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Preface

Ordinary differential equations (ODEs) are the preferred language for the investi-
gation and understanding of various natural phenomena. Employed extensively in
natural sciences, engineering, and technology, ODEs are nowadays integrated in
any standard undergraduate science curriculum, while continuing to be the subject
of intensive research.

Although ODEs model a large number of natural phenomena, it is well known
that not many admit explicit solution. For this reason, the qualitative theory and
associated methods are often employed as an alternative investigative tool. When
successful, the qualitative approach leads to a broader picture of important open
subsets of solutions (sometimes the entire set), providing information about the
ODEs’ flow, parametric stability and bifurcations.

However, few families of ODEs allow a full treatment from the qualitative
theory standpoint. The family of systems of linear differential equations is one
of them. In the context of the qualitative theory, the importance of this family
is evident when much of the local analysis of nonlinear ODEs is reduced to the
study of their linear part. Nevertheless, this family exhibits limited richness from
a dynamical systems standpoint.

In this book we consider planar systems of piecewise linear differential equa-
tions (PWLS), to which we apply the full program of the qualitative theory. PWLS
may be considered as some of the most tractable nonlinear ODEs and they dis-
play a rich and interesting dynamical behaviour, comparable to that of general
nonlinear ODEs.

Beyond the academic-theoretical significance, the study of PWLS has prac-
tical relevance. The interest in these class of systems is driven by concrete appli-
cations in engineering, in particular in control theory and the design of electric
circuits.

This book is addressed to mathematicians, engineers, and scientists in gen-
eral, who are interested in the qualitative theory of ODEs, PWLS in particular. It
is also a reference book for anyone interested in the global phase portraits and the
bifurcation sets of all the symmetric three-piece linear differential systems (here
called fundamental systems), since their full characterization is presented here for
the first time.

xi



xii Preface

The book is divided into five chapters. Chapter 1 introduces fundamental
systems, describes their global phase portraits (including behaviour at infinity) and
the bifurcations occurring when parameters vary. To emphasize the importance of
fundamental systems in applications, we discuss two well-known examples: the
motor position control and the Wien bridge circuit. For the later and for specific
values of the parameters, we describe the evolution of the phase portrait.

In Chapter 2 we collect the basic results of the qualitative theory of planar
ODEs which are used in the rest of the book. To simplify the exposition of some
concepts we have confined ourselves to ODEs having a complete flow. For this
reason some of the results presented here are more restrictive than those that
normally appear in the literature. In Section 2.5 we treat planar linear differential
systems. We refer frequently to this section throughout the book. In Section 2.9
we formalize some aspects of the compactification of flows in order to apply this
technique to the fundamental systems. As known, the Poincaré compactification is
widely used in polynomial differential systems to study the behaviour of the flow
near the infinity. However, although some differential equations can be compacti-
fied satisfactorily, we have not found a systematization of its use outside the class
of polynomial differential systems.

Chapter 3 begins with the study of the fundamental systems. We show that
within this class the existence and uniqueness theorem and the theorem on contin-
uous dependence on initial conditions and parameters are valid. We further prove
that the behaviour of these systems is determined by a pair of matrices, called
fundamental matrices. This justifies that, except in very singular cases, we use
the trace and the determinant of the two matrices as fundamental parameters to
describe the dynamics of these systems. Additionally, we study the local phase
portrait at the singular points, both finite and infinite, and we give some results
about the existence and configuration of periodic orbits.

Poincaré maps of PWLS are determined by the linear differential systems
which act in each of the pieces. For fundamental systems, one of these linear
differential systems is homogeneous, while the other two are non-homogeneous.
Consequently, in Chapter 4 we study all the Poincaré maps of linear differential
systems associated to two cross sections. These cross sections are parameterized
in such a way that the Poincaré maps become invariant under linear transforma-
tions. We note that the parametrization introduced here has important implica-
tions. First, it allows the study of the Poincaré maps by choosing, in each case,
the simplest expression for the fundamental matrices. Usually we will assume that
the matrices are expressed in their real Jordan normal form. Second, we can char-
acterize the region in the parameter space where we can guarantee the existence
of the Poincaré maps. Thus the bifurcation set associated to the non-existence of
the Poincaré maps in the parameter space is an algebraic manifold homeomorphic
to the Whitney umbrella. Finally, this parametrization establishes a link between
Poincaré maps of PWLS and the class of differential systems which are called
observable in control theory.



Preface xiii

By collecting the results obtained in the previous chapters, in Chapter 5 we
are able to describe and classify all the phase portraits of fundamental systems.
The description of the phase portraits is carried out via the characterization of
all separatrices and canonical regions. This allows us to use in a rigorous way the
Marcus–Newmann–Peixoto Theorem on the topological classification of planar
flows and to describe explicitly the bifurcation manifolds. Each of the sections
of the chapter is devoted to fundamental systems having fixed the sign of two
fundamental parameters. All sections of this chapter are structured similarly. First,
we collect the results about singular points (both finite and infinite) and limit
cycles. Second, we locate the rest of the separatrices of the system and we describe
the behaviour of the canonical regions. Finally, we organize all the information in
propositions which describe and classify fundamental systems when we vary the
two parameters. At the end of each section we describe the bifurcations set and
provide a picture of the parameter space representing the bifurcation manifolds
and the corresponding phase portraits.

Readers interested only in such results can read the introductory Chapter
1 and then skip directly to Chapter 5, where they may find at the end of each
section a complete list of phase portraits and their bifurcations.

The book has been organized in such a way so that the full classification of
the global dynamics of the fundamental systems is obtained by using the qualita-
tive theory of ODEs. Since there are many cases that must be considered, some
propositions are very similar to each other and following all of them at the first
reading becomes a little tedious. It may be recommended that at first reading only
some of the proofs presented in Sections 3.11, 4.4 and 4.5 be followed in detail,
so that the main arguments are understood. For instance, in Chapter 5, it may
be useful to focus on one class of fundamental systems given by fixing the sign of
the two fundamental parameters, and then follow the rest of the results in more
detailed subsequent readings.

We thank Christina Stoica for her careful reading of the text of this book
and her improvements to our poor English.

Jaume Llibre
Antonio E. Teruel
Barcelona, 2013.



Chapter 1

Introduction and statement of
the main results

Nowadays most scientific research is written in the language of ordinary differ-
ential equations (ODEs). Since the times these equations appeared first in the
works of G.W. Leibnitz (1646–1716) and I. Newton (1642–1727), more and more
fields of knowledge found and continue to find in them an accurate language to
determine and to develop their knowledge. Astronomy, and in particular Celestial
Mechanics, Physics and Chemistry found in differential equations the most natu-
ral way of expressing their laws. Engineering, Economics, Ecology, Epidemiology,
Neuroscience, etc., use this language in order to model natural phenomena and
to simulate their behaviour in theoretical and numerical experiments that hardly
could be carried out in a laboratory. As a result, the study of ODEs became one
of the areas of mathematics with a very large number of applications.

The determination of explicit expressions of the solutions of ODEs has been
the objective of the first mathematicians who studied ODEs, even though it soon
became clear that not all equations admit solutions that can be expressed terms
of elementary functions, see J. Liouville’s work (1809–1882). In fact, in spite of the
multiple attempts to progress along this line, the number of differential equations
that can be solved explicitly is insignificantly small compared with the totality
of equations. Moreover, even when it is possible to find an expression for the
solution, this could be so complicated that its analysis would encounter significant
difficulties.

At the end of 19th century, H. Poincaré (1854–1912) [in his “Mémoire sur
les courbes définies par une équation différentielle (1881–1886)] inaugurates a new
direction in the study and understanding of ODEs. Thanks to Poincaré’s per-
spective, solutions started to be considered geometric elements (orbits). This new
point of view did lead to the qualitative theory of differential equations. Research
of A. Lyapunov (1857–1918) about the stability of the motion, of I.O. Bendixson

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 1
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhäuser Advanced Texts, 
DOI 10.1007/978-3-0348-0657-2_1, © Springer Basel 2014 



2 Chapter 1. Introduction and statement of the main results

(1861–1935) and G.D. Birkhoff (1884–1944), among others, joined the direction
set forward by Poincaré’s ideas.

The new approach tries to understand the dynamics of a system modeled by
a family of (ordinary) differential equations, ẋ = f (t,x;λ) without needing to find
an explicit expression of their solutions. From the point of view of the qualitative
theory of differential equations, this understanding involves:

(1) the description of the phase portrait of every differential equation in the
family;

(2) the introduction of an equivalence relation between the different phase por-
traits and their classification according to this relation;

(3) the description of the changes (bifurcations) in the phase portrait which occur
when the equations change from one class of equivalence to another.

The phase portrait of a differential equation describes the domain where the
differential equation is defined (phase space) as the union of all its orbits. Since
orbits are manifolds of dimension less than or equal to 1, these could be: points,
and in this case we call them singular points ; curves homeomorphic to the circle
S1 (periodic orbits); or curves homeomorphic to the straight line R. Usually only
a finite number of orbits determine the phase portrait. The set S formed by these
special orbits is closed and R2 \ S is formed by open connected components, each
of them called canonical regions. The union of the separatrices and an orbit of each
canonical region is called the separatrix configuration. A graphical representation
homeomorphic to the separatrix configuration is called a description of the phase
portrait.

The qualitative theory provides results and tools for the local analysis of
phase portraits. For instance, the Hartman–Grobman Theorem [30] (1963) de-
scribes, under general hypotheses, the behaviour of orbits in a neigbourhood of
singular points. Nevertheless, the results in the description of the global phase
portraits are mainly significative when we work with equations in dimension 1 or
2. A specific example is the Poincaré–Bendixson Theorem, which guarantees, un-
der compactness assumptions, that the limit sets of the orbits are: singular points,
periodic orbits or separatrix cycles.

In fact, we do not have complete knowledge of global phase portraits of
differential equations, not even in the plane. Important questions, such as the
number of limit cycles (isolated periodic orbits inside the set of all periodic orbits)
and their distribution in the plane, are still to be answered beyond the field of linear
differential equations [61]. This question, focused on planar polynomial equations,
is known as the second part of 16th Hilbert’s problem, which was formulated by D.
Hilbert (1862–1943) in 1900.

Two differential equations can be equivalent from the point of view of qual-
itative theory, even if they are different in some other aspects. The most used
equivalence relation, which preserves the topological structure of the phase por-
trait, is the so-called topological equivalence. Two systems are said to be topolog-
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ically equivalent if there exists a homeomorphism between their respective phase
portraits, transforming the orbits of one system into the orbits of the other and
preserving their orientation. For some authors, as for instance M.M. Peixoto [51],
topological equivalence is not required to preserve the orbit orientation.

Generalizing L. Markus’ works [48] and referring to vector fields on 2-dimen-
sional manifolds with isolated singular points, D.A. Neumann [50] established
that the separatrix configuration determines the topological class of equivalence
of phase portraits. Another characterization of the topological equivalence classes
for differential equations on 2-dimensional manifolds is due to M.M. Peixoto [51].

Since 1937, when the physicist A.A. Andronov (1901–1952) and the mathe-
matician L.S. Portryagin (1908–1988) introduced the concept of structural stabil-
ity, the analysis of changes in separatrix configurations acquired great importance
in the qualitative theory of differential equations. Without going more deeply into
the subject, a differential equation is said to be structurally stable if its separa-
trix configuration is equivalent to the separatrix configuration of any vector field
“close” to it. A characterization of structurally stable 2-dimensional vector fields
was obtained by Peixoto [52].

On the other hand, separatrix configurations of phase portraits can change
when the parameters change. These changes are called bifurcations and the value
of the parameter where they take place are called bifurcation values. Both the
graphical representation of bifurcation values and the description of the changes
of the separatrix configurations are called bifurcation set.

To sum up, we can assert that a phase portrait grasps the essence of the
dynamical behaviour of a differential equation. In a similar way, a bifurcation set
grasps the essence of the dynamical behaviour of a family of differential equations.

In this book we apply the whole program of the qualitative theory of differ-
ential equations to the symmetric (with respect to the origin) family of three-piece
piecewise linear differential systems in the plane. The richness of the dynamic
behaviours observed in this family is, in general, comparable to that of general
nonlinear differential systems in the plane.

1.1 Piecewise linear differential systems

After presenting the book’s purpose, in this section we introduce the family of
systems under study, that is the family of piecewise linear differential systems,
elsewhere called piecewise affine systems. In particular we deal with planar con-
tinuous and symmetric ones. We also consider two examples of these systems that
show their relevance in applications.

A differential system defined on an open region S ⊆ Rn is said to be a
piecewise linear differential system (PWLS) on S if there exists a set of 3-tuples
{(Ai,bi, Si)}i∈I such that: Ai is a n× n real matrix; bi ∈ Rn; Si ⊆ S is an open
set in Rn satisfying that Si ∩Sj = ∅ if i �= j and

⋃
i∈I Cl(Si) = S; and Aix+bi is

the vector field defined by the system when x ∈ Si. As usual Cl(Si) denotes the
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closure of Si. Thus the vector field defined by a PWLS is a linear map on each of
the disjoint regions Si, but is not globally linear on the whole S.

Example 1. From a given planar differential system ẋ = f(x) with a differentiable
vector field f one can construct a set of different PWLS. For instance, let us
suppose that p1 and p2 are two zeros of f , and let k be a vector in R2 such that
kTp1 < 0 and kTp2 > 0. The straight line Γ = {x ∈ R2 : kTx = 0} divides R2

into the two open regions S1 = {x ∈ R2 : kTx < 0} and S2 = {x ∈ R2 : kTx > 0}.
Denoting by Df(pi) the Jacobian matrix of the vector field f at the point pi, it
follows that {(Df(pi),−Df(pi)pi, Si)}i=1,2 is a piecewise differential system on

the whole R2.

In this example it can be observed that the piecewise linear vector field co-
incides on each region Si with the Taylor expansion up to order one of the map f
around the point pi. In this sense the PWLS is a kind of global linearization of the
differential system ẋ = f(x). Just as linear differential systems arise by local lin-
earization of differential systems, PWLS can be thought of as a global linearization
of differential systems. Unfortunately, there are no results about the relationship
between the dynamics of the two systems in the global case (as they are avail-
able in the local case, for instance the Hartman–Grobman Theorem). However,
the intuition says that important features of the global dynamical behaviour will
persist when we change from the differential system to the piecewise linear one
[10, 11, 12, 43, 54, 56].

We note that the definition of a PWLS does not contain information about
the behavior of the flow at the boundaries ∂Si of the regions Si. PWLS can
be classified depending on how we can extend the vector field to ∂Si. Let Γij =
∂Si∩∂Sj be the common boundary of the regions Si and Sj . If Aip+bi = Ajp+bj

for every p ∈ Γij , then the PWLS is said to be continuous, otherwise the PWLS
is said to be discontinuous.

Discontinuous systems (not necessarily piecewise linear ones) are very im-
portant, see the recent excellent book by Di Bernardo et al. [19] and references
therein. The use of discontinuous models for mechanical systems in which impacts
occur, or for electronic systems employing electronic switches, allows to faithfully
represent the real dynamics of these types of systems.

From now on we restrict ourselves to continuous PWLS. In this case we
have that Aip + bi = Ajp + bj for every p ∈ Γij . Hence, the boundary Γij

is contained in the linear manifold defined by the solutions of the linear system
(Ai−Aj)x = bj−bi. Therefore, the boundary of the region Si is formed by pieces
of hyperplanes in Rn.

Planar vector fields defined by continuous PWLS are globally Lipschitz, but
are not differentiable at the boundaries Γij . A great part of the qualitative the-
ory of differential equations, for instance bifurcation theory, is developed under
the assumption of differentiability of the vector field. This explains why the re-
sults obtained in that framework cannot be directly applied to the study of PWLS.
Nevertheless, the piecewise linear behaviour of these systems allows, in some cases,
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to carry out completely the program of the qualitative theory, from the descrip-
tion of phase portraits to the study of the bifurcation set. See, for instance, the
pioneering work of Andronov [3]. A complete description of the phase portraits
and bifurcation sets of two-piece piecewise linear systems can be found in [26].
Some aspects of the phase portraits of non-symmetric three-piece piecewise lin-
ear systems appear in [55]. Contributions on the phase portraits of fundamental
systems in dimension three can be found in [41].

In this book we deal with the special family of planar and continuous PWLS
given by {(A,b, S+), (B,0, S0), (A,b, S−)}, where A is a 2×2 real matrix, b ∈ R

2\
{0}, B = A+bkT , the regions S+ and S− are the half-planes {x ∈ R2 : kTx > 1}
and {x ∈ R2 : kTx < −1}, respectively, and the region S0 is the central strip
{x ∈ R2 :

∣∣kTx
∣∣ < 1}. The boundary of S0 is formed by two symmetric straight-

lines Γ+ := {x ∈ R2 : kTx = 1} and Γ− := {x ∈ R2 : kTx = −1}. Following J.
Llibre and J. Sotomayor [44], we call these systems fundamental systems.

Fundamental systems can also be written in the piecewise linear form

ẋ =

⎧⎨⎩
Ax+ b, if kTx > 1,
Bx, if

∣∣kTx
∣∣ ≤ 1,

Ax− b, if kTx < −1,
(1.1)

or in the Lur’e form

ẋ = Ax+ ϕ(kTx)b, (1.2)

where the function ϕ : R→ R is the odd three-piece linear function

ϕ (σ) =

⎧⎨⎩
−1, if σ < −1,
σ, if |σ| ≤ 1,
1, if σ > 1.

Restricted to each of the half-planes S+ and S−, the fundamental system
(1.1) is a non-homogeneous linear system. Then the dynamical behavior of the
fundamental system in these regions is determined by the trace t and the deter-
minant d of the matrix A. On the other hand, when restricted to the central strip
S0, the fundamental system (1.1) is a homogeneous linear system. Therefore, the
dynamical behaviour of the fundamental system in S0 is determined by the trace
T and the determinant D of the matrix B.

The values of D, T, d and t will be called the fundamental parameters of
the family, and we will describe all the bifurcations of the fundamental family in
dependence on them.

We emphasize that fundamental systems are the canonical representatives
of a wide class of PWLS. So for given m0,m1, u ∈ R with m0 �= m1 and u > 0,
the change of variables k̃ = uk, b̃ = u−1(m0 − m1)

−1b and Ã = A − m1b̃k̃
T

transforms the fundamental system (1.2) into the PWLS

ẋ = Ãx+ ϕ̃(k̃Tx)b̃, (1.3)
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where

ϕ̃ (σ) =

⎧⎨⎩
m1σ − (m0 −m1)u, if σ < −u,
m0σ, if −u ≤ σ ≤ u,
m1σ + (m0 −m1)u, if u < σ.

Therefore, the two systems have the same orbits and thus the same dynamic
behaviour.

1.1.1 Examples

Many publications on piecewise linear differential systems come from applications,
as for instance control theory and electric circuits design. The list of published
papers devoted to these systems gives an idea of their increasing importance. We
refer the reader to the following works and the references therein: M. Komuro [37],
L.O. Chua and A.C. Deng [15], L.O. Chua and R. Lum [47] and [46], Chai Wah
and L.O. Chua [59], and J. Álvarez, R. Suárez and J. Álvarez [1].

Non-linearities that appear in real dynamical systems are very often modeled
by smooth functions. Hence, results and tools from smooth dynamics and local bi-
furcation theory can be fruitfully applied. But, in some cases, considering piecewise
linear functions is an alternative that fits better, qualitatively and quantitatively,
the experiments [3], [24]. Standard piecewise linear functions are: saturation, to
model amplifiers and motors, see Figure 1.1(a); dead zone, to model valves and
motors, see Figure 1.1(b); friction, to model the static friction of motors, see Figure
1.1(c); and sign, to model relays, see Figure 1.1(d).

Figure 1.1: Piecewise linear functions: (a) saturation; (b) dead zone; (c) friction;
(d) sign.

(a) (b)

(c) (d)
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In the following examples, we show usual applications where PWLS arise in a
natural way. In our opinion these applications justify the interest in these systems.

Motor position control

A classical problem in control theory is the motor position control. This problem
consists in designing a device fed by a motor, which is able to place the motor very
precisely in a position θi called the reference position. This problem appears very
often in industrial automatization and in robotics control when we try to control
the position of a mechanical arm. An introduction to control theory can be found
in the books of S. Lefschetz [39], D.P. Atherton [9], and K.S. Narendra and J.M.
Taylor [49].

A direct current motor position control device is sketched in Figure 1.2.
The system is formed by four elements: an operational amplifier with character-
istic function fa (v) ; a DC motor with characteristic function TM (v) and with a
tachometer included; a set of gears with a velocity relation from n to 1; and a pro-
portional control device with constant K. This design corresponds to a full-state
feedback control design.

:

:

:

:

Figure 1.2: Sketch of a DC motor position control device.

kT θ̇M

R R1

R −A v
K

eθi θM n

1
θ0

Control
Operational
amplifier

DC motor

Let θo, Io and Fo(θ̇o) denote the position, the inertia momentum and the
friction force of the outer axis, and let θM , IM and FM (θ̇M ) denote the position,
the inertia momentum and the friction force of the motor axis. The equation of
motion of the device is(

n2IM + Io
) ..

θo= nTM

(
fa

(
K (θi − θo)−K nθ̇o

))
− n2FM θ̇o − Foθ̇o, (1.4)
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see [9]. In this equation we assume that friction forces are proportional to angular
velocities.

The linear case: first approach. Some electronic components are de-
signed in such a way that their outputs are proportional to the inputs. Conse-
quently, we can suppose that the characteristic functions of both the amplifier
and the motor are linear, that is fa (v) = Gv and TM (v) = KT v. Considering
θi = 0, equation (1.4) can be written as the linear homogeneous differential equa-
tion (

n2IM + I0
) ..

θ0 +
[
n2 (KT GK + FM ) + Fo

]
θ̇o + (nKT GK) θo = 0.

Components saturation. It is not a restriction to assume that the char-
acteristic function of the amplifier is linear. However, this behaviour cannot be
kept for every input voltage. An operational amplifier has a finite output range
which cannot be exceeded, even for high input voltages. Therefore, a more realistic
model has to consider a characteristic function for the amplifier of saturation type

fa (v) =

⎧⎨⎩
Gδa, if v > δa,
G v, if |v| ≤ δa,
−Gδa, if v < −δa,

see Figure 1.1(a). Hence, by considering

A =

(
0 1
0 − (n2FM + F0

)
/
(
n2IM + I0

) ) ,

x1 = θo, x2 = θ̇o, k = (K,nK)T , b =
(
0,−nKT/(n

2IM + I0)
)T

and θi = 0,

equation (1.4) can be written as ẋ = Ax + fa
(
kTx

)
b, which is a fundamental

system, see (1.3).
In the same way that the operational amplifier does, the DC motor works

in a range of set voltages. If we exceed this range, the output of the motor will
remain constant. Consequently, a more realistic model will take it into account a
piecewise linear characteristic function of saturation type for the motor TM . Taking

kT = (−GK,−GKn)
T
, b =

(
0, n/

(
n2IM + Io

))T
and the values for x1, x2, θi and

A, as in the previous case, equation (1.4) can be written as ẋ = Ax+TM

(
kTx

)
b,

which is a fundamental system.
Coulomb friction in the motor. We can suppose that the saturation

problems in the operational amplifier and motor can be avoided by choosing com-
ponents whose features are higher than those which are usually required. Never-
theless, the motor needs a minimum tension to overcome inner frictions and to
start turning. In order to take this into account, we will consider a piecewise linear
characteristic function for the motor of dead zone type, see Figure 1.1(b). Setting

TM (v) =

⎧⎨⎩
KT (v − δM ), if v > δM ,
0, if |v| ≤ δM ,
KT (v + δM ), if v < −δM ,
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and A, k, b, x and θi as in the previous case, expression (1.4) transforms into
expression ẋ = Ax+ TM

(
kTx

)
b, which is a fundamental system.

Wien bridge

In electronic circuits design also arises a large family of examples modeled by
fundamental systems [3], [16]. In the following example we introduce a well-known
circuit, the Wien bridge oscillator formed by two resistors, two capacitances and
one operational amplifier (op-amp) with negative feedback see Figure 1.3.

Figure 1.3: Wien bridge circuit.

R2

+
C2 − �i2

+−

Rs Rf

−

C1

+

R1 i1�

�

Vo

�

�
i3

�

The circuit is formed by two loops. The first one contains the resistor R1 and
the capacitors C1 and C2. The second loop is formed by the resistor R2 and the
capacitor C2. For the sake of simplicity, we consider that the circuit is clockwise
oriented in the first loop and anticlockwise oriented in the second one.

Kirchhoff’s laws can be used to describe the evolution of the voltages VC1

and VC2 across the capacitors C1 and C2, respectively, leading to the differential
equations ⎧⎪⎨⎪⎩

R1C1V̇C1 = −VC1 − VC2 − V0,

R1C2V̇C2 = −VC1 −
(
1 +

R1

R2

)
VC2 − V0,

(1.5)

where V0 is the output voltage of the op-amp.

The characteristic function of an op-amp depends only on the difference
between the voltage at the non-inverting terminal and the voltage at the inverting
terminal (VC2 and 0, respectively, in the Wien bridge). In an ideal framework,
this function is considered to be linear and the slope of the function is called the
open-loop gain of the amplifier. In practice, the op-amp has a limited response
range (−E,E), beyond which the amplifier is saturated. Taking this into account,
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a more realistic characteristic function for the op-amp is given by

V0 =

{
E sign(−αVC2 + E), if |αVC2 | > E,
−αVC2 , if |αVC2 | ≤ E,

(1.6)

where α = 1 +RF /RS is the gain of the op-amp.
Using the above expression of V0 and making the change of variables

x1 =
αVC2

E
, x2 =

αVC1

E
,

the system of differential equations (1.5) can be rewritten as the fundamental
system

ẋ =

⎧⎨⎩
Ax+ b, if x1 > 1,
Bx, if |x1| ≤ 1,
Ax− b, if x1 < 1,

(1.7)

where

b =

⎛⎜⎜⎝
α

R1C2

α

R1C1

⎞⎟⎟⎠ , A =

⎛⎜⎜⎜⎝
−
(

1

R1C2
+

1

R2C2

)
− 1

R1C2

− 1

R1C1
− 1

R1C1

⎞⎟⎟⎟⎠ ,

and B = A+ bTe1.

1.2 Main results

What follows is the presentation of the main new results obtained in this book
on the classification of the fundamental systems. The readers who are not famil-
iar with the qualitative theory of differential equations are referred to the next
chapters, where they will find the definitions of the notions which appear here.

Since Andronov and his colleagues began the study of the piecewise linear
differential equations in [3], and in particular the study of fundamental systems,
part of their phase portraits have been described by different authors. Andronov
also established the existence of limit cycles in the family of fundamental systems
and used the Poincaré map between the lines Γ+ and Γ− as a tool for the search
for limit cycles and in the analysis of their stability.

Some questions about the local phase portrait in a neighbourhood of the sin-
gular points of the fundamental systems with parameterD > 0 can be found in [1].
However, the study of fundamental systems from the point of view of the qualita-
tive theory of differential equations starts with the work of Llibre and Sotomayor
[44]. In that paper the authors describe the phase portraits and the bifurcation set
of all the fundamental systems with parameters D > 0 and T < 0. We note that in
[44] the authors do not study the behaviour of the system in a neighbourhood of
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Figure 1.4: Phase portrait of fundamental systems with D > 0 and T < 0.

infinity. Therefore, from the eleven equivalence classes depicted in Figure 1.4, the
authors only identified five. Moreover, the techniques used there for the study of
the limit cycles differ from those introduced by Andronov. A review of this work
appears in Section 5.2.

Based on the study of the Poincaré maps, in [46] and [47] R. Lum and L.O.
Chua studied the configuration of the limit cycles appearing in two-piece and in
three-piece linear differential systems, respectively. The two studies are based on
a conjecture which is true in the first case, as it has been proved by E. Freire,
E. Ponce and F. Torres [24], but it is erroneous in the second, as we will show in
Section 5.5.

The bifurcation set of fundamental systems has also been subject to analysis
by other authors. For example, Llibre and Ponce [42] characterize the values of
the parameters in which the system exhibits a Hopf bifurcation at infinity.

Following the point of view of the qualitative theory of differential equations,
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Figure 1.5: Phase portrait of fundamental systems with D > 0 and T = 0.

in this book we make a topological classification of the family of the fundamental
systems with parameter D �= 0; we provide the global phase portrait for each of
the 56 topological equivalence classes; and we describe the bifurcation set in the
fundamental parameter space (D,T, d, t) .

The main results we provide in this book can be summarized in the following
four theorems.

Theorem 1.2.1. The phase portrait of a fundamental system with fundamental
parameter D > 0 and given (t, d) is topologically equivalent to the corresponding
one shown in Figure 1.4 when T < 0; or in Figure 1.5 when T = 0; or in Figure
1.6 when T > 0.

Theorem 1.2.2. Figure 1.7 shows the bifurcation set of the fundamental systems
for which the fundamental parameter D is positive and constant.

Theorem 1.2.3. The phase portrait of a fundamental system with fundamental
parameter D < 0 is topologically equivalent to the corresponding one shown in
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Figure 1.6: Phase portrait of fundamental systems with D > 0 and T > 0.

Figure 1.8 when T ≤ 0 or T > 0 and t2 − 4d ≥ 0; or in Figure 1.9 when T > 0
and t2 − 4d < 0.

Theorem 1.2.4. Figure 1.10 corresponds to the bifurcation set of the fundamental
systems for which the fundamental parameter D is negative and constant.

The last picture in Figure 1.4, 1.5, 1.6, 1.8 and 1.9 corresponds to the bi-
furcation set of the fundamental systems where the fundamental parameters D
and T are constant. To easily follow the evolution of the phase portraits when
the parameters (t, d) vary and for a better understanding of the nature of the
bifurcations, we have ordered the phase portraits clockwise.

When D > 0 the bifurcation set is formed by the three-dimensional manifolds
H∞, SN∞, N , HeL, {T = 0}, and the surfaces O, VB1 and VB2, see Figure
1.7. We remark that in Figure 1.7 we are considering a positive fixed value for
the parameter D. This allows us to represent the three-dimensional manifolds by
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Figure 1.7: Bifurcation set when D is a positive constant.

surfaces and the surfaces by curves.

The manifold H∞ corresponds to a Hopf bifurcation at infinity, see Figure
1.4(a) and (b). The manifold SN∞ corresponds to a saddle-node bifurcation of two
singular points at infinity, see Figure 1.4(b), (c) and (d) in the supercritical case
and Figure 1.4(h), (i) and (a) in the subcritical case. The manifold N corresponds
to a pitchfork bifurcation at infinity, see Figure 1.4(d) and (e) in the supercritical
case and Figure 1.4(g) and (h) in the subcritical case. Finally, the manifold HeL
corresponds to a heteroclinic bifurcation, see Figure 1.4(f). We remark that in
the surface O, where the above manifolds intersect, we have the four bifurcations
simultaneously.

The bifurcation manifolds VB1 and VB2 do not correspond to any dynamical
bifurcation. These manifolds appear when the real Jordan normal forms of the
fundamental matrices of the system are not uniquely determined. In such a case
two different phase portraits are possible for the same parameter value.

The manifold {T = 0} corresponds to a vertical-Hopf bifurcation. This bifur-
cation occurs when the periodic orbit at the boundary of a bounded center persists
as a limit cycle. This phenomena has been widely studied by Freire, Ponce and
Torres [24].
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Figure 1.8: Phase portrait of fundamental systems with D < 0 and T ≤ 0.
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The bifurcation set in the case whenD < 0 is formed by the three-dimensional
manifoldsH∞,HoL,NHlc, SN∞,W ∗

1 ,W
∗
2 ,N , and the surfacesO, VB1, VB2, and

{T = 0}, see Figure 1.10. In Figure 1.10 we consider the case when the fundamental
parameter D takes a fixed negative value. For this reason the three-dimensional
manifolds are represented by surfaces and the surfaces by curves.

(a) (b) ( c) (d)

( e)

b d

a c e

Figure 1.9: Phase portrait of fundamental systems with D < 0, T > 0 and t2−4d <
0.

The manifold H∞ corresponds to a bifurcation in which a Hopf bifurcation
at infinity and a vertical-Hopf bifurcation at two finite singular points occur si-
multaneously, see Figure 1.8(a), (b) and (c). The manifold HoL corresponds to
homoclinic bifurcation, see Figure 1.8(d). The manifold NHlc corresponds to a
saddle-node bifurcation of limit cycles, see Figure 1.8(f).

Like in the case D > 0, the manifolds SN∞ and N correspond to a saddle-
node bifurcation and a pitchfork bifurcation of singular points at infinity. Also,
the surfaces VB1 and VB2 describe the same type of bifurcations as in the case
D > 0.

The bifurcations associated with surfaces W ∗
1 and W ∗

2 cannot be described
locally; rather, they correspond to global bifurcations which arise when an eigen-
vector of the fundamental matrix A is parallel to the straight lines Γ+ and Γ−,
see Figure 1.8(i) and (p), or Figure 1.8(k) and (ñ).

Just as in the case D > 0 on the bifurcation surface O, which is the inter-
section of the bifurcation manifolds H∞, SN∞, HoL and N , the four bifurcations
occur simultaneously. The bifurcation surface {T = 0, t = 0}, where the manifolds
H∞ and HoL intersect, also involves a combination of the two bifurcations.
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Figure 1.10: Bifurcation set when D is a negative constant.
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Applications

We finish this chapter by describing the evolution of the phase portrait and the
bifurcations occurring in the example of the Wien bridge when we fix the values
of the components R1, R2, RS , C1 and C2, and vary only the value of Rf .

Straightforward computations show that the trace t and the determinant d
of the matrix A are expressed in terms of the values of the components by

t = −
(

1

R1C2
+

1

R2C2
+

1

R1C1

)
, d =

1

R1C1R2C2
.

From this we obtain that t < 0 and d > 0. Similarly, the trace T and the determi-
nant D of the matrix B are given by

T = t+
1

R1C2

(
1 +

RF

RS

)
, D = d.

Therefore, D > 0 and the sign of T depends on the value of the resistor RF .
Set R1 = 2.188KΩ, R2 = 2.167KΩ, RS = 2.192KΩ, C1 = 646nF and

C2 = 328nF. For these values one has that t2 − 4d > 0. This circuit was actually
built in laboratory, see Figure 1.11(a) and the experiences described below have
been confirmed on the oscilloscope.
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Figure 1.11: (a) A Wien bridge circuit built on a protoboard. (b) Experimental
observation on a oscilloscope of the limit cycle, for the real value RF = 10.63KΩ.

(a) (b)

Setting the value of RF less than 3.326KΩ we obtain that T < 0. The
corresponding phase portrait of the PWLS (1.7) is depicted in Figure 1.4(h). We
see that the origin, which is a focus type singular point, is a global attractor. Also,
two separatrices born at the two saddles at infinity are observed. The remaining
singular points at infinity are two nodes.

When RF = 3.326KΩ one has T = 0. The corresponding phase portrait is
depicted in Figure 1.6(h). Now the global attractor, namely, the singular point
at the origin, is replaced by a central region foliated by periodic orbits (bounded
period annulus). The remainder of the phase portrait persists without changes.

For values of RF greater than 3.326KΩ we have that T > 0. The corre-
sponding phase portrait is depicted in Figure 1.9(g). As it can be observed, the
period annulus disappears and only one periodic solution persists. This limit cycle
is a global attractor and bifurcates from the boundary of the period annulus. This
bifurcation is called a focus-center-limit cycle bifurcation. The stability of the sin-
gular point at the origin changes, the point becoming unstable, see Figure 1.11(b).
Qualitative and quantitative aspects of the focus-center-limit cycle bifurcation are
studied in [23].



Chapter 2

Basic elements of the qualitative
theory of ordinary differential
equations

In this chapter we collect some basic ideas and results from the qualitative theory
of ordinary differential equations. We present only the tools needed in our later
analysis and the theoretical context where they appear. Most of these results have
extensions to more general contexts. To not make our presentation too long we
will restrict ourselves to the most relevant facts.

A deeper and more detailed introduction can be found in the following books:
A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.G. Maier [4], [5], M.W. Hirsch
and S. Smale [33], V.I. Arnold [7], J. Sotomayor [57], [58], P. Hartman [30], S. Lef-
schetz [40], L. Perko [53], C. Chicone [14], and recently the book of F. Dumortier,
J. Llibre and J.C. Artés [21].

2.1 Differential equations and solutions

2.1.1 Existence and uniqueness of solutions

Let U be a subset of Rn and W an open subset of U. We say that the function
f : U → Rn is Lipschitz on W , if there exists a constant L ∈ R, such that for
every x, y ∈W

||f (x)− f (y)|| ≤ L ||x− y|| .
The constant L is called a Lipschitz constant for f onW. Here and in the sequel ‖·‖
denotes the Euclidean norm of Rn. Since Rn is a finite-dimensional vector space,
if f is Lipschitz with respect to a norm of Rn, then f is Lipschitz with respect
to any other norm of Rn. Hence, the definition of Lipschitz functions does not

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhäuser Advanced Texts, 
DOI 10.1007/978-3-0348-0657-2_ , © Springer Basel 2014 2

19
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depend on the chosen norm. However, this is not true for the Lipschitz constants.
For instance, if f is Lipschitz on W, with Lipschitz constant L with respect to the
Euclidean norm of Rn, then

√
nL is a Lipschitz constant of f with respect to the

maximum norm of Rn

||x||∞ = max
1≤k≤n

{|xk|} ,

where x = (x1, x2, . . . , xn)
T
, and (·)T denotes the transposed vector.

In particular when f is Lipschitz on the whole domain U, we call f globally
Lipschitz . On the other hand if for every x0 ∈ U there exists a neighbourhood W
of x0 in U such that f is Lipschitz on W, then we call f locally Lipschitz on U.

Example 2 (Linear function). Consider the function f(x) = Ax, where A is a n×n
matrix. Since ‖f(x) − f(y)‖ = ‖Ax − Ay‖ ≤ ‖A‖‖x − y‖, f is both locally and
globally Lipschitz in Rn, with L = ‖A‖ as a Lipschitz constant.

Example 3. Consider the quadratic function f(x) = x2. Since

|f(x)− f(y)| = |x+ y||x− y|, (2.1)

for any x0 ∈ R one has |f(x) − f(y)| < 2(|x0| + ε)|x − y| in W = (x0 − ε, x0 +
ε). Therefore, f is a locally Lipschitz function in R. However, f is not globally
Lipschitz in R. Indeed, assuming that there exists a constant L such that |f(x)−
f(y)| < L|x− y| for every x, y ∈ R, we contradict (2.1).

Example 4 (Piecewise linear function). Consider the piecewise linear function
f(x) = |x|. From the triangle inequality we have |f(x)−f(y)| = ||x|−|y|| ≤ |x−y|,
which implies that f is both locally and globally Lipschitz, with Lipschitz constant
equal to 1.

For the purposes of this book it is enough to consider a differential equation
or a system of ordinary differential equations as

ẋ = f (x) , (2.2)

where x = x (s) ∈ U, U is an open subset of Rn and f : U → Rn is a locally
Lipschitz function on U . From now on ẋ denotes the derivative of x (s) with
respect to s. As usual, the domain of f (the set U) is called the phase space, the
variable x is called the dependent variable, and s is called the independent variable
or time. We use the variable s instead of the standard variable t because t will
denote the trace of some matrices which will appear later on.

In a more general context equation (2.2) is known as an autonomous ordi-
nary differential equation (as opposed to non-autonomous differential equations),
because the function f does not depend explicitly on the independent variable s.

A smooth function φ : I → U , where I is an open interval of R, is said to be
a solution of the differential equation (2.2) if φ̇ (s) = f (φ (s)) for every s ∈ I.

Geometrically, a differential equation (2.2) assigns to every point x in the
phase space U a vector f (x) in the tangent space at x. Then a solution of the
differential equation is a curve φ : I → U whose tangent vector at φ̇ (s) coincides
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with the vector f (φ (s)) for any s, see Figure 2.1. From this reason we call the
function f a vector field .

Figure 2.1: (a) Vector field f defined in the phase space U. (b) A solution φ(s) of
the differential equation ẋ = f(x).

(a)

f(x)
x

(b)

φ̇(s) = f(φ(s))

φ(s)

I
φ

The existence of solutions of differential equations (2.2) is not obvious and
it depends on some properties of the vector field f . The same is true for the
uniqueness of the solution which satisfies the initial conditions (s0,x0), i.e. φ (s0) =
x0. The following theorem states the basic result in this direction.

Theorem 2.1.1 (Existence and uniqueness). Let U be an open subset of Rn, f :
U → Rn be a locally Lipschitz function on U , s0 ∈ R and x0 ∈ U . There exist a
constant c > 0 and a unique solution φ : (s0 − c, s0 + c) → U of the differential
equation ẋ = f (x) such that φ (s0) = x0.

For a proof of this theorem we refer the reader to [33].
To emphasize the dependence of the solutions on the initial conditions

(s0,x0), we denote the solution of the differential equation (2.2) passing through
x0 at time s = s0 by φ (s; s0,x0).

2.1.2 Prolongability of solutions

From the existence and uniqueness theorem we obtain conditions on the vector
field f (x) so that it has exactly one solution passing through an a-priori fixed
point. This solution is defined at least on a sufficiently small open interval. In the
next result we find the maximal interval of existence. First, we need to introduce
the following definitions.

We say that φ : I → U , with φ = φ (s; s0,x0), is a maximal solution of
equation (2.2), if for every solution ψ : J → U , with ψ = ψ (s; s0,x0), we have
J ⊆ I. We call maximal interval of definition the interval of definition of the
maximal solution φ (s; s0,x0), and we denote it by I(s0,x0). From now on we will
only consider maximal solutions. The differential systems (vector fields) such that
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all their solutions have the maximal interval of definition equal to R are called
complete. In the following proposition we present sufficient conditions on the vector
field of a differential equation for it to be complete.

Proposition 2.1.2. Consider the differential equation ẋ = f (x), where f : Rn → Rn

is a globally Lipschitz function. Then for every initial conditions (s0,x0) ∈ R×Rn

it holds that I(s0,x0) = R.

A proof of Proposition 2.1.2 can be found in [53, Section 3.1, Theorem 3]
or in [57, Proposition 4, p. 15]. We emphasize that the differentiability condition
imposed on the vector field in the first reference is not essential for the proof and
can be removed. Note that the hypothesis in Proposition 2.1.2 is very restrictive.
As we will see in Section 3.3, fundamental systems satisfy it.

Example 5. As we saw in Example 2 linear differential systems ẋ = Ax are globally
Lipschitz, and hence complete.

2.1.3 Dependence on initial conditions and parameters

Consider the family of differential equations

ẋ = f (x, λ) ,

where f : U ×V → Rn, U is an open subset of Rn, and V is an open subset of Rp.
The set V is called the parameter space of the differential equation.

Assuming that λ0 ∈ V , s0 ∈ R and x0 ∈ Rn, there exists exactly one solution
of the differential equation ẋ = f (x, λ0) passing through x0 at time s0. We denote
this solution by φ (s; s0,x0, λ0). In the next theorem we summarize the behaviour
of the solution φ (s; s0,x0, λ0) when we vary s0, x0 or λ0. First we introduce some
additional definitions.

Let W be an open subset of U . The function f (x, λ) is said to be Lipschitz
with respect to the first variable in W , if there exists a positive constant L ∈ R,
such that for every x,y ∈ W and λ ∈ V

||f (x, λ)− f (y, λ)|| ≤ L ||x− y|| .

In particular, if f is Lipschitz with respect to the first variable in U , then we say
that f is globally Lipschitz with respect to the first variable. The function f is said
to be locally Lipschitz with respect to the first variable if for every x0 ∈ U there
exists a neighbourhood W of x0 in U such that f is Lipschitz with respect to
the first variable in W . For simplicity we will call f globally or locally Lipschitz
without a reference to the first variable when no confusion can arise.

Theorem 2.1.3 (Dependence on initial conditions and parameters). Let U and V
be open subsets of Rn and Rp, respectively. Let f : U × V → Rn be a locally
Lipschitz function with respect to the first variable in U and f ∈ Cr (U × V ) for
some r ≥ 0. Then for every (s0,x0, λ0) ∈ R × U × V the solution φ (s; s0,x0, λ0)
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of the differential equation ẋ = f (x, λ0) is r times continuously differentiable with
respect to x0 and λ0 and r + 1 times continuously differentiable with respect to s.

A proof of this theorem can be found in Hartman [30, pp. 93–96] or Lefschetz
[40, pp. 36–43].

Example 6 (A family of piecewise linear differential equations). Consider the fam-
ily of differential equations ẋ = |x| + λ, with λ > 0, which is defined on whole R.
With respect to the vector field, the phase space splits into two regions, {x < 0}
and {x > 0}, and in both the field is given by a linear function. Moreover, it is
continuously differentiable with respect to the parameter λ, but is only globally
Lipschitz with respect to the variable x.

Straightforward computations show that the solution φ(s; 0, x0, λ) of the dif-
ferential equation passing through x0 < 0 at time s = 0 is given by

φ(s; 0, x0, λ) =

⎧⎪⎨⎪⎩
λ+ e−s(x0 − λ), if s ≤ s∗,

λ

(
λ

λ− x0
es − 1

)
, if s > s∗

where s∗ = ln(1 − x0/λ) is the time required for the solution to reach the origin,
see Figure 2.2. Note that the maximal interval of definition of the solution is R.

Taking the first and the second derivative with respect to s one has that

dkφ

dsk
(s; 0, x0, λ) =

⎧⎪⎨⎪⎩
(−1)ke−s(x0 − λ), if s ≤ s∗,

λ2

λ− x0
es, if s > s∗

for k = 1, 2. Thus the solution φ(s; 0, x0, λ) is an analytical function of s in R\{s∗}
and once continuously differentiable at s = s∗, but it is not twice continuously
differentiable at s = s∗.

Taking derivatives with respect to λ it is easy to conclude that φ(s; 0, x0, λ)
is once continuously differentiable in R but is not twice continuously differentiable
at s = s∗.

This example shows that solutions of piecewise linear differential equations
lose regularity at the boundary between the regions where the vector field is linear.

2.1.4 Other properties

We recall now some other properties of the solutions of differential equations. We
say that φ : R → Rn is a periodic function, if there exists a positive constant T
such that φ (s+ T ) = φ (s) for every s ∈ R. The smallest value of T satisfying this
property is called the period of the function φ.

Proposition 2.1.4. Consider the differential equation ẋ = f (x) with f : Rn → Rn

a globally Lipschitz function.
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Figure 2.2: Solutions φ(s; 0, x0, λ) of the differential equation ẋ = |x|+ λ.

s

x

x0

s∗

φ(s; 0, x0, λ)

(a) Let φ (s; s0,x0) be a solution. Then for every τ ∈ R, φ (s+ τ, s0,x0) is also
a solution.

(b) Let φ (s; s1,x1) and φ (s; s2,x2) be two solutions satisfying φ (τ1; s1,x1) =
φ (τ2; s2,x2) for fixed τ1, τ2 ∈ R. Then φ (s− (τ2 − τ1) ; s1,x1) = φ (s; s2,x2)
for every s ∈ R.

(c) Let φ (s; s0,x0) be a solution and suppose that there exist τ1, τ2 ∈ R, τ1 <
τ2, such that φ (τ1; s0,x0) = φ (τ2; s0,x0). Then, φ (s; s0,x0) is a periodic
function whose period is a multiple of τ = τ2 − τ1.

For a proof of this result we refer the reader to [60, pp. 8–9]. Note that in
this reference the author assumes that the vector field is differentiable, but it is
easy to check that this hypothesis can be substituted by requiring the uniqueness
of the solutions.

2.2 Orbits

In this section we present some dynamical features of solutions to differential
equations. Take s0 ∈ R and x0 ∈ U , and let φ (s; s0,x0) be a maximal solution of
the differential equation (2.2). We call the set

γ (s0,x0) :=
{
x ∈ U : x = φ (s; s0,x0) and s ∈ I(s0,x0)

}
the orbit of the solution φ (s; s0,x0).

When the phase space is the whole Rn and the vector field f is globally Lips-
chitz in Rn, the maximal interval of definition of all solutions is R, see Proposition
2.1.2. Then γ (t0,x0) = γ (t0 + τ,x0) for every τ ∈ R, see Proposition 2.1.4(a).
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Hence we will simply use γ (x0) to denote the orbit through x0. Moreover, if
x1 ∈ γ (x0), then there exists s1 ∈ R such that x1 = φ (s1; s0,x0). Applying
Proposition 2.1.4(b) to the solutions φ (s; s0,x0) and φ (s; s1,x1) one obtains that
γ (x1) = γ (x0). Therefore orbits are independent on the point of reference, and
we can avoid the reference to such point when no confusion can arise.

Suppose that x2 ∈ γ (x1) ∩ γ (x0) �= ∅. Since orbits do not depend on the
point of reference, γ (x0) = γ (x1) = γ (x2). Therefore, if two orbits intersect at a
point, then they coincide.

Example 7. Consider the planar piecewise linear differential system ẋ = x, ẏ = |y|.
Since the two variables are decoupled, the corresponding differential equation can
be easily solved. Indeed, the solution with initial condition (x0, y0) is given by
φ(s; 0, (x0, y0)) = (x(s), y(s)), where

x(s) = esx0, y(s) =

{
esy0, if y0 ≥ 0,

e−sy0, if y0 < 0,

see Figure 2.3(a) and (b).
Set x0 ∈ R and y0 < 0. The orbit through the point p = (x0, y0) is defined

by γ(p) = {(esx0, e
−sy0) : s ∈ R}, and so y(s) = x0y0/x(s), which is the branch

of an hyperbola passing through p, see Figure 2.3(c).
On the other hand, if y0 > 0, then the orbit through p is defined by γ(p) =

{(esx0, e
sy0) : s ∈ R}, and so γ(p) is a half-line, see Figure 2.3(c).

2.3 The flow of a differential equation

Consider the differential equation

ẋ = f (x) , (2.3)

where f : U → Rn is locally Lipschitz in an open subset U of Rn. Suppose that
for every x ∈ U , the solution φ (s; 0,x) is defined on whole R, i.e., I(0,x) = R. The
flow of the differential equation (2.3) is defined to be the function

Φ : R× U → R
n

given by Φ(s,x) = φ(s; 0,x). The notion of flow introduced here is sometimes
referred as completed flow . That is because the maximal interval of definition of
the solutions is the whole R. Since the differential systems considered in this work
are complete, we can use both terms. In particular, if f : Rn → Rn is globally
Lipschitz, then the flow of the differential equation ẋ = f(x) is complete, see
Proposition 2.1.2.

Other authors denote the flow of a differential equation by the pair consisting
of the function Φ and the phase space U . It is also usual to denote by Φs(x) the
function Φ(s,x) (see [29] or [53]). Some properties of flows are collected in the
following result.
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Figure 2.3: Solutions φ(s; 0, (x0, y0)) = (x(s), y(s)) and orbits of the differential
equation ẋ = x, ẏ = |y|. (a) Dependence of the first coordinate x(s) of the solution
φ(s; 0, (x0, y0)) on s. (b) Dependence of the second coordinate y(s) of the solution
φ(s; 0, (x0, y0)) on s. (c) Orbit γp with p = (x0, y0) depicted in the phase space
(x, y).
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Proposition 2.3.1. Let Φ (s,x) be the flow defined by the differential equation (2.3).

(a) For every x ∈ U , Φ(0,x) = x.

(b) For every s, t ∈ R and x ∈ U , Φ(s+ t,x) = Φ(s,Φ(t,x)).

(c) Φ is a continuous function.

Proof. Statement (a) follows from the definition of Φ. Statement (b) follows by
taking x1 = x, x2 = φ(t; 0,x), τ1 = t, τ2 = 0 and s1 = s2 = 0 and applying
Proposition 2.1.4(b). Statement (c) is a consequence of the continuous dependence
of the solutions on the initial conditions and parameters, see Theorem 2.1.3. �

In the classical point of view, the objective of the theory of differential equa-
tions is to find explicit expressions for the flow Φ(s,x). In the qualitative theory
it is more important to describe the topological properties of the flow and the
asymptotic behaviour of its orbits, i.e., the behaviour of the orbits when s tends
to ±∞. The phase portrait of a differential equation (2.3) is defined as the union
of all the orbits of (2.3).
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Let Φ(s,x) be the flow of the differential equation (2.3) and take p ∈ U .
By the continuous dependence of the solutions on the initial conditions and pa-
rameters, the function Φp : R → U given by Φp(s) := Φ(s,p) is continuously

differentiable. Furthermore, since Φ̇p(s) = f(Φp(s)), if there exists s0 such that

Φ̇p(s0) = 0, then (by the uniqueness of the solutions) we have Φp(s) = p for every
s ∈ R. In this case, the orbit γ(p) = {p} is called a singular point . To simplify
the notation, if γ(p) is a singular point, we denote it by p. Therefore Rn \ γ (p),
Rn \ {p} and Rn \ p are identical notations. If Φ̇p(s0) �= 0 for some s0 ∈ R, then
Φp(R) = γ(p) is a one-dimensional manifold and we call p a regular point . The
flow in a sufficiently small neighbourhood of a regular point is said to be parallel .
For the definition of a parallel flow in a neighbourhood of a singular point see Sub-
section 2.6.3. By the classification of one-dimensional manifolds (see [38]), γ(p) is
diffeomorphic either to R, or to S1. When γ(p) is diffeomorphic to S1 the orbit
γ(p) is called a periodic orbit .

Theorem 2.3.2. Every orbit of a differential equation (2.3) is diffeomorphic either
to a point, or to a circle S1, or to a straight line R.

Example 8. By Example 7, the flow of the piecewise linear differential system
ẋ = x, ẏ = |y| is given by Φ(s, (x0, y0)) = (esx0, e

sy0) when y0 ≥ 0 and by
Φ(s, (x0, y0)) = (esx0, e

−sy0) when y0 < 0. The corresponding phase portrait is
shown in Figure 2.3(c). In this example, each orbit, except the one that passes
through the origin, is diffeomorphic to the line R. The orbit through the origin is
diffeomorphic to a point. Therefore, it is a singular point.

2.4 Basic ideas in qualitative theory

After analysing the topology of the orbits we present some basic definitions for
studying their asymptotic behaviour. Consider the differential equation (2.3) and
let E be a subset of U. The set E is said to be positively invariant (under the
flow) if for every q ∈ E we have Φ(s,q) ∈ E for all s ≥ 0. The set E is said to be
negatively invariant (under the flow) if for every q ∈ E we have Φ(s,q) ∈ E for all
s ≤ 0. A set E is said to be invariant (under the flow) when it is both positively
and negatively invariant (under the flow).

An invariant set E is stable, if for any neighbourhood W of E, there exists
a neighbourhood V of E such that, for every p ∈ V and s > 0 it holds that
Φ (s,p) ∈W . An invariant set E is unstable when it is not stable.

Given p,q ∈ U , the point q is called an α-limit point of p if there exists a
sequence {sn}+∞

n=0 satisfying lim
n↗+∞

sn = −∞ and such that lim
n↗+∞

Φ (sn,p) = q.

The point q is called an ω-limit point of p if there exists a sequence {sn}+∞
n=0

satisfying lim
n↗+∞

sn = +∞ and such that lim
n↗+∞

Φ (sn,p) = q.

The α-limit set of a point p ∈ U , denoted by α(p), is defined as the union
of the α-limit points of p. Analogously the ω-limit set of a point p ∈ U , denoted



28 Chapter 2. Basic elements of the qualitative theory of ODEs

by ω(p), is defined as the union of the ω-limit points of p.
Let γ(p), or simply γ, be the orbit passing through the point p ∈ U . The

α-limit set of the orbit γ is the α-limit set of the point p, the ω-limit set of the
orbit γ is the ω-limit set of p. As it is easy to check, these definitions do not
depend on the chosen point p of the orbit. Therefore, we denote the α- and the
ω-limit set of an orbit by α (γ) and ω (γ), respectively.

Given an invariant set E, the stable manifold of E, denoted by W s(E), is
the set of points in the phase space U whose ω-limit set is contained in E. The
unstable manifold of E, denoted by W u(E), is the set of points in U whose α-limit
set is contained in E.

A set E is called asymptotically stable if its stable manifold W s(E) is a
neighbourhood of E. A set E is called asymptotically unstable if its unstable man-
ifold Wu(E) is a neighbourhood of E. In particular, every asymptotically stable
(respectively, unstable) set is stable (respectively, unstable).

A limit cycle of the differential equation (2.3) is a periodic orbit isolated in the
set of all the periodic orbits of (2.3). A limit cycle is called stable (respectively,
unstable) if it is asymptotically stable (respectively, unstable). Another kind of
limit cycle, called semistable limit cycle, can be also defined and we will introduce
it in Section 2.8.

Example 9. In this example we consider a fundamental system

ẋ =

⎧⎪⎨⎪⎩
Ax+ b, if kTx > 1,

Bx, if |kTx| ≤ 1,

Ax− b, if kTx < −1,

with parameters d = det(A) < 0, t = trace(A) < 0, D = det(B) > 0 and T =
trace(B) = 0. In Section 5.3 we prove that its phase portrait in a neighbourhood
of the origin is which is the one shown in Figure 2.4.

Different invariant sets can be easily identified. For instance, invariant sets
are present in both the grey and the central white region formed by periodic orbits.
This is because every orbit contained in one of these regions does not leave the
region, neither in positive time, nor in negative time. Of course, sets formed by
singular orbits are also invariant. Hence the singular points e+, 0 and e−, and the
periodic orbit Γ are invariant.

Note that Γ is a stable invariant set. In fact, its stable manifold W s(Γ) is
the whole grey region. However, it is not asymptotically stable, because W s(Γ) is
not a neighbourhood of Γ. The origin 0 is also a stable invariant set which is not
asymptotically stable.

On the other hand, the singular point e− is the ω-limit set of the orbits γ−
1

and γ−
2 , see Figure 2.4. It is also the α-limit set of the orbits γ−

3 and γ−
4 . The

periodic orbit Γ is the ω-limit set of the orbit γ−
4 .

Let γ be an orbit of the flow Φ(s,x) and p be a point on γ. We define the
positive and negative semiorbit of γ as the sets γ+(p) := {Φ(s,p) : s ≥ 0} and
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Figure 2.4: Phase portrait of the fundamental system with D > 0 and T = 0 in
a neighbourhood of the origin 0. Invariant regions: the singular points e+, 0, e−;
the periodic orbit Γ; and the open region W s(Γ) (in grey) and the open region in
the interior of Γ (in white and foliated by periodic orbits).
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γ−(p) := {Φ(s,p) : s ≤ 0}, respectively. The orbit γ is called positively bounded
if there exist a point p ∈ γ and a compact subset K of U such that γ+(p) ⊂ K.
The orbit γ is called negatively bounded if there exist a point p ∈ γ and a compact
subset K of U such that γ−(p) ⊂ K. Finally, γ is said to be bounded if it is
positively and negatively bounded.

Proposition 2.4.1. Let γ be an orbit of the differential system (2.3). If γ is positively
bounded (respectively, negatively bounded), then ω(γ) (respectively, α(γ)) is a non-
empty set.

For a proof of this result we refer the reader to [53, p. 191] or [57, p. 245]. Note
that in references above, authors require the differentiability of the vector field. It
is easy to check that instead of this hypothesis we can require the uniqueness of
the solutions and the completeness of the flow.

2.5 Linear systems

Linear systems of differential equations, or briefly, linear systems, are one of the
families of differential equations for which there exists a complete theory. We re-
view some of the standard facts on linear systems because, as we will see later,
there exists a close relationship between linear and general non-linear differen-
tial systems. The nature of this relationship is such that linear systems can be
considered as a first natural step in the study of the differential systems.

As usual, L(Rn) denotes the vector space of the linear maps from Rn to Rn,
and GL(Rn) the group of the invertible linear maps. Consider T ∈ L(Rn) and let
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A be the matrix representation of T . In the sequel we will identify the linear map
T with its matricial representation A, and write A ∈ L(Rn). If T is invertible; i.e.,
det(A) �= 0, we will write A ∈ GL(Rn).

If A ∈ L(Rn) we denote by t or trace(A) the trace of A, and by d or det(A)
the determinant of A. This explains our use of the variable s, instead of the more
usual one t, to denote the time in the differential equation. Let A ∈ L(Rn). Then
for every s ∈ R we define the exponential matrix of the matrix sA as the formal
power series

esA :=

∞∑
k=0

skAk

k!
,

where A0 denotes the identity matrix Id and Ak = Ak−1A for k ≥ 1. Two matrices
A,B ∈ L(Rn) are said to be equivalent if there exists P ∈ GL(Rn) such that
B = PAP−1. We summarize some properties of the exponential matrix in the
following proposition.

Proposition 2.5.1. Let A ∈ L(Rn).

(a) For every s ∈ R, the series
∞∑
k=0

skAk

k!

is absolutely convergent. Moreover, if s0 > 0, the series is uniformly conver-
gent in (−s0, s0).

(b) If A,B ∈ L(Rn) are equivalent matrices with B = PAP−1 for a P ∈ GL(Rn),
then esB = PesAP−1 for every s ∈ R.

(c) If B ∈ L(Rn) is such that AB = BA, then es(A+B) = esAesB for every s ∈ R.

(d) For every s ∈ R,
(
esA
)−1

= e−sA.

(e) For every s ∈ R, desA/ds = AesA.

(f) Let v ∈ Rn be an eigenvector of A with eigenvalue λ ∈ R. Then v is an
eigenvector of esA with eigenvalue esλ.

A proof of these results can be found in [7, Chapter 3] or [53, pp. 10–13].
In this section we consider the linear system (more precisely, the homogeneous

linear system)
ẋ = Ax, (2.4)

where A ∈ L(Rn), and denote d = det(A) and t = trace(A).
The linear vector field f(x) = Ax is a globally Lipschitz function with Lips-

chitz constant L = ||A||. From the existence and uniqueness theorem it follows that
for every x0 ∈ Rn there exists a unique solution of system (2.4) passing through
x0 at s = 0. Moreover, this solution is defined for all s ∈ R (see Proposition 2.1.2).
The following result provides an explicit expression for the linear flows.
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Theorem 2.5.2 (Linear flow). The linear differential equation ẋ = Ax, with A ∈
L(Rn), defines a flow Φ : R× Rn → Rn given by Φ(s,x) = esAx.

A proof of this theorem can be obtained as a corollary of Proposition 2.5.1(e).
We denote by ker(A) the vector subspace formed by the singular points of

the linear system (2.4). This subspace is called the kernel of the linear map A.
Notice that the origin always belong to ker(A). Moreover, when A ∈ GL(Rn), the
origin is the unique singular point.

Let v1,v2, . . . ,vns be the generalized eigenvectors corresponding to the eigen-
values of the matrix A with negative real part. The stable subspace is the vector
subspace generated by the vectors v1,v2, . . . ,vns , i.e.,

Es := 〈v1,v2, . . . ,vns〉 .
Let u1,u2, . . . ,unu be the generalized eigenvectors corresponding to the eigen-
values of the matrix A with positive real part. The unstable subspace is the vector
subspace

Eu := 〈u1,u2 . . . ,unu〉 .
Let w1, . . . ,wnc be the generalized eigenvectors corresponding to the eigenvalues
of the matrix A with zero real part. The center subspace is the vector subspace

Ec := 〈w1,w2 . . . ,wnc〉 .
Theorem 2.5.3 (Dynamical behaviour of linear systems). Consider the linear dif-
ferential system ẋ = Ax with A ∈ GL(Rn). Then:

(a) Rn = Es ⊕ Eu ⊕ Ec.

(b) W s(0) = Es.

(c) Wu(0) = Eu.

For a proof of this result, see [53, Section 1.9].

2.5.1 Non-homogeneous linear systems

Differential systems of the form

ẋ = Ax+ b, (2.5)

with A ∈ L(Rn) and b ∈ Rn \{0} are called non-homogeneous linear (differential)
systems. By Proposition 2.5.1(e), the flow of systems (2.5) is given by

Φ(s,x) = esAx+

∫ s

0

e(s−r)Ab dr.

If the non-homogeneous linear system (2.5) has a singular point x∗, the
change of coordinates z = x−x∗ transforms it into the homogeneous linear system
ż = Az. Thus the flow of the non-homogeneous linear system (2.5) is a translation
of the flow of a homogeneous linear system, namely Φ(s,x) = esA(x − x∗) + x∗.
Finally, note that if the non-homogeneous linear system has no singular points,
then det(A) = 0.
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2.5.2 Planar linear systems

In the following two subsections we restrict our attention to planar linear systems.
We begin by showing the following version of the real Jordan normal form theorem
[33].

Theorem 2.5.4 (Real Jordan normal form). Consider a matrix A ∈ L(R2) with
d = det(A) and t = trace(A). A is equivalent to one of the following matrices J :

(a) If d = 0 and t = 0, then J =

(
0 0
0 0

)
or J =

(
0 1
0 0

)
.

(b) If d = 0 and t �= 0, then J =

(
t 0
0 0

)
.

(c) If d > 0 and t = 0, the eigenvalues of A are complex numbers with zero real

part and imaginary part β > 0, and J =

(
0 −β
β 0

)
.

(d) If d > 0 and t2 − 4d = 0, there exists exactly one real eigenvalue of A with

multiplicity two, λ1, and J =

(
λ1 0
0 λ1

)
or J =

(
λ1 1
0 λ1

)
.

(e) If d > 0 and t2 − 4d > 0, there exist two real eigenvalues of A, λ1 > λ2, and

J =

(
λ1 0
0 λ2

)
.

(f) If d > 0, t �= 0 and t2 − 4d < 0, the eigenvalues of A are complex numbers

with real part α �= 0 and imaginary part β > 0, and J =

(
α −β
β α

)
.

(g) If d < 0, there exist two real eigenvalues of A, λ1 > 0 > λ2, and J =(
λ1 0
0 λ2

)
.

The matrix J defined in the preceding theorem is called the real Jordan
normal form of A. Note that, except when t2 − 4d = 0, the real Jordan normal
form of A is determined by the parameters t and d. If t2 − 4d = 0, then there
exist two possibilities, one diagonal and the other non-diagonal, depending on the
coefficients of A.

Consider the linear system

ẋ = Ax, (2.6)

with A ∈ L(R2), and let P ∈ GL(R2) be the matrix which transforms A into its
real Jordan normal form J , i.e., J = PAP−1. The linear change of coordinates
y = Px transforms the linear system (2.6) into the system

ẏ = Jy. (2.7)
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To obtain the expression of the linear flow of (2.7) it is enough to consider the
following cases:

J =

(
λ1 0
0 λ2

)
, J =

(
λ 1
0 λ

)
and J =

(
α −β
β α

)
,

see Proposititon 2.5.1(b) and Theorem 2.5.4

Proposition 2.5.5. Consider J ∈ L(R2) and s ∈ R.

(a) If J =

(
λ1 0
0 λ2

)
, then esJ =

(
esλ1 0
0 esλ2

)
.

(b) If J =

(
λ 1
0 λ

)
, then esJ = esλ

(
1 s
0 1

)
.

(c) If J =

(
α −β
β α

)
, then esJ = esα

(
cos (βs) − sin (βs)
sin (βs) cos (βs)

)
.

For a proof of this proposition see [7], [53], or [57].
Let Φ(s,x) and Ψ(s,y) be the flows of systems (2.6) and (2.7), respectively.

If x0 ∈ R2, then Φ(s,x0) = esAx0 = P−1esJPx0 = P−1Ψ(s, Px0). Therefore,

Φ(s,x) = P−1Ψ(s, Px). (2.8)

From this we obtain the expressions of the flow of any planar linear system.

Theorem 2.5.6. Consider the flow Φ(t,x) of the linear system ẋ = Ax, with A ∈
L(R2), d = det(A) and t = trace(A). Let J be the real Jordan normal form of A
and P be the matrix such that J = PAP−1.

(a) If t2 − 4d > 0, then

Φ (s,x) = P−1

(
esλ1 0
0 esλ2

)
Px.

(b) If t2 − 4d = 0, then either Φ (s,x) = esλx or

Φ (s,x) = P−1

(
esλ s
0 esλ

)
Px,

depending on whether J is diagonal or not.

(c) If t2 − 4d < 0, then

Φ (s,x) = esαP−1

(
cos (βs) − sin (βs)
sin (βs) cos (βs)

)
Px.
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2.5.3 Planar phase portraits

In this subsection we describe the phase portrait of planar linear systems. We also
present the notation of singular points of such systems. For a general classification
of these singular points, see Subsection 2.7.1.

From relation (2.8) it follows that given x0 ∈ R2, the orbit of system (2.6)
through x0 and the orbit of system (2.7) through Px0, γ(x0) and γ(Px0), respec-
tively, satisfy γ(x0) = P−1γ(Px0). Therefore, the phase portrait of system (2.6) is
a linear transformation of the phase portrait of system (2.7). Hence, it is enough
to describe the phase portrait of a linear system (2.7), where J is the real Jordan
normal form of the matrix A.

Case d < 0

If the determinant of the matrix A is strictly negative, then A has two real eigen-
values λ1 > 0 > λ2. Hence, the stable and unstable subspaces (Es and Eu) are
each generated by an eigenvector, and the central subspace is the origin, Ec = {0}.
The real Jordan normal form of A is

J =

(
λ1 0
0 λ2

)
.

The phase portrait of the system ẏ = Jy is represented in Figure 2.5, the
phase portrait of system ẋ = Ax is a linear transformation of it.

Figure 2.5: A saddle point and its stable and unstable separatrices.

In this case the singular point at the origin is called a saddle point. The two
orbits in the stable subspace are called the stable separatrices of the saddle and the
orbits in the unstable subspace are called the unstable separatrices of the saddle.
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Case d = 0

Suppose that A is the zero matrix, i.e., the dimension of ker (A) is 2. In this case,
any point in the phase plane is a singular point, so the case is of no interest. Assume
now that ker(A) has dimension equal to 1, i.e., ker(A) is a straight line through the
origin formed by all the singular points of the system. Hence, the singular points
are not isolated. The real Jordan normal form of A changes according to whether
t = trace(A) is equal to zero or not. Thus, when t = 0 the matrix J is not diagonal
and the straight line ker(A) is called a non-isolated nilpotent manifold, see Figure
2.6(b). When t < 0 (respectively t > 0) the matrix J is diagonal and the straight
line ker (A) is called a stable (respectively unstable) normally hyperbolic manifold,
see Figure 2.6(a) (respectively, (c)). The term “normally hyperbolic manifold” is
motivated by [34].

Figure 2.6: Non-isolated singular points: (a) Stable normally hyperbolic manifold
for t < 0; (b) Non-isolated nilpotent manifold for t = 0; and (c) unstable normally
hyperbolic manifold for t > 0.

(a) (b) (c)

Case d > 0

We distinguish three cases, depending on the sign of t2 − 4d. When t2 − 4d > 0,
the matrix A has two real eigenvalues with the same sign, λ1 > λ2. Therefore
if t < 0, then Es = R2 and Eu = Ec = {0}; and if t > 0, then Eu = R2 and
Es = Ec = {0}. The phase portrait of the system ẏ = Jy is shown in Figure
2.7, depending on t. The corresponding phase portrait of the system ẋ = Ax is
obtained by a linear transformation. The origin is called an asymptotically stable
node if t < 0, and an asymptotically unstable node if t > 0.

When t2 − 4d = 0, there exists a unique eigenvalue λ, which is real, and the
real Jordan normal form of A is

J =

(
λ 0
0 λ

)
or J =

(
λ 1
0 λ

)
.
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Figure 2.7: (a) Asymptotically stable node. (b) Asymptotically unstable node.

(a) (b)

For each of these matrices we have to consider the cases t < 0 and t > 0. The phase
portrait of the system ẏ = Jy is shown in Figure 2.8, depending on t and J. The
corresponding phase portrait of the system ẋ = Ax is a linear transformation of it.
The origin is called a degenerated diagonal node in the first case, and a degenerated
node in the second one.

When t2 − 4d < 0, the eigenvalues of A are a pair of conjugate complex
numbers and

J =

(
α −β
β α

)
.

The phase portrait of the system ẏ = Jy is shown in Figure 2.9, depending on
the sign of t = 2α. The corresponding phase portrait of the system ẋ = Ax is a
linear transformation of it. When t = 0, the origin is called a center . When t < 0,
the origin is called an asymptotically stable focus. When t > 0, the origin is called
an asymptotically unstable focus.

2.6 Classification of flows

Every classification criterion involves appropriate definitions for invariant sets, as
specialized to different classes. If the list of the selected invariant sets is large,
then the number of elements in each class is small and the classification is not
effective. If the list of invariant sets is small, then we can collect systems with
different behaviours and assign them to the same class. Thus the first step is to
find an optimal classification criterion. In the theory of flows the criterion chosen
is the preservation of the “orbit structure”, a notion that will be defined in the
following subsection.
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Figure 2.8: (a) Degenerated diagonal nodes. (b) Degenerated nodes.

(a)

(b)

2.6.1 Classification criteria

We begin by defining equivalence relations for flows, in correspondence to the
algebraic, the differentiable and the topological points of view.

Consider the differentiable systems ẋ = f(x) and ẏ = g(y), with f : U → Rn

a locally Lipschitz function defined on U ⊂ Rn and g : V → Rn a locally Lipschitz
function defined on V ⊂ Rn. Let Φ(s,x) and Φ∗(s,y) be the respective flows.
We recall that in this work we consider only complete flows, i.e., the interval of
definition of all the solutions is the entire R.

Two flows are said to be conjugate if there exists a bijection h : U → V
(called conjugacy), such that Φ∗(s,h(x)) = h(Φ(s,x)) for every s ∈ R and x ∈ U .
The flows are said to be equivalent if there exists a bijection h : U → V (called
equivalence), such that γ is an orbit of the first system if and only if h(γ) is an
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Figure 2.9: (a) Asymptotically stable focus. (b) Center. (c) Asymptotically unsta-
ble focus.

(a) (b) (c)

orbit of the second one and in addition h preserves the orientation of the orbit.
It is easy to check that if two flows are conjugate, then they are equivalent. The
converse is not always true.

An equivalence h transforms singular points into singular points and periodic
orbits into periodic orbits. When h is a conjugacy, the period of the periodic orbits
is also preserved.

Consider two conjugate (respectively equivalent) flows. The flows are said to
be linearly conjugate (respectively, linearly equivalent) if h is a linear isomorphism.
The flows are said to be Cr-conjugate (respectively, Cr-equivalent), with r ∈
{1, 2, . . . ,∞, ω}, if h is a diffeomorphism such that h, h−1 ∈ Cr (recall here that
Cω denotes the class of analytic functions). The flows are said to be topologically
conjugate (respectively topologically equivalent) if h is a homeomorphism.

Two differential equations are said to be linearly, Cr, or topologically equiva-
lent (respectively, conjugate) if their flows are linearly, Cr, or topologically equiva-
lent (respectively, conjugate). Further, they are said to present the same qualitative
behaviour or the same dynamical behaviour if they are topologically equivalent.

In the next result we relate the different classification criteria.

Proposition 2.6.1. Consider two differential equations.

(a) If they are linearly conjugate (respectively, equivalent), then they are Cr-
conjugate (respectively, Cr-equivalent) for every r ∈ {1, 2, . . . ,∞, ω} .

(b) If they are Cr-conjugate (respectively, Cr-equivalent) with r ∈ {1, . . .∞, ω},
then they are topologically conjugate (respectively, equivalent).

(c) If they are linearly, Cr, or topological conjugate, then they are linearly, Cr,
or topologically equivalent.

The conjugacy of flows is also a conjugacy of vector fields. In the next lemma
we characterize the Cr-conjugacy via the conjugacy of vector fields. As usual, given
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a diffeomorphism h : U → V , Dh(x) denotes the Jacobian matrix of h evaluated
at the point x.

Lemma 2.6.2. Consider two differential equations ẋ = f(x) and ẏ = g(y), with
f : U → Rn and g : V → Rn locally Lipschitz functions on U and V , respectively.
Their flows are Cr-conjugate if and only if there exists a diffeomorphism h : U →
V in Cr such that Dh(x)f(x) = g(h(x)) for every x ∈ U .

A proof of this result can be found in [58, p. 19, Lemma 3.4]

2.6.2 Classification of linear flows

Given a linear isomorphism h : U → V , with U and V open subsets of Rn, there
exists a matrix M ∈ GL(Rn) such that h(x) = Mx for any x ∈ U .

Lemma 2.6.3. If the linear map h(x) = Mx is constant on an open subset U ⊂ Rn,
then M is the zero matrix.

Proof. Suppose that M is not the zero matrix. Then there exists a vector e ∈ U
such that Me �= 0. Take x0 ∈ U . Since U is open, x1 = x0 + δe ∈ U for δ > 0
small enough. Therefore, δMe = Mx1 −Mx0 = 0, a contradiction. �
Proposition 2.6.4 (Linear conjugacy of linear flows). Consider two linear systems
ẋ = Ax and ẏ = A∗y, with A,A∗ ∈ L(R2), and denote d = det(A), t = trace(A),
d∗ = det(A∗) and t∗ = trace(A∗).

(a) The systems are linearly conjugate if and only if there exists M ∈ GL(R2)
such that A∗ = MAM−1, i.e., the matrices of the systems are equivalent.

(b) If the systems are linearly conjugate, then d = d∗ and t = t∗.

(c) If d = d∗, t = t∗ and t2 − 4d �= 0, then the systems are linearly conjugate.

Proof. (a) Suppose that the given systems are linearly conjugate. By definition
there exists a linear map M ∈ GL(R2) such that, for any given solution of the
first system, x(s) = φ(s; 0,x0), the function y(s) = Mx(s) is a solution of the
second one. Moreover, ẏ = MAM−1y. Applying Lemma 2.6.3 to the linear map
h(y) =

(
A∗ −MAM−1

)
y, we conclude that A∗ = MAM−1.

Conversely, suppose that A∗ = MAM−1 with M ∈ GL(R2). By Proposition
2.5.1.(b), esA

∗
= MesAM−1 for all s ∈ R. The flows of the linear systems are

Φ(s,x) = esAx and Φ∗(s,y) = esA
∗
y, respectively, see Theorem 2.5.2. Hence,

Φ∗(s,Mx) = esA
∗
Mx = MesAx = MΦ(s,x). Therefore, the systems are linearly

conjugate.
Statement (b) follows from statement (a). For a proof of statement (c) see

Arnold [7, p. 169]. �
Proposition 2.6.5 (Cr-conjugacy of linear flows). Two linear flows are Cr-conjuga-
ted for r ∈ {1, 2, . . . ,∞, ω} if and only if they are linearly conjugate.

For a proof of the previous proposition see Arnold [7, p. 170].
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Corollary 2.6.6. Consider two linear systems ẋ = Ax and ẏ = A∗y and denote
d = det(A), t = trace(A), d∗ = det(A∗) and t∗ = trace(A∗). If the flows are
Cr-conjugate with r ∈ {1, 2, . . . ,∞, ω}, then d = d∗ and t = t∗.

Proof. The proof follows from Propositions 2.6.5 and 2.6.4 (b). �
In the next result we present a characterization of the topological conjugacy

of linear flows.

Proposition 2.6.7 (Topological conjugacy of linear flows). The flows of two linear
systems whose eigenvalues have no zero real part are topologically conjugate if
and only if they have the same number of eigenvalues with positive and the same
number of eigenvalues with negative real part.

For a proof of this result see Arnold [7, pp. 172–182].

2.6.3 Topological equivalence of non-linear flows

As we have seen, in the case of linear flows there exists a characterization of the
three different classification criteria. To our knowledge a complete characterization
of topological equivalence exists only for planar non-linear flows. To introduce it
we need some new notations and results analogous to the ones in the previous
subsection. Essentially all these definitions and results can be found in [48, pp.
127–148] and [50, pp. 73–81], where they are applied in a more general context.
Similar results are due to Peixoto [52].

Consider a differential equation ẋ = f(x) with f a Lipschitz function defined
in R2, and let Φ(s,x) be its flow. Following Markus and Neumann, we denote this
flow by (R2,Φ). By the continuous dependence of solutions on the initial conditions
and parameters, the flow (R2,Φ) is continuous in both variables. The flow (R2,Φ)
is said to be parallel if it is topologically equivalent to one of the following flows:

(a) The flow defined in R
2 by the differential system ẋ = 1, ẏ = 0, called strip

flow .

(b) The flow defined in R2 � {0} by the differential system in polar coordinates
ṙ = 0, θ̇ = 1, called annular flow .

(c) The flow defined in R2 � {0} by the differential system in polar coordinates
ṙ = r, θ̇ = 0, called spiral or radial flow .

An orbit γ(p) of the flow (R2,Φ) is called a separatrix if

(a) is a singular point, or

(b) is a limit cycle, or

(c) γ(p) is homeomorphic to R and there is no tubular neighbourhood N of γ(p)
with the following properties:

(c.1) Every point q in N has the same α-limit and ω-limit sets of p, i.e.,
α(q) = α(p) and ω(q) = ω(p).
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(c.2) The boundary of N , i.e., Cl(N) \N , is formed by α(p), ω(p) and two
orbits γ(q1) and γ(q2) such that α(p) = α(q1) = α(q2) and ω(p) =
ω(q1) = ω(q2), see Figure 2.10. As usual Cl(N) denotes the closure of
N , i.e., the smallest closed set containing N .

Figure 2.10: The boundary of N .

α(p) ω(p)γ(p)

γ(q1)

γ(q2)

Let S be the union of the separatrices of the flow (R2,Φ). It is easy to check
that S is an invariant closed set. If N is a connected component of R2 \S, then N
is also an invariant set, and the flow (N,Φ|N ) is called a canonical region of the
flow (R2,Φ).

Proposition 2.6.8. Every canonical region of the flow (R2,Φ) is parallel.

For a proof of this proposition see [50].
The separatrix configuration of a flow (R2,Φ) is the union of all separatrices of

the flow together with an orbit belonging to each canonical region. Given two flows
(R2,Φ) and (R2,Φ∗), let S and S∗ be the union of their separatrices, respectively.
The separatrix configuration C of the flow (R2,Φ) is said to be topologically
equivalent to the separatrix configuration C∗ of the flow (R2,Φ∗) if there exists
an orientation preserving homeomorphism from R2 to R2 which transforms orbits
of C into orbits of C∗, and orbits of S into orbits of S∗.

Theorem 2.6.9 (Markus–Neumann–Peixoto). Let (R2,Φ) and (R2,Φ∗) be two con-
tinuous flows with only isolated singular points. Then they are topologically equiv-
alent if and only if their separatrix configurations are topologically equivalent.

For a proof of this result we refer the reader to [50].
It follows from the previous theorem that in order to classify the flows of

planar differential equations, it is enough to describe their separatrix configuration.

Example 10. Consider the local phase portrait depicted in Figure 2.11(a). The set
S of all separatrices is formed by the singular points e+, e− and 0, the periodic or-
bits Γ+ and Γ−, and the homoclinic orbits γ+ and γ−. Therefore, S is an invariant
closed set. In Figure 2.11(b) we represent the set of all canonical regions.
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Note that Figure 2.11(a) presents clearly the set of all separatrices together
with an orbit for each canonical region which shows the asymptotic behaviour
of the orbits contained in its interior. Thus Figure 2.11(a) also represents the
separatrix configuration of the phase portrait. From this it is easy to understand
that the separatrix configuration is the skeleton of the phase portrait.

