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Preface

The main goal of this book is to present background material and recently developed
mathematical methods in the study of infinite-dimensional evolutionary models,
taking into account dissipativity and stability properties of various forms and
origins.

The main feature of dissipative systems is the presence of an energy reallocation
mechanism with decaying in higher modes. This mechanism can lead to the
appearance of complicated limit regimes and structures in the system, which are
stable in a certain sense. It is commonly recognized that the general theory of
dissipative systems was significantly stimulated in the 1980s with attempts to
find adequate mathematical models to explain turbulence phenomena. By now,
significant progress in the study of infinite-dimensional dissipative dynamics has
been made (see, e.g., the monographs BABIN/VISHIK [9], CHEPYZHOV/VISHIK
[31], CHUESHOV [39], HALE [116], LADYZHENSKAYA [142], ROBINSON [195],
SELL/YOU [206], and TEMAM [216] and the references therein).

The main feature of this book in comparison with the sources mentioned is that
we systematically present, develop, and use the quasi-stability method originally
designed for second order in time models with nonlinear damping in collaboration
with Irena Lasiecka in CHUESHOV/LASIECKA [56, 58] (see also our recent survey
[60]). Here we extend this method substantially. New classes of second order
evolutions, parabolic-type models, and PDE systems with delay are included for
consideration.

We hope that this book will be useful not only to mathematicians interested in the
general theory of dynamical systems, but also to physicists and engineers interested
in both the mathematical background and methods for the asymptotic analysis of
infinite-dimensional dissipative systems that arise in continuum mechanics.

Our presentation is based on general and abstract models and covers sev-
eral important classes of nonlinear PDEs, which generate infinite-dimensional
dissipative systems. These classes include heat and reaction-diffusion models, a
wide spectrum of models arising in two-dimensional hydrodynamics for studying
turbulence phenomena and plate and wave models with nonlinear state-dependent
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damping. We also consider the nonlinearly damped wave Kirchhoff model and some
classes of parabolic and hyperbolic delay problems.

Much of the analysis in this book is devoted to the stability of dynamics and
a rigorous reduction of infinite-dimensional systems to some finite-dimensional
structures, which are described only by finitely many degrees of freedom. These
finite-dimensional structures should be of interest to application-oriented scientists,
who pursue the mathematical simulation of real infinite-dimensional phenomena.

The book contains a large number of exercises. As in the famous monograph
by Dan Henry [123], they are an integral part of the book. Most of them are placed
strategically within the text, rather than at the end of a section. Some of the exercises
are routine, while others are general comments and remarks written in “‘exercise
form.” This allows us to make the narrative shorter and avoid extra refinement.

The book can be used as a textbook for courses in dissipative dynamics at the
graduate level. It is sufficient to know the basic concepts and facts from functional
analysis and ordinary differential equations to understand this book. In fact, many
parts of the book were already used in advanced undergraduate and beginning
graduate courses given by the author at the Kharkov University.
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Introduction

The general theory of dynamical systems originated from the qualitative theory of
ordinary differential equations, the foundations of which were laid by H. Poincaré
(1854-1912) and A.M. Lyapunov (1857-1918). A very important contribution
to the theory was made by G.D. Birkhoff (1884-1944). He was an inventor of
the term “dynamical system” and he developed the theory at the abstract level
using topological methods to a great extent. The notion of a dynamical system
is the mathematical formalization of the general scientific concept of evolution
(time-dependent) processes. These processes can be of quite different natures.
Dynamical systems naturally arise in the study of many physical, chemical,
biological, ecological, economical, and even social phenomena. The notion of a
dynamical system includes a set of its possible states (state space) and a law of
the state evolution in time. Thus, the term “dynamical system” covers a wide class
of models which may describe arbitrary objects evolving in time and also time-
dependent processes. For instance, this class of objects and processes includes
models generated by nonlinear evolutionary partial differential equations (PDEs)
arising in continuum mechanics and mathematical physics. These models require
infinite-dimensional spaces for the representation of a variety of possible states.
In this book we concentrate on (infinite-dimensional) systems which demonstrate
various types of relocation and dissipation of energy. It seems (see, e.g., the
discussion in HALE [116], RAUGEL [188], TEMAM [216]) that for the first time
these effects were formalized in the paper LEVINSON [150], where the notion of
(dynamical) dissipativity was introduced in its modern (mathematical) form; see
also BILLOTI/LASALLE [13], CODDINGTON/LEVINSON [75], PLISS [182, 183].
Dissipativity means that the limiting dynamics becomes localized in the phase
space. This can be expressed as a statement on the existence of a bounded
absorbing set. In the case of systems with a finite number of degrees of freedom
this localization allows us to select limiting objects such as attractors, which
carry important information concerning the qualitative behavior of the system.
The situation is quite different for infinite-dimensional systems. To single out
the corresponding limiting regimes we need additional compactness properties of
evolutions. This makes the theory much more complicated in infinite dimensions.

xi
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Nevertheless, by now several important aspects of the theory of infinite-dimensional
systems have been developed with a concentration on different classes of PDE
models (see, e.g., the monographs BABIN/VISHIK [9], CHEPYZHOV/VISHIK [31],
CHUESHOV [39], CHUESHOV/LASIECKA [56, 58], HALE [116], LADYZHENSKAYA
[142], ROBINSON [195], SELL/YOU [206], TEMAM [216] and the surveys BABIN
[7], MIRANVILLE/ZELIK [166], RAUGEL [188]).

This book focuses on the dynamics of infinite-dimensional dissipative systems.
In order to achieve a reasonable level of generality, our consideration is fairly
abstract and tuned to general classes of evolutions, which are defined on abstract
spaces. Our aim is to present general methods and abstract results pertaining
to fundamental dynamical system properties related to long-time behavior. Our
main tool is based on quasi-stability properties of the corresponding dissipative
system. Roughly speaking, the quasi-stability means that we are able to control the
divergence of two trajectories by decomposing their difference into convergent and
compact parts.

The main features of the book (comparative to other sources) are the following:

*  We present, develop, and illustrate an approach to the compactness of dynamics
which is based on the relatively recent observation made in KHANMAMEDOV
[134] (see also CHUESHOV/LASIECKA [56, 58]) and has proved to be very useful
for the study of problems with critical nonlinearities. This approach appeared as a
method of compensated compactness by means of potential energy for the second
order in time evolution equations and was already applied in many situations. In
fact, this approach represents a weak form of quasi-stability.

e To study problems related to the finite dimensionality of attractors and their
smoothness properties, we suggest and develop a new version of the quasi-
stability method originally introduced in CHUESHOV/LASIECKA [51] (see also
CHUESHOV/LASIECKA [56, 58] and the recent survey CHUESHOV/LASIECKA
[60]) for some classes of evolution equations of second order in time. The
main advantage of this method is minimal requirements concerning the initial
smoothness of the dynamics.

* In our presentation we are strongly oriented on the application of the theory
to infinite-dimensional systems, which have their roots in continuum mechanics
and mathematical physics. However, to make the abstract schemes more trans-
parent and to present different possible scenarios of complicated behavior we
use low-dimensional ODE examples intensively. Some of them are low-mode
approximations of the real-world PDE models.

* We provide the basic concepts of the theory of dynamical systems in modern
form adapted to the infinite-dimensional (locally noncompact) case. We present
some material in the form of exercises. Some of them contain additional
information about the objects under consideration. This makes the text more
concentrated. In fact, many of the exercises can be changed into plain text by
substituting the title “Exercise” with words like “easy to see.” However, we prefer
to keep them in this “quantized” form and believe that this makes the text more
user-friendly for the reader.
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The book is organized as follows.

Chapter 1 deals with the basic notation and definitions of the abstract theory of
dynamical systems. Here we explain such notions as trajectories and w-limit sets.
We also present several notions of stability (Lagrange, Poisson, and Lyapunov). We
discuss possible types of behaviors of individual trajectories such as wandering and
nonwandering, recurrent, almost recurrent, and almost periodic motions. We mainly
follow the classical sources such as NEMYTSKII/STEPANOV [171] and SIBIRSKY
[212]. In this chapter we also present a complete theory of 1D continuous dynamical
systems and discuss the Poincaré-Bendixson theory presenting the main types of
qualitative dynamics in 2D systems with continuous time. In conclusion, by means
of examples we consider elements of bifurcation theory.

Chapters 2 and 3 are central to the book. They pertain to the long-time behavior
of (infinite-dimensional) dynamical systems and involve quasi-stability ideas in
different forms.

Chapter 2 starts with the foundations of the general theory of dissipative
systems. Although in many considerations in this and the next chapters we deal
with both discrete and continuous time systems, our main point of interest is
continuous systems with infinite-dimensional phase spaces. First we introduce
several notions of dissipativity and present a certain useful and rather general
criterion for dissipativity. The next topic is asymptotic compactness. Analysis of
the existing literature shows that there are two popular equivalent forms of this
notion, which are important from the point of view of the PDE applications. One
of them is due to Olga Ladyzhenskaya, and the second one was suggested and
explored by Jack Hale. Relying on the properties of the Kuratowski measure of
noncompactness, we suggest several convenient criteria for asymptotic compactness
which demonstrate some weak forms of quasi-stability. Then we present the central
result of this chapter and the whole theory of dissipative systems. It is a theorem
stating that dissipativity and asymptotic compactness are necessary and sufficient
conditions for the existence of a compact global attractor. We also discuss various
forms of stability of global attractors and the reduction principle, which states the
possibility to reduce dynamics to smaller phase spaces. The chapter concludes with
the considerations devoted to a rather wide and important class of gradient systems.
This class assumes the existence of a Lyapunov-type function on the phase space.
The main features of these systems are the possibilities (i) to avoid the dissipativity
property in explicit form in the proof of the existence of a global attractor, and (ii)
to describe a structure of the attractor via unstable manifolds.

In Chapter 3 we continue to present the theory of dissipative systems, con-
centrating on finite-dimensional behavior in the infinite-dimensional case. Here
we introduce and discuss the notions of Hausdorff and fractal (box-counting)
dimensions. The main result concerning dimension which we present in the book
is a generalization of the celebrated Ladyzhenskaya theorem on dimension of
invariant sets for (locally) Lipschitz mappings in Banach spaces. We compare
this approach with the volume contraction method (see, e.g., BABIN/VISHIK [9],
CHEPYZHOV/VISHIK, [31], TEMAM [216]), which requires C' smoothness of
evolutions. It is known from examples in CHUESHOV/LASIECKA [56] that this gap
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between Lipschitz continuity and C' smoothness can be critical for several classes of
systems. The version of the generalization presented is also an extension of schemes
suggested earlier in CHUESHOV/LASIECKA [56, 58] and proved to be useful in the
case of models with critical nonlinearities. Motivated by this generalization and also
by ideas presented in CHUESHOV/LASIECKA [56, 58], we introduce the notion of
a quasi-stable system in a more general form than the one that was discussed in
CHUESHOV/LASIECKA [58]. This new version of quasi-stability allows us to cover
not only the second order in time models (as in CHUESHOV/LASIECKA [58]) but
also several types of parabolic systems. Delay perturbations are also included in
the scheme. The notion of quasi-stability is rather natural from the point of view
of long-time behavior. It pertains to decomposition of the flow into exponentially
stable and compact parts. However, in contrast with the standard “splitting” method
(see BABIN/VISHIK [9] or TEMAM [216]), the quasi-stable decomposition refers
to a difference of two trajectories and is related to different forms of dynamical
squeezing. For quasi-stable systems we show (i) the existence of compact global
attractors (with the help of the new asymptotic compactness criterion presented in
the previous chapter), and (ii) finiteness of the fractal dimension of these attractors
(relying on our extension of the Ladyzhenskaya-type result). For these systems it is
also possible to establish the existence of fractal exponential attractors, which are
finite-dimensional forward invariant sets attracting trajectories with an exponential
speed. These objects were introduced in the 1990s (see EDEN ET AL. [92] and the
references therein). We also discuss other consequences of quasi-stability, such as
determining functionals and regularity properties of trajectories from the attractor.
Thus, quasi-stability provides important tools, which automatically deliver a set of
important properties of long-time dynamics.

The rest of the book, Chapters 4-6, is devoted to applications of the general
abstract theory presented in Chapters 2 and 3 and demonstrates capabilities of the
quasi-stability method. These applications deal with different classes of evolution
equations of the form

w="F@), t>0, u|,_,= uo, (*)
in a Hilbert space X. These classes include parabolic- and hyperbolic-type models
and also their delay perturbations. The main goal is to demonstrate how the general
theory developed can be implemented in the studies of particular systems of the
form (*). Usually this kind of implementation follows some standard scheme and
requires a realization of several steps.

e Step 1: Generation. We need to check whether the equation in (*) generates a
dynamical system. For this we need to prove global well-posedness of the Cauchy
problem in (¥), i.e., to establish the existence and uniqueness statement and show
continuous dependence of solutions on initial data uy. This makes it possible
to introduce the evolution operator S, which maps u in the solution taken at
moment ¢. Thus, we can construct a dynamical system with the phase space X
and make an attempt to apply the general theory.
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e Step 2: Basic qualitative properties. This step usually assumes answers on
the questions about dissipativity and related energy balance equalities. These
equalities are usually the main tool in the proof of dissipativity. In the case of
gradient systems an explicit form of dissipativity can be avoided. Instead the set
A ={u € X : F(u) = 0} of stationary (time-independent) solutions should be
studied.

e Step 3: Long-time dynamics. The main goal is to establish the existence of
a global attractor. For this we need asymptotic compactness, which can be
established by application of either smoothening properties of the evolution
operator (in the case of parabolic-type models) or the compensated compactness
method mentioned above (in the case of second order in time equations). Another
way is to show that the system is quasi-stable, even in some weak form.

o Step 4: Other features of asymptotic behavior. This step includes issues related
to the finite dimension of the attractor and its other similar properties. Studies
of exponential attractors and determining functionals also provide important
information about the long-time dynamics. All related results can be obtained
in one shot in the case when we manage to show that the system is quasi-stable.
Qualitative model-dependent methods can also be applied at this stage.

We demonstrate all these steps for several types of models in Chapters 4-6.

Chapter 4 deals with abstract evolution models of parabolic type. We discuss
two types of models here. The first one is a general abstract parabolic-type equation
which models reaction-diffusion processes. First we prove several (local and global)
well-posedness statements, which rely on the notion of a mild solution and are
motivated by perturbation-type results presented in PAZY [181]. Next we deal
with dissipativity and compactness. It is remarkable that for this class of models
dissipativity implies the compactness of the system (i.e., the existence of a compact
absorbing set). Then using the standard multipliers technique we establish what is
called the Ladyzhenskaya squeezing property. This property allows us to show that
the system is quasi-stable and thus to apply all the techniques presented in Chapter 3.
The squeezing property also provides an approach to study the data assimilation
problem for the parabolic models considered. This problem is a question on how
to incorporate available observation data in computational schemes to improve the
quality of the future evolution predictions of the corresponding dynamical system.
This problem has a long history and was studied by many authors at different levels
(see the references in Chapter 4).

A similar program is realized for a certain abstract class of models which are
motivated by 2D hydrodynamics. In contrast with the first type of models, the
studies of this class are based on the notion of a weak solution of variational type
and involve the Galerkin method. This class contains a wide variety of 2D hydro-
dynamical models, including the Navier-Stokes equations, magnetohydrodynamic
(MHD) equations, the Boussinesq model for Bénard convection, the 2D magnetic
Bénard problem, and also some models of turbulence.

Chapter S specializes in the direction of second order systems. It develops and
applies material presented in Chapters 2 and 3 for this particular type of system.
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We deal with a second order in time equation with damping and source terms
of different structure whose abstract form is the following Cauchy problem in a
separable Hilbert space:

uy + K@u, + Au+Bu) =0, t>0; ul—o = up, Uli=0 = us. (%)

This model represents nonlinear wave dynamics with the damping (operator)
coefficient K (1) which depends on displacement u (but not on velocity u;). Formally,
we can rewrite the equation in (**) as a first order equation of the form (*) and
apply the scheme described above. The main achievements in this chapter deal
with well-posedness and the existence of a compact finite-dimensional attractor for
different situations. We prove that the corresponding system is asymptotically quasi-
stable, and then we apply general theorems on properties of quasi-stable systems.
This allows us to establish the existence of a fractal exponential attractor and
give the conditions that guarantee the existence of a finite number of determining
functionals. In the case when the set of equilibria is finite and hyperbolic, we show
that every trajectory is attracted by some equilibrium at an exponential rate. By
means of an example we also consider the case when the main elliptic part A is
nonlinear. The motivation for this is the Kirchhoff wave equation in a bounded
domain in RY which demonstrates the interplay of a nonlinear state-dependent
nonlocal damping and nonlinear stiffness. Again, the main method is quasi-stability.

In Chapter 6 we consider the qualitative dynamics of abstract evolution equa-
tions containing delay terms. We start with delay perturbations of the parabolic-type
models considered in Chapter 4. The corresponding perturbations are Lipschitz. For
these equations we prove well-posedness and study the long-time dynamics. We
also consider a parabolic problem with a singular delay term. This allows us to
include some population dynamics models with state-dependent delays in the scope
of the theory developed. Then we deal with a class of second order in time nonlinear
evolution equations with state-dependent delays. This class covers several important
PDE models arising in the theory of nonlinear plates. We prove well-posedness
in a certain space of functions which are C' in time. The solutions constructed
generate a dynamical system in a C'-type space over a delay time interval. The main
result shows that this dynamical system possesses compact global and exponential
attractors of finite fractal dimension. To obtain this result we adapt the developed
method of quasi-stability estimates.

The Appendix provides necessary background and preliminary material used
throughout the book. In particular, here we describe basic properties of vector-
valued function spaces and quote several compactness theorems for them. We also
present some extensions of the standard Gronwall inequality and provide some
material on calculus in infinite-dimensional spaces. We discuss several important
issues related to ordinary differential equations and the Orlicz-type result of
genericity of uniqueness in the case of abstract parabolic models. The monotonicity
method for 2D hydrodynamical models is also presented here.

As we mentioned, the book can be used by beginners wanting first to learn
the basic theory of dissipative systems and also by specialists wanting to prepare
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a lecture for graduate students. In this case we would recommend at the first
stage of reading (or teaching) to restrict yourselves to the first four sections of
Chapter 1 with reference to the examples in Sections 1.7-1.9 to get an idea of how
the dynamics may depend on the dimension of the system. We then recommend
switching to Chapter 2. In this chapter some material can also be omitted at the first
reading (Subsections 2.2.3 and 2.3.4, for instance). Next we recommend reading the
first two subsections in Section 3.1 and then switching to Section 3.4 on quasi-
stability to complete the basic general theory portion. For a basic overview of
applications we recommend concentrating on Sections 4.1, 4.2 and on the first
part of Section 4.3. Then one could go to Section 6.1 on delay systems. Another
possibility is, after reading Section 4.1 on operators with a discrete spectrum, to
then switch to the second order in time models considered in the first two sections
of Chapter 5. Alternatively, after Section 4.1, the readers can also switch to the 2D
hydrodynamical models presented in the second part of Chapter 4.



Chapter 1
Basic Concepts

This chapter collects basic definitions, notions and also the simplest illustrating
statements from the general theory of dynamical systems. We also describe all
possible dynamical scenarios in 1D and 2D continuous systems and, by means
of examples, discuss the principal bifurcation pictures. Our intention in the latter
materials is to give the reader some feeling on what kind of dynamics can arise for
low-dimensional (1 or 2) continuous time evolutions.

We mainly follow the presentation given in NEMYTSKII/STEPANOV [171] and
SIBIRSKY [212] and also rely on the classical ODE sources; see CODDINGTON/
LEVINSON [75], HARTMAN [120], LEFSCHETZ [148] and also BAUTIN
/LEONTOVICH [11], REISSING/SANSONE/CONTI [189]).

1.1 Evolution operators and dynamical systems

As already mentioned in the Introduction, the notion of a dynamical system includes
a set of its possible states (state space) and a law of the evolution of the state in time.
Below we take a complete metric space X as a set of possible states. We denote by
T4+ all non-negative elements on T, where T is either R or Z and represents the
time.

Definition 1.1.1. A family {S,},et, of continuous mappings of X into itself is said
to be an evolution operator (or evolution semigroup, or semiflow) if it satisfies the
semigroup property:

So=1d, Si4;=S8,08; forall t,7 > 0.

In the case when T = R we assume in addition that the mapping t — Sx is
continuous from R into X for every x € X. The pair (X, S;) is said to be a dynamical
system with the phase (or state) space X and the evolution operator S;.

© Springer International Publishing Switzerland 2015 1
1. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Universitext,
DOI 10.1007/978-3-319-22903-4_1



2 1 Basic Concepts

If T = Z, then the evolution operator (and dynamical system) is called discrete
(or with discrete time). If T = R, then S; (resp. (X, S;)) is called an evolution
operator (resp. dynamical system) with continuous time. If a notion of dimension
can be defined for the phase space X (e.g., if X is a linear space), the value dim X is
called a dimension of the dynamical system. [

The following examples illustrate Definition 1.1.1.

Example 1.1.2 (Ordinary differential equations). Let F : R > R? be a (nonlin-
ear) mapping. Consider the equation

du(t)

el F(u(r)), t>0, u(0)=uyeR. (1.1.1)

If this problem has a unique solution for every initial data uy, € R? which
continuously depends on u, then it generates an evolution semigroup S; in X = R?
by the formula S;uy = u(t, up), where u(t, up) is the solution to problem (1.1.1).
Thus, we have a dynamical system (X, S;) with the phase space X = R L]

Example 1.1.3 (Mappings). Let X be a complete metric space. Consider a mapping
F: X +— X. Letn € Z4. Then the n-fold composition S, = F o --- o F of the
mapping F provides us with an evolution family. If the mapping F is continuous,
then we obtain a discrete time dynamical system (X, S,,). Therefore, the pair (X, F)
completely determinates this (discrete time) dynamical system. This is why a pair
(X, F) consisting of the space X and the (one-step) mapping F is also often called a
dynamical system. [

The following example shows how a single mapping can generate a dynamical
system with continuous time.

Example 1.1.4 (Continuous time systems from mappings). As in the previous exam-
ple, let X be a complete metric space and F : X — X be a continuous mapping.
Consider the difference equation with continuous argument

u(t+ 1) = F(u(r)), t e Ry.

Any solution of this equation can be easily constructed from data ¢ (£) defined on
[0, 1] by the formula

u(t) =8S"(p(t—n)), n<t<n+1, neZ,,
where S, = F o --- o F. This function u is continuous on R when
peY={¢pecC(0,1.X) : ¢(1) =F(¢(0))},

where C([0, 1], X) is the space of continuous functions on [0, 1] with values in X.
Now we can define a continuous time evolution operator in Y by the formula

Si o ¢(E) > FIHl(g({r +&}), £ €[0.1], teRy,
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where [£] is the integer part of & and {&} is its fractional part. Thus, we arrive at a
continuous time system (Y, S;). This kind of system (mainly in the case when X is
an interval in R) was intensively studied in SHARKOVSKY/MAISTRENKO/ROMA-
NENKO [209]; see also SHARKOVSKY ET AL. [208]. Features of the dynamics in
the system (Y, S;) provide a motivation for the recently introduced and developed
notion of ideal turbulence; see SHARKOVSKY [207]. =

Example 1.1.5 (Bebutov dynamical system). Let X = C(R) be the space of all
continuous functions on R equipped with the Bebutov metric:

1
dist(y, ¢) = sup min { sup | (x) — ¢(x)], (-

r>0 lx|<r

In this case X becomes a complete metric space, and convergence with respect
to this metric is equivalent to uniform convergence on bounded sets (see, e.g.,
SIBIRSKY [212]). As an evolution operator S; we take the left shift operator

SHX) =fx+1), feX, t=0.

This system (X, S;) is called the Bebutov (shift) dynamical system. It is convenient
to demonstrate different types of dynamics of individual trajectories with the help
of this system (see, e.g., NEMYTSKII/STEPANOV [171], SIBIRSKY [212] and the
references therein). =

Remark 1.1.6 (Closed evolutions'). Many general dynamical properties can be
established without assuming the continuity of evolution operators S,. This can
be important in the study of some infinite-dimensional PDE models. Instead of
continuity, following PATA/ZELIK [179] we can assume that evolution operators
S; are closed in the corresponding space X. This means that for every r > 0 the
properties x, — x and S;x,, — y for some x,y € X as n — oo imply that S,x = y. It
is clear that continuity of mappings S; implies their closeness. However, the inverse
statement is valid under some additional conditions only. Namely, one can show that
if S; is closed and maps any compact set into a relatively compact set, then x — S;x
is continuous. Indeed, let x, — x as n — oo. For every t+ > 0 we can choose a
subsequence {n,,} such that S.x,, — y for some y € X. By the closeness of S; this
implies that S,x = y. Moreover, one can see that the sequence {S,x,} cannot have
other limiting points except y = S;x. This means continuity of S;. On the other hand,
the mapping f : R4 +— R given by the formula

(1-x7! ifo<x<l;
x ifx>1,

Jx) =

"We recommend omitting of this remark at the first reading.
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provides us with a closed evolution operator which is not continuous (for other
examples we refer to PATA/ZELIK [179]). Closed evolutions also arise in the study
of the long-time dynamics of a class of PDE systems with state-dependent delay
(see Section 6.2 in Chapter 6).

We also note that operator closedness is a well-known concept in the theory
of linear (unbounded) operators, see, e.2., DUNFORD/SCHWARTZ [88, Chapter 2]
or YOSIDA [229, Chapter 2]. To our best knowledge, in the context of evolution
operators this notion appeared in BABIN/VISHIK [9] as a (weak) closedness of
an evolution (strongly continuous) semigroup (see also CHUESHOV [39] and
Theorem 2.3.18 below) and in PATA/ZELIK [179] for the general case. n

In the study of qualitative behavior a notion of equivalence of dynamical
systems plays an important role. This equivalence relation allows us to divide
wide collections of dynamical systems into classes of systems with very similar
behaviors.

Definition 1.1.7 (Topological equivalence). Two dynamical systems (X, S;) and
(X,S,) are said to be ropologically equivalent (or isomorphic) if there exists a
homeomorphism 4 from X onto X such that A(S,x) = S,h(x) for all x € X and
t € Ty4. In this case the evolution operators S; and S, are called topologically
conjugate. [

The following exercise illustrates this definition.

Exercise 1.1.8. Let o, 8 > 0 and o, 8 # 1. Then two discrete systems (R, ax)
and (R4, Bx) are topologically equivalent if and only if either {o, 8 > 1} or else
{a, B < 1}. Hint: To prove the sufficient part look for a homeomorphism 4 of R
of the form A(x) = x¥ with some y > 0; the necessary part can be proved by the
contradiction argument. [

1.2 Trajectories, invariant sets, and equilibria

Now we recall several well-known notions from the theory of dynamical systems
(see, e.g., BABIN/VISHIK [9], CHUESHOV [39], NEMYTSKII/STEPANOV [171],
SIBIRSKY [212], TEMAM [216] and the references cited in these monographs).

Let S, be an evolution semigroup in X. A set D C X is said to be forward (or
positively) invariant (with respect to S;) if S;D C D for all ¢+ > 0. It is backward
(or negatively) invariant if $;D 2 D for all t > 0. The set D is said to be invariant
(or strictly invariant) if it is both forward and backward invariant; that is, S,D = D
forall ¢ > 0.

Some properties of invariant sets are listed in the following exercise.

Exercise 1.2.1. Prove the following statements.

(A) The union of an arbitrary collection of forward invariant sets is also forward
invariant (the same is true concerning backward and strict invariance).
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(B) The nonempty intersection of an arbitrary collection of forward invariant sets
is also forward invariant. Show by means of examples that this cannot be true
in general for backward invariant sets. Hint: Consider the discrete dynamical
system (X, f) with X = [0, 1] and

3x if 0<x<1/3;
fx) = 1 if 1/3<x<2/3;
3(1—x) if 2/3<x<]l,

Show thatf(Al mAz) z A; NA; when A = [0,2/3] and A, = [1/3, 1]

(C) Let S, be surjective, i.e., $;X = X for every ¢t > 0. If B is a forward invariant
set, then the complement X \ B is backward invariant.

(D) If S, is injective, i.e., for each ¢ the equality S;x = S;y implies x = y, the
complement X \ B is a forward invariant set for every backward invariant set B.

(E) Let S; be a one-to-one mapping. Then the complement X \ B of every invariant
set B is also invariant.

(F) If B is forward invariant, then the closure B of B is also forward invariant.
The same is true for backward invariance if we assume that the closure B of
B is a compact set. Make sure that the compactness of B is essential for its
backward (and strict) invariance. Hint: Consider the discrete system (R, f)
with £(x) = (1 4+ x)~! 4+ xsin? x and show that f(R}) = f(intRy) = intR,
where intRy = {x e R4 : x > 0}.

(G) Let S, and S, be two topologically conjugate semiflows in X and X. Let & :
X > X be the corresponding homeomorphism. Then a set D is invariant (resp.
forward or backward invariant) if and only if D = h(D) is invariant (resp.
forward or backward invariant).

Let S; be an evolution operator in X. For any D C X we denote by

vp=Js:.D

>t

the tail (from the moment 7) of the trajectories emanating from D. It is clear that
vh = vip = ySJtrD. If D = {v} is a single point set, then y;F = y? is said to be
a positive semitrajectory (or semiorbit) emanating from v. A curve y = {u(r) :
t € T} in X is said to be a full trajectory iff S;u(t) = u(t + tv) forany v € T
and r > 0. For every v € X there exists a positive semitrajectory which contains v.
Since S, is not necessarily an invertible operator, this is not true for a full trajectory.
Positive semitrajectories are forward invariant sets. Full trajectories are invariant
sets. The set y™™ = {u(t) : 11 <t < 15} is called a segment (or a piece) with
time interval [z1, o] of the trajectory y. A trajectory y = {u(t) : t € T} is called
a periodic trajectory (or periodic orbit, or a cycle) if there exists 7 > 0, such that
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u(t + T) = u(r) for all t € T. In this case any point on y is called periodic (or T-
periodic). The minimal positive number 7 possessing this property is called a period
of a trajectory. An element vy € X is called a fixed point of an evolution operator if
Sivg = vg for all £ > 0 (synonyms: equilibrium, stationary point, rest point).

Exercise 1.2.2. Let S; and S, be two topologically conjugate semiflows in X and X.
Let i : X — X be the corresponding homeomorphism. Show that

(A) A point v is fixed for S, if and only if & (v) is a fixed point for S,.
(B) y is a periodic orbit for S, if and only if 4(y) is a periodic orbit for S, with the
same period.
L]

Exercise 1.2.3. Prove that the set of all fixed points is closed. =

Exercise 1.2.4. If there exists the limit v = lim;— 4o S;w for some w € X, then v
is a fixed point. Thus, semitrajectories can converge to fixed points only. =

The Schauder fixed point theorem? makes it possible to prove the following
assertion on the existence of a fixed point.

Theorem 1.2.5. Let (X, S,) be a continuous dynamical system on some complete
metric space X such that the mapping (t; x) — S;x is continuous. Then every forward
invariant set M which is homeomorphic to a compact convex set in some Banach
space contains a fixed point.

Proof. We use the same argument as in SIBIRSKY [212].

Let {z,} be a sequence of positive numbers such that t, — 0 and & be a
homeomorphism which maps M onto M = h(M) which is a convex compact set
in some Banach space. Let

R, =hosS,, oh™' MM
By the Schauder theorem there exists y, € M such that R,y, = y,. The sequence
{yn} is compact. This allows us to find an element x, € M and sequences {x,} C X
and {7, > 0} C R such that

S =%, n=12,..., and x, = x«, 7, = 0 as n — oo. (1.2.1)

By continuity of S,x with respect to (#;x) we have that for every ¢ > 0 there exist
t. > 0 and n, > 0 such that

dist (Spx,, xx) < & forall 7 € [0,¢], n > n,.

2The Schauder theorem (see, e.g., ZEIDLER [231, Volume I, Chapter 2]) states that any continuous
mapping from a convex compact set in a Banach space into itself has a fixed point.
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Since 7, — 0, this yields
dist (S,x,, x«) < & forall 7 € [0, 7,], n > A,.

Since x, is a t,-periodic point, this implies that the relation above is valid for all
te R+, i.e.,

dist (S;x,, x+) <& for t e Ry, n> n,.
In the limit n — oo we obtain that
dist (Spx«, x4) < & forevery t € Ry and e > 0,

which implies that S;x« = x, for all # € R4+ and thus completes the proof. O

We apply Theorem 1.2.5 in Section 1.8 to prove a version of the Poincaré-Bendixson
theorem for 2D dynamical systems.

Remark 1.2.6. Under conditions of Theorem 1.2.5 the relations in (1.2.1) mean
that every vicinity of a point x,. € X contains periodic points for (X,S;) with
arbitrary small periods. Exactly this property allowed us to show that x, is an
equilibrium for this system. However, bear in mind that we cannot guarantee that
the periods t, in (1.2.1) are minimal. Thus, we do not know whether periodic
points with arbitrary small periods arise. Moreover, it is known from YORKE [228]
(see also Theorem 1.8.8 below) that there are some restrictions from below on
possible periods of solutions to finite-dimensional autonomous ODEs with smooth
nonlinearities. We also refer to ROBINSON/VIDAL-LOPEZ [197, 198] (see also
ROBINSON [196]) for similar restrictions in the case of parabolic PDE models. =

1.3 Omega-limit sets

To describe asymptotic behavior it is convenient (see, e.g., BIRKHOFF [14],
LEFSCHETZ [148], NEMYTSKII/STEPANOV [171]) to use the concept of an w-limit
set. The set

oD) =(\vh=\S:D (1.3.1)

>0 >0 1>t
is called the w-limit set of the trajectories emanating from D (the bar over a set
means the closure).

Exercise 1.3.1. If w(D) # 0, then w(D) is closed and w(S;D) = w(D) for every
t>0. [
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Exercise 1.3.2. If v is a fixed point, then w(v) = {v}; if y is a periodic orbit, then
wly)=7v. .

In the following well-known assertion we provide an alternative (to (1.3.1))
description of w-limit sets.

Proposition 1.3.3. Let S; be an evolution operator in a complete metric space X
and D C X. Then x € w(D) if and only if there exist sequences t, — +o0o and
X, € D such that S; x, — x as n — oo.

Proof. If x € w(D), then

X € US,D forevery n =0,1,...

™>n

Therefore, there exist #, > n and x, € D such that dist(x, S,,x,) < 1/n and thus
Sy, Xq —> X asn — o0.

Now we assume that x = lim,_, y,, where y, = S; x,, for some ,, — 400 and
X, € D. It is obvious that

Y € USTD C USTD forall n > no,

>t >t

where n is defined such that 7, > ¢ for all n > ny. Therefore,

x= lim y, € USTD forall ¢> 0.
n—»o00 e

Thus, x € w(D). O
Exercise 1.3.4. Let S, and S, be two topologically conjugate semiflows in X and X
with the homeomorphism % : X — X. Then h(w(D)) = w(h(D)). u
Exercise 1.3.5. Any w-limit set (if it exists) is forward invariant. n

If y = {u(r) : t € T} is a full trajectory, we can define both w- and «-limit sets
of y by the formulas

o(y) = ﬂ U{u(r) ct>t) and a(y) = ﬂ U{u(r) T <t} (1.3.2)

>0 t<0
Exercise 1.3.6. Let y = {u(¢) : t € T} be a full trajectory. Show that

xew(y) & {x : 3t, = 400 such that x = lim u(tn)} ,
n—>oo

xea(y) & {x : 3t, > —oo such that x = lim u(tn)} .

n—>oo

The sets w(y) and a(y) (if they exist) are forward invariant. n
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The following assertion shows that any semitrajectory spends arbitrary large time
intervals in an arbitrary neighborhood of any forward invariant subset in @(v).

Proposition 1.3.7. Let (X, S;) be a dynamical system. Assume that (t;x) — S;x is
continuous from Ry x X into X (in the case when T = R). Let w(v) # @ for
some v € X and A is a forward invariant subset of w(v) (the equality A = w(v) is
allowed). Then for any ¢ > 0, T > 0 and t, > 0 there exists t > t, such that

S € O.(A) forall t€[i,i+T], (1.3.3)

where O,(A) = {y € X : dist(y,A) < &} is the e-neighborhood of the set A.
Proof. Let g € A. Then by the continuity property of (¢; x) — S;x for any ¢ > 0 and
T > 0 there exists § > 0 such that

sup {dist(S.x, S;q) : t € [0, T]} < ¢ provided dist(x,qg) < 8.

Since ¢ € w(v), by Proposition 1.3.3 we can choose arbitrary large 7 such that
dist(S7v, g) < 6. Thus,

sup {dist(S,v,A) : t € [1,7 + T]} < sup {dist(S,S7v,S,q) : t € [0,T]} < e,

hence (1.3.3) is valid. O

Now we present a condition under which a given point from w(v) is either fixed or
periodic.

Proposition 1.3.8. Let the hypotheses of Proposition 1.3.7 be in force. Let w €
w(v) and w = lim, 0 S, v for some sequence t, — ~+00 (such a sequence exists
by Proposition 1.3.3). If this sequence {t,} can be chosen such that the differences
ty+1 — t, are uniformly bounded, then the point w is either fixed or periodic.

Proof. We can assume that the sequence {t,} is increasing and there exist positive
k and K such that k < 1,41 — 1, < K forn = 1,2.... Indeed, if necessary, we
can choose the subsequence %,,+; = min{t,, : t, > 1, + k} with 7; = 7;. Next we
can choose a subsequence {n,,} such that t,, 4, — t,, — t« for some t, > 0 when
m — oo. Now using the continuity (#; x) — S.x we obtain that

w= mli)ngo Sty a1V = mlgr;o Stumt 1=t St V= St W.

This means that w is either fixed or periodic. O

Below we provide conditions under which (D) is nonempty. In the next section
we discuss this issue in the case when D is a single point set.
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1.4 Limiting properties of individual trajectories

We start with the following notion (see NEMYTSKII/STEPANOV [171] or SIBIRSKY
[212]), which is important not only in the studies of long-time dynamics of
individual trajectories but also for the existence of global minimal attractors; see
Section 2.3.

Definition 1.4.1 (Lagrange stability). A semitrajectory y,- = {S;v : 1 € T4}
(and its initial point v) is said to be Lagrange stable if the closure y;t of y;t is
compact in X. [

Exercise 1.4.2. The set of all Lagrange stable points is forward invariant. [

Exercise 1.4.3. Let S, and S, be two topologically conjugate semiflows on X and
X with the homeomorphism /4 : X + X. Then a point v is Lagrange stable (with
respect to ;) if and only if 2(v) is Lagrange stable (with respect to S;). [

Exercise 1.4.4. Let X = C(R) and (X, S;) be the corresponding Bebutov system
(see Example 1.1.5). Show that every bounded uniformly continuous function from
C(R) is a Lagrange stable point for the system (X, S;). L]

The following assertion contains criteria for Lagrange stability.

Theorem 1.4.5. A semitrajectory y;t = {Sv : t € T4} is Lagrange stable if and
only if the following two conditions® are satisfied:

(i) the w-limit set w(v) emanating from v is a nonempty compact set;
(i) distx(S;v, w(v)) = 0ast — +oo.

Proof. Let y,;F be Lagrange stable. Then y7 is a compact set for every T > 0. Since
y1 is a decreasing sequence of compact sets, by (1.3.1) (v) is a nonempty compact
set. To prove the convergence property in (ii) we use the contradiction argument.
Assume that there exists a sequence {f, — 400} such that

distx (S, v,w(v)) > 8§ >0 for all n=1,2,... (1.4.1)

By the compactness of ﬁ there exist an element z € X and a subsequence {7, }
such that S, U — z as m — oo. Moreover, by Proposition 1.3.3, z € w(v). This
contradicts the property in (1.4.1).

Assume now that the conditions in Theorem 1.4.5 are satisfied. To prove
Lagrange stability of ¥, we need to show that any sequence of the form {S, v}
contains a convergent subsequence. If the sequence {#,} contains an (infinite)
bounded subsequence, then the conclusion follows from the continuity of the
evolution operator. Thus, we need to consider the case when #,, — oo. In this case by

3Tf the space X is locally compact, then the second condition can be omitted. See, e.g., SIBIRSKY
[212, Theorem 2.8].



1.4 Limiting properties of individual trajectories 11

(ii) there exists a sequence {z,} in w(v) such that distx(S,, v, z,) — 0 asn — oco. By
(i) we can choose a subsequence {z,, } which converges to some element z € w(v).
Itis clear that S;, v — zasm — oo. Thus, the sequence {S;, v} is relatively compact
and hence y,' is Lagrange stable. O

Proposition 1.4.6. Let a semitrajectory y,” = {S,v : t € T} be Lagrange stable.
Then w(v) is a (strictly) invariant set.

Proof. By Exercise 1.3.5, S;w(v) C w(v). To obtain reverse inclusion we write an
element z € w(v) as

= lim S;”U = lim S;S,n_tv.
n—>oQo n—>oQo

By Lagrange stability the sequence {S, v} is relatively compact for each r > 0
and thus contains a subsequence {S,nm_tv} such that §;, —v — wy for some element
w, € X. Itis clear from Proposition 1.3.3 that w, € w(v). Hence z = S,w,. Thus
w(v) C S;w(). |

Theorem 1.4.7. Let a semitrajectory y;7 = {S;v : t € T4} be Lagrange stable.
Then the w-limit set w(v) emanating from v is connected.

Proof. By Theorem 1.4.5, w(v) is a nonempty compact set. Assume that w(v) is not
connected, i.e., w(v) = KUK, where K and K, are two nonempty disjoint compact
sets such that dist(K, Kx) = 28 > 0. Take k € K and k. € K. By Proposition 1.3.3
there exist sequences {z,} and {z’} such that #,, 7’ — oo and

lim S, v =k and lim S;pv = ks.
n—>00 n—>oo "
Moreover, we can assume that , < £ and also
dist(S;,v,K) < & and dist(S;xv, K) > 6.

Since ¢(r) = dist(S,v, K) is a continuous function, this implies that there exists
T, € [ty, 1] such that dist(S;,v, K) = §. The Lagrange stability of y," implies that
the sequence {S;, v} is relatively compact; i.e., there exist {n,,} and z € X such that
S84,V — z asm — oo. By Proposition 1.3.3, z € w(v). This contradicts the relation
dist(z, K) = 6. |

The following example shows that without assuming Lagrange stability the
w-limit set can be non-connected.

Example 1.4.8 (Non-connected limit set). We present an analytic realization of the
example given in SIBIRSKY [212, p. 39] in the graphic form. See Figure 1.1.

Let «,0 > 0 and H(s) = arctans, s € R. In the strip X =
{(x; y:xeR, |y < %} we define an evolution operator by the formula

Si(x05¥0) = (x(2, x0, y0); x(t, X0, ¥0)).
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y
/2

T
N

-n/2

Fig. 1.1 Dynamics near non-connected w-limit set

where for |yo| < 7 we suppose that

x(t.x0.0) = Re[(xo + iH ™" (y0)) exp{(a + iw)1}]

and
y(t. %0, y0) = H (Im [(xo + iH " (o)) exp{(a + iw)t}])
(here i = +/—1). In the case |yo| = 5 we take

x(t, X9, y0) = Xo — tsignyo, y(t,Xo,Y0) = Yo-

One can see that S, is an evolution operator with continuous semitrajectories.
All nonzero semitrajectories are unbounded and thus Lagrange unstable. The
calculations based on Proposition 1.3.3 show that

a)(v):{xER, y:—%}u{xeR, y:%}

for any v = (x0; yo) 7# (0;0) with [yo| < 7. See Figure 1.1. n

Using properties of w-limit sets it is possible to suggest some classification of
individual trajectories and to introduce an important notion of Poisson stability.

Definition 1.4.9 (Poisson stability). If the set w(v) is empty, then the point v and
the semitrajectory y," are called departing. In the case when w(v) # @ but w(v) N
.5 = 0 the point v and the semitrajectory y,! are called asymptotic. If w(v)Ny,t #
@, then the point v and the semitrajectory y, are called Poisson stable. [

The simplest examples of Poisson stable trajectories are stationary points and
periodic trajectories.
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Exercise 1.4.10. Prove the following statements.

(A) The point v and the semitrajectory y," are Poisson stable if and only if there
exists z, > Osuch that y/* C w(v).If w(v) is strictly invariant and the evolution
operator possesses the backward uniqueness property (S;u = S;v for some
t > 0 implies u = v), then we can take t, = 0.

(B) The set of all Poisson stable points is strictly invariant; i.e., (i) if v is Poisson
stable, then S;v is also Poisson stable for every ¢ > 0 and (ii) if S;v is Poisson
stable for some ¢ > 0, then v is Poisson stable.

The following theorem gives a topological criterion for the Poisson stability.

Theorem 1.4.11. Let (X,S;) be a dynamical system with continuous time. Then
the point v and the semitrajectory y,t are Poisson stable if and only if y, is not
homeomorphic to the semi-axis R.

Proof. Lety," be a Poisson stable semitrajectory which contains neither equilibrium
nor periodic orbit. In this case the mapping > ¥ (f) = S,v € y, is one-to-one and
continuous from R on y,F. However, the inverse mapping vl y.© > Ry is not
continuous. Indeed, there exists 7, > 0 such that v« = S;,v € w(v). Therefore, by
Proposition 1.3.3 we can find a sequence ¢, — 400 such that y, := S, v — v4 as
n — oo. In this case ¥~ (y,) = 1, goes to 400 and not to ¥~ (vy) = 4.

To continue let us assume that y," is homeomorphic to Ry and @ : y;5 > Ry is
the corresponding homeomorphism. Then the mapping G = @ o ¥ maps R onto
itself and is one-to-one and continuous. Thus, it is strictly increasing. This allows us
to show that G is a homeomorphism. Then ¥ = @~! o G is also a homeomorphism
as it is a composition of two homeomorphisms. Thus, y," cannot be Poisson stable.

Now assume that y, is not Poisson stable. In this case the mapping ¢ > (1) =
S;v € y,F remains one-to-one and continuous from R4 on yY . Moreover, the inverse
mapping ¥~ : y;F > Ry is also continuous. Indeed, if some sequence {x,} C y,
converges to some point x € y,5, then £, = ¥~!(x,) is bounded (otherwise x €
w(v)). Let 7 be a limiting point for {z,}. Then it is obvious that x = S;v. This
means that 7 = ¥~!(x). Thus, x, — x implies that ¥~ '(x,) — ¥~ (x);i.e., ¥isa
homeomorphism between y{ and R . This completes the proof. O

1.5 Recurrent properties of trajectories

We continue the study of qualitative properties of individual trajectories. Our main
goal in this section is to show what kinds of scenarios are possible in the dynamics
of individual trajectories. The realization of this or other types of recurrent behaviors
in a concrete system is not a simple task and lies beyond the general theory.
However (see NEMYTSKII/STEPANOV [171], SIBIRSKY [212] and the references
therein), all motions described below can be demonstrated in the Bebutov system
(see Example 1.1.5).
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1.5.1 Wandering and nonwandering points

We introduce the following concept (see BIRKHOFF [14]).

Definition 1.5.1 (Wandering and nonwandering points). Let S, be an evolution
operator on X. A point v € X and semitrajectory y, are said to be nonwandering
(in X) if for any #» € T4 and any neighborhood &'(v) C X of v there exists
a moment of time ¢ > t, such that (v) N §;0(v) # @. A point y € X and
semitrajectory yj’ are called wandering (in X) if they are not nonwandering;
i.e. there exists a number t, € Ty and a neighborhood &(y) C X such that
O@)NS;0(y) =@ forall t > t. L]

Exercise 1.5.2. The set of all wandering points is open and thus the set of all
nonwandering points is closed. (]

Proposition 1.5.3. The set of all nonwandering points is forward invariant.

Proof. By continuity of S, for any ¢ > 0 and t > 0 there exists § = §, > 0 such that
S Os(v) C Os(S,v), where O,(w) is the e-neighborhood of the point w. Therefore

ﬁS(STU) N Stﬁs(srv) o Srﬁé(v) n Srstﬁf?(v) DI [ﬁé’(v) N StﬁS(v)] .

The latter set is not empty provided Os(v) N S;0s5(v) # @. This implies the
conclusion. O

Exercise 1.5.4. Let D be a closed forward invariant set in X. The point v € D is
said to be nonwandering in D, if it is nonwandering for the restriction of S; on D
endowed with the induced topology. Prove that if v € D is nonwandering in D, then
v is nonwandering in X. n

Proposition 1.5.5. Every point from w(v) is nonwandering.

Proof. Let q € w(v) for some v € X. Then by Proposition 1.3.3, for any
neighborhood &(g) there exists w € y,t such that w € O(g). Since w(w) = w(v)
(see Exercise 1.3.1), we have g € w(w). Applying Proposition 1.3.3 again, we obtain
that for any 7, > 0 there exists ¢t > t, such that S;w € 0(q). O

Exercise 1.5.6. Assume that there exists a Lagrange stable trajectory y,. Then the
set of nonwandering points is nonempty. [

1.5.2 Center of attraction

Let S; be an evolution operator with either discrete or continuous time on some
complete metric space X. As in NEMYTSKII/STEPANOV [171] and SIBIRSKY [212],
we introduce some characteristics which describe the amount of time spent by the
trajectory near a given set.
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Let E be a Borel set in X and yg(x) be the corresponding characteristic function
(xe(x) = 1 forx € E and yg(x) = 0 for x € E). We define the time of occurrence
of the point v in the set E during the time interval [0, 7] by the formulas

T
t(v,T,E) = / xe(S;v)dt (the continuous time case, T = R)
0

and

T
(v, T,E) = Z xe(S,v) (the discrete time case, T = Z).

n=0

If the limit

P(E,v) = Tlim M

—+00 T

exists, then we call it the relative time spent by the trajectory starting in v in the
set E. It is also convenient to introduce lower P and upper P relative times by the
formulas

’ T’ E ™ 3 ) Tv E
P(E.v) = lim nf T(”—T) and B(E,v) = limsup - . )

T—>+o0 T—>+00

which exist for every Borel set E (due to the fact that 0 < 7 (v, T, E)/T < 1 for all
T > 0).

Exercise 1.5.7. Let P« (E) be either P(E, v) or_@(E, v). Show that (a) Py(E) <
P.(F) when E C F and (b) P(E U F) < P(E) + P(F). n

Exercise 1.5.8. Leto € R. Consider the one-dimensional dynamical system (X, S;)
with X = R and S,x = xe*’. Calculate the time of occurrence and the relative time
as functions of « for the set E = [—1, 1] and for every initial point v € R, v # 0.
Make sure that P(E,v) = 0if ¢ > 0 and P(E,v) = 1 when o < 0. u

Exercise 1.5.9 (Relative times for rotations). Let (R?,S,) be a dynamical system
in R? with evolution operator given (in the complex form) by the relation

S,(x + iy) = ' (x + iy) for x+iy € C =R+ iR.

Show that the relative time for the set E = {(x;y) : 0 < x < 400, |y| < h} has the
form

1/2, if x> + > < h%
P(E, (x;y)) =
%arcsin \/);‘T‘z ifx% + y2 > h2.
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The notion of a center of attraction for an individual trajectory plays an important
role in the study of asymptotic dynamics (see, e.g., SIBIRSKY [212] and the
references therein).

Definition 1.5.10 (Center of attraction). A forward invariant closed set V C X
is said to be a center of attraction for a semitrajectory y,” if we have that
P(O:(V),v) = 1 for any ¢ > 0, where J,(V) is an e-neighborhood of the set
V. If the set V does not contain a proper invariant subset with the same property,
then this set is called the minimal center of attraction. [

Exercise 1.5.11. Let (X, S;) be the dimensional dynamical system described in
Exercise 1.5.8. Show that in the case when « < 0 every interval [—§, B] is a center
of attraction for every point v € R and {0} is the minimal center of attraction. If
a > 0 the set R\ (—p, B) is a center of attraction for every point v # 0 and there is
no minimal center of attraction for this v. (]

The following result concerning the center of attraction was established in
SIBIRSKY [212].

Theorem 1.5.12. Let S, be an evolution operator in X and y,\ be a Lagrange stable
semitrajectory. Then the set

T, 0
W, =3xeX :limsupw

> 0 forevery$§ >0 (1.5.1)
T—+o0 T

is a nonempty closed set lying in the w-limit set w(v) such that

’ T» ﬁ& Wv
P(O:(W,),v) = Tlim T(U—T()) =1 foreverye > 0. (1.5.2)

—+00

The set W, is forward invariant. Moreover, W, is the minimal center of attraction
fory;f.
Proof. We split the proof into several steps.

Step 1: W, is nonempty. Indeed, let ¢ > 0 be fixed and

I\ O(W,), if W, # 0;
K=3"% .
Vo s itw, =0.

If K = @, we obviously have that W, # 0. Let K # @. For every g € K we have
that ¢ ¢ W, and thus there exists § = §, > 0 such that

T.0
P(0(@).0) = lim “”—M =0 foreveryq € K. (1.5.3)
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Since K is compact, there exists a finite collection {¢; : i = 1,...,m} C K such
that K C UL, 05, (q;). Therefore, by Exercise 1.5.7 it follows from (1.5.3) that
P(K,v) = 0. On the other hand, we obviously have that P(?j ,v) = 1. Thus K

is a proper subset of 7;” and thus W, # @.
Step 2: Relation (1.5.2) holds. Indeed,

yIc (¥ \K)UK C 0.(W,) UK.
Thus 7(v, T, 7;“) <t(v,T,O0,(Wy)) + t(v, T, K) and hence

TV T, O.(W,

T—o00 T—00 T

This implies (1.5.2).

Step 3: W, belongs to w(v). Indeed, let ¢ ¢ w(v). By Theorem 1.4.5, w(v)
is a compact set. Therefore, there exist a neighborhood &,(q) of ¢ and a
neighborhood &, (w(v)) of the set w(v) such that €, (q) N O, (w(v)) = @. By
Theorem 1.4.5, S;v converges to w(v). Thus S;v € O,(w(v)) for all ¢ large
enough. This implies that ﬁ(ﬁ,,(q), v) = 0 and thus g € W,,.

Step 4: W, is closed. Let g € X \ W,,. Then there exists a neighborhood &, (g)
such that @(ﬁn (g9),v) = 0. Thus for any p € &,(q) there exists § > 0 such
that p € Os(p) C 0),(q) and hence P(Os(p).v) < @(ﬁn(q), v) = 0. Therefore,
Oy(q) C X\ W,. Thus W, is closed.

Step 5: W, is forward invariant. Let ¢ € W,.. By the continuity of S, for every
& > 0 there is § > 0 such that S;0s(q) C O.(S;q). Thus,

T
t(v, T, O:(S,q9)) > t(v,T, S, 05(q)) = / XS.05(q) (Srv)dr
0

(for the definiteness we consider the continuous time case only). One can see that
{r:Sv e 805(q)) D{r:S—v e Os5(q)}
in the case when r > t. Hence,

X5,650)(SrV) = X65()(Sr—v) forall r >t

Consequently,

T T
(0.1 0.50) = [ xSz [ xowSudr -
t 0

This implies that P(&,(S,q), v) > 0 for any & > 0. Thus W, is forward invariant.
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Step 6: W, is a minimal center of attraction. To see this, it is sufficient to prove
the following lemma.

Lemma 1.5.13. Let the hypotheses of Theorem 1.5.12 be in force. Then for every
closed set V with property P(O.(V),v) = 1, for any ¢ > 0 we have that W, C V.

Proof. Suppose g ¢ V. Then there exists n > 0 such that &, (q) C X\ €,,(V). Since
P(0,(V),v) = 1, we have P(0,(g), v) = 0, which means that g & W,. |

This completes the proof of Theorem 1.5.12. O

1.5.3 Almost recurrent and recurrent trajectories

In the class of nonwandering trajectories we can extract a class with stronger
recurrence properties (see NEMYTSKII/STEPANOV [171] and SIBIRSKY [212]).

Definition 1.5.14 (Almost recurrent trajectory). A semitrajectory y," uniformly
approximates a set @ C X if for any ¢ > O there exists T > 0 such that every

segment y7*+T approximates the set Q within &, i.e.,

QC O(y™*") forany 7 > 0.

A semitrajectory y," and the point v are said to be almost recurrent if y," uniformly
approximates the point v; i.e., for any & > O there exists 7 > 0 such that v €
O (yr™"T) for any T > 0. "

Exercise 1.5.15. Every almost recurrent point is nonwandering. =

Proposition 1.5.16. If y,© is an almost recurrent semitrajectory, then w(v) is not
empty, v € w(v), and hence y,} is Poisson stable.

Proof. By Definition 1.5.14 applied to € = 1/n we have that
dist(v, y;"”"'T") <1/n, n=1,2,...
for some sequence 7, > 0. Thus there exists #, € [n,n + T,], t, — 00, such that
dist(v, S;,v) <2/n forall n=1,2,....

Thus v = lim, .« Sy, v. Therefore, by Proposition 1.3.3, v € w(v). O
Proposition 1.5.17. The set of all almost recurrent points is forward invariant.
Proof. Let v be an almost recurrent point and ¢ = S,;v for some ¢ > 0. By the

continuity of S;, for every ¢ > 0 there is § > 0 such that

dist(q, S;p) < & provided dist(v,p) < 4. (1.5.4)
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On the other hand, since v is almost recurrent, there is 7 = T'(6) such that
dist(v, y7*t7) < § forevery t > 0.

Therefore (1.5.4) yields

dist(q, yq”JrT) = dist(¢q, S,y>" ") <& forevery t > 0.

Thus g = S,v is an almost recurrent point. O

As in BIRKHOFF [14] (see also NEMYTSKII/STEPANOV [171] and SIBIRSKY
[212]), we introduce the following subclass of almost recurrent motions.

Definition 1.5.18 (Recurrent trajectory). A semitrajectory y," and the point v are
said to be recurrent if y,\ uniformly approximates itself; i.e., for any & > 0 there

exists T > 0 such that y,7 C O.(y>**7T) for any > 0. "
Exercise 1.5.19. Every periodic or fixed point is recurrent. [
Exercise 1.5.20. The set of all recurrent points is forward invariant. [
Exercise 1.5.21. If a semitrajectory y,' is recurrent, then y, is bounded. [

Proposition 1.5.22. Let y,\ be a recurrent semitrajectory. Then this semitrajectory
v, is Lagrange stable.

Proof. By definition, for every ¢ > 0 there exists 7 = T, > 0 such that y, lies in

Or/a(y2T). Therefore y;t C ﬁg/z(W). Since K = yu'" is compact for every fixed
T > 0, there exists a finite £/2-net for K, i.e., a finite set {p, : n = 1,...,m} in K
such that

K C Uy_ Oy 2(pn)-

In this case y,- C UY_, O,(p,). Thus, for every ¢ > 0 there exists a finite e-net for
y,©. Therefore (see, e.g., DIEUDONNE [85, Section 3.17] or Proposition A.3.4 in the
Appendix), the set y, is compact. O

Below we use the notion of minimal set which we define as a nonempty forward
invariant closed set which does not contain a proper nonempty forward invariant
closed subset.

Proposition 1.5.23. Any compact minimal set X is strictly invariant.

Proof. Take v € X'. Then E C X. Thus the semitrajectory y," is Lagrange stable.
Hence by Proposition 1.4.6, w(v) is a strictly invariant subset of ¥'. By minimality
Y = w(v). Thus X is strictly invariant. O

Exercise 1.5.24. Show that every semitrajectory y T from a compact minimal set
Y is dense in X. L]

Now we return to the recurrence. In fact, the following properties of recurrent
trajectories were established in BIRKHOFF [14].
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Theorem 1.5.25 (Birkhoff). Let (X, S;) be a dynamical system. Then

* Any semitrajectory from a compact minimal set is recurrent.

o If we assume in addition that (t,x) — S;x is continuous from Ry x X into X (in
the continuous time case), then the closure of any recurrent semitrajectory is a
compact minimal set.

Proof. Let ¥ be a minimal set and y,7 C X be not recurrent. Then there exists &
such that for any 7 > 0 we have
v.i & O (yE* ") for some t = t(go, T) > 0.
Thus, there exist sequences {7, — +oo} and {p, = S, v} such that
y;r 4 @0()/]%7”) forall n=1,2,....
Therefore, we can find a sequence {g,} C y," such that

dist(g,, Sipn) > &9 forall t €[0,T,], n=1,2,.... (1.5.5)

Since X is compact, by an appropriate choice of subsequences, we can assume that
qnaqeﬁ and p, >pe€e X as n— oo.

Thus (1.5.5) implies that dist(g, S;p) > & for every ¢ > 0. Hence the closure E of

yp+ is a forward invariant (see Exercise 1.2.1(F)) proper closed subset of X', which
is impossible.

To prove the second part of Theorem 1.5.25 we first establish the following
lemma concerning almost recurrent semitrajectories.

Lemma 1.5.26. Assume that (t, x) — Six is continuous from Ry x X into X (in the
continuous time case). Let yv+ be an almost recurrent trajectory. Then the omega

limit set w(v) is minimal. By Proposition 1.5.16 this implies that E = w(v) and
thus is also minimal.

Proof. Let A be a closed forward invariant proper subset of w(v). Then v ¢ A.
Indeed, if v € A, then E C A and thus w(v) C A, which contradicts our assumption
concerning A. Let d = dist(v,A) and ¢ < d/2. By almost recurrence of v there
exists 7 > 0 such that

v E ﬁg(y;"+T) for every © > 0.
On the other hand, by Proposition 1.3.7 we have that
}/E'HT C O¢(A) forsome T > 0.

This implies that v € 0. (A). This is impossible because 2¢ < dist(v, A). O
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To conclude the proof of Theorem 1.5.25 we note that if ;" is recurrent, then by

Proposition 1.5.22 y, is Lagrange stable; i.e., y, is a compact set which is minimal
according to Lemma 1.5.26. O

1.5.4 Almost periodic trajectories

Definition 1.5.27. A full trajectory y = {u(r) : t € R} is said to be almost periodic
if for any & > 0 there exists T = T'(¢) > 0 such that any time interval of the length
T contains a number 7 such that dist(u(f + 7), u(t)) < ¢ for every t € R. u

Exercise 1.5.28. Show that equilibria and periodic orbits are almost periodic. =

Exercise 1.5.29. A full trajectory y = {u(r) : t € R} is almost periodic if and only
if for every ¢ > 0 there exists T such that

dist(u(r), y**T7) < ¢ forall 1,7 € R, (1.5.6)

where y** = {u(t) : a < t < b} denotes a segment of the trajectory y.
Moreover, (1.5.6) can be written in the form:

y C O.(y*"T) forevery t € R. (1.5.7)

We note that (1.5.7) implies that every almost periodic trajectory is recurrent not
only in the forward time direction (tr > 0), as described in Definition 1.5.18, but
also possesses a similar property in the backward (r < 0) time direction.

Proposition 1.5.30. Let y = {u(r) : t € R} be an almost periodic trajectory.
Then

e The closurey of y is a compact set andy = w(y) = a(y).

e For every p € y there exists a full almost periodic trajectory y« = {w(t) : t €
R} C ¥ such that w(0) = p. Moreover, under the conditions of Lemma 1.5.26 by
the minimality property (see Lemma 1.5.26) we have yx = .

Proof. Tt follows from (1.5.7) that any semitrajectory ™1 is recurrent for every .
By Propositions 1.5.16 and 1.5.22, this implies that y is compact and y C w(y). It
follows from Exercise 1.3.6 that w(y) C y. Thus ¥ = w(y). Equality y = a(y)
follows by the same arguments as Propositions 1.5.16 and 1.5.22 applied to the
backward direction of time.

To prove the second statement we note that for every p € ¥y = w(y) there is a
sequence {z, — 400} such that u(t,) — p as n — oo. Since ¥ is compact and

wu(t) = u(t, +1) € y forevery t € R, (1.5.8)
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the sequence {z, = u(t, + m)} is relatively compact for every m € Z. Hence, by the
standard diagonal procedure there exist a sequence {n;} and elements w,, € X such
that wy = p and

u(ty, +m) — wy, as [ — oo and Siwy, = Wyt1, m € Z.

Therefore, there exists a full trajectory y. = {w(t) : t € R} C ¥ such that w(m) =
Wi, w(0) = p, and

u(ty, +1t) - w(t) as I - oo forevery t € R.

It follows from Definition 1.5.27 that for every ¢ > 0 there exists 7 such that for
every tx € R we can find t € [t«, t« + T] such that dist(u(t), u(t + 7)) < ¢ for all
t € R. Thus, substituting #,, 4 ¢ instead of ¢ yields

dist(u(t,, + 1), u(t,, +t+ 1)) <¢ forall reR, l€Zy.
Therefore, after the limit transition / — oo we obtain that
dist(w(t), w(t + 7)) < ¢ forall r € R.

Thus yx is almost periodic. O

For more details concerning recurrent and chaotic properties of individual tra-
jectories we refer to BIRKHOFF [14], GUCKENHEIMER/HOLMES [114], KATOK/
HASSELBLATT [132], NEMYTSKII/STEPANOV [171], SHARKOVSKY ET AL. [208],
SIBIRSKY [212] and the references therein.

1.6 Equilibria and Lyapunov stability

There are many sources which discuss the notion of Lyapunov stability; see the
monographs CODDINGTON/LEVINSON [75], HARTMAN [120], LEFSCHETZ [148],
SIBIRSKY [212], for instance. Our main goal in this section is to present the
result stating that this kind of stability for an equilibrium is equivalent to the
existence of some function with specific properties defined on a neighborhood of
this equilibrium.
We first recall the general concept of Lyapunov stability.

Definition 1.6.1 (Lyapunov stability). A point v and the semitrajectory y," are

called Lyapunov stable if for any ¢ > 0 there exists § > 0 such that dist(S;v, S;w) <
¢ for all > 0 and w € X with the property dist(v, w) < 8. n



1.6 Equilibria and Lyapunov stability 23

Specifying this definition for fixed points, we arrive at the following.

Definition 1.6.2 (Lyapunov stability of fixed points). A fixed point v is said to be
Lyapunov stable if for any & > 0 there exists § > 0 such that dist(v, S;w) < & for all
t > 0 and w € X with the property dist(v, w) < §. If, moreover, dist(v, S;w) — 0 as
t — 400, then v is said to be asymptotically Lyapunov stable.* [

Definition 1.6.3 (Local Lyapunov function). A non-negative real-valued function
V(x) defined on some neighborhood &, (v) of a fixed point v is called a (local)
Lyapunov function for the point v when the following conditions hold:

e V(w,) — 0if and only if w, — v as n — o0;
* if for some 7, > 0 and w € X we have that S;w € 0, (v) for all ¢ € [0, 7], then
V(Sw) < V(w) fort € [0, ts].
n

Exercise 1.6.4. Let vy be a Lyapunov stable fixed point. Show that

05>0U{)/v+ . diSt(U, Uo) < 8} = {1)0}

The following exercise shows that a local Lyapunov function is not unique.

Exercise 1.6.5. Assume that V(x) is a local Lyapunov function for v defined on
O,(v). Let f be a strictly increasing continuous scalar function defined on the
closure of range (V) = {V(x) : x € 0,(v)} and f(0) = 0. Show that W(x) =
f(V(x)) is also a local Lyapunov function. u

Theorem 1.6.6. A fixed point v € X is Lyapunov stable if and only if there exists a
local Lyapunov function for v.

Proof of Theorem 1.6.6. We use the same argument as in SIBIRSKY [212].

Let a fixed point v € X be Lyapunov stable and gy > 0. Then there exists a
Os,(v) such that S;x € O, (v) for all x € Os,(v). Thus, we can define a function V
by the formula

V(x) = sup dist(S;x,v) forall x € O, (v). (1.6.1)
=0

Let us prove that V(x) is a Lyapunov function for v.
By the stability of v, for any & > 0 there exists 0 < § < §y such that

dist(S,q,v) < e forall ¢+ > 0 provided dist(g,v) < 6. (1.6.2)

“There are examples showing that the property dist(v, S;w) — 0 as t — +o00 does not imply
the Lyapunov stability. See, e.g., TESCHL [217, p. 168] and also Example 1.9.6 with & = 0 in
Section 1.9.
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Thus, if w, — v as n — o0, then there exists ng such that dist(S;w,, v) < & for all
t > 0and n > ny. Hence V(w,) — 0 as n — oo.
By (1.6.1) we have that

dist(w,, v) < sup dist(S;w,,v) = V(w,)

>0

and thus w,, — v as n — oo provided V(w,) — 0 as n — co.
The monotonicity of V(S,w) follows from the semigroup property of S,. Indeed,
we have that

V(S;w) = sup dist(S;+,w, v) = sup dist(S,w, v) < sup dist(S;x,v) = V(w).

>0 >t >0

Now we assume that there exists a local Lyapunov function V(x) for a fixed point
v € X which is defined on &, (v). We take ¢ < 1 and set

A =inf{V(x) : ¢ <dist(x,v) < n}.

By the first requirement concerning V in Definition 1.6.3 we have that A > 0 and
there exists 0 < § < & such that V(x) < A provided dist(x,v) < §. Now we
show that for these ¢ and § the relation in (1.6.2) holds. Indeed, if (1.6.2) is not true
for some ¢ € Os(v), then by the continuity of 7 > S,q there exists t, > 0 such
that dist(S,q,v) < ¢ for all r € [0, t«) and dist(S,,q,v) = &, which implies that
V(S:.q) = A. However, by the second requirement in Definition 1.6.3 we have that
V(S:.q) < V(q) < A. Thus, we arrive at a contradiction.

This completes the proof of Theorem 1.6.6. O

Theorem 1.6.7. Let v € X be a fixed point of some dynamical system (X, S;). Then
v is asymptotically Lyapunov stable if and only if there exists a local Lyapunov
Sfunction for v on 0,(v) possessing the property

V(Sw) — 0 as t — +oo provided Siw € 0y, (v) forall t> 0. (1.6.3)

Proof. If v is asymptotically Lyapunov stable, then by Theorem 1.6.6 there exists
a Lyapunov function V(x) for v. We have that S;w — v for all w from some
neighborhood of v. By the first property in Definition 1.6.3 this implies (1.6.3).
Suppose that there exists a Lyapunov function V(x) possessing property (1.6.3).
Then by Theorem 1.6.6, v is a Lyapunov stable fixed point. This means that for any
0 < & < n there exists § > 0 such that dist(v,S,w) < eforallt > Oandw € X
with the property dist(v, w) < §. In this case we can apply (1.6.3) to conclude that
V(S;w) — 0 ast — +oo. Thus, the first property in Definition 1.6.3 yields that
Syw — 0. Hence, v is asymptotically Lyapunov stable. O
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1.7 Complete theory of 1D continuous systems

Now we describe all possible scenarios in one-dimensional systems with continuous
time. We start with several simple observations by including them in the following
exercises.

Exercise 1.7.1. Describe the dynamics in the models generated by the following
equations: (a) X = x, (b) x = —x, (¢) x = |x|, (d) X = 1. Show that the corresponding
dynamical systems cannot be topologically equivalent. [

Exercise 1.7.2. Any continuous dynamical system (S;, R) on R is monotone, i.e.,
ifx <y, then S;x < S;yforallt € Ry. [

Exercise 1.7.3. Show that a continuous dynamical system on R cannot contain
nontrivial periodic orbits. (]

Exercise 1.7.4. Show that any semitrajectory y4+ = {Sx : t € R4} of a continuous
dynamical system on R is a graph of a monotone function, i.e., f > S;x is either
non-decreasing or non-increasing. [

Exercise 1.7.5. Consider the Cauchy problem
i) = —x(0), x(t) = xo.

(A) Show that this equation generates the dynamical system (R, S;) with the
evolution operator S; given by the formula

Sexo = xo(1 4+ 263) 72, x € R.

(B) Make sure that there are no nonzero semitrajectories which can be extended to
a full trajectory.

(C) Show that the zero equilibrium is asymptotically Lyapunov stable.

(D) Show that the formula in (1.6.1) gives us a Lyapunov function of the form
V(x) = |x| for the zero equilibrium. Thus by Exercise 1.6.5, V; (x) = |x|* is
also a Lyapunov function for every A > 0.

]

We can say more about 1D systems on R in the case when the evolution operator
is invertible; i.e., S; is a one-parameter continuous group of continuous mapping. We
call this system a dynamical system with continuous reversible time. In this case any
point x belongs to some full trajectory (cf. Exercise 1.7.5).

We start with the following simple observations.

Exercise 1.7.6. Let (R, S,) be a dynamical system on the real line R with contin-
uous reversible time. Assume that the system has no equilibrium points. Show that
any full trajectory y = {S;x : ¢ € R} is a graph of a strictly monotone function with
the range R. =
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Exercise 1.7.7. Let (R, S;) and (R, S;) be two dynamical systems on the real line
R with continuous reversible time. Assume that both systems have no equilibrium
points. Show that these systems are topologically equivalent. Hint: Use the result
of Exercise 1.7.6 and show that the mapping S,0 — S,0 gives the desired
homeomorphism. =

This exercise means that in the absence of equilibria any system on R with
continuous reversible time is topologically equivalent with the system of right shifts
on the real line: S;x = x+ ¢, x,t € R.

Since the set .4 of equilibrium points for (R, S;) is closed (see Exercise 1.2.3),
we have that

R\ A4 = U(a;, b;), forsome a;,b; € {—oo} U A U {+o00}.
Every interval (a;, b;) is called adjacent to 4.

Exercise 1.7.8. Let (R, S;) be a dynamical system on R. Show that any adjacent
interval (a, b) to .4 is a strictly invariant set. Moreover, if (R, S;) has continuous
reversible time, then # — S,x is a strictly monotone continuous mapping of R onto
(a, b) for each x € (a, b). u

In the following theorem it is important to bear in mind that any homeomorphism
of real line R! onto itself is represented by a strictly monotone function.

Theorem 1.7.9. Let (R, S,) and (R, S;) be two dynamical systems on the real line
R with continuous reversible time. We denote by A~ and N the corresponding sets
of equilibrium points (one/both of them can be empty). These systems are conjugate
if and only if there exists a homeomorphism ¥ on R such that Wy (N) = N and
the directions of motions on the corresponding intervals adjacent to AN and N are
compatible (i.e., they coincide if ¥ (x) increases and are oppositely directed if ¥ (x)
decreases).

Proof. We need only to prove the sufficient part. For this we use the same argument
as in SIBIRSKY [212].

Let ¥ be a homeomorphism with the properties formulated in the theorem. We
construct a conjugate mapping 4 as follows. If x € 47, we set A(x) = ¥ (x). Then
inside every adjacent interval .# = (a, b) for .4 we fix a point x,5. The end points
of this interval are mapped into end points of some adjacent interval  for N . We
fix a point X, inside #. Now we define the mapping & on (a, b) as

h(Sxam) = Sixa forall t e R.

One can see that the mapping we have defined is a homeomorphism with the
properties

h(S;x) = S;h(x) forall x,reR.

We also have the following assertion.
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Theorem 1.7.10. Every dynamical system (R, S;) with continuous reversible time
is conjugate with a system generated by some ordinary differential equation.

Proof. We use the argument given in SIBIRSKY [212].
Let us set f(x) = O for every x € 4. Then inside every adjacent interval .¢ =
(a, b) for .4 we fix a point x,, and denote

f(x) = (x—a)(x — b)sign [x,p — S1xwp], x € (a,b).
If a = —oo we take
f(x) = (x—b)sign [xep — S1xap], x € (a,b).

We perform this similarly in the case b = oco. One can see that the equation x = f(x)
generates a dynamical system with continuous reversible time. By Theorem 1.7.9
this system is topologically equivalent to (S;, R). O

We do not know whether a similar result holds in higher dimensions.
Exercise 1.7.11. Assume that 1D dynamical systems (R,S;) and (R,S,) with

reversible time have finite numbers of equilibria

N ={x<xp<..<xy} and AN ={X <Xy <...<ZXy}

We also denote xo = Xp = —oo and xy+1 = Xj,; = +oo. Show that R,S;)
and (R, S,) are equivalent if N = N and the motions of S, and §t~on the intervals
(x;, xi+1) and (X;, X;+1) have the same directions forall i = 0, ..., N. n

The following exercise demonstrates that the condition of time reversibility is
important in Theorem 1.7.9 and Exercise 1.7.11.

Exercise 1.7.12. Show that the system (R, S;) considered in Exercise 1.7.5 is not

equivalent to the system generated by the equation x = —x. Hint: The equivalence
would imply that in the system discussed in Exercise 1.7.5 every point belongs to a
full trajectory. u

The following property of 1D systems makes it possible to study their dynamics in
detail.

Exercise 1.7.13 (Comparison principle for 1D ODE). Let x(¢) and y(¢) be solu-
tions to the 1D equations

X =f(x) and y = g(y)
on some interval [0, T) with f, g € C'(R). Assume that

x(0) = y(0) and f(x(r)) = g(x(1)) for 7 €[0,7).
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Prove that x(¢) > y(¢) for t € [0, T). Hint: Show that z(¢#) = x(¢) — y(¢) satisfies the
linear equation z = a(t)z(¢) + b(t) for some non-negative b(t). n

As an application of the comparison principle we suggest the following exercise.

Exercise 1.7.14 (Lyapunov exponent). Let (R, S;) be a system generated by some
1D equation

i=f(x), t>0, x(0)=x€R, (1.7.1)

where f € C'(R). Let x, be an (isolated) equilibrium and f’(x4) < 0. Show that x,
is asymptotically stable for (R, S;) and there exists a vicinity s(x,) such that

. In |S;x|
lim ——

t—+00 t

= f'(x4) forall x € Os(xy). (1.7.2)

Hint: Use the comparison principle for x = f(x) and the linear equation

=1 (ex) £ ely

near the equilibrium x.. We note that the limit on the left-hand side of (1.7.2) is
called the Lyapunov exponent and provides the exact rate of the convergence to the
stable equilibrium x,. [

We conclude this section with several facts related to non-uniqueness and blow-up
phenomena for 1D ODE:s.

We start with the standard non-uniqueness example (see, e.g., HARTMAN [120]),
which shows that the uniqueness statement for the 1D ODE in (1.7.1) cannot be true
without the Lipschitz assumption for f.

Example 1.7.15. The functions x(f) = #*> and x(f) = 0 solve the Cauchy problem
inR: x = 2./|x|, # > 0 and x(0) = 0. L]

In relation to this example, it is interesting to mention the following simple assertion
concerning uniqueness for 1D equations.

Proposition 1.7.16. Let f : R — R be a continuous function. Then a Cauchy
problem

x=f(x), t>0, x(0) =x €R, (1.7.3)

has a unique (local) solution in a neighborhood of the point xy, provided

o either f is Lipschitz in some neighborhood of xy,
e orelsef(xg) #O.

Proof. We note that the existence of local solutions to (1.7.3) is well known (see,
e.g., CODDINGTON/LEVINSON [75] or HARTMAN [120] and also Theorem A.1.2
in the Appendix). The same theorem yields the uniqueness in the Lipschitz case.
Thus, we need to consider the case f(xg) # O only. In this case there is a
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neighborhood of the point x; such that 1/f(x) is continuous and preserves the sign.
This implies that every solution to (1.7.3) in this neighborhood satisfies the equation

" dE

%F(x(t)) =1 with F(x) = Nl

Moreover, x(f) solves (1.7.3) if and only if it solves the functional equation
F(x(f)) = t for all + > 0 small enough. Since F is strictly monotone near x,, we
have that x(f) = F~'(f) for small ¢+ > 0 and thus the local solution x(¢) is locally
unique. O

Remark 1.7.17. Proposition 1.7.16 implies that any solution x(¢) to the equation
considered in Example 1.7.15 is locally unique for every initial datum xy # O.
We note that this fact does not mean that any extension of x(f) outside a small
neighborhood of this x is also unique. For instance, the function

-(1-n%0=<r<1;
x(t) =140, l<t<a
(t—a)*, a<t<oo,

for every a > 1 solves the equation x = 2./|x|, ¢ > 0, with the initial datum
x(0) = —1. This solution is unique until it reaches the branching point x, = 0 at
the time ¢, = 1. [

The following example shows that the smoothness of the function f is not
sufficient for global existence. As can be seen from Exercise 1.7.20, the behavior
of the right-hand side f(x) as |x| — oo is responsible for this.

Exercise 1.7.18. Show that any solution x(#) to the following Cauchy problem:

x=x t>0, x(0) = xo € R,

has the form x(¢) = xo(1 — xo¢)~!, which blows up’ for each initial datum xy > 0 at
the time Ty = 1/xp. n

The model below demonstrates more complicated types of behaviors of local
solutions.

Exercise 1.7.19. Let A, x > 0, u € R. Show that any solution x(¢) to the problem:
X+ Ax+ pulx*x=0, r>0, x(0)=x €R, (1.7.4)

has the form

SThis means that |x(f)] — oo as t — T from the left.
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—1/x

x(t) = e Mxg [1 + %(1 - e‘“’) Ixol"] . (1.7.5)

Make sure that problem (1.7.4) has a global solution if and only if either u > 0 or
else i < 0and |p|A ™ xol* < 1.

Show that in the case A = 0 problem (1.7.4) has a global solution if and only

if either & > 0 or else © < 0 and xy = 0. Hint: In the limit A — 0 (1.7.5) gives

x(t) = xo [1 + poet|xo|<] V. .

To conclude this section, we mention the following result on global existence for
1D ODEs with a continuous right-hand side (see, e.g., CODDINGTON/LEVINSON

[75D.

Exercise 1.7.20. Let f be a continuous function on R. Then for every xy € R any
local solution to problem (1.7.3) can extended on the whole time semi-axis R,
provided there exists a continuous function ¥ (r) on R4 such that

® dr C~
y(r)

Hint: Apply the non-explosion criterion of Theorem A.1.2. [

VxeR: |[f®)|<¢¥(x]) and 36§>0: /
8

1.8 Possible types of qualitative behaviors in 2D systems

The theory of continuous 2D systems is much more complicated than 1D theory.
Nevertheless, due to the fact that trajectories in 2D systems separate the phase
space into two parts and cannot intersect each other, it is still possible to develop
a rather deep and complete theory of 2D continuous systems (see, e.g., the
monographs CODDINGTON/LEVINSON [75], HARTMAN [120], LEFSCHETZ [148],
NEMYTSKII/STEPANOV [171] and also BAUTIN/LEONTOVICH [11], REISSING/
SANSONE/CONTI [189]). In this section we will discuss possible scenarios of
dynamical behavior in continuous systems on the plane R?.

1.8.1 General facts and Poincaré-Bendixson theory

We start with the following assertion, which gives a complete description of possible
structures of w-limit sets of individual trajectories (for the proof we refer to
CODDINGTON/LEVINSON [75], LEFSCHETZ [148], NEMYTSKII/STEPANOV
[171]).

Theorem 1.8.1. Let y*(v) = {Sv : t > 0} be a semitrajectory of a continuous
2D dynamical system (R?,S,). Assume that y*(v) is Lagrange stable (see Defini-
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tion 1.4.1). In this case the w-limit set w(v) is a compact connected strictly invariant
set (see Section 1.4). There are only two possibilities for this set:

o either w(v) is a cycle (periodic trajectory);

e or w(v) consists of some subset N, of the set N of equilibria and (possibly)
some set of full trajectories y = {u(t) : t € R} such that u(t) — N, ast — +o0
(this means that the a-limit a(y) and w-limit w(y) sets belong to N;).

If the set .4 of equilibria is finite, then under the conditions of Theorem 1.8.1
we have only one of the following possibilities:

e w(v) is a single equilibrium;

* w(v) is a single cycle;

* w(v) consists of a number of equilibrium points and full trajectories connecting
these points.

We illustrate these types of behaviors in the following exercises.

Exercise 1.8.2. Consider the systems in R? generated by the equations
X1 =—Ax;, X =—pxa, A,p>0.

Show that the equilibrium (0, 0) is the w-limit set for every semitrajectory of the
system. L]

Exercise 1.8.3. Let (R2,S,) be the system generated by the equations

X = —Bxy +x1 —x1(x] + x3),
X = Bxi + x2 — x2(x} + x3).

Show that in the case f # 0, the circle y = {(x1,x2) : x7 4+ x3 = 1} is the w-limit
set for every nonzero semitrajectory. If § = 0, then every point of this circle is
an equilibrium which is an w-limit set for some semitrajectory. Hint: Use the polar
coordinates (x; = @ cos ¢, x, = @ sin @) to simplify equations. [

Exercise 1.8.4 (see Chueshov [39], Chapter 1). Let us consider the following
quasi-Hamiltonian system in R?:

with H(p,q) = %pz + ¢* — ¢> and > 0. Show that these equations generate a
dynamical system in R? and the separatrix I" = {(¢,p) : H(p.q) = 0} is the
w-limit set for any trajectory starting in the domain {(¢,p) : H(p,q) > 0}. This set
I” consists of the equilibrium point (0, 0) and also two (homoclinic) trajectories

v+ =g+ (0).p+(®) : 1€ R*} and y_ = {(¢-(1).p—(1)) : t € R*}
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(mh
N

Fig. 1.2 w-limit set consisting of two homoclinics and unstable equilibrium

such that ¢4+ () > 0, g—(¥) < 0, and (g+(?),p+(t)) — (0,0) as t — =£oo. The
corresponding dynamics is shown in Figure 1.2. [

There are several important facts related to the Poincaré-Bendixson theory which
provides criteria for the existence of equilibria and periodic orbits. For instance,
Theorem 1.8.1 implies the following assertion.

Corollary 1.8.5. Let B be a bounded closed forward invariant set for (R?,S)).
Assume that B does not contain equilibria. Then there is a periodic orbit inside B.

Proof. Any point v € B is Lagrange stable in B. Thus w(v) lies in B and thus does
not contain equilibria. Therefore, by Theorem 1.8.1, w(v) is a cycle. O

We also mention the following result due to Bendixson (see the reference given in
CODDINGTON/LEVINSON [75]).

Theorem 1.8.6 (Bendixson). Let a 2D system (R?,S,) possess a periodic trajec-
tory y. Then there is at least one equilibrium inside the domain bounded by y.

Proof. Since y is a simple closed curve, then the domain D bounded by y is
homeomorphic to the unit disc. The set D is definitely forward invariant. Therefore,
we can apply Theorem 1.2.5. O

Theorem 1.8.6 gives us the following assertion.

Corollary 1.8.7. A simply connected domain D in R? does not contain periodic
orbits provided there are no equilibria inside D.

This corollary means that the situation of Corollary 1.8.5 can be realized in the case
when B is not simply connected only.
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1.8.2 Lower bounds for cycle periods

In spite of the several criteria mentioned above, the problem of existence of (non-
constant) periodic solutions of autonomous equations is much more difficult than
the existence of fixed points. An autonomous system does not contain any a priori
exact information about the period of a possible periodic solution. In this context it
is interesting to mention the following result due to YORKE [228], which provides
the lower bounds for possible periods.

Theorem 1.8.8 (Yorke, 1969). Any (nontrivial) periodic orbit of the equation x =
fx) (x € RY), where f is globally Lipschitz with the constant L on R?, d > 2, has
period T > 27 /L.

Exercise 1.8.9. Show that all nontrivial solutions of the system in R? generated by
X = —wxy, X = wx,
are periodic with the minimal period 7 = 27 /w. Thus, the estimate for the period

in Theorem 1.8.8 is sharp. =

The model borrowed from FARKAS [97] shows that without the global Lipschitz
property a system may possess orbits of arbitrary minimal period.

Exercise 1.8.10 (Farkas, [97]). Let « > 0. Show that for every T € (0, co) in the
system (R2, S;) generated by the equations

X1 = =] +1)% & =x0] +x)

there is a periodic orbit with minimal period 7. Hint: In the polar coordinates
(x] = 0cos @, x, = o sin @) the equations have the form ¢ = 0 and ¢ = 0**. [

The globally Lipschitz condition in Theorem 1.8.8 can be relaxed in the
following way.

Exercise 1.8.11. Assume that X = f(x) generates a dynamical system in R¢ which
possesses a (bounded) forward invariant set B. Show that there are no nontrivial
periodic solutions inside B with period less than 27 /Lg, where Lg is the Lipschitz
constant for f on B. [

Proof of Theorem 1.8.8. We follow the line of the argument given in the short
note BUSENBERG/FISHER/MARTELLI [21] and rely on the following Poincaré-
Wirtinger inequality:

T TZ T
/lu(t)|2dt§F/ |ie(r) |*dt (1.8.1)
0 7= Jo
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for every scalar T-periodic function possessing the properties
T
uel0,7), / u(t)dt = 0.
0

The inequality in (1.8.1) easily follows from calculations with Fourier series.
Let x(t) = (x1(2), ...x4(2)), be a periodic orbit with the (minimal) period 7. Let

v(®) = (Vi(0), ..., va(1)) = x(1) = x(t = 7)

with a fixed t > 0. By periodicity we obviously have that

T

/ vi(s)ds =0 foreveryt >0, i=1,...,d.
0
Therefore by (1.8.1),
T T2 T T2 T
| wora < [ tsora = = [ o) e - o)
0 47'[2 0 4-77.'2 0

This implies that

T ) d . X
/0 O =3 /0 os(0) Pl

L2T?
472

272

T ) L T 5
1 —x(t— dt = — D gadt.
[ 0 st =0t = 5 [k

=

If LT < 27, then v(¢) = x(¢t) —x(t—1t) = O for ¢ € [0, T] and for every t > 0. Thus
x(¢) is a stationary point. O

We note that the argument above does not use the fact that the equation is
finite-dimensional and can be applied to ODEs with globally Lipschitz right-
hand sides in arbitrary Hilbert spaces BUSENBERG/FISHER/MARTELLI [21]. Some
results are available in Banach spaces; see BUSENBERG/FISHER/MARTELLI [21]
and also the recent paper NIEUWENHUIS/ROBINSON/STEINERBERGER [172] and
the references therein. The same idea was already applied in ROBINSON [196]
and ROBINSON/VIDAL-LOPEZ [197, 198] to obtain lower bounds for periods of
solutions to some classes of semilinear parabolic equations.

1.8.3 Example of w-limit set with three unstable equilibria

To give an additional illustration of possible structures of w-limit sets in 2D systems
we consider the following coupled equations:
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x=(x—A)y, (1.8.2a)
y=Ax+ %(x2 -y, (1.8.2b)

with A > 0. This system was considered before in GUCKENHEIMER/HOLMES [114,
Section 18].

One can see that for any initial data (xo;yo) € R? the system in (1.8.2) has a
unique local solution; i.e., it generates a local semiflow.

Exercise 1.8.12. Show that the system in (1.8.2) can be written in the Hamiltonian
form:

. O0H | oH
X = —, = -,
ay Y ox
where
A 1 X 2
H(xy) = — = (2 + 12 T2 X 233
(x,y) 2(x +y)+2(xy 3)-{-3
P Y B )
2 3 '
Thus H(x, y) is a constant on solutions. u

Exercise 1.8.13. Show that
Yo = (0:0), Y; = (=24:0), Yi = (A;£+/31)

are equilibria for (1.8.2). These points can be seen in Figure 1.3. [

Exercise 1.8.14. Using (1.8.2a) show that the value z(f) = x(f) — A preserves its
sign in time evolution. The same is true for z+ (f) = y(f) = % (x(1)+21). Moreover,

the lines (see Figure 1.3)

Iy ={x—A =0} and Iiz{y:t%(x—i-Z/\):O}

are invariant sets. Hint: Using the Hamiltonian representation with H written as
H(x,y) = %(x — A)z+z— one can see that z4 satisfies the equation

2y = 5D~ 1/V3 -2

and a similar relation for z_. n
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Fig. 1.3 Qualitative dynamics of quasi-Hamiltonian 2D system (1.8.3)

Exercise 1.8.15. On the vertical line /[y = {x = A} the dynamics of system (1.8.2)
is described by the equation

3 1
y= 512 - §y2, t>0, y(0)=yo.

