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Preface

to Volumes III and IV

The first two volumes of this monograph can be regarded as an expansion
and updating of my book “Linear partial differential operators” published
in the Grundlehren series in 1963. However, volumes III and IV are almost
entirely new. In fact they are mainly devoted to the theory of linear
differential operators as it has developed after 1963. Thus the main topics
are pseudo-differential and Fourier integral operators with the underlying
symplectic geometry. The contents will be discussed in greater detail in the
introduction.

I wish to express here my gratitude to many friends and colleagues who
have contributed to this work in various ways. First I wish to mention
Richard Melrose. For a while we planned to write these volumes together,
and we spent a week in December 1980 discussing what they should
contain. Although the plan to write the books jointly was abandoned and
the contents have been modified and somewhat contracted, much remains of
our discussions then. Shmuel Agmon visited Lund in the fall of 1981 and
generously explained to me all the details of his work on long range
scattering outlined in the Goulaouic-Schwartz seminars 1978/79. His ideas
are crucial in Chapter XXX. When the amount of work involved in writing
this book was getting overwhelming Anders Melin lifted my spirits by
offering to go through the entire manuscript. His detailed and constructive
criticism has been invaluable to me; I as well as the readers of the book
owe him a great debt. Bogdan Ziemian’s careful proofreading has eliminated
numerous typographical flaws. Many others have also helped me in my
work, and I thank them all.

Some material intended for this monograph has already been included in
various papers of mine. Usually it has been necessary to rewrite these
papers completely for the book, but selected passages have been kept from a
few of them. I wish to thank the following publishers holding the copyright
for granting permission to do so, namely:

Marcel Dekker, Inc. for parts of [41] included in Section 17.2;

Princeton University Press for parts of [38] included in Chapter XXVII;
D. Reidel Publishing Company for parts of [40] included in Section 26.4;
John Wiley & Sons Inc. for parts of [39] included in Chapter XVIIL
(Here [N] refers to Hérmander [N] in the bibliography.)

Finally I wish to thank the Springer-Verlag for all the support I have
received during my work on this monograph.

Djursholm in November, 1984 Lars Hormander
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Introduction

to Volumes III and IV

A great variety of techniques have been developed during the long history
of the theory of linear differential equations with variable coefficients. In
this book we shall concentrate on those which have dominated during the
latest phase. As a reminder that other earlier techniques are sometimes
available and that they may occasionally be preferable, we have devoted the
introductory Chapter XVII mainly to such methods in the theory of second
order differential equations. Apart from that Volumes III and IV are in-
tended to develop systematically, with typical applications, the three basic
tools in the recent theory. These are the theory of pseudo-differential oper-
ators (Chapter XVIII), Fourier integral operators and Lagrangian distri-
butions (Chapter XXV), and the underlying symplectic geometry (Chapter
XXI). In the choice of applications we have been motivated mainly by the
historical development. In addition we have devoted considerable space and
effort to questions where these tools have proved their worth by giving
fairly complete answers.

Pseudo-differential operators developed from the theory of singular in-
tegral operators. In spite of a long tradition these played a very modest role
in the theory of differential equations until the appearance of Calderén’s
uniqueness theorem at the end of the 1950°s and the Atiyah-Singer-Bott
index theorems in the early 1960’s. Thus we have devoted Chapter XXVIII
and Chapters XIX, XX to these topics. The early work of Petrowsky on
hyperbolic operators might be considered as a precursor of pseudo-differen-
tial operator theory. In Chapter XXIII we discuss the Cauchy problem
using the improvements of the even older energy integral method given by
the calculus of pseudo-differential operators.

The connections between geometrical and wave optics, classical me-
chanics and quantum mechanics, have a long tradition consisting in part of
heuristic arguments. These ideas were developed more systematically by a
number of people in the 1960’s and early 1970’s. Chapter XXV is devoted to
the theory of Fourier integral operators which emerged from this. One of its
first applications was to the study of asymptotic properties of eigenvalues
(eigenfunctions) of higher order elliptic operators. It is therefore discussed in
Chapter XXIX here together with a number of later developments which
give beautiful proofs of the power of the tool. The study by Lax of the
propagation of singularities of solutions to the Cauchy problem was one of

L. Hérmander, Classics in Mathematics 1
The Analysis of Linear Partial Differential Operators IV,
DOI: 10.1007/978-3-642-00117-8_Intro, © Springer-Verlag Berlin Heidelberg 2009



2 Introduction

the forerunners of the theory. We prove such results using only pseudo-
differential operators in Chapter XXIII. In Chapter XXVI the propagation
of singularities is discussed at great length for operators of principal type. It
is the only known approach to general existence theorems for such oper-
ators. The completeness of the results obtained has been the reason for the
inclusion of this chapter and the following one on subelliptic operators. In
addition to Fourier integral operators one needs a fair amount of symplectic
geometry then. This topic, discussed in Chapter XXI, has deep roots in
classical mechanics but is now equally indispensible in the theory of linear
differential operators. Additional symplectic geometry is provided in the
discussion of the mixed problem in Chapter XXIV, which is otherwise
based only on pseudo-differential operator theory. The same is true of
Chapter XXX which is devoted to long range scattering theory. There too
the geometry is a perfect guide to the analytical constructs required.

The most conspicuous omission in these books is perhaps the study of
analytic singularities and existence theory for hyperfunction solutions. This
would have required another volume - and another author. Very little is
also included concerning operators with double characteristics apart from a
discussion of hypoellipticity in Chapter XXII. The reason for this is in part
shortage of space, in part the fact that few questions concerning such operators
have so far obtained complete answers although the total volume of results
is large. Finally, we have mainly discussed single operators acting on scalar
functions or occasionally determined systems. The extensive work done on
for example first order systems of vector fields has not been covered at all.



Chapter XXV. Lagrangian Distributions
and Fourier Integral Operators

Summary

In Section 18.2 we introduced the space of conormal distributions associated
with a submanifold Y of a manifold X. This is a natural extension of the
classical notion of multiple layer on Y. All such distributions have their
wave front sets in the normal bundle of Y which is a conic Lagrangian
manifold. In Section25.1 we generalize the notion of conormal distribution
by defining the space of Lagrangian distributions associated with an arbi-
trary conic Lagrangian A< T*(X)~0. This is the space of distributions u
such that there is a fixed bound for the order of P, ... Pyu for any sequence
of first order pseudo-differential operators P, ..., Py with principal symbols
vanishing on A. This implies that WF(u)cA. Symbols can be defined for
Lagrangian distributions in much the same way as for conormal distri-
butions. The only essential difference is that the symbols obtained are half
densities on the Lagrangian tensored with the Maslov bundle of Sec-
tion 21.6.

In Section 25.2 we introduce the notion of Fourier integral operator; this
is the class of operators having Lagrangian distribution kernels. As in the
discussion of wave front sets in Section8.2 (see also Section21.2) it is
preferable to associate a Fourier integral operator with the canonical re-
lation <(T*(X)~0)x (T*(Y)~0) obtained by twisting the Lagrangian with
reflection in the zero section of T*(Y). We prove that the adjoint of a
Fourier integral operator associated with the canonical relation C is as-
sociated with the inverse of C, and that the composition of operators
associated with C, and C, is associated with the composition C, o C, when
the compositions are defined. Precise results on continuity in the H ;) spaces
are proved in Section25.3 when the canonical relation is the graph of a
canonical transformation. We also study in some detail the case where the
canonical relation projects into T*(X) and T*(Y) with only fold type of
singularities.

The real valued C* functions vanishing on a Lagrangian <= T*(X)\0 form
an ideal with dim X generators which is closed under Poisson brackets. We
define general Lagrangian ideals by taking complex valued functions in-
stead. With suitable local coordinates in X they always have a local system

L. Hérmander, Classics in Mathematics 3
The Analysis of Linear Partial Differential Operators 1V,
DOI: 10.1007/978-3-642-00117-8 1, © Springer-Verlag Berlin Heidelberg 2009



4 XXV. Lagrangian Distributions and Fourier Integral Operators

of generators of the form
xjﬁaH(é)/aC_p j=1"--’n5

just as in the real case. The ideal is called positive if Im H £0. This condition
is crucial in the analysis and turns out to have an invariant meaning.
Distributions associated with positive Lagrangian ideals are studied in Sec-
tion25.4. The corresponding Fourier integral operators are discussed in
Section 25.5. The results are completely parallel to those of Sections25.1,
25.2 and 25.3 apart from the fact that for the sake of brevity we do not
extend the notion of principal symbol.

25.1. Lagrangian Distributions

According to Definition 18.2.6 the space I"™(X, Y; E) of conormal distribution
sections of the vector bundle E is the largest subspace of *H, _,.4) (X, E),
n=dim X, which is left invariant by all first order differential operators
tangent to the submanifold Y. It follows from Theorem 18.2.12 that it is even
invariant under all first order pseudo-differential operators from E to E with
principal symbol vanishing on the conormal bundle of Y. The definition is
therefore applicable with no change to any Lagrangian manifold:

Definition25.1.1. Let X be a C* manifold and A< T*(X)~0 a C* closed
conic Lagrangian submanifold, E a C® vector bundle over X. Then the
space I™(X, A;E) of Lagrangian distribution sections of E, of order m, is
defined as the set of all ue2'(X, E) such that

(25.1.1) Ly ... Lyue®H", . (X, E)

for all N and all properly supported L;e ¥ (X;E, E) with principal symbols
L3, vanishing on A.

The following lemma allows us to localize the study of I"™(X, A; E).

Lemma25.1.2. If uel™(X,A;E) then WFu)<A, and Auel™X,A;E) if
AeY°(X ;E,E). Conversely, ueI™X, A;E) if for every (xq,&,)e T*(X)~\0 one
can find Ae'P°(X;E, E) properly supported and non-characteristic at (xq,&,)
such that Auel™(X, A;E).

Proof. If (x4, &)¢A we can choose L,, ..., Ly in (25.1.1) non-characteristic in
a conic neighborhood I' and conclude that ueH{g in I' if s<N—m—n/4.
Hence WF(u)nI'=0. To prove the second statement we observe that

L,..LyAu=L,...Ly_ALyu—L,...Ly_,[A4,Ly]u.
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Here [4,Ly]eP%(X;E,E) and Lyuel™X, A;E) by Definition25.1.1. By in-
duction with respect to N we conclude that

L;...LyAue®H{, . .(X,E)

for all properly supported Ae¥P°(X;E,E) and L;e Y(X;E, E) with principal
symbols vanishing on A. To prove the converse we choose B according to
Lemma 18.1.24 so that (x,,&,)¢ WF(BA—1I). Thus (x,,&,)¢ WF(BAu—u),
and since BAuelI™(X, A; E) it follows that

Ll LNuemH:"_cm_,,/‘;) at (xO’ 60)

if L,,...,Ly satisfy the conditions in Definition25.1.1. Hence (25.1.1) is
fulfilled so uel™(X, A; E).

Remark. So far we have not used that A is Lagrangian. However, if (25.1.1)
is fulfilled we have [L; L] ue*H{,, _, (X, E) for any N, so WF(u) is
contained in the characteristic set of [L;, L,] by the first part of the proof.
Hence WF(u) cannot contain an arbitrary point in A unless 4 is involutive.
The hypothesis that A is Lagrangian means that A is minimal with this
property, or alternatively that we have a maximal set of conditions (25.1.1)

which do not imply that u is smooth.

Lemma 25.1.2 reduces the study of distributions ueI™(X, A4; E) to the case
where WF(u) is contained in a small closed conic neighborhood I, of some
point (x,,&y)eA, and supp u is close to x,. In that case Definition 25.1.1 is
applicable even if A is just defined in an open conic neighborhood I; of I},
for only the restriction of the principal symbol of L; to I is relevant. More
generally, given a conic Lagrangian submanifold A of the open cone I}
< T*(X)~ 0 we shall say that uelI™X, A; E) at (x,, &)l if there is an open
conic neighborhood I =1 of (xq, &,) such that Auel™(X, A;E) for all prop-
erly supported Ae P° with WF(4) < I; it suffices to know this for some such
A which is non-characteristic at (x,, &)

In view of Theorem21.2.16 we may thus assume now that X =IR" and
that A={(H'(&),&); elR"~0} where H is a real valued function in
C*(IR"~.0) which is homogeneous of degree 1. We may also assume that E
is the trivial bundle, which is then omitted from the notation.

Proposition25.1.3. If uelf,, (R" A4), A={(H'(),¢); £eR"\0}, then (%)

=e HO(Y), |E|>1, where veS™ "4R"). Conversely, the inverse Fourier
transform of e~y is in I™(R", A) if veS™"4(R".

Proof. Choose ye CF(IR") equal to 1 in a neighborhood of 0 and define h by
h=yH, where Hy=(1-yx)H. Then H,—he¥ (see the proof of Theo-
rem7.1.22), so H,—he% Thus heS' has the principal symbol H, so it
suffices to prove the result with H replaced by h. Set h(&)=0h(£)/0%;. The
operator hyD) is convolution with the inverse Fourier transform of h; so it
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is properly supported. Hence
(25.1.2) DPT1(x;—h/D)/ue®H _,_nq if |Bl=lal

for [x;—h;D),D,]=id; so commuting the factors D’ we obtain a sum of

products of operators of the form (x;—h;(D))D, to which (25.1.1) is applica-

ble. Recalling the definition of “H_,,_,,, We obtain
1ETT(=D;=h &)y a(©)PdE < C,R¥™ "9, R>1, ||=|al.

R/2<|&| <2R
With the notation #(¢&)=e @ p(¢) this means that

S . |§|2I°" |D*v(€)?dé £ C, RYAmn/9)
R/2<|¢|<2R

If vg(&)=v(RE)/R™™* then
| IDvg(@)2de<C,
t<lél<2
which by Lemma 7.6.3 gives uniform bounds for D*v; when |£|=1, that is,
bounds for |D*v(&)| (1 +|¢|)*!~™*"* The argument can be reversed to prove
the last statement in the proposition, for the passage from the operators

(x;—h;(D)) D, to the general operators in (25.1.1) can be made by the argument
preceding Theorem 18.2.7.

A slight modification of the proof gives precise information about the
smoothness of elements in I™, We state the result directly in a global form.

Theorem 25.1.4. If Uel™(X, A) and UeH ,, at (x,,&0)eA, then Uel*(X, A) at
(x9, &) if p+so+n/4>0.

Proof. Choose A€ ¥°(X) properly supported, non-characteristic at (x,, &), SO
that AUeH,,. By Lemma 25.1.2 we have AUel™. We can choose 4 so that
WF(AU) is in a small conic neighborhood of (x,,&,). Writing u=AU we
conclude that it is sufficient to prove that uel” if ueH ,, and u satisfies the
hypotheses in Proposition 25.1.3. With the notation used there we have

J ID°wR@OPdESCay [ |vr(©)PdE S CRTHm/S,

i<lel<2 i<lél<2
Let [£|=1 and set Vg () =vg(£+n/R)R~""? where 6>0. Then

§ D"V P dnSC,R72M0, | |V ()2 dn< CR-200*msnis)

Inl <1 Inl<1
Now we use the Sobolev inequality
IDPVOIP=Cy | (X ID* V@) +1V()*)dn
Inl<1 la|=s

where s>n/2. This is somewhat more general than (7.6.6) but follows from
the same proof. Taking s so large that sé >s,+m+n/4 we obtain

lDﬂ VR,C(O)I <C'R —(so+m+ n/4;’
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hence
IDﬂ UR(&)' < C'Réw/2+ Iﬂl)—(30+m+n/4)’ If‘ =1,

ID” v(f)| < C'|§|J(nl2+ 1BI)—(so+n/2+ Iﬁl), |€]>1.

For every f we can choose ¢ so that the exponent is smaller than p—n/4
—|Bl, and then we obtain veS* ™4, hence uel®.

We shall now prove that elements in I™(X, A) can also be represented by
means of arbitrary phase functions ¢ parametrizing A in the sense of
Definition 21.2.15. At first we assume that ¢ is non-degenerate.

Proposition 25.1.5. Let ¢(x,0) be a non-degenerate phase function in an open
conic neighborhood of (x,00)eR"x(RN~0) which parametrizes the
Lagrangian manifold A in a neighborhood of (x4,%¢0); &o=¢%(xe,00)
Dy(x0,00)=0. If aeS™+®-2NI4R"xR™) has support in the interior of a
sufficiently small conic neighborhood I of (x,,0,), then the oscillatory integral

(25.1.3) u(x)=Q2m)="+2N/4 [ ¢i¢x0 g(x, 0)dO
defines a distribution uelf, (R", A). If A={(H'({),£)} as in Proposition25.1.3
then (for |£]|>1)
(25.1.9) e HO 4(&) — 2m)"* a(x, 0) e™**#"® |det B| ~teSm 41
where (x, 0) is determined by ¢g(x,0)=0, ¢’ (x,0)=¢, and
o= (¥ %),
ox Poo

Here a(x,0) is interpreted as O if there is no such point in T. B d(¢) is
polyhomogeneous if a is. Conversely, every uelI™X, A) with WF(u) in a small
conic neighborhood of (x4, &,) can, modulo C*, be written in the form (25.1.3).

In the proof we shall need an extension of Lemma 18.1.18.
Lemma 25.1.6. Let I; C R" x @RM\ 0), j = 1,2, be open conic sets and let
V: I, > T, be a C* proper map commuting with multiplication by positive scalars
in the second variable. If acS™(R" x R"?) has support in the interior of a

compactly based cone cI, then aoyeS™(IR™ xRN ') if the composition is
defined as 0 outside I.

Proof. The support of aoy belongs to a compactly based cone —I; where
¥ (x, &)=(y,n) implies |¢|/C <|n| < C|&|. The hypothesis on a means that
D} ,a(, = C,t™,  1/C<|n|<C.
Since ao Y(x,t&)=af(.,t.)o Y(x, &) by the homogeneity of i, we obtain
IDZe(@ o P)(x,26)| S Cot™, €] =1,

by using Leibniz’ rule. This proves the lemma.
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Proof of Proposition25.1.5. By hypothesis ¢..(xq,0,)=¢&0+0, so the oscil-
latory integral (25.1.3) is well defined. » has compact support if I' has a
compact base. We shall use the method of stationary phase to evaluate

(25.1.5)  €HOG(E)=2m) 2N ([ i@ xO+ HE=<xE) g(x §)dx db.
The exponent has a critical point if

¢.(x,0=¢,  ¢,=0,
which by hypothesis means that (x, £)eA, hence that x=H'(¢). The critical
point is non-degenerate. In fact, the maps
C={(x60); $p=0}3(x,0)—(x,¢;)e4 and A3(x,&—¢

are diffeomorphisms. Hence C > (x,0) — ¢, is a diffeomorphism, so d¢’ =d¢,
=0 implies dx=d0=0. The matrix @ is therefore non-singular. If we divide
(multiply) the first n (last N) rows (columns) by |0] we see that detd is
homogeneous in 0 of degree n—N. Hence a(x,0)|det®d|~* is in S"~"* in a
conic neighborhood of C. By Lemma25.1.6 this remains true for the restric-
tion to C regarded as a function of &.

It follows from Theorem7.7.1 that there is a constant C such that for
any N
(25.1.6) || @O =D g(x, B)dx| < Cy(1€]+16)~",
if |8]>C|¢é or |&]>ClA).
In fact, (¢(x, 0) —<x, £>)/(1€|+]0])=f(x) is homogeneous in (¢, 6) of degree 0
and bounded in C*. If (x, f)esupp a we have
L)z (&= C oD/l +16) =% if 16]/1¢| is small,
Lf/ON2(C,101—1EDAIEI +18) > Cy/2  if |£]/16] is small.
We can therefore apply Theorem 7.7.1 with w=|&| +|6.

Choose yeCP(RM\0) equal to 1 when 1/C<|f|<C. By (25.1.6) the
difference between ¢'#® {(¢) and

U(&)=(@2m)~"*2MI% ff @0+ HEO -y (9/1¢]) a(x, 6)dx dO
is rapidly decreasing as £ —»o0. Set |€]|=t, &/t =# and replace 0 by t6. Then
U(&)=(2m)~+ 204 ([ git@x.0+ H =Cxmd) o () g (x, £ )™ dx d.

Here the exponent has only one critical point in the support of the inte-
grand and it is defined by ¢p(x, 8) =0, ¢ (x,0)=n. At that point

¢ (x,0)=<0, d5(x,0)>=0,  {x,n)=CH'(m), n>=Hln)

so the critical value is 0. Using (7.7.13) we obtain an asymptotic expansion
of U. Since y=1 at the critical point, the leading term is

(2m)"* a(x,t O)tN =2 gril4sen®|det |4,
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that is, the term displayed in (25.1.4) in view of the homogeneity of det @
already pointed out. The k™ term will contain another factor t=* and a
linear combination of derivatives of a(x,t6) with respect to x, 0, so it is in
Sm-m4-k In view of Proposition 18.1.4 it follows that we have an asymptotic
series in the sense of Proposition 18.1.3, and this completes the proof of the
first part of the proposition.

To prove the converse it is by Proposition 25.1.3 sufficient to consider an
element uel™X, A) with v=die®eS™~"* having support in a small conic
neighborhood of ¢,. Choose a C* map (x,0)—y(x,0)elR"~0 in a conic
neighborhood of (x,, 6,) such that  is homogeneous of degree 1 and (x, 6)
=0¢/0x when d¢/d0=0. Let

ag(x,0)=2m)""*vo(x,0)e "4 |det p|tesm+n-2NN4

near C, and define u, by (25.1.3) with a replaced by a,. From the first part
of the proposition it follows then that u —u,eI™~!. Repeating the argument
gives a sequence a;eS"*"~2M*~J such that u—uy—...—u;el™ =" if u; is
defined by (25.1.3) with a replaced by a;. If a is an asymptotic sum of the
series Zai it follows that (25.1.3) is valid modulo C*. The proof is complete.

We shall now examine what must be changed in the preceding argument
if ¢ is just a clean phase function. We still have (25.1.6) so only U(¢) is
important. However, ¢(x,0)+ H(n)—{x,n)> does not satisfy the hypotheses
in Theorem 7.7.6. We do know that (locally)

C={(x,0); 0¢(x,0)/00=0}

is a manifold of dimension e¢+n, where ¢ is the excess, and that the
composed map C—A—-R": (x,0)—(x, ¢, )— ¢, has surjective differential,
hence a fiber C, of dimension e over n where x=H'(x). The critical points of
&(x,0)+ H(n)—{x,n) are defined by ¢, =0, ¢, =n, that is, (x,0)e C,, and d¢}
=0, d¢, =0 precisely along the tangent space of C,. Note that we have
fixed upper and lower bounds for [6] on C, since |¢,|=1. We can split the 6
variables into two groups ¢, 8" so that the number of 6" variables is e and
the projection C,3(x,0)—0" has bijective differential. Then d¢, =0, d¢, =0,
d0"=0 implies dx=d0=0. Thus the Hessian of ¢(x,0)+ H(n)—<{x,n) with
respect to (x,0’) is not 0, so the critical point on C, when 6" is fixed is non-
degenerate. If we change the definition of @ to

¢= (¢::fx ¢,%,9’),

0'x 00

an application of Theorem 7.7.6 to the integral U(¢) with respect to the
n + N — e variables x, ¢ gives, when we integrate with respect to " after-
wards,

eiH(g)ﬁ(é)__(zn)nM—e/Z j‘ t(N+e—n)/2a(x,t9) em‘/4sgn0|det (D"* dgnesm+e/2—n/4—-1.
Cn
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Note that the order has increased by e/2 since the stationary phase evalua-
tion is applied to e variables less. For the same reason a factor (27m)%2 is
lost. If we introduce tf as a new variable, noting that det & is homogeneous
of degree n— N +e now, we obtain

Proposition 25.1.5'. Let ¢(x,0) be a clean phase function with excess e in an
open conic neighborhood of (xq,0,)eR"x (R¥~0) which parametrizes the
Lagrangian manifold A in a neighborhood of (x4,&0); o= (x0,00)
Bp(x0,05)=0. If aecS™*-2N-20/4R" x R™) has support in the interior of a
sufficiently small conic neighborhood I of (x,,0,) then the oscillatory integral

(25.1.3y u(x)=(2m)~"*+2N-204 [oi0x0 g(x, 0)d6

defines a distribution uelf,, (R" A). If A={(H'({),{)} as in Proposition
25.1.3 then

(25.1.4y €HOUE—Q2m)"* | a(x,0)e™/*5"?|det §| "1 df eS™ "4
Ce
Here C,={(x,0); ¢g(x,0)=0, ¢, (x,0)=C_}; 0=(0",0") is a splitting of the 0
variables in two groups such that C,3(x,0)—6" has bijective differential, and
o= (¥ ),
v oo
Conversely, modulo C* every uel™(X, A) with WF(u) in a small conic neigh-
borhood of (x4, &,) can be written in the form (25.1.3).

Remark. If feC™(Y) has a critical point at y,eY then |det f”(y,)|* trans-
forms as a density at y,. This is why in the standard stationary phase
formula the density in the integrand is transformed to a scalar in the
asymptotic expansion. If on the other hand f is critical on a submanifold Z
c Y and is non-degenerate in transversal directions, then the square root of
the determinant of the Hessian in transversal planes defines a density in the
normal bundle. Dividing a density in Y by it gives a density on Z. This
confirms the invariant meaning of the integrand in (25.1.4).

There is no difficulty in performing a change of local coordinates x in
the representation (25.1.3) of an element in I™(X, A), so Proposition 25.1.3
contains all that is needed to define a principal symbol isomorphism for I™
extending Theorem 18.2.11.. However, it is instructive to establish first a
theorem on limits of elements in I"™ which connects the definitions in this
section with those given in the linear case in Section 21.6.

Proposition 25.1.7. Let uel,, (R" A), A={(H'({),£), (eR"\0}, and set ety

=Q2n)"*v, veS™ "4 If YeCO(R") is real valued, Y(x,)=0, Y'(xo)=Ey+0,
(xg,&o)EA, then as t — + o0

@25.1.7) 172" 2(ue~"¥)xg +x /1) — v(Eo) T Y (x) 5 0 in D,
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where
(25.1.8) wl, o (X)=Q2m) 3" fexpiQ¥ . (x,&)d¢,
QY &%, &)= <%, &) =W (xg)x, x)/2 = CH"(E0) &, £)/2.
Note that the factor t=™2 in the left-hand side of (25.1.7) means that

ue~""¥ is pulled back as a half density by the map x> x,+ x/t. The other
factor ¢t=2™ reflects that u is of order m and is examined near the frequency

£2&,.

Proof of Proposition 25.1.7. By Fourier’s inversion formula
u(x) =@ n)” 3n/4 5 (%8> —HQ) v(é)dé.

Replacing ¢ by t2¢,+t¢ we obtain if ye CY

(25.1.9) 72" M2 (ue T ) (xo + /1), D

=(2m) 34 [[ & BO p(e2 £ 1) £~ 22 y (x) dx dE,
where
E(x,&)=C{xq+x/t, P& +1E) —t2P(xo+x/t) —t> H(E o+ E/1).

Now H(&o)=<H'(£o) Eo) = <X, €02 H'(Eo)=%0, Y(Xo)=0, ¥'(x0)={,, s0
E®,&=0% . (x,0+001/1)
uniformly on compact sets. Hence
(25.1.10) [ el E®Ox(x)dx — [expliQY . (x,€) x(x)dx
uniformly for & in a compact set. If xesupp x then
|0 (x, )/0x|=[t&o+ & —t(xo +x/0)| 2 (<] — C2(1€]+1)/2

if |€|>2C+1, so Theorem 7.7.1 shows that the left-hand side of (25.1.10) has
a bound Cy(1+|¢])~" independent of ¢, for every N. Thus

@m)y~ /4 [[ e BeDy(x)dx dE — (u;f’eo,x),
and (25.1.7) follows if we show that for large N
flo@&o+t —v(E* L)l e 2" "2 (1 +|¢)~NdE -0,  t—oo.
The integrand can be estimated by
el 2y~ 2mam2 4 E) N < e HE A +IED Y,

if |E]<t|E,]/2, so this part of the integral is O(1/f). When |€|>|&,)/2 the
bound (1 +]&))*m*"2=¥ for the integrand is obvious, which completes the
proof.

Remark. If ue 2'(R"), (x,, &o)¢ WF(u) and 04 &, =y'(x,), then
tNue ") (xo+x/t)>0 in @
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for every N. In fact, replacing u by yu where ye Cy is 1 in a neighborhood
of x, and supported in another small neighborhood we can assume that
ueé’ and that 4 is rapidly decreasing in a conic neighborhood of &,. We
may also assume that y(x)={x, ;) for if p vanishes of second order at x,
then 2p(xy+x/t)—={p"(xo)X,x)/2, t—oo. The Fourier transform of
N ue ) (xo+x/t) is then tNTTHIG(E2E ) +tE)e %9 which is bounded
when |&|/t is small, and uniformly bounded by a power of (1 +|¢&|) elsewhere.

If veSy,."* it follows from (25.1.7) that
(25.1.7y £ e~ ) (xo + x/1) > vo(Eg) U, oo(X)  in D,

where v, is the principal symbol of v. At first sight it might seem that the
limit is strongly tied to the specific local coordinates x, but in fact it is not:

Lemma 25.1.8. Let u, be distributions in a neighborhood of 0 in R" such that
M}u,— U in @' as t >0, where M,(x)=tx. If 0 is a local diffeomorphism at 0
with 6(0)=0, it follows then that

M:O*u, - 05U, -0,
where 0,(x)=0'(0)x is the differential of 6 at 0.

Proof. We can write M} 6*u,= M} 0* M$, MFu,. Since
M, 000 M(x)=1t""0(tx)— 0(x)
in C*® as t -0, it follows that M¥6*u,— 0% U.

The existence of the limit U is thus coordinate independent. If we regard
u as a distribution on a manifold, the limit is a distribution on the tangent
space at 0. If u, is transformed as a half density distribution under a change
of variables, we obtain of course a factor |det #(0)|%, so the limit is a half
density on the tangent space.

Let us now return to (25.1.7) where veSp"* and v, is the principal
symbol. If u is thought of as a half density u(x)|dx|* in a manifold X,
expressed in the local coordinates x, we conclude that the limit vo(¢o)u¥, .
is a half density on the tangent space T, (X). In the tangent space S
= Ty, 5 (T*(X)) the tangent planes 1, and A of the graphs of ' and of 4 are
given by £=y"(xo)x and x=H"(£y)¢ in our local coordinates. In S the
tangent space of the fiber defined by x=0 is a distinguished Lagrangian
plane 1,. If we compare (25.1.8) with (21.6.5) and (21.6.6) it follows that
v(&o)u¥, s, €1(4,4,) defines an element in I(4) independent of the choice of y,
hence an element in the tensor product M,®Q? where M, is the fiber over
A of the Maslov bundle defined on T*(X) by the tangents of the fibers, and
Q% is the fiber of the half density bundle on A. With the trivialization of the
Maslov bundle given by the Lagrangian planes £ =0 in the local coordinates
used in Propositions 25.1.5 and 25.1.7, the half density in the tangent space
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at (H'(Ep), Ep)eA is v(Ey) |dE]* when ¢ parametrizes A by x= H'(¢). Thus we
obtain an invariant definition of a section of M,®Q% which is homo-
geneous of degree m+n/4. (For the definition of homogeneity see the dis-
cussion preceding Definition 18.2.10.) It will be called the principal symbol of
u.

The preceding discussion motivates our definition of the principal sym-
bol for general uel™(X, A), but it will actually only depend on Proposition
25.1.5. As a preliminary to the definition we must extend Definition 18.2.10
to symbols on conic manifolds. On any conic manifold V there is defined a
multiplication M, by real numbers t >0, satisfying the conditions in Defini-
tion 21.1.8. We define S$™(V) as the set of all aeC*(V) such that the
functions t~™M¥a are uniformly bounded in C*(V) when t=1. If for some

compact set K<V the support of a is contained in UM,K, and V is an
t21

open subset of R" x (R¥~\.0) with M, defined as multiplication by t in the
second variable, then the proof of Lemma25.1.6 shows that this definition
agrees with our earlier ones. An advantage of the present definition is that it
is applicable also if say a is a half density on V. Let a, be a fixed positive
half density on V which is homogeneous of degree u, that is, M¥a,=t"a,.
For example, if V=R"x(R¥\0) with variables x, 0, then |dx|¥|d6|* is a
half density which is homogeneous of degree u=N/2. We can now write
every aeS™(V,Q}) in the form a=ay,b where beS™ #(V) is a scalar symbol,
and conversely all such products are in S™(V, 23).

