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Preface

Ordinary differential equations (ODEs) are the preferred language for the investi-
gation and understanding of various natural phenomena. Employed extensively in
natural sciences, engineering, and technology, ODEs are nowadays integrated in
any standard undergraduate science curriculum, while continuing to be the subject
of intensive research.

Although ODEs model a large number of natural phenomena, it is well known
that not many admit explicit solution. For this reason, the qualitative theory and
associated methods are often employed as an alternative investigative tool. When
successful, the qualitative approach leads to a broader picture of important open
subsets of solutions (sometimes the entire set), providing information about the
ODEs’ flow, parametric stability and bifurcations.

However, few families of ODEs allow a full treatment from the qualitative
theory standpoint. The family of systems of linear differential equations is one
of them. In the context of the qualitative theory, the importance of this family
is evident when much of the local analysis of nonlinear ODEs is reduced to the
study of their linear part. Nevertheless, this family exhibits limited richness from
a dynamical systems standpoint.

In this book we consider planar systems of piecewise linear differential equa-
tions (PWLS), to which we apply the full program of the qualitative theory. PWLS
may be considered as some of the most tractable nonlinear ODEs and they dis-
play a rich and interesting dynamical behaviour, comparable to that of general
nonlinear ODEs.

Beyond the academic-theoretical significance, the study of PWLS has prac-
tical relevance. The interest in these class of systems is driven by concrete appli-
cations in engineering, in particular in control theory and the design of electric
circuits.

This book is addressed to mathematicians, engineers, and scientists in gen-
eral, who are interested in the qualitative theory of ODEs, PWLS in particular. It
is also a reference book for anyone interested in the global phase portraits and the
bifurcation sets of all the symmetric three-piece linear differential systems (here
called fundamental systems), since their full characterization is presented here for
the first time.

xi



xii Preface

The book is divided into five chapters. Chapter 1 introduces fundamental
systems, describes their global phase portraits (including behaviour at infinity) and
the bifurcations occurring when parameters vary. To emphasize the importance of
fundamental systems in applications, we discuss two well-known examples: the
motor position control and the Wien bridge circuit. For the later and for specific
values of the parameters, we describe the evolution of the phase portrait.

In Chapter 2 we collect the basic results of the qualitative theory of planar
ODEs which are used in the rest of the book. To simplify the exposition of some
concepts we have confined ourselves to ODEs having a complete flow. For this
reason some of the results presented here are more restrictive than those that
normally appear in the literature. In Section 2.5 we treat planar linear differential
systems. We refer frequently to this section throughout the book. In Section 2.9
we formalize some aspects of the compactification of flows in order to apply this
technique to the fundamental systems. As known, the Poincaré compactification is
widely used in polynomial differential systems to study the behaviour of the flow
near the infinity. However, although some differential equations can be compacti-
fied satisfactorily, we have not found a systematization of its use outside the class
of polynomial differential systems.

Chapter 3 begins with the study of the fundamental systems. We show that
within this class the existence and uniqueness theorem and the theorem on contin-
uous dependence on initial conditions and parameters are valid. We further prove
that the behaviour of these systems is determined by a pair of matrices, called
fundamental matrices. This justifies that, except in very singular cases, we use
the trace and the determinant of the two matrices as fundamental parameters to
describe the dynamics of these systems. Additionally, we study the local phase
portrait at the singular points, both finite and infinite, and we give some results
about the existence and configuration of periodic orbits.

Poincaré maps of PWLS are determined by the linear differential systems
which act in each of the pieces. For fundamental systems, one of these linear
differential systems is homogeneous, while the other two are non-homogeneous.
Consequently, in Chapter 4 we study all the Poincaré maps of linear differential
systems associated to two cross sections. These cross sections are parameterized
in such a way that the Poincaré maps become invariant under linear transforma-
tions. We note that the parametrization introduced here has important implica-
tions. First, it allows the study of the Poincaré maps by choosing, in each case,
the simplest expression for the fundamental matrices. Usually we will assume that
the matrices are expressed in their real Jordan normal form. Second, we can char-
acterize the region in the parameter space where we can guarantee the existence
of the Poincaré maps. Thus the bifurcation set associated to the non-existence of
the Poincaré maps in the parameter space is an algebraic manifold homeomorphic
to the Whitney umbrella. Finally, this parametrization establishes a link between
Poincaré maps of PWLS and the class of differential systems which are called
observable in control theory.



Preface xiii

By collecting the results obtained in the previous chapters, in Chapter 5 we
are able to describe and classify all the phase portraits of fundamental systems.
The description of the phase portraits is carried out via the characterization of
all separatrices and canonical regions. This allows us to use in a rigorous way the
Marcus-Newmann—Peixoto Theorem on the topological classification of planar
flows and to describe explicitly the bifurcation manifolds. Each of the sections
of the chapter is devoted to fundamental systems having fixed the sign of two
fundamental parameters. All sections of this chapter are structured similarly. First,
we collect the results about singular points (both finite and infinite) and limit
cycles. Second, we locate the rest of the separatrices of the system and we describe
the behaviour of the canonical regions. Finally, we organize all the information in
propositions which describe and classify fundamental systems when we vary the
two parameters. At the end of each section we describe the bifurcations set and
provide a picture of the parameter space representing the bifurcation manifolds
and the corresponding phase portraits.

Readers interested only in such results can read the introductory Chapter
1 and then skip directly to Chapter 5, where they may find at the end of each
section a complete list of phase portraits and their bifurcations.

The book has been organized in such a way so that the full classification of
the global dynamics of the fundamental systems is obtained by using the qualita-
tive theory of ODEs. Since there are many cases that must be considered, some
propositions are very similar to each other and following all of them at the first
reading becomes a little tedious. It may be recommended that at first reading only
some of the proofs presented in Sections 3.11, 4.4 and 4.5 be followed in detail,
so that the main arguments are understood. For instance, in Chapter 5, it may
be useful to focus on one class of fundamental systems given by fixing the sign of
the two fundamental parameters, and then follow the rest of the results in more
detailed subsequent readings.

We thank Christina Stoica for her careful reading of the text of this book
and her improvements to our poor English.

Jaume Llibre
Antonio E. Teruel
Barcelona, 2013.



Chapter 1

Introduction and statement of
the main results

Nowadays most scientific research is written in the language of ordinary differ-
ential equations (ODEs). Since the times these equations appeared first in the
works of G.W. Leibnitz (1646-1716) and I. Newton (1642-1727), more and more
fields of knowledge found and continue to find in them an accurate language to
determine and to develop their knowledge. Astronomy, and in particular Celestial
Mechanics, Physics and Chemistry found in differential equations the most natu-
ral way of expressing their laws. Engineering, Economics, Ecology, Epidemiology,
Neuroscience, etc., use this language in order to model natural phenomena and
to simulate their behaviour in theoretical and numerical experiments that hardly
could be carried out in a laboratory. As a result, the study of ODEs became one
of the areas of mathematics with a very large number of applications.

The determination of explicit expressions of the solutions of ODEs has been
the objective of the first mathematicians who studied ODEs, even though it soon
became clear that not all equations admit solutions that can be expressed terms
of elementary functions, see J. Liouville’s work (1809-1882). In fact, in spite of the
multiple attempts to progress along this line, the number of differential equations
that can be solved explicitly is insignificantly small compared with the totality
of equations. Moreover, even when it is possible to find an expression for the
solution, this could be so complicated that its analysis would encounter significant
difficulties.

At the end of 19th century, H. Poincaré (1854-1912) [in his “Mémoire sur
les courbes définies par une équation différentielle (1881-1886)] inaugurates a new
direction in the study and understanding of ODEs. Thanks to Poincaré’s per-
spective, solutions started to be considered geometric elements (orbits). This new
point of view did lead to the qualitative theory of differential equations. Research
of A. Lyapunov (1857-1918) about the stability of the motion, of I.O. Bendixson

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 1
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhduser Advanced Texts,
DOI 10.1007/978-3-0348-0657-2_1, © Springer Basel 2014



2 Chapter 1. Introduction and statement of the main results

(1861-1935) and G.D. Birkhoff (1884-1944), among others, joined the direction
set forward by Poincaré’s ideas.

The new approach tries to understand the dynamics of a system modeled by
a family of (ordinary) differential equations, x = f (¢, x; A) without needing to find
an explicit expression of their solutions. From the point of view of the qualitative
theory of differential equations, this understanding involves:

(1) the description of the phase portrait of every differential equation in the
family;

(2) the introduction of an equivalence relation between the different phase por-
traits and their classification according to this relation;

(3) the description of the changes (bifurcations) in the phase portrait which occur
when the equations change from one class of equivalence to another.

The phase portrait of a differential equation describes the domain where the
differential equation is defined (phase space) as the union of all its orbits. Since
orbits are manifolds of dimension less than or equal to 1, these could be: points,
and in this case we call them singular points; curves homeomorphic to the circle
St (periodic orbits); or curves homeomorphic to the straight line R. Usually only
a finite number of orbits determine the phase portrait. The set .S formed by these
special orbits is closed and R? \ S is formed by open connected components, each
of them called canonical regions. The union of the separatrices and an orbit of each
canonical region is called the separatriz configuration. A graphical representation
homeomorphic to the separatrix configuration is called a description of the phase
portrait.

The qualitative theory provides results and tools for the local analysis of
phase portraits. For instance, the Hartman—-Grobman Theorem [30] (1963) de-
scribes, under general hypotheses, the behaviour of orbits in a neigbourhood of
singular points. Nevertheless, the results in the description of the global phase
portraits are mainly significative when we work with equations in dimension 1 or
2. A specific example is the Poincaré-Bendixson Theorem, which guarantees, un-
der compactness assumptions, that the limit sets of the orbits are: singular points,
periodic orbits or separatriz cycles.

In fact, we do not have complete knowledge of global phase portraits of
differential equations, not even in the plane. Important questions, such as the
number of limit cycles (isolated periodic orbits inside the set of all periodic orbits)
and their distribution in the plane, are still to be answered beyond the field of linear
differential equations [61]. This question, focused on planar polynomial equations,
is known as the second part of 16th Hilbert’s problem, which was formulated by D.
Hilbert (1862-1943) in 1900.

Two differential equations can be equivalent from the point of view of qual-
itative theory, even if they are different in some other aspects. The most used
equivalence relation, which preserves the topological structure of the phase por-
trait, is the so-called topological equivalence. Two systems are said to be topolog-
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ically equivalent if there exists a homeomorphism between their respective phase
portraits, transforming the orbits of one system into the orbits of the other and
preserving their orientation. For some authors, as for instance M.M. Peixoto [51],
topological equivalence is not required to preserve the orbit orientation.

Generalizing L. Markus’ works [48] and referring to vector fields on 2-dimen-
sional manifolds with isolated singular points, D.A. Neumann [50] established
that the separatrix configuration determines the topological class of equivalence
of phase portraits. Another characterization of the topological equivalence classes
for differential equations on 2-dimensional manifolds is due to M.M. Peixoto [51].

Since 1937, when the physicist A.A. Andronov (1901-1952) and the mathe-
matician L.S. Portryagin (1908-1988) introduced the concept of structural stabil-
ity, the analysis of changes in separatrix configurations acquired great importance
in the qualitative theory of differential equations. Without going more deeply into
the subject, a differential equation is said to be structurally stable if its separa-
trix configuration is equivalent to the separatrix configuration of any vector field
“close” to it. A characterization of structurally stable 2-dimensional vector fields
was obtained by Peixoto [52].

On the other hand, separatrix configurations of phase portraits can change
when the parameters change. These changes are called bifurcations and the value
of the parameter where they take place are called bifurcation values. Both the
graphical representation of bifurcation values and the description of the changes
of the separatrix configurations are called bifurcation set.

To sum up, we can assert that a phase portrait grasps the essence of the
dynamical behaviour of a differential equation. In a similar way, a bifurcation set
grasps the essence of the dynamical behaviour of a family of differential equations.

In this book we apply the whole program of the qualitative theory of differ-
ential equations to the symmetric (with respect to the origin) family of three-piece
piecewise linear differential systems in the plane. The richness of the dynamic
behaviours observed in this family is, in general, comparable to that of general
nonlinear differential systems in the plane.

1.1 Piecewise linear differential systems

After presenting the book’s purpose, in this section we introduce the family of
systems under study, that is the family of piecewise linear differential systems,
elsewhere called piecewise affine systems. In particular we deal with planar con-
tinuous and symmetric ones. We also consider two examples of these systems that
show their relevance in applications.

A differential system defined on an open region S C R™ is said to be a
piecewise linear differential system (PWLS) on S if there exists a set of 3-tuples
{(Ai,b;, i)}, such that: A; is a n x n real matrix; b; € R"; S; C S is an open
set in R™ satisfying that S; N.S; = 0 if i # j and [ J,; CI(S;) = S; and A;x + by is
the vector field defined by the system when x € S;. As usual CI(S;) denotes the
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closure of S;. Thus the vector field defined by a PWLS is a linear map on each of
the disjoint regions S;, but is not globally linear on the whole S.

Ezample 1. From a given planar differential system x = f(x) with a differentiable
vector field f one can construct a set of different PWLS. For instance, let us
suppose that p; and p, are two zeros of f, and let k be a vector in R? such that
kTp; < 0 and kTpy > 0. The straight line I' = {x € R? : kTx = 0} divides R?
into the two open regions S; = {x € R? : kTx < 0} and Sz = {x € R? : kTx > 0}.
Denoting by Df(p;) the Jacobian matrix of the vector field f at the point p;, it
follows that {(Df(p;), —Df(pi)pi, Si)};—; » is a piecewise differential system on
the whole R2.

In this example it can be observed that the piecewise linear vector field co-
incides on each region S; with the Taylor expansion up to order one of the map f
around the point p;. In this sense the PWLS is a kind of global linearization of the
differential system x = f(x). Just as linear differential systems arise by local lin-
earization of differential systems, PWLS can be thought of as a global linearization
of differential systems. Unfortunately, there are no results about the relationship
between the dynamics of the two systems in the global case (as they are avail-
able in the local case, for instance the Hartman—Grobman Theorem). However,
the intuition says that important features of the global dynamical behaviour will
persist when we change from the differential system to the piecewise linear one
[10, 11, 12, 43, 54, 56].

We note that the definition of a PWLS does not contain information about
the behavior of the flow at the boundaries 0S; of the regions S;. PWLS can
be classified depending on how we can extend the vector field to 995;. Let I';; =
0S5;N0S; be the common boundary of the regions S; and ;. If A;p+b; = A;p+b;
for every p € I';;, then the PWLS is said to be continuous, otherwise the PWLS
is said to be discontinuous.

Discontinuous systems (not necessarily piecewise linear ones) are very im-
portant, see the recent excellent book by Di Bernardo et al. [19] and references
therein. The use of discontinuous models for mechanical systems in which impacts
occur, or for electronic systems employing electronic switches, allows to faithfully
represent the real dynamics of these types of systems.

From now on we restrict ourselves to continuous PWLS. In this case we
have that A;p + b; = A;p + b; for every p € I'y;. Hence, the boundary I';;
is contained in the linear manifold defined by the solutions of the linear system
(A; — Aj)x = bj —b,. Therefore, the boundary of the region S; is formed by pieces
of hyperplanes in R™.

Planar vector fields defined by continuous PWLS are globally Lipschitz, but
are not differentiable at the boundaries I';;. A great part of the qualitative the-
ory of differential equations, for instance bifurcation theory, is developed under
the assumption of differentiability of the vector field. This explains why the re-
sults obtained in that framework cannot be directly applied to the study of PWLS.
Nevertheless, the piecewise linear behaviour of these systems allows, in some cases,
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to carry out completely the program of the qualitative theory, from the descrip-
tion of phase portraits to the study of the bifurcation set. See, for instance, the
pioneering work of Andronov [3]. A complete description of the phase portraits
and bifurcation sets of two-piece piecewise linear systems can be found in [26].
Some aspects of the phase portraits of non-symmetric three-piece piecewise lin-
ear systems appear in [55]. Contributions on the phase portraits of fundamental
systems in dimension three can be found in [41].

In this book we deal with the special family of planar and continuous PWLS
given by {(A,b,S}),(B,0,5),(A,b,S_)}, where A is a 2 x 2 real matrix, b € R?\
{0}, B = A+bk”, the regions S, and S_ are the half-planes {x € R? : kTx > 1}
and {x € R? : kTx < —1}, respectively, and the region Sy is the central strip
{x e R?: |ka| < 1}. The boundary of Sy is formed by two symmetric straight-
lines I'y := {x € R? : kTx = 1} and I'_ := {x € R? : kTx = —1}. Following J.
Llibre and J. Sotomayor [44], we call these systems fundamental systems.

Fundamental systems can also be written in the piecewise linear form

Ax+b, ifkTx>1,
x=1{ Bx, if |kTx|<1, (1.1)
Ax—b, ifkTx< -1,

or in the Lur’e form

% = Ax + p(kTx)b, (1.2)
where the function ¢ : R — R is the odd three-piece linear function

1, ifo< -1,
plo)=1¢ o, if |o] <1,
1, ifo>l.

Restricted to each of the half-planes Sy and S_, the fundamental system
(1.1) is a non-homogeneous linear system. Then the dynamical behavior of the
fundamental system in these regions is determined by the trace ¢t and the deter-
minant d of the matrix A. On the other hand, when restricted to the central strip
So, the fundamental system (1.1) is a homogeneous linear system. Therefore, the
dynamical behaviour of the fundamental system in Sy is determined by the trace
T and the determinant D of the matrix B.

The values of D, T, d and t will be called the fundamental parameters of
the family, and we will describe all the bifurcations of the fundamental family in
dependence on them.

We emphasize that fundamental systems are the canonical representatives
of a wide class of PWLS. So for given mq, my,u € R with mg # m; and u > 0,
the change of variables k = uk, b = u=!(mg — m;)"'b and A = A — m;bk”
transforms the fundamental system (1.2) into the PWLS

% = Ax + 3(k"x)b, (1.3)
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where
mio — (mo —my) u, if o< —u,
&(U) = moo, if —u<o<u,
mio + (mo —my) u, if uwu<o.

Therefore, the two systems have the same orbits and thus the same dynamic
behaviour.

1.1.1 Examples

Many publications on piecewise linear differential systems come from applications,
as for instance control theory and electric circuits design. The list of published
papers devoted to these systems gives an idea of their increasing importance. We
refer the reader to the following works and the references therein: M. Komuro [37],
L.O. Chua and A.C. Deng [15], L.O. Chua and R. Lum [47] and [46], Chai Wah
and L.O. Chua [59], and J. Alvarez, R. Susrez and J. Alvarez [1].

Non-linearities that appear in real dynamical systems are very often modeled
by smooth functions. Hence, results and tools from smooth dynamics and local bi-
furcation theory can be fruitfully applied. But, in some cases, considering piecewise
linear functions is an alternative that fits better, qualitatively and quantitatively,
the experiments [3], [24]. Standard piecewise linear functions are: saturation, to
model amplifiers and motors, see Figure 1.1(a); dead zone, to model valves and
motors, see Figure 1.1(b); friction, to model the static friction of motors, see Figure
1.1(c); and sign, to model relays, see Figure 1.1(d).

(c) (d)

Figure 1.1: Piecewise linear functions: (a) saturation; (b) dead zone; (c¢) friction;
(d) sign.



1.1. Piecewise linear differential systems 7

In the following examples, we show usual applications where PWLS arise in a
natural way. In our opinion these applications justify the interest in these systems.

Motor position control

A classical problem in control theory is the motor position control. This problem
consists in designing a device fed by a motor, which is able to place the motor very
precisely in a position 6; called the reference position. This problem appears very
often in industrial automatization and in robotics control when we try to control
the position of a mechanical arm. An introduction to control theory can be found
in the books of S. Lefschetz [39], D.P. Atherton [9], and K.S. Narendra and J.M.
Taylor [49].

A direct current motor position control device is sketched in Figure 1.2.
The system is formed by four elements: an operational amplifier with character-
istic function f, (v); a DC motor with characteristic function Ths (v) and with a
tachometer included; a set of gears with a velocity relation from n to 1; and a pro-
portional control device with constant K. This design corresponds to a full-state
feedback control design. ,

kO

Control L — — — —
Operational

amplifier = @@ - - m - - = = I : Bo

AQY

E

- g_
3]

A

Figure 1.2: Sketch of a DC motor position control device.

Let 6,, I, and F,(0,) denote the position, the inertia momentum and the
friction force of the outer axis, and let 0ys, Iy and Fiy (QM) denote the position,
the inertia momentum and the friction force of the motor axis. The equation of
motion of the device is

(21 + 1) fo=nTu ( fa (K (0: — 0,) — Knéo)) —n2Fy b, — Foy,  (1.4)
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see [9]. In this equation we assume that friction forces are proportional to angular
velocities.

THE LINEAR CASE: FIRST APPROACH. Some electronic components are de-
signed in such a way that their outputs are proportional to the inputs. Conse-
quently, we can suppose that the characteristic functions of both the amplifier
and the motor are linear, that is f, (v) = Gv and Ty (v) = Kpwv. Considering
0; = 0, equation (1.4) can be written as the linear homogeneous differential equa-
tion

(n®In +1o) 6o + [n* (K- G K + Far) + Fo] 0, + (n K- G K) 6, = 0.

COMPONENTS SATURATION. It is not a restriction to assume that the char-
acteristic function of the amplifier is linear. However, this behaviour cannot be
kept for every input voltage. An operational amplifier has a finite output range
which cannot be exceeded, even for high input voltages. Therefore, a more realistic
model has to consider a characteristic function for the amplifier of saturation type

G, if v >4,
fa(v) = G, if |v| < dq,
—G g, if v < —dg,

see Figure 1.1(a). Hence, by considering

(0 1
"\ 0 —(nPFy+F)/(nPIu+1o) )’

21 = 0y, 12 = 6, k = (K,nK)", b = (0,—nKp/(nIy + 1)) and 6; = 0,
equation (1.4) can be written as X = Ax + f, (k’x) b, which is a fundamental
system, see (1.3).

In the same way that the operational amplifier does, the DC motor works
in a range of set voltages. If we exceed this range, the output of the motor will
remain constant. Consequently, a more realistic model will take it into account a
piecewise linear characteristic function of saturation type for the motor T);. Taking
kT = (-GK, —GKn)T, b= (O,n/ (n2IM + Io))T and the values for z1, 22, 6; and
A, as in the previous case, equation (1.4) can be written as x = Ax+ Ty (ka) b,
which is a fundamental system.

COULOMB FRICTION IN THE MOTOR. We can suppose that the saturation
problems in the operational amplifier and motor can be avoided by choosing com-
ponents whose features are higher than those which are usually required. Never-
theless, the motor needs a minimum tension to overcome inner frictions and to
start turning. In order to take this into account, we will consider a piecewise linear
characteristic function for the motor of dead zone type, see Figure 1.1(b). Setting

KT(U—5M), ifv>5M,
Tn (v) =4 O, if |v] < éur,
Kr (v+6um), if v < 0,



1.1. Piecewise linear differential systems 9

and A, k, b, x and 6; as in the previous case, expression (1.4) transforms into
expression X = Ax + Ty (ka) b, which is a fundamental system.

Wien bridge

In electronic circuits design also arises a large family of examples modeled by
fundamental systems [3], [16]. In the following example we introduce a well-known
circuit, the Wien bridge oscillator formed by two resistors, two capacitances and
one operational amplifier (op-amp) with negative feedback see Figure 1.3.

Rl il Cl
L I I

Figure 1.3: Wien bridge circuit.

The circuit is formed by two loops. The first one contains the resistor R; and
the capacitors C7 and Cs. The second loop is formed by the resistor Ro and the
capacitor Cy. For the sake of simplicity, we consider that the circuit is clockwise
oriented in the first loop and anticlockwise oriented in the second one.

Kirchhoft’s laws can be used to describe the evolution of the voltages V¢,
and Ve, across the capacitors C; and Cs, respectively, leading to the differential
equations

RiC\Ve, = —Vo, — Ve, — Vo,
(1.5)

R1CoVe, = —Vg, — (1 + p

Rl) Ve — Vo,
2
where Vj is the output voltage of the op-amp.

The characteristic function of an op-amp depends only on the difference
between the voltage at the non-inverting terminal and the voltage at the inverting
terminal (Vi, and 0, respectively, in the Wien bridge). In an ideal framework,
this function is considered to be linear and the slope of the function is called the
open-loop gain of the amplifier. In practice, the op-amp has a limited response
range (—FE, E), beyond which the amplifier is saturated. Taking this into account,
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a more realistic characteristic function for the op-amp is given by

Ve = Esign(—aVe, + E), if |aVe,| > E,
0= —aVe,, if |aVe,| < E,

where « = 14+ Rp/Rg is the gain of the op-amp.
Using the above expression of V;; and making the change of variables

OzV02 OéVc1
T = ) T2 = )

E E
the system of differential equations (1.5) can be rewritten as the fundamental
system
Ax+b, ifz >1,
X =< Bx, if |x1] <1, (1.7)
Ax —b, ifz <1,

where
a 1 1 1
R.1Cy a (R102 * R202> " RiCy
b= , A= ,
« 1 1
”C el ROy

and B= A+ bTe;.

1.2 Main results

What follows is the presentation of the main new results obtained in this book
on the classification of the fundamental systems. The readers who are not famil-
iar with the qualitative theory of differential equations are referred to the next
chapters, where they will find the definitions of the notions which appear here.

Since Andronov and his colleagues began the study of the piecewise linear
differential equations in [3], and in particular the study of fundamental systems,
part of their phase portraits have been described by different authors. Andronov
also established the existence of limit cycles in the family of fundamental systems
and used the Poincaré map between the lines I';. and I'_ as a tool for the search
for limit cycles and in the analysis of their stability.

Some questions about the local phase portrait in a neighbourhood of the sin-
gular points of the fundamental systems with parameter D > 0 can be found in [1].
However, the study of fundamental systems from the point of view of the qualita-
tive theory of differential equations starts with the work of Llibre and Sotomayor
[44]. In that paper the authors describe the phase portraits and the bifurcation set
of all the fundamental systems with parameters D > 0 and 7" < 0. We note that in
[44] the authors do not study the behaviour of the system in a neighbourhood of
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(e) () (9)
(i) (i) (k)

Figure 1.4: Phase portrait of fundamental systems with D > 0 and T < 0.

infinity. Therefore, from the eleven equivalence classes depicted in Figure 1.4, the
authors only identified five. Moreover, the techniques used there for the study of
the limit cycles differ from those introduced by Andronov. A review of this work
appears in Section 5.2.

Based on the study of the Poincaré maps, in [46] and [47] R. Lum and L.O.
Chua studied the configuration of the limit cycles appearing in two-piece and in
three-piece linear differential systems, respectively. The two studies are based on
a conjecture which is true in the first case, as it has been proved by E. Freire,
E. Ponce and F. Torres [24], but it is erroneous in the second, as we will show in
Section 5.5.

The bifurcation set of fundamental systems has also been subject to analysis
by other authors. For example, Llibre and Ponce [42] characterize the values of
the parameters in which the system exhibits a Hopf bifurcation at infinity.

Following the point of view of the qualitative theory of differential equations,
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Figure 1.5: Phase portrait of fundamental systems with D > 0 and 7' = 0.

in this book we make a topological classification of the family of the fundamental
systems with parameter D # 0; we provide the global phase portrait for each of
the 56 topological equivalence classes; and we describe the bifurcation set in the
fundamental parameter space (D,T,d,t).

The main results we provide in this book can be summarized in the following
four theorems.

Theorem 1.2.1. The phase portrait of a fundamental system with fundamental
parameter D > 0 and given (t,d) is topologically equivalent to the corresponding
one shown in Figure 1.4 when T < 0; or in Figure 1.5 when T = 0; or in Figure
1.6 when T > 0.

Theorem 1.2.2. Figure 1.7 shows the bifurcation set of the fundamental systems
for which the fundamental parameter D is positive and constant.

Theorem 1.2.3. The phase portrait of a fundamental system with fundamental
parameter D < 0 is topologically equivalent to the corresponding one shown in
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(k)

Figure 1.6: Phase portrait of fundamental systems with D > 0 and 7" > 0.

(i) ()

Figure 1.8 when T < 0 or T > 0 and t2 —4d > 0; or in Figure 1.9 when T > 0
and t? — 4d < 0.

Theorem 1.2.4. Figure 1.10 corresponds to the bifurcation set of the fundamental
systems for which the fundamental parameter D is negative and constant.

The last picture in Figure 1.4, 1.5, 1.6, 1.8 and 1.9 corresponds to the bi-
furcation set of the fundamental systems where the fundamental parameters D
and T are constant. To easily follow the evolution of the phase portraits when
the parameters (t,d) vary and for a better understanding of the nature of the
bifurcations, we have ordered the phase portraits clockwise.

When D > 0 the bifurcation set is formed by the three-dimensional manifolds
Hoos SN oo, N, HeL, {T =0}, and the surfaces O, VB; and VBs, see Figure
1.7. We remark that in Figure 1.7 we are considering a positive fixed value for
the parameter D. This allows us to represent the three-dimensional manifolds by
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VB,

SN oo N
VB, Hoo”
VB : :
d‘

W/

Figure 1.7: Bifurcation set when D is a positive constant.

surfaces and the surfaces by curves.

The manifold H., corresponds to a Hopf bifurcation at infinity, see Figure
1.4(a) and (b). The manifold SN o corresponds to a saddle-node bifurcation of two
singular points at infinity, see Figure 1.4(b), (¢) and (d) in the supercritical case
and Figure 1.4(h), (i) and (a) in the subcritical case. The manifold A corresponds
to a pitchfork bifurcation at infinity, see Figure 1.4(d) and (e) in the supercritical
case and Figure 1.4(g) and (h) in the subcritical case. Finally, the manifold H.L
corresponds to a heteroclinic bifurcation, see Figure 1.4(f). We remark that in
the surface O, where the above manifolds intersect, we have the four bifurcations
simultaneously.

The bifurcation manifolds V5, and VBs do not correspond to any dynamical
bifurcation. These manifolds appear when the real Jordan normal forms of the
fundamental matrices of the system are not uniquely determined. In such a case
two different phase portraits are possible for the same parameter value.

The manifold {T" = 0} corresponds to a vertical-Hopf bifurcation. This bifur-
cation occurs when the periodic orbit at the boundary of a bounded center persists
as a limit cycle. This phenomena has been widely studied by Freire, Ponce and
Torres [24].
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(p)

Figure 1.8: Phase portrait of fundamental systems with D < 0 and 7' < 0.
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The bifurcation set in the case when D < 0 is formed by the three-dimensional
manifolds Heo, HoLy NHic, SN s, Wi, W5, N, and the surfaces O, VB1, VBs, and
{T = 0}, see Figure 1.10. In Figure 1.10 we consider the case when the fundamental
parameter D takes a fixed negative value. For this reason the three-dimensional
manifolds are represented by surfaces and the surfaces by curves.

(b) (¢) (d)

()

Figure 1.9: Phase portrait of fundamental systems with D < 0,7 > 0 and t>—4d <
0.

The manifold H, corresponds to a bifurcation in which a Hopf bifurcation
at infinity and a vertical-Hopf bifurcation at two finite singular points occur si-
multaneously, see Figure 1.8(a), (b) and (c). The manifold H,L corresponds to
homoclinic bifurcation, see Figure 1.8(d). The manifold N'H,;. corresponds to a
saddle-node bifurcation of limit cycles, see Figure 1.8(f).

Like in the case D > 0, the manifolds SN o, and N correspond to a saddle-
node bifurcation and a pitchfork bifurcation of singular points at infinity. Also,
the surfaces VB and VB, describe the same type of bifurcations as in the case
D > 0.

The bifurcations associated with surfaces W and W3 cannot be described
locally; rather, they correspond to global bifurcations which arise when an eigen-
vector of the fundamental matrix A is parallel to the straight lines I'y and I'_|
see Figure 1.8(i) and (p), or Figure 1.8(k) and (11).

Just as in the case D > 0 on the bifurcation surface O, which is the inter-
section of the bifurcation manifolds Heo, SN o, HoL and N, the four bifurcations
occur simultaneously. The bifurcation surface {T' = 0, t = 0}, where the manifolds
Hoo and H,L intersect, also involves a combination of the two bifurcations.
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Figure 1.10: Bifurcation set when D is a negative constant.

Applications

We finish this chapter by describing the evolution of the phase portrait and the
bifurcations occurring in the example of the Wien bridge when we fix the values
of the components R, Ro, Rs,Cy and Cs, and vary only the value of Ry.

Straightforward computations show that the trace ¢ and the determinant d
of the matrix A are expressed in terms of the values of the components by

P d= !
T O\RIC ROy T RiCi)’ T RiCIR:Oy

From this we obtain that ¢ < 0 and d > 0. Similarly, the trace T" and the determi-
nant D of the matrix B are given by

1 Rp
+m@<+%)

Therefore, D > 0 and the sign of T" depends on the value of the resistor Rp.

Set Ry = 2.188 K, Ry = 2.167TKQ), Rg = 2.192 KQ, (1 = 646nF and
Cy = 328 nF. For these values one has that t> — 4d > 0. This circuit was actually
built in laboratory, see Figure 1.11(a) and the experiences described below have
been confirmed on the oscilloscope.
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Figure 1.11: (a) A Wien bridge circuit built on a protoboard. (b) Experimental
observation on a oscilloscope of the limit cycle, for the real value Rp = 10.63 K.

Setting the value of Rp less than 3.326 K2 we obtain that T < 0. The
corresponding phase portrait of the PWLS (1.7) is depicted in Figure 1.4(h). We
see that the origin, which is a focus type singular point, is a global attractor. Also,
two separatrices born at the two saddles at infinity are observed. The remaining
singular points at infinity are two nodes.

When Rr = 3.326 K2 one has T" = 0. The corresponding phase portrait is
depicted in Figure 1.6(h). Now the global attractor, namely, the singular point
at the origin, is replaced by a central region foliated by periodic orbits (bounded
period annulus). The remainder of the phase portrait persists without changes.

For values of Rp greater than 3.326 K2 we have that 7" > 0. The corre-
sponding phase portrait is depicted in Figure 1.9(g). As it can be observed, the
period annulus disappears and only one periodic solution persists. This limit cycle
is a global attractor and bifurcates from the boundary of the period annulus. This
bifurcation is called a focus-center-limit cycle bifurcation. The stability of the sin-
gular point at the origin changes, the point becoming unstable, see Figure 1.11(b).
Qualitative and quantitative aspects of the focus-center-limit cycle bifurcation are
studied in [23].



Chapter 2

Basic elements of the qualitative
theory of ordinary differential
equations

In this chapter we collect some basic ideas and results from the qualitative theory
of ordinary differential equations. We present only the tools needed in our later
analysis and the theoretical context where they appear. Most of these results have
extensions to more general contexts. To not make our presentation too long we
will restrict ourselves to the most relevant facts.

A deeper and more detailed introduction can be found in the following books:
A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.G. Maier [4], [5], M.W. Hirsch
and S. Smale [33], V.I. Arnold [7], J. Sotomayor [57], [58], P. Hartman [30], S. Lef-
schetz [40], L. Perko [53], C. Chicone [14], and recently the book of F. Dumortier,
J. Llibre and J.C. Artés [21].

2.1 Differential equations and solutions

2.1.1 Existence and uniqueness of solutions

Let U be a subset of R™ and W an open subset of U. We say that the function
f: U — R" is Lipschitz on W, if there exists a constant L € R, such that for
every X,y € W

If (%) —f Il < Lix—yll

The constant L is called a Lipschitz constant for f on W. Here and in the sequel ||-||
denotes the Fuclidean norm of R™. Since R" is a finite-dimensional vector space,
if f is Lipschitz with respect to a norm of R™, then f is Lipschitz with respect
to any other norm of R™. Hence, the definition of Lipschitz functions does not

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 19
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhduser Advanced Texts,
DOI 10.1007/978-3-0348-0657-2_2, © Springer Basel 2014
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depend on the chosen norm. However, this is not true for the Lipschitz constants.
For instance, if f is Lipschitz on W, with Lipschitz constant L with respect to the
Euclidean norm of R™, then y/nL is a Lipschitz constant of f with respect to the
mazximum norm of R"
Il = max {Jol},

where x = (21,29, . .. ,xn)T, and ()T denotes the transposed vector.

In particular when f is Lipschitz on the whole domain U, we call f globally
Lipschitz. On the other hand if for every xg € U there exists a neighbourhood W
of xg in U such that f is Lipschitz on W, then we call f locally Lipschitz on U.

Ezample 2 (Linear function). Consider the function f(x) = Ax, where Aisanxn
matrix. Since ||f(x) — f(y)|| = ||Ax — Ay| < ||Allllx — y||, f is both locally and
globally Lipschitz in R™, with L = ||A|| as a Lipschitz constant.

Ezample 3. Consider the quadratic function f(z) = 2. Since

1f (@) = fW)l = |z +yllz —yl, (2.1)

for any zo € R one has |f(z) — f(y)| < 2(Jzo] + &)z —y| in W = (2o — &, 20 +
g). Therefore, f is a locally Lipschitz function in R. However, f is not globally
Lipschitz in R. Indeed, assuming that there exists a constant L such that |f(z) —
f(y)| < L|z — y| for every z,y € R, we contradict (2.1).

Ezample 4 (Piecewise linear function). Consider the piecewise linear function
f(z) = |z|. From the triangle inequality we have |f(x)— f(y)| = ||z|—|y|| < |z—y],
which implies that f is both locally and globally Lipschitz, with Lipschitz constant
equal to 1.

For the purposes of this book it is enough to consider a differential equation
or a system of ordinary differential equations as

x=f(x), (2.2)

where x = x(s) € U, U is an open subset of R” and f : U — R” is a locally
Lipschitz function on U. From now on % denotes the derivative of x (s) with
respect to s. As usual, the domain of f (the set U) is called the phase space, the
variable x is called the dependent variable, and s is called the independent variable
or time. We use the variable s instead of the standard variable ¢ because ¢ will
denote the trace of some matrices which will appear later on.

In a more general context equation (2.2) is known as an autonomous ordi-
nary differential equation (as opposed to non-autonomous differential equations),
because the function f does not depend explicitly on the independent variable s.

A smooth function ¢ : I — U, where I is an open interval of R, is said to be
a solution of the differential equation (2.2) if ¢ (s) = f (¢ (s)) for every s € I.

Geometrically, a differential equation (2.2) assigns to every point x in the
phase space U a vector f (x) in the tangent space at x. Then a solution of the
differential equation is a curve ¢ : I — U whose tangent vector at ¢($) coincides
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with the vector f (¢ (s)) for any s, see Figure 2.1. From this reason we call the
function f a vector field.

G\

Figure 2.1: (a) Vector field f defined in the phase space U. (b) A solution ¢(s) of
the differential equation x = f(x).

¢(s) = £(¢(s))

o(s).

The existence of solutions of differential equations (2.2) is not obvious and
it depends on some properties of the vector field f. The same is true for the
uniqueness of the solution which satisfies the initial conditions (s, Xo), i-e. ¢ (so) =
Xg. The following theorem states the basic result in this direction.

Theorem 2.1.1 (Existence and uniqueness). Let U be an open subset of R™, f :
U — R" be a locally Lipschitz function on U, sg € R and x¢g € U. There exist a
constant ¢ > 0 and a unique solution ¢ : (sg —¢,s0+¢) = U of the differential
equation x = £ (x) such that ¢ (sg) = Xo.

For a proof of this theorem we refer the reader to [33].

To emphasize the dependence of the solutions on the initial conditions
(s0,%0), we denote the solution of the differential equation (2.2) passing through
X( at time s = sg by ¢ (s; s0,X0)-

2.1.2 Prolongability of solutions

From the existence and uniqueness theorem we obtain conditions on the vector
field f (x) so that it has exactly one solution passing through an a-priori fixed
point. This solution is defined at least on a sufficiently small open interval. In the
next result we find the maximal interval of existence. First, we need to introduce
the following definitions.

We say that ¢ : I — U, with ¢ = ¢ (s;0,%0), is a mazimal solution of
equation (2.2), if for every solution ¢ : J — U, with ¢ = 1 (s;s0,X¢), we have
J C I. We call mazimal interval of definition the interval of definition of the
maximal solution ¢ (s; so, %), and we denote it by I(y, x,). From now on we will
only consider mazimal solutions. The differential systems (vector fields) such that
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all their solutions have the maximal interval of definition equal to R are called
complete. In the following proposition we present sufficient conditions on the vector
field of a differential equation for it to be complete.

Proposition 2.1.2. Consider the differential equation x = f (x), where f : R™ — R”
is a globally Lipschitz function. Then for every initial conditions (so,%g) € R x R™
it holds that I (4, x,) = R.

A proof of Proposition 2.1.2 can be found in [53, Section 3.1, Theorem 3]
or in [57, Proposition 4, p. 15]. We emphasize that the differentiability condition
imposed on the vector field in the first reference is not essential for the proof and
can be removed. Note that the hypothesis in Proposition 2.1.2 is very restrictive.
As we will see in Section 3.3, fundamental systems satisfy it.

Ezxample 5. As we saw in Example 2 linear differential systems x = Ax are globally
Lipschitz, and hence complete.

2.1.3 Dependence on initial conditions and parameters

Consider the family of differential equations
x=1f(x,)),

where f : U x V — R”, U is an open subset of R”, and V' is an open subset of RP.
The set V is called the parameter space of the differential equation.

Assuming that \g € V, sg € R and x¢ € R"”, there exists exactly one solution
of the differential equation x = f (x, ;) passing through x( at time so. We denote
this solution by ¢ (s; S0, X0, Ao). In the next theorem we summarize the behaviour
of the solution ¢ (s; sg, X0, A\g) when we vary sg, Xo or Ag. First we introduce some
additional definitions.

Let W be an open subset of U. The function f (x, A) is said to be Lipschitz
with respect to the first variable in W, if there exists a positive constant L € R,
such that for every x,y € W and A € V

If(xA) = £y, VIl < L|x =yl

In particular, if f is Lipschitz with respect to the first variable in U, then we say
that f is globally Lipschitz with respect to the first variable. The function f is said
to be locally Lipschitz with respect to the first variable if for every xg € U there
exists a neighbourhood W of x¢ in U such that f is Lipschitz with respect to
the first variable in W. For simplicity we will call f globally or locally Lipschitz
without a reference to the first variable when no confusion can arise.

Theorem 2.1.3 (Dependence on initial conditions and parameters). Let U and V
be open subsets of R™ and RP, respectively. Let £ : U x V. — R"™ be a locally
Lipschitz function with respect to the first variable in U and £ € C" (U x V') for
some r > 0. Then for every (so,Xo, o) € R x U x V the solution ¢ (s; so, X0, A\o)
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of the differential equation x = £ (x, \g) is r times continuously differentiable with
respect to xg and \g and r + 1 times continuously differentiable with respect to s.

A proof of this theorem can be found in Hartman [30, pp. 93-96] or Lefschetz
[40, pp. 36-43].
Ezample 6 (A family of piecewise linear differential equations). Consider the fam-
ily of differential equations & = || + A, with A > 0, which is defined on whole R.
With respect to the vector field, the phase space splits into two regions, {z < 0}
and {x > 0}, and in both the field is given by a linear function. Moreover, it is
continuously differentiable with respect to the parameter A, but is only globally
Lipschitz with respect to the variable z.

Straightforward computations show that the solution ¢(s; 0, zo, \) of the dif-
ferential equation passing through zo < 0 at time s = 0 is given by

A+e (g — A), if s <%,

A s : *
A(A—xoe —1), if s>s

where s* = In(1 — zo/A) is the time required for the solution to reach the origin,
see Figure 2.2. Note that the maximal interval of definition of the solution is R.
Taking the first and the second derivative with respect to s one has that

¢(S7 07 Zo, >\) =

(—D)Fe=%(zo — N), if s < s*,
S;va()v)\) = )\2

k
dsk ( s : *
e®, if s>s
)\ — X
for k = 1,2. Thus the solution ¢(s;0,xg, A) is an analytical function of s in R\ {s*}
and once continuously differentiable at s = s*, but it is not twice continuously
differentiable at s = s*.

Taking derivatives with respect to A it is easy to conclude that ¢(s;0, xo, A)
is once continuously differentiable in R but is not twice continuously differentiable
at s = s*.

This example shows that solutions of piecewise linear differential equations
lose regularity at the boundary between the regions where the vector field is linear.

2.1.4 Other properties

We recall now some other properties of the solutions of differential equations. We
say that ¢ : R — R™ is a periodic function, if there exists a positive constant T
such that ¢ (s + 1) = ¢ (s) for every s € R. The smallest value of T" satisfying this
property is called the period of the function ¢.

Proposition 2.1.4. Consider the differential equation x = f (x) with £ : R™ — R
a globally Lipschitz function.
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¢(55 07 Zo, >\)

Zo

Figure 2.2: Solutions ¢(s;0,zg, A) of the differential equation & = |x| + A.

(a) Let ¢ (s;s0,%0) be a solution. Then for every T € R, ¢ (s + 7, 50,X0) is also
a solution.

(b) Let ¢ (s;81,%x1) and ¢ (s;82,%X2) be two solutions satisfying ¢ (11;81,%1) =
& (T2; 82,%X2) for fited 71,72 € R. Then ¢ (s — (12 — 71) 5 81, X1) = ¢ (8; 82, X2)
for every s € R.

(c) Let ¢ (s;80,%0) be a solution and suppose that there exist 71,72 € R, 71 <
Ta, such that ¢ (71;50,%0) = ¢ (72;50,%X0). Then, ¢ (s;s0,X0) s a periodic
function whose period is a multiple of T = 10 — 1.

For a proof of this result we refer the reader to [60, pp. 8-9]. Note that in
this reference the author assumes that the vector field is differentiable, but it is
easy to check that this hypothesis can be substituted by requiring the uniqueness
of the solutions.

2.2 Orbits

In this section we present some dynamical features of solutions to differential
equations. Take sp € R and xg € U, and let ¢ (s; s0,X¢) be a maximal solution of
the differential equation (2.2). We call the set

v (s0,%0) = {x eU:x=¢(s;80,%9) and s € I(SO’XO)}

the orbit of the solution ¢ (s; s, o).

When the phase space is the whole R™ and the vector field f is globally Lips-
chitz in R™, the maximal interval of definition of all solutions is R, see Proposition
2.1.2. Then 7 (tg,x0) = 7 (to + 7,%0) for every 7 € R, see Proposition 2.1.4(a).
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Hence we will simply use v (xo) to denote the orbit through xo. Moreover, if
X1 € v (x0), then there exists s; € R such that x; = ¢ (s1;50,X0). Applying
Proposition 2.1.4(b) to the solutions ¢ (s; so, Xg) and ¢ (s; s1,%1) one obtains that
v (x1) = 7 (x0). Therefore orbits are independent on the point of reference, and
we can avoid the reference to such point when no confusion can arise.

