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PREFACE 

The aim of this book is to present the elements of the theory of 
partial differential equations in a form suitable for the use of students 
and research workers whose main interest in the subject lies in finding 
solutions of particular equations rather than in the general theory. 
In its present form it has developed from courses given by the author 
over the last ten years to audiences of mathematicians, physicists, 
and engineers in the University of Glasgow and the University College 
of North Staffordshire, and to members of the Research Staff of the 
English Electric Company at Stafford. It therefore caters for readers 
primarily interested in applied rather than pure mathematics, but it is 
hoped that it will be of interest to students of pure mathematics following 
a first course in partial differential equations. 

A number of worked examples have been included in the text to 
aid readers working independently of a teacher. The problems 
which are given to test the reader's grasp of the text contain, in some 
cases, additional theorems not considered in the body of the text. 
Some of them are therefore merely statements of classical results ; 
the remainder have been taken from examination papers of the 
University of Glasgow and are reproduced here by permission of the 
Secretary of the University Court. 

The author is indebted to a number of colleagues and students for 
critical comments on the lectures upon which this book is based and 
for reading portions of the manuscript. In particular, thanks are 
due to Ben Noble and Keith Fitch, who worked through the entire 
manuscript and checked the problems ; to Janet Burchnall and 
Valerie Cook, who prepared the manuscript for the press ; to John 
Lowndes, who devoted a great deal of time to reading the proof sheets; 
and to Elizabeth Gildart, who prepared the index. 

IAN N. SNEDDON 

Simson Professor of Mathematics 
University of Glasgow 
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Chapter I 

ORDINARY DIFFERENTIAL EQUATIONS IN 
MORE THAN TWO VARIABLES 

In this chapter we shall discuss the properties of ordinary differential 
equations in more than two variables. Parts of the theory of these 
equations play important roles in the theory of partial differential 
equations, and it is essential that they should be understood thoroughly 
before the study of partial differential equations is begun. Collected 
in the first section are the basic concepts from solid geometry which 
are met with most frequently in the study of differential equations. 

I. Surfaces and Curves in Three Dimensions 

By considering special examples it is readily seen that if the rectangular 
Cartesian coordinates (x,y,z) of a point in three - dimensional space 
are connected by a single relation of the type 

f(x,y,z) = O (l) 

the point lies on a surface. For that reason we call the relation (1) the 
equation of a surface S. 

To demonstrate this generally we suppose a point (x,y,z) satisfying 
equation (1). Then any increments (x,ôy,ôz) in (x,y,z) are related by 
the equation 

ax s + á (5y + áZ (5z = o 
y 

so that two of them can be chosen arbitrarily. In other words, in the 
neighborhood of P(x,y,z) there are points P'(x + , y + n, z + o satis- 
fying (1) and for which any two of , 77, are chosen arbitrarily and the 
third is given by ,á +ßáy +á =o 
The projection of the initial direction PP' on the plane xOy may there- 
fore be chosen arbitrarily. In other words, equation (1) is, in general, 
a relation satisfied by points which lie on a surface. 

1 
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2 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

If we have a set of relations of the form 

x = Fi(u, v), y = F2(u, v), z = F3(u, v) (2) 

then to each pair of values of u, y there corresponds a set of numbers 
(x,y,z) and hence a point in space. Not every point in space corre- 
sponds to a pair of values of u and y, however. If we solve the first 
pair of equations 

x = F1(u,v), y = = F2(u,v) 

we may express u and y as functions of x and y, say 

u = 2(x,y), y = ,a(x,y) 

so that u and y are determined once x and y are known. The corre- 
sponding value of z is obtained by substituting these values for u and y 

into the third of the equations (2). In other words, the value of z is 
determined once those of x and y are known. Symbolically 

z = F3 { } 

so that there is a functional relation of the type (1) between the three 
coordinates x, y, and z. Now equation (1) expresses the fact that the 
point (x,y,z) lies on a surface. The equations (2) therefore express 
the fact that any point (x,y,z) determined from them always lies on a 
fixed surface. For that reason equations of this type are called para- 
metric equations of the surface. 

It should be observed that parametric equations of a surface are not 
unique ; i.e., the same surface (I) can be reached from different forms 
of the functions F1, F2, F3 of the set (2). As an illustration of this fact 
we see that the set of parametric equations 

x = a sin u cos v, 

and the set 

y = a sin u sin v, z -a cos u 

1 - v2 1 - v2 . 2av 
x =a1 COS u, y -a1 sin u, z = + v2 

both yield the spherical surface 

x2 + y2 + z2 = a2 

A surface may be envisaged as being generated by a curve. A point 
whose coordinates satisfy equation (1) and which lies in the plane 
z = k has its coordinates satisfying the equations 

z = k, f(x,y,k) = O (3) 

which expresses the fact that the point (x,y,z) lies on a curve, Fk say, 
in the plane z = k (cf. Fig. 1). For example, if S is the sphere with 
equation x2 + y2 + z2 = a2, then points of S with z = k have 

z = k, x2 +y2=a2_...k2 
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ORDINARY DIFFERENTIAL EQUATIONS 3 

showing that, in this instance, rk is a circle of radius (a2 - k2)1 which 
is real if k < a. As k varies from -a to +a, each point of the sphere 
is covered by one such circle. We may therefore think of the surface 
of the sphere as being "generated" by such circles. In the general case 
we can similarly think of the surface (1) as being generated by the 
curves (3). 

We can look at this in another way. The curve symbolized by the 
pair of equations (3) can be thought of as the intersection of the surface 
(1) with the plane z = k. This idea can readily be generalized. If a 
point whose coordinates are (x,y,z) lies on a surface S1, then there must 
be a relation of the form f(x,y,z) = 0 between these coordinates. If, 
in addition, the point (x,y,z) lies on a surface S2, its coordinates will 
satisfy a relation of the same type, say g(x,y,z) = O. Points common 

Figure I Figure 2 

to S1 and S2 will therefore satisfy a pair of equations 

f(x,y,z) = o, g(x,y,z) = 0 (a) 

Now the two surfaces S1 and S2 will, in general, intersect in a curve C, 
so that, in general, the locus of a point whose coordinates satisfy a pair 
of relations of the type (4) is a curve in space (cf. Fig. 2). 

A curve may be specified by parametric equations just as a surface 
may. Any three equations of the form 

x --= fi(t), y = f2(t), z f3(t) (5) 

in which t is a continuous variable, may be regarded as the parametric 
equations of a curve. For if P is any point whose coordinates are 
determined by the equations (5), we see that P lies on a curve whose 
equations are 

(1)1(xy) = o, t2(x,z) = o 

where (1)1(x ,y) = 0 is the equation obtained by eliminating t from the 
equations x = fi(t), y = f2(t) and where (I)z(x,z) = O is the one obtained 
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4 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

by eliminating t between the pair x = f1(t), z = f3(t). A usual para- 
meter t to take is the length of the curve measured from some fixed 
point. In this case we replace t by the symbol s. 

If we assume that P is any point on the curve 
x = x(s), y = y(s), z = z(s) (6) 

which is characterized by the value s of the arc length, then s is the 
distance PoP of P from some fixed 
point Po measured along the curve 
(cf. Fig. 3). Similarly if Q is a 
point at a distance 8s along the 
curve from P, the distance P0 Q will 
be s -I- Ss, and the coordinates of 
Q will be, as a consequence, 

{xis +ash, yes +6s), z(s +ash} 

The distance äs is the distance from 
P to Q measured along the curve 
and is therefore greater than 8c, the 
length of the chord PQ. However, 
in many cases, as Q approaches the 

Figure 3 point P, the difference bs - cSc 

becomes relatively less. We shall 
therefore confine our attention to curves for which 

lim S = 1 

6s-->.0 Ss 

On the other hand, the direction cosines of the chord PQ are 

{x(s + ss) - x(s) y(s + âs) - y(s) z(s + as) - z(s)} 

8c ac k 
and by Maclaurin's theorem 

(7) 

x(s + 6s) x(s) - 6s (-dx) -H 0(6s2) 
ds 

so that the direction cosines reduce to 

8s Ss as 

be 

{idx 

s + O(8s ) }1 
Sc 

{lz 
ds + O(Ss), 

Sc 

{dz 

ds + O(ós)} 

As âs tends to zero, the point Q tends towards the point P, and the 
chord PQ takes up the direction to the tangent to the curve at P. If 
we let Ss --->- 0 in the above expressions and make use of the limit (7), 
we see that the direction cosines of the tangent to the curve (6) at the 
point P are 

(dx dy dz 
ds' ds' TO 

(8) 
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ORDINARY DIFFERENTIAL EQUATIONS 5 

In the derivation of this result it has been assumed that the curve (6) 
is completely arbitrary. Now we shall assume that the curve C given 
by the equations (6) lies on the surface S whose equation is F(x,y,z) = 0 
(cf. Fig. 4). The typical point {x(s),y(s),z(s)} of the curve lies on this 
surface if 

F[x(s),y(s),z(s)] --.= O (9) 

and if the curve lies entirely on the surface, equation (9) will be an 
identity for all values of s. Differentiating equation (9) with respect 
to s, we obtain the relation 

ôF dx ôF dy ôF dz 
áxds +áyds+ áZds -o (10) 

Now by the formulas (8) and (10) we see that 
the tangent T to the curve C at the point P is 
perpendicular to the line whose direction 
ratios are 

aF aF aF 
(11) 

`ax' 5;.' áZ 
The curve C is arbitrary except that it passes through the point P and 
lies on the surface S. It follows that the line with direction ratios (11) 
is perpendicular to the tangent to every curve lying on S and passing 
through P. Hence the direction (11) is the direction of the normal to 
the surface S at the point P. 

If the equation of the surface S is of the form 

Z = .f(xy) 

Figure 4 

and if we write 
az az 

ax --13' 3 /-q 
then since F = f(x,y) - z, it follows that F = p, Fi, = q, Fz - -1 and 
the direction cosines of the normal to the surface at the point (x,y,z) are 

,q, -1 

(12) 

Vp2 4- e + 1 

The expressions (8) give the direction cosines of the tangent to a 
curve whose equations are of the form (6). Similar expressions may 
be derived for the case of a curve whose equations are given in the 
form (4). 

The equation of the tangent plane va at the point P(x,y,z) to the 
surface S1 (cf. Fig. 5) whose equation is F(x,y,z) = 0 is 

(X-x)+(Y_y) ÿ +(z- z)az -aF -0 (14) 

where (X, Y,Z) are the coordinates of any other point of the tangent 

(13) 
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6 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

plane. Similarly the equation of the tangent plane 77-2 at P to the 
surface S2 whose equation is G(x,y,z) = 0 is 

(x -x) 
ax +(Y -y) ay +(z -Z) aG =o (is) 

The intersection L of the planes 77.1 and 7r2 is the tangent at P to the curve 

Figure 5 

C which is the intersection of the surfaces Si. and S2. It follows from 
equations (14) and (15) that the equations of the line L are 

X -x Y-y Z-z 
a aG aF aG aF aG aF aG aF aG aF ac (i6) 
ay az az ay az ax 

_ 
ax az ax ay ay ax 

In other words, the direction ratios of the line L are 

a(F, G) a(F,G) a(F,G) 

a(y,z) ' a(z,x) ' a(x,y) 
Example 1. The direction cosines of the tangent at the point (x,y,z) to 

axe + by2 + cz2 = 1, x + y + z = i are proportional to (by - cz, 
ax - by). 

In this instance 
F = ax2 + by2 + cz2 - 1 

and G= x +y +z-1 
so that 

a(F,G) 2by 2cz = 2(by - cz) 
a(y,z) 1 1 

etc., and the result follows from the expressions (16). 

(16) 

the conic 
cz - ax, 
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ORDINARY DIFFERENTIAL EQUATIONS 7 

PROBLEMS 
1. Show that the condition that the surfaces F(x,y,z) = 0, G(x,y,z) = 0 should 

touch is that the eliminant of x, y, and z from these equations and the equations 
Fx : Gx = F, : Gil = F,: Gz should hold. 

Hence find the condition 
2 
that the plane lx + my + nz + p = 0 should 

touch the central conicoid ax + by + cz2 = 1. 
2. Show that the condition that the curve u(x,y,z) = 0, v(x,y,z) = 0 should 

touch the surface w(x,y,z) = 0 is that the eliminant of x, y, and z from these 
equations and the further relation 

á(u, v, w) 
o 

a(x,y,z) 
should be valid. 

Using this criterion, determine the condition for the line 

x- a_y -b_z -c 
l m n 

to touch the quadric axe + ßy2 + yz2 = 1. 

2. Simultaneous Differential Equations of the First Order and the 
First Degree in Three Variables 

Systems of simultaneous differential equations of the first order and 
first degree of the type 

dx 2 

dt 
-,fi(xl,x2, . , xn, t) ...,n (1) 

arise frequently in mathematical physics. The problem is to find n 
functions xi, which depend on t and the initial conditions (i.e., the 
values of xl, x2, . . . , xn when t = 0) and which satisfy the set of 
equations (1) identically in t. 

For example, a differential equation of the nth order 

dnx dx d2x 

dtn -.1 t' x' dt ' dt2 ' 

dn-1x 
. . ' dtn-x 

may be written in the form 

dx dy1 dye 
dt - y'' dt - Y 2' dt - Ya' 

dyn -1 
dt 

.., 

(2) 

f 2, ... ,Yn_i) 

showing that it is a special case of the system (1). 
Equations of the kind (1) arise, for instance, in the general theory 

of radioactive transformations due to Rutherford and Soddy.' 

E. Rutherford, J. Chadwick and C. D. Ellis, "Radiations from Radioactive 
Substances" (Cambridge, London, 1930), chap. I. 
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8 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

A third example of the occurrence of systems of differential equations 
of the kind (1) arises in analytical mechanics. In Hamiltonian form the 
equations of motion of a dynamical system of n degrees of freedom 
assume the forms 

dpi_ - aH, dgiaH i- 2 
dt aqi dt api ' ' 

. . 

where H(g1,g2, . . . ,gn,pl,p2, ,pn,t) is the Hamiltonian function 
of the system. It is obvious that these Hamiltonian equations of motion 
form a set of the type (1) for the 2n unknown functions q1, q2, , qn, 
p1, p 2, , pn, the solution of which provides a description of the 
properties of the dynamical system at any time t. 

In particular, if the dynamical system possesses only one degree of 
freedom, i.e., if its configuration at any time is uniquely specified by a 
single coordinate q (such as a particle constrained to move on a wire), 
then the equations of motion reduce to the simple form 

dp aH dq aH 
dt - aq ' diap 

where H(p,q,t) is the Hamiltonian of the system. If we write 

aH _ P(p,q,t) aH Q(p,q,t) 
aq R(p,q,t)' ap R(p,q,t) 

then we may put the equations (4) in the form 

dp dq dt 
t Q(p,q,t) . t 

(5) 
P(p,q,t) Q(p,q,) (p,q, ) 

For instance, for the simple harmonic oscillator of mass m and stiffness 
constant k the Hamiltonian is 

. , n (3) 

(a) 

p2 kq2 

H2m+ 2 

so that the equations of motion are 

dp _dg_dt 
-kmq - p m 

Similarly if a heavy string is hanging from two points of support and 
if we take the y axis vertically upward through the lowest point O of 
the string, the equation of equilibrium may be written in the form 

dx dy ds 

H 
= 

W 7 (6) 

where H is the horizontal tension at the lowest point, T is the tension 
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ORDINARY DIFFERENTIAL EQUATIONS 9 

in the string at the point P(x,y), and W is the weight borne by the portion 
OP of the string. 

By trivial changes of variable we can bring equations (5) and (6) 
into the form 

dx_dy_dz 
P Q R 

where P, Q, and R are given functions of x, y, and z. For that reason 
we study equations of this type now. In addition to their importance 
in theoretical investigations in physics they play an important role in 
the theory of differential equations, as will emerge later. 