Describe the qualitative behavior of trajectories on Iy. Make sure that solutions
starting with yo < —+/3 blow up. [

Exercise 1.8.16. Describe the dynamics on the lines I+ = {y & «/Lg (x+21) =0}
Hint: See Figure 1.3. L]

Exercise 1.8.17. Using the result of Exercise 1.8.14, make sure that the triangle
2 1 2
A= {(x;y) D 2A<x <A, oy < §(x+2/\) }
and its closure A are forward invariant sets and the (local) semiflow restricted on A

is global. The triangle A is shown in Figure 1.3. (]

Now we consider a quasi-Hamiltonian modification of system (1.8.2) of the form

oM OH . OH _OH 183)
dy Mo Y= 7o T H dy’ o
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where H(x, y) is the same as in Exercise 1.8.12 and p > 0 is a parameter. It is clear
that equations (1.8.3) generate a local semiflow. Moreover, one can see that

* The points Yy, Y1, and Y+ defined in Exercise 1.8.13 are equilibria for the quasi-
Hamiltonian system in (1.8.3).

* The lines Iy and I+ defined in Exercise 1.8.14 are invariant with respect to the
semiflow generated by (1.8.3).

¢ The triangle A (see Exercise 1.8.17) and its closure A are invariant with respect
to the dynamics governed by (1.8.3). Moreover, for every initial data (xo; yo) €
A there exists a global solution to (1.8.3). Thus, equations (1.8.3) generate a
dynamical system in the triangle A.

Using the obvious relation

d, | (P > (HY’

= (5) + (%)
on solutions to (1.8.3), one can also see that for & > 0 the w-limit set for every
nonzero point inside A is the boundary dA, which consists of three (unstable)
equilibria (vertexes of the triangle) and connecting them full trajectories (sides of
the triangle).® The qualitative behavior of the system generated by (1.8.3) is shown

in Figure 1.3. For other illustrations of possible dynamics in 2D systems we refer to
the 2D examples in Section 1.9.

1.8.4 On 2D systems generated by a second order equation

An important class of 2D systems arises from the Newton laws of dynamics of a
material point which lead to the following equation:

X =f(x,5c), X|,=() = X0, .5C|,=0 = Xi.
We can write this equation as a first order 2D system
x=y, y=f(xy), xl=0o=x0. Y=o = x1,
and apply the standard Peano-Carathéodory result (see Theorem A.1.2 in the
Appendix) to guarantee the local existence of solutions when f(x, y) is a continuous
function. To show that the model above generates a dynamical system, we need

additional hypotheses. We discuss these conditions, concentrating mainly on models
which are important from an applications point of view.

In the Hamiltonian case (x = O0) every nonzero trajectory y starting in A is periodic, i.e.,
y =o(y) = ay).
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Example 1.8.18 (Lienard equation, I). We start with a model with a state-dependent
damping coefficient. Let k(x) be a locally Lipschitz function on R and U(x) € C'(R)
with locally Lipschitz derivative U’(x). Assume also that

inf k(x) > —oco and inf U(x) > —o0.
x€R x€R

One can see that the problem
X4+ k@)x+U'x) =0, xl=0=x0, Xli=0=x1, (1.83.4)

has a unique solution x(f) which generates a dynamical system on R? with the
evolution operator S, given by the formula S;(xo; x;) = (x(¢); -x(¢)). Moreover, any
solution satisfies the energy balance equation

ljc(z)z + U(x(t) + / tk(x(t)))'c(t)zdt = 1x% +U(x), t>0.
2 0 2

Remark 1.8.19. Some authors (see, e.g., LEFSCHETZ [148]) called (1.8.4) the
Cartwright-Littlewood equation. In the case when

k(x) = —ko(1 —x2), ko > 0, and U(x) = gxz, a>0,
the model in (1.8.4) is called the van der Pol equation. If
a, b, ¢
k(x) = ko >0 and U(x) = Zx +§x +§x, a>0,b,ceR,

then (1.8.4) is called the Duffing equation. [

Example 1.8.20 (Lienard equation, II). In this model we deal with nonlinear
damping depending on velocity only. Let U(x) € C'(R) with locally Lipschitz
derivative U’(x) and inf,er U(x) > —oo. The problem

¥+gx) + UK =0, x|=0=x0, X|i=0 =x (1.8.5)

generates a dynamical system on R? if one of the following conditions holds:

(@) g(s) € C(R) and there exists ¢ € R4 such that g(s) + as is not decreasing;
(b) g(s) is locally Lipschitz and g(s)s > 0.

This result can be derived from Theorem A.1.2 and relies on the corresponding
energy balance relation which allows us to show the absence of blow-up phenomena.
]
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Exercise 1.8.21. Let (R2,S;) be a dynamical system generated by the Duffing
equation

i+x—x=0.

Calculate the relative times (see the definition in Section 1.5.2) which different
trajectories spend near (0; 0). =

Exercise 1.8.22 (Krasovskii example [136]). Consider the equation
F+k(+)i+x=0
with the damping coefficient function k(r) possessing the properties

k € Lipipc(R+), rglgr k(r) > —oo.

Show that (i) this equation generates a dynamical system in R? and (ii) for each root
0o of the function k(r) the set {(x;%) : x> + i> = Q%} is a periodic orbit of period
T =2m. [

1.9 Bifurcation theory by means of examples

If we deal with a family of dynamical systems (S}', X) depending on the param-
eter u, in principle, we can observe different types of qualitative behaviors
for different values of the parameter u. Moreover, it is well known (see, e.g.,
GUCKENHEIMER/HOLMES [114], HALE/KOCAK [117], KUZNETSOV [139]) that
small changes in the parameters can produce large changes in the qualitative
behavior of trajectories. According to KUZNETSOV [139] the appearance of a
topologically nonequivalent dynamical behavior under variation of parameters is
called a bifurcation and the goal of bifurcation theory is to produce bifurcation
diagrams that divide the parameter space into regions of topologically equivalent
systems.

In this section by means of examples we demonstrate several types of bifur-
cations (for a general bifurcation theory we refer to GUCKENHEIMER/HOLMES
[114], HALE/KOCAK [117], KUZNETSOV [139]) and the references therein). The
examples presented here have the dimension 1 or 2. However, all of them can
be used to produce similar pictures of qualitative behavior of infinite-dimensional
(PDE) models; see the discussion in Section 4.2.5.

Example 1.9.1 (Pitchfork bifurcation). We consider a 1D system generated by the
equation

X = px—x.
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Fig. 1.4 Pitchfork bifurcation: loss of stability of the zero equilibrium

For i < 0 the system has one stable fixed point x = 0. This point becomes unstable
and splits off two stable fixed points +,/it when p > 0. The point x = 0 remains
fixed but becomes unstable. For each 1 € R this qualitative behavior is presented
in Figure 1.4. The bold line and curve show equilibria. The arrows demonstrate
dynamics of trajectories for each u € R. (]

Example 1.9.2 (Transcritical bifurcation). The system generated by

L px =247
i=—
14+ x2

has two fixed points for © # 0 which collide and exchange stability at u = 0
(x = 0 is stable when u < 0 and unstable for u > 0). The qualitative behavior
is presented in Figure 1.5. The bold lines are equilibria. The arrows demonstrate
stability/instability effects for a fixed u. [

Example 1.9.3 (Saddle-node (fold) bifurcation). ~We consider on R? a dynamical
system generated by the equations
p—x?

=BT
1+ x?

y=—y. (1.9.1)

We observe the following bifurcation behavior (see Figure 1.6):

¢ i < 0: there are no equilibrium points (for every initial data (xo; yo) and we have
that S;(xo; yo) = (x(7); y(¢)) tends to (—o0;0) as t — 00), see Figure 1.6(a).

¢ u = 0: a non-hyperbolic unstable equilibrium arises at (0; 0) and we have the
following picture (Figure 1.6(b)):

— if xp < 0, then S;(x0; yo) = (x(¢); y(¢)) tends to (—o0; 0) as t — o0;
— if xp > 0, then S;(xo; yo) — (0;0) as t — oo.
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%

Fig. 1.5 Transcritical bifurcations: exchange of stability

* 1 > 0: we have two equilibrium points (& ,//t: 0) and the following picture:

- ifxo > /I, then S;(xo; y0) = (x(¢); y(f)) tends to (,/11; 0) as t — oo;
— if |xo| < /I, then S;(xo; y0) = (/11;0) as t — o0;
- ifxo < — /1, then S;(xo;y0) — (—00;0) as t — 0.

Hence we have two equilibria; one of them is a stable node and another is a saddle
(there are both stable and unstable directions), see Figure 1.6(c).

Thus, when p becomes positive we observe a generation of two equilibria connected

by a heteroclinic trajectory from the regular picture (without any rest points). [

Example 1.9.4 (Andronov-Hopf bifurcation). ~ We consider a family (S!',R?) of
dynamical systems generated by the following equations:

S o 24,2
%)‘61 = Ux; — X2 Xl(X12+X22), (1.9.2)
X = x1 + px2 — x2(x7 + x3)
In polar coordinates (x; = pcos¢g, x = psing) the problem in (1.9.2) can be
written as
s _ 2
{ 0 =o(u—0". (19.3)
o =1

Therefore, we observe the following bifurcation picture:

e u < 0: unique exponentially stable equilibrium (focus), see Figure 1.7(a);
e u = 0: unique (non-exponential) stable focus, see Figure 1.7(a);
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A

X

RS
I
o

///

A A

u>0

Fig. 1.6 Saddle-node bifurcation, generation of two equilibria from regular picture: (a) no
equilibria, (b) saddle-node equilibrium, (c) saddle (—ry; 0) and node (r,,; 0) equilibria, r, = /u

e 1w > 0: unstable focus at zero and stable periodic orbit (the circle with center at
0 and radius r, = ,/p). The dynamics is shown in Figure 1.7(b).

Thus, a periodic orbit arises from zero equilibria. The period does not depend on w.
The size of the orbit is small for small & > 0. We observe the “soft” regime of
the cycle appearance. This means (see, e.g., KUZNETSOV [139]) that small changes
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X5 X5

(o)

\t/ X X

(@) <0 (b) >0

Fig. 1.7 Andronov-Hopf bifurcation: generation of periodic orbit from equilibrium: (a) stable
focus, (b) unstable focus and stable periodic orbit, r, = /it

of the bifurcation parameter u cannot produce large changes in the dynamics of an
individual trajectory whose initial data do not depend on w. In other words, if we
change u back and forth, the dynamics of the trajectories changes continuously. m

All bifurcations above are local. They can be detected by looking at small
neighborhoods of equilibrium (fixed) points. Now we give two examples of global
(nonlocal) bifurcations.

Example 1.9.5 (Generation of periodic orbit from infinity). This is a small
modification of the system presented in Example 1.9.4. We consider the following
equations:

X1 =x1 — X — pxy (6 + x3),

: (1.9.4)
X = x4 X — px(x? + x3)

In polar coordinates this problem can be written as
o=o(l-pe’). ¢=1

Therefore, we observe the following bifurcation picture (see Figure 1.8):

e 1 < 0: unique unstable focus, Figure 1.8(a);
e 1 > 0: unstable focus at zero and stable periodic orbit (the circle with center at
0 and radius 1/ /1), Figure 1.8(b).

Thus, a periodic orbit arises from infinity. The size of the orbit goes to infinity as
M — 0. In this limit the orbit disappears at infinity. [
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Fig. 1.8 Generation of periodic orbit from infinity: (a) unstable focus, (b) unstable focus and stable
cycle, r, =1/ /1

Example 1.9.6 (Saddle-node homoclinic bifurcation).  As in KUZNETSOV [139,
p. 59] we consider following equations on the plane R?:

{561:xl(l—x%—x%)—xz(l—i—,u—i-x]), (1.9.5)

G =xi(l+ p+x) +x0(l —x —x) .

In polar coordinates (x; = o cos ¢, x, = @ sin ¢) the problem in (1.9.5) has the form

- )
{9_ o(l =0, (1.9.6)
=1+ pu+ocosg.

For all & € R the unit circle {(o; ¢) : ¢ = 1} is an invariant set of the corresponding
dynamical system (Si',R?). At & = 0, there is a (non-hyperbolic) equilibrium
point of the system: x* = (0*;¢*)) = (1;x). For small positive values of u
the equilibrium on the circle disappears (Figure 1.9(c)), while for small negative
W it splits into a saddle and a node connected by (heteroclinic) orbits (saddle-
node bifurcation on the circle); see Figure 1.9(a). Thus, for £ > 0 a stable limit
cycle appears in the system coinciding with the unit circle. This circle is always an
invariant set in the system, but for © < 0 it contains equilibria and thus does not
represent a periodic orbit. So we observe a generation of a periodic orbit. We note
that for 4 = O there is exactly one orbit that is homoclinic to the non-hyperbolic
equilibrium x*. Thus, we observe a generation of a periodic orbit from a homoclinic
trajectory. We also note that this example with © = 0 demonstrates the effect that a
globally attracting equilibrium can be unstable. =
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Fig. 1.9 Saddle-node homoclinic bifurcation, generation of periodic orbit from saddle and node
via homoclinic trajectory: (a) saddle and node with connecting heteroclinic orbits, (b) non-
hyperbolic equilibrium on circle with homoclinic orbit, (c) unstable focus and stable periodic orbit

For the theory and further examples of possible bifurcation scenarios we refer
to GUCKENHEIMER/HOLMES [114], HALE/KOCAK [117], KUZNETSOV [139] and
the references therein. As we have already mentioned, it is well to bear in mind that
all scenarios represented by ODE systems can be realized in evolution PDE models.
See the discussion in Section 4.2.5.



Chapter 2
General Facts on Dissipative Systems

In this chapter we deal with the qualitative theory pertinent to (infinite-dimensional)
dissipative systems. Our presentation is based mainly on some new criteria for
asymptotic compactness which rely on a certain weak form of quasi-stability. We
also emphasize a role of gradient systems for the existence of global attractors.
A similar approach was discussed earlier in CHUESHOV/LASIECKA [56, 58] in a
short form without many details. For other possible approaches to the topic we
refer to the monographs BABIN/VISHIK [9], CHUESHOV [39], HALE [116], HENRY
[123], LADYZHENSKAYA [142], ROBINSON [195], SELL/YOU [206], TEMAM [216]
and the surveys BABIN [7] and RAUGEL [188].

Our main focus is on questions such as the existence of global attractors and
their structure. We present ideas and methods which are applicable to the systems
generated by nonlinear partial differential equations. We discuss these applications
in Chapters 4-6 in detail for several PDE classes. In the current chapter we
illustrate general results on long-time dynamics by means of finite-dimensional
ODE examples only. Questions related to dimensions and smoothness of attractors
for infinite-dimensional systems are considered in Chapter 3.

2.1 Dissipative dynamical systems

The main topic of this book is that of dissipative dynamical systems. As already
mentioned in the Introduction, from a physical point of view, dissipative systems are
characterized by relocation and dissipation of energy. This means that the energy of
higher modes is dissipated and relocated to low modes. The interaction of these two
mechanisms can lead to the appearance of complicated limit regimes and structures
in the system that are stable in a suitable sense.

© Springer International Publishing Switzerland 2015 47
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We start with a description of several concepts which present both dissipation
and relocation on a formal level.

Definition 2.1.1. Let S; be an evolution operator on a complete metric space X and
(X, S;) be the corresponding dynamical system.

* Aclosed set B C X is said to be absorbing for S, if for any bounded set D C X
there exists 7y(D) such that S,D C B for all t > (D).

e S, is said to be (bounded) dissipative if it possesses a bounded absorbing set B. If
the phase space X of a dissipative evolution operator S; is a Banach space, then
the radius of a ball containing an absorbing set is called a radius of dissipativity
of ;.

* S, is said to be point dissipative if there exists a bounded set By C X such that for
any x € X there is fy(x) such that S;x € B for all r > #((x).

We apply the same terminology to the corresponding dynamical system (X, S;). =

The following criterion of dissipativity covers many cases which are important from
an applications point of view.

Theorem 2.1.2 (Criterion of dissipativity). Let (X, S;) be a continuous dynamical
system in some Banach space X. Assume that

* there exists a continuous function U(x) on X possessing the properties

P1(llxl) = U(x) = ¢2(xl). VxeX, (2.1.1)
where ¢; are continuous functions on Ry such that ¢;(r) — +o0 as r - +0o0;

* there exist a derivative ‘%U(S,y) for everyt > 0 and y € X, a positive function'
a(r) on Ry, and a positive number o such that

d .
d—tU(Sty) < —a(llyl) provided |Siy| > o. (2.1.2)

Then the dynamical system (X, S;) is dissipative with an absorbing set of the form
By = {x:|x]| < R4}, (2.1.3)

where the constant Ry depends on the functions ¢ and ¢, and the constant 9 only.

Proof. The argument involves some kind of “barrier method”; see, e.g.,
REISSING/SANSONE/CONTI [189] for a discussion in the ODE case.
Let us choose Ry > o such that ¢;(r) > O for all » > Ry. Let

L = sup{¢y(r) : r < 1+ Ry}.

I'This function a(r) may tend to zero as r — +00.
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We show that the ball B in (2.1.3) is absorbing provided R. > R + 1 is chosen such
that ¢ (r) > L for r > R,. This choice is definitely possible and R, can be taken
dependent on ¢y, ¢,, and p only.

Our argument consists of two steps.

Step 1. First we show that
ISyll < Ry« forall >0 and |y| < Ro. (2.1.4)
Indeed, if this is not true, then for some y € X such that |y|| < R, there exists
a time 7 > 0 possessing the property ||S7y|| > R«. By the continuity of S,y this
implies that there exists 0 < # < 7 such that ||Syy|| = 1 + Rp > 0. Let
o = sup{r <7t: ||S-L-y|| =1 +R()}. (2.1.5)
It is clear that ||S;,y|| = 1 4+ Ro > o. Therefore, equation (2.1.2) implies that
1(lISylD) = U(Sy) = U(Syy) = L for t € [19,11],
where
t; = supf{t: ||S.y|| = o forall o <t <t}
This means that ||S;y|| < R« for all ¢ € [y, #;]. Since || S7y|| > R« we have that
fo < t; < 1. Moreover, it is clear that ||S;, || = o. Thus, there exists #; € (11,7)
(hence #, > t) such that ||S,,y|| = 1 + Ro. This contradicts the definition of #,
in (2.1.5) and thus (2.1.4) is proved.
Step 2. Let us assume now that B is an arbitrary bounded set in X that lies outside
the closed ball with the radius Ry. Then equation (2.1.2) implies that
U(Sy) < U(y) —a(llylhr < Lg — apt for t€[0,7], y € B, (2.1.6)
where 7 = sup{z : ||S;y|| > ¢ forall 0 <t <1t} and
Lg = sup{U(x) : x € B}, ap = inf{a(x) : x € B}.
We can assume that Ly > L. If 7 < t3 = (L — L)/ap, then, since ||S;y| = o,
by (2.1.4) we have that ||S;y|| < Ry« for all t > 3. If 7 > tp, then by (2.1.6)
and (2.1.1)
o1(ISyll) = U(Siy) =L for t € [tp, 1]

and hence ||S,y|| < Rx for t € [t3,7]. Since ||S;y|| = 0, by (2.1.4) we have that
IS:y]l < R« for all t > 7. Consequently, the set B, given by (2.1.3) is absorbing.

a



50 2 General Facts on Dissipative Systems

We conclude this section with several exercises which illustrate the notion of
dissipativity.

Exercise 2.1.3. Show that the hypothesis (2.1.2) in Theorem 2.1.2 can be replaced
by the requirement

d
U6 + oISl = B, 2.1.7)
where ¢3(r) is a continuous function such that
liminf ¢5(r) > B
r—>00

and B is a positive constant. In particular, (2.1.7) is true with ¢3(r) = a¢;(r) if we
assume that

d
EU(SJ) +aU(Sy) < B, (2.1.8)

where « and B are positive constants. =

Exercise 2.1.4. Let (2.1.8) be in force. Solving the inequality in (2.1.8), show that
the set

{xeX: Ux) <R}

is a forward invariant absorbing set provided R > f/a. n

Exercise 2.1.5. Show that the dynamical system generated in R by the differential
equation x + f(x) = 0 (see Section 1.7 in Chapter 1) is dissipative, provided the
function f(x) possesses the additional property: xf(x) > §x*> — ¢, where § > 0 and
c are constants. Hint: Take U(x) = x? and use the result of Exercise 2.1.3. Find an
upper estimate for the minimal radius of dissipativity. [

Exercise 2.1.6. Let (X,S;) be a dissipative system and let By be a bounded
absorbing set. Show that there exists 7, > 0 such that the set B, = U{S,By : t > 14}
is a bounded forward invariant absorbing set for (X, S;). [

Exercise 2.1.7. Consider a discrete dynamical system (R, f), where f is a continu-
ous function on R. Show that the system is dissipative, provided there exist p > 0
and 0 < @ < 1 and such that |f(x)| < a|x| when |x| > p. L]

Exercise 2.1.8 (Duffing equation). Consider a dynamical system in R? generated
(see Remark 1.8.19 and Example 1.8.18) by the Duffing equation

36+y)'c+x3—ax=b,
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where a and b are real numbers and y > 0. Using the properties of the function
: o 1y 2 . 2
Ux,x) =x + Ex + ax” + v[2xx + yx ]

where v > 0 is small enough, show that this dynamical system is dissipative. (]

Exercise 2.1.9 (Lorenz system). Consider the Lorenz system arising as a three-
mode Galerkin approximation in the problem of convection in a thin layer of liquid:

X =—0x+ oy,
y=rx—y—xz
7= —bz+ xy.

Here o, r, and b are positive numbers. Prove the dissipativity of the dynamical
system generated by these equations in R3. Hint: Consider the function

Vx,y,2) =x2~|—y2~l—(z—r—cr)2

on the trajectories of the system. [

Exercise 2.1.10 (Krasovskii equation). Consider the system generated by the
equation

kP +iP)i4+x=0,
in R?, see Exercise 1.8.22. Show that this system is dissipative under the conditions

k € Loo(R4) N Lippe(Ry),  liminfk(r) > 0.
r—>+00

Hint: Consider the function V(x, x) = x*> + %> + vxt with v > 0 small enough on
the trajectories. =

2.2 Asymptotic compactness and smoothness

To study the long-time dynamics of infinite-dimensional systems we also need
some properties of asymptotic compactness. There are several ways to formulate
these properties depending on the structure of the corresponding model (see,
e.g., the monographs BABIN/VISHIK [9], HALE [116], LADYZHENSKAYA [142],
TEMAM [216] and the references therein). Below we mainly concentrate on the
approaches suggested by LADYZHENSKAYA [142] and HALE [116]. We also refer
to HARAUX [118], where some concepts of asymptotic compactness were used for
the first time.
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2.2.1 Basic definitions and facts

We start with several notions of compactness of an evolution operator.
Definition 2.2.1. Let S; be an evolution operator on a complete metric space X.

* §,is said to be compact if it possesses a compact absorbing set.

» S, is said to be conditionally compact if for any bounded set D such that S,D C D
for t > O there exist tp > 0 and a compact set K in the closure D of D, such that
S:D C K forall t > tp.

» S, is said to be asymptotically compact if the following Ladyzhenskaya condition
(see LADYZHENSKAYA [142] and the references therein) holds: for any bounded
set B in X such that the tail y*(B) := U;>.S/B is bounded for some v > 0 we
have that any sequence of the form {S, x,} with x,, € B and 1, — oo is relatively
compact.

* An evolution operator S; is said to be asymptotically smooth if the following
Hale condition (see, e.g., HALE [116]) is valid: for every bounded set D such that
S;D C D for t > 0 there exists a compact set K in the closure D of D, such that
S;D converges uniformly to K in the sense that

1121 dx{S:D| K} = 0, where dx{A|B} = sup distx(x, B). (2.2.1)
—>+00

X€EA

We apply the same terminology in the case of dynamical systems. Below we also
use the notation S;D = K as t — o0 in the case when (2.2.1) holds. n

Exercise 2.2.2. If S; is a compact evolution operator, then S; is conditionally
compact. The latter property implies that S; is asymptotically compact and asymp-
totically smooth. n

Exercise 2.2.3. Show that any dissipative conditionally compact system is com-
pact. Hint: By Exercise 2.1.6 there exists a bounded forward invariant absorbing set.
]

The proposition below shows that asymptotic smoothness is equivalent to
asymptotic compactness.

Proposition 2.2.4. An evolution operator S, in some metric space X is asymptoti-
cally compact if and only if it is asymptotically smooth.

Proof. We start with the following key lemma, which is also important in further
considerations.

Lemma 2.2.5. Let an evolution operator S; be asymptotically compact on X and D
be a bounded set. Assume the tail y* (D) is bounded for some t > 0. Then the w-limit
set> w(D) is a nonempty compact strictly invariant set such that S;D = w(D) as
t— oQ.

2We recall that the notions of a tail and an w-limit set were introduced in Chapter 1.
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Proof. Tt follows from asymptotic compactness that for any #, — oo and x,, € D the
sequence {S,, x,} is relatively compact. Therefore, there exist a subsequence {n,,}
and an element z € X such that S;, x,,, — zas m — oo. By Proposition 1.3.3,

w(D) = {z eX:z= tgm S,,xn, for some t, - 400, x, € D}. (2.2.2)
o0

Hence w(D) contains the element z, at least, and thus w(D) is not empty.

To prove compactness of w(D) we note that by (2.2.2) for any sequence {z,}
in w(D) there exist #, — oo and x, € D such that disty(S,,x,,2,) < 1/n. By
asymptotic compactness there exist a subsequence {n,,} and an element Z such that
Sty Xn, —> 2 € @(D) as m — oo. Thus, we have that z,,, — Z. This means that (D)
is relatively compact. In the same way, if z, — Z asn — oo, then Z = Z € w(D),
i.e., w(D) is closed.

Now we prove invariance of w(D). Let z € w(D) and z = lim,— o S;,x,. Then
Siz = limy— 00 Si44,%,. Thus, due to (2.2.2) w(D) is forward invariant. To prove
backward invariance we consider the sequence {S; _x,} for some fixed r+ > 0
and n such that t, > t. By asymptotic compactness this sequence is relatively
compact. Thus, there exist a sequence {n,} and an element v € w(D) such that
Ym = S, —Xn, — v. We also have that S;y,, — z. Thus z = S;v and hence
S;w(D) D w(D), i.e., (D) is backward invariant.

Assume that S;D = w(D) is not true. Then there exist § > 0 and sequences
t, — oo and x, € D such that distx(S;,x,, (D)) > § for all n. As above, {S; x,}
is relatively compact. Therefore, S;, x,, — z € w(D) for some subsequence {n,,}.
This contradicts the relation disty (Sy, x,, @(D)) > 6. ]

Now we return to the proof of Proposition 2.2.4.

Let S, be asymptotically compact and B C X be an invariant bounded set. By
Lemma 2.2.5, w(B) is a compact set which attracts B. Thus, the Hale condition (see
Definition 2.2.1) holds.

Let S; be asymptotically smooth and B C X be a bounded set such that the
tail y*(B) = U;>.S:B is bounded for some v > 0. Since B, = y*(B) is forward
invariant, by the Hale condition S;B.. converges uniformly to a compact set K. Thus
S, x, — K for any sequences x, € B and t, — oo. Hence {S, x,} is relatively
compact. a

The following exercise provides some sufficient conditions of asymptotic com-
pactness of semiflows. They were established and applied by many authors (see,
e.g., TEMAM [216, Chapter 1] and also LADYZHENSKAYA [142] and RAUGEL
[188]).

Exercise 2.2.6. An evolution operator S; in some metric space X is asymptotically
compact provided one of the following conditions is valid:

(A) There exists a compact set K such that S;B =2 K as t — oo for every bounded
set Bin X.
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(B) For any bounded set B there exists a compact set Kz such that S;B = Kp as
t — oo.

(C) X is a Banach space and there exists a decomposition S, = S,(l) + S;z), where

,(l) is uniformly compact for large ¢; that is, for any bounded set B there exists

to = 1o(B) such that the set yV(B; 10) := | J.., SWB is relatively compact in

X and S;z) is uniformly stable in the sense that

=1

rg(t) = sup {IIS;Z)XIIX D XE€ B} —0 as t— oo. (2.2.3)

Hint: (C) implies (B) with Kz = Closurey {y"(B:19)}. Statement (B) applied to
a bounded sequence B = {x,} yields the convergence of S; x, to a compact set as
t, — OQ. [ ]

2.2.2 Kuratowski’s measure of noncompactness

To obtain effective criteria of asymptotic compactness, it is convenient to use
Kuratowski’s a-measure of noncompactness (see, e.g., AKHMEROV ET AL. [2] and
the references therein). The latter is defined by the formula

o(B) = inf{d : B has a finite cover by open sets of diameter < d}

on bounded sets of a complete metric space X. We recall that the diameter of the set
is defined by the relation diam B = sup {dist(x,y) : x,y € B}.

Some elementary properties of the o-measure are collected in the following
exercises.

Exercise 2.2.7. Let X be a complete metric space.
(A) Show that in the definition of a-measure we can consider arbitrary coverings,
ie.,

a(B) = inf{d : B has finite cover by (arbitrary) sets of diameter < d}.

This implies that «(B) < diam B.
(B) Show thatif K1 C K>, then a(K;) < «(K3) (monotonicity).
(C) Show that «(K) = a(K), where K is the closure of K.
(D) Show that ¢(A U B) < max{a(A), «(B)} (semi-additivity).
(E) Show that «(K) = 0 if and only if the closure K of K is compact.
(F) Show that the set B is bounded if and only if «(B) < co.

Exercise 2.2.8. Let X be a Banach space. Show that
(A) a(AB) = |A|a(B) for any A € R, where AB = {Ax : x € B} (homogeneity).
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(B) a(y + B) = a(B) for any y € X, where y + B = {y 4+ x : x € B} (invariance
under translations).
]

It is known (see, e.g., AKHMEROV ET AL. [2]) that «(Bg(y)) = 2R for every ball
Br(y) = {x € X : |[x — y|lx < R} in an infinite-dimensional Banach space X. The
following propositions are also important (see HALE [116] and SELL/YOU [206])
in the study of asymptotic smoothness of evolution operators.

Proposition 2.2.9. Let A and B be bounded sets in a Banach space X. Then
a(A+ B) <a(A) + a(B), (2.2.4)

whereA+B={x+y :x€A, yeB}

Proof. Take arbitrary & > 0. Let {&}'} and {0} be coverings of A and B with

diameters less than & (A) + ¢ and «(B) + &. Then {0} + ﬁ]B} is a covering for A + B.
It is clear that ‘

diam{@} + 0F} < diam{0}'} + diam{OF} < a(A) + a(B) + 2.

This implies (2.2.4). a

Proposition 2.2.10. Let X be a complete metric space and Uy D Uy D Us... be
nonempty closed sets in X. If «(U,) — 0 as n — o0, then N> U, is nonempty and
compact.

Proof. For each n take u,, € U, and consider the sequence {u, }. For every ¢ > 0 we
can find N such that «(Uy) < e. Thus,

K={u,:n=1,...} Clu,: n=1,...,N—1}UUN.

Hence by Exercise 2.2.7(B,D), a(K) < a(Uy) < ¢ for every & > 0. Therefore,
a(K) = 0 and thus K is compact. Thus, there exist u € X and a subsequence {n,,}
such that

uy,, € U,, and u,, — uasm — oo.

Since U, is closed for every n, we have that u € U, for every n, i.e., U = N> U,
is not empty. It is clear that U is closed. Since «(U) < a(U,) forn = 1,2,..., we
have or(U) = 0 and thus by Exercise 2.2.7(E) U is compact. |

Exercise 2.2.11. Prove the continuous analog of Proposition 2.2.10: if «(U;) — 0
as t — oo for some decreasing family {U,} of nonempty closed sets, then N;>oU, is
nonempty and compact. ]

Exercise 2.2.12. Let B D B, D ... be a sequence of closed sets in a complete
metric space X. Assume that diam B, — 0 as n — oo. Show that there exists a
unique element x € X such that x € B, for all n (in the case when {B;} are balls
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in a Banach space, this fact is known as the principle of nested balls). Hint: Apply
Proposition 2.2.10 and also the observation made in Exercise 2.2.7(A). [

The following assertion allows us to reformulate the asymptotic smoothness/com-
pactness in the terms of Kuratowski’s a-measure.

Proposition 2.2.13. An evolution operator S; is asymptotically smooth if and only
if for any bounded forward invariant set B we have that a(S;B) — 0 as t — o0.

Proof. Let B be a bounded forward invariant set for S;.

If S, is an asymptotically smooth evolution operator, then there exists a compact
set Kp such that S;B = Kp as t — o00. By the compactness of K, for any ¢ > 0
there exists a finite set {x; : k = 1,...N,} in Kp such that

Ne
Kp C U,@k, where %, = {x e X : disty(xz, x) < 8}.
k=1

Since S;B =2 Kj, there exists ¢, > 0 such that S;B C Uf;l,%’k for all > t.. Thus
a(S;B) < 2¢ for all t > t,. This implies that «(S;B) — 0 as t — oo.

Assume now that «(S,B) — 0 as t — oo. Then we can apply the result of
Exercise 2.2.11 to a family of the sets U; = S,B and conclude that

w(B) = ﬂ S;B is a nonempty compact set.

>0

Thus, it is sufficient to show that S;,B = w(B). If this is not true, then there exist
d > 0 and sequences #, — oo and x,, € B such that distx(S;, x,, ®(B)) > ¢ for all n.
One can see that for any 7 > 0 there exists N, such that

Sy in=12..3C{Sx:n=12....N}_JSB.

Thus a({S;,x, : n = 1,2,...}) < «a(S,;B), which implies that «({S;x,}) = 0.
Hence {S;,x,} is relatively compact. Therefore, S;, x,, — z € w(B) for some
subsequence {n,,}. This contradicts the relation distx(S;,x,, ®(B)) > §. O

Using Proposition 2.2.13 we can prove the next assertion, which is a slight
modification of the statement proved earlier in HALE [116, Lemma 3.2.3] by another
method.

Proposition 2.2.14. Let S; be an evolution operator in a Banach space X. Assume
that for each t > 0 there exists a decomposition S; = S,(l) + S,(Z), where S;z) is a
mapping in X satisfying (2.2.3) and Sﬁl) is compact in the sense that for each t > 0
the set S;l)B is a relatively compact set in X for every t > 0 large enough and for
every bounded forward invariant set B in X. Then S, is asymptotically smooth.



2.2 Asymptotic compactness and smoothness 57

We note that this proposition improves the statement of Exercise 2.2.6(C), because
we do not assume compactness of y()(B;1y) here. The size of S;”B may be
unbounded as t — +o0.

Proof. For any bounded forward invariant set B we have that S;B C S;l)B + sz)B.
Therefore, Proposition 2.2.9 (see also Exercise 2.2.7) yields

a(SB) < a(S{"B) + (57 B) < a(S\”'B) < diam{S{” B} < 2sup |57 y|
YEB

for all z large enough. Thus by (2.2.3), a(S;B) — 0 as t+ — oo. Hence by
Proposition 2.2.13, S; is asymptotically smooth. O

Keeping in mind Proposition 2.2.13, it is convenient to introduce the following
notion (see HALE [116]).

Definition 2.2.15. A (nonlinear) operator V on a complete metric space X is said to
be an a-contraction if there exists 0 < k < 1 such that «(VB) < ka(B). u

The following simple result connects this notion with dynamics.

Exercise 2.2.16. A dynamical system (X,S,) is asymptotically smooth if there
exists t, > 0 such that S,, is an a-contraction. Hint: For every forward invariant
set D we have that S;D C S,,, D, where n is the integer part of #/7. =

For more discussion of the a-measure from the point of view of dynamical
systems we refer to HALE [116] and the references therein; see also SELL/YOU
[206, Lemma 22.2].

2.2.3 Criteria of asymptotic compactness via weak
quasi-stability

We conclude this section with several assertions that give convenient criteria for
asymptotic smoothness/compactness of evolution operators and dynamical systems.
These criteria generalize the corresponding statements known due to KHANMAME-
DOV [134], MA/WANG/ZHONG [156] and CERON/LOPES [28]. A posteriori they
can be treated as some weak forms of quasi-stability discussed in Chapter 3.
Roughly speaking, this weak quasi-stability means that the difference of two
trajectories can be made small for large moments of time modulo some functional
which demonstrates some (rather weak) compactness behavior (see, e.g., (2.2.5)
below).

We start with the criterion which relies on the idea presented in KHANMAMEDOV
[134] and provides more flexibility with respect to more standard methods (see,
e.g., the discussion in CHUESHOV/LASIECKA [56, 58] and also the references cited
therein).
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Theorem 2.2.17. Let S; be an evolution operator on a complete metric space X.
Assume that for any bounded forward invariant set B in X and for any € > 0 there
exists T = T(e, B) such that

dist (S7y1, Sty2) < € + Yepr(y1,)2). i € B, (2.2.5)
where Y, g 1 (¥1, y2) is a functional defined on B x B such that

lim inflim 1nf e 57V, ym) = 0 for every sequence {y,} C B. (2.2.6)

m—o0 n—>»

Then S, is an asymptotically smooth evolution operator.

The result stated in Theorem 2.2.17 is an abstract version of Theorem 2 in KHAN-
MAMEDOV [134] and can be derived from the arguments given in KHANMAMEDOV
[134]. Our proof is shorter and can be easily derived from the following assertion.’

Proposition 2.2.18. Let S; be an evolution operator on a complete metric space X.
Assume that for any bounded positively invariant set B in X and for any € > 0 there
exists T = T(e, B) such that

lim inflim 1nfdlst (S7Yu, STym) < € for every sequence {y,} C B. (2.2.7)

m—o0 n—>

Then S, is an asymptotically smooth evolution operator.

Proof. By Proposition 2.2.13 it is sufficient to prove that

lim «(S;B) =0,
1—>00

where «(B) is Kuratowski’s ¢-measure of noncompactness.

Because S, B C S,,B for t; > t, the function «(f) = «(S,B) is non-increasing.
Therefore, it is sufficient to prove that for any & > 0 there exists 7 > 0 such that
a(StB) < e. If this is not true, then there is &g > 0 such that a(S7B) > 5¢, for all
T > 0. For this &) we choose T} such that (2.2.7) holds. The relation o(S7,,B) > 5¢¢
implies that there exists an infinite sequence {y,}°2, such that

dist(S7,yn, Styym) = 289 foralln #m, nm=1,2,... (2.2.8)

If such a sequence does not exist, then we can use the following construction:
take arbitrary y; € B and choose y, € B such that dist(Spy1, S1,y2) > 2éo.
Then we take y; € B such that dist(Sz,y3, S1,yi)) > 2o for i = 1,2, and so
on. If this procedure stops, we obtain a finite 2go-net for Sy, B. This means that
a(S7,B) < 4¢p and contradicts the relation «(St,B) > 5¢&¢. Thus (2.2.8) holds true.
This contradicts (2.2.7). O

3In many cases we can use Proposition 2.2.18 directly. Theorem 2.2.17 is formulated mainly due
to priority and historical reasons.
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Proposition 2.2.18 can also be used to obtain the following criterion.

Proposition 2.2.19. Let S; be an evolution operator on a reflexive Banach space X.
Assume that for any bounded forward invariant set B in X and any ¢ > 0 there exist
T > 0 and a compact operator K such that

(I = K)Sryl <&, VyeB. (2.2.9)

Then the evolution operator S; is asymptotically smooth.

This proposition was proved in MA/WANG/ZHONG [156] for the case when K is a
finite-dimensional projector. Now the relation in (2.2.9) with a projector is known
as the “flattening” property (see the discussion in CARVALHO/LANGA/ROBINSON
[26] and KLOEDEN/RASMUSSEN [135]).

Proof. By (2.2.9) we have that

A

S7y1 = Sryall < 1 = K)Sryill + | = K)Srya || + [IK(S7y1 — Sty ||
28 + |[K(Sryt — Sty2)ll, Y yi,y2 € B.

IA

Let {y,} C B. Since {Sry,} C B is a bounded sequence, there exists a weakly
convergent subsequence {S7y,, }. By the compactness of K, we have that

lim ||K(Styn, — Stys,)| =0
k,m—00

which implies that

liminfliminf || K (S7y, — Stym)|| = 0 for every sequence {y,} C B.
o

m—o0 n—>
Thus, we can apply Proposition 2.2.18. O

The following exercise presents another asymptotic smoothness criterion in reflex-
ive Banach spaces.

Exercise 2.2.20. Let S; be an evolution operator on a Hilbert space. Assume that S;
is weakly continuous for every ¢ > 0; i.e., the condition x, — x weakly in X implies
that S;x, — S weakly. Show that the evolution operator S; is asymptotically
smooth provided that for any bounded forward invariant set B and for any ¢ > 0
there exists T = T (g, B) such that

limsup [[Szy, | < [[Sryll + ¢ (2.2.10)
n—>odo
for every sequence {y,} C B such that y, — y weakly. Hint: Prove first that
lim sup ”STyn - STy” =e
n—>oo

then apply Proposition 2.2.18. [
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The following assertion is a generalization of the results presented in HALE [116]
and CERON/LOPES [28] (see also CHUESHOV/LASIECKA [56, 58] where this fact
is established by a different method).

Theorem 2.2.21. Let S; be an evolution operator on a complete metric space X.
Assume that for any bounded forward invariant set B in X there exist T > 0, a
continuous nondecreasing function g : Ry + Ry, and a pseudometric o’ on the
set B such that

(i) g(0) =0; g(s) <s, s>0.

(ii) The pseudometric o} is precompact (with respect to the topology of X) in the
sense that any sequence {x,} C B has a subsequence {x,,} which is Cauchy
with respect to 0.

(iii) The following estimate holds for every y,,y, € B:

distx(Sryl s STyz) <g (diStx(y1 s yz)) =+ Qg(y] ,yz). (2.2.11)

Then the evolution operator S, is asymptotically smooth.

Remark 2.2.22. The difference between pseudometrics and metrics is that a pseu-
dometric can be degenerate. In our case this means that the property o5 (yi,y2) = 0
does not imply y; = y,. We also know that instead of (2.2.11) one may also assume
that

disty(Sy1. Sty2) < g (disty(y1.32) + 05 (1. 32)) .

(pseudometric inside g); see some details in [56, Chapter 2]. n

Proof. We use Proposition 2.2.18.

Let B be a bounded forward invariant set in X with diameter L. One can see
that for any ¢ > 0 we can choose N such that gV(L) < &, where g" denotes the
composition g o --- o g. Iterating (2.2.11) we have that

disty (SYy1. SYy2) < g (distx (S7'y1. SF7'y2)) + 0p(SY ~'y1. 87 'v2)
< g(g(---g(g (L) + 05 (1. ¥2)))
+ 05(Sry1.51y2)) -+ +) + e (SY 'y, S ).

The right-hand side of the relation above is a continuous function of L and the
expressions of the form

oh(Siy. STyy), m=1,....N—1.



2.3 Global attractors 61

Since the pseudometric o} is precompact, any sequence {x,} C B has a subsequence
{Xu} such that

péil)noogg(S’T")%np,S’}‘fcnq) =0, Ym=1,...,N—1.

This implies that

lim inf lim inf disty (SYx,, Sfx) < g¥(L) < e.
k—>00 n—>00

By Proposition 2.2.18 this implies that S, is asymptotically smooth. O

Theorem 2.2.21 implies the following result which was proved earlier in the
paper of CERON/LOPES [28].

Proposition 2.2.23. Let (X,S;) be a dynamical system in a Banach space X.
Assume that for any bounded forward invariant set B in X there exist functions
Cp(t) = 0 and Kg(t) > 0 such that lim,—,, Kg(t) = 0, a time ty = to(B), and a
precompact pseudometric o on X such that

1Siv1 — Sivall < Kp(®) - lyr — y2ll + Cp(®) - 0(y1,¥2), ¢ = to, (2.2.12)

for every y1,y2 € B. Then (X, S;) is an asymptotically smooth dynamical system.

Proof. We apply Theorem 2.2.21 with g(s) = K(T)-s, where T is chosen such that
KB(T) < 1. O

2.3 Global attractors

The main objects arising in the analysis of the long-time behavior of dissipative
dynamical systems are attractors. Their study makes it possible to answer a number
of fundamental questions on the properties of limit regimes that can arise in the
system. There are several general approaches and methods that allow us to study
attractors for a large class of dynamical systems generated by nonlinear partial
differential equations (see, e.g., BABIN/VISHIK [9], CHUESHOV [39], HALE [116],
LADYZHENSKAYA [142], TEMAM [216] and the references listed therein). In this
section we present the main general tools which are usually involved in the theory
of infinite-dimensional dissipative systems.
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2.3.1 Existence and basic properties

Several definitions of an attractor are available (see, e.g., the discussion in CHUES-
HOV [39, Section 1.3]). From the point of view of infinite-dimensional systems, the
most convenient concept is a global attractor.*

Definition 2.3.1 (Global attractor). Let S; be an evolution operator on a complete
metric space X. A bounded closed set 2l C X is said to be a global attractor for
S, if

(i) 2l is an invariant set; that is, S;24 = %A forz > 0.

(i1) A is uniformly attracting; that is, for all bounded set D C X

liin dx{S:D |2} =0 for every bounded set D C X, (2.3.1)
—>+00

where dx{A|B} = sup,, distx(x, B) is the Hausdorff semidistance.
]

In many sources (see, e.g., BABIN [7], CHEPYZHOV [31], HALE [116], TEMAM
[216]) the definition of a global attractor requires this to be a compact set. We do
not assume this property because, hypothetically, situations when a global attractor
is not compact are possible for systems with degenerate damping mechanisms. See,
e.g., Section 5.3.3 in Chapter 5.

Exercise 2.3.2. Show that if a global attractor exists, then it is unique. =

Exercise 2.3.3. Show that any backward invariant bounded set belongs to the
global attractor. In particular, every stationary point lies in the attractor. =

Exercise 2.3.4. Show that

(A) A full trajectory y = {u(f) : t € R} belongs to the global attractor if and only
if y is a bounded set.

(B) For any x from the attractor 2 there exists a full trajectory y = {u(r) : t € R}
such that u(0) = x and y C 2. Hint: The strict invariance property of the
attractor implies that there exists a sequence {x_, : n = 1,2,...} C 2 such
that Six_, = x_—1) foralln =1,2,... withxp = x.

Thus, the global attractor can be described as a set of all bounded full trajectories.
]

The main result on the existence of global attractors is the following assertion.

4 Below we use the Fraktur (Gothic) “A” for notation of global attractors because the Latin version
of this letter is overloaded, especially in Chapters 4—6.



2.3 Global attractors 63

Theorem 2.3.5. Let (X,S;) be a dissipative asymptotically compact dynamical
system on a complete metric space X. Then S; possesses a unique compact global
attractor A such that

A = w(By) = ﬂ USTBO (2.3.2)

>0 t>t

for every bounded absorbing set By and

t_l)lin (dx{S:Bo | A} + dx{|S;By}) = 0, (2.3.3)

where as above dx{A|B} = sup,, distx(x, B). Moreover, if there exists a connected
absorbing bounded set,’ then 2 is connected.

Property (2.3.3) states that 2{ attracts bounded absorbing sets in the Hausdorff metric
which is defined by the formula

disty {A|B} = dy{A|B} + dx{B|A}

for all bounded sets A and B. The convergence in the Hausdorff metric means that
for any ¢ > 0 and for any absorbing set B there exists ¢, > 0 such that ;B C 0,(A)
and A C O,(S,B) for all t > 1. Here U,(D) denotes the e-vicinity of the set D.

We note that in finite-dimensional systems for the existence of a global attractor
we need the dissipativity property only. This observation implies that the Duffing
(Exercise 2.1.8) and Lorenz (Exercise 2.1.9) systems possess global attractors.

Exercise 2.3.6. Show that the 1D system generated by the equation & + x> —x = 0
on R possesses a global attractor 20 and 2( is the interval [—1,1]. Hint: See
Exercise 2.1.5 for dissipativity; also, make use of the fact that the attractor is a
connected set containing the rest points x = +1. [

Further applications of Theorem 2.3.5 will be presented later.

Proof of Theorem 2.3.5. Since S; is dissipative, there exists a bounded absorbing
set By. This implies that for every bounded set D the tail yj lies in By for all
t > tp. Therefore, using the asymptotic compactness of (X, S;), by Lemma 2.2.5 we
conclude that w(By) is a nonempty compact strictly invariant set such that (2.3.1)
holds. Thus, the formula in (2.3.2) gives a global attractor.

To prove (2.3.3) we need to show that

lim sup{dx(x, S;By) : x € A} = 0.
t—>+00

SWe can assume instead that X is a connected space in the sense that every two points from X can
be connected by a continuous path.
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This follows from the fact that 2{ C By, which implies that
A =852 C S;By forall > 0.

To prove connectedness we use (2.3.3) and the contradiction argument.

Let Bj be connected. Assume that 2( is not connected, i.e., 2l = K U K, where
K and K, are two nonempty disjoint compact sets such that dist(K, Kx) = 3§ > 0.
By (2.3.3) we have that

SBy C Os(A) = {x € X : disty(x, ) < 8} (2.3.4)

for all 7 large enough. Obviously S;By is connected for each ¢. Thus, by (2.3.4) we
have that S,By C O5(K), where K is either K or Ky, say K = K. Using (2.3.3) again
we have that

K« C 2 C O5(S,By) C Oas(K)

for all ¢ large enough. This is impossible because dist(K, Kx) = 36 > 0. |

It is clear that if an evolution operator possesses a compact global attractor, then
it is dissipative and asymptotically compact. Thus, Theorem 2.3.5 implies that a
dynamical system (X, S;) has a compact global attractor if and only if it is dissipative
and asymptotically compact (or asymptotically smooth).

Exercise 2.3.7. Show that under the hypotheses and the notation of Theorem 2.3.5
we have that

9 = ﬂ S,By forevery N € Zy and T > 0. (2.3.5)
n>N
Hint: &l C By and thus 2 = S,,72 C S,7By foreveryn € Z4 and T > 0. n

Exercise 2.3.8. Let a system (X, S;) be dissipative and V = §;, be an a-contraction
for some 7. > 0 (see Definition 2.2.15). Then (X, S;) possesses a compact global
attractor which can be written in the form (2.3.5). Hint: See Exercise 2.2.16. n

In some cases it is convenient to use the condition of point dissipativity instead
of (bounded) dissipativity. The following assertion can be found in HALE [116] and
RAUGEL [188]; see also CARVALHO/LANGA/ROBINSON [26].

Theorem 2.3.9. An evolution semigroup S; on some complete metric space X
possesses a compact global attractor if and only if

(i) S, is point dissipative;
(ii) for every bounded set B there exists T > 0 such that the tail yg = U;>.S;B is
bounded;
(iii) S; is asymprotically smooth.
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Proof. Due to Theorem 2.3.5 it is sufficient to prove that under the conditions above
the system (X, S;) is (bounded) dissipative. To show this, we use the same idea as in
RAUGEL [188].

We first establish the following “locally compact” dissipativity property. Namely,
we show that there exists a bounded forward invariant set B, possessing the
property: for every compact set K

de=¢€x >0, tx >0 : S;0.(K) C By forall > 1, (2.3.6)

where 0, (K) is the e-neighborhood of K. Indeed, since S, is point dissipative, there
exists a bounded set By such that

Vix€X, 3% >0: Sxg€ By forall > Iy -

We can assume that By is open. In this case, by the continuity of S; there is € =
€x, > 0 such that

S,XO ﬁs—o ()C()) C By.

Let 7o be such that B, = yp’ is bounded. In this case,

70

Sttt ﬁ% (x0) Cy . = By forall T > 7.
If K is a compact set, then we can find a finite set {x;} in K such that
KC%=U0 (x).
It is clear that

SU = US,@XZ_ (x;) C By forall t > 1y 4+ maxt,,.

Since 7% is open, we can find € = €x > 0 such that 6,(K) C % . Thus (2.3.6) is
established.

To conclude the proof we note that for every bounded set B there exists T = 1p
such that y; is bounded and forward invariant. Thus, by asymptotic smoothness,
there is a compact set K such that

Ve>0, 3. >0 : S,[)/g] C O(K) forall t > t,.

Hence the locally compact dissipativity property in (2.3.6) implies the desired
conclusion. O

The study of the structure of the global attractors is an important problem from
the point of view of applications. There are no universal approaches to this problem.
It is well known that even in finite-dimensional cases an attractor can possess an
extremely complicated structure. However, some sets that belong to the attractor can
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be easily pointed out. For example, every stationary point and every bounded full
trajectory belong to the global attractor (see Exercises 2.3.3 and 2.3.4). The global
attractor also contains unstable motions which can be introduced by the following
definition (see, e.g., BABIN/VISHIK [9], CHUESHOV [39], TEMAM [216]).

Definition 2.3.10. Let ./ be the set of stationary points of a dynamical system
(X5 SI):

N ={veX : Sv=uvforalz>0}.

We define the unstable manifold .#"(.4/") emanating from the set .4 as a set of all
y € X such that there exists a full trajectory y = {u(r) : r € R} with the properties

u(0) =y and tlim disty (u(r), #) = 0. 2.3.7)
——00
n
Exercise 2.3.11. Show that .Z"(./") is a (strictly) invariant set. n

The following assertion can be found in BABIN/VISHIK [9], CHUESHOV [39], or
TEMAM [216], for instance.

Proposition 2.3.12. Let .4V be the set of stationary points of a dynamical system
(X, S;) possessing a global attractor . Then A" (N) C 2.

Proof. Lety € #*(AN) and y = {u(t) : t € R} be the trajectory possessing
property (2.3.7). Then there exists s < 0 such that the set

ys ={u(t) : —oo <t < s} C{z: dist(z, /) < 1}

Thus ys is bounded. It is also clear that y, is backward invariant, i.e., y; C S;y;
for every t > 0. Therefore, the result of Exercise 2.3.3 implies that y, C 2l. Since
y € S_;Ys, this implies the desired conclusion. ad

In some cases (see Section 2.4 below) it is possible to show that the unstable
manifold coincides with the attractor; that is, .#Z*(.4") = 2.

To exclude unstable motions from consideration, it is convenient to use the
concept of a global minimal attractor (see LADYZHENSKAYA[142]). This concept
is also useful for a description of the long-time behavior of individual trajectories.

Definition 2.3.13 (Global minimal attractor). Let S, be an evolution operator on
a complete metric space X. A bounded closed set 2, C X is said to be a global
minimal attractor for S, if the following properties hold.

(1) RAmin 1s a positively invariant set; that is, S;%nin S Apmin for £ > 0;
(i1) Amin attracts every point x from X; that is,

lim disty(S;x, Amin) = 0 forany x € X;
t—>—+00
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(iii) Apmin is minimal; that is, 2, has no proper closed subsets possessing (i)
and (ii). [

One can prove the following assertion.
Theorem 2.3.14. Let S; be an evolution operator on a complete metric space X.
Assume that S, is point dissipative (see Definition 2.1.1). If any semitrajectory y," is

Lagrange stable (see Definition 1.4.1), then S; possesses a (unique) global minimal
attractor Uwin. Moreover, the attractor i has the representation

Unin = | J{0() : xeX}. (2.3.8)

Proof. Since any positive semitrajectory is Lagrange stable, then by Theorem 1.4.5
and Proposition 1.4.6 each w-limit set w(x) is a strictly invariant compact set which
attracts S;x. Thus,

Amin = | J{o@) : xe X} (2.3.9)
is a strictly invariant set attracting all semitrajectories. Due to point dissipativity this

set Amin 1s bounded. Now using the continuity of S; one can see that the closure A,
of Apin is forward® invariant, and thus pin = Apmin is @ minimal global attractor. O

Exercise 2.3.15. Assume that a system (X, S;) possesses a compact global minimal
attractor 2l,,;,. Show that in this case any semitrajectory y," is Lagrange stable, and
thus 2,,,;, has form (2.3.8). n

The following assertion (see DE [83]) shows how global and global minimal
attractors are related.

Theorem 2.3.16. Assume that an evolution operator S; on a complete metric space
X possesses a compact global attractor 2. Then there exists a global minimal
attractor Umin which is a compact subset of 2 and has the form (2.3.8). Moreover,
Amin s strictly invariant and

A = (O Unin) = (|| Sc(05@uin)) for every § >0, (23.10)

>0 t>t

where Os(D) denotes the §-neighborhood of the set D. Thus, any small neighbor-
hood of Amin “generates” the global attractor 2.

Proof. 1t is clear that we can apply Theorem 2.3.14 and show that 2l.;, given
by (2.3.8) is a global minimal attractor. Since w(x) C 2 for every x, we have that
Amin C A and thus it is compact.

The set A, given by (2.3.9) is strictly invariant. Therefore, we can apply
Exercise 1.2.1(F) to show that in = Amin i strictly invariant.

% In general we cannot guarantee the strict invariance of this closure, see Exercise 1.2.1(F).
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To prove (2.3.10) we note that for every § > 0 the set By = Os(nin) is point-
absorbing, i.e.,

VxeX, 3t,>0: Sxe€eBy, YVt>t,.

Thus, we can apply the same argument as in the proof of Theorem 2.3.9 and show
that there exist &g > 0 and 9 > 0 such that

S0 0@ C v = S:Bo

>t

for some t, > 0. Therefore,

A =S4, C S (S, O () C y,;:”* C ygp, forevery s> 0.

Thus,
2AC ﬂy_fgo = w(By).
>0
This completes the proof of Theorem 2.3.16. O

For some further discussions of properties of global minimal attractors we refer to
LADYZHENSKAYA [142] and DE [83].

2.3.2 Weak global attractor

The most restrictive assumption guaranteeing the existence of a global attractor
is asymptotic compactness of the corresponding dynamical system (see Theo-
rem 2.3.5). However, in some cases it is possible to get rid of this requirement.
For this we need the notion of a global weak attractor.

Definition 2.3.17 (Global weak attractor). Let S, be an evolution operator in a
reflexive Banach space X. A bounded weakly closed set 2( in X is called a global
weak attractor if (i) it is invariant (S0 = A for all + > 0) and (ii) it is uniformly
attracting in the weak topology: for any weak vicinity & of the set 2( and for every
bounded set B C X there exists t, = (€, B) > 0 such that S,B C & forallt > t,.
]

It is clear that if a global attractor exists and is weakly closed, then it is also weak.
Thus, in the finite-dimensional case they are the same.

Theorem 2.3.18. Let S, be an evolution semigroup on a separable reflexive Banach
space X. Assume that S, is weakly closed; i.e., for every t > 0 the weak convergence
properties x, — x and Six, — y imply that y = Sx. If this semigroup S; is
dissipative, then it possesses a weak global attractor.
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The argument for the proof relies on weak compactness of bounded sets in a
separable reflexive Banach space. For details we refer to BABIN/VISHIK [9] or
CHUESHOV [39]. Here we give an alternative argument by showing that the situation
can be reduced to Theorem 2.3.5.

Proof. Let D be an absorbing bounded set for S;. We can suppose that D is weakly
closed. Let ¢, > 0 be such that S;,D C D for all t > ¢, and

*—VD —Ust

1>1%

One can see that D, is a bounded forward invariant set. Since S; is weakly
closed, the weak closure D) of D, possesses the same properties. Moreover (see
DUNFORD/SCHWARTZ [88, Chapter 5, Section 5]), this set D}, endowed with weak
topology is a compact metric space with respect to the distance

(-9 W
Q(f,g)—;m, f.g € Dy,

where {l,} is a complete set of functionals on X. Thus, the evolution operator S; is
automatically (asymptotically) compact, and we can apply Theorem 2.3.5. O

We note that sometimes it is also convenient to use not only strong or weak
convergences but also other topologies in the definition of global attractors. We
refer to BABIN/VISHIK [9] (see also the recent survey BABIN [7]) for the theory
of attractors involving two phase spaces with different topologies. We also refer to
CHESKIDOV/FOIAS [33], CHESKIDOV [32], FOIAS/ROSA/TEMAM [106] and the
literature cited there for some development of the theory of weak attractors with
application to 3D hydrodynamics.

2.3.3 Stability properties and reduction principle

In order to describe the stability properties of attractors, we need the following
notions.

Definition 2.3.19 (Lyapunov stability of invariant sets). A forward invariant set
M is said to be stable (in the Lyapunov sense) if for any vicinity & of the closure M
of M there exists an open set ¢’ such that M C ¢’ C ¢ and S,0" C € forallt > 0.
The set M is asymptotically stable iff it is stable and S;x — M as t — oo for every
x € 0. This set is uniformly asymptotically stable if it is stable and

lim sup disty(S;x, M) = 0.

1=>+00 e/



70 2 General Facts on Dissipative Systems

We note that when M = y,F = {S,v : t > 0} is a semitrajectory, the stability of
M as an invariant set follows from its stability as a trajectory (see Definition 1.6.1).
However, as we can see in the following exercise, the inverse statement is not true.

Exercise 2.3.20. Show that any (nontrivial) trajectory in the system described in
Exercise 1.8.10 is stable as an invariant set but unstable as a trajectory. [

To distinguish these two types of (Lyapunov) stability, the stability of a trajectory as
an invariant set is often called the orbital stability of the trajectory.

The following stability property of compact global attractors is important in
many situations (see, e.g., BABIN/VISHIK [9] or CHUESHOV [39]).

Theorem 2.3.21. Let (X, S;) be a dynamical system in a complete metric space X
possessing a compact global attractor 2. Assume that there exists a bounded vicinity
U of AU such that the mapping (t;x) — Six is continuous on Ry x % . Then 2 is
uniformly asymptotically stable.

Proof. Let € be a vicinity of 2. Then there exists 7 > 0 such that S, C 0
for all t > T. Now we show that there exists a vicinity &* of the attractor such
that S;0,x C O for all + € [0,T]. If this is not true, then there exist sequences
{u,} C X and {t,} C [0, T] such that dist{u,, A} — 0 and S, u, & 0. Since 2 is
compact, we can choose a subsequence {n;} such that u,, - u € 2andt, — 1€
[0, T]. Therefore, the continuity property of the function (¢; x) — S;x gives us that
St Une — S € 2. This contradicts the equation S, u, ¢ 0. Thus, there exists an
0* D A such that S,0, C O for t € [0, T]. This implies that S;(0x N %) C O
for all ¥ € R. Therefore, the attractor 2 is stable. Thus, by the global attraction
property the attractor 2 is uniformly asymptotically stable. O

In certain situations the following reduction principle enables us to significantly
decrease the number of degrees of freedom in the problem. This is important in the
study of infinite-dimensional systems.

Theorem 2.3.22 (Reduction principle). Let (X,S;) be a dissipative dynamical
system in a complete metric space X. Assume that there exists a positively invariant
locally compact’ closed set M possessing the property of uniform attraction.:

lim supdisty(S;x, M) = 0 for every bounded set D. (2.3.11)

1=+ yep

If A is a global attractor of the restriction (M, S;) of the system (X, S;) on M, then
A is also a global attractor for (X, S;).

Proof. We use the same method as in CHUESHOV [39, Chapter 1].
It is sufficient to verify that

lim supdisty(S;x,A) =0 (2.3.12)

t—>+00 x€D

7In the sense that every bounded subset of that set is relatively compact.
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for any bounded set D in X. Assume that there exists a bounded closed set B C X
such that (2.3.12) does not hold. Then there exist sequences {y,} C Band {z, : t, —
+o00} such that

disty (S;, v, 2) > § for some § > 0. (2.3.13)
Let By be a bounded absorbing set for (X, S;). We choose a time £ such that

sup distx (S, x,2A) < §/2 (2.3.14)

XEMNBy

This choice is possible because 2 is a global attractor for (M, S;). Equation (2.3.11)
implies that

distx(S;,—1, yn. M) = 0, n— +o00.

The dissipativity of (X, S;) gives us that S, ¥, € By for all n large enough.
Therefore, local compactness of the set M guarantees the existence of an element
7z € M N By and a subsequence {rn;} such that 7 = limg_ Srnk_,* Yn,- This implies
that S;, yu, —> Si,z. Therefore, equation (2.3.13) gives us that disty(S:,z,2) > 4,
which contradicts (2.3.14). This completes the proof of Theorem 2.3.22. O

Example 2.3.23. Consider the following system of ODEs:

JHY Ay =y2 >0, y|_, = (2.3.15)
. 2 . .

t+zl+y) =0, >0, z[,_; =2,
where A € R. One can see that for any initial data the problem in (2.3.15) has a
unique solution on some semi-interval [0, ), where . < oo depends on (yo; zo).
If we multiply the first equation by y(¢) and the second equation by z(t), then after
taking the sum we obtain

1d
EE[Y + 2] +y -+ =0, 0<1<ts.

This implies that the function V(y,z) = y* + z? possesses the property

2
—V(y(t) z2(1)) + 2V (1), z(1)) < (a +2 A) , 0<t<ty.

Therefore,

(14 2)?

1 (1—e?), 0<1<ty.

V(y(®),z(2)) < V(yo,z0)e > +
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This implies that any solution to problem (2.3.15) can be extended to the whole
semi-axis R and the dynamical system (R2, S;) generated by (2.3.15) is dissipative.
Obviously, the set M = {(y;0) : y € R} is positively invariant. Moreover, the
second equation in (2.3.15) yields that

%E[Z(t)] +[z2(0)? <0, >0.

on the solutions. Hence, |z(7)| < |zole™ for all r > 0. Thus, the set M exponentially
attracts all bounded sets from R2. Consequently, Theorem 2.3.22 yields that
the global attractor of the dynamical system (M, S;) is also the attractor of the
system (RZ, S,).

On the set M, equations (2.3.15) are reduced to the problem

JHY = Ay=0,t>0. y,_, = . (2.3.16)

Thus, the global attractors of the dynamical systems generated by equations (2.3.15)
and (2.3.16) coincide, and the study of the dynamics on the plane is reduced to the
investigation of properties of a certain one-dimensional dynamical system. =

Exercise 2.3.24. Using the same idea as in Exercise 2.3.6, show that the global
attractor 2 of the system (R, S) generated by (2.3.16) is the interval [ \/)t_ , \/K]
in R, where A1 = max{0, A}. Therefore, by Theorem 2.3.22 the global attractor 2/
of the dynamical system (R?, S;) generated by (2.3.15) has the form A = {(y:z) :

—VA+ <y <Ay, z=0} =

Another example of a model with the reduction possibility is described in the
following exercise.

Exercise 2.3.25 (Two-mode plasma equation). This model arises as the lowest
mode approximation of some equations arising in plasma physics (see, e.g., CHUE-
SHOV/SHCHERBINA [70, 71] and the references therein). We consider the following
system of ODEs:

G e e L S T

iz—z(1+y)+i6z=0, t>0, z|_; =2, -
where y is a real and z is a complex unknown function. Assume that y and § are
positive parameters. Prove the following statements:

(A) Equations (2.3.17) generate a dynamical system (X, S;) in X = R? x C. Hint:
One can see that for any initial data the problem in (2.3.17) has a unique
solution on some semi-interval [0, 7,), where t, < oo depends on (yo; y1; 20)-
If we multiply the second equation by z(¢) and take the imaginary part, then we
get the relation
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d 5 5
el 2 =
dtIZ(t)l + 28lz(t)]" =0

on the existence time interval. This allows us to apply the non-explosion
criterion (see Theorem A.1.2).

(B) The subspace Xo = {U = (30;v1:0) : (yo:y1) € R?} is (strictly) invariant,
and the restriction (Xp; S;) of (X, S;) on Xj is generated by the Duffing equation

FHyy+y —y=0.1>0. y_,=y0. I, =1 (2.3.18)

(C) The subspace Xo = {U = (yo:y1:0) : (vo:y1) € R?} is an exponentially
attracting set for ;.

(D) Show that system (2.3.17) is dissipative. Hint: Make use of the same Lyapunov
function as in Exercise 2.1.8 for the first equation and the fact that |z(7)| <
|zo| exp{—41}.

(E) Using the reduction principle, describe the global attractor for the system
(X, 8.

We can also formulate a reduction principle with exponential convergence
properties (see FABRIE ET AL. [94] and also CHUESHOV [39, Lemma 1.9.6]).

Theorem 2.3.26. Let (X, S,) be a dissipative dynamical system in a complete metric
space X. In addition to the hypotheses of Theorem 2.3.22, we assume:

e There is an absorbing set By and constants K, « > 0 such that
disty (S;x, S;y) < Le*'disty(x,y) forany x,y € By. (2.3.19)

* The convergence in (2.3.11) holds with exponential rate, i.e., there exist K,y > 0
such that

sup disty (S;x, M) < Ke™ "', t> 0. (2.3.20)

X€EBy

* The attractor 2 is exponential in M, i.e., for any bounded set D in M there exist
positive constants Kp and yp and time tp such that

sup disty (Syx, A) < Kpe "P', t>tp. (2.3.21)

xX€D

Then 2 is an exponential attractor for (X, S;), i.e., for any bounded set B in X there
exist positive constants Kg and yp and time tg such that

sup diStx(St.x, Q() < ng_VBt, t > 1p. (2.3.22)

XEB

Proof. We first prove the following lemma.
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Lemma 2.3.27 (Fabrie et al. [94]). Let (X, S;) be a dynamical system in a complete
metric space X. Assume that there exist L, o > 0 such that

distx(Six, S;y) < Le'distx(x,y) forany x,y € X. (2.3.23)

LetM;, i = 0, 1,2, be subsets in X such that S;M; converges to M| with exponential
speed, i = 0, 1. This means that

sup disty (Sx, M1) < Kie """ and sup disty(S;x, M>) < Kye " (2.3.24)

XEMy XEM)

for some positive constants K; and y;. Then S;My — M, exponentially, i.e.,

sup disty(Six, Ma) < (LK + Ky)e ™" with y = L
XEMy o+ Y1 + V2

(2.3.25)
Proof. Letx € My and z € M,. Then

disty (S;x, z) < disty (SKZ‘S(I—K)va Seiw) + distx (Se;w, 2)
forany 0 <« < 1and w € M;. By (2.3.23),

disty (Sex, z) < Le*'disty (S—eyx, w) + disty(Sew, 2).

Therefore,

disty (Six, Mp) < Le*'disty (S1—cyx, w) + sup disty(S.y, M2)
YEM

for any O < ¥ < 1 and w € M;. This implies that

sup disty (S,x, M) < LK el 7=l 4 g, p=72kt

XEMy

forany 0 <k < 1. Taking ¥ = y; (¢ + y1 + yz)_l we obtain (2.3.25). O
To conclude the proof of Theorem 2.3.26, we apply Lemma 2.3.27 with

X=B=U_SBy=My, M| =MNB, M, =2,

where 7 is chosen such that B C By is a forward invariant absorbing set. O

Exercise 2.3.28. Show that any solution to the 1D ODE in (2.3.16) with A > 0 and
with initial data |yg| > A has the form

—-1)2
y(6) = v Ao [yg - A)e—”’] C1>0
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Using this formula, prove that the attractor A (see Exercise 2.3.24) for the system
generated by (2.3.16) is exponential. Then apply Theorem 2.3.26 to show that the
global attractor 2/ of the dynamical system (R2,S,) generated by (2.3.15) is also
exponential. [

Exercise 2.3.29. Show that the attractor 2 for (2.3.15) for A = 0 is not exponential.
Hint: Use the formula from Exercise 1.7.5. [

2.3.4 Stability of attractors with respect to parameters

We next deal with the stability of attractors with respect to perturbations of a
dynamical system. For this we consider a family of dynamical systems (X, S}) with
the same phase space X and with evolution operators Sf‘ depending on a parameter
A from a complete metric space A.

We start with the following simple assertion (see, e.g., ROBINSON [195, Theo-
rem 10.16]). We also refer to BABIN/VISHIK [9] and HALE [115] for similar results
on semicontinuity.

Proposition 2.3.30. Let X be a complete metric space and S,A be a family of
evolution semigroups on X possessing global attractors A* for A € A. Assume
that

e the attractors A* are uniformly bounded, i.e., there exists a bounded set By such
that A* C By;

* there exists ty > 0 such that S,Ax — S,on as A — Ag for each t > ty uniformly
with respect to x € By, i.e.,

sup disty (S'x, $}x) — 0 as A — Ao. (2.3.26)

XEBy
Then the family {*} of attractors is upper semicontinuous at the point Ay, i.e.,
dy {2 | A%} = sup {disty(x, A) : x € A} — 0 as A — .

Proof. Given ¢ > 0 there exists ¢ > f, such that SfOBO C 0.(A). We also have
that

disty (S}x, S7By) < sup distx (Sty, Sy), Vx € By.

YEBy)
Thus,

35§ >0: Sf‘Bo C ﬁzE(QIAO) as soon as disty (A, Ag) < 6.
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Consequently,
Ve>0: At =SMA* C SPBy C 0, (A™) when dists (X, Ag) < 8.

This implies the conclusion. O

We illustrate the statements of this proposition and the next theorem in Exer-
cises 2.3.34 and 2.3.35 below.

The following assertion, which was proved by KAPITANSKY/KOSTIN [130] (see
also BABIN/VISHIK [9] and CHUESHOV [39]), assumes a much weaker hypothesis
concerning convergence of semigroups. This can be critical in singularly perturbed
evolutions; see examples in KAPITANSKY/KOSTIN [130]. However, in contrast with
the previous assertion, some uniform compactness property of the attractors is
assumed.

Theorem 2.3.31 (Kapitansky-Kostin [130]). Assume that a dynamical system
(X, Sl)“) in a complete metric space X possesses a compact global attractor A* for
every A € A. Assume that the following conditions hold.

(i) There exists® a compact K C X such that A+ C K.
(ii) If A — Ao, Xx — X0, and x, € M, then

S*x; — SMxy  for some T > 0. (2.3.27)
Then the family {4} of attractors is upper semicontinuous at the point Ao; that is,
dy {A* | A2} = sup {disty (x, A*) : x € A} - 0 as A — Ao. (2.3.28)

Moreover, if (2.3.27) holds for every t > 0, then the upper limit A(Ag, A) of the
attractors A* at My defined by the formula

A(ho. A) = [ J{A* : 1 e A, 0<dist(h. 1) < 8} (2.3.29)
§>0

is a nonempty compact strictly invariant set lying in the attractor A" and possessing
the property

dy {2 [A(ho, A)} — 0 as A — . (2.3.30)

Proof. Assume that equation (2.3.28) does not hold. Then there exists a sequence
Am — Ao such that dyx {QIA'“ |Ql)“’} > 2§ forallm = 1,2,... and for some § > 0.

8This property can be relaxed, see Exercise 2.3.33 below.
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Thus we can find a sequence x,, € A" such that disty (x,,, A*) > §. But this
sequence {x,,} lies in the compact K. Therefore, without loss of generality we can
assume that x,, — xo for some xy € K such that xy & 2% We show now that this
fact leads to a contradiction.

Let Y = {un(t) : t € R} C A* be a full trajectory of the dynamical system
(X, S,A'") passing through the element x,, (1,,(0) = x,,). Using the standard diagonal
process, one can see that there exist a subsequence {m,} and a sequence of elements
uy € K such that

nl_i)rgoum”(—Nt) =uy forall N=0,1,...,
with uy = xg, where t is the same as in (2.3.27). The condition (ii) also implies that
un—t = im w,, (~(N = L)7) = lim 7", (~N7) = S}%uy
forallN=1,2,...and L = 1, ..., N. Therefore, the function

S,A"uo, for t > 0;

1) =
u(?) SH ey, for —tN<t<—t(N—1), N=1,2,...,

gives a full trajectory y of (X, S,)‘O) passing through xo. It is obvious that this
trajectory is bounded. Therefore, by Exercise 2.3.4(A), y C Qlé. This contradicts
the relation xo ¢ 21* and thus completes the proof of (2.3.28).

To prove the assertion concerning the set 2A(Ag, A) given by (2.3.29), we first
note that, by the assumption in (i),

W(ho, A) = J{A : 1 € A, 0<dist(, Ao) < 8}
is a compact set for each § > 0 and 2%(1o, A) D A (Ao, A) for every § > §'. Thus

A(ro. 4) = |2’ (Ao 4)

5>0

is a nonempty compact set. By (2.3.28) we have that 2(1,, A) € 2. The (strict)
invariance of 20(4¢, A) follows from the obvious relation

x € A(Ao, A) if and only if {EI Ap = Ao, Ax, €AM - x = lim xn} .

n—>oo

(2.3.31)
By (2.3.27) with 7 > 0 arbitrary we obtain that

SMx = lim S*x,, Vr>0.
n—>oo
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Since S;‘”x,, € A*  the criterion in (2.3.31) implies that S,A‘Jx € A* for every t > 0,
ie., S,AOQl()LO, A) C 2A(Ag, A). To prove the backward invariance of 2(1g, A) we
note that by invariance of the attractors 2*» there exists a sequence y, € 2A* such
that x, = S;\” v». Due to the assumption in (i) and the criterion in (2.3.31), we can
choose a subsequence {n;} such that y,, — y € (Ao, A). Thus,

x= lim x, = lim Sy, = Sy,
k—00 k—00
which implies that S,AOQI(AO,A) D A(Ag, A). Relation (2.3.30) follows

from (2.3.31). This completes the proof of Theorem 2.3.31. O

In the following two exercises we suggest that the reader make sure that condition
(i) in Theorem 2.3.31 concerning uniform compactness can be relaxed.

Exercise 2.3.32. Let {B,} be a sequence of bounded sets in a complete metric
space X. Assume that there exists a compact set K such that

dx {B, | K} = sup {distx(x,K) : x € B,} - 0 as n — oc.

Then every sequence {x,} with x, € B, contains a subsequence {x,,} such that
Xy, — z as k — oo for some z € K. L]

Exercise 2.3.33. Using the result of the previous exercise, show that condition (i)
in Theorem 2.3.31 can be changed to the following one: there exists a compact set
K, such that

dy {2 | Ky} — 0 as A — Ao

(if condition (i) holds, then this property is definitely true with K, = K). [

The situation with the (full) continuity of attractors 2* with respect to A is
more complicated. In general the family {2*} is not lower semicontinuous at the
point Ao; that is, the property dy {A* |2*} — 0 as Ay — Ao does not hold. The
corresponding examples (borrowed from BABIN [7] and RAUGEL [188]) are given
in the following exercises.

Exercise 2.3.34 (Raugel [188]). We consider a dynamical system generated in R
by the following equation:

i=(1-x)&*—=21), t>0, x(0)=x€R.

Prove that for each value of the parameter A € [—1,1] this dynamical system
possesses a global attractor *. Show that

_ [—ﬁ, 1] for A > 0;

A+ =
{1}, for A <O0.
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Thus dy {A* [ A%} — 0as A, — A for every Ag € [—1,1] and dy {A° |AM} =1
as Ay — —0, which means that 2* is not (fully) continuous at A = 0. Moreover,

A0, [-1,0]) = {1} # 2A°,

where 2((0, [—1, 0]) is the upper limit defined according to (2.3.29). n
A similar idea is realized in the next exercise.

Exercise 2.3.35 (Babin [7]). Let (R, S,A) be a dynamical system generated by the
equation

i=—x[(Ix|—1)*=21], >0, x(0)=xp€R.

Prove that for each value of the parameter A € R the system (R, Sf‘) possesses a
global attractor 2, and

%A — [—1 — VA, 1+ +/A] for A > 0;
7 o, for A <O.

Thus, 2(, is continuous with respect to A for every A # 0 and is not lower

semicontinuous at A = 0. n

We note that in order to prove lower semicontinuity under the hypotheses of The-
orem 2.3.31 some additional assumptions should be imposed (see BABIN/VISHIK
[9]). However, the lower semicontinuity property is generic under simple compact-
ness assumptions (see the discussion in the surveys BABIN [7], RAUGEL [188] and
also the recent note HOANG/OLSON/ROBINSON [124]). In particular, one can prove
the following result (see HOANG/OLSON/ROBINSON [124] for the details).

Theorem 2.3.36 (Full continuity of attractors). Let (X,S}) be a collection of
dynamical systems on a complete metric space X. We suppose that the set A of
parameters is also a complete metric space. Assume that the following conditions
hold.

(i) X, S,A) possesses a compact global attractor A* for every A € A;
(ii) there exists a compact set K C X such that A* C K for every A € A;
(iii) for each t > 0 the function A — S,Ax is continuous uniformly for x in compact
subsets of X.

Then the family {4*} of attractors is continuous in A with respect to the Hausdorff
distance

dy {A| B} = sup {distx(x,B) : x € A} + sup {distx(x,A) : x € B}

at every point Ay from some residual set. Thus, the full continuity of A — {A*} isa
generic property.
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We recall (see, e.g., BOURBAKI [16]) that in the metric space A a residual set is
the complement of a meager set. A subset D of A is said to be meager (or a first
category set in the Baire sense), if it is contained in a countable union of closed
nowhere dense subsets of A. A set K is said to be nowhere dense if its closure
contains no open sets. By the Baire categories theorem (see, e.g., BOURBAKI [16])
any residual set is dense. A property & is said to be generic in A if &7 holds in
some residual set of A.

In conclusion, we emphasize that the results presented in this subsection
deal with stability of attractors with respect to parameters in the Hausdorff
(semi)distance and do not consider issues related to uniform stability of individual
perturbed trajectories on large time intervals. In this connection we point out
the method of finite-dimensional composed trajectories for global tracking of
trajectories of a perturbed system which was developed by BABIN/VISHIK [9,
Chapters 7 and 8] (see also a short survey in BABIN [7] and the references therein).

2.4 Gradient systems

In this section we consider gradient systems. The main features of these systems are
that (i) in the proof of the existence of a global attractor we can avoid a dissipativity
property in explicit form, and (ii) the structure of the attractor can be described via
unstable manifolds.

2.4.1 Lyapunov function

We start with the following definition.

Definition 2.4.1. Let ¥ € X be a forward invariant set of a dynamical system
(Xa Sl) .

¢ A continuous functional @(y) defined on Y is said to be a Lyapunov function on
Y for the dynamical system (X, S;) if t — @(S;y) is a non-increasing function for
anyy €Y.

e The Lyapunov function @(y) is said to be strict on Y if the equation @(S,y) =
@(y) for all t > 0 and for some y € Y implies that S,y = y for all r > 0; that is, y
is a stationary point of (X, S;).

e The dynamical system (X,S;) is said to be gradient if there exists a strict
Lyapunov function for (X,S,) on the whole phase space X. This Lyapunov
function is usually called global.

u

The simplest examples of Lyapunov functions are given in the following
exercises.
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Exercise 2.4.2. Let F : R? — R be a C? function such that F(x) — +oo as
|x| = oo. Show that the ordinary differential equation

¥=-VF(x), xeR? >0,

generates a dynamical system (R, S;) which possesses a strict Lyapunov function
@(x) = F(x) on R%. u

Exercise 2.4.3. Consider the second order in time ordinary differential equation
y+ yy+ U/(y) = Ov > 07 y‘t:O = Yo, y =0 =Y,

where y > 0 and U(y) is a C? function on R bounded from above. Show that this
equation generates a dynamical system (R?, S,) which possesses a strict Lyapunov
function

1
D(y.y) = Eyz +UQ), (1)) e R%

Hint: See Example 1.8.18 and Remark 1.8.19. [

Example 2.4.4. Using the result of Exercise 2.4.3, one can see that the system
generated by the plasma equation in (2.3.17) has a strict Lyapunov function on
the attractor 2. This is true due to the reduction principle, which shows that the
dynamics on 2 can be described by the Duffing equation in (2.3.18). We do
not know whether the system generated by (2.3.17) possesses a global Lyapunov
function, i.e., whether it is gradient. The same effect can be seen in the model
considered in Example 2.3.23. [

2.4.2 Geometric structure of the attractor

The following result on the structure of a global attractor is known from many
sources, including BABIN/VISHIK [9], CHUESHOV [39], HALE [116], HENRY
[123], LADYZHENSKAYA [142], TEMAM [216].

Theorem 2.4.5. Let a dynamical system (X, S;) possess a compact global attrac-
tor 2. Assume that there exists a strict Lyapunov function on . Then A = .#" (W),
where M"(N') denotes the unstable manifold emanating from the set N of
stationary points (see Definition 2.3.10). Moreover; the global attractor 2 consists
of full trajectories y = {u(t) : t € R} such that

lim disty(u(r), #) =0 and lim disty(u(r), .#) = 0. (2.4.1)
t—>—00 t—>+00
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Proof. Tt is known from Proposition 2.3.12 that .#Z*(.#") C 2. Thus, we need only
prove that 2 C .Z"*(N).

Let y € 2. By Exercise 2.3.4(B) there exists a full trajectory y = {u(?) : t € R}
passing through y, u(0) = y. Since y C £, the set y is compact. This implies that
the a-limit set

a(y) = [\Ulu@ : 1= 7}

<0

of the trajectory y is a nonempty compact set. One can see that the set a(y) is
invariant: S;(y) = o(y). This follows from its compactness and the description
given in Exercise 1.3.6.

Let us show that the Lyapunov function @(x) is a constant on «(y). Indeed, if
u € a(y), then there exists a sequence {z,} such that t, - —oo and u(t,) — u as
n — oo (see Exercise 1.3.6). Consequently,

P(u) = lim P(u(ty)).

By the monotonicity of @ along trajectories, we have

@ (u) = sup @(u(r)).

<0

Therefore, the limit above does not depend on a sequence {u, } and the function @ (1)
is a constant on «(y). Hence by invariance of «(y) we have that @ (S,u) = @ (u) for
allt > 0 and u € a(y). This means that «(y) lies in the set .#” of stationary points.
Now we prove that

l_l)ilnoo dist(u(t), a(y)) = 0. (2.4.2)

If (2.4.2) is not true, then there exists a sequence {t, — —oo} such that
disty(u(t,),a(y)) > 8§ >0 for all n=1,2,... (2.4.3)

By the compactness of y there exist an element z € X and a subsequence {t,,, } such
that u(t,,) — zas m — co. Moreover, by Exercise 1.3.6, z € a(y). This contradicts
the property in (2.4.3) and thus (2.4.2) holds.

Since a(v) C ¥, equation (2.4.2) implies the first relation in (2.4.1) and hence
ye€ A" (N)and A = #"(N).

To prove the second relation in (2.4.1), we use the same idea as above. We
consider the w-limit set

w(y) = [\Ulu@) 1= 1}

>0
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which is a nonempty compact strictly invariant set. As above, it follows from the
monotonicity of @ and the invariance of w(y) that the Lyapunov function @(x) is
a constant on w(y) and hence @(S;u) = @(u) for all r > 0 and u € w(y). This
implies that w(y) C 4. As above, by the contradiction argument,

dist(u(t), A) < dist(u(t), w(y)) — 0 as t - +oo.

This completes the proof of Theorem 2.4.5. O

Remark 2.4.6. 1t follows from the first equality in (2.4.1) that under the hypotheses
of Theorem 2.4.5 the following relation is valid:

sup{@ () : u €A} <sup{®@(u) : ue N}, 244

where @(u) is the corresponding Lyapunov function. If @(u) topologically domi-
nates the metric of the phase space X, then the inequality in (2.4.4) can be used in
order to provide an upper bound for the size of the attractor and an absorbing ball.
This method can be applied to obtain uniform (with respect to the parameters of the
problem) bounds for the attractor. We refer to Section 5.3 for an application of this
idea for some class of second order in time models. L]

If the system (X, S,) is gradient; i.e., if a strict Lyapunov function exists on the
whole phase space, then the result of Theorem 2.4.5 can be improved (see, e.g.,
BABIN/VISHIK [9] or CHUESHOV [39]). More precisely, we can describe the long-
time behavior of individual trajectories.

Theorem 2.4.7. Assume that a gradient dynamical system (X,S;) possesses a
compact global attractor 2. Then

ligl disty(S;x, A") = 0 foranyx € X; (2.4.5)
=100

that is, any trajectory stabilizes to the set N of stationary points.® In particular, this
means that the global minimal attractor A, coincides with the set of the stationary
points, Ypin = A

Proof. For every x € X we consider the w-limit set w(x) = NyoU{Sx : t >t}
and apply the same argument as in the end of the proof of Theorem 2.4.5. O

Exercise 2.4.8. Show that relation (2.4.5) in the statement of Theorem 2.4.7
remains true if instead of the existence of a compact global attractor we assume
that any semitrajectory of the system is Lagrange stable (see Definition 1.4.1). The
assertion concerning global minimal attractors remains in force if we assume that
the set .4 is bounded. L]

° This property is often referred to as strong stability of the set of equilibria.
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Assume that .4 = {zi,...,z,} is a finite set. In this case A = UL, .Z"(z),
where .#"(z;) is the unstable manifold of the stationary point z;. That is, .#Z“(z;)
consists of all y € X such that there exists a full trajectory y = {u(f) : t € R} with
the properties u(0) = y and u(f) — z; as t - —oo.

Theorems 2.4.5 and 2.4.7 lead us to the following consequences.

Corollary 2.4.9. Assume that a gradient dynamical system (X,S;) possesses a
compact global attractor A and N is a finite set. Then

(i) The global attractor 2 consists of full trajectories y = {u(t) : t € R}
connecting pairs of stationary points: any u € 2 belongs to some full trajectory
y C 2 and for any y C U there exists a pair {z,z*} C A such that

u(t) > zast — —ooand u(t) — z7* ast — +oo.

(ii) For any v € X there exists a stationary point z such that S;v — z ast — +00.

Remark 2.4.10. Assume that the hypotheses of Corollary 2.4.9 hold. Introduce m
distinct values @; < &, < -+ < @, of the set {@(x) : x € 4"} and let

Jij{erV : @(x)=®j}, j=1,...,my.

Then the sets AL, ..., ™0 provide Morse decomposition of the attractor 2(. That
is, (i) the subsets .47 are compact, invariant, and disjoint; and (ii) for any x €
2\ U;47 and every full trajectory y, C 2 through x there exist k > [ such that
a(yy) € A% and w(y,) € A, where a(y,) and w(y,) are the a- and w-limit sets
for y, (see (1.3.2)).

In the situation considered the set .#"! is uniformly asymptotically stable
(see Definition 2.3.19). Thus, .#"! is a subattractor of the attractor 2. We recall
that by the definition (see BABIN [7]) any compact strictly invariant uniformly
asymptotically stable subset of 2l is called a subattractor. If the set 4! is not
connected (e.g., it consists of isolated equilibria), then we can split .#'! into
several non-intersecting subattractors. This observation motivates (see BABIN [7])
the notion of a fragmentation number of the attractor 2, which is defined as the
maximal number of non-intersecting subattractors in (. This number characterizes
the intrinsic complexity of the attractor. For further discussions we refer to BABIN
[7] and the references therein. =

The following example shows that the strictness of the corresponding Lyapunov
function is important in the statements of Theorems 2.4.5 and 2.4.7.

Example 2.4.11 (Non-strict Lyapunov function). We consider the dynamical sys-
tem (R?, S,) generated by the following equations:

X] = px; —axy — X (x% + x%),

. 2.4.6
Xo = ax) + px; — xz(x% + x%) ( )
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where £ € R and o > 0 are parameters. In the case @ = 1 this system was
considered in Example 1.9.4 as a demonstration for the Andronov-Hopf bifurcation.
It was shown that for & < 0 the system has a unique equilibrium x, = (0;0).
If w > 0 and « > O there is also the periodic orbit (the circle C_/; with center at 0
and the radius ,/ut). If in the latter case we take o« = 0, then the circle C Ji consists
of equilibria.