Figure 2.11: (a) Separatrix configuration correspondig to a fundamental system
with parameters D < 0, T < 0 and t = w1(d), see Section 5.5. (b) Canonical
regions associated to the phase portrait.

(a)

γ+

Γ+

e+

γ−
Γ−

e−

(b)

2.7 Non-linear systems

In this section we return to non-linear flows. Let U ⊆ Rn be an open subset,
f : U → Rn be a locally Lipschitz function in U and Φ (s,x) be the flow defined by
the differential equation ẋ = f (x). Recall that we consider only complete flows,
i.e., solutions are defined for every value of time s ∈ R.

2.7.1 Local phase portraits of singular points

We begin by studying the local behaviour of flows in a neighbourhood of singular
points, i.e., points x ∈ U such that f (x) = 0.

Theorem 2.7.1 (Lyapunov function). Consider the differential equation ẋ = f(x),
with f : U → Rn a locally Lipschitz function in U. Let x0 be a singular point. If
there exist a neighbourhood W of x0 in U and a function V : W → R satisfying

(a) V (x0) = 0 and V (x) > 0 when x �= x0,
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(b) dV (x(s))
ds ≤ 0 in W \{x0}, where x(s) is a solution of the differential equation,

then x0 is stable. Moreover,

(c) if dV (x(s))
ds < 0 in W \ {x0}, then x0 is asymptotically stable.

The function V figuring in this theorem is called a Lyapunov function. For a
proof of the Lyapunov function theorem we refer the reader to [33, p. 192].

Now we classify the singular points according to the linear part of the vector
field. Let x0 be a singular point of the differential system ẋ = f(x), where f is a
C1 function in a neighbourhood of x0. Let Df(x0) be the Jacobian matrix of f
evaluated at x0. The point x0 is said to be a hyperbolic singular point if all the
eigenvalues of Df(x0) have non-zero real part.

For a planar differential system we say that a singular point x0 is an elemen-
tary non-degenerate singular point if the determinant of Df(x0) is not zero. In
particular, every hyperbolic singular point is an elementary non-degenerate one.
The converse is not true. Since elementary non-degenerate singular points with
determinant of Df(x0) less than zero are saddle points, we call antisaddle any
non-degenerate singular point at which the Jacobian matrix has positive determi-
nant. The singular point x0 is said to be an elementary degenerate singular point
if the determinant of Df(x0) is zero and the trace of Df(x0) is non-zero. The
singular point x0 is said to be nilpotent if the determinant and the trace of the
matrix Df(x0) are both zero and Df(x0) is not the zero matrix.

Since the concept of a flow introduced in our textbook corresponds to the
concept of a complete flow used by other authors (see Subsection 2.3), in the
following version of the Hartman–Grobman theorem we impose the condition that
the maximal interval of definition of all solutions isR.

Theorem 2.7.2 (Hartman–Grobman). Let U be an open subset of Rn, f : U → Rn

be a C1(U) function, Φ(s,x) be the flow of the differential equation ẋ = f(x), and
x0 be a hyperbolic singular point. Then there exist a neighbourhood W of x0, a
neighbourhood V of the origin, a homeomorphism h : W → V with h(x0) = 0,
and an interval I ⊆ R containing the origin, such that

h ◦ Φ(s,x) = esDf(x0)h(x)

for every s ∈ I and x ∈ U .

For a proof of the previous theorem see Section 4.3 in [14] or [51, p. 294].
The Hartman–Grobman theorem asserts that the differential systems ẋ =

f(x) and ẋ = Df(x0) are topologically equivalent in a neighbourhood W of a hy-
perbolic singular point x0 and V of the origin. This is why we use the same names
for non-linear hyperbolic singular points and for the linear hyperbolic ones. Even
for non-hyperbolic singular points, when the system is topologically equivalent to
a linear system, we use the same terminology for both singular points. Accord-
ingly, the singular point x0 of a non-linear differential system ẋ = f(x) is said
to be a stable normally hyperbolic singular point if f is topologically equivalent
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to the differential system ẋ = 0, ẏ = −y in a neighbourhood of x0 and 0. The
singular point x0 is said to be an unstable normally hyperbolic singular point if f is
topologically equivalent to the differential system ẋ = 0, ẏ = y in a neighbourhood
of x0 and 0. The singular point x0 is said to be a non-isolated nilpotent singular
point if f is topologically equivalent to the differential system ẋ = y, ẏ = 0.

The standard tool for studying the flow in a neighbourhood of a planar non-
hyperbolic singular point is a change of variables called blow-up, see [8], [20] and
[21] for more details. Here, we summarize a description of this change of variables
in the case of planar vector fields f(x, y) = (P (x, y), Q(x, y)), where P and Q are
analytic functions. Without loss of generality we can assume that the origin is a
singular point of the system (otherwise we can translate the singular point to the
origin by a convenient change of variables).

Consider the differentiable function hx : R2 → R2 defined by hx(x̄, ȳ) =
(x̄, x̄ ȳ). Using the Jacobian matrix of hx and the vector field f we can define a
vector field fx on R

2 satisfying the equality

Dhx(fx(x̄, ȳ)) = f(hx(x̄, ȳ)) = f(x̄, x̄ ȳ).

From here, one obtains the following expression for fx when x̄ �= 0

fx(x̄, ȳ) =

(
P (x̄, x̄ ȳ),

Q(x̄, x̄ȳ)− ȳP (x̄, x̄ȳ)

x̄

)
. (2.9)

Since the origin is a singular point, i.e., P (0, 0) = Q(0, 0) = 0, expression (2.9) can
be extended to x̄ = 0 to yield an analytic vector field on R2. Such a vector field is
called a blow-up in the x-direction.

The vector fields f and fx are topologically equivalent in R2 \ {0} and R2 \
{x̄ = 0} , respectively. Moreover, since hx maps the straight line x̄ = 0 into the
origin, the behaviour of the flow of f in a neighbourhood of the origin can be
obtained from the behaviour of the flow of fx in a neighbourhood of x̄ = 0 in the
following sense. Let γ be an orbit of the differential system ẋ = f(x) such that the
origin is contained in its α- or ω-limit set. If m = tan θ, with θ ∈ (−π/2, π/2), is
the slope of γ at the origin, then the angle θ is called a characteristic direction of
the origin and the point (0,m) is a singular point of the blow-up system u̇ = fx(u).
The study of the local phase portrait at the point (0,m) is easier than the one of
the origin, because such singular points are less degenerate.

If m = ±∞, then another change of variables applies. Specifically, consider
the function hy : R2 → R2 given by hy(x̄, ȳ) = (x̄ ȳ, ȳ), and the vector field fy
satisfying Dhy(fy(x̄, ȳ)) = f(x̄ ȳ, ȳ). It follows that

fy(x̄, ȳ) =

(
P (x̄ ȳ, ȳ)− x̄Q(x̄ ȳ, ȳ)

ȳ
, Q(x̄ ȳ, ȳ)

)
. (2.10)

Thus (0, 0) is a singular point of the blow-up system u̇ = fy(u). In general, if
m = tan θ with θ ∈ (0, π), then (1/m, 0) is a singular point of the blow-up system
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u̇ = fy(u). Hence, going back to the original variables a finite number of curves
are present, splitting any neighbourhood of the origin into hyperbolic, elliptic and
parabolic sectors, see Figure 2.12.

Figure 2.12: Sectors in the neighbourhood of a singular point.
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A singular point x0 is called a saddle-node if a neighbourhood of x0 is the
union of a unique parabolic sector and two hyperbolic sectors. Thus a saddle-node
has three separatrices: two of them, called the hyperbolic manifolds or separatrices
of the saddle-node, are related to the boundary of the parabolic sector; and the
remainder, called the central manifold or separatrice of the saddle-node, is related
to the boundary between the two hyperbolic sectors. Note that this terminology is
appropriate only when the singular point is elementary and degenerate. To simplify
notation we continue using this terminology not only for nilpotent saddle-nodes,
but also for more degenerated saddle points.

Theorem 2.7.3 (Elementary non-degenerate singular points). Let (0, 0) be an iso-
lated singular point of the differential system

ẋ = X(x, y), ẏ = y + Y (x, y),

where X and Y are analytic functions in a neighbourhood of the origin and their
series expansion involve only terms of second order and higher. Let f(x) be a
solution of the equation y + Y (x, y) = 0 in a neighbourhood of the origin and
suppose that the function g(x) = X(x, f(x)) can be written in the form g(x) =
amxm+O(xm+1) where O(xk) stands for an analytic function with terms of order
greater or equal than k in its series expansion, m ≥ 2, and am �= 0.

(a) If m is odd and am > 0, then the origin is topologically equivalent to a stable
node.

(b) If m is odd and am < 0, then the origin is topologically equivalent to a sad-
dle with the stable manifold tangent to the x-axis and the unstable manifold
tangent to the y-axis.

(c) If m is even, then the origin is a saddle-node. Its hyperbolic manifold is
unstable and tangent to the y-axis. Its central manifold is tangent to the
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x-axis and when am > 0 (respectively, am < 0) it is unstable (respectively,
stable) in the 0 direction and stable (respectively, unstable) in the π direction.

For a proof of Theorem 2.7.3 we refer the reader to [4, p. 340] or [21, p. 74].

Theorem 2.7.4 (Nilpotent singular points). Let (0, 0) be an isolated singular point
of the system

ẋ = y +X(x, y), ẏ = Y (x, y),

where X and Y are analytic functions in a neighbourhood of the origin and their
series expansions involves only terms of second order and higher. Let y = f(x) =
a2x

2+a3x
3+O(x4) be a solution of the equation y+X(x, y) = 0 in a neighbourhood

of the origin, and suppose that F (x) = Y (x, f(x)) = Axα(1 + O(x)) and Φ(x) =
(∂X/∂x+ ∂Y/∂y)(x, f(x)) = Bxβ(1 +O(x)), with A �= 0, α ≥ 2 and β ≥ 1.

(a) If α is even, then

(a.1) if α > 2β + 1, the origin is a saddle-node with the three separatrices
tangent to the x-axis;

(a.2) if α < 2β + 1 or Φ ≡ 0, then a neighourhood of the origin is the union
of two hyperbolic sectors.

(b) If α is odd and A > 0, then the origin is a saddle whose stable and unstable
separatrices are tangent to the x-axis.

(c) If α is odd and A < 0, then

(c.1) if α > 2β+1 and β even; or α = 2β+1, β even and B2+4A(β+1) ≥ 0,
then the origin is a node, stable when B < 0 and unstable when B > 0;

(c.2) if α > 2β+1 and β odd; or α = 2β+1, β odd and B2 +4A(β+1) ≥ 0,
then the origin is the union of a hyperbolic sector and an elliptic sector;

(c.3) if α = 2β + 1 and B2 + 4A(β + 1) < 0, then the origin is a focus;

(c.4) if α < 2β + 1; or Φ ≡ 0, then the origin is a center.

A proof of the previous theorem can be found in [4, pp. 357–362], in [2], or
in [21, p. 116].

2.7.2 Periodic orbits: Poincaré map

One of the most important tools in the study of flows in the neighbourhood of
periodic orbits is the so called Poincaré map. Consider a locally Lipschitz vector
field f : U → Rn and let Φ(s,x) be the flow defined by the differential equation
ẋ = f(x). Let Σ be a hypersurface in Rn and take a point p in Σ∩U . The flow Φ
is said to be transverse to Σ at the point p if f(p) is not contained in TpΣ (the
tangent space to Σ at point p). If f(p) ∈ TpΣ, then p is called a contact point of
the flow with Σ.



2.7. Non-linear systems 47

Let V be an open subset of Σ. We say that the flow is transverse to Σ at V
if the flow is transverse to Σ at every point in V .

Consider now two open hypersurfaces Σ1, Σ2 and two points p1 ∈ Σ1 ∩ U ,
p2 ∈ Σ2 ∩ U such that p2 = Φ(s1,p1). There exist a neighbourhood V1 of p1 in
Σ1 ∩U , a neighbourhood V2 of p2 in Σ2 ∩U , and a function τ : V1 → R satisfying
τ(p1) = s1 and Φ(τ(q),q) ∈ V2 for every q ∈ V1. Moreover, if the vector field
f is globally Lipschitz, Cr with r ≥ 1, or analytic, then the function τ is also
continuous, Cr with r ≥ 1, or analytic, respectively. For more details see [53, pp.
193–194] or [57, pp. 226–227]. In this situation we define the Poincaré map as the
map π : V1 → V2 given by

π(q) = Φ(τ(q),q),

for every q ∈ V1, see Figure 2.13.

Figure 2.13: Poincaré map π.
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When the vector field is globally Lipschitz, Cr with r ≥ 1, or analytic, the
Poincaré map π is also continuous, Cr with r ≥ 1, or analytic, respectively.

By reversing the sense of the flow it is easy to conclude that the Poincaré map
is invertible and the inverse map π−1 is continuous, Cr with r ≥ 1, or analytic,
respectively. In the particular case when Σ1 = Σ2 the Poincaré map π is called a
return map.

Consider p ∈ Σ1 and let γ(p) be a periodic orbit. From the continuous
dependence of the flow on the initial conditions, it follows that a return map π
can be defined in a neighbourhood of p, and p is a fixed point of π. Conversely,
if p ∈ Σ1 is a fixed point of a return map π, then γ(p) is a periodic orbit. Hence,
limit cycles are associated to isolated fixed points of return maps. A limit cycle
γ(p) is called a hyperbolic limit cycle if the absolute value of all the eigenvalues
of the Jacobian matrix Dπ(p) is different from 1; otherwise γ(p) is called a non-
hyperbolic limit cycle. Note that this definition does not depend on the chosen
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point p or on the chosen cross section Σ1.

Theorem 2.7.5. Let f : U ⊂ R
n → R

n be a Lipschitz function in U , γ(p) be
a hyperbolic limit cycle of the differential equation ẋ = f(x) and π be a return
map defined in a neighbourhood of γ(p). Suppose that π is differentiable in a
neighbourhood of p.

(a) If the absolute value of every eigenvalue of Dπ(p) is less than 1, then γ(p)
is a stable limit cycle.

(b) If the absolute value of at least one eigenvalue of Dπ(p) is greater than 1,
then γ(p) is an unstable limit cycle.

A proof of this result can be found in [21] or in [57, Chapter IX].

2.8 α- and ω-limit sets in the plane

In this section we deal with the asymptotic behaviour of the remainder orbits.
These orbits are diffeomorphic to straight lines, see Theorem 2.3.2. In this section
we restrict ourselves to planar flows. In this context the following version of the
Jordan curve theorem will be useful later on.

A curve in the plane is said to be a Jordan curve if it is homeomorphic to
S1, i.e., if it is a closed curve without autointersections.

Theorem 2.8.1 (Jordan curve). The complementary set of a Jordan curve γ in the
plane is the union of two open, disjoint and connected sets. Furthermore, one of
these sets is bounded and its boundary is the curve γ.

Since orbits of a flow are disjoint, from the Jordan curve theorem it follows
that a periodic orbit γ splits the phase plane into two invariant regions, one of
which is bounded. This bounded region will be called the interior of γ and be
denoted by Σγ .

Periodic orbits are not the unique Jordan curves formed by solutions. We
define a separatrix cycle to be a finite union of n singular points p1,p2, . . . ,pn

(some of these points may coincide) and n orbits γ1, γ2, . . . , γn, with the property
that α(γk) = {pk} for k = 1, 2, . . . , n, ω(γk) = {pk+1} if k = 1, 2, . . . , n− 1, and
ω(γn) = {p1}, see Figure 2.14. The singular points p1,p2, . . . ,pn will be called
the vertices of the cycle.

We define a homoclinic cycle to be a separatrix cycle formed by one singular
point (homoclinic point) and one orbit (homoclinic orbit), see Figure 2.14(a). A
double homoclinic cycle is a separatrix cycle formed by one singular point (in
this case p1 and p2 are identified) and two orbits, see Figure 2.14(b). Finally,
a heteroclinic cycle is a separatrix cycle formed by two singular points and two
orbits, see Figure 2.14(c).

A periodic orbit γ is said to be inside asymptotically stable (respectively,
inside asymptotically unstable) if there exists a neighbourhood V of γ such that
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Figure 2.14: Separatrix cycles: (a) homoclinic cycle; (b) double homoclinic cycle;
(c) heteroclinic cycle.

(a) (b) (c)

p1

γ1 γ1

γ2

p1 = p2

p1

p2

γ2

γ1

V ∩ Σγ ⊂ W s(γ) (respectively, V ∩ Σγ ⊂ Wu(γ)). A periodic orbit γ is said
to be outside asymptotically stable (respectively, outside asymptotically unstable)
if there exists a neighbourhood V of γ such that V ∩ (R2 � Cl(Σγ)) ⊂ W s(γ)
(respectively, V ∩ (R2 � Cl(Σγ)) ⊂Wu(γ)).

A limit cycle γ is said to be semistable if γ is either inside asymptotically
stable and outside asymptotically unstable, or inside asymptotically unstable and
outside asymptotically stable.

The following result asserts that the α- and ω-limit set of orbits of planar
differential systems are simple sets: singular points, periodic orbits, or separatrix
cycles.

Theorem 2.8.2 (Poincaré–Bendixson). Let f : U ⊂ R2 → R2 be a locally Lipschitz
function in the open subset U, and let γ be an orbit of the differential system
ẋ = f(x). Suppose that γ is positively bounded (respectively, negatively bounded)
and the number of singular points in ω(γ) (respectively, in α(γ)) is finite.

(a) If ω(γ) (respectively, α(γ)) has no singular points, then ω(γ) (respectively,
α(γ)) is a periodic orbit.

(b) If ω(γ) (respectively, α(γ)) has singular points and regular points, then ω(γ)
(respectively, α(γ)) is a separatrix cycle.

(c) If ω(γ) (respectively α(γ)) has no regular points, then ω(γ) (respectively,
α(γ)) is a singular point.

A proof of this result can be found in the book of Hartman [30, Chapter 7] or
in [21]. The following results are corollaries of the Poincaré–Bendixson Theorem,
see [21].

Corollary 2.8.3. Let f : U ⊂ R2 → R2 be a Lipschitz function in an open set U and
let γ be a periodic orbit of the differential system ẋ = f(x). If η, � ⊂ Σγ are orbits
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and ω(η) = γ (respectively, α(η) = γ), then α(�) �= γ (respectively, ω(�) �= γ).

Corollary 2.8.4. Let f : U ⊂ R2 → R2 be a Lipschitz function in an open and
simply connected set U and let γ ⊂ U be a periodic orbit of the differential system
ẋ = f(x). Then there exists a singular point in Σγ .

2.9 Compactified flows

The aim of this section is to describe the asymptotic behaviour of unbounded
orbits, i.e. the behaviour of flows near the infinity.

To do this, we use the so called Poincaré compactification. The French math-
ematician H. Poincaré was the first to use this technique, in the study of poly-
nomial vector fields. We will only consider some aspects of this technique. More
information can be found in [58], [4] and [21].

2.9.1 Poincaré compactification

We define the following sets in R3

S
2 :=

{
(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1
}
,

H+ :=
{
(x, y, z) ∈ S

2 : z > 0
}
,

S
1 :=

{
(x, y, z) ∈ S

2 : z = 0
}
,

H− :=
{
(x, y, z) ∈ S

2 : z < 0
}
.

S2 is called the unit sphere of R3, and H+, S
1 and H− are called the north hemi-

sphere, the equator and the south hemisphere of S2, respectively.
We say that a function f : R2 → R2 satisfies the �Lojasiewicz property at

infinity if there exists a positive integer n such that the function fn defined by

fn(x, y, z) := zn f
(x
z
,
y

z

)
(2.11)

can be extended to z = 0 and this extension is locally Lipschitz in the whole S2.
Since S2 is a compact set, if fn is locally Lipschitz in S2, then fn is also globally
Lipschitz in S2.

Given a function f , if there exists a non-negative integer n0 such that the
function fn0 is globally Lipschitz in S

2, then for every n ≥ n0 the function fn is
also globally Lipschitz in S2. We call the degree of f at infinity, and denote it by
n = n (f) , the least positive integer m such that fm is well defined and Lipschitz
in S2.

Lemma 2.9.1. If the function f : R2 → R2 satisfies the �Lojasiewicz property at
infinity with degree at infinity equal to n, then there exist positive constants R and
M , such that

||f(x)|| ≤M ||x||n ,
for every ||x|| > R.
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Proof. Given a point (x, y) in R2 we consider the point (x̄, ȳ, z̄) in the north

hemisphere H+, where z̄ = (1 + x2 + y2)−
1
2 > 0, x̄ = xz̄, and ȳ = yz̄. Conversely,

for every point (x̄, ȳ, z̄) ∈ H+ the point (x̄/z̄, ȳ/z̄) belongs to R
2.

By the hypothesis, there exists a positive integer n such that the function
fn is (globally) Lipschitz in S2, and consequently fn is continuous in S2. Since
the unit sphere is a compact manifold, there exists a positive constant N for
which ||fn(x, y, z)|| < N for every (x, y, z) ∈ S2, or, equivalently ||fn(x, y, z)|| <
N ||(x, y, z)||n. Therefore,

|z̄|n
∣∣∣∣∣∣f ( x̄

z̄
,
ȳ

z̄

)∣∣∣∣∣∣ < N ||(x̄, ȳ, z̄)||n .

Here ||·|| denotes the Eucĺıdean norm in R2 or in R3, depending on the context.

Dividing by |z̄|n and returning to the original variables, we obtain ||f(x, y)|| <
N ||(x, y, 1)||n. Taking a positive constant R such that

N

N + 1
<

(
R√

1 +R2

)n

,

we have (N + 1) ||(x, y)||n > N ||(x, y, 1)||n for every ||(x, y)|| > R. The lemma
follows by taking M = N + 1. �

The inequality in Lemma 2.9.1 justifies the name of the 	Lojasiewicz property
at infinity (see [20] for more information). From this inequality it is also easy to
understand the degree of a function at infinity.

The rest of this section is devoted to the compactification of vector fields sat-
isfying the 	Lojasiewicz property at infinity. We also provide an explicit expression
of a flow near infinity and a technique for studying this flow in a neighbourhood
of a singular point at infinity.

Let f : R2 → R2 be a local Lipschitz function satisfying the 	Lojasiewicz
property at infinity and let n be the degree of f at infinity. Consider the diffeo-
morphisms h+ : R2 → H+ and h− : R2 → H− defined by

h+(x, y) :=
1√

1 + x2 + y2
(x, y, 1) and h−(x, y) := −h+(x, y). (2.12)

The functions h+ and h− are the central projections (with center at the origin)
of the tangent plane to S2 at the point (0, 0, 1) onto H+ and H−, respectively, see
Figure 2.15.

The diffeomorphisms h+ and h− and the vector field f define two vector
fields f+ and f− on the hemispheres H+ and H−, respectively, given by

f+(x, y, z) := Dh+

(
h−1
+ (x, y, z)

)
f
(
h−1
+ (x, y, z)

)
,

f−(x, y, z) := Dh−
(
h−1
− (x, y, z)

)
f
(
h−1
− (x, y, z)

)
.

(2.13)
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Therefore, the rule

f̃ (x, y, z) :=

{
f+(x, y, z), if (x, y, z) ∈ H+,

f−(x, y, z), if (x, y, z) ∈ H−,

defines a vector field over H+ ∪H− = S2 \ S1 which, by (2.12) and (2.13), can be
written as

f̃ (x, y, z) = z

⎛⎝ 1− x2 −xy
−xy 1− y2

−xz −yz

⎞⎠ f
(x
z
,
y

z

)
.

In general the vector field f̃ cannot be extended to the equator of the sphere. How-
ever since f has degree n at infinity, the vector field fS2(x, y, z) := zn−1f̃(x, y, z)
obtained by multiplying by zn−1 satisfies

fS2(x, y, z) =

⎛⎝ 1− x2 −xy
−xy 1− y2

−xz −yz

⎞⎠ fn(x, y, z). (2.14)

Therefore, fS2 is defined and Lipschitz on whole S2. Since fS2 |H+
= zn−1f+ and

fS2 |H− = zn−1f−, the vector field fS2 can be understood as an extension to S2

of the vector field f̃ multiplied by the analytic function zn−1. This multiplicative
factor is not important in the analysis of the asymptotic behaviour of the flow
because it only represents a change in the scale of time. In particular, if we change
the variable s to the variable τ by ds = zn−1dτ , the vector field fS2 over S2

can be understood as two copies (each defined on a hemisphere) of the vector
field f defined on R2. Therefore, the behaviour of f near infinity follows from the
behaviour of fS2 in a neighbourhood of the equator. Note that the equator, z = 0,
is invariant under the flow of fS2 .

For polynomial planar vector fields f(x, y) = (P (x, y), Q(x, y)), with P and
Q polynomials, it is easy to prove that f satisfies 	Lojasiewicz’s property at infinity
and n = max{degP, degQ} is the degree of f at infinity. Furthermore the vector
field fS2 is analytic on S2, see [21] or [58, pp. 57–60] for details.

Consider the Poincaré disc, D :=
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
, and the so

called gnomonic projection p+ : H+ ∪ S1 → D, given by

p+(x, y, z) :=
1

1 + z
(x, y).

The vector field fS2 |H+∪S1
and the diffeomorphism p+ define a vector field fD on

D given by
fD(x, y) := Dp+

(
p−1
+ (x, y)

)
fS2
(
p−1
+ (x, y)

)
.

For a differential system ẋ = f(x), where f is a locally Lipschitz function
in R

2 and satisfies the 	Lojasiewicz property at infinity with degree n at infinity,
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we call the differential system ẋ = fD(x) Poincaré’s compactification. The vector
fields f and fD|Int(D) are Cr-equivalent and hD : = p+ ◦h+ is the equivalence map.

Here Int(D) denotes the interior of D; that is the biggest open subset contained
in D. In this sense we identify the behaviour of fD at the boundary ∂D with the
behaviour of f at infinity.

Figure 2.15: Poincaré’s compactification.
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Finally, for every x ∈ R2 it is easy to prove that

hD(x) =
1

1 +

√
1 + ||x||2

x (2.15)

and

fD(x, y) =

(
1−x2+y2

2 −xy
−xy 1+x2−y2

2

)
fn

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2

1 + x2 + y2

)
.

(2.16)

2.9.2 The behaviour of a flow at infinity

Since the equator of S2 is invariant under the flow defined by fS2 , the boundary of
the Poincaré disc ∂D is invariant under the flow defined by fD. Then ∂D is a circle
formed by solutions called the infinity manifold. A point p ∈ ∂D is said to be a
singular point at infinity if fD(p) = 0. If there are no singular points at infinity, we
say that there exists a periodic orbit at infinity, or that the infinity is a periodic
orbit.

Let p ∈ ∂D be a singular point at infinity. As we know, the stable manifold
of p, W s(p) ⊂ D, is formed by the orbits γ of the Poincaré compactification
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satisfying p ∈ ω(γ). Consider the subset h−1
D

(W s(p)) of R2. For simplicity we call
this set the stable manifold of the singular point at infinity p and we also denote
it by W s(p). Note that orbits in R2 belonging to the stable manifold of a singular
point at infinity escape to infinity in forward time. In a similar way we define in
R2 the unstable manifold of a singular point at infinity and denote it by Wu(p).
Note that orbits in R2 belonging to the unstable manifold of a singular point at
infinity escape to infinity in backward time. In general, we will use the same name
for a subset E of R2 and for the subset hD(E) of Int(D).

When there are no singular points at ∂D, we denote the stable and the unsta-
ble manifold of the periodic orbit at infinity by W s(∞) and Wu(∞), respectively.

Let z = (x0, y0)
T ∈ ∂D be a singular point at infinity of the differential

system ẋ = f(x), that is, a solution of the equation fD|∂D (x) = 0. To determine
the behaviour of the flow in a neighbourhood of z we use the local chart (Hz,hz)
of S2, where Hz =

{
(x, y, z) ∈ S2 : xx0 + yy0 > 0

}
is the hemisphere centered at

the point p−1
+ (z) = (x0, y0, 0)

T and

hz(x, y, z) :=
1

xx0 + yy0
(yx0 − xy0, z)

is the inverse of the central projection (with center at the origin) of the tangent
plane to S2 at the point (x0, y0, 0)

T . Thus, the vector field fS2 and the diffeomor-
phism hz define a locally Lipschitz vector field fz : R2 → R2, given by

fz(x, y) := Dhz

(
h−1
z (x, y)

)
fS2
(
h−1
z (x, y)

)
.

Since hz(x0, y0, 0) = 0, the origin is a singular point of the flow defined by fz, see
Figure 2.15.

The vector fields fS2 and fz are differentiably conjugate in a neighbourhood of
the singular points p−1

+ (z) and 0. Therefore, to describe the behaviour of the flow
generated by fD in a neighbourhood of z it is sufficient to describe the behaviour
of the flow generated by fz in a neighbourhood of 0 with y ≥ 0.

We end the section by giving explicit expressions of the vector field fz(x, y).
From

h−1
z (x, y) =

1√
1 + x2 + y2

(x0 − xy0, y0 + xx0, y) (2.17)

and

Dhz(x, y, z) =
1

(xx0 + yy0)
2

( −y x 0
−zx0 −zy0 xx0 + yy0

)
it follows that

fz(x, y) = z(x, y)

( −y0 − xx0 −xy0 + x0

−yx0 −yy0
)
fn

(
x0−xy0

z(x,y) ,
y0+xx0

z(x,y) ,
y

z(x,y)

)
,

(2.18)

where z(x, y) =
√
1 + x2 + y2.
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In particular, for polynomial vector fields f(x, y) = (P (x, y), Q(x, y)), if we
take charts centered at the points zx = (1, 0) and zy = (0, 1), we obtain

fzx(x, y) = ynm(x, y)

⎛⎝ Q
(

1
y ,

x
y

)
− xP

(
1
y ,

x
y

)
−yP

(
1
y ,

x
y

) ⎞⎠ ,

fzy (x, y) = ynm(x, y)

⎛⎝ −P
(

−x
y , 1

y

)
− xQ

(
−x
y , 1

y

)
−yQ

(
−x
y , 1

y

) ⎞⎠ ,

where m(x, y) = z(x, y)1−n. These expressions are the usual ones found in the
literature, see for instance [58] or [4] or [21]. To obtain the expression of fzy which
appears in [58, p. 59] we have to perform the change of variables (x, y)→ (−x, y)
which only change the orientation of the base. If we remove m(x, y) from the
expressions of fzx and fzy by rescaling the time, these vector fields are polynomial.
Note that, in general, fD is not C1.

2.10 Local bifurcations

The qualitative behaviour of a parametric family of differential equations, ẋ =
f(x, λ), can change by the value of the parameter λ; that is, the qualitative be-
haviour can change from one topological equivalence class to another. From The-
orem 2.6.9, a change of the topological equivalence class implies a change of the
separatrix configuration. This change in the separatrix configuration is called a
bifurcation and the value of the parameter λ in which it takes place is called a
bifurcation value. In a more general context, the word bifurcation refers not only
to other changes in the behaviour of the flow, but also to changes in the topo-
logical equivalence class. For details about bifurcation theory see the books of J.
Guckenheimer and P. Holmes [29], J. Hale and H. Koçak [31], and S. Chow and
J. Hale [17].

In this section we introduce the basic notions of the theory and offer a brief
summary of the most usual bifurcations, at least in the context of this book.
It is not our purpose to study analytical aspects of bifurcation theory. Here we
consider only its geometrical aspects. Some bifurcations described below take place
in a neighbourhood of a singular point, hence they are refered as local bifurcations .

The set of all bifurcation values in the parameter space is called the bifur-
cation set of the parametric family. When the bifurcation values form a manifold
in the parameters space we refer to it as bifurcation manifold. The representation
in the product space V × U (where V is the parameter space and U is the phase
space) of the invariant sets (singular points, periodic orbits, separatrix cycles, etc.
. . . ) is called bifurcation diagram. When the invariant set represented in a bifur-
cation diagram is a periodic orbit, it is customary to use in the representation the
amplitude or the period of the periodic orbit instead of the orbit itself.
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2.10.1 Bifurcations from a singular point

Now we describe some of the bifurcations which take place in a neighbourhood of a
singular point. We distinguish between uniparametric bifurcations or bifurcations
of codimension 1 (saddle-node bifurcation, transcritical bifurcation, pitchfork bi-
furcation and Hopf bifurcation), and biparametric bifurcations or bifurcations of
codimension 2 (cusp bifurcation).

For a bifurcation value λ0 we say that the differential system ẋ = f(x, λ) has
a supercritical saddle-node bifurcation at the singular point x0 if

(i) for λ < λ0, the differential system has no singular points in a neighbourhood
U of x0;

(ii) when λ = λ0, x0 is the unique singular point in U and it is a saddle-node;

(iii) for λ > λ0, the differential system has exactly two singular points at U , one
of which is a saddle and the other a node.

In Figure 2.16(a) we represent the bifurcation diagram of the supercritical saddle-
node bifurcation. When this bifurcation occurs to the left of the bifurcation value,
it is called a subcritical saddle-node bifurcation, see Figure 2.16(b).

Figure 2.16: Saddle-node bifurcation: (a) supercritical; (b) subcritical.

(a) (b)
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The differential system ẋ = f(x, λ) is said to have a transcritical bifurcation
at x0 for the bifurcation value λ0 if

(i) for λ < λ0, there exist exactly two singular points (one stable and one un-
stable) in a neighbourhood U of x0;

(ii) for λ = λ0, the two singular points collapse into one at x0, which in general
is a non-hyperbolic singular point;

(iii) for λ > λ0, there exist exactly two singular points in U (one stable and one
unstable).

In Figure 2.17 we represent the bifurcation diagram of a transcritical bifurcation.
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Figure 2.17: Transcritical bifurcation diagram

stable

unstable

λ0 λ

The differential system ẋ = f(x, λ) is said to have a supercritical pitchfork
bifurcation at the bifurcation value λ0 for the singular point x0 if

(i) for λ < λ0, there exists exactly one singular point in a neighbourhood U of
x0 and it is a node (respectively, a saddle);

(ii) for λ = λ0, x0 is the unique singular point in U ;

(iii) for λ > λ0, there exist exactly three singular points in U. Two of them are
nodes (respectively, saddles) and have the same stability as the singular point
which exists for λ < λ0. The other singular point is a saddle (respectively, a
node).

When the bifurcation occurs for values of λ < λ0, it is called a subcritical pitchfork
bifurcation. In Figure 2.18 we represent the bifurcation diagram of the pitchfork
bifurcation. Note that in this bifurcation we can choose different behaviours for
the singular points.

Figure 2.18: Pitchfork bifurcation: (a) supercritical; (b) subcritical. The names in
parentheses correspond to the other choice of the singular points.
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2.10.2 Bifurcations from orbits

This subsection is devoted to the local bifurcations that involve singular points,
periodic orbits and separatrix cycles.

We say that the differential equation ẋ = f(x,λ) has a vertical bifurcation at
the singular point x0 for the bifurcation value λ0, if

(i) for λ < λ0, there exists exactly one singular point in a neighbourhood U of
x0;

(ii) for λ = λ0, x0 is the unique singular point in U and U is foliated by periodic
orbits;

(iii) for λ > λ0, there exists exactly one singular point in U and it has opposite
stability compared with the singular point which appears in (i).

In Figure 2.19(a) we represent the bifurcation diagram of the vertical bifurcation.
There the vertical variable corresponds to the amplitude of the periodic orbit.

Figure 2.19: Bifurcation diagram involving periodic orbits. The y-axis represent the
amplitude of the periodic orbits: (a) vertical bifurcation; (b) Hopf bifurcation; (c)
saddle-node bifurcation of limit cycles; and (d) focus-center-limit cycle bifurcation.
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The differential equation ẋ = f(x, λ) has a supercritical Hopf bifurcation at
the singular point x0 for the bifurcation value λ0, if

(i) for λ < λ0, there exists exactly one singular point and it is stable (respec-
tively, unstable) in a neighbourhood U of x0;

(ii) for λ = λ0, x0 is the unique singular point in U ;
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(iii) for λ > λ0, the system has exactly one singular point x0 and one limit cycle γ
in U . Moreover, the singular point is unstable (respectively stable) the limit
cycle is stable (respectively unstable) and the amplitude of γ tends to 0 as λ
tends to λ0.

In Figure 2.19(b) we represent the supercritical Hopf bifurcation diagram. The
variable in the vertical axis is the amplitude of the limit cycle γ. When the limit
cycle γ appears for λ < λ0 and disappears for λ > λ0 we say that it is a subcritical
Hopf bifurcation.

We say that the differential equation ẋ = f(x, λ) has a supercritical saddle-
node bifurcation of limit cycles at λ0 for the limit cycle γ if

(i) for λ < λ0, the system has no limit cycles in a neighbourhood U of γ;

(ii) for λ = λ0, γ is the unique limit cycle in U and it is semistable;

(iii) for λ > λ0, the system has exactly two limit cycles in U , one stable and the
other unstable. Moreover, both limits cycles tend to γ as λ tends to λ0.

In Figure 2.19(c) we show the supercritical saddle-node bifurcation of limit cycles.
When the limit cycles appear for λ < λ0, we say that a subcritical saddle-node
bifurcation of limit cycles occurs.

The differential equation ẋ = f(x, λ) is said to have a supercritical focus-
center-limit cycle bifurcation in the periodic orbit γ if

(i) for λ < λ0, there exists a convex neighbourhood U of γ with exactly one
singular point x0, which is stable (respectively, unstable);

(ii) for λ = λ0, the singular point x0 is a local center, with γ in the boundary;

(iii) for λ > λ0, there exists a unique limit cycle borning at γ and it is stable
(respectively, unstable), and there exists exactly one singular point, which is
unstable (respectively, stable).

In Figure 2.19(d) we represent the bifurcation diagram of a supercritical Hopf-
vertical bifurcation. When the bifurcation takes place for λ < λ0, it is called
subcritical focus-center-limit cycle bifurcation.

The differential equation ẋ = f(x, λ) is said to have a homoclinic cycle bifur-
cation at point x0 if

(i) for every λ �= λ0, the system has exactly one singular point in a neighbour-
hood U of x0 and that point is a saddle;

ii) for λ = λ0, the system has a saddle point at x0 and the stable and unstable
separatrices of x0 meet, forming a homoclinic cycle.



Chapter 3

Fundamental Systems

In this chapter we introduce the class of differential systems which is the focus of
this book, namely, the fundamental systems. Vector fields associated to fundamen-
tal systems are continuous piecewise linear functions. This ensures the existence
and uniqueness of solutions of fundamental systems, and the continuous depen-
dence of solutions on the initial conditions and on parameters. From a geometric
point of view we can think of a fundamental system as the union of three linear
systems, each of them defined on a different region in the phase space. This enables
us to use a matricial approach for studying this class.

We also present some results about the existence and localization of singular
points (either finite or infinite), and periodic orbits.

3.1 Definition of fundamental systems

Consider a 2× 2 real matrix Ã, i.e., Ã ∈ L
(
R2
)
, and two non-zero vectors b̃, k̃ ∈

R2. Let ϕ̃ : R→ R be a function given by

ϕ̃ (σ) =

⎧⎪⎨⎪⎩
m1σ − (m0 −m1)u, if σ < −u,
m0σ, if |σ| ≤ u,

m1σ + (m0 −m1)u, if σ > u,

(3.1)

where m0 �= m1 and u > 0, see Figure 3.1(a). We define a fundamental system as
the following family of planar differential equations

ẏ = Ãy + ϕ̃
(
k̃Ty

)
b̃. (3.2)

The function ϕ̃ is usually referred as the characteristic function of the fundamental
system.

Since the characteristic function ϕ̃ is a continuous nonlinear (m0 �= m1 and
u > 0) function, the vector field defined by system (3.2) is also continuous and
nonlinear.

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 1
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhäuser Advanced Texts, 
DOI 10.1007/978-3-0348-0657-2_ , © Springer Basel 2014 3
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3.2 Normal forms

From equation (3.2) it follows that 11 parameters are used in order to define a

fundamental system: 4 coefficients of the matrix Ã, 2 components of the vector k̃,
2 components of the vector b̃, and 3 parameters of the characteristic function ϕ̃.
We now normalize the characteristic function to reduce the number of necessary
parameters.

By substituting expression (3.1) in expression (3.2) we have

ẏ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ãy+

(
m1k̃

Ty− (m0 −m1)u
)
b̃, if kTy < −u,

Ãy+
(
m0k̃

Ty
)
b̃, if

∣∣kTy
∣∣ ≤ u,

Ãy+
(
m1k̃

Ty+(m0 −m1)u
)
b̃, if kTy > u.

Using the fact that (k̃Ty)b̃ = (b̃ k̃T )y and the notations A = Ã + m1b̃k̃
T , b =

(m0 −m1)b̃ and k = k̃, the previous system can be written as

ẏ =

⎧⎪⎨⎪⎩
Ay−ub, if kTy < −u,(
A+bkT

)
y, if

∣∣kTy
∣∣ ≤ u,

Ay + ub, if kTy > u.

Finally, the change of variables x = (1/u)y transforms system (3.2) into the system

ẋ = Ax+ ϕ
(
kTx

)
b, (3.3)

with A ∈ L(R2), b,k ∈ R2 � {0} and

ϕ (σ) =

⎧⎨⎩
−1, if σ < −1,
σ, if |σ| ≤ 1,
1, if σ > 1,

(3.4)

see Figure 3.1(b).
The system (3.3) with the characteristic function (3.4) will be called the

normal form of the fundamental system (3.2).
Normal forms of fundamental systems involve only 8 parameters (A,b,k) (we

eliminated the 3 parameters of the characteristic function). Moreover, systems
(3.2) and (3.3) are linearly conjugate, i.e. have the same qualitative behaviour.
Hence in the sequel we will restrict our attention to fundamental systems expressed
in normal form.

3.3 Existence and uniqueness of solutions

The continuity of the characteristic function ϕ implies the continuity of the vector
field f(x) = Ax+ϕ(kTx)b defined by (3.3). In the following we prove that ϕ and
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Figure 3.1: Characteristic functions ϕ̃ and ϕ.

f are globally Lipschitz. This will allow us to conclude not only the existence and
uniqueness of solutions of the fundamental systems, but also the completeness of
their flow.

Lemma 3.3.1. The characteristic function ϕ̃(σ) defined in (3.1) is globally Lipschitz
in R, with Lipschitz constant L = max{|m0|, |m1|}.
Proof. To show that |ϕ̃(σ1) − ϕ̃(σ2)| ≤ L|σ1 − σ2| for all σ1, σ2 ∈ R, we divide
the proof into 8 cases, depending on the intervals I− = (−∞,−u), I0 = [−u, u] or
I+ = (u,+∞), where σ1 and σ2 lie.

If σ1 and σ2 are in the same interval, then

|ϕ̃ (σ1)− ϕ̃ (σ2)| =
⎧⎨⎩
|m1| |σ1 − σ2| , if σ1, σ2 ∈ I−,
|m0| |σ1 − σ2| , if σ1, σ2 ∈ I0,
|m1| |σ1 − σ2| , if σ1, σ2 ∈ I+.

Therefore, |ϕ̃ (σ1)− ϕ̃ (σ2)| ≤ L |σ1 − σ2|.
Suppose now that σ1 ∈ I− and σ2 ∈ I0. Then

|ϕ̃ (σ1)− ϕ̃ (σ2)| = |m1σ1 − (m0 −m1)u−m0σ2|
= |m1 (σ1 + u)−m0 (σ2 + u)|
≤ L (|σ1 + u|+ |σ2 + u|) .

Since σ1 ∈ I− and σ2 ∈ I0, we have σ1+u < 0, σ2+u ≥ 0 and σ1 < σ2. Therefore,

|ϕ̃ (σ1)− ϕ̃ (σ2)| ≤ L |σ2 − σ1| .
Similar arguments apply to the remaining cases. �
Proposition 3.3.2. (a) The vector field defined by the fundamental system (3.3)

is Lipschitz in R
2 with Lipschitz constant L = ‖A‖+ ‖bkT ‖.

(b) The theorem on the existence and uniqueness theorem of solutions of ordinary
differential equations holds for fundamental systems.
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(c) Let x(s) be the solution of fundamental system (3.3) with the initial condition
x(0) = x0, then

x (s) = eAsx0 +

∫ s

0

eA(s−r)ϕ
(
kTx

)
b dr. (3.5)

(d) Flows of fundamental systems are complete. Moreover, flows of fundamen-
tal systems depend in differential manner on time, and continuously on the
initial conditions and on parameters.

Proof. (a) By taking m0 = 1, m1 = 0 and u = 1 in Lemma 3.3.1, it follows that ϕ
is a Lipschitz function in R with Lipschitz constant L = 1, i.e.,∣∣ϕ (kTx1

)− ϕ
(
kTx2

)∣∣ ≤ ∣∣kT (x1 − x2)
∣∣ .

Hence we have ‖(ϕ(kTx1)−ϕ(kTx2))b‖ ≤ ‖bkT (x1−x2)‖. From this we conclude
that the vector field f(x) = Ax + ϕ(kTx)b defined by (3.3) satisfies

‖f (x1)− f (x2)‖ ≤ (‖A‖+ ‖bkT ‖) ‖x1 − x2‖ ,

which proves our statement.

(b) follows from Theorem 2.1.1 and statement (a).

(c) It is easy to check that the function x(s) defined by (3.5) satisfies equation
(3.3) as well as the initial condition x(0) = x0. The assertion follows by applying
the statement (b).

(d) follows from Proposition 2.1.2 and Theorem 2.1.3. �

3.4 Symmetric orbits

As the function ϕ is odd (i.e., ϕ(−σ) = −ϕ(σ)), the vector field f(x) = Ax +
ϕ(kTx)b defined by the fundamental system (3.3) is also an odd function. There-
fore, if x(s) is a solution of (3.3), then y(s) = −x(s) is also a solution of (3.3).
Note that the orbits associated to the solutions x(s) and y(s) are symmetric to one
another with respect to the origin. In particular, if x(s) and y(s) are associated
to the same orbit, then this orbit is a symmetric periodic orbit.

3.5 Piecewise linear form

Since characteristic functions are nonlinear functions, fundamental systems are
also nonlinear. In this section we show that fundamental systems can be under-
stood as three linear systems, each defined on a different region in the plane.
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Substituting ϕ in equation (3.3) and using the notations

S− :=
{
x ∈ R

2 : kTx <− 1
}
,

L− :=
{
x ∈ R

2 : kTx = −1} ,
S0 :=

{
x ∈ R

2 :
∣∣kTx

∣∣ < 1
}
, (3.6)

L+ :=
{
x ∈ R

2 : kTx = 1
}
,

S+ :=
{
x ∈ R

2 : kTx > 1
}
,

one can recast system (3.3) as

ẋ =

⎧⎨⎩
Ax− b, if x ∈ S− ∪ L−,
Bx , if x ∈ L− ∪ S0 ∪ L+,
Ax+ b, if x ∈ L+ ∪ S+,

(3.7)

where, if A =

(
a11 a12
a21 a22

)
, bT = (b1, b2) and kT = (k1, k2), then

B = A+ bkT =

(
a11 + k1b1 a12 + k2b1
a21 + k1b2 a22 + k2b2

)
. (3.8)

Expression (3.7) will be called the piecewise linear form of the fundamental system
(3.3).

The straight lines L+ and L− are symmetric with respect to the origin.
These lines split the phase plane into the half-planes S+, S− and the open strip S0

(Figure 3.2). On each of these regions the system is linear, with matrices A and
B, respectively; moreover, the system changes continuously on the straight lines
L+ and L−. In fact, as we proved in Proposition 3.3.2(a), the vector field on L+

and L− is not only continuous, but also globally Lipschitz in R2.

3.6 Fundamental matrices

The matrices (A,B) in (3.7) are called the fundamental matrices of the funda-
mental system (3.3).

From (3.8) associated to a fundamental system with parameters (A,b,k),
there exists a pair of fundamental matrices (A,B). However, not for all pairs of
matrices A and B there exists a fundamental system with fundamental matrices
(A,B). In the following we give sufficient and necessary conditions on the pair
(A,B) so that they are fundamental matrices.

Proposition 3.6.1. Let A,B ∈ L(R2). Then (A,B) is a pair of fundamental ma-
trices if and only if A �= B and det(B −A) = 0.

Proof. Suppose that (A,B) is a pair of fundamental matrices. From (3.8) it follows
that there exist vectors b,k ∈ R2 � {0} such that B − A = bkT . Consequently,
det(B −A) = k1b1k2b2 − k1b2k2b1 = 0.
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Figure 3.2: Piecewise linear phase plane of a fundamental system.

Suppose now A = B. Then we have k1b1 = 0, k1b2 = 0, k2b1 = 0 and k2b2 =
0. This clearly implies that k = 0 or b = 0, which contradicts our assumptions.
So A �= B. This proves the necessary condition.

Conversely, if A �= B, the matrix

B −A =

(
m11 m12

m21 m22

)
,

is not the zero matrix. We assume that m11 �= 0; the other three cases follow by
using similar arguments.

Take bT = (m11,m21) and kT = (1,m12/m11), thus b,k ∈ R2 � {0} . Since
det(B−A) = 0 it is easy to check that B = A+bkT . Therefore, (A,B) is the pair
of fundamental matrices of the fundamental system with parameters (A,b,k). �

Given the pair of fundamental matrices (A,B) one can choose different vec-
tors b and k satisfying (3.8). That is, there exist more than one fundamental
system with (A,B) as fundamental matrices. The next proposition shows an im-
portant relationship between all these fundamental systems.

Proposition 3.6.2. Two fundamental systems having the same pair of fundamental
matrices are linearly conjugate.

Proof. Let (A,B) be the fundamental matrices of the two fundamental systems

ẋ = Ax+ ϕ
(
kTx

)
b and ẏ = Ay + ϕ

(
k∗Ty

)
b∗,

where bT = (b1, b2), k
T = (k1, k2), b

∗T = (b∗1, b
∗
2) and k∗T = (k∗1 , k

∗
2).

By (3.8), the matrices bkT and b∗k∗T are equal. Thus k1b1 = k∗1b
∗
1, k1b2 =

k∗1b
∗
2, k2b1 = k∗2b

∗
1 and k2b2 = k∗2b

∗
2.
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Since b∗ �= 0, suppose that b∗1 �= 0 (the case b∗1 = 0 and b∗2 �= 0 follows using
similar arguments). From the above equalities we have b1 �= 0, k∗ = (b1/b

∗
1)k and

b∗ = (b∗1/b1)b.
Consider M = (b∗1/b1)Id ∈ L(R2), where Id denotes the identity matrix. If

x(s) is a solution of the first fundamental system and y(s) = Mx(s), then

ẏ =
b∗1
b1

ẋ =A

(
b∗1
b1

x

)
+ ϕ

(
kT b1

b∗1
y

)(
b∗1
b1

)
b = Ay + ϕ

(
k∗Ty

)
b∗,

i.e., y(s) is a solution of the second fundamental system. Hence the systems are
linearly conjugate and M is the linear conjugation. �

Associated to a pair of fundamental matrices (A,B) there exists a one-
parameter family of fundamental systems which have (A,B) as fundamental ma-
trices. In fact, from the above proof, this family has parameters (A,αb, (1/α)k)
with α �= 0. But all these systems have the same phase portrait up to a linear
transformation; i.e., they are linearly conjugate, see Section 2.6 for more details.
This allows us to use fundamental matrices to classify the behavior of fundamental
systems.

Up to now we have not reduced the number of parameters used for describing
the behavior of the systems. We have only reduced the number of fundamental
systems to study by choosing a unique representant of the above family; i.e., for
instance by choosing α = 1.

3.7 Fundamental parameters

Consider a fundamental system (3.3) with fundamental matrices (A,B). The vec-
tor (D,T, d, t) where

D = det(B), T = trace(B), d = det(A) and t = trace(A). (3.9)

will be called the fundamental parameters of the fundamental system. Since funda-
mental matrices are related, fundamental parameters are also related. From (3.8)
it follows that

D = d+ (a11k2b2 + a22k1b1 − a12k1b2 − a21k2b1)

= d+ kT

(
a22 −a12
−a21 a11

)
b. (3.10)

Therefore, when d �= 0, we obtain

D = d
(
1 + kTA−1b

)
. (3.11)

In a similar way (3.8) yields

T = t+ (k1b1 + k2b2) = t+ kTb. (3.12)
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Proposition 3.7.1. If we change the direction of the flow (by the change of time
s → −s) of a fundamental system with fundamental parameters (D,T, d, t), then
we obtain a fundamental system with fundamental parameters (D,−T, d,−t).
Proof. Let ẋ = Ax+ϕ(kTx)b be a fundamental system with fundamental param-
eters (D,T, d, t). The change of variables (x, s) → (y,−s) transforms the system
into the fundamental system ẏ = −Ay−ϕ(kTy)b with parameters (D∗, T ∗, d∗, t∗),
where d∗ = d, t∗ = −t, D∗ = D and T ∗ = −T. �

3.8 Linear conjugacy

In Proposition 2.6.4(a) we have shown that two linear systems with equivalent
matrices are linearly conjugate. This fact makes possible the classification of linear
flows using the trace t and the determinant d of the matrix when t2 − 4d �= 0, see
Proposition 2.6.4(c). As we shall prove in Theorem 3.8.2, a similar result holds for
fundamental systems.

Two fundamental systems are said to be equal in an open subset U ⊂ R
2 if

the vector fields defined by them are equal in U .

Lemma 3.8.1. Fundamental systems ẋ = Ax+ϕ(kTx)b and ẋ = A∗x+ϕ(k∗Tx)b∗

are equal in R2 if and only if A = A∗, b = nb∗ and k = nk∗, where n ∈ {1,−1}.
Proof. Let

ẋ =

⎧⎨⎩
Ax− b, if x ∈ S− ∪ L−,
Bx, if x ∈ L− ∪ S0 ∪ L+,
Ax+ b , if x ∈ L+ ∪ S+,

and

ẋ =

⎧⎨⎩
A∗x− b∗, if x ∈ S∗

− ∪ L∗
−,

B∗x , if x ∈ L∗
− ∪ S∗

0 ∪ L∗
+,

A∗x+ b∗, if x ∈ L∗
+ ∪ S∗

+,

be the piecewise linear forms of the two fundamental systems, respectively.

Suppose that the two systems are equal in R2. If S−∩S∗− �= ∅, then Ax−b =
A∗x−b∗ for all x in the open set S−∩S∗

−, i.e., (A−A∗)x = b−b∗ for x ∈ S−∩S∗
−.

From Lemma 2.6.3 it follows that A = A∗ and b = b∗. On the contrary, if
S− ∩ S∗− = ∅, then S− ∩ S∗

+ �= ∅. In this case applying similar arguments as
before we obtain A = A∗, b = −b∗.

On the other hand, since S0∩S∗
0 is a non-empty open set andBx = B∗x when

x ∈ S0∩S∗
0 , applying Lemma 2.6.3 we obtain B = B∗. Now from equation (3.8) it

follows that bkT = bkT∗. Taking coordinates and noting that b,k,k∗ ∈ R2�{0} ,
it is easy to check that k = k∗ or k = −k∗, depending on whether b = b∗ or
b = −b∗.

Suppose now that A = A∗, b = nb∗ and k = nk∗. It is clear that ϕ(kTx)b =
n2ϕ(k∗Tx)b∗, which completes the proof. �
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In the following theorem we give a characterization of the linear conjugacy
classes of fundamental systems. In this characterization we use only fundamental
matrices.

Theorem 3.8.2. (a) Two fundamental systems with respective fundamental ma-
trices (A,B) and (A∗, B∗) are linearly conjugate if and only if there exists a
matrix M ∈ GL(R2) such that A∗ = MAM−1 and B∗ = MBM−1.

(b) If two fundamental systems are linearly conjugate, then they have the same
fundamental parameters.

Proof. Let ẋ = Ax+ϕ(kTx)b and ẏ = A∗y+ϕ(k∗Ty)b∗ be two linearly conjugate
fundamental systems, and let M ∈ GL(R2) be the conjugacy matrix.

Take q in R2 and let y(s) be the solution of the second system with initial
condition q = y(0). Since the systems are conjugate with conjugacy M , it follows
that x(s) = M−1y(s) is a solution of the first system. Multiplying by M and
taking its derivative at s = 0, we have M ẋ(0) = ẏ(0), which is equivalent to

MAM−1q+ ϕ(kTM−1q)Mb = A∗q+ ϕ(k∗Tq)b∗.

Since q is an arbitrary point in R2 we obtain A∗ = MAM−1, b∗ = nMb and
k∗T = nkTM−1 with n ∈ {1,−1}, see Lemma 3.8.1. Substituting these expressions
into B∗ = A∗ + b∗k∗T , see (3.8), and taking into account that B = A+ bkT , we
have

B∗ = MAM−1 + n2MbkTM−1 = M(A+ bkT )M−1 = MBM−1.

Now let us prove the other implication. Let (A,B) and (A∗, B∗) be the fun-
damental matrices of the fundamental systems

ẋ = Ax+ ϕ(kTx)b, (3.13)

ẏ = A∗y + ϕ(k∗Ty)b∗, (3.14)

respectively. By hypothesis, there exists a regular matrix M such that A∗ =
MAM−1 and B∗ = MBM−1.

The change of coordinates z = Mx transforms system (3.13) into the system

ż = MAM−1z+ ϕ
(
kTM−1z

)
Mb, (3.15)

with fundamental matrices (MAM−1,MBM−1). Thus systems (3.13) and (3.15)
are linearly conjugate with conjugacy matrix M .

Since systems (3.14) and (3.15) have the same pair of fundamental matrices,
Proposition 3.6.2 implies that they are linearly conjugate. Thus systems (3.13)
and (3.14) are also linearly conjugate. This completes the proof of statement (a).

Statement (b) is a straightforward consequence of statement (a). �
There are some important consequences of Theorem 3.8.2.
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Remark 3.8.3. All fundamental systems in the same linear conjugacy class have
topologically equivalent phase portraits. Thus, there is not loss of generality in
assuming that either matrix A or matrix B is given in its real Jordan normal
form. This usually simplifies the computations. Note that solutions of a linear
system appear in their easiest form when we use their real Jordan normal form.

Remark 3.8.4. To each linear conjugacy class there is associated a unique point
in the space R4 given by the fundamental parameters (D,T, d, t), see Theorem
3.8.2(b). However, two different classes can be associated to the same point. We
call such points virtual bifurcation points. As we shall see in Chapter 5, the set of
all virtual bifurcation points has zero Lebesgue measure in the set of all bifurcation
points. Since almost always fundamental parameters characterize the linear conju-
gacy classes, we choose R4 = {(D,T, d, t) : D,T, d, t ∈ R} as the parameter space
of the fundamental systems. Note that we have reduced the initial 8-dimensional
parameter space to dimension 4.

Remark 3.8.5. The behaviour of fundamental systems with respect to the linear
conjugacy relationship is very similar to that of linear systems, see Proposition
2.6.4.

3.9 Finite singular points

We are now interested in the study of phase portraits of fundamental systems.
Since the separatrix configuration is the skeleton of a phase portrait, see Theorem
2.6.9, we start by studying the simplest separatrices of fundamental systems, i.e.,
singular points. In this section we give the number, the localization and the local
phase portrait of finite singular points. Singular points at infinity will be studied
in the following section.

Consider the fundamental system

ẋ = Ax+ ϕ
(
kTx

)
b. (3.16)

Its singular points are determined by the zeros of the linear function Ax + b in
the half-plane S+, by the zeros of Bx in the strip L+ ∪ S0 ∪L−, and by the zeros
of Ax− b in S−.

Since the origin 0 ∈ S0, 0 is always a singular point. Furthermore, if the
fundamental parameter D �= 0, then the origin is the unique singular point in
L+ ∪ S0 ∪ L−.

Suppose that the fundamental parameter d �= 0. We define the points e+ and
e− as

e+ = −A−1b and e− = A−1b. (3.17)

By (3.7), if e+ ∈ S+, then e+ is the unique singular point in S+. By the symmetry
of the orbits with respect to the origin, e− is the unique singular point in S−.
On the other hand, when e+ �∈ S+ it follows that e− �∈ S−. Hence e+, e− are not
singular points of (3.16). These points are usually called virtual singular points



3.9. Finite singular points 71

(see, [24] and [25]). In the next result we give necessary and sufficient conditions
on the fundamental parameters so that e+ and e− are genuine singular points.

Lemma 3.9.1. Consider a fundamental system with fundamental parameter d �= 0.

(a) The points e+ and e− satisfy

kT e+ = 1− D

d
and kT e− =

D

d
− 1. (3.18)

(b) e+ belongs to S+ (respectively, e− ∈ S−) if and only if Dd < 0.

(c) e+ belongs to L+ (respectively, e− ∈ L−) if and only if D = 0.

Proof. (a) Since d �= 0, from (3.11) we have D = d(1 − kT e+), which establishes
the formula. Statements (b) and (c) follow easily from the definition of S+ and
L+ and (3.18). �

Now we classify the finite singular points depending on the fundamental pa-
rameters. Before doing this we prove that the number of singular points and the
regions S+ ∪ S− and S0 to which they belong are invariant under linear transfor-
mations.

Lemma 3.9.2. Let ẋ = Ax + ϕ(kTx)b and ẋ = A∗x + ϕ(k∗Tx)b∗ be two linear
conjugate fundamental systems, with conjugacy matrix M ∈ GL

(
R2
)
. If q is a

singular point of the first system, then q∗ = Mq is a singular point of the second
one, and

∣∣kTq
∣∣ ≤ 1 if and only if

∣∣k∗Tq∗∣∣ ≤ 1.

Proof. Since M is a conjugacy matrix, it maps orbits into orbits. Thus q∗ is a
singular point for the second system.

From the proof of Theorem 3.8.2 we have A∗ = MAM−1, b∗ = nMb, and
k∗T = nkTM−1, with n ∈ {−1, 1}, which proves our assertion. �

According to Lemma 3.9.2, if q ∈ S0, then q∗ belongs to the central open
strip, written S∗

0 , of the transformed system. But if q ∈ S+, we cannot be sure
if q∗ belongs to S∗

+ or to S∗
−. In any case, if the singular point q ∈ S+, there is

always a singular point of the transformed system in S∗
+. This point will be either

q∗ or −q∗.

Theorem 3.9.3. Consider a fundamental system with fundamental parameter D �=
0. Under this assumption the origin 0 is the unique singular point in L−∪S0∪L+

and we have:

(a) Suppose D > 0. If T 2−4D < 0, then the origin is a stable focus when T < 0,
a center when T = 0, and an unstable focus when T > 0. If T 2−4D ≥ 0, then
the origin is a stable node when T < 0, and an unstable node when T > 0.

(a.1) If d ≥ 0, then there are no singular points in S+ ∪ S−.

(a.2) If d < 0, then e+ (respectively e−) is the unique singular point in S+

(respectively S−). Moreover, e+ and e− are saddle points.
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(b) Suppose D < 0. Then the origin is a saddle point.

(b.1) If d ≤ 0, then there are no singular points in S+ ∪ S−.

(b.2) If d > 0, then e+ (respectively e−) is the unique singular point in S+

(respectively S−). Moreover, if t2 − 4d < 0, then e+ and e− are stable
foci when t < 0, centers when t = 0, and unstable foci when t > 0. If
t2 − 4d ≥ 0, then e+ and e− are stable nodes when t < 0, and unstable
nodes when t > 0.

Proof. Let ẋ = Ax + ϕ(kTx)b be the given fundamental system. In the central
region L−∪S0∪L+ the system is ẋ = Bx, with B = A+bkT and D = det(B) �= 0.
Therefore the origin is the unique singular point in L− ∪ S0 ∪ L+.

(a) Since the system is linear in a neighbourhood of the origin, its local phase
portrait follows from Subsection 2.5.3.

(a.1) When d > 0, it follows that Dd > 0. By Lemma 3.9.1(b), there are no
singular points in S+ ∪ S−.

Suppose now that d = 0. By Theorem 3.8.2(a) and Lemma 3.9.2, we can
assume without loss of generality that the matrix A is one of the following ones:

A =

(
t 0
0 0

)
, A =

(
0 1
0 0

)
or A =

(
0 0
0 0

)
.

In the three cases we arrive at a contradiction with the hypothesis. First suppose
A is the zero matrix. Then B = bkT and D = 0, which contradicts the hypothesis.
Suppose now that the matrix A is not the zero matrix and trace(A) = 0. If there
exists a singular point q in S+, i.e., Aq+ b = 0, then bT = (b1, 0). In this case

B =

(
b1k1 1 + b1k2
0 0

)
.

Therefore D = 0, which contradicts the hypothesis. The remaining case follows
in a similar way. So there are no singular points in S+. By the symmetry of the
orbits with respect to the origin, there are no singular points in S−.

(a.2) When d < 0 we have Dd < 0. By Lemma 3.9.1(b), e+ is the unique
singular point in S+ and e− is the unique singular point in S−. Since the system is
linear in S+ and S−, the local phase portraits of e+ and e− follow from Subsection
2.5.3.

Statements (b), (b.1) and (b.2) follow using arguments similar to those of
the proofs of statements (a), (a.1) and (a.2). �
Remark 3.9.4. All singular points of a fundamental system with fundamental pa-
rameter D �= 0 are isolated, see Theorem 3.9.3. Furthermore, the existence in a
fundamental system of more that one singular point is equivalent to Dd < 0.

In the following result we study the degenerate case D = 0. In this case
singular points are not isolated. In particular, they are located on curves in the
phase space. To compute the quantitative aspects of these curves one can assume
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with no loss of generality that the matrix B is given in its real Jordan normal
form, see Lemma 3.9.2.

From now on, given two vectors uT = (u1, u2), v
T = (v1, v2) in R2, we denote

by (u,v) the matrix whose columns are the vectors u and v. We recall that v⊥

denotes the vector (−v2, v1)T orthogonal to the vector v.

Theorem 3.9.5. Consider a fundamental system with fundamental parameter D =
0.

(a) If d �= 0, the set formed by all the singular points of the system is the closed
segment s0 := {λe+ : λ ∈ [−1, 1]} contained in L− ∪ S0 ∪ L+. If T < 0
(respectively, T > 0), then the segment without the endpoints is a stable
(respectively, an unstable) normally hyperbolic manifold. If T = 0, then the
segment without the endpoints is a non-isolated nilpotent manifold.

(b) Suppose that d = 0 and B is given in its real Jordan normal form.

(b.1) If B is the zero matrix, the set of singular points is the closed strip
L− ∪ S0 ∪ L+.

(b.2) Suppose that B is not the zero matrix and Bk⊥ = 0. Then the set of
all the singular points in L− ∪ S0 ∪L+ is the straight line r0 := {λk⊥ :
λ ∈ R}. Moreover, if T < 0 (respectively T > 0), then the straight line
r0 is a stable (respectively an unstable) normally hyperbolic manifold; if
T = 0, then r0 is a non-isolated nilpotent manifold.

(b.2.1) Suppose that either T t < 0 and kTb⊥ = 0, or T = 0, t = 0
and kTb⊥ > 1. Then the set of all the singular points in S+ is the
straight line r+ := {q+λk⊥ : λ ∈ R} and the set of all the singular
points in S− is the straight line r− := {−q+ λk⊥ : λ ∈ R}, where
qT is equal to (k−1

1 (1−T/t), 0) or to (0, b1(k2b1−1)−1) depending
on whether T �= 0 or T = 0.
Moreover, if T < 0 (respectively, T > 0), the straight lines r+, r−
are unstable (respectively, stable) normally hyperbolic manifolds; if
T = 0, then r+ and r− are non-isolated nilpotent manifolds.

(b.2.2) Otherwise, there are no singular points in S+ ∪ S−.

(b.3) Suppose that B is not the zero matrix and Bk⊥ �= 0. Then the set of
all the singular points is the piecewise linear curve⎧⎪⎨⎪⎩

s− := {−q+ λw : λ < 0} ⊂ S−,
s0 := {ηq : η ∈ [−1, 1]} ⊂ L− ∪ S0 ∪ L+,

s+ := {q+ λw : λ > 0} ⊂ S+,

where qT is equal to (0, k−1
2 ) or (k−1

1 , 0) depending on whether T �= 0 or
T = 0; and wT is equal to (k2b1, T −k1b1) or (1−k2b1, k1b1) depending
on whether T �= 0 or T = 0.
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Moreover, if either T > 0, or T = 0, or T < 0, then the segment s0 is
either an unstable normally hyperbolic manifold, a non-isolated nilpo-
tent manifold, or a stable normally hyperbolic manifold, respectively.
The segments s+ and s− are either unstable normally hyperbolic man-
ifolds, non-isolated nilpotent manifolds, or stable normally hyperbolic
manifolds depending on whether t > 0, t = 0, or t < 0, respectively.

Proof. Let ẋ = Ax+ ϕ(kTx)b be the given fundamental system. Therefore, B =
A+ bkT and D = det(B).

(a) Since D = 0 and d �= 0, Lemma 3.9.1(c) implies that there are no singular
points in S+ and S−. Moreover, the singular points e+ and e− belong to L+ and
L−, respectively. So all the singular points of the system are located in the closed
strip L− ∪ S0 ∪ L+.

By continuity, the vector fields Ax+b and Bx are equal on the straight line
L+. Thus Be+ = 0 and Be− = 0. It is clear that if q belongs to the segment s0
defined in the statement, then Bq = 0. Moreover, every point in s0 is a singular
point. Now we prove that there are no other singular points different from these.

Suppose that q is a singular point in L−∪S0∪L+ such that q �∈ s0. Therefore
{q, e+} is a basis of R2. Since the matrix B vanishes on each element of the basis,

it is the zero matrix. Consequently, A = −bkT and d = det(−bkT ) = 0, which
contradicts our assumptions.

The local phase portrait of the singular point in s0 follows from Subsection
2.5.3.

(b.1) Suppose that B is the zero matrix. Then every point in the closed strip
L− ∪ S0 ∪ L+ is a singular point.

Moreover, when B is the zero matrix, then A = −bkT . Thus any point q in
the half-plane L+ ∪ S+ is a singular point if b(−kTq + 1) = 0. Since b �= 0, this
is equivalent to q ∈ L+. By similar arguments we have that every singular point
in the half-plane S− ∪ L− belongs to the straight line L−.

(b.2) Since Bk⊥ = 0, every point in the segment r0, defined in the statement,
is a singular point. Moreover, there are no other singular points in L− ∪ S0 ∪ L+.
Otherwise, arguments similar to those in the proof of statement (a) show that B
is the zero matrix, which contradicts our assumptions. The local phase portrait of
the singular points in r0 follows from Subsection 2.5.3.

Now we look for the singular points in S+ and S−. Since D = 0, either

B =

(
T 0
0 0

)
, or B =

(
0 1
0 0

)
,

depending on whether T �= 0, or T = 0. Therefore, if T �= 0, then k1 �= 0 and
k2 = 0; and if T = 0, then k1 = 0 and k2 �= 0.

Suppose T �= 0. From expression (3.8) we have

A =

(
T − k1b1 0
−k1b2 0

)
.
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Therefore, the singular points in S+ have to satisfy the equations x1(T − k1b1) =
−b1, −x1k1b2 = −b2 and k1x1 > 1.

If b2 �= 0, then upon dividing by −b2, isolating x1 in the second equation,
and substituting x1 in the first one, one obtains that T = 0, contrary to our
assumption. Thus, if b2 �= 0, there are no singular points in S+ (by the symmetry
of the orbits with respect to the origin, there are no singular points in S−).

If b2 = 0, then

A =

(
T − k1b1 0

0 0

)
, where t = T − k1b1.

Suppose t = 0. In this case A is the zero matrix and Ax+b = b �= 0. Thus, there
are no singular points in S+ ∪ S−.

Suppose now that t �= 0. Since singular points in S+ have to satisfy the equa-
tions x1 = −b1/t and k1x1 = 1− T/t > 1, we have the following two possibilities.
If T t > 0, there are no singular points in S+ ∪ S−. Otherwise, if T t < 0, the
set of singular points in S+ is the straight line r+ = {q + λk⊥ : λ ∈ R}, where
qT =

(
1
k1

(
1− T

t

)
, 0
)
. By the symmetry of the orbits, the set of all the singular

points in S− is the straight line r− = {−q+ λk⊥ : λ ∈ R}.
The translation y = x− q transforms the non-homogeneous system ẋ =

Ax+ b into a homogeneous one. The local phase portraits of the singular points
in r+ and r− follow from Subsection 2.5.3. This finishes the proof of statements
(b.2.1) and (b.2.2) when T �= 0.

Suppose now T = 0. From (3.8) we have

A =

(
0 1− k2b1
0 −k2b2

)
.

Therefore the singular points in S+ must satisfy the equations x2(1−k2b1)+b1 = 0,
b2(1− k2x2) = 0, and k2x2 > 1. A direct computation shows that if either b2 �= 0;
or b2 = 0 and 1 − k2b1 = 0; or b2 = 0, 1 − k2b1 �= 0 and −k2b1/(1 − k2b1) ≤ 1,
there are no singular points in S+ ∪ S−. Otherwise, we have b2 = 0, 1− k2b1 �= 0,
and k2b1/(k2b1 − 1) > 1. Thus the set of singular points in S+ is the straight line
r+ = {q+ λk⊥ : λ ∈ R}, where qT = (0, b1/(k2b1 − 1)). By the symmetry of the
orbits with respect to the origin, the set of singular points in S− is the straight
line r− = {−q + λk⊥ : λ ∈ R}. The local phase portrait of the singular points
at r+ and r− follows from Subsection 2.5.3. This finishes the proof of statements
(b.2.1) and (b.2.2) when T = 0.

(b.3) Consider v ∈ R\{0} such that Bv = 0. Hence, the vectors k⊥ and v are
linearly independent. From this we obtain that the straight lines r = {λv : λ ∈ R}
and L+ intersect. Let q be the intersection point. It is easy to check that the
segment s0 = {λq : λ ∈ [−1, 1]} contains all the singular points in L− ∪ S0 ∪ L+.
The local phase portrait of the singular points follows from Subsection 2.5.3.

Now we shall look for the singular points in the half-plane S+ and S−. Sup-
pose T �= 0. From this it can be concluded that k2 �= 0, and the intersection point
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satisfies qT = (0, k−1
2 ). Moreover, since d = −Tk2b2 = 0 it follows that b2 = 0 and

therefore

A =

(
T − k1b1 −k2b1

0 0

)
.

Consider wT := (k2b1, T − k1b1). Since det(w,k⊥) = Tk2 �= 0, the vectors
w and k⊥ are linearly independent. Suppose that s+ = {q + λw : λ > 0} is a
half-line belonging to S+. Otherwise, by taking wT = (−k2b1,−T + k1b1), we get
that s+ ⊂ S+. It is easy to check that Aw = 0. Therefore, all the points in s+ are
singular points. Now we will see that they are the only singular points in S+.

If p is a singular point in S+ such that p �∈ S+, then {w,p−q} is a basis of
R2 and Aw = A(p−q) = 0. Therefore, A is the zero matrix and k2b1 = 0, k2 �= 0,
and T = k1b1 = 0, in contradiction with T �= 0.

By the symmetry of the system, the set of singular points in S− is the half-line
s−. Thus the set of singular points is the piecewise linear curve⎧⎨⎩

s− in S−,
s0 in L− ∪ S0 ∪ L+,
s+ in S+.

The local phase portrait of the singular points follows from Subsection 2.5.3.
Suppose now that T = 0. Then k1 �= 0 and qT = (k−1

1 , 0). Since b2 = 0, we
have

A =

( −k1b1 1− k2b1
0 0

)
.

A similar analysis to the one in the proof of the case T �= 0 shows that, upon
taking wT = (1 − k2b1, k1b1), the set of all singular points is the piecewise linear
curve ⎧⎨⎩

s− in S−,
s0 in L− ∪ S0 ∪ L+,
s+ in S+.

The local phase portrait of the singular points follows from Subsection 2.5.3. �

3.10 Compactification of the flow

In this section we calculate the number of singular points at infinity. We start by
showing that the flows of fundamental systems can be extended to infinity via the
Poincaré compactification. That is, for a fundamental vector field f , we can define
the Poincaré compactification fD of f .

In general, when a vector field f defined in R2 can be compactified (i.e., can
be extended to infinity), f and its Poincaré compactification fD are differentiably
equivalent in their open domains, R2 and Int(D). This is because the behaviour of
fD on the boundary ∂D corresponds to the behaviour of f at infinity.
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In the particular case of fundamental systems it can be proved that the
vector field and its compactification are differentiably conjugate in R2 and Int(D),
respectively. Moreover, if two fundamental systems are linearly conjugate in R2,
then their Poincaré compactifications are differentiably conjugate in D.

According to this and to Theorem 3.8.2(a), in order to study the compactified
flow of a fundamental system, there is not loss of generality in assuming that either
the matrix A, or the matrix B, is given in its real Jordan normal form.

We define on the unit sphere S2 = {x ∈ R3 : ‖x‖ = 1} the following regions:

S+ :=
{
z ∈ S

2 : z3 ≥ 0, (z1, z2)k ≥ z3 or z3 ≤ 0, (z1, z2)k ≤ z3
}
,

S0 :=
{
z ∈ S

2 : |(z1, z2)k| ≤ |z3|
}
,

S− :=
{
z ∈ S

2 : z3 ≥ 0, (z1, z2)k ≤ −z3 or z3 ≤ 0, (z1, z2)k ≥ −z3
}
.

Note that the closed regions S+, S− and S0 are the images under the central
projection on the unit sphere of the half-planes L+ ∪ S+, S− ∪ L− and of the
central strip L− ∪ S0 ∪ L+ , respectively.

Proposition 3.10.1. (a) Fundamental vector fields f(x) = Ax + ϕ(kTx)b satisfy
the �Lojasiewicz property at infinity. Furthermore, the degree of any funda-
mental vector fields at infinity is equal to 1, i.e., n(f) = 1.

(b) The Poincaré compactification of a fundamental vector field is given by

fD (x) =

⎛⎜⎝
1+x2

2−x2
1

1+||x||2
−2x1x2

1+||x||2

−2x1x2

1+||x||2
1+x2

1−x2
2

1+||x||2

⎞⎟⎠(A( x1

x2

)
+ χ

(
x1, x2,

1−||x||2
2

)
b

)
,

where χ : S2 → R is the function given piecewise by

χ (z) :=

⎧⎨⎩
−z3, if z ∈ S−,
(z1, z2)k, if z ∈ S0,
z3, if z ∈ S+.

(c) The Poincaré compactification fD is symmetric with respect to the origin; that
is, fD(−x) = −fD(x).

(d) The fundamental vector field f and the Poincaré compactification fD| Int(D)
are differentiably conjugate.

Proof. (a) To prove this statement it suffices to show that the vector field

f1 (z) = z3f
(

z1
z3
, z2
z3

)
= A

(
z1
z2

)
+ z3ϕ

(
k1

z1
z3

+ k2
z2
z3

)
b,

defined on S+ ∪ S−, can be extended as a global Lipschitz function to whole S2,
see Subsection 2.9.1.
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Easy computations show that when z ∈ S+ ∪ S−, that is, z3 �= 0, the non-
linear term in the definition of f1 satisfies

z3ϕ
(
k1

z1
z3

+ k2
z2
z3

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−z3, if
k1z1 + k2z2

z3
< −1,

(z1, z2)k, if

∣∣∣∣k1z1 + k2z2
z3

∣∣∣∣ ≤ 1,

z3, if
k1z1 + k2z2

z3
> 1.

In new of the expression of χ (z) in the statement,

f1 (z) = A

(
z1
z2

)
+ χ (z)b

on S+ ∪ S−. Therefore, f1 can be prolonged to z3 = 0. For simplicity, we will use
f1 to denote the extended vector field on the whole sphere S2.

Now we prove that f1 is a global Lipschitz function on S2. Since f1 is defined
as the sum of two functions and one of them is linear, we only need to show that the
other, χ, is a global Lipschitz function on S

2, i.e., |χ(q1)−χ(q2)| ≤ L‖q1−q2‖∞
for all q1,q2 ∈ S2. Recall that ‖ · ‖∞ denotes the supremum norm in R3.

We divide the proof into cases according to the set S+, S0 or S− where the
points q1 and q2 belong. When q1 = (x1, y1, z1)

T and q2 = (x2, y2, z2)
T belong

to the same set, then

|χ (x1, y1, z1)− χ (x2, y2, z2)| =
⎧⎨⎩
|z1 − z2| , if q1,q2 ∈ S+,
|k1 (x1 − x2) + k2 (y1 − y2)| , if q1,q2 ∈ S0,
|z1 − z2| , if q1,q2 ∈ S−.

Taking L = max{1, 2|k1|, 2|k2|}, we have |χ(q1)− χ(q2)| ≤ L‖q1 − q2‖∞.

Suppose now that q1 ∈ S+ and q2 ∈ S0. Denote σ1 = k1x1 + k2y1 and
σ2 = k1x2 + k2y2. Then |χ(q1) − χ(q2)| = |z1 − σ2|. We distinguish four cases,
depending on the signs of z1 and z2.

Suppose that z1 ≥ 0 and z2 ≥ 0. From the definition of S+ and S0, we have
σ1 ≥ z1 and |σ2| ≤ z2. Hence z1−z2 ≤ z1−σ2 ≤ σ1−σ2. Suppose that z1 ≥ 0 and
z2 ≤ 0. Then |σ2| ≤ −z2 and σ1 − σ2 ≤ z1 − σ2 ≤ z1 + z2 ≤ z1 − z2. Suppose now
that z1 ≤ 0 and z2 ≥ 0. By similar arguments, z2−z1 ≤ z1+z2 ≤ z1−σ2 ≤ σ1−σ2.
Finally, when z1 ≤ 0 and z2 ≤ 0, we have σ1− σ2 ≤ z1− σ2 ≤ z1− z2. In any case
it follows that |χ(q1)− χ(q2)| ≤ L‖q1 − q2‖∞.

Consider now the case q1 ∈ S+ and q2 ∈ S−. Then we have |χ(q1)−χ(q2)| =
|z1 + z2|. Denote, as above, σ1 = k1x1 + k2y1 and σ2 = k1x2 + k2y2. Then by
the definition of S+ and S−, it follows that 0 ≤ z1 + z2 ≤ σ1 − σ2 if z1z2 ≥ 0
and − |z1 − z2| ≤ z1 + z2 ≤ |z1 − z2| if z1z2 ≤ 0. Therefore, |χ(q1) − χ(q2)| ≤
L‖q1 − q2‖∞.
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Similar arguments apply to the remaining case q1 ∈ S0 and q2 ∈ S−. Thus,
we conclude that f1 is a global Lipschitz function defined on the whole S2. Conse-
quently, the degree of f at infinity is n(f) = 1.