We return now to the definition of the principal symbol of a general
uel™(X,A) where X is a C* manifold and A=T*{X)~0 is a C* conic
Lagrangian manifold. For any (x,, ;)4 we can choose local coordinates x
at x, such that a conic neighborhood I' of (x4,&,) in A is defined in the
local coordinates by x=H'({) as in Proposition25.1.3. If I; I is a com-
pactly generated cone we can use Lemma25.1.2 to split u into a sum u,; +u,
where u;eI™(X,A) and WF(u,)<I', WF(u,)nI;=0. We can take u, with
compact support in the coordinate patch. For the Fourier transform in the
local coordinates we have by Proposition 25.1.3

(25.1.11) eHO G (&)= 2n)"* v(E)eS™ "4,

If u=ii, +ii, is another decomposition with the same properties, we have
WF(ii, —u,)nI;=0. Since WF(ii, —u,)<I and I} ={(H'({),{), ey, } for some
closed cone y, cIR"~\0 we conclude that the Fourier transform of i, —u, is
rapidly decreasing in a conic neighborhood of y,. Hence the class of v in
Sm=n4(y,)/S™(y,) does not depend on the decomposition of u, and we can
consider v|d¢|* as an element in S™*"4(I}, Q})/S~ (I, Q%) in view of the
isomorphism y,3&—(H'(¢), {)el;. We shall now study to what extent
the residue class mod S™*"4~! depends on the choice of local coordinates.
It is convenient to do so by examining the symbol definition just made
when u is defined by (25.1.3) in terms of a non-degenerate phase function
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but the local coordinates are fixed. Note that (25.1.11) gives
(25.1.11y u,(x)=Q2m)= 34 [ O -HO p(£)d¢

which is a special case of (25.1.3) with ¢(x, &)=<{x, &> —H(£) and N=n.
From (25.1.4) it follows that if ueI™ __(X, A) and €'#{i=(2m)"*0, then

comp
(25.1.12) v(&)|dE|F —a(x, 0) e™/*en® |det |~ ¥ |dE|PeS™ 4~ 1(A, QF)

where ¢p(x, 0)=0, ¢ (x, 0)=¢ defines (x,0) as a function of £. Apart from the
Maslov factor exp(ni/4 sgn #) we can interpret (25.1.12) as follows. (Com-
pare (21.6.17).) Set as before

C={(x,0); ¢5(x, 0)=0}.

The pullback d.=4(¢,) of the é function in RY by the map (x, 6)~ ¢,e R
is a density on C given by

dc=|dA||D(4, ¢3)/D(x, 0)| !

if A=(4,,...,4,) denote arbitrary local coordinates on C extended to C*
functions in a neighborhood and |d4| is the Lebesgue density. This follows
from (6.1.1). In particular we can take A=¢’ when A is parametrized by &.
Then we obtain d.=|d¢&||det &|~*, hence

(25.1.13) v(&)|dEF=alx, O)die™!*5"® mod S™*+"4-1(A4,QY)

where C is identified with A by the map (x, 6) - (x, ¢.).
If we now introduce new coordinates X and transform u as a half
density, that is, #i(X)=|Dx/D%|* u(x), then (25.1.3) gives

(%) = 2m)~ 2N/ [ 01969 (% 6)do,
dF 0=¢(x,0), a,0)=|Dx/Dx|*a(x,0).

With the obvious identification of the manifolds C and C defined by ¢ and
by &, we have d.=|Dx/Dx|d¢ so

(25.1.14) adi=ad}.

The half density v(¢)|d¢|? is thus invariant under a change of local coor-
dinates apart from a Maslov factor of absolute value 1. Every non-singular
(n+ N) x (n+ N) matrix & has signature congruent to n+N mod?2 so if & is
the matrix replacing @ in the new coordinate system then the Maslov factor
gri/4tan®-sen®) which occurs is a power of the imaginary unit i. This means
that (25.1.13) gives a principal symbol eS™*"4(A, Q%) for the element uel™
defined by (25.1.3), which is uniquely determined modulo S™*"*4-1(4,Q%)
and is multiplied by a power of i when the local coordinates are changed.
For every uel™(X, A) we therefore get a principal symbol in

Sm+"/4(/1, MA ®Q;}ﬂ)/sm+n/4— I(A,MA®QJI}1)’

where M, is a locally constant line bundle. It is defined by a covering
A=JI; of A with open cones [} and transition functions which are just
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powers of i. The discussion of the polyhomogeneous case above or just
comparison of (25.1.13) and (21.6.17) identifies M , with the Maslov bundle
defined more geometrically in Section 21.6. In particular, it follows from
(21.6.18) that if we have another local representation

u(x)=(2m) ="+ 2004 [ (140 G(x, G) df
in addition to (25.1.3) then

adg — e adteSm 4= 1A, QY)

in the common domain of definition on A if

5 =(58n Pgo(x, 0) —sgn Pi(x, 6)
where ¢'(x,0)=¢'(x,0)=0 and ¢.(x,0)=¢.(x,0)=¢ Here the integer s is
locally constant, and the x coordinates are now arbitrary. This connects
with the definition of the Maslov bundle indicated after (21.6.17).
Summing up, we have now proved the following extension of Theo-
rem 18.2.11 where we allow again the presence of a general vector bundle:

Theorem25.1.9. Let X be a C® manifold, AcT*X)~0 a C*® conic
Lagrangian submanifold, and E a C*® complex vector bundle over X. Then we
have an isomorphism

I"(X, A; Q4@E)/I"~\(X, A; Q4®E)
- S A, M @@ E)/S™ 4~ (A, M, AR E).

Here E is the lifting of the bundle E to A. The image under the map is called
the principal symbol.

Proof. By Lemma25.1.2 this only has to be verified locally. For suitable
fixed local coordinates the statement follows from Proposition25.1.3. The
Maslov bundle has been defined so that it is independent of the local
coordinates chosen. - We shall often write E instead of £ when no con-
fusion seems possible.

Under the hypotheses in Proposition 25.1.5" the principal symbol of u
expressed in terms of the local coordinates there is equal to

ldE* [ a(x, B)e™*="® |det &|~*d6".
Ce

This follows from (25.1.4), and C,, @ have been defined in Propo-
sition25.1.5'. We want to compare this with the definitions in Section 21.6.
To every (x,,0,)e C, the Hessian Q of ¢/2 at (x,, 0,) defines

U=a(x,,0,)2m)~"*2N-29104 [ £i0=0 dge (1, A,)@2(R)

where R is the radical of Q, ,, in the 6 direction, 4 is the tangent plane of
A at (H'(¢),€) and 4, is the horizontal Lagrangian plane defined by d¢=0
there. By hypothesis R20 6" is bijective, and the symbol of U as defined
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in Section 21.6 with the local coordinates x, ¢ is
|dEI* a(x,,0,)e™ "4 ? |det d|~* |d0V"|.

Since C.a(x,()— (0" is bijective, |d0”| is a positive density on C.. Thus the
symbol of u is the integral over C; of the density on C. with values in
(M, ® Q%) (4. » defined according to Section 21.6.

The phase function —¢ defines the Lagrangian A=iA where
i: T*(X)— T*(X) is defined by i(x, g’)z(vx, —¢&). From (25.1.4) it follows that
the principal symbol of i is defined on A by

(25.1.15) a(x, ) e "4 | det @~ 4,

that is, we obtain the pullback by i of the complex conjugate of the
principal symbol of u. Now the complex conjugate of a section of M ,®Q}
is a section of M;'®Q3, and i*M;'=M; by (21.6.5) since i* 0= —¢. (This
is just another way of expressing the complex conjugation of the Maslov
factor in (25.1.15).) The pullback of a section of M;'®Q} can thus be

identified with a section of M;,®Q,%. Summing up, we have

Theorem 25.1.10. Let the hypotheses of Theorem25.1.9 be fulfilled and let
j: E—F be an antilinear bundle map. Then uel™(X, A, Qi@E) implies
juel"( X, A; QY@ F) if A=iA, i(x,&)=(x, =&); and i*jaeS"*"*(X,A; M;®
Qi ®F) is a principal symbol of ju if aeS"+*"*(X, A; M ,® Q4 ® E) is one for u.

As in Section 18.1 we could have used considerably more general sym-
bols in the preceding discussion. Lemma 25.1.6 remains valid for the symbol
spaces §;'=S),_,. More generally, we can define S)(V) if V is a conic
mdmfold as the set cf ae C“(V) such that when t>1

m~—(1-p)k *q
t~ M¥a

is uniformly bounded in C*(V) for every k=0. We abandon now the intrin-
sic Definition25.1.1 and define I} when p>1 as the set of distributions
which are microlocally of the form (25.1.11) with veSZ"""‘. An analogue of
Proposition 25.1.5 follows with no essential change of the proof, and it leads
to a principal symbol isomorphism

IM(X, A, Q4QE)/ 17+ =2(X, A; B}@E)
SPHAM ,@QAQE)/Sp 2+ = 20(A, M, @ Q5 QF).

It would also have been possible to define I} by the condition (25.1.1) in
Definition 25.1.1 for all L;e ¥,>*~ (X E, E) with principal symbol vanishing
on A. However, the nroof of the analogue of Proposition 25.1.3 becomes
somewhat longer since, we must consider on one hand operators with
symbols of the form |£P y((x —H'(&))|E)! ~#)(x;—h(£)) and on the other hand
operators with symbols of the form |&|2?~'(1 —x((x—h(&)|£]'~*)). Here
xeCY is equal to 1 in a neighborhood of the origin. We leave the details for

the interested and energetic reader.
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Let X and Y be two C* manifolds and E, F two complex vector bundles on
X, Y. Then every Ae2'(X x Y,Q} , y®Hom(F, E)) defines a continuous map

o CIY, @ F) - D'(X, BRE)

and conversely. (See Section5.2 and, for the role of the half densities, also
Section 18.1.) Here the fiber of the vector bundle Hom(F, E) at (x, y) consists
of the linear maps F,— E,. In particular, if 4 is a closed conic Lagrangian
submanifold of T*(X x Y)~0 we can identify I"(Xx Y, 4;Q}, ,®Hom(F, E))
with a space of such maps. If we have

(25.2.1) Ac(THX)N0) x (T*Y)N0)
then it follows from Theorem8.2.13 and Lemma25.1.2 that &/ is even a

continuous map from CZ(Y) to C*®(X) which can be extended to a con-
tinuous map from &'(Y) to 2'(X) with

(25.2.2) WF(u)c C(WFu)), ued'(Y,Q3QF),

where
C=A"={(x, &y, —me(T*X)~0) x (T*Y)\0);(x, & y,ne A}

is a canonical relation from T*(Y)~0 to T*(X)\0. (See Definition 21.2.12)
As in Section21.2 we call A= C’ the twisted canonical relation. The Maslov
bundle M, can be regarded as a bundle M. on C defined by C and the
product symplectic form gy —ay.

Definition 25.2.1. Let C be a homogeneous canonical relation from T*(Y)~ 0
to T*X)~0 which is closed in T*X x Y)\0, and let E, F be vector
bundles on X, Y. Then the operators with kernel belonging to
I"(XxY, C'; Q,y®Hom(F,E)) are called Vourier integral operators of
order m from sections of F to sections of E, associated with the canonical
relation C.

Let E* be the vector bundle with fiber E¥ at xeX antidual to the fiber
E_ of E. Then we have a pairing
ure [(u0)(x);  ueCPX,BQRE), ve?'(X,25QE*),

and a similar one for Yand F. If 4e2'(X x Y, Q% .;®Hom(F,E)) then the
adjoint of the map Ce(Y,Q@F) -2 (X,Q2®E) defined by A is defined
by A*e€ 2’ (Yx X,Q%y « x®Hom(E*, F¥*)). If s is the map Yx X —+X x Y inter-
changing the two factors then 4* is obtained by composing s* A with the
antilinear bundle map Hom(F, E)-»Hom(E*,F*) given by taking adjoints. If

Ael™(X x Y, C'; Q% . y\®Hom(F, E))
s*Ael™Y x X,s*C'; Q% . y®Hom(F, E));

then
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if a is the principal symbol of A then s*a is the principal symbol of s*A.
This is obvious by the invariance of our constructions. With the same
notation i for the reflection in the cotangent bundle as in Theorem 25.1.10
we have i*s*C'=(C~'Y where C~! is the inverse canonical relation ob-
tained by interchanging T*(X) and T*(Y). Thus we obtain in view of
Theorem 25.1.10:

Theorem 25.2.2. Let C be a homogeneous canonical relation from T*(Y)\0 to
T*(X)~0 which is closed in T*(X x Y)\0, and let E, F be vector bundles on
X, Y. If AeI™(X x Y, C'; 2}, ,®Hom(F, E)), identified with the correspond-
ing linear operator, then A*eI™(YxX, (C™'Y; Q},y®Hom(E* F*). If
aeS" "4 (C; M. ®@QE®Hom(F,E)) is a principal symbol for A, where
n=dim(X x Y), then s*a*eS™*"*(C~', M-, ® Q- ® Hom(E*, F*)) is a prin-
cipal symbol for A*. Here s is the interchanging map Yx X > X x Y.

Note that we have here chosen to regard the principal symbol as defined
on C rather than on C'. This is usually more convenient in connection with
Fourier integral operators and should cause no confusion.

We shall now discuss products, so let C, be a homogeneous canonical
relation from T*(Y)~0 to T*(X)~0 and C, another from T*(Z)~0 to
T*(Y)~0 where X, Y, Z are three manifolds, with vector bundles, E, F, G.
Let

Ae™(X x Y, C; Q} . y@Hom(F, E)),

A,el™(Y x Z,C%; Q3 ,QHom(G, F))

and assume that both are properly supported so that the composition 4,4,
of the corresponding operators is defined. We want to show that it is
associated with the composition C of the canonical relations C, and C,
provided that the composition is clean, proper and connected in a sense
which we shall now define. Already after the statement of Theorem 21.2.14
we defined the composition to be clean if C,x C, intersects T*(X)
x A(T*(Y)) x T*(Z) cleanly, that is, in a manifold C with tangent plane
everywhere equal to the intersection of the tangent planes of the intersecting
manifolds. We shall say that the composition is proper if the map

Co>THX xZ)~0

is proper. (When Y is compact this is automatically true since C, and C,
are closed in T*(X x Y)~0 and T*(Y x Z)\ 0 respectively but contained in
(T*X)N0) x (T*(Y)~0) and (T*(Y)~0) x (T*(Z)~0).) Then the range C is a
closed subset of T*(X xZ)~0 contained in (T*(X)\0)x(T*(Z)~0). The
inverse image C, in C of yeC is a compact manifold of dimension equal to
the excess e of the clean intersection. To avoid self-intersections of C we
assume that the composition is connected in the sense that C, is connected
for every yeC. Then it follows from Theorem21.2.14 that C is also a
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canonical relation. We shall prove that
(25.2.3) A A eImrmre(X « 7 C; Q% ,QHom(G, E))

and compute the principal symbol. Note that when the composition is
transversal, that is, the excess e=0, then A4,4,eI™*™. The normalizations
introduced in Section25.1 were to a large extent motivated by our wish to
maintain this natural property of the order of differential and pseudo-
differential operators.

By a partition of unity we can reduce the proof of (25.2.3) to the local
case where X cR"™*, YcR"™, Z<IR"% the bundles E, F, G are trivial and

A (x, y)=(2m)~mxrrw+ 2N 016000 g (x, y, ) d6,
Ay(y,2)=(2m)~rr+rz+ 284 [oH0.29 g (y 7 1) d1.
Here ¢ is a non-degenerate phase function in a conic neighborhood of
(%0>Y0,00)€X x Y x (RN*~\.0) parametrizing C, in a conic neighborhood of
(05 €o» Yo Mo), thus
$6=0, ¢.=&o ¢,=—no at (xq,0,0)
Similarly ¢ is a non-degenerate phase function in a conic neighborhood of
(V0»20>To)€ Y X Z x (R¥2\.0) parametrizing C, in a conic neighborhood of
(Yo» o> 2o, Lo), thus
¥, =0, ¢;=’70, V,=—0o at (yo,2g, 7o)
The amplitudes a,, a, have supports in small conic neighborhoods of
(x5 Y0, 00) and (yo, 2o, 7o) respectively, and
(2524) alesm;+(nx+ny—2N|)/4’ aZESm2+("Y+nz—2NZ)/4.

If a;eS~™ then A=A, A, is given by

(25.2.5) A(x,2)=[A4,(x,y)4,(y, 2)dy
=(2n)—(nx+nz+ 2(ny+N; +sz4j_” eidb(x,z,y,o,t)a(x, z,9, 6, r)dyd@dt

where

P(x,2,y,0,7)=d(x,,0)+ ¥ (y,2,1);
a(x’ Z, ya 0, T)=a1(x’ ,V, 0)02(}’, 2z, T)-

From Proposition 21.2.19 we know that @ is a clean phase function defining
C, in a conic neighborhood of (x,, 2y, Yo, 04, 7o) This will lead to a proof of
(25.2.3) when we have proved that the integration can be restricted to a set
where |0] and |t| have the same order of magnitude so that a is a well
behaved symbol. This is not the case for the function a as it stands since, for
example, differentiation with respect to § only improves the magnitude by a
factor 1/(1 +16]) and not by 1/(1 +|0] +|z]).

We assume that a, and a, have supports in compactly generated cones
I and I, where 0¢(x,y,0)/0y and dy(y, z,7)/0y never vanish. Then we can
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find C, and C, such that

Ciltl<|0]< Cyltl  if (x,y,0)el}, (y,z, 7)€l
and
0¢(x,y,0)/0y+0y(y, z,1)/0y=0.

In fact, if |§|=1 for example we have an upper bound for
109 (x, y,0)/0y| =0 (y, z,7)/0yl,

hence an upper bound for |t|. We choose a homogeneous function (0, 1) of

degree 0 which is equal to 1 when C,|7|/2<|0|<2C,|t| and has support in

the cone where C,|7|/3<|0| <3 C,|t|. With the notation
b(x,z,,0,7)=x(0,7)a(x,zy,0,7),
r(x,z,y,0,1)=(1-x(6,7) a(x,zy,6,7)

we have
(25.2.6) |0)+|t| < C|0®(x, z,y,0,7)/dy| in suppr,
(25.2.7) C,I7l/3<101<3C,l1] in suppb.

From (25.2.4) and (25.2.6) it follows that the repeated integral
R(x,2)=Q2n) " [[dOdt [ ®*="*Ir(x,2,y,0,7)dy,

n={(ny+nz+2(ny+ N, + N,))/4, exists and is a C* function in X x Z depend-

ing continuously on a, and a,. In fact, by Theorem7.7.1 and (25.2.6) the

inner integral can be estimated by any power of (1+]6|+]|t|)~!, and this

remains true after any number of differentiations with respect to x or z.
From (25.2.4) and (25.2.7) it follows that

(25.2.8) beSH(X X Y x Z) x RN+ N2,
u=my +my+(nx +nz +2(ny — Ny — Np))/4.

However, we wish to consider y as one of the parameters so we take say
w=((101>+|7*)*y,0, 7R+ M1+ V20
as a new variable. Then

Dw/D(y,0,7)=(16]>+|z|*)™"?
so we have

(2528 b(x,2,5,0,7) D(3, 0, )/ DaeS* " (X x Z) x R+ Mo+

where y, 0, T are regarﬁed as functions of w. Hence Proposition 25.1.5
shows that

(2529) B(x,2)=(2m) " [&®==»09p(x, 2,y,6,7)dydddrel™ *"***(X x Z, C')
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where e is the excess of the intersection, and B depends continuously on a,
and a, when they vary in the symbol spaces (25.2.4). Since

A,A,=B+R

when a; are of order —oo we conclude that this equality is always valid,
which implies (25.2.3).

To compute the principal symbol of 4,4, we can use (25.1.4). This
formula means that when we split the variables 6 into two groups ¢, 6" in
such a way that @ is a non-degenerate phase function for fixed 6” and there
are e such variables, then the principal symbol is the integral with respect to
8" of that defined by the integral for fixed 68”. We should really apply this to
the w variables, but the invatiance of (25.1.4) under coordinate changes
shows that this is irrelevant. Now we know from Proposition 21.2.19 that
the function @ in (25.2.9) is a clean phase function parametrizing C. Let @
be non-degenerate in ()',6,1') while the e variables (y”,6”,7") parametrize
the sets C,, y=(x,¢,2,{)eC. Denote by B,. 4. .. the kernel obtained when
we only integrate with respect to y',#,7" in (25.2.9).

Next observe that, for example, the principal symbol of 4, at the point
(x, 9%, y, —¢,)eC,; corresponding to a point with ¢,=0, and the tangent
plane of C, there, are determined by the Hessian of ¢ as in the discussion
of the lmear case in Section21.6. The same goes for A2 and B ,. ... The
product of the principal symbols of A, and 4, defined in Theorem 21 6 7 is
therefore equal to the density dy”d@”dt” tlmes the principal symbol of
B, 4. Integrating with respect to y”, 6", " we now obtain the second
main theorem in the calculus of Fourier integral operators (see the dis-
cussion following Theorem 25.1.5%):

Theorem25.2.3. Let C, be a C™ homogeneous canonical relation from
T*(Y)~0 to T*X)~0 and C, another from T*(Z)~0 to T*(Y)~0 where X,
Y, Z are three C* manifolds, with C* vector bundles E, F, G. Let

A e™(X x Y,C}; @} .y®Hom(F, E)),

A,eI™(Y xZ,C,; Q% , ,Hom(G, F))
and assume that both are properly supported. Assume that the composition C
=C,0C, is clean, with excess e, proper and connected. For ye C denote by

C, the compact e dimensional fiber over y of the intersection of C;x C, and
T*(X)x A(T*(Y))x T*(Z). Then

A A,elmimre(X x Z,C'; Q% ,QHom(G, E)),
and for the principal symbols a,a,,a of A;,A,,A A, we have
(25.2.10) a=[a, xa,.

Here a,xa, is the density on C, with values in the fiber of M-®Q} .,
®Hom(G, E) defined in Theorem21.6.7, extended by tensor product with
Hom(G, F) and Hom(F, E).



22 XXV. Lagrangian Distributions and Fourier Integral Operators

We recall from Theorem 21.6.7 that the half density associated with a is
(2m)~** times the half density associated purely geometrically with a, and
a, through (21.6.21), (21.6.22). Some authors choose not to include this
factor in the definition of the product but put it in the right-hand side of
(25.2.10). There is of course no unique best procedure but one should be
careful to have the factor at precisely one place.

Theorem 25.2.3 covers a range of apparently different situations. For
example, if X=Y=Z, C,=C,=identity, we have recovered Theo-
rem 18.1.23. With X =Y, Z reduced to a point, C, =identity and C, equal to
the conormal bundle of a submanifold of X we have Theorem 18.2.12. For
more general Lagrangians C, we have a result first encountered in Lem-
ma25.1.2. Some other cases will be discussed in Section25.3. However,
Theorem 25.2.3 is unsatisfactory for some C; because the principal symbol is
always 0. Then 4, A,eI™*™~1*¢/2 and one should compute the principal
symbol of A; A, as operator of this lower order. In principle this can always
be done by means of (25.2.9). To avoid lengthy geometrical arguments we
shall just consider a simple case which will be important later on. Even so
we need a preliminary discussion of how vector fields act on densities.

Let M be a manifold and v a real C® vector field on M. Then v
generates a local one parameter group of C* maps ¢' in M, defined by

de'(x)/dt=v(¢'(x)), ¢°(X)=x, xeM.
If ae Q*(M) then we define the Lie derivative £ ,a along v by

d
..‘t’,,a=a(¢')*a|,=0.
Let x,,...,xy be local coordinates in M and write a=uldx|*. Then (¢')*a

=u,|dx[*,

u,(x)=u(¢'(x))(D ¢'(x)/Dx)".
The derivative of the Jacobian is Tr(dv;/0x,)=divv when t =0, hence
(25.2.11) &L, (uldx[*)=(} v;0u/0x;+x(div v)u) |dx|*.

We take this as definition of the Lie derivative if v is a complex vector field;
it is clear that the definition is independent of the choice of local coor-
dinates since this is true when v is real.

We can now state a theorem on the product in a case where Theo-
rem 25.2.3 can be improved.

Theorem 25.2.4. Let Pe ¥y, (X) be properly supported, with principal symbol p
and subprincipal symbol c. Assume that C is a homogeneous canonical relation
Jrom T*(Y)N0 to T*(X)~0 such that p vanishes on the projection of C in
T*(X)N0. If AcI™(X x Y, C'; QX x Y)}) and aeS™ * " x*"I4(C' M .®@Q%) is a

principal symbol of A, it follows that PAeI™*™ ~Y(X x Y, C'; X x Y)?) has
(25.2.12) i"'%y a+ca
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as principal symbol. Here H, is the Hamilton field of p, lifted to a function on
(T*(X)~0) x (T*(Y)\0), so H,, is tangential to C.

Note that since M is locally constant the presence of the Maslov factors
can be ignored in the computation of the Lie derivative.

In the proof of Theorem 25.2.4 we shall use local coordinates in X and
in Y such that C’' can locally be represented in the form {(0H/d¢, ¢,
0H/0n,n)} where H(&,n) is a homogeneous function of degree 1 in (&, 7).
(This could also have been done in the proof of Theorem 25.2.3 but the
simplification would have been marginal so we preferred to use general
phase functions.) To show that such coordinates exist although we do not
allow general coordinate changes in X x Y as in Theorem21.2.16, we need
the following lemma.

Lemma 25.2.5. If Ac T*(R") is a Lagrangian plane, then 1 is transversal to
' the Lagrangian plane 1,={(x,{); {;=a;x;} for almost all acRM,

Proof. Choose a, so that (1,0,...,0,a,,0,...,0)¢A. Let V be the line generat-
ed by this vector and V° the o orthogonal space defined by ¢, =a,x,. Then
Ve[V is isomorphic to T*RM~! and A'=(AnV°) is Lagrangian there by
Proposition 21.2.13. If the lemma is proved for lower dimensions we can
choose a,,...,ay so that 1’ is transversal to the plane defined by $i=a;x;,
j>1. Since

An{(x,&); §i=a;x;,j=1,...,N}c X

we obtain x,=...=¢,=0 in the intersection, hence x, =¢, =0 too.
Proof of Theorem25.24. As in the proof of Theorem 25.2.3 we can argue

locally. By Theorem21.2.16 and Lemma25.2.5 we can choose local coor-
dinates in X, Y so that

A(x, ) =(27t)‘ 3(nx +ny)/4 ” (x> +<y,m> — HE,m) a(t,n)dEdy

where aeS™ ~("x+m)/4(Rrx+nr) hag support in a conic neighborhood of a
point (¢y,7n,) where H is in C®. If veCg it follows that the Fourier
transform of Av is

()" (2m)~3nx+m0)4 [ o =iHED (¢, n) 5(—n)dr,
SO
PAv(x)=(2m)~ 3+ 104 [{ 5O~ HE P(x, £) a(E, n) 5(—n)dE dn

where P(x, &) is the full symbol of P. Hence the kernel of PA is
(zn)—S(nx+ny)l4 “’ & ({x:+ ymd —HEm) P(x, c) a(¢,ndédn.
Since p(x,£)=0 on C we can write

p(x, &)= p,(x,&n)(x;—OH/0¢)
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where p; is homogeneous of degree m with respect to (¢, 7). We may assume
that a vanishes in a neighborhood of 0 and write P=p+r. Then an integra-
tion by parts gives

(PA)(x, y)z(zn)—unx +ny)/4 “‘ ei(<x.§>+ (end— Ht:-'m(ra —Zng(Pja))df dr,.
The principal symbol of 4 is a(£,n)|d&| |dn|t and that of PA is
(ra—Y. Dy, (0;0))s— ojoe [EI* Idnl?

when (&, #) are taken as parameters on C. Now

H,=Y 0p/0¢,d/dx,— Y ap/ox;0/o¢,

is tangential to C. Functions on C are restrictions of functions of the form
F(&,n), so in terms of the parameters (£,7) on C this vector field has the

form
—Z@p/é’lehama{ 0/0¢;.
Hence the principal symbol of P4 is (i~' £y +7)(ald|* |dn|*) where

y=r—3 D¢,pj+%Y D¢, pj(0H/0E, ()

evaluated for x=0H/0¢&. Here the last sum is caused by the divergence term
in (25.2.11). Thus y is the value for x=0H/0¢& of

r(x, &)= Y. Dy,pjx, &) +3 ). Dy, px, ) +3 ). D, pj(x, £) 0> H/OE, 0L ;.
Since
Y 0%p/0x, 08, =Y Op, /0, — . Op;/0x, aZH/agjagk
when x =0H/0¢, this proves that (25.2.12) is the principal symbol of PA.

In the applications of the calculus developed in this section we shall
often have Fourier integral operators defined only microlocally. It is ob-
vious how these microlocal versions of Theorems 25.2.2, 25.2.3 and 25.2.4
should be stated; they are really the statements which occurred in the
proofs.

The results proved in this section remain valid for I’} instead of I™, p>7,
but the remainder terms in the calculus are of course only 2p—1 units

lower in order.

25.3. Special Cases of the Calculus, and I? Continuity

Next to pseudo-differential operators, which have kernels in I™(X x X, C’) where
C is the diagonal A* in (T*(X)\ 0) x (T*(X)\ 0), the simplest Fourier integral
operators are those defined by

AeI™X xY,C'; 2}, , ® Hom(F,E))
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where C is the graph of a canonical transformation from T*(Y)~0 to
T*(X)~0. In that case C is a symplectic manifold with the symplectic form

— ¥ R
Oc=T}0y=n}0y

where oy, oy are the symplectic forms in T*(X), T*(Y) and =y, ny are the
projections from C to T*(X), T*(Y). The manifolds X and Y must have the
same dimension n then. We can factor out the natural symplectic half
density Qf from the symbol of A. This is a half density of order n/2,
so the order m+(n+n)/4 of the half density valued principal symbol is
reduced to m. Thus the principal symbol a is now regarded as an element in
S™(C,M.®Hom(F, E)). (That the order is reduced to m here is of course no
coincidence; we have chosen our normalizations to make this true for
pseudo-differential operators.) From the remarks following Theorem 21.6.7 it
follows that if BeI™(YxZ, C,; Q},,®Hom(G,F)) and 4, B are prop-
erly supported then ABel™*™ (X xZ, (C-C,); Q},,®Hom(G,E)) and
the principal symbol is obtained by multiplying that of B by a, with C
identified with T*(Y), and then identifying C, with CoC,.

From the calculus it is easy to deduce L? continuity. We content our-
selves with stating it in the scalar case but nothing needs to be changed in
the case of bundle maps.

Theorem 25.3.1. Assume that C is locally the graph of a canonical transfor-
mation from T*(Y)~0 to T*(X)~0 and let AcI®(XxY, C'; Q%.y). Then
A defines a continuous map from L2, (Y,Q3}) to L5 (X,Q}). It is com-

pact if the principal symbol of A tends to 0 at oo over every compact sub-
set of X x Y.

Proof. If the symbol of 4 has support in a sufficiently small cone then A has
compact support in X xY and A*Ael°(Yx Y,4*; Q},,), by Theorems
25.2.2 and 25.2.3. Thus A*A4 is a pseudo-differential operator of order 0,
hence I? continuous by Theorem 18.1.29, so

(Au,Au)=(A* Au,u)< C(u,u), uel*(Y,Q}).

If a is a principal symbol of 4, then |a|? is a principal symbol for 4* 4 when
considered as a function in T*(Y). If a—»0 at oo it follows that A*A4 is
compact. This implies that 4 is compact, for if u; is bounded in I? and
A*Au; is convergent then Au; is convergent since

A ;—u)l 2 =(A*A(u;—uy), u;—u,) 0.

Corollary 25.3.2. Assume that C is locally the graph of a canonical transfor-
mation from T*(Y)~0 to T*(X)~0 and let AcI™(X xY,C’; Q%,y)- Then A
defines a continuous map from Hig™(Y,Q3}) to HZ,.(X,Q%) for every
real s.