One can see that the function

1
V(x1,x) = E(x% +33)% — p(xg +13)

satisfies the equation

dV(X[,Xz) _

S2) 9103 4 )~ WPOS + D) 20

on a solution S;yp = (x1(¢); x2(z)). Thus, V is a Lyapunov function. Moreover, we
observe the following picture:

e If u < 0 this function is strict (and the global attractor consists of a single (zero)
equilibrium);

e If w > 0 and @ = O, the function V is still strict (the circle C JE consists of
equilibria) and the global attractor is the disc D ; = {(3 + x3) < u}, which
can be seen as a collection of trajectories connecting the zero equilibrium and an
equilibrium lying on C 5.

e If £ > 0and o > 0, the function V is not strict and the global attractor is the
disc D s which contains a nontrivial periodic orbit.

]

The following exercise demonstrates the non-uniqueness of the Lyapunov function
V in Example 2.4.11. A similar effect for local Lyapunov functions was observed in
Exercises 1.6.5 and 1.7.5(D).

Exercise 2.4.12. Show that
1, NN ) 2
W(x1,x) = §(X1 +x3)" — 5()61 +x3)

is also a Lyapunov function for (2.4.6) which is strict when either 4 < 0 or @ = 0.
L]

Another example with non-strict Lyapunov function provides the Krasovskii
system (see Exercises 1.8.22 and 2.1.10) under the condition that the damping
coefficient k(r) is non-negative and has a nonzero root.

To describe additional properties of global attractors for gradient systems, we
introduce the following definition.
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Definition 2.4.13. Let X be a Banach space. Assume that the evolution operator
S; of a dynamical system (X,S,) is of class C!; that is, S,u has a continuous
Fréchet derivative'® with respect to u € X for each t > 0. An equilibrium point
z of dynamical system (X, S;) is said to be hyperbolic if the Fréchet derivative
S = DS (z) of S,z at the moment 7 = 1 is a linear operator in X with the spectrum
o (8’) possessing the property

olSH)N{weC :|w=1}=40.

We also define the index ind (z) (of instability) of the equilibrium z as a dimension
of the spectral subspace of the operator S’ corresponding to the set o+ (') = {z €
o(S): |z > 1} n

The following assertion is proved in BABIN/VISHIK [9].

Theorem 2.4.14. Assume that a gradient dynamical system (X, S;) in a Banach
space X with a strict Lyapunov function @ (u) possesses the following properties.

(i) It admits a compact global attractor 2.
(ii) S; € C'* for some o > 0 and there exists a vicinity € D U such that

IDS;(u) — DS;(v)|x>x < Crlu—vl%, u,ved,tel0,T]

(iii) (¢, u) — S,u is continuous over Ry x 2.
(iv) The operators S; are injective on A for any t > 0 and S;"' are continuous on 2.
(v) The Fréchet derivatives DS;(u) of S,u at any point u € A have zero kernel.
(vi) The set N = {z1,...,2a} of equilibrium points is finite and every point z; € N
is hyperbolic.

Let the indexation of equilibrium points be such that
P(1) = P(z2) =+ = P(z)

and My, = U}‘Zl/// “(zj), My = 9, where 4" (z;) is the unstable manifold emanating
Sfrom zj. Assume that the function t — ®(Su) is strictly decreasing foru & N
Then A = M, and the following properties hold.

(i) A" (z;) N AM"(z) = D when i # j.

(ii) My is a compact invariant set.
(iii) 0.4"(z;) = M (z;) \ A" (2;) is an invariant set and 0.4"(z;) C M;—_;.
(iv) For any compact set K C 4 "(z;) \ {z:} we have

lim max{distx(S;k, M;—) : k€ K} = 0.

t—>+00

10See Section A.5 in the Appendix for the definitions.



2.4 Gradient systems 87

(v) Every set .#"(z;) is a C'-manifold of finite dimension d;, this manifold is
diffeomorphic to R%, and the embedding .#"(z;) C X is of class C' in a vicinity
of any point v € " (z;). Moreover, d; = ind(z;).

In many cases it is important to know how fast the trajectories starting from
bounded sets converge to global attractors. The result stated below provides
conditions sufficient for an exponential rate of stabilization to the attractor along
with some additional properties of the attractor (see, e.g., BABIN/VISHIK [9], HALE
[116] and also Theorems 4.7 and 4.8 in the survey RAUGEL [188]).

Theorem 2.4.15. Let (X, S;) be a dynamical system in a Banach space X. Assume
that (i) an evolution operator S, is C', (ii) the set N of equilibrium points is finite
and all equilibria are hyperbolic, (iii) there exists a function Lyapunov ®(x) on X
such that @(Six) < @(x) forallx € X, x € A and for all t > 0, and (iv) there
exists a compact global attractor 2. Then

o Foranyy € X there exists e € N such that
Sy —ellx < Cye ™, t>0.
Moreover,
sup {dist (S;y,20) : y€ B} < Cge™®, t>0, (2.4.7)

for any bounded set B in X. Here C,, Cp, and w are positive constants, and
in (2.4.7) depends on the minimum, over e € N, of the distance of the spectrum
of D[Sye] to the unit circle in C.

* Ifwe assume in addition that (i) S| is injective on the attractor and (ii) the linear
map DI[Sy] is injective for every y € U, then for each e € N the unstable
manifold .#"(e) is an embedded C'-submanifold of X of finite dimension ind (e).

We note that the proof of this result (see BABIN/VISHIK [9] or HALE [116]) relies on
geometric consideration of the behavior of trajectories in a vicinity of equilibrium
points. The critical assumption for this is that the evolution S; is C' and that
equilibria are finite and hyperbolic. The above assumptions allow us to reduce the
problem of convergence in the vicinity of equilibria to a linear problem.

We also refer to CARVALHO/LANGA [25] and CARVALHO/LANGA/ROBINSON
[26, Chapter 5] for some generalizations of the notion of a gradient system. These
generalizations are related to the Morse decomposition of attractors and deal with
families of isolated invariant sets rather than with collections of (isolated) equilibria.

Another important issue is persistence of the regular structure of a global
attractor under perturbations. On this topic we mention the paper by BABIN/VISHIK
[8], which presents some results on the persistence of the gradient structure
(i.e., the existence of a strict Lyapunov function) for some classes of PDEs.
Recently this question was discussed in great detail in ARAGAO ET AL. [3] and
CARVALHO/LANGA/ROBINSON [26, Chapter 5].
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2.4.3 Criteria of existence of global attractors
for gradient systems

In this section we prove several assertions on the existence of global attractors which
do not assume any dissipativity properties of the system in explicit form.

We start with the following criterion for the existence of a global attractor for
gradient systems (see, e.g., RAUGEL [188, Theorem 4.6]), which is useful in many
applications.

Theorem 2.4.16. Let (X , S,) be an asymptotically smooth gradient system which
has the property that for any bounded set B C X there exists t > 0 such that
y:(B) = U;>.S,B is bounded. If the set A of stationary points is bounded, then
(X , St) has a compact global attractor 2.

Remark 2.4.17. By Theorem 2.4.5 the global attractor 2 given by Theorem 2.4.16
coincides with the unstable set .#4 (.#") emanating from the set .4~ of stationary
points (see Definition 2.3.10), i.e., % = A4 (A). [

Proof of Theorem 2.4.16. Let B be a bounded set in X and B, = y,(B). We
consider the restriction (B, S;) of the dynamical system (X , St) on the (forward
invariant) set B;. Since B; is bounded, (B;,S;) is a dissipative asymptotically
smooth dynamical system. By Theorem 2.3.5 this system possesses a compact
global attractor 2. By Theorem 2.4.5 g = .#4(AN3), where A3 = A4 N B;.
Under the condition B D .4 we have that 4" = S,/ C §,B for every t > 0. Thus
A C B;. This implies that 2z = .# (./4") and thus the attractor 2 is independent
of B when B D /. Since 2, C g, for B C B,, we have that 2l := .#Z, (A)
attracts all bounded sets from X. |

Using Theorem 2.4.16 we can obtain the following assertion (see Corollary 2.29
in CHUESHOV/LASIECKA [56]).

Theorem 2.4.18. Assume that (X, S;) is a gradient asymptotically smooth dynam-
ical system. Assume its Lyapunov function ®(x) is bounded from above on any
bounded subset of X and the set @ = {x : ®(x) < R} is bounded for every R.
If the set N of stationary points of (X, S,) is bounded, then (X,S,) possesses a
compact global attractor A = A" (N).

Proof. Due to Theorem 2.4.16, it is sufficient to show that for any bounded set
B C X the set y4 (B) = U;>0S:B is bounded. To see this, we note that B C @ for
some R > 0. Since @ is invariant, we have that y4 (B) C @ and thus y;(B) is
bounded. O

Exercise 2.4.19. Show that in the statement of Theorem 2.4.18 the condition
concerning the boundedness of the set of stationary points can be changed to the
requirement that (X, S;) is point dissipative (see Definition 2.1.1). [

Example 2.4.20 (Two-mode fluid-structure model). This model is the lowest
Galerkin mode approximation of a system arising in the study of interaction of a
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fluid filling a bounded vessel with an elastic wall (see, e.g., CHUESHOV/RYZHKOVA
[68] and the references therein). The equations appear as follows:

d )

= [z +yy]+az=f, (2.4.8a)
d ) ,

= [yz+2y]—Ay+y =h, (2.4.8b)

where @ > 0, |y| < 1, and A,f,h € R are constants. We endow these equations
with initial data

2(0) = zo, ¥(0) = yo, y(0) = y1. (2.4.9)

One can see that problem (2.4.8) and (2.4.9) has a unique local solution for all initial
data (z0: yo:y1) € R?. Using the multipliers z — f/a for the first equation and y for
the second one, we obtain the following energy balance relation:

d
B0 = f/ey(0).30) + alz(1) —f/a? =0 (2.4.10)

on the existence interval, where the energy functional E has the form

. 1 .. 1 A
E(zy.3) = 52 +yzy + 3 + 3" = 5 —hy.
2 4 2
The energy relation in (2.4.10) allows us to use the non-explosion criterion in
Theorem A.1.2 and show that problem (2.4.8) and (2.4.9) generates a dynamical
system in R3. Moreover, one can see that

V(z,y,9) = E(z—f/a.y,y)

is a strict global Lyapunov function for this system. Since the set

{(zy) : az=f, ¥y —ay=h}

of stationary solutions is finite, by Theorem 2.4.18 the system generated by (2.4.8)
and (2.4.9) possesses a global attractor which coincides with the unstable set
emanating from the set of equilibria. [

If a system (X, S;) is not gradient but possesses a Lyapunov function (which
is not strict), we cannot guarantee that 2 = .#Z"“(./4"). However, we can prove
the following assertion (see also CHUESHOV [39, Theorem 6.2, Chapter 1] and
CHUESHOV/LASIECKA [56, Theorem 2.30]).

Theorem 2.4.21. Let (X,S;) be an asymptotically smooth dynamical system in
some complete metric space X. Assume that there exists a Lyapunov function ®(x)
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for (X, S;) on X such that ®@(x) is bounded from above on any bounded subset of
X and the set @ = {x : ®(x) < R} is bounded for every R. Let & be the set
of elements x € X such that there exists a full trajectory {u(t) : t € R} with the
properties u(0) = x and @ (u(t)) = @(x) forallt € R. If B is bounded, then (X, S;)
possesses a compact global attractor and A = A" (B).

Proof. We choose Ry such that # C @g,. By Theorem 2.3.5 the dynamical system
(P, S;) possesses a compact global attractor 2z for every R. Let R > Ry. In this
case we have that Z C ®g. By the same argument as in the proof of Theorem 2.4.5
we can show that for any full trajectory y = {u(t) : ¢ € R} from the attractor
Az we have that a(y) C % and thus u(t) — % ast — —oo. This means that
Ar C AM"(P). Since A is a bounded strictly invariant set, we have that Z C 2g.
This implies that .Z"(%) C g and thus Ag = #"(A) for all R > Ry. Therefore,
A = 4" () is a global attractor for (X, S,). O

The following two exercises illustrate Theorem 2.4.21.

Exercise 2.4.22. Apply Theorem 2.4.21 to the model in Example 2.4.11 to describe
the global attractor in the case when @ and « are positive. [

Exercise 2.4.23. Apply Theorem 2.4.21 to describe the structure of the global
attractor for the Krasovskii system (see Exercise 2.1.10). =



Chapter 3
Finite-Dimensional Behavior and Quasi-Stability

This chapter deals mainly with the dimension theory of global attractors. We present
some background and develop a relatively new approach which is based on some
ideas due to O. Ladyzhenskaya (see LADYZHENSKAYA [142] and the literature cited
there) and assumes minimal smoothness properties of evolutions. We also discuss
a wide class of dynamical systems which admits what is called the stabilizability
(or quasi-stability) estimate. The notion of quasi-stability originally arose in the
study of some plate models with nonlinear critical damping. However, the extension
developed in this chapter allows us to consider a wider class of second order
models (see Chapter 5) and also to cover several classes of parabolic and delayed
models (see Chapters 4 and 6). In addition to attractors, other long-time behavior
objects such as exponential attractors and determining functional sets are considered
from the point of view of quasi-stability in this chapter.

3.1 Dimension of global attractors

Finite dimensionality is an important property of global attractors that can be
established for many dissipative dynamical systems. There are several approaches
that provide effective estimates for the dimension of attractors of dissipative
infinite-dimensional systems (see, e.g., BABIN/VISHIK [9], LADYZHENSKAYA
[142], TEMAM [216]). Here we primarily focus on an approach that does not
require smoothness of the evolutionary operator (as in BABIN/VISHIK [9], TEMAM
[216]) and relies on the idea introduced by Ladyzhenskaya’s theorem (see, e.g.,
LADYZHENSKAYA [142]) on the finite dimensionality of invariant sets. The devel-
opment of the Ladyzhenskaya approach is based on some types of quasi-stability
estimates (see CHUESHOV/LASIECKA [51, 56, 58] for a primary idea and also
PRAZAK [187] for a similar method based on a squeezing property). This approach
also covers the method suggested in MALLET-PARET [159] and MANE [161], which
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requires differentiability of the corresponding evolution operator. However, we wish
to point out that the estimates of the dimension obtained in the framework of quasi-
stability usually tend to be conservative. In the case of smooth dynamics the method
based on control of contractions of finite-dimensional volumes leads to much
sharper bounds for the attractor dimension. This volume contraction method was
developed and applied by many authors (see, e.g., the discussion in the monographs
BABIN/VISHIK [9], BOICHENKO/LEONOV/REITMANN [15], CHEPYZHOV/VISHIK
[31], TEMAM [216]). Below, for the sake of self-containment, we will discuss
this method following the presentation given in CHEPYZHOV/VISHIK [31] and
TEMAM [216].

3.1.1 Fractal and Hausdorff dimensions

Fractal and Hausdorff dimensions are the most commonly used measures in the
theory of infinite-dimensional dynamical systems. They can be defined as follows
(see, e.g., FALCONER [95]).

Definition 3.1.1 (Fractal and Hausdorff dimensions). Let M be a compact set in
a metric space X.

* The fractal (box-counting) dimension dimy M of M is defined by

Inn(M,
dim, M = Tim sup " M-€)
e—>0 ln(l/S)

where n(M, ¢€) is the minimal number of closed balls of radius & which cover the
set M.

* For positive d we define the (ball-based) d-dimensional Hausdorff measure by
the formula

pu(M,d) = sup u(M.d, ¢),
>0

where the value +o0 is allowed, and

w(M,d, g) = inf Z(rj)d T MC UB(xj,rj), rp<eg

J 1

Here B(xj,r;) is the ball in X with center x; and radius r;. The corresponding
covering can be countable. One can show (check this!) that (i) if u(M, dx) < oo
for some dy > 0, then u(M,d) = 0 for all d > dx, and (ii) if ©(M, ds) > O for
dy« > 0, then (M, d) = +oo0 for all d < d. Thus, there exist dy > 0 such that
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+o0, if d < dy;

M =
PMD) =20 it d > ay.

The Hausdorff dimension dimy M of M is defined as the value dy separating two
regions of values for i, e.g., we can take dimg M = inf{d : w(M,d) = 0}.

Example 3.1.2. Let M be an interval of length /. It is clear that
i—l fn(M,e)fi—i—l.
2¢e 2¢
Therefore,
1 [—2¢ I I+ 2e¢

In—- +1In <InnM,e) <In- + .
e e 2

This implies that the fractal dimension dims M coincides with the value of the

standard geometric dimension. [
The same effect demonstrates the following statement.

Proposition 3.1.3. Let M be a bounded set with nonempty interior in RY. Then

dimg M = dimyp M = d.

Proof. We consider the case of the fractal dimension only (for the Hausdorff case,
see FALCONER [95], for instance). Since both dimensions are monotone with
respect to set inclusion, it is sufficient to prove the result for a ball in R¢. For
this we use the following lemma on coverings.

Lemma 3.1.4. Let R? be equipped with Euclidean norm | - | and
Br = {xeRd D x—y« =R}

be a ball in R? with radius R. Then for any & > 0 there exists a finite set {x; : k =
1,...n.} C Bg such that

" 2R\!
Br C U{xe]Rd D —xi| < e} and n, < (1 +—) .
k=1 €

Moreover, the maximal number of points {x;} inside the ball By possessing the
property |xj — x;| > ¢ for any i # j admits the same bound (1 + 2R/¢)°.

Proof. Because By is compact in RY, there exists aset {x; : k = 1,...,n,} C Bg
such that (i) for any y € Bg we can find x; such that |y —x;| < &, and (ii) |x; —x;| > ¢
for any i # j. Thus, we need only prove the estimate for n.. Consider the balls

Bk={xERd : |x—xk|<£/2}, k=1,...,n,.
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These balls possess the properties By N B; = @ for k # j, k,j=1,...n,, and
- e
B, CB= {xeRd Dol — ys] §R—|—E}, k=1,..., n,.

Hence n, - Vol (By) = Y 2, Vol(By) < Vol(B). This implies the estimate for n,. o

Using this lemma one can see that

(R)d ( 2R)d
—) <nBr.e) <|14+—] .
& £

This implies that dim; B = d for every R > 0. Since we have B, C M C By
for some 0 < r < R < o0, by monotonicity we obtain the conclusion of
Proposition 3.1.3. o

Example 3.1.5. Let M be the Cantor set obtained from the interval [0, 1] by the
sequential removal of the central thirds. First we remove all the points between
1/3 and 2/3. Then we remove the central thirds (1/9,2/9) and (7/9, 8/9) of the
two remaining intervals [0, 1/3] and [2/3, 1]. After that we do the same with the
central parts of the four remaining intervals, and so on. If we continue this process
to infinity, we obtain the Cantor set M. Let us calculate its fractal dimension. First
of all, we note that

o0
M=\
k=0

where

JO :[Ov 1]a
Jy =[0,1/3] U [2/3,1],
J» =[0,1/91U[2/9,1/3] U [2/3,7/9] U [8/9,1], and so on.

Each set J; can be considered as a union of 2% intervals of length 37%. Since
M C Ji for each k and the boundary points of J; lie in M, the minimal number
of intervals of length 37 covering the set M equals to 2¥. Therefore, one can show
(see Exercise 3.1.11 below) that

dim M = i In 2K In2
m = m —)«) = ——
= 2.3~ 3

Thus, the fractal dimension of the Cantor set is not an integer (if a set possesses this
property, it is called a fractal set). One can also show that the Hausdorff dimension
of this Cantor set has the same value; see, e.g., FALCONER [95]. n
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Some additional properties of the dimension are collected in the following
exercises.

Exercise 3.1.6. Let M be a compact set in a complete metric space.

(A) Prove that dimy M < dims M; i.e., the Hausdorff dimension does not exceed
the fractal one.

(B) Verify that dim;(M; UM,) = max{dim; M, dim; M,} for the fractal dimension
and

dimy (Uj?'ile) = mjax dimy M; (Hausdorff dimension). (3.1.1)

In particular, every countable set has Hausdorff dimension zero.
(C) Assume that M| x M, is a direct product of two sets. Then for the fractal'
dimensions we have

diIIlf(M1 X Mz) < dlmf M, + dlIIlf M,. 3.1.2)
(D) Let G be a Lipschitz mapping of one metric space into another. Then
dim; G(M) < dim; M.

Moreover, if G is Holder, i.e., dist(G(x), G(y)) < L[dist(x, y)]* for some @ < 1,
then dim; G(M) < o' dimy M. Check whether the same properties are valid
for the Hausdorff dimension.

]

Remark 3.1.7. In the case of the Hausdorff dimension an inequality like (3.1.2)
is not true in general. We refer to Example 7.8 in FALCONER [95, p. 97] which
shows that there exist sets E and F on R such that dimy £ = dimyg F = 0 and
dimy E x F = 1. In the case of the Hausdorff dimension we can only prove that

dimy E + dimy F < dimyg(E X F) < dimy E + dimy F

for any couple of sets E and F (see FALCONER [95, p. 94] for the proof for sets
in R9). n

Exercise 3.1.8. Make the following calculations on the real line.

(A) Show that the fractal dimension coincides with the Hausdorff one in
Example 3.1.2.

B) Let M = {l/n}c"’1 C R. Show that dim; M = 1/2. Hint: n < n(M,¢) <
n+ 1+ 2e) '(n+ 1)~ provided [(n + 1) (n + 2)]7! <2e < [n(n+ D]~

(C) Let M = {1/Inn}32, C R. Prove that dimy M = 1. [

ISee Remark 3.1.7 for the case of the Hausdorff dimension.



96 3 Finite-Dimensional Behavior and Quasi-Stability

The following facts can be found in ROBINSON [195] and BOICHENKO/LEONOV/
REITMANN [15].

Exercise 3.1.9. Let {¢,} be an orthonormal basis in a Hilbert space X.

(A) Consider the set

1
M:{O}u{—en:nzl,z,...}
Inn

Show that dimy M = oo. What can we say about the Hausdorff dimension
of this set? Hint: See BOICHENKO/LEONOV/REITMANN [15, p. 199] or
ROBINSON [195, p. 352].

(B) Let

M, ={0}U{n"%,:n=1,2,...} witha > 0. (3.1.3)

Prove that dim¢ M = o~'. Hint: See the idea presented in ROBINSON [195,
p- 329].
(C) For s > 0 we consider the Hilbert space X; defined by the relation

oo

X;=qu= chek ul? = X:kzs|ck|2 <00

k=1

Let M,, be given by (3.1.3). Show that (i) M,, is compact in Xy if and only if
s < «a, and (ii) dimf SMy = [o—s] forall 0 < s < o, where dimf“ M denotes
the fractal dimension of a set M in the space H,. Hint: The set M, can be written
in the form M, = {0} U {n™*¢} : n = 1,2,...}, where {¢} = n""¢,} is an
orthonormal basis in Hj.

| |

Exercise 3.1.10. Show that a set M and its closure have the same fractal dimension.
This is not true for the Hausdorff dimension of M. Hint: Take M = Q N [0, 1]
(all rational numbers in [0, 1]) and show that

dimg{Q N [0,1]} =0 and dimg{[0, 1]} =

For the fractal dimension we have dim/{Q N [0, 1]} = dim¢{[0, 1]} = 1. n

The following facts are useful in the dimension calculations.

Exercise 3.1.11. Let N(M, ¢) be the minimal number of closed sets of diameter 2¢
that cover a compact set M. Prove the following statements.

(A) The fractal dimension dims M can be written in the form

InN(M,
dimy M = lim sup V(. ¢)

m st —ln(l/e) (3.1.4)
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(B) The dimension dimy M can also be represented by the formula

] N M» n
dimy M = lim sup InN(M, &) 3.1.5)
n—0 ln(l/an)

for every monotone sequence &, — +0 such that ¢,41/&, > @ > 0 for some
a>0.
]

Remark 3.1.12. The facts presented in the exercises above show that the fractal
dimension dominates the Hausdorff one. In contrast with the fractal dimension, the
Hausdorff dimension is countably additive (in the sense of (3.1.1)). The examples
in Exercises 3.1.8(B,C), 3.1.9(A), and 3.1.10 show that these dimensions do not
coincide. The example in Exercise 3.1.9(A) even shows that the same set can have
zero Hausdorff dimension and infinite fractal dimension. Moreover, as we can see
from Exercise 3.1.9(C), the value of the dimension may depend on the topology
chosen. We also refer to the paper SHUBOV [211], which provides an example of
a set with finite fractal dimension in one space and infinite fractal dimension in
another (smaller) space.

Below we mainly deal with the fractal dimension of attractors for the following
reasons: (i) the fractal dimension is more convenient in calculations, and (ii) it
estimates the Hausdorff dimension from above. We note that the importance of
the notion of finite fractal dimension is also illustrated by the following property
(see FOTIAS/OLSON [102] or HUNT/KALOSHIN [125]): if M is a compact set in a
Hilbert space X such that dim; M < n/2 for some n € N, then M can be placed
in the graph of a Holder continuous mapping which maps a compact subset of R”
onto M. We refer to FALCONER [95] for details and for other properties of Hausdorff
and fractal (box-counting) dimension. We also mention the monograph ROBINSON
[196], which discusses various aspects of dimension theory with applications to
attractors of infinite-dimensional systems. [

We conclude this section with an assertion which shows that under some
conditions even an uncountable union of finite-dimensional sets may have a finite
fractal dimension (we use this fact in our constructions of fractal exponential
attractors).

Proposition 3.1.13. Let M be a compact set in a complete metric space X and V (t)
be a family of continuous mappings from M into X, t € [a, b]. We assume that there
exist K,L > 0and 0 <y < 1 such that

distx(V(0)x, V(t)y) < L [distx(x,y)]", x,y €M, t € [a,b],

and

disty(V(t)x, V(2)x) <K |ty —|", xe€M, t1,t; € [a,b].
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Then the set My (a,b) = U,e(qp)V ()M has a finite fractal dimension in X,

1
dimy’ My(a,b) < —[1 + dimf M].

<

Proof. Let {F;} be a minimal covering of M by its closed subsets with diameters
less than 2¢. Then the family {V(¢)F;} is a covering of V()M with diameters less
than 27 Le” . Consider the sets
b—a

pat

ijZV(lk)Fj with ty =a+ ke, k=0,1,...,n. <

For every y € My (a, b) we can find k and j such that y = V(¢)x for some ¢ € [t;, tj+1]
and x € Fj. In this case,

distx (y. Gyj) < distx(V(0)x, V(i)x) <K |t — 1| < K¢e".

Therefore, the sets
Oker(Gy) = {w € X : disty(w, Gy) <K&}
give a covering for My (a, b) with
diam(Ok.» (Gy)) <2Ke” +2"Le’ = (2K +2"L)¢".
Thus,

a

b—a+1
NMy(a.b), 2K + 2L e”) < ~— 2T Ly, e).
&

This implies the conclusion. o

3.1.2 Criteria for finite dimension of invariant sets:
Lipschitz case

In further considerations the following criterion (see CHUESHOV/LASIECKA [56])
turns out to be very useful (see also CHUESHOV/LASIECKA [48, 51] for related
results). Its main advantage is that we do not involve any smoothness properties
for evolutions except the Lipschitz continuity. The basic idea behind this criterion
is some kind of splitting of evolution into stable and compact parts which refers
to the difference of two trajectories. The compact part is described by means of
compact seminorms. We recall (see, e.g., YOSIDA [229, Chapter 1]) that a real-
valued function n(x) defined on a linear space X is called a seminorm on X if

n(x +y) <nx) + n(y) and n(Ax) = |A|n(x) forall x,y e X, A € R.
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The difference between norms and seminorms is that a seminorm can be degenerate,
i.e., n(x) = 0 does not imply x = 0. For instance, n(x;, x,) = |xi| 4+ |x2| is a norm
on R?, and n(x;, x2) = |x1| is a seminorm.

Definition 3.1.14 (Compact seminorm). A seminorm n(x) on a Banach space X
is said to be compact if any bounded sequence {x,} C X contains a subsequence
{xm, } which is Cauchy with respect to n, i.e., n(x,, — X)) — 0 as k, ! — oo. (]

Our basic result in this section is the following theorem.

Theorem 3.1.15. Let X be a Banach space and M be a bounded closed set in X.
Assume that there exists a mapping V : M +— X such that

(i) MC VM.
(ii) 'V is Lipschitz on M; that is, there exists L > 0 such that

[Voi = Vuo|| < Lllvy —va2fl, vi,v2 € M. (3.1.6)
(iii)  There exist compact seminorms ny(x) and ny(x) on X such that
||VU1 — V’l)2|| < 7’]”’!)1 — 02” + Co - [nl(vl — U2) + I’lz(VUl — V’Uz)] (317)

for any v|,v, € M, where 0 < 1 < 1 and cy > 0 are constants.

Then M is a compact set in X of a finite fractal dimension. Moreover,

2 1! deo(1 +12)'/?
] Anmg (M) , (3.1.8)
+1 1—n

dimg M < [ln T

where my(R) is the maximal number of pairs (x;,y;) in X x X possessing the
properties

Ix6ll” + lyill> < R, mi(x —x) +ma(yi—y) > 1, i #]. (3.1.9)

Exercise 3.1.16. Show that under the compactness hypothesis concerning the
seminorms 77 and n,, the characteristic mg(R) defined in Theorem 3.1.15 is finite for
every fixed R > 0. Hint: Apply the contradiction argument and use the compactness
of the seminorms. =

Remark 3.1.17. We also note that if X is a separable Hilbert space and the
seminorms n; and n, have the form n;(v) = ||Pv]||, i = 1,2, where P, and P,
are finite-dimensional orthoprojectors, then

8(1 + L2)1/2y2 2 1!
dimef(dimPl—l—disz)'ln(l—|— (L+ L)' 2 .[m } .

1—n 1+n
(3.1.10)
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Indeed, in this case the set {(x;, y;) }{110(R)

i=1

satisfying (3.1.9) possesses the properties
1P1xll? + P2yl < B2, [1P1 G = I + P2 i = 3)I7 > 1/2, i # .

This means that the points z; = (Pyx;; P,y;) belong to the ball of radius R in the
space Z = P X x P,X and possess the property ||zi—z;)|; 1 /2, i # j. We have that
dimZ = dim P; + dim P, < oco. Thus, we can apply Lemma 3.1.4 to conclude that
mo(R) < (1 4+ 2+/2R)4™Z in this case. This implies (3.1.10). [

Theorem 3.1.15 was derived in CHUESHOV/LASIECKA [56] as a consequence
of some general dimension-type results established in the case of metric spaces.
For Hilbert spaces the proof can be found in CHUESHOV/LASIECKA [51]; see
also CHUESHOV/LASIECKA [58]. A similar approach based on the quasi-stability
inequality (3.1.7) with compact norms instead of seminorms n; and n, was also
discussed recently in FEIREISL/PRAZAK [100, Proposition 2.6]. Below we prove a
more general version of Theorem 3.1.15 (see Theorem 3.1.21) which allows us to
include several new models in the list of applications.

As a simple consequence of Theorem 3.1.15 we can obtain the following well-
known assertion (see, e.g., LADYZHENSKAYA [141]).

Corollary 3.1.18 (Ladyzhenskaya’s theorem). Let M be a compact set in a
Hilbert space H. Assume that V is a continuous mapping in H such that V(M) 2 M
and there exists a finite-dimensional projector P in H such that

[P(Vor = V)| < lflvr —vall,  vi,v2 €M, (3.1.11)
and

||(I—P)(VU1 — VU2)|| < 5”1)1 — 1)2”, Vi,V € M, (3112)

where § < 1. Then the fractal dimension dimy M is finite and there exists a constant
¢ = c(8,1) > 0 such that

dimy M < c-dimP. (3.1.13)
Proof. It follows from (3.1.11) and (3.1.12) that
Vv — Vua|| < §|lvy — vzl + [|P(Vvr — Vua)|l, wvy,v2 € M.

Thus, we can apply Theorem 3.1.15 and also Remark 3.1.17 with n; = 0 and
np(v) = ||Pv|. o

Exercise 3.1.19. Prove that M is a single point set when / < 1 —§ in (3.1.11)
and (3.1.12). [
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Roughly speaking, the assumptions (3.1.11) and (3.1.12) mean that the mapping V
squeezes the set M along the space (I—P)H, although it does not stretch M too much
along PH. The negative invariance of M gives us that M C V*M for all k € N. Thus,
the set M must be initially squeezed. This property is expressed by the assertion on
finite dimensionality of M. In a similar way we can interpret relation (3.1.7): Vis a
contraction up to modulo compact seminorm.

The following assertion demonstrates the role of another version of squeezing
(which we call the Foias-Temam squeezing property; see the discussion in CON-
STANTIN/FOIAS/TEMAM [79] and TEMAM [216]). We also refer to Chapter 4,
where this property is discussed for several parabolic models.

Corollary 3.1.20 (Foias-Temam squeezing). Let M be a compact set in a Banach
space X and V be a Lipschitz continuous mapping in X such that V(M) 2 M.
Assume that V satisfies a squeezing property on M in the following form: for some
n < 1 and y > 0 there exists a finite-dimensional projector P on X such that for
every vy, vy € M we have either

[(I = P)(Vvy — Vuy)|| < y[[P(v1 —v2)],
or
Vv — Vua| < vy — sl

Then the fractal dimension dimy M is finite.

Proof. Obviously under the conditions above,
[Voir = Vool < nllor —vaf| + (1 + p)[[P(vr —v2)||, vi,v2 € M. (3.1.14)

Therefore, we can apply Theorem 3.1.15. o

We also refer to CHUESHOV/LASIECKA [53] for an analysis of the
dimension problem in the case of nonlinear relations of the type (3.1.7) and
to CHUESHOV/LASIECKA [56] for statements in metric spaces and some other
corollaries of Theorem 3.1.15.

We derive Theorem 3.1.15 from the following more general result which is
central to this section.

Theorem 3.1.21. Let X be a Banach space and M be a bounded closed set in X.
Assume that there exists a mapping V : M +— X such that

(i) M < VM;
(ii) There exist a Lipschitz mapping K from M into some Banach space Z and a
compact seminorm nz(x) on Z such that

[Vor = Vua|| < nllvr — va|| + nz(Kvi — Kvz) (3.1.15)

for any vi,v, € M, where 0 < 1 < 1 is a constant.
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Then M is a compact set in X of a finite fractal dimension and

, 2 1! 4Ly
dim¢M < |In -Inmy , (3.1.16)
1+7 1—n

where Ly > 0 is the Lipschitz constant for K :

||KU1 —Kl)2||z < L[(”Ul — U2||, V1,V €M, (3.1.17)

and mz(R) is the maximal number of elements z; in the ball {z € Z : |zillz < R}
possessing the property nz(z; — z;) > 1 when i # j.

In the proof of Theorem 3.1.21 we follow the line of the argument given in

CHUESHOV/LASIECKA [51] and rely on the following lemma.

Lemma 3.1.22. Assume that V : M +— X is a mapping such that (3.1.15) with
some 1 > 0 holds. Then

a(VB) <n-w(B) forany BC M, (3.1.18)

where a(B) is Kuratowski’s a-measure of noncompactness of the set B (for the
definition see Section 2.2.2). Thus, V is an o-contraction on M in the case when
n < 1 (see Definition 2.2.15).

Proof. By the definition of «(B), for any ¢ > 0 there exist sets F1, ..., F, such that
B=F U...UF,, diamF; < a(B)+ e.

Let /" = {x; : i = 1,2...m} C B be a finite set such that for every y € B there
isi € {1,2,...,m} with the property nz(Ky — Kx;) < e. If there is no such set for
some ¢ > 0, then there exists a sequence {z,} C B such that

nz(Kz, — Kz,,) > ¢ forall n # m. (3.1.19)

The sequence {Kz,} contains a subsequence {Kz,,} which is Cauchy with respect
to ny, i.e., nz(Kz, — Kz,,) — 0 when n = [,m — oo. This is impossible due
to (3.1.19). Thus, such a finite set .4 exists, and

B=ULC, Ci={yeB:nzKy—Kx;))<¢g}, xieN.

By exploiting the representations B = U;;(C; N F;) and VB = U,;;(V(C; N Fj)),
one can see from (3.1.15) that diam (V(C; N F;)) < n-a(B) + ¢ - [2 + n]. This
implies (3.1.18). =

Remark 3.1.23. We note that the a-contraction property of V given by the previous
lemma is not sufficient for finite dimensionality of the set M. This can be shown by
means of an example. Indeed, following CHUESHOV/LASIECKA [60] we suppose
that
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o0
X=hL=q9x=(x;x;...): E xi2<oo
i=1

and

M={x=(@ix:..)€h x| <i? i=12,.}
We define a mapping V in X by the formula

[Vx]i =filx), i=12,...

where fi(s) = s for |s| <i72,fi(s) =i 2fors > i2, andfi(s) = —i 2 fors < —i 2.
One can see that V is globally Lipschitz on X and VX = M = VM. Since M is a
compact set, the mapping V is an a-contraction (with n = 0). On the other hand, it
is clear that dimy M = oo.

We also note that this example means that the statement of Theorem 2.8.1 in
HALE [116] is not true without additional hypotheses concerning the mapping. =

Proof of Theorem 3.1.21. Lemma 3.1.22 implies that ¢ (M) < n - a(M). Since 0 <
n < 1, this is possible only if «(M) = 0. Thus, M is compact.

Assume that {F; : i = 1,...,N(M,¢)} is the minimal covering of M by its
closed subsets with a diameter equal to or less than 2e with0 < & < 1.Let0 < § <
1 and

o(x,y) = nz(Kx — Ky), x,y € M. (3.1.20)
Let {xj :j=1,...,n;} C F; be amaximal subset of F; such that
Q(x]’:,xj;) > Je, x},xi eF;, jk=1,...,n, j#k
Obviously,
n; = my(F;, 8¢) < exp{o, (M. 8)}. (3.1.21)

where m, (B, €) is the maximal cardinality of a subset z; in B such that o(z, 1) > ¢
and

0,(M,8) = sup sup{lnm,(F,8¢) : F C M, diamF < 2¢}. (3.1.22)
4 0

O<e<l1

The value 0,(M, §) is finite and admits the estimate

2L
0o(M.,8) <Inmy (TK) . (3.1.23)
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Indeed, let B C M. In the space Z we consider the set # = {z = Kx : x € B}. Itis
clear that

mQ(B,e) ZR{Z[G% : nz(Z,'—Zj)>8, l;é]},

where R{...} denotes the maximal number of elements with the given properties.
Since by (3.1.17)

diamZ% = sup |[Kx — Ky|| < R = LgdiamB,

x,yEB
there exists yo € A such that
% CBr(yo) ={z€Z: |z—ylz <R}
Therefore, using the property nz(Az) = Anz(z) for any A > 0, we obtain that
mg(B. &) < R{z € Br(yo) : nz(zi—z) > . i #j}

=R {z € Br(0) : nz(zi—z) > ¢, i #j}

= R {z € Brse(0) : nz(zi—z) > 1, i # j} = mz(R/e).
This implies (3.1.23).

To continue with the proof, we note that
F; C UB’:, B} = {v eF;: p(v,xj) < -8}.
Jj=1

Therefore,

NM.e) n;
vmc | (JvB.

=1 j=1
Ify;,y, € B}, then from (3.1.15) we have
1Vy1 = Vyall < nllyr = y2ll + pOr1. ) + p(y2. X)) < 2(n + b)e.
Thus, diam {VB;} <2(n+é8)eforany e > 0and 0 < § < 1. Therefore,
N (VM. (n + 8)¢) < exp {0, (M.8)} - N(M.¢). (3.1.24)

For further use we emphasize that relation (3.1.24) remains true without the
hypothesis M € VM.
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If we choose 0 < § < 1 — n, then from (3.1.24) under the assumption M C VM
we obtain that

InN (M, qe) <0,(M,8) +1nN(M,¢)

for any ¢ > 0, where ¢ = n + § < 1. Let &, = ¢"¢&( for some gy > 0. It is clear that

InN (M, e,) <noy(M,8) +InN(M,&), n=12,.... (3.1.25)
Now for any ¢ < gy we can find n = n, and € € [e], &) such that

Ent1 < E<eg, &=("E (3.1.26)
Hence,
InN(M,e) <ng-0,(M,8) +InNM,&) <n,-0,(M,8) +InN(M, &).

Thus, by (3.1.4) we obtain that

ne
dim;M < 0,(M,$) - lim su .
M= ool D) i

It follows from (3.1.26) that

In(¢/e)  In(eo/e)
ne = < .
In(1/q) ~ In(1/q)

Therefore,

dimy M < 0,(M, §) L 2Lx !
=0 g = TS ) (17

If we take § = (1 —n)/2 and ¢ = (1 + n)/2, we obtain (3.1.16). The proof of
Theorem 3.1.21 is complete. |

Remark 3.1.24. The analysis of the argument given in the proof of Theorem 3.1.21
shows that the statement of this theorem remains true if we assume that M is a
compact set but the relation in (3.1.15) holds in a weaker (local) form:

(ii*)  There exist (a) a Lipschitz mapping K from M into some Banach space Z,
(b) a compact seminorm nz(x) on Z, and (c) &9 > 0 such that

Vv — Vua|| < nllvi — vzl + nz(Kvy — Kvy) (3.1.27)

for any vy, v, € M possessing the property ||[v; — va|| < g9, where 0 < n < 1
is a constant.
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We use this observation in Section 3.1.3 in order to derive from Theorem 3.1.21 the
results on dimension for C' mappings given in MALLET-PARET [159] and MANE
[161]. n

Proof of Theorem 3.1.15. We take the space Z = X x X endowed with the norm

1/2
lzllz = (IKI> + I¥17) . 2= (my) €Z,

and define the operator K : M + Z by the formula Kx = co(x; Vx). We also take
nz(z) = ny(x)+ny(y) for z = (x;y). In this case the Lipschitz constant for K is Ly =
co(1 4+ L*)/2. We also have m.(R) = mg(R). Thus, we can apply Theorem 3.1.21
to conclude the proof. O

Another consequence of Theorem 3.1.21 is the following assertion, which was
proved in CHUESHOV/LASIECKA [56] by another method.

Corollary 3.1.25. Let X be a Banach space and M be a bounded closed set in X.
Assume that there exists a mapping V : M +— X such that (i) M C VM, and (ii) the
mapping V admits the splitting
V=S+K, (3.1.28)
where S is Lipschitz and stable on M, i.e., there exists 0 < n < 1 such that
ISv1 = Svall < nllvr = vall, vi,vs € M, (3.1.29)
and K is a Lipschitz mapping from M into some Banach space Y C X, i.e.,

[Kvi — Kva|ly < Lgllvr — w2, vi,v2 € M. (3.1.30)

We assume that Y is compactly embedded in X.
Then M is a compact set in X of a finite fractal dimension and

- 4L
Inmyx , (3.1.31)
1—n

dimy M < |:1n
' 1+7

where my x(R) is the maximal number of points x; in the ball of radius R in Y
possessing the properties || x; — x;|| > 1, i # j.

Proof. Tt follows from (3.1.28) and (3.1.29) that
Vv — Vsl < nllv; — vzl + [J(Kvy — Kvy)||, vi,v2 €M,
where we have denoted by J the embedding operator Y into X. Thus, we can apply

Theorem 3.1.21 with Z = Y and nz(z) = ||Jz||. Since J is compact, nz(z) is a
compact seminorm. o
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If in the splitting (3.1.28) we have S = 0, then we easily arrive at the
following assertion which was proved in ZELIK [232, Theorem 4.1] (see also
MALEK/PRAZAK [158, Lemma 1.3] and the recent monograph FEIREISL/PRAZAK
[100, Theorem 2.4]). In these sources it was applied for some types of parabolic
problems.

Corollary 3.1.26. Let X and Y be Banach spaces such that Y is compactly
embedded in X. Let M be a bounded closed set in X. Assume that V. : M — Y
is a Lipschitz mapping from M into Y, i.e.,

[Vvi = Vually < L|jvy —v2llx, vi,v2 € M.

If M C VM, then M is a compact set in X and its fractal dimension (in X) admits
the estimate

In my x (4L)

In2

’

where my x(R) is the same as in Corollary 3.1.25.

Proof. We apply Corollary 3.1.25 with S = O and n = 0. o

3.1.3 Criteria for finite dimension of invariant sets: C' case

In this section we consider the case of smooth mappings. Our primary goal is to
present the main idea of the volume contraction method (see CONSTANTIN/FOIAS
[77], CONSTANTIN/FOIAS/TEMAM [79] and also the monographs BABIN/VISHIK
[9], BOICHENKO/LEONOV/REITMANN [15], CHEPYZHOV/VISHIK [31], TEMAM
[216]).

We start with several important statements which show how the results of the
previous section can be applied in the smooth case. Namely, using Theorem 3.1.21
and also the observation made in Remark 3.1.24, we can give an alternative proof
of some results established in MALLET-PARET [159] and MANE [161]. For this we
first recall the following definition (see Section A.5 in the Appendix for more details
concerning calculus in infinite-dimensional spaces).

Definition 3.1.27 (Fréchet derivative). Let & be an open set in a Banach space X.
A mapping V : 0 +— X is said to be Fréchet differentiable on O if for any u € &
there exists a bounded linear operator V' (u) such that

V(@) = V@) — V()@ —u]
v — ull

—0 as [Jv—u| —0. (3.1.32)
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The operator V'(u) is called the (Fréchet) derivative of V at the point u € €. The
relation in (3.1.32) means that for every u € & there exist § > 0 and a scalar
function y(s) on [0, §] such that y(s) — 0 as s — 0 and

V() = V@) = V@ —-ul < y(lv—ulDlv—ul.
If the number § and the function y(s) do not depend on u, then the mapping V is

said to be uniformly (Fréchet) differentiable on 0. [

The following assertion generalizes Theorem 2.1 of MALLET-PARET [159] and
provides a version of the result presented in MANE [161].

Theorem 3.1.28. Let M be a compact set in a Banach space X. Assume that there
exists an open set O such that M C 0 C X. Suppose that V : O +— X is Fréchet
differentiable on O and M C VM. If the derivative V'(u) is continuous with respect
to u in the operator topology and there exists a finite-dimensional projector* P such
that

V') —P)| <1 forevery ucM, (3.1.33)

then the set M has a finite fractal dimension.

Proof. Letu € M. Since V is continuously differentiable on &, we have that
1
V() —V(u) = / V(v + 01— Vu)(v—u)dr (3.1.34)
0

for every v € X such that |u —v|| < & < dist(M, X \ ©). Using the continuity of V’,
the compactness of M, and the relation in (3.1.33), we can choose ¢ > 0 such that

IVwu+w)yI—-P)|<g<1and |[Vu+w| <K, YueM, |w|| <e.

This implies the property (ii*) in Remark 3.1.24 with n = ¢, Z = X, nz(y) =
K||Py||. Thus, applying the observation made in Remark 3.1.24, we conclude the
proof. o

Instead of the existence of the continuous derivative with property (3.1.33) in
Theorem 3.1.28, we can assume that V is uniformly quasi-differentiable® on M.

Definition 3.1.29 (Uniform quasi-differentiability). Let M be a set in a Banach
space X and V : M +— X be a continuous mapping. This mapping is called
uniformly quasi-differentiable in X on the set M if for any u € M there exists a
bounded linear operator L(u) on X such that

IV(v) = V() — Lw)(v —w)|| < y(lv —ulDl|v — ull (3.1.35)

2This means that P is a bounded operator on X such that P> = P and dim P = dim PX < oo.

3For dimensionality considerations this notion was used by many authors. See, e.g., BABIN/VISHIK
[9], CHEPYZHOV/VISHIK [31], TEMAM [216] and the references therein.
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for all u,v € M, where the scalar function y(s) does not depend on u,v € M and
y(s) — 0 as s — 0. The operator L(u) is called the quasi-derivative of V at the
pointu € M. (]

We have the following version of Theorem 3.1.28.

Theorem 3.1.30. Let M be a compact set in a Banach space X and V : M +— X
be uniformly quasi-differentiable on M. Suppose that M C VM and there exists a
finite-dimensional projector P such that

IL@)P|| < C and |L(w)(I —P)|| < g <1 forevery ue M. (3.1.36)

Then the set M has a finite fractal dimension.

Proof. Letu,v € M. It follows from (3.1.35) that

V) =V =y(lv—ulDlv —ull + LT = P)(u—v)| + [Lw)Pu—v)]|
<lg + y(lv —uDlllv — ull + Cl|P(u = v)].
This implies the property (ii*) in Remark 3.1.24 for gy chosen such that y(s) <

(1—¢g)/2when0 < s < gy Inthiscase n = (1 + q)/2,Z = X, nz(y) = C||Py]|.
Thus, as in the previous case, we can conclude the proof. O

Obviously in both Theorems 3.1.28 and 3.1.30 we can take an arbitrary linear
compact operator K instead of the projector P. Moreover, this observation can be
improved. Namely, we can obtain the following result which basically was proved
in MANE [161].

Theorem 3.1.31. Let M be a compact set in a Banach space X andV : M +— X be
uniformly quasi-differentiable on M. Assume that the quasi-derivative L(u) can be
split into two parts

L(u) = L' (u) + L*(w), ueM,
where

sup [L'(w)|| = ¢ < 1
ueEM

and L*(u) is a compact operator on X for each u € M. We also assume that the
function u v L?(u) is continuous in the operator norm. If M C VM, then dimy M is
finite.

Proof. Let u,v € M. As in the proof of Theorem 3.1.30, using (3.1.35) and also
the splitting of L(u), we obtain that

V(@) = V@) <lg + y(lv = uDllv = ull + [L* @)~ v)].
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We know that the family of operators L?(u) is continuous in the operator norm.
Thus, the function u +— L?(u) is uniformly continuous, and hence for every > 0

there exists a finite §-net {wk}kNi"I) in M such that
YueM Ik: |L2(u)—L*wy)| <.

In this case,

122 @) (u = ) | <IL* ) — L2 W)l (v = )] + [ La(wi) (v — )|

N
<nllv—ul + 3 I 0 — ).
k=1
Therefore,
N()
V@) = V@l <lg+ 1+ y(lv —ulllv —ul + 3 L2000 @ — ).
k=1
This allows us to apply Remark 3.1.24 and conclude the proof. o

In all Theorems 3.1.28, 3.1.30, and 3.1.31, bounds for the dimension can be derived
from relation (3.1.16) in the statement of Theorem 3.1.21. However, as was already
mentioned, the bounds which follow from the results of Section 3.1.2 are rather
conservative, and the volume contraction method makes it possible to improve
these bounds significantly. This method requires both differentiability of evolution
mapping V and the Hilbert structure of the phase space.

To introduce finite-dimensional volumes* and describe their properties we need
the following definitions.

Let L be a linear bounded operator on a Hilbert space X. Following
CONSTANTIN/FOIAS/TEMAM [79] and TEMAM [216] we introduce the numbers

(L) = sup in}; || Lu]|, (3.1.37)
€

FCX U
dimF=m lul=1

where F is a subspace in X, and we suppose that
wn(L) = o1 (L) ... ay(L). (3.1.38)

The following assertion can be found in TEMAM [216, Chapter V].

“For the reader’s convenience we mention that the linear algebra required is presented particularly
clearly in CARVALHO/LANGA/ROBINSON [26].
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Proposition 3.1.32. Let L be a linear bounded operator on a Hilbert space X. Then
the following minimax properties hold:

a,(L) = sup in}fF |1 Lu| = }gg sup |[Lul|. (3.1.39)
ue
dimFam lul=1 dimF=m—1 ot

Moreover, {a,,(L)} is a non-increasing sequence and

ww(L) = sup |[Loi ALy A ... A Lyl (3.1.40)
P

1/2
where |y A ... A | = [det (i, ¢ ;’f/:l] is the m-dimensional volume of the
parallelepiped spanned by ¢, . . ., Py,

Thus, the value w,,(L) characterizes the behavior of m-dimensional volumes under
the action of L. It is also clear that w (L) = o1 (L) = ||L||xx. Below we say that L
contracts m-dimensional volumes if w,,(L) < 1. There is a simple characterization
of volume contractive linear operators.

Proposition 3.1.33. A linear bounded operator L contracts m-dimensional volumes
for some m if and only if L = C + K, where C is a contraction, i.e., |Cllx—»x < 1,
and K is a compact operator. Moreover, if w,,(L) < 1, then in the representation
L = C+K we can choose C to be a contraction and K a finite-dimensional operator
such that dim KX < m.

Proof. Let L = C + K with a contraction C and a compact operator K. Since
{@,(L)} is a non-increasing sequence, it is sufficient to show that o, (L) < 1 for
some m. It follows from (3.1.39) that

am(L) = jnf  sup [Cu + Kul| < [|Cllxr>x + otm(K).
dimF=m—1 ok

Since K is a compact operator, we have that «,,(K) — 0 as m — oo (see, e.g.,
TEMAM [216, Chapter V]). Thus, for some m we have that

||C||X»—>X +Olm(K) < 1.
Assume now that w,,(L) < 1 for some m. Since {®,(L)} is a non-increasing
sequence, we have that «,,(L) < 1. It follows from results in TEMAM [216,

Chapter V, Section 1.3] that the space X can be split into the direct sum

X = Xo + X,
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where X is spanned by an orthogonal family {ej};gl of eigenvectors of the operator
(L*L)'/?. Moreover, we have that

ILplx < an(D)Pllx. ¢ € X3

This means that the operator R = (L*L)"/? is a sum of a contraction and a finite-
dimensional projector. Using the polar representation of a bounded operator (see,
e.g., DUNFORD/SCHWARTZ [89, Chapter 12, Section 7]), we can conclude that the
operator L has the same structure. ]

To state the main theorem of the volume contraction method, we need to extend the
characteristic wy, (L) defined for integers m on all non-negative reals by the following
interpolation formulas:

oo(L) = 1, 0a(L) = 0n(L)' " 0ps1 (L)' = 0p(L)t1 (L),

foralld =m+s,m € Z4+,0 < s < 1. One can show that the function d — wy(L)
is non-increasing (see, e.g., TEMAM [216, Chapter 5]).

The proof of the following result can be found in TEMAM [216]; see also the
references therein.

Theorem 3.1.34 (Basic Hausdorff dimension bound). Let M be a compact set in
a Hilbert space X and V : M +— X be uniformly quasi-differentiable on M. Assume
that VM = M and the quasi-derivative L(u) possesses the properties

sup [|L(u)||lx>x < +00
ueM

and

wg = sup wy(L(u)) <1 for some d € Ry. (3.1.41)
ueM

Then the Hausdorff dimension dimy M of M is finite and dimy M < d.

In contrast with the argument given in Theorem 3.1.21, which is based on covering
results for finite-dimensional balls (see Lemma 3.1.4), the proof of Theorem 3.1.34
involves more refined covering lemmas concerning ellipsoids. This is the main
reason why it is possible to obtain the relation (3.1.41) for the dimension, leading to
substantial improvement of the dimension bounds.

By Proposition 3.1.33 the requirement in (3.1.41) implies that the quasi-
derivative L(u) for each u € M can be split as

L(u) = C(u) + K(u), (3.1.42)
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where C(u) is a contraction and K is a finite-dimensional operator such that

sup [|Cw)|lxmx < [wa]/? <1, dimKX <d + 1.
ueM

However, in order to apply the quasi-stability method via Theorem 3.1.31 here, we
need to assume that in the splitting (3.1.42) the operators are continuous with respect
to u in the operator norm. In this sense the fact on the finite dimension cannot be
derived from Theorem 3.1.21.

A result similar to Theorem 3.1.34 is also valid for the fractal dimension. Namely,
we have the following assertion.

Theorem 3.1.35 (Basic fractal dimension bound). Ler V be uniformly quasi-
differentiable on a compact set M in a Hilbert space X and M C VM. Assume
that

wj = supw;(L(n)) <kj<oo, j=12,...,n
ueM

and ford =n+ swith0 < s < 1 we have

wg = sup wg(L(u)) < kg < 1.
ueM

Then the dimension dimy M of M is finite and admits the estimate

. logk; Jj
dim;M < d —=J 42,
M =4 E, (log(l ) T d)

For the proof we refer to CONSTANTIN/FOIAS/TEMAM [79]; see also CHEP-
YZHOV/VISHIK [31]. Another version of the corresponding statement concerning
fractal dimension can be found in TEMAM [216]. It is also possible to show
(see CHEPYZHOV/ILYIN [29]) that dim; M has the same bound as dimyM in
Theorem 3.1.34 under the additional hypotheses that VM = M and the quasi-
differential L(u) is continuous with respect to u in the operator norm.

To control volume contractions and optimize bounds for dimension it is conve-
nient to use the uniform Lyapunov numbers introduced in CONSTANTIN/FOIAS [77]
and CONSTANTIN/FOIAS/TEMAM [79].

We first note that V7 = Vo...o V is also uniformly quasi-differentiable with the
quasi-derivative

Ly(u) = L(V""'w)L(VP~u) . .. L(Vu)L(u).
Thus, we can define the numbers

w;(p) = sup w;(L"(u)).
ueM
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One can show (see TEMAM [216, Chapter V]) that @;(p) is subexponential with
respect to p, i.e.,

@i(p + q) = wj(p)w;(q).
This implies that the values

M = lim [@,(p)]"" = inf [@;(p)]"" (3.1.43)

p—>00

exist. With this notation Theorems 3.1.34 and 3.1.35 lead to the following assertion.

Corollary 3.1.36. Let V : M +— X be uniformly quasi-differentiable on a compact
set M in a Hilbert space X. Assume that VM = M and the quasi-derivative L(u)
possesses the property

sup [ L(u)[[x>x < +00.
ueM
If I1; < 1 for some d > O, then

dimyM <d and dim/M <d gy 7
im, n im, max [ ———— + =],
nit =@ M =4 \log(1/1T,) © d

where n is the integer part of d.

The statement of Corollary 3.1.36 can be rewritten in another form. To do this,
following CONSTANTIN/FOIAS [77] and CONSTANTIN/FOIAS/TEMAM [79] we
introduce the notation

Ay =11, A, = m/n—h m>2.

We obviously have that

_ 1/
A, = lim ( On(P) ) "

=00 \ Wy—1(p)

The numbers A,, are called uniform Lyapunov numbers on M for the mapping V,
and

U = log A, are global Lyapunov exponents, m > 1.

The following result can be found in TEMAM [216].

Theorem 3.1.37. Let V : M +— X be uniformly quasi-differentiable on a compact
set M in a Hilbert space X. Assume that VM = M and the quasi-derivative L(u)
possesses the property
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sup || L(u)||x—>x < +o00.
ueM

If i1 + ... + Unt1 < 0 for some n > 0, then

AT S oy VS

<1,
[n+1]

Hat1 <0,

and

[+ o g

dimg M < dimLyapM =ng +
| ng+1]

(3.1.44)

where ny is the minimal integer such that
M1+ .oy =0 and g + ..o+ fpp+1 <O0.

The right-hand side dimpy., M in (3.1.44) is called the Lyapunov dimension of
the set M, and relation (3.1.44), which means that the Lyapunov dimension
dominates the Hausdorff dimension, is known as the Kaplan-Yorke formula. See
the references in CONSTANTIN/FOIAS [77] and CONSTANTIN/FOIAS/TEMAM [79]
or in CHEPYZHOV/VISHIK [31] and TEMAM [216]. We also mention that for the
fractal dimension the following bound:

dimy M < (o + 1) max |14 5T H (3.1.45)
1<j=no [t + o+ g1l

is valid (see, e.g., TEMAM [216] and CHEPYZHOV/VISHIK [31]). Under some
conditions of a different nature concerning the mapping V and its (quasi-) deriva-
tive, one can show that the fractal dimension admits the same bound as the
Hausdorff one in the Kaplan-Yorke formula (3.1.44). See the discussions in
CHEPYZHOV/VISHIK [31] and also in CHEPYZHOV/ILYIN [29].

3.2 Exponential attractors for discrete systems

The dimension theorems discussed in the previous section pertain to negatively
or strictly invariant sets M (M C V(M)). As for positively invariant sets, the
finite dimensionality is not guaranteed. However, one can show that the latter sets
are attracted by finite-dimensional compacts at an exponential rate. For instance,
the method presented in the proof of Theorem 3.1.21 allows us to obtain the follow-
ing assertion, which is a version of the result proved in CHUESHOV/LASIECKA [56]
for metric spaces.
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Theorem 3.2.1. Let V : M +— M be a mapping defined on a closed bounded set
M of a Banach space X. Assume that there exist a Lipschitz mapping K from M into
some Banach space Z and a compact seminorm nz(x) on Z such that

[Vvir = Vua|| < nllvi — val| + nz(Kvi — Kvy) (3.2.1)

for any vi,v, € M, where 0 < n < 1 is a constant. Then for any 0 € (n,1)
there exists a positively invariant compact set A9 C M of finite fractal dimension

satisfying
sup {dist(V*u,Ag) : ue M} <rb*, k=12,..., (3.2.2)

for some constant r > 0. Moreover,

-1
dim; Ag < Inmy (;L—Kn) . [m H , (3.2.3)

where, as in Theorem 3.1.21, Lk is the Lipschitz constant for K (see (3.1.17)) and
mz(R) is the maximal number of elements z; in the ball {z € Z : |zllz < R}
possessing the property nz(z; — z;) > 1 when i # j.

Note that the condition (3.2.2) means an exponential rate of attraction.

Proof. Tt follows from Lemma 3.1.22 that V is an a-contraction. Therefore, by
Exercise 2.3.8 the set My = N,>1 V"M is a compact global attractor for the discrete
dynamical system (M, V¥). By Theorem 3.1.21, dim; My < co. We construct a set
Ay as an extension of M.

Since V is an «-contraction on M, due to invariance we can assume that
a(M) < 2 and thus N(M, 1) < oo. Here and below N(B, ¢) denotes the cardinality
of the minimal covering of B by its closed subsets of diameter equal to or less
than 2¢.

It follows from (3.1.24) that

N (VM, ge) < exp {UQ (M; 5)} -N(M, ¢)

for any ¢ > 0, where ¢ = n + § and o, (M, §) is given by (3.1.22) and admits the
estimate (3.1.23). Taking V"*~'M instead of M in the previous formula, we obtain

N (V'M,ge) < exp{o, (V"'M,8)} -N(V'"'M,e), n=12,...
Since V"~'M C M, we have that
0o (V”_lM,S) <o,M,8), n=12,...
Thus, we have

N (V'M, qe) < exp{o, (M.8)} -N(V""'M.e), n=1.2,...,
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and hence
N (V'M.¢,) < exp{nog(M,8)} -N(M,&), n=12,..., (3.2.4)

where we choose ¢, = ¢"¢y with some 1/2 < gy < 1.
In the construction of inertial sets we rely on some ideas presented in EDEN
ET AL. [92]. For this we need the following assertion.

Lemma 3.2.2. Assume that 0 > 1. Then there exists a collection of finite sets
{E}52, possessing the properties:

(i) E,, C V"M foreverym =0,1,..., and

viM c ) (V"M Byn(v)), m=0.1,..., (3.2.5)

veEE,,

where B,(v) = {w € X : ||lw—v|| < p} is a ball with the center at v.
(ii) There exists a constant Ny > 0 such that for every m > 0 we have

CardE,, < N(V"M,0™) < Nyexp (m ~0,(M, 0 — 77)) , (3.2.6)

where 0,(M, 8) is given by (3.1.22) and admits estimate (3.1.23).

Proof. LetE,, = {a! :i =1,...,N,} be a maximal set in V"M possessing the
property |[af" — a}'|| > 26™, i # j. Then it is clear that (3.2.5) holds. To establish
relation (3.2.6) we note that the inequality

N,, = CardE,, < N(V"M,0™), m=0,1,..., (3.2.7)

follows from the fact that two different elements from E,, cannot belong to the same
set of diameter 26™. By (3.2.4) this implies (3.2.6). O

Completion of the proof of Theorem 3.2.1. We prove that the set
Ag =My U{V*E,, : kkm=0,1,2,..}

satisfies the conclusion of the theorem.
It is easy to see that Ag is a compact, positively invariant set. By (3.2.5),

dist(V"y, Ap) < dist(V"y,E,) <20™, m=0,1,2,...,
for every y € M. This implies (3.2.2).
To estimate the fractal dimension of Ay, we use the idea presented in the

monograph CHUESHOV/LASIECKA [56]. We first note that

Ag CVIMU{V*E,, : k+m<n—1, k,m > 0}
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for every n > 1. Therefore,

n—1
N(Ag.e) <N(V'M.&) + Y (n—m)Card E,,

m=0

for every n > 1 and ¢ > 0. Consequently, choosing ¢ = 6" from Lemma 3.2.2, we
obtain

N(Ag,0") < Noexp (n-o,(M,0 —n)) {1+ Zjexp (—j-0o(M. 6 — 1))
=1

exp (0p(M, 0 — 1))
(exp (0p(M. 6 — 1)) — 1)2

= Noexp (n-0,(M. 0 —n)) {1+

for every n > 1. As in the proof of Theorem 3.1.21, we take 0 < ¢ < 1 and choose
n = n, such that 8" < & < "1, Thus,

InN(Ag, &) <InN(Ag, 0™) < n.,0,(M,0 —1n) + C(K,L,0,n).

Because n, < 1+ In(1/¢) [In(1/6)]~", this implies (3.2.3). o

As an application of Theorem 3.2.1 we obtain the following assertion (which
was also established in CHUEHSOV/LASIECKA [56] and FEIREISL/PRAZAK [100]
by other methods).

Theorem 3.2.3. Let V : M +— M be a mapping defined on a closed bounded set
M of a Banach space X. Assume that the Lipschitz condition for V in (3.1.6) holds,
and that there exist compact seminorms ny and ny on H such that

Vv — Vool < nllvy — val| + co - [n1(vy — v2) + n2 (Vo — Vy)] (3.2.8)

holds for any v, v, € M, where 0 < n < 1 and ¢y > 0 are constants. Then for any
0 € (n,1) there exists a positively invariant compact set Ag C M of finite fractal
dimension satisfying (3.2.2). Moreover,

2¢o(1 + L2)1/2 17!
dims Ay < Inmy (CO(Q;)) . [m 5] , (3.2.9)
' —7

where, as in Theorem 3.1.15, my(R) is the maximal number of pairs (x;,y;) in X x X
possessing the properties

Il 4+ lyill> < R% mi(xi —x) +ma(yi—y) > 1, i # .
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If X is a Hilbert space and n(x) = ||P1x| and ny(x) = ||Px||, where Py and P, are
finite-dimensional projectors in X, then

42(1 + L2)2¢,
0—n

17!
dim;Ag < In (1 + ) |:ln 5:| (dim Py +dimPy). (3.2.10)

Proof. We have the same choice of Z, K and ny as in the proof of Theorem 3.1.15.
Thus, in estimate (3.2.3) we need to set Lg = co(1 + L?)'/2. In the case when the
seminorms n; and n; are generated by orthogonal projectors, we use the observation
made in Remark 3.1.17. o

As a consequence of Theorem 3.2.3 we can easily derive the following assertion,
which is compatible with the construction presented in EDEN ET AL. [92].

Corollary 3.2.4. LetV : M — M be a mapping defined on a closed bounded set M
of a Banach space X. Assume that the Lipschitz condition for V in (3.1.6) holds and
V possesses on M the Foias-Temam squeezing property: for some n < 1 and y > 0
there exists a finite-dimensional projector P on X such that for every vy, v, € M we
have either

(I = P)(Vvr = Vuo)|| = y[[P(vi —v2)],
or
[Vvr = Vua|| < nllvy — va.

Then for any 0 € (n, 1) there exists a forward invariant compact finite-dimensional
set Ag satisfying (3.2.2).

Proof. As in Corollary 3.1.20 we have relation (3.1.14), which allows us to apply
Theorem 3.2.3. o

Another consequence of Theorem 3.2.1 is the following assertion.

Theorem 3.2.5. Let V : M +— M be a mapping defined on a closed bounded set
M of a Banach space X. Assume that V admits the splitting V = S + K such that
relations (3.1.29) and (3.1.30) are in force. Then there exists a forward invariant
compact finite-dimensional set Ag such that (3.2.2) holds for some 0 < 6 < 1 and
r>0.

The proof of Theorem 3.2.5 follows from Theorem 3.2.1 and uses the same
observation as in Corollary 3.1.25. We also note that in the case when (3.1.29)
holds with n < 1/2 the statement of Theorem 3.2.5 is well known from the paper
EFENDIEV/MIRANVILLE/ZELIK [91].

Under the hypotheses of Theorem 3.2.1 the discrete dynamical system (M, V¥)
possesses a compact global attractor M,. This attractor uniformly attracts all
the trajectories of the system (M, V¥), and by Theorem 3.1.21 dimy M, < oo.
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Unfortunately, in general the rate of convergence to the attractor cannot be
estimated. This rate may be very slow. However, Theorem 3.2.1 attests that
the global attractor is contained in a finite-dimensional positively invariant set
which attracts M uniformly and exponentially fast. Thus, the dynamics of the
system becomes finite-dimensional exponentially fast independent of the speed
of convergence to the global attractor. Moreover, the reduction principle (see
Theorem 2.3.22) is applicable in this case. Thus, finite-dimensional, positively
invariant, exponentially attracting sets can be useful to describe the qualitative
behavior of infinite-dimensional systems. These sets are frequently called inertial
sets or fractal exponential attractors (see EDEN ET AL. [92] and also Section 3.4.1
below). In some cases they turn out to be surfaces in the phase space. For details
we refer to EDEN ET AL. [92] and to the references therein; see also the survey
MIRANVILLE/ZELIK [166].

3.3 Determining functionals

In many applications it is important to search for minimal (or close to minimal)
sets of natural parameters of the problem that uniquely determine the long-time
behavior of the system. This question was first discussed in FOIAS/PRODI [105]
and LADYZHENSKAYA [140] for the 2D Navier-Stokes equations. Later on, other
equations and models were considered (see, e.g., CONSTANTIN/DOERING/TITI
[76], FOo1AS ET AL. [104], FO1IAS/TEMAM [107], FO1AS/T1TI [108], LADYZHEN-
SKAYA [141], SERMANGE/TEMAM [205] and the references quoted therein). The
concepts of determining nodes (FOIAS ET AL. [104], FOIAS/TEMAM [107], SER-
MANGE/TEMAM [205]) and determining local volume averages (FOIAS/TITI [108],
JONES/TITI [126, 127]) were also introduced. The general concept of determining
functionals in framework interpolation theory was introduced as well (see COCK-
BURN/JONES/TITI [73, 74]). These functionals can be interpreted as some kinds of
measurements of the state of the system. For further details we refer to the survey
CHUESHOV [38] and to the references quoted therein (see also CHUESHOV [39,
Chapter 5]). Recently the theory of determining functionals was applied in the
study of the (discrete) data assimilation problem, which originated from weather
prediction (see, e.g., HAYDEN/OLSON/TITI [122] and also CHUESHOV [44]).

3.3.1 Main concepts

The following definition is based on the property established in FOIAS/PRODI [105]
for the Fourier modes of solutions to the 2D Navier-Stokes system with periodic
boundary conditions.



3.3 Determining functionals 121

Definition 3.3.1. Let (X,S;) be a dynamical system in some Banach space X.
Assume that there exists a complete linear topological space V which is continu-
ously embedded into X (the case V = X is allowed) and for any x € X there exists a
moment #, such that S,x € Vforallr > t,. Let £ ={[;:j=1,...,N} be asetof
linear continuous functionals on V and let two semitrajectories {u(t) = Su : t > 0}
and {v(r) = S,v : t > 0} be given. Then .Z is said to be a set of (asymptotically)
determining functionals on V for those trajectories of the system (X,S;) if the
condition

lim |[(u(f)) —L(v()| =0 forj=1,...,N (3.3.1)
—0o0
implies that
lim || u(®) —v(®) ||x= 0. (3.32)
—>00

If the implication above is true for any two semitrajectories {u(¢) = S,u : t > 0} and
{v(¢) = S,v : t > 0}, we call .Z determining on V for the system (X, S;). n

Remark 3.3.2. 1. The property in (3.3.1) can be written as

—>

.....

It is clear that n¢ is a seminorm on .Z. This observation allows us to introduce
the notion of a determining seminorm: a continuous seminorm » on V is said to
be (asymptotically) determining for (X, S;) if the property n(u(f) — v(r)) — 0 as
t — oo implies (3.3.2).

2. We note that sometimes it is convenient to use other types of convergence
in (3.3.1) and (3.3.2). For instance, instead of (3.3.1), in CHUESHOV [38,
Definition 1.1] (see also CHUESHOV [39, Chapter 5]) the following weaker
property is assumed:

+1
tlim / [li(u(r)) — lj(v(r))|2dr =0 forj=1,...,N. (3.3.3)
—00 t

We can also consider the convergence in (3.3.1) along some sequence {t,}
tending to infinity. This can be interpreted as a measurement of the state of
the system made from time to time (for instance, every two hours in weather
prediction).

3. Other approaches and definitions characterizing determining functionals are
possible and have been used in the literature (see, e.g., LADYZHENSKAYA [140]
and COCKBURN/JONES/TITI [73, 74] and the references therein). For instance,
there is a definition (see CHUESHOV [38] or CHUESHOV [39, Chap. 5] and
also Remarks 3.3.14 and 3.4.13(2) below) based on an extension to a general
dynamical system of the property of finite-dimensional projections proved in
LADYZHENSKAYA [140] for trajectories lying in the global attractor of the 2D
Navier-Stokes equations.
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For characterization of a set of determining functionals it is convenient to use the
following concept of completeness defect which has been suggested in CHUESHOV
[37, 38] in the case of pairs of embedded Banach spaces. To consider a certain class
of quasi-stable systems (see Section 3.4 below), we introduce this notion in the case
of a single space equipped with an additional seminorm.

Definition 3.3.3. Let V be a Banach space and u be a seminorm on V. The
completeness defect of a set £ of linear functionals on V with respect to w is the
value

€V, ) =supf{uw) : weV, l(w)=0,1€ Z, |wlly <1} . (3.3.4)

In the case when V is continuously and densely embedded into another Banach
space X (with the property || - ||x < c|| - ||v), the value

ez(V.X) = ex(V. |- llx)
=supf{|w|x : weV,Ilw)=0,le.Z, ||w|y <1} (3.3.5)

is said to be the completeness defect of a set .Z of linear functionals on V with
respect to X (see CHUESHOV [37, 38]). [

We note that finite dimensionality of the Span.Z of the set . is not assumed at this
point. It is also obvious that € 4 (V, u) > €4,(V, u) provided Span.Z} C Span.%.
In addition, € »(V, u) = 0 if and only if p(w) = O for every element

we Lt ={weV:iw) =0,Vlec L)

Thus, if @ is norm, then the relation € »(V, u) = 0 is equivalent to the statement
that the class of functionals .Z is complete in V; that is, the following uniqueness
condition holds: I(w) = 0 for all € . implies w = 0.

The basic properties of completeness defect which we use in the subsequent
considerations are described in the following assertions (see CHUESHOV [38] and
[39, Chapter 5] for the case of pairs of spaces).

Proposition 3.3.4. Let € = €»(V, 1) be the completeness defect of a finite
set & = {l; : j = 1,...,N} of linear functionals on V with respect to some
seminorm (L. Then there exists a positive constant C ¢ such that

nww) < Ce-max{li(w)| : j=1,...,Ni+eg-|w|ly forany weV. (3.3.6)

Proof. Obviously we can assume that {/;} are linearly independent functionals. This
allows us to construct a biorthogonal system {¢; : j = 1,...,N} C V for .Z (ie.,
we have that [;(v;) = 0if j # i and [;(¢;) = 1). In this case for any w € V the
element v = w — vazl li(w)e; possesses the properties /;(v) = Oforj=1,...,N.
By the definition in (3.3.4) we have that u(v) < eg||v|y. Therefore, from the
representation for v we obtain (3.3.6). O
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The following assertion gives a condition under which the completeness defect is
small.

Proposition 3.3.5. Let V be a separable Hilbert space and | be a weakly continu-
ous seminorm on 'V, i.e., jL(x,) — 0 when x, — x weakly in V as n — oo. Then

(1) For any € > 0 there exist a constant K, and finite-dimensional orthoprojectors
P? in 'V such that

p) < elvll + Ks[[Pvl, veV. (3.3.7)

(2) For any ¢ > O there exists a a finite family of functionals £ = {l; : j =
1,...,N}suchthat e »(V, u) < e.

Proof. To establish the first statement we follow the line of argument given in
CHUESHOV/LASIECKA [58, Chapter 7]. Assume that (3.3.7) is not true. Then there
exist &9 > 0 and a sequence of orthoprojectors {P,,} such that P,, — I strongly in V
and

w(m) = €0 + cml|Puvnll, m=1,2,..., (3.3.8)

for some sequence {v,,} C V with the property ||v,| = 1, where ¢,, — 00 as
m — oo. We can also assume that v,, — v weakly in V for some v € V. It follows
from (3.3.8) that || P, v, || — 0 as m — oc.

Because

P,v=P,(v—uv,)+ P,v, —> 0 weakly in V,

we conclude that v = 0. Since pu is weakly continuous, this implies that u(v,,) — 0
as m — oo, which contradicts (3.3.8). Thus (3.3.7) holds.

To prove the second part we take a basis {¢;} in the finite-dimensional space P°V
and consider the functionals L;(v) = (v,e;),j = 1,...,N = dim P°. The property
€2 (V, n) < e follows from (3.3.7). o

Exercise 3.3.6. Show that any weakly continuous seminorm on a reflexive Banach
space is compact in the sense of Definition 3.1.14. We do not know whether the
inverse statement is valid. [

Exercise 3.3.7. Let V C W C X be Banach spaces such that all the embeddings
are continuous and dense. Assume that the (interpolation) inequality

0 1—-6
lullw < agllulxllully™, weV,

is valid with some constants ag > 0 and 0 < 6 < 1. Then for any set .Z of the
linear functionals on W the following estimate holds:

- 1/6 _
a7 e2(V.W)]"" < €2 (V.X) < [age (W. X))/~ (33.9)

Hint: See [38] or [39, Chapter 5]. [
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We also note that the completeness defect is closely related with some concepts
of the approximation theory (see CHUESHOV [38] or [39, Chapter 5] for details).
Below we use the so-called interpolation operators which are related with the set of
functionals given. To describe their properties we need the following notion.

Definition 3.3.8. Let V C H be separable Hilbert spaces and R be a linear operator
from V into H. As in AUBIN [5], the value

ey (R) = sup{llu — Rully : llully <1} = I = Rllvsns

is said to be the global approximation error in H arising in the approximation of
elements v € V by elements Rv. Here and below | - ||yp denotes the operator
norm for linear mappings from V into H. (]

The following assertion (see CHUESHOV [38, 39] for the proof) shows that the
completeness defect provides us with a bound from below for the best possible
global approximation error.

Theorem 3.3.9. Let V and H be separable Hilbert spaces such that V is compactly
and densely embedded into H. Let £ be a finite set of linear functionals on V. Then
we have the following relations:

ey(V,H) = min{ef,l(R) : Re Zy},

where X is the family of linear bounded operators R : V — H and such that
Rv=0forallve L+ ={veV :Iv)=0, e L) Moreover, we have that

ex(V.H) = e)(I — Qg) = sup{[|Qeully : |ully <1}, (3.3.10)

where Q o is the orthoprojector in V onto £+

One can show (see CHUESHOV [39]) that any operator R € % ¢ has the form

N
Rv =Y "L()y;. YveV. (3.3.11)

J=1

where {1/;} is an arbitrary finite set of elements from V. This is why Z¢ is called
the set of interpolation operators corresponding to the set .. An operator R € Z.¢
is called a Lagrange interpolation operator, if it has form (3.3.11) with {y;} such
that [y (¥;) = 8. In the case of Lagrange operators we have that R*>=R,ie,Risa
projector.

We also note that the operator Q » in (3.3.10) has the following structure:

N
Qz =1-Py with Pyv =Y (§.0)v& YveV.
j=1
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where {§;} is the orthonormal basis in the orthogonal supplement .#Z¢ to the
annihilator .Z+ in V. We call P.¢ the optimal interpolation operator corresponding
to the set .Z.

Example 3.3.10 (Modes). Let A be a positive operator with a discrete spectrum in
a separable Hilbert space H with domain Z(A); that is, there exists the orthonormal
basis {e;} in H such that

Aey = wrer, O0<wy <wy <---, lim w; = oo. (3.3.12)

k—00
Let {H,}er be the scale of spaces generated by A; that is, H;, = Z(A®) if s > 0 and
H; is the completion of H with respect to the norm ||A® - || when s < 0. Denote by
Z the set of functionals . = {/;(u) = (w,e))g : j = 1,2,...,N}. A simple
calculation (see CHUESHOV [38] or [39, Chapter 5]) shows that € »(Hy, H,) =
wy forevery s > 0. =

The following two families of functionals on the Sobolev spaces’ H*(£2) are
important from the point of view of applications.

Let £2 be either a smooth domain or a parallelepiped in R". Assume that £2 is
divided into subdomains {§2; : j=1,2,..., N} such that

2= j=12.....N. 2(\2=0 j#i

where the bar denotes the closure of a set.

Example 3.3.11 (Generalized local volume averages). Assume that A;(x) is a
function from Ly (£2;) such that

supp A; CC £2;, / Ai(x)dx =1
2

and £2; is a star-like domain with respect to the support supp A;.° We define the set
% of generalized local volume averages as a family of functionals of the form

£ = {lj(u) = /Q Au(x) dx, j=1,2,...,N

SWe refer to ADAMS [1] or LIONS/MAGENES [152] for definitions and basic facts from the theory
of these spaces.

SThis means that for every x € £2; there is y € supp A; such that the interval {Ax+ (1—1)y : 0 <
A <1} lies in £2;.
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It follows from CHUESHOV [38, Theorem 3.1] that there exist constants ¢; and ¢,
depending on s, 0, and §2 such that for € # (s, 0) = €2 (H*($2), H° (§2)) the estimate

s—0

s—0
c e |:max dj} <eg(s,0)<cp- [max dJ:| (3.3.13)
j J

holds for every 0 < o < s, where d; = diam £2; = sup{|x —y| : x,y € £2;}. n

Example 3.3.12 (Nodes). Let the domain §2 be divided into subdomains {£2;} as
described above. We choose the point x; in each subdomain §2; and define the set of
functionals on H™(§2), m = [n/2] + 1 (we call them nodes):

¥ = {lj(u) = M()Cj) DX € Qj,jz 1,2,...,N}.

By Theorem 3.2 from CHUESHOV [38] estimate (3.3.13) remains true for s > m and
0<o <s. ]

. Below we present some results that involve the completeness defect to character-
ize sets of determining functionals.

3.3.2 A result on the existence of determining functionals

It is clear that to establish the existence of a finite number of determining functionals
we need to control the difference of two trajectories of the system. For different
classes this can be done in different ways depending on the properties of the system.
However, in all cases some basic stability (and quasi-stability) type calculations are
present in all approaches (we refer to CHUESHOV [38] and [39, Chapter 5] for a
survey). As an illustration we provide one particular result in which the spaces V
and X are the same.

Theorem 3.3.13. Let (X, S;) be a dynamical system in a Banach space X. Assume

that for two semitrajectories u(t) and v(t) there exist a seminorm | and a function
V(1) € Li°(R4) such that

+1
FJEH,IENSJJP/, | (7)|dt < o0
and
lu() = v(@* + / Y (@) - Ju(x) —v(@)|*de

< llu(s) = v + /t p(u(r) —v(x)*dr  (33.14)

N
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holds for all t > s > 0. Then [ is a determining’ seminorm for this couple of
solutions provided

1 t+a
yw’L = liminf —/ Y(t)dt > 0 for some a > 0.
—>o0 t

Let & = {l; : j = 1,...,N} be a family of linear continuous functionals on
X. If we assume in addition that SQ(X, n < y;r , then £ is determining for the
semitrajectories u(t) and v(t).

Proof. For the proof we use the line of argument given in CHUESHOV [38].
Let A(¢) = ||u(f) — v(?)||>. Then (3.3.14) yields

h(r) + / U ()h(t) dr < h(s) + / g(r)dr (3.3.15)
fort > s > 0, where either

¥(0) = ¥(r) and g(r) = p(u(r) - v())*,

in the first case, or else
V() =Y (@)~ (48X, 1) and g(r) = C max () ~ v(x)

with arbitrary § > 0 in the second case (we also use Proposition 3.3.4).
Solving the inequality® in (3.3.15), we obtain

t t t
h(t) < h(s) exp{—/ V(o) dO} —1—/ g(1) exp{—/ &(a)do} dt  (3.3.16)
s s T
when ¢t > 5. One can see that there exists 7, > 0 such that
T+a 5
/ Y(o)do > afy >0 forall 1> 1> 14,
T

where B, > 0 is any number less than y;f in the first case and )/J —&%,(X, 1) in
the second case. This implies that

t
[ &(a)do > By(t—1)—C forall t> 1 > 14,

7See the definition in Remark 3.3.2.

8See Section A.2 in the Appendix.
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where C depends on a, I, + and y];r . Therefore, (3.3.16) yields

limsup 4(f) < lim sup[t g(t)exp %—[t &(o)da} dr.

—>00 *

Since g(r) — 0 as t — oo, this relation via I"Hopital’s rule allows us to complete
the proof of the theorem. o

Remark 3.3.14. Under the conditions of Theorem 3.3.13 the set .Z is also deter-
mining in the following Ladyzhenskaya type (see LADYZHENSKAYA [140]) sense:
for any two full trajectories u(t) and v(¢) defined on the whole time axis and such
that

sup{|lu()| + lv@®)] : —oo <t <00} <R <
the condition
Jtxe e R: [j(u(t)) = lj(v(r)) foralmostallt <ty andj=1,....,N, (3.3.17)

implies that u(¢) = v(r) for all r € R provided

1 t+a
Yy = liminf —/ ¥ (v)dr > &%,(X, ) for some a > 0.
t

t—>—00 @

Indeed, it follows from (3.3.16) that

h(t) Sh(s)exp{—/t &(o)do} forall —oo <5 <t < ty.

Thus, in the limit s — —oo we obtain that u(¢) = v(¢) for all ¢ < #,.. Therefore,
ut+ 1) = S;u(@t) =S;v@) =v(Et+1), Vi<te,7>0.

This implies the conclusion.

We note that the property above appeared for the first time in LADYZHEN-
SKAYA [140] (see also LADYZHENSKAYA [141, 142]) for the case of modes (see
Example 3.3.10) with . = +o00 as a statement that finite-dimensional projections
of full trajectories from the attractor of the 2D Navier-Stoke equations uniquely
determinate these trajectories. =

3.4 Quasi-stable systems

We complete this chapter with a section which collects some general facts based
on unifying specific criteria that lead to the existence and desired properties of
attractors such as their finite dimension and the existence of exponential attractors.



3.4 Quasi-stable systems 129

We single out a class of “quasi-stable” systems that enjoy some kind of stabiliz-
ability inequalities written in some general form. Although these inequalities are
often difficult to establish, once proved they provide a string of consequences that
describe various properties of attractors. For the first time this kind of stability
attracted attention in the paper of CHUESHOV/LASIECKA [51, Theorem 3.11],
devoted to dynamics of second order in time evolution equations. Later on the
quasi-stability method was developed in CHUESHOV/LASIECKA [56, 58] in order to
cover wave/plate-type models with nonlinear (CHUESHOV/LASIECKA [52, 56, 58])
and thermal (CHUESHOV/LASIECKA [57, 58]) damping. In that form the method
covers a large variety of hyperbolic-type models; see the discussion in Remark 7.9.3
of CHUESHOV/LASIECKA [58]. Here we extend the notion of quasi-stability to
include models with “parabolic”’-type behavior. Then we specify two subclasses
of quasi-stable systems. Both are motivated by different evolution models and
demonstrate additional properties of dynamics such as smoothness of attractors and
existence of finite families of determining functionals. The first subclass is designed
mainly to cover some variety of semilinear parabolic-type problems. The second one
corresponds to models generated by the second order in time evolution equations.

3.4.1 General concept of a quasi-stable system

We start with quasi-stability inequality at fixed time. This (unified) notion was
motivated by several classes of PDE models, both parabolic and hyperbolic.
Moreover, the idea behind this notion can be applied in many other cases (see,
e.g., CHUESHOV/LASIECKA [56, 59]). Systems with delay/memory terms’ can
also be included in this framework (see, e.g., CHUESHOV/REZOUNENKO [66, 67],
FASTOVSKA [98, 99], POTOMKIN [186], RYZHKOVA [201] and also the proof
of Theorem 9.3.5 in CHUESHOV/LASIECKA [58]). The same idea was recently
applied in CHUESHOV/KOLBASIN [49] (see also Chapter 5) for the analysis
of long-time dynamics in a degenerate hyperbolic-type model. The quantum
Zakharov system (see CHUESHOV [43] and the references therein) and several
classes of fluid-structure interaction models (see, e.g., CHUESHOV [45, 46] and
CHUESHOV/RYZHKOVA [68, 69]) also demonstrate some applications of quasi-
stability idea.

Definition 3.4.1. Let (X, S;) be a dynamical system in some Banach space X. This
system is said to be quasi-stable on a set 8 C X (at time t) if there exist (a) time
t« > 0, (b) a Banach space Z, (c) a globally Lipschitz mapping K : £ — Z, and
(d) a compact seminorm'® nz(-) on the space Z, such that

For more details in the case of delay models we refer to Chapter 6.
19See Definition 3.1.14.
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[Se.y1 = S y2llx < g lyr = y2llx + nz(Ky; — Ky») (3.4.1)

for every y,y, € ¥ with 0 < ¢ < 1. We emphasize that the space Z, the operator
K, the seminorm nz, and the time moment 7, may depend on . n

 The definition of quasi-stability is rather natural from the point of view of long-
time behavior. It pertains to decomposition of the flow into exponentially stable and

compact parts (see (3.4.1)). This represents some sort of analogy with the “splitting”
method (BABIN/VISHIK [9] and TEMAM [216]); however, the decomposition refers
to the difference of two trajectories, rather than a single trajectory. We mention
that in the degenerate case when ny = 0 the relation in (3.4.1) transforms into the
following one:

1Syt = Suy2llx < g - llyr — y2llx forevery yi,y, € #. (3.4.2)

Thus, S,, is a contraction on the closure B of B. If we assume that A is forward
invariant, then there is a unique fixed point ¥ for S,, in 2. The invariance of %
implies that S,y is also a fixed point for every ¢ > 0. Thus, by the uniqueness we
have that S,y = y for all r > 0, i.e., y is a unique equilibrium in B . Moreover, it
follows from (3.4.2) that this equilibrium is exponentially stable in %, i.e.,

ISy —Fllx < Ce™ sup |[|S:y—Flx foreveryye &

T€[0,1x]

with some « > 0. This observation explains why the property in (3.4.1) is called
quasi-stability. We also refer to Remark 3.4.16 for a discussion of a quasi-stability
notion in the case when a model possesses some structural properties with a
particular form of the operator K.

In the following exercise we point out an important special case of the quasi-
stability introduced in Definition 3.4.1.

Exercise 3.4.2. Let Y be a Banach space compactly embedded in X. Instead
of (3.4.1), assume that S;, is globally Lipschitz from % into Y. Show that (X, S,)
is quasi-stable on 2 at time t.. Hint: See the argument in Corollaries 3.1.25
and 3.1.26. (]

 In what follows our first task is to show that quasi-stable systems enjoy many
nice properties that include the existence of global finite-dimensional attracfors and

fractal exponential attractors. Then we switch on particular forms of quasi-stability.
We first show that the fixed time quasi-stability property implies asymptotic
compactness.