Suppose that xo € v (x1) N7y (x¢) # 0. Since orbits do not depend on the
point of reference, vy (xg) = v (x1) = v (x2). Therefore, if two orbits intersect at a
point, then they coincide.

Ezample 7. Consider the planar piecewise linear differential system @ = x,y = |y|.
Since the two variables are decoupled, the corresponding differential equation can
be easily solved. Indeed, the solution with initial condition (zg,yo) is given by

&(s;0, (z0,y0)) = (z(s),y(s)), where

e*yo,  ifyo =0,
z(s) = ewo,  y(s) = { e

e *yo, ifyo <O,
see Figure 2.3(a) and (b).

Set g € R and yo < 0. The orbit through the point p = (zg, yo) is defined
by v(p) = {(e*xo,e yo) : s € R}, and so y(s) = xoyo/x(s), which is the branch
of an hyperbola passing through p, see Figure 2.3(c).

On the other hand, if yo > 0, then the orbit through p is defined by v(p) =
{(e®zo,€e®yo) : s € R}, and so v(p) is a half-line, see Figure 2.3(c).

2.3 The flow of a differential equation

Consider the differential equation
x =f(x), (2.3)

where f : U — R" is locally Lipschitz in an open subset U of R™. Suppose that
for every x € U, the solution ¢ (s;0,x) is defined on whole R, i.e., [(g x) = R. The
flow of the differential equation (2.3) is defined to be the function

P:RxU—-R"

given by ®(s,x) = ¢(s;0,x). The notion of flow introduced here is sometimes
referred as completed flow. That is because the maximal interval of definition of
the solutions is the whole R. Since the differential systems considered in this work
are complete, we can use both terms. In particular, if f : R® — R" is globally
Lipschitz, then the flow of the differential equation x = f(x) is complete, see
Proposition 2.1.2.

Other authors denote the flow of a differential equation by the pair consisting
of the function ® and the phase space U. It is also usual to denote by ®4(x) the
function ®(s,x) (see [29] or [53]). Some properties of flows are collected in the
following result.
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e O (c)

(b)

Figure 2.3: Solutions ¢(s;0, (xo,%0)) = (z(s),y(s)) and orbits of the differential
equation & = x, ¥ = |y|. (a) Dependence of the first coordinate x(s) of the solution
#(s;0, (x0,y0)) on s. (b) Dependence of the second coordinate y(s) of the solution
#(s;0, (x0,y0)) on s. (c) Orbit vp with p = (zo,yo) depicted in the phase space
(z,9).

Proposition 2.3.1. Let ® (s,x) be the flow defined by the differential equation (2.3).
(a) For everyx € U, ®(0,x) =x.
(b) For every s,t e R andx € U, ®(s +t,x) = ®(s, D(¢,x)).
(¢) @ is a continuous function.

Proof. Statement (a) follows from the definition of ®. Statement (b) follows by
taking x1 = x, x3 = ¢(¢;0,x), 1 = t, 2 = 0 and s = s2 = 0 and applying
Proposition 2.1.4(b). Statement (c) is a consequence of the continuous dependence
of the solutions on the initial conditions and parameters, see Theorem 2.1.3. [

In the classical point of view, the objective of the theory of differential equa-
tions is to find explicit expressions for the flow ®(s,x). In the qualitative theory
it is more important to describe the topological properties of the flow and the
asymptotic behaviour of its orbits, i.e., the behaviour of the orbits when s tends
to oo. The phase portrait of a differential equation (2.3) is defined as the union
of all the orbits of (2.3).
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Let ®(s,x) be the flow of the differential equation (2.3) and take p € U.
By the continuous dependence of the solutions on the initial conditions and pa-
rameters, the function ®p, : R — U given by ®,(s) := ®(s,p) is continuously
differentiable. Furthermore, since ®,(s) = £(®p(s)), if there exists so such that
@, (s0) = 0, then (by the uniqueness of the solutions) we have ®,(s) = p for every
s € R. In this case, the orbit v(p) = {p} is called a singular point. To simplify
the notation, if v(p) is a singular point, we denote it by p. Therefore R™ \ v (p),
R” \ {p} and R" \ p are identical notations. If ®,(sq) # 0 for some sy € R, then
O, (R) = ~(p) is a one-dimensional manifold and we call p a regular point. The
flow in a sufficiently small neighbourhood of a regular point is said to be parallel.
For the definition of a parallel flow in a neighbourhood of a singular point see Sub-
section 2.6.3. By the classification of one-dimensional manifolds (see [38]), v(p) is
diffeomorphic either to R, or to S'. When ~(p) is diffeomorphic to S the orbit
~v(p) is called a periodic orbit.

Theorem 2.3.2. Every orbit of a differential equation (2.3) is diffeomorphic either
to a point, or to a circle S, or to a straight line R.

Ezample 8. By Example 7, the flow of the piecewise linear differential system
& =z, 9y = |yl is given by ®(s, (x0,y0)) = (e°xo,e’yp) when yo > 0 and by
D(s, (z0,y0)) = (ezg, e *yy) when yo < 0. The corresponding phase portrait is
shown in Figure 2.3(c). In this example, each orbit, except the one that passes
through the origin, is diffeomorphic to the line R. The orbit through the origin is
diffeomorphic to a point. Therefore, it is a singular point.

2.4 Basic ideas in qualitative theory

After analysing the topology of the orbits we present some basic definitions for
studying their asymptotic behaviour. Consider the differential equation (2.3) and
let E be a subset of U. The set E is said to be positively invariant (under the
flow) if for every q € E we have ®(s,q) € E for all s > 0. The set E is said to be
negatively invariant (under the flow) if for every q € F we have ®(s,q) € E for all
s < 0. A set F is said to be invariant (under the flow) when it is both positively
and negatively invariant (under the flow).
An invariant set E is stable, if for any neighbourhood W of E, there exists
a neighbourhood V' of E such that, for every p € V and s > 0 it holds that
® (s,p) € W. An invariant set E is unstable when it is not stable.
Given p,q € U, the point q is called an «-limit point of p if there exists a
sequence {s,} % satisfying lim s, = —oco and such that lim & (s,,p) = q.
n,/*+oo n,'+oo

The point q is called an w-limit point of p if there exists a sequence {Sn}:;z%

satisfying lim s, = 400 and such that lim & (s,,p) =q.
n,'+oo n,/*+oo

The «a-limit set of a point p € U, denoted by a(p), is defined as the union
of the a-limit points of p. Analogously the w-limit set of a point p € U, denoted
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by w(p), is defined as the union of the w-limit points of p.

Let v(p), or simply ~, be the orbit passing through the point p € U. The
a-limit set of the orbit v is the a-limit set of the point p, the w-limit set of the
orbit -y is the w-limit set of p. As it is easy to check, these definitions do not
depend on the chosen point p of the orbit. Therefore, we denote the a- and the
w-limit set of an orbit by « () and w (7y), respectively.

Given an invariant set E, the stable manifold of E, denoted by W*(E), is
the set of points in the phase space U whose w-limit set is contained in E. The
unstable manifold of E, denoted by W*(E), is the set of points in U whose a-limit
set is contained in E.

A set E is called asymptotically stable if its stable manifold W*(E) is a
neighbourhood of E. A set F is called asymptotically unstable if its unstable man-
ifold W*(E) is a neighbourhood of E. In particular, every asymptotically stable
(respectively, unstable) set is stable (respectively, unstable).

A limit cycle of the differential equation (2.3) is a periodic orbit isolated in the
set of all the periodic orbits of (2.3). A limit cycle is called stable (respectively,
unstable) if it is asymptotically stable (respectively, unstable). Another kind of
limit cycle, called semistable limit cycle, can be also defined and we will introduce
it in Section 2.8.

Ezample 9. In this example we consider a fundamental system
Ax+b, ifkTx>1,

Bx, if [kTx| <1,
Ax—b, ifkTx < —1,

W
I

with parameters d = det(A) < 0, ¢ = trace(4) < 0, D = det(B) > 0 and T =
trace(B) = 0. In Section 5.3 we prove that its phase portrait in a neighbourhood
of the origin is which is the one shown in Figure 2.4.

Different invariant sets can be easily identified. For instance, invariant sets
are present in both the grey and the central white region formed by periodic orbits.
This is because every orbit contained in one of these regions does not leave the
region, neither in positive time, nor in negative time. Of course, sets formed by
singular orbits are also invariant. Hence the singular points e, 0 and e_, and the
periodic orbit I' are invariant.

Note that T" is a stable invariant set. In fact, its stable manifold W*(T") is
the whole grey region. However, it is not asymptotically stable, because W*(T") is
not a neighbourhood of I'. The origin 0 is also a stable invariant set which is not
asymptotically stable.

On the other hand, the singular point e_ is the w-limit set of the orbits ;"
and v, , see Figure 2.4. It is also the a-limit set of the orbits 5 and v, . The
periodic orbit I' is the w-limit set of the orbit v, .

Let v be an orbit of the flow ®(s,x) and p be a point on v. We define the
positive and negative semiorbit of v as the sets v (p) := {®(s,p) : s > 0} and
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// w=(T)
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Figure 2.4: Phase portrait of the fundamental system with D > 0 and 7' = 0 in
a neighbourhood of the origin 0. Invariant regions: the singular points e, 0, e_;
the periodic orbit I'; and the open region W#(I") (in grey) and the open region in
the interior of I' (in white and foliated by periodic orbits).

v~ (p) := {®(s,p) : s < 0}, respectively. The orbit v is called positively bounded
if there exist a point p € v and a compact subset K of U such that v*(p) C K.
The orbit v is called negatively bounded if there exist a point p € v and a compact
subset K of U such that v~ (p) C K. Finally, v is said to be bounded if it is
positively and negatively bounded.

Proposition 2.4.1. Let v be an orbit of the differential system (2.3). If v is positively
bounded (respectively, negatively bounded), then w(7y) (respectively, a(7y)) is a non-
empty set.

For a proof of this result we refer the reader to [53, p. 191] or [57, p. 245]. Note
that in references above, authors require the differentiability of the vector field. It
is easy to check that instead of this hypothesis we can require the uniqueness of
the solutions and the completeness of the flow.

2.5 Linear systems

Linear systems of differential equations, or briefly, linear systems, are one of the
families of differential equations for which there exists a complete theory. We re-
view some of the standard facts on linear systems because, as we will see later,
there exists a close relationship between linear and general non-linear differen-
tial systems. The nature of this relationship is such that linear systems can be
considered as a first natural step in the study of the differential systems.

As usual, L(R™) denotes the vector space of the linear maps from R™ to R™,
and GL(R™) the group of the invertible linear maps. Consider T' € L(R™) and let
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A be the matrix representation of 7'. In the sequel we will identify the linear map
T with its matricial representation A, and write A € L(R™). If T is invertible; i.e.,
det(A) # 0, we will write A € GL(R™).

If A e L(R™) we denote by t or trace(A) the trace of A, and by d or det(A)
the determinant of A. This explains our use of the variable s, instead of the more
usual one ¢, to denote the time in the differential equation. Let A € L(R™). Then
for every s € R we define the exponential matriz of the matrix sA as the formal

power series
o0
sA SkAk
e’ = E B
k=0

where A° denotes the identity matrix Id and AF = A1 A for k > 1. Two matrices
A, B € L(R™) are said to be equivalent if there exists P € GL(R™) such that
B = PAP~!'. We summarize some properties of the exponential matrix in the
following proposition.

Proposition 2.5.1. Let A € L(R™).

(a) For every s € R, the series
sk Ak
2
k=0
is absolutely convergent. Moreover, if so > 0, the series is uniformly conver-
gent in (—So, So0)-

(b) If A, B € L(R™) are equivalent matrices with B = PAP™! for a P € GL(R"),
then e5B = PesAP~1 for every s € R.

(c) If B € L(R™) is such that AB = BA, then e*AtB) = e34¢5B for every s € R.

)
(d) For every s € R, (eSA)il =e %4,
(e) For every s € R, de*”/ds = Aes4.
(f)

Let v € R™ be an eigenvector of A with eigenvalue A € R. Then v is an

eigenvector of €5 with eigenvalue e*.

A proof of these results can be found in [7, Chapter 3] or [53, pp. 10-13].
In this section we consider the linear system (more precisely, the homogeneous

linear system)
X = Ax, (2.4)

where A € L(R™), and denote d = det(A) and t = trace(A).

The linear vector field f(x) = Ax is a globally Lipschitz function with Lips-
chitz constant L = ||A]|. From the existence and uniqueness theorem it follows that
for every xo € R™ there exists a unique solution of system (2.4) passing through
xg at s = 0. Moreover, this solution is defined for all s € R (see Proposition 2.1.2).
The following result provides an explicit expression for the linear flows.
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Theorem 2.5.2 (Linear flow). The linear differential equation X = Ax, with A €
L(R"™), defines a flow ® : R x R" — R™ given by ®(s,x) = e*x.

A proof of this theorem can be obtained as a corollary of Proposition 2.5.1(e).

We denote by ker(A) the vector subspace formed by the singular points of
the linear system (2.4). This subspace is called the kernel of the linear map A.
Notice that the origin always belong to ker(A). Moreover, when A € GL(R™), the
origin is the unique singular point.

Let vi1,va, ..., vy, be the generalized eigenvectors corresponding to the eigen-
values of the matrix A with negative real part. The stable subspace is the vector
subspace generated by the vectors vi,va,...,v,_, ie.,

E? = <V1,V2,...,Vns>.

Let uj,ug,...,u,, be the generalized eigenvectors corresponding to the eigen-
values of the matrix A with positive real part. The unstable subspace is the vector
subspace

EY = <U.1,112 .. .,unu> .
Let wy,...,w,,_ be the generalized eigenvectors corresponding to the eigenvalues
of the matrix A with zero real part. The center subspace is the vector subspace

E°:=(wi,Wa..., Wy, ).

Theorem 2.5.3 (Dynamical behaviour of linear systems). Consider the linear dif-
ferential system x = Ax with A € GL(R™). Then:

(a) R* = B5 @ E" & E°.
(b) W*(0) = E*.
(c) W“(0) = E™.
For a proof of this result, see [53, Section 1.9].

2.5.1 Non-homogeneous linear systems

Differential systems of the form
x = Ax + b, (2.5)

with A € L(R™) and b € R™\ {0} are called non-homogeneous linear (differential)
systems. By Proposition 2.5.1(e), the flow of systems (2.5) is given by

d(s,x) = e*x —|—/ e~ Ab dr.
0

If the non-homogeneous linear system (2.5) has a singular point x*, the
change of coordinates z = x —x* transforms it into the homogeneous linear system
7 = Az. Thus the flow of the non-homogeneous linear system (2.5) is a translation
of the flow of a homogeneous linear system, namely ®(s,x) = %4 (x — x*) 4+ x*.

Finally, note that if the non-homogeneous linear system has no singular points,
then det(A) = 0.
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2.5.2 Planar linear systems

In the following two subsections we restrict our attention to planar linear systems.
We begin by showing the following version of the real Jordan normal form theorem
[33].

Theorem 2.5.4 (Real Jordan normal form). Consider a matriv A € L(R?) with
d =det(A) and t = trace(A). A is equivalent to one of the following matrices J:

0 0 0 1
(a) Ifd-Oandt-O,thenJ-(o 0>07‘J—(0 0).

(b) Ifd=0 and t £ 0, then J = (é 8).

(¢) If d > 0 and t = 0, the eigenvalues of A are complex numbers with zero real

part and imaginary part >0, and J = < 2 _Oﬁ ) .

(d) If d > 0 and t*> — 4d = 0, there exists exactly one real eigenvalue of A with

o o )\1 O _ >\1 1
multiplicity two, \1, and J = ( 0 A\ ) orJ = ( 0 M\ ) ’

(e) If d > 0 and t? — 4d > 0, there exist two real eigenvalues of A, A1 > o, and
g A0
L0 X )T
(f) If d > 0, t # 0 and t? — 4d < 0, the eigenvalues of A are complex numbers

with real part o # 0 and imaginary part B >0, and J = ( g —aﬂ ) .

(¢) If d < 0, there exist two real eigenvalues of A, Ay > 0 > Ao, and J =
A0
0 X /-

The matrix J defined in the preceding theorem is called the real Jordan
normal form of A. Note that, except when t? — 4d = 0, the real Jordan normal
form of A is determined by the parameters t and d. If > — 4d = 0, then there
exist two possibilities, one diagonal and the other non-diagonal, depending on the
coefficients of A.

Consider the linear system

x = Ax, (2.6)

with A € L(R?), and let P € GL(R?) be the matrix which transforms A into its
real Jordan normal form J, i.e., J = PAP~!. The linear change of coordinates
y = Px transforms the linear system (2.6) into the system

y=Jy. (2.7)
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To obtain the expression of the linear flow of (2.7) it is enough to consider the

following cases:

o )\1 0 o Al o (0% —[‘3
r=( o )=(a a)mar=(5 7).
see Proposititon 2.5.1(b) and Theorem 2.5.4
Proposition 2.5.5. Consider J € L(R?) and s € R.

A0 et 0
(a) [fJ—( 01 o ),thene“-( 0 63/\2)'

(b) IfJ:(g\ i\),thenes‘]:es’\((l) i)

=5 )= (G5 )

For a proof of this proposition see [7], [53], or [57].

Let ®(s,x) and ¥(s,y) be the flows of systems (2.6) and (2.7), respectively.
If xo € R?, then ®(s,%0) = e*4xg = P~'e5/ Pxyg = P~'¥(s, Pxq). Therefore,

®(s,x) = P~ 1U(s, Px).

From this we obtain the expressions of the flow of any planar linear system.

(2.8)

Theorem 2.5.6. Consider the flow ®(t,x) of the linear system x = Ax, with A €
L(R?), d = det(A) and t = trace(A). Let J be the real Jordan normal form of A

and P be the matriz such that J = PAP™!.
(a) If t> —4d > 0, then

0 esr2

SA
d>(s,x)=P1<6 0 )Px.

(b) If t> — 4d = 0, then either ® (s,x) = e**x or

sA
P (s,x)=P! ( 60 ei\ ) Px,

depending on whether J is diagonal or not.

(c) If t> —4d < 0, then

o=t (0O b
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2.5.3 Planar phase portraits

In this subsection we describe the phase portrait of planar linear systems. We also
present the notation of singular points of such systems. For a general classification
of these singular points, see Subsection 2.7.1.

From relation (2.8) it follows that given x¢ € R?, the orbit of system (2.6)
through x¢ and the orbit of system (2.7) through Pxq, v(x0) and y(Pxg), respec-
tively, satisfy y(xo) = P~1y(Pxg). Therefore, the phase portrait of system (2.6) is
a linear transformation of the phase portrait of system (2.7). Hence, it is enough
to describe the phase portrait of a linear system (2.7), where J is the real Jordan
normal form of the matrix A.

Case d <0

If the determinant of the matrix A is strictly negative, then A has two real eigen-
values Ay > 0 > Ag. Hence, the stable and unstable subspaces (E® and E“) are
each generated by an eigenvector, and the central subspace is the origin, E¢ = {0}.
The real Jordan normal form of A is

A0
/= ( 0 A )
The phase portrait of the system y = Jy is represented in Figure 2.5, the
phase portrait of system x = Ax is a linear transformation of it.

W\
R

Figure 2.5: A saddle point and its stable and unstable separatrices.

In this case the singular point at the origin is called a saddle point. The two
orbits in the stable subspace are called the stable separatrices of the saddle and the
orbits in the unstable subspace are called the unstable separatrices of the saddle.
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Case d =0

Suppose that A is the zero matrix, i.e., the dimension of ker (A) is 2. In this case,
any point in the phase plane is a singular point, so the case is of no interest. Assume
now that ker(A) has dimension equal to 1, i.e., ker(A) is a straight line through the
origin formed by all the singular points of the system. Hence, the singular points
are not isolated. The real Jordan normal form of A changes according to whether
t = trace(A) is equal to zero or not. Thus, when ¢ = 0 the matrix J is not diagonal
and the straight line ker(A) is called a non-isolated nilpotent manifold, see Figure
2.6(b). When ¢ < 0 (respectively ¢ > 0) the matrix J is diagonal and the straight
line ker (A) is called a stable (respectively unstable) normally hyperbolic manifold,
see Figure 2.6(a) (respectively, (c)). The term “normally hyperbolic manifold” is
motivated by [34].

N N N
— << > ——— > ———
— <« > —<—%—> —
— > —<— > —<—%— > —
A > o o o o o o O P>
— > —<¢— < —<t—— > ——
—p < ——— P ——
—p < ——— P> ——

(a) (b) ()

Figure 2.6: Non-isolated singular points: (a) Stable normally hyperbolic manifold
for t < 0; (b) Non-isolated nilpotent manifold for ¢ = 0; and (c) unstable normally
hyperbolic manifold for ¢ > 0.

Case d > 0

We distinguish three cases, depending on the sign of t> — 4d. When ¢ — 4d > 0,
the matrix A has two real eigenvalues with the same sign, A\; > Ao. Therefore
if t < 0, then E* = R? and E* = E° = {0}; and if t > 0, then E* = R? and
E® = E° = {0}. The phase portrait of the system y = Jy is shown in Figure
2.7, depending on t. The corresponding phase portrait of the system X = Ax is
obtained by a linear transformation. The origin is called an asymptotically stable
node if t < 0, and an asymptotically unstable node if t > 0.

When t? — 4d = 0, there exists a unique eigenvalue )\, which is real, and the
real Jordan normal form of A is

A0 Al
J—(O )\) or J—<0 A)'
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(a) (b)

Figure 2.7: (a) Asymptotically stable node. (b) Asymptotically unstable node.

For each of these matrices we have to consider the cases t < 0 and ¢t > 0. The phase
portrait of the system y = Jy is shown in Figure 2.8, depending on ¢ and J. The
corresponding phase portrait of the system x = Ax is a linear transformation of it.
The origin is called a degenerated diagonal node in the first case, and a degenerated
node in the second one.

When t? — 4d < 0, the eigenvalues of A are a pair of conjugate complex

numbers and
([ a =B
J = ( 3 o > .

The phase portrait of the system y = Jy is shown in Figure 2.9, depending on
the sign of ¢ = 2a. The corresponding phase portrait of the system x = Ax is a
linear transformation of it. When ¢ = 0, the origin is called a center. When ¢ < 0,
the origin is called an asymptotically stable focus. When t > 0, the origin is called
an asymptotically unstable focus.

2.6 Classification of flows

Every classification criterion involves appropriate definitions for invariant sets, as
specialized to different classes. If the list of the selected invariant sets is large,
then the number of elements in each class is small and the classification is not
effective. If the list of invariant sets is small, then we can collect systems with
different behaviours and assign them to the same class. Thus the first step is to
find an optimal classification criterion. In the theory of flows the criterion chosen
is the preservation of the “orbit structure”, a notion that will be defined in the
following subsection.
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AN e

(b)

Figure 2.8: (a) Degenerated diagonal nodes. (b) Degenerated nodes.

2.6.1 Classification criteria

We begin by defining equivalence relations for flows, in correspondence to the
algebraic, the differentiable and the topological points of view.

Consider the differentiable systems x = f(x) and y = g(y), with f : U — R”
a locally Lipschitz function defined on U C R™ and g : V' — R"™ a locally Lipschitz
function defined on V' C R™. Let ®(s,x) and ®*(s,y) be the respective flows.
We recall that in this work we consider only complete flows, i.e., the interval of
definition of all the solutions is the entire R.

Two flows are said to be conjugate if there exists a bijection h : U — V
(called conjugacy), such that ®*(s,h(x)) = h(®P(s,x)) for every s € R and x € U.
The flows are said to be equivalent if there exists a bijection h : U — V (called
equivalence), such that v is an orbit of the first system if and only if h(y) is an
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Figure 2.9: (a) Asymptotically stable focus. (b) Center. (c) Asymptotically unsta-
ble focus.
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orbit of the second one and in addition h preserves the orientation of the orbit.
It is easy to check that if two flows are conjugate, then they are equivalent. The
converse is not always true.

An equivalence h transforms singular points into singular points and periodic
orbits into periodic orbits. When h is a conjugacy, the period of the periodic orbits
is also preserved.

Consider two conjugate (respectively equivalent) flows. The flows are said to
be linearly conjugate (respectively, linearly equivalent) if h is a linear isomorphism.
The flows are said to be C"-conjugate (respectively, C"-equivalent), with r €
{1,2,...,00,w}, if h is a diffeomorphism such that h, h=* € C” (recall here that
C% denotes the class of analytic functions). The flows are said to be topologically
conjugate (respectively topologically equivalent) if h is a homeomorphism.

Two differential equations are said to be linearly, C", or topologically equiva-
lent (respectively, conjugate) if their flows are linearly, C", or topologically equiva-
lent (respectively, conjugate). Further, they are said to present the same qualitative
behaviour or the same dynamical behaviour if they are topologically equivalent.

In the next result we relate the different classification criteria.

Proposition 2.6.1. Consider two differential equations.

(a) If they are linearly conjugate (respectively, equivalent), then they are C”-
conjugate (respectively, C"-equivalent) for every r € {1,2,...,00,w}.

(b) If they are C"-conjugate (respectively, C"-equivalent) with r € {1,...00,w},
then they are topologically conjugate (respectively, equivalent).

(c) If they are linearly, C", or topological conjugate, then they are linearly, C,
or topologically equivalent.

The conjugacy of flows is also a conjugacy of vector fields. In the next lemma
we characterize the C"-conjugacy via the conjugacy of vector fields. As usual, given
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a diffeomorphism h : U — V, Dh(x) denotes the Jacobian matriz of h evaluated
at the point x.

Lemma 2.6.2. Consider two differential equations x = f(x) and y = g(y), with
f:U—->R" andg:V — R"” locally Lipschitz functions on U and V , respectively.
Their flows are C"-conjugate if and only if there exists a diffeomorphism h : U —
V in C" such that Dh(x)f(x) = g(h(x)) for every x € U.

A proof of this result can be found in [58, p. 19, Lemma 3.4]

2.6.2 Classification of linear flows

Given a linear isomorphism h : U — V| with U and V open subsets of R", there
exists a matrix M € GL(R™) such that h(x) = Mx for any x € U.

Lemma 2.6.3. If the linear map h(x) = Mx is constant on an open subset U C R™,
then M is the zero matriz.

Proof. Suppose that M is not the zero matrix. Then there exists a vector e € U
such that Me # 0. Take xg € U. Since U is open, x; = xg + de € U for § > 0
small enough. Therefore, Me = Mx; — Mxy = 0, a contradiction. O

Proposition 2.6.4 (Linear conjugacy of linear flows). Consider two linear systems
x = Ax and y = A*y, with A, A* € L(R?), and denote d = det(A), t = trace(A),
d* = det(A*) and t* = trace(A*).

(a) The systems are linearly conjugate if and only if there evists M € GL(R?)
such that A* = MAM™', i.e., the matrices of the systems are equivalent.

(b) If the systems are linearly conjugate, then d = d* and t = t*.
(c) Ifd=d*, t =t* and t> — 4d # 0, then the systems are linearly conjugate.

Proof. (a) Suppose that the given systems are linearly conjugate. By definition
there exists a linear map M € GL(R?) such that, for any given solution of the
first system, x(s) = ¢(s;0,%0), the function y(s) = Mx(s) is a solution of the
second one. Moreover, y = M AM ~'y. Applying Lemma 2.6.3 to the linear map
h(y) = (A* — MAM_I) y, we conclude that A* = MAM~!.

Conversely, suppose that A* = M AM~! with M € GL(R?). By Proposition
2.5.1.(b), e54” = Me*AM~! for all s € R. The flows of the linear systems are
®(s,x) = e*x and ®*(s,y) = ey, respectively, see Theorem 2.5.2. Hence,
d* (s, Mx) = 54" Mx = Me*“x = M®(s,x). Therefore, the systems are linearly
conjugate.

Statement (b) follows from statement (a). For a proof of statement (c) see
Arnold [7, p. 169]. O

Proposition 2.6.5 (C"-conjugacy of linear flows). Two linear flows are C" -conjuga-
ted for r € {1,2,...,00,w} if and only if they are linearly conjugate.

For a proof of the previous proposition see Arnold [7, p. 170].
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Corollary 2.6.6. Consider two linear systems x = Ax and y = A*y and denote
d = det(A), t = trace(4), d* = det(A*) and t* = trace(A*). If the flows are
C"-conjugate with r € {1,2,...,00,w}, then d = d* and t = t*.

Proof. The proof follows from Propositions 2.6.5 and 2.6.4 (b). O

In the next result we present a characterization of the topological conjugacy
of linear flows.

Proposition 2.6.7 (Topological conjugacy of linear flows). The flows of two linear
systems whose eigenvalues have no zero real part are topologically conjugate if
and only if they have the same number of eigenvalues with positive and the same
number of eigenvalues with negative real part.

For a proof of this result see Arnold [7, pp. 172-182].

2.6.3 Topological equivalence of non-linear flows

As we have seen, in the case of linear flows there exists a characterization of the
three different classification criteria. To our knowledge a complete characterization
of topological equivalence exists only for planar non-linear flows. To introduce it
we need some new notations and results analogous to the ones in the previous
subsection. Essentially all these definitions and results can be found in [48, pp.
127-148] and [50, pp. 73-81], where they are applied in a more general context.
Similar results are due to Peixoto [52].

Consider a differential equation x = f(x) with f a Lipschitz function defined
in R?, and let ®(s,x) be its flow. Following Markus and Neumann, we denote this
flow by (R?, ®). By the continuous dependence of solutions on the initial conditions
and parameters, the flow (R?, ®) is continuous in both variables. The flow (R?, ®)
is said to be parallel if it is topologically equivalent to one of the following flows:

(a) The flow defined in R? by the differential system @ = 1, § = 0, called strip
flow.

(b) The flow defined in R? . {0} by the differential system in polar coordinates
=0, 0 =1, called annular flow.

(¢) The flow defined in R? \ {0} by the differential system in polar coordinates
r=r,0 =0, called spiral or radial flow.

An orbit v(p) of the flow (R?, ®) is called a separatriz if
(a) is a singular point, or
(b) is a limit cycle, or

(¢) v(p) is homeomorphic to R and there is no tubular neighbourhood N of v(p)
with the following properties:

(c.1) Every point q in N has the same «-limit and w-limit sets of p, i.e.,
a(q) = a(p) and w(q) = w(p).
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(c.2) The boundary of N, i.e., CI(N)\ N, is formed by a(p), w(p) and two
orbits v(q1) and y(qz) such that a(p) = a(q1) = a(qz) and w(p) =
w(q1) = w(qa2), see Figure 2.10. As usual CI(N) denotes the closure of
N, i.e., the smallest closed set containing V.

v(az)

Figure 2.10: The boundary of NNV.

Let S be the union of the separatrices of the flow (R?, ®). It is easy to check
that S is an invariant closed set. If NV is a connected component of R?\ S, then N

is also an invariant set, and the flow (N, ®|y) is called a canonical region of the
flow (R?, ®).

Proposition 2.6.8. Every canonical region of the flow (R?, ®) is parallel.

For a proof of this proposition see [50].

The separatriz configuration of a flow (R?, @) is the union of all separatrices of
the flow together with an orbit belonging to each canonical region. Given two flows
(R%,®) and (R?,®*), let S and S* be the union of their separatrices, respectively.
The separatrix configuration C' of the flow (R?,®) is said to be topologically
equivalent to the separatrix configuration C* of the flow (R2, ®*) if there exists
an orientation preserving homeomorphism from R? to R? which transforms orbits
of C into orbits of C*, and orbits of S into orbits of S*.

Theorem 2.6.9 (Markus-Neumann-Peixoto). Let (R?, ®) and (R?, ®*) be two con-
tinuous flows with only isolated singular points. Then they are topologically equiv-
alent if and only if their separatriz configurations are topologically equivalent.

For a proof of this result we refer the reader to [50].
It follows from the previous theorem that in order to classify the flows of
planar differential equations, it is enough to describe their separatrix configuration.

Ezample 10. Consider the local phase portrait depicted in Figure 2.11(a). The set
S of all separatrices is formed by the singular points e, e_ and 0, the periodic or-
bits I'; and I'_, and the homoclinic orbits 4 and «_. Therefore, S is an invariant
closed set. In Figure 2.11(b) we represent the set of all canonical regions.
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Note that Figure 2.11(a) presents clearly the set of all separatrices together
with an orbit for each canonical region which shows the asymptotic behaviour
of the orbits contained in its interior. Thus Figure 2.11(a) also represents the
separatrix configuration of the phase portrait. From this it is easy to understand
that the separatrix configuration is the skeleton of the phase portrait.

(b)

Figure 2.11: (a) Separatrix configuration correspondig to a fundamental system
with parameters D < 0, T < 0 and ¢t = w1(d), see Section 5.5. (b) Canonical
regions associated to the phase portrait.

2.7 Non-linear systems

In this section we return to non-linear flows. Let U C R"™ be an open subset,
f: U — R"” be a locally Lipschitz function in U and @ (s,x) be the flow defined by
the differential equation X = f (x). Recall that we consider only complete flows,
i.e., solutions are defined for every value of time s € R.

2.7.1 Local phase portraits of singular points

We begin by studying the local behaviour of flows in a neighbourhood of singular
points, i.e., points x € U such that f (x) = 0.

Theorem 2.7.1 (Lyapunov function). Consider the differential equation x = f(x),
with £ : U — R™ a locally Lipschitz function in U. Let xo be a singular point. If
there exist a neighbourhood W of xo in U and a function V : W — R satisfying

(a) V(xo) =0 and V(x) > 0 when x # xo,
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(b) dv(dxs(s)) <0 in W\{xo}, where x(s) is a solution of the differential equation,
then xq is stable. Moreover,
(c) if dv(di(s)) <0 in W\ {x0}, then xq is asymptotically stable.

The function V figuring in this theorem is called a Lyapunov function. For a
proof of the Lyapunov function theorem we refer the reader to [33, p. 192].

Now we classify the singular points according to the linear part of the vector
field. Let x¢ be a singular point of the differential system x = f(x), where f is a
C! function in a neighbourhood of xg. Let Df(xg) be the Jacobian matrix of f
evaluated at xg. The point xq is said to be a hyperbolic singular point if all the
eigenvalues of Df(x() have non-zero real part.

For a planar differential system we say that a singular point x( is an elemen-
tary non-degenerate singular point if the determinant of Df(xq) is not zero. In
particular, every hyperbolic singular point is an elementary non-degenerate one.
The converse is not true. Since elementary non-degenerate singular points with
determinant of Df(xg) less than zero are saddle points, we call antisaddle any
non-degenerate singular point at which the Jacobian matrix has positive determi-
nant. The singular point x is said to be an elementary degenerate singular point
if the determinant of Df(x) is zero and the trace of Df(x() is non-zero. The
singular point x¢ is said to be nilpotent if the determinant and the trace of the
matrix Df(xg) are both zero and Df(xg) is not the zero matrix.

Since the concept of a flow introduced in our textbook corresponds to the
concept of a complete flow used by other authors (see Subsection 2.3), in the
following version of the Hartman—Grobman theorem we impose the condition that
the maximal interval of definition of all solutions isR.

Theorem 2.7.2 (Hartman—Grobman). Let U be an open subset of R™, £ : U — R
be a CH(U) function, ®(s,x) be the flow of the differential equation %X = f(x), and
Xo be a hyperbolic singular point. Then there exist a neighbourhood W of x¢, a
neighbourhood V' of the origin, a homeomorphism h : W — V with h(xq) = 0,
and an interval I C R containing the origin, such that

ho ®(s,x) = e PExop(x)

for every se I andx € U.

For a proof of the previous theorem see Section 4.3 in [14] or [51, p. 294].

The Hartman—Grobman theorem asserts that the differential systems x =
f(x) and x = Df(x¢) are topologically equivalent in a neighbourhood W of a hy-
perbolic singular point xg and V' of the origin. This is why we use the same names
for non-linear hyperbolic singular points and for the linear hyperbolic ones. Even
for non-hyperbolic singular points, when the system is topologically equivalent to
a linear system, we use the same terminology for both singular points. Accord-
ingly, the singular point xo of a non-linear differential system x = f(x) is said
to be a stable normally hyperbolic singular point if £ is topologically equivalent
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to the differential system © = 0, y = —y in a neighbourhood of x¢ and 0. The
singular point x is said to be an unstable normally hyperbolic singular point if f is
topologically equivalent to the differential system & = 0, y = y in a neighbourhood
of x¢ and 0. The singular point xg is said to be a non-isolated nilpotent singular
point if £ is topologically equivalent to the differential system & =y, y = 0.

The standard tool for studying the flow in a neighbourhood of a planar non-
hyperbolic singular point is a change of variables called blow-up, see [8], [20] and
[21] for more details. Here, we summarize a description of this change of variables
in the case of planar vector fields f(z,y) = (P(z,y), Q(z,y)), where P and Q are
analytic functions. Without loss of generality we can assume that the origin is a
singular point of the system (otherwise we can translate the singular point to the
origin by a convenient change of variables).

Consider the differentiable function h, : R? — R? defined by h,(Z,9) =
(Z,7y). Using the Jacobian matrix of h, and the vector field f we can define a
vector field f, on R? satisfying the equality

th(fw(jvg)) = f(hw(ff»g)) = f(jﬁfg)'
From here, one obtains the following expression for f, when T # 0

2.2~ P339

x (2.9)

(@) = (P29,
Since the origin is a singular point, i.e., P(0,0) = Q(0,0) = 0, expression (2.9) can
be extended to Z = 0 to yield an analytic vector field on R2. Such a vector field is
called a blow-up in the x-direction.

The vector fields f and f, are topologically equivalent in R? \ {0} and R?\
{z = 0}, respectively. Moreover, since h, maps the straight line £ = 0 into the
origin, the behaviour of the flow of f in a neighbourhood of the origin can be
obtained from the behaviour of the flow of f, in a neighbourhood of £ = 0 in the
following sense. Let  be an orbit of the differential system % = f(x) such that the
origin is contained in its a- or w-limit set. If m = tan 6, with 6 € (—7w/2,7/2), is
the slope of v at the origin, then the angle 6 is called a characteristic direction of
the origin and the point (0,m) is a singular point of the blow-up system 0 = £, (u).
The study of the local phase portrait at the point (0,m) is easier than the one of
the origin, because such singular points are less degenerate.

If m = £oo, then another change of variables applies. Specifically, consider
the function h, : R* — R? given by h,(Z,79) = (2¥,7), and the vector field £,
satisfying Dh,(f,(z,y)) = f(Z 7, y). It follows that

inar= (7DD o)

Thus (0,0) is a singular point of the blow-up system u = f,(u). In general, if
m = tan 6 with 6 € (0, ), then (1/m,0) is a singular point of the blow-up system
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u = f,(u). Hence, going back to the original variables a finite number of curves
are present, splitting any neighbourhood of the origin into hyperbolic, elliptic and
parabolic sectors, see Figure 2.12.

PV

Hyperbolic Elliptic Atracting Repelling
sector sector parabolic sector  parabolic sector

Figure 2.12: Sectors in the neighbourhood of a singular point.

A singular point xg is called a saddle-node if a neighbourhood of x( is the
union of a unique parabolic sector and two hyperbolic sectors. Thus a saddle-node
has three separatrices: two of them, called the hyperbolic manifolds or separatrices
of the saddle-node, are related to the boundary of the parabolic sector; and the
remainder, called the central manifold or separatrice of the saddle-node, is related
to the boundary between the two hyperbolic sectors. Note that this terminology is
appropriate only when the singular point is elementary and degenerate. To simplify
notation we continue using this terminology not only for nilpotent saddle-nodes,
but also for more degenerated saddle points.

Theorem 2.7.3 (Elementary non-degenerate singular points). Let (0,0) be an iso-
lated singular point of the differential system

i=X(xy), y=y+Y(zy),

where X and 'Y are analytic functions in a neighbourhood of the origin and their
series expansion involve only terms of second order and higher. Let f(x) be a
solution of the equation y + Y (x,y) = 0 in a neighbourhood of the origin and
suppose that the function g(x) = X (z, f(x)) can be written in the form g(x) =
amx™ +O(x™ L) where O(x*) stands for an analytic function with terms of order
greater or equal than k in its series expansion, m > 2, and a,;, # 0.

(a) If m is odd and a,, > 0, then the origin is topologically equivalent to a stable
node.

(b) If m is odd and a,, < 0, then the origin is topologically equivalent to a sad-
dle with the stable manifold tangent to the x-axis and the unstable manifold
tangent to the y-axis.

(¢) If m is even, then the origin is a saddle-node. Its hyperbolic manifold is
unstable and tangent to the y-axis. Its central manifold is tangent to the
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x-azxis and when a, > 0 (respectively, a, < 0) it is unstable (respectively,
stable) in the 0 direction and stable (respectively, unstable) in the w direction.

For a proof of Theorem 2.7.3 we refer the reader to [4, p. 340] or [21, p. 74].

Theorem 2.7.4 (Nilpotent singular points). Let (0,0) be an isolated singular point
of the system
t=y+X(z,y), y=Y(y),

where X and Y are analytic functions in a neighbourhood of the origin and their
series expansions involves only terms of second order and higher. Let y = f(x) =
azr?+azx®+0(x*) be a solution of the equation y+X (x,y) = 0 in a neighbourhood
of the origin, and suppose that F(x) = Y (z, f(z)) = Az*(1 + O(x)) and ®(z) =
(0X )0z + Y /0y)(x, f(x)) = BxP (1 4+ O(x)), with A#0, « > 2 and > 1.

(a) If v is even, then

(a.l) if a > 2B + 1, the origin is a saddle-node with the three separatrices
tangent to the x-axis;

(a.2) if « <2841 or ® =0, then a neighourhood of the origin is the union
of two hyperbolic sectors.

(b) If o is odd and A > 0, then the origin is a saddle whose stable and unstable
separatrices are tangent to the x-axis.

(¢) If a is odd and A < 0, then

(c.1) if a > 2B+1 and B even; or a = 23+1, B even and B> +4A(B+1) > 0,
then the origin is a node, stable when B < 0 and unstable when B > 0;

(c.2) ifa>2B8+1 and B odd; or o =23+ 1, B odd and B> +4A(B+1) >0,
then the origin is the union of a hyperbolic sector and an elliptic sector;

(c.3) ifa=2B+1 and B®> +4A(B + 1) <0, then the origin is a focus;
(cd) if a <284 1; or ® =0, then the origin is a center.

A proof of the previous theorem can be found in [4, pp. 357-362], in [2], or
in [21, p. 116].

2.7.2 Periodic orbits: Poincaré map

One of the most important tools in the study of flows in the neighbourhood of
periodic orbits is the so called Poincaré map. Consider a locally Lipschitz vector
field f : U — R™ and let ®(s,x) be the flow defined by the differential equation
% = f(x). Let ¥ be a hypersurface in R™ and take a point p in X NU. The flow &
is said to be transverse to ¥ at the point p if f(p) is not contained in Tp¥ (the
tangent space to ¥ at point p). If f(p) € T, X, then p is called a contact point of
the flow with 3.
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Let V be an open subset of 3. We say that the flow is transverse to ¥ at V'
if the flow is transverse to X at every point in V.

Consider now two open hypersurfaces X1, Y9 and two points p; € 31 N U,
p2 € X2 NU such that po = ®(s1,p1). There exist a neighbourhood V; of p; in
>1NU, a neighbourhood V5 of ps in 35 NU, and a function 7 : V3 — R satisfying
T7(p1) = s1 and ®(7(q),q) € V; for every q € Vi. Moreover, if the vector field
f is globally Lipschitz, C" with » > 1, or analytic, then the function 7 is also
continuous, C" with r > 1, or analytic, respectively. For more details see [53, pp.
193-194] or [57, pp. 226-227]. In this situation we define the Poincaré map as the
map 7 : Vi — Vs given by

Figure 2.13: Poincaré map 7.

When the vector field is globally Lipschitz, C™ with » > 1, or analytic, the
Poincaré map 7 is also continuous, C” with r» > 1, or analytic, respectively.

By reversing the sense of the flow it is easy to conclude that the Poincaré map
is invertible and the inverse map 7! is continuous, C” with » > 1, or analytic,
respectively. In the particular case when ¥ = ¥5 the Poincaré map w is called a
return map.

Consider p € ¥; and let y(p) be a periodic orbit. From the continuous
dependence of the flow on the initial conditions, it follows that a return map =
can be defined in a neighbourhood of p, and p is a fixed point of 7. Conversely,
if p € ¥4 is a fixed point of a return map , then y(p) is a periodic orbit. Hence,
limit cycles are associated to isolated fixed points of return maps. A limit cycle
~(p) is called a hyperbolic limit cycle if the absolute value of all the eigenvalues
of the Jacobian matrix Dx(p) is different from 1; otherwise v(p) is called a non-
hyperbolic limit cycle. Note that this definition does not depend on the chosen
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point p or on the chosen cross section X1.

Theorem 2.7.5. Let f : U C R™ — R"™ be a Lipschitz function in U, v(p) be
a hyperbolic limit cycle of the differential equation X = f(x) and ® be a return
map defined in a neighbourhood of v(p). Suppose that m is differentiable in a
neighbourhood of p.

(a) If the absolute value of every eigenvalue of Dw(p) is less than 1, then ~(p)
is a stable limit cycle.

(b) If the absolute value of at least one eigenvalue of Dm(p) is greater than 1,
then ~v(p) is an unstable limit cycle.

A proof of this result can be found in [21] or in [57, Chapter IX].

2.8 a- and w-limit sets in the plane

In this section we deal with the asymptotic behaviour of the remainder orbits.
These orbits are diffeomorphic to straight lines, see Theorem 2.3.2. In this section
we restrict ourselves to planar flows. In this context the following version of the
Jordan curve theorem will be useful later on.

A curve in the plane is said to be a Jordan curve if it is homeomorphic to
S!, i.e., if it is a closed curve without autointersections.

Theorem 2.8.1 (Jordan curve). The complementary set of a Jordan curve v in the
plane is the union of two open, disjoint and connected sets. Furthermore, one of
these sets is bounded and its boundary is the curve 7.

Since orbits of a flow are disjoint, from the Jordan curve theorem it follows
that a periodic orbit v splits the phase plane into two invariant regions, one of
which is bounded. This bounded region will be called the interior of v and be
denoted by X,.

Periodic orbits are not the unique Jordan curves formed by solutions. We
define a separatriz cycle to be a finite union of n singular points p1,po,...,Pn
(some of these points may coincide) and n orbits v1, y2, . .., Vn, with the property
that a(yx) = {px} for k=1,2,...,n, w(vw) = {pr+1t L k=1,2,...,n—1, and
w(yn) = {p1}, see Figure 2.14. The singular points p1, p2,..., P, will be called
the wvertices of the cycle.

