such that C < C’ and C’'/A is divisible.

(5) Show that if A; (i € I) is a chain of pure-essential extensions of G, then A =
UierA; is also a pure-essential extension of G.

(6) Let A be a pure-injective group containing G as a pure subgroup. A maximal
pure-essential extension of G in A is a summand of A.

(7) Give an example where A, (n < w) are the pure-injective hulls of the groups
Gy, but [, A, is not the pure-injective hull of [ [, G,.

(8) Using invariants of a group, determine a complete system of invariants for its
pure-injective hull. [Hint: ranks.]

(9) Find conditions on the invariants of a pure-injective group A such that A has no
proper summands isomorphic to A.
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5 Locally Compact Groups

Having discussed compact and linearly compact groups, it is worth while making a
few comments on the locally compact case. Besides the Pontryagin duality theory
we rely heavily on homological machinery, so a reader not familiar with the material
of Chapters 7-9 is advised to read this section after studying these chapters.

Locally Compact Extensions It is well known that a locally compact (abelian)
group is the direct sum of R" (for some integer n > 0) and a group G that contains an
open compact subgroup C. Thus G fits into an exact sequence ) - C - G — A —
0 where C is compact and A is discrete. Conversely, any extension of a compact C
by a discrete A yields a well-defined locally compact group G, as the only topology
compatible with the given topologies of C and A is the one in which a base of
neighborhoods of 0 in C is also a base of neighborhoods of 0 in G. Consequently,
if C is compact and A is discrete, then the elements of Ext(4, C) may be viewed as
the locally compact extensions of C by A (the equivalence of extensions is the same
whether C is discrete or compact).

Recall that the Pontryagin dual (or character group) Char G of a locally
compact group G, i.e., the group of all continuous homomorphisms of G into the
compact group T = R/Z, equipped with the compact-open topology, is again
locally compact. We write

G = Char G = Hom(G, T),

where Hom now stands for continuous homomorphisms. Importantly, if G is
compact, then G is discrete, and vice versa. The Pontryagin Duality asserts that
the map

ng: G — G, actingas ng(x)(x) = x(x) (x€G,xeG)
implements a canonical algebraic and topological isomorphism between G and its

second dual G.

Hom, Ext with Compact Second Argument In the sequel, the letters M, N will
stand for compact groups, so their duals M, N are discrete groups. The group
Hom(M , N) carries a compact topology: the compact-open topology makes it into a
compact group.

Lemma 5.1. For compact groups M and N, there are natural (topological) isomor-
phisms of compact groups

UMN: Hom(M, N) — Hom(ﬁ/, M),

vyv: Hom(M,N) — Hom(M ® N, T) = (M ® N)"
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Proof. Tt is enough to consider a sequence of natural isomorphisms:

Hom(M, N) = Hom(M, Hom(N, T)) = Hom(M ® N, T)
o Hom(ﬁf QM, T) =~ Hom(ﬁl, HomZ(M, T)) =~ Hom(ﬁ’, M),

where we have made repeated use of Theorem 1.13 in Chapter 8. O
If the isomorphism Theorem 3.8 in Chapter 9 is used with the following cast of
characters: A = M, B = N are discrete groups, and C = T, then we get

Ext(M, Hom(N, T)) 2 Hom(Tor(M,N), T).

Consequently,

Lemma 5.2. For compact M and N, there is a natural isomorphism
Ext(M,N) = (Tor(M,N))"

that makes Ext(M, N) into a compact group. O

Since Tor is symmetric in its arguments, Lemma 5.2 shows that the switch
involution in Tor(N, M) induces a natural isomorphism between the compact groups
Ext(M, N) and Ext(N, M). This isomorphism can easily be described explicitly:

Theorem 5.3. For compact groups M, N, there is a natural topological isomor-
phism

Ext(M,N) =~ Ext(N,M)

that carries the extension0 — N — G — M = 010 its Pontryagin dual 0 — M —
G—N—O.

Proof. As G is locally compact, Pontryagin duality yields a natural bijection Oy
between the two Exts whose inverse is the map 6yy. This bijection respects the
group operations, since the Baer sum is defined by using diagonal and codiagonal
maps (which are dual to each other). O

Duality of Long Exact Sequences The purpose of including this section in this
volume was also to point out that the classical induced long exact sequences The-
orem 2.4 in Chapter 8 and Theorem 2.3 in Chapter 9 become intertwined once
topology gets involved. In fact, we can verify a surprising duality between these
long sequences.
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Theorem 5.4. Let M be compact, A, B, C discrete, and the sequence 0 — A —
B — C — 0 exact. The Pontryagin dual of the exact sequence

0 — Tor(A, M) — Tor(B, M) — Tor(C, M) —
—>AQM—>BM—>CQM — 0
of discrete groups is the exact sequence
0 - Hom(C,M) — Hom(B, M) - Hom(A, M) —
— Ext(C,M) — Ext(B,M) — Ext(A,M) — 0

of compact groups (Where the maps are continuous).

Proof. Application of the exact functor Hom(e, T) to the first long exact sequence
yields the second one, after making use of Lemma 5.1 and 5.2. The continuity of
the maps is straightforward. O

Autodual Extensions As an application, consider the special case M = N. Then
O is an involution of the compact group Ext(M ,M). Of particular interest are
those extensions which are autodual in the sense that 6y, carries them into equiv-
alent extensions, and those which antidual, i.e. 6y, acts on them as multiplication
by —1. It is readily checked that both the autodual and the antidual extensions in
Ext(M , M) form a subgroup Ext(M , M), and Ext(M,M)_, respectively.

Proposition 5.5. Suppose M is compact such that multiplication by 2 is an
automorphism of Ext(M, M). Then there is a direct decomposition

Ext(M, M) = Ext(M, M) & Ext(M, M)_

where the summands are closed subgroups.

Proof. All that we have to point out is that, for every element ¢ of Ext(M M), ¢
is the Baer sum of %(e + ¢) and %(e — ¢), which are evidently auto- and antidual
extensions, respectively. O

Corollary 5.6 (Fuchs-Hofmann [1]). All the extensions of a compact group M by
its dual M are autodual if and only if the torsion part of M is locally cyclic.

Proof. By Lemma 5.2, the condition can be rephrased as saying that the involution
of Tor(M, M) corresponding to the switch of the arguments is the identity. Since if
M = A & B, then

Tor(M, M) = Tor(A, A) & Tor(B,A) & Tor(A, B) & Tor(B, B),

and the involution in question would switch the two middle summands, the condition
Tor(A,B) = 0 is necessary. This means that, for each prime p, one of the
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p-components A,, B, must be 0, i.e. the torsion part of M is locally cyclic, i.e.
tM < Q/Z. As Tor vanishes for torsion-free groups, it is pretty clear that this
condition is sufficient. O

Example 5.7 (Samelson). Consider the extension 0 — J, — Q;‘ — Z(p*°) — 0 where J,
carries the obvious compact topology. This extension is self-dual, and so are all extensions of J,,

by Z(p™).

% Notes. More on the homological aspects of topological groups may be found in K.H.
Hofmann-S.A. Morris, The Structure of Compact Groups (de Gruyter, 1998), and on autoduality
in Fuchs—Hofmann [1].

Loth [3] investigates how group properties are reflected in the Pontryagin duals.

Exercises

(1) f0 - L - M — N — 0is an exact sequence of compact groups, then for any
discrete A, the sequence

0 — Hom(A, L) - Hom(A, M) — Hom(A,N) —
— Ext(A, L) — Ext(A,M) — Ext(A,N) — 0

of compact groups is exact with continuous maps.
(2) Find the Pontryagin dual of the long exact sequence in the preceding exercise.
(3) An extension equivalent to an autodual extension is autodual as well.
(4) Describe the auto- and antidual extensions in Ext(Z(p) @ Z(p>°), Z(p) ® J,) if

p#2

6 The Exchange Property

We end this chapter with a brief study of the Exchange Property, a property that has
come to prominence in the literature. It is closely connected with the problem of
uniqueness of direct decompositions, with the Krull-Schmidt theorem, as we shall
see below.

Exchange Property A group G is said to have the (finite) exchange property if,
for any direct decomposition

A=GOH= ®ierA;

of a group A, where A;, H are arbitrary groups, and / is a (finite) index set, there
always exist subgroups B; of A; for i € I such that

A =G (Pie B).
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Evidently, B; must be a summand of A;: it is a summand of A contained in A;. We
shall see that some special groups, like injective, quasi-injective, and pure-injective
groups, enjoy the exchange property.

The next lemma will be needed in the following proofs (it holds also for
modules).

Lemma 6.1 (Crawley-Jonsson [1]). Iz suffices to check the exchange property for
G in case the A; are isomorphic to subgroups of G.

Proof. LetA = G @ H = @ A; with arbitrary A;. Set H; = H N A;, and let overbars
denote images under the canonical map ¢ : A — A/H’ where H' = @ H;. Then
A=G®H= ®A;, where

Ai=A/AiNH)=A/ANH) = (A +H)/H<A/H =G.

By hypothesis, there exist Bi < A satisfying A = G @ (@B;). Setting
B; = ¢~ 'B; N A;, we clearly have A = G & (& B)). O

Groups with the Exchange Property It seems sensible to start the study with
indecomposable groups. (It is easily checked that, for indecomposable groups, the
finite and the general exchange properties are equivalent.) Observe that a group with
local endomorphism ring is necessarily indecomposable.

Theorem 6.2 (Warfield [2]). An indecomposable group G has the finite exchange
property if and only if its endomorphism ring End G is local.

Proof. Suppose End G is local, and A = G® H = B @ C. Let ¢, B, y denote the
projections of A onto its summands G, B and C, respectively. § + y = 1, implies
¢BP + ¢yp = ¢ where the terms will be viewed as endomorphisms of G; in
particular, ¢ acts as the identity on G. End G local implies that either $¢ or ¢y ¢ is
an automorphism of G; say, the first alternative holds. Setting K = Im 8¢, it is clear
that both ¢ ['x: K — G and 8 }'¢: G — K are isomorphisms. As ¢K = ¢fG = G,
we have A = K @ H. Now K < B implies B = K & B’ for some B’ < B, thus
A=G®H =K B & C. Taking into account that 8 induces an isomorphism of
G with K, we conclude that A = G & B’ & C, i.e. G enjoys the exchange property.
To prove the converse, assume End G is not local. Thus there are endomorphisms
a and B of G, which are not automorphisms, such that « — f§ = 1g. Then A =
G| ® G; (G; = G) also decomposes as A = H| & H, where H| = {(g,2) | ¢ € G}
and H, = {(Bg,ag) | g € G} are indecomposable. However, neither A = G; & H)
nor A = G| @ H», so G does not have the exchange property. O

Several important groups have the exchange property. For instance,

Theorem 6.3 (Warfield, Fuchs). Injective groups, and more generally, quasi-
injective groups share the exchange property.

Proof. We prove the claim for a quasi-injective G. Suppose A = G @ H = Djes A;
where each A; is isomorphic to a subgroup of G. Pick a subgroup B of A maximal
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with respect to the properties: (i) B = @;e; B; with B; < A;, and (i) GN B = 0. We
claimA = G @ B.

The natural homomorphism ¢ : A — A/B maps G isomorphically into A, so ¢G
is a quasi-injective subgroup inA/B = @®; (A;+B)/B. Owing to the maximal choice
of B, GN(A;+B)/B is an essential subgroup in (A;+ B)/B for each index i, whence
we conclude that ¢G is essential in A/B. As ¢pA; < A/B, where A; is isomorphic to
a subgroup of ¢ G, and ¢G is fully invariant in its injective hull (that contains A/B),
we can argue that necessarily ¢A; < ¢G. Therefore, pA < ¢G, whence G = A/B,
and A = G @ B follows. O

Our next task is to establish a sufficient condition on a group to have the exchange
property, this will be needed in the applications. The theorems above suggest strong
dependence on the endomorphism ring. This is confirmed by the next theorem.

An exchange ring is a (not necessarily commutative) ring E such that the left
module gE has the finite exchange property.

Theorem 6.4 (Warfield). A group G has the finite exchange property if and only if
E = End G is an exchange ring.

Proof. In the proof we use the ad hoc notations X = Hom(X, G) for a group X,
and Y* = Homg(Y,G) for a left E-module ¥ (where G is viewed as a left E-
module). Thus XV is a left E-module, and Y* is a group. In this notation, G¥ = gE
and E® = G. Consequently, the canonical maps G — GV and E — E"Y are
isomorphisms.

Assuming G has the exchange property, let eM = E® N = L, & L, with a left
E-module N and left ideals L; of E. Hence M" = G @& N* = L} & L) are group
decompositions. Hypothesis implies the existence of summands C; < L/ such that
M" = G& C| & C,. Thus, MY = E® C) & CJ. In view of the isomorphism
E — E””, the canonical maps L; — L;*" are monic, so the map M — M
is likewise monic. It remains to set B; = L; N C/ to obtain M = E & B, @ B,
establishing the exchange property of E.

Since the group G and the ring E play symmetric roles in the last argument, the
proof is complete. O

Exchange Rings We now investigate properties of endomorphism rings that imply
the exchange property. We need a definition: for an ideal H of the ring R, we say that
idempotents lift modulo H if every idempotent coset in R/H contains an idempotent
element of R.

Theorem 6.5. A ring E is an exchange ring if it is von Neumann regular modulo its
Jacobson radical J, and idempotents lift mod J.

Proof. Assume E is a ring as stated. First we prove thatifa + b = 1 (a,b € E),
then there exists an idempotent ¢ € Ea such that 1 — e € Eb. We start with the
special case when J = 0. By regularity, if given a € E, there exists a ¢ € E such
that aca = a. Then f = ca is an idempotent, and sois e = f + (1 —f)a € Ea. A
simple calculation leadsto 1 —e = (1 —f)(1 —a) = (1 —f)b € Eb.
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In the general case, let overbars denote cosets mod J. By the preceding paragraph,
for a € E, there exists an x € E such that ¥* = ¥ € Ea and 1 — % € Eb. We may
assume, without loss of generality, that x € Ea. Hypothesis guarantees that we can
find an idempotent f € X. Thenu = 1 —f +xisaunitin E (asx—f € J),sou™! € E
exists. Setting ¢ = u~'fu = u~'fx € Ex < Ea, and observing that g = f = a, we
have g2 = gand (1—g)—y(1 —a) € J for some y € E. Consequently, g +y(1 —a) is
aunit in E, so it has an inverse v € E. It remains to definee = g—(1—g)vg € Eg <
Ea, and to check thate? = eand 1 —e = (1 —g)(1 —vg) = (1 —g)vy(l —a) € Eb.

Suppose E is the endomorphism ring of the groupA. Let A=G G H = A § As,
and denote the projections onto G, A1, A, by 7, &1, o, respectively. Evidently, 7 Ex
is the endomorphism ring of G, and ma 7w + wasm = m. By what has been proved
above, there exist §; € wEx (i = 1,2) such that y; = B;a;7w are orthogonal
idempotent endomorphisms of G with y; + y» = m. Since y; is an idempotent,
Bi may be chosen so as to satisfy y;8; = B;. Note that

7T,3i = ,Bi = ,BNT, Y = Vi = Vi, ,Biai,Bi = ,35-

The maps 1; = «o;fi; (i = 1,2) are orthogonal idempotents satisfying n,y; =
a; Bt = a;fi;m = nim. Setting B; = A; N Kern,, it is easily seen that
B; = Im[(1 — n;)a;] = Im(e; — 1;). We now claim that A = G & B| D B;.

First, if a € G N (B} & B,), then from nja = 0 = na we obtain that a =
via+ya = Braja+ Brona = (Brai Br)aia+ (BronB2)ana = Binia+Bana = 0.
Evidently, A = Im 7 4+ Im 1, + Im(e; — 11) + Im(o; — 12), hence it only remains
to prove that Im n < G+ Bl + Bz. ‘We have Ol,',Bi?'],' = a,-,B,-oz,-,B,-a,- = Ol,',BiOli = Q;n;,
and for i # j, also n;8; = n;(whi) = (im)(vifi) = (m¥)(viBi). It follows that
Im(n; — Bin;) is annihilated by both n; and oy, so it is contained in B; (j # i).
Consequently, Im n; < Im B;n; + Im(n; — Bini) < G + B;. O

For the proof of Theorem 6.7 below, we require the following lemma that is a
special case of a result by Zimmermann-Huisgen—Zimmermann [1].

Lemma 6.6. Let the ring E be algebraically compact as a left module over itself.
Then E = E/J is von Neumann regular, and its idempotents lift to E.

Proof. Suppose Lisa finitely generated left ideal of E. Clearly, there is a finitely
generated left ideal L of E that maps upon L via the canonical homomorphism ¢ :
E — E. First we verify the existence of a finitely generated left ideal U minimal
with respect to the property L + U = E.

Let W be a left ideal of E satisfying L+W=E, and {U; | i € I} a descending
chain of finitely generated left ideals of E, contained in W, such that L + U; = E
forevery i € I. As U = (), U; is again a left ideal, it remains only to show
that L + U = E (by minimality, U is then even singly generated, since 1 € E). Let
{ai,...,a,} and {u;1, ..., un,} be sets of generators of L and U, respectively. The
condition L + U; = E translates into the solvability of the system of equations

xiap + -+ xpay + yauin + oo F Yiltim, =1 (P €1)
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in E for the unknowns x;, yi. The chain property of the set of the U; guarantees that
for every finite subset J of I, the system consisting of equations with indices in J
admits a simultaneous solution. Algebraic compactness implies the existence of a
global solution x; = ¢; € E and yi = ci € E. Then U is the principal left ideal
generated by u = 1 — (eja; + -+ - + eyay).

We claim that for this U, the intersection L N U is superfluous in E (i.e., it can
be omitted from every generating system of E). First we show that it is superfluous
in U. Suppose that U = (L N U) + V for some left ideal V < U. Then E =
L+LNU)+V =L+ VimpliesV = U by the minimality of U. Next, let
E = (LNU)+Aforaleftideal A < E. By the modularlaw, U = (LNU) + (ANU),
whence U = A N U follows as L N U is superfluous in U. But then U < A, thus
E=LNU+U+A=U+A=A and L N U is superfluous in E. Hence
L NU < J, and passing mod J, we obtain that the sum L + U = E has to be direct.
A ring in which every finitely generated left ideal is a summand is known to be von
Neumann regular, so E is von Neumann regular.

It remains to verify that idempotents lift modulo J. For an idempotent coset x+J,
consider the set S of all cosets f + A of ideals A of E such that f + A < x + J (so
A < J)andf? € f + A. The set S is not empty, and a proof like the one above (for
the existence of a minimal U) will guarantee that it contains a minimal member, say,
e + B (B < J). To complete the proof, we show that e is an idempotent.

Since (1 —2¢)> = 1 + 4(e> —e) € 1 + J is invertible, so is 1 — 2¢. Hence
y=(2—e)(1—-2¢) ' €B.Setf =e+yex+Jand C = y’E < B < J. Then
(e+y)?—(e+y) = e —e+ (2e—1)y+y* = y? shows that we have f +C € S. As
f + C < e + B, necessarily B = C. Hence y € C implies y = y?r for some r € E,
and from 1 — yr € 1 + J we obtain y = 0. Consequently, e = f is idempotent. O

We are now prepared for the proof of the following important theorem.

Theorem 6.7 (Warfield [3]). Algebraically compact groups have the (finite
exchange property.

Proof. Combining Theorem 6.5, Lemma 6.6 with Theorem 6.4, it follows that
a group enjoys the exchange property whenever its endomorphism ring is a left
algebraically compact ring. As left and right exchange rings are identical (this
follows from Theorem 6.4, since the opposite ring E°*? is the endomorphism ring
of gE). An appeal to Theorem 4.2 in Chapter 16 completes the proof. O

The next theorem is the main result on direct sums of groups with local
endomorphism rings. We state it here without proof.

Theorem 6.8 (Azumaya, Crawley-Jonsson [1]). Assume
A=a
il

where each A; is a countably generated group with local endomorphism ring. Then
every direct decomposition of A can be refined to a direct decomposition isomorphic
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to the given one. In particular, every summand C of A satisfies C = @®;e; A; for a
suitable subset J of 1. O

A class C of groups is said to have the Krull-Schmidt property if every group in
C is a direct sum of indecomposable members of C, and such a direct decomposition
is unique up to isomorphism. Hence Theorem 6.8 can be rephrased by stating that
direct sums of countably generated groups with local endomorphism rings enjoy the
Krull-Schmidt property.

% Notes. The exchange property for algebraic systems was introduced by Crawley—Jénsson
[1], it became a well-researched subject. It is still an open problem whether or not the finite
exchange property implies the unrestricted exchange property (it is true for indecomposable
modules). The proofs in the text are modeled after arguments by W.K. Nicholson [Trans. Amer.
Math. Soc. 229, 269-278 (1977)]. The exchange property for injective modules was proved
by Warfield [Pacific J. Math. 31, 263-276 (1969)] and for quasi-injectives by Fuchs [Annali
Scuola Norm. Pisa 23, 541-546 (1969)]. Monk [Proc. Amer. Math. Soc. 35, 349-353 (1972)]
characterizes exchange rings as rings R such that for all @ € R there exist b,c € R with
bab = b, ¢(1 — a)(1 — ba) = 1 — ba. For Theorems 6.4 and 6.7, see Warfield [Math. Ann.
199, 31-36 (1972)], and for Theorem 6.8, Azumaya [Nagoya Math. J. 1, 117-124 (1950)].

There are several results facilitating the proofs that certain groups (or modules) enjoy the
exchange property. For instance, for the finite exchange property it suffices to check for an index
set of cardinality 2 (Exercise 1). Furthermore, in Lemma 6.1 it is enough to assume that all the
groups A; are isomorphic to G (Zimmermann-Huisgen—Zimmermann [1]).

Ivanov [4] discusses an ‘almost exchange property’ of groups G. His definition reads as follows:
if A = G®H = @A, then there are a partition of / into finite subsets /; and subgroups
C; < @ie Ai such that A = G @ (&; C;). Closure under finite sums is established.

Exercises

(1) For the finite exchange property it suffices to check for 2 summands.
(2) (a) A finite direct sum has the finite exchange property exactly if all summands
enjoy this property.
(b) In general, the exchange property is not preserved when taking infinite
direct sums. [Hint: a direct sum of unbounded cyclic p-groups.]
(3) (a) Finite groups have the exchange property.
(b) Z does not have the exchange property.
(4) If A =B & C = G® H and B is an unbounded X-cyclic p-group, then either G
or H has an unbounded X-cyclic summand. [Hint: keep using Exercise 3.]
(5) Supposethat G = A; @ --- @ A, where all End A; are local. Use the exchange
property to show:

(a) a decomposition of G into indecomposable summands is unique up to
isomorphism;

(b) a summand of G is isomorphic to a partial direct sum of the given
decomposition.
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Problems to Chapter 6

PROBLEM 6.1. Which reduced algebraically compact groups carry an injective
module structure over some ring with 1?

PROBLEM 6.2. Which algebraically compact rings can be endomorphism rings
of groups?

Such rings are not cotorsion-free, so the results in Sect. 7 in Chapter 16 are not applicable.

PROBLEM 6.3. Does the finite exchange property imply the general exchange
property?

This is a well-known difficult open problem.



Chapter 7
Homomorphism Groups

Abstract The fact that the homomorphisms of a group into another group form an abelian group
has proved extraordinarily profound not only in abelian group theory, but also in Homological
Algebra where the functor Hom is one of the cornerstones of the theory. Our first aim is to find
relevant properties of Hom both as a bifunctor and as a group.

It is rather surprising that in some significant cases Hom(A, C) is algebraically compact; for
instance, when A is a torsion group, or when C is algebraically compact. In the special situation
when C is the additive group T of the reals mod 1, in which case Hom(A, T), furnished with
the compact-open topology, will be the character group of A, our description leads to a complete
characterization of compact abelian groups by cardinal invariants. An analogous result deals with
the linearly compact abelian groups.

The final section discusses special types of homomorphisms that play important roles in the
theory of torsion groups.

1 Groups of Homomorphisms

Homomorphism Groups We have already noticed earlier that, if o and 8 are
homomorphisms of A into C, then their sum « + §, defined as

(¢ + B)a =aa+ Ba (a €A,

is again a homomorphism A — C. It is now routine to check that the homomor-
phisms of A into C form an abelian group under addition. This group is called the
homomorphism group of A into C and is denoted by Hom(A, C). The zero in this
group is the trivial homomorphism mapping A to 0 € C, and the inverse —« of
a:A — Cmapsa € Aupon —(xa) € C.

If A = C, then the elements of Hom(A, A) are the endomorphisms of A, and
the group Hom(A,A) = EndA is called the endomorphism group of A. This
group carries a ring structure where the product ¢f of o, 8 € EndA is defined
by (¢f)a = a(Ba) for a € A (observe the order of maps). The ring identity is the
identity automorphism of A.

Next we list some simple facts on homomorphism groups.

(A) There are two important necessary conditions to satisfy when we are looking
for homomorphisms « : A — C: one is that if a € A is annihilated by n € N,
then also n(aa) = 0 € C, and the other is that we must have h,(aa) > h,(a).
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(B) Hom(A, C) = 0 in the following cases: (i) A is torsion and C is torsion-free;
(ii) A is a p-group and C is a g-group, for primes p # q; (iii) A is divisible and
C is reduced.

(O) IfCln] = 0 for some n € N, then Hom(A, C)[n] = 0 for every group A. Indeed,
ifa: A — Candno = 0, then for a € A we have n(aa) = (na)a = 0 whence
C[n] = 0 implies ¢a = 0,i.e.« = 0.

(D) Hom(A, C) is torsion-free whenever C is torsion-free.

(E) If C is torsion-free and divisible, then so is Hom(A, C) for every A. In order
to show that Hom(A, C) is now also divisible, pick an « € Hom(A, C) and
an n € N. For a € A, there exists a unique ¢ € C with nc = «a, and thus
we may define amap f: A — C via Ba = c. It follows readily that § is a
homomorphism A — C satisfying nff = «.

(F) IfnA = A for some n € N, then Hom(A, C)[n] = 0. Indeed, let « € Hom(A, C)
with nae = 0. Write a € A as a = nb for some b € A. Then wa = a(nb) =
(na)b = 0 shows that @ = 0.

(G) IfA is divisible, then Hom(A, C) is torsion-free.

(H) If A is torsion-free and divisible, then the same holds for Hom(A, C), for any
C. The proof is similar to the one in (E).

Example 1.1. If A = Z, then every « : Z — C is completely determined by (1) = ¢ € C.
Moreover, evidently, for every ¢ € C there is a homomorphism y : Z — C such that y(1) = c.
Since a(1) = ¢y and B(1) = ¢, imply (o + B)(1) = ¢; + ¢, the correspondence y > c¢ given
by y(1) = c is a natural isomorphism between Hom(Z, C) and C,

Hom(Z,C) = C for all groups C.

Example 1.2. If A = Z(m) with m € N, then again, every homomorphism « : Z(m) — C is
determined by the image a(1) = c¢ of the coset I = 1 + mZ, but here me = 0 must hold, i.e.
¢ € C[m]. Conversely, each such c gives rise to a homomorphism y : 1 > ¢, and as in the preceding
example, the correspondence y +> ¢ given by y(1) = c is a natural isomorphism

Hom(Z(m), C) = C[m] for all groups C.
Example 1.3. From the preceding example we obtain
Hom(Z(p"), Z(p")) = Z(p*) where £ = min{k, n}.

Example 1.4. Next, let C be quasi-cyclic, say, C = (c, ..., Cuy - .- ) with the defining relations
pe1 = 0, pcy41 = cy(n > 1). If n is an endomorphism of C, then write nc, = k,c, with an integer
ky (0 < k, < p") for every n. Now k,c, = nc, = 77(I?Cn+1) = pNCut1 = Phnt1Cnt1 = knq1Cn
implies k, = k,+; mod p". This means that the sequence of the k, is a Cauchy sequence in J,, so it
has a limit, say = € J), is the limit. The correspondence n + 7 between the endomorphisms 7 of C
and the p-adic integers 7 is evidently additive. If the endomorphisms 7, and 7, define the same ,
then 7, —n, maps every ¢, to 0, i.e. 7; = n,. On the other hand, if # = so+s;p+---+s,p"+...
is any p-adic integer, then the correspondence ¢, —> (so + sip + «-+ + s,p")c, for all n (which
we may write simply as m¢,) extends uniquely to an endomorphism 7 of C such that n = 7. We
conclude:

EndZ(p™) = J,.

Example 1.5. Consider Q¥, the group of rational numbers with powers of p as denominators,
and C = Z(p>). Suppose Q¥ = (1,p~',...,p7™,...) and C as in the preceding example
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(and ¢, = 0 for n < 0). A p-adic number p = p*z (with a p-adic unit 7 and k € Z) induces a
homomorphism 7: Q) — Z(p°®) such that p~" +> mc,—; for all . As in the preceding example,
we can convince ourselves that different p-adic numbers p give rise to different homomorphisms,
and every homomorphism 1: Q%) — Z(p™®) arises in this way. Consequently, Hom(Q®, Z(p°°))
is isomorphic to the additive group of all p-adic numbers, i.e., we have

Hom(QP), Z(p™>®)) = &,Q with & = 2%,

Example 1.6. If A = C = J,, then it is evident that multiplication by a fixed p-adic integer &
is an endomorphism of J, (which we denote by 1), and different p-adic integers yield different
endomorphisms of J,,, since they map 1 € J, differently. Let £ € End J, such that £(1) = 7. Then
& and 7 are identical on Z < Jp, 30 Z < Ker(§ — 7). But J,/Z is divisible, while J,, is reduced, so
J,/ Ker(§ — ) = 0. It follows that £ = 7, and we have

EndJ, = J,.

Hom and Direct Sums and Products Our next concern is the behavior of Hom
towards direct sums and direct products. The following theorem is fundamental.

Theorem 1.7. For an arbitrary index set I, there are natural isomorphisms

Hom(®;e/ Ay, C) = [ | Hom(A;. C) (7.1)
i€l
and
Hom(A, [ | Ci) = [ | Hom(A. Cy). (7.2)
i€l i€l

Proof. In order to prove (7.1),let p; : A; — D A; and ; : &A; — A; denote the
injection and the projection maps, respectively. We map the left side of (7.1) to the
right side by sending & : ®A; — Cto (...,ap;,...) where ap; : A; — C. This
is evidently a homomorphism ¢ from the left to the right side. It is clear that ¢
maps « to 0 only if « = 0. Since every (..., q;,...) € [[Hom(A;, C) defines an
a € Hom(@ A;, C) via o = ®(a;7;), ¢ is epic as well.

For the proof of (7.2), let 0; : C; — []C; and 7; : [[C; — C; denote the
injection and the projection maps, respectively. Every 8 € Hom(A, [] C;) defines
a homomorphism t;8 € Hom(A, C;) for each i. As in the preceding paragraph, we
conclude that the correspondence 8 +— (..., t;8,...) is an isomorphism of the left-
hand side of (7.2) with its right-hand side. O

We can now derive the following corollary.

Corollary 1.8. Assume A is a torsion group with p-components A, and C is a group
with p-components C,. Then

Hom(A, C) = [ | Hom(4,. C,).

P
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Proof. Apply (7.1) and observe that Hom(4,, C) = Hom(4,, C,). O
Example 1.9. For any group A,

Hom(A.Q) = [] @

tko(4)

Because of (E), the description of Hom(A, Q) becomes a simple calculation in cardinal arithmetics.
If F is a free subgroup of A generated by a maximal independent system of elements of infinite
order only, then every ¢ : F — Q extends uniquely to a map o : A — Q. This amounts to saying
that Hom(F, Q) = Hom(A, Q) naturally. The former Hom is evaluated by using (7.1).

Hom As Bifunctor The correct way of viewing Hom is as a functor
Abx Ab— Ab associating the group Hom(A, C) with the ordered pair (A,C) €
Ab x Ab. In the balance of this section we investigate the functorial behavior of
Hom.

Leta: A — Aand y: C — C' be fixed homomorphisms. An n € Hom(A, C)

defines a homomorphism A’ — C’ as the composite A’ “a-Lc-LC. The
correspondence 1 — yna is a homomorphism

Hom(w, y): Hom(A, C) — Hom(A', C"),

called the homomorphism induced by o and y. Clearly, Hom(14, 1¢) = 1tom,0)-
Furthermore, if A” LA LA and Lo s , then
Hom(ao', y'y) = Hom(e', ') Hom(c, y).

Evidently, Hom(e, y) is additive in both arguments. Therefore, we can conclude:

Theorem 1.10. Hom is an additive bifunctor Ab x Ab — Ab, contravariant in the
first and covariant in the second argument. O

It is often convenient to use abbreviated notations (provided there is no danger
of confusion):

a® = Hom(w, 1¢) and vx = Hom(1y, y).

The following result describes the behavior of Hom towards direct and inverse
limits.

Theorem 1.11 (Cartan—Eilenberg [CE]). Assume
A={A;(iel;nl} and E={C(je)):p}

are a direct and an inverse system of groups, respectively, and let A = limA;, C =
1(21 C; with canonical maps m;: A; — A and p;: C — C;. Then

§ = {Hom(A;, C)) ((i.j) € I x J: Hom(x}, p})}
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is an inverse system of groups whose inverse limit is Hom(A, C) with Hom(z;, p;)
as canonical maps.

Proof. 1t is straightforward to check that §) is an inverse system; let H denote its
inverse limit. From the required commutativity of the triangles we can conclude
that there exists a unique map & rendering all triangles

Hom(A,C) ----%--- > H
Hom(ﬂ'“pN /gij
Hom(4,;,C;)

commutative, where the £; are the canonical maps. To show that £ is monic, let
n € Ker&. Then §;én = 0, that is, pjnm; = Hom(sm;, pj)n = 0 for all i, j. Thus the
map nm;: A; = Cis 0, because all of its jth coordinates are 0, and since U;m;A; = A,
we have n = 0.

Any y € His of the form y = (..., xj4....) € [[Hom(A;, C;) where the
coordinates y; satisfy the requisite postulates. Define n : A — C as follows: if
a = ma;, then for this i set na = (..., xjai,...) € [[C;. It is straightforward
to verify the independence of na of the choice of i as well as the homomorphism
property of . Considering that &y = y;; and §;6n = pjnm; = y;, we must have
&n = y, showing that £ is epic. Thus £ is an isomorphism. O

Hom and Exact Sequences Next we prove a most frequently used application
of the Hom functor.

Theorem 1.12. If0 — Ai>Bi>C — 0 is an exact sequence, then so are the
induced sequences

0 — Hom(G, A)-*> Hom(G, B)-=> Hom(G, C) (7.3)
and
0 — Hom(C, G)ﬁ—> Hom(B, G)a—> Hom(A4, G) (7.4)

for every group G. Equation (7.3) can always be completed to an exact sequence
with — 0 if G is a free group, and (7.4) if G is a divisible group.

Proof. Letn: G — A.If an = 0, then o« monic implies n = 0, so oy is also
monic. Furthermore, Ban = 0 shows that S.a = 0 as well. If £: G — B is such
that B& = 0, then Im& < Ker = Ima, so thereisa ¢ : G — A with § = a¢.
Thus (7.3) is exact. If we continue with — 0, then exactness at Hom(G, C) would
mean that for every {: G — C thereis a £: G — B such that 8& = ¢, this holds for
free groups G, due to their projective property.

Nextlet n: C — G.If n = 0, then n = 0, since S is epic; thus §* is monic.
From nBa = 0 we obtain o*B* = 0. Assume £ : B — G satisfies £ = 0. This
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means that Ker 8 = Ima < Ker£, sothereisa¢: C — G with § = ¢f. Thus (7.4)
is exact. If G is injective, then for every {: A — G thereis a § : B — G such that
¢ = £a, so — 0 can be added to (7.4). O

More can be said if we start with a pure-exact sequence.

Proposition 1.13 (Fuchs [11]). If the sequence given in the preceding theorem is
pure-exact (p-pure-exact), then so are (7.3) and (7.4).

Proof. First, let n: G — B, £: G — A satisfy nn = «f (n € N). Thus npy
maps G into @A, and so Imn < n~'aA. By Theorem 2.10 in Chapter 5, n~'aA =
aA @ X where nX = 0. If 7 denotes the projection onto the first summand, then
¢ = a 'nn: G — A satisfies n¢p = £, establishing the first claim.

Next, assume nn = £ holds forn: B — G, §: C — G and n € N. Then
n(na) = EBa = 0 shows that noeA < Ker . Owing to Theorem 2.10 in Chapter 5,
there is a direct decomposition B/ (naA) = aA/(naeA) @B’/ (naA) for some B’ < B.
Define ¢ as the composite map B — B/(neA) — B'/(naeA) — G, where the second
map is the canonical projection, while the third is induced by 7. Clearly, n¢p = nn
and A < Ker ¢. Because of this inclusion, there is a homomorphism 6 : C — G
such that ¢ = 6. Hence n(0p) = n¢ = nn = £B, completing the proof. O

Small Groups A group G is said to be small if there is a natural isomorphism
Hom(G, ®ies Ci) = @iy Hom(G, C;)

for every set of groups C;. Equivalently, the image of every homomorphism of G
into an infinite direct sum is already contained in the direct sum of a finite number
of summands. If the groups C; in the definition are restricted to a class C of groups
(e.g., to torsion-free groups), then G is called C-small. In particular, if C is the direct
sum of copies of G itself, then G is self-small.

Example 1.14. (a) Finitely generated groups are small, while finite rank torsion-free groups are
F-small, where F denotes the class of torsion-free groups.

(b) The quasi-cyclic group Z(p®®) is not small: it has a homomorphic image in @y, Z(p°°) that
has non-zero projection in every summand (elements of order p”" have non-zero coordinates
in the first n» summands).

(a) Epic images of small groups are small.

(b) A finite direct sum of groups is small if and only if each component is small.

(c) A group is small if and only if it is finitely generated. If G is small, then its
copy in an injective group must be contained in the direct sum of finitely many
summands, whence we infer that G is of finite rank. The torsion subgroup
of G cannot have infinitely many non-zero p-components, nor a quasi-cyclic
summand (see Example 1.14b), so it must be finite. G/1G is a small torsion-free
group, hence all of its torsion homomorphic images have to be small, so finite.
Hence G/tG is a finite extension of a finitely generated free subgroup, so itself
finitely generated.

(d) A torsion-free group is small in the category of torsion-free groups if and only
if it is of finite rank.
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% Notes. The group structure of Hom has been the main topic of numerous investigations.
It is impossible to survey them without the extensive knowledge of the material in later chapters.
Perhaps the most important results are due to Pierce [1] that give a very precise description of Hom
in case of p-groups, making use of Theorem 2.1. No comparable study is expected for torsion-free
groups.

One question which we would like to point out here is concerned with the problem as to what
extent the functor Hom(A, *) determines the group A. That A is by no means determined by this
functor was proved by Hill [12] for p-groups and by Sebel’din [2] for torsion-free groups. The
counterexamples are: 1) A = @,5B and A’ = GBszE where B = @y, ®Pn<w Z(p") (B is the
torsion-completion of B, see Sect. 3 in Chapter 10); and 2) A = @, ZHQ and A’ = A® Q. Then
Hom(A, G) = Hom(A’, G) holds for all G. Albrecht [7] deals with this question for p-groups and
cotorsion groups.

An important generalization of homomorphism groups is concerned with groups with distin-
guished subgroups. The objects of the category Ab, are A = {A;A;(i < n)} where A € Ab, and
Ag, ..., A,—1 are fixed subgroups of A. If C = {C; C;(i < n)} is another object in this category,
then ¢ : A — C is a morphism if ¢ € Hom(A, C) such that ¢(4;) < C; for all i < n. Results
on homomorphism groups in such categories are instrumental in several questions concerning
ordinary homomorphism groups.

Exercises

(1) Show that Hom(A, C) is isomorphic to a subgroup of C*.

(2) We have Hom(A, C) =~ Hom(C, A) and Hom(A, Q/Z) = A if both A and C
are finite groups.

(3) If A is torsion-free and C is divisible, then Hom(A, C) is divisible.

(4) Prove that Hom(A, Z(m)) =~ Hom(A/mA, Z(m)) for all m € N.

(5) If C is torsion-free, then Hom(Q, C) is isomorphic to the maximal divisible
subgroup of C.

(6) If the sequence 0 - A — B — C — 0 is pure-exact, then (7.3) can be
completed with — 0 if G is X-cyclic, and (7.4) can so be completed if G is
pure-injective.

(7) (a) If A is a torsion group, then the set union UIme, taken for all o €

Hom(A, C), is a subgroup of C.
(b) The same is not necessarily true if A is torsion-free. [Hint: A of rank 2
withEndA =~ Z,and C =A@ A.]
(8) Prove EndJ, = J, via the isomorphism End J, = l(i£1n Hom(J,, Z(p")).
(9) Describe the structures of End(@,Q) and End(&,J,) for a cardinal «.
(10) If either A or C is a p-group, then Hom(A, C) is a J,-module.
(11) If ¢ € AutA, y € AutC, then Hom(e, y) is an automorphism of Hom(A, C).
(12) (Gerdt) G is small if and only if G < @;¢; C; implies G < @,y C; for some
finite subset J C I. (Thus it suffices to consider monomorphisms.)
(13) (Gerdt) If D is the class of divisible groups, then D-small groups are small.
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2 Algebraically Compact Homomorphism Groups

Having considered elementary properties of Hom as well as the exact sequences
involving Homs, we turn our attention to special situations when Hom(A, C) is of
great interest. We concentrate on cases in which Hom is algebraically compact.

Hom for Torsion Groups We start with the remarkable fact that if A is a
torsion group, then Hom(A, C) has to be algebraically compact, and hence it can
be characterized by invariants describable in terms of the invariants of A and C.

Theorem 2.1 (Harrison [2], Fuchs [11]). IfA is a torsion group, then Hom(A, C)
is a reduced algebraically compact group, for any C.

Proof. 1t suffices to prove that if A is a p-group, then H = Hom(A, C) is complete
in its p-adic topology. To show that H is Hausdorff, suppose n € H is divisible by
every power of p. If a € A is of order p¥, and if y € H satisfies p*y = 7, then
na = p*ya = yp*a = 0 shows that n = 0. Next, let ny,...,7,,... be a Cauchy
sequence in the p-adic topology of H; dropping to a subsequence if necessary, we
may assume it is neat: 1,41 — 1, € p"H for each n, i.e. 9,41 — n, = p" x, for some
Xn € H. Let

n=m+mm—=n)++ @net — 1) +....

This is a well-defined map A — C, since for a € A of order pk, we have
(M1 — Mu)a = 0 for all n > k, so that the image na = na + (n2 — n1)a +
-++ + (nx — M—1)a is well defined. Furthermore,

N="1n = Matt — M) + 2 — Mar1) + - =p"(Yn +PYut1 +...),

where the infinite sum in the parentheses belongs to H. Thus n —n,, € p"H, and 7 is
the limit of the given Cauchy sequence. Consequently, H is complete. O

We give a second, shorter proof based on Theorem 1.11. As a torsion group, A
is the direct limit of its finite subgroups A;. By Theorem 1.11, Hom(A, C) is then
the inverse limit of the groups Hom(4;, C) which are bounded in view of Sect. 1(F).
Hence Hom(A, C) is the inverse limit of complete groups, and the assertion follows
from Sect. 2, Exercise 7 in Chapter 6.

The invariants of Hom(A, C) for p-groups A can be computed, but the computa-
tion is very technical and lengthy, so we just refer the interested reader to Pierce [1];
see also Fuchs [IAG].

Hom for Compact Groups A most interesting case is when the Hom is a
compact group. Next, we take a look at this situation.

We want to give an algebraic characterization of those groups that can carry
a compact group topology. In Sect.5 in Chapter 6 we have introduced the group
CharG = G as the group of all continuous homomorphisms of the topological
group G into the circle group T = R/Z, and observed that Gis compact if and
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only if G is discrete. Actually, this is all that we need from the Pontryagin duality to
describe the structure of compact groups:

Proposition 2.2. A group A can carry a compact group topology if and only if it is
of the form
A = Hom(G, T)

for some group G. O
Here Hom can be viewed in the algebraic or in the topological sense.

Character Groups Accordingly, our problem became purely algebraic: to
classify the groups of the form Hom(G, T). Algebraically, T is nothing else than
the direct product of quasi-cyclic groups, one for each prime p. Hence

Char G ~ l_[ Hom(G, Z(p*)).
p

Consequently, it suffices to deal with Hom(G, Z(p°°)) only.
In describing the structure of this Hom, crucial role is played by the p-basic
subgroups of G. So let us fix a p-basic subgroup B of G, and write

B =®;2)B, where By = ®Z, B, = ®Z(p") for n> 1.

Here k, (n > 0) are cardinal numbers, uniquely determined by G. The p-component
of G/B is of the form &, Z(p>°); the fact that the cardinal ¥ depends on the choice of
B is not relevant (as we shall see below), but it can be made unique by choosing e.g.
a lower basic subgroup in the p-component of G. Finally, we let A = 1ko(G/B). A
full characterization of Hom(G, Z(p°°)) may be given with the aid of these cardinal
numbers.

Theorem 2.3 (Fuchs [10]). Using the above notation, for any group G we have
Hom(G, Z(p™)) = ]"[ Z(p™) @ ]—[ [1ze" e l—[J o] (1.5)
n=1 Ky ARo

Proof. The p-pure exact sequence 0 - B — G — G/B — 0 induces the p-pure-
exact sequence

0 — Hom(G/B, Z(p*>°)) — Hom(G, Z(p*>°)) — Hom(B, Z(p*°)) — 0.

Now Theorem 1.7 shows that

Hom(B, Z(p™)) = ]"[ Hom(B,. Z(p™)) = [ | (™) & ]_[ [ ]ze".

Ko n=1 Ky
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If we write G/B = ®,Z(p*>°) & H with zero p-component for H, then because
of Hom(®,Z(p>°), Z(p*°)) = [], End(Z(p>™)) = [], Jp. it remains to evaluate
Hom(H, Z(p*°)). The p-pure subgroup L in H generated by a maximal independent
set of elements of infinite order is torsion-free and p-divisible, and H/L is a torsion
group with zero p-component, so L = @,;Q%. (This group L is not unique, not
even its cardinality is well defined, but this does not influence the outcome.) The
exactness of 0 > L — H — H/L — 0 implies that of 0 = Hom(H/L, Z(p°°)) —
Hom(H, Z(p*°)) — Hom(L, Z(p*>°)) — 0, thus we obtain

Hom(H. Z(p™)) = Hom(L. Z(p™)) = [ [Hom@Q?. Z(*)) = [ [ ] @
A

AR

where we have used Example 1.5. We observe that Hom(G/B, Z(p*°)) is alge-
braically compact, so its purity in Hom(G, Z(p®°)) implies that it is a summand.
This completes the proof. O

If we determine the cardinal numbers ko, &, k, A for all primes, then Char G will
be the direct product of groups (7.5) with p ranging over all primes. The group on
the right side of (7.5) does not depend on the choice of k, since the second summand
always has a summand that is the product of k" copies of J, where ¥’ = fin rk 1B, so
(7.5) has always the product of fin rk tG copies of J,. A similar comment applies to
the choice of A (see also Theorem 2.6 below).