Proposition 3.4.3 (Asymptotic smoothness). Ler a dynamical system (X, S;) be
quasi-stable on every bounded forward invariant set % in X. Then (X,S,) is
asymptotically smooth.
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Proof. For every forward invariant set % there exists . = (%) > 0 such
that (3.4.1) holds. Therefore, we can apply Theorem 2.2.21 with g(s) = gs, T = t,
and o(y1, y2) = nz(Ky; — Ky;) to obtain the result. o

Corollary 3.4.4 (Global attractor). Let a system (X, S;) be dissipative and satisfy
the hypothesis of Proposition 3.4.3. Then this system possesses a compact global
attractor.

Proof. Since by Proposition 3.4.3 the system (X, S;) is asymptotically smooth, the
result follows from Theorem 2.3.5. ]

The following assertion shows that quasi-stability implies the finite dimensionality
of a global attractor.

Theorem 3.4.5 (Finite-dimensional attractor). Assume that a system (X, S;) pos-
sesses a compact global attractor 2 and is quasi-stable on 2 at some point t, > 0
(see Definition 3.4.1). Then the attractor 2 has a finite fractal dimension dims2d
in X. Moreover, we have the estimate

2 1! 4L
dim; 2 < [m } Inmy ( K ) , (3.4.3)
1+g¢g 1—gq

where Lg > 0 is the Lipschitz constant for K (see (3.1.17)) and mz(R) is the maximal
number of elements z; in the ball {z € Z : |zillz < R} possessing the property
nz(zi —zj) > 1 when i # j.

Proof. We apply Theorem 3.1.21 with V = §;, . o

For quasi-stable systems we have several results pertaining to (generalized)
fractal exponential attractors. We start with the following definition (see EDEN
ET AL. [92)).

Definition 3.4.6. A compact set Ay, C X is said to be inertial (or a fractal
exponential attractor) of the dynamical system (X, S;) if Aeyp is a positively invariant
set of finite fractal dimension and for every bounded set D C X there exist positive
constants tp, Cp, and yp such that

dX{StD |Aexp} = sup diStX(Stx» Aexp) = CD : e_yD(t_tD)» t=tp.
xX€D

If the exponential attractor has finite fractal dimension in some extended space
X D X, we frequently call this exponentially attracting set a generalized fractal
exponential attractor. L]

For more details concerning fractal exponential attractors we refer to EDEN
ET AL. [92] and also to the recent survey of MIRANVILLE/ZELIK [166]. We only

mention that (i) a global attractor can be non-exponential (see Exercise 2.3.29), and
(ii) an exponential global attractor is not unique, but contains the global attractor.
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We note that the standard technical tool (see, e.g., EDEN ET AL. [92] and a
discussion in MIRANVILLE/ZELIK [166]) in the construction of fractal exponential
attractors is the squeezing property in the Foias-Temam sense (see a discussion
and the references in CONSTANTIN/FOIAS/TEMAM [79] and TEMAM [216]). This
property says (see, e.g., the statement of Corollary 3.2.4), roughly speaking, that
either the higher modes are dominated by the lower ones or that the semiflow is
contracted exponentially. We also refer to the survey of MIRANVILLE/ZELIK [166]
for some generalization of this method. Instead our approach is based on the quasi-
stability property, which says that the semiflow is asymptotically contracted up to a
homogeneous compact additive term.

Theorem 3.4.7 (Fractal exponential attractor). Assume that a dynamical system
(X, S;) is dissipative and quasi-stable (in the sense of Definition 3.4.1) on some
bounded absorbing set 2 at some moment t > 0. We also assume that

[Sy1 = Syallx < Cz -yt —yallx  foreveryyi,y, € Zandt € [0,t] (3.4.4)

and there exists a space X D X such that t Sy is Holder continuous in X for
everyy € A in the sense that there exist 0 < y <1 and Cg,, > 0 such that

||S,]y — S,2y||5( < C,%z|l1 — [2|y, nh,h € [O,t*], y € A. (345)

Then the dynamical system (X, S;) possesses a (generalized) fractal exponential
attractor whose dimension is finite in the space X.

Proof. We can assume that 2 is forward invariant. In this case V := S;, maps £
into itself, and we can apply Theorem 3.2.1. This theorem implies that the mapping
V possesses a fractal exponential attractor; that is, there exists a compact set o/ C %
and a number 0 < 7 < 1 such that dimjf o < oo, Vol C o/, and

sup {disty(VAU, ) : Ue B} <Cn*, k=1.2,..., (3.4.6)
for some constant C > 0. One can also see that
Acxp = U{S : 1t €[0,1:]}

is a compact forward invariant set with respect to S;; that is, S;Aexp C Aexp.
Moreover, it follows from (3.4.5) and from Proposition 3.1.13 that

dim® Aeyp < 77! [1 + dimf /] < o0.
We also have from (3.4.6) and (3.4.4) that

sup {distX(S,y,Aexp) D yE ,@} <Ce¥, t>o0,
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for some & > 0. Thus, Acy, is a (generalized) fractal exponential attractor. O

We do not know whether the finiteness of the fractal dimension dimj}f Aexp holds
true without the Holder continuity property (3.4.5) imposed in some vicinity of
Acxp. This is because Ay, is a uncountable union of (finite-dimensional) sets
S,o7/. We also emphasize that fractal dimension depends on the topology; see
Remark 3.1.12.

The following assertion is a version of the theorem proved in CHUESHOV [39,
Chapter 1] (see also FABRIE ET AL. [94] for a similar approach to the construction
of exponential attractors).

Theorem 3.4.8 (Exponential attractors via transitivity). Assume that a dynam-
ical system (X,S;) on a separable Banach space X possesses the following
properties:

o There exist a positively invariant compact set F and positive constants C and y
such that

sup {distx(Six, F) : x € D} < C-e 707

for every bounded set D C X and fort > tp.
o There exist a neighborhood O of the compact F and numbers Ay and o such
that

||SZJC1 —SﬂCz” < Alealt”)ﬁ —XQ”

provided that S,x; belongs to the closure O of O for all t > 0.
» The mapping t — Six is uniformly Holder continuous on F; that is, there exist
constants Cp(T) > 0 and n € (0, 1] such that

1S,x = Spx|| < Cr(D)|t1 — 1|7, 1,1, €[0,T], x € F.

e The system (X, S;) is quasi-stable at some time t, > 0 on F.

Then there exists a fractal exponential attractor Aeyp, for (X, S;) whose dimension is
finite in X.

Proof. We consider the restriction (F,S;) of the system (X,S,) on the compact
invariant set F. As in the proof of Theorem 3.4.7, we can conclude that there exists
a compact forward invariant set Aex, with finite dimension dim))f Aexp in X such that

sup {distX(Sty,Aexp) T ye€ F} <Ce™, t>0,

for some v > 0. Therefore, we can apply Lemma 2.3.27 on reduction in the vicinity
0 to obtain the conclusion. o

We emphasize that the Holder time continuity property in Theorem 3.4.8 is
imposed on some exponentially attracting set F only. In applications related to
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nonlinear evolutionary PDEs this set F' can be some space of smooth functions.!! So
we deal with dynamics in a smoother space and there is a chance to estimate time
derivatives of solutions in norms which are stronger than in the case of energy-type
solutions. For parabolic problems this effect is demonstrated in Chapters 4 and 6.
We also refer FABRIE ET AL. [94] for a nontrivial application of this idea in the case
of wave dynamics.

We also note that after the basic monograph of EDEN ET AL. [92] expo-
nential attractors were studied by many authors for a large variety of PDE
systems, and the theory was refined in several directions (see the survey in
MIRANVILLE/ZELIK [166] and the references therein). Moreover, as was mentioned
in MIRANVILLE/ZELIK [166], there is a common opinion that exponential attractors
exist for all equations of mathematical physics for which it is possible to prove the
existence of a finite-dimensional compact global attractor.

Now we split our considerations into two special cases demonstrating additional
features of dynamics.

3.4.2 Quasi-stable systems: special case

Here we consider the quasi-stability inequality with a special choice of the space Z,
the seminorm nz, and the operator K. This choice was motivated by several classes
of parabolic PDE problems (see Chapters 4 and 6 below). In the case considered we
can also show the existence of finite families of determining functionals.

Assumption 3.4.9. Let (X, S;) be a dynamical system in some Banach space X and
P C X. Assume that there exist (a) compact seminorms 7 (-) and n;(-) on the space
X, and (b) numbers a4, tx > 0 and 0 < g < 1 such that

ISv1 — Sovallx < ax - |ly1 —y2llx forevery yi,y, € B andt € [0, t4] (3.4.7)

and

18631 = S y2llx < g Iyt = y2llx + n1(1 — y2) + n2(Si,y1 — Si,y2) (3.4.8)

for every y;,y, € A.

Proposition 3.4.10. Under Assumption 3.4.9 the system (X, S;) is quasi-stable on
X C X.

Proof. Wetake Z = X x X, n,(x,y) = n1(x) + n2(y), and define K : X — Z by the
relation Kx = (x; Sy, x). o

This is definitely true for parabolic models because they possess smoothening properties. See
Chapter 4.
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This simple observation allows us to apply the results presented in the previous
section to establish the following assertion.

Theorem 3.4.11 (Global and exponential attractor). Assume that a dynamical
system (X,S,) is dissipative and satisfies Assumption 3.4.9 on some bounded
absorbing set 9. Then this system possesses a compact global attractor of finite
fractal dimension dimgA in X satisfying the estimate

-1 211/2
] nmy (4(1]+—a*)) , (3.4.9)
—q

dimy A < |:ln
1+¢

where my(R) is the maximal number'? of pairs (x;,y;) in X x X possessing the
properties

Il 4+ lyill®> < R mi(xi—x) + ma(yi—y) > 1, i #J.

If in addition we assume that there exists a space X D X such that t — Sy is Holder
continuous in X for everyy € 9B, that is, there exist 0 <y < 1 and Cy 1 > 0 such
that

1S4y = Suylls < Carlh —n|”, 6.6 €[0,T], ye B, (3.4.10)

then the dynamical system (X,S;) possesses a (generalized) fractal exponential
attractor whose dimension is finite in the space X.

Proof. To prove the existence of a global attractor with estimate (3.4.9) for its
dimension we apply Corollary 3.4.4 and Theorem 3.4.5 with the same choice of Z,
ngz, and K as in Proposition 3.4.10. The existence of a fractal exponential attractor
follows from Theorem 3.4.7. o

Using the structure of the quasi-stability inequality in (3.4.8), we can also
establish the following assertion on determining functionals.

Theorem 3.4.12 (Determining functionals). Assume that a system (X, S;) is dis-
sipative and satisfies Assumption 3.4.9 on some bounded absorbing set A. Let
Z ={lj:j=1,...,N} be a set of linearly independent functionals on X. Assume
that

ezr(m) +eg(ng) <1—gq, (3.4.11)

where €¢(nj) = €¢(X,nj) is the completeness defect of the family £ with respect
to the seminorm n; (see Definition 3.3.3), the constant g < 1, and the seminorms n;
are the same as in relation (3.4.7). Then £ is the set of asymptotically determining
functionals, i.e., the relation

12This number is finite for every R. See Exercise 3.1.16 and Remark 3.1.17.
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lim [(Siy; — Siy2) =0, j=1,2,....N, (3.4.12)
1—>00

implies that lim,— o ||S;y1 — S;y2]lx = 0.
Proof. By Proposition 3.3.4 we have that

ni(v) < ex()vllx + Co max [h©)], Vv eX. (34.13)
j=1..,

Let V = §,,. We can assume that 4 is forward invariant with respect to V. Then
using (3.4.13), from (3.4.8) we obtain that

Vy1r = Vyallx < n- Iyt = y2llx + A 01 = y2) + A (Vy1 — Vo) (3.4.14)
for every y;, y, € %, where

1=lg+ermll( —ex(m)]™ <1 and H () = Cy max [4(0)]

for some positive constant C ¢. After iteration of (3.4.14) we obtain

m
IV = Vyallx =0l =yl + o0 A (V" = V)

k=1
m—1
Y VR =V, m=1.2.... (34.15)
k=0

By (3.4.12) we have that
N (V'y — V") = 0 as n — +oo.

Therefore, one can see that

m

m—1
lim 33 " (VR = V) + Y Tt (v Ry = ViR =0

m—0o0
k=1 k=0
Hence (3.4.15) yields
lim ||me1 — me2||X = O,
m—>00

where V" = S, . Using (3.4.7) we can conclude now that lim,_ o ||S;y1 —Siy2llx =
0 and complete the proof. o
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Remark 3.4.13. 1. As one can see from the argument given in the proof of
Theorem 3.4.12, the conclusion follows if instead of (3.4.12) we assume that

lim [(S,y1 —S,y2) =0, j=1,2,...,N,
n—o0

where 1, = nty, i.e., it is sufficient to know that the corresponding measurements
become close to each other along some sequence of time moments. Moreover, if
the system (X, S;) is a point quasi-stable for some range of time moments, say
tx € [o, B] with @ > 0, we can take any sequence {f,} satisfying the inequality
a < ty,41 — t, < B in the relation above. We refer to Theorem 1.3 in Chapter 5
of CHUESHOV [39] for a discussion of a similar result.

2. Under the hypotheses of Theorem 3.4.12 we can prove that the set .Z of
functionals is also determining in the Ladyzhenskaya sense: for any two full
trajectories y; = {u;(¢) : t € R} which belong to % the property

At e R l(u (1)) = l(ux(r)) forevery t <ty, le 2L,

implies that u;(f) = uy(¢) for all ¢+ € R. Indeed, in this case instead of (3.4.15)
we can write

lur(@®) = u2@lx = 0" flua (r = mts) = ua(t = mta) | x < Can™

for every m € Z4 and t < t.. As in Remark 3.3.14, in the limit m — oo this
implies the conclusion.

3.4.3 Asymptotically quasi-stable systems

Now we discuss properties of quasi-stable systems whose phase space admits an
additional structure. Our main motivation is related to nonlinear PDEs of second
order in time possibly interacting with parabolic equations. The results presented
were established earlier in CHUESHOV/LASIECKA [58, Section 7.9] by another
method.

We assume the following structure of the model.

Assumption 3.4.14 (Structure). Let X, Y, and © be reflexive Banach spaces; X is
compactly embedded in Y. We endow the space H = X x Y x ® with the norm

Iyll7 = luoll% + a5 + 1017,y = (o3 ur: 6).

The trivial case ® = {0} is allowed. We assume that (H, S;) is a dynamical system
in H = X x Y x ® with the evolution operator of the form

Sy = (u(®);u(1);0(r)), y= (uo;ur;60) € H, (3.4.16)
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where the functions u(z) and 6(¢) possess the properties
ue CR4,X)NC'(R:,Y), 6eCRy,O). (3.4.17)

The structure of the phase space H and the evolution operator S; in Assump-
tion 3.4.14 is motivated by the study of some systems generated by equations of
the second order in time in X x Y possibly interacting with first order evolutions
in the space ®. This type of interaction arises in modeling of thermoelastic plates
(see, e.g., CHUESHOV/LASIECKA [57] and [58, Chapters 5 and 11]). We also refer
to Section A.3 in the Appendix concerning the functional spaces in (3.4.17) and also
L,-classes which we use below.

Definition 3.4.15 (Asymptotic quasi-stability). A dynamical system of the
form (3.4.16) is said to be asymptotically quasi-stable on a set & C H if there
exist a compact seminorm fx(-) on the space X and non-negative scalar functions
a(t), b(t), and c(r) on Ry such that (i) a(t) and c(¢) are locally bounded on [0, co),
(ii) b(r) € Li(R4) possesses the property lim, o, b(f) = 0, and (iii) for every
v1,y2 € A and t > 0 the following relations:

[Sy1 = Siyvall% < a(®) - ly1 — y2 114 (3.4.18)

and

ISv1 = SallZy < b() - [y = yally + (@) - sup [px('(s) —i2(s)]”  (3.4.19)

0<s<t

hold. Here we denote S;y; = (u'(t); ui(); 0'(2)), i = 1,2. "

Remark 3.4.16. Relation (3.4.19), in the context of long-time dynamics, was
introduced in CHUESHOV/LASIECKA [51] (see also ELLER/CHUESHOV/LASIECKA
[48] and the discussion in CHUESHOV/LASIECKA [56]). Roughly speaking, it
means asymptotic stability modulo compact terms. The inequality in (3.4.19) was
called a stabilizability estimate. To obtain such an estimate proves fairly technical
(in critical problems) and requires rather subtle PDE tools to prove it. Illustrations
of the method are given later in Chapters 5 and 6 for some abstract models
(see also Chapters 9 and 11 in CHUESHOV/LASIECKA [58] for a variety of von
Karman models and BUCCI/CHUESHOV/LASIECKA [19, 20], CHUESHOV ET AL.
[41, 48, 51, 54-56, 61, 62, 68], NABOKA [168] for similar considerations for other
models). u

Proposition 3.4.17 (Quasi-stability). Let structural Assumption 3.4.14 be in force.
Assume that the dynamical system (H, S;) is asymptotically quasi-stable on some set
P in H. Then this system is quasi-stable on the set # at every time T > 0 such that
b(T) < 1.

Proof. We first show that the seminorm p possesses the following property:

Ve>03C,>0: ux(u) <el|ullx + Cs|lully forany u e X. (3.4.20)
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To see this we introduce the Banach space
X = Closure {v € X : |[v|lg = pux(v) + [v]ly < oo}. (3.4.21)

One can see that X is compactly embedded in the Banach space X. To prove (3.4.20)
we need to show that

Ve>03C,>0: |ullg <elullx + Cellully forany ueX. (3.4.22)

This can be done by the following argument (due to LIONS [151]). If (3.4.22) is not
true, then there exist &g > 0 and a sequence {u,} C X such that

lunllz = €ollunllx + nllunlly foreveryn=1,2,....
Thus, for v, = un||un||§1 we have that
gollvnllx + nllvally <1 and |jv,llg =1 forn=1,2,....
Therefore, the sequence {v,} is relatively compact in X and [|v,|y — O asn —
oo. This implies that {v,} contains a subsequence which converges to 0 in X. This

contradicts the fact ||v,||z = 1 for all n. Thus, the relation in (3.4.20) is proved.
Using this relation and also (3.4.18), we obtain

wpMAm@—m@Fsﬂm—m%+cmngwﬂm@—wm%,

0<s<T )<s<

where we use the notation y; = (ub;ul;6}), i = 1,2. This allows us to
rewrite (3.4.19) at the moment 7 in the following form:

1S7y1 =Sry2llfy < [B(T) +el-[yi =y2llfy + Cor sup [l (s) —u? ()7 (3.4.23)

0<s<T

for every & > 0 with S,y; = (u'(2); ul(£); 0'(2)), i = 1, 2.
Now we take Z = W, (0, T), where

T
m&n=zfu&ﬁmwwmmzl(mwawmwﬂm<w
(3.4.24)

and choose T and ¢ > 0 such that b(T) + ¢ < g < 1 in (3.4.23). We define operator
K : H — Z by the relation

(Ky)([) = PXS,y, t e [0, T], where y = (Lt(); ui; 9()) € H.
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Here Py is the projection in H on the first component; i.e., in the case when
S,y = (u(t); u,(¢); 0(r)) we have that PxS,y = u(r). It follows from (3.4.18) that
K is globally Lipschitz.

By the Aubin-Dubinskii-Lions theorem (see Theorem A.3.7 in the Appendix)
the space Wy(0,T) is compactly embedded into C(0, T;Y). This implies that the
seminorm 7z(z) = CerSupy,<r ||2(s)|ly is compact on Z. Thus, the evolution
operator S given by (3.4.16) satisfies the requirements of Definition 3.4.1 for every
point t,, = T with b(T) < 1. This completes the proof of the proposition. o

In the same way as in the previous section we can derive from the results of
Section 3.4.1 the following assertion.

Theorem 3.4.18 (Global and exponential attractor). Ler Assumption 3.4.14 be
valid. Assume that the system (H,S,) is dissipative and asymptotically quasi-
stable on a bounded forward invariant absorbing set % in H. Then the system
(H, S;) possesses a compact global attractor A. This attractor A has a finite fractal
dimension dimeIA.

Assume in addition that there exists a space H D H such that t — S,y is Holder
continuous in H for every y € B; that is, there exist 0 < y < 1 and Czr > 0such
that

1S,y =Syl < Carlti —n|", t.t€[0,T], ye A (3.4.25)

Then the dynamical system (H,S;) possesses a (generalized) fractal exponential
attractor whose dimension is finite in the space H.

We note that this theorem was proved in CHUESHOV/LASIECKA [56, 58] by the
method of “short” trajectories initially suggested in some form in MALEK/NECAS
[157] and MALEK/PRAZAK [158]; see also FEIREISL/PRAZAK [100]. We also note
that we can use the relation in (3.4.3) in Theorem 3.4.5 to provide some bounds
for the dimension dim;’A. Similar estimates on the abstract level can be found in
CHUESHOV/LASIECKA [56, 58] or [60] for different situations.

The asymptotic quasi-stability allows us to obtain additional regularity of
trajectories lying on the global attractor. The theorem below provides regularity
for time derivatives. The needed “space” regularity usually follows from the
analysis of the respective PDE via elliptic theory (see the corresponding results in
CHUESHOV/LASIECKA [58]).

Theorem 3.4.19 (Regularity). Let Assumption 3.4.14 be valid. Assume that the
dynamical system (H,S;) possesses a compact global attractor 2L and is asymp-
totically quasi-stable on the attractor . Moreover, we assume that (3.4.19) holds
with the function c(t) possessing the property coo = SUP,er + c(t) < oo. Then any
Sull trajectory {(u(t); u,(t); 6(t)) : t € R} that belongs to the global attractor enjoys
the following regularity properties:

U € Lo(R; X) NCR;Y), uy € Lo(R;Y), 6, € Loo(R;2Z) (3.4.26)
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Moreover, there exists R > 0 such that
luOII% + lluaOIF + 16017 < R, 1R, (3.4.27)

where R depends on the constant ¢, on the seminorm [Lx in Definition 3.4.15, and
also on the embedding properties of X into Y.

Proof. 1t follows from (3.4.19) that for any two full trajectories

y ={U@) = u(n);u(1):6(r)) : 1 € R},
y* =AU = @ O:u(0:07() 1 teR}

from the global attractor we have that

1Z@) 7 < bt — )| Z($)II + et — s) sup. [1x (z(0)]) (3.4.28)

forall s <t s,t € R, where Z(t) = U*(t) — U(¢) and z(t) = u*(f) — u(t). In the
limit s — —oo relation (3.4.28) gives us that

I1ZOIF < oo sup  [px((@)]?

—00<7t<t

for every t € R and for every couple of trajectories y and y*. Using relation (3.4.20)
we can conclude that

sup |Z()IZ < C sup  lz(0)3, (3.4.29)

—00=<71t<t —00<1t<t

for every ¢ € R and for every couple of trajectories y and y* from the attractor.

Now we fix a trajectory y and for 0 < |h| < 1 we consider the shifted trajectory
y* =y, = {y(t+ h) : 1t € R}. Applying (3.4.29) for this pair of trajectories and
using the fact that all terms in (3.4.29) are quadratic with respect to Z, we obtain
that

sup {[lu" (D% + luf O + 16/ @2} =€ sup |l @IIF.  (3.4.30)

—OO=<T=t —OO=<T=t

where u" () = h™' - [u(t + h) — u(t)] and 6" () = h™" - [0(¢t + h) — 6(¢)]. On the
attractor we obviously have that

1 h
||u”(r)||ysz-/ lu(e +lyde < C, 1eR,
0
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with uniformity in 4. Therefore, (3.4.30) implies that
@I + Iy DI + 167 DIIZ < €. 1 €R.

Passing with the limit on 4 this yields relations (3.4.26) and (3.4.27). O

Another consequence of the quasi-stability estimate is the following assertion
borrowed from CHUESHOV/LASIECKA [58] and pertaining to determining func-
tionals (see Theorem 3.4.12 and also Section 3.3 for a general discussion of the
theory of determining functionals).

Theorem 3.4.20 (Determining functionals). Let Assumption 3.4.14 be valid.
Assume that the dynamical system (H, S;) is dissipative and asymptotically quasi-
stable on some bounded absorbing set . Let £ = {l; : j = 1,...,N} be a set of
linearly independent functionals on X and € »(ux) be its completeness defect with
respect to the seminorm [y (see Definition 3.3.3). If there exists T > 0 such that

ne. = b(r) + eé,(/tx)c(r)- sup a(s) < 1, (3.4.31)

s€[0,7]

then the relation

Jlim Lu'(s) —u*(s)) =0, j=1,2,...,N, (3.4.32)
—>00

implies that im,—oo [|Sy1 — Siya|lu = 0. Here Syy; = (' (1); ui(2); (1)), i = 1,2.
Proof. We first note that the convergence in (3.4.32) is equivalent to the convergence

Ag(t) = sup max|li(u'(s) —u?(s))| =0, - oo, (3.4.33)

s€[tp+] J
for every fixed t > 0. Assume now that
Spyi = (U'(1); ul(t); 0'(t)) € B for t > 1y, i=1,2.
Then from (3.4.19) we have that
2
IS4ey1 — Se4ev2llfr < b@)ISv1 — Sevallzy + ¢(2) SUP+ [1x(u' () —u?(s))]”,
1<s<t+7
(3.4.34)

for any ¢ > #;. By Proposition 3.3.4 we have that

px() = ex(uolvllx + Cz max @), YveX. (3.4.35)
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From (3.4.35) we have

x@) = (14 ) ool + Coo max [[@)P. Vv eX.

for each § > 0. By (3.4.18) this implies that

sup  [px(u'(s) — ()]’

1<s<t+t

< [(1 +8)e (ux) sup a(S)] IS:y1 = Sy2llfy + Cor 5 A% (1)

s€[0,7]
Consequently, (3.4.34) yields
||St+r}’1 - Sz+r)’2||12-1 = 77||Sly1 - Sly2||1g-1 + Cf,SAf(/(t)v

where n = (1 + S)GQ(MX)C(r) * SUP,e(p o 4(s) + b(7). Under condition (3.4.31) we
can choose § > 0 such that < 1 and find that

n—1
IStgtneyt = Sirneyallis < 1"+ ISyt = Sy2llfy + €Y 0" ™" A%y (o + mr).
m=0
It is easy to see now that lim,— o ||Siy4ncy1 — S,0+my2||i, = 0 under condi-

tions (3.4.31) and (3.4.33). Application of (3.4.18) completes the proof. m]



Chapter 4
Abstract Parabolic Problems

The main goal of this chapter is to show how the general methods developed in the
previous chapters can be applied in the study of properties of qualitative dynamics
for a class of abstract evolution equations of the form

u; + Au = B(u), u} =uy € H,

=0
in a Hilbert space H, where A is a positive self-adjoint operator and B(u) is a
nonlinear mapping on H. This kind of model covers many classes of parabolic-type
equations including heat and reaction-diffusion models and also some hydrodynami-
cal problems. The first several sections are based on the substantially revised content
of CHUESHOV [39, Chapter 2] and present an approach involving the notion of
a mild solution. The final (hydrodynamical) sections are new. They use another
concept of a solution. We deal here with what are called weak (or variational)
solutions. In many cases weak and mild solutions lead to the same functions.
However, well-posedness statements for each of them require different tools.

Our considerations are concentrated around well-posedness and long-time
dynamics issues. In the latter case we apply the idea of the quasi-stability method.
For the considered class of models this method is based on the Ladyzhenskaya
squeezing property.

Many results presented in this chapter are known from other sources. Never-
theless, we include them in order to demonstrate the advantages of the developed
technology in the most transparent way.

4.1 Positive operators with discrete spectrum

In this section we consider properties of the linear part of the problem above. The
class of linear operators we deal with arises in many PDEs on bounded domains.

© Springer International Publishing Switzerland 2015 145
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Definition 4.1.1. A linear self-adjoint positive densely defined operator A with
domain Z(A) on a separable Hilbert space H is said to be an operator with discrete
spectrum if there exists an orthonormal basis {e; } in H consisting of the eigenvectors
of the operator A:

Aepy = Aer, O0< A <Ay <---, lim Ay = oo.
k—00

In this case for every element u € H we have the relations
o0 o0
u=Y (ue)e and [ul* = |(u. e,
k=1 k=1
where || - || and (-, -) are the norm and scalar product in H. Moreover,
oo
u e 2(A) if and only if Z/\,§|(14,ek)|2 < 00,
k=1
and
o0
Au=Y" Mlu.er)e; for u € Z(A).
k=1

This structure of the operator A allows us to define an operator f(A) for a wide class
of functions f(s) defined on the positive semi-axis R4 . We can take

2(@A) =Jh=> cecH: Y clf(Q)f <oo

k=1 k=1
as a domain and assume that
o o
fAh="afAer. h=) crer € D(f(A)).
k=1 k=1

In particular, one can define operators A* for every « € R. This allows us to
introduce the space H; (with s > 0) as the domain Z(A*) equipped with the graph
norm || - ||y = ||A® - ||. If s is negative, we define H; as the completion of H with
respect to the norm |- ||, = [JA~H! - ||. We note that Hy = H and the spaces H_, with
o > 0 can be identified with the space of formal series f ~ Z,fil crey such that

o0
2 _ 29 —2
IFI12, = DA™ < 0.
k=1
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Thus, we obtain the scale of spaces Hy; with s € R, which possesses several
important properties. Some of them are collected in the following exercise.

Exercise 4.1.2. Prove the following statements.

(A) Each H; is a separable Hilbert space with the inner product given by (u, v); =
(A’u, A*v).

(B) H; C H, for every s > o, Moreover, H; is dense in H,.

(C) The operator A can be extended on the whole scale {H,} as a bounded linear
operator from H; into Hy_;.

(D) Similarly, the operator A~! exists and is bounded from H, into H,. | for every
seR.

(E) Prove the following interpolation inequality:

1A%u]| < |Aull®|u)'=?, Yue 2(A), 6<c]0,1]. 4.1.1)

Moreover, if for some «, 8, # € R we have that u = 6a + (1 — )8 with
0 € [0, 1], then

A u|| < J|A%|? |APu)'~0, Yuen,2(4"). (4.1.2)

Hint: Write the norm on the left-hand side of (4.1.1) in coordinates and apply
the Holder inequality:

| = (X |xi|p)l/p > Iyilq)]/q, })+

withp = 67! and ¢ = (1 — 8)~. Then derive (4.1.2) from (4.1.1).
(F) Using the result in (4.1.1) and the inequality

1
-=1, 1 <p,g+ oo,
q

+-=1, 1<p, g+ o0,

Q=

1 1 1
oyl < =[x+ =[yl?, ~
p q p

show that

0/(1—6)
||A9u||se||Au||+(;) (A=O)ul. Yue D@, >0, 6€0.1).

The following exercise means that H_; is dual for Hy with respect to the inner
product in H.

Exercise 4.1.3. Letf € H, for o > 0. Show that the linear functional F(u) = (f, u)
can be continuously extended from the space H to H_, and |(f, )| < |Ifllsllgll-»
for any f € H, and g € H_,. Moreover, for every 0 € R any continuous linear
functional F(«) on H, has the form F(u) = (u, g), where g € H_;. Thus, H_; is
the space of continuous linear functionals on H,, for every o € R. [
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Remark 4.1.4. A similar scale of spaces H; can be constructed based on a general
positive operator A. In this case the properties presented in Exercises 4.1.2 and 4.1.3
remain true. We can even consider more general operators for the generation of the
continuous scales of spaces (see, e.g., ENGEL/NAGEL [93] or HENRY [123]). n

The following fact involves the discrete spectrum property.

Exercise 4.1.5. Show that the relation

N
Pyu=Y (u.e)e, ucHy o€cR, (4.1.3)

k=1
defines an orthoprojector onto Span{e; : &k = 1,2,...,N} in each space H,.
Moreover, Pyu € NgoH; and ||Pyu — ull;, — 0 as N — oo. Thus, we can
approximate any element from the scale by its smooth projections. [

The following compactness statement is important in our further considerations.

Proposition 4.1.6. Let s > 0. Then the space Hy is compactly embedded into H,.
This means that every sequence bounded in H; is relatively compact in H,.

Proof. It is well known that every bounded set in a separable Hilbert space is
weakly relatively compact. Thus, it contains a weakly convergent sequence (see,
e.g., DUNFORD/SCHWARTZ [88, Chapter 5]). Therefore, it is sufficient to prove that
any sequence weakly tending to zero in H; converges to zero with respect to the
norm of the space H,,.

Let {f,,} be a sequence weakly convergent to zero in Hy. This means that

lim (f,,8)s =0, Yg e H,, and ¢; = sup ||fuls < o0. 4.1.4)

n—>oo

For every N > 2 we obviously have

o0 N—1 e’}
1 s
V2 =D A1 edl” < Y A | e + 260 D A8 (el
k=1 N k=N

k=1
N—1 1

= Z/\/%ﬂ(fn»ekﬂ2 + F”fn”?

k=1

2(s
N
Therefore, it follows from (4.1.4) that

c
limsup |[fullo < %, N=2,3...
AN

n—>o0

Passing to the limit N — oo yields that lim,—c ||f,[|2 = 0. This completes the
proof of Proposition 4.1.6. o
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Exercise 4.1.7. The resolvent R(A,A) = (A—A)~!, A # Ay, is a compact operator
in each space H,. L]

Now we define an exponential function of A by the formula
(o) o0
e My = Ze_’l“’(u, ex)ey for u = Z(u,ek)ek. (4.1.5)
k=1 k=1

Exercise 4.1.8. Show that S, = ¢~ is a strongly continuous contraction semigroup
on each space H; whose generator is —A. This means (see, e.g., PAZY [181]) that

(i) the linear operators S, are contractive on H foreacht > 0, i.e., ||S;||g~>n, < 1;
(i) S; satisfies the semigroup property

So=1, S4.=3S8,S; forall tr,7 € Ry;

(iii) any semitrajectory ¢ — S,x is strongly continuous from R into H; for every

x € Hy; and
(iv) the function t + S,x is strongly differentiable in H; for every x € Hj4, and
%S,x} =0 = —Ax. The latter property is equivalent to the relation
. 1

lim (- (S,—Dx+Ax| =0, Vxe Hgy.

=40 || ¢ s
For t > 0 we also have that e H, C Ny.oH, for every o € R and e ™ is a
compact operator on each H,. n

The following assertion describes the decay rates of e ™.

Proposition 4.1.9. Let Qy = I — Py, where Py is the projector defined in (4.1.3).
We also suppose that Qo = 1. Then for every a > 0 the following inequality:

1A Qe ™ ull < [(%) + A“NH] e~ Quull, weH, N=0,1,...,

(4.1.6)
holds. In the case a = 0 we suppose that 0° = 0.
Proof. One can see that
o0 o0
”AaQNe—tAMHZ — Z Aiae—Zlkt|(u7ek)|2 < sup [Aiae—ﬂtkl] Z |(L{,€k)|2.
k=N+1 kzN+1 k=N-+1

This yields that

_ 1 _
1A% One™ull < @ Sup (ne™ 1| Qwull.
KUZIANF-1
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Since the maximum of the function u“e™* on R4 is «%e™® and is attained when
U = o, we can see that

(tAn+1) e V4T Ay gy > a;

—a

oL, U] —
sup  [pfe ] a%e if tAy+1 < a,

H=tAN 41

< [ + (tAyg1) T e

This implies (4.1.6). O
The estimate in (4.1.6) with N = 0 implies uniform stability of e~ in each
space H, with the estimate
1A% < [(%) + A‘{‘] ™M, 150, Ya > 0. 4.1.7)
Here and below we denote the operator norm in the space H by || - || (if there is no
confusion) or || - | gsp-
We also have that
| —e min{l1, 74}
IA7P (1 = ™) < sup < sup
A>0 /'\ﬁ A>0 A'ﬂ
min{l, A
= su min{l, A} _ #, 1>0 VBel01]. (4.1.8)
A>0 AP

This means that the semigroup ¢~ is strongly continuous in H and uniformly

continuous (even Holder) as a mapping from H into H_g for 8 > 0.
In some calculations (on finite time intervals near zero) it is convenient to use
another version of (4.1.7), which we show in the following exercise.

Exercise 4.1.10. Show that

lA%e™ ] < (%) >0, (4.1.9)
e

where a > 0 is arbitrary (with the rule that 00 =1). n
Below we also use the following inequality.

Exercise 4.1.11. Let 0 < o < 1. Using Proposition 4.1.9, show that

t
1
/ QA% dr <~ 2@ g 1> 0, (4.1.10)
0

— l—a
AN+1

where
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o
Ky = a“/ £ dr. (4.1.11)
0

Hint: After applying (4.1.6) change the integration variable 7 into § = (f — 7)Ay41.
]

4.2 Well-posedness of semilinear parabolic equations

As we already mentioned, our main point of interest in this chapter is an abstract
parabolic problem of the form

u+Au = B(u), u|_,=uo€H, 4.2.1)

=0
Our basic requirements concerning this model are listed below.

Assumption 4.2.1 (Basic hypotheses). We assume that H is a separable Hilbert
space and

(A) A is a positive self-adjoint operator with discrete spectrum on H (see
Definition 4.1.1);

(B) B is a (nonlinear) locally Lipschitz mapping from H, = Z(A%) into H with
some 0 < « < I;i.e., we assume that for every p > 0 there exists L, such that

1B(u1) — B(ua)|| < Lo[|A” (ur — wa)||, wi € Hoy ||A%wil| < p, i=1,2.
4.2.2)

The requirements in Assumption 4.2.1 are used to show that equation (4.2.1)
generates a dynamical system with several important compactness properties.
When we are interested in solvability and/or uniqueness only, the hypotheses
in Assumption 4.2.1 can be relaxed. For instance, using the result presented in
Chapter 6 we can avoid the Lipschitz condition (4.2.2) in the local existence part.
Moreover, we can also show that the uniqueness is a generic property for non-
Lipschitz (but continuous) nonlinearities (see Section A.6 in the Appendix).

We already know that under Assumption 4.2.1(A) the operator —A generates a
strongly continuous compact semigroup e~ of contractions (see Exercise 4.1.8 in
Section 4.1). This allows us, similar to HENRY [123], to introduce the following
definition.

Definition 4.2.2 (Mild solution). A function' u € C([0, T); H,,) is said to be a mild
solution to (4.2.1) on an interval [0, T) if

! We refer to Section A.3 in the Appendix for the description of the basic vector-valued functional
spaces which we use below.
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u(t) = e "uo + / e "Bu(r))dr, te0.7), 4.2.3)
0

and similarly for the closed interval [0, T7. n

4.2.1 Basic well-posedness theorem

Our main result in this section is the following theorem.

Theorem 4.2.3 (Well-posedness). Let Assumption 4.2.1 be in force. Then

Local solutions: For each element uy € Hy, we can find t,x, < 0o such that there
is a unique mild solution u(t) to problem (4.2.1) defined on [0, tax).

We have lim,—,,_ || u(?) ||¢= 00, provided ty.x < 0.

Any two mild solutions u(t) and u,(t) with initial data u,o and uyy on the joint
interval [0, T] of existence admit the estimate

| w1 () —uz(®) la< Cr(R) || w10 — uz0 |l t € [0, 7], (4.2.4)

under the condition supy 7y |ui(f)|l« <R, i=1,2.
Global solutions: Let u(t) be a mild solution with some initial data uy. Assume
that there exist T > 0 and Cr(uy) such that

sup [[u(®)|la < Cr(uo) (4.2.5)
[0.7%)

for every interval [0, T*) C [0, T] of the existence of the solution u(t). Then the
solution u(t) exists on [0, T). Moreover, if for any T > 0 there exists Cr(ug) such
that (4.2.5) holds, then the solution u(t) can be extended on [0, 4+00); that is,
Imax = 0.

If B(u) is globally Lipschitz, i.e., (4.2.2) is satisfied with L, = L independent of
p, then for every uy € Hy, there exists a unique mild solution to (4.2.1) for every
interval [0, T]. In this case (4.2.4) can be written in the form

|| I/t]([) — Mz(t) ”o{f Ce™! ” Uig — Uy ”ou t>0, (426)

for every pair of mild solutions u,(t) and uy(t), where C > 0 and w > 0 are
constants.

In the case « = O the statement of Theorem 4.2.3 can be easily derived from
the results presented in PAZY [181, p. 184]. The case @« > 0 requires some
modifications.
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Proof. Step 1: B is globally Lipschitz. In this case we apply the standard fixed
point argument in a slightly modified form in comparison with PAzY [181]. Here
we briefly describe this argument.

Let Wy = C([0, T, Hy) endowed with the corresponding sup-norm. For a given
uy € H, we define a mapping % on Wy by the formula

t
Blul(t) = e Muy + / e TIABu(r)) dr, te€[0,T].
0
Using the relation (see Exercise 4.1.10)
o
1A% < (%) L t>0, a>0, 42.7)
e

where we suppose that 0° = 1, and also the estimate (see (4.1.8))
AP —e™)| <P, >0, VBelo1], 4.2.8)

one can see that #[u] € Wr and thus & : Wy — Wr. Moreover, using (4.2.7)
we have that

120~ 21Ol <L (2) T =) fu=vlw,. 1€ [0.7]
and thus
1210 = 2(ollwy < a(D)lu=vllw, with g(7) = L () 771 —a)™"

Taking T such that ¢(T) < 1, we obtain the existence and uniqueness of a
fixed point for A. This implies the local existence result with the time interval
independent of the initial data. This allows us to use the standard step-by-step
procedure to construct a global solution.

Step 2: Locally Lipschitz case. We define a truncating operator wg on H, by the
formula

X, if [|Ix[le < R;

. 4.2.9)
Rx x|l " if lx]le > R,

mr(x) =

for R > 0 and introduce a (truncated) function Bg(u) by the relation
Bgr(u) = B(mg(w)), u € H,.
One can see that Bg(#) = B(u) for |ul, < R. According to Lemma A.4.1

from the Appendix applied in the Hilbert space H,, the mapping By is globally
Lipschitz for every R and the Lipschitz constant is Lg. Thus, we can guarantee
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that for any uy € H, the equation
u; + Au = Bg(u) (4.2.10)

has a unique mild solution # on Ry . By (4.2.3) and (4.2.7) we have that

@) o = ol + T~ [IIB(O)II + Lymax ||u(r>)||a] L refo.Tl

Thus,
lullwy < [luolle + caT*IBO)] (1 — caLgT' )", (4.2.11)

provided c,LgT'™® < 1. Let uy € H, be arbitrary. We choose R such that
lluolle < R and assume for now that u is a solution to (4.2.10). Due to (4.2.11)
we can choose T* such that ||u(?)|| < R for t < Tx. Consequently, Bg(u(t)) =
B(u(t)) for t < T*, and this means that u(f) solves equation (4.2.1) on that
interval.

Step 3: Lipschitz continuity. To prove the Lipschitz properties in (4.2.4)
and (4.2.6), we note that (4.2.3) and also (4.2.2) and (4.2.7) imply that

t

1
1) =) = it =l + Cra | s () = (o) o

Therefore, the Henry-Gronwall lemma (see Lemma A.2.3 in the Appendix)
yields

llur (6) — w2 (1)) o < 26“ B ||uyo — rolle. V't € [0,T],

where a(R, «) is a positive constant. This implies (4.2.4) and also (4.2.6), because
in the latter case Cg, and hence a(R, «) do not depend on R.

Step 4: Maximal existence interval. It is clear from the argument in Step 2 that if
u is a solution to (4.2.3) on [0, £*], it can be extended to a solution on the interval
[0, "+ 6] for some § > 0. For this we use the same method as outlined above with
the initial value t* and with a larger R. Of course, § depends on upper bounds for
() -

Let [0, fmax) be the maximal interval of existence of the solution. If #,,, < oo,
then lim, ~, _|lu(f)|| = oo. Otherwise there exists a sequence #, " fmax such
that ||u(t,)|l« < C. This would allow us to extend u as a solution to (4.2.3) to an
interval [0, t,, + 6] with § > 0 independent of n. Hence u can be extended beyond
tmax, Which contradicts the construction of #;,x.

To prove the global existence part we need only note that (4.2.5) allows us to
extend a solution inside the interval [0, 7] with time steps independent of T* < T.
This completes the proof of Theorem 4.2.3. o
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As we see from Theorem 4.2.3, to guarantee the global existence and uniqueness of
mild solutions it is sufficient to assume that B is globally Lipschitz. The following
exercise shows that this hypothesis can be slightly relaxed by assuming that B is
locally Lipschitz but linearly bounded.

Exercise 4.2.4. Let Assumption 4.2.1 be in force. Assume that B(u) is linearly
bounded, i.e.,

IBw)| < Cy + C>||A%u|| forall u € H,,.

Then problem (4.2.1) has a unique mild solution for every interval [0, 7] and for
any initial data. Hint: Use the non-explosion criterion in (4.2.5) and also the Henry-
Gronwall lemma (see Lemma A.2.3 in the Appendix). [

Remark 4.2.5. Theorem 4.2.3 can also be applied in the situation when, instead
of (4.2.2), we assume that B is a locally Lipschitz mapping from H;,, into H; with
some s € Rand 0 < « < 1 and for every p > 0 there exists L, such that

|B(ur)—B(u2)||ls < Lollur —t2|ls o> i € Hoy |tills1e <p, i=1,2. (42.12)

Indeed, in this case we can consider the problem in the space H = H,. The semi-
group e~ possesses the same properties in each space H;, and thus Theorem 4.2.3
gives a result on well-posedness of problem (4.2.1) in the space C([0, T], Hy+q)-

We also note that if (4.2.12) holds for some @ = o, then the same relation is true
for all @ € [a«, 1). Thus, using Theorem 4.2.3 we can conclude that a solution from
C([0, T], Hy+4, ) belongs to C([0, T], Hy+4) for every o € [, 1) provided uy € Hy.
Below we will see that this conclusion remains true even for uy € H,, but on the
intervals [§, 7] with § > 0.

Finally we note that we can avoid the requirements of the discrete spectrum for
A by assuming that A is a positive self-adjoint operator only. [

Exercise 4.2.6. Let u(r) be a mild solution. Using the integral relation in (4.2.3)
and the smoothening estimate in (4.2.7), show that u(f) € C((0,T], Hg) for every
B €la,1)and

1
Il = Cos | g lual -+ me | 1€ @71
for every t € (0, T] and some constant mg under the condition that ||u(f)|l, < R. =

Exercise 4.2.7. Using the same idea as in Exercise 4.2.6, show that the Lipschitz
property in (4.2.4) can be improved in the following way: for every B € [, 1)
and every pair u;(f) u>(f) of mild solutions on [0, T] such that ||u;(f)|| < R for all
t € [0, T], we have the estimate

M@—m@MSQ4@m+ Mm—mm,mmJL

th—o

with positive constants C, g and ag(T). L]
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Exercise 4.2.8. Using (4.2.7) show that every mild solution u(¢) to (4.2.1) satisfies
the following inequality:

lu(t)) —u(@)llp < || (1 = "™ )uo||, + Capmplty =o' . 1.1 € 0.7,

for every B € [0, 1) under the condition that ||u(f)|, < R for every t € (0,T]. In
particular, by (4.2.8) this implies that u(f) is Holder continuous in each space Hy
with 6 < o and in H, if ug € H, withy > a. n

Proposition 4.2.9. Let Assumption 4.2.1 be in force. Then any mild solution u(t) is
also weak; i.e., it satisfies the relation

(u(t),v) = (uo,v)—/o (u(r),Av) dt—}—[o (B(u(z)),v)dr, ve 2), 4.2.13)

for t from every existence interval [0, T]. Moreover, we have that

* u€ly0,T;Hp),

* u(t) is absolutely continuous in H_y »,

* u(t) satisfies (4.2.1) as an equality in H_y, for almost t € [0, T],
* the following energy balance relation holds:

SO+ [ @ ade = Sl + [ By @214

Proof. Let Py be the orthoprojector onto Span{ey,...,ey}. Then uy = Pyu(r)
satisfies the integral equation

un(f) = e Pyuy + / [e_(’_’)AfN(t) dr  with fy(r) = PyB(u(z))
0

in the finite-dimensional space PyH. Thus, the standard finite-dimensional calcula-
tions after the limit transition lead to the desired results. O

Exercise 4.2.10. Show that under the conditions of Proposition 4.2.9 any mild
solution possesses the property u, € C((0,T); H—s) for every § > 0. Hint: Use
equation (4.2.1) and apply the result of Exercise 4.2.6. [

4.2.2 A case study: Henry-Miklavcic¢ model

To demonstrate different issues related to the well-posedness of mild solutions, we
consider an abstract version of the model considered in HENRY [123] (see also
CHUESHOV [39, Chapter 2]).
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Let A satisfy Assumption 4.2.1. Consider the problem

u; + Au = —u||A%u||"u, u‘ uo, (4.2.15)

=0 —

where 0 < o < 1,m > 1, and u € R. We note that a one-dimensional version of
this model was considered in Exercise 1.7.19.

Exercise 4.2.11. Make sure that problem (4.2.15) satisfies the Lipschitz condition
in (4.2.2) with L, = [p|AT4(1 + m)p". L]

The model in (4.2.15) is exactly solvable. Indeed, any mild solution u(z) can be seen
as a solution to the linear equation

u, + Au~+f()u =0, with f(£) = u||A%u@)|™. (4.2.16)
Thus, we can write

u(t) = exp%—tA - /tf(r) d‘[} up,
0

which implies that
t
A% g " = A“u(o)|" exp {um / JA“u(o) " dr}
0

1 d d
= ——exp ,um/ |Au()||" dz; .
my dt 0

Therefore, after integration we obtain

1

t
exp f - [ 1wl ae = : -
|:1 + um[ ||A“e_mu0||mdr:|
0

and thus arrive at the following explicit formula for a mild solution:

exp {—At} uy
t 1/m
|:1 + /Lm/ ||A°‘e_’Au0||mdt]
0

This formula allows us to state explosion criteria for solutions in the system. We
recall that explosion of a local solution u(f) means that u(z) is defined on some
interval [0, T) and blows up at the end of the interval, i.e., ||u(f)|lo, — +ocast — T
witht < T.

u(t) = 4.2.17)
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e Case > 0: There is no explosion; a mild solution exists globally for every
initial data uy € H,.

¢ Case < 0: In this case a solution u(r) with initial data uy blows up if and only
if

+oo 1
/ A% e ug||™ dv > T (4.2.18)
0

In particular, this means that solutions with small initial data exist globally and
solutions with large uy blow up. This statement is confirmed by the following
exercises.

Exercise 4.2.12. Let i < 0. Show that solutions to (4.2.15) exist globally under the
condition [ugle < (A1|p|~")™. Hint: We know that |le M up|le < e |lug|ly.

Exercise 4.2.13. Let 1 < 0. Show that for every vy € H, there exists a positive
number 1, = 1(vg, ¢, i, m) such that the solution to (4.2.15) with uy = nvy exists
globally when n < 7, and this is not true when n > n,. Calculate this critical
barrier 7. [

Exercise 4.2.14. Show that in the case m = 2 the explosion criterion in (4.2.18)
can be written as [JA*™"2uy|| > 1//|1]. "

We note that the formula in (4.2.17) can also be used to construct solutions in the
case when uy ¢ H,,. Indeed, letuy € Hg for some 0 < B < « such that («a—f)m < 1.
In this case,

¢ 4 L1 ePm Gl
A% yo|" dr < C n = dv = C T (@B’
/0 A% | dt < Cogllul [0 (f) w0l T = Bym

Thus, for every u € R there exists 7), < 400 such that the function u(f) given by
(4.2.17) possesses the property

ue C([0,T,), Hg) N C*((0.T,). Hy), VseR.

The behavior of this function near zero is described in the following exercise.
Exercise 4.2.15. Show that lim sup,_, o {#* P |A%u(1)||} < +oc. .

Thus, one can show that the integral in (4.2.3) for this u exists, and thus u(z) satisfies
integral equation (4.2.3) with B(#) = —||A%u|™u on the interval [0, T},). Hence we
have a mild solution for the data uy & H,. Moreover, u(t) satisfies (4.2.15) in the
classical sense.

In the case it < 0 we can observe the non-uniqueness effect when the initial data
do not belong to H,. Indeed, following an idea presented in HENRY [123], it is easy
to show that the function
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u(t) = exp{/lf(t) dr} v(t) with v(t) = e vy

solves the differential equation in (4.2.15) on the interval (0, 1). Here f(¢) is the
same as in (4.2.16). Thus, by the same calculations as used above, one can see that
any solution v () to the equation v, + Av = 0 generates a solution to (4.2.15) on the
interval (0, 1) by the formula

o(0)
1 I/m"*
[1 +luln [ ||A“v(r)||'"dr]

We take v(f) = e vy, where vy € H. In this case, u € C*((0, 1], H,) for all s € R.
Assume that

u(t) = (4.2.19)

limir(l)f {tﬂ||A“e7’Av0||} > 0 for some 8 > 1/m. (4.2.20)
—

Then we have

1
liminf%tmﬂ_l / |[A%e A vo||m dr} > 0.
1—>+0 ¢

This implies u(f) — 0 in H as t — +0. Thus, the function u given by (4.2.19)
possesses the property

ue & = (0,11, H) N C®((0, 1), Z(A))

and solves (4.2.15) with the zero initial data. Hence, under the condition (4.2.20),
we have non-uniqueness of mild solutions to (4.2.15) in the class .Z.

We note that the requirement in (4.2.20) can be satisfied if, for instance, we
assume that the spectrum of the operator A has the form A, = Pok=1,2,...
(this corresponds to the spectrum of the 1D Laplace operator). Indeed, let p > 1/2;
then

k=1
In this case with 4o¢ — 2p > —1 we have that

e 00
||A0t€_tAU0||2 = Zk4a_2p€_k2t Z CO/ S4Ot—2pe_§2t dg
=1 1
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1 4a—2p+1 00 s R 1 2a0—p+1/2
=c| — s dE > ¢ (—) .
(«ﬂ) [ﬁ t

Thus, we obtain (4.2.20) with 8 = o — (0 —1/2)/2. Thus, in the case when am > 1
we can choose p > 1/2 such that (4.2.20) holds.

4.2.3 Galerkin method

Well-posedness issues for the problem in (4.2.1) can also be studied with the help
of the Galerkin method.

Let Py be the orthoprojector in H onto Span{ey,...,ey}. A Galerkin approxi-
mate solution to (4.2.1) of order N with respect to the basis {e;} is defined as a
continuously differentiable function

N
WD) =) aDex,

k=1

with values in the finite-dimensional space PyH which satisfies the equations

u) +Au" = PyB"), u"|_, = Pyuo€H. (4.2.21)

=0
In the exercises below we assume that Assumption 4.2.1 is in force.

Exercise 4.2.16. Show that (4.2.21) can be rewritten as a system of N ordinary
differential equations for the functions g, (f). Using Theorem A.1.2 make sure that
for each N the problem in (4.2.21) is locally well-posed. [

Exercise 4.2.17. Show that problem (4.2.21) is equivalent to the problem of finding
a continuous function «" with values in PyH satisfying the integral equation

t
WV () = e A Pyuy + [ e~ TIAPUB(UN (1)) dr. (4.2.22)
0

Exercise 4.2.18. Let uy € H,. Using the same method as in Theorem 4.2.3, prove
the local solvability well-posedness of problem (4.2.22) on a segment [0, 7], where
the parameter 7 can be chosen to be independent of N. Moreover, the following
uniform estimate is valid:

sup max ||u" ()]l <R forsome R > 0. (4.2.23)
N t€[0.7]

The parameter R depends on ||ug||,- [
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Theorem 4.2.19. Let Assumption 4.2.1 be in force and uy € Hy. Assume that a
sequence of approximate solutions u" admits estimate (4.2.23) on some interval
[0, T). Then there exists a mild solution u(t) to problem (4.2.1) on the segment [0, T
and

1
max lu() — ¥ (B) o < C <||(1 ~ Pl + 5= ) , (4.2.24)
N+1

where C = C(T,R, ) > 0 is a constant independent of N.
Proof. 1t follows from (4.2.21) that

t
V(1) = e TINN(s) + / e APy BUN (v))dt, N=1,2,....

Therefore, using Proposition 4.1.9 and also estimate (4.2.7), we can see that for
N < M:

1" (@) = u @)l <l (5) = u" (5)

1) +an]e ia oa

r—t

() e - o ar

forall 0 < s < ¢ < T. This implies that

1™ (@) = u @)l <l (5) = u" ()l + MR)In (2, 5)

t— 1—«
+ Lg ( ) |t =] max 1 () — i (7)., 42.25)
e l—«o TE[s,t

forall0 <s <t < T, where M(R) = ||B(0)|| + LgR and

o

t o
In(t.s) = / [(:) A |, s (4.2.26)

Introducing the new variable £ = (f — t)A41, One can see that
o0
In(t,s) < Jn(t,—o0) = A4t [1 +a / g dé] = Aysh [+ %]
0

(4.2.27)
Thus, it follows from (4.2.25) that there exists Tx = T« (R, «®) < T such that

a0 =i Ol = 20 6) i )l + CR AT
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for all s € [0, T) such that s + T, < T. Hence the step-by-step procedure leads to
the relation

max (1) ' Oll < C (1P = Pryuoll + 3357

for all M > N and for any interval [0, 7] for which (4.2.23) holds. Thus, there exists
a function u € C(0, T; H,) such that (4.2.24) holds. It is easy to see that this u is a
mild solution to (4.2.1). O

4.2.4 Nonlinearity with the main potential part

Now we consider a case in which we can guarantee the global solvability of
problem (4.2.1). We impose the following hypothesis.

Assumption 4.2.20. Assumption 4.2.1 holds with ¢ = 1/2, i.e.,

(i) A is a positive self-adjoint operator with discrete spectrum on H (see Defini-
tion 4.1.1);

(ii) B is a locally Lipschitz mapping from H;/, = P(A"?) into H such that for
every p > 0 there exists L, such that

B(u1) — B(uz)|| < Lolluy — uzllij2, wi € Hija, |luilliz <p, i=1,2.

(4.2.28)
Assume in addition that
B(u) = —Bo(u) + B (u),
where By : Hj/; — H is continuous and linearly bounded, i.e.,
Bi(w)|| < c1 + callullij2, u € Hyp, (4.2.29)

and By : Hi; — H is a potential operator on the space Hj,,. This means (see
Section A.5 in the Appendix) that there exists a Frechét differentiable functional
IT(u) on Hy; such that Bo(u) = IT'(u), i.e.,

lim [n(u +v) — [T () — (Bo(w), v)] —0. (4.2.30)
ol 2—0 [[v]]1/2

Remark 4.2.21. We note that under Assumption 4.2.20 it follows from Proposi-
tion A.5.2 in the Appendix (see also (A.5.4)) that for every u € C!([a, b], H}2) the
scalar function 7 > IT(u(t)) is a C' function on [a, b] and
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ditﬂ(u(t)) = (Bo(u(1)), u,(t)), te€la,b]. (4.2.31)

Moreover, the relation in (A.5.5) in this case gives us that
1
Ou+v)—Iu = / (Bo(u + Av),v)dA forevery u,v € Hy.
0

This formula with # = 0 yields
sup {[IT(v)| : ||v]l1/2 <R} < oo forevery R >0

under the condition that sup{||Bo(v)|| : [|v|1/2 < R} < oo for every R > 0. n

Theorem 4.2.22. Let Assumption 4.2.20 be in force. Assume that the functional
I1(u) possesses the following property: there exist B < 1/2 and y > 0 such that

BIAY2ul> + () +y > 0. YueHp. (4.2.32)

Then for every uy € Hyj, problem (4.2.1) has a unique mild solution u(t) in the
space C(Ry; His). Moreover, there exists the time derivative u; which belongs to
L>(0,T; H) for every T > 0, and the following balance relation:

EGu(t) + / ()Pt = E(uo) + / (B1(u(0)). u(0))d (4.233)
0 0
holds for every t > 0. Here
E(u) = %||Al/2u||2 + (u), u€ H).

Proof. To obtain the result we use Theorem 4.2.19 on approximations.
Let

N
NOEDIFAGLE:

k=1

be the Galerkin approximation of order N. Then u" (¢) solves problem (4.2.21); i.e.,
we have that

uiv + A = PyB@u), uN| = Pyug € H.

=0

To apply Theorem 4.2.19 we need to check (4.2.23). To do this we multiply the
equation above by u. This yields



164 4 Abstract Parabolic Problems

d[1
7 + 2 [EIIA‘/ZMNIIZ + n(uN)} =(B1(). 1)

1
< S 1P+ e+ AP,
where ¢ and ¢, are the constants from (4.2.29). By (4.2.32),
1 1
W) = SIAV 4 T +y = (5= B) 1AV
It is also easy to see that
Lovge, 4@ N N
Sl 17+ —Ww') = aWu') + a
2 dt
on any interval [0, T with some a; > 0. This relation allows us to obtain the estimate
t
A2 @)|* + / lu (x)|Pdt = Cr(1 + E(Pyug)) < Crr (4.2.34)
0

for every initial data ug € Hj/, such that |lug|i2 < R. This allows us to apply
Theorem 4.2.19 and show the existence of a mild solution. Moreover, using (4.2.34)
we have that {u"} is a weakly compact sequence in L,(0, T; H) for every T > 0.
Therefore, the convergence u¥ — u given by Theorem 4.2.19 implies that the
generalized time derivative u, exists and belongs to L, (0, T; H).

To prove (4.2.33), we note that from (4.2.13) in Proposition 4.2.9 it follows that

w(t) = Pyu(t) solves the following finite-dimensional equation:
w; + Aw = fiy(t) = —PnBo(u(?)) + PyB(u(?)).

Thus, using the multiplier w, we obtain
t t
E(Pyu(n)) + / 1Pyu (D) |IPdT =E(Pyuo) + / (B1(u(1)), Pyu(t))dt
0 0

+/ (B()(PNM(I)) —Bo(u(‘[)),PNut(T))dT.
0

After the limit transition N — 0o, we obtain (4.2.33). O

Remark 4.2.23. By Proposition 4.2.9 the solution u(#) given by Theorem 4.2.22 is
also weak. Moreover, it follows from (4.2.33) that u,(f) € H for almost all ¢, and the
equation in (4.2.1) is satisfied as an equality in H. In particular, this allows us to see
that the mild solution possesses the properties

u € Ly(0,T; 2(A)), u; € L,(0,T:H), YT > 0.

Following PAZY [181] it is natural to call this solution strong.
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The method which leads to the a priori estimate (4.2.34) and the balance relation
in (4.2.33) is very close to the approach developed in Chapter 5 for second order in
time models. The multiplier 4, is crucial in both cases. We refer to Section 5.1.3 for
a further discussion of this issue. [

4.2.5 Semilinear heat (reaction-diffusion) equation

One of the standard applications of the results presented above is a semilinear heat
equation.
In a bounded domain §2 C R? we consider the following problem:

u(x, 1) — Au(x, t) + f(u(x, 1), Vu(x, 1)) = 0 (4.2.35)
endowed with boundary and initial conditions
ul,o =0, ul,_, = uo. (4.2.36)
Here f(u, £) is a function on R'*“ which is specified below.

We consider (4.2.35) in the space H = L,(§2) and suppose A = —A on the
domain

P(A) = HX(R2) NHY(2) = {u € Lry(2) 1 dypyu € La(82). ul,, = 0},

where we use the notation H*(§2) for the Sobolev space of order s and H{(§2)
denotes the closure of C§°(£2) in H*(£2). It is well known that 2(A?) = H}(£2).
The nonlinear mapping B is defined by the relation

[B@)I(x) = f(u(x), Vu(x). u € Hy(£2).

There are two important cases in which B satisfies (4.2.2) with o = 1/2:

« f : R > R is globally Lipschitz. In this case (4.2.2) holds with L,
independent of p.
« f: R > R possesses a polynomially bounded main part, i.e.,

fu.§) = =fo(w) + fi(u,§), (4.2.37)

where f; : R!*¢ > R is globally Lipschitz and fy : R! + R satisfies the
inequality

fo(w) —fow)| = CA + [ul” + [v]")u — v], (4.2.38)
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where 7 € [0, +00) whend < 2 and r < 2(d — 2)~! for d > 3. To prove (4.2.2)
with o = 1/2 for this case, we use the following embedding (see ADAMS [1]):

o (d=<2, Vp<oo;
H' (2)CcL,(2) if 1"~ ’
(§2) C L&) i {d>2,pgzd(d—2)—‘.
Under the conditions above, By(u) = fy(u(x)) has a potential I7(u) which is
given by

u(x)
() = fg [ i fo(s)ds}dx, u € Hy(2).

The condition in (4.2.32) is satisfied when

lim inf]ls) > —Ap, (4.2.39)

[s|>00 8

where A is a first eigenvalue of the operator —A with the Dirichlet boundary
conditions.

The conditions above can be relaxed in several directions. For instance, ford = 3 we
know from ADAMS [1] that H*(§2) C Loo(£2) when s > 3/2. Thus, if f € C'(R),
then

Ilfo (1) —fo(u2) ||i2(9)

1 2
< [ [ i@+ a - ol | ne - ewopas
2 0
<sup {[f'©®)] : Is| < co (llr o) + luallmsce)} lur = uallfa g

for every s > 3/2. This observation makes it possible to show that the corresponding
operator B is locally Lipschitz from Z(A%) into H for every 3/4 < o < 1.
Thus, we can apply Theorem 4.2.3 to prove the local well-posedness of the
problem in (4.2.35) and (4.2.36) without any growth requirements like (4.2.38).
For more details and other examples we refer to HENRY [123] and CHUESHOV
[39, Chapter 2].

In particular, we can consider a vector version of the model considered in (4.2.35)
by assuming that

U= (ul;...;u’"), f(u) = Qfl(u);...;f'"(u)).

This situation describes a reaction-diffusion process of m reagents with concentra-

tions u!, u?, ..., u™, whose diffusion coefficients can also be different. Thus (see,

e.g., HENRY [123]) we obtain the system
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u—viAu+ @, u") =0, i=12,...,m (4.2.40)
In this case the Neumann boundary condition

9 i
a_u =0, on 082, i=1,2,...,m, (nisoutward normal to 952), 4.2.41)
n

is more natural than the Dirichlet condition in (4.2.36), because the former states
the absence of flows of reagents crossing 0£2.

We mention that the dynamics in system (4.2.40) and (4.2.41) can present
rather complicated behaviors. For instance, every bifurcation picture discussed in
Section 1.9 can be detected in some reaction-diffusion system of the form (4.2.40)
and (4.2.41). The point is that the subspace % of the constant (independent of x)
vectors is invariant with respect to the dynamics governed by (4.2.40) and (4.2.41).
The restriction of (4.2.40) and (4.2.41) on the subspace %} is an ODE of the form
u + f(u) = 0. We also refer to the survey of POLACEK [185] and the references
therein for general results on the realization of ODE dynamics by several classes of
parabolic PDE:s.

4.3 Long-time dynamics in semilinear parabolic equations

In this section we continue our studies of the qualitative properties of parabolic
systems which are modeled by equation (4.2.1). We concentrate on long-time
dynamics and attractors. To proceed we assume that problem (4.2.1) has a unique
mild solution on R .?> By Theorem 4.2.3 this solution is continuous both in time
and initial data. Thus, we can define a dynamical system (H,,S;) on H, with an
evolution operator S; given by the formula

S,uo = u(f), where u(r) solves (4.2.1).

Our goal in this section is to apply the method developed in Chapters 2 and 3 to
describe the asymptotic properties of the dynamical system (Hy, S;).
4.3.1 Dissipativity and compactness

We start with the following assertion, which shows that dissipativity implies
compactness.

2We refer to Theorem 4.2.22, which provides sufficient conditions for this global well-posedness.
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Proposition 4.3.1. Assume that the problem (4.2.1) satisfies Assumption 4.2.1
and generates a dynamical system (Hy,S,) in Hy. Then (Hy,S;) is conditionally
compact (see Definition 2.2.1). If this system is dissipative, then it is compact
(see Definition 2.2.1). Moreover, if the ball By = {u € Hy, : |ulla < Ro}
is absorbing, then for every 8 € [0,1) there exists Rg > 0 such that the set
By = {u € Hy : |lullg < Rg} is also absorbing for (Hy,S;). The latter property
with 0 € (a, 1) means that the system has a compact absorbing set.

Proof. First we prove that dissipativity implies compactness. Due to the compact-
ness statement in Proposition 4.1.6, it is sufficient to show that the ball By with some
radius Ry > 0 is absorbing when 0 € (¢, 1).

It follows from (4.2.3) and (4.1.9) that u(t) = S;u satisfies the relation

0 — 0—a t 0 0
oo = (5=5)  Wol+ [ (552 ) IBaelar @3

for all # > 5. Let D be a bounded set in H, and uy € D. We have u(t) = S;uy € By
for t > tp. Thus,

0—a \'™ 0\ |t—s|'~?
lu@llo < (e(t_s)) Ro + L(Ro, B) (;) g 4.3.2)

for all t > s > tp, where L(Ry, B) = sup{||B(u)|| : u € By}. Thus taking t = s + 1
we obtain that the set By = {u € Hy : ||u|lg < Rp} is absorbing with the radius

0—a\'™ 0\’ 1
Ry=—— Ry+L(Ry.B) [ -] —.
e e 1-6

To prove the conditional compactness of (Hy, S;), we note that for every bounded
forward invariant set D we have that ||B(u(t)|| < Cp for all 7 > 0. Therefore,
the conclusion follows from (4.3.1) with s = 0 in the same manner as above. This
concludes the proof. ]

The following theorem gives some conditions under which equation (4.2.1)
generates a dissipative dynamical system.

Theorem 4.3.2. Assume that Assumption 4.2.20 is in force; that is,

(i) A is a positive self-adjoint operator with discrete spectrum on H;
(ii) B is a locally Lipschitz mapping from Hy;, = PD(AY?) into H such that for
every p > 0 there exists L, such that (4.2.28) holds;
(iii) B(u) = —Bo(u) + Bi(u), where By : Hy;» +— H is continuous and linearly
bounded, i.e., (4.2.29) holds, and By = I1’ : H; 2 > H is a potential operator
on the space H ;.
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Assume in addition that

(iv) there exist B < 1/2 and y > 0 such that (4.2.32) holds, i.e.,
BIAY2ull® + () +y =0, YueH; (43.3)
(v) there exist u < 1 and § > 0 such that
(Bo(u),u) + pu[|A2ul> +8 >0, YueH,; (4.3.4)
(vi) for every x > O there exists C,, such that
I1B1(w)|| < Cy + %|AY?ul| forall ue H,j. (4.3.5)

Then problem (4.2.1) generates a dissipative dynamical system (Hy;»,S,) in Hy .

Proof. By Theorem 4.2.22 problem (4.2.1) possesses a unique global solution u(f)
and generates a dynamical system in H; ;. Using the balance relation in (4.2.14),
we obtain that

1d
5 7 1P + 1Al + (Bo(w), w) = (Bi(w),w) < nl|A"ul® + ), (436)

for every n > 0 and for almost all # > 0. The balance relation in (4.2.33) yields

d
]2 + —[

1 1
& [ + 1] = @) < 1l + a2 +

2
4.3.7)

for almost all # > 0. On the space H{,, we define the functional

1 1
W (@) = 3l + 314" 2ul + ) + .

Since by Remark 4.2.21 I1(u) is bounded on every bounded set, we conclude
from (4.3.3) that

ar|AY2u))® < # (u) < p(|A"?ul]), (4.3.8)

where a; > 0 and ¢(r) = y + axr® + sup{|[IT(w)| : |ul1/> < r}. It also follows
from (4.3.6), (4.3.7), and (4.3.4) that

%W(u(t)) +v|AY2u@)|? < b, t>0, (4.3.9)
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for some v,b > 0. The relations in (4.3.8) and (4.3.9) allow us to apply
Theorem 2.1.2 (see also Exercise 2.1.3) and conclude that (H,», S;) is a dissipative
system. ]

Exercise 4.3.3. Show that (4.3.5) is valid when B has sublinear growth; i.e., there
exists 6 € [0, 1) such that ||B; (u)|| < ¢1 + c2||AY?u|| for all u € Hys. "

Exercise 4.3.4. Show that the conditions of Theorem 4.3.2 are valid for the heat
equation in (4.2.35) when f has the form (4.2.37), where (i) fy satisfies (4.2.38)
and (4.2.39); (ii) fi is globally Lipschitz and has sublinear growth

i@, §) < c1 + ea(lu + [€))° with 6 € [0,1). .
Corollary 4.3.5. Under the hypotheses of Theorem 4.3.2, the system (Hy;,S;)
generated by (4.2.1) is compact. Thus, it possesses a compact global attractor.

Proof. By Theorem 4.3.2 the system is dissipative. Hence by Proposition 4.3.1 the
system is compact. Thus, the existence of a compact global attractor follows from
Theorem 2.3.5. m]

As we will see below, the global attractor given by Corollary 4.3.5 is finite-dimen-
sional. We derive this fact from quasi-stability properties of the system considered,
which we establish in Section 4.3.3 below.

4.3.2 Stationary solutions

Under the hypotheses of Theorem 4.3.2 we can also establish the existence of
stationary solutions (which definitely belong to the attractor).

Proposition 4.3.6. Let B(u) = —By(u) + Bi(u) and let Assumption 4.2.20 be in
force. Assume in addition that relations (4.3.4) and (4.3.5) hold. Then the set

N = {M (S H1/2 D Au+ B()(M) = Bl(u)} (4310)
of stationary solutions is a nonempty bounded set in H, (hence it is compact in
Hi)).

We note that the hypotheses in Proposition 4.3.6 are not optimal and can be relaxed
substantially (see, e.g., LIONS [151] or SHOWALTER [210]). Our motivation behind
Proposition 4.3.6 is to describe equilibria in the case when the system (Hi,», S;)
possesses a global attractor.

Proof. We consider a sequence {u"} of Galerkin approximations which are defined
as elements in Py H satisfying the equation

A" + PyBo(") = PyB (u"), N=1,2,... (4.3.11)

To show the existence of these solutions, we apply the following “acute angle”
lemma (see, e.g., SHOWALTER [210, Proposition 2.1, p. 37]).
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Lemma 4.3.7. Letf : Bg := {x € R : |x| < R} — R be a continuous mapping
such that (f (x), x)ge > 0 for every x € 0Bg. Then f has a zero in the ball Bg.

Exercise 4.3.8. State and prove Lemma 4.3.7 in the 1D case (d = 1). n

To check the conditions of Lemma 4.3.7, we note that (4.3.4) and (4.3.5) with an
appropriate » > 0 imply that

1
(A + PyBo(u") = PyBi ("), u") = 5(1 = )| A2 |2 = e(8, ).

By Lemma 4.3.7 this implies that for every N there exists at least one solution
to (4.3.11) satisfying the estimate

42N> < R =2(1— p)~'e(8. )
This yields that
4> < [[Bo@™)[| + |Bi ()| < C-

Thus, the set {¥"} is bounded in H; and hence compact in Hy/,. This allows us to
make the limit transition (along a subsequence) and prove the existence of stationary
solutions. It is clear that the set .4 of all stationary solutions is bounded in H;. o

As we know from Chapter 2, except for equilibria the global attractor may also
contain periodic orbits. In this relation we note that, similar to finite-dimensional
Theorem 1.8.8 on periodic orbits, we can give a low bound for possible periods of
orbits of the system generated by (4.2.1) (see ROBINSON [196, p. 156]). However,
it seems that the bound in ROBINSON [196] is not sharp.

4.3.3 Squeezing and quasi-stability

Two facts presented in this section allow us to involve the powerful tools developed
in Chapter 3 for studies of parabolic models. The first fact is the following
Ladyzhenskaya squeezing property (see LADYZHENSKAYA [142] and the references
therein) of the evolution operator S;. This is an important component of many
qualitative considerations for parabolic PDEs. It can be treated as a strong form
of quasi-stability.

Proposition 4.3.9 (Ladyzhenskaya squeezing property). Let Assumption 4.2.1
be in force. Assume that (4.2.1) generates a dynamical system (Hy, S;). We denote
Oy = I — Py, where Py is the orthoprojector onto Span{ey, ..., ey} in H. Then for
every) < g< 1,0 <a<b< 400, and R > 0 there exists N, = N(a,b,R, q)
such that
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lON[Siut — Siutx]lle < qllut — usllqs V€ [a,b], YN > Ny, (4.3.12)
for any u and u from the set
9P ={u€Hy : ||Sulle <R foralltel0,b]}.

Proof. Let u(t) = S;u and u,(t) = S;ux . Using Proposition 4.1.9, one can see that

10N () — s () |« < € 1| O (u(0) — 14 (0)) o

t
L o o —([_T)AN_H _
+LRA [(t—r> +AN+1]6 lu()) = us(t)llodr  (4.3.13)

for all + € [0, b]. It follows from (4.2.4) (see also (4.2.6) in the case of globally
Lipschitz B) that there exists a constant C(R, b) > 0 such that

u(®) — ux (D]l < C(R,D)[|u(0) —ux(0)|lo, #€[0,0], u(0),us(0) € 7.
Therefore, (4.3.13) yields

10N (u(t) = s (D)) lle < [€7*¥+" + LgC(R, b)Ix (1, 0)] 4(0) — 14 (0) [

(4.3.14)
where Jy(t,0) is defined in (4.2.26). Thus, using (4.2.27) we obtain that
10N (St = Siua) o < [0 4+ Cu(R DAl — sl (4.3.15)

for all t € [0,b] and u,u, € 2. This inequality implies that for every ¢ < 1,
0 <a<b< +00,and R > 0 we can choose N, such that (4.3.12) holds. O

Exercise 4.3.10. If B(u) is a globally Lipschitz function, then (4.3.12) is valid for
every u, ux € H, with N, independent of R. n

Proposition 4.3.11 (Quasi-stability). Let the hypotheses of Proposition 4.3.9 be in
force. Then for every g < 1,0 < a < b < 400, and forward invariant bounded set
P there exists N = N(a, b, q, B) such that

IS = St llo < qllu — uslle + [|PN[Sit = Siuta]llor, V2 € [a, b], (4.3.16)

forall u, uy € . This means that the system (H,, S;) satisfies Assumption 3.4.9 with
arbitrary t* > 0 and implies that (Hy, S;) is quasi-stable on 9B at every time t.

Proof. We have that

ISie — Seusclla < |ON[Siut — Sius]lle + | Pn[Sit — Sptt] |-

Thus (4.3.16) follows from (4.3.12).
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It is clear that ||Py[-]||« is @ compact seminorm on H,,. Thus (3.4.8) in Assump-
tion 3.4.9 holds with X = H,, n; = 0, and n, = ||Pn[-]|l«. The Lipschitz property
in (3.4.7) follows from (4.2.4). Therefore, we can apply Proposition 3.4.10. ]

Exercise 4.3.12. Show that the relation in (4.3.16) can be written in the following
uniform form:

IS;u — Suslle < ql|Sru — Srttslle + ||Pn[Sit — Setts]llee, U, us € B, 4.3.17)

forall r > 0andt € [a + r, b + r] with g and N independent of r. n

Remark 4.3.13. It follows from Exercise 4.2.7 that for every forward invariant
bounded set % in H,, the evolution operator S, is a Lipschitz mapping from % into
Hg with B € [a, 1). More precisely, for every B € [0, 1) and 0 < @ < b < +00 and
forward invariant bounded set % there exists a constant C = Cx»(«, B8; a, b) such
that

Sie — Siu|lp < Ca(o, Bsa, b)||u—uxllo, Yt€lab], Yuu, € B. (43.18)
Since Hg is compactly embedded into H, for 8 > «, the inequality in (4.3.18)

allows us to establish another form of quasi-stability of the system (H,, S;) using
the same idea as in Corollaries 3.1.25 and 3.1.26. L]

Remark 4.3.14 (Foias-Temam squeezing property). The Ladyzhenskaya squeezing
inequality (4.3.12) implies that for every y > 0 the following property holds: for
eacht € [a, b] and u, ux € & we have either

|On (St — S|l < YIIPN[Siu — Sius] ||« (4.3.19)

or else
1
S — Spuslle =g |1+ ; [l — vs|la- (4.3.20)
Indeed, if (4.3.19) is not true for some ¢ and u, u,, then
1
1Py (Seut — Seus) [l < " O[St — Siut] |-
Thus,
1S — Siuslla <Py (Sit — Siuts) | + |ON[Sitt — Sittx] |l

1
< (1 + ;) |ON[Sut — Sut] e



174 4 Abstract Parabolic Problems

Therefore, (4.3.12) implies (4.3.20). In the case when ¢(1 + y~!) < 1, the property
above is a dynamical form of the Foias-Temam squeezing property restricted to the
interval [a, b]; see CONSTANTIN/FOIAS/TEMAM [79] or TEMAM [216]. n

The results of Propositions 4.3.9 and 4.3.11 allow us to make several important
conclusions concerning the long-time dynamics of (Hy, S;).

4.3.4 Global and exponential attractors

The following assertion is a consequence of Theorem 3.4.11.

Theorem 4.3.15 (Global and exponential attractor). Let Assumption 4.2.1 be in
force. Assume that (4.2.1) generates a dissipative dynamical system (Hy, S;). Then
this system possesses a compact global attractor 2L of finite fractal dimension dims2L
in Hy. This attractor is a bounded set in Hy, and for any full trajectory {u(t) : t €
R} from the attractor we have that u(t) is an absolutely continuous function with
values in Hg for every B < 1 and

sup {lu(0)llp + IlAu() — B(u()) g} < C. 4.3.21)

Moreover, the system (H,, S;) possesses a fractal exponential attractor ., (whose
dimension is finite in the phase space Hy).

We note that the bounds for the dimensions of 2 and 2, can be derived from
Theorems 3.4.11 and 3.2.3.

Proof. By Proposition 4.3.11 the system satisfies Assumption 3.4.9 on every
bounded forward invariant set. Thus, we can apply Theorem 3.4.11 to conclude
the existence of finite-dimensional global attractor 2.

To prove the claimed smoothness of the attractor, we first note that, by Proposi-
tion 4.3.1, for each B < 1 there is an absorbing set which is bounded in Hg. Thus,
the attractor is bounded in Hg for every « < B < 1. Next, we can restrict the system
(Hqy, S;) on the space Hg with o < 8 < 1 and apply Proposition 4.3.11 on the set 2.
It follows from (4.3.17) that

lu(t +h) —u®llp < qllut +h—1) —u(t = Dlg + Aylu( + h) —u@®)|-1+4

for every ¢ € R and for any full trajectory {u(f) : ¢ € R} from the attractor. Since
on the attractor

t+h
llu(t + h) —u@®l-14p = / [lu(@)llp + 1B@)l] dr < Calhl,
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we obtain that
(1 =q)sup |lu(z + h) —u@)|lp < Caln|hl|.
1€R

After the limit transition 2 — O this yields (4.3.21), which, in particular, means that
2( is a bounded subset of H;.

To prove the existence of the fractal exponential attractors 2A,,,, we use the sec-
ond part of Theorem 3.4.11. For this we need to check the Holder continuity prop-
erty (3.4.10) on some absorbing set for (H,, S;) with X = H,. To do this, we note
that by Proposition 4.3.1 there exists an absorbing set By which is bounded in Hy
with some 6 > «. Therefore, Exercise 4.2.8 yields the desired Holder continuity. o

Corollary 4.3.16. Let the hypotheses of Theorem 4.3.2 be in force. Then the
system (Hy /2, S;) generated by (4.2.1) possesses a finite-dimensional compact global
attractor 2 which is a bounded set in H,. There also exists a fractal exponential
attractor ey, (with finite dimension in H, 2 ).

Proof. We apply Theorem 4.3.2 to show that the system (Hy/,,S,) is dissipative.
Thus, the result follows from Theorem 4.3.15. O

4.3.5 Gradient structure and rates of stabilization to equilibria

In this section we consider the situation presented in Corollary 4.3.16 under
additional conditions which guarantee a gradient structure of the system.

Theorem 4.3.17. Let the hypotheses of Theorem 4.3.2 be in force and By(u) = 0.
Then the system (Hi»,S;) generated by (4.2.1) is gradient, and thus the global
attractor given by Corollary 4.3.16 has a regular structure, ie., A = H"(N),
where " (N) denotes the unstable manifold emanating from the set

A ={u € Hy : Au—+ By(u) = 0}

of stationary points (see Definition 2.3.10). The global attractor 2 consists of full
trajectories y = {u(t) : t € R} such that

lim distx(u(t), #) =0 and lim distx(u(z),.+/) = 0. (4.3.22)
t——00 t—>+o00
For any u € Hy/, we have

lim disty(Su, #) =0, (4.3.23)
t—>+00

that is, any trajectory stabilizes to the set A of stationary points. In particular, if
the set N is finite, then for every u € Hy/, there exists ¢ € N such that
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lim ||S;u— ¢l = 0. (4.3.24)
t—>—+00
Proof. Due to the balance relation (4.2.33) with By = 0, the functional
Lo /2,112
E(w) = S1A"ul? + M (w).

is a strict Lyapunov function for (Hj/,S,). Thus, the structure of the attractor
follows from Theorem 2.4.5. The convergence property in (4.3.24) follows from
Theorem 2.4.7. =

Under additional conditions one can show that the convergence to an equilibrium
in (4.3.24) takes place at an exponential rate.

Theorem 4.3.18 (Rate of stabilization). In addition to the hypotheses of Theo-
rem 4.3.17, we assume that the set A of stationary points is finite and By(u) is
Fréchet differentiable on Hy, at every stationary point. This means® that for every
¢ € N there exists a bounded linear operator Bi(¢) : Hy/» — H such that

1o + v) — Bo(®) — By@)vl| _

0.
lvll1/2—>0 lvlli/2

Let all equilibria be hyperbolic in the sense that the equation Au + Bj(¢)u = 0
has only a trivial solution for each ¢ € N . Then for any u € H,, there exist an
equilibrium ¢ € N and constants y > 0, C > 0 such that

IS — ¢llij2 < Ce™" forall 1> 0. (4.3.25)

We note that this type of stabilization theorem is well known in the literature
for different classes of gradient systems, and several approaches to the ques-
tion of stabilization rates are available (see, e.g., BABIN/VISHIK [9] and also
CHUESHOV/LASIECKA [51, 56, 58] and the references therein). The approach
presented in BABIN/VISHIK [9] relies on the analysis of linearized dynamics near
each equilibrium and requires the hyperbolicity condition in a dynamical form (we
need this condition in a weaker form). Here we use the method developed for second
order in time evolution equations in CHUESHOV/LASIECKA [51, 56] (see also the
discussion in Chapter 5).

Proof. Let u € Hij, and u(t) = Su. Then by Theorem 4.3.17 there exists an

equilibrium ¢ € A4 satisfying (4.3.24). Thus, we need only to prove that S,u tends

to ¢ with the stated rate. We can assume that sup,.. [|Siu|1/2 < R for some R > 0.
The function z(r) = u(f) — ¢ solves the following equation:

3 For details see Definition A.5.1 in the Appendix.
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2(1) + Az(1) + Bo(¢ + 2(1)) — Bo(¢) = 0. >0, (4.3.26)

in both the mild and the weak sense. Let

&) = Sz, + @),

;|
where
(1) = I1(¢ + 2(1)) — 1($) — (Bo(9).2) = [01(30(¢ + A2) = Bo(¢). 2)dA.
In the same way as in Theorem 4.2.22 one can see that
E(t) + /0 t lz:(2)||*dt = £(0). (4.3.27)

In particular, &(f) is non-increasing. Moreover, since z — 0 in Hy;; as t — 400,
we have that &(f) — 0 when t — +4o00. Thus &(r) > 0 for all > 0. Since

[P(1)] < Crllz®) 121z < ellz@17 ), + Cre Iz, Ve >0,

we have that
1
lez(t)llf/z = Crllz@I* < €@) < [z0)7 2 + Crllz®N?, Ye>0, (4328
Multiplying (4.3.26) by z one can show that
t t
lz(11? +/0 I2(D)II} )2dT < 1lz(0) [ + CR/O lz(2)|*dx.
Since &(7) is monotone, we have that
T T T
16 < [ swds [ N0+ Ce [0
0 0 0
Thus, we obtain that
T
T8(T) + / ||z(t)||%/2dt < Cgrr I[I(}a;%( |z(t)||* for every T > 0. (4.3.29)
0 s

Now we prove the following lemma.

Lemma 4.3.19. Let z(t) be a mild solution to (4.3.26) such that
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T
[ IR e =5 andsup 0l < o (43.30)
T—1 teR 4
with some 8,0 > 0 and T > 1. Then there exists 6y > 0 such that

T
max ||z(f)]|> < c/ llz:(0) | dt (4.3.31)
[0.7] 0

for every 0 < § < 8y, where the constant C may depend on §, o, and T.

Proof. Assume that (4.3.31) is not true. Then for some § > 0 small enough there
exists a sequence of solutions {7 ()} satisfying (4.3.30) and such that

T _l
lim gmax 12" (0)]? [/ ||z;'(t)||2dt:| § = 0. (4.3.32)
[0.7] 0

n—>o0

By (4.3.30) max[o 71 [|2"(1)||* < C,, for all n. Thus (4.3.32) implies that

T
lim / |27(0)]|%dt = 0. (4.3.33)
n—oo 0

Therefore,

r 1/2
max 20 =201 < VT | [ lora)  —0 0o
s 0

Thus, due to (4.3.30) we can assume that there exists z* € H|, such that
Z'() > ZF s-weakly in Loo(0,T; H)2). (4.3.34)

It follows from (4.3.33), (4.3.26), and (4.3.30) that

T T T
/0 ||Az"<r>||2drsc[[o 12012 + /0 ||z"(r>||%/2dr]scr<g>

for every n. Thus, we can see that u* = ¢ + z* € H; solves the problem
Au + By(u) = 0. From (4.3.30) we have that |[A"/?(u* — ¢)||*> < §. If we choose
8o > 0 such that ||[AY2(¢; — ¢)||> > 28, for every couple ¢, and ¢, of stationary
solutions (we can do it because the set .4 is finite), then we can conclude that
u* = ¢ provided § < §y. Thus we have z* = 0 in (4.3.34). Moreover, applying
Theorem A.3.7 on compactness, we can conclude that
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T T
max |20 + [ 1201 e+ [ 1201~ 0. 0 oo ¥y >0,
’ 0 0

(4.3.35)

Now we normalize the sequence 7" by defining

7' =7 with ¢, = max ||Z*(D)].
[0.7]
By (4.3.35), ¢, = 0 as n — oo. The relation in (4.3.32) yields
T
/ 27(0)||%dt — 0 as n — oo. (4.3.36)
0

It follows from (4.3.27) and (4.3.28) that
Lo 2 2 ! 2 2
i PO < &0 + Crl" O < E(T) +/0 Iz (@I"dt + Crll" ()"

for all ¢ € [0, T]. Hence using (4.3.29) we obtain that

1 T
— sup [|AV2Z" (@) <&(T) + / Iz} (t)|*dT + Cgmax ||2" ()|,
4 1ep0.1] 0 [071]

< Crrmax [|Z'(®)|*, T > 1.
[0,7]
Therefore, (4.3.35) implies that

sup A2 ()| = 0, n— oo,
t€[0,T]

and also the following uniform estimate:

sup A2 0P <C, n=1,2,....
t€[0,7]

Using (4.3.26) we can conclude that

2
1A' 0)[1> <212 O1* + S 1B@ + (1) ~B@)|?
<2|Z @I + CrrllA?2 ()],

This implies that

T
/ |AZ"(1)||>dt < Crr, n=1,2,....
0
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Thus, relying on (4.3.36) we can assume that there exists z* € H; such that
Z'() = z* *-weakly in L,(0,T; H;). (4.3.37)

Moreover, by the Aubin-Dubinskii-Lions theorem (see Theorem A.3.7 in the
Appendix),

/;T 2" (r) — 2*||%_,7dt — 0, n—o00, V1>0. (4.3.38)
The function 7" satisfies the equation
7+ AT+ Cln[Bo(qﬁ +7") — Bo(¢)] = 0. (4.3.39)
It follows from (4.3.38) that
B0 + ) = Bo(@)] — By(@)E" swongly in Ly(O.T: .