Proof. Let B be a properly supported pseudo-differential operator of order
s—m in X, and let B,,B, be such operators of order s and —s in Y with
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B,B,—1I of order —co. Then
BA=(BAB,)B, +BA(I - B,B,).

The last term is continuous from &' to C*, B, is continuous from H, to L*
and BAB, is continuous from I* to I* so BA is continuous from H, to I*
as claimed.

The calculus always allows one to pass from I? continuity to H
continuity as in the Corollary, and we shall therefore usually only discuss L
continuity in what follows.

For Fourier integral operators associated with a canonical transfor-
mation it is sometimes convenient to use a representation which is close to
that of pseudo-differential operators

(25.3.1) Au(x)=Q2mn)~" [N a(x,n)d(n)dn, ueCPR").
This means that the kernel is

(253.2) A(x,y)=Q2n) " @=D-m) g(x, n)dn.

This formula does indeed define AeI™(R2", C') if aeS™ and

(25.3.3) C={(x,9,,¢,,m}.

C is (locally) the graph of a canonical transformation if and only if
det(02¢/0x dn)+0, for this is the condition for the maps (x,n)~ (x,d.) and
(x,n) (¢}, 1) to be local diffeomorphisms. The graph of any homogeneous
canonical transformation is locally of this form:

Proposition 25.3.3. Let C be the graph of a local homogeneous canonical trans-
formation from a neighborhood of (yo,m9) € T*(Y)\ O to a neighborhood of
(x0,&0) € T*(X)\ 0. Then one can choose local coordinates y at yo such that C
is of the form (25.3.3) in a neighborhood of (xo, &0, Yo, o) and det 8¢ /8x 6n # 0
at (xp,70). One calls ¢ a generating function of C.

Proof. We can choose the y coordinates so that

Ca(x, &, y, M (x,n)

is a local diffeomorphism at (x4,&,,0,7)- In fact, C~' maps the La-
grangian fiber T} in T*(X)\0 to a conic Lagrangian through (y,,#,). By
Theorem 21.2.16 we can choose the local coordinates so that it is transver-
sal to the plane n=n,, and then the map Ca(x,¢,y,n)(x,n) has injective
differential. By Theorem 21.2.18 we can now find a homogeneous function
S(x,7n) in a neighborhood of (x4, —#,) such that

Cl = {(xa - 6S(x, ")/axy as(x’ 'I)/aﬂ, ’7)}
With ¢(x,n)= —S(x, —n) the proposition is proved.
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If AeI™(X x Y,C’) and WF'(A) is sufficiently close to (x4, &g, ¥q, M), it
follows from Proposition25.1.5 that modulo C*® one can write 4 in the
form

(25.3'2)1 A = (zn)—ﬂ ."ei(¢(x,'1)'“ <ymd) a(x’ y’ r’) dﬂ

where aeS™. On {(x,y,7); ¢,(x,n)—y=0} we can take (x,n) as parameters
and the density 6(y—¢;) is then |dx||dn|. Hence a(x, ¢,(x,n),n)|dx|*|dn|* is
a principal symbol of 4 with the parameters (x,n7) on C and the Maslov
bundle trivialized by the phase function ¢(x,n)—{y,n). We have the same
principal symbol if a(x, y,n) is replaced by aq(x, n)=a(x,d¢/0n,n). Thus

A =Q2m)™" [ @EN=O M) a(x, y, )~ aqlx, n) dnel™
and we can apply the same argument to A,. Iterating the argument we
obtain a;eS™ "~/ such that
@m)~" [ HeEn =M a(x, y, 1) — ZNa,-(x, n)dnel™ ",
i<
Ifb~§ajeS"' then
° A—(21:)‘"je""“""'"“”'”b(y, ndneC*®

which proves that modulo C® every Ael™ with WF'(A) close to
(x05 %95 Y0>Mo) is Of the form (25.3.2), (25.3.1).

To compute the principal symbol of A with the half density removed we
must use the symplectic coordinates (x, &) =(x, ¢.(x,7)). Since

ldx||d&|=|det @y, (x, m)l |dx||dn]
division by |dx|?|dé|* leaves as principal symbol of (25.3.2)

a(x, ¢, (x, 1), n) [det ¢, (x, )| 73,

with the Maslov bundle trivialized by the phase function in (25.3.2)".

One can work almost as easily with Fourier integral operators belonging
to a canonical transformation as with pseudo-differential operators. The
notion of elliptic operator is well defined:

Definition 25.3.4. If C is (the graph of) a homogeneous canonical trans-
formation from T*(Y)~0 to T*(X)~0 and Ael"(XxY,C; Q},,
® Hom(F, E)), then A is called non-characteristic at (xy, &y, yq,1,)€C if the
principal symbol has an inverse €S~™(C, M¢ ' ® Hom(E, F)) in a conic neigh-
borhood. A is called elliptic if it is non-characteristic at every point in C.

The proof of Theorem 18.1.24 can be used again to show that if C!
is also a graph and A is everywhere elliptic and properly supported
then A has a parametrix Bel ™(Yx X, (C™'); Q}, ,® Hom(E, F)), that
is, BA—1I and AB—1I have C* kernels. We have such operators in mind
in the following theorem of Egorov:
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Theorem 25.3.5. Let C be the graph of a homogeneous canonical bijection
from T*(Y)N0 to T*(X)~0 and let Ael™(XxY,C; Qi.,), and
Bel ™Y x X, (C~1'Y; Q},4) be properly supported. If P is a properly sup-
ported pseudo-differential operator in X it follows that Q=BPA is a properly
supported pseudo-differential operator in Y. If c is a principal symbol of BA and
p is a principal symbol of P, then c¢ (poy) is a principal symbol of Q if C is
the graph of the canonical transformation y.

Proof. If PeP*(X) then PAel™**(X x Y, C') hence BPAe ¥*(Y). A principal
symbol of PA is obtained when that of A is multiplied by p lifted to C by
the projection to T*(X)~0. This is equivalent to multiplication by the
function poy on T*(Y)\0 lifted by the projection to T*(Y)\O0, thus
PA—ARelI™*-! if Re¥*(Y) has principal symbol poy. Hence
BPA—BAReW*~! which proves the statement.

There are of course also local forms of the preceding results. When using
Theorem 25.3.5 for example we choose B and A with (y,,%,)¢ WF(BA—1I)
which only requires y to be defined near (yq,1,). The result then says that a
pseudo-differential operator with principal symbol poy is microlocally con-
jugate to one with principal symbol p. Together with the results of Sec-
tion21.3 and arguments to remove the terms of lower order, this will be
important in the study of pseudo-differential operators in Chapter XXVI. In
what follows we shall also use the related observation that the microlocal
study of operators Ael™(X x Y, C’) with a general canonical relation C can
be simplified by composition right and left with elliptic Fourier integral
operators belonging to canonical transformations. Thus we may replace C
by C,oCoC, where C, and C, are graphs of canonical transformations.
This means that we can simplify C by making arbitrary homogeneous
canonical changes of coordinates in T*(X)~0 and T*(Y)~\0. To discuss the
simplifications which this can yield we start as usual with the linear case.

Lemma 25.3.6. Let S,, S, be symplectic vector spaces with symplectic forms
gy, 05, and let G=S,®S, be Lagrangian for 6,—a,. Then there are sym-
plectically orthogonal decompositions of S, and S,,

$;=81:1®812, $§,=5,,85,,
such that G=1,®G®1, where A; is Lagrangian in §;; and G is the graph of
a linear symplectic transformation S,, > S, ,.
Proof. Let A, ={yeS;; (y,0)eG}, 1,={yeS,; (0,y)eG}. These are isotropic
planes and G < A{@®1J since G is Lagrangian. If we write
A{=4,0S8,,

then S,,~1{/4, is symplectic and S, =S, ,@®S,, where the symplectically
orthogonal complement S,, of S,, contains 4,. We define S,, and S,, in
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the same way and obtain G = A\; ® G @ )\, where G C S, @ S, has bijective
projection on S;, and S,,. Since dimS;;=2dim4; it follows that 1; is
Lagrangian in S ;.

Let o be the form o, lifted to G or equivalently the form o, lifted to G.
It is equal to oz in G and vanishes in A, and A, which are also oy
orthogonal to G. Hence the rank of o is dim$, ,,

(25.3.4) corank o =dim 1, +dim 4,.

This number will play a role in the L* estimates below. However, we shall
first use Lemma25.3.6 to put quite general canonical relations in a con-
venient form:

Proposition25.3.7. Let S, and S, be conic symplectic manifolds and C a
homogeneous canonical relation in a neighborhood of (y,,7,)€S; X S,. Assume
that the radial direction of S; at y; is not a tangent of C, j=1,2. Then one can
choose homogeneous symplectic coordinates (x,) in S, at y, and (y,n) in S, at
Y5, such that with a splitting x=(x',x"),....,(n",n") of the x,&, y,n variables
with n variables in the first group we have x=y=0, £=(1,...,0), 5
=(1,0,...,0) at (y,,7,), and the tangent plane of C there is defined by

dx'=dy', d&¢=dyw, d&' =0, dn"=0.
Here 2n is the rank of o at (y,,7,)-

Proof. We apply Lemma25.3.6 to the tangent space G=T,, ,.(C) contained
in T, (S,)®T,(S,)- By hypothesis the radial vector p;eT, (S) is not in 4;.
However, (p,, p,)€G since C is conic, so

ofp;t)=0 if t;ed;,
and in general
oi(p1,t))=0,(ps,t;) if (¢;,t,)€C.

Set dimS§;=2n; and dimS,,=dimS,,=2n with the notation in Lemma
25.3.6. Then 4; is of dimension n;—n so we can choose a basis e, ,,...,€,,
for 4, and a basis ¢,,,,...,¢, for A,. Since p,,e,,,...,e, are linearly
independent we can use the beginning of the proof of Theorem21.1.9 to
choose e, ...,e, and ¢,,...,¢,, satisfying (i), (iv), (ii), (iii) there with b,=4,.
With &, =p, we get a symplectic basis. Since e,,...,e,, &,...,&, are @
orthogonal to 4, we can find é,,...,¢,, &,...,&, such that (e,,é,)),...,(g,,&,)
are in G. These new vectors then satisfy the same commutation relations as
€y,...,€p, €,..., &, including the symplectic product with p, resp. p,. All of
them are orthogonal to e¢,,,,...,e,,. We can take & =p,. Omitting &, at
first we can use the extension argument in the beginning of the proof of
Theorem 21.1.9 again to complete the symplectic basis é,,...,&,,. The last
vector & chosen is necessarily p, which restores the vectors chosen orig-
inally. Thus G is spanned by (e;,&;), (¢;,¢j), j = 1,...,n, and by (¢;, &) for
j > n. Now the end of the proof of Theorem 21.1.9 shows that we can find
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homogeneous symplectic coordinates (x, £) in T*(X)~\0, equal to (0,(1,0)) at
71, such that H, = —¢; and H, =e; there. Then C has the stated form if we
choose (y,n) in a similar way.

The location of the tangent plane of C in Proposition 25.3.7 shows in
particular that x’, x”, n’, y” can be used as local coordinates on C. As in the
proof of Proposition 25.3.3 an application of Theorem 21.2.18 shows that we
can find a homogeneous function S(x’,x"”,y”,x’) in a conic neighborhood of
n'=(—1,0,...,0), x'=0, x" =0, y”"=0, such that

C'={(x',x", —0S/0x’, —0S/0x";0S/on’, y",n', —OS/dy")}.
If we put ¢(x',x",y",n)=—=8(x',x",y", —n') then

C={(x',x",0¢/0x',0¢/0x";0p/0n',y",n', —0¢/0y")}
which shows that C is locally parametrized by the phase function
¢(xla xn’ ,V”, ’7’) - <y,a r’,>
If AeI™(R™ xR™,C’) and WF'(4) belongs to a small conic neigh-

borhood of (0,¢,,0,&,) where ¢, =(1,0,...,0)eR™ and &, =(1,0,...,0)eR"™ it
follows that we can write A modulo C? in the form

A =(21[)_(M+"2+ 2n)/4 5 ei(¢(x',x",y",1|')——(y’,q')) a(xl, xn, y,, y”, V[’)d"]'

Here the dependence of a on y’ can be eliminated as in the discussion of
(25.3.2) above, and then we have

(2535) Au= (2 71’)—("' +ny+2n)/4 ”’ ei¢(x’.x”.y”.n’) a(x/, X", y”, 1’[’) ﬁ("l’ yn)dr’/ dyn

where i(r, y”) is the Fourier transform of ue CY(IR") with respect to the n
variables y, and aeS™*™*m-2mM4 hag support in a small conic neigh-
borhood of (0,0,2,). At that point itself the difference ¢(x', x",y",n)— (X', 7"
vanishes of third order so A is fairly close to a pseudo-differential operator
in x' depending on the parameters x”, y". This will be used later on. At the
moment we just observe that for small x”, y we do have a Fourier integral
operator associated with the canonical transformation with generating func-
tion ¢, where x” and y” have been fixed. The order is m+(n, +n,—2n)/4
=m+(corank 6-)/4. By Theorem25.3.1 we therefore obtain I? continuity
when m < —(corank a,.)/4. '

Theorem 25.3.8. Let AeI™(X x Y,C'; Q%,,) where C is a homogeneous ca-
nonical relation to which the radial vectors of T*(X)~0 and T*(Y)~0 are
never tangential. Then A defines a continuous operator from chomp(Y, Q}) to

L .(X,Q}) if m< —(corank a.)/4. Here o is the two form on C obtained
by lifting the symplectic form in T*(X) or T*(Y) by the projection from C.

Proof. The distribution A can be microlocalized so we may assume that
WF'(A) is in a small conic neighborhood of (y;,y,)eC. If n;=dim X, and
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n,=dim Y, we can choose a homogeneous canonical transformation from a
conic neighborhood of (0,&,)e T*(IR™) to a conic neighborhood of y,, with
graph C,, and another homogeneous canonical transformation, with graph
C,, from a conic neighborhood of y, to a conic neighborhood of
(0,&,)e T*(R™) such that C,o Co C, has the form in Proposition25.3.7. Let
F, and F, be Fourier integral operators of order 0 associated with C, and
C, which are elliptic at (0,¢,;y,) and (y,;0,&,) respectively. Then
F,AF,eI™(R™ xR"?; (C,0 Co C,)) is of the form discussed above, hence I?
continuous. We can choose G, and G, of order 0 associated with C;! and
C; ! so that
(V1. 7)EWF' (G F, =1),  (y,,7)¢ WF'(F,G, 1)

Then the operator G, F1AF,G, is L? continuous and G, F1AF,G; — A € C*™ if
WF'(A) is sufficiently close to (y,,7,). The proof is complete.

The conclusion in Theorem 25.3.8 is optimal if 6. has a constant rank
2n. In fact, in that case the projection C— T*(X)~0 has constant rank
equal to n+dim X, by Lemma 25.3.6. The range is therefore locally a sub-
manifold X, of that dimension (PropositionC.3.3), and Lemma25.3.6 also
shows that 2, is involutive and that the tangent plane is not orthogonal to
the radial vector. By Theorem21.2.4 it follows that we can choose homo-
geneous symplectic coordinates such that X, is defined by ¢”=0 and the
projection of C in T*(Y)~\ 0 is defined by n”=0. The generating function ¢
constructed above is then independent of x” and y” so we have operators A
which are independent of x” and y” if the amplitude a is so chosen. For
them it is obvious that Theorem 25.3.8 cannot be improved. However, in general
the rank of o¢ may only drop from its maximum value on a small set, so the
following converse of Theorem 25.3.8 leaves a gap in general.

Theorem 25.3.9. Assume that every Ael™(X xY, C'; Q%) defines a con-
tinuous operator from L% (Y,Q}) to I3 (X,Q}) and that the radial vec-

‘comp

tors of T*(X)N0 and T*(Y)\0 are never tangential to the homogeneous
canonical relation C. Then corank o< —12m.

Proof. In view of Proposition253.7 and the argument in the proof of
Theorem 25.3.8 it is sufficient to prove that if ny and ny denote the number
of x" and y” variables then ny+ny < —12m if (25.3.5) is L* continuous when

a(x',x",y" )= +|71>"*  u=m+(ny+ny)/4,
in a conic neighborhood of x'=x"=y"=0, '=0=(1,0,....,0) where
(25.3.6)  |p(x',x", )", 1) —<x', 1)
S CUXP+1x"P+1y )+l + .+ ) 12).

We apply 4 to .
u‘(y)———u(ty,, tKyu)eer(y'.a)’ K=%,
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where ueCJ(R™). For large t the support of u, is close to 0 and the
spectrum is concentrated at t26. The I? norm of u, is t~"+*"¥/2||y]|,,, and
the Fourier transform with respect to y' is

=t~ a0t —16,ty").
Hence Au,(x)=f(tx’,t*x"") where
f,(x) =t —xn;(z n)—(m +n2+2n)/4 “‘ ei¢(x’/!,x”/t",y"/!",tZO+tn’)
ca(x'[t, x"[t%, Y [t 20+t (', ¥y ) Ay dy”.
Since x = % we obtain using (25.3.6)
|£2 @ Ox'/t, X" [,y [, 0+ 1’ /) = t2{x'[t, 0+ 1 [t 2D
SCUXPRHIX"P+HY P +InPry  if In1<t/2.
The integrand can be estimated by
Cla(n, y" N (A +1e20+tn))* < C'e2# (', y ) (L + 0 >
if we consider separately the cases where || <t/2 and |¢'|>t/2. Hence
ﬁ(x)t—2u+xn’,;e—il(x'.9) -2 n)—(n, +ny+2n)/4 .” ot (X HIQ" ") '2('7” y)dy'dy’
=(2m)~ x4 j‘ &YV y(x ") dy"

where @ is the third order polynomial in (x”,y") in the Taylor expansion of
¢ at (0,0,0,6). For suitable u this is not 0 so

(OIS Ol Aul, gl =l 2,
Hence the continuity of 4 implies that
QUK+ ) 2= (i + )3,
so m<(ny +ny) (2 —3 = —(ny +ny)/12, which proves the theorem.

Remark. Using non-homogeneous canonical transformations one can elim-
inate the condition on the radial vectors in Theorems 25.3.8 and 25.3.9.

We shall now discuss the canonical relations with folds in Theorem
21.4.11 where equality will actually be attained in the inequality proved in
Theorem 25.3.9. Substitution of Theorem 21.4.11 for Proposition 25.3.7 in the
proof of Theorem25.3.8 shows that it is sufficient to study the canonical
relation Cc< T*(IR"\0) x T*(R"~\ 0) defined by the phase function

b(x,,5,8)={x—p,&> +s&, —5°¢,/3.
We recall that ¢, = ¢, =0 means that
X =yi+s=0;  x,—y,—s’3=0; x;=y, 1<j<n; ¢ =5,
so ¢ parametrizes the canonical relation
C={(x,%&,, &, X, +5,X5 003X, _ 1, Xy —5/3,5%&,, &), E,>0}.
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Here x, &'=(,,...,£,) and seR are parameters on C, £,>0. We have
0(ds, ) =ldx||dZ'| |ds| with these parameters since

D(x’ élis’ ¢I§’ ¢;)/D(x,y, tf,S)= + 1.

To obtain a homogeneous system of parameters we must replace s by &,s
say, and this will be important to keep in mind since it influences the order
of the corresponding Fourier integral operators.

If AeI™(R"xR", C") and WF'(A) is in a compactly generated conec C, it
follows from Proposition 25.1.5 that modulo C*

(253.7)  A(x,y)=(Qm)~Cr+2+ 104 [[gi65r.50 g(x, y, 5, &) dsdE

where geSm*!+(2n-2m+1)4_gm+4 Here we have taken into account that
replacing s by a homogeneous parameter reduces the degree by one unit as
in the proof of Theorem 25.2.3. The principal symbol of A4 is

(25.3.8) ao(x,s, &) |dx|*|d&|* |ds|?,
ao(x,5,E)=a(x, X, +5,%5, ..., Xy_1, X, —5/3,5,5%&,,E)eSm+

when x, s, £ are parameters on C and the Maslov bundle is trivialized by ¢.
We obtain the same principal symbol when a is replaced by a,. As in the
discussion of (25.3.2) above we can therefore conclude that modulo C* it is
possible to represent A with an amplitude a(x,s, £)eS™** independent of y
and ¢, in (25.3.7), thus

(2537 Au(x)=(Q2m) """} [[ <O +sb-CwiI g(x 5, &) d(E) dE ds.

Using Theorem 7.7.18 we could show that integration with respect to s gives
modulo C* kernels

(25.3.9) Au(x)= (27r)”"+*~j €<= a(x, &) (¢ de,
(253.10)  a(x, &)=Ai(—&, &) bo(x, &)+ A (&, & )b, (x, &).

Here Ai is the Airy function (7.6.16) and byeS™*¥(R"xR"), b, eS™ *(R"
xIR") and b; have support where |{|<C, ¢, for some C,. However, we shall
not rely on this method of proof, which would actually require a slight
extension of Theorem7.7.18. Instead we shall prove that (25.3.9), (25.3.10)
with such restrictions on the supports implies that AeI™(R”xR", C’) and
show that elements of this form have principal symbols restricted only by
the support conditions. As in the discussion of (25.3.2) above this allows us
to show by successive reduction of the degree that any element in I™ with
sufficiently small wave front set has the representation (25.3.9), (25.3.10).

Inserting the definition of the Airy function in (25.3.10) we obtain the
oscillatory integral

(25.3.11) a(x, &)=Q2n)~! ojoe"(S’/-"—sﬁ'én“}’(bo(x, &) +isb,(x, &) ds

—@m) | s EIp (x, E)E —isEhb,(x, &)ds.
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By hypothesis we have [£,|< C,¢, in suppb;. Hence

;—s(sél—s3é,,/3) =&, —s2¢,|>s2E,2  if s2>2C,.

Choose yeCg(R) equal to 1 in (—-}/2C,, Y2C,). Then it follows from
Theorem 7.7.1 that the integral obtained by inserting a factor 1 —x(s) in the
last member of (25.3.11) defines a function in §~*. (It does not really matter
that the integral is taken over a non-compact set for already a first integra-
tion by parts with respect to s will give an integrable factor < C/(s*¢,).)
Hence, modulo C*, the kernel of (25.3.9) is

A(x,y)=Qm) "4 [ F=n0>+58=603) y (5)(bo(x, E) & —ish  (x, §) ) ds dE,
and the principal symbol is by (25.3.8)
(25.3.12) a(x,s, &) |dx|*|dE* |ds)3,
a(x,s,&)=by(x,5%¢,,&) &3 —isb,(x,5*E,, &) L.
Here x(s) has been omitted since y(s)=1 in the support of the other factor.
The right-hand side is in S™** and every function aeS™** can be written in

this way when the support is appropriate. In fact, splitting a in a sum of an
even and an odd function with respect to s we can write

a(x,s, &) =ay(x,s% &) +sa,(x,s%, &)

where a, and a, are symbols of the same order. (See Theorem C.4.4 in the
appendix.) We can then take

bo(x, &)=, Yay(x,$1/8,8) by, Q) =18 2a,(x,8,/¢,,8)

which have the required properties than.

d is not very well behaved as a symbol. In fact, from (7.6.20) it follows
that |4i®(t)| < C,(1+[t)>~* and this is the best possible estimate of its
kind. Differentiation with respect to £ will therefore not improve the be-
havior at infinity. However, if m+ ¢ <0 we have for every «

IDa(x, &)l = C,.

By Theorem 18.1.11’ this implies I? continuity if a vanishes for x outside
some compact set. Summing up, we have now proved:

Theorem 25.3.10. If b,eS™**(R"xR") and b,eS™ #*(R"xIR") have supports
where |E| < C &, then (25.3.9), (25.3.10) define an element AcI™(R"x R", C')
where C is the canonical relation (21.4.20), (21.4.20). With the Maslov bundle
trivialized by the phase function (21.4.19) the principal symbol is given by
(25.3.12). Every AelI™(R"xR", C’) with |{|<C,¢&, in the wave front set has
such a representation, and A is I? continuous if m< —1.

From Theorem 25.3.10 and Theorem 21.4.11 we obtain using also the argu-
ments in the proof of Corollary 25.3.2: '
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Theorem 25.3.11. Let Cc(T*(X)\0)x(T*(Y)\0) be a homogeneous canoni-
cal relation which is closed in T*(X x Y)N\0, such that the projections
C—- T*X)N0 and C—- T*(Y)\0 have at most fold singularities. Assume that
there is no point in C where the canonical one forms in T*(X)\0 and
T*(Y)~0 both vanish in the tangent space of C. Then it follows that
every AcI™(X x Y, C'; Q% ;) defines a continuous map

H™ (L Q) - Hi (X, 23).

Note in particular that Theorem 25.3.11 shows that Theorem 25.3.9 can-
not be improved.

25.4. Distributions Associated with Positive Lagrangian Ideals

Let S be a C* symplectic manifold with dimS=2n, and let AcS be a C*
Lagrangian submanifold of S. Then the set

J={ueC*(S,R), u=0 on A}
is an ideal in C*(S,R) with the following three properties:

(i) J is closed under Poisson brackets, that is,
(254.1) {u,v}eJ if u,veld.

(i) For every point in S there is a neighborhood V and functions
uy,...,u,eJ such that du,...,du, are linearly independent at every point in V
and u,,...,u, generate J in ¥, that is, every ueJ with supp ucV can be
written

u=Yau;, a.eCyV)
1
(iii) If fueJ for every feCg then uel.

Conversely, assume that J is an ideal in C°°(S,IR) with the properties (i), (ii)
and (iii), and let A be the set of common zeros of the functions in J. From (ii) it
follows that A is a manifold of dimension n, and (25.4.1) shows that A is
involutive, hence Lagrangian. By a partition of unity we find using (iii) that
J consists of all functions in C%(S,R) vanishing on A. Identifying La-
grangian manifolds with the corresponding ideals we can now define complex
Lagrangians by simply removing the restriction to real valued functions.

Definition 25.4.1. Let S be a C* symplectic manifold. An ideal J = C*(S, C)
satisfying the conditions (i), (i), (iii) above, with du,,...,du, now linearly
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independent over €, is called a complex Lagrangian ideal. If S is conic we
say that J is conic provided that in condition (ii) one can choose V conic
and the generators u; homogeneous.

The set of zeros of J,
Jr={7€S; u(y)=0 for all ueJ}

is not necessarily a manifold but we can define a tangent plane T,(J) in the
complexification of T(S) for every yeJg as the intersection of the planes du;
=0 where u,,...,u, are local generators of J. It is clear that this definition
does not depend on the choice of generators. T(J) is Lagrangian since
{u;,u,} =0 at v, j,k=1,...,n, so the real points in T,(J) form an isotropic
plane. The following is an analogue of Theorem 21.2.16.

Proposition25.4.2. Let X be a C™ manifold and let J be a complex conic
Lagrangian ideal in C*(T*(X)~0). For every y,eJg the local coordinates
Xy,...,X, at the projection x,€X of y, can be chosen so that, with the
corresponding coordinates (x, &) in T*(X), the Lagrangian plane defined in the
complexification of T, (T*(X)) by the equations d§;=0 is transversal to T, (J).
If yo=(x4,&,) one can choose He C*®, homogeneous of degree 0 in a conic
neighborhood of &, such that J is generated by x;—0H({)/0¢; in a conic
neighborhood of y,. Conversely such functions always generate a complex
conic Lagrangian ideal. If H is another function with the same property then
we have for every N in a conic neighborhood of &,

IH'(Q) - HOISCyImHQ),  |HE)-HE)I= Cylé| tm HEM.

Proof. If 1 is a Lagrangian plane in T*(C") it follows from the complex
version of Corollary 21.2.11 that one can find a complex Lagrangian plane
transversal to A and the plane x =0, hence of the form

¢=Bx

where B is a complex symmetric matrix. That this plane is transversal to A
means that a certain determinant involving B is not 0. Since a polynomial
does not vanish identically for real arguments if it is not 0, one can always
choose B real. But then the proof of Theorem 21.2.16 shows that the local
coordinates can be chosen so that the desired transversality is obtained.

With such coordinates for A=T, (J) let uj(x,{), j=1,...,n, be local gener-
ators of J at y, which are homogeneous of degree 0. The transversality
means that the equations duj=0, d¢;=0, j=1,...,n, imply dx=0, that is,
det(0u;/0x,)+0. By Lemma7.5.9 we can then in a neighborhood of y, find
generators for J of the form x;—hi(&), j=1,...,n. Restricting h; to the unit
sphere and extending by homogeneity from there we find that h; can be
taken homogeneous of degree 0. By (25.4.1)

{x;= B (&), X, — hy(&)) = Oh JOE;— Ok JOE €.
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Set H(¢)=) ¢ jhi(€). Since h, is homogeneous of degree 0 we have
aH/afk_hk=z'fj(ahj/aék"ahk/aéj)e-],

so x,—0H/0¢.eJ. Hence x,—0H/0&,, k=1,...,n are generators of J by
Lemma 7.5.8. To prove the last statement we use that the homogeneity gives

H(§)—H()=Y ¢ (0H/0&;— 0H/OE ).
Since 0H/0¢,—0H/0¢ ;€] we have by Lemma 7.5.10
|0H/0E —0H/0E| < Cy|0Im H/OEN
for every N, which completes the proof.

Guided by Proposition 25.1.3 we shall define I"™(X,J) microlocally as the
set of inverse Fourier transforms of functions of the form e ¥y where
veS™ "4(R"). However, this will not be a temperate distribution unless
Im H £0. If this condition is fulfilled, then Jy is defined by

{(H'($), §); Im H(£)=0}

in a neighborhood of y,, for Im H=0 implies Im H'=0 since Im H<0, and
Im H'=0 implies Im H=0 since H is homogeneous of degree 1. By Lemma
7.7.2 we have in a conic neighborhood of ¢,

[Tm H'(¢)I* < — CIm H(¢)/¢|

for both sides are homogeneous of degree 0. If H is another function
defining J we obtain from Proposition 25.4.2

IIm H(¢)—Im H(¢)| £ C|Im H(E)*/|¢] <|Im H(&)|/2

in a conic neighborhood of &,, since Im H(¢,)=0. Thus Im H <0 also. The
sign is also preserved when the local coordinates are changed. To prove this
we shall more generally consider how J can be defined by means of phase
functions. The following definition replaces Definition 21.2.15. For the sake
of simplicity we restrict ourselves to the non-degenerate case.

Definition 25.4.3. Let X be a C* manifold, x,eX, and let ¢(x,6) be a C*
function in an open conic neighborhood I'c X x (R¥\0) of (x,,8,), which
is homogeneous of degree 1 in 0. Then ¢ is called a non-degenerate phase
function of positive type at (x,, 0,) if ¢y(x,,0,)=0 and

(i) $%(xo, 00) +0; .

(ii) the differentials d(0¢/00,), ...,d(0¢/06)) are linearly independent over
the complex numbers at (x,,60,);

(iii) Im ¢(x,0)=0in I

A phase function of positive type always parametrizes a Lagrangian:

Proposition 25.4.4. If ¢ is a non-degenerate phase function of positive type at
(xg,00)€X x (R¥\0) then ¢'(xq,00)=E,€T*~0. If x,,...,x, are local

0
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coordinates in X and &,,...,¢, corres;londing coordinates in T*(X) then the
functions independent of 0 in the ideal J generated by

(2542)  0¢(x,0)/00,, j=1,..,N; 0¢/ox,—&, k=1,...,n,

form a conic Lagrangian ideal J in a conic neighborhood of (x4, ¢&,). If this is
regarded as a conic set in T*(X)\0 then J does not depend on the choice of
local coordinates, and T,(J) is a positive Lagrangian plane at every point yeJ.
When the coordinates are chosen as in Proposition25.4.2 the ideal is generated
by x;—0H/0&;, j=1,...,n, where HeC> is positively homogeneous and
Im H £0 in a conic neighborhood of &,. We have

o(x,0) —<{x, &>+ H(E)eJ>.

Proof. Since  ¢(xg,0,)={Py(x0,0,),0,>=0 and Im¢=20, we have
Im ¢/ (xo,00)=0 s0 o= (x0,00)€T%~0 by (i). The differentials of the
generators (25.4.2) are linearly independent at (x,, 6, &,), for if

Zajd a¢/aoj+zbkd(a¢/axk_£k)=0

then b, =0 since ¢, is an independent variable, hence a;=0 since ¢ is non-
degenerate. Let J be the ideal generated by the functions (25.4.2) in a
neighborhood of (x,,8,,&,), and let J be the set of functions in J which are
independent of 6. It is clear that J is invariantly defined on T*(X) in a
neighborhood of (x,,&,). To examine J it is convenient to use local coor-
dinates such that det @ +0 at (x,,0,) if

(25.4.3) &= (¢,’j" 4’,’:").