Observe that the first and the fourth summands in (7.5) come from elements of
infinite order, while the two middle summands from the torsion subgroup of G.
Hence:

Corollary 2.4. Char G is reduced if and only if G is a torsion group, and is divisible
if and only if G is torsion-free. O

Since groups G can be found with arbitrarily chosen cardinals «,, and «, for every
prime p, we can conclude:

Corollary 2.5 (Hulanicki [1], Harrison [1]). A reduced group is the character
group of some (torsion) group exactly if it is the direct product of finite cyclic groups
and groups J,, for (distinct or equal) primes p. O

For divisible groups, a simple inequality must be satisfied.

Theorem 2.6 (Hulanicki [1], Harrison [1]). A divisible group # 0 is the charac-
ter group of some (torsion-free) group if and only if it is of the form

l_[ HZ(poo) &) 1_[ where (1 > Ry.

Py w

Proof. If G is a torsion-free group, then its rank is, in the above notation, ko(p) +
A(p) (the dependence on p must be indicated, but the sum is the same for every
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prime p). This shows that Char G will have the stated form with @, = ko (p), unless
ko(p) = 0 for every prime p. In this case, the direct sum with HROQ does not change
the isomorphy class of the first direct product.

Conversely, given a divisible group of the stated form, it is an easy exercise to
check that ;« may be replaced by p+ » Mp- This says, in short, that ;o > 1, may be
assumed. Define G as a direct sum of rational groups G; such that, for every prime
D, 1p of them satisty pG; # G; and u of them satisfy pG; = G;. Then Char G will
be as desired. O

Example 2.7. (a) For discrete groups Z(p>°), Q we have Char Z(p®°) == J, and Char Q = R.
(b) For discrete J,,, Char J, = Z(p>°) @ @,x, Q.

Corollary 2.8 (Kakutani). The character group of a group of infinite cardinality
Kk is of the power 2.

Proof. The cardinality of an infinite group G is the sum of the cardinalities used
in Theorem 2.3, taken for all primes p. (7.5) implies that then the group Char G
must have cardinality 2%. O

The theorems above are convincing evidence that the algebraic structure of
compact groups is extremely special. The cardinality of the set of all non-isomorphic
groups of infinite cardinality < 2¢ is 22°, but the number of those that can carry a
compact group structure is minuscule. For instance, if x = R, with |a| < Ry, then
there are only countably many, pairwise (algebraically) non-isomorphic groups of
cardinality « that can be compact topological groups, provided we assume GCH.
Indeed, then the cardinal invariants in Theorems 2.3 and 2.6 can be chosen not more
than countably many ways, and they are unique due to GCH.

Example 2.9. This is an example of a group that can carry one and only one compact group
topology: J; for any cardinal « (it is compact in the finite index topology). In fact, Theorem 2.3
shows that the only discrete group whose character group is = J; is the group @, Z(p>) where «
is unique if GCH holds (note that |J; | = 2°).

In contrast, some groups may be furnished with as many distinct compact
topologies as possible, as is shown by the following theorem:

Theorem 2.10 (Fuchs [10]). For any infinite cardinal , there exist 2“ non-
isomorphic compact topological groups of power 2 that are algebraically all
isomorphic.

Proof. In the proof we refer to Corollary 3.8 in Chapter 11 that asserts the
existence of 2“ non-isomorphic p-groups of cardinality «: they can be chosen with
isomorphic basic subgroups @52, @, Z(p"), and they have the same final rank «.
By virtue of Theorem 2.3, their character groups are algebraically isomorphic to
[122, T1. Z(") & [1, J,; however, by the Pontryagin duality theory, they are not
isomorphic as topological groups. O

While we are still on the subject of compactness, it is worthwhile pointing out
that Hom preserves (algebraic) compactness in the second argument.
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Theorem 2.11. If A is (algebraically) compact, then Hom(G, A) is (algebraically)
compact for every group G.

Proof. Hom(G, A) is isomorphic to a subgroup of the group A% of all functions from
G to A. If A is compact, then A is a compact group in which Hom is a closed subset.
Hence Hom(G, A) is a compact group. (For the proof of algebraic compactness, use
the summand property.) O

Linearly Compact Groups The structure of linearly compact groups (see
Sect. 3 in Chapter 6) is similar to the compact case, though there are some notable
differences. First and foremost is that the Kaplansky duality replaces the Pontryagin
duality.

In Kaplansky’s theory, the duality is established between the category of
linearly compact and the category of discrete p-adic modules, for a fixed prime
p. Thus only those abelian groups are participating in the duality that are also
J,-modules. The characters are continuous homomorphisms into the discrete p-
adic module Z(p*>°). If M is a discrete p-adic module, then its character module
Hom,, (M, Z(p*)) is a linearly compact J,-module, furnished with the compact-
open topology. On the other hand, if M is a linearly compact J,-module, then the
continuous homomorphisms of M into Z(p*°) yield a discrete J,-module.

Example 2.12. The Kaplansky dual of the discrete group Z(p°°) is the linearly compact group J,,,
and vice versa.

Consequently, the linearly compact p-adic modules are, from the pure algebraic
point of view, nothing else than the groups Hom;, (M, Z(p>)) where M ranges over
the class of discrete p-adic modules. Hence, from the proof above on the character
groups one can derive:

Theorem 2.13 (Fuchs [15]). A group admits a linearly compact topology if and
only if it is the direct product of groups of the following types:

(a) Cocyclic groups: Z(p"), Z(p™°) for any prime p and n € N;
(b) The additive group J, of the p-adic integers and the additive group of the field
@; of the p-adic numbers, for each prime p. O

% Notes. The character group of a discrete left module (over any ring) is a right module that is
compact in the compact-open topology. Theorem 2.11 also extends to modules. It was S. Lefschetz
who introduced linearly compact vector spaces, and later the theory was extended to modules.
Linearly compact modules have an extensive theory.

Exercises

(1) Prove that Hom(Q, Q/Z) =~ Q.
(2) (a) If Ais algebraically compact, and if H is a pure subgroup of a group G, then
Hom(G, A) =~ Hom(H,A) ® Hom(G/H, A).
(b) Show that then Char G =~ Char H® Char G/H (isomorphism in the
algebraic sense only).
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(3) The additive group R of the reals can be furnished with infinitely many distinct
topologies, each yielding non-isomorphic compact groups. [Hint: Char (6, Q).]
(4) The group A = ZN/Z®™ is the character group of ®y,(Q ® Q/Z). [Hint:
Exercise 9 in Sect. 3 in Chapter 6.]
(5) If Cis a complete group, then Hom(A, C) is the inverse limit of bounded groups.
(6) (a) Assume A is equipped with a non-discrete compact topology. Then it
has a subgroup (algebraically) isomorphic either to 1) J, for some p,
or to 2) an infinite direct product of cyclic groups of prime orders.
[Hint: Theorem 2.3.]
(b) A group admits a non-discrete locally compact topology if and only if it has
a subgroup of kind 1) or 2).
(7) (Faltings) Let A be a p-group. Then f(Hom(A, Z(p*>°)) = A if and only if A is
torsion-complete with finite UK-invariants.
(8) Calculate the invariants of the algebraically compact group Hom(A, C) in case
A is X-cyclic and C = @, Z(p™>°).
(9) Find the invariants of Hom(A, C) if A is torsion-free and C = &®,Z(p°°). [Hint:
take p-basic in A.]
(10) Give a detailed proof of Theorem 2.13 for linearly compact groups.

3 Small Homomorphisms

This section should be read after getting familiar with the basic material from
Chapter 10; in particular, with large subgroups to be discussed in Sect. 2 there.

Small Homomorphisms Let A, C be p-groups. Following Pierce [1], we call a
homomorphism ¢ : A — C small if Ker ¢ contains a large subgroup of A. In other
words, the Pierce condition (Sect. 2 in Chapter 10) must be satisfied: given k > 0,
there exists n > 0 such that

p"Alp"] < Kerg.

Example 3.1. The map 7 in the proof of Szele’s theorem 6.10 in Chapter 6 is a small endomor-
phism of the p-group A; its image is a basic subgroup.

(A) Elements of infinite height belong to the kernel of every small homomorphism,
since the first Ulm subgroup is contained in each large subgroup (see Sect. 2(D)
in Chapter 10).

(B) The small homomorphisms ¢ : A — C form a subgroup of the group
Hom(A, C). Observe that if p"A[p*] < Ker¢; and pA[p*] < Ker¢», then
P"Alp*] < Ker(¢) + ¢») holds with n = max{n;,n,}. The group of small
homomorphisms will be denoted by Hom,(A, C).

(C) Homy(A, C) = Hom(A, C) whenever either A or C is bounded. The latter holds
as p™A is a large subgroup of A for each m > 0.
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(D) The factor group Hom(A, C)/ Hom,(A, C) is torsion-free. This follows from the
fact that if p”'¢ is a small homomorphism for some ¢: A — C and m > 0, then
¢ must be small, as well.

E) Ifp: A — Cis a small homomorphism, then B 4+ Ker¢ = A for any basic
subgroup B of A. This is a consequence of the definition of large subgroups.

Lemma 3.2 (Pierce [1]). Let B be a basic subgroup of the p-group A. There is a
natural isomorphism

Homy(A, C) — Homy (B, C)

given by the restriction map: ¢ — ¢ | Bwhere p: A — C.

Proof. If ¢: A — Cis a small homomorphism, then (E) shows that, for every a € A,
the image ¢a is the same as ¢b if a = b mod Ker ¢ (b € B). Hence it is clear that
¢ | Bis different for distinct ¢’s.

Conversely, we show that if we are given a small homomorphism ¢ : B — C,
then we can extend it to a small ¢ : A — C. By definition, there is a large subgroup
B(u) of B contained in Ker . Then L = A(u) is a large subgroup of A such that
L N B = B(u) by the purity of B in A. Since A/L = (L + B)/L = B/(L N B) and
there is a natural homomorphism B/(L N B) — B/ Kery/, we have the composite
map ¢ : A — A/L — B/Kery, which is evidently small and coincides with ¥
on B. O

Hom; As a Summand Perhaps more interesting is that Hom(A,C) is a
summand of Hom(A, C). This is demonstrated by the next theorem.

Theorem 3.3 (Pierce [1]). For p-groups A, C, Homg(A, C) is a direct summand of
Hom(A, C), complete in its p-adic topology. We have

Hom(A, C) = F @ Hom,(A, C)

where F is the p-adic completion of a free group F.

Proof. To show that Homg(A, C) is complete, let ¢1,...,¢;, ... be a neat Cauchy
sequence in Hom;(A, C). It is Cauchy also in Hom(A, C), thus, by the completeness
of this Hom, it has a limit in Hom(A, C), which must be ¥ = ¢| + (¢, — ¢1) +
-+« 4 (¢ix1 — @) + . ... It remains to show that ¥ is small. By the Cauchy property,
¢ir1 — ¢i = p'y; for some ¥; € Homy(A, C). Pick a k € N and let p"A[p"] <
Ker v, for suitable n; € N, for each i. Since A[p*] < Ker p*v; < Kerp'y/; whenever
i > k, if we choose n = max{ng,n,...,ng k}, then p"A[p"] < Ker(¢ir1 — ¢;) for
all i, showing that v is a small homomorphism. This proves that Homy(A, C) is a
complete group.

Since by (D) Hom(A, C)/ Hom,(A, C) is torsion-free, Hom, (A, C) is by algebraic
compactness a summand of Hom(A, C). A complementary summand is p-adically
complete (as a summand of Hom(A, C)) and torsion-free, so it must be the p-adic
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completion of a free group. (The rank of F can be computed as A* where « (1)
denotes the final rank of the basic subgroup of A (resp. C) if these are infinite.) O

The special case A = C leads to the subgroup End;(A) of EndA consisting
of the small endomorphisms of A. It is a two-sided ideal: that n¢ is small for all
n € EndA whenever ¢ € End;A is pretty obvious. That the same holds for ¢ too
follows easily, see, e.g., Exercise 2. Thus End(A)/End,(A) is a torsion-free ring on
an algebraically compact group.

Exact Sequence for Hom; We now prove an analogue of Theorem 1.12 for
Homy.

Proposition 3.4 (Pierce [1]). Let 0 — AiBi)C — 0 be an exact sequence of
p-groups. Then the induced sequence

0 — Hom, (G, A)-"> Homy(G, B)-~*> Hom,(G, C)

is likewise exact for every group G. If the first sequence is pure-exact, then so is the
induced sequence even if we append — 0 to the end.

Proof. For the first part, the only non-obvious claim is Ima, > Ker .. If n €
Hom,(G, B) satisfies Bn = 0, then S(nG) = 0, so nG < Ima. Hence there is a
&: G — A such that af = 5. Since evidently Ker& = Ker 7 (« being monic), we
have £ € Hom,(G, A), as desired.

Assume the given sequence is pure-exact, and 8 € Homy(G, C). If H denotes a
basic subgroup of G, then by Theorem 4.3 in Chapter 5 there is a homomorphism
y : H — Bsuch that By = 6 | H. It is readily checked that the map ¢ : G =
H+Ker 6 — Bis well defined if we apply y to H and send Ker 6 to 0. Furthermore,
¢ is small, and B« (¢p) = 0, so B is surjective. To verify purity, let ¢ € Hom,(G, B)
satisfy p*¢ € a(Hom,(G,A)). Then by Proposition 1.13 there is a ¥ : G — A
satisfying a(p*v) = p*¢. From the equality of the kernels we derive that p* is a
small homomorphism. Hence v is small as well, and the proof is complete. O

Note that we do not claim that the sequence for Hom,(*, G) is exact. As Pierce
[1] points out, in contrast to Proposition 3.4, this is not true in general.

% Notes. Megibben [2] shows that an unbounded torsion-complete p-group has a non-small
homomorphism into a separable p-group C if and only if C has an unbounded torsion-complete
subgroup. A result by Monk [2] states that the finite direct decompositions of End A/ Endy A are
induced by those of End A, so that they correspond to certain direct decompositions of A.

The concept of small homomorphism has been extended to the torsion-free and mixed cases by
Corner—-Gobel [1]. The general version, called inessential homomorphism, is based on the ideal
Ines A of End A; this is the set of all kinds of endomorphisms that are always present in groups
(like those with finite rank images). Interested readers are advised to consult this interesting paper.
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Exercises

(1) (Pierce) Every small homomorphism ¢ : p*A — p*C can be extended to a small
homomorphismA — C.

(2) (Pierce) (a) ¢: A — C is small if and only if for every k > O thereisann > 0
such that o(a) < p* and h(a) > n imply ¢ (a) = 0.

(b) ¢ is small if and only if, for every k > 0, there is an n > 0 such that
p'a # 0 (a € A) implies o(pa) < o(p*a).

(3) (Pierce) Prove that Homy(A; & A,,C) =~ Homy(A;, C) & Hom,(A,, C) and
Hom; (A, C; & C;) = Hom(A, C;) & Homg(A, C3).

(4) (Pierce) If G is a pure subgroup of the p-group A, then every small homomor-
phism ¢ : G — C extends to a small homomorphismA — C.

(5) (Pierce) Let A, C be arbitrary p-groups. Homg(A, C) = Hom(A, C) if either (a)
A has bounded basic subgroups and C is reduced, or (b) C is bounded.

(6) The composite of two small homomorphisms is small.

(7) Suppose A, C are p-groups. ¢ : A — C is small exactly if ¢(A') = 0 and the
induced map A/A! — C is small.

(8) Let A be a p-group with unbounded basic subgroup B. Prove Szele’s
theorem 6.10 in Chapter 5 by first mapping B onto itself by a small
endomorphism, and then applying Lemma 3.2.

(9) Let A be a p-group and B a basic subgroup of A. Then, for every p-group C,
the torsion subgroups of Hom(A, C) and Hom(B, C) are isomorphic. [Hint: the
elements in these Homs are small homomorphisms.]

Problems to Chapter 7

PROBLEM 7.1. Can the groups Hom(M,Z) be characterized for monotone
subgroups M of Z¥0?

See Sect. 2 in Chapter 13 for monotone subgroups.

PROBLEM 7.2. Call ¢ € Hom(A, B) a right universal homomorphismforA — B
if every ¥ € Hom(A, B) factors uniquely as v = n¢ with n € EndB. It is left
universal if v = ¢y with unique y € EndA. Study the cases when uniqueness is
not required, so Hom is singly generated (on the right or on the left) over End.

Right universal homomorphisms, called localizations, were discussed by Dugas [3] for torsion-
free groups. Left universal homomorphisms were completely described by Chachdlski—Farjoun—
Gobel-Segev [1] for divisible groups B under the name of cellular cover, and for arbitrary abelian
groups by Fuchs—Gobel [2]. See also Dugas [4].



Chapter 8
Tensor and Torsion Products

Abstract The tensor product of groups is one of the most important concepts and
indispensable tools in the theory of abelian groups. They compete in importance with
homomorphism groups, but their features are totally different.

Tensor products can be introduced in various ways. We define them via generators and defining
relations, and then we show that they have the universal property for bilinear maps. Tensoring is
a bifunctor that is right exact in both arguments. The exact sequence of tensor products is a most
useful asset, both as a tool in proofs and as a device in discovering new facts. Exactness on the left
can be restored by introducing the functor Tor, the torsion product, that is of independent interest.

If one of the groups is a torsion group, then the tensor product can be completely described by
invariants. In particular, the tensor product of two torsion groups is always a direct sum of cyclic
groups. The torsion product behaves differently, it raises more challenging problems. The tensor
product of torsion-free groups is a difficult subject.

Various facts concerning groups that were proved originally in an ad hoc fashion may be
verified more clearly, and perhaps more elegantly, by using homological methods, in particular,
the long exact sequences connecting the tensor and torsion products (as well as Hom and Ext).

1 The Tensor Product

Bilinear Functions and the Tensor Product Suppose A and C are arbitrary
groups, and g is a function defined on the set A x C with values in a group G,
g :Ax C — G.We say that g is a bilinear function if it satisfies

g(al + Clz,C) = g(al,c) + g(a%c) (81)
and

gla,c1 + c2) = gla,c1) + gla, c2) (8.2)

for all @,aj,a> € A, c,c1,cy € C. It follows at once that a bilinear function obeys
the following simple rules: g(a,0) = 0 = g(0,¢), g(na,c) = ng(a,c) = g(a, nc)
forallae A,ce C,andn € Z.

We are going to define a group (that will be denoted by A ® C) as well as a
bilinear function e: A x C — A ® C, such that e is the most general bilinear function
in the sense that any bilinear function g : A x C — G for any group G factors
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uniquely through it: there is a unique group homomorphism ¢ : A ® C — G such
that g = ¢e. This is the universal property of the tensor product.

Define X as the free group on the set A x C; i.e. the free generators of X are the
pairs (a,c) witha € A,c € C. Let Y denote the subgroup of X generated by the
elements of the form

(a1 + az,c) — (a1, ¢) — (az,¢) and (a,c; + ) — (a,c1) — (a, c2) (8.3)
forall a,a;,ar € A, ¢, c1,c» € C. The tensor product of A and C is defined as
ARC=X/Y.

If we write the coset (a,c¢) + Y as a ® c, then a typical element of A ® C will be
written as a finite sum u = Zi ki(a; ® c¢;) with a; € A, c; € C,k; € Z, where the
elements are subject to the rules

(a+a)®c=a1R®c+a,®c and a®(ci+c) =a®ci+a®Rc;. (8.4)

We also observe that na @ ¢c = n(a®c) = a®ncforalla € A,c € C,n € Z.
As a consequence, the elements of A ® C can be written in a simplified form as
u =7y (a; ® ¢;) where a; € A,¢; € C. However, it should be emphasized that
ordinarily # has many expressions of this form.

The notation a ® c is in principle ambiguous: it has a different meaning when
it is considered as an element of A ® C or as an element of A’ ® C’ for subgroups
A’ < A,C’ < C containing a and ¢, respectively (e.g., it can be 0 in A ® C, but not
in A’ ® C’; see (H)). Therefore, one always has to specify to which tensor product
the element a ® c belongs, unless its membership is clear from the context.

From the definition it is clear that e : (a,c) > a ® c is a bilinear map of A x C
intoA ® C.If g: A x C — G is an arbitrary bilinear map, then the correspondence
a ® c — g(a, c) extends to a homomorphism ¢ : A ® C — G, since the generators
of A ® C are subject only to the relations (8.3) (and to their consequences) that hold
for the respective images in G. Furthermore, it is obvious that no other map ¢ can
satisfy g = ¢e, i.e. given g, there is a unique ¢ making the triangle

AxC
e/ g

AC 2o G

commute. We can now state:

Theorem 1.1. Given a pair A, C of groups, there exist a group AQ C and a bilinear
function

e: AXC—-ARC
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with the following property: if g: A x C — G is a bilinear function into any group
G, then there is a unique homomorphism ¢ : A @ C — G making the above triangle
commute. This property determines A ® C up to isomorphism.

Proof. Tt remains to prove the last statement. Assume there are a group B, and a
bilinear function f : A x C — B with the same properties as A ® C and e. By the
first part of the theorem, there is a unique homomorphism ¢ : A ® C — B with
e = ¢f, and by the hypothesis on B, there is a unique ¥ : B - A ® C withf = yre.
Hence e = Y¢e,f = ¢yf, and in view of the uniqueness property, we conclude
that ¢ = lagc and ¢y = 15,50 A ® C = B, as claimed. O

As mentioned above, A ® C is called the tensor product of A and C, and we will
refer to the map e: A x C — A ® C as the tensor map. From the symmetry of
the roles of A and C in the definition it follows right away that the correspondence
a ® ¢ — ¢ ® a induces a natural isomorphism

ARC=CQ®A.
It is easy to check, for arbitrary groups A, B, C, the associative law
ARB)®RC=A® (B®RC)

either by the universal property or by the equality of generators.

Basic Properties Before stating some relevant properties of tensor products, we
record a simple lemma that is instrumental in exploring tensor products.

Lemma 1.2. Letac A,c € C.

(@) Ifm,n € Z such that ma = 0 = nc, then d(a ® c¢) = 0 where d = gcd{m, n};
(b) ifmlaand mec =0, thena ® ¢ = 0;
(¢) if m|a and n|c, then mn|(a ® c).

Proof. (a) Ifs,t € Zsuchthatsm+m =d,thend(a®c) = sma@c+maQc =
sma®c+a® tnc=0.

(b) Ifa =mad (d € A),thena®@ c =md ® c =a’ ® mc = 0.

(c) Ifalsoc = nc’ (¢’ € C),thena ® c = mn(d’ ® ¢'). O

Here is a short list of the most useful properties of tensor products. (Note how
important an ingredient the universal property is in the proofs of (A)-(B).) The
proofs of (C)-(H) are straightforward, and will be left to the reader.

(A) There is a natural isomorphism Z @ C = C for every group C.
The elements of Z ® C may be brought to the simpler form )_".(n; ® ¢;) =
>(1®nic) =1Qcforc=7,nic; € C.Thusthemap ¢:c > 1® cisan
epimorphism C — Z ® C. Clearly, (m, ¢) + mc is a bilinear map Z x C — C,
so the universal property implies that there is a unique ¥ : Z ® C — C acting
as ¥ (1 ® ¢) = c¢. Consequently, ¢ and v are inverse to each other.

(B) There is a natural isomorphism Z(m) @ C = C/mC for every integer m > 0
and group C.
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Here again, ¢ : ¢ — | ® ¢ is an epimorphism C — Z(m) ® C where 1 =
1 + mZ. We have mC < Ker¢, since |l ® mc = m @ c = 0 ® ¢ = 0. Now
(n,c¢) — nc + mC is a bilinear map Z(m) x C — C/mC, so by the universal
property, there is a homomorphism ¥ : Z(m) ® C — C/mC such that y¥¢ is
the canonical map C — C/mC. Thus Ker ¢ = mC.

(C) The heights satisfy hy(a ® ¢) > hy(a) + hy(c) (a € A, c € C). Thus if either A
or C is p-divisible (resp. divisible), then so is A ® C.

(D) If hy(a) > w fora € A and C is a p-group, then a @ ¢ = 0 for every c € C.
Thus if A is p-divisible and C is a p-group, then A @ C = 0.

(E) Ifa € mA and ¢ € C[m] for some m € Z, thena ® ¢ = 0.

(F) If either A or C is a p-group (torsion group), then sois A @ C.

(G) IfAis a p-group and C is a q-group for different primes p, q, then A ® C = 0.

Example 1.3. We have the following natural isomorphisms: Z ® Z(n) = Z(n), Z(p") @ Z(p") =

Z(p*) with k = min{m, n}, and Z(n) ® Z(m) = Z(d) where d = gcd{m, n}.

Example 1.4. Suppose A is a rational group. Then every x € A ® C can be written in the form

x = a®c withsome a € A, ¢ € C.In fact, as always, x = ZL] (a;®c;)holds witha; € A, ¢; € C,

but in the present case A is locally cyclic, i.e. there exists an a € A such that each g; is an integral

multiple of a, say a; = m;a (m; € 7). Thus

x = Z(m,»a ®c) = Z(a ®mjc;) =a® (Z m;c;)
where Y m;c; = ¢ € C. This form is not unique: if @« = ma’, then also x = a’ ® mec.

(H) It is very important to keep in mind that if B is a subgroup of A, then B ® C
need not be a subgroup of A® C. For instance, Z < Q,but Z® Z(p) = Z(p) is
not a subgroup of Q ® Z(p) = 0; or, Z(p) < Z(p*°), but Z(p) @ Z(p) = Z(p)
is not a subgroup of Z(p*°) ® Z(p) = 0. (We will see later that this cannot
happen if the containment is pure.)

Tensor Product As Bifunctor Leto: A — A’, y: C — C’ be homomorphisms.
Clearly, (a, c) — aa®yc is abilinear map Ax C — A’ ® C’, hence there is a unique
homomorphism¢: A ® C — A’ ® C’ such that ¢ (a ® ¢) = aa ® yc. This map will
be denoted as ¢ = o ® y, thus

(@®y)(a®c)=aa® yc @®ceARC,aa®ycc A’ ®C).
To avoid complicated notations, we will often write simply
o = a® 1c, Ve =14 Q@ y
whenever there is no danger of confusion. We also observe:

@@y)(@®y)=ad ®@yy,

(i +a)®@y=(@®y)+(®Yy), a® (1 +1)=@®y) + (@®y)
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for matching homomorphisms «, ¢y, @2, y, ¥1, 2. Hence we can state:

Theorem 1.5 (Cartan-Eilenberg [CE]). The tensor product is an additive bifunc-
tor Ab x Ab — Ab, covariant in both variables. O

In the next lemma we prove an important property: tensor products commute
with direct limits, and, in particular, with direct sums.

Lemma 1.6. The tensor product commutes with direct limits.

Proof. LetA = {A; (i € I); ]TL} } be a direct system of groups with direct limit A and
canonical maps ;: A; — A. Then

C={A®C(iel; r ®1c}

is also a direct system; let H denote its direct limit, and p;: A; ® C — H the
canonical maps. The homomorphisms 7; ® 1¢: A; ® C - A ® C satisfy m; ® 1¢ =
(1 ®1c) (7w ® 1¢) for i < j. By Theorem 1.1, there is a unique 0 : H — A ® C such
that op; = m; ® 1¢ for each i. Our claim is that ¢ is an isomorphism. Given a € A,
write a = m;a; for some a; € A;, and observe that g: (a,c) — p;(a; ® c) is a well
defined bilinear map A x C — H (i.e., it does not depend on the choice of i and @;).
Therefore, there is a homomorphism ¢: A ® C — H satisfying ¢ (a ® ¢) = g(a, c).
Nowa®c = (m; ® 1¢)(a; ® ¢) = opi(a; ® c¢) = og(a, c) shows that o and ¢ are
inverse on the generators of A ® C and H. O

Corollary 1.7. (i) For all groups A;, C; we have
(Bict A) ® (Bjes C)) = Bicr Bjey (AiQ® C))

(ii) In case A = ®,A, is a torsion group with p-components A,, then A ® C =
®, (A, ® C) for every C. If C is also a torsion group, C = @,C,, then
ARC=8,(4, ®C,). O

Tensor Product and Exact Sequences We have come to study the behavior of
the tensor product towards short exact sequences. In view of the symmetry, we may
confine ourselves to tensoring from one side only. The next theorem shows that ®
is a right exact functor.

Theorem 1.8 (Cartan—Eilenberg [CE]). If 0 — A—>B—">C — 0 is an exact
sequence of groups, then so is the sequence

A®GUBRGEC®G =0

for every group G.

Proof. Since o = 0, we have Bsax = (Ba)x = 0. Thus we need only prove
that the homomorphism ¢ : H = (B ® G)/Imax, — C ® G induced by B is
an isomorphism. Given ¢ € C, choose a b € B such that Bb = c¢. The mapping
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(c,g) = (b ® g) + Imax € H is clearly well-defined and bilinear, so there is a
homomorphism ¥ : C ® G — H such that (c ® g) = (b ® g) + Imax. It is now
clear that ¢ and v are inverse to each other on the generators. O
Example 1.9. To show that in Theorem 1.8 the tensored sequence cannot be extended with 0 —
on the left, consider the inclusion map Z(p) — Z(p°°). If it is tensored with Z(p), then the induced
map Z(p) ® Z(p) = Z(p) = Z(p°°) ® Z(p) = 0 is no longer monic. (See also (H).)

Example 1.10. We show that A = J, ®J, contains an uncountable divisible torsion-free subgroup.
The exact sequence 0 — Zg,) —> J, —> Q@™ — 0 induces the exact sequence 0 — Zpy @J, =

J, ®J, —> Q¥ @ J, — 0 (Theorem 3.5 will show that tensoring with a torsion-free group
preserves exactness). From the exact sequence 0 — Z —> Z) —> @,#,Z(g%°) — 0 it follows

that Z, ® J, = J,, so algebraically compact, while Q™) ® J, is a large torsion-free divisible
group. Hence the tensored sequence splits, and the claim follows: J, ® J, = J, & Q™).

A repeated applications of the last theorem shows that if §: B — C and 8’ :
B’ — (' are epimorphisms, then sois 8 ® f’': B® B — C ® C’. With a somewhat
greater effort one can prove a little bit more:

Corollary 1.11. Ler Ai>Bi>C — 0 and A’LB’LC’—)O be exact sequences.
Then the sequence

BB
—

ARB)®BRA)—>BRB5C®C -0

is exact where £ = V[(a ® 1p) & (15 ® &')].

Proof. Consider the following commutative diagram with exact rows and columns:

BRA —— CpA

1B®o/l l(lc®o/)
AgB 22, pep P85 cop
u@ﬂ’l 1B®ﬁ,l llc®ﬁ’

a@lgr

AR C —= BgC’ CC —— 0

l ! l

0 0 0

BR1ar
s

Hence it is clear that the map 8 ® B’ = (1¢ ® B')(B ® 1p) is surjective, and it is
easy to verify by simple diagram chasing that its kernel is the union of Ker(8 ® 15/)
and Ker(1z ® 8'). ]

Vanishing Elements in Tensor Products An immediate corollary to Lemma 1.6
is that if Y i (a; ® ¢;) vanishes in the tensor product A ® C, then there are
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finitely generated subgroups A’ < A,C' < C with a; € A',c; € C' such that
Yii(a;i ® ¢;) = 0as an element of A’ ® C'. Actually, we can obtain more detailed
information about what forces an element of a tensor product to become 0.

Lemma 1.12. In the tensor product A @ C of the groups A, C, a relation

n

Z(d,’@C,’):O (a,-EA, C,'EC)

i=1

holds if and only if there exist elements by € C (j = 1,...,m) as well as integers
r€Z(i=1,...,n;j=1,...,m) such that

n

ci = Z rib;  foralli and Z rya; =0 forallj.
j=1 i=1

Proof. Sufficiency follows from a simple computation:

n n

D@®c) =) la®Q_ bl =Y [ rya) ®b] =0,
j=1 =1 i=l

i=1 i=1

For the converse, assume ) " (a; ® ¢;) = 0. Let F = @yes (xx) be a free group,
and ¢: F — A an epimorphism such that x; = a; fori = 1,...,n (we assume that
these indices are in I). Hypothesis implies that the element ) ., (x; ® ¢;) in the
second term of the exact sequence Ker¢ ® C - F ® C — A ® C — 0 belongs to
the image of the first map. Hence there exist elements y; € Ker¢ and b; € C such

that 3 7, (6 ® ¢;) = 372, (v ® by). Writing y; = 3=, rigxe (g € Z), we get

Z(xi ®ci) = Z Z(xkrkj ® b)) = Z Z(xk ® rigb;).
i=1

koj=1 k=1

. . m n
Since the x; are free generators, hence we obtain ¢; = 3 'L rybjand } i, rya; =

¢y; = 0. o

For later application we point out that the elements b; in the proof may be chosen
in any preassigned pure subgroup C’ of C that contains the ¢;. In fact, it will follow
from Theorem 3.1 that A ® C' — A ® C is a monic map, so if Y _(a; ® c;) vanishes
inA® C, thenitmustbe 0inA ® C'.

A Natural Isomorphism A most important natural isomorphism connecting
Hom with the tensor product is the content of the following theorem.

Theorem 1.13. For any three groups A, B, C, there is a natural isomorphism

¢ : Hom(A ® B, C) = Hom(A, Hom(B, C)),
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acting as follows: if n: A ® B — C, then
[(pn)a](b) = n(a ® b) foralla € A,b € B.

Proof. Clearly, ¢(n) assignsto a € A amap (¢n)a: B — C that sends b € B to
n(a ® b) € C. The homomorphism properties of (¢ n)a are rather obvious. It is also
clear that the correspondence ¢ :  — (¢n)a is a homomorphism, so it remains to
find an inverse to ¢. Pick a y: A — Hom(B, C), and observe that (a, b) — (ya)(b)
is a bilinear function g: A x B — C. Hence there exists a unique n: A® B — C
such that n(a ® b) = (xa)(b). The mapping v : y — n is readily seen to be inverse
to ¢. O

% Notes. Tensor products for groups were introduced by H. Whitney. It is one of the
fundamental functors in Homological Algebra and in Category Theory. Tensor products A @ C
for modules over a ring R are defined when A is a right and C is a left R-module, and in
forming Y, the above generators are complemented with those of the form (ar,c) — (a, rc) for

alla € A,c € C,r € R. Theorem 1.13 is an important result: it claims that the tensor product and
the Hom are adjoint functors.

Exercises

(1) The bilinear functions A x C — G form a group under addition. This group
is = Hom(A ® C, G).

(2) There is a (non-natural) isomorphism A ® C = Hom(A, C) for finite groups
A, C.

(3) Characterize the groups C that satisfy in turn the following conditions:

(a) A® C = A for every group A;

(b) A ® C =~ A/mA with a fixed integer m, for every A;
(c) A ® Cis adivisible group for every A;

(d) A ® C = 0 for every torsion group A;

() A ® C = 0 for every p-group A;

(f) A ® Cis atorsion group for every A.

(4) Describe the structure of the following tensor products: (a) J, @ Q; (b) J, ®J,

for primes p # ¢; (c) J, ® C for a torsion group C.

(5) (a) If a € A,c € C are elements of infinite order, then the same holds for
a®cinAQ® C.

(b) Let {a;}ier and {c;}je; be maximal independent sets in the torsion-free
groups A and C, respectively. Show that {a; ® cj}icsjes is a maximal
independent setin A ® C.

(c) We have rko(A ® C) = 1ko(A) - rko(C) for any groups A, C.
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(6) (a) If A is torsion-free, then Q ® A is naturally isomorphic to the divisible
hull of A; a natural embedding being given by a — 1 ® a.

(b) Claim (a) is false if A has elements # 0 of finite order.

(7) Assume that the element a € A is such thata ® ¢ = 0in A ® C for all torsion
groups C and for all ¢ € C. Prove thata € A'.

(8) Define multilinear functions g: A} x --- X A, — G, the corresponding tensor
productA; ® --- ® A, and the tensor map e for multilinear functions. Prove
the universal property and the associativity relations

(A1 ®A) ®A; =A1 QA QA3 = A ® (A2 ® A3).

(9) There is a natural homomorphism
Ag[a—-]]asc

which in general fails to be an isomorphism. [Hint: A = Q, C; unbounded

torsion groups. See Mittag-Leffler groups in Sect. 8 in Chapter 3.]

(10) If « € EndA, y € EndC, then ¢ ® 1¢ and 14 ® y are commuting

endomorphisms of A ® C.

(11) (a) Assume A and C are torsion-free groups, and p’la ® ¢ holds for some
a € A,c € C, prime p, and integer t > 0. Show that there are integers
r,s > 0 such that p"|a, p*|c with r + 5 = ¢.

(b) Using the notion of type of torsion-free groups to be introduced in Sect. 1
in Chapter 12, find the type of A ® C if A, C are rank one torsion-free
groups.

(12) (Corner) (a) If A ® C is p-divisible, then one of A, C is p-divisible. [Hint:
argue with p-basic subgroups.]

(b) Let A be a torsion group. A ® C = 0 if and only if (i) pA # A implies

p(tC) = tC, and (ii) A, # 0 implies p(C/tC) = C/tC.

(13) (Head) Let B be a subgroup of a p-group A, and C a reduced group. The
canonical map B ® C — A ® C is monic exactly if B N p"A = p"B holds

whenever C has a cyclic summand of order p".

2 The Torsion Product

In Theorem 1.8 it was proved that the tensor product is right exact, and Example 1.9
shows that it is not left exact. Now the question arises whether or not it is possible to
salvage some sort of exactness by introducing another functor. It is our next goal to
define a bifunctor that leads to a long exact sequence continuing the tensor sequence
to the left.

Torsion Products The torsion product Tor(A, C) of the groups A, C is defined
as the group generated by the triples (a,m, c) witha € A,c € C,m € N such that
ma = 0 = mc, subject to the following relations:
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(a1 + a2, m,c) = (ay,m,c) + (a,m,c) where ma, = ma, = mc =0,
(a,m,c1 + ¢c2) = (a,m,c1) + (a,m,c;) where ma = mcy = mcy; =0,
(a,mn,c) = (na,m,c) where mna = mc =0,

(a,mn,c) = (a,m,nc) where ma = mnc =0

foralla,ay,a, € A, ¢,cy,c; € C, m,n € N. (Thus the relations are assumed to hold
whenever the right-hand sides are defined.) In view of the apparent symmetry, we
have

Tor(A, C) = Tor(C,A) for all A, C,

this being a natural isomorphism via (a, m, c) <> (¢, m, a).

The first two relations above imply (0,m,c) = 0 = (a,m,0); furthermore,
(na,m,c) = n(a,m,c) = (a,m,nc) for each n € 7Z whenever the symbols are
meaningful. Thus every element x of Tor(4, C) is a finite sum x = )_,(a;, m;, ¢;)
with mja; = 0 = myc; (a; € A,c; € C,m; € N), so there exist finite subgroups
A’ <A, C' < Csuchthat x € Tor(4’, C') < Tor(A, C). Note that m(a, m,c) = 0, so
Tor is always a torsion group (as its name indicates).

We list a number of elementary properties of Tor.

(A) There is a natural isomorphism Tor(A, C) = Tor(¢(A), t(C)). This follows from
the fact that in the definition of Tor, only elements of finite order are involved.
In particular, Tor(A, C) = 0 if either A or C is torsion-free.

(B) IfnA = 0 for some n € 7, then nTor(A, C) = 0 for every C. Clearly, all the
generators of Tor are now annihilated by n.

(C) Tor(A, C) = 0ifA is p-group and C is a g-group for different primes p, q.

(D) Multiplication by an integer n on A or on C induces multiplication by the same
n on Tor(A, C). This is an immediate consequence of the additivity of Tor.

(E) If C = {c) is a cyclic group of order n, then there is a natural isomorphism
Tor(A, C) = A[n]. Now, every x € Tor(A, C) is annihilated by n, so x can be
written in the form x = (a, n, ¢) with na = 0. In this special case, the elements
of Tor have unique forms, since (a, n, ¢) = 0 follows from the relations only if
a = 0. Hence Tor(A, C) = Aln].

(F) We have Tor(Z(p"), Z(p*)) = Z(p™™*t) and Tor(Z(p*), Z(¢")) = 0 if p.q
are distinct primes. This follows from (E) via a straightforward calculation.

Tor As Bifunctor In order to examine the behavior of Tor as a bifunctor
Ab x Ab — Ab, choose homomorphisms ¢ : A — A’,y : C — C'. Evidently,
if (a,m,c) is a generator of Tor(A, C), then (xa,m,yc) will be a generator of
Tor(A’, C"). Moreover, the function (a, m, c) — (aa, m, yc) between the generators
extends uniquely to a group homomorphism

Tor(et, y): Tor(A, C) — Tor(4', C).
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It is pretty obvious that Tor(e,y) Tor(e’,y’) = Tor(aa’,yy’) for matching
homomorphisms, as well as Tor(14, 1¢) = ltora,c). Hence we conclude:

Theorem 2.1 (Cartan-Eilenberg [CE]). The torsion product is an additive
bifunctor Ab x Ab — Ab, covariant in both variables. O

Next we prove the important result:

Theorem 2.2. Tor commutes with direct limits (and so also with direct sums):

Tor(limA;, C) = lim Tor(4;, C).
— —

1 l

Proof. Let A = {A; (i € I);Jr{ } be a direct system of groups with direct
limit A, and canonical maps m; : A; — A. We get the direct system € =
{Tor(A;, C) (i € I);Tor(r],1c)}; let T denote its direct limit, and p; the canonical
maps Tor(A;, C) — T. The homomorphisms Tor(7;, 1¢) : Tor(4;, C) — Tor(A, C)
satisfy Tor(rr;, 1¢) = Tor(r;j, 1¢) Tor(m], 1¢) for i < j. T being a direct limit, there
is a unique 0 : T — Tor(A, C) such that op; = Tor(sw;, 1¢). To show that ¢ is an
isomorphism, let (a, m, c¢) € Tor(A, C) where of course ma = 0 = mc. We can write
a = ma; for some a; € A; with ma; = 0, whence Tor(7;, 1¢): (a;, m, c) — (a,m,c)
shows that o is a surjective map. If x € Kero, then there is an index i € [ with
piy = x for some y € Tor(4;, C). Now Tor(m;, 1c)y = op;y = ox = 0 implies
the existence of a j > i such that Tor(s], 1c)y = 0. Apply p;, and notice that
pj TOI'(]Tii ,1¢) = p; to conclude that x = p;y = 0. This proves that o is an
isomorphism. O

An immediate consequence of the preceding theorem, combined with (A), is that
if A, C are any groups, then Tor(A, C) = @, Tor(A,, C,) holds for the p-components
Ap and C,,.

(G) For any three groups A, B, C, there is a natural isomorphism

Tor(A, Tor(B, C)) = Tor(Tor(A, B), C).

We can represent both sides as direct limits of the respective finitely generated
subgroups, since Tor commutes with direct limits. Consequently, it suffices to verify
the isomorphism for finitely generated groups. These are X-cyclic groups, Tor
commutes with direct sums, so a further reduction to cyclic groups is immediate. If
one of the groups is infinite cyclic or if not all of A, B, C belong to the same prime,
then both sides are 0. If A, B, C are cyclic of orders p*, p%, p”, respectively, then a
quick calculation (using (E)) shows that both sides are isomorphic to Z(p") with
n = min{k, £, m}. Hence the stated isomorphism is evident. It is easy to check that
the isomorphism is natural for cyclic groups, and direct limits preserve the naturality
of maps.

The following natural isomorphism makes it possible to identify the torsion part
of a group via Tor.
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Theorem 2.3. For every group C, we have
Tor(Q/Z, C) = t(C).

Proof. We start observing that Q/Z is the direct limit of the direct system 2A =
{Z(m); 7]} where 7]} : Z(m) — Z(n) is the natural injection for m|n, acting as
1 + mZ — nm~' 4 nZ. From Theorem 2.2 we conclude that Tor(Q/Z, C) is the
direct limit of the direct system € = {Tor(Z(m), C); Tor(x};, 1¢)}. In view of (E),
we can replace Tor(Z(m), C) by C[m], and Tor(s,, 1¢) becomes the inclusion map
C[m] — Ciln], as is easily verified. Thus the direct limit will be the union of the
C[m] for all m > 0, which is exactly #(C). O

Tor and the Tensor Product Let

0> A58 50 (8.5)
be an exact sequence. Define the connecting homomorphism
§:Tor(G,C) > GRA

as follows: if (g, m, c) € Tor(G,C) and if Bb = ¢ (b € B), thenlet§: (g, m,c) —
g ® a where €a = mb (a € A). Thus § is defined on the set of generators, and in
view of the relations in Tor and in ®, it extends to all of Tor(G, C). Importantly,
the definition is independent of the choice of b, a, because if b’, @’ are other choices,
thend =b+ax(x€A), d =a+mx,andso g ® d’ = g ® a + g ® mx where
g®mx=mgx=0.

The exactness of the sequence in the following theorem is one of the most
important results.

Theorem 2.4 (Cartan-Eilenberg [CE]). If (8.5) is exact, then so is for any group
G the sequence

* * §
0 — Tor(G, A)-~%> Tor(G, B)-2> Tor(G, C)—>

16®
S 6eA % 6B ¥ cec—o.

Proof. Since both tensor and torsion products commute with direct limits, and since
direct limits of exact sequences are exact, it will be enough to verify exactness for
G = Z and G = Z(m) (m € N) only. The first case is trivial, since it just leaves the
given exact sequence (8.5) unchanged (all Tors are 0). If G = (g) = Z(m), then the
elements of the Tors are of the form (g, m, x) with mx = 0, while those in the tensor
products are of the form ¢ ® x with x taken mod mX (here X = A, B, C). That
the composite of any two maps is 0 is clear except at places where § is involved.
Then §8«(g,m,b) = 8(g,m,Bb) = g ® a = 0, because aa = mb = 0, and
(1 ®a)é(g,m,c) = 1c®a)(g ®a) = (1 ® xa) = 0 as xa € mB.
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It remains to prove that the kernels are included in previous images for the first
three maps. If a«(g,m,a) = (g,m,aa) = 0, then e = 0 and a = 0, thus o
is monic. If B(g,m,b) = 0, then similarly fb = 0, thus some ¢ € A satisfies
aa = b with ma = 0. Hence a«(g,m,a) = (g, m,b), and the exactness at the
second Tor follows. Next, suppose §(g,m,c) = 0 where mc = 0 (¢ € C). Then
with the above notation g ® a = 0, so a € mA, i.e. a = ma’ for some a’ € A. Thus
amd = aa = mb,i.e. m(b—aa’) = 0. Hence (a, m, 8(b —aa’)) € Tor(G, B) maps
upon (g, m, c). Finally, if (14 ® «)(g ® a) = 0, then «a = mb for some b € B, and
for this b we have 6(g, m, Bb) = g ® a. This implies exactness at G ® A, completing
the proof. O

By the way, if (8.5) is chosen as a free resolution of C, say,0 - H - F — C —
0 with free group F, then Tor(G, C) can be defined as the kernel of the induced map
G ® H — G ® F. This interpretation leads to an alternative set of generators and
defining relations for Tor(G, C).

% Notes. The torsion product Tor(A, C) is defined over any ring R if A is a right and C is a
left module. Theorem 2.4 carries over, but the left O has to be removed and the sequence extended
to the left by terms of higher functors Torff(*, *).