(b) follows easily from expression (2.16).
(c) follows from the expression of fD in the previous statement and the fact

that χ(−z1,−z2, z3) = −χ(z1, z2, z3).
(d) Notice that when n(f) = 1, the vector fields fS2 and f̃ coincide, see

expression (2.14). Consequently, f and fD|Int(D) are differentiably conjugate, see
Subsection 2.9.1 for more details. �

Another expression for the function χ(z) defined in Proposition 3.10.1(b) is

χ (z) =

⎧⎪⎨⎪⎩
−z3, if z3 (k1z1 + k2z2) ≤ −z23 ,
k1z1 + k2z2, if |z3 (k1z1 + k2z2)| < z23 ,

z3, if z3 (k1z1 + k2z2) ≥ z23 ,

(3.19)

as we can easily check.
In the following proposition we show that the Poincaré compactifications of

two linearly conjugate fundamental systems are differentiably conjugate. We also
provide an expression for the conjugacy.

Proposition 3.10.2. Let ẋ = f(x) and ẋ = f∗(x) be two linearly conjugate funda-
mental systems, and let ẋ = fD(x) and ẋ = f∗

D
(x) be their Poincaré compactifica-

tions.

(a) The vector fields fD and f∗
D
are differentiably conjugate.

(b) Let M be the matrix of the conjugacy between f and f∗; then

h (x) =
2

1− ||x||2 +
√(

1− ||x||2
)2

+ 4 ||Mx||2
Mx,

effects the conjugacy between fD and f∗
D
.

Proof. Note that the function h given in statement (b) is a diffeomorphism defined
on an open subset containing D. So it is sufficient to prove that Dh(x)fD(x) =
f∗
D
(h(x)) for every x ∈ D.

Since ‖x‖ = 1 if and only if ‖h(x)‖ = 1, h maps Int (D) into itself and ∂D
into itself. Thus we can divide the proof depending on whether x ∈ Int(D), or
x ∈ ∂D.

We begin with the case x ∈ Int(D). Let hD be the conjugacy between a vector
field and its Poincaré compactification, see (2.15). Since

hD (x) =
1

1 +

√
1 + ||x||2

x and h−1
D

(x) =
2

1− ||x||2x,
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an easy computation shows that h(x) = hD ◦M ◦ h−1
D

(x). Since both hD and M
are conjugacies, h|Int(D) is also a conjugacy, i.e., Dh(x)fD(x) = f∗

D
(h(x)) for all

x ∈ Int(D).
Now we show what happens on the boundary of D. Take x ∈ ∂D, and consider

{xn}∞n=0 ⊂ Int(D) such that lim
n→∞xn = x. Since xn ∈ Int(D), we know that

Dh(xn)fD(xn) = f∗
D
(h(xn)) for all n ∈ N. Since h is C1, and fD and f∗

D
are

continuous functions, letting n → ∞ we have Dh(x)fD(x) = f∗
D
(h(x)), which

completes the proof. �
In the proof of Proposition 3.10.2 we have not used that f and f∗ are fun-

damental systems. So the proposition can be stated with f and f∗ vector fields
satisfying the 	Lojasiewicz property at infinity. Furthermore, Proposition 3.10.2
may be seen as a corollary of a more general result. Namely, suppose that f and
f∗ are differentiably conjugate with conjugacy g; then h = hD ◦g ◦h−1

D
is a conju-

gacy between fD|Int(D) and f∗
D
|Int(D). Moreover, if g satisfies g(λx) = λαg(x) with

α > 0, then

h (x) =
2

1− ||x||2 +
√(

1− ||x||2
)2

+ 4 ||g (x)||2
g (x)

is a differentiable function defined in an open set containing D. Hence h is a
differentiable conjugacy between fD and f∗

D
.

3.11 Singular points at infinity

Let ẋ = fD(x) be the Poincaré compactification of the fundamental system ẋ =
f(x), with f(x) = Ax+ ϕ(kTx)b. The singular points at infinity are given by the
solutions of the equation fD|∂D (x) = 0.

In order to study the behaviour of the flow in a neighborhood of a singular
point at infinity, we define the following subsets of the Poincaré disc D:

D+ :=

{
x ∈ D : kTx >

1

2

(
1− ||x||2

)}
,

D0 :=

{
x ∈ D :

∣∣kTx
∣∣ ≤ 1

2

(
1− ||x||2

)}
,

D− :=

{
x ∈ D : kTx < −1

2

(
1− ||x||2

)}
.

Note that D+, D0 and D− are contained in the images of the sets S+ ∩ {z3 ≥ 0},
S0 ∩ {z3 ≥ 0} and S− ∩ {z3 ≥ 0}, respectively, under the projection

p+ (z) =
1

1 + z3
(z1, z2) .
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Therefore, D+, D0, and D− contain the image under the conjugacy hD of the
regions S+, L− ∪ S0 ∪ L+, and S− respectively, see Figure 3.3. By definition, D0

is a closed set, but D+ and D− are not closed.

For simplicity, we will denote a subset of R2 and its image under hD by the
same letter. Thus, L+ = hD(L+) and L− = hD(L−).

Figure 3.3: Subsets D+, D0 and D− of the Poincaré disc D.

According to Proposition 3.10.2, in order to study the singular points at
infinity of a fundamental system, we can assume, with no loss of generality, that
one of their fundamental matrices is given in its real Jordan normal form. Thus
the rest of this section assumes that A is in real Jordan normal form.

Proposition 3.11.1. Consider the fundamental system ẋ = Ax + ϕ(kTx)b with
parameters (D,T, d, t) and such that the matrix A is in real Jordan normal form.

(a) If t2 − 4d < 0, then there are no singular points at infinity. Therefore, the
infinity manifold ∂D is a periodic orbit.

(b) If t2 − 4d = 0 and the matrix A is diagonal, then every point in the infinity
manifold ∂D is a singular point.

(c) If t2 − 4d = 0 and the matrix A is not diagonal, then there are exactly
two singular points at infinity: xT

+ = (1, 0) and xT
− = (−1, 0). Furthermore,

the singular points x+ and x− are contained in ∂D0 if and only if the first
component of the vector k is zero.

(d) If t2 − 4d > 0, then there are exactly four singular points at infinity: xT
+ =

(1, 0), xT
− = (−1, 0), yT

+ = (0, 1) and yT
− = (0,−1). Furthermore, the singular

points x+ and x− are contained in ∂D0 if and only if the first component of
the vector k is zero; and the singular points y+ and y− are contained in ∂D0

if and only if the second component of the vector k is zero.
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Proof. We note that the expression of the Poincaré compactification fD restricted
to the infinity manifold ∂D is

fD (x) =

(
x2
2 −x1x2

−x1x2 x2
1

)
Ax,

see Proposition 3.10.1(b).
(a) Suppose that t2 − 4d < 0. Since the matrix A is in real Jordan normal

form,

A =

(
α −β
β α

)
with β > 0.

Therefore,

fD|∂D (x) = ||x||2
( −βx2

βx1

)
,

and fD|∂D (x) �= 0, which proves the statement.
(b) Suppose that t2 − 4d = 0. Then there are two possibilities for the matrix

A, but only one of them is diagonal,

A =

(
λ 0
0 λ

)
.

Therefore, the expression of the Poincaré compactification in ∂D is

fD|∂D (x) = λ

(
x1x

2
2 − x1x

2
2

−x2
1x2 + x2

1x2

)
,

which is the zero vector. Then every point in ∂D is a singular point.
(c) Under the assumption that A is not diagonal, we have

A =

(
λ 1
0 λ

)
and fD|∂D (x) =

(
x3
2

−x1x
2
2

)
.

Hence, fD|∂D (x) = 0 if and only if x2 = 0 and x1 = ±1. That is, xT
+ = (1, 0) and

xT
− = (−1, 0) are the unique singular points at infinity. Moreover, since kTx+ = k1

and kTx− = −k1, the singular points belong to ∂D0 if and only if k1 = 0.
(d) Suppose that t2 − 4d > 0. In this case,

A =

(
λ1 0
0 λ2

)
and fD|∂D (x) = (λ1 − λ2)x1x2

(
x2

−x1

)
.

Therefore, fD|∂D (x) = 0 if and only if x1 = 0 and x2 = ±1, or x2 = 0 and x1 = ±1.
From this we conclude that the unique singular points at infinity are x+, x−, y+,
and y−. The statement follows noting that kTx+ = k1, k

Tx− = −k1, kTy+ = k2,
and kTy− = −k2. �
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In the rest of this section we will study the local phase portrait of the singular
points at infinity. We start by introducing some notations.

Let q be a singular point at infinity of a system ẋ = f(x); that is, q ∈ ∂D
and fD(q) = 0. Let fq be the vector field defined in (2.18). We recall that fq is
defined on a local chart of the sphere centered at the point q. The vector fields
fD and fq are differentiably conjugate in a neighbourhood of q inside D and in
a neighbourhood of 0 inside the half-plane {x ∈ R2 : x2 ≥ 0}. Then in order to
know the local phase portrait of fD at q, it is sufficient to know the local phase
portrait of fq at 0, see Figure 3.4.

Figure 3.4: Neighbourhoods of q and 0 where fD and fq are differentiably conjugate.

A singular point at infinity q is said to be a saddle, a node or a saddle-node,
if, for the vector field fq the singular point at the origin is a saddle, a node or a
saddle-node, respectively. A singular point at infinity q is said to be a non-isolated
nilpotent point or a normally hyperbolic point, see Figure 3.5(b) and (c), if, for
the vector field fq the singular point at the origin is a non-isolated nilpotent point
or a normally hyperbolic point, respectively, see Figure 3.5(a).

At this point we introduce additional concepts concerning singular points
which will be needed in the following results.

We call q a stable (respectively unstable) non-isolated node if the flow of the
vector field fq in a neighbourhood of the origin is topologically equivalent to the
flow of ẋ = −xy2, ẏ = −y3 (respectively ẋ = xy2, ẏ = y3) in a neighbourhood of
the origin, see Figure 3.5(d) and (e). The curve formed by the singular points will
be called the singular manifold of the non-isolated node.

We call q a semi-stable non-isolated node if the flow of the vector field fq in
a neighbourhood of the origin is topologically equivalent to the flow of ẋ = xy,
ẏ = y2 in a neighbourhood of the origin, see Figure 3.5(f). The curve formed by the
singular points will be called the singular manifold of the semi-stable non-isolated
node.

Given a singular point at infinity q, in the following result we give the ex-
pression of the vector field fq in a local chart centered at q.
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Figure 3.5: Non-isolated singular points: (a) non-isolated nilpotent; (b) stable nor-
mally hyperbolic; (c) unstable normally hyperbolic; (d) non-isolated stable node;
(e) non-isolated unstable node; and (f) non-isolated semi-stable node.

Lemma 3.11.2. Let qT = (q1, q2) ∈ ∂D be a singular point at infinity of the fun-
damental system ẋ = Ax+ ϕ(kTx)b.

(a) Let χ be as in Proposition 3.10.1(b), then

fq (x) = M

(
A

(
q1 − x1q2
q2 + x1q1

)
+ μ (x)χ

(
q1−x1q2
μ(x) , q2+x1q1

μ(x) , x2

μ(x)

)
b

)
,

where μ(x) =
√
1 + ‖x‖2 and M =

( −q2 − x1q1 q1 − x1q2
−x2q1 −x2q2

)
.

(b) Let f−q be the vector field defined on the local chart centered at −q. Then fq
and f−q are equal.

Proof. (a) From expression (2.18) it follows that

fq (x) = μ (x)

( −q2 − x1q1 q1 − x1q2
−x2q1 −x2q2

)
fn(f)

(
q1−x1q2
μ(x) , q2+x1q1

μ(x) , x2

μ(x)

)
,

where n(f) is the degree of f at infinity.
In the case of fundamental systems we have n(f) = 1, see Proposition 3.10.1.

Moreover, f1(z) = A

(
z1
z2

)
+ χ(z)b. The statement follows immediately.

(b) The conclusion follows from statement and the fact that χ(−z1,−z2, z3) =
−χ(z1, z2, z3). �
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Remark 3.11.3. According to Lemma 3.11.2(b), in order to study two opposite
singular points at infinity, q and −q, it is sufficient to study only one of them.
In particular, the behaviour of the flow of the compactified vector field fD in a
neighbourhood of q is obtained from the behaviour of the flow of fq in a non-
negative y-coordinate neighbourhood of the origin. Moreover, the behaviour of
the flow of the compactified vector field fD in a neighbourhood of −q is obtained
from the behaviour of the flow of fq in a non-positive y-coordinate neighbourhood
of the origin.

Remark 3.11.4. When the singular point at infinity q belongs to the region ∂D+

(respectively ∂D−), the vector field fq depends on the compactification of two
non-homogeneous linear vector fields, see Figure 3.4. On the other hand, when q
belongs to the central region ∂D0, the vector field fq depends on the compactifi-
cation of the two aforementioned linear systems and on the compactification of a
homogeneous one.

We will describe the behaviour of singular points at infinity separately for
two groups. In the first one, using Theorem 3.11.5 to 3.11.8, we study the singular
points at infinity when they belong to ∂D+, or ∂D−. In the second group, using
Theorem 3.11.9 to 3.11.12, we study the singular points at infinity when they
belong to ∂D0. Recall that in all these cases there is not loss of generality in
assuming that the matrix A is in real Jordan normal form.

Theorem 3.11.5. Consider a fundamental system ẋ = Ax+ϕ(kTx)b with param-
eters (D,T, d, t) where t2− 4d = 0. Suppose that A is given in real Jordan normal
form and is diagonal. Then every point at infinity is a singular point.

(a) If t > 0 (respectively, t < 0), every point in ∂D � {±k⊥/‖k‖} is a stable
normally hyperbolic singular point (respectively, unstable normally hyperbolic
singular point), and the normally hyperbolic manifold is contained in ∂D, see
Figure 3.6(a).

(b) If t = 0, every point in ∂D� {±k⊥/‖k‖,±b/‖b‖} is a non-isolated nilpotent
singular point with the singular manifold contained in ∂D. When T > 0 (re-
spectively, T < 0), the singular points ±b/‖b‖ are stable non-isolated nodes
(respectively, unstable non-isolate nodes). The singular manifold of these
points is contained in ∂D, see Figure 3.6(b). When T = 0, then ±b/‖b‖ =
±k⊥/‖k‖.

Proof. From Proposition 3.11.1(b) it follows that every point in ∂D is a singular
point. In this theorem we are only interested in singular points at infinity which do
not belong to D0. Therefore, since D0 ∩ ∂D = {±k⊥/‖k‖}, we study only singular
points in ∂D� {±k⊥/‖k‖}.

Let q be a singular point in ∂D � {±k⊥/‖k‖} and suppose that kTq > 0
(otherwise we consider the singular point −q). There exists a neighbourhood U of
the origin such that

kTq+ x1k
Tq⊥ > |x2| ,
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for every xT = (x1, x2) ∈ U . Therefore, if x2 ≥ 0, then (kTq + x1k
Tq⊥)x2 ≥ x2

2;
and if x2 ≤ 0, then (kTq+ x1k

Tq⊥)x2 ≤ −x2
2. Hence,

μ (x)χ

(
q1 − x1q2
μ (x)

,
q2 + x1q1
μ (x)

,
x2

μ (x)

)
= |x2| ,

for any x ∈ U , see (3.19). Thus the vector field defined in the local chart centered
in q can be expressed as

fq (x) =

( −q2 − x1q1 q1 − x1q2
−x2q1 −x2q2

)⎛⎜⎜⎝
t

2
(q1 − x1q2) + |x2| b1

t

2
(q2 + x1q1) + |x2| b2

⎞⎟⎟⎠ ,

see Lemma 3.11.2(a). Simple computations show that the system ẋ = fq(x) can
recast as

ẋ1 = −x2

(
bTqx1 − bTq⊥) , ẋ2 = −x2

(
bTqx2 +

t

2

)
, (3.20)

when x ∈ U and x2 ≥ 0. Notice that every point on the straight line x2 = 0 is a
singular point. Now we study the local phase portrait of system (3.20) at each of
these singular points.

Let x(s), with x2(s) �= 0, be a solution of system (3.20). Performing the
change of time dτ = x2(s)ds and using the prime, instead of the dot, to denote
the derivative with respect to the new time τ , it follows that

x′
1 = −bTqx1 + bTq⊥, x′

2 = −bTqx2 − t

2
. (3.21)

(a) Suppose that t �= 0. On the straight line x2 = 0, the flow of system (3.21)
is transversal. Returning to the original time variable, we see that the straight line
x2 = 0 is a stable normally hyperbolic manifold if t > 0, and an unstable normally
hyperbolic manifold if t < 0.

(b) Suppose now that t = 0. First we consider the case q �= ±b/‖b‖. When
bTq �=0, the change of time ρ(τ) = bTqτ transforms system (3.21) into the fol-
lowing one:

dx1

dρ
= −x1 +

bTq⊥

bTq
,

dx2

dρ
= −x2.

Since in this case bTq⊥ �= 0, the origin is not a singular point; i.e., in a neighbour-
hood of the origin the flow is parallel. Going back through the changes of time
we conclude that the straight line x2 = 0 is a non-isolated nilpotent manifold of
system (3.20).

When bTq = 0, we have q = ±b⊥/‖b‖ and bTq⊥ = ±‖b‖. Therefore,
system (3.20) can be written as ẋ1 = ±‖b‖x2, ẋ2 = 0. We see that the straight
line x2 = 0 is a non-isolated nilpotent manifold of (3.20).
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Now we consider the case q = ±b/‖b‖. Since t = 0, it follows that T = kTb,
see (3.12). We divide the rest of the proof in three parts, according to the sign
of T. When T > 0, i.e., kTb > 0, we consider the singular point at infinity
q = b/‖b‖. For this point we have kTq > 0. Therefore, the behavior of the
flow in a neighbourhood of q can be obtained from system (3.20), which can be
written as ẋ1 = −‖b‖x1x2, ẋ2 = −‖b‖x2

2. Then we get that the origin is a semi-
stable non-isolated node and the singular manifold is x2 = 0. The stable manifold
is contained in the half-plane x2 > 0, and the unstable one is contained in the
half-plane x2 < 0.

When T < 0, we consider the point q = −b/‖b‖. Then kTq > 0. We use
again the system (3.20), which can be expressed as ẋ1 = ‖b‖x1x2, ẋ2 = ‖b‖x2

2.
Thus the origin is a semi-stable non-isolated node and the singular manifold is
x2 = 0. The unstable manifold is contained in the half-plane x2 > 0 and the stable
one in the half-plane x2 < 0.

When T = 0, we have ±b/‖b‖ = ±k⊥/‖k‖, and the singular points q =
±b/‖b‖ belong to ∂D0. Therefore, we do not study them. �

Figure 3.6: Local phase portraits of fD at the singular points at infinity when
t2 − 4d = 0 and A is diagonal.

In the following result we show that there are singular points at infinity such
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that their hyperbolic, central or singular manifolds are contained in a straight
line. These straight lines play a very important role in the description of the
global phase portrait. To express them we will use the coordinate system of R2

instead of the coordinate system of D.

Theorem 3.11.6. Consider a fundamental system ẋ = Ax+ϕ(kTx)b with param-
eters (D,T, d, t), where t2 − 4d = 0, and the vector k = (k1, k2)

T is such that
k1 �= 0. Suppose that A is in its real Jordan normal form and is not diagonal.
Then there are exactly two points at infinity, x+ and x−, and these points do not
belong to ∂D0.

(a) If t �= 0, then x+ (respectively, x−) is a saddle-node with the central manifold
in ∂D and the hyperbolic manifold on the straight line x2 = −2 sign (k1) b2/t
(respectively, x2 = 2 sign (k1) b2/t). Moreover, when t > 0, the hyperbolic
manifold is stable, and when t < 0, the hyperbolic manifold is unstable, see
Figure 3.7(a).

(b) If t = 0 and D < 0 (respectively, D > 0), then a neighbourhood of x+ and x−
in ∂D is an elliptic sector (respectively hyperbolic sector), see Figure 3.7(b).

(c) If t = 0 and D = 0, then x+ (respectively, x−) is a semi-stable non-isolated
node with the singular manifold on the straight line x2 = − sign(k1)b1 (res-
pectively, x2 = sign(k1)b1), see Figure 3.7(c).

Proof. By Theorem 3.11.1(c), there are exactly two singular points at infinity,
xT
+ = (1, 0) and xT

− = (−1, 0), which are symmetric with respect to the origin.
Thus in order to study the behaviour of the flow in a neighbourhood of these
singular points it is sufficient to consider only one of them. In this proof we take
ẋ = fx+(x).

Since k1 �= 0, there exists a neighbourhood U of the origin such that |k1 +
k2x1| > |x2|, for every xT = (x1, x2) ∈ U. Thus

μ (x)χ

(
1

μ (x)
,

x1

μ (x)
,

x2

μ (x)

)
=

k1
|k1| |x2| ,

see the expression of χ in (3.19). On the other hand, A is in real Jordan normal
form, and the trace and the determinant of A satisfy t2 − 4d = 0. Then, from
Lemma 3.11.2(a), we get the following expression of fx+ in U :

fx+ (x) =

( −x1 1
−x2 0

)⎛⎜⎜⎝
⎛⎜⎜⎝

t

2
+ x1

t

2
x1

⎞⎟⎟⎠+ μ (x)χ

(
1

μ (x)
,

x1

μ (x)
,

x2

μ (x)

)
b

⎞⎟⎟⎠ .

When x ∈ U and x2 ≥ 0, simple computations show that the differential
system ẋ = fx+(x) can be written as

ẋ1 =
k1b2
|k1| x2 − k1b1

|k1| x1x2 − x2
1, ẋ2 = − t

2
x2 − x1x2 − k1b1

|k1| x
2
2. (3.22)
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Now we study the origin of (3.22).
(a) If t �= 0, the change of time τ (s) = −ts/2 transforms system (3.22) into

x′
1 = −2 k1b2

t |k1|x2 + 2
k1b1
t |k1|x1x2 +

2

t
x2
1, x′

2 = x2 +
2

t
x1x2 + 2

k1b1
t |k1|x

2
2,

where the prime denotes the derivative with respect to the variable τ. The change

of variables (z1, z2)→
(
x1 + 2 k1b2

t|k1|x2, x2

)
transforms this system into

z′1 =
2

t
z21 + 2

k1
t |k1|

(
b1 − 2

b2
t

)
z1z2, z′2 = z2 +

2

t
z1z2 + 2

k1
t |k1|

(
b1 − 2

b2
t

)
z22 .

Thus the origin is an isolated degenerate elementary singular point. Moreover,
suppose that z2 = f(z1) is the solution of the equation z′2 = 0 in a neighbourhood
of the origin and let X(z1, z2) be the first component of the vector field. Then the
function g(z1) = X(z1, f(z1)) has the following power series expansion:

g (z1) =
2

t
z21 −

4

t2

(
b1 − 2

b2
t

)2

z41 +O
(
z6
)
.

From Theorem 2.7.3(c) it follows that the origin is a degenerate elementary saddle-
node with the hyperbolic manifold contained in the line z1 = 0 and this manifold
is unstable. Furthermore, if t > 0 (respectively, t < 0), the straight line z2 = 0
contains the central manifold of the saddle-node, and this manifold is stable in the
π direction (respectively, 0 direction).

Going back through the changes of variables we conclude that system (3.22)
has a saddle-node at the origin with the central manifold on the x-axis and the
hyperbolic manifold on the straight line x1 + 2k1b2x2/(t|k1|) = 0. The central
manifold is stable in the 0 direction and the hyperbolic manifold is stable when
t > 0 and unstable when t < 0.

To write the straight line x1 + 2k1b2x2/(t|k1|) = 0 in the coordinate system
of R2, we have to apply the transformation h−1

+ ◦ h−1
x+

to this line, see (2.12) and
(2.17).

(b) Suppose now that t = 0 and D < 0. From expression (3.10) we obtain
D = −k1b2. Then k1b2 > 0. The change of time τ(s) = sk1b2/|k1| transforms
(3.22) into the system

x′
1 = x2 − b1

b2
x1x2 − |k1|

k1b2
x2
1, x′

2 = − |k1|
k1b2

x1x2 − b1
b2
x2
2,

which has a nilpotent singular point at the origin.
Define

X (x1, x2) = −b1
b2
x1x2 − |k1|

k1b2
x2
1, Y (x1, x2) = − |k1|

k1b2
x1x2 − b1

b2
x2
2
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Figure 3.7: Local phase portraits of fD at the singular points at infinity when
t2 − 4d = 0, k1 �= 0 and A is not diagonal.
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and let x2 = f(x1) be the solution of the equation x2 + X(x1, x2) = 0 in a
neighbourhood of the origin. Then

f (x1) =
|k1|
k1b2

x2
1 +

|k1| b1
k1b22

x3
1 +O

(
x4
1

)
,

g (x1) = Y (x1, f (x1)) = − 1

b22
x3
1 (1 +O (x1)) ,

Φ (x1) =

(
∂X

∂x1
+

∂Y

∂x2

)
(x1,f(x1))

= −3 |k1|
k1b2

x1

(
1 +

b1
b2
x1 +O

(
x2
1

))
.

From Theorem 2.7.4(c.2) it follows that this neighbourhood of the origin is the
union of a hyperbolic sector with an elliptic one. Since the axis x2 = 0 is invariant
under the flow, the orbits contained in x2 = 0 are not in the interior of the
hyperbolic sector. To determine whether the axis x2 = 0 contains or not the
boundary between the two sectors we need to do a blow-up in the direction x2 = 0.
The change of variables x1 = u1, x2 = u1u2 transforms the system into the system

u′
1 =

k1b2
|k1| u1u2 − k1b1

|k1| u
2
1u2 − u2

1, u′
2 = −k1b2

|k1| u
2
2,

which has a singular point at the origin and the flow of which leaves the axes
invariant.

Let u(τ) = (u1(τ), u2(τ)) be a solution of the system such that u1(0) > 0
and u2(0) < 0. Since k1b2 > 0, it follows that u1(τ) > 0 and u2(τ) < 0 in a
neighbourhood of the origin. Therefore u′

1 < 0, u′
2 < 0, and the origin does not

belong to the ω-limit set of u.
Let u(τ) = (u1(τ), u2(τ)) be a solution of the system such that u1(0) < 0

and u2(0) > 0. Then u′
1 < 0, u′

2 < 0 in a neighbourhood of the origin and the
origin does not belong to the α-limit set of u.

Returning to the original variables, the quadrants {u1 > 0, u2 < 0} and
{u1 < 0, u2 > 0} become the quadrants {x1 > 0, x2 < 0} and {x1 < 0, x2 < 0},
respectively. Thus we conclude that the hyperbolic sector is exactly the half-plane
x2 < 0, and the boundary between the two sectors is the straight line x2 = 0.

Similar arguments apply when D = −k1b2 > 0. In this case we conclude
that the boundary between the two sectors is the straight line x2 = 0, and the
hyperbolic sector is contained in the half-plane x2 > 0.

(c) Suppose now that t = 0 and D = 0. Consequently,D = −k1b2 and b2 = 0.
Then system (3.22) can be written as

ẋ1 = −x1

(
x1 +

k1b1
|k1| x2

)
, ẋ2 = −x2

(
x1 +

k1b1
|k1| x2

)
.

This system has a non-isolated singular point at the origin.
The change of variables u1 = x1, u2 = x1 + k1b1x2/ |k1|, transforms it into

the system
u̇1 = −u1u2, u̇2 = −u2

2.
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Thus the origin is a semi-stable non-isolated node with the singular manifold
contained in u2 = 0. Returning to the original variables we obtain that system
(3.22) has a semi-stable non-isolated node at the origin with the singular manifold
contained in the straight line x1 + (k1b1/|k1|)x2 = 0. To express this straight
line in the coordinate system of R2 we have to apply to it the transformation
h−1
+ ◦ h−1

x+
. �

Now we study the singular points at infinity when the fundamental param-
eters satisfy t2 − 4d > 0. In this case there exist exactly four singular points at
infinity, x+, x−, y+, and y−. In the next theorem we study the local phase por-
trait of the compactified flow at x+ and x−. In Theorem 3.11.8 we shall study the
local phase portrait of the compactified flow at y+ and y−.

Theorem 3.11.7. Consider a fundamental system ẋ = Ax+ϕ(kTx)b with parame-
ters (D,T, d, t), where t2−4d > 0 and the vector k = (k1, k2)

T is such that k1 �= 0.
Suppose that A is in real Jordan normal form, and let λ1 > λ2 be its eigenvalues.
Under these assumptions there exist exactly four singular points at infinity, x+,
x−, y+, and y−.

(a) If d > 0 and t > 0, then x+ (respectively, x−) is a stable node. One of the
characteristic directions coincides with ∂D, and the other one coincides with
the straight line x2 = − sign(k1)b2/λ2 (respectively, x2 = sign(k1)b2/λ2).
Moreover, all the orbits except the above straight line arrive at infinity tan-
gentially to ∂D, see Figure 3.8(a).

(b) If d > 0 and t < 0, then x+ (respectively, x−) is a saddle with the stable
manifold contained in ∂D and the unstable one contained in the straight line
x2 = − sign(k1)b2/λ2 (respectively, x2 = sign(k1)b2/λ2), see Figure 3.8(c).

(c) If d < 0, then x+ (respectively, x−) is a stable node. One of the characteristic
directions coincides with ∂D and the other one with the straight line x2 =
− sign(k1)b2/λ2 (respectively, x2 = sign(k1)b2/λ2). Moreover, all the orbits
arrive at infinity tangentially to the straight line, see Figure 3.8(b).

(d) Suppose that d = 0 and t < 0.

(d.1) If D < 0, then x+ (respectively, x−) is a stable node. One of the charac-
teristic directions coincides with ∂D and the other one with the straight
line x2 = − sign(k1)b2/t (respectively, x2 = sign(k1)b2/t). Moreover, all
the orbits arrive at infinity tangentially to the straight line, see Figure
3.8(i).

(d.2) If D = 0, then x+ (respectively, x−) is a stable normally hyperbolic
singular point with the normally hyperbolic manifold contained in the
straight line x2 = − sign(k1)b2/t (respectively, x2 = sign(k1)b2/t), see
Figure 3.8(h).

(d.3) If D > 0, then x+ (respectively, x−) is a saddle. The stable manifold is
contained in ∂D and the unstable manifold is contained in the straight
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line x2 = − sign(k1)b2/t (respectively, x2 = sign(k1)b2/t), see Figure
3.8(g).

(e) If d = 0 and t > 0, then x+ and x− are two stable nodes such that the
orbits arrive at infinity tangentially to ∂D if b2 �= 0, and any direction is a
characteristic direction if b2 = 0. See Figures 3.8(d), (e) and (f).

Proof. To know the local phase portraits of the fundamental system at the infinite
singular points x+ and x−, it is sufficient to study the system ẋ = fx+(x) in a
neighbourhood of the origin, see Lemma 3.11.2(b).

Since k1 �= 0, there exists a neighbourhood U of the origin such that

μ (x)χ

(
1

μ (x)
,

x1

μ (x)
,

x2

μ (x)

)
=

k1
|k1| |x2| ,

for every x ∈ U . From Lemma 3.11.2(a) and noting that A is in its real Jordan
form it is easy to check that the system ẋ = fx+(x) can be written as

ẋ1 = (λ2 − λ1)x1 +
k1b2
|k1| x2 − k1b1

|k1| x1x2,

ẋ2 = −λ1x2 − k1b1
|k1| x

2
2,

(3.23)

when x2 ≥ 0.
(a) Suppose that d > 0 and t > 0. In this case the eigenvalues of A satisfy

λ1 > λ2 > 0. The linear part of system (3.23) has eigenvalues λ2 − λ1 < 0 and
−λ1 < 0. Then the origin is a hyperbolic stable node. The characteristic directions
coincide with the straight lines x2 = 0 and λ2x1 +

k1b2
|k1| x2 = 0. Furthermore, the

orbits that are not separatrices are tangent to x2 = 0 at the origin. We recall that
in order to express the straight lines in the coordinates of R2, we have to apply
the transformation h−1

+ ◦ h−1
x+

.
(b) Suppose that d > 0 and t < 0. In this case 0 > λ1 > λ2, and the origin of

system (3.23) is a hyperbolic saddle. It is easy to check that the stable manifold
is contained in the straight line x2 = 0 and the unstable one is contained in the
straight line λ2x1 + k1b2x2/|k1| = 0.

(c) Suppose that d < 0. Then λ1 > 0 > λ2. The statement follows by applying
the same arguments as in the proof of statement (a).

(d) Suppose that d = 0 and t < 0. In this case 0 = λ1 > λ2 and system (3.23)
becomes

ẋ1 = λ2x1 +
k1b2
|k1| x2 − k1b1

|k1| x1x2, ẋ2 = −k1b1
|k1| x

2
2, (3.24)

which has a degenerate elementary singular point at the origin.
(d.1) From (3.10) we have D = λ2k1b1. Thus, when D < 0 we get k1b1 > 0.

The change of variables u1 = x2 and u2 = λ2x1 + k1b2x2/|k1| transforms system
(3.24) into the system

u̇1 = −k1b1
|k1| u

2
1, u̇2 = λ2u2 − k1b1

|k1| u1u2.
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Changing the time as τ (s) = λ2s and denoting by prime the derivative with
respect to τ we obtain the system

u′
1 = −

k1b1
λ2 |k1|u

2
1, u′

2 = u2 − k1b1
λ2 |k1|u1u2,

which has an isolated singular point at the origin and the flow of which leaves the
axes invariant. Define

X (u1, u2) = − k1b1
λ2 |k1|u

2
1, Y (u1, u2) = − k1b1

λ2 |k1|u1u2,

and let u2 = f(u1) be the solution of the equation u2 + Y (u1, u2) = 0 in a
neighbourhood of the origin. Then g(u1) = X(u1, f(u1)) = −k1b1u2

1/λ2|k1|. By
Theorem 2.7.3(c), the origin is a saddle-node with the unstable hyperbolic manifold
on u1 = 0. The central manifold of the saddle-node is contained in the line u2 = 0
and it is unstable in the direction 0.

Going back through the changes of variables and time, it follows that system
(3.24) has a saddle-node at the origin. The stable hyperbolic manifold of the
singular point is contained in x2 = 0, the central manifold is contained in λ2x1 +
k1b2x2/|k1| = 0 and it is stable in the half-plane x2 > 0 and unstable in the half-
plane x2 < 0. Finally, the orbits arrive at the origin tangentially to the straight
line.

(d.2) When D = 0, k1b1 = 0, and system (3.24) becomes ẋ1 = λ2x1 +
(k1b2/|k1|)x2, ẋ2 = 0. For this system the origin is a stable normally hyperbolic
singular point with the normally hyperbolic manifold on the straight line λ2x1 +
k1b2x2/|k1| = 0.

(d.3) When D > 0, k1b1 < 0. By applying the same arguments as those in
the proof of statement (d.1) we obtain that system (3.24) has a saddle-node at the
origin. The stable hyperbolic manifold of the singular point is contained in the axis
x2 = 0. The central manifold is contained in the straight line λ2x1+k1b2x2|k1| = 0
and it is stable in the half-plane x2 < 0 and unstable in x2 > 0.

(e) When d = 0 and t > 0, the eigenvalues of A satisfy λ1 > λ2 = 0. Thus
the linear part of system (3.23) has a hyperbolic stable node at the origin. This
node is non-diagonal when b2 �= 0 and it is diagonal when b2 = 0. �

Theorem 3.11.8. Consider a fundamental system ẋ = Ax+ϕ(kTx)b with param-
eters (D,T, d, t), where t2 − 4d > 0 and the vector k = (k1, k2)

T is such that
k2 �= 0. Suppose that the matrix A is in real Jordan normal form, and let λ1 > λ2

be the eigenvalues of A. Under these assumptions there exist exactly four singular
points at infinity, x+, x−, y+, and y−.

(a) If d > 0 and t > 0, then y+ (respectively, y−) is a saddle with the unstable
manifold contained in ∂D and the stable one contained in the straight line
x1 = − sign(k2)b1/λ1 (respectively, x1 = sign(k2)b1/λ1), see Figure 3.8(a).
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Figure 3.8: Local phase portraits of fD at the singular points at infinity when
t2 − 4d > 0, k1 �= 0 and k2 �= 0.
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(b) If d > 0 and t < 0, then y+ (respectively, y−) is an unstable node. One of
the characteristic directions coincides with ∂D, and the other with the straight
line x1 = − sign(k2)b1/λ1 (respectively, x1 = sign(k2)b1/λ1). Moreover, the
other orbits leave the infinity tangentially to it, see Figure 3.8(c).

(c) If d < 0, then y+ (respectively, y−) is an unstable node. One of the char-
acteristic directions coincides with ∂D, and the other with the straight line
x1 = − sign(k2)b1/λ1 (respectively, x1 = sign(k2)b1/λ1). Moreover, the other
orbits leave the infinity tangentially to the straight line, see Figure 3.8(b).

(d) If d = 0 and t < 0, then y+ and y− are unstable nodes such that the orbits
leave the infinity tangentially to it if b1 �= 0, and any direction is a charac-
teristic direction if b1 = 0, see Figures 3.8(g), (h) and (i).

(e) Suppose d = 0 and t > 0.

(e.1) If D < 0, then y+ (respectively, y−) is an unstable node. One of
the characteristic directions coincides with ∂D and the other with the
straight line x1=− sign(k2)b1/t (respectively, x1=sign(k2)b1/t). More-
over, the orbits leave the infinity tangentially to the straight line, see
Figure 3.8(f).

(e.2) If D = 0, then y+ (respectively, y−) is an unstable normally hyperbolic
singular point. The normally hyperbolic manifold is contained in the
straight line x1 = − sign(k2)b1/t (respectively, x1 = sign(k2)b1/t), see
Figure 3.8(e).

(e.3) If D > 0, then y+ (respectively, y−) is a saddle with the unstable man-
ifold contained in ∂D and the stable one contained in the straight line
x1 = − sign(k2)b1/t (respectively, x1 = sign(k2)b1/t), see Figure 3.8(d).

Proof. To determine the local phase portraits of the fundamental system at the
infinite singular points y+ and y− it is sufficient to study the system ẋ = fy+(x)
in a neighbourhood of the origin, see Lemma 3.11.2(b).

Since k2 �= 0, there exists a neighbourhood U of the origin such that |−k1x+
k2| > |x2| for every x ∈ U . It is easy to check that

μ (x)χ

(
− x1

μ (x)
,

1

μ (x)
,

x2

μ (x)

)
=

k2
|k2| |x2| .

Hence, if x ∈ U and x2 ≥ 0, the system ẋ = fy+(x) becomes

ẋ1 = (λ1 − λ2)x1 − k2b1
|k2| x2 − k2b2

|k2| x1x2,

ẋ2 = −λ2x2 − k2b2
|k2| x

2
2,

(3.25)

see Lemma 3.11.2(a).
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(a) Suppose that d > 0 and t > 0. In this case the eigenvalues of A satisfy
λ1 > λ2 > 0. The linear part of system (3.25) has eigenvalues λ1 − λ2 > 0
and −λ2 < 0. Then, by the Hartman–Grobman theorem, the origin is a saddle.
The unstable manifold of the saddle point is contained in the line x2 = 0 and
the stable manifold is contained in the straight line λ1x1 − k2b1x2/|k2| = 0. To
write the straight line in the coordinate system of R2 we apply the transformation
h−1
+ ◦ h−1

x+
.

(b) Suppose that d > 0 and t < 0. In this case the eigenvalues of A satisfy
0 > λ1 > λ2. Applying again the Hartman–Grobman theorem to system (3.25),
we conclude that the origin is a hyperbolic unstable node. Moreover, one of the
characteristic directions of the node coincides with x2 = 0, and the other with the
straight line λ1x1 − k2b1

|k2| x2 = 0. The tangency of orbits at the origin follows from

−λ2 > λ1 − λ2 > 0.

(c) Suppose that d < 0. In this case λ1 > 0 > λ2. The statement follows
similarly to statement (b). The tangency of orbits at the origin follows from λ1 −
λ2 > −λ2.

(d) Suppose now that d = 0 and t < 0. Thus 0 = λ1 > λ2. The statement
follows similarly to statement (b). The tangency of orbits at the origin depends
on whether b1 = 0 or b1 �= 0.

(e) Suppose that d = 0 and t > 0. Then it follows that the eigenvalues of A
satisfy λ1 > λ2 = 0, and system (3.25) becomes

ẋ1 = λ1x1 − k2b1
|k2| x2 − k2b2

|k2| x1x2, ẋ2 = −k2b2
|k2| x

2
2. (3.26)

(e.3) When D > 0, it follows from expression (3.10) that k2b2 > 0. Thus if we
replace λ1 by λ2, k2 by k1, b2 by b1, and b1 by −b2 in system (3.26), we obtain the
system (3.24), which is studied in the proof of Theorem 3.11.7(d.1). Note that the
change in time τ (s) = λ2s used in that proof preserves now the orientation. Thus,
system (3.26) has a saddle-node at the origin. The unstable hyperbolic manifold
of this point is contained in the line x2 = 0. The central manifold is contained in
the straight line λ1x1−k2b1x2/|k2| = 0, and it is unstable in the half-plane x2 > 0
and stable in the half-plane x2 < 0. Finally, the orbits which arrive at the origin
are tangent to the straight line.

Statements (e.1) and (e.2) follow by the same arguments as those used in the
proof of statement (e.3). �

Now let us study the local phase portraits of singular points at infinity which
belong to D0. Vector fields in a neighbourhood of these points are formed by three
different non-linear systems, see Figure 3.3. In this case, phase portraits can be
drawn by studying each of these vector fields separately and by composing the
respective phase portraits. Note that when the straight lines L+ and L− contain a
characteristic direction of the singular point at infinity, more care is needed when
completing the phase portrait.
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Theorem 3.11.9. Consider a fundamental system ẋ =Ax+ϕ(kTx)b with parame-
ters (D, T, d, t) where t2− 4d = 0. Suppose that A is in real Jordan normal form
and is diagonal. Under these assumptions there exist exactly two singular points
at infinity in D0, ±k⊥/‖k‖.
(a) If D > 0, then T �= 0. When T > 0 (respectively T < 0) the singular points

±k⊥/‖k‖ are stable normally hyperbolic singular (respectively, unstable nor-
mally hyperbolic) points with the normally hyperbolic manifold contained in
∂D, see Figure 3.5(b) and (c).

(b) Suppose that D = 0 and T > 0.

(b.1) If d = 0, then the phase portraits in a neighbourhood of ±k⊥/‖k‖ are
topologically equivalent to the one shown in Figure 3.10(b), after revers-
ing the orientation of the flow.

(b.2) If d �= 0, then the phase portraits in a neighbourhood of ±k⊥/‖k‖ are
topologically equivalent to the one shown in Figure 3.10(a).

(c) Suppose that D = 0 and T < 0.

(c.1) If d = 0, then the phase portraits in a neighbourhood of ±k⊥/‖k‖ are
topologically equivalent to the one shown in Figure 3.10(b).

(c.2) If d �= 0, then the phase portraits in a neighbourhood of ±k⊥/‖k‖ are
topologically equivalent to the one shown in Figure 3.10(a), after revers-
ing the orientation of the flow.

(d) If D = 0 and T = 0, then the phase portraits in a neighbourhood of ±k⊥/‖k‖
are topologically equivalent to the one shown in Figure 3.10(c).

(e) Suppose that D < 0. In this case t �= 0.

(e.1) If t > 0, then the phase portraits in a neighbourhood of ±k⊥/‖k‖ are
topologically equivalent to the one shown in Figure 3.10(a).

(e.2) If t < 0, then the phase portraits in a neighbourhood of ±k⊥/‖k‖ are
topologically equivalent to the one shown in Figure 3.10(a), after revers-
ing the orientation of the flow.

Proof. Consider the fundamental system ẋ =Ax+ϕ(k∗Tx)b∗, where k∗ = k/‖k‖
and b∗ = ‖k‖b. This system and the one in the statement of the theorem have the
same fundamental matrices. By Propositions 3.6.2 and 3.10.2, their Poincaré com-
pactifications are differentiably conjugate. Thus it is not a restriction to suppose
that vector k satisfies ‖k‖ = 1.

By Lemma 3.11.2(b), it is sufficient to study the system ẋ = fk⊥(x) in a
neighbourhood U of the origin. Recall that we are interested only in the half-plane
x2 ≥ 0. For simplicity of notation we use U instead of U ∩ {(x1, x2) : x2 ≥ 0}.
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From Lemma 3.11.2(a) and expression (3.19) for x ∈ U we get

fk⊥ (x) =

⎧⎪⎨⎪⎩
f−
k⊥ (x) , if x1 ≤ −x2,

f0k⊥ (x) , if |x1| ≤ x2,

f+
k⊥ (x) , if x1 ≥ x2,

where

f−
k⊥ (x) :=

( −bTkx2 − bTk⊥x1x2

−λx2 − bTk⊥x2
2

)
,

f0k⊥ (x) :=

(
bTkx1 + bTk⊥x2

1

−λx2 + bTk⊥x1x2

)
,

f+
k⊥ (x) :=

(
bTkx2 + bTk⊥x1x2

−λx2 + bTk⊥x2
2

)
.

We remark that when the characteristic directions of the singular point at the
origin do not coincide with the straight lines x2 = ±x1, the local phase portrait
of system ẋ = fk⊥(x) can be obtained by composition of the local phase portraits
of systems ẋ = f−

k⊥(x), ẋ = f0k⊥(x) and ẋ = f+
k⊥(x) restricted to the regions

x1 ≤ −x2, |x1| ≤ x2 and x1 ≥ x2, respectively (recall that x2 ≥ 0). Moreover,
when the characteristic directions of the singular point at the origin coincide with
the straight lines x2 = ±x1, but these straight lines are invariant under the flow
of the system ẋ = fk⊥(x), we can use the same argument as before to obtain the
phase portrait of system ẋ = fk⊥(x) in a neighbourhood of the origin.

Note that if we change b to −b in the expression of the vector field f+
k⊥ , we

obtain the vector field f−
k⊥ . Moreover, if we substitute q = k in the expression for

system (3.20), we obtain the expression for system ẋ = f−
k⊥(x). Thus, to under-

stand the local phase portrait of systems ẋ = f+
k⊥(x) and ẋ = f−

k⊥(x), one can refer
to the proof of Theorem 3.11.5. Next let us study the phase portrait of system
ẋ = f0k⊥(x).

Suppose that bTk �= 0 and t �= 0. The origin is a hyperbolic singular point
with linear part equal to (

bTk 0
0 −t/2

)
.

Thus, when bTk > 0 and t > 0 (respectively, bTk < 0 and t < 0) the origin is a
saddle point with the stable manifold (respectively, unstable manifold) contained
in the line x1 = 0 and with the unstable manifold (respectively, stable manifold)
contained in the line x2 = 0. When bTk > 0 and t < 0 (respectively bTk <
0 and t > 0) the origin is an unstable node (respectively, stable node) with a
characteristic direction given by x1 = 0 and the other given by x2 = 0. Moreover,
if t/2 + bTk > 0, then the orbits are tangent to the straight line x1 = 0 at the
origin; if t/2 + bTk < 0, then the orbits are tangent to x1 = 0 at the origin; and
if t/2 + bTk = 0, then any direction is a characteristic direction. In the last case
it is easy to check that the lines x2 = ±x1 are invariant under the flow.
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Suppose that bTk = 0 and t �= 0. The change of time τ(s) = −ts/2 recasts
system ẋ = f0k⊥(x) as

x′
1 = −2b

Tk⊥

t
x2
1, x′

2 = x2 − 2
bTk⊥

t
x1x2,

which has a degenerate singular point at the origin.
If X(x1, x2) = −2x2

1b
Tk⊥/t, Y (x1, x2) = −2x1x2b

Tk⊥/t, and f(x1) is the
solution of the equation x2 + Y (x1, x2) = 0 in a neighbourhood of the origin,
then X(x1, f(x1)) = −2x2

1b
Tk⊥/t. From Theorem 2.7.3(c) it follows that the

origin is a saddle-node with the central manifold on the line x2 = 0 and with the
hyperbolic manifold on the line x1 = 0. Moreover, when bTk⊥ > 0 (respectively,
bTk⊥ < 0), the central manifold is unstable in the direction π (respectively 0)
and the hyperbolic manifold is stable or unstable depending on whether t > 0 or
t < 0, respectively.

Suppose that bTk �= 0 and t = 0. In this case the straight line x1 = 0 is
formed by singular points. To desingularize the system we use the change of time
dτ = x1(s)ds, which transforms the system ẋ = f0k⊥(x) into the system

x′
1 = bTk+ bTk⊥x1, x′

2 = bTk⊥x2.

Since the origin is not a singular point, the flow is parallel in a neighbourhood of
the origin. Returning to the original time variable we conclude that x1 = 0 is a
stable or unstable normally hyperbolic manifold depending on whether bTk < 0
or bTk > 0, respectively.

Finally, suppose that bTk = 0 and t = 0. In this case the straight line x1 = 0
is formed by singular points. The change of time dτ = x1(s)ds transforms the
system ẋ = f0k⊥(x) into the system

x′
1 = bTk⊥x1, x′

2 = bTk⊥x2.

When bTk⊥ < 0 (respectively, bTk⊥ > 0) the origin is a stable node (respectively,
unstable node). Returning to the original time variable we conclude that the origin
is a non-isolated semi-stable node with the singular manifold contained in x1 = 0.

Now let us describe the local phase portrait of the system ẋ = fk⊥(x) de-
pending on the fundamental parameters (D,T, d, t). From expressions (3.10) and
(3.12) it follows that D = t/2(t/2 + kTb) and T = t/2 + (t/2 + kTb), respec-
tively. Therefore Λ1 = t/2 + bTk and Λ2 = t/2 are the eigenvalues of the matrix
B = A+ bkT .

(a) Suppose that D > 0. In this case the eigenvalues Λ1 and Λ2 have the
same sign, and therefore T = Λ1 +Λ2 �= 0. When T > 0, then Λ2 > 0 and Λ1 > 0.
We have divided the proof into three parts: (a.1) t > 0 and bTk > 0; (a.2) t > 0
and bTk = 0; (a.3) t > 0, bTk < 0. In any case t > 0, thus systems ẋ = f+

k⊥(x)

and ẋ = f−
k⊥(x) have a stable normally hyperbolic singular point at the origin with

the normal hyperbolic manifold contained in x2 = 0. Moreover, the straight lines
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bTkx2 − (t/2)x1 = C1 and bTkx2 + (t/2)x1 = C2 with C1, C2 ∈ R are invariant
under the respective flows.

(a.1) When bTk > 0, the system ẋ = f0k⊥(x) has a hyperbolic saddle at the
origin, and the stable manifold is contained in the straight line x1 = 0.

(a.2) When bTk = 0, the system ẋ = f0k⊥(x) has a saddle-node at the origin.
The hyperbolic manifold is stable and contained in the line x1 = 0 and the central
manifold is contained in the line x2 = 0.

(a.3) When bTk < 0 and (t/2) + bTk > 0, the system ẋ = f0k⊥(x) has a
hyperbolic stable node at the origin. The characteristic directions coincide with
the axes and any orbit is tangent to the straight line x2 = 0 at the origin.

In short, the system ẋ = fk⊥(x) has a stable normal hyperbolic singular
point at the origin, and the normal hyperbolic manifold is contained in x2 = 0,
see Figure 3.9.

The rest of the statements follow using similar arguments. �

Figure 3.9: Local phase portrait of system ẋ = fk⊥ (x) obtained by composing the

phase portaits of systems ẋ = f+
k⊥ (x), ẋ = f0

k⊥ (x) and ẋ = f−
k⊥ (x), when D > 0,

T > 0, t > 0 and bTk > 0.

Figure 3.10: Non-isolated singular points at the infinity when t2 − 4d = 0 and A
is not diagonal.

Theorem 3.11.10. Consider a fundamental system ẋ =Ax+ϕ(kTx)b with param-
eters (D,T, d, t), where t2 − 4d = 0 and the vector k = (k1, k2)

T satisfies that
k1 = 0. Suppose that matrix A is in real Jordan normal form and is not diagonal.
Under these assumptions there are exactly two singular points at infinity x+, x−
and they belong to D0.
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(a) If D > 0, then T �= 0. When T > 0 (respectively, T < 0), x+ and x− are
saddle-nodes. The central manifold is contained in ∂D and the hyperbolic one
is contained in the straight line x2 = 0. Moreover, the hyperbolic manifold is
stable (respectively unstable), see Figure 3.12(a).

(b) Suppose that D = 0 and T > 0.

(b.1) If d = 0, then the phase portraits in a neighbourhood of x+ and x−
are topologically equivalent to the one shown in Figure 3.12(b) after
reversing the orientation of the flow.

(b.2) If d �= 0, then x+ (respectively, x−) is a saddle-node. The central mani-
fold is contained in ∂D and the hyperbolic one is contained in the straight
line x2 = 2 sign(k2)b2/t (respectively, x2 = −2 sign(k2)b2/t). Moreover,
the hyperbolic manifold is stable, see Figure 3.12(a).

(c) If D = 0 and T = 0, then the phase portraits in a neighbourhood of the points
x+ and x− are topologically equivalent to the one shown in Figure 3.12(c),
(d) or (e) depending on b1 > −1, b1 = −1, or b1 < −1, respectively.

(d) Suppose that D = 0 and T < 0.

(d.1) If d = 0, then the phase portraits in a neighbourhood of x+ and x− are
topologically equivalent to the one shown in Figure 3.12(b).

(d.2) If d �= 0, then x+ (respectively, x−) is a saddle-node. The central mani-
fold is contained in ∂D and the hyperbolic one is contained in the straight
line x2 = −2 sign(k2)b2/t (respectively, x2 = 2 sign(k2)b2/t). Moreover,
the hyperbolic manifold is stable, see Figure 3.12(a).

(e) If D < 0, then t �= 0 and x+ (respectively x−) is a saddle-node. The central
manifold is contained in ∂D. If t > 0, the hyperbolic manifold is contained in
the straight line x2 = 2 sign(k2)b2/t (respectively, x2 = −2 sign(k2)b2/t), and
it is stable, see Figure 3.12(a); if t < 0, the hyperbolic manifold is contained
in the straight line x2 = −2k2b2/|k2|t (respectively, x2 = 2k2b2/|k2|t) and it
is unstable, see Figure 3.12(a) (note that the flow in this figure has reverse
direction).

Proof. According to the proof of Theorem 3.11.9, it suffices to describe the flow
of the system ẋ = fx+(x) in a neighbourhood U of the origin, where

fx+ (x) :=

⎧⎪⎨⎪⎩
f+x+

(x) , if x1 > x2,

f0x+
(x) , if |x1| ≤ x2,

f−x+
(x) , if x1 < −x2,
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and

f+x+
(x) :=

(
b2x2 − b1x1x2 − x2

1

− (t/2)x2 − x1x2 − b1x
2
2

)
,

f−x+
(x) :=

( −b2x2 + b1x1x2 − x2
1

− (t/2)x2 − x1x2 + b1x
2
2

)
,

f0x+
(x) :=

(
b2x1 − (b1 + 1)x2

1

− (t/2)x2 − (b1 + 1)x1x2

)
.

Moreover, the phase portrait of the system ẋ = fx+(x) in the neighbourhood U can
be obtained by the composition of the local phase portraits of systems ẋ = f+x+

(x),

ẋ = f0x+
(x) and ẋ = f−x+

(x).

Changing b to −b in the expression of f−x+
, we obtain the vector field f+x+

.

Moreover, the expression of the system ẋ = f+x+
(x) is equal to the one of (3.22) by

taking k1 = 1. Therefore, to determine the phase portraits of systems ẋ = f+x+
(x)

and ẋ = f−x+
(x), we refer the reader to the proof of Theorem 3.11.6. Now let us

study the phase portrait of the system ẋ = f0x+
(x) depending on the values of b2

and t.
Suppose that b2 �= 0 and t �= 0. The system ẋ = f0x+

(x) has a hyperbolic
singular point at the origin, and the linear part of the system has the matrix(

b2 0
0 −t/2

)
.

Suppose that b2 = 0 and t �= 0. In this case the origin is a degenerated elementary
singular point. When b1 = −1, the straight line x2 = 0 is the normally hyperbolic
manifold, and it is stable for t > 0 and unstable for t < 0. When b1 �= −1, the
change of time τ(s) = −ts/2 transforms the system ẋ = f0x+

(x) into the system

x′
1 = 2

b1 + 1

t
x2
1, x′

2 = x2 + 2
b1 + 1

t
x1x2.

Consider the functions X(x) = 2(b1 + 1)x2
1/t and Y (x) = 2(b1 + 1)x1x2/t, and let

f(x1) be the solution of the equation x2 + Y (x) = 0 in a neighbourhood of the
origin. It is easy to see that X(x1, f(x1)) = 2(b1 + 1)x2

1/t. By Theorem 2.7.3(c),
the origin is a saddle-node with the central manifold contained in x2 = 0 and the
hyperbolic manifold contained in x1 = 0. When t > 0 (respectively, t < 0) the
hyperbolic manifold is stable (respectively, unstable). Moreover, when b1 > −1
(respectively, b1 < −1) the central manifold is stable (respectively, unstable) in
the 0 direction.

Suppose that b2 �= 0 and t = 0. In this case the straight line x1 = 0 is
formed by singular points. The change of time dτ = x1(s)ds transforms the system
ẋ = f0x+

(x) into the system

x′
1 = b2 − (b1 + 1)x1, x′

2 = − (b1 + 1)x2.



104 Chapter 3. Fundamental Systems

For this system the origin is not a singular point. Thus the flow is parallel in a
neighbourhood of the origin. Returning to the original time variable we conclude
that the origin is a normally hyperbolic singular point, and the normally hyperbolic
manifold is contained in x1 = 0. Moreover, the normally hyperbolic manifold is
stable when b2 < 0, and unstable when b2 > 0.

Suppose, finally, that b2 = 0 and t = 0. Then we obtain the system

ẋ1 = − (b1 + 1)x2
1, ẋ2 = − (b1 + 1)x1x2.

When b1 = −1, every point in a neighbourhood of the origin is a singular point.
When b1 �= −1, if we change the time dτ = x1 (s) ds, then we obtain that the origin
is a stable node (respectively, unstable node) if b1 > −1 (respectively, b1 < −1).
Returning to the original time variable we conclude that the origin is a semi-stable
node with the singular manifold contained in x1 = 0.

Now we study the local phase portrait of the system ẋ = fx+(x) depending
on the fundamental parameters (D,T, d, t). From (3.10) and (3.12) it follows that
D = d + tb2/2 and T = t + b2, and therefore the eigenvalues of the matrix B =
A+ bkT are Λ1 = t/2 + b2 and Λ2 = t/2.

(a) When D > 0, the eigenvalues Λ1 and Λ2 have the same sign. Therefore,
T = Λ1 + Λ2 �= 0. Suppose that T > 0 (the case T < 0 follows by using similar
arguments). Under this assumption it follows that Λ1 > 0 and Λ2 > 0. Thus, t > 0
and t/2 + b2 > 0. We divide the proof into the following three cases: (a.1) b2 > 0;
(a.2) b2 = 0; (a.3) b2 < 0.

(a.1) System ẋ = f+x+
(x) has a saddle-node at the origin with the central

manifold on the axis x2 = 0 and the hyperbolic manifold on the straight line
x1 + 2b2x2/t = 0, see Figure 3.11. Moreover, the central manifold of the singular
point is stable in the 0 direction and the hyperbolic manifold is stable.

System ẋ = f−x+
(x) has a saddle-node at the origin with the central manifold

contained on x2 = 0 and the hyperbolic manifold contained in x1 − 2b2x2/t = 0.
Moreover, the central manifold is stable in the 0 direction and the hyperbolic
manifold is stable.

System ẋ = f0x+
(x) has a saddle at the origin with the stable and the unstable

manifold contained in the lines x1 = 0 and x2 = 0, respectively.
Thus the neighbourhood of the origin is the union of a stable parabolic sector

with a hyperbolic sector. The boundary between these sectors is contained in
x1 = 0, see Figure 3.11.

The remainder statements follow using similar arguments. �

Theorem 3.11.11. Consider a fundamental system ẋ =Ax+ϕ(kTx)b with param-
eters (D,T, d, t), where t2 − 4d > 0 and the vector k = (k1, k2)

T satisfies that
k1 = 0. Suppose that the matrix A is in real Jordan normal form and let λ1 > λ2

be its eigenvalues. Under these assumptions there exist exactly four singular points
at infinity, x+, x−, y+, and y−. Moreover, x+ and x− belong to ∂D0.

(a) Suppose that D > 0. Then T �= 0.
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Figure 3.11: Local phase portrait of system ẋ = fx+ (x) obtained by composing
the phase portaits of systems ẋ = f+x+

(x), ẋ = f0x+
(x) and ẋ = f−x+

(x), when
t > 0 and b2 > 0.

Figure 3.12: Singular points at infinity when t2− 4d = 0, matrix A is not diagonal
and k1 = 0.

(a.1) If T > 0, then the singular points at infinity x+ and x− are stable nodes.

(a.2) If T < 0, then the singular points at infinity x+ and x− are saddles
with the stable manifold contained in ∂D.

(b) Suppose that D = 0 and T > 0.

(b.1) If d = 0 and t < 0, then the phase portraits in a neighbourhood of the
singular points x+ and x− are topologically equivalent to the one shown
in Figure 3.15(b) when b1 �= 0; or in Figure 3.15(e) reversing the flow
orientation when b1 = 0.

(b.2) If d = 0 and t > 0 or d �= 0, then x+ and x− are stable nodes.

(c) Suppose that D = 0 and T < 0.

(c.1) If d = 0, then x+ and x− are normally hyperbolic singular points with
the normally hyperbolic manifold contained in the line x2 = 0.
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(c.2) If d �= 0, then the phase portraits in a neighbourhood of x+ and x− are
topologically equivalent to the one shown in Figure 3.15(a) reversing the
flow orientation.

(d) If D = 0 and T = 0, then the phase portraits in a neighbourhood of x+

and x− are topologically equivalent to the one shown in Figure 3.15(c), when
b1 �= 0; or in Figure 3.15(d) reversing the flow orientation when b1 = 0.

(e) Suppose that D < 0.

(e.1) If d ≤ 0 or d > 0 and t > 0, then x+ and x− are stable nodes.

(e.2) If d > 0 and t < 0, then the phase portraits in a neighbourhood of
x+ and x− are topologically equivalent to the one shown in Figure
3.15(a) reversing the flow orientation. The boundary between the hy-
perbolic and the parabolic sectors is contained in the straight lines x2 =
± sign(k2)b2/λ2.

(e.3) The case d > 0 and t = 0 is not possible.

Proof. According to the proof of Theorem 3.11.9, it is enough to study the system
ẋ = fx+(x) in a neighbourhood U of the origin, where

fx+ (x) =

⎧⎪⎨⎪⎩
f+x+

(x) , if x1 ≥ x2,

f0x+
(x) , if |x1| < x2,

f−x+
(x) , if x1 ≤ −x2,

and

f+x+
(x) :=

(
(λ2 − λ1)x1 + x2b2 − x1x2b1

−λ1x2 − x2
2b1

)
,

f0x+
(x) :=

(
(λ2 − λ1 + b2)x1 − b1x

2
1

−λ1x2 − x1x2b1

)
,

f−x+
(x) :=

(
(λ2 − λ1)x1 − x2b2 + x1x2b1

−λ1x2 + x2
2b1

)
.

Hence, the phase portrait of the system ẋ = fx+(x) in U can be obtained by
composing the local phase portraits of the systems ẋ = f−x+

(x), ẋ = f0x+
(x), and

ẋ = f+x+
(x).

Changing b to −b in the expressions of ẋ = f+x+
, we obtain the system

ẋ = f−x+
. Thus, it is enough to describe one of them. Moreover, system ẋ = f+x+

becomes system (3.23) by taking k1 = 1. Therefore, to understand the phase
portraits of both systems, ẋ = f−x+

(x) and ẋ = f+x+
(x), we refer the reader to the

proof of Theorem 3.11.7.
Now let us study the phase portrait of the system ẋ = f0x+

(x). Since the
matrix of its linear part is (

λ2 − λ1 + b2 0
0 −λ1

)
,



3.11. Singular points at infinity 107

the origin is a hyperbolic singular point when λ1 �= 0 and λ2−λ1+b2 �= 0. Suppose
that λ1 > 0 (the behaviour of the singular point when λ1 < 0 can be obtained
from this case by multiplying the equation by −1 and reversing the direction of
the flow). When λ2+b2−λ1 > 0 the origin is a saddle point. Its unstable manifold
is contained in the axis x2 = 0 and the stable one in the axis x1 = 0. When
λ2+ b2−λ1 < 0 the origin is a stable node such that: for λ2+ b2 > 0 the orbits are
tangent to x2 = 0 at the origin; for λ2 + b2 < 0 the orbits are tangent to x1 = 0
at the origin; and for λ2 + b2 = 0 any direction is a characteristic direction.

We consider now the non-hyperbolic case. Suppose that λ1 = 0. The change
in the time variable dτ = x1 (s) ds transforms the system ẋ = f0x+

(x) into

x′
1 = (λ2 + b2)− b1x1, x′

2 = −x2b1.

For this system the origin is not a singular point when λ2 + b2 �= 0. Hence, in
a neighbourhood of the origin the flow is transversal to x1 = 0. Suppose that
λ2 + b2 = 0. In this case the system has a stable node at the origin when b1 > 0;
an unstable node at the origin when b1 < 0; or a neighbourhood of the origin is
formed by singular points when b1 = 0. Returning to the original time variable
we obtain that: if λ2 + b2 �= 0, the origin is a normally hyperbolic singular point
with the normal manifold contained in x1 = 0. It is stable or unstable depending
on whether λ2 + b2 < 0 or λ2 + b2 > 0. Moreover, if λ2 + b2 = 0, then the origin is
a non-isolated semi-stable node with the singular manifold contained in x1 = 0.

Suppose now that λ1 �= 0 and λ2 + b2 − λ1 = 0. In this case the system has
a degenerate elementary singular point at the origin. With the change in the time
variable τ (s) = −λ1s, we obtain

x′
1 =

b1
λ1

x2
1, x′

2 = x2 +
b1
λ1

x1x2.

We now distinguish the cases b1 = 0 and b1 �= 0. In the first one the origin is an
unstable normally hyperbolic singular point with the singular manifold contained
in the line x2 = 0. In the second case by Theorem 2.7.3(c) the system has a
saddle-node at the origin with the hyperbolic manifold contained in the line x1 =
0 and with the central manifold contained in the line x2 = 0. Moreover, the
hyperbolic manifold is unstable and when b1λ1 > 0 (respectively b1λ1 < 0) the
central manifold is stable in the π (respectively 0) direction.

Returning to the original variables we obtain the following behaviour sur-
rounding the origin. When b1 = 0, the origin is a normally hyperbolic singular
point with the singular manifold on the line x2 = 0. The singular manifold is
stable or unstable depending on whether λ1 > 0 or λ1 < 0. When b1 �= 0, the
origin is a saddle-node with the hyperbolic manifold on the line x1 = 0 and the
central manifold on the line x2 = 0. The hyperbolic manifold is stable or unstable
depending on λ1 > 0 or λ1 < 0, respectively. The central manifold is stable in the
0 or in the π direction depending on whether b1 > 0 or b1 < 0.

Now let us study the local phase portrait of system ẋ = fx+(x) depending
on the fundamental parameters (D,T, d, t). Since D = λ1(λ2 + b2) and T = λ1 +
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(λ2 + b2), see (3.10) and (3.12), the eigenvalues of the matrix B = A + bkT are
Λ1 = λ1 and Λ2 = λ2 + b2.

(a) Suppose that D > 0 and T > 0. We divide the proof of this statement
into the following three parts: (a.1) λ2 + b2 − λ1 > 0; (a.2) λ2 + b2 − λ1 = 0; (a.3)
λ2 + b2 − λ1 < 0.

(a.1) System ẋ = f0x+
(x) has a saddle at the origin with the unstable manifold

contained in the line x2 = 0 and the stable manifold contained in the line x1 = 0.
System ẋ = f+x+

(x) (respectively, ẋ = f−x+
(x)) has a node at the origin with

the characteristic directions contained in the lines x2 = 0 and λ2x1 + b2x2 = 0
(respectively, x2 = 0 and λ2x1 − b2x2 = 0).

In order to describe the phase portrait in a neighbourhood of the origin, we
have to ensure that the characteristic directions do not coincide with the straight
lines separating the domains of the different systems. Hence, since λ2+b2−λ1 > 0,
λ2 − λ1 < 0 and λ2 + b2 > 0, we have b2 > 0 and −λ2/b2 < 1. Therefore when
λ2 > 0 the half-line λ2x1+b2x2 = 0 with x2 ≥ 0 intersects the region x1 ≥ x2 only
at the origin; when λ2 < 0 the half-line λ2x1 + b2x2 = 0 with x2 ≥ 0 is contained
in the region x1 ≥ x2. We conclude that the system ẋ = fx+(x) has a stable node
at the origin, see Figure 3.13.

The remaining statements follow using similar arguments. �

Figure 3.13: Local phase portrait of system ẋ = fx+ (x) obtained by composing
the phase portaits of systems ẋ = f+x+

(x), ẋ = f0x+
(x) and ẋ = f−x+

(x) when
λ1 > 0 and λ2 − λ1 + b2 > 0.

Theorem 3.11.12. Consider a fundamental system ẋ =Ax+ϕ(kTx)b with funda-
mental parameters (D,T, d, t), where t2 − 4d > 0 and the vector k = (k1, k2)

T

satisfies k2 = 0. Suppose that the matrix A is in real Jordan normal form and
let λ1 > λ2 be its eigenvalues. Under these assumptions there exist exactly four
singular points at infinity, x+, x−, y+, and y−. Moreover, y+ and y− belong to
∂D0.

(a) If D > 0 and T > 0, then y+ and y− are saddle points with the unstable
manifold contained in ∂D and with the stable manifold contained in the line
x1 = 0.

(b) If D > 0 and T < 0, then y+ and y− are unstable nodes.
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(c) Suppose that D = 0 and T > 0.

(c.1) If d = 0, then y+ and y− are unstable normal hyperbolic singular points
with the normally hyperbolic manifold contained in the line x1 = 0.

(c.2) If d �= 0, then the phase portraits in a neighbourhood of y+ and y− are
topologically equivalent to the one shown in Figure 3.15(a).

(d) Suppose that D = 0 and T < 0.

(d.1) If d = 0 and t > 0, then the phase portraits in a neighbourhood of y+

and y− are topologically equivalent to the one shown in Figure 3.15(b)
when b2 �= 0, or in Figure 3.15(e) when b2 = 0.

(d.2) If d = 0 and t < 0 or d �= 0, then y+ and y− are unstable nodes.

(e) If D = 0 and T = 0, then the phase portraits in a neighbourhood of y+

and y− are topologically equivalent to the one shown in Figure 3.15(c) when
b2 �= 0, or in Figure 3.15(d) when b2 = 0.

(f) Suppose that D < 0.

(f.1) If d ≤ 0 or d > 0 and t < 0, then y+ and y− are unstable nodes.

(f.2) If d > 0 and t > 0, then the phase portraits in a neighbourhood of y+

and y− are topologically equivalent to the one shown in Figure 3.15(a).
The stable separatrices of y+ and y− are contained in the straight lines
x2 = ± sign(k1)b1/λ1.

(f.3) The case d > 0 and t = 0 is not possible.

Proof. According to the proof of Theorem 3.11.9, we only have to study the system
ẋ = fy+(x) in a neighbourhood U of the origin with x2 ≥ 0, where

fy+ (x) =

⎧⎪⎨⎪⎩
f+y+

(x) , if x1 ≥ x2,

f0y+
(x) , if |x1| < x2,

f−y+
(x) , if x1 ≤ −x2,

and

f+y+
(x) :=

(
(λ1 − λ2)x1 + x2b1 + x1x2b2

−λ2x2 + x2
2b2

)
,

f0y+
(x) :=

(
(λ1 + b1 − λ2)x1 + b2x

2
1

−λ2x2 + x1x2b2

)
,

f−y+
(x) :=

(
(λ1 − λ2)x1 − x2b1 − x1x2b2

−λ2x2 − x2
2b2

)
.

Changing b to −b in the expressions of ẋ = f+y+
, we obtain the system ẋ =

f−y+
. Thus it is enough to describe one of them. Moreover, if we take k2 = 1, system
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ẋ = f+y+
coincides with system (3.25). Therefore, to draw the phase portraits of

both systems ẋ = f−y+
(x) and ẋ = f+y+

(x), one can refer to the proof of Theorem
3.11.8.

Now we study the phase portrait of system ẋ = f0y+
(x). Since the matrix of

its linear part is (
λ1 + b1 − λ2 0

0 −λ2

)
,

the origin is a hyperbolic singular point when λ2 �= 0 and λ1 + b1− λ2 �= 0. Hence
when λ2 > 0 and λ1 + b1 − λ2 > 0, the origin is a saddle point with the stable
manifold tangent to x2 = 0 and the unstable manifold tangent to x1 = 0. When
λ2 > 0 and λ1 + b1 − λ2 < 0, the origin is a stable node, and the orbits reach the
origin tangentially to x2 = 0, or to x1 = 0, depending on whether λ1 + b1 > 0 or
λ1+ b1 < 0. When λ1 + b1 = 0 any direction is a characteristic direction. The case
λ2 < 0 can be obtained from the case λ2 > 0 by multiplying the parameters by
−1 and by reversing the orientation of the flow.

Suppose that λ2 = 0. The change of variables dτ = x1(s)ds transforms the
system ẋ = f0y+

(x) into the system

x′
1 = λ1 + b1 + b2x1, x′

2 = x2b2.

For this system when λ1 + b1 �= 0 the origin is not a singular point and the flow is
transversal to x1 = 0. On the contrary, when λ1+b1 = 0 the origin can be either a
stable diagonal node, an unstable diagonal node, or a non-isolated singular point,
depending on whether b2 < 0, b2 > 0 or b2 = 0. Returning to the original variables
we obtain that the origin is a non-isolated semi-stable node with the singular
manifold contained in the line x1 = 0.

Suppose now that λ2 �= 0 and λ1 + b1 − λ2 = 0. In this case the system
ẋ = f0y+

(x) has a degenerate elementary singular point at the origin. Changing
the time variable to τ (s) = −λ2s, we obtain

x′
1 = − b2

λ2
x2
1, x′

2 = x2 − b2
λ2

x1x2.

When b2 = 0, the origin is an unstable normally hyperbolic singular point with
the singular manifold contained in the line x2 = 0. According to Theorem 2.7.3(c),
when b2 �= 0 the system has a saddle-node at the origin. The hyperbolic manifold
is contained in the line x1 = 0 and the central manifold is contained in the line
x2 = 0. Moreover, the hyperbolic manifold is unstable and the central manifold is
stable in the 0 direction if and only if b2λ2 < 0.

Returning to the original variables we conclude that when b2 = 0 the origin is
a normally hyperbolic singular point with the singular manifold contained in x2 =
0, and this manifold is stable or unstable depending on whether λ2 > 0 or λ2 < 0.
On the other hand, when b2 �= 0 the origin is a saddle-node with the hyperbolic
manifold contained in the line x1 = 0 and the central manifold contained in the
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line x2 = 0. The hyperbolic manifold is stable or unstable depending on whether
λ2 > 0 or λ2 < 0, and the central manifold is stable in the 0 direction if and only
if b2λ2 < 0.

Now we study the local phase portrait of ẋ = fy+(x) depending on the fun-
damental parameters. Since D = λ2(λ1+b1) and T = λ1+λ2+b1, the eigenvalues
of matrix B = A+ bkT are Λ1 = λ1 + b1 and Λ2 = λ2.

(a) Suppose that D > 0 and T > 0. We will consider the following three
cases: (a.1) λ1 + b1 − λ2 > 0; (a.2) λ1 + b1 − λ2 = 0; (a.3) λ1 + b1 − λ2 < 0.

(a.1) System ẋ = f0y+
(x) has a saddle point at the origin with the unstable

manifold contained in the line x2 = 0 and the stable one contained in the line
x1 = 0.

System ẋ = f+y+
(x) (respectively, ẋ = f−y+

(x)) has a saddle point at the
origin. The unstable manifold is contained in the line x2 = 0 and the stable one is
contained in the line λ1x1 − b1x2 = 0 (respectively, λ1x1 + b1x2 = 0).

Since λ1 > λ2 it follows that λ1 > 0. Therefore, when b1 ≥ 0 the straight line
λ1x1 − b1x2 = 0 is contained in the region |x2| > |x1| and the system ẋ = fy+(x)
has a saddle point at the origin, see Figure 3.14. Moreover, when b1 < 0, then
λ1/b1 < −1 and the straight line λ1x1 − b1x2 = 0 is also contained in |x2| > |x1|.
Thus, the system ẋ = fy+(x) has a saddle point at the origin.

The remaining statements follow in a similar way. �

Figure 3.14: Local phase portrait of system ẋ = fy+ (x) obtained by composing
the phase portaits of systems ẋ = f+y+

(x), ẋ = f0y+
(x) and ẋ = f−y+

(x) when
λ2 > 0 and λ1 − λ2 + b1 > 0.

3.12 Periodic orbits

This section is devoted to the existence and location in the phase plane of Jordan
curves Γ formed by solutions. Such curves split the phase plane into two regions,
one of which is denoted by ΣΓ and is bounded. Since ΣΓ is an invariant set,
the qualitative behaviour of the flow in ΣΓ can be obtained from the Poincaré–
Bendixson Theorem.

In Lemma 3.12.1 we prove that for a fundamental system with D �= 0 only
three kinds of finite Jordan curves formed by solutions can exist: periodic orbits,
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Figure 3.15: Singular points at infinity when t2 − 4d > 0 and k2 = 0.

homoclinic cycles and heteroclinic cycles.

Lemma 3.12.1. Consider a fundamental system with parameters (D,T, d, t), where
D �= 0. If Γ is a Jordan curve formed by solutions, then Γ is a periodic orbit, a
homoclinic cycle with vertex at the origin, or a heteroclinic cycle with vertices at
the singular points e+ and e−.

Proof. If Γ does not contain any singular point, then Γ is a periodic orbit. Suppose
now that Γ contains a unique singular point p and a unique orbit γ. Since Γ is an
invariant compact set, there exit the α- and ω-limit sets of γ and α(γ) = ω(γ) = p.
Thus Γ is a homoclinic cycle. Suppose that the vertex of the homoclinic cycle is e+
(the arguments are similar if we suppose that e− is the vertex of Γ). Since D �= 0,
then e+ is a saddle point, see Theorem 3.9.3. It is easy to check that Cl(ΣΓ) is an
invariant compact and simply connected set. By applying the Poincaré–Bendixson
Theorem, every orbit in ΣΓ has an α- and an ω-limit set in Cl(ΣΓ), and such limit
sets are either a periodic orbit, a singular point or a separatrix cycle. In the last
two cases we have singular points in ΣΓ, which contradicts the symmetry of the
vector field with respect to the origin. In the first case again we reach the same
contradiction, by Cororally 2.8.4. Hence the vertex of Γ is the origin.

Suppose now that Γ contains two singular points, see Figure 3.16(a) and (b).
First we will prove that the Jordan curve shown in Figure 3.16(a) is not possible;
i.e. the flow on Γ must be oriented. After that we will prove that the vertices of Γ
are e+ and e−.

Since D �= 0 and the system has more than one singular point, Theorem
3.9.3 implies that Dd < 0 and the singular points are 0, e+ or e−. Moreover,
any singular point is hyperbolic and the local phase portraits of e+ and e− are
identical. Finally, since Dd < 0, either the origin is a saddle and e+ and e− are
antisaddles, or e+ and e− are saddle points and 0 is an antisaddle point.

Suppose that Γ is equal to the Jordan curve shown in Figure 3.16(a). If e+
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and e− are the singular points contained in Γ, by the symmetry of the vector field
with respect to the origin, they are saddle points and the other separatrices of e+
and e− split ΣΓ into two invariant regions, A and B, see Figure 3.16(a.1). In the
interior of B there are no singular points. We arrive at a contradiction by applying
the Poincaré–Bendixson Theorem to this region.

Figure 3.16: Qualitative Jordan curves formed by solutions with two singular
points.

Suppose that 0 and e+ are the singular points belonging to Γ. There exists
a Jordan curve formed by solutions Γ−, symmetric to Γ and such that 0, e− ∈
Γ−. It is easy to conclude that e+ and e− are saddle points and 0 is a node,
see Figure 3.16(a.2). The unstable separatrices of e+ and e− split ΣΓ and ΣΓ−
into four invariant regions, two of them without singular points inside. We arrive
to contradiction by applying the Poincaré–Bendixson Theorem to these regions.
Hence, if Γ is a Jordan curve formed by two singular points and two orbits, then
Γ is the curve shown in Figure 3.16(b).

In that case, since either e+ and e− are saddles and 0 is an antisaddle, or 0
is a saddle and e+ and e− are antisaddles, it is easy to conclude that the vertices
of Γ have to be the saddle points e+ and e−. Moreover, the singular point 0 is
contained in ΣΓ. �

In the following theorem we collect some results about the existence and
location of Jordan curves formed by solutions in the phase plane.

Theorem 3.12.2. Consider a fundamental system with parameters (D,T, d, t),
where D �= 0.

(a) If T t > 0, then there are no Jordan curves formed by solutions.

(b) Suppose that Γ is a Jordan curve formed by solutions.
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(b.1) If T t < 0, then Γ ∩ S0 �= ∅ and Γ ∩ (S+ ∪ S−) �= ∅.

(b.2) If T �= 0 and t = 0, then Γ ⊂ S+ ∪ L+ or Γ ⊂ S− ∪ L−.

(b.3) If T = 0 and t �= 0 then Γ ⊂ L+ ∪ S0 ∪ L−.

Proof. Let X = (P,Q) be the vector field defined by the fundamental system
and let Γ be a Jordan curve formed by solutions. Since the functions ∂P/∂x and
∂Q/∂y are well defined and bounded in ΣΓ \ {L+, L−}, the divergence div(X) =
∂P/∂x+ ∂Q/∂y is also well defined and bounded in ΣΓ \ {L+, L−}. Moreover,∫∫
ΣΓ

div (X) dxdy =

∫∫
ΣΓ∩S+

div (X) dxdy +

∫∫
ΣΓ∩S0

div (X) dxdy +

∫∫
ΣΓ∩S−

div (X) dxdy.

Taking into account that div(X) = t in S+ ∪S− and div(X) = T in S0, we obtain
that ∫∫

ΣΓ

div (X) dxdy = (A+ +A−) t+A0T,

where A+,A− and A0 are the areas of the open regions ΣΓ ∩ S+, ΣΓ ∩ S−, and
ΣΓ ∩S0, respectively. The rest of the proof is divided according to the type of the
curve Γ: a periodic orbit, a homoclinic cycle or a heteroclinic cycle, see Lemma
3.12.1.

Suppose that Γ is a periodic orbit. By applying Green’s Theorem for domains
bounded by rectificable curves [6, p. 280],∫∫

ΣΓ

div (X) dxdy =

∮
Γ

Pdy −Qdx = 0.

Therefore, (A+ +A−)t+A0T = 0 and the theorem follows easily by noting that
A+,A− and A0 are non-negative.

Figure 3.17: Green’s Theorem for a homoclinic cycle.