From equations (8) of Sec. 1 it follows immediately that the solutions 
of equations (7) in some way trace out curves such that at the point 
(x,y,z) the direction cosines of the curves are proportional to (P, Q,R). 

The existence and uniqueness of solutions of equations of the type (7) 
is proved in: 

Theorem 1. If the functions f1(x,y,z) and f2(x,y,z) are continuous in 
the region defined by Ix - al < k, 

I 

y - bi < 1,1z - cl < m, and if in 
that region the functions satisfy a Lipschitz condition of the type 

I - fAx,?),01 < Ally - 

(7) 

171 + .BEIZ - I 

I 
-f2(x,)I < A2Iy -- ,,I ± B21z - I 

then in a suitable interval Ix - al < h there exists a unique pair of 
functions y(x) and z(x) continuous and having continuous derivatives in 
that interval, which satisfy the differential equations 

dy dz 
dx f1(x,y,z), dx .f2(x,y,z) 

identically and which have the property that y(a) = b, z(a) = c, where 
the numbers a, b, and c are arbitrary. 

We shall not prove this theorem here but merely assume its validity. 
A proof of it in the special case in which the functions f. and f2 are 
linear in y and z is given in M. Golomb and M. E. Shanks, "Elements 
of Ordinary Differential Equations" (McGraw -Hill, New York, 1950), 
Appendix B. For a proof of the theorem in the general case the reader 
is referred to textbooks on analysis.1 

The results of this theorem are shown graphically in Fig. 6. 
According to the theorem, there exists a cylinder y = y(x), passing 
through the point (a,b,0), and a cylinder z = z(x), passing through the 
point (a,0,c), such that dyldx = jj and dzldx = f2. The complete 
solution of the pair of equations therefore consists of the set of points 

1 See, for instance, E. Goursat, "A Course in Mathematical Analysis" (Ginn, 
Boston, 1917), vol. II, pt. II, pp. 45ff. 
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I0 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

common to the cylinders y = y(x) and z = = z(x) ; i.e., it consists of 
their curve of intersection F. 

This curve refers to a particular choice of initial conditions ; i.e., 
it is the curve which not only satisfies the pair of differential equations 
but also passes through the point (a,b,c). Now the numbers a, b, and c 
are arbitrary, so that the general solution of the given pair of equations 
will consist of the curves formed by the intersection of a one -parameter 
system of cylinders of which y = y(x) is a particular member with 
another one- parameter system of cylinders containing z = z(x) as a 

(a,0,c) 

Y =Y (x) 

z=z (x) 

, ' ' 4/ 
(a,b,0 ) 

Figure 6 

member. In other words, the general solution of a set of equations of 
the type (7) will be a two- parameter family of curves. 

3. Methods of Solution of dxJP = dy/Q = dz /R 

We pointed out in the last section that the integral curves of the set 
of differential equations É__f 

Q R 7) 
(1) 

form a two- parameter family of curves in three -dimensional space. If 
we can derive from the equations (1) two relations of the form 

u1(x, y,z ) = c1; u2(x,y,z) = c2 (2) 

involving two arbitrary constants c1 and c2, then by varying these 
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ORDINARY DIFFERENTIAL EQUATIONS I I 

constants we obtain a two- parameter family of curves satisfying the 
differential equations (1). 

Method (a). In practice, to find the functions u1 and u2 we observe 
that any tangential direction through a point (x,y,z) to the surface 
u1(x,y,z) = c1 satisfies the relation 

au1 dx 
au1 

d au1 dz = 0 
ax 

+ 
ay y 

+ 
az y 

If u1 = c1 is a suitable one -parameter system of surfaces, the tangential 
direction to the integral curve through the point (x,y,z) is also a tan- 
gential direction to this surface. Hence 

Pau, u1 au1 
Q 

a 
ax ay az .Y 

To find u1 (and, similarly, u2) we try to spot functions P', Q', and R' 
such that 

PP' +QQ'+ RR' =0 
and such that there exists a function u1 with the properties 

aux aux R' aux -ax Q =-5.-y- ' =az 
i.e., such that 

P' dx + Q' dy + R' dz 

is an exact differential dux. 
We shall illustrate this method by an example: 

Example 2. Find the integral curves of the equations 

dx dy dz 
y(x + y) + az x(x + y) - az z(x + y) 

In this case we have, in the above notation, 

P= y(x -I- y) +az, Q - x(x + y) - az, R= z(x +y) 
If we take 

(6) 

P' Q / =1, R= _x +y 
z z z2 

then condition (3) is satisfied, and the function th of equation (4) assumes the form 

Similarly if we take 
P' =x, R' _ -a 

condition (3) is again satisfied, and the corresponding function is 

u2 = 2 (x2 - y2) - az 

Hence the integral curves of the given differential equations are the members of the 
two -parameter family 

x + y = C1Z, x2 - y2 - 2az = c2 (7) 
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12 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

We have derived the solution in 'this manner to illustrate the general argument 
given above. Written down in this way, the derivation of the solution of these 
equations seems to require a good deal of intuition in determining the forms of the 
functions P', Q', and R'. In any actual example it is much simpler to try to cast the 
given differential equations into a form which suggests their solution. For example, 
if we add the numerators and denominators of the first two "fractions," their value 
is unaltered. We therefore have 

dx + dy dz 

(x + y)2 z(x + y) 

which may be written in the form 

d(x+y) dz 
x + y z 

This is an ordinary differential equation in the variables x + y and z with general 
solution 

x + y =cxz (8) 
where cl is a constant. 

Similarly 

which is equivalent to 

x dx -y dy dz 
a(x + y)z z(x + y) 

xdx -ydy - adz =0 
i.e., to d(32-x2 - 1-y2 -- az) = 0 

and hence leads to the solution 

x2 --- y2 - gaz = c2 (9) 

Equations (8) and (9) together furnish the solution (7). 

In some instances it is a comparatively simple matter to derive one of 
the sets of surfaces of the solution (2) but not so easy to derive the 
second set. When that occurs, it is possible to use the first solution in 
the following way : Suppose, for example, that we are trying to deter- 
mine the integral curves of the set of differential equations (6) and that 
we have derived the set of surfaces (8) but cannot find the second set 
necessary for the complete solution. If we write 

x +y 
cl 

z 

in the first of equations (6), we see that that equation is equivalent to 
the ordinary differential equation 

dx dy 

which has solution 
y --I- a /cl x -a /c, 
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ORDINARY DIFFERENTIAL EQUATIONS 13 

where c2 is a constant. This solution may be written 
2a 

i 
and we see immediately that, by virtue of equation (8), the curves of 
intersection of the surfaces (8) and (10) are identical with those of the 
surfaces (8) and (9). 

Method (b). Suppose that we can find three functions P', Q', R' 
such that 

(10) 

P' dx -I- Q' dy -+- R' dz 

PP' + QQ' -I- RR' 

is an exact differential, dW' say, and that we can find three other 
functions P ", Q ", R" such that 

P" dx +- Q" dy R" dz 
PP" + QQ" + RR" 

is also an exact differential, dW" say. Then, since each of the ratios (11) 
and (12) is equal to dx /P, it follows that they are equal to each other. 
This in turn implies that 

dW' = dW" 
so that we have derived the relation 

W'_ w " 

between x, y, and z. As previously, c1 denotes an arbitrary constant. 

Example 3. Solve the equations 

dx dy dz 

(12) 

y +az z +ßx x+yy 
Each of these ratios is equal to 

dx-}-,udy+vdz 
íß(y az) -I- ,u(z -1- ßx) ; v(x -I- yy) 

If â, y, and v are constant multipliers, this expression will be an exact differential if 
it is of the form 

1 dx -I- ,u dy -1- v dz 
p Rx- }- ,uy +vz 

and this is possible only if 
p2, + flit -I-v =0 
A- pia -}-yv =0 
a).. +- pct - pv = 0 

Regarded as equations in 2, ,CC, and v, these equations possess 
is a root of the equation 

which is equivalent to 

-p ß 1 

1 - p y 

a 1 -p 

=0 

p3 + (0c -I- ß -1- y) p + 1 -1- aßy = O 

(13) 

a solution only if p 

(14) 

(15) 
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14 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

This equation has three roots, which we may denote by p1, p2, P3. If we substitute 
the value Pi for p in the equation (14) and solve to find A = AI, ,u = ,u1, v = v1, then 
in the notation of (13) 

d W ' = 1 Aldx +,u1dy +v1dz 
Pi ; lx + ply + viz 

so that W' = log (Aix + ply + v1z)11 P1 

Similarly w" = log 02x + ,u 2y + v2z)11P2 

and (13) is equivalent to the relation 

(21x + Illy + v1z)31P1 = c1(22x + I2y + v2z)11P2 

where c1 is a constant. In a similar way we can show that 

(Aix + ply + 'v1Z)11Pi = c2(23x + ,u3y + v3z)11P3 

with c2 a constant. 
A more familiar form of the solution of these equations is that obtained by 

setting each of the ratios equal to dt. We then have relations of the type 

-1 log (Aix + tti y + viz) = dt 
Pi 

which give 
Aix + ici y + viz = ciePzt 

where the ci are constants and i = 1, 2, 3. 

Method (c). When one of the variables is absent from one equation 
of the set (1), we can derive the integral curves in a simple way. 
Suppose, for the sake of definiteness, that the equation 

dy dz 

Q - --T? 

may be written in the form 
dy 
dz 

= f(y,z) 

Then by the theory of ordinary differential equations this equation has 
a solution of the form 

igY,z,cl) = 0 

Solving this equation for z and substituting the value of z so obtained 
in the equation 

dx dy 

IF --64 
we obtain an ordinary differential equation of type 

dy 
dx 

= g(x ,y, c 1) 

whose solution 
y(x,y, c1, c 2) = o 

may readily be obtained. 
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Example 4. Find the integral curves of the equations 

dx d y dz 

x + z y z +y2 
The second of these equations may be written as 

dz z 
dy -y- -y 

which is equivalent to 
d z 

dy y 
and hence has solution 

z = co/ +y2 
From the first equation of the set (16) we have 

dx x z 
dy -y + 

and this, by equation (17), is equivalent to 
dx x 

dy -ÿ 
If we regard y as the independent variable and x as the dependent variable in this 
equation and then write it in the form 

d x c _ 1 

dy y y 
we see that it has a solution of the form 

x = cly log y + c2y + y2 

(16) 

(17) 

(18) 
The integral curves of the given differential equations (16) are therefore determined 
by the equations (17) and (18). 

PROBLEMS 
Find the integral curves of the sets of equations: 

dx dz 
x(y - z) y(z - x) ^ z(x - y) 

a dx dy c dz 
2. - - 

(b - c)yz (c - a)zx 
_ 

(a - b)xy 

dx dy dz 

1. 

3. 

4. 

xz -- y yz -x 
dx dy dz 

x2(y3 -- z3) y2(z3 -- x3) z2(x3 - y3) 

4. Orthogonal Trajectories of a System of Curves on a Surface 

The problem of finding the orthogonal trajectories of a system of 
plane curves is well known.1 In three dimensions the corresponding 
problem is : Given a surface 

F(x,y,z) = O (1) 

1 M. Golomb and M. E. Shanks, "Elements of Ordinary Differential Equations" 
(McGraw -Hill, New York, 1950), pp. 29 -31, 64 -65. 
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16 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

and .a system of curves on it, to find a system of curves each of which 
lies on the surface (1) and cuts every curve of the given system at right 
angles. The new system of curves is called the system of orthogonal 
trajectories on the surface of the given system of curves. The original 
system of curves may be thought of as the intersections of the surface 

(1) with the one -parameter family of 
surfaces 

Aftilig/0 
1411111111111P1, 

ANumm00 
Avaimuipil 

Atensiof \V11l 
'caw 
tnMIfrN' 

tnnns 
"In' V tr. .,.,, 

Figure 7 

G(x,y,z) = c1 (2) 

For example, a system of circles 
(shown by full lines in Fig. 7) is 
formed on the cone 

x2 + y2 = z2 tan2 a (3) 

by the system of parallel planes 
z = c1 (4) 

where c1 is a parameter. It is 
obvious on geometrical grounds that, 
in this case, the orthogonal trajec- 
tories are the generators shown dotted 
in Fig. 7. We shall prove this 
analytically at the end of this section 
(Example 5 below). 

In the general case the tangential 
direction ( dx,dy,dz) to the given 
curve through the point (x,y,z) on 
the surface (1) satisfies the equations 

- 
dx - 

Fd + aFdz = 0 (5) a y 
y az () 

and 
aG aG 

aGd 
aG 

ax 
(6) 

x + a y + y 
Hence the triads (dx,dy,dz) must be such that 

dx dy dz 

where 

Q 

aF aG aF aG - 
a y az ax ax 

aF aG aF aG 

a az az az ' y 
aF aG aF aG 

ax ay ay ax 

The curve through (x,y,z) of the orthogonal system has tangential 

(7) 

(8) 
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direction (dx',dy',dz') (cf. Fig. 8), which lies on the surface (1), so that 

OF 
dx' + 

aF , aF 
dy' + (9) 

ax y 
= 0 

and is perpendicular to the original system of curves. Therefore from 
equation (7) we have 

P dx' + Q dy' + R dz' = 0 

Equations (9) and (10) yield the equations 

dx' dy' dz' 
P' Q' R' 

where 

P' 
aF aF 
a Q az ' y 

,^aF__ aF 
Q ax ' 

R' 
aF aF 
ax ay 

(12) 

(dx',dy',dz') 

(10) 

Figure 8 

The solution of the equations (11) with the relation (1) gives the system 
of orthogonal trajectories. 

To illustrate the method we shall consider the example referred to 
previously : 

Example 5. Find the orthogonal trajectories on the cone x2 + y2 = z2 tan2 a of its 
intersections with the family of planes parallel to z = O. 

The given system of circles on the cone is characterized by the pair of equations 

x dx + y dy = tang az dz, dz = 0 

which are equivalent to 
dx dy dz 
y -- x r 0 

The system of orthogonal trajectories is therefore determined by the pair of equations 

xdx + ydy = tan2 oczdz, ydx -- xdy = 0 

i.e., by 
dx d y z tant a dz - 
x y x2 + y2 

which have solutions 
x2 -}- y2 = z2 tan2 a, x = cl y (13) 

where cx is a parameter. Hence the orthogonal trajectories are the generators of the 
cone formed by the intersection of its surface with the sheaf of planes x = co/ 
passing through the z axis (cf. Fig. 7). 
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18 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

PROBLEMS 

1. Find the orthogonal trajectories on the surface x2 + y2 + 2fyz + d = 0 of its 
curves of intersection with planes parallel to the plane xOy. 

2. Find the orthogonal trajectories on the sphere x2 + y2 + z2 = a2 of its 
intersections with the paraboloids xy = cz, c being a parameter. 

3. Find the equations of the system of curves on the cylinder 2y = x2 orthogonal 
to its intersections with the hyperboloids of the one- parameter system 
xy =z +c. 

4. Show that the orthogonal trajectories on the hyperboloid 

x2+y2 -z2 =1 
of the conics in which it is cut by the system of planes x + y = e are its 
curves of intersection with the surfaces (x - y)z - k, where k is a parameter. 

5. Find the orthogonal trajectories on the conicoid 

(x + y)z = 1 

of the conics in which it is cut by the system of planes 

x -y+z =k 
where k is a parameter. 

5. Pfaffian Differential Forms and Equations 

The expression 
n 

Fi(x1 ,x 2, 
i=1 

. . . ,xn) dxi (1) 

in which the Fi (i = 1, 2, . . . , n) are functions of some or all of the n 
independent variables x1, x2, . . . , xn, is called a Pfaffian differential 
form in n variables. Similarly the relation 

n 
Fidxi=0 (2) i.i 

is called a Pfaffian differential equation. 
There is a fundamental difference between Pfaffian differential 

equations in two variables and those in a higher number of variables, 
and so we shall consider the two types separately. 