S.E. Dickson [Trans. Amer. Math. Soc. 121, 223-235 (1966)] defines torsion theory for
abelian categories A as a pair (7, F) of classes in A such that 7, F are maximal with respect
to the property Hom 4 (7, F) = Oforall T € 7,F € F. T is closed under homomorphic images,
direct sums and extensions, while F is closed under taking kernels, direct products and extensions.
An example for a torsion theory in .Ab is (besides the obvious one) when 7 is the class of divisible,
and F is the class of reduced groups.

A more general concept is the radical. A functor R: Ab — Ab defines a radical in Ab if
R(A) <Aand R(A/R(A)) = Oforall A € Ab. E.g. p° (for any ordinal o) is a radical functor in the
category of torsion groups. More generally, if X" is any class of groups, then Rx (A) = Ny Ker ¢
with ¢ € Hom(A,X) (VX € X) is a radical functor. An idempotent radical defines a torsion
theory.

Exercises

(1) Prove that (a,m; + my,c) = (a,my,c) + (a, my, c) holds for the generators of
Tor whenever the right hand side makes sense.

(2) For finite groups A, C, Tor(A, C) = A ® C is a (non-natural) isomorphism.

(3) Assume (a,p”,c1) = (a,p",cz) in Tor(A,C) where A = (a) = Z(p") and
o(c1) = o(cy) = p". Prove that ¢; = c;.

(4) (a) A is torsion-free if and only if Tor(A, C) = 0 for every group C.
(b) Tor(A,A) = 0 implies that A is torsion-free.

(5) If A is torsion-free, then A ® Tor(B, C) = Tor(A ® B, C). [Hint: direct limit.]

(6) Forall A, C, and m € Z, one has Tor(A ® Z(m),C) =~ A ® Tor(Z(m), C) and
Tor(Z(m),A) ® Tor(Z(m), C) = Tor(Tor(Z(m),A), C).

(7) If A satisfies Tor(A, C) = #(C) for every group C, then A = Q/Z & G with G
torsion-free.
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(8) Formulate and prove the dual of Corollary 1.11 for Tor.
(9) Give counterexamples to show that Tor does not commute with (a) direct
products; (b) inverse limits. [Hint: A = ]_[p Z(p*).]

3 Theorems on Tensor Products

We wonder under what conditions the exactness of a short exact sequence is
preserved when tensoring it with a group G or when forming the torsion product
with G. We offer two independent conditions, one relates the sequence itself (pure-
exactness), while the other specifies the groups G (torsion-freeness).

Tensor Product and Pure-Exact Sequences We verify a frequently used
property of pure-exact sequences.

Theorem 3.1 (Harrison [1], Fuchs [11]). [f0 - A — B — C — 0 is a pure-
exact sequence, then so are the sequences

0>ARG—->BRG—->CRG—0 (8.6)
and
0 — Tor(A, G) — Tor(B,G) — Tor(C,G) — 0 (8.7)

for every group G.

Proof. Pure-exactness for both sequences follows from Theorem 3.1 or Corol-
lary 3.6 in Chapter 5, since the claim is true for cyclic groups, and both tensor
and torsion products commute with direct limits. O

An important consequence of this theorem is that if A’, C" are pure subgroups in
A, C, respectively, then A’ ® C’ may be regarded as a (pure) subgroup of A® C under
the natural map. In other words, @’ ® ¢’ (@’ € A’, ¢’ € C’) is the same if viewed as
an element of A’ ® C’ or as one of A ® C. Needless to say, the same conclusion can
be stated for p-purity.

Lemma 3.2 (Fuchs [11]). If B is a p-basic subgroup of A, and C is a p-group, then
there is a natural isomorphism

ARC=B®C.

Proof. We start with the p-pure-exact sequence 0 - B —> A — A/B — 0, and ten-
sor it with C to obtain the exact sequence0 > B C > A QR C — (A/B) ® C — 0.
Since A/B is p-divisible and C is a p-group, their tensor product vanishes. The
exactness of 0 > B® C - A ® C — 0 amounts to the claim in the lemma. O
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Tensor Products of Torsion Groups The last result enables us to determine
explicitly the tensor product of two groups if one of them is a torsion group. Let
B, denote a p-basic subgroup of A, and C, the p-component of the torsion group C,
then

A®Cx~d,(AR®C,) = (B, ® Cp). (8.8)

The last tensor products are easily computed as the groups B, are X-cyclic. Note
that these isomorphisms also show that, for a torsion group C, we have A @ C =
(tA) ® C) & (A/tH(A) ® C). More generally,

Lemma 3.3 (Harrison [2]). If B is a pure subgroup of A, and if C is a torsion
group, then

ARC=[B®C]|®[(A/B) ® C].

Proof. Referring again to the direct limit property, the proof can be simplified to the
special case C = Z(p*) of cocylic groups. If k is an integer, then we know that the
pure-exact sequence 0 - B — A — A/B — 0 splits when tensored with a finite
cyclic group. If k = oo, then (8.6) along with the injectivity of B ® Z(p°) implies
the claim. O

If both A and C are torsion groups, then their tensor product is very simple to
describe:

Theorem 3.4 (Harrison [1], Fuchs [6]). The tensor product of torsion groups is a
direct sum of finite cyclic groups.

Proof. 1f both A and C are torsion groups, then Lemma 3.2 permits us to replace
C, in (8.8) by its basic subgroup, so B, ® C, will be a direct sum of finite cyclic
groups. O

Tensor Products and Torsion-Free Groups The other case when exactness is
preserved under tensor products is recorded in the following theorem.

Theorem 3.5 (Dieudonné). Suppose 0 — A — B — C — 0 is an exact sequence.
If G is a torsion-free group, then the induced sequence (8.6) is also exact.
Hence the tensor product of torsion-free groups is again torsion-free.

Proof. As Tor(G, x) = 0 for torsion-free G, the claim follows at once from Theo-
rem 2.4. O

Very little is known about the structure of the tensor product of torsion-
free groups, except when the groups are completely decomposable. In this case,
complete information is available about the tensor product, based on the tensor
product of two rank one torsion-free groups; see Chapter 12. A very modest result
is related to p-basic subgroups.
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Lemma 3.6. Let A and C be torsion-free groups with p-basic subgroups B and D,
respectively. Then A ® C is torsion-free, and its p-basic subgroups are isomorphic
to B® D.

Proof. From the p-pure-exact sequence 0 —- B — A — A/B — 0 we deduce the
p-pure-exact sequence0 > BQC - AR C - (A/B)® C - 0. As (A/B) ® C
is p-divisible and torsion-free, the p-basic subgroups of B ® C are also p-basic in
A ® C. A repetition of this argument leads to the conclusion that B ® D is p-basic
inA®C. O

As far as mixed groups are concerned, we are able to get some information about
their torsion and torsion-free parts.

Theorem 3.7. For any groups A, C, there are isomorphisms

HAQC) = [t(A) @ C)] ® [t(A) ® C/H(O)] & [A/t(A) ® t(C)],
A®C)/HA®C) =A/tA) ® C/t(C).

Proof. 1t is easily checked that the kernel of the natural epimorphism A @ C —
A/t(A) ® C/t(C) is generated by A ® +(C) and #(A) ® C (which are subgroups of
A ® C; cf. Theorem 3.3). Evidently, A ® #(C) = [t(A) ® t(C)] & [A/t(A) ® t(C)],
and 1(A) ® C = [t(A) ® 1(C)] & [t(A) ® C/t(C)] are torsion groups. O

% Notes. Theorem 3.5 sounds trivial, but one should not forget that it was published before
the powerful homological machinery existed. It is a special case of a general theorem on modules
that states that exactness is preserved by tensoring a short exact sequence with a flat module. By the
way, flat modules are defined by the property that Tor vanishes identically for them. (Flat abelian
group is the same as torsion-free group.)

Tensor products need not be reduced even if the components are reduced as is shown

by Example 1.10. A. Fomin [1] studied the tensor powers of torsion-free groups A of rank »n and

p-corank k. He found that A® - - - ®A (k+ 1 factors) contains a p-divisible subgroup of rank ( . +1)'

Exercises

(1) The following are equivalent:

(a) The sequence 0 - A — B — C — 0 is pure-exact;
@ 0—->A®G—>B®G— C®G — 0is exact for every G;
(b) 0 — Tor(A, G) — Tor(B, G) — Tor(C, G) — 0 is exact for each G.

(2) (a) (Harrison) If 0 - A — B — C — 0 is a pure-exact sequence, then

0->A®G—>B®G— C®G — 0is splitting exact for every torsion G.

(b) If a group G has property (a) for every pure-exact sequence, then it must be
torsion. [Hint: B free and C = Q.]
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(3) (a) If A ® C contains a copy of Z(p®°), then either A or C has a subgroup
>~ Z(p).

(b) Examine when A ® C = Z(p*™).

(4) (a) Provethat A ® C = Z implies A =~ C = Z.
(b) If A ® C is a non-trivial free group, then both A and C are free.

(5) If A is torsion-free, then A =~ Hom(Q/Z,A ® Q/Z) (Z-adic completion).

(6) If the sequence 0 - A — B — C — 0 is pure-exact, then the same holds
for the sequence 0 — tA — tB — tC — 0 of torsion subgroups. [Hint:

Tor(Z(p®), *).]

4 Theorems on Torsion Products

While tensoring with a p-group implements drastic structural simplification, this is
not the case for the torsion product, though we may notice some smoothing effect.
In this section, we explore some interesting features of Tor.

In order to get more information about Tor, we want to take advantage of its
left exactness. The first and foremost fact to be observed is that if A’ < A and
C’' < C, then Tor(A’, C") < Tor(A, C). This is a powerful property that will be used
throughout without mentioning it explicitly.

Elementary Facts Our first concern is how Tor behaves towards multiplication
by integers.

Lemma 4.1 (Nunke [4]). For every integer n, we have
nTor(A, C) = Tor(nA, nC).

Proof. Starting with the exact sequence 0 — nA — A — A/nA — 0 and the same
for C, we obtain the exact sequence

0 — Tor(nA,nC) — Tor(A, C) — Tor(A/nA, C) ® Tor(A, C/nC),

using the commutative diagram dual to Corollary 1.11. Hence we conclude that
nTor(A,C) < Tor(nA,nC), since the direct sum in the displayed formula is
annihilated by n. To prove the converse inclusion, pick a generator x = (na, m, nc) €
Tor(nA, nC) where mna = 0 = mnc (a € A,c € C). Here x = (a,nm,nc) =
n(a,nm, c¢) € nTor(A, C). O

Interestingly, in the last lemma the integer n can be replaced by p° for any
ordinal 0.

Lemma 4.2 (Nunke [4]). For all ordinals o and p-groups A, C, we have

p° Tor(A, C) = Tor(p° A, p° C).



246 8 Tensor and Torsion Products

Thus the length of the p-group Tor(A, C) can exceed neither the length of A nor the
length of C.

Proof. First we observe that, by the left exactness of Tor, Tor(p°A, p°C) may be
regarded as a subgroup of Tor(A, C). To prove the claim by induction, note that the
case 0 = 0 is trivial, and the step from o to o 4 1 follows from the preceding lemma
along with the induction hypothesis:

p-p° Tor(A, C) = pTor(p°A, p°C) = Tor(p - p°A, p - p° C).
If o is a limit ordinal, then
p° Tor(A, C) = Np<sp” Tor(A, C) = Ny, Tor(pPA, p°C) > Tor(p° A, p° C).

The reverse inclusion follows in the same way as in the proof of Lemma 4.1. O
Lemma 4.3 (Nunke [4]).
(i) For all groups A, C, and integers n > 0,

Tor(A, C)[n] = Tor(A[n], C[n]).

(ii) The ranks satisfy rk,(Tor(A, C)) = 1k, (A) - rk,(C).

Proof. (i) Multiplication by n yields the exact sequence 0 — A[n] —
A-"5nA — 0, whence we derive the exact sequence 0 — Tor(A[n],C) —
Tor(A, C)—> Tor(nA, C). Thus Tor(A,C)[n] = Keri = Tor(A[n],C).
Applying the same argument to C, we obtain the desired isomorphism.

(ii) Since the rank of a p-group is the dimension of its socle as a Z/pZ-vector space,

and since Tor commutes with direct sums, the equality follows from the proved
isomorphism, applied for n = p. O

A consequence of this lemma is that if A, C are non-zero p-groups, then Tor(A, C)
is never 0.

UK-Invariants of Tor The following result will enable us to determine the UK-
invariants of Tor for p-groups in terms of their invariants.

Theorem 4.4 (Nunke [4]). IfA, C are p-groups, then the oth UK-invariant of their
torsion product is

Jo(Tor(A, ©)) = f»(A) f>(C) + f>(A) tk(p°T'C) + tk(p”T'A) £, (C).
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Proof. Write p°A[p] = p°t'A[p] @ G and p°Clp] = p°+'Clp] ® H where
tk(G) = f5(A) and tk(H) = f,(C). Combining Lemmas 4.2 and 4.3 we obtain
(p° Tor(A, C))[p] = Tor(p°Alp], p° C[p]) whence

(p° Tor(A, C))[p] = Tor(p®t'A[p]. p°*' Clp]) & Tor(G. p ' Clp])
® Tor(p‘THA[p],H) @ Tor(G, H)[p].

The first summand on the right is (p° ™! Tor(A, C))[p], so the oth UK-invariant of
Tor will be the sum of the ranks of the remaining three summands. The claim
follows from the observation that the rank of the last summand is tk(G) tk(H) =

fo (A)fo (C) O

Anticipating results from Chapter 11 that direct sums of countable p-groups are
completely determined by their UK-invariants, we can state:

Corollary 4.5. Ifthe p-groups A, C are direct sums of countable groups, then so is
their torsion product. In this case, Tor(A, C) can be completely characterized by the
UK-invariants of A and C.

Proof. As Tor commutes with direct sums, the first claim is evident. The rest follows
from our discussion above. O

Tor and Intersection of Subgroups Additional relevant properties are listed in
the following two lemmas.

Lemma 4.6 (Nunke [4]). Suppose A’,A” are subgroups of A and C',C" are
subgroups of C. Then

(1) Tor(A’ N A", C) = Tor(A’, C) N Tor(A”, C);
(ii) Tor(A’, C') = Tor(A, C') N Tor(A’, C);
(iii) Tor(A’ N A”,C' N C") = Tor(A’, C') N Tor(A”, C”).

Proof. (i) From the commutative diagram

0 Al A A AlJ(A' N A") 0
0 A A AJAT 0

with exact rows and monic vertical maps we get the commutative diagram

0 Tor(A' N A", C) Tor(A’,C) Tor(A’/(A’N A”),C)
0 Tor(A”, C) Tor(A, C) Tor(A/A"”,C)
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whose rows are exact and the vertical maps are monic. Diagram chasing shows
that Tor(A’ N A”, C) must be the stated intersection, thus (i) holds.
(ii) follows in the same way from the commutative diagram

0 —— Tor(A’,C') ——— Tor(A,C") ——— Tor(A/A',C")

! ! l

0 ——— Tor(A",C) ——— Tor(A,C) ——— Tor(A/A,C)

with exact rows and monic vertical maps.
(iii) Using (i) and (ii), we calculate

Tor(A’, C') N Tor(A”, C") = Tor(A, C") N Tor(A’, C) N Tor(A, C") N Tor(A”, C)
= Tor(A’ NA”,C) NTor(A,C' N C")
= Tor(A' NA",C' n "),

as desired.

Lemma 4.7 (Nunke [4]).

(i) For every x € Tor(A, C), there exist unique finite subgroups A’ < A, C' < C
with x € Tor(A’, C’) such that if x € Tor(A”,C") (A” < A,C" < C), then
A <A"and C < (C".

(ii) For every infinite subgroup G < Tor(A, C), there exist subgroups A’ < A, C' <
C such that G < Tor(A’, C") and |A’'| + |C’'| < |G].

Proof. (i) Consider pairs A”, C” of finite subgroups withA” < A, C" < C satisfying
x € Tor(A”, C”). From Lemma 4.6(iii) we conclude that the sets of such A” and C”
are closed under intersection, so there is a unique minimal pair A, C'. (ii) follows
from (i). |

We can say something definitive about the basic subgroups of Tor, also for those
of the subgroups of Tor.

Lemma 4.8 (Nunke [4]). Assume A, C are reduced p-groups. Every subgroup G of
Tor(A, C) is starred, i.e. its basic subgroups are of the same cardinality as G itself.

Proof. (Keef) Let B denote a basic subgroup of G. There is nothing to prove if B is
finite, so assume it is infinite. By Lemma 4.7, there are subgroups A’ < A,C’ < C
of cardinality < |B| such that B < Tor(A’, C’). There are maps « : Tor(A4,C) —
Tor(A/A’,C) and y : Tor(A,C) — Tor(A,C/C’) with kernels Tor(A’, C) and
Tor(A, C'), respectively, so that the kernel of the map « & y : Tor(4,C) —
Tor(A/A’, C) & Tor(A, C/C’) is equal to Tor(A’, C) N Tor(A, C') = Tor(A’,C").
Since B is mapped by @ & y onto 0 in a reduced group, the image of G under o & y
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must also be 0 (see Lemma 6.7 in Chapter 5). This means that G < Tor(A’, C’), thus
|G| < |Tor(A’,C")| = |B. |

Dependence on the Underlying Set We now show that, interestingly, the
structure of Tor might depend on the set-theoretical model in which it is considered.
(For the torsion-completion B, see Sect. 3 in Chapter 10.)

Theorem 4.9 (Keef [2]). Let B be an unbounded countable X-cyclic p-group. Then
Tor(B, B) is X-cyclic if and only if CH holds.

Proof. Assume CH, so that we can create a filtration of the torsion-complete
p-group B (whose cardinality is 2%) with countable pure (Z-cyclic) subgroups
Cy (0 < w1). Consider the pure-exact sequences

0 — Tor(C,, Cy) — Tor(Cy,, Cy41) — Tor(Cy, Co41/Cs) — 0,
0 — Tor(Cy, Cy41) = Tor(Cy41, Cot1) = Tor(Cy4+1/Cs, Cot1) — 0.

These sequences split, as the last Tors are X-cyclic, so Tor(Cy41, Cot1) =
Tor(C,, Cy) ®Tor(Cy, Co41/Cy) ®Tor(Cy41/Cs, Cy+1). Therefore, in the smooth
chain of the Tor(C,, Cy), every group is a summand of the next one with X-cyclic
complementary summand, and since evidently Tor(E, E) = U<, Tor(Cy, Cy), that
Tor(B, B) is Z-cyclic follows at once from Theorem 2.11 in Chapter 5.

Conversely, by way of contradiction, suppose T = Tor(B, B) is X-cyclic, and
R, < 2%, Using a fixed direct decomposition of T into cyclic summands, a
standard back-and-forth argument leads us to a pure subgroup C such that B <
C < B,|C| = Xy, and Tor(C, C) is a summand of 7. Tor(C, C) is obviously
a summand of Tor(B, C) as well, hence the exact sequence 0 — Tor(C,C) —
Tor(B, C) — Tor(B/C, C) — 0 is splitting. Consequently, the last Tor is X-cyclic.
But B/C is divisible of cardinality 2%, hence Tor(B/C, C) = @ C # 0, and C is -
cyclic. But C cannot be X-cyclic, since it is uncountable and its basic subgroups are
countable. O

When Tor is «-Cyclic Call a p-group «-cyclic if every subgroup which has
cardinality < k is ¥-cyclic. The main interest lies of course in groups of cardinality
> k that are k-cyclic.

Example 4.10. 1t is clear that for every uncountable cardinal «, k-cyclic p-groups are separable
(in the sense of Sect. 1 in Chapter 10), and in turn, every separable p-group is 8 -cyclic by Priifer’s
theorem.

Lemma 4.11 (Nunke [4]). If the p-groups A and C are k-cyclic, then Tor(A, C) is
Kkt -cyclic.

Proof. Tt suffices to prove that T = Tor(A, C) is X-cyclic provided |A| = |C| = k.
Choose smooth chains 0 = Ayg < - < A; < ...and 0 = C) < --- < C; <
... (0 < k) of pure subgroups with unions A and C, respectively, such that the links
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have cardinality < k, so they are ¥-cyclic by hypothesis. Then T is the union of the
smooth chain T, = Tor(A,, Cy) (0 < k) of pure subgroups. For each o, there is a
pure-exact sequence

0—=>T, > Toy — Tor(Ao'J'-l/Ao“, Co‘-"-l) (&) TOI’(A(T.H, Co‘-"-l/Co“)

(the dual of Corollary 1.11). The last direct sum of the Tors is X-cyclic, since Cy 41
and A, are both X-cyclic, thus T, = T, ® H, for some X-cyclic H,. Hence
we conclude that T = @, H, is X-cyclic. |

In particular, if A, C are separable p-groups (thus N;-cyclic), then Tor(A, C) is
R,-cyclic. A simple induction shows thatif Ay, ..., A are separable p-groups, then
their torsion product Tor(Ay, ..., An) is R, -cyclic.

% Notes. More on Tor can be found in Nunke [4]. For iterated torsion products, see Keef
[2]. Keef [9] gives a complete answer to Nunke’s question as to when Tor(4, C) is X-cyclic.
He introduces new invariants whose values are collections of finite sets of uncountable regular
cardinals.

The problem has been raised about the relation of reduced p-groups A, C if they satisfy
Tor(A, G) == Tor(C, G) for all reduced groups G. Hill [12] has several positive results, and Cutler
[1] provides examples showing that A, C need not be isomorphic. Keef [7] shows that reduced p-
groups A, C satisfy Tor(A, G) = Tor(C, G) for all reduced p-groups G if and only if they have the
same UK-invariants and A @ X = C @ Y for some X-cyclic groups X, Y. For an excellent survey
of Tor, see Keef [8].

Exercises

(1) Forall A, C, we have | Tor(A, C)| < |A| - |C|.

(2) If A, C are p-groups of length A4, Ac, then the length of Tor(A, C) is exactly
min{)kA, Ac}

(3) The divisible part of Tor(A, C) is the torsion product of the maximal divisible
subgroups of A and C.

(4) (Richman) If A, C are p-groups, and u = (a, pk.c) € Tor(A,C) is a generator,
then A, (1) = min{h,(a), h,(c)}.

(5) (Nunke) Let a € A,c € C be of the same order p™, and A’ < A,C’ < C
such that the generator (a, p™, ¢) of Tor(A, C) belongs to Tor(A’, C'). Then also
acA,ce.

(6) The torsion product T = Tor(A, C) of two reduced p-groups has a X-cyclic
summand of the same cardinality as 7. (We could be more specific and claim a
summand isomorphic to a basic subgroup of 7'.) [Hint: Lemma 4.8 and Lemma
6.12 in Chapter 5.]

(7) (Nunke) If A, C are p-groups such that Tor(A, C) is, but C is not X-cyclic, then
A must be separable.
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(8) (Keef) If A’ < A,C’ < C, then Tor(A’, C') is isotype (Sect. 5 in Chapter 11) in
the direct sum Tor(A, C’) & Tor(A’, C). [Hint: Lemmas 4.2 and 4.6.]

5 Localization

Localization at Primes Let S denote a set of primes. The localization of Z at
S is defined as the set of rational numbers ; such that all the prime divisors of the
denominator s belong to S. It is easy to check that these rational numbers form a
subring of Q; it is denoted by S~!Z. By far the most important special case is when
S consists of all primes with the exception of a single prime p, in which case the
localization is denoted as Z,), and is called the localization at p.

We are particularly interested in the localization of groups at a prime p. The
localization of group A at p is defined by the formula

Apy = Zp) Q@ A.

Thus A is a Z,)-module. The localization map 6,(A): A — A(,) acting as 6,(A):
a — 1 ® a is a natural homomorphism. (We often simplify notation and write 8, if
there is no danger of confusion.) , has the universal property thatif v : A — M
is a group homomorphism into a Zg)-module M, then there exists a unique Z)-
homomorphism ¥’ : Ay — M such that ¢y = ¥'6,. It is routine to check that
Ker 6, is the direct sum of the g-components of the torsion subgroup of A for all
primes g # p.

If 6,(A) is an isomorphism, we say that A is p-local. A p-local group is
nothing else than a group with unique g-divisibility for every prime ¢ # p. Group
homomorphisms between p-local groups are automatically Z,)-homomorphisms.

(A) The localization at p is functorial: if ¢ : A — C is a homomorphism, then
there exists a unique Z)-homomorphism ¢, : A¢,) — C,) such that 6,(C)¢ =
¢,0,(A). The map ¢, carries 1 ® a (a € A) to 1 ® ¢a.

(B) Localization is an exact functor Ab — Mod-Z,) from the category of abelian
groups into the category of Z)-modules. More explicitly, this means that if

o B . .
0 - B—A—>C — 0 is an exact sequence, then so is the sequence 0 —

(& ﬂ)
B(,,)—p>A(p)—1>C(,,) — 0. In fact, tensoring by the torsion-free Z,) preserves
exactness. In particular, we have

Ap)/Bp) = (A/B) ().

(O) If Ais a torsion group, then its localization at p is just its p-component Ap. In
our notation, A,y = A,. Thus localization at p leaves a p-group unchanged.
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(D) Localization commutes with arbitrary direct sums:

(Pie1 A)) p) = Drer (A)(p)-

(The same fails for direct products.)
(E) For every group A, there is a canonical embedding

0: A— l_[A(P)’

P

acting as 8(x) = (...,0,(x),...). This is clear, since the intersection of the
kernels of the 6, for all p is 0. Consequently, A = 0 if and only if A(,) = O for
all primes p.

(F) A homomorphism ¢ : A — C is injective (respectively, surjective) if and only
if ¢p: Ay — Cyp) is injective (respectively, surjective) for all primes p. If ¢
is monic, then ¢, is also monic by (B). Conversely, the sequence 0 — K —

b . . o
A—>C is exact (K = Ker ¢), so the same is true for the localization sequence

¢)
0— Kp — A(I,)—I>C(p). By hypothesis, K,y = 0 for all p, so K = 0 by (E).
A similar proof applies to the epic case.

Thus ¢ : A — C is an isomorphism if and only if ¢, : Ay — C is an
isomorphism for every prime p. However, it should be kept in mind that A = C
need not be true even if Ay = Cp) for all p (Exercise 4).

Localization of Torsion-Free Groups If G is torsion-free, then the canonical
map 0,(G) is monic for each p. Thus 6,(G) embeds G as a subgroup in G(,) which
in turn is embedded in the divisible hull of G. These embeddings are natural which
makes it possible to form intersections of distinct localizations.

Lemma 5.1. For any torsion-free group G,
G =N,Gp

where the intersection is taken in the injective hull of G.

Proof. This is a special case of a general theorem on localization over commutative
rings, but it is easy to give a quick proof for groups. Since G < Gy, for all primes
p, it is enough to prove that every x € N, G(,) belongs to G. For a p, thereis n € N,
coprime to p, such that nx € G. Also, for every prime divisor p; of n we can find an
n; € N coprime to p; with njx € G. If t,1; € Z satisfy tn + tiny + -+ + tgng = 1,
then x = tnx + timx + --- + tynex € G. O

% Notes. There is an increasing interest in localizations. They can be defined as idempotent
functors L: Ab — Ab along with the natural transformation 1 45, —> L.
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Exercises

(1) If F is a free group, then F) is a free Z)-module.

(2) Localization commutes with finite intersections: (G N H) ) = Gy N Hp).

(3) Find a counterexample to show that in general direct products do not commute
with localization.

(4) A and C need not be isomorphic even if A,y = C,) for every prime p. [Hint: Z
and the group of rational numbers with square-free denominators.]

(5) Hom(A, C)»y = Hom(A(,), C(»)) need not be true, not even for torsion-free
A,C. [Hint: A = Z,), C = Z.]

(6) (Hasse principle for abelian groups) Let B be a subgroup of A with A/B torsion,
and let ¢ : B — C be a homomorphism. Suppose that, for each prime p, the
localization map ¢, : B,) — C(p) has an extension ¥, : Ay — C(p). Then there
exists a homomorphism ¢* : A — C that extends ¢ and satisfies ¢;‘ =, for
each prime p.

Problems to Chapter 8

PROBLEM 8.1. Find the groups A with Tor(A,A) = A.
PROBLEM 8.2. Determine the Ulm factors of Tor(A, C) for p-groups A, C.

PROBLEM 8.3. When can a reduced p-group A be written as Tor(B, C) for
reduced p-groups B, C?

PROBLEM 8.4. When is a rank 4 torsion-free group the tensor product of two
rank 2 torsion-free groups? More generally, when is a torsion-free group a non-
trivial tensor product?

Lausch [1] has results on the rank 4 case.



Chapter 9
Groups of Extensions and Cotorsion Groups

Abstract The extension problem for abelian groups (as a special case of the general
group-theoretical question formulated by O. Schreier) consists in constructing a group from a
normal subgroup and the corresponding factor group. The classical way of discussing extensions
is via factor sets which we follow in our presentation (simplified for the abelian case). Then we
introduce Baer’s group Ext, an extremely important device, and discuss its fundamental properties.
The intimate relationship between Hom and Ext has been pointed out by Eilenberg—MacLane [1];
this led to the interpretation of Ext as a derived functor of Hom and has been exploited extensively
in Homological Algebra. Another important functor is Pext, the group of pure extensions, which
appears unexpectedly as the first Ulm subgroup of Ext.

The investigation of the group structure of Ext leads to the concept of cotorsion group, a
generalization of algebraic compactness. We give special prominence to cotorsion groups that
occur not only as Ext, but also in several other forms.

1 Group Extensions

The Extension Problem Given two groups, A and C, the extension problem
consists in finding all groups B such that B contains a subgroup A’ isomorphic to A
and B/A’ =~ C. This situation can be expressed in terms of the exact sequence

¢: 0> AB5C 0, ©.1)

where o stands for the inclusion map, and v is an epimorphism with kernel nA. In
this case, we say that B is an extension of A by C.

It is our next aim to survey all extensions for fixed A and C. This can be done
in different ways. We first describe extensions via factor sets (in a pedestrian way),
and then we discuss them by using short exact sequences (which is a more attractive
and more powerful method).

Leta, b, ... denote elements of A, and u, v, w, ... those of C. Assuming that B
is an extension of A by C, we pick a transversal; this is a function g: C — B
that assigns an element of B in the coset corresponding to u, i.e. g(u) € v~'u. For
convenience, it is always assumed that g(0) = 0. Once the function g is selected,
every b € B has a unique form b = g(u) + pa withu € C, a € A. Since g(u) + g(v)
and g(u + v) belong to the same coset mod 1A, there is an f(u, v) € A such that

g() + g(v) = g(u +v) + puf(u, v).

© Springer International Publishing Switzerland 2015 255
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Thus we have a function f: C x C — A, uniquely determined by the extension B and
by the choice of representatives g(«). The commutative and associative laws imply
that f satisfies

J.v) =f,u), fv)+fu+v,w)=[fuv+w)+fv,w) 9.2)

for all u,v,w € C. A function f satisfying these two equations is called a factor
set on C to A. Evidently, a splitting map for v (if it exists) is also a transversal for
which the factor set is identically 0.

Assume, conversely, that we are given two groups, A and C, along with a factor
set {f(u,v)}uvec on C to A. We will construct a group B as the set of all pairs
(u,a) € C x A with the operation

(u,a) + (v,b) = (u+v,a+ b+ f(u,v)).

The commutative and associative laws in B are consequences of conditions (9.2),
while (0,0) is the zero in B, and (—u,—a — f(—u,a)) is the inverse to (u,a).
Manifestly, the mappings i : a — (0,a),v: (4,a) — u will make the sequence
(9.1) exact. Thus B is an extension of A by C, where the choice g(v) = (u,0)
corresponds to the factor set f.

The relation between extensions and factor sets being clarified, it is now obvious
that the extension problem amounts to finding all factor sets. The direct sum C & A
is always a solution to the extension problem; it is called the splitting extension. If
g(u) = (u,0) € C @ A is chosen, then f(u, v) is identically 0.

Equivalence of Extensions While a factor set determines the extension
uniquely, the converse is not true: a factor set depends also on the representatives
selected. In order to remedy the problem with this ambiguity, an equivalence relation
is introduced for factor sets. We shall call the factor sets f; and f, equivalent if they
are coming from the same extension by using another set of representatives. This
means that the new representatives will be g(u) + wh(u) with some h(u) € A, and
accordingly, the new factor set will look like f(u,v) + h(u) + h(v) — h(u + v).
A factor set f/(u, v) of the form f’(u, v) = h(u) + h(v) — h(u + v) with any function
h: C — Aiscalled a transformation set or coboundary; we always choose
h(0) = 0. Consequently, by definition, two factor sets are equivalent if and only if
their difference is a coboundary.

One should be aware of the fact that two equivalent, but different, factor sets
do not necessarily define identical extensions. However, the two extensions, B and
B’, are essentially the same in the sense that the correspondence § : (u,a) +—
(u,a + h(u)) is not only an isomorphism § : B — B’, but it is a special one
that induces the identity maps both on A and on C. This is tantamount to saying that
the diagram
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¢: 0 At B -“,C 0
— H
¢ 0 A g Y 0

is commutative. In this case, the extensions ¢ and ¢’ themselves are called equiva-
lent. Thus, there is a bijective correspondence between the equivalence classes of
extensions of A by C and the equivalence classes of factor sets f : C x C — A.
In this correspondence, the splitting extensions form an equivalence class, and the
corresponding equivalence class of factor sets consists of factor sets of the form
h(u) + h(v) — h(u + v) for arbitrary functions 4: C — A (with 2(0) = 0 as agreed).

The Group Ext We have come to a leading idea: instead of being satisfied with
a survey of the collection of all extensions, one tries to furnish this set with a proper
algebraic structure which would provide a more powerful tool in the exploration.
This was done by R. Baer who introduced a group structure, creating a fascinating
theory.

Iff,f": C x C — A are factor sets, then their sum f + f” defined as

(F +)v) = fu,v) +f (wv)

is again a factor set. Under this composition, the factor sets form a group, denoted
Z(C,A). The coboundaries form a subgroup B(C, A), and what has been concluded
above can be rephrased by saying that there is a bijective correspondence between
the equivalence classes of extensions of A by C and the elements of the factor group
Z(C,A)/B(C,A). This factor group is generally called the group of extensions of
Aby C:

Ext(C,A) = Z(C,A)/B(C, A).

Having defined Ext in terms of factor sets, we now proceed to another interpre-
tation: via short exact sequences (9.1). If we think of extensions of A by C as such
sequences, then it seems reasonable to create and to study first a category whose
objects are short exact sequences. In doing so, the first order of business is to define
the morphisms between two exact sequences, ¢ and ¢’. The right definition is pretty
clear: it is a triple (o, B8, y) of group homomorphisms rendering the diagram
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commutative. There is no difficulty in showing that in this way we have indeed
defined a category which will be denoted £.

In accordance with our definition of equivalent extensions above, we will say that
the exact sequences ¢ and ¢’ (qua extensions) are equivalent (notation: ¢ = ¢’) if
A = A’,C = C and there is a morphism (14, 8, 1¢) from ¢ to ¢’. That § is then an
isomorphism follows at once from Lemma 2.6 in Chapter 1.

The beauty of treating extensions as short exact sequences lies in the fact that we
can work with commutative diagrams, making most proofs more transparent. But
first we must learn the basic facts about the category £.

To start with, we concentrate on extensions of a fixed groupA.If y: C' — Cisa
homomorphism, then there is a pull-back square

’

B 2
sf 4]
0 ALt B 2. 0

From Sect. 3(a) in Chapter 2 we know that v’ is an epimorphism (since so is v), and
the pull-back property shows that Ker v’ =~ Kerv =~ A. Hence there exists a monic
map (' : A — B acting as i’ : a — (ua,0) € B' (< B @ ('), so that the diagram

ey: 0 4 -t B X C’ 0
I
e: 0 A+t B2, C 0

has exact rows and commutative squares. The top row is an extension of A by C’
which we have denoted by ey to indicate its origin from ¢ via y. Note that y* =
(14, B, y) is a morphism ¢ — ey in the category €.

Now suppose we have a similar commutative diagram

" "

¢ 0 At pr X 0
—_— gl
e: 0 A—" - B Y S0 0

with exact rows, for another group B”. By the pull-back property there is a unique
¢: B’ — B’ suchthat v'¢p = v” and B¢ = B'. Since the maps pu”, u': A — B
are such that B(pu”) = '’ = u = B and V' (pu”) = v/ =0 = vy,
the uniqueness assertion on pull-backs implies ¢pu” = u’. Hence (14, ¢, 1¢) is an
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E-morphism ¢’ — ey, and so ¢ = ey. This shows that ¢y is unique up to
equivalence. Once this has been established, we can then assert that el¢ = ¢ and

e(yy’) = (ey)y’ for "L 0L C.1f we view Ext(*,A) for a fixed A as a functor
Ab — Ab, then its contravariant character is evident.

Next we switch the roles: we keep C fixed and let A vary. Givenamapa: A — A,
let B’ be defined by the push-out square (on the left)

ae: 0  —— B -z C 0

where we have already completed the diagram to have an exact sequence at the
bottom row. This could be done, since p’ is a monomorphism, and if B’ is defined
as a factor group of A’ @ B, then v'((d’, b) + H) = vb makes the diagram commute.
The bottom row is an extension of A’ by C which was denoted as «e. As before, we
can show (using dual arguments) that «ce is unique up to equivalence, furthermore,

1ye = e and (o'a)e = o/ (awe) for A—>A'—>A". Thus, for a fixed C, Ext(C, %) is a
covariant functor Ab — Ab.

Combining the maps & : A — A’ and y : ¢’ — C, we obtain the important
associative law: a(ey) = (ae)y. Indeed, by making use of the pull-back property of
(ae)y, it is easy to verify the existence of a morphism («, 8’, 1¢): ey — (ae)y and
the commutativity of the square

(1,8" )
—_

ey
((yvﬁ/sl)l J/(avﬂwl)

(1,87)
(e)y —5 ae

The Baer Sum of Extensions It was shown above that the extensions (more
precisely, the equivalence classes of extensions) of A by C form a group. We wonder
how to describe the group operation in the language of short exact sequences. We
will use the diagonal map Ag: G — G & G (where g — (g, g)), as well as the
codiagonal map Vg: G & G — G (where (g1, g2) + g1 + £2)- If we understand by

the direct sum of extensions ¢;: 0 — A,-&B,-&C,- — 0 (i = 1, 2) the extension

a1 P @
e Per: 0>A DA ngl@Bzﬂuzzcl@Czﬁos

then we can state:
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Proposition 1.1 (Baer). The sum of the extensions ¢; and ¢, of A by C is the
extension

e1 + ¢e2 = Va(e ®er)Ac.

Proof. What we have to establish is that if f; : C x C — A is a factor set
belonging to ¢; (i = 1,2), then fi + f> belongs to Va(e; @ e2)Ac. It is clear that
(fic1, c2), fo(c), c5)) with ¢;, ¢; € Cis afactor set belonging to the direct sum ¢; @e,
and (fi(c1, ¢2), f2(c1, ¢2)) is one corresponding to (e; @ e2) Ac. An application of V4
yields the factor set fi(cy, c2) + f2(c1, ¢2). O

It is now easy to conclude that for the homomorphisms «; : A — A’ and
y;: C' — C the following equivalences hold for the extensions e, ¢1, ¢; of A by C:

ale; +e) =aep +aey, (e +e)y =e1y+ ey, (9.3)
(a1 +an)e =oare+aze, e(y1 + y2) = ey + epa. 9.4)

The equivalences (9.3) express the fact that o : ¢ > ae and y*: ¢ > ey are group
homomorphisms

ax : Bxt(C,A) — Ext(C,A"), y*:Ext(C,A) — Ext(C',A),

while (9.4) asserts that (o] +&2)« = (1)« + (2)« and (y1 +y2)* = (y1)* + (v2)*,
i.e. the correspondence Ext: C x A — Ext(C,A) with y X o > y*a = a4y ™ is an
additive bifunctor .Ab x Ab — Ab. This fact is important enough to be recorded as
a theorem:

Theorem 1.2 (Eilenberg—-MacLane [1]). Ext is an additive bifunctor Ab x Ab —
Ab, contravariant in the first, and covariant in the second variable. O

In order to be consistent with the functorial notation for homomorphisms, we
shall also use the notation Ext(y, &) for y*asx = axy™*, thus Ext(y, @) : Ext(C,A) —
Ext(C’,A’) acting as ¢ > «ey. In the sequel, we will often deal with diagrams of
extensions, emphasizing that in all of these diagrams extensions can be replaced by
equivalent extensions without causing any harm to commutativity or exactness.

A useful observation: if C is a p-group, then there are natural isomorphisms

Ext(C,A) = Ext(C,Zy) ® A) and Ext(A, C) = Ext(Zp) ® A, C).

In both cases the right-hand sides can also be interpreted as Extz,, .

% Notes. If we wish to develop extensions solely qua short exact sequences, then the Baer sum
would serve as the definition of the sum of two extensions, and then we have to verify: (1) e; + ¢
is indeed an extension of A by C which stays in the same equivalence class if ¢;, ¢, are replaced
by equivalent extensions, and (2) the equivalence classes form a group under this operation. For
details of this approach, we refer to MacLane [M]. A third method of introducing Ext is as the
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derived functor of Hom, this is a popular way of defining Ext in Homological Algebra, where also
the higher Ext" functors are dealt with (for n > 1, these are trivial for abelian groups).

It was O. Schreier (1926) who started a more systematic investigation of the extensions of
non-commutative groups (in a multiplicative notation): given the groups A, C, new groups G
have to be constructed such that G contains a normal subgroup N isomorphic to A satisfying
G/N = C. Besides factor sets, he used also automorphisms of A (these are not needed in the
commutative case) to describe extensions. Extensions without factor sets were discussed by Baer
(1935). Topological applications were discovered by S. Eilenberg and S. Mac Lane (1942).

A note on the terminology is in order. A few authors apply a reverse terminology: if B/A = C,
then they say that B is an extension of C by A. It seems more natural to extend on the top than in
the bottom.

Exercises

(1) A factor set on any group C to a divisible group D is a transformation set. [Hint:
set up a system of equations.]

(2) Let B be a basic subgroup of the reduced p-group A. For any group C, any factor
setf: C x C — Aisequivalent to a factor set g: C x C — B.

(3) The exact sequences 0 — Z —3>Zi>Z(3) —0and 0 — Z —3>ZL>Z(3) —
0 represent different elements in Ext(Z(3),Z)if : 1 +— 1 +3Z, y: 1
2 + 3Z.

(4) There are p inequivalent extensions of Z(p) by Z(p), but only two non-
isomorphic ones.

(5) In terms of factor sets f, the extension ey corresponds to the composite map

' x e x CL>A, and ae to C X CLA#A’ (notation as in the text).
(6) If (o, B, y): ¢ — ¢ is a morphism in the category &, then e = ¢'y.
(7) (a) Leta: A — A’ be an epimorphism. Then «e with ¢ as in (9.1) is equivalent
to the extension 0 — A/ Kerae — B/ (Kera) — C — 0 (obvious maps).
(b) Let y : C" — C be a monic map. Then ¢y is equivalent to 0 — A —
p~!Imy) = Imy — 0.
(8) (a) Ifan extension is represented by a pure-exact sequence, then the same holds
for all equivalent extensions.
(b) Show that the Baer sum of two extensions represented by pure-exact
sequences is again pure-exact.
(9) (a) Let o be an automorphism of A. When is ¢ equivalent to oce?
(b) When does ¢y = ¢ hold for some y € AutC?

2 Exact Sequences for Hom and Ext

The functorial aspects of Ext having been settled, we move on to gather more
information about its formal properties, in particular, its behavior towards exact
sequences. What might come as a surprise is that it is intimately connected with
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the functor Hom: Ext emerges as an “error term” for the failure of exactness of the
Hom sequence in Sect. 1 in Chapter 7.

Preparatory Lemmas We need to do a little technical work before we prove
our main result in this section. We start with an easy, but very useful observation.
(Compare with Lemmas 2.1 and 2.2 in Chapter 1.)

Lemma 2.1. Suppose we are given the diagram

with exact row. Then

(1) there exists a map & : G — B such that BE = n if and only if en splits;
(ii) thereis a map ¢: B — H such that Lo = x if and only if ye splits.

Proof. 1f there is such a &, then the diagram

0 A AaG e 0
| Lo |
e 0 A 2 B LENYG: 0

(with the obvious maps in the top row) commutes, hence the top row is = en.
Conversely, if en: 0 — A — B’ — G — 0 splits, then a splitting map followed
by B — B yields a map £ : G — B with the desired property. For ¢ the proof is
dual. O

The following lemma unveils the basic relationship between Hom and Ext.
Actually, it is the jumping board to Theorem 2.3; it deals with a special case needed
in the proof of Theorem 2.3.

Lemma 2.2. Let0 — H — F — C — 0 be a free resolution of C and 0 — A —
D — N — 0 an injective resolution of A.

(i) There exists a natural map §* : Hom(H,A) — Ext(C,A) such that following
the sequence is exact:

0 — Hom(C,A) — Hom(F, A) — Hom(H, A)~— Ext(C,A) — 0.  (9.5)
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(ii) There is a natural map 8+ : Hom(C, N) — Ext(C, A) that makes the following
sequence exact:

0 — Hom(C,A) — Hom(C, D) — Hom(C, N)ﬁ) Ext(C,A) — 0. (9.6)

Proof. Starting from the middle row, consider the following diagram with exact
rows and commutative squares:

e1: 0 H —* F cC —— 0
Lo e

e: 0 Al p Lo
T |

e: 0 A D - N —— 0,

where ¢ exists, because F is free, and Y exists, because D is divisible; then y and n
are automatic. Thus ¢ = ye; and ¢ = ¢,7, showing that the maps in (9.5) and (9.6)
between the Hom and Ext are surjective. To prove exactness at the last Homs, we
refer to the preceding lemma to argue that e = ye; is splitting if and only if there is a
map {: F — A such that {u = y, and similarly, e = e,7 is splitting exactly if there
isamap £: C — D such that vE = 5. This amounts to saying that the kernels are
the images of the maps Hom(F,A) — Hom(H, A) and Hom(C, D) — Hom(C, N),
respectively. We leave it as an exercise to the reader to show that the maps §*, 6.
(called connecting maps) are natural. O

The Hom-Ext Exact Sequences We now have all the ingredients to verify the
extremely important long exact sequences.

Theorem 2.3 (Cartan—Eilenberg [CE]). If 0 — A—>B—>C — 0 is an exact
sequence, then so are the sequences

0 - Hom(C, G) - Hom(B, G) - Hom(4, G) —
2 Ext(C, 6) Ext(B, 6) 5 Ext(4, G) — 0 9.7)
and

0 — Hom(G,A) — Hom(G, B) - Hom(G, C) —

2 Bxt(G, A2 Ext(G, B)> Ext(G, C) — 0 9.8)

for every group G. All the maps are natural.
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Proof. The proof relies on the Snake Lemma 2.5 in Chapter 1. We first choose free
resolutions 0 - H; - F; > A - 0and 0 - H, —» F, — C — 0, and note
that there is a free resolution 0 — H, & H, — F; & F, - B — 0 (see Sect. 1,
Exercise 7 in Chapter 3). These are used in the commutative diagram

0 —— Hom(C,G) —2— Hom(B, G) —ZL . Hom(4,G)

! ! l

0 ——— Hom(F2,G) ——— Hom(F1 @ F»,G) ——— Hom(F1,G) — 0

J= 0] b

0 Hom(Hs,G) —“— Hom(H; & H2,G) —%— Hom(H, A) 0
Ext(C,G) —2— Ext(B,G) —22 ., Ext(A,G) 0

where the middle rows are exact, because F;, H; are free groups, while the columns
(bordered with O’s, not shown) are exact, thanks to Lemma 2.2. By Lemma 2.5 in
Chapter 1, (9.7) follows from the diagram. The proof of (9.8) is similar. O

Purity in the Exact Sequence on Ext We complement Theorem 2.3 with the

following result where the starting short exact sequence is pure-exact.