Suppose now that Γ is a homoclinic cycle to a singular point e. SinceX(e) = 0
for every small enough ε > 0, there exists a neighbourhood Uε of e such that
‖X(x)‖ < ε when x ∈ Uε. One may smooth Γ near e to produce a differentiable
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curve Γ∗ such that Γ and Γ∗ coincide in R2 \ Uε and the length of the arc where
Γ and Γ∗ differ is less than 1, see Figure 3.17. Applying Green’s Theorem to the
region bounded by Γ∗ we obtain that

−ε <
∫∫
ΣΓ∗

div (X) dxdy =

∮
Γ∗

Pdy −Qdx < ε.

Therefore, −ε < (A∗
+ + A∗−)t + A∗

0T < ε, where A∗
+,A∗− and A∗

0 denote the
areas of regions ΣΓ∗ ∩ S+, ΣΓ∗ ∩ S−, and ΣΓ∗ ∩ S+, respectively. Since A∗

+,A∗
−

and A∗
0 tend to A+,A− and A0, respectively, as ε tends to 0, we conclude that

(A++A−)t+A0T = 0. Similar arguments can be applied when Γ is a heteroclinic
cycle. �

The ideas used in the proof of Theorem 3.12.2 are due to Lefschetz [40, pp.
238–239]. Note that these arguments can be also applied when Γ is a Jordan curve
formed by solutions with any number of singular points. In this case the set of
singular points contained in Γ is compact. Hence, it is always possible to find a
neighbourhood Uε such that ‖X(x)‖ < ε if x ∈ Uε.

3.13 Asymptotic behaviour

In this section, by using the integral expression of the solutions, we offer some
preliminary results about the asymptotic behaviour of the orbits of a fundamental
system.

Proposition 3.13.1. Given a matrix A ∈ L(Rn), the following statements are equiv-
alent.

(a) The eigenvalues of A have negative real part.

(b) There exist positive constants a, c,m,M and a non-negative constant k, such
that for any x0 ∈ Rn and s ∈ R the following inequalities hold:

m
∣∣sk∣∣ e−as ‖x0‖ ≤ ‖eAsx0‖ ≤Me−cs‖x0‖.

For a proof of this proposition see [53, p. 56].

Proposition 3.13.2. Given a fundamental system with fundamental parameters
(D,T, d, t), where d > 0 and t < 0, there exists R > 0 such that the ω-limit
set of any orbit is contained in the ball of radius R centered at the origin.

Proof. Take x0 ∈ R2 and let x(s) be the solution of the fundamental system
ẋ = Ax+ ϕ(kTx)b such that x(0) = x0. From expression (3.5) it follows that

‖x(s)‖ ≤ ‖eAsx(0)‖+ ‖eAs‖
∫ s

0

‖e−Ar‖‖ϕ(kTx)b‖dr.
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Since d > 0 and t < 0, the eigenvalues of A have negative real part. Thus,
there exist positive constants c and M such that ‖eAsx0‖ ≤ Me−cs‖x0‖ for any
x0 ∈ R2 and s ∈ R, see Proposition 3.13.1. On the other hand, ‖ϕ(kTx)b‖ ≤ ‖b‖,
and so

‖x (s) ‖ ≤Me−cs‖x (0) ‖+Me−cs‖b‖
∫ s

0

‖e−Ar‖dr

≤Me−cs

(
‖x (0) ‖+ ‖b‖

∫ s

0

Mecrdr

)
= Me−cs

(
‖x (0) ‖ − M‖b‖

c

)
+

M2‖b‖
c

.

This implies that the solution x(s) is bounded when s tends to infinity. Therefore,
the ω-limit set of this solution is contained in the ball of radius R = M2‖b‖. �
Proposition 3.13.3. Given a fundamental system with fundamental parameters
(D,T, d, t), where d > 0 and t > 0, there exists R > 0 such that the α-limit
set of any orbit is contained in the ball of radius R centered at the origin.

Proof. The change of the time variable t to −t transforms the original system into a
fundamental system with fundamental parameters (D,−T, d,−t), see Proposition
3.7.1. The statement follows by applying Proposition 3.13.2 to this system. �
Proposition 3.13.4. Given a fundamental system with fundamental parameters
(D,T, d, t), where d = 0 and t < 0, there exist straight lines ω1 and ω2 which are
symmetric with respect to the origin and such that ωi ∩ Γ+ �= ∅ and ωi ∩ Γ− �= ∅
for i ∈ {1, 2}. Let Bω be the closed strip bounded by ω1 and ω2.

(a) For every solution x(s), there exists s0 > 0 such that {x(s) : s > s0} ⊂ Bω.

(b) Bω is a positively invariant set and contains every ω-limit set.

(c) If D > 0, then all orbits are positively bounded.

Proof. Take x0 = (x10, x20) ∈ R2 and let x(s) = (x1(s), x2(s)) be the solution of
the fundamental system ẋ = Ax+ϕ(kT x)b such that x(0) = x0. From expression
(3.5) it follows that

x (s) = eAsx (0) +

∫ s

0

eA(s−r)ϕ
(
kTx

)
b dr.

Since linear maps transform straight lines into straight lines, it is not a re-
striction to assume that the matrix A is in real Jordan normal form. Thus

A =

(
t 0
0 0

)
,

and consequently,

x1 (s) = etsx10 +

∫ s

0

et(s−r)ϕ
(
kTx

)
b1dr.
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Since |ϕ(σ)| ≤ 1 for σ ∈ R, we conclude that

|x1 (s)| ≤ ets
(
|x10|+ |b1|

t

)
− |b1|

t
.

Note that the symmetric straight lines ωk := {(−1)k(1− |b1|/t, x2) : x2 ∈ R} with
k = 1, 2 intersect Γ+ and Γ−. Moreover, it is easy to check that the set Bω has
property (a).

(b) Take y = (y1, y2)
T ∈ ω1. Then y1 = −1 + |b1|t−1 < 0 and Ay = (|b1| −

t, 0)T , that is, the first component of the vector field is positive. We conclude that
Bω is a positively invariant set. From statement (a) it follows that Bω contains
every ω-limit set.

(d) Consider the family of segments Sh := {(x1, h) : |x1| ≤ 1 − |b1|/t} for
h > 0. Suppose that k2 > 0. When h is big enough we have k1x1+k2h > 1, whence
Sh ⊂ S+. In the region S+ the system is linear, with Ax+b = (t−|b1|+b1, b2) and
b2 < 0 (note that D = tk2b2 > 0, see (3.10)). Then there exists h0 > 0 such that
Rh := {(x1, x2) : |x1| ≤ 1 − |b1|/t and |x2| ≤ h} is a positive compact invariant
set for every h > h0. Moreover, Bω =

⋃
h>h0

Rh, which concludes the proof.
The case k2 < 0 follows by using similar arguments. �

Proposition 3.13.5. Given a fundamental system with fundamental parameters
(D,T, d, t), where d = 0 and t > 0, there exist straight lines α1 and α2 which are
symmetric with respect to the origin and such that αi ∩ Γ+ �= ∅ and αi ∩ Γ− �= ∅
with i ∈ {1, 2}. Let Bα be the closed strip bounded by α1 and α2.

(a) For every solution x(s), there exists s0 > 0 such that {x(−s) : s > s0} ⊂ Bα.

(b) Bα is a negatively invariant set which contains every α-limit set.

(c) If D > 0, then all orbits are negatively bounded.

Proof. The change of the time variable t to −t transforms the original system
into another fundamental system with fundamental parameters (D,−T, d,−t),
see Proposition 3.7.1. The result follows by applying Proposition 3.13.4 to this
system. �

Proposition 3.13.6. Given a fundamental system with fundamental parameters
(D,T, d, t), where d < 0, there exist two pairs of symmetric straight lines α1 and
α2, and ω1 and ω2 such that ωi ∩ Γ+ �= ∅, ωi ∩ Γ− �= ∅, αi ∩ Γ+ �= ∅, and
αi ∩ Γ− �= ∅, for i ∈ {1, 2}. Let Bω and Bα be the closed strips bounded by ω1 and
ω2 and by α1 and α2, respectively. Then:

(a) For every solution x(s), there exists s0 > 0 such that {x(s) : s > s0} ⊂ Bω

and {x(−s) : s > s0} ⊂ Bα.

(b) Bα is a negatively invariant set containing every α-limit set.

(c) Bω is a positively invariant set containing every ω-limit set.
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(d) Bα ∩Bω is a compact and invariant set containing every singular point and
every limit cycle.

Proof. Take x0 = (x10, x20) ∈ R2 and let x(s) = (x1(s), x2(s)) be the solution of
the fundamental system ẋ = Ax+ϕ(kT x)b such that x(0) = x0. From expression
(3.5) it follows that

x (s) = eAsx (0) +

∫ s

0

eA(s−r)ϕ
(
kTx

)
b dr.

Since linear maps transform straight lines into straight lines, it is not a re-
striction to assume that the matrix A is in real Jordan normal form. Thus,

A =

(
λ1 0
0 λ2

)
, with λ1 > 0 > λ2,

and therefore

xk (s) = eλksxk (0) +

∫ s

0

eλk(s−r)ϕ
(
kTx

)
bkdr,

for k = 1, 2. From this it follows that for every s > 0 we have

|x1 (−s)| ≤ eλ1(−s) |x1 (0)|+ |b1|
∫ 0

−s

eλ1(−s−r)dr ≤ e−λ1s

(
|x1 (0)| − |b1|

λ1

)
+
|b1|
λ1

,

|x2 (s)| ≤ eλ2s |x2 (0)|+ |b2|
∫ s

0

eλ2(s−r)dr ≤ eλ2s

(
|x2 (0)|+ |b2|

λ2

)
− |b2|

λ2
.

Hence, there exist s+ > 0 and s− < 0 such that |x2(s)| < 1 − |b2|/λ2 when
s > s+, and |x1(s)| < 1 + |b1|/λ1 when s < s−.

Consider the symmetric straight lines ωk := {(−1)k+1(x1, 1− |b2|/λ2) : x1 ∈
R} and αk = {(−1)k+1(1 + |b1|/λ1, x2) : x2 ∈ R}, for k = 1, 2. It is easy to check
that these straight lines intersect Γ+ and Γ−.

(b) Let x = (x1, x2)
T be a point on α1 (respectively, α2). Then x1 = 1 +

|b1|/λ1 which is positive (respectively, negative). Since Ax+ϕ(kTx) = (λ1+ |b1|+
ϕ(kTx)b1, λ2x2+ϕ(kTx)b2)

T , that is, the first coordinate of the vector field at x is
also positive (respectively, negative), we conclude that Bα is a negatively invariant
set. Moreover, by statement (a), Bα contains all the α-limit sets.

(c) The statement follows by using similar arguments to those in the proof
of statement (b).

(d) Since Bα ∩ Bω is a compact set, (d) follows from statements (b) and
(c). �
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Return maps

The determination of the number and location of limit cycles of a planar differential
system is one of the most difficult problems in the qualitative theory of differential
equations. In the case of planar polynomial differential systems this problem is
known as the second part of Hilbert’s 16th problem, and it remains open even for
polynomials of degree 2. In the case of fundamental systems this problem can be
completely solved by using the return maps defined by the flow of the system on
convenient cross sections contained in the straight lines L+ and L−.

Consider a fundamental system

ẋ = Ax+ ϕ
(
kTx

)
b, (4.1)

with matrix A ∈ L(R2) and vectors k,b ∈ R2 \ {0}, and let

ẋ =

⎧⎨⎩
Ax− b, if x ∈ S− ∪ L−,
Bx, if x ∈ L− ∪ S0 ∪ L+,
Ax+ b, if x ∈ L+ ∪ S+,

be the piecewise linear expression of system (4.1), whereB = A+bkT . By Theorem
3.12.2, we can distinguish three different kinds of periodic orbits Γ, depending on
their location in the phase plane.

(i) Γ is contained in one of the open regions S+, S0, or S− where the system is
linear.

(ii) Γ intersects only one of the straight lines L+ or L−.

(iii) Γ intersects both the straight line L+ and the straight line L−.

Since the flow is linear in S+, S0, or S−, periodic orbits in the class (i) appear
only in the case of a linear center. Consequently, the behaviour of these orbits is
well known. For this reason we restrict our attention to periodic orbits belonging
either to the class (ii) or to the class (iii).

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhäuser Advanced Texts, 
DOI 10.1007/978-3-0348-0657-2_ , © Springer Basel 2014 4
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Suppose that Γ only intersects the straight line L+. By the symmetry of the
fundamental vector field with respect to the origin, the intersection point does
not belong to the bounded region ΣΓ inside Γ. Moreover, there exists another
periodic orbit, denoted by Γ−, which is symmetrical with respect to the origin to
the periodic orbit Γ, and such that Γ− only intersects the straight line L−, see
Figure 4.1(a). Thanks to the continuous dependence of the solutions of an ordinary
differential equation with respect to the initial conditions, we can define a return
map Π in a neighbourhood of one of the intersection points of Γ with L+ by taking
the cross sections contained in L+. Similarly, we can define another return map
associated to the periodic orbit Γ− by taking the cross sections contained in L−.

Figure 4.1: (a) Periodic orbits intersecting with only one straight line. (b) Periodic
orbit intersecting with two straight lines.

Suppose now that the periodic orbit Γ intersects the two straight lines L+

and L−. In the same way, associated to Γ, and following the flow, we can define a
return map Π in a neighbourhood of one of the intersection points of Γ with L+

by taking the cross section contained in L+, see Figure 4.1(b). Thus we reduce the
study of periodic orbits in class (ii) or in class (iii) to the study of return maps
defined on the straight lines L+ and L−.

4.1 Poincaré maps for fundamental systems

Let Γ be a periodic orbit of system (4.1) such that Γ intersects the straight lines L+

and L−. Let Π be the return map associated to L+ and defined in a neighbourhood
of the periodic orbit Γ. The map Π can be written as a composition of the Poincaré
maps which maps points from L+ to L−, from L− to L−, from L− to L+ and from
L+ to L+, see Figure 4.1(b). Similarly, if Γ is a periodic orbit intersecting only one
of the straight lines, then Π can be written as a composition of the Poincaré maps
which maps points either from L+ to L+ or from L− to L−, see Figure 4.1(a).

Let Φ(s,x) be the flow of system (4.1). We define the following subsets con-
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tained in the straight lines L+ and L−.

DomA
++ := {q ∈ L+ : ∃sq ≥ 0, Φ (sq,q) ∈ L+ and Φ (s,q) ⊂ S+ ∀s ∈ (0, sq)} ,

DomB
+− := {q ∈ L+ : ∃sq > 0, Φ (sq,q) ∈ L− and Φ (s,q) ⊂ S0 ∀s ∈ (0, sq)} ,

DomA
−− := {q ∈ L− : ∃sq ≥ 0, Φ (sq,q) ∈ L− and Φ (s,q) ⊂ S− ∀s ∈ (0, sq)} ,

DomB
−+ := {q ∈ L− : ∃sq > 0, Φ (sq,q) ∈ L+ and Φ (s,q) ⊂ S0 ∀s ∈ (0, sq)} ,

DomB
++ := {q ∈ L+ : ∃sq ≥ 0, Φ (sq,q) ∈ L+ and Φ (s,q) ⊂ S0 ∀s ∈ (0, sq)} ,

DomB
−− := {q ∈ L− : ∃sq ≥ 0, Φ (sq,q) ∈ L− and Φ (s,q) ⊂ S0 ∀s ∈ (0, sq)} .

Take a point q in DomM
kj with k, j ∈ {+,−} andM ∈ {A,B}. Let γ(q) be the

orbit through q. The flight time sq is defined to be the interval of time between two
consecutive intersections of γ(q) with the straight lines Lk and Lj , respectively.
Note that during this time the orbit γ(q) lies within one of the regions where the
system is linear. The matrix of this linear system appears as a superscript in the
name of the corresponding set.

If a set DomM
jk is non-empty, then we call ΠM

jk(q) = Φ(sq,q) the Poincaré
map of system (4.1) associated to the straight lines Lj and Lk.

For now it is not possible to describe precisely the decomposition of the
return map Π in terms of the Poincaré maps ΠM

jk . This will be one of the topics in

Section 4.6. Nevertheless, it is obvious that knowledge of the Poincaré maps ΠM
jk

is essential for the knowledge of the return map Π.

After the pioneering work of Andronov [3], such Poincaré maps have been
used by most authors working in this subject, see for instance [47], [24], [25] and
[26]. In all these works the authors obtain, just by applying a rotation and by
rescaling the original variables, a linearly conjugated fundamental system such
that L+ = {x = 1} and L− = {x = −1}. Hence, the expression of both the
Poincaré maps and the fundamental matrices A and B are related to this new
configuration.

Here we present an alternative parametrization of the straight lines L+ and
L− in such a way that the Poincaré maps associated to them are invariant un-
der linear transformations. That is, we can consider that the fundamental matri-
ces A and B are in their real Jordan normal form. As it is proved in [45] these
parametrization can be extended to higher dimensions, with similar consequences.

Finally, when the superscript M coincides with B, the Poincaré map ΠM
jk

is defined by the flow of the homogeneous linear system ẋ = Bx. Further, when
M coincides with A, the Poincaré map ΠM

jk is defined by the flow of the non-
homogeneous linear systems ẋ = Ax ± b. Thus in Section 4.3 and Section 4.5 we
study the behaviour of the Poincaré maps defined by the flow of homogeneous and
non-homogeneous linear systems, respectively.
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4.2 Transversality of a linear flow

Consider the linear system
ẋ = Ax, (4.2)

where A ∈ L(R2). From now on, q̇ denotes the value of a vector field defined by a
differential system at the point q of the phase plane. In particular, for the linear
system (4.2) q̇ = Aq.

Let L = {p+λv : λ ∈ R} be a straight line which does not pass through the
origin. Let n be the unit vector orthogonal to L such that nTp > 0; in this case
we say that n is oriented in the opposite sense to the origin. Note that choosing
the vector n does not depend on the point p on L. Of course, if we take another
point q = p+ λv in L, then nTq = nTp > 0.

The flow of system (4.2) is said to be transversal to the straight line L at a
point q if nT q̇ �= 0. Otherwise, q is said to be a contact point of the flow with the
straight line L. The following definitions formalize the intuitive idea of the sense
of a transversal flow with respect to a straight line L. A transversal flow to L at a
point q ∈ L is said to have outside orientation if nT q̇ > 0. A transversal flow to
L at a point q ∈ L is said to have inside orientation if nT q̇ < 0. Accordingly, we
define the following subsets in L

LI :=
{
q ∈ L : nTq ≤ 0

}
and LO :=

{
q ∈ L : nTq ≥ 0

}
.

In Proposition 4.2.5 and 4.2.6 we describe the different possibilities for the sets LI

and LO depending on the invertibility of the matrix A. Before doing this we give
some technical lemmas.

Lemma 4.2.1. Consider a linear system ẋ = Ax with A ∈ GL(R2) and let L be a
straight line in the phase plane which does not pass through the origin. Two points
p and q in L are different if and only if ṗ �= αq̇ for any α ∈ R.

Proof. Since A is invertible, the equality ṗ = αq̇ is equivalent to the equality
p = αq. In this case L is a straight line through the origin, in contradiction with
the hypothesis. �

Consider the unit circle S1 = {x ∈ R2 : ‖x‖ = 1} and the continuous map
Ψ : R2\ ker(A)→ S

1 given by

Ψ (q) =
q̇

‖q̇‖ =
Aq

‖Aq‖ , (4.3)

where ker(A) denotes the null space of A. The map Ψ provides information about
the sense and the direction of the linear vector field defined by (4.2). For instance,
if A ∈ GL(R2), then Ψ(R2\{0}) = S1. This map will be particularly interesting
when we restrict it to either straight lines or orbits.

Let α(λ) be a curve in the phase plane and (1, θ(λ)) the parametrization in
polar coordinates of Ψ(α(λ)). We say that function Ψ|α is monotone if θ(λ) is
strictly monotone.
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Lemma 4.2.2. Consider a linear system ẋ = Ax with A ∈ GL(R2) and let L =
{p+ λv : λ ∈ R} be a straight line in the plane.

(a) If L does not pass through the origin, then Ψ|L is monotone. Furthermore
Ψ(L) is an open semi-circle of S1 with endpoints Ψ(v) and −Ψ(v).

(b) If L passes through the origin, then Ψ(L) = {Ψ(v),−Ψ(v)}.
Proof. (a) By Lemma 4.2.1, Ψ|L is an injective and a continuous map. Thus, θ(λ)
is also injective and continuous. Therefore, θ(λ) is monotone.

Since Ψ is continuous, the set Ψ(L) is a connected subset of S1. Hence Ψ(L) is
a circle arc. Moreover, by Lemma 4.2.1, if w ∈ Ψ(L), then −w �∈ Ψ(L). Therefore,
Ψ(L) is contained in a semi-circle. The statement (a) follows from lim

λ↗+∞
Ψ(p +

λv) = Ψ(v) and lim
λ↘−∞

Ψ(p+ λv) = −Ψ(v).

(b) Since the origin is contained in L, we can write L = {λv : λ ∈ R}. The
statement follows from the equality Ψ(λv) = λΨ(v)/|λ| when λ �= 0. �

Let f : R2 → R2 be a vector field and v ∈ R2. The set {q ∈ R2 : f(q) =
λv with λ ∈ R} is called the isocline of f defined by the vector v. Therefore, the
isoclines of the linear system (4.2) are the straight line through the origin, see
Lemma 4.2.2(b). More precisely, we have the following result.

Lemma 4.2.3. Set A ∈ GL(R2) and v ∈ R2�{0}. The isocline of the system
ẋ = Ax defined by the vector v is the straight line through the origin L = {λA−1v :
λ ∈ R}.

Given p = (p1, p2)
T ∈ R2 we denote by p⊥ the vector (−p2, p1)T . The

following properties are obvious: (a) p⊥ is orthogonal to p, (b) ‖p⊥‖ = ‖p‖, and
(c) (p⊥)⊥ = −p.
Lemma 4.2.4. Consider a linear system ẋ = Ax with A ∈ L(R2) and let p be a
point in R2. Then (Aṗ)T ṗ⊥ = − det(A)pT ṗ⊥.

Proof. Let t and d be the trace and the determinant of the matrix A, and let
Id be the identity matrix. From the Cayley–Hamilton theorem we obtain that
A2 − tA + d Id = 0. Multiplying both sides by p we get that Aṗ = tṗ−dp.
Therefore, (Aṗ)T ṗ⊥ = −dpT ṗ⊥. �

Proposition 4.2.5. Consider the linear system ẋ = Ax with A ∈ GL(R2) and let
L be a straight line in the phase plane.

(a) Suppose that L does not pass through the origin.

(a.1) There exists at most one contact point of the flow with L.

(a.2) Let p be a contact point of the flow with L. If det(A) > 0, then LI =
{p + λṗ : λ ≥ 0} and LO = {p+ λṗ : λ ≤ 0}. If det (A) < 0, then
LI = {p+ λṗ : λ ≤ 0} and LO = {p+ λṗ : λ ≥ 0}.
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(a.3) If LI �= ∅ and LO �= ∅, then there exists exactly one contact point of
the flow with L.

(a.4) If the flow has no contact points with L, then either LI = L and LO =
∅, or LI = ∅ and LO = L.

(b) If L passes through the origin, then either L is an invariant straight line
(in this case any point on L is a contact point), or the origin is the unique
contact point of the flow with L.

Proof. Statement (a.1) is a consequence of Lemma 4.2.2(a).
(a.2) Since L does not pass through the origin and the matrix A ∈ GL(R2),

ṗ �= 0. Hence, we can write L = {p + λṗ : λ ∈ R}. Then the unit orthogonal
vector n is either ṗ⊥/‖ṗ‖ or −ṗ⊥/‖ṗ‖. In both cases, (Aṗ)Tn = − det(A)pTn,
see Lemma 4.2.4.

Take q ∈ L such that q �= p. Then we can write q = p+λṗ with λ �= 0, and
therefore

nT q̇ = nTAq = nT ṗ+ λnTAṗ =λnTAṗ = −λdet(A)nTp.

Since nTp > 0, the orientation of the flow on the straight line L depends on the
sign of λ and the statement follows.

(a.3) Consider the continuous function f(λ) = nTA(q + λv) defined on the
straight line L = {q + λv : λ ∈ R}. Clearly f satisfies that f(λ1) ≤ 0 when
q + λ1v ∈ LI and f(λ2) ≥ 0 when q + λ2v ∈ LO. Therefore, there exists a λ∗

such that f(λ∗) = 0. That is, q + λ∗v is a contact point of the flow with L. The
uniqueness of the contact point follows from statement (a.1).

(a.4) Consider the function f defined in the proof of (a.3). If there are no
singular points on L, then either f(λ) > 0 or f(λ) < 0, which proves the statement.

(b) Since L is a straight line through the origin, we can write L = {λv :
λ ∈ R}. Thus the origin is a contact point of the flow with L. Suppose that there
exists another such contact point q. Then q = λv with λ �= 0, and Aq = αv with
α ∈ R. Therefore, Av = (α/λ)v, i.e., v is an eigenvector of A and L is invariant
under the flow. �

Given a linear system ẋ = Ax with det(A) �= 0 and a straight line L which
does not pass through the origin, in Proposition 4.2.5 we have proved that if there
exists a contact point of the flow with L, we can split the straight line into the
two half-lines LI and LO in such a way that the flow over LI and LO has opposite
sense. For a treatment of a more general case we refer the reader to [45]. Under a
natural restriction, in the next proposition we prove that even when det(A) = 0,
the straight line L can also be divided into the two half-lines LI and LO. From
now on we denote by det(v,w) the determinant of the matrix whose columns are
the vectors v and w in R2.

Proposition 4.2.6. Consider a planar linear system ẋ = Ax with det(A) = 0 and
such that A is not the zero matrix. Let L be a non-invariant straight line which does
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not pass through the origin and let n be the unit orthogonal vector to L oriented
in the opposite sense to the origin.

(a) If p is a contact point of the flow with L, then det(An⊥,n⊥) �= 0.

(b) If p is a contact point of the flow with L, then p is a singular point.

(c) There exists at most one contact point of the flow with L.

(d) Let p be a contact point of the flow with L. If det(An⊥,n⊥) > 0, then
LI = {p+ λn⊥ : λ ≤ 0} and LO = {p+ λn⊥ : λ ≥ 0}. If det(An⊥,n⊥) < 0,
then LI = {p+ λn⊥ : λ ≥ 0} and LO = {p+ λn⊥ : λ ≤ 0}.

(e) If LI �= ∅ and LO �= ∅, then there exists exactly one contact point of the
flow with L.

Proof. (a) It is clear that L = {p+λn⊥ : λ ∈ R}. Suppose that det(An⊥,n⊥) = 0;
that is, nTAn⊥ = 0. For any λ ∈ R it follows that nTA(p + λn⊥) = 0. Hence L
is an invariant straight line, which contradicts our assumptions.

(b) Let p be a contact point of the flow with L. Then ṗ = λ0n
⊥ with λ0 ∈ R

and (Aṗ)T ṗ⊥ = −λ2
0(An

⊥)Tn = −λ2
0 det(An

⊥,n⊥). From Lemma 4.2.4 we have
that (Aṗ)T ṗ⊥ = − det(A)pT ṗ⊥ = 0, and so λ0 = 0 and ṗ = 0.

(c) Suppose that p and q are two different contact points of the flow with
L. Thus we can write L = {p + λ (p− q) : λ ∈ R}. Since Ap = Aq = 0, see
statement (b), it follows that L = ker(A), which contradicts that L does not pass
through the origin. Therefore the contact point is unique.

(d) Since p is a contact point of the flow with L, we can write L = {p+λn⊥ :
λ ∈ R}. The statement follows as a consequence of the equality nTA(p+ λn⊥) =
λdet(An⊥,n⊥) for λ ∈ R.

(e) Take q1 ∈ LI and q2 ∈ LO. Then L = {q1 + λ(q2 − q1) : λ ∈ R}. The
continuous function f(λ) = nTAq1 + λnTA(q2 − q1) defined on R satisfies that
f(0) < 0 and f(1) > 0. Thus, there exists λ0 ∈ (0, 1) such that p = q1+λ0(q2−q1)
is a contact point of the flow with L. The uniqueness follows from the statement
(c). �

In Propositions 4.2.5 and 4.2.6 we prove that the flow defined by a planar
linear system is transversal to any non-invariant straight line in the phase plane,
except in a contact point p, in case that it exists. In this case the contact point
splits the straight line into two half-lines such that the flow has opposite sense in
each of them.

Let L be a straight line not passing through the origin. Then L splits the
phase plane into two half-planes S0 and S, where S0 is the one containing the
origin. Let γ(p) be the orbit through the contact point p. In the next result we
prove that in a neighbourhood of p the orbit γ(p) is contained in one of the half-
planes S0∪L or S∪L. In Proposition 4.2.10 we prove that, under some restrictions,
this behaviour is not only local, but also global.
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Proposition 4.2.7. Consider a linear system ẋ = Ax with A ∈ GL(R2). Let L be a
straight line in the phase plane not passing through the origin, p a contact point
of the flow with L, and x(s) the solution of the system such that x(0) = p. Define
f(s) = nTΨ(x(s)), s ∈ R.

(a) If det(A) > 0, then there exists ε > 0 such that {x(s) : s ∈ (−ε, ε)} ⊂ S0 ∪L
and f(s) is strictly decreasing in (−ε, ε).

(b) If det(A) < 0, then there exists ε > 0 such that {x(s) : s ∈ (−ε, ε)} ⊂ S ∪ L
and f(s) is strictly increasing in (−ε, ε).

Proof. Since any rotation transforms L into a straight line L∗ not passing through
the origin and S0 into the connected component of R2 \ L∗ containing the origin,
we can assume without loss of generality that L = {x2 = b} with b > 0. Hence
p = (p1, b)

T and ṗ = (ṗ1, 0)
T with ṗ1 �= 0, see Figure 4.2.

By the Inverse Function Theorem, there exist a neighbourhood I of p1 and
a differentiable function τ : I → (−δ, δ) such that τ(x1(s)) = s, where x(s) =
(x1(s), x2(s))

T and x(0) = p. To simplify the notation, we define x2 : I → R by
x2(x1) = x2(τ(x1)). It is clear that x2 is a differentiable function and {x(s) : s ∈
(−δ, δ)} = {(x1, x2(x1)) : x1 ∈ I}. Hence, x(s) is locally contained either in S0

or in S if and only if x2(x1) has a local maximum or minimum at x1 = p1, see
Figure 4.2. We compute the sign of d2x2/dx

2
1

∣∣
x1=p1

in order to distinguish these

two situations.

Figure 4.2: Graph of the function x2(x1).

Let (aij)1≤i,j≤2 be the coefficients of the matrix A. Then ẋ1 = a11x1+a12x2,
ẋ2 = a21x1 + a22x2, and

d2x2

dx2
1

=
d

dx1

(
dx2

dx1

)
=

x1
dx2

dx1
− x2

(a11x1 + a12x2)
2 det (A) .

Therefore
d2x2

dx2
1

∣∣∣∣
x1=p1

=
−b
(ṗ1)

2 det (A) . (4.4)

(a) Suppose that det(A) > 0. In this case x2(x1) has a local maximum at
x1 = p1. Hence, there exists ε > 0 such that {x(s) : s ∈ (−ε, ε)} ⊂ S0.
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Since the function f(s) defined in the proposition can be expressed as

f (s) = nT ẋ (s)

||ẋ (s)|| =
ẋ1

|ẋ1|
dx2/dx1√

1 + (dx2/dx1)
2
,

where n = (0, 1)T and ẋ = ẋ1(1, dx2/dx1) in (−ε, ε), we have that

df

ds
=

ẋ1

|ẋ1| ẋ1
d

dx1

⎛⎝ dx2/dx1√
1 + (dx2/dx1)

2

⎞⎠ =
d2x2

dx2
1

|ẋ1|(
1 + (dx2/dx1)

2
) 3

2

.

From expression (4.4) it follows that df/ds < 0 in (−ε, ε).
Statement (b) follows by using similar arguments. �

Lemma 4.2.8. Consider a planar linear system ẋ = Ax whose matrix A has only
real eigenvalues. Let L and γ be respectively a straight line in the phase plane
passing through the origin and an orbit of the system. If γ intersects L at more
than one point, then γ ⊂ L and L is invariant under the flow.

Proof. Suppose that det(A) = 0. In this case the orbits of the linear system are
either singular points or they are contained in straight lines, see Subsection 2.5.3,
and the lemma is obvious.

Suppose now that det(A) �= 0. Since linear transformations map straight lines
into straight lines, we can assume without loss of generality that A is given in its
real Jordan normal form. Therefore, A is either

(i)

(
λ1 0
0 λ2

)
with λ1 ≥ λ2, or (ii)

(
λ 1
0 λ

)
with λ ∈ R.

Suppose that p and q are two points in L ∩ γ. Since p,q ∈ L, then q = rp.
Moreover, since p,q ∈ γ, then q = eAs0p with s0 > 0. Therefore,(

r Id− eAs0
)
p = 0. (4.5)

Suppose that A is given by expression (i). Then by (4.5), either p1 = 0,
p2 = 0, or λ1 = λ2, where p = (p1, p2)

T . In any case we obtain that γ ⊂ L.
Suppose that A is given by expression (ii). Then by (4.5), p2 = 0 and therefore

γ is also contained in L. �
Using the map Ψ defined in expression (4.3) in the next result we study the

set of directions of a linear vector field restricted to an orbit.

Lemma 4.2.9. Consider a linear system ẋ = Ax with A ∈ GL(R2) and let γ be an
orbit.

(a) If all the eigenvalues of the matrix A are real and γ is not contained in a
straight line, then Ψ|γ is monotone and Ψ(γ) is contained in an open semi-
circle.
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(b) If all the eigenvalues of the matrix A have real part equal to zero and the
orbit γ is not a singular point, then Ψ(γ) = S1.

Proof. (a) Let p and q be two points in γ. Since A is an invertible matrix, if
Ψ(p) = Ψ(q), then p = λq, where λ = ‖Ap‖/‖Aq‖. Therefore, γ intersects
a straight line L which passes through the origin in two different points. From
Lemma 4.2.8 it follows that γ ⊂ L, which contradicts our assumptions. Therefore,
the map Ψ|γ is injective.

Since Ψ(−p) = −Ψ(p), the same argument that we used before can be ap-
plied to show that, if Ψ(p) ∈ Ψ(γ), then −Ψ(p) �∈ Ψ(γ). Therefore, Ψ(γ) is
contained in an open semi-circle.

(b) The proof follows straightforward by the representation γ = {esAp :
s ∈ R}, where esA is the composition of a rotation of angle βs and a homothetic
transformation. �

Proposition 4.2.10. Consider a linear system ẋ = Ax with A ∈ GL(R2) and such
that all the eigenvalues of A are real. Let L be a straight line in the plane which
does not pass through the origin, p a contact point of the flow with L, and γ(p)
the orbit through p.

(a) If det(A) > 0, then γ ⊂ S0 ∪ L.

(b) If det(A) < 0, then γ ⊂ S ∪ L.

Proof. (a) Let x(s) be the solution of the system such that x(0) = p. Since
det(A) > 0 by Proposition 4.2.7(a), there exists ε > 0 such that {x(s) : s ∈
(−ε, ε)} ⊂ S0 ∪ L and the function f(s) = nTΨ(x(s)) is continuous and strictly
decreasing in (−ε, ε).

Suppose that there exists s1 > 0 such that x(s1) ∈ LO, i.e., f(s1) > 0. Since
f(0) = 0 and f is decreasing in a neighbourhood of s = 0, there exists s∗ ∈ (0, s1)
such that f(s∗) = 0. This implies that Ψ(x(0)) = ±Ψ(x(s∗)), in contradiction
with Lemma 4.2.9(a). Similar arguments can be applied if we suppose that there
exists s1 < 0 such that x(s1) ∈ LI . Therefore, γ ⊂ S0 ∪ L.

Statement (b) follows by using similar arguments. �

4.3 Poincaré maps of homogeneous linear systems

Consider the planar homogeneous linear system

ẋ = Ax (4.6)

and let L+ and L− be two different straight lines in the phase plane which are
symmetric with respect to the origin. Note that then L+ and L− do not pass
through the origin. Moreover, L+ and L− split the phase plane into three regions.
We denote by S0 the open strip containing the origin, and by S+ and S− the
half-planes bounded by L+ and L−, respectively.
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Using the expression of the flow of the linear system (4.6) and arguments
similar to those employed in Subsection 4.1, we can define on L+ and on L− the
following subsets:

Dom++ := {q ∈ L+ : ∃sq > 0 such that esqAq ∈ L+, and either

esAq ⊂ S+ or esAq ⊂ S0 ∀s ∈ (0, sq)} ∪ CP+,

Dom+− := {q ∈ L+ : ∃sq > 0 such that esqAq ∈ L−, and

esAq ⊂ S0 ∀s ∈ (0, sq)}, (4.7)

Dom−− := {q ∈ L− : ∃sq > 0 such that esqAq ∈ L−, and either

esAq ⊂ S− or esAq ⊂ S0 ∀s ∈ (0, sq)} ∪ CP−,

Dom−+ := {q ∈ L− : ∃sq > 0 such that esqAq ∈ L+, and

esAq ⊂ S0 ∀s ∈ (0, sq)},

where CP+ and CP− are empty sets or consist of the contact points of the flow
with the straight lines L+ or L−, respectively.

If for some j, k ∈ {+,−} we have that Domjk �= ∅, then we define the
Poincaré map Πjk of the homogeneous linear system (4.6) associated to the straight
lines Lj and Lk as Πjk : Domjk → Lk, Πjk(q) = esqAq.

Remark 4.3.1. We remark that the Poincaré maps ΠM
jk defined in Subsection 4.1

are the same as the corresponding one defined above. Thus, in order to study the
maps ΠM

jk it is sufficient to study the maps Πjk.

In Proposition 4.3.3 we present some results on the domain of the Poincaré
maps. Necessary and sufficient conditions for the existence of these maps are given
in Proposition 4.3.4. But first we prove a technical lemma.

Lemma 4.3.2. Consider a planar linear system ẋ = Ax with A not the zero matrix.
Let L+ and L− be two symmetric straight lines in the plane and let Domjk be the
sets defined in (4.7). If for some j, k ∈ {+,−} the set Domjk �= ∅, then there
exists exactly one contact point p+ of the flow with L+. In this case p− = −p+

is the unique contact point of the flow with L−.

Proof. Suppose that there exists a point q1 in Dom++. (The other cases follow
in a similar way.) By definition, there exist sq1 > 0 and q2 ∈ L+ such that
q2 = esq1Aq1; i.e., q2 = Π++(q1). Moreover, either esAq1 ⊂ S+ or esAq1 ⊂ S0 for
every s ∈ (0, sq1). Therefore, the flow at the points q1 and q2 has opposite sense.
Thus LI

+ �= ∅ and LO
+ �= ∅. The lemma follows from Propositions 4.2.5(a.3) or

4.2.6(e), depending on whether det(A) �= 0 or det(A) = 0. �

Proposition 4.3.3. Consider a planar linear system ẋ = Ax with A not the zero
matrix. Let L+ and L− be two symmetric straight lines in the plane and let Domjk

be the sets defined in (4.7)) Suppose that Domjk �= ∅ for every j, k ∈ {+,−}.
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(a) If det(A) > 0, then

Π++ : Dom++ ⊂ LO
+ −→ LI

+,

Π+− : Dom+− ⊂ LI
+ −→ LO

−,

Π−− : Dom−− ⊂ LO
− −→ LI

−,

Π−+ : Dom−+ ⊂ LI
− −→ LO

+.

(b) If det(A) = 0, then Dom++ = {p+}, Dom−− = {p−}, Π++(p+) = p+,
Π−−(p−) = p−, and

Π+− : Dom+− ⊂ LI
+ −→ LO

−,

Π−+ : Dom−+ ⊂ LI
− −→ LO

+.

(c) If det(A) < 0, then

Π++ : Dom++ ⊂ LI
+ −→ LO

+,

Π+− : Dom+− ⊂ LI
+ −→ LO

−,

Π−− : Dom−− ⊂ LI
− −→ LO

−,

Π−+ : Dom−+ ⊂ LI
− −→ LO

+.

Proof. (a) Since Dom++ �= ∅ and Dom−− �= ∅, there exist a contact point p+

of the flow with the straight line L+, and a contact point p− of the flow with
the straight line L−, see Lemma 4.3.2. These points split L+ and L− into the
respective half-lines LI

+, L
O
+, L

I− and LO−, see Proposition 4.2.5.
Let x(s) be the solution of the system such that x(0) = p+. In Proposition

4.2.7(a) we proved that there exists ε > 0 such that x(s) ⊂ S0 ∪L+ if s ∈ (−ε, ε).
Thanks to the continuous dependence of the solutions of a differential equation on
the initial conditions, we conclude that if q1 ∈Dom++ and q2 = Π++(q1), then
the flow at q1 has outward sense and the flow at q2 has inward sense, see Figure
4.3(a). Therefore q1 ∈ LO

+ and q2 ∈ LI
+.

Take now a point q3 in Dom+− and let q4 = Π+−(q3). By the definition of
the set Dom+−, the orbit through q3 is contained during the flight time in S0.
Therefore, q1 ∈ LI

+ and q2 ∈ LO
−, see Figure 4.3(a).

Using the symmetry of the linear vector field with respect to the origin, we
obtain the result about the Poincaré maps Π−− and Π−+.

(b) Let p+ be the unique contact point of the flow with L+, see Lemma
4.3.2. By Proposition 4.2.6(b), p+ is a singular point. Thus, p+ ∈Dom++ and
Π++(p+) = p+. Similarly, there exists a unique contact point p− with the straight
line L− which is a singular point and Π−−(p−) = p−

Since det(A) = 0, the flow evolves in parallel straight lines. Suppose that
L+ is not invariant under the flow. Then every orbit intersects L+ in at most
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one point. Therefore, Dom++ = {p+} and Dom−− = {p−}. Similar arguments to
those used in the proof of statement (a) show that Π+− :Dom+− ⊂ LI

+ −→ LO
−

and Π−+ :Dom−+ ⊂ LI− −→ LO
+.

Suppose now that L+ is an invariant straight line. Then clearly Dom+− and
Dom−+ are empty sets, which contradicts our assumptions.

Statement (c) follows by using similar arguments to those used in the proof
of statement (a). �

Figure 4.3: Domain of the Poincaré maps when det(A) > 0 (a) and (b); when
det(A) < 0 (c); and when det(A) = 0 (d).

In the following result we present necessary and sufficient conditions for the
existence of the Poincaré maps Πjk with j, k ∈ {+,−}.
Proposition 4.3.4. Consider a planar linear system ẋ = Ax with non-zero matrix
A. Let L+ and L− be two symmetric straight lines in the plane. The Poincaré
maps associated to L+ and L− are defined if and only if the flow of the system
has a unique contact point with L+.
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Proof. Suppose that the Poincaré maps are defined. By definition, this implies
that Domjk are not empty. Therefore, the flow has a unique contact point p+

with L+ and a unique contact point p− with L−, see Lemma 4.3.2.

Conversely, suppose now that the flow has a unique contact point p+ with
L+. Then p+ lies in Dom++ and the Poincaré map Π++ is defined at it and
satisfies that Π++(p+) = p+. Moreover, by the symmetry of the vector field with
respect to the origin, p− = −p+ is a contact point of the flow with L−. Therefore,
p− ∈Dom−− and Π−−(p−) = p−.

It remains to prove that Π+− and Π−+ are also defined. We have divided the
proof according to the sign of d = det(A).

Suppose that d > 0. The contact points p+ and p− split the straight lines
L+ and L− into the half-lines LI

+, LO
+, LI− and LO− respectively. Let γ be the

orbit through p+ and suppose that the eigenvalues of A have non-zero imaginary
part. Since γ cannot be contained in S0, where S0 is the connected component of
R2�L+ containing the origin, we conclude that either γ+∩LO− �= ∅ or γ−∩LI− �= ∅.
Thanks to the continuous dependence of the solutions of a differential equation on
the initial conditions, Π+− and Π−+ are defined. Suppose now that the eigenvalues
of A are real. By Proposition 4.2.10, it follows that γ ⊂ S0 ∪ L+. Consider now
the following two cases: (i) γ ∩ L− �= ∅ and (ii) γ ∩ L− = ∅.

(i) In this case either γ+ intersects LO
− or γ− intersects LI

−. Suppose that γ
+∩

LO
− �= ∅. The continuous dependence of the solutions of a differential equation on

the initial conditions implies that the Poincaré map Π+− is defined. Now suppose
that γ+ ∩ LI− �= ∅. In a similar way we obtain that Π−+ is defined.

(ii) Since γ ⊂ S0 ∪L+ and γ ∩L− = ∅, the orbit γ lies in the strip bounded
by L+ and L−. Moreover, since the system is linear and the eigenvalues of A are
real numbers, either γ+ or γ− is not bounded. Suppose that γ+ is not bounded.
Let x(s) be the solution of the system such that x(0) = p+. Then lim

s↗+∞
Ψ(x(s)) =

Ψ(p+) = Ψ(x(0)), which contradicts Lemma 4.2.9. Therefore γ intersects L−. As
we have seen in (i), this implies that Π+− and Π−+ are defined.

Suppose that d < 0, i.e., the origin is a saddle point. Since p+ is a contact
point of the flow with L+, we can write L+ = {p+ + λṗ+ : λ ∈ R}. Suppose that
L+ is parallel to any separatrix of the saddle. Thus, ṗ+ is an eigenvector of A. Let
λ1 �= 0 be the corresponding eigenvalue. Set q = p+−λ−1

1 ṗ+ ∈ L+. Then Aq = 0
which implies that q = 0. Consequently, the straight line L+ passes through the
origin, which contradicts our assumptions. Therefore, L+ and L− intersect both
separatrices of the origin. By the continuous dependence of the solutions of a
differential equation on the initial conditions, it follows that Π+− and Π−+ are
defined, see Figure 4.3(c).

Suppose now that d = 0. Since p+ is the unique contact point of the flow
with the straight line L+, we have that L+ ∩ ker(A) = {p+} and the orbits are
contained in straight lines transversal to L+ and L−. It is easy to conclude that
Π+− and Π−+ are well defined, see Figure 4.3(d). �
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4.3.1 Poincaré maps πjk

Suppose that the Poincaré maps Πjk of the homogeneous linear system (4.6) asso-
ciated to the symmetric straight lines L+ and L− are defined. Hence, there exists
a unique contact point p of the flow with L+, see Proposition 4.3.4. Let n be the
unit vector orthogonal to L+ oriented in the opposite sense with respect to the
origin, i.e., nTp > 0. Then L+ = {p+ λv : λ ∈ R} and L− = {−p+ λv : λ ∈ R},
where v = ṗ or v = n⊥ depending on whether det(A) �= 0 or det(A) = 0.

If det(A) > 0, then by Proposition 4.2.5(a.2),

LI
+ = {p+ aṗ : a ≥ 0} , LO

+ = {p− aṗ : a ≥ 0} ,
LI
− = {−p− aṗ : a ≥ 0} , LO

− = {−p+aṗ : a ≥ 0} , (4.8)

and if det(A) < 0, then

LI
+ = {p− aṗ : a ≥ 0} , LO

+ = {p+ aṗ : a ≥ 0} ,
LI
− = {−p+ aṗ : a ≥ 0} , LO

− = {−p− aṗ : a ≥ 0} . (4.9)

Suppose now that det(A) = 0. If det(An⊥,n⊥) < 0, then by Proposition 4.2.6(d),

LI
+ =

{
p+ an⊥ : a ≥ 0

}
, LO

+ =
{
p− an⊥ : a ≥ 0

}
,

LI
− =

{−p− an⊥ : a ≥ 0
}
, LO

− =
{−p+an⊥ : a ≥ 0

}
,

(4.10)

and if det(An⊥,n⊥) > 0, then

LI
+ =

{
p− an⊥ : a ≥ 0

}
, LO

+ =
{
p+ an⊥ : a ≥ 0

}
,

LI
− =

{−p+ an⊥ : a ≥ 0
}
, LO

− =
{−p−an⊥ : a ≥ 0

}
.

(4.11)

Using this parametrization of L+ and L− we can associate to any point q
on L+ and on L− a unique value a ≥ 0, called the coordinate of q. The following
statements are obvious:

(i) The unique points on L+ and on L− with coordinate equal to 0 are the
contact points p and −p;

(ii) two symmetric points in L+ and in L− have equal coordinates.

Take q1 ∈ Lj and q2 ∈ Lk such that q2 = Πjk(q1), where j, k ∈ {+,−}.
Let a1 and a2 be the coordinates of q1 and q2, respectively. The Poincaré map
πjk is defined by a2 = πjk(a1). To know the qualitative behaviour of the Poincaré
map πjk with j.k ∈ {+,−}, is equivalent to know the qualitative behaviour of the
Poincaré map Πjk. The following results present some important properties of the
Poincaré maps πjk.

Lemma 4.3.5. Consider a planar linear system ẋ = Ax with non-zero matrix A.
Let L+ and L− be two symmetric straight lines in the plane. Suppose that the
Poincaré maps πjk with j, k ∈ {+,−} are defined. Then:
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(a) π++ and π−− coincide.

(b) π+− and π−+ coincide.

(c) The Poincaré maps π∗
jk associated to the flow of the linear system ẋ = −Ax

and the straight lines L+ and L− are defined, and they satisfy π∗
jk = π−1

jk .

(d) πjk are analytic functions. Moreover, the inverse of these functions are also
analytic functions.

Proof. Statements (a) and (b) follow immediately by using the symmetry of the
vector field with respect to the origin and by noting that the coordinates of two
symmetric points on L+ and L− are equal.

(c) The change of time variable τ = −s transforms the linear system ẋ = Ax
into the linear system ẋ = −Ax. Therefore, the orbits of the two systems coincide
but have opposite orientation. We conclude that the Poincaré maps π∗

jk associated

to the system ẋ = −Ax are defined and they coincide with the Poincaré maps π−1
jk .

(d) The statement follows by noting that the flight time s is an analytic
function of the initial condition x and that the flow Φ(s,x) of the linear system is
also an analytic function of its arguments s and x, see Subsection 2.7.2 for more
details. �

In order to study the qualitative behaviour of all the Poincaré maps πjk

associated to a planar linear system it is enough to consider the maps π++ and
π+−, see Lemma 4.3.5(a) and (b). Moreover, we can restrict ourselves to the case
when trace(A) ≥ 0. The case when trace(A) < 0 then follows by taking π−1

++ and

π−1
+−, see Lemma 4.3.5(c).

Another important property of the Poincaré maps πjk is that they are in-
variant by linear changes of coordinates. Hence, we can consider that the matrix
of the linear system is expressed in the most convenient way, for instance in its
real Jordan form. A generalization of this fact can be found in [45]. Before proving
this, we show that the half-lines LI

+, L
O
+, L

I− and LO− are invariant under linear
changes of coordinates.

Given a matrix M ∈ GL(R2) and a subset L in the plane, we denote by ML
the set {Mq : q ∈ L}.
Lemma 4.3.6. Let A be a non-zero matrix, M ∈ GL(R2) and L a straight line in
the plane. If p is a contact point of the flow of the planar system ẋ = Ax with
L, then p∗ = Mp is a contact point of the flow of the system ẋ = A∗x with the
straight line L∗ = ML, where A∗ = MAM−1. Moreover, ṗ∗ = M ṗ, L∗I = MLI

and L∗O = MLO.

Proof. Since the linear change of coordinates y = Mx transforms the system
ẋ = Ax into the system ẏ = A∗y, it is clear that p∗ = Mp is a contact point
of the flow of the new system with the straight line L∗. Moreover, ṗ∗ = A∗p∗ =
MAp = M ṗ. The contact points p and p∗ divide the straight lines L and L∗ in
two half-lines LI , LO and L∗I , L∗O, respectively. In order to show that L∗I = MLI
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and L∗O = ML∗O we carry out the proof depending on the invertibility of the
matrix A.

Suppose that d = det(A) > 0 (the case d < 0 follows in a similar way).
Hence det(A∗) > 0. From Proposition 4.2.5(a.2) we have LI = {p+ λṗ : λ ≥ 0},
LO = {p+ λṗ : λ ≤ 0}, L∗I = {p∗ + λṗ∗ : λ ≥ 0} and L∗O = {p∗ + λṗ∗ : λ ≤ 0}.
Therefore, L∗I = MLI and L∗O = MLO.

Suppose now that d = 0. Let n and n∗ be the unit orthogonal vectors to L
and L∗, respectively, which are oriented in the direction opposite to the origin.
Since

p∗T (Mn⊥)⊥ = − det
(
Mp,Mn⊥) = − det (M)pTn,

we have that

n∗ = − sign (det (M))

(
Mn⊥)⊥
||Mn⊥|| , n∗⊥ = sign (det (M))

Mn⊥

||Mn⊥||
and

det
(
A∗n∗⊥,n∗⊥) = det (M)

||Mn⊥|| det
(
An⊥,n⊥) .

Suppose that det(An⊥,n⊥) > 0 (the case det(An⊥,n⊥) < 0 follows similarly).
Then LI = {p+ λn⊥ : λ ≤ 0} and LO = {p + λn⊥ : λ ≥ 0}, see Proposition
4.2.6(d). If det(M) > 0, then det(A∗n∗⊥,n∗⊥) > 0. From Proposition 4.2.6(d) we
obtain that L∗I = {p∗+λn∗⊥ : λ ≤ 0} and L∗O = {p∗+λn∗⊥ : λ ≥ 0}. Therefore,
L∗I = MLI and L∗O = MLO. If det(M) < 0, then det(A∗n∗⊥,n∗⊥) < 0 and
L∗I = {p∗ + λn∗⊥ : λ ≥ 0} and L∗O = {p∗ + λn∗⊥ : λ ≤ 0}. In this case we also
conclude that L∗I = MLI and L∗O = MLO. �
Proposition 4.3.7. Consider a linear system ẋ = Ax with A ∈ GL(R2) and let L+

and L− be two symmetric straight lines in the plane. Suppose that the Poincaré
maps πjk associated to L+ and L− are defined. If M ∈ GL(R2), then the Poincaré
maps are invariant under the change of coordinates y = Mx.

Proof. Since the Poincaré maps πjk are defined, there exists a contact point p
of the flow with L+, see Proposition 4.3.4. Thus p∗ = Mp is the contact point
of the flow of the system ẋ = A∗x with the straight line L∗

+ = ML+, where
A∗ = MAM−1, see Lemma 4.3.6. By Proposition 4.3.4, the Poincaré maps π∗

jk

associated to the flow of the system ẋ = A∗x and the straight lines L∗
+ and

L∗
− = ML− are defined. We will prove that π∗

+k(a) = π+k(a) for k ∈ {+,−}.
Consider a value a in the domain of the map π++. Hence, there exist a point

q1 in LO
+ and a point q2 in LI

+ such that q1 = p − aṗ, q2 = p + π++ (a) ṗ and
q2 = Π++ (q1) . Suppose that det(A) > 0 (the case when det(A) < 0 follows in
a similar way). Then L∗O

+ = MLO
+ and L∗I

+ = MLI
+, see Lemma 4.3.6. Therefore

q∗
1 = Mq1 = p∗ − aM ṗ ∈ L∗O

+ , q∗
2 = Mq2 = p∗ + π++(a)M ṗ ∈ L∗I

+ and
q∗
2 = Π∗

++(q
∗
1). Noting that ṗ∗ = A∗p∗ = M ṗ, it follows that π∗

++(a) = π++(a).
Consider now that a belongs to the domain of the map π+−. Using similar

arguments it can be proved that π∗
+−(a) = π+−(a). �
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Next we prove that when det(A) = 0 the Poincaré map π+− is not invariant
under linear changes of coordinates. In this case, however, the new Poincaré map
π∗
+− is just a scaled version of π+−.

Proposition 4.3.8. Consider a planar linear system ẋ = Ax with non-zero matrix
A such that det(A) = 0. Let L+ and L− be two symmetric straight lines in the
plane. Suppose that the Poincaré map π+− associated to L+ and L− is defined.
If M ∈ GL(R2), then the Poincaré map π∗

+− associated to the flow of the system
ẋ = A∗x, where A∗ = MAM−1, and the straight lines ML+ and ML− are defined.
Moreover there exists K > 0 such that π∗

+−(Ka) = Kπ+−(a).

Proof. Since π+− is defined, there exists a contact point p of the flow with L+.
Then p∗ = Mp is a contact point of the flow of the system ẋ = A∗x with L∗

+ =
ML+. We conclude that the Poincaré map π∗

+− is well defined, see Proposition
4.3.4.

Suppose that det(An⊥,n⊥) > 0 (similar arguments can be applied in the
case det(An⊥,n⊥) < 0). Take a ≥ 0 belonging to the domain of π+−. There exist
q1 ∈ LI

+ and q2 ∈ LO
− such that q1 = p − an⊥ and q2 = −p − π+−(a)n⊥. Since

L∗I
+ = MLI

+ and L∗O− = MLO−, the points q∗
1 = Mq1 and q∗

2 = Mq2 satisfy

q∗
1 = p∗ − sign (det (M)) a∗n∗⊥,

q∗
2 = −p∗ − sign (det (M)) π∗

+− (a∗)n∗⊥.

We conclude that

sign (det (M)) a∗n∗⊥ = aMn⊥,

sign (det (M)) π∗
+− (a∗)n∗⊥ = π+− (a)Mn⊥.

Since

n∗⊥ = sign (det (M))
Mn⊥

||Mn⊥|| ,

setting K = ‖Mn⊥‖ > 0 it follows that a∗ = Ka and π∗
+−(a

∗) = K π+−(a).
Consequently, π∗

+−(Ka) = K π+−(a), as claimed. �

As we have proved in Propositions 4.3.7 and 4.3.8, in order to study the
qualitative behaviour of the Poincaré maps πjk we can assume that the matrix
of the linear system is given in real Jordan normal form. Looking at the implicit
expressions for the Poincaré maps in Proposition 4.3.11, it is easy to understand
the simplification in computations that this argument introduces.

Corollary 4.3.9. Consider a planar linear system ẋ = Ax such that the trace t
and the determinant d of the matrix A satisfy t2 − 4d �= 0. Let L+ and L− be
two symmetric straight lines in the plane and suppose that the Poincaré maps πjk

associated to L+ and L− are defined. Then πjk are analytic functions with respect
to the parameters t and d.
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Proof. Without loss of generality we can assume that the matrix A is in its real
Jordan normal form, see Propositions 4.3.7 and 4.3.8. Since t2 − 4d �= 0, the
coefficients of the Jordan matrix A are analytic functions with respect to the
parameters t and d. The corollary follows from the differentiable dependence of
the solutions of a linear differential system on parameters. �

4.3.2 Existence of the Poincaré maps

In the next result we characterize the existence of the Poincaré maps πjk.

Theorem 4.3.10. Consider a planar linear system ẋ = Ax with non-zero matrix
A. Let L+ and L− be two symmetric straight lines in the plane. The following
statements are equivalent.

(a) The Poincaré maps πjk associated to L+ and L− are defined.

(b) There exists a unique contact point of the flow of the linear system with L+.

(c) If v is a vector parallel to the straight line L+, then v and Av are linearly
independent, i.e., det(Av,v) �= 0.

Proof. The equivalence between statements (a) and (b) is exactly Proposition
4.3.4. Then it remains to prove that statements (b) and (c) are equivalent.

Let v be a vector parallel to L+ and q a point in L+. The straight lines
L+ and L− can be expressed as L+ = {q + λv : λ ∈ R} and L− = {−q + λv :
λ ∈ R}. We divide the proof into two cases, depending on whether det(A) = 0 or
det(A) �= 0.

Suppose that det(A) �= 0. By Lemma 4.2.3, the straight line L = {λA−1v :
λ ∈ R} is the isocline defined by v. There exists a unique contact point of the flow
with L+ if and only if L+ and L intersect at a unique point, i.e., det(A−1v,v) �= 0
or, equivalently, det(Av,v) �= 0.

Suppose now that det(A) = 0. Since A is not the zero matrix, if there exists a
unique contact point of the flow with L+, then L+ is a non-invariant straight line.
Suppose that det(Av,v) = 0. This implies that Av = αv for some α ∈ R, and
so L+ is an invariant straight line, which contradicts our assumption. Therefore,
det(Av,v) �= 0. Conversely, if det(Av,v) �= 0, then the straight lines L+ and
ker(A) are not parallel. Therefore L+ and ker(A) intersect at a unique point p,
which is a singular point. Moreover, L+ = {p + λv : λ ∈ R} is a non-invariant
straight line. By Proposition 4.2.6(c), p is the unique contact point of the flow
with L+. �

4.3.3 Implicit equations of the Poincaré maps πjk

We now present some implicit equations for πjk depending on the sign of the
determinant of the matrix A.
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Proposition 4.3.11. Consider a planar linear system ẋ = Ax with non-zero matrix
A. Let L+ and L− be two symmetric straight lines in the plane and let p be a
contact point of the flow with L+.

(a) If det(A) > 0, then there exist two analytic functions, s++(a) ≥ 0 and
s+−(a) > 0, such that

(Id + π++ (a)A)p = es++(a)A (Id− aA)p,

(−Id + π+− (a)A)p = es+−(a)A (Id + aA)p.

(b) If det(A) < 0, then there exist two analytic functions, s++(a) ≥ 0 and
s+−(a) > 0, such that

(Id + π++ (a)A)p = es++(a)A (Id− aA)p,

(−Id− π+− (a)A)p = es+−(a)A (Id− aA)p.

(c) Suppose that det(A) = 0. There exists an analytic function s+−(a) > 0 such
that

(c.1) if det(An⊥,n⊥) > 0, then −p− π+−(a)n⊥ = es+−(a)A(p− an⊥),

(c.2) if det(An⊥,n⊥) < 0, then −p+ π+−(a)n⊥ = es+−(a)A(p+ an⊥).

Proof. (a) Since det(A) > 0 it follows that Dom++ ⊂ LO
+ and Π++(Dom++) ⊂ LI

+,
see Proposition 4.3.3(a). Take q1 ∈ LO

+ and q2 ∈ LI
+ such that q2 = Π++(q1), and

let a be the coordinate of q1. Then π++(a) is the coordinate of q2, i.e., q1 = p−aṗ
and q2 = p+ π++(a)ṗ, see (4.8).

On the other hand, since q2 = Π++(q1), there exists an analytic function
sq1 (the flight time) such that q2 = esq1Aq1. Therefore, setting s++(a) = sq1 we
obtain that p+ π++(a)ṗ = es++(a)A(p− aṗ). The statement follows by using the
fact that ṗ = Ap.

The remaining statements can be proved in a similar way. �

4.4 Qualitative behaviour of the maps πjk

Suppose that the Poincaré maps π++ and π+− associated to the flow of a planar
homogeneous linear system ẋ = Ax and two symmetric straight lines in the plane
L+ and L− are defined. In this section we study the qualitative behaviour of the
maps π++ and π+− depending on the values of t = trace(A) and d = det(A).

Since π++ and π+− are invariant under linear changes of coordinates when
d �= 0, see Proposition 4.3.7, and their qualitative behaviour does not change when
d = 0, see Proposition 4.3.8, we can consider without loss of generality that A is in
real Jordan normal form. Accordingly, this section is divided in subsections, each
devoted to one of the real Jordan normal forms.
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Moreover, we need to study only the behaviour of π++ and π+− when t > 0:
the case t < 0 can be obtained from the case t > 0 by Lemma 4.3.5(c). Accordingly,
in each of the following subsections we summarize the qualitative behaviour of π++

and π+− in two propositions and two corollaries. We deal first with the case t > 0.
Throughout this section we will write f ′(a) and f ′′(a) to denote the first and

the second derivative of a function f(a) with respect to a.

4.4.1 Diagonal node: d > 0 and t2 − 4d > 0

It is known that in this case the matrix A has two real and distinct eigenvalues
λ1 = (t +

√
t2 − 4d)/2 and λ2 = (t − √t2 − 4d)/2, and the real Jordan normal

form of A is (
λ1 0
0 λ2

)
.

Proposition 4.4.1. Consider A ∈ GL(R2) such that d > 0, t > 0 and t2 − 4d > 0.
Then the eigenvalues of A satisfy λ1 > λ2 > 0. Let π++ be the Poincaré map
defined by the flow of the linear system ẋ = Ax and associated to two symmetric
straight lines in the plane, L+ and L−. Then the following holds:

(a) π++ : [0, λ−1
1 )→ [0,+∞), π++(0) = 0, lim

a↗λ−1
1

π++(a) = +∞ and π++(a) > a

in (0, λ−1
1 ).

(b) If a ∈ (0, λ−1
1 ), then π′

++(a) > 1 and lim
a↘0

π′
++(a) = 1.

(c) If a ∈ (0, λ−1
1 ), then π′′

++(a) > 0.

(d) The graph of π++ has a vertical asymptote at a = λ−1
1 .

(e) π++ is implicitly defined by the expression

(
2 + π++ (a)

(
t−√t2 − 4d

)
2− a

(
t−√t2 − 4d

) ) t+
√

t2−4d

t−
√

t2−4d

=
2 + π++ (a)

(
t+

√
t2 − 4d

)
2− a

(
t+

√
t2 − 4d

) .

(f) The qualitative behaviour of the graph of π++ is shown in Figure 4.5(a).

Proof. By Proposition 4.3.11(a), the map π++ satisfies that

(Id + π++ (a)A)p = es++(a)A (Id− aA)p,

where p =(p1, p2)
T is the contact point of the flow of the linear system with L+,

a ≥ 0, b = π++(a) ≥ 0 and s = s++(a) ≥ 0.
Without loss of generality we can assume that the matrix A is in real Jordan

normal form. Thus the coordinate axes are invariant under the flow. Since p is
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the contact point and L+ does not pass through the origin, p1 �= 0 and p2 �= 0.
Therefore the map b = π++(a) is determined by the system

1 + bλ1 = (1− aλ1) e
λ1s, 1 + bλ2 = (1− aλ2) e

λ2s, (4.12)

and the inequalities a ≥ 0, b ≥ 0 and s ≥ 0.

(a) Note that s = 0, a = 0 and b = 0 is a solution of system (4.12). Hence,
π++(0) = 0. Furthermore, since we are interested in solutions with b ≥ 0, it follows
that 1 − aλ1 > 0 and 1 − aλ2 > 0, i.e., a < λ−1

1 < λ−1
2 . Therefore, the domain of

π++ is contained in [0, λ−1
1 ).

Now we find the solutions of system (4.12) such that s > 0. Multiplying the
first equation by λ2, the second one by λ1 and substracting the first from the
second, we obtain the following parametric equations of π++:

a (s) =
λ1

(
1− eλ2s

)− λ2

(
1− eλ1s

)
d (eλ1s − eλ2s)

,

b (s) =
(λ2 − λ1) e

ts − λ2e
λ2s + λ1e

λ1s

d (eλ2s − eλ1s)
,

(4.13)

where t = λ1+λ2 and d = λ1λ2. Since λ1 > λ2, functions a(s) and b(s) are defined
and differentiable in (0,+∞). Moreover, a(s) > 0 in (0,+∞), lim

s↘0
b(s) = 0 and

lim
s↘0

a(s) = 0.

Differentiating with respect to s in (4.12) and isolating da/ds and db/ds we
obtain

da

ds
= b

λ1 − λ2

eλ1s − eλ2s
,

db

ds
= a

λ1 − λ2

eλ1s − eλ2s
ets.

Since a(s) > 0 in (0,+∞), we have b′(s) > 0. Hence, b(s) > 0 and consequently
a′(s) > 0. Finally, from (4.13) it follows that lim

s↗+∞
a(s) = λ−1

1 and lim
s↗+∞

b(s) =

+∞. We conclude that π++ : [0, λ−1
1 )→ [0,+∞) and lim

a↗λ−1
1

π++(a) = +∞.

Note that in order to finish the proof of the statement (a) it remains to
verify that π++(a) > a in [0, λ−1

1 ). This inequality will be shown in the proof of
the statement (b) below.

(d) The statement follows by noting that

lim
a↗λ−1

1

db

da
= lim

a↗λ−1
1

aets

b
= +∞.

(e) Isolating s in (4.12) we obtain

(
1 + bλ1

1− aλ1

)λ2
λ1

=
1 + bλ2

1− aλ2
, (4.14)
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which is an implicit expression of π++(a). The expression of the statement (e)
is obtained by substituting λ1 = (t +

√
t2 − 4d)/2 and λ2 = (t − √t2 − 4d)/2 in

(4.14)
(b) and (c) Differentiating expression (4.14) with respect to a and isolating

db/da we have that

π′
++ (a) =

db

da
=

a

b

1 + bt+ b2d

1− at+ a2d
. (4.15)

The qualitative behaviour of the parabolas 1+bt+b2d and 1−at+a2d is represented
in Figure 4.4. It is easy to conclude that π′

++(a) > 0 in (0, λ−1
1 ). Moreover, from

(4.15) and (4.13) it follows that

lim
a↘0

π′
++ (a) = lim

s↘0

a (s)

b (s)
= lim

s↘0

λ2

(
1− eλ1s

)− λ1

(
1− eλ2s

)
(λ2 − λ1) ets − λ2eλ2s + λ1eλ1s

.

Figure 4.4: Qualitative behaviour of 1 + t x+ d x2 and 1− t x+ d x2 when d > 0,
t > 0 and t2 − 4d > 0.

Hence, by applying l’Hôpital’s rule twice we have

lim
a↘0

π′
++ (a) =

d (λ2 − λ1)

t2 (λ2 − λ1)− λ3
2 + λ3

1

= 1.

On the other hand, differentiating with respect to a in (4.15) we obtain

π′′
++ (a) =

d

da

(
db

da

)
=

(b− a) (b+ a)

ab2 (1− at+ a2d)

db

da
. (4.16)

Note that it remains to be proved that π++(a) > a in (0, λ−1
1 ) because in this case

π′′
++(a) > 0, which will finish the proof.

Suppose that there exists a value a0 in (0, λ−1
1 ) such that π++(a0) = a0. The

function g(a) = π++(a)−a is continuously defined in [0, a0] and analytic in (0, a0).
Moreover, g(0) = g(a0) = 0. Thus, there exists ξ ∈ (0, a0) such that g′(ξ) = 0 or,
equivalently, π′

++(ξ) = 1. The function

h (a) =

{
1, if a = 0,
π′
++ (a) , if a ∈ (0, ξ] ,
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is continuous in [0, ξ], differentiable in (0, ξ) and satisfies that h(0) = h(ξ) = 1.
Hence, there exists a1 ∈ (0, ξ) such that h′(a1) = 0, equivalently, π′′

++(a1) = 0.
By (4.16), this implies that π++(a1) = a1, equivalently, g(a1) = 0. Using this
argument repeatedly we obtain a strictly decreasing sequence {an}+∞

n=0 such that
g(ak) = 0 for any k ≥ 0, which contradicts the fact that g is a non-identically zero
analytic function. Then π++(a) �= a in (0, λ−1

1 ). Noting that lim
a↗λ−1

1

π++(a) = +∞,

see statement (a), it follows that π++(a) > a in (0, λ−1
1 ). �

Figure 4.5: Qualitative behaviour of the Poincaré map π++ for the parameters (a)
d > 0, t > 0 and t2 − 4d > 0, (b) d > 0, t < 0 and t2 − 4d > 0.

Corollary 4.4.2. Consider A ∈ GL(R2) such that d > 0, t < 0 and t2 − 4d > 0.
Then the eigenvalues of A satisfy 0 > λ1 > λ2. Let π++ be the Poincaré map
defined by the flow of the linear system ẋ = Ax associated to two symmetric
straight lines in the plane, L+ and L−. Then:

(a) π++ : [0,+∞) → [0, |λ2|−1), π++(0) = 0, lim
a↗+∞

π++(a) = |λ2|−1 and

π++(a) < a in (0, |λ2|−1).

(b) If a ∈ (0,+∞), then 0 < π′
++(a) < 1 and lim

a↘0
π′
++(a) = 1.

(c) If a ∈ (0,+∞), then π′′
++(a) < 0.

(d) The graph of π++ has a horizontal asymptote at b = |λ2|−1.

(e) π++ is implicitly defined by the expression

(
2 + π++ (a)

(
t−√t2 − 4d

)
2− a

(
t−√t2 − 4d

) ) t+
√

t2−4d

t−
√

t2−4d

=
2 + π++ (a)

(
t+

√
t2 − 4d

)
2− a

(
t+

√
t2 − 4d

) .

(f) The qualitative behaviour of the graph of π++ is shown in Figure 4.5(b).

Proof. The proof follows straightforward by noting that the map π++ is the inverse
of the map described at Proposition 4.4.1, see Lemma 4.3.5(c). �
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Proposition 4.4.3. Consider A ∈ GL(R2) such that d > 0, t > 0 and t2 − 4d > 0.
Then the eigenvalues of A satisfy λ1 > λ2 > 0. Let π+− be the Poincaré map
defined by the flow of the linear system ẋ = Ax and associated to two symmetric
straight lines in the plane L+ and L−. Then:

(a) There exists a value b∗ > λ−1
2 such that π+− : [0,+∞)→ [b∗,+∞), π+−(0) =

b∗, lim
a↗+∞

π+−(a) = +∞, and π+−(a) > a in [0,+∞).

(b) If a ∈ (0,+∞), then 0 < π′
+−(a) < 1 and lim

a↘0
π′
+−(a) = 0.

(c) If a ∈ [0,+∞), then π′′
+−(a) > 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of π+− when a
tends to +∞.

(e) π+− is implicitly defined by the expression

(
π+− (a)

(
t−√t2 − 4d

)− 2

a
(
t−√t2 − 4d

)
+ 2

) t+
√

t2−4d

t−
√

t2−4d

=
π+− (a)

(
t+

√
t2 − 4d

)− 2

a
(
t+

√
t2 − 4d

)
+ 2

.

(f) The qualitative behaviour of the graph of π+− is shown in Figure 4.6(a).

Proof. Applying arguments similar to those in the proof of Proposition 4.4.1, we
obtain that b = π+−(a) is determined by the system

−1 + bλ1 = (1 + aλ1) e
λ1s, −1 + bλ2 = (1 + aλ2) e

λ2s, (4.17)

and the inequalities a ≥ 0, b ≥ 0 and s > 0.

(a) and (d) Since a ≥ 0, from (4.17) it follows that −1 + bλ1 > 0 and
−1 + bλ2 > 0, i.e., b > λ−1

2 > λ−1
1 . Thus the image of π+− is contained in

(λ−1
1 ,+∞).

Multiplying the first equation in (4.17) by λ2, the second one by λ1 and
substracting the second equation from the first, we obtain the parametric equations
of π+−:

a (s) =
λ2

(
1 + eλ1s

)− λ1

(
1 + eλ2s

)
d (eλ2s − eλ1s)

,

b (s) =
(λ2 − λ1) e

ts + λ2e
λ2s − λ1e

λ1s

d (eλ2s − eλ1s)
.

(4.18)

The auxiliary function f(s) = λ2(1+eλ1s)−λ1(1+eλ2s) satisfies that f ′(s) =
d(eλ1s − eλ2s) > 0, f(0) = 2(λ2 − λ1) < 0 and lim

s↗+∞
f(s) = +∞. Consequently,

there exists a unique value s∗ > 0 such that f(s∗) = 0, equivalently, a(s∗) = 0.
Hence, if s ∈ (0, s∗), then a(s) > 0 and b(s) > 0.
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Differentiating with respect to s in (4.17) and isolating da/ds and db/ds, we
obtain that

da

ds
=

eλ2s (1 + aλ2)− eλ1s (1 + aλ1)

eλ1s − eλ2s
,

db

ds
= a

(λ2 − λ1) e
ts

eλ1s − eλ2s
.

Since da/ds < 0 in (0, s∗], lim
s↘0

a(s) = +∞ and a(s∗) = 0, the domain of definition

of π+−(a) is [0,+∞). Moreover, since db/ds < 0 in (0, s∗] and lim
s↘0

b(s) = +∞, the

image of π+−(a) is contained in [b∗,+∞) where b∗ = b(s∗) > λ−1
2 .

Finally from expression (4.18) we have lim
a↗+∞

π+−(a)/a = lim
s↘0

b/a = 1 and

b (s)− a (s) =
(λ2 − λ1) (e

ts − 1) + λ2

(
eλ2s − eλ1s

)
+ λ1

(
eλ2s − eλ1s

)
d (eλ2s − eλ1s)

> 0.

From this expression it follows that b(s) > a(s), i.e., π+−(a) > a. Moreover, by
applying l’Hôpital’s rule twice we have lim

a↗+∞
(b−a) = 2t/d. We conclude that the

straight line b = a+2t/d is an asymptote of the graph of π+−(a) when a tends to
+∞.

(e) Isolating s in (4.17) we obtain an implicit expression of π+−(
bλ1 − 1

aλ1 + 1

)λ2
λ1

=
bλ2 − 1

aλ2 + 1
. (4.19)

The statement follows by substituting the values of λ1 and λ2 in (4.19).
(b) and (c) Differentiating with respect to a in expression (4.19) and isolating

db/da yields

π′
+− (a) =

db

da
=

a

b

1− bt+ b2d

1 + at+ a2d
, (4.20)

where the parabolas 1 − bt+ b2d and 1 + at+ a2d are shown in Figure 4.4. Since
a ≥ 0 and b > λ−1

2 , then π′
+−(a) > 0 in [0,+∞) and lim

a↘0
π′
+−(a) = 0.

From expression (4.20) we compute

π′′
+− (a) =

(b − a) (b+ a)

ab2 (1 + at+ a2d)

db

da
> 0,

which proves the proposition. �

Corollary 4.4.4. Consider A ∈ GL(R2) such that d > 0, t < 0, and t2 − 4d > 0.
Then the eigenvalues of A satisfy 0 > λ1 > λ2. Let π+− be the Poincaré map
defined by the flow of the linear system ẋ = Ax and associated to two symmetric
straight lines in the plane L+ and L−. Then:

(a) There exists a value a∗ > |λ1|−1 such that π+− : [a∗,+∞) −→ [0,+∞),
π+−(a∗) = 0, lim

a↗+∞
π+−(a) = +∞, and π+−(a) < a in [a∗,+∞).
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Figure 4.6: Qualitative behaviour of the Poincaré map π+− for the parameters (a)
d > 0, t > 0, and t2 − 4d > 0, (b) d > 0, t < 0, and t2 − 4d > 0.

(b) If a ∈ (a∗,+∞), then π′
+−(a) > 1 and lim

a↘a∗
π′
+−(a) = +∞.

(c) If a ∈ (a∗,+∞), then π′′
+−(a) < 0.

(d) The straight line b = a+ 2t/d is an asymptote for the graph of π+− when a
tends to +∞.

(e) π+− is implicitly defined by the expression of Proposition 4.4.3(e).

(f) The qualitative behaviour of the graph of π+− is shown in Figure 4.6(b).

Proof. The proof follows easily by using that π+− is the inverse map of the one
described in Proposition 4.4.3, see Lemma 4.3.5(c). �

4.4.2 Non-diagonal node: d > 0 and t2 − 4d = 0

When t2 − 4d = 0, the matrix A has two real eigenvalues which are equal, λ1 =
λ2 = λ. In this case there exist two different real Jordan normal forms for the
matrix A, one diagonal and the other non-diagonal. In the diagonal case it is easy
to check the non-existence of contact points of the flow with any straight line not
passing through the origin. This implies the non-existence of Poincaré maps, see
Theorem 4.3.10. Thus we only need to consider the non-diagonal case, that is,

A =

(
λ 1
0 λ

)
with λ =

t

2
.

Lemma 4.4.5. Consider the function ψ1 : R2 → R given by ψ1(x, y) = 1 + exy(1−
xy). The qualitative behaviour of the graph of ψ1(x, y0) is shown in Figure 4.7,
depending on whether y0 > 0 (a) or y0 < 0 (b).

Proof. Since ∂ψ1/∂x|(x,y0)
= −xy20exy0 and ∂2ψ1/∂x

2
∣∣
(x,y0)

= −y0(1 + y0)e
xy0 ,

when y0 > 0 the unique critical value of ψ1(x, y0) is x = 0 which is a maximum.
Moreover, lim

x↗−∞
ψ1(x, y0) = 1, lim

x↗+∞
ψ1(x, y0) = −∞, and ψ1(0, y0) = 2. This

proves the lemma. The case y0 < 0 follows by noting that ψ1(−x, y) = ψ1(x,−y).
�
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Figure 4.7: Qualitative behaviour of ψ1 (x, y0) = 1 + exy0 (1− xy0) when y0 > 0
(a) and when y0 < 0 (b).

Proposition 4.4.6. Consider A ∈ GL(R2) such that d > 0, t > 0, and t2 − 4d =
0. Then the eigenvalues of A satisfy that λ1 = λ2 = λ. Assume that A is not
diagonalizable and let π++ be the Poincaré map defined by the flow of the linear
system ẋ = Ax and associated to two symmetric straight lines in the plane L+

and L−. Then:

(a) π++ : [0, λ−1)→ [0,+∞), π++(0) = 0, lim
a↗λ−1

π++(a) = +∞, and π++(a) >

a in (0, λ−1).

(b) If a ∈ (0, λ−1), then π′
++(a) > 1 and lim

a↘0
π′
++(a) = 1.

(c) If a ∈ (0, λ−1), then π′′
++(a) > 0.

(d) The graph of π++ has a vertical asymptote at a = λ−1.

(e) π++ is implicitly defined by the expression

t π++ (a) + 2

2− at
= e

2 t (π++(a)+a)
(t π++(a)+2)(2−at) .

(f) The qualitative behaviour of the graph of π++ is shown in Figure 4.5(a).

Proof. By Proposition 4.3.11(a),

(Id + π++ (a)A)p = esA (Id− aA)p,

where p = (p1, p2)
T is the contact point of the flow with L+, a ≥ 0, π++(a) ≥ 0,

and s ≥ 0.
Without loss of generality we assume that the matrix A is in real Jordan

normal form. Thus x2 = 0 is a straight line invariant under the flow. Since p is
the contact point and L+ does not pass through the origin, p2 �= 0. Therefore, the
map b = π++(a) is implicitly defined by the system

1 + bλ = (1− aλ) eλs, b = (−a+ s (1− aλ)) eλs, (4.21)
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and the inequalities a ≥ 0, b ≥ 0 and s ≥ 0.
(a) and (d) Arguments similar to those used in the proof of Proposition 4.4.1

show that the domain of definition of π++ is contained in [0, λ−1
1 ) and π++(0) = 0.

We are now interested in the solutions of (4.21) such that s > 0. Multiplying
the second equation by λ and substituting bλ in the first one, we obtain the
following parametric expression of π++:

a (s) =
−1 + e−λs + λs

λ2s
, b (s) =

−1− λs+ eλs

λ2s
. (4.22)

Note that both functions are positive and differentiable in (0,+∞).
Differentiating in (4.21) with respect to s and isolating da/ds, we obtain

that da/ds = s−1b(s)e−λs > 0. Moreover, since lim
s↗+∞

a(s) = λ−1, the domain of

definition of π++(a) is [0, λ
−1).

On the other hand, since lim
s↗+∞

b(s) = +∞, we obtain lim
a↗λ−1

π++(a) = +∞.

Therefore, the straight line a = λ−1 is an asymptote of the graph of π++(a).
Finally, since b(s)− a(s) > 0 (note that the function f(s) = eλs− e−λs− 2λs

satisfies that f(0) = 0 and f ′(s) > 0 when s > 0), it follows that π++(a) > a in
[0, λ−1).