In the case of two variables we may write equation (2) in the form 

P(x,y) dx -I- Q(x,y) dy = O 

which is equivalent to 

ax -f(xy) 
if we write f(x,y) = -P /Q. Now the functions P(x,y) and Q(x,y) are 
known functions of x and y, so that f(x,y) is defined uniquely at each 
point of the xy plane at which the functions P(x,y) and Q(x,y) are 
defined. In particular, if these functions are single -valued, then 
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dyldx is single -valued, so that the solution of equation (3) which satisfies 
the boundary condition y = yo when x = xo consists of the curve which 
passes through this point and whose tangent at each point is defined by 
equation (4). This simple geometrical argument can be formalized' to 
show that the differential equation (3) defines a one-parameter family of 
curves in the xy plane. In other words, it can be shown that there 
exists, at least in a certain region of the xy plane, exactly one function 
0(x,y) such that the relation 

0(x,y) = c (s) 

in which c is a constant, defines a function y(x) which satisfies identically 
the differential equation (3). 

It may happen that the differential form P dx + Q dy may be written 
in the form d¢(x,y), in which case it is said to be exact or integrable. 
Even when the form is not exact, it follows from writing equation (5) 
in the differential form 

dx i ÿ ay = o 

that there exists a function 0(x,y) and a function ,u(x,y) such that 

1 ao 1 ao 
P áx - Q áy -12 

By multiplying equation (3) by this function ,u(x,y), we see that it can be 
written in the form 

0 
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20 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

Theorem 3. A necessary and sufficient condition that there exists 
between two functions u(x,y) and v(x,y) a relation F(u,v) = 0, not 
involving x or y explicitly is that 

a(u,v) 

, a(x, y) 

First, the condition is necessary. For since the relation 

F(u,v) = 0 (8) 

is an identity in x and y, we have as a result of differentiating with 
respect to x 

aF au aF av 

au ax av ax 

and as a result of differentiating with respect to y 

aF au aF ôv 

áu áy + áv áy -° 
Eliminating âFiôv from these two equations, we find that 

aF f au av au ôv1 

au k áx áy - áy T. 

Since the relation (8) involves both u and v, it follows that ôFl ôu is not 
identically zero, so that 

a(u,v) 

a(x,y) 

Second, the condition is sufficient. We may eliminate y from the 
equations 

(9) 

u u(x,y), v v(x,y) 

to obtain the relation 
F(u,v,x) = 0 

From this relation it follows immediately, as a result of differentiating 
with respect to x, that 

aF aF au aFav 
ax k 

au ax i- 
av ax 

and as a result of differentiating with respect to y that 

aF au aF av au ay av ay y 
Eliminating aF/av from these equations, we find that 

aF av a(u,v) aF 
ax ay a(x,y) au 
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If the condition (9) is satisfied, we see that 

âFÔv_ 
ôx ây 

The function y is a function of both x and y, so that âvJôy is not identi- 
cally zero. Hence 

a, -o 
ax 

which shows that the function F does not contain the variable x 
explicitly. 

Another result we shall require later is: 
Theorem 4. If X is a vector such that X curl X = 0 and ,u is an 

arbitrary function of x, y, z then (,uX) curl (,uX) = O. 

For, by the definitions of curl we have 

,uX curl ,uX = (1uP) 
?) 

a(a Q) 
x, ?/,z 

where X has components (F,Q,R). The right -hand side of this equation 
may be written in the form 

P aP- aQ 
N P 

abt - PR 
a 

tay az Q az a 
x,11,2 x,y,z y 

and the second of these sums is identically zero. Hence 

,uX curl (uX) _ (X curl X} ,u2 

and the theorem follows at once. 
The converse of this theorem is also true, as is seen by applying the 

factor l /,u to the vector ,uX. 
Having proved these preliminary results, we shall now return to the 

discussion of the Pfaffian differential equation (6). It is not true that 
all equations of this form possess integrals. If, however, the equation 
is such that there exists a function ,u(x, y,z) with the property that 
,u(P dx -I- Q dy + R dz) is an exact differential do, the equation is 
said to be integrable and to possess an integrating factor ,u(x,y,z). The 
function 0 is called the primitive of the differential equation. The 
criterion for determining whether or not an equation of the type (6) 
is integrable is contained in : 

Theorem 5. A necessary and sufficient condition that the Pfaffian 
differential equation X dr = 0 should be integrable is that X curl X = O. 

The condition is necessary, for if the equation 

P dx + Q dy -f- .R dz = 0 (6) 

1 H. Lass, "Vector and Tensor Analysis" (McGraw -Hill, New York, 1950), p. 45. 
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is integrable, there exists between the variables x, y, z a relation of the 
type 

F(x,y,z) = C 

where C is a constant. Writing this in the differential form 

aF aF aF di = o 
ax + 

y 
y + az 

we see that there must exist a function ,u(x,y,z) such that 

aF aF aF 
PP =-a.' ' Q _ 

ay" 
`. = az 

. 

i.e., such that 

so that since 

we have 

so that 

,uX =grad F 

curl grad F = 0 

curl (1uX) = O 

,uX curl (uX) = 0 

From Theorem 4 it follows that 

XcurlX -=O 

Again, the condition is sufficient. For, if z is treated as a constant, 
the differential equation (6) becomes 

P(x,y,z) dx + Q(x,y,z) dy = O 

which by Theorem 2 possesses a solution of the form 

U(x, y,.z) = c1 

where the "constant" c1 may involve z. Also there must exist a function 
,u such that 

au au 
= PP, = PQ (10) 

ax ay 

Substituting from the equations (10) into equation (6), we see that the 
latter equation may be written in the form 

au 
ax 

dx - ÿ dy - U dz + (,uR - 
az I 

dz = 0 

which is equivalent to the equation 

dU + K dz = 0 (11) 
if we write 

K - a 
R 

az 
(12) 
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Now we are given that X curl X = 0, and it follows from Theorem 4 
that 

,uX curl ,uX = 0 
Now 

X= (P,1uQ,,aR) - 1 aU aU 
ax ' a ' az 

= grad U + (0,0,K) 
Hence 

ktx curl ( _ UU a Kx ' ay ' + K ' + áy ' -a' ° 
au ax au ax 
ax äy - áy ax 

Thus the condition X curl X = 0 is equivalent to the relation 

a(u,K) 
a(x,y) 

From Theorem 3 it follows that there exists between U and K a 
relation independent of x and y but not necessarily of z. In other 
words, K can be expressed as a function K(U,z) of U and z alone, and 
equation (11) is of the form 

dU + K(U,z) 0 
dz 

which, by Theorem 2, has a solution of the form 

Ito( U,z) = c 

where c is an arbitrary constant. On replacing U by its expression in 
terms of x, y, and z, we obtain the solution in the form 

F(x,y,z) = c 

showing that the original equation (6) is integrable. 
Once it has been established that the equation is integrable, it only 

remains to determine an appropriate integrating factor ,u(x,y,z). We 
shall discuss the solution of Pfaffian differential equations in three 
variables more fully in the next section. Before going on to the 
discussion of methods of solution, we shall first of all prove a theorem 
on integrating factors of Pfaffian differential equations which is of 
some importance in thermodynamics. Since the proof is elementary, 
we shall state the result generally for an equation in n variables : 

Theorem 6. Given one integrating factor of the Pfaffian differential 
equation 

1 

XI dx1 + X2 dx + . + Xn dxn = 0 

we can find an infinity of them. 
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For, if ,u(x1,x2, . . . ,xn) is an integrating factor of the given 
equation, there exists a function 0(x1,x2, . . . ,x7) with the property 
that 

X =a i =12.. n (13) 
2 

If 0(0) is an arbitrary function of ck, we find that the given Pfaffian 
differential equation may be written in the form 

c/(1) 
(X1dx1+X2dx2+ x + X n d n) = 0 

which, by virtue of the relations (13), is equivalent to 
d (1) ao 

dx 
ao 

dx 
a° 

dx 0 
d ax 1 - ax 2 

+ - ax n x 2 

i.e. to 
c/(1) 

d = da 0 - 
d 

with solution 
(KO) = c 

Thus if is an integrating factor yielding a solution fi - = c and if (J) 

is an arbitrary function of 0, then 1u(dV /dç) is also an integrating 
factor of the given differential equation. Since 1 is arbitrary, there 
are infinitely many integrating factors of this type. 

To show how the theoretical argument outlined in the proof of 
Theorem 5 may be used to derive the solution of a Pfaffian differential 
equation we shall consider: 

Example 6. Verify that the differential `erential equation 

(y2 + yz) dx -I- (xz -I- z2) dy -I- (y2 -- xy) dz = o 

is integrable and find its primitive. 
First of all to verify the integrability we note that in this case 

X =- (y2 + yz, xz + Z2, y2 - xy) 
so that curl X =2( -x + y -z,y, --y) 

and it is readily verified that 
X curl X =0 

If we treat z as a constant, the equation reduces to 
dx dy dy 

x -I - z y y+z 
which has solution U(x,y,z) - c1, where 

U(x,y,z) y(x -.I- z) - y+z 
Now 

1 a U= 1 y 1 

11 _ P ax + z)2 

and, in the notation of equation (12), 

K= y(v x) 
(y I- 

1 
Z) 

y y(x + z) = 0 
y + z (yTz)2 
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Since K = 0, equation (11) reduces to the simple form dU = O with solution 
U = c; i.e., the solution of the original equation is 

y(x + z).= c(y + z) 
where c is a constant. 

It is of interest to consider the geometrical meaning of integrability. 
The functions y = y(x), z = z(x) constitute a solution of the equation 

Pdx+Qdy+.Rdz =0 (14) 

if they reduce the equation to an identity in x. Geometrically such a 
solution is a curve whose tangential direction T at the point X(x,y,z) 
is perpendicular to the line A whose direction cosines are proportional 
to (P, Q,R) (cf. Fig. 9), and hence the tangent to an integral curve lies 
in the disk ar which is perpendicular 
to 2 and whose center is (x,y,z). On 
the other hand, a curve through the 
point X is an integral curve of the 
equation if its tangent at X lies in rr. 

When the equation is integrable, 
the integral curves lie on the one - 
parameter family of surfaces 

(k(x,y,z) : -- : c 

Any curve on one of these surfaces 
will automatically be an integral 
curve of the equation (14). The 
condition of integrability may there- 
fore be thought of as the condition that the disks a should fit together 
to form a one -parameter family of surfaces. 

Another way of looking at it is to say that the equation (14) is 
integrable if there exists a one -parameter family of surfaces orthogonal 
to the two- parameter system of curves determined by the equations 

dx dy dz 
P Q R 

Figure 9 

When the equation is not integrable, it still has solutions in the 
following sense. It determines on a given surface S with equation 

U(x,y,z) = 0 (15) 

a one -parameter system of curves. For, eliminating z from equations 
(14) and (15), we have a first -order ordinary differential equation whose 
solution 

v(x, y, c) -0 
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is a one- parameter system of cylinders C1, C2, . . . (cf. Fig. 10) with 
generators parallel to Oz and cutting the surface S in the integral 
curves 11 1, "2, . . . . 

' ii / /// 1/ /I: //// //// Jr // /MA ///// ///// 
/MIIIIIIW/ . // 

PROBLEMS 

Determine which of the following equations are integrable, and find the solution 
of those which are: 

1. y dx + x dy + 2z dz = 0 

2. z(z + y) dx + z(z + x) dy - 2xy dz = O 

3. yz dx + 2xz dy - 3xy dz = 0 

4. 2xz dx + z dy -dz = 0 

5. (y2 + xz) dx + (x2 + yz) dy -I- 3z2 dz = 0 

6. Solution of Pfaffian Differential Equations in Three Variables 

We shall now consider methods by which the solutions of Pfaffian 
differential equations in three variables x, y, z may be derived. 

(a) By Inspection. Once the condition of integrability has been 
verified, it is often possible to derive the primitive of the equation by 
inspection. In particular if the equation is such that curl X = 0, then'. 

1 Ibid., p. 46. 
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X must be of the form grad y, and the equation X dr = O is equivalent 
to 

with primitive 

av 
dx 

âv av 
dz = 0 

ax + 
y y+az 

v(x,y,z) = c 

Example 7. Solve the equation 

(x2z - y3) dx + 3xy2 dy -F x3 dz = 0 

first showing that it is integrable. 
To test for integrability we note that X = (x2z - y3, 3xy2, x3), so that 

curl X = (0, -2x2, 6y2), and hence X curl X = O. 

We may write the equation in the form 

x2(z dx + x dz) - y3 dx -f- 3xy2 dy = 0 

2 

i.e., z dx + x dz - 2 dx -}-- 
3 y 

dy = 
O x x 

3 

i.e., d(xz) -}- d Y -0 
x 

so that the primitive of the equation is 

x2z + y3 = cx 
where c is a constant. 

(b) Variables Separable. In certain cases it is possible to write the 
Pfaffian differential equation in the form 

P(x) dx + Q(y) dy + R(z) dz = O 

in which case it is immediately obvious that the integral surfaces are 
given by the equation 

fP(x) dx + f Q(Y) dy + JR(z) dz = c 

where c is a constant. 

Example 8. Solve the equation 

a2y2z2 dx + b2z2x2 dy + c2x2y2 dz = 0 

If we divide both sides of this equation by x2y2z2, we have 

a2 b2 c2 

x2 
dx + 2 dy + 

a2 
dz = 0 

y 
showing that the integral surfaces are 

a2 b2 c2 -+ - + -- 
x y z 

where k is a constant. 

=k 
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(c) One Variable Separable. It may happen that one variable is 
separable, z say, in which case the equation is of the form 

P(x,y) dx + Q(x,y) dy + R(z) dz = 0 (1) 

For this equation 
X = (P(x,y),Q(x,y),R(z)} 

and a simple calculation shows that 

curl X = 0, 0, a Q aP 
ax ay 

so that the, condition for integrability, X curl X = 0, implies that 

aP a Q 

ay 
_ 

ax 

In other words, P dx + Q dy is an exact differential, du say, and equation 
(1) reduces to 

du + R(z) dz 
with primitive 

0 

u(x,y) + i R(z) dz -c 
Example 9. Verify that the equation 

x(y2 - a2) dx + y(x2 - z2) dy - z(y2 - a2) dz = o 

is integrable and solve it. 
If we divide throughout by (y2 - a2)(x2 - z2), we see that the equation assumes 

the form 
xdx - zdz ydY 

x2 - Z2 y2 - a2 

showing that it is separable in y. By the above argument it is therefore integrable if 

aP aR 

az 
- 

ax 

which is readily shown to be true. To determine the solution of the equation we 
note that it is 

id log (x2 - z2) + 2 d log (y2 - a2) = O 

so that the solution is 

where c is a constant. 
(x2 - Z2)(}12 - a2) = c 

(d) Homogeneous Equations. The equation 

P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = 0 (2) 

is said to be homogeneous if the functions P, Q, R are homogeneous in 
X, y, z of the same degree n. To derive the solution of such an equation 
we make the substitutions 

y = ux,. z -- vx (3) 
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Substituting from (3) into (2), we see that equation (2) assumes the form 

P(1,u,v) dx + Q(1,u,v)(u dx + x du) + R(1,u,v)(x dv + v dx) = 0 

a factor xn canceling out. If we now write 

A(u,v) _ Q(1,u,v) 
P(1,u,v) uQ(1,u,v) + vR(1,u,v) 

R(1,u,v) 
B(u, v) _ 

P(1,u,v) -- vR(1,u,v) uQ(1,u,v) 
I 

we find that this equation is of the form 

dx 
x 

+ A(u,v) du + B(u,v) dv = 0 

and can be solved by method (c). 
It is obvious from the above analysis that another way of putting 

the same result is to say that if the condition of integrability is satisfied 
and P, Q, R are homogeneous functions of x, y, z of the same degree 
and xP + yQ + zR does not vanish identically, its reciprocal is an 
integrating factor of the given equation. 