0x (L)

The proof of Proposition 25.1.5 shows with no essential change that this is
true if and only if the plane d{=0 in the complexification of T, , (T*(X)) is
transversal to the complex Lagrangian plane A which is the image under
d(x, ¢, (x,0)) of the subspace of the complexified tangent -plane of
X x (RV\0) at (x,,0,) where d¢,=0. In the proof of Proposition 25.4.2 we
saw that this transversality can be obtained by a suitable choice of local
coordinates at x, in X. Now the fact that det ® +0 means by Theorem 7.5.9
that generators for J can be chosen of the form

(25.4.2y x;—=X[8), 6,—0,%.

We can choose X; and ©; homogeneous of degree 0 and 1 respectively,

hence defined in a conic neighborhood of £,.
Since the generators (25.4.2) are the derivatives of

f(xs 9’ €)= ¢(xs 0)'— <x’ é)
with respect to x and 6, it follows from Lemma 7.7.8 that there is a function
£0(®) with f(x,0,&)—f°(¢)eJ? and
(254.9) Im f°(¢)2 C(IIm X(¢)|* + |Im 6(¢)|*)
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in a neighborhood of &. Restricting to |¢| = || and extending by homogeneity
we can make f° homogeneous of degree 1. Since

J20(f(x,0,8)—f2EN/IE;= —x;— f A(€)/0¢;

it follows that we can replace the generators x;— X (¢) in (25.4.2) by x;

+0f°(£)/0&;. Every C*™ function g(x, &) in a neighborhood of (x,,&,) can be
written in the form

g(x, &)=Y q;(x, &) (x;+0f °(&)/0&;) +r ().
If geJ then reJ so in a neighborhood of &, we have for every N
Ir(©)] < Cy(IIm X(2)] +|Im O@))"
by Lemma 7.5.10. Since
IIm £°(&)|=1Im <3f °(&)/0¢, £>| < CI¢| |Im af °(£)/0¢|
it follows in view of (25.4.4) that for every N
(&)l < Cy|Im of %(€)/0¢I".

Hence Theorem7.5.12 shows that r is in the ideal generated by x;
+0f%&)/0E;, j=1,...,n. If we set H(&)=—f°(¢) it follows that Im H <0 and
that J is generated by x;—dH(¢)/0¢;, j=1,...,n.

The complex Lagrangian plane A at the beginning of the proof is
the image of (dx,d{) when d({, —0¢/0x,)=0, k=1,...,n, and d(0¢/06,)=0,
j=1,...,N. These conditions are equivalent to d(x,—0H/d{)=0 and
d0;—0(£)=0, k=1,...,n; j=1,...,N. Hence A=T, ,(J) so the trans-
versality condition in the proof is identical to that in Proposition 25.4.2. That
T,,&(J) is positive follows from the fact that Im H"({,) <0 (cf. the proof of
Proposition 21.5.9). The proof is complete.

It is sometimes useful to decrease the number of 6-variables:

Corollary 25.4.5. Let the hypotheses in Proposition 25.4.4 be fulfilled, and
assume that with a splitting of the 0 variables in two groups ¢, 8" we have
det ¢g.o-+0 at (x,,0,). Then 0,+0, and there is a homogeneous function
¢'(x,0') in a neighborhood of (x,,6;) such that ¢'(x,0)—¢(x,0) is in the
square of the ideal generated by the components of 0¢(x,0)/00". The function
¢’ is a phase function of positive type at (x,,0,) defining the same ideal J as

¢.

Proof. The homogeneity of ¢ gives ¢g.,0=0, so 8,=0 would give 6;=0,
hence a contradiction. The existence of ¢’ follows from the discussion
preceding Lemma 7.7.8. The homogeneity is obtained by restricting to the
sphere |0'|=|0,| and extending by homogeneity. That Im¢’'>0 is a con-
sequence of Lemma 7.7.8. Since ¢’ —$eJ?, with the notation in Proposition

25.4.4, we have . R
o'jox;—&ed, 0¢'[00E].
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Hence the Lagrangian ideal J' defined by ¢’ is contained in J. Since the
number of generators of J and of J’ are both equal to dim X, it follows from
Lemma 7.5.8 that the ideals J and J' must be identical. This completes the
proof.

Remark. From Corollary 25.4.5 it is easy to obtain an extension of Theo-
rem21.2.18. In fact, let x=(x',x"”) be a splitting of the variables and set
D(x,0,y" . n")=¢(x,y",0)+{(x"—y",n"). Under the hypotheses in Proposi-
tion25.4.4 it is immediately seen that @ is a non-degenerate phase function
of positive type at (xq, 8y, xg, ;) Which also defines J. (We can homogenize
the parameters (y”,6,7") as in the proof of Theorem25.2.2.) ¢ has a non-
degenerate critical point at (x4, 8,, x5, £;) as a function of (y”,60) if dx=0,
dgg(x',y",0)=0, d¢).(x',y",0)=0, dn” =0 implies dy”"=d0=0, that is, if the
map T, .(J)2(dx,d{)w (dx',d") is injective. Then Corollary 254.5 shows
that we can eliminate the (y”,0) variables and obtain a new non-degenerate
phase function of positive type which has the form ¢,(x',n")+<{x",n").
Proposition 25.4.4 is the special case where no ¢ variables occur.

Definition 25.4.6. A conic Lagrangian ideal J is said to be positive at
(xq,&p)eJg if it can be parametrized in a neighborhood by a non-degenerate
homogeneous phase function of positive type.

By Proposition25.4.4 an equivalent definition is that for some local
coordinates the ideal J is locally generated by

x;—OHE)0E;, j=1,...,n,

where H is homogeneous and Im H<0. This is then true for all local
coordinates such that the plane d{=0 at (x,, {,) is transversal to T, . (J).

We shall now prove an analogue of Proposition25.1.5 which will allow
us to define I"™(X,J) when J is a positive conic Lagrangian ideal.

Theorem25.4.7. Let ¢, J and H be as in Proposition2544 and let
aeS™+=2N4R" x RN) have support in a small conic neighborhood I of
" (xg,0p). Then

(25.4.5) u(x)=2m)~ "+ 2N/ [ 00 g(x 0)dOe & (R")
is defin'ed as an oscillatory integral and
(25.46) WF () = {(x, §',(x, 0)); (x,0)€ T, $j(x,0)=0}  Jp.

One can find v, vyeS™ "*(R") with support in a small conic neighborhood of
&y and v—v,eS™ "4~ 1(R") such that (x,&q)¢ WF(u—u,) if

(254.7) uy(x)=2m) " [ C=O-HD y(£) d¢,
and
(25.4.8) vo(€)— 21" a(x, 0) (det ®/i)~tef

in a neighborhood of (xo,0,,&,). Here J is the ideal generated by (25.4.2) and
@ is defined by (25.4.3). Conversely, if u, is defined by (25.4.7) with
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veS™~"4(R") then one can find aeS™* "~ 2M/% such that (x,,&,)¢ WF(u—u,) if
u is defined by (25.4.5).

As a preparation for the proof we must discuss the condition (25.4.8).

Lemma 25.4.8. For every acS*(R" x R") one can find veS*(R") such that
(25.4.9) v(&)—a(x,0)e]

at infinity in a conic neighborhood of (x4,0,,&,) independent of a. Conversely,
given veS* we can find aeS" such that (25.4.9) is valid in such a set.

Proof. That aeS* means that the functions
(x,0)—a(x,t0)t*

are bounded in C* when t>1, say. A moment’s reflection on the proof of
Lemma7.5.7 then shows that in a fixed neighborhood V of (x,,0,,&,) we
can write

a(x,t0)t™* =3 b(x,0,&,)(x;— X )+ Y c)(x,0,£,)(0,— O (&) +v(&, 1)

where X (£) and ©({) are defined as in the proof of Proposition25.4.4 and
b;, c;, v are bounded in C*(V). If x({)e C* has support in a small neigh-
borhood of £, the product of the two sides by y will be equal in a conic
neighborhood of (x,,0,,,); hence we have there for ¢ >1

x(&/t)alx, 0)=t*x(E/D(X by(x, 0/t, &/, 1)(x;— X (&)
+2¢,0x,0/t,£/1)(6;— © ()t +v(&/t, 1)),

We can choose y so that

Ix(é/t)dt/t=1

in a conic neighborhood of &,, for this integral is a homogeneous function
of ¢ of degree 0 (cf. Section3.2). Now an integration with respect to dt/t
from 1 to oo gives if |¢] is large enough and (x, 0, &) is in a sufficiently small
conic neighborhood of (x,,0,,&,)

a(x,0)=3 B(x,0,8)(x;— X (£)+ Y C;(x,0,£)(6;,— 6 (&) +v(%)

where B;eS", CjES"_l and veS*. This proves the first statement. To prove
the second one we just divide v(t£)t~* in the same way by d¢/00— ¢ with a
function of (x,0) as remainder, multiply by a function of (x,6), change

variables and integrate. There is no need to repeat the details.

Remark. If veSnJ it follows from Lemma 7.5.10 that |D*v(¢)] can be esti-
mated by |£fF~*-V|Im H)® when |£|>1, for all N and « Since
|Im HI¥ ™ is bounded it follows that the corresponding distribution
(25.4.7) is in C*. Thus the choice of v, in (25.4.8) is irrelevant mod C*.

Proof of Theorem25.4.7. The distribution (25.4.5) was defined in Theo-
rem7.8.2, and (25.4.6) follows from Theorem8.1.9. In the rest of the proof
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we can follow that of Proposition25.1.5, starting from the representation
(25.1.5) of #(¢), which we divide by e since this is an exponentially
increasing function. As before it follows that in a conic neighborhood of &,
we have (&)= Uy(&)+ U,(&) where U, is rapidly decreasing and with |¢|=¢,
E/t=1, xe CXR¥~.0)

(254.10)  Uy(&)=(2m)~ "+ 2N ([ git@ 0= <xm) y(0) a(x, t)eY dx d.

We assume that |{,|=1. When n=¢, the exponent has only the critical
point (x,4,0,) in the support of the integrand so for n close to £, we can by
Theorem 7.7.1 choose y with support as close to 6, as we please. In view of
(254.6) we know that U; is rapidly decreasing outside any given conic
neighborhood of &, if the support of a is in a sufficiently small conic
neighborhood of (x,,8,). Thus we may require that # is close to &,. We can
then apply Theorem7.7.12, with w=t, noting that the error term there is
uniform with respect to u when u and the various residue classes are
bounded in C*. The exponent ¢(x,0)—<{x,n> is congruent to — H(n)
mod J2. The coefficients of the operator L ; in (7.7.23) are homogeneous in
0 of degree —j, hence congruent modJ to homogeneous functions of # of
degree —j. Replacing by &/t and multiplying by the factor ¢t~/ in (7.7.23)
we obtain homogeneous functions of ¢ of degree —j. By Lemma254.8
a)(x,0) is congruent modJ to a function a,,(é)eS"~ ! in a conic neigh-
borhood of (x4,8,,&,), if p=m+(n—2N)/4. Hence alf)(x,t0) is congruent to
a,4(tn) modulo the ideal generated by the x, 6 derivatives of ¢(x,0)—(x,n),

S0
020ha(x,t0)=1t"la,,(tn)

modulo this ideal. Since |¢|*'a,4(£)eS* the ™ term in the sum in (7.7.23) is
therefore in $*~7J; if we take v terms the error term can be estimated by
C t—V—(n+N)/2tu+N=C tm—n/4—v
v v M

If A(€) is homogeneous of degree n— N and congruent to det (/i) modulo J,
then the determinant factor in (7.7.23) becomes

(2m)= N2 Am)~E=2m N2 A e

where ¢t~V cancels the factor tV in (25.4.10). Thus we obtain from (7.7.23) a
sequence v;eS**+N-"/2=i=gm=r4=J guch that

U — ¥ vf&)e  HO < C,|gm 4=,

j<v
If v~) v,eS™~"* it follows that
0 .
Uy(&)=U (&) —v() e~ H@

is rapidly decreasing in a conic neighborhood of &,, so (x,,&,)¢ WF(u,) if i,
=U,. This completes the proof of the first statement in the theorem.
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To prove the converse we observe that we can choose a,eS™+®~2N/4 ¢
that

(25.4.11) (&) — 21" a,(x, 0) (det (B(x, 0)/i)~ *e].

If u is defined by (25.4.5) with a=a, then u,=u, —u is mod C* of the form
(25.4.7) with v equal to some R,eS™~"*~! in a conic neighborhood of &,.
We can iterate this procedure and obtain successively a;eS™+®"-2M4+1-J
such that if u is defined by (25.4.5) with a=a, +... +a; then u, —u is of the
form (254.7) with v equal to a function R;eS™ "*~/ in a fixed conic
neighborhood of £,. When a~ Xa; the assertion in the theorem is proved.

Definition 25.4.9. Let J be a positive conic Lagrangian ideal in T*(X)\0
where X is a C* manifold. If E is a vector bundle on X then I™(X,J;E) is
the space of distribution sections U of E on X such that for every
(x> €p)EJg there is a homogeneous phase function ¢(x,8) of positive type
parametrizing J near (x,,&,), a local trivialization of E and a distribution u
of the form (25.4.5) in a neighborhood of x,, with aeS™*®~2M/4 guch that
(x0,€0)¢ WF(U —u). Here n=dim X and N is the number of 6 variables.

By Theorem 25.4.7 it would be equivalent to require this condition for
every phase function ¢ of positive type. Starting from (25.4.8) we could also
introduce a notion of principal symbol. However, this requires not only an
extension of Section21.6 but also a study of the effect of the damping factor
e " in (25.4.8) so we content ourselves with referring the interested reader
to the literature listed in the notes at the end of the chapter.

The condition on U in Definition 25.4.9 is a microlocal one. If we just
have J defined in an open cone —T*(X)\0 it is therefore clear what it

means to say that UelI™(X,J; E) there.

25.5. Fourier Integral Operators with Complex Phase

In this section we shall make the discussion quite brief since it is essentially
a repetition of arguments from Section25.2 with reference to Section25.4
instead of Section25.1. Let X and Y be two C* manifolds. If J is a positive
conic Lagrangian ideal in C®(T*(X x Y)\0) then

J={f;i*fed},  ix&yn)=(x2Ey, —n)

is called a positive conic canonical (or twisted Lagrangian) ideal. We have
of course J=(J').

Definition 25.5.1. Let J< C®(T*(X x Y)~\0) be a positive conic canonical
ideal with Jpc(T*(X)~0)x(T*(Y)~0), and let E, F be vector bundles on
X, Y. Then the operators with kernel in I"(X x Y,J'; 2}, ,® Hom(F, E)) are
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called Fourier integral operators of order m from sections of Q}@F
to sections of Q4 ® E, associated with the canonical ideal J.

In the following theoremJ~! denotes the ideal on T*Y x X)~0 ob-
tained by swapping the factors T*(Y) and T*(X), and J~! is the complex
conjugate.

Theorem 25.5.2. If AeI™(X x Y,J'; @}, y®Hom(F, E)) then
A*eI™(Yx X,(J~'); Q3 x@Hom (E*, F*)).

Proof. 1t suffices to consider the local case where E, F are trivial bundles
and X, Y subsets of Euclidean spaces. We can write

A(X, y)= j a(x, ¥ 0) ei¢(X,y.0) de

where aeS™*"=2M/4 p is the dimension of X x Y and N is the number of 0
variables. Then
A*(y, x) = I a(x, Y, 0)* e~ i¢(x,y,0) de.

J consists of the functions independent of 6 in the ideal generated by

00(x,y,0)/0x;—¢;, 0¢(x,y,0)/0y,+m, JP(x,y,0)/06,
while A* is associated with the ideal generated by

—00(x,y,0)/0y —n,, —0¢(x,y,0)/0x;+¢;,  —0¢(x,y,0)/00,.

This is the ideal J, or considered as an ideal of functions on T*(Y x X) the
ideal J-!. This proves the theorem.

We shall only discuss composition in the transversal case. Thus let X, Y,
Z be C* manifolds and let

(25.5.1) (%0105 Yo, N)E(TH*(X)~ 0) x (T*(Y)\0),
(0:M0» 20, Lo)E(T*(Y)\ 0) x (T*(2) . 0)

be points in J,gx resp. J,g, where J, and J, are positive conic canonical
ideals defined in some conic neighborhoods. If T, ., is the complexified
tangent space of T*(X) at (xq,&o) and T, , , T, . are similarly defined, then
the tangent planes T(J,) and T(J,) are linear subspaces of T, . x T, ., and
Tome X Too.ro- When T(J,) x T(J,) intersects T, x A(T, ,)x T, . transver-

Y0, 20,§
sale(: A(ﬁo,:o) denoting the diagonal in T, , x T, the composition is said

. N N Yosno Yo,no?
to be transversal at the point in question.

Proposition 25.5.3. Let J, and J, be positive conic canonical ideals living on
T*(X x Y)\0 and T*(Y x Z)\ 0 respectively, and assume that the composition
is transversal at the point (25.5.1). Then the functions in a neighborhood of
(X0>%05205C0) in T*(X) x T*(Z) which lifted to

A=TH*X)x A(T*(Y)) x T*2)
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are restrictions to A of elements in the ideal generated by J,®1 and 1®J,
form a local positive conic canonical ideal J, o J,.

Proof. Lemma25.2.5 remains valid if 4 is complex. In view of Proposi-
tion 25.4.2 we can therefore choose local coordinates in X, Y and Z at x,,
¥o and z, such that J; is defined by the phase function

d)l(x’ Y, éa ’1)= <x’ 6> - <y’ '7) - Hl(fa ,1)
and J, is defined by

6203, 2,1,8) =<y, 1> —<2,{> — Hy(n,0)
which are both of positive type. This means that

x;—0H,(&,m)/0&;,  y,+0H (&, n)/on,
are local generators for J; and that

Y= 0H(0,0)/0m,,  z,+0H,(n, ()0,

are local generators for J,. The tangent planes T(J,) and T(J,) are defined
by the vanishing of the differentials of these functions. Since T(J,) x T(J,) is
Lagrangian and T(d) is involutive, the transversality means that at (25.5.1)
T(J,)x T(J,) does not contain any element +0 with 0 components in the
tangent spaces of T*(X) and T*(Z) and equal components in the tangent
space of T*(Y). Thus the equations

dx;=d¢;=0, dz;=d{,;=0, d(x;—dH,(n)/0¢)=0,

d(z,+0H,(n,0)/0)=0,  d(0H (¢, n)/on, + OH 5(n,{)/0n,)=0
must imply dn=0. This means precisely that
0%H,/0Ednn' =0, 8*H,/dlonn'=0, 0*(H,+H,)/on*n'=0
must imply n'=0, that is, that
(25.5.2) the differentials d(0(H,(&,n)+ H,(n,{))/0n,) are linearly independent.

Now the ideal generated by J,®1 and 1®J, is generated by the func-
tions
xj_aH1(€9 ’1)/661, yk+aH1(fa'I)/a'lk, y;z—aHZ(r,I’ C)/a";p
z)+0H (n',§)/0¢,
if (y/,n') are the coordinates in the second copy of T*(Y). We do not change

the restriction to the diagonal if we add the generators y, —y, and n,—mn;.
The ideal then obtained is generated by

x;—OH(EM)/08;,  OHL(EM/on,+2H 0 Ofomy,  yoc+ OH,(E /o,
2+ 0H,(n,0)/0(, and y,—yi, N—M-
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The restriction to 4 with coordinates x, £, y, 7, z, { is therefore precisely the
ideal generated by these functions with y,—y, and n,—n, omitted. Thus
J, oJ, consists of the functions independent of y, # in this ideal.

Set with 0=(y,{,n,7',{)
(2553)  D(x,2,0)=0,(x,y,&,m)+ ¢y, 2,1, ()
=%, =y —H(&n) +<y.0"> =<z, —Hyn', ).
As in the proof of Theorem25.2.3 we should think of y, & #, n/, { as
homogeneous functions of degree 0,1,...,1 of some other variable w; which
makes @ a homogeneous function. However, it is more convenient never to

display this variable explicitly. It is clear that Im #>0, and we shall now
prove that @ is non-degenerate. Since

0®[oy,=n—n., 09/0&;=x;—0H,(&,n)/0¢;,
0®/on, = —y,— 0H,(&,n)/On,,
0®/on =y, —0H,(n',{)/om,, 09/0L,= —z,—0H,(n',{)/d(,
and x;, y,, z, are independent variables, the linear independence of all these
differentials follows if we show that at (25.5.1)
Y aydn,—dn)+ ¥ bod(OH (&, n)/on, +0H (', {)/on)=0

implies a, =b, =0. Writing dn’ =dn+dn' —dn in the second sum we obtain b,
=0 by (25.5.2), and then it follows at once that a, =0 too.

The positive conic canonical ideal J defined by @ according to Proposi-
tion 25.4.4 consists of the functions of x, ¢, z, { in the ideal generated by
00/0¢;, 09/0y,, 09/on,, 0P/0n,, 0P/0(,. Since 0P/dy,=n,—n,, a function is
in this ideal if and only if this is true for the restriction to the set where 5’
=n. But this means that J coincides with J, o J, which completes the proof.

In the proof of Proposiiton25.5.3 we have used very special defining
phase functions for J, and J,. However, a defining phase function for J, o J,
can be obtained in a natural way from arbitrary defining phase functions for
J, and J,.

Proposition 25.5.4. Let the hypotheses in Proposition 25.5.3 be fulfilled and let
d(x,y,0), Y(y,z,7) be homogeneous phase functions of positive type at
(%9, 0,00) and (yo,24,7,) respectively which define J, and J, near (25.5.1).
Then

(25.5.3y D(x,2,y,0,7)=d(x,y, )+ Y (y,2,7)

is a phase function of positive type defining J, o J,.

Here @ is a homogeneous function of a suitable parameter, say
w=((10*>+111*)*y,6,7),

but it is more convenient to use the parameters (y,0,1) in the proof.
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Proof. First note that since the number of generators of a canonical ideal in
T*X x Z)\0 is always dim(X x Z), it follows from Lemma 7.5.8 that if one
such ideal is contained in another one then they are identical. Hence it
suffices to show that J, o J, is contained in the canonical ideal defined by &.
Now J; consists of functions independent of 0 in the ideal generated by

09(x,y,0)/0x;—¢&;,  0¢(x,y,0)/0y,+n,, d(x,y,0)/00,
while J, consists of functions independent of 7 in the ideal generated by

6://(y, z, T)/ayk_nk’ ad/(yvzv T)/azl'*‘Cls 5'//(}% Z, T)/atu-

Thus J;®1 and 1®J, restricted to the diagonal are contained in the ideal
generated by these functions. If f(x,&,z,{)eJ, o J, we can then write locally

f=2a[0¢/0x;—&)+Y b(0p/oy,+m)+Y c,0¢/30,
+Y.d AP+ )0y, +Y e(dW/oz,+ )+ Y £, 00/,

where a;,..., f, are functions of x, &, z, {, y, 6, t, n. We can make all
coefficients except b, independent of n by reducing them modulo the ideal
generated by 0¢/dy,+n,, k=1,...,dimY, and changing b, to take care of
the quotients. By Lemma 7.5.10 it follows then, since R= b,(3¢/0y,+1,) is
independent of 7, that for every N

(2554) IR(x,¢,2,(,,0,7)|< Cy|Im¢/0y|".

Lemma7.5.11 gives the same estimate for the derivatives of R. We can
estimate |dlm¢/dy|> by Im¢ locally, and since Im¢@={dIm¢/86,0) it
follows that we can replace d¢/0y by 0¢/00 in (25.5.4). Hence Theo-
rem7.5.12 shows that R is in the ideal generated by J¢/06,. Thus we may
drop the sum ) b,(0¢/dy,+n,) altogether, which means that f is in the
canonical ideal defined by .

It is now easy to study composition of Fourier integral operators. In fact
the proof of Theorem25.2.3 does not require any change at all since Theo-
rem7.7.1 is equally valid for phase functions of positive type and Proposi-
tion25.5.4 shows that the phase function @ occurring in the proof defines
the composition ideal. Hence we obtain

Theorem 25.5.5. Let J, and J, be positive conic canonical ideals in, respectively,
T*(X x Y)N0 and T*(Y x Z)\ 0 such that

(i) JirS(THX)N0) x (T*(Y)N0), J,g=(T*Y)N0) x (T*Z)\0);

(i) the composition is transversal at every point in the intersection of

JirxJog and TH*X)x A(T*Y)) x TXZ),
(iii) the map
(Jir X LR (THX) x A(T*(Y) x THZ)) - THX x Z)~\0

is injective and proper.
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Then J,oJ,, defined locally by Proposition25.5.3, is a positive conic
canonical ideal in T*(X x Z)~0. Let
A,eI™(X x Y,J;; @}, ;®Hom(F, E)),
A,eI™(Y x Z,J3; Q% ,QHom (G, F))
be properly supported, E, F, G being vector bundles on X, Y, Z. Then
A A eI ™ (X X Z,(J; 0 J,) 5 %, ,QHom (G, E)).

Finally we shall prove an analogue of Theorem 25.3.1.

Theorem 25.5.6. Let J = C*(T*(X x Y)\0) be a positive conic canonical ideal
with Jg <(T*X)~0)x (T*(Y)\0). Then every AcI®X xY,J'; Q% ) defines
a continuous map from L2, (Y,Q}) to I} (X,Q}) if and only if there is no

yeJg such that T/(J) has a real element with only one of the components in
T(T*(X)) and T(T*(Y)) equal to 0.

Proof of the Necessity. Let y=(x4,&0,Y0,M0)€Jg and choose local coor-
dinates at x, in X and at y, in Y such that J is defined by a phase function
of the form

{x,&>=<y,ny—H(,n)

in a conic neighborhood of y. Thus Im H<0 there, and if the coordinates
are chosen so that x,=0, y,=0 then Hy(¢y,n0)=0, H,($o,70)=0. Set n=ny
+ny where ny=dim X, ny=dim Y. If aeS”~2"4(R") has support in a small
conic neighborhood of (£,,7,) then the oscillatory integral

A(x, y)__.” 2 (x> — v — HEm) a(f, n)dédn

is in I%X x Y,J') in a neighborhood of (x,, y,) and in C* elsewhere, so 4 is
supposed to be the kernel of a continuous operator from I2__(R"™) to

L, (R"™). We choose a(&,n)=(1-+( [ +In2)/(1E[ +Inel)~"® at infinity in
a conic neighborhood of (£,,7,). With ue CY(IR") and ve CY(IR"*) we set

u(y)= et <ymo> u(ty) tny/Z’ v, (x)= et (x&0d v(tx)t""/z.

Since ||lu,||=|ull, llvl=Iv|, the norms being I* norms, and since the sup-
ports of u, and v, tend to {0}, the I? continuity gives for some M

lim [(Au,, v,)| < M|ju] o).

t— 00
A direct computation gives
dm=t"""a((n—no)ft), &) =t""2H(E~1*E)),
(A, v)="2 [[ e~ HE ot btnot ) ) §(Z) a(£2 &+t E, t210 + tm) dE dr.
The exponential is bounded by 1 in absolute value, and

t*H(Eo+E/tno+n/t) > QE,n), t— oo,
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where Q is the quadratic part in the Taylor expansion of H at (&g,7,)
(Recall that dH=0 at (&,,n,) which implies H=0 by the homogeneity.) We
have '
"2 a(t? & + &, 2o +tn) — 1| < COA+E| +In) "+ 22/t

by the mean value theorem if (/€| +|#n])/t is small and by the boundedness of
a otherwise. Letting t » co we therefore obtain

|ff e~ Q€™ 6i(n) (&) A& dn| < M jull ||,
that is, ||4,l| <M if 4, is the operator with kernel
Aglx, y)=” FURO-Gm -0 g dn.

(Note that the argument so far is parallel to the proof of Proposi-
tion 25.1.7.) The tangent plane T (J) is the linear canonical relation

(255.5) {(0Q/0¢8, &, —aQ/an, n)} = THE™) x THC™).

Assume now that (%, £;0,0) is real and belongs to the canonical relation
(25.5.5). Then it is symplectically orthogonal, that is,

9Q[0¢, &y —(%,&y=0  for all (&,n).
With the notation ¢(x, &, y,n)={x, &> —{y,n) — Q(&,n) this implies that
(K%, D,>—<x, &) Ao(x, y)=[[ (%, &) — <(x, E)) e dE dn
=[[(-D,,&ye*dEdn=0.
Choose ue C3(R") with 44u=+0. Since Ao uel? and
(€% D> — <%, E))(Aou)=0

we obtain £=0 if =0, for A,u cannot be supported by a hyperplane. If %
+0 and y is a real valued solution of the equation (X,0y/0x)>={x, &) then
e““’Aou is constant in the direction x, which contradicts that 0+ A,ue L.
Hence %=E£=0. Taking the adjoint of 4, we conclude that (25.5.5) cannot
have a real element of the form (0,0; y,#) either, which completes the proof
of the necessity.

Proof of the Sufficiency. We can localize by multiplying 4 to the left and
right by partitions of unity in X or Y. More generally, we can microlocalize
by using pseudo-differential partitions of unity, so 4 may be assumed to
have support near (x,,y,)eR"**"* while WF'(4) is contained in a small
conic neighborhood of the ray through y=(x,,&,,ye,%)- We shall prove
that A*A is a pseudo-differential operator of type 4, 1 which will make the
proof of Theorem 25.3.1 applicable.

If ¢(x,y,0) is a non-degenerate phase function of positive type at
(%9, ¥0,0,) defining J at y, we can write A modulo C* in the form

A(x,y)={ =29 a(x,y,6)d0
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where aeS"2M4R"x R"), n=ny+ny, and a has support in a small conic
neighborhood of (x,, y4,0,)

$5=0, ¢.=& P,=—ny at (xg,yo,0)
By Theorem 25.5.2 the kernel of the adjoint operator

A*(y, x)=A(x,y) =[e~"***Va(x, y,0)d0

is in I°(Y x X,J ') where J~! is defined by the phase function —¢(x,y,6).

The composition J~!oJ is transversal, for teT(J)n T,(J) implies t=0 if the
component ty of t in T, . (T*(Y))¢ is 0. Hence A*Aelo(Yx Y,(J~'0J)), the
support of A*A4 is close to (yy,y,) and WF'(A*A) is in a small conic
neighborhood of (y4,0,Y,"o)- The composition J~*oJ is defined there by

the non-degenerate phase function of positive type

(25.5.6) o(x,y,0)—o(x,2,7)

where z denotes the variable in the copy of Y to the left.

There is also a defining phase function of the form @(z,7)—{y,n) with
Im ¢ =0. By the remark following Corollary 25.4.5 this will be proved if we
show that the map

T (Tt oJ)a(dz,dl,dy,dn) (dz,dn)

Yo.1o,yo.fo

is injective. If (ty,ty) is in the kernel, then a(ty,ty)=o0(ty,ty)=0 since the z
and n components are equal to 0. We can find tyeT, . (T*(X))¢ such that

(tx,t)eTV),  (Ex,B)eT(),
hence by the positivity of T, . .. . (J)

6@y, tx)— oy, ty) 20,  i(a(ty,ty)—o(ty,ty)=0.

It follows that a(fy,ty)=0 too, hence

(Ex,teT(), (tx,ty)eT(J)
by virtue of Proposition 21.5.10. It follows that (0, Re(ty —ty))e T,(J) and that
(0, Im(ty —ty))e T(J), so ty=ty. Since the z components of ty and the 5
components of ty are 0, it follows that ¢, =ty =0, which proves the assertion.