(e) The statement follows by isolating s in the first equation of system (4.21)
and substituting it in the second one.

(b) and (c) Differentiating in (4.22) with respect to s we obtain that

da

ds
=

ψ1 (s,−λ)− 2

(λs)2
,

db

ds
=

ψ1 (s, λ)− 2

(λs)2
, (4.23)

where ψ1(s, λ) = 1 + esλ(1− sλ). Hence

dπ++

da
=

db/ds

da/ds
=

ψ1 (s, λ)− 2

ψ1 (s,−λ)− 2
> 0,

see Lemma 4.4.5. By applying l’Hôpital’s rule,

lim
a↘0

π′
++ (a) = lim

s↘0

db/ds

da/ds
= lim

s↘0

eλs (1− λs)− 1

e−λs (1 + λs)− 1
= 1.

Differentiating dπ++/da with respect to a, it follows that

d2π++

da2
=

d

ds

(
ψ1 (s, λ)− 2

ψ1 (s,−λ)− 2

)
1
da
ds

= − (b− a)

(ψ1 (s,−λ)− 2)
2

1
da
ds

,

which proves that π′′
++(a) > 0 in (0, λ−1). �

Corollary 4.4.7. Consider A ∈ GL(R2) such that d > 0, t < 0, and t2 − 4d =
0. Then the eigenvalues of A satisfy λ1 = λ2 = λ < 0. Assume that A is not
diagonalizable and let π++ be the Poincaré map defined by the flow of the linear
system ẋ = Ax and associated to two symmetric straight lines in the plane L+

and L−. Then:
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(a) π++ : [0,+∞)→ [0, |λ|−1), π++(0)=0, lim
a↗+∞

π++(a)= |λ|−1, and π++(a)<

a in (0,+∞).

(b) If a ∈ (0,+∞), then 0 < π′
++(a) < 1 and lim

a↘0
π′
++(a) = 1.

(c) If a ∈ (0,+∞), then π′′
++(a) < 0 in (0,+∞).

(d) The straight line b = |λ|−1
is a horizontal asymptote of the graph of π++

when a tends to +∞.

(e) π++ is implicitly defined by the expression of Proposition 4.4.6(e).

(f) The qualitative behaviour of the graph of π++ is shown in Figure 4.5(b).

Proof. The proof follows directly by using that the Poincaré map π++ is the inverse
of the map described in Proposition 4.4.6. �
Proposition 4.4.8. Consider A ∈ GL(R2) such that d > 0, t > 0, and t2 − 4d =
0. Then the eigenvalues of A satisfy λ1 = λ2 = λ > 0. Assume that A is not
diagonalizable and let π+− be the Poincaré map defined by the flow of the linear
system ẋ = Ax and associated to two symmetric straight lines in the plane L+

and L−. Then:

(a) There exists a value b∗ > λ−1 such that π+− : [0,+∞)→ [b∗,+∞), π+−(0) =
b∗, lim

a↗+∞
π+−(a) = +∞, and π+−(a) > a in (0,+∞).

(b) If a ∈ (0,+∞), then 0 < π′
+−(a) < 1 and lim

a↘0
π′
+−(a) = 0.

(c) If a ∈ (0,+∞), then π′′
+−(a) > 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of π+− when a
tends to +∞.

(e) π+− is implicitly defined by the expression

t π+− (a)− 2

2 + a t
= e

2t (π+−(a)+a)
(t π+−(a)−2)(2+t a) .

(f) The qualitative behaviour of the graph of π+− is shown in Figure 4.6(a).

Proof. Arguments similar to those used in the proof of Proposition 4.4.6 show that
b = π+−(a) is implicitly determined by the system

1− bλ = − (1 + aλ) eλs, −b = − (a+ s (1 + aλ)) eλs, (4.24)

and the inequalities a ≥ 0, b ≥ 0 and s > 0.
(a) Let s∗ > 0 be the zero of the function ψ1(s, λ) defined in Lemma 4.4.5(a),

and set b∗ = s∗eλs
∗
. It is easy to check that a = 0, b = b∗ and s = s∗ is a solution

of system (4.24), i.e., π+−(0) = b∗ > λ−1.
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Solving (4.24) we obtain the parametric equations of π+−:

a (s) =
1 + e−λs − λs

λ2s
and b (s) =

1 + λs+ eλs

λ2s
, (4.25)

where a(s) and b(s) are differentiable functions in (0,+∞). Differentiating these
functions with respect to s it follows that

da

ds
= −ψ1 (s,−λ)

λ2s2
< 0 and

db

ds
= −ψ1 (s, λ)

λ2s2
< 0,

see Lemma 4.4.5. From this we have that a(s) and b(s) are strictly decreasing
functions in (0, s∗). Since lim

s↘0
a(s) = +∞, the domain of definition of π+− is

[0,+∞).
From (4.25) it follows that lim

s↘0
b(s) = +∞, hence lim

a↗+∞
π+−(a) = +∞ and

b(s) > a(s) in (0, s∗). Therefore, π+−(a) > a in [0,+∞).
(d) From expression (4.25) we obtain

lim
s↘0

b

a
= 1 and lim

s↘0
(b− a) =

4

λ
= 2

t

d
,

which proves the statement.
Statement (e) follows easily by isolating s in (4.24).
(b) and (c) Since a′(s) < 0 and b′(s) < 0, we get π′

+−(a) > 0, lim
a↘0

π′
+−(a) = 0,

and

π′′
+− (a) =

d

ds

(
ψ1 (s, λ)

ψ1 (s,−λ)
)

1
da
ds

= − λ2s (b− a)
da
dsψ1 (s,−λ)2

> 0,

which proves the statement. �
Corollary 4.4.9. Consider A ∈ GL(R2) such that d > 0, t < 0, and t2 − 4d =
0. Then the eigenvalues of A satisfy λ1 = λ2 = λ < 0. Assume that A is not
diagonalizable and let π+− be the Poincaré map defined by the flow of the linear
system ẋ = Ax and associated to two symmetric straight lines in the plane L+

and L−. Then:

(a) There exists a value a∗ > |λ|−1 such that π+− : [a∗,+∞) → [0,+∞),
π+−(0) = 0, lim

a↗+∞
π+−(a) = +∞ and π+−(a) < a in (a∗,+∞).

(b) If a ∈ (a∗,+∞), then π′
+−(a) > 1 and lim

a↘a∗
π′
+−(a) = +∞.

(c) If a ∈ (a∗,+∞), then π′′
+−(a) < 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of π+− when a
tends to +∞.

(e) π+− is implicitly defined by the expression of Proposition 4.4.8(e).
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(f) The qualitative behaviour of the graph of π+− is shown in Figure 4.6(b).

Proof. The proof follows easily by using that the Poincaré map π+− is the inverse
of the map described in the Proposition 4.4.8. �

4.4.3 Center and focus: t2 − 4d < 0

In this subsection we assume that the matrix A has two complex eigenvalues
λ = α+ iβ and λ̄, where α = t/2 and β =

√
4d− t2/2. In this case the real Jordan

normal form of A is (
α −β
β α

)
with β �= 0.

Hence, when t = 0, i.e., α = 0, the singular point at the origin is a center, otherwise
it is a focus.

Lemma 4.4.10. Consider the function ψ2 : R2 → R given by ψ2(x, y) = 1 −
exy(cos(x)−y sin(x)). The qualitative behaviour of ψ2(x, y0) in (−∞, 2π] is shown
in Figure 4.8(a) when y0 > 0 and (b) when y0 < 0.

Proof. Since ∂ψ2/∂x|(x,y) = (1 + y2)exy sin(x), the critical values of ψ2 are xk =

kπ, where k ∈ Z. From ∂2ψ2/∂x
2
∣∣
(x,y)

= (1 + y2)exy(cos(x) + y sin(x)) and as-

suming that y0 > 0 it follows that ψ2 has a local minimum at xk for k even or has
a local maximum at xk for k odd.

On the other hand, when p ∈ Z and p < 0 we have ψ2(x2p, y0) = 1 −
e2pπy0 > 0, and consequently ψ2(x, y0) > 0 when x < 0. Moreover, ψ2(0, y0) = 0,
ψ2(π, y0) = 1 + eπy0 > 0, and ψ2(2π, y0) = 1 − e2πy0 < 0. Therefore, there exists
a unique zero τ∗ in (0, 2π) which proves the lemma for y0 > 0. The case y0 < 0
follows by using the fact that ψ2(−x, y) = ψ2(x,−y). �

Figure 4.8: Qualitative behaviour of ψ2 (x, y0) = 1−exy0 ( cos (x) − y0 sin (x) ) ; (a)
when y0 > 0, (b) when y0 < 0.

Proposition 4.4.11. Consider A ∈ GL(R2) such that d > 0, t ≥ 0, and t2−4d < 0.
Let π++ be the Poincaré map defined by the flow of the linear system ẋ = Ax and
associated to two symmetric straight lines in the plane L+ and L−. Then:



4.4. Qualitative behaviour of the maps πjk 151

(a) If t > 0, then π++ : [0,+∞) → [0,+∞), π++(0) = 0, lim
a↗+∞

π++(a) = +∞,

and π++(a) > a in (0,+∞).

(a.1) If a ∈ (0,+∞), then π′
++(a) > 1 and lim

a↘0
π′
++(a) = 1.

(a.2) If a ∈ (0,+∞), then π′′
++(a) > 0.

(a.3) Set γ = t/
√
4d− t2. The straight line b = eγπa − t(1 + eγπ)/d is an

asymptote of the graph of π++ when a tends to +∞.

(a.4) π++ is implicitly defined by the expression

1 + tπ++ (a) + dπ++ (a)
2

1− ta+ da2
= e

2γ arctan

(
(a+π++(a))β

(π++(a)−a)α+1−aπ++(a)d

)
.

(a.5) The qualitative behaviour of the graph of the map π++ is shown in Figure
4.9(a).

(b) If t = 0, then π++ is the identity in [0,+∞).

Proof. Let p =(p1, p2)
T be the contact point of the flow with L+. By Proposition

4.3.11(a),
(Id + π++ (a)A)p = esA (Id− aA)p,

where a ≥ 0, π++(a) ≥ 0 and s ≥ 0. Since L+ does not pass through the origin,
we conclude that p1 �= 0 or p2 �= 0, which implies that b = π++(a) is defined by
the system

1 + bα = eαs {cos (βs) + a [β sin (βs)− α cos (βs)]} ,
bβ = eαs {sin (βs)− a [α sin (βs) + β cos (βs)]} , (4.26)

and the inequalities a ≥ 0, b ≥ 0 and s ≥ 0.
(a) Since s = 0, a = 0 and b = 0 is a solution of system (4.26), we have

π++ (0) = 0. Furthermore, if a = a0, b = b0 and s = s0 is a solution of (4.26), then
s0 is the flight time between the points q1 = p− aṗ and q2 = p+ bṗ, see Section
4.3. Thus βs0 is the angle between q1 and q2, and consequently βs ∈ [0, π).

Define τ = βs and γ = α/β. Solving system (4.26) with τ ∈ (0, π) we obtain
the following parametric equations of π++:

a (τ) =
βe−γτ

d sin (τ)
ψ2 (τ, γ) and b (τ) =

βeγτ

d sin (τ)
ψ2 (τ,−γ) , (4.27)

where ψ2 is the function described in Lemma 4.4.10.
Since lim

τ↗π
a(τ) = +∞ and lim

τ↗π
b(τ) = +∞, the domain of definition of π++

is [0,+∞) and lim
a↗+∞

π++(a) = +∞. Moreover, when τ ∈ (0, π) we have

b (τ) − a (τ) =
β

d sin (τ)

(
eγτ − e−γτ − 2γ sin (τ)

)
> 0,
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and therefore π++(a) > a in (0,+∞).
(a.3) From expression (4.27) it follows that

lim
a↗+∞

π++ (a)

a
= lim

τ↗π

b (τ)

a (τ)
= lim

τ↗π
e2γτ

ψ2 (τ,−γ)
ψ2 (τ, γ)

= eγπ.

Hence, applying l’Hôpital’s rule we obtain

lim
a↗+∞

π++ (a)− eγπa = lim
τ↗π

b (τ) − eγπ a (τ) =
−t (1 + eγπ)

d
,

and therefore the straight line b = eγπa−t(1+eγπ)/d is an asymptote of the graph
of π++(a).

(a.4) Adding the two equations squared in system (4.26) and dividing them
we obtain

1 + tb+ db2 = e2γτ
(
1− ta+ da2

)
,

tan (τ) =
(a+ b)β

(b− a)α+ 1− abd
,

which proves the statement.
(a.1) and (a.2) Differentiating in (4.27) with respect to τ it follows that

da

dτ
=

β

d sin2 (τ)
ψ2 (τ,−γ) and

db

dτ
=

β

d sin2 (τ)
ψ2 (τ, γ) .

Thus, π′
++(a) = ψ2(τ, γ)/ψ2(τ,−γ) > 0 and lim

a↘0
π′
++(a) = 1, see Lemma 4.4.10.

Moreover,

π′′
++ (a) =

d

dτ

(
db

da

)
1
da
dτ

=
2d
(
1 + γ2

)
sin3 (τ)

βψ2 (τ,−γ)3
(sinh (γτ)− γ sin (τ)) .

Since sinh(γτ) > γ sin(τ) when τ ∈ (0, π), we conclude that π′′
++(a) > 0 in the

interval (0,+∞).
(b) Since t = 0, we obtain that γ = α/β = 0. Applying expression (4.27), it

follows that π++(a) = a in (0,+∞). The statement follows by noting that a = 0,
b = 0 and s = 0 is also a solution of (4.26). �

Corollary 4.4.12. Consider A ∈ GL(R2) such that d > 0, t < 0, and t2 − 4d < 0.
Let π++ be the Poincaré map defined by the flow of the linear system ẋ = Ax and
associated to two symmetric straight lines in the plane L+ and L−. Then:

(a) π++ : [0,+∞)→ [0,+∞), π++(0) = 0, lim
a↗+∞

π++(a) = +∞, and π++(a) <

a in (0,+∞).

(b) If a ∈ (0,+∞), then 0 < π′
++(a) < 1 and lim

a↗0
π′
++(a) = 1.

(c) If a ∈ (0,+∞), then π′′
++(a) < 0.
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Figure 4.9: Qualitative behaviour of the Poincaré map π++; (a) when t2 − 4d < 0
and t > 0, (b) when t2 − 4d < 0 and t < 0.

(d) Set γ = t/
√
4d− t2. The straight line b = eγπa−t(1+eγπ)/d is an asymptote

of the graph of π++ when a tends to +∞.

(e) π++ is implicitly defined by the expression of Proposition 4.4.11(e).

(f) The qualitative behaviour of the graph of π++ is shown in Figure 4.9(b).

Proof. The proof follows directly by using that π++ is the inverse of the map
described in Proposition 4.4.11. �

Proposition 4.4.13. Consider A ∈ GL(R2) such that d > 0, t ≥ 0, and t2−4d < 0.
Let π+− be the Poincaré map defined by the flow of the linear system ẋ = Ax and
associated to two symmetric straight lines in the plane L+ and L−. Then:

(a) If t > 0, then there exists a value b∗ > 0 such that π+− : [0,+∞)→ [b∗,+∞),
π+−(0) = b∗, lim

a↗+∞
π+−(a) = +∞, and π+−(a) > a in (0,+∞).

(a.1) If a ∈ (0,+∞), then 0 < π′
+−(a) < 1 and lim

a↘0
π′
+−(a) = 0.

(a.2) If a ∈ (0,+∞), then π′′
+−(a) > 0.

(a.3) The straight line b = a+2t/d is an asymptote of the graph of π+− when
a tends to +∞.

(a.4) π+− is implicitly defined by the expression

1− tπ+− (a) + dπ+− (a)2

1 + ta+ da2
= e

2γ arctan

(
(a+π+−(a))β

(π+−(a)−a)α−1+aπ+−(a)d

)
.

(a.5) The qualitative behaviour of the graph of the map π+− is shown in
Figure 4.6(a).

(b) If t = 0, then the map π+− is the identity function in [0,+∞).
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Proof. Arguments similar to those used in the proof of Proposition 4.4.11 imply
that π+− is determined by the system

−1 + bα = eαs {cos (βs) + a [α cos (βs)− β sin (βs)]} ,
bβ = eαs {sin (βs) + a [α sin (βs) + β cos (βs)]} , (4.28)

and the inequalities a ≥ 0, b ≥ 0 and s > 0.
(a) and (a.3) Following the proof of Proposition 4.4.11, we conclude that

τ = βs belongs to (0, τ∗], where τ∗ is the unique zero of the function 2− ψ2(τ, γ)
in (0, π), see Lemma 4.4.10 and Figure 4.10.

Solving system (4.28) for τ ∈ (0, τ∗] and γ = α/β we obtain the parametric
equations of π+−:

a (τ) =
βe−τγ

d sin (τ)
(2− ψ2 (τ, γ)) and b (τ) =

βeτγ

d sin (τ)
(2− ψ2 (τ,−γ)) . (4.29)

From these equations we conclude that lim
τ↘0

a(τ) = +∞ and lim
τ↘0

b(τ) = +∞ which

implies that the domain of definition of π+−(a) is [0,+∞); lim
a↗+∞

π+−(a) = +∞;

b (τ)− a (τ) =
1

d sin (τ)

(
2α sin (τ) + β

(
eγτ − e−γτ

))
> 0 if τ ∈ (0, τ∗] ,

that is, π+−(a) > a in (0,+∞); lim
a↗+∞

π+−(a)/a = lim
τ↘0

b(τ)/a(τ) = 1; and by

applying l’Hôpital’s rule,

lim
a↗+∞

π+− (a)− a = lim
τ↘0

b (τ) − a (τ) = 2t/d,

which implies that b = a+ 2t/d is an asymptote of the graph of π+−(a).
Statement (a.4) follows by arguments similar to those used in the proof of

Proposition 4.4.11(e).
(a.1) and (a.2) Differentiating in (4.29) with respect to τ it follows that

da

dτ

∣∣∣∣
τ

= β
ψ2 (τ,−γ)− 2

d sin2 (τ)
< 0 and

db

dτ

∣∣∣∣
τ

= β
ψ2 (τ, γ)− 2

d sin2 (τ)
< 0.

Hence, π′
+−(a) > 0, lim

a↘0
π′
+−(a) = lim

τ↗τ∗
(ψ2(τ, γ) − 2)/(ψ2(τ,−γ) − 2) = 0 and

lim
a↗+∞

π′
+−(a) = lim

τ↘0
(ψ2(τ, γ) − 2)/(ψ2(τ,−γ) − 2) = 1. Moreover, taking into

account that db/dτ < 0 the image of π+− is contained in [b∗,+∞), where b∗ =
b(τ∗).

Computing the second derivative of π+− with respect to a we have that

π′′
+− (a) =

d

dτ

(
db

da

)
1
da
dτ

=
2d sin3 (τ)

(
1 + γ2

)
β (2− ϕ (−τ, γ))3 (sinh (γτ) + γ sin (τ)) .

Since 0 < τ ≤ τ∗ < π, we conclude that π′′
+−(a) > 0.

Statement (b) follows in much the same way as Proposition 4.4.13(b). �
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Figure 4.10: Qualitative behaviour of the function 2−ψ2 (x, y0) ; (a) when y0 > 0,
(b) when y0 < 0.

Corollary 4.4.14. Consider A ∈ GL(R2) such that d > 0, t < 0, and t2 − 4d < 0.
Let π+− be the Poincaré map defined by the flow of the linear system ẋ = Ax and
associated to two symmetric straight lines in the plane L+ and L−. Then:

(a) There exists a value a∗ > 0 such that π+− : [a∗,+∞)→ [0,+∞), π+−(a∗) =
0, and lim

a↗+∞
π+−(a) = +∞. Moreover, π+−(a) < a in (a∗,+∞).

(b) If a ∈ (0,+∞), then π′
+−(a) > 1 and lim

a↘a∗
π′
+−(a) = +∞.

(c) If a ∈ (0,+∞), then π′′
+−(a) < 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of π+− when a
tends to +∞.

(e) π+− is implicitly defined by the expression in Proposition 4.4.13(a.4).

(f) The qualitative behaviour of the graph of π+− is shown in Figure 4.6(b).

Proof. The proof follows directly by using that the Poincaré map π+− is the inverse
of the map described in Proposition 4.4.13. �

4.4.4 Saddle: d < 0

In this subsection we consider the case where the matrix A has two real eigenvalues
with different sign; that is, λ1 > 0 > λ2, where λ1 = (t +

√
t2 − 4d)/2 and

λ2 = (t−√t2 − 4d)/2. The real Jordan normal form of A is

A =

(
λ1 0
0 λ2

)
.

Proposition 4.4.15. Consider A ∈ GL(R2) such that d < 0 and t ≥ 0. Then the
eigenvalues of A satisfy λ1 > 0 > λ2. Let π++ be the Poincaré map defined by the
flow of the linear system ẋ = Ax and associated to two symmetric straight lines
in the plane L+ and L−. Then:
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(a) If t > 0, then π++ : [0, λ−1
1 ) → [0, |λ2|−1), π++(0) = 0, lim

a↗λ−1
1

π++(a) =

|λ2|−1, and π++(a) > a in (0, λ−1
1 ).

(a.1) If a ∈ (0, λ−1
1 ), then π′

++(a) > 1. Furthermore, lim
a↘0

π′
++(a) = 1 and

lim
a↗λ−1

1

π′
++(a) = +∞.

(a.2) If a ∈ (0, λ−1
1 ), then π′′

++(a) > 0.

(a.3) The graph of π++ has a vertical asymptote at a = λ−1
1 .

(a.4) π++ is implicitly defined by the expression

(
2 + π++ (a)

(
t−√t2 − 4d

)
2− a

(
t−√t2 − 4d

) ) t+
√

t2−4d

t−
√

t2−4d

=
2 + π++ (a)

(
t+

√
t2 − 4d

)
2− a

(
t+

√
t2 − 4d

) .

(a.5) The qualitative behaviour of the graph of π++ is shown in Figure 4.12(a).

(b) If t = 0, then π++ is the identity in [0, λ−1
1 ).

Proof. Arguments similar to those in the proof of Proposition 4.4.1 show that the
map b = π++(a) is defined by the system

1 + bλ1 = eλ1s (1− aλ1) , 1 + bλ2 = eλ2s (1− aλ2) , (4.30)

and the inequalities a ≥ 0, b ≥ 0 and s ≥ 0.
(a) As in the proof of Proposition 4.4.1(a), from system (4.30) we obtain the

following information: π++(0) = 0; the domain of definition of π++ is contained
in (0, λ−1

1 ); and the parametric equations of π++ are

a (s) =
λ2

(
1− eλ1s

)− λ1

(
1− eλ2s

)
d (eλ2s − eλ1s)

,

b (s) =
(λ2 − λ1) e

ts + λ1e
λ1s − λ2e

λ2s

d (eλ2s − eλ1s)
.

(4.31)

Note that the functions a(s) and b(s) are differentiable in s ∈ (0,+∞).

Differentiating in (4.30) with respect to s and isolating da/ds and db/ds we
obtain that

da

ds
= b (s)

λ1 − λ2

eλ1s − eλ2s
and

db

ds
= 1− b (s)

λ1e
λ2s − λ2e

λ1s

eλ1s − eλ2s
.

Hence, since lim
s↘0

b(s) = 0 and lim
s↗+∞

b(s) = |λ2|−1, see expression (4.30), we con-

clude that b(s) ≥ 0 and a′(s) > 0 in (0,+∞). Now using that lim
s↘0

a(s) = 0 and
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lim
s↗+∞

a(s) = λ−1
1 it follows that the domain of definition of π++ is [0, λ−1

1 ) and

lim
a↗λ−1

1

π++(a) = |λ2|−1.

We will prove the inequality π++(a) > a at the end of the present proof.
(a.4) Isolating s in each of the equations of system (4.30) we obtain the

following implicit expression for the map b = π++(a):

1 + bλ2

1− aλ2
=

(
1− aλ1

1 + bλ1

)−λ2
λ1

. (4.32)

(a.1), (a.2) and (a.3) Differentiating in (4.32) with respect to a and isolating
db/da we obtain that

π
′
++ (a) =

db

da
=

a

b

1 + bt+ b2d

1− at+ a2d
. (4.33)

The behaviour of the parabolas 1 + bt+ b2d and 1 − at+ a2d is shown in Figure
4.11. From this it is easy to conclude that π′

++(a) > 0 when a ∈ (0, λ−1
1 ) and

lim
a↗λ−1

1

π′
++(a) = +∞. Furthermore, since lim

a↗λ−1
1

π++(a) = |λ2|−1, the graph of

π++ has a vertical asymptote at a = λ−1
1 .

By applying l’Hôpital’s rule we obtain

lim
s↘0

b (s)

a (s)
= lim

s↘0

(λ2 − λ1) e
ts + λ1e

λ1s − λ2e
λ2s

λ2 (1− eλ1s)− λ1 (1− eλ2s)
= 1,

which implies that lim
a↘0

π′
++(a) = 1, see expression (4.33).

Figure 4.11: Qualitative behaviour of the parabolas 1+ t x+d x2 and 1− t x+d x2

when the parameter d < 0.

Differentiating expression (4.33) with respect to a we get

π′′
++ (a) =

db

da

(b− a) (b+ a)

ab2 (1− at+ a2d)
.
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Hence, π′′
++(a) > 0 if π++(a) > a; π′′

++(a) = 0 if π++(a) = a; and π′′
++(a) < 0

if π++(a) < a. From this we conclude that π++(a) �= a, see the end of the proof
of Proposition 4.4.1(e) for more details. Moreover, since lim

a↗λ−1
1

π++(a) = |λ2|−1 >

λ−1
1 , we have π++(a) > a and π′′

++(a) > 0.
(b) If t = 0, then λ1 = −λ2 and π++(a) = a, see (4.31). �

Figure 4.12: Qualitative behaviour of the Poincaré map π++ (a) when d < 0 and
t > 0, (b) when d < 0 and t < 0.

Corollary 4.4.16. Consider A ∈ GL(R2) such that d < 0 and t < 0. Then the
eigenvalues of A satisfy λ1 > 0 > λ2. Let π++ be the Poincaré map defined by the
flow of the linear system ẋ = Ax and associated to two symmetric straight lines
in the plane L+ and L−. Then:

(a) π++ : [0, λ−1
1 ) → [0, |λ2|−1), π++(0) = 0, lim

a↗λ−1
1

π++(a) = |λ2|−1, and

π++(a) < a in (0, λ−1
1 ).

(b) If a ∈ (0, λ−1
1 ), then 0 < π′

++(a) < 1 and lim
a↘0

π′
++(a) = 1.

(c) If a ∈ (0, λ−1
1 ), then π′′

++(a) < 0.

(d) The straight line b = |λ2|−1 is a horizontal asymptote of the graph of π++

when a tends to +∞.

(e) π++ is implicitly defined by the expression in Proposition 4.4.15(a.4).

(f) The qualitative behaviour of the graph of π++ is represented in Figure 4.12(b).

Proof. The proof follows directly by using that the Poincaré map π++ is the inverse
of the map described in Proposition 4.4.15. �
Corollary 4.4.17. Consider A ∈ GL(R2) such that d < 0 and let λ1 > 0 > λ2

be the eigenvalues of A. Suppose that the flow of the linear system ẋ = Ax has
a contact point p with a straight line L not passing through the origin. Then L
intersects with the stable and the unstable subspaces of the origin at p−λ−1

1 ṗ and
p+ |λ2|−1ṗ, respectively.
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Proof. Since L does not pass through the origin, p is the unique contact point of
the flow with L, i.e., L is not invariant under the flow, see Proposition 4.2.5(a).
Thus L intersects the stable and the unstable subspaces of the origin at points u
and v, respectively. Moreover, the point p splits L into the two half-lines LI =
{p+ λṗ : λ ≤ 0} and LO = {p+ λṗ : λ ≥ 0}. It is clear that u ∈ LI and v ∈ LO.
Let a0 > 0 and b0 > 0 be the coordinates of the points u and v, respectively. From
the continuous dependence of the solutions of a linear differential system on the
initial conditions, it follows that lima↗a0 π++(a) = b0. Therefore, the statement
is a consequence of Proposition 4.4.15(a) and Corollary 4.4.16(a). �
Proposition 4.4.18. Consider A ∈ GL(R2) such that d < 0 and t ≥ 0. Then the
eigenvalues of A satisfy λ1 > 0 > λ2. Let π+− be the Poincaré map defined by the
flow of the linear system ẋ = Ax, associated to two symmetric straight lines in the
plane L+ and L−. Then:

(a) If t > 0, then π+− : (λ−1
1 ,+∞) → (|λ2|−1,+∞), lim

a↘λ−1
1

π+−(a) = |λ2|−1,

and lim
a↗+∞

π+−(a) = +∞.

(a.1) If a ∈ (λ−1
1 ,+∞), then π′

+−(a) > 1, lim
a↘λ−1

1

π′
+−(a) = +∞, and

lim
a↗+∞

π′
+−(a) = 1.

(a.2) If a ∈ (λ−1
1 ,+∞), then π′′

+−(a) < 0.

(a.3) The straight line b = a−2t/d is an asymptote of the graph of π+− when
a tends to +∞.

(a.4) π+− is implicitly defined by the expression(
π+− (a)

(
t−√t2 − 4d

)− 2

a
(
t−√t2 − 4d

)
+ 2

) t+
√

t2−4d

t−
√

t2−4d

=
π+− (a)

(
t+

√
t2 − 4d

)− 2

a
(
t+

√
t2 − 4d

)
+ 2

.

(a.5) The qualitative behaviour of the graph of π+− is shown in Figure 4.13(a).

(b) If t = 0, then π+− is the identity map in (λ−1
1 ,+∞).

Proof. Arguments similar to those used in the proof of Proposition 4.4.3 show that
the map b = π+−(a) is determined by the system

1 + bλ1 = (−1 + aλ1) e
λ1s, 1 + bλ2 = (−1 + aλ2) e

λ2s, (4.34)

and the inequalities a ≥ 0, b ≥ 0 and s > 0. From this we conclude that a > λ−1
1

and b > |λ2|−1.
By solving system (4.34) for s > 0 we get the parametric equations of π+−:

a (s) =
λ2

(
1 + eλ1s

)− λ1

(
1 + eλ2s

)
d (eλ1s − eλ2s)

,

b (s) =
(λ2 − λ1) e

ts + λ2e
λ2s − λ1e

λ1s

d (eλ1s − eλ2s)
.

(4.35)
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Hence, since lim
s↘0

a(s) = +∞, lim
s↘0

b(s) = +∞, lim
s↗+∞

a(s) = λ−1
1 , and lim

s↗+∞
b(s) =

|λ2|−1, we conclude that π+−(a) is defined in (λ−1
1 ,+∞), lim

a↗λ−1
1

π+−(a) = |λ2|−1

and lim
a↗+∞

π+−(a) = +∞.

From (4.35) we obtain that lim
a↗+∞

π+−(a)/a = lim
s↘0

b(s)/a(s) = 1. Moreover

by applying l’Hôpital’s rule we get lim
a↗+∞

b(s) − a(s) = −2t/d. Therefore, b =

a− 2t/d is an asymptote of the graph of π+−.
The implicit expression of π+−(−1 + aλ1

1 + bλ1

)−λ2
λ1

=
1 + bλ2

−1 + aλ2
, (4.36)

follows from system (4.34). Differentiating in (4.36) with respect to a and isolating
db/da yields

db

da
=

a

b

1 + bt+ b2d

1− at+ a2d
, (4.37)

where the graphs of the parabolas are qualitatively depicted in Figure 4.11. Thus,
it is easy to conclude that π′

+−(a) > 1, lim
a↘λ−1

1

π′
+−(a) = +∞, and

π′′
+− (a) =

db

da

(b− a) (b+ a)

ab2 (1− at+ a2d)
.

Therefore, π′′
+−(a) < 0. For more details, see the proof of Proposition 4.4.3 �

Figure 4.13: Qualitative behaviour of the Poincaré map π+− (a) when d < 0 and
t > 0, (b) when d < 0 and t < 0.

Corollary 4.4.19. Consider A ∈ GL(R2) such that d < 0 and t < 0. Then the
eigenvalues of A satisfy λ1 > 0 > λ2. Let π+− be the Poincaré map defined by the
flow of the linear system ẋ = Ax and associated to two symmetric straight lines
in the plane L+ and L−. Then:
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(a) π+− : (λ−1
1 ,+∞) → (|λ2|−1,+∞), lim

a↘λ−1
1

π+−(a) = |λ2|−1, lim
a↗+∞

π+−(a) =

+∞, and π+−(a) < a in the domain (λ−1
1 ,+∞).

(b) If a ∈ (λ−1
1 ,+∞), then 0 < π′

+−(a) < 1. Furthermore, lim
a↘λ−1

1

π′
+−(a) = 0

and lim
a↗+∞

π′
+−(a) = 1.

(c) If a ∈ (λ−1
1 ,+∞), then π′′

+−(a) > 0.

(d) The straight line b = a − 2t/d is an asymptote of the graph of π+− when a
tends to +∞.

(e) π+− is implicitly defined by the expression in Proposition 4.4.18(a.4).

(f) The qualitative behaviour of the graph of π+− is shown in Figure 4.13(b).

Proof. The proof follows directly by using that the Poincaré map π+− is the inverse
of the map described in the Proposition 4.4.18, see Lemma 4.3.5(c). �

4.4.5 Degenerate node: d = 0

We suppose now that the matrix A has two real eigenvalues, one being equal to 0
and the other one equal to t. Hence, A has two different real Jordan normal forms.
When t �= 0, then the real Jordan normal form of A is

A =

(
t 0
0 0

)
,

while when t = 0, the real Jordan normal form of A is

A =

(
0 1
0 0

)
.

Note that we do not consider the case where A is the zero matrix.
In any case, the behaviour of the Poincaré map π++ is trivial, see Proposition

4.3.3(b). Therefore we restrict our attention to the Poincaré map π+−.

Proposition 4.4.20. Consider A ∈ L(R2) not the zero matrix and such that d = 0.
Let π+− be the Poincaré map defined by the flow of the linear system ẋ = Ax and
associated to two symmetric straight lines in the plane L+ and L−. Then:

(a) If t > 0, then there exists a value b∗ > 0 such that π+− : [0,+∞)→ [b∗,+∞)
and π+−(a) = a+ b∗.

(b) If t = 0, then π+− is the identity map in [0,+∞).

(c) If t < 0, then there exist a value b∗ > 0 such that π+− : [b∗,+∞)→ [0,+∞)
and π+−(a) = a− b∗.
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Proof. Let n = (n1, n2)
T be the unit orthogonal vector to L+ oriented in the

direction opposite to the origin and suppose that det(An⊥,n⊥) > 0. The case
det(An⊥,n⊥) < 0 follows by using similar arguments. Let p = (p1, p2)

T be the
contact point of the flow with L+. From Proposition 4.3.11(c) it follows that the
map π+− satisfies

−p− π+− (a)n⊥ = esA
(
p− an⊥) .

Therefore p ∈ ker(A) \ {0}, see Proposition 4.2.6(b).
(a) Without loss of generality we can consider that the matrix A is in real

Jordan normal form. Thus, p1 = 0, p2 �= 0 and the map b = π+−(a) is implicitly
defined by the system

bn2 = etsan2, bn1 = an1 − 2p2,

and the inequalities a ≥ 0, b ≥ 0 and s > 0. From det(An⊥,n⊥) = −tn1n2 > 0
we obtain that n1n2 < 0. Moreover, pTn = p2n2 > 0 implies that p2/n1 < 0.
Therefore, π+−(a) = a− 2p2/n1 for a ≥ 0.

(b) Without loss of generality we can consider that the matrix A is in real
Jordan normal form. Thus, p1 �= 0, p2 = 0 and the map b = π+−(a) is implicitly
defined by the system

−p1 + bn2 = p1 + an2 − san1, −bn1 = −an1,

and the inequalities a ≥ 0, b ≥ 0 y s > 0. Since pTn = p1n1 > 0, we obtain that
n1 �= 0 and π+−(a) = a.

(c) The proof follows by using the fact that the Poincaré map π+− is the
inverse of the map described in the statement (a), see Proposition 4.3.5(c). �

4.5 Poincaré maps of non-homogeneous linear systems

To finish our study about the Poincaré maps defined by the flow of a fundamental
system and associated to two symmetric straight lines L+ and L−, we need to
analyze the Poincaré maps defined by the flow of a non-homogeneous linear system

ẋ = Ax+ b, (4.38)

where A ∈ L(R2) and b ∈ R2 \ {0}, and associated to a straight line not passing
through the origin. We denote by L+ this straight line and by S0 and S+ the
half-planes bounded by L+, where S0 is the half-plane containing the origin. As
before, n denotes the unit orthogonal vector to the straight line which is oriented
in the direction opposite to the origin.

Since L+ does not pass through the origin it can be split into the two subsets,
LI
+ and LO

+. The set CP+ = LI
+ ∩ LO

+ is formed by the contact points of the flow
of the non-homogeneous linear system (4.38) with L+. Define in L+ the subset

Dom++ :=
{
q ∈ LO

+ : ∃sq ≥ 0, Φ (sq,q) ∈ LI
+ and Φ (s,q) ⊂ S+ ∀s ∈ (0, sq)

}
∪ CP+.
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When Dom++ �= ∅, we can define the Poincaré map of the non-homogeneous linear
system (4.38) associated to the straight line L+ by Π++ : Dom++ ⊂ LO

+ → LI
+

with Π++(q) = Φ(sq,q).
Suppose that the flow of system (4.38) has a unique contact point p with L+.

Since p ∈ LI
+ and p ∈ LO

+, Π++(p) = p. In the particular case Dom++ = CP+

we say that the behaviour of Π++ is trivial.
Note that the Poincaré map Π++ here defined corresponds with the Poincaré

map ΠA
++ defined by the flow of a fundamental system and associated with the

straight line L+, see Section 4.1. The study of the qualitative behaviour of the map
Π++ is divided into two subsections depending on the invertibility of the matrix
A. Thus, in Subsection 4.5.1 we deal with the case det(A) �= 0 and in Subsection
4.5.2 with the case det(A) = 0.

4.5.1 Non-homogeneous linear systems with A ∈ GL(R2)

Suppose that A is invertible. Then we can consider the point e+ = −A−1b. The
translation y = x− e+ transforms the system (4.38) into the homogeneous linear
system

ẏ = Ay, (4.39)

and the straight line L+ into the straight line L∗
+. Thus, if e+ �∈ L+, then L∗

+

does not pass through the origin. Define L∗− = {−q : q ∈ L∗
+}. Note that the

homogeneous linear system (4.39) and the straight lines L∗
+ and L∗

− fulfill the
conditions of Section 4.3. Therefore, if the Poincaré map Π++ associated to the
flow of (4.38) and the straight line L+ is defined, then it induces a Poincaré map
associated to the flow of the homogeneous linear system (4.39) and the straight line
L∗
+. Moreover, the converse statement is also true. Let Π∗

jk denote the Poincaré
maps induced by the translation above. Hence, we have the following result.

Proposition 4.5.1. Consider a matrix A ∈ GL(R2), a vector b ∈ R2 \ {0} and the
point e+ = −A−1b. Let L+ be a straight line in the plane not passing through the
origin and such that e+ �∈ L+. The Poincaré map Π++ associated to the flow of
the non-homogeneous linear system Ax + b and the straight line L+ is defined if
and only if there exists a unique contact point of the flow with L+. In this case
L+ is a non-invariant straight line and LI

+ and LO
+ are non-empty half-lines.

Proof. The statement is a consequence of Proposition 4.3.4. �

It is clear that the behaviour of the map Π++ can be obtained from the
behaviour of the map Π∗

++. Furthermore, this last map can be expressed as a
composition of the Poincaré maps considered in Section 4.3.

Depending on whether e+ ∈ S+ or e+ ∈ S0, the translation y = x − e+
preserves or reverses the orientation of the flow on L+ and L∗

+, see Figure 4.14.
Thus when e+ ∈ S0 the translation y = x − e+ transforms the half-lines LI

+ and
LO
+ into the half-lines L∗I

+ and L∗O
+ , respectively. When e+ ∈ S+, the translation

transforms LI
+ into L∗O

+ and LO
+ into L∗I

+ . This implies the following result.
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Figure 4.14: Relation between the half-lines LI
+, L

O
+, L

∗I
+ and L∗O

+ depending on
(a) e+ ∈ S0, (b) e+ ∈ S+.

Proposition 4.5.2. Consider a matrix A ∈ GL(R2), a vector b ∈ R
2 \ {0} and the

point e+ = −A−1b. Let L+ be a straight line in the plane not passing through the
origin and such that e+ �∈ L+. Suppose that the Poincaré map Π++ associated to
the flow of the system ẋ = Ax+b and the straight line L+ is defined, and let Π∗

++

be the Poincaré map induced by the translation y = x− e+.

(a) Suppose that e+ ∈ S0.

(a.1) If det(A) > 0, then Π∗
++ is the Poincaré map defined in Section 4.3.

(a.2) If det(A) < 0, then Π∗
++ is trivial.

(b) Suppose that e+ ∈ S+.

(b.1) Assume that det(A) > 0. If t2 − 4d ≥ 0, then Π∗
++ is trivial. If t2 −

4d < 0, then Π∗
++ coincides with the composition of the Poincaré maps

Π−+ ◦Π−− ◦Π+− where Π−+, Π−− and Π+− are the maps defined in
Section 4.3.

(b.2) If det(A) < 0, then Π∗
++ is the Poincaré map defined in Section 4.3.

Proof. (a) Since e+ ∈ S0, the translation y = x − e+ transforms the half-lines
LI
+ and LO

+ into L∗I
+ and L∗O

+ , respectively. Moreover, it is easy to check that the
domain Dom++ of Π∗

++ is contained in L∗O
+ .

When det(A) > 0, the Poincaré map defined by a linear flow with the domain
contained in L∗O

+ is the map defined in Section 4.3; this proves statement (a.1).
When det(A) < 0, the domain of Π∗

++ is contained in the half-line L∗I
+ , see

Proposition 4.3.3(c). Thus Π∗
++ is defined in the intersection of the half-lines L∗I

+

and L∗O
+ , i.e., in the contact point. Applying again this argument it follows that

the image of Π∗
++ is also the contact point. Therefore the behaviour of Π∗

++ is
trivial, as claimed in (a.2).

(b) Suppose that e+ ∈ S+. The translation y = x− e+ transforms the half-
lines LI

+ and LO
+ into L∗O

+ and L∗I
+ , respectively. By Proposition 4.3.3(a), there
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are no Poincaré maps defined on LI
+ which have the image contained on LO

+.
Thus either the behaviour of Π∗

++ is trivial, or Π∗
++ = Π−+ ◦Π−− ◦Π+−. In this

last case the orbits have to surround the origin. Therefore, if t2 − 4d ≥ 0, then
Π∗

++ is trivial, see Lemma 4.2.9(a). If t2 − 4d < 0, then Π∗
++ is non-trivial. Thus

Π∗
++ = Π−+ ◦Π−− ◦Π+−, which proves the statement (b.1).

If det(A) < 0, then by Proposition 4.3.3(c) we have two possibilities: (i) Π∗
++

is the map Π++; (ii) Π∗
++ = Π−+ ◦ Π−− ◦ Π+−. In this last case the orbits have

to surround the origin, which proves the statement (b.2). �
In order to study the Poincaré maps defined by the flow of a non-homogeneous

linear system with regular matrix and associated to a straight line not passing
through the origin, we restrict our attention to the Poincaré maps defined by the
flow of a homogeneous linear system, see Proposition 4.5.2. When det(A) > 0,
the behaviour of the map Π∗

++ depends on whether e+ ∈ S0, or e+ ∈ S+ and
t2 − 4d < 0. To distinguish between these two situations we denote the map
Π−+ ◦Π−− ◦Π+− by Π̃++.

Thus, the behaviour of the Poincaré maps defined by a non-homogeneous
linear flow and associated to a straight line which does not pass through the
origin is determined by π++ and π̃++ = π−+ ◦ π−− ◦ π+−. There are two different
ways of studying the map π̃++: one by using the well know information about
maps π+− and π++, see Section 4.3, and the other by obtaining a new expression
for π̃++. The latter is adopted here.

Note that Π̃++ = Π−+ ◦ Π−− ◦ Π+− satisfies that Π̃++ : L∗I
+ → L∗O

+ where
L∗I
+ = {p+ aṗ : a ≥ 0} and L∗O

+ = {p− aṗ : a ≥ 0}, see (4.8). Thus the map π̃++

is implicitly defined by the equation

p− π̃++ (a) ṗ = eAs (p+ aṗ) (4.40)

and the inequalities a ≥ 0, b = π̃++(a) ≥ 0 and s ≥ 0.

4.5.2 Non-homogeneous linear systems with A �∈ GL(R2)

Suppose now that the matrix A of the non-homogeneous linear system (4.38) is
singular, that is det (A) = 0. To describe the Poincaré maps defined by the flow of
this system and associated to a straight line in the plane, we distinguish different
situations. First we consider the case where A is the zero matrix. Then ẋ = b
where b ∈ R

2 \ {0}. Therefore the orbits of this system are contained in straight
lines and consequently the behaviour of Π++ is trivial.

Suppose now that system (4.38) has a singular point e, i.e., Ae+b = 0. The
translation y = x− e transforms (4.38) into the homogeneous system ẏ = Ay and
the Poincaré map Π++ into the Poincaré map Π∗

++. By Proposition 4.3.3(b), the
behaviour of the map Π∗

++ is trivial. Hence the map Π++ associated to the system
(4.38) is also trivial. For this reason, we restrict our attention to the Poincaré maps
defined by the flow of a non-homogeneous linear system (4.38) without singular
points and such that the matrix A is singular, but not the zero matrix.
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Let L+ be a straight line in the plane which is not invariant under the flow.
In this subsection we define a coordinate system onr L+ and a map π̃++ which is
invariant under linear transformations so that we can reduce the study of Π++ to
the study of π̃++.

Let n be the unit orthogonal vector to L+ which is oriented in the direction
opposite to the origin. We define the following subsets in L+:

LI
+ :=

{
q ∈ L+ : nT q̇ ≤ 0

}
and LO

+ := {q ∈ L+ : nT q̇ ≥ 0},
where q̇ = Aq+ b.

Proposition 4.5.3. Consider a singular non-zero matrix A ∈ L(R2) and a vector
b ∈ R2 \ {0}. Let L+ be a straight line in the plane which is not invariant under
the flow of the system ẋ = Ax + b. Suppose that this non-homogeneous linear
system has no singular points. Then:

(a) The flow of the system has at most a contact point with L+.

(b) If LI
+ �= ∅ and LO

+ �= ∅, then the system has exactly one contact point with
L+.

(c) Suppose that there exists a contact point p of the flow with the straight line L+

and let n be as above. Then det(An⊥,b) �= 0. Moreover, if det(An⊥,b) > 0,
then LI

+ = {p+λṗ : λ ≤ 0} and LO
+ = {p+λṗ : λ ≥ 0}, and if det(An⊥,b) <

0, then LI
+ = {p+ λṗ : λ ≥ 0} and LO

+ = {p+ λṗ : λ ≤ 0}.
(d) The Poincaré map Π++ is defined if and only if the flow of the system has a

unique contact point with L+.

Proof. (a) Suppose that the flow of the system has two contact points with L+,
p1 and p2. Thus L+ = {p1 + λ(p1 − p2) : λ ∈ R}, Ap1 + b = α1(p1 − p2) and
Ap2 +b = α2(p1−p2). From this it follows that A(p1−p2) = α(p1−p2), which
implies that L+ is an invariant straight line, in contradiction with our hypothesis.
Therefore there exists at most one contact point with L+.

(b) Take a point p in L+. We can write L+ = {p+ λn⊥ : λ ∈ R}. Consider
the auxiliar function f(λ) = nT [A(p+λn⊥)+b]. Since LI

+ �= ∅ and LO
+ �= ∅ there

exist λ1 and λ2 such that f(λ1) ≤ 0 and f(λ2) ≥ 0. The existence of a contact
point follows from the continuity of the function f. The uniqueness of the contact
point is a consequence of statement (a).

(c) Let p be a contact point of the flow with L+. Since the system has no
singular points, ṗ �= 0. From this we conclude that L+ = {p+λṗ : λ ∈ R}, that the
vector n is equal to either ṗ⊥/‖ṗ‖ or −ṗ⊥/‖ṗ‖, and that nT (Aṗ) = det(An⊥,b).

Consider now a different point q in L+. Then q = p + λṗ with λ �= 0.
Therefore

nT q̇ = nT (Ap+ b) + λnTAṗ = λdet
(
An⊥,b

)
.

If we suppose that det(An⊥,b) = 0, then since nT q̇ = 0 for every point q ∈ L+,
we conclude that L+ is an invariant straight line, which contradicts the hypothesis.
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Therefore, det(An⊥,b) �= 0. The expression of LI
+ and LO

+ follows from the above
equation.

(d) Suppose that the map Π++ is defined. Then the half-straight lines LI
+ �= ∅

and LO
+ �= ∅. By statement (b), the flow of the system has exactly one contact

point with the straight line L+.
Conversely, if the flow has exactly one contact point p with L+, then p splits

L+ into the half-lines LI
+ and LO

+. Let γ(p) be the orbit through the point p.
By the continuous dependence of the solutions of a linear differential system with
respect to the initial conditions we conclude the existence of a Poincaré map in a
neighbourhood of γ(p). �

If the flow of the non-homogeneous linear system (4.38) has a contact point
p with the straight line L+, then we can associate a value a ≥ 0, called coordinate,
to any point on L+, see Proposition 4.5.3(c). Thus if det(An⊥,b) > 0, then

LI
+ = {p−aṗ : a ≥ 0} and LO

+ = {p+ aṗ : a ≥ 0} ,

while if det(An⊥,b) < 0, then

LI
+ = {p+ aṗ : a ≥ 0} and LO

+ = {p− aṗ : a ≥ 0} .

Let Π++ be the Poincaré map defined by the flow of system (4.38) and associated
to the straight line L+, and let q1 and q2 be two points on L+ such that q2 =
Π++(q1). We denote by π̃++ the map which transforms the coordinate of q1 into
the coordinate of q2. In this way we can reduce the study of the behaviour of π̃++

to the study of the behaviour of Π++.
By using similar arguments to those used in the homogeneous case we obtain

the next result which we present without proof.

Lemma 4.5.4. Consider a singular matrix A ∈ L(R2) and a vector b ∈ R2\{0}. Let
L+ be a straight line in the plane which does not pass through the origin. Suppose
that the Poincaré map π̃++ associated to the flow of the non-homogeneous linear
system ẋ = Ax+ b and the straight line L+ is defined. Then:

(a) π̃∗
++ associated to the flow of the system ẋ = −Ax− b and the straight line

L+ is defined and satisfies that π̃∗
++ = π̃−1

++.

(b) π̃++ depends analytically on the parameter t = trace(A).

(c) π̃++ is an analytic function of its argument and its inverse is also analytic.

By Lemma 4.5.4, in order to determine the qualitative behaviour of the
Poincaré map π̃++ defined by the system (4.38), it is enough to consider the
case trace(A) ≥ 0. The case trace(A) < 0 follows by considering π̃−1

++.

Lemma 4.5.5. Consider a non-zero matrix A ∈ L(R2), a vector b ∈ R2 \ {0}, and
a regular matrix M ∈ GL(R2) such that det(M) > 0. Let L be a straight line in
the plane and p be a contact point of the flow of the system ẋ = Ax + b with L.
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Then p∗ = Mp is a contact point of the flow of the system ẋ = A∗x + b∗ with
L∗ = ML, where A∗ = MAM−1 and b∗ = Mb. Moreover, ṗ∗ = M ṗ, L∗I = MLI

and L∗O = MLO.

Proof. The linear change of coordinates y = Mx transforms the system ẋ =
Ax+b, the straight line L, and the contact point p into the system ẏ = A∗y+b∗,
the straight line L∗ = ML, and the contact point p∗ = Mp, respectively.

Let n and n∗ be the unit orthogonal vectors to L and L∗, respectively. Then

det
(
A∗n∗⊥,b∗) = det (M)

||Mn⊥|| det
(
An⊥,b

)
.

See the proof of Lemma 4.3.6 for more details.
Assume that det(An⊥,b) > 0 (the case det(An⊥,b) < 0 is treated in a

similar way). In this case LI
+ = {p−aṗ : a ≥ 0} and LO

+ = {p+aṗ : a ≥ 0},
see Proposition 4.5.3(c). On the other hand, since det(M) > 0, we obtain that
det(A∗n∗⊥,b∗) > 0. Hence, L∗I = {p∗−aṗ∗ : a ≥ 0} and L∗O = {p∗+aṗ∗ : a ≥
0}, i.e., L∗I = MLI and L∗O = MLO. �

Proposition 4.5.6. Consider a singular matrix A ∈ L(R2) and a vector b ∈ R2\{0}.
Let L+ be a straight line in the plane which does not pass through the origin.
Suppose that the Poincaré map π̃++ associated to the flow of ẋ = Ax+ b and to
the straight line L+ is defined. If M ∈ GL(R2) such that det(M) > 0, then π̃++

is invariant under the change of coordinates y = Mx.

Proof. Suppose that det(An⊥,b) > 0 (the case det(An⊥,b) < 0 is treated sim-
ilarly). By Lemma 4.5.5, p∗ = Mp is the contact point of the flow of the sys-
tem ẏ = A∗y + b∗ with the straight line L∗

+ = ML+, where A∗ = MAM−1

and b∗ = Mb. Moreover, p∗ splits L∗
+ into the two half-lines L∗I

+ = MLI
+ and

L∗O
+ = MLO

+.
Since π̃++ is well defined, there exist a coordinate a ≥ 0, a point q1 in LO

+, and
a point q2 in LI

+ such that q2 = Π++(q1), q1 = p+ aṗ and q2 = p− π̃++ (a) ṗ.
Therefore, Mq1 ∈ L∗O

+ , Mq2 ∈ L∗I
+ and Mq1 = Π∗

++(Mq2), where Mq1 =
Mp+ aM ṗ and Mq2 = Mp− π̃++(a)M ṗ. This proves the proposition. �

By the last proposition, we can assume that the matrix A is given in real
Jordan normal form. In other case, since det(A) = 0, we can always transform the
matrix A into its real Jordan normal form by an orientation-preserving change of
coordinates.

4.5.3 Qualitative behaviour of the Poincaré map π̃++

In this subsection we study the qualitative behaviour of the Poincaré map defined
by the flow of the non-homogeneous linear system ẋ = Ax + b. Recall that if
d = det(A) �= 0, then the Poincaré map above is equal to one of the Poincaré
maps defined by a linear flow, see Proposition 4.5.2 and Section 4.4. Only when
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t2− 4d < 0 and the singular point e+ belongs to S+ the Poincaré map denoted by
π̃++ does not coincide to any of the Poincaré maps defined by a linear flow. In this
case such Poincaré maps can be expressed as a composition of the Poincaré maps
studied in Section 4.4; that is, π̃++ = π−+ ◦ π−− ◦ π+−. Proposition 4.5.7 and
Corollary 4.5.8 describe the behaviour of the map π̃++ when d �= 0, t2 − 4d < 0
and t ≥ 0 or t < 0, respectively.

In the degenerate case d = 0 there exists two possibilities for the Poincaré
map π̃++. If the non-homogeneous linear system ẋ = Ax+b has a singular point,
then the behaviour of π̃++ is trivial, see Subsection 4.5.2. If the non-homogeneous
system has no singular points, then π̃++ cannot be reduced to any of the Poincaré
maps associated to the homogeneous case. In Proposition 4.5.9 and Corollary
4.5.10 we will describe the behaviour of the map π̃++ when d = 0, and t ≥ 0 and
t < 0, respectively.

Proposition 4.5.7. Consider a matrix A ∈ GL(R2) with parameters d > 0, t ≥ 0
and t2 − 4d < 0, and a vector b ∈ R2 \ {0}. Let π̃++ be the Poincaré map defined
by the flow of the system ẋ = Ax + b and associated to a straight line L+ which
does not pass through the origin. Then:

(a) If t > 0, then there exist a value b∗ > 0 such that π̃++ : [0,+∞)→ [b∗,+∞),
π̃++(0) = b∗, lim

a↗+∞
π̃++(a) = +∞, and π̃++(a) > a in (0,+∞).

(a.1) If a ∈ (0,+∞), then π̃′
++(a) > 0 and lim

a↘0
π̃′
++(a) = 0.

(a.2) If a ∈ (0,+∞), then π̃′′
++(a) > 0.

(a.3) The straight line b = eγπa+ t(1 + eγπ)/d is an asymptote of the graph
of π̃++ when a tends to +∞, where γ = t/

√
4d− t2.

(a.4) π̃++ is implicitly defined by the expression

1− tπ̃++ (a) + dπ̃++ (a)2

1 + ta+ da2
= e

2γ arctan

(
(a+π̃++(a))β

(π̃++(a)−a)α−1+adπ̃++(a)

)
.

(a.5) The qualitative behaviour of the graph of π̃++ is depicted in Figure
4.15(a).

(b) If t = 0, then π̃++ is the identity in [0,+∞).

Proof. By Proposition 4.5.2(b.1), the map π̃++ can be expressed as a composition
of the maps π−+, π−− and π+−, i.e., π̃++ = π−+ ◦ π−− ◦ π+−. Therefore, the
statements (a), (a.1) and (a.2) are consequences of Propositions 4.4.11 and 4.4.13.

(a.3) We assume that A is in real Jordan normal form, see Proposition 4.3.7.
From (4.40) it follows that the map b = π̃++(a) is defined by the system

1− bα = eαs {cos (βs) + a [α cos (βs)− β sin (βs)]} ,
−bβ = eαs {sin (βs) + a [α sin (βs) + β cos (βs)]} , (4.41)
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and the inequalities a ≥ 0, b ≥ 0 and s ≥ 0, where α = t/2 ≥ 0 and β =√
4d− t2/2 > 0.

Consider the change of the time variable τ = βs and take γ = α/β. Isolating
a and b in (4.41), we obtain the parametric equations of π̃++,

a (τ) =
β cos (τ) − α sin (τ)− βe−γτ

d sin (τ)
,

b (τ) =
α sin (τ) + β cos (τ)− βeγτ

d sin (τ)
.

(4.42)

Since A is in real Jordan normal form, τ is the angle covered by the solution during
the flight time s. Hence, we conclude that τ ∈ (π, τ∗), where τ∗ < 2π.

From (4.42) it can be proved that lim
τ↘π

a(τ) = +∞ and

lim
a↗+∞

π̃++ (a)

a
= lim

τ↘π

b

a
=

1 + eγπ

1 + e−γπ
= eγπ.

By applying l’Hôpital’s rule it is easy to check that lim
a↗+∞

(π̃++(a) − eγπa) =

t(1 + eγπ)/d, which implies that the straight line b = eγπa + t(1 + eγπ)/d is an
asymptote of the graph of π̃++(a).

(a.4) For more details, see the proof of Proposition 4.4.11(a.4).
(b) If t = 0, then α = 0 and γ = 0. Therefore the statement follows from

equation (4.42). �

Figure 4.15: Qualitative behaviour of the Poincaré map π̃++ (a) when t2− 4d < 0
and t > 0, (b) when t2 − 4d < 0 and t < 0.

Corollary 4.5.8. Consider a matrix A ∈ GL(R2) with parameters d > 0, t < 0 and
t2 − 4d < 0, and a vector b ∈ R2 \ {0}. Let π̃++ be the Poincaré map defined by
the flow of the system ẋ = Ax+b and associated to a straight line which does not
pass through the origin. Then:

(a) There exists a value a∗ > 0 such that π̃++ : [a∗,+∞)→ [0,+∞), π̃++(a
∗) =

0, and lim
a↗+∞

π̃++(a) = +∞. Moreover, π̃++(a) < a in (a∗,+∞).
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(b) If a ∈ (a∗,+∞), then π̃′
++(a) > 0 and lim

a↘a∗
π̃′
++(a) = +∞.

(c) If a ∈ (a∗,+∞), then π̃′′
++(a) < 0.

(d) The straight line b = eγπa+ t(1+eγπ)/d is an asymptote of the graph of π̃++

when a tends to +∞, where γ = t/
√
4d− t2.

(e) π̃++ is implicitly defined by the expression of the Proposition 4.5.7(e).

(f) The qualitative behaviour of the graph of π̃++ is depicted in Figure 4.15(b).

Proof. The proof follows straightforward by using the fact that the map π̃++ is
the inverse of the map described in Proposition 4.5.7. �
Proposition 4.5.9. Consider a non-zero singular matrix A ∈ L(R2) and a vector
b ∈ R2 \ {0}. Let L+ be a non-invariant straight line which does not pass through
the origin and n be the unit orthogonal vector to L+ oriented in the direction
opposite to the origin. Suppose that the non-homogeneous linear system ẋ = Ax+b
has no singular points and that the Poincaré map π̃++ associated to the flow of
the system and to the straight line L+ is defined. Then:

(a) If det(An⊥,b) > 0, then the domain of π̃++ is a = 0, and π̃++(0) = 0.

(b) If det(An⊥,b) < 0 and t > 0, then π̃++ : [0, t−1) → [0,+∞), π̃++(0) = 0,
lim

a↗t−1
π̃++(a) = +∞, and π̃++(a) > a in (0, t−1).

(b.1) If a ∈ (0, t−1), then π̃′
++(a) > 1 and lim

a↘0
π̃′
++(a) = 1.

(b.2) If a ∈ (0, t−1), then π̃′′
++(a) > 0.

(b.3) π̃++ is implicitly defined by the expression

1 + tπ̃++ (a) = (1− at) et(a+π̃++(a)).

(b.4) The graph of π̃++ has a vertical asymptote at a = t−1.

(b.5) The qualitative behaviour of the graph of π̃++ is depicted in Figure
4.16(a).

(c) If det(An⊥,b) < 0 and t = 0, then the map π̃++ is the identity in [0,+∞).

Proof. By Proposition 4.5.6, we can assume that the matrix A is in real Jordan
normal form, i.e.,

(i) A =

(
t 0
0 0

)
or (ii) A =

(
0 1
0 0

)
,

depending on whether t �= 0 or t = 0. Therefore, the flow Φ(s,x) of the non-
homogeneous linear system ẋ = Ax+ b is given by

(i)

(
ets
(
x1 +

b1
t

)− b1
t

x2 + b2s

)
or (ii)

(
b2
2 s

2 + (x2 + b1) s+ x2

x2 + b2s

)
,
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where b = (b1, b2)
T with b2 �= 0 and x = (x1, x2)

T . Note that b2 �= 0 because the
system has no singular points.

Since π̃++ is well defined, the flow of the system has a unique contact point
p = (p1, p2)

T with the straight line L+, see Proposition 4.5.3(d).
(a) Suppose that det(An⊥,b) > 0. By Proposition 4.5.3(d), the contact point

p splits L+ into the two half-lines, LI
+ and LO

+. Moreover, we obtain that LI
+ =

{p− aṗ : a ≥ 0}, LO
+ = {p+aṗ : a ≥ 0}, and the map π̃++ takes coordinates of

points of LO
+ into coordinates of points of LI

+. Thus π̃++ is implicitly defined by
the equation

p− π̃++ (a) ṗ = Φ(s,p+ aṗ)

and the inequalities a ≥ 0, π̃++(a) ≥ 0 and s ≥ 0. Substituting in this equation the
expression of the flow in (i) and (ii) we obtain two systems. It is easy to check that
in both cases the second equation of these systems is given by π̃++(a) = −(s+ a),
which implies that π̃++ is only defined in a = 0 and π̃++(0) = 0.

(b) Assume that det(An⊥,b) < 0 and t < 0. Arguments similar to those in
the proof of statement (a) show that the map π̃++ is implicitly defined by the
equation

p+ π̃++ (a) ṗ = Φ(s,p− aṗ)

and the inequalities a ≥ 0, π̃++(a) ≥ 0 and s ≥ 0. Since t > 0, substituting in this
equation the expression of the flow corresponding to the case (i) we obtain that

p1 + π̃++ (a) (tp1 + b1) = ets
(
p1 − a (tp1 + b1) +

b1
t

)
− b1

t
,

π̃++ (a) b2 = −ab2 + sb2.
(4.43)

Note that the second equation is now π̃++(a) = s− a, which does not imply that
π̃++ is only defined in a = 0. It is easy to check that x1 = −b1/t is an invariant
straight line of the flow of the system. Therefore, tp1 + b1 �= 0. Applying this to
the first equation in (4.43) we get

1 + tπ̃++ (a) = et(π̃++(a)+a) (1− ta) . (4.44)

Since t > 0, from (4.44) it follows that π̃++(0) = 0 and the domain of definition
of π̃++ is contained in [0, t−1).

Introduce now the auxiliary function ψ3(x) = (1 + tx)e−tx. Then expression
(4.44) can be written as ψ3(π̃++(a)) = ψ3(−a). The following properties of the
function ψ3 can be easily verified: ψ3 is defined on R; ψ3 is strictly increasing
on (−∞, 0) and strictly decreasing on (0,+∞); ψ3(0) = 1; lim

x↘−∞
ψ3(x) = −∞;

lim
x↗+∞

ψ3(x) = 0, and ψ3(−t−1) = 0. We deduce that the domain of π̃++ is [0, t−1),

that lim
a↗t−1

π̃++(a) = +∞, and that π̃++(a) �= a in [0, t−1), which implies that

π̃++(a) > a in [0, t−1).
Differentiating expression (4.44) with respect to a we obtain that π̃′

++(a) =

aeat/(π̃++(a)e
−tπ̃++(a)). Define now a new auxiliary function by ψ4(x) = xetx −
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π̃++(x)e
−tπ̃++(x). Since ψ4(0) = 0 and ψ′

4(x) > 0 in (0, t−1), it follows that ψ4(x) >
0 in (0, t−1). From this we conclude that π̃′

++(a) > 1 in (0, t−1).
Differentiating twice expression (4.44) with respect to a we obtain

π̃′′
++ (a) =

et(a+2π̃++(a))

(π̃++ (a))3

[
(1 + at) (π̃++ (a))

2
e−tπ̃++(a) − a2eta (1− tπ̃++ (a))

]
.

Suppose now that there exists a∗ ∈ (0, t−1) such that π̃′′
++(a

∗) = 0; that is,

(1 + a∗t) (π̃++ (a∗))2 e−tπ̃++(a∗) = (a∗)2 eta
∗
(1− tπ̃++ (a∗)) .

This yields that π̃++(a
∗) < t−1 and (1 + a∗t)e−tπ̃++(a∗) ≤ eta

∗
(1 − tπ̃++(a

∗)).
Expressing this last inequality in terms of the auxiliary function ψ3 gives ψ3(a

∗) ≤
ψ3(−π̃++(a

∗)), which contradicts the fact that ψ3 is strictly decreasing in (0,+∞)
and π̃++(a) > a. Therefore, we have π̃′′

++(a) �= 0 if a ∈ (0, t−1). Finally, since
lim

a↗t−1
π̃′′
++(a) > 0, we get that π̃′′

++(a) > 0 if a ∈ (0, t−1).

From π̃′
++(a) > 1 in (0, t−1) it follows that lim

a↘0
π̃′
++(a) = L ≥ 1. Applying

l’Hôpital’s rule we obtain that

L = lim
a↘0

π̃′
++ (a) = lim

a↘0

(
1

π̃′
++ (a)

eat (1 + at)

e−tπ̃++(a) (1− tπ̃++ (a))

)
=

1

L
,

which implies that L = 1.
(c) Arguments similar to those in the proof of statement (a) show that when

det(An⊥,b) < 0 and t = 0, the map π̃++ is implicitly defined by the system

π̃++ (a) (p2 + b1) = b2
2 s

2 + [b1 + p2 − ab2] s− a (p2 + b1) ,
π̃++ (a) b2 = −ab2 + sb2.

Isolating s in the second equation and substituting it in the first one we obtain
that π̃++(a) = a, which finishes the proof. �

Figure 4.16: Qualitative behaviour of the Poincaré map π̃++ (a) when d = 0 and
t > 0, (b) d = 0 and t < 0.
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Corollary 4.5.10. Consider a non-zero singular matrix A ∈ L(R2) and a vector
b ∈ R2 \ {0}. Let L+ be a non-invariant straight line which does not pass through
the origin and let n be the unit orthogonal vector to L+ oriented in the direction
opposite to the origin. Suppose that the non-homogeneous linear system ẋ = Ax+b
has no singular points and that the Poincaré map π̃++ associated to the flow and
to L+ is defined. Then:

(a) If det(An⊥,b) < 0 and t < 0, then π̃++ : [0,+∞) → [0, |t|−1), π̃++(0) = 0,
lim

a↗+∞
π̃++(a) = |t|−1, and π̃++(a) < a in (0,+∞).

(b) If a ∈ (0,+∞), then 0 < π̃′
++(a) < 1 and lim

a↘0
π̃′
++(a) = 1.

(c) If a ∈ (0,+∞), then π̃′′
++(a) > 0.

(d) π̃++ is implicitly defined by the expression of Proposition 4.5.9(b.3).

(e) The graph of π̃++ has a horizontal asymptote at b = |t|−1.

(f) The qualitative behaviour of the graph of π̃++ is shown in Figure 4.16(b).

Proof. The corollary follows by using that π̃++ is the inverse of the map described
in the Proposition 4.5.9(b), see Lemma 4.5.4(a). �

4.6 Return maps of fundamental systems

In this section we describe the return map Π defined by the flow of a fundamental
system and associated to the straight line L+ as the composition of the Poincaré
maps ΠM

jk , where j, k ∈ {+,−} and M ∈ {A,B}, see Section 4.1. Those Poincaré
maps have been reduced to the Poincaré maps defined by the flow of a homoge-
neous and a non-homogeneous linear system (Πjk and Π̃++), and they have been
studied in detail in Sections 4.3 and 4.5 via the so-defined Poincaré maps πjk with
j, k ∈ {+,−} and π̃++. From now on we use the superscript A or B to identify
which of the two linear systems define the Poincaré maps πjk. Thus πB

jk are the

Poincaré maps defined by the homogeneous linear system ẋ = Bx, and πA
jk are

the Poincaré maps defined by the non-homogeneous linear system ẋ = Ax± b.
Consider the fundamental system

ẋ = Ax+ ϕ
(
kTx

)
b, (4.45)

with A ∈ L(R2) and k,b ∈ R2 \ {0}. Take L+ = {x ∈ R2 : kTx = 1} and
L− = {x ∈ R2 : kTx = −1}. Since L+ and L− does not pass through the origin,
we can split them into the subsets LI

+, L
O
+, L

I
− and LO

−. Since we know when the
flow Φ(s,x) of the fundamental system (4.45) has a contact point with the straight
line L+, these subsets are half-lines.

Consider the subset

Dom :=
{
q ∈ LI

+ : ∃sq > 0,Φ (sq,q) ∈ LI
+ and ∀s ∈ (0, sq) , Φ (s,q) �∈ LI

+

}
.
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When Dom �= ∅, we define the return map associated to the flow of the fundamental
system (4.45) and to the half-line LI

+ by Π :Dom ⊂ LI
+ → LI

+ and Π(q) =
Φ(sq,q). It is easy to check that if Dom �= ∅, then two or more of the sets Dom++,
Dom+−, Dom −− and Dom−+, see (4.7), are not empty. This implies that there
exists exactly one contact point p of the flow of the fundamental system with L+,
see Lemma 4.3.2. By the symmetry of the vector field with respect to the origin,
−p is the contact point of the flow with L−. The existence of contact points on
L+ and L− allows us to associate a non-negative number to any points on L+ and
L− called the coordinate of the point. For more details, see Subsections 4.3.1 and
4.5.2. We define the return map π as the map that transforms the coordinate of q
into the coordinate of Π (q). As usual, we restrict our attention to the return map
π instead of Π.

In the following result we express π as the composition of the Poincaré maps
πA
jk, π̃

A
++ and πB

jk. Given a map f we denote by f2 the map f ◦ f .
Theorem 4.6.1. Consider a fundamental system ẋ = Ax + ϕ(kTx)b with funda-
mental matrices (A,B) and parameters (D,T, d, t). Then:

(a) The return map π is defined if and only if the flow of the system has exactly
one contact point with the straight line L+.

(b) π is defined if an only if det(Ak⊥,k⊥) �= 0.

(c) If D > 0, d �= 0 and π is defined, then π = (πA
++ ◦ πB

+−)
2.

(d) If D > 0, d = 0 and π is defined, then π = (π̃A
++ ◦ πB

+−)
2.

(e) Suppose that D < 0, d > 0 and the return map π is defined. Let Λ1 > 0 > Λ2

be the eigenvalues of the matrix B. If t2 − 4d < 0, then

π (a) =

{ (
π̃A
++ ◦ πB

++

)
(a) , if a ∈ [0,Λ−1

1

)
,(

π̃A
++ ◦ πB

+−
)2

(a) , if a ∈ (Λ−1
1 ,+∞) .

If t2 − 4d ≥ 0, then the domain of π is a = 0 and π(0) = 0.

(f) If D < 0 and d ≤ 0, then the domain of π is a = 0 and π(0) = 0.

(g) π is analytic with respect to a.

Proof. (a) As we have seen, the existence of the return map π implies the existence
of exactly one contact point. Thus it remains to prove only the converse. Suppose
that the flow of the system has exactly one contact point p with L+. Then Π(p) =
p and the return map is defined.

(b) Since the fundamental system in S0 is ẋ = Bx, the existence of a con-
tact point of the flow with L+ is equivalent to det(Bk⊥,k⊥) �= 0, see Theorem
4.3.10. The statement follows by noting that B = A + bkT and det(Ak⊥,k⊥) =
det(Bk⊥,k⊥).

(c) Suppose that D > 0 and d > 0 (when d < 0, the same arguments can be
applied to prove the statement). In this case the flow of the system has a contact
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point with L+, see statement (a). Hence the Poincaré maps πB
+− and πB−+ are

defined, see Proposition 4.3.4. Moreover, πB
+− maps coordinates of points in LI

+

into coordinates of points in LO−; and πB−+ maps coordinates of points in LI− into
coordinates of points in LO

+, see Proposition 4.3.3(a).
Suppose that e+ = −A−1b ∈ S+. Then the fundamental system has a sin-

gular point in S+, which contradicts Theorem 3.9.3(a). Therefore, e+ �∈ S+. By
Proposition 4.5.1, this implies that πA

++ and πA
−− are well defined. Moreover, πA

++

maps coordinates from LO
+ to LI

+, and πA
−− maps coordinates from LO

− to LI
−, see

Proposition 4.5.2(a).
We conclude that there exists exactly one return map π defined in LI

+. More-
over, this map can be expressed as a composition of the Poincaré maps πM

jk , i.e.,

π = πA
++ ◦ πB−+ ◦ πA−− ◦ πB

+−. The statement follows by noting that πA
++ = πA−−

and πB
+− = πB

−+, see Lemma 4.3.5(a) and (b).
(d) The statement follows by arguments similar to those used in the proof of

(c).
(e) Since D < 0, it is easy to conclude that the Poincaré maps πB

jk with
j, k ∈ {+,−} are well defined, see the proof of statement (a) for more details.
Moreover, πB

++ maps coordinates from LI
+ to LO

+ and πB
+− maps coordinates from

LI
+ to LO

−.
Since d > 0, e+ = −A−1b is a singular point contained in S+, see Theo-

rem 3.9.3(b). Therefore, the Poincaré maps π̃A
++ and π̃A

−− are well defined, see
Proposition 4.5.1.

Suppose that t2− 4d ≥ 0. By Proposition 4.5.2(a), the behaviour of the map
π̃A
++ is trivial and so is the behaviour of the return map π. Suppose that t2−4d < 0.

In this case π̃A
++ maps coordinates from LO

+ to LI
+. We have two possibilities for

the return map π: either π = π̃A
++ ◦ πB

++, or π = π̃A
++ ◦ πB−+ ◦ π̃A−− ◦ πB

+−. The
domain of both of these maps follows from Propositions 4.4.15 and 4.4.18 and from
Corollaries 4.4.16 and 4.4.19. The statement follows by noting that π̃A

++ = π̃A−−
and πB

+− = πB
−+.

(f) Arguments similar to those used in the proof of the statement (d) show
that the Poincaré maps πB

jk are well defined when D < 0.
Suppose that d < 0. From Theorem 3.9.3(a) it follows that e+ �∈ S+. More-

over, the Poincaré map πA
++ is defined, see Proposition 4.5.1. The behaviour of

πA
++ follows from Proposition 4.5.2(a.2).

Suppose d = 0. Without loss of generality, we can assume that

(i) A =

(
t 0
0 0

)
or (ii) A =

(
0 1
0 0

)
.

The case where A is the zero matrix is not considered because this would imply
that D = 0, see (3.10).

Since n = k/‖k‖ is the unit orthogonal vector to L+ oriented in the direction
opposite to the origin, in case (i) we obtain that det(An⊥,b) = −tk2b2 = −D > 0
(see expression (3.10)), and in case (ii) we obtain that det(An⊥,b) = −D > 0. By
Proposition 4.5.9(a), it follows that the behavior of π̃A

++ is trivial.
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(g) If π is defined, then we can write π as a composition of analytic maps,
which proves the statement. �

From the definition of the return map π it follows that a periodic orbit
intersecting L+ and/or L− is associated to a fixed point of π. Thus, any fixed
point of π is associated to a periodic orbit intersecting L+ and/or L−. Further,
the existence of periodic orbits which are not contained into one of the regions
S+, S0 or S− is equivalent to the existence of a fixed point of the return map π.
Moreover, any isolated fixed point of π is associated to a periodic orbit, which is
a limit cycle, Γ. When Γ is hyperbolic, we can obtain its stability from Theorem
2.7.5. In the case that Γ is not a hyperbolic limit cycle we have the following
proposition.

Proposition 4.6.2. Consider a fundamental system ẋ = Ax+ ϕ(kTx)b and let a∗

be a fixed point of the return map π associated to a periodic orbit Γ.

(a) If there exists ε > 0 such that |π′(a)| < 1 in (a∗, a∗+ ε), then Γ is an outside
asymptotically stable periodic orbit.

(b) If there exists ε > 0 such that |π′(a)| < 1 in (a∗ − ε, a∗), then Γ is an inside
asymptotically stable periodic orbit.

(c) If there exists ε > 0 such that |π′(a)| > 1 in (a∗, a∗+ ε), then Γ is an outside
asymptotically unstable periodic orbit.

(d) If there exists ε > 0 such that |π′(a)| > 1 in (a∗ − ε, a∗), then Γ is an inside
asymptotically unstable periodic orbit.

Proof. (a) Suppose that |π′(a)| < 1 in (a∗, a∗+ε). The statement follows by noting
that the sequence an+1 = π(an) with a0 ∈ (a∗, a∗ + ε) is contained in (a∗, a∗ + ε)
and tends to a∗.

The remaining statements follows in a similar way. �

Lamerey map

For a fundamental system with fundamental matrices (A,B) and parameters D >
0 and d �= 0, the Lamerey maps are defined by

gA (a) = π−A
++ (a)− πB

+− (a) and gB (a) = πA
++ (a)− π−B

+− (a) . (4.46)

When D > 0 and d = 0, the Lamerey maps are defined by

gA (a) = π̃−A
++ (a)− πB

+− (a) and gB (a) = π̃A
++ (a)− π−B

+− (a) . (4.47)
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When D < 0, d > 0 and t2 − 4d < 0, the Lamerey maps are defined by

gA (a) =

{
π̃−A
++ (a)− πB

++ (a) , if a ∈ [0,Λ−1
1 ),

π̃−A
++ (a)− πB

+− (a) , if a ∈ (Λ−1
1 ,+∞),

and

gB (a) =

{
π̃A
++ (a)− π−B

++ (a) , if a ∈ [0,Λ−1
1 ),

π̃A
++ (a)− π−B

+− (a) , if a ∈ (Λ−1
1 ,+∞),

(4.48)

where Λ1 > 0 > Λ2 are the eigenvalues of the matrix B. In the next result we
prove that the zeros of the Lamerey maps are the fixed points of the return map
π, and therefore they are associated to periodic orbits that are not contained in
one of the regions S+, S0, or S−.

Lemma 4.6.3. Consider a fundamental system with matrices (A,B) and funda-
mental parameters (D,T, d, t).

(a) The Lamerey maps are defined if and only if the flow of the system has a
contact point with the straight line L+.

(b) The Lamerey map gA (respectively gB) has a zero at a0 if and only if a0 is a
fixed point of the return map π.

Proof. Statement (a) follows from Theorem 4.6.1(a).
(b) Suppose that D > 0 and d �= 0. The remaining cases can be proved by

using similar arguments. Consider the Lamerey map gA (similar considerations
apply to gB as well).

Suppose that a0 is a zero of gA. Then π−A
++(a0) = πB

+−(a0). Since π−A
++ =

(πA
++)

−1 by Lemma 4.3.5(c), we have that (πA
++◦πB

+−)(a0) = a0, and consequently
(πA

++ ◦ πB
+−)

2(a0) = a0. By Theorem 4.6.1(b), this means that a0 is a fixed point
of the return map π.

Suppose now that a0 is a fixed point of π, i.e., (πA
++ ◦ πB

+−)
2(a0) = a0. By

the symmetry of the flow with respect to the origin it can be concluded that
(πA

++ ◦ πB
+−)(a0) = a0. The statement follows by using that π−A

++ = (πA
++)

−1. �
A graphical tool to study the existence and the location of the zeros of the

Lamerey maps gA or gB is provided by the so-called Lamerey diagrams, see [3],
p. 161. These diagrams depict the graph of the Poincaré maps which define the
Lamerey map. For instance, when D > 0 and d �= 0, we draw the graph of πA

++

and πB
+−. Thus, a0 is a zero of gA or gB if and only if a0 is an intersecting point

of the graph of πA
++ and πB

+−.

Proper fundamental systems

In Theorem 4.6.1(b) we characterize the existence of return maps in fundamental
systems by det(Ak⊥,k⊥) �= 0. From this equation we obtain an interesting rela-
tionship between the existence of the return map and ideas originating in control
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theory, and in particular in the concept of observability of a control system. For
an introduction to control theory we refer the reader to [36]. More specific results
can be found in [32] and [35].

A control system is composed of a steady state equation (usually a differential
equation) ẋ = f(x,u), which depends on the states x(s) of the system and on the
inputs u(s), and of an output function y = g(x,u), which also depends on the
states and on the inputs.

A control system is said to be observable if there exists a time s1 > 0 such
that any initial state x(s0) can be distinguished from another state x0 by knowing
the input u(s) and the output y(s) in the interval [s0, s1]. That is, the state of
an observable control system is determined by the input and the output. This
property is essentially for applications: if a system is not observable (we cannot
obtain the state of the system from the outputs), then it cannot be controled (we
cannot steer the system from one state to another).

In the case when the steady state equation is a fundamental system we obtain
that observability is equivalent to the existence of the return map π. This result
is presented in Theorem 4.6.5. As usual, the gradient of a function h is denoted
by ∇h.

Proposition 4.6.4. The control system ẋ = f(x) + g(x)u, y = h(x)u is observable
if and only if the matrix

K =

( ∇h
fT∇h

)
has maximal rank.