Example 10. Verify that the equation 

yz(y z) dx + xz(x + z) dy + xy(x -I- y) dz = O 

is integrable and find its solution. 
It is easy to show that the condition of integrability is satisfied; this will be left 

as an exercise to the reader. Making the substitutions y = ux, z = vx, we find 
that the equation satisfied by x, u, v is 

uv(u -I- v) dx + v(v + 1)(u dx -1-- x du) -I- u(u -1- 1)(v dx -I. x dv) = 0 

which reduces to 
dx v(v + 1) du + u(u -I- 1) dv 

x ` 2uv(1 -I-- u -I- v) 

Splitting the factors of du and dv into partial fractions, we see that this is equivalent to 

2dx+ 1- 1 fi 1 dv=0 
x u 1+ u-}- v v 1 I- at + v 

or, which is the same thing, 

dx du dv d(1 +u +v)_0 
x u v 1 -I- a± v 

The solution of this equation is obviously 

xzuv = c(1 + u + y) 

where c is a constant. Reverting to the original variables, we see that the solution 
of the given equation is 

xyz = c(x + y + z) 
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


30 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

(e). Natani's Method. In the first instance we treat the variable z as 
though it were constant, and solve the resulting differential equation 

Pdx -I -Qdy =O 
Suppose we find that the solution of this equation is 

0(x,y,Z) = el (4) 

where c1 is a constant. The solution of equation (2) is then of the form 

4:1)(0,z) =--- c2 (5) 

where c2 is a constant, and we can express this solution in the form 

0(x,y,Z) = v(Z) 

where v is a function of z alone. To determine the function v(z) we 
observe that, if we give the variable x a fixed value, a say, then 

0(a,y,Z) - y(Z) (6) 

is a solution of the differential equation 

Q( «,y,z) dy + R(«,y,z) dz = O (7) 

Now we can find a solution of equation (7) in the form 

fc( ),, z) : : C (8) 

by using the methods of the theory of first -order differential equations. 
Since equations (6) and (8) represent general solutions of the same 

differential equation (7), they must be equivalent. Therefore if we 
eliminate the variable y between (6) and (8), we obtain an expression 
for the function p(z). Substituting this expression in equation (6), we 
obtain the solution of the Pfaffian differential equation (2). 

The method is often simplified by choosing a value for a, such as 
0 or 1, which makes the labor of solving the differential equation (7) 
as light as possible. It is important to remember that it is necessary to 
verify in advance that the equation is integrable before using Natani's 
method. 

Example 11. Verify that the equation 

z(z ± y2) dx -I-- z(z --I-- x2) dy - xy(x + y) dz = o 

is integrable and find its primitive. 
For this equation 

X - {z(z --' - y2), z(z + x2), --xy(x -1- y); 
curl X = 2( - --x2 - -- xy - - -- Z, y2 - I . xy -f- z, zx -- zy) 

and it is soon verified that X i curl X 0, showing that the equation is integrable. 
An inspection of the equation suggests that it is probably simplest to take dy - 0 

in Natani's method. The equation then becomes 

- 1 dx+ 1 1 dz =0 
x x -I- y z -I_ z z 
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showing that it has the solution 
x(y2 + z) 
z(x + y) .f 

If we now let z = 1 in the original equation, we see that it reduces to the simple 
form 

dx dy -0 
1 +x2 1 +y2 

with solution 
tan-1 x + tan-1 y = const. 

Writing tan-1 (1 /c) for the constant and making use of the addition formula 

1 1x ._ y tan-1 xi- tan- y = tan-- 1- x y 
we see that the solution of equation (10) is 

1 - xy - 
x+y 

(10) 

This solution must be the form assumed by (9) in the case z = 1; in other words, 
(11) must be equivalent to the relation 

x(y2 + 1) fy () (12) x + y 

Eliminating x between equations (11) and (12), we find that 

.f (y) = 1 -cy 
Substituting this expression in equation (9), we find that the solution of the 
equation is 

x(y2 + z) = z(x + y)(1 - cy) 

(f) Reduction to an Ordinary Differential Equation. In this method 
we reduce the problem of finding the solution of a Pfaffian differential 
equation of the type (2) to that of integrating one ordinary differential 
equation of the first order in two variables. It is necessary, of course, 
that the condition for integrability should be satisfied. 

If the equation (2) is integrable, it has a solution of the form 

f(x,y,z) = c (Z3) 

representing a one-parameter family of surfaces in space. These 
integral surfaces will be intersected in a single infinity of curves by the 
plane 

z = x -1- ky (14) 

where k is a constant. The curves so formed will be the solutions of 
the differential equation 

p(x,y,k) dx + q(x,y,k) dy = 0 (15) 

formed by eliminating z between equations (2) and (14). 
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If we have found the solution of the ordinary differential equation 
(15), we may easily find the family of surfaces (13), since we know their 
curves of intersection with planes of the type (14), For the single 
infinity of curves of intersection which pass through one point on the 
axis of the family of planes obtained by varying k in (14) will in general 
form one of the integral surfaces (13). 

Suppose that the general solution of equation (15) is 

0(x,y,k) = const. (16) 

then, since a point on the axis of the planes (13) is determined by 
y = 0, x = c (a constant), we must have 

0(x,y,k) = 96(c,0,k) (17) 

in order that the curves (16) should pass through this point. When k 
varies, (17) represents the family of curves through the point y = 0, 
x = c. If c also varies, we obtain successively the family of curves 
through each point on the axis of (14). That is, if we eliminate k 
between equations (17) and (13), we obtain the integral surfaces required 
in the form 

(X, y,z --x -_ (18) 1$ 

The complete solution of the Pfaffian differential equation (2) is 
therefore determined once we know the solution (16) of one ordinary 
differential equation of the first order, namely, (15). If it so happens 
that the constant k is a factor of equation (15), then we must use some 
other family of planes in place of (14). 

Theoretically, this method is superior to Natani's method in that it 
involves the solution of one ordinary differential in two variables 
instead of two as in the previous case. On the other hand, this one 
equation is often more difficult to integrate than either of the equations 
in Natani's method. 

Example 12. Integrate the equation 

(y -r z) dx + (z - I- x) dy -I (x + y) dz = O 

The integration of this equation could be effected in a number of ways --.by 
methods (a), (d), (e), for instance -but we shall illustrate method (f) by applying 
it in this case. 

Putting z = x -r ky, we find that the equation reduces to the form 

d Y -}- 
2x + (k + 2)y = 4 

dx (k + 2)x + 2k y 

which is homogeneous in x and y. Making the substitution y 

therefore 

dx {2kv -1- (k + 2)1 dv 
2 , 

x . kv2 + (k + 2)v -i- 1 

x2 {kv2 + (k + 2)v + 1 } -- const. 

gx,y,k) = ky2 + (k + 2)xy + x2 

= vx, we find that 
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It follows immediately that 

(x, y, 
z 

= xy + yz -,- zx 
y 

x 

and (c, z x c2 

y 
Writing C for c2, we obtain the solution 

xy -f- yz -I-- zx C 

PROBLEMS 

Verify that the following equations are integrable and find their primitives: 
1. 2y(a - x) dx -i-- [z - y2 - I - (a - x)2] dy -. y dz -- 0 

2. y(1 ; z2) dx - x(1 -;- z2) dy ... (x2 1. y2) dz - 0 

3. (y2 --- yz -I-- z2) dx --I-- (z2 I- zx - I - x2) dv -:-- (x2 I - x,y -1- y`2) dz -0 
4. yz dx -!.. xz dy -1- xy dz =_- 0 

5. ( X 4- yz) dx -I- x(z - - x) dy -_- ( l 1 xy) dz - O 

6. y(x -I- 4)(y -I- z) dx --- x(y .. 3z) dy -;--. 2xy dz - (} 

7. yz dx -I-- (x2y -- zx) dy -}- (x2z - xy) dz -0 
8. 2 yz dx - 2xz dy -- (x2 - y2)(z --- 1) dz - : 0 

33 

7. Carathéodory's Theorem 

The importance of the analysis of Sec. 5 is that it shows that we 
cannot, in general, find integrating factors for Pfaffian differential 
forms in more than two independent variables. Our discussion has 
shown that Pfaffian differential forms fall into two classes, those which 
are integrable and those which are not. This difference is too abstract 
to be of immediate use in thermodynamical theory, and it is necessary 
to seek a more geometrical characterization of the difference between 
the two classes of Pfaffian forms. 

Before considering the case of three variables, we shall consider the 
case of a Pfaffian differential form in two variables. As a first example 
take the Pfaffian equation 

dx --dy =0 
which obviously has the solution 

x -y = e (I) 

where c is a constant. Geometrically this solution consists of a family 
of straight lines all making an angle ir/4 with the positive 'direction of 
the x axis. Consider now the point (0,0). The only line of the family 
(1) which passes through this point is the line x = y. This line inter- 
sects the circle x2 + y2 = s2 in two points 

A and B - VI 2 A/2 A/2 
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Now it is not possible to go from A to any point on the circle, 
other than B, if we restrict the motion to be always along lines 
of the family (1). Thus, since E may be made as small as we please, it 
follows that arbitrarily close to the point (0,0) there is an infinity. of 
points which cannot be reached by means of lines which are solutions of 
the given Pfaffian differential equation. 

This result is true of the general Pfaffian differential equation in two 
variables. By Theorem 2 there exists a function qS(x,y) and a function 
,u(x,y) such that 

,u(x,Y) {P(x,Y) dx + Q(x,y) dy} = dgx,y) 

so that the equation 
P dx -I- Q dy = 0 

must possess an integral of the form 

gx,y) = c (2) 

where e is a constant. Thus through every point of the xy plane there 
passes one, and only one, curve of the one -parameter system (2). From 
any given point in the xy plane we cannot reach all the neighboring 
points by curves which satisfy the given differential equation. We shall 
refer to this state of affairs by the statement that not all the points in the 
neighborhood are accessible from the given point. 

A similar result holds for a Pfaffian differential equation in three 
independent variables. If the equation possesses an integrating factor, 
the situation is precisely the same as in the two -dimensional case. All 
the solutions lie on one or other of the surfaces belonging to the one - 
parameter system 

«x,y,z) = c 

so that we cannot reach all the points in the neighborhood of a given 
point but only those points which lie on the surface of the family passing 
through the point we are considering. 

By extending the idea of inaccessible points to space of n dimensions 
we may similarly prove: 

Theorem 7. If the Pfaffian differential equation 

AX = Xi dxj + X2 dx2 + . .. _.E_. Xn dx = o 

is integrable, then in any neighborhood, however small, of a given point 
Go, there exists points which are not accessible from G4 along any path 
fórwhich zX= O. 

What is of interest in thermodynamics is not the direct theorem but 
the converse. That is, we consider whether or not the inaccessibility of 
points in the neighborhood of a given point provides us with a criterion 
for the integrability of the Pfaffian differential equation. If we know 
that in the neighborhood of a given point there are points which are 
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arbitrarily near but inaccessible along curves for which LX = 0, can 
we then assert that the Pfaffian differential equation ¿X = O possesses 
an integrating factor ? Carathéodory has shown that the answer to 
this question is in the affirmative. Stated formally his theorem is : 

Theorem 8. If a Pfaffian dfferential form 0X = X1 dx1 + X2 dx2 + 
' ' ' + xn din has the property that in every arbitrarily close neighbor- 
hood of a given point Go there exist points G which are inaccessible from 
Go along curves for which AX = 0, the corresponding Pfaffian differential 
equation ¿XX = 0 is integrable. 

We shall consider the proof of this theorem in the case n = 3. The 
geometrical concepts are simpler in this case, and the extension to a 
higher number of independent variables is purely formal. 

First of all we shall prove the theorem making use of a method 
suggested by a paper of Buchdahl's.1 This depends essentially on 
noting that by means of the transformations (10) and (12) of Sec. 5 the 
equation 

P dx -f- Q dy + R dz = 0 (3) 

may be written in the form 

dU + K(U,y,z) 
dz ( ,y,z ) 0 (4 ) 

in which, it will be observed, the function K may be expressed as a 
function of the three variables U, y, and z. If we take y to be fixed, 
we may write equation (4) in the form 

dU --E- K(U, y, z) dz = 0 

which by Theorem 2 has a solution of the form 

U «z,y) (5) 

Now we showed in Sec. 5 that equation (3) was integrable if it could be 
put in the form 

i.e., if, and only if, 

dU 
--F- K( U",z) 0 (6) 

ayo 
áy (7) 

in a certain region of the yz plane. 
Suppose the point Go(x0,y0,z0) is contained in a domain D of the 

xyz space. Then if P, Q, R, and ,u are such that Y and K are single - 
valued, finite, and continuous functions of x, y, and z, there is a one -to- 

1 H. A. Buchdahl, Ani. J. Phys., 17, 44 (1949). 
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one correspondence between the points of D and those of a domain D' 
of the Uyz space. Let Ho(U0,xo, yo) be the point of D' corresponding 
to the point Go of D. We shall now consider how the passage along a 
solution curve of equation (6) from Ho to a neighboring point H may 
actually be effected : 

(a) First pass in the plane y = yo from Ho to the point H1; then by 
virtue of (5) the coordinates of H1 will be {«z0 + C, yo), yo, zo + CI, 
where ' denotes the displacement in the z coordinate. Furthermore 
since Ho lies on the same integral curve as H1, it follows that 

Uo = gzo,y0) 

(b) Next pass in the plane U = «z0 + ?', yo) from H1 to the point 
H2. Since z is constant, it follows that the coordinates of H2 are 

H1 H 2 

/, 
1 

/ 
/ _, 

/ 
( i I 

¡ y=ya H 
%- ii_j 

/ / / / V 

Figure I 1 

[ß(z0 -I- ¿', yo), Yo + 17 - 7i', zo + ' }, where n - 71' denotes the 
displacement H1H2. 

(c) Next pass in the plane y = yo + ri - 'i1' to the point H3, which 
then has coordinates {«z0 + , yo + 7 -- f'), yo + ,1 n', zo + 0, - ?' denoting the change in the z coordinate. 

(d) Finally pass in the plane U = 96(z0 -I- , yo + 71 -- 97') through a 
displacement n' to the point H, which then has coordinates 

U = 0(Z0 -I- yo -I-- n - n'), Y = yo +17) z=zo+ 
If the point (U0 -i- El, yo + E2, Z + 83), which is arbitrarily close to 

H0(Uo,y0)zo), is accessible from Ho along solutions of the equation (4), 
then it is possible to choose the displacement r), n', in such a way that 

0(z0 + , Yo + 17 - n') - 0(z0,y0) ___. 81, f - 62, S - 63 (8) 

Now if all the points in the neighborhood of Ho are accessible from Ho, 
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it follows that the points (U0 + 8, yo, zo) which lie on the line x = xo, 
y = yo are accessible from Ho. Therefore it should be possible to 
choose a displacement 77' such that 

{(z0, Yo - ?') - 0(zo,y0) } = E (9) 

and this is so only if aq/ ay is not identically zero, in which case, as we 
remarked above, the equation is not integrable. 