Set

(25.5.7) D(z,1,%,y,0,7)=d(x,y,0)— $(x,2,7)+ <y, 1
and let J be the ideal generated by the derivatives of ® with respect to x, y,
0, 7. Then ¢—®eJ? by Corollary254.5 and the remark following it. The
ideal J has also generators of the form

xj_X -(Z, ")’ yj— Yj(z9 V]), ej_ @j(z’ ’1)? Tj_ T}(Za r’)

where X, Y, ©,, 7; are homogeneous of degree 0, 0, 1, 1 respectively, and
X=x,, Y=y,, T=0, at (yo,7,)- By Lemma 7.7.8 we have near (y,,7,)
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(25.5.8) lIm (X, Y,0, T)(z,n)|*< CIm §(z,1).
Since ¢ —®eJ? it follows if X"=Re X,..., T"=Re T that
Im ¢(Z9 r” Xr(z’ ’1)1 LA ] Tr(z, ’1)) é Cl Im (ﬁ(z’ ")a

for the generators of J are <C|Im(X,Y,0,T)| at (z,n,X",...,T"). If o=0¢,
+ig¢, then the left-hand side is equal to

$,(X", Y, 00+ ¢,(X",2, T")
and we conclude in view of Lemma 7.7.2 that near (y,,7,)
(2559) |95(X", Y7, @) +195(X", 2, T")| < C,(Im (2, m)*.
With the notation
J(x,y,0)=(09,(x, y,0)/0(x,0), 0¢,(x, y,0)/0(x, y, )
we have in a neighborhood of (y,,7,)
(25.5.10) | f(X"(z,n), Y"(z, 1), ©"(z,m) — (X" (2,1), 2, T"(z, m)| £ C5(Im (2, ).

For the components of f invoAlving ¢, this follows from (25.5.9). By the
definition of J we have d0®/dxeJ, 09/00 — d®/dteJ, hence

(X", Y7, 0) = (X", 2, T")| +95(X", Y, ©) — §(X", 2, T")| < C,(Im (2, n))*.

This gives the estimate (25.5.10) of the components involving ¢, since we
have already estimated those involving ¢,.

The Jacobian matrix df(x, y, 0)/0(y, 0) is injective at (x,,y,, 0,). Indeed, if
dx=0 and df =0 then d¢;,=0 so (dx,d¢,dy,dn)eT,(J) if {=¢, and n= —¢,.
If dy and d@ are real then dn is also real since f contains d¢,/0y. Thus dx
=0, d¢é=0, dy and dn are real so dy=dn=0 by our hypothesis on J. This
proves the injectivity since f is real. Hence Taylor’s formula gives in a
neighborhood of (x,, y,,0,) that

ly—zl+10—1|= C|f(x,y,0)—f(x,2,7)|.
If we combine this estimate with (25.5.10) we have proved that
(25.5.11) |Y"(z,n)— 2| +10"(z, 1)~ T"(z,1)| < C5(Im ¢ (z, n))*.

Set Y(z,7)=(z,n)—{z,n). To estimate the derivatives of  we shall use
again that

l/I(Z, 7’)+ <Z, ’1> - Q(Z, n,Xx,Y, 0’ T)ejz'

The first order derivatives are in J, hence bounded by C(Im d(z,n)? at
(X", Y,0,T"). We have

0 _
5;((27 7[) - ¢(Zs n,x,y, 0; t)) =n + d)_lv(xa Y, 0) + (¢’z(x7 z, T) - d’;(x’ Vs 0))9

0
%Kz,n) —d(z,1,x,9,0,7))=z—y.
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Here n+¢)(x,y, 0)eJ. Taking x=X",...,t=T" we now obtain using (25.5.9)
and (25.5.11)
|0 (2,n)/0z| +10Y (z,m)/on| < C (Im Y (2, m))*

in a neighborhood of (y,,7,). In view of the homogeneity it follows that
(255.12) 0y (2, n)/0z1? /1 + 1Y (z, m)/on|* In| < C Im Y (z, 1)

in a conic neighborhood.
(25.5.12) has the important consequence that in a conic neighborhood of

(.VOa '70) .
(25.5'13) ID;Dﬁei“’"’"’l < Cul,ﬂ(iul— Iﬁl)/2e—lml#(y.n)/2’ [n]>1.

In particular, e¥eS} ,. To prove (25.5.13) we observe that D5Dfe'" is a
linear combination of terms of the form

(D' D8 Y) ... (D3<Diy)e'.
When |a;+ 822 we just use the estimate
D DEIS Cplnl! =115 Clller =200, >,
and when |a;+f;|=1 we use that by (25.5.12)
ID3 DEY| < e/~ /2([m y)2.

Since (Im )" e~ "™¥/2 is bounded for every N, the estimate (25.5.13) follows.
(Conversely, it is easy to see that (25.5.13) implies (25.5.12).)

Now we have proved that A*A4eOp(S] ,). Hence A*A4 is I? continuous
by Theorem 18.6.3, and this proves that A4 is I? continuous (see also the
proof of Theorem 25.3.1).

Notes

Operators of the form now called Fourier integral operators were in-
troduced by Lax [3] to study the singularities of solutions of hyperbolic
differential equations. The study was purely local but some global con-
siderations were added by Ludwig [1]. The constructions of Lax were taken
up again in Hormander [22] in order to prove equally precise results on the
spectral function of higher order elliptic operators as those based on the
Hadamard construction in Chapter XVII. A systematic discussion of a
global theory was given in Hormander [26] after an announcement in
[26a]. As emphasized by Maslov the theory has much in common with his
canonical operators. The interested reader might consult Maslov [1] to
explore this relationship.

The definition in Hormander [26] of Lagrangian distributions - called
Fourier integral distributions there - was based on representations with
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non-degenerate phase functions. Following a suggestion by Melrose (cf.
Melrose [1]) we have chosen a different definition which is obviously global
and invariant. It is of course equivalent to the one using phase functions.
Following Duistermaat-Guillemin [1] we have also allowed clean phase
functions here. Section25.2 follows Hormander [26] and so does Sec-
tion 25.3 essentially apart from Theorem25.3.10 which comes from Taylor
[3].

Positive Lagrangians and corresponding distributions were introduced
by Melin-Sjostrand [1]. We have followed their paper in Section 25.4 but
changed the definitions by introducing Lagrangian ideals instead of almost
analytic continuations. Section 25.5 contains the discussion of I? continuity
in Melin-Sjostrand [2] with some improvements from Hormander [43]
where precise estimates of norms can also be found.



Chapter XXVI. Pseudo-Differential
Operators of Principal Type

Summary

In Section104 we saw that the strength of a differential operator with
constant coefficients in R" is determined by the principal part p if and only
if p=0 implies dp+0 in R"\ 0. Such operators were said to be of principal
type. The purpose of this chapter is to study general operators Pe ¥y (X)
on a manifold X assuming that the condition dp+0 when p=0 is valid in a
suitably strengthened form which makes the properties of P independent of
lower order terms.

At first we assume that the principal symbol p is real valued. In the
constant coefficient case we know then from Section 8.3 that singularities of
solutions of the equation Pu= f travel along bicharacteristic curves, that :s,
integral curves of the Hamilton field H, of p with p=0, unless they are
disturbed by singularities of f. In Theorem 23.2.9 and remarks at the be-
ginning of Section24.2 the result was extended to second order differential
operators, and in Section26.1 it is proved for pseudo-differential operators.
After P is reduced to first order by multiplication with an elliptic operator
of order 1 —m we use the homogeneous Darboux theorem in Chapter XXI
to reduce p locally to a coordinate £, by a homogeneous canonical transfor-
mation x. The calculus of Fourier integral operators in Chapter XXV then
shows that conjugation of P by a suitable Fourier integral operator as-
sociated with y reduces p microlocally to the operator D, for which the
propagation of singularities is quite obvious. Thus we obtain the desired
extension of the theorem on propagation of singularities; it is non-trivial
provided that H, is non-radial at the characteristic points which is also
required for the application of the homogeneous Darboux theorem. Exis-
tence theorems for the adjoint operator on a compact subset K of X follow
when K is non-trapping for bicharacteristics of p, that is, no bicharacteristic
remains forever over K. When this is true for every compact subset K of X
we say that P is of principal type in X; locally this just means that dp is not
proportional to the canonical one form {£,dx) at the characteristic points.
Under appropriate conditions on convexity of X with respect to the bichar-
acteristic flow, related to those in Section 10.8, we can also construct global
two sided parametrices of P.

L. Hormander, Classics in Mathematics 54
The Analysis of Linear Partial Differential Operators 1V,
DOI: 10.1007/978-3-642-00117-8_2, © Springer-Verlag Berlin Heidelberg 2009
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The situation is much more complicated when p is complex valued. This
complexity is already seen in the geometry of the characteristic set p~*(0)
which first of all may not be a manifold, and secondly may be complicated
from the symplectic point of view since the rank of the symplectic form
restricted to the characteristic set is variable. Two simple extreme cases are
studied first. In Section 26.2 we assume that p~!(0) is an involutive manifold
of codimension 2, thus {Rep, Imp}=0 when p=0. As in the real case we
can then reduce P microlocally to the Cauchy-Riemann operator D, +iD,.
This commutes with operators with symbol analytic in x, +ix, which leads
to a proof that if Pue C*™ then the regularity function

su(x,§)=sup {s;ueH at (x,{)}

is superharmonic in the leaves of the foliation of the involutive manifold
p~'(0). (These have a natural analytic structure defined by the complex
tangent vector field H; the solutions of H,w=0 are the analytic functions.)

In Section26.3 we study the opposite extreme case where {Rep, Imp}
+0 which implies that p~'(0) is a symplectic manifold of codimension 2. A
famous example is the Lewy operator

P=D,+iD,+i(x,+ix;)D,

in R3. It appears as the tangential Cauchy-Riemann operator on the
boundary of the strictly pseudo-convex domain

Q={(z,,2,)eC?; |z,|>+2Im z,<0}.
In fact, d/0z, +a0/0z, is tangential to d22 if and only if on dQ
0=(0/0Z, +ad/0z,)(z,Z, —iz,+iZ,)=2z, +ai.
Writing z, =x, +ix,, z,=x,+ix, and taking x,,x,,x, as parameters in 0Q2
we obtain the Lewy operator multiplied by 1i. The fact that Q is strictly

pseudo-convex implies that for any point in 92 one can find U analytic in
Q except at the given point. Indeed, if aeC then

Re(z,a+z,/i—|al*/2)SRe(z,a—|z,/*/2—al*/2) <0, zeR,
with strict inequality except when z, =a and Im z,= —|a|?/2. Hence, if be R
U(2)=1/(zya+z,/i—|a|*/2 +ib)
is analytic in Q except at z,=a, z,=b—ila|>/2. The boundary value u
satisfies the equation Pu=0 and has a singularity which does not propa-
gate. If (x,£)eWF(u) it is clear that p(x,&)=¢&, +i&,+i(x, +ix;)¢;=0, that

is, £,=x,¢&, and ¢,= —x,&,, and since u is a boundary value of a function
analytic in z, in a lower half plane we must have ¢, <0. Noting that

{Rep,Imp}={&, —x,&;,&,+x, &3} =2&3<0

we are led to the result proved in Section 26.3 that for every pseudodifferen-
tial operator P and characteristic point (x,£) with {Rep, Imp} (x, &) <0 one
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can find u with PueC® and WF(u) equal to the ray through (x,&). An
essentially dual fact, first observed by Hans Lewy for the Lewy operator, is
that the equation Pu=f cannot be solved for most f if there is a character-
istic point with {Rep, Im p} >0; in fact, it is then usually impossible to solve
the equation microlocally at (x, ). In the proofs of these facts we shall use
Fourier integral operators to reduce to the model operator D,+ix,D,,
sometimes called the Mizohata operator, which is somewhat simpler than
the Lewy operator. The existence and regularity of solutions of the equation
(D,+ix,D,)u=f can be studied quite explicitly. At the same time we
discuss the equation (D, +ix%D,)u=f for every positive integer k. When k
is even the properties are quite close to those of the Cauchy-Riemann
operator (k=0) and for all odd k we have properties similar to those of the
Lewy operator.

The results of Section 26.3 suggest that solvability of the inhomogeneous
equation Pu= f requires that Imp has no sign change from — to + along
bicharacteristics of Re p. This condition was originally conjectured by Niren-
berg and Treves and called condition (¥) by them. Section 26.4 is devoted
to the proof of this conjecture by means of an idea of R. Moyers, after the
functional analytic aspects of various notions of solvability have been dis-
cussed at some length and the condition (¥) has been given an appropriate
global form invariant under multiplication by non-vanishing functions.

It is still unknown if condition (¥) is sufficient for solvability. From
Section 26.5 on we therefore assume the stronger condition (P) which rules
out all sign changes of Imp on bicharacteristics of Rep. (For differential
operators this is equivalent to (¥).) Condition (P) leads to considerably
simplified properties of the characteristic set discussed in Section 26.5. The
main point is that the flowout along Hg,, and H,,, of the set of character-
istic points with dRep and dImp linearly independent is an involutive
manifold Nj of codimension 2. Thus N5 is foliated by two dimensional
leaves where a degenerate Cauchy-Riemann equation is defined by the
Hamilton field H,. The propagation of singularities along bicharacteristics
of Rep which leave the characteristic set at some time is discussed in
Section 26.6 by means of energy integral estimates. Similar estimates are the
basis of the study in Section 26.7 of degenerate Cauchy-Riemann equations

(D, +ia(x)D,)u=f

with a=0, which implies condition (P). The results show in particular that
there is an analytic structure in the leaves B of N%, or rather in the sets B
obtained by collapsing to a point every embedded one dimensional bichar-
acteristic curve, that is, any curve where H, is proportional to the tangent.
In Section 26.9 we show that with this structure the superharmonicity of the
regularity function s} proved in Section 26.2 for the non-degenerate case
remains valid in N§. An essential ingredient in the proof is another version
of the energy integral estimates, due to Nirenberg and Treves, which is
given in Section 26.8. This estimate together with the advanced calculus of
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pseudo-differential operators in Section 18.5 leads also to the proof in Sec-
tion 26.10 that when Pue C*® then s¥ is quasi-concave on any one dimen-
sional bicharacteristic, that is, the minimum in any interval is taken at an
end point.

All the results on singularities established in Sections 26.6-26.10 are
combined in Section 26.11 to an existence theorem for a pseudo-differential
operator P satisfying condition (P). It states that if no complete one or two
dimensional bicharacteristic is trapped over the compact set K then the
equation Pu=f can be solved in a neighborhood of K for any f which is
orthogonal to the finite dimensional space of solutions ve CJ(K) of the
equation P*v=0. When no bicharacteristic is trapped over a compact
subset of X, we say that P is of principal type in X and have semi-global
existence theorems for arbitrary lower order terms.

26.1. Operators with Real Principal Symbols

It was proved in Section 8.3 that the singularities of solutions of differential
equations with constant coefficients and real principal part propagate along
the bicharacteristics. We shall now show how the symplectic geometry and
operator theory developed in Chapters XXI and XXV allow one to extend
the result to variable coefficients. In doing so we shall start from scratch
and do not rely on the results of Section 8.3.

Theorem 26.1.1. Let X be a C® manifold and let Pe¥Y™(X) be properly
supported and have a principal symbol p which is real and homogeneous of
degree m. If ue2'(X) and Pu=f{, it follows that WF(u)N WF(f) is con-
tained in Char(P)=p~'(0) and is invariant under the flow defined there by
the Hamilton vector field H,.

By Theorem 18.1.28 we have
WF(u)c WF(f)u Char (P)

so only the invariance under the Hamilton flow has to be proved. At a
point where H,=0 or H, has the radial direction this invariance is also
obvious, so in the proof we may assume that H, and the radial direction are
linearly independent. We shall prove the theorem by reducing it to the
special case P=D, in RR" where it follows by explicit solution of the
equation Pu= f. The study of this special case as well as the reduction will
at the same time prepare for the construction of a parametrix later on in
this section, so we shall also include some material which will be required
then.

By E} and E7 we denote the forward and backward fundamental
solutions of the operator D,, the kernels of which are defined by

Ef =iH(x,—y,)®d(x'—y), 1=—iH(y,—x)®x —Yy).
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Here H is the Heaviside function, H(t)=1 for t>0 and H(t)=0 for t<O0,
and we have used the notation x=(x,, x’) and y=(y,, )’) for points in R".
Note that Ef —E] =id(x’ —)') or, in Fourier integral form,

(26.1.1) (Ef —E7)(x, y)=2m) ="~V [~ 40,

This is a conormal distribution with respect to {(x, y); x'=y'}, and the order
is —1 since there are n—1 phase variables and (2n—2(n—1))/4=4. Thus we

have E} —E7 eI~ *(R"xR", C,) where
(26.1.2) Ci={(x, & pm); x'=y, &=n"#+0,{,=n,=0}

is the corresponding canonical relation. It follows that yEf belongs to
I"}(R"xR", C}) if ye C*(R"xR") vanishes in a neighborhood of the diag-
onal, for if x=y then either E{ or E vanishes in a neighborhood of (x, y).
In particular, we conclude that WF'(EY) is contained in C, except over the
diagonal in R" xR". Since (D, +D, )E; =0 for j=1,...,n we have {=7 in
WF'(E$) (see also (8.2.15)), and

WF'(E¥)> WF'(D, Ef)=WF'(5(x —)).

The right hand side is the diagonal in (T*(IR")~\0)x(T*(R")~0) (Theo-
rem 8.1.5) so we have proved

Proposition 26.1.2. Let E} and Ey be the forward and the backward funda-
mental solutions of D, = —i0/0x, in R". Then we have

(i) WF'(E$) is the union of the diagonal in (T*(R")\0)x (T*(R")\0)
and the part of the canonical relation C, defined by (26.1.2) where x,2y,.

(ii) Ef —E; el *(R"xR", C)), and yEfel *(R"xR", C) if x is in
C*(IR"x R™ and vanishes near the diagonal. '

The statement (i) is a more elementary analogue of Theorem 8.3.7 for the
operator D,. It is all that is needed to prove Theorem 26.1.1 for P=D, by
repeating the proof of Theorem 8.3.3; this is left for the reader to do.

In the general proof of Theorem 26.1.1 we may assume that P is a first
order operator, for if Q is an elliptic pseudo-differential operator with
positive principal part, homogeneous of degree 1—m, then Pu=jf implies
(QP)u=Qf where QP has the same characteristics and bicharacteristics as
P, and WF(Qf)=WF(f). As already pointed out it is also sufficient to
consider characteristics (x, {;) of P where H, does not have the radial
direction. This makes Theorem 21.3.1 applicable so we can find a homo-
geneous canonical transformation y from an open conic neighborhood of
(0,¢,)e T*(R")\0 to an open conic neighborhood of (x,, &,) such that y*p
=¢,. This geometrical construction can be lifted to the operator level:

Proposition 26.1.3. Let Pe W' (X) have real and homogeneous principal part p,
let p(xy, o)=0 and assume that the Hamilton field H, at (x,,&o) and the
radial direction are linearly independent. Let y be any homogeneous canonical
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transformation from an open conic neighborhood of (0,¢,)e T*(R")\0 to a
conic neighborhood of (x,, &,) such that y*p=¢&,. For any peR one can then
find properly supported Fourier integral operators Ael*(X xR",I") and
Bel *(R"x X, (I'"'Y), where I is the graph of y, such that

(i) WF'(A) and WF'(B) are in small conic neighborhoods of (x,,&,,0,¢,)
and (0, g,, x4, &,) respectively.

(i) (¥o» Eo» Xo» Eo)E WF'(AB—1I); (0,5,,0,2,)¢ WF'(BA—I).

(i) (xg» Eo» Xo» E0)¢ WF'(AD,B—P); (0,5,,0,5,)¢ WF'(BPA—D,).
Thus D, and P are microlocally conjugate to each other.

Proof. Choose any A,el*(X xR" I") such that WF'(4,) is close to
(x> &9, 0, &,) and A, is non-characteristic there. As observed after Definition
25.3.4 we can then choose B el *(R"x X, (I'"'Y) so that (ii) is fulfilled.
Then it follows from Theorem 25.3.5 that

0, &,)¢WF(B,PA, —D, —0Q)
for some Qe P°(R". We shall prove in a moment that there exist elliptic
pseudo-differential operators 4,, B, e Y°(R") such that
(26.1.3) B,A,—1e¥~*, B,(D,+Q)A,—D,e¥~".
Admitting this for a moment we set A=A4,4, and B=B,B,. Then
0,&)¢ WF(B,(B, A, —I)4,)=WF(BA - 1),
©,&,)¢ WF(B,(B,PA, —D, —Q)A,)=WF(BPA-D,)

which proves the second half of (ii) and (iii). The first half follows at once if
we multiply left and right by 4 and by B.

To solve (26.1.3) we observe that by Theorem 18.1.24 one can for every
elliptic 4, of order O find B, € ¥° with B,A,—Ie P~ ® and 4,B,—1e ¥~~,
s0 (26.1.3) is equivalent to the condition (D, +Q)4,—A,D,€ ¥~ > for some
elliptic 4,, that is,

(26.1.3y [D,,A,]+QA,e ¥,

If q° is a principal symbol of Q and a° is a principal symbol of 4,, then the
principal symbol of (26.1.3)' vanishes if

i71{¢,,a"} +4°a"=0,

that is, 3a°/dx, = —iq®a®. This equation is solved by

(s, O=exp (i ] a6 x, O de)
0

which is an element of S° by Lemma 18.1.10. Choosing A° with principal
symbol a° we can now successively choose 4/e ¥ ~/(R") so that for every j

[Dy,A°+...+ A1+ Q(A°+...+ A)=R;e ¥~ 1.
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In fact, this only requires that a principal symbol a/ of A’ satisfies the
equation
itod/ox,+q°a’=—r)_,

where r}_, is a principal symbol of R;_,. The solution
a(x,&)=a’(x, &) | —ir)_,(t, x', §)/a’(x', 1, §)dt
1]

is in S~ since r9_,/a° is. If the symbol of A4, is chosen as the asymptotic
sum of the symbols of 4% A7, ... we have satisfied (26.1.3).

Proof of Theorem 26.1.1. First recall that we have reduced the proof to the
case m=1 and that the theorem has been proved for the operator D,. So
suppose that m=1 and let (x,, ;)€ WF(u)~ WF(f), hence p(x,, £,)=0. As
already pointed out we may assume that H,(x,, {,) and the radial direction
are linearly independent. We then choose A, B according to Proposition
26.1.3 and set v=Bue2'(R"). Since

D,v=(D,—~BPA)Bu+BP(AB—-I)u+Bf

it follows from (ii) and (iii) in Proposition 26.1.3 that (0, &,)¢ WF(D,v). On
the other hand, (0, ¢,) e WF(v) since (x,, £,) € WF(u) and

u=(I—AB)u+Av, (x,,&,)¢ WF((I—AB)u).

Thus (x,,0,e,)e WF(v) for small |x,|, and since WF(v)cy~! WF(u) it fol-
lows that WF(u) contains the image of this curve under y. Now the defini-
tion of the Hamilton field is symplectically invariant so this means that
WF(u) contains a neighborhood of (x,, &) on the bicharacteristic curve
through (x,, £,) which completes the proof.

Theorem 26.1.1 can be given a more precise form if we take into account
the H, classes of u and f. First recall that fe H{S at (x,, {,) means that
Afel?, for some Ae ¥* which is non-characteristic at (x,, &). If f=Pu this
means that ue H%S ) at (x,, &) if (xq, £o)¢ Char(P). The H, regularity in

the characteristic set propagates along the bicharacteristics:

Theorem 26.1.4. Let P satisfy the hypotheses in Theorem 26.1.1, let I be an
interval on a bicharacteristic curve where f=Pu is in Hi. If ue H{S,, _,, at
some point on I it follows that this is true on all of 1.

Proof. The H, continuity properties of pseudo-differential and Fourier
integral operators allow us to reduce the proof to the case m=1 and then,
using Proposition 26.1.3 as before with u= —s, to the case P=D,, s=0 and
(x0, £0)=(0,¢,). Since Ef maps L2, to L%, the proof works as before in
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this situation if the wave front set of a distribution is replaced throughout
by the set of points in T*(IR")~ 0 where it is not in 2.

We shall now prove that bicharacteristics do carry the singularities of
some solutions provided that they do not close on the cosphere bundle.

Theorem 26.1.5. Assume that P e W™ (X) is properly supported and has a real
principal part p which is homogeneous of degree m. Let I be a compact
interval on a bicharacteristic of p which has an injective projection to the
cosphere bundle of X, let I' be the cone generated by I in T*(X)~0 and let
I'’ be the cone generated by the end points of 1. For any seR one can then
find ue 9'(X) so that ue Hi*(X) for every t<s and

WF(Pu)=I", WFw=I, u¢HZat (x¢&) if (x,&el.
If X=R", P=D,, I={(x,,0,¢,), x, eRR} then we can simply take
u(x)=(x3+...+x2_,+0—ix,)~"*.
Since the measure of {x'eR"!, |xZ+...+x2_ —ix,|St} is Cir—2/2+!
=Ct"? for reasons of homogeneity, and }t'“d(t"’2)< oo if and only if

(1]
a<n/2, we have ue L if and only if p<2. Hence it follows from Theorem

loc

7.1.13 that (@EL" for every ¢>2 if ¢eCg, so ueH}y® if <0. It is clear
that D, u=0, and WF(u)<{(x, te,), x'=0, t>0} by Theorem 8.1.6. Since the
projection sing supp u of WF(u) in R" is equal to the x, axis this inclusion
is an equality and u is not in L? at any point on I.

If as in Theorem 26.1.5 we have a finite interval I={(x,,0,¢,);
as<x,=<b} we shall cut off the function u at a and b with some care so that
the wave front set does not grow. To do so we choose functions

00
¥ € C§°((a,b) x R*™!) with Y, ¢ =1 in a neighborhood of (a,b) x {0} and
—00
supp ¥;—{a} resp. {b} as j—» —oo resp. +oco. We can choose a regulariza-
tion v; of u;=y;u such that if U;=u;—v; then supp U;—{a} or {b} as j—
+00 or —oo, |Ujll_ <2~ and
1GISA+IED~1 when [E;]+... +1&, | Z &N
In fact, Uj(&)=i,(&)(1 —£(5;¢)) where ye Cy, (0)=1. We have
fla P +1Eydé <o, <0,

and Iﬁj(¢)|(1+|§|)""->0 at oo outside any conic neighborhood of ¢,, so we
just have to take 6, small enough. Now we obtain U=} U;eH,, for every
t<0, WF(U)<I and U —ueC® at (x,,0) if a<x, <b, so U is not in H,, at
any point on I. Since D,U is only singular at (a,0) and (b,0) and since
WEF(D,Uyc WF(U)=1, it follows that U has the properties required in
Theorem 26.1.5.
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To prove Theorem 26.1.5 in general we need a global version of Theo-
rem 21.3.1 and of Proposition 26.1.3 allowing us to conjugate P to D,.

Proposition 26.1.6. Let X be a C* manifold and p a real valued C* function
in T*(X)~\0 which is homogeneous of degree 1. Let I be a compact interval
on R and y: I-T*(X)\ 0 a bicharacteristic, thus

pey=0, y'=H,oy.

We assume that the composition of y and the projection n: T*(X)~ 0—5*(X)
on the cosphere bundle is injective. Then one can find a conic neighborhood V
of {(x,,0,¢,); x, €I} and a C® homogeneous canonical transformation y from
V to an open conic neighborhood y(V)cT*(X)~N0 of y(I) such that

x(x1, 0, 8)=7(x,) and y*p=¢,.

Proof. Assume to simplify notation that 0el. We can use Theorem 21.3.1 to
find a homogeneous canonical transformation y from a convex conic neigh-
borhood ¥, of (0, ¢,) to a conic neighborhood of y(0) such that y*p=¢, and
x(0, &,)=7(0). Then x, maps the Hamilton field d/0x, of ¢, to H,, so

(26.1.4) 0x(x, €)/0x, =H,p(x(x, ¢))-

When x'=0 and {=¢, we also have the solution y(x,), x, €I, with the same
initial value when x,=0. Hence we can uniquely extend y to a conic
neighborhood V of Ix{(0, ¢,)}, which is convex in the x; direction, so that
(26.1.4) remains valid. The projected curves x> my(x, £) are the integral
curves of the vector field induced by H, on §*(X). (Functions on $*(X) can
be identified with homogeneous functions f of degree 0 on T*(X)\0, and
H,f={p,f} is then also homogeneous of degree 0.) Since y is also homo-
geneous it follows from the hypothesis on oy that y is a diffeomorphism if
V is small enough. If we write

x '=Xy . X, B, 0 B,
then the fact that y, ! maps H, to 9/0x, means that
H,X,=1, H,X;=0 ifj>1, H,E =0 forall k.
Hence the Poisson brackets {X;, X}, {X;, &,}, {E,, E|} are constant along
the orbits of the Hamilton field H,, by the Jacobi identity. They vanish at

some point since we started from a canonical transformation, so they vanish
identically, which proves that also the extended map y is canonical.

The following extension of Proposition 26.1.3 follows with the same
proof:

Proposition 26.1.3. Let Pe ¥'(X) have real and homogeneous principal part
p, and let y: I-T*(X)\ 0 be a bicharacteristic with the properties assumed in
Proposition 26.1.6. If T is the graph of a canonical transformation y from a
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conic neighborhood of J=1x (0, ¢,) to a conic neighborhood of y(I), satisfying
the conclusion in Proposition 26.1.6, then one can for any ueR find properly
supported Fourier integral operators Ael*(X xR", I'") and Bel *(R"x X,
(I'~YY) such that

(i) WF'(A) and WF'(B) lie in small conic neighborhoods of the graph of x
restricted to J and its inverse respectively,

(i) y()n WF(AB—~I)=9, JAnWF(BA—I)=0.
(iii) yI)nWF(AD,B—P)=0, JAWF(BPA—D,)=9.

Proof of Theorem 26.1.5. We may again assume in the proof that m=1.
Changing notation in Theorem 26.1.5 so that I is replaced by y(I), IcR,
we have precisely the situation in Proposition 26.1.3. Choose A and B
according to Proposition 26.1.3" with u= —s. We have already constructed a
distribution U in R" with WF(U) generated by J, WF(D, U) generated by
the end points of J, U EH(’,",c for every t<0 and U¢ H[SS at (x, &) for every
(x,&)ed. If we set u=AU then U=Bu mod C®, Pu=PAU=ABPAU

=AD,U mod C®, so u has the required properties.

We shall now discuss existence theorems for the equation Pu=f which
follow from Theorems 26.1.4 and 26.1.5 applied to the adjoint P* combined
with abstract functional analysis. At first we shall only consider solvability
on compact sets. All operators will tacitly be assumed to act on half
densities so that the adjoints are well defined and of the same kind.

Theorem 26.1.7. Assume that P e ¥™(X) is properly supported and has a real
principal part p which is homogeneous of degree m. Let K be a compact
subset of X such that no complete bicharacteristic curve is contained in K.
Then it follows that

N(K)={ve&'(K), P*v=0}

is a finite dimensional subspace of Cg(K) orthogonal to P2'(X). If
fe H:;’,“(X) Jor some seR (resp. fe C*(X)) and if f is orthogonal to N(K),
then one can find ueHZS, _)(X) (resp. ue C*(X)) so that Pu=f in a

neighborhood of K.

Proof. The principal part of P* is also p. Hence N(K)c C* by Theorem
26.1.1, for if ve N(K) and (x, £)e WF (v) then the bicharacteristic starting at
(x, &) would have to remain over K. By the closed graph theorem the L?
topology in N(K) is equivalent to the C* topology, which shows that the
unit ball in the L? topology is compact. Thus dim N (K)< co.

The hypotheses of the theorem are also fulfilled if K is replaced by a
sufficiently small compact neighborhood K'. To prove this we may assume
that m=1 and can then consider the bicharacteristics as curves in the
cosphere bundle. Since this is compact over K’, we would obtain a bicharac-
teristic staying over K for all values of the parameter if there is one over K’
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for every compact neighborhood K’ of K. This proves the assertion. Since
dim N(K’) decreases with K’ and is finite, it is also clear that N(K')= N(K)
if K' is sufficiently close to K.

Let | ||, denote a norm which defines the H, topology for distributions
with support in an arbitrary fixed compact subset of X. Since ved’'(K),
P*ve H,, implies veH,,,,_,) by Theorem 26.1.4, it follows from the closed
graph theorem that

(26.1.5) 1ol gsm-1yS CUP*ll gy + 10l 420, vECTK).

Let V be a supplementary space of N(K) in H,,,_,,n&'(K). Then there is
another constant C, such that

(26.1.6) Iolgym—1,=CiIP*vll,), veVCF(K).
In fact, if this were false we could select a sequence v;€ V with
“Uj"(,.,.m_n:l’ '"P*vj"(g)""o-

A weakly convergent subsequence must converge strongly in H,,,_, to a
limit veV with P*v=0 and 1= Cl|v|,,p_3) by (26.1.5). Hence v is a non-
zero element of N(K) belonging to V, which is a contradiction.