Therefore, after the limit transition in (4.3.39) we have that Z* satisfies
AT+ By(#)Z* =0

and, by hyperbolicity of ¢, we conclude that z* = 0. Thus (4.3.38) with Z* = 0
and (4.3.36) imply that

max ||Z"|| = 0 as n — oo,
[0,7]

which is impossible. o

Completion of the proof of Theorem 4.3.18. By (4.3.24) we can choose T > 0 such
that (4.3.30) holds with § < 6y and T > Ty. Lemma 4.3.19, inequality (4.3.29), and
the energy relation in (4.3.27) imply that

T
TET) < Crr /0 I Pdt < Car [60) — &T)). (43.40)

Therefore, &(T) < yr&(0) for some 0 < yg < 1. This yields that &(mT) < yg'&(0)
form = 1,2, .... We also have that

lz(nT)|7/, < 46 (mT) + Cg . 1" < Cr&(mT), m=1.2,...

Thus, ||z(mT)||%/2 < Cgryg form = 1,2,.... This implies (4.3.25) and completes
the proof. o
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4.3.6 Determining functionals

We now present several results on determining functionals. For a general discussion
of the theory of determining functionals we refer to Section 3.3 and to the references
therein. As was already mentioned in that section, finite families of determining
functionals provide an important tool for parameterizing the long-time dynamics.

We start with a result based on quasi-stability which specifies the method
suggested in Theorem 3.4.12 for the case of abstract parabolic problems.

Theorem 4.3.20 (Determining functionals). Let Assumption 4.2.1 be in force.
Assume that (4.2.1) generates a dissipative system (Hy, S;).

e Modes: There exists Ny > 0 such that the modes {e; : k = 1,2,...,N} are
determining for every N > Ny; i.e., for every yi,y, € H, the property

lim (S1 = Sy ) = 0. j=1L2,....N, 4.3.41)
—>00

implies
lim [|Sy1 — Suvslle = 0. (4.3.42)
=00

Here {e; )72, is the eigenbasis of the operator A.

* General functionals: Ler Z = {l; : j = 1,...,N} be a set of linearly indepen-
dent functionals on H, and € ¢ (Hy, H) be the corresponding completeness defect
(see Definition 3.3.3). Then there exists €x > 0 such that under the condition
€y (Hy, H) < €4 the set £ is determining; i.e., the relation

lim [;(Sy; —Spy2) =0, j=1,2,....N, (4.3.43)
—>00

implies (4.3.42).

Proof. In the case of modes, the statement is a direct consequence of (4.3.16)
and the argument given in the proof of Theorem 3.4.12. In the case of general
functionals, we note that (4.3.16) implies the quasi-stability in (3.4.8) with X = H,,,
ny = 0, and ny(y) = A% ||y||. In the case considered, € ¢ (ny) = Afye»(Hy, H). |

Another kind of result on determining functionals is based on the following
observation, which involves functionals defined on a certain model space. This
structure allows us to cover several situations which are important from an
applications point of view (see below).

As above, we consider an abstract parabolic equation defined on a separable
Hilbert space H of the form

u; +Au = B(u), t>0, ul;= = up. (4.3.44)

Here A is a positive operator with discrete spectrum; see Definition 4.1.1.
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Theorem 4.3.21. Let Assumption 4.2.1 be in force with « = 1/2. Assume that
problem (4.3.44) is uniquely solvable within the class W = C(Ry;Hyj,) and it is
point dissipative; that is, there exists R > 0 such that

|AY2u(r)|| <R, when t > ty(ug), forevery u(t) € ¥ . (4.3.45)
Let Zy and Z, denote Hilbert spaces with the norms | - ||z, and || - ||z, such that

Zy C Zy. Assume that there exists a linear operator J : V. = Hy;, = Z; such that
Jullz, < K - |lull1/2, and the following monotonicity-type inequality:

1
S 1A — ) |P = (Blur) = B(ua). ty =) = =CR) Ty —wa) 7, (+3.46)

is fulfilled for all u; € H, /> possessing the properties ||A1/2uj|| < R, where R > 0
is the constant from (4.3.45) and C(R) is a positive number. Let & = {l; : i =
1,...,N} be a set of linear continuous functionals on Z,. Then the set

L = {Ew) = L,(w) : |; € &}

is determining for problem (4.3.44) provided € v(Z,, Zy) < (2C(R)K?)™'/2.

Proof. For the proof we use the line of argument given in CHUESHOV [38]. One can
see that

d
%EHW(I)II2 + (Aw(1), w(1)) = (B(u1 (1)) — B(uz(1)), w(1))

for the difference w(t) = u;(f) — uy(t) of two solutions u;(f) and u,(f) from # .
Hence the condition in (4.3.46) gives

d
EIIW(I)II2 + AW < 2CR) |Iw ()17,

for ¢ large enough. Proposition 3.3.4 implies that

lwllz, < Kez(Z1, Zo)|A?w]| 4 Cz - max |Li(Jw)).
Therefore,
d 2 1/2 2 2
WO + Bz - |APw O < Cory - max (o)

for ¢ large enough, where

By =1-2(1+ n)eX(Zi, Z)C(R)K>
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with arbitrary n > 0. Obviously we can choose 1 > 0 such that 8. > 0. Applying
Gronwall’s lemma, we obtain

IwOI? < W) exp{=21 (1 — )}

t
+ C,]/ exp{—A 1Bz (t — 1)} Ne[w(r)]dr (4.3.47)
for ¢ > s with s > 0 large enough, where ./ [w] = max; |/;(Jw)|*. This implies that

t
limsup ||w(1)||* < Cs lim sup/ exp{—PBy(t — 1)} Ny[w(r)]dr.
—>00 —>00 s

Thus, I’Hopital’s rule yields ||w(#)|| — 0 as t — oo.

By interpolation (see Exercise 4.1.2(E)), using (4.3.45) we have that ||w(#)||; — 0
as t — oo for every s < 1/2. To obtain the result in H;/, we need to use the fact of
the smoothening of the trajectories (see Exercises 4.2.6 and 4.2.7). This completes
the proof. m]

Exercise 4.3.22. Show that in the case when the condition (4.3.46) is met with the
constant C independent of R, we can get rid of the dissipativity condition (4.3.45)
in Theorem 4.3.21. [

Remark 4.3.23. Under the conditions of Theorem 4.3.21, the set .Z is also deter-
mining in the Ladyzhenskaya sense (see Remark 3.3.2(3) and also Remark 3.3.14):
for any two solutions u;(¢) and u,(¢) to problem (4.3.44) defined on the whole time
axis and such that

sup{[|[A2u;(1)|| : —oo <t <oo} <R, i=1,2,
the condition
It € R: [i(u1(t)) = [j(ux(z)) foralmostallt <txandj=1,...,N

implies that u;(f) = u,(¢) for all #+ € R. The proof of this assertion follows from
relation (4.3.47), which gives us

[w(@®) > < [w(s)||> exp{—Bg(t —s)} forall —oo <s <1< ts.

As in Remark 3.3.14, in the limit s — —oo this implies the conclusion. Similar
determining properties can also be established in the quasi-stability framework of
Theorem 4.3.20; see Remark 3.4.13(2). =

We note that the standard situation covered by the framework of Theorem 4.3.21
is the case of boundary determining functionals, that is, the case when Z; C Zj
are Sobolev-type spaces on the boundary of nonlinear parabolic PDEs in a bounded
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domain (see CHUESHOV [38] and [39, Section 5.8] for details). However, we can
also apply this theorem in the following situation.

Corollary 4.3.24. Let Assumption 4.2.1 with « = 1/2 be in force. Assume that
problem (4.3.44) is uniquely solvable within the class W = C(Ry;Hij,) and it is
point dissipative;* i.e., it satisfies (4.3.45). Let & = {l; : j = 1,...,N} be a set of
linear continuous functionals on the space Hy;,. Then £ is a set of asymptotically
determining functionals for problem (4.3.44) provided the completeness defect
€y (Hi 2, H) fulfills the inequality

Ey = Eg(Hl/z,H) < L_l, (4348)

where Lg and R are the same as in (4.2.2) and (4.3.45).

Proof. We show that the condition in (4.3.46) of Theorem 4.3.21 holds with Z;, =
H,Zy = Hy);,and J = Id. Indeed, it is clear that

1
A2 — 0)|? = (B(wr) = Blaw), ur — o)

1 12
=z §||A1/2(u1 — )| — L[l A2 (uy — wo) | - luy — ua| = _ERllul — ]|,

This implies (4.3.46) with C(R) = L3%/2 and concludes the proof. o

For other applications and generalizations of the idea presented in Theorem 4.3.21
and Corollary 4.3.24, we refer to CHUESHOV [38] and [39, Chapter 5].

4.3.7 Discrete data assimilation

The data assimilation problem is the question of how to incorporate available obser-
vation data into computational schemes to improve the quality of the predictions
of the future evolution of the corresponding dynamical system. This problem has
a long history and has been studied by many authors at different levels (see, e.g.,
the monographs of LAHOZ ET AL (EDS) [82], KALNAY [129] and the references
therein).

We consider the case when observations of the system are made in some sequence
{t,} of moments of time and use the same formulation of the data assimilation
problem as in HAYDEN/OLSON/TITI [122].

Our main goal is to demonstrate the role of the Ladyzhenskaya squeezing
property (see Proposition 4.3.9) in the solving of data assimilation problems. As in

4As above (see Exercise 4.3.22), we can avoid this condition in the case when (4.2.2) holds with
L, independent of p.
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HAYDEN/OLSON/TITI [122], we also involve the notion of determining modes or,
more generally, determining functionals. However, our method is different from
the approach developed in HAYDEN/OLSON/TITI [122] for the 2D Navier-Stokes
equations.

We assume that Assumption 4.2.1 is in force and problem (4.2.1) generates a
dynamical system (H,,S;). Let & = {l; : j = 1,...,N} be a finite family of
functionals on H, (each functional /; can be interpreted as a single observational
measurement). Let R be some Lagrange interpolation operator related with %,
ie.,

N
Ryv = sz(v)wj, Vv € H,, (4.3.49)
j=1

where {y;} is a finite set of elements from H, such that [y (y;) = &, (in this case
R?f = Ry, ie., Ry is a projector). We refer to Section 3.3 for further details
concerning interpolation operators.

Definition 4.3.25 (Data assimilation). For a given solution U(r) = S,Uj to (4.2.1)
with initial data Uy, we consider the sequence {r;, = R4 U(t,)} which represents
the (joint) observational measurements of the solution U(f) at a sequence {z,} of
times. The sequence {r’,} is called a sequence of observation values. Now we can
construct prognostic values at time t, for U(t) by the formula

Uy = (1= R)Sy g sttny + 1 n=12,..., (4.3.50)

where u is an (unknown) vector, which, according to HAYDEN/OLSON/TTTT [122],
corresponds to an initial guess Uy of the reference solution. We can also define the
prognostic (piecewise continuous) trajectory as

u(t) = Si—,u, for t e[t t,y1), n=0,1,2,.... 4.3.51)
We say that the prognosis is asymptotically reliable at a sequence of times ¢, if
”U(tn) - Mn”a — 0 as n— +oo.

Our goal is to find conditions on R ¢ and ¢, which guarantee that the prognosis based
on a finite number of single observations .2 = {I; : 1 < j < N} is asymptotically
reliable.

We assume that 0 < a < 1,41 —t, < b < 400 for some positive a and b.

The following assertion is our main result concerning problem (4.2.1).

Theorem 4.3.26. Let Assumption 4.2.1 be in force with a globally Lipschitz B (i.e.,
L, in (4.2.2) is independent of p). Assume that £ is a finite family of functionals
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on Hy and there is a Lagrange interpolation operator R o of the form (4.3.49) with
Y € Hg for some B € (a, 1) possessing the property

11— Rlluysny < co (4.3.52)

with the constant cy independent of . Let U(t) = S;Uy with Uy € Hg. Then
there exists €x > 0 such that under the condition® €(Hg,H,) < €y the prognosis in
(4.3.50) is asymptotically reliable for every uy € Hg.

In the case of the modes described in Example 3.3.10 and based on the
eigen-elements of A there exists Nx = Nx (o) such that the prognosis (4.3.50) is
asymptotically reliable for every B € [a, 1) with Ry = Py, where P is given by

N
Pyv =Y (e.v)e, Vv € H,, (4.3.53)
=1
with some N > Ny, where {e;} is the eigenbasis of A.

Proof. We note that in the globally Lipschitz case problem (4.2.1) generates a
dynamical system (Hg, S;) foreach B € [, 1), see Theorem 4.2.3 and Remark 4.2.5.
In each space Hg we obviously have that

U(tn) — Uy = (1 - RD‘/)[St,I—t,,,I U(tn—l) - St,,—t,,,l un—l]-
In the case of modes we have that I — R¢ = Qp, where Qy is the orthoprojector

onto Span {e;, k > N + 1} in H. Therefore, using the squeezing property given in
Proposition 4.3.9 (see also Exercise 4.3.10), we can choose N, such that

1U(t) —unllp < qllU(ta—1) — un—1llp withg < 1.
This implies that

U() —usllg > 0 as n — o0, VB e€la,l),
with exponential speed. Therefore, the statement of the theorem is valid in the case
of modes.

In the general case, Proposition 4.3.9 (see also Exercise 4.3.10 and Proposi-
tion 4.3.11) implies that

154, U(tn—1) — Sa,un—111

< gn|U(t=1) = tnt llp + Ay 1182, Ultamr) = Sttt |l (4.3.54)

Se(Hg, H,) denotes the corresponding completeness defect; see Definition 3.3.3.
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with A, = 1, —1,—1, where gy < 1 can be chosen as small as we need at the expense
of N. By the Lipschitz property in (4.2.6) of the evolution operator S,, we have that

1S4, U(t=1) = Sa,ttn-1lle < Ce”|Utn1) =ttt la-
Since [;(U(t,—1)) = lj(up—1), this gives
”SAn U(tn—l) - SA,,un—l ”oz =< €(I—Iﬂ»I—Ioz)cewb”L,(tn—l) — Up—1 “,3
Thus (4.3.54) yields
|U(,) — ”n”ﬂ < qllU(ta—1) — tp—1 ”ﬂv
where
G = 1= Relggromy [an + A e (Hy. H)Ce™ |
Hence we can choose N and €(Hg, H,) such that g < 1. Therefore, the prognosis is
asymptotically reliable with exponential speed. o
We conclude our considerations with the following remark.
Remark 4.3.27. 1. As an example of set .Z functionals {/;} satisfying (4.3.52),
we can consider generalized modes which are defined by the formulas:
li(u) = (Kej,u), j=1,...,N,

where {e;} is the eigenbasis of the operator A and K is a linear invertible self-
adjoint operator in H such that K and K~' map H g into itself. In this case the
operator R ¢ has the form (4.3.49) with y; = K™ '¢;.

2. Under the conditions of Theorem 4.3.26, we also have that

lim U —u(]ls =0

for the prognostic trajectory given by (4.3.51). Thus, the prognosis is also
reliable in the sense used in HAYDEN/OLSON/TITI [122].

3. The most restrictive hypothesis of Theorem 4.3.26 is the global Lipschitz
property for B. To overcome this restriction for general models we need to
establish additional dissipativity-type properties for every sequence of prognos-
tic values. This requires additional structural properties of the corresponding
system. We demonstrate this approach below in the case of two-dimensional
hydrodynamical systems.
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4.4 Abstract model for 2D hydrodynamical systems

Now we consider another class of parabolic-type models. Namely, we deal with
a certain abstract situation which covers a wide variety of models arising in two-
dimensional hydrodynamics. The main advantage of the scheme developed here is
that we do not use specific functional spaces of particular hydrodynamical models;
we rely on general properties of abstract operators and spaces. We note that a similar
approach to hydrodynamical problems was realized earlier by TEMAM [215, 216].

In contrast with the previous sections, our further considerations are based on the
notion of a weak (variational) solution, demonstrating another approach to dynamics
in parabolic models.

4.4.1 Abstract hypotheses and motivation

As above, let H denote a separable Hilbert space with the norm | - || and the inner
product (.,.). Assume that A is a self-adjoint positive linear operator on H. We set
V = Hipp = 2(AY?) and denote ||v|ly = [|AY?v]| forv € V. Let V! = H_y),
be the dual of V (with respect to (., .)). Thus, we have the triple V. C H C V’. The
duality between u € V and v € V’ is denoted by the same symbol as the inner
product in H.

The goal is to study the following abstract model in H:

u(t) + Au(t) + B(u(t), u(t)) + Ku(t) =f, ”|r=o = uy, 4.4.1)

where f € V'isgivenand B : VxV — V' and K : H — H are continuous
mappings satisfying the following hypotheses (for the basic motivation we refer to
Example 4.4.4 below).

Assumption 4.4.1. ¢« The operator A = A* > 0 has a discrete spectrum (see
Section 4.1).

e B:VxV — V'isabilinear continuous mapping.

¢ The trilinear form b(uy, uy, u3) = (B(uy, uz), uz) possesses the following skew-
symmetric property

(B(ul, I/tz) s M3) = — (B(M], u3) s Mz) for u, eV,i= 1,2,3. (442)

» There exists a Banach (interpolation) space .7 possessing the properties

(i) VC# CH,
(ii) there exists a constant ay > 0 such that

IvlI%, < aollv|| [vlly forany v € V; (4.4.3)
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(iii) there exists a constant C > 0 such that

|(B(uy, uz), us)| < Cllur|le luallv llusll o, foru; €V, i=1,2,3.
(4.4.4)
1. K : H— H is globally Lipschitz.

Remark 4.4.2. (1) The relation in (4.4.3) holds true in the case when J& = H\ .
However, sometimes it can be another type of space. See the examples below.

(2) The relation in (4.4.4) means that B maps .77 x V into #’ C V' and also
J x 2 into V' continuously. In particular, we have that

IB(u1. up)llv = A" *B(ur, wo) | < Cllurll e lualle for uy.uy € .
(4.4.5)
(3) Since the operator A has a discrete spectrum, by Proposition 4.1.6 the space V
is compactly embedded into H. This property implies that V is also compactly
embedded into 7. Indeed, if {u,} is a sequence in V which is weakly
convergent to zero in V, then due to the compactness of the embedding V C H
we have that

lim |lu,|| =0 and sup |ju,|v < oco.
n—>o0 n

Therefore (4.4.3) yields that ||u,|  — 0 as N — oo. This means that the
embedding V C JZ is also compact. Due to (4.4.5) this implies that the

mapping
(I/tl ) I/lz) [ d B(I/ll s I/tz)

is weakly continuous from V x V into V' equipped with the strong topology.
This observation is important for 2D hydrodynamical PDE models in bounded
domains.

]

Exercise 4.4.3. Using relations (4.4.2), (4.4.3), and (4.4.4), show that for every
n > 0 there exists C;; > 0 such that

|(B(ur. uz), u3)| < nlluslly + Cy lur 5 NallZp. wi € V. i=1,2,3,  (4.4.6)
(B(w), w)| < 0wy, + Cy la* ually, w1,u2 €V, (4.4.7)
and also

[(B(u1) — B(uz) , uy — uz)| = [(B(uy — uz), us)| (4.4.8)

< nllur — w2y + Cy lur — wa||* |uall %y, w1, uz € V.

In the last two relations we use the notation B(u) = B(u, u). n
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The main motivation for the conditions in Assumption 4.4.1 is that it covers a
wide class of 2D hydrodynamical models. In this section we mention only one of
them; for others we refer to Section 4.6.

Example 4.4.4 (2D Navier-Stokes equation). Let D be a bounded simply connected
domain of R?. We consider the Navier-Stokes equation with the Dirichlet (no-slip)
boundary conditions:

du—vAu+uVu+Vp=f, divu=0 in D, u=0 on 0D, (449

where u = (u'(x, 1); u*(x, 1)) is the velocity of a fluid, p(x, ¢) is the pressure, x =
(x1;x2) € D, v > 0 is the kinematic viscosity, and f(x) represents external forces.
We also use the notation

uVu = (Z u,~8,~) u and divu = Z 0.

i=12 i=12
Let n denote the outward normal to 0D and let
H={fe[l*D)] :divf =0 in Dand (f, n) = 0 on 3D}

be endowed with the usual L? scalar product. Projecting on the space H of
divergence-free vector fields, problem (4.4.9) can be written in the form (4.4.1)
(with K = 0) in the space H (see, e.g., [215]), where A is the Stokes operator
generated by the bilinear form

2
a(uy,up) = v Z/ Vu’i -Vujz dx, (4.4.10)
j=1 P

with uj,u; € V= [Hé (D)]2 N H. Here H'(D) is the first order Sobolev space on
D;see[1]. Themap B = B: V x V — V' is defined by

2
(B(uy, up) , uz) = /D[ul(x)Vuz(x)] uz(x)dx = Z /];u’l Qub ul dx (4.4.11)

ij=1

for u; € V. Using integration by parts, and Schwarz’s and Young’s inequalities,
one checks that this map B satisfies Assumption 4.4.1 with /% = [L4(D)]2 NH.
The inequality in (4.4.3) is the well-known Ladyzhenskaya inequality (see, e.g.,
CONSTANTIN/FOIAS [78] or TEMAM [215]).

We can also include in (4.4.9) a Coriolis-type force by changing f into f — Ku,
where K(u',u*) = co(—u?,u'), for some constant co. In this case we get (4.4.1)
with K # 0. L]
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4.4.2 Well-posedness

In this section we prove that the problem in (4.4.1) is well-posed in the class of weak
(variational) solutions. To do this, we use the Galerkin method in combination with
compactness® properties discussed in Remark 4.4.2(3). Note also that we cannot
apply the result from Section 4.2. The point is that, from Assumption 4.4.1, the
nonlinearity is locally Lipschitz from JZ” D V = H,, into VI = H_, /2. Thus, in
general, B does not map H,+, into H; for some s € R and « € [0, 1). Hence we
cannot guarantee the main requirement of Section 4.2 concerning the nonlinearity
(cf. Assumption 4.2.1 and Remark 4.2.5).
We start with the notion of a weak solution for the model in (4.4.1).

Definition 4.4.5. A function’ u € L,(0,T;V) is said to be a weak solution
for (4.4.1) on an interval [0, T if the following relation is satisfied:

T T
- /0 (). v (H)di + /0 [(Aut), v(5) + B(®) + K(w(®)., v(0)] dr

T
= (uo, v(0)) +/ (f, v(r))dt (4.4.12)
0
for any function v from the class
Wr ={v e Ly)0,T;V):v, € L,(0,T;H), v(T)=0}.

Here and below we use the notation B(u) = B(u, u).
The following exercise provides another form of relation (4.4.12).

Exercise 4.4.6. Using a test function of the form

T
v(t) = |:/ ¢(I)d{| -v with ¢ € C([0,T]), veV,
show that any weak solution satisfies the relation
(u(t), v) = (up, v) —/0 [(Au(t),v) + (B(u(r)) + K(u(r)) —f,v)] dt  (4.4.13)

for every v € V and for almost all 7 from the interval [0, T. n

Our main result in this section is the following theorem.

In the Appendix we present another approach (based on the monotonicity idea presented in
MENALDI/SRITHARAN [165]) which does not involve discreteness of the spectrum of the operator
A and compactness of embeddings.

7 See the Appendix for the basic definitions and properties of measurable vector functions.
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Theorem 4.4.7 (Well-posedness). Let Assumption 4.4.1 be in force. Then for any
f € V' and uy € H, problem (4.4.1) has a unique weak solution u on any interval
[0, T. This solution (i) belongs to C(0, T; HYNL,(0, T; V), (ii) satisfies the following
energy balance relation:

l t 1 t
SO + [ la@Rde = SO + [ ¢ = Kae).uwyde, ¢ o,
(4.4.14)
(iii) possesses the properties

||u(t)||2+/0 ||u(r)||‘2/dr+/0 lu(@)%dr < Cr(Ifllv. p), 1€[0.T],  (4.4.15)

for every |up|| < p, and

0 =20 + [ 1) - 2ol
smwmrMMW%m{m+@fﬂmeM4 (4.4.16)
0

for every pair of solutions u' () and u*(t), where c; are absolute constants.

Proof. We use the Galerkin method. Let {¢;};>1 be an orthonormal basis® of the
Hilbert space H such that ¢, € Z(A). We denote by uV(t) = ZkN=1 g a
function satisfying the relations

) +Au" +GN), @) =0, k=1,....N, and u"|_ = Pyup € H, (44.17)

where Py is the orthogonal projector in H on Hy = Span{¢;,--- ,¢ny}and G : V —
V' is defined by

G(u) =B(u,u) + Ku)—f, VYuelV.
One can see that Galerkin approximate solutions 1" exist at least locally. Moreover,
multiplying the first relation (4.4.17) by g (¢) after summation we obtain the balance

relation in (4.4.14) with " instead of u on every existence interval [0, T]. This leads
to the following a priori estimate:

t
nWmW+fnww%wsawmxremn
0

which, due to (4.4.3), yields

8We can use the eigenbasis {e;} of A. However, this is not necessary.
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t t
1 () P+ / 1 () 2+ / W@ dr < Cr(fou). 1€ [0.T].  (44.18)
0 0
From (4.4.17) using (4.4.5) we obtain
W@y = A2 @) < ol @y + el @ Py + o

Thus, we arrive at the following additional a priori estimate:

T
/ [ul ()3 dt < Cr(f, uo). (4.4.19)
0

The estimates in (4.4.18) and (4.4.19) imply the global existence of approximate
solutions and also the existence of the function

u(f) € Loo(0, T; HYNL,(0, T; V)NL4(0, T; ) with u, € L,(0,T; V') (4.4.20)

such that along a subsequence we have
(i) u" — uweakly in L?>(0, T; V) and in L*(0, T; 2#), *-weakly in Lo (0, T; H);
(i) uV — u, weakly in L*(0, T; V).

By Proposition A.3.3 from the Appendix, u(r) € C([0, T]; H). Moreover, since the
embedding V C 7 is compact, using the Aubin-Dubinskii-Lions theorem (see
Section A.3.3 in the Appendix) we conclude that

T
max () = u@) + [ (0~ u(@)ede > 0. N > .
s 0

Using (4.4.5) we also have that

T T
/0 IB@™ (2))=Bu(x)||*) dv < C /0 I @11*) ¥ (x) — u(@) |5 dx

2/3

1/3
<c [ [ ' ||uN<r)||,‘;fdr} [ | o) - u(r)nifdr] ~o,

as N — oo. All these convergences stated above allow us to make the limit transition
N — oo in the integral form of (4.4.17) and show that u(r) is a weak solution to
problem (4.4.1) satisfying (4.4.15).

It follows from (4.4.20) that u satisfies (4.4.1) as an equality in V’. This implies
the balance relation in (4.4.14) and also allows us to prove (4.4.16). Indeed, the
function u(f) = u'(f) — u?(¢) satisfies the equation

u, + Au + B(ul (1), u' (t)) — B(uz(t), uz(t)) + K(u' (1)) — K(u?(r)) = 0.
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Therefore, multiplying® the equation by u(f) and relying on (4.4.8) with n = 1/2,
one can see that

d
Ellu(t)ll2 + @7 < 2(R1 + Cripallu' 0)]15) llu(@)])*.

Thus, the standard argument via Gronwall’s lemma yields (4.4.16).
Uniqueness of solutions to (4.4.1) follows from (4.4.16). O

4.4.3 Generation of C' dynamical system

By Theorem 4.4.7 problem (4.4.1) generates a dynamical system (H,S,) with
evolution operator defined by weak solutions according to the formula

S;uo = u(t), where u(r) solves (4.4.1).
Our goal in this section is to show that the semiflow S, is C! with respect to initial

data (the corresponding definitions can be found in Section A.5 in the Appendix).

Theorem 4.4.8. Let Assumption 4.4.1 be in force. Assume for simplicity that K is
a linear operator. Then the semiflow S, generated by (4.4.1) is C" in the sense that
u > S;u has a Fréchet derivative'® S/[u] for each u € H which depends continuously
on u in the operator norm. This derivative S)[u] is a linear bounded mapping on
H and can be calculated by the formula S[ulwg = w(t), where w(t) is a weak
(variational) solution to the following linear nonautonomous problem:

w, + Aw + B(w,u(t)) + B(u(t),w) + Kw =0, W|t=0 = wp, 4.4.21)

with u(t) = Su.
The main ingredient in the proof of this theorem is the following assertion.

Lemma 4.4.9. Let the hypotheses of Theorem 4.4.8 be in force. Then for every
u(t) € C(0,T;H) N Ly(0,T;V) and wy € H, problem (4.4.21) has a unique weak
solution w on the interval [0, T]. This solution possesses the property

w(t) € C(0,T; H) N L(0,T;V)

and satisfies the following estimate:

This multiplication can be justified via Proposition A.3.3.

10See details in the Appendix, Section A.5.
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()2 + /0 Iw@)ldr < [w(O)]2 exp {2: 1K s + /0 ||u(r>||zvdr§
(4.4.22)

for all t € [0,T). If w(t) and w(t) are solutions to (4.4.21) with different u(t) and
u(t), then

Iw(e) — )| + /0 Iw(e) — w0 2de

t 1/2
< aetnill? | [ Juo -a@ltar | L @z
0
where
t
et = exp {1 [K o + <2 [ [I(o) + 013 ]

Proof. To obtain the result we can use the Galerkin method, and for this we need
some a priori estimates. We obtain them at the formal level. They can be justified in
the standard way (see, e.g., LIONS [151]). Multiplying (4.4.21) by w(¢) in H yields

1d
EEIIWII2 + Wiy + BOw, u(1). w) + (Kw, w) = 0.

Using (4.4.4) and the interpolation inequality in (4.4.3), one can see that

d
EIIWII2 + Iwlly < 2[IK s + ctlu@ 7] 1wl

This implies (4.4.22) and provides an appropriate a priori estimate.
To establish (4.4.23) we note that z = w — w satisfies the equation

2+ Az + B(z, u(t)) + B(u(?), z) + B(w, u(t) — u(t)) + B(u(t) — u(t), w) + Kz = 0.

Using (4.4.4) we obtain

d - -
EIIZII2 + 12017 < 2[IK Nl + crlle@ 5] 1217 + c2llw 3 lu) — a(@)11%-

Therefore, using Gronwall’s lemma and also the estimate in (4.4.22) for w, we can
obtain (4.4.23). m]

To conclude the proof of Theorem 4.4.8, we follow the standard scheme (see,
e.g., BABIN/VISHIK [9]). Let w(t) = w(t; ug, wy) solve (4.4.21) with u(t) = S,u.
Then the function
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2(t) = Si[uo + wo] — Siuo] —w(?)
satisfies the equation
uz+Az+F(@) =0 (4.4.24)
with
F(t) = B(u, ) — B(u,u) — B(u, w) — B(w,u) + Kz,

where u(t) = S;[uo + wo] and u(t) = S;[uo).
One can see that F(¢) can be written in the form

F = B(z.it) + B(u.2) + B(w.,u — u) + Kz.
Therefore, using the skew symmetry of B, we have that
(F.z) = (B(z.1).2) + (B(w.w).2) + (Kz.2).
Hence by (4.4.3) and (4.4.4) we obtain that
1 _
|(F.2) = 5 [zl + co(t + I@F) 2] + erllwil’, ]

for some constants ¢y, ¢; > 0. Therefore, multiplying (4.4.24) by z we obtain

d -
EIIZII2 + Iz < co(1 + Nallf)llzl® + eillwlls,.

Thus, Gronwall’s lemma yields

t t t
IO + [ Iz ldr < erexp {co N ||a||2v)dr} | 1wt
Therefore, by the estimate in (4.4.15) and Lemma 4.4.9 we obtain that
115, [0 + wol — Si[uo] — w(t: g, wo)|I> < Cr(T)[[woll*

for every t € [0, T] and |jug + woll, [[woll < R. Thus w(z; ug, wo) = S,[uo]wo. This
implies the conclusion of Theorem 4.4.8.
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4.5 Long-time dynamics in 2D hydrodynamical systems

In this section we study asymptotic properties of the system (H,S;) generated
by problem (4.4.1). We follow the schemes and rely on the results presented in
Chapters 2 and 3.

4.5.1 Dissipativity

In the following assertion we collect several preliminary dissipativity properties of
the system.

Proposition 4.5.1 (Primitive dissipativity estimates). Ler Assumption 4.4.1 be in
force. Assume that K is skew-symmetric; i.e., (Ku,u) = 0 for all u € H. Let A, be
the minimal eigenvalue of the operator A. Then for any solution u(t) to (4.4.1) we
have

2
JuOI < JuolPe™" + @ (1=, V=0, 451

Moreover,

t+1 1
lu(e + D) +/ lu@)Ivde < Juol*e™ " + [IF13, (1 + —) , Y120.
t

Al
4.5.2)
and also

t+1 1 2
[ otar < [wlte s (14 5)] L vizo ass
t

Proof. The standard multiplication by u gives that

1d
EEIIMII2 + (Au,u) = (f,u). (4.5.4)
Since |(f, u)| < (|[f||%,, + |lull3)/2, this implies that

d
@I + Al < W1

Applying a Gronwall-type argument we have (4.5.1). Similarly, after integration
from (4.5.4), we have that

t+1
lur + 11? +/ lu(@) 5 dr < lu@|> + If 1
t

Thus, (4.5.2) follows from (4.5.1).
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To prove (4.5.3) we use two previous estimates and also the interpolation
inequality in (4.4.3). o

Remark 4.5.2 (Absorbing properties). Proposition 4.5.1 implies the following
absorbing properties: for every p > 0 there exists a time #, such that we have

+1 1
||u(t+1)||2+/ lu(z)||3dr < Rj% = 1+|f]3 (1 + /\_1) . Vt>1t, (455)
t

and
t+1
/ lu(o)||%pdt < ayRi, V1> 1, (4.5.6)
t

for all uy with the property that |ug|| < p. In particular, the system (H, S;) generated
by (4.4.1) is dissipative; see Definition 2.1.1. (]

4.5.2 Determining functionals

The dissipativity properties established above make it possible to obtain the
existence of a finite number of (asymptotically) determining functionals (for the
definitions we refer to Section 3.3), even without any compactness assumptions.

Theorem 4.5.3. Assume that the hypotheses of Proposition 4.5.1 hold. Let u, and
uy be two solutions to problem (4.4.1) with different initial data. Let £ = {l; : i =

1,...,N} be a set of the linear continuous functionals on V such that
tlim () —up()) =0, j=12,...,N. (4.5.7)
—>00

Assume that one of the solutions (say, u,) possesses the property

t+1
lim sup / w1 ()| %pdr < RL. (4.5.8)
t

t—>+00

Then the set £ is asymptotically determining for these two solutions in the sense
that ||u;(t) — up(t)|| — 0 as t — oo, provided the completeness defect € » =
€(V, H) satisfies the condition

ey < ex = (2R +2C1oRY) ™, (45.9)

where Ry is the Lipschitz constant of K and C/, is the constant in (4.4.7) with
n=1/2.
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Proof. Letu = u; — u,. It follows from (4.4.8) with n = 1/2 that

d
EIIMII2 + llully < 2(Ri + Cupallu ) llull?, (4.5.10)

where R and C)/, are the same as in the statement.
By Proposition 3.3.4,

1
| 2u* > m”””2 —CysNou), Ny(u) = mjaxllj(u)|,

for every § > 0. Thus, we obtain

1

d
W+ | e =20+ Gl O1) |1l < a2,
<z

(4.5.11)
This allows us to complete the proof. Indeed, it follows from (4.5.11) that

lu()l* + [ V(o) - lu(@)|*dr < |u)|* + Ces / Ng(u(r))dr  (4.5.12)

holds for all t > s > 0, where

V(1) = — 2(R1 + C1/2||M1(t)”if)'

(1+8)e%

Under the condition (4.5.9) we have that

+1
Voo = liminf/ ¥(t)dr > —2(Ri + Cl/zRi) > 0.
—>00 t

(1+8)€%

for some § > 0. Thus, we can apply Theorem 3.3.13 to obtain the conclusion. o

4.5.3 Compactness of the semiflow and a global attractor

The proof of the existence of global attractors requires some compactness properties
of semiflow, and for this we need to impose additional requirements concerning the
system. These conditions are motivated by the hydrodynamical systems considered
in Section 4.6.

Proposition 4.5.4. In addition to basic Assumption 4.4.1, we assume that
Hy4 C FC and |u| e < C||u||1/4, u € Hyyy. 4.5.13)

Let f € H_y4. Then Hy 4 is invariant with respect to the semiflow S;. Moreover, for
every T > 0 and R > 0 there exists a constant C(T, R) such that
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1
474 Su0]P < — C(TR) orall 1€ 0.7), (4.5.14)

provided |up| < R.

Remark 4.5.5. The condition in (4.5.13) is true in the case of the 2D Navier-Stokes
equations (see Example 4.4.4). The point is that in this case we have

ZAVY C [LD)] nH = . (4.5.15)
This fact relies on space interpolation theory and certain embedding theorems (see,

e.g., TRIEBEL [220]). Some self-contained details concerning (4.5.15) can be found
in CONSTANTIN/FOIAS [78]. n

Proof. The following argument can be justified on the Galerkin approximations.
Multiplying (4.4.1) by A'/?u we obtain

1d
5 gAYl + 1Al 4 (B(w), A + (K () = f,A"2u) = 0.
By (4.4.4) and (4.5.13) we have

|Bu), A2u)| < Cllulle lully 1A 2ull e < CIAY *ull lull Jully.

By interpolation, ||ul|y < ||AY*u|'/?||A3/*u||'/?. Thus,

|(B(u), A" ?u)| < ~[|AY *ul* + CIA*u|?||ull%,.

L
4
We also have that
1
(K@) = f.4 2] = 2147 ul? + G AT ul? + G+ 1112, 0),

Consequently,

d
EI|A1/4MII2+ A ull> < er [1+ lulbe JIAY ull® + o2 (1 + IF12, 0. (45.16)
Introducing

t
W) = A + / 1A u(@) |2 d.
0

we can rewrite (4.5.16) as
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d
E‘I’(f) <o [T+ [u@t ] ¥ @) + c2(1 + [IF124,4)-

Thus, Gronwall’s lemma yields

t
1A ()P + / 1A u(@) |2 de
0

t
< [+ ot -+ 17120 exp e[+ [t
0

This implies that Hj /4 is forward invariant with respect to S;.
To obtain the smoothening property in (4.5.14), we multiply (4.5.16) by ¢. This
allows us to show that the function ¥ () := #||A/*u()||? satisfies the relation

d
ZrO=a [1+ el ] ¥ @) + 1A u@? + a1+ £, )-

Applying Gronwall’s lemma we obtain that

t
t| A u() || < h(t) exp {01 [H/ IIMII‘Ede}} ,
0
where

t
W) =e(+ 1120 + /0 AV u(@)|? dr

T 1/2
<1+ 110+ Vimas Ll | [ 14 uoar]

Here above we have used the Holder inequality and also the interpolation relation
lAY4u||> < ||lu||||A/?u||. Thus, by (4.4.15) we obtain that

h(t) < C(T.f,R)\/t, te(0,T].

This implies (4.5.14). ]

Another possibility to get the smoothening property is to impose additional hypothe-
ses concerning the nonlinearity B (again, the condition below is motivated by the 2D
Navier-Stokes system; see, e.g., TEMAM [215]).

Proposition 4.5.6. In addition to basic Assumption 4.4.1, we assume that f € H
and B : V x 9(A) — H and also that there exists a constant C > 0 such that

I1B(ur, un)|| < Cllur L Nually/ | Aua|| V2, forui € V, wy € D(A).  (45.17)
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Then H,, is invariant with respect to semiflow S; and for every T > 0 and R > 0
there exists a constant C(T, R) such that

1
A28 0] < - C(T,R) forall t € (0,T], (4.5.18)

provided |ug| < R.

Proof. As in Proposition 4.5.4, our argument is formal. For justification we can use
the Galerkin approximations.
Multiplying (4.4.1) by Au and using (4.5.17), we obtain that

d
d—tllAl/zull2 +llAul® < e [1+ ul b IAY2ull® + e (1 + 1. (4.5.19)

Therefore, the same argument as in Proposition 4.5.4 makes it possible to show that
H\; is forward invariant with respect to S;.

Multiplying (4.5.19) by ¢, we obtain that the function ¢(r) = 1]|A"?u(r)|?
satisfies the relation

d
2P0 =a [1+ llullb ] ¢ @) + A 2u@? + ear (1 + IF]).

Gronwall’s lemma yields

||A1/2u(t)||2 < [_lg(t) exp {cl [l + /t ||u(r)||ifdri|§ ,
0
where
g0 =+ 1) + A 2u() .
0

Relation (4.4.15) yields g(t) < C(T,f,R) fort € (0, T]. Thus (4.5.18) follows. o

Now we are in position to formulate hypotheses which guarantee the existence of a
compact global attractor for the system considered.

Assumption 4.5.7. In addition to the requirements in Assumption 4.4.1, we assume
that

e feHand (K(u),u) =0foreveryu eV,
* one of the assumptions in (4.5.13) or in (4.5.17) holds.

Under this assumption we can apply either Proposition 4.5.4 or Proposition 4.5.6
and show that there exists Ry such that the set

B={uecH: |[AY*u()| < R}
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is an absorbing set for the system (H,S;). Since A has a discrete spectrum and,
by Proposition 4.1.6, Hj,4 is compactly embedded into H, the set B is compact.
Thus, the system (H, S;) is compact and from Theorem 2.3.5 we have the following
assertion.

Theorem 4.5.8 (Global attractor). Let Assumption 4.5.7 be in force. Then the
system (H, S;) generated by (4.4.1) has a compact global attractor. This attractor is
a bounded set in Hyy4 (in Hyj» when (4.5.17) holds).

4.5.4 Squeezing, quasi-stability, and finite-dimensional
attractors

In this section we establish the Ladyzhenskaya squeezing property and also
quasi-stability for 2D hydrodynamical-type systems. As was already mentioned in
Section 4.3.3, the squeezing property demonstrates a strong form of quasi-stability.
In principle this property allows us to study the long-time dynamics of the system
directly (as was done in LADYZHENSKAYA [142], for instance). However, the
quasi-stability method incorporates this class of models in a more general unified
framework and provides useful tools for the further studies.

Proposition 4.5.9 (Ladyzhenskaya squeezing property). Let Assumption 4.5.7
be in force and Qy = I — Py, where Py is the orthoprojector onto Span {e1, . .., ey}
in H, where {e;} is the eigenbasis of the operator A. Then for every 0 < g < 1,
0<a<b<+oo, andR > 0 there exists Ny = N(a, b, R, q) such that
ION[Su — Sus]ll < gllu —usll, Vte€la,b], YN > N, (4.5.20)

for any u and uy from the set 9, where

9 = {u €Hyy @ ||Siulliya <R forallt €0, b]}
in the case when (4.5.13) holds and

9 = {u € Hipp o ||Siullij2 <R forallt € [O,b]}

when (4.5.17) is valid.

Proof. Let u(t) = S;u and us(t) = Siux. Then w(t) = u(r) — u«(¢) satisfies the
equation

w; + Aw + B(w, u) + B(ux,w) + K(u) — K(ux) = 0. (4.5.21)
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Using (4.4.4) and (4.4.3) we have that

|(Bw. u), Ovw)| <CllwllellullllQvwlilv < ell@vwlly + Cellwl, llull?,
<e(|OxwIT + [IWlIF) + Cellwl(lull’,
for every ¢ > 0, and, similarly,
|(B(ux, w), Ovw)| < (|QnwII5 + [WIF) + Cellwl® lluxll -

Therefore, multiplying (4.5.21) by QOyw we obtain that

d
E”QNWHZ + 1A 20onwl* < ellwlly + CelwlP(lullt, + lluxl%,) + Cllwl?,
(4.5.22)
for every ¢ > 0. Thus, for u, u. € 2 we have that

SHw I + Al @l < ellwl + CR P (4523)
for every ¢ > 0. Therefore,
[oNw(®)[I*> <[|Qnw(0)[|>e ¥+
e [ol Iw(@)llye v+ dr + C.(R) /(;t [w(z)||Pe™ ¥ +1070) dr

! C:(R
<l 4 e [ @l de+ S mas wo
0

N+1 €[0.4]

Using (4.4.16) we obtain that

low®lF < [t (o4 2D ) e | o2
N+1

for every ¢ > 0. This implies (4.5.20). o
In the same way as in Section 4.3.3 we can prove quasi-stability.

Proposition 4.5.10 (Quasi-stability). Let Assumption 4.5.7 be in force. Then for
every 0 < g < 1,0 < a <b < 400, and a forward invariant set B which is
bounded in Hy ;4 (in Hy > if (4.5.17) holds), there exists N = N(a, b, q, ) such that

|Siu— Spusc|| < ql|Srut— Syutse|| + || Pn[Siu—Sius]ll, Yt ela+r,b+r], (4.524)

forall u,u, € % and r > 0. This means that the system (H, S,) is quasi-stable on %
at every time ty. Moreover, (H, S;) satisfies Assumption 3.4.9 with arbitrary t* > 0.
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Proof. Exactly as in the proof of Proposition 4.3.11 (see also Exercise 4.3.12), we
can see that (4.5.24) follows from (4.5.20) and Assumption 3.4.9 holds with X = H,
ny = 0,and ny = ||Py[-]|. =

Similar to the techniques in Section 4.3.4, we can derive from Propositions 4.5.9
and 4.5.10 several conclusions concerning global and exponential attractors of
(H,S,).

The following assertion is based on Theorem 3.4.11.

Theorem 4.5.11 (Global and exponential attractor). Ler Assumption 4.5.7 be in
force. Then the global attractor 2 of the system (H,S;) generated by (4.4.1) is a
bounded set in Hy 4 (in H, 2 if (4.5.17) holds) and possesses the properties:

» A has finite fractal dimension dim;2, in H.
e For any full trajectory {u(t) : t € R} from the attractor, u(t) is an absolutely
continuous function with values in H and

sup {lu @) + 1A 2u@)| + |Au(r) + Bu(@)|} < C. (4.5.25)

Moreover, the system (H, S;) possesses a fractal exponential attractor U, (whose
dimension is finite in the phase space H).

The bounds for the dimensions of 2 and 2., can be derived from Theorems 3.4.11
and 3.2.3.

Proof. The existence of a global attractor 2 and the basic smoothness was proved
in Theorem 4.5.8.

By Proposition 4.5.10 the system satisfies Assumption 3.4.9 on every forward
invariant set which is bounded in Hi/4 (or in Hjs4). Thus, we can apply Theo-
rem 3.4.11 to conclude finite dimensionality of the global attractor.

To prove the claimed smoothness of the attractor, we note that it follows
from (4.5.24) that

lut + 1) —u@| < glluc +h—=1) —ult = D] + [[Pyu( + h) —u@]]]

for every t € R and for any full trajectory {u(t) : ¢ € R} from the attractor. One
can see that

t+h
[Pyl + h) —u@]]| < [ I1Py[B(u(z)) + K(u(r)) —f1ll dv < Cy|hl.

Substituting this in the previous formula, we obtain that

(1—g)sup lu(t + h) — u(t)|| < Cx|hl.
te

After the limit transition 2 — 0 this yields (4.5.25).
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To prove the existence of the fractal exponential attractors 2,y,, we use the
second part of Theorem 3.4.11. For this we need to check the Holder continuity
property (3.4.10) on some forward invariant absorbing set for (H,S;). On an
absorbing set in H/4 (the case when (4.5.13) is valid) or in Hy/, (if (4.5.17) holds)
we definitely have that ||u;(f)||—3/4 is bounded. Thus, interpolation gives that u(f) is
a Holder function in H. o

Remark 4.5.12 (Dimension via volume contraction method). Since the semiflow
S, is C! in the case considered with linear operator K, we can use the volume
contraction method presented in Section 3.1.3. This method is based on a Liouville-
type formula for the limiting volume contraction coefficients I1; given by (3.1.43)
and constructed with the help of the evolution V = ;. Namely (see, e.g., one
of the monographs BABIN/VISHIK [9], CHEPYZHOV/VISHIK [31], ROBINSON
[195, 196], TEMAM [216]), using the structure of the derivative S;[u] for S,u given
in Theorem 4.4.8, one can show that

1 1
I; < exp {lim sup sup 7/ Trj L(uo, r)dr§ ,
0

t—=>00  upeU
where the operator L(uy, t) is given by
L(up, t)w = —Aw — B(u(t), w) — B(w, u(t)) — Kw, w e Z(A),

with u(f) = S;up. The m-dimensional trace of the linear operator L is defined by the
relation

Q is orthoprojector in H,
Tr, L = Tr (LO) : ,
; SUP{ "D oh c g). dimQ =m
Let

1 t
¢; = limsup sup —/ Trj L(ug, 7)dt.
0

t—=>00  upeU

It follows from the results in Section 3.1.3 that if jj is the smallest number such that
gj, < 0and gj,—; > 0, then

dimg 2 < jo.

In the concrete 2D hydrodynamical models this formula usually leads to the best
possible estimate for the Hausdorff dimension (see, e.g., BABIN/VISHIK [9] and
TEMAM [216] in the case of the 2D Navier-Stokes equations). However, at the
abstract level considered, we can perform the following calculations only.
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It follows from the basic Assumption 4.4.1 and the properties of the trace
operation that

1< ,
Tr; (L(uo, 7) < —3 ;)&k +j[er + eallu@)lly]

for some constants ¢; and c¢;. Therefore, using (4.5.2) one can see that

J

1 . 1
qi < _EZ K+ |:61 + ollf I3 (1 + /\_1):|

k=1

Since Ay, — 400 as k — o0, we can conclude that there exists jy such that
gj, < 0. To obtain a more explicit form of bounds for jy, we need additional
information about the behavior of the spectrum A; when &k — oo and also more
sophisticated estimates for the trace of linearization of the nonlinear term (see
the corresponding calculations BABIN/VISHIK in [9], CHEPYZHOV/VISHIK [31],
TEMAM [216]). Thus, as we already mentioned, the optimal estimates for dimension
require more detailed information and involve model-dependent techniques. =

4.5.5 Data assimilation

The main goal in this section'' is to demonstrate some additional properties
of dynamics which directly follow from the Ladyzhenskaya squeezing property.
We deal with a (hydrodynamical) data assimilation problem which is important
from the point of view of weather prediction (see, e.g., KALNAY [129] and also
HAYDEN/OLSON/TITI [122] where the 2D Navier-Stokes equations are considered).

As in Section 4.3.7, we consider the discrete data assimilation problem in the
sense due to HAYDEN/OLSON/TITI [122]. We suppose that Assumption 4.5.7 is
valid with the compactness condition (4.5.13). Instead of (4.5.13) we can also
assume (4.5.17); however, the argument is different in the latter case at the final
stage.

Let £ ={lj:j=1,...,N} be afinite family of functionals on H;,, and R ¢ be
a Lagrange interpolation operator related to .Z of the form

N
Ryv =Y "L()y;. YveH, (4.5.26)
j=1
where {1/;} is a finite set of elements from H|, such that [y () = 8.
For a given solution U(t) = S,Uj to (4.4.1) with initial data Uy, we consider the
sequence {1y, = Ry U(t,)} of observation values and define prognostic values at
time ¢, for U(¢) by the formula

"'This section can be omitted at the first reading.



208 4 Abstract Parabolic Problems

up = (1 —Re)S—t_jn—1 + 1y, n=12,..., (4.5.27)

where i is an initial guess of the reference solution Uy (see [122]). We recall (see
Definition 4.3.25) that the prognosis is asymptotically reliable at a sequence of times
t, if

|U(t,) — up]] = 0 as n — +o0.

We are looking for conditions on R and f, which guarantee that the prognosis
based on observations .2 = {l; : 1 < j < N} is asymptotically reliable. To obtain
results we follow the same line of argument as in CHUESHOV [44]. We also note
that the approach here is different from the method applied in Section 4.3.7 in the
case of globally Lipschitz nonlinearities.

We assume that 0 < a < f,41 —t, < b < 400 for some positive a and b.

The following assertion gives us a dissipativity property for prognostic values,
which is important for our application of the Ladyzhenskaya squeezing property.

Lemma 4.5.13. Let Assumption 4.5.7 be valid. Assume that |U(t)||1/4 < x for all
t >ty and

IR |lg—sn < co and |1 — Ry ||gsy < ¢y with ¢y < PRLES
Then there exists ny. > 0 such that

lunll < 1+ 0« forall n> ny, (4.5.28)
where

Qx = (Cl ”f”V’)‘l_]/z + Co)n_l/“%)(l - cle_’““/z)_l.

If we assume in addition that ||1 — R ||n, y>m,,, < c2, then there exists C(a, b, 0x)
such that

lunllija <0 =c2C(a,b,04) + (1 +c2)x forall n>me =14+n.. (45.29)

Proof. One can see from Proposition 4.5.1 that

1/2 1/4

liall < cre™ s || + i lfllv AT 4 oy e, n=1,2, .
This implies that
lunll < gilluoll + 05, n=1,2,...

where ¢« = cje~*1%/2. This yields (4.5.28).
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To prove (4.5.29) we note that
lunllija < c2llSs,—te ttn—1ll1/s + (1 +c2)e, n=1,2,...

Hence (4.5.29) follows from (4.5.28) and (4.5.14) or (4.5.18). O
In the case of (spectral) modes we have the following assertion.

Corollary 4.5.14 (Modes). We take the functionals I, (v) = (v,e) and thus the
interpolation operator R ¢ in (4.5.27) is given by (4.3.53), i.e.,

N
Ryv =) (e.v)ej. YveH, (4.5.30)
j=1

with some N. Here {e;} is the eigenbasis of A. Then there exist positive constants
C(\fllv, %, a, b) and my such that

lunlliza <0 = CUlfllvr, 2, a,b) forall n> my.

Proof. Inthiscasecyo =c; =c¢, = 1. ]

Now we are in position to obtain the main results. We start with the case of
modes.

Theorem 4.5.15 (Modes). Let Assumption 4.5.7 be valid with the compactness
condition (4.5.13). Then there exists Ny such that the prognosis (4.5.27) is asymp-
totically reliable with R  given by (4.5.30) with arbitrary N > Ni.

Proof. We obviously have that
U(tn) —Up = (1 - Ry)[S,n,,n_] U(tnfl) - S,n,,”_lun,l], Vn=>1. (4.5.31)

In the case of modes we have that I — R ¢ = Qp. Therefore, using Corollary 4.5.14,
by Proposition 4.5.9 we can choose N, such that

”U(tn) - un” = q”U(tn—l) — Up—1 ”7 n = My,

with ¢ < 1. This implies that
|U(t,) —u,|| > 0 as n — 400

with exponential speed. Thus, the prognosis is asymptotically reliable. o
The next result deals with general functionals.

Theorem 4.5.16. Let Assumption 4.5.7 be in force with the compactness condition
(4.5.13). Assume that £ is a finite family of functionals on H and there is a
Lagrange interpolation operator R ¢ possessing the properties:
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1 —=Rzllms>n < c1 and |1 =R |nypom,,, < 2

with the constants c¢| and ¢, independent of £ such that ¢; < M2 Then there
exists €x > 0 such that under the condition € »(H,H_s5) < €4« for some 0 < § <
1/4 the prognosis in (4.5.27) is asymptotically reliable for every uy € H. Here
€ (H, H_g) denotes the corresponding completeness defect for the set £ .

Proof. Proposition 4.5.10 and Lemma 4.5.13 imply that
1S4, U(tam1) — Sa,un—1]l
< gn|U(t=1) = tpr || + A PNLS 4, Utn—1) — Sa,tn—1]ll -5 (4.5.32)

for n > my with A, = 1, —t,—, where gy < 1 can be chosen as small as we need at
the expense of N. Now we apply the following lemma (its proof will be given later).

Lemma 4.5.17. Let u' (1) = Su' and u?(t) = Su* be such that ||u'(1)||1/a < x for
allt € [0, T)and 0 < § < 1/4. Then

AT S = Su]l| < Crull Al — ]| for ¢ €[0.7].
This lemma implies that
1S4, U(tn—1) = Sa,un—1l-5 = C(b. DNU(tn—1) — ttn—1 -5, 1 = ms.
Since [;(U(ty,—1)) = lj(un—1), this gives
1S4, U(tn—1) — Sa,un—1ll-s < €2(H,H-5)C(b, Q) |U(tn—1) — tn—11l, n = ms.
Thus (4.5.31) and (4.5.32) yield
1U () — unll = gIlUEn—1) — ttn1 |
for n > my, where
G =1 = Rellmsu [av + Ayex(H, H-5)C(b, 0)].

We can choose N and € (H, H_s) such that g < 1. Therefore, the prognosis is
asymptotically reliable with exponential speed. o

Remark 4.5.18. The number of functionals which provides an asymptotically
reliable prognosis according to Theorems 4.5.15 and 4.5.16 is finite. However, the
estimates for this number which follow from the statement of the theorem are not
optimal and not constructive. The derivation of optimal bounds for the number
requires more careful analysis of constants related to dissipativity and squeezing
properties of individual trajectories. We refer to HAYDEN/OLSON/TITI [122] for a
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more constructive approach based on the multipliers technique and developed in the
case of the 2D Navier-Stokes equations for the reference solution from the global
attractor. L]

Proof of Lemma 4.5.17. The function u(f) = u'(f) — u?(¢) satisfies the equation
u; + Au + B(ul(t), u](t)) — B(uz(t), uz(t)) + K(u' (1) — K(u?(r)) = 0.

This allows us to multiply the equation by A=2%u(f) and to show that

S LI + 14 uto))?

< |B(u,u?). A" ®u)| + [B(u', u), A% u)| + Cllul|[|A™>ul|>.
It follows from (4.4.4) that
B, u?), A w)| + |B(u',u), A"*u)| < C(Ju' Il + 11 ) luell o 1A~
Using the fact that [|u|| »» < C||u||1/4 and the interpolation we conclude that

laell o A=) < CAT ul] 2| AY2Pu] 2.
This implies
%Ilt‘\_ﬁu(t)ll2 < C(L+ [l 5 + 15 1A ul .

which allows us to make the conclusion via Gronwall’s lemma.

4.6 Hydrodynamical applications

In this section we discuss several important hydrodynamical models for which we
can apply the theory we have developed.

4.6.1 2D magnetohydrodynamic equations

We consider magnetohydrodynamic (MHD) equations for a viscous incompressible
resistive fluid in a 2D bounded domain D, which have the form (see, e.g., MOREAU
[167]):
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i — vy A+ uVu = —V (p n §|b|2) 4 sbVb +f, 4.6.1)
8.b — v, Ab + uVb = bVu + g, (4.6.2)
diviu =0, divb =0, 4.6.3)

where u = (u'(x,1);u*(x,7)) and b = (b'(x,1);b*(x,1)) denote velocity and
magnetic fields, p(x, f) is a scalar pressure, and x = (x;;x;) € D. We recall that
the term v Vw for different 2D fields v and w has the form

vVw = (Z viai) w for v = (v';v?), w= (w';n?).

i=12
We consider the following boundary conditions:
u=0, (b,n)=0, 09,b*—0d,b'=0 on D. (4.6.4)

In the equations above v, is the kinematic viscosity, v, is the magnetic diffusivity
(which is determined from magnetic permeability and conductivity of the fluid),
the positive parameter s is defined by the relation s = Ha?v,v,, where Ha is
the Hartmann number, and »n is the outer normal vector. The given functions
f =f(x,t) and g = g(x, t) represent external volume forces and the curl of external
current applied to the fluid. We refer to LADYZHENSKAYA/SOLONNIKOV [143],
DUVAUT/LIONS [90], and SERMANGE/TEMAM[205] for the mathematical theory
for the MHD equations.

The above equations are a particular case of equation (4.4.1) for some choice of
spaces and operators which satisfy Assumption 4.4.1. To see this, we first note that
without loss of generality we can assume that s = 1 in (4.6.1) (indeed, if s # 1
we can introduce a new magnetic field b := /sb and rescale the curl of the current
g := +/sg). For the velocity part of the MHD equations, we use the same spaces as
in Example 4.4.4. We denote them as H(j) and V:

Hay = {f € [L2(D)]’ : divf = 0 in D and(f, n) = 0 ondD}
endowed with the usual L? scalar product and
2
Vi = [Hy(D)]" N Hay.
We denote by A the Stokes operator on Hjy generated by the bilinear form defined
by (4.4.10) with v = v.
For the magnetic part we set Hp) = H(jy and V, = [H! (D)]2 N H() and define

another Stokes operator A, as an unbounded operator on H(y generated by the
form (4.4.10) with v = v, considered on the space V5.
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We can write (4.6.1)—(4.6.4) in the form (4.4.1) in the space H = H() X H()
withA = A XAy, K = 0. We alsoset V = V| x V, and define B: V x V — V' by
the relation

(B(z1,22), 23) =(B(u1, ), us) — (B(by, ba), us)
+ (B(u1. b3), b3) — (B(by. uz). b3)
for z; = (u;;b;)) € V = Vy x V,, where B is given by (4.4.11). The conditions in

Assumption 4.4.1 are satisfied with 77 = ( [L4 (D)]2 X [L4(D)]2) N H. In the same
way as in Remark 4.5.5 we can conclude that (4.5.13) holds for this case.

4.6.2 2D Boussinesq model for the Bénard convection

The next example is the following coupled system of Navier-Stokes and heat
equations from the Bénard convection problem (see, e.g., FOIAS/MANLEY/TEMAM
[103] and the references therein). Let D = (0, ) x (0, 1) be a rectangular domain in
the vertical plane, {e;, ¢;} the standard basis in R2, and x = (xl;xz) an element of
R2. Denote by p(x, ) the pressure field, f, g external forces, u = (u'(x, 1); u?(x, t))
the velocity field, and 8 = 0(x,r) the temperature field satisfying the following
system:

ou +uVu—vAu+ Vp = Oe, +f, divu =0, (4.6.5)

3,0 +uVe —u? —kAO =g, (4.6.6)
with boundary conditions

u=0, 6=0on x>*=0andx*>=1,

u,p,0,u,, 6. are periodic in x' with period 1.2

Here v is the kinematic viscosity, and « is the thermal diffusion coefficient. Let
Hay = {u € [LZ(D)]2 cdive =0, WPy = 1| oey =0, Uy = u'|x1=l}
and H4, = L*(D). We also denote

V; = {u € Ha N [H' (D)]2 | e—o = ul2—; = 0, uis [-periodic in xl} ,

2Here and below this means that ¢ |1 —g = ¢|,1—; for the corresponding function.
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Vi={0 e H(D): 0|2 =0|2=, =0, 0 is l-periodic in x'} .

Let A3 be the Stokes operator in H(3) generated by the bilinear form (4.4.10)
considered on V3 and A4 be the operator in H 4, generated by the Dirichlet form

a(@l, 92) = K'/ V@] . Vez dx, 91, 92 € Vy.
D

Again, the above equations are a particular case of equation (4.4.1) for the following
spaces and operators which satisfy Assumption 4.4.1. We assume H = H(3) X H)
and V = V3 x V;. We set A(u, 0) = (Azu; A40), K(u, 0) = —(fey ; u?), and define
the mapping B : V x V — V' by the relation

(B(z1,22),23) = (B (1, u2), u3) + Z / Uy 9; 0, 05 dx
D

i=1.2

for z; = (ui;6;) € V = V3 x V4, where B is given by (4.4.11). With this
notation, the Boussinesq equations for (u, 8) are a particular case of (4.4.1) with

Assumption 4.4.1 for 7 = ( [L4(D)]2 x L*(D)) N H. As above, (4.5.13) holds for
this case.

4.6.3 2D magnetic Bénard problem

This is the Boussinesq model coupled with a magnetic field (see GALDI/PADULA
[109]). As above, let D = (0,]) x (0, 1) be a rectangular domain in the vertical
plane, {e;, >} the standard basis in R2. We consider the equations

dut + uVu — v Au+ V (p n §|b|2) —sbVb = fes + £, divu =0,
9,0 +uvVo —u® — kA0 = f,
0:b —vyAb +uVb—bVu=h, divb=0,
with boundary conditions

u=0, 6=0, b =0 0b'=0o0nx>=0andx*=1,

u,p,0,b,u,,60,1,b, are periodic in x' with period /.

As for the MHD case we can assume that s = 1. In this case we have (4.4.1) for
the variable z = (u; 0; b) with H = H3) X< H(4) x H(s), where H(3, and H4) are the
same as in the previous example and H(sy = H(z). We also set V = V3 x V4 x Vs,
where V3 and V, are the same as above and Vs = H(3) N [H ! (D)]z. The operator A
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is generated by the bilinear form

2 2
a(z],zZ)zUIZ/VL/;-VLJdeH[vel-vezdxsz/vH;-v%dx
=19D D =1 D

for z; = (u;, 0;, b;) € V. The bilinear operator B is defined by
(B(z1,22),23) = (B(u1,u2), u3) — (B(b1, ba), u3)

+ (B(u1,bs), b3) — (B(b1,us). b3) + Z / U 3; 0, 03 dx
D

=12

for z; = (ui;6i;b;) € V, where B is given by (4.4.11). We also set K(u, 0,b) =
—(Bey ; u?;0). It is easy to check that this model is an example of equation (4.4.1)
with Assumption 4.4.1, where ¢ = ([L4(D)]2 x L*(D) x [L4(D)]2) N H. The
condition in (4.5.13) is also valid for this model.

4.6.4 3D Leray a-model for Navier-Stokes equations

The theory can also be applied to some 3D models. As an example we consider
the 3D Leray o-model (see LERAY [149]; for recent developments of this model
we refer to CHEPYZHOV/TITI/VISHIK [30], CHESKIDOV ET AL. [34] and to the
references therein). In a bounded 3D domain D we consider the following equations:

du—vAu+vVu+ Vp =f, 4.6.7)
(1-—aA)v =u, divu=0, divv=0 in D, (4.6.8)
v=u=0 on 0D. (4.6.9)

where u = (u';u*;u®) and v = (v';v?;v?) are unknown fields, and p(x, ¢) is the
pressure. In the space

H={ue [LZ(D)]3 :divu = 0in D and (u,n) = 0 on dD}
problem (4.6.7)—(4.6.9) can be written in the form

u; + Au + B(Gyu, u) = f,

where A is the corresponding 3D Stokes operator (defined similarly as in the 2D
case) by the form
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3
a(uy,up) = v Z/ Vu’i Vu’lzdx
j=17P
onV = HN|[H] (D)]3), Gy = (1d + ozv_lA)_1 is the Green’s operator, and

3
(B(uy,uz), uz) = Z / u’l dub uydx, u;€V=HnN [Hé(D)]3.
D

ij=1

Note that the embedding H'/>(D) C L3(D) with dimD = 3 (see TRIEBEL
[220]) implies that inequality (4.4.3) holds true for J# = [L3(D)]3 N H.

Furthermore, Holder’s inequality and the embedding H'(D) C L(D) imply that for
U, Uy, U3z € V’
|(B(Gaur, u2) , u3)| < Clluz|lv [|Gautr || 26y 143230y
< Cllually |Gaurllv llusllzzp)
< Clluzlly lurllzz oy Nusllzs o)

where the last inequality comes from the fact that Az G, is a bounded operator on
H, so that

1
1Gaurlly = |42 Gotr || = Cllur|| = Cllus[l3p-

This implies Assumption 4.4.1 for By (u;, up) := B(Gyuj, uy). Condition (4.5.13)
follows from the embedding H'/?(D) C L*(D).

4.6.5 Shell model of turbulence

Let H be a set of all sequences u = {uj, us,...} of complex numbers such that
>, lun|* < oo. We consider H as a real Hilbert space endowed with the inner
product (-, -) and the norm | - | of the form

(o]

oo
(u,v) =Re Zunv:, |ul* = Z |t |2,

n=1 n=1

where v denotes the complex conjugate of v,. In this space H we consider the
evolution equation (4.4.1) with K = 0 and with linear operator A and bilinear
mapping B defined by the formulas
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o0
(Auw), = vi2u,, n=12,..., P2A)={ucH: Zkﬁlun|2<oo ,

n=1
where v > 0, k, = ko with kg > 0 and o > 1, and

[B(u, v)], = —i (akny11)y 4 (Vi y + bhntty_ Uiy — akn—1uy_ Un_5 — b1y 05 ;)

n—1

forn = 1,2, ..., where a and b are real numbers (here we also assume that u_; =
uy = v—; = vo = 0). This choice of A and B corresponds to what is called the GOY
model (see, e.g., OHKITANI/YAMADA [173]). If we take

[B(u,v)], = —i (akn+luz+1 Up+2 + bknu:_lvn-l-l + akp—1up—1vp—2 + bkn—lun—Zvn—l) >

then we obtain the Sabra shell model introduced in LvOV ET AL. [155]. In both
cases the equation (4.4.1) is an infinite sequence of ODEs.

One can easily show (see BARBATO ET AL. [10] for the GOY model and
CONSTANTIN/LEVANT/TITI [80] for the Sabra model) that the trilinear form

(B(u,v),w) = Re Z[B(u V)W

n=1

possesses the property (4.4.2) and also satisfies the inequality
|(B(u, v),w)| < Cllull[AY*v||w], Yu,weH, VYve2(A?).

The conditions in Assumption 4.4.1 hold with J# = 2(A*) for any choice of s €
[0, 1/4]. For any case Z(A'/*) C 4 is also in force.

We can also consider the dyadic model (see, e.g., KATZ/PAVLOVIC [133] and the
references therein), which can be written as an infinite system of real ODEs of the
form

Aty 4+ VA uy — A"+ A gty = £, n=1,2,..., (4.6.10)
where v, > 0, A > 1, uy = 0. Simple calculations show that under the condition

a > 1/2 the system (4.6.10) can be written as (4.4.1) and that Assumption 4.4.1
holds for [B(I/t, U)]ﬂ = _Anun—lvn—l + /\n+1 Up Up+1 and (Au)n =V AZan Uy.

4.6.6 Hopf model of turbulence

This model was suggested in 1948 by E. Hopf (see the references in HENRY
[123]) as an illustration of one of the possible scenarios (which is known now as
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the Landau-Hopf scenario) of the turbulence appearance in fluids. The model is
described by the following equations:

Uy = Uy —V ¥V —WkW—1Ux*x1,
Vp = UV +VUkU+VRa+wxD, 4.6.11)

Wy = UWy +Wku—vxb+wxa,

where the unknown functions u, v, w are even and 2z -periodic with respect to x and
the convolution w * u defined as follows:

1 2
o = 5= [ v o a.
T Jo
A phase space for this model is the space
H= {U = wviw) € [Le®)] : Uw) = U(—x) = Ux + 27[)}

endowed with the L,-norm:
2
lu|? = /O @) + @ + W) ?]dx, U = (u;v;w).

The operator A is defined on Z(A) = [HIZOC(R)]z' N H, and has the form
Az v;w) = (U — [l U — UUxs W — iky), (15 0;w) € D(A).
The corresponding bilinear mapping B has the form
B(f],U) =0 *v+Wwkw, =D *u,—w % u,
where U = (u; v; w) and where U = (u; v; w). The operator K is given by
KU=—(u—-uxl;v+vka+wxbw—v*xb+wxa)

where U = (u;v;w). One can see that Assumption 4.4.1 is satisfied here. For
detailed calculations relating to this model, we refer to CHUESHOV [39, Chapter 2].



Chapter 5
Second Order Evolution Equations

In this chapter we show how the general ideas developed in Chapters 2 and 3 can
be applied to second order in time evolution equations with damping and source
terms of various structure, whose abstract form is the following Cauchy problem in
a separable Hilbert space H:

puy + K(wu, +Au+B(w) =0, t>0;  ulj=0 = uo, =0 = u1. (5.0.1)

We also consider by means of an example the case when the main elliptic part
A is nonlinear. The model in (5.0.1) represents nonlinear wave dynamics with
the damping (operator) coefficient K(«), which depends on the displacement u
(but not on the velocity u,). This type of model was studied by many authors for
different classes of equations; see, e.g., CHUESHOV/KOLBASIN [49], GATTI/PATA
[111], PATA/ZELIK [178, 180] and the references therein. We note that there is a
wide class of models with velocity-dependent damping (D(u;) in (5.0.1) instead
of K(u)u;), but we do not discuss them here, and refer the reader to the surveys
in CHUESHOV/LASIECKA [56, 58]. We also mention that models with different
types of strong (linear) damping in wave equations have been considered by
many authors; see, e.g., CARVALHO/CHOLEWA [23], CHOLEWA/DLOTKO [35],
KALANTAROV/ZELIK [128], PATA/ZELIK [177], and also the literature quoted in
these references. This class of models corresponds to the case when K(u) = K
is a non-negative operator independent of u# and hence can be included in our
framework. Under some additional hypotheses (see, e.g., LASTECKA/TRIGGIANI
[145, Chapter 3] and the references therein), the corresponding linearization
generates an analytical semigroup. This situation was studied by many authors (see,
e.g., the discussion in LASIECKA/TRIGGIANI [145, Chapter 3]). In principle, this
allows us to use the “parabolic” methods presented in Chapter 4. However, our main
examples are related to the case when K(u) depends nonlinearly on «, and thus it is
problematic to use analyticity of the linearization.
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The main topics in this chapter deal with the existence of a compact finite-
dimensional attractor for different situations. In the case when the set of equilibria is
finite and hyperbolic, we show that every trajectory is attracted by some equilibrium
at an exponential rate. We also consider dynamics in the inertial zero limit & — 0,
and show how the results can be extended to the case when we have the nonlocal
nonlinear Kirchhoff operator instead of A in (5.0.1).

Our arguments involve the method based on quasi-stability estimates (see
Section 3.4.3). We first prove that the corresponding system is asymptotically quasi-
stable in the sense of Definition 3.4.15, and then we apply general theorems on
properties of quasi-stable systems.

To obtain the results concerning equilibria, we rely on some type of observability
inequality and use the same idea as in CHUESHOV/LASIECKA [56, Section 4.3]
(see also CHUESHOV/LASIECKA [51, 58]) and the argument given in the proof of
Theorem 4.3.18.

The main applications, which we keep in mind, are concerned with a class
of elastic plate models with different types of boundary conditions. The results
presented can also be applied to nonlinear wave equations.

5.1 Generation of a dynamical system

In this section we impose our main hypotheses and show that problem (5.0.1)
generates a dynamical system. Our presentation mainly follows the ideas presented
in CHUESHOV/KOLBASIN [49, 50].

5.1.1 Main hypotheses and motivation

Assumption 5.1.1. We impose the following set of hypotheses.

(A) The operator A is a linear self-adjoint positive operator densely defined on a
separable Hilbert space H possessing a discrete spectrum (see Definition 4.1.1).
Below we denote by {e;} the orthonormal basis in H consisting of the
eigenvectors of the operator A:

Aep = Mer, O0< A <Ay <---, lim A; = oo.
k—00

We denote by || - || and (-, -) the norm and the scalar product in H. As in the
previous chapter, we denote by H, (with s > 0) the domain Z(A*) equipped
with the graph norm || - ||y = ||A® - ||. As above, H_; denotes the completion of
H with respect to the norm || - |-y = [|[A™* - |.

(D) For some value 6 € [0, 1/2] the damping operator K (1) maps Hy into H_y and
possesses the properties:
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(i) For each u € 2(A'/?) the operator K (1) generates a symmetric bilinear form
b,(v,w) = (K(u)v,v) on Hg x Hy and for every o > 0 there exist o, > 0 and
B, > 0 such that!

allvlf < (K@v,v) < Bollvllg, YV Aull <o, veHs. (511
(ii) For every ¢ > 0 there exists C, > 0 such that
1K (1) = K@) | ttgsti_y < CollA i —un)[l. VIAui] < 0. (5.12)

where || - || x>y stands for the operator norm of linear mappings from X into Y.
(iii) We also have that

K (1) — K@)]¥ -6 < C,AY*73(uy — wy)|||Aly|| (5.1.3)

for some § > 0 and for all ||A'/2u;|| < o and ¥ € Z(A?) with some [ > 0.
(B) There exists § > 0 such that the nonlinear operator B maps H;/,_s into H_g
and is locally Lipschitz, i.e.,

IB(u1) — B(wa)|—g < L(0)|lur — uall1/2—s5, V[A?ui| < o. (5.1.4)

In addition we assume:

(i) The mapping B is weakly continuous’ from H,  into H_; for some [ > 6,
ie.,

|(B(u,) — B(u), )| — 0 forevery ¢ € H, (5.1.5)

provided u, — u weakly in Hy .

(ii) B(u) = IT'(u), where IT(u) is a C' functional® on H; = Z(A'/?), and ’
stands for the Fréchet derivative (see the definition in (A.5.3)). We assume
that there exist n < 1/2 and C > 0 such that

nAY2ul> + M)+ C>0, wueH/;,=2A4"). (5.1.6)
Remark 5.1.2. As already mentioned, our main goal is to demonstrate the method

but not to obtain the best possible result for the considered class of abstract systems.
However, we note that our conditions can be relaxed in different directions; see,

Tt is allowed that o, — 0 and B, — 00 as ¢ — 00.

2We need this property in order to make limit transitions on the Galerkin approximations in the
nonlinear term. We also note that this property is valid in the case when (5.1.4) holds with § > 0.

3 We note that IT(u) is locally bounded on Hj 5, see Remark 4.2.21.
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e.g., CHUESHOV/KOLBASIN [50] for some details and discussions. We note that
our damping term D(u, u,) = K(u)u, is positive (in the sense that (D(u, u;), u;) > 0,
see the left inequality in (5.1.1)) but not monotone in general. Thus, we cannot
apply the theory developed in HARAUX [119] and CHUESHOV/LASIECKA [56]. We
also mention that problem (5.0.1) was studied in CARVALHO/CHOLEWA/DLOTKO
[24] in the Banach space setting for a constant operator K(u) = A%’ with
1/4 < 6 < 1/2 (in contrast with our case of 0 < 6 < 1/2). The situation in
CARVALHO/CHOLEWA/DLOTKO [24] corresponds to the case when the linear part
of the problem generates an analytic semigroup. [

Our main motivation is related to plate models (with hinged boundary conditions,
for definiteness). In this case the middle surface of a plate is a domain £2 in R?, and
u(t) = u(x,t), x € £2,t > 0, is the transverse displacement of this middle surface at
point x and time z. In these models we have the following.

« A= (—Ap)?, where Ap is the Laplace operator in a bounded smooth domain £2
in R? with Dirichlet boundary conditions. We then have that H = L,(£2) and

2A)={uecH(2) : u=Au=0 on 382}.

Here H (£2) is the L,-based Sobolev space of the order 0.
¢ The damping operator K (1) may have the form

K(wu, = Aloy(u)Au,) — div [oq(u, Vu)Vuy] + o2 (u)uy, (5.1.7)

where oy (s1), 01(s1,52,53) and 0,(s;) are non-negative locally Lipschitz func-
tions of s5; € R, i = 1,2,3, satisfying some growth conditions (for a
more detailed discussion of properties of the damping functions we refer to
CHUESHOV/KOLBASIN [50]). We note that every term in (5.1.7) represents a
different type of damping mechanism. The first one is viscoelastic Kelvin-Voight
damping, the second one represents structural damping , and the term o, (u)u; is
the dynamical friction (or viscous damping). We refer to LASIECKA/TRIGGIANI
[145, Chapter 3] and to the references therein for a discussion of stability
properties caused by each type of damping term in the case of linear systems.

* The nonlinear feedback (elastic) force F (1) may have one of the following forms
(which represent different plate models):

(a) Kirchhoff model: B(u) is the Nemytskii operator
u > —k - div {|Vu|?'Vu — u|Vu|"Vu} — p(x), (5.1.8)

where k > 0, g > r > 0, u € R are parameters, p € L,(£2).
(b) Von Karman model (see LIONS [151] and also CHUESHOV/LASIECKA [58]):

B(u) = —[u, v(u) + Fo] — p(»),
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where Fy € H*(2) and p € L,(£2) are given functions, the von Karman
bracket [u, v] is given by

_ 32 ,.52 2 92 2 2
[u,v] = 0y u- 0, v+ 0 u-0;,v—2-0; u-0y v,

and the Airy stress function v(u) solves the following elliptic problem:

Av(u) + [u,u] =0 in £, % =v(u) =0 on 052. (5.1.9)

(c) Berger model: In this case the feedback force has the form

B(u) = — |:K/;2 |Vul*dx — F] Au— p(x),

where k > 0 and I" € R are parameters, p € L,(£2); for more details and
references see, e.g., CHUESHOV [39, Chapter 4] and CHUESHOV/LASIECKA
[56, Chapter 7].

We do not provide full details concerning these models and refer to CHUESHOV/
KOLBASIN [49, 50] and to the references therein. We also refer to CIARLET [72]
for a general presentation of the plate theory.

As an example, we can also consider the following wave equation on a bounded
domain £2 in R?® with a nonlocal damping coefficient:

y + o (ull () — Au+ @) = f(), ulyp =0. (5.1.10)

One can see that Assumption 5.1.1 is valid if we assume that (a) s < 1 and o is a
positive and locally Lipschitz function, and (b) the source term ¢ € C2(R) possesses
the properties

liminf {p(s)s™'} > A1, |¢”(s)| < C(1 + |s]), s € R,

|s| =00

where A; is the first eigenvalue of the minus Laplace operator with Dirichlet
boundary conditions.

In a similar way, we can consider the wave model (5.1.10) in an arbitrary spatial
dimension and with another form of the damping operator and cover the case when
s = 1in (5.1.10); see Section 5.4 below.

We refer to PATA/ZELIK [178, 180] for the case when the damping coefficient
has the form o (u(z, x)) with some scalar function o and mention the recent papers
SAVOSTIANOV/ZELIK [202, 203] which deal with wave models damped by linear
terms of the form (—A)??u, with 6 € [0, 1/2]. The results in these papers involve
specific properties of wave dynamics, and it seems that they cannot be derived at the
abstract level.
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5.1.2 Well-posedness: nondegenerate case

We first prove the existence and uniqueness of weak solutions to problem (5.0.1) in
the case of the positive inertial parameter /.

Definition 5.1.3. A function u(f) is said to be a weak solution to (5.0.1) on an
interval [0, T if

U € Loo(0.T; Z(A'?)),  uy € Loo(0, T H) N Ly(0, T; 2(A%))
and (5.0.1) is satisfied in the sense of distributions, i.e., #(0) = ug and

T T T T
— /0 (, vy)dr + /O (K )ty v)dt + fo (Au, v)dt + /O (B(u), v)dt = M(ul(:l(ol)l);

for every v € #7, where
W ={v € Loo(0, T; Z(A'?)), v € Loo(0, T; H), v(T) = 0}.

For a description of the functional L, spaces involved above, see Section A.3 in the
Appendix. [

The main statement in this section is the following assertion, which also contains
some auxiliary solution properties needed for the results on asymptotic dynamics.

Theorem 5.1.4. Let Assumption 5.1.1 be in force and (uy;uy) € 7 = D(AV?) x
H. Then the following assertions hold.

1. Problem (5.0.1) has a unique weak solution u(t) on Ry. This solution belongs to
the class

W = CR4: 2(A'?) N C' (R4 H),
and the following energy relation:
t
S + [ K. u@)e = @) G.112)
0
holds for every t > 0, where the energy & is defined by the formula

1
£, ) = Euo, ) + Mwo) = 5 (sl + 4" 2u0]|”) + 1T o).
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Moreover, this solution u(t) satisfies the estimate

+o0
sup E(u(t), u,(t)) + / A% u, (1) |?dt < Ck when E(ug,u1) <R?*,  (5.1.13)
>0

0

where Cg > 0 does not depend on L.
2. Ifu'(t) and u?(t) are two weak solutions such that E(u'(0), ui(0)) < R% i = 1,2,
then their difference z(t) = u' () — u*(¢) satisfies the relation

B0, 2() + / 1492 (0) 2t < agE((0). 2, (0))e™ (5.1.14)
0

for some constants ag, bg > 0 independent of .

Proof. To prove the existence of solutions, we use the standard Galerkin method,
seeking approximations of the form

N
(@) = yer. N=1.2.... (5.1.15)
k=1

that solve the finite-dimensional projections of (5.0.1):

,uuf,/%—PNK(uN)uﬁv +AuN +PyBM) =0, t > 0; u|,—o = Pyuo, uﬁv|,=0 = Pyuy,
(5.1.16)

where Py is the orthoprojector onto Span{e; : k =1,2,...,N}.

Exercise 5.1.5. Show that problem (5.1.16) has a unique local solution. Hint:
Rewrite (5.1.16) as a first order equation and apply Theorem A.1.2. =

Multiplying (5.1.16) by u, we get that u" (¢) satisfies the energy relation (5.1.12).
By (5.1.6) we obtain that

CoE(uo, ul) —c < é"(uo, Ltl) < C(R)

whenever E(ug, u;) < R?. Therefore, by (5.1.1) the energy relation for uy/(¢) yields
the a priori estimate, which implies the global existence of approximate solutions.
Moreover, estimate (5.1.13) holds with constant C(R) independent of N for these
solutions. Using the equation for #" (¢) and also the conditions (5.1.1) and (5.1.4), it
can be shown in the standard way that

T
MZ/ |A™2ul (0)||*dt < Cr(R), N =1,2,...,
0
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for every T > 0. These a priori estimates show that (u";u;ul) is *-weakly

t o7
compact in
Yr :=Loo(0,T; Hi/2) X [Loo(0,T: H) N Ly(0, T; Hp)] X Lr(0, T; H-1y2), YT > 0.
The Aubin-Dubinskii-Lions theorem (see SIMON [213, Corollary 4] and also
Theorem A.3.7 in the Appendix) yields that (u"; u)) is compactin C([0, T]; H j2—¢ X
H_.) for every ¢ > 0. Thus there exists u(f) € Loo(0, T; H) such that
(u;uiug) € Yr, (uwsu) € C([0,T); Hijp—e xH-,), Y& >0,

and, along a subsequence, we have

o u" — u*-weakly in Loo(0, T; Hy /) and strongly in C([0, T]; Hy jo—);
o ul — u, *-weakly in Lo (0, T; H) N L,(0, T; Hy) and strongly in C([0, T]; H—.);

t

o ul} — u, weakly in L, (0, T; H_y 2).

It is also clear from Lions’ lemma (see, e.g., LIONS/MAGENES [152] and
Lemma A.3.1 in the Appendix) that ¢t +— (u(f);u(t)) is a weakly continuous
function in % = H,,, x H. Therefore, the uniform convergence

1" (1) = u@) 12— + lup' (1) = ()| — 0, 1 €[0.7]

yields (uV(1);ul (1)) — (u(t); u, (1)) weakly in Hyp x H for every t € [0,T).
In particular, this and also (5.1.5) imply that

(B (1)) — B(u(r)), ¥) — 0 forevery ¥ € H;, t € [0, T].
For the damping term we have that
(KM )uy! = K (g, v) = () —ur, K@)v) + (1, [K(@") = K(@)]v).

The weak convergence u" — u, in L,(0, T; Hp) yields

T
/ (U —u;, K(u)v)dr — 0 as N — o0
0

for every v € #7. As for the second term, by (5.1.3)
(), [K(@") = K@)]v)| < Cll lo | — w1251l

This implies that

T
/ (uiv,[K(uN)—K(u)]v)dr—>O as N — o0, VYuve.
0
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All of these convergence properties make it possible to show that u(r) is a weak
solution satisfying (5.1.13).

To obtain the energy relation in (5.1.12), we note that the function u" () = P,u(r)
for everyn = 1,2,... solves an equation of the form

o u" + Au" = h(t) with h(t) = —(P,K(u)u; + P,B(u)) € L,(0,T; H).

Therefore, using the multiplier u, we can obtain that

E(u(t), u, (1)) + ./0 (K(u)uy, u)dt + /0 (B(u), uy)dt = E(ug, uy) (5.1.17)

where the energy E(u, u,) is given by

1
EQu.u) = 5 [l + 1A 2ul?].
In particular, this implies that t — E(u(t), u,(¢)) is continuous and thus the weak
continuity of ¢ > (u(f); u,(¢)) implies its strong continuity in Z(A'/?) x H, i.e.,
u(t) € # . Now using approximations and relation (4.2.31) in Remark 4.2.21, we
can derive the energy relation in (5.1.12) from (5.1.17).

To prove (5.1.14), we note that z(f) = u'(f) — u?(t) solves the equation
wzy + K@) — K@)u? + Az + B(u') — B(u*) = 0. (5.1.18)

Thus, multiplying this equation by z, and integrating from s to ¢, we have

E.(t)+ / (K(u"Yu} —K(u*)u?, z,)dr = E,(s)— / (B")—B@?),z)dr  (5.1.19)

for any 0 < s < t, where E,(f) = E(z(f), z(?)). Using Assumption 5.1.1D(i,ii) and
(5.1.13), we obtain that

t

t
E(t) + yr / IA? z,2dv < E.(s) + c& / (1+ [u2]2) 1A 2] dx,

s

for all s < ¢ and for some yg,cg > 0. Now we can apply Gronwall’s lemma to
obtain (5.1.14), which, in particular, implies the uniqueness of weak solutions. o

Remark 5.1.6. Under additional hypotheses concerning K and B, we can also estab-
lish the existence of more regular solutions. We do not pursue these generalizations
at the abstract level, and refer to CHUESHOV/KOLBASIN [49] and the references
therein for some results in this direction. [



228 5 Second Order Evolution Equations

Applying Theorem 5.1.4, we obtain the following assertion.

Proposition 5.1.7. Let Assumption 5.1.1 be in force. Then problem (5.0.1) gener-
ates a dynamical system in the space 7€ = P(AY?) x H with the evolution operator
Sk given by

Sty = (u(t);u,(t)), wherey = (uo; uy) and u(t) solves (5.0.1).

This system is gradient (see Definition 2.4.1) with the full energy & (up;u1) as a
strict Lyapunov function (this follows from the energy relation in (5.1.12)).

5.1.3 Well-posedness: degenerate case

One of our goals is to study asymptotic properties of the system (47, SY') in the
zero mass density limit 4 — 0. To describe these properties we need to consider the
model (5.0.1) in the degenerate case u = 0. Thus, we arrive at the problem

KWwu, + Au+ B(u) =0, ul,= = up. (5.1.20)

In the case when K (1) = Id this equation belongs to the class of models studied in
Chapter 4. Our conditions in Assumption 5.1.1 concerning A and B are very close to
the hypotheses of Theorem 4.2.22. However, we cannot apply the theory developed
in Chapter 4 for generic operators K. Equation (5.1.20) does not contain a naturally
separated linear part, and thus it is problematic to use the idea of a mild solution
for (5.1.20). On the other hand, the result established for x = 0 in this chapter can
be applied to the models studied in Sections 4.2 and 4.3. Thus, in addition to the
method based on mild formulation, we can use the approach presented here.

It is remarkable that many steps in the well-posedness argument for (5.1.20)
repeat the corresponding argument for the second order in time model in (5.0.1).
To realize this analogy, it is convenient to accept the following definition.