Lemma 2.4. Suppose 0 — Ai>Bi>C — 0 is a pure-exact sequence. Then, for
every group G, the induced homomorphisms

B*: Ext(C,G) — Ext(B,G) and ax:Ext(G,A) — Ext(G, B)

map onto pure subgroups.

Proof. We give a detailed proof for the first part (using Theorem 5.2 below), and
leave the rest to the reader as an exercise. In the following commutative diagram,
we start from the bottom row and then form the preceding rows by using the maps
in the right column as indicated:

¢Bop: 0 G K’ C[n] 0
H l l
¢fo: 0 G K Bin| 0
H l Ik
¢d: 0 G H' B 0 (€Imp*)
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Here the rows are exact, o denotes the injection map, and p exists, due to the purity
of the given exact sequence. The composite map Bop: C[n] — C will be the natural
injection. If the last but one row belongs to n Ext(B, G), then Theorem 5.2 below
shows that the second row splits, and hence so does the top row. This means that the
bottom exact sequence belongs to n Ext(C, G), so the last but one row is in nIm 8*.
This holds for every n € N, thus Im 8* is pure in Ext(B, G). O

Ext and Direct Sums, Products We have to find out how Ext behaves towards
direct sums and products. In view of Theorem 2.3, it should not come as a surprise
that Ext imitates Hom in this respect.

Theorem 2.5. For all groups A, A;, C, C;, there exist natural isomorphisms

Ext(@ie; Ci.A) = [ [ Ext(C;. A). (9.9)
i€l

Ext (c, HA,) =~ [Ext(C.A). (9.10)
i€l i€l

Proof. We prove (9.9), the proof of (9.10) runs dually. We start with free resolutions
of the C;, 0 - H; — F; — C; — 0 with F; free, to obtain the exact sequences
Hom(F;,A) — Hom(H;,A) — Ext(C;,A) — Ext(F;,A) = 0. The exact sequence
0 - &H — &F; — &;,C; — 0 induces the top exact sequence in the
commutative diagram

HOIn(@Z'FZ',A) Hom(éBiHi,A) EXt(@iCi,A) 0
I, Hom(F;, A) [, Hom(H;, A) I, Ext(C;, A) 0

We know from Theorem 1.7 in Chapter 7 that the first two vertical maps represent
natural isomorphisms, whence we can conclude that there is a natural isomorphism
between the two Exts in the diagram. O

% Notes. The long exact sequence for Hom-Ext generalizes for modules over arbitrary rings.
However, the 0 at the right end is then replaced by sequences of higher Exts.

The functor Ext does not behave in the same way towards direct and inverse limits as Hom. If
{Ci(i € D)|n!}is adirect system of groups with direct limit C, then {Ext(C;, A)(i € I)| Ext(x},14)}
is an inverse system. The most we can say in general is that there is a natural homomorphism
¢ : Ext(C,A) — l(ir_nExt(C,-,A). For the special case when the direct system is indexed by the
natural numbers, see Lemma 5.9. In general, the so-called Mittag-Leffler condition guarantees the
surjectivity of ¢.

Gobel-Prelle [1] ask for groups G with the properties like Ext([]A;, G) = []; Ext(4;, G) for
all choices of the A;, and show that “only G = Q” is the answer.
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Exercises

(1) The group G is divisible if and only if, for every monomorphism o« : A — B, the
induced map o* : Ext(B, G) — Ext(A, G) is epic.

(2) G is free if and only if, for every epimorphism 8 : B — C, the induced map
B+« : Ext(G, B) — Ext(G, C) is epic.

(3) Let @ : A — B be a monomorphism such that o, : Ext(G,A) — Ext(G, B) is
monic for every G. Prove that Im« is a summand of B.

(4) Let B: B — C be an epimorphism such that §* : Ext(C,G) — Ext(B, G) is
monic for every G. Then Ker § is a summand of B.

(5) Suppose A satisfies Hom(A, Z) = 0. Then rk, Ext(A, Z) = 1k, Ext(A/pA, Z).

(6) Prove that Ext(Q, Z) =~ Q™. [Hint: 0 — Z — Q — @,Z(p™) — 0.]

(7) Verify the isomorphism (for any p) Ext(Z(p*°),J,) = J,. [Hint: 0 — J, —
0, = Z(p™) — 0.]

(8) Assume B is a basic subgroup of the p-group A. For any group G, the groups
Ext(G,A) and Ext(G, B) are epimorphic images of each other. [Hint: Theorem
6.10 in Chapter 5.]

3 Basic Properties of Ext

In this section our objective is to record a number of elementary and some advanced
properties of the group of extensions. We shall make extensive use of the long exact
sequences stated in Theorem 2.3 without referring to them explicitly.

Induced Endomorphisms Ife¢: 0 - A — B — C — 0 is an exact sequence,
anda € EndA, y € EndC, then both we and ¢y are again extensions of A by C. Itis
aroutine calculation to verify that the correspondences o : ¢ = e and y*: ¢ > ey
are endomorphisms of Ext(C, A); they will be called the induced endomorphisms
of Ext. Their actions commute, since a+y* = y*ax. Consequently, Ext(C, A) is a
bimodule over the endomorphism rings End A and End C.

Our next lemma points out a most useful fact.

Lemma 3.1. Multiplication by an integer n on A or on C induces multiplication
by the same n on Ext(C,A). The same holds for multiplication by a p-adic integer
(provided it is defined on A or on C).

Proof. If a; € End A, then (o) +---+,)« = (@1)«+-- -+ (o). Since 14 obviously
acts as the identity on Ext, it is manifest that 7 € EndA induces multiplication by n
on Ext(C, A). The proof for C is analogous.

A p-adic integer 7 is the limit of a sequence n; € Z (i < w) in the p-adic
topology, say, p'|m — n; for i < w. By what has been proved, multiplication by 7
on Ext(C, A) is the limit of multiplications by n;, and hence it can be identified with
the multiplication by . O
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Elementary Facts on Ext Next, we collect several elementary results on Ext;
they are useful in computing Ext. We start with two rather trivial remarks which
reveal important features of Ext.

(A) A group C satisfies Ext(C,A) = 0 for all A exactly if it is free. Thus, we claim
that every extension by C splits if and only if C is free. The “if” part is the same
as Theorem 1.5 in Chapter 3, while the “only” if part follows from Theorem
1.7 in Chapter 3.

(B) A group A satisfies Ext(C,A) = 0 for all C if and only if it is divisible. This is
a restatement of the equivalence (i) <> (iii) in Theorem 2.6 in Chapter 4.

(C) If, for some m € N, either mA = 0 or mC = 0, then also mExt(C,A) = 0.
This is an obvious consequence of Lemma 3.1.

(D) If mA = A for some integer m € N, then also mExt(C,A) = Ext(C,A).

This follows from the exactness of Ext(C, A)i) Ext(C,A) — 0 which is a

consequence of the exactness of AS5A 0.

(E) Ext(Q,A) is torsion-free divisible for each group A. This is obvious if we
combine (C) and (D).

(F) C[m] = 0 implies mExt(C,A) = Ext(C,A) for every m € N. In particular,
Ext(C, A) is divisible whenever C is torsion-free. Hypothesis guarantees that

the sequence 0 — C-55C is exact, whence the exactness of the induced

Ext(C, A)— Ext(C,A) — 0 follows.
(G) For all groups A, and for every integer m > 0,

Ext(Z(m),A) = A/mA.

From the exact sequence 0 — 757 — Z(m) — 0 we obtain the exact
sequence

Hom(Z, A) 2~ A—"> Hom(Z, A) = A — Ext(Z(m), A) — Ext(Z, A) = 0.

A moment’s reflection shows that the image of the first Hom in the second one
is mA, whence the stated isomorphism is evident.

Example 3.2. If m,n are relatively prime integers satisfying mA = 0 and nC = 0, then
Ext(C,A) = 0. This is an immediate consequence of (C).

Example 3.3. Using (G), a simple calculation with the integers m, n shows that
Ext(Z(m), Z(n)) = Z(d),
where d = gcd{m, n}. Thus Ext(Z(m), Z(n)) = 0 whenever m, n are relatively prime.

(H) For any group C and integer m,

Ext(C, Z(m)) = Ext(C[m], Z(m)).
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The exact sequence 0 — C[m] — C-5mC — 0 induces the exact sequence

Ext(mC, Z(m))&Ext(C, Z(m)) — Ext(C[m],Z(m)) — 0. The image of
the first map must be 0 owing to Lemma 3.1 and (F), whence the claim is
immediate.

() IfA is p-divisible and C is a p-group, then Ext(C,A) = 0. If D is the divisible
hull of A, then D/A is torsion divisible with zero p-component. This means
that Hom(C, D/A) = 0. The exactness of the sequence Hom(C,D/A) —
Ext(C,A) — Ext(C, D) = 0 establishes the assertion.

() An automorphism o € AutA (or y € AutC) induces an automorphism of
Ext(C,A). Using the inverse @ of «, observe that the induced endomorphisms
of Ext(C, A) will satisfy ax&x = @«0« = 1. The same argument applies to y*.

Example 3.4. Let R denote the group of the rational numbers with square-free denominators, and

T the direct sum @, Z(p) with p running over the prime numbers. The exact sequence 0 — Z —>
R — T — 0 induces the exact sequence

0 — Hom(7,T) - Hom(R,T) — Hom(Z,T) = T
— Ext(T, T) = Ext(R,T) — 0.

It is easily checked that the map between the first Homs is an isomorphism, and Ext(7,T) =

[T, Ext(Z(p), Z(p)) = [1, Z(p). Thus Ex(R, T) = ([1, Z(p))/T = Q.

Isomorphisms Involving Ext For later reference, it is necessary to point out:
Theorem 3.5 (Eilenberg-MacLane [1]). Let A be a torsion-free group, and D its
injective hull. If C is torsion, then

Ext(C,A) = Hom(C,D/A).
Thus Ext(C, A) is reduced algebraically compact whenever C is torsion and A is
torsion-free.

Proof. Our starting point is the exact sequence 0 - A — D — D/A — 0.In
the induced exact sequence 0 = Hom(C, D) — Hom(C,D/A) — Ext(C,A) —
Ext(C, D) = 0, the first Hom vanishes because C is torsion and D is torsion-free.
Hence the stated isomorphism follows at once. The second claim is a consequence
of Theorem 2.1 in Chapter 7. O

The choice A = Z leads to an interesting corollary on character groups:

Corollary 3.6. For a torsion group C, we have the natural isomorphism
Ext(C,Z) = Char C.

Proof. Just note that, for C torsion, Hom(C, R/Z) = Hom(C, Q/Z). O
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Example 3.7.
(a) Ext(Z(p®°),Z) = Char Z(p*°) = J, for every prime p.
(b) Ext(Q/Z,Z) = Char Q/Z = Z =[], J,-
Finally, we state without proof two important isomorphisms (that are derived
from the Kiinneth relations).

Theorem 3.8 (Cartan-Eilenberg [CE]). For all groups A, B, C we have
Ext(A, Ext(B, C)) = Ext(Tor(A, B), C). 9.11)
In case C is injective, also
Ext(A, Hom(B, C)) = Hom(Tor(A, B), C). (9.12)

|

% Notes. There is an extensive literature on the structure of Ext; for instance, what its torsion-
free or p-rank is if it is divisible, or when it can be isomorphic to Q. Interestingly, some questions
turn out undecidable in ZFC. But, tempting as it is, the discussion of these results would take us too
far afield from our principal aim here. However, let us point out that there is a full characterization
of the divisible group Ext(G, Z) for torsion-free groups G, assuming that V = L and there is no
weakly compact cardinal. See Shelah—Striingmann [2], and the literature quoted there.

Eklof-Huber [1] investigate when Ext vanishes, by using a new invariant, called I"-invariant,
which is an equivalence class in filtrations.

It is natural to ask to what extent the functor Ext(C, %) or Ext(*, C) determines the group C.
For countable p-groups A, B of finite Ulm length, Moskalenko [2] shows (under CH) that they are
isomorphic whenever Ext(A, C) = Ext(B, C) holds for all groups C. For finite rank torsion-free
groups, see Notes to Sect. 1 in Chapter 12.

Exercises

(1) For finite groups A, C, there is a (non-natural) isomorphism Ext(C,A) =
Hom(C,A).
(2) Ext(C,A) = 0if A is a p-group and C is a g-group for different primes p, g.
(3) For any prime p, Ext(Z(p*°), A) = 0 is equivalent to pA = A.
(4) (a) Ext(C,A)/mExt(C,A) = Ext(C,A/mA) for all groups A, C (m € N).
(b) Verify the following converse of (D): If, for some group A and for some
m € N, the equality m Ext(C,A) = Ext(C, A) holds for every group C,
then mA = A.
(c) Suppose the group A and the integer m € N have the property that
mExt(C,A) = 0 for every group C. Then mA is divisible.
(5) Assume that mA = A and A[m] = 0; then also m Ext(C,A) = Ext(C,A) and
Ext(C,A)[m] = 0.
(6) (a) If mC = C and C[m] = 0 for some m € N, then m Ext(C, A) = Ext(C, A)
and Ext(C,A)[m] = 0 as well. Conclude that Ext(C,A) is torsion-free
divisible if so is C.
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(b) Prove the following converse of (F): if C and m € N satisfy m Ext(C,A) =
Ext(C,A) for all groups A, then C[m] = 0.
(c) If Cis such that Ext(C, A) is torsion-free divisible for every group A, then
C is also torsion-free divisible.
(7) (Baer) If the groups A, C satisty p Ext(C,A) = Ext(C,A) for some prime p,
then either C[p] = 0 or pA = A.
(8) If A is torsion-free, then Ext(C, A) = Ext(+(C),A) & Ext(C/1(C),A).
(9) Prove the isomorphism Ext(Z,), Z) = Z(p*™) & Q¥ [Hint: 0 > Z —
Zp) — Dy£pZ(g*°) — 0, apply Hom(x, Z).]
(10) Verify Ext(Q®, Z) = Z(p*>®) @ Q. [Hint: 0 — Z — QP — Z(p*>®) — 0.]
(11) Prove Ext(J,,Z) = Z(p™) & QZNO. [Hint: 0 — J, — Q; — Z(p*>°) — 0.]
(12) Using the fact that ]_[p Z(p) is a reduced group with @,Z(p) as torsion
subgroup, show that Ext(Q, ®,Z(p)) # 0.
(13) (Nunke) Prove that Hom(C,Z) = 0 = Ext(C,Z) implies C = 0. [Hint:
Ext(¢+(C), Z) = 0 and Ext(C/mC, Z) = 0, then Exercise 6.]
(14) (Nunke) Every torsion-free divisible group D is representable as an Ext. [Hint:
try Ext(Q, T') with torsion 7'.]
(15) For atorsion-free A, Ext(A, Z) is torsion-free if and only if A has the projective
property with respect to the exact sequences 0 — 757 — Z/nZ — 0 for
alln € N.
(16) (Hill-Megibben) Let A be a p-group. An exact sequence 0 - A — G —
Z(p*™) — 0 represents an extension of finite order in Ext(Z(p°),A) if and
only if G is not reduced.

4 Lemmas on Ext

We will need several important lemmas involving Ext that are most useful in the
theory. They relate Ext to ascending chains.

Eklof’s Lemmas We start with two lemmas due to P. Eklof. The first provides
a sufficient condition for an Ext to vanish (with no restriction on the sizes), while
the second sharpens this to a necessary and sufficient condition in the Constructible
Universe.

Lemma 4.1 (Eklof’s Lemma). Let A be any group, and

0=C<Ci<--<C, <+ (vV<k) (9.13)
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(where K is any infinite cardinal) a smooth chain of subgroups of a group C such
that

(a) Uv</( CV = C;
(b) for each v < k, Ext(C,+,/C,,A) = 0.

Then Ext(C,A) = 0.

Proof. Let0 - A — GLC — 0 be an extension of A by C, and let G, denote
the subgroup of G that is the complete preimage of C, under ¢. Then G is the union
of the smooth chainA = Gy < G| < -+ < G, < ---. We are going to define by
transfinite induction a smooth chain 0 = By < By < -+ < B, < ---(v < k) of
subgroups of G such that G, = A @ B, where B, = C,.

The starting point v = 0 is obvious, and so is the case when v is a limit ordinal,
since then we have no choice other than taking unions. So suppose that, for some
ordinal © < «, G, and B, have been defined in the desired way for all v < pu.
By induction, we may assume that Ext(C,,A) = 0. Now G,41/B,, can be viewed
as an extension of A by G,.+1/G, = Cu41/Cy, so condition (b) guarantees that
(A + B,)/B, = Ais asummand, ie. Guy1/B, = (A + B,)/By ® Bu41/B, for
some subgroup B, +1 < Gy+i. Clearly, G,+; = A ® B,+1. Once we have the
complete chain of the B, for v < k, we can argue that the union B = U, B,
satisfies G = A @ B, i.e. the given exact sequence splits. O

Much greater effort is needed if we wish to prove something similar with
a necessary and sufficient condition. This can be done in Godel’s Constructible
Universe, i.e. under the hypothesis V = L. We will need an easy observation which
we display as a lemma for easy reference.

In the proofs of the next lemmas, it will be convenient to consider an extension
of A by C (or by a subgroup C’ < C) to be a group built on the set C x A (on C' x A).
This can be done without loss of generality.

Lemma 4.2. Suppose ¢: C' — C is an inclusion map, and A is a group such that
Ext(C,A) =0 and Ext(C/C,A) #0.

Given splitting exact sequences with maps p, p' in (9.14), there exists a homomor-
phism y: G' — G making the diagram

0 A G L 0
H Xl Lﬁ (9.14)
0 A G 2 ¢ 0

commute such that there is no splitting map o : C — G with yo' = o¢, for any
splitting map o' C' — G of p/.
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Proof. By hypothesis, in the exact sequence Hom(C,A) — Hom(C',A) —
Ext(C/C’,A) — Ext(C,A) = 0 the map between the two Homs is not epic. If
n: C' — A is a map that does not extend to any C — A, then define y to map
(a,d) € G =AxC onto (a+ nc,¢c’) € G = A x C. It is readily checked that,
by the choice of 7, no splitting map o : C — A @ C with yo’ = 0¢ may exist. 0O

Keep in mind that the main point is that, under the stated hypotheses, the map
x can be chosen such that the two splitting sequences have no matching splitting
maps.

Lemma 4.3 (Eklof). Assuming V = L, let k be an uncountable regular cardinal,
A any group of cardinality < k, and (9.13) a k-filtration of a group C of cardinality
K such that

Ext(C,,A) =0 forallv <«.
Then Ext(C,A) = 0 if and only if the set
E={v <k |3p>v suchthat Ext(C,/C,,A) # 0}

is not stationary in K.

Proof. If E is not stationary in «, then choose a cub X that does not intersect E.
Keeping only the subgroups C,, with v € X, an appeal to Lemma 4.1 shows that the
hypotheses are satisfied for the modified chain, and therefore Ext(C,A) = 0.

Conversely, suppose E is stationary in k. We can clearly drop those indices that
are not needed, and still have a stationary subset of k, so there is no loss of generality
in assuming © = v + 1 in the definition of E. Let {A,},, be a filtration of A
(repetitions are allowed). In view of the Diamond Principle < (it holds because
V = L), there exists a family {g,},eg of functions g,: C, — C, x A, (v € E) such
that, for every function g: C — C x A, theset{v € E | g | C, = g,} is stationary
ink.

With the aid these g,, we are going to construct a non-split exact sequence e:
0 — A — G-25C — 0 as the direct limit of splitting exact sequences ¢,: 0 — A —

Pv . . .
G,—>C, — 0 (v < k) such that whenever u < v, there is a commutative diagram

¢, 0 A G, 22— ¢, 0
| [mer ©.15
e: 0 A G, 2 C, 0

where the right vertical map is the inclusion map. Let v < «, and assume that ¢,
has been defined for every 1 < v such that required diagrams are commutative. We
distinguish three cases. (Now G, is assumed to be built on the set C,, x A, so the y/j
are also inclusion maps.)
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Case 1. If v is alimit ordinal, then we let ¢, be the direct limit of the exact sequences
¢y for u < v with connecting maps (14, y,;, incl). This is a splitting sequence,
since by hypothesis C, satisfies Ext(C,,A) = 0.

Case 2. Letv = § + 1. If 6 ¢ E or if gs is not a splitting map for ps, then let

6,: 0 > A — Gugc\, — 0 be a splitting extension with any choice of
Y5 : Gs — G, such that (9.15) commutes (with 1 = 8).

Case 3. The remaining case is when v = § + 1, § € E, and the selected g5: Cs —
Cs x As C C x A is a splitting map for ps. From Lemma 4.2 we conclude
that there are a map y; : Gs — G, and a splitting extension ¢,: 0 - A —

Gui>Cu — 0 with a commutative diagram (9.15) such that there exists no
splitting map o : C, — G, for p, extending gs.

We now define ¢ : 0 — A — G—>C — 0 as the direct limit of the splitting exact

sequences ¢, : 0 >A — Gvi>cv —0forv < k where G =CxA =U, .(C, xA)
as sets. By way of contradiction, assume there is a splitting homomorphism
g C — G for p. Note that we must then have g(C,) < G, for every v < k. By
the choice of the functions g,, there is a § € E (actually, stationarily many of them)
such that g | Cs = gs. This means that es+; has been constructed according to
Case 3 above. Since g | Cs4; is both a splitting map for es4+; and an extension
of g I Cs, we have reached a contradiction to the existence of a splitting g. Thus
Ext(C,A) # 0, indeed. O

Ext When Both Arguments Are Chains In the following lemma we turn to the
case when both arguments in Ext are unions of chains. This is a version of a lemma
by Eklof—Fuchs; it requires a different approach.

Lemma 4.4. Let k be an uncountable regular cardinal, and B, (v < «) arbitrary
groups. We setA = @, B, and A, = @, B, (1 < k). Furthermore, let again
(9.13) be a k-filtration of a group C of cardinality k. Suppose that

Ext(C,,A,) =0 forallv <«.
If the set
E={v <« |3p>v suchthat Ext(C,/C,,A,/A,) # 0}

is stationary in k, then Ext(C,A) # 0.

Proof. As noted above, there is no loss of generality in assuming & = v + 1 in
the application of E. Observing that Ext(C,, B,) = 0if u > v, the exact sequence
0— C, - Cy+1 — C,4+1/C, — 0 induces the exact sequence

Hom(C,+1, B,) - Hom(C,, B,) — Ext(C,+,/C,,B,) — 0.

We now define homomorphisms y, : C, — B, (v < k). If v € E, then by
hypothesis the last Ext # 0, and we can choose a y, that has no extension to
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Cy+1 — B,. If v ¢ E, then select y, = 0. Define a direct system of splitting short
exact sequences ¢, (v < k) with commutative diagrams

P

¢:0 —— 4, — A, 0C, — C, —— 0

l »| l

(o
6410 0 —— Ay —— A, 100 . Coy1 —— 0

where the extremal vertical arrows are the injection maps, ¢,, ¢, +| are the obvious
projections, while y, is defined as follows:

Y- (avvcv) g (av + XvCv, ),

where a, € A,, ¢, € C,. At limit ordinals u, we form the direct limit of the system
{ev | v < pu} which will clearly be an extension of A,, by Cy,. Therefore, in view of
the hypothesis Ext(Cy,,A,) = 0, it will be equivalent to, and thus identifiable with,
the splitting sequence ¢, .

Suppose e: 0 - A — GLC — 0 is the limit of the direct system {e, | v < K}
with the indicated maps, and let p, : A, & C, — G denote the map induced by
the canonical morphisms ¢, — e¢. Thus p,+1y, = p, for all v < k. By way of
contradiction, assume that e splits, and let / : C — G be a splitting map for ¢; thus,
we can write G = A @ ¥ C. |C,| < k implies that ¥ maps C, into the direct sum of
C, and a set of less than « of the B,,’s. Routine arguments lead us to the conclusion
that the set

SZ{U <K | 1/fCu fpv(Av@Cv)}

isacubin k. Evidently, foreach v € S, ¥ induces a splitting map ¥, : C, — A, BC,
for ¢, such that p, ¥, = ¢ | C,.

We will denote by ¢, the composition of i, with the projection onto A,, and by
—£, the map p, followed by the projection onto A. It is clear that for all ¢, € C,,
e, = pu(Cicy,cy) = (&yey — ey, cy) is equal to Ye, = (0,c¢,), whence
¢, = &, follows. Furthermore, p, ¥, c, also equals

Pv+1 Yo ¥ucy =pu+1Vv(Cocy, ) = pur1(§uey + xuen,c)
=(vey + yvew — Losicu, Cy),
thus ¢y4+1¢y = &yey + yoey € Ay, & B, = A,4;. Consequently, ¢,4+; followed
by the projection of A, onto B, carries ¢, € C, onto x,c,, therefore it yields a

homomorphism C,+; — B, extending y,. This shows that v ¢ E, i.e., E is not
stationary in k. O
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% Notes. Lemma 4.4 was published by Eklof-Fuchs [Annali Mat. Pura Appl. 90, 363-374
(1988)] for the special case (on valuation domain) needed there.

Let us call attention to the basic difference between Lemmas 4.3 and 4.4. In the former lemma,
the second argument of Ext was kept fixed, while in the latter lemma the second argument could
grow as large as necessary to match the size of the group in the first argument. This explains why
we needed the Diamond Principle in one case, but not in the other, this difference will be more
apparent in Sect. 7 in Chapter 13.

Exercises

(1) Suppose that A satisfies Ext(X,A) = O for all rank 1 torsion-free groups X.
Then Ext(C,A) = 0 for all torsion-free groups C.

(2) If Ext(Z(p),A) = 0 holds for A, then Ext(C, A) = 0 for all p-groups C.

(3) If A satisfies Ext(Z(p),A) = 0 for all primes p, then A is divisible.

(4) Derive Pontryagin’s Theorem 7.1 in Chapter 3 from Lemma 4.1.

(5) (Eklof—Huber) If C is a torsion-free group of countable rank such that
Ext(B,A) = 0 holds for all finite rank subgroups B < C, then also
Ext(C,A) = 0 for any A.

5 The Functor Pext

That the extensions of A by C in which A is a pure subgroup (we will call them pure-
extensions) play a distinguished role does not seem to be obvious at the outset. The
truly significant thing here is that these extensions form a subgroup of Ext which
can be identified as the first Ulm subgroup of Ext.

Preliminary Lemma We recall that if « : A — Aand y : C — C are
endomorphisms, then there are induced endomorphisms «x and y* of Ext(C, A).
We begin with investigating the actions of o and y* in Ext(C, A). In the proof of
the next lemma, conveniently we may view A as a subgroup of B.

Lemma 5.1 (Baer [4]). Given the exact sequence

0 ASBECo0 (9.16)

and the endomorphisms a: A — A and y: C — C, we have:
(i) ¢ € Imay if and only if A/ A is a summand of B/aA;

(ii) ¢ € Im y* if and only if A is a summand of B~ Ker y;
(iii) if Kery = 0, then ¢ € Kery* ifand only if B~ ' Imy =~ A @ Im y.
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Proof.

(i) (Tellman [1]) The sequence Ext(C, ®A) — Ext(C,A) — Ext(C,A/aA) — Ois
obviously exact. Since the induced map Ext(C, A) = Ext(C, ¢A) is surjective,
the sequence

Ext(C,A) = Ext(C,A) — Ext(C,A/aA) — 0

is also exact. It shows that ¢ € Im a4 exactly if ¢ is mapped upon the splitting
extension of A/«A by C. This is tantamount to saying that A/«A is a summand
of B/aA.

(i) An argument similar to the one in (i) yields the exact sequence

Ext(C,A) 5> Ext(C,A) — Ext(Kery, A) — 0.

This shows that the extension e satisfies ¢ € Im y* exactly if it is mapped upon
the splitting extension of A by Ker y.

(iii) It is clear from Lemma 2.1 that ¢ € Kery* if and only if the top row in the
pull-back diagram

ey: 0 A B’ C 0
H | [
e: 0 A B 7~ 0

is splitting. As y is monic, this means that the sequence ey : 0 — A —
B 'Imy — Imy — 0 is splitting. O

Pext as First Ulm Subgroup of Ext Our main goal in proving the preceding
lemma was to apply it to the case when the endomorphisms are multiplications by
some non-zero integer n. From Lemma 3.1 we know that then the induced endomor-
phisms on Ext are likewise multiplications by the same n. Consequently, Lemma
5.1() tells us that (9.16) represents an element of n Ext(C, A) if and only if A/nA is
a summand of B/nA. Observing that ¢ € n Ext(C, A) implies ¢ € m Ext(C, A) for all
m|n, we are now in a position to derive:

Theorem 5.2 (Nunke [1], Fuchs [AG]). The exact sequence (9.16) represents

(i) an element of nExt(C, A) if and only if mA = A N\ mB for all m|n;
(ii) an element of the first Ulm subgroup Ext(C,A)! if and only if it is pure-exact.
In other words,

Pext(C,A) = Ext(C,A)",

where Pext(C, A) denotes the set of pure-extensions of A by C. O
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Thus Pext(C, A) is not only a subset, it is also a subgroup of Ext(C, A), called the
group of pure-extensions.

Ife: 0 — AiBi)C — 0 is a pure-extension of A by C, and if pu :
A — A',v: C' — C are homomorphisms, then the extensions e and ev are
again pure-extensions, this is easy to check directly, but also follows immediately
from Theorem 5.2 by observing that the map Ext(v, u) : Ext(C,A) — Ext(C’,A’)
carries Ulm subgroups into Ulm subgroups. We can thus claim that Pext is an
additive bifunctor Ab x Ab — Ab, contravariant in the first, and covariant in
the second variable.

From Theorem 4.3 in Chapter 5 we derive at once:

Corollary 5.3. A group C satisfies Pext(C,A) = 0 for all groups A if and only if it
is X-cyclic. O

Exact Sequences for Pext Having had a first glimpse of Pext, it looks interest-
ing enough to pursue its properties. To reveal its behavior towards exact sequences,
we prove a couple of results. The next two lemmas are more general than we need
them right now, but we will find their generality useful later on.

Lemma 5.4. Suppose 0 — A#Bi)C — 0 is an exact sequence such that «A is
contained in the ath Ulm subgroup B° of B. Then B maps B° onto C°.
Similarly, if A < p°B, then B(p°B) = p°C.

Proof. 1t is pretty clear that 8(B%) < C°, so only the surjectivity requires a proof.
Since Ker 8 < B°, the transfinite heights of the elements of B not in B° are the
same in every coset mod Ker 8. As the height of an element in an epic image is
the supremum of the heights of its preimages, no element can belong to C° without
being contained in B(B?).

The proof for p° B is the same. O

Lemma$5.5. Ife: 0 — A#Bi)C — 0 represents an element in the oth
Ulm subgroup Ext(C,A)° of Ext(C,A), then for every group G, the connecting
homomorphisms §* and 8« act as

8*: Hom(A, G) — Ext(C,G)°, 84: Hom(G, C) — Ext(G,A)°.

In particular, if ¢ is pure-exact, then Im§* and Im 8, are contained in Pext(C, G)
and Pext(G, A), respectively.

Similarly, if ¢ € p°Ext(C,A), then Im§* € p°Ext(C,G) and Imd, €
p° Ext(G,A).

Proof. An n € Hom(A, G) induces a map 7« : Ext(C,A) — Ext(C, G) that carries
the top row into the bottom row in the commutative diagram



278 9 Groups of Extensions and Cotorsion Groups

nse: 0 G B . c 0

Homomorphisms map Ulm subgroups into Ulm subgroups, so necessarily n«e¢ €
Ext(C, G)°. But the bottom row is exactly the image of 1 under 6*, whence the
claim is immediate. The dual proof establishes the statement involving ., while the
last claim is a simple corollary, as Lemma 5.4 is available. O

Now we can fit together the pieces of information we obtained in these lemmas
to prove that Pext admits the same kind of long exact sequences as Ext does.

Theorem 5.6 (Harrison [1]). Ler 0 — Ai>Bi>C — 0 be a pure-exact
sequence. Then, for every group G, the following induced sequences are exact:

0 — Hom(C, G) — Hom(B, G) — Hom(4, G) —
8—*> Pext(C, G)ﬂ—*> Pext(B, G)a—*> Pext(A,G) — 0 9.17)
and
0 - Hom(G,A) - Hom(G, B) - Hom(G, C) —
LN Pext(G, A)—> Pext(G, B)ﬁ) Pext(G, C) — 0. (9.18)

All the maps are natural.

Proof. In view of Lemma 5.5 and the functorial behavior of Pext, it is evident that
(9.17) and (9.18) make sense (i.e., the images of the indicated maps are correct),
only their exactness has to be established. We do not have to worry about exactness
at the Homs (see Theorem 2.3), so let us concentrate on the Pext part. Theorem 2.3
also assures the exactness of the sequence

Hom(A, G)-— Ext(C, G)~— Ext(B, G)~=> Ext(4, G) — 0.

By Lemma 5.5, Im§* < Ext(C,G)', so from Theorem 5.2 we infer that B*
maps Ext(C,G)! = Pext(C,G) upon (ImB*)! < Ext(B,G)', thus a* for Pext
is surjective. But then (Im 8*)! < Ext(B,G)' cannot be a proper inclusion. This
establishes the exactness of (9.17). The proof of (9.18) is similar. O

We observe that Theorem 5.6 also holds if we start with a p-pure-exact sequence,
and assume that G is a p-adic group.
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Pext and Algebraic Compactness Pext turns out to be a most versatile device
to test algebraic compactness. First of all, it is clear that the definition of algebraic
compactness can be rephrased by saying that A is algebraically compact if and only
if Pext(C,A) = O for all groups C. A reduction to certain C yields an especially
convenient criterion (Proposition 5.8). But first a comment that will be used in the
next proof.

Assume A is reduced and algebraically compact. The exact sequence 0 — Z —
Q — Q/Z — 0 induces the exact sequence 0 — Hom(Z,A) — Ext(Q/Z,A) —
Ext(Q,A) = 0, where the last Ext vanishes by the algebraic compactness of
A. Hence we obtain the natural isomorphism Ext(Q/Z,A) =~ A for a reduced
algebraically compact (= complete) A.

Proposition 5.7. Let A be a group such that A' = 0. Then
0 — Pext(Q/Z,A) — Ext(Q/Z,A) - A — 0

is an exact sequence where A denotes the Z-adic completion of A. There is a natural
isomorphism

Pext(Q/Z,A) =~ Hom(Q/Z,A/A).

Proof. If A' = 0, then A is a pure subgroup of its completion, and we can use the
pure-exact sequence 0 — A — A — A/A — 0 to derive two exact sequences

0 — Hom(Q/Z,A/A) — Ext(Q/Z,A) — Ext(Q/Z,A) = A — 0
and
0 — Hom(Q/Z,A/A) — Pext(Q/Z,A) — Pext(Q/Z,A) = 0,
where we have used the divisibility of A /A to get O at the right end of the first

sequence. Hence the claims are evident. O

Observe that Proposition 5.7 also tells us the interesting fact that the completion
of a group A with trivial Ulm subgroup can also be obtained by forming the initial
Ulm factor of Ext(Q/Z, A).

Proposition 5.8. A group A is algebraically compact if and only if it satisfies
Ext(Q,A) =0 and Pext(Q/Z,A)=0.

Proof. For the proof of sufficiency, we assume that A is reduced and the indicated
Ext and Pext vanish. Let D be the divisible hull of A and D’ the divisible hull of A!
in D. Then A + D’ contains A as a pure subgroup with (A + D’)/A torsion divisible.
The assumption Pext(Q/Z, A) = 0 implies Pext(E,A) = 0 for all torsion divisible
E, 50 A is a summand in A+ D’. This can happen only if D’ = 0,and A' = 0. Thus A
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is a pure subgroup in A with divisible A/A. Now A/A cannot contain any copy of
Q, since Ext(E,A) = 0 for all torsion-free divisible E, and neither can it contain
any torsion divisible subgroup because of Hom(Q/Z,A/A) = Pext(Q/Z,A) = 0.
Consequently, A/A = 0, establishing the claim. O

More on Pext In general, neither Ext nor Pext needs to convert a direct limit to
an inverse limit of Exts or Pexts, but in the countable case something definite can be
stated.

Lemma 5.9 (Nunke [1]). Let C, (n < w) be a direct system with connecting maps
¢n: Cy — Cuy1, and limit C. Then the natural map

¥ Ext(C,A) — lim Ext(C,. A) (9.19)

n<w

is surjective.

Proof. The direct system of the C,, gives rise to an inverse system with connecting
maps ¢, : Ext(C,41.A) — Ext(C,,A). Since the natural maps y, : C, — C induce
Yo o Ext(C,A) — Ext(C,,A) which satisfy yy¢y = yy,;, ¥ is well defined. To
prove its surjectivity, let ¢ be an element in the inverse limit, say, represented by a
sequence of extensions ¢, € Ext(C,,A) (n < w) fitting in the commutative diagrams

Cn: 0 A Bn I Cn — 0
H | [
epy1: 0 A Byyy —— Chyr —— 0

It is clear that then the ¢, form a direct system of exact sequences whose limit
¢* belongs to Ext(C, A). A straightforward check convinces us that v (¢*) must be
equal to e. O

In the following statement we keep the notations of the preceding lemma.

Proposition 5.10. Let C be a countable group which is the union of the chain
C, (n < w) of finitely generated subgroups. Then

(i) Kery = Pext(C,A).
(i) (Jensen [Je]) Pext(C,A) = 1(1111 Hom(C,,A).

Proof.

(i) The inclusions y,: C, — C induce epimorphisms y,’ : Ext(C, A)
— Ext(C,,A), and evidently, Ker v is contained in the intersection of the
Kery. As an extension 0 - A — B — C — 0 belongs to Pext(C,A) if
and only if it is carried to O by all y,, the claim is evident.
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(ii) (Schochet [1]) We observe that C fits in the pure-exact sequence 0 —

D<o Cnl> @Pn<w C;, = C — 0 where y is the Eilenberg map. By making use
of Theorem 5.6, hence we deduce the exact sequence

Hom(® < Cry A) — Hom(B, <, Cn, A) — Pext(C,A) — 0.

These Homs can be rewritten as direct products, so that the cokernel of
the Eilenberg map between them is 1(i£11 Hom(C,,A) (see, e.g., Sect.5 in
Chapter 2). O
% Notes. It is remarkable that the pure-extensions form the first Ulm subgroup of Ext. This
fact is the source of several generalizations of purity for groups, see e.g. Sect. 8 in Chapter 11. For
modules over integral domains, in general, the first Ulm submodule of Ext fails to be the collection
of pure-extensions.
Mekler [1] proves that it is consistent with GCH that there exist non-X-cyclic p-groups C such
that Ext(C,A) = O for all countable groups A. Compare this with Corollary 5.3. For more on
Ext(C,A), see Harrison [3].

Exercises

(1) Prove that an extension equivalent to a pure-extension is also a pure-extension.

(2) If C is torsion-free, then Pext(C,A) = Ext(C,A) for every A. Conclude that
Ext(C, A) is divisible provided C is torsion-free.

(3) (Irwin—Walker—Walker) An extensione¢: 0 - A — B — C — 0 belongs
to the divisible subgroup of Ext(C, A) if and only if the induced sequence
0 — tA — tB — tC — 0 is splitting exact.

(4) ¢:0 - A — B — C — 0is in the Frattini subgroup of Ext(C, A) exactly if it
is neat-exact.

(5) Prove Ext(C,A/pA) = Ext(C[p],A/pA) = Ext(C[p],A) forall A, C.

(6) Verify the natural isomorphisms

Pext(Bies CinA) = [ [ Pext(C;. A), Pext (C, l_[Ai) = [ [ Pext(C.A).

i€l i€l i€l

(7) If C is torsion, then Pext(C,A) = Pext(C,tA). [Hint: Lemma 1.4 in Chapter
5).]
(8) If A is a X-cyclic p-group and C is a divisible p-group, then those extensions
of A by C in which A is a basic subgroup form a subgroup in Ext(C, A).
(9) If A' = 0, then Ext(Q, A) = Hom(Q, A/A).
(10) If 0 - A — B — C — 01is a pure-exact sequence and F is X-cyclic, then the
sequence 0 — Ext(F,A) — Ext(F, B) — Ext(F, C) — 0 is splitting exact.
(11) (Schoeman) A group C has the property that Ext(C,A) is algebraically
compact for all groups A if and only if #C is X-cyclic.
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6 Cotorsion Groups

In this section we get acquainted with a remarkable class of groups which fits
perfectly into the structure theory of the groups of extensions. They were introduced
independently and almost simultaneously by Harrison [1], Nunke [1], and Fuchs
[11]. The name was coined by Harrison who pointed out their dual behavior to
torsion groups (Theorem 7.4).

Cotorsion Groups Here is the definition: a group G is called cotorsion if it
satisfies

Ext(A,G) = 0 for all torsion-free groups A.

Visibly, cotorsion generalizes the concept of algebraic compactness.

Every torsion-free group A can be embedded in a direct sum of copies of Q. The
inclusion map A — @ Q implies that the sequence Ext(® Q, G) = [ Ext(Q, G) —
Ext(A, G) — 0is exact. Consequently, the single equality

Ext(Q,G) = 0

suffices to guarantee that the group G is cotorsion. This is a handy criterion for
cotorsionness.

Example 6.1. From Theorem 3.8 we can deduce that every Ext is cotorsion. Indeed, we have
Ext(Q, Ext(C,A)) = Ext(Tor(Q, C),A) = 0, since the Tor vanishes. (We will give another proof
in Theorem 6.5 that is independent of Theorem 3.8 whose proof has been omitted.)

As usual, we start with a list of elementary consequences of the definition. The
immediate goal is to show that the class of cotorsion groups is closed under direct
products, extensions and epic images.

(A) A direct product [|,c; G; is cotorsion if and only if every summand G; is
cotorsion. This is a straightforward consequence of the natural isomorphism
Ext(Q.[]; G) = [[,Ext(Q, G)).

(B) A group G is cotorsion if a subgroup H and the factor group G/H are
cotorsion. The exact sequence 0 - H — G — G/H — 0 implies the
exactness of Ext(Q, H) — Ext(Q, G) — Ext(Q, G/H).

(C) Epimorphic images of cotorsion groups are cotorsion. If G is cotorsion, and
H is an epic image of G, then the sequence Ext(Q, G) — Ext(Q,H) — 0 is
exact, whence the claim is evident.

(D) Assume G is reduced and cotorsion. A subgroup H of G is cotor-
sion exactly if the factor group G/H is reduced. The exact sequence
0 - H - G — G/H — 0 leads to the exact sequence

0 = Hom(Q, G) —» Hom(Q, G/H) — Ext(Q, H) — Ext(Q,G) = 0.
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Thus the middle terms are isomorphic; this shows that Ext(Q, H) = 0 if and
only if Hom(Q, G/H) = 0.

(E) For every endomorphism 0 of a reduced cotorsion group G, both Ker 0 and
Im 6 are cotorsion. The claim follows at once from (D) and (C), respectively.

(F) Inverse limits of reduced cotorsion groups are again reduced cotorsion. The
inverse limit G* of reduced groups G; is a subgroup in the direct product [ [; G;
which is, by (A), cotorsion (and reduced) if so are the G;. Because of (D), it
remains to show that the factor group [; G;/G* is reduced. Recall that G* was
the intersection of kernels of certain endomorphisms 6; of [ |; G; (see Sect. 5(C)
in Chapter 2), and consequently, [ |. G;/G* is a subdirect product of the groups
Im 0;. These groups are reduced, and hence the claim is immediate.

Characterization of Cotorsion Groups The first evidence of the intimate
relation between Ext and cotorsion groups is our next theorem.

Theorem 6.2. A reduced group G is cotorsion if and only if there is an isomorphism
Ext(Q/Z,G) = G.

A reduced cotorsion group is a Z-module.

Proof. 1f this isomorphism holds, G is cotorsion by Example 6.1 (it will follow
from Theorem 6.5 too). For the converse, we start off with the exact sequence
0 - Z — Q — Q/Z — 0 which induces the exact sequence

0 = Hom(Q, G) - Hom(Z, G) = G — Ext(Q/Z, G) — Ext(Q, G) — 0.

The connecting homomorphism between Hom and Ext is an isomorphism if and
only if the last Ext vanishes. This is the case if and only if G is cotorsion. As Q/Z
is a Z-module, so is Ext(Q/Z, G) by the induced endomorphisms. O

Note that the proof shows that the isomorphism in the last theorem may be
regarded to be natural for reduced cotorsion groups G.

Corollary 6.3. A reduced cotorsion group is algebraically compact exactly if it is
Hausdorff in the Z-adic topology.

Proof. A reduced cotorsion group G satisfies Ext(Q/Z,G) =~ G, therefore,
Pext(Q/Z, G) = G'. G is Hausdorff if and only if G' = 0, and the claim follows
from Proposition 5.8. O

Structure of Cotorsion Groups The last theorem has an important conse-
quence: the structure theory of cotorsion groups can be reduced to the p-adic case.
Indeed, cotorsion groups enjoy the following canonical decomposition.

Theorem 6.4. A reduced cotorsion group G is a direct product,

G:HG,
p
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where, for each prime p, G, is a reduced cotorsion group which is a module over the
ring J, of p-adic integers. The G, are uniquely determined fully invariant subgroups.

Proof. In view of the isomorphism Q/Z = &, Z(p*°), the preceding theorem
implies G = Ext(®, Z(p*°), G) = ]_[[7 G, where G, = Ext(Z(p*), G) is cotorsion.
G, is the intersection of all ¢"G for primes ¢ # p and all n < w, so it is fully
invariant in G. O

More on Ext The best way to explain the significance of cotorsion groups is
to present a few illustrative applications. The first and foremost one is (i) in the
following theorem that was the source for inspiration of the concept “cotorsion”
(the name is a different story).

Theorem 6.5.

(1) The group Ext(C,A) is cotorsion for all groups A and C.
(i1) If C is torsion, then Ext(C, A) is reduced cotorsion for all A.

Proof. From the injective resolution 0 - A — E — D — 0 of A (where E, D
are injective) we derive the exact sequence 0 — Hom(C,A) — Hom(C,E) —
Hom(C, D) — Ext(C,A) — 0.

(1) As D is injective, Hom(C, D) is algebraically compact (Theorem 2.11 in
Chapter 7), so by (C), its epic image Ext(C, A) is cotorsion.