If feH{(X) is orthogonal to N(K) we set t=1—m—s and have by
(26.1.6) for some C

(26.1.7) I(f, 9IS ClIP*0ll,, veCF(K),

for this is true. if ve Vn Cy(K) and neither side changes if an element of
N(K) is added to v. By the Hahn-Banach theorem it follows that the anti-
linear form P*vi(f, v), ve Cy(K), can be extended to an anti-linear form
on Hg™ which is continuous for || ||,. Thus there is a distribution ueH("f,)
=H{%$,._ ) such that

(f, )=, P*v), veC3(K),

which implies that Pu=f in the interior of K. If we apply this conclusion
to a suitable neighborhood K’ of K, we obtain Pu=f in a neighborhood of
K.

To prove the C® case of the theorem we denote by C*(K) the quotient
of C*(X) by the subspace of functions vanishing of infinite order on K. The
dual space of this Fréchet space is 8’(K) (Theorem 2.3.3). To show that the
range of the map C®(X)—C*®(K) defined by P is the orthogonal space of
N(K) we have to show that P*¢&'(K) is weakly closed in &'(X), or equiva-
lently that the intersection of P*#'(K) and the unit ball in H,nd&'(K,) is
weakly closed for every real t and compact K, = X. (See Lemmas 16.5.8 and
16.5.9.) Now ve£'(K), P*ve H, implies ve H,,,,,_,, by Theorem 26.1.4, and
by (26.1.6) we have v=v,+v, where v,e N(K) and [v,l|,,,_1,)=C. Since
the set of such v, e #'(K) is weakly compact and P*v=P*v,, the assertion is
proved.
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Remark 1. When K consists of a point x, we conclude that for every fe C*
one can choose ue C* so that Pu=f in a neighborhood of x,, provided
that H, does not have the radial direction at any characteristic point (x, ¢).

Remark 2. The condition on the bicharacteristics made in Theorem 26.1.7 is
merely sufficient and in no way necessary for the conclusion to be valid. For
example, if P is a differential operator with constant coefficients our as-
sumption means that P is of principal type (Definition 10.4.11) but the
conclusion is always valid in the C* case and holds in the H, spaces also
for example if P is the heat operator, which has multiple characteristics.
Even when the characteristics are simple the condition is not necessary in
the variable coefficient case. For example, the conclusions of Theorem 26.1.7

are valid for P=x,0/0x, —x,0/0x,+c

in X={(x,,x,); 1<x}+x2<2} if ¢ is a real constant 0, although (the
normals of) the circles x3+x2=r? are bicharacteristics. Thus the lower
order terms may in general be essential. However, they are irrelevant when
the hypotheses of Theorem 26.1.7 are fulfilled, and just as in Definition
10.4.11 we introduce a terminology which refers to this fact:

Definition 26.1.8. Let Pe ¥™(X) be a properly supported pseudo-differential
operator. We shall say that P is of real principal type in X if P has a real
homogeneous principal part p of order m and no complete bicharacteristic
strip of P stays over a compact set in X.

We shall now discuss global solvability of the equation Pu=f modulo
C™. The results should be compared with Sections 10.6 and 10.7 in the
constant coefficient case.

Theorem 26.1.9. Let P be of real principal type in the manifold X. Then the
following conditions are equivalent:

(a) P defines a surjective map from 9'(X) to 2'(X)/C*(X).

(b) For every compact set K = X there is another compact set K'< X such
that . .

a ued’'(X), singsupp P*ucK =>sing suppucK'.

(c) For every compact set K = X there is another compact set K' = X such
that every bicharacteristic interval with respect to P having endpoints over K
must lie entirely over K'.

Proof. (b)=>(c) with the same K’ by Theorem 26.1.5. Using Theorem 26.1.1
we shall also prove that (c)= (b). In doing so we may assume that P is of
order 1 since we can multiply P by an elliptic operator of order 1 —m
without affecting these conditions. When the degree is 1 the bicharacteristic
strips can be considered as integral curves of a vector field on the cosphere
bundle which is an advantage since the fibers are then compact.
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Assuming that (c) is valid, that uedé’(X), sing suppP*ucKk,
(x,£)e WF(u), we shall show that there is a contradiction if x¢K'
By Theorem 26.1.1 the bicharacteristic through (x, €) stays in WF(u) until it
reaches a point lying over K. In view of (c) and the assumption that x¢ K’
at least one half ray y of the bicharacteristic starting at (x, £) contains no
point above K, so y= WF(u). Choose (x,, £,) so that its projection in the
cosphere bundle is a limit point of y at infinity, which is possible since y lies
over the compact set suppu. Then the entire bicharacteristic strip with
initial data (x,, £,) must stay over supp u, which contradicts the hypothesis
that P is of principal type.

Since P is of principal type we know that ue C* if ue&’ and Pue C®.
Combined with the purely functional analytic arguments in the proof of
Theorem 10.7.8 this gives that (b) = (a).

It remains to show that (a) = (c). Assume that (c) is not valid. For some
compact set KX we can then find a sequence of compact intervals
1,,1,, ... on bicharacteristic strips with end points lying over K and points
(x;,&)€el; with x;—o00 in X, that is, only finitely many contained in any
compact subset. We may assume that the intervals I; are disjoint even when
considered in the cosphere bundle. Let (y;, n;) be one end point of I; and let
I; be the cone = T*(X)\0 generated by the bicharacteristic between (y;, 1))
and (x;, £} while I} consists of the rays through these points. Now use
Theorem 26.1.5 to determine u; € 8’(X) such that

WF(u)=I,, WF(Pu)=Ij, wu;¢H_; atany pointin I

We can write Pu;=f;+g; where WF(f)) and WF(g) are the rays through
(x5, &) and (y;, 1) respectively. In doing so we can take the suppcwt of f; so
close to x; that the supports of the distributions f; are locally finite. We can

then form
f=X1

Now we shall prove that Pu~f is not in C® for any ue2’'(X), which
means that (a) is not valid. To do so we choose s so large negative that
ue Hi in a neighborhood of K. When —j<s it follows that u—u; is not in
H:;’,‘ at any point on I; close to (y;, n;) whereas u—ujesH(';’)c at the other end
point of I;. By Theorem 26.1.4 this shows since m=1 that P(u—u)) is not in
H, at every point in the interior of I;. However,

Pu—u)=Pu—f+Y f.—g;
k*j

and the interior of I; does not meet the wave front set of the sum nor that
of gjir Hence Pu—f is not in H, at every point on I;, which completes the
proof.

When convexity conditions similar to those of Section 10.6 are fulfilled
one can improve Theorem 26.1.9 to existence of genuine solutions. However,
this does not differ very much from the discussion in Section 10.6 so we
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leave for the reader to contemplate such results or consult the references at
the end of the chapter. Instead we shall study global parametrices for
operators satisfying the condition in Theorem 26.1.9, for whlch it is con-
venient to introduce a name:

Definition 26.1.10. If P is of real principal type in X we shall say that X is
pseudo-convex with respect to P when condition (c) in Theorem 26.1.9 is
fulfilled.

To clarify the geometric properties of the Hamilton field on the charac-
teristic set we need two lemmas on vector fields satisfying conditions like
(c) in Theorem 26.1.9.

Lemma 26.1.11. Let M be a C* manifold and v a C* vector field on M.
Then the following conditions are equivalent:

(@) No complete integral curve of v is relatively compact, and for every
compact set K in M there is another K' containing every compact interval on
an integral curve of v with end points in K.

(b) v has no periodic integral curves, and the relation R consisting of all
(1, ¥,)EM xM with y, and y, on the same integral curve of v is a closed
C® submanifold of M x M.

(c) There exists a manifold M,, an open neighborhood M, of M,xO0 in
M, xR which is convex in the R direction, and a diffeomorphism M — M which
carries v into the vector field 0/0t if points in M, xR are denoted by (y,, t).

Proof. Let us first show that the first part, of (a) implies

(a’) No integral curve of v defined for all positive or all negative values
of the parameter is relatively compact.

In fact, suppose that R ot y(t) is an integral curve of v with compact
closure K. Then we can find a sequence t;—+co such that. x=lim y(t)
exists. Since t—y(t;+1) is an integral curve for te(—t;, o) it follows that K
contains a complete relatively compact integral curve starting at x, which
contradicts the first part of (a). (This argument was already used to prove
that (c) = (b) in Theorem 26.1.9.)

Next we prove that (a) = (b). Denote the v flow by ¢ so that t¢(y, ) is
the solution of the equation dx/dt=v(x) with x(0)=y, defined on a maximal
open interval cR. If D, is the domain of ¢, then

R={(¢(y9 t)a y)’ (y7 I)ED¢}'

The map (y, )=(¢(y, t), y) is injective since there are no closed integral
curves, and it is clear that the differential is injective. To prove that R is a
closed C* submanifold it suffices therefore to show that the map is proper.
Let (y;,t)eD, and assume that y,—y, ¢(y;,t)—x as j—»oco. We have to
show that (y;, t)) has a limit point in D,. In doing so we may assume that
t;—>Te[ —o0, c0]. By the second part of condition (a) there is a compact set
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K' such that ¢(y;,t)eK’ when te[0,¢;]. f T=too it follows that
¢(y,s)eK’ for s=0 or for s<0. But this contradicts (a') so T is finite and
(yj1 tj)""(yi T)GD¢'

(b)=(c). It follows from (b) that the quotient space My=M/R is a
Hausdorff space, and identifying a neighborhood of the equivalence class of
y with a manifold transversal to v at y we obtain a structure of C®
manifold in M,. The map M—M, has a C*® cross section M,—M. This is
obvious locally and using a partition of unity in M, we can piece local
sections together to a global one, for only an affine structure is required to
form averages. We can now take

M1={(y’ t)’ yEMo, (y’ t)ED¢}

and the map M,—M given by ¢. Since the implication (c)=(a) is trivial,
this completes the proof.

In our applications of Lemma 26.1.11 we shall have a conic manifold M
and a vector field v commuting with multiplication by positive scalars as is
the case for the Hamilton field of a function which is homogeneous of
degree 1. Thus vu is homogeneous of degree m if u is. In particular, if M, is
the quotient of M by multiplication with R, then v induces a vector field
v, on M, as already observed in the proof of Proposition 26.1.6.

Lemma 26.1.12. Let M be a conic manifold and v a C* vector field on M
commuting with multiplication by positive scalars, such that the vector field v,
induced on M, has the properties in Lemma 26.1.11. Then there exists a C*
manifold My, an open neighborhood M’ of My x0 in M xR which is convex
in the direction of R, and a diffeomorphism M—M’' xR ,, commuting with
multiplication by positive scalars (defined as identity in M’ and standard
multiplication in R ) such that v is mapped to the vector field 8/0t if (y,,t,71)
denotes the variables in My xR xR | .

Proof. First note that by a partition of unity we can construct a positive C®
function r(y) on M which is homogeneous of degree 1. If n is the projection
of M on M, we obtain a diffefomorphism

Maym(n(y), r()eM, xR,

commuting with multiplication by R,. From condition (c) in Lemma
26.1.11 applied to v, we now obtain a diffecomorphism M—-M’ xR, with M’
as in that lemma, which transforms v to a vector field of the form

v,=0/0t+a(y,,t)ro/or

since it is equal to 0/0t for functions independent of r. Now solve the

equation
0b(yo, 1)/0t+a(ye, t)=0
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with initial condition b=0 when t=0 for example. Then be C*(M’), and if
R=rexpb(y,,t) we have v; R=0. If we take R as a new radial variable
instead of r, there will be no term d/0R in the new expression of v so the
lemma is proved.

Remark 1. Under the hypotheses in Lemma 26.1.12 the vector field (v, 0) on
M xM defines a vector field ©# on the relation manifold R (see
Lemma 26.1.11 (b)) which satisfies the same conditions. This is obvious when
the vector field is put in the form given by Lemma 26.1.12.

Remark 2. Let v satisfy the conditions in Lemma 26.1.12 and let ce C*(M)
be homogeneous of degree 0. Then the equation (v+c)u=f has a solution
ueS™(M) for every feS™(M). In fact, if c=0 we just have to integrate f
with respect to t from t=0 with the coordinates given by Lemma 26.1.12.
For a general ¢ we first obtain in this way a homogeneous function C with
vC=c, and multiplication by e reduces to the case c=0.

Let us now return to an operator Pe P™(X) of real principal type, with
principal symbol p, assuming that X is pseudo-convex with respect to P.
Denote by N the set of zeros of p in T*(X)\0. This is a conic manifold,
and the Hamilton field H, is tangential to N. The integral curves are the
bicharacteristics of P, and we define the bicharacteristic relation C of P by

(26.1.8) C={((x, &), (»,M)eNxN; (x,£) and (y,7)
lie on the same bicharacteristic}.

The construction is invariant under the action of canonical transformations
on p since the definition of the Hamilton field is. Multiplication of p by a
non-vanishing function will change the parameter on the bicharacteristics
but not affect C. Note that the set C, defined by (26.1.2) is the bicharacter-
istic relation of D, .

By the preceding remarks we may assume that P is of degree 1 when
studying C. By hypothesis the vector field induced by H, on N, satisfies
condition (a) in Lemma 26.1.11 so Lemma 26.1.12 is applicable. It follows at
once that C is a closed conic submanifold of N x N, and since the positive
homogeneous function r is constant along the bicharacteristics it is clear
that C is also closed in T*(X x X)\0. Since C, is a canonical relation, that
is, the product symplectic form vanishes in C,, it follows in view of
Proposition 26.1.6 that C is a canonical relation. In fact, if ((x, &), (y, n))e C
we can by a canonical transformation reduce p to ¢, in a neighborhood of
the bicharacteristic between (x, £) and (y, n). Thus we have proved:

Proposition 26.1.13. Assume that P is of real principal type in X and that X
is pseudo-convex with respect to P. Then the bicharacteristic relation C of P
is a homogeneous canonical relation from T*(X)~\0 to T*(X)~0 which is
closed in T*(X x X)\0.
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If 4y is the diagonal in N, then C\ 4, is the disjoint union C* U C~ of
the forward (backward) bicharacteristic relations C* and .C~ defined as the
set of all ((x, &), (v, 7)) N x N such that (x, &) lies after (resp. before) (y, n) on
a bicharacteristic. These are open subsets of C and inverse relations. The
definition is invariant under multiplication of p by positive functions but
C* and C~ are interchanged if we multiply by a negative function. The
importance of these sets is suggested by Proposition 26.1.2 which we shall
now extend as follows:

Theorem 26.1.14. Let Pe ¥Y™(X) be of real principal type in X and assume
that X is pseudo-convex with respect to P. Then there exist parametrices E*
and E- of P with

(26.1.9) WF(E*)=4*uC*, WF/(E )=4*uC"~

where A* is the diagonal in (T*(X)\0)x (T*(X)\0). Any left or right para-
metrix E with WF'(E) contained in A4¥ U C* resp. 4* U C~ must be equal to
E* resp. E- modulo C®. For every seR the parametrices E* and E~ define
continuous maps from Hi3™(X) to H(‘;’im_l)(X )- Finally

(26.1.10) E*—E-el¥™(X x X, C'),

and E* —E~ is non-characteristic at every point of C'.

Before the proof we recall that a continuous operator E: C2(X)—-2'(X)
is called a right parametrix if

PE=I+R

where I is the identity and R has a C® kernel. If instead EP=I+R’ with
R'eC™ then E is called a left parametrix. We shall say that E is a
parametrix if E is both a right and a left parametrix. Note that the theorem
is an extension of Theorem 8.3.7 also.

Proof of Theorem 26.1.14. We begin with a proof of the uniqueness. Assume
for example that E;, is a right and E, a left parametrix with
WF'(E))c 4* U C*, which implies that they map C3 to C*. To prove that
E,—E,eC” we would like to argue that E,PE, is congruent both to E,
and to E, mod C® (cf. the proof of Theorem 18.1.9), but this is in no way
obvious since E, and E, are not properly supported. However, we do know
that E,BE, is defined if B is a pseudo-differential operator with kernel of
compact support in X xX, for B maps 2'(X) to &'(X) then. If
(x, &, y,ne WF'(E,BE,) but (x, £) and (y, n) are both in the complement of
WF(B) it follows that (x, ¢,z {)eC* and that (z,(,y,n)e C* for some
(z, {)e WF(B). This implies that (x, &), (¥, ), (2, {) are on the same bicharac-
teristic strip, with (z, {) between the other points. Let K and K’ be as in
condition (c) in Theorem 26.1.9. If WF(B) has no point over K’ it follows
that WF'(E,BE,) has no point in K x K. Now choose ¢ € Cg (X) equal to 1
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near K' and form
E,¢PE, —E,P$E,=E,(¢P—PP)E,.

The wave front set of the right-hand side contains no point over K x K, so
the same is true of E,¢—¢E,. Since K is arbitrary it follows that
E,—E,eC™.

Since PE=I+R is equivalent to E*P*=]+R* and P* has the same
principal symbol as P, the existence of left parametrices with the properties
listed in the theorem follows from the existence of right parametrices for P*.
To prove the theorem it is therefore sufficient to construct a right para-
metrix with the required regularity properties. In doing so we may assume
that the order of P is 1, for P can otherwise be replaced by the product with
an elliptic operator Q of degree 1 —m with positive homogeneous principal
symbol; Q has a pseudo-differential parametrix by Theorem 18.1.24.

The first step in the construction is local in the cotangent bundle near
the diagonal.

Lemma 26.1.15. Let Pe Y'(X) satisfy the hypotheses of Theorem 26.1.14 and
let (xq, &g)e T*(X)N0, p(xy, £)=0. Choose A and B according to Proposi-
tion 26.1.3 with p=0 and set Ff =y E{ where y € C*(IR?") is equal to 1 in a
neighborhood of the diagonal. If  vanishes outside a sufficiently small
neighborhood of the diagonal, Te ¥W°(X) has its wave front set in a suf-
ficiently small conic neighborhood of (x4, £,), and F* = AF* BT, then
(i) WF'(F*)c4*u CH,
(i) PF*=T+R* where R*el-*(X x X, C’) and WF'(R*)c C%,
(iii) F*—F-el-}*XxX, C).

Proof. Conditions (i) and (iii) follow immediately from the corresponding
conditions in Proposition 26.1.2. To prove (ii) we form

(26.1.11) PF*=PAF*BT=(PA—AD,)F*BT+AD,F:BT.
By (iii) in Proposition 26.1.3 we have
(xg, €9, 0,¢,)¢ WF'(PA—AD,)T.

It follows that there is a conical neighborhood V of (0,¢,) such that
(PA—AD,)ve C® if WF(v)c V. Since WF'(Ft) can be made arbitrarily close
to the diagonal in (T*(IR")\0) x (T*(IR")\. 0) by choosing the support of ¢
close to the diagonal in R"xR", we can choose ¥ and a conic neigh-
borhood W of (0, ¢,) such that WF(FE v)cV if WF(v)<W. If WF(T)< x(W)
it follows that the first term in the right-hand side of (26.1.11) is in- C®. To
study the last term in (26.1.11) we note that D, F;* =I+R{ where

R =(D,,¥(x,)E; eIT*R"xR", C}), WF'(R{)=Cy.

Since ABT—T=(AB—I)Te C> if WF(T) is sufficiently close to (x,, &), it
follows that PF* =T+ R* where R* —AR¥ BTe C®, which proves (ii).
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End of Proof of Theorem 26.1.14. If (xq, ¢,)e T*(X)N0 and p(x,, &) +0
then Theorem 18.1.24' gives a stronger result than Lemma 26.1.15: we can
find a pseudo-differential operator F such that PF=T+R where Re C®
and WF(F)= WF(T). Now choose a locally finite covering {V:} of T*(X)~0
by open cones V; such that either Lemma 26.1.15 or the preceding obser-
vation is applicable when WF(T)<¥,. We can choose V; so that the pro-
jections W, in X are also locally finite and can then write I=) T, where
WF(T) <V, and the support of the kernel of T, belongs to W, x W,. For every
i we choose F,.* according to Lemma 26.1.15 or as indicated above, with
supp Ff c W, x W,. Then the sum

F:t___ZFl_i

is defined, (26.1.9) and (26.1.10) are satisfied by these operators, and F*
maps H{J™?(X) continuously into H(':f(X ) for every s. In fact, this is true for
E*=yEf if y is taken as a function of x —y, for the operator E* is then
convolution by a measure of compact support. All other factors are H,
continuous by Corollary 25.3.2.

So far we just have

PF*=I+R* where R*el;}¥(XxX,C), WF(R*)cC™
However, by Lemma 26.1.16 below we can choose Gt eI~ *(X x X, C’) so
that PGt —R*eC®(XxX), WF(G%)cC*oWF(RY).

Since corank g.=2 it follows from Theorem 25.3.8 that G* is continuous
from H{™ (X) to Hiy¥(X) for every s, so E* =F* —G* is a right parametrix
which has this continuity property. The construction shows that F* —F~
and therefore E* —E~ is non-characteristic at the diagonal of N (cf
(26.1.1)). Since P(E* —E")eC® it follows from Theorem 25.2.4 that the
principal symbol satisfies a first order homogeneous differential equation
along the bicharacteristics starting there. Hence E* —E~ is non-characteris-
tic everywhere. (Using Proposition 26.1.3" instead of Proposition 26.1.3 we
could in fact have computed the principal symbol directly at any point in
C.) This implies that WF'(E* —E~)=C, and since WF'(E¥)c4*UC?* we
conclude that WF'(E*)> C*. Since

A*=WF'(I)=WF' (PE*)cWF'(E¥)
the proof of Theorem 26.1.14 will be completed by the following

Lemma 26.1.16. If FeI*(X x X, C') and WF'(F)c C%, then one can find Ae
(X x X, C') with
PA—FeC®, WF'(A)cC*oWF(F)cCt.

Proof. If a, and f are the principal symbols of 4, and of F, then it follows
- from Theorem 25.2.4 that PA,—FeI*~! if

i~ %y ay+cag=f,
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where ceS°. Let @ be a non-vanishing section of M.® 2% which is homo-
geneous of degree n/2. (As a complex vector bundle M,® Q% is trivial.) If
we set a,=wu and f=wg, the equation is of the form

-1 f oy e
i""Hu+c'u=g

where ¢’ is homogeneous of degree 0 and u, g are scalar symbols of degree s.
It follows from the remarks after Lemma 26.1.12 that this equation has a
unique solution u€S*® vanishing on the diagonal in N, and the support is
contained in C* o WF'(F). The same argument can be applied to PA,—F.
Hence we obtain a sequence 4 jcsI"'f(X x X, C') with

WF'(A))= C* o WF'(F)

and

P(Ag+...+A)—FelF "1 (X x X, C)).
If we choose A so that A—A,—... —AjeI""‘1 for every j, the lemma is
proved.

Theorem 26.1.14 can be generalized when the characteristic set N is not
connected. In fact, if N=N, UN_ with N, and N_ disjoint and open, then
we can find E* and E- as in Theorem 26.1.14 with (26.1.9) replaced by

(26.1.9y WF'(E¥)=4* U(C*N(N, x N,))U(CFn(N_xN_)).

The very slight modification of the proof is left as an exercise for the reader.
Important examples of this situation are the advanced and retarded funda-
mental solutions of the wave operator.

The most noteworthy feature of Theorem 26.1.14 is that a two sided
parametrix is obtained. In the following sections we shall prove far reaching
extensions of Theorem 26.1.4 concerning the propagation of singularities,
and this will lead to existence theorems similar to Theorem 26.1.7. However,
we do not have any general methods for constructing two-sided parame-
trices.

26.2. The Complex Involutive Case

The study of pseudo-differential operators P e ¥™(X) with homogeneous prin-
cipal symbol p is far more intricate when p is complex valued than in the
real case discussed in Section 26.1. Already the geometry of the characteris-
tic set N=p~!(0) may then be very complicated even if dp+0. At first we
shall therefore only consider the subset

(26.2.1) N,={(x, )e T*(X)\0; p(x, {)=0, d Rep(x, {)
and dImp(x, &) are linearly independent}
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which is a conic manifold of codimension 2. Section 26.3 will be devoted to
the open subset

(2622) N,,={(x,{)e T*(X)\0; p(x, {)=0, {Rep, Imp}(x, {)+0}

which is a symplectic manifold. The purpose of the present section is to
study the interior N,; of N,N\N,, which is an involutive manifold. We
recall from Section 21.2 that as involutive manifold N,; is foliated by 2
dimensional leaves I'. In analogy with the real case we shall call them
bicharacteristics of P. The Hamilton vector field

H,=Hy, ,+iH,,,

is tangential to any leaf I and has linearly independent real and imaginary
parts so it defines an analytic structure in I' where the analytic functions are
the solutions of the equation H,u=0. By Theorem 21.2.7 a leaf I is either
conic or else the radial direction is never tangential to I'. We shall postpone
the discussion of the first case until Section 26.7 and only discuss here the
open subset NJ; of N,; where

(26.23) Hg,,, H,,, and the radial direction are linearly independent.

Whereas Theorem 26.1.4 reflects the fact that the equation H,u=0 in the
real case has only constant solutions on a bicharacteristic, we shall now
have to take into account that this equation has a large solution space in
the two dimensional bicharacteristic I. To state an analogous result we
recall from Section 18.1 that if ue 2'(X) then the regularity of u at (x, £) can
be measured by the function

su(x, O)=sup {t;ueH, at (x,8)}, (x,&)eT*(X)~0,

which is lower semi-continuous and positively homogeneous of degree 0.
We have by (18.1.38)

(26.2.4) sk, =s¥—u

Au="u

if A is a pseudo-differential operator of order u, and by (18.1.39) there is
equality in (26.2.4) where A is non-characteristic. If more generally A is a
Fourier integral operator of order p belonging to a canonical transfor-
mation y then (26.2.4) is just modified to

(26.2.4y X* Sz — 1,

with equality at the non-characteristic points.
The following is an analogue Theorem 26.1.4:

Theorem 26.2.1. Let ue2'(X), Pu=f, and let ' cT*(X)~0 be an open
subset of a leaf in the foliation of N3,. If s is a superharmonic function in I’
such that s} 2s then

min(s¥, s+m—1)
is superharmonic in I
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When I'nWF(f)=0 we can take s=+oo0 and conclude that s* is
superharmonic. Since a superharmonic function in an open connected set is
identically + oo if it is +o00 in an open subset, we obtain by applying
Theorem 26.2.1 to all leaves close to a given one:

Corollary 26.2.2. If ue 2'(X) and Pu= f, then
(NZ:inWFu)~WF(f)

is invariant under the bicharacteristic foliation in N3, WF(f).

Proof of Theorem 26.2.1. Choose a homogeneous function a of degree 1 —m
with a(x,, £,)+0 at a given point in NjJ; and a homogeneous canonical
transformation y as in Theorem 21.3.2 such that

x*(al’)=§1 +iéz
in a conic neighborhood of (0, ¢,). If Qe ¥'~™ has principal symbol a, we
can now repeat the proof of Proposition 26.1.3 to construct Fourier integral
operators A and B of order 0 satisfying the conditions (i), (ii) there as well
as (iii) with D, replaced by D,+iD, and P replaced by QP. The only
change is that to construct 4, we must solve a Cauchy-Riemann equation
in each step, and this can be done by Cauchy’s integral formula. If v=Bu
and (D;+iD,)v=g we obtain using (26.2.4) as in the proof of Theorem
26.1.1 or (26.1.4) that
sy=x*sy, sp=yx*sf+m-—1

in a neighborhood of (0, ¢,). This reduces the proof to the special case P
=D, +iD, and the leaf through (0, ¢,). It will then be made in three steps.

a) If ue&'(R" and (D, +iD,)u=feL? then ueL?. This is a very special
case of Theorem 10.3.2. A direct proof follows from the fact that u=E=*f
where the fundamental solution E=(2m)~'(x,+ix,)~"d(x3,...,X,) is a
measure.

b) (Localization) Let ued&'(R"), (D,+iD,)u=f, and assume that for
some compact set K <R? we have, 0 denoting the origin in R"~2,

uel? at 0Kx{0}xe, fel’? at Kx{0}xe,
Then ueL? at K x {0} x ¢,. For the proof we set
v=yx;(xy, X2) X2(x3, ..., X,) x3(D)u

where x,eCy(R?) is equal to 1 in K, y,e CY(R""?) and x,(0)=1,
x3€S°(R") and y,(te,)=1 when t>1. Then (D, +iD,)v=g where

g=Xx1X2X3(D)f +(Dy xy +iD;x,) x2 X3(D)u.

If suppy, is sufficiently close to K, suppy, is sufficiently close to 0 and
suppy, is in a sufficiently small conic neighborhood of ¢, then geI? so
ve L%, by a), which proves the assertion.
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c) Let ue2’'(R"), (D,+iD,)u=f and assume that for a compact set
K <R? and an entire function ¢ in z=x, +ix, we have

min(s},s)>Re¢p at 0Kx{0}xe, and sf=s at Kx{0}xe,

where s(x,, x,) is superharmonic in a neighborhood of K. Hence s>Re ¢ in
K, and by Proposition 16.1.4 the superharmonicity of min (s}, s) will follow
if we show that s} =Re¢ at K x {0} x¢,. Choose y€ C3(R") equal to 1 in a
neighborhood of K x {0}, and set U =a(x, D)(xu) where

a(x, &)=x(x)(1 +|&|?) ¢@2,

If Re¢p<pu at x, then aeS* in a neighborhood since differentiation with
respect to z can only give factors log(1+|¢|?). We have (D, +iD,)U=F,

F=a(x,D)xf +[D,+iD,, a(x, D)x]u.

The commutator is of order —oo in a neighborhood of K x {0} since y=1
there and ¢ is analytic. Hence

Uel? at 0K x{0}xe, and Fel? at Kx{0}xe,
so b) gives that Ue L? at K x {0} x¢,. Set

b(x, &)=x(x)(1+|&|?)~ ¢@2,
Then

V=b(x, D)U=yx3u+c(x, D)u

where ceS®~! for any £>0 in the neighborhood of K x {0} where y=1.
Since x*+c(x, D) is non-characteristic there we obtain s*=s}, hence

s¥*2Re¢p—0 in K x{0}xe,
for any 6>0. This completes the proof.

For the operator D, +iD, in R", n=3, we shall now prove an analogue
of Theorem 26.1.5 which proves that the superharmonicity in Theorem
26.2.1 is exactly the right condition. The result can immediately be carried
over locally to the leaves of NJ; for a general P, by the argument used to
prove Theorem 26.1.5 with Proposition 26.1.3' replaced by the modification
of Proposition 26.1.3 at the beginning of the proof of Theorem 26.2.1. A
global form of the result can be proved by working more directly with the
operator P, but for this we refer to the literature indicated at the end of the
chapter.

Theorem 26.2.3. Let  be an open connected subset of R? with boundary 0%,
and set T=Qx {0} xR, ¢, "'=02x{0} xR e, where 0 is the origin in
R"-2 Let s be a lower semi-continuous function in R?* with values in
(—o0, + 0] which is + oo in tﬁ, superharmonic and not identically + co in
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Q. Then one can find ue 9'(R") with WF(u)=I', WF((D,+iD,)u)cI" and
(26.2.5) sk=n*s in '\I", s}zna*s inTI'.
Here = is the projection '—Q.

The proof is similar to that of Theorem 8.3.8, although more technical,
so the reader may wish to recall that proof first. Using a functional analytic
argument we shall show that u can be found so that s*=>zn*s with equality
in a countable subset E of I'. This will give (26.2.5) if E is suitably chosen:

Lemma 26.2.4. For every lower semi-continuous function s in an open set
QcRY there is a countable subset E of Q such that for every lower semi-
continuous function s' in Q with s'<s in E we have s'<s in Q.

Proof. Let V; be an enumeration of the closed balls with rational center and
radius which are contained in Q. Choose x;eV¥; such that s(x j)=min, s
which is possible since s is lower semi-continuous, and let E={x;}. If now §'
is lower semi-continuous and s'(x)>s(x) for some x€£2, we can find V; with
xeV; such that s'(y)>s(x) for every yeV,. Hence s'(x;))>s(x)2s(x;). This
proves the lemma.