A proof of this result can be found in [32], p. 135. From this proposition we
obtain that if the control system ẋ = Ax+ϕ(kTx)b, y = xTk is observable, then
the determinant of

K = K (A,k) =

(
kT

kTA

)
does not vanish. This implies that the flow of the fundamental system ẋ = Ax +
ϕ(kTx)b has a contact point with the straight line L+ = {x ∈ R2 : kTx = 1}, see
Theorem 4.3.10. Note that the definition of observable control system depends on
the output uTh(x) and we work only with the steady state equation. Following
Komuro [37] and Chua [59], we introduce the notion of proper fundamental system.
A fundamental system ẋ = Ax + ϕ(kTx)b is said to be proper if det(K(A,k)) �=
0. Thus, any control system with a proper fundamental system as steady state
equation and output y = kTx is observable. Therefore, we obtain the following
result.

Theorem 4.6.5. Given a fundamental system ẋ = Ax + ϕ(kTx)b, the following
statements are equivalent.

(a) The flow of the fundamental system has exactly one contact point with L+.

(b) The vectors Ak⊥ and k⊥ are independent, i.e., det(Ak⊥,k⊥) �= 0.
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(c) The vectors Bk⊥ and k⊥ are independent, i.e., det(Bk⊥,k⊥) �= 0.

(d) The fundamental system is proper.

(e) The control system ẋ = Ax+ ϕ(kTx)b; y = kTx is observable.

An important property of proper fundamental systems is that they admit a
canonical form, called proper form, which involves only the fundamental param-
eters. The extension of this relationship to higher dimension is developed in [45].
Another interesting approach to the proper form of a fundamental system in higher
dimensions can be found in [13]. In that work the authors are using an equivalent
expression, called the Van der Pol–Duffing form of a fundamental system.

Proposition 4.6.6. For any proper fundamental system ẋ = Ax + ϕ(kTx)b with
fundamental parameters (D,T, d, t) there exists a change of coordinates y = Mx
with y = (y1, y2)

T , which transforms the system into the system

ẏ =

(
0 −d
1 t

)
y + ϕ (y2)

(
d−D
T − t

)
.

Proof. In [13] and [59] the authors prove that for a proper fundamental systems
there exists a change of coordinates y = Mx such that

MAM−1 =

(
0 −d
1 t

)
.

The result follows by noting that kTM−1 = (0, 1)
T

and Mb = (d−D,T − t)
T
.

�

Since limit cycles are important in applications, some authors pay attention
to fundamental systems exhibiting such orbits, see [55]. We have seen that the
existence of limit cycles in fundamental systems implies the existence of the return
map π. By Theorem 4.6.5, fundamental systems with limit cycles are contained in
the class of proper fundamental systems.

4.7 Fundamental parameter space

In this section we show that proper systems are dense in the family of fundamental
systems. We find an algebraic manifold W in the parameter space R4 such that
any fundamental system with fundamental parameters (D,T, d, t) �∈W is proper.
The manifold W is called the Whitney umbrella and has important properties
from a geometric viewpoint.

As a consequence of Theorem 4.6.5 we obtain a relationship between proper
systems and the real Jordan normal form of the fundamental matrices. We recall
that the vector k⊥ = (−k2, k1)T is parallel to the straight lines L+ and L−, see
(3.6) and (3.7).
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Lemma 4.7.1. Consider a fundamental system ẋ = Ax + ϕ(kTx)b with vector
k = (k1, k2)

T and fundamental matrices (A,B). Suppose that either A or B is
given in its real Jordan normal form. Then:

(a) If A or B is equal to

(
α −β
β α

)
with β �= 0, then the system is proper.

(b) If A or B is equal to

(
λ 1
0 λ

)
, then the system is proper if and only if

k1 �= 0.

(c) If A or B is equal to

(
λ 0
0 λ

)
, then the system is not proper.

(d) If A or B is equal to

(
λ1 0
0 λ2

)
with λ1 > λ2, then the system is proper if

and only if k1 �= 0 and k2 �= 0.

Proof. Suppose that the matrix A is in real Jordan normal form. The same argu-
ments can be applied if B is in real Jordan normal form.

Easy computations show that: det(Ak⊥,k⊥) = −β‖k⊥‖2 in the case (a);
det(Ak⊥,k⊥) = k21 in the case (b); det(Ak⊥,k⊥) = 0 in the case (c); and
det(Ak⊥,k⊥) = k1k2(λ1 − λ2) in the case (d). The lemma follows from Theo-
rem 4.6.5. �

We start by locating in the fundamental parameter space R4 the region where
the real Jordan normal forms of the fundamental matrices A and B are not deter-
mined by the fundamental parameters.

Define the three-dimensional vector subspace

WB :=
{
(D,T, d, t) ∈ R

4 : T 2 − 4D = 0
}
.

Consider a fundamental system with fundamental parameters (D,T, d, t) ∈ WB

and fundamental matrices (A,B). Since the fundamental parameters are invariant
under linear changes of coordinates, we can assume without loss of generality that
B is in real Jordan normal form. Therefore, if B is diagonal, then

B =

(
T/2 0
0 T/2

)
,

A =

( −k1b1 + T/2 −k2b1
−k1b2 −k2b2 + T/2

)
,

and the fundamental parameter d = T
2 (t− T

2 ). If B is not diagonal, then

B =

(
T/2 1
0 T/2

)
,

A =

( −k1b1 + T/2 1− k2b1
−k1b2 −k2b2 + T/2

)
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and the fundamental parameter d = T
2 (t− T

2 ) + k1b2.
Consider now the family of algebraic surfaces F={FB

c }c∈R in R4 given by

FB
c =

{(
T 2

4
, T,

T

2

(
t− T

2

)
+ c, t

)
: (T, t) ∈ R

2

}
. (4.49)

It is clear that WB is foliated by FB
c . Moreover, given a fundamental system

with fundamental matrices (A,B) and fundamental parameters (D,T, d, t) ∈ FB
c

with c �= 0, the real Jordan form of the matrix B is not diagonal. If c �= 0, i.e.,
(D,T, d, t) ∈ FB

0 , we cannot decide if the real Jordan normal form of B is diagonal
or not.

In a similar way, the family of algebraic surfaces FA = {FA
c }c∈R given by

FA
c =

{(
t

2

(
T − t

2

)
+ c, T,

t2

4
, t

)
: (T, t) ∈ R

2

}
,

foliates the vector subspace WA := {(D,T, d, t) ∈ R4 : t2 − 4d = 0}. Moreover,
only when the fundamental parameters lie in FA

0 , there exists an uncertainty in the
real Jordan form of the matrix A. The following lemma summarizes these facts.

Lemma 4.7.2. (a) Consider a fundamental system with matrices (A,B) and pa-
rameters (D,T, d, t) in FB

c with c �= 0 (respectively, FA
c ). Then the real Jor-

dan form of the matrix B (respectively, A) is not diagonal.

(b) Take (D,T, d, t) in FB
0 (respectively, in FA

0 ). Then there exist fundamental
systems with matrices (A,B) and parameters (D,T, d, t) such that the real
Jordan normal form of the matrix B (respectively, A) is not diagonal. There
exist fundamental systems with matrices (A,B) and parameters (D,T, d, t)
such that the real Jordan normal form of the matrix B (respectively, A) is
diagonal.

Recall that for a fundamental system with parameters (D,T, d, t) and matri-
ces (A,B) the eigenvalues ofA are λ1 = (t+

√
t2 − 4d)/2 and λ2 = (t−√t2 − 4d)/2,

and the eigenvalues of B are Λ1 = (T+
√
T 2 − 4D)/2 and Λ2 = (T−√T 2 − 4D)/2.

If λ1 and λ2 are real, then λ1 ≥ λ2, and if Λ1 and Λ2 are real, then Λ1 ≥ Λ2.
Consider the three dimensional algebraic manifolds

W1 :=
{
(D,T, d, t) ∈ R

4 : T 2 − 4D ≥ 0, d = Λ1 (t− Λ1)
}
,

W2 :=
{
(D,T, d, t) ∈ R

4 : T 2 − 4D ≥ 0, d = Λ2 (t− Λ2)
}
, (4.50)

W :=
{
(D,T, d, t) ∈ R

4 : (2 (d−D)− T (t− T ))
2
= (t− T )

(
T 2 − 4D

)}
and the surface

F ∗ :=
{
(D,T, d, t) ∈ R

4 : T 2 − 4D ≥ 0, D = d and T = t
}
.

Note that W = W1 ∪W2. These manifolds are represented in Figure 4.17.



4.7. Fundamental parameter space 183

Given a fundamental system with matrices (A,B) and fundamental param-
eters (D,T, d, t) ∈ W1, one has that Λ1 is a common eigenvalue of the matrices
A and B. Hence, either Λ1 = λ1 or Λ1 = λ2. Similarly, if (D,T, d, t) ∈ W2, then
either Λ2 = λ1 or Λ2 = λ2. Finally, if (D,T, d, t) ∈ F ∗, then Λ1 = λ1 and Λ2 = λ2.

Lemma 4.7.3. Let W , W1, W2 and F ∗ be the manifolds defined in (4.50). Then:

(a) W ⊂ {(D,T, d, t) ∈ R4 : T 2 − 4D ≥ 0 and t2 − 4d ≥ 0}.
(b) W1 ∩W2 = FB

0 ∪ F ∗.

(c) FA
0 ∩ FB

0 ⊂ F ∗.

(d) FA
0 ⊂W .

Proof. (a) Suppose that (D,T, d, t) ∈ W. Since W = W1 ∪ W2, from (4.50) it
follows that t2 − 4d = (t − 2Λ1)

2 if (D,T, d, t) ∈ W1, or t2 − 4d = (t − 2Λ2)
2 if

(D,T, d, t) ∈W2. In both cases we have t2 − 4d ≥ 0.
(b) First we prove that W1∩W2 ⊆ FB

0 ∪F ∗. Take (D,T, d, t) ∈W1∩W2 and
suppose that T 2 − 4D = 0. Thus d = T (t − T/2)/2, see (4.50). From expression
(4.49) we conclude that (D,T, d, t) ∈ FB

0 and consequently (D,T, d, t) ∈ FB
0 ∪F ∗.

Suppose now that T 2 − 4D > 0. Then (4.50) yields d = Λ1(t− Λ1) = Λ2(t− Λ2),
which implies t = Λ1 + Λ2 = T (note that Λ1 > Λ2). Substituting t = T in
d = Λ1(t− Λ1) it follows that d = D. Therefore, (D,T, d, t) ∈ FB

0 ∪ F ∗.
We now prove that W1 ∩W2 ⊇ FB

0 ∪ F ∗. Suppose that (D,T, d, t) ∈ FB
0 .

Hence T 2 − 4D = 0, Λ1 = Λ2 = T/2 and d = T (t − T/2)/2, which implies
(D,T, d, t) ∈ W1 ∩W2. Otherwise, if (D,T, d, t) ∈ F ∗, then T 2 − 4D ≥ 0, t = T,
d = D and consequently Λ1 = λ1 and Λ2 = λ2. Thus, (D,T, d, t) ∈W1 ∩W2.

(c) Take (D,T, d, t) ∈ FA
0 ∩ FB

0 . Since (D,T, d, t) ∈ FA
0 , it holds that D =

t(T−t/2)/2, and since (D,T, d, t) ∈ FB
0 , it follows that D = T 2/4. Thus we obtain

that (T − t)2 = 0, or equivalently T = t. Therefore, D = d and (D,T, d, t) ⊂ F ∗.
(d) If (D,T, d, t) ∈ FA

0 , then D = t(T − t/2)/2 and d = t2/4 = t(t− t/2)/2.
Thus t/2 is a common eigenvalue of A and B, and consequently (D,T, d, t) ∈
W . In particular, if t/2 > (T − t/2), i.e., t > T , then (D,T, d, t) ∈ W1; and
if t/2 < (T − t/2), then (D,T, d, t) ∈ W2. Finally, if t = T , then d = D and
(D,T, d, t) ∈W1 ∩W2. �

Given a fundamental system such that one of the fundamental matrices A or
B is in real Jordan normal form, in order to know whether the system is proper
or not we need to study when the components of the vector k = (k1, k2)

T vanish,
see Lemma 4.7.1. In the following result we obtain necessary conditions.

Lemma 4.7.4. Consider a fundamental system ẋ = Ax+ϕ(kTx)b with parameters
(D,T, d, t) and such that the matrix A is in real Jordan form.

(a) If t2 − 4d ≥ 0 and k1 = 0, then T 2 − 4D ≥ 0.

(b) If t2 − 4d > 0 and k2 = 0, then T 2 − 4D ≥ 0.
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Proof. (a) Suppose that t2 − 4d ≥ 0. Since the matrix A is in real Jordan form,
k⊥ = (−k2, 0)T is an eigenvector of A with eigenvalue λ1 ∈ R. Moreover, B =
A+bkT . Thus k⊥ is also an eigenvector of the matrix B with eigenvalue λ1. This
implies that T 2 − 4D ≥ 0.

Statement (b) can be proved by using similar arguments. In this case note
that t2− 4d = 0 does not imply that (0, 1)T is an eigenvector of the matrix A. �
Lemma 4.7.5. Consider a fundamental system ẋ =Ax+ϕ(kTx)b with parameters
(D,T, d, t) satisfying that T 2−4D ≥ 0 and such that the matrix A is in real Jordan
normal form. Then;

(a) If A is diagonal and (D,T, d, t) �∈W , then k1 �= 0 and k2 �= 0.

(b) If t2 − 4d = 0, the matrix A is non-diagonal, and (D,T, d, t) �∈ W , then
k1 �= 0.

(c) Suppose that (D,T, d, t) ∈ W1 \W2. If k1 = 0, then 2Λ1 ≥ t. If k2 = 0, then
2Λ1 ≤ t.

(d) Suppose that (D,T, d, t) ∈ W2 \W1. If k1 = 0, then 2Λ2 ≥ t. If k2 = 0, then
2Λ2 ≤ t.

Proof. Let (A,B) be the fundamental matrices of the system.
(a) Since the matrix A is diagonal, (1, 0)T and (0, 1)T are the eigenvectors of

A. Thus, if either k1 = 0 or k2 = 0, then k⊥ is an eigenvector of A. Moreover, since
B = A+ bkT the vector k⊥ is also an eigenvector of B with the same eigenvalue.
Hence, (D,T, d, t) ∈ W , which contradicts the hypothesis. Therefore k1 �= 0 and
k2 �= 0.

Statement (b) follows by using similar arguments.
(c) Suppose that (D,T, d, t) ∈ W1 \W2. Hence, d = Λ1(t − Λ1). Therefore,

Λ1 and t−Λ1 are the eigenvalues of the matrix A. If we suppose that t2− 4d = 0,
then Λ1 = t− Λ1 and t = 2Λ1, which proves the statement.

Suppose now that t2 − 4d > 0. In this case

A =

(
λ1 0
0 λ2

)
with λ1 > λ2, and B =

(
λ1 + k1b1 k2b1

k1b2 λ2 + k2b2

)
.

Assume that k1 = 0. From the above expression it follows that λ1 and λ2 + k2b2
are the eigenvalues of the matrix B. Since t− Λ1 and Λ1 are the eigenvalues of A
suppose that λ1 = t−Λ1 and λ2 = Λ1. Then Λ1 = Λ1+k2b2. From this we obtain
that k2b2 = 0 and therefore D = d and T = t. Consequently, d = Λ2(t − Λ2)
and (D,T, d, t) ∈ W2, which contradicts the hypothesis. Therefore, λ1 = Λ1 and
λ2 = t− Λ1 with λ1 > λ2 and the statement follows.

Statement (d) follows by using arguments similar to those in statement (a).
�

Theorem 4.7.6. (a) Every fundamental system with parameters (D,T, d, t) �∈ W
is proper.
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(b) Every fundamental system with parameters (D,T, d, t) ∈ F ∗ is not proper.

(c) Consider (D,T, d, t) ∈ W \ F ∗. There exist fundamental systems with pa-
rameters (D,T, d, t) which are proper. There exist fundamental systems with
parameters (D,T, d, t) which are not proper.

Proof. Since fundamental parameters and contact points are invariant under linear
changes of coordinates, we can assume that either the matrix A or the matrix B
is given in its real Jordan normal form.

(a) Given a fundamental system with parameters (D,T, d, t) �∈ W we dis-
tinguish three cases. First we suppose that T 2 − 4D < 0 or t2 − 4d < 0. Then
from Lemma 4.7.1(a) we conclude that the system is proper. Suppose now that
T 2 − 4D ≥ 0 and that the matrix A is diagonal. In this case the components
of the vector k satisfy that k1 �= 0 and k2 �= 0, see Lemma 4.7.5(a). Since
(D,T, d, t) /∈ FA

0 , see Lemma 4.7.3(d), we have t2 − 4d > 0 and therefore the
system is proper, see Lemma 4.7.1(d). Suppose now that T 2 − 4D ≥ 0 and that
the matrix A is non-diagonal. Hence, t2− 4d = 0 and k1 �= 0, see Lemma 4.7.5(b).
By Lemma 4.7.1(d), we conclude that the system is proper.

(b) Given a fundamental system with (D,T, d, t) ∈ F ∗ we have that T 2 −
4D ≥ 0, T = t and D = d. Consider the following cases. Suppose that T 2−4D = 0
and the matrix B is diagonal. Therefore, the system is not proper, see Lemma
4.7.1(c). Suppose now that B is not diagonal. Hence, the matrices B and A are the
ones described in (4.49), and therefore, t = T −kTb and d = D−TkTb/2+ k1b2.
Since T = t and D = d, it is clear that kTb = 0 and k1b2 = 0. Thus, if k1 �= 0,
then b2 = 0 and b1 = 0, in contradiction with b �= 0. Therefore, k1 = 0 and the
system is not proper, see Lemma 4.7.1(b).

Suppose that T 2 − 4D > 0. From expression (3.10) it follows that D − d =
Λ1k2b2 + Λ2k1b1 and T − t = k1b1 + k2b2. Since D = d, T = t and Λ1 > Λ2,
we obtain that k1b1 = 0 and k2b2 = 0. From this we deduce that if k1 �= 0, then
b1 = 0 and b2 �= 0, which implies that k2 = 0. In a similar way, if k2 �= 0, then
k1 = 0. Therefore, k1k2 = 0 and the system is not proper, see Lemma 4.7.1(d).

(c) Consider (D,T, d, t) ∈ W \ F ∗. Suppose that the parameters (D,T, d, t)
lie in FB

0 \F ∗. Then T �= t, D = T 2/4 and d = T (t−T/2)/2, see (4.49). We define
the following matrices:

B =

(
T/2 0
0 T/2

)
and A =

( − (T − t) + T/2 0
0 T/2

)
.

Thus D = det(B), T = trace(B), d = det(A) and t = trace(A). Since A and B
satisfy the condition of Proposition 3.6.1, there exists a fundamental system with
parameters (D,T, d, t) and fundamental matrices (A,B). By Lemma 4.7.1(c), we
conclude that this system is non-proper.

We define now the following matrices:

B =

(
T/2 1
0 T/2

)
and A =

( − (T − t) + T/2 1
0 T/2

)
.
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Similar arguments prove that there exists a fundamental system with parameters
(D,T, d, t) and fundamental matrices (A,B). In this case the vectors k = (k1, k2)

T

and b =(b1, b2)
T satisfy that k1b1 = T − t �= 0. Consequently, k1 �= 0, and by

Lemma 4.7.1(b), the system is proper.
Finally, we suppose that the parameters (D,T, d, t) are contained inW \(W1∩

W2). If (D,T, d, t) ∈ W1\W2 (similar arguments apply when (D,T, d, t) ∈ W1\W2

), then we obtain that T 2 − 4D > 0 and d = Λ1(t− Λ1), see expression (4.50). In
this case we define the following matrices:

B =

(
Λ1 0
0 Λ2

)
and A (β) =

(
Λ1 − (T − t) β

0 Λ2

)
with β ∈ R.

It is clear that for any β ∈ R there exists a fundamental system with parameters
(D,T, d, t) and fundamental matrices A(β) and B, see Proposition 3.6.1. Moreover
the vectors k and b satisfy that k1b1 = T − t �= 0, −k2b1 = β and b2 = 0. From the
first equality we obtain that k1 �= 0 and from the others we obtain that k2 �= 0 if
and only if β �= 0. Therefore the system is proper if and only if β �= 0, see Lemma
4.7.1(d). �

Figure 4.17: Intersection with t = t0 of the manifoldW in the coordinates u = t−T ,
v = T 2 − 4D and z = 2 (d−D) + T (T − t) .

Set t = t0. By using the change of coordinates u = t − T , v = T 2 − 4D
and z = 2(d−D) + T (T − t), the manifold W can be expressed as z2 = u2v, see
expression (4.50). This algebraic manifold is called the Whitney umbrella which
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has important properties from the geometric point of view [28]. For instance the
origin is a pinch point also called a branch point or a Whitney singularity.

The intersection of the manifold W with the space t = t0 is represented in
Figure 4.17. The intersection of the manifolds T 2 − 4D = 0 and t2 − 4d = 0 with
t = t0 is given by the surfaces v = 0 and z =

(
v + u2

)
/2. In Figure 4.17 we

represent also the intersection of the surfaces FA
0 , FB

0 and F ∗ with t = t0. From
this we can see graphically all statements of the Lemma 4.7.3. Finally, it is easy
to check that W can be expressed as

W =
{
(D,T, d, t) ∈ R

4 : (d−D)
2 − (t− T ) (Td−Dt) = 0

}
.



Chapter 5

Phase portraits

Let ẋ = f(x) be a fundamental system and let ẋ = fD(x) be its Poincaré com-
pactification. In this chapter we describe all the global phase portraits of the
compactified system ẋ = fD(x) and we study how they vary with the parameters
(D,T, d, t). Using the topological equivalence relation, we present the bifurcation
set in the fundamental parameter space R4.

In the study of the phase portrait of the compactified system we note two
facts. First, the behaviour of the compactified flow of ẋ = fD(x) on the boundary
∂D of the Poincaré disc corresponds to the behaviour of the flow of the fundamental
system ẋ = f(x) at infinity. This study has been the goal of Section 3.11. Second,
the flow of the compactified system in the interior Σ∞ of the Poincaré disc is
differentiably equivalent to the flow of the fundamental system in R

2. Hence, the
local phase portrait at the singular points in Σ∞ (the finite singular points) can
be obtained from Theorems 3.9.3 and 3.9.5. Moreover, to study the limit cycles
and their local phase portraits, we use the return map defined by the flow of the
fundamental system with respect to one of the symmetric straight lines L+ or L−.
This return map has been the main objective of Chapter 4.

Each of the sections of this chapter presents different local phase portraits
obtained by fixing the sign of the parameters D and T . We start by defining some
subsets in the parameter space (D,T, d, t) and introduce the notation used in the
rest of the chapter.

5.1 Introduction

For any fixed D,T ∈ R2 we denote by ΠD,T the plane

ΠD,T :=
{
(D,T, d, t) : (t, d) ∈ R

2
}

in the parameter space. When no confusion can arise we denote by (t, d) the points
of ΠD,T .

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhäuser Advanced Texts, 
DOI 10.1007/978-3-0348-0657-2_ , © Springer Basel 2014 5

189



190 Chapter 5. Phase portraits

Let E be a subset of R4. We denote by E|D,T the intersection of E with the
plane ΠD,T . Thus W |D,T = W1|D,T ∪W2|D,T denotes the intersection of the plane
ΠD,T with the manifold W, see (4.50). Note that the sets W1|D,T and W2|D,T are

two different straight lines when T 2−4D > 0, and they represent the same straight
line when T 2 − 4D = 0.

When no confusion can arise, the elements of the set E|D,T will be denoted
by a two-dimensional vector (t, d) instead of the four-dimensional one (D,T, d, t).
In fact we will use both notations indistinguishably. Note that the change in the
order of the coordinates when we pass from four to two coordinates is only a
matter of convention. If E|D,T does not depend essentially on the parameters D
and T , then we preserve the name E for the set E ∩ΠD,T . Thus the intersection
with the plane ΠD,T of the following regions in the parameter space

C11 :=
{
(D,T, d, t) ∈ R4 : t2 − 4d > 0, t > 0, d > 0

}
,

C21 :=
{
(D,T, d, t) ∈ R4 : t2 − 4d < 0, t > 0

}
,

C12 :=
{
(D,T, d, t) ∈ R4 : t2 − 4d < 0, t < 0

}
,

C22 :=
{
(D,T, d, t) ∈ R4 : t2 − 4d > 0, t < 0, d > 0

}
,

C3 :=
{
(D,T, d, t) ∈ R

4 : t < 0, d < 0
}
,

C4 :=
{
(D,T, d, t) ∈ R4 : t > 0, d < 0

}
,

(5.1)

the hyperplanes

SN∞ :=
{
(D,T, d, t) ∈ R4 : t2 − 4d = 0

}
,

N :=
{
(D,T, d, t) ∈ R4 : d = 0

}
,

and the plane

O :=
{
(D,T, d, t) ∈ R

4 : t = 0, d = 0
}
,

will be denoted by the same symbol, that is, C11 , C21 , C12 , C22 , C3, C4, SN∞, N , and
O, respectively. The manifold SN∞ is easily located in Figure 4.17. Moreover, the
straight lines W1|D,T and W2|D,T are tangent to SN∞ at the points

VB1|D,T := W1|D,T ∩ SN∞, VB2|D,T := W2|D,T ∩ SN∞, (5.2)

where FA
0 = VB1∪VB2. Finally, W1|D,T and W2|D,T intersect at the point (t, d) =

(T,D) belonging to F ∗, see (4.50).

Given a fundamental system ẋ = Ax + ϕ(kTx)b with fundamental pa-
rameters (D,T, d, t) ∈ SN∞, it follows from Lemma 4.7.2(c) that if (t, d) �∈
VB1|D,T ∪ VB2|D,T , then the real Jordan normal form of the matrix A is not
diagonal. Otherwise, i.e., if (t, d) ∈ VB1|D,T ∪ VB2|D,T , then the fundamental
parameters do not determine if the real Jordan normal form of A is diagonal or
not, see Lemma 4.7.2(d).
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5.2 The case D > 0 and T < 0

Consider a fundamental system ẋ = Ax + ϕ(kTx)b with parameters (D,T, d, t)
and fundamental matrices (A,B). Thus we have the matrix B = A+kTb and the
vectors k,b ∈ R2 \ {0}. In this section we assume that D > 0 and T < 0.

Preliminary results about the number and the local phase portraits at the
singular points of the fundamental systems with D > 0 and T < 0 can be found
in [1]. The work of Llibre and Sotomayor [44] presents the different global phase
portraits in the plane and the bifurcation set of such systems. In this section we
complete this work by considering the behaviour at infinity and by describing the
phase portraits in the Poincaré disc and the bifurcations of the singular points at
infinity.

5.2.1 Proper fundamental systems

By Theorem 4.7.6, a fundamental system with parameters D > 0, T < 0 and
(t, d) /∈ W |D,T = W1|D,T ∪ W2|D,T is a proper fundamental system. Moreover, if
t = T and d = D or (t, d) ∈ VB1|D,T ∪ VB2|D,T , then the system is not proper.

In Figure 5.1 we represent the sets W |D,T , VB1|D,T and VB2|D,T when

T 2 − 4D > 0. If T 2 − 4D = 0, then W1|D,T = W2|D,T and VB1|D,T = VB2|D,T .

If T 2 − 4D < 0, then W |D,T = ∅.

Suppose that T 2−4D ≥ 0 and let Λ1 ≥ Λ2 be the eigenvalues of the matrix B.
Define the half-lines W ∗

1 |D,T = W1|D,T ∩{t ≤ 2Λ1} and W ∗
2 |D,T = W2|D,T ∩{t ≤

2Λ2}. If we suppose that the matrix A is in real Jordan normal form, then from
Lemma 4.7.5 we obtain that (t, d) belongs to either W ∗

1 |D,T or W ∗
2 |D,T and k1 = 0.

W1jD�TW2jD�T

d

t

k1 = 0

k2 = 0

(T;D)

t
2 ¡ 4d

=
0

VB1jD;T =
¡
2¤1;¤

2
1

¢

VB2jD;T =
¡
2¤2;¤

2
2

Figure 5.1: Straight lines W1|D,T and W2|D,T whenD > 0, T < 0 and T 2−4D > 0.

)
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5.2.2 Singular points

We start with the study of the singular points of the compactified vector field
ẋ = fD(x) in the interior of the Poincaré disc Σ∞. The following result is a corollary
of Theorem 3.9.3.

Proposition 5.2.1. Consider a fundamental system with parameters D > 0 and
T < 0; thus the origin is an asymptotically stable hyperbolic singular point.

(a) If d ≥ 0, then the unique singular point is the origin and it is a focus if
T 2 − 4D < 0 and a node if T 2 − 4D ≥ 0.

(b) If d < 0, then there exist exactly three singular points: the origin (with the
same possible cases as in statement (a)) and two saddle points e+ and e− .

5.2.3 Behaviour at infinity

Given a fundamental system with fundamental matrices (A,B) and parameters
t2 − 4d = 0, we recall that if (t, d) /∈ VB1|D,T ∪ VB2|D,T , then the real Jordan
normal form of the matrixA is not diagonal, see Lemmas 4.7.2 and 4.7.3. Moreover,
if (t, d) ∈ VB1|D,T ∪ VB2|D,T , then the real Jordan normal form of A can be
diagonal or not.

Proposition 5.2.2. Consider a fundamental system with parameters D > 0 and
T ≤ 0.

(a) If t2 − 4d < 0, then the system has a periodic orbit at infinity.

(b) If t2 − 4d = 0 and the real Jordan form of A is diagonal, then infinity is
an unstable normally hyperbolic manifold. We remark that this occurs only if
(t, d) ∈ VB1|D,T ∪ VB2|D,T .

(c) Suppose that t2−4d = 0 and the real Jordan normal form of A is not diagonal.
Then there exist exactly two singular points at infinity, x+ ∈ ∂D+ and x− ∈
∂D−.

(c.1) If t �= 0, then x+ (respectively, x−) is a saddle-node with center manifold
contained in ∂D. The hyperbolic manifold is stable when t > 0 and
unstable when t < 0.

(c.2) If t = 0, then a neighbourhood of x+ and x− in D is formed by a
hyperbolic sector.

(d) Suppose that t2 − 4d > 0. Then there exist exactly four singular points at
infinity, x+,y+ ∈ ∂D+ and x−, y− ∈ ∂D−.

(d.1) If d ≥ 0 and t > 0, then x+ and x− are stable nodes, and y+ and y−
are saddle points with the unstable manifold contained in ∂D.

(d.2) If d ≥ 0 and t < 0, then x+ and x− are saddle points with the stable
manifold contained in ∂D, and y+ and y− are unstable nodes.
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(d.3) If d < 0, then x+ and x− are stable nodes, and y+ and y− are unstable
nodes.

Proof. Let (A,B) be the fundamental matrices of the system. Without loss of
generality, we can assume that the matrix A is in real Jordan normal form, see
Proposition 3.10.2.

Statement (a) is a consequence of Theorem 3.11.1(a).
(b) From Theorem 3.11.1(b) it follows that ∂D is formed by singular points.

Since the matrix A is diagonal, the parameters (t, d) belong to VB1|D,T ∪ VB2|D,T

and therefore t < 0, see Figure 5.2. The statement follows from Theorems 3.11.5(a)
and 3.11.9(a).

(c) Since t2 − 4d = 0 and the matrix A is not diagonal, it follows from
Theorem 3.11.1(c) that there exist exactly two singular points at infinity, x+ and
x−. Moreover, x+ = −x−. For simplicity we denote by x+ the singular point in
∂D+ and by x− the singular point in ∂D−. Statements (c.1) and (c.2) follow from
Theorems 3.11.6(a), (b) and 3.11.10(a).

(d) By Theorem 3.11.1(d), there exist exactly four singular points at infinity.
We denote by x+ and y+ the singular points in ∂D+, and by x− and y− the
singular points in ∂D−.

Suppose that d ≥ 0 and t > 0. Then (t, d) �∈ W |D,T , see Figure 5.1. Therefore,
k1 �= 0 and k2 �= 0, see Lemma 4.7.5(a). From Theorem 3.11.7(a) and (e) it follows
that x+ andx− are stable nodes, and from Theorem 3.11.8(a) and (e.3) it follows
that y+ and y− are saddle points. Moreover, the unstable manifolds of y+ and
y− are contained in ∂D. This proves statement (d.1).

Suppose that d ≥ 0 and t < 0. Then from Theorem 3.11.7(b), (d.3) and
Theorem 3.11.11(b) it follows that x+ and x− are saddle points with the stable
manifold in ∂D. From Theorem 3.11.8(b), (d) and Theorem 3.11.12(b) it follows
that y+ and y− are unstable nodes.

Suppose now that d < 0. Then (t, d) �∈ W ∗
1 |D,T ∪ W ∗

2 |D,T , see Figure 5.1.
Hence k1 �= 0. Therefore, x+ and x− are stable nodes, see Theorem 3.11.7(c), and
y+ and y− are unstable nodes, see Theorem 3.11.8(c) and Theorem 3.11.12(b). �

In Figure 5.2 we summarize the local phase portrait at infinity proved in
Proposition 5.2.2. We recall that only when (t, d) are in VB1|D,T or in VB2|D,T

the behaviour at infinity is not uniquely determined.

5.2.4 Periodic orbits

Next we study the existence of Jordan curves formed by solutions. In general
these curves are formed by separatrices, and so they play an essential role in the
description of the phase portrait. In the next result we distinguish in the parameter
space the fundamental systems having this kind of invariant curves and the regions
in the phase space where these curves appear.

Proposition 5.2.3. Consider a fundamental system with parameters D > 0 and
T < 0.
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Figure 5.2: The local phase portrait at infinity of fundamental systems with pa-
rameters D > 0 and T ≤ 0.



5.2. The case D > 0 and T < 0 195

(a) If t ≤ 0, then the system has no Jordan curves formed by solutions.

(b) Suppose that t > 0. If Γ is a Jordan curve formed by solutions, then Γ∩(S+∪
S−) �= ∅ and Γ ∩ S0 �= ∅.

Proof. (a) Suppose that t < 0. In this case the statement is a corollary of Theorem
3.12.2(a). Suppose now that t = 0 and let Γ be a Jordan curve formed by solutions.
Thus, either Γ ⊂ S+ ∪L+ or Γ ⊂ S− ∪L−, see Theorem 3.12.2(b.2). Suppose that
Γ ⊂ S+ ∪ L+, otherwise we can apply similar arguments. Since in S+ ∪ L+ and
S−∪L− the system is linear, we conclude that in these half-planes the system is in
the center case. This implies that the parameter d > 0, the invariant curve Γ is a
periodic orbit and there exists a singular point e in ΣΓ ⊂ S+. From the symmetry
of the vector field with respect to the origin it is easy to conclude the existence of
three singular points, e,−e and the origin. By Proposition 5.2.1(a), the existence
of these singular points contradicts the fact that d > 0. Therefore, if t = 0, then
there are no Jordan curves formed by solutions.

Statement (b) is a corollary of Theorem 3.12.2(b.1). �

According to Proposition 5.2.3, the existence of Jordan curves formed by
solutions in fundamental systems with D > 0 and T < 0 is possible only under
the assumption of t > 0. Moreover, these curves can only be periodic orbits,
homoclinic cycles, or heteroclinic cycles intersecting the straight lines L+ and L−,
see Lemma 3.12.1 and Theorem 3.12.2(b.1). As it is shown in Subsection 4.6, in
this case we can define the return map π in a neighbourhood of the invariant curve
Γ. This return map can be expressed depending on the fundamental parameter d,
see Theorem4.6.1(b) and (c). Thus, when d �= 0 it follows that π = (πA

++ ◦ πB
+−)

2,
and when d = 0, π = (π̃A

++ ◦ πB
+−)2. In these expressions, πA

++, π̃
A
++ and πB

+−
are the Poincaré maps defined by the flow of the corresponding linear system and
associated to the symmetric straight lines L+ and L−.

As it is shown in Subsection 4.6, the fixed points of the return map π are the
zeros of the Lamerey map gA = π−A

++ − πB
+− when d �= 0 and the Lamerey map

gA = π̃−A
++ − πB

+− when d = 0, see expressions (4.46) and (4.47), respectively.
In the next result we summarize all the information proved in Section 4.4

about the Poincaré map πB
+− when D > 0 and T < 0.

Lemma 5.2.4. Given a proper fundamental system with fundamental matrices
(A,B) and parameters D > 0 and T < 0, the Poincaré map πB

+− has the fol-
lowing properties:

(a) Let 0 > Λ1 > Λ2 be the eigenvalues of the matrix B. There exists a value a0 >
|Λ1|−1 such that πB

+− : [a0,+∞) → [0,+∞), πB
+−(a0) = 0, lim

a↗+∞
πB
+−(a) =

+∞, and πB
+−(a) < a.

(b) If a ∈ (a0,+∞), then (πB
+−)

′(a) > 1 and lim
a↘a0

(πB
+−)

′(a) = +∞.

(c) If a ∈ (a0,+∞), then (πB
+−)

′′(a) < 0.
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(d) The straight line b = a+2T/D is an asymptote of the graph of the map πB
+−

as a↗ +∞.

(e) The implicit expression of the map πB
+− depends on the sign of T 2 − 4D.

Specifically,

(e.1) if T 2 − 4D > 0, then πB
+− is implicitly defined by

(
πB
+− (a)

(
T −√T 2 − 4D

)− 2

a
(
T −√T 2 − 4D

)
+ 2

) T+
√

T2−4D

T−
√

T2−4D

=
πB
+− (a)

(
T +

√
T 2 − 4D

)− 2

a
(
T +

√
T 2 − 4D

)
+ 2

,

(e.2) if T 2 − 4D = 0, then πB
+− is implicitly defined by

πB
+− (a)T − 2

aT + 2
= exp

( (
πB
+− (a) + a

)
T(

πB
+− (a)− a

)
T − 2 + 2aπB

+− (a)D

)
,

(e.3) if T 2 − 4D < 0, then πB
+− is implicitly defined by

1− TπB
+− (a) +D

(
πB
+− (a)

)2
1 + Ta+Da2

= exp

(
2T√

4D − T 2
arctan

( (
πB
+− (a) + a

)√
4D − T 2(

πB
+− (a)− a

)
T − 2 + 2aπB

+− (a)D

))
.

Proof. The lemma is a consequence of Corollaries 4.4.4, 4.4.9 and 4.4.14. �

In the next results we summarize all the information about the Poincaré maps
π−A
++ and π̃−A

++ obtained in Sections 4.4 and 4.5.2 in the case when the fundamental
parameters are D > 0, T < 0, d ≥ 0 and t > 0.

Lemma 5.2.5. Consider a fundamental system with fundamental matrices (A,B)
and parameters D > 0, T < 0, d ≥ 0 and t > 0. If d > 0, then the Poincaré map
πA
++ is well defined and its inverse map π−A

++ has the following properties:

(a) There exists a value r ≤ +∞ such that π−A
++ : [0,+∞)→ [0, r) and π−A

++(a) <
a.

(b) If a ∈ (0,+∞), then 0 < (π−A
++)

′(a) < 1 and lim
a↘0

(π−A
++)

′(a) = 1.

(c) If t2 − 4d ≥ 0, then there exists b0 > 0 such that b = b0 is a horizontal
asymptote of the graph of π−A

++(a) when a tends to +∞. If t2 − 4d < 0, then

the straight line b = e−γπa + t(1 + e−γπ)/d, with γ = t/
√
4d− t2, is an

asymptote of the graph of π−A
++(a) when a tends to +∞.

If d = 0, then the Poincaré map π̃A
++ is well defined and its inverse map π̃−A

++ has
the following properties:
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(d) There exists a value r ≤ +∞ such that π̃−A
++ : [0,+∞)→ [0, r) and π̃−A

++(a) <
a.

(e) If a ∈ (0,+∞), then 0 < (π̃−A
++)

′ (a) < 1 and lim
a↘0

(π̃−A
++)

′(a) = 1.

(f) There exists b0 > 0 such that b = b0 is a horizontal asymptote of the graph
of π̃−A

++(a) when a tends to +∞.

Proof. Since t > 0 and d ≥ 0, it is easy to check that (D,T, d, t) �∈ W |D,T , see
Figure 5.1. By Theorem 4.7.6, the system is a proper fundamental system and
the Poincaré maps π−A

++ and π̃−A
++ are well defined depending on whether d > 0

or d = 0, respectively. The properties of the maps follow from Corollaries 4.4.2,
4.4.7, 4.4.12 and 4.5.10. �

Using the Lamerey map gA, in the next proposition we prove the existence of
a unique limit cycle for any fundamental system with parameters D > 0, T < 0,
d ≥ 0 and t > 0.

Proposition 5.2.6. Any fundamental system with parameters D > 0, T < 0, d ≥ 0
and t > 0 has exactly one limit cycle Γ. Moreover, Γ is a hyperbolic asymptotically
unstable limit cycle which arises via a Hopf bifurcation at infinity when t = 0, and
it satisfies that 0 ∈ ΣΓ.

Under the assumption that the system is given in its proper normal form, if
t is suficiently small, then the radius of Γ is approximately equal to

RΓ =

√
1 +

(
Dt− Td

d

1 + e−γπ

1− e−γπ

)2

, where γ =
t√

4d− t2
.

Proof. Since t > 0 and d ≥ 0, we have that (D,T, d, t) �∈ W |D,T and the system
is a proper fundamental system, see Theorem 4.7.6. Therefore, the Poincaré maps
πB
+− and πA

++ or π̃A
++ are also well defined depending on whether d > 0 or d = 0,

respectively. Consequently, the Lamerey map gA = π−A
++−πB

+− or gA = π̃−A
++−πB

+−
is well defined, depending on whether d > 0 or d = 0, respectively. We prove the
existence of a unique limit cycle by showing that gA has exactly one zero.

The maps πB
+−, π

−A
++ and π̃−A

++ are described in Lemmas 5.2.4 and 5.2.5, re-
spectively. From this we obtain that gA is defined in [a0,+∞), gA(a0) > 0 and
lim

a↗+∞
gA(a) = −∞. Thus, gA has a zero in [a0,+∞). Moreover, since g′A(a) < 0

in [a0,+∞), the Lamerey map gA has a unique zero a∗ in [a0,+∞). Therefore, the
system has exactly one limit cycle Γ. In Figure 5.3 we draw the different Lamerey
diagrams depending on the sign of t2 − 4d.

To study the local phase portrait of the limit cycle Γ we use the return map
π = (πA

++ ◦ πB
+−)2. The case π = (π̃A

++ ◦ πB
+−)2 follows by similar arguments. By

Lemma 5.2.4(b), (πB
+−)′(a) > 1, and by Lemma 5.2.5(c), (π−A

++)
′(a) < 1. Hence,

dπ

da

∣∣∣∣
a∗

=

(
dπA

++

da

∣∣∣∣
πB
+−(a∗)

dπB
+−
da

∣∣∣∣
a∗

)2

> 1.
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a¤

a0a¤¤ a

b

(a) t2 ¡ 4d < 0 (b) t2 ¡ 4d ¸ 0

¼¡A++

¼B+¡

aa0
a¤

¼¡A++

¼B+¡

b

Figure 5.3: Lamerey diagram for parameters D > 0, T < 0, d > 0 and t > 0.

Therefore, Γ is an asymptotically unstable hyperbolic limit cycle, see Proposition
4.6.2. Moreover, since any limit cycle has a singular point in its interior and the
origin is the unique singular point of the system, see Proposition 5.2.1(b), it follows
that 0 ∈ ΣΓ.

Let a∗∗ be the abscissa of the intersection point between the asymptotes of
the graphs of π−A

++ and πB
+−, see Figure 5.3(a). Note that if t is sufficiently small

we always have that t2 − 4d < 0. Since

a∗∗ + 2
T

D
= e−γπa∗∗ +

t

d

(
1 + e−γπ

)
,

with γ = t/
√
4d− t2, one has that

a∗∗ =
Dt (eγπ + 1)− 2Tdeγπ

Dd (eγπ − 1)
,

which is an aproximation of the value of a∗.
Suppose that the system is given in the proper normal form, i.e.,

ẋ =

(
0 −d
1 t

)
x+ ϕ (x2)

(
d−D
T − t

)
.

The contact point p of the flow of the system with the straight line L+ satisfies
that p = (−T, 1)T and ṗ = (−D, 0)T . Moreover, since a∗∗ is an approximation of
a∗, Γ intersects L+ close to the points q1 = p + a∗∗ṗ and q0 = p − π−A

++(a
∗∗)ṗ.

Therefore, RΓ = ‖q1‖ is an approximation of the radius of Γ, i.e.,

RΓ =

√
1 + (T + a∗∗D)2 =

√
1 +

(
Dt− Td

d

(1 + e−γπ)

(1− e−γπ)

)2

.

Finally, since lim
t↘0

γ = 0, it follows that lim
t↘0

RΓ = +∞, which proves that Γ arises

from a Hopf bifurcation at infinity when t = 0. �
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Under the same hypothesis of Proposition 5.2.6 in [42, Theorem 1] the authors
give the following approximation for the radius of the limit cycle Γ:

JΓ = (Dt− 2t− T )
1 + eγπ

1− e−γπ
.

It is easy to check that

lim
t↘0

RΓ

JΓ
= 1,

which proves that the two approximations coincide to first order.
We will define in the quadrant C4 = {(D,T, t, d) ∈ R

4 : t > 0, d < 0}
a 3-dimensional topological manifold HeL in such a way that if HeL|D,T is the
differentiable curve along which HeL intersects the plane ΠD,T , then any fun-
damental system with parameters contained in HeL|D,T has a heteroclinic cycle
connecting the singular points e+ and e−.

To define HeL we first search for necessary conditions on the fundamental
parameters (D,T, d, t) in order to have a heteroclinic cycle for any fundamental
system with these parameters. Since these conditions are obtained by using the
Poincaré maps, that is, by assuming that the system is proper, in order to obtain a
complete characterization of the fundamental systems having a heteroclinic cycle
we need to prove that systems with parameters on HeL are proper. We note
that Llibre and Sotomayor [44] obtained only the necessary conditions on the
parameters assuming that they are also sufficient.

Since the point W1|D,T ∩ W2|D,T is not contained in C4, for any (t, d) ∈
C4, there exists a proper fundamental system having these parameters. In the
next result we prove that two different proper fundamental systems having these
parameters also have the same Poincaré maps.

Proposition 5.2.7. Consider two different proper fundamental systems having the
same fundamental parameters D > 0, T < 0, d < 0, t > 0 and with fundamental
matrices (A,B) and (A∗, B∗), respectively. Then πA

++ = πA∗
++ and πB

+− = πB∗
+−.

Proof. Suppose that T 2 − 4D �= 0. It is easy to conclude that B and B∗ are
equivalent matrices, i.e., there exists a regular matrixM such that B∗ = MBM−1.
Since the Poincaré maps are invariant under linear changes of coordinates, we get
πB
+− = πB∗

+−. By applying similar arguments to the matrices A and A∗ we obtain

that πA
++ = πA∗

++.
Suppose now that T 2 − 4D = 0. Since D > 0 and both systems are proper,

we obtain that the real Jordan normal forms of the matrices B and B∗ are not
diagonal, see Lemma 4.7.1(c). Moreover, B and B∗ are equivalent matrices. Con-
sequently, πB

+− = πB∗
+−. By applying similar arguments to the matrices A and A∗

we obtain that πA
++ = πA∗

++. �
Therefore, there exists a unique Poincaré map πB

+− associated to any pa-
rameters D > 0 and T < 0. Similarly, there exists a unique Poincaré map πA

++

associated to any pair (t, d) ∈ C4.
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Now we define the manifold HeL. Consider the following set in R4:

S =
{
(D,T, k, t) : D > 0, T < 0 and 0 < t < k ≤ t+ a−1

0

}
,

where a0 is the lower boundary of the domain of definition of πB
+−, see Lemma

5.2.4(a). Since πB
+− depends on D and T , it follows that the value a0 also depends

on D and T . To simplify the notation, in the following computations we assume
implicitly this dependence. We also consider that the values of the parameters D
and T are fixed. We now obtain the expression of HeL|D,T . The expression of
HeL follows by varying the parameters D and T .

Take (k, t) ∈ S; that is, 0 < t < k and a0 ≤ (k − t)−1. Hence, the function

h (k, t) := πB
+−
(
(k − t)

−1
)
− k−1 (5.3)

is well defined and differentiable in S, see Lemma 5.2.4(a), and satisfies

∂h

∂k
= −dπB

+−
da

1

(t− k)
2 +

1

k2
< 0 and

∂h

∂t
=

dπB
+−
da

1

(t− k)
2 > 0. (5.4)

Note that if (k, t) ∈ S, then k2 > (t− k)2 and (πB
+−)

′(a) > 1, see Lemma 5.2.4(b).

Set k0 > 0 and take t ∈ [k0 − a−1
0 , k0

)
. Thus, (k0, t) ∈ S. When t varies

in [k0 − a−1
0 , k0), the value (k − t)−1 covers the interval [a0,+∞) and the map

πB
+−((k − t)−1) takes any value in [0,+∞), see Lemma 5.2.4(a). Therefore, given

k0 > 0, there exists a unique t0 such that πB
+−((k0 − t0)

−1) = k−1
0 , which is

equivalent to h(k0, t0) = 0.
By the Implicit Function Theorem, there exists a differentiable function k(t)

defined on (0,+∞) such that

h (k (t) , t) = πB
+−
(
(k (t)− t)

−1
)
− k (t)

−1
= 0, (5.5)

and
dk

dt
= − ∂h/∂t

∂h/∂k
> 1,

see (5.4). Define in (0,+∞) the function f ∈ C1((0,+∞)) by

f (t) := k (t) (t− k (t)) < 0. (5.6)

It is easy to check that f ′(t) = k′(t)(t − k(t)) + k(t)(1 − k′(t)) < 0. Hence, the
graph of f splits C4 in the following subsets:

C14
∣∣
D,T

:= {(t, d) ∈ C4 : t > 0 and d < f (t)} ,
HeL|D,T := {(t, d) ∈ C4 : t > 0 and d = f (t)} , (5.7)

C24
∣∣
D,T

:= {(t, d) ∈ C4 : t > 0 and d > f (t)} .
Next we obtain an expression of the differentiable curve HeL|D,T depending on
the parameters D and T .
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Proposition 5.2.8. Consider D > 0 and T < 0.

(a) If T 2 − 4D > 0, then HeL|D,T is implicitly defined by

(
(T−√

T 2−4D)(
√
t2−4d−t)+4d

(T−√
T 2−4D)(

√
t2−4d+t)−4d

) T+
√

T2−4D

T−
√

T2−4D

=
(T+

√
T 2−4D)(

√
t2−4d−t)+4d

(T+
√
T 2−4D)(

√
t2−4d+t)−4d

.

(b) If T 2 − 4D = 0, then HeL|D,T is implicitly defined by

T
(√

t2 − 4d− t
)
+ 4d

T
(√

t2 − 4d+ t
)− 4d

= exp

(
2T
√
t2 − 4d

T 2 − 2T t+ 4d

)
.

(c) If T 2 − 4D < 0, then HeL|D,T is implicitly defined by

4d2 +
(
t−√t2 − 4d

) (
D
(
t−√t2 − 4d

)− 2Td
)

4d2 +
(
t+

√
t2 − 4d

) (
D
(
t+

√
t2 − 4d

)− 2Td
)

= exp

(
2T√

4D − T 2
arctan

(√
t2 − 4d

√
4D − T 2

2 (D + d)− T t

))
.

Proof. Given (t, d) ∈ HeL|D,T , i.e., t > 0, d < 0 and d = k(t)(t − k(t)), see (5.7)
and (5.6), we have

k (t) =
t+

√
t2 − 4d

2
and t− k (t) =

t−√t2 − 4d

2
.

Since k(t) and t satisfy (5.5), we conclude that

πB
+−

(
2√

t2 − 4d− t

)
=

2√
t2 − 4d+ t

is an implicit expression of the curve HeL|D,T . The proposition follows from
Lemma 5.2.4(e). �

In Proposition 5.2.12 we will prove that any proper fundamental system
with parameters (t, d) ∈ C14

∣∣
D,T

has no Jordan curves formed by solutions. When

(t, d) ∈ HeL|D,T , the system has a heteroclinic cycle connecting the singular points

e+ and e−; and when (t, d) ∈ C24
∣∣
D,T

, the system has exactly one limit cycle. First

we need some technical lemmas.

Lemma 5.2.9. Let πA
++ be the Poincaré map defined by the flow of a proper fun-

damental system with parameters d < 0 and t > 0, and let λ1 > 0 > λ2 be the
eigenvalues of the matrix A. Then:
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(a) π−A
++ : [0, |λ2|−1)→ [0, λ−1

1 ), π−A
++(0) = 0 and lim

a↗|λ2|−1
π−A
++(a) = λ−1

1 .

(b) If a ∈ [0, |λ2|−1), then π−A
++(a) < a.

(c) If a ∈ (0, |λ2|−1), then 0 < (π−A
++)

′(a) < 1 and lim
a↗|λ2|−1

(π−A
++)

′(a) = 0.

(d) If a ∈ (0, |λ2|−1), then (π−A
++)

′′(a) < 0.

(e) The straight line b = λ−1
1 is a horizontal asymptote of the graph of π−A

++ when
a tends to |λ2|−1.

Proof. The lemma follows from Corollary 4.4.16. �
Similarly to the case d > 0 and t > 0, the existence of a limit cycle will be

obtained as a consequence of the existence of an isolated zero of the Lamerey map.
In the next lemma we obtain the existence of a heteroclinic cycle from this map.

Lemma 5.2.10. Consider a proper fundamental system with parameters D > 0,
T < 0, d < 0 and t > 0. Let λ1 > 0 > λ2 be the eigenvalues of the matrix A and
let a0 be the lower boundary of the domain of definition of πB

+−.

(a) If |λ2|−1 ≤ a0, then the system has no Jordan curves formed by solutions.

(b) Suppose that a0 < |λ2|−1 and consider the Lamerey map

g (a) :=

⎧⎨⎩ π−A
++ (a)− πB

+− (a) , if a ∈
[
a0, |λ2|−1

)
,

λ−1
1 − πB

+−
(
|λ2|−1

)
, if a = |λ2|−1

.

(b.1) g is continuous in [a0, |λ2|−1] and g ∈ C∞((a0, |λ2|−1)).

(b.2) g has a zero a∗ ∈ [a0, |λ2|−1) if and only if the system has a limit cycle
Γ. In that case Γ is an asymptotically unstable hyperbolic limit cycle
which intersects L+ at the points of coordinates a∗ and πB

+−(a∗). Also,
the origin 0 is contained in ΣΓ.

(b.3) g has a zero at a∗ = |λ2|−1 if and only if the system has a heteroclinic
cycle Δ connecting the singular points e+ and e−. Moreover, the cycle
Δ intersects L+ at the points of coordinates |λ2|−1 and λ−1

1 .

Proof. (a) Suppose that there exists a Jordan curve Γ formed by solutions of the
system. Then Γ intersects the straight lines L+ and L−, see Proposition 5.2.3(b).
Let a∗ be the coordinate of the intersection point. By the continuous dependence
of the solutions of a linear system on the initial conditions, the return map π is
defined in a neighbourhood of a∗. Since D > 0, it follows that π = (πA

++ ◦ πB
+−)

2,
see Theorem 4.6.1(b).

Lemmas 5.2.9(a) and 5.2.4(a.1) yield πA
++([0, λ

−1
1 )) = [0, |λ2|−1) and

πB
+−([a0,+∞)) = [0,+∞). Therefore, π is defined if a0 < |λ2|−1, which con-

tradicts the hypothesis. From this we conclude that the system has no Jordan
curves formed by solutions.
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Statement (b.1) follows by noting that the Poincaré map π−A
++ is analytic and

that lim
a↗|λ2|−1

π−A
++(a) = λ−1

1 .

(b.2) Let a∗ ∈ [a0, |λ2|−1) be a zero of g, i.e., πB
+−(a

∗) = π−A
++(a

∗). Hence,
πA
++ ◦ πB

+−(a∗) = a∗ which implies that a∗ is a fixed point of π. Therefore, there
exists a periodic orbit Γ intersecting the straight line L+ at the points with coor-
dinates a∗ and π−A

++(a
∗) = πB

+−(a
∗). Finally, since

π′ (a∗) =
[(
πA
++

)′ (
πB
+− (a∗)

) (
πB
+−
)′
(a∗)

]2
> 1,

see Lemmas 5.2.4(b) and 5.2.9(c), the periodic orbit Γ is an asymptotically un-
stable hyperbolic limit cycle, see Theorem 2.7.5. The other implication follows by
reversing the above argument.

(b.3) Let p be the contact point of the flow with L+. Note that p does exist
because the Poincaré maps are defined. Since the singular point e+ is a saddle, the
stable and the unstable manifolds of e+ intersect L+ at the points qs

+ = p−λ−1
1 ṗ

and qu
+ = p + |λ2|−1 ṗ, respectively, see Corollary 4.4.17. Similarly the stable

and the unstable manifolds of e− intersect L− at the points qs
− = −p+λ−1

1 ṗ and
qu− = −p− |λ2|−1ṗ, see Figure 5.4.

Let γs−
+ be the stable separatrix of e+ through the point qs

+ and let γu−
+

be the unstable separatrix of e+ through the point qu
+. Similarly, let γs+

− and
γu+
− be the stable and unstable manifolds of e− through the points qs

− and qu
−,

respectively.
Suppose that |λ2|−1 is a zero of the Lamerey map g. Thus πB

+−(|λ2|−1) = λ−1
1

and therefore the orbit γu−
+ intersects L− at the point of coordinate λ−1

1 , i.e., qs
−.

Analogously, the orbit γu+
− intersects L+ at the point of coordinate λ−1

1 , i.e., qs
+.

Therefore, γu−
+ = γs+

− , γu+
− = γs−

+ and the singular points e+ and e− form a
heteroclinic cycle Δ, see Figure 5.4.

Conversely, if Δ is a heteroclinic cycle connecting the singular points e+ and
e−, then πB

+−(‖λ2|−1) = λ−1
1 , see Figure 5.4. �

Lemma 5.2.11. Consider a proper fundamental system with fundamental parame-
ters D > 0, T < 0, d < 0 and t > 0, and let the eigenvalues of the matrix A be
λ1 > 0 > λ2.

(a) The parameters (t, d) belong to C14
∣∣
D,T

if and only if πB
+−(|λ2|−1) < λ−1

1 or

|λ2|−1 does not lie in the domain of πB
+−.

(b) The parameters (t, d) belong to HeLD,T if and only if πB
+−(|λ2|−1) = λ1.

(c) The parameters (t, d) belong to C24
∣∣
D,T

if and only if πB
+−(|λ2|−1) > λ1.

Proof. Consider the function f(t) = k(t)(t − k(t)) defined in (5.6) where k(t) is
implicitly defined in (5.5). Since t− k(t) < 0 and k(t) > 0, it follows that

k (t) =
t+
√

t2 − 4f (t)

2
.
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Figure 5.4: Different possibilities for the stable and the unstable manifolds of
the singular points e+ and e−. In the case (b) these orbits coincide, forming a
heteroclinic cycle Δ connecting these singular points.

On the other hand, since d = λ1(t−λ1), one has k(t) < λ1 if and only if d < f(t).
(a) Suppose that (t, d) ∈ C14

∣∣
D,T

. In this case t > 0 and d < f(t), which

implies that k(t) < λ1. Since h is a decreasing function with respect to the first
coordinate, see (5.4), it follows that h(λ1, t) < h(k(t), t) = 0. Therefore, if πB

+− is

defined at |λ2|−1, then πB
+−(|λ2|−1) < λ−1

1 .

Conversely, if |λ2|−1 belongs to the domain of πB
+− and πB

+−(|λ2|−1) < λ−1
1 ,

then h(λ1, t) < h(k(t), t) = 0. Therefore, k(t) < λ1 and d < f(t), which proves
that (t, d) ∈ C14

∣∣
D,T

. Suppose now that |λ2|−1 does not lie in the domain of πB
+−.

From Lemma 5.2.4(a) it follows that 0 < |λ2|−1 < a0, i.e., −a−1
0 > −|λ2| = λ2,

which implies that t < λ1 − a−1
0 . Since (k(t), t) ∈ S, where S is the domain of h,

see (5.3), it follows that t ≥ k(t) − a−1
0 and consequently λ1 > k(t), d < f(t) and

(t, d) ∈ C14
∣∣
D,T

.

(b) Suppose that (t, d) ∈ HeL|D,T , which implies that t > 0 and d = f(t).
From this we obtain that k(t) = λ1 and k(t)− t = |λ2|. Substituting these values
in (5.5) it follows that πB

+−(|λ2|−1) = λ−1
1 . The converse statement follows in the

same way.
(c) Suppose that (t, d) ∈ C24

∣∣
D,T

, which implies that t > 0 and d > f(t).

From this we obtain that λ1 < k(t). Since h is a decreasing function with respect
to the first coordinate, we get that h(λ1, t) > h(k(t), t) = 0, or, equivalently,
πB
+−((λ1 − t)−1) > λ−1

1 . Therefore, πB
+−(|λ2|−1) > λ−1

1 . �

Proposition 5.2.12. Consider a proper fundamental system with parameters D > 0,
T < 0, d < 0 and t > 0, so the eigenvalues of the matrix A are real and satisfy
that λ1 > 0 > λ2.

(a) If (t, d) ∈ C14
∣∣
D,T

, then the system has no Jordan curves formed by solutions.

(b) If (t, d) ∈ HeL|D,T , then the system has exactly one Jordan curve Δ formed
by solutions. Moreover, Δ is a heteroclinic cycle connecting the singular
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points e+ and e−.

(c) If (t, d) ∈ C24
∣∣
D,T

, then the system has exactly one Jordan curve Γ formed by

solutions. Moreover, Γ is a asymptotic unstable hyperbolic limit cycle such
that the origin 0 is contained in ΣΓ.

Proof. Note that the Lamerey map g(a) (see Lemma 5.2.10) is not only defined
when (t, d) ∈ C14

∣∣
D,T

, see Lemma 5.2.11(a). In this case |λ2|−1 ≤ a0. Otherwise,

when g(a) is defined, it follows that

g′ (a) =
dπ−A

++

da

∣∣∣∣∣
a

− dπB
+−
da

∣∣∣∣∣
a

< 0

in (a0, |λ2|−1), see Lemmas 5.2.4 and 5.2.9(c).
(a) Suppose that (t, d)∈ C14

∣∣
D,T

and |λ2|−1 ≤ a0. Hence, by Lemma 5.2.10(a),

there are no Jordan curves formed by solutions.
Suppose now that |λ2|−1 > a0. In this case g(a) is defined and satisfies that

g′(a) < 0 and g(|λ2|−1) > 0, see Lemma 5.2.11(a). Therefore, the map g is positive
in its domain, i.e., the system has no Jordan curves formed by solutions.

(b) Suppose that (t, d) ∈ HeL|D,T . By Lemma 5.2.11(b), g(|λ2|−1) = 0.
Hence, the system has a heteroclinic cycle connectingo the singular points e+
and e−. Moreover, since g′(a) < 0, the function g has no zeros left in its domain
[a0, |λ2|−1). This implies that there is no other Jordan curve formed by solutions.

(c) Suppose that (t, d) ∈ C24
∣∣
D,T

. By Lemma 5.2.11(c), g(|λ2|−1) < 0. More-

over, from Lemmas 5.2.4 and 5.2.9(a) it follows that g(a0) = π−A
++(a0)−πB

+−(a0) =
π−A
++(a0) > 0. Therefore, since g′ < 0 the function g has a unique zero a∗ in its

domain [a0, |λ2|−1), which implies that there exists a unique Jordan curve formed
by solutions and it is a limit cycle, see Lemma 5.2.10(b.2). �

In the next result we study the non-proper fundamental systems in C4.
Proposition 5.2.13. Every non-proper fundamental system with parameters D > 0,
T < 0 and (t, d) ∈ C4 has no Jordan curves formed by solutions.

Proof. Let Γ be a Jordan curve formed by solutions, i.e., Γ is either a periodic orbit,
or a heteroclinic cycle, or a homoclinic cycle, see Lemma 3.12.1. By Proposition
5.2.3(b), Γ intersects the straight lines L+ and L−. Thus, we can define a Poincaré
map from L+ to L+ in a neighbourhood of Γ, which contradicts the fact that the
system is non-proper. �

Suppose that (t∗, d∗) ∈ W |D,T ∩ HeL|D,T , and hence there exist proper and
non-proper fundamental systems with the same parameters (t∗, d∗), i.e., for the
same parameters (t∗, d∗) we have different phase portraits. In the next result we
prove that this situation is not possible.

Proposition 5.2.14. Suppose that D > 0 and T < 0. Then W |D,T ∩ HeL|D,T = ∅.
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Proof. Suppose that T 2 − 4D < 0. In this case W1|D,T = W2|D,T = ∅, and the
statement is straightforward.

Suppose that T 2 − 4D ≥ 0. In this case the set HeL|D,T is the graph of
the function f(t) = k(t)(t − k(t)) with t > 0, see (5.7) and (5.6). We recall that
0 < t < k(t) ≤ t + a−1

0 < t − Λ1, where a0 is the lower bound of the interval of
definition of the Poincaré map πB

+−, which depends on the parameters D > 0 and
T < 0.

Since limt↘0 f(t) = limt↘0−k(t)2 > limt↘0−(t − Λ1)
2 = −Λ2

1 and the
straight line W1|D,T intersects the line t = 0 at the point (0,−Λ2

1), see Figure 5.1,
it is sufficient to prove that HeL|D,T and W1|D,T do not intersect. Suppose that
there exists a point (t∗, d∗) ∈ W1|D,T ∩HeL|D,T . Hence, since (t

∗, d∗) ∈ HeL|D,T ,
we have that d∗ = f(t∗) = k(t∗)(t∗ − k(t∗)), with k(t∗) > 0 and t − k(t∗) < 0.
Moreover, since (t∗, d∗) ∈ W1|D,T , we have that d

∗ = Λ1(t
∗−Λ1) with Λ1 < 0 and

t∗−Λ1 > 0. Therefore, k(t∗) = t∗−Λ1, in contradiction with k(t∗) < t∗−Λ1. �

5.2.5 Phase portraits

Let
ẋ = fD (x) (5.8)

be the Poincaré compactification of a fundamental system with fundamental pa-
rameters (D,T, d, t), where D > 0 and T < 0. In this section we describe the
different phase portraits in the Poincaré disc D of the compactified system (5.8)
when the parameters (t, d) vary in the plane ΠD,T .

We note that the orbits in ∂D are separatrices of the system (5.8). Moreover,
if ∂D contains no singular points, then the system has a periodic orbit on ∂D. We
denote by ∞ this periodic orbit and by Σ∞ the interior of the Poincaré disc.

Proposition 5.2.15. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0 and (t, d) ∈ H∞ ∪ C12 . Then:
(a) The separatrices of the system are:

(a.1) the hyperbolic singular point at the origin 0, which is asymptotically
stable, and

(a.2) the limit cycle ∞ at infinity.

(b) The canonical region is Σ∞ \ 0 = Wu(∞) ∩W s(0).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) From Propositions 5.2.1(a) and 5.2.2(a) we obtain that the origin is
the unique singular point in the Poincaré disc D and it is an asymptotically stable
hyperbolic singular point. From Proposition 5.2.3(a) it follows that∞ is the unique
Jordan curve formed by solutions. Hence, ∞ is a limit cycle and so 0 and ∞ are
the separatrices of the system.



5.2. The case D > 0 and T < 0 207

(b) Let γ be an orbit in Σ∞ \0. Since D is a compact manifold, the α- and ω-
limit sets of γ, i.e., α(γ) and ω(γ), are contained in D. By applying the Poincaré–
Bendixson Theorem we conclude that α(γ) = ∞ and ω(γ) = 0. Consequently,
Σ∞\0 = Wu(∞)∩W s(0). Notice that this also proves that there are not additional
separatrices in the system.

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.2.16. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0 and (t, d) ∈ C21 . Then:
(a) The separatrices of the system are:

(a.1) the hyperbolic singular point at the origin 0, which is asymptotically
stable, and

(a.2) the limit cycle ∞ at infinity and a hyperbolic limit cycle Γ ⊂ Σ∞, which
is asymptotically unstable.

(b) The canonical regions are Σ∞ \ Cl(ΣΓ) = Wu(Γ) ∩W s(∞) and ΣΓ \ 0 =
Wu(Γ) ∩W s(0).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) Note that the existence of those separatrices is a consequence of Propo-
sitions 5.2.1(a), 5.2.2(a) and 5.2.6.

(b) Let γ be an orbit in ΣΓ \0. Since Cl(ΣΓ) is an invariant compact set, the
α- and ω-limit sets of γ are contained in Cl(ΣΓ). The origin is the unique singular
point of the system and there are no Jordan curves formed by solutions contained
in ΣΓ, see Propositions 5.2.1(a) and 5.2.6. Hence, the Poincaré–Bendixson Theo-
rem implies that α(γ) and ω(γ) are the origin and the limit cycle Γ, respectively.
Therefore, ΣΓ \ 0 = Wu(Γ) ∩W s(0).

Similar arguments can be applied to the invariant compact set D \ ΣΓ =
Cl(Σ∞ \ Cl(ΣΓ)). Hence, we obtain that Σ∞ \ Cl(ΣΓ) = Wu(Γ) ∩W s(∞). From
this we also conclude that the system has not additional separatrices.

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.2.17. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, (t, d) ∈ SN∞ and t > 0. Then:

(a) The separatrices of the system are:

(a.1) the hyperbolic singular point at the origin 0, which is asymptotically
stable, and the two saddle-nodes at infinity, x+ and x−;

(a.2) the hyperbolic limit cycle Γ, which is asymptotically unstable;

(a.3) the center manifolds of x+ and x−, which are contained in ∂D, and the
stable manifolds of x+ and x−.
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(b) The canonical regions are Σ0+∞ = Wu(Γ)∩W s(x+), Σ
0−∞ = Wu(Γ)∩W s(x−),

and ΣΓ \ 0 = Wu(Γ) ∩W s(0).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.2.1(a), 5.2.2(c) and 5.2.6.

(b) For the behaviour of the flow in ΣΓ \ 0 see the proof of Proposition
5.2.16(b).

Since the system has no Jordan curves formed by solutions in Σ∞ \ Cl(ΣΓ),
see Proposition 5.2.6, and the unique singular points in D \ ΣΓ are x+ and x−,
we conclude that there are no Jordan curves formed by solutions in D \ ΣΓ. By
applying the Poincaré–Bendixson Theorem to the invariant set D \ ΣΓ it follows
that Σ∞ \ Cl(ΣΓ) ⊂Wu(Γ).

Let γs
+ be the stable separatrix of x+ contained in Σ∞, i.e., ω(γs

+) = x+.
Since γs

+ ⊂ Σ∞ \ Cl(ΣΓ), we have α(γs
+) = Γ. Analogously, if γs

− is the stable
separatrix of x−, then ω(γ−) = x− and α(γ−) = Γ. Therefore, γs

+ and γs− split
Σ∞ \ Cl(ΣΓ) into two open connected and invariant regions Σ0+

∞ and Σ0−
∞ . Let

Σ0+∞ be the region containing the parabolic sector of x+ and let Σ0−∞ be the region
containing the hyperbolic sector of x+. By the symmetry of the flow with respect to
the origin Σ0−

∞ contains the parabolic sector of x− and Σ0+
∞ contains the hyperbolic

sector of x−. By Proposition 5.2.2(b), the parabolic sector of x+ and x− is stable.
Hence, we conclude that Σ0+

∞ ⊂ W s(x+) and Σ0−
∞ ⊂ W s(x−). From this we also

obtain that the system has not additional separatrices.
Statement (c) follows from Theorem 2.6.9. �

Proposition 5.2.18. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, (t, d) ∈ C11 ∪ N , and t > 0. Then:

(a) The separatrices of the system are:

(a.1) the hyperbolic singular point at the origin 0, which is asymptotically
stable; the asymptotically stable nodes x+, x− ∈ ∂D, and the saddle
points y+, y− ∈ ∂D;

(a.2) the hyperbolic limit cycle Γ, which is asymptotically unstable;

(a.3) the stable manifolds of y+ and y−, and the unstable manifolds of y+

and y−, which are contained in ∂D.

(b) The canonical regions are Σ0+∞ = Wu(Γ)∩W s(x+), Σ
0−∞ = Wu(Γ)∩W s(x−),

and ΣΓ \ 0 = W s(0) ∩Wu(Γ).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.2.1(a), 5.2.2(d) and 5.2.6.
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(b) For the behaviour of the flow in ΣΓ \ 0 see the proof of Proposition
5.2.16(b).

By Proposition 5.2.6, there are no Jordan curves formed by solutions in
Σ∞ \Cl(ΣΓ). Moreover, the unique singular points in D\ΣΓ are the nodes x+ and
x− and the saddles y+ and y−. Thus, any separatrix cycle with singular points
in ∂D contains either x+ or x−, which contradicts the fact that these points are
nodes. Hence there are no separatrix cycles in D\ΣΓ. By the Poincaré–Bendixson
Theorem, the α- and ω-limit sets of any orbit in D \ ΣΓ are the singular points
x+, x−, y+, y− and the limit cycle Γ which is asymptotically unstable. Therefore,
Σ∞\Cl(ΣΓ) ⊂Wu(Γ) and the stable separatrix γs

+ of the saddle y+, i.e., ω(γ
s
+) =

y+, satisfies that α(γs
+) = Γ. Analogously, if γs

− is the stable separatrix of y−,
then α(γs

−) = Γ and ω(γs
−) = y−. Thus, γs

+ and γs
− split Σ∞ \ Cl(ΣΓ) into two

open, connected and invariant regions, denoted by Σ0+∞ and Σ0−∞ . Let Σ0+∞ be the
region containing the point x+ in its closure, and let Σ0−

∞ be the region containing
the point x− in its clousure.

By the Poincaré–Bendixson Theorem, the α- and ω-limit sets in Cl(Σ0+
∞ )

are the saddle points y+ and y−, the asymtotically stable node x+ and the
asymptotically unstable limit cycle. Therefore, Σ0+∞ ⊂ Wu(Γ) ∩ W s(x+). By
using the symmetry of the flow with respect to the origin we conclude that
Σ0−∞ ⊂Wu(Γ)∩W s(x−). This also proves that there are no additional separatrices
in D.

Statement (c) follows from Theorem 2.6.9. �
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Figure 5.5: Regions Σ+
∞, Σ0

∞ and Σ−
∞ when d < 0.

Proposition 5.2.19. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, and (t, d) ∈ C24

∣∣
D,T

. Then:

(a) The separatrices of the system are:
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(a.1) the asymptotically stable singular point at the origin 0, the saddle points
e+, e−, the asymptotically stable nodes at infinity, x+ and x−, and the
asymptotically unstable nodes at infinity, y+ and y−;

(a.2) the asymptotically unstable hyperbolic limit cycle Γ;

(a.3) the stable and the unstable separatrices of e+ and e−, and the orbits
contained in ∂D.

(b) The canonical regions are: Σ++∞ ⊂ Wu(y+) ∩ W s(x+), Σ
+−∞ ⊂ Wu(y+) ∩

W s(x−), Σ0−
∞ = Wu(Γ) ∩ W s(x−), Σ−−

∞ ⊂ Wu(y−) ∩ W s(x−), Σ−+
∞ ⊂

Wu(y−)∩W s(x+), Σ
0+
∞ = Wu(Γ)∩W s(x+), and ΣΓ \0 = Wu(Γ)∩W s(0).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) Note that the orbits contained in ∂D are separatrices. The existence
of the others separatrices is a consequence of Propositions 5.2.1(b), 5.2.2(d) and
5.2.12(c).

(b) For the behaviour of the flow in the region ΣΓ \0 see the proof of Propo-
sition 5.2.16(b).

Since x+, x−, y+ and y− are nodes, it is easy to conclude that there are no
separatrix cycles with singular points in ∂D. Hence, there exists exactly one Jordan
curve formed by solutions and it is contained in Σ∞, see Proposition 5.2.12(c).
Therefore, the α- and ω-limit sets of any orbit in D \ ΣΓ are the singular points
e+, e−, x+, x−, y+, y−, and the limit cycle Γ.

Let γu+
+ and γu−

+ be the unstable separatrices of the saddle point e+. Since
y+, y−, and Γ are asymptotically unstable, it follows that ω(γu+

+ ), ω(γu−
+ ) ∈

{x+, x−}. Suppose that both separatrices have the same ω-limit set, for instance
x+. Then Wu(e+)∪x+ splits D into two open and invariant regions. LetM+ be the
region which does not contain e−. It is easy to check that there are no separatrix
cycles in Cl(M+). Thus, the α- and ω-limit sets of any orbit in Cl(M+) are the
singular points e+ and x+. Let γ be an orbit in M+. Since x+ is asymptotically
stable it follows that α(γ) = e+. This implies that γ is an unstable separatrix of
e+, which contradicts that γ ⊂M+. Therefore, ω(γ

u+
+ ) �= ω(γu−

+ ).

Without loss of generality we assume that ω(γu+
+ ) = x+ and ω(γu−

+ ) = x−.
By the symmetry of the flow with respect to the origin, ω(γu+

− ) = x+ and ω(γu−
− ) =

x−. Then Wu(e+) and Wu(e−) split Σ∞ \Cl(ΣΓ) into three open, connected and
invariant regions, denoted by Σ+

∞, Σ0
∞, and Σ−

∞, see Figure 5.5(a). We study the
behaviour of the flow in each of these regions.

The α- and ω-limit sets of any orbit in Cl(Σ+
∞) are the singular points x+,

y+, x−, and e+. Let γ be an orbit in Σ+∞. Since x+ and x− are asymtotically
stable nodes and e+ has the unstable separatrices contained in ∂Σ+

∞, it is clear
that α(γ) = y+. Therefore, Σ

+∞ ⊂ Wu(y+). By the symmetry of the flow with
respect to the origin, we conclude that Σ−

∞ ⊂Wu(y−).
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On the other hand, the α- and ω-limit sets in Cl(Σ0∞) are the nodes x+ and
x−, the saddle points e+ and e−, and the asymptotically unstable limit cyle Γ.
From this we obtain that Σ0∞ ⊂Wu(Γ).

Since Wu(e+) is a common boundary for the regions Σ+
∞ and Σ0

∞, a stable
separatrix of e+ denoted by γs+

+ is contained in Σ+
∞, and the other, denoted by γs−

+ ,
is contained in Σ0∞, see Figure 5.5(a). By the symmetry of the flow with respect
to the origin we obtain that γs−

− ⊂ Σ−
∞ and γs+

− ⊂ Σ0
∞. Arguments similar to

those used in the study of Σ+
∞, Σ0

∞ and Σ−
∞ show that α(γs+

+ ) = y+, α(γ
s−
+ ) = Γ,

α(γs+
− ) = Γ, and α(γs−

− ) = y−. Hence, W s(e+) and W s(e−) split Σ+∞, Σ0∞, and
Σ−

∞ in the open, connected and invariant regions Σ++
∞ , Σ+−

∞ , Σ0+
∞ , Σ0−

∞ , Σ−−
∞ , and

Σ−+∞ , see Figure 5.5(a).
Let Σ++

∞ be the region bounded by the orbits γs+
+ and γu+

+ . From Σ++
∞ ⊂ Σ+

∞
we conclude that Σ++

∞ ⊂ Wu(y+). Moreover, since the α- and ω-limit sets in
Cl(Σ++∞ ) are the saddle e+, the asymptotically stable node x+, and the asymp-
totically unstable node y+, we obtain that Σ++

∞ ⊂ W s(x+). Therefore, Σ
++
∞ ⊂

Wu(y+) ∩W s(x+). The remainder inclusions follow in a similar way.
Statement (c) follows from Theorem 2.6.9. �

Proposition 5.2.20. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, and (t, d) ∈ HeL|D,T . Then:

(a) The separatrices of the system are:

(a.1) the asymptotically stable point at the origin 0, the saddle points e+, e−,
the asymptotically stable nodes x+, x− ∈ ∂D, and the asymptotically
unstable nodes y+, y− ∈ ∂D;

(a.2) the stable and the unstable separatrices of e+ and e−, which form a
heteroclinic cycle Δ, and the orbits which are contained in ∂D.

(b) The canonical regions are: Σ++
∞ ⊂ Wu(y+) ∩ W s(x+), Σ

+−
∞ ⊂ Wu(y+) ∩

W s(x−), Σ−−∞ ⊂Wu(y−)∩W s(x−), Σ−+∞ ⊂Wu(y−)∩W s(x+), and ΣΔ\0 =
Wu(Δ) ∩W s(0).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) Note that the orbits contained in ∂D are separatrices. The existence of
the remaining separatrices is a consequence of Propositions 5.2.1(b), 5.2.2(d) and
5.2.12(b).

(b) For the behaviour of the flow in the region ΣΔ \ 0, see the proof of
Proposition 5.2.17(c).

Since x+, x−, y+, and y− are nodes, there are no separatrix cycles with
singular points contained in ∂D. Moreover, the unique Jordan curve formed by
solutions contained in D is the heteroclinic cycle Δ, see Proposition 5.2.12(b).
Thus, by the Poincaré–Bendixson Theorem, the unique α- and ω-limit sets in
D \ ΣΔ are the singular points e+, e−, x+, x−, y+ and y−, and the heteroclinic
cycle Δ.
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Since e+ and e− are contained in the cycle Δ and both points have a sepa-
ratrix contained in Σ∞ \ Cl(ΣΔ), it is easy to check that Δ cannot be the α- or
ω-limit set of any orbit in Σ∞ \ Cl(ΣΔ).

Let γs+
+ and γs−

− be the separatrices of the saddle points e+ and e− which
are not contained in the cycle Δ. Hence, γs+

+ ∪ γs−
− ⊂ Σ∞ \ Cl(ΣΔ). We conclude

that the points e+, e−, x+, and x− cannot be the α-limit sets of γs+
+ and γs−

− .
Therefore, α(γs+

+ ) = y+ and α(γs−
− ) = y−.

In a similar way, if γu+
+ and γu−

− are the unstable separatrices of the singular
points e+ and e− which are not contained in the cycle Δ, then ω(γu+

+ ) = x+ and
ω(γu−

− ) = x−. Thus, the separatrices γs+
+ , γu+

+ , γs−
− , and γu−

− split Σ∞ \ Cl(ΣΔ)
into four open, connected and invariant regions denoted by Σ++

∞ , Σ+−
∞ , Σ−−

∞ , and
Σ−+∞ .

Let Σjk
∞ be the region which contains the points yj and xk on the boundary,

with j, k ∈ {+,−}. The behaviour of the flow in Σjk
∞ follows by noting that yj is

asymptotically unstable and xk is asymptotically stable.

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.2.21. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, and (t, d) contained in the parameter region
C14
∣∣
D,T

∪ C3 ∪ {(0, d) ∈ ΠD,T : d < 0}. Then:

(a) The separatrices of the system are:

(a.1) the asymptotically stable point at the origin 0, the saddle points e+, e−,
the asymptotically stable points x+, x− ∈ ∂D, and the asymptotically
unstable nodes y+, y− ∈ ∂D;

(a.2) the separatrices of the saddles e+ and e−, and the orbits which are
contained in ∂D.