(i) If Cis a p-group, then the Homs are reduced and algebraically compact (Theo-
rem 2.1 in Chapter 7), so the image X of the monic map between the two first
Homs is cotorsion. In view of the exact sequence 0 — X — Hom(C, D) —
Ext(C,A) — 0, property (D) implies that Ext(C, A) is reduced. If C is torsion,
then Ext(C, A) is a product of reduced cotorsion groups, so is itself of the same
kind. O

We offer one more result on Ext showing that there are cases in which Ext is
not only cotorsion, but even algebraically compact. Recall that by Corollary 3.6,
Ext(C, Z) is compact if C is torsion.

Proposition 6.6.

(i) For every C, Ext(C, Z) is algebraically compact.
(i) Ext(C,A) is algebraically compact if so is A.

Proof.

(i) The exact sequence 0 — Z — R — R/Z — 0 induces the exact
sequence Hom(C,R) — Hom(C,R/Z) — Ext(C,Z) — Ext(C,R) = 0.
Here Hom(C, R) is torsion-free divisible, so its image in Hom(C,R/Z) is a
summand. Therefore, Ext(C, Z) is isomorphic to a summand of the compact
group Hom(C, R/Z).

(i) By Theorem 1.2 in Chapter 6, an algebraically compact A is a summand of a
direct product of cocylic groups. Hence Ext(C, A) is a summand of a product of
groups Ext(C, Z(p")) for various primes p and various k € N U {oco}. These
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groups are bounded and 0, respectively. Thus Ext(C,A) is a summand of a
product of bounded groups, so algebraically compact. O

Let us stop for a moment to record a useful consequence of the proof of
Theorem 6.5.

Corollary 6.7. Every reduced group G can be embedded in the cotorsion group
G* = Ext(Q/Z, G)

such that G*/ G is torsion-free divisible.

Proof. Consider the exact sequence 0 — G =~ Hom(Z,G) — Ext(Q/Z,G) —
Ext(Q, G) — 0. We know from Theorem 6.5 that G* = Ext(Q/Z, G) is cotorsion,
and from Sect. 3(E) that Ext(Q, *) is torsion-free and divisible. O

Occurrence of Cotorsion Groups In addition to Theorem 6.5, the following
two propositions afford classes of natural examples of cotorsion groups.

Proposition 6.8 (De Marco—Orsatti [1]). Let G be a topological group in a
metrizable linear topology, and G its completion in this topology. Then G/G is a
cotorsion group.

Proof. Assuming G non-discrete, let G = U, > U, > --- > U, > --- bea
base of neighborhoods for 0 consisting of subgroups with N,U, = 0. Define the
map ¢ : [[U, — G by sending the infinite vector (i1, ..., U, ...) (uy € U,) to
du, € G (note that the infinite series Y _ u, converges in G, since the sequence
of the u, converges to 0). Manifestly, ¥ maps the finite vectors in [] U, into G.
Furthermore, Imy =G, since every element of G is the limit of a Cauchy sequence
in G. Hence G/G is an epic image of the factor group [1U./ & U, which is
by Corollary 1.12 in Chapter 6 an algebraically compact group. Therefore, G/G
is cotorsion. O

As a final illustration we mention the first derived functor lim' of the inverse
limit functor (see Sect. 5 in Chapter 2).

Proposition 6.9 (Huber—Warfield [1]). If {A, (n < w)} is a countable inverse
system of groups, indexed by the natural numbers, then the derived functor yields a
cotorsion group l(iLnl Ap.

Proof. Let o, : A1 — A, denote the connecting homomorphisms in the inverse
system. The derived functor 1(i£11 A, is isomorphic to the cokernel of the Eilenberg

map §: [JA, — []A, given by
8: (ag,ay,...,ay,...) = (ap —ap(ay),a; —ai(az), ..., a, — ap(ang1),...).

It is clear that Im § contains the direct sum of the A,,, and therefore 1(1111 A, 18 an

epimorphic image of the factor group [ A,/ @ A,.. As above, it follows that l(il_n1 Ap
is cotorsion. O
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When Cotorsion Is a Direct Sum We conclude this section with an interesting
property of cotorsion groups that is related to their direct decompositions.

Proposition 6.10. Let G = @®;e; C; be a direct decomposition of a reduced
cotorsion group. Then there is an integer m > 0 such that

mC; =0 foralmostall i €l

Proof. We anticipate Proposition 8.3 which states that the Ulm factors of cotor-
sion groups are algebraically compact. If we factor out the first Ulm subgroups
throughout, then we get a direct decomposition G/G' = @;e; C;/C} of the reduced
algebraically compact group G/G'. By Theorem 2.17 in Chapter 6, there is an
integer m > 0 such that almost all summands C;/C; are m-bounded. If C;/C} is
bounded, then Cl.l ought to be 0. It follows that almost all of the summands C; are
bounded by m. O

% Notes. Huber—Warfield [1] also proved that every cotorsion group can be obtained in the
way described in Proposition 6.9, and if we allow systems of length w; as well, then every group
is obtainable as lim'.

Cotorsion m((ﬁulcs over integral domains were studied extensively by E. Matlis [Memoirs
Amer. Math. Soc. 49 (1964)]. Other generalizations were given by E. Enochs and R. Warfield,
Jr. The theory of cotorsion modules is flourishing, since Salce [2] initiated the theory of cotorsion
pairs. Cf. the monograph Approximations and Endomorphism Algebras of Modules (2006) by R.
Gobel and J. Trlifaj. The cotorsion theories for abelian groups were described by Gobel-Shelah—
Wallutis [1].

Exercises

(1) A countable cotorsion group is a direct sum of a divisible and a bounded group.
[Hint: consider G/G'.]

(2) Let G be a cotorsion group, and D the divisible hull of G!. Then G + D is the
pure-injective hull of G.

(3) A s torsion-free if Ext(A, G) = O for all (reduced) cotorsion groups G.

(4) For a cotorsion G, there is a natural isomorphism Ext(C, G) = Ext(¢C, G) for
every C.

(5) Suppose 0 - A — B — C — 0 is pure-exact, and G is algebraically compact.
Argue that the induced sequence 0 — Ext(C, G) — Ext(B, G) — Ext(A, G) —
0 is splitting exact. [Hint: Lemma 5.5, Proposition 6.6(ii).]

(6) If G' = 0, then (G*)! =~ Hom(Q/Z, G/G) and G*/(G*)! = G.

(7) For all A, C, Ext(C,A) admits a decomposition Ext(C,A) =~ D & Ext(tC,A)
where the first summand is an epimorphic image of the divisible group
Ext(C/tC,A), and the second summand is a reduced group. [Hint: Theorem
6.5(ii).]
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(8) (Wald) If G; (i € I) are cotorsion groups, then so is the subgroup of []., G
that consists of the vectors whose supports are countable. [Hint: consider
Ext(Z(p®>), *).]

(9) (Wald) G is cotorsion if every countable subgroup of G is contained in a
cotorsion subgroup of G. [Hint: Ext(Q, G) = 0.]

7 Cotorsion vs. Torsion

The material of this section constitutes an important part of our study of cotorsion
groups. The highlight is a decomposition of reduced cotorsion groups into two
summands, mimicking the decompositions of torsion groups into reduced and
divisible parts. The relationship to torsion groups is much deeper than one would
expect, torsion and cotorsion are related to an amazing extent: the two summands
belong to categories which are equivalent to the subcategories of reduced torsion and
divisible torsion groups, respectively. These category equivalences were discovered
by Harrison [1].

Adjusted Cotorsion Groups To begin with, we state a relevant definition.
A cotorsion group that is reduced and admits no non-zero torsion-free summands is
called adjusted. (This simply says that it is reduced and no J,, is a summand.)

Lemma 7.1 (Harrison [1]). Let T be a reduced torsion group. Then Ext(Q/Z, T)
is an adjusted cotorsion group whose torsion subgroup is isomorphic to T, and
whose factor group modulo T is (torsion-free) divisible.

Proof. From the standard exact sequence 0 — Z — Q — Q/Z — 0 we derive the
exact sequence

0 - Hom(Z,T) = T — Ext(Q/Z,T) — Ext(Q,T) — Ext(Z,T) = 0.

Thus the claim on the factor group will follow as soon as we can show that
Ext(Q, T) is torsion-free and divisible. But this is obvious from Sect. 3(E). What
we have proved so far implies that any torsion-free summand of Ext(Q/Z, T) must
be divisible. Because of Theorem 6.5(ii), it has to be 0. ]

Lemma 7.2. IfT denotes the torsion subgroup of a group G, then
Ext(Q/Z,G) = Ext(Q/Z,T) ® Ext(Q/Z, G/T).

Proof. From the exact sequence 0 - T — G — G/T — 0 we obtain the exact
sequence

0 — Ext(Q/Z,T) — Ext(Q/Z, G) — Ext(Q/Z,G/T) — 0.
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In view of Theorem 3.5 we know that the last Ext is = Hom(Q/Z, D) where D is the
cokernel of G/T in its divisible hull. Thus this Ext is the direct product of groups
Hom(Z(p®°), D) with p ranging over various primes, and Sect. 1(G) in Chapter 7
shows that these Homs are torsion-free. Since every Ext is cotorsion, the displayed
exact sequence must split. O

Canonical Decomposition of Cotorsion Groups We do not need any more
preparation for the proof of the basic decomposition theorem of reduced cotorsion
groups mentioned above.

Theorem 7.3 (Harrison [1]). Let G denote a reduced cotorsion group, and T its
torsion subgroup. There is a decomposition

G =~ Ext(Q/Z. T) ® Ext(Q/Z.G/T),

where the first summand is an adjusted cotorsion group, and the second summand
is a torsion-free algebraically compact group. This direct decomposition of G into
an adjusted cotorsion and a torsion-free algebraically compact group is unique up
to isomorphism.

Proof. Combining Theorem 6.2 and Lemma 7.2, we obtain the stated decom-
position. The first summand is, by Lemma 7.1, an adjusted cotorsion group
(the cotorsion hull of T, Sect.9), while the second summand is torsion-free and
algebraically compact as a consequence of Theorem 3.5. The uniqueness of the
decomposition follows from the fact that if G = C & A is a decomposition with C
adjusted, and A torsion-free algebraically compact, then 7 < C and T°*/T divisible
imply 7* < C. Hence T* = Ext(Q/Z,T) is a summand of C, but it cannot be a
proper one, because a complement would be torsion-free divisible. O

Accordingly, every cotorsion group G decomposes, uniquely up to isomorphism,
as G = D @& C & A where D is divisible, C is adjusted cotorsion, and A is
reduced torsion-free algebraically compact. The summands D and A can fully be
characterized by cardinal invariants, while the classification of adjusted cotorsion
groups remains open, since it is equivalent to the unsolved classification problem
of torsion groups; this equivalence will be more transparent in the light of Theorem
7.4 below.

Two Category Equivalences We are now entering the discussion of two cate-
gory equivalences between certain subcategories of cotorsion and torsion groups.

Consider the category T of reduced torsion groups and the category C of adjusted
cotorsion groups; we regard them as full subcategories of 4b. Observe that if ¢ :
T — T’ is a map between two reduced torsion groups, then there is an induced map
¢°*: Ext(Q/Z,T) — Ext(Q/Z, T") which is canonical, so that it is an isomorphism
provided so is ¢.

We have all the tools in our arsenal to verify the following remarkable dual roles
of the functors Ext and Tor.
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Theorem 7.4 (Harrison [1]). The category T of reduced torsion groups and the
category C of adjusted cotorsion groups are equivalent categories. The equivalence
is provided by the covariant functors:

Ext(Q/Z,*): T — C and Tor(Q/Z,x): C — T.

Proof. If T € T, then Ext(Q/Z, T) € C as stated in Lemma 7.1. The same lemma
implies Tor(Q/Z,Ext(Q/Z,T)) =~ T, remembering that the functor Tor(Q/Z, *)
picks up the torsion subgroup (Theorem 2.3 in Chapter 8). On the other hand, if
C e CandT = ¢C, then Tor(Q/Z,C) =~ T, and C' = Ext(Q/Z,T) is a reduced
adjusted cotorsion group with torsion subgroup 2= 7. But it follows from Lemma
7.1 straightforwardly that if both C and C’ are reduced adjusted cotorsion groups
with isomorphic torsion subgroups, then they are themselves isomorphic. Therefore,
Ext(Q/Z, Tor(Q/Z,C)) = C. O
Example 7.5. Let T be torsion and Hausdorff in the Z-adic topology (i.e., T! = 0). Then T*® =
Ext(Q/Z,T) is reduced, an extension of T by the divisible torsion-free group Ext(Q, T). Its first

Ulm subgroup is the algebraically compact Pext(Q/Z, T) = Hom(Q/Z, T/T) modulo which T*
is isomorphic to the completion 7.

The other category equivalence is between the category D of divisible torsion
groups and the category F of reduced torsion-free algebraically compact groups.
Both are viewed as full subcategories of .Ab. Since the reduced algebraically
compact groups are exactly the complete groups, we will switch to the shorter name
in formulating the following theorem.

Theorem 7.6 (Harrison [1]). The category D of divisible torsion groups is equiv-
alent to the category F of complete torsion-free groups. The equivalence is given by
the covariant functors

Hom(Q/Z,*): D — F and Q/Z® *: F — D.

Proof. Let C denote a complete torsion-free group, and FE its divisible hull. In the
arising exact sequence 0 - C — E — D — 0, the group D is divisible torsion.
The long exact sequences for Tor-tensor and for Hom-Ext yield

0 — Tor(Q/Z,D) =D - Q/Z® C — 0
and
0 - Hom(Q/Z, D) — Ext(Q/Z,C) = C — 0,
respectively. We have taken into account that Tor(Q/Z, x) selects the torsion
subgroup, and Hom(Q/Z, ) ignores torsion-free groups. The last isomorphism is

supported by Theorem 6.2. Thus there are natural isomorphisms D = Q/Z ® C and
C =~ Hom(Q/Z, D), which proves that the given functors induce an equivalence
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on the objects. They act in the same way on the morphisms, as witnessed by the
commutative diagrams

D 2. p
Hom(Q/Z,*)l lHom(Q/Z,*)
C Hom(Q/Z,5) c’

c .
Tor(Q/Z,*)JV lTor(@/Z,*)

Tor(Q/Z,)
_

D D’

|

An especially convenient and handy way to capture the correspondence D < C
is via the exact sequence 0 - C — E — D — 0, where, we repeat, E is the
divisible hull of C, a direct sum of copies of Q.

Example 7.7. 1f D = Z(p®°°), then C = Hom(Q/Z, Z(p°)) = J,. There is an exact sequence
0— J, > ®Q — Z(p>) — 0.1f D = Q/Z, then C = Hom(Q/Z, Q/Z) = Z, and the
sequence 0 — Z— ®Q— Q/Z — 0 is exact.

% Notes. The dual behavior of Ext-Tor as well as Hom-tensor is most interesting and most
important; there are other similar, less relevant, examples of duality in Homological Algebra.
While the generalization of Theorem 7.6 has widespread applications in the theory of modules
over integral domains (this is the Matlis category equivalence), so far Theorem 7.4 remains an
isolated result, though it easily generalizes to modules over integral domains.

Exercises

(1) A non-zero cotorsion group has a summand isomorphic to one of the following
groups: Q, Z(p") (k < 00), J,,, for some prime p.

(2) Show that 7 N C is the class of bounded groups.

(3) Let D = Z(p*®)®) Find Hom(Q/Z, D).

(4) If G is adjusted cotorsion, then |G| < |tG[*.

(5) Inthe category equivalence of Theorem 7.6, what subcategory of F corresponds
to the category of divisible p-groups?

(6) If G,H are adjusted cotorsion groups, then Hom(G,H) =~ Hom(:G,tH)
naturally.

(7) End G = End(rG) for an adjusted cotorsion G.
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Cotorsion Groups and Algebraic Compactness We continue our analysis of
cotorsion groups. First, let us mention a few more results on the relationship between
cotorsion and algebraically compact groups. As we shall see later on, they can be
quite useful.

Lemma 8.1.

(i) A reduced cotorsion group is algebraically compact if and only if its first Ulm
subgroup vanishes.
(ii) A torsion-free group is cotorsion if and only if it is algebraically compact.

Proof.

(i) This is basically equivalent to Corollary 6.3.
(i1) Itis enough to prove this for a reduced group G. If G is torsion-free and reduced,
then G! = 0. The claim follows from (i). |

Proposition 8.2. Every reduced cotorsion group is a quotient of a torsion-free
algebraically compact group modulo an algebraically compact subgroup.

Proof. Let 0 - G — E — D — 0 be an injective resolution of the reduced
cotorsion group G. We obtain the induced exact sequence

0 — Hom(Q/Z,E) - Hom(Q/Z, D) — Ext(Q/Z, G) — Ext(Q/Z,E) = 0.

The Homs are torsion-free and algebraically compact, while the first Extis = G, as
stated in Theorem 6.2. O

The Ulm Factors of Cotorsion Groups The last proposition confirms that
cotorsion groups can be derived from algebraically compact groups as epic images.
Miraculously, algebraically compact groups are implanted in a natural fashion in
cotorsion groups:

Proposition 8.3 (Fuchs [11]). Ulm subgroups of cotorsion groups are cotorsion,
and Ulm factors of cotorsion groups are algebraically compact.

Proof. If G° is the oth Ulm subgroup of the cotorsion group G, then G/G° is a
reduced group. Hence the first statement follows from Sect. 6(D). Then also the oth
Ulm factor G°/G°*! is cotorsion, as it is guaranteed by Sect. 6(C). Its first Ulm
subgroup vanishes, so we can finish the proof by invoking Lemma 8.1(i). O

We note, in passing, that this result can be complemented by claiming that, in
case G has finite Ulm length, a converse is also true: if the Ulm factors of G are
algebraically compact, then G is cotorsion. (This is a consequence of Sect. 6(B).)

Corollary 8.4 (Harrison [1]). A forsion group A is cotorsion if and only if it is of
the form A = B & D, where B is bounded and D is divisible.
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Proof. Sufficiency being obvious, assume A is torsion and cotorsion. By Proposition
8.3 its initial Ulm factor is algebraically compact. By Corollary 3.5 in Chapter 6,
a torsion group that is reduced and algebraically compact is bounded. Hence the
reduced part of A is bounded. O

Our next result relates the Ulm length of the torsion group T to the corresponding
adjusted cotorsion group 7* = G. Specifically, we prove:

Proposition 8.5. Let T be a reduced torsion group of Ulm length o. Then the
cotorsion group G = Ext(Q/Z, T) has Ulm length o or o + 1. The subgroup G° is
torsion-free, and there is a natural isomorphism

G° =~ Hom(Q/Z,G/(G° + T)).

Proof. Since T < G, it is clear that the Ulm length of G cannot be less than 0. We
alsohave G° N T = T° = 0, so G? is torsion-free cotorsion. By Lemma 8.1(ii), G°
is algebraically compact, so its first Ulm subgroup vanishes, G°*! = 0.

The sequence 0 — T — G/G° — G/(G° + T) — 0 is exact, and the last factor
group is divisible as an epic image of G/T. Hence Theorem 2.3 leads us to the exact
sequence

0 — Hom(Q/Z,G/(G° + T)) - Ext(Q/Z.T) ~ G
— Ext(Q/Z,G/G°) = G/G° — 0,

where the last isomorphism holds because G/G? is reduced cotorsion. The map
between the two Exts is natural, so its kernel must be G°. O

Groups That Can be Ext The groups that appear in the form Ext(C,A) when
the arguments belong to certain subclasses have been under close scrutiny by
abelian group theorists. There are numerous publications about this subject, not only
structural results in ZFC, but also under additional set-theoretical hypotheses, not
to mention several consistency theorems. These are deeper results whose proofs
demand more substantial machinery, so we cannot discuss them here. We only
include a result with a relatively easy proof.

Theorem 8.6 (Jensen [Je]). If A is torsion-free of countable rank, then Ext(A, Z)
is either O or is a direct sum of the following summands:

(1) a direct sum of continuously many copies of Q, and,
(2) for each prime p, a direct sum of finitely or continuously many copies of Z(p°°).

Proof. By Corollary 8.3 in Chapter 3, A is a direct sum of a free group and a torsion-
free group which has no non-trivial homomorphism into Z. Evidently, it suffices to
consider the second summand only, i.e. we may assume Hom(A,Z) = 0. In this

case, for a prime p, the exact sequence 0 — ALA = A /pA — 0 induces the

exact sequence 0 — Ext(A/pA,7Z) — Ext(A, Z)i> Ext(A, Z) — 0, where in view
of Sect. 3(F), Ext(A, Z) is a divisible group. The image of the first Ext in the second
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Ext is exactly the p-socle of Ext(A,Z), thus the number of summands Z(p®°) in
Ext(A,Z) is given by the dimension of the elementary p-group Ext(A/pA,7Z) as a
7./ pZ-vector space. This is equal to the dimension of A/pA if this is finite, otherwise
it is of the power of the continuum if A/pA is countably infinite.

If A # 0 and Hom(A,Z) = 0, then A contains a finite rank pure subgroup B
which is not free (Theorem 7.1 in Chapter 3), i.e. B contains a finitely generated
free subgroup F such that B/F is infinite. From the exact sequence 0 — F —
B — B/F — 0 we derive the exact sequence Hom(F,Z) — Ext(B/F,Z) —
Ext(B,Z) — 0. Here Hom is finitely generated free and the torsion-free rank of the
first Ext is of the power of the continuum (see, e.g., Sect. 7(e) in Chapter 13), so
the last Ext must have the same torsion-free rank. As Ext(B, Z) is an epic image of
Ext(A, Z), the proof is complete. O

% Notes. For more detailed information about the Ulm subgroups and Ulm factors of the
groups Ext(Q/Z, T), we refer to Harrison [3].

The groups Ext(G,Z) have been studied by several authors. The study splits into the cases
according as G is torsion or torsion-free. Ext(G, Z) is isomorphic to the character group of G if
G is torsion (so it is a compact group). For countable torsion-free G, see Theorem 8.6. For larger
torsion-free G, see the Notes to Sect. 3. Additional information: Hiller—Huber—Shelah [1] show in
L that Hom(G, Z) = 0 implies that Ext(G, Z) admits a compact topology.

Schultz [5] calls G a splitter if Ext(G, G) = 0 (e.g., torsion-free algebraically compact groups).
His study includes groups whose infinite direct sums or products are also splitters. See Gobel—
Shelah [3] for more on splitters, using new ideas and methods.

Exercises

(1) For areduced p-group T, these conditions are equivalent:

(a) Ext(Z(p™), T) is algebraically compact;
(b) Ext(Z(p™).T) = T;
(c) T is torsion-complete.

(2) Find non-isomorphic reduced cotorsion groups with 2 Ulm factors such that the
corresponding Ulm factors are isomorphic. [Hint: B the standard basic, T pure
in torsion-completion B such that |B : T| = |T : B| = 2%; compare the groups
Ext(Z(p*), B) and Ext(Z(p*>°), T).]

(3) (a) Let G denote a reduced cotorsion group. There is a cotorsion group A such

thatA' =~ G.
(b) (Kulikov) Every cotorsion group G can be realized as G = Pext(C, A) for
suitable A, C.

(4) Let A be a reduced torsion-free algebraically compact group, and C an
algebraically compact subgroup. Show that there is a transfinite well-ordered
descending chain of algebraically compact subgroups A, from A down to B
such that all the factors A, /A, + are algebraically compact. (At limit ordinals,
intersections are taken.) [Hint: A/C is cotorsion.]

(5) (Hiller-Huber—Shelah) Let A be torsion-free such that Hom(A, Z) = 0. Then
the rank of the p-component of Ext(A, Z) is either finite or of the form 2* for an
infinite cardinal «.
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(6) For every totally disconnected compact abelian group A, there is a torsion group
T such that Ext(T, Z) = A. [Hint: Corollary 3.6.]

9 Cotorsion Hull and Torsion-Free Cover

Algebraically compact groups can be characterized as pure-injective groups. This
brings up the obvious question: Do cotorsion groups display any injective behavior?
This is the first question which we wish to address in this section.

The Relative Injectivity To begin with, we introduce a new kind of exact
sequence. Call an exact sequence ¢ : 0 - A — B — C — 0 torsion-splitting
if the sequence et: 0 - A — B’ — tC — 0 (with B’ < B) splits for the injection
map t: tC — C.

(A) If C is torsion-free, or if the sequence is already splitting, then it is trivially
torsion-splitting.

(B) e is torsion-splitting if and only if torsion groups have the projective property
with respect to e¢.

(C) e is torsion-splitting exactly if the induced sequence 0 — tA — tB — tC — 0
of torsion subgroups is splitting exact.

The following proposition gives only a vague idea what torsion-splitting exact
sequences are like, but it helps identifying them within Ext.

Proposition 9.1. An exact sequence ¢: 0 - A — B — C — 0 is torsion-splitting
if and only if it represents an element in the divisible subgroup of Ext(C, A).

Proof. We use the exact sequence 0 - ' — C — C/T — 0 (where T = tC)
to derive the exact sequence Ext(C/T,A) — Ext(C,A) — Ext(T,A) — 0.
The extension ¢ € Ext(C,A) is torsion-splitting if and only if it maps upon
0 € Ext(T, A), i.e. it comes from the first Ext which is divisible (C/T is torsion-free).
As Ext(T,A) is reduced, ¢ is torsion-splitting exactly if it belongs to the divisible
subgroup of Ext(C, A). O

It follows, in particular, that the torsion-splitting extensions of A by C form a
subgroup in Ext(C, A).
We can now answer in the affirmative the question posed above:

Theorem 9.2. A group is cotorsion if and only if it has the injective property rel-
ative to torsion-splitting exact sequences; in particular, relative to exact sequences
0 - A — B — C — 0 with torsion-free C.

Proof. The most relevant part of this claim is a weaker form of the “only if” part: if
¢: A — G is ahomomorphism of a group A into a cotorsion group G, and if A is a
subgroup of H with torsion-free quotient H/A, then ¢ extendsto amap ¢ : H — G.
This is immediately seen from the exact sequence Hom(H, G) — Hom(A, G) —
Ext(H/A,G) = 0.
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We continue assuming G cotorsion. If 0 - A — B — C — 0 is a torsion-
splitting exact sequence and T = tC, then evidently, every map ¢ : A — G extends
toamap ¢’': B — G where B < B,B’/A =~ T. As B/B' is torsion-free, by what
has been proved in the preceding paragraph, ¢’ extends to some ¥ : B — G.

Conversely, suppose G has the injective property relative to all torsion-splitting
exact sequences. Without loss of generality, G may be assumed reduced. By Corol-
lary 6.7, there is an exact sequence 0 - G — G* — D — 0 with G* cotorsion and
D torsion-free divisible. Since G has the injective property with respect to this exact
sequence, the sequence splits and G is a summand of the cotorsion group G* (hence
G =G"). O

Thus forsion groups are projective, and cotorsion groups are injective objects for
the torsion-splitting exact sequences.

Cotorsion Hull The embedding A — A® of a reduced group A in a reduced
cotorsion group deserves special attention. A® is actually the cotorsion hull of A in
the following sense: A® is the minimal cotorsion group containing A with torsion-
free quotient. In fact, we have

Proposition 9.3.

(1) Let A be a reduced group and A* = Ext(Q/Z, A). Any homomorphism ¢ : A—~G
into a reduced cotorsion group G extends uniquely to ¢°®: A®* — G.

(ii) The correspondence A — A°® is functorial: every homomorphisma : A — B has
a unique extension a®: A®* — B® making the following square commutative:

A —2 . B

Lo

A* —— B*

Proof.

(1) The exact sequence 0 — A-LsA A0 /A — 0 leads to the exact sequence

0 = Hom(A®*/A, G) — Hom(A®, G)L)Hom(A, G) — Ext(A*/A,G) = 0.

We infer that ® is an isomorphism, proving (i).
(ii) follows in the same way, using B® in place of G. O
Proposition 9.4. A rorsion-splitting exact sequencee¢: 0 - A — B — C — 0 of
reduced groups induces a splitting exact sequence

¢*:0>A*—>B*"—>C*—0.
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Proof. Applying the Hom-Ext exact sequence with Q/Z to e, the exactness of ¢® is
immediate. Its splitting will follow once we can establish that it is torsion-splitting.
Since tC*® = ¢C, from the commutative diagram

e: 0 A B C 0
| | |
e*: 0 A* B* () 0

it is routine to derive the projective property of torsion groups relative to the exact
sequence ¢®. O

The cotorsion hull of a mixed group can be computed easily from those of
the torsion and torsion-free parts. In fact, from Lemma 7.2 it follows that for any
reduced group A, we have

A* = (1A)* @ (A/tA)°.

Example 9.5. Let B = @,B, with B, = @ Z(p") for each n € N. Then B® is equal to the
subgroup G < [, B, such that G/B is the largest torsion-free divisible subgroup in ([ ], B,)/B.

Example 9.6. For a reduced torsion-free group A, A® = A.

Torsion-Free Cover The class of cotorsion groups (and especially their general-
izations) has attracted much attention in recent years, because they form a so-called
cotorsion pair along with the class of torsion-free groups. This means that G is
cotorsion if and only if Ext(A, G) = 0 for every torsion-free A, and vice versa, A
is torsion-free if and only if Ext(A, G) = 0 holds for every cotorsion G. There is
a very rich, fast growing literature available on this subject for modules. One of
the objects of research is the existence of covers and envelopes (or hulls) in the
respective classes; in our case: torsion-free covers and cotorsion hulls. The latter
has been settled above, so let us move to the question of torsion-free covers.

Needless to say, every group is an epic image of a torsion-free group, for instance,
of a free group. We wonder if there is a minimal one among such torsion-free groups.
Better yet, if there is a unique minimal one. Enochs [2] succeeded in showing that
there is always a minimal one that is even unique up to isomorphism. To make this
fact precise, we have to clarify what “minimality”” should mean.

Let¢: F — A be a homomorphism of the torsion-free group F into A. ¢ is called
a torsion-free cover of A if

(1) for every torsion-free group G and homomorphism y : G — A there is a map
n: G — F such that ¢ = y, and
(i) Ker ¢ contains no non-zero pure subgroup of F.

Condition (i) says, in more prosaic terms, that maps from torsion-free groups into
A must factor through ¢. Hence it follows that the map ¢ has to be surjective (since
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there is a free group mapping onto A). Trivially, a torsion-free group is a torsion-free
cover of itself.

We do not wish to enter into a full-fledged study of torsion-free covers, since this
would take us too far afield. But not too much effort is needed in establishing their
existence.

Lemma 9.7 (Enochs [2]). Every group A admits a torsion-free cover ¢ : F — A,
and Ker ¢ is a reduced algebraically compact group.

Proof. Let D denote the injective hull of the torsion subgroup T = rA. By the
Harrison category equivalence, there is an exact sequence 0 - C - E — D — 0
where C is a complete torsion-free group, and E is an injective torsion-free group
(a direct sum of copies of Q). Cutting down from D to T, we get an exact sequence
0 - C - B — T — 0. Here C cannot contain any pure subgroup of B, because
every rank 1 pure subgroup of B maps upon a non-zero subgroup of T (7 is essential
in D).

We claim that there exists an exact sequence in the middle row, unique up to
equivalence, making the diagram

C —— C=Kerg¢
| |

0 B F H 0
| ‘| H

0 T A H 0

with exact rows commute where H = A/T. Indeed, there is a natural bijection
between the extensions of 7 by H and those of B by H, as it is clear from the exact
sequence Ext(H, C) — Ext(H, B) — Ext(H,T) — 0, where the first Ext vanishes
(H is torsion-free and C is algebraically compact). We claim that ¢ : FF — A is
a torsion-free cover of A. If y : G — A with a torsion-free group G, then the
exactness of Hom(G, F) — Hom(G, A) — Ext(G, C) = 0 implies the existence of
an n: G — F as required by (i). Furthermore, (ii) is also satisfied, since C does not
contain any pure subgroup of B, and B is pure in F. O

Example 9.8. The group J, is the torsion-free cover of Z(p*) for every integer k > 0, where
¢ J, > Z(P*) with Ker¢p = p*J,. Condition (ii) in the definition of torsion-free cover is
obviously satisfied. To check (i), let y : G — Z(p*) with torsion-free G, and pick g € G such that
(yg) = Imy. Then there is u € J, such that ¢u = yg. Since (u) is p-pure in J,,, the correspondence
g > u extends to a desired map n : G — J, in view of the algebraic compactness of J,,.

Example 9.9. The torsion-free cover of Z(p°°) is the additive group Q;‘ of the field of p-adic
numbers (i.e., the quotient field of J,). This follows from the isomorphism Hom(Q, Z(p®°)) = Q;‘ .
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% Notes. Cotorsion hulls of groups have been investigated by several authors. For the
cotorsion hulls of separable p-groups, see Moskalenko [1], and Kemoklidze [1], where also their
full transitivity has been studied.

Torsion-free covers over arbitrary integral domains are unique up to isomorphism. For a proof,
we refer to Enochs—Jenda, Relative Homological Algebra (2000), Theorem 4.2.1. A torsion-free
F is called a torsion-free precover of A if it satisfies condition (i) in the definition of torsion-free
cover. It is an important fact that every precover has a summand isomorphic to the cover.

Exercises

(1) If C is a cotorsion group, then Hom(A, C) is cotorsion for every A. [Hint: start
with 1A, A/tA.]

(2) Verify the inequality |A®| < |A|®0.

(3) A group has the projective property relative to all torsion-splitting-exact
sequences if and only if it is the direct sum of a free group and a torsion group.

(4) If A < G and G is a reduced cotorsion group with G/A torsion-free divisible,
then G = A°.

(5) (Rangaswamy) (a) For a group G, Ext(C, G) is reduced for all groups C if and
only if G is cotorsion.
(b) For a fixed C, Ext(C, G) is reduced for all groups G if and only if C is a
direct sum of a torsion and a free group.

(6) Show that Z — Z(p) cannot be a torsion-free cover. [Hint: rational groups
— Z(p).]

(7) The torsion-free cover of a divisible group D is given by Hom(Q,D) —
Hom(Z, D) = D.

Problems to Chapter 9

PROBLEM 9.1. Which cotorsion groups cannot be represented as Ext(C, A) for
any A, C?

PROBLEM 9.2. Is it possible to give an upper bound for the Ulm length of
Ext(C, A) in terms of the Ulm lengths of A and C?

PROBLEM 9.3. Characterize p-groups A such that p® Ext(A, Z) = 0.

PROBLEM 9.4. Study the cotorsion hulls of groups over their endomorphism
rings.

PROBLEM 9.5. Relate a torsion group to its torsion-free cover.



Chapter 10
Torsion Groups

Abstract We are now prepared to plunge into an in-depth study of the major classes of abelian
groups. Divisible groups have been fully characterized, so we can concentrate on reduced groups.
Our discussion begins with the theory of torsion groups. Since a torsion group is a direct sum of
uniquely determined p-groups, it is clear that the study of torsion groups reduces immediately
to p-groups. This chapter is primarily concerned with p-groups without elements of infinite
heights (called separable p-groups), while the next chapter will concentrate on p-groups containing
elements of infinite heights.

Separable p-groups are distinguished by the property that every finite set of elements is
contained in a finite summand. This proves to be a very powerful property. However, as it turns out,
it does not simplify the group structure to the extent one hopes for: though the full potential of this
condition has not been realized, it looks probable (if not certain) that a reasonable classification in
terms of the available invariants is impossible. Every separable p-group is a pure subgroup between
its basic subgroup B and the largest separable p-group B with the same basic subgroup. Much of
the interest in these torsion-complete p-groups B comes from their numerous remarkable algebraic
and topological features, one of which is that they admit complete systems of invariants.

There is a large body of work available on separable p-groups, and a fair amount of material
will be covered on such groups that are distinguished by interesting properties, mostly those shared
by torsion-complete groups.

1 Preliminaries on p-Groups

Before embarking on an in-depth study of p-groups, we have to get familiar with
the basic tools.

Transfinite Heights and Indicators We start with transfinite heights that
provide a lot of information about how an element sits inside the group. Let A be a
p-group. Recall that for an ordinal o, the subgroup p°A was defined recursively:
pA = {pa | a € A}, p°t'A = p(p°A), and p°A = N,.; pPA if o is a limit
ordinal. For cardinality reason, there is a smallest ordinal t with p“’lA = p'A;
this subgroup must be the divisible part of A which we may denote as p®™A. We
form the descending chain

A>pA>--->p'A>--.>p°A>...>p'A = p™A.

The ordinal 7 is called the length of A.
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(A) If Cis a subgroup of the p-group A such that p"A < C < A for some n € N,
and if A has infinite length, then C has the same length.

(B) IfA has length 0 and S < A[p"], then A/S has length < o + n. In fact, this is
clear from p°(A/S) < A[p"]/S.

The transfinite height /(a) (henceforth called briefly the height) of an element
0 # a € A is defined to be the ordinal o if a € p°A \ p° 1A, and we set h(a) = 0o
for elements a € p>°A. We write hy,(a) if the prime p is not obvious from the context.

More information is contained in the indicator. Let a € A be an element of order
p". With a we associate the strictly increasing sequence

u(a) = (h(a), h(pa), ..., h(p"'a), h(p"a) = co) (10.1)

of ordinals with the symbol oo at the end. u(a) is called the indicator of a in A. It is
sometimes reasonable to continue the indicator with symbols oo; if we do so, then it
is easier to define the partial order for the characteristics: u(a) < u(b) to mean that
h(p"a) < h(p"b) foralln € N.

If h(p'a)+1 < h(p™*'a), then we say there is a gap between i(p'a) and h(p+'a),
or simply a gap at i(p'a). If o(a) = p" in a reduced p-group, there is certainly a gap
between h(p"'a) and h(p"a) = oo.

Lemma 1.1 (Kaplansky [K]). Let A be a reduced p-group of length t, and oy <
o] < -+ < 0Op—1 < T a strictly increasing sequence of ordinals. Then u =
(00,01,...,0,—1,0, = 00) is the indicator of some a € A if and only if it satisfies
the gap condition:

(*) If there is gap between o; and 0;4., then the o;th UK-invariant f5,(A) of A is

£ 0.

Proof. Assume thatin u a gap occurs at i(p'a) for some a € A. This means that there
isab € A such that p''a = pb with h(b) > h(p'a) = 0;. Now ¢ = p'a—b is of order
p and of height min{A(p'a), h(b)} = o;. Hence the group p%Al[p]/p° ' A[p] # 0, so
its dimension f;;, (A) # 0.

Conversely, let u = (09,01, ...,0,—1,0, = ) (0,1 # 00) satisfy (*). Then
there is an a,—; € A[p] of height o,—;. We distinguish two cases. If there is no gap
between o0,—, and 0,1, then pick an a,—, of height o, such that pa,—, = a,—;.
If there is a gap between them, then (*) ensures the existence of a b € A[p] of height
0,—2, and there is a ¢ € A of height > o, with pc = a,—;. Nowa,—, = b+ ¢
is of height 0,—, and satisfies pa,—, = a,—;. Proceeding in the same way, we get
successively elements a,—1, a,—», . .., ag such that pa; = a;4+ and h(a;) = o0; (i =
0,...,n—1). By construction, u(ag) = (09, 01, ... ,Op—1, 0y = 00). O

Subsocles A subgroup S of the socle A[p] of A is called a subsocle of A. A
subsocle is said to support the subgroup C of A if C[p] = S. A subsocle S carries
the topology inherited from the p-adic topology of A, so it will make sense to talk of
a closed and of a dense subsocle, meaning closed resp. dense in A[p]. S is discrete
in case S N p™A = 0 for some m € N, i.e. the heights of the non-zero elements of S
are bounded by m — 1.
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We make an important observation about pure subgroups whose socles support
summands.

Lemma 1.2 (Irwin—-Walker [1], Enochs [1]). A pure subgroup supported by the
socle of a summand is itself a summand.

Proof. Suppose A = B @ C is a p-group, and G is a pure subgroup of A such that
Glp] = BJp]. Clearly, GN C = 0 and G + C contains A[p]. Given a € Alp],
write @ = g + ¢ with g € G[p],c € C|p]. Then the height of a in G + C is
> min{i(g), h(c)} = ha(a). Therefore, G + C is pure in A. For a pure, essential
subgroup, we have G @ C = A (see Sect. 1(F) in Chapter 5). O

Pure subgroups supported by dense subsocles are of special interest.

Theorem 1.3 (Hill-Megibben [2]). Let S be a dense subsocle of the p-group A. If
C is a subgroup of A maximal with respect to the property Clp] = S, then C is pure
and dense in A.

Proof. The existence of subgroups C of the stated kind follows at once from Zorn’s
lemma. We use induction on n to prove C N p"A < p"C.Forn = 1l,letpa=ce€ C
with a € A. If a ¢ C, then by the maximal choice of C, there is b € (C,a) N A[p]
such that b ¢ S. We can write b = —¢’ + ka for some ¢’ € C and integer
k (1 < k < p) which may be assumed to be 1 without loss of generality. Then
pc’ = p(a — b) = pa = c, and the case n = 1 is done.

Now assume that C N p"A < p"C holds for some n > 1, and let a € A
satisfy p"*'a € C. By what has been shown, p"*'a = pc for some ¢ € C. Since
p"a— c € Alp], the density of S in A[p] guarantees the existence of ad € S such that
p'a—c—d € p"A. Then c + d € C Np"A, so by induction hypothesis, some ¢; € C
satisfies p"c; = ¢ + d. Hence p"'c; = pc = p"*!a, and the purity of C follows.

We refer to Lemma 2.8 in Chapter 5 to argue that the cosets mod C that are
of order p can be represented by elements of A[p]. Owing to the density of S, the
elements of order p in A/C are of infinite height in A/C. Hence A/ C is divisible (cf.
Sect. 1(C) in Chapter 4), and C is dense in A. |

Indicators with Integers In case the indicator contains only finite ordinals, an
important conclusion may be drawn. Of course, no infinite ordinal may occur if the
p-group is separable, i.e. every non-zero element is of finite height. An important
technical lemma:

Lemma 1.4 (Baer [5]). Let A be a p-group, and

u@) = (ro, 71, ..., Fn—1, 1y = 00)
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the indicator of a € A, where rj (j < n) are integers. Let r,,, ..., 1y, = 1y denote the

places before which gaps occur. Define the integers ki, . .., ks by the rules:
ki=ro, ko =ry —ny, ..., kg =rp_, —ns_1.

Then0 <ny <---<ngand0 < ky < --- < ky, and there exist elementscy, ...,c5 €

A such that

@o(c) =pithifori=1,....s
®) C={c;)® & (c;) is a summand of A;
(©)a=phci+ -+ phe,

Proof. We induct on o(a). If this is p, then u(a) = (ry, c0) and everything follows
from Corollary 2.2 in Chapter 5. Thus let o(a) = p" (n > 1), and assume the
claim true for elements of orders < p"~!. The inequalities for the n; and k; are
obvious. Consider the element p™—'a which is of height r,—;, and choose a ¢c; € A
with p"—t¢y = p™—'a. Then (c,) is pure in A and is of order p™s™%. The element
a = a— pc,is of order p" < p"~! and—as is readily verified—its indicator is
u(@) = (ro,71,.-.,n_,—1,00). Invoking induction hypothesis, we argue that for
a’ there are elements ¢, ...,c,—; € A of the desired kind. Note that (c,) intersects
C' = {(c1) @ - ® (cs—1) trivially, since p"sT® ¢, is of order p and of height
ng + ks — 1, while C’ does not contain any such element. We now set C = C’ @ {(c;).
C must be pure in A, since elements in its socle have the same height in C as they
have in A (Sect. 1(E) in Chapter 5). A finite pure subgroup is a summand. O

We can now derive an important corollary to the preceding lemma.

Corollary 1.5. Let A be a separable p-group. There is an endomorphism of A
mapping a € A to b € A if and only if u(a) < u(b).

Proof. Since endomorphisms never decrease heights, the necessity is obvious. To
prove sufficiency, assume u(a) < u(b) fora, b € A. By the preceding lemma, we can
embed a and b in direct summands C = (c1)®---®(c;) and D = (d;) D - - (d;) of
A, respectively, subject to the stated conditions. It suffices to exhibit a map : C —
D with na = b to complete the proof. Write a = pXic; + --- + pFic, as in condition
(c) and similarly, b = p“id, + --- + p“d, where o(d)) = Pt 0 <m < --- <
my, 0 <€ <--- < {;,. Now oo = h(p"a) < h(p™b) shows that psb = 0, thus
ng > my, and therefore, we may map c; upon plf—kfdj + -+ plkd, where j is the
smallest index with n; > m; (so that the image will be of order < o(cy) = p™thk).
The elements @’ = a — p*sc; and b’ = b — plid; — --- — phd, satisty u(a’) < u(¥),
and by induction hypothesis C = (c;) @ -+ @ (c;—1) has a homomorphism into
D = (d|) @ --- ® (dj—i) mapping ¢’ upon b'. This extends to a homomorphism
n: C — D with 5 acting on ¢, as indicated. O

Kaplansky [K] calls a reduced p-group A fully transitive if it has the property
stated in Corollary 1.5. A is transitive if the same holds for automorphisms with
inequality replaced by equality. Corollary 1.5 asserts the full transitivity of p-groups
with no non-zero elements of infinite height.
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Arbitrarily Large Lengths An obvious question concerning p-groups is
whether or not there exist p-groups of arbitrarily large length. The answer is
yes, but it is not obviously so. The first existence proof was given independently
and almost simultaneously by Kulikov [3] and the author [2]; the result follows
immediately from Theorem 1.9 below. With the advent of the theory of totally
projective p-groups, it is easy to construct examples of p-groups of arbitrarily large
length.

Theorem 1.6. There exist reduced p-groups of arbitrarily large length.

Proof. Starting with the group Hy = 0, we shall construct a p-group H,, for every
ordinal o, such that

(a) Hy is of length o;

(b) p°Hy41 is cyclic of order p and Hy41/p°Hy4+1 = Hy;
(c) Hy = ®p<s H, if 0 is a limit ordinal;

(d) all the UK-invariants of H, are < |o]|.

The construction is straightforward, the stated conditions indicate how to pro-
ceed. Since Hy = 0, from (b) we conclude by induction that, for an integer n > 0,
H, is cyclic of order p". Then (c) implies that H,, = ®,<, Z(p").

If o is a limit ordinal, (c) tells us how to form H,. For a non-limit ordinal, write
o = p + n with limit ordinal p and integer n > 0. Two cases will be distinguished
accordingasn = lorn > 2.

In case n > 2, we may assume that H,,,_1/p"H,4,—1 is a cyclic group C of
order p"~!. Let B be a cyclic group of order p" and y : B — C an epimorphism. As
the induced map yx : Ext(H,, B) — Ext(H,, C) is surjective, there exists a group
H,,+, making the diagram

0 B H,\n H, 0
| s |
0 C Hy,+nfl Hll 0
commute and its first row exact. It is readily seen that H, ., = H, satisfies

conditions (a), (b), and (d).

If n = 1, then a different kind of construction is needed. The trick is to view H,
as the direct sum of H,1/p"Hy41 for p < p where all the subgroups p?H, 4 are
cyclic of order p. Using the codiagonal map V : @,<, p’Hy,r1 — C = Z(p), we
define H,, via the push-out diagram
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0 —— @®p<p P’ Hpp1 —— Bpp Hpa Hy, 0
[ | H
0 —— C s H, H, 0

where C < p"H, 11, since V is epic on each summand. The reverse inclusion is a
consequence of p*H,, = 0, so H, 1| = H, satisfies (a)—(b). That (d) also holds in
all cases follows rather easily from the definition by transfinite induction. O

We recognize H,+; as an old acquaintance of ours. In fact, it is identical to the
Priifer group constructed in Example 5.7 in Chapter 5. This group is a simplest
example of a reduced p-group with non-zero elements of infinite height. Because
of this resemblance, the group H, defined above was named by Nunke [5] a
generalized Priifer group of length o.