Remark. The choice of E here can be quite unique. For example, if N=1
and s(x)=0 for irrational x, s(p/q)= —1/|q| when p/q is a reduced fraction,
then s/2<s at all irrational points but not at the rational ones. It is easily
seen that E must in fact contain all rational points in this case.

We shall also need an analogue of Theorem 15.1.1 for open subsets of C.
(In Section 15.1.1 we only considered the whole of €" to avoid technical
difficulties which occur otherwise when n>1.)

Lemma 26.2.5. Let w be an open set in € and ¢pe C*(w) a strictly subhar-
monic function, that is, A¢>0. If fe *(w,e"*(4¢)"'dA), where dA is the
Lebesgue measure, then one can find ue L*(w, e~*dA) with du/dz= f and

(26.2.6) flul>e=*dAg4f|f1 e *(4¢)~"dA.

Proof. As in the proof of Theorem 15.1.1 we set

,0),=[uve ?dA; u,vell=L*(w,e *di).

The equation du/0Z= f means that
s w)y=—(u, 5W)¢- we Cg(w),
dw=e®d(e " *w)/0z=0w/0z—wD¢/0z.
Now
I6wli3= —(8/0Z6w, w),=(0* /020 Zw, w),+ |0w/d 2§
247 (4d)w,w),, weCP(w).
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Hence
I(f, w,ISMéwl,, weCs; M*=4f|fI*e *(4¢)"'d4,

so the lemma follows from the Hahn-Banach theorem if we extend the
map wr(f, ), to an antilinear map on L2 without increasing the norm.

Just as in Section 15.1 we can use Lemma 26.2.5 to construct analytic
functions with appropriate bounds:

Lemma 26.2.6. Let ¢, w be as in Lemma 26.2.5, and let z,ew,€w. If t is a
large positive number we can then find an analytic function f, in w such that

(26.2.7) fizg) =1, |£(2)|S2t*?, zew,.
There are constants C,, such that for all non-negative integers o
(26.2.8) IDZ £(2)| S C,(logt)* t*®, zew,.

. Proof. Taylor’s formula shows that

$(2)=Re g(z)+ 02 $(2)/029% |z — 2|+ 0(12—z4]?)
where g is the analytic polynomial

8(2)=(z0) +2(2—26) 0 (20)/02+ (2 —20)? 6 b2,/ 7.
If b and 6 are sufficiently small positive numbers it follows that
d(2)=Reg(z)+blz—zo%, |z—2z4| <.
Now choose ye C3({z; |z —z,| <0}) with x(z2)=1 when |z —z4| <J/2, and set
5@ =225 ~(z—zg)u(2).
£, is analytic if
(26.2.9) 0u/dz=18")(z—z,)"10y/0Z=h,.
With e=b4%/4>0 we have
fIn2t=2*dA<Ct 25

Shrinking o if necessary we may assume that 4¢ is bounded from below in
o and conclude, using Lemma 26.2.5 with ¢ replaced by 2¢logt, that
(26.2.9) has a solution with

[lul?t=2%da<e= 2=
An application of Lemma 15.1.8 with r=1/logt now gives
lu(2)| £ C'logtt=2+%4),  zew,

where w,Ew'€w. This implies (26.2.7) for large t and zew'. Cauchy’s in-
equality in discs with radius 1/logt and center in @, then proves (26.2.8).
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Proof of Theorem26.2.3. Let F be the Fréchet space of all ue2'(R") with
WF(u)cI and s¥==*s in I'; the topology is the weakest one making the
maps 5
Faur Buel .
continuous for every properly supported Be P* with u<n*s in WF(B)nT. (It
suffices to use countably many operators B, so the topology is metrizable,
and it is a routine exercise to verify the completeness.) By Lemma 26.2.4 we
can choose a countable subset E of I'\I" such that ueF and s*<zn*s in E
implies s} =n*s in '\ TI".

The subset F, of F where WF((D,+iD,)u)cI" is also a Fréchet space
with the weakest topology making the inclusion F,— F and the map

Fy2urs(D, +iD,)ue C*(Q x R"-?)

continuous. We shall prove that if yeE and Te¥**? is properly supported,
with homogeneous principal symbol which does not vanish at y, then

(26.2.10) {ueF,, Tueli }

is of the first category. If we use this fact for a countable number of operators
T with WF(T) shrinking to y it follows that

(26.2.11) {ueFy, s¥y)>s(ny)} -

is of the first category. Hence s¥*<=*s in E for all ueF, except a set of the
first category, and this will prove Theorem 26.2.3.

Suppose now that (26.2.10) is not of the first category. Then it follows
from the closed graph theorem that the map

Fyau> Tuel?

is continuous. Let x,=(n7,0) be the projection of y in R" and let K be a
compact neighborhood of x,. Then we have

(26.2.12) I Tull Ly S N2(Dy +iD)ull gy + 3. I1Bjull Lagx

where yeC(2xR"~2), M is a large integer, B;e'P" is properly supported,
pj<n*s in [[=WF(B)NT, and the sum is finite. Let K, be the union of ny
and the projection of suppy in Q. We shall choose u carefully near K, so
that the first term on the right-hand side drops out.

Choose open sets » and w, in R? with

Kocw,EwER
and then choose ¢e C*(w) with 4¢>0 and
(26.2.13) ¢>—-sin o, @¢<-—y;in wnnl}.

As in the proof of Theorem15.1.6, for example, we can achieve this by
regularizing —s and adding a small multiple of x} +x32, for —s< —y; in n[;
and —s is semi-continuous from above. Choose x,eCg(w,) equal to 1 in a
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neighborhood of K, #e C3(R"~?) with &(0)=1, and set
(26.2.14) a,(x, %5, &) = xo(X1, X,) fi(2) 1?2 B(E" [t — ) log ).

Here ¢'=(¢,,...,¢,), z=x,+ix, and f, is given by Lemma 26.2.6 with z,=mn7.
Thus |£”/t —¢,| < C/logt in suppa,, and since differentiation with respect to &”
will give a factor logt/t, we obtain in view of (26.2.8)

(26.2.15) |DzDEa(xy, %, &) S Cypllog (2+IEN)=+#1 (1 4¢P+ -2 =lel

If t=2" where v is an integer > N, say, the supports are disjoint so
N
AN=Za2"
No

also has the bound (26.2.15). Note that any conic neighborhood of supp x,
x g, contains the supports of all terms except a finite number. Thus A is
uniformly of order —pu outside such a neighborhood, for any pu.

We shall prove that (26.2.12) is not valid for the corresponding conormal
distributions (with respect to the x,x, plane)

un(x)={ Ay, %,,E") "¢ dg”
when N —oo. First of all we have y(D,+iD,)uy=0 since y,=1 in supp y.
This means that the first term in the right hand side of (26.2.12) vanishes
when u=uy. By (26.2.13) we have ¢+pu;< —¢;<0 in wn=nl} so (26.2.15)

€
implies that A, is bounded in S-e-k@- ”’2, in a neighborhood of
supp xoN=nl;. Using (18.2.16) we now conclude that

BjuN = I BjN(xl, x21 5”) ei(x",{") dgn

where B,y is bounded in S=%*?-"2 a5 N—co. If 4 is the conormal bundle
of the x,x, plane this means that Bjuy is bounded in I~%~"4(R" A)
(Proposition 25.1.5). Hence B;uy in bounded in “H which proves that
|Bjuyll L2k ) is bounded. From (26.2.12) it follows now that Tuy is bounded
in I*(K), so Tu eI’ in a neighborhood of x,. Now Tu, can also be
calculated by (18.2.16). If t(x,&) is the principal symbol of T, which is
homogeneous of degree s(ny), then the symbol of Tu_, is

t(xly xz, 0’ 6”) Auo(xla x29 6”)
plus lower order terms. At (n7,2"¢)) the symbol is thus asymptotically equal to
t(y)(2")’(“” +o(ry)+(2-n)2

However, since Tu,e”H, in a neighborhood of x, it follows from Theo-
rem25.1.4 that the symbol must be in $**©@-"2 for every £¢>0 in a neigh-
borhood of ny. This contradicts that ¢ +s>0 by (26.2.13). The proof is now
complete.
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26.3. The Symplectic Case

In this section we shall study the pseudo-differential operator P with prin-
cipal symbol p in the symplectic characteristic manifold N,, defined by
(26.2.2). By Theorem 21.3.3 we can locally in N,, reduce p to £, +ix,&, by
multiplication with a non-vanishing factor and composition with a canoni-
cal transformation. In Theorem21.3.5 we have also given an invariant
description of a more general situation where we can reduce p to the form
&, +ixkE, where k is a positive integer. As in Proposition 26.1.3 we can lift
these transformations to the operator level; in doing so we only consider
the polyhomogeneous case for the sake of simplicity.

Proposition26.3.1. Let Pe¥y; (X) have principal symbol p with p(x°, &%) =0,
and assume that there is a homogeneous function a of degree 1 —m in a conic
neighborhood of (x°,&°) with a(x®, £%) %0, and a homogeneous canonical trans-
formation y from a conic neighborhood of (0, +¢,)eT*(R")\0 to a conic
neighborhood of (x°, £°)e T*(X)\ 0 such that y*(ap)=¢, +ixt&,. Then we can
find properly supported Fourier integral operators AeI;,;”'(X xR"I") and
BeIS, (R" x X,(I'~ ")), where I is the graph of x, such that

() WF'(A) and WF'(B) are in small conic neighborhoods of (x° &£°,0, +e¢,)
and (0, t¢,,x°, £°) respectively.

(i) BAe¥'~™(R") is non-characteristic at (0, +e¢,)

(iii) (0,=%e,) € WF(BPA — Dy — ix{Dy).
Proof. Choose any A,el}."(X xR"I") and B,el (R"xX,(I'"')) such
that the principal symbol of A,B, is equal to a in a neighborhood of
(x° £%. Then the principal symbol of BiPA; is equal to & + ixf¢, in a
neighborhood of (0, +¢,). Replacing P by B,PA, it is then as in the proof of
Proposition 26.1.3 sufficient to prove the theorem when X=R", m=1 and
the principal symbol of P is equal to ¢, +ix%&,. The full symbol is then
& HixkE +po(x, E)+p_,(x,E)+.... We want to find pseudo-differential oper-
ators 4 and C of order 0, non-characteristic at (0, +¢,) such that the symbol
of

(26.3.1) PA—C(D,+ixD,)

is of order —oo in a conic neighborhood of (0, +¢,). If B is defined so that
the symbol of BC—1I is of order —oco in another such neighborhood, we
shall then have all statements in the proposition.

Let the symbols of 4 and C be ay+a_;+... and cy+c_;+.... The
leading symbol of (26.3.1) vanishes if a,=c,. The next term vanishes if

(26.3.2) —i{&, +ixté, a0} +poag+(E, +ixkE ) a_, —c_,)=0,
that is,
(26.3.2y —1(0/0x, +ix}0/0x, —ikx}y~'£,0/0 )ag+pya,

+(&, +ixkE)a_, —c_,)=0.
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It suffices to solve this equation when £,=1 and extend the solution by
homogeneity after cutting it off outside a neighborhood of the origin. To do
so we choose a, so that

(26.3.3) —i(8/0x, +ix%d/ox,—ikx%=1¢,0/0& )ay+Ppoa,

vanishes of infinite order when x,=0, and a,=1 there. This means that
(26.3.3) and all the x, derivatives shall vanish when x,=0, which suc-
cessively determines & ap/ Bx{ when x; = O for every j. By Theorem 1.2.6 we
can choose a, with these derivatives. The quotient r of (26.3.3) by &, +ixk¢,
is then a C® function r, homogeneous of degree —1, and (26.3.2) is valid if
a_,—c_,= —r. Using this equation to eliminate c_, from the next equa-
tion, it becomes an inhomogeneous equation of the form (26.3.2)" which can
be solved in the same way. Repeating the argument we obtain a solution of
(26.3.1), and this completes the proof.

From Proposition 26.3.1 it follows as in the proof of Theorems 26.1.4 and
26.2.1 that any microlocal statement on the singularities of the equation
(26.3.4) (D, +ixtD)u=f

at (0, +¢,) can be carried over to the equation Pu=f at (x° £°). We shall
therefore study the equation (26.3.4) carefully. For odd values of k it will
turn out that its properties differ significantly from those of the constant
coefficient operators which served as models in Sections 26.1 and 26.2.
Fourier transform of (26.3.4) with respect to x, leads to an ordinary differen-
tial equation which we shall examine first.

Lemma26.3.2. If ue C3(R) and k is an integer 20 then
(26.3.5) [0 +(1 +x*)|u|?)dx S C, [ |u —x*u|® dx.

Proof. We may assume that u is real valued. With f=u'—x*u we have
fz =u12 + kauZ _xk(uZ)l’
hence
[ frdx=[?+(x*+kx*~")u?)dx.

When k is odd the terms in the right hand side are all positive. If we just
integrate for |x|>1 we also obtain then

u(—1)2+u(1)’s | f2dx.
Ix|>1
An integration by parts gives

1
Jutdx=u(1)®+u(—1)> -2 xuw'dx
2

1 1
Su(1)?+u(—12+ [ u?dx/2+ | 2u'?dx,
-1 -1



26.3. The Symplectic Case 83

hence

;luz dx22(u(1)*+u(—1))+4[u?dx <6 | f2dx,
50 (26.3.5) is valid with C,=7. When k is even we first observe that
a_ffz dx= u_f(u’2 +x2"u2)d)é +u(1)%
Set ue~*"'k+ D=y fo—x**'k+D—=g Then v'=g, so

j‘ v2dx= jl' v2d(x+3)=4v(1)> —v(—2)* -2 } vv'(x+3)dx
-2 -2 -2

1 1
S4v(1)? —v(—2)*+ [ v2dx/2+32 | v'?dx,
-2 -2
which gives
1 1
20(—2)%+ [ v?dx<8v(1)*+64 | g*dx.
-2 -2

Since |x[**!/(k+1) is bounded in (—2, 1) we have now proved that
};uz dx+u(—2)*<C, ]?zfz dx.
If we note that
-_(2 fldx= __[z(u’2 +(x2* + kx*~YYu?)dx —2*u(—2)?

and that x2*+kx*~! 2 x2%(1 —k/2** ') 2 3x?*/4 if x < —2, the estimate (26.3.5)
follows.

If we replace x by 0x in (26.3.5) we obtain
(26357 [(1w'|*+16** 'x*ul* +|0ul>)dx < C, [ |u' — 6+ x*ul? dx, ueCg(R).

Here 6**! can be an arbitrary real number if k is even but must be positive
when k is odd. This is significant for there is no estimate of the form (26.3.5)
with 4’ —x*u replaced by u'+x*u when k is odd. In fact, the equation v’
+x*u=0 then has the solution u(x)=e~**""/(k+1) in &, and cutting u off
far away we find that no such estimate exists. This distinction between even
and odd values of k will be crucial in what follows and was in fact already
observed in a geometric context in Theorem 21.3.5. From (26.3.5) we obtain
the following estimate

Proposition 26.3.3. Let a(¢)e C*(IR") be homogeneous of degree 1/(k+1) and
assume that |£|<KE&, in suppa for some constant K. Then we have with I?
norms

(26.3.6) laD)ull S CH(D, +ix4Dyul, ueCTR.
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Proof. If (D, +ix%D,)u= f then
(D, +ixtE)U=F

where U and F are the Fourier transforms of u and f with respect to x,.
When £,>0 it follows from (26.3.5) with 6=¢X*+1 that

JIEYE+D U2 dx, < C, [ |FI? dx,.
If 4, f are the Fourier transforms in all the variables it follows that

J &V AP dES C, [1 (@)1 de.

én>0

Since a(&)/EX%+1) js bounded in supp a the estimate (26.3.6) is proved.
The estimate (26.3.6) leads directly to a result on hypoellipticity:

Proposition 26.3.4. The operator D, +ix%D, is microhypoelliptic where £,>0
(and also where &,<0 if k is even). More precisely, if (26.3.4) is valid and
feH, at (x°¢&°), then ueH 4.4, at (x°&%) if E2>0 (or £2<O0 and k is
even).

Proof. Assume first that uel? ., feL?
fxdx=1, and form the regularizations

Choose yeCy with =0 and

‘comp*

u,=uxy,=jy(eD)u.
Then ||lu,| £ |lull and
(Dy+ixiD,)u,=f*x,+i[x,D,, {(eD)]u

is also bounded in I? as £ —0 since the symbol of the commutator

- Y &-DiDedes, (',‘)
0<jsk

is bounded in Sp. (Proposition 18.1.2). Hence (26.3.6) shows that a(D)u, is

bounded in I? as ¢—0, so a(D)uel? if a satisfies the condition in Proposi-

tion 26.3.3. This proves that ueH,, ;, when £, >0; replacing x by —x we

obtain the same result when &, <0 if k is even.

" To prove the general statement assume that we already know that ue H )
at (x%,¢&°) for a certain t <s. If g(x, D) is of order t, q has compact support in
x, and WF(q) is in a sufficiently small conic neighborhood of (x?, £°), then v
=q(x,D)ucl?>___ and

‘comp
(D, +ixtD)v=q(x,D) f+[D,+ix' D, q(x,D)] ue?

since the commutator is also of order t. Hence veH /s 1 by the first part
of the proof. If g is chosen non-characteristic at (x &%) it follows that
ueH /041y at (x°£°. By 1teratmg the argument a finite number of times
we obtain ueH, ;4. 1) at (x° &%), which completes the proof.
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In view of Theorems 21.3.3 and 21.3.5 we obtain from Propositions
26.3.1 and 26.3.4

Theorem 26.3.5. Let Pe ¥, (X) have principal part p, and let (x° £% be a

point where
p(x%&%=0, {Rep,Imp}(x° £%)>0.

If Pu=feH, at (x°&°) it follows then that ueH,,, _, at (x°&°). More
generally, Pu=feH, at (x°¢&° implies ueH, ,_iyus1y at (x°&% if
p(x° &%) =0, Hg,,(x° £%) %0, and Im p has just a zero of order exactly k near
(x £°) on each bicharacteristic of Re p starting near (x°, £°), with a change of
sign from — to + or no sign change at all. In particular, P is then
microhypoelliptic at (x°, £°).

At a non-characteristic point we have of course the “elliptic” result that
feH, implies ueH, . Thus Theorem 26.3.5 gives a loss of k/(k+1) deriv-
atives compared to the elliptic case. One calls P subelliptic with a loss of
k/(k+1)<1 derivatives. A complete discussion of subellipticity will be given in
Chapter XXVILI. In particular we shall then see that the constant k/(k+1) in
Theorem 26.3.5 cannot be decreased, which is also easy to prove by tracing
the proof of Proposition 26.3.4 backwards.

When the sign change from + to — ruled out in Theorem 26.3.5 occurs,
there is no microhypoellipticity at (x°, £°). Moreover, non-propagating sin-
gularities may appear there.

Theorem 26.3.6. Let Pe ¥y (X) have principal part p, let
p(x% &% =0,  Hg, (x°&%+0,

and assume that Imp on every bicharacteristic of Rep starting near (x°, &%)
has a zero near (x°,£°) of order exactly k where the sign of Imp changes from
+ to —. For any seR one can then find ue2'(X) with Pue C*(X), WF(u)
generated by (x°,£°), and ueH{gy if and only if t<s.

Proof. By Proposition 26.3.1 it suffices to prove the theorem when P=
D,+ix%D,, (x° &% =(0, —¢,), and k is odd. Choose ye C*(R) equal to 1 on
(2, 0) and 0 on (— o0, 1), and set for real a

uu(x)=je—9(ix,.+x';+ Yk+ 1)+ |x"|?) oaw(e)do

where x"”=(x,,...,X,_,). By Theorem8.1.9 we have

WF(u,)= {(0, —0¢,),0>0}.
Partial integration shows that u, and all its derivatives are rapidly decreas-
ing when x— 0, so u,eH, at (0, —¢,) if and only if u,eH,(IR"). Moreover,

i, is-rapidly decreasing outside any conic neighborhood of (0, —¢,). Denote
the Fourier transform of exp(—x%*'/(k+1)) by &, thus de&, If e=1/(k+1)
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then the Fourier transform of u, with respect to x,,x"” becomes
fe= i B(¢,/00~ e~ K" P1%m/6)Y"= /2 6 y (6) B
which means that

B(EysnrEpo 1y —E)=20"2 B(E,/85) e~ 71148 Eomem =202y (£, £,>0.
The product by (1 +|&1%)? is square integrable when |&,|<¢,, |€”| <&, if and
only if 2a—e—(1—2D)+e+(n—2)2+2t< —1.

If we choose a so that
2a—e—(n—2)2+2s= —1,

the theorem is proved.

In Section26.4 we shall prove a general form of Theorem 26.3.6 where
hypotheses are only made on a single bicharacteristic of Rep. At the same
time it will be proved that there is an intimate connection between the
existence of non-propagating singularities as in Theorem 26.3.6 and non-
existence theorems for the adjoint operator.

As in Section 26.1 we shall finally give parametrix constructions, particu-
larly for the model equation (26.3.4). First we assume that k is even. It is
then easy to construct a twosided fundamental solution for (26.3.4) reduces
to the Cauchy-Riemann equation if x%*!/(k+1) is introduced as a new
variable instead of x,. To simplify notation we first assume that n=2 and
set for x, yeR?

(26.3.7) E(x, y)=%(x';“/(k+ D4ix, =y k+1)—iy,)~ L.

This is a continuous function of x (or y) with values in L}, and a slight
modification of the proof of (3.1.12) gives
(26.3.8) D, + ixk D,)E(x,y)=(—D,, —i ¥ D,) E(x, y)=6(x —y).
In fact, if ue C3(R") then
| Ex,y)(—Dyu()—iy;Dyu(ydy=— [ E(x,y)u(y)(}dy,+idy,)

Ix=yl>e lx—yl=¢
with the contour integral taken in the positive sense. The argument varia-
tion of y+!/(k+1)+iy,—xk*!/(k+1)—ix, around the circle is 2n, which
gives the second part of (26.3.8). The first part follows since E(x,y)=
—E(y, x). For the operator E with kernel E(x, y) we obtain

(2639) . (D,+ix:D,)Eu=E(D,+ixtDJu=u, uecCL(R?).

It is obvious from (26.3.7) that sing supp E is in the diagonal of R? x R?. If
(x,&,y,m)e WF'(E) and (x,£)#(y,n) then it follows from (26.3.9) that {,=n,
=0, hence &,=n,+0 since (D,,+D,,)E(x,y)=0, and therefore ¢{,=n,.
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Thus WF'(E) is equal to the diagonal in (T*(R%)\0) x (T*(R?)\ 0) after all.
- In case n>2 we have the fundamental solution

(26.3.7)  E(x, y)=5i;(x'§+ k4D +ix, =yt e+ 1) —iy) " @6(x" —y")

where x"=(x,,...,x,_,) and y"'=(y,,...,¥,_). It is clear that
(26.3.9y (D,+ix D,)Eu=E(D,+ix'D)Ju=u, ueCg(R".
By Theorem 8.2.9 we have
(26.3.10) WF'(E)={(x, &; y,me(T*(R")\0) x (T*(R")\ 0);
(x,&)=W,n) or x"=y", E=n, {,;=¢,=0}.
From Proposition 26.34 it follows that E maps H™ into HYS 4.1

microlocally where &, 0.

The preceding results are essentially familiar from the Cauchy-Riemann
equation. However, we shall now see that the situation changes drastically
when k is odd. At first we assume again that n=2. The kernel E(x, y) defined
by (26.3.7) now has a singularity both for x=(y;,y,) and x=(—y,,y,).
Instead of (26.3.8) we obtain, say,

(=D,, —iD,)) E(x,y)=0(x =y}, y2)) —0(x —( =y, ,))-

The definition must therefore be changed.
Let us first try to solve the equation

(D, +ix}Dj)u=feCF(R?)
by introducing the Fourier transforms U and F of u and f with respect to
x,. This gives the equation (D, +ix* &,) U(x,, &,)=F(x,,¢&,) or
31(UCxy, €5) exp(—xk* & /(k+ 1)) = iF(x,y, &) exp(—xk+ 1 £, (k+ 1)),

Since the exponential tends to 0 when x,— o0 if ¢, >0, the equation cannot
have a solution in & unless the integral of the right-hand side vanishes. For
a general F we take the I? orthogonal projection on this subspace, so we
form

(26.3.11) F(x,, &) —c(€;) exp(—x5* 1 &, /(k+1))
where c(¢,) is determined by

c(€)1¢E)= | F(yy, &) exp(—yit &, /(k+1))dy,, &,>0.
Here -

o0

I¢)= [ exp(—2yi*'&,y/(k+1)dy, =&; "+ D I().

(I(1) can of course be expressed in terms of I'(1/(k+1)).) Let @, f be the
inverse Fourier transform of the term removed from F in (26.3.11),
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(26312) Q, f(x)=(21:)~1g §§ €424 f(y)dydE,/IE,), feCF(R?)

2>0

where @(x,y)=x,—y, +i(x** 1 +yt*1)/(k+1). It is the orthogonal projection
in I? on solutions of the homogeneous equation D ,u—ixtD,u=0. An
elementary computation gives that the kernel is

(26.3.12) Q. (x,y)=(2n)" 19—kitk+ ”(k+ 1)~ 1/ + l)(¢(x’ y)/i)—(k+2)/(k+ 1

The inverse Fourier transform of the solution of the differential equation
with F replaced by (26.3.11) for ¢,=0, and 0 for £,<0, is

(263.13) E, f(x)=% gdézj e VENH(x, —y,) —G(x,, £,)) f()dy

where H is the Heaviside function, ¥(x,y)=x,—y,+i(p " —xk*1)/(k+1),
and

(263.14)  G(x,,&,)= [ e~ 2" alk+Dgy/I(E ) =G(x,E5/%* 1, 1),

In view of the elementary estimates valid for £,>0,
(26.3.15) [G(x;, &)l < Ce~2Xt" 1+ D) . <0,

1 =G(x,,&,)| < Ce=2xi*1alk+) x50
1052 1

it follows by partial integration with respect to £, that the inner integral in
(26.3.13) is rapidly decreasing when &, —0o0. In fact, Imy =0 unless |x,|>|y,|
and then we have H(x, —y,)=0 if x, <0 and H(x,—y,)=1 if x,>0. Thus
(26.3.13) defines a continuous map from Cy to C. From the definitions
above we obtain

(26.3.16) E (D,+ixtD,)f=H(D,)f, feCy,
(26.3.17) (D,+ixtD,)E, f=H(D,)f-Q.f, feCy.
Passing to adjoints in (26.3.16), (26.3.17) we obtain
(D, —ix;D,)E% f=H(D,)f, E%(D,—ixiD,)f=H(D,)f-Q%f, feC3.

We change the sign for x, which changes the adjoints to

(26.3.18) Q_(x,0)=Qm)"' [ SFEIdE JI(—E,)
52<0

i
(26.3.19) E_(x,y)= s [ €Y (H(y, —x,)—G(yy, —&,))dE,.
§2<0
If we set E=E_ +E_ and note that H(D,)+ H(—D,) is the identity, we have
(26.3.20) (D, +ixD)Ef=f-Q.f, feCP,
(26.3.21) E(D,+ix*D)f=f-Q_f, feCg.
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The wave front sets of the kernels of these operators are easily de-
termined. First of all we have

(26.3.22) WF(@Q)={(x.&,y,n); x,=y,=&;=n,=0, x,=y,,&,=n,20},

for WF'(Q,) is contained in the right hand side by (26.3.12), (26.3.18) and
Theorem 8.1.9, and Q. is singular at (x,y) if x, =y, =0, x,=y, by (26.3.12)
and its analogue for Q _. For the kernels (26.3.20), (26.3.21) mean that

(D, +ixiD, ) E(x,y)=08(x —y) —Q . (x, )
(=D,,—iy}D, ) E(x,y)=8(x—y) —Q_(x, ),
and the translation invariance in x, gives in addition
(D,,+D,,) E(x, y)=0.

The common characteristics of these operators are defined by &, =n, =0, ¢,
=—n,%+0, x,=y,=0, and at these points one of the operators is micro-
hypoelliptic by Proposition 26.3.4. It follows that WF'(E) is contained in the
diagonal, and since WF'(Q,)uWF'(Q_) is nowhere dense there we must
have equality. We are now ready to prove

Proposition26.3.7. Let E, Q., Q_ be defined as above. Then (26.3.20),
(26.3.21) are valid for fe&, WF'(E) is the diagonal in (T*(R?)\0)
x (T*(R*)\0), and WF'(Q,) is the subset defined by (26.3.22). If feH, at
(x°,&%) then Q, feH, and EfeH ., 4,1y at (x° &%), thus H{S™ is mapped
into H and H |, 1), by these operators.

Proof. Only the continuity statements remain to be proved. We know
already that Q, as orthogonal projections in I? are bounded there. Let J be
the positive canonical ideal defined by the phase function &,¢(x,y),
&,>0. It is generated by the functions ¢(x,y), &, —i&,x%, n, —in,»% and &,
—1,. Then Q, el'/®**V-#R*,J') is non-characteristic in the real set Jg. It
follows that every Qel'/®*+V-%(R* J') defines an operator which is con-
tinuous from chomp to L2, for the corresponding operator can be written in
the form QA4 mod C*, where A is a pseudo-differential operator of order 0.
(Note that this follows from Theorem 25.5.6 if k=1 but not for larger values
of k) The H, continuity of @, now follows immediately (see for example
the proof of Corollary25.3.2). Hence Q% and therefore Q_ is H, con-
tinuous. If fe H{S™ then

(s)
(D, +ixtD,)Ef=f—-Q, feHly

s0 EfeH ., /441y at (x°&°) by Proposition 26.3.4 unless this is a character-
istic point with £3<0. For E* we have the same result except at the
characteristic points with £9>0, and this completes the proof.

The operators Q, and Q _ are hermitian symmetric and
(26.3.23) (D,—ixtD,)Q, =0, (D,+ix D,)Q_=0.
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They are the projection operators on the cokernel and on the kernel of
D, +ixXD,. We shall draw some important conclusions from this after in-
troducing the extra parameters which occur in the n dimensional case. From
now on we therefore redefine E, 0, Q_ by substituting x,, y, for x,, y, and
taking the tensor product with 8(x" —y"), X" =(x,, ..., X,_ 1)-

Proposition 26.3.7". For the distributions E, Q,, Q_e2'(R*") and the corre-
sponding operators we have

(26.3.20y (D, +ixkD)Ef=f-0Q.f, feé&,
(26.3.21Y E(D,+ixD)f=f-Q_f, feé&,
(26.3.23y (D,—ixtD)Q.f=0, (D,+ixkD,)Q_f=0, feé&,
26322y WF(Q1)={(x,&,y,ne(T*R")~0) x (T*IR")~0);

(x.O=,n), x;=¢,=0, £, 20

or x"=y", {=n, {;=¢,=0},
(26.3.24)  WF'(E)={(x,¢,y,me(T*(R")~0) x (T*IR")\0);

(x,&)=(y,m or x"=y", {=n, &, =¢,=0}.
If fe€(R") and feH, at (x°¢&°) and E3+0, then Q. feH, and
EfeH, 1jus 1y at (x%&°).
Proof. (26.3.22) and (26.3.24) are immediate consequence of Proposition
26.3.7 and Theorem 8.2.9. They show that E and @, are continuous from &’
to @', so (26.3.20), (26.3.21) follow since they hold in C® by (26.3.20),
(26.3.21). It also follows that (x° %)¢ WF(Ef)u WF(Q, f) if (x° E%)¢ WF(f)
and £240. When proving the last statement we may therefore assume that
feH, and that WF(f) is in a small conic neighborhood of (x°, £°), thus
(D) fel

if aeé’ and deS’(R). But d(D,) commutes with E and Q, so it follows
from Proposition 26.3.7 that d@(D,)Q, feL3,., d(D,) EfeH{S., 1, The state-

loc>
ment follows if we multiply by b(D) x(x) where yeCg and beS° is chosen so
that |&[/|¢,| is bounded in suppb, for b(D)y(x)d(D,) is then a pseudo-
differential operator which can be chosen non-characteristic at (x°, £°).