Definition 5.1.8. A function u(¢) is called a strong solution to (5.1.20) on an
interval [0, T, if

u € L®(0,T;Hi ), u, € L*0,T;Hp), u(0) = up,

and

Ot—N

T T
(K, v)dt + [ (AY?u,AV?v)dt + [ (B(u),v)dt =0 (5.1.21)
0 0

holds for all v € L2(0, T; H ). n
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Although we define solutions in the variational sense, we apply the term “strong”
because, from Theorem 5.1.9 below (in the case € = 0), these solutions possess
values in Z(A) for almost all ¢ € [0, T] and satisfy (5.1.20) in H. We do not work
with the standard weak solutions, because their uniqueness seems to be out of reach
under the conditions imposed.

Theorem 5.1.9. Let Assumption 5.1.1 be in force and uy € Hyj» = D(AY?). Then
problem (5.1.20) has a unique strong solution u(t) on any interval [0, T| such that

u(t) € C([0,T]; Hi/2)) N L*(0, T; Hi—g) (5.1.22)

and the following balance relation holds:
t
M) + [ (K0, 0)ds = M. o), (5.1.23)
0

where I, (u) = %HAl/zu”Z + I1(u). Moreover,

t+1
o0
sup A" 2u(r) ||2+ sup / \}A‘—"u(r)ﬂzdz + / 1A%u,(x)|PdT < cg,
tER teR f 0

(5.1.24)

provided uy € Bix(R) = {u € 2(AY?) : ||[AV2u| < R}. If u'(t) and u*(t) are
strong solutions with initial data u(l) and ué from the ball By />(R), then

t
I (1) = @13, + [0 lu} (0) — 2 (DI3dr < aglluy — ]2 e, (5.1.25)

for all t > 0. Thus, problem (5.1.20) generates a dynamical system (H1 /Z,S,)
with the evolution operator defined as S;uy = u(t), where u(t) is the solution to
problem (5.1.20) with the initial condition u(0) = ug € Hiy». This system is gradient
with IT,(u) as a strict Lyapunov function.

Proof. We adopt the approach presented in the proof of Theorem 5.1.4 and rely on
some ideas presented in BABIN/VISHIK [9] and CHUESHOV [39].

Step 1: Existence. Let u" (¢) be a Galerkin approximate solution of (5.1.20), i.e.,
a function " (r) with values in PyH = Span{ey, ..., ey} solving the problem

PyK@™)ul + AuY + PyB(u™) =0,  uyn(0) = Pyug. (5.1.26)

Since the matrix ((K (v)ex, ej)) nxy 18 strictly positive for every v € D(A?)
and, by (5.1.2), is Lipschitz with respect to v, we can guarantee the existence
of uy(¢) at least locally on some interval [0, Ty) (see, e.g., Theorem A.1.2 in the
Appendix).
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Multiplying (5.1.26) by uY, we obtain (5.1.23) with u"(f) instead of u(t).

>
Relation (5.1.23) leads to the following a priori estimate:

|AY2uN ()|* < Cr,  t€[0,Tx),
under the condition ||A/?4" (0)| < R. By (5.1.1) we also have that
(K(uN)uﬁV, uﬁv) > aR||uﬁV||§.

Thus, we arrive at an a priori estimate of the form
t
A3 O + [ 1AW ©lde < G 1el0.T.)
0

which implies the existence of approximate solutions on the semi-axis Ry with
the following uniform estimate:

o0
sup [|AY2uN (1)? +/ |A%uY (1)|?dt < Cr, N =1,2,.... (5.1.27)
ZEJR+ 0

Since Au" = —Py(K(u™)ul + B(u")), from (5.1.27) we obtain

1
sup f | (0)]}_ydr < Cr. (5.1.28)
ZER+ f

It follows from (5.1.27) and (5.1.28) that there exists
u(t) € Loo(Ry; Hipn) N LY(Ry; Hi—p)
with u, € L,(R4; Hy) such that along a subsequence
uV — u(f) *-weakly in Loo(0, T3 Hi2) N L*(0, T; Hi—p),

u — u, (1) weaklyin Ly(0,T;Hp),

as N — oo for every T > 0. By the Aubin-Dubinskii-Lions theorem (see
Theorem A.3.7 in the Appendix),

u¥ —u in C([0,T); Hijp—e) N Ly(0, T; Hi—p—c)), Ve >O0. (5.1.29)
Moreover, by Proposition A.3.3 with V. = H_g, H = Hy;», and V = Hy, one
can see that u(z) belongs to C([0, T; Hy»). It is also clear that u" (¢) satisfies the

variational form in (5.1.21) with

v = vy € Ly(0,T; Py 2(AY?)),
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where M < N. Therefore, passing to the limit (sequentially as N — oo
and M — o0) one can see that u(z) is a strong solution to problem (5.1.20)
satisfying (5.1.22) and (5.1.24). The subcritical estimate in (5.1.3) for K and the
weak convergence in (5.1.5) for B along with (5.1.29) make it possible to pass to
the limit in the nonlinear terms.

Step 2: Energy balance relation. In the following lemma we prove that any strong
solution satisfies (5.1.23) and obeys some estimates which we need to prove
(5.1.25).

Lemma 5.1.10. Any strong solution u(t) to (5.1.20) on an interval [0, T] possesses
property (5.1.22) and satisfies the energy balance relation in (5.1.23) for t € [0, T).
Moreover,

t
15 + /0 I3z < Car € [0.7], (5.1.30)
and also
t+T
sup [ (@)} gde = Ca1 + 1), (5.131)
t€R+ f

provided ||A"?uy|| < R, where Cy does not depend on T.

Proof. One can see from (5.1.21) that u(¢) € L,(0, T; Hi—g) and the relation (5.1.20)
holds in H_ for almost all ¢ € [0, T]. Thus, by Proposition A.3.3 any strong solution
satisfies (5.1.22). Multiplying (5.1.20) by Pyu,(t) € L,(0, T; PyH), after integration
we obtain that

%(HPNA‘/%{(OH2 — |PvA"2u(0) %) + / (K (u)u, + B(u), Pyu;)dz = 0.
0

Since Py — [ strongly, using the smoothness property (5.1.22) and the relation
B(u) = I1'(u), we can pass to the limit N — oo and obtain (5.1.23). Rela-
tions (5.1.30) and (5.1.31) follow from (5.1.23) in the same way as in the proof
of (5.1.27) and (5.1.28). o

Step 3: Uniqueness and Lipschitz property. It is obvious that the uniqueness of
strong solutions follows from the Lipschitz property in (5.1.25).

Let u'(r) and u?(f) be two strong solutions to problem (5.1.20) with different
initial data such that ||[A'/24/(0)| < R. Then z(t) = u'(t) — u?(t) solves the
equation

[K(ul)u,l — K(uz)utz] + Az + [B(ul) — B(Mz)] = 0.



232 5 Second Order Evolution Equations

In the same way as in the proof of Lemma 5.1.10, using the test function Pyz,
and then passing to the limit as N — oo, we get that

1

E(IIA” 2201 = 14220 |1%)

+ / (K@uyu} — K@P)u?, z)dr + | (B(u') — B@?),z)dr = 0.
0 0

By the properties (5.1.2) and (5.1.4) of B and K, this implies that

t

t
142201 e [ Nelfide <IA2O + [ (1K) = K6, s
0 0

+ 1B = B s |z lodx
t
ﬂw%@W+Q/MWﬂOHWMMMM
0
Thus,

t t
OR
I+ % [ Nadide < 1OIRa + e [ 121z (1 -+ 12IE) d.
0 0

(5.1.32)
which implies (5.1.25). This completes the proof of Theorem 5.1.9. o

5.2 Global attractors

In this section we prove the existence of global attractors for the dynamical systems
(22, 8"y and (H, /2,8:) and study their properties. As was shown in the previous
section, these systems are gradient, and thus we can use the criterion of the global
attractor existence for gradient systems stated in Theorem 2.4.16.

We also apply a weak quasi-stability method based on Theorem 2.2.17 and
Proposition 2.2.18. To implement the method for the models with state-dependent
damping coefficient, we need additional hypotheses.

Assumption 5.2.1. We assume the following.
(1) The family of operators K (u) is subcritical in the sense that
1K) = K@) llmgestiy < CollA* P —w)ll. VA Puill <. (5:2.1)

for some § > 0.
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(2) Also,

e either 0 < 6 < 1/2 and B is subcritical, i.e., (5.1.4) holds with some § > 0;
e orelse 0 < 6 < 1/2 and the mapping u +— I1(u) is continuous with respect
to convergence in Hj,s for some § > 0.

(3) There exist v < 1 and C > 0 such that
vIAY2ul* + (B(u), u) + C > 0, u € Hp.

We need the last requirement to obtain the following fact.

Exercise 5.2.2. The set A% = {u € H» : Au+ B(u) = 0} of stationary solutions
is bounded. Hint: Use the same idea as in the proof of Proposition 4.3.6. =

5.2.1 Existence of regular attractors

Our goal is to prove the following result on attractors.

Theorem 5.2.3. Let Assumptions 5.1.1 and 5.2.1 be in force. Then the dynamical

systems (€, S)') and (H, 2, S;) possess compact global attractors 0 and 2, which
have the form A* = H*"(N) and A = M " (N%), where

N ={(w;0) € H ue N} and Ny ={ue DAY?) : Au+ B(u) = 0}
are the corresponding sets of equilibria for (3, S}') and (H, 2, S;). Moreover,

distyp(Si'y, A) = inf{||S/'y —ellnw e € A} =0 as t > +oo (5.2.2)
for everyy € € and

disty, , (S, A2) = inf {||Sy —ell1)2 e € M} — 0 as t > +o0 (5.2.3)

for every u € Hy ).

We recall (see Definition 2.3.10) that .#Z*(.#") denotes the unstable set emanating
from .4 which is a subset of 7 such that for each z € .# (./4") there exists a full
trajectory {y(z) : t € R} satisfying u(0) = z and distx(y(7), #) — 0 as t > —o0.

The proof of Theorem 5.2.3 consists of several steps. We start with some
preliminary remarks.

As we know from Proposition 5.1.7 and Theorem 5.1.9, both systems (%, SI)
and (Hi,», S;) are gradient. Moreover, by Assumption 5.1.1 one can see that the
corresponding Lyapunov functions satisfy the following requirements: (i) @(x) is
bounded from above on any bounded set; (ii) the set ®x = {x € X : @(x) < R} is
bounded for every R, where X = ¢ or X = H,». The sets of stationary points are
bounded under Assumption 5.2.1(3); see Exercise 5.2.2.
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Therefore, in order to apply Theorem 2.4.16 we need only to check that the
corresponding system is asymptotically smooth. For this we use Proposition 2.2.18
based on weak quasi-stability.

We start with two preliminary lemmas.

Lemma 5.2.4. Let i € [0, wol for some o > 0. Under Assumption 5.1.1 there
exist Ty > 0 and a constant ¢ > 0 independent of T and |1 such that for any pair u'
and u* of weak solutions to (5.0.1) (to (5.1.20) in the case when . = 0) we have the
following relation:

T T T
TEf(T)+/ Eé‘(t)dt—l—f dt/ (D(7), z1)dt (5.2.4)
0 0 '

T T ’
Sc{/o ||zt(t)||2dt+/O |(D(t),z,)|dt+[0 (D). 2)| df + W)

for every T > To, where z(t) = u'(t) — u*(t), and the functionals* EY, D, and ¥y
are defined as

1
EL(1) = Ey (2(0).2:(n) = 3 (llz @I + 1A 22@)]17)
D(1) = K(u' (0)uy (1) — K(u* (0)u; (1),

T T
%(u‘,uz):’ /0 (G(2), 2(0))dx +' /O (G(t). 2(0))dt

" ‘ /0 " [ T(G(r), z(7))dt

with G(t) = B(u' (1)) — B(u?(1)).

Proof. We use the standard arguments involving the multipliers z, and z for (5.1.18).
We refer to the proof of Lemma 3.23 in CHUESHOV/LASIECKA [56] and also
to CHUESHOV/LASIECKA [58, Lemma 8.3.1], where this lemma is proved under
another set of hypotheses concerning the damping operator. However, the corre-
sponding argument does not depend on the structure of the damping operator. For
self-containment, we sketch the argument.

The variable z satisfies the equation

wzn + Az + D(1) + G(1) = 0, (5.2.5)

and hence we have the following energy relation:

T T
EM(T) + / (D(v), z,(x))dr = E* (1) + / (G(2), z:(0))dr. (5.2.6)

“To emphasize the uniform dependence of bounds on 1, we use the notation E% instead of E,.
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Multiplying (5.2.5) by z after integration we obtain
T T
| Bt <oz (B2 + E2O) 1 [ laolPas
0 0

1 T 1 7
+t3 /0 I(D(s),z(s))lds+§ /0 (G(s), z(s))ds. (5.2.7)

By (5.2.6),

T T
E!(0) = EI(T) +[0 (D(7),z:(7))dt —/(; (G(1), z:(1))dr.

This relation allows us to exclude E.'(0) from (5.2.7). Integrating (5.2.6) from 0
to T, we obtain

T T T T T
TEM(T) + /0 dt f (D(7). (1))dr < /0 E*(dt + /0 dt / (G(1), z(1))dr.

Therefore, (5.2.4) with T,y and ¢ depending on p( follows from (5.2.7). o

Remark 5.2.5. The inequality stated in Lemma 5.2.4 constitutes a common first
step in the proofs of several assertions on the existence and finite dimensional-
ity of global attractors for second order in time evolution equations (see, e.g.,
CHUESHOV/LASIECKA [56, 58]). In the terminology of CHUESHOV/LASIECKA
[58], the inequality in (5.2.4) represents equipartition of the energy. The potential
energy is reconstructed from the kinetic energy and the nonlinear quantities entering
the equation (see CHUESHOV/LASIECKA [58] for some details for other models).
Eventually, these quantities will need to be absorbed (“modulo” lower order terms)
by the damping. The realization of this step depends heavily on the assumptions
imposed on the model. Although this approach was originally designed for second
order in time evolution equations (see, e.g., CHUESHOV/LASIECKA [56] and
the references therein), we can also apply the same idea for the parabolic-like
problem (5.1.20). n

Lemma 5.2.6. Let u' and u* be two solutions to (5.0.1) with initial data (ul); u').
We assume that |} ||* + ||u6||%/2 < R> Then

T T T
maxer (o) < E4(D) + [ |(D(z>,z,)|dt+ck[/ Jalar + [ ||A”2z||2dz]
R 0 0 0

1

with z = u' — u?, where E" and D(t) are the same as in Lemma 5.2.4.
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Proof. Tt follows from (5.2.6) that
T T
max £4() < B + [ 0@.2(@)lde + [ 6. a0)lax
s 0 0

Using (5.1.4) and (5.1.13) we have
(G.2)| < CrllA"zllllzello < Cr (IA"?2)” + l1z:15) -

Substitution in the previous formula yields the conclusion. o

Now we simplify the representation in Lemma 5.2.4. Namely, we prove the
following assertion.

Lemma 5.2.7. Let n € [0, o] for some oy > 0. Under Assumptions 5.1.1 and
5.2.1, there exist Ty > 0 and a constant ¢ > 0 independent of T and | such that for
any pair u' and u? of weak solutions to (5.0.1) (to (5.1.20) in the case when j1 = 0)
possessing the properties E*(1¢(0), 1£,(0)) < R we have
T T
HWUU+/1Eﬂ0mE(hT%§HﬂZ+Ck/ lzlfdr + c¥r(u',u?),
) 0o T 0
(5.2.8)

where z = u' — u?, and E, and Wr(u', u?) are the same as in Lemma 5.2.4. The

constants in (5.2.8) do not depend on | € [0, o
Proof. Using (5.2.1) we obtain that

(D), 20)] < Crellzillf + ellzl} sl 13 (5.2.9)
for any ¢ > 0 and
(D(1).z1) = yellzll — Crllzllijosllu? 13-
We also have that
(D@, 2)| < ellzllf + Cre[lzl7o—sllufll7 + llz:17]

for any ¢ > 0. Therefore, after choosing € in an appropriate way, Lemma 5.2.4
implies

T T
nya)+/‘Eﬂ»msCA1+Ty/ el ol 3t
0 0

T
+ CR/ Izl 2dt + cWr(u', u?)
0
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for every T > Ty. Thus, using the interpolation (see Exercise 4.1.2(E,F))
|42 < A2 < ez + Cllz? 0 <8 <1/2, Ve >0,
we obtain

T T
TEX(T) + / EF(ydr < e / el e 2de
0 0

T T
4 Coer [ NP1l + o [ el + cortal i)
0 0

Next, it follows from Lemma 5.2.6 and (5.2.9) that

T
maxE () < EA(T) + Cae [ lalids
. 0

T T
—i—e/ IAY22)|2 [lu? (| %t + CR/ A 2| dt.
0 0
We note that due to (5.1.13) (or (5.1.24) in the case u = 0),
T T
[ 14 2P < sz - [ < Cmaner 0.
0 0

Choosing € = €(R) in an appropriate way, we have the bound
T T
r{ga)];Eg‘(t) < 2EX(T) + Cg [ ||zll§dt + Cr [ A 2| %dt. (5.2.10)
T 0 0

This gives us

T T
TENT) + [ BNt <Car [ LelPlid e
0 0

T
+Cr / lall2dt + ¥ (i) 5211
0

for T > T,. Therefore, (5.2.8) follows. ]

Proof of Theorem 5.2.3. As we mentioned above, we need only to prove that the
corresponding system is asymptotically smooth.
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Let u' and u? be weak solutions to (5.0.1) (to (5.1.20) in the case when p = 0)

possessing the properties E* (¢ (0), 1,(0)) < R. We also suppose z = u' — u?.

The case @ < 1/2 with a critical force B. We recall that the criticality of the force
B means that (5.1.4) holds with § = 0. In this case,

T T T
‘ | Go.zond] <Ce [ elhalitode = Ce [ 1

T
< 2 di+TC, 2,
<e [ 2k e+ TCr. max
Therefore by Lemma 5.2.7,
T
TENT) < Cormax el + Ca [ lalfidr + cofl o), 5212)
s 0
where

T T T
', u?) = ‘ f (G(1), z:(v))dt| + ‘ / dt [ (G(1), z:(7))dr|. (5.2.13)
0 0 t

Under the conditions of Lemma 5.2.4, by Theorems 5.1.4 and 5.1.9 we have that

T T
/ leli2dr < 2 [ (1 |3 + 2 13)de < Ce.
0 0

Therefore, relation (5.2.12) gives us that for any € > 0 there exists T = T(R, ¢€)
such that

E(T) <€+ CR,GI[IOR;)](IIZO)II2 + CreWrp(ur. u2).

The case w > 0. Let {y, = (uy;u})} be a bounded sequence in the space S,
ie., EF(up, ut) < R* for some R. Let (u"(t); u" (1)) be the corresponding solution
to (5.0.1). Then by estimate (5.1.13) in Theorem 5.1.4 we can assume that

W"(t); u' (1)) — (u(t); u,(r)) *weakly in  Loo(0,T; 2(AY?) x H).  (5.2.14)

In particular, by the Aubin-Dubinskii-Lions theorem (see Theorem A.3.7), this
implies that

r[na>]<||u"(t) —u"(D)|; >0 as nm — o0, YO <n<1/2. (5.2.15)
0,7
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Thus, to apply Proposition 2.2.18 we need only to prove

lim inf hmmfllfo(u u") =0 (5.2.16)

m—0o0 n—>oo

for every T > 0, where W2 (w, v) is given by (5.2.13).
We claim that

T
lim lim (G”'"(t) up (t) —u'(r))dr =0 (5.2.17)

m—>00 n—>00

for any t < T, where G (t) = B(u"(t)) — B(u™(t)). Indeed, since

T
[ (G (), u)(r) —u)'(v))dt
= I u"(T)) — D" (1)) + T W"(T)) — D W" (1)) — 7 (n,m),

where

T
ST (nm) = / [T (0). " () + (T (" (0)). i (0))] de

by Assumption 5.2.1(2) and (5.2.15) we have that

T
lim lim (G"’”(r) Y(t) —u)'(v))dt

m—00 n—>0Q0
= 217(u(T)) — 20T (u(¢)) — lim lim ﬂ,T(n, m). (5.2.18)
m—>00 n—>00
It follows from (5.2.15) and Assumption 5.1.1(B) that
' W' (1)) — ' (u(r)) *-weaklyin Leo(0,T;H_g).

Therefore, using (5.2.14) we obtain that

lim 11m (I'[ @"(7)), uf'(r))dr = lim (17 (u(z)), u'(v))dr

- / (I (u(v)), u,(1))d

In a similar way, we also have that

lim hm (17 " (v)),u; (r))dr = hm / (IT' (W™ (7)), u,(v))dr

m—>00 n—>

- [ (T (@), u(0))d.
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Therefore,

T
lim lim %" (n,m) =2 / (T (u(1)), u,(t))dr. (5.2.19)

m—>00 n—>00

Hence after substituting (5.2.19) in (5.2.18), we get (5.2.17).

To conclude the proof, we note that (5.2.16) follows from (5.2.13) and (5.2.17)
and also from the Lebesgue dominated convergence theorem. Thus, we can apply
Proposition 2.2.18 and obtain asymptotic compactness for the case p > 0.

The case ;© = 0. Now we have the relation

1AY22(D)))* < € + Cze,el[lg’d;]illz(t)||2 + CreWp(ur,ua).

Let {uf} be a sequence in Z(A'/?) such that |AY2u2|| < R for some R. Let
u"(t) be the corresponding solution to (5.1.20). In this case by estimate (5.1.24)
in Theorem 5.1.9 we can assume that (u"(¢);u}(f)) is a *-weakly convergent
sequence in

[Loo(0. T: Hyj2) N Ly(0, T; Hi—g))]| x L2(0, T: Hp).
In particular, this implies the strong convergence of " () in
C([0,T); 2(A"*7%)) N Ly (0, T; 2(A' %)), V&> 0.
These convergence properties allow us to apply the same argument as in the

case w > 0 to prove that lim,—co lim,;— oo lI/TO(T, u",u™) = 0. This implies the
asymptotic smoothness in the case u = 0.

The case § < 1/2 with a subcritical force B. Now the case 8 = 1/2 is included
at the expense that B is subcritical in the sense that (5.1.4) holds with § > 0.
The subcritical estimate in (5.1.4) with § > 0 yields

T T T
|Wr| < CR/ llz:l|2dt + 8/ ||z||%/2dt + CR,E,T/ lzl|?dr for every & > 0.
0 0 0

Therefore, by (5.2.8)
T T
TE.(T) + / E.(t)dt < Cg / ||z,||§dt+cR,Tr[g%< l2(0)]1%. (5.2.20)
0 0 s

Thus, as above, we obtain

E.(T) <e+ CR,er[na)]<||z(t)||2 for T > T,.
0,7

This implies the desired conclusion on asymptotic compactness. (]
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5.2.2 Rate of stabilization to equilibria

Using the same idea as in CHUESHOV/LASIECKA [51, 56, 58], we can establish
the following result on convergence of individual solutions to equilibria at an
exponential rate.

Theorem 5.2.8 (Rate of stabilization). In addition to Assumption 5.1.1 and 5.2.1,
we assume that B(u) is Fréchet differentiable® and its derivative B' (1) possesses the
properties

|B' ()wl =12 < Cglwll1/2, w e H_y, (5.2.21)
and
I[B' () — B’ (0)Iwl|-1/2 < Crllu = vl1/2-5 - w2, w € Hypa, (5.2.22)
forany u,v € Hyjy such that ||u1» < R and ||v||1/2 < Rwith § > 0. Let the set
Ne ={ue 2(AV?) : Au+ B(u) =0}
of stationary solutions be finite and all equilibria be hyperbolic in the sense that the

equation Au + B'(¢)u = 0 has only a trivial solution for each ¢ € Ns. Then

e Case u > 0: Foranyy = (ug; u) € S there exist a stationary solution ¢ € Ny
and constants y > 0, C > 0 such that

wllu @ + llu(@®) — I3, < Ce™, >0, (5.2.23)

where (u(t); u,(t)) = SI'y is the flow generated by (5.0.1) on .
» Case y = 0: For any uy € Hyj there exist a stationary solution ¢ € N, and
constants y > 0, C > 0 such that

IS0 — I3, < Ce™, 1> 0, (5.2.24)

where S, is the evolution operator for (5.1.20) on Hy ;.

As we mentioned in Chapter 4, rate stabilization theorems are well known for
different classes of gradient systems, and several approaches to this question are
available (see, e.g., BABIN/VISHIK [9] and also CHUESHOV/LASIECKA [51, 56,
58]). Here we use the method developed in CHUESHOV/LASIECKA [51, 56] (see
also the discussion in CHUESHOV/LASIECKA [58]), and we use (in contrast with
BABIN/VISHIK [9]) the static form of the hyperbolicity condition. A parabolic
realization of this method was already applied in the proof of Theorem 4.3.18.

3 See Section A.5 in the Appendix for the definitions.
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Proof. Let u(f) be a solution (5.0.1) for some fixed u € [0, uo]. Since A% is
finite by (5.2.2) and (5.2.3) in Theorem 5.2.3, we have that there exists a stationary
solution ¢ € 44 such that

O + lu(@) — I3, > 0. 1 — oo. (5.2.25)

Thus, we need only to prove that u(¢) tends to ¢ at the stated rate.
We can assume that

sug) {/L||ut(t)||2 + ||u(t)||%/2} < R for some R > 0.
=

The function z(¢) = u(f) — ¢ satisfies the following equation:
uzu(t) + K(¢ + 2(1))z(1) + Az(t) + B(¢p + z(t)) — B(¢p) =0, 1 > 0.  (5.2.26)

Let &(1) = E (1) + ®(f), where E.(t) is the same as in Lemma 5.2.4, and

1
Q1) = (¢ + z2(1) — [1(¢) — (B(p), z(1)) = /0 (B(¢ + Az) — B(¢), 2)dA.
One can see that

&0+[mw+dﬂmwaﬁmh=é©. (5.2.27)

In particular, we have that (1) is non-increasing. Moreover, since (z;z;) — 0 in
Hy/, x H as t — +o00, we have that &(f) — 0 when t — 4o00. Thus &(¢) > 0 for
all t > 0. It is also clear from (5.1.4) that

|E(t) — EX(1)] < Crllz(®)]l1/2—sll2(0) [l < ellz®|i )2 + Crellz®]?. ¥Ye>0,
(5.2.28)

under the conditions imposed on B in Assumptions 5.1.1 and 5.2.1.
Using the multiplier z in (5.2.26), we obtain

d
n (@ 2) = wllzl* + (K (@ + 2)z.2) + |A%2]|* + (B(¢ + 2) — B(¢),2) = 0.

Therefore,

T T
/HW%W&MWW+@©HW/HM%
0 0

T T
+Q/HMMW¢+Q/HMWMMM,
0 0
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where § = 0 is allowed when 6 < 1/2. The constants may depend on pg. This
implies that

T T T
/@mmgm@m+w@H@Jme+q/nWa
0 0 0
By (5.2.28),
E(t) < 2EM(1) + Crllz(®)|* and E“(r) < 28(1) + Crllz(®)]
for all € R. Since
_ » T » T
&m=ﬂn+/mw+ammmmmﬁsan+@[HMMMr
0 0
and
B T _ T T
T&(T) 5/ E@)dt < 2[ Ef(t)dt+CR/ lz(t)||*dt.
0 0 0
we have that
" T " " T
TE(T) + 2 / E(t)dt < co&(T) + Cr / lz:(0) I5dt + Cr.r max 20y
0 0 >

This implies that

T T
)+ [ Eod = G [ @+ Cormax O 6229
0 0 »

for T > T, with some T > O.
A parabolic analog of the following lemma with K(u) = Id and 6 = 0 was
already proved in Chapter 4 (see Lemma 4.3.19). Here we apply the same idea.

Lemma 5.2.9. Let z(t) be a weak solution to (5.2.26) such that

T
/ EY(t)dt <& and sup E(t) <o (5.2.30)
T—1 teER

with some 8,0 > 0 and T > 1. Then there exists 6y > 0 such that

T
mwk@WfC/|m®%w (5.2.31)
[0.7] 0

for every 0 < § < 8y, where the constant C may depend on §, o, and T.
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Proof. Assume that (5.2.31) is not true. Then for some § > 0 small enough there
exists a sequence of solutions {z"(¢)} satisfying (5.2.30) and such that

T -1
lim %max |2 (2)||* |:/ ||z:’(t)||§dt:| } = 0. (5.2.32)
[0.7] 0

n—>0o0

By (5.2.30), maxp.7) |2" (1) |* < C, for all n. Thus, (5.2.32) implies that

T
lim f |22 (t)||2dt = 0. (5.2.33)
n—>00 0

Therefore, we can assume that there exists z* € H,» such that

n

7' — Z* *-weakly in Lo (0, T Hy)2). (5.2.34)

It follows from (5.1.1) and (5.2.33) that for u"(r) = ¢ + z"(¢) we have the relation

T

lim | [(K(¢ + 2" (0)z/ (1), y(1)ldr = O forany ¥ & L(0, T Hy).
n— 0
This allows us to conclude that u* = ¢ + z* € H, 2 solves the problem

Au + B(u) = 0. From (5.2.30) we have that |A'/2(u* — ¢)||> < 26. If we choose
8o > 0 such that |AY2(¢; — ¢»)||> > 28, for every pair ¢ and ¢, of stationary
solutions (we can do this because the set .44 is finite), then we can conclude that
u* = ¢, provided § < &y. Thus, we have z* = 01in (5.2.34).

Now we normalize the sequence z" by defining

2 —1_n . n
?' =, 7" with ¢, = max ||Z"(?)],
n n 0.7] ” ( )”

where we account only for a suitable subsequence of nonzero terms in c,. By the
compactness embedding properties (see Theorem A.3.7), it is clear from (5.2.33)
and (5.2.34) with z* = 0 that ¢, — 0 as n — 00. By (5.2.32),

T
/ |27 (t)|2dt — O as n — oo. (5.2.35)
0

Relations (5.2.29) and (5.2.35) imply the following uniform estimate:

sup {plZ @I + |42 0P} <€ n=1.2,....
t€[0,7]

Thus, we can suppose that there exists z* € H; such that

(" Jpz) = (2%;0) x-weakly in Loo(0,T;Hyjn x H), p > 0. (5.2.36)
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The function " satisfies the equation

Kz + CLK(¢ + 7"z + A" + ci[B(qs +7") — B(¢)] = 0. (5.2.37)

As above, from (5.1.1) and (5.2.35) we conclude that

1 T
—/ [(K(¢p + 2"z, ¥)|dt - 0 as n — oo forany ¥ € L,(0,T; Hp).
Cn Jo

It also follows from (5.2.21) and (5.2.22) that

(B + )~ B@)] > B@)2 weakly in L0, T H_y2).

n

Therefore, after the limit transition in (5.2.37) we conclude that z* satisfies the
equation AZ* + B/'(¢)z* = 0 and, by hyperbolicity of ¢, we have that z* = 0.
Thus, (5.2.36) (we use also (5.2.35) in the case © = 0) and the Aubin-Dubinskii-
Lions theorem (see Theorem A.3.7) imply that maxpo 7 [|2"|| — 0 as n — oo, which
is impossible. ]

Remark 5.2.10. In the parabolic case (u = 0) with 6§ < 1/2, we can avoid the
hypotheses in (5.2.21) and (5.2.22) concerning the derivative B’. To do this, we can
use the same idea as in the proof of Lemma 4.3.19. (]

Completion of the proof of Theorem 5.2.8. By (5.2.25) we can choose Ty > 0 such
that (5.2.30) holds with § < §y and T > Ty. From (5.2.28) we have that &(T) <
CrE,(T). The energy relation in (5.2.27) and the lower bound in (5.1.1) yield that

T
[ Ieolia < c[£0 - &), (5238)

Therefore, Lemma 5.2.9, relation (5.2.29), and the energy relation in (5.2.27) imply
that &(T) < yr&(0) for some 0 < yr < 1. This implies that & (mT) < yp'&(0) for
m=1,2,....By (5.2.28), (§.2.31), and (5.2.38) we have

E.(mT) < 2&(mT) + CR[ max lzO|? < CxémMT), m=1,2,....

Thus, E.(mT) < Cryg form = 1,2,.... Now using (5.1.14) and (5.1.25), we
obtain (5.2.23) and (5.2.24). The proof is complete. o
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5.3 Properties of the attractor

Our main goal in this section is to demonstrate how the quasi-stability method
developed in Chapter 3 can be applied to the systems generated by second order
evolution equations with a state-dependent damping coefficient. To cover the critical
case of the force term B, we need some structural hypotheses concerning B.
We impose them in Assumption 5.3.1 below.

5.3.1 Finite dimension and smoothness

The proof of finiteness of the fractal dimension of the global attractors for (Z, S})
and (H, 2, S;) requires the following additional hypotheses concerning the nonlinear
force B(u) in the critical case.

Assumption 5.3.1. Assume that

* B(u) = I'(u) with the functional IT : Z(A"/?) + R which is a (Fréchet) C
mapping. See Section A.5 in the Appendix for the definition.

o The second IT®(u) and the third IT® (u) derivatives of IT(u) satisfy the
conditions®

(TP @)iv.0)] < G A2, v e 2, (5.3.1)
for some o < 1/2, and

(T @) v va,03)] < CollAY v [IIA v [[lvsllo,  vi € 2(A1),

(53.2)
for all u € 2(A"?) such that ||A'/2ul| < p, where p > 0 is arbitrary and C, is
a positive constant. Here (IT%® (u); vy, ..., v;) denotes the value of the derivative

IT™ () on elements vy, . .., vy.

This assumption concerning nonlinear feedback force B(u) appeared earlier for
systems with monotone velocity-dependent damping (see CHUESHOV/LASIECKA
[56, p. 98]) to cover the case of critical nonlinearities.

Recall (see Proposition A.5.3 in the Appendix) that the derivatives I7% (1) of
the functional IT are symmetric k-linear continuous forms on Z(A'/?). Moreover, if
IT € C3, then (B(u),v) = (IT'(u); v) is a C? functional for every fixed v € Z(A'/?),
and the following Taylor’s expansion holds:

6 Another version of the condition in (5.3.1) is possible; see (5.4.45) below.



5.3 Properties of the attractor 247

(B(u + w) — B(u),v) = (ITP (u); w,v) + /1(1 — ) {IT® 4+ Aw); w, w, v)dA
0

(5.3.3)
for any u, v € Z(A'/?). See Theorem A.5.4.
Let us assume that u(¢) and z(¢) belong to the class C! ([a, bl; _@(Al/z)) for some
interval [a, b] € R. Then, by the differentiation rule for composition of mappings
(Proposition A.5.2) and using the symmetry of the form I7® (i), we have that

d
d—t(ﬂ(z)(u);z, z2) = (I (u); uy, 7, 2) + 2(T P (w); 7, 2,).

Therefore, from (5.3.3) we obtain the representation
(But) +20) — B@). 50) = T00 + R0, 1€l SE  (534)
with
0() = 3 (MP(u()):200). 20) (53.5)

and
1 1
R(r) = —(1T O ()i up, 2, 2) + / (1= )ITPW+A2)iz.z.z)dh. (5.3.6)
0

The representation in (5.3.4) leads to the following assertion which, in fact, is proved
in [56] (see (4.38), p. 99).

Proposition 5.3.2. Let Assumptions 5.1.1 and 5.3.1 be in force. Assume that
functions (u';u}) and (u*;u?) from C(R4; Z(AV?)) x L(Ry; H) possess the
property

max {[A"2u' (9)[* + 1A% (s) 1P} < R (5.3.7)
sER
for some R > 0. Let
G,1,2(0) = B(u' (1)) — B2 (1)). (5.3.8)

Then for any ¢ > 0 and T > 0O there exist a(R) and b(R) independent of i € (0, (o]
such that for z(t) = u' () — u*(¢t) we have the following relation:

s+T
/ (Gt (1), (1)) dx

s+t

sup

s+T
<e f AY2z(2) || Pdx (5.3.9)
t€[0,T] s
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a(R) [*+T 1/2 2 o 2
+— d(@)|A z(7)[|"dT + b(R) sup [[A%z(s + )|l
€ s 7€[0,T]

foralls > 0and € > 0, where 0 < 1/2 and

d(t) = d(t;ur,w) = |lu; OIF + lu} ()13 (5.3.10)

Proof. Using (5.3.4) and also (5.3.1) and (5.3.2), we have

s+T s+T
‘/+ (Guluz,zz)dt‘ §|Q(s+T)|+|Q(s+t)|+/ IR(7)|d

s+t

s+T
<Cr sup [|A7z(D)||* + CR/ (lluf o + 14710 A" 22,
[s,s+T] s+t

which implies (5.3.9). O

Remark 5.3.3. 1If the nonlinear force B(u) is subcritical; i.e., instead of (5.1.4) with
6 = 0 we have

IB(ur) — B(uz) |- < L(@)IIA° (ur —u)|l,  YIIA"ui]| < o, (5.3.11)

for some o < 1/2, then we can avoid the hypotheses listed in Assumption 5.3.1.
Indeed, under the condition in (5.3.7), relation (5.3.11) implies that

s+T
[ (G1,2(7), z4(7))dt

s+t

sup
t€[0,7]

b(R)T
(6) sup ||A%z(s + )|I>  (5.3.12)

s+T
< / ()2 +
s 7€[0,7]

for all s > 0 and € > 0. As we see below, this inequality can be used in the next
proposition instead of (5.3.9). (]

The following proposition establishes the quasi-stability estimate for the dynamical
systems (7, SI') and (Hy )2, S)).

Proposition 5.3.4 (Quasi-stability estimate). Ler u € [0, uo]. In addition to
Assumptions 5.1.1 and 5.2.1, we suppose that either Assumption 5.3.1 or else
relation (5.3.11) holds. Let u', i = 1,2 be two solutions either to (5.0.1) (. > 0)
with the initial data such that ||A1/2uf)||2 + plui > < R* or to (5.1.20) with
||A1/2u6|| < R i = 1,2. Let z = u; — up. Then there exist C(R),y(R) > 0
independent of 1 € [0, o] such that

EM(1) < C(R)E*(0)e 7" 4 C(R)r%a]XHz(r)Hz, Vi >0, (5.3.13)
N

where EX (1) = 5 (ullz()|” + A?2(0)]]%)-
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Proof. Using Lemma 5.2.7 and either estimate (5.3.9) from Proposition 5.3.2 or
relation (5.3.12) from Remark 5.3.3, we obtain that

T
TE!(T) + /Ef(r)dt
0
T T
< Cy / lz:|3dt 4 Crr | sup[|A%z(2)|*> + / dO)||A?z(0)|Pdr |, (5.3.14)
[0.7]
0 0

where d(t) is defined in (5.3.10).
From (5.2.6) we have that

T T T
/ a2t < Ca | E(0) = EAT) + / 1A 22 12 2dr + / (Gunens 20}
0 0 0

Therefore, using either (5.3.9) or (5.3.12) we obtain that

T

T
/ llz:l|2dt <CRE.(0) + Cr. / d()||A"?z|*ar
0 0

T
+ Curmax ATz + ¢ / 1AV |dr,
-~ [0,T
0

where d(t) is given by (5.3.10). Inserting this estimate for z, in (5.3.14), we get

T T
TE!(T) + / |zl 5dt + / E'(v)dr <
0 0
T

CrE"(0) + Crr | supl|A%z(z)|)* + / d)|AYz(0)|%dr | . (5.3.15)
[0,7]
0

This inequality holds for 0 = 0 as well. Indeed, by interpolation,

sup[|A”z|* < esup||A'/?z]|* + Cesup|z|®, Ve > 0.
[0.7] [0.7] [0.7]

The term € sup ||A'/?z||? is controlled by (5.2.10); therefore, after an appropriate
choice of €, we obtain (5.3.15) with 0 = 0. As a consequence,
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T
TEY(T) < CgE(0) + Crrsup|lz(t)||* + Cryr [ d(t)EX (1)dt
[0.7] 0

for T large enough. This implies

T
EX(T) < xgEZ(0) + CR,T/ (o 15 + laf 15] EX (1)t + CR,T[SUI;HZ(I)HZ,
0,T]

0
(5.3.16)
where xg < 1 and T > Ty(R).

To conclude the proof of Proposition 5.3.4, we apply the same argument as in
CHUESHOV/LASIECKA [56, p. 62] (see also CHUESHOV/LASIECKA [58, p. 414]).
First we note that (5.3.16) yields

Ef((m + 1)T) < xgEY(mT) + cgrbyn, m=0,1,2,...,

with xg < 1, where

2 (m+ DT 1112 212
bn=  sup O+ [ (1 13 + 12112) X (o).
[mT,(m+1)T) mT

This yields
E(mT) < xgE-(0) + ¢ ) k™'
I=1

Because xr < 1, we can see that there exists y > 0 such that

EM(1) < Ce""E-(0)

+C;

t
sup [12(7) |2 + / e d(z !, uz)E?(r)dr}
[0.7] 0

for all + > 0, where
d(r:u' 1) = |lu (Ol + lluf (D)3

Therefore, applying Gronwall’s lemma to the function E% (f)e?’, we find that

t
E.(1) < |:C1EZ(O)e_V’ + Gy sup ||z(r)||2:| exp % C2/ d(t;u',u?) d‘lf} )
[0,7] 0

Now using the finiteness of the dissipation integrals in (5.1.13) and (5.1.24), we
obtain estimate (5.3.13). This concludes the proof of Proposition 5.3.4. o
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Now we are in position to prove our main result on the finiteness of the fractal
dimension of the attractors.

Theorem 5.3.5. Let Assumptions 5.1.1 and 5.2.1 be in force. Concerning the
forcing term B(u), we assume that either B(u) is subcritical (i.e., (5.3.11) holds)
or B(u) satisfies Assumption 5.3.1. Then

Case u > 0:

1. The global attractor A" of the system (€, S!") has a finite fractal dimension
dimA* with upper bound independent of |1 € (0, o).

2. The global attractor A* lies in 2(A' %) x D(A'/?) and for any full trajectory
(u(1); us(t)) from the attractor we have that

oo
IIA“"u(t)||2+/ lulGde + pllA w1 + 1 ua (D> < RS (53.17)

[e.]

for all t € R. Moreover, the (uniform) Holder condition

% (A2 (e + ) = u@)I? + pllu(t +h) —w@OP] <R;  (53.18)

holds for every t € R and h > 0. Here Ry does not depend on [i.
3. Assume in addition that K : Hyj» — £ (Hg,H—g) and B : Hy/» — H_g are
C! Fréchet smooth mappings such that their derivatives satisfy the relations

(K (u); v)w]—g < CollAY?v]|[|w]lg, v e 2(AY?), we Hy,  (53.19)
and there exist § > 0 such that
4B (u): v) o < CollA? 0], v e2(A?), (5.3.20)

for any u € D(A'?) such that |A"?u| < o, where o is arbitrary. Here we
denote by (@' (u); v) the value of the derivative @' (u) on the element v. Then
the uniform (in ) bounds in (5.3.17) and (5.3.18) can be improved in the
following way:

1A @IP + plus @I < R, V1€ R. (5.3.21)

Case . = 0:

4. The global attractor A of the system (Hy /2, S:) has a finite fractal dimension
dlmel

5. For any full trajectory u(t) from the attractor 2 we have that
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oo

1A 2u(®)|? +/ lurllgdt < co. A2+ h) —u(@)|| < coh'/?

- (5.3.22)
forallt € Rand h > 0.

Proof. We apply the quasi-stability method developed in Section 3.4.3. Its realiza-
tion is based on the estimate in (5.3.13).

The case i > 0: To obtain the independence of a bound for the dimension, it
is convenient to introduce the scaled dynamical system (57, $!) with the evolution
operator S! defined by the formula

- 10
n_ w —1 : —
St =M, oS'oM;" with M, = (0 ﬁ) : (5.3.23)

It is clear that (7, SI') possesses a global attractor At and A+ = M L AX, where A*
is the global attractor for (JZ, SI").
It follows from (5.1.14) and (5.3.13) that

ISEy1 = SEyally < arllyr — y2l2pe™ (5.3.24)

and

IS¢ y1 = SE¥2l%0 < crllyr = 203077 + CRmaxllu (@O -y (@ (53.25

for all r > 0, where y; = (u);u}) is such that |ly;[|3, = [lu}|* + [AY240)2 < R?

and the positive constants in (5.3.24) and (5.3.25) do not depend on . We also use

the notation Si'y; = (u!' (); \/f£d,u!" (), where u!' (£) solves (5.0.1) with initial data
= (u?;u_l/zu}).

Relations (5.3.24) and (5.3.25) mean that the system (7, SI) is asymptotically
quasi-stable (see Definition 3.4.15), and thus by Proposition 3.4.17 this system is
quasi-stable at some time moment. Therefore, to prove the finiteness (with a uniform
bound) of the fractal dimension of the global attractor AL, we apply Theorem 3.4.18
and the bound for its dimension given in Theorem 3.4.5, see (3.4.3). Since the
constants in (5.3.24) and (5.3.25) do not depend on p, we can conclude that there is
a bound for dimf']// 20#* which does not depend on .

To prove the second statement of Theorem 5.3.5, we note that by Theorem 5.2.3
A = #"(/). Since the system is gradient and the energy functional & (u, v) is a
strict Lyapunov function, we conclude that

1
sup Eu,v) < sup E@u,v) = sup { = [|AYu|]> + T} < co,
(u;v)€AL (usv)eN UEN% 2
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where ¢, does not depend on p. Therefore by (5.1.13),

oo

AV P+ [l + plu@) <R, vieR (5.3.26)
o0

for any full trajectory (u(z); u,()) from 2*. Applying the quasi-stability estimate in
(5.3.13) to this and the shifted trajectory (u(z + h); u,(t + h)), in the same way as
we did in the proof of Theorem 3.4.19, we can conclude that

1
[IAY (e + ) = u@) > + pllu(t + 1) = w(0)]7]

N

T+h
<Ce sup [ lw(®)2ds. (5.3.27)

—oo<T<t

Using the estimate ||u,(f)||> < R?/u (which follows from (5.3.26)) and also the
relation

A= uOI < C [l + 1K @] + 1B 2]

which follows from (5.0.1), we can easily obtain (5.3.17). Relation (5.3.27) with the
integral bound for [|u,||? in (5.3.26) yields (5.3.18).

To prove the third statement in Theorem 5.3.5, we restrict ourselves to the case
of small intervals (0, 1t¢]. To prove the desired smoothness we consider the equation
for w = u; on the attractor A*:

pwa + Ku(®)we + Aw + (K (u(®): w)u, + (B'(u); w) = 0. (5.3.28)

We multiply (5.3.28) by w; in H. Using (5.3.19) and (5.3.20) we have that

d
LW w) + (K@@)we. w) =71 (Ilwel3 + 14 2w]?)
+ CralluOIFIAw]? + Crylwlly — (5.329)

for any n > 0, where

1

E(w,w)) = 5 [llwell® + 1A 2w]?].

This implies that

d 1
— B0 w) + aolwilf < 2142w + Collw @ (1 + 14" 2w]?) - (5.3.30)
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for the trajectory (u(t); u,(f)) from 2A*. Multiplying (5.3.28) by w and using (5.3.19)
and (5.3.20), one can also see that
d [EURVEIT 2 2
o w.we) = =S AW+ pliwell™ + el
+ Crellu @I - 142w])” + Callw

for © > 0 with arbitrary € > 0. Therefore, with an appropriate choice of o > 0
and € > 0 (both small), the function

V) = 5 [l + 1472I?] + v, )
satisfies the relations
Sl + 1A I?) < Vo) < 20ulbwl” + 1472wl
and
EV0) + eV @) = el - V) + el

where the constants ¢; do not depend on p. Using the boundedness of the integral
term in (5.3.26), by a Gronwall-type argument we conclude that

V() < Ce 7 V(s) + Gy, 1>,
with the constants independent of w. In the limit s — —oo this yields
Wl (1) 1> + “Al/zuz(t)”z <C, reR,

which implies (5.3.21).
The case (v = 0: We first note that by (5.1.24) on the attractor 2 we have

+1
o0
sup [|[AY2u(r)||? + sup / 1A u(o)||>dT + / 1A%, (0)||Pdr < €. (5.3.31)
R —
t

teR t€ o}

For dimension we use the same quasi-stability idea as above.
Let uf), i = 1,2, be two elements from the attractor 2. We denote u/(¢) = S,uf)
and z(t) = u'(t) — u*(¢). By (5.3.13) with & = 0 we have

A 22(0)||> < C1]|AY*2(0) | Pe™ 7" + czl}laf(nz(r)uz, Vi > 0. (5.3.32)
0,1
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This implies that (H;,5, S;) is quasi-stable on the attractor 2l with Z = W,(0,T),
where

T
Wi(0.7) = 1200 : Izl o) = /0 (1A 22(0) 1> + |z () |1*) dt < cof . (5.3.33)

In Definition 3.4.1 we also choose the operator K : Hj/, + Z according to the
formula

Kug = {u(r) : t€[0,T]}, where u(t) = S;uy,

and suppose nz(u) = Czr[na)](||u(r)||2. By (5.1.25) the operator K is a Lipschitz
0.7

mapping from H,, into Z. The seminorm n is compact on Z by the compactness
Theorem A.3.7. Thus, we can apply Theorem 3.4.5 to prove the finiteness of the
fractal dimension of 2.

To obtain (5.3.22) we use (5.3.31) and the quasi-stability estimate in (5.3.32) for
the trajectories u(r) and u(t + h), i.e., with z(t) = u(t + h) — u(r). |

Remark 5.3.6. Using Theorem 3.4.7 one can show the existence of a (generalized)
fractal exponential attractor for the systems considered. We can also establish
criteria for the existence of finite families of determining functionals. For this
we can use the idea presented in Theorem 3.4.20. However, we do not pursue
these directions for the model considered in (5.0.1). The corresponding arguments
are standard. We refer to CHUESHOV/LASIECKA [56, 58] for similar approaches
and results for second order in time models with other damping mechanisms. [

5.3.2 Upper semicontinuity of attractors

Now we show that the attractors 2(* for problem (5.0.1) in some sense converge to
the attractor of the system generated by (5.1.20) as ¢ — 0. If 8 < 1/2 and the
conditions in (5.3.19) and (5.3.20) are valid, we can apply abstract Theorem 2.3.31.
However, we prefer to establish a slightly more general result to demonstrate a direct
approach to upper semicontinuity.

Theorem 5.3.7. Let Assumptions 5.1.1 and 5.2.1 be in force and 0 < 1/2. Assume
in addition that the forcing term B(u) either is subcritical (i.e., (5.3.11) holds) or
satisfies Assumption 5.3.1. Let 2 be the attractor of the system (Hy,2, S;) generated
by (5.1.20). Then

lim [ sup {dist (v, 2) : y € A}] =0, (5.3.34)

where 2 = {(u; 0):uce Ql} and A" is the global attractor for the dynamical system
(A, S) with the evolution operator SI' given by (5.3.23).
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If we assume in addition that (5.3.19) and (5.3.20) hold, then

lim [{distr (v, 2%) 1y € A4}] = 0, (5.3.35)

n—>0
where A" is the attractor of system (H,S\") generated by (5.0.1) and
A" = {(u; v):ueA, v= K_l(u)[Au + F(u)]}

Proof. We first note that by the compactness Theorem A.3.7 in the Appendix it
follows from (5.3.17) and (5.3.18) that for any trajectory

W) = @0 ' (1) 1€ Ry C A
the family {y*(f)},~0 is relatively compact in the space
C([a,b]; 2(A'~"") x 2(A'/*7")), VYa<b, n>0.

Moreover, we have that \/ﬁuﬁ‘ — 0in L>(R; Hy) as u — 0.

These observations allow us to obtain (5.3.34) by the standard contradiction
argument (see BABIN/VISHIK [9], CHUESHOV [39], RAUGEL [188], for instance).
Indeed, assume that (5.3.34) is not valid. Then there exist sequences u, — 0 and
y" € A*n such that

dist,z(y",2A) > 8, n=1,2,... (5.3.36)

Let ¥, = {y"(r)} be a full trajectory for (2, S!') in the attractor 21 such that
y*(0) = y". Such a trajectory exists due to Exercise 2.3.4(B). By the observations
made we can assume that y"(t) = (u"(¢); \/f,u} (t)) is convergent in the space

C(la,b);Hi—¢—y X Hijo—y), Ya<b, n>0.

Thus, there exists u € C,(R; Hi—g—,) such that
ma [ = @2, + 10112, ] > 0. n = 00, (5.3.37)

for every interval [a, b] and for all > 0 small enough. Moreover, we have that u, €
L)(R; Hp) and u! — u, weakly in L,(R; Hp). Passing to the limit in the variational
form of equation (5.0.1), we can see that u(¢) is a strong solution to problem (5.1.20)
on R which is bounded in H,,. Therefore, applying Exercise 2.3.4(B) again, we
obtain that {u(¢)} is a full trajectory which lies in the attractor 2(. Thus, (5.3.37)
implies that y* — ((0); 0) € 2, which contradicts (5.3.36).
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To prove (5.3.35) we note that in this case from (5.3.21) we additionally have that
il (£)|| = O uniformly in z. This observation makes it possible to obtain (5.3.35)
in the same way as (5.3.34). o

5.3.3 A model with noncompact global attractor

We conclude this section with an example which shows that a second order in time
model with a degenerate damping coefficient may possess a global attractor which
is not compact in the phase space. This means that the requirement of boundedness
(instead of compactness) in Definition 2.3.1 of a global attractor is reasonable.
We consider the following infinite-dimensional version of the Krasovskii system
(see Exercises 1.8.22 and 2.1.10):
wy + Au+k(lu, (0> + A2 u@) |Du, = 0, u =u;, (53.38)

= Up, U;

t=0 t=0

in a separable Hilbert space H, where, as above, A is a positive operator with a
discrete spectrum. The intensity k of the damping is determined by the energy of the
system. We suppose that k() is a scalar bounded Lipschitz function on R4 such that
k(1) = 0 and k(s) is strictly increasing for s > 1. On the interval [0, 1] the function
k(s) can be arbitrary. For instance, we can take

2 0, if 0<s<1;
k(s) = ko (l ——) or k(s) = nr=s=
I+ ko (1—s7"), if s> 1.

Similar to Definition 5.1.3, we introduce the notion of a weak solution to (5.3.38)
on an interval [0, 7] which we define as a function

U € Loo(0.T: 2(A'?)),  uy € Loo(0, T; H)

such that u(0) = uy and
T T T
- / (tr, v)dt + / klll? + 1A 2ulP))ur, vt + / (Au, v)dr = (u1. v(0)),
0 0 0
for every v € #7, where

Wy = {v € Loo(0,T; 2(A"?)), v, € Loo(0, T; H), v(T) =0} .

For a description of the functional spaces above, see Section A.3 in the Appendix.
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Proposition 5.3.8. For every (up;u;) € 5 = Hy;» X H, problem (5.3.38) has a
unique weak solution u(t) on R4. This solution belongs to the class

C(Ry:Hyp) N C'(Ry:H)

and the energy relation

E(u(1), u, (1)) + /Oz(k(2E(u(f)7Mr(f)))lluz(f)llzdf = E(uo, u1) (5.3.39)
holds for every t > 0, where the energy E is defined by the formula
E(ug, uy) = % (||'41||2 + ||A1/2u0||2)-
Moreover, for every pair u'(t) and u*(t) of weak solutions such that
E@'(0),1(0) <R*, i=1,2,
we have that z(t) = u' () — u*(¢) satisfies the relation
E(z(1), (1)) < brrE(2(0),z(0)), t€[0,T], VYT > 0, (5.3.40)

for some constant br g > 0.

Proof. We cannot directly refer here to the standard compactness method as in
Theorem 5.1.4, because the nonlinear term in (5.3.38) is critical and cannot be
defined as a weakly continuous mapping from Hj,, x H in some negative order
space. However, we can use the structure of the problem, which provides an
important invariance property.

Let Py be the orthoprojector onto Span {ey, ..., ey}, where {e;} is the eigenbasis
for A. It is easy to see that for every initial data (uo;u;) € y = PyH,;» X PyH
there exists a solution u to (5.3.38) which takes its values PyH| ;. In fact, this means
that the Galerkin approximate solutions satisfy the equation in (5.3.38). Using
this observation, we take arbitrary (uo;u;) € 4 and denote by u" the solution
to (5.3.38) with the initial data (Pyuo; Pyu,). Every solution #" satisfies the energy
relation in (5.3.39) with (Pyug; Pyu;) instead of (ug; u;). This implies that

t
1 )2 + A2 @) < 1Py | + || A2 Pyuo|* + 2k / |ul (v)||dx,
0

where kg = —inf{k(s) : s > 0]}. Thus, Gronwall’s lemma yields

e @1 + A2 @ = [I1Pwan 2 + JAY2Pyao|*] 2 < 2B o, )
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Now we consider the difference 7V = u™ —u™ for different N and M. This function
solves the equation

™ Au A k(g O + 1AV (0))z"
= — [kl )1 + 1A O 1) — k(" O 17 + [A2M¥ D) ] .

Multiplying this equation by zﬁv M in H and using the notation
NM _ (NM. NM N _ (N. N
ZNM = (NMANMy and UY = (V5 ul)

and the relations
1Z1% = lzl® + 14Y%2)1* = 2E(z, 20),

we obtain t

1d
Ed—tIIZN’M(t)II,ny < kollZ¥M 154 + Clla" Il - 122" I (IO e + UM ) 128 1L

< Cr(E(uo; w)) | Z¥M 1%,

Thus, Gronwall’s lemma yields

max 12O + |42 0]

2
< Cr(ug, u1) [||(PN — Py |* + [|A*(Py — Pa)uo | ] .
This implies that {u"(¢)} is a Cauchy sequence in
C([0,T]:H2) N C'([0,T]:H), YT > 0.

This allows us to pass to the limit N — oo and prove the existence of weak
solutions possessing the required smoothness. The uniqueness of weak solutions
and the Lipschitz property in (5.3.40) can be achieved in the standard way. o

By Proposition 5.3.8, problem (5.3.38) generates an evolution operator in the space
€ = Hy» x H by the formula S;(uo; u1) = (u(t); u,(1)), where u(t) solves (5.3.38).
‘We note that the change of the time variable ¢ — —¢ in equation (5.3.38) gives us
the same problem but with damping function —k(s) instead of k(s) in (5.3.38). Since
k(s) is bounded, we can use the same argument as in Proposition 5.3.8 to prove well-
posedness for the inverse time problem. This allows us to state that the evolution
operator S; is invertible and thus {S;} is an evolution group. This observation is
important below, where we discuss the invariance properties of sets in 7.
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Our main result concerning the system (57, S;) is the following assertion.

Proposition 5.3.9. The global attractor of the system (J€,S;) generated by the
equation in (5.3.38) is the ball

2
% = {Uy = (o) € 2 < ol = > + 420 |* < 1}

Proof. The linear problem

uy + Au =0, u| = U, ut| = uj,

t=0 t=0

has a unique solution u(#) such that E(u(f); u,(t)) = E(ug,u;) for all ¢t € R. Thus,
by the uniqueness statement in Proposition 5.3.8, due to the property k(1) = O,
this implies that the unit sphere 0.2 is a strictly invariant set with respect to S;.
Therefore, one can show that both sets 4 and Closure(J7 \ %) are also strictly
invariant.

It is also easy to see from the energy relation that any ball

PBr = {Uo = (uo;m) € A = |Uoll%p = [lw|* + HAI/ZMOHZ < Rz}

is a forward invariant set for every R > 1. Thus, we need only to prove that S,%x
goes to A uniformly in u € %y for every R > 1.

First we show that for every Uy ¢ % we have ||S,Uy||,» — 1 ast — co. Assume
that this is not true. By the energy relation and the invariance of Closure(.7 \ %)

the function ¢ > ||S;Up||,» is non-increasing. This means that there exists Ry > 1
such that

||S,Uo||f >Ry, Vt>0, and lim ||SIU0||)f = Ry.
—>00
In this case the damping coefficient satisfies the inequality
k(|1S:Uol|%s) = k(R3) = ks > 0 forall ¢ > 0.

This implies that

d 2 2

—|1S:Uoll5¢ + 2k« |luc]|” < O,

dt
where S,Uy = (u(?); u,(t)). We also have that

d
5 () = luel)> = 1A 2ull® = k(1IS:Uo 1) (ur, )

< (14 20 g = Ljareug?
= 24, t ) s
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where k; = sup{k(s) : s > 1}. The relations above allow us to state that there are
parameters y > 0 and n > 0 such that the function

V() = ||StU0||ij + n(u, uy)

possesses the properties
d 1 ) )
EV(I) +yV() <0 and 5||S,U0||% < V(@) = 2|8:Uoll -
This implies
I1S:Uol13 < 4| Uoll3pe™"" aslongas [S,Usl% = Ro > 1, (5.3.41)

which contradicts the initial guess that ||S;Up|| s+ > Ry > 1 for all # > 0. Thus,

lim [IS;Uo|l» = 1.
—>00

One can show that this convergence is uniform with respect to Uy € %y \
interior(Z). The point is that the relation in (5.3.41) yields that forany R; > R, > 1
there exists 7. = t«(R1, R2) > 0 such that S;%Bg, C Py, forall t > 1.

To conclude the proof of convergence S,%r — %, we note that

SZU()

dist (S, Uo, B) < —H
o, ) 15.Uolr e

S Uy — = |S:Uollr — 1

for every Uy € P \ interior(A). Therefore,
dist - (S;Uy, B) — 0 as t — o0

uniformly for every Uy € %y \ interior(4). This means that the ball & is a global
attractor for the system generated by (5.3.38). o

5.4 Kirchhoff wave models with a structural
nonlinear damping

In this section our main goal is to illustrate the previously developed methods by
means of an abstract second order evolution equation with nonlinearity in the main
part. As a model we choose the following Cauchy problem:

ug + ¢ (|A?u)|?)Au 4 o (A" ul|>)A* u; + B(u) = 0, >0,
u(0) = uy, u;(0) = uy,

(5.4.1)

with 6 € [1/4,1/2) under the following set of hypotheses.
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Assumption 5.4.1. (i) The operator A is a linear positive self-adjoint operator
with domain Z(A) in a separable Hilbert space H (we denote by | - || and (-, )
the norm and the inner product in this space). We assume that A has a discrete
spectrum (see Definition 4.1.1):

Aey = Aier, O0< A <A <---, lim Ay = oo.
k—>00

As above, we denote by Py the orthoprojector onto Span{e; : k= 1,2,...,N}
and by H; (with s > 0) the domain Z(A*) equipped with the graph norm ||-||; =
|A* - ||. In this case H_; denotes the completion of H with respect to the norm
Il = llA= 1.

(i) The damping (o) and the stiffness (¢) factors are positive C' functions on the
semi-axis Ry = [0, +00). Moreover, we assume that 8 € [1/4,1/2) and

D(s) = / ¢ (§)dE — +o0 as s — +o00.’ (5.4.2)
0
(iii) The nonlinear operator B maps H|/, into H_gy and is locally Lipschitz, i.e.,

IB(u1) — Buz)|—9 < L(@)|w1 — wallijo,  VIAY*uil| <o. (5.4.3)

We also assume that (a) B(x) = IT'(u), where IT(u) is a C' functional on
Hyp = 2(A'Y?), and ’ stands for the Fréchet derivative, and (b) there exist
n < 1/2 and C > 0 such that

n®(|A2ul|®) + M) + C>0, ueHy,,=2A%. (5.4.4)

Our main motivating example is the case when H = L,(£2), where £2 is a bounded
smooth domain in RY, A is the minus Dirichlet Laplace operator, and B(u) is a
Nemytskii operator generated by an appropriate C! function f (see Section 5.4.4 for
more details). This kind of second order evolution model goes back to G. Kirchhoff
d=1,¢(s) = o+¢1s,0(s) = 0,f(u) = 0) and has been studied by many authors
under different types of hypotheses starting with the pioneering papers BERNSTEIN
[12], L1ONS [153], POHOZHAEV [184] (see also the literature cited in the survey
MEDEIROS/FERREL/MENEZES [163] and the discussion below).

Remark 5.4.2. We concentrate on the case when 1/4 < 6 < 1/2. The case of
strong damping (f = 1/2) requires a separate consideration and has been studied
in CHUESHOV [42]. This paper covers the case of possibly non-positive stiffness
coefficients ¢ and supercritical source terms B (in the sense that B(u) & H_;,, is

7 This coercive behavior holds if lim inf,— + oo {s¢(s)} > 0, for instance. The standard example is
P (s) = P + ¢p15* with ¢y > 0, ¢; > 0, and @ > 1. However, we can also take a decreasing ¢ (s)
like (1 4+ )~ L.
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allowed for some u € Hj»). This became possible due to the fact that the damping
operator has the same regularity order as the main elastic part. For the case 0 <
6 < 1/4, to the best of our knowledge, the uniqueness theorem for this model is not
established for initial data from the natural energy space s = Hj/, x H (see the
discussion in MEDEIROS/MILLA MIRANDA [164]). Thus, we are not able to apply
here the approaches from the theory of single-valued dynamical systems. [

In this section we study well-posedness and long-time dynamics for general
nonlinear stiffness and damping coefficients. Then we show the existence of a
compact global attractor possessing some regularity and structural properties. Under
some additional conditions concerning the source term B, we prove that the attractor
has a finite fractal dimension. Moreover, in this case we prove the existence of
a fractal exponential attractor and give conditions for the existence of finite sets
of determining functionals. As in the case of the constant stiffness coefficient, we
rely on the quasi-stability method developed in Chapter 3. As an application of
the results obtained in Section 5.4.4 we consider the Kirchhoff wave equation in a
bounded domain in R¢ with d > 1. Our presentation is partially based on the paper
of CHUESHOV [40].

5.4.1 Well-posedness

Well-posedness issues for Kirchhoff-type models like (5.4.1) have been studied
intensively in past years. The primary focus was the case when 8§ = 0 or
6 = 1/2, the damping coefficient ¢ > 0 is a constant, and the source term
B(u) is either absent or subcritical. For the case 8 = 0 we refer to GHISI
[112], MATSUYAMA/IKEHATA [162], ONO [174], TANIGUCHI [214] and also
to the survey MEDEIROS/FERREL/MENEZES [163]. In these papers the authors
have studied sets of initial data for which solutions exist and are unique. The
papers of MATSUYAMA/IKEHATA [162] and TANIGUCHI [214] also consider the
case of nonlinear viscous damping. For the case # = 1/2 of strong (Kelvin-
Voigt) damping the global well-posedness results are available in the literature
(see, e.g., AUTUORI/PUCCI/SALVATORI [6], CAVALCANTI ET AL. [27], KALAN-
TAROV/ZELIK [128], MEDEIROS/MILLA MIRANDA [164], NAKAO/ZHIJIAN [170],
ONO [175] and the references therein). All these publications assume that the
damping coefficient o (s) = oy > 0 is a constant.

The case of a structural damping with 0 < 6 < 1/2 was considered in
MEDEIROS/MILLA MIRANDA [164] with the constant damping coefficient o and
B = 0. The main result in that paper states the existence of weak solutions for
6 € (0, 1/2] with initial data (uo; uy) from Hy,yq1/4,6y ¥ H and their uniqueness for
6 € [1/4,1/2]. We also mention the recent paper LAZO [147], which deals with
nonlinear damping of the form o (||A%u||*)A%u; with 0 < @ < 1. The main result
of LAZO [147] states only the existence of weak solutions for uniformly positive ¢
and o in the case when B(u) = 0.
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Our main result in this section is Theorem 5.4.4 on the well-posedness of
problem (5.4.1). This theorem also contains some auxiliary properties of weak
solutions which we need for the results on the asymptotic dynamics. We start with
the following notion which repeats Definition 5.1.3 with obvious changes.

Definition 5.4.3. A function u(¢) is said to be a weak solution to (5.4.1) on an
interval [0, T if

u€ Loo(0,T;Hy2), u € Loo(0,T; H) N Ly(0,T; Hy) (5.4.5)

and (5.4.1) is satisfied in the sense of distributions, i.e., u(0) = u( and

T T
- / (s v)dt + / o (1A 2u(0) |2 (A° 1y, A®v)
0 0

T T
+ / S (1A ?u@)||*) (Au, v)dr + / (B(u), v)dt = (uy, v(0)), (5.4.6)
0 0
for every v € #7, where
Wi = {v € Loo(0, T: Z(A"?)), v; € Log(0, T; H), (T) = 0}.

Theorem 5.4.4 (Well-posedness). Let Assumption 5.4.1 be in force and (uy; u;) €
€ = Hyjy x H. Then for every T > 0 problem (5.4.1) has a unique weak solution
u(t) on [0, T). This solution possesses the following properties:

1. The function t — (u(t); u;(t)) is strongly continuous in 7¢. Moreover,
uely0,T;Hi—p), VT >0, (5.4.7)
Uy € Loo(0,T; H_29) N Ly(0,T; H_g), YT >0, (5.4.8)

and there exists a constant Cgr > 0 such that

1
ltn (D112 + Nt D1 + (@117, +/0 lu,(2) 5
t

1
+ 10 | @l + lua(@)2g]dr < Ce - (5:49)
+tJo

for every t € Ry and initial data such that ||(ug; uy)|| 2 < R.
2. The energy identity

& u(t), ui (1)) +/ o (lu@)} ) (D IFdT = & (uls). ur(s) (5.4.10)
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holds for every t > s > 0, where the energy & is defined by the relation

Euo,m) = 5 [umll* + @ (|4 2uo)] + T (o), (wo3m1) € A,

1

2
with @ and I1 defined in Assumption 5.4.1.

3. If u'(t) and u?(t) are two weak solutions such that ||(u'(0);ul(0))||,» < R i =

1,2, then there exists b > 0 such that the difference z(t) = u'(t) — u*(z)
satisfies the relation

20 1% + IIZ(I)II%/z-i-[O Iz ()5t < brr (IO + 12(0)II7) (5.4.11)

forallt € [0,T].

Proof. As in Section 5.1.2, to prove the existence of solutions, we use the standard
Galerkin method.

We assume that || (uo; u1)|| » < R for some R > 0 and seek approximate solutions
uN(f), N = 1,2,..., with values in PyH which solve the corresponding finite-
dimensional projections of (5.4.1). Such solutions exist (at least locally), and after
multiplication of the corresponding projection of (5.4.1) by u (f) we get that u" (1)
satisfies the energy relation in (5.4.10). By the coercivity requirements in (5.4.2)
and (5.4.4), we conclude that

@™ (t); ul ()| r < Cg forall t€[0,7], N=1,2,3.... (5.4.12)

Since o(s) > 0, this implies that a(||uN(t)||f/2) > og > 0 forall t € [0,7].
Therefore, the energy relation (5.4.10) for u" yields that

T
/ |ul (0)||3dt < C(R), N =1,2,..., forany T > 0. (5.4.13)
0

The next a priori estimate involves the fact that 6 > 1/4. We use the multiplier
A'"72%4N to obtain

d _ 1
- [(A‘ 2N W) + 52(||uN||%/2)] + oI ) e 174
= —Bu"), A"y + ) |5

where X (s) = f(; o(§)dE. Tt follows from (5.4.12) (and a posteriori from the
requirements in (5.4.2) and (5.4.4)) that ¢>(||uN||f/2) > ¢r > 0 and

|(Bw). A" u)| < IBW)l—pllulli—s < ellull}_g + ClIBOW)|I%, (5.4.14)
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for all w € Hy/, and u € Hi—g. Therefore, using (5.4.12), (5.4.3), and the relation
I 113 e < AN 5. 6 = 1/4,

we have

d

_ 1 Or
— |:(A1 200N ) + 52(||uN||%/2)] +

ZoN I = A7 11 + C®),

dt

for t € [0,T]. Since |(A'"=20uM,ul)| < /\}/2_29||A1/2u’v||||uﬁv|| < Cg in our case
(when 6 > 1/4), this and (5.4.13) imply the following a priori estimate:

T
/0 ||uN(t)||%_9dt <CR)(1+T), N=1,2,..., forany T > 0. (5.4.15)

The above a priori estimates show that (u"; ) is *-weakly compact in

Wr = [Loo(0, T; Hy2) N Ly(0, T; Hi—)) | X [Loo (0, T3 H) N Ly(0, T; Hy)]

(5.4.16)
for every T > 0. Moreover, using the equation for u" () we see that
sup [l (0)]|%y <Cr, N=1,2,..., (5.4.17)

t€[0,T]

and also

T T
/0 gy (D112 gt < CR/O [1+ 1O 13- + e OIIF] dr < Cr(1 +T)

for N = 1,2,.... Thus, the Aubin-Dubinskii-Lions compactness theorem (see
Section A.3.3 in the Appendix) yields that (u"; uV) is also compact in

[CO,T;Hijp—) N Ly(0,T; Hi—g—)] x [C(0, T; H-.) N Ly(0, T; Hy—c)]

for every € > 0. Hence there exists an element (u; u,) in Wy (see (5.4.16)) such that
(along a subsequence) the following convergence holds:

N 2
max 1) —u(t
0] [l (2) — u( )”1/2—3

T T
+ /0 1 () — u )|yt + fo 1 () — (@) 2, dr — 0
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as N — oo. In particular, due to the fact that 6 < 1/2, this implies that

T T
[O 1B () — Bu(®)||%, < cR[0 ¥ (1) = u(@)|I3 ,dt — 0 as N — oo,

and also

T T
/0 YA D17 )= (lu@)]i ) < CR/O (O —u(@)|}jpdt — 0 as N — oo,

where 1 is either ¢ or 0. These observations allow us to make a limit transition in
nonlinear terms and prove the existence of weak solutions. One can see that these
solutions possess the properties stated in (5.4.7), (5.4.8), and (5.4.9).
To prove the uniqueness statement, we first show that any weak solution u(r)
satisfies (5.4.7). Indeed, since
Pyue {v e C'(0,T,PyH) : vy € Loo(0, T, PyH)} and PyH C 2(A),

we can use the element A' 2% Pyu(r) as a multiplier for (5.4.1). This yields

A Py, Pae) + o (Jul} ) APy, P
+ @ lull? ) 1Pyulli—_g + (Bw). A" Pyu) = | Pyugl|? 5.
Therefore, using (5.4.5), (5.4.14), and also the relation
[(Aw,v)| < e|lwlli_g + Celv]|2, Ye>0, 0<6 <1,

we obtain the uniform estimate
T
/ |Pyu(t)|[}_gdt < Cr, N=1,2,...
0

This implies (5.4.7) for the solution u(z).
We also note that

WO — )], = 2 / A0, (r). A" u())de

for almost all ¢, s € [0, T], where u(f) is an arbitrary weak solution to (5.4.1). Thus,
by (5.4.5) and (5.4.7) we can assume that ¢ > ||u(?) ||%/2 is an absolutely continuous
function.

Now we prove that (5.4.11) holds for every pair u' () and u?(f) of weak solutions.
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268

One can see that z(f) = u'(f) — u?(f) solves the equation

1 1
2+ 5alz(r)sz, + 5¢>12(z)Az + GG, u*1) =0, (5.4.18)

where 012(1) = 01(1) + 02(1) and $12(1) = ¢1(2) + $2(7) with
0i(t) = o (|’ D)7, i) = ¢l D7), i=1,2, (5.4.19)

and
1

Gl i) =3 {[o1(0) = (A (] + ) + [$1(0) = p2(DAG' + 1))}
+ B(u') — B(i?). (5.4.20)

It is clear that G € LY(Ry;H_g). Since t +> ||u(t)||%/2 is an absolutely

continuous function, the same property holds for ¢, (f). Therefore, we can multiply

equation (5.4.18) by Pyz; and obtain that

1d 2, 1 2 1 2 AN L, 2

Pyz” + §¢12(f)||PNZ||1/2 +§012(t)”PNZt”0+G (n = Z¢12(t)||PNZ“1/2'

24t
(5.4.21)

Here

$1(1) = ¢1(1) + ¢3(1) with /(1) = 2¢' ([l D17 2)(Au' ), i = 1.2,

and
GN(t) = (Gu', u*; 1), Pyz) = HY (t) + HY (1) + HY (¢), (5.4.22)

where

HY 0 = S[01(0) ~ o2 O)AY ) + 1), Pz,

HY 0 = S161(0) ~ pr0)AG + 1), Py

HY (1) = (B(u') — B(u?), Pyz)).

One can see that
(5.4.23)

610 < Cr (llug llollee' -6 + Nl llo 1 1-6) -

Since
G1(t) — a(r) = 2(A(u" + 1?), 2) - P12(0), (5.4.24)
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where ¢, is given by

~ 1 !
P = 5 /0 ¢ Al )13, + (1= DO ,)dA (5.4.25)
and a similar relation holds true for o (f) — 0,(¢), we have that

[HY (0] < €llPyzilly + Cer (Il 5 + 147 13) 121175,
HY (1)) < €llPyzllf + Cer (Il 17— + 14[17_9) l12II7 2.

HY (1)) < €llPyzlf + Cerllzli

with the constant C, g independent of N. This implies

d 1
% [llPNZt||2 + §¢12(t)||PNZ”%/2:| + aglPnzllf < br (1 + din () |12]17)2,
(5.4.26)
where dia (1) = [l 1 + llu7 1§ + llu' I35 + lu?[I7_y. By (5:4.5) and (5.4.7),

t
/ di2(v)dt < Crr, t€][0,T].
0

Therefore, writing (5.4.26) in integral form after the limit transition N — oo via a
Gronwall’s-type argument we obtain (5.4.11).

By (5.4.11) we have the uniqueness statement for weak solutions.

The continuity in .77 and the energy relation for weak solutions follow from the
corresponding properties of solutions to some nonautonomous linear problem which
we state in the following assertion.

Lemma 5.4.5. Assume that ¢(s) and o(s) are strictly positive absolutely contin-
uous scalar functions and ¢’ € L'°(Ry). Let f € LRy, H_g) and (uo;u;) €
C = Hyjy x H. Then the linear Cauchy problem

g + ¢ (OAu 4+ (VA u, = @), >0, u(0) = uy, u,(0) = u, (5.4.27)
has a unique weak solution u(t). This solution possesses the properties
(u(@®);u(t)) € ¥ = C(Ry; Hyjp x H) N LY(Ry; Hi—g % Hy), (5.4.28)
and

t
)

eI + a3 )2 +/( [l 1 + lus()5] dz

t
scT[||u1||2+||uo|l%/z+ / Hf(f)”z—edf] (5.4.29)
0
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for every t € [0, T|, and satisfies the energy relation

Ey (1 u(t). uy(1)) + /0 o () us(0) 2

1 t t
= Ey(0;up, u1) + Efo ¢’(r)||u(r)||%/2dr + [0 (), u,(7))dr, (5.4.30)

where the energy E4(t; u(t), u,(t)) is defined by the relation

1
Byt m®) = 5 [lu @1 + ¢ 0 1@ ]

Proof. We use the Galerkin method. Approximate solutions u" () with values in
PyH exist and, since problem (5.4.27) is linear, the differences ™M () = u"(¢) —
uM (f) satisfy the energy relation of the form

LBy 0,10 1) + 0 0 )13

1

= §¢’(I)IIMN’M(t)II%/z + (F(@0).uM(1)).

This implies that

T
sup {0 + 1 01} + [ 1 0lae
t€[0,7] 0

t
<¢ [n(PN — Pl + 1By = Pl + [ 18 - PM)f<r>||2_9dr]
0
(5.4.31)
A1—29MN,M

for every T > 0. Moreover, using the multiplier we can also find that

T
| 1R e = cx[ ey = Pa P + 1Py = Pl
t
+ / 1Py — PM)f(t)||2_9dt]. (5.4.32)
0

Thus, by (5.4.31) and (5.4.32) the approximate solutions (u";u) converge to a
weak solution in the space ¥ defined in (5.4.28). It is also clear that relation (5.4.29)
holds and the energy relation in (5.4.30) is satisfied. o
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Remark 5.4.6. We note that in the case of “frozen” coefficients ¢ and o (i.e., when
¢(t) = ¢o > 0and o(r) = o9 > 0), problem (5.4.27) generates an analytic
semigroup (see, €.g., LASIECKA/TRIGGIANI [145, Chapter 3] and the references
therein). In particular, this allows us to apply general results (see LUNARDI [154],
for instance) on evolution families generated by time-dependent sectorial operators
to obtain further regularity properties of solutions to (5.4.27). [

Lemma 5.4.5 implies the corresponding continuity properties for the original
nonlinear problem and also the energy relation (5.4.10). For this we consider u(f)
as a solution to (5.4.27) with ¢(t) = ¢ (||u(?)|| /2) o(t) = oa(|Ju@®)| /2) and f(¢) =
—B(u(?)). To obtain the energy relation we also use the obvious equality

FOII = 5 P01~ QI )

The proof of Theorem 5.4.4 is complete. ]
Remark 5.4.7. 1t follows from (5.4.9) that

o0
sup {1230 + )1 + )12 + /0 le(O)l3de < Cr (5.433)
teR

for any initial data such that ||(ug, u1)||,» < R. The finiteness of the dissipation
integral in (5.4.33) is important for the study of long-time dynamics. [

Remark 5.4.8. In the case when 0 < 6 < 1/4, from the energy relations for
approximate solutions #" (f) we can obtain the same a priori estimate as in (5.4.12)
and (5.4.13). Then using the multiplier A" we find that

d
2@ )+ o (7o) (A", A )
+ U I N1 20 + (B™), A7) = 5.

This and also estimates (5.4.12) and (5.4.13) yield the relation
/ lu (1) ||? 124edt <CR)Y1+T), N=12,..., foranyT > 0.

This bound allows us to make the limit transition in nonlinear terms for0 < 6 < 1/4
and to prove the existence of weak solutions #(#) such that

(u; u,) (S] LOO(O, T; H1/2 X H) N LQ(O, T; H1/2+9 X Hg)
We do not know how to prove the uniqueness of weak solutions in the case 0 < 6 <

1/4. The point is that the estimate in (5.4.15) is possible in the case 6 > 1/4 only.
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5.4.2 Smooth solutions

Now we prove additional smoothness of weak solutions. To do this, we need
additional requirements concerning the nonlinear force B(u).

Assumption 5.4.9. We assume that B : Hy/, — H_g has a Fréchet derivative B'(u)
which is a linear operator from Hj,, into H—y for each u € H;, and there exists
¢, > 0 such that

(B'(u)v,v) = —¢,[|v][§ and [ATB ]| < c,llv]lo

forevery u,v € Hyjs, |ulli/2 < p.

Proposition 5.4.10 (Regularity). Let Assumptions 5.4.1 and 5.4.9 be in force.
Then for every weak solution u(t) with initial data (ug;u;) € € we have the
following additional regularity:

(u;u;) € Loo(a, T; Hi—g X Hg), uy € Loo(a,T; xH_g) N Ly(a,T; H)
for every 0 < a < T. Moreover, there exists cgr > 0 such that

R.T

t+1
C
la®) 12 + O + Ol + [ l(@lPde < 65 5434
t

for every t € (0, T| under the condition ||(uo; u1)||» < R.
If we assume in addition that (ug; u;) € Hi—_y X Hy, then

t
lua @126 + N D115 + @7 +/0 lua(@IPdT < crr (14w + lluolli_s)
(5.4.35)
foreveryt € (0,T].

Proof. The argument below can be justified by considering Galerkin
approximations.

Let u(t) be a solution such that ||(u(?); u;(¢))||.» < R for ¢t € [0, T]. Formal
differentiation gives that v = u,(f) solves the equation

va + o ([ullf A v + ¢ (lull} DAV + B'@)v + Gu(uuiit) =0, (5.4.36)
where

Gt = 20" (I 04w, + 'l ) Aue] (At ).
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Thus, multiplying equation (5.4.36) by v and using (5.4.9), we have that

d 1
" [(v, ) + EU(”M”%/z)”U”é] + ¢} )NV, + B (W, v)
< lloill? + Cr [|(Aw, v)* + | (Au, v)] [0 ]I5] -

This implies that

d 1
2[00+ SO 013 |+ gl o+
B0 = Tl + Co[leli + lallolulo] 1013,

Using the multiplier A= v, in (5.4.36) we obtain

1d
52 L2 + @l ) 1010 | + o lull )l vl
< Cr [ I llollolluli=o + W13 oo Nl el | + [ A2 By, v

Here we also use the fact that 6 > 1/4. Let

1 1
w0 = 5 1002 + @l ) 1010 | + 0 [(v, v) + 5o(uun%/z)nvn?;]
for n > 0 small enough. It is obvious that there exists 79 > 0 such that

nag [villZg + lvl5] < Wa () < br [llvilZg + [lvII5] -

for 0 < n < ny. Moreover,

d
S 1) + (B (0. ) + el
< Callwl} + Il + 1A= (0. )|

Thus, by Assumption 5.4.9,

d
— W0+ erllvrl? = Cr1+ Nl + uali_g) 0115 (5437)

Using the finiteness of the integrals in (5.4.9) and a Gronwall’s-type argument,
we obtain that

||utt(t)||30+IIMt(t)||§+/O lun()IPdT < Crr (lun(0)]2 + lue(0)[3)  (5.4.38)
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for t € (0, T). It follows from (5.4.1) and (5.4.9) that

@12y < Cr (1 + [lu(@IF—g + llu D7) . (5.4.39)
lu@)li—g < Cr (1 + llua(®]24 + lu(0)]17) (5.4.40)
for all + > O under the condition |(ug;u;)||l,,x < R. Therefore, (5.4.38)

implies (5.4.35).
To obtain (5.4.34) we multiply (5.4.37) by 2. This yields

d
E[IZ‘I’*] + art® v l* < Cr (14 lluellg + llulli_g) [PWi] + 2tbg [[[0:]125 + I01I5] -
(5.4.41)

One can see that
2o < 1+ Pllullllvlg < Cr[l + llw (0], € [0,T],
and
lvell2g < Cllvdlllluell-2, 1 € [0,7].
The relation
Ay, = _(7(”’4”%/2)’41 - ¢(||u||%/2)A1_20u _A_ZQB(U)
yields |[A=?%u,|| < Cg. Therefore,
tlvil2y < Crellvll < e |vil|* + Cre, 1 €[0,7].

Thus, from (5.4.41) we have
d 2 1 2 2 2l1/
E(t Y,) < Cr+ CR( + lluellg + ||14||1—9) (W]

Using the finiteness of the integrals in (5.4.9) and also relation (5.4.40), we
obtain (5.4.34). o

In further considerations we need the following properties of stationary solutions.

Proposition 5.4.11. [In addition to Assumption 5.4.1 we assume that

timinf {@(ul )l + (Blw).w)} > 0. (5.4.42)

flaell 1/2—>00

Then the set



5.4 Kirchhoff wave models with a structural nonlinear damping 275

Ny = {u € Hypo : p(lull?)Au + Bu) = o} (5.4.43)

of stationary solutions is a nonempty compact set in Hy . Moreover, ¥, is bounded
in H1_9.

Proof. One can see from (5.4.42) and from Lemma 4.3.7 on the “acute angle” that
there exists a sequence {u"} of approximate stationary solutions (with values in
PyH) which is bounded in Hy»: ||u" |1/ < R for some R > 0. From the equation
for u" we have

2 2 2
crlu™li=g = ¢Uu™IF DN 7 < 1B@™)l-pllu™ll1—-6 < Crllu"ll1-

for positive cg and Cg. This implies that [|u"||;—g < Cg. Since H;_y is compactly
embedded in Hj/, we can make the limit transition along a subsequence of {u"}
and conclude the proof. o

Remark 5.4.12. The condition in (5.4.42) holds true, if s¢(s) — +oo0 as s —> +00
and (B(u), u) > —c for all u € Hy», for instance. Another possibility for (5.4.42) in
the case of the wave model in R? is shown in Section 5.4.4 below. =

5.4.3 Long-time dynamics

In this section we deal with a global attractor for the dynamical system gen-
erated by (5.4.1). There are many papers on stabilization to zero equilibrium
for Kirchhoff-type models (see, e.g., AUTUORI/PUCCI/SALVATORI [6], CAVAL-
CANTI ET AL. [27], MATSUYAMA/IKEHATA [162], MEDEIROS/FERREL/MENEZES
[163], MEDEIROS/MILLA MIRANDA [164], TANIGUCHI [214] and the references
therein) and only a few recent results devoted to (nontrivial) attractors for systems
like (5.4.1). We refer to NAKAO [169] for studies of local attractors in the case of
viscous ( = 0) linear damping. The global attractors were studied only in the
case of a strong damping (6 = 1/2); see CHUESHOV [42] and also FAN/ZHOU
[96], NAKAO/ZHIJIAN [170], YANG ET AL. [225-227] in the case 0 = const > 0
possibly perturbed by nonlinear viscous damping terms.

We concentrate on the case 1/4 < 6 < 1/2 with nontrivial stiffness ¢ and
damping o factors.

By Theorem 5.4.4 problem (5.4.1) generates an evolution semigroup S; in the
space % = H\/» x H by the formula

Sy = (u(t); u,(t)), wherey = (up; uy) € ¢ and u(r) solves (5.4.1). (5.4.44)

One can see from the energy relation in (5.4.10) that the dynamical system (57, S;)
is gradient on 7 (see Definition 2.4.1). The full energy & (uo;u1) is a strict



276 5 Second Order Evolution Equations

Lyapunov function. Thus, we can use the criterion of the existence of global
attractors for gradient systems (see Theorem 2.4.16).

To prove finiteness of the fractal dimension of global attractors, we use the quasi-
stability method based on an appropriate stabilizability estimate. For this we need
additional hypotheses concerning nonlinear force B(u). In fact, they require some
smoothness of the potential mapping B(-) (see Section A.5 for the basic definitions)
and are almost the same® as those in Assumption 5.3.1.

Assumption 5.4.13. Assume that

e B(u) = II'(u) with the functional IT : Hy;, +— R, which is a Fréchet C*
mapping.

 The second I7® (1) and the third IT® (u) Fréchet derivatives of IT(u) satisfy the
conditions
(TP w):v,v)| < elvll})y + Coellvl> v eEHyp Ye>0, (5.4.45)
and
(TP (w); v1.v2,03)| < Collvillij2llvallij2llvalle.  vi € Hy, (5.4.46)
for all u € Hi_g such that |jul|i—¢ < p, where p > 0 is arbitrary and C, is a
positive constant. Here (IT%® (u); vy, ..., v;) denotes the value of the derivative

mn® (u) on elements vy, ..., v;. For details concerning the Fréchet calculus we
refer to Section A.5 in the Appendix.

Assume now that u' (7) and ?(f) belong to the class C'([a, b]: H;) for some interval
[a.b] C R. Let z(f) = u'(f) — u?(¢). Then, by the same argument as in Section 5.3.1,
we can obtain the representation

(B (0) =BG 0).2(0) = SO0 + R0, 1€l CR (5447
with
06) = 3?6 0):2(0).2() (5.4.49)
and

] 1
R(t) = —5(17(3>(u2);u,2,z,z) +/ (1= )(ITP W + A2): 2,2, z,)dA.
0

8 The main difference is that relation (5.4.45) and (5.4.46) hold for u € H\—g in the present case.
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If we assume in addition that ||u’()||;—y < R for all ¢ € [a,b], i = 1,2, then by
Assumption 5.4.13 we have the estimates

100)| < ellz@)I} ), + Crelz®I. Ve >0, (5.4.49)
and
IRO)| < Crllu o + 17 llo) 120117 - (5.4.50)

Our main result in this section is the following theorem.

Theorem 5.4.14. Let Assumptions 5.4.1 and 5.4.9 be in force and relation (5.4.42)
be valid. Then the following assertions hold.