The groups H, not only provide us with p-groups of arbitrary length, but, more
importantly, they will serve as building blocks of the significant class of totally
projective p-groups, to be discussed in Sects. 3—6 in Chapter 11.

As an additional information on these H,, let us point out:

Corollary 1.7. The Ulm factors of H, are X-cyclic groups.

Proof. We argue via transfinite induction. For 0 < w, H,; is just a direct sum of
cyclic p-groups. If ¢ = p + n with limit ordinal i and n € N, then H, /p"H, has
the stated property by induction hypothesis, while the last Ulm subgroup of H,; is
cyclic of order p". On the other hand, if o is a limit ordinal, then the construction
above shows that the Ulm factors of H, will be the direct sums of the Ulm factors
of the H, (p < o), whence the claim is evident. O

Every Group Can Be p’A Another obvious question related to the existence of
p-groups is answered by the following result that is proved in a more general setting
(for arbitrary G).

Proposition 1.8. Given a prime p, an ordinal o, and a group G, there exists a group
A such that p°A = G.

Proof. First we construct a mixed group M, to fit into the exact sequence 0 —
() = Z - My; — H, — 0 such that p° M, = (x,) (thus h,(x;) = o). This can
be done in the same way as in the proof of Theorem 1.6, using the existing H,’s,
with an infinite cyclic group at the very end (in place of a cyclic group of order p).
(Cf. Nunke groups in Sect. | in Chapter 15.)

Let B = ®jes (b;) be a p-basic subgroup of G. For each i € I, select a copy C;
of M, with ¢; a generator of the cyclic group p° C;. Define A as the push-out in the
diagram
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0 —— Dier(ci) —— DierCi —— ®ier Hy —— 0

| 8 H

0O —— G E— A —— @y H, —— 0

where y is defined by the correspondence ¢; — b;. It remains to prove that p°A = G.
The inclusion p’A < G is a consequence of p” H, = 0. Clearly, the generators b; of
the basic subgroup B of G will have height o. The rest follows from Lemma 6.7 in
Chapter 5. O

Conditions on the Ulm Sequence For completeness’ sake, we state a general
necessary and sufficient condition on the Ulm sequence of p-groups. The theorem
answers a question posed by A.G. Kurosh. The proofs are too long for inclusion,
and since we are not going to need the result, we just show the necessity part, and
for the rest we refer to the original articles.

We recall that, for a p-group A, the oth Ulm subgroup A% is defined inductively
as A' = Ny<p p"A, AT = (A%)!, and AY = Ny, A% if y is a limit ordinal. The
factor group A, = A%/A**! is the ath Ulm factor, and the sequence

Ao ALy .. Ag,... (@ <)) (10.2)

is the Ulm sequence of A. B, will denote a basic subgroup of A,.

Theorem 1.9 (Kulikov [3], Fuchs [2]). Letr (10.2) be a well-ordered sequence of
p-groups, and k an infinite ordinal. There exists a reduced p-group A of cardinality
K with Ulm sequence (10.2) if and only if the following conditions are satisfied.:

(a) Ay is separable for each o < A;

(b) 205a<l |A0€| =Kk = l_[0§n<min{w,l} |A"|’.
(¢) rkBy41 < fin tk A, for everyoa + 1 < A;
(d) Ypoyan |Aal < Ap[%0 for0 < f < 1.

Proof. We establish necessity only. (a) is obvious, and so is (b) for finite ordinals A.
For infinite ordinals, the first inequality in (b) follows from A = U,y (A% \ A%T1)
and |A,| < |[A%\A*T!|.If |A,,| = min,, |A,|, then (cf. Corollary 5.15 in Chapter 5)

AL = Aol |41 -+ [An1[|A"] < |Aol|A1] - [An—r[IA"Y < T 1AW

0<n<w

(d) follows from (b) applied to A? and from Corollary 5.15 in Chapter 5:
Zﬂmd Al < |AP| < |A,3|R". To verify (c), note that for each n € N, there
is an x; € A“ such that p"x; = b; for every b; in a basis of By4;. These x; are
independent mod A®T! for otherwise we have rix; +- - -+rx; = ¢ € Byy1, whence
riby+-- -+ by = p"c € By41. By the purity of By+1, p"|r; fori = 1,..., k, which
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is tantamount to the independence of the x; in A,. It follows that A, = A /A‘)H'1
contains an independent set of elements of p” whose cardinality is not less than
rk By+1. O

Notation In order to simplify notation, we shall write p®A[p] for the accurate
(p°A)|[p] to denote the socle of p°A.

% Notes. Transitivity and full transitivity have been investigated by several papers. Corner [7]
gives examples establishing the independence of these notions. Files—-Goldsmith [1] prove that A
is fully transitive if and only if A @ A is transitive. Separable p-groups are both transitive and fully
transitive, and so are the totally projective p-groups (Sect. 6 in Chapter 11).

It is not an easy task to find a p-group that fails to contain proper subgroups isomorphic to the
entire group. Stringall [1] exhibits such an example with the standard basic subgroup.

Exercises

(1) Prove that p° (p?A) = p”*°A for any ordinals p, o and any p-group A. [Hint:
induction.]

(2) Let A be a finite group of type (p*', ..., pk) with k; < --- < k,. Describe all
possible indicators of elements in A.

(3) The indicators of elements in a separable p-group form a distributive lattice
under the partial order defined above.

(4) A pure subgroup is dense in A exactly if its socle is dense in A[p].

(5) (Hill-Megibben) A neat subgroup supported by a dense subsocle is a pure
subgroup.

(6) In a ¥-cyclic p-group, (a) every subsocle supports a pure subgroup, and (b)
pure subgroups with the same support are isomorphic.

(7) (Hill) Let B = @®,({as—1) and B” = @, (a,) with o(ar) = p*. Define
C = &, (az—1 + paz,). In the torsion-complete group B &) B (Sect. 3), the
pure subgroups G = B’ & B’ and H = C + B” have the same socle, but
they are not isomorphic. [Hint: under an isomorphism G — H, G must have
elements carried outside H.]

(8) (Charles) Let A be a p-group, and @ € A with (@) N A = 0. Then a can
be embedded in a minimal pure subgroup of A, and any two minimal pure
subgroups containing a are isomorphic over {a).

(9) Prove Corollary 1.5 for automorphisms, replacing inequality by equality.

(10) (Megibben) Check that the following group is not fully transitive: A = GG H
where G' =~ H'! =~ Z(p), G/G' is torsion-complete and H/H' is Z-cyclic.
[Hint: G! is fully invariant in A, because every homomorphism G/G' —
H/H'is small.]

(11) (Kulikov) The set of non-isomorphic p-groups of cardinality < « has
cardinality 2*. [Hint: Theorem 1.9; choose each Ulm factor A, such that its
invariants are non-zero only for p* where k is either only odd or only even.]
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2 Fully Invariant and Large Subgroups

Fully Invariant Subgroups Recall that a subgroup G of a group A is called
fully invariant (resp. characteristic) if every endomorphism (automorphism) of A
carries G into itself. Trivially, fully invariant subgroups are characteristic, but the
converse is not true in general, as is demonstrated by examples of suitable 2-groups
and torsion-free groups.

Example 2.1 (Kaplansky [K]). Let A = (a;) @ (a2) ® (a3) where o(a;) = 2'. Consider the
subgroup G generated by all g € A such that o(g) = 4,h(g) = 0,h(2g) = 2; these elements
are: a; & 2a; and a; + 2a; = 2a;. Every automorphism carries generators into generators, so G is

characteristic. However, it is not fully invariant, since a; ¢ G, but the projection A — (a;) maps
G onto (a;). (For torsion-free groups, see Sect. 1, Exercise 9 in Chapter 17.)

No complete description of fully invariant subgroups of p-groups is known so
far, a satisfactory characterization is available only in special cases; see Baer [5],
Shiffman [1], Kaplansky [K]. These particular cases include the most important
subclasses of p-groups, like the separable and the totally projective p-groups.

In order to describe the fully invariant subgroups of fully transitive p-groups A,
let

u = (00,01,.--,0n,--.)

be a strictly increasing sequence of ordinals, followed possibly by a sequence of
symbols co. The meaning of u < v should be clear. We associate with u the
subgroup

A(w) = A(00,01,...,04,...) ={a €A | hy(p"a) > 0, (n < w)}. (10.3)

This is evidently a fully invariant subgroup. We note that

(@) A@) = Nuen p~"(P™"A);
(b) if A = @i/ Aj, then A(u) = Pic; A;(0);
(¢) every homomorphism ¢ : A — C maps A(u) into C(u).

As before, we say that u has a gap at o, if 0, + 1 < 0,41, and that u satisfies the
gap condition for A if u having a gap at 0, is equivalent to A having an element of
order p and of height o, (in other words, the o,th UK-invariant f; (A) # 0).

(d) If both u and v satisfy the gap condition for A, then does u A v too. For, if
uAvV=1(00,.--,Pn,---) (point-wise infimum) has a gap at p,, then either u or
v has p, at the nth place, and the same must have a gap at this place. Thus the
pnth UK-invariant f,, (A) # 0.

Theorem 2.2 (Kaplansky [K]). Suppose A is a fully transitive p-group. A sub-
group G of A is fully invariant if and only if it can be written in the form G = A(u)
where u satisfies the gap condition. u is uniquely determined by G.



308 10 Torsion Groups

Proof. We have noticed above that every subgroup of the form (10.3) is fully
invariant. Assume, conversely, that G is a fully invariant subgroup, and define
0, as the minimum of the heights h(p"g) with g running over G. The sequence
00,01, ...,0n,... 18 obviously strictly increasing (except when it reaches co). To
verify the gap condition, suppose ox + 1 < 041 for some k. Surely, there exists an
x € G with h(p*x) = oy, and by definition A(p*T'x) > o34 ; thus, this x has a gap
at oy in its indicator. By Lemma 1.1, A must contain an element of order p and of

height oy.

The inclusion G < A(0y, 01, ..., 0y, .. . ) is obvious. We now verify the existence
of a g € G such that h(p'g) = o; fori = 0,1,...,n — 1. If there is no gap
in the sequence 09, 07,...,0,—1, and if g € G satisfies h(p""'g) = 0,1, then

this g is already as desired. If there is a gap in this sequence, and if the first gap
appears between 0j—; and o, then there is a g; € G such that h(p'g)) = o; for
i=0,1,...,j— 1. If the second gap lies between oy—; and o} (j < k), then some
g € G exists with h(p'g’) = o, fori = j,...,k— 1. By Lemma 1.1, A contains a
gi such that h(p'gy) > max{h(p'g’),0; + 1} fori = 0,1,...,j — 1 and h(p'gy) =
h(p'g’) for i > j. Because of full invariance, and hence full transitivity, as well as
Corollary 1.5, g € G. Thus proceeding, we construct elements g;, gx,..., 8¢ € G
for the gaps in 09,01,...,0,—1, and at the end, g = g + g + -+ + g¢ will
satisfy h(p'g) = o; fori = 0,1,...,n — 1. Thus h(g) < h(a) for every a €

A(09p,01,...,0n,...) of order < o(g). Full transitivity shows that a € G, i.e. G
is of the form (10.3).

If (00.01,...,0,...) and (0],07,...,0,,...) are different sequences, both
satisfying the gap condition, then let n be the first index with o, # 0, say, 0, < 0,..
There exists an a € A with h(p'a) = o; fori = 0,1,...,n. This a belongs to
A(00,01,...,0,,...), butnotto A(c},07,...,0,,...). O

Large Subgroups There is a kind of fully invariant subgroup in p-groups which
is of particular interest. It was called by Pierce [1] a large subgroup. It is defined as
a fully invariant subgroup G satisfying G 4+ B = A for every basic subgroup B of A.

We list some relevant properties.

(A) Ois a large subgroup if and only if A is bounded.

(B) In a bounded group, all fully invariant subgroups are large.

(C) If G is a large subgroup of A, then so is p"G for every n. Indeed, p"G is fully
invariant and satisfies p"G + B = p"G + p"B + B = p"A 4+ B = A provided
G+ B=A.

(D) If G is a large subgroup of A, then A/G is X-cyclic. In order to prove this,
observe that G + B = A implies A/G =~ B/(G N B). Write B = ®;¢; (b)),
and notice that the (b;) are summands of A, so the projection of G on (b;) is
G N (b;). Hence G N B = @,/ (G N (b;)), and B/(G N B) is the direct sum of
the cyclic groups (b;)/(G N (b;)).

(E) A is contained in every large subgroup of A. This follows from (D), since if
A/G is X-cyclic, then necessarily Al < G.

Our next purpose is to single out the large subgroups from among the fully
invariant subgroups. We will say that a subgroup G of a p-group A satisfies the
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Pierce condition if for every k € N there is an n € N such that every a € A with
o(a) < p* and h(a) > n is contained in G, i.e.

p"AP] < G.

Since (B) completely characterizes large subgroups in bounded groups, our focus
is on unbounded groups.

Theorem 2.3 (Pierce [1]). Let A be an unbounded, reduced p-group. For a fully
invariant subgroup G of A, these are equivalent:

(i) G is a large subgroup of A;
(i) G = A(ro,r1,...,Fn, ... ) With a strictly increasing sequence of non-negative
integers r, and symbols oo (satisfying the gap condition);
(iii) the Pierce condition holds for G.

Proof.

(i) = (ii) By Theorem 2.2, G = A(0y, 01, . .., 0Oy, ... ) for suitable o,,, and in view
of (E), we have g, < w for all n € N for which g,, # oc.
(i) = (i) Given k € N, let n = rr—; — k + 1. Then none of r,—, — k + 2,

r—3 — k4 3,...,r exceeds n. Therefore, if a € A is such that o(a) < pk and
h(a) > n,then h(p'a) > n+i>r;fori=0,1,...,k—1, and h(p'a) = oo for
i > k. Thusu(a) > (ro,r1,...,tn,...),and a € G.

(iii) = (i) We have to prove G + B = A for any basic subgroup B of A. Picka € A
with o(a) = p*, and choose n € N according to the Pierce condition. By the
divisibility of A/B, we have a = b + p"c for some b € B, ¢ € A. We may
assume o(b) < p*, because 0 = p*a = p*b + p"t*c implies p*b = p"T*b' for
some b’ € B,soalso a = (b — p"b') + p"(b' + ¢) where o(b — p"b’) < p~.
But then o(p"c) < p* as well, and therefore (iii) implies p"c € G. This proves
G+ B=A. O

% Notes. It was Kaplansky [K] who characterized the fully invariant subgroups in fully
transitive p-groups. The theory of large subgroups is due to Pierce [1]. Numerous papers deal
with the relation of the structure of the group to the structure of its large subgroups; e.g. large
subgroups are totally projective if and only if the group itself is totally projective.

Anyone in search for more cardinal invariants of p-groups might try to test the vector spaces
A(u)/A(v) in case u = (pg, P1s- - -, Pn,-..) and v = (09,01, ..., 0y, ...) satisfy p, < 0, < pu41
for every n < w. However, in this way no new invariants are gained, since the dimension of the
vector space in question turns out to be just the sum of dimensions of p*A[p]/p° A[p] for n < w.

Exercises

(1) Find the maximal length of chains of fully invariant subgroups in a bounded
p-group.

(2) If L; is a large subgroup of the p-group A; for i € I, then ®;¢/L; is large in
SierAi
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(3) Let A be a separable p-group, and a € A. What is the fully invariant subgroup
of A generated by a?

(4) If G is a large subgroup in the p-group A, then there is an n < ® such that
Glp] = p"Alp].

(5) If A is a reduced p-group and has a large subgroup that is X-cyclic, then A
itself must be X-cyclic. [Hint: preceding exercise.]

(6) For a pure subgroup C and for a large subgroup A(u) of a p-group A, we
always have C(u) = C N A(u).

(7) (a) Give an example when A(u) = A(v), but u # v (no gap condition is

required).

(b) If A(u) = A(v) and if u satisfies the gap condition, then u < v.

(8) Let A be a fully transitive p-group.

(a) For a family G; = A(u)) (j € J) of fully invariant subgroups write their
union and intersection in the form (10.3).

(b) The fully invariant subgroups of A form a complete distributive sublattice
Kin L(A).

(c) The large subgroups form a filter in K.

(9) What is the intersection of all large subgroups of a p-group?

(10) The lattices of large subgroups of the p-groups A and C are isomorphic if the
two groups have isomorphic basic subgroups. [Hint: gaps.]

(11) (Pierce) Any single basic subgroup B # A is a test group for a fully invariant
subgroup G to be large: if A = G + B for the selected B, then A = G + B’
holds for all basic subgroups B'.

(12) (Pierce) Let G be a large subgroup in a separable p-group A. If B is a basic
subgroup of A, then G N B is a basic subgroup of G. [Hint: for purity show
BN pG = pBNG)anduse (C).]

(13) (Pierce) A large subgroup of a large subgroup is a large subgroup. [Hint:
preceding exercise.]

(14) For p-groups A, C, a homomorphism ¢ : A — C is small if and only if Ker ¢
satisfies the Pierce condition if and only if Ker ¢ contains a large subgroup
of A.

(15) Is it true that in a reduced p-group, for every element a # 0 there exists a
fully invariant subgroup G maximal with respect to the property a ¢ G?

3 Torsion-Complete Groups

Our study of p-groups continues with p-groups without elements # 0 of infinite
height. This is the case when the first Ulm subgroup A! = 0, i.e. A is Hausdorff in
the p-adic (equivalently, in the Z-adic) topology. The closure X~ of a subgroup X
of A in the p-adic topology is obtained by taking the first Ulm subgroup X~ /X =
(A/X)'inA/X.
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Separability We may refer to a separable p-group as a group in which every
finite subset {ay, ..., a,} can be embedded in a finite direct summand. In fact, it is
straightforward to check that this definition is equivalent to the one used in Sect. 1:
the non-trivial part follows from Lemma 1.4 by using induction.

Torsion-Complete Groups Undoubtedly, the most significant class of separa-
ble p-groups, besides the class of direct sums of cyclic p-groups, is the class of
torsion-complete p-groups. Their study began with the work of Kulikov [2] (under
the name of closed p-groups), and was brought to maturity by several authors in
the 1960s. These groups have profound implications in the theory of p-groups.
Fortunately, they admit a satisfactory classification by cardinal invariants.

In this section and in the next one, we assemble various results on torsion-
complete p-groups. We will adhere to the following notation: B,, will denote a direct
sum of cyclic groups of order p", B, = @, Z(p") for an unspecified cardinal «,,
and B will denote their direct sum ®,,en B,,.

By a torsion-complete p-group is meant the torsion subgroup of the p-adic
completion B of a direct sum B of cyclic p-groups. ¢B is uniquely determined by
B, so we may denote it by B—this notation will be standard in this volume. We will
see in due course that a torsion-complete p-group can be written in the form B for
any of its basic subgroups B.

We also note that in the category of torsion groups, the categorical product is
the torsion subgroup of the direct product. Therefore, torsion-complete p-groups
are nothing else than categorical products of bounded p-groups. It is no wonder that
they share several properties with bounded groups.

Since B is a subgroup of [1,, Bn the same holds for B. Hence an element g € B
can be written uniquely in the form

g=(b1.bs,....b, ...)  with b, €B,. (10.4)

A vector g in (10.4) will belong to B if and only if the orders of its coordinates b, are
bounded. The elements of B are represented by vectors with finite supports. In view
of the structures of the B, for any sequence {b, },en With b, € B, of orders bounded
by p™, we have h(b,) > n — m for n > m; thus, h(g) = min{h(b,),...,h(b,—1)}
whenever b; # 0 for at leastoneof i = 1,...,m— 1.

Example 3.1. All bounded p-groups are torsion-complete. The simplest unbounded example for a
torsion-complete group is when B is the standard basic subgroup, i.e. B, = {a,) = Z(p") for each

n. The elements of this B are the vectors b = (kyay, . .., kndy, . . .), where 0 < k, < p", and there
is an integer m such that p"'k,a, = 0 for all n.

We record a few important facts on torsion-complete p-groups.

(A) B = B if and only if B is bounded. We observe that if B is unbounded, then B
will contain vectors (10.4) with infinite support. L
(B) For two X-cyclic p-groups, B and B', we have B&® B’ = B® B'.
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(C) B is a basic subgroup of B. In fact, as we saw in Theorem 2.4 in Chapter 6,
B is a basic subgroup in B, so it is also a basic subgroup in its torsion
subgroup B.

Theorem 3.2. Let B be a S-cyclic p-group of infinite cardinality k. Then |B| < k™.
Equality holds if also fintk B = k.

Proof. The stated inequality is an immediate consequence of the representation
of elements of B in the form (10.4): [B] = [[,enkn < (O,en k). If also
fintk B = «, then we distinguish two cases according as the set of cardinalities
Kk, = |By| (n € N) contains only finitely many or infinitely many «, equal to k.
In the second alternative the claim is obvious. In the first case, for the proof we
may ignore any B, of cardinality «, and assume that «, < « for all n. Necessarily,
infinitely many of the «, are different, and we must have > k, = k = sup, k.
Jech [J] tells us that in these circumstances [ [, k, = KXo, O

We are now in a position to derive the following theorem that solves at once the
structure problem for torsion-complete p-groups. It shows that they are completely
characterized by their UK-invariants.

Theorem 3.3 (Kulikov [2]). Two torsion-complete p-groups are isomorphic if and
only if their basic subgroups are isomorphic. Thus the sequence ki, ... Ky, ... of
cardinal invariants of B = ®,<, B, (Where B, = @®,, Z(p")) is a complete and
independent set of invariants for B.

Proof. The ‘only if’ part is a trivial consequence of (C) and the uniqueness (up to
isomorphism) of basic subgroups. O

Torsion-Completion We wish to clarify the relation between arbitrary p-groups
A and torsion-complete p-groups. Let B = &, B, (with the adopted notation) be a
basic subgroup of A. As in Sect.5 in Chapter 5, we have a sequence A = B; @
---@® B, ® A, (n € N) of direct decompositions such that the (n 4+ 1)st is obtained
from its predecessor by separating the summand B,4; from A,. In this way, we
can associate with each a € A a sequence by,...,b,,... with b, € B, such that
a=b;+:--+ b, + a, for some a, € A,. This gives rise to a correspondence

n:av> (bi,....bu,...)  (by€B) (10.5)

which is obviously a homomorphism of A into [, B,. As the order of a is a bound
for the orders of the b,, n maps A into B. It is clear that 1 acts isomorphically on B,
mapping its elements to vectors with finite supports. As B is a separable group, we
have A' < Ker#. On the other hand, if na = 0 for some a € A of order p¥, then
a = a, € A, for every n, thus h(a) = h(a,) > n+ 1 — k for every n; this means that
h(a) > w and a € A'. Consequently, Kern = A'.

Theorem 3.4. Let A be a p-group, and B a basic subgroup of A. Then 1 in (10.5)
is a homomorphism of A onto a pure subgroup of B. The kernel of n is the first Ulm
subgroup A', and B/nA is divisible.
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In particular, a separable p-group A with basic subgroup B is isomorphic to a
pure (dense) subgroup of B containing B.

Proof. Tt remains to check the purity of Im 7 in B. By Sect. 6(F) in Chapter 5, nB is
a basic subgroup in 1A, so nA/nB is a divisible group. Manifestly, 7B is basic in B,
whence the purity of nA in B is immediate. O

It is appropriate to regard the torsion-complete group B obtained from the p-
group A in the preceding theorem as the torsion-completion of A. It is unique up to
isomorphism.

As a consequence, a separable p-group may be thought of (and treated as) a
pure and dense subgroup of a torsion-complete group. This point of view gives us
considerably more leverage than regarding it as a subgroup of a divisible group. To
illustrate this, we interrupt momentarily the discussion of our main topic, and prove
the following slight generalization of Priifer’s Theorem 5.3 in Chapter 3.

Theorem 3.5. Let A be a separable p-group, and B a pure X-cyclic subgroup of A.
If A/B is countable, then A is X-cyclic.

Proof. As B can be expanded to be a basic subgroup, we may assume B is a
basic subgroup of A. A is treated as a pure subgroup of B containing B. Let
ai,...,anm, ... be a countable set that, together with B, generates A. We can write
am = bty byp,...) € B with b,,, € B,. Each B, is a direct sum of cyclic
groups of order p”, so there is a decomposition B, = B, & B, such that b, € B,
for all m, and B), is countable. Setting B’ = @, B, and B” = &, B), we obtain
B=B®B"andA = A’@B" where A’ = (B',ay,...,an,...). Here A’ is countable
and separable, so by Theorem 5.3 in Chapter 3 it is X-cyclic. O

Theorems on Torsion-Complete Groups We return to torsion-complete
groups, and continue with various algebraic characterizations. The main algebraic
features are encapsulated in the following theorem.

Theorem 3.6. For a reduced p-group A, the following conditions are equivalent.

(i) A is torsion-complete;
(ii) A is the torsion subgroup of a reduced algebraically compact group;
(iii) A is pure-injective in the category of p-groups (i.e., it has the injective property
relative to pure-exact sequences of p-groups);
@iv) A is a direct summand in every p-group in which it is contained as a pure
subgroup.

Proof.

(i) = (ii) This implication is obvious, since B is by definition the torsion subgroup
in the algebraically compact (= complete) group B.
(i1) = (iii) Next, suppose (ii), i.e. A is the torsion part of an algebraically compact

group C. Let 0 — G—H i)K — 0 be a pure-exact sequence of p-groups,
and n: G — A a homomorphism. If 7 is viewed as a map G — C, then by
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pure-injectivity there is a y: H — C such that n = yo. As H is torsion, y must
land in A, so (iii) follows.

(iii) = (iv) If (iii) holds for A, and if A is a pure subgroup in a p-group G, then the
identity map 14 extends to a map G — A, establishing the summand property
of A. Thus (iv) is immediate.

(iv) = (i) Finally, assume (iv). If A' # 0, then A would be pure, but not a
summand, in the torsion part G of the pure-injective hull of A (recall: G/A
is divisible and every divisible subgroup # 0 of G intersects A non-trivially).
Hence A! = 0, and so by Theorem 3.4 A may be thought of as a pure subgroup
of B where B denotes a basic subgroup of A. By hypothesis (iv), we have
BxA® T?/A, where the second summand must vanish, since it is divisible,
and B is reduced. Hence (i) follows. ]

We go on to point out that condition (iv) can be rephrased by stating that
Pext(T,A) = O for all torsion groups 7. As a matter of fact, this criterion can
considerably be improved: Z(p®°) is a kind of ‘test’ group for torsion-completeness.

Corollary 3.7. A p-group A is torsion-complete if and only if
Pext(Z(p*™°),A) = 0;

equivalently, Ext(Z(p®), A) is algebraically compact.

Proof. Start with a pure-exact sequence 0 - C — T — & Z(p*>°) — 0 where C is
a basic subgroup of an arbitrarily chosen p-group 7. From Theorem 5.6 in Chapter 9
we derive the exact sequence

Pext(® Z(p™). A) = [ [ Pext(Z(p™). A) — Pext(T.A) — Pext(C.A) = 0

whence the implication Pext(Z(p>°),A) = 0 = Pext(T,A) = 0 is evident.

Pext is the first Ulm subgroup of Ext, so the stated condition is equivalent to
saying that the first Ulm subgroup of Ext(Z(p*>°),A) vanishes which means the
algebraic compactness of this Ext (Corollary 6.3 in Chapter 9). O

(D) We note that if A = B for a basic subgroup B of A, then also A = B’ for
any basic subgroup B’ of A. In fact, if B'(< A) is a basic subgroup, then A is
pure in B/, thus the torsion-complete A is a summand of B’. The complement
is divisible, so it must be 0.

(E) It should be pointed out that, for a Z-cyclic p-group B, B is the largest
separable p-group whose basic subgroup is B. In fact, every separable p-group
with B as basic subgroup is embeddable in B.

(F) The natural map Hom(B, B) — Hom(B, B) is an isomorphism. This follows
from the pure-exact sequence 0 — B — B — @ Z(p>®) — 0, applying
Theorem 5.6 in Chapter 9 and taking Corollary 3.7 into account.

Subgroups of Torsion-Complete Groups Next, we want to find out when
subgroups of torsion-complete p-groups are again torsion-complete.
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Corollary 3.8 (Irwin—O’Neill [1]). A subgroup G of a torsion-complete p-group A
is torsion-complete if the factor group A/G is reduced.

Proof. If A/G is reduced, then the exact sequence 0 - G - A — A/G — 0
induces the exact sequence 0 = Hom(Z(p*°),A/G) — Ext(Z(p*),G) —
Ext(Z(p*>°),A). Thus Ext(Z(p*°),G) can be regarded as a subgroup of
Ext(Z(p®°), A). If the first Ulm subgroup (i.e., Pext) of the latter group vanishes,
then the same holds for the former group, i.e. Pext(Z(p*>°),G) = 0. By
Corollary 3.7, the proof is complete. O

More can be said if the subgroup is pure.

Corollary 3.9. For any pure subgroup G of a torsion-complete p-group A, the
factor group A/ G is a direct sum of a divisible group and a torsion-complete group.
Thus the closure of a pure subgroup is a summand of A.

Proof. Because of Theorem 5.6 in Chapter 9, the pure-exactnessof 0 - G — A —
A/G — 0 implies that the induced map Pext(Z(p*>°),A) — Pext(Z(p*°),A/G) is
onto. By Corollary 3.7, the first Pext vanishes, and therefore so does the second. It
follows that the reduced part of A/G is torsion-complete. Consequently, the factor
group G~ /G is divisible for the closure G~ of G in A, so G is also pure in A. Thus
A/G™ is torsion-complete, hence G~ is torsion-complete by Corollary 3.8. It is pure
in A, so a summand. O

We draw particular attention to the next two theorems. The first result provides
a relevant information about the isomorphy of pure dense subgroups in torsion-
complete groups.

Theorem 3.10 (Leptin [1]). Two pure and dense subgroups, G and H, of a torsion-
complete p-group A are isomorphic if and only if A has an automorphism carrying
G onto H. Moreover, every isomorphism between G and H can be extended uniquely
to an automorphism of A.

Proof. We show that any isomorphism ¢ : G — H is induced by a unique
automorphism o of A. Viewing ¢ as a map G — A, from the pure-exact sequence
0 > G —> A —> A/G — 0 we conclude that there is an @ : A — A extending
G — A; cf. Theorem 3.6(iii). Changing the roles of G and H, we obtain a map
B:A — A which extends ¢ ' : H — A. Now both B« and o are endomorphisms
of A: the former is the identity on G, the latter is the identity on H, thus both are
identities on the respective basic subgroups. From our hypothesis it follows that both
G and H contain basic subgroups of A, thus S« and af are identities on these basic
subgroups. Section 6(G) in Chapter 5 implies that o = 14 = «ff; thus @ € AutA.
The uniqueness of « is a consequence of the same (G), since any two extensions of
¢ induce the same map on a basic subgroup. O

An immediate consequence of Theorem 3.10 is that an isomorphism between
basic subgroups of a torsion-complete group A extends uniquely to an automor-
phism of A. Actually, this property characterizes the torsion-complete groups, as is
shown by
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Theorem 3.11 (Leptin [1], Enochs [3]). A reduced p-group A is torsion-complete
if and only if every isomorphism between basic subgroups extends to an automor-
phism of A.

Proof. In order to verify the ‘if” part, suppose A has the stated property. If A is
bounded, then it has only one basic subgroup, viz. itself, and there is nothing to
prove. So assume A is unbounded, and let B be a basic subgroup of A. As B is
unbounded, B < B. Let B’ be a subgroup of B such that B < B < B and B'/B
is countable divisible. Because of Theorem 3.5, B’ is again a basic subgroup of B,
so by Theorem 3.10 there is an automorphism B of B such that BB’ = B. Then
BB(< B) is also basic in B, and in A as well, so by hypothesis, there is an ¢ € AutA
suchthata | B= 8 | B.

Define amap ¢: B — A as follows. Put ¢b = bforevery b € B.If x € B\ B, then
it is included in some B’, and we set ¢x = o' Bx. This definition is unambiguous:
if B” is another basic subgroup of B containing B’, and if 8’ € AutB with ’B” = B
ando’ € AutAwithe’ | B= ' | B,then 8/87'B = 8'B' < f’'B” = Bando’a™!
agrees with 8/8~! on BB = B, and hence on B. We conclude that o’a™' = /B!,
showing that ™! 8 = /7' #’, so that ¢ is well defined. If x € Ker ¢, then ™' Bx =
0, Bx = 0, and x = 0, that is, ¢ is monic.

Therefore, ¢B is a subgroup of A such that B = B. This means that ¢B is pure
in A, and so Theorem 3.6(iv) implies that it is a direct summand of A. But A is
reduced and A/¢$B is divisible, thus necessarily B = A. This proves that ¢ is an
isomorphism, and A is torsion-complete. O

% Notes. Only a few classes of separable p-groups are well explored. In the countable case,
by Priifer’s theorem, they are just X-cyclic groups, so the focus should be on the uncountable case.
No general structure theorem is available, and none is expected, but much is known about a few
classes with special properties (torsion-complete, quasi-complete, summable, etc. p-groups).

The theory of torsion-complete p-groups was developed by Kulikov [2], proving many of the
essential results. He also proved that any two direct decompositions of a torsion-complete group
have isomorphic refinements. Observe that the cardinality of any torsion-complete p-group A is
‘essentially’ of the form ™0 for some 1. What we mean is that if A = G @ H with bounded H,
and A = |G| is minimal, then A = 0.

There is a large body of work on torsion-complete groups, and numerous characterizations
exist for torsion-completeness. Waller [1] considers generalized torsion-completeness to p-groups
of countable limit length A. Torsion-completion in the p*-topology retains some of the pleasant
features of torsion-complete groups.

In retrospect, it is no surprise that torsion-completeness attracted so much attention, even before
the theory of algebraically compact groups was developed. The similarity of the two theories is
understandable, but, as far as importance is concerned, algebraic compactness is overwhelming.

It is instructive to study generalizations of separability involving higher cardinals. A p-group is
called «-separable, if every subgroup of cardinality < kx embeds in a X-cyclic summand of size
< k. Megibben [8] investigates R;-separable p-groups, and shows that their summands inherit this
property; he also proves several results that require additional set-theoretical hypotheses.
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Exercises

(1) The torsion part of a direct product of p-groups is torsion-complete if and
only if each summand is torsion-complete.

(2) Using the notation of the text, prove that ([],B,)/B is a torsion-free
algebraically compact group which is not divisible unless 0.

(3) Large subgroups in torsion-complete groups are likewise torsion-complete.

(4) Using the notation in the text, an element g = (by,...,b,,...) € B of order
p" generates a cyclic summand of B if and only if o(b,) = p".

(5) (a) Let A be a separable p-group, and B an upper basic subgroup of A. If

B # A, then |A/B| > R, and there is a decomposition A = A’ @ A” such

that A" is Z-cyclic and |A”| = |A/B|. [Hint: argue as in Theorem 3.5.]
(b) Every separable p-group A can be written as A = A’ @ A” such that A’ is

S-cyclic, and every basic subgroup of A” is both upper and lower.

(6) In atorsion-complete p-group, all basic subgroups are lower as well as upper.
[Hint: Theorem 3.11.]

(7) (Kemoklidze) If B is a basic subgroup of the p-group A, and if every
endomorphism of B extends to A, then either A = Bor A = B.

(8) Let B be a torsion-complete p-group with fin tk B = k. There is a direct
decomposition B = G @ H, where H is bounded and G is torsion-complete
of cardinality «*.

(9) Kernels (but not all images) of endomorphisms of torsion-complete groups
are again torsion-complete.

(10) (Faltings) A p-group A is isomorphic to the torsion part of Hom(A, Z(p°°))
if and only if it is torsion-complete with finite UK-invariants.
(11) Let A be a separable p-group with basic subgroup B.

(a) I B/A == (Z(p™®))®, then Pext(Z(p™). A) = (J,)®.
(b) The Ulm factors of Ext(Z(p™), A) are: B and (J,)®).

(12) (Richman) Let A be a separable p-group, and G a bounded subgroup. A is
torsion-complete if and only if so is A/G. [Hint: Corollary 3.8.]

(13) Every height-preserving automorphism of the socle of B can be extended to
an automorphism of B.

(14) (Megibben) Let A be an unbounded torsion-complete p-group, and C an
arbitrary separable p-group. There exists a homomorphism of A into C which
is not small exactly if C contains an unbounded torsion-complete subgroup.
[Hint: exhibit an unbounded torsion-complete group in the image of a non-
small homomorphism.]

(15) Let T be a pure dense subgroup in the torsion-complete p-group B containing
the basic subgroup B such that tk(B/T) = n € N. Then

(a) Pext(Z(p*°),T) = ®,J,; and
(b) if § is a separable p-group containing 7" as a pure dense subgroup with
tk(S/T) = n, then S = B.
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4 More on Torsion-Complete Groups

With regard to the question of direct decompositions of torsion-complete groups,
we have definitive results.

Finite Direct Decompositions of Torsion-Complete Groups An unbounded
torsion-complete p-group has numerous direct decompositions into a finite number
of unbounded summands.

Proposition 4.1. Let B be a torsion-complete p-group with basic subgroup B. For
every direct decomposition B = C; @ -+ @ Cy with a finite number of summands,
there is a direct decomposition

B=C, & --®C

where bars denote p-adic closures. Also, C; = a fori=1,... k

Proof. We represent the elements of B as in (10.4) of Sect. 3. Every a € B can be

written uniquely as a = a; + --- + a; where a; = (¢j1,...,Cin,...) and ¢; € C;
for all n. Evidently, a; € C; fori = 1, ..., k. The stated equality follows from this
representation. O

Infinite Direct Decompositions of Torsion-Complete Groups The behavior of
torsion-complete groups in infinite direct decompositions is quite unusual. We begin
with a preliminary lemma.

Lemma 4.2 (Enochs [1]). If a torsion-complete p-group A is contained in a direct
sum C = ®jer C; of separable p-groups, then there exist an integer m and a finite
number of summands such that

P"Ap) = Ci & - & C.

Proof. The proof is similar to the one in Lemma 2.16 in Chapter 6, with the
understanding that m; should mean p/, and the g; are selected in the socles. O

Further specialization A = C yields the following result that provides a pretty
complete information about the kind of direct decompositions torsion-complete
p-groups might have.

Theorem 4.3 (Kulikov [2]). If a torsion-complete p-group A is a direct sum A =
®ier Ci, then the C; are torsion-complete, and for a sufficiently large integer m,
p"C; = 0 for almost all i.

Proof. The torsion-completeness of the summands is evident, while the existence
of m as stated follows from the preceding lemma. O

Exchange Property for Torsion-Completeness The p-groups that are torsion-
complete belong to the exclusive club of groups that enjoy the exchange property.
This is proved like Theorem 6.7 in Chapter 6, the reference to Theorem 4.2 in
Chapter 16 includes torsion-complete groups as well.
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Theorem 4.4 (Crawley—Jonsson [1]). Torsion-complete p-groups have the
exchange property. |

Large Subgroup Topology The balance of this section is devoted to the
topological aspects of torsion-completeness, in particular, to the large subgroup
topology.

Let A be a separable p-group, and {U;};; the family of its large subgroups which
we now declare as a subbase of open neighborhoods of 0. This is a linear topology
which we will denote by w. Thus the open subgroups in w are those that contain a
large subgroup, i.e. which satisfy the Pierce condition.

(a) Separable p-groups are Hausdorff in the large subgroup topology w. This is
obvious, since already the intersection of the large subgroups p"A (n € N) is
the first Ulm subgroup A'.

(b) The topology w is finer than the p-adic topology. This follows from the fact that
p"A is a large subgroup for each n < w.

(c) For a pure subgroup C of a separable p-group A, the large subgroup topology
is the same as the topology inherited from the large subgroup topology of A. In
fact, purity guarantees that C(u) = A(u) N C.

(d) Every homomorphism ¢ : A — C between separable p-groups is continuous in
the large subgroup topology. Let c € C be the image of a € A under ¢, and c+V
an open neighborhood of c. We may assume that V is a large subgroup of C, say,
defined by the sequence {r,},en (cp. Theorem 2.3). If U is the large subgroup of
A defined by the very same sequence of integers, then clearly ¢ (a+U) € c+ V.

(e) In a separable p-group, a bounded sequence is Cauchy in the p-adic topology
if and only if it is Cauchy in the large subgroup topology. The ‘if’ part being
obvious, let {a;};-, be a p¥-bounded Cauchy sequence in the p-adic topology,
and U = A(ro, ..., Iy, ...) aneighborhood of 0 in the large subgroup topology.
There is an index m such that a; —a; € p"* kA for all i,j > m. Then the indicator
ofa;j—ajis> (e —k,nk—k+1,...,r,00...). Asre—k+£>r. (£ <k),
we have a; — a; € U fori,j > m.

(f) A Cauchy net in the large subgroup topology is bounded. By way of con-
tradiction, assume that there is an unbounded Cauchy net in w. This is also
Cauchy in the p-adic topology, so it contains an unbounded cofinal subsequence

ap,...,a;,.... We may assume that the orders o(a;) = p™ increase with
i, and so do the heights 4; of the differences ¢; = a; — a;—;. Define u=
(ro,7r1,-..,rn,...) such that the r; form an increasing sequence of positive

integers satisfying the inequalities: r,,—; > h; + n; for each i. Then the indicator
of ¢jis (hj, hi+1,...,hi+n;—1,00,...), thus ¢; ¢ A(u) for all i, contradicting
the Cauchy property of the subsequence.

Charles [3] defines the inductive topology on a p-group A by declaring those
subgroups G of A to form a subbase of neighborhoods about 0 which satisfy: for
eachk e N,

Glp = p"A N APpY] for some n € N.
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(g) The large subgroup topology on p-groups coincides with the inductive topology.
One way it is obvious: G satisfies the Pierce condition, and so it contains a large
subgroup of A. For the converse, observe that a group G satisfying the above
conditions is fully invariant in A: it is the union of the fully invariant subgroups
p"A[p"]. In addition it satisfies the Pierce condition, so it is a large subgroup.

The principal result on the relation of torsion-completeness and the large
subgroup topology is as follows.

Theorem 4.5 (Kulikov [2], Charles [3], Cutler-Stringall [1]). For a separable
p-group A, the following are equivalent:

(i) A is torsion-complete;
(ii) every bounded Cauchy sequence in the p-adic topology of A is convergent;
(iii) A is complete in the large subgroup topology.

Proof. To fix the notation, as usual let B = @,en B, with B, = @& Z(p") be a basiE
subgroup of A. Then a € A can be identified with a vector (by,...,b,,...) € B
(bn € By), where p"b, = 0 for every n if o(a) = p".

(i) = (i) Assuming A = B, let ay = (bg1s...,bpn....) € B (k = 1,2,...)
be a bounded Cauchy sequence in the p-adic topology where by, € B,. For
convenience, suppose the sequence is neat, so we have

vt —ar = (bives —bias .. ity — bins...) €P'B

for all k£, £ € N. This implies that byy¢1 = by, ..., bgtox = bk, showing that
the first k coordinates of ay, ag+1, ... are the same, and in addition, byy¢, —
by, € p*B, for each n € N. Define b = (by1, b, ..., by, ...) which belongs
to B in view of the boundedness of the sequence {a }k<e- This b is the limit of
the ay, because obviously

b—ar=(0,...,0,bxs14+1 — brit1, betak+2 — brg+as - -.) € P'B.

(i) = (iii) Just observe that (e) implies that a Cauchy net in the large subgroup
topology is a bounded Cauchy net in the p-adic topology.

(iii) = (i) Letb = (b1,...,by,...) (b, € B,) be an element, say, of order p”, in
the torsion-complete group B > A. Consider the sequence a,, = by +---+b, € A
for n € N. This is a Cauchy sequence in the large subgroup topology, since it is
bounded and a,4+r —a, = by+1 + -+ + byt € p""A for all k > 1. It ought
to have a limit in A, which cannot be anything else than . Thus B <A, and @)
follows. O

The preceding theorem says in effect that torsion-complete groups are exact
analogues of complete groups: the large subgroup topology takes over the role of
the p-adic topology.

We wind up this section with the following interesting corollary.
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Corollary 4.6. The completion of a separable p-group in its large subgroup
topology is its torsion-completion.

Proof. Let A be a pure subgroup of the torsion-complete p-group B, and G the
completion of A in its large subgroup topology. The identity map of A extends to
a continuous map 6 : G — B which has to be surjective, because A is dense in B.
There is a similar map y : B — G, and the composite §y : B — B must be the
identity. O

% Notes. Leptin [1] gave additional characterizations for torsion-completeness. In addition to
Theorem 3.10, he proved that if a basic subgroup B of a separable p-group A has the property that
every automorphism of B extends to an automorphism of A, then either A = Bor A = B.

Crawley [1] solves one of the Kaplansky test problems for p-groups in the negative, by pointing
out that it is possible to have p-groups A, C satisfyingA = C@ C D A,butA % C § A.

In the proceedings of the 1967 Montpellier conference, both Charles [3] and Cutler-Stringall
[1] pointed out the completeness of torsion-complete groups, using different approaches: the
former used the inductive topology arising from the topologies of the subgroups A[p], induced
by the p-adic topology, while the latter used the large subgroup topology.

Exercises

(1) Every subgroup C of a torsion-complete p-group A can be embedded in a
summand G of A such that |G| < |C[*. [Hint: embed in pure subgroup.]

(2) A torsion-complete p-group that is contained in a X-cyclic p-group must be
bounded.

(3) A torsion-complete p-group A fails to have a proper pure subgroup = A if and
only if its UK-invariants are finite.

(4) If C is a torsion-complete subgroup of a separable p-group A such that A/C is
bounded, then A is also torsion-complete. [Hint: apply Ext(Z(p®°),*).]

(5) (Koyama—Irwin) A separable p-group A is torsion-complete if and only if
every decomposition B = C; @& C, of its basic subgroup B induces a direct
decompositionA = C| & C;.

(6) (Irwin—O’Neill) Suppose A = B @ C is a separable p-group that contains an
unbounded torsion-complete subgroup. Then either B or C has an unbounded
torsion-complete subgroup.

5 Pure-Complete and Quasi-Complete p-Groups

It does not seem unreasonable to anticipate that torsion-complete p-groups have
many more properties of interest. Some of these are shared by wider classes of
groups as well. In this section, we discuss briefly two such special properties. Both
are related to the existence of certain pure subgroups, motivated by the observations
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that in torsion-complete p-groups every subsocle supports a pure subgroup, and
closures of pure subgroups in the p-adic topology preserve purity.

Pure-Completeness A p-group A is called pure-complete if every subsocle of
A supports a pure subgroup of A. Because of Theorem 1.3, this property is shared
by all dense subsocles.

Since in a pure-complete p-group, also the subsocle consisting of all the elements
of infinite heights must support a pure subgroup (which cannot be anything else than
a divisible subgroup), we conclude that every such group decomposes into the direct
sum of a separable and a divisible group.