On the other hand if there are points which are inaccessible from Ho, 
it follows that there exist values of el, 82, and 83 for which the equations 
(8)-or what is the same thing, equation (9)-have no solution. To the 
first order we may write equation (9) in the form 

(62 77 (;v) ) __ 2 
acb 

kaz z--7o 

If this fails to give a value for 7ì', it can only be because 

(4) = 0 
ay = Yo 

i.e., only if the equation is integrable. 
A more geometrical proof of Carathéodory's theorem has been given 

by Born.' In this proof we consider the solutions of the Pfaffian 
differential equation (3) which lie on a given surface S with parametric 
equations 

x = x(u,v), y = y(u,v), z =- z(u, v) 

These curves will satisfy the two -dimensional Pfaffian differential 
equation 

F du G dv = 0 (10) 
where 

F=P- ax. ay 
R 

aZ, -P ax ay 
R 

aZ 

au Q au au av av i av 

Now, by Theorem 2, equation (10) has a solution of the form 

(u,v) = 0 

representing a one -parameter system of curves covering the surface S. 
Let us now suppose that arbitrarily close to a given point Go there are 
inaccessible points, and let us further assume that G is one of these 
points. Through Go draw a line A which is not a solution of equation 
(3) and which does not pass through G. Let r be the plane defined 
by the line a. and the point G. 

1 M. Born, "Natural Philosophy of Cause and Chance" (Oxford, London, 1949), 
Appendix 7, p. 144. 
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If we now take the plane into be the surface S, introduced above, we 
see that there is just one curve which lies in the plane 7r, passes through 
the point G, and is a solution of equation (3). Suppose this curve 
intersects the line A in the point H; then since G is accessible from H 
and inaccessible from Go, it follows that H is inaccessible from Go. 
Furthermore, since we can choose a point G arbitrarily close to Go, 
the point H may be arbitrarily near to Go. 

Suppose now that the line A is made to move parallel to itself to 
generate a closed cylinder a. Then on the surface a there exists a 

Figure 12 Figure 13 

curve c which is a solution of (3) and passes through Go. If the line A 

cuts the curve c again in a point I, then by continuously deforming the 
cylinder a we can make the point I move along a segment of the line 2 

surrounding the point Go. In this way we could construct a band of 
accessible points in the vicinity of Go. But this is contrary to the 
assumption that, arbitrarily close to Go, there exist points on the line 2 

(such as H) which are inaccessible from Go ; hence we conclude that 
for each form of a the point I coincides with Go. 

As the cylinder a is continuously deformed, the closed curve c traces 
out a surface which contains all solutions of the equation (3) passing 
through the point Go. Since this surface will have an equation of the 
form 

01(x,y,Z) _ 964(xo,yo,ZO) 

it follows that there exist functions ,u and 56 such that 

,u(P dx -}- Q dy -I- R dz) = d¢ 

and so the theorem is proved. 
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8. Application. to Thermodynamics 

Most elementary textbooks on thermodynamics follow the historical 
development of the subject and consequently discuss the basic principles 
in terms of the behavior of several kinds of "perfect" heat engines. 
This is no doubt advantageous in the training of engineers, but mathe- 
maticians and physicists often feel a need for a more formal approach. 
A more elegant, and at the same time more rational, formulation of the 
foundations of thermodynamics has been developed by Carathéodory 
on the basis of Theorem 8, and will be outlined here. For the full 
details the reader is referred to the original papers.1. 

The first law of thermodynamics is essentially a generalization of 
Joule's experimental law that whenever heat is generated by mechanical 
forces, the heat evolved is always in a constant ratio to the correspond- 
ing amount of work done by the forces. There are several ways in 
which such a generalization may be framed. That favored by 
Carathéodory is : 

In order to bring a thermodynamical system from a prescribed initial 
state to another prescribed final state adiabatically, it is necessary to do 
a constant amount of mechanical work which is independent of the manner 
in which the change is accomplished and which depends only on the 
prescribed initial and final states of the system. 

It will be observed that in this axiom the idea of quantity of heat is 
not regarded, as it is in the classical theory of Clausius and Kelvin, as 
being an intuitive one; an adiabatic process can be thought of as one 
taking place in an adiabatic enclosure defined by the property that the 
inner state of any thermodynamical system enclosed within it can be 
altered only by displacing a finite area of the wall of the enclosure. 

Mathematically this first law is equivalent to saying that in such an 
adiabatic process the mechanical work done W is a function of the 
thermodynamical variables (x ,x . . x) and (x(°) x, ") . . (°)) 1 2, 9 1 

,P, , ,xrz 

defining the final and initial states of the system and not of the inter- 
mediate values of these variables. Thus we may write 

W -" W(x1,x2, . . . ,x ;x(1()),X())), . . . 9.4())) 

and if we consider a simple experiment in which the substance goes from 
the initial state (x °), . . . ,x; °)) to an intermediate state (4, . . . 

and then to a final state (x1, . . . ,x,), we obtain the functional equation 

W(x1, . .(i) (i) _ (i) (i) . (°) (°) . . . ,aC1t,1 . . . ,xn ) W(xx a 
. . . ,xra x1 , . . 

W(x .. ' (°) X) 1, ,.fin ,xl 

1 C. Carathéodory, Math. Anil., 67, 355 (1909) ; Sitzher. preuss. Akad. Wiss. 
Physik. -math. Kl., 1925, p. 39. General accounts of Carathéodory's theory are 
contained in M. Born, Physik. Z., 22, 218, 249, 282 (1921); A. Landé, "Handbuch 
der Physik" (Springer, Berlin, 1936), vol. 9, chap. IV. 
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for the determination of the function W. This shows that there exists a 
function U(x1, . . . ,xn), called the internal energy of the system, with 
the property that 

W(x . . ,x7,;.4), °)) ( ) (°) c ° >) 
1> ,xn -= U x1, ,xn -U x , ,xn 

(1) 

If we now consider the case in which the state of the system is changed 
from (x1 °), . . . JO) to (x1, . . . ,xn) by applying an amount of work 
W, but not ensuring that the system is adiabatically enclosed, we find 
that the change in internal energy U(x1, . . . ,x,) --- U(x °, . . . ,x (e), 
which can be determined experimentally by measuring the amount of 
work necessary to achieve it when the system is adiabatically enclosed, 
will not equal the mechanical work W. The difference between the 
two quantities is defined to be the quantity of heat Q absorbed by the 
system in the course of the nonadiabatic process. Thus the first law 
of thermodynamics is contained in the equation 

Q = U - U0 -- W (2) 

In Carathéodory's theory the idea of quantity of heat is a derived one 
which has no meaning apart from the first law of thermodynamics. 

A gas, defined by its pressure p and its specific volume y, is the 
simplest kind of thermodynamical system we can consider. It is 
readily shown that if the gas expands by an infinitesimal amount dv, 
the work done by it is -p du, and this is not an exact differential. 
Hence we should denote the work done in an infinitesimal change of 
the system by 0 W. On the other hand it is obvious from the definition 
of U that the change in the internal energy in an infinitesimal change 
of the system is an exact differential, and should be denoted by dU. 
Hence we may write (2) in the infinitesimal form 

AQ = dU -tW (3) 

If we take p and y as the thermodynamical variables and put A W = p dv, then for a gas 

zQ -- Pdp+Vdv (4) 

where P- , a U 
a U 

ap au 

Now from Theorem 2 we have immediately that, whatever the forms 
of the functions P and V, there exist functions ,u(p,v) and yt(p,v) such 
that 

itt A Q = 40 (5) 

showing that, although A is not itself an exact differential, it is always 
possible to find a function ,u of the thermodynamical variables such 
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that ,u 0 Q is an exact differential. This result is a purely mathematical 
consequence of the fact that two thermodynamical variables are 
sufficient for the unique specification of the system. 

It is natural to inquire whether or not such a result is valid when the 
system requires more than two thermodynamical variables for its 
complete specification. If the system is described by the n thermo- 
dynamical variables x1, x2, . . . , xn, then equation (4) is replaced by 
a Pfaffian form of the type 

n 

AQ =_ >: Xi dxi 
i-1 

(6) 

in which the 1(i's are functions of x1, . . . , xn. We know that, in 
general, functions it and 0 with the property y v Q -_ dlq do not exist 
in this general case. If we wish to establish that all thermodynamical 
systems which occur in nature have this property, then we must add a 
new axiom of a physical character. This new physical assumption is 
the second law of thermodynamics. 

In the classical theory the physical basis of the second law of thermo- 
dynamics is the realization that certain changes of state are not physically 
realizable; e.g., we get statements of the kind "heat cannot flow from. 
a cold body to a hotter one without external control." In formulating 
the second law, Carathéodory generalizes such statements and then 
makes use of Theorem 8 to obtain mathematical relationships similar 
to those derived by Kelvin and Clausius from their hypotheses. The 
essential point of Carathéodory's theory is that it formulates the results 
of our experience in a much more general way without loss of any of 
the mathematical results. Carathéodory's axiom is : 

Arbitrarily near to any prescribed initial stale there exist states which 
cannot be reached from the initial state as a result of adiabatic processes. 

If the first law of thermodynamics leads to an equation of the type 
(6) for the system, then the second law in Carathéodory's Form asserts 
that arbitrarily near to the point (x; °), . . . ,x ?) there exist points 
(x1, . . . ,x ) which are not accessible from the initial point along 
paths for which A Q --- O. It follows immediately from Theorem 8 that 
there exist functions u(x1, . . . ,x,z) and 0(x1, . . . ,x ) with the 
property that 

,uAQ = -d0 (7) 

The function occurring in this equation is called the entropy of the 
thermodynamical system. It can be shown that the function ,u is, 
apart from a multiplicative constant, a function only of the empirical 
temperature of the system. It is written as 1 /T, and T is called the 
absolute temperature of the system. It can further be demonstrated 
that the gas -thermometer scale based on the equation of state of a 
perfect gas defines a temperature which is directly proportional to T; 
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by choosing the absolute scale in the appropriate manner we can make 
the two temperatures equal. With this notation we can write equation 
(7) in the familiar form 

AQ =d¢ T (8) 

Theorem 8 shows that such an equation is valid only if we introduce a 
physical assumption in the form of a second law of thermodynamics. 

MISCELLANEOUS PROBLEMS 

1. Find the integral curves of the equations: 

dx dy - dz 
(a) 

y3x - 2x4 2y4 - x3y 2z(x3 

dx - dy dz 
2xz 2yz z2 x2 y2 

y3) 

dx - dy _ dz 
x +y x +y - (x +y +2z) 

2e. Find the integral curves of the equations 

dx dy dz 

cy - bz az -- cx - bx -ay 
and show that they are circles. 

3. Solve the equations 
dx dy dz 

x2 + - a2 xy - az - xZ -I- ay 

and show that the integral curves are conics. 

4. The components of velocity of a moving point (x,y,z) are (2z - 4x, 2z - 2y, 
2x + 2y --- 3z); determine the path in the general case. 

If the initial point is (5,1,1), show that as t -± co the limiting point (1,2,2) is 
approached along a parabola in. the plane x -F 2y + 2z -- 9. 

5. Find the orthogonal trajectories on the cylinder y2 - 2z of the curves in which 
it is cut by the system of planes x + z = c, where c is a parameter. 

6. Show that the orthogonal trajectories on the cone 

yz +zx+xy =0 
of the conics in which it is cut by the system of planes x -y = c are its curves 
of intersection with the one -parameter family of surfaces 

(x + y - 2z)2(x 4- y + z) -- k 

7. Find the curves on the paraboloid 

x2 - y2 = 2az 

orthogonal to the system of generators 
2a 

x -y=Az, x+y - 7 
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S. Find curves on the cylinder x2 + 2y2 = 2a2 orthogonal to one system of 
circular sections. 

9. Show that the curves on the surface x2 + y2 = 2z orthogonal to its curves of 
intersection with the paraboloids yz = cx lie on the cylinders 

x2 + 2z2 + z log (kz) -0 
where k is a parameter. 

10. Verify that the following equations are integrable and determine their 
primitives : 

(a) zy dx - zx dy - y2 dz = 0 

(b) (y2 + z2) dx + xy dy + xz dz = 0 

(c) (y + z) dx -I- dy -I- dz = 0 

(d) (2xyz -}-- z2) dx - F- x2z dy + (xz + 1) dz = 0 

(e) zy2 dx -f . zx2 dy - x2y2 dz 
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Chapter 2 

PARTIAL DIFFERENTIAL EQUATIONS OF THE 
FIRST ORDER 

. Partial Differential Equations 
We now proceed to the study of partial differential equations proper. 

Such equations arise in geometry and physics when the number of 
independent variables in the problem under discussion is two or more. 
When such is the case, any dependent variable is likely to be a function 
of more than one variable, so that it possesses not ordinary derivatives 
with respect to a single variable but partial derivatives with respect to 
several variables. For instance, in the study of thermal effects in a 
solid body the temperature O may vary from point to point in the solid 
as well as from time to time, and, as a consequence, the derivatives 

ao ao ao ao 

ax' ay aZ' at ' 

will, in general, be nonzero. Furthermore in any particular problem it 
may happen that higher derivatives of the types 

a29 ago a3e 

ax2 
, 

ax at ' ax2 at, etc. 

may be of physical significance. 
When the laws of physics are applied to a problem of this kind, we 

sometimes obtain a relation between the derivatives of the kind 
ao 

F (- , . 

ax 
ato 

. ' ax2 
' 

a2o 

' 'axat' o (1) 

Such an equation relating partial derivatives is called a partial differential 
equation. 

Just as in the case of ordinary differential equations, we define the 
order of a partial differential equation to be the order of the derivative 
of highest order occurring in the equation. If, for example, we take O 

to be the dependent variable and x, y, and t to be independent 
variables, then the equation 

ato ao 

ax2 at 
44 

(2) 
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is a second -order equation in two variables, the equation 

(ao) 3 ao _ 
ax at 

is a first-order equation in two variables, while 

x 
a8 ao a0 a+ya +at (4 ) ax ay 

is a. first-order equation in three variables. 
In this chapter we shall consider partial differential equations of the 

first order, i.e., equations of the type 

o, a0 , . -0 
ax 

(3) 

(s) 

In the main we shall suppose that there are two independent variables x 
and y and that the dependent variable is denoted by z. If we write 

az 
P - ax 

az 
q: 

J ry 
(F) 

we see that such an equation can be written in the symbolic form 

f (x,y,z,p,q) O (7) 

2. Origins of First -order Partial Differential Equations 

Before discussing the solution of equations of the type (7) of the last 
section, we shall examine the interesting question of how they arise. 
Suppose that we consider the equation 

x2+12 +(z C)2 = :a2 (t) 

in which the constants a and c are arbitrary. Then equation (1) 
represents the set of all spheres whose centers lie along the z axis. If 
we differentiate this equation with respect to x, we obtain the relation 

x +p(z -c) -0 
while if we differentiate it with respect to y, we find that 

y - l - q(z - c) = =0 

Eliminating the arbitrary constant c from these two equations, we 
obtain the partial differential equation 

.yp ` xq = 0 (2) 

which is of the first order. In some sense, then, the set of all spheres 
with centers on the z axis is characterized by the partial differential 
equation (2). 
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However, other geometrical entities can be described by the same 
equation. For example, the equation 

x2 + y2 = (z --- c)2 tan2 a (3) 

in which both of the constants c and a are arbitrary, represents the set of 
all right circular cones whose axes coincide with the line Oz. If we 
differentiate equation (3) first with respect to x and then with respect to 
y, we find that 

p(z - c) tan2 a == x, q(z -- c) tang oc = y (4) 

and, upon eliminating c and oc from these relations, we see that for these 
cones also the equation (2) is satisfied. 

Now what the spheres and cones have in common is that they are 
surfaces of revolution which have the line Oz as axes of symmetry. 
All surfaces of revolution with this property are characterized by an 
equation of the form 

z .f (x2 + y2) (5) 

where the function f is arbitrary. Now if we write x2 -F y2 : -: u and 
differentiate equation (5) with respect to x and y, respectively, we obtain 
the relations 

p = -= 2xf'(ie), q = 2yf'(u) 
where f'(u) = df f du, from which we obtain equation (2) by eliminating 
the arbitrary function f (u). 

Thus we see that the function z defined by each of the equations (1), 
(3), and (5) is, in some sense, a "solution" of the equation (2). 