(1) The evolution semigroup S; possesses a compact global attractor U in 5€ which
is a bounded set in Hi—g X Hy. Moreover,

+1
sup (nu(r)n%_@ @12 + a2 + / ||u,,<r)||2dr) < Ca
t

1eR
(5.4.51)
Sfor any full trajectory y = {(u(t); u,(t)) : t € R} from the attractor 1. Moreover,

A= HM"(N), where N = {(u;0) € A : p(|A*u|*)Au + B(u) = 0}
(5.4.52)
and dist - (y, A) — 0 ast — oo foranyy € €.
(2) Assume in addition that either B(u) is subcritical ° on H\_g in the sense that
there exists § > 0 such that

B(u1) — B(uz)||-o < L(0)llu1 —uzll1/2—s. Vlluilli-o < o. (5.4.53)

or else Assumption 5.4.13 holds. Then the attractor 2 has a finite fractal
dimension and the following hold.

(a) Any trajectory y = {(u(t);u,(¢)) : t € R} from the attractor 2 possesses the
properties

(w5 uss uy) € Loo(R; Hi—g X Hijp x H) (5.4.54)
and there is R > 0 such that

sup sup (lu(t) I3 + )13 + N (0)|?) < R, (5.455)
yCA teR

° As we will see in Section 5.4.4, the mapping B can be subcritical on H;_y and critical (or even
supercritical) on the potential energy space Hj .
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(b) There exists a fractal exponential attractor .y, in J.

(¢) Let & = {l; : j = 1,...,N} be a finite set of functionals on Hy;, with the
completeness defect € 4 = € (Hyj2, H). Then there exists &g > 0 such that
under the condition €y < g the set £ is (asymptotically) determining in the
sense that the property

lim max |};(u' (1) — ()| = 0
t—>00

for a pair of weak solutions u'(t) and u'(t) implies that

(@) = 2@ 12 + 1 1) = D1} = 0.

lim
—>00

Proof of Theorem 5.4.14. Let
éoR = {(uo;ul) e I : g(l/lo,ul) < R} s (5456)

where & (ug,u;) is the energy defined in the statement of Theorem 5.4.4. It
follows from Assumption 5.4.1 that IT(u) is bounded on every bounded set (see
Remark 4.2.21), and for every bounded set B C ¢ there exists Rp such that
B C &g,. By (5.4.2) and (5.4.4) the set &% is bounded for every R, and by the
energy relation in (5.4.10) &k is a positively invariant set in 5. This implies that
Y0(B) = |U,>( S:B is bounded for every bounded set B. The smoothness result stated

in Proposition 5.4.10 implies that @@;l’ := 8§18k is a compact set for every R > 0.
Therefore, S; is asymptotically smooth (even compact) on every set &¢. Thus, the
first part of the theorem follows from Theorem 2.4.16 and Proposition 5.4.10.

To prove the second part of Theorem 5.4.14, we first note that the set & given
by (5.4.56) is absorbing for R large enough; i.e., there exists R, such that for any
bounded set B C 5 one can find t5 > 0 such that S;B C &%, for all t > t5.
This follows from the existence of a global attractor. By Proposition 5.4.10 the set
5,51) = S, &g, is bounded in Hi_g X Hy. Since &, is a positively invariant absorbing
set, the same property is true for éjgi) . We use this observation in the proof of a quasi-
stability property of S; in the energy space 7, which is stated in the following
assertion.

Proposition 5.4.15 (Quasi-stability). Let the hypotheses of the second part of
Theorem 5.4.14 be in force. Assume that u'(tf) and u*(t) are two weak solutions
such that

||ui(t)||%_9 + ||u;(t)||§ <R? forall t >0 and for some R > 0. (5.4.57)



5.4 Kirchhoff wave models with a structural nonlinear damping 279

Then the difference z(t) = u' () — u*(t) satisfies the relation

t
IO + 12001 > < an (IO + O ) €7 + e [ 7o),
0

(5.4.58)
where ag, bg, yg are positive constants.

Proof. We start with the following lemma.

Lemma 5.4.16. Let u'(t) and u*(t) be two weak solutions to (5.4.1) satisfying
(5.4.57). Then for z(t) = u'(t) — u*(t) we have the relation'’

d
5@+ crllzll ) < collzllf + Crllzl? (5.4.59)

forallt €[0,T], whereco = 1 + )Ll_e.

Proof. The difference z(f) = u'(f) — u?(t) solves (5.4.18). Therefore, multiplying
equation (5.4.18) by z in H yields

d 1 1
E(Z’ %) + Emz(t) S(A%z,7) + §¢12(l) Nzllt )y + (G P, 0).2) = ||zl
where

o12(1) = 01(1) + 02(2), $12() = $1(1) + P2(2)

with 0;(¢) and ¢;() given by (5.4.19), and G(u', u?, 1) is defined by (5.4.20).
Using (5.4.24) and (5.4.49) under the condition (5.4.57), we have that

[§1(r) — $2(1)| < Crllzllo.
and hence
[61() — $2(01(AGW" +u?),2)| = Crllzll§ < €llzll ), + Cerllzl®, Ve > 0.
Similarly,
l[o1(5) = 02 (DA™ () + ), )| < Crllzlf < ellzll? ), + Cerlizll®, Ve > 0.
We also have that

|(Bu') —B?),2)| < |Bu') = B()l|-glzllo < ellzll} ), + Cerllzll?

101t is easy to show that the product (z, z;) is absolutely continuous with respect to ¢ for every pair
of weak solutions, and thus the relation in (5.4.59) has meaning.
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and
1472, 2 < ozl < & (Il + 2l ) + Celel™

Thus, using the structure (5.4.20) of the term G(u',u?:f) in (5.4.18) we
obtain (5.4.59). o

Now we multiply (5.4.18) by z, and obtain that

= [nz,n2 + %«pn(t)uzn%/z] + 300013+ G0 = [6H0lR, (5460
with
G(t) = (G(u' v’ 1), z) = H\ (1) + Hy(t) + H3(2).
where

1
Hi(1) = Slon(0) — o2 (DA% (u] + 7). 2),
1
Hy(1) = S1i(1) — (D] A" + u®), )
Hs(1) = (B(u') — B(u?), ).
One can see that under the condition in (5.4.57),
IHi(0)] < ez + 12017 ) + Cerllzl?. Ve>0, i=1.2.

If B is subcritical on H|_y in the sense of (5.4.53), then the estimate for Hj(¢) is
direct and the same as that for H; and H5:

IH3 0] < Cellzllolzliz-s < & (lal + 1203,) + Crelld?, Ve >o.

Therefore, in the argument below we concentrate on the case described in Assump-
tion 5.4.13. In this case we use relation (5.4.47) and introduce the energy-type
functional

1 I
Ei() = 5 |zl + 5600lzl7, + 00 |,
2 2

where Q(¢) is given by (5.4.48). From (5.4.60) and (5.4.50) using the calculations
above, we obviously have

d
piUs crllzelf < [e + Crelllu/ 15 + I 1] 12112 + Crellzl.



5.4 Kirchhoff wave models with a structural nonlinear damping 281

Therefore, using Lemma 5.4.16 and relation (5.4.49), we obtain that the function
Wi(®) = E«(D) + n(z.2:) + K|z()]* n >0,

with appropriate K > 0 and 7 > 0 small enough, satisfies the relations

ar (IO + 12013 2) < Watt) < br (IO + 120113 )

and

d

V() +erWa() = Crllug 115 + 1l I5) W (6) + Crllz(0)||?

with positive constants. Thus, the finiteness of the dissipation integral in (5.4.33)
and the standard Gronwall’s argument imply the result in (5.4.58) in the case when
Assumption 5.4.13 holds. In the subcritical case (5.4.53) we use the same argument
but for the functional E, without the term containing Q. o

Completion of the proof of Theorem 5.4.14. We first note that Proposition 5.4.15
means that the semigroup S; is (asymptotically) quasi-stable in the sense of
Definition 3.4.15 on the positively invariant absorbing set é‘}gi) = S§,&%,, where
&% is defined in (5.4.56) and Ry is sufficiently large.

To obtain the result on regularity stated in (5.4.54) and (5.4.55), we first apply
Theorem 3.4.19, which gives us

sup ([l (01} + a()]) < Ca
teR

for any trajectory y = {(u(?); u,(¢)) : t € R} C 2. Therefore, applying (5.4.51) we
obtain (5.4.54) and (5.4.55).
By (5.4.35) any weak solution u(f) possesses the property

t+1
lu@ i + [l (D)II3 +/ lua(2)|*dT < Cr,r for 1€[0.T], ¥T >0,
t

provided (up;u;) € @@IS). This implies that ¢ +— (u(?);u,(t)) = S,y is a 1/4-
Holder continuous function with values in J# for every y € é’,gl). Indeed, using
the interpolation inequality (4.1.2) with u = 1/2, 0 = 1 — 0, B = 6, we have

lu(e + h) — u@) |12 < [l + 1) |16 + [u@1—6]"> lul + h) — u(r)]}/?

t+h
/ () llodx
t

1/2

<Cr..T < Cln|V4,
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and similarly for ||u,(t + h) — u,(¢)|. Since <5}§l) is a positively invariant absorbing

set, the existence of a fractal exponential attractor follows from Theorem 3.4.18.
To prove the statement concerning determining functionals, we use the same idea

as in the proof of Theorem 3.4.20. o

5.4.4 An application

In a bounded smooth domain 2 C R?, d = 1,2,3, we consider the following
Kirchhoff wave model with a structural nonlinear damping:

uy + o (| V) [=ApF us — ¢ (I Vul*) Au + f(u) = 0, x € 2, 1> 0,

ulge =0, u(0) =uy, du(0) = uy.
(5.4.61)

Here [—Ap]?? is the power of a (positive self-adjoint) operator —Ap generated by
the Laplacian A with Dirichlet boundary conditions and || - || is the L,-norm. We can
represent this problem in the abstract form (5.4.1) by setting H = L,(£2),A = —Ap
and with B(u) the Nemytskii operator generated by the function f (). We note that
the presence of the parameter 6 in the model allows us to control the “strength” of
the dissipative mechanism between the viscoelastic Kelvin-Voight damping (8 =
1/2) and the dynamical friction (6 = 0). We do not know whether all values of
0 < 6 < 1/2 can be realized in real physical situations.

One can show (see CHUESHOV [40] for details) that Assumption 5.4.1 is satisfied
if we impose the following hypotheses.

+ The damping (o) and the stiffness (¢) factors are positive C' functions on the
semi-axis R4 = [0, +00). Moreover,

/szi)(é)dé — +o00 as s = 400,
0

and 1/4 < 0 < 1/2.
e f(u)is a C! function such that £(0) = 0 (without loss of generality) and (a) if
d = 1, then f is arbitrary; (b) if d = 2, then
If'(w)| < C(1+ [uf™") forsome p > 1

(c)if d = 3, then

3
If'(w)| < C(1+uP™") withsome 1 <p <p, <2+ T
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e [fighi + py > 0, where A, is the first eigenvalue of the operator —Ap and
flg == liminf¢(s) > 0 and py := liminf{s_lf(s)} >0
s—>-+00 |s] =00

(if fty = +o00, then p; > —oo can be arbitrary).

These hypotheses imply the statement of Theorem 5.1.4 for the model in (5.4.61).
Moreover, this is the subcritical case, i.e., (5.4.53) holds. To employ Assump-
tion 5.4.9, we need to assume only that

inf {f'(u) : ueR} > —oo.

Therefore, we have that both Proposition 5.4.10 and Theorem 5.4.14 hold true
for the Kirchhoff wave model in (5.4.61). For more details concerning this example,
we refer to [40].



Chapter 6
Delay Equations in Infinite-Dimensional Spaces

Our main goal in this chapter is to demonstrate how the method developed in
Chapters 2 and 3 can be applied to study qualitative dynamics of abstract evolu-
tion equations containing delay terms. These equations naturally arise in various
applications, such as viscoelasticity, nuclear reactors, heat flow, neural networks,
combustion, interaction of species, microbiology, and many others. The theory
of delay, or more generally, functional differential equations has been developed
by many authors (see, e.g., the discussion and the references in the monographs
DIEKMANN ET AL. [84], HALE [115] and WU [224]).

The general theory of delay equations in infinite-dimensional spaces started
with FITZGIBBON [101] and TRAVIS/WEBB [218] at the abstract level and was
developed in the last decades mainly for parabolic-type models with constant and
time-dependent delays (see, e.g., the monograph WU [224] and the survey RUESS
[200]). Abstract approaches for C-type (FITZGIBBON [101], TRAVIS/WEBB [218])
and L,-type (KUNISCH/SCHAPPACHER [138]) phase spaces are available.

In this chapter we deal with two classes of models.

One of them is represented by a first order equation whose linear stationary part
is a positive self-adjoint operator. In fact we consider some delay perturbations of
the model studied in Sections 4.2 and 4.3. We deal with two types of perturbations.
The first type is represented by Lipschitz mappings defined on the natural “history”
space. The perturbations of the second type are more singular and include a case of
a discrete state-dependent delay.

The second class of models is represented by second order in time evolution
equations, which are similar to the ones considered in Chapter 5, but perturbed by
delay terms. The hypotheses imposed on the delay forces in the latter case allow us
to cover an important class of models with state-dependent delay.

In all cases, to study the long-time dynamics we rely on the quasi-
stability method. In the delay case this method was applied earlier in

© Springer International Publishing Switzerland 2015 285
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CHUESHOV/LASIECKA/WEBSTER [63, 64] and CHUESHOV/REZOUNENKO [66]
for second order models and in CHUESHOV/REZOUNENKO [67] for parabolic
equations.

6.1 Models with parabolic main part and Lipschitz
delay term

We consider abstract evolution equations of the form
u;, + Au = B(u'), u(s)|x€[_h~0] =u’(s) = ¢(s), (6.1.1)

in a Hilbert space H, where A is a positive self-adjoint operator and B(u') is a
nonlinear mapping which is defined on pieces u' := {u(t + s) : s € [—h,0]} of
an unknown function u and has its values in H, ¢ : [—h, 0] — H is a given (initial)
function.

Here and below # represents the (maximal) delay effect. We deal with arbitrary
(but fixed) 0 < h < 4o00. The case h = +o00 is beyond the scope of the theory
developed here.

Our main motivating example is a reaction-diffusion equation with (discrete)
delay time 4 in the reaction term of the form

u(x, 1) = Au(x,t) + f(u(x,t —h)), xe 2 CR? t>0.

We note that in order to state the problem rigorously for all time moments ¢ > 0 we
need to know prehistory, i.e., the values of the concentration u(x, #) for t € [—h, 0].
This leads to a Cauchy problem of the form (6.1.1) with initial data imposed on the
interval [—h, 0] and with nonlinear term B which is determined at given time ¢ by
the values of solutions in the time interval z — h, f].

To obtain our well-posedness result below, we mainly follow the method
suggested in TRAVIS/WEBB [219]; see also FITZGIBBON [101], TRAVIS/WEBB
[218] and WU [224].

6.1.1 Well-posedness and generation of a dynamical system

Similar to Chapter 4 we impose the following hypotheses.

Assumption 6.1.1. We assume that H is a separable Hilbert space with the norm
| - || and the inner product (-, -) and

(A) A is a linear positive self-adjoint operator with discrete spectrum on H (see
Definition 4.1.1). As in Section 4.1 we consider the scale of spaces Hj
generated by powers A® of the operator A.
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(B) B is a (nonlinear) continuous' mapping from %, into H with 0 < a < 1, where
6. = C([—h, 0], Hy) is a Banach space endowed with the norm

lvle, = sup{l| A%v(0) |: 6 € [-h, 0]}
We also assume that B is bounded on bounded sets in €, i.e.,
VR>0,3Cg: |B()| <Cg forall |v|g, <R.

As in Chapter 4 we introduce the following definition.

Definition 6.1.2 (Mild solution). A function u € C([—h,T);H,) is said to be a
mild solution to (6.1.1) on an interval [0, T) if u(¢) = ¢(¢) for all ¢t € [—h, 0] and

u(t) = e "u(0) + [ e TIABWY) dr, te€[0,T). (6.1.2)
0

Similarly we can define this notion for the closed interval [0, T]. Here and below
we denote by u' an element in 6, = C([—h, 0]; Hy) of the form u'(0) = u(t + 6),
0 € [-h,0]. n

In the standard way (see TRAVIS/WEBB [219]) we can prove the following result on
the existence of local solutions, which is the main ingredient of the well-posedness
result stated later.

Proposition 6.1.3 (Local existence). Let Assumption 6.1.1 be in force. Then for
every ¢ € G, we can find 0 < Tyax < 0o such that

(a) there is a mild solution u(t) to problem (6.1.1) defined on [—h, Thnax);
(b) we have that either T,y = 00 or lim7,,, —o |u(?)|g, = o0o.

Proof. We use the same idea as in TRAVIS/WEBB [219] (see also WU [224,
Section 2.2]) and, in contrast with the non-delay result presented in Theorem 4.2.3,
we involve Schauder’s fixed point theorem (see, e.g., ZEIDLER [231, Volume I,
Chapter 2]) instead of the contraction principle. The point is that we now do not
assume any Lipschitz conditions concerning B. In some sense this proposition is an
infinite-dimensional analog of Theorem A.1.2.

Let Wy = C([—h,T),Hy) endowed with the corresponding sup-norm. For a
given ¢ € %, we define an element in Wy by the formula

(1), if t € [—h,0];
¢@) =
e Mp(0), if re(0,T].

In contrast with Assumption 4.2.1, at this point we do not assume any Lipschitz properties for
B(u). See the comments in Remark 6.1.4.
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It is obvious that |@|w, < |¢|¢,. Now we assume that |p|4, < p for some p > 0,
and on the ball

DRZ{UGWT : |M|WT§R}CWT
we consider the mapping

0, if t € [—h,0];

Bv](t) = ‘
/ e TOAB(@T +vT)dr, if t€ (0,T).
0

If v is a fixed point for £, then the function u = ¢ + v is a mild solution.
For every 0 <, <t, < T we have that

Blv)(t) — Blol(n) = / " AR 4 ) dr

n

1
+ / e_(fl_f)A [e_(fz_fl)A _ 1]B(¢T + v‘[) dr.
0
Due to (4.1.8), (4.1.9), and (4.1.10), this implies that
o\« o _
1101(t2) = 2010 < (2) J2 =071 =)™ Crsy

1= 0PI+ s g AT TP Cre

forevery 0 < f < 1 —«, where C, = max {||B(v)| : |v|¢, <r}and

o0
Hy = a“/ E%e ¢ dE.
0
Thus A[v] is Holder in the sense that
|93[v]|H£(O’T) < Cop(R,p) <00, v € Dp, (6.1.3)
where

Ha 0.T) It — 1#

h,h € [0, T]
|t1 —l2| <1

In particular, this means that Z[u] € Wr and thus & : Dg +— Wr. Itis also easy to
see that this mapping is continuous in the Wr-topology.
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For all ¢ € [—h, T] using (4.1.9) we have that

B
s < (£) 7700 g ey we v, (6.14

for every 0 < B < 1. Thus taking 7 such that
o
(E) T'"(1— )" Cryp <R,
e

we obtain that the ball Dy is invariant with respect to 2.
Now we show that the closure 8 (Dg) of A(Dg) is compact in the Wr-topology.
Indeed, applying (6.1.4) with 8 > « we obtain that the set

#(Dg) = {v(1) : v € B(Dp)}

belongs to a bounded set in Hg for each t € [—h, T]. By Proposition 4.1.6 Hy is
compactly embedded into H,. Therefore %,(Dg) lies in a compact set of H, for
every t. By (6.1.3) Z(Dg) is an equicontinuous collection on [—A, T]. Thus we can
apply the Arzela-Ascoli theorem (see Lemma A.3.5 in the Appendix) to show that
#(Dg) is compact in Wr. Therefore by Schauder’s fixed point theorem? % has a
fixed point in Dz which defines a solution.

To complete the proof we use the same argument as in Theorem 4.2.3.

If a solution exists on a closed interval [0, 7], then by the previous argument we
can extend it on the interval [0, T + 6], where § depends on an upper bound for
|u”|¢,, where, as above, u” = {u(T + ) : 6 € [—h,0]}. This means that there is a
maximal existence interval [0, T},4). If T} < +00 and

lim |u'|¢, = 400 is not true,
t—=>Tinax—0

then there exists a sequence 7,, — T, — 0 and a number R, such that T |z, < R«
foralln = 1,2, .... Thus using u as an initial data we can extend the solution to an
interval [0, T,, 4 8] for some § > 0, which does not depend on n. Since T, — T},
this means that we are able to extend the solution beyond 7,,,;.

This completes the proof of Proposition 6.1.3. o

Remark 6.1.4. The argument above can be applied in the non-delay case considered
in Section 4.2. In this case Proposition 6.1.3 presents another way to obtain the
local existence result stated in Theorem 4.2.3 even without assuming the Lipschitz

2 The theorem asserts (see, e.g., ZEIDLER [231, Volume I, Chapter 2]) that if K is a convex subset
of a Banach space and T is a continuous mapping of K into itself such that 7'(K) is contained in a
compact subset of K, then T has a fixed point.
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property (4.2.2). The principal role is played by the fact that the linear part of
the problem generates an analytic semigroup with smoothening properties (see
Section 4.1). n

Using the non-explosion condition in Proposition 6.1.3 we can provide the
following result on the existence of global solutions.

Exercise 6.1.5. Let the hypotheses of Proposition 6.1.3 be in force. Assume that
the nonlinearity B(v) is linearly bounded, i.e., there exist constants C; and C, such
that

[BO)|| < Ci + Calvlg,, Y veC.

Then every local solution can be extended on the whole Ry . Hint: Use (6.1.2), (4.1.9),
and the step-by-step procedure as in Section 4.2 or in the proof of Theorem 6.1.6
below. [

Now we are in position to establish the main result of the section.

Theorem 6.1.6 (Well-posedness). Let Assumption 6.1.1 be in force. Assume in
addition that B is a (nonlinear) locally Lipschitz mapping from 6, into H with
0 <a <1, i.e, we assume that for every p > 0 there exists L, such that

IB(vi) — B(v2)|| < Lylvi — valg,, vi € 6u, |vilg, <p, i=1,2. (6.1.5)
7

Then the local solution given by Proposition 6.1.3 is unique. Moreover, any two mild
solutions uy (t) and uy(t) with initial data u9 and u3 on the joint interval [0, T of the
existence admit the estimate

| ur(t) — uz(®) o< Cr(R)|u — iS4, t€[0,T], (6.1.6)

under the condition sup_y, 7 |lu;() ||« < R.

If B(u) is globally Lipschitz, i.e., (6.1.5) is satisfied with L, = L independent of
o, then for every u’ € G, there exists a unique mild solution to (6.1.1) for every
interval [0, T]. In this case (6.1.6) can be written in the form

| w1 () — uz(0) o< Ae®|ul — uSlg,, >0, (6.1.7)
for every pair of mild solutions u(t) and u(t), where A > 0 and w > 0 are

constants.

Proof. We need to show the Lipschitz properties in (6.1.6) and (6.1.7) only.
We first note that (6.1.2) and also (6.1.5) and (4.1.9) imply that

t
s (1) = w2 (D[l < [1u7(0) = u3(0) | + Crer / |uf — u3le, dr.
0

1
(t—1)
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This yields

toax luy — wlleg, < |uf — w3k, + CraT' ™4 (1 — )™ max Iy — 5],
T T

for every T < T. Thus we can choose T = T(R, «) such that

max oy — s, < 20u — e, (6.1.8)
0,7

Therefore, applying the step-by-step procedure we obtain (6.1.6). In the globally
Lipschitz case the constant Cgo does not depend on R. This implies the same
property for 7. Thus (6.1.8) yields (6.1.7). o

Now we impose a hypothesis which guarantees the global solvability of prob-
lem (6.1.1) in the locally Lipschitz case. This set of hypotheses is a delay version of
Assumption 4.2.20.

Assumption 6.1.7. Assumption 6.1.1 and relation (6.1.5) hold with @« = 1/2.
Moreover we assume that

B(v) = —Bo(v(0)) + B1(v),

where By : €1/> — H is linearly bounded, i.e.,
IBi()|| < c1 + calvlg ), v € Cip,

and By : Hj;» + H is a potential operator on the space Hj,,; i.e., there exists
a Frechét differentiable functional IT(u) on H, /> such that By(u) = IT'(u) in the
sense of relation (4.2.30). See also Section A.5 in the Appendix.

Roughly speaking, we assume that the nonlinearity is split into a non-delay potential
part and a globally Lipschitz delay term.

Theorem 6.1.8. Let Assumption 6.1.7 be in force. Assume that the functional IT (u)
possesses the property: there exist B < 1/2 and y > 0 such that

BIAY2ull® + M) +y >0, VueH,). (6.1.9)

Then for every ¢ € €\ problem (6.1.1) has a unique mild solution on R lying in
the space C([—h, +00); Hy/2).

Proof. The following argument is formal. To justify it we can use calculations with
the projection Pyu as in the end of the proof of Theorem 4.2.22.
If we multiply (6.1.1) by u,, then we obtain that

d
o1 + 5 | 142 + e |

1
= Bi@),w(0) = SluOI + ] + Sl ,-
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It is easy to see that
1 1

WG i= 1AV + 10+ y = (5= B ) 14" ul?

and satisfies the inequality
t
W) = W) +7 +a} [ 1l o
on any interval [0, 7] with some a; > 0. Therefore,
t
max [[A"2u(s)||* < C(T) + C [ max [|AY2u(r)|?dt
s€[0,7] o0 s€[0.7]

on any interval [0, T] under the condition that |u°|, ,» < p. This relation allows
us to apply Gronwall’s lemma and use the non-explosion criterion stated in
Proposition 6.1.3. This yields the desired conclusion. ]

Remark 6.1.9. As in Section 4.2.3 we can apply the Galerkin method to study
the problem in (6.1.1). Under the conditions of Theorem 6.1.6 we can prove the
corresponding analog of Theorem 4.2.19 on convergence of approximations and
give an alternative argument in the proof of Theorem 6.1.8. We do not pursue these
issues for the model discussed now, and postpone them to Section 6.2, which is
devoted to a state-dependent delay. [

The results above allow us to construct a dynamical system. Indeed, let the
conditions of Theorem 6.1.6 be in force. Assume in addition that for every initial
data ¢ € %, the corresponding solution u(z) to (6.1.1) exists globally (e.g., the
hypotheses of Theorem 6.1.8 are valid). Following the standard procedure (see, e.g.,
[115] or [224]) we can define a family of mappings S; : 6, + %, by the formula

[Sipl(0) = u(t+ 0), ¢ € C, (6.1.10)
where u(t) solves (6.1.1) with the initial data ¢. One can see from Theorem 6.1.6

that

e for each r € R, the mapping S; is continuous on %;
e the family {S;},er_ satisfies the semigroup property;
« the function ¢ — S, is continuous in %, for every ¢ € %,.

Thus problem (6.1.1) generates (see Definition 1.1.1) a dynamical system (%, S;)
with phase space %, and evolution operator S;.
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6.1.2 Global and exponential attractors

Now we consider the long-time dynamics of the dynamical system (%, S;) gener-
ated by (6.1.1). Our first goal is to show that the system (%, S;) possesses some
compactness and quasi-stability properties. To do this, in the space %, we introduce
the following linear set:

Yy ={v€by: v]g < oo},
where 8 € (a, 1) and

A% [v(61) — v(B)]|l
01,6, €[—h,0] |6, — 92|ﬁ—a :

v|s, = max [|APv(6
vl =, max_[4%0@)] +

This space %3 can be written as
@ = C([—h.0]: Hg) N CP~*([~h,0]: Hy),

where C¥([—h, 0]; Hy) denotes the corresponding Holder space (see Section A.3.1
in the Appendix). By the Arzela-Ascoli theorem (see Lemma A.3.5), %} is a Banach
space which is compactly embedded in %, for o < .

Proposition 6.1.10 (Conditional compactness and quasi-stability). Ler the
hypotheses of Theorem 6.1.6 be in force. This means that (a) Assumption 6.1.1
is valid, and (b) B : 6, + H is a locally Lipschitz mapping from with 0 < a < 1
and for every p > 0 there exists L, such that (6.1.5) holds. Assume that the problem
(6.1.1) generates a dynamical system (6, S;). Let D be a forward invariant bounded
set in 6. Then

(1) Foreveryt > hthe setS;D is bounded in % for arbitrary B € (a, 1). Moreover,
for every § > O there exists Rs such that

S$:D CBg ={u€ @ :|ulg, <Rs} forallt>§+h (6.1.11)

In particular, this means that the system (6, S;) is conditionally compact and
thus asymptotically smooth (see Definition 2.2.1).

(2) The mapping S; is Lipshcitz from D into %g. Moreover, for everyh < a < b <
~+00 there exists a constant Mp(a, b) such that

S — S,i|ay, < Mp(a,b)|u’ — @l t€lab], u’,@®e€D.  (6.1.12)

In particular, this means that the system (6, S;) is quasi-stable at any time from the
interval [a, b] (see Exercise 3.4.2).

Proof. Let B € (a, 1) and u(t) = S;u° be a solution to (6.1.1). It follows from (6.1.2)
and (4.1.9) that
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(o)l < (M)H ol + [ r (L)ﬁ 1B de

e(t—s) e(t—1)

forall t > s > 0. Since S;u’ € D for all t > 0 we have that |u(f)||, < Cp for all
t > 0. Thus,

_ B—a B, 1B
||u(t)||ﬂ§('3 “) CD+KD(B)(’3) li=s 2 (6.1.13)

e(t—s) e 1-8

forallt > s > 0, where Kp(B) = sup{||B(v)|| : v € D}. Taking s = t — § we obtain
that

S$;D C{ueCp :|lullp <R5} forallt>3§+h,

where

(BT B\ 8
w=(75") oreo(C) i

As in the proof of equicontinuity in Proposition 6.1.3, using the representation

n
u(tz) —u(ty) = [e" @74 — 1u(ty) + / e TMBWN dr, 1 >1 >0,

n

and the Holder continuity of the operator exponent in relation (4.1.8) we can show
that

Jute2) = (el <ltz == el + Kp(B) () 12 = 1] (1 = )™

forevery « < 8 < 1 and 1, t; > 0. This implies that

l[u(tz) — u(®1) |

|ty — 1, [P~

ti,t €8, T
n—n] <1

} < Cps forevery s > 0.

Therefore (6.1.11) follows.

Now we prove the second part of the statement. Let u(r) and u.(f) be two
solutions with initial data from D and w(f) = u(f) — u,(t). Using (4.1.9) one can see
that there exists a constant Cp > 0 such that

- fe t B
ol < (5=5) oo [ () wiear 6119

for all + > s > 0. Using (6.1.6) we obtain that
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lw®)llg < Cpla,b)|w'lg,, tels+a,s+Db], foralls>0anda>0. (6.1.15)

Lett,t; € [a,b] and 1, > 1;. Using the representation

W) = M) + [N B) ~ B,

151

one can see that

15 o o
o) =@l = e = 1wl + Co [ (125)" 'l d.

3l

Therefore from (4.1.8) and (6.1.6) we obtain

Iw(22) = wt)la < |22 — 11 [P~ [w(t) g + C(b) { / 2 (t;%) dr} W0,

Thus (6.1.15) with s = 0 yields
Iw(t2) = w(t)lle < Cp(a,b) [|tr —t11F™ + |12 — 111" W'}«

for all #,#, € [a,b]. This and (6.1.15) with s = 0 give (6.1.12) and conclude the
proof. o

Exercise 6.1.11. Let the hypotheses of Proposition 6.1.10 be in force. Show that
any bounded semitrajectory for (6, S;) is a relatively compact set. [

Proposition 6.1.10 allows us to state the existence of global and exponential
attractors for (%, S;) under the condition that this system is dissipative.

Theorem 6.1.12 (Global attractor). Let (a) Assumption 6.1.1 be valid, and (b)
B : 6, — H be a locally Lipschitz mapping with 0 < a < 1 and for every p > 0
there exists L, such that (6.1.5) holds. Assume that problem (6.1.1) generates a
dissipative dynamical system (6, S;). Then this system possesses a compact global
attractor. This attractor is a bounded set in the space % for every € (a, 1) and
has a finite fractal dimension.

Proof. Since (%, S;) is dissipative, by Proposition 6.1.10 the system (%, S;) is
compact (see Exercise 2.2.3). Thus the existence of a compact global attractor
follows from Theorem 2.3.5. It is also clear from Proposition 6.1.10 that the
attractor is bounded in #3. To prove finiteness of the fractal dimension we use
Theorem 3.4.5. o

The next outcome of Proposition 6.1.10 is the existence of a fractal exponential
attractor.

3We refer to Theorem 6.1.15 below for sufficient conditions of dissipativity.
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Theorem 6.1.13 (Fractal exponential attractor). Under the hypotheses of Theo-
rem 6.1.12 the system (6, S;) generated by (6.1.1) possesses a fractal exponential
attractor ., whose dimension is finite in 6.

Proof. By Proposition 6.1.10 the system is quasi-stable at every time ¢, > h on any
(forward invariant) absorbing set. Thus we can apply Theorem 3.4.7. Due to (6.1.11)
there exists a forward invariant absorbing set which belongs to %3 for 8 > «. Thus
every trajectory from this set is Holder continuous in %,. Thus dims 2., is finite
in G,. ]

Using Proposition 6.1.10 we can also obtain a result on determining functionals
for every pair of bounded solutions, even without assuming dissipativity of the
system.

Theorem 6.1.14 (Determining functionals). Let the hypotheses of Theorem 6.1.6
be in force, that is (a) Assumption 6.1.1 is valid, and (b) B : 6, — H is a locally
Lipschitz mapping with 0 < o < 1 and for every p > O there exists L, such that
(6.1.5) holds. Let u(t) and u«(t) be two solutions to problem (6.1.1) (with different
initial data) on Ry such that

limsup (||u(?)||¢ + ||ux(?)|la) < R for some R > 0. (6.1.16)

t—>—+00

Let & ={l; :j=1,...,N} be a set of functionals on Hg for some B € (a, 1) with
the completeness defect e (B, o) = €4 (Hg, Hy). Then there exists g = &o(R) such
that under the condition € (B, @) < &g the set £ is asymptotically determining, i.e.,
the property

Li(u@®) — i(us(t)) = 0 ast — +oo forallj=1,...,N
implies that ||u(t) — ux(t)||e = 0 ast — +oc.

Proof. By (6.1.16) there exists so € R4 such that
[u@lle + lus (D)l <R forall z > so.

Let w(f) = u(f) — u«(¢). Using the property of the completeness defect stated in
Proposition 3.3.4 and also (6.1.15), we can conclude that

w)lle <e2(B.)[w(®)llp+ Ce max |1;(w(®)]
ez(B,0)Crla,b)|W'], + Co max |1i(w(@®))]
forall 0 < a <t—s < bwiths > s¢. This yields

Wl < (B0 Cala bYW, + Cor max, max lou(e + )
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forall0 <a+h+s <t <s+bwiths > s9. If we takea = h, b = 2h, and
t = s+ 2h with s = 59 + 2(m — 1)h, then we obtain

w2, = gl 2R, Cor max ma [0 + 2mh -+ 6)]
—n, S

for every m = 1,2,..., where ¢ := e4(B,2)Cg(a,b). If we choose ¢4 (8, «)
sufficiently small such that g < 1, then after iterations in the same way as was done
in the proof of Theorem 3.4.12 we can conclude that ||w(?)||, — 0 ast — 4+o00. O

Now we give conditions under which equation (6.1.1) generates a dissipative
dynamical system.

Theorem 6.1.15 (Dissipativity). Assume that B(v) = —By(v(0)) + By(v) and
Assumption 6.1.7 is in force. Assume in addition that

e the potential I1(u) is bounded from below,* i.e., there exists y > 0 such that
II(u) > =y, Vué€H;; (6.1.17)

e there exist § > 0 and ¢ > 0 such that
1
= (Bo(uw), w) = SIIA2ull® = 6IT@w) + ¢, Vu € Hp; (6.1.18)

e there exist x > 0 and ¢ > 0 such that
0
IBi(v)||* < ¢+ x/ |AY2v(0) |0 (d) forallv € € ), (6.1.19)
—h

where a(d0) is a Borel measure on [—h, 0] such that o ([—h,0]) = 1.

Then problem (6.1.1) generates a dissipative dynamical system (Hy,,S;) provided
x < AQA + 8)_].

Remark 6.1.16 (Admissible structure of the delay term). Condition (6.1.19) con-
cerning the delay term B admits both point and distributed delays. For instance, we
can consider

—hy

Bi(v)=¢g (Z ciAPiv(—hy) + / ’ AﬂOU(—e)f(e)de) , v E G,

i=1

4 We can relax this condition by changing (6.1.17) into (6.1.9). However, this requires some
additional calculations and leads, which is more important, to a smaller interval of admissible
values of the intensity parameter x in the bound for the delay term in (6.1.19). We do not pursue
this case and leave the details for the readers.
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where g is a globally Lipschitz mapping on H, ¢; € R, 8; € [0,1/2], h; > 0
are fixed constants, and f € L;(—ho,0) is a real function. The corresponding
constant x in (6.1.19) can be controlled by the Lipschitz constant of g and also
by the parameters ;£1 = Y o, |¢;] and wo = ||f[|L,(=no.0)- Moreover, there are no
restrictions on the parameters (1 and u, in the case when the mapping g is sublinear,
i.e., it satisfies the inequality

le@)| < a1 + ax|ul|, Yue H, with 0 <y < 1.

In this case for every x > 0 we can find ¢ = ¢, such that (6.1.19) is valid. We
also note that the restriction concerning the intensity parameter » in the statement
of Theorem 6.1.15 is not surprising. We refer to Exercise 6.1.17 below, which
demonstrates different types of behaviors depending on the intensity of a delay term.
See also Remark 6.3.12 below, where a similar effect is discussed for second order
in time models. =

Exercise 6.1.17. Consider the following delay ODE:
X4+x—2x-xt—1)=0. (6.1.20)

Show that

(A) If % > 1, then there exists A, > 0 such that x(r) = e**' solves (6.1.20) on R .
Thus (6.1.20) has unbounded solutions.

(B) If 0 < % < 1, then any solution to (6.1.20) is bounded on R4. Hint: Show that
the function

v = 5 (WP + [ o)

does not increase along solutions.
]

Proof of Theorem 6.1.15. The following calculations can be justified on Galerkin
approximations.
Multiplying equation (6.1.1) by u we obtain that

1d
Ed—tllu(t)ll2 + IA2u@? + (Bo(u(0), u(r)) = (Bi (), u(1))

c % 0
< nllA2u@)|*> + i + i /h |AY2u(r + 0)]]>0 (dB) (6.1.21)

for every n > 0. Using the multiplier u, as in the proof of Theorem 6.1.8, we
also have
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@1+ 5 | 142 + 1| = @160.u0)

c % 0
< lu(0)]]> + 12 /h IAY2u(r + 0)|?0(dh).  (6.1.22)

Now we consider the function
1 2, 1 1/2 2
W (1) = Ellu(t)ll + EIIA u@|*+ @) +y + u#(),

where p is a positive parameter and

0 t

1 0 t
Wolt) = ~ / ds f 1A"2u(60)|d6 + / o@s) [ 1Au(6) o
hi)on  Jixs —h t+s

We note that the main idea behind inclusion of the additional delay term % is to
compensate the contribution from By (u'). This idea goes back to the considerations
in [115] and was already used in infinite dimensions (see, e.g., CHUESHOV/LASIE-
CKA [58, p. 480] and also CHUESHOV/LASIECKA/WEBSTER [63], CHUESHOV/RE-
ZOUNENKO [66, 67]). The corresponding compensator is model-dependent. Below
in Sections 6.2 and 6.3 we demonstrate this effect for other models.

It is clear that

t
0 < #() < 2/_ A 2u(s)|>ds < 2h|u’ o

t—h

and

(1) 1/2 ) 1 0 1/2 2 0 1/2 2
7=2IIA u(@®|| ~% hllA u(t + s)||°ds — hIIA u(t + s)[|7o (ds).

Since by Remark 4.2.21 I1(u) is bounded on every bounded set, we conclude
from (6.1.17) that

1
AP =7 (0) < pUIAull) + 2phlu' 5, . (6.1.23)

where ¢(r) =y + ar? + sup{|[T(u)| : |lul|1/2 < r} for some a > 0. It also follows
from (6.1.21) and (6.1.22) that

SO+ @) < ~(1 = 1= 20|47 u )~ Bofu() u(v)

+ 3 [l + 14" 2u(e) | + 201 w(e)]
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0

+ [—ﬁ + 2vu]/ A 2u(t + 6)%do
h —h

0
Flop+ 242 / IAY2u(t + 0|0 (d6) + yv + C,
dndy 4] )

By (6.1.18) this implies that
d 1 V-1 1/2 2
AW+ @) <~ (5 —n—2n— S [A7 +1]) 1AV
dt 2 2
" 0
—(§—=v)(u@) + [_E + 2V/L] / ||A1/2u(t + 9)||2d0
—h
x x 0 1/2 2
+ |:—;L + — + —i|/ I|A / u(t+ 0)||7o(do) + yv + C,,.
h

47))&1 4 —

This yields
d
EW(I) +v#(t) <b, t>0, (6.1.24)

for some v, b > 0 provided that

1
E—n—Z/x—%[M‘IH]ZO, §—v =0,

and

—%—i—Zv,uSO, —M+L+ <0.

X
47])&1 4

These relations hold with = 1/4 and with v > 0 small enough if we demand that

L ouso + X2 4% 0
g MY THRTA TR

Thus under the condition % < A;(2A; 4+ 8)~! we can find appropriate x and prove
dissipativity using (6.1.23), (6.1.24) and also the observation made in Exercise 2.1.3.
O

Using Theorems 6.1.12 and 6.1.13 we can derive from Theorem 6.1.15 the
following assertion.

Corollary 6.1.18 (Global and exponential attractors). Let the hypotheses of
Theorem 6.1.15 be in force and (€2, S;) be the system generated by (6.1.1). Then
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* The system (61,2, S:) possesses a compact global attractor. This attractor is a
bounded set in the space % for every B € (1/2,1) and has a finite fractal
dimension.

* The system (61,2, S;) possesses a fractal exponential attractor whose dimension
is finite in 6\ .

Proof. Theorem 6.1.15 guarantees the dissipativity of (%),2.S;). Thus the result
follows from Theorems 6.1.12 and 6.1.13. O

6.1.3 Application: reaction-diffusion (heat) equation with delay

In a bounded domain £ C R? we consider the following problem:
M[(x, t) - Au(x7 t) +f0(u(x» t)) = fl (u(x» r— hl)a VM(.X, r— hZ)) (6125)
endowed with boundary and initial conditions of the form

0, (6.1.26)

ulyo =0, u e[ max{hy dny.0) = PO)-

We assume that f; : R!™ - R is globally Lipschitz and fy : R' > R satisfies
the inequality

[fo(u) —fo(v)] = C(1 + [u]” + [v]")|u —v], (6.1.27)
where r € [0, +00) whend <2 and r < 2(d —2)~! ford > 3.
We consider (6.1.25) in the space H = L,(§2) and assume A = —A on the
domain

P(A) = HX(2) NHY(2) = {u € Ly(2) 1 dypyu € Lo(2). ul,, = 0},

where we use the notation H*(§2) for the Sobolev space of order s (ADAMS [1]) and
H{($2) denotes the closure of C3°(§2) in H*(§2). It is well known that 2(AV?) =
H{(£2). The nonlinear mapping B is defined by the relation

B(u') = —Bo(u(r)) + By (u'),
where
[Bo()](x) = fo(u(x)). u € Hy($2),

and the definition of B; is obvious. As was seen in Section 4.2.5 the mapping By is
locally Lipschitz from Hé (£2) into L*(£2). The condition in (6.1.9) is satisfied when
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lim inf@ > —Ay, (6.1.28)
s

|s|]—o00

where A is a first eigenvalue of the operator —A with Dirichlet boundary conditions.
Thus equation (6.1.25) defines a dynamical system in the space

% = C([—max{hy., hy}.0): Hy (2)).

To guarantee the hypotheses of Theorem 6.1.15 it is sufficient to assume in addition
that

ufy(u) > ofu|"t? — B for some @ > 0 and B > 0.

The condition in (6.1.19) concerning the delay term is valid with discrete measure
o concentrated at {—h;,—h,} and with the parameter » defined by the Lipschitz
constant of fj.

6.2 Parabolic problems with state-dependent delay:
a case study

As we mentioned at the beginning of this chapter, the general theory of delay
systems was mainly developed in the case of constant delays. On the other hand, it
is clear that the constancy of the delay is just an extra assumption made to simplify
the study, but it is not really well-motivated by real-world models. To describe a
process more naturally, a new class of state-dependent delay models was introduced
and studied during the last decades. As mentioned in the survey of HARTUNG ET AL.
[121], the discussion of differential equations with such delays goes back to 1806
when Poisson studied a geometrical problem.> However, the theory of (ordinary)
differential equations with state-dependent delay was developed only recently
(see, e.g., KRISZTIN/ARINO [137], MALLET-PARET ET AL. [160], WALTHER
[222] and also the survey HARTUNG ET AL. [121] and the references therein).
Partial differential equations with state-dependent delay have been essentially less
investigated; see the discussions in the papers REZOUNENKO [190, 191] devoted to
the parabolic case.

The simplest case of a state-dependent delay is a delay explicitly given by a real-
valued function 7 : R — Ry which depends on the value x(f) at the reference
time ¢ but not on previous values of the solution {x(7),t < ¢}. This leads to
terms of the form f(x(t+ — n(x(¢))) in the model considered. Even in this case
non-uniqueness can appear (see the scalar ODE example constructed in 1963 by

SWe refer to WALTHER [223] for a modern and detailed discussion of Poisson’s example with
state-dependent damping.
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DRIVER [86]). The standard way for general models to avoid non-uniqueness in the
case of infinite-dimensional dynamics is to consider smoother (narrower) classes
of solutions. However in this case the existence problem may become critical. The
main task is to find a good balance between these two issues.

In this section we deal with a certain abstract parabolic problem with a state-
dependent delay term of a rather general structure. Our considerations are based
on the paper CHUESHOV/REZOUNENKO [67] and motivated by several biological
models; see the discussion and the references in BRITTON [18], GOURLEY/SO/WU
[113] and REZOUNENKO/ZAGALAK [194]. We note that in the context of population
dynamics, delays arise frequently as the maturation time, and this time is a function
of the total population. Similarly, in the modeling of infectious disease transmission
or in the modeling of immune response, the delay is due to the time required to
accumulate an appropriate dosage of infection or antigen concentration.

As for previous topics of this book, we first discuss well-posedness of the
problem with a concentration on variational-type solutions. Then we deal with
the existence of a global finite-dimensional attractor and consider exponential
attractors. The main difficulty we face is related to the fact that the corresponding
delay term is not Lipschitz on the natural energy balance space. This circumstance
makes it impossible to prove that the evolution operators S, we construct are
continuous mappings on the phase space for # small. We have continuity of the
evolution operators for relatively large times only.

6.2.1 Model description

We deal with the model in (6.1.1) with a special choice of the nonlinear (delay) term
B. More precisely, we take B(u') = F(u') — G(u(¢)). Formally this form is the same
as the one postulated in Assumption 6.1.7. However we prefer to use a different
notation because our hypotheses concerning the delay term and the potential part
are different. Thus we consider the dynamics of abstract evolution delay equations
of the form

u () + Au(®) + Gu()) = F@'), t>0, (6.2.1)

in some Hilbert space H. Here A is a linear and G is a nonlinear operator, and the
term F(u') represents a delay effect in the dynamics. As in the previous section, the
history segment (the state) is denoted by u’ = u'(0) = u(t + 6) for 6 € [—h,0].

Assumption 6.2.1 (Basic hypotheses). We assume that:

(A) A is a positive operator with a discrete spectrum in a separable Hilbert space H
with a dense domain Z(A) C H (see Definition 4.1.1). As above we suppose
H; = 9(A°) for s > 0 and H; is the completion of H with respect to the norm
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|A* - || when s < O (see Section 4.1). Here and below, || - || is the norm of H,
and (-, -) is the corresponding scalar product. We denote by ||v||; = ||A*v]| the
norm in H,.

The delay term F(u') has the form F(u;) = Fo(u(t — n(u'))), where (a) Fy :
H, — H, is globally Lipschitz for « = 0 and « = —1/2, i.e., there exists
Lr > 0 such that

[|Fo(v) = Fo)|la < Lrllv —ulle, v,u€Hy, a=0,-1/2; (6.2.2)
and (b) n : € = C([—h,0]; H) — [0, h] C R is globally Lipschitz:
(@) —n(W)| < Lyl¢g —Vle. V. ¥ €€, (6.2.3)

where |v|¢ = sup{||v(0)| : O € [—h, 0]} is the norm in the space €.

G : Hyj» = H is locally Lipschitz, i.e.,
[|Gw) = G| = Le(R)||[v —ullij2, v,u € Hipa, |vllij2, ullij2 =R,
(6.2.4)
where L : Ry — Ry is a non-decreasing function. In addition we

assume that G is a potential mapping,which means that there exists a (Frechét
differentiable) functional IT(u) : H,/» — R such that G(u) = I1’(u) in the
sense

im {folly5 [+ v) = @) + (Gw), v)] = 0.

||UH1/2—>
Moreover, we assume that (a) there exist positive constants c¢; and ¢, such that
1
(G(u),Au) > —c1||A2u||* — 2, u€ 2(A); (6.2.5)

and (b) there exist § > O and m > O such that G : Hy/»—s — H_,, is continuous.

Our main motivating example of a system with discrete state-dependent delay is the
following one:

uy(t,x) — Au(t,x) + g(u(t,x)) = d(x) — f (K[u(t = n(u'), )](x)) . x€ 2, 1>0,

(6.2.6)

in a bounded domain £2 C R”, where K : L?(£2) — L*(£2) is a bounded operator
and f : R — R stands for a Lipschitz function. The function

n: C([—h,0]; L*(2)) — [0,h] C Ry

denotes a state-dependent discrete delay. The Nemytskii operator u +— g(u)
with a C' function g represents a nonlinear (non-delayed) reaction term and d(x)
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describes sources. The form of the delay term is motivated by models in population
dynamics where function f is a birth function (it could be f(s) = cys - e,
with ¢;,¢c; > 0) and the delay 5 represents the maturity age. For more detailed
discussions and further examples (e.g., the diffusive Nicholson blowflies equation,
the Mackey-Glass equation — a diffusive model of blood cell production, and the
Lasota-Wazewska-Czyzewska model in hematology) with state-dependent delay,
we refer to GOURLEY/SO/WU [113] and REZOUNENKO/ZAGALAK [194] and to
the references therein. Several special cases of the model in (6.2.6) were studied
in REZOUNENKO [191-193] and REZOUNENKO/ZAGALAK [194]). We note that
if we equip (6.2.6) with the Dirichlet boundary condition, then the dissipativity
property in (6.2.5) holds provided g € C'(R), g(0) = 0, and the derivative g'(s) is
bounded from below. This follows by standard integration by parts. Thus population
dynamics models with nonlinear sink/source feedback terms can be included in the
framework of this section. For this kind of a biological model, but with a state-
independent delay, we refer to WU [224].
We equip the equation (6.2.1) with the initial condition

u(0) = ¢(0), 0 €[-h,0], (6.2.7)
and for initial data ¢ consider the space
‘gE{weth%HWmemﬂﬁw<+w;M@egmh} (6.2.8)

where

llo(s) — @]

Lipy, 5(9) = SUP% D st €lab], s # t}
' st |S_ t|

denotes the corresponding Lipschitz constant. One can show that all elements from
Z are absolutely continuous functions ¢ on [—A, 0] with values in H_; /. The latter
means that there exists a derivative ¢, € Loo(—h, 0; H—1/2) such that

0(5) = p(0) - / " ©)de. s € [-h0]
Moreover, one can see that
Lip_yq (A7) = esssup {1420, (9)]| + 5 € [=h, 01} = @1l rouionoimyo)
We equip the space .Z with the natural norm

. 1 1
ol = max llg()]] +Lipyg(A29) + 1426 (O)] | (6:2.9)
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We note that the delay term F(p) = Fo(e(—n(p))) in (6.2.1) is well defined for
every ¢ € € and possesses the property (see (6.2.2) for @ = 0):

|F(@)] <c1 +alply, ¢ €F, (6.2.10)

with ¢; = ||F(0)|| and ¢; = Lr. One can see that F is continuous on %, but it is
not Lipschitz on this space. We can only show that the delay term F satisfies the
inequality

IF(@) = F)ll-vj2 = Le (1 + LLipyg (A2 0)) [o = vle  (62.11)

for every ¢ € £ and ¥ € %. Using the terminology of [160] we can call this
mapping F “almost Lipschitz” from ¢ into H_». See also the discussion in [121].

Remark 6.2.2. We can also include in (6.2.1) a delay term M (u') which is defined
by a globally Lipschitz function from C([—h, 0]; H,/,) into H. We will not pursue
this generalization because our main goal in this section is state-dependent delay
models. Parabolic-type delay equations with those globally Lipschitz M (u') were
discussed in Section 6.1. [

6.2.2 Well-posedness

In contrast with Section 6.1, based on the mild formulation of the problem we now
consider variational-type solutions which possess additional smoothness. The main
reason for this is a singularity of the delay term on the “standard” phase space.

We introduce the following definition.

Definition 6.2.3 (Strong solution). A vector function
u(t) € C([~h, T]; H) N C([0, T]; Hij2) N L2(0, T3 Hy) (6.2.12)

is said to be a (strong) solution to the problem defined by (6.2.1) and (6.2.7) on
[0, T] if

(@) u(0) = ¢(0) for 6 € [—h,0];
(b) Vv € L,(0,T; H) such that v, € L,(0, T; H-;) and v(T) = 0 we have that

T T
- / w(t). v (1)) dt + / (Au(t). v(1) di
0 0

T
+ /0 (—F @) + G(u(®)), v(1)) dt = ((0),v(0)).  (6.2.13)



6.2 Parabolic problems with state-dependent delay: a case study 307

Remark 6.2.4. Let u(t) be a strong solution on an interval [0, T] with some ¢ € €.
Then it follows from (6.2.12) and also from (6.2.4) and (6.2.10) that

F(') — G(u(t)) € Loo(0,T; H).
This allows us to conclude from (6.2.12) and (6.2.13) that
u(t) € Loo(0, T; H_1/2) N L»(0,T; H). (6.2.14)

Moreover, the relation in (6.2.13) implies that u(r) satisfies (6.2.1) for almost all
t € [0,T] as an equality in H. In particular, this implies that u(¢) solves the integral
equation in (6.1.2) with B(u') = F(u')—G(u(t)), i.e., u(t) is a mild solution to (6.2.1)
and (6.2.7) as well. We also note that relations (6.2.12) and (6.2.14) yield

u' € & forevery t €[0,T] and r[glw]c ||y < +o0 (6.2.15)
T

for every strong solution u(¢) with initial data ¢ from the space . which is defined
in (6.2.8). "

We have the following theorem on the existence and uniqueness of solutions.

Theorem 6.2.5. Let Assumption 6.2.1 be in force. Assume that ¢ € £, see (6.2.8).
Then the initial value problem defined by (6.2.1) and (6.2.7) has a unique strong
solution on any time interval [0, T). This solution possesses the property

u(t) € C([0, T): H_1/2) N Ly (0, T; H) (6.2.16)

and satisfies the estimate

1A 2,0 + 114" 2] + /0 [l (@)1 + lAu(@)[P] de < Cr(R)

(6.2.17)
forallt € [0,T) and ||A?¢(0)|)* + |g0|%) < R%. Moreover, for every two strong
solutions u' and u® with initial data @' and ¢* from &£ we have that

t
sup [l (©) =2 @I + [ 12! (0) i @)Fde < CuDle' =
7€[0,7] 0
(6.2.18)
for every t € [0, T] and for all ¢' such that |¢'| ¢ < R.

Proof. To prove the existence we use the standard compactness method (LIONS
[151]) based on Galerkin approximations with respect to the eigenbasis {e;} of the
operator A.
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We define a Galerkin approximate solution of order N by the formula

N
uV =u(r) = ng,zv(f)ek,

k=1

where the functions g; v are defined on [—#, T}, absolutely continuous on [0, 77, and
are such that the following equations are satisfied:

Y + Au" — F([uM]") + GM),e) =0, t>0, (6.2.19)

W (0),er) = (p(0),ex), YO € [-h,0], Yk=1,...,N. -
The equation in (6.2.19) is a system of delay differential equations in RN ~ PyH,
where Py is the orthogonal projection onto the subspace Span {ey, ..., ey}. Hence,
we can apply a finite-dimensional analog of Proposition 6.1.3 (see also HARTUNG
ET AL. [121] for the purely ODE argument) to get the local existence of solutions
to (6.2.19).

Next, we derive an a priori estimate which allows us to extend solutions u
to (6.2.19) on an arbitrary time interval [0, 7]. We also use it for the compactness of
the set of approximate solutions.

We multiply the first equation in (6.2.19) by Argry and sum fork = 1,...,N to
get

N

1d
EEIIA”ZMNU)II2 + |4 0)|? + (=F(["]) + G" (1), Au® (1)) = 0.
Due to (6.2.10) and (6.2.5) this implies that
d t
= [||A”2uN(t>||2 +f ||Au”(r>||2dr} < e+ WY + 1A (01
0
<co[l + o] + e max [JAY2N ()|
7€[0,1]
Integrating the last inequality we can easily see that the function
12
w(r) = max |[AY%N (7)|)* + / ||Au" (7)||*d~
T€[0,7] 0
satisfies the inequality
t
W (1) < 2||[AY2p(0)|* + 2tco[1 + |@lZ] + 21 / ¥(7)dr.
0

Therefore Gronwall’s lemma gives us the a priori estimate

t
A2 (1) | + /0 ||Au® (7)|]* dr < 2¢“ [||AY20(0)|* + b1 + |[Z]].
(6.2.20)
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for all # from an existence interval, where a and b are positive constants. This a priori
estimate allows us to extend approximate solutions on every time interval [0, 7] such
that (6.2.20) remains true for every ¢ € [0, T).
Now we establish additional a priori bounds. Using (6.2.20), (6.2.4), and (6.2.10),
from the first equation in (6.2.19) we obtain that
Il (1) + A O] < IF@)I + GG @) < CR.T), 1€ [0,T],

provided |[A'/2¢(0)|]> + |¢|% < R?. Thus by (6.2.20) we obtain the estimate
t
A2 (@) + f [l I + |4 (0)]P] dt = Cr(R) (6.2.21)
0

for all £ € [0, T] and ||[A'29(0)||*> + lp|2. < R%. It also follows from (6.2.19) that

sup [|A72u (1)|* < Cr(R). (6.2.22)
1€[0.T]
Thus
{u"}32 is a bounded set in Wi = Loo (0, T; Hy2) N Ly (0, T; D(A)),
and

{uﬁv}]‘ff’:l is a bounded setin Wy = Loo(0, T; H-1/2) N Ly (0, T; H).

Hence, there exist a subsequence {(u*; u¥)} and an element (u;u,) € Wi x W, such
that

{(uk; uf)} *-weakly converges to (u; u,) in Wy x W,.

By the Aubin-Dubinskii-Lions theorem (see the Appendix, Section A.3.3) we also
have

u* — u in C([0,T]; Hijo—5)) N La(0,T; Hi—s) as k — oo.

Now the proof that any *-weak limit u(¢) is a solution is standard. To make
the limit transition in the nonlinear terms F' and G we use relation (6.2.11) and
Assumption 6.2.1(Gb).

The property u(tf) € C([0,T]; Hi») follows from the well-known continuous
embedding (see Proposition A.3.3 in the Appendix)

{u e Ly(0,T;Hy) :u € Ly(0,T; H)} C C([0,T]; Hij2)-



310 6 Delay Equations in Infinite-Dimensional Spaces

The continuity of u, in H_;, follows from equation (6.2.1) and from the continuity
of u in Hy,. Thus the existence of strong solutions is proved. It is easy to see
from (6.2.21) and (6.2.22) that the strong solution constructed satisfies (6.2.17).
Now we prove the uniqueness.
Let u' and u? be two solutions (at this point we do not assume that they have the
same initial data). Then the difference

z=u"—u? € C([0,T); Hyj2) N Ly(0, T; Hy)
is a strong solution to the linear parabolic-type (non-delay) equation
z(t) + Az(t) = f(r), t >0, (6.2.23)
with
f@) = F([u'l) = F(1w') + GG’ (1) — G(u' (1)).

By Remark 6.2.4, f € Loo(0, T; H). From (6.2.4) and (6.2.11) and using (6.2.15) we
also have that

GG 0) = G )] = L@@z 1€ 0.7,
and
|47 2FE (') = FEAYDI < L1+ L)'l 1€ [0.7),
for every o > maxo 7 {|[u''| & + |[u?]'| ). Therefore
60 20)] <Le(1 + LI elle®lz + Lo(@ 1@ 210
<3 1012 + C@I< e

The observations made in Remark 6.2.4 allow us to use the standard multiplier z
in (6.2.23). Thus we can obtain that

d
EIIZ(t)II2 +11A220|* = C@IZ 1% =< Clo) [le —¢’[% + sup IIZ(T)IIZ]

7€[0,7]
for every ¢ = maxgo7) {|[u']'|.» + |[t*]'|.#}. Applying Gronwall’s lemma we obtain

sup [l (1) — 2D + /0 A2 () — 2 ()] e < C@)le" — o2

T€[0,7]
(6.2.24)
for all ¢ € [0, T]. This implies the uniqueness of strong solutions.
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As a by-product the uniqueness yields that any strong solution satisfies (6.2.17).
Therefore we can apply (6.2.24) with some o = o(R, T) to obtain (6.2.18).
Thus the proof of Theorem 6.2.5 is complete. o

Theorem 6.2.5 allows us to define an evolution semigroup S; on the space .¥
(see (6.2.8)) by the formula

So=u, t=0, (6.2.25)

where u(f) is the unique solution to problem (6.2.1) and (6.2.7). We note
that (6.2.18) implies that S; is almost locally Lipschitz on %, i.e.,

Sip" — Sip?|e < Cr(T)|g" — @l forevery ¢' € L, |¢'ly <R, t€[0,T]

However, it seems that a similar bound is not true in the space .. We can only
guarantee that ¢ — S, is a continuous mapping on .Z for t > h. Moreover, the
following assertion shows that the mapping ¢ — S, is even %-Hﬁlder on . with
respect to ¢ when ¢t > h.

Proposition 6.2.6 (Dependence on initial data in the space .%). Assume that the
hypotheses of Theorem 6.2.5 are in force. Let u' and u® be two solutions on [0, T]
with initial data ¢' and ¢* from £. Then the difference z = u' — u? satisfies the
estimate

(t =) [IIA"220)117 + 1142201 1]

+ /h (t =) [llz(OI> + [[Az(D)|]*] dT < Cr(R)l¢' —¢*l¢  (6.2.26)

for all t € [h, T| and for all initial data ¢' such that |¢’|» < R. This implies that for
every t > h the evolution semigroup S; is %-Hi)'lder continuous in the norm of £. In
the case when t € (0, h] we can guarantee the closedness of the evolution operator
S, only. This means® (see, e.g., PATA/ZELIK [179)) that the properties ¢, — ¢ and
S — Y in the norm of £ as n — oo imply that S, = .

Proof. Let Py be the orthoprojector on Span {ey, ..., ey}. Multiplying (6.2.23) by
PyAz and using (6.2.17) and (6.2.4) we obtain that

d
E”PNAIHZ(I)HZ +1PvAZOI]P < IF([?]) = F(@u'T)I? + Cr(DIIA22(0)]]?

SWe mention that any continuous mapping is closed, and a mapping can be closed but not
continuous. See examples in [179] and also in Remark 1.1.6.
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for all > 0. From (6.2.17), (6.2.2) and (6.2.3) we also have that

t—n([u?]") 5
/ 12 (©) e
t 1 t)

—n([u']

2
IF(’]) — F('I? < 2L% + 10 = '

< 22 o) =@ [ l@lrds
t—h
H0PY ~ W] = CrRIEY — WY e 6227)

for every t > h. Therefore

d 1/2
PP 4+ IPaAZOIF < Cr) | max 2P + A2 | = b

Integrating over interval [z, f] with t > h and using (6.2.18), after the limit transition
N — oo we obtain that

W2 + [ 4@l < |AV0IP + @l =Pl (6228)

for all t > T > h. Now we integrate (6.2.28) with respect to t over [A, #], change the
order of integration, and use (6.2.18) to get

(t = WA ?z(0)] | + /h (& —WAz()|* dE < Cr(R)l¢' —¢’le, 1> h.

Using the expression for z, from (6.2.23) and also the bounds in (6.2.18) and (6.2.27)
we have that

llz:(5) + Az + IA7 22 @)| > < Cr® [IA20)| + lo' = *le], 1= h.

This implies (6.2.26), which yields the %-Hélder continuity of the evolution
semigroup S, in the norm of .Z for ¢ > h.

The closedness of S, for ¢ € (0, k] follows from (6.2.18). Indeed, the continuity
in a weaker topology on bounded sequences in .Z allows us to identify the limit of
S, with S;(lim ¢,,). o

Remark 6.2.7. From (6.2.27) we can obtain a %-Hélder continuity relation
like (6.2.26) for all t > 0 if we assume in addition that one of initial data ¢’
possesses the property ¢! € Ly(—h, 0; H). In this case the argument above leads to
the relation

U201 + 12201 + [ [P +1AzlP] de

< Cr(R) [IA2 (9" (0) — *(O)]| + @' — ||  (6.2.29)
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for all ¢+ € [0, 7] and for all initial data ¢' such that |¢'|# + |¢|r,—nom < R.
Moreover, one can also see that the set

L={peZ : ¢ €l(—h0:H)} (6.2.30)

is forward invariant with respect to S;. Thus ¢ — S, is a %—Hélder continuous
mapping for each ¢ > 0 on the Banach space %, endowed with the norm

lolz = lole + @2 nom)-

Hence a dynamical (in the classical sense, see Definition 1.1.1) system (%, S;)
arises. However we prefer to avoid property ¢, € Ly(—h,0; H) in the description
of the phase space. Our goal is long-time dynamics, and the existence of limiting
objects requires some compactness properties. Unfortunately, we cannot guarantee
these properties in the space %, without serious restrictions concerning the delay
term. L]

Remark 6.2.8. We have a similar problem to that above with the time continuity
of the evolution operator ;. It is clear from (6.2.12) and (6.2.16) that ¢t — S, is
continuous in .Z for every ¢ € £ when t > h. To guarantee the continuity z — S,
for all t > 0 we must make a further restriction’ on the initial data. The main
restriction is a compatibility condition at time # = 0. To describe this condition we
introduce the following (complete) metric space:

(S Cl([—h,O];H_l/z);
Y=1¢9€%=C(-hO0]H) | ¢0) e H; (6.2.31)
@:(0) + Ag(0) + G(¢(0)) = F(p)

Here the compatibility condition ¢;(0) + A@(0) + G(¢(0)) = F(¢) is understood
as an equality in H_ /5. The distance in Y is given by the relation

disty (@, ) = ||AY*(¢(0) — ¥ (0))]
+ max 1A 20 (0) — YOI + llp®) — v (O]} . (6.2.32)

One can see that Y is a closed subset in the space .Z and the topology generated by
the metric disty coincides with the induced topology of .Z’; see (6.2.9). L]

In the following assertion we collect several dynamical properties of the evo-
lution semigroup S, which are direct consequences of Theorem 6.2.5, Proposi-
tion 6.2.6, and Remark 6.2.8.

TWe refer to the discussions in REZOUNENKO [192] and REZOUNENKO/ZAGALAK [194] for the
related PDE models.
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Proposition 6.2.9. Under the conditions of Theorem 6.2.5 problem (6.2.1) gener-
ates an evolution semigroup S, of closed mappings on £ such that

(a) S;.Z C Y foreveryt > hand the set S;B is bounded in Y for each t > h when
B is bounded in the space £;

(b) the setY is forward invariant: S,;Y C Y forallt > 0;

(c) the mapping ¢ — S, is %—H(‘)’lder continuous on £ (and hence on Y) for all
t>h;

(d) the trajectories t — S, are continuous fort > hand ¢ € L. If ¢ € Y, then
these trajectories are continuous for all t > 0.

6.2.3 Long-time dynamics: hypotheses and statement

We impose the following (standard) hypotheses (see, e.g.,TEMAM [216]) concerning
the nonlinear (non-delayed) sink/source term G.

Assumption 6.2.10. The nonlinear mapping G : Hy/, — H is potential and has the
form

G(u) = IT'(u) with IT(u) = Ho(u) + IT; (u),

where I1y(u) > 0 is bounded on bounded sets in H/, and IT,(u) satisfies the
property

Vn>03C,>0: [M@wl<n(lIA"?ull> + Mo) + Cy, u € Hip.

(6.2.33)
Moreover, we assume that
(a) there are constants v € [0, 1), ¢4, c5 > 0 such that
— (u,G(w) < V||A2u|? = callo(u) + ¢s, u € Hyp; (6.2.34)
(b) for every 7 > 0 there exists C; > 0 such that
ul* < C; + 7 (I|A"?ul|* + Ho(w)) . u € Hp. (6.2.35)

In the case of parabolic models like (6.2.6), examples of functions g(u) such that the
corresponding Nemytskii operator satisfies Assumptions 6.2.1(G) and 6.2.10 can be
found in [9] and [216]. The simplest one is g(u) = u’> + a;u® + a,u with arbitrary
ap,a, € R in the case when 2 is a 3D domain.

Theorem 6.2.11 (Global and exponential attractors). Let Assumptions 6.2.1 and
6.2.10 be in force. Suppose that S, is the evolution semigroup generated in £ by
(6.2.1) and (6.2.7). Then there exists £y > 0 such that this semigroup possesses a
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compact connected global attractor U provided mph < £y, where h is the delay time
and my is the linear growth constant for Fyy in H defined by the relation

L [Fo()]l
mp = limsup ———

(6.2.36)
lull—>+oo Il

Moreover, for every 0 < f < 1,0 < o < 1/2, @ < B, this attractor belongs to
the set

A Bolc + AP @il + Hid, (AP o) + Hid, (AP )

Dig=1peyY 0 vz
’ [ (ho@F +lo@P @] <
—n

(6.2.37)

for some R = R(a, B), where the Holder seminorm Hld, (V) is given by

1) — t
Hld, (y) = sup%w D hF b, b€ [—h,O]} .
1—h
Assume in addition that there exist y,§ € (0, 1/2] such that
(1) the mapping Fy is globally Lipschitz from H_,, into H /2y, i.e.,

| Fo(u) — Fo(v)|l—1j24s < cllu—v|—y, u,v € H_; (6.2.38)

(ii) the mapping G is almost locally Lipschitz from Hy>—, into H_y 55 in the sense
that

|G(u) — G()||-1/248 < c(R)||u — v][1/2—y (6.2.39)

forallu,v € H_g such that ||ul|1—g, |[v|]i—g < R with some0 < 8 < 1/2.
Then:

(A) The global attractor A has finite fractal dimension.
(B) There exists a fractal exponential attractor Ucxp.

Remark 6.2.12. It follows from the statement of Theorem 6.2.11 that the global
attractor 2( is a bounded set in the Holder-type space

C*([=h,0] : Hi—q—s) N C'*([=h,0] : H_y—s), Ya €[0,1/2], § > 0.

Concerning Holder spaces, we refer to Section A.3.1 in the Appendix. =

The following subsections are devoted to the proof of Theorem 6.2.11.
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6.2.4 Proof of the existence of a global attractor

To prove the existence of a global attractor we first show that the evolution operator
possesses a compact absorbing set in .Z. Obviously the same is true in the space Y.
Since S;Y C Y and S; is continuous on Y, we can apply the standard existence result
given by Theorem 2.3.5.

We start with the existence of a bounded absorbing set.

Proposition 6.2.13 (Bounded dissipativity). Assume that u(t) solves (6.2.1) and
(6.2.7) with ¢ € £. Then one can find £y > 0 such that for every delay time h
satisfying the inequality mph < {y the following property holds: there exists Ry
such that for every bounded set B in £ there is tg such that

t+1
||A—1/2uf(r>||2+||A”2u(r)||2+/ [l @IP + [lAu(@)II*] de < Ry (62.40)
t

forall t > tg and for all initial data ¢ € B. This yields that the evolution semigroup
S; is dissipative on £ provided mph < {.

Proof. We use the Lyapunov method to get the result. For this we consider the
following functional:

h t
V(t) = = [lu@|* + 1A 2u@®)*] + T (@) + %/0 {/t_xllu,@)llzdé} ds,

N =

defined on strong solutions u(¢) for # > h. The positive parameter p will be chosen

later. As in the proof of Theorem 6.1.15 the main idea behind inclusion of an

additional integral term in Vistofinda compensator for the delay term in (6.2.1).
One can see from (6.2.33) that there exist 0 < ¢y < 1/2 and ¢, ¢; > 0 such that

co [IA2u(®)|1* + Mo(u(®)] — ¢ < V(1)
h
< o1 [IAYu(@)|* + Ho(u()] + p RCIC E)PdE +c.  (6.2.41)

We consider the time derivative of V along a solution. One can easily check that
d ~
2V = @®).u®) + (Au@). u(®) + (Gu@®). u(1)

h
2 [ @I = o =91} ds
= (l0) + Au() + Gt 9) — (0, 1)
, k" 2
0.0+l =5 [ e g)1Pa
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Using (6.2.1) and also the relation

(w(®), u, (1) = —(Au(®), u() + (FW') — G(u(r)), u(t))

we find that
d -
VO =(F@), w0 + u@) = (1= wlu P
h
- % /0 |, — E)]12d & — [|A2u(@)|]> = (G(u(t)), u(?)).

By the definition of mp in (6.2.36), for any number My greater than my we can find
C(MF) such that

IF@)| = |[Fou(t — n@)))|| < Mr|lu(t — n("))|| + C(MF).
Therefore
IF@)|| <Mp|lut —n(u") —u@®|| + Mr||lu@)|| + C(MF)

:MF

t
/ uz(9)d9H + Mp|[u(@®)|| + C(MF),
t=n(u')

and thus

h
VPG| < My - [uu(r)n i [ ||u,(r—s>||ds} L CMp), 1= h

Since

h h 1/2
fnu,(r—smdssh“z(/ ||u,(r—s>||2ds) ,
0 0

we have that
1
F), )] <5 IO + Mo
h
+ M2 / st — B2 + CMp), 1> h
0

In a similar way

h
[(F@'), u(1)))| < e1Mzh ; |t = ©)|Pd & + C(Mp)(A + ||u(@)]).
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Thus

[(F (), ui (@) + u(@®)| <
SN + b2 [ = IR + 01+ O
The relations in (6.2.34) with v € [0, 1) and (6.2.35) with 7 > 0 small enough yield
et (Mp) (1 [ul?) = IAY2ul P = (u, G(w)) < —ao [[|A"2ul* + Mo(w)] + a1 (M)

for some a; > 0 with gy independent of Mp. Thus it follows from the relations above
that

G0 == (3= 1) I OIF = o261 + 1360
h
Fap) + [+ amph] [ —oiPas

for some a; > 0. Hence using the right inequality in (6.2.41) we arrive at the relation
d - - 1
G0 + 770 <= (=) I OIF = (@0 = yen) [I4"ulP + Mow]

h
+ [y + amh] [l = ©IPdE +ar o).

h
(6.2.42)
Therefore taking u = 1/4 and fixing 0 < y < agc]' we obtain that
d - - 1 )
ZVO+YVO+ @I = C 1= h (6.2.43)

provided yh+4a;M?h*> < 1. Thus under the condition 4a;m>h> < 1 we can choose
y € (0, aocl_l] and My > my such that (6.2.43) holds. In particular,

d ~ ~
d_rv(t) +yV(@®) <C, t>h
This yields

- N c
V(D) < V(e 7" + =(1—e7 M), 1=, (6.2.44)
y
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when mph < £y. Using (6.2.41) and (6.2.17) we can conclude that |‘7(h)| < Cg for
all initial data from a bounded set B in .Z. Hence (see (6.2.1)) there exists R such
that for every initial data from a bounded set B in .¥

1A 2u@)|| + A7 2u (1) || + |Ju(2) + Au(®)|| < R forall > .

Moreover, it follows from (6.2.43) that
t+1
/ llu,(7)|?dr < Cg forall t> t.
t

These relations imply (6.2.40) and will allow us to complete the proof of Proposi-
tion 6.3.11. =

Remark 6.2.14. If the mapping Fy has a sublinear growth in H, i.e., there exists
B < 1 such that

IFo@)l < e1 + eallull”, weH,

then the linear growth parameter my given by (6.2.36) is zero. Thus in this case
we have no restrictions concerning / in the statement of Proposition 6.2.13. In
particular, this is true in the case of bounded mappings Fy. Moreover, in the
latter case the argument can be simplified substantially (we can use a Lyapunov-
type function without delay terms as was done in REZOUNENKO [192] and
REZOUNENKO/ZAGALAK [194] for the case of parabolic model (6.2.6) with
bounded f). u

We use Proposition 6.2.13 to obtain the following assertion, which means that
the evolution semigroup S, is (ultimately) compact.

Proposition 6.2.15 (Compact dissipativity). As in Proposition 6.2.13 we assume
that mph < £y. Then the evolution operator S, possesses a compact absorbing set.
More precisely, for every 0 < 8 < 1,0 < a < 1/2, a < B, the set Dgﬂ given by
(6.2.37) is absorbing for some R. This set Df. p Is compact in Y provided 0 < a <

B <1/2

Proof. We first note that the compactness of DF pinY C ZLfor0<a<pf<1/2
follows from the Arzela-Ascoli theorem (see, e.g., Lemma A.3.5 in the Appendix).
Now we show that D , is absorbing.
Using the mild form of the problem, the bound in (6.2.10), and then the
expression for u, from (6.2.1) one can show that

A" @) + A~ u (0)|| < Cr.(8) forall 1= 1, (6.2.45)

for every § > 0, where u(t) is a solution possessing property (6.2.40).
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Now we consider the difference u(t;) —u(t;) with t; > t,. Namely, using the mild
form we obtain

AP (u(t) — u(@))|| <[|A'F (7 — Du(n)||
131
+/ AP eI (|F @) + [Gu(r)) dr.
n
Since (see relation (4.1.8) and Exercise 4.1.10)
—a —At o o —At an —a
A7 =] < ¢ and [l4% ]| < () e
forallt > 0and 0 < o < 1, we obtain

1A' (u(t) — u(@)|| <lt — ol IIA™*u(w)]]
n 1
- T
“ﬂffz = a7 LCre + ] de

fort; > t, > tg. Thus forevery 0 < o < 8 < 1 we have

AP (u(t)) — u(t))|| < Cr, |t — 12| forall t; > 15, |t; — 2] < 1. (6.2.46)

Similarly to (6.2.27), using (6.2.46) with 8 = 1 and « = 1/2 we obtain that

r—n(u'2)
/ GIL

1—n(u'n)

IF @) = F®)|l < Ly

1/2
< Cr, [ln— 0l + " —u” 2] < Cp, |t — 1]

for every t1,t, > tg > h. Thus from (6.2.1) and (6.2.46) we obtain

AP (u (1)) — u,(12))|| < Cro|ti — 12|* forall ;> 15, |ty —1] <1,

for every 0 < o < 1/2. This implies that the set Dg.’ p given by (6.2.37) is absorbing
for some R provided0 < f <land0 <o < 1/2,a < B. o

To conclude the proof of the existence of a compact connected global attractor,
we apply® Proposition 6.2.15 and the existence result given by Theorem 2.3.5.

8 Another way is to apply the existence result due to PATA/ZELIK [179] for closed semigroups. See
CHUESHOV/REZOUNENKO [67] for details.



6.2 Parabolic problems with state-dependent delay: a case study 321

6.2.5 Long-time dynamics: dimension and exponential
attractor

In our situation we can assume that there exists a forward invariant closed
absorbing set Dy which belongs to Ds 8 for an appropriate choice of the parameters
(see Proposition 6.2.15). We also note that the restriction of S, on Dy is continuous in
both 7 and initial data in the topology induced by .Z (see (6.2.9)). Thus a dynamical
system (S;, Do) in the classical sense arises. Therefore we can apply the quasi-
stability method.

Proposition 6.2.16 (Quasi-stability). Let Assumptions 6.2.1 and 6.2.10 be in
force. Assume that (6.2.38) and (6.2.39) are valid. Let Dy be a forward invariant
closed absorbing set Dy which belongs to Ds, 5 Then

1Si0" — Si9*|r <Cre ™ [1l0"(0) — @*(0)]1)2 + @' — ¢*|«]
+ Cr max A2 (ul (s) — uP ()], £ = h, (6.2.47)
s€0,1

for every ¢' € Dy, where u'(t) = (Si9")(0)|,_, and y € (0.1/2] is the parameter
in (6.2.38) and (6.2.39).

Proof. Using the mild form presentation for /(¢) and (6.2.39) we obtain that
1AY2(u' (1) —? @)]] < 1A' (0) —?(0))]]
* At [[AT8e™ A1 D(1iu!, u?) dr,
where
2(viut ) = ClATPHFI@T) = F@e])]| + Crll (2) — e (0)lli2—
and y, § > 0 are parameters from (6.2.38) and (6.2.39). As in (6.2.27), using (6.2.38)

we also have that

=0 (2]
e e - ra s c | [ el

—n(u')

+ C|[u? — u')'|¢ < C(R) X lu?(t + 0) —u'(t + 0)||
€[—h,0
for every ¢ > 0. Therefore

142! (1) = @) < ere™ 11420 0) = 2O + 19" — ¢°l¢]
+ c2(R) max A2 (! (s) — (). (6.2.48)
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Using (6.2.1), (6.2.4), and (6.2.11) we obtain that
1472} (@) =} )] = CR) 114! (0 = )] + 1 = u' Tl ]

Thus

14720y (1) — g 0)]] < cre™ [[IA2(01(0) = > )] + ¢ — ¢°|]
+ c2(R) max A2 (' (5) — ()], t=h.  (6.2.49)

Relations (6.2.48) and (6.2.49) imply (6.2.47). The proof of Proposition 6.2.16 is
complete. ]

In order to prove finite dimensionality of the attractor 2 we apply Theorem 3.1.21
on the attractor with an appropriate choice of operators and spaces. Indeed, let T > 0
be chosen such that 7 = Cre "7 < 1 where Cy is the constant from (6.2.47). We
define the Lipschitz mapping

K : Dy Zjo gy = C'([0,T: H_1/2) N C([0, T]: H2)

by the rule K¢ = u(z),t € [0, T], where u is the unique solution of (6.2.1) and (6.2.7)
with initial function ¢ € Dy. The seminorm nz(x) = maxgepo, | |AY2= v u(s)]| is
compact on Z 71 due to the compact embedding of Z 7y into C([0, T]; Hi/»—,)) by
the Arzela-Ascoli theorem (see Lemma A.3.5).

If we take

X = {p € C'([~h.0]: H_12) N C([—h,0]: H) |¢(0) € Hy/> }

equipped with the norm (6.2.32) and suppose that V = Sy, then the (discrete) quasi-
stability inequality in (3.1.15) is valid on Dy. Hence we can apply Theorem 3.1.21
with V = Sy and M = 2. Thus dim, 2 is finite (in X and thus in .Z).

To prove the existence of a fractal exponential attractor we can use Theo-
rem 3.4.7. For this we need only to note that t — S,¢ is a-Holder on the absorbing
set Dy:

1S1¢ — Sholx < Cpylti —12|*, 11,12 € [0,T], ¢ € Do.
This follows from the fact that Dy is included in the set ij 8 given by (6.2.37) with

p=1/2
Thus the proof of Theorem 6.2.11 is complete.
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6.3 Second order in time evolution equations with delay

Now we consider the dynamics of second order in time equations with delay of the
form

uy (t) + ku,(t) + Au(t) + B(u(®)) + M(u') =0, t>0, (6.3.1)

in a Hilbert space H. Here, as above, A is a linear and B(-) is a nonlinear operator,
and M(u') represents a (nonlinear) delay effect in the dynamics. All these objects
will be specified later. Our consideration is based mainly on ideas and some results
established in CHUESHOV/REZOUNENKO [66].

The main model we keep in mind is a nonlinear plate equation of the form

(2, X) + ku (1, x) + A%u(t, x) + f(u(t, x)) + au(t — t[u(r)], x) = 0, (6.3.2)

in a smooth bounded domain £2 C R? with some boundary conditions on 952.
Here 7 is a mapping defined on solutions with values in some interval [0, /], and k
and a are constants. The term au(t — t[u(f)], x) models the effect of the Winkler-
type foundation (see SELVADURAI [204] or VLASOV/LEONTIEV [221]) with state-
dependent delay response. The nonlinear force F can be of Kirchhoff, Berger, or von
Karman type (see Section 6.3.6). Our abstract model also covers the wave equation
with state-dependent delay (see the discussion in Section 6.3.6).

Plate equations with [linear delay terms have previously been studied
mainly in Hilbert L,-type spaces on a lag interval (see, e.g., BOUTET DE
MONVEL ET AL. [17], CHUESHOV [36], CHUESHOV/LASIECKA/WEBSTER [63],
CHUESHOV/REZOUNENKO [65] and the references therein). However this L,-type
situation does not satisfactorily cover state-dependent delays of the form described
above. In this case the delay term in (6.3.2) is not even locally Lipschitz, and
thus difficulties related to uniqueness may arise. The desire to have the Lipschitz
property for this type of delay term leads naturally to C-type spaces. Moreover,
in our approach we employ the special structure of second order in time systems
and take into account natural “displacement-velocity” compatibility from the very
beginning.

We also note that some results (mainly, the existence and uniqueness) for general
second order in time PDEs with delay are available. Most of them are based on a
reformulation of the problem as a first order system and application of the theory of
such systems (see, e.g., FITZGIBBON [101]). We also mention the papers GARRIDO-
ATIENZA/REAL [110] and KARTSATOS/MARKOV [131], which involve the theory
of m-accretive (see SHOWALTER [210], for instance) operators.

The main result in this section states that (6.3.1) generates a dynamical system in
some space of C! functions on the delay time interval and possesses a compact
global attractor of finite fractal dimension. We also establish the existence of a
fractal exponential attractor. Again, to achieve these results we involve the method
of quasi-stability estimates presented in Chapter 3. The main results are illustrated
by plate and wave models.
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6.3.1 Well-posedness and generation of a dynamical system

In this subsection we introduce our basic hypotheses and prove a well-posedness
result. The main outcome is the fact that problem (6.3.1) generates a dynamical
system in an appropriate space of C' functions.

Assumption 6.3.1. Let H be a separable Hilbert space H with the norm | - || and
the inner product (-, -). With reference to (6.3.1) we assume:

(A) A is a positive operator with a discrete spectrum on H with a dense domain
2(A) (see Definition 4.1.1).

(B) The nonlinear (non-delayed) mapping B : Z(A'/?) — H is locally Lipschitz,
i.e., for any R > 0 there is Lg > 0 such that for any u', u? with ||[A"/?4|| <R,
one has

1B') = B@?)|| < LgllAY? (' = u?)]].
(M) Consider the space
W = C([—h,0]; 2(A"?)) N C'([~h,0]; H), (6.3.3)
endowed with the norm

= A20(0 o (0
lolw eé?f‘;fm” 9( )||+9g[1_a,§0]|| o9 (0)]|

and assume that the nonlinear delay term M maps the space W into H and is
locally Lipschitz:

[M(p1) — M(p2)|| < Coler — alw

for every g1, ¢, € W, |gjlw < 0,j = 1,2.

As in Section 6.1 we also use the spaces 6, = C([—h, 0]; Z(A%)) endowed with the
norm

lvle, = sup{|| A%v(0) |: 0 € [-h,0]}.
With this notation the norm in W can be written in the form

lolw = [@la, + 196914

Below we write € = %,. We also recall that 7/’=7(f) = z(t + 6), 0 €
[—h, 0], denotes the element of C([—h, 0]; H), while 4 > 0 presents the (maximal)
retardation time. As in the previous sections we also use the scale of the spaces Hy
generated by the operator A and equipped with the norms ||u|; = ||A%u|.
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We supply equation (6.3.1) with the following initial data:
W’ =u’0) = u(6) = ¢(0), forf e[-h,0], ¢ € W. (6.3.4)

We can rewrite equation (6.3.1) as the first order differential equation
d t
EU([) +ZU@E) =N (U"), t>0, (6.3.5)

in the space 9 = Hy;» x H, where U(t) = (u(t); u,(¢)). Here the operator </ and
the map ./ are defined by

U = (—v;Au+ kv) for U = (;v) € 2(F) = 2(A) x 2(A'/?),
N(®@) = (0;B(p(0)) + M(p)) for @ = (p:09¢p), ¢ € W. (6.3.6)

The operator .7 generates the exponentially stable Co-semigroup e~“" in .J#; see,
e.g., CHUESHOV [39] or TEMAM [216].
The representation in (6.3.5) motivates the following definition.

Definition 6.3.2. A mild solution to (6.3.1) and (6.3.4) on an interval [0, 7] is
defined as a function

u € C([=h,T); 2(A"*) N C'([~h, T]; H),

such that u(6) = ¢(0) for 6 € [—h,0] and U(t) = (u(?); u,(¢)) satisfies the relation
t

U(r) = e U0) + / e N (U*)ds, t€0,T]. (6.3.7)
0

Similarly we can also define a mild solution on the semi-interval [0, 7). Below U(¢)
is also occasionally called a mild solution. [

Remark 6.3.3. 'We can also consider the equation in (6.3.7) for U which belongs to
the class C([—h, T); 7). In this case both Definitions 6.3.2 and 6.1.2 look the same,
the only difference being in the structure of the corresponding linear semigroup.
However we prefer to restrict our consideration to the subspace in C([—h, T|; 7)
consisting of pairs of the form (u;u,;). Thus in contrast with FITZGIBBON [101]
we implement “displacement-velocity” compatibility at the level of the notion of
solutions. As we will see below, this allows us to include for consideration rather
general state-dependent delay terms. [

One can prove the following local result.

Proposition 6.3.4. Let Assumption 6.3.1 be valid. Then for any ¢ € W there exist
T, > 0 and a unique mild solution U(t) = (u(t); u,(t)) of (6.3.1) and (6.3.4) on the
semi-interval [0, T,). Solutions continuously depend on initial function ¢ € W.
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Proof. The argument for the local existence and uniqueness of a mild solution is
standard (see, e.g., FITZGIBBON [101]) and uses the Banach fixed point theorem
for a contraction mapping in the space C([—h,T]: 2(A'/?)) N C'([—h,T];:H)
with appropriately small 7. We note that in contrast with parabolic-type models
(see Proposition 6.1.3) the semigroup e’ is not compact. Therefore we cannot
guarantee the compactness of the corresponding integral-type mapping % and apply
Schauder’s fixed point theorem. This is why we need Lipschitz conditions for B and
M in Assumption 6.3.1. o

To obtain a global well-posedness result we need additional hypotheses concern-
ing B and M.

Assumption 6.3.5. We assume the following properties.