Proposition 26.3.7 immediately gives back Proposition26.3.4. Indeed, if
ueé’ and (D, +ix}D,)u=f, then
u=Ef+0Q_u.
If feH,, at (x° &%) and £0>0 it follows that ueH ;. 1 at (x°¢°) since
(x°, £%)¢ WF(Q _u). We can also obtain Theorem 26.3.6 for the model opera-

tor if we observe that (D, +ix%D,)u=0 when u=Q _ f. We choose fe&’ with
WF(f) equal to a ray in ~_ where

2, ={(x,9)eT*R"); x,=¢, =0, {,20}.
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Then WF(u) is in the same ray by (26.3.22). We can choose f so that u is
not smooth and then give u the desired regularity by applying a suitable
convolution operator in D,. We can also determine completely when the
equation (26.3.4) can be solved microlocally at (x° &°), provided that £°40.
Let fe&’ and assume that

(26.3.25) (x°,EO)¢WF((D, +ixi D )u—f)

for some ue2'. We can of course take ued” then. Since Q, (D, +ix{D,)=0
by.(26.3.23), because Q, is hermitian symmetric, it follows that

(26.3.26) (x°, E0¢WF(Q, /).

Conversely, if (26.3.26) is valid then (26.3.25) is satisfied by u=Ef in view of
(26.3.20), so we obtain

Proposition 26.3.8. If fe&', and E2+0, then one can find ue?’ satisfying
(26.3.25) if and only if (26.3.26) is fulfilled.

The condition (26.3.26) is of course automatically fulfilled if (x° E%)¢Z,.
However, if (x° £%eZ, we can as indicated above for Q_ find f so that
WF(Q, f) is generated by (x°¢°) and Q, f has a prescribed regularity.
Using Theorem 26.3.1 we can immediately carry this result over to operators
satisfying the condition there. When k=1 we obtain in particular

Theorem 26.3.9. For every (x°, £°)e T*(X)\0 where p=0 and {Rep, Imp} >0
and for any given s one can find feH?(X) with WF(f) generated by (x°, £°)
and (x°, E%)e WF(Pu —f) for every ue9'(X).

It is also easy to extend Proposition26.3.7" microlocally to operators
satisfying the conditions in Proposition26.3.1. In case N,, defined by
(26.2.2), is the full characteristic variety one can also give a global version of
Proposition 26.3.7". To do so one just combines the local constructions with
a pseudo-differential partition of unity placed to the right (left) except near
Z_(2,)

(26.3.27) Z,={(x,£)eT*X)\0; p(x,¢)=0, {Rep, Imp} (x,£)20}.

These constructions fit together in the complement of X_uZX, since E is
uniquely determined there mod C®. The details are left for the reader who
might also consult the references at the end of the chapter where it is shown
that @, and E become unique mod C® if @, are required to be hermitian
symmetric.

26.4. Solvability and Condition ()

Let P be a properly supported pseudo-differential operator in a C® man-
ifold X of dimension n, and let K be a compact subset of X. In this section
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we shall prove a necessary condition for the equation Pu=f to be solvable
at K in a very weak sense suggested by Theorem 26.1.7.

Definition 26.4.1. We shall say that P is solvable at K if for every f in a
subspace of C*(X) of finite codimension there is a distribution u# in X such
that

(26.4.1) Pu=f
in a neighborhood of K.

In the definition we have not assumed that the neighborhood where
(26.4.1) is valid or the order of the distribution u can be chosen inde-
pendently of f. However, using Baire’s theorem we shall now show that this
is always possible. At the same time we shall show that solvability is
equivalent to a solvability condition mod C*.

Theorem 26.4.2. The following conditions on the properly supported pseudo-
differential operator P in X and the compact set K< X are equivalent:

(i) P is solvable at K.

(ii) There is an integer N and an open neighborhood Y<X of K such
that for every f GH}‘;,C)(X) there is a distribution ueH\?*y(X) such that
Pu—feC*(Y).

(iii) There is an integer N such that for every feHQ(X) there is a
distribution u in X such that Pu—feC® in a neighborhood of K.

(iv) There is an integer N such that for every feHy(X) we can find
ue9'(X) with Pu—feH\, ,, in some neighborhood of K.

(v) There is an integer N and an open neighborhood Y = X of K such that
for every f in a subspace WCH{j’v“)(X) of finite codimension the equation
(26.4.1) is valid in Y for some ue H{* y(X).

Proof. The implications (ii) = (iii) = (iv) and (v) = (i) are obvious. We shall
now prove that (i) = (ii). Let || ||, denote a norm in H{™(X) which defines
the topology in H{(M)=H§ n&'(M) for every compact set M < X. Choose
a fundamental decreasing system of open neighborhoods of K,

Ke..eY,eY eX.

Since P is properly supported we can find Z€ X so that Pu=0in Y, if u=0
in Z. Fix ¢eCg(X) with ¢=1 in Z. Then we have Pu=P(¢u) in Y, if
ue2'(X), and supp ¢uc M =supp ¢.

Condition (i) means that we can choose fi,..., f,e C*(X) so that for any
feC>®(X) we have

(26.4.2) Pu=f+Ya,f, inYy
1

for some positive integer N, a;eC and ue2'(X). Since u can be replaced by

¢u we can always choose ueé’'(M), hence ueH;_y(M) for some N. The
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union of the sets
Fy={feC™(X); (26.4.2) is valid with ue H{_y(M), Ilull(_N,+Z|ajl=<__N}

is therefore equal to C*(X). The set Fy is convex, symmetric and closed
since the set of permitted (u,a,,...,a,) in the definition is convex, symmetric
and weakly compact. Hence it follows from Baire’s theorem that Fy has O as
an interior point when N is large. Thus we can find yeC3(X) and N’ so

that
2 feC*X), Nxflw,S1= feFy.

Using the same compactness argument again we conclude that (26.4.2) has a
solution ueH{_y(M), ay,...,a, with |[ul_y,+Y |a)SN for every feHy,
with ||y fll - =1. This gives (ii) with N replaced by max (N, N').

It remains to prove that (iv) = (v). To do so we now denote by G, the set
of all feH{y(Y;)=H such that

Pu=f+g in Y,

v

for some geH{y, ;,(Y;) and ueH{_ (M) with
(26.4.3) lullZ )+ lghey, 1 S V2

Baire’s theorem gives as above that G, contains the unit ball in H for large
v. The minimum of the left-hand side of (26.4.3) is attained precisely when
(4,g) is orthogonal to all (v,g') with Pu'=g’ in Y,, so g is then a linear
function Tf of f (All norms are taken Hilbertian) The map T:
H—- Hiy +1,(71) has norm <v. Thus T defines a compact operator in H,
which implies that the range of I+ T has finite codimension. The equation
Pu=h in Y, has a solution ue H{_ (M) for every heH in the range of I+T.
This proves (v) with N replaced by max (N, v).

Remarks. a) If P satisfies (v) and Q is of order —2N —1 then it is clear that
P +Q satisfies (iv). Thus solvability at K is not destroyed by perturbations
of P of sufficiently low order.

b) In view of (iii) it follows from Theorem 26.3.9 that P is not solvable at
{x} if x is in the projection in X of the set X, defined by (26.3.27).

c) In proving that (i) = (ii) it would have been sufficient to know that
(J Fy is of the second category. If P is not solvable at K it follows therefore
that for every finite dimensional subspace W of C®(X) the set

{f+g; feC>®(X), Pu=f in a neighborhood of K for some ue2'(X), ge W}

is of the first category in C®(X). For any sequence K;, W, with these
properties we can thus find fe C*(X) so that the equation Pu= f cannot be
solved modulo W; in a neighborhood of K; for any j. In particular, we can
choose feC*®(X) so that the equation Pu=f cannot be solved in a neigh-
borhood of any point in the projection of 2, in X. An example is the Lewy
operator P=D, +iD,+i(x, +ix,)D, in R>. Since

2, ={(x,&); £1=xz§3, éz'—' “xlép €3>0}
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has surjective projection we can choose fe C*(R?) so that the equation Pu
= f does not have a distribution solution in any open set.

The condition (iii) in Theorem 26.4.2 suggests a definition of solvability
at a set in the cosphere bundle:

Definition 26.4.3. If K is a compactly based cone = T*(X)\0 we shall say
that P is solvable at K if there is an integer N such that for every
feH i (X) we have KN WF(Pu—f)=0 for some ue2'(X).

Solvability at a compact set McX is equivalent to solvability at
T*(X)l)~ 0, by condition (iii) in Theorem 26.4.2. Note that solvability at K
< T*(X)~0 implies solvability at any smaller closed cone, and that solv-
ability at K only depends on the symbol of P in a conic neighborhood of K.
This makes it possible to prove necessary conditions for solvability by local
arguments where the following proposition can be used:

Proposition 26.44. Let K< T*(X)\0 and K'cT*(Y)\0 be compactly based
cones and let y be a homogeneous symplectomorphism from a conic neigh-
borhood of K' to one of K such that y(K')=K. Let AeI™(X x Y,I") and
BeI™ (Y x X,(I' ")) where I is the graph of x, and assume that A and B are
properly supported and non-characteristic at the restriction of the graphs of y
and x~! to K’ and to K respectively, while WF'(A) and WF'(B) are contained
in small conic neighborhoods. Then the pseudo-differential operator P in X is
solvable at K if and only if the pseudo-differential operator BPA in Y is
solvable at K'.

Proof. Choose A,el ™ (X x Y,I") and B,el ™ (Y x X,(I""")) propetly sup-
ported so that
K'nWF(BA, —1)=0, KnWF(4,B—I)=9,
K'nWF(B,A-I)=0, K~WF(AB,~I)=0.

Assume that P is solvable at K and choose N as in Definition 26.4.3. Let
geHy_,.(Y) and set f=A,geH%(X). We can then find ue2'(X) with
KnWFPu—f)=0. Let v=B,ue2'(R"). Then

WF(Av—u)=WF(AB, —I)u)
does not meet K, so KnWF(PAv—f)=0. Hence
K’ WF(BP Av — Bf)=0.
Since K'"WF((BA, —I)g)=0 it follows that
K' A WF(BPAv—g)=0.

Hence BPA is solvable at K'. Conversely, if BPA is solvable at K' it follows
that A4,BPAB, is solvable at K. Since KN WF(A,BPAB, —P)=§ this means
that P is solvable at K, which completes the proof.
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As a final analytic preparation for the proof of necessary conditions for
solvability we shall show that solvability of P implies an a priori estimate
for the adjoint operator P*.

Lemma26.4.5. Let K be a compactly generated cone < T*(X)~\0 such
that P is solvable at K, and choose YEX so that KcT*(Y). If N is the
integer in Definition 26.4.3 we can find an integer v and a properly supported
pseudo-differential operator A with WF(A)n K =0 such that

(26.44) vl _yy= CUIP*vll )+ 0l _y_m+1Avlg),  veCR(Y).

Proof. Let YEZ€ X. We claim that for fixed f in the Hilbert space HfN,(Z)
we have for some C, v and A as in the lemma

(264.5) (/o)) = C(IP*vll i+ vl _y_n+1Avllg),  veCF(Y).

In fact, by hypothesis we can find u and g in &'(X) so that f=Pu+g and
K nWF(g)=0. Thus

(fiv)=(u, P*v)+(g,v), veCg(Y).

Choose properly supported pseudo-differential operators B, and B, of order
0 with I=B, + B, and WF(B,)n WF(g)=0, WF(B,)n K =@ which is possible
since WF(g)nK=@. Then B,geC® so (B,gv) can be estimated by
Clivll_y_n We have for some u

|(B,g, v)| £ B3 v,y = C(IBB3 vl o)+ 0l _y_m)

if B is elliptic of order u and properly supported. This gives (26.4.5) with 4
=BB3.

Let V be the space Cg(Y) equipped with the topology defined by the
semi-norms [vll _y_,, IP*vl), v=1,2,..., and | Avl|,, where A4 is a proper-
ly supported pseudo-differential operator with K~ WF(4)=#. It suffices to
use a countable sequence A,,A4,,... where A, is noncharacteristic of order v
in a set which increases to T*(X)~O0~\K as v—oo. Thus V is a metrizable
space. The sesquilinear form (f,v) in the product of the Hilbert space
HfN)(Z) and the metrizable space V is obviously continuous in f for fixed v,
and by (26.4.5) it is also continuous in v for fixed f. Hence it is continuous,
which means that for some v and C

(o)< ClA ) (I P*oll )+ 1A, 0l oy + 101l _y _ s
feHN(Z), veCg(Y).

This implies (26.4.4).

Proposition 26.3.8 suggests that an operator Pe¥p,, with principal
symbol p is not solvable at a characteristic point where Imp changes sign
from — to + on the oriented bicharacteristic of Rep. However, from
Proposition 26.4.4 we know that a necessary condition for solvability stated
in terms of p should be invariant under multiplication by non-vanishing
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homogeneous functions, so we are led to the following somewhat more
complicated looking condition:

Definition 26.4.6. The positively homogeneous function pe C*(T*(X)\0) is
said to satisfy condition (¥) in the open set Y <X if there is no positively
homogeneous complex valued function g in C®(T*(Y)~\0) such that Imqgp
changes sign from — to + when one moves in the positive direction on a
bicharacteristic of Regp over Y on which g=+0. (Sometimes p is then said to
satisfy (¥).)

Recall that a bicharacteristic of r is an integral curve of the Hamilton
field H, where r=0. We shall say that a bicharacteristic of Reqp where
q+0 is a semi-bicharacteristic of p. The main purpose of this section is
to prove the following theorem.

Theorem 26.4.7. Suppose that there is a C* positively homogeneous function q
in T*(X)N0 and a bicharacteristic interval t+ y(t), a<t<bh, for Reqp such
that q(y(t)) 0, a<t=<b, and

Im gp(y(a)) <0 <Imgp(y(b)).
Then P is not solvable at the cone generated by y([a,b]).

Corollary 26.4.8. If P is solvable at the compact set K< X then K has an
open neighborhood Y in X where p satisfies condition ('¥).

Proof. By condition (v) in Theorem 26.4.2 we can find a neighborhood Y of
K such that P is solvable at any compactly generated cone M c T*(Y).
Hence the statement follows from Theorem 26.4.7.

Without using Theorem 26.4.7 but only results already established we
can prove that Imgp cannot change sign from — to + on a bicharacteristic
of Regp at a point (x° £%eT*(Y)\0 where Imgp vanishes of finite order.
In fact, if Q is a pseudo-differential operator with principal symbol g we
know from Proposition 26.4.4 that QP must be solvable in a neighborhood
of (x° £%). On every bicharacteristic of Reqp nearby there must be a zero
(x!, &) where the same sign change occurs, and we choose it so that the
order of the zero is minimal. Then gp satisfies the hypothesis of Theo-
rem21.3.5 at (x!,£!) so using Proposition 26.3.1 we can transform QP
microlocally at (x!,¢') to the operator D, +ix%D, at (0,¢,), where it is not
solvable by Proposition26.3.8. In view of Proposition26.4.4 this is a con-
tradiction proving the weaker form of condition ().

Before proving Theorem 26.4.7 in complete generality we must study the
geometrical situation in some detail; this will also lead to a simpler form of
condition (¥). Suppose that the hypotheses of Theorem 26.4.7 are fulfilled,
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and choose a pseudo-differential operator @ with principal symbol q. Then the
principal symbol of P, = QP is p; = gp, so Imp; changes sign from — to +
along a bicharacteristic of Rep,. We then set ,=0Q,P, where Q, is of
degree 1 —degree P, and has positive, homogeneous principal symbol. If p,
is the principal symbol of P, then Imp, and Imp, have the same sign and
Rep, has the same bicharacteristics as Rep, including the orientation. In
view of Proposition26.4.4 it is therefore sufficient to prove Theorem 26.4.7
in the case where g=1 and p is of degree 1. The bicharacteristics of Rep
can then be considered as curves on the cosphere bundle. If the curve where
Imp changes sign is closed on S*(X) we can always pick an arc which is not
closed where. the change of sign still occurs, and this we assume done in
what follows. We can then use Proposition 26.1.6 and Proposition 26.4.4 to
reduce the proof further to the case X =IR", Rep=¢,, and the bicharacteris-
tic of Rep given by

(26.4.6) asx, b, X' =(x,..,x)=0, ¢&=¢,.

Global problems might occur in our constructions if b—a is large so we
shall examine how small the intervals can be where the crucial sign change
occurs. To do so we set

L(x',&)=inf{t —s; a<s<t<b, Imp(s,x',0,&)<0<Imp(t,x',0, &)}

when (x', &) is close to (0,¢,), and we denote by L, the lower limit of L(x', £')
as (x',£')—(0, &,). For small >0 we can choose an open neighborhood ¥; of
(0,¢,) in R?"~? with diameter <¢ such that L(x’,¢)>L,—8/2 in V. For
some (xj, &5)eV; and s, t; with a<s;<t;<b we have

ty—s;<Lo+9/2, Imp(s;s,x5,0,&5)<0<Imp(ty,x5,0, &)

It follows that Imp(t,x’,0,¢) and all derivatives with respect to x’, & must
vanish at (t,x5,0,&5) if s;+d<t<t;—9d, for otherwise we could choose
(x',&)eV; so close to (x5, &) that

Imp(t,x',0,£)+0, Imp(ss,x',0,&)<0<Imp(t;,x’,0,E).

The required change of sign must then occur in one of the intervals (s;,t)
and (¢, t;) which is impossible since they are shorter than L,—d/2.

Choose a sequence §;—0 such that lims, =a, and lim ¢, =b, exist.
Then by —ao=L, and Imp(&(,0,¢,)=0 for all o, B with a, =0 if ay<t<b,.
If ay<b, it follows in particular that we have a one dimensional bicharac-
teristic in the following sense:

Definition26.49. A one dimensional bicharacteristic of the pseudo-dif-
ferential operator with homogeneous principal symbol p is a C' map
y: I - T*(X)~ 0 where I is an interval on R, such that

(i) p(r(®)=0, tel,

(ii) O%y'(t)=c(t) H (y()) if tel.
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In order to achieve a simplification of p similar to that in Theorem
21.3.6 near a one dimensional bicharacteristic we shall now prove that the
choice of the function g in Definition 26.4.6 is not very essential there.

Lemma 26.4.10. Let y: I - T*(X)~\0 be the inclusion of a characteristic point
for p or a compact one dimensional bicharacteristic interval and assume that
for some qe C® we have

(i) g*0 and ReH,,%0 on y(I),

(ii) there is a neighborhood U of y(I) where Im qp never changes sign from
— to + along a bicharacteristic of Reqp.
Then (ii) is valid for every q satisfying (i).

Note that no homogeneity is assumed here so we could in fact have an
arbitrary symplectic manifold. This will be allowed in the following more
general statement of the result which is actually easier to prove.

Lemma 26.4.10". Let I be a point or a compact interval on R, and let y: I - M
be an embedding of I in a symplectic manifold M as a one dimensional
bicharacteristic of p=p,+ip,, if I is not reduced to a point, and any charac-
teristic point otherwise. Let

2
fj=zajkpk’ j=1’2’
1

where det(a;)>0 on y(I). Assume that H, +0 and that H; +0 on y(I). If
y(I) has a neighborhood U such that p, does not change sign from — to +
along any bicharacteristic for p, in U, then U can be chosen so that f, has no
such sign change along the bicharacteristics of f, in U.

Proof. First note that if p=0 at a point in U then
{Px’P2}=Hp,P2 <0.

Hence we have at the same point

{fi.foi}={a,1p1+a1,p;, a51P1 +a5,P,}
=(a,1a3,—0a1,8,,){P1, P2} S0.

The proof is now divided into two steps, the first of which is quite trivial.

(i) Assume first that a,,=0. Since a,,a,,>0 either a,, and a,, are both
positive or both negative. Thus the bicharacteristics of f,=a,,p, are
equal to those of p, with preserved and reversed orientation respectively,
and f,=a,,p, when p,=0 so f, has the same and opposite sign as p,,
respectively. The lemma is therefore true in this case.

(ii) Proposition 26.1.6 obviously has an analogue for a general symplec-
tic manifold where we just drop everything referring to the multiplicative
structure in T*(X)~0. The proof is the same except that we start from
Theorem 21.1.6 instead of Theorem21.3.1. By a canonical change of vari-
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ables we can therefore make M=R?", p,=¢, and I'=y(I) equal to an
interval on the x, axis. Let T be a vector eR?" with

(Tdp,>=1, (Tdf;)+0 on I.

Since dp, and df, do not vanish on I', the existence of T is obvious if I"
consists of a single point. Otherwise dp, is proportional to dp, on I so df,
is proportional to dp,. We can take any T with £, coordinate equal to 1
then.
Set
42(%,8)=p,((x, &) =&, T)

which means that p,=q, when £, =0 and that g, is constant in the direc-
tion T. Then there is a C® function ¢ such that

4,=¢p,+p,

so it follows from step (i) that the hypotheses in the lemma are fulfilled for
p,+ig,. We have

fi=(a;;—a;,9)p,+4a,,4;,
hence

0+(Tdf,>=(a,;,~a,;,¢) onI.
In a neighborhood of I' we can therefore divide f, by a,, —a,,¢ and set

q,=fi/(a;y —a,,9)=p, +a,,(a;, —a,,$)"'q,

which implies
2
/,}:ijqu’ j=1,2a
1

where b,,=a,, —a,¢, b;,=0 and detb=deta>0. Thus it follows from
step (i) that it is sufficient to prove that (q,,q,) satisfies the hypothesis made
on (p;,p,) in the lemma. The difficulty here is that the surfaces p, =0 and
q,=0 are not the same. We shall identify them by projecting in the direc-
tion T.

Let U be a neighborhood of I' where g, does not change sign from — to
+ on the bicharacteristics of p,. Since T is transversal to the surface f, =q,
=0 we can choose U so small that

Y={(x,8)eU; q,(x,{)=0}
is mapped diffeomorphically by the projection # in the direction T on
X={(x,9)eU; ¢, =0}.

When g, =q,=0, thus p, =p,=0, we have H, q,=H, p,<0. At a point in
Y where q,=0 and dg, vanishes on the tangent space of ¥, we have dq,=0
since (T, dq,>=0. Hence w=H, =H, there so n,w=H, . If we apply the
following lemma to f=gq,=n*q, and the vector fields v=(7t“)*Hm and w
=H, in Y, it follows that g, cannot change sign from — to + along a
bicharacteristic of g, in Y, which proves the lemma.
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Lemma26.4.11. Let feCYY) where Y is a C? manifold and let v be a
Lipschitz continuous vector field in Y such that for any integral curve t+ y(t)
of v we have

(26.4.7) f0)<0 = f(y(t)) <0 for t>0.
Let w be another Lipschitz continuous vector field such that
(26.4.8) (w,df) <0 when f =0
(26.4.9) w=v  when f=df =0.

Then (26.4.7) remains valid if y(t) is an integral curve of w.

Note that (26.4.8) is empty when f=df =0 so it is natural that another
condition must be imposed then.

Proof. Let F be the closure of the union of all forward orbits for v starting
at a point with f(y)<0. By (26.4.7) we have f <0 in F, and F contains the
closure of the set where f<0. Orbits of v which start in F must remain in
F. If now (y,n)eN,(F) (Definition 8.5.7) then y is in the boundary of F so
f(»)=0. If df(y)+0 then F is bounded by the surface f=0 in a neigh-
borhood of y, so n must be a positive multiple of df(y) and {w(y),n) <0 by
(26.4.8). If df (y)=0 we have (w(y),n>=<{v(y),n) by (26.4.9), and {v(y),n> =<0
by condition (ii) in Theorem 8.5.11. Hence w satisfies condition (ii) in Theo-
rem 8.5.11 so condition (i) there is also fulfilled, which proves the lemma.

Before proceeding with the proof of Theorem26.4.7 we digress to give
two alternative forms of condition ().

Theorem 26.4.12. Each of the following conditions is necessary and sufficient
for the homogeneous C* function p in T*(Y)N\ 0 to satisfy condition (¥):

(¥,) There is no C*® complex valued function q in T*(Y)\0 such that
Imgp changes sign from — to + when one moves in the positive direction on
a bicharacteristic of Re qp where q+0.

(¥,) If T is a characteristic point with H,+0 or a compact one dimension-
al bicharacteristic interval with injective regular projection in S*(Y) then there
exists a C* function q in a neighborhood Q of I' such that Re H ,#+0 in Q
and Imqp does not change sign from — to + when one moves in the positive
direction on a bicharacteristic of Reqp in Q.

Proof. It is clear that (¥,) = (¥); the difference is just that g is not assumed
homogeneous in (¥). To prove that (¥)=>(¥,) we only have to show that
ReH,,+0 on I' for some homogeneous g. This is clear if I' is a point.
Otherwise I' has a parametrization t—I'(t) with I'(t)=c(t) H (I'(t)). If the
parameter is suitably normalized then c(t) and I'(t) are C* functions. If n:

T*(Y)~0—S*(Y) is the projection then t+—>nI'(t) is an embedding of an
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interval so we can find a C* function g, on S*(X) with g (nI'(t))=c(t). Thus
g=m*q is homogeneous of degree 0 and Re H,,+0 on I

It remains to prove that (¥,)=(¥,) or equivalently that (¥,) is false if
(%) is. So let g be any function in C®(T*(Y)~\0) such that Imgp changes
sign from — to + on a bicharacteristic y of Regqp where g+0. As above we
can find a compact one dimensional bicharacteristic interval 'cy or a
point I'ey such that the sign change occurs on bicharacteristics of Reqgp
arbitrarily close to I' By Lemma 26.4.10 this remains true for any other
choice of g with Hg.,,+0 on I', so (¥,) will be proved false if we show that
7 is injective and has injective differential on I', when I is a one dimension-
al bicharacteristic interval. If H, has the radial direction at some point on I'
then the whole orbit of Hyg,,, starting at I', and in particular y, would just
be a ray where p=0 identically. This contradicts our assumptions so n
restricted to I' has injective differential. If nI" is a closed smooth curve then
p would also vanish identically on y which is again contradictory. Finally it
cannot happen that moI returns to the same position with a change of
orientation, for a one dimensional bicharacteristic is uniquely determined by
its starting point and the choice of orientation there. If mo I'(t,)=moI'(t,),
t, <t,, and the orientations are opposed, then we can for any t; >t, close to
t, find t, with t}; <t, <t, and o I'(t})=mo I'(t;). The supremum ¢ of such t;
must be equal to the infimum of the corresponding t, which contradicts
that woI’ has a nonzero tangent at moI'(f). Thus (¥,) is false and the
theorem is proved.

The interest of condition (¥,) is of course that it eliminates the need to
consider arbitrary functions g. In case I" is a point it suffices to check it for
q=1 and for g=i.

To simplify the principal symbol near a one dimensional bicharacteristic
we need a global version of Theorem 21.3.6.

Proposition 26.4.13. Let p be a C® homogeneous function on T*(X)\0, let I
be a compact interval on R not reduced to a point and I3t y(t)eT*(X)\0 a
one dimensional bicharacteristic, ye C®. Assume also that the composition of y
and the projection T*(X)~NC— S*(X) is injective, which means in particular
that H (y(t)) never has the radial direction. Then there is a homogeneous C*
canonical transformation y from a conic neighborhood of {(x,e,), x,€l, x'=0}
in T*(IR")\0 to a conic neighborhood of y(I) in T*(X)~0 and a C* homo-
geneous function a of degree 1 —m with no zero on y(I) such that x(x,,0,¢,)
=v(x,), x,€l, and

(26.4.10) xMap)=¢, +if(x,¢)

where f is real valued, homogeneous of degree 1 and independent of &,.

Proof. Essentially we just have to inspect the proof of Theorem 21.3.6 to see
that it works globally. First choose as in the proof of Theorem26.4.12 a C*®
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function g, homogeneous of degree 1 —m, such that g(y(t))=c(t) where c is
the function in Definition 26.4.9. Then
V(€)=Hg,(y(t)), dImgp=0 at y(), tel.
From Proposition26.1.6 it follows that we can find a canonical transfor-
mation y satisfying the conditions in the theorem except that
x*(gp)=¢,+igx, &)

where we only know that dg=0 on I x(0,¢,). Using Malgrange’s prepara-
tion theorem we can find h and r homogeneous of degree 0 and 1 respec-
tively, and C* in a neighborhood of I x (0, ¢,), so that

(24.4.11) & =h(x, O (&, +igx, &) +r(x, &).

In fact, it suffices to prove this when £,=1 and then extend from there by
homogeneity. As in the proof of Theorem 21.3.6 the preparation theorem
gives a local solution at any point in I x (0, ¢,), and the local solutions can
be pieced together by a partition of unity in x; to a solution in a neigh-
borhood of Ix(0,¢,). Note that h=1 and dr=0 on I x(0,¢,). Writing r=
r,+ir, we want to introduce

yi=xy, ny=&—r(x¢)
as new canonical variables. We choose
V2=X,, N,=C&5, ., n,=¢&,  when x,=0
and determine these canonical variables so that they are constant along the

orbits of H,,. One of these contains I x (0, ¢,), so y,, ﬁz, ... will be defined in

a neighborhood. The commutation relations are fulfilled by the Jacobi
identity since they hold when x, =0. Hence we obtain a canonical transfor-
mation yx, keeping I x (0, ¢,) fixed, such that h(x, &)(£, +ig(x, ¢)) composed
with yx, is equal to n, +if(y, ) where f(y, n)= —r,(x, &'). Now

offon,={f, y;}=—{ry, x,}=0
s0 yox,; and g(x~')*h have the desired properties.

If we combine the discussion preceding Definition 26.4.9 with Proposi-
tion 24.4.13 or Theorem 21.3.6 we conclude in view of Lemma 26.4.10 that
Theorem 26.4.7 follows if we prove

Theorem 26.4.7’. Suppose that in a conic neighborhood of
r={(x,,0,0,¢%, ag,<x,<b,} = T*(R")~0
the principal symbol of P has the form
p(x, =&, +if (x, &)

where f is real valued and vanishes of infinite order on I if by>a,. Assume
also that in any neighborhood of I' one can find an interval in the x,
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direction where f changes sign from — to + for increasing x,. Then P is not
solvable at I

In the proof of Theorem 26.4.7 we may also assume that the lower
order terms py, p_;, ... in the symbol of P are independent of &, near I'. In
fact, Malgrange’s preparation theorem implies that

Po(x, §)=4(x, (& +if (x, &) +r(x, &)

where g is homogeneous of degree —1 and r homogeneous of degree 0. (See
the proof of Proposition 26.4.13.) The term of degree 0 in the symbol of
(I—q(x, D)) P is equal to r(x, &'). Repetition of the argument allows us to
make the lower order terms successively independent of &,.

To prove Theorem 26.4.7' we shall use Lemma 26.4.5 which shows that it
suffices to construct approximate solutions of the equation P*p=0 con-
centrated so near I' that (26.4.4) cannot hold. Let us first show how this can
be done in the simple case where I'={(0, ¢,)} e T*(R") and P=D, +ix,D,.
(In that case we know of course already from Proposition 26.3.8 that there
is no solvability.) Set

(26.4.12) ,(x)=p(x) e
where ¢ e Cy(R") is equal to 1 in a neighborhood of 0 and
wx)=x,+i(x2+x3+... +x2_; +(x,+ix2/2)%)/2
satisfies the equation P*w=0. If supp ¢ is small enough then
Imw(x)>|x|?/4, xesuppo,

s0 v; — 0 in C®(R"\ 0) and TV P*v, = ™V (P*¢)e'™ — 0 in C{°(R") for
any N. We have v,.(x) = €™ V,(x1/T) where V,(x) = V(x) = e~ BP/2 in 7 as
T — +00. Since 9,(€) = 77"/2V,((€ —Te,)/ V1) it is clear that D,.(£)(1+]¢)Y — 0
uniformly for any N outside any conic neighborhood of €, and on any compact
set, so Av, — 0 uniformly for any properly supported pseudo-differential operator
A such that (0,¢,) & WF(A). We also have

"Uz“(zs)T—ZH"/z"nVﬂiz as 1— o0,

and these statements together show that (26.4.4) cannot be valid.

Using Theorem 21.3.3 and Proposition 26.3.1 we can adapt the preced-
ing construction to prove that (26.4.4) is not valid if there is a point
(x,§)e T*(Y)NO0~ WF(A) where p(x, £)=0 and {Rep, Imp}(x, £)>0. When
proving Theorem 26.4.7° we may therefore assume that

(26.4.13) f(x,&)=0=>0f(x,&)/0x,; <0

in a neighborhood of I'. This will be important for an application of
Lemma 26.4.11 later on.
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