We shall now generalize this argument slightly. The relations (1) 
and (3) are both of the type 

F(x,y,z,a,b) - -= O (6) 

where a and b denote arbitrary constants. If we differentiate this 
equation with respect to x, we obtain the relation 

aF aF _ o 
aF a 

q (7) 
y 

The set of equations (6) and (7) constitute three equations involving two 
arbitrary constants a and b, and, in the general case, it will be possible 
to eliminate a and b from these equations to obtain a relation of the 
kind 

f(x,y,z,p,q) = o (8) 

showing that the system of surfaces (1) gives rise to a partial differential 
equation (8) of the first order. 

The obvious generalization of the relation (5) is a relation between 
x, y, and z of the type 

F(u,v) = 0 (9) 
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where u and y are known functions of x, y, and z and F is an arbitrary 
function of u and v. If we differentiate equation (9) with respect to 
x and y, respectively, we obtain the equations 

aF fau au 1 ôF¡ôv ôv 

ôu âx + âzp + ôv 1áx + ôzp o 

aF (au au aF ôv ôv 

au láy áZ q + ev áy + áZ 9 0 

and if we now eliminate aFlâu and aF/ay from these equations, we 
obtain the equation 

(u,v) a(u,v) a(u,v) 
p a(y,Z) q a(z,x) a(x,y) 

(10) 

which is a partial differential equation of the type (8). 
It should be observed, however, that the partial differential equation 

(10) is a linear equation ; i.e., the powers of p and q are both unity, 
whereas equation (8) need not be linear. For example, the equation 

(x - a)2 -I (y - b)2 --f -- z2 = 1 

which represents the set of all spheres of unit radius with center in the 
plane xOy, leads to the first-order nonlinear differential equation 

z2(1 I - J)2 I- q2) :_ 1 

PROBLEMS 

1. Eliminate the constants a and b from the following equations: 

(a) z - (x + a)(y + b) 

(b) 2z - (ax -I- y)2 -I b 

(c) axe -I-- bye + z2 - 1 

2. Eliminate the arbitrary function f from the equations: 
(a) z :: X y - I f (x2 _I_ y2) 

(b) z -x + y -I- f (xy) 

(c) z 
xy 
z 

(d) z = 1(x - y) 

(e) f (x2 -I- .y2 + z2, z2 - 2xy) = 0 

3. Cauchy's Problem for First -order Equations 

Though a complete discussion of existence theorems would be out of 
place in a work of this kind, it is important that, even at this elementary 
stage, the student should realize just what is meant by an existence 
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theorem. The business of an existence theorem is to establish con- 
ditions under which we can assert whether or not a given partial 
differential equation has a solution at all; the further step of proving 
that the solution, when it exists, is unique requires a uniqueness theorem. 
The conditions to be satisfied in the case of a first -order partial differ - 
ential equation are conveniently crystallized in the classic problem of 
Cauchy, which in the case of two independent variables may be stated as 
follows : 

Cauchy's Problem. If 
(a) xo(,u), yo(p), and zo(u) are functions which, together with their 

first derivatives, are continuous in the interval M defined by 
PiClu <ra2; 

(b) And if F(x,y,z,p,q) is a continuous function of x, y, z, p, and q 
in a certain region U of the xyzpq space, then it is required to establish 
the existence of a function 0(x,y) with the following properties : 

(1) 0(x,y) and its partial derivatives with respect to x and y arc 
continuous functions of x and y in a region R of the xy space. 

(2) For all values of x and y lying in R, the point {x,y,4(x,y),b(x,y), 
0v(x, y) } lies in U and 

-Fcx,y, 0(x,y), (k s(x,y),Ov(x)y)1 O 

(3) For all ,u belonging to the interval M, the point {x0(/2),y0(/L)} 
belongs to the region R, and 

9S txo(it),Y0(P)} = 

zo 

Stated geometrically, what we wish to prove is that there exists a 
surface z = «X,)') which passes through the curve I.' whose parametric 
equations are 

_ xo(L), y.- yo(a), z== zo(p) (1) 

and at every point of which the direction (p,q, ---1) of the normal is such 
that 

F(x,y,z,p,q) - : O (2) 

We have given only one form of the problem of Cauchy. The problem 
can in fact be formulated in seven other ways which are equivalent to 
the formulation above. The significant point is that the theorem can- 
not be proved with this degree of generality. To prove the existence 
of a solution of equation (2) passing through a curve with equations (1) 
it is necessary to make some further assumptions about the form of the 
function F and the nature of the curve P. There are, therefore, a whole 
class of existence theorems depending on the nature of these special 

1 For details the reader is referred to D. Bernstein, "Existence Theorems in 
Partial Differential Equations," Annals of Mathematics Studies, no. 23, (Princeton, 
Princeton, N.J., 1950), chap. II. 
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assumptions. We shall not discuss these existence theorems here but 
shall content ourselves with quoting one of them to show the nature of 
such a theorem. For the proof of it the reader should consult pages 
32 to 36 of Bernstein's monograph cited above. The classic theorem 
in this field is that due to Sonia Kowalewski : 

Theorem 1. If g(y) and all its derivatives are continuous for 
ly - yol < 8, ifx0 is a given number and zo = g(yo), go = g'(yo), and if 
f (x,y,z,q) and all its partial derivatives are continuous in a region S 
defined by 

Ix - xo <ô, I - YoI <a, Iq -qoi <6 
then there exists a unique function ç(x,y) such that: 

(a) «x,y) and all its partial derivatives are continuous in a region R 
defined by Ix .-- xol < bl, LY - yo¡ < (52; 

(b) For all (x,y) in R, z---: «x,y) is a solution of the equation 

az az 
ax f x, 

y, z, ay 

(c) For all values of y in the interval ly - yol < 61, «x0,y) = g(y). 
Before paLsing on to the discussion of the solution of first -order 

partial differential equations, we shall say a word about different kinds 
of solutions. We saw in Sec. 2 that relations of the type 

F(x,y,z,a,h) -= 0 (3) 

led to partial differential equations of the first order. Any such 
relation which contains two arbitrary constants a and h and is a solution 
of a partial differential equation of the first order is said to be a complete 
solution or a complete integral of that equation. On the other hand 
any relation of the type 

F(u,v) = 0 (4) 

involving an arbitrary function F connecting two known functions u 
and y of x, y, and z and providing a solution of a first -order partial 
differential equation is called a general solution or a general integral of 
that equation. 

It is obvious that in some sense a general integral provides a much 
broader set of solutions of the partial differential equation in question 
than does a complete integral. We shall see later, however, that this is 
purely illusory in the sense that it is possible to derive a general 
integral of the equation once a complete integral is known (see Sec. 12). 

4. Linear Equations of the First Order 

We have already encountered linear equations of the first order in 
Sec. 2. They are partial differential equations of the form 

Pp -FQq =R (I) 
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where P, Q, and R are given functions of x, y, and z (which do not 
involve p or q), p denotes az/ ax, q denotes az/ay, and we wish to find a 
relation between x, y, and z involving an arbitrary function. The first 
systematic theory of equations of this type was given by Lagrange. 
For that reason equation (1) is frequently referred to as Lagrange's 
equation. Its generalization to n independent variables is obviously 
the equation 

X X2 + + Xn = Y (2) 

where XI, X2, . . . , Xn, and Y are functions of n independent variables 
Xi, x2, .. . , xn and a dependent variable, f'; pi denotes of/ax (i = 1, 
2, . . . , n). It should be observed that in this connection the term 
"linear" means that p and q (or, in the general case, p1, p 2, , pn) 
appear to the first degree only but P, Q, R may be any functions of x, y, 
and z. This is in contrast to the situation in the theory of ordinary 
differential equations, where z must also appear linearly. For example, 
the equation 

az az - - z2 + xax x 

is linear, whereas the equation 

dz 
X = Z2 + x2 

is not. 
The method of solving linear equations of the form (1) is contained in: 
Theorem 2. The general solution of the linear partial differential 

equation 
Pp + Qq =R (l) 

is 
F(u,v) = 0 (3) 

where F is an arbitrary function and u(x,y,z) = c1 and v(x,y,z) = c2 form 
a solution of the equations 

dxdy= dz 
P Q --R- (4) 

We shall prove this theorem in two stages : (a) We shall show that 
all integral surfaces of the equation (1) are generated by the integral 
curves of the equations (4); (b) and then we shall prove that all 
surfaces generated by integral curves of the equations (4) are integral 
surfaces of the equation (1). 

(a) If we are given that z = f (x,y) is an integral surface of the partial 
differential equation (1), then the normal to this surface has direction 
cosines proportional to (p,q, -1), and the differential equation (1) is no 
more than an analytical statement of the fact that this normal is perpen- 
dicular to the direction defined by the direction ratios (P,Q,R). In 
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other words, the direction (P, Q,R) is tangential to the integral surface 
z= f(x,y). 

If, therefore, we start from an arbitrary point M on the surface (cf. 
Fig. 14) and move in such a way that the direction of motion is always 
(P,Q,R), we trace out an integral curve of the equations (4), and since 
P, Q, and R are assumed to be unique, there will be only one such 
curve through M. Further, since (P, Q,R) is always tangential to the 
surface, we never leave the surface. In other words, this integral curve 
of the equations (4) lies completely on the surface. 

We have therefore shown that through each point M of the surface 
there is one and only one integral curve of the equations (4) and that this 
curve lies entirely on the surface. That 
is, the integral surface of the equation (l', Q, R ) 

(i) is generated by the integral curves of 
the equations (4). 

(b) Second, if we are given that the 
surface z : -=: f(x,y) is generated by integral 
curves of the equations (4), then we 
notice that its normal at a general point 
(x,y,z) which is in the direction (az/ax, 
az f ay, - - l) will be perpendicular to the 
direction (P, Q,R) of the curves generat- 
ing the surface. 'Therefore 

az 
=-- 0 

ax ay 

which is just another way of saying that 
z : f(x,y) is an integral surface of equation (1). 

To complete the proof of the theorem we have still to prove that any 
surface generated by the integral curves of the equations (4) has an 
equation of the form (3). Let any curve on the surface which is not a 
particular member of the system 

u(x,y,z) = c1, v(x,y,z) =: c 2 (5) 

Figure 14 

have equations 
fi(x,y,z) -- 0, v(x,y,z) 

: O (6) 

If the curve (5) is a generating curve of the surface, it will intersect the 
curve (6). The condition that it should do so will be obtained by 
eliminating x, y, and z from the four equations (5) and (6). This will 
be a relation of the form 

P(cx, c 2) =-- 0 (7) 

between the constants c1 and c2. The surface is therefore generated by 
curves (5) which obey the condition (7) and will therefore have an 
equation of the form 

F(u,v) = 0 (3) 
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Conversely, any surface of the form (3) is generated by integral curves 
(5) of the equations (4), for it is that surface generated by those curves 
of the system (5) which satisfy the relation (7). 

This completes the proof of the. theorem. 
We have used a geometrical method of proof to establish this theorem 

because it seems to show most clearly the relation between the two 
equations (1) and (4). The theorem can, however, be proved by purely 
analytical methods as we shall now show: 

Alternative Proof. If the equations (5) satisfy the equations (4), then 
the equations 

and 

ux dx + u dy -}- uz dz = 0 

dx, dy di 
P Q R 

must be compatible; i.e., we must have 

Pux+ Qui, +Ruz =O 
Similarly we must have 

Pvx+ Qv, +Rvz =0 
Solving these equations for P, Q, and R, we have 

P Q R 
(u,v)/ d(y,z) a(u,v)la(Z,x> a(u,v )la(xy) 

Now we showed in Sec. 2 that the relation 

F(u,v) = 0 

leads to the partial differential equation 

a(u,v) a(u,v) a(u,v) 

p a(y,z) + q a(z,x) a(x >y) 

Substituting from equations (8) into equation (9), we see that (3) is a 
solution of the equation (1) if u and y are given by equations (5). 

We shall illustrate the method by considering a particular case: 

(8) 

(9) 

Example 1. Find the general solution of f the differential equation 

x2 
az 

- y a 2 

az 
= (x + y)z Tx y 

The integral surfaces of this equation are generated by the integral curves of the 
equations 

dx dy dy dz 

x2 y2 
_ 

(x -}- y)z 

The first equation of this set has obviously the integral 
x-1 _y l =c1 

(10) 
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and it follows immediately from the equations that 

dx -- dy dz 

which has the integral 
x2 - y2 (x -I- y)z 

x - C2 
z 

(12) 

Combining the solutions (11) and (12), we see that the integral curves of the equations 
(10) are given by equation (12) and the equation 

xy - C3 
z 

and that the curves given by these equations generate the surface 

xy x 
z 

(13) 

= o (14) 

where the function F is arbitrary. 
It should be observed that this surface can be expressed by equations such as 

(x y) z = xy f 

or z == xyg- 
x -y 
xy 

(in which f and g denote arbitrary functions), which are apparently different from 
equation (14). 

The theory we have developed for the case of two independent 
variables can, of course, be readily extended to the case of n independent 
variables, though in this case it is simpler to make use of an analytical 
method of proof than one which depends on the appreciation of 
geometrical ideas. The general theorem is : 

Theorem 3. If . . u (x x x z) = c (i = 1 2, n) are 
2 1 2> > n i > > 

. . , 

independent solutions of the equations 

dx1 dx 2 

P1 P2 

din dz 

n R 

then the relation(u1,u2, . . . ,u) = 0, in which the function is 
arbitrary, is a general solution of the linear partial derential equation 

p az az az = R 
1 ax 1 2 ax n 

Txn 

To prove this theorem we first of all note that if the solutions of the 
equations 

are 

dx, dx2 

-P1 P2 

uáCx1,x2, 

dxn dz 

Pn R 
(15) 

. . ,xn;z)=ci i= 1,2, . . . ,n (16) 
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then- the n equations 

au' aui 
i 

dx' -}- azdz 
=0 =1,2, . . . ,n (17) 

axi 

must be compatible with the equations (15). In other words, we must 
have 

ryz 

au, au, 
Pi 

ax + R 
az = o (18) 

j=1 3 

Solving the set of n equations (18) for Pi, we find that 
Pi R 

a(u1,u2, . . . ,un) 

a(.x1, ,xi-1,Z,xi-f-1, . . ,xn) 

where a(u1,u2, . ,u42)1 a(x1,x2, 

a(u1,u2, . . . ,un) 

a(x1,x2, 
. . ,xn) 

i= 1,2,...,n (19) 

. . . ,xn) denotes the Jacobian 
au1 aut au1 

ax1 ax2 axn 

aut aut aut 
ax1 ax 2 axn 

. . 

aun aun aun 

ax1 ax 2 axn 

Consider now the relation 
J)(u1,u2, . . . ,un) = 0 (20) 

Differentiating it with respect to xi, we obtain the equation 

(a1:t au; au; az 
au , ax . + az ax ii 

2 2 

and there are n such equations, one for each value of i. Eliminating 
the n quantities at / au1, . . . , a / au, from these equations, we obtain 
the relation 

n. 
a(u1, . ,un) ' az a(u1, ,u;_1,u,,u5-1, gun) - (21) ax .. x + ax.ax._ zx x ( 1> > n) j=1 (x1, 

> 1> > f1 n) 

Substituting from equations (19) into the equation (21), we see that the 
function z defined by the relation (20) is a solution of the equation 

az az az 
P1 

ax + P2 
ax + .--E-- Pn ax 1 2 n = 

as we desired to show. 

R (22) 
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Example 2. If u is a function of x, y, and z which satisfies the partial differential 
equation 

-au au =o 
ax ay az 

show that u contains x, y, and z only in combinations x + y + z and x2 + y2 + z2. 