(b) The canonical regions are: Σ++∞ ⊂ Wu(y+) ∩ W s(x+), Σ+0∞ = Wu(y+) ∩
W s(0), Σ+−

∞ ⊂ Wu(y+) ∩ W s(x−), Σ−−
∞ ⊂ Wu(y−) ∩ W s(x−), Σ−0

∞ =
Wu(y−) ∩W s(0), and Σ−+

∞ ⊂Wu(y−) ∩W s(x+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) Orbits in ∂D are separatrices. The existence of the remaining separa-
trices is a consequence of Propositions 5.2.1(b), 5.2.2(d) and 5.2.3(a) when t ≤ 0,
and a consequence of Propositions 5.2.12(a) and 5.2.13 when t > 0.

(b) Note that there are no Jordan curves formed by solutions in Σ∞, see
Proposition 5.2.3(a) when t ≤ 0 and Propositions 5.2.12(a) and 5.2.13 when t > 0.
Moreover, since x+, x−, y+, and y− are nodes, there are no separatrix cycles with
singular points contained in ∂D. Hence, from the Poincaré–Bendixson Theorem it
follows that the α- or ω-limit sets of any orbit in D are the singular points in the
statement (a.1).
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Let γs+
+ and γs−

+ be the stable separatrices of the saddle point e+. Since
the singular points 0, x+, and x− are asymptotically stable, α(γs+

+ ) = y+ and
α(γs−

+ ) = y−. From the symmetry of the flow with respect to the origin we get
α(γs+

− ) = y+ and α(γs−
− ) = y−. Thus, the stable manifolds of e+ and e− split

Σ∞ into three open, connected and invariant regions denoted by Σ+
∞, Σ0

∞, and
Σ−∞. Let Σ+∞ be the region containing the point e+, Σ

−∞ the region containing the
point e−, and Σ0

∞ the region containing the origin 0.
The α- and ω-limit sets in Σ+

∞ are the nodes y+ and y−, the saddle point e+,
and the asymptotically stable node x+. Therefore, Σ

+∞ ⊂ W s(x+). In a similar
way it follows that Σ0

∞ ⊂W s(0) and Σ−
∞ ⊂W s(x−).

Since W s(e+) is the common boundary between the regions Σ+∞ and Σ0∞,
one of the unstable separatrices of e+, denoted by γu+

+ , is contained in Σ+
∞ and the

other, denoted by γu−
+ , is contained in Σ0

∞. From the symmetry of the flow with
respect to the origin we have γu−

− ⊂ Σ−∞ and γu+
− ⊂ Σ0∞. Hence, the curve defined

by Wu(e+) ∪ 0 ∪Wu(e−) splits the regions Σ+
∞, Σ0

∞, and Σ−
∞ into the six open,

connected, and invariant regions Σ++
∞ , Σ+0

∞ , Σ+−
∞ , Σ−−

∞ , Σ−0
∞ , and Σ−+

∞ . Let Σjk
∞

be the region containing the points yj and xk in its boundary, with j, k ∈ {+,−}.
The statement follows by noting that yj is asymptotically unstable and that xk

is asymptotically stable.
Statement (c) follows from Theorem 2.6.9. �

Proposition 5.2.22. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, (t, d) ∈ C22 ∪ N , and t < 0. Then:

(a) The separatrices of the system are:

(a.1) the asymptotically stable point at the origin 0, the asymptotically unsta-
ble nodes y+,y− ∈ ∂D, the saddle points x+,x− ∈ ∂D which have their
stable manifold contained in ∂D, and

(a.2) the stable and unstable separatrices of x+ and x−.

(b) The canonical regions are: Σ+0
∞ = Wu(y+) ∩W s(0) and Σ−0

∞ = Wu(y−) ∩
W s(0).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.2.1(a) and 5.2.2(d).

(b) From Proposition 5.2.3(a) it follows that there are no Jordan curves
formed by solutions contained in Σ∞. Moreover, there are no separatrix cycles
with singular points in ∂D. Otherwise, the singular point y+ or y− would belong
to the cycle, which is not possible. By the Poincaré–Bendixson Theorem, the α-
and ω-limit sets of any orbit in D are: the asymptotically stable point at the
origin, the asymptotically unstable nodes y+, y−, and the saddle points x+ and
x−. Therefore, Σ∞ ⊂W s(0). We recall that the stable separatrices of x+ and x−
are contained in ∂D.
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Let γu
+ be the unstable separatrix of x+, i.e., α(γ

u
+) = x+. It is easy to

conclude that ω(γu
+) = 0. By the symmetry of the flow with respect to the origin,

if γu− is the unstable separatrix of x−, then α(γu−) = x− and ω(γu−) = 0. Thus,
γu
+ ∪ 0 ∪ γu

− splits Σ∞ into the two open, connected, and invariant regions Σ+0
∞

and Σ−0
∞ . Let Σ+0

∞ be the region with y+ on the boundary. The α- and ω-limit
sets in Cl(Σ+0∞ ) are the origin, the saddle points x+, x−, and the asymptotically
unstable node y+. Therefore, Σ+0

∞ ⊂ Wu(y+) and Σ+0
∞ = Wu(y+) ∩ W s(0).

From the symmetry of the flow with respect to the origin we obtain that Σ−0
∞ =

Wu(y−) ∩W s(0).
Statement (c) follows from the Theorem 2.6.9. �

Proposition 5.2.23. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, (t, d) ∈ SN∞ \ {VB1|D,T ∪ VB2|D,T }, and
t < 0. Then:

(a) The separatrices of the system are:

(a.1) the asymptotically stable point at the origin 0, and the saddle-nodes at
infinity x+ and x−;

(a.2) the center manifold of x+ and x−, which is contained in ∂D, and the
unstable hyperbolic manifold of x+ and x−.

(b) The canonical regions are: Σ+0
∞ ⊂ Wu(x+) ∩W s(0) and Σ−0

∞ ⊂ Wu(x−) ∩
W s(0).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.2.1(a) and 5.2.2(c).

(b) By using arguments similar to those in the proof of Proposition 5.2.22,
we conclude that there are no limit cycles and separatrix cycles in D. Thus, the
possible α- and ω-limit sets in D are the asymptotically stable node 0 and the
saddle-nodes x+ and x−.

Let γu
+ be the unstable separatrix of x+, i.e., α(γ

u
+) = x+. Then ω(γu

+) = 0.
By the symmetry of the flow with respect to the origin, if γu

− is the unstable
separatrix of x−, then α(γu

−) = x− and ω(γu
−) = 0. Thus, the curve γu

+ ∪ 0 ∪ γu
−

splits Σ∞ into the two open, connected, and invariant regions Σ+0∞ and Σ−0∞ . Let
Σ+0

∞ be the region containing the parabolic sector of x+, and let Σ−0
∞ be the

region containing the hyperbolic sector of x+. Since the possible α- and ω-limit
sets in Cl(Σ+0∞ ) are 0, x+, and x−, we obtain that Σ+0∞ ⊂ Wu(x+) ∩W s(0). By
using again the symmetry of the flow with respect to the origin, it follows that
Σ−0∞ ⊂Wu(x−) ∩W s(0).

Statement (c) follows from Theorem 2.6.9. �
In the next result we deal with the fundamental systems that have non-

isolated singular points. In this case we cannot apply Theorem 2.6.9. Thus in order
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to characterize the topological equivalence classes of these fundamental systems
we build explicit homeomorphism which establish the equivalence relation.

Proposition 5.2.24. Consider the Poincaré compactification of a fundamental sys-
tem with fundamental matrices (A,B) and parameters D > 0, T < 0, and (t, d) ∈
VB1|D,T ∪ VB2|D,T .

(a) If the real Jordan normal form of the matrix A is non-diagonal, then the phase
portrait of the Poincaré compactification is the one described in Proposition
5.2.23.

(b) Suppose that the real Jordan normal form of the matrix A is diagonal.

(b.1) The boundary of the Poincaré disc D is an unstable normally hyperbolic
manifold. The origin is the unique singular point in Σ∞ and it is global
asymptotically stable, i.e., Σ∞ \ 0 ⊂W s(0).

(b.2) The phase portrait of the Poincaré compactification is topologically equi-
valent to its correspondent in Figure 5.6.

Proof. Statement (a) follows similarly as in Proposition 5.2.23.
(b.1) The local phase portrait of ∂D and 0 is a consequence of Proposi-

tions 5.2.1(a) and 5.2.2(b). Moreover, since there are no Jordan curves formed by
solutions in D, see Proposition 5.2.3(a), the statement follows from the Poincaré–
Bendixson Theorem.

(b.2) From statement (b.1) it follows that any orbit of the system tends to
the origin when s tends to ∞. Moreover, since the matrix A is diagonal, so is the
matrix B. Therefore, the origin is a diagonal node and the orbits in a neigbourhood
are contained in straight lines. Hence, if we consider a sufficiently small circle c
centered at the origin, then c intersects every orbit of the system at exactly one
point.

Let c′ be a circle centered at the origin and contained in the corresponding
phase portrait in Figure 5.6. It is easy to check that c′ intersects evey orbit of
the system at exactly one point. Let h be a homeomorphism from c to c′. Using
h, it is easy to define a homeomorphism between the flows of the two systems
which preserves the orientation. Hence, the two phase portraits are topologically
equivalent. �
Proposition 5.2.25. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T < 0, and (t, d) ∈ O. Then:

(a) The separatrices of the system are:

(a.1) the asymptotically stable singular point at the origin 0, the singular
points at infinity x+ and x−, and

(a.2) the central manifold of x+ and x− which is contained in ∂D, forming a
heteroclinic cycle at infinity Δ.

(b) The canonical region is Σ∞ \ 0 = Wu(Δ) ∩W s(0).



216 Chapter 5. Phase portraits

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.6.

Proof. (a) The existence of the separatrices is a consequence of Propositions
5.2.1(a), 5.2.2, and 5.2.3(a).

(b) Since x+ and x− are saddle-nodes with the central manifold contained
in ∂D, it is easy to conclude the existence of the heteroclinic cycle Δ. Moreover,
there are no Jordan curves formed by solutions in Σ∞, see Proposition 5.2.3(a).
Hence, since the origin is asymptotically stable, we conclude that Σ∞ ⊂ W s(0).
Consequently, Σ∞ \ 0 ⊂Wu(Δ).

Statement (c) follows from Theorem 2.6.9. �

5.2.6 The bifurcation set

In this subsection we describe the bifurcations that take place in the phase por-
trait of the Poincaré compactification of a fundamental system when we vary the
parameters (t, d) in ΠD,T , where D > 0 and T < 0.

Take (t, d) ∈ H∞ and vary the parameters (t, d) clockwise. When the param-
eters are on H∞, the phase portrait is formed by the origin, a globally asymptot-
ically stable fixesd point, and a limit cycle at infinity, i.e., contained in ∂D. Just
after crossing the manifold H∞, an asymptotically unstable hyperbolic limit cycle
Γ emerges from the limit cycle at ∂D. Hence, the parameters in the manifold H∞
correspond to a supercritical Hopf bifurcation at infinity.

When we take parameters (t, d) in the manifold SN∞ with t > 0, then
saddle-nodes x+ and x− appear at infinity ∂D. Just after crossing this manifold
SN∞ both saddle-nodes splits into a saddle y± and a node x±. Thus, the manifold
SN∞ coincides with a supercritical saddle-node bifurcation at infinity.

When we cross the straight line N , every saddle point at ∂D splits into an
asymptotically unstable node y± contained in ∂D and a saddle point e± contained
in Σ∞. Since the flow in the Poincaré disc D is the projection of the Poincaré
compactified flow on the Poincaré sphere, it is easy to see that on the sphere every
saddle point on the equator splits into three singular points: one asymptotically
unstable node on the equator, and two saddle points, each of them contained in
one hemisphere. Therefore, the straight half-line N with t > 0 coincides with a
supercritical pitchfork bifurcation at infinity.

On HeL|D,T the saddle points e+ and e− which emerge from the pitchfork
bifurcation at infinity, collide with the limit cycle Γ which emerges from the Hopf
bifurcation at infinity. Thus, the manifold HeL|D,T coincides with a heteroclinic
cycle bifurcation.

When (t, d) ∈ N and t < 0, the saddle points e± go to infinity and collide
with the nodes x± in ∂D, giving rise to a saddle point. Thus, the straight half-line
N with t < 0 coincides with a subcritical pitchfork bifurcation at infinity.

On the manifold SN∞ with t < 0 the saddle points at infinity x± and the
nodes at infinity y± coalesce into two saddle-node points at infinity x±. These
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saddle-node points vanish when we leave SN∞. Therefore, the manifold SN∞
coincides with a subcritical saddle-node bifurcation at infinity. Note that on this
manifold there exist two special bifurcation points, VB1|D,T and VB2|D,T . Taking
parameters at these points, there exist fundamental systems having two saddle-
nodes at infinity x±, and there exist fundamental systems for which the infinity
is formed by singular points.

One of the most complex bifurcations when D > 0 and T < 0 takes place
at the origin and it is a codimension 2 bifurcation. At this point the different
bifurcation manifolds H∞, SN∞, N , and HeL|D,T coincide.

5.3 The case D > 0 and T = 0

In this section we present the phase portrait of the Poincaré compactification of
fundamental systems

ẋ = Ax+ ϕ
(
kTx

)
b,

with fundamental matrices (A,B) and parameters (D,T, d, t), D > 0 and T = 0.
Since we consider the case T = 0, we denote the plane ΠD,T by ΠD,0. In the next
result we find the regions in the parameter space ΠD,0 where the fundamental
systems are proper.

Lemma 5.3.1. Assume that D > 0 and T = 0.

(a) The sets W1|D,T and W2|D,T are empty. Hence, any fundamental system
with (t, d) ∈ ΠD,0 is proper.

(b) Consider a fundamental system with fundamental matrices (A,B) and pa-
rameters D > 0, T = 0, and (t, d) ∈ ΠD,0. Suppose that the matrix A is in
real Jordan normal form. If t2 − 4d = 0, then A is non-diagonal and k1 �= 0.
If t2 − 4d > 0, then k1k2 �= 0.

Proof. (a) From (4.50) it follows that W1|D,T and W2|D,T are empty sets. The
statement follows from Lemma 4.7.3(a) and Theorem 4.7.6(a).

(b) Suppose that t2 − 4d = 0. From Lemma 4.7.2 we obtain that only when
(D,T, d, t) ∈ FA

0 , the real Jordan normal form of the matrix A is diagonal. Since
for these parameters FA

0

∣∣
D,0

= ∅, see Lemma 4.7.3(d), we conclude that the

matrix A is non-diagonal. From Proposition 4.7.1(b) it follows that k1 �= 0.
Suppose that t2−4d > 0. In this case the proof follows from Lemma 4.7.1(d).

�

5.3.1 Singular points

In the next result we summarize the information about the finite singular points of
the fundamental systems with parameters D > 0 and T = 0 obtained in Theorem
3.9.3(a).
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Figure 5.6: Phase portraits and the bifurcation set of fundamental systems with
parameters D > 0 and T < 0.
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Proposition 5.3.2. Consider a fundamental system with fundamental parameters
D > 0 and T = 0.

(a) If d ≥ 0, then the origin is the unique singular point and it is a center.

(b) If d < 0, then there exist exactly three singular points: the center at the origin
and two saddle points e+ ∈ S+ and e− ∈ S−.

5.3.2 Behaviour at infinity

The different behaviours at infinity when D > 0 and T = 0 are summarized in
Proposition 5.2.2 and represented in Figure 5.2. We recall that in this case the real
Jordan normal form of the matrix A is always non-diagonal, see Lemma 5.3.1(b).
Therefore, when D > 0 and T = 0, the manifold ∂D at infinity is not a normally
hyperbolic manifold, see Proposition 5.2.2(b).

5.3.3 Annular region of periodic orbits

Since any fundamental system with parameters D > 0 and T = 0 is a proper
fundamental system, see Lemma 5.3.1(a), there exists a contact point p+ of the
flow with the straight line L+. Let ΓM be the orbit through p+. By Proposition
4.2.7(a), ΓM is locally contained in L− ∪ S0 ∪ L+. Since the singular point at the
origin is a center, every orbit, except the origin, which is contained in the strip
L− ∪ S0 ∪ L+, is a periodic orbit. From the symmetry of the flow with respect
to the origin it is easy to conclude that p− = −p+ is the contact point of the
flow with L− and, moreover, ΓM is a periodic orbit tangent to L+ and L− at the
contact points p+ and p−.

Let ΣΓM be the region bounded by ΓM . Thus ΣΓM is contained in L−∪S0 ∪
L+, which implies that Cl(ΣΓM )\0 is an annular region formed by periodic orbits,
see Figure 5.7. In the next result we prove that these annular regions contain all
Jordan curves formed by solutions when t �= 0.

Proposition 5.3.3. Consider a fundamental system with parameters D > 0, T =
0 and t �= 0. Any Jordan curve formed by solutions is a periodic orbit and is
contained in Cl(ΣΓM ) \ 0.
Proof. Let Γ be a Jordan curve formed by solutions. From Theorem 3.12.2(d) it
follows that Γ ⊂ Γ+ ∪ S0 ∪ Γ−, i.e., Γ is a periodic orbit. Since ΓM is tangent to
the straight lines L+ and L−, we conclude that Γ ⊂ Cl(ΣΓM ) \ 0. �

Note that for t �= 0 the periodic orbit ΓM is maximal in the set of all periodic
orbits of the system. Moreover, the interior region bounded by ΓM contains all
Jordan curves formed by solutions. Therefore, the phase portrait of these systems
is determined by the stability of ΓM . In fact in the next result we prove that ΓM

is either the α- or the ω-limit set of any orbit in R
2 \ ΣΓM when d ≥ 0.
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Figure 5.7: The periodic orbit ΓM and the annular region Cl(ΣΓM ) \ 0 formed by
periodic orbits.

Proposition 5.3.4. Consider a fundamental system with parameters D > 0, T = 0,
t �= 0, and d ≥ 0.

(a) If t > 0, then ΓM is an outside asymptotically unstable limit cycle. Moreover,
R2 \ ΣΓM = Wu(ΓM ).

(b) If t < 0, then ΓM is an outside asymptotically stable limit cycle. Moreover,
R

2 \ ΣΓM = W s(ΓM ).

Proof. (a) By Propositions 3.13.3 and 3.13.5(d), every orbit of the system has a
bounded α-limit. Since the origin is the unique singular point and every Jordan
curve formed by solutions is contained in Cl(ΣΓM ), see Proposition 5.3.3, the α-
limit set of any orbit in R2\ΣΓM is the limit cycle ΓM , which proves the statement.

Statement (b) follows from Proposition 3.7.1 by reversing the direction of the
time. �

For d �= 0, in order to study the local phase portrait of the periodic orbit ΓM

we use the return map π. In the next lemma we summarize the information about
the Poincaré maps πB

+− and πA
++.

Lemma 5.3.5. Consider a fundamental system with D > 0, T = 0 and d �= 0.

(a) The Poincaré map πB
+− is defined and coincides with the identity map in

[0,+∞).

(b) The Poincaré map πA
++ is defined.

(b.1) If t > 0 and d > 0, then there exists a value a0 > 0 (where a0 can be
equal to +∞) such that πA

++ : [0, a0)→ [0,+∞), πA
++(0) = 0, πA

++(a) >
a, lim

a↗a0

πA
++(a) = +∞, and (πA

++)
′(a) > 1 in the interval (0, a0).

(b.2) If t = 0, then the map πA
++ is equal to the identity in the interval [0, a0)

where a0 = +∞ if d > 0 or a0 = |d|− 1
2 if d < 0.
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(b.3) If t > 0 and d < 0, then there exist two values a0 > 0 and b0 > 0 such
that πA

++ : [0, a0)→ [0, b0), π
A
++(0) = 0, πA

++(a) > a, lim
a↗a0

πA
++(a) = b0,

and (πA
++)

′(a) > 1 in (0, a0).

(c) The return map π satisfies π = πA
++ ◦ πA

++.

Proof. By Lemma 5.3.1(a), the system is proper. Therefore, the Poincaré maps
πA
++ and πB

+− are defined.
Statement (a) is a consequence of Proposition 4.4.13(b).
Statement (b.1) is a consequence of Propositions 4.4.1, 4.4.6 and 4.4.11. State-

ment (b.2) follows from Proposition 4.4.11(b) when d > 0 and from Proposition
4.4.15(a) when d < 0. Statement (b.3) follows from Proposition 4.4.15(b).

From Theorem 4.6.1(b) it follows that the return map π is defined and satis-
fies that π = (πA

++ ◦πB
+−)2, where πB

+− is the identity map. From this we conclude
the proof of statement (c). �

In the following result we describe the local phase portrait of the periodic
orbit ΓM in the case d < 0.

Proposition 5.3.6. Consider a fundamental system with parameters D > 0, T = 0,
t �= 0, and d < 0.

(a) If t > 0, then ΓM is an outside asymptotically unstable limit cycle.

(b) If t < 0, then ΓM is an outside asymptotically stable limit cycle.

Proof. (a) From Lemmas 5.3.5(c) and (b.3) it follows that the unique fixed point
of the return map π it located at a = 0. Moreover,

π′ (a) > 1 if a ∈ (0,+∞) . (5.9)

Since ΓM intersects L+ at the contact point p+ with coordinate a = 0, the state-
ment follows from Proposition 4.6.2(c).

Statement (b) follows from statement (a) by reversing the sign of time, see
Proposition 3.7.1. �

In Proposition 5.3.3 we have proved that for t �= 0, the annular region
bounded by ΓM and the singular point at the origin contains all the Jordan curves
formed by solutions, and that these Jordan curves are periodic orbits. We also
have studied the local behaviour of the flow in a neighbourhood of the periodic
orbit ΓM . Now we deal with the case t = 0. In the next result we show that for
t = 0 and d ≥ 0 the annular region of periodic orbits also exists and it is not
bounded. In fact this annular region covers the phase plane, i.e., we have a global
center.

Proposition 5.3.7. Consider a fundamental system with parameters D > 0, T = 0,
d ≥ 0, and t = 0. Any orbit in R2 \ 0 is a periodic orbit.
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Proof. We split the proof depending on d > 0 or d = 0. Suppose that d > 0 and
let γ be an orbit in R2 \ 0. Since d > 0 and t = 0, the system has a virtual center
in the half-planes L+ ∪ S+ and L− ∪ S−. Moreover, since D > 0 and T = 0, the
system has a center in S0. Thus, either γ ⊂ S0, or γ intersects L+ and L−. In the
first case, we obtain that γ is a periodic orbit. In the second case, since the return
map is the identity, see Lemmas 5.3.5(b.2) and (c), it follows that γ is a periodic
orbit.

Suppose that d = 0. Let ẋ = Ax + ϕ(kTx)b be a fundamental system.
Without loss of generality we can assume that the matrix A is in real Jordan
normal form, i.e.,

A =

(
0 1
0 0

)
.

From (3.10) it follows that D = −k1b2 > 0, which is equivalent to −k1/b2 > 0.
Consider the auxiliary function f(u) =

∫ u

0 ϕ(r)dr, where ϕ is the piecewise
linear characteristic function of the system. It is clear that f(u) satisfies f(u) =
f(−u), is non-negative, is strictly increasing in (0,+∞), and has a global minimum
at u = 0. Hence, for any h > 0 there exists exactly one value uh > 0 such that
h− f(u) > 0 if and only if u ∈ (−uh, uh) and f(−uh) = f(uh) = h.

Consider the following function defined on the whole phase plane R2:

V (x) =
1

2

(
−k1
b2

)
x2
2 + f

(
kTx

) ≥ 0,

where x = (x1, x2)
T . Since the components of the vector field are ẋ1 = x2 +

ϕ(kTx)b1 and ẋ2 = ϕ(kTx)b2, it is easy to check that V is a first integral of the
system, that is,

dV

ds
= (k1b1 + k2b2)ϕ

2
(
kTx

)
= Tϕ2

(
kTx

)
= 0.

Therefore, the sets

Ih =
{
x ∈ R

2 : V (x) = h
}
=

{
x ∈ R

2 : x2 = ±
√
2

(
− b2
k1

)
(h− f (kTx))

}
,

with h ≥ 0, are formed by solutions of the system. Moreover, x ∈ Ih if and only if
kTx ∈ [−uh, uh]. We conclude that Ih is a Jordan curve formed by solutions when
h > 0 and that I0 = 0. Since the unique singular point is the origin, it follows that
Ih is a periodic orbit when h > 0. �

5.3.4 Heteroclinic cycles

We deal now with the case d < 0 and t = 0. As we shall see, in this case the annular
region of periodic orbits is bounded by a heteroclinic cycle Δ to the saddle points
e+ and e−.
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Proposition 5.3.8. Consider a fundamental system with parameters D > 0, T = 0,
d < 0, and t = 0. The system has a heteroclinic cycle Δ connecting the singular
points e+ and e−. Moreover, the region Cl(ΣΔ) contains any Jordan curve formed
by solutions, and the annular region ΣΔ \ 0 is formed by all the periodic orbits of
the system.

Proof. Let (A,B) be the fundamental matrices of the system, and let λ1 > 0 > λ2

be the eigenvalues of A.
Since t = 0, we have that λ1 = |λ2| = |d| 12 . Hence, a stable separatrix γs−

+

and an unstable separatrix γu−
+ of the point e+ intersect the straight line L+ at the

points of coordinates a = λ−1
1 and b = |λ2|−1, respectively, see Corollary 4.4.17.

By the symmetry of the flow with respect to the origin, a stable separatrix
γs+
− and an unstable separatrix γu+

− of e− intersect L− at the points of coordinates

a = λ−1
1 and b = |λ2|−1, respectively.
By Lemma 5.3.5(a), we have πB

+−(|λ2|−1) = |λ2|−1 = λ−1
1 . Hence, the unsta-

ble separatrix γu−
+ of e+ coincides with the stable separatrix γs+

− of e−, and γs−
+

coincides with γu+
− . This forms a heteroclinic cycle Δ to the singular points e+

and e−.
Note that the Poincaré map πA

++ is the identity in [0, |λ2|−1), see Lemma
5.3.5(b.2). Hence, the return map π = πA

++ ◦ πA
++ is the identity in [0, |λ2|−1).

Therefore, the annular region ΣΔ \ 0 is formed by periodic orbits. �

5.3.5 Phase portraits

We recall that if the compactified flow of a fundamental system has no singular
points contained in the manifold at infinity ∂D, then we denote by∞ the periodic
orbit contained in ∂D.

Define on the plane ΠD,0 the half-line

HeL|D,0 := {(t, d) : t = 0 and d < 0} .

By Proposition 5.2.8(c), HeL|D,0 is the limit of the differentiable curve HeL|D,T

when T tends to 0.

Proposition 5.3.9. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, and (t, d) ∈ H∞. Then:

(a) The separatrices of the system are:

(a.1) the singular point at the origin 0, which is a center, and

(a.2) the periodic orbit at infinity ∞.

(b) The canonical region is Σ∞ \ 0 and is formed by periodic orbits.

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.
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Proof. Statements (a) and (b) are a consequence of Propositions 5.3.2(a), 5.2.2(a)
and 5.3.7.

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.3.10. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, and (t, d) ∈ C21 . Then:
(a) The separatrices of the system are:

(a.1) the singular point at the origin 0 which is a center;

(a.2) the limit cycle at infinity ∞, and the outside asymptotically unstable
limit cycle ΓM such that 0 ∈ ΣΓM .

(b) The canonical regions are: Σ∞ \Cl(ΣΓM ) = Wu(ΓM )∩W s(∞), and ΣΓM \0
formed by periodic orbits.

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(a), 5.2.2(a), 5.3.3(a) and 5.3.4(a).

(b) By Proposition 5.3.3, any Jordan curve formed by solutions is contained
in Cl(ΣΓM )\0 and is a periodic orbit. Thus, from the Poincaré–BendixsonTheorem
it follows that the α- and ω-limit sets of the orbits in Σ∞\Cl(ΣΓM ) are the outside
asymptotically unstable limit cycle ΓM and the limit cycle at infinity ∞. Hence,
Σ∞ \ Cl(ΣΓM ) = Wu(ΓM ) ∩W s(∞).

The behaviour of the flow in ΣΓM \ 0 is a consequence of Proposition 5.3.3.
Statement (c) follows from Theorem 2.6.9. �

Proposition 5.3.11. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, (t, d) ∈ SN∞, and t > 0. Then:

(a) The separatrices of the system are:

(a.1) the singular point at the origin 0 which is a center, the saddle-node
points at infinity x+, x−, which have their stable hyperbolic manifold
contained in Σ∞, and their central manifold contained in ∂D;

(a.2) the outside asymptotically unstable limit cycle ΓM which satisfies that
0 ∈ ΣΓM ;

(a.3) the separatrices of the singular points x+, x−.

(b) The canonical regions are: the annular region ΣΓM \ 0 formed by periodic
orbits, Σ0+

∞ ⊂Wu(ΓM ) ∩W s(x+), and Σ0−
∞ ⊂Wu(ΓM ) ∩W s(x−).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.
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Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(a), 5.2.2(c), 5.3.3(a) and 5.3.4(a).

(b) The behaviour of the flow in the annular region ΣΓM \0 is a consequence
of Proposition 5.3.3(a).

By Proposition 5.3.4(a), Σ∞ \Cl(ΣΓM ) ⊂Wu(ΓM ). Since the stable separa-
trices γs

+ and γs
− of the singular points at infinity x+ and x− are contained in Σ∞,

it follows that α(γs
+) = α(γs

−) = ΓM . Hence, γs
+ and γs

− split Σ∞ \ Cl(ΣΓM ) into
two open, connected, and invariant regions denoted by Σ0+∞ and Σ0−∞ . It is easy to
conclude that Σ0+

∞ ⊂ W s(x+) and Σ0−
∞ ⊂ W s(x−), for more details see the proof

of Proposition 5.2.17(b).
Statement (c) follows from Theorem 2.6.9. �

Proposition 5.3.12. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, (t, d) ∈ C11 ∪ N , and t > 0. Then:

(a) The separatrices of the system are:

(a.1) the singular point at the origin 0 which is a center, the asymptotically
stable nodes at infinity x+, x−, and the saddle points at infinity y+,
y−, which have their unstable manifold contained in ∂D;

(a.2) the outside asymptotically unstable limit cycle ΓM which satisfies that
0 ∈ ΣΓM ;

(a.3) the separatrices of the saddle points y+ and y−.

(b) The canonical regions are: the annular region ΣΓM \ 0 formed by periodic
orbits, Σ0+

∞ = Wu(ΓM ) ∩W s(x+), and Σ0−
∞ = Wu(ΓM ) ∩W s(x−).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(a), 5.2.2(d), 5.3.3 and 5.3.4(a).

(b) By Proposition 5.3.4(a), Σ∞ \ Cl(ΣΓM ) ⊂ Wu(ΓM ). Then the stable
separatrices γs

+ and γs
− of y+ and y− satisfy that α(γs

+) = α(γs
−) = ΓM . Hence,

the orbits γs
+ and γs

− split Σ∞ \Cl(ΣΓM ) into two open, connected, and invariant
regions denoted by Σ0+∞ and Σ0−∞ . Let Σ0+∞ be the region containing the point x+

in its boundary. By the Poincaré–Bendixson Theorem, the α- and ω-limit sets
contained in Cl(Σ0+

∞ ) are: the asymptotically stable node x+, the saddle points
y+, y−, and the limit cycle ΓM . Therefore, Σ0+

∞ ⊂Wu(ΓM )∩W s(x+). Moreover,
if γ ⊂ Wu(ΓM ), then either γ ⊂ Σ0+

∞ , or γ ⊂ Σ0−
∞ , or γ is one of the separatrices

γs
+ and γs−.

The behaviour of the flow in ΣΓM \0 is a consequence of Proposition 5.3.3(a).
Statement (c) follows from Theorem 2.6.9. �

Proposition 5.3.13. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0 and (t, d) ∈ C4. Then:
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(a) The separatrices of the system are:

(a.1) the singular point at the origin 0 which is a center, the saddle points
e+, e−, the asymptotically stable nodes at infinity x+, x− ∈ ∂D, and
the asymptotically unstable nodes at infinity y+, y− ∈ ∂D;

(a.2) the outside asymptotically unstable limit cycle ΓM , which satisfies that
0 ∈ ΣΓM ;

(a.3) the separatrices of the singular points e+ and e−.

(b) The canonical regions are: the annular region ΣΓM \ 0 formed by periodic
orbits, Σ++

∞ ⊂ Wu(y+) ∩ W s(x+), Σ+−
∞ ⊂ Wu(y+) ∩ W s(x−), Σ0+

∞ =
Wu(ΓM )∩W s(x+), Σ

0−∞ = Wu(ΓM )∩W s(x−), Σ−+∞ ⊂Wu(y−)∩W s(x+),
and Σ−−

∞ ⊂Wu(y−) ∩W s(x−).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(a), 5.2.2(d), 5.3.3 and 5.3.6(a).

(b) By Proposition 5.3.3, the system has no Jordan curves formed by solu-
tions. Since x+, x−, y+, and y− are nodes, it is easy to conclude that there are
no separatrix cycles having their singular points contained in ∂D. Thus, by the
Poincaré–Bendixson Theorem, the α- and ω-limit sets in D \ΣΓM are the singular
points at infinity, x+, x−, y+, and y−, and the limit cycle ΓM . The statement
follows by using arguments similar to those in the proof of Proposition 5.2.19(b).
The behaviour of the flow in ΣΓM \ 0 is a consequence of Proposition 5.3.3(a).

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.3.14. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0 and (t, d) ∈ HeL|D,0. Then:

(a) The separatrices of the system are:

(a.1) the singular point at the origin 0 which is a center, the saddle points
e+, e−, the asymptotically stable nodes at infinity x+, x−, and the
asymptotically unstable nodes at infinity y+, y−;

(a.2) the separatrices of the saddle points e+ and e−, which form a hetero-
clinic cycle Δ such that 0 ∈ ΣΔ, and the separatrices of the singular
points at infinity which are contained in ∂D.

(b) The canonical regions are: the annular region ΣΔ\0 formed by periodic orbits,
Σ++∞ ⊂ Wu(y+) ∩W s(x+), Σ

+−∞ ⊂ Wu(y+) ∩W s(x−), Σ−−∞ ⊂ Wu(y−) ∩
W s(x−), and Σ−+

∞ ⊂Wu(y−) ∩W s(x+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.
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Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(b), 5.2.2(d) and 5.3.8.

(b) The behaviour of the flow in ΣΔ \0 is a consequence of Proposition 5.3.8.
The behaviour of the flow in Σ∞ \ Cl(ΣΔ) follows by using arguments similar to
those used in the proof of Proposition 5.2.20(d).

Statement (c) follows from Theorem 2.6.9. �
Proposition 5.3.15. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, and (t, d) ∈ C3. Then:
(a) The separatrices of the system are:

(a.1) the singular point at the origin 0 which is a center, the saddle points
e+, e−, the asymptotically stable nodes at infinity x+, x−, and the
asymptotically unstable nodes at infinity y+, y−;

(a.2) the outside asymptotically stable limit cycle ΓM , which satisfies 0 ∈
ΣΓM ;

(a.3) the separatrices of the saddle points e+, e−, and the separatrices of the
singular points at infinity which are contained in ∂D.

(b) The canonical regions are: the annular region ΣΓM \ 0 is formed by peri-
odic orbits, Σ++

∞ ⊂ Wu(y+) ∩W s(x+), Σ
+0
∞ = Wu(y+) ∩W s(ΓM ), Σ+−

∞ ⊂
Wu(y+)∩W s(x−), Σ−−

∞ ⊂Wu(y−) ∩W s(x−), Σ−0
∞ = Wu(y−) ∩W s(ΓM ),

and Σ−+∞ ⊂Wu(y−) ∩W s(x+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(b), 5.2.2(d), 5.3.3 and 5.3.6(b).

(b) The behaviour of the flow in ΣΓM \ 0 follows from Proposition 5.3.3(a).
The behaviour of the flow in Σ∞ \Cl(ΣΓM ) follows by using similar arguments to
those in the proof of Proposition 5.2.21(c). We note that the role played there by
the singular point at the origin is played here by the limit cycle ΓM .

Statement (c) follows from Theorem 2.6.9. �
Proposition 5.3.16. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, (t, d) ∈ C22 ∪ N , and t < 0. Then:

(a) The separatrices of the system are:

(a.1) the singular point at the origin 0, which is a center, the saddle points
at infinity x+, x−, which have the stable manifold contained in ∂D, and
the asymptotically unstable nodes at infinity y+, y−;

(a.2) the outside asymptotically stable limit cycle ΓM , which satisfies that
0 ∈ ΣΓM ;

(a.3) the separatrices of the saddle points x+ and x−.



228 Chapter 5. Phase portraits

(b) The canonical regions are: the annular region ΣΓM \ 0 formed by periodic
orbits, Σ+0

∞ = Wu(y+) ∩W s(ΓM ), and Σ−0
∞ = Wu(y−) ∩W s(ΓM ).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(a), 5.2.2(c), 5.3.3 and 5.3.4(b).

(c) The behaviour of the flow in ΣΓM \ 0 is a consequence of Proposition
5.3.3(a). The behaviour of the flow in Σ∞ \ Cl(ΣΓM ) follows by using arguments
similar to those in the proof of Proposition 5.2.22(c). We note that the role played
there by the singular point at the origin is played here by the limit cycle ΓM .

Statement (c) follows from Theorem 2.6.9. �
Proposition 5.3.17. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, (t, d) ∈ SN∞, and t < 0. Then:

(a) The separatrices of the system are:

(a.1) the singular point at the origin 0, which is a center, the saddle-nodes
at infinity x+, x− ∈ ∂D, which have their unstable hyperbolic manifold
contained in Σ∞, and their center manifold contained in ∂D;

(a.2) the outside asymptotically stable periodic orbit ΓM , which satisfies that
0 ∈ ΣΓM ;

(a.3) the separatrices of the saddle-nodes at infinity x+ and x−.

(b) The canonical regions are: the annular region ΣΓM \ 0 formed by periodic
orbits, Σ+0

∞ = Wu(x+) ∩W s(ΓM ), and Σ−0
∞ = Wu(x−) ∩W s(ΓM ).

(c) The phase portrait of the Poincaré map is topologically equivalent to its cor-
respondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(a), 5.2.2(c), 5.3.3 and 5.3.4(b).

(c) The behaviour of the flow in ΣΓM \ 0 is a consequence of Proposition
5.3.3(a). The behaviour of the flow in Σ∞ \ Cl(ΣΓM ) follows by using similar
arguments to those used in the proof of Proposition 5.2.23(c). We note that the
role played there by the singular point 0 is played here by the periodic orbit ΓM .

Statement (c) follows from Theorem 2.6.9. �
Proposition 5.3.18. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, and (t, d) ∈ C12 . Then:
(a) The separatrices of the system are:

(a.1) the singular point at the origin 0, which is a center;

(a.2) the limit cycle at infinity ∞, and the outside asymptotically stable peri-
odic orbit ΓM , which satisfies that 0 ∈ ΣΓM .
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(b) The canonical regions are: the annular region ΣΓM \ 0 formed by periodic
orbits, and Σ∞ \ Cl(ΣΓM ) = Wu(∞) ∩W s(ΓM ).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.3.2(a), 5.2.2(a), 5.3.3 and 5.3.4(b).

(b) The behaviour of the flow in ΣΓM \ 0 and Σ∞ \ Cl(ΣΓM ) follows from
Propositions 5.3.3(a) and 5.3.3, respectively.

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.3.19. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0, T = 0, and (t, d) ∈ O. Then:

(a) The separatrices of the system are:

(a.1) the singular point at the origin 0, which is a center, and the singular
points at infinity x+, x−, which satisfy that a neighbourhood of each of
them is a hyperbolic sector with the separatrices contained in ∂D;

(a.2) the separatrices of the singular points at infinity x+ and x−.

(b) The unique canonical region is Σ∞ \ 0 formed by periodic orbits.

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.8.

Proof. (a) The existence of these separatrices is a consequence of Proposition
5.3.2(a) and 5.2.2(c).

(b) The behaviour of the flow in Σ∞ \ 0 follows from Proposition 5.3.7.

Statement (c) follows from Theorem 2.6.9. �

5.3.6 The bifurcation set

In Subsection 5.3.5 we have described the phase portrait of the Poincaré compact-
ification of a fundamental system with parameters D > 0 and T = 0 as depending
on the parameters t and d. We have summarized all descriptions in Figure 5.8.
From this and from Subsection 5.2.6 we conclude that in this case the bifurcation
set is formed by the half-lines H∞ and HeL|D,0, the differentiable curve SN∞,
and the straight line N . The phase portrait of the compactified flow exhibits a
Hopf bifurcation at infinity on the straight line H∞, a saddle-node bifurcation at
infinity on the curve SN∞, a pitchfork bifurcation at infinity on the straight line
N , and a homoclinic bifurcation on the curve HeL|D,0.
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Figure 5.8: Phase portraits and the bifurcation set of the Poincaré compactification
of fundamental systems with parameters D > 0 and T = 0.
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5.4 The case D > 0 and T > 0

Consider a fundamental system ẋ(s) = f(x(s)) with parameters (D,T, d, t),D > 0,
and T > 0, where f(x) = Ax+ ϕ(kTx)b. Let ẋ = fD(x) be its Poincaré compact-
ification. The change of the time variable τ = −s transforms the system in the
new fundamental system x′(τ) = A∗x(τ) + ϕ(kTx(τ))b∗, with fundamental pa-
rameters (D,T ∗, d, t∗), T ∗ = −T < 0, and t∗ = −t, see Proposition 3.7.1, where ′

denotes the derivative with respect to τ , A∗ = −A, and b∗ = −b. The Poincaré
compactification of the new system satisfies x′ = −fD(x(−τ)), see Proposition
3.10.1(b), and has the same orbits as ẋ(s) = fD(x(s)), but with the opposite
orientation. Therefore we will describe the phase portraits of the compactified
system ẋ(s) = fD(x(s)) by using the phase portraits of the compactified systems
x′ = −fD(x(−τ)) described in Subsection 5.2.5. We will also describe the bifurca-
tion set of the fundamental systems with parameters D > 0 and T > 0 by using
the bifurcation set in the case D > 0 and T ∗ < 0. In order to do that we define
the following regions of parameters in the plane ΠD,T , with D > 0 and T > 0:

C13
∣∣
D,T

:=
{
(t, d) : (−t, d) ∈ C24

∣∣
D,T∗

}
,

C23
∣∣
D,T

:=
{
(t, d) : (−t, d) ∈ C14

∣∣
D,T∗

}
,

the curve
HeL|D,T :=

{
(t, d) : (−t, d) ∈ HeL|D,T∗

}
,

and the points

VB1|D,T :=
{
(t, d) : (−t, d) ∈ VB1|D,T∗

}
,

VB2|D,T :=
{
(t, d) : (−t, d) ∈ VB2|D,T∗

}
.

Note that these sets are the transformed versions of the sets defined in (5.1), (5.2)
and (5.7).

Proposition 5.4.1. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D > 0 and T > 0, and fundamental matrices (A,B).

(a) If (t, d) ∈ H∞ ∪ C21 , then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.9.

(b) If either (t, d) ∈ SN∞ \ {VB1|D,T , VB2|D,T } with t > 0, or the parameters
(t, d) ∈ {VB1|D,T , VB2|D,T }, and the real Jordan normal form of the matrix
A is non-diagonal, then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.9.

(c) If (t, d) ∈ {VB1|D,T , VB2|D,T } and the real Jordan normal form of the ma-
trix A is diagonal, then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.9.
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(d) If (t, d) ∈ C11 ∪N and t > 0, then the phase portrait of the Poincaré compact-
ification is topologically equivalent to its correspondent in Figure 5.9.

(e) If (t, d) ∈ C23
∣∣
D,T

∪ C4 ∪ {(0, d) ∈ ΠD,T : d < 0}, then the phase portrait of

the Poincaré compactification is topologically equivalent to its correspondent
in Figure 5.9.

(f) If (t, d) ∈ HeL|D,T , then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.9.

(g) If (t, d) ∈ C13
∣∣
D,T

, then the phase portrait of the Poincaré compactification is

topologically equivalent to its correspondent in Figure 5.9.

(h) If (t, d) ∈ C22 ∪N and t < 0, then the phase portrait of the Poincaré compact-
ification is topologically equivalent to its correspondent in Figure 5.9.

(i) If (t, d) ∈ SN∞ and t < 0, then the phase portrait of the Poincaré compact-
ification is topologically equivalent to its correspondent in Figure 5.9.

(j) If (t, d) ∈ C12 , then the phase portrait of the Poincaré compactification is
topologically equivalent to its correspondent in Figure 5.9.

(k) If (t, d) ∈ O, then the phase portrait of the Poincaré compactification is
topologically equivalent to its correspondent in Figure 5.9.

Proof. All statements follow by reversing the time and applying the correspondig
proposition of Subsection 5.2.5. �

5.4.1 The bifurcation set

By Theorem 5.4.1 and Figure 5.9, the half-line H∞, the differentiable curve SN∞,
the straight line N , and the differentiable curve HeL|D,T correspond to a Hopf
bifurcation at infinity, a saddle-node bifurcation at infinity, a pitchfork bifurca-
tion at infinity, and a homoclinic bifurcation, respectively. For more details, see
Subsection 5.2.6.

5.5 The case D < 0 and T < 0

In this section we describe the phase portraits of the Poincaré compactification of
fundamental systems

ẋ = Ax+ ϕ
(
kTx

)
b,

with parameters (D,T, d, t), D < 0, T < 0, and (t, d) ∈ ΠD,T . The dynamical
richness of this case is due to the potential co-existence of different kinds of Jordan
curves formed by solutions.

We start by searching in the parameter plane ΠD,T for the regions where the
system is proper.
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Figure 5.9: Phase portraits and the bifurcation set of the Poincaré compactification
of fundamental systems with parameters D > 0 and T > 0.
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5.5.1 Proper fundamental systems

Assume that D < 0 and T < 0. We recall that fundamental systems with pa-
rameters (t, d) /∈ W |D,T are proper, see Theorem 4.7.6. Note that systems with
parameters (t, d) contained in the set W1|D,T ∩ W2|D,T (that is, t = T and
d = D) are not proper. In Figure 5.10 we represent the straight lines W1|D,T

and W2|D,T for the parameters D < 0 and T < 0. Finally, observe that for
(t, d) ∈ W |D,T = W1|D,T ∪ W2|D,T proper and non-proper fundamental systems
may co-exist.

W2jD;T

d

t
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k2 = 0

¡
2¤1;¤

2
1

¢

¡
2¤2;¤

2
2

¢

(T;D)
t
2 ¡ 4d

=
0

W1jD;T

Figure 5.10: Straight lines W1|D,T and W2|D,T for the parameters D < 0 and
T < 0.

By Lemmas 4.7.2(c) and (d), when t2 − 4d = 0 and the parameters (t, d) do
not belong to VB1|D,T ∪ VB2|D,T , the real Jordan normal form of the fundamen-
tal matrix A is non-diagonal. Moreover, when (t, d) ∈ VB1|D,T ∪ VB2|D,T , the
fundamental parameters do not determine whether the real Jordan normal form
of the matrix A is diagonal or not.

5.5.2 Singular points

The following result is a consequence of Theorem 3.9.3. Note that it does not
depend on the parameter T .

Proposition 5.5.1. Consider a fundamental system with parameter D < 0.

(a) If d > 0, then the system has exactly three singular points: a hyperbolic saddle
at the origin 0, and the points e+ ∈ S+ and e− ∈ S−. If t = 0, then e+
and e− are centers. Otherwise, they are hyperbolic and asymptotically stable
(when t < 0) or unstable (when t > 0).

(b) If d ≤ 0, then the system has exactly one hyperbolic saddle at the origin 0.
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5.5.3 Behaviour at infinity

The following proposition does not depend on the parameter T .

Proposition 5.5.2. Consider a fundamental system with parameter D < 0 and
fundamental matrices (A,B). Suppose that the matrix A is in real Jordan form.

(a) If t2 − 4d < 0, then the system has a periodic orbit at infinity ∞.

(b) If t2 − 4d = 0 and A is diagonal, then any point on ∂D \ {±k⊥/‖k‖} is a
stable normally hyperbolic singular point when t > 0, and a unstable normally
hyperbolic singular point when t < 0. The local phase portrait of ±k⊥/‖k‖
is topologically equivalent to its correspondent in Figure 5.11(a) when t > 0,
and in Figure 5.11(b) when t < 0.

(c) If t2 − 4d = 0 and A is non-diagonal, then there exist exactly two singular
points at infinity, x+ ∈ ∂D+ and x− ∈ ∂D−. If t > 0, then x+ and x− are
saddle-nodes with stable hyperbolic manifolds. Moreover, the center manifolds
are contained in ∂D. If t = 0, then a neighbourhood of the singular points x+

and x− is an elliptic sector. If t < 0, then x+ and x− are saddle-nodes with
unstable hyperbolic manifolds. The center manifolds are contained in ∂D.

(d) If t2 − 4d > 0, then the system has four singular points at infinity, x+,
y+ ∈ ∂D+, x−, y− ∈ ∂D−. If d ≤ 0, then x+ and x− are asymptotically
stable nodes, and y+ and y− are asymptotically unstable nodes. If d > 0,
t > 0 and k2 �= 0, then x+ and x− are asymptotically stable nodes, and y+

and y− are saddle points with the unstable manifolds contained in ∂D. If
d > 0, t > 0 and k2 = 0, then x+ and x− are asymptotically stable nodes,
and the local phase portraits of y+ and y− are topologically equivalent to
their correspondents in Figure 5.11(c). If d > 0, t < 0 and k1 �= 0, then
x+ and x− are saddle points with the stable manifolds contained in ∂D, and
y+ and y− are asymptotically unstable nodes. If d > 0, t < 0 and k1 = 0,
then the local phase portraits of x+ and x− are topologically equivalent to
their correspondents in Figure 5.11(d), and y+ and y− are asymptotically
unstable nodes.

Proof. Statement (a) is a consequence of Theorem 3.11.1(a).
(b) Since t2−4d = 0 and the matrix A is diagonal, the manifold at infinity ∂D

is formed by singular points, see Theorem 3.11.1(c). Moreover, (t, d) ∈ FA
0

∣∣
D,T

=

VB1|D,T ∪ VB2|D,T , see Lemma 4.7.2(c), which implies that either t = 2Λ1 > 0

or t = 2Λ2 < 0. The local phase portrait of ±k⊥/‖k‖ follows from Theorem
3.11.9(e). The local phase portraits of the remaining points are as described in
Theorem 3.11.5(a).

(c) By Theorem 3.11.1(b), the system has two singular points at infinity. We
denote by x+ the singular point contained in ∂D+ and by x− the singular point
contained in ∂D−. The statement is a consequence of Theorems 3.11.6(a), (b) and
3.11.10(e).
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(a) (b)

(c) (d)

Figure 5.11: Singular points at infinity when D < 0, t2 − 4d = 0 (a) and (b), or
t2 − 4d > 0 (c) and (d).

(d) By Theorem 3.11.1(b), the system has four singular points at infinity.
We denote by x+, y+ the singular points contained in ∂D+ and by x−, y− the
singular points contained in ∂D−.

When d ≤ 0, the local phase portraits of x+ and x− are as described in
Theorems 3.11.7(c) and 3.11.11(f.1). The local phase portraits of y+ and y− are
as described in Theorems 3.11.8(c) and 3.11.12(f.1).

When d > 0 and t > 0, the local phase portraits of x+ and x− are as
described in Theorems 3.11.7(a) and 3.11.11(f.1). If k2 �= 0, then the local phase
portraits of y+ and y− are as described in Theorem 3.11.8(a). If k2 = 0, then the
local phase portraits of y+ and y− are as described in from Theorem 3.11.12(f.2).

When d > 0 and t < 0, the local phase portraits of y+ and y− are as
described in Theorems 3.11.8(b) and 3.11.12(f.1). If k1 �= 0, then the local phase
portraits of x+ and x− are as described in Theorem 3.11.7(b). If k1 = 0, then the
local phase portraits of x+ and x− are as described in Theorem 3.11.11(f.2). �

Following Proposition 5.5.2, in Figure 5.12 we display the behaviour of the
flow in a neighbourhood of ∂D. Note that when t2−4d < 0, there exists a periodic
orbit at infinity. At this time we cannot decide the stability of this periodic orbit.
Moreover, it is not clear the behaviour at infinity when (t, d) ∈ VB1|D,T and
(t, d) ∈ VB2|D,T .

5.5.4 Periodic orbits

First we locate the parameter region in the plane ΠD,T which contains all the
fundamental systems having Jordan curves formed by solutions.
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Figure 5.12: Behaviour at infinity when D < 0.
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Proposition 5.5.3. Consider a fundamental system with parameters D < 0 and
T < 0.

(a) If t < 0 or t = 0 and d ≤ 0, then the system has no Jordan curves formed by
solutions.

(b) If t = 0 and d > 0, then there exist two periodic orbits Φ+ ⊂ S+ ∪ L+ and
Φ− ⊂ S− ∪ L− such that the annular regions Cl(ΣΦ+) \ e+ and Cl(ΣΦ−) \
e− are foliated by periodic orbits. Moreover, any Jordan curve formed by
solutions is contained in one of these annular regions.

(c) If t > 0 and Γ is a Jordan curve formed by solutions, then Γ ∩ S0 �= ∅ and
Γ ∩ (S+ ∪ S−) �= ∅.

Proof. (a) Suppose that t < 0. Under this assumption the statement follows from
Theorem 3.12.2(a). Suppose that t = 0 and d ≤ 0, and let Γ be a Jordan curve
formed by solutions. By Theorem 3.12.2(c), either Γ ⊂ S+ ∪L+, or Γ ⊂ S− ∪L−.
This contradicts the fact that the systems in the half-planes S+∪L+ and S−∪L−
are linear systems with determinant d ≤ 0.

(b) Suppose that t = 0 and d > 0. Then (t, d) �∈ W |D,T , which implies that
the system is proper. Let p+ be the contact point of the flow with L+ and let
Φ+ be the orbit through p+. By Proposition 4.2.10, the orbit Φ+ is contained in
S+ ∪ L+. Therefore, Φ+ is a periodic orbit with e+ ∈ ΣΦ+ . Since e+ is a center,
the region ΣΦ+ is formed by periodic orbits. By the symmetry of the flow with
respect to the origin, there exists a periodic orbit Φ− through the contact point
p− = −p+. Moreover, Φ− ⊂ S− ∪L−, e− ∈ ΣΦ− , and Cl(ΣΦ−) \ e− is an annular
region foliated by periodic orbits, see Figure 5.13. Since any Jordan curve formed
by solutions Γ is contained in either S+ ∪L+ or S− ∪L−, we conclude that either
Γ ⊂ Cl(ΣΦ+) \ e+ or Γ ⊂ Cl(ΣΦ−) \ e−.

Statement (c) follows from Theorem 3.12.2(b). �

p+

p¡

©+

©¡

L+

L¡

Figure 5.13: Periodic orbits Φ+ and Φ−, and the annular regions of periodic orbits
when D < 0, T < 0, d > 0, and t = 0.
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From Proposition 5.5.3 we obtain that only fundamental systems with pa-
rameters t > 0, or t = 0 and d > 0, can exhibit Jordan curves Γ formed by
solutions. Moreover, when t > 0 the Jordan curve Γ intersects L+ and/or L−. In
this case there exists a contact point of the flow with the straight lines L+ and
L−, and hence the return map π is defined, see Theorem 4.6.1(a).

In the next lemma we summarize the information about the return map π
and the Poincaré maps π̃A

++, π
B
++ and πB

+−.

Lemma 5.5.4. Consider a fundamental system with fundamental matrices (A,B)
and parameters D < 0 and T ≤ 0. Let Λ1 > 0 > Λ2 be the eigenvalues of the
matrix B.

(a) The return map π is defined. Its behaviour is not trivial if and only if t2−4d <
0. In this case

π (a) =

{ (
π̃A
++ ◦ πB

++

)
(a) , if a ∈ [0,Λ−1

1 ),(
π̃A
++ ◦ πB

+−
)2

(a) , if a ∈ (Λ−1
1 ,+∞) .

(b) If T = 0 and the Poincaré maps πB
++ and πB

+− are defined, then πB
++ :

[0,Λ−1
1 )→ [0, |Λ2|−1), πB

+− : (Λ−1
1 ,+∞)→ (|Λ2|−1,+∞), and they are iden-

tity maps.

(c) If T < 0 and the Poincaré map πB
++ is defined, then:

(c.1) πB
++ : [0,Λ−1

1 ) → [0, |Λ2|−1), πB
++(0) = 0, πB

++(a) < a in (0,Λ−1
1 ), and

lim
a↗Λ−1

1

πB
++(a) = |Λ2|−1;

(c.2) if a∈(0,Λ−1
1 ), then 0<(πB

++)
′(a)<1, lim

a↘0
(πB

++)
′(a)=1, lim

a↗Λ−1
1

(πB
++)

′(a)

= 0, and (πB
++)

′′(a) < 0;

(c.3) the straight line b = |Λ2|−1 is a horizontal asymptote of the graph of
πB
++.

(d) If T < 0 and the Poincaré map πB
+− is defined, then:

(d.1) πB
+− : (Λ−1

1 ,+∞) → (|Λ2|−1,+∞), πB
+−(a) < a, lim

a↘Λ−1
1

πB
+−(a) =

|Λ2|−1, and lim
a↗+∞

πB
+−(a) = +∞;

(d.2) if a ∈ (Λ−1
1 ,+∞), then (πB

+−)′(a) < 1, lim
a↘Λ−1

1

dπB
+−(a)/da = 0,

lim
a↗+∞

(πB
+−)′(a) = 1, and (πB

+−)′′(a) > 0;

(d.3) the straight line b = a + 2T/D is an asymptote of the graph of πB
+−.

Moreover, πB
+−(a) > a+ 2T/D for every a ∈ (Λ−1

1 ,+∞).

(e) If t = 0 and the Poincaré map π̃A
++ is defined, then π̃A

++ coincides with the
identity in the interval [0,+∞).
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(f) If t > 0 and the Poincaré map π̃A
++ is defined, then:

(f.1) there exists a value b∗ > 0 such that π̃A
++ : [0,+∞) → [b∗,+∞),

π̃A
++(a) > a in (0,+∞), and π̃A

++(0) = b∗;

(f.2) (π̃A
++)

′(a) > 0, lim
a↘0

(π̃A
++)

′(a) = 0, and (π̃A
++)

′′(a) > 0;

(f.3) the straight line b = eγπa+ t(1+ eγπ)/d is an asymptote of the graph of
π̃A
++, where γ = t/

√
4d− t2. Moreover, π̃A

++(a) > eγπa + t(1 + eγπ)/d
in [0,+∞).

Proof. (a) Suppose that t2 − 4d < 0. Thus (t, d) �∈ W |D,T , see Lemma 4.7.3(a),
and the system is proper. From this we conclude that the return map π is defined.
The expression of π is a consequence of Theorem 4.6.1(d). Thus, if π is defined
and is non-trivial, then from Theorem 4.6.1(d) it follows that t2 − 4d < 0.

The remaining statements except (d.3) and (f.3) follow from Corollary 4.4.16,
4.4.19 and Propositions 4.5.7, 4.4.15 and 4.4.18.

(d.3) Define the auxiliary function ψ(a) = πB
+−(a)−a− 2T/D in the interval

(Λ−1
1 ,+∞). From statement (d.2) it follows that ψ′(a) < 0, i.e., ψ(a) is strictly

decreasing in (Λ−1
1 ,+∞). On the other hand, since b = a + 2T/D is the asymp-

tote of the graph of πB
+−, we get that lim

a↗+∞
ψ(a) = 0. Therefore, ψ(a) > 0 in

(Λ−1
1 ,+∞).

(f.3) Define ψ(a) = π̃A
++(a)− eγπa− t(1 + eγπ)/d in [0,+∞). Since ψ′(a) =

(π̃A
++)

′(a) − eγπ and ψ′′(a) = (π̃A
++)

′′(a), statement (f.2) implies that ψ′′(a) > 0,
i.e., ψ′(a) is strictly increasing. On the other hand, since the straight line b =
eγπa+t(1+eγπ)/d is an asymptote of the graph of π̃A

++, we get that lim
a↗+∞

ψ′(a) = 0

and lim
a↗+∞

ψ(a) = 0. Therefore, ψ′(a) < 0 and ψ(a) > 0 in [0,+∞). �

The return map π is defined only when t2 − 4d < 0, see Lemma 5.5.4(a).
Therefore, {(t, d) ∈ ΠD,T : t2 − 4d ≤ 0 and t ≥ 0} is the parameter region in the
plane ΠD,T which contains the fundamental systems with Jordan curves formed
by solutions. From this we obtain the following proposition.

Proposition 5.5.5. Fundamental systems with parameters D < 0, T < 0, t > 0,
and t2 − 4d ≥ 0 have no Jordan curves formed by solutions.

In Proposition 5.5.3(b) we have proved that when t = 0 and d > 0, there
exist two periodic orbits Φ+ and Φ− such that the annular regions Cl(ΣΦ+)\{e+}
and Cl(ΣΦ−) \ {e−} contain all of the Jordan curves formed by solutions. These
Jordan curves are periodic orbits. Using the return map π described in Lemma
5.5.4 we study the local phase portraits of Φ+ and Φ−.

Proposition 5.5.6. Consider a fundamental system with parameters D < 0, T < 0,
d > 0, and t = 0. Then the periodic orbits Φ+ and Φ− are non-hyperbolic and they
are outside asymptotically stable.
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Proof. Since t2−4d < 0, the Poincaré maps π̃A
++, π

B
++ and πB

+− and the return map

π are defined. Moreover, π = π̃A
++ ◦ πB

++ in [0,Λ−1
1 ), π(0) = 0, and 0 < π′(a) < 1,

see Lemma 5.5.4. Since Φ+ and Φ− intersect L+ and L−, respectively, at points
with coordinate a = 0, the result follows from Proposition 4.6.2. �

Lamerey map

As we have seen, only fundamental systems with parameters t ≥ 0 and t2−4d < 0
can exhibit Jordan curves formed by solutions. Moreover, when t = 0, the regions
Cl(ΣΦ+) and Cl(ΣΦ−) contain all Jordan curves formed by solutions, and the
periodic orbits Φ+ and Φ− are outside asymptotically stable.

Now we study the Jordan curves formed by solutions when the fundamental
parameters lie in C21 = {(t, d) : t > 0 and t2 − 4d < 0}. Note that in the following
result we also include the case T = 0, which we consider in the next section.

Lemma 5.5.7. Consider a fundamental system with parameters D < 0, T ≤ 0, and
(t, d) ∈ C21 .
(a) The Lamerey map

g (a) =

⎧⎪⎪⎨⎪⎪⎩
π̃A
++ (a)− π−B

++ (a) , if a ∈
[
0, |Λ2|−1

)
,

π̃A
++ (a)− Λ−1

1 , if a = |Λ2|−1
,

π̃A
++ (a)− π−B

+− (a) , if a ∈
(
|Λ2|−1 ,+∞

)
,

is defined and continuous in [0,+∞), and it satisfies that g ∈ C1((0,+∞))
and g ∈ Cω((0,∞) \ |Λ2|−1).

(b) The map g has a zero at a value a∗ �= |Λ2|−1 if and only if the system has
a periodic orbit Γ. In this case, the periodic orbit Γ intersects the straight
line L+ at the point of coordinate π̃A

++(a
∗). Moreover, if a∗ < |Λ2|−1, then

e+ ∈ ΣΓ and 0 �∈ ΣΓ; and if a∗ > |Λ2|−1, then {0, e+, e−} ⊂ ΣΓ.

(b.1) If g′(a∗) > 0, then Γ is an asymptotically unstable hyperbolic limit cycle.

(b.2) If g′(a∗) = 0 and there exists ε > 0 such that g′ < 0 in (a∗ − ε, a∗) and
g′ > 0 in (a∗, a∗ + ε), then Γ is a non-hyperbolic limit cycle which is
inside asymptotically stable and outside asymptotically unstable.

(b.3) If g′(a∗) = 0 and there exists ε > 0 such that g′ > 0 in (a∗ − ε, a∗) and
g′ < 0 in (a∗, a∗ + ε), then Γ is a non-hyperbolic limit cycle which is
inside asymptotically unstable and outside asymptotically stable.

(b.4) If g′(a∗) < 0, then Γ is an asymptotically stable hyperbolic limit cycle.

(c) The map g has a zero at the value |Λ2|−1 if and only if the system has two
homoclinic cycles Δ+ and Δ− to a common singular point at the origin 0.
Moreover, Δ = Δ+ ∪Δ− is a double homoclinic cycle.
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Proof. (a) Suppose that (t, d) ∈ C21 . By Lemma 5.5.4(a), the maps π̃A
++, π

B
++ and

πB
+− are defined. Since π̃A

++, π
B
++ and πB

+− are analytic functions, the Lamerey

map g is analytic in (0,−Λ−1
2 ) ∪ (−Λ−1

2 ,+∞). From Lemma 5.5.4(c.1)(d.1)(c.2)
and (d.2) it follows that g and g′ are continuous at |Λ2|−1.

(b) Consider the Lamerey map gB defined in (4.48). It is easy to check that
g is the extension of gB to the value |Λ2|−1. Thus, a∗ �= |Λ2|−1 is a zero of g if and
only if a∗ is a zero of gB. In this case, π̃A

++(a
∗) is a fixed point of the return map π.

Therefore, there exists a periodic orbit Γ intersecting L+ at π̃A
++(a

∗). Moreover,
when a∗ < |Λ2|−1, the return map in a neigbourhood of a∗ is given by π̃A

++ ◦πB
++.

Hence, e+ ∈ ΣΓ (see the definition of π̃A
++) and ΣΓ does not contain the origin

(see the definition of πB
++). Analogously, when a∗ > |Λ2|−1, the singular points

e+, e− and 0 are contained in ΣΓ.
(b.1) Suppose that a∗ ∈ [0, |Λ2|−1), g(a∗) = 0, and g′(a∗) > 0. Hence,

π̃A
++(a

∗) = π−B
++ (a∗) and (π̃A

++)
′(a∗) > (π−B

++ )′(a∗). From Lemma 5.5.4(a) it follows
that

dπ

da

∣∣∣∣
π̃A
++(a∗)

=
dπ̃A

++

da

∣∣∣∣
πB
++(π̃A

++(a∗))

dπB
++

da

∣∣∣∣
π̃A
++(a∗)

>
dπ−B

++

da

∣∣∣∣∣
πB
++(π̃A

++(a∗))

dπB
++

da

∣∣∣∣
π̃A
++(a∗)

= 1.

Therefore the limit cycle Γ is asymptoticaly unstable.
The statement follows by using similar arguments when we suppose that

a∗ ∈ (|Λ2|−1,+∞).
Statements (b.2), (b.3) and (b.4) follows in a similar way.
(c) Suppose that |Λ2|−1 is a zero of the Lamerey map g. Then π̃A

++(|Λ2|−1) =

Λ−1
1 . Since the stable and the unstable separatrices of the saddle at the origin inter-

sect L+ at the points with coordinates Λ−1
1 and |Λ2|−1

, respectively, see Corollary
4.4.17, we conclude that the two separatrices connect and they form a homoclinic
cycle. �

We now introduce the auxiliary functions

y (a) = eγπa+
t

d
(1 + eγπ) ,

where

γ =
t√

4d− t2
,

and

h (a) =

⎧⎪⎪⎨⎪⎪⎩
y (a)− π−B

++ (a) , if a ∈
[
0, |Λ2|−1

)
,

y (a)− Λ−1
1 , if a = |Λ2|−1

,

y (a)− π−B
+− (a) , if a ∈

(
|Λ2|−1

,+∞
)
.

(5.10)
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Note that y(a) is the asymptote of the graph of the Poincaré map π̃A
++, see Lemma

5.5.4 (f.3). Thus h is an approximation of the Lamerey map g. In the following
result we present some properties of the function h.

Lemma 5.5.8. Suppose that D > 0 and T < 0, and let g(a) and h(a) be the
functions defined in Lemma 5.5.7(a) and in (5.10). Then g(a) > h(a) in (0,+∞),
lim

a↗+∞
g(a)− h(a) = 0, g′(a) < h′(a) in [0,+∞), and lim

a↗+∞
g′(a)− h′(a) = 0.

Proof. From Lemma 5.5.4(f.3) we obtain that π̃A
++(a) > y(a), which implies that

g(a) > h(a). Moreover, since y(a) is an asymptote of the graph of the map π̃A
++(a),

it follows that lim
a↗+∞

g(a)− h(a) = 0 and lim
a↗+∞

g′(a)− h′(a) = 0.

On the other hand, since (π̃A
++)

′′(a) > 0 (see Lemma 5.5.4(f.3)), the function
(π̃A

++)
′(a) is strictly increasing in (0,+∞). From this we conclude that

dπ̃A
++

da
< lim

a↗+∞
dπ̃A

++

da
= lim

a↗+∞
y′ (a) = eγπ.

Since y(a) is a straight line, it follows that (π̃A
++)

′(a) < y′(a) in (0,+∞), and
therefore g′(a) < h′(a) in (0,+∞). �
Lemma 5.5.9. Suppose that D < 0 and T < 0, and let g be the map defined in
Lemma 5.5.7(a).

(a) If a1 is a zero of g in [0, |Λ2|−1], then g′ < 0 in [a1, |Λ2|−1]. Therefore, g has
at most one zero in [0, |Λ2|−1].

(b) The map g′ is strictly increasing in (|Λ2|−1,+∞) and there is a unique value
a∗ ∈ (|Λ2|−1,+∞) such that g′(a∗) = 0. Moreover, a∗ is a minimum of g in
(|Λ2|−1,+∞). Finally, lim

a↗+∞
g(a) = +∞.

(c) If a1 is a zero of g in [0, |Λ2|−1], then there exists exactly one zero a2 of g in
(|Λ2|−1,+∞) and g′(a2) > 0.

(d) If the map g has no zeros in [0, |Λ2|−1], then either g has two zeros, a1 < a2,
in (|Λ2|−1,+∞) which satisfy g′(a1) < 0 < g′(a2), or g has exactly one
zero in (|Λ2|−1,+∞) with multiplicity greater than 1, or g has no zeros in
(|Λ2|−1,+∞).

Proof. (a) Suppose that a1 is a zero of g in the interval [0, |Λ2|−1], and assume
that there exists ξ ∈ [a1, |Λ2|−1] such that g′(ξ) ≥ 0. Then h′(ξ) > 0, see Lemma
5.5.8. Since h′′(a) = −(π−B

++ )′′(a), it is easy to check that h′′(a) < 0 in (0, |Λ2|−1)
and h′′(|Λ2|−1) = 0, see Lemma 5.5.4(c). Thus h′ > 0 in (0, ξ]. Therefore, since
h(0) = t(1 + eγπ)/d > 0, we obtain that h > 0 in [0, ξ], which contradicts the fact
that h(a1) < g(a1) = 0. Then we conclude that g′(a) < 0 in [a1, |Λ2|−1].

(b) From Lemmas 5.5.4(d.2) and (f.2) it follows that

g′′ (a) =
d2π̃A

++

da2

∣∣∣∣
a

− d2π−B
+−

da2

∣∣∣∣∣
a

> 0
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in (|Λ2|−1,+∞). Thus, g′(a) is strictly increasing in (|Λ2|−1,+∞).
On the other hand, from Lemma 5.5.4, we conclude that lim

a↗|Λ2|−1
g′(a) = −∞

and lim
a↗+∞

g′(a) = eγπ − 1 > 0. Therefore, there exists a unique value a∗ in the

interval (|Λ2|−1,+∞) such that g′(a∗) = 0. Moreover, g takes its minimum value
at a∗.

Since the straight line b = a+2T/D is an asymptote of the graph of the map
πB
+−, see Lemma 5.5.4(d.3), we obtain that

lim
a↗+∞

h (a) = lim
a↗+∞

[
(eγπ − 1) a+

(
t

d
(1 + eγπ) + 2

T

D

)]
= +∞.

From Lemma 5.5.8 we conclude that lim
a↗+∞

g(a) = +∞.

(c) Suppose that a1 is a zero of the map g in the interval [0, |Λ2|−1]. By
statement (a), a1 is the unique zero in [0, |Λ2|−1], and g′ < 0 on [0, |Λ2|−1].
Thus g(|Λ2|−1) < 0. By statement (b), g is strictly increasing in the interval
(|Λ2|−1,+∞) and lim

a↗+∞
g(a) = +∞. Hence, there exists a unique zero a2 of g in

(|Λ2|−1,+∞).
(d) Since g(0) > 0 and there are no zeros of g in the interval (0, |Λ2|−1], it

follows that g > 0 in (0, |Λ2|−1]. By statement (b), there are three possibilities:
(i) the value of g at the minimum is negative, which implies that g has two zeros,
a1 ∈ (|Λ2|−1, a∗) and a2 ∈ (a∗,+∞); (ii) the value of g at the minimum is zero,
which implies that a∗ has multiplicity greater that 1; (iii) the value of g at the
minimum is positive, which implies that g > 0. �

In Lemma 5.5.9 we have summarized the possible qualitative behaviours of
the graph of the map g when the parameters (t, d) are in the region C21 . Each of
these possible graphs are drawn in Figure 5.14.

Now we will prove that the five possibilities depicted in Figure 5.14 can be
obtained by varying the parameters (t, d) in C21 . Specifically, we exhibit two differ-
entiable curves HoL|D,T and NHlc|D,T in C21 such that, if we take the parameters
in HoL|D,T , then the graph of the corresponding map g is the one sketched in
Figure 5.14(b); and if we take the parameters in NHlc|D,T , then the graph of the
corresponding map g is sketched in Figure 5.14(d). We will also prove that these
curves split C21 into three regions, and in each of these regions the graph of the
corresponding map g is equivalent to one of the graphs shown in Figure 5.14(a),
(c) and (e), respectively.

For a fixed value d0 > 0 we define the family of maps g(a, t) = g(a) and
π̃A
++(a, t) = π̃A

++(a), where 0 < t < 2
√
d0. Note that the Poincaré maps π−B

++ and

π−B
+− and the eigenvalues of the matrix B, denoted by Λ1 and Λ2, depend only on

the parameters T and D and they are fixed along this section.

Lemma 5.5.10. Suppose that D < 0, T < 0, and d0 > 0 and consider the family of
maps g(a, t) with 0 < t < 2

√
d0.
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(a) (b) (c)

(e)
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a1
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g (a)

(d)

Figure 5.14: The qualitative behaviour of the graph of the map g when (t, d) varies
in the parameter region C21 .

(a) Given a ∈ (0,+∞), lim
t↘0

g(a, t) < 0.

(b) There exists a value t(d0) in (0, 2
√
d0) such that g(a, t(d0)) > 0 in [0,+∞).

Moreover, lim
t↗2

√
d0

g(a, t) = +∞ uniformly in a.

(c) If a ∈ [0,+∞) and t ∈ (0, 2
√
d0), then ∂g/∂t|(a,t) > 0.

(d) Given a ∈ (0,+∞), there exists a value t(a, d0) in (0, 2
√
d0) with g(a, t(a, d0))

= 0.

Proof. (a) Since the Poincaré maps depend differentiably on the parameters, see
Lemma 4.3.5, it follows that the Poincaré map π̃A

++(a, t) and the map g are dif-
ferentiable in t. Thus lim

t↘0
π̃A
++(a, t) = π̃A

++(a, 0) for any a ∈ [0,+∞). On the other

hand, since the map π̃A
++(a, 0) is the identity, see Lemma 5.5.4(e), it follows that

lim
t↘0

π̃A
++(a, t) = a for any a ∈ [0,+∞). Therefore,

lim
t↘0

g (a, t) =

⎧⎪⎪⎨⎪⎪⎩
a− π−B

++ (a) , if a ∈
(
0, |Λ2|−1

)
,

|Λ2|−1 − Λ−1
1 , if a = |Λ2|−1

,

a− π−B
+− (a) , if a ∈

(
|Λ2|−1

,+∞
)
.
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The statement follows by noting that π−B
++ (a) > a and π−B

+−(a) > a, see

Lemmas 5.5.4(c.1) and (d.1), and that |Λ2|−1 − Λ−1
1 = −T/D < 0.

(b) Suppose that a ∈ [0, |Λ2|−1). Hence g(a, t) = π̃A
++(a, t) − π−B

++ (a). The

map π−B
++ satisfies that 0 ≤ π−B

++ (a) < Λ−1
1 and the map π̃A

++ satisfies that

π̃A
++ (a, t) > eγπa+

t

d0
(1 + eγπ) >

t

d0
(1 + eγπ) ,

where γ = t/
√
4d0 − t2, see Lemma 5.5.4. It follows that g(a, t) > t(1 + eγπ)/d0 −

Λ−1
1 .

Note that this inequality also holds when a = |Λ2|−1. In this case g(a, t) =
π̃A
++(a, t) − Λ−1

1 and the map π̃A
++ satisfies the same inequality as before, see

Lemma 5.5.4.

Suppose now that a ∈ (|Λ2|−1,+∞). Then g(a, t) = π̃A
++(a, t) − π−B

+−(a).

By Lemma 5.5.4, it follows that Λ−1
1 < π−B

+− (a) < a − 2T/D. Thus g(a, t) >
eγπa+ t(1 + eγπ)/d0 − a− 2T/D. Therefore, we can write that

g (a, t) >
t

d0
(1 + eγπ)−max

{
Λ−1
1 , 2

T

D

}
.

Taking the value t(d0) in such a way that t(d0)/d0 > max{Λ−1
1 , 2 T

D}, we obtain
that g(a, t(d0)) > 0 in [0,+∞). Moreover, we conclude that limt↗2

√
d0

g(a, t) =
+∞ uniformly in the variable a.

(c) For any given a0 ∈ [0,+∞) we consider the map b(t) := π̃A
++(a0, t) defined

in the interval (0, 2
√
d0). From the definition of g(a, t) it follows that

∂g

∂t

∣∣∣∣
(a0,t)

=
db

dt
.

Thus we need to prove that db/dt > 0 in (0, 2
√
d0).

From Proposition 4.5.7(a.4) and Corollary 4.5.8(e) it follows that 1 − b t +
b2d0 = (1 + a0t + a20d0)e

2γ(t)τ(b,t), where b = b(t), γ(t) = t√
4d0−t2

, and τ(b, t) =

arctan
(

(a0+b)
√
4d0−t2

(b−a0)t−2+2a0bd

)
. Thus, the map b is implicitly defined by

ln

(
1− bt+ b2d0
1 + a0 t+ a20d0

)
= 2γ (t) τ (b, t) . (5.11)

Consider the auxiliary maps

ψ1 (x, y) := ln

(
1− xy + x2d0
1 + a0y + a20d0

)
and ψ2 (x, y) := 2γ (y) τ (x, y) .

Using this maps we can rewrite expression (5.11) by ψ1(b, t)−ψ2(b, t) = 0. Differ-



5.5. The case D < 0 and T < 0 247

entiating this expression with respect to t we obtain

0 =
d

dt
(ψ1 (b, t)− ψ2 (b, t))

=

(
∂ψ1

∂x

∣∣∣∣
(b,t)

db

dt
+

∂ψ1

∂y

∣∣∣∣
(b,t)

)
−
(

∂ψ2

∂x

∣∣∣∣
(b,t)

db

dt
+

∂ψ2

∂y

∣∣∣∣
(b,t)

)
,

which is equivalent to(
∂ψ1

∂x

∣∣∣∣
(b,t)

− ∂ψ2

∂x

∣∣∣∣
(b,t)

)
db

dt
=

(
∂ψ2

∂y

∣∣∣∣
(b,t)

− ∂ψ1

∂y

∣∣∣∣
(b,t)

)
. (5.12)

Since

∂ψ1

∂x

∣∣∣∣
(b,t)

=
2bd0 − t

1− bt+ b2d0
,

∂ψ1

∂y

∣∣∣∣
(b,t)

= − (b+ a0) (1 + a0bd0)

(1− bt+ b2d0) (1 + a0t+ a20d0)
,

∂ψ2

∂x

∣∣∣∣
(b,t)

= − t

1− b t+ b2d0
,

and

∂ψ2

∂y

∣∣∣∣
(b,t)

=
2

4d0 − t2

(
4d0τ√
4d0 − t2

)

− 2

4d0 − t2

(
(b + a0)

[
(a0bd0 − 1) t2 + (b− a0) 2d0t

]
2 (1− b t+ b2d0) (1 + a0t+ a20d0)

)
,

relation (5.12) can be recast as(
2bd0 − t

1− b t+ b2d0
+

t

1− b t+ b2d0

)
db

dt

=
2

4d0 − t2

(
4d0τ√
4d0 − t2

− (b+ a0)
[
(a0bd0 − 1) t2 + (b− a0) 2d0t

]
2 (1− b t+ b2d0) (1 + a0t+ a20d0)

)

+
(b+ a0) (1 + a0bd0)

(1− b t+ b2d0) (1 + a0t+ a20d0)
.

Operating in both sides of the equality we obtain that

2bd0
(
4d0 − t2

)
1− b t+ b2d0

db

dt
=

8d0τ√
4d0 − t2

+
2d0 (b+ a0) (2 + 2a0bd0 + a0t)

(1− b t+ b2d0) (1 + a0t+ a20d0)

− 2d0 (b+ a0)
(
bt+ a0bt

2
)

(1− b t+ b2d0) (1 + a0t+ a20d0)
.
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Isolating db/dt in this equality we get

db

dt
=

1− bt+ b2d0
b (4d0 − t2)

(
4τ√

4d0 − t2

)
+

1

b (4d0 − t2)

(
(b+ a0)

(
2 + 2a0bd0 + a0t− bt− a0bt

2
)

(1 + a0t+ a20d0)

)
,

which can be simplified to

db

dt
=

4τ
(
1− b t+ b2d0

) (
1 + a0t+ a20d0

)
b (4d0 − t2)

√
4d0 − t2 (1 + a0t+ a20d0)

+

√
4d0 − t2 (b+ a0)

(
2 + 2a0bd0 + a0t− bt− a0bt

2
)

b (4d0 − t2)
√
4d0 − t2 (1 + a0t+ a20d0)

.

Defining now the map

f (b, t) := 4τ
(
1− bt+ b2d0

) (
1 + a0t+ a20d0

)
+
√
4d0 − t2 (b+ a0)

(
2 + 2a0bd0 + a0t− bt− a0bt

2
)
,

the expression of db/dt can be written as

db

dt
=

f (b, t)

b (4d0 − t2)
√
4d0 − t2 (1 + a0t+ a20d0)

.

We recall that b = b(t) = π̃A
++(a0, t). Since b ≥ 0, 4d0 − t2 > 0, and a0 ≥ 0, it

follows that
b
(
4d0 − t2

)√
4d0 − t2

(
1 + a0t+ a20d0

) ≥ 0.

Hence, the sign of db/dt is the sign of the function f(b, t), so let us compute the
sign of f(b, t) when t varies in (0, 2

√
d0).