(B) The nonlinear mapping B : H />, — H is potential, i.e., it has the form
B(u) = IT'(u),

where IT’(u) denotes the Fréchet derivative’ of a C' functional IT(u) :
Hi/» — R. Moreover, we assume that [T(u) = IIo(u) + I11(u), where
Iy(u) > 0is bounded on bounded sets in H > and [T, (1) satisfies the property

Vn>03C,>0: || <n(|AY?ull* + Ho(w) + C,, u € Hp.
(6.3.8)
(M) The nonlinear delay term M : W — H satisfies the linear growth condition

M(p)|| <My +M A2 3.
IM(@)Il = Mo + My max [[A7¢(6)]| + max [|90¢(6)]] (6.3.9)

for all ¢ € W and for some M; > 0.

As is well-documented in CHUESHOV/LASIECKA [56, 58], the second order
models with nonlinearities satisfying Assumption 6.3.5(B) arise in many applica-
tions (see also the discussion in Section 6.3.6). We also emphasize that the force M
may contain non-delay terms; i.e., it is allowed that

M(p) = B*(p(0)) + M(p), p €W,

where M obeys the conditions above concerning M and B* : H, s2 — H is Lipschitz
and linearly bounded.
We have the following well-posedness result.

9See the definition in Section A.5.
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Theorem 6.3.6 (Well-posedness). Let Assumptions 6.3.1 and 6.3.5 be in force.
Then for any ¢ € W there exists a unique global mild solution U(t) = (u(t); u,(t))
to (6.3.1) and (6.3.4) on the semi-axis [0, +00). This solution satisfies the energy
equality

). w(0) + k / ()| Pdls = E(w(0). 1(0)) — / M), 1,(s)) ds.
’ ° (6.3.10)
Here we denote
&(u,v) = E(u,v) + Iy (u) with E(u,v) = % (||v||2 + ||A1/2u||2) + My(u).

(6.3.11)
Moreover, for any ¢ > 0 and T > 0 there exists C, r such that

A2 @(®) = a@)I| + llus()) = @ (D)l < Corle —@lw, t€[0.T.  (63.12)
or any pair u(t) and u(t) of mild solutions witn nitial data ¢ an sucn tnat
j d i jld soluti jth initial data ¢ and ¢ such th
lolw. [@lw =< o

Proof. The local existence and uniqueness of mild solutions are given by Proposi-
tion 6.3.4. Let U = (u; u,) be a mild solution to (6.3.1) and (6.3.4) on the (maximal)
semi-interval [—h, T,,) and

() = B(u(t)) + M(u') € C([0,T,); H).

It is clear that we can consider (u(t);u,(f)) as a mild solution of the linear non-
delayed equation

vu(f) + Av(t) + kv (1) +f"(t) =0, 1€[0,T,). (6.3.13)

Therefore (see Chapter 5) one can show that u(r) satisfies an energy relation of the
form

Eo(u(t). (6)) + k / 15) s = Eo((0), u,(0)) — / (F*(5). 1s(s)) di
(6.3.14)

for all 0 < t < T,, where Eo(u,v) = 5 (|A"?ul|> + ||v||?). Using the structure of
f*, after some calculations (first performed on smooth functions) we can show that

/0 (F(5). () s = TTut)) — TT(u(0)) + /0 M), 14(s)) ds.

Therefore (6.3.14) yields (6.3.10) for every ¢ < T,.
Using (6.3.9) and (6.3.10) we obtain

k t t
E (), u (1)) + 5/0 [lu:(s)||*ds < &u(0), u;(0)) + ¢; /(; (1 + |uv|%,) ds.
(6.3.15)
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One can see that
'l = max |[A"2u(s + 6)|| + max |[[u(s + 6)]
0€[—h.0] 0€[—h.0]

<lglw + 22 max [E@(0). u(2)]"” (63.16)

for every s € [0, T,). It follows from (6.3.8) that there exists a constant ¢ > 0 such
that

1
EE(u, V) —c < Eu,v) < 2E(u,v) +c¢, ue 2(AY?), v e H. (6.3.17)

Therefore we use (6.3.17) and (6.3.16) to continue (see (6.3.15)) as follows:
max E(u(o), u,(0))
o €[0,1]

t
<c (1 + t + Eu(0), u;(0)) + ¢ - o]}, + / max Eu(0), u;(c0)) ds) )
0 o S
The application of Gronwall’s lemma yields the following (a priori) estimate:

max E(u(0),u(0)) < C (1 4+ E@(0),u,(0)) + |ply) - €”, a>0, t<T,,
o€l|0,r

which allows us, in the standard way, to extend the solution on the semi-axis R.
To prove (6.3.12) we use the fact that the difference w(f) = u(r) — u(t) solves the
problem in (6.3.13) with

JU0) = B(u(®) + M(u') — B(iu(r)) — M(@d).

This completes the proof of Theorem 6.3.6. ]

Using Theorem 6.3.6 we can define an evolution operator S; : W — W for all
t > 0 by the formula S;¢p = u, where u(z) is the mild solution to (6.3.1) and (6.3.4),
satisfying u® = ¢. This operator satisfies the semigroup property and generates a
dynamical system (W, S;) with the phase space W defined in (6.3.3).

We conclude this subsection with the following remarks.

Remark 6.3.7 (Smooth solutions). Assume in addition that B(u) is Frechét differen-
tiable on H /> and M is “locally almost Lipschitz” on ¢ in the sense that

[M(p1) — M(p2)|| < Coler — @2l (6.3.18)

for every ¢1,¢» € W, |gjlw < o,j = 1,2. Then the smoothness of the initial
data ¢ and some compatibility conditions imply that the solutions are C?> smooth on
[—h, +00). Indeed, one can show (see [66]) that the set
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¢ € C'([—h,0]; Hy2) N C([—h,0]: Hy),
©i(0) + k¢;(0) + Ap(0) + B(p(0)) + M(¢) = 0.

(6.3.19)

& =1¢ e C*(|-h,0];H)

is forward invariant with respect to the flow S; subset in W. Thus the dynamics is
defined in a smother space. The set .% is an analog to the solution manifold used in
WALTHER [222] for the ODE case and in REZOUNENKO/ZAGALAK [194] for the
parabolic PDE case as a well-posedness class. See CHUESHOV/REZOUNENKO [66]
for more details. =

Remark 6.3.8 (Finite-dimensional case). The well-posedness results in Theo-
rem 6.3.6 can also be applied in the ODE case when H = R", A is a symmetric
n X n matrix A, and the nonlinear mappings B : R" — R", M : C([—h,0]; R") — R”
satisfy appropriate requirements. The space of initial states is W = C!([—h, 0]; R").
In contrast with the solution manifold method suggested in WALTHER [222]
(see also HARTUNG ET AL. [121]), this approach to well-posedness does not
assume any nonlinear compatibility conditions and is based on the natural (linear)
“position-velocity” compatibility. This provides us with an alternative point of
view on dynamics and leads to a simpler well-posedness argument compared to
the method of the solution manifold. For a more detailed discussion we refer to
CHUESHOV/REZOUNENKO [66]. n

6.3.2 Asymptotic properties: dissipativity

Now we begin to study the long-time dynamics of the system (W, S;) generated
by mild solutions to problem (6.3.1). To do this, we need to impose additional
hypotheses.

Assumption 6.3.9. We assume the following.

(B) The nonlinear term B : Hy/, — H has the potential IT(u) = ITo(u) + I1; ()
satisfying (6.3.8) and also (a) there are constants v € [0, 1), ¢y, c; > 0 such
that

— (u.B(w)) < v[|JA"2u||* — c1TTo(u) + c2.  u € Hya: (6.3.20)
(b) for every n > 0 there exists C;, > 0 such that
lul? < Cy + 0 (IIAY2ul? + Mo() . u € Hipo. (6.321)

(M) The nonlinear delay term M : W +— H possesses the property

t
IM@)II* < g0+ &1llA"*~u()||* + gz(h)/ [l ()11 ds (6.3.22)
t—h

with the parameters go, g1 > 0, § € (0, 1/2] independent of / and the factor
g2(h) such that hg,(h) — O as h — 0.
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Remark 6.3.10. Concerning the nonlinear (non-delayed) term B, our assumptions
are motivated by nonlinear plate models and are the same as in [56] and [58,
Chapter 8]. We have already involved similar requirements in the case of parabolic
models with state-dependent delay (see Assumption 6.2.10). We also point out that
the requirements in Assumption 6.3.9 imply the hypotheses of Assumption 6.3.5.

For the delay term, our main example is a discrete state-dependent delay force
M : W+ H of the form M(u") = G(u(t—t(u"))), where T maps W into the interval
[0, 4] and G is a globally Lipschitz mapping from H into itself. In this case the term
M (u") can be written in the form

M) = Gult—tW)) =G (u(t) - /t u; (s) ds) ) (6.3.23)

—z(u)

Thus we have that
t
MG < 16O + Lo [nu(r)n +/h||ut(s>||ds],
i

where Lg is the Lipschitz constant of the mapping G. This yields (6.3.22) with
g0 = 4]|G(0)|]>, g1 = 4L%, and gr(h) = 2L%h. We also note that M(u') in the
form (6.3.23) satisfies the Lipschitz condition in Assumption 6.3.1(M) if we assume
that 7 is locally Lipschitz on W:

[T(01) — t(@2)] = Golor — @2|w
for every @1, ¢, € W, |¢jlw < 0,j = 1,2. Indeed, from (6.3.23) we have that
1M (u’) = M) || <Lg|lu(s — 7(u’)) — u(s — = (@"))]|
+ Lollu(s — t(@')) — (s — = (@) ||
<oLg|t(*) — t(it*)| + Lg pax, l|u(s + 0) —uls + 0)||
=(I +0Cp)Lg|u’ —u'|w

for all u*, u* € W, |uf|w, ||&’|lw < o.
Instead of the structure presented in (6.3.23) we can take a delay term of the form

N
M) =) Gr(u(t — w(w'))),

k=1

or even consider an integral version of this sum and add a non-delay subcritical force
B* (u(z)) with linear growth. We can also include velocity terms with a (distributed)
state-dependent delay of the form
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0
/ (0, u")u,(t + 0) db,

—h

where r : [—h,0]x W — H is measurable in the first variable and globally Lipschitz
with respect to the second variable and satisfies appropriate properties. However, for
the sake of transparency, we do not pursue these generalizations. =

Our first step in the study of the qualitative behavior of the system (W, S;) is the
following (ultimate) dissipativity property.

Proposition 6.3.11 (Dissipativity). Let Assumptions 6.3.1 and 6.3.9 be valid. Then
for any kg there exists hy = h(ky) > 0 such that for every

(k; h) € [ko, +00) x (0, ho)

the system (W, S,) is dissipative, i.e., there exists R > 0 such that for every o > 0
we can find t, > 0 such that

ISiplw <R forall @eW, |plw=<o0, t>t1,.

Moreover for every fixed kg > 0 the dissipativity radius R is independent of k > ko
and the delay time h € (0, hy]. Thus the dynamical system (W,S,) is dissipative
uniformly in k > ko and h < hy.

Remark 6.3.12. (1) The dissipativity property can be written in the form
w1 + [|Au@)|]> < R forall 1> 1,

provided the initial function ¢ € W possesses the property |¢|w < 0. We can
also show in the standard way (see Exercise 2.1.6) that there exists a bounded
forward invariant absorbing set 8 in W which belongs to the ball {¢p € W :
|¢|lw < R} with radius R independent of k € [k, +00) and & € (0, ho].

(2) As we see in the proof below, by increasing the low bound k, for the damping
interval, we can increase the corresponding admissible interval for 4. This fact
is compatible with the observation that a large time lag may destabilize the
system. For instance, it is known from COOKE/GROSSMAN [81] that for the
delayed 1D ODE

() + kin(r) + au(t) + u(t— ) = 0

with a > 1 and 2a > k2, there exist positive numbers 7, < t* such that the
zero solution is stable for all T < 7, and unstable when 7 > t*. This example
also demonstrates the role of a large damping. Indeed, if kK> > 2a > 2, then
(see COOKE/GROSSMAN [81]) the zero solution is stable for all T > 0. Thus
a large time delay requires a sufficiently large damping coefficient to stabilize
this system.
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Proof. We use the following functional:

h t
V) = 0.0+ yao.uo) + 5 [ [ jueirae] o

Here & is defined in (6.3.11) and the positive parameters y and u will be chosen
later.

As in the proof of Theorem 6.1.15 (see also Proposition 6.2.13), the main idea
behind inclusion of an additional delay term in V is to find an appropriate compen-
sator for M (u'). The compensator is determined by the structure of the mapping M
(see (6.3.22)). For second order in time infinite-dimensional models this idea was
applied in CHUESHOV/LASIECKA [58, p. 480] and CHUESHOV/LASIECKA/WEB-
STER [63] in the study of a flow-plate interaction model which contains a linear
constant delay term with critical spatial regularity. The corresponding compensator
has a different form in the latter case and thus it is model-dependent.

One can see from (6.3.8) that there is 0 < Yy < 1 such that

h
%E(u(l),uz(t))—c < V(@) < 2E(M(t),uf(t))+ﬂ/0 lu(=§)|PdE+c.  (63.24)

for every 0 < y < yo, where c does not depend on k.
Let us consider the time derivative of V along a solution. One can see that

d
— (D), (1) =luy (1) 12 = k(u(t). u, (1)
— [|AY2u(®)])* — (u, B(w)) — (u. M(u")). (6.3.25)

Combining (6.3.25) with the energy relation in (6.3.10) and using the estimate
k(u, ) < K2 w1 + §llul|* we get

d -~
L) <~ (k= y(1 1)l + M) 10)
1
—y (—Znu(r)nz A2 + (. Bw)) + (u,M(u')))

VLR TR
= e —oipde.

Using the inequality |(M(u'), u,(1))| < kl|u/(1)]]* + 1||M(u")||* and also esti-
mate (6.3.22) we obtain that

M), (D) = KD
c h
L )+ 220 [ gpae,

where ¢y > 0 does not depend on k.
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In a similar way,

1
L)+ 1), M)
h
< o) [0 et = E)PAE + Cop (1 + [[AV2u(t) ).

The relations in (6.3.20) and (6.3.21) with small enough 1 > 0 and an interpolation
inequality (see Exercise 4.1.2) of the form

[AY2 0| < e| AV?ul)® + Collu)®, ue 2(AY?), Ve>o0, (6.3.26)
yield
Caprr (1 + [|A272u][?) — [|JA?u) > — (u, Bw)) < =3aoE(u, u)) + [|u|* + ar

for some a; > 0. Thus it follows from the relations above that
d - 3
290 <= (G- re - ) luo?

+ 2 [1+ 1A u@ 7]+ y (<3a0E@).w(@) + a)

h
N [_% N (% N y) gzm)} /0 (e — £)Pd £

Using (6.3.21) and (6.3.26) we find that
Conat/2—=8 12 « Epatrz, )2 1 (l
1Al < 2 [IAulP + oG] + b 8), Ve o,
where b(s) is a non-decreasing function. Taking ¢ = yapk we obtain

€0\ 41/2-8 2 l R :
p A u@|” = yaoE(u(t), u,(t)) + kb(y/aok>7

where b(s) is a non-decreasing function. Thus using (6.3.24) and rescaling the
function b(s) we arrive at the relation

ds - 3 1 /1
VO +yaV(®) = - (Zk —yQ+K) - y,) | (DI* + ¥ [a + ﬁb(}/—k)} ,

" 2 h )
. [_Z ¢ ayan+ (z 4 y) gz(h)} [l - oirae.
(6.3.27)
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Take u = § and y = ﬁ, where 0 < o < 1 is chosen such that y < y, for all
k > 0 (the bound y arises in (6.3.24)). Assume also that & satisfies the inequality

k vk 2
- — 4+ = h) <0. 6.3.28
ot St (347 ) < (6328

Then (6.3.27) implies that

1
—V(t) T yaoV(t) <y |:a n y_b(yk)} (6.3.29)

One can see that there is og = ay(kg) such that oy < yk < /2 for all k > k.
Therefore from (6.3.29) we obtain that

- - 1
V(l) < V(O)e_)’aot _(1 _ e—yaot) [a =+ —b( )] s (6330)
0o ‘0o
provided
ko 1 2 1
- — h -] <0. 6.3.31
g+ ) (2 +3) < 6331)

Here we used (6.3.28) and properties yk < 1/2,y < 1/2, which follow from the
choice of y. The relation in (6.3.31) can be written in the form

ko 262
h .
|:a0k0+ 48:(h )}_k 14

This is true if we assume, for instance, that

h<ko and h (h)<1 &
aop 0 an 82 _4k +4

Under this condition relation (6.3.30) implies the desired (uniform in k and h)
dissipativity property and completes the proof of Proposition 6.3.11. o

6.3.3 Asymptotic properties: quasi-stability

In this section we show that the system (W, S;) generated by the delay equation
in (6.3.1) possesses some asymptotic quasi-stability property. As we have seen
before, quasi-stability leads to several important conclusions concerning the global
long-time dynamics of the system.

Quasi-stability requires additional hypotheses concerning the system.
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Assumption 6.3.13.

(B) We assume that the nonlinear (non-delayed) mapping B : Hy/» — H satisfies
one of the following conditions: '’

(a) either it is subcritical, i.e., there is positive 1 such that for any R > 0
there exists Lg(R) > 0 such that

|B(u) — B(@)|| < Lg(R)||AY*™"(u — )|, (6.3.32)

for all u, it € 2(A'/?) with the properties ||A"/?u||, ||A"/?i|| < R;
(b) or else it is critical, i.e., (6.3.32) holds with n = 0, and the damping
parameter k is large enough.

(M) There exists § > 0 such that the delay term M satisfies the subcritical local
Lipschitz property, i.e., for any o > 0 there exists L;(0) > 0 such that

[M(p) —M(@)|| = Lu(o) oA 14127 (p(8) — ¢ (O))]. (6.3.33)

for any ¢ and ¢ such that ||¢]||w, ||®¢]lw < o-

As in Remark 6.3.10 one can see that (6.3.33) holds for M given by (6.3.23) if
we assume that

[7(0) = (@] = Li(o) max_ [1A"*7(¢(8) = $(O). (6.3.34)
The following theorem is the main step in the proof of quasi-stability of the

system (W, S;).

Theorem 6.3.14 (Quasi-stability inequality). Let Assumptions 6.3.1, 6.3.5, and
6.3.13 be in force. Then there exist positive constants C\(R), A, and C,(R) such
that for any two solutions u(t) and u(t) with initial data ¢ and ¢ possessing the
properties

O + A" 2u@)|1* < R, i@ + [|A"a@)||> < R forall t = —h,

(6.3.35)
the following quasi-stability estimate holds:

[, (2) — it (D) 1> + 1A (u(r) — () ||

=GR g = gy + Co(R) max |12 (@) — a@DIP (63.36)

with some § > 0. In the critical case k > ko(R) for some ky(R) > 0.

10 We distinguish the cases of critical and subcritical nonlinearities.
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We emphasize that Theorem 6.3.14 does not involve Assumption 6.3.9 and deals
only with pairs of uniformly bounded solutions. However, if the conditions in
Assumption 6.3.9 are valid, then by Proposition 6.3.11 and Remark 6.3.12(1) there
exists a bounded forward invariant absorbing set. Thus under the conditions of
Proposition 6.3.11 we can apply Theorem 6.3.14 on this set.

Before proving Theorem 6.3.14, we note that its main consequence is the
following assertion, which states quasi-stability of the system (W, S;) in the sense
of Definition 3.4.1.

Theorem 6.3.15 (Quasi-stability). Let Assumptions 6.3.1, 6.3.5, and 6.3.13 be in
force. Then for every bounded forward invariant set B there exists T = Ty such
that the system (W, S,) is quasi-stable at the time T on 2.

Proof. We assume that & lies in the ball {¢ : |¢|lw < R} and choose T > h
in (6.3.36) such that g = C;(R)e *T < 1. As the space Z we take

Z =7y = C([0. T}; Hj2) N C'([0. T]; H)
and define the seminorm

nz(u) = C2(R) max [|A"* " u(®)|P.
£€fo.7]

By the Arzela-Ascoli theorem (see Lemma A.3.5) this seminorm is compact on Z.
Thus we obtain (3.4.1) with X = W and K : W — Z given by the relation

K[u®(r) = u(r), te€]0,T],

where u is a solution to (6.3.1) and (6.3.4) with initial data u° € W. ]

6.3.3.1 Proof of Theorem 6.3.14

We split the proof into two cases and start with the simplest one.

Subcritical case: We rely on the mild solution form (6.3.7) of the problem and
follow the line of argument given in CHUESHOV/LASIECKA [58, p. 479-480] with
modifications which are necessary for the case of state-dependent delay force M.
As in Chapter 5, here we can also use the multipliers method. However for
completeness we will demonstrate the constant variation method. The multipliers
method is presented below in the case of the critical force B.

Let us consider two solutions U = (u;u,) and U = (u; uy) to (6.3.1) possessing
property (6.3.35). Using (6.3.7) and exponential stability of the semigroup e~“* in
the space .77 = 2(A'/?) x H we have that
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WU(t) = T(0)|e <Ce™||UO) — TO)]|

! T ~
+C / NN (U — N (UF)||eds, t>0,
0
(6.3.37)

with A, C > 0, where ./ is given by (6.3.6). Since
|V (U*) = A (D) < ||Bu(t)) = B@@))|| + |[M(u') — M@)]|,
using properties (6.3.32) and (6.3.33) we obtain

1A (U%) = A (@)l < C(R) o A2 (us + 6) — (s + 6))]

for some 6 > 0. Thus (6.3.37) yields
U = T@)||w <Ce™||U0) = T(O)||w + CR) I(t, u — it) (6.3.38)

for t > 0, where

ro
I(t,7) = / e M=) max [|AY?2(s + 0)|| ds with z(s) = u(s) — ii(s).
0 te[—h.0]

Now we split I(¢,z) as I(t,z) = I'(t,z) + I*(t, z), where
h h 5
I'(t,2) = / e ) max [|AY?72(s + )| ds < Cral’|w [ A=) g
0 (e[—h.0] )

=Cr|2’|w - e_jl(é’im - nr!

and

t -
Fm@z/eﬁwng%ﬂwﬂﬁu+@mw
h —h,

t ¥ o~
< [ e as mx Al = (1= A a4V
0 £€[0.1] £€[0.1]

Thus (6.3.38) yields the desired estimate in (6.3.36) for the subcritical case.

Critical case with large damping: We use the same idea as in Section 5.3.1 and
partially follow the line of the arguments of CHUESHOV/LASIECKA [56, p. 85,
Theorem 3.58].
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Let u and u be solutions satisfying (6.3.35). Then z = u — u solves the equation
2u() + Az(1) + kz,(1) = =B12(1) — My 2(7) (6.3.39)
with
Bia(1) = B(u(r)) — B((t)); Mia(r) = M(u') — M(it').

We multiply the last equation by z,(¢) and integrate over [¢, T]:

T
E(T) — E.(0) + k f l2(5)| P ds

t

T T
. / (B1a(s), 24(s)) ds — / (Mr2(5). 2(s) ds.  (6.3.40)

Here we denote E. (1) = 1(||z()|* + [|AY2z()[]*).
One can check that there is a constant Cz > 0 such that

C
B2, z(0)] < &|A 20> + ?RIIZz(t)IIZ, Ve>0.
Similarly, using Assumption 6.3.13(M), we have

(120, 20| = max A2+ 6)| + Cella()”

Hence, from (6.3.40) we get

T T
B - £+ [ I@IPa] <o [ 4701

T 1 T
+/ max ||JAY20z(s + 0)|>ds + Cg (1 + —)/ l|z:(s)||*ds  (6.3.41)
; 0€[—h0] &) N

for every ¢ > 0. Below we choose k (assume that it is) big enough to satisfy (see the
the last term in (6.3.41))

1 k
Cr (1 + —) < 3 forall k> k. (6.3.42)
&

This choice is made to simplify the estimates only (the final choice of ky will be
made after the choice of ¢).

Now we multiply (6.3.39) by z(¢) and integrate over [0, T], using integration by
parts. This yields
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T T
D)D) = @O0 + [ 1AV=0IPds+ & [ @26 ds
0 0
T T T
< [P+ 5 [0l ds+ e [ NP s
b man, 146+ P s,

Hence, using the definition of E, and the relation

T 1 T 5 k2 T 5
E[ @oands <5 [Claora+ S [P

we obtain

T T
3 | 1z ds <3 [P ds+ o) + B

2 Jo
— T
+ Cr(k) / max_|[|A"270z(s 4 0)|| ds. (6.3.43)
o 0€[—h0]

From (6.3.41) with r = 0 and using (6.3.42) we get
3k T T
EO) <EM+ 5 [ aIPds+e [ Azl ds
0 0
/ max ||AY*7z(s 4 0)||* ds. (6.3.44)
o 0€[-=h0l

It also follows from (6.3.41) with the help of integration over [0, T] (we use (6.3.42)
again) that

T T
TE.(T) 5/ E.(s) ds~|—8T/ [|AY22(s)||? ds
0 0
+ T/ max ||A1/2 S2(s + 0)|| ds. (6.3.45)
Another consequence of (6.3.41) and (6.3.42) is
k T T
5 | aIPds <E0+e [ a1
0 0

/ Gé?ai( [[AY2 3 2(s + 0)| | ds. (6.3.46)
0



340 6 Delay Equations in Infinite-Dimensional Spaces

Considering the sum of (6.3.46) and (6.3.43) and assuming that k > 4, we can get

”f@mmsa&@+&0»
0

T T
+ cos/ [|AY22(s5)||* ds + C,’Qk/ max ||AY27%z(s + 6)||* ds. (6.3.47)
0 ’ 0 96[—h,0]

Now to both sides of (6.3.47) we add the value %TEZ(T) and use (6.3.45):

s)ds +
2 0 ¢ 2 ‘

T
smu+n/HN%®Ww+a@®+&G»
0

T
+ Cri(1 4+ 7) / ,max A2 (s 4+ 0)||>ds.  (6.3.48)
0 —h,

Next we evaluate E,(0) 4+ E(T). Using (6.3.44) we have
3k (T 2 ! 1/2 2
E:(0) + E(T) 2E:(T) + — | la@Ids+e | |lA772(s)][" ds
0 0

T
+/ max ||A'?732(s + 6)||? ds.
o 0€[—h0]

Substituting this into (6.3.48) we obtain

1 7 1 T
5/ E.(s)ds + (ET—ZC) E.(T) < cok/ l1z:(s)||* ds
0 0

T T
+(1+7) [cw/ ||AY22(s)|)2ds + CR(k)/ max ||Al/2_5z(s+9)||2ds]
0 0 0€[—h,0]
Choosing T such that

1
ET_ZC > 1, (6.3.49)

we get

1 T T
EM+; [ EGdzaca+D) [ 40P
0 0

T T
+ (147 CR(k)/0 eg[l—alfo] ||A1/2_bz(s +6)|*ds + cok/O l|z:(s)|]? ds.
(6.3.50)
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To estimate the last term in (6.3.50) we use (6.3.41) with r = 0 (remember-
ing (6.3.42)) to get

k

T T
3 | NI <O By e [ 140 R

/ max 4727520+ )| ds
e

So, we can rewrite (6.3.50) as
1 T
E.(T) + —/ E.(s)ds
2 Jo
T
<20(E0) ~ ET) + e (14 7) [ IWz(9)] s
0
—~ T o
+ (14 T) Cr(k) max_||A"27%z(s 4 0)|| ds. (6.3.51)
o 0€[-h0]
Since ||A!/?z(s)||? < 2E.(s), the choice of small & > 0 to satisfy
1
as(1+7) <3 (6.3.52)
simplifies (6.3.51) as follows:

E.(T) < &(E.(0) — E.(T)) + (1 + T) CR(k)/ max ||A1/2 S2(s + 0)||? ds.

The last step is

E.(T) < ] A2 (s 4 0)|* ds.
Since y = :LO < 1, this means that there is @ > 0 such that
T
E.(T) < e “TE.(0) + Crrx / ,max [[AY2732(s + 0)|| ds. (6.3.53)
0 O€l—n

Note that the parameters are chosen in the following order. First we choose T > h
to satisfy (6.3.49), next we choose small ¢ > 0 to satisfy (6.3.52), and finally we
choose k > 4 big enough to satisfy (6.3.42).
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Now using the same step-by-step procedure (mT +— (m + 1)T) as in Proposi-
tion 5.3.4, we can derive the conclusion in (6.3.36) from the relation in (6.3.53)
written on the interval [mT,(m + 1)T]. Thus the proof of Theorem 6.3.14 is
complete.

6.3.4 Global and exponential attractors

In this section, relying on Proposition 6.3.11 and Theorem 6.3.15, we establish the
existence of a global attractor and study its properties.

The main consequence of dissipativity and quasi-stability given by Proposi-
tion 6.3.11 and Theorem 6.3.14 is the following theorem.

Theorem 6.3.16 (Global attractor). Let Assumptions 6.3.1, 6.3.9, and 6.3.13 be in
force. Then the dynamical system (W, S;) generated by (6.3.1) possesses the compact
global attractor A of finite fractal dimension. Moreover, for any full trajectory
{u(t) :t € R} such that u' € A for all t € R we have that

U € Loo(R, H), u; € Loo(R,H1y2) u € Loo(R, Hy) (6.3.54)
and

lua @I + 1A 2@ + [Au(®)]| <R, ¥1eR. (6.3.55)
Proof. By Theorem 6.3.15 the system (W,S;) is quasi-stable. Due to Proposi-
tion 6.3.11 this system is dissipative. Therefore to prove the existence of a compact
global attractor 2l we can use Proposition 3.4.3 and Corollary 3.4.4. This attractor

is finite-dimensional due to Theorem 3.4.5.
To prove the regularity properties in (6.3.54) and (6.3.55), we can use the

inequality in (6.3.36) and the same idea as in the proof of Theorem 3.4.19. Indeed,
let y = {u(t) : t € R} be a full trajectory of the system. This means that

(S;u’)(0) = u(t+ s+ 0) for 8 € [-h,0], seR, t>0.
Assume that i’ € 2 for all 1 € R. Consider the difference of this trajectory and its

small shift y. = {u(t + &) : t € R} and apply the inequality in (6.3.36) with the
starting point at s € R:

ur(t + &) — u (D> + [|AY> (u(t + ) — u(®))||?

<CURIEHINH — i}y + Co(R) max A2 (u(E + &) — ()]
€|s,t
Since u* € 2 for all s € R, in the limit s — —oo0 we obtain that

e (2 + &) — ur (D> + |A (u(t + &) — u(®)||?
< C(R) sup [JAY*P(u(E + &) —u(®))|

§€[—o0.i]
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Now in the same way as in the proof of Theorem 3.4.19 we can conclude that

5 [t -+ &) = 1P + 1102t + )~ u) ]

is uniformly bounded in ¢ € (0, 1] and ¢ € R. This implies (passing to the limit
& — 0) that

@117 + 11420, @) < Cr-

Now using equation (6.3.1) we conclude that ||Au(t)||> < Cg. This gives (6.3.54)
and (6.3.55).
This completes the proof of Theorem 6.3.16. o

Remark 6.3.17. One can show (see CHUESHOV/REZOUNENKO [66]) that in the
situation considered in Remark 6.3.7 the global attractor 2 is a bounded set on
the manifold .Z given by (6.3.19). [

Now we present a result on fractal exponential attractors. We recall (see
Definition 3.4.6) that a compact set 2., C W is said to be a (generalized)
fractal exponential attractor for the dynamical system (W, S;) iff 2., is a positively
invariant set whose fractal dimension is finite (in some extended space # O W)
and for every bounded set D C W there exist positive constants 7p, Cp, and yp such
that

dwiSiD | Aexp} = supdist w(Six, Aexp) < Cp-e PP t>15  (6.3.56)

x€D

Using the quasi-stability property and Theorem 3.4.7 we can construct fractal
exponential attractors for the system considered.

Theorem 6.3.18 (Exponential attractor). Let the hypotheses of Theorem 6.3.16
be in force. Then the dynamical system (W,S,) possesses a (generalized) fractal
exponential attractor whose dimension is finite in the space

W = C(I~h,0];Hi/o—5) N C'([=h,0]; H—5), ¥ &> 0.
Proof. Using (6.3.1) we can see that ||u,(f)||-; < Cg for all + € Ry and for
every solution from an absorbing ball. This allows us to show that S;¢ is Holder
continuous in 7 in the space #/, i.e.,

ISt —Spelw < Cglti —t|", t.hb eR4, ye B,

for some positive y > 0. Indeed, using the interpolation inequality (4.1.2) with an
appropriate choice of parameters, we have that

lu(t + h) — u(®)l1/2-5 < [llu(t + W)z + lu@llj2] > Jul + B) — u@)]?
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foro < § < 1/2. Since

lutz + 1) —u(@)| < < Cglhl,

t+h
f ()
t

the former inequality implies that u(r) is 26-Holder in H; /»_s, and similarly for u,(t).
Thus the result follows from Theorem 3.4.7. ]

In conclusion, we note that using quasi-stability property (6.3.36) we can also
establish some other asymptotic properties of the system (W, S;). For instance, using
the same idea as in Theorem 3.4.20 we can suggest criteria which guarantee the
existence of a finite number of determining functionals.

The question of whether it is possible to avoid the assumption of large damping
in the case of critical nonlinearities in Theorem 6.3.18 is still open.

6.3.5 Remark on models with structural damping

In this section we briefly discuss the model in (6.3.1) with structural damping of the
form 2 - A'/?u, instead of viscous damping k - u,. Namely, we consider the equation

(1) + 2%AY?u,(t) + Au(r) + B(u(t)) + M(u') =0, 1> 0. (6.3.57)

The presence of structural damping leads to additional a priori estimates. This makes
it possible to relax the conditions concerning the terms B(-) and M (u'). Moreover for
the model in (6.3.57) we can apply the parabolic theory developed in Section 6.1.
Indeed, equation (6.3.57) can be treated as a nonlinear delay perturbation of a linear
model of the form

up (1) + 2%6AV2u,(t) + Au(r) =0, 1> 0.

Using the idea presented in LASIECKA/TRIGGIANI [144] we can rewrite (6.3.57) as
a semilinear parabolic model. For instance, in the case when!! % > 1 we can use the
variables

n = —% (1) + (e — BAu(0))

and

120 = 5 (10) + G+ HAu(0).

B

""The case 0 < x < 1 can be considered in a similar way, but it requires a complexification
procedure. See LASIECKA/TRIGGIANI [144] and also CHUESHOV/LASIECKA [58, Chapter 13].
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where § = V%2 — 1. The inverse transformation has the form
u=A"@ 4y, w=—pOr+y) = BO1— ).
Using these variables y; and y,, equation (6.3.57) can be written in the form
d
d_tY + AY = B(Y"), (6.3.58)

where

_ (o G+ pA? 0
Y_(yz)’A_( 0 (%—ﬂ)A‘/z)’

| BATP010) + 3200 + MAT204 +34)
B(Y') = ﬁ

and

—BAT2(y1(t) + y2(1)) — MA™V2(4 + ¥h))

It is clear that A is a positive operator in H x H with a discrete spectrum.
Thus problem (6.3.58) has the same form as (6.1.1), and thus we can apply the
methods presented in Sections 6.1 and 6.2. In particular, this makes it possible to
obtain a local existence result without Lipschitz continuity hypotheses and establish
additional compactness properties for the system generated by (6.3.57).

6.3.6 Applications: plate and wave models

In this section we consider several possible applications of the results above.

6.3.6.1 Plate models

Our main applications are related to nonlinear plate models.
Let £2 C R? be a bounded smooth domain. In the space H = L,(£2) we consider
the following problem:

uy(t, x) + ku,(t, x) + Azu(t, X)
+ [f(u(t, ND])(x) +u(t —t[u'],x) =0, x€ 2, t >0, (6.3.59)

u= g—u =0 on 352, u(f) = ¢(A) for O € [—h,0]. (6.3.59b)
n
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We assume that
T 1 C([=h,0]; Hy(2)) N C'([=h, 0]; Lo(£2)) > [0, h]

is a Lipschitz continuous mapping. As was already mentioned, the delay term in
(6.3.59a) models the foundation reaction with a delayed (state-dependent) response.

The model in (6.3.59) can be written in the abstract form (6.3.1) in the space
H = L,(£2) with A = A? defined on the domain Z(A) = (H* N H})(£2). Here and
below H*(£2) is the Sobolev space of order s and Hj($2) is the closure of C{°(2)
in H*(£2).

As the simplest example of a state-dependent delay satisfying all hypotheses in
Theorems 6.3.16 and 6.3.18 we can consider

t[u'] = g(Q[u']), (6.3.60)

where g is a smooth mapping from R into [0, /] and

N
Olu'l = Z ciu(t — oy, a;).

i=1

Here ¢; € R, 0; € [0,h], a; € §2 are arbitrary elements. We could also consider
the term Q with the Stieltjes integral over delay interval [—A, 0] instead of the sum.
Another possibility is to consider a combination of averages like

N
= — 0y, i(x)dx, 6.3.61
Ol ;/Qu(r 012 )& () dx (63.61)

where 0; € [0, 4] and {&;} are functions from L,(£2). We can also consider linear
combinations of these Q’s as well as their powers and products. The corresponding
calculations are simple and related to the fact that the space Z(A'/?) is an algebra
belonging to C(£2).

The nonlinearities f satisfying all requirements of Theorems 6.3.16 and 6.3.18
are the same as in CHUESHOV/LASIECKA[56, 58], and the delay perturbations of
the models considered in these sources in the case of linear damping provide us
with a series of examples. Here we only mention three of them.

Simplified Kirchhoff model: In this case f(u) = fy(u) — h(x), where h € L,(£2),
and

fo € Lipc(R) satisfies llilln inffy(s)s™! = oo. (6.3.62)
S|—00

This is a subcritical case (relation (6.3.32) holds with > 0). The growth condition
in (6.3.62) is needed to satisfy Assumption 6.3.9.
The following two examples are critical ((6.3.32) holds with n = 0).
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Von Karman model: In this model (see, e.g., CHUESHOV/LASIECKA [58] or
LIONS [151])

@) = —[u,v(u) + Fo] — h(x),
where Fy € H*(£2) and h € L,(£2) are given functions,
[u,v] = 8§1u . 8)2(21) + 8)2(2u . Bflv — 2 Oyl * Oyyxy U,

and the function v () satisfies the equations:

v (u)
on

A*v(u) 4 [u,u] =0 in £, =v(u) =0 on 02.

For details we refer to CHUESHOV/LASIECKA [56, 58].

Berger model: In this case f(u) = IT' (), where

2
n(u)=§[ | |Vu|2dx} =4 [ v [ umax,

where k > 0 and u € R are parameters, 1 € L,(§2). We refer to the
analyses presented in CHUESHOV [39, Chapter 4] and CHUESHOV/LASIECKA [56,
Chapter 7].

In all these models we can also include a non-conservative non-delay force of the
form

() = (a10y, + a0,,)u, where (a;;a;) € R%

These kinds of models arise in some aero-elastic problems; see, e.g., CHUESHOV/
LASIECKA [58].
6.3.6.2 Wave model
Let 2 C R d = 2,3, be a bounded domain with a sufficiently smooth boundary
I'. The exterior normal on I" is denoted by n. We consider the following wave
equation:

uy — Au~+ku; + f(w) +u(t—t[u']) =0 in Q =[0,00) x 2
subject to boundary conditions either of Dirichlet type

u=0 on ¥ =[0,00) x I, (6.3.63)
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or else of Robin type

9
M u=0 on . (6.3.64)
on

The initial conditions are given by u(8) = ¢(0), 6 € [—h,0]. In this case H =
L,(£2) and A is — A with either the Dirichlet (6.3.63) or the Robin (6.3.64) boundary
conditions. So Z(A'/?) is either H{(£2) or H'(£2) in this case.

We assume that k is a positive parameter and the function f € C?(R) satisfies the
following polynomial growth condition: there exists a positive constant M > 0 such
that

" (s)] < M(1 + |s]97"),

where ¢ < 2 whend = 3 and ¢ < oo when d = 2. Moreover, we assume
the same lower growth condition as in (6.3.62). One can see that the hypotheses
in Theorems 6.3.16 and 6.3.18 are satisfied (see [56, Chapter 5] for a detailed
discussion). Moreover we have the subcritical case if d = 2 ord = 3 and g < 2.
The case d = 3 and g = 2 is critical.

As for the delay term u(r — t[u']), we can assume that, as in the plate models
above, 7[u'] has the form (6.3.60) with Q[u,] given by (6.3.61). Moreover, instead of
the averaging we can consider an arbitrary family of linear functionals on H'~3(£2)
for some § > 0; i.e., we can take

N

QL1 = cilifult — )],

i=1

where ¢; € R, 0; € [0, h] and [; € [H'~%(£2)]’ are arbitrary elements.



Appendix A
Auxiliary Facts

In this appendix we start with a discussion of various issues related to solvability
of finite-dimensional ODEs. Then we discuss some issues related to Gronwall’s
lemma which are important for parabolic problems. We also consider properties
of measurable functions with values in infinite-dimensional spaces, some approx-
imations of the identity operator on Banach and Hilbert spaces, and elements of
differential calculus on these spaces. We also show that uniqueness for semilinear
parabolic problems is a generic property and discuss the monotonicity method for
2D hydrodynamical problems.

A.1 Generation of continuous systems by ODEs

In this section we review several classical results on the generation of dynamical
systems by ordinary differential equations (ODEs).

Let X = R¢ with the (Euclidean) norm || - || and f : X ~ X be a continuous
function. We consider the following Cauchy problem in X:

] =f(u), t>t, I/t([()) =uy € X. (A.1.1)

Definition A.1.1. A function u(¢f) with values in X is said to be a solution to
problem (A.1.1) on a (semi-open) interval [ty, zy + T) if

u € C([to, to + T); X) N C' (o, 10 + T); X)

and satisfies (A.1.1) on the open interval (fy,f) + T). We can similarly define a
solution on closed intervals of the form [fy, 7y + T]. The notation C([a, b]; X) and
C'((a, b); X) has an obvious meaning (see Section A.3.1 below). n
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The following result is standard and can be found in many books on ODEs (see,
e.g., CODDINGTON/LEVINSON [75] or HARTMAN [120]). It is usually attributed to
the contributions of G. Peano (1858-1932) and C. Carathéodory (1873-1950).

Theorem A.1.2 (Carathéodory-Peano). Let f be a continuous function from
X = R? into itself. Then for any uy € X and ty € R there exists T < oo such that
problem (A.1.1) has a solution on the interval [ty, ty + T). Moreover,

* every solution can be extended to an (a maximal) interval [t0, to + T) possessing
the property: if T < oo then the solution blows up, i.e.,

lim sup ||u(?)|| = +o0;
t T

e if we assume in addition that f is locally Lipschitz in the sense that for every
R > O there is Lg such that

Ilf (1) — f(u) || < Lglluy — ua|| forall ||ui]l <R, i=1,2, (A.1.2)

then the solution is unique.

Sketch of the proof. We present the main steps only. For details we refer to the
classical sources CODDINGTON/LEVINSON [75] or HARTMAN [120]).

We first note that the Cauchy problem in (A.1.1) is equivalent to the problem:
find u € C([to, to + T); X) satisfying the integral relation

u(t) = up + /tf(u(f))dr forall t € [ty, 20 + T). (A.1.3)

Next we define approximate solutions. For Ty« > 0 and for every n = 1,2,... we
consider a sequence of functions v,(¢) on [y, ty + Tx] satisfying the relation

U, for t € [ty, to + T« /n];

v, (1) = (A.1.4)

t—=Tx«/n
Uy + / f(Un(‘[))d‘C, for t € [l() + T*/}’l, to + T*],
4]

forn = 1,2,.... Itis clear that v; (#) = uo and the delayed character of the integral
above allows us to define v,(7) by the step-by-step procedure starting from the
initial interval [t, fo + T«/n]. One can show that each function v, is continuous
on [ty, tg + T«].

Now we fix R > 0 and consider the ball Br(ug) = {u € X : ||u — uo|| < R}. Let

MR(I/LQ) = sup{|[f(u)|| u € BR(M())} and T* < MR(M())_lR.
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Using the step-by-step method it is easy to see that
max{||v,(t) —upl| : t € [to,t0 + T«]} <R.
This implies that
v, (t) — va(22) || < Mg(up)|t; — 1] forall 1,1 € [fy, tg + Tx].

Thus {v,(7)} is a uniformly bounded and equicontinuous sequence on [fg, fop + Tx].
Since X is finite-dimensional, by the Arzela-Ascoli theorem (see, e.g.,
DIEUDONNE [85] and also Lemma A.3.5) there exists a convergent subsequence

{0, (D}

max_ ||vg, (f) —v(@)| = 0 as m — oo
t€fto,to+Tx]

for some function v € C([t, to + Tx], X). It follows from (A.1.4) that

%m=m+ffmxmw—/ Fon, (D)

—Ts /N

forto+Ts/ny, <t <ty+Txandm = 1,2, .... This yields that v(7) satisfies (A.1.3).

Thus the existence of solutions to problem (A.l.1) on a “small” interval
[to, to + T«] is proved. Taking initial data u(zy + T%) at the time fy + T« we can
extend the solution to a greater interval. Hence we can construct a solution on some
semi-open interval [fo, fo + T) which is maximal in the sense that we cannot extend
the solution beyond 7 + 7.

Let [fy, to + T) be an interval of existence for a solution u(¢) and T < oo. If we
assume that u(¢) is bounded as r ' T, then by (A.1.3) we have that u(7) is continuous
att = ty+ T. Thus we can extend the solution beyond #y + 7. This implies that every
solution can be extended to an interval [fo, o 4 T) with the property: if T < oo, then
lim sup, - [[u(t)]| = +o0.

The statement on uniqueness of solutions follows via a Gronwall’s-type
argument.

Let f be locally Lipschitz and assume that u(¢) and u,(¢) are two solutions
to (A.1.1) on some joint interval [zy, #y + T]. Using representation (A.1.3) one can
show that

t
|ty () — ua (0)|| < Ly(uy, uz)/ |1 (z) —up(7)||dr forall ¢ € [ty, 19 + T,
1o

where Lr(ui,up) = Lg with R = maXep n+millui (O] + lu2(2)[|}. Thus the
standard Gronwall lemma implies the uniqueness.
This completes the proof of Theorem A.1.2. o
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We mention that Example 1.7.15 in Section 1.7 shows that the uniqueness statement
in Theorem A.1.2 cannot be true without the Lipschitz assumption for f.
The following result provides a criterion for global existence.

Theorem A.1.3. Let X = RY and f : X — X be a continuous mapping. Assume
that f satisfies the following dissipativity condition: there exist ki > 0 and k, > 0
such that

(f(w),u) < ky||lull®> + ky forall ueX. (A.1.5)

Then for any uy € X and ty € R problem (A.1.1) has a solution on the semi-axis
[to, +00). Moreover, this solution admits the estimate

k
lu(@)||> < 210 ||y |1 + é (1 — 1) forall t > t. (A.1.6)

If we assume in addition that f is locally Lipschitz (see (A.1.2)), then the solution is
unique and depends continuously on initial data. Furthermore, for any two solutions
u'(t) and w? () with initial data u} and u}, from the ball B, = {v € X : ||v| < p}
we have the following estimate:

lu (1) — u(0)|| < Crplluy — udll forall t € [to, to + T, (A.1.7)

where Cr, = exp{TLg} with R = /p?> + ka/k\ exp{kiT}, with the same Lg as in
(A.1.2).

Proof. The existence of a local solution u(f) on some interval [y, 7y + 7) follows
from Theorem A.1.2.

If we substitute this solution u(¢) into (A.1.1) and multiply (A.1.1) by u(z), then
we obtain

S = (o). u) < ka @I + ko 1€ [0+ 7).

Via a Gronwall’s-type argument this implies the estimate in (A.1.6) on the existence
interval. In particular this means that the solution cannot blow up at the end of this
interval, and thus by Theorem A.1.2 the solution can be extended on the semi-axis
[to, +00). Obviously estimate (A.1.6) remains true on this semi-axis.

To prove (A.1.7) we note that by (A.1.6) we have

li!())? < R* = M7 (0* + ko /ky), t€toto+T], i=1,2.

Therefore using (A.1.1) and the Lipschitz condition in (A.1.2) we can conclude that
u(t) = u' () — u?(¢) satisfies the relation
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d
S LI = (")~ F0?), 1) < LI, 1€ lo.to + 71

By the Gronwall lemma this implies (A.1.7). o

The Lipschitz condition in Theorem A.1.3 can be relaxed if we assume some
monotonicity of f(u). More precisely, the following assertion holds.

Theorem A.1.4. Let X = R? and f : X +— X be a continuous mapping. Assume
that f satisfies the following one-sided Lipschitz condition: there exists ko > 0 such
that

(Fuh) —f@P), u' —u?) < kollu' —u®||* forall u',u® € X. (A.1.8)

Then for any uy € X and ty € R problem (A.1.1) has a unique solution on the
semi-axis [ty, +00). Moreover, this solution admits the estimate (A.1.6) with k| =

ko + 1/2 and ky = ||f(0)||/2, and for the difference of two solutions u'(t) and u?(t)

with initial data utl) and ug we have the estimate

! (1) — u?(0)]| < O ud — || forall t> 1. (A.1.9)
Proof. The statement follows from the argument given in the proof of Theo-

rem A.1.3. We leave it to the reader to provide all the details. o

The results in Theorems A.1.3 and A.1.4 give us conditions for the generation
of continuous time dynamical systems in R? by ODEs. The evolution operator S, is
given by S,uy = u(t), where u(f) is a solution to (A.1.1) with 7y = 0.

A.2 Two Gronwall-type lemmas

In this section we prove two assertions which provide us with some nonstandard
extensions of the classic (see, e.g., HARTMAN [120]) Gronwall’s inequality.

Lemma A.2.1. Let ¥ (t) and g(t) be given scalar functions from L'(R1.). Assume
that a continuous function h(t) defined on R satisfies the inequality

h(t) + / Y (t)h(t)dr < h(s) + / g(r)dr (A2.1)
forallt > s > 0. Then

h(t) < h(s) exp%—[ ¥(o) da} +/ g(r) exp{—/ I/I(O)d(f} dt  (A22)

forallt > s > 0.



354 A Auxiliary Facts

Proof. The main difficulty in the proof of this lemma is that it is not assumed that
his a C! function and/or ¥ and g have fixed signs. For instance, in the case when
h € C'(Ry) we can choose t = s + As in (A.2.1) and after the limit transition
As — +0 show that

H(s) + ¥ (s)h(s) < g(s) foralmostall s € R.

Therefore using the multiplier e(s) = exp { f; ¥ () do} we can see that

%[h(s)e(s)] < g(s)e(s) for almostall s € Ry.

Thus after integration we can obtain (A.2.2).
To overcome the difficulty of the insufficient smoothness of the function (s) we
first prove the following assertion.

Lemma A.2.2. Assume that f(t) is a continuous function on an interval [a, b] such
that

811m1nf 5] [f(t+ 8) —f ()] = —m(r) (A.2.3)

for almost all t € (a, b), where m(t) € L'(a, b). Then

f() —f(t) < /2 m(t)dt forall a<ti <t <b. (A24)

151

Proof. It is clear that

t
M) = £(t) - / m(t)dr € Cla, b
and satisfies the relation

blmé inf |;| M(t+8)—M(@)] >0 (A.2.5)

forall t € &, where 4 is a measurable set of full measure in (a, b). To obtain (A.2.4)
we should prove that M(r) is a non-increasing function on [a, b]. It is sufficient
to prove that the function @(tf) = M(f) — yt is non-increasing for any y > 0.
From (A.2.5) we have

hmmf |5| [@t+ 68 —DP@)] >y >0, t€RB.
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This implies that for every ¢ € 4 there exists o (¢) > 0 such that

P(t—1)>P(1), 0<t<o0(t),t€A. (A.2.6)
Let 1; < t, be points from . Consider the covering of the segment [t;, ;) by
intervals (r — min{o (t;), 0 (1)}, 1), where t € 2. It is clear that there exists a finite

subcovering. Moreover we can choose the points 7; < 1, < ... < ty from £ N
(t1, 1) such that

nhe(m—o(m)u), wel—o(n)h)
and
T € (1 — 0 (Tt1), 1), k=1,...N—1.
Therefore from (A.2.6) we have
D(t) > D(11); P(w) = P(tit1), k=1,...N—=1; D(ty) > D(1) .

This implies that @(t,) > ®(1,). o
We apply Lemma A.2.2 to the function

f(@®) = h(r)exp {/ V(o) dO'} = h(t)e(?).
0
It follows from (A.2.1) with s =t + 8, § < 0, that
[+ 8) —f(t) =[h(t + §) — h(D)]e(t + 8) + h(r) [e(t + §) — e(?)]
> |: t ¥ (t)h(r)dt — [t g(7) dr:| e(t+6)
t+3§ t+3§
+ h(t) [e(t + 6) — e(?)] .

This relation implies (A.2.3) with m(r) = g(t)e(¢). Therefore the application of
Lemma A.2.2 yields the inequality in (A.2.2). o

Our second Gronwall-type lemma provides an important tool for parabolic
problems. The corresponding modification was suggested in HENRY [123].

Lemma A.2.3 (Henry-Gronwall). Let u(t) be a measurable locally bounded non-
negative function on R4 satisfying the inequality

"u(r)dr

o (t—1)

u(t)y <a+b for almost all t > 0, (A2.7)
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where a,b > 0 and a € [0, 1) are constants. Then
u(t) < 2aexp {cabl/(lf‘x)t} for almost all t > 0, (A.2.8)

for some constant c, > 0 depending on o only.

Proof. The original argument in HENRY [123] relies on an iteration procedure. The
idea of the proof presented here is borrowed from ROBINSON [196, p. 132]; see also
CARVALHO/LANGA/ROBINSON [26].

We start with the case when u(¢) is continuous. In this case (A.2.7) is satisfied
for all t > 0. First we prove a comparison principle for this case. We claim that if a
non-negative continuous function y(r) satisfies the inequality

Y1) = a* +b /0 t (yt (f)f)ta L 120, (A.2.9)

for some a* > a, then u(r) < y(¢) for all ¢+ € R. Indeed, if this is not true, then
for z(r) = y(r) — u(¢) we have that z(0) = a¢* —a > 0 and thus there is £, > 0
such that z(r) > 0 for all ¢ € [0, #x) and z(z+) = 0. On the other hand, if we subtract
from (A.2.9) relation (A.2.7), then we obtain that

Ix d
y(R)de >a* —a>0.

z(t*)za*—a—l—b/

0o (t—1)

This gives a contradiction.
Next we construct a comparison function for continuous u satisfying (A.2.7).
Rescaling u(t) + a~'u(f), if necessary, we can assume that @ = 1 in (A.2.7).
We take a* = 3/2 and look for a parameter N such that the function y,(f) = 2¢"
satisfies (A.2.9). We have

/r yO(T)d‘C =2/t 1 eNrd_L, — ZeNt /t 1 e—N(t—'[)d.L—
o (t—1) o t—1) o (t—1)*

t o0
=yo(?) / 5% Mds < yo(t) / s %M.
0 0

Introducing the variable £ = Ns in the integral above we obtain

' o
yo(r)dt %y ' -
/0 (;)_ ) =) i With % E/o E e NEgE,

Thus

3 "yo(t)dt 3 b, 3 b,
4| <= N < | =+ 2 | yo).
+ /0 (t_t)a_z-i-yo()Nl_a_[4+N1_a})’0()
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Consequently yo(?) satisfies (A.2.9) with a* = 3/2 provided we choose N such
that by, N~ = 1/4. By the comparison principle this implies the inequality
in (A.2.8) in the class of continuous functions.

Now we assume that u(?) is a measurable locally bounded function. In this case,

"u(r)dr
o t—1)

w(t) = Blu]l(t) =a+b

is a continuous function. Since the mapping B is order preserving, we can apply it
to the inequality in (A.2.7) and show that w(r) satisfies the inequality

w(t)dt

w(t)fa—i—b/() -0

Thus applying Lemma A.2.3 for continuous functions, we obtain for w(r) = B[u]()
the same bound as in (A.2.8). Since u(t) < w(r) for almost all # > 0, we obtain the
desired conclusion. o

A.3 Vector-valued functions and compactness theorems

Now we describe some properties of vector-valued functions and discuss several
compactness theorems, which we use in the main text.

A.3.1 Continuous vector-valued functions

Let 7 be an interval in R and X be a Banach space. We denote by C(I; X) the vector
space of all continuous functions f : I — X. If I is a closed bounded interval, then
C(I; X) is a Banach space with the norm

Ifllcax) = I?ealx If @) x.

For k € N we denote by C¥(I; X) the space of all k-times differentiable functions
with continuous k-th derivative. Here we understand derivatives in the strong sense.
For instance, the first derivative of f at a point ¢ € I is an element f in X such that

fa+m —f@)

h r

lim
h—0

=0,

and similarly for higher derivatives. We also set C®(I; X) = Mi>1C*(I; X).
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Sometimes it is convenient to use the Holder spaces C"(I; X) which are analogs
for CK(I; X) for a non-integer smoothness index. These spaces can be introduced in
the following way.

Let I be a closed bounded interval and v € R4. We suppose that k = [v] and
a = v — [v] are the integer and fractional parts of v. We define the space C"(I; X)
by the formula

C'(I:X) = {y € C*(I;X) : Hldo[y?] < o0},
where ¥ denotes the derivative of ¥ of order k and

Hid, [¢] =SUP%% tthel h#h

This space C”(I; X) is Banach with the norm given by

k
[Wlevan = 3 max ¥ ()llx + Hida [y ],
m=0

where k = [v] and @ = v — [v].

A.3.2 Bochner integral and vector-valued L, functions

We start with a brief introduction to Bochner integration of vector-valued functions.
For more details we refer to DUNFORD/SCHWARTZ [88, Chapters 3,4] or YOSIDA
[229, Chapter 5].

Assume that X is a Banach space and I = (a,b) is an interval (bounded or
unbounded) in R. Let f : I — X be a vector-valued function.

The function f is called simple if it can be represented as

= xxa)

k=1

for elements x; € X and measurable bounded subsets A; C I, where ya(?) is the
characteristic function of the set A. For a simple function f we define its integral by

[ £3ds i= 3w,
k=1

where (1 (Ay) denotes the Lebesgue measure of Ay on R.
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If a function g : [ — X can be approximated pointwise by simple functions; i.e.,
if there exists a sequence {f,} of simple functions on / such that

lim | g(¢) —f,()||x = 0 for almostall ¢ € I,
n—>o0

then we call f (strongly) measurable.
If g is measurable and there exists a sequence {f;,} of simple functions on 7 such
that

Jim [150 =01 =0,

then g is said to be (Bochner) integrable. For an integrable function f we define its
integral by

/ g(Hdt := lim / fu(t)dt.

1 n—>oo 1

We list some elementary properties of measurable functions. See DUNFORD/
SCHWARTZ [88] or YOSIDA [229] for the proofs.

o If {f,} is a sequence of measurable functions on I converging to f strongly for
almost all ¢ € I, then f is measurable as well.

e If f is continuous, then it is measurable.

e If f is measurable, then f is integrable if and only if

[W@mm<w.

e If f is integrable, then

/1 f()dt

e If X is a separable space, then f is measurable if and only if it is weakly
measurable; i.e., [(f(¢)) is a (scalar) measurable function for every [ € X* (Pettis’
theorem).

Xs[wmmm

For 1 < p < 400 we define the spaces

f is Bochner measurable,

Lp(I;X) =9f:I—X 1p

Wfllz,ax) = [/Ilf(t)ll’;(dt:| < 00
1
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If p = 400 we suppose that

f is Bochner measurable,
Loo;X) :=3f: 1~ X
fll oo :x) = esssup{|lf (@) : tel} < oo

The spaces L,(I; X) are Banach forall 1 < p < +o00.
Our main point of interest is the case when X is a Hilbert space. In this case the
spaces L, (I, X) are reflexive for 1 < p < +00, and

1 1
[L,,(I;X)]* =L,(;X) for -+ - =1.
P q
Any linear functional F on L, (I; X) has the form

(F,u) = /(f(t),u(t))xdt, YuelL,(;X),
I
where f is some element from L,(/; X). We also have that
Loo(1;X) = [Li(I:X)]".

The space L, (I; X) is Hilbert with the inner product

(. Qs = /, (1), g(0))xdl.

We also note that *-weak convergence of a sequence {f, } to an element f in L, (/, X)
with 1 < p < 400 means that

nl_i)nolo /I(fn(t), u(t))xdt = /I(f(t), u(t))xdt forevery u € L,(I;X),

where g~'4+p~! = 1. In the reflexive case (p # oo) this convergence is called weak.

A well-known fact based on the Banach-Alaoglu theorem (see, e.g., RUDIN [199,
Chapter 3]) states that any bounded set in L, (I; X) with 1 < p < 400 is *-weakly
relatively compact in the sense that any sequence in this set contains a *-weakly
convergent subsequence. We use this fact and also the compactness theorem stated
in Section A.3.3 to perform limit transitions in approximate solutions in Chapters 5
and 6.

To guarantee weak continuity of solutions to evolution equations in a smoother
space, we need the following lemma (see LIONS/MAGENES [152, Section 3.8.4]).

Lemma A.3.1 (Lions’ lemma). Let X and Y be two Banach spaces such that X
is continuously embedded in Y. Assume that a function f € Loo(a, b; X) is weakly
continuous in Y, i.e., the function t +— I(f(t)) is continuous for every | € Y*. Then
f () is also weakly continuous in X.
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The following assertion deals with generalized derivatives of functions with
values in Banach spaces (see, e.g., LIONS/MAGENES [152] or TEMAM [215, 216]).

Proposition A.3.2. Let u and v be integrable functions on [a, b] with values in a
Banach space X. Then the following three conditions are equivalent:

o there exists £ € X such that
t
u(t) =§+ / v(t)dt for almost allt € [a, b];

e for every test function ¢ € C5°((a, b); R) we have

b b
/ Pi(u(t)dr = —/ p(v(ndt (¢ = (d/dD)¢);
e foreveryl € X* we have
%l(u(t)) = l(v(¢)) in the sense of distributions on (a, b).

The function v := 0,u = u, is called a derivative of u in the distributional sense.

Let A be a positive self-adjoint operator on a Hilbert space H and V = Z(A)
endowed with the graph norm |u||; = ||Au||. We denote by V_; the completion of
H with respect to the norm |u||_; = ||[A™'u|. One can see that V_; = V* and
thus the triple V.C H C V* of embedding spaces arises. The spaces V and V*
become Hilbert if we define inner products as (u,v); = (Au,Av) and (u,v)—; =
(A~'u, A~1v). Using this triple we can introduce the space

W(a,b) = {u € Ly(a,b;V) : u, € Ly(a,b; V_1)},

where u, is the derivative of u in the distributional sense (see Proposition A.3.2). We
equip the space W(a, b) with the norm

2 2 2
el wiany = Nullz,@pvy + Nz @pv_y)

which provides W(a, b) with the Hilbert structure. The following assertion can be
found in LIONS/MAGENES [152] or TEMAM [215].

Proposition A.3.3 (Continuous embedding). The space W(a, b) is continuously
embedded into C([a, b]; H) and

3C>0: |u®llcarm = Nu®llwap, Yue Wa,b),
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and
lu@|* = [u(@)]* + 2ft(”(f)sut(f))dr’ t€la,b]l, YueW(a,b).

We note that instead of the pair {V; V*} we can consider pairs {H,; H—_ }, where the
spaces H; are defined in Section 4.1 with the help of a positive self-adjoint operator.

A.3.3 Compactness theorems for vector-valued functions

We first recall the definition and some criteria for compactness of sets in Banach
spaces (see, e.g., DUNFORD/SCHWARTZ [88], YOSIDA [229], or ZEIDLER [231]).

A set F in a Banach space X is said to be compact if for every family of open sets
covering F there exists a finite subfamily covering F. A set is relatively compact if
its closure is compact. Given € > 0, a set C C X is said to be e-net foraset M C X
if M C Ugectx @ |lx —allx < &}

The following equivalent conditions for compactness are well known (see, e.g.,
DUNFORD/SCHWARTZ [88, Chapter 5]).

Proposition A.3.4. Let K be a set in a Banach space X. Then the following
Statements are equivalent.

e The set K is relatively compact.

e Forevery ¢ > 0 there exists a finite e-net for K.

e Forevery ¢ > 0 there exists a relatively compact e-net for K.

* Any sequence of elements from K contains a subsequence that converges to some
element of X.

We use the following compactness criteria applicable to vector-valued continuous
functions.

Lemma A.3.5 (Arzela-Ascoli theorem, I). Let X be a Banach space. A set F C
C(a, b; X) is relatively compact if and only if

1) F@t) :={f(@t) : f € F} is relatively compact in X for each t € [a, D).
(ii) F is equicontinuous; that is, for any € > 0 there exists § > 0 such that

If @) —f(s)llx <& foranyf € Fandt,s € [a, ] such that |t — s| <.

The following version of the Arzela-Ascoli theorem is a relaxed form of the previous
lemma. Instead of assuming compactness for every fixed ¢, only the integral form of
the compactness property is required.

Lemma A.3.6 (Arzela-Ascoli theorem, II). Let X be a Banach space. A set F C
C(a, b; X) is relatively compact if and only if
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(i) ftllz F:= {fttlzf(t)dt i fe€ F} is relatively compact in X for each t1, 1, € [a, b).
(1) F is equicontinuous.

We also state the following result on compactness of vector functions, which
plays a key role in many situations considered in Chapters 4—6.

Theorem A.3.7 (Aubin-Dubinskii-Lions). Assume that X C Y C Z is a triple of
Banach spaces such that X is compactly embedded in Y.

* Let F be a bounded set in L,(a,b; X) for some 1 < p < oo such that the set
0 F :={0,f : f € F}is bounded in L,(a,b;Z) for some q > 1. Here 0,f is the
derivative in the distributional sense. Then F is relatively compact in Ly(a, b;Y).
If ¢ > 1, then F is also relatively compact in C(a, b; Z).

e If F is a bounded set in Lo (a, b; X) and 0,F is bounded in L,(a, b; Z) for some
r > 1, then F is relatively compact in C(a, b;Y).

Particular cases! of Theorem A.3.7 can be found in AUBIN [4], DUBINSKII [87],
and LIONS [151, Chapter 1, Section 5]). In almost the same form as above,
Theorem A.3.7 is stated in SIMON [213, Corollary 4]. For the proof we refer
to SIMON [213]. See also the Appendix in CHUESHOV/LASIECKA [58], where a
concise argument based on the Arzela-Ascoli theorem stated in Lemma A.3.6 is
given in the case when g > 1.

A.4 Approximation of identity by uniformly
bounded mappings

In well-posedness results related to transitions from the case of globally Lipschitz
nonlinearities to the local case, we use a truncation procedure based on the following
assertion.

Lemma A.4.1. Let X be a Banach space. We define a mapping wg on X by the
formula

x, if |lxll < R;

o (A4.1)
Rx|lx|71 if flxll > R.

JTR(X) =

Then for each R > 0 the mapping my is globally Lipschitz and we have that
||ltr (1) — mr(v)|| < Lip(g)||lu — v|| for everyu,v € X,

where Lip(ng) < 2. If X is a Hilbert space and || - || is the norm generated by its
scalar product, then Lip(mg) = 1.

IThe result is named after Aubin, Dubinskii, and Lions. In the Western literature Theorem A.3.7
is usually referred to as the Aubin or Aubin-Lions result. In the Russian literature it is often called
the Dubinskii theorem.
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Proof. We distinguish three cases.

@@) If ||ul|, |v]| < R, the conclusion is obvious.
(ii) In the case |lu|| < R and ||v|| > R we have

u—R—
[[vll

7R (1) — r(V)[| =

H [[uflv] — Ro]|
]l

Thus

[« — v)[lv]] + (vl = R)v||
o]l
lle = vl + (loll = llul)) < 2[ju—v].

g (1) — R (V)]

IA

< llu =l + (vl = R)

IA

(iii) In the case |u|| > R, ||v|| > R we have

|wr(u) — mr(V)|| =

v _H Ml = vilul
il =% ullol

Hence

[ = v)[[vll + vl = lulDvl
e[l

< llu—vll + [Ilv] = llull] < 2u— vl

I7r(u) — mr(W) | < R

This completes the proof of Lemma A.4.1 in the Banach case.
In the case when X is a Hilbert space we can use the same argument as in CHUE-
SHOV/ELLER/LASIECKA [47]; see also CHUESHOV/LASIECKA [58, Chapter 2]. o

A.5 Elements of differential calculus in Banach spaces

In this section we quote several notions and results related to the smoothness
of mappings F between two Banach spaces X and Y. Our presentation relies on
CARTAN [22].

We start with the following definition.

Definition A.5.1 (Fréchet derivative). Let &' be an open set in X. A mapping F :
O + Y is said to be Fréchet differentiable on O if for any u € O there exists a
bounded linear operator F’(«) from X into ¥ such that

[1F(v) — F(u) — F'(w)(v — )|l
v —ullx

—0 as |[v—ulx = 0. (A5.1)



A.5 Elements of differential calculus in Banach spaces 365

The operator F'(u) is called the (Fréchet) derivative of F at the point u € €. The
relation in (A.5.1) means that for every u € & there exist § > 0 and a scalar function
y(s) on [0, 8] such that y(s) — 0 as s — 0 and

IF(v) = F(u) = F'(w)(v —wlly < y(Ilv —ullx)llv — ullx.

If the number § and the function y(s) do not depend on u, then the mapping F is
said to be uniformly (Fréchet) differentiable on €. One says that F : 0 + Y is
continuously differentiable on O or of the class C' on O if:

e F is differentiable at every point of

o the derivative F’ is a continuous mapping from & into Z(X + Y), where
Z(X — Y) denotes the space of linear operators from X into Y equipped with
the operator norm.

The chain rule stated in the following assertion is important in many calculations.

Proposition A.5.2 (Derivative of a compound function). Let X, Y, Z be three
Banach spaces, O an open set in X, and ¥ an open set in Y. Consider two
continuous mappings

F:0—vcCY G:Vw—Z

On the set O we consider the compound mapping GoF : O + Z If F is
differentiable at a point a € O and G is differentiable at the point b = F(a),
then H = G o F is differentiable at the point a and

H'(a) = G'(b)F'(a).
In other words, the linear mapping H'(a) : X v Z is the composition of the linear
mapping F'(a) : X — Y and the linear mapping G'(a) : Y — Z.
Proof. See CARTAN [22]. O

This proposition implies that if F is continuously differentiable on an open set &
and the interval [u, v] := {Au+ (1 —=A)v : 0 < A < 1} liesin & for some u,v € O,
then

1
F(v) —F(u) = /0 F'(Av+ (1= u)(v—u)d. (A5.2)

Consider now a particular case of mappings /1 from a Banach space X into the
real axis R. In this case the derivative IT'(u) is a linear mapping from X into R.
Thus IT’(u) can be treated as an element of adjoint space X*. So the mapping u
IT’'(u) from X into X™* arises. This observation leads to the following definition.
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A mapping B : X — X* is said to be potential on X if there exists a Frechét
differentiable functional IT(«) on X such that B(u) = IT'(u), i.e.,

lim O+ v)— I — (B(u,v)| =0, (A5.3)
lvllx—0 [[v]lx

where (f, v) denotes the value of functional f on v.

Applying Proposition A.5.2, one can show that in the situation above for every
u € C'([a, b]; X) we have that ¢ — IT(u(¢)) is a C" scalar function on [a, b] and

%H(u(r)) = (B(u(?)), u,(t)), t€ [a,b]. (A.5.4)

Taking now u(¢) = u + tv, one can see that
1
H(u+v)—I(u) = f (B(u + Av),v)dA forevery u,v € X. (A5.5)
0

Now we introduce the derivatives of higher order.

Let F : & C X + Y be a differentiable mapping on &. Then the derivative F’
can be seen as a mapping from & into the Banach space .Z(X + Y). Thus we can
define the second derivative F”(u) of F as the first derivative of the mapping

F :0— %X~ 7).
In this case F”(a) is a linear mapping from X into .Z(X + Y), i.e.,
F'(a) e XX~ Z(X+—Y)) foreach a € 0.
One can see that the following isomorphism takes place:
LXK ZLX~Y)=Z2XxX—Y)=2X2-Y),

where Z (X" > Y) denotes the space of all linear mappings from X x ... x X into
Y. It is clear that £ (X>*" — Y) is a Banach space.

Thus we can define by induction the n-th order derivative F™ on ¢ as the first
derivative of the mapping

FO=D o g 2(X*07D s y).

In this case F™ (a) is an element from .Z (X" - Y).
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We accept the following definition. A mapping F : & C X + Y is of the
class C" on @ (or F is n times continuously differentiable on &) if there exist all
derivatives F® with the order k < n on ¢ and if the mapping

FW 0 Z2(X*"—Y)
is continuous. The following assertion provides us with the symmetry properties of

the higher derivatives.

Proposition A.5.3 (Symmetry). If F : X — Y is n times differentiable on O, then
for every a € O the derivative F™ (a) € Z(X*" > Y) is a multilinear symmetric
mapping from the product space X X ... x X into Y. This means that

FO@)[vy,...,v] = FR@)[veqys - - - s Vo)
for every permutation o of {1,2, ..., k}. Here F®O (u)[vy, ..., v] denotes the value
of the derivative F® (u) on elements v1, . .., v

We note that in the case when ¥ = R, the Fréchet derivatives I7%® (x) of the
functional IT are symmetric k-linear continuous (scalar) forms on X.
In conclusion we recall Taylor’s formula (see CARTAN [22] for the proof).

Theorem A.5.4 (Taylor’s formula with integral remainder). Let F : 0 — Y
be a mapping of the class C"T'. As previously, € denotes an open set of a Banach
space X, and Y a Banach space. If the interval [u,u+v] = {x = u+tv : v € [0, 1]}
is contained in O, then

n 1 1 1—7)"
Fu+v)=Fu) + Z —FOW, ..., v] + QF('H_I)(M + )[v,..., vldr,
Lol o nl
(A.5.6)
where F® (u)[vy, ..., v] denotes the value of the derivative F® (u) on elements

VUlyeuonoy Uk

A.6 The Orlicz theorem on uniqueness
for parabolic problems

Our goal in this section is to show that the uniqueness of solutions to the parabolic-
type problem considered in Chapter 4 with a continuous (non-Lipschitz, in general)
nonlinearity is a generic property (in the Baire category sense). According to
YUDOVICH [230], a similar result for ordinary differential equations seems to go
back to the earlier paper ORLICZ [176].

Recall some definitions (see, e.g., BOURBAKI [16]).
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Let .Z be a complete metric space. A set K is said to be nowhere dense if its
closure contains no open sets. A subset D of . is said to be meager (or a first
category set in the Baire sense), if it is contained in a countable union of closed
nowhere dense subsets of .Z. The complement of a meager set is called residual.
By the Baire categories theorem (see, e.g., BOURBAKI [16]) any residual set is
dense. A property & of elements of . is said to be generic in £ if & holds
in some residual set.

We consider the problem

u; + Au = B(u), u} =uy € H, (A.6.1)

=0
under the following set of hypotheses.

Assumption A.6.1 (Basic hypotheses). We assume that H is a separable Hilbert
space and

(A) A is a positive self-adjoint operator with a discrete spectrum on H (see
Definition 4.1.1);

(B) B is a (nonlinear) continuous mapping from H, = Z(A%) into H with0 < o <
1 and bounded on every bounded set in Hy, i.e.,

VR>0,3Cr: |B()| <Cg forall |v]q <R.

Let . be a family of nonlinearities B satisfying Assumption A.6.1(B). We
assume that . is a complete metric space . with respect to some metric 0 ¢
such that (a) for every sequence {B,} we have that

0v(B,,B) > 0 implies VR >0, sup ||B,(v)—B()|—0 (A.6.2)

lvlle<R

as n — oo, and (b) every element of .Z can be approximated in .Z by a sequence
{B,} of Lipschitz point continuous mappings. A mapping B : H, +— H is called
Lipschitz point continuous if for every point u € H,, there exists an open set &' (u) >
1 and a constant L(u) such that

[B(ur) — Buo) || < L) A" (ur —u2)|l, Yuj € Ou), i=1,2. (A.6.3)

As an example of the class £ we can take the space of all continuous mappings
B : H, — H satisfying Assumption A.6.1(B) and endowed with the metric

o0

0z(B1,B) =) 27*

k=1

di(B1 — By)
1+ du(Bi—By)’

where d,(B) = supy,, <. |B@)]|. It is easy to see that the property in (A.6.2) is
valid. To show that Lipschitz point continuous mappings are dense in . we can
apply the approximation lemma established in LASOTA/YORKE [146].
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We recall that an initial datum u,. € Z(A%) is said to be a uniqueness point if
there is a vicinity & of u, in H, such that problem (A.6.1) with uy € ¢ has a unique
(local) mild solution? in this vicinity ¢. We also say that problem (A.6.1) possesses
a local uniqueness property for a given B if all initial data are uniqueness points for
this B.

The following theorem states that the local uniqueness property is generic.

Theorem A.6.2 (Orlicz). Let Assumption A.6.1 be in force. Then for every initial
data uy € P(A%) problem (A.6.1) has a (local) mild solution u(t). Moreover the set
M of all elements B € £ such that (A.6.1) has at least one non-uniqueness point
is a meager set, i.e., A is a countable union of closed nowhere dense sets. Thus the
set of all problems of the form (A.6.1) with the local uniqueness property is residual.

Proof. The existence of solutions for continuous B(u) follows from Proposi-
tion 6.1.3; see also Remark 6.1.4.

To prove the statement concerning uniqueness, we rely on the idea due to ORLICZ
[176] in the form presented in YUDOVICH [230] for the ODE case.

Let uyp € H, and 7, a be positive numbers. We denote by .# (uo, 7, a) the set of
nonlinearities B in .Z such that there exist

ﬁ() € %1(14(]) = {U S Ha . ”U —u0||a < 1}
and two mild solutions u(f) and #(f) to problem (A.6.1) on the interval [0, 7) such

that

o u(t) € % (up) and u(r) € B (up) forall ¢t € [0, 1),
° M(O) = iy and ﬁ(O) = I:t(),

and

sup lu(®) — u(®)|le > a. (A.6.4)
t€[r/2,7]

We claim that the set .# (ug, 7, a) is closed in .Z. Indeed, let {B,} C .# (uy, t,a) C
£ and B, — B in .Z. This means that there exist a sequence {ug} and solutions
u"(t) and " (¢) such that

o u'(t) € B1(uy) and u"(t) € S (up) forall r € [0, 7);
e u"(0) = ug and u(0) = ug;

and also

sup lu"(t) —i"(t)||le > a. (A.6.5)
€[r/2.7]

2 We note that in this case a solution starting in &' can be globally non-unique. See Remark 1.7.17.
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We can assume that uy — u, in H, weakly for some ux € H,. By the compactness
statement in Proposition 4.1.6 this implies that

sup lle™ 1y — ¢ usllg + sup e

r€[0,7] t€le, ]

AU — e uylly — 0, n— o0,

for every positive € and & < «. By the definition of mild solutions (see
Definition 4.2.2) we have

t
u'(t) = e uf + / e~ UIAB, (u"(s))ds
0
and
t
Wt = e "up + / e~ TIAB, (i (s))ds.
0

Since 0. #(B,, B) — 0, we also have that

sup ||B,(uo + v) — B(up + v)|| = 0, n — ooc.

[v]e<1

Thus B, (v) is uniformly bounded on % (). This implies that

sup [l@' @, + lu"®)]ly,] < Ce. n=1.2,...

t€le,1]

for every positive € with y € («, 1). As in the proof of Proposition 6.1.3 we can
show that the sequences {u"(f)} and {&"(f)} are uniformly Holder on [e, 7] in the
sense that

| + |u"|

|u Cs.z

HE (e,0) Heer) =

forevery0 < 8 <1 —o« and € < 7, where

Hy (a.b) [t — t2]P

n,h € [a,b]
|t1—[2|§1 )

By the Arzela-Ascoli theorem, see Lemma A.3.5, we can conclude that there exist
u(t) and u(t) in C((0, t]; Hy) such that along a subsequence we have

sup [[lu" (1) —u(@)[la + 4" (@) — u(@®)le] = 0, n— oo.

t€[e, 1]



A.6 The Orlicz theorem on uniqueness for parabolic problems 371

and

sup [[|u" (1) —u(®)|lo + [[u" (1) —u(@®)lle] >0, n—o0, 0 <a.
t€[0,7]

These properties allow us to show that u(f) and u(¢) are mild solutions for (A.6.1)
with initial data u,. It is also clear that (A.6.4) is valid for these solutions. Thus the
set A (uy, 7, a) is closed in Z.

This set is nowhere dense. If this is not true, then we can find a Lipschitz point
continuous function near B for which we have the uniqueness property.

We complete the argument in the same way as in YUDOVICH [230]. Let {wy }ren
be a countable dense set in H, and Q4 be positive rational numbers. Then the set

///:U{///(wk,r,a) c keN, re@+,ae(@+}

is meager. It is clear that every continuous nonlinearity B with non-uniqueness point
belongs to some set .# (wy, T, a) with rational T and a. This completes the proof. o

As an application of Theorem A.6.2 in a bounded smooth domain 2 C R?, we
consider the heat equation
u(x, 1) — Au(x, 1) + f(u(x, 1)) =0 (A.6.6)
endowed with boundary and initial conditions

ulyo =0, ul_, = uo. (A6.7)

We assume that f : R — R is a continuous function. In the 3D case we have
the Sobolev embedding (see TRIEBEL [220]): H*/>*3(2) € C(£2) for § > 0. This
implies that the Nemytskii operator u — f(u) is continuous from H>/>*%(2) into
L,(£2) for every continuous f.

In this example we take .2 = C(R) endowed with the norm

maxs < |f1(s) —fa(s)|
1+ maxjy < [fi (s) — fa(s)

ocw (fi.2) = Zz_k

k=1

The problem in (A.6.6) and (A.6.7) can be written in the form (A.6.1) in the space
H = L,(£2) with A = —A defined on the domain Z2(A) = H?*(2) N H}(£2). In
this case Z(A3/*%) = (H3/*>T2 N H})(£2) for § € (0,1/4) and thus we can apply
Theorem A.6.2 with @ = 3/4 + 6 and £ = C(R). The property in (A.6.2) is
obvious in this case. Thus we arrive at the following result.

Theorem A.6.3. Let 2 C R> be a bounded smooth domain. Assume that initial
data uy lies in (H>*+% N H})(82). Then for every continuous function f the problem
in (A.6.6) and (A.6.7) has a (local) mild solution u(t) which lies in the space
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C([0,T); H3/4+45) with some T = T(uo,f) > 0. Moreover the set of all continuous
functions f € C(R) for which the problem has at least one non-uniqueness point is
a meager set in C(R) with respect to uniform convergence on finite intervals. Thus
the uniqueness is a generic property in the space of all continuous reaction terms f.

A.7 Monotonicity method for well-posedness
of 2D hydrodynamical systems

The goal of this section is to prove the well-posedness of the abstract 2D hydro-
dynamical problem in (4.4.1) without® assuming that the operator A possesses a
discrete spectrum. For this we use the Galerkin method in combination with the
monotonicity-type argument suggested in MENALDI/SRITHARAN [165].

Thus we consider

ug(1) + Au(t) + B(u(r), u()) + Ku(t) = f, ul|_, = uo. (A7.1)

in a separable Hilbert space H with the norm | - || and the inner product (.,.).
We assume that A is an (unbounded) self-adjoint positive linear operator on H and
consider the triple V C H C V’, where

* V=Hy = 2(AY?) with |[v]|y = |A?v| for v € V;

e V' = H_), is the dual of V with respect to (., .), [[v[v» = [|[A™"/?v]| forv € V.
In contrast with Section 4.4, there is no compact embedding in the pair V C H.

Concerning B, K, and f, we assume the same properties as in Assump-
tion 4.4.1:

e B:VxV — V'isabilinear continuous mapping.
e The trilinear form b(uy, uy, u3) = (B(uy, uz), uz) possesses the following skew-
symmetry property:
(B(M], I/tz) s M3) = — (B(M], u3) s Mz) for u; € V, = 1, 2, 3.
» There exists a Banach (interpolation) space .7 such that V C ¢ C H and
Jap >0 : [v|% <aolv||v]lv foranywv e V.

e There exists a constant C > 0 such that

|(B(u1, Mz) s M3)| < C ||u1 ||)f ||M2||V ||u3||,~f, for u; € V, i= 1,2, 3.

(A.7.2)
* K :H > His globally Lipschitz, f € V'.

3This corresponds to the case of 2D hydrodynamical flows in unbounded domains.
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We recall that a function u € L,(0, T; V) is said to be a weak solution on [0, T
if (A.7.1) is satisfied in the sense of distributions (see Definition 4.4.5).
The following assertion is an analog of Theorem 4.4.7 for the noncompact case.

Theorem A.7.1 (Well-posedness). Let the hypotheses stated above be in force.
Then for any uy € H problem (A.7.1) has a unique weak solution u on any interval
[0, T). This solution possesses the property

ue C0,T;H) N Ly0,T; V), u € Ly(0,T; V'),

satisfies the energy balance relation in (4.4.14), and admits the estimates stated in
(4.4.15) and (4.4.16).

Proof. As in the proof of Theorem 4.4.7, using a smooth orthonormal basis {¢;} in
H we can construct approximate solutions #" (f) which solve the equations

W) —FW"), @) =0,k=1,....N, and u"|_, = Pyuo € H, (A.7.3)
with
Fu) =—-Au—B(u,u) —Ku)+f, VYueV,

where Py is the orthogonal projector in H on Hy = Span{¢;,---,¢n}. These
solutions satisfy the balance relation in (4.4.14) with u" instead of u and admit
the a priori estimate

(1)1 +/0 [l @15 + I @I + e (@15 ] dv < Cr(fuo)

for every ¢t € [0,T]. As in the proof of Theorem 4.4.7, this estimate implies the
existence of the function

u(t) € Loo(0, T; H) N Ly(0, T; V) N Ly(0, T; ) with u, € L»(0,T; V'),

such that along a subsequence we have

(i) uV¥ — u weakly in L*(0, T; V) and in L*(0, T; 27, *-weakly in Lo (0, T; H).
In addition we can assume that

(i) u™(T) — u(T) weakly in H (for some i(T)),

@iii) u¥ — u, and F(u") — F weakly in L*(0, T; V') for some F.

We use this information to show, via a monotonicity argument, that u(f) is a weak
solution to (A.7.1). The main issue is to show that F = F(u).

Let f € C'([0, T]) be such that ||f||oc = 1, f(0) = 1. For any integer j > 1 we
set h;(t) = f(¢)g;, where {¢;};>1 is the previously chosen orthonormal basis for H.
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Due to the convergences above, we obtain in the limit from (A.7.3) that
T T
@(T), o) f(T) = (u0.¢)) + /0 (u(s), @)f (s)ds + /0 (F(s), hj(s))ds.
(A.7.4)

Letr € (0,7) be fixed. Take 0 < f; < 1 such that fi(s) = 1 fors < r— 1/k and
fi(s) = 0fors > t. Set f = f; in (A.7.4). In the limit Xk — oo we obtain that

t
0= (uo — u(t),goj) + / (F(s), ¢j)ds foralmostall +€[0,7] andj=1,2,....
0
This implies that
t
u(t) = up + / F(s)ds € H for almost all ¢ € [0, T]. (A7.5)
0

This means that we can suppose that u(¢) is continuous with values in V’. Moreover,
taking f = 1 in (A.7.4) we obtain

w(T) = up + /OTF(s)ds.

Thus i#(T) = u(T). Since u, € L,(0, T; V'), by Proposition A.3.3, u(r) is continuous
in H.

To establish that F(s) = F(u(s)) we use the monotonicity-type argument
presented in MENALDI/SRITHARAN [165]. We first note that inequality (A.7.2)
implies (4.4.8). Therefore for any n > 0 there exists C;, > 0 such that for u,v € V,

(Fu) = F(v), u=v) < =(1=n)u=v| + (Ri + Cyllvll},) [u—v[?  (A.7.6)

where R| is the Lipschitz constant of K and C; is the constant from (4.4.8).
Let

ve X =LY0,T; ) NL=(0,T; H)) N L*(0,T; V) .

For every t € [0, T], we set

r(t):/ [21{)1 +2¢, ||u(s)||_‘;f] ds, (A7.7)
0

where C,, is a function of 7 such that (A.7.6) holds. We have that 0 < r(f) < oo for
all t € [0, T] and also

r€Loo(0:T), e € L>®(0,T), ¥ € L'(0,T), e € L'(0,T). (A.7.8)
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The weak convergence u” (T) — u(T) and the property Pyuy — up in H imply that

lu(T)1? ™™ — fuoll? < tim inf [} (T)> e —

|Pyuo|?] .- (A.7.9)

Since u € L,(0,T; V) and u, € L,(0, T; V'), by Proposition A.3.3,

1@ = O] = 2 / (u(s). s(s))ds.
0

This implies the relation

T T
(D)2 e — u()] = 2 / 7O (u(s). uy(s))ds — / ¥ (5)e™ Ju(s) |Pds.
0 0

which can be justified due to (A.7.8). The same relation is definitely true with
uV instead of u. Using (A.7.5) and letting u = v + (u — v) after simplification,
from (A.7.9) we obtain

T
/o O [ = () {lu(s) = v(&)? + 2(us) — v(s) . v(s)}
+ 2(F(s), u(s)))] ds < lirrllvianN, (A.7.10)
where
T
Xy = /0 O =1 (5) = @I +2(" () = v(s) . v(s)}

+ 2(FuN (s)), uV (s))] ds.

Relation (A.7.6) with 0 < n < 1 and Schwarz’s inequality imply that

T
O R SCI TIORETE

0
+ 2(F(u (s)) — F(v(s)), u" (s) — v(s))]ds <0.

Furthermore, Xy = Yy + Zy with

T
Zy = [ [ =2/ 006 = 1606 + 276 9).v(0)

+ 2(F(v(s)), u" (5)) — 2(F(v(s)), v(S))] ds.
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The weak convergence properties imply that Zy — Z as N — oo, where

T
Z = /0 e[ = 2F (s) (uls) — v(s), v(s)) + 2{F(s), v(s)) + 2(F (v(s)), u(s))
—2(F(v(s)), v(s))]ds.
Thus, (A.7.10) yields
T
| O =r @) = oI +2076) = Fo). ) = v} ds <0
(A7.11)

foranyv € Z.ForA € Rand v € L*°(0, T, V), we set vy = u— Av. Itis clear that
vy € 2. Applying (A.7.11) to v := v, yields

T
[ e—m(s)[ — X2 OB + 2A(F(s) — F(v.(s)), ﬁ(s))] ds <0, (A.7.12)
0

where r)(s) is given by (A.7.7) with v, instead of v. The same argument as
for (A.7.6) yields

[(F(a(s)) = F(u(s)), 5())| < CIA[IT)T + 1T luls)]1%]
for A # 0 and s € [0, T]. Thus in the limit A — 0 we deduce that

[ ' e (F(s) — F(vy(s)), 5(s))ds — ' e O (F(s) — F(u(s)), 0(s))ds.

0 0

Now dividing (A.7.12) by A > 0 (resp. A < 0) and letting A — 0 we obtain that for
every U € L*°(0, T; V), which is a dense subset of L*(0,T; V),

T
/ e [(F(s) — F(u(s)), ﬁ(s))] ds = 0.
0
Hence (A.7.5) can be rewritten as
u(t) = ug + /:F(u(s))ds, t € [0,T].

This means that u(t) is a weak solution satisfying (4.4.15).
Other statements of Theorem A.7.1 follow from the argument given in the proof
of Theorem 4.4.7. o
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