In this case the auxiliary equations are 

dx dy dz du 
y -z z--x x -y 0 

and they are equivalent to the three relations 
du = 0 

dx -I- dy + dz = 0 

xdx- 1- ydy +zdz =0 
which show that the integrals are 

u =c1i x + y + z =c2, 
Hence the general solution is of the form 

u = f (x + y + z, x2 
+ 

y2 -I- z2) 

as we were required to show. 
It should be observed that there is a simple method of verifying a result of this 

kind once the answer is known. We transform the independent variables from x, y, 
and z to , n, and , where 4 = x + y -I- z, n = x2 + y2 + z2, and is any other 
combination of x, y, and z, say y + z. Then we have 

x2 + y2 + z2 = C3 

au aii ax 
an - ax an 

and it is readily shown that 

ax- ay_x - z az y -x 
a a y -z a y -z 

)au _au 
x 
)áu x- y 

)áu 
y á z ax + 

ay 
+ 

az 

If, therefore, the function u satisfies the given partial differential equation, we have 
au/ n = o, showing that u = 1.($,T)), which is precisely what we found before. 

au ay au az 

+ áy g -{ âz á (23) 

so that 

PROBLEMS 

Find the general integrals of the linear partial differential equations: 
1. z(xp - yq) = y2 - x2 

2. px(z - 2y2) _ (z - qy)(z - y2 - 2x3) 

3. px(x + y) = qy(x + y) - (x - y)(2x + 2y + z) 
4. yep - xyq = x(z - 2y) 
5. (y + zx)p - (x + yz)q = x2 y2 

6. x(x2 + 3y2)p - y(3x2 + y2)q = 2z(y2 - x2) 
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5. Integral Surfaces Passing through a Given Curve 

In the last section we considered a method of finding the general 
solution of a linear partial differential equation. We shall now 
indicate how such a general solution may be used to determine the 
integral surface which passes through a given curve. We shall suppose 
that we have found two solutions 

u(x,y,z) = c1, v(x, y, z) = c 2 (1) 

of the auxiliary equations (4) of Sec. 4. Then, as we saw in that section, 
any solution of the corresponding linear equation is of the form 

arising from a relation 
F(u,v) 0 (2) 

(3) F(c1,c2) 0 

between the,constants c1 and c2. The problem we have to consider is 
that of determining the function F in special circumstances. 

If we wish to find the integral surface which passes through the 
curve c whose parametric equations are 

x = x(t), y =y(t), z =z(t) 
where t is a parameter, then the particular solution (1) must be such that 

u {x(t),y(t),z(t) } = cl, v {x(t), y(t),z(t) } = c2 

We therefore have two equations from which we may eliminate the 
single variable t to obtain a relation of the type (3). The solution we are 
seeking is then given by equation (2). 

Example 3. Find the integral surface of the linear partial differential equation 

x(y2 z)p - y(x2 -I- z)q = (x2 - y2)z 

which contains the straight line x -I- y = 0, z = 1. 

The auxiliary equations 

have integrals 

dx dy dz 
x( y2 -I- z) = -y(x2 -I- z) (x2 - y2)z 

xyz = c1, x2 -I- y2 - 2z = c2 (4) 

For the curve in question we have the freedom equations 

x =t, y = -t, z-1 
Substituting these values in the pair of equations (4), we have the pair 

2 - t 2t2 -2 = c2 

and eliminating t from them, we find the relation 

2c1-- I- c2 +2 =0 
showing that the desired integral surface is 

x2 -! y2 +2xyz -2z+2 =0 
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PROBLEMS 

1. Find the equation of the integral surface of the differential equation 
2y(z - 3)p + (2x - z)q = y(2x - 3) 

which passes through the circle z = 0, x2 + y2 = 2x. 

2. Find the general integral of the partial differential equation 
(2xy - 1)p + (z - 2x2)q = 2(x - yz) 

and also the particular integral which passes through the line x = 1, y = O. 

3. Find the integral surface of the equation 

(x - y) v2p + (y - x)x2q = (x2 + y2)2. 

through the curve xz = a3, y- O. 

4. Find the general solution of the equation 
2x(y + z2)p + y(2y + z2)q _- z3 

and deduce that 
yz(z2 + - 2y) ^ x2 

is a solution. 

5. Find the general integral of the equation 
(x --y)p -I- -(y -x - z)q = z 

and the particular solution through the circle z = 1, x2 -I- y2 - 1. 

6. Find the general solution of the differential equation 
x(z + 2a)p -I- (xz -F 2yz + 2ay)q - z(z + a) 

Find also the integral surfaces which pass through the curves: 

(a) y ==0, z2 =4ax 
(b) y = 0, z3 -I- x(z + a)2 0 

6. Surfaces Orthogonal to a Given System of Surfaces 

An interesting application of the theory of linear partial differential 
equations of the first order is to the determination of the systems of 
surfaces orthogonal to a given system of surfaces. Suppose we are 
given a one-parameter family of surfaces characterized by the equation 

f(x,y,z) _ c cl> 

and that we wish to find a system of surfaces which cut each of these 
given surfaces at right angles (cf. Fig. 15). 

The normal at the point (x,y,z) to the surface of the system (1) which 
passes through that point is the direction given by the direction ratios 

(P,Q,R) _ ká 
' ÿ' aZl 

If the surface with equation 
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cuts each surface of the given system orthogonally, then its normal at 
the point (x,y,z) which is in the direction 

az az 
' ' 

1 

ax ay 

is perpendicular to the direction (P, Q,.R) of the normal to the surface of 
the set (1) at that point. We there - 

z =56 t x, y) fore have the linear partial differen- 
tial equation 

az ôz 

+Q 
(4) 

cl x y 

Figure 15 

=C2 

for the determination of the surfaces 
(3). Substituting from equations 
(2), we see that this equation is 
equivalent to 

of az áf az of 
ax ax + ay ay aZ 

=C3 Conversely, any solution of the 
linear partial differential equation 
(4) is orthogonal to every surface 
of the system characterized by equa- 
tion (1), for (4) simply states that the 
normal to any solution of (4) is per- 
pendicular to the normal to that 
member of the system (1) which 
passes through the same point. 

The linear equation (4) is therefore the general partial differential 
equation determining the surfaces orthogonal to members of the system 
(1); i.e., the surfaces orthogonal to the system (1) are the surfaces 
generated by the integral curves of the equations 

dx - dy dz 

s a.f1 .v s 
(5) 

a fI x 
Example 4. Find the surface which intersects the surfaces of the system 

z(x + y) = c(3z + 1) 

orthogonally and which passes through the circle x2 + y2 = 1, z = 1. 

In this instance 
z(x + y) 

f 3z + 1 

so that the equations (5) take the form 
dx dy dz 

z(3z + 1) z(3z -I- 1) (x + y) 
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which have solutions 
x -y = ci, x2 + y2 - 2z3 - Z2 -= C2 

Thus any surface which is orthogonal to the given surfaces has equation of the form 

x2 + y2 - 223 - Z2 = f (x - y) 

For the particular surface passing through the circle x2 + y2 = 1, z = 1 we must 
take f to be the constant -2. The required surface is therefore 

x2 + y2 = 223 + 22 - 2 

PROBLEMS 

1. Find the surface which is orthogonal to the one -parameter system 

z = cxy(x2 + - y2) 

and which passes through the hyperbola x2 - y2 = a2, z = O. 

2. Find the equation of the system of surfaces which cut orthogonally the cones 
of the system x2 + y2 + z2 = cxy. 

3. Find the general equation of surfaces orthogonal to the family given by 

(a) x(x2 + y2 + z2) = ciy2 

showing that one such orthogonal set consists of the family of spheres given by 

(b) x2 + y2 + z2 = c2z 

If a family exists, orthogonal to both (a) and (b), show that it must satisfy 

2x(x2 - z2) dx + y(3x2 + y2 - z2) dy + 2z(2x2 + y2) dz = 0 

Show that such a family in fact exists, and find its equation. 

7. Nonlinear Partial Differential Equations of the First Order 

We turn now to the more difficult problem of finding the solutions 
of the partial differential equation 

F(x,y,z,p,q) = 0 (1) 

in which the function F is not necessarily linear in p and q. 
We saw in Sec. 2 that the partial differential equation of the two - 

parameter system 
f(x,y,z,a,b) = 0 (2) 

was of this form. It will be shown a little later (Sec. 10) that the 
converse is also true; i.e., that any partial differential equation of the 
type (1) has solutions of the type (2). Any envelope of the system (2) 
touches at each of its points a member of the system.1 It possesses 
therefore the same set of values (x,y,z,p,q) as the particular surface, 
so that it must also be a solution of the differential equation. In this 

1 The properties of one- and two -parameter systems of surfaces are outlined 
briefly in the Appendix. 
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way we are led to three classes of integrals of a partial differential 
equation of the type (1): 

(a) Two -parameter systems of surfaces 

f (x,y,z,a,b) = 0 

Such an integral is called a complete integral. 
(b) If we take any one -parameter subsystem 

f {x,y,z,a,0(a)} = O 

of the system (2), and form its envelope, we obtain a solution of equation 
(1). When the function iga) which defines this subsystem is arbitrary, 
the solution obtained is called the general integral of (1) corresponding 
to the complete integral (2). When a definite function 0(a) is used, we 
obtain a particular case of the general integral. 

(c) If the envelope of the two -parameter system (2) exists, it is also a 
solution of the equation (1); it is called the singular integral of the 
equation. 

We can illustrate these three kinds of solution with reference to the 
partial differential equation 

z2` 1 + p2 + q2) 

We showed in Sec. 2 that 

1 (3) 

(x - a)2 + (y - b)2 + z2 = 1 (4) 

was a solution of this equation with arbitrary a and b. Since it contains 
two arbitrary constants, the solution (4) is thus a complete integral of 
the equation (3). 

Putting b = a in equation (4), we obtain the one -parameter subsystem 
(X' - 02 + (y (02 + z2 1 

whose envelope is obtained by eliminating a between this equation and 

x+y -2a -0 
so that it has equation 

(x - y)2 + 2z2 --r---- 2 (s) 

Differentiating both sides of this equation with respect to x and y, 
respectively, we obtain the relations 

ZZp =y - x, ZZq =x -y 
from which it follows immediately that (5) is an integral surface of the 
equation (3). It is a solution of type (b); i.e., it is a general integral 
of the equation (3). 

The envelope of the two-parameter system (3) is obtained by elimi- 
nating a and b from equation (4) and the two equations 

x -a =0 y -b =0 
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i.e., the envelope consists of the pair of planes z = ± I. It is readily 
verified that these planes are integral surfaces of the equation (3) ; since 
they are of type (c) they constitute the singular integral of the equation. 

It should be noted that, theoretically, it is always possible to obtain 
different complete integrals which are not equivalent to each other, i.e., 
which cannot be obtained from one another merely by a change in the 
choice of arbitrary constants. When, however, one complete integral 
has been obtained, every other solution, including every other complete 
integral, appears among the solutions of type (b) and (c) corresponding 
to the complete integral we have found. 

To illustrate both these points we note that 
(y mx -- C)2 m2)( z2) (6) 

is a complete integral of equation (3), since it contains two arbitrary 
constants in and c, and it cannot be derived from the complete integral 
(4) by a simple change in the values of a and b. It can be readily shown, 
however, that the solution (6) is the envelope of the one -parameter 
subsystem of (4) obtained by taking b = ma + c. 

PROBLEMS 

1. Verify that z = ax -I- by -F a + b - ab is a complete integral of the partial 
differential equation 

z:-- -px.I gy_p+q - pq 
where a and b are arbitrary constants. Show that the envelope of all planes 
corresponding to complete integrals provides a singular solution of the 
differential equation, and determine a general solution by finding the envelope 
of those planes that pass through the origin. 

2. Verify that the equations 

(a) 

(b) 

z V2x -I- a--I-- V2y + b 

z2 + ,r.c _ 2(1 + A_-1)(x + Ay) 

are both complete integrals of the partial differential equation 
1 1 z= - - + 
P q 

Show, further, that the complete integral (b) is the envelope of the one - 
parameter subsystem obtained by taking 

a 
b --- 

in the solution (a). 

8. Cauchy's Method of Characteristics 

We shall now consider methods of solving the nonlinear partial 
differential equation 

F 
aZ aZ 

x' Y' Z' 
o (t) 
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In this section we shall consider a method, due to Cauchy, which is 
based largely on geometrical ideas. 

The plane passing through the point P(xo,yo,zo) with its normal 
parallel to the direction n defined by the direction ratios (p0,q0, --1) is 
uniquely specified by the set of numbers D(x0,y0,z0,p0,g0) Conversely 
any such set of five real numbers defines a plane in three -dimensional 
space. For this reason a set of five numbers D(x,y,z,p,q) is called a 
plane element of the space. In particular a plane element (x0,y0,z0,p0,q0) 
whose components satisfy an equation 

F(x,y,z,p,q) = O (2) 

is called an integral element of the equation (2) at the point (x0,y0,z0). 

Elementary cone 
It is theoretically possible to solve 

ry an equation of the type (2) to 
obtain an expression 

q = G(x,y,z,p) (3) 
from which to calculate q when x, 
y, z, and p are known. Keeping 
x0, yo, and zo fixed and varying 
p, we obtain a set of plane 
elements {x0,y0,z0,p,G(x0,y0,z0,p)}, 

Plane element which depend on the single para- 
meter p. As p varies, we obtain 
a set of plane elements all of which 

pass through the point P and which therefore envelop a cone with 
vertex P; the cone so generated is called the elementary cone of 
equation (2) at the point P (cf. Fig. 16). 

Consider now a surface S whose equation is 

z = g(x,y) (4) 
If the function g(x,y) and its first partial derivatives ax, y), ax, y) are 
continuous in a certain region R of the xy plane, then the tangent plane 
at each point of S determines a plane element of the type 

(x0,y0,g(x0,y0) ,g(x0,y0),g(x0,y0) } (5) 
which we shall call the tangent element of the surface S at the point 
{x0,y0,g(x0,y0) }. 

It is obvious on geometrical grounds that : 
Theorem 4. A necessary and sufficient condition that a surface be an 

integral surface of a partial differential equation is that at each point its 
tangent element should touch the elementary cone of the equation. 

A. curve C with parametric equations 
x -== x(t) , y = y(t) , z = z(t) (6) 

lies on the surface (4) if 

Figure 16 

z(t) ---=-7 g{x(t),y(t)} 
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for all values of t in the appropriate interval I. If P0 is a point on this 
curve determined by the parameters to, then the direction ratios of the 
tangent line POPI (cf. Fig. 17) are {x'(t0),y'(t0),z'(t0)}, where x'(to) 
denotes the value of dx /dt when. t = to, etc. This direction will be 
perpendicular to the direction (pogo, -1) if 

Z (fio) = PoxAto) + goYo'(to) 

For this reason we say that any set 

{x(t),y(t),z(t),p(t),q(t) } (7) 

of five real functions satisfying the condition 

z'(t) = p(t)x'(t) + q(t)y'(t) (8) 

defines a strip at the point (x,y,z) of the curve C. If such a strip is 
also an integral element of equa- 
tion (2), we say that it is an integral 
strip of equation (2 ); i.e., the set 
of functions (7) is an integral strip 
of equation (2) provided they 
satisfy condition (8) and the further 
condition 

F {x(t),.y(t),z(t),p(t),q(t)} = 0 (9) 

for all t in I. 
If at each point the curve (6) 

touches a generator of the elemen- 
tary cone, we say that the corresponding strip is a characteristic strip. 
We shall now derive the equations determining a characteristic strip. 
The point (x -I- dx, y + dy, z + dz) lies in the tangent plane to the 
elementary cone at P if 

dz= pdx +qdy (10) 

where p, q satisfy the relation (2). Differentiating (10) with respect to 
p, we obtain 

(P 4 

Figure 17 

0 = dx -f- dip dy (11) 

where, from (2), 
ôF ôF dq + =o (12> 

Solving the equations (10), (11), and (12) for the ratios of dy, dz to dx, 
we obtain 

dx dy dz 
F, F,- F "I- q Q 

so that along a characteristic strip x'(t), y'(t), z'(t) must be proportional 

(13) 
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to Fp, Fa, pF, + qFq, respectively. If we choose the parameter t in 
such a way that 

x'(t) - F,, y' (t) -F, (14) 

then 

z'(t) =PFD + qFQ (15) 

Along a characteristic strip p is a function of t so that 

P (t) = 
ax x 

(t) + a Y (t) 

ap aF ap aF 
ax ap + ay áq 

ap aF aq aF 
ax ôp + ax âq 

since âp0y - aq/ax. Differentiating equation (2) with respect to x, 
we find that 

aF aF aF ap aF aq 
ax + az p + ap ax + ax 

so that on a characteristic strip 

p' (t) = -(Fs -I -- pF,) 

and it can be shown similarly that 

q'(t) - -(Fr + qFz) 

(16) 

(17) 

Collecting equations (14) to (17) together, we see that we have the 
following system of five ordinary differential equations for the deter- 
mination of the characteristic strip 

x'(t) = FF, y'(t) = Fq, z'(t) = pF, + qFa 
(18) 

p'(t) - F pF z, q'(t) = Fi, qFz 

These equations are known as the characteristic equations of the differ- 
ential equation (2). These equations are of the same type as those 
considered in Sec. 2 of Chap. 1, so that it follows, from a simple 
extension of Theorem 1 of that section, that, if the functions which 
appear in equations (18) satisfy a Lipschitz condition, there is a unique 
solution of the equations for each prescribed set of initial values of the 
variables. Therefore the characteristic strip is determined uniquely by 
any initial element (x0,y0,z0,p0,q0) and any initial value to of t. 