We define a homoclinic cycle to be a separatrix cycle formed by one singular
point (homoclinic point) and one orbit (homoclinic orbit), see Figure 2.14(a). A
double homoclinic cycle is a separatrix cycle formed by one singular point (in
this case p1 and ps are identified) and two orbits, see Figure 2.14(b). Finally,
a heteroclinic cycle is a separatrix cycle formed by two singular points and two
orbits, see Figure 2.14(c).

A periodic orbit v is said to be inside asymptotically stable (respectively,
inside asymptotically unstable) if there exists a neighbourhood V' of v such that
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P2

Figure 2.14: Separatrix cycles: (a) homoclinic cycle; (b) double homoclinic cycle;
(c) heteroclinic cycle.

VNX, C W3(y) (respectively, VN X, C W"(y)). A periodic orbit v is said
to be outside asymptotically stable (respectively, outside asymptotically unstable)
if there exists a neighbourhood V' of « such that V N (R? \ CL(E,)) € WH(v)
(respectively, V N (R? \ CL(E,)) C W¥(y)).

A limit cycle ~ is said to be semistable if « is either inside asymptotically
stable and outside asymptotically unstable, or inside asymptotically unstable and
outside asymptotically stable.

The following result asserts that the a- and w-limit set of orbits of planar
differential systems are simple sets: singular points, periodic orbits, or separatrix
cycles.

Theorem 2.8.2 (Poincaré-Bendixson). Let f : U C R? — R? be a locally Lipschitz
function in the open subset U, and let v be an orbit of the differential system
% = f(x). Suppose that vy is positively bounded (respectively, negatively bounded)
and the number of singular points in w(7y) (respectively, in a(vy)) is finite.

(a) If w(y) (respectively, a(v)) has no singular points, then w(y) (respectively,
(7)) is a periodic orbit.

(b) If w(y) (respectively, a()) has singular points and regular points, then w(7y)
(respectively, a(y)) is a separatriz cycle.

(c) If w(v) (respectively a(v)) has no regular points, then w(y) (respectively,
(7)) is a singular point.

A proof of this result can be found in the book of Hartman [30, Chapter 7] or
n [21]. The following results are corollaries of the Poincaré-Bendixson Theorem,
see [21].

Corollary 2.8.3. Let f : U C R? — R2 be a Lipschitz function in an open set U and
let v be a periodic orbit of the differential system % = f(x). If n, 0 C X, are orbits
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and w(n) = v (respectively, a(n) = =), then a(o) # v (respectively, w(o) # 7).

Corollary 2.8.4. Let f : U C R? — R? be a Lipschitz function in an open and
simply connected set U and let v C U be a periodic orbit of the differential system
% = f(x). Then there exists a singular point in 3. .

2.9 Compactified flows

The aim of this section is to describe the asymptotic behaviour of unbounded
orbits, i.e. the behaviour of flows near the infinity.

To do this, we use the so called Poincaré compactification. The French math-
ematician H. Poincaré was the first to use this technique, in the study of poly-
nomial vector fields. We will only consider some aspects of this technique. More
information can be found in [58], [4] and [21].

2.9.1 Poincaré compactification

We define the following sets in R3

z,Y, 2 ER3::1:2+y2+22:1},

{(z,,2)
{(xy,)€S2:z>0},
{(z,,2)

{(

T, 2 682:220},
(z,y, 2 €S2zz<0}.

S? is called the unit sphere of R?, and H,, S' and H_ are called the north hemi-
sphere, the equator and the south hemisphere of S?, respectively.

We say that a function f : R? — R? satisfies the Lojasiewicz property at
infinity if there exists a positive integer n such that the function f,, defined by

£.(x,y,2) :=2"f (i, Z) (2.11)

can be extended to z = 0 and this extension is locally Lipschitz in the whole S2.
Since S? is a compact set, if f,, is locally Lipschitz in S2, then f,, is also globally
Lipschitz in S2.

Given a function f, if there exists a non-negative integer no such that the
function f,, is globally Lipschitz in S?, then for every n > ng the function f, is
also globally Lipschitz in S2. We call the degree of f at infinity, and denote it by
n = n (f), the least positive integer m such that f,, is well defined and Lipschitz
in S2.

Lemma 2.9.1. If the function f : R? — R? satisfies the Lojasiewicz property at
infinity with degree at infinity equal to n, then there exist positive constants R and
M, such that

G < M [[x[|"

for every ||x|| > R.
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Proof. Given a point (z,y) in R? we consider the point (Z,#,z) in the north
hemisphere H, where z = (1 + 22 +42)"2 > 0, Z = 2z, and § = yz. Conversely,
for every point (z,7, z) € Hy the point (%/%,7/z) belongs to R2.

By the hypothesis, there exists a positive integer n such that the function
f,, is (globally) Lipschitz in S?, and consequently f,, is continuous in S2. Since
the unit sphere is a compact manifold, there exists a positive constant N for
which ||f,(z,y,2)|| < N for every (z,y,2) € S?, or, equivalently ||f,(z,y,2)| <
N ||(z,y, 2)||". Therefore,

(1) < v l@s 2

2"

Here ||-|| denotes the Euclidean norm in R? or in R3, depending on the context.
Dividing by |z|" and returning to the original variables, we obtain ||f(z, y)|| <
N ||(x,y,1)||". Taking a positive constant R such that

Le(ate)
N+1 Vi4+R2)

we have (N + 1) [|(z,y)||" > N||(x,y,1)||" for every ||(z,y)|| > R. The lemma
follows by taking M = N + 1. |

The inequality in Lemma 2.9.1 justifies the name of the Lojasiewicz property
at infinity (see [20] for more information). From this inequality it is also easy to
understand the degree of a function at infinity.

The rest of this section is devoted to the compactification of vector fields sat-
isfying the Lojasiewicz property at infinity. We also provide an explicit expression
of a flow near infinity and a technique for studying this flow in a neighbourhood
of a singular point at infinity.

Let f : R2 — R? be a local Lipschitz function satisfying the Lojasiewicz
property at infinity and let n be the degree of f at infinity. Consider the diffeo-
morphisms hy : R?> = H, and h_ : R? — H_ defined by

1
hy(x,y) := z,y,1) and h_(z,y) := —-h (z,y). 2.12
+(2,y) \/1+$2+y2( y.1) (z,y) +(2,9) (2.12)

The functions hy and h_ are the central projections (with center at the origin)
of the tangent plane to S? at the point (0,0, 1) onto H, and H_, respectively, see
Figure 2.15.

The diffeomorphisms h; and h_ and the vector field f define two vector
fields f; and f_ on the hemispheres H; and H_, respectively, given by

(2.13)
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Therefore, the rule

”f( ) f+(x7yvz)7 if (xvyvz) € H+7
x,Y,z) = .
Y £ (2,y,2), if (,y,2) € H,

defines a vector field over H; U H_ = S?\ S! which, by (2.12) and (2.13), can be
written as

_ 1—22 —ay .
flr,y,2) =2 -2y 1-¢° f(y)
z Z
—xz —yz

In general the vector field f cannot be extended to the equator of the sphere. How-
ever since f has degree n at infinity, the vector field fg (z,y,2) = 2" f(z, vy, 2)
obtained by multiplying by z"~! satisfies

1—22 —ay
fSQ(Ivyvz) = —TY 1 _y2 fn(zvyvz) (214)
—xz —yz

Therefore, fs2 is defined and Lipschitz on whole S2. Since fs2| = 2", and
feo|;; = 2", the vector field fs2 can be understood as an extension to S?

of the vector field f multiplied by the analytic function 2”~!. This multiplicative
factor is not important in the analysis of the asymptotic behaviour of the flow
because it only represents a change in the scale of time. In particular, if we change
the variable s to the variable 7 by ds = 2" !dr, the vector field fs over S?
can be understood as two copies (each defined on a hemisphere) of the vector
field f defined on R2. Therefore, the behaviour of f near infinity follows from the
behaviour of fs2 in a neighbourhood of the equator. Note that the equator, z = 0,
is invariant under the flow of fge.

For polynomial planar vector fields f(x,y) = (P(z,y), Q(z,y)), with P and
@ polynomials, it is easy to prove that f satisfies Lojasiewicz’s property at infinity
and n = max{degP, deg@} is the degree of f at infinity. Furthermore the vector
field fs: is analytic on S?, see [21] or [58, pp. 57-60] for details.

Consider the Poincaré disc, D := {(x,y) € R? : 2? +y* <1}, and the so
called gnomonic projection py : Hy US! — D, given by

1

= 1Jrz(x,y)-

P+ (Iv Y, Z) :
The vector field fg| H,US! and the diffeomorphism p. define a vector field fp on
D given by
fo(x,y) := Dps (py' (2,9)) f= (P31 (2,9)) -
For a differential system % = f(x), where f is a locally Lipschitz function
in R? and satisfies the Lojasiewicz property at infinity with degree n at infinity,
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we call the differential system x = fip(x) Poincaré’s compactification. The vector
fields f and fD|Int(D) are C"-equivalent and hp : = p, oh is the equivalence map.
Here Int(D) denotes the interior of I; that is the biggest open subset contained
in D. In this sense we identify the behaviour of fp at the boundary 0D with the
behaviour of f at infinity.

x = f(x)

Figure 2.15: Poincaré’s compactification.

Finally, for every x € R? it is easy to prove that

1

hp(x) = X (2.15)
1+ \/1 NI
and
1—m2+y2 _ _ 2 _ 2
fo(z,y) = 2 R ( x ) 2 ) ! ) '
—xy v 1+22 492" 1+a22+y2" 1+22+y?
(2.16)

2.9.2 The behaviour of a flow at infinity

Since the equator of S? is invariant under the flow defined by fg2, the boundary of
the Poincaré disc D is invariant under the flow defined by fp. Then 0D is a circle
formed by solutions called the infinity manifold. A point p € 9D is said to be a
singular point at infinity if fp(p) = 0. If there are no singular points at infinity, we
say that there exists a periodic orbit at infinity, or that the infinity is a periodic
orbit.

Let p € 0D be a singular point at infinity. As we know, the stable manifold
of p, Ws(p) C D, is formed by the orbits « of the Poincaré compactification
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satisfying p € w(y). Consider the subset hy ' (W*(p)) of R2. For simplicity we call
this set the stable manifold of the singular point at infinity p and we also denote
it by W#(p). Note that orbits in R? belonging to the stable manifold of a singular
point at infinity escape to infinity in forward time. In a similar way we define in
R? the unstable manifold of a singular point at infinity and denote it by W*(p).
Note that orbits in R? belonging to the unstable manifold of a singular point at
infinity escape to infinity in backward time. In general, we will use the same name
for a subset E of R? and for the subset hp(FE) of Int(DD).

When there are no singular points at D, we denote the stable and the unsta-
ble manifold of the periodic orbit at infinity by W#(co) and W*(c0), respectively.

Let z = (20,90)7 € OD be a singular point at infinity of the differential
system x = f(x), that is, a solution of the equation fp|,p (x) = 0. To determine
the behaviour of the flow in a neighbourhood of z we use the local chart (H,, hy)
of S?, where H, = {(x,y, 2) € S?: xx0 + yyo > 0} is the hemisphere centered at
the point p3'(z) = (0, ¥0,0)" and

1
h,(z,y,2):= To — TYo, 2
2(7,Y, 2) x:co—i—yyo(y 0 Yo, %)
is the inverse of the central projection (with center at the origin) of the tangent
plane to S? at the point (x9,%0,0)”. Thus, the vector field fs: and the diffeomor-
phism h, define a locally Lipschitz vector field f, : R? — R2, given by

f,(v,y) := Dh, (h;! (z,9)) fs2 (h; ' (z,y)) .

Since h,(xo,yo,0) = 0, the origin is a singular point of the flow defined by f,, see
Figure 2.15.

The vector fields fs2 and f, are differentiably conjugate in a neighbourhood of
the singular points pll(z) and 0. Therefore, to describe the behaviour of the flow
generated by fp in a neighbourhood of z it is sufficient to describe the behaviour
of the flow generated by f, in a neighbourhood of 0 with y > 0.

We end the section by giving explicit expressions of the vector field f,(z,y).

From )
~1 _ _
h, *(z,y) = a4y (zo — Yo, Yo + 0, Yy) (2.17)

Dh,(z,y,z) = ! ( Y v 0 )
o (zz0 + yyo)® \ —2To  —2Yo  TTo +YYo

and

it follows that

_ —Yo —Txo —ITYo + Zo To—xYo Yot+xxT Y )
fe(w.y) = =(z.9) < —YZo —YYo ) tn ( Zo(r,y)o’ g(r,y)o’ z(zy) )
(2.18)

where z(z,y) = /1 + 22 + y2.
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In particular, for polynomial vector fields f(z,y) = (P(x,y), Q(x,y)), if we
take charts centered at the points z, = (1,0) and z, = (0, 1), we obtain

Q(L, =) —apP (L=
(49t

P (7)) = (7))
| )

f. (z,y) = y"m(z,y)

ny (Iv y) = ynm(xv Yy

where m(x,y) = z(z,y)'~". These expressions are the usual ones found in the
literature, see for instance [58] or [4] or [21]. To obtain the expression of f,  which
appears in [58, p. 59] we have to perform the change of variables (z,y) — (—x,y)
which only change the orientation of the base. If we remove m(x,y) from the
expressions of f,, and f, by rescaling the time, these vector fields are polynomial.
Note that, in general, fp is not C'.

2.10 Local bifurcations

The qualitative behaviour of a parametric family of differential equations, x =
f(x, ), can change by the value of the parameter A; that is, the qualitative be-
haviour can change from one topological equivalence class to another. From The-
orem 2.6.9, a change of the topological equivalence class implies a change of the
separatrix configuration. This change in the separatrix configuration is called a
bifurcation and the value of the parameter A\ in which it takes place is called a
bifurcation value. In a more general context, the word bifurcation refers not only
to other changes in the behaviour of the flow, but also to changes in the topo-
logical equivalence class. For details about bifurcation theory see the books of J.
Guckenheimer and P. Holmes [29], J. Hale and H. Kocak [31], and S. Chow and
J. Hale [17].

In this section we introduce the basic notions of the theory and offer a brief
summary of the most usual bifurcations, at least in the context of this book.
It is not our purpose to study analytical aspects of bifurcation theory. Here we
consider only its geometrical aspects. Some bifurcations described below take place
in a neighbourhood of a singular point, hence they are refered as local bifurcations.

The set of all bifurcation values in the parameter space is called the bifur-
cation set of the parametric family. When the bifurcation values form a manifold
in the parameters space we refer to it as bifurcation manifold. The representation
in the product space V' x U (where V is the parameter space and U is the phase
space) of the invariant sets (singular points, periodic orbits, separatrix cycles, etc.

..) is called bifurcation diagram. When the invariant set represented in a bifur-
cation diagram is a periodic orbit, it is customary to use in the representation the
amplitude or the period of the periodic orbit instead of the orbit itself.
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2.10.1 Bifurcations from a singular point

Now we describe some of the bifurcations which take place in a neighbourhood of a
singular point. We distinguish between uniparametric bifurcations or bifurcations
of codimension 1 (saddle-node bifurcation, transcritical bifurcation, pitchfork bi-
furcation and Hopf bifurcation), and biparametric bifurcations or bifurcations of
codimension 2 (cusp bifurcation).

For a bifurcation value A\g we say that the differential system x = f(x, A) has
a supercritical saddle-node bifurcation at the singular point xg if

(i) for A < Ao, the differential system has no singular points in a neighbourhood
U of xq;

(ii) when A = Ao, xg is the unique singular point in U and it is a saddle-node;

(iii) for A > Ao, the differential system has exactly two singular points at U, one
of which is a saddle and the other a node.

In Figure 2.16(a) we represent the bifurcation diagram of the supercritical saddle-
node bifurcation. When this bifurcation occurs to the left of the bifurcation value,
it is called a subcritical saddle-node bifurcation, see Figure 2.16(b).

node node
saddle-node saddle-node
Ao R Ao .
A A
\  saddle saddle /
~ -
~ ~ — -

(a) (b)

Figure 2.16: Saddle-node bifurcation: (a) supercritical; (b) subcritical.

The differential system x = f(x, A) is said to have a transcritical bifurcation
at x¢ for the bifurcation value \g if

(i) for A < Ag, there exist exactly two singular points (one stable and one un-
stable) in a neighbourhood U of xo;

(ii) for A = Ao, the two singular points collapse into one at xg, which in general
is a non-hyperbolic singular point;

(iii) for A > Ag, there exist exactly two singular points in U (one stable and one
unstable).

In Figure 2.17 we represent the bifurcation diagram of a transcritical bifurcation.
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N
S N unstable
N
stable N S
Ao A

Figure 2.17: Transcritical bifurcation diagram

The differential system % = f(x, \) is said to have a supercritical pitchfork
bifurcation at the bifurcation value \g for the singular point xg if

(i) for A < Ag, there exists exactly one singular point in a neighbourhood U of
xo and it is a node (respectively, a saddle);

(ii) for A = Ao, x¢ is the unique singular point in U;

(iii) for A > Ao, there exist exactly three singular points in U. Two of them are
nodes (respectively, saddles) and have the same stability as the singular point
which exists for A < Ag. The other singular point is a saddle (respectively, a
node).

When the bifurcation occurs for values of A < )y, it is called a subcritical pitchfork
bifurcation. In Figure 2.18 we represent the bifurcation diagram of the pitchfork
bifurcation. Note that in this bifurcation we can choose different behaviours for
the singular points.

node (saddle) node (saddle)

saddle (node) saddle (node)
A

node (saddle) node (saddle)

(a) (b)

Figure 2.18: Pitchfork bifurcation: (a) supercritical; (b) subcritical. The names in
parentheses correspond to the other choice of the singular points.
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2.10.2 Bifurcations from orbits

This subsection is devoted to the local bifurcations that involve singular points,
periodic orbits and separatrix cycles.

We say that the differential equation x = f(x,A\) has a vertical bifurcation at
the singular point xq for the bifurcation value Ag, if

(i) for A < Ag, there exists exactly one singular point in a neighbourhood U of
X0;

(ii) for A = Ao, X¢ is the unique singular point in U and U is foliated by periodic
orbits;

(iii) for A > Ag, there exists exactly one singular point in U and it has opposite
stability compared with the singular point which appears in (i).

In Figure 2.19(a) we represent the bifurcation diagram of the vertical bifurcation.
There the vertical variable corresponds to the amplitude of the periodic orbit.

Ao 0
> >A
(a) (b)
Ao
A, 9

() (d)

Figure 2.19: Bifurcation diagram involving periodic orbits. The y-axis represent the
amplitude of the periodic orbits: (a) vertical bifurcation; (b) Hopf bifurcation; (c)
saddle-node bifurcation of limit cycles; and (d) focus-center-limit cycle bifurcation.

The differential equation x = f(x, \) has a supercritical Hopf bifurcation at
the singular point xq for the bifurcation value Ag, if

(i) for A < Xg, there exists exactly one singular point and it is stable (respec-
tively, unstable) in a neighbourhood U of xq;

(ii) for A = Ao, x¢ is the unique singular point in U;
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(iii) for A > Ap, the system has exactly one singular point x¢ and one limit cycle
in U. Moreover, the singular point is unstable (respectively stable) the limit
cycle is stable (respectively unstable) and the amplitude of v tends to 0 as A
tends to Ag.

In Figure 2.19(b) we represent the supercritical Hopf bifurcation diagram. The
variable in the vertical axis is the amplitude of the limit cycle v. When the limit
cycle v appears for A < Ag and disappears for A > Ag we say that it is a subcritical
Hopf bifurcation.

We say that the differential equation x = f(x, A) has a supercritical saddle-
node bifurcation of limit cycles at \g for the limit cycle ~ if

(i) for A < Ao, the system has no limit cycles in a neighbourhood U of ~;
(ii) for A = Ao, ~v is the unique limit cycle in U and it is semistable;

(iii) for A > Ao, the system has exactly two limit cycles in U, one stable and the
other unstable. Moreover, both limits cycles tend to v as A tends to Ag.

In Figure 2.19(c) we show the supercritical saddle-node bifurcation of limit cycles.
When the limit cycles appear for A < Ag, we say that a subcritical saddle-node
bifurcation of limit cycles occurs.

The differential equation X = f(x,A) is said to have a supercritical focus-
center-limit cycle bifurcation in the periodic orbit ~ if

(i) for A < Ag, there exists a convex neighbourhood U of v with exactly one
singular point xg, which is stable (respectively, unstable);

(ii) for A = Ao, the singular point xq is a local center, with + in the boundary;

iii) for A > Ag, there exists a unique limit cycle borning at v and it is stable
y g v
(respectively, unstable), and there exists exactly one singular point, which is
unstable (respectively, stable).

In Figure 2.19(d) we represent the bifurcation diagram of a supercritical Hopf-
vertical bifurcation. When the bifurcation takes place for A < g, it is called
subcritical focus-center-limit cycle bifurcation.

The differential equation x = f(x, \) is said to have a homoclinic cycle bifur-
cation at point xq if

(i) for every A # )g, the system has exactly one singular point in a neighbour-
hood U of x(y and that point is a saddle;

ii) for A = Ao, the system has a saddle point at xo and the stable and unstable
separatrices of xy meet, forming a homoclinic cycle.



Chapter 3

Fundamental Systems

In this chapter we introduce the class of differential systems which is the focus of
this book, namely, the fundamental systems. Vector fields associated to fundamen-
tal systems are continuous piecewise linear functions. This ensures the existence
and uniqueness of solutions of fundamental systems, and the continuous depen-
dence of solutions on the initial conditions and on parameters. From a geometric
point of view we can think of a fundamental system as the union of three linear
systems, each of them defined on a different region in the phase space. This enables
us to use a matricial approach for studying this class.

We also present some results about the existence and localization of singular
points (either finite or infinite), and periodic orbits.

3.1 Definition of fundamental systems

Consider a 2 x 2 real matrix g, ie., AeL (R2), and two non-zero vectors E, ke
R2. Let ¢ : R — R be a function given by

myo — (mo —my) u, if o< —u,
¢ (o) =4 mogo, it |o| <uw, (3.1)
myo + (mo —my) u, if o> u,

where mo # m; and u > 0, see Figure 3.1(a). We define a fundamental system as
the following family of planar differential equations

y=Ay+3 (KTy) b. (3.2)

The function ¢ is usually referred as the characteristic function of the fundamental
system.

Since the characteristic function ¢ is a continuous nonlinear (mgy # mp and
u > 0) function, the vector field defined by system (3.2) is also continuous and
nonlinear.

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 61
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhduser Advanced Texts,
DOI 10.1007/978-3-0348-0657-2_3, © Springer Basel 2014
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3.2 Normal forms

From equation (3.2) it follows that 11 parameters are used in order to define a
fundamental system: 4 coefficients of the matrix Z, 2 components of the vector E,
2 components of the vector b, and 3 parameters of the characteristic function .
We now normalize the characteristic function to reduce the number of necessary
parameters.

By substituting expression (3.1) in expression (3.2) we have

f~ly+ mlﬁTy— (mo —mq) u) B, if k'y < —u,

y=1{ Ayt mOETy) b, it [KTy| <u,
Ay+ (mikTy+ (mo — mq) u) b, if KTy > u.

Using the fact that (k7y)b = (bk”)y and the notations A = A + m;bk?, b =
(mo — mq)b and k = k, the previous system can be written as

Ay—ub, if KTy < —u,
v = (A—i—ka) Y, if |kTy| < u,
Ay + ub, if KTy > u.

Finally, the change of variables x = (1/u)y transforms system (3.2) into the system
%X =Ax+¢ (k"x)b, (3.3)
with A € L(R?), b,k € R? \ {0} and

1, if o< -1,
(o) = o, if Jo] <1, (3.4)
1, if o>1,

see Figure 3.1(b).

The system (3.3) with the characteristic function (3.4) will be called the
normal form of the fundamental system (3.2).

Normal forms of fundamental systems involve only 8 parameters (A4, b, k) (we
eliminated the 3 parameters of the characteristic function). Moreover, systems
(3.2) and (3.3) are linearly conjugate, i.e. have the same qualitative behaviour.
Hence in the sequel we will restrict our attention to fundamental systems expressed
in normal form.

3.3 Existence and uniqueness of solutions

The continuity of the characteristic function ¢ implies the continuity of the vector
field f(x) = Ax + p(k”x)b defined by (3.3). In the following we prove that ¢ and
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A

(a) (b)

Figure 3.1: Characteristic functions ¢ and ¢.

f are globally Lipschitz. This will allow us to conclude not only the existence and
uniqueness of solutions of the fundamental systems, but also the completeness of
their flow.

Lemma 3.3.1. The characteristic function ¢(o) defined in (3.1) is globally Lipschitz
in R, with Lipschitz constant L = max{|mgl, |m1]|}.

Proof. To show that |p(o1) — @(02)| < L|oy — 09| for all 01,02 € R, we divide
the proof into 8 cases, depending on the intervals I = (—oo, —u), Ip = [—u,u] or
I = (u,+00), where o1 and o9 lie.

If 01 and oy are in the same interval, then

|m1||01—02|, ifO’l,O'QEI,,
|9 (01) =@ (02)| = ¢ |mollor — 02|, if 0,00 € Lo,
|m1||01—02|, if01,02€I+.

Therefore, | (1) — @ (02)| < Loy — o3].
Suppose now that o1 € I_ and o9 € Iy. Then
@ (01) — @ (02)| = [mio1 — (mo — m1) u — moos|

= |m1 (o1 +u) — mo (02 + )|
< L(loy +ul + |oz +ul).

Since o1 € I_ and o5 € Iy, we have 01 +u < 0, o5 +u > 0 and 01 < 03. Therefore,

¢ (01) = @ (02)| < Loz —ou].
Similar arguments apply to the remaining cases. |

Proposition 3.3.2. (a) The vector field defined by the fundamental system (3.3)
is Lipschitz in R? with Lipschitz constant L = ||A| + ||bk” .

(b) The theorem on the existence and uniqueness theorem of solutions of ordinary
differential equations holds for fundamental systems.
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(c) Letx(s) be the solution of fundamental system (3.3) with the initial condition
x(0) = xq, then

x (s) = eMxo + /0 ey (kx) bdr. (3.5)

(d) Flows of fundamental systems are complete. Moreover, flows of fundamen-
tal systems depend in differential manner on time, and continuously on the
initial conditions and on parameters.

Proof. (a) By taking mg =1, m; = 0 and v = 1 in Lemma 3.3.1, it follows that ¢
is a Lipschitz function in R with Lipschitz constant L = 1, i.e.,

|g0 (kal) —p (kTX2)| < |kT(x1 — X2)| .

Hence we have ||(¢(k?x1)—p(kTx2))b| < ||bk” (x1 —x2)||. From this we conclude
that the vector field f(x) = Ax + ¢(k?x)b defined by (3.3) satisfies

I (1) — £ (x2) | < (1A + [P []) [[x1 — x|,

which proves our statement.

(b) follows from Theorem 2.1.1 and statement (a).

(c) It is easy to check that the function x(s) defined by (3.5) satisfies equation
(3.3) as well as the initial condition x(0) = xg. The assertion follows by applying
the statement (b).

(d) follows from Proposition 2.1.2 and Theorem 2.1.3. O

3.4 Symmetric orbits

As the function ¢ is odd (i.e., ¢(—0) = —p(0)), the vector field f(x) = Ax +
¢o(kTx)b defined by the fundamental system (3.3) is also an odd function. There-
fore, if x(s) is a solution of (3.3), then y(s) = —x(s) is also a solution of (3.3).
Note that the orbits associated to the solutions x(s) and y(s) are symmetric to one
another with respect to the origin. In particular, if x(s) and y(s) are associated
to the same orbit, then this orbit is a symmetric periodic orbit.

3.5 Piecewise linear form
Since characteristic functions are nonlinear functions, fundamental systems are

also nonlinear. In this section we show that fundamental systems can be under-
stood as three linear systems, each defined on a different region in the plane.
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Substituting ¢ in equation (3.3) and using the notations
S_ ::{X€R2:ka<—l},
L_:={xeR’:k'x=-1},
So={xeR®: |k"x| <1}, (3.6)
Ly := {X€R2:ka:1},
Sy ::{XERQ:ka>1},
one can recast system (3.3) as

Ax — b, ifxeS_UL_,
x={ Bx, ifxeL USyUL,, (3.7)
AX+b, ierLJ,_USJ,_,

Where, if A= ( a2 )7 bT = (bl,bQ) and kT = (kl,kg), then
a1 A22

(3.8)

B:A+ka = ( a11+k1b1 a12+k2b1 )

az1 + kiba  ags + kaba

Expression (3.7) will be called the piecewise linear form of the fundamental system
(3.3).

The straight lines L; and L_ are symmetric with respect to the origin.
These lines split the phase plane into the half-planes Sy, S_ and the open strip Sy
(Figure 3.2). On each of these regions the system is linear, with matrices A and
B, respectively; moreover, the system changes continuously on the straight lines
L4 and L_. In fact, as we proved in Proposition 3.3.2(a), the vector field on L4
and L_ is not only continuous, but also globally Lipschitz in R?.

3.6 Fundamental matrices

The matrices (A, B) in (3.7) are called the fundamental matrices of the funda-
mental system (3.3).

From (3.8) associated to a fundamental system with parameters (A, b, k),
there exists a pair of fundamental matrices (A4, B). However, not for all pairs of
matrices A and B there exists a fundamental system with fundamental matrices
(A, B). In the following we give sufficient and necessary conditions on the pair
(A, B) so that they are fundamental matrices.

Proposition 3.6.1. Let A, B € L(R?). Then (A, B) is a pair of fundamental ma-
trices if and only if A # B and det(B — A) = 0.

Proof. Suppose that (A, B) is a pair of fundamental matrices. From (3.8) it follows
that there exist vectors b,k € R? ~ {0} such that B — A = bk”. Consequently,
det(B — A) = klblebQ — klekal =0.
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Sy
So
x=Ax+Db
S %X = Bx Ly
x=Ax—b
L_

Figure 3.2: Piecewise linear phase plane of a fundamental system.

Suppose now A = B. Then we have k1b; =0, kiby = 0, koby = 0 and koby =
0. This clearly implies that k = 0 or b = 0, which contradicts our assumptions.
So A # B. This proves the necessary condition.

Conversely, if A # B, the matrix

B_ A= M1 M
ma1 Moz )’
is not the zero matrix. We assume that mq1 # 0; the other three cases follow by
using similar arguments.
Take bT = (mll,mgl) and kT = (1 m12/m11) thus b, k e R2 < {0} . Since

det(B— A) = 0 it is easy to check that B = A+bk” . Therefore, (4, B) is the pair
of fundamental matrices of the fundamental system with parameters (4, b, k). O

Given the pair of fundamental matrices (A4, B) one can choose different vec-
tors b and k satisfying (3.8). That is, there exist more than one fundamental
system with (A, B) as fundamental matrices. The next proposition shows an im-
portant relationship between all these fundamental systems.

Proposition 3.6.2. Two fundamental systems having the same pair of fundamental
matrices are linearly conjugate.

Proof. Let (A, B) be the fundamental matrices of the two fundamental systems
X =Ax+ (ka) b and y=Ay + ¢ (k*Ty) b*,
where bT = (b1, ba), kT = (k1, k2), b*T = (b},b3) and k*T = (k}, k3).

By (3.8), the matrices bk’ and b*k*” are equal. Thus kib, = k* 107, kibe =
kibs, koby = k30T and koby = k305,
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Since b*# 0, suppose that b; # 0 (the case bj = 0 and b} # 0 follows using
similar arguments). From the above equalities we have by # 0, k* = (b1 /b})k and
b = (b7/b1)b.

Consider M = (b /b1)Id € L(R?), where Id denotes the identity matrix. If
x(s) is a solution of the first fundamental system and y(s) = Mx(s), then

b b b by
y="'x=A( "x)+¢ (k" ly)(,'])b=A4y+¢(kTy)b",
bl b1 bl bl

i.e., y(s) is a solution of the second fundamental system. Hence the systems are
linearly conjugate and M is the linear conjugation. O

Associated to a pair of fundamental matrices (A, B) there exists a one-
parameter family of fundamental systems which have (A, B) as fundamental ma-
trices. In fact, from the above proof, this family has parameters (4, ab, (1/a)k)
with a # 0. But all these systems have the same phase portrait up to a linear
transformation; i.e., they are linearly conjugate, see Section 2.6 for more details.
This allows us to use fundamental matrices to classify the behavior of fundamental
systems.

Up to now we have not reduced the number of parameters used for describing
the behavior of the systems. We have only reduced the number of fundamental
systems to study by choosing a unique representant of the above family; i.e., for
instance by choosing o = 1.

3.7 Fundamental parameters

Consider a fundamental system (3.3) with fundamental matrices (A, B). The vec-
tor (D, T,d,t) where

D = det(B), T = trace(B), d =det(A) and ¢t = trace(A). (3.9)

will be called the fundamental parameters of the fundamental system. Since funda-
mental matrices are related, fundamental parameters are also related. From (3.8)
it follows that

D = d + (a11kaba + ag2k1b1 — a12k1ba — ag1k2b1)

=d+kT( 9 T2 )y, (3.10)
—a21 ail

Therefore, when d # 0, we obtain
D=d(1+k"A™'b). (3.11)
In a similar way (3.8) yields
T =t + (kiby + kaby) =t + k' b. (3.12)
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Proposition 3.7.1. If we change the direction of the flow (by the change of time
s — —s) of a fundamental system with fundamental parameters (D,T,d,t), then
we obtain a fundamental system with fundamental parameters (D, —T,d,—t).

Proof. Let X = Ax+¢(k”x)b be a fundamental system with fundamental param-
eters (D, T,d,t). The change of variables (x,s) — (y, —s) transforms the system
into the fundamental system y = — Ay —p(k” y)b with parameters (D*, T, d*, t*),
where d* =d, t* = —t, D* =D and T* = —-T. O

3.8 Linear conjugacy

In Proposition 2.6.4(a) we have shown that two linear systems with equivalent
matrices are linearly conjugate. This fact makes possible the classification of linear
flows using the trace t and the determinant d of the matrix when ¢ — 4d # 0, see
Proposition 2.6.4(c). As we shall prove in Theorem 3.8.2; a similar result holds for
fundamental systems.

Two fundamental systems are said to be equal in an open subset U C R? if
the vector fields defined by them are equal in U.

Lemma 3.8.1. Fundamental systems x = Ax+o(kTx)b and X = A*x+¢(k*Tx)b*
are equal in R? if and only if A = A*, b = nb* and k = nk*, where n € {1, —1}.

Proof. Let
Ax—b, ifxeS_UL_,
X = Bx, ifxe L_USyU Ly,
AX+b, ifX€L+US+,
and

A*x —b*, ifxe St UL,
x={ B'x, ifx e L* US;ULY,
A*x+b*, ifxeLiUST,

be the piecewise linear forms of the two fundamental systems, respectively.

Suppose that the two systems are equal in R2. If S_NS* # @, then Ax—b =
A*x—Db* for all x in the open set S_NS* ie., (A—A*)x =b—b*forx € S_NS*.
From Lemma 2.6.3 it follows that A = A* and b = b*. On the contrary, if
S_NS* = @, then S_ N ST # &. In this case applying similar arguments as
before we obtain A = A*, b = —b*.

On the other hand, since SpN.S; is a non-empty open set and Bx = B*x when
x € SpNS§, applying Lemma 2.6.3 we obtain B = B*. Now from equation (3.8) it
follows that bk’ = bk’*. Taking coordinates and noting that b, k, k* € R2~ {0},
it is easy to check that k = k* or k = —k*, depending on whether b = b* or
b = —b*.

Suppose now that A = A*, b = nb* and k = nk*. It is clear that p(k”x)b =
n?o(k*Tx)b*, which completes the proof. O
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In the following theorem we give a characterization of the linear conjugacy
classes of fundamental systems. In this characterization we use only fundamental
matrices.

Theorem 3.8.2. (a) Two fundamental systems with respective fundamental ma-
trices (A, B) and (A*, B*) are linearly conjugate if and only if there exists a
matriz M € GL(R?) such that A* = MAM~' and B* = MBM~!.

(b) If two fundamental systems are linearly conjugate, then they have the same
fundamental parameters.

Proof. Let x = Ax+p(kTx)b andy = A*y+¢(k*Ty)b* be two linearly conjugate
fundamental systems, and let M € GL(R?) be the conjugacy matrix.

Take q in R? and let y(s) be the solution of the second system with initial
condition q = y(0). Since the systems are conjugate with conjugacy M, it follows
that x(s) = M~'y(s) is a solution of the first system. Multiplying by M and
taking its derivative at s = 0, we have M%(0) = y(0), which is equivalent to

MAM'q+ (k" M~'q)Mb = A*q + ¢(k*" q)b*.

Since q is an arbitrary point in R? we obtain A* = MAM ™!, b* = nMb and
k*T = nkT" M~ with n € {1, —1}, see Lemma 3.8.1. Substituting these expressions
into B* = A* + b*k*T, see (3.8), and taking into account that B = A + bk’ we
have

B* = MAM ™' + n?Mbk" M~ = M(A+bk" )M~ = MBM ™!,

Now let us prove the other implication. Let (A4, B) and (A*, B*) be the fun-
damental matrices of the fundamental systems

% = Ax + p(k"x)b, (3.13)
)

y= Ay + ok Ty)b, (3.14

respectively. By hypothesis, there exists a regular matrix M such that A* =
MAM~" and B* = MBM .
The change of coordinates z = Mx transforms system (3.13) into the system

z=MAM 'z + ¢ (k" M~'z) Mb, (3.15)

with fundamental matrices (M AM~1, M BM~'). Thus systems (3.13) and (3.15)
are linearly conjugate with conjugacy matrix M.

Since systems (3.14) and (3.15) have the same pair of fundamental matrices,
Proposition 3.6.2 implies that they are linearly conjugate. Thus systems (3.13)
and (3.14) are also linearly conjugate. This completes the proof of statement (a).

Statement (b) is a straightforward consequence of statement (a). O

There are some important consequences of Theorem 3.8.2.
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Remark 3.8.3. All fundamental systems in the same linear conjugacy class have
topologically equivalent phase portraits. Thus, there is not loss of generality in
assuming that either matrix A or matriz B is given in its real Jordan mormal
form. This usually simplifies the computations. Note that solutions of a linear
system appear in their easiest form when we use their real Jordan normal form.

Remark 3.8.4. To each linear conjugacy class there is associated a unique point
in the space R* given by the fundamental parameters (D,T,d,t), see Theorem
3.8.2(b). However, two different classes can be associated to the same point. We
call such points virtual bifurcation points. As we shall see in Chapter 5, the set of
all virtual bifurcation points has zero Lebesgue measure in the set of all bifurcation
points. Since almost always fundamental parameters characterize the linear conju-
gacy classes, we choose R* = {(D,T,d,t) : D,T,d,t € R} as the parameter space
of the fundamental systems. Note that we have reduced the initial 8-dimensional
parameter space to dimension 4.

Remark 3.8.5. The behaviour of fundamental systems with respect to the linear
conjugacy relationship is very similar to that of linear systems, see Proposition
2.6.4.

3.9 Finite singular points

We are now interested in the study of phase portraits of fundamental systems.
Since the separatrix configuration is the skeleton of a phase portrait, see Theorem
2.6.9, we start by studying the simplest separatrices of fundamental systems, i.e.,
singular points. In this section we give the number, the localization and the local
phase portrait of finite singular points. Singular points at infinity will be studied
in the following section.

Consider the fundamental system

%X =Ax+¢ (k"x)b. (3.16)

Its singular points are determined by the zeros of the linear function Ax 4+ b in
the half-plane S, by the zeros of Bx in the strip L U Sy U L_, and by the zeros
of Ax —bin S_.

Since the origin 0 € Sy, 0 is always a singular point. Furthermore, if the
fundamental parameter D # 0, then the origin is the unique singular point in
Liu SoUL_.

Suppose that the fundamental parameter d # 0. We define the points e} and
e_ as

e, =—A"'b and e. = A7 'b. (3.17)

By (3.7), if e} € S, then e is the unique singular point in S . By the symmetry
of the orbits with respect to the origin, e_ is the unique singular point in S_.
On the other hand, when ey ¢ S, it follows that e_ ¢ S_. Hence e, e_ are not
singular points of (3.16). These points are usually called virtual singular points
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(see, [24] and [25]). In the next result we give necessary and sufficient conditions
on the fundamental parameters so that e, and e_ are genuine singular points.

Lemma 3.9.1. Consider a fundamental system with fundamental parameter d # 0.

(a) The points e; and e_ satisfy

D D
ke, =1— g and ke = gL (3.18)

(b) ey belongs to Sy (respectively, e— € S_) if and only if Dd < 0.
(¢) ey belongs to Ly (respectively, e— € L_) if and only if D = 0.

Proof. (a) Since d # 0, from (3.11) we have D = d(1 — kTe, ), which establishes
the formula. Statements (b) and (c) follow easily from the definition of S; and
L, and (3.18). O

Now we classify the finite singular points depending on the fundamental pa-
rameters. Before doing this we prove that the number of singular points and the
regions Sy U S_ and Sy to which they belong are invariant under linear transfor-
mations.

Lemma 3.9.2. Let x = Ax + o(k"x)b and x = A*x + o(k*Tx)b* be two linear
conjugate fundamental systems, with conjugacy matric M € GL (R2). If q is a
singular point of the first system, then q* = Mq is a singular point of the second
one, and |kTq| <1 if and only if k*Tq*| <1.

Proof. Since M is a conjugacy matrix, it maps orbits into orbits. Thus q* is a
singular point for the second system.

From the proof of Theorem 3.8.2 we have A* = MAM~!, b* = nMb, and
k*T = nkTM~1, with n € {—1,1}, which proves our assertion. O

According to Lemma 3.9.2, if q € Sy, then q* belongs to the central open
strip, written Sg, of the transformed system. But if q € S, we cannot be sure
if q* belongs to S} or to S*. In any case, if the singular point q € Sy, there is
always a singular point of the transformed system in 57 . This point will be either
q* or —q*.

Theorem 3.9.3. Consider a fundamental system with fundamental parameter D #
0. Under this assumption the origin 0 is the unique singular point in L_USoU L
and we have:

(a) Suppose D > 0. If T?> —4D < 0, then the origin is a stable focus when T < 0,
a center when T = 0, and an unstable focus when T > 0. If T2 —4D > 0, then
the origin is a stable node when T' < 0, and an unstable node when T > 0.

(a.1) If d > 0, then there are no singular points in S; U S_.

(a.2) If d < 0, then ey (respectively e_ ) is the unique singular point in Sy
(respectively S_ ). Moreover, ey and e_ are saddle points.
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(b) Suppose D < 0. Then the origin is a saddle point.
(b.1) If d <0, then there are no singular points in Sy US_.

(b.2) If d > 0, then e; (respectively e_) is the unique singular point in Sy
(respectively S_ ). Moreover, if > — 4d < 0, then ey and e_ are stable
foci when t < 0, centers when t = 0, and unstable foci when t > 0. If
t2 —4d > 0, then ey and e_ are stable nodes when t < 0, and unstable
nodes when t > 0.

Proof. Let X = Ax + ¢(kTx)b be the given fundamental system. In the central
region L_USoUL, the system is x = Bx, with B = A+bk” and D = det(B) # 0.
Therefore the origin is the unique singular point in L_ U Sy U L.

(a) Since the system is linear in a neighbourhood of the origin, its local phase
portrait follows from Subsection 2.5.3.

(a.1) When d > 0, it follows that Dd > 0. By Lemma 3.9.1(b), there are no
singular points in S; U S_.

Suppose now that d = 0. By Theorem 3.8.2(a) and Lemma 3.9.2, we can
assume without loss of generality that the matrix A is one of the following ones:

t 0 0 1 00
a=(g o) a=(0 o) ora=(00)

In the three cases we arrive at a contradiction with the hypothesis. First suppose
A is the zero matrix. Then B = bk’ and D = 0, which contradicts the hypothesis.
Suppose now that the matrix A is not the zero matrix and trace(A) = 0. If there
exists a singular point q in S, i.e., Aq+b = 0, then b” = (b;,0). In this case

o bikr 1+ Dbike
b (B 1)

Therefore D = 0, which contradicts the hypothesis. The remaining case follows
in a similar way. So there are no singular points in S;. By the symmetry of the
orbits with respect to the origin, there are no singular points in S_.

(a.2) When d < 0 we have Dd < 0. By Lemma 3.9.1(b), e; is the unique
singular point in S; and e_ is the unique singular point in S_. Since the system is
linear in S} and S_, the local phase portraits of e, and e_ follow from Subsection
2.5.3.

Statements (b), (b.1) and (b.2) follow using arguments similar to those of
the proofs of statements (a), (a.1) and (a.2). O

Remark 3.9.4. All singular points of a fundamental system with fundamental pa-
rameter D # 0 are isolated, see Theorem 3.9.3. Furthermore, the existence in a
fundamental system of more that one singular point is equivalent to Dd < 0.

In the following result we study the degenerate case D = 0. In this case
singular points are not isolated. In particular, they are located on curves in the
phase space. To compute the quantitative aspects of these curves one can assume
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with no loss of generality that the matrix B is given in its real Jordan normal
form, see Lemma 3.9.2.

From now on, given two vectors u u,u2), vl = (v1,v9) in R?, we denote
by (u,v) the matrix whose columns are the vectors u and v. We recall that v+
denotes the vector (—vg,v1)T orthogonal to the vector v.

T

Theorem 3.9.5. Consider a fundamental system with fundamental parameter D =
0.

(a) If d £ 0, the set formed by all the singular points of the system is the closed
segment so := {Xe;r : A € [—1,1]} contained in L_ U SoULy. If T <0
(respectively, T > 0), then the segment without the endpoints is a stable
(respectively, an unstable) normally hyperbolic manifold. If T = 0, then the
segment without the endpoints is a non-isolated nilpotent manifold.

(b) Suppose that d =0 and B is given in its real Jordan normal form.

(b.1) If B is the zero matriz, the set of singular points is the closed strip
L_USyUL,.

(b.2) Suppose that B is not the zero matriz and Bk = 0. Then the set of
all the singular points in L_ U SoU L, is the straight line ro := {\k* :
X € R}. Moreover, if T < 0 (respectively T > 0), then the straight line
ro is a stable (respectively an unstable) normally hyperbolic manifold; if
T =0, then ro is a non-isolated nilpotent manifold.

(b.2.1) Suppose that either Tt < 0 and kTbt = 0, or T = 0, t = 0
and kTbL > 1. Then the set of all the singular points in S, is the
straight line ry = {q+ k" : A\ € R} and the set of all the singular
points in S_ is the straight line r_ := {—q+ \k* : A € R}, where
q” is equal to (ky (1 —T/t),0) or to (0,by(keby —1)71) depending
on whether T'# 0 or T = 0.