In the proof of Proposition 4.5.7 we showed that τ(b, t) ∈ (π, τ∗], where
τ∗ < 2π. Hence, since b ≥ 0 and a0 ≥ 0, it follows that 1 − b t + b2d0 > 0
and 1 + a0t + a20d0 > 0, which implies that 4τ(1 − b t + b2d0)(1 + a0t + a20d0) >
4π(1− b t+ b2d0)(1 + a0t+ a20d0). Therefore, if we consider the auxiliary map

p (b, t) := 4π
(
1− bt+ b2d0

) (
1 + a0t+ a20d0

)
+
√
4d0 − t2 (b+ a0)

(
2 + 2a0bd0 + a0t− bt− a0bt

2
)
,

then it is easy to conclude that f(b, t) > p(b, t).
Since

p (b, 0) = 4π
(
1 + b2d0

) (
1 + a20d0

)
+ 2
√
d0 (b+ a0) (2 + 2a0bd0) ,

we have that p(b, 0) > 0. Note that if we prove that p(b, t) �= 0 for t ∈ (0, 2
√
d0),

then p(b, t) > 0 for t ∈ (0, 2
√
d0), which implies that f(b, t) > 0 for t ∈ (0, 2

√
d0).
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Since the signs of the functions f and db/dt coincide, we conclude that db/dt > 0
for t ∈ (0, 2

√
d0), which proves the statement.

Writing p(b, t) as a polynomial in the variable b, we have that p(b, t) =
b2n2(t) + bn1(t) + n0(t), where

n2 (t) := 4πd0
(
1 + a0t+ a20d0

)
+
√
4d0 − t2

(
2a0d0 − a0t

2 − t
)
,

n1 (t) :=
√
4d0 − t2

(
2 + a20

(
2d0 − t2

))− 4πt
(
1 + a0t+ a20d0

)
,

and

n0 (t) := 4π
(
1 + a0t+ a20d0

)
+
√
4d0 − t2

(
2a0 + a20t

)
.

We are going to prove that the discriminant �(t) := n1(t)
2 − 4n2(t)n0(t) of the

polynomial p(b, t) is negative. Therefore, p(b, t) has no real zeros.
Inserting the expressions of the functions nk(t) in �(t) it is easy to check

that

� (t) = − (4d0 − t2
) (

c4 (t) a
4
0 + 4c3 (t) a

3
0 + 8c2 (t) a

2
0 + 8c1 (t) a0 + c0 (t)

)
,

where
4d0 − t2 > 0,

c0 (t) := 4 (2π − 1) (2π + 1) > 0,

c1 (t) :=
(
4π2 − 1

)
t+ 2π

√
4d0 − t2 > 0,

c2 (t) :=
(
4π2 + 1

)
d0 +

(
2π2 − 1

)
t2 + 3πt

√
4d0 − t2 > 0,

c3 (t) :=
(
8π2d0 − t2

)
t+ 4d0π

√
4d0 − t2 + 2d0t+ 2t2π

√
4d0 − t2 > 0

and

c4 (t) :=
(
16π2 − 4

)
d20 + 8d0π t

√
4d0 − t2 + t2

(
4d0 − t2

)
> 0.

Therefore, �(t) < 0 in (0, 2
√
d0) and statement (c) follows.

(d) By statements (a) and (b), if we take a0 ∈ (0,+∞), then there exist
values t1 and t2 in (0, 2

√
d0) such that g(a0, t1) < 0 and g(a0, t2) > 0. Hence,

there exists a value t3 in (t1, t2) such that g(a0, t3) = 0. The uniqueness of this
value can be obtained from statement (c). �

The curve HoL|D,T of homoclinic cycles

Given d > 0 and a ∈ (0,+∞), there exists a value t = t(a, d) in (0, 2
√
d) such

that g(a, t(a, d)) = 0, see Lemma 5.5.10(d). In particular, when a = |Λ2|−1, we
can define a function w1 of d by

w1 (d) := t
(
|Λ2|−1

, d
)

(5.13)



250 Chapter 5. Phase portraits

such that g(|Λ2|−1, w1(d)) = 0. It is easy to check that for any fixed d > 0 the
qualitative behaviour of the graph of g(a, w1(d)) is the one shown in Figure 5.14(b),
see Lemma 5.5.9(a) and (b). This implies that the system has two homoclinic cycles
to a common singular point at the origin, see Lemma 5.5.7(c).

Define HoL|D,T := {(w1(d), d) : d > 0}. Since g(|Λ2|−1, w1(d)) = 0, we

obtain that π̃A
++(|Λ2|−1) = Λ−1

1 . Hence, by Proposition 4.5.7(a.4), an implicit
expression of the curve HoL|D,T is given by

exp

(
2t√

4d− t2
arctan

(√
T 2−4D

√
4d−t2

2(D+d)−Tt

))
=

4D2+(T−√
T 2−4D)[d(T−√

T 2−4D)−2Dt]
4D2+(T+

√
T 2−4D)[d(T+

√
T 2−4D)−2Dt]

.

We note that the curve HoL|D,T tends to the straight line H∞ = {t = 0, d > 0}
as T tends to 0.

The curve NHlc|D,T of non-hyperbolic limit cycles

We now define a function w2(d) in the interval (0,+∞) in such a way that any
fundamental system with parameters (t = w2(d), d) has a non-hyperbolic limit
cycle which is inside asymptotically stable and outside asymptotically unstable.

For any value d > 0 we consider the function g(a, t) = π̃A
++(a, t) − π−B

+−(a)

defined in the domain (|Λ2|−1,∞) × (0, 2
√
d). For any t ∈ (0, 2

√
d) there exist a

unique value a∗(t) ∈ (|Λ2|−1,∞) such that ∂g/∂a|(a∗(t),t) = 0, see Lemma 5.5.9(b).

Moreover, g(a, t) takes its minimum value at a∗(t). From

∂2g

∂a2

∣∣∣∣
(a,t)

=
d2π̃A

++

da2

∣∣∣∣
a

− d2π−B
+−

da2

∣∣∣∣∣
a

> 0,

see Lemmas 5.5.4(f.2) and (d.2), and the Implicit Function Theorem we obtain
that a∗(t) is a differentiable function.

Consider the auxiliary function μ(t) := g(a∗(t), t) defined in the interval
(0, 2

√
d). Since g and a∗(t) are differentiable functions, it follows that the function

μ(t) is differentiable. Moreover,

μ′ (t) =
∂g

∂a

∣∣∣∣
(a∗(t),t)

da∗

dt

∣∣∣∣
t

+
∂g

∂t

∣∣∣∣
(a∗(t),t)

=
∂g

∂t

∣∣∣∣
(a∗(t),t)

> 0,

see Lemma 5.5.10(c). Then μ(t) is strictly increasing in (0, 2
√
d).

Since g(|Λ2|−1, w1(d)) = 0 and a∗(w1(d)) is the minimum of the function
g(a, w1(d)) in the interval (|Λ2|−1,+∞), it follows that μ(w1(d)) < 0. On the other
hand, g(a, t(d)) > 0 in the interval (|Λ2|−1,+∞), see Lemma 5.5.10(b). Therefore,
μ(t(d)) > 0. We conclude that there exists a unique value w2(d) = (w1(d), t(d))
such that μ(w2(d)) = 0. Equivalently, g(a∗(w2(d)), w2(d)) = 0, where a∗(w2(d)) is
the solution of the equation ∂g/∂a|(a,w2(d))

= 0.
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Thus, given d > 0 and considering the values a = a∗(w2(d)) and t = w2(d),
there exists a unique solution of the system

g (a, t) = 0,
∂g

∂a

∣∣∣∣
(a,t)

= 0. (5.14)

Note that the qualitative behaviour of the graph of g(a, w2(d)) is the one shown
in Figure 5.14(d), see Lemma 5.5.9.

Consider the differentiable curve NHlc|D,T := {(w2(d), d) : d > 0}. Since
g(a∗(w2(d)), w2(d))=0, any fundamental system with parameters (t, d)∈NHlc|D,T

has a periodic orbit, see Lemmas 5.5.7(b.2) and (b.3). Moreover, since

∂2g

∂a2
> 0 and

∂g

∂a

∣∣∣∣
(a∗(w2(d)),w2(d))

= 0,

this periodic orbit is inside asymptotically stable and outside asymptotically un-
stable, see Lemmas 5.5.7(b.2) and (b.3).

Equations (5.14) can be expressed in terms of the Poincaré maps as

π−B
+− (a∗ (w2 (d))) = π̃A

++ (a∗ (w2 (d))) ,

where a∗(w2(d)) ∈ (|Λ2|−1,+∞) is the solution of dπ−B
+−/da = dπ̃A

++/da, see
Lemma 5.5.9(b). Note that for T = 0 the Poincaré map πB

+− is the identity.
Thus, we conclude that the curve NHlc|D,0 tends to the straight line H∞ = {t =
0 and d > 0} as T tends to 0.

Behaviour of the Lamerey map

Consider in C21 the following regions bounded by the curves HoL|D,T and
NHlc|D,T :

C211
∣∣
D,T

=
{
(t, d) ∈ C21 : w2 (d) < t < 2

√
d
}
,

C221
∣∣
D,T

=
{
(t, d) ∈ C21 : w1 (d) < t < w2 (d)

}
, (5.15)

C231
∣∣
D,T

=
{
(t, d) ∈ C21 : 0 < t < w1 (d)

}
,

see Figure 5.15.
Next we prove that given parameters (t, d) contained in either the region

C211
∣∣
D,T

, or in the region C221
∣∣
D,T

, or in the region C231
∣∣
D,T

, the qualitative be-

haviour of the graph of g(a) is represented in Figure 5.14(e), (c) or (a), respectively.

Lemma 5.5.11. Suppose that (t, d) ∈ C21 and let g(a) be the Lamerey map as defined
in Lemma 5.5.7(a).

(a) If (t, d) ∈ C231
∣∣
D,T

, then the map g(a) has exactly two zeros: a1 in the interval

(0, |Λ2|−1) and a2 in the interval (|Λ2|−1,+∞). Furthermore, g′(a1) < 0 and
g′(a2) > 0. The qualitative behaviour of the graph of g(a) is shown in Figure
5.14(a).
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¯̄
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¯̄
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C211
¯̄
D;T

Figure 5.15: Partition of the parameter region C21 by the curves w1(d) and w2(d).

(b) If (t, d) ∈ H0L|D,T , then the map g(a) has exactly two zeros: a1 = |Λ2|−1 and

a2 ∈ (|Λ2|−1,+∞). Furthermore, g′(a1) < 0 and g′(a2) > 0. The qualitative
behaviour of the graph of g(a) is shown in Figure 5.14(b).

(c) If (t, d) ∈ C221
∣∣
D,T

, then the map g(a) has exactly two zeros a1 and a2, and

these zeros lie in (|Λ2|−1,+∞). Furthermore, g′(a1) < 0 and g′(a2) > 0. The
qualitative behaviour of the graph of g(a) is shown in Figure 5.14(c).

(d) If (t, d) ∈ NHlc|D,T , then the map g(a) has exactly one zero a∗ and this zero

lies in (|Λ2|−1,+∞). Furthermore, g′(a∗) = 0, g′ < 0 in (|Λ2|−1, a∗), and
g′ > 0 in (a∗,+∞). The qualitative behaviour of the graph of g(a) is shown
in Figure 5.14(d).

(e) If (t, d) ∈ C211
∣∣
D,T

, then g(a) > 0 in [0,+∞). The qualitative behaviour of

the graph of g (a) is shown in Figure 5.14(e).

Proof. (a) Suppose that (t, d) ∈ C231
∣∣
D,T

. Hence, t < w1(d), which implies that

g(a) = g(a, t) < g(a, w1(d)). We recall that ∂g/∂t > 0, see Lemma 5.5.10(c).
Thus g(|Λ2|−1) < g(|Λ2|−1, w1(d)) = 0. On the other hand, since g(0) = g(0, t) =
π̃A
++(0, t) > 0, we conclude that there exists a value a1 ∈ (0, |Λ2|−1) such that

g(a1) = 0. The statement follows from Lemmas 5.5.9(a) and (c).
(b) Suppose that (t, d) ∈ H0L|D,T . Hence, t = w1(d), which implies that

g(|Λ2|−1, w1(d)) = 0. Thus, the map g(a) = g(a, w1(d)) has a zero at a1 = |Λ2|−1.
The statement follows from Lemmas 5.5.9(a) and (c).

(c) Suppose that (t, d) ∈ C221
∣∣
D,T

. Hence, w1(d) < t < w2(d), which implies

that

0 = g
(
|Λ2|−1

, w1 (d)
)
< g

(
|Λ2|−1

)
= g

(
|Λ2|−1

, t
)
< g

(
|Λ2|−1

, w2 (d)
)
.

We recall that ∂g/∂t > 0.
Suppose that g(a) has a zero a1 in [0, |Λ2|−1). By Lemma 5.5.9(a), the map

g(a) is strictly decreasing in [a1, |Λ2|−1). Hence, g(|Λ2|−1) < g(a1) = 0, which
contradicts the above inequality. Therefore, g(a) has no zeros in [0, |Λ2|−1).
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Consider the map μ(t) = g(a∗(t), t). Since t < w2(d), it follows that μ
′(t) =

∂g/∂t|(a∗(t),t) > 0, see Lemma 5.5.10(c). Therefore, g(a∗(t)) = g(a∗(t), t) <

g(a∗(w2(d)), w2(d)) = 0. By Lemma 5.5.9(b), lim
a↗+∞

g(a) = +∞.

Summarizing all the above information, we obtain that g(|Λ2|−1) > 0,
g(a∗(t)) < 0, and lim

a↗+∞
g(a) = +∞. Hence, the map g(a) has exactly two ze-

ros a1 and a2 in the interval (|Λ2|−1,+∞). The sign of g′ at the points a1 and a2
follows from Lemma 5.5.9(d).

(d) Suppose that (t, d) ∈ NHlc|D,T . Thus t = w2(d), which implies that
a∗(t) is the unique zero of g(a) and g′(a).

(e) Suppose that (t, d) ∈ C211
∣∣
D,T

. Thus w2(d) < t and g(a, w2(d)) < g(a), see

Lemma 5.5.10(c). Since a∗(w2(d)) is the minimum of g(a, w2(d)) in (|Λ2|−1,+∞)
and g(a∗(w2(d)), w2(d)) = 0, it follows that g(a) > 0 when a > |Λ2|−1. From
Lemma 5.5.9(c) it follows that g(a) has no zeros in the interval [0, |Λ2|−1], which
proves the statement. �

Now we present a result about the number of periodic orbits and homoclinic
cycles for fundamental systems with parameters (t, d) ∈ C21 .
Theorem 5.5.12. Consider a fundamental system with parameters D < 0, T < 0,
and (t, d) ∈ C21 .
(a) If (t, d) ∈ C231

∣∣
D,T

, then the system has exactly three Jordan curves formed

by solutions, Φ+, Φ− and Γ. Moreover, Φ+ and Φ− are asymptotically stable
hyperbolic limit cycles such that e+ ∈ ΣΦ+ , e− ∈ ΣΦ− , and Γ is an asymp-
totically unstable hyperbolic limit cycle such that Φ+ ∪ Φ− ∪ 0 ∈ ΣΓ.

(b) If (t, d) ∈ HoL|D,T , then the system has exactly three Jordan curves formed
by solutions, Δ+, Δ− and Γ. Moreover, Δ+ and Δ− are homoclinic cycles to
a common singular point at the origin 0, and Γ is an asymptotically unstable
hyperbolic limit cycle such that Δ+ ∪Δ− ⊂ ΣΓ.

(c) If (t, d) ∈ C221
∣∣
D,T

, then the system has exactly two Jordan curves formed by

solutions, Φ and Γ. Moreover, Φ is an asymptotically stable hyperbolic limit
cycle, and Γ is an symptotically unstable hyperbolic limit cycle such that {e+,
e−, 0} ⊂ ΣΦ ⊂ ΣΓ.

(d) If (t, d) ∈ NHlc|D,T , then there exists exactly one Jordan curve formed
by solutions, Γ. Moreover, Γ is a non-hyperbolic limit cycle which is in-
side asymptotically stable and outside asymptotically unstable and such that
{e+, e−,0} ⊂ ΣΓ.

(e) If (t, d) ∈ C211
∣∣
D,T

, then the system has no Jordan curves formed by solutions.

Proof. (a) Suppose that (t, d) ∈ C231
∣∣
D,T

. Hence, the map g(a) has exactly two

zeros a1 ∈ (0, |Λ2|−1) and a2 ∈ (|Λ2|−1,+∞), see Lemma 5.5.11(a). Each of these
zeros is associated to a periodic orbit which intersects the straight line L+. Let Φ+
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be the periodic orbit which intersects L+ at the point of coordinate π̃A
++(a1) and

let Γ be the periodic orbit which intersects L+ at the point of coordinate π̃A
++(a2).

Since a1 < |Λ2|−1, it follows that the origin is not contained in the region ΣΦ+

and the singular point e+ is contained in the region ΣΦ+ , see Lemma 5.5.7(b). By
the symmetry of the flow with respect to the origin, there exists a periodic orbit
Φ− such that e− ∈ ΣΦ− . Since a2 > |Λ2|−1 > a1, the origin is contained in ΣΓ

and the periodic orbits Φ+ and Φ− are contained in ΣΓ.
From Lemma 5.5.11(a) we obtain that g′(a1) < 0 and g′(a2) > 0. The state-

ment now follows from Lemmas 5.5.7(b.4) and (b.1).
(b) Suppose that (t, d) ∈ HoL|D,T . Then the zeros of the map g(a) satisfy

that a1 = |Λ2|−1 and a2 ∈ (|Λ2|−1,+∞), see Lemma 5.5.11(b). By Lemma 5.5.7(c),
and associated to the zero a1, there exists a double homoclinic cycle Δ to a common
singular point at the origin which is formed by two homoclinic cycles Δ+ and Δ−.
Associated to the zero a2 there exists a periodic orbit Γ surrounding the origin,
see Lemma 5.5.7(b). Moreover, since a2 > a1 it follows that ΣΔ ⊂ ΣΓ.

The return map π in a neighbourhood of the double homoclinic cycle Δ
satisfies that dπ/da < 1. Note that in Lemma 5.5.11(b) we proved that g′(a1) < 0.
Thus, Δ+ and Δ− are inside asymptotically stable. Therefore, the double cycle Δ
is outside asymptotically stable. By Lemma 5.5.11(b), g′(a2) > 0, which implies
that Γ is an asymptotically unstable hyperbolic limit cycle.

Statements (c), (d) and (e) follow similarly by using Lemmas 5.5.11 and
5.5.7. �

From Theorem 5.5.12(c) we conclude that a fundamental system with pa-
rameters D < 0, T < 0, and (t, d) ∈ C22

1

∣∣
D,T

has two hyperbolic limit cycles, Φ

and Γ. One of these limit cycles is asymptotically stable and the other is asymp-
totically unstable. Moreover, they satisfy that Φ ⊂ ΣΓ. This solves in the negative
a conjecture appearing in the work of Chua and Lum [47, p. 4].

5.5.5 Phase portraits

In this subsection we describe the different phase portraits in the Poincaré disc
D of the compactified system of a fundamental system with parameters D < 0,
T < 0, and (t, d) varying in ΠD,T .

Define in ΠD,T the following half-lines:

W1|∗D,T := W1|D,T ∩ {(t, d) : t > 2Λ1} ,
W2|∗D,T := W2|D,T ∩ {(t, d) : t < 2Λ2} .

(5.16)

Proposition 5.5.13. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ H∞. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0 and the singular points e+ and e−,
which are of center type;
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(a.2) the limit cycle at infinity ∞ and the outside asymptotically stable peri-
odic orbits Φ+ and Φ− such that e+ ∈ ΣΦ+ and e− ∈ ΣΦ− ;

(a.3) the stable and the unstable manifolds of the saddle point at the origin.

(b) The canonical regions are: the annular regions ΣΦ+ \e+ and ΣΦ− \e− foliated
by periodic orbits, Σ+∞ = Wu(∞) ∩W s(Φ+), and Σ−∞ = Wu(∞) ∩W s(Φ−).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.18.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a), 5.5.2(a), 5.5.3(b) and 5.5.6.

(b) The behaviour of the flow in the annular regions ΣΦ+ \ e+ and ΣΦ− \ e−
follows from Proposition 5.5.3(b).

Since there are no Jordan curves formed by solutions contained in the region
Σ∞ \ Cl(ΣΦ+ ∪ ΣΦ−), see Proposition 5.5.3(b), the separatrices of the origin do
not connect in a homoclinic cycle. Moreover, the periodic orbits Φ+ and Φ− are
outside asymptotically stable, see Proposition 5.5.6. Let γs+ and γs− be the stable
separatrices of the saddle point at the origin and let γu+ and γu− be the unstable
separatrices of the singular point at the origin. From the Poincaré–Bendixson
Theorem we conclude that α(γs+) = α(γs−) = ∞, ω(γu+) = Φ+, and ω(γu−) =
Φ−. Therefore, the stable manifold of the origin splits Σ∞\Cl(ΣΦ+∪ΣΦ−∪Wu(0))
into the two open, connected, and invariant regions Σ+∞ and Σ−∞.

Let Σ+
∞ be the region containing the orbit Φ+ in its boundary, and let Σ−

∞
be the region containing the orbit Φ− in its boundary. We conclude that Σ+∞ =
Wu(∞) ∩ W s(Φ+) and Σ−

∞ = Wu(∞) ∩ W s(Φ−), which implies that no other
separatrices than those in statement (a) appear in the system.

Statement (c) follows from Theorem 2.6.9. �
Proposition 5.5.14. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ C231

∣∣
D,T

. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0 and the asymptotically unstable hyper-
bolic foci e+ and e−;

(a.2) the limit cycle at infinity ∞, the asymptotically unstable hyperbolic limit
cycle Γ and the asymptotically stable hyperbolic limit cycles Φ+ and Φ−,
which satisfy that e+ ∈ ΣΦ+ , e− ∈ ΣΦ− , Φ+ ∪ Φ− ∪ 0 ⊂ ΣΓ;

(a.3) the stable and the unstable manifolds of the saddle point at the origin.

(b) The canonical regions are: Σ∞ \Cl(ΣΓ) = Wu(Γ) ∩W s(∞), Σ+
Γ = Wu(Γ)∩

W s(Φ+), Σ−
Γ = Wu(Γ) ∩ W s(Φ−), ΣΦ+ \ e+ = Wu(e+) ∩ W s(Φ+), and

ΣΦ− \ e− = Wu(e−) ∩W s(Φ−).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.18.
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Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a), 5.5.2(a) and Theorem 5.5.12(a).

(b) From Theorem 5.5.12(a) and the Poincaré–Bendixson Theorem it follows
that the α- and the ω-limit sets of the orbits contained in D \ΣΓ are the periodic
orbit at infinity ∞ and the asymptotically unstable limit cycle Γ. Consequently,
Σ∞ \ Cl(ΣΓ) = Wu(Γ) ∩W s(∞). In a similar way, the α- and the ω-limit sets
in Cl(ΣΦ+) are the unstable focus e+ and the asymptotically stable limit cycle
Φ+. Therefore, ΣΦ+ \ e+ = Wu(e+)∩W s(Φ+). By the symmetry of the flow with
respect to the origin, it follows that ΣΦ− \ e− = Wu(e−) ∩W s(Φ−).

The stable manifold of the origin splits ΣΓ \Cl(ΣΦ+ ∪ΣΦ− ∪Wu(0)) into the
two open, connected and invariant regions Σ+

Γ and Σ−
Γ . For more details, see the

proof of Proposition 5.5.13(b). The behaviour of the flow in Σ+
Γ and Σ−

Γ is easily
checked.

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.5.15. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ HoL|D,T . Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0 and the asymptotically unstable hyper-
bolic foci e+ and e−;

(a.2) the limit cycle at infinity ∞ and the asymptotically unstable hyperbolic
limit cycle Γ;

(a.3) the separatrices of the saddle at the origin, which form two homoclinic
cycles Δ+ and Δ− to a common singular point at the origin. Moreover,
e+ ∈ ΣΔ+ , e− ∈ ΣΔ− , and Δ = Δ+ ∪Δ− is a double homoclinic cycle
contained in ΣΓ.

(b) The canonical regions are: Σ∞ \ Cl(ΣΓ) = Wu(Γ) ∩W s(∞), ΣΓ \ Cl(ΣΔ) =
Wu(Γ)∩W s(Δ), ΣΔ+ \e+ = Wu(e+)∩W s(Δ+), and ΣΔ− \e− = Wu(e−)∩
W s(Δ−).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.18.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a), 5.5.2(a) and Theorem 5.5.12(b).

(b) The α- and the ω-limit sets in the region D \ ΣΓ are the limit cycles ∞
and Γ. From this we conclude that Σ∞ \ Cl(ΣΓ) = Wu(Γ) ∩W s(∞).

Define ΣΔ = ΣΔ+ ∪ ΣΔ− . The α- and the ω-limit sets contained in the
region Cl(ΣΓ) \ ΣΔ are the asymptotically unstable limit cycle Γ and the double
homoclinic cycle Δ. From this we conclude that ΣΓ \Cl(ΣΔ) = Wu(Γ) ∩W s(Δ).

The α- and the ω-limit sets contained in the region Cl(ΣΔ+) are the homo-
clinic cycle Δ+ and the asymptotically unstable singular point e+. Thus ΣΔ+ \
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e+ = Wu(e+) ∩W s(Δ+). The behaviour in the region ΣΔ− \ e− follows by the
symmetry of the flow with respect to the origin.

Statement (c) is a consequence of Theorem 2.6.9. �

Proposition 5.5.16. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ C221

∣∣
D,T

. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0 and the asymptotically unstable foci e+
and e−;

(a.2) the limit cycle at infinity ∞, the asymptotically unstable hyperbolic limit
cycle Γ, and the asymptotically stable hyperbolic limit cycle Φ, which
satisfies that {0, e+, e−} ⊂ ΣΦ ⊂ ΣΓ;

(a.3) the separatrices of the saddle at the origin.

(b) The canonical regions are: Σ∞ \ Cl(ΣΓ) = Wu(Γ) ∩W s(∞), ΣΓ \ Cl(ΣΦ) =
Wu(Γ) ∩W s(Φ), Σ+

Φ = Wu(e+) ∩W s(Φ), and Σ−
Φ = Wu(e−) ∩W s(Φ).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.18.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a), 5.5.2(a) and Theorem 5.5.12(c).

(b) The α- and the ω-limit sets contained in the region Σ∞ \ Cl(ΣΓ) (re-
spectively, in the region ΣΓ \ Cl(ΣΦ)) are the limit cycles ∞ and Γ (respectively,
the limit cycles Γ and Φ). From this we conclude the behaviour of the flow in the
region Σ∞ \ Cl(ΣΓ) (respectively, in the region ΣΓ \ Cl(ΣΦ)).

Since there are no Jordan curves formed by solutions in ΣΦ, see Theorem
5.5.12(c), the separatrices of the saddle at the origin are not contained in any homo-
clinic cycle. On the other hand, the singular points e+ and e− are asymptotically
unstable. Thus, if γs+ and γs− are the stable separatrices of the origin and γu+ and
γu− are the unstable separatrices of the origin, then, by the Poincaré–Bendixson
Theorem, we have α(γs+) = e+, α(γ

s−) = e− and ω(γu+) = ω(γu−) = Φ). Hence,
the separatrices γu+ and γu− split the region ΣΦ \ Cl(W s(0)) into the two open,
connected, and invariant regions Σ+

Φ and Σ−
Φ .

Let Σ+
Φ be the region containig e+ in its boundary. The α- and the ω-limit

sets in Cl(Σ+
Φ) are the singular points 0 and e+, and the asymptotically stable

limit cycle Φ. Therefore, Σ+
Φ = Wu(e+) ∩W s(Φ). By the symmetry of the flow

with respect to the origin, we conclude that Σ−
Φ = Wu(e−) ∩W s(Φ).

Statement (c) follows from Theorem 2.6.9. �

Proposition 5.5.17. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ NHlc|D,T . Then:

(a) The separatrices of the system are:
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(a.1) the saddle point at the origin 0 and the asymptotically unstable foci e+
and e−;

(a.2) the limit cycle at infinity ∞, and the non-hyperbolic limit cycle Γ = Φ,
which is inside asymptotically stable and outside asymptotically unstable
and satisfies that {0, e+, e−} ⊂ ΣΓ;

(a.3) the separatrices of the saddle at the origin.

(b) The canonical regions are: Σ∞ \Cl(ΣΓ) = Wu(Γ)∩W s(∞), Σ+
Γ = Wu(e+)∩

W s(Γ), and Σ−
Γ = Wu(e−) ∩W s(Γ).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.18.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a), 5.5.2(a) and Theorem 5.5.12(d).

(b) The behaviour of the flow in the regions Σ∞ \ Cl(ΣΓ) and ΣΓ follows
by applying arguments similar to those in the proof of Propositions 5.5.16(b) and
5.5.16(b) respectively.

Statement (c) is a consequence of Theorem 2.6.9. �
Proposition 5.5.18. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ C211

∣∣
D,T

. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0 and the asymptotically unstable foci e+,
e−;

(a.2) the limit cycle at infinity ∞;

(a.3) the separatrices of the saddle at the origin.

(b) The canonical regions are: Σ+
∞ = Wu(e+) ∩W s(∞) and Σ−

∞ = Wu(e−) ∩
W s(∞).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.18.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a), 5.5.2(a) and Theorem 5.5.12(e).

Statement (b) follows by using arguments similar to those in the proof of
Proposition 5.5.16(b).

Statement (c) is a consequence of Theorem 2.6.9. �
Now we are going to describe the phase portrait of the compactified flow

of the fundamental systems with parameters t2 − 4d ≥ 0. To do this, we need
to control the characteristic directions of the singular points at infinity and the
location of the singular points e+ and e−. In Section 3.11 we described this under
the assumption that the fundamental matrix A is given in its real Jordan normal
form. We recall that this assumption was not a restriction, see Proposition 3.10.2.
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Proposition 5.5.19. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, (t, d) ∈ SN∞ \ VB1|D,T , and t > 0. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, the asymptotically unstable nodes e+,
e−, and the saddle-nodes at infinity x+, x−, which have their central
manifold contained in ∂D and their stable hyperbolic manifolds con-
tained in Σ∞;

(a.2) the separatrices of the saddle at origin, and the separatrices of the
saddle-nodes x+ and x−.

(b) The canonical regions are: Σ++
∞ ⊂ Wu(e+) ∩ W s(x+), Σ+−

∞ = Wu(e+) ∩
W s(x−), Σ−−

∞ ⊂Wu(e−) ∩W s(x−), and Σ−+
∞ = Wu(e−) ∩W s(x+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.

Proof. Let (A,B) be the fundamental matrices of the system and suppose that
the matrix A is in real Jordan normal form. In this case, since (t, d) �∈ VB1|D,T ∪
VB2|D,T , the matrix A is non-diagonal, see Lemma 4.7.2(a).

(a) The existence of these separatrices is a consequence of Propositions
5.5.1(a) and 5.5.2(c).

(b) Since (t, d) �∈ VB1|D,T , we obtain that k1 �= 0, see Figure 5.10. From
Proposition 3.6.2 we can assume that k1 = 1.

Let γs
+ and γs

− be the stable separatrices of saddle-nodes at infinity x+ and
x−, which are contained in their hyperbolic manifolds. From Theorem 3.11.6(a)
it follows that γs

+ and γs− are contained in the straight lines x2 = −2b2/t and
x2 = 2b2/t, respectively.

Since

A =

(
λ 1
0 λ

)
,

the vector (1, 0)T is an eigenvector of A and

e+ = −A−1b = − 4

t2

(
tb1/2− b2

tb2/2

)
.

From this we conclude that α(γs
+) = e+. By the symmetry of the flow with respect

to the origin, α(γs
−) = e−, see Figure 5.16.

From Proposition 5.5.5 it follows that there are no Jordan curves formed by
solutions contained in Σ∞. Moreover, there are no separatrix cycles to singular
points contained in ∂D. Otherwise, the singular points e+ or e− would belong to
this separatrix cycle, which is impossible because they are nodes. Therefore there
are no limit cycles and separatrix cycles.

Let γu+
0 and γu−

0 be the unstable separatrices of the origin. The α- and the
ω-limit sets contained in D are the singular points 0, e+, e−, x+, and x−. Since e+
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and e− are asymptotically unstable and there are no separatrix cycles, we obtain
that ω(γu+

0 ) = x+ and ω(γu−
0 ) = x−. Thus, Wu(0) splits the region Σ∞ into the

two open, connected, and invariant regions Σ+∞ and Σ−∞.
Let Σ+

∞ be the region containing e+, see Figure 5.16, and let γs+
0 be the

stable separatrix of the origin in Σ+
∞. The α- and the ω-limit sets in Cl(Σ+

∞) are
the singular points 0, e+, x+, and x−. Hence α(γs+

0 ) = e+ and the invariant curve
γs+ ∪ e+ ∪ γs

+ splits the region Σ+
∞ into the two open, connected, and invariant

regions Σ++
∞ and Σ+−

∞ . Let Σ++
∞ be the region containing γu+ in its boundary, and

let Σ+−∞ be the region containing γu− in its boundary, see Figure 5.16. Note that
the hyperbolic sector of the saddle-node x+ is contained in Σ+−

∞ . In a similar way
we define the regions Σ−−∞ and Σ−+∞ in Σ−∞. Then the hyperbolic sector of x− is
contained in Σ−+

∞ .
The behaviour of the flow in each of this regions Σjk

∞ follows by observing
that the α- and the ω-limit sets in Cl(Σjk∞) are the singular points 0, ej , and xk

with j, k ∈ {+,−}.
Statement (c) follows from Theorem 2.6.9. �

x¡

x+
°s+

e+

e¡

§+
1

§¡
1

°s
¡

°u+0

°u¡0

Figure 5.16: Regions Σ+
∞ and Σ−

∞ defined in the phase space of the Poincaré com-
pactification of a fundamental system with parameters (t, d) ∈ SN∞ \ V B1|D,T

and t > 0.

In the following result we deal with the special case where the boundary of
the Poincaré disc ∂D is formed by singular points. Under this condition, Theorem
2.6.9 cannot be applied. Hence, in order to classify the phase portraits of this
family of fundamental systems we build a homeomorphism between their phase
portraits and the corresponding sketches represented in Figure 5.17.

Proposition 5.5.20. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ VB1|D,T , and fundamental
matrices (A,B).

(a) If the real Jordan normal form of the matrix A is non-diagonal, then the phase
portrait of the Poincaré compactification is the one described in Proposition
5.5.19.
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(b) Suppose that the real Jordan normal form of the matrix A is diagonal. Then:

(b.1) Every point in ∂D is a singular point and ∂D \ {±k⊥/‖k‖} is a stable
normally hyperbolic manifold. There exist exactly three singular points
in Σ∞: the saddle point at the origin 0 and the asymptotically unstable
degenerated nodes e+ and e−.

(b.2) The straight lines η+ = {e++rk⊥ : r ∈ R} and η− = {e−+rk⊥ : r ∈ R}
split Σ∞ into three open and connected regions, Σ+

∞, Σ0
∞, and Σ−

∞,
which are invariant under the flow. These regions satisfy that Σ+∞ ⊂
Wu(e+), Σ

−
∞ ⊂ Wu(e−), and the ω-limit set of every orbit contained

in Σ+∞∪Σ+∞ is one of the singular points contained in ∂D\{±k⊥/‖k‖}.
The separatrices of the saddle at the origin split Σ0

∞ into four open,
connected, and invariant regions Σ++

∞ , Σ+−
∞ , Σ−+

∞ , and Σ−−
∞ , such that:

Σ++∞ ⊂Wu(e+)∩W s(k⊥/‖k‖), Σ−+∞ ⊂Wu(e−)∩W s(k⊥/‖k‖), Σ−−∞ ⊂
Wu(e−) ∩W s(−k⊥/‖k‖), and Σ+−

∞ ⊂Wu(e+) ∩W s(−k⊥/‖k‖).
(b.3) The phase portrait of the Poincaré compactification is topologically equi-

valent to its correspondent in Figure 5.17.

Proof. Let (A,B) be the fundamental matrices of the system and suppose that A
is in real Jordan normal form.

(a) Assume that the matrix A is non-diagonal. Since (t, d) ∈ VB1|D,T , we
have divided the proof into two parts depending on the first coordinate of the
vector k.

Suppose that k1 �= 0. In this case the proof is identical to the proof of Propo-
sition 5.5.19. Suppose that k1 = 0. Then k2 �= 0 and without lost of generality
we can consider k2 = −1. Thus the hyperbolic manifolds of the singular points at
infinity x+ and x− are contained in the straight lines x2 = −2b2/t and x2 = 2b2/t,
respectively, see Theorem 3.11.10(e). The rest of the proof is identical to the proof
of Proposition 5.5.19.

Statement (b.1) is a consequence of Propositions 5.5.1(a) and 5.5.2(b).
(b.2) The straight lines η+ and η− are parallel to L+ and L− and intersect the

boundary of the Poincaré disc ∂D at the singular points at infinity ±k⊥/‖k‖. Since
e+ and e− are diagonal nodes, it follows that η+ and η− are invariant under the
flow. Thus, the straight lines η+ and η− split the region Σ∞ into the three open,
connected, and invariant regions Σ+∞, Σ0∞, and Σ−∞. We denote by Σ+∞ and Σ−∞
the regions which are contained in the half planes S+ and S−, respectively. Hence
the α- and the ω-limit sets in Cl(Σ+

∞) and Cl(Σ−
∞) are the asymptotically unstable

singular points e+ and e− and the normally hyperbolic manifold at infinity which
is asymptotically stable. From this we conclude the behaviour of the flow in Σ+

∞
and Σ−

∞.
The α- and the ω-limit sets in the region Cl(Σ0∞) are the saddle point at

the origin, the diagonal nodes e+ and e−, and the singular points at infinity
±k⊥/‖k‖ ∈ ∂D. Let γs+ and γs− be the stable separatrices of the saddle point at
the origin, and let γu+ and γu− be the unstable separatrices of the saddle point at
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the origin. It is easy to check that α(γs+) = e+, α(γ
s−) = e−, ω(γu+) = k⊥/‖k‖,

and ω(γu−) = −k⊥/‖k‖. Thus, the curves W s(0) and Wu(0) split the region
Σ0∞ in four open, connected, and invariant regions Σ++∞ , Σ−+∞ , Σ−−∞ , and Σ+−∞ .
Let Σ++

∞ be the region such that {0, e+, let k⊥/‖k‖} ⊂ ∂Σ++
∞ , Σ−+

∞ be such
that {0, e−, k⊥/‖k‖} ⊂ ∂Σ−+

∞ , Σ−−
∞ such that {0, e−, −k⊥/‖k‖} ⊂ ∂Σ−−

∞ , and
Σ+−∞ such that {0, e+, −k⊥/‖k‖} ⊂ ∂Σ+−∞ . The behaviour of the flow in each of
these regions follow from the stability of the singular points which belong to its
boundary.

(b.3) The separatrices in the central region Cl(Σ0
∞) are the singular points

0, e+, e−, the singular points at infinity ±k⊥/‖k‖, the orbits on the straight lines
η+ and η−, and the separatrices of the saddle point at the origin. The canonical
regions contained in Cl(Σ0

∞) are Σ++
∞ , Σ−+

∞ , Σ−−
∞ , and Σ+−

∞ . Since in Cl(Σ0
∞)

there exists a finite number of singular points, Theorem 2.6.9 applies. Thus, the
phase portrait in Cl(Σ0∞) is topologically equivalent to the central region of the
correspondig phase portrait in Figure 5.17. Let h0 be the topological equivalence.

Consider a circle centered at the singular point e+ and contained in Σ+∞.
Since e+ is a diagonal node, it is clear that this circle intersects exactly once
any orbit contained in Cl(Σ+

∞). Hence, we can define an orientation preserving
homeomorphism h+ from the region Cl(Σ+∞) to its correspondent in the picture in
Figure 5.17. Similarly, we define an orientation preserving homemorphism h− from
the region Cl(Σ−∞) to its correspondent in the picture in Figure 5.17. Therefore,

h =

⎧⎨⎩
h+ in Cl (Σ+

∞) ,
h0 in Cl

(
Σ0∞
)
,

h− in Cl (Σ−
∞) ,

is an orientation preserving homeomorphism from D to its correspondent picture
in Figure 5.17. This proves the statement. �

Proposition 5.5.21. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ C11 \ W1|∗D,T . Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, the asymptotically unstable nodes e+
and e−, the asymptotically stable nodes at infinity x+ and x−, and the
saddle points at infinity y+ and y−, which have their unstable manifold
contained in ∂D;

(a.2) the separatrices of the saddle point at the origin, and the separatrices
of the singular points y+ and y−.

(b) The canonical regions are: Σ++
∞ = Wu(e+) ∩ W s(x+), Σ+−

∞ = Wu(e+) ∩
W s(x−), Σ−−∞ = Wu(e−) ∩W s(x−), and Σ−+∞ = Wu(e−) ∩W s(x+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.
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Proof. Let (A,B) be the fundamental matrices of the system and suppose that
the matrix A is in real Jordan normal form. If (t, d) �∈ W1|∗D,T , then t > 2Λ1, see
(5.16) and k2 �= 0, see Figure 5.10. Without loss of generality we can consider that
k2 = 1.

(a) The existence of the listed separatrices is a consequence of Proposition
5.5.1(a) and 5.5.2(d).

(b) Let γs
+ and γs

− be the unstable separatrices of the saddles y+ and y−,
respectively. By Theorem 3.11.8(a), the separatrices γs

+ and γs
− are contained in the

straight lines x = −b1/λ1 and x = b1/λ1, respectively, where λ1 > λ2 denote the
eigenvalues of the matrix A. Since A is in real Jordan normal form, it follows that
(0, 1)T is an eigenvector of A and e+ = −A−1b = (−b1/λ1,−b2/λ2)

T . Therefore,
we conclude that α(γs

+) = e+ and α(γs
−) = e−.

By Proposition 5.5.5, the system has no Jordan curves formed by solutions
contained in the region Σ∞. Moreover, since x+, x−, e+ and e− are nodes, we
conclude that there are no separatrix cycles with singular points in ∂D. Thus, the
system has no periodic orbits and separatrix cycles, and the α- and the ω-limit
sets contained in D are the seven singular points.

Let γu+ and γu− be the unstable separatrices of the origin. Since the singular
points e+ and e− are asymptotically unstable nodes and the singular points at
infinity y+and y− are saddle points, the ω-limit sets of the separatrices γu+ and
γu− are x+ and x−. We can suppose that ω(γu+) = x+ and ω(γu−) = x−. Hence,
the curve Wu(0) splits the region Σ∞ into the two open, connected, and invariant
regions Σ+

∞, Σ−
∞. Let Σ+

∞ be the region containing the singular point e+ and Σ−
∞

the region containing the singular point e−.
Let γs+

+ be the stable separatrix of the origin contained in Σ+∞, and γs− be
the stable separatrix of the origin contained in Σ−

∞. The α- and the ω-limit sets
of the system in Σ+∞ are the singular points 0, e+, x+, y+, and x−. Therefore,
α(γs+) = e+. Moreover, the curve W s(0) together with W s(y+) and W s(y−)
split the regions Σ+

∞ and Σ−
∞ into the four open, connected, and invariant regions

Σ++∞ , Σ+−∞ , Σ−−∞ , and Σ−+∞ . Let Σjk∞ be the region containing the singular points ej
and xk in its boundary, with j, k ∈ {+,−}. The statement follows by noting that
the singular points ej are asymptotically unstable and the singular points xk are
asymptotically stable. This also proves that there are no additional separatrices.

Statement (c) is a consequence of Theorem 2.6.9. �
Proposition 5.5.22. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ W1|∗D,T .

(a) If the fundamental system is proper, then the qualitative behaviour of the
Poincaré compactification is described in Proposition 5.5.21.

(b) Suppose that the fundamental system is not proper. Then:

(b.1) The separatrices of the system are:
(b.1.1) the saddle point at the origin 0, the asymptotically unstable nodes

e+ and e−, the asymptotically stable nodes at infinity x+ and x− ∈
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∂D, and the singular points at infinity y+, y− ∈ ∂D, which have
the local phase portrait equivalent to that in Figure 5.11(c);

(b.1.2) the separatrices of the saddle point at the origin, and the separa-
trices of the singular points y+ and y−.

(b.2) The canonical regions are: Σ+∞ = Wu(e+) ∩W s(x+), Σ
−∞ = Wu(e−) ∩

W s(x−), Σ++
∞ ⊂Wu(e+)∩W s(y+), Σ

−+
∞ ⊂Wu(e−)∩W s(y+), Σ

−−
∞ ⊂

Wu(e−) ∩W s(y−), and Σ+−
∞ ⊂Wu(e+) ∩W s(y−).

(b.3) The phase portrait of the Poincaré compactification is topologically equi-
valent to its correspondent in Figure 5.17.

Proof. Let (A,B) be the fundamental matrices of the system and suppose that
the matrix A is in real Jordan normal form.

(a) Suppose that the fundamental system is proper. From Lemma 4.7.1(d)
we obtain that k2 �= 0. The proof is identical to the proof of Proposition 5.5.21.

(b.1) Suppose that the system is not proper. In this case k2 = 0 and we can
assume without lost of generality that k1 = 1. Thus the existence of the listed
separatrices is a consequence of Propositions 5.5.1(a) and 5.5.2(d).

(b.2) Let λ1 > λ2 > 0 be the eigenvalues of the matrix A. Since A is in
real Jordan normal form, it follows that the separatrices of y+ and y− are on
the straight lines x = −b1/λ1 and x = b1/λ1, see Figure 5.11(c) and Proposition
3.11.12(f.2).

On the other hand, e+ = −A−1b = (−b1/λ1,−b2/λ2)
T , and the straight

lines η+ = {e+ + rk⊥ : r ∈} and η− = {e− + rk⊥ : r ∈ R} are contained in the
half-planes S+ and S−, respectively. Then η+ and η− are invariant under the flow
and they contain the stable separatrices of the singular points at infinity y+ and
y−. Therefore, the straight lines η+ and η− split the region Σ∞ into the three
open, connected and invariant regions Σ+

∞,Σ0
∞, and Σ−

∞. Let Σ+
∞ be the region

containing the singular point x+ in its boundary, Σ−
∞ the region containing the

singular point x− in its boundary, and Σ0∞ the region limited by the straight lines
η+ and η−.

By Proposition 5.5.5, the system has no Jordan curves formed by solutions
contained in Σ∞. Moreover, since the singular points x+, x−, e+, and e− are
nodes, there are no separatrix cycles to singular points in ∂D. We conclude that
the system has neither periodic orbits nor separatrix cycles.

Since the separatrices of y+ and y− are contained in η+ and η−, respectively,
the regions Σ+

∞ and Σ−
∞ contain the hyperbolic sectors of the singular points y+

and y−. Then the α- and the ω-limit sets in Cl(Σ+∞) are the singular points e+,
y+, x+, and y−. Therefore, we conclude that Σ+

∞ = Wu(e+) ∩ W s(x+) and
Σ−

∞ = Wu(e−) ∩W s(x−).
The α- and the ω-limit sets contained in Cl(Σ0∞) are the singular points 0,

e+, e−, y+, and y−. Let γs+, γs−, γu+, and γu− be the stable and the unsta-
ble separatrices of the origin, respectively. Thus ω(γu+) = y+, ω(γ

u−) = y−,
α(γs+) = e+, and α(γs−) = e−. Therefore, the curve W s(0) together with the
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curve Wu(0) split Σ0∞ into the four open, connected, and invariant regions Σ++∞ ,
Σ−+

∞ , Σ−−
∞ , and Σ−+

∞ . Let Σjk
∞ be the region containing the singular point ej in-

side of it and the singular point at infinity yk in its boundary. The behaviour
of the flow in Σjk

∞ follows by noting that ej is asymptotically unstable and yk is
asymptotically stable.

Statement (b.3) is a consequence of Theorem 2.6.9. �
Proposition 5.5.23. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ {(t, d) : d ≤ 0} \ O. Then:
(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, the asymptotically stable nodes at in-
finity x+, x− ∈ ∂D, and the asymptotically at infinity unstable nodes
y+, y− ∈ ∂D;

(a.2) the separatrices of the origin, and the orbits contained in ∂D.

(b) The canonical regions are: Σ++∞ ⊂ Wu(y+) ∩ W s(x+), Σ
+−∞ ⊂ Wu(y+) ∩

W s(x−), Σ−−
∞ ⊂Wu(y−) ∩W s(x−), and Σ−+

∞ ⊂Wu(y−) ∩W s(x+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.

Proof. (a) The existence of these separatrices is a consequence of Propositions
5.5.1(b) and 5.5.2(d).

(b) From Proposition 5.5.5 it follows that the system has no Jordan curves
formed by solutions contained in Σ∞. Moreover, since the singular points x+,
x−, y+ and y− are nodes, we conclude that there are no separatrix cycles to the
singular points contained in ∂D. Then the α- and the ω-limit sets in the Poincaré
disc D are the singular points.

Let γs+, γs−, γu+, and γu− be the stable and the unstable separatrices
of the origin, respectively. Hence α(γs+) = y+, α(γ

s−) = y−, ω(γu+) = x+,
ω(γu−) = x−, and the curveW s(0) together with the curve Wu(0) split the region
Σ∞ into the four open, connected, and invariant regions Σjk

∞ for j, k ∈ {+,−}. Let
Σjk∞ be the region containing the singular points yj and xk in its boundary. The
behaviour of the flow in Σjk

∞ follows by noting that the α- and the ω-limit sets
containing in Cl(Σjk

∞) are the singular points at infinity yj and xk, respectively.
Statement (d) is a consequence of Theorem 2.6.9. �

Proposition 5.5.24. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ C22 \ W2|∗D,T . Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, the asymptotically stable nodes e+ and
e−, the saddle points at infinity x+, x− ∈ ∂D, which have their sta-
ble manifold contained in ∂D, and the asymptotically unstable nodes at
infinity y+, y− ∈ ∂D;
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(a.2) the separatrices of the saddle point at the origin, and the separatrices
of the singular points at infinity x+ and x−.

(b) The canonical regions are: Σ++
∞ = Wu(y+) ∩ W s(e+), Σ

+−
∞ = Wu(y+) ∩

W s(e−), Σ−−
∞ = Wu(y−) ∩W s(e−), and Σ−+

∞ = Wu(y−) ∩W s(e+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.

Proof. Let (A,B) be the fundamental matrices of the system and suppose that the
matrix A is in real Jordan normal form. Since (t, d) �∈ W2|∗D,T , we have t < 2Λ2.
Therefore, the first coordinate of the vector k satisfies k1 �= 0 and we can assume
without loss of generality that k1 = 1.

(a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a) and 5.5.2(d).

(b) Let 0 > λ1 > λ2 be the eigenvalues of the matrix A. Let γu
+ and γu

− the
unstable separatrices of x+ and x−, respectively. Thus γu

+ and γu− are contained
in the straight lines x2 = ±b2/λ2, see Theorem 3.11.7(b).

On the other hand, e+ = −A−1b = (−b1/λ1,−b2/λ2)
T and e− = A−1b =

(b1/λ1, b2/λ2)
T . Hence, we conclude that ω(γu

+) = e+ and ω(γu
−) = e−.

By Proposition 5.5.3(a), it follows that the system has no Jordan curves
formed by solutions contained in Σ∞. Thus, since the singular points y+, y−, e+,
and e− are nodes, we obtain that there are no separatrix cycles to singular points
in ∂D. Therefore the α- and the ω-limit sets in D are the singular points 0, e+,
e−, x+, x−, y+, and y−.

Let γs+, γs−, γu+, and γu− be the stable and the unstable separatrices of the
origin, respectively. We conclude that α(γs+) = y+, α(γ

s−) = y−, ω(γu+) = e+,
and ω(γu−) = e−. Thus, the separatrices of the origin together with the unstable
separatrices of the singular points at infinity x+ and x− split Σ∞ into the four
open, connected, and invariant regions Σjk

∞ for j, k ∈ {+,−}. Let Σjk
∞ be the region

containing the singular points yj and ek in its boundary. The statement follows
by noting that the singular point yj is asymptotically unstable and the singular
point ek is asymptotically stable.

Statement (d) is a consequence of Theorem 2.6.9. �

Proposition 5.5.25. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ W2|∗D,T .

(a) If the system is proper, then the qualitative behaviour of the Poincaré com-
pactification is described in Proposition 5.5.24.

(b) Suppose that the system is not proper. Then:

(b.1) The separatrices of the system are:
(b.1.1) the saddle point at the origin 0, the asymptotically stable nodes e+,

e−, the singular points at infinity x+, x− ∈ ∂D, see Figure 5.11(d),
and the asymptotically unstable nodes at infinity y+, y− ∈ ∂D;
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(b.1.2) the separatrices of the saddle at the origin, and the separatrices of
the singular points x+ and x−.

(b.2) The canonical regions of the system are: Σ+∞ = Wu(y+) ∩ W s(e+),
Σ−

∞ = Wu(y−)∩W s(e−), Σ++
∞ ⊂Wu(x+)∩W s(e+), Σ

−+
∞ ⊂Wu(x−)∩

W s(e+), Σ
−−∞ ⊂Wu(x−) ∩W s(e−), and Σ+−∞ ⊂Wu(x+) ∩W s(e−).

(b.3) The phase portrait of the Poincaré compactification is topologically equi-
valent to its correspondent in Figure 5.17.

Proof. Let (A,B) be the fundamental matrices of the system and assume that the
matrix A is in real Jordan normal form.

(a) Since the system is proper, k1 �= 0, see Lemma 4.7.1(d). The proof is
identical to the proof of Proposition 5.5.24.

(b.1) Assume that the system is not proper and (t, d) ∈ W2|∗D,T . Hence
k2 = 0 and k1 �= 0. We take k1 = 1, and then the existence of the listed separatrices
is a consequence of Propositions 5.5.1(a) and 5.5.2(d).

(b.2) Since the matrix A is in real Jordan normal form, (0, 1)T is an eigenvec-
tor of A. Then the straight lines η+ = {e+ + rk⊥ : r ∈ R} and η− = {e− + rk⊥ :
r ∈ R} contain the unstable separatrices of the singular points at infinity x+ and
x−, see Theorem 3.11.11(f.2). Moreover, these straight lines are invariant under
the flow, see the proof of Proposition 5.5.22 for more details. On the other hand,
η+ and η− are parallel to the straight lines L+ and L−, and they are contained in
the half-planes S+ and S−, respectively. Therefore η+ and η− split Σ∞ into the
three open, connected and invariant regions Σ+

∞, Σ0
∞, and Σ−

∞. Let Σk
∞ be the re-

gion containing the singular point at infinity yk in its boundary, with k ∈ {+,−};
and let Σ0

∞ be the region containing the origin.
From Proposition 5.5.5 we obtain that the system has no Jordan curves

formed by solutions contained in Σ∞. Moreover, it is easy to conclude that there
are no separatrix cycles to singular points contained in ∂D. Therefore the α- and
the ω-limit sets in Cl(Σ+

∞) are the singular points e+, x+, y+, and x−. It is easy
to check that the hyperbolic sectors of x+ and x− are contained in Σ+

∞ and Σ−
∞,

respectively. Then Σ+
∞ = Wu(y+) ∩W s(e+) and Σ−

∞ = Wu(y−) ∩W s(e−).
Similar arguments to those in the proof of Proposition 5.5.22(b.2) show that

the stable and the unstable manifold of the origin split Σ0
∞ into the four open,

connected and invariant regions, Σ++
∞ , Σ−+

∞ , Σ−−
∞ , and Σ+−

∞ . The statement follows
by denoting by Σjk∞ the region containing the singular points xj and ek in its
boundary, where j, k ∈ {+,−}.

Statement (b.3) is a consequence of Theorem 2.6.9. �
Proposition 5.5.26. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, (t, d) ∈ SN∞ \ VB2|D,T , and t < 0. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, the degenerated nodes e+ and e−, the
saddle-nodes at infinity x+, x− ∈ ∂D, which have their central manifold
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contained in ∂D , and their unstable hyperbolic manifold contained in
Σ∞;

(a.2) the separatrices of the saddle at the origin, and the separatrices of the
singular points x+ and x−.

(b) The canonical regions are: Σ++∞ = Wu(x+) ∩ W s(e+), Σ
+−∞ = Wu(x+) ∩

W s(e−), Σ−−
∞ = Wu(x−) ∩W s(e−), and Σ−+

∞ = Wu(x−) ∩W s(e+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.

Proof. Let (A,B) be the fundamental matrices of the system and assume that the
matrix A is in real Jordan normal form. Since (t, d) �∈ VB2|D,T , it follows that the
matrix A is non-diagonal, see Lemma 4.7.2. Thus we can assume that k1 �= 0.

(a) The existence of these separatrices is a consequence of Propositions
5.5.1(a) and 5.5.2(c).

(b) Arguments similar to those in Proposition 5.5.19(c) show that: the sin-
gular points e+ and e− are the ω-limit sets of the unstable separatrices of the
singular points at infinity x+ and x−, respectively; the system has no separatrix
cycles to singular points contained in ∂D; and the separatrices of the saddle at the
origin together with the unstable separatrices of x+ and x− split the region Σ∞
into the four open, connected, and invariant regions, Σ++∞ , Σ+−∞ , Σ−−∞ , and Σ−+∞ .
The statement follows immediately if we denote by Σjk

∞ the region which contain
the singular points xj and ek in its boundary, where j, k ∈ {+,−}.

Statement (d) is a consequence of Theorem 2.6.9. �

Proposition 5.5.27. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ VB2|D,T and with fundamental
matrices (A,B).

(a) If the real Jordan normal form of the matrix A is non-diagonal, then the qual-
itative behaviour of the Poincaré compactification is described in Proposition
5.5.26.

(b) Suppose that the real Jordan normal form of the matrix A is diagonal. Then:

(b.1) The boundary ∂D of the Poincaré disc is formed by singular points in
such a way that ∂D \ {±k⊥/‖k‖} is an unstable normally hyperbolic
manifold and the local phase portrait of the singular points ±k⊥/‖k‖
is topologically equivalent to that in Figure 5.11(b). The system has
three singular points in Σ∞: the saddle point at the origin 0 and the
degenerated diagonal nodes e+ and e−.

(b.2) The straight lines η+ = {e++rk⊥ : r ∈ R} and η− = {e−+rk⊥ : r ∈ R}
split the interior of the Poincaré disc Σ∞ into the three open, connected
and invariant regions Σ+∞, Σ0∞, and Σ−∞, satisfying that Σ+∞ ⊂W s(e+),
Σ−

∞ ⊂ W s(e−). Moreover, the α-limit set of every orbit in Σ+
∞ ∪ Σ−

∞
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is contained in ∂D \ {±k⊥/‖k‖}. The separatrices of the origin split
Σ0

∞ into the four open, connected, and invariant regions Σ++
∞ , Σ+−

∞ ,
Σ−−∞ , and Σ−+∞ , satisfying that Σ++∞ ⊂Wu(k⊥/‖k‖)∩W s(e+), Σ

+−∞ ⊂
Wu(k⊥/‖k‖)∩W s(e−), Σ−−

∞ ⊂Wu(−k⊥/‖k‖)∩W s(e−), and Σ−+
∞ ⊂

Wu(−k⊥/‖k‖) ∩W s(e+).

(b.3) The phase portrait of the Poincaré compactification is topologically equi-
valent to its correspondent in Figure 5.17.

Proof. Without loss of generality we can assume that the matrix A is in real
Jordan normal form.

(a) Suppose that k1 �= 0. Then the statement follows by using arguments
similar to those used in the proof of Proposition 5.5.26.

Now suppose that k1 = 0. We assume that k2 = 1. In this case, the unstable
separatrices of the singular points at infinity x+ and x− are contained in the
straight lines x2 = ±b2/λ, see Theorem 3.11.10(e). The statement follows by using
arguments similar to those in the proof of Proposition 5.5.26.

Statement (b.1) is a consequence of Propositions 5.5.1(a) and 5.5.2(b).
(b.2) From Proposition 5.5.3(a) we conclude that the system has no Jordan

curves formed by solutions. As in Proposition 5.5.20(b.2), it can be shown that: the
straight lines η+ and η− are invariant under the flow and contain the separatrices
of the singular points at infinity ±k⊥/‖k‖; the lines η+ and η− split the interior
of the Poincaré disc Σ∞ into the three open, connected and invariant regions Σ+

∞,
Σ0∞, and Σ−∞; and the behaviour of the flow in these regions, as described.

(b.3) The separatrices of the system in Cl(Σ0
∞) are the singular points 0, e+,

e−, ±k⊥/‖k‖, the orbits contained in η+ and η−, and the separatrices of the origin.
Therefore, the canonical regions contained in Cl(Σ0∞) are Σ++∞ , Σ+−∞ , Σ−−∞ , and
Σ−+

∞ . From Theorem 2.6.9 we conclude that there exists an orientation preserv-
ing homeomorphism h0 from Cl(Σ0∞) to the corresponding region in Figure 5.17.
Following the proof of Proposition 5.5.20(b.3), we can construct two orientation
preserving homeomorphisms h+ and h− from Σ+

∞ and Σ−
∞ to the corresponding

regions in Figure 5.17, respectively. The statement follows by noting that

h =

⎧⎨⎩
h+ in Cl (Σ+

∞) ,
h0 in Cl

(
Σ0

∞
)
,

h− in Cl (Σ−
∞) ,

is a topological equivalence. �
Proposition 5.5.28. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ C12 . Then:
(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, and the asymptotically stable foci e+,
e−;

(a.2) the limit cycle at infinity ∞ = ∂D;
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(a.3) the separatrices of the saddle point at the origin.

(b) The canonical regions are: Σ+
∞ = Wu(∞) ∩W s(e+) and Σ−

∞ = Wu(∞) ∩
W s(e−).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.

Proof. (a) The existence of the listed separatrices is a consequence of Propositions
5.5.1(a) and 5.5.2(a).

(b) The system has no Jordan curves formed by solutions contained in Σ∞,
see Proposition 5.5.3(a). Then the α- and the ω-limit sets in the Poincaré disc D

are the limit cycle ∞ and the singular points 0, e+, and e−. Let γu+, γu−, γs+,
and γs− be the unstable and the stable separatrices of the origin, respectively.
Hence ω(γu+) = e+, ω(γ

u−) = e−, and α(γs+) = α(γs−) = ∞. Therefore, the
separatrices γs+ and γs− split the region Σ∞ \ Cl(Wu(0)) into the two open,
connected, and invariant regions Σ+

∞ and Σ−
∞. Let Σk

∞ be the region containing
ek in its boundary, where k ∈ {+,−}. The behaviour of the flow in Σ+∞ and Σ−∞
follows by observing that the singular points e+ and e− are asymptotically stable
and the limit cyle ∞ is asymptotically unstable.

Statement (c) is a consequence of Theorem 2.6.9. �
Proposition 5.5.29. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T < 0, and (t, d) ∈ O. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, and the singular points at infinity x+,
x− ∈ ∂D, which have a neighbourhood contained in D formed by an
elliptic sector;

(a.2) the separatrices of the saddle point at the origin, and the separatrices of
the singular points x+ and x−, which form two heteroclinic cycles Δ+

and Δ− to the common singular point at the origin.

(b) The canonical regions are: ΣΔ+ ⊂ Wu(x+) ∩ W s(x+), ΣΔ− ⊂ Wu(x−) ∩
W s(x−), Σ+−∞ ⊂Wu(x+) ∩W s(x−), and Σ−+∞ ⊂Wu(x−) ∩W s(x+).

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.

Proof. Statement (a.1) is a consequence of Propositions 5.5.2(c) and 5.5.1(b).
(a.2) From Proposition 5.5.3(a) we conclude that there are no Jordan curves

formed by solutions in the interior of the Poincaré disc Σ∞. Hence, the separatrices
of the origin cannot connect in a separatrix cycle contained in Σ∞. On the other
hand, the origin is the unique singular point in Σ∞. Let γs+, γs−, γu+, and γu−

be the stable and the unstable separatrices of the origin. Therefore, α(γs+
0 ) =

ω(γu+
0 ) = x+ and α(γs−

0 ) = ω(γu−
0 ) = x−, which form the heteroclinic cycles Δ+

and Δ−.
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(b) The behaviour of the flow in ΣΔ+ and ΣΔ− is straightforward.

Let Σ+−
∞ and Σ−+

∞ be the connected components of Σ∞ \ Cl(ΣΔ+ ∪ ΣΔ−).
It is easy to conclude that the boundaries of these regions, ∂Σ+−∞ and ∂Σ−+∞ , are
not contained in a separatrix cycle. Thus, the α- and the ω-limit sets in Cl(Σ+−

∞ )
and Cl(Σ−+

∞ ) are x+, x+, and 0, which proves the statement.

Statement (c) is a consequence of Theorem 2.6.9. �

5.5.6 The bifurcation set

Using the results proved in Subsection 5.5.5 and the phase portraits sketched in
Figures 5.17 and 5.18, in this subsection we describe the bifurcations that take
place in the phase portrait of the Poincaré compactification of a fundamental
system with parameters D < 0 and T < 0 and (t, d) varying in the plane ΠD,T .

Take (t, d) ∈ C12 and vary the parameters clockwise. On the straight line
H∞ the singular points e+ and e− are bounded centers limited by two periodic
orbits. Just after crossing H∞ only two periodic orbits persist, becoming two
stable limit cycles. Also, another limit cycle appears bifurcating from infinity. Then
on the straight line H∞ two different bifurcations occur: the first one is a Hopf
bifurcation from the singular point at infinity; the other one is a focus-center-limit
cycle bifurcation at the singular points e+ and e−.

On the curve HoL|D;T the two limit cycles which emerge at the focus-center-
limit cycle bifurcation collide with the separatrices of the saddle at the origin
forming two homoclinic cycles to the common singular point at the origin. These
homoclinic cycles disappear just after crossing the curve HoL|D;T and one unstable
limit cycle emerges. Therefore, on the curve HoL|D;T the family of fundamental
systems exhibits a homoclinic bifurcation.

On the curve (t, d) ∈ NHlc|D,T the limit cycle born at the homoclinic bi-
furcation collides with the one born in the Hopf bifurcation at infinity. From this
collision appears a non-hyperbolic limit cycle which is inside asymptotically sta-
ble and outside asymptotically unstable. This limit cycle disappears just after
crossing the curve NHlc|D,T . Thus, on the curve NHlc|D,T the family exhibits a
saddle-node bifurcation of limit cycles.

In much the same way as in Subsection 5.2.6, a saddle-node bifurcation of
the singular points at infinity occurs on the curve SN∞.

The fundamental systems with parameters lying on the straight half-line
W1|∗D,T have two different compactified phase portrait, depending on whether
the system is proper or not. If the system is proper, then the phase portrait is
topologically equivalent to the phase portrait of systems with parameters in C11 . If
the system is not proper (an eigenvector of the fundamental matrix A is parallel
to the straight line L+), then the straight lines through the singular points e+
and e− which are parallel to L+ define a parabolic sector of the saddle points at
infinity. Therefore, a parabolic sector bifurcation of the saddle points at infinity
occurs on W1|∗D,T .
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As in Subsection 5.2.6, a pitchfork bifurcation of the saddles at infinity occurs
on the straight line N . In this case (for t > 0) it is a subcritical bifurcation.

On the straight half-line W2|∗D,T , a parabolic sector bifurcation of the saddle
points at infinity takes place.

5.6 The case D < 0 and T = 0

In this section we consider the fundamental systems

ẋ = Ax+ ϕ
(
kTx

)
b,

with parameters D < 0 and T = 0. The dynamical behaviour of these systems
is similar to the dynamical behaviour of fundamental systems with parameters
D < 0 and T < 0. Only when t2 − 4d < 0, their phase portraits are different,
see Subsection 5.6.1. Therefore, to describe the Poincaré compactification of the
fundamental systems with parameters D < 0, T = 0, and t2 − 4d ≥ 0 we refer the
reader to Propositions 5.6.3 and 5.6.4, and Figure 5.17.

5.6.1 Proper fundamental systems

According to Subsection 5.5.1, for the non-proper fundamental systems with pa-
rameters D < 0 and T = 0, the parameters (t, d) lie on the straight lines W1|D,0 =
W1 ∩ ΠD,0 and W2|D,0 = W2 ∩ ΠD,0, see Figure 5.10. Note that the intersection
of these straight lines is a point which belongs to the half-line t = 0 and d < 0.

From Lemma 4.7.2 we conclude that the fundamental systems with param-
eters D < 0, T = 0, and t2 − 4d = 0 and such that the real Jordan normal form
of the matrix A is diagonal satisfy that (t, d) ∈ VB1|D,0 ∪ VB2|D,0 . Here VB1|D,0

and VB2|D,0 are the intersection points of the straight lines W1|D,T and W2|D,T

with the parabola t2 − 4d = 0, respectively.

5.6.2 Finite singular points and singular points at infinity

The existence, number and location of finite and infinite singular points, together
with the associated local phase portraits are described in Propositions 5.5.2 and
5.5.1.

5.6.3 Periodic orbits

In the following we prove that only fundamental systems with parameters t = 0
and d > 0 can exhibit Jordan curves formed by solutions.

Proposition 5.6.1. Consider a fundamental system with parameters D < 0 and
T = 0.
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Figure 5.17: Phase portraits and the bifurcation set of the Poincaré compactifica-
tion of the fundamental systems with parameters D < 0 and t2 − 4d ≥ 0.
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Figure 5.18: Phase portraits and the bifurcation set of the Poincaré compactifica-
tion of the fundamental systems with parameters D < 0, T < 0, and t2 − 4d < 0.
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(a) If either t �= 0 or t = 0 and d ≤ 0, then there are no Jordan curves formed
by solutions.

(b) If t = 0 and d > 0, then there exist two periodic orbits Φ+ ⊂ L+ ∪ S+ and
Φ− ⊂ L−∪S− such that the annular regions Cl(ΣΦ+) \ e+ and Cl(ΣΦ−) \ e−
are formed by periodic orbits.

Proof. (a) Suppose that t �= 0 and let Γ be a Jordan curve formed by solutions.
From Theorem 3.12.2(d) it follows that Γ ⊂ L+∪S0∪L−. But this is not possible,
because the system in L+ ∪ S0 ∪ L− becomes a linear system with matrix B and
det(B) = D < 0.

Suppose now that t = 0 and d ≤ 0. From Lemma 5.5.4(a) it follows that
the return map π is not defined. Hence, every Jordan curve formed by solutions is
contained in one of the regions S+, S0 or S−. In these regions the system becomes
linear with parameters D < 0 or d ≤ 0. This implies that any Jordan curve
formed by solutions must be contained in them. Therefore, the systems has no
Jordan curves formed by solutions.

(b) The existence of the periodic orbits Φ+ and Φ−, and the behaviour of the
flow in Cl(ΣΦ+) \ e+ and Cl(ΣΦ−) \ e− can be concluded by applying arguments
similar to those in the proof of Proposition 5.5.3(b). �

In the next result we show that for a fundamental system with parameters
t = 0 and d > 0 every orbit not contained in Cl(ΣΦ+) \ e+ or in Cl(ΣΦ−) \ e− is
either a periodic orbit or a homoclinic cycle to the singular point at the origin.

Proposition 5.6.2. Consider a fundamental system with parameters D < 0, T = 0,
t = 0, and d > 0. The stable and the unstable separatrices of the origin form
two homoclinic cycles Δ+ and Δ− to the common singular point at the origin.
Moreover, every orbit different from Δ+, Δ−, 0, e+, and e− is a periodic orbit.

Proof. Since T = 0, t = 0, and t2−4d < 0, it follows that the Poincaré maps π̃A
++,

πB
++, and πB

+− are the identity on their respective domains, see Lemma 5.5.4(b)
and (e). Hence the Lamerey map defined in Lemma 5.5.7(a) satisfies that g (a) = 0
for every a �= |Λ2|−1. Therefore, any orbit γ intersecting either L+ or L− at a point
of coordinate a �= |Λ2|−1 is a periodic orbit, see Lemma 5.5.7(b).

Let Λ1 and Λ2 be the eigenvalues of the matrix B. Since T = 0, we have
−Λ1 = Λ2 < 0. Hence g(|Λ2|−1) = 0. From Lemma 5.5.7(c) we conclude that the
separatrices at the origin form two homoclinic cycles Δ+ and Δ− to the common
singular point at the origin.

The periodic orbits Φ+ and Φ− defined in Proposition 5.6.1(b) intersect L+

and L− at the contact points p+ and p−, respectively (see the proof of Proposition
5.5.3 for more details). Since the points p+ and p− have coordinate a = 0, it follows
that Φ+ ⊂ ΣΔ+ and Φ− ⊂ ΣΔ− . �
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5.6.4 Phase portraits

Now we describe the compactified phase portraits of the fundamental systems
with parameters D < 0 and T = 0. We present these results in two separate
propositions, depending on the existence of a previously studied phase portrait.
In the first of these results we describe a phase portrait which is not topologically
equivalent to any of the phase portraits studied before.

Following expression (5.16) we define the half-lines W1|∗D,0 and W2|∗D,0 for
the parameter D < 0.

Proposition 5.6.3. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0, T = 0, and (t, d) ∈ H∞. Then:

(a) The separatrices of the system are:

(a.1) the saddle point at the origin 0, and the singular points e+ and e−,
which are centers;

(a.2) the limit cycle at infinity ∞;

(a.3) the separatrices of the saddle at the origin, which form two homoclinic
cycles Δ+ and Δ− to the singular point at the origin in such a way that
e+ ∈ ΣΔ+ and e− ∈ ΣΔ− .

(b) The canonical regions are: ΣΔ+ \ e+, ΣΔ− \ e−, and Σ∞ \ Cl(ΣΔ+ ∪ ΣΔ−).
Moreover, every orbit in these regions is periodic.

(c) The phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.19.

Proof. Statements (a.1) and (a.2) follow from Propositions 5.5.1(a) and 5.5.2(a).
Statements (a.3) and (b) follow from Proposition 5.6.2. Statement (c) follows from
Theorem 2.6.9. �
Proposition 5.6.4. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0 and T = 0 and fundamental matrices (A,B).

(a) If (t, d) ∈ C21 , then the phase portrait of the Poincaré compactification is
topologically equivalent to its correspondent in Figure 5.19.

(b) If either (t, d) ∈ SN∞ \ VB1|D,0 and t > 0, or (t, d) ∈ VB1|D,0 and the real
Jordan form of the matrix A is non-diagonal, then the phase portrait of the
Poincaré compactification is topologically equivalent to its correspondent in
Figure 5.17.

(c) If (t, d) ∈ VB1|D,0 and the real Jordan normal form of the matrix A is diag-
onal, then the phase portrait of the Poincaré compactification is topologically
equivalent to its correspondent in Figure 5.17.

(d) If either (t, d) ∈ C11 \W1|∗D,0 or (t, d) ∈ W1|∗D,0 and the system is proper, then
the phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.
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(e) If (t, d) ∈ W1|∗D,0 and the system is not proper, then the phase portrait of the
Poincaré compactification is topologically equivalent to its correspondent in
Figure 5.17.

(f) If t �= 0 and d ≤ 0, then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.17.

(g) If either (t, d) ∈ C22 \W2|∗D,0 or (t, d) ∈ W2|∗D,0 and the system is proper, then
the phase portrait of the Poincaré compactification is topologically equivalent
to its correspondent in Figure 5.17.

(h) If (t, d) ∈ W2|∗D,0 and the system is not proper, then the phase portrait of the
Poincaré compactification is topologically equivalent to its correspondent in
Figure 5.17.

(i) If either (t, d) ∈ SN∞ \ VB2|D,0 and t < 0, or (t, d) ∈ VB2|D,0 and the real
Jordan normal form of the matrix A is non-diagonal, then the phase portrait
of the Poincaré compactification is topologically equivalent to its correspon-
dent in Figure 5.17.

(j) If (t, d) ∈ VB2|D,0 and the real Jordan normal form of the matrix A is diag-
onal, then the phase portrait of the Poincaré compactification is topologically
equivalent to its correspondent in Figure 5.17.

(k) If (t, d) ∈ C12 , then the phase portrait of the Poincaré compactification is
topologically equivalent to its correspondent in Figure 5.19.

Proof. The proof of statement (a) is identical to the proof of the Proposition
5.5.18. The proof of the remainder statements may be obtained from the proof of
the corresponding proposition in Subsection 5.5.5. �

5.6.5 The bifurcation set

The bifurcations which take place in the region t2−4d ≥ 0 of the parameter space
ΠD,0 when D < 0 are identical to those in the region t2 − 4d ≥ 0 of the plane
ΠD,T with D < 0 and T < 0, see Subsection 5.5.6. We refer the reader to this
subsection for a description of these bifurcations.

In the region t2−4d < 0 there exists an unique bifurcation curve, namely, the
straight line H∞. This curve corresponds to a focus-center-limit cycle bifurcation
in a neighbourhood of the singular points e+ and e−, together with a homoclinic
bifurcation.

5.7 The case D < 0 and T > 0

Following Section 5.4, under a time-reversal transformation, a fundamental sys-
tem with parameters (D,T, d, t) becomes a fundamental system of parameters
(D,T ∗, d, t∗), where T ∗ = −T and t∗ = −t. Hence, the two systems have identical
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Figure 5.19: Phase portrait and the bifurcation set of the Poincaré compactification
of the fundamental systems with parameters D < 0, T = 0, and t2 − 4d < 0.

orbits but oppositely oriented. Therefore, using the regions C211
∣∣
D,T∗ , C221

∣∣
D,T∗ ,

and C231
∣∣
D,T∗ , the curves HoL|D,T∗ and NHlc|D,T∗ , the half-lines W1|∗D,T∗ and

W2|∗D,T∗ , and the points VB1|D,T∗ and VB2|D,T∗ in the plane ΠD,T∗ , we define
in the plane ΠD,T (where T = −T ∗ > 0) the regions

C112
∣∣
D,T

:=
{
(t, d) : (−t, d) ∈ C231

∣∣
D,T∗

}
,

C122
∣∣
D,T

:=
{
(t, d) : (−t, d) ∈ C221

∣∣
D,T∗

}
,

C132
∣∣
D,T

:=
{
(t, d) : (−t, d) ∈ C211

∣∣
D,T∗

}
,

the curves

HoL|D,T :=
{
(t, d) : (−t, d) ∈ HoL|D,T∗

}
,

NHlc|D,T :=
{
(t, d) : (−t, d) ∈ NHlc|D,T∗

}
,

the half-lines

W1|∗D,T :=
{
(t, d) : (−t, d) ∈ W1|∗D,T∗

}
,

W2|∗D,T :=
{
(t, d) : (−t, d) ∈ W2|∗D,T∗

}
,
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and the points

VB1|D,T :=
{
(t, d) : (−t, d) ∈ VB1|D,T∗

}
,

VB2|D,T :=
{
(t, d) : (−t, d) ∈ VB2|D,T∗

}
.

Proposition 5.7.1. Consider the Poincaré compactification of a fundamental sys-
tem with parameters D < 0 and T > 0 and fundamental matrices (A,B).

(a) If (t, d) ∈ H∞, then the phase portrait of the Poincaré compactification is
topologically equivalent to its correspondent in Figure 5.20.

(b) If (t, d) ∈ C21 , then the phase portrait of the Poincaré compactification is
topologically equivalent to its correspondent in Figure 5.20.

(c) If either (t, d) ∈ SN∞ \ VB1|D,T and t > 0, or (t, d) ∈ VB1|D,T and the real
Jordan normal form of the matrix A is non-diagonal, then the phase portrait
of the Poincaré compactification is topologically equivalent to its correspon-
dent in Figure 5.17.

(d) If (t, d) ∈ VB1|D,T and the real Jordan normal form of the matrix A is diag-
onal, then the phase portrait of the Poincaré compactification is topologically
equivalent to its correspondent in Figure 5.17.

(e) If either (t, d) ∈ C11 \ W1|∗D,T , or (t, d) ∈ W1|∗D,T and the system is proper,
then the phase portrait of the Poincaré compactification is topologically equiv-
alent to its correspondent in Figure 5.17.

(f) If (t, d) ∈ W1|∗D,T and the system is not proper, then the phase portrait of
the Poincaré compactification is topologically equivalent to its correspondent
in Figure 5.17.

(g) If t �= 0 and d ≤ 0, then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.17.

(h) If either (t, d) ∈ C22 \ W2|∗D,T , or (t, d) ∈ W2|∗D,T and the system is proper,
then the phase portrait of the Poincaré compactification is topologically equiv-
alent to its correspondent in Figure 5.17.

(i) If (t, d) ∈ W2|∗D,T and the system is not proper, then the phase portrait of
the Poincaré compactification is topologically equivalent to its correspondent
in Figure 5.17.

(j) If either (t, d) ∈ SN∞ \ VB2|D,T and t < 0, or (t, d) ∈ VB2|D,T and the real
Jordan normal form of the matrix A is non-diagonal, then the phase portrait
of the Poincaré compactification is topologically equivalent to its correspon-
dent in Figure 5.17.

(k) If (t, d) ∈ VB2|D,T and the real Jordan normal form of the matrix A is diag-
onal, then the phase portrait of the Poincaré compactification is topologically
equivalent to its correspondent in Figure 5.17.
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(l) If (t, d) ∈ C132
∣∣
D,T

, then the phase portrait of the Poincaré compactification

is topologically equivalent to its correspondent in Figure 5.20.

(m) If (t, d) ∈ NHlc|D,T , then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.20.

(n) If (t, d) ∈ C122
∣∣
D,T

, then the phase portrait of the Poincaré compactification

is topologically equivalent to its correspondent in Figure 5.20.

(o) If (t, d) ∈ HoL|D,T , then the phase portrait of the Poincaré compactification
is topologically equivalent to its correspondent in Figure 5.20.

(p) If (t, d) ∈ C112
∣∣
D,T

, then the phase portrait of the Poincaré compactification

is topologically equivalent to its correspondent in Figure 5.20.

Proof. All the statements follow by applying a time-reversal and by employing the
corresponding results of Subsection 5.5.5. �

5.7.1 The bifurcation set

For a description of the bifurcations we refer the reader to Subsection 5.5.6.
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Figure 5.20: Phase portraits and the bifurcation set of the Poincaré compactifica-
tion of the fundamental systems with parameters D < 0, T > 0, and t2 − 4d < 0.
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Poincaré map Πjk, 163

Lipschitz
constant, 19

function, 19, 22
global, 20, 22
local, 20, 22

	Lojasiewicz
degree, 50
property at infinity, 50

Lyapunov function, 43

Matrix
equivalent, 30
exponential, 30
Jacobian, 39
Jordan form, 32
kernel, 31

Observable system, 179
Orbit, 24

flight time, 121
homoclinic, 48
periodic, 27
separatrix, 40

Parameter space, 22
Period, 23
Periodic function, 23
Periodic orbit

at infinity, 53
inside asympto. stable, 48
inside asympto. unstable, 48
outside asympto. stable, 49
outside asympto. unstable, 49

Phase portrait, 26
canonical region, 41
separatrix configuration, 41
skeleton, 41

Phase space, 20
Poincaré compactification, 53
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