Example 5.1. Let B be the direct sum of cyclic groups of fixed order p*. Then every subsocle of
B supports a direct summand of B, so B is pure-complete. More generally, a torsion group with
bounded p-components is pure-complete.

Example 5.2. Divisible p-groups are pure-complete.

It is rather obvious that summands of pure-complete groups are again pure-
complete. However, the direct sum of two pure-complete p-groups need not be
pure-complete as is shown by the following example.

Example 5.3 (Hill-Megibben [2]). Suppose A and C are non-isomorphic p-groups, and there is a
height-preserving isomorphism ¢ : A[p] = C|p] between their socles (such p-groups do exist, see
e.g. Theorem 9.2). Assuming A is quasi-complete (see below), it follows from the characterization
to be stated in the Notes below that so is C, and hence by Corollary 5.6 infra they are pure-
complete. However, the subsocle S = {(x,¢x) | x € A[p]} of the direct sum A @ C does not
support any pure subgroup. In fact, a pure subgroup supported by S ought to be a subdirect sum of
A and C with 0 kernels. But such a subdirect sum could exist only if A and C were isomorphic.

Lemma 5.4 (Hill-Megibben [3]).

(i) X-cyclic p-groups are pure-complete.
(i) The direct sum of a countable number of torsion-complete p-groups is pure-
complete.

Proof. (i) This will be a simple consequence of (ii), since we can write a X-cyclic
p-group as A = @,en B, where B, = @ Z(p") is torsion-complete.

(i) First we show that a torsion-complete p-group A is pure-complete. Actually,
we prove somewhat more: if S is a subsocle of A, and H is a pure subgroup
of A with H[p] < S, then A contains a pure subgroup G such that H < G and
G[p] = S. Let B’ be a basic subgroup of H, and B” a maximal X-cyclic pure
subgroup of A that contains B’ and satisfies B”[p] < S. Finally, let B be a basic
subgroup of A that contains B” as a summand, say, B = B” & C. We then have
A=B"&C. Since B’[p] must be dense in S, we have § < E”[p]. An appeal to
Theorem 1.3 establishes the existence of a G with the desired properties.

Now suppose A = @72 | A,, where the A, are torsion-complete p-groups. Let

S denote a subsocle of A. Then S, = SN (A; & --- & A,) is a subsocle of the

torsion-complete p-groupA; @- - -PA,, so it supports a pure subgroup G,,. What

we have proved in the preceding paragraph shows that the pure subgroups G,

can be selected so as to form a chain G; < --- < G, < ....Itis then clear that

G = U, G, is pure in A and is supported by S. O
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Quasi-Complete Groups Let A be a reduced p-group. It is called quasi-
complete (Head[1]) if the closure G~ (in the p-adic topology) of every pure
subgroup G is again pure in A. Since G~ /G can be identified as the first Ulm
subgroup of A/ G, the quasi-completeness of A means that, for any pure subgroup G
of A, the first Ulm subgroup (A/G)' of A/G is pure in A/G, i.e. divisible.

We list a few trivialities for quasi-complete groups.

(A) Reduced quasi-complete p-groups are separable. This follows from 0~ = A'.

(B) Torsion-complete groups are quasi-complete. This is a simple consequence of
Corollary 3.9.

(C) Closed pure subgroups in a quasi-complete group are quasi-complete.

(D) If G is a closed pure subgroup of a quasi-complete p-group A, then A/G is
likewise quasi-complete. For, if H/G is a pure subgroup of A/G, then H is pure
inA, so [(A/G)/(H/G)]' = (A/H)" must be divisible.

Next we show that the property that we verified for torsion-complete groups in
the proof of Lemma 5.4 actually characterizes quasi-completeness.

Proposition 5.5 (Irwin—-Richman-Walker [1], Koyama [1]). A reduced p-group
A is quasi-complete if and only if, for every pure subgroup H of A, and for every
subsocle S with H[p] < S, there exists a pure subgroup G of A such that H < G and
Glp] = S.

Proof. Let A be quasi-complete, H a pure subgroup of A such H[p] < S < A|p], and
G a pure subgroup maximal with respect to the properties H < G and G[p] < S. To
prove G[p] = S, by way of contradiction assume that there is an x € S\ G. If the
coset x + G has finite height k in A/G, then write x + G = pfy + G with y € A.
Now (y + G) is a summand of A/G, and G & (y) is a pure subgroup supported
by G[p] @ (x) < S, a contradiction. If x + G has infinite height in A/G, then by
quasi-completeness it is contained in a subgroup G'/G = Z(p*°). Clearly, G’ is
pure in A and is supported by G[p] & (x) < S, again a contradiction.

Conversely, let A have the stated property. First choosing S = A'[p], we obtain
A! divisible, and hence 0. Next, for any pure subgroup H, choose G pure containing
H with socle S = H™[p]. Then G/H is pure in A/H with socle (A/H)'[p].
Consequently, G/H is divisible and equal to H~/H, so A is quasi-complete. O

Hence it follows at once:
Corollary 5.6. Quasi-complete p-groups are pure-complete. O

We isolate a preparatory result in the next lemma that will be needed in later
proofs.

Lemma 5.7 (Hill-Megibben [3]). Suppose A is a quasi-complete p-group, and B’
is an unbounded summand of a basic subgroup B of A. Then B =A + B'.

Proof. LetB =B @ B’,and 7 : B — B’ the projection map. Then 7(A) is pure

in B”, since B” < m(A) and Coker(zw | A) is divisible. We want to prove that
Coker(zr | A) = 0 by showing that every b € B”[p] is in w(A). Let C denote a basic
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subgroup of B’ with B'/C = Z(p*°), and u € B’\ C an element of order p>. One can
easily construct a pure X-cyclic subgroup X < A with X[p] = Clp]andb+u € X~.
By quasi-completeness, the closure AN X~ of Xin Ais purein A,sopu € AN X~
implies that pa = pu forsomea € ANX .Henceb = (b+u—a)— (u—a) €
X~ [p] + A[p] < B’ + A, completing the proof. O

Another way of looking at quasi-completeness relies on the property stated in
Corollary 3.9 for torsion-complete groups.

Theorem 5.8 (Hill-Megibben [2]). A separable p-group A is quasi-complete if
and only if A/G is a direct sum of a divisible and a torsion-complete group,
whenever G is any unbounded pure subgroup of A.

Proof. For sufficiency, note that the stated condition implies that the closure of G
will also be pure in A. For the proof of necessity, assume A is quasi-complete and
contained in B, where B is a basic subgroup of A. The p-adic closure H (in B) of
an unbounded pure subgroup G is by Corollary 3.9 a summand of B, hence torsion-
complete. Since A contains a basic subgroup of G, and hence of H, from Lemma 5.7
we conclude that A + H = B. In view of quasi-completeness, (ANH)/G == (A/G)'
is divisible. Therefore, A/G is isomorphic to a direct sum of a divisible group and
A/(ANH) = (A+ H)/H = B/H, a summand of B. O

It follows from Lemma 5.7 that if B = B’ @ B” is a decomposition of a basic
subgroup of a quasi-complete p-group A, then

ANB)®(ANB)<A<B @B

and A is a subdirect sum of B’ and B” with kernels A N B’ and A N B”. This remark
is now used to prove that quasi-complete p-groups that are not torsion-complete are
few and far between.

Theorem 5.9 (Hill-Megibben [2]). A quasi-complete p-group of final rank > 2%
is torsion-complete.

Proof. Let A be quasi-complete of final rank > 2% and B = B @ B” a
decomposition of its basic subgroup such that B’ is countable and unbounded. In
view of the mentioned subdirect sum representation, we have B”/(A N B”) =
B'/(A N B’) where the last quotient has cardinality < |B/| < 2%. Let S denote a
complete set of representatives of B” modulo A N B”. Clearly, S must be contained
in the completion of a summand C of B” which has cardinality not exceeding 2%,
Thus B” = C @ C' for some C' < B” of final rank > 2% where C’ < A. By
Lemma5.7,B=A+ C’ <A, and hence A is torsion-complete. O

Thus, if we are asking for an example of a quasi-complete p-group that is not
torsion-complete, then we should not look beyond the continuum. Such an example
(of cardinality exactly 2%0) was supplied by Hill-Megibben [2].

% Notes. Lady [1] proves that the torsion subgroup of a direct product of
Y-cyclic p-groups is pure-complete.
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It was Head [1] who first studied quasi-completeness. Let us mention the following useful
characterization of quasi-completeness. Let A be a separable p-group embedded in the torsion-
completion B of its basic subgroup B. Hill-Megibben [2] prove that A is quasi-complete if and
only if B[p] = A[p] + S~ holds for every subsocle S of A where the heights of elements of S are
unbounded (S is calculated in B)—actually, this follows from the proof of Lemma 5.7. Another
interesting result is concerned with unbounded torsion-complete p-groups T of cardinality 2%,
Given any countable subgroup A of T, there exists a proper quasi-complete pure subgroup G < T
such that G N A = 0 and 7/G is divisible.

Exercises

(1) Define a pure-complete torsion group in the same way as it was done for p-
groups, and show that a torsion group is pure-complete if and only if all of its
p-components are pure-complete.

(2) (Hill-Megibben) If A is pure-complete, and C is X-cyclic, then A @ C is also
pure-complete.

(3) (Hill-Megibben) If A is a pure-complete, and C is a torsion-complete p-group
with finite UK-invariants, then A @ C is again pure-complete.

(4) The direct sum of two quasi-complete p-groups need not be quasi-complete.
[Hint: quasi-complete plus large torsion-complete.]

(5) (Hill-Megibben) Show that in any direct decomposition of a quasi-complete p-
group that is not torsion-complete, only one of the summands can be unbounded
(i.e., the group is essentially indecomposable). [Hint: Theorem 5.8.]

(6) (Benabdallah—Irwin) Call a subgroup G of a p-group A almost dense if, for
every pure subgroup C of A containing G, the factor group A/C is divisible.
Show that G is almost dense in A exactly if p"A[p] < G + p"™'A holds for all
n<ow.

6 Thin and Thick Groups

Small homomorphisms have been discussed in Sect. 3 in Chapter 7. Several features
make them especially interesting for study. Here we discuss two different types
of p-groups defined in terms of small homomorphisms. Their relation to torsion-
completeness will be evident.

Thin Groups A p-group C is said to be thin (Richman [1]) if every homo-
morphism ¢ : B — C from the standard torsion-complete p-group B into C is small
(recall: B = @pen Z(p")). (In the category of p-groups, thin groups play similar role
as slender groups in the category of torsion-free groups; see Sect. 2 in Chapter 13.)
It is easily checked:

(a) Subgroups of thin groups are thin.
(b) Extension of a thin group by a thin group is again thin.
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(c) Homomorphisms of any unbounded torsion-complete p-group into a thin group
are small. This will follow immediately from the more general Lemma 6.4 that
is needed in the proof of the subsequent theorem.

Lemma 6.1 (Richman [1]). Direct sums of thin groups are thin.

Proof. The proof follows the arguments in Lemma 2.16 in Chapter 6 and in
Lemma 4.2 with obvious modifications. O

Example 6.2 (Megibben [5]). X-cyclic groups are thin. This is an immediate consequence of
Lemma 6.1, observing that cyclic p-groups are trivially thin.

Example 6.3. The group Z(p°®) is not thin. The standard torsion-complete p-group B evidently
has a map ¢ onto Z(p°°) such that B < Ker ¢. Such a Ker ¢ cannot contain a large subgroup of B,
since B + Ker ¢ # B.

Lemma 6.4 (Keef [6]). Let A; (i < w) be p-groups. If

v JA)—C

i<w

is a homomorphism into a thin group C, then for each k € N there is n € N such
that

v([]r"alp'D = 0.

i>n

Proof. If this were not true, then for some k£ we could find elements a, €
[1..,P"Ailp"] for all n < w such that ¥ (a,) # 0. Let (b,) be a cyclic group of
order p**" and n : «([1,., (bx)) — t(I],-,Ai) a homomorphism mapping p"b,
upon a,. Then the composite map ¥n: #(]],., (bn)) — C would not be small (its
kernel fails the Pierce condition), contrary to our hypothesis on C. O

The condition of non-measurability appears in the next result: another evidence
of its intimate relation to direct products.

Theorem 6.5 (Keef [6]). Let p; : A; — A = t([[,c;Ai) denote the ith injection
map, where the A; are p-groups, and I is a non-measurable index set. A p-group C
is thin if and only if it satisfies:

(*) a homomorphism ¢ : A — C is small exactly if ¢p; is small for everyi € I.

Proof. First, suppose C satisfies (*), and ¢ : B — C is a homomorphism, where B
is the torsion-completion of the standard basic subgroup B. Since the induced maps
B, — C are small homomorphisms, hypothesis implies that so is ¢. Consequently,
C is thin.

Conversely, assume that C is thin, and let ¢ : A — C be such that ¢p; is
small for every i € I, but ¢ is not small. Then in view of the definition of small
homomorphisms, there is a k € N such that ¢ ([],; p"Ai[p*]) # 0 foralln € N.
Consider the set S of all subsets J C I such that ¢ ([ ],c, p"Ai[p"]) # 0 foralln € N.
As the ¢p; are small, none of J € S is finite. From Lemma 6.4 it follows that if
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Ji,....Jj,... are pairwise disjoint subsets in S, then Uj.,,J; ¢ S must hold for
some m € N. The proof of Lemma 6.4 in Chapter 2 applied to ¢ (in place of f)
convinces us that / is measurable, a contradiction. O

Example 6.6. To show that the last theorem may fail for measurable cardinals, let / be a
measurable index set, and A; copies of the same countable, unbounded X-cyclic p-group X, and
also C = X. In order to define ¢ : A = #([],c;A;) = X, choose a vectora = (...,q;,...) € A,
and regard the coordinates as elements of X. There are only countably many different coordinates,
so the supports of the equal ones give rise to a countable partition of / into disjoint subsets, exactly
one of which has measure 1, and the rest has measure 0. If the support of x € X is the one of
measure 1, then set ¢»(a) = x. This is a well-defined homomorphism; it is not small, though ¢p; is
small for each i € 1.

Thick Groups A p-group G is called thick (Megibben [2]) if every homomor-
phism ¢ : G — C into a X-cyclic group C is small.

Example 6.7. Torsion-complete p-groups are thick. This is a consequence of Example 6.2.

Example 6.8 (Megibben [2]). A pure dense subgroup G of a torsion-complete p-group B is thick
whenever [B/G| < R. Indeed, let ¢ : G — C be a homomorphism, where C is X-cyclic. Then
A = Im¢ is likewise Z-cyclic. Now, ¢ extends uniquely to ¢ : B — A, where A denotes the
torsion-completion of A. As Im¢/A is countable, by Theorem 3.5 Im ¢ is also Z-cyclic. Thus ¢ is
small, and sois¢ = ¢ } G.

In the following theorem, which is a dual to Theorem 6.5, ; denotes the ith
coordinate projection.

Theorem 6.9 (Rychkov—Thomé [1], Keef [6]). A p-group G is thick if and only if
the following holds:

(**) for every set {A; | i € I} of separable p-groups, a homomorphism ¢ : G —
Dicr A; is small exactly if w;p is small for every i € I.

Proof. If G has property (**) and the A; are cyclic p-groups, then ¢ small
implies G is thick. For the converse, assume ¢ : G — @®;g/A; is a non-small
homomorphism, though all of 7;¢p are small. Thus for each k < w thereisn € N
such that ¢ (p"G[p*]) # 0. Because the homomorphisms ;¢ are small, we can
find inductively integers n;, elements x; € p“G[p*], and different indices i; € I
such that 7;¢(x;) # 0. As A;; is separable, there is a map y; : A; — B, to
a cyclic p-group, such that yi(7;¢(x;)) # 0. The y;’s yield the composite map
Y @ierAi > ®j<wAi; — Dj<w Bi such that yd(x;) # 0, showing that y¢ is not
small, so G is not thick. O

Theorem 6.10 (Keef [6]). If the p-groups A; (i € I) are thick, then so is the torsion
subgroup of their direct product.

Proof. 1f I is finite, then the assertion follows from the fact that the direct sum of
large subgroups of the summands is large in the direct sum. Suppose / is infinite,
and ¢ : 1(J[;e;Ai)) — C where C is Z-cyclic. By the analogue of Theorem 6.7 in
Chapter 2, there are a finite subset J C [ and an integer m such that p™#(] |, Y, A) #

0 is mapped by ¢ into a finite summand of C. If this summand is annihilated by p*,
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then Ker ¢ contains, along with a direct sum of large subgroups of A; (i € J), also
" t([T,e; Ai)- Therefore, ¢ is small, and #([],; A;) is thick. O

% Notes. Megibben [2] shows that a separable p-group is thin exactly if it does not contain an
unbounded torsion-complete p-group. Generalizations of thin and thick groups have been discussed
by Rychkov—Thomé [1].

Keef [3] proves an interesting result on the torsion subgroup of a countable product of p-groups
(generalizing Theorem 6.10 in Chapter 5): for any collection {A, },en of p-groups, there exists an
epimorphism

¢: I(HAn) —> @nENAw

neN

Exercises

(1) Every homomorphism B — B is small (B is a Z-cyclic p-group).
(2) (Keef)

(a) Given a p-group A, let S(A) denote the class of p-groups C such that all
homomorphisms ¢ : A — C are small. Prove that S(A) is closed under
taking subgroups.

(b) If A is unbounded and reduced, then every group in S(A) is thin.

(3) In the definition of thick p-groups, can the X-cyclic C be restricted to the
standard B = @,en Z(p")?

(4) A p-group is thick if and only if its initial Ulm factor is thick.

(5) (Keef) Let A, C be reduced unbounded p-groups. There exists a non-small
homomorphism A — C if either A is not thick or C is not thin.

7 Direct Decompositions of Separable p-Groups

Every non-trivial separable p-group has an indecomposable summand: a cyclic
group, but the group itself need not be a direct sum of indecomposable groups.
The obvious question is: what kind of decompositions a separable p-group might
have? We would like to use the knowledge that we have gained on torsion groups
so far to draw attention to some not so common direct decompositions. We will
mention a few results of this sort. We point out right away that the presence of
cyclic summands rules out the existence of superdecomposable p-groups.

Direct Decompositions We know that a separable p-group has an ample supply
of finite summands. These are of course X-cyclic groups. How about unbounded -
cyclic summands? We refer to Khabbaz’ Theorem 6.14 in Chapter 5 showing that
in case the basic subgroups have the same cardinality as the p-group A, then A has
3-cyclic summands as large as its cardinality permits.
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X;-Separability Almost free groups have analogues in the torsion case:
p-groups in which every subgroup of smaller cardinality is X-cyclic, see
Corollary 8.11 in Chapter 3. A stronger version requires that every subgroup of
smaller cardinality can be embedded in a ¥-cyclic summand.

Theorem 7.1 (Hill [8], Crawley—Megibben [1]). There exists a separable p-group
of cardinality Ry, not a X-cyclic group, such that every countable subgroup embeds
in a X-cyclic direct summand.

Proof. Let B = @, B,, B, = ®y,Z(p"), and C a basic subgroup of B such that
B/C = Z(p*). We construct a p-group A of cardinality ®; as the union of an
ascending chain of pure subgroups, all isomorphic to B.

We start with Ag = 0. Suppose that for some ordinal § < w;, the countable
Y-cyclic groups A, have been defined for all « < B to form a smooth chain,
each being pure in its successors. If 8 is a limit ordinal, then we have to set Ag =
Uy p Ao As a countable separable p-group, Ag will then be X-cyclic (Theorem 5.5
in Chapter 3). If 8 = y + 1 and y is a successor ordinal, then define Ag = A, @ F,
where F, = B. Finally, if 8 = y + | and y is a limit ordinal, then choose Ag = B
with A, embedded in Ag as C is embedded in B. Then all the groups A, are X-cyclic
and pure in their union A = Ua <o A,. Moreover, each A, with non-limit « is a
direct summand of every Ag with 8 > «, where the complements form a chain, so
itis a summand of A as well. Since A has cardinality 8, and every countable subset
of A is contained in some A,, it is clear that A has the required embedding property.
However, A cannot be X-cyclic, since it violates the criterion of Theorem 7.5 in
Chapter 3 (see the Remark after it): Ay+1/Ay = Z(p™) is not X-cyclic for every
limit ordinal @ < w, and the set of limit ordinals < w; is stationary in ;. O

Summands of Various Properties Features that we want to consider next are
concerned with the size of direct decompositions: when one of the summands ought
to be small or large in size.

A p-group A is said to be essentially indecomposable if it is incapable of
decomposition into two unbounded summands; i.e. if A = B @ C, then either B
or C is bounded. Bounded p-groups share this property, but no unbounded torsion-
complete group has it (see Proposition 4.1). The next example exhibits an essentially
indecomposable p-group of the cardinality of the continuum (for another example
see Sect. 5, Exercise 5).

Example 7.2. Pierce [1] shows that the torsion-complete group B (where B denotes the standard
basic subgroup) contains a pure subgroup G > B of cardinality 2% such that End G = J,®End; G.
Idempotents in End, G yield bounded summands, therefore only idempotents mod End; G could
produce two unbounded summands. But J, has only a single idempotent 7 0, so such a G must be
essentially indecomposable.

From the existence Theorem 7.3 in Chapter 16 one can derive the existence of
arbitrarily large essentially indecomposable p-groups, even a large family of such
groups with the property that all homomorphisms between different members are
small.
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A class more general than essentially indecomposable groups was studied by
Cutler—Irwin [1]. They call a p-group A essentially finitely indecomposable, or
e.f.i. for short, if for every direct decomposition of A there is an integer n > 0
such that almost all summands are p”-bounded. An equivalent condition is: A has
no unbounded X-cyclic subgroup as a summand.

Example 7.3. Thick groups are e.f.i. To verify this, assume A is a p-group that is not e.f.i., so it
has an unbounded X-cyclic summand B such that A = B @ C with unbounded C. The projection
A — B is not a small homomorphism, A is not thick.

Lemma 7.4 (Cutler-Irwin [1]). A reduced p-group is e.f.i. if and only if its initial
Ulm factor is e.f.i.

Proof. If A has an unbounded X-cyclic group as a summand, then this summand
remains summand mod the first Ulm subgroup A'. Conversely, if A/A! has an
unbounded X-cyclic summand, then by Theorem 6.13 in Chapter 5 every basic
subgroup of A/A! has such a summand. Basic subgroups of A/A! come from those
of A, so also A has an unbounded X-cyclic summand. O

Quasi-Indecomposable Groups A group A is called quasi-indecomposable if,
for every cardinal k < |A|, in every direct decomposition of A (into any number of
summands) there is always a summand of cardinality > «. It is obvious that

(a) a reduced countable p-group is quasi-indecomposable exactly if it is
unbounded;

(b) if |A| is a successor cardinal, then quasi-indecomposability means that in every
direct decomposition one of the summands has the same cardinality as A.

Example 7.5. The torsion-complete group B with the standard basic subgroup B is quasi-
indecomposable of cardinality 2.

Theorem 7.6 (Kulikov [1, 2]). For every infinite cardinal A, there exist quasi-
indecomposable separable p-groups of cardinality A.

Proof. Ignoring the countable case settled by (a), we distinguish three mutually
exclusive cases.

Case 1: There is an infinite cardinal k satisfying k < A < k™. Define A as a pure
dense subgroup of cardinality A in the torsion-complete group B with basic
subgroup B = @°2, B, where B, = @, Z(p"). Suppose A = P;e; C; with
C; # 0. Here necessarily |I| < |B| = «, because every summand must have
a non-zero basic subgroup. Therefore, if & < A, then |C;| < w forall i € I is
impossible, thus A is quasi-indecomposable.

Case 2: A = N,y is a successor cardinal, and u < A implies ¥ < A. Then
foo = N;, and by the Hausdorff formula (Jech [J]), &f:ﬂ_l = R, also holds,
ie. A% = ). Define A = B with B = @, B,, B, = ®; Z(p"). Manifestly, A
has cardinality and final rank A. If A = @;¢; C;, then by Theorem 4.3 there is
an integer m such that almost all p”C; = 0. At least one of the unbounded C;
must have final rank A.
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Case 3: A is a limit cardinal such that < A implies ™ < A. Write A = > s Ko
with an increasing sequence of cardinals k, < A (0 < cf1), and for each o
construct a torsion-complete group A, = B, (as in Case 1) with the cardinal
Ky. Then A = @y ) Ay Will have cardinality and final rank A. Suppose A =
@,es Ci. By Theorem 4.3, for each o, there is an integer m, such that p™ A, [p]
is contained in the direct sum of a finite number of the C;, and it is clear that
one of these must have cardinality > «,. Thus for every < A there is a C; of
cardinality > u, so A is quasi-indecomposable. O

k-Indecomposable Groups Another property we wish to look at relates to the
number of summands. A group A is xk-indecomposable if it cannot be written as a
direct sum of « non-zero groups. Of course, in this case, only groups of cardinality
> k are of interest.

Example 7.7. The group in Case 1 of Theorem 7.6 above is «-indecomposable (of cardinality
> k). In fact, every direct decomposition of A induces a direct decomposition of a basic subgroup
of A. Every basic subgroup is of cardinality «, so the group cannot be a direct sum of more than «
non-zero summands.

In view of Theorem 5.3 in Chapter 3, no countably infinite, Xo-indecomposable
separable p-group may exist. However, for larger cardinalities we have a simple
criterion for the existence:

Theorem 7.8 (Szele [7], Fuchs [4], Khabbaz [1]). For an uncountable infinite
cardinal A, there exist A-indecomposable separable p-groups of cardinality > A
if and only if either

(i) there is a cardinal k such thatk < A < «™0; or
(ii) A is a limit cardinal of cofinality w.

(1) is a necessary and sufficient condition for the existence of groups of the stated
kind to be of cardinality equal to A.

Proof. First assume there is a A-indecomposable p-group A of cardinality A. Let
B = @®,B, be a basic subgroup of A, where B, = @®,,Z(p"). As B, is a summand,
we must have «, < A for each n. Then Y, «, = |B| < |A| < |B|™. If the first
inequality is strict, we get case (i). In the remaining cases & < A implies u™ < A,
and either A = x1 with «®0 = «, or A is a limit cardinal with >, kn = A, in which
case cf A = w is a must.

If A satisfies (i), then let A be defined as in Case 1 above in Theorem 7.6.
Example 7.7 establishes the existence of such an A.

To rule out the case when A = « 7 is a successor cardinal and ™ = «, note that
for such a A the basic subgroup B of any separable p-group A of cardinality > A must
also be of cardinality > A. If |[B| = A, then also |A| = (1)¥ = A (by Hausdorff
formula), and Theorem 6.14 in Chapter 5 implies that A has a X-cyclic summand of
cardinality A. If |B| > A, then B, and hence also A, must have a bounded summand
of size A. Such an A cannot be A-indecomposable.

If A is like in (ii), then let kg < --- < k, < ... be cardinals with ), k, = A;
we may assume (k,,)™0 = «, for each n. Let A = B be the torsion-complete group
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with basic subgroup B = @, B,, where B, = ®,, Z(p"). Thenrk B = fintk B = A,
thus |[A| = A®0—as it is clear from Theorem 3.2; here, A¥ > A by Jech [J]. Now
if A = ®;er C;, then by Theorem 4.3 there is an integer m such that almost all of
p"C; vanish. Obviously, the cardinality of a p™-bounded summand cannot exceed
Km < A, so the index set I has cardinality < A, and A is A-indecomposable.

To prove the second claim, it only remains to show that (ii) is not an option if we
wish the group to have cardinality equal to A, and (i) fails. If A is a limit cardinal
such that ;. < A implies u®0 < A, then in any separable p-group of cardinality A, the
basic subgroups ought to have cardinality A. We invoke Theorem 6.14 in Chapter 5
to argue that then the group has a X-cyclic summand of cardinality A. O

Direct Product vs. Direct Sum The following theorem records a remarkable
feature of torsion groups. Interestingly, but not surprisingly, the natural boundary
for the result is the first measurable cardinal. To simplify notation, we confine our
discussion to p-groups.

Theorem 7.9 (Zimmermann-Huisgen [1]). Let A; (i € I) be reduced p-groups,
and I a non-measurable index set. In any infinite direct decomposition of the direct
product

A= l_[Ai = Bjes Cj,

i€l
no more than a finite number of the C;’s are torsion-free.

Proof. There is a smallest ordinal t such that p*A; = 0 for all i € I. Then also
p*C; = Oforall j € J, so there is a smallest p such that p?C; is torsion for almost
all j € J. We will be done if we show that p = 0.

By way of contradiction, assume p > 0. Theorem 6.7 in Chapter 2 guarantees
the existence of an ordinal ¢ < p as well as finite subsets Iy C I,Jy € J such that

P°Br, < (®jes, C)) + (Bjes PC)),

where B;, = ]_[iel\lo A;. No harm is done if we replace ®jej, Cj by ®Bjes, p°Cj
in the last containment relation. Passing mod p”A, we obtain p°By,/p’B;, —
®jecs, P’ C;/p"C;j), a monomorphism. Both sides may be viewed as subgroups
of p®A/pPA, therefore there is an epimorphism between the cokernels:
[Tics, P Ai/PPA) — @jesvs, (0° Cj/pPC)). Here the finite product is a p-group,
so the same has to be true for the direct sum. This means that o is also an ordinal
such that almost all of p®C; are torsion. Thus p cannot be minimal unless p = 0. O

Number of Separable p-Groups The question as to the cardinality of the set
of non-isomorphic separable p-groups of cardinality k arises naturally. Shelah [2]
proved that the cardinality is 2 for every infinite cardinal x, using a more general
result of his on the number of non-isomorphic models. Here we cannot give details
of his proof; instead, we offer a weaker theorem showing only that there exist
arbitrarily large cardinals with this property.
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Proposition 7.10. Let «k be an infinite cardinal such that k™ = 2. Then there
exist 2% non-isomorphic separable p-groups of cardinality 2€. Moreover, they can
be chosen so as to have isomorphic basic subgroups.

Proof. The claim is a bonus of Theorem 9.2 below. O

Regarding Proposition 7.10, we point out that there are arbitrarily large cardinals
Kk satisfying the hypothesis of this proposition (Griffith [6]). In fact, starting with
any infinite cardinal po, set (L, = 2" andk =), _ tn. Then

Kkoznun:nzunZZZMZZK

n<w n<w

along with the reverse inequality implies k™0 = 2¢,

% Notes. Monk [2] proves that a p-group A is essentially indecomposable if and only if the
factor ring End A/ End; A has no idempotents other than 0 and 1. An interesting variant is Irwin’s
essentially finitely indecomposable p-groups defined above. The class of these groups is closed
under finite direct sums and summands.

Rychkov [3] considers p-groups A of cardinality x > R, and of final rank « that are not X-
cyclic, but every subgroup of cardinality < « embeds in a X-cyclic summand of cardinality < k.
Assuming V = L, he establishes the existence of such an A for every uncountable, regular, not
weakly compact cardinal x. A has the additional property that it cannot be decomposed into the
direct sum of two summands of the same final rank.

Shelah [2] establishes the existence of families of separable p-groups like in Proposition 7.10
such that every homomorphism between two different groups is small.

Exercises

(1) A torsion-complete p-group A with fin tk A = |A] is quasi-indecomposable.

(2) An unbounded quasi-complete p-group with a countable basic subgroup is
quasi-indecomposable.

(3) In a separable p-group A, the summand C constructed for a € A in Lemma 1.4
is a minimal summand containing a.

(4) (Soifer, Gobel-Ziegler) A group is called almost A-decomposable for a
cardinal A if, for every cardinal k < A, it admits a direct decomposition
with k non-zero summands, but has no decomposition into A such summands.
There exist almost A-decomposable p-groups of cardinality A for any infinite A
satisfying u* = A < ™ for some cardinal . [Hint: suitable B.]

(5) The direct sum of a finite number of e.f.i. groups is e.f.i.

(6) There exists no Xp-indecomposable reduced p-group of cardinality Rg.
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8 Valuated Vector Spaces

Though in a p-group A, the socle A[p] plays a discernible role, the information about
the group itself provided by its structure is, however, next to nothing: it is a vector
space over Z/pZ, and in vector spaces all subspaces of equal dimensions are alike.
The situation changes drastically, if the elements of the socle are viewed along with
their heights that they acquired from the group. We take this as our inspiration to
embark into the study of vector spaces in which the vectors are equipped with a
‘value.’ In order to understand what such valuated vector spaces can offer, we have
to have a closer look at them.

Valuation of Vector Spaces With applications to reduced p-groups in mind,
we will restrict our discussions to vector spaces over the prime field Z/pZ of
characteristic p. Such vector spaces are easy to handle, since their one-dimensional
subspaces are finite. To simplify discussion, the values will be taken from the class
of ordinals with a symbol co adjoined (which is to be viewed larger than any
ordinal); this class will be denoted in this section by I'.

To set the stage, let V denote a vector space over the prime field Z/pZ of
characteristic p. By a valuation of V is meant a function v of V into I" such that, for
allx,yeV,

(i) v(x) = oo if and only if x = 0;
(ii) v(kx) = v(x) if ged{k,p} = 1;
(iii) v(x +y) = min{v(x), v(y)}.

Note that (ii) implies that in a one-dimensional vector subspace all non-zero vectors
have the same value. It is a good idea to keep in mind an immediate consequence of

(iii):
v(x +y) = min{v(x),v(y)} whenever v(x) # v(y).

In fact, this follows from combining (iii) with v(y) > min{v(—x), v(x+y)} if v(x) >
v(y).

The pair (V;v) consisting of a vector space V and its valuation v is called a
valuated vector space. Its support is defined as

suppV ={v(a)|0#£acV}CT.

V is homogeneous if supp V is a singleton {y}, and is finite-valued if supp V is a
finite set.

A morphism between valuated vector spaces (V;v) and (W;w) is a linear
transformation y : V. — W (i.e., a group homomorphism) that does not decrease
values, i.e. w(yx) > v(x) forall x € V.
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Category V The valuated vector spaces (V;v) with these morphisms form
a category V. Vector space isomorphisms that preserve values are the category
isomorphisms; these will be referred to as isometries.

Example 8.1. A one-dimensional valuated vector space (V;v) is isometric to Z(p) where every
element # 0 has the same value y. If g € V is a generator, then for a valuated vector space (W; w)
there is non-zero morphism ¢ : V. — W if and only if there is an x € W with y < w(x), in which
case ¢pg = x gives rise to a morphism.

Example 8.2. For any reduced p-group A, the socle A[p] of A becomes a valuated vector space if
the values are the heights measured in A. If ¢ : A — B is a homomorphism of A into a reduced
p-group B, then A[p] is mapped into B[p] such that the map does not decrease heights.

A subspace U of V carries the induced valuationu = v ' U, and (U; u) becomes
a subobject of (V; v) in the category V. (Usually it is harmless to denote the induced
valuation in U also by the same symbol v.) The quotient space V /U can be equipped
with the valuation

v*(x+ U) = sup v(x + a) (xeV)

acelU

making it into a valuated vector space (V/U;v*), and the natural map V — V/U
into a V-morphism. It follows that the category V admits kernels and cokernels, so
that we can talk about exact sequences of valuated vector spaces:

0— (U;u) - (V;v) - (W;w) — 0.

More explicitly, this means that (U; u) is a subobject of (V; v) such that the vector
space V /U with the induced valuation is isometric to (W; w). Moreover, we have:

Proposition 8.3. The category of I'-valued Z/pZ-vector spaces V is an additive
category with kernels and cokernels. It admits products and coproducts.

Proof. The first claim is obvious in view of what has been said above. The product
of the valuated vector spaces (V;; v;) with i € [ is easily seen to be the cartesian
product [ | V;; i.e. it consists of all vectors x* = (..., x;,...) withx; € V; where the
valuation is given via v(x*) = infie; v;(x;). We shall denote this categorical product
by the usual symbol [ [; V.

It is readily checked that the coproduct | [ V; of the (V;; v;) is the vector space
direct sum @ V; with the valuation defined as for the product. O

Example 8.4. For reduced p-groups, direct decompositions A = @;¢; A; are reflected in the socles
as coproducts A[p] = | [;¢; Ailp], and vice versa.

Example 8.5. Let B = @°2, B, where B, is a direct sum of cyclic groups of the same order p".

n=1
For each n, B, [p] is a homogeneous vector space with constant value n—1, and Blp] = [[°2, B.[p].
Of course, each B, [p] is a coproduct of one-dimensional vector spaces.

The following lemma is elementary, but most essential.

Lemma 8.6. Let (A; v) be a subspace of the valuated vector space (V; v) such that
thereisay € T satisfying v(a) > y foralla € A, and v(x) < y forall x ¢ A. Then
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V = A]]B for some subobject B of V which can be chosen so as to contain any
given subspace C of V disjoint from A.

Proof. Let C be any subspace of V disjoint from A. In view of Zorn’s lemma, there
is a subspace B of V which is maximal with respect to the properties: C < B and
ANB = 0. Then evidently, V = A @ B as vector spaces. From the stated conditions
on the values it follows at once that v(a + b) = min{v(a), v(b)} for all a € A and
b € B. This means that V = A ] [ B, indeed. O

This leads to most useful decompositions of (V;v). For y € I" set
Vi={aeV|v@) >y} and V,={aecV]v(a) >y}

These are fully invariant subspaces in the sense that every endomorphism of (V; v)
(endomorphisms are V-maps!) carries them into themselves. From the preceding
lemma we conclude that there are subspaces A(y) < A’(y) of V such that

V=AW [V and v=4a@m)]]V.

Hence there is a subspace B(y) of V such that V¥ = B(y) [ | V,. Obviously, B(y) is
a homogeneous subspace isometric to the vector space V¥ /V, with constant value
y. Its dimension i, (V) = dim V?/V, is uniquely determined by V, it may be called
the yth Ulm-Kaplansky invariant, briefly the yth UK-invariant, of V.

Lemma 8.7. Let A be a homogeneous subspace of the valuated vector space V, and
C a subspace of V suchthat A+ C = A C. Then V = A | B for some B > C.

Proof. If y € I is the common value of the non-zero elements of A, then we pass
mod V, to conclude that A* + C* = A*[[C* where stars indicate cosets. By
Lemma 8.6, we have V* = A*[]B* for some B* > C*. The complete inverse
image B of B* in V satisfies V. = A[ | B. ]

Free Valuated Vector Spaces A valuated vector space F' is called free if it is
the coproduct of one-dimensional valuated vector spaces. Thus F is of the form
F = [],e; Vi where (V;; v;) are one-dimensional valuated vector spaces, each with
constant value y;. If x; € V; is a basis element, then every function f: X — W from
the basis X = {x;};e; extends (uniquely) to a category morphism of F into a valuated
vector space (W;w) if and only if y; < w(f(x;)) for all i € I. This property can be
used as a definition of free valuated vector spaces, it is an exact analogue of what
we have learned about free groups; of course, the stated inequality is a must. Note
that:

(A) Every homogeneous valuated vector space is free. In fact, such a space is just
a vector space with constant valuation.

(B) Two free valuated vector spaces are isometric if and only if, for every ordinal y,
the cardinalities of the free generators of value y are the same for both spaces.
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(C) Every valuated vector space is a V-homomorphic image of a free valuated
vector space.

(D) A finite-valued subspace A of a valuated vector space V is a free summand of
V. For, if supp A consists of the values y; < --+ < y, then by Lemma 8.7 we
can write V.= A% ] [ V; for some subspace V; such that A = A% [ [(A N Vy)
(A7 denotes the yx-homogeneous summand of A). The conclusion follows by
a straightforward induction.

Proposition 8.8 (R. Brown). Countable dimensional valuated vector spaces are
free.

Proof. In fact, if dim V is countable, then V is the union of an ascending chain
0=Vy<V, <:--- <V, <... of subspaces where vectors in V,, have n different
values. Therefore, by (D) there are decompositions V,,+1 = U, ||V, for suitable

subspaces U, (n < w). Hence V = [ [, _ U, follows at once. a

Example 8.9. The socle of a countable p-group is a free valuated vector space under the height
valuation. This is clear from Proposition 8.8.

From Theorem 2.5 in Chapter 2 and Proposition 8.8 follows at once:
Theorem 8.10. Summands of a free valuated vector space are free. O

We do not intend to pursue the exploration of valuated vector spaces, since we
do not wish to make extensive use of them, but we cannot leave the subject without
mentioning a few interesting facts. The valuation defines a non-archimedean metric,
called ultra-metric on the valuated vector space (V;v). The distance of a,b € V
is defined as d(a,b) = v(a — b), so it is an ordinal. The basic properties of this
distance function are not the same as for the real-valued distances:

(i) d(a,b) = oo is equivalent to a = b;
(ii) d(b,a) = d(a,b); and
(iii) d(a,c) = min{d(a, b),d(b,c)} forall a,b,c € V.

The last inequality is a strengthened version of the triangle inequality. A ball
B(a, y) with center a € V and radius y € I’ is defined as

Bla,y)={xeV]|vx—a)>y}=a+ V.

Note that b € B(a, y) implies B(a,y) = B(b, y), so every element in the ball can
be viewed as a center. Moreover, if two balls intersect, then one is contained in the
other. The ultra-metric defines a topology where convergence, density, etc. make
good sense.

The most important case is when the values are < w. The reader should observe
the close analogy of the dense free subspace in the next lemma to basic subgroups.

Lemma 8.11. Let V be a valuated vector space with values < w. It contains dense
free valuated subspaces; these are all isometric.
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Proof. Define B(n) via V" = B(n)[]V, for each n < . Thus B(n) is homo-
geneous, so free with values n. We claim that the free valuated vector space
B = 1],., B(n) is dense in V. Indeed, if @ € V \ B, then for each n < w it has
a decomposition a = by + - -+ + b, + ¢, with b; € B(i) for all i, and ¢, € V,; thus,
v(a—by—---—b,) > n. The UK-invariants of B are the same as those of V, whence
the claim on isometry becomes evident. O

% Notes. The idea of using the elements of the socle equipped with their heights can be
traced back to Charles’ proof of Kulikov’s Theorem 5.1 in Chapter 3. Hill [3] used the metric
defined by the height in the socle. A systematic study of valuated vector spaces was initiated in
the author’s paper [J. Algebra 35, 23-38 (1975)], using a more general setting. Every valuated
vector space embeds in a complete one. We point out that subspaces of free valuated vector spaces
need not be free, but summands are always free. Generalization to valuated groups turns out more
important, it has an extensive literature (for a brief discussion of valuated groups, we refer to Sect. 3
in Chapter 15).

Exercises

(1) If A and B are subspaces of the valuated vector space V such that a — a + B is
an isometry from A to V/B, then V = A ][ B.
(2) Show that B is isometric to V/A if A and B are subspaces of the valuated vector
space V such that V.= A]|B.
(3) (a) A valuated vector space with countable support is free if and only if it is the
union of a countable ascending chain of finite-valued subspaces.
(b) A subspace of a free valuated vector space with countable support is free.
(c) Give an example of a countably valued vector space that is not free. [Hint:
rephrase the claims for socles of p-groups.]
(4) For every valuated vector space V with values < w, there exists a separable
p-group A such that A[p] with height valuation is isometric to V.
(5) If V. = A] ][ B and if C is a subspace of V containing A, then C = A[[(BN C).
(6) Prove the claim that two balls in a valuated vector space can intersect only if
one is contained in the other.
(7) Call a € V orthogonal to a subspace U of the valuated vector space (V, v) (in
notation: a L U) if v(a + u) < v(a) for all u € U. We say a subspace W of V
is orthogonal to U (and write W L U) if a L U holds for all @ € W. Prove that

(@) W L Uimplies U L W.
(b)y W LUifandonlyif W+ U =W]]U.
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9 Separable p-Groups That Are Determined by Their Socles

The results in this section will elucidate the importance of viewing the socle of a
p-group as a vector space furnished with the height-valuation. In this section, the
socles will be assumed to carry this valuation.

It is an immediate question as to what extent a p-group is determined by its
socle as a valuated vector space. Further questions include characterization of the
socles of p-groups in some well-defined class C or cases when the isometry of socles
implies the isomorphy of the p-groups within the class C. We deal briefly with these
questions. We should probably stress at the outset that the valuated vector space
point of view has many more applications than those treated here.

Subgroups Supported by Dense Subsocles If we are to talk about these
questions, we should probably start with showing the opposite situation: it can
very well happen that as many non-isomorphic separable p-groups as possible have
isometric socles. Before stating the relevant theorem, we prove a lemma.

Lemma 9.1 (Hill-Megibben [3]). Let A be a reduced p-group. A proper dense
subsocle S of A supports 2* different pure and dense subgroups, where A =

IpAlp] N S|.

Proof. Let {c;}icr denote a basis of the vector space pA[p] N S, and choose a; €
A (i € I) such that pa; = c;. By hypothesis, there is a u € A[p] \ S. For a subset
J of I, let X; be the set of the elements g; where g; = q;if i € Jand g; = a; + u
otherwise. S is still the socle of the subgroup generated by X;, so by Theorem 1.3
for each J, X; is contained in a pure and dense subgroup C; of A, supported by S.
If K is a different subset of 1, then C; # Ck, since no C; may contain both «; and
a; + u. As |I| = A, we have 2* different subgroups Cj. O

Regarding the cardinal hypothesis in the following result, let us note that there
exist arbitrarily large cardinals « satisfying ¥® = 2. (See the comment following
Proposition 7.10.)

Theorem 9.2 (Hill-Megibben [3]). Let k be a cardinal satisfying k¥ = 2, and
A a separable p-group of cardinality 2“ whose basic subgroups have rank and final
rank equal to k. Then a proper dense subsocle S of cardinality 2¢ supports 2% non-
isomorphic pure (and dense) subgroups of A.

Proof. Let B be the torsion-complete group whose basic subgroup B has rank and
final rank «. By Theorem 3.2, we have |B| = 2*. Applying Lemma 9.1 to the case
A = 2¢, we conclude that there are 2>° different pure subgroups supported by a
proper dense subsocle S. Owing to Theorem 3.10, isomorphic dense subgroups are
carried into each other by an automorphism of B. We complete the proof by showing
that B has less than 2> automorphisms.

Each automorphism of B is entirely determined by its action on B. As any
generator of B is mapped by an automorphism upon one of A different elements,
the cardinality of Aut B is at most AX = (2¢)° = 2 < 2%, O
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When Socles Determine the Group We now turn to the discussion of positive
results. Our intention is to show that the X-cyclic p-groups, the direct sums
of countable p-groups, and the direct sums of torsion-complete p-groups are
determined by their socles as valuated vector spaces, within the respective classes
of groups.

Theorem 9.3.

(i) A p-group is X-cyclic if and only if its socle is a free valuated vector space with
values < .
(i) Groups with isometric free socles of values < w are isomorphic.
(iii) Every free valuated vector space over Z/pZ with values < w is isometric to
the socle of a X-cyclic p-group.

Proof. (i) If A is X-cyclic, then A[p] is the coproduct of the socles of the cyclic
summands. These are one-dimensional spaces, so A[p] is free as a valuated vector
space. Conversely, a free valuated vector space is the coproduct of one-dimensional
spaces each of which supports a cyclic group which is of order p"*! if n is the
common value of the non-zero vectors. Hence also (ii) is evident.

(iii) is straightforward. |

For the class of countable p-groups, the analogues of (i)—(ii) hold (see Theo-
rem 1.6 in Chapter 11, while the analogue of (iii) holds true only under additional
conditions on the invariants; see Exercise 2.