Moreover, if T <0 (respectively, T > 0), the straight lines vy, r—
are unstable (respectively, stable) normally hyperbolic manifolds; if
T =0, then r and r— are non-isolated nilpotent manifolds.

(b.2.2) Otherwise, there are no singular points in Sy U S_.

(b.3) Suppose that B is not the zero matriz and Bk # 0. Then the set of
all the singular points is the piecewise linear curve

s ={—q+Iw:A<0}CS_,
so:={nq:ne[-1,1} C L_USyU Ly,
sy ={q+Aw: A >0} C Sy,

where qT is equal to (0,ky ') or (k7',0) depending on whether T # 0 or

T =0; and w'' is equal to (koby, T — kiby) or (1 — kaby, k1b1) depending
on whether T'# 0 or T = 0.
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Moreover, if either T > 0, or T =0, or T < 0, then the segment sq is
either an unstable normally hyperbolic manifold, a non-isolated nilpo-
tent manifold, or a stable normally hyperbolic manifold, respectively.
The segments s4 and s_ are either unstable normally hyperbolic man-
ifolds, non-isolated nilpotent manifolds, or stable normally hyperbolic
manifolds depending on whether t > 0, t =0, ort < 0, respectively.

Proof. Let x = Ax + ¢(k”x)b be the given fundamental system. Therefore, B =
A+ bk’ and D = det(B).

(a) Since D = 0 and d # 0, Lemma 3.9.1(c) implies that there are no singular
points in S; and S_. Moreover, the singular points e and e_ belong to L and
L_, respectively. So all the singular points of the system are located in the closed
strip L_ U So U L.

By continuity, the vector fields Ax + b and Bx are equal on the straight line
L. Thus Be; = 0 and Be_ = 0. It is clear that if q belongs to the segment sq
defined in the statement, then Bq = 0. Moreover, every point in sg is a singular
point. Now we prove that there are no other singular points different from these.

Suppose that q is a singular point in L_USyUL such that q € sg. Therefore
{g,e,} is a basis of R?. Since the matrix B vanishes on each element of the basis,
it is the zero matrix. Consequently, A = —bk” and d = det(—bk”) = 0, which
contradicts our assumptions.

The local phase portrait of the singular point in sy follows from Subsection
2.5.3.

(b.1) Suppose that B is the zero matrix. Then every point in the closed strip
L_USyU Ly is a singular point.

Moreover, when B is the zero matrix, then A = —bk”. Thus any point q in
the half-plane L, U S, is a singular point if b(~k”q + 1) = 0. Since b # 0, this
is equivalent to q € L. By similar arguments we have that every singular point
in the half-plane S_ U L_ belongs to the straight line L_.

(b.2) Since Bk* = 0, every point in the segment g, defined in the statement,
is a singular point. Moreover, there are no other singular points in L_ U Sy U L.
Otherwise, arguments similar to those in the proof of statement (a) show that B
is the zero matrix, which contradicts our assumptions. The local phase portrait of
the singular points in rq follows from Subsection 2.5.3.

Now we look for the singular points in S; and S_. Since D = 0, either

T 0 0 1
B‘(o 0)’Or B_(o 0)’

depending on whether 7" # 0, or T' = 0. Therefore, if T" # 0, then k; # 0 and
ko = 0; and if T'= 0, then k; = 0 and ko # 0.
Suppose T # 0. From expression (3.8) we have

(T —kby 0
a= (TS o)
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Therefore, the singular points in S have to satisfy the equations z1 (T — k1b1) =
—by, —x1k1bo = —by and kyz1 > 1.

If b # 0, then upon dividing by —bs, isolating z; in the second equation,
and substituting z; in the first one, one obtains that T = 0, contrary to our
assumption. Thus, if ba # 0, there are no singular points in Sy (by the symmetry
of the orbits with respect to the origin, there are no singular points in S_).

If b, = 0, then

A= ( T_Oklbl 8 ),Wheret:T—klbl.

Suppose t = 0. In this case A is the zero matrix and Ax +b = b # 0. Thus, there
are no singular points in Sy U S_.

Suppose now that ¢ # 0. Since singular points in S have to satisfy the equa-
tions 21 = —by/t and k1z1 =1 — T/t > 1, we have the following two possibilities.
If Tt > 0, there are no singular points in S; U S_. Otherwise, if Tt < 0, the
set of singular points in S, is the straight line 7, = {q + Ak* : A € R}, where

q’ = (kll (1 — f) ,O) . By the symmetry of the orbits, the set of all the singular

points in S_ is the straight line r_ = {—q + Ak : A € R}.

The translation y = x — q transforms the non-homogeneous system X =
Ax + b into a homogeneous one. The local phase portraits of the singular points
in 74 and r_ follow from Subsection 2.5.3. This finishes the proof of statements
(b.2.1) and (b.2.2) when T # 0.

Suppose now T = 0. From (3.8) we have

0 1—keoby
a=(o S )

Therefore the singular points in S must satisfy the equations xo(1—kob1)+b1 = 0,
ba(1 — kawe) = 0, and koxe > 1. A direct computation shows that if either by # 0;
or b2 =0and 11— kgbl = 0; or b2 = 0, 1-— k‘gbl 75 0 and —k‘gbl/(l — k‘gbl) S 1,
there are no singular points in S; U S_. Otherwise, we have by = 0, 1 — koby # 0,
and koby /(kaby — 1) > 1. Thus the set of singular points in S, is the straight line
ri = {q+ Akt : X € R}, where q7 = (0,b1/(k2b; — 1)). By the symmetry of the
orbits with respect to the origin, the set of singular points in S_ is the straight
line 7— = {—q+ M\k* : A € R}. The local phase portrait of the singular points
at r4 and r_ follows from Subsection 2.5.3. This finishes the proof of statements
(b.2.1) and (b.2.2) when T = 0.

(b.3) Consider v € R\ {0} such that Bv = 0. Hence, the vectors k* and v are
linearly independent. From this we obtain that the straight lines r = {Av : A € R}
and L, intersect. Let q be the intersection point. It is easy to check that the
segment so = {A\q : A € [—1,1]} contains all the singular points in L_ U Sy U L.
The local phase portrait of the singular points follows from Subsection 2.5.3.

Now we shall look for the singular points in the half-plane S} and S_. Sup-
pose T' # 0. From this it can be concluded that ke # 0, and the intersection point
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satisfies g7 = (0, ky '). Moreover, since d = —Tkqby = 0 it follows that by = 0 and

therefore
T — kb —kaoby
am (T k)

Consider wT' := (kgb1, T — k1b1). Since det(w,k*) = Tky # 0, the vectors
w and k' are linearly independent. Suppose that s, = {q + Aw : A > 0} is a
half-line belonging to Sy . Otherwise, by taking w? = (—kgby, =T + k1by), we get
that s; C S4. It is easy to check that Aw = 0. Therefore, all the points in sy are
singular points. Now we will see that they are the only singular points in 5.

If p is a singular point in St such that p € S, then {w,p —q} is a basis of
R? and Aw = A(p—q) = 0. Therefore, A is the zero matrix and kgb; = 0, kg # 0,
and T = k1b; = 0, in contradiction with T" # 0.

By the symmetry of the system, the set of singular points in S_ is the half-line
s_. Thus the set of singular points is the piecewise linear curve

s_ inS_,
Ssop in L_USQUL+,
S+ in S+.

The local phase portrait of the singular points follows from Subsection 2.5.3.
Suppose now that 7= 0. Then k; # 0 and q” = (k:l_l,O). Since by = 0, we

have
o —kibr 1 —koby
)

A similar analysis to the one in the proof of the case T' # 0 shows that, upon
taking w? = (1 — koby, k1b1), the set of all singular points is the piecewise linear
curve

s— inS_,
so inL_USyULy,
S+ in S+.

The local phase portrait of the singular points follows from Subsection 2.5.3. [

3.10 Compactification of the flow

In this section we calculate the number of singular points at infinity. We start by
showing that the flows of fundamental systems can be extended to infinity via the
Poincaré compactification. That is, for a fundamental vector field f, we can define
the Poincaré compactification fp of f.

In general, when a vector field f defined in R? can be compactified (i.e., can
be extended to infinity), f and its Poincaré compactification fp are differentiably
equivalent in their open domains, R? and Int(ID). This is because the behaviour of
fp on the boundary 9D corresponds to the behaviour of f at infinity.
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In the particular case of fundamental systems it can be proved that the
vector field and its compactification are differentiably conjugate in R? and Int(DD),
respectively. Moreover, if two fundamental systems are linearly conjugate in R?,
then their Poincaré compactifications are differentiably conjugate in D.

According to this and to Theorem 3.8.2(a), in order to study the compactified
flow of a fundamental system, there is not loss of generality in assuming that either
the matrix A, or the matrix B, is given in its real Jordan normal form.

We define on the unit sphere S? = {x € R? : ||x|| = 1} the following regions:

Sy = {z €S?: 23>0, (21,22) k> 23 or 23 <0, (21,22) k < 23},

Sp := {Z € S2 : |(Zl,22)k| < |Z3|},

S_ = {z €S%: 23>0, (21,22) k< —23 or 23 <0, (21,22) k> —23}.
Note that the closed regions Sy, S_ and Sy are the images under the central

projection on the unit sphere of the half-planes Ly U S,, S_ U L_ and of the
central strip L_ U Sy U L , respectively.

Proposition 3.10.1. (a) Fundamental vector fields f(x) = Ax + p(kTx)b satisfy
the Eojasiewicz property at infinity. Furthermore, the degree of any funda-
mental vector fields at infinity is equal to 1, i.e., n(f) = 1.

(b) The Poincaré compactification of a fundamental vector field is given by

l+as—af —2x132
L2 1+ |x||?
T 1—||x]|?
£ (x) = (a(2) #x(rm ) b)
—2z122 I+af—a3 2

L+]x||? L[| |2

where x : S — R is the function given piecewise by

—Z23, ZfZ eS_,
23, ZfZ S S+.

(¢) The Poincaré compactification fp is symmetric with respect to the origin; that
is, fp(—x) = —fp(x).

(d) The fundamental vector field f and the Poincaré compactification fD'Int(]D))
are differentiably conjugate.

Proof. (a) To prove this statement it suffices to show that the vector field
z z z z z
fi(z) = zf (2,2) =4 ( o ) + 250 (k12 + k222 ) b,

defined on S; US_, can be extended as a global Lipschitz function to whole S2,
see Subsection 2.9.1.
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Easy computations show that when z € S, US_, that is, z3 # 0, the non-
linear term in the definition of f; satisfies

k k
—23, if 121+ Rz < -1,
zZ3
k k
23 (klzl +k2z2) ={ (21, 2)k, i ‘ 121+ 22|
23 23 23
k k
23, jpo AL Rz
Z3

In new of the expression of x (z) in the statement,

fl(z)_A< A1 )—i—x(z)b

22

on S US_. Therefore, f; can be prolonged to z3 = 0. For simplicity, we will use
f, to denote the extended vector field on the whole sphere S2.

Now we prove that f is a global Lipschitz function on S2. Since f; is defined
as the sum of two functions and one of them is linear, we only need to show that the
other, ¥, is a global Lipschitz function on S?, i.e., |x(q1) — x(q2)| < L|la1 — 92|/~
for all q1,q2 € S2. Recall that || - || denotes the supremum norm in R3.

We divide the proof into cases according to the set Sy, Sp or S_ where the
points q; and g2 belong. When q; = (21,y1,21)7 and q2 = (22,92, 22)7 belong
to the same set, then

|21 — 22], if qi,q2 € Sy,
[x (21,91, 21) — X (22,2, 22)| = < k1 (w1 — @2) + k2 (y1 —y2)|, if d1,q2 € Sy,
|21 — 22], if q1,q2 € S_.

Taking L = max{1, 2/ki], 2[ks}, we have [x(ar) — x(az)| < Lllas — sl

Suppose now that q; € Sy and gz € Sg. Denote o1 = kix1 + koyr and
09 = k1xo + kayo. Then |x(q1) — x(qz2)| = |21 — o2|. We distinguish four cases,
depending on the signs of z; and zs.

Suppose that z; > 0 and 2z > 0. From the definition of S, and Sy, we have
o1 > z1 and |o2| < z9. Hence 21 — 25 < 21 — 02 < 01 — 02. Suppose that z; > 0 and
29 < 0. Then |o2| < —z9 and 01 — 02 < 21 — 02 < 21 + 22 < 21 — 22. Suppose now
that z; < 0 and 29 > 0. By similar arguments, 20— 21 < 21422 < 21 —02 < 01 —03.
Finally, when z; < 0 and 29 < 0, we have 01 — 02 < 21 — 03 < 21 — 29. In any case
it follows that |x(a1) — x(a2)| < Llla1 — g2

Consider now the case q; € Sy and g2 € S_. Then we have |x(q1) —x(q2)| =
|21 + 22|. Denote, as above, 01 = k1z1 + koy1 and oz = kixe + kays. Then by
the definition of S; and S_, it follows that 0 < z7 4+ 20 < 01 — 09 if 2729 > 0
and — |21 — 22| < 21 4+ 29 < |21 — 29| if 2129 < 0. Therefore, |x(q1) — x(a2)| <
Lqu - q2||oo
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Similar arguments apply to the remaining case q; € Sp and qz € S_. Thus,
we conclude that f; is a global Lipschitz function defined on the whole S?. Conse-
quently, the degree of f at infinity is n(f) = 1.

(b) follows easily from expression (2.16).

(c) follows from the expression of f in the previous statement and the fact
that x(—z1, —22, 23) = —x(21, 22, 23). N

(d) Notice that when n(f) = 1, the vector fields fs2 and f coincide, see
expression (2.14). Consequently, f and fD|1nt(1D>) are differentiably conjugate, see
Subsection 2.9.1 for more details. |

Another expression for the function x(z) defined in Proposition 3.10.1(b) is

—2Z3, lf Z3 (klzl —+ kQZQ) S —Z%,
X (Z) = kiz1 + /45222, if |23 (/45121 + k222)| < Z%, (319)
23, if 25 (k121 + kozo) > 23,

as we can easily check.

In the following proposition we show that the Poincaré compactifications of
two linearly conjugate fundamental systems are differentiably conjugate. We also
provide an expression for the conjugacy.

Proposition 3.10.2. Let x = f(x) and x = £*(x) be two linearly conjugate funda-
mental systems, and let x = fp(x) and %X = f}(x) be their Poincaré compactifica-
tions.

a e vector fields fp an are differentia conjugate.
Th lds fi d £ d bly conjug
(b) Let M be the matriz of the conjugacy between £ and £*; then

2
2 2 2 2
L= Il + 4/ (1= IxIP) =+ 4l

effects the conjugacy between fp and fj.

h(x) = Mx,

Proof. Note that the function h given in statement (b) is a diffeomorphism defined
on an open subset containing D. So it is sufficient to prove that Dh(x)fp(x) =
f5(h(x)) for every x € D.

Since ||x|| = 1 if and only if ||h(x)|| = 1, h maps Int (D) into itself and oD
into itself. Thus we can divide the proof depending on whether x € Int(D), or
x € 0D.

We begin with the case x € Int(D). Let hyp be the conjugacy between a vector
field and its Poincaré compactification, see (2.15). Since

- 1
N 2
1+\/1+||x||

2

x and hy'(x) = )X,
1 — [[x]|

hp (x)
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an easy computation shows that h(x) = hp o M o hy'(x). Since both hp and M
are conjugacies, hlyp) is also a conjugacy, i.e., Dh(x)fp(x) = fj(h(x)) for all
x € Int(D).

Now we show what happens on the boundary of D. Take x € 0D, and consider
{xn}22y C Int(D) such that nh_}Ir;o X, = X. Since x, € Int(D), we know that

Dh(x,)fp(x,) = £5(h(x,)) for all n € N. Since h is C!, and fp and f} are
continuous functions, letting n — oo we have Dh(x)fp(x) = f3(h(x)), which
completes the proof.

In the proof of Proposition 3.10.2 we have not used that f and f* are fun-
damental systems. So the proposition can be stated with f and f* vector fields
satisfying the Lojasiewicz property at infinity. Furthermore, Proposition 3.10.2
may be seen as a corollary of a more general result. Namely, suppose that f and
f* are differentiably conjugate with conjugacy g; then h = hpogo hﬂgl is a conju-
gacy between fp|y,p, and fﬁ|1nt(D). Moreover, if g satisfies g(Ax) = A\*g(x) with
a > 0, then

2
L (1 1) + 4l GO

is a differentiable function defined in an open set containing . Hence h is a
differentiable conjugacy between fp and fj.

h (x) = g (x)

3.11 Singular points at infinity

Let x = fp(x) be the Poincaré compactification of the fundamental system x =
f(x), with f(x) = Ax + p(kTx)b. The singular points at infinity are given by the
solutions of the equation fp|,p (x) = 0.

In order to study the behaviour of the flow in a neighborhood of a singular
point at infinity, we define the following subsets of the Poincaré disc D:

o 1T 1 2
]D)+._{xe]D>.k x>2<1—||X|| )},
1
Dy := {XED: |ka| < 9 (1—||x||2>},
1
D_ = {xeDszx<—2 (1—||x||2)}.

Note that D, Dy and D_ are contained in the images of the sets Sy N {z3 > 0},
So N {z3 >0} and S_ N {z3 > 0}, respectively, under the projection

1

1 + z (21722) .

p+(z) =
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Therefore, Dy, Dy, and D_ contain the image under the conjugacy hp of the
regions S4, L_ U Sy U Ly, and S_ respectively, see Figure 3.3. By definition, Dy
is a closed set, but Dy and D_ are not closed.

For simplicity, we will denote a subset of R? and its image under hp by the
same letter. Thus, Ly = hp(Ly) and L = hp(L_).

oD

Figure 3.3: Subsets D, Dy and D_ of the Poincaré disc D.

According to Proposition 3.10.2, in order to study the singular points at
infinity of a fundamental system, we can assume, with no loss of generality, that
one of their fundamental matrices is given in its real Jordan normal form. Thus
the rest of this section assumes that A is in real Jordan normal form.

Proposition 3.11.1. Consider the fundamental system % = Ax + o(kTx)b with
parameters (D, T,d, t) and such that the matriz A is in real Jordan normal form.

(a) If t? — 4d < 0, then there are no singular points at infinity. Therefore, the
infinity manifold 0D is a periodic orbit.

(b) If t2 — 4d = 0 and the matriz A is diagonal, then every point in the infinity
manifold 0D is a singular point.

(c) If t> — 4d = 0 and the matriz A is not diagonal, then there are exactly
two singular points at infinity: x*. = (1,0) and x~ = (—1,0). Furthermore,
the singular points x4 and x_ are contained in Dy if and only if the first
component of the vector k is zero.

(d) If t> — 4d > 0, then there are exactly four singular points at infinity: xi =
(1,0), xL = (=1,0), yL = (0,1) and y~ = (0, —1). Furthermore, the singular
points x4 and x_ are contained in 0Dy if and only if the first component of
the vector k is zero; and the singular points y and y_ are contained in 0Dy
if and only if the second component of the vector k is zero.
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Proof. We note that the expression of the Poincaré compactification fy restricted
to the infinity manifold 0D is

2
oo ( 2, TH ) ax

—T1T2 7

see Proposition 3.10.1(b).
(a) Suppose that t* — 4d < 0. Since the matrix A is in real Jordan normal
form,

A:(%‘ tf) with 8 > 0.

Therefore,
—pPx
folon G0 = il (4072 ).

and fp|,p (x) # 0, which proves the statement.
(b) Suppose that t> —4d = 0. Then there are two possibilities for the matrix
A, but only one of them is diagonal,

A0
A= ( >0 ) |
Therefore, the expression of the Poincaré compactification in 9D is

2 2
mmww=x( s x”2),

—xix2 + x%xg

which is the zero vector. Then every point in D is a singular point.
(¢) Under the assumption that A is not diagonal, we have

Al 3
A= () ad wlpoo=( 2.

Hence, fp|yp, (x) = 0 if and only if zo = 0 and x1 = £1. That is, x1 = (1,0) and
xT' = (-1, 0) are the unique singular points at infinity. Moreover, since k?x, = k;

and kTx_ = —k;, the singular points belong to 0Dy if and only if k; = 0.
(d) Suppose that t? — 4d > 0. In this case,

A0 T
A= ( 01 )\2 ) and fDlaD (X) = ()\1 —)\2){,611[72 ( _;1 )

Therefore, fp|yp (x) = 0if and only if 21 = 0 and 2 = 1, or 22 = 0 and z; = £1.
From this we conclude that the unique singular points at infinity are x4, x_, y4,
and y_. The statement follows noting that k”x, =k, kTx_ = —k;, kTy, = ko,
and kTy_ = —ks. O
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In the rest of this section we will study the local phase portrait of the singular
points at infinity. We start by introducing some notations.

Let q be a singular point at infinity of a system x = f(x); that is, q € D
and fp(q) = 0. Let £y be the vector field defined in (2.18). We recall that fy is
defined on a local chart of the sphere centered at the point q. The vector fields
fp and fq are differentiably conjugate in a neighbourhood of q inside D and in
a neighbourhood of 0 inside the half-plane {x € R? : 25 > 0}. Then in order to
know the local phase portrait of fy at q, it is sufficient to know the local phase
portrait of fy at 0, see Figure 3.4.

Figure 3.4: Neighbourhoods of q and 0 where fp and fg are differentiably conjugate.

A singular point at infinity q is said to be a saddle, a node or a saddle-node,
if, for the vector field fy the singular point at the origin is a saddle, a node or a
saddle-node, respectively. A singular point at infinity q is said to be a non-isolated
nilpotent point or a normally hyperbolic point, see Figure 3.5(b) and (c), if, for
the vector field fy the singular point at the origin is a non-isolated nilpotent point
or a normally hyperbolic point, respectively, see Figure 3.5(a).

At this point we introduce additional concepts concerning singular points
which will be needed in the following results.

We call q a stable (respectively unstable) non-isolated node if the flow of the
vector field fq in a neighbourhood of the origin is topologically equivalent to the
flow of & = —ay?, y = —y? (respectively & = xy?, § = y°) in a neighbourhood of
the origin, see Figure 3.5(d) and (e). The curve formed by the singular points will
be called the singular manifold of the non-isolated node.

We call q a semi-stable non-isolated node if the flow of the vector field fq in
a neighbourhood of the origin is topologically equivalent to the flow of © = zy,
) = y? in a neighbourhood of the origin, see Figure 3.5(f). The curve formed by the
singular points will be called the singular manifold of the semi-stable non-isolated
node.

Given a singular point at infinity g, in the following result we give the ex-
pression of the vector field fy in a local chart centered at q.



84 Chapter 3. Fundamental Systems

(b)
()
Figure 3.5: Non-isolated singular points: (a) non-isolated nilpotent; (b) stable nor-

mally hyperbolic; (¢) unstable normally hyperbolic; (d) non-isolated stable node;
(e) non-isolated unstable node; and (f) non-isolated semi-stable node.

(d) (f)

Lemma 3.11.2. Let q7 = (q1,q2) € D be a singular point at infinity of the fun-
damental system x = Ax + o(k?x)b.

(a) Let x be as in Proposition 3.10.1(b), then
_ q1 — 1492 q1—x1q2 gq2+x1q z
fa () = M (A( 2 +T1q1 ) +H(X)X< PR 1’#(’2‘)> b) ’
where ju(x) = /1 + |x]|2 and M = ( a2 T G ) .

—x2q1 —x2492

(b) Let f_q be the vector field defined on the local chart centered at —q. Then fq
and f_q are equal.

Proof. (a) From expression (2.18) it follows that

—q2 — T1q1 q1 — T1492 —x “+x x
fq (x) = p(x) ( "oy e ) foie) (q1#(x1)<h’ Q2#(x1)q17 u(i)> ’

where n(f) is the degree of f at infinity.
In the case of fundamental systems we have n(f) = 1, see Proposition 3.10.1.

Moreover, f1(z) = A ( zl ) + x(2z)b. The statement follows immediately.
2

(b) The conclusion follows from statement and the fact that x(—z1, —22, 23) =
_X(217227Z3)' O
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Remark 3.11.3. According to Lemma 3.11.2(b), in order to study two opposite
singular points at infinity, q and —q, it is sufficient to study only one of them.
In particular, the behaviour of the flow of the compactified vector field fp in a
neighbourhood of q is obtained from the behaviour of the flow of f; in a non-
negative y-coordinate neighbourhood of the origin. Moreover, the behaviour of
the flow of the compactified vector field fp in a neighbourhood of —q is obtained
from the behaviour of the flow of fy in a non-positive y-coordinate neighbourhood
of the origin.

Remark 3.11.4. When the singular point at infinity q belongs to the region 0D
(respectively 0D_), the vector field fq depends on the compactification of two
non-homogeneous linear vector fields, see Figure 3.4. On the other hand, when gq
belongs to the central region 0Dy, the vector field f5 depends on the compactifi-
cation of the two aforementioned linear systems and on the compactification of a
homogeneous one.

We will describe the behaviour of singular points at infinity separately for
two groups. In the first one, using Theorem 3.11.5 to 3.11.8, we study the singular
points at infinity when they belong to 0Dy, or dD_. In the second group, using
Theorem 3.11.9 to 3.11.12, we study the singular points at infinity when they
belong to dDy. Recall that in all these cases there is not loss of generality in
assuming that the matrix A is in real Jordan normal form.

Theorem 3.11.5. Consider a fundamental system x = Ax + o(kTx)b with param-
eters (D, T,d,t) where t> — 4d = 0. Suppose that A is given in real Jordan normal
form and is diagonal. Then every point at infinity is a singular point.

(a) If t > 0 (respectively, t < 0), every point in D ~ {£k*/|k|} is a stable
normally hyperbolic singular point (respectively, unstable normally hyperbolic
singular point), and the normally hyperbolic manifold is contained in D, see

Figure 3.6(a).

(b) Ift =0, every point in D~ {£k>/| k|, £b/|/b||} is a non-isolated nilpotent
singular point with the singular manifold contained in OD. When T > 0 (re-
spectively, T < 0), the singular points £b/||b|| are stable non-isolated nodes
(respectively, unstable non-isolate nodes). The singular manifold of these
points is contained in 0D, see Figure 3.6(b). When T = 0, then +b/|b|| =
it /||

Proof. From Proposition 3.11.1(b) it follows that every point in 9D is a singular
point. In this theorem we are only interested in singular points at infinity which do
not belong to Dg. Therefore, since Dy N ID = {+k* /| k||}, we study only singular
points in 9D ~ {+k* /| k||}.

Let q be a singular point in D ~ {£k"/|/k|/} and suppose that kT'q > 0
(otherwise we consider the singular point —q). There exists a neighbourhood U of
the origin such that

kTq+ xlkTqJ‘ > |172| s
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for every x? = (x1,22) € U. Therefore, if 25 > 0, then (kT q + z1k?'qt)zs > 23;
and if x5 < 0, then (kT q + z1k"'qt )2y < —22. Hence,

1 —T1q2 G2 +T1q1 X2 — Iz
o (7 5™ " ™ ) =

for any x € U, see (3.19). Thus the vector field defined in the local chart centered
in q can be expressed as

t
9 (g1 — z1q2) + |22 b1

—q2 — 191 41 — T142
fa) = ) |

—x2q1 —x24G2
(g2 +x1q1) + |22] b2

N o

see Lemma 3.11.2(a). Simple computations show that the system % = fq(x) can
recast as

. . t
r1 = —T2 (quﬂfl — quJ') s To = —XT2 (qu.IQ + 2) 5 (320)

when x € U and z2 > 0. Notice that every point on the straight line o = 0 is a
singular point. Now we study the local phase portrait of system (3.20) at each of
these singular points.

Let x(s), with x2(s) # 0, be a solution of system (3.20). Performing the
change of time dr = x2(s)ds and using the prime, instead of the dot, to denote
the derivative with respect to the new time 7, it follows that

t
o

(a) Suppose that ¢ # 0. On the straight line 25 = 0, the flow of system (3.21)
is transversal. Returning to the original time variable, we see that the straight line
x2 = 0 is a stable normally hyperbolic manifold if ¢ > 0, and an unstable normally
hyperbolic manifold if ¢ < 0.

(b) Suppose now that ¢ = 0. First we consider the case q # £b/||b|. When
bT'q #0, the change of time p(7) = b?qr transforms system (3.21) into the fol-
lowing one:

2} = -bTqa; +bTqt, o5 =-bTqus - (3.21)

dI’l quJ— dIQ

dp ~ —x + bTq ' dp
Since in this case b”q* # 0, the origin is not a singular point; i.e., in a neighbour-
hood of the origin the flow is parallel. Going back through the changes of time
we conclude that the straight line x5 = 0 is a non-isolated nilpotent manifold of
system (3.20).
When bTq = 0, we have ¢ = 4+b1/||b|| and b’qt = =£||b|. Therefore,
system (3.20) can be written as #; = £||b||x2, 2 = 0. We see that the straight
line z2 = 0 is a non-isolated nilpotent manifold of (3.20).

= —XT2.
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Now we consider the case q = +b/||b||. Since t = 0, it follows that T' = kb,
see (3.12). We divide the rest of the proof in three parts, according to the sign
of T. When T > 0, i.e., k’'b > 0, we consider the singular point at infinity
q = b/|b||. For this point we have kTq > 0. Therefore, the behavior of the
flow in a neighbourhood of q can be obtained from system (3.20), which can be
written as i1 = —||b||z172, 22 = —||b||3. Then we get that the origin is a semi-
stable non-isolated node and the singular manifold is x5 = 0. The stable manifold
is contained in the half-plane x5 > 0, and the unstable one is contained in the
half-plane zo < 0.

When T' < 0, we consider the point q = —b/|b||. Then kT'q > 0. We use
again the system (3.20), which can be expressed as @1 = |b||z122, @2 = ||b/z3.
Thus the origin is a semi-stable non-isolated node and the singular manifold is
22 = 0. The unstable manifold is contained in the half-plane x5 > 0 and the stable
one in the half-plane zo < 0.

When T = 0, we have +b/|b|| = £k*/| k|, and the singular points q =
+b/| /b belong to dDy. Therefore, we do not study them. O

t>0 t<0

b _.b_

Figure 3.6: Local phase portraits of fp at the singular points at infinity when
t2 —4d = 0 and A is diagonal.

In the following result we show that there are singular points at infinity such
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that their hyperbolic, central or singular manifolds are contained in a straight
line. These straight lines play a very important role in the description of the
global phase portrait. To express them we will use the coordinate system of R?
instead of the coordinate system of D.

Theorem 3.11.6. Consider a fundamental system x = Ax + o(kx)b with param-
eters (D, T,d,t), where t> — 4d = 0, and the vector k = (k1,ko)T is such that
k1 # 0. Suppose that A is in its real Jordan normal form and is not diagonal.
Then there are exactly two points at infinity, x4+ and x_, and these points do not
belong to ODy.

(a) Ift # 0, then x4 (respectively, x_ ) is a saddle-node with the central manifold
in OD and the hyperbolic manifold on the straight line x4 = —2sign (k1) b/t
(respectively, xo = 2sign (k1) be/t). Moreover, when t > 0, the hyperbolic
manifold is stable, and when t < 0, the hyperbolic manifold is unstable, see

Figure 3.7(a).

(b) Ift =0 and D < 0 (respectively, D > 0), then a neighbourhood of x4 and x_
in 0D is an elliptic sector (respectively hyperbolic sector), see Figure 3.7(b).

(¢) If t =0 and D = 0, then xy (respectively, x_) is a semi-stable non-isolated
node with the singular manifold on the straight line xo = — sign(kq1)by (res-
pectively, xo = sign(ky1)by ), see Figure 3.7(c).

Proof. By Theorem 3.11.1(c), there are exactly two singular points at infinity,
x? = (1,0) and x~ = (—1,0), which are symmetric with respect to the origin.
Thus in order to study the behaviour of the flow in a neighbourhood of these
singular points it is sufficient to consider only one of them. In this proof we take
x = fy, (x).

Since k1 # 0, there exists a neighbourhood U of the origin such that |k +
kox1| > |xal, for every xT' = (z1,29) € U. Thus

u(X)x< TN ) =
px) px) pwx)) |k
see the expression of x in (3.19). On the other hand, A is in real Jordan normal

form, and the trace and the determinant of A satisfy t?> — 4d = 0. Then, from
Lemma 3.11.2(a), we get the following expression of fy, in U:

|:L'2|7

+ 1

= (o) || e (i)

911

When x € U and x2 > 0, simple computations show that the differential
system x = fy, (x) can be written as

klbg k‘lbl t klbl 2

. 2 .
_ N _ _ b _ . 3.22
2] | T | x1x9 — Ty, Eo 2902 T1T2 | x5 ( )
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Now we study the origin of (3.22).
(a) If t # 0, the change of time 7 (s) = —ts/2 transforms system (3.22) into

k1bs k1by 2 2 k1by
1 =-2 +2 v 22 g =+ ) 2
Ty t|/{:1|x2 t|k1|$1$2 t.’L'l, ) X9 tiUl.’EQ t|k1|$2,

where the prime denotes the derivative with respect to the variable 7. The change

of variables (21, z2) — (:171 + Qfllkbj To, :1:2> transforms this system into

2 k b 2 k b
Zi = tZ%+2t|/j1| (bl -2 ;)2122, zé =29 + tZlZ2+2t|kll| (bl -2 ;)Z%.

Thus the origin is an isolated degenerate elementary singular point. Moreover,
suppose that zo = f(21) is the solution of the equation z5 = 0 in a neighbourhood
of the origin and let X (z1, 22) be the first component of the vector field. Then the
function g(z1) = X (z1, f(21)) has the following power series expansion:

2
o(z)= 22— (bl —2’?) 440,
From Theorem 2.7.3(c) it follows that the origin is a degenerate elementary saddle-
node with the hyperbolic manifold contained in the line z; = 0 and this manifold
is unstable. Furthermore, if ¢ > 0 (respectively, ¢ < 0), the straight line zo = 0
contains the central manifold of the saddle-node, and this manifold is stable in the
7 direction (respectively, 0 direction).

Going back through the changes of variables we conclude that system (3.22)
has a saddle-node at the origin with the central manifold on the z-axis and the
hyperbolic manifold on the straight line x1 + 2k1box2/(t|k1|) = 0. The central
manifold is stable in the 0 direction and the hyperbolic manifold is stable when
t > 0 and unstable when ¢ < 0.

To write the straight line x1 + 2k1ba22/(t|k1]) = 0 in the coordinate system
of R?, we have to apply the transformation h;l o h;+1 to this line, see (2.12) and
(2.17).

(b) Suppose now that ¢ = 0 and D < 0. From expression (3.10) we obtain
D = —kyby. Then kijby > 0. The change of time 7(s) = ski1ba/|k1| transforms
(3.22) into the system

x’:x—blxx—|k1|x2 f:—'kllxa:—blx?
1 27, T2 Ty T 2 Foyby U172 T 3, T2
which has a nilpotent singular point at the origin.
Define
b1 | | |1 | b1
X (x1,22) = —b2x1x2 - klng%’ Y (z1,22) = _k‘lngl@ - b2x§
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t>0 t<0

t=0yD<O0 t=0yD>0

(¢)t=0y D=0

Figure 3.7: Local phase portraits of fp at the singular points at infinity when
t2 —4d =0, k; # 0 and A is not diagonal.
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and let zo = f(x1) be the solution of the equation xo + X(x1,22) = 0 in a
neighbourhood of the origin. Then

|k1| 2 |k1|b1 3 4
= 0]
k1bo Tt klb% it (551) ’

g(x1) =Y (w1, f (21)) =

f (1)

1
— el (140 (@),
2

X oy 3 |k by ,
P = = — 1 O .
(xl) <8I1 " axQ)(ml,f(wl)) k1b2 " ’ b " (xl)

From Theorem 2.7.4(c.2) it follows that this neighbourhood of the origin is the
union of a hyperbolic sector with an elliptic one. Since the axis 2 = 0 is invariant
under the flow, the orbits contained in zo = 0 are not in the interior of the
hyperbolic sector. To determine whether the axis xzo = 0 contains or not the
boundary between the two sectors we need to do a blow-up in the direction x5 = 0.
The change of variables x1 = uj, T2 = ujus transforms the system into the system
k1b k1b k1b
uy = |]1€1|2u1u2 - |]1€1|1ufu2 —ul, uh = — |;1|2u§,
which has a singular point at the origin and the flow of which leaves the axes
invariant.

Let u(r) = (u1(7),u2(7)) be a solution of the system such that uq(0) > 0
and u2(0) < 0. Since k1by > 0, it follows that uyi(7) > 0 and uz(7) < 0 in a
neighbourhood of the origin. Therefore u} < 0, u}, < 0, and the origin does not
belong to the w-limit set of u.

Let u(r) = (u1(7),u2(7)) be a solution of the system such that u;(0) < 0
and u2(0) > 0. Then uj < 0, u5 < 0 in a neighbourhood of the origin and the
origin does not belong to the a-limit set of u.

Returning to the original variables, the quadrants {u; > 0, us < 0} and
{u1 < 0, uz > 0} become the quadrants {z; > 0, z2 < 0} and {z; < 0, z2 < 0},
respectively. Thus we conclude that the hyperbolic sector is exactly the half-plane
x2 < 0, and the boundary between the two sectors is the straight line x5 = 0.

Similar arguments apply when D = —kiby > 0. In this case we conclude
that the boundary between the two sectors is the straight line x9 = 0, and the
hyperbolic sector is contained in the half-plane x5 > 0.

(¢) Suppose now that t = 0 and D = 0. Consequently, D = —k;bs and by = 0.
Then system (3.22) can be written as

. k1by . k1by
T =—x1 |21 + T2 |, Xo=—x2|21+ T2 |-
|1 |Fe1 |
This system has a non-isolated singular point at the origin.
The change of variables u1 = x1, ugs = x1 + k1bix2/ |k1], transforms it into
the system

. . 2
U = —uUirug, U2 = —Ugy.
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Thus the origin is a semi-stable non-isolated node with the singular manifold
contained in us = 0. Returning to the original variables we obtain that system
(3.22) has a semi-stable non-isolated node at the origin with the singular manifold
contained in the straight line 1 + (k1b1/|k1|)z2 = 0. To express this straight
line in the coordinate system of R? we have to apply to it the transformation
h:Ll o h;i. O

Now we study the singular points at infinity when the fundamental param-
eters satisfy t2 — 4d > 0. In this case there exist exactly four singular points at
infinity, x4, X, y4, and y_. In the next theorem we study the local phase por-
trait of the compactified flow at x; and x_. In Theorem 3.11.8 we shall study the
local phase portrait of the compactified flow at y and y_.

Theorem 3.11.7. Consider a fundamental system x = Ax+p(kTx)b with parame-
ters (D, T, d,t), where t? —4d > 0 and the vector k = (ki, k2)T is such that ky # 0.
Suppose that A is in real Jordan normal form, and let \y > Ao be its eigenvalues.
Under these assumptions there exist exactly four singular points at infinity, x4,

X, Y+, andy_.

(a) If d > 0 and t > 0, then x4 (respectively, x_) is a stable node. One of the
characteristic directions coincides with 0D, and the other one coincides with
the straight line xo = —sign(ky)ba/Aa (respectively, xo = sign(ki)ba/A2).
Moreover, all the orbits except the above straight line arrive at infinity tan-
gentially to 0D, see Figure 3.8(a).

(b) If d > 0 and t < 0, then x4 (respectively, x_) is a saddle with the stable
manifold contained in 0D and the unstable one contained in the straight line
xo = —sign(k1)ba/Aa (respectively, xo = sign(k1)bz2/N2), see Figure 3.8(c).

(c) Ifd < 0, then x4 (respectively, x_) is a stable node. One of the characteristic
directions coincides with D and the other one with the straight line x4 =
—sign(k1)ba/ N (respectively, xo = sign(k1)ba/N2). Moreover, all the orbits
arrive at infinity tangentially to the straight line, see Figure 3.8(b).

(d) Suppose that d =0 and t < 0.

(d.1) If D < 0, then x4 (respectively, x_ ) is a stable node. One of the charac-
teristic directions coincides with 0D and the other one with the straight
line xo = —sign(kq)ba/t (respectively, xo = sign(ki)ba/t). Moreover, all
the orbits arrive at infinity tangentially to the straight line, see Figure
3.8(i).

(d.2) If D = 0, then x4 (respectively, x_) is a stable normally hyperbolic
singular point with the normally hyperbolic manifold contained in the
straight line xo = —sign(ky)be/t (respectively, xo = sign(kq)ba/t), see
Figure 3.8(h).

(d.3) If D >0, then x4 (respectively, x_) is a saddle. The stable manifold is
contained in 0D and the unstable manifold is contained in the straight
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line o = —sign(ky)ba/t (respectively, xo = sign(ki)ba/t), see Figure
3.8(g).
() If d = 0 and t > 0, then x4 and x_ are two stable nodes such that the

orbits arrive at infinity tangentially to 0D if by # 0, and any direction is a
characteristic direction if by = 0. See Figures 3.8(d), (e) and (f).

Proof. To know the local phase portraits of the fundamental system at the infinite
singular points x4 and x_, it is sufficient to study the system x = fx (x) in a
neighbourhood of the origin, see Lemma 3.11.2(b).

Since k1 # 0, there exists a neighbourhood U of the origin such that

1 X1 i) - kl
n(x)x <u<x>’u<x>’u<x>) = Il

for every x € U. From Lemma 3.11.2(a) and noting that A is in its real Jordan
form it is easy to check that the system % = fy, (x) can be written as

|I2|,

k1b k1b
1= — A1) + M2 e — T
k1b '
Gy = —Mzy — 196%,

(K]

when x5 > 0.

(a) Suppose that d > 0 and ¢ > 0. In this case the eigenvalues of A satisfy
A1 > A2 > 0. The linear part of system (3.23) has eigenvalues Ao — A1 < 0 and
—A1 < 0. Then the origin is a hyperbolic stable node. The characteristic directions
coincide with the straight lines x2 = 0 and Aoxq + ’T}Ci"? zo = 0. Furthermore, the
orbits that are not separatrices are tangent to xo = 0 at the origin. We recall that
in order to express the straight lines in the coordinates of R2, we have to apply
the transformation hi' o h;i.

(b) Suppose that d > 0 and ¢ < 0. In this case 0 > A; > A3, and the origin of
system (3.23) is a hyperbolic saddle. It is easy to check that the stable manifold
is contained in the straight line o = 0 and the unstable one is contained in the
straight line )\Q.Il + k1b2I2/|/€1| =0.

(c) Suppose that d < 0. Then A; > 0 > Ao. The statement follows by applying
the same arguments as in the proof of statement (a).

(d) Suppose that d = 0 and ¢ < 0. In this case 0 = A\; > A2 and system (3.23)

becomes
kiby kb kb
|k ke| kx| 72

which has a degenerate elementary singular point at the origin.

(d.1) From (3.10) we have D = Ayk1b1. Thus, when D < 0 we get k1b; > 0.
The change of variables u1 = x2 and us = Aox1 + k1boxo/|k1| transforms system
(3.24) into the system

T1 = Aoy + (324)

kiby o . 1
— L Uy, U = )\2u2 — ULU.
|Fe1 |

iy = 1b
L ki |
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Changing the time as 7(s) = A2s and denoting by prime the derivative with
respect to 7 we obtain the system

7 klbl 2 7 klbl

T kM T T g e

which has an isolated singular point at the origin and the flow of which leaves the
axes invariant. Define

kibi 4 k1by
X = — Y = —
(u17u2) )\2 |k1|u17 (uhUZ) )\2 |k1|ulu27
and let us = f(u1) be the solution of the equation us + Y (uj,u2) = 0 in a

neighbourhood of the origin. Then g(u;) = X (u1, f(u1)) = —kibiu?/Aalk:|. By
Theorem 2.7.3(c), the origin is a saddle-node with the unstable hyperbolic manifold
on u; = 0. The central manifold of the saddle-node is contained in the line us = 0
and it is unstable in the direction O.

Going back through the changes of variables and time, it follows that system
(3.24) has a saddle-node at the origin. The stable hyperbolic manifold of the
singular point is contained in x5 = 0, the central manifold is contained in A\ox; +
k1bazo/|k1| = 0 and it is stable in the half-plane xo > 0 and unstable in the half-
plane z2 < 0. Finally, the orbits arrive at the origin tangentially to the straight
line.

(d.2) When D = 0, k1by = 0, and system (3.24) becomes @1 = Xoz1 +
(k1ba/|k1])z2, @2 = 0. For this system the origin is a stable normally hyperbolic
singular point with the normally hyperbolic manifold on the straight line Aox; +
k1b2I2/|/€1| =0.

(d.3) When D > 0, k1b; < 0. By applying the same arguments as those in
the proof of statement (d.1) we obtain that system (3.24) has a saddle-node at the
origin. The stable hyperbolic manifold of the singular point is contained in the axis
x2 = 0. The central manifold is contained in the straight line Aoy +k1boxa|ki| =0
and it is stable in the half-plane x5 < 0 and unstable in x5 > 0.

(e) When d = 0 and ¢ > 0, the eigenvalues of A satisfy A\; > Ao = 0. Thus
the linear part of system (3.23) has a hyperbolic stable node at the origin. This
node is non-diagonal when by # 0 and it is diagonal when by = 0. O

Theorem 3.11.8. Consider a fundamental system x = Ax + o(kTx)b with param-
eters (D, T,d, t), where t> —4d > 0 and the vector k = (k1,k2)T is such that
ko # 0. Suppose that the matriz A is in real Jordan normal form, and let Ay > Ao
be the eigenvalues of A. Under these assumptions there exist exactly four singular
points at infinity, X4, X_, Y4, and y_.

(a) If d > 0 and t > 0, then y4 (respectively, y_) is a saddle with the unstable
manifold contained in 0D and the stable one contained in the straight line
x1 = —sign(ka)bi /A1 (respectively, x1 = sign(k2)bi /A1), see Figure 3.8(a).
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(e)d=0,t>0, D=0 (f)d=0,t>0,D<0

y-
(8) d=0,t<0,D>0 (h)d=0,t<0,D=0 ()d=0,t<0, D<0

Figure 3.8: Local phase portraits of fp at the singular points at infinity when
t2—4d>0, k1 # 0 and ko # 0.
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(b) If d > 0 and t < 0, then y (respectively, y_) is an unstable node. One of
the characteristic directions coincides with 0D, and the other with the straight
line x1 = —sign(k2)b1 /A1 (respectively, x1 = sign(k2)b1/A1). Moreover, the
other orbits leave the infinity tangentially to it, see Figure 3.8(c).