Theorem 9.4.

(1) If A is a direct sum of countable p-groups, then its socle Alp] is a free valuated
vector space with values < w;.

(ii) Direct sums of countable p-groups are isomorphic if and only if their socles
are isometric.

Proof. (i) It suffices to prove the claim for countable p-groups A. Then dim A[p] is
countable, so Proposition 8.8 implies that A[p] is free as a valuated vector space.
(i) This is equivalent to Kolettis’ theorem (Corollary 6.7 in Chapter 11). O

As expected, also the torsion-complete groups are determined by their socles.
However, it is not so obvious that the same holds for their arbitrarily large direct
sums.

Theorem 9.5 (Hill [S]). Two direct sums of torsion-complete p-groups are isomor-
phic if and only if they have isometric socles.

Proof. To begin with, we show that two torsion-complete p-groups with isometric
socles are isomorphic. The ‘basic’ subspaces (cp. Lemma 8.11) in the socles are
isometric, so the basic subgroups of the torsion-complete groups are isomorphic,
and hence the groups themselves are isomorphic.
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It suffices to prove the ‘if” part of the statement. Our first step is to show that two
separable p-groups A, C with isometric socles can be embedded isomorphically as
pure subgroups in a torsion-complete p-group such that they share the same socle.
An isometry ¢: A[p] — C[p] carries the socle A’[p] of a basic subgroup A" of A onto
the socle C'[p] of a basic subgroup C’ of C. As ¢ is height-preserving, it extends to
an isomorphism ¢’ : A’ — C’ which in turn extends to an isomorphism ¢ : A — C
between the torsion-completions of A and C. Then ¢(A) and C have the same socle
in C.

Thus it is harmless to assume that the p-groups A = @;e; A; and C = ®jey C;
(where A;, C; are torsion-complete) are pure subgroups with the same socle in a
torsion-complete group B. Under this hypothesis, we prove that for any summand
A;, C admits a summand D; such that D;[p] = A;[p]. From Lemma 4.2 we argue
that there is an integer m such that p™A;[p] is contained in a finite direct sum
Cj, ® --- & Cj,. This direct sum is torsion-complete, so by Lemma 5.4 it contains a
pure subgroup U supported by p™A;[p]. If we write A;[p] = X & p™A;[p], then it is
clear that X (of bounded heights) supports a summand V of C, thus there is a pure
subgroup D; = U@ V < C as stated. Now A;, as a pure torsion-complete subgroup,
is a summand of B. A pure subgroup supported by the support of a summand is itself
a summand (Lemma 1.2), so D; is a summand of B, and hence of C. It is evidently
~ A;.

Clearly, the subgroups D; generate their direct sum in C such that D = @;¢;D;
has the same socle as A[p] = C[p]. The proof will be complete if we can show that
Dispurein C. Letx € (D;, @ --- @ D;)[p] be of height & in C. It has the same
height in A, so all of its coordinates in the A; have height > A. x has exactly the
same coordinates in the D; with the same heights. Thus the elements in D[p] cannot
have smaller heights in D than in C, and so D is pure in C. O

Other classes of p-groups in which only isomorphic groups can have isometric
socles are the class of simply presented and the class of p®*!-projective p-groups.
These groups will be discussed later in Sects. 3 and 10 in Chapter 11, respectively.

% Notes. By making use of the Diamond Principle, both Cutler [2], Dugas—Vergohsen [1]
proved that the only separable p-groups of cardinality < X that are determined by their socles are
the X-cyclic and the torsion-complete groups. Mekler—Shelah [5] established the independence
of this question in ZFC. The Keef class K, of p-groups is the smallest class that contains the
cyclic p-groups, and is closed under taking summands, direct sums, and torsion subgroups of non-
measurable direct products. Keef [4] shows that the groups in K, are characterized by their socles
within this class (generalizing Theorem 9.5).

As we have already mentioned above, subspaces of free valuated vector spaces need not be
free. The valuated socles of totally projective p-groups are never free once the lengths of the groups
exceed w, but are always embeddable in free valuated vector spaces. Valuated vector spaces that
support totally projective p-groups were characterized in the author’s paper [Symposia Math. 23,
47-62 (1979)].

There are interesting results on direct sums of torsion-complete groups. One of those is that
summands are again such direct sums. Another theorem states that any two decompositions have
isomorphic refinements. See Irwin—Richman—Walker [1], Hill [4], Enochs [1]. Ivanov [2] has an
extensive study of countable direct sums of algebraically compact and torsion-complete groups,
including cancellation properties, solutions to Kaplansky’s test problems, etc.
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Hill [1] gave the first example of non-isomorphic pure subgroups supported by the same socle.
In his paper [18], he examines to what extent the socle can determine the group. Cutler [4] raises the
question as to the existence of non-isomorphic pure and dense subgroups with the same p"-socle
in a separable p-group, and shows that it is undecidable in ZFC.

Exercises

(1) (Hill) Show that the decompositions &;A; = @®;C; where A;, C; are torsion-
complete p-groups have common refinement. [Hint: argue with the exchange
property.]

(2) Find necessary and sufficient conditions on the UK-invariants of a free valuated
vector space V (with values < w;) to exist a countable p-group with socle
isometric to V. [Hint: Theorem 1.9 in Chapter 11.]

Problems to Chapter 10

PROBLEM 10.1. Let {C, | 0 < 7} be a smooth increasing chain of p-groups
such that C, is pure in Cy41, and Cy41/Cy is a thin group for all ¢ < 7. Is the
union C = U, C, a thin group?

PROBLEM 10.2. Let {C, | 0 < 7} be a smooth increasing chain of p-groups
such that C, is pure in Cy41, and Cy,41/Cy is a thick group for all ¢ < t. Is the
union C = U, C, a thick group?

PROBLEM 10.3. Call the p-groups A, C almost disjoint if only the X-cyclic
groups can have isomorphic copies in both of them. Is there any bound for the
cardinality of sets of non-isomorphic pairwise almost disjoint p-groups?

This problem for torsion-free groups was discussed by Eklof-Mekler—Shelah [1].
PROBLEM 10.4. Characterize the socle A[p] as a valuated vector space.
Much has been done by Dugas—Vergohsen [1] under the hypothesis V = L.

PROBLEM 10.5. When do the “slices” A[p"*!]/A[p"] as valuated vector spaces
determine a separable p-group A?



Chapter 11
p-Groups with Elements of Infinite Height

Abstract We continue our study of torsion groups concentrating on p-groups (with
unspecified prime p) in the general case when the groups contain elements of infinite height.
Matters are more subtle here as one has to deal with transfinite heights that are the central concept
both in the search for invariants and in the proofs.

The focus of the structure theory is on p-groups that can be described by their UK-invariants.
Accordingly, this chapter is primarily devoted to countable p-groups and their generalizations: the
totally projective p-groups. The theory is perhaps the most interesting and highly satisfactory clas-
sification of a fairly large class of p-groups in terms of well-ordered sequences of cardinal numbers
(provided by their UK-invariants). The four main approaches to the theory of totally projective p-
groups (simple presentation, total projectivity, nice systems, and balanced-projectivity) underline
the extreme importance of these groups; this theory is unparalleled in beauty and richness in abelian
group theory.

Once the equivalence of the four main characterizations is established, there remain still some
intriguing questions to be answered. For instance, which well-ordered sequences of cardinals may
be the UK-invariants of a totally projective p-group? or, which is the largest class of p-groups that
includes the generalized Priifer groups, is closed under direct sums and summands, and whose
members are distinguishable via their UK-invariants?

Needless to say, there have been various attempts to extend the well-rounded theory of totally
projective p-groups, and various generalizations have been considered in the literature. So far these
theories have produced only less remarkable results. Though several innovative techniques have
been discovered, it seems that so far they have fallen short of true significance.

The final sections of this chapter deal with questions that are spin-offs of the theory of totally
projective p-groups, and offer a glimpse into classes depending on ordinal numbers.

1 The Ulm-Zippin Theory

The main objective of this section is to present the celebrated Ulm-Zippin theory of
countable p-groups. As before, p denotes an arbitrary, but fixed prime number, and
for an element a € A, hy(a) (or h(a)) will mean its transfinite height at p.

Hill Invariants Let A be a p-group, and G a subgroup of A. Anelementa € A\G
is said to be proper with respect to G if the heights satisfy

h(a) > h(x) forallx e a + G.

© Springer International Publishing Switzerland 2015 343
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In other words, a has the maximal height in its coset mod G. Thus an elementa € A
of height o is proper with respect to G if and only if a ¢ p°T'A + G. In this case,

hA(Cl) = hA/G(a + G)

Of course such an element a need not exist in a coset, though it can be shown easily
that if the height of a coset a + G in A/G is a non-limit ordinal, then the coset does
contain an element of this height. Note that if a is proper with respect to G, then we
have

h(a + g) = min{h(a), h(g)} forall g € G.

Evidently, if G is finite, then every coset mod G contains elements proper with
respect to G. The same holds if G = p°A for an ordinal o.

Let now A be a reduced p-group, and G a subgroup of A. For an ordinal o, we
introduce the notation

G(o) = (p°T'A + G) N p°Alp];

this is a subgroup between p°A[p] and p°® *'A[p]. From our remark above it follows
that an element a € A of order p and of height o belongs to G(o) if and only if it is
not proper with respect to G. Consequently, representatives of the non-zero cosets
in the factor group

Jo(A,G) = p°Alpl/G(o)

are exactly the elements of A that are of order p, of height o, and proper with respect
to G. This Z/pZ-vector space is called the oth UK-invariant of A relative to G
or the oth Hill invariant of A relative to G. Sometimes we understand by this
invariant the dimension of the vector space. We can allow this ambiguity, since from
the context it will always be clear what we mean: vector space or its dimension.
Evidently, f, (4. G) < f(A) and f, (A, 0) = f,(A). Here f, (A) = pAlp]/p° ' Alp]
is the Ulm-Kaplansky- or UK-invariant of A.

Example 1.1. Let A = Z(p"t') and G = pA. Then G(k) = p*Alp] = Alp] fork =0, ..., n, and
G(k) = 0 for all k > n. Thus the Hill invariants f; (A, G) vanish for all o.

Example 1.2. Let A be a reduced p-group, and B its basic subgroup. Then B(n) = (p"T!A +
B) N p"Alp] = AN p"Alp] = p"Alp], thus f,,(A,B) = O foralln < w.If 0 > w, then B(o) =
" 'A+B) N poAlpl = p"HAlpl. thus £, (A. B) = (p" T Alp]) /(07 Alp]) = 5 (A).

Example 1.3. Let A be a reduced p-group, and G = pPA for some ordinal p. Then G(o) =
(p°TTA + pPA) N p°Alp] = p°tT1A[p] or p°Alp] according as o < p or ¢ > p. Thus f, (A, p°A)
equals f; (A) if 0 < p and is O otherwise.

In order to illustrate the role of Hill invariants, we prove a simple lemma.
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Lemma 1.4. Assume A, C are p-groups, G is a subgroup of A, and H is a subgroup
of C such that f;(A, G) = f,(C, H) for some o. There exists an a € A[p] of height o
and proper with respect to G if and only if there is a ¢ € C[p] of height o and proper
with respect to H.

Proof. Observe that x € G(0) means that x € A[p] is of height o, and not proper
with respect to G, since—we repeat—x € p° T1A + G is another way of saying that
the coset x + G has a representative in p° T1A. O

Let A and C be reduced p-groups, and G < A, H < C subgroups. An
isomorphism ¢: G — H is called height-preserving if

hc(pg) = ha(g)  foreveryg € G.

It is important to keep in mind that heights are always computed in the large groups.
Manifestly, the restriction of an isomorphism of groups A — C to subgroups
G — H is always height-preserving.

Kaplansky—Mackey Lemma The next lemma is crucial in extending isomor-
phisms between subgroups to larger subgroups. It is the most essential ingredient
in the proof of Ulm’s theorem below. The groups A, C in Lemma 1.5 need not be
p-groups, but the Hill invariants are computed for the chosen prime p.

Lemma 1.5 (Kaplansky—-Mackey [1]). Let A and C be reduced groups, G a
subgroup of A, and H a subgroup of C such that A/G and C/H are p-groups.
Suppose ¢ : G — H is a p-height-preserving isomorphism; furthermore, for all
0, f,(A, G) < f,(C. H) and

a2 p’Alpl/G(o) — p°Clp]/H(0) (1L.1)

are monomorphisms. If a € A is proper with respect to G and pa € G, then ¢ can
be extended to a height-preserving isomorphism

¢*: (G,a) — (H,c)
for a suitable c € C such that
% ((G.a)(0)/G(0)) = (H.c)(0)/H(0)  forallo.

Proof. Assume that a with h(a) = o has been chosen in its coset mod G, in addition
to being proper with respect to G, to satisfy also 4(pa) > o + 1 whenever possible.
We distinguish two cases according as such a choice is possible or not.

Case I: h(pa) > o + 1. In this case pa = pb for some b € A of height > o + 1.
Then h(a — b) = o, and a — b is proper with respect to G, for otherwise there
would exist a g € G with h(a — b + g) > o, leading to the contradiction
h(a + g) > o. By an earlier remark, a — b ¢ G(0), thus there is a u € p° C[p]
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such that «, maps a — b + G(0) to u + H(o). This u is evidently proper with
respect to H. Since ¢ is height-preserving, there is a d € C of height > o + 1
such that pd = ¢(pa) € H. Now ¢ = d + u is proper with respect to H and
satisfies h(c) = o, pc = ¢ (pa) € H.

Case II: h(pa) = o + 1. Pick a ¢ € C of height o such that ¢(pa) = pc. To
see that ¢ € H is contradictory, assume that ¢ (g) = ¢ for some g € G. Then
pg = pa, and p(a — g) = 0. As a was proper with respect to G, we obtain
h(a — g) = min{h(a), h(g)} = o, showing that @’ = a — g is likewise proper
with respect to G. But i(pa’) = oo > o + 1 contradicts the choice of a. Thus
¢ ¢ H, and we now show that it is proper with respect to H. If we had an
x € H with h(c + x) > o, then necessarily #(x) = o, whence we conclude that
o < h(c + x) < h(pc + px) = h(pa + p¢~'x) implies @’ = a + ¢~ 'x satisfies
h(d') = min{h(a), h(x)} = o and h(pa’) > o + 1, contrary to the choice of a.
Thus ¢ ¢ H is proper with respect to H.

In both cases, with the chosen ¢ € C, we will extend ¢ to ¢* by letting ¢
correspond to a. That we get an isomorphism ¢* : (G,a) — (H,c) is clear from
the selection of c. To show that it is height-preserving, observe that, for all g € G,

h(a + g) = min{h(a). h(g)} = min{h(c), h($g)} = h(c + $g).

To verify the claim on the action of ¢*, take into consideration that if p < o, then
h(a) > p 4+ 1 implies (G, a)(p) > G(p), while if p > o, then the same inequality is
the consequence of a being proper with respect to G. Similar inequalities hold for H
and c. If p = o, thenin Case I, (G, a)(c) = (a—b) & G(0) and (H,c)(0) = (u) ®
H(0), and the choice of u guarantees that o, induces an isomorphism as desired. In
Case I, no g € G and &' € A with h(a') > o + 1 may satisfy p(a— g+ a’) = 0, so
that again (G, a)(0) = G(0), and similarly (H, ¢)(0) = H(0). O

Whenever the monomorphisms o, are not preassigned, in Case I any u €
p° Clp]/H(0) may be chosen.

A corollary to the preceding proof is that the pth Hill invariants of A relative
to G and relative to (G, a) are the same except possibly when p = ¢ in which case
f5(A, (G, a))+1 = f; (A, G) may hold. But certainly we have (in the notation above)

Jo(A.(G.a)) = fo(C.{H.c)).

Ulm’s Theorem Equipped with this lemma, we are prepared for the proof of the
main result.

Theorem 1.6 (Ulm [1]). For the countable reduced p-groups, A and C, the follow-
ing conditions are equivalent:

(i) A and C have the same Ulm length t, and for each o < t, the Ulm factors A,
and C, are isomorphic;
(i1) A and C have the same UK-invariants: f;(A) = f(C) forall o;
(iii) A and C are isomorphic.
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Proof. The implication (i) =(ii) is a simple consequence of the fact that the
number of cyclic summands of order p" in the decomposition of A, is equal to the
(wo + n—1)st UK-invariant of A, while (iii) = (i) is trivial. It remains to show that
(1) = (iii).

Assuming (ii), for each o we fix an isomorphism a, : p°Alp]/p°T'Alp] —
p°C[p]/p° T C[p]. The elements of A, C can be arranged in countable sequences:
A = {ao,...,an,...},C = {co,...,Cp,...}; WEe may even assume pd,4+| €
(ao, - -, an), pcu+1 € {co,-..,cy) for all n. Suppose we have constructed chains
of finite subgroups 0 = Gy < G; <--- < G,ofAand0=Hy <H; <:--<H,of
C, as well as height-preserving isomorphisms ¢; : G; — H; such that ¢, | G; = ¢;
fori =0,1,...,n We may assume that &, induces isomorphisms p®A[p]/Gi(c) —
p°Clp]/H;(0) for i < n.1If nis odd, select the first g; in the sequence that does
not belong to G,. We wish to extend ¢, to a height-preserving isomorphism ¢+
of G,4+1 = (G,,a;) with a subgroup H,+; of C, containing H,. This can be done
by using Lemma 1.5. If n is even, then we select the first ¢, € C with ¢, ¢ H,,
and extend ¢, ! to an isomorphism of H,+| = (H,.c,) with a subgroup G,+ in A.
After each step, (11.1) will be satisfied, as is clear from Lemma 1.5. It is evident
that ¢ = U, ,, ¢, will establish the isomorphy of A and C. O

Before moving on to the existence question, we record an important corollary
to the preceding theorem. Though it will follow from the more general Lemma 4.5
below, we give a short proof.

Corollary 1.7 (Zippin [1]). IfA and C are countable p-groups with the same UK-
invariants, then every isomorphism between p°A and p°C (for any fixed ordinal p)
extends to an isomorphism A — C.

Proof. The proof is essentially the same as for the preceding theorem, just we have
to start with a prescribed isomorphism y : p?A — p”C. The only UK-invariants
needed in the proof are those of indices 0 < p. As cosets of finite extensions of
pPA always contain elements proper with respect to them, a repetition of the proof
in Theorem 1.6 establishes our claim. O

Example 1.8. The Priifer group H,4; defined in Sect.1 in Chapter 10 has the UK-invariants
fo(Hy41) = 1foro =0,1,..., . All countable p-groups with the same sequence of invariants
are isomorphic to Hy 4.

Zippin’s Theorem Once we have a classification theorem, we also need a result
saying what values of the invariants can occur. In order to find out what sequences
Jo(A),....f5(A), ... of cardinals may serve as UK-invariants in Ulm’s theorem, we
turn our attention to Zippin’s main theorem. (For generalization, see Theorem 3.7.)

Theorem 1.9 (Zippin [1]). There exists a countable reduced p-group A of length t
and with UK-invariants ng, ..., Ri, ..., e, ..., Ny, ... (0 < T) if and only if

(a) T = wa + k is a countable ordinal where k > 0 is an integer;
(b) each ny is a non-negative integer or R such that for each p < t, infinitely many
of the cardinals n,, ..., ny1, ... (i < w) are non-zero.
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Proof. The necessity of the conditions is immediate, the sole non-trivial argument
relies on the fact that only the last Ulm factor can be bounded.

For sufficiency, we first develop a sequence A, (v < «) of X-cyclic p-groups
whose UK-invariants are n,,+; forj < w (forj < k whenv = «). By (b), the A, are
all unbounded with the possible exception of the last one if such exists. The theorem
will be proved if we succeed in defining a p-group whose Ulm factors are A,. We
use transfinite induction on «. If « = 0, or if « = 1,k = 0, then the sequence has
only one Ulm factor, and A = Ay is as desired. Hence we assume that either « = 1
and k > 0, or @ > 2, and the existence has been established for shorter sequences.
The proof distinguishes several cases.

Casel. a — 1 exists and A, is a cyclic group, say, of order p*. Let C denote a

countable p-group with Ulm sequence A, (v < o — 1),A!_, where A, | =

a—1 "
®io(ci) with o(c;) = p'Th provided Ay—1 = B0 (b;) wWith o(b;) = pb.
Define A as the quotient of C modulo the subgroup generated by all plic; —
plicj (i,j < w). If we denote by a the coset of p'ic;, then it is clear that A/(a) is
a countable p-group with Ulm sequence A, (v < o — 1). Since the exponents
{; are unbounded, ¢ must have a height not smaller than the heights of the c;,
so it belongs to the arth Ulm subgroup of A, which is (a). That (a) has order p*
can be verified by taking a copy of Z(p®°), mapping each c¢; upon an element
of the same order, watching that all the p%ic; should have the same image, and
then extending this map to all of C stepwise starting with A,_;. It only remains
to point out that such a map factors through A.

Casell. o« — 1 exists and A, is a X-cyclic group. We reduce the construction to
Case I. We decompose each A, (v < o — 1) into a direct sum of a countable
number of unbounded summands, and for each cyclic summand of A, we apply
the above construction with one of the summands. Finally, we take the direct
sum of the groups constructed.

Case Ill. « is a limit ordinal and k = 0. We decompose each A, (v < «) into a
countable direct sum of unbounded groups: A, = ®,<,<s G,,. We appeal to
the induction hypothesis to conclude the existence of countable p-groups G, of
length 0 (1 < «) with Ulm sequence Gy, Gy, ..., Gy ThenA = @, G,
is a countable p-group with the prescribed Ulm sequence.

Case IV. « is a limit ordinal and A, is a cyclic group of order p*. We decompose
each A, = (b,) @ A/, where the cyclic summands (b,) are selected such that
for each p < o and for each m € N, there is a v < « with o(b,) = p* > p".
By induction hypothesis, there is a countable p-group C with Ulm factors C =
(c,) ® A (v < &) where o(c,) = p'T%. Define A as the factor group of C
modulo the subgroup generated by all p“ ¢, — pYc,, (v, < @). In the same
way as in Case 1, it follows that A will have the prescribed Ulm sequence.

Case V. « is a limit ordinal and A, # 0 is a X-cyclic group. This case can be
reduced to Case IV by imitating the method used in Case II. O

Example 1.10. Let Gy, G be unbounded countable X-cyclic p-groups, and write Gy = ®;,, {a;),

G = @i, (gi). We define a group A whose Ulm factors are isomorphic to the given groups as

follows. Let By = @;-,, {b;) be a basic subgroup of Gy such that Gy/By is a countable direct sum:
Go/By = @i, C; with C; = Z(p®°). Let ¢; € Gy be a representative of a generator of the socle
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of C;. The group A will be defined as the group generated by {a;, g;}i<» subject to the existing
relations for the b;, elements of C;, and for the g; (e.g., of the form p™g; = 0), to the relations
between the ¢; and the b;, and in addition to pc; = g; for all i < w. Then the elements g; will have
infinite heights in A. To complete the argument, we still need to ascertain that the new relations do
not force any collapse in A. We need not worry about the elements generated by the ¢;, because
none of them becomes 0, not even modulo the subgroup generated by the g;. If a € A contains
generators g;, then define a map ¢: A — Z(p°°) by mapping one of these generators to a non-zero
element, the rest of the g; to 0, and extend this map to all of A. Then ¢ (a) 7 0, so a # 0.

Theorems 5.3 in Chapter 3, 1.6, 1.9 of Priifer, Ulm, and Zippin yield a complete
classification of countable reduced p-groups. We regard this theory as the greatest
achievement in abelian group theory in the first half of the twentieth century.

A few comments may be inserted here about this theory. If A is a countable
reduced p-group of length T = aw + k, then we can arrange its UK-invariants in a
convenient matrix form (to which we will refer as the UK-matrix of A):

fd)  AA) ... fud) ...
Jfo(A) fot+1(A) ... fota(A) ...
U@) = = I, )]

pr(A) pr+l(A) .. -pr+n(A) cee

where the rows are indexed by ordinals p < « (or p < « if kK > 0) and the columns
by non-negative integers. The cardinal numbers in the pth row are the invariants of
the pth Ulm factor of A. The matrix U(A) satisfies:

(i) itis an o X w-matrix with a countable ordinal «;
(ii) the entries are non-negative integers or Xo;
(iii) every row (with the possible exception of the very last one) contains infinitely
many non-zero entries.

Ulm’s theorem can be interpreted as saying that two reduced countable p-groups
are isomorphic, A = C, if and only if the corresponding matrices are equal: U(A) =
U(C), while Zippin’s theorem says that every matrix with properties (i)—(iii) is the
UK-matrix of some reduced countable p-group.

Corollaries We conclude this section with two corollaries.

Proposition 1.11. A countably infinite reduced p-group decomposes into the direct
sum of infinitely many non-trivial groups.

Proof. Let A be a group as stated, and let U(A) be its UK-matrix. It is an easy
exercise in cardinal arithmetics to decompose U(A) into the sum of countably many
matrices satisfying (i)—(iii). By Zippin’s theorem, each of these matrices defines a
group A, (n < w), and Ulm’s theorem assures that A = D, Aj. O

Proposition 1.12 (Baer [1]). A countable reduced p-group A has the property that

any two of its direct decompositions have isomorphic refinements if and only if
Al =0 ie Ais X-cyclic.
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Proof. If A' = 0, i.e. if A is a direct sum of cyclic p-groups, then evidently, its
direct decompositions have isomorphic refinements: we decompose each summand
into the direct sum of cyclic p-groups.

Conversely, assume that A' # 0. We decompose the UK-matrix U(A) into
the sum of two matrices U(A) = M; + M, such that they satisfy conditions
(i)—(iii) and have never non-zero entries at the same location. Next, define matrices
M|, M) by switching the first rows of M; and M,, while keeping the rest of the
rows intact. There are countable reduced p-groups A1, A, C1, C; with UK-matrices
M, My, M|, M), respectively, and by Ulm’s theorem we have A =~ A; @ Ay =~
C1 & C,. However, no summand of A; that contains elements # 0 of infinite height
can be isomorphic to such a summand of C; fori = 1, 2. O

It is no longer true for p-groups of higher cardinalities that they are isomorphic
whenever their corresponding Ulm factors are isomorphic.

Example 1.13 (Kulikov [2]). Let Gy = B be the torsion-complete p-group with the standard basic
subgroup B = @2, (b,) (o(b,) = p"), and G, the direct sum of 2™ cyclic groups (g} (i € I) of
order p. Two groups, A and C, will be defined with Gy, G| as Ulm sequence such that |A[p]/A!| =
Ro and |C[p]/C"| = 2%, Let Go/B = ®,e; D; (D; = Z(p™>)), and select a canonical generating
set di, € D; of order p" (n € N) for each i. Now A is generated by all of b/, d,. g/ subject to the
same relations as the corresponding b,, d;,, g; except that pd;; = 0 is replaced by pd{1 = g/ for
every i € I. Furthermore, for C, we write I = I; U I, with disjoint subsets, both of cardinality
2%0_and keep the same generating set and relations including pd;; = 0 but only for i € I, and put
pd;y = gl fori € I,. The groups A and C cannot be isomorphic, because |A[p]/A!| = |B[p]| = R,
while |C[p]/C"| = |I;]| = 2%°.

Example 1.14 (Richman [3]). Let B and C be torsion-complete groups with basic subgroups B =
@nen B, (B, = Z(p")) and C = D,en C, (C, = Z(p*™")), respectively. Then G = E/B[p] and
H = C @ C/C[p] are extensions of an elementary p-group by a torsion-complete group. They
have the same UK-invariants: the nth invariant is 1 for all n < w, and the wth invariant is 2.
However, G and H are not isomorphic: G[p]/G" is countable, while H[p]/H" has the power of the
continuum.

For larger cardinalities, we have the following theorem which can be derived
from Theorem 1.6 with only set-theoretical argument. It will be restated as a
Theorem 6.7, so we skip its proof now.

Theorem 1.15 (Kolettis [1]). If the p-groups A and C are direct sums of countable
groups, then they are isomorphic if and only if their corresponding UK-invariants
are equal. O

* Notes. Priifer’s group H,,+; (defined in 1923) was the first example for a reduced p-group
with non-zero elements of infinite height. A decade later, in 1933 Ulm [1] used ingenious matrix-
theoretical arguments to prove that the Ulm factors of a countable reduced p-group determine the
group up to isomorphism. Ulm translated the problem from p-groups into infinite-dimensional
linear algebra, and applied (his thesis supervisor) Toeplitz’s theory to obtain a kind of normal
form. Subsequently in 1935, Zippin [1] published a group-theoretical proof, and at the same
time established the important existence Theorem 1.9. Surprisingly, no fruit has been born out
of this remarkable theory for a quarter of a century, and even applications were very scarce. In
1960 the situation changed with Kolettis [1] where Ulm’s theory was extended to direct sums of
countable p-groups. The elegant proof by Kaplansky—Mackey [1] opened the door for substantial
generalizations of Ulm’s theorem. Hill [2] and Richman—Walker [2] show that Kolettis’ theorem
can be derived from Ulm’s just by pure set-theoretical argument.
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There are numerous results in the literature involving countable p-groups, and their direct sums.
We will see some later on. In these cases, luckily, the question of isomorphy boils down to the
equality of the UK-invariants.

Rogers [1] notes that—ignoring addition—a p-group A becomes a tree under multiplication by
p: the nodes are the elements of A, and two nodes a,b € A are connected by an oriented edge if
a = pb. She defines UK-invariants, and derives Ulm’s theorem. This idea goes back to Crawley—
Hales [1, 2], and is explored more fully in the paper Hunter—Richman—Walker [3].

Crawley [3] points out that p-groups with a finite number of Ulm factors are determined
by the UK-invariants even if they are uncountable, but still X-cyclic (this is a consequence of
Theorem 12.2). However, Lemma 12.3 will show that this is no longer true if the Ulm factors
are not X-cyclic. In another paper [2] he shows that a reduced countable torsion group has the
cancellation (substitution) property if and only if all of its UK-invariants are finite for all primes.
In the same vein, Gobel-May [1] describe when a direct sum of countable p-groups is cancellable.

Szmielew [1] initiated a model-theoretical study of abelian groups. Barwise—Eklof [1] con-
sidered the classification problem of p-groups in the infinitary language Loo,, and show that
the (modified) UK-invariants determine an arbitrary p-group up to Loo,-equivalence. This is a
genuine generalization of Ulm’s theorem, since for countable groups, Lo, -equivalence implies
isomorphism.

Exercises

(1) If G < H are subgroups of a p-group A, then f, (A, G) > f; (A, H) for all o.
(2) Let A = B & C be a p-group. Then f; (A, B) = f,(C) for each ordinal 0.
(3) If o is a countable ordinal and a € p° A, then a embeds in a countable subgroup
C of A such thata € p°C.
(4) (a) For each countable ordinal t, the set of non-isomorphic countable p-
groups of length t has the power of the continuum.
(b) Is the same true for the set of all non-isomorphic countable p-groups?
(5) Let A, C be countable p-groups. State a necessary and sufficient condition
on their UK-invariants for A having (a) a subgroup isomorphic to C; (b) a
summand isomorphic to C.
(6) (a) For every countable ordinal t, there exists a countable reduced p-group
M(7) of length t such that every countable reduced p-group of length <
is isomorphic to a summand of M(7).
(b) There is a reduced p-group M of length w; and of cardinality X such that
every countable reduced p-group is isomorphic to a summand of M.
(7) (Kaplansky) (a) If A is a countable p-group, and if C satisfiesA @A = C P C,
then A = C.
(b) For a countable p-group A with finite UK-invariants, A@B =~ A® C implies
B =~ C, where B, C are countable p-groups.
(c) The claim in (b) may fail if A has infinite UK-invariants.
(8) Find precise conditions, in terms of the UK-invariants, for a countable reduced
p-group A to satisfy A @ A = A. Then also A®) =~ A,
(9) (Irwin—Walker) Let H be a p°A-high subgroup of the p-group A, for some
ordinal o. Show that f,(H) = f,(A) for p < 0.



352 11 p-Groups with Elements of Infinite Height

(10) Let A be a reduced countable p-group, and C a summand of A. Suppose that
p°A = p°C @ X holds for some ordinal o and a subgroup X. ThenA = C&@ B
for some B with p°B = X.

(11) LetA be ap-groupoflength t > w, and C = Z(p") a cyclic group. There exists
a group G such that p*G = C and G/p*G = A. [Hint: distinguish according
as the last Ulm factor of A is bounded or not.]

2 Nice Subgroups

The insight one obtains from the Ulm-Zippin theory guides the in-depth study of p-
groups of higher cardinalities. It was Hill who isolated the concept of nice subgroup
in an effort to find conditions under which Ulm’s theorem extends to a larger class
of p-groups. A close analysis of the Kaplansky—Mackey proof of Ulm’s theorem
(see Lemma 1.5) led him to the discovery of this significant type of subgroup which
embodies the property of finite subgroups relevant to the proof. We shall see that
the abundance of such subgroups in a p-group will make it possible to prove an Ulm
type theorem for a class of uncountable p-groups.

Nice Subgroups A subgroup N of a p-group A is called nice if every coset of
A mod N contains an element proper with respect to N. In other words, every coset
a+ N (a € A\ N) contains an a 4 x (x € N) such that hy(a + x) = hayn(a + N).

We point out right away that in order to check the niceness of a subgroup N,
we need to look only at cosets of limit heights in A/N. In fact, first of all, every
element in a coset of height 0 has 0 height. Applying transfinite induction, suppose
that we know that cosets of heights < o contain elements proper with respect to
N, and hyv(a + N) = o + 1. Then pb + N = a + N for some b € A with
han(b 4+ N) = hy(b) = o (by hypothesis). Thus h4(pb) > o + 1, and since strict
inequality is out of question, we see that pb is proper with respect to N. The case of
limit ordinals is included in the hypothesis.

The next lemma offers a most important characterization of niceness.

Lemma 2.1 (Hill [11]). A subgroup N of a p-group A is nice exactly if
P’ (A/N) = (p°A + N)/N for every (limit) ordinal o and co. (11.2)

Proof. Observe that p®(A/N) is the set of cosets whose heights in A/N are > o,
while (p°A + N)/N is the image of p®A under the canonical map A — A/N. Hence
the inclusion > holds for every subgroup N of A. Now N is nice in A if and only if
every coset of height o can be represented by an element of A of height o. Thus the
reverse inclusion holds for every o exactly if N is nice in A. (The reduction to limit
ordinals follows from the remarks before the lemma.) |
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We can rephrase the last lemma by saying that in the exact sequence 0 — N —
A — C — 0 the subgroup N is nice if and only if the induced sequence p°N —
p°’A — p°C — 0 is exact for every o (the emphasis being on the exactness at p° C).

Example 2.2.

(a) Finite subgroups are trivially nice. More generally, finite extensions of a nice subgroup are
nice. This follows from the simple observation that a finite extension cannot create new cosets
of limit heights.

(b) If A/N is a separable p-group, then N is nice in A.

Example 2.3. For every ordinal o, the subgroup p°A is nice in the p-group A. Recall that heights
< o are preserved passing mod p°A.

Properties of Nice Subgroups Let us acquaint ourselves with some elementary
properties of niceness.

(A) Direct summands are nice subgroups.

(B) Subgroups closed in the p-adic topology are nice. (In this case, the cosets have
finite heights only.) In particular, in a torsion-complete group, a pure subgroup
is nice if and only if it is a summand.

(C) The subgroup @;erN; is nice in @;eA; exactly if N; is nice in A; for eachi € I.

(D) A nice subgroup N of A need not be nice in a subgroup B that lies between N
and A. This can be seen in a divisible group A where all subgroups are nice.

(E) The property of being nice is not transitive, in general (see Exercise 7), but the
following special case is true: a subgroup N of p°A is nice in A if and only if
it is nice in p°®A. This is a consequence of the relation h4(a) = o0 + hyoa(a)
(a € p°A). Moreover, if N is nice in A, then N Np°A is nice in p° A for every o.

Visibly, (D)—(E) show that niceness does not behave like purity. However, the
following two useful properties are reminiscent of purity.

Lemma 2.4 (Hill [11]). Let A be a p-group, and M, N subgroups with N < M.
Then the following hold:

(i) if M is nice in A, then M/N is nice in A/N;
(ii) if N is nice in A and M/ N is nice in A/N, then M is nice in A.

Proof.

(1) By our remark above, it suffices to check niceness at limit ordinals. We use
induction on the height. Let #4/x(a +M/N) = o be a limit ordinal, and assume
that all cosets mod M/N of heights < ¢ contain cosets mod N proper with
respect to M/N. This means that for every ordinal p < o, there exists anx, € M
such that hy/y(a + x, + N) > p. Therefore, haju(a + M) > o, and since
the reverse inequality is trivially true, ha/m(a + M) = o. By hypothesis, M
is nice in A, so there is an x € M such that hy(a + x) = o. It follows that
ha/n(a 4+ x + N) = o, since strict inequality > is impossible.

(ii) By the hypotheses of (ii), ha/u(a + M) > o implies the existence of a
y € M satisfying hyyy(a + y + N) = o, and of a z € N satisfying
hy(a+y+2) =o. O
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Consequently, if N is a nice subgroup of A, then under the natural correspondence
between subgroups of A containing N and subgroups of A/N, nice subgroups
correspond to nice subgroups.

% Notes. Niceness is a crucial concept in the theory. We shall see that nice subgroups play
crucial role also in mixed groups; see Chapter 15.

Exercises

(1) If M, N are subgroups of a p-group A, and if a € A is proper with respect to
both of them, then a is proper with respect to M N N as well.

(2) A subgroup N is nice in the p-group A if and only if the equality N + p°A =
Np<o (N + pPA) holds for all limit ordinals 0.

(3) If Nis nice in A, then so is N + p°A for every o.

(4) (Hill) Let A be a p-group. For a subgroup N of A to be nice it is necessary and
sufficient that N N p° A is nice in p°A and (N + p°A)/p°A) is nice in A/p° A for
all ordinals 0.

(5) A p-group has the property that all of its subgroups are nice if and only if it is a
direct sum of a bounded group and a divisible group.

(6) The union of an ascending chain of nice subgroups need not be nice.

(7) Let B denote an unbounded X-cyclic p-group, and B its torsion-completion.
Show that (a) B[p] is nice in B[p] (it is a summand); (b) B[p] is nice in B; but (c)
Bl[p] is not nice in B.

(8) Give an example where N < M < A, M/N is nice in A/N, but M fails to be
nice in A.

(9) The extensions of a p-group A by a p-group C in which A is a nice subgroup
form a subgroup in Ext(C, A). [Hint: Baer sum.]

3 Simply Presented p-Groups

We now embark on an ambitious generalization of Ulm’s theorem: this section
and the three following ones are devoted to the theory of p-groups that can be
characterized by their UK-invariants. This theory is undoubtedly one of the major
achievements in the theory of p-groups of arbitrary cardinality; it provides the most
penetrating results known today on p-groups. We develop the theory on parallel
lines:

. simply presented p-groups;

. p-groups with nice systems (or nice composition series) of subgroups;
. balanced-projective p-groups; and

. totally projective p-groups.

AW N =

Simple Presentation In this section, we deal with p-groups that have a special
kind of presentation. As a motivation, let us recall that a ¥-cyclic p-group can be
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presented by a set of symbols x as the set of generators (corresponding to a basis),
with defining relations of the form p"x = 0 for certain integers n > 0; i.e., all the
relations involve exactly one generator. In contrast, no particular property is needed
for a group A to be presented with defining relations containing no more than three
generators. Indeed, if we choose the set of elements of A as generating system, then
the existing equalities like a + b = c for a, b, ¢ € A provide relations of the desired
kind. Our present aim is to investigate those p-groups that are in between, i.e. which
can be presented by a set of generators such that all the defining relations contain at
most two generators.

Thus given a set X of generators, we now assume that every defining relation is
of the form nx = 0 or nx = my where x,y € X and m,n € N. Since we are dealing
with p-groups, we can get rid of integers prime to p, so that we may assume that
every defining relation is of the form

p'x=0 or p'x=p"y (11.3)

where x,y € X. We will call a p-group A defined in this way a simply presented p-
group, and write A = (X; E) where E stands for the collection of defining relations.
These groups, under the name of 7-groups, were introduced by Crawley—Hales [1].

Faithful Simple Presentation We will need more control on the elements, and
therefore we simplify the presentation (at the expense of enlarging the generating
set). First, we replace p"x = 0 by the relations

DX = X1, PX| = X2, «.., PXp—1 =0

after adjoining x, . .., x,— to X as additional generators. The same can be done for
the relations of the form p"x = p™y. As a result, we may assume without loss of
generality that every relation in E is of the form px = 0 or px =y (x,y € X).

Next, in order to avoid the nuisance of working with generators that become 0
in A, and different generators that become equal in A, first we delete those x € X
that are O in A, and replace them by O in the relations. By doing so, we give the
same name in the relations to generators x # y in X that become equal in A. To
summarize, we have now a presentation A = (X; E) such that

(i) each defining relation is of the form px = 0 or px = y withx,y € X;
(ii) if x € X, then x # 0 in A;
(iii) if x, y are different elements in X, then x # y in A.

A presentation satisfying (i)—(iii) will be called faithful. Thus if the simple
presentation of a p-group is faithful, then every generator occurs in exactly one
relation with coefficient p, but may occur in numerous relations with coefficient 1.

In this section we will assume (unless stated otherwise) that all the presentations
considered are faithful.
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Example 3.1.

(a) Cyclic groups of order p" are simply presented: Z(p") = (x,x2,..., Xpypx1 = 0,px; =
X1s...,PXy = X,—1) (faithful presentation).

(b) Quasi-cyclic groups are simply presented: Z(p™°) = (x1,...,X,...;px1 = 0,px, =
Xis..oyPXy = Xp—1,...) (faithful presentation).

(c) The Priifer group H, 4 is simply presented: H,41 = {xo,x1, ..., Xpy oo 3pxo = 0,px; =
X0+ ... P"Xy = Xo, ...) (this is not a faithful presentation).

Example 3.2. A clever method of constructing simply presented groups was suggested by Walker
[4]. For an ordinal B, we define a simply presented p-group Pg of length 8 + 1 as follows. The
generators are finite “strings” (861 B,) forn > 0 where 8 > B; > ... > B, is a strictly
decreasing sequence of ordinals. The defining relations are:

p(BB1-..Bn) = (BB1...Bu—1) forn=1 and p(B)=0.

It is obvious that, for every ordinal 8, Pg is simply presented, and by induction it is not difficult to
verify that its length is 8 + 1.

A faithful simple presentation gives rise to a partial order in the set X of
generators. For x, y € X we define

y<x provided p"x =y forsomen > 0.

This is a partial order that satisfies the minimum condition. The minimal elements
are precisely those z € X for which pz = 0 is a relation in E. Note that the set
X, = {x € X | x > z} is a tree with nodes corresponding to the generators in X, and
edges representing the relations between these generators in E.

Properties of Simple Presented Groups Divisible groups are simply pre-
sented, but the main interest lies in the reduced case. To elicit properties of reduced
simply presented p-groups, we now record a few basic facts on them. (All groups
are reduced, and simple presentations are faithful.)

(A) Direct sums of simply presented groups are simply presented. This is obvious.
B) If M is the set of minimal elements of X in the partial ordering, then X =
U.em X, (disjoint union) and

A= Brem (Xz>-

This is easy to see, since every x € X belongs to some X, and X, X, are disjoint
sets provided y # z in M.

(C) A simply presented p-group of limit length is the direct sum of simply presented
groups of smaller lengths. This can be derived at once from (B) where the
subgroups (X;) with z € M are of smaller lengths.

(D) Every non-zero element a of a simply presented p-group can be written uniquely
in the form

a=rnx +--+rnx *k=>=1) (11.4)
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where X1, ..., x; are distinct elements of X and 0 < r; < pfori = 1,...,k
In view of (i)—(iii), the existence of such a representation is evident. To verify
uniqueness, suppose a = rix; + -+ + rxx = s;x; + -+ + spxx holds for

distinct xq, ..., x; € X and for integers 0 < 7;,5; < p. Let x; be a maximal one
among Xxp, ..., X in the natural partial order of X. There is a homomorphism
¢ of (x1,...,x), and hence of A, into Z(p°°) mapping x; upon an element of
order p and x3, ..., x, to 0. Now ¢pa = ri(¢x;) = s1(¢x;) entails r; = s1, and

the rest follows by induction.

(E) If (11.4) is the unique representation of a # 0 in a simply presented p-group

(F)

(&)

(H)

A, then a € p°A if and only if x; € p°A fori =1, ..., k. Proof of necessity by
induction on 0. The assertion being trivially true for o = 0, suppose thata = pb
where b = s1y; +- -+ s¢y¢ € p°A for some ¢ and distinct yy, ..., y; € X; here,
0 <s; <pforj=1,...,L By induction hypothesis y; € p°A for all j. Hence
a = s1(py1) + -+ + se(pye), and the set {xi, ..., x;} is coming from the set of
non-vanishing py;. Hence necessarily x; € p°+1A, and we are done.

In particular, A(a) = min{h(x;),...,h(x;)} if ais asin (11.4).

If A is simply presented, then so are A/p° A and p° A for every . Hence also the
Ulm factors are simply presented. This follows from (E).

The Ulm factors of a simply presented p-group are X-cyclic groups. First
assume A is separable. Then the minimal elements in a faithful generating
system are of finite height, so from (E) it follows that the heights of the elements
in each (X;) in the decomposition (B) are bounded. Therefore, the groups (X,)
are -cyclic. In the general case, by (F) the Ulm factors are simply presented,
they are also separable, so also X-cyclic.

An infinite simply presented p-group A satisfies

A] = 40| = Y _f(4),

n<w

where Ay = A/A! is the initial Ulm factor. As the Ulm factors are X-cyclic
groups, the second equality is evident. To prove the first, we induct on the length
A of the Ulm sequence. If A* # 0, but A**! = 0, then Theorem 1.9(c) in
Chapter 10 implies |A/A*| > |A*|. As A/A* is also simply presented and has the
same initial Ulm factor, by induction we obtain |A| = |A/A%||A*| = |A/A*| =
|Ao|. If the first ordinal A with A* = 0 is a limit ordinal, then A = @ A; with
summands for which the induction hypothesis applies. Hence the claim is clear.

A consequence of (H) is that the ranks of the Ulm factors of simply presented

groups never increase with the indices: tkA, > tkAg if @ < .

The following lemma is crucial.

Lemma 3.3. The generalized Priifer groups H, are simply presented.

Proof. From the definition of H, it is manifest that if H, is simply presented, then
s0 is Hy 4. Invoking (C) and (A) at limit ordinals, the claim is established. ]
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We will refer to the next result in the proof of the main Theorem 3.6.

Lemma 3.4. Let A = (X; E) be a simply presented p-group, and Y a subset of X.
The subgroup N = (Y) is a nice subgroup of A.

Proof. Leta € A\ N, and write a = rix; + -+ + rixg + s1y1 + -+ + s¢ye as
in (11.4) where x; and y; are distinct elements in X \ Y and in Y, respectively; here
ri, §j are positive integers < p. We claim that b = rx| +---+rix; € a+ N is proper
with respect to N. Pick any ¢ = ;| + --- + ,,), € N, and calculate the height of
the element b + ¢ € a + N. Evidently, we have h(b + ¢) <