(¢) If d < 0, then y4 (respectively, y—) is an unstable node. One of the char-
acteristic directions coincides with 0D, and the other with the straight line
x1 = —sign(ka)by /M1 (respectively, x1 = sign(ka)b1/\1). Moreover, the other
orbits leave the infinity tangentially to the straight line, see Figure 3.8(b).

(d) Ifd =0 and t < 0, then y+ and y_ are unstable nodes such that the orbits
leave the infinity tangentially to it if by # 0, and any direction is a charac-
teristic direction if by =0, see Figures 3.8(g), (h) and (i).

(e) Suppose d =0 andt > 0.

(el) If D < 0, then yy (respectively, y—_) is an unstable node. One of
the characteristic directions coincides with 0D and the other with the
straight line x1=— sign(k2)by/t (respectively, x1 =sign(k2)b1/t). More-
over, the orbits leave the infinity tangentially to the straight line, see
Figure 3.8(f).

(e.2) If D =0, then yy (respectively, y_) is an unstable normally hyperbolic
singular point. The normally hyperbolic manifold is contained in the
straight line x1 = —sign(ka)by/t (respectively, x1 = sign(kz)b1/t), see
Figure 3.8(e).

(e.3) If D >0, then y (respectively, y_) is a saddle with the unstable man-

ifold contained in 0D and the stable one contained in the straight line

x1 = —sign(ka)by/t (respectively, x1 = sign(kz)b1/t), see Figure 3.8(d).

Proof. To determine the local phase portraits of the fundamental system at the

infinite singular points y and y_ it is sufficient to study the system x = fy_ (x)
in a neighbourhood of the origin, see Lemma 3.11.2(b).

Since ko # 0, there exists a neighbourhood U of the origin such that | — kyz+
ko| > |2 for every x € U. It is easy to check that

1 1 9 ) ko

“(X)X<‘u<x>’u<x>’u<x> =k 1221

Hence, if x € U and x2 > 0, the system x = fy,, (x) becomes

b b
1= (M — ) x1 — k2 Yag — k2 2 119,
kob ’
iy = —domy — - 21“%7

||

see Lemma 3.11.2(a).
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(a) Suppose that d > 0 and ¢ > 0. In this case the eigenvalues of A satisfy
A1 > Ay > 0. The linear part of system (3.25) has eigenvalues Ay — Ay > 0
and —Ag < 0. Then, by the Hartman—Grobman theorem, the origin is a saddle.
The unstable manifold of the saddle point is contained in the line zo = 0 and
the stable manifold is contained in the straight line Ajax1 — kabizo/|ka| = 0. To
write the straight line in the coordinate system of R? we apply the transformation
hi'oh !

(b) Suppose that d > 0 and ¢ < 0. In this case the eigenvalues of A satisfy
0 > A1 > Aa. Applying again the Hartman—Grobman theorem to system (3.25),
we conclude that the origin is a hyperbolic unstable node. Moreover, one of the
characteristic directions of the node coincides with o = 0, and the other with the
straight line \jzq — ]‘“if‘l x2 = 0. The tangency of orbits at the origin follows from
X2 > A1 — A > 0.

(¢) Suppose that d < 0. In this case Ay > 0 > Ay. The statement follows
similarly to statement (b). The tangency of orbits at the origin follows from A\; —
Ao > —Ao.

(d) Suppose now that d = 0 and ¢ < 0. Thus 0 = A; > Aa. The statement
follows similarly to statement (b). The tangency of orbits at the origin depends
on whether b = 0 or by # 0.

(e) Suppose that d = 0 and ¢ > 0. Then it follows that the eigenvalues of A
satisfy A1 > Ay = 0, and system (3.25) becomes

k2by k2ba . kaba

— = - ) 3.26
| To T1T2, T2 | x5 ( )

T1 = M7 —

(e.3) When D > 0, it follows from expression (3.10) that k2be > 0. Thus if we
replace A1 by Ao, k2 by k1, by by b1, and by by —by in system (3.26), we obtain the
system (3.24), which is studied in the proof of Theorem 3.11.7(d.1). Note that the
change in time 7 (s) = A2s used in that proof preserves now the orientation. Thus,
system (3.26) has a saddle-node at the origin. The unstable hyperbolic manifold
of this point is contained in the line 3 = 0. The central manifold is contained in
the straight line A\jz1 — kabixa/|ke| = 0, and it is unstable in the half-plane xo > 0
and stable in the half-plane zo < 0. Finally, the orbits which arrive at the origin
are tangent to the straight line.

Statements (e.1) and (e.2) follow by the same arguments as those used in the
proof of statement (e.3). O

Now let us study the local phase portraits of singular points at infinity which
belong to Dy. Vector fields in a neighbourhood of these points are formed by three
different non-linear systems, see Figure 3.3. In this case, phase portraits can be
drawn by studying each of these vector fields separately and by composing the
respective phase portraits. Note that when the straight lines L, and L_ contain a
characteristic direction of the singular point at infinity, more care is needed when
completing the phase portrait.
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Theorem 3.11.9. Consider a fundamental system %X =Ax+p(kTx)b with parame-
ters (D, T, d, t) where t* —4d = 0. Suppose that A is in real Jordan normal form
and is diagonal. Under these assumptions there exist exactly two singular points
at infinity in Dy, +k* /| k||.

(a) If D > 0, then T # 0. When T > 0 (respectively T < 0) the singular points
+k*/||k|| are stable normally hyperbolic singular (respectively, unstable nor-
mally hyperbolic) points with the normally hyperbolic manifold contained in
D, see Figure 3.5(b) and (c).

(b) Suppose that D =0 and T > 0.

(b.1) If d = 0, then the phase portraits in a neighbourhood of +k*/||k|| are
topologically equivalent to the one shown in Figure 3.10(b), after revers-
ing the orientation of the flow.

(b.2) If d # 0, then the phase portraits in a neighbourhood of +k*/||k|| are
topologically equivalent to the one shown in Figure 3.10(a).

(c) Suppose that D =0 and T < 0.

(c.1) If d = 0, then the phase portraits in a neighbourhood of £k /||k|| are
topologically equivalent to the one shown in Figure 3.10(b).

(c.2) If d # 0, then the phase portraits in a neighbourhood of £k /||k|| are
topologically equivalent to the one shown in Figure 3.10(a), after revers-
ing the orientation of the flow.

(d) If D =0 and T = 0, then the phase portraits in a neighbourhood of £k /| k||

are topologically equivalent to the one shown in Figure 3.10(c).
(e) Suppose that D < 0. In this case t # 0.

(e.1) Ift > 0, then the phase portraits in a neighbourhood of £k=*/|k| are
topologically equivalent to the one shown in Figure 3.10(a).

(e.2) Ift < 0, then the phase portraits in a neighbourhood of £k=*/|k| are
topologically equivalent to the one shown in Figure 3.10(a), after revers-
ing the orientation of the flow.

Proof. Consider the fundamental system % =Ax+¢(k*Tx)b*, where k* = k/||K||
and b* = || k|| b. This system and the one in the statement of the theorem have the
same fundamental matrices. By Propositions 3.6.2 and 3.10.2, their Poincaré com-
pactifications are differentiably conjugate. Thus it is not a restriction to suppose
that vector k satisfies | k|| = 1.

By Lemma 3.11.2(b), it is sufficient to study the system x = f . (x) in a
neighbourhood U of the origin. Recall that we are interested only in the half-plane
x9 > 0. For simplicity of notation we use U instead of U N {(x1,x2) : x2 > 0}.
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From Lemma 3.11.2(a) and expression (3.19) for x € U we get

£ (x), ifa; < -9

k
fir (x) = fﬁi (x), if |zq] < @2,
f]:l (X) ) if x1 > 2o,
where
_ —kaIQ - kaL.IlIQ
ka (X) = ,

—Axo — kaLxg
bTkz; +bTkta?

0 - 1 1

ka (X) E < —>\172 +kaLx1x2 )

o (x) = b kzs + b Tkt zi 20
Kk \ X = —A\zo + bkt a2 )

We remark that when the characteristic directions of the singular point at the
origin do not coincide with the straight lines xo = +x1, the local phase portrait
of system x = fi 1 (x) can be obtained by composition of the local phase portraits
of systems X = f_, (x), X = f), (x) and %X = £ (x) restricted to the regions
x1 < —xg, |z1| < 29 and x1 > o, respectively (recall that xo > 0). Moreover,
when the characteristic directions of the singular point at the origin coincide with
the straight lines x5 = +x1, but these straight lines are invariant under the flow
of the system x = fi 1 (x), we can use the same argument as before to obtain the
phase portrait of system x = fi 1 (x) in a neighbourhood of the origin.

Note that if we change b to —b in the expression of the vector field f]jm we
obtain the vector field f, . Moreover, if we substitute q = k in the expression for
system (3.20), we obtain the expression for system %X = f,, (x). Thus, to under-
stand the local phase portrait of systems x = flj' L (x) and x = f,_, (x), one can refer
to the proof of Theorem 3.11.5. Next let us study the phase portrait of system
% =f), (x).

Suppose that b7k # 0 and t # 0. The origin is a hyperbolic singular point

with linear part equal to
b’k 0
0 —t/2 )

Thus, when b7k > 0 and t > 0 (respectively, b7k < 0 and t < 0) the origin is a
saddle point with the stable manifold (respectively, unstable manifold) contained
in the line 1 = 0 and with the unstable manifold (respectively, stable manifold)
contained in the line x5 = 0. When b7k > 0 and t < 0 (respectively b7k <
0 and ¢t > 0) the origin is an unstable node (respectively, stable node) with a
characteristic direction given by z; = 0 and the other given by xo = 0. Moreover,
if /2 + bTk > 0, then the orbits are tangent to the straight line x; = 0 at the
origin; if ¢/2 + bTk < 0, then the orbits are tangent to z; = 0 at the origin; and
if #/2 +bTk = 0, then any direction is a characteristic direction. In the last case
it is easy to check that the lines x5 = +x; are invariant under the flow.
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Suppose that b7k = 0 and ¢ # 0. The change of time 7(s) = —ts/2 recasts
system % = £, (x) as

[
Ty =

Pk, b7kt

/
. Ty, Ty =1T2—2 ; T1T9,

which has a degenerate singular point at the origin.

If X(z1,72) = —222bTkt/t, Y(z1,22) = —22129bTk: /¢, and f(zy) is the
solution of the equation xo + Y (z1,22) = 0 in a neighbourhood of the origin,
then X(z1, f(z1)) = —222bTk*/t. From Theorem 2.7.3(c) it follows that the
origin is a saddle-node with the central manifold on the line x5 = 0 and with the
hyperbolic manifold on the line x; = 0. Moreover, when b”k* > 0 (respectively,
b7kt < 0), the central manifold is unstable in the direction 7 (respectively 0)
and the hyperbolic manifold is stable or unstable depending on whether ¢ > 0 or
t < 0, respectively.

Suppose that b7k # 0 and ¢ = 0. In this case the straight line z; = 0 is
formed by singular points. To desingularize the system we use the change of time
dr = x1(s)ds, which transforms the system % = f, (x) into the system

o =b Tk +bTktzy, af=blTkta,.

Since the origin is not a singular point, the flow is parallel in a neighbourhood of
the origin. Returning to the original time variable we conclude that z; = 0 is a
stable or unstable normally hyperbolic manifold depending on whether b”k < 0
or bk > 0, respectively.

Finally, suppose that b”k = 0 and ¢ = 0. In this case the straight line z; = 0
is formed by singular points. The change of time dr = z1(s)ds transforms the
system % = f, (x) into the system

/ Ty.L / Ty L
. =b kx1, x5 =b k.

When b?k' < 0 (respectively, bTk* > 0) the origin is a stable node (respectively,
unstable node). Returning to the original time variable we conclude that the origin
is a non-isolated semi-stable node with the singular manifold contained in z; = 0.

Now let us describe the local phase portrait of the system x = fi.1 (x) de-
pending on the fundamental parameters (D, T, d,t). From expressions (3.10) and
(3.12) it follows that D = t/2(t/2 + kb)) and T = t/2 + (t/2 + kT'b), respec-
tively. Therefore A; = /2 + bTk and Ay = t/2 are the eigenvalues of the matrix
B=A+bk".

(a) Suppose that D > 0. In this case the eigenvalues Ay and Ay have the
same sign, and therefore T'= A1 + Ay # 0. When T > 0, then As > 0 and A; > 0.
We have divided the proof into three parts: (a.1) ¢ > 0 and bk > 0; (a.2) t > 0
and b’k = 0; (a.3) ¢ > 0, bk < 0. In any case t > 0, thus systems x = £, (x)
and x = f_, (x) have a stable normally hyperbolic singular point at the origin with
the normal hyperbolic manifold contained in xo = 0. Moreover, the straight lines
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bTkzy — (t/2)x; = C; and bTkay + (t/2)1; = Co with C1,Cy € R are invariant
under the respective flows.

(a.1) When b”k > 0, the system % = £, (x) has a hyperbolic saddle at the
origin, and the stable manifold is contained in the straight line z; = 0.

(a.2) When bk = 0, the system x = £, (x) has a saddle-node at the origin.
The hyperbolic manifold is stable and contained in the line z; = 0 and the central
manifold is contained in the line x5 = 0.

(a.3) When b”k < 0 and (¢/2) + b"k > 0, the system % = f, (x) has a
hyperbolic stable node at the origin. The characteristic directions coincide with
the axes and any orbit is tangent to the straight line xo = 0 at the origin.

In short, the system %X = fi1(x) has a stable normal hyperbolic singular
point at the origin, and the normal hyperbolic manifold is contained in zs = 0,
see Figure 3.9.

The rest of the statements follow using similar arguments. (]

Figure 3.9: Local phase portrait of system % = f| 1 (x) obtained by composing the
phase portaits of systems x = fkt (x), x = flgL (x) and x = £ (x), when D > 0,
T >0,t>0and b"k > 0.

(a) (b) (c)

Figure 3.10: Non-isolated singular points at the infinity when t? —4d = 0 and A
is not diagonal.

Theorem 3.11.10. Consider a fundamental system % =Ax-+o(k?x)b with param-
eters (D, T, d,t), where t*> —4d = 0 and the vector k = (kyi, k2)T satisfies that
k1 = 0. Suppose that matriz A is in real Jordan normal form and is not diagonal.
Under these assumptions there are exactly two singular points at infinity x4, X—
and they belong to Dy.
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(a) If D > 0, then T # 0. When T > 0 (respectively, T < 0), x4+ and x_ are
saddle-nodes. The central manifold is contained in 0D and the hyperbolic one
is contained in the straight line xo = 0. Moreover, the hyperbolic manifold is
stable (respectively unstable), see Figure 3.12(a).

(b) Suppose that D =0 and T > 0.

(b.1) If d = 0, then the phase portraits in a neighbourhood of x4 and x_
are topologically equivalent to the one shown in Figure 3.12(b) after
reversing the orientation of the flow.

(b.2) Ifd # 0, then x (respectively, x_ ) is a saddle-node. The central mani-
fold is contained in OD and the hyperbolic one is contained in the straight
line xo = 2sign(ka)ba/t (respectively, xo = —2sign(ka)ba/t). Moreover,
the hyperbolic manifold is stable, see Figure 3.12(a).

(¢) If D=0 and T = 0, then the phase portraits in a neighbourhood of the points
x4 and x_ are topologically equivalent to the one shown in Figure 3.12(c),
(d) or (e) depending on by > —1, by = —1, or by < —1, respectively.

(d) Suppose that D =0 and T < 0.

(d.1) If d =0, then the phase portraits in a neighbourhood of X4 and x_ are
topologically equivalent to the one shown in Figure 3.12(Db).

(d.2) Ifd # 0, then x4 (respectively, x_) is a saddle-node. The central mani-
fold is contained in 0D and the hyperbolic one is contained in the straight
line xo = —2sign(k2)ba/t (respectively, xo = 2sign(ks)ba/t). Moreover,
the hyperbolic manifold is stable, see Figure 3.12(a).

(e) If D <0, then t # 0 and x4 (respectively x_) is a saddle-node. The central
manifold is contained in OD. Ift > 0, the hyperbolic manifold is contained in
the straight line xo = 2sign(ka)by/t (respectively, xo = —2sign(ka)ba/t), and
it is stable, see Figure 3.12(a); if t < 0, the hyperbolic manifold is contained
in the straight line xo = —2koba/|ka|t (respectively, xo = 2koba/|ka|t) and it
is unstable, see Figure 3.12(a) (note that the flow in this figure has reverse
direction).

Proof. According to the proof of Theorem 3.11.9, it suffices to describe the flow
of the system % = fy, (x) in a neighbourhood U of the origin, where

£5 (x), if x>,
(x) =< 2, (x), if |z1| <o,

fx_+ (X)7 if T < —T2,

f.
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and

2
f+ bQIQ — b1171.$2 — Xy

(%) = ( —(t/2) 23 — 2129 — bya3 ) ’

£ (X) L —bQIQ + blxlxg — I%
X+ T — (t/2) To — T1T2 + blﬂfg ’

B bowy — (b + 1) a3
f2+ (x) := ( — (t/22);2 - (1b1 + 1) z120 )

Moreover, the phase portrait of the system x = fy, (x) in the neighbourhood U can
be obtained by the composition of the local phase portraits of systems x = £ N (x),
% =, (x) and x = f, (x).

Changing b to —b in the expression of f, , we obtain the vector field iR L
Moreover, the expression of the system x = ff, (x) is equal to the one of (3.22) by
taking k1 = 1. Therefore, to determine the phase portraits of systems x = £ N (x)
and x = f_ (x), we refer the reader to the proof of Theorem 3.11.6. Now let us
study the phase portrait of the system % = f2 . (x) depending on the values of by
and ¢.

Suppose that ba # 0 and t # 0. The system x = f2+ (x) has a hyperbolic
singular point at the origin, and the linear part of the system has the matrix

(% )

Suppose that bs = 0 and t # 0. In this case the origin is a degenerated elementary
singular point. When b; = —1, the straight line o = 0 is the normally hyperbolic
manifold, and it is stable for ¢ > 0 and unstable for ¢t < 0. When b; # —1, the

change of time 7(s) = —ts/2 transforms the system % = f? (x) into the system
by +1 by +1
/1:21t 2 x;:x2+2lt 1T,

Consider the functions X (x) = 2(b; + 1)z%/t and Y (x) = 2(by + 1)z122/t, and let
f(z1) be the solution of the equation z2 + Y (x) = 0 in a neighbourhood of the
origin. It is easy to see that X (zy, f(x1)) = 2(b1 + 1)2%/t. By Theorem 2.7.3(c),
the origin is a saddle-node with the central manifold contained in x2 = 0 and the
hyperbolic manifold contained in z; = 0. When ¢ > 0 (respectively, ¢ < 0) the
hyperbolic manifold is stable (respectively, unstable). Moreover, when b; > —1
(respectively, by < —1) the central manifold is stable (respectively, unstable) in
the 0 direction.

Suppose that bs # 0 and ¢t = 0. In this case the straight line ;1 = 0 is
formed by singular points. The change of time d7 = x1(s)ds transforms the system
% = f}, (x) into the system

Illzbg—(bl—Fl)Il, I;:—(bl—i-l)IQ
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For this system the origin is not a singular point. Thus the flow is parallel in a
neighbourhood of the origin. Returning to the original time variable we conclude
that the origin is a normally hyperbolic singular point, and the normally hyperbolic
manifold is contained in z; = 0. Moreover, the normally hyperbolic manifold is
stable when by < 0, and unstable when by > 0.

Suppose, finally, that by = 0 and ¢t = 0. Then we obtain the system

I.lz—(bl—Fl)I%, igz—(bl—i-l).flﬂa.

When b; = —1, every point in a neighbourhood of the origin is a singular point.
When b; # —1, if we change the time dr = 1 (s) ds, then we obtain that the origin
is a stable node (respectively, unstable node) if by > —1 (respectively, by < —1).
Returning to the original time variable we conclude that the origin is a semi-stable
node with the singular manifold contained in z; = 0.

Now we study the local phase portrait of the system x = fy, (x) depending
on the fundamental parameters (D, T, d,t). From (3.10) and (3.12) it follows that
D = d+tby/2 and T =t + ba, and therefore the eigenvalues of the matrix B =
A+bk” are A; =t/2+ by and Ay = t/2.

(a) When D > 0, the eigenvalues Ay and Ay have the same sign. Therefore,
T = Ay + Ay # 0. Suppose that T > 0 (the case T' < 0 follows by using similar
arguments). Under this assumption it follows that A; > 0 and A2 > 0. Thus, ¢ > 0
and t/2 4 by > 0. We divide the proof into the following three cases: (a.1) by > 0;
(a.2) by = 0; (a.3) by < 0.

(a.1) System % = £ (x) has a saddle-node at the origin with the central
manifold on the axis 9 = 0 and the hyperbolic manifold on the straight line
x1 + 2boxo/t = 0, see Figure 3.11. Moreover, the central manifold of the singular
point is stable in the 0 direction and the hyperbolic manifold is stable.

System % = £ (x) has a saddle-node at the origin with the central manifold
contained on xo = 0 and the hyperbolic manifold contained in 7 — 2byz5/t = 0.
Moreover, the central manifold is stable in the 0 direction and the hyperbolic
manifold is stable.

System % = f£+ (x) has a saddle at the origin with the stable and the unstable
manifold contained in the lines 1 = 0 and z2 = 0, respectively.

Thus the neighbourhood of the origin is the union of a stable parabolic sector
with a hyperbolic sector. The boundary between these sectors is contained in
1 = 0, see Figure 3.11.

The remainder statements follow using similar arguments. (]

Theorem 3.11.11. Consider a fundamental system % =Ax+p(k?'x)b with param-
eters (D, T, d,t), where > —4d > 0 and the vector k = (ky, k2)T satisfies that
k1 = 0. Suppose that the matriz A is in real Jordan normal form and let \y > Ao
be its eigenvalues. Under these assumptions there exist exactly four singular points
at infinity, x4, X—, y4, and y_. Moreover, x; and x_ belong to 0Dy.

(a) Suppose that D > 0. Then T # 0.
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Figure 3.11: Local phase portrait of system % = fy. (x) obtained by composing
the phase portaits of systems x = £ (x), x = f,(c)+ (x) and x = £ (x), when
t >0 and by > 0.

()

Figure 3.12: Singular points at infinity when ¢ — 4d = 0, matrix A is not diagonal
and kl =0.

(a.l) IfT > 0, then the singular points at infinity x, and x_ are stable nodes.

(a.2) If T < 0, then the singular points at infinily x4 and x_ are saddles
with the stable manifold contained in OD.

(b) Suppose that D =0 and T > 0.

(b.1) If d =0 and t < 0, then the phase portraits in a neighbourhood of the
singular points x4 and x_ are topologically equivalent to the one shown
in Figure 3.15(b) when by # 0; or in Figure 3.15(e) reversing the flow
orientation when by = 0.

(b.2) Ifd=0 and t >0 or d # 0, then x4 and x_ are stable nodes.
(c) Suppose that D =0 and T < 0.

(c.1) If d = 0, then x4+ and x_ are normally hyperbolic singular points with
the normally hyperbolic manifold contained in the line xo = 0.
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(c.2) If d # 0, then the phase portraits in a neighbourhood of x4 and x_ are
topologically equivalent to the one shown in Figure 3.15(a) reversing the
flow orientation.

(d) If D = 0 and T = 0, then the phase portraits in a neighbourhood of x4
and x_ are topologically equivalent to the one shown in Figure 3.15(c), when
b1 # 0; or in Figure 3.15(d) reversing the flow orientation when by = 0.

(e) Suppose that D < 0.
(el) Ifd <0 ord>0 andt >0, then x4 and x_ are stable nodes.

(e.2) If d > 0 and t < 0, then the phase portraits in a neighbourhood of
x4+ and x_ are topologically equivalent to the one shown in Figure
3.15(a) reversing the flow orientation. The boundary between the hy-
perbolic and the parabolic sectors is contained in the straight lines xo =

+ Sign(kg)bg/)\g.
(e.3) The case d >0 and t =0 is not possible.

Proof. According to the proof of Theorem 3.11.9, it is enough to study the system
x = fy, (x) in a neighbourhood U of the origin, where

fj+ (x), ifa > o,
fo, (%) =9 £, (%), if [21] <o,
fe, (x), ifx <-—ux9,
and
+ . ()‘2 - )\1) T+ $2b2 — .’E1$2b1
fx+ (X) o ( —>\1x2 - x%bl ’

0 o Qo= A +bo)my —bya?
be, ()= < -T2 — z122b1 ’

- o A= A1)y — @by + w2y
fx* (X) T < -z + x%bl '

Hence, the phase portrait of the system x = fy (x) in U can be obtained by
composing the local phase portraits of the systems x = f (x), X = f,?+ (x), and
x =1 (x).

Changing b to —b in the expressions of x = £ . » we obtain the system
% = f,,. Thus, it is enough to describe one of them. Moreover, system x = £
becomes system (3.23) by taking k3 = 1. Therefore, to understand the phase
portraits of both systems, x = f¢, (x) and x = f, (x), we refer the reader to the
proof of Theorem 3.11.7.

Now let us study the phase portrait of the system % = f)?+ (x). Since the

matrix of its linear part is
A—A1+by 0
0 -X )7
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the origin is a hyperbolic singular point when A; # 0 and Aa — A1 + b3 # 0. Suppose
that Ay > 0 (the behaviour of the singular point when A; < 0 can be obtained
from this case by multiplying the equation by —1 and reversing the direction of
the flow). When Ay +bs — Ay > 0 the origin is a saddle point. Its unstable manifold
is contained in the axis zo9 = 0 and the stable one in the axis 1 = 0. When
A2 +ba — A1 < 0 the origin is a stable node such that: for Ay + b2 > 0 the orbits are
tangent to zo = 0 at the origin; for As + by < 0 the orbits are tangent to x1 = 0
at the origin; and for A 4+ bo = 0 any direction is a characteristic direction.

We consider now the non-hyperbolic case. Suppose that \; = 0. The change
in the time variable d7 = 1 (s) ds transforms the system x = f)?+ (x) into

56/1 = ()\2 + bg) — b1, {,C/Q = —x9by.

For this system the origin is not a singular point when Ao + bs # 0. Hence, in
a neighbourhood of the origin the flow is transversal to x1 = 0. Suppose that
A2 + by = 0. In this case the system has a stable node at the origin when b; > 0;
an unstable node at the origin when b; < 0; or a neighbourhood of the origin is
formed by singular points when b; = 0. Returning to the original time variable
we obtain that: if Ay + by # 0, the origin is a normally hyperbolic singular point
with the normal manifold contained in z; = 0. It is stable or unstable depending
on whether Ao + b3 < 0 or Ag + bs > 0. Moreover, if Ay + by = 0, then the origin is
a non-isolated semi-stable node with the singular manifold contained in z; = 0.

Suppose now that A\; # 0 and Ao + by — Ay = 0. In this case the system has

a degenerate elementary singular point at the origin. With the change in the time
variable T (s) = —\1s, we obtain
ill :17%, :17’2 = I9 + )\11 xr1T2.
We now distinguish the cases by = 0 and b; # 0. In the first one the origin is an
unstable normally hyperbolic singular point with the singular manifold contained
in the line zo = 0. In the second case by Theorem 2.7.3(c) the system has a
saddle-node at the origin with the hyperbolic manifold contained in the line z; =
0 and with the central manifold contained in the line x2 = 0. Moreover, the
hyperbolic manifold is unstable and when b1\ > 0 (respectively b1 A1 < 0) the
central manifold is stable in the 7 (respectively 0) direction.

Returning to the original variables we obtain the following behaviour sur-
rounding the origin. When b; = 0, the origin is a normally hyperbolic singular
point with the singular manifold on the line o = 0. The singular manifold is
stable or unstable depending on whether A\; > 0 or A\; < 0. When b; # 0, the
origin is a saddle-node with the hyperbolic manifold on the line 7 = 0 and the
central manifold on the line x5 = 0. The hyperbolic manifold is stable or unstable
depending on A\; > 0 or A\; < 0, respectively. The central manifold is stable in the
0 or in the 7 direction depending on whether b; > 0 or b; < 0.

Now let us study the local phase portrait of system x = fx (x) depending
on the fundamental parameters (D, T, d,t). Since D = A\j(A2 + b2) and T = A\ +

[
Ty =
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(A2 + ba), see (3.10) and (3.12), the eigenvalues of the matrix B = A + bk’ are
Al = )\1 and A2 = )\2 + b2.

(a) Suppose that D > 0 and T > 0. We divide the proof of this statement
into the following three parts: (a.1) Ao +ba — A1 > 0; (a.2) Ao + b2 — A1 = 0; (a.3)
Ao+ by — A <O0.

(a.1) System % = f? . (x) has a saddle at the origin with the unstable manifold
contained in the line 9 = 0 and the stable manifold contained in the line z; = 0.

System X = ff (x) (respectively, X = f_ (x)) has a node at the origin with
the characteristic directions contained in the lines zo9 = 0 and Aoz + boxe = 0
(respectively, zo = 0 and Aoz — baxo = 0).

In order to describe the phase portrait in a neighbourhood of the origin, we
have to ensure that the characteristic directions do not coincide with the straight
lines separating the domains of the different systems. Hence, since Ao +bs— A1 > 0,
A2 — A1 < 0 and A2 + ba > 0, we have by > 0 and —\3/by < 1. Therefore when
A2 > 0 the half-line A\ox1 +boxs = 0 with zo > 0 intersects the region x1 > x5 only
at the origin; when Ay < 0 the half-line A\oxzy + boxo = 0 with x5 > 0 is contained
in the region x; > x2. We conclude that the system %X = fy (x) has a stable node
at the origin, see Figure 3.13.

The remaining statements follow using similar arguments. O

Figure 3.13: Local phase portrait of system X = fx . (x) obtained by composing
the phase portaits of systems x = £ (x), x = 7, (x) and x = f_ (x) when
A1 > 0and Ao — Ay + by > 0.

Theorem 3.11.12. Consider a fundamental system % =Ax+p(kTx)b with funda-
mental parameters (D, T, d,t), where t> —4d > 0 and the vector k = (ki,ko)”
satisfies ko = 0. Suppose that the matriz A is in real Jordan normal form and
let A1 > Ao be its eigenvalues. Under these assumptions there exist exactly four
singular points at infinity, x4, X_, y4+, and y—. Moreover, y+ and y_ belong to
0Dy.

(a) If D > 0 and T > 0, then y+ and y_ are saddle points with the unstable
manifold contained in 0D and with the stable manifold contained in the line
T = 0.

(b) If D >0 and T < 0, then y+ and y_ are unstable nodes.
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(¢) Suppose that D =0 and T > 0.

(c.1) Ifd =0, then y+ and y— are unstable normal hyperbolic singular points
with the normally hyperbolic manifold contained in the line x; = 0.

(c.2) If d # 0, then the phase portraits in a neighbourhood of y+ andy_ are
topologically equivalent to the one shown in Figure 3.15(a).

(d) Suppose that D =0 and T < 0.

(d.1) If d = 0 and t > 0, then the phase portraits in a neighbourhood of y
and y_ are topologically equivalent to the one shown in Figure 3.15(b)
when by # 0, or in Figure 3.15(e) when by = 0.

(d.2) Ifd=0and t <0 ord # 0, then y4 and y_ are unstable nodes.

(e) If D =0 and T = 0, then the phase portraits in a neighbourhood of y
and y_ are topologically equivalent to the one shown in Figure 3.15(c) when
by # 0, or in Figure 3.15(d) when by = 0.

(f) Suppose that D < 0.
(t1) If d<0 ord >0 and t <0, then y; and y_ are unstable nodes.

(f.2) If d > 0 and t > 0, then the phase portraits in a neighbourhood of y
and y_ are topologically equivalent to the one shown in Figure 3.15(a).
The stable separatrices of y4+ and y_ are contained in the straight lines

Ty = + sign(kl)bl/)\l.
(£.3) The case d >0 and t =0 is not possible.

Proof. According to the proof of Theorem 3.11.9, we only have to study the system
x = fy, (x) in a neighbourhood U of the origin with x5 > 0, where

fr (x), if x> a2,
£, (x) =19 £, (x), if [21] <o,
£, (x), ifa < -,

and

£ (x) = (A1 = A2) 21 + @by + w1200
Y+ T —Aoxo + x%bg ’

0 L ()\1 =+ b1 — )\2) X + ng%
f)’+ (X) T < —)\2{E2 + $1.’E2b2 ’

£ (x) — ( ()\1 - >\2)171 — T2b1 — T122b9 ) )

Y+ —AoXo — x%bg

Changing b to —b in the expressions of X = f)‘,:, we obtain the system x =
£, . Thus it is enough to describe one of them. Moreover, if we take ko = 1, system
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X = f;L . coincides with system (3.25). Therefore, to draw the phase portraits of
both systems x = f; (x) and X = £/, (x), one can refer to the proof of Theorem
3.11.8.

Now we study the phase portrait of system x = f§,)+ (x). Since the matrix of

its linear part is
A+bi—X O
0 —X )’

the origin is a hyperbolic singular point when Ay # 0 and A1 + b1 — Ay # 0. Hence
when Ao > 0 and A\ + by — Ay > 0, the origin is a saddle point with the stable
manifold tangent to xo = 0 and the unstable manifold tangent to z; = 0. When
Ao >0 and A1 + b1 — A2 < 0, the origin is a stable node, and the orbits reach the
origin tangentially to x9 = 0, or to x; = 0, depending on whether A\; +b; > 0 or
A1+ b1 < 0. When \; + by = 0 any direction is a characteristic direction. The case
A2 < 0 can be obtained from the case Ao > 0 by multiplying the parameters by
—1 and by reversing the orientation of the flow.

Suppose that Ay = 0. The change of variables dr = z1(s)ds transforms the
system x = £ (x) into the system

17/1 = )\1 + bl + bQIl, 17/2 = IQbQ.

For this system when A1 + b1 # 0 the origin is not a singular point and the flow is
transversal to z1 = 0. On the contrary, when A1 +b; = 0 the origin can be either a
stable diagonal node, an unstable diagonal node, or a non-isolated singular point,
depending on whether by < 0,b2 > 0 or bs = 0. Returning to the original variables
we obtain that the origin is a non-isolated semi-stable node with the singular
manifold contained in the line z; = 0.

Suppose now that Ay # 0 and A1 + by — Ao = 0. In this case the system
X = f§,)+ (x) has a degenerate elementary singular point at the origin. Changing

the time variable to 7 (s) = —Az2s, we obtain
x! :—b2:1c2 xh = T9 — b2x1x2
1 )\2 1 2 )\2 °

When by = 0, the origin is an unstable normally hyperbolic singular point with
the singular manifold contained in the line x5 = 0. According to Theorem 2.7.3(c),
when by # 0 the system has a saddle-node at the origin. The hyperbolic manifold
is contained in the line 27 = 0 and the central manifold is contained in the line
x2 = 0. Moreover, the hyperbolic manifold is unstable and the central manifold is
stable in the 0 direction if and only if bo Ao < 0.

Returning to the original variables we conclude that when by = 0 the origin is
a normally hyperbolic singular point with the singular manifold contained in xo =
0, and this manifold is stable or unstable depending on whether A\s > 0 or Ay < 0.
On the other hand, when b2 # 0 the origin is a saddle-node with the hyperbolic
manifold contained in the line 27 = 0 and the central manifold contained in the
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line 2 = 0. The hyperbolic manifold is stable or unstable depending on whether
A2 > 0 or Ay < 0, and the central manifold is stable in the 0 direction if and only
if oo < 0.

Now we study the local phase portrait of X = fy (x) depending on the fun-
damental parameters. Since D = Ay(A1+b1) and T = A1 + A2 + by, the eigenvalues
of matrix B = A + bk’ are A; = A\; + b; and Ay = \s.

(a) Suppose that D > 0 and T" > 0. We will consider the following three
cases: (a.l) A+ b1 — A >0 (32) A+ b1 — Ay =0; (33) A+ b1 — A <0.

(a.1) System % = fy (x) has a saddle point at the origin with the unstable
manifold contained in the line zo = 0 and the stable one contained in the line
I = 0.

System % = ff (x) (respectively, x = f (x)) has a saddle point at the
origin. The unstable manifold is contained in the line x5 = 0 and the stable one is
contained in the line A\jx1 — byze = 0 (respectively, Aix1 + byze = 0).

Since A1 > Ag it follows that Ay > 0. Therefore, when b; > 0 the straight line
A1z1 — biwa = 0 is contained in the region |zz| > |#1| and the system x = fy_ (x)
has a saddle point at the origin, see Figure 3.14. Moreover, when b; < 0, then
A1/b1 < —1 and the straight line Ayx1 — byze = 0 is also contained in |zo| > |21].
Thus, the system x = fy_ (x) has a saddle point at the origin.

The remaining statements follow in a similar way. (|

Figure 3.14: Local phase portrait of system X = fy_ (x) obtained by composing
the phase portaits of systems x = i (x), X = fJ, (x) and x = f; (x) when
Ao >0 and A\ — Ao + b7 > 0.

3.12 Periodic orbits

This section is devoted to the existence and location in the phase plane of Jordan
curves I' formed by solutions. Such curves split the phase plane into two regions,
one of which is denoted by ¥ and is bounded. Since Xp is an invariant set,
the qualitative behaviour of the flow in ¥ can be obtained from the Poincaré—
Bendixson Theorem.

In Lemma 3.12.1 we prove that for a fundamental system with D # 0 only
three kinds of finite Jordan curves formed by solutions can exist: periodic orbits,
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N

(a)

(©)

Figure 3.15: Singular points at infinity when ¢ —4d > 0 and ko = 0.

homoclinic cycles and heteroclinic cycles.

Lemma 3.12.1. Consider a fundamental system with parameters (D, T,d,t), where
D #£ 0. If " is a Jordan curve formed by solutions, then I' is a periodic orbit, a
homoclinic cycle with vertex at the origin, or a heteroclinic cycle with vertices at
the singular points e and e_.

Proof. If " does not contain any singular point, then I' is a periodic orbit. Suppose
now that I' contains a unique singular point p and a unique orbit . Since I is an
invariant compact set, there exit the a- and w-limit sets of v and a(v) = w(y) = p.
Thus I' is a homoclinic cycle. Suppose that the vertex of the homoclinic cycle is e
(the arguments are similar if we suppose that e_ is the vertex of I'). Since D # 0,
then e is a saddle point, see Theorem 3.9.3. It is easy to check that Cl(Xr) is an
invariant compact and simply connected set. By applying the Poincaré-Bendixson
Theorem, every orbit in 3 has an a- and an w-limit set in C1(Xr), and such limit
sets are either a periodic orbit, a singular point or a separatrix cycle. In the last
two cases we have singular points in X, which contradicts the symmetry of the
vector field with respect to the origin. In the first case again we reach the same
contradiction, by Cororally 2.8.4. Hence the vertex of I' is the origin.

Suppose now that I' contains two singular points, see Figure 3.16(a) and (b).
First we will prove that the Jordan curve shown in Figure 3.16(a) is not possible;
i.e. the flow on I" must be oriented. After that we will prove that the vertices of '
are e; and e_.

Since D # 0 and the system has more than one singular point, Theorem
3.9.3 implies that Dd < 0 and the singular points are 0, e, or e_. Moreover,
any singular point is hyperbolic and the local phase portraits of e, and e_ are
identical. Finally, since Dd < 0, either the origin is a saddle and e; and e_ are
antisaddles, or e} and e_ are saddle points and 0 is an antisaddle point.

Suppose that T' is equal to the Jordan curve shown in Figure 3.16(a). If e
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and e_ are the singular points contained in I', by the symmetry of the vector field
with respect to the origin, they are saddle points and the other separatrices of e
and e_ split Xr into two invariant regions, A and B, see Figure 3.16(a.1). In the
interior of B there are no singular points. We arrive at a contradiction by applying
the Poincaré-Bendixson Theorem to this region.

(a.2)

Figure 3.16: Qualitative Jordan curves formed by solutions with two singular
points.

Suppose that 0 and e; are the singular points belonging to I'. There exists
a Jordan curve formed by solutions I'_, symmetric to I' and such that 0,e_ €
I'_. It is easy to conclude that e; and e_ are saddle points and O is a node,
see Figure 3.16(a.2). The unstable separatrices of ey and e_ split X and Xp_
into four invariant regions, two of them without singular points inside. We arrive
to contradiction by applying the Poincaré-Bendixson Theorem to these regions.
Hence, if T is a Jordan curve formed by two singular points and two orbits, then
I' is the curve shown in Figure 3.16(b).

In that case, since either e} and e_ are saddles and O is an antisaddle, or O
is a saddle and e; and e_ are antisaddles, it is easy to conclude that the vertices
of " have to be the saddle points e, and e_. Moreover, the singular point 0 is
contained in Xr. O

In the following theorem we collect some results about the existence and
location of Jordan curves formed by solutions in the phase plane.

Theorem 3.12.2. Consider a fundamental system with parameters (D,T,d,t),
where D # 0.

(a) If Tt > 0, then there are no Jordan curves formed by solutions.

(b) Suppose that T is a Jordan curve formed by solutions.



114 Chapter 3. Fundamental Systems

(b.1) If Tt <0, thenT NSy # @ and TN (Sy US_) # @.
(b.2) IfT#0 andt =0, then T C S ULy or T CS_UL_.
(b.3) If T=0andt#0 then ' C Ly USoU L_.

Proof. Let X = (P,Q) be the vector field defined by the fundamental system
and let T be a Jordan curve formed by solutions. Since the functions dP/dz and
0Q /)y are well defined and bounded in Xr \ {L, L_}, the divergence div(X) =
OP/0x + 0Q /0y is also well defined and bounded in ¥r \ {L4, L_}. Moreover,

// div (X) dzedy = // div (X) dzdy + // div (X) dzdy + // div (X) dzdy.

XrNS4 3rNSo YrnsS—

Taking into account that div(X) =t in S4 US_ and div(X) = T in Sy, we obtain
that

/ / div (X) dady = (As + A_)t + AT,

where A, , A_ and Ag are the areas of the open regions >r N Sy, Xp N S_, and
Y1 NSy, respectively. The rest of the proof is divided according to the type of the
curve I': a periodic orbit, a homoclinic cycle or a heteroclinic cycle, see Lemma
3.12.1.

Suppose that I' is a periodic orbit. By applying Green’s Theorem for domains
bounded by rectificable curves [6, p. 280],

!F / div (X) dedy = f Pdy — Qdz = 0.

Therefore, (A + A_)t + AgT = 0 and the theorem follows easily by noting that
Ai, A_ and Aj are non-negative.

Figure 3.17: Green’s Theorem for a homoclinic cycle.

Suppose now that I' is a homoclinic cycle to a singular point e. Since X(e) = 0
for every small enough € > 0, there exists a neighbourhood U, of e such that
[IX(x)]| <& when x € U. One may smooth I' near e to produce a differentiable
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curve I'* such that T and I'* coincide in R? \ U. and the length of the arc where
I' and I'* differ is less than 1, see Figure 3.17. Applying Green’s Theorem to the
region bounded by I'* we obtain that

—e < //div (X) dzdy = dey —Qdr < e.

S I+

Therefore, —e < (A% + A% )t + AT < e, where A%, A* and Aj denote the
areas of regions ¥p- N Sy, ¥« N S_, and Xr- NSy, respectively. Since A%, A*
and A§ tend to A, , A_ and Ay, respectively, as ¢ tends to 0, we conclude that
(A4 +A_)t+ AT = 0. Similar arguments can be applied when I is a heteroclinic
cycle. |

The ideas used in the proof of Theorem 3.12.2 are due to Lefschetz [40, pp.
238-239]. Note that these arguments can be also applied when I" is a Jordan curve
formed by solutions with any number of singular points. In this case the set of
singular points contained in I' is compact. Hence, it is always possible to find a
neighbourhood U, such that || X(x)| < ¢ if x € U..

3.13 Asymptotic behaviour

In this section, by using the integral expression of the solutions, we offer some
preliminary results about the asymptotic behaviour of the orbits of a fundamental
system.

Proposition 3.13.1. Given a matriz A € L(R"™), the following statements are equiv-
alent.

(a) The eigenvalues of A have negative real part.

(b) There exist positive constants a,c, m, M and a non-negative constant k, such
that for any xo € R™ and s € R the following inequalities hold:

m |s*| e x| < [le™ x| < Me™||xq]].

For a proof of this proposition see [53, p. 56].

Proposition 3.13.2. Given a fundamental system with fundamental parameters
(D,T,d,t), where d > 0 and t < 0, there exists R > 0 such that the w-limit
set of any orbit is contained in the ball of radius R centered at the origin.

Proof. Take xo € R? and let x(s) be the solution of the fundamental system
% = Ax + ¢(kTx)b such that x(0) = xg. From expression (3.5) it follows that

()l < [le”*x(0)] + ||€AS||/0 le™ e (k"x)b]|dr.
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Since d > 0 and ¢t < 0, the eigenvalues of A have negative real part. Thus,
there exist positive constants ¢ and M such that |[e?*xg| < Me=%|x¢| for any
xo € R? and s € R, see Proposition 3.13.1. On the other hand, ||o(kx)b|| < ||b]|,
and so

Ix(s) ]| < Afe-csnx<o>\\+—Afe-6ﬂuaujg e~ ldr

< are (IO + v [ drear)
0

B Mbll) L M2Ibl
Cc c

e (x<0> ||

This implies that the solution x(s) is bounded when s tends to infinity. Therefore,
the w-limit set of this solution is contained in the ball of radius R = M?||b||. O

Proposition 3.13.3. Given a fundamental system with fundamental parameters
(D,T,d,t), where d > 0 and t > 0, there exists R > 0 such that the «-limit
set of any orbit is contained in the ball of radius R centered at the origin.

Proof. The change of the time variable ¢ to —t transforms the original system into a
fundamental system with fundamental parameters (D, —T,d, —t), see Proposition
3.7.1. The statement follows by applying Proposition 3.13.2 to this system. O

Proposition 3.13.4. Given a fundamental system with fundamental parameters
(D,T,d,t), where d =0 and t < 0, there exist straight lines w1 and we which are
symmetric with respect to the origin and such that w; NTy # 0 and w; NT_ # 0
for i € {1,2}. Let B, be the closed strip bounded by w1 and ws.

(a) For every solution x(s), there exists so > 0 such that {x(s): s> so} C By,.

(b) B, is a positively invariant set and contains every w-limit set.

(¢) If D > 0, then all orbits are positively bounded.
Proof. Take xg = (710, 220) € R? and let x(s) = (z1(s), z2(s)) be the solution of
the fundamental system x = Ax + ¢(k’ x)b such that x(0) = xg. From expression
(3.5) it follows that

x (s) = e™*x (0) + / eAl (ka) b dr.
0

Since linear maps transform straight lines into straight lines, it is not a re-
striction to assume that the matrix A is in real Jordan normal form. Thus

t 0
(5 0)

z1 (s) = e¥x19 + / et(s_r)go (ka) bydr.
0

and consequently,
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Since |¢(0)| <1 for o € R, we conclude that

b b
|£E1 ($)| < ets (|1710| + |t1|) _ |t1|'

Note that the symmetric straight lines wy, := {(—=1)*(1 — |b1|/t, 72) : 22 € R} with
k = 1,2 intersect I'y and I'_. Moreover, it is easy to check that the set B, has
property (a).

(b) Take y = (y1,92)7 € wi. Then y; = —1+ |b1]t™! < 0 and Ay = (|b1] —
t,0)7, that is, the first component of the vector field is positive. We conclude that
B, is a positively invariant set. From statement (a) it follows that B, contains
every w-limit set.

(d) Consider the family of segments Sy, := {(x1,h) : |z1] < 1 — [by|/t} for
h > 0. Suppose that ko > 0. When £ is big enough we have kix1+kah > 1, whence
Sy, C St. In the region S the system is linear, with Ax+b = (¢t —|b1|+b1, b2) and
ba < 0 (note that D = tkaby > 0, see (3.10)). Then there exists hg > 0 such that
Ry, := {(x1,22) : |z1] < 1 — |b1]/t and |z2| < h} is a positive compact invariant
set for every h > hg. Moreover, By, = (J;,- ho Fon, which concludes the proof.

The case ky < 0 follows by using similar arguments. |

Proposition 3.13.5. Given a fundamental system with fundamental parameters
(D,T,d,t), where d =0 and t > 0, there exist straight lines a1 and as which are
symmetric with respect to the origin and such that c; NTy # 0 and a; NT_ # 0
with i € {1,2}. Let By, be the closed strip bounded by a1 and as.

(a) For every solution x(s), there exists so > 0 such that {x(—s): s> so} C Bq.
(b) By is a negatively invariant set which contains every a-limit set.
(¢) If D > 0, then all orbits are negatively bounded.

Proof. The change of the time variable ¢ to —t transforms the original system
into another fundamental system with fundamental parameters (D,—T,d, —t),
see Proposition 3.7.1. The result follows by applying Proposition 3.13.4 to this
system. |

Proposition 3.13.6. Given a fundamental system with fundamental parameters
(D,T,d,t), where d < 0, there exist two pairs of symmetric straight lines a1 and
as, and wi and ws such that w; NTy # 0, w;NT_ # 0, a; NTy # 0, and
a;NT_ #0, fori € {1,2}. Let B,, and B, be the closed strips bounded by wy and
wo and by a1 and awe, respectively. Then:

(a) For every solution X(s), there exists so > 0 such that {x(s) : s > so} C By,
and {x(—s) : s > so} C Ba-

(b) B, is a negatively invariant set containing every a-limit set.

(¢) By, is a positively invariant set containing every w-limit set.
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(d) B, N By is a compact and invariant set containing every singular point and
every limit cycle.

Proof. Take x¢ = (10, 220) € R? and let x(s) = (z1(s), z2(s)) be the solution of
the fundamental system x = Ax + ¢(kTx)b such that x(0) = xo. From expression
(3.5) it follows that

x(s) = e*x(0) + / eAt gy (k"x) bdr.
0

Since linear maps transform straight lines into straight lines, it is not a re-
striction to assume that the matrix A is in real Jordan normal form. Thus,

(A0 .
A_<O )\2),W1th)\1>0>)\2,

and therefore
zp (5) = ey (0) —|—/ M (kTX) bydr,
0
for k = 1,2. From this it follows that for every s > 0 we have

0
b b
|21 (—s)] < e |21 (0)] + |by] ol (|:171 (0)| — |)\1|) + |)\1|,
1 1

—S

s b b
22 ()] < €29 [z (0)] + [ba] / A2y < 29 ([, ()] 4+ 1P21) = 102l
0 )\2 )\2

Hence, there exist sy > 0 and s_ < 0 such that |z2(s)] < 1 — |b2|/A2 when
s> sq, and |z1(s)| <1+ |b1|/A1 when s < s_.

Consider the symmetric straight lines wy 1= {(—=1)¥T1(z1,1 — |ba|/A2) 1 71 €
R} and oy = {(=1)*1(1 + |b1|/A1,72) : 72 € R}, for k = 1,2. Tt is easy to check
that these straight lines intersect I'y and I'_.

(b) Let x = (z1,72)T be a point on a; (respectively, ap). Then z; = 1 +
|b1|/A1 which is positive (respectively, negative). Since Ax+@(k?x) = (A1 +|b1| +
o(kTx)by, Aaza+p(kTx)bo)T, that is, the first coordinate of the vector field at x is
also positive (respectively, negative), we conclude that B, is a negatively invariant
set. Moreover, by statement (a), B, contains all the a-limit sets.

(c) The statement follows by using similar arguments to those in the proof
of statement (b).

(d) Since B, N B, is a compact set, (d) follows from statements (b) and
(c). O
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Return maps

The determination of the number and location of limit cycles of a planar differential
system is one of the most difficult problems in the qualitative theory of differential
equations. In the case of planar polynomial differential systems this problem is
known as the second part of Hilbert’s 16th problem, and it remains open even for
polynomials of degree 2. In the case of fundamental systems this problem can be
completely solved by using the return maps defined by the flow of the system on
convenient cross sections contained in the straight lines L, and L_.
Consider a fundamental system

X = Ax+ ¢ (k"x) b, (4.1)
with matrix A € L(R?) and vectors k,b € R?\ {0}, and let

Ax—b, ifxeS_UL_,
X =<( Bx, ifxe L_USyU L4,
AX+b, ierLJ,_USJ,_,

be the piecewise linear expression of system (4.1), where B = A+bk”. By Theorem
3.12.2, we can distinguish three different kinds of periodic orbits I'; depending on
their location in the phase plane.

(i) T is contained in one of the open regions Sy, Sy, or S_ where the system is
linear.

(ii) I intersects only one of the straight lines L1 or L_.
(iii) T intersects both the straight line L and the straight line L_.

Since the flow is linear in Sy, Sy, or S_, periodic orbits in the class (i) appear
only in the case of a linear center. Consequently, the behaviour of these orbits is
well known. For this reason we restrict our attention to periodic orbits belonging
either to the class (ii) or to the class (iii).

J. Llibre and A.E. Teruel, Introduction to the Qualitative Theory of Differential Systems: 119
Planar, Symmetric and Continuous Piecewise Linear Systems, Birkhduser Advanced Texts,
DOI 10.1007/978-3-0348-0657-2_4, © Springer Basel 2014
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Suppose that I' only intersects the straight line L. By the symmetry of the
fundamental vector field with respect to the origin, the intersection point does
not belong to the bounded region Xr inside I'. Moreover, there exists another
periodic orbit, denoted by I'_, which is symmetrical with respect to the origin to
the periodic orbit I', and such that I'_ only intersects the straight line L_, see
Figure 4.1(a). Thanks to the continuous dependence of the solutions of an ordinary
differential equation with respect to the initial conditions, we can define a return
map 11 in a neighbourhood of one of the intersection points of I with L by taking
the cross sections contained in L. Similarly, we can define another return map
associated to the periodic orbit I'_ by taking the cross sections contained in L_.

L L L .
4 S
S +
’ @ St 11 (q)
& .
11 (q) g
L. S

Figure 4.1: (a) Periodic orbits intersecting with only one straight line. (b) Periodic
orbit intersecting with two straight lines.

Suppose now that the periodic orbit I' intersects the two straight lines L
and L_. In the same way, associated to I', and following the flow, we can define a
return map Il in a neighbourhood of one of the intersection points of I' with L
by taking the cross section contained in L, see Figure 4.1(b). Thus we reduce the
study of periodic orbits in class (ii) or in class (iii) to the study of return maps
defined on the straight lines L and L_.

4.1 Poincaré maps for fundamental systems

Let T be a periodic orbit of system (4.1) such that I intersects the straight lines L
and L_. Let II be the return map associated to L, and defined in a neighbourhood
of the periodic orbit I'. The map II can be written as a composition of the Poincaré
maps which maps points from L to L_, from L_ to L_, from L_ to L4 and from
L, to Ly, see Figure 4.1(b). Similarly, if I" is a periodic orbit intersecting only one
of the straight lines, then II can be written as a composition of the Poincaré maps
which maps points either from Ly to Ly or from L_ to L_, see Figure 4.1(a).

Let ®(s,x) be the flow of system (4.1). We define the following subsets con-
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tained in the straight lines L, and L_.

Dom?, :={q € Ly :3sq >0, ®(sq,q) € L1 and @ (s,q) C S1 Vs € (0,5q)},
Dom?_:={q€ L} :35q>0, ®(sq,q) € L_ and & (s,q) C Sp Vs € (0,54)},
Dom? :={qe€L_:354>0,®(sq,q) € L_ and ®(s,q) C S_ Vs € (0,54)},
Dom?, :={q € L_:3sq >0, ®(sq,q) € Ly and & (s,q) C Sp Vs € (0,54)},
Domf+ ={q€Li:35q >0, P(sq,q) € Ly and ®(s,q) C So Vs € (0,54)},
Dom?_ = {qeL_:354>0, ®(s5q,q) € L_and & (s,q) C Sy Vs € (0,54)} -

Take a point q in Domy] with k,j € {+, =} and M € {A, B}. Let v(q) be the
orbit through q. The flight time sq is defined to be the interval of time between two
consecutive intersections of y(q) with the straight lines L, and L;, respectively.
Note that during this time the orbit v(q) lies within one of the regions where the
system is linear. The matrix of this linear system appears as a superscript in the
name of the corresponding set.

If a set Dom% is non-empty, then we call H% (4) = ®(sq,q) the Poincaré
map of system (4.1) associated to the straight lines L; and Ly,.

For now it is not possible to describe precisely the decomposition of the
return map II in terms of the Poincaré maps H%. This will be one of the topics in
Section 4.6. Nevertheless, it is obvious that knowledge of the Poincaré maps H%
is essential for the knowledge of the return map II.

After the pioneering work of Andronov [3], such Poincaré maps have been
used by most authors working in this subject, see for instance [47], [24], [25] and
[26]. In all these works the authors obtain, just by applying a rotation and by
rescaling the original variables, a linearly conjugated fundamental system such
that Ly = {& = 1} and L_ = {& = —1}. Hence, the expression of both the
Poincaré maps and the fundamental matrices A and B are related to this new
configuration.

Here we present an alternative parametrization of the straight lines L and
L_ in such a way that the Poincaré maps associated to them are invariant un-
der linear transformations. That is, we can consider that the fundamental matri-
ces A and B are in their real Jordan normal form. As it is proved in [45] these
parametrization can be extended to higher dimensions, with similar consequences.

Finally, when the superscript M coincides with B, the Poincaré map H%
is defined by the flow of the homogeneous linear system x = Bx. Further, when
M coincides with A, the Poincaré map H% is defined by the flow of the non-
homogeneous linear systems x = Ax £+ b. Thus in Section 4.3 and Section 4.5 we
study the behaviour of the Poincaré maps defined by the flow of homogeneous and
non-homogeneous linear systems, respectively.
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4.2 Transversality of a linear flow

Consider the linear system
x = Ax, (4.2)

where A € L(R?). From now on, § denotes the value of a vector field defined by a
differential system at the point q of the phase plane. In particular, for the linear
system (4.2) q = Aq.

Let L = {p+ Av : A € R} be a straight line which does not pass through the
origin. Let n be the unit vector orthogonal to L such that n”p > 0; in this case
we say that n is oriented in the opposite sense to the origin. Note that choosing
the vector n does not depend on the point p on L. Of course, if we take another
point q = p + Av in L, then n”q = n”p > 0.

The flow of system (4.2) is said to be transversal to the straight line L at a
point q if n”7¢ # 0. Otherwise, q is said to be a contact point of the flow with the
straight line L. The following definitions formalize the intuitive idea of the sense
of a transversal flow with respect to a straight line L. A transversal flow to L at a
point q € L is said to have outside orientation if n”'¢ > 0. A transversal flow to
L at a point q € L is said to have inside orientation if n”§ < 0. Accordingly, we
define the following subsets in L

LI::{qeL:an§O} andLO::{qeL:anzO}.

In Proposition 4.2.5 and 4.2.6 we describe the different possibilities for the sets L'
and LY depending on the invertibility of the matrix A. Before doing this we give
some technical lemmas.

Lemma 4.2.1. Consider a linear system X = Ax with A € GL(R?) and let L be a
straight line in the phase plane which does not pass through the origin. Two points
p and q in L are different if and only if p # aq for any o € R.

Proof. Since A is invertible, the equality p = aq is equivalent to the equality
P = aq. In this case L is a straight line through the origin, in contradiction with
the hypothesis. O

Consider the unit circle S' = {x € R? : ||x|| = 1} and the continuous map
U : R?\ ker(A) — St given by

_ 4 _ Aq

lal - lAal”
where ker(A) denotes the null space of A. The map ¥ provides information about
the sense and the direction of the linear vector field defined by (4.2). For instance,
if A € GL(R?), then W(R?\{0}) = S!. This map will be particularly interesting
when we restrict it to either straight lines or orbits.

Let a(\) be a curve in the phase plane and (1,60())) the parametrization in

polar coordinates of ¥(a())). We say that function ¥|, is monotone if O(\) is
strictly monotone.

v(a) (4.3)
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Lemma 4.2.2. Consider a linear system X = Ax with A € GL(R?) and let L =
{p+ Av: X €R} be a straight line in the plane.

(a) If L does not pass through the origin, then V|1, is monotone. Furthermore
VU (L) is an open semi-circle of St with endpoints U(v) and —¥(v).

(b) If L passes through the origin, then ¥(L) = {¥(v), —U(v)}.

Proof. (a) By Lemma 4.2.1, ¥|y, is an injective and a continuous map. Thus, 6(\)
is also injective and continuous. Therefore, 6(\) is monotone.

Since W is continuous, the set ¥(L) is a connected subset of S*. Hence ¥(L) is
a circle arc. Moreover, by Lemma 4.2.1, if w € U(L), then —w & ¥ (L). Therefore,
U(L) is contained in a semi-circle. The statement (a) follows fromAgTwW(p +

Av) = ¥(v) and )\EIPOO U(p+Av) =—-U(v).

(b) Since the origin is contained in L, we can write L = {Av : A € R}. The
statement follows from the equality U(Av) = A¥(v)/|A| when X # 0. O

Let f : R? — R? be a vector field and v € R% The set {q € R? : f(q) =
Av with A € R} is called the isocline of f defined by the vector v. Therefore, the
isoclines of the linear system (4.2) are the straight line through the origin, see
Lemma 4.2.2(b). More precisely, we have the following result.

Lemma 4.2.3. Set A € GL(R?) and v € R?~{0}. The isocline of the system
% = Ax defined by the vector v is the straight line through the origin L = {\A~'v :
A e R}

Given p = (p1,p2)T € R? we denote by pt the vector (—pz,p1)?. The
following properties are obvious: (a) p* is orthogonal to p, (b) |[p*|| = ||p/, and

(c) (PH)* =-p.

Lemma 4.2.4. Consider a linear system %X = Ax with A € L(R?) and let p be a
point in R2. Then (Ap)Tpt = —det(A)pTpt.

Proof. Let t and d be the trace and the determinant of the matrix A, and let
Id be the identity matrix. From the Cayley-Hamilton theorem we obtain that
A? —tA + dId = 0. Multiplying both sides by p we get that Ap = tp—dp.
Therefore, (Ap)Tpt = —dpTp+. O

Proposition 4.2.5. Consider the linear system X = Ax with A € GL(R?) and let
L be a straight line in the phase plane.

(a) Suppose that L does not pass through the origin.
(a.1) There exists at most one contact point of the flow with L.

(a.2) Let p be a contact point of the flow with L. If det(A) > 0, then L' =
{P+AD: A >0} and LO = {p+Ap: A <0}. If det (A) < 0, then
LI ={p+Xp:A<0} and L® = {p+ A p: X > 0}.
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(a.3) If L' # @ and L° # @, then there exists exactly one contact point of
the flow with L.

(a.4) If the flow has no contact points with L, then either L' = L and L° =
@, or L' =@ and L® = L.

(b) If L passes through the origin, then either L is an invariant straight line
in this case any point on L is a contact point), or the origin is the unique
in thi y point on L i tact point the origin is the uni
contact point of the flow with L.

Proof. Statement (a.1) is a consequence of Lemma 4.2.2(a).

(a.2) Since L does not pass through the origin and the matrix A € GL(R?),
p # 0. Hence, we can write L = {p + Ap : A € R}. Then the unit orthogonal
vector n is either p/||p|| or —pL/||p||. In both cases, (Ap)Tn = —det(A) pTn,
see Lemma 4.2.4.

Take q € L such that q # p. Then we can write q = p + Ap with A # 0, and
therefore

nTg=n"Aq=n"p+ In?Ap = nT Ap = —Adet(A)nTp.

Since n”'p > 0, the orientation of the flow on the straight line L depends on the
sign of A and the statement follows.

(a.3) Consider the continuous function f(\) = nTA(q + Av) defined on the
straight line L = {q + Av : A € R}. Clearly f satisfies that f(A;) < 0 when
g+ v e L and f(\2) > 0 when q + Aov € LY. Therefore, there exists a \*
such that f(A\*) = 0. That is, g + A\*v is a contact point of the flow with L. The
uniqueness of the contact point follows from statement (a.1).

(a.4) Consider the function f defined in the proof of (a.3). If there are no
singular points on L, then either f(X) > 0 or f(\) < 0, which proves the statement.

(b) Since L is a straight line through the origin, we can write L = {\v :
A € R}. Thus the origin is a contact point of the flow with L. Suppose that there
exists another such contact point q. Then q = Av with A # 0, and Aq = av with
a € R. Therefore, Av = (a/\)v, i.e., v is an eigenvector of A and L is invariant
under the flow. O

Given a linear system x = Ax with det(A4) # 0 and a straight line L which
does not pass through the origin, in Proposition 4.2.5 we have proved that if there
exists a contact point of the flow with L, we can split the straight line into the
two half-lines L’ and L? in such a way that the flow over L’ and L? has opposite
sense. For a treatment of a more general case we refer the reader to [45]. Under a
natural restriction, in the next proposition we prove that even when det(A4) = 0,
the straight line L can also be divided into the two half-lines L and L°. From
now on we denote by det(v, w) the determinant of the matrix whose columns are
the vectors v and w in R2.

Proposition 4.2.6. Consider a planar linear system X = Ax with det(A) = 0 and
such that A is not the zero matrixz. Let L be a non-invariant straight line which does
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not pass through the origin and let n be the unit orthogonal vector to L oriented
in the opposite sense to the origin.

) If p is a contact point of the flow with L, then det(An*,nt) # 0.

) If p is a contact point of the flow with L, then p is a singular point.
(¢) There exists at most one contact point of the flow with L.

)

Let p be a contact point of the flow with L. If det(Ant,nt) > 0, then
LI ={p+int:2<0} and LP = {p+ Ant : A > 0}. If det(Ant,nt) <0,
then LT = {p + Ant : A > 0} and L = {p + Ant : X < 0}.

(e) If L' # @ and L° # @, then there exists exactly one contact point of the
flow with L.

Proof. (a) It is clear that L = {p+An' : A\ € R}. Suppose that det(Ant,nt) = 0;
that is, n” Ant = 0. For any A € R it follows that n” A(p + Ant) = 0. Hence L
is an invariant straight line, which contradicts our assumptions.

(b) Let p be a contact point of the flow with L. Then p = Agn' with A\ € R
and (Ap)Tpt = —2\3(Ant)Tn = —\3det(Ant, nt). From Lemma 4.2.4 we have
that (Ap)Tp* = —det(A) pT’pt =0, and so \g = 0 and p = 0.

(c) Suppose that p and q are two different contact points of the flow with
L. Thus we can write L = {p+ A(p—4q) : A € R}. Since Ap = Aq = 0, see
statement (b), it follows that L = ker(A), which contradicts that L does not pass
through the origin. Therefore the contact point is unique.

(d) Since p is a contact point of the flow with L, we can write L = {p+An= :
A € R}. The statement follows as a consequence of the equality n” A(p + Ant) =
Adet(Ant,nt) for A € R.

(e) Take q; € L and gz € L. Then L = {q; + Mgz — q1) : A € R}. The
continuous function f(\) = nT Aq; + An? A(qa — q1) defined on R satisfies that
f(0) < 0and f(1) > 0. Thus, there exists A\g € (0, 1) such that p = q1+Xo(gz2—a1)
is a contact point of the flow with L. The uniqueness follows from the statement
(c). O

In Propositions 4.2.5 and 4.2.6 we prove that the flow defined by a planar
linear system is transversal to any non-invariant straight line in the phase plane,
except in a contact point p, in case that it exists. In this case the contact point
splits the straight line into two half-lines such that the flow has opposite sense in
each of them.

Let L be a straight line not passing through the origin. Then L splits the
phase plane into two half-planes Sy and S, where Sj is the one containing the
origin. Let v(p) be the orbit through the contact point p. In the next result we
prove that in a neighbourhood of p the orbit v(p) is contained in one of the half-
planes SoUL or SUL. In Proposition 4.2.10 we prove that, under some restrictions,
this behaviour is not only local, but also global.
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Proposition 4.2.7. Consider a linear system x = Ax with A € GL(R?). Let L be a
straight line in the phase plane not passing through the origin, p a contact point
of the flow with L, and x(s) the solution of the system such that x(0) = p. Define
f(s) =nT¥(x(s)), s € R.

(a) If det(A) > 0, then there exists € > 0 such that {x(s): s € (—e,e)} C SyUL
and f(s) is strictly decreasing in (—¢,¢).

(b) If det(A) < 0, then there exists € > 0 such that {x(s):s € (—e,e)} CSUL
and f(s) is strictly increasing in (—e,€).

Proof. Since any rotation transforms L into a straight line L* not passing through
the origin and Sy into the connected component of R? \ L* containing the origin,
we can assume without loss of generality that L = {z3 = b} with b > 0. Hence
p = (p1,b)" and p = (p1,0)” with p; # 0, see Figure 4.2.

By the Inverse Function Theorem, there exist a neighbourhood I of p; and
a differentiable function 7 : I — (—4,d) such that 7(z1(s)) = s, where x(s) =
(71(s), 22(s))T and x(0) = p. To simplify the notation, we define x5 : I — R by
xo(x1) = wo(7(21)). It is clear that x5 is a differentiable function and {x(s) : s €
(=0,0)} = {(z1,22(x1)) : @1 € I}. Hence, x(s) is locally contained either in Sy
or in S if and only if xo(x1) has a local maximum or minimum at z; = p;, see
Figure 4.2. We compute the sign of d2x2/dx%|m:pl in order to distinguish these
two situations.

X9 S
L={z2=5} p:(I:O)
P

So z9 (z1)

b1 T

Figure 4.2: Graph of the function zs(x1).

Let (a;j)1<i,j<2 be the coefficients of the matrix A. Then #1 = a1121 +a1272,
Ty = a21x1 + a2, and

dzo
Pz d (d@) I T det (A)
dx% o dry \ dzy N (allxl —|—a12x2)2 '
Therefore 2 )
dxj = 7, det(A). (4.4)
Y lgy=p,  (D1)

(a) Suppose that det(A) > 0. In this case x2(x1) has a local maximum at
x1 = p1. Hence, there exists £ > 0 such that {x(s) : s € (—e,e)} C So.
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Since the function f(s) defined in the proposition can be expressed as

T X(S) _ d?l dacg/dxl
%O T 1l /1 ¢ (dadar?

where n = (0,1)7 and % = @1 (1, dxo/dz1) in (—¢,¢), we have that

)

df Lt'l . d dacg/dxl d2$2 |£L’1|
= . I = 3
ds |1 “d

1 \/1 L (deyfde)?) 0 (1 + (dxg/dx1)2>2

From expression (4.4) it follows that df /ds < 0 in (—¢,¢).
Statement (b) follows by using similar arguments. O

Lemma 4.2.8. Consider a planar linear system x = Ax whose matriz A has only
real eigenvalues. Let L and v be respectively a straight line in the phase plane
passing through the origin and an orbit of the system. If v intersects L at more
than one point, then v C L and L is invariant under the flow.

Proof. Suppose that det(A) = 0. In this case the orbits of the linear system are
either singular points or they are contained in straight lines, see Subsection 2.5.3,
and the lemma is obvious.

Suppose now that det(A) # 0. Since linear transformations map straight lines
into straight lines, we can assume without loss of generality that A is given in its
real Jordan normal form. Therefore, A is either

. A1 O . . Al .
>
(1) < 0 A ) with Ay > A\g, or (ii) ( 0\ ) with A € R.

Suppose that p and q are two points in L N ~. Since p,q € L, then q = rp.
Moreover, since p,q € 7, then q = e**0p with sg > 0. Therefore,

(r1d —e?*)p =o0. (4.5)

Suppose that A is given by expression (i). Then by (4.5), either p; = 0,
pa =0, or \; = A2, where p = (p1,p2)”. In any case we obtain that v C L.

Suppose that A is given by expression (ii). Then by (4.5), p2 = 0 and therefore
v is also contained in L. O

Using the map ¥ defined in expression (4.3) in the next result we study the
set of directions of a linear vector field restricted to an orbit.

Lemma 4.2.9. Consider a linear system x = Ax with A € GL(R?) and let v be an
orbit.

(a) If all the eigenvalues of the matriz A are real and ~y is not contained in a
straight line, then U], is monotone and U(v) is contained in an open semi-
circle.



128 Chapter 4. Return maps

(b) If all the eigenvalues of the matriz A have real part equal to zero and the
orbit v is not a singular point, then ¥(vy) = St.

Proof. (a) Let p and q be two points in 7. Since A is an invertible matrix, if
U(p) = ¥(q), then p = A\q, where A = || Ap||/||Aq||. Therefore, v intersects
a straight line L which passes through the origin in two different points. From
Lemma 4.2.8 it follows that v C L, which contradicts our assumptions. Therefore,
the map ¥|, is injective.

Since ¥(—p) = —¥(p), the same argument that we used before can be ap-
plied to show that, if U(p) € ¥(y), then —¥(p) & U(v). Therefore, U(y) is
contained in an open semi-circle.

(b) The proof follows straightforward by the representation v = {e*4p :
s € R}, where ¢4 is the composition of a rotation of angle 3s and a homothetic
transformation. |

Proposition 4.2.10. Consider a linear system % = Ax with A € GL(R?) and such
that all the eigenvalues of A are real. Let L be a straight line in the plane which
does not pass through the origin, p a contact point of the flow with L, and ~(p)
the orbit through p.

(a) If det(A) >0, then v C Sp U L.
(b) If det(A) <0, thenyC SUL.

Proof. (a) Let x(s) be the solution of the system such that x(0) = p. Since
det(A) > 0 by Proposition 4.2.7(a), there exists € > 0 such that {x(s) : s €
(—€,e)} C Sp UL and the function f(s) = nTW¥(x(s)) is continuous and strictly
decreasing in (—¢,¢e).

Suppose that there exists s; > 0 such that x(s;) € L9, i.e., f(s1) > 0. Since
f(0) =0 and f is decreasing in a neighbourhood of s = 0, there exists s* € (0, s1)
such that f(s*) = 0. This implies that ¥(x(0)) = +¥(x(s*)), in contradiction
with Lemma 4.2.9(a). Similar arguments can be applied if we suppose that there
exists s; < 0 such that x(s1) € L. Therefore, v C So U L.

Statement (b) follows by using similar arguments. O

4.3 Poincaré maps of homogeneous linear systems
Consider the planar homogeneous linear system
% = Ax (4.6)

and let Ly and L_ be two different straight lines in the phase plane which are
symmetric with respect to the origin. Note that then L, and L_ do not pass
through the origin. Moreover, L1 and L_ split the phase plane into three regions.
We denote by Sy the open strip containing the origin, and by S; and S_ the
half-planes bounded by L and L_, respectively.
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Using the expression of the flow of the linear system (4.6) and arguments
similar to those employed in Subsection 4.1, we can define on L and on L_ the
following subsets:

Domyy :={q € L : Isq > 0 such that e’alq € L, and either
e*tqC Sy or e*q C Sy Vs € (0,54)} UCPy,
Dom;_ := {q € Ly : 354 > 0 such that e*aq € L_, and
e*q C Sy Vs € (0,54) 1, (4.7)
Dom__ :={q € L_ : 3sq > 0 such that e®adq e L_, and either
e*AqC S_or e*tq C Sy Vs € (0,54)} UCP_,
Dom_, := {q € L_ : 354 > 0 such that e*aq € L, and
e*q C Sy Vs € (0,54)},

where CPy and C'P_ are empty sets or consist of the contact points of the flow
with the straight lines L or L_, respectively.

If for some j,k € {+,—} we have that Dom;; # @, then we define the
Poincaré map 111, of the homogeneous linear system (4.6) associated to the straight

lines L; and Ly as Iy, : Domj, — Ly, Ijx(q) = e®a’q.

Remark 4.3.1. We remark that the Poincaré maps H% defined in Subsection 4.1
are the same as the corresponding one defined above. Thus, in order to study the
maps H% it is sufficient to study the maps IL;;.

In Proposition 4.3.3 we present some results on the domain of the Poincaré
maps. Necessary and sufficient conditions for the existence of these maps are given
in Proposition 4.3.4. But first we prove a technical lemma.

Lemma 4.3.2. Consider a planar linear system X = Ax with A not the zero matriz.
Let Ly and L_ be two symmetric straight lines in the plane and let Domj;, be the
sets defined in (4.7). If for some j,k € {+,—} the set Dom;, # &, then there
exists exactly one contact point p4 of the flow with L. In this case p— = —py
is the unique contact point of the flow with L_.

Proof. Suppose that there exists a point ¢; in Dom, ;. (The other cases follow
in a similar way.) By definition, there exist sq, > 0 and q2 € L4 such that
qo = e’uqy;ie., qz = I (q1). Moreover, either e54q; C S, or e4q; C Sy for
every s € (0, sq, ). Therefore, the flow at the points q; and gz has opposite sense.
Thus Li # & and Lg # . The lemma follows from Propositions 4.2.5(a.3) or
4.2.6(e), depending on whether det(A) # 0 or det(A) = 0. O

Proposition 4.3.3. Consider a planar linear system X = Ax with A not the zero
matriz. Let Ly and L_ be two symmetric straight lines in the plane and let Domjy,
be the sets defined in (4.7)) Suppose that Domjy, # @ for every j, k € {+,—}.
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(a) If det(A) > 0, then

Il ; :Domyy C LY — L,
I, :Domy_ C LY — L2,
__:Dom__ c LY — LI,

M4 :Dom_y C LL — L2.

(b) If det(A) = 0, then Domy; = {p4+}, Dom__ = {p_}, ll1+(p+) = P+,
II__(p-) =p-, and

I, :Domy_ C L, — L°,

M, :Dom_, Cc LT — Lg.

(c) If det(A) <0, then

I} : Domyy C LY — LY,
I, :Domy_ C L1 — L9,
I__:Dom__cLl — L°,

I, :Dom_y C L — LY.

Proof. (a) Since Dom; # @ and Dom__ # &, there exist a contact point p
of the flow with the straight line L, and a contact point p_ of the flow with
the straight line L_, see Lemma 4.3.2. These points split L, and L_ into the
respective half-lines Li, Lg, L' and L9, see Proposition 4.2.5.

Let x(s) be the solution of the system such that x(0) = p4. In Proposition
4.2.7(a) we proved that there exists £ > 0 such that x(s) C SoU Ly if s € (—¢,¢).
Thanks to the continuous dependence of the solutions of a differential equation on
the initial conditions, we conclude that if q; € Dom,; and q2 = II;+4(q1), then
the flow at q; has outward sense and the flow at qs has inward sense, see Figure
4.3(a). Therefore q; € LY and gy € L1

Take now a point q3 in Dom; _ and let q4 = II;_(q3). By the definition of
the set Dom, _, the orbit through qs is contained during the flight time in Sy.
Therefore, q; € Li and gz € L, see Figure 4.3(a).

Using the symmetry of the linear vector field with respect to the origin, we
obtain the result about the Poincaré maps I1__ and IT_.

(b) Let p4 be the unique contact point of the flow with L, , see Lemma
4.3.2. By Proposition 4.2.6(b), p+ is a singular point. Thus, py € Domy and
IT, ; (p+) = p+. Similarly, there exists a unique contact point p_ with the straight
line L_ which is a singular point and II__(p_) = p_

Since det(A4) = 0, the flow evolves in parallel straight lines. Suppose that
Ly is not invariant under the flow. Then every orbit intersects Ly in at most
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one point. Therefore, Dom; = {py} and Dom__ = {p_}. Similar arguments to
those used in the proof of statement (a) show that Iy :Domy_ C LI — L9
and IT_, :Dom_, C LT — Lg.

Suppose now that L, is an invariant straight line. Then clearly Dom, _ and
Dom_ are empty sets, which contradicts our assumptions.

Statement (c) follows by using similar arguments to those used in the proof
of statement (a). O

Figure 4.3: Domain of the Poincaré maps when det(A4) > 0 (a) and (b); when
det(A) < 0 (c); and when det(A) =0 (d).

In the following result we present necessary and sufficient conditions for the
existence of the Poincaré maps ILj;, with j, k € {+,—}.

Proposition 4.3.4. Consider a planar linear system X = Ax with non-zero matriz
A. Let Ly and L_ be two symmetric straight lines in the plane. The Poincaré
maps associated to Ly and L_ are defined if and only if the flow of the system
has a unique contact point with L .
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Proof. Suppose that the Poincaré maps are defined. By definition, this implies
that Domj;, are not empty. Therefore, the flow has a unique contact point p.
with Ly and a unique contact point p_ with L_, see Lemma 4.3.2.

Conversely, suppose now that the flow has a unique contact point p; with
Ly. Then p; lies in Domy and the Poincaré map Il is defined at it and
satisfies that I, (p4+) = p+. Moreover, by the symmetry of the vector field with
respect to the origin, p— = —p. is a contact point of the flow with L_. Therefore,
p- €Dom__ and II__(p_) =p-_.

It remains to prove that I, _ and II_4 are also defined. We have divided the
proof according to the sign of d = det(A).

Suppose that d > 0. The contact points p4 and p_ split the straight lines
Ly and L_ into the half-lines Li, Lg, LL and LY respectively. Let v be the
orbit through p; and suppose that the eigenvalues of A have non-zero imaginary
part. Since v cannot be contained in Sy, where Sy is the connected component of
R2\ L containing the origin, we conclude that either y*NLY # @or vy NLL +# @.
Thanks to the continuous dependence of the solutions of a differential equation on
the initial conditions, II; _ and II_; are defined. Suppose now that the eigenvalues
of A are real. By Proposition 4.2.10, it follows that v C Sy U L. Consider now
the following two cases: (i) yNL_ # @ and (ii) yN L_ = @.

(i) In this case either v intersects L9 or v~ intersects L. . Suppose that v N
LO +# @. The continuous dependence of the solutions of a differential equation on
the initial conditions implies that the Poincaré map Il _ is defined. Now suppose
that y* N LY # @. In a similar way we obtain that II_ is defined.

(ii) Since v C So U Ly and yN L_ = &, the orbit ~ lies in the strip bounded
by Ly and L_. Moreover, since the system is linear and the eigenvalues of A are
real numbers, either v or ¥~ is not bounded. Suppose that " is not bounded.
Let x(s) be the solution of the system such that x(0) = p. Then }IB U(x(s)) =

S o0

U(py) = ¥(x(0)), which contradicts Lemma 4.2.9. Therefore ~ intersects L_. As
we have seen in (i), this implies that I, _ and TI_; are defined.

Suppose that d < 0, i.e., the origin is a saddle point. Since p, is a contact
point of the flow with L, we can write Ly = {p+ + AP+ : A € R}. Suppose that
L is parallel to any separatrix of the saddle. Thus, py is an eigenvector of A. Let
A1 # 0 be the corresponding eigenvalue. Set q = p4 — )\flp+ € L. Then Aq=0
which implies that g = 0. Consequently, the straight line L passes through the
origin, which contradicts our assumptions. Therefore, L and L_ intersect both
separatrices of the origin. By the continuous dependence of the solutions of a
differential equation on the initial conditions, it follows that II,_ and II_ are
defined, see Figure 4.3(c).

Suppose now that d = 0. Since p4 is the unique contact point of the flow
with the straight line Ly, we have that Ly Nker(A) = {p+} and the orbits are

contained in straight lines transversal to Ly and L_. It is easy to conclude that
IT,_ and IT_ are well defined, see Figure 4.3(d). ]
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4.3.1 Poincaré maps 7,

Suppose that the Poincaré maps IL;; of the homogeneous linear system (4.6) asso-
ciated to the symmetric straight lines L and L_ are defined. Hence, there exists
a unique contact point p of the flow with L, see Proposition 4.3.4. Let n be the
unit vector orthogonal to L, oriented in the opposite sense with respect to the
origin, i.e., n”Tp > 0. Then Ly = {p+Av:AXeR} and L_ = {—p+ Av: A € R},
where v = p or v = n* depending on whether det(A) # 0 or det(A) = 0.

If det(A) > 0, then by Proposition 4.2.5(a.2),

Li ={p+ap:a>0}, LY={p—ap:a>0},

4.8
L' ={-p—ap:a>0}, L= {-ptap:a>0}, (4.8)

and if det(A) < 0, then
Lt ={p—ap:a>0}, L2={p+ap:a>0}, W)

LI_:{—p—Fa[')azO}, Lg:{—p—apazo}
Suppose now that det(A) = 0. If det(An+,nt) < 0, then by Proposition 4.2.6(d),

Li:{p+anL:a20}, ng{p—anL:aZO},

L' ={-p—ant:a>0}, L2={-p+ant:a>0}, (4.10)
and if det(An*,n") > 0, then

b= —antiaz ¢ = Lia>

Li={p-an':a>0}, LY={p+an’:a=>0}, (4.11)

L' ={-p+ant:a>0}, L2={-p—ant:a>0}.

Using this parametrization of L, and L_ we can associate to any point q
on L; and on L_ a unique value a > 0, called the coordinate of q. The following
statements are obvious:

(i) The unique points on L; and on L_ with coordinate equal to 0 are the
contact points p and —p;

(ii) two symmetric points in Ly and in L_ have equal coordinates.

Take q; € L; and q2 € Ly such that qo = ILjx(q1), where j, k € {+,—}.
Let a; and as be the coordinates of q; and qq, respectively. The Poincaré map
7k is defined by as = mjx(a1). To know the qualitative behaviour of the Poincaré
map m;, with j.k € {4, —}, is equivalent to know the qualitative behaviour of the
Poincaré map 1I,;. The following results present some important properties of the
Poincaré maps m;y.

Lemma 4.3.5. Consider a planar linear system x = Ax with non-zero matriz A.
Let Ly and L_ be two symmetric straight lines in the plane. Suppose that the
Poincaré maps m;, with j, k € {+,—} are defined. Then:



134 Chapter 4. Return maps

(a) T4+ and T—_ coincide.
(b) 74— and m_4 coincide.

(¢) The Poincaré maps T}y, associated to the flow of the linear system x = —Ax

and the straight lines Ly and L_ are defined, and they satisfy 75, = 7Tj7€1.

d) mir are analytic functions. Moreover, the inverse of these functions are also
J 4
analytic functions.

Proof. Statements (a) and (b) follow immediately by using the symmetry of the
vector field with respect to the origin and by noting that the coordinates of two
symmetric points on L4 and L_ are equal.

(c) The change of time variable 7 = —s transforms the linear system %X = Ax
into the linear system X = —Ax. Therefore, the orbits of the two systems coincide
but have opposite orientation. We conclude that the Poincaré maps ﬂ;-‘k associated

to the system X = — Ax are defined and they coincide with the Poincaré maps Tl'j_kl.

(d) The statement follows by noting that the flight time s is an analytic
function of the initial condition x and that the flow ®(s,x) of the linear system is
also an analytic function of its arguments s and x, see Subsection 2.7.2 for more
details. ]

In order to study the qualitative behaviour of all the Poincaré maps 7
associated to a planar linear system it is enough to consider the maps 74 and
m4_, see Lemma 4.3.5(a) and (b). Moreover, we can restrict ourselves to the case
when trace(A) > 0. The case when trace(A) < 0 then follows by taking 77} and
7,1, see Lemma 4.3.5(c).

Another important property of the Poincaré maps m; is that they are in-
variant by linear changes of coordinates. Hence, we can consider that the matrix
of the linear system is expressed in the most convenient way, for instance in its
real Jordan form. A generalization of this fact can be found in [45]. Before proving
this, we show that the half-lines Li, Lg, LT and L° are invariant under linear
changes of coordinates.

Given a matrix M € GL(R?) and a subset L in the plane, we denote by ML
the set {Mq:qe€ L}.

Lemma 4.3.6. Let A be a non-zero matriz, M € GL(R?) and L a straight line in
the plane. If p is a contact point of the flow of the planar system x = Ax with
L, then p* = Mp is a contact point of the flow of the system x = A*x with the
straight line L* = ML, where A* = MAM™'. Moreover, p* = Mp, L*I = ML’
and L*© = MLO.

Proof. Since the linear change of coordinates y = Mx transforms the system
%X = Ax into the system y = A*y, it is clear that p* = Mp is a contact point
of the flow of the new system with the straight line L*. Moreover, p* = A*p* =
MAp = Mp. The contact points p and p* divide the straight lines L and L* in
two half-lines L', L and L*!, L*©, respectively. In order to show that L*! = ML’
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and L*¢ = ML*® we carry out the proof depending on the invertibility of the
matrix A.

Suppose that d = det(A) > 0 (the case d < 0 follows in a similar way).
Hence det(A*) > 0. From Proposition 4.2.5(a.2) we have LI = {p + Ap : A > 0},
LO ={p+Ap:A<0}, L' = {p* + Ap* : A >0} and L*® = {p* + A\p* : A < 0}.
Therefore, L*! = M L' and L*° = ML°.

Suppose now that d = 0. Let n and n* be the unit orthogonal vectors to L
and L*, respectively, which are oriented in the direction opposite to the origin.
Since

T (Mnl)L = —det (Mp, MnL) = —det (M) p”n,

we have that

Mnt)*
n* = —sign (det (M)) (||MnnJ-)|| . n*t = sign (det (M

) Mnt
|[Mnt|]

and det (M)
t
det (A*n*t n*t) = ¢ det (An*,nt) .
( )= fooal) de (an' )
Suppose that det(An*,n*) > 0 (the case det(An*,nt) < 0 follows similarly).
Then L' = {p+Ant : A < 0} and L° = {p+ An' : X > 0}, see Proposition
4.2.6(d). If det(M) > 0, then det(A*n*t, n*L) > 0. From Proposition 4.2.6(d) we
obtain that L*! = {p*+An*! : A <0} and L*© = {p*+An*! : A > 0}. Therefore,
L = ML and L*© = MLP. If det(M) < 0, then det(A*n*+ n*!t) < 0 and
L = {p* + An*+ : A > 0} and L*© = {p* + An*! : X\ < 0}. In this case we also
conclude that L*f = ML! and L*© = MLO. |

Proposition 4.3.7. Consider a linear system X = Ax with A € GL(R?) and let L
and L_ be two symmetric straight lines in the plane. Suppose that the Poincaré
maps T associated to Ly and L_ are defined. If M € GL(R?), then the Poincaré
maps are invariant under the change of coordinates y = Mx.

Proof. Since the Poincaré maps ;. are defined, there exists a contact point p
of the flow with L., see Proposition 4.3.4. Thus p* = Mp is the contact point
of the flow of the system %X = A*x with the straight line L} = ML, where
A* = MAM™', see Lemma 4.3.6. By Proposition 4.3.4, the Poincaré maps i,
associated to the flow of the system %X = A*x and the straight lines L% and
L* = ML_ are defined. We will prove that 77}, (a) = 74 ¢(a) for k € {+,—}.
Consider a value a in the domain of the map 7. Hence, there exist a point
qi in LY and a point qo in L such that q1 = p — ap, g2 = p + 744 (a) p and
q2 = IL4 (q1). Suppose that det(A) > 0 (the case when det(A) < 0 follows in
a similar way). Then L*O MLO and L%’ = ML’ see Lemma 4.3.6. Therefore
q1 = Mq, = p* —aMp € L+ , @5 = Mgy = p* + 7 (a)Mp € L3 and
=1I"_, (a7 ). Noting that p* = A*p* = Mp, it follows that 7% | (a) = 741 (a).
Consider now that a belongs to the domain of the map my_. Using similar
arguments it can be proved that 7% _(a) = 74— (a). O
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Next we prove that when det(A) = 0 the Poincaré map 4 _ is not invariant
under linear changes of coordinates. In this case, however, the new Poincaré map
7} _ is just a scaled version of 7 _.

Proposition 4.3.8. Consider a planar linear system x = Ax with non-zero matriz
A such that det(A) = 0. Let Ly and L_ be two symmetric straight lines in the
plane. Suppose that the Poincaré map m4_ associated to Ly and L_ is defined.
If M € GL(R?), then the Poincaré map 7 _ associated to the flow of the system
% = A*x, where A* = MAM ™', and the straight lines ML and M L_ are defined.
Moreover there exists K > 0 such that 7% _(Ka) = K7, _(a).

Proof. Since my_ is defined, there exists a contact point p of the flow with L.
Then p* = Mp is a contact point of the flow of the system %X = A*x with L7 =
ML, . We conclude that the Poincaré map 77} _ is well defined, see Proposition
4.3.4.

Suppose that det(An*,n') > 0 (similar arguments can be applied in the
case det(Ant,nt) < 0). Take a > 0 belonging to the domain of 7 . There exist
qi € Li and q2 € LY such that q; = p —an* and qo = —p — 7 _(a)n". Since
Lf = MLI+ and L*© = M L9, the points qf = Mq; and qj = Mqy satisfy

q} = p* — sign (det (M)) a*n**,
q; = —p* —sign (det (M)) % _ (a*)n**.
We conclude that
sign (det (M)) a*n*t = aMn™,
sign (det (M)) 7% _ (a*)n** = 7 _ (a) Mn™*.

Since

Mn*t
|| Mok’

setting K = [[Mn*|| > 0 it follows that a* = Ka and 7}_(a*) = K7ny_(a).
Consequently, 7% _(Ka) = K 74 _(a), as claimed. O

n*t = sign (det (M))

As we have proved in Propositions 4.3.7 and 4.3.8, in order to study the
qualitative behaviour of the Poincaré maps m;, we can assume that the matrix
of the linear system is given in real Jordan normal form. Looking at the implicit
expressions for the Poincaré maps in Proposition 4.3.11, it is easy to understand
the simplification in computations that this argument introduces.

Corollary 4.3.9. Consider a planar linear system X = Ax such that the trace t
and the determinant d of the matriz A satisfy t> — 4d # 0. Let Ly and L_ be
two symmetric straight lines in the plane and suppose that the Poincaré maps ;i
associated to Ly and L_ are defined. Then m; are analytic functions with respect
to the parameters t and d.
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Proof. Without loss of generality we can assume that the matrix A is in its real
Jordan normal form, see Propositions 4.3.7 and 4.3.8. Since t2 — 4d # 0, the
coefficients of the Jordan matrix A are analytic functions with respect to the
parameters ¢ and d. The corollary follows from the differentiable dependence of
the solutions of a linear differential system on parameters. |

4.3.2 Existence of the Poincaré maps
In the next result we characterize the existence of the Poincaré maps 7.

Theorem 4.3.10. Consider a planar linear system x = Ax with non-zero matriz
A. Let Ly and L_ be two symmetric straight lines in the plane. The following
statements are equivalent.

(a) The Poincaré maps m;, associated to Ly and L_ are defined.
(b) There exists a unique contact point of the flow of the linear system with L .

(¢) If v is a vector parallel to the straight line Ly, then v and Av are linearly
independent, i.e., det(Av,v) # 0.

Proof. The equivalence between statements (a) and (b) is exactly Proposition
4.3.4. Then it remains to prove that statements (b) and (c¢) are equivalent.

Let v be a vector parallel to Ly and q a point in Ly. The straight lines
Ly and L_ can be expressed as Ly = {q+Av: A € R} and L_ = {—q+ Av :
A € R}. We divide the proof into two cases, depending on whether det(A) = 0 or
det(A) # 0.

Suppose that det(A) # 0. By Lemma 4.2.3, the straight line L = {\A7'v :
A € R} is the isocline defined by v. There exists a unique contact point of the flow
with L if and only if L, and L intersect at a unique point, i.e., det(A~ v, v) # 0
or, equivalently, det(Av,v) # 0.

Suppose now that det(A) = 0. Since A is not the zero matrix, if there exists a
unique contact point of the flow with Ly, then L, is a non-invariant straight line.
Suppose that det(Av,v) = 0. This implies that Av = av for some a € R, and
so L, is an invariant straight line, which contradicts our assumption. Therefore,
det(Av,v) # 0. Conversely, if det(Av,v) # 0, then the straight lines L, and
ker(A) are not parallel. Therefore Ly and ker(A) intersect at a unique point p,
which is a singular point. Moreover, Ly = {p + Av : A € R} is a non-invariant
straight line. By Proposition 4.2.6(c), p is the unique contact point of the flow
with L. O

4.3.3 Implicit equations of the Poincaré maps 7,

We now present some implicit equations for 7, depending on the sign of the
determinant of the matrix A.
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Proposition 4.3.11. Consider a planar linear system x = Ax with non-zero matriz
A. Let Ly and L_ be two symmetric straight lines in the plane and let p be a
contact point of the flow with L .

(a) If det(A) > 0, then there exist two analytic functions, sii+(a) > 0 and
sy—(a) > 0, such that

(Id+ 74 (a) A)p = e+ @A (Id — aA) p,
(=Id+ 7 (a) A) p = e+ DA (Id + aA) p.

(b) If det(A) < 0, then there exist two analytic functions, sy4+(a) > 0 and
s+—(a) > 0, such that

(Id+ 744 (a) A) p = e+ @A (Id — aA) p,
(=Id — 7 (a) A) p = e+~ DA (Id — aA) p.

(¢) Suppose that det(A) = 0. There exists an analytic function s4_(a) > 0 such
that

(c.1) if det(Ant nt) >0, then —p — 74 (a)nt = e+~ (DA(p — ant),
(c.2) if det(Ant,nt) <0, then —p + 74— (a)nt = 5+ (D4(p + ant).

Proof. (a) Since det(A) > 0 it follows that Dom C LY and I} 4 (Domy4) C LZ,
see Proposition 4.3.3(a). Take q; € LY and g2 € L} such that qo = 111 (q1), and
let a be the coordinate of q;. Then 744 (a) is the coordinate of qo, i.e., 1 = p—ap
and qz = p + 7144 (a)p, see (4.8).

On the other hand, since qa = I (q1), there exists an analytic function
Sq. (the flight time) such that qz = e*a1“q;. Therefore, setting s; 4 (a) = sq, we
obtain that p + 74 ¢ (a)p = e*++(@4(p — ap). The statement follows by using the
fact that p = Ap.

The remaining statements can be proved in a similar way. O

4.4 Qualitative behaviour of the maps 7j;

Suppose that the Poincaré maps 7, and w4 _ associated to the flow of a planar
homogeneous linear system x = Ax and two symmetric straight lines in the plane
Ly and L_ are defined. In this section we study the qualitative behaviour of the
maps 744 and 74 _ depending on the values of t = trace(A) and d = det(A).

Since w44 and my_ are invariant under linear changes of coordinates when
d # 0, see Proposition 4.3.7, and their qualitative behaviour does not change when
d = 0, see Proposition 4.3.8, we can consider without loss of generality that A is in
real Jordan normal form. Accordingly, this section is divided in subsections, each
devoted to one of the real Jordan normal forms.
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Moreover, we need to study only the behaviour of 744 and 7 when ¢ > 0:
the case t < 0 can be obtained from the case ¢ > 0 by Lemma 4.3.5(c). Accordingly,
in each of the following subsections we summarize the qualitative behaviour of 7
and 74 _ in two propositions and two corollaries. We deal first with the case ¢ > 0.

Throughout this section we will write f'(a) and f”(a) to denote the first and
the second derivative of a function f(a) with respect to a.

4.4.1 Diagonal node: d > 0 and t> — 4d > 0

It is known that in this case the matrix A has two real and distinct eigenvalues
A = (t+ V12 —4d)/2 and Ny = (t — /t2 — 4d)/2, and the real Jordan normal

form of A is
A O
0 X /-

Proposition 4.4.1. Consider A € GL(R?) such that d > 0, t > 0 and t* — 4d > 0.
Then the eigenvalues of A satisfy \1 > Ao > 0. Let w4 be the Poincaré map
defined by the flow of the linear system x = Ax and associated to two symmetric
straight lines in the plane, Ly and L_. Then the following holds:

(a) Tyt 1 [0,A71) = [0, +00), 744 (0) =0, lim T4 (a) = 00 and 711 (a) > a
a,/ Ay
in (0, A7 h).
(b) Ifa € (0,A\"), then 7', (a) > 1 and ii{‘%ﬂ;jL(a) =1.

(c) Ifa € (0,A\"), then 7' (a) > 0.
(d) The graph of w1 has a vertical asymptote at a = \; .
(e) mi4 is implicitly defined by the expression

t+\/t2 —ad

2+ 7y (a) (t— V2 —4d) \ =V 24w (a) (E+ V2 —4d)
2 —a(t — Vt2 — 4d) O 2—a(t+VE2—4d)

(f) The qualitative behaviour of the graph of w1 is shown in Figure 4.5(a).

Proof. By Proposition 4.3.11(a), the map 7 satisfies that

(Id+ 7,y (a) A)p = e+ DA (Id — aA) p,
where p =(p1,p2)7 is the contact point of the flow of the linear system with L,
a>0,b=m14(a) >0and s =s;4(a) >0.

Without loss of generality we can assume that the matrix A is in real Jordan
normal form. Thus the coordinate axes are invariant under the flow. Since p is
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the contact point and L, does not pass through the origin, p; # 0 and py # 0.
Therefore the map b = w11 (a) is determined by the system

T4+0A = (1 —aX) e, 1+bry = (1 —adg) e, (4.12)

and the inequalities @ > 0, b > 0 and s > 0.

(a) Note that s =0, a = 0 and b = 0 is a solution of system (4.12). Hence,
74+ (0) = 0. Furthermore, since we are interested in solutions with b > 0, it follows
that 1 —aX; >0 and 1 —aXy >0, ie., a < )\fl < )\gl. Therefore, the domain of
74 is contained in [0, A\]1).

Now we find the solutions of system (4.12) such that s > 0. Multiplying the
first equation by A2, the second one by A; and substracting the first from the
second, we obtain the following parametric equations of 74 :

A (1 —eMt) = Mg (1 —eMF)

" d(ene =) | (4.13)
b(s) = (A2 — )\l)ets SV SERNIS W ST .
- d(€>\25 _ e)qs) ’

where t = A\ + A2 and d = A \a. Since A1 > \g, functions a(s) and b(s) are defined
and differentiable in (0, +00). Moreover, a(s) > 0 in (0, +00), li\r}) b(s) = 0 and
lim a(s) = 0.
sN\0

Differentiating with respect to s in (4.12) and isolating da/ds and db/ds we
obtain

da )\1 - )\2 db )\1 - )\2 ets

= =a
ds eMs —el2s’ (g eMs — gh2s

Since a(s) > 0 in (0, +00), we have ¥'(s) > 0. Hence, b(s) > 0 and consequently

a’(s) > 0. Finally, from (4.13) it follows that ET a(s) = A\! and ET b(s) =
+00. We conclude that 7, : [0,A\] ) — [0, 4+00) and lim ) Ty (a) = +oo.
a,/ Ay

Note that in order to finish the proof of the statement (a) it remains to
verify that 74 (a) > a in [0, A ). This inequality will be shown in the proof of
the statement (b) below.

(d) The statement follows by noting that

. db . aets
lim = lim = +o0.
asatda g a0t b

(e) Isolating s in (4.12) we obtain

A2
<1+b)\1>*11+b)\2 (4.14)

1—&)\1 _1—(1)\2’
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which is an implicit expression of 744 (a). The expression of the statement (e)
is obtained by substituting A\; = (¢ + V2 —4d)/2 and Xy = (t — /12 — 4d)/2 in
(4.14)

(b) and (c) Differentiating expression (4.14) with respect to a and isolating
db/da we have that

dba 1+bt+bd
! = = . 4.1
et (@) da b 1l—at+a?d (4.15)

The qualitative behaviour of the parabolas 1+bt+b%d and 1—at+a?d is represented
in Figure 4.4. It is easy to conclude that 7/,  (a) > 0 in (0, A\]''). Moreover, from
(4.15) and (4.13) it follows that

. Coa(s) o A (T—eM) =g (1 -
Yy () = = I ) et — gedas 4 Agehis”
At At
A0 At
1+ to + da? 1 -tz + da?

Figure 4.4: Qualitative behaviour of 1 +tx +dz? and 1 — tx + dx? when d > 0,
t >0 and t? —4d > 0.

Hence, by applying I’'Hopital’s rule twice we have

. d(X2— A1)
/ _
o s (@ = o 0, o) - M A

On the other hand, differentiating with respect to a in (4.15) we obtain

ﬂ*(“):dci <32> _ (b—a)(b+a) db (416)

~ab? (1 —at + a2d) da’
Note that it remains to be proved that 7, (a) > a in (0, A\]'') because in this case
7'l (a) > 0, which will finish the proof.

Suppose that there exists a value ag in (0, A\;!) such that 7, (ag) = ag. The
function g(a) = 744 (a) —a is continuously defined in [0, ag] and analytic in (0, ag).
Moreover, g(0) = g(ag) = 0. Thus, there exists £ € (0,ap) such that ¢’(¢) = 0 or,
equivalently, 7/, | (£) = 1. The function

=1

17 ifa:()v
h(a)—{ﬂ%(a), if a € (0,¢],
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is continuous in [0, ¢], differentiable in (0,&) and satisfies that h(0) = h(§) = 1.

Hence, there exists a; € (0,§) such that h'(a;) = 0, equivalently, 7/ (a1) = 0.

By (4.16), this implies that 7y (a1) = a1, equivalently, g(a;) = 0. Using this

argument repeatedly we obtain a strictly decreasing sequence {an}:SO such that

g(ag) = 0 for any k > 0, which contradicts the fact that ¢ is a non-identically zero

analytic function. Then 7, (a) # a in (0, A\]!). Noting that gm ) Ty4(a) = +oo,
a,/ A

see statement (a), it follows that 74 (a) > a in (0, \['). O

Figure 4.5: Qualitative behaviour of the Poincaré map 7 for the parameters (a)
d>0,t>0andt?>—4d >0, (b) d>0,t <0 and t*> — 4d > 0.

Corollary 4.4.2. Consider A € GL(R?) such that d > 0, t < 0 and t> — 4d > 0.
Then the eigenvalues of A satisfy 0 > A1 > Xo. Let w4y be the Poincaré map
defined by the flow of the linear system X = Ax associated to two symmetric
straight lines in the plane, Ly and L_. Then:

(a) mq @ [0,400) = [0,[A2| 1), m4(0) = O, . mri(a) = [Xo| ™" and
iy (a) < ain (0, |A2|7h).

(b) Ifa € (0,400), then 0 < 7’ (a) <1 and ii{‘%ﬂ';+(a) =1.

(c) If a € (0,400), then 7/ (a) < 0.

(d) The graph of my+ has a horizontal asymptote at b= |\a| 1.

(e) w44 is implicitly defined by the expression

t+\/t2 —ad

24 7mq (a) (t— V2 —4d) \ VP-4 247 (a) (t+ V2 — 4d)
2 —a (t — V12 — 4d) C 2—a(t+ V2 —4d)

(f) The qualitative behaviour of the graph of w4+ is shown in Figure 4.5(b).

Proof. The proof follows straightforward by noting that the map 7 4 is the inverse
of the map described at Proposition 4.4.1, see Lemma 4.3.5(c). O
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Proposition 4.4.3. Consider A € GL(R?) such that d >0, t > 0 and t* — 4d > 0.
Then the eigenvalues of A satisfy A1 > Ao > 0. Let my_ be the Poincaré map
defined by the flow of the linear system x = Ax and associated to two symmetric
straight lines in the plane Ly and L_. Then:

(a) There exists a value b* > \; ' such that i _ : [0,4+00) — [b*, +00), 74 (0) =
b*, }1&1 wy_(a) = 400, and m4_(a) > a in [0, +00).

(b) If a € (0,400), then 0 < 7. _(a) <1 and il{‘% 7' _(a) =0.

(c) If a € [0,400), then 7!/ _(a) > 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of m_ when a
tends to +o00.

(e) m4— is implicitly defined by the expression

t+\/t2 —ad
T (a) (t— V2 —4d) =2\ VP 1 (a) (t+ V2 —4d) -2
a(t—Vt2 —4d) +2 a(t+Vt2—4d)+2

(f) The qualitative behaviour of the graph of w4 _ is shown in Figure 4.6(a).

Proof. Applying arguments similar to those in the proof of Proposition 4.4.1, we
obtain that b = w1 _(a) is determined by the system

—14bA\ = (1+a\)e™®, —14+bry = (14 ads) e, (4.17)

and the inequalities @ > 0, b > 0 and s > 0.

(a) and (d) Since a > 0, from (4.17) it follows that —1 + bA; > 0 and
~1+bXy > 0, ie, b > A" > A" Thus the image of 7, _ is contained in
(A1, +00).

Multiplying the first equation in (4.17) by Az, the second one by A; and
substracting the second equation from the first, we obtain the parametric equations
of my_:

Ao (1+€4%) = Ay (14 ¥9)

a (3) = d(@A25 _ 6>‘15) 9 (4 18)
b( ) . ()\2 — )\1)6ts + )\QSAQS — )\16>‘15 '
8) = d(€>\25 _ e)qs) :

The auxiliary function f(s) = Aa(1+e*1%) — Ay (1+4¢72°) satisfies that f/(s) =
d(eM® —e*2%) > 0, f(0) = 2(A2 — ;) < 0 and }in f(s) = +o0. Consequently,

there exists a unique value s* > 0 such that f(s*) = 0, equivalently, a(s*) = 0.
Hence, if s € (0, s*), then a(s) > 0 and b(s) > 0.
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Differentiating with respect to s in (4.17) and isolating da/ds and db/ds, we
obtain that
da € (1+aky) —eM* (1+ar) db (A — e’

ds eMs — ghos Cods T Y ehs _ehas
Since da/ds < 0 in (0, s*], li\I% a(s) = 400 and a(s*) = 0, the domain of definition
of my_(a) is [0, 400). Moreover, since db/ds < 0 in (0, s*] and li{‘% b(s) = 400, the

image of 7, _(a) is contained in [b*, +00) where b* = b(s*) > \; L.
Finally from expression (4.18) we have }1&1 my_(a)/a= h\i% b/a =1 and

()\2 — )\1) (6ts — 1) + Ao er2s _ ghis + A1 er2s _ ghis
b(s) —a(s)= d(e(AQs — eMis) ) ( ) > 0.

From this expression it follows that b(s) > a(s), i.e., m+—(a) > a. Moreover, by
applying I’Hopital’s rule twice we have ;i(m (b—a) = 2t/d. We conclude that the

+oo

straight line b = a + 2t/d is an asymptote of the graph of 7, _(a) when a tends to
+00.

(e) Isolating s in (4.17) we obtain an implicit expression of w4 _

bA S
1 — 1\ ™ 2 — 1
= . 4.19
<a)\1 + 1) aXo + 1 ( )

The statement follows by substituting the values of A; and A in (4.19).
(b) and (c) Differentiating with respect to a in expression (4.19) and isolating
db/da yields
db  a 1—0bt+b%d

/ = = 4.20
- (a) da b 1l+at+a2d ( )

where the parabolas 1 — bt 4+ b2d and 1 + at + a?d are shown in Figure 4.4. Since
a>0andb>\", then 7, _(a) >0 in [0, +00) and li\f‘m0 7' _(a) = 0.

From expression (4.20) we compute

(b—a)(b+a) db

1!
= O
- (@) ab? (1 + at + a?d) da -
which proves the proposition. O

Corollary 4.4.4. Consider A € GL(R?) such that d > 0, t < 0, and t* — 4d > 0.

Then the eigenvalues of A satisfy 0 > Ay > Xo. Let my_ be the Poincaré map

defined by the flow of the linear system x = Ax and associated to two symmetric

straight lines in the plane Ly and L_. Then:

(a) There exists a value a* > |A\1|™! such that 7i_ : [a*,+00) — [0,+00),
my—(a*) =0, }1&1 my—(a) = +oo, and 14_(a) < a in [a*,+00).
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Figure 4.6: Qualitative behaviour of the Poincaré map w4 _ for the parameters (a)
d>0,t>0,and t> —4d > 0, (b) d > 0, t < 0, and t? — 4d > 0.

(b) If a € (a*,+00), then 7’ _(a) > 1 and lim 7', _(a) = +o0.

a~a*
(¢) If a € (a*,4+0), then ©{_(a) < 0.
(d) The straight line b = a + 2t/d is an asymptote for the graph of m,_ when a
tends to +o00.
(e) m4— is implicitly defined by the expression of Proposition 4.4.3(e).
(f) The qualitative behaviour of the graph of w4 is shown in Figure 4.6(b).

Proof. The proof follows easily by using that my_ is the inverse map of the one
described in Proposition 4.4.3, see Lemma 4.3.5(c). O

4.4.2 Non-diagonal node: d > 0 and t*> — 4d = 0

When t? — 4d = 0, the matrix A has two real eigenvalues which are equal, A\; =
A2 = \. In this case there exist two different real Jordan normal forms for the
matrix A, one diagonal and the other non-diagonal. In the diagonal case it is easy
to check the non-existence of contact points of the flow with any straight line not
passing through the origin. This implies the non-existence of Poincaré maps, see
Theorem 4.3.10. Thus we only need to consider the non-diagonal case, that is,
Al . t
A—( 0 )\) Wlth)\—z.
Lemma 4.4.5. Consider the function ¢ : R? — R given by 11 (z,y) = 1+ e*¥(1 —

xy). The qualitative behaviour of the graph of ¥1(x,yo) is shown in Figure 4.7,
depending on whether yo > 0 (a) or yo < 0 (b).

Proof. Since 91 /0x|, .\ = —ayZe™o and 62¢1/8x2|($ o = —yo(1 + yo)e™°,
when yo > 0 the unique critical value of 11 (z,y0) is = 0 which is a maximum.
MOI’GOVGI', }l(m 1/’1(%90) = 17 ;1‘1}»1 7/)1@790) = =00, and 1/’1(0790) = 2. This

proves the lemma. The case yo < 0 follows by noting that ¥ (—x,y) = 1 (z, —y).
O
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Figure 4.7: Qualitative behaviour of ¢; (z,y0) = 1 + e*¥ (1 — 2yo) when yo > 0
(a) and when yo < 0 (b).

Proposition 4.4.6. Consider A € GL(R?) such that d > 0, t > 0, and t> — 4d =
0. Then the eigenvalues of A satisfy that Ay = Ao = \. Assume that A is not
diagonalizable and let w44 be the Poincaré map defined by the flow of the linear
system x = Ax and associated to two symmetric straight lines in the plane L,
and L_. Then:

(a) Ty 2 [0,A71) — [0, +00), m44(0) = 0, 21/317177++(a) = +o00, and T4 (a) >
a in (0,A71).
(b) Ifa € (0,A71), then /. (a) > 1 and ii\‘mow;Jr(a) =1.

(¢) If a € (0,A71), then 7/, (a) > 0.
(d) The graph of w4+ has a vertical asymptote at a = A\~ 1.

(e) mi4 is implicitly defined by the expression

2t (7r++(a)+a)
[ (a) +2 — e (t74q(a)+2)(2—at)
2—at

(f) The qualitative behaviour of the graph of w1 is shown in Figure 4.5(a).
Proof. By Proposition 4.3.11(a),

(Id+ 7y (a) A)p = e (Id — ad) p,

where p = (p1,p2)7 is the contact point of the flow with L, a > 0, 7, (a) > 0,
and s > 0.

Without loss of generality we assume that the matrix A is in real Jordan
normal form. Thus zo = 0 is a straight line invariant under the flow. Since p is
the contact point and L, does not pass through the origin, ps # 0. Therefore, the
map b = 744 (a) is implicitly defined by the system

14+bA=(1—-aNe*, b= (—a+s(l—a))e, (4.21)
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and the inequalities a > 0, b > 0 and s > 0.
(a) and (d) Arguments similar to those used in the proof of Proposition 4.4.1
show that the domain of definition of 7 4 is contained in [0, A\;*) and 7, (0) = 0.
We are now interested in the solutions of (4.21) such that s > 0. Multiplying
the second equation by A and substituting bX in the first one, we obtain the
following parametric expression of 74 :

—l4+e 4+ As —1—)As+tes
a(s) = \2s , b(s)= \2s . (4.22)

Note that both functions are positive and differentiable in (0, 400).
Differentiating in (4.21) with respect to s and isolating da/ds, we obtain

that da/ds = s~'b(s)e=** > 0. Moreover, since Em a(s) = A71, the domain of
s oo

definition of w4 (a) is [0, A71).

On the other hand, since lim b(s) = 400, we obtain lim 744 (a) = +oc.
5,/'400 a,/ A1

Therefore, the straight line a = A~! is an asymptote of the graph of 7, (a).

Finally, since b(s) —a(s) > 0 (note that the function f(s) = e** —e™** —2\s
satisfies that f(0) = 0 and f’(s) > 0 when s > 0), it follows that 744 (a) > a in
[0,A71).

(e) The statement follows by isolating s in the first equation of system (4.21)
and substituting it in the second one.

(b) and (c) Differentiating in (4.22) with respect to s we obtain that

da:wl(s,—)\)—2 db:wl(s,)\)—2

ds (hs)? ' ds Ds)? (4.23)
where 11 (s, \) = 1 + e**(1 — s)). Hence
driy _ dbfds _ Yi(s,A) =2
da da/ds 1 (s,—\) —2 ’
see Lemma 4.4.5. By applying 'Hopital’s rule,
As
Yim 4 (a) = limy 32%2 = lim 66—*5((11_—i—>\;s))_—11 =1L
Differentiating dr 4 /da with respect to a, it follows that
Eriy d [ Pi(s,N) -2\ 1 (b—a) 1
0 = (e ) T Wi -2
which proves that 7/ (a) > 0in (0, A71). O

Corollary 4.4.7. Consider A € GL(R?) such that d > 0, t < 0, and t* — 4d =
0. Then the eigenvalues of A satisfy A1 = Ao = XA < 0. Assume that A is not
diagonalizable and let w44 be the Poincaré map defined by the flow of the linear

system x = Ax and associated to two symmetric straight lines in the plane L,
and L_. Then:
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(a) myy 2 [0, +00) = [0,[A[71), 71 (0)=0, aglfoo Tt (a) =[N, and iy (a) <
a in (0, 400).
(b) If a € (0,400), then 0 < 7’ (a) <1 and ii{(r%)ﬂf‘_+(a) =1.

(¢) If a € (0,400), then ©/{_ (a) < 0 in (0,+00).

(d) The straight line b = |)\|_1 is a horizontal asymptote of the graph of miy
when a tends to +0o.

(e) my4 is implicitly defined by the expression of Proposition 4.4.6(e).
(f) The qualitative behaviour of the graph of w4+ is shown in Figure 4.5(b).

Proof. The proof follows directly by using that the Poincaré map 7 ; is the inverse
of the map described in Proposition 4.4.6. |

Proposition 4.4.8. Consider A € GL(R?) such that d > 0, t > 0, and t> — 4d =
0. Then the eigenvalues of A satisfy A1 = Ao = A > 0. Assume that A is not
diagonalizable and let my_ be the Poincaré map defined by the flow of the linear
system x = Ax and associated to two symmetric straight lines in the plane L,
and L_. Then:

(a) There exists a value b* > X\~1 such that 7, _ : [0, 4+00) — [b*, +00), 71 (0) =
b*, }1&1 74— (a) = 400, and 74_(a) > a in (0,400).

(b) If a € (0,400), then 0 < w', _(a) <1 and (11{(1% 7 _(a) =0.

(¢) If a € (0,+00), then w7/ _(a) > 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of m1_ when a
tends to +o0.

(e) m4— is implicitly defined by the expression

2t (74 _(a)ta
tﬂ'—i—— (a) -2 _ e(tw+(7(t)—2)(2+)ta) .
2+at

(f) The qualitative behaviour of the graph of w4 _ is shown in Figure 4.6(a).

Proof. Arguments similar to those used in the proof of Proposition 4.4.6 show that
b= my_(a) is implicitly determined by the system

I—bA=—(1+aN) e, —b=—(a+s(1+aN)e, (4.24)

and the inequalities a > 0, b > 0 and s > 0.

(a) Let s* > 0 be the zero of the function 1 (s, ) defined in Lemma 4.4.5(a),
and set b* = s*e**". It is easy to check that a = 0, b = b* and s = s* is a solution
of system (4.24), i.e., my_(0) = b* > A~ L.
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Solving (4.24) we obtain the parametric equations of w4 _:

T+e ™ — s 1+ As + et
a(s) = 2 and b(s) = \2 , (4.25)
where a(s) and b(s) are differentiable functions in (0, +00). Differentiating these
functions with respect to s it follows that
da _1/)1 (s,—\) b _1/)1 (s, \)

<0 and

= = 0
ds 252 ds 252 <%

see Lemma 4.4.5. From this we have that a(s) and b(s) are strictly decreasing
functions in (0, s*). Since li\n% a(s) = +oo, the domain of definition of 74_ is

[0, 400).

From (4.25) it follows that li\mo b(s) = 400, hence }1&1 74— (a) = 400 and
b(s) > a(s) in (0, s*). Therefore, 74 _(a) > a in [0, 4+00).
(d) From expression (4.25) we obtain

b 4
ii\I‘%aZI and li\r})(b—a):)\:2d,
which proves the statement.
Statement (e) follows easily by isolating s in (4.24).
(b) and (c) Since a’(s) < 0 and b'(s) < 0, we get 7/, _(a) > 0, li{% 7/ _(a) =0,

. d ( () X5 (b~ a)
1 sb—a
7 () = ( 1 (S, ) _ >0,
p-(a)= 4 U1 (s,—A)) da dag) (5,—N)°
which proves the statement. (|

Corollary 4.4.9. Consider A € GL(R?) such that d > 0, t < 0, and t* — 4d =
0. Then the eigenvalues of A satisfy A1 = A2 = A < 0. Assume that A is not
diagonalizable and let w4 _ be the Poincaré map defined by the flow of the linear
system x = Ax and associated to two symmetric straight lines in the plane L,
and L_. Then:

(a) There exists a value a* > |\~! such that 7 : [a*,+00) — [0,+00),

m+—(0) =0, a}i&loo m—(a) = 400 and m4_(a) < a in (a*, +00).

(b) If a € (a*,+00), then 7’ _(a) > 1 and lim 7', _(a) = +o0.

aNa*
(c) If a € (a*,+00), then 7] _(a) < 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of m_ when a
tends to +oo.

(e) my_ is implicitly defined by the expression of Proposition 4.4.8(e).
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(f) The qualitative behaviour of the graph of w4 is shown in Figure 4.6(b).

Proof. The proof follows easily by using that the Poincaré map my_ is the inverse
of the map described in the Proposition 4.4.8. |

4.4.3 Center and focus: t*> — 4d < 0

In this subsection we assume that the matrix A has two complex eigenvalues
A= a+if and A, where a = t/2 and 8 = v/4d — t2/2. In this case the real Jordan

normal form of A is
( p _aﬁ) with 3 # 0.

Hence, when t = 0, i.e., « = 0, the singular point at the origin is a center, otherwise
it is a focus.

Lemma 4.4.10. Consider the function vy : R? — R given by ¥o(z,y) = 1 —
e (cos(x) —ysin(x)). The qualitative behaviour of Vs (x,yo) in (—oo, 27| is shown
in Figure 4.8(a) when yo > 0 and (b) when yo < 0.

Proof. Since 0t2/0x|(, = (1+ y?)e™ sin(z), the critical values of vy are x) =
km, where k € Z. From 82w2/6x2|(m n = (1 + y?)e*¥(cos(x) + ysin(x)) and as-
suming that yo > 0 it follows that 1o has a local minimum at xy for k even or has
a local maximum at xj for k£ odd.

On the other hand, when p € Z and p < 0 we have ¥a(z2p,%0) = 1 —
e2P™o > (0, and consequently ¥(x,yo) > 0 when z < 0. Moreover, 12(0, o) = 0,
Po(m,yo) = 1+ ™0 > 0, and ¥2(2m,yp) = 1 — e?™¥° < 0. Therefore, there exists
a unique zero 7* in (0, 27) which proves the lemma for yo > 0. The case yo < 0

follows by using the fact that ¥o(—z,y) = a2 (x, —y). O
@l V2 (@ %0) Y2 (2, y0) 12
T .

7‘27[' —T 7I' % y —T m 2‘71'

(a) (b)

Figure 4.8: Qualitative behaviour of ¥ (2, yp) = 1 —e*¥° (cos (x) — yosin (z) ) ; (a)
when yo > 0, (b) when yo < 0.

Proposition 4.4.11. Consider A € GL(R?) such thatd > 0,t > 0, and t> —4d < 0.
Let w44 be the Poincaré map defined by the flow of the linear system x = Ax and
associated to two symmetric straight lines in the plane Ly and L_. Then:
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(a) If t >0, then mi4 : [0, +00) — [0, +00), 744 (0) = 0, }1&1 T4 (a) = 400,

and 44 (a) > a in (0,+00).

(a.1) Ifa € (0,+00), then 7. (a) > 1 and }Li{‘réﬂg+(a) =1.

(a.2) If a € (0,+00), then [, (a) > 0.

(a.3) Set v = t/\/4d —t2. The straight line b = e’ a — t(1 + e¥™)/d is an
asymptote of the graph of 71 when a tends to +oo.

(a.d) w44 is implicitly defined by the expression

(a+mq4(a))8
(7r++(a)—a)oc+17a7r++(a)d )

1+ t7T++ (a) =+ d7T++ (a)2 . 62'yarctan<
1 —ta + da? N

(a.5) The qualitative behaviour of the graph of the map w4 4 is shown in Figure
4.9(a).

(b) Ift =0, then 4y is the identity in [0, +00).

Proof. Let p =(p1,p2)” be the contact point of the low with L. By Proposition
4.3.11(a),
(Id+ 744 (a) A)p = e* (Id — aA) p,

where a > 0, 744 (a) > 0 and s > 0. Since L, does not pass through the origin,
we conclude that p; # 0 or py # 0, which implies that b = 714 (a) is defined by
the system

1+ba = e*{cos(Bs)+ alBsin(Bs) —acos(Bs)]|},
b3 = e {sin(Bs) — alasin(Bs) + Bcos(Bs)]},

and the inequalities a > 0, b > 0 and s > 0.
(a) Since s = 0, a = 0 and b = 0 is a solution of system (4.26), we have
744 (0) = 0. Furthermore, if a = ag, b = by and s = s is a solution of (4.26), then
so is the flight time between the points q; = p — ap and qz = p + bp, see Section
4.3. Thus Bsq is the angle between q; and g2, and consequently Bs € [0, 7).
Define 7 = s and v = a/ 3. Solving system (4.26) with 7 € (0, 7) we obtain
the following parametric equations of 7 :

_ g
~ dsin (1)

(4.26)

o () amdb(r) = PC ga(r—y),  (427)

a(7) ~ dsin(7)

where 19 is the function described in Lemma 4.4.10.
Since li}n a(T) = 400 and 1i}n b(T) = 400, the domain of definition of w1 4

is [0, 4+00) and gm T4+ (a) = +00. Moreover, when 7 € (0,7) we have
a +oo

B

b(r) —a(r) = dsin (1)

(77 —e 7" —2ysin (7)) > 0,
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and therefore 714 (a) > a in (0, +00).
(a.3) From expression (4.27) it follows that
lim T+ (a) _ — lim 6277 1/’2 (T7 _7) — 7T
a,/+oo a T/‘ﬂa(T) T wg (7’,’7)

Hence, applying 'Hopital’s rule we obtain

. . —t(1+e")
| —e"a=limb(r) — "™ =
a/l&l T4 (@) —e’™a TI/I(I}T (1) —e"™a(r) d ,

and therefore the straight line b = e?"a—¢(14¢e7™)/d is an asymptote of the graph
of T4+ (CL) .

(a.4) Adding the two equations squared in system (4.26) and dividing them

we obtain
1+th+db? = e (1 —ta—|—da2) ,

_ (a+0)3
tan () = (b—a)a+1—abd’

which proves the statement.
(a.1) and (a.2) Differentiating in (4.27) with respect to 7 it follows that

da 15}

db
= gy md =B ().

dr — dsin® (1)

Thus, 7/, | (a) = ¥2(7,7)/Y2(r,—v) > 0 and il{% 7', (a) = 1, see Lemma 4.4.10.

Moreover,
d (db\ 1  2d(1+~?)sin®(7)
" o o . . .
'l (a) = dr <da> jﬁ = Bun (1. _7)3 (sinh (y7) — ysin (7)) .

Since sinh(y7) > vysin(r) when 7 € (0,7), we conclude that 7'/, (a) > 0 in the
interval (0, 400).

(b) Since t = 0, we obtain that v = a/3 = 0. Applying expression (4.27), it
follows that 744 (a) = a in (0, +00). The statement follows by noting that a = 0,
b=0and s =0 is also a solution of (4.26). O

Corollary 4.4.12. Consider A € GL(R?) such that d > 0, t < 0, and t? — 4d < 0.
Let w44 be the Poincaré map defined by the flow of the linear system x = Ax and
associated to two symmetric straight lines in the plane Ly and L_. Then:

() T4y :[0,400) = [0,400), T44(0) =0, agrfoo Ti4(a) = +o0, and my 4 (a) <
a in (0,400).
(b) If a € (0,400), then 0 < w', | (a) <1 and i%ﬂ##@) =1.

(c) If a € (0,400), then /[ (a) < 0.
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b b=e""a——(1+¢")
T4 (a)

Figure 4.9: Qualitative behaviour of the Poincaré map 7, 1 ; (a) when t2 — 4d < 0
and ¢ > 0, (b) when > —4d < 0 and ¢ < 0.

(d) Sety = t/\/4d — t2. The straight line b = e?™a—t(1+e7™)/d is an asymptote
of the graph of T4 when a tends to +oc0.

(e) w4 is implicitly defined by the expression of Proposition 4.4.11(e).
(f) The qualitative behaviour of the graph of w4+ is shown in Figure 4.9(b).

Proof. The proof follows directly by using that 744 is the inverse of the map
described in Proposition 4.4.11. O

Proposition 4.4.13. Consider A € GL(R?) such thatd > 0,t >0, and t* —4d < 0.
Let w4 be the Poincaré map defined by the flow of the linear system x = Ax and
associated to two symmetric straight lines in the plane Ly and L_. Then:

(a) Ift > 0, then there exists a value b* > 0 such that m4_ : [0,400) — [b*, +00),
- (0) = b*, }1&1 my—(a) = +oo, and 7+_(a) > a in (0, +00).

(a.1) Ifa € (0,+00), then 0 < 7/, _(a) <1 and il\‘mo 7', _(a) = 0.

(a.2) If a € (0,+00), then 7| _(a) > 0.

(a.3) The straight line b= a+2t/d is an asymptote of the graph of w_ when
a tends to +o00.

(a.4) m4_ is implicitly defined by the expression

2 atmy _(a))B
1-— tﬂ'_;,__ (a) + d7T+_ (a) _ eQ‘Y arCtan((ﬂ+7(a()7a):71+21+7(a)d> .
1+ ta + da?

(a.5) The qualitative behaviour of the graph of the map w4_ is shown in
Figure 4.6(a).

(b) Ift =0, then the map w4 _ is the identity function in [0,+00).
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Proof. Arguments similar to those used in the proof of Proposition 4.4.11 imply
that 74 _ is determined by the system

—1+ba = e**{cos(Bs)+ alacos(Bs)— Bsin(Bs)]},
b8 = e {sin (Bs) +alasin (8s) + B cos (Bs)]}

and the inequalities ¢ > 0, b > 0 and s > 0.

(a) and (a.3) Following the proof of Proposition 4.4.11, we conclude that
7 = fs belongs to (0,7*], where 7* is the unique zero of the function 2 — ¢o(7,7)
in (0,7), see Lemma 4.4.10 and Figure 4.10.

Solving system (4.28) for 7 € (0,7*] and v = «/ we obtain the parametric
equations of w4 _:

_ fe
~ dsin(7)

(4.28)

e
a(r) @=ta(r) and br)= @ —a(no). (@429)
From these equations we conclude that li{‘% a(T) = +o0 and li{‘% b(7) = +oo which

implies that the domain of definition of 74 _(a) is [0, +00); aglfoo i (a) = +oo;

1
_ - i VT _ e ; *
b(r)—al(r) dsin () (2asin (1) + S (e e 7)) >0if r € (0,77,
that is, 74y_(a) > a in (0, +00); a;i‘l—ir-loo my_(a)/a = }i{%b(T)/a(T) = 1; and by

applying 'Hopital’s rule,

li _(a)—a=limb(r)— = 2t/d,
Jim i (@) —a =l b(r) —a(r) =2t/
which implies that b = a + 2t/d is an asymptote of the graph of 7, _(a).
Statement (a.4) follows by arguments similar to those used in the proof of
Proposition 4.4.11(e).
(a.1) and (a.2) Differentiating in (4.29) with respect to 7 it follows that

da P (1, —7) — 2 Y2 (7,7) — 2
= <0 and =
dr dsin® () B - P dsin? (1)

Tli/‘rITl*(wQ(7—77) - 2)/(1/}2(7—7 _’7> - 2) = 0 and
(2(1,v) — 2)/(¢2(1, —y) — 2) = 1. Moreover, taking into

< 0.

Hence, 7, _(a) > 0, lim 7/, _(a) =
a0
. p :
ST =
account that db/dr < 0 the image of w1 _ is contained in [b*,400), where b* =
b(7*).
Computing the second derivative of m_ with respect to a we have that

L d (Y 1 2dsin® (7) (149)
L (a)= dr (da) da " B(2—p(=1,7))°

Since 0 < 7 < 7% < 7, we conclude that 7'/ _(a) > 0.
Statement (b) follows in much the same way as Proposition 4.4.13(b). O

(sinh (y7) + ysin (7)) .
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2—¢2($a90) 2_¢2($ay0)
N/ m o N\,
—2r -7 27 —2m T 27

(a) (b)

Figure 4.10: Qualitative behaviour of the function 2 — 15 (x, 39) ; (a) when yo > 0,
(b) when yo < 0.

Corollary 4.4.14. Consider A € GL(R?) such that d > 0, t < 0, and t*> — 4d < 0.
Let w4 be the Poincaré map defined by the flow of the linear system x = Ax and
associated to two symmetric straight lines in the plane L and L_. Then:

(a) There exists a value a* > 0 such that 74— : [a*, +00) = [0, +00), T4 (a*) =

0, and ;i(m 74— (a) = +o00. Moreover, my_(a) < a in (a*,+00).
a '+oo

(b) If a € (0,400), then 7/, _(a) > 1 and lim 7’ _(a) = +oc.

aN\a*
(c) If a € (0,400), then 7'\ _(a) < 0.

(d) The straight line b = a + 2t/d is an asymptote of the graph of m1_ when a
tends to +o0.

(e) my— is implicitly defined by the expression in Proposition 4.4.13(a.4).
(f) The qualitative behaviour of the graph of w1 _ is shown in Figure 4.6(b).

Proof. The proof follows directly by using that the Poincaré map 7 _ is the inverse
of the map described in Proposition 4.4.13. (]

4.4.4 Saddle: d <0

In this subsection we consider the case where the matrix A has two real eigenvalues
with different sign; that is, Ay > 0 > Mg, where \; = (tf + V2 —4d)/2 and
Ay = (t — V/t2 — 4d)/2. The real Jordan normal form of A is

(A0
a=(% %)
Proposition 4.4.15. Consider A € GL(R?) such that d < 0 and t > 0. Then the
eigenvalues of A satisfy Ay > 0> Ao. Let w4 be the Poincaré map defined by the

flow of the linear system x = Ax and associated to two symmetric straight lines
in the plane Ly and L_. Then:
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(a) If t > 0, then myy 2 [0,A71) = [0,[Xe] "), m44(0) = 0, lim mii(a) =
a,/ Ay
2| =Y, and w4 (a) > a in (0,A\]1).
(a.1) If a € (0,\{"), then 7', (a) > 1. Furthermore, ii{‘r%Jw;+(a) =1 and

lim 7/ (a) = +o0.
e i (a)

(a.2) Ifa € (0,A"), then 7{_(a) > 0.
(a.3) The graph of T4, has a vertical asymptote at a = \;*.
(a.4) w14 is implicitly defined by the expression

t+/t2 —4d

2 + 7T++ (CL) (t — \/t2 — 4d) t7¢t274d _ 2 + 7T++ (CL) (t —|— \/t2 — 4d)
2 —a (t — Vi2 - 4d) C 2—a(t+VE2—4d)
(a.5) The qualitative behaviour of the graph of w4+ is shown in Figure 4.12(a).
(b) Ift =0, then m y is the identity in [0,\]").
Proof. Arguments similar to those in the proof of Proposition 4.4.1 show that the
map b = 744 (a) is defined by the system
L+bA =eM* (1 —a)), 14bly=e"(1-a)), (4.30)

and the inequalities ¢ > 0, b > 0 and s > 0.

(a) As in the proof of Proposition 4.4.1(a), from system (4.30) we obtain the
following information: 744 (0) = 0; the domain of definition of 71 is contained
in (0, \;1); and the parametric equations of 7, , are

o )\2 (1 - les) - )\1 (1 - szs)

a (S) - d(€>\25 _ e)qs) ’
(4.31)
b (S) . ()\2 — )\1) els + )\16>\1S — )\26>‘25
- d(eAQS _ ekls) :

Note that the functions a(s) and b(s) are differentiable in s € (0, 400).
Differentiating in (4.30) with respect to s and isolating da/ds and db/ds we
obtain that

da Al — A db B )\1€>\25 _ )\26)\15
ds b(s) ohis _ ghas and gs = 1-0b(s) .

6A18 — ekgs

Hence, since h\% b(s) =0 and gm b(s) = |A2| !, see expression (4.30), we con-
s s H+oo

clude that b(s) > 0 and a/(s) > 0 in (0, 400). Now using that li\‘nlo a(s) = 0 and
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}gf a(s) = A\t it follows that the domain of definition of 7w, is [0, A ") and

lim17r++(a) = |A2|_1.
a,/ Ay

We will prove the inequality 744 (a) > a at the end of the present proof.
(a.4) Isolating s in each of the equations of system (4.30) we obtain the
following implicit expression for the map b = 74 (a):

A2
1+ b\ (1—&)\1>*1 (432)

1—aky  \ 140X\
(a.1), (a.2) and (a.3) Differentiating in (4.32) with respect to a and isolating
db/da we obtain that

, db  al40bt+b%d
Ty (a)=, = (4.33)

da  bl—at+a2d
The behaviour of the parabolas 1 + bt + b?d and 1 — at + a?d is shown in Figure
4.11. From this it is easy to conclude that 7/, ,(a) > 0 when a € (0,A\;") and
lim ), (a) = 4oco. Furthermore, since lim i (a) = [Xo|', the graph of
a/‘Afl a/‘Afl
m4+4 has a vertical asymptote at a = )\fl.
By applying I’'Hopital’s rule we obtain

) (S) . ()\2 — )\1) els + )\1€A18 — )\26)‘28
lim = lim =1,
SN0 a(s)  s\O0 Ay (1 —ers)—Ap(1—e29)

which implies that li{(% 7', (a) =1, see expression (4.33).

1 —tz + da? 1+ tx + dz?

Figure 4.11: Qualitative behaviour of the parabolas 1 +tx+dxz? and 1 —t 2+ d 2>
when the parameter d < 0.
Differentiating expression (4.33) with respect to a we get

db (b—a)(b+a)
" _
et (a) = da ab? (1 — at + a2d)’
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Hence, 7'/ (a) > 0 if 744 (a) > a; 7{ (a) = 0if myy(a) = a; and 7} (a) < O

if my4(a) < a. From this we conclude that 744 (a) # a, see the end of the proof

of Proposition 4.4.1(e) for more details. Moreover, since lim it (a) = |7t >
a,/ N[

Ar!, we have 7.4 (a) > a and 7/ (a) > 0.

(b) If t =0, then Ay = —X2 and 74 (a) = a, see (4.31). O
el b=a h=a
’ T+ (a) b= |>\2|’/1/
a= Afl Ty (a) )\1_1
(a) “ (b) “

Figure 4.12: Qualitative behaviour of the Poincaré map 744 (a) when d < 0 and
t >0, (b) when d <0 and t < 0.

Corollary 4.4.16. Consider A € GL(R?) such that d < 0 and t < 0. Then the
eigenvalues of A satisfy Ay > 0> Ao. Let w4 be the Poincaré map defined by the
flow of the linear system x = Ax and associated to two symmetric straight lines
in the plane Ly and L_. Then:

(a) mq [07)‘1_1) = [0, [x271), m4(0) = 0, 11{\11717T++(a) = X!, and

[P

miq(a) < ain (0,A71).

(b) Ifa€ (0,A\"), then 0 < 7', (a) <1 and }Li{‘%WQLJa) =1

(c) Ifa€ (0,A"), then 7'/ (a) <O0.

(d) The straight line b = || =% is a horizontal asymptote of the graph of miy
when a tends to +oo.

(e) w4 is implicitly defined by the expression in Proposition 4.4.15(a.4).

(f) The qualitative behaviour of the graph of w4 is represented in Figure 4.12(Db).

Proof. The proof follows directly by using that the Poincaré map 7 ; is the inverse
of the map described in Proposition 4.4.15. (]

Corollary 4.4.17. Consider A € GL(R?) such that d < 0 and let \; > 0 > Xy
be the eigenvalues of A. Suppose that the flow of the linear system x = Ax has
a contact point p with a straight line L not passing through the origin. Then L
intersects with the stable and the unstable subspaces of the origin at p — A;lp and
p + [Xa| 71D, respectively.
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Proof. Since L does not pass through the origin, p is the unique contact point of
the flow with L, i.e., L is not invariant under the flow, see Proposition 4.2.5(a).
Thus L intersects the stable and the unstable subspaces of the origin at points u
and v, respectively. Moreover, the point p splits L into the two half-lines L' =
{p+Ap:A<0}and LO = {p+ Ap : A > 0}. It is clear that u € L! and v € L.
Let ag > 0 and by > 0 be the coordinates of the points u and v, respectively. From
the continuous dependence of the solutions of a linear differential system on the
initial conditions, it follows that limg »q, 744 (a) = bg. Therefore, the statement
is a consequence of Proposition 4.4.15(a) and Corollary 4.4.16(a). O

Proposition 4.4.18. Consider A € GL(R?) such that d < 0 and t > 0. Then the
eigenvalues of A satisfy A1 > 0 > Aa. Let my_ be the Poincaré map defined by the
flow of the linear system x = Ax, associated to two symmetric straight lines in the
plane Ly and L_. Then:

(@) > 0, then mee s (O, +0) = (Raf =400, lim, me(a) = [l
@AY
d i _(a) = .
and lim (a) =+

(al) If a € (A\[',+00), then 7', _(a) > 1, aii‘g\ni1 7', _(a) = +oo, and
a}i{a}Q ' _(a) =1. 1
(a.2) Ifa € (A\[',+00), then 7'/ _(a) < 0.
(a.3) The straight line b = a—2t/d is an asymptote of the graph of m4_ when
a tends to 4o00.
(a.d) m4_ is implicitly defined by the expression
t++/t2 —4d
<7r+_ (a) (t — V/t2 — 4d) — 2) Ve m(a) (t+ ViR - 4d) -2
a(t—Vt2 —4d) +2 a(t+vVe2—4d)+2
(a.5) The qualitative behaviour of the graph of m4_ is shown in Figure 4.13(a).
(b) Ift =0, then w, _ is the identity map in (A\]*, +00).
Proof. Arguments similar to those used in the proof of Proposition 4.4.3 show that
the map b = 74 _(a) is determined by the system
L4+bA = (=1+a\)e™®, 1+4by = (=14 ads)e?’, (4.34)

and the inequalities a > 0, b > 0 and s > 0. From this we conclude that a > )\1_1
and b > |)\2|71.
By solving system (4.34) for s > 0 we get the parametric equations of 7y _:
Mo (1 A1s) _ (1 A2s
a(s): 2( te ) 1(+€ )7
d (6A18 _ 6)\‘28)
Do — \ ts by /\23_)\ A1s
by = 2 7T Al Z e
d(eAlS _ e)\gs)

(4.35)
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Hence, since lim a(s) = +o0, lim b(s) = 400, lim a(s) = A;', and lim b(s) =
sN\0 sN\0 s,/ 400 s,/ +o00
|A2| =1, we conclude that 74 (a) is defined in (A\;', +00), lim T—(a) = [Ao| 7t
a,/ N[
and lim 7;_(a) = +oc.

a /' +oo
From (4.35) we obtain that gm my_(a)/a = li\rj}) b(s)/a(s) = 1. Moreover
a /" +oo s
by applying I'Hopital’s rule we get }T b(s) — a(s) = —2t/d. Therefore, b =

a — 2t/d is an asymptote of the graph of 7y _.
The implicit expression of w4

X
(—14—&)\1)_)‘f - 1+b)\2

= 4.36
1 —|— b)\l —1 —|— CL)\Q ’ ( )

follows from system (4.34). Differentiating in (4.36) with respect to a and isolating
db/da yields
db al+0bt+0b%d
da  b1l—at+a2d
where the graphs of the parabolas are qualitatively depicted in Figure 4.11. Thus,

it is easy to conclude that 7/, _(a) > 1, lim ) 7', _(a) = +o0, and
aNA]

(4.37)

db (b—a)(b+a)
" o
e (@) = da ab? (1 — at + a?d)’

Therefore, /] _(a) < 0. For more details, see the proof of Proposition 4.4.3 O

) t
X A b
e (a) b a Ty (a)
|)\2‘_1 b=a ) /
~ B Y
At S d
A
(a) a A (b) ¢

Figure 4.13: Qualitative behaviour of the Poincaré map m_ (a) when d < 0 and
t >0, (b) when d <0 and t < 0.

Corollary 4.4.19. Consider A € GL(R?) such that d < 0 and t < 0. Then the
eigenvalues of A satisfy A1 > 0> Ao. Let my_ be the Poincaré map defined by the
flow of the linear system x = Ax and associated to two symmetric straight lines
in the plane Ly and L_. Then:
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m 7 (a) =

(8) 7o s (ATY400) = (hal ™%, +00), lim my—(a) = Phal™%, i
[PANDN a /' +oo

1
400, and T4 _(a) < a in the domain (A]*, +00).
(b) Ifa € (\{',+00), then 0 < «'._(a) < 1. Furthermore, E‘Iﬁlwgi(a) =0
@Ay
d li ! =1.
an a/l(riloow+_(a)
(c) Ifa € (\{',+00), then 7{_(a) > 0.

(d) The straight line b = a — 2t/d is an asymptote of the graph of mi_ when a
tends to +o00.

(e) my_ is implicitly defined by the expression in Proposition 4.4.18(a.4).
(f) The qualitative behaviour of the graph of w4 _ is shown in Figure 4.13(b).

Proof. The proof follows directly by using that the Poincaré map 7 _ is the inverse
of the map described in the Proposition 4.4.18, see Lemma 4.3.5(c). (]

4.4.5 Degenerate node: d =0

We suppose now that the matrix A has two real eigenvalues, one being equal to 0
and the other one equal to t. Hence, A has two different real Jordan normal forms.
When t # 0, then the real Jordan normal form of A is

t 0
(5 a)

while when ¢ = 0, the real Jordan normal form of A is

0 1
A= .
Note that we do not consider the case where A is the zero matrix.

In any case, the behaviour of the Poincaré map w4 is trivial, see Proposition
4.3.3(b). Therefore we restrict our attention to the Poincaré map my_.

Proposition 4.4.20. Consider A € L(R?) not the zero matriz and such that d = 0.
Let w4 be the Poincaré map defined by the flow of the linear system x = Ax and
associated to two symmetric straight lines in the plane Ly and L_. Then:

(a) Ift >0, then there exists a value b* > 0 such that m4_ : [0,4+00) — [b*, +00)
and m4_(a) = a + b*.

(b) Ift =0, then m4_ is the identity map in [0, +00).

(c) Ift <0, then there exist a value b* > 0 such that m4_ : [b*,4+00) — [0, +00)
and 74 _(a) = a — b*.
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Proof. Let n = (ny,n2)" be the unit orthogonal vector to L, oriented in the
direction opposite to the origin and suppose that det(Ant,nt) > 0. The case
det(An*,n') < 0 follows by using similar arguments. Let p = (p1,p2)” be the
contact point of the flow with L. From Proposition 4.3.11(c) it follows that the
map 7y satisfies
—p—74_ (a)nt =4 (p— an®).

Therefore p € ker(A) \ {0}, see Proposition 4.2.6(b).

(a) Without loss of generality we can consider that the matrix A is in real
Jordan normal form. Thus, p; = 0, p2 # 0 and the map b = 74 _(a) is implicitly
defined by the system

bng = e'®ans, bni = ani — 2pa,

and the inequalities ¢ > 0, b > 0 and s > 0. From det(AnJ-,nJ-) = —tning > 0
we obtain that nins < 0. Moreover, p’n = pany > 0 implies that p2/ny < 0.
Therefore, 7y _(a) = a — 2py/n; for a > 0.

(b) Without loss of generality we can consider that the matrix A is in real
Jordan normal form. Thus, p; # 0, p2 = 0 and the map b = 74 _(a) is implicitly
defined by the system

—p1 +bng = p1 +ang — sany, —bn; = —anq,

and the inequalities @ > 0, b > 0y s > 0. Since p’n = pyn; > 0, we obtain that
ny # 0 and 74 _(a) = a.

(¢) The proof follows by using the fact that the Poincaré map w4 _ is the
inverse of the map described in the statement (a), see Proposition 4.3.5(c). O

4.5 Poincaré maps of non-homogeneous linear systems

To finish our study about the Poincaré maps defined by the flow of a fundamental
system and associated to two symmetric straight lines Ly and L_, we need to
analyze the Poincaré maps defined by the flow of a non-homogeneous linear system

X = Ax + b, (4.38)

where A € L(R?) and b € R? \ {0}, and associated to a straight line not passing
through the origin. We denote by L. this straight line and by Sy and S the
half-planes bounded by L., where Sy is the half-plane containing the origin. As
before, n denotes the unit orthogonal vector to the straight line which is oriented
in the direction opposite to the origin.

Since L, does not pass through the origin it can be split into the two subsets,
Li and Lg. The set CPy = Li N Lg is formed by the contact points of the flow
of the non-homogeneous linear system (4.38) with L. Define in L the subset

Dom, :={q€ LY :3sq >0, ®(sq,q) € L and @ (s,q) C S; Vs € (0,34)}
UCP;.
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When Dom  # &, we can define the Poincaré map of the non-homogeneous linear
system (4.38) associated to the straight line Ly by Il4y : Domyy C LY — L%
with IL 1 (q) = ®(sq, q)-

Suppose that the flow of system (4.38) has a unique contact point p with L.
Since p € L and p € LY, I 4 (p) = p. In the particular case Dom = CPy
we say that the behaviour of 114y is trivial.

Note that the Poincaré map I, here defined corresponds with the Poincaré
map Hﬁ ., defined by the flow of a fundamental system and associated with the
straight line L, see Section 4.1. The study of the qualitative behaviour of the map
IT; 4 is divided into two subsections depending on the invertibility of the matrix
A. Thus, in Subsection 4.5.1 we deal with the case det(A) # 0 and in Subsection
4.5.2 with the case det(A4) = 0.

4.5.1 Non-homogeneous linear systems with A € GL(R?)

Suppose that A is invertible. Then we can consider the point e, = —A~'b. The
translation y = x — ey transforms the system (4.38) into the homogeneous linear
system

y = Ay, (4.39)

and the straight line Ly into the straight line L% . Thus, if e, ¢ Ly, then L7
does not pass through the origin. Define L* = {—q : q € L% }. Note that the
homogeneous linear system (4.39) and the straight lines L% and L* fulfill the
conditions of Section 4.3. Therefore, if the Poincaré map 11, associated to the
flow of (4.38) and the straight line L is defined, then it induces a Poincaré map
associated to the flow of the homogeneous linear system (4.39) and the straight line
L% . Moreover, the converse statement is also true. Let II7, denote the Poincaré
maps induced by the translation above. Hence, we have the following result.

Proposition 4.5.1. Consider a matriz A € GL(R?), a vector b € R?\ {0} and the
point e, = —A~'b. Let L, be a straight line in the plane not passing through the
origin and such that e, & L. The Poincaré map 11, associated to the flow of
the non-homogeneous linear system Ax + b and the straight line L is defined if
and only if there exists a unique contact point of the flow with L. In this case

L is a non-invariant straight line and L-Ii- and Lg are non-empty half-lines.

Proof. The statement is a consequence of Proposition 4.3.4. O

It is clear that the behaviour of the map Il ; can be obtained from the
behaviour of the map II% | . Furthermore, this last map can be expressed as a
composition of the Poincaré maps considered in Section 4.3.

Depending on whether e, € S or e; € Sp, the translation y = x — ey
preserves or reverses the orientation of the flow on L and L%, see Figure 4.14.
Thus when ey € Sy the translation y = x — e transforms the half-lines Lﬂ_ and
L9 into the half-lines L’ and L*?, respectively. When e, € S, the translation

transforms Li into Lio and Lg into Lf . This implies the following result.
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*I
%

So

Ll =10 5

—— — +
\s S+ /< \<3+

) ot |

So

L' =17

et
O _ 7+0 O _ 1
L9 = L% L9 =1L

(a) (b)

Figure 4.14: Relation between the half-lines LfL, Lg, Lif and Ljo depending on
(a) e € SO, (b) e € S+.

Proposition 4.5.2. Consider a matriz A € GL(R?), a vector b € R?\ {0} and the
point e, = —A~'b. Let L, be a straight line in the plane not passing through the
origin and such that e, ¢ L. Suppose that the Poincaré map 11,1 associated to
the flow of the system x = Ax+b and the straight line L is defined, and let 117 |
be the Poincaré map induced by the translation y = x —e;.

(a) Suppose that e € Sy.
a. et >0, then 18 the Poincaré map defined in Section 4.3.
1) If det(A) >0, then II* | is the P d d d in S 4.3
(a.2) If det(A) <0, then II* | is trivial.
(b) Suppose that e € S4.

(b.1) Assume that det(A) > 0. If t* — 4d > 0, then II* , is trivial. If t* —
4d < 0, then 1T, coincides with the composition of the Poincaré maps
Iy oll__olly_ wherell_4, II__ and I1;_ are the maps defined in
Section 4.3.

(b.2) If det(A) <0, then 1%, is the Poincaré map defined in Section 4.3.

Proof. (a) Since ey € Sy, the translation y = x — ey transforms the half-lines
LfL and Lg into Lf and Lio, respectively. Moreover, it is easy to check that the
domain Dom 4 of IT% | is contained in Lio.

When det(A) > 0, the Poincaré map defined by a linear flow with the domain
contained in Lio is the map defined in Section 4.3; this proves statement (a.l).

When det(A) < 0, the domain of IT% | is contained in the half-line L%/, see
Proposition 4.3.3(c). Thus II% , is defined in the intersection of the half-lines L%/
and Ljo, i.e., in the contact point. Applying again this argument it follows that
the image of II' | is also the contact point. Therefore the behaviour of II% | is
trivial, as claimed in (a.2).

(b) Suppose that e € S;. The translation y = x — e transforms the half-
lines L% and Lg into Ljo and L3, respectively. By Proposition 4.3.3(a), there
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are no Poincaré maps defined on LfL which have the image contained on Lg.
Thus either the behaviour of I, | is trivial, or I} | =1I_; oll__ oIl _. In this
last case the orbits have to surround the origin. Therefore, if > — 4d > 0, then
IT% | is trivial, see Lemma 4.2.9(a). If t* — 4d < 0, then II*_, is non-trivial. Thus
It , =114 oll__ oIl _, which proves the statement (b.1).

If det(A) < 0, then by Proposition 4.3.3(c) we have two possibilities: (i) IT% |
is the map IT; 1 (i) II% | =TI_4 oIl__ oIl _. In this last case the orbits have
to surround the origin, which proves the statement (b.2). |

In order to study the Poincaré maps defined by the flow of a non-homogeneous
linear system with regular matrix and associated to a straight line not passing
through the origin, we restrict our attention to the Poincaré maps defined by the
flow of a homogeneous linear system, see Proposition 4.5.2. When det(A4) > 0,
the behaviour of the map II. | depends on whether e, € Sp, or e, € Sy and
t2 —4d < 0. To distinguish between these two situations we denote the map
H,+ oll__o H+7 by H++.

Thus, the behaviour of the Poincaré maps defined by a non-homogeneous
linear flow and associated to a straight line which does not pass through the
origin is determined by 7y, and 744 = 7_4 om__ omy_. There are two different
ways of studying the map 7, 4: one by using the well know information about
maps 7m4_ and 74, see Section 4.3, and the other by obtaining a new expression
for w4, . The latter is adopted here.

Note that ﬁ++ =TI_4 oII__ oIl _ satisfies that ﬁ++ : L*+I — Lio where
L ={p+ap:a>0}and L;° = {p—ap : a > 0}, see (4.8). Thus the map 7
is implicitly defined by the equation

p— 7yt (a)p=e™ (p+ap) (4.40)

and the inequalities a > 0, b =741 (a) > 0 and s > 0.

4.5.2 Non-homogeneous linear systems with A ¢ GL(R?)

Suppose now that the matrix A of the non-homogeneous linear system (4.38) is
singular, that is det (A) = 0. To describe the Poincaré maps defined by the flow of
this system and associated to a straight line in the plane, we distinguish different
situations. First we consider the case where A is the zero matrix. Then x = b
where b € R? \ {0}. Therefore the orbits of this system are contained in straight
lines and consequently the behaviour of I is trivial.

Suppose now that system (4.38) has a singular point e, i.e., Ae+b = 0. The
translation y = x — e transforms (4.38) into the homogeneous system y = Ay and
the Poincaré map IL, ; into the Poincaré map II% , . By Proposition 4.3.3(b), the
behaviour of the map II, , is trivial. Hence the map I | associated to the system
(4.38) is also trivial. For this reason, we restrict our attention to the Poincaré maps
defined by the flow of a non-homogeneous linear system (4.38) without singular
points and such that the matrix A is singular, but not the zero matrix.
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Let Ly be a straight line in the plane which is not invariant under the flow.
In this subsection we define a coordinate system onr L, and a map 74 which is
invariant under linear transformations so that we can reduce the study of 11} to
the study of 74 4.

Let n be the unit orthogonal vector to L which is oriented in the direction
opposite to the origin. We define the following subsets in L :

L' :={qe Ly :n"§<0} and LY :={qe L;:n"§>0},
where ¢ = Aq + b.

Proposition 4.5.3. Consider a singular non-zero matriv A € L(R?) and a vector
b € R?\ {0}. Let Ly be a straight line in the plane which is not invariant under
the flow of the system X = Ax + b. Suppose that this non-homogeneous linear
system has no singular points. Then:

(a) The flow of the system has at most a contact point with L .

(b) If Li #+ & and Lg %+ &, then the system has exactly one contact point with
L.

(¢c) Suppose that there exists a contact point p of the flow with the straight line L
and let n be as above. Then det(An't,b) # 0. Moreover, if det(An*,b) > 0,
then LI = {p+Ap : A <0} and LY = {p+Ap : A > 0}, and if det(An"’,b) <
0, then LY. = {p+Ap: A >0} and L? = {p+ Ap: A < 0}.

(d) The Poincaré map 4 is defined if and only if the flow of the system has a
unique contact point with L .

Proof. (a) Suppose that the flow of the system has two contact points with L,
p1 and p2. Thus Ly = {p1 + A(p1 — p2) : A € R}, Ap1 + b = a1(p1 — p2) and
Aps2 +b = as(p1 — p2). From this it follows that A(p1 — p2) = a(p1 — p2), which
implies that L is an invariant straight line, in contradiction with our hypothesis.
Therefore there exists at most one contact point with L.

(b) Take a point p in L. We can write L, = {p + An* : A € R}. Consider
the auxiliar function f(\) = n” [A(p+An')+b]. Since L} # @ and LY # @ there
exist A\; and Ay such that f(A1) < 0 and f(A2) > 0. The existence of a contact
point follows from the continuity of the function f. The uniqueness of the contact
point is a consequence of statement (a).

(c) Let p be a contact point of the flow with L. Since the system has no
singular points, p # 0. From this we conclude that Ly = {p+Ap : A € R}, that the
vector n is equal to either p*/||p|| or —p~/||p||, and that n?'(Ap) = det(Ant,b).

Consider now a different point q in Ly. Then q = p + Ap with A # 0.
Therefore

nT¢q =n’(Ap + b) + An"Ap = A det (AnL, b).

If we suppose that det(An*,b) = 0, then since n”'¢ = 0 for every point q € L,
we conclude that L, is an invariant straight line, which contradicts the hypothesis.
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Therefore, det(An', b) # 0. The expression of LfL and Lg follows from the above
equation.

(d) Suppose that the map I, ; is defined. Then the half-straight lines Li + g
and Lg # . By statement (b), the flow of the system has exactly one contact
point with the straight line L.

Conversely, if the flow has exactly one contact point p with L, then p splits
Ly into the half-lines LY and LY. Let v(p) be the orbit through the point p.
By the continuous dependence of the solutions of a linear differential system with
respect to the initial conditions we conclude the existence of a Poincaré map in a
neighbourhood of 7 (p). O

If the flow of the non-homogeneous linear system (4.38) has a contact point
p with the straight line L., then we can associate a value a > 0, called coordinate,
to any point on L, see Proposition 4.5.3(c). Thus if det(An*,b) > 0, then

Li:{p—a[’):aEO} and Lg:{p—i-af):aZO},
while if det(Ant, b) < 0, then
L! ={p+ap:a>0} and LY ={p—ap:a>0}.

Let II; 4 be the Poincaré map defined by the flow of system (4.38) and associated
to the straight line L, and let q; and g2 be two points on Ly such that q2 =
IT; ; (q1). We denote by 714 the map which transforms the coordinate of q; into
the coordinate of 2. In this way we can reduce the study of the behaviour of 74
to the study of the behaviour of II ;.

By using similar arguments to those used in the homogeneous case we obtain
the next result which we present without proof.

Lemma 4.5.4. Consider a singular matriz A € L(R?) and a vector b € R*\{0}. Let
Ly be a straight line in the plane which does not pass through the origin. Suppose
that the Poincaré map T4y associated to the flow of the non-homogeneous linear
system x = Ax + b and the straight line L is defined. Then:

(a) 7, associated to the flow of the system X = —Ax — b and the straight line
L is defined and satisfies that 75 | = %;i
(b) T4+ depends analytically on the parameter t = trace(A).

(¢) T4+ is an analytic function of its argument and its inverse is also analytic.

By Lemma 4.5.4, in order to determine the qualitative behaviour of the
Poincaré map 7y defined by the system (4.38), it is enough to consider the
case trace(4) > 0. The case trace(A) < 0 follows by considering 7 * .

Lemma 4.5.5. Consider a non-zero matriz A € L(R?), a vector b € R?\ {0}, and
a reqular matriz M € GL(R?) such that det(M) > 0. Let L be a straight line in
the plane and p be a contact point of the flow of the system X = Ax + b with L.
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Then p* = Mp is a contact point of the flow of the system x = A*x + b* with
L* = ML, where A* = MAM ™! and b* = Mb. Moreover, p* = Mp, L*' = ML’
and L*© = MLO.

Proof. The linear change of coordinates y = Mx transforms the system X =
Ax+Db, the straight line L, and the contact point p into the system y = A*y +b*,
the straight line L* = M L, and the contact point p* = Mp, respectively.

Let n and n* be the unit orthogonal vectors to L and L*, respectively. Then

_det (M)

det (A*n*+,b*) =
( )= |t

det (AnJ‘, b) .
See the proof of Lemma 4.3.6 for more details.

Assume that det(An®,b) > 0 (the case det(Ant,b) < 0 is treated in a
similar way). In this case LY = {p—ap : a > 0} and LY = {p+ap : a > 0},
see Proposition 4.5.3(c). On the other hand, since det(M) > 0, we obtain that
det(A*n*+ b*) > 0. Hence, L*! = {p*—ap* : a > 0} and L*© = {p*+ap* : a >
0}, i.e., L*I = MLT and L*0 = ML©. O

Proposition 4.5.6. Consider a singular matriz A € L(R?) and a vector b € R?\{0}.
Let Ly be a straight line in the plane which does not pass through the origin.
Suppose that the Poincaré map T4+ associated to the flow of X = Ax+b and to
the straight line L is defined. If M € GL(R?) such that det(M) > 0, then 7, |
is invariant under the change of coordinates y = Mx.

Proof. Suppose that det(An*,b) > 0 (the case det(An*,b) < 0 is treated sim-
ilarly). By Lemma 4.5.5, p* = Mp is the contact point of the flow of the sys-
tem y = A"y + b* with the straight line L} = ML, where A* = MAM™!
and b* = Mb. Moreover, p* splits L’ into the two half-lines Lif = ML{Ir and
L9 =MLS.

Since 74 4 is well defined, there exist a coordinate a > 0, a point q; in Lg, and
a point qo in LY such that go =114 (q1), 1 = p+ap and q2 = p — 74 (a) P.
Therefore, Mq; € Lio, Mqs € Lif and Mq, = II' , (Mq2), where Mq; =
Mp + aMp and Mqs = Mp — 74 (a)Mp. This proves the proposition. O

By the last proposition, we can assume that the matrix A is given in real
Jordan normal form. In other case, since det(A) = 0, we can always transform the
matrix A into its real Jordan normal form by an orientation-preserving change of
coordinates.

4.5.3 Qualitative behaviour of the Poincaré map 7,

In this subsection we study the qualitative behaviour of the Poincaré map defined
by the flow of the non-homogeneous linear system x = Ax + b. Recall that if
d = det(A) # 0, then the Poincaré map above is equal to one of the Poincaré
maps defined by a linear flow, see Proposition 4.5.2 and Section 4.4. Only when
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t? —4d < 0 and the singular point e, belongs to S the Poincaré map denoted by
74+ does not coincide to any of the Poincaré maps defined by a linear flow. In this
case such Poincaré maps can be expressed as a composition of the Poincaré maps
studied in Section 4.4; that is, T4 = m_4 o m__ o wy_. Proposition 4.5.7 and
Corollary 4.5.8 describe the behaviour of the map 7, when d # 0, t2 — 4d < 0
and ¢t > 0 or t < 0, respectively.

In the degenerate case d = 0 there exists two possibilities for the Poincaré
map 7. If the non-homogeneous linear system X = Ax + b has a singular point,
then the behaviour of 7, is trivial, see Subsection 4.5.2. If the non-homogeneous
system has no singular points, then 7, 1 cannot be reduced to any of the Poincaré
maps associated to the homogeneous case. In Proposition 4.5.9 and Corollary
4.5.10 we will describe the behaviour of the map 744 when d =0, and ¢ > 0 and
t < 0, respectively.

Proposition 4.5.7. Consider a matriz A € GL(R?) with parameters d > 0, t > 0
and t?> — 4d < 0, and a vector b € R?\ {0}. Let 741 be the Poincaré map defined
by the flow of the system X = Ax + b and associated to a straight line Ly which
does not pass through the origin. Then:

(a) Ift > 0, then there exist a value b* > 0 such that 744 : [0, +00) — [b*, +00),
T44(0) = 0%, }1&1 Tyt (a) = +00, and 7y (a) > a in (0,+00).

(a.1) Ifa € (0,+00), then 7, (a) > 0 and ii{(r})%;+(a) =0.

(a.2) If a € (0,+00), then 7/ (a) > 0.

(a.3) The straight line b= e’ a +t(1 + e¥™)/d is an asymptote of the graph
of T4y when a tends to +00, where v = t/\/4d — t2.

(a.4) T4 is implicitly defined by the expression

~ ~ 2 atFyy(a))B
1-— t7'('++ (a) + d7T++ (a) _ 62’)/ 'drCtan( (?r++(a()—t)ztl+a)d%++(a)> )
1+ ta + da?
(a.5) The qualitative behaviour of the graph of T4+ is depicted in Figure
4.15(a).

(b) Ift =0, then T4y is the identity in [0, +00).

Proof. By Proposition 4.5.2(b.1), the map 74 can be expressed as a composition
of the maps m_,, m__ and 7y_, i.e., 744 = m_4 onw__ o my_. Therefore, the
statements (a), (a.1) and (a.2) are consequences of Propositions 4.4.11 and 4.4.13.

(a.3) We assume that A is in real Jordan normal form, see Proposition 4.3.7.
From (4.40) it follows that the map b = 71 (a) is defined by the system

1—ba = e* {cos(Bs)+ alacos(Bs)— Bsin(Bs)]},
—bB = e {sin(Bs) + a[asin (Bs) + B cos (Bs)]}, (441)
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and the inequalities ¢ > 0, b > 0 and s > 0, where & = ¢/2 > 0 and 8 =
Vad —2/2 > 0.

Consider the change of the time variable 7 = s and take v = /. Isolating
a and b in (4.41), we obtain the parametric equations of 7,

_ Bcos (1) —asin (1) — fe 7

N dsin (T) ’

asin (1) 4+ Bcos (1) — BeI™
dsin (1)

(4.42)

Since A is in real Jordan normal form, 7 is the angle covered by the solution during
the flight time s. Hence, we conclude that 7 € (7, 7*), where 7* < 2.
From (4.42) it can be proved that li\r‘n a(T) = +o00 and
T s

_ a7

T b 1 o
lim it (o) =lim = te
a,/*+oo a NT 4 1+e 7™

By applying 'Hopital’s rule it is easy to check that gm (T14(a) — e’™a) =
a '+oo

t(1 + e?™)/d, which implies that the straight line b = e""a + t(1 4+ €7™)/d is an
asymptote of the graph of 744 (a).

(a.4) For more details, see the proof of Proposition 4.4.11(a.4).

(b) If t = 0, then a = 0 and v = 0. Therefore the statement follows from
equation (4.42). O

Figure 4.15: Qualitative behaviour of the Poincaré map 7, (a) when 2 —4d < 0
and t > 0, (b) when t? —4d < 0 and ¢ < 0.

Corollary 4.5.8. Consider a matriz A € GL(R?) with parameters d > 0, t < 0 and
t2 —4d < 0, and a vector b € R?\ {0}. Let 7, be the Poincaré map defined by
the flow of the system x = Ax+b and associated to a straight line which does not
pass through the origin. Then:

(a) There exists a value a* > 0 such that T4y : [a*, +00) — [0, +00), T4y (a*) =
0, and gm T4y (a) = +oo. Moreover, T4 (a) < a in (a*,+00).
a '+oo
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(b) If a € (a*,+00), then 7 (a) > 0 and l{‘m 7, (a) = +oo.
(¢) If a € (a*,+00), then T/ (a) < 0.

(d) The straight line b= e"™a+t(1+€7™)/d is an asymptote of the graph of T4
when a tends to +o0o, where v = t/\/4d — t2.

(e) T4 is implicitly defined by the expression of the Proposition 4.5.7(e).
(f) The qualitative behaviour of the graph of T4 is depicted in Figure 4.15(Db).

Proof. The proof follows straightforward by using the fact that the map 744 is
the inverse of the map described in Proposition 4.5.7. |

Proposition 4.5.9. Consider a non-zero singular matriv A € L(R?) and a vector
b € R?\ {0}. Let Ly be a non-invariant straight line which does not pass through
the origin and n be the unit orthogonal vector to L. oriented in the direction
opposite to the origin. Suppose that the non-homogeneous linear system x = Ax+b
has no singular points and that the Poincaré map T4y associated to the flow of
the system and to the straight line Ly is defined. Then:

(a) If det(Ant,b) > 0, then the domain of T4y is a =0, and 744 (0) = 0.
(b) If det(Ant,b) < 0 and t > 0, then Ty : [0,t7') — [0, 4+00), T4 (0) = 0,
gml Tt (a) = o0, and 744 (a) > a in (0,t71).
a,/'t—
(b.1) Ifa€ (0,t71), then @ (a) > 1 and ii{‘%%;+(a) =1.

(b.2) Ifa € (0,t71), then 7 (a) > 0.
) T4 is implicitly defined by the expression
14 t74 4 (a) = (1 — at) etletm++(@),
4) The graph of T4 has a vertical asymptote at a =t1.

) The qualitative behaviour of the graph of Ty is depicted in Figure
4.16(a).

(c) If det(Ant,b) < 0 and t = 0, then the map 74 is the identity in [0, +00).

Proof. By Proposition 4.5.6, we can assume that the matrix A is in real Jordan

normal form, i.e.,
. t 0 . 0 1
(1)A—<0 O) or (11)A—(O 0),

depending on whether ¢ # 0 or ¢ = 0. Therefore, the flow ®(s,x) of the non-
homogeneous linear system x = Ax + b is given by

0 <ets (1 + %) =" ) or (i) ( 252 4 (22 +b1) s + 22 )

To + bas To + bas
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where b = (b1, bo)” with by # 0 and x = (x1,22)”. Note that by # 0 because the
system has no singular points.

Since 744 is well defined, the flow of the system has a unique contact point
p = (p1,p2)T with the straight line L, see Proposition 4.5.3(d).

(a) Suppose that det(An', b) > 0. By Proposition 4.5.3(d), the contact point
p splits L into the two half-lines, LI+ and Lg. Moreover, we obtain that LfL =
{p—ap:a>0}, LY = {p+ap : a > 0}, and the map 74 takes coordinates of
points of Lg into coordinates of points of Li. Thus 74 is implicitly defined by
the equation

P~ T+ (a)p=2(s,p+ap)
and the inequalities a > 0, T4 (a) > 0 and s > 0. Substituting in this equation the
expression of the flow in (i) and (ii) we obtain two systems. It is easy to check that
in both cases the second equation of these systems is given by 74 (a) = —(s+a),
which implies that 7 is only defined in @ = 0 and 744 (0) = 0.

(b) Assume that det(An’,b) < 0 and ¢ < 0. Arguments similar to those in
the proof of statement (a) show that the map 7y is implicitly defined by the
equation

P+ Tt (a)p=2(s,p—ap)
and the inequalities a > 0, 741 (a) > 0 and s > 0. Since ¢ > 0, substituting in this
equation the expression of the flow corresponding to the case (i) we obtain that

N by by
— pts _ —
p1+Tyq (@) (tpr+b1) = e (Pl a(tpy +b1) + " ) £ (4.43)

%++ (CL) b2 = —ab2 + Sbg.

Note that the second equation is now 74 (a) = s — a, which does not imply that
T4+ is only defined in a = 0. It is easy to check that 1 = —by/t is an invariant
straight line of the flow of the system. Therefore, tp; 4+ b1 # 0. Applying this to
the first equation in (4.43) we get

14+ t7,4 (a) = fT++@+a) (1 _q) (4.44)

Since ¢t > 0, from (4.44) it follows that 74 (0) = 0 and the domain of definition
of 7,4 is contained in [0,#71).

Introduce now the auxiliary function 3(z) = (1 + tx)e *®. Then expression
(4.44) can be written as ¢3(7T4+(a)) = ¥3(—a). The following properties of the
function 3 can be easily verified: ¥3 is defined on R; 13 is strictly increasing
on (—o0,0) and strictly decreasing on (0, 400); 13(0) = 1; gm P3(x) = —o0;

B‘Ij_l Y3(x) = 0, and ¥3(—t~!) = 0. We deduce that the domain of 7 is [0,¢71),
that Bml%_H(a) = +o00, and that 744 (a) # a in [0,¢7!), which implies that

a,/'t-

Tii(a) >ain [0,¢71).
Differentiating expression (4.44) with respect to a we obtain that 7/, , (a) =
ae®/ (7 1 (a)e”™++(9)). Define now a new auxiliary function by t4(z) = ze!® —
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Ty (x)e ™+ (@) Since 1h4(0) = 0 and o} (z) > 0in (0,¢1), it follows that 1y(z) >
0 in (0,¢7"). From this we conclude that 7/, | (a) > 1 in (0,¢71).
Differentiating twice expression (4.44) with respect to a we obtain
et(at+27i 4 (a))

T @=" ) (1+at) (Fys (a)* e T++@ —a2et (1 — 17, (a))] .
T+4+ (Q

Suppose now that there exists a* € (0,¢71) such that 7/ (a*) = 0; that is,
(L ™) (s (@) 0 = ()2 e” (1— 7, 4 (a")).

This yields that 744 (a*) < t~% and (1 4+ a*t)e”7T++(@) < e (1 — 7, 4 (a¥)).
Expressing this last inequality in terms of the auxiliary function 5 gives ¥3(a*) <
3 (=744 (a*)), which contradicts the fact that )3 is strictly decreasing in (0, 4+00)
and 744 (a) > a. Therefore, we have 7/ (a) # 0 if a € (0,¢™'). Finally, since

alfirﬁl 7/, (a) > 0, we get that 7/ (a) > 0if a € (0,¢71).
From 7/, (a) > 1 in (0,¢71) it follows that 0101{(1% 7, (a) = L > 1. Applying

I’Hopital’s rule we obtain that
- 1 e (1 + at) 1
L= lim 7 =1l _ _ ~ =
Yim @y (a) = limy (W/H (@) e~ tFes(@) (1 — t7y 4 () ) ~ L

which implies that L = 1.
(¢) Arguments similar to those in the proof of statement (a) show that when
det(An* b) < 0 and t = 0, the map 7, , is implicitly defined by the system

Tig(a) (p2+b1) = %54 [br+p2—aba)s—a(py+b1),
7AT/++ (CL) b2 = —ab2—|—5b2.

Isolating s in the second equation and substituting it in the first one we obtain
that 74 (a) = a, which finishes the proof. O

Figure 4.16: Qualitative behaviour of the Poincaré map 744 (a) when d = 0 and
t>0,(b)d=0andt<0.



174 Chapter 4. Return maps

Corollary 4.5.10. Consider a non-zero singular matriz A € L(R?) and a vector
b € R?\ {0}. Let Ly be a non-invariant straight line which does not pass through
the origin and let n be the unit orthogonal vector to Ly oriented in the direction
opposite to the origin. Suppose that the non-homogeneous linear system x = Ax+b
has no singular points and that the Poincaré map wy. associated to the flow and
to L is defined. Then:

(a) If det(Ant,b) < 0 and t < 0, then T4 : [0,+00) — [0, [t|71), 7++(0) = 0,

}m 7r++( )= [t|7Y, and 714 (a) < a in (0, +00).
+
(b) If a € (0,400), then 0 <7, (a) <1 and li{(r})%;+(a) =1.

(c

)
(d) T4+ is implicitly defined by the expression of Proposition 4.5.9(b.3).
)

(e

(f) The qualitative behaviour of the graph of T4 is shown in Figure 4.16(b).

If a € (0,400), then 7/ (a) > 0.
The graph of T, has a horizontal asymptote at b = |t|~*.

Proof. The corollary follows by using that 7y is the inverse of the map described
in the Proposition 4.5.9(b), see Lemma 4.5.4(a). O

4.6 Return maps of fundamental systems

In this section we describe the return map II defined by the flow of a fundamental
system and associated to the straight line L, as the composition of the Poincaré
maps H%, where j,k € {+,—} and M € {A, B}, see Section 4.1. Those Poincaré
maps have been reduced to the Poincaré maps defined by the flow of a homoge-
neous and a non-homogeneous linear system (IL;; and 114, ), and they have been
studied in detail in Sections 4.3 and 4.5 via the so-defined Poincaré maps 7;; with
j,k € {+,—} and 744. From now on we use the superscript A or B to identify

which of the two linear systems define the Poincaré maps m;;. Thus ﬂ'JBk are the

Poincaré maps defined by the homogeneous linear system x = Bx, and Wﬁc are
the Poincaré maps defined by the non-homogeneous linear system x = Ax + b.
Consider the fundamental system

%= Ax+¢ (k'x)b, (4.45)

with A € L(R?) and k,b € R?\ {0}. Take L, = {x € R? : kTx = 1} and
L_={xeR?:kTx = —1}. Since L, and L_ does not pass through the origin,
we can split them into the subsets Lﬂ_, Lg, LT and L°. Since we know when the
flow ®(s,x) of the fundamental system (4.45) has a contact point with the straight
line L, these subsets are half-lines.

Consider the subset

Dom := {q € L : 354 > 0, (sq,q) € L, and Vs € (0,s4), ®(s,q) ¢ L} }.
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When Dom # @, we define the return map associated to the flow of the fundamental
system (4.45) and to the half-line L% by II :Dom C LI — L. and II(q) =
®(sq,q). It is easy to check that if Dom # @, then two or more of the sets Dom 4,
Dom;_, Dom __ and Dom_, see (4.7), are not empty. This implies that there
exists exactly one contact point p of the flow of the fundamental system with L,
see Lemma 4.3.2. By the symmetry of the vector field with respect to the origin,
—p is the contact point of the flow with L_. The existence of contact points on
L4 and L_ allows us to associate a non-negative number to any points on L and
L_ called the coordinate of the point. For more details, see Subsections 4.3.1 and
4.5.2. We define the return map 7 as the map that transforms the coordinate of q
into the coordinate of II (q). As usual, we restrict our attention to the return map
7 instead of IL.

In the following result we express 7 as the composition of the Poincaré maps
Wﬁc, 7~ri‘+ and Wﬁ. Given a map f we denote by f2 the map fo f.

Theorem 4.6.1. Consider a fundamental system X = Ax + p(kTx)b with funda-
mental matrices (A, B) and parameters (D, T,d,t). Then:

(a) The return map w is defined if and only if the flow of the system has exactly
one contact point with the straight line L .

)

) If D >0, d#0 and 7 is defined, then m = (74, owB_)2.
) If D >0, d=0 and 7 is defined, then m = (74, owB_)2.
)

Suppose that D < 0, d > 0 and the return map 7 is defined. Let Ay > 0 > Aq
be the eigenvalues of the matriz B. If t> — 4d < 0, then

7 (a) = { (T3 °7T5+)2(a), ifae[0,A7"),
(7fion¥ ) (a), ifae (A", +00).

If t* — 4d > 0, then the domain of 7 is a = 0 and 7(0) = 0.
(f) If D <0 and d <0, then the domain of w is a =0 and 7(0) = 0.
(g) 7 is analytic with respect to a.

Proof. (a) As we have seen, the existence of the return map 7 implies the existence
of exactly one contact point. Thus it remains to prove only the converse. Suppose
that the flow of the system has exactly one contact point p with L. Then II(p) =
p and the return map is defined.

(b) Since the fundamental system in Sy is X = Bx, the existence of a con-
tact point of the flow with L, is equivalent to det(Bk* k') # 0, see Theorem
4.3.10. The statement follows by noting that B = A + bk’ and det(Ak*, kt) =
det(Bk*, k1).

(¢) Suppose that D > 0 and d > 0 (when d < 0, the same arguments can be
applied to prove the statement). In this case the flow of the system has a contact
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point with L, see statement (a). Hence the Poincaré maps 72_ and 8, are

defined, see Proposition 4.3.4. Moreover, 7rf7 maps coordinates of points in Li
into coordinates of points in LY; and 72 | maps coordinates of points in LT into
coordinates of points in LY, see Proposition 4.3.3(a).

Suppose that e, = —A~'b € S,. Then the fundamental system has a sin-
gular point in Sy, which contradicts Theorem 3.9.3(a). Therefore, ey ¢ S;. By
Proposition 4.5.1, this implies that Wﬁ+ and 72 _ are well defined. Moreover, wf+
maps coordinates from Lg to Li, and 72_ maps coordinates from L to L, see
Proposition 4.5.2(a).

We conclude that there exists exactly one return map 7 defined in Lﬂ_. More-

over, this map can be expressed as a composition of the Poincaré maps ﬂ% , i.e.,

™= Wﬁ+ o 7r§+ o o Wf_. The statement follows by noting that Wﬁ+ =rl_

and 7¥_ =78 see Lemma 4.3.5(a) and (b).
(d) The statement follows by arguments similar to those used in the proof of
(c)-

(e) Since D < 0, it is easy to conclude that the Poincaré maps Wﬁc with
J.k € {+,—} are well defined, see the proof of statement (a) for more details.
Moreover, wf | maps coordinates from Li to Lg and wf_ maps coordinates from
Li to LO.

Since d > 0, ey = —A~!'b is a singular point contained in S, , see Theo-
rem 3.9.3(b). Therefore, the Poincaré maps %ﬁ 4 and 74 are well defined, see
Proposition 4.5.1.

Suppose that t2 —4d > 0. By Proposition 4.5.2(a), the behaviour of the map
%ﬁ+ is trivial and so is the behaviour of the return map 7. Suppose that > —4d < 0.
In this case %_‘a | maps coordinates from Lg to Lﬂ_. We have two possibilities for
the return map 7 either 7 = 7, onP, or m = 7, onB, o7 oxP . The
domain of both of these maps follows from Propositions 4.4.15 and 4.4.18 and from
Corollaries 4.4.16 and 4.4.19. The statement follows by noting that %ﬁ+ =74_
and wf_ = 7r§+.

(f) Arguments similar to those used in the proof of the statement (d) show
that the Poincaré maps ﬂ'JBk are well defined when D < 0.

Suppose that d < 0. From Theorem 3.9.3(a) it follows that ey & S, . More-
over, the Poincaré map wf . is defined, see Proposition 4.5.1. The behaviour of
74, follows from Proposition 4.5.2(a.2).

Suppose d = 0. Without loss of generality, we can assume that

(i)Az(é 8) or (ii)A:(g (1))

The case where A is the zero matrix is not considered because this would imply
that D = 0, see (3.10).

Since n = k/||k|| is the unit orthogonal vector to L oriented in the direction
opposite to the origin, in case (i) we obtain that det(Ant,b) = —tkeby = —D >0
(see expression (3.10)), and in case (ii) we obtain that det(An*,b) = —D > 0. By
Proposition 4.5.9(a), it follows that the behavior of 74, is trivial.
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(g) If 7 is defined, then we can write 7 as a composition of analytic maps,
which proves the statement. O

From the definition of the return map =w it follows that a periodic orbit
intersecting Ly and/or L_ is associated to a fixed point of 7. Thus, any fixed
point of 7 is associated to a periodic orbit intersecting Ly and/or L_. Further,
the existence of periodic orbits which are not contained into one of the regions
Sy, So or S_ is equivalent to the existence of a fixed point of the return map 7.
Moreover, any isolated fixed point of 7 is associated to a periodic orbit, which is
a limit cycle, I'. When I is hyperbolic, we can obtain its stability from Theorem
2.7.5. In the case that I' is not a hyperbolic limit cycle we have the following
proposition.

Proposition 4.6.2. Consider a fundamental system x = Ax + ¢(kTx)b and let a*
be a fized point of the return map ™ associated to a periodic orbit .

(a) If there exists € > 0 such that |7'(a)| < 1 in (a*,a* +¢), then T is an outside
asymptotically stable periodic orbit.

(b) If there exists € > 0 such that |7’ (a)| <1 in (a* —e,a*), then T is an i