The main theorem about characteristic strips is: 
Theorem 5. Along every characteristic strip of the equation 

F(x,y,z,p,q) = o the function F(x,y,z,p,q) is a constant. 
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The proof is .a matter simply of calculation. Along a characteristic 
strip we have 

dFxz t t (t ),y(t), (t ),p()t ,q() } 

=Fxx' 

= FxF + ;i; + Fz(pF, + qFv) - FF(Fx + pFz) - FQ(F, + qFz) 

=0 
so that F(x,y,z,p,q) = k, a constant along the strip. 

As a corollary we have immediately: 
Theorem 6. If a characteristic strip contains at least one integral 

element of F(x,y,z,p,q) = O it is an integral strip of the equation 
F(x,y,z,zx,z.) = O. 

We are now in a position to solve Cauchy's problem. Suppose we 
wish to find the solution of the partial differential equation (1) which 
passes through a curve F whose freedom equations are 

x = 0(v), y = OW, 

then in the solution 

z - x(v) 

x = x(po,go,xo,yo,zo,to,t), etc. 

(19) 

(20) 

of the characteristic equations (18) we may take 

xo 0(v), yo 6(v), zo = x(v) 

as the initial values of x, y, z. The corresponding initial values of 
po' qo are dëtermined by the relations 

xi(v) = po0'(v) + g00'(v) 

F{0(v),0(v),x(v),p0,g0) = O 

If we substitute these values of xo, yo, zo, Po, qo and the appropriate 
value of to in equation (20), we find that x, y, z can be expressed in 
terms of the two parameters t, y, to give 

x = X I(v, t), y = Y1(v, t), z = Z1(v, t) (21) 

Eliminating y, t from these three equations, we get a relation 

î(x,y,z) =o 
which is the equation of the integral surface of equation (1) through 
the curve F. We shall illustrate this procedure by an example. 

Example 5. Find the solution of the equation 

z = 2(p2 + q2) + (p - x)(q - y) 
which passes through the x -axis. 
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It is readily shown that the initial values are 

x0 = V, yo =0, Z0 =0, pa =0, qo - 2v, to = 0 

The characteristic equations of this partial differential equation are 
dx dy 

+q -x, dz_ )+ dt dt dt p y q p q 

dp 

dt p q .Y 

dq 
dt 

from which it fóllows immediately that 

x = v + p, y = q --- 2v 

Also it is readily shown that 
d d +q -x, +q - +q _y dr p dt 

giving 
p + q -x = vet, p +q -y =2vet 

x) 

Hence we have 

x = v(2et - 1), y = v(et - 1), p '= 2v(et 1), q = v(et + 1) (22) 

Substituting in the third of the characteristic equations, we have 

dz = 5v2e2t 3y2et 
dt 

with solution 
z = .sv2(e2t 1) 3 v2,(et 1) (23) 

Now from the first pair of equations (22) we have 

et = y -x 
2y --x 

so that substituting in (23), we obtain the solution 

z = jy(4x -- 3y) 

v = x -2y 

PROBLEMS 

1. Find the characteristics of the equation pq = z, and determine the integral 
surface which passes through the parabola x = 0, y2 = z. 

2. Write down, and integrate completely, the equations for the characteristics of 

(1 + q2)z = px 
expressing x, y, z, and p in terms of 0, where q = tan 9s, and determine the 
integral surface which passes through the parabola x2 = 2z, y = O. 

3. Determine the characteristics of the equation z = p2 - q2, and find the 
integral surface which passes through the parabola 4z . + x2 = 0, y = O. 

4. Integrate the equations for the characteristics of the equation 

p2 + q2 = 4z 

expressing x, y, z, and p in terms of q, and then find the solutions of this 
equation which reduce to z = x2 + 1 when y = O. 
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9. Compatible Systems of First -order Equations 

We shall next consider the condition to be satisfied in order that every 
solution of the first -order partial differential equation 

f(x,y,z,p,q) = 0 (1) 

is also a solution of the equation 

g(x,y, z,p, q) = 0 (2) 

When such a situation arises, the equations are said to be compatible. 
If 

J a(fg) 0 o 
(3) 

we can solve equations (1) and (2) to obtain the explicit expressions 

p := 0(x,y,z), q = v(x,y,z) (4) 

forp and q. The condition that the pair of equations (1) and (2) should 
be compatible reduces then to the condition that the system of equations 
(4) should be completely integrable, i.e., that the equation 

0 dx + v dy -dz = 0 

should be integrable. From Theorem 5 of Chap. 1 we see that the 
condition that this equation is integrable is 

sg -Vz) -I- V(Ii6z) - (Vx - Ov) = 0 

which is equivalent to 
vx + Ovz = Ov + 1pOz (5) 

Substituting from equations (4) into equation (1) and differentiating 
with regard to x and z, respectively, we obtain the equations 

,lx +fp (kx+Ja1Px -O 
,l z + LOz + fi,vz = O 

from which it is readily deduced that 

f x + Of. + f(çh + ck0z) + fÁv' + çiz) = O 

Similarly we may deduce from equation (2) that 

gx + cgz + gp(Ox + 00z) + ga(lPx + OVz) 

Solving these equations, we find that 

_1 a(f g) af ,g 
tpx +OVz I a(x + 

a(Z ,p) 

where J is defined as equation (3). 

=0 

(6) 
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If we had differentiated the given pair of equations with respect to 
y and z, we should have obtained 

Oy -I- /PC - x a(fg) a(.f,g} j a(y,q) r a(z,q)) 

so that, substituting from equations (6) and (7) into equation (5) and 
replacing 0, p by p, q, respectively, we see that the condition that the 
two conditions should be compatible is that 

[f,g] =Q 

a(fg) -L a(fg) a(f,g) a(f ,g) [fg- 
a(x ,p) ' a(z ,p) a (y,q) a(z ,q) 

Example 6. Show that the equations 

xp = yq, z(xp ± yq) = 2xy 

are compatible and solve them. 
In this example we may take f = xp -- yq, g = z(xp + yq) - 2xy so that 

a(fg) a(, 
) - - x2 , a(f ;g) - - 2x a(f fg) _ x a(x, p) a(z,p) p a(y,q) y 

a(z) 

yp 

from which it follows that 

where 

[f, ] = xp(yq - xp) = 0 

since xp = yp. The equations are therefore compatible. 
It is readily shown that p = yl z, q = x /z, so that we have to solve 

zdz= ydx+xdy 
which has solution 

z2 =c1 +2xy 
where ex is a constant. 

PROBLEMS 

(8) 

(9) 

1. Show that the equations 

xp - yq = x, x2p + q = xz 

are compatible and find their solution. 

2. Show that the equation z = px + qy is compatible with any equation 
f (x,y,z,p,q) -0 that is homogeneous in x, y, and z. 

Solve completely the simultaneous equations 

z = px + qy, 2xy(p2 + o = z(yp + xq) 

3. Show that the equations f(x,y,p,q) = 0, g(x,y,p,q) = 0 are compatible if 

a(f,g) 
-r- 

a(f,g) 0 
a(x,p) a(y,q) 

Verify that the equations p = P(x,y), q = Q(x,y) are compatible if 

ap aQ 

ay - ax 
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4. If u1 = au/ ax, u2 = au/ ay, u3 - au/ az, show that the equations 

f (x,y,z,u1,u2,u3,) = O, g (x,y,z,u1,u2,u3) = O 

are compatible if 
a( f,g) a( fg) a( f,g) 
a(x, u1) a( y, u2) a(z, u3) 

O 

W. Charpit's Method 

A method of solving the partial differential equation 

f(x,y,z,p,q) = 0 CO 

due to Charpit, is based on the considerations of the last section. The 
fundamental idea in Charpit's method is the introduction of a second 
partial differential equation of the first order 

g(x,y,z,p,q,a) = O (2) 

which contains an arbitrary constant a and which is such that: 
(a) Equations (1) and (2) can be solved to give 

p = p(x,y,z,a), q = q(x,y,z,a) 
(b) The equation 

dz = p(x,y,z,a) dx -f- q(x,y,z,a) dy (3) 
is integrable. 

When such a function g has been found, the solution of equation (3) 

F(x,y,z,a,b) = O (4) 

containing two arbitrary constants a, b will be a solution of equation (1). 
From the considerations of Sec. 7 it will be seen that equation (4) is a 
complete integral of equation (1). 

The main problem then is the determination of the second equation 
(2), but this has already been solved in the last section, since we need 
only seek an equation g = 0 compatible with the given equationf = O. 

The conditions for this are symbolized in equations (3) and (8) of the 
last section. Expanding the latter equation, we see that it is equivalent 
to the linear partial differential equation 

-f; T)c + i; T:y + (Pi; + q i;') .-.z- 

ag ag 
(f. + pfz) - (f, + q fz) -,---- 0 (5) 

ap 

for the determination of g. Our problem then is to find a solution of 
this equation, as simple as possible, involving an arbitrary constant a, 
and this we do by finding an integral of the subsidiary equations 

dx dy - dz dp dg 

.Îp .Îa PL + 9.fß -(.Î. -1- pf) -(Îv + 9.ÎZ) 
(6) 
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in accordance with Theorem 3. These equations, which are known as 
Chárpit's equations, are equivalent to the characteristic equations (18) 
of Sec. 8. 

Once an integral g(x,y,z,p,q,a) of this kind has been found, the problem 
reduces to solving for p, q, and then integrating equation (3) by the 
methods of Sec. 6 of Chap. 1. It should be noted that not all of 
Charpit's equations (6) need be used, but that p or q must occur in the 
solution obtained. 

Example 7. Find a complete integral of f the equation 

p2x+g2y =z 
The auxiliary equations are 

dx dy dz dp dq 
2px 2 q y 2(p2x + q2 y) p2 q2 

from which it follows that 
p2 dx + 2px dp -g2dy + 2qy dq 

p2x 
q2), 

and hence that 
p2x aq2y 

where a is a constant. Solving equations (7) and (8) for p, q, we have 

az z 1 

p= (1 +a)x ' q- (1 +a)y 
so that equation (3) becomes in this case 

1 +a dZ= á dx+ dy z x y 
with solution 

{(1 + a)z }+ = (ax)¡ + y1 + b 

which is therefore a complete integral of (7). 

PROBLEMS 
Find the complete integrals of the equations: 

1. (p2 + q2)y = qz 

2. p = (z + qy)2 
3. z2 =pgxy 
4. xp + 3yq = 2(z - x2q2) 

5. px5 - 4g3x2 + 6x2z -2 = 0 

6. 2(y + zq) = q(xp + yq) 

7. 2(z + xp + yq) = yp2 

(7) 

(8) 

I I. Special Types of First -order Equations 

In this section we shall consider some special types of first -order 
partial differential equations whose solutions may be obtained easily 
by Charpit's method. 
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(a) Equations Involving Only p and q. For equations of the type 

f (p ,q) -0 (1) 

Charpit's equations reduce to 

dx_dy= dz dp dq 

. Î P fq P.Î9 + g.Î 0 d 
An obvious solution of these equations is 

P = a (2) 

the corresponding value of q being obtained from (1) in the form 

f(a,q) = o (3) 

so that q = Q(a) 

a constant. The solution of the equation is then 

z = ax + Q(a)y + b (4) 

where b is a constant. 
We have chosen the equation dp = 0 to provide our second equation. 

In some problems the amount of computation involved is considerably 
reduced if we take instead dq = 0, leading to q - = a. 

Example 8. Find a complete integral of the equation pq - : I. 
In this case Q(a) _- I /a, so that we see, from equation (4), that a complete 

integral is 

which is equivalent to 

z=ax-+-y+b 
a 

a2x+y - az = c 

where a, c are arbitrary constants. 

(b) Equations Not Involving the Independent Variables. If the partial 
differential equation is of the type 

.f (z,p,q) = 0 (5) 

Charpit's equations take the forms 

dx dy _ dz dp dq 

.f; f, pf + of pi; fz 

the last of which leads to the relation 

p = aq (6) 

Solving (5) and (6), we obtain expressions for p, q from which a complete 
integral follows immediately. 
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Example 9. Find a complete integral of the equation p2z2 + q2 = 1. 

Pitting p = aq, we find that 

q2(1 + a2z2) = 1, q = (1 + a2z2)- ,, p = a(1 + a2z2)-1 

Hence (1 + a2z2)} dz = a dx + dy 

which leads to the complete integral 

az(1 + a2z) Q - log [ az + (1 -1- a2z2) 11-1 = 2a(ax -i- y -I- b) 

(c) Separable Equations. We say that a first -order partial differential 
is separable if it can be written in the form 

f(x,p) = g(y,q) (7) 

For such an equation Charpit's equations become 

dx dy dz dp dg 

J J) ` g, 1.1 iga --f. gY 

so that we have an ordinary differential equation 

dp ,fx= 0 
dx fn 

in x and p which may be solved to give p as a function of x and an 
arbitrary constant a. Writing this equation in the form"; dp + f dx 

0, we see that its solution is f(x,p) a. Hence we determine p, q 
from the relations 

f (x,p) = a, g(y,q) = a (g) 

and then proceed as in the general theory. 

Example 10. Find a complete integral of the equation p2y(1 -S- x2) _ qx2. 
We first observe that we can write the equation in the form 

p2(1 
-f x2) q 

X2 y 

so that p 
ax 

V1 -á 2 
) q=-cry 

and hence a complete integral is 

z '= a V 1+ x2 _i- 2 a2y2 + h 

where a and h are constants. 

(d) Clairaut Equations. A first- order partial differential equation is 
said to be of Clairaut type if it can be written in the form 

z = px + qy + f(p,q) (9) 

The corresponding Charpit equations are 

dx dy dz dp dg __ f x +fp y + px +qy +pfp +q fa 0_0 
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so that we may. take p = a, q = b. If we substitute these values in (9), 
We get the complete integral 

z = ax + by -1- f (a,b) (10) 

as is readily verified by direct differentiation. 

Example 11. Find a complete integral of the equation 

(p - q)(z - -- xp -- yq) _: 1 

Writing this equation in the form 
l. 

Z xp yglPEq 
we see that a complete integral is 

z===ax-{-by-I 
u { b - 

1 

PROBLEMS 

Find complete integrals of the equations : 

1. p q . -_, pq 

2. z p2 -q2 
3.zpq -p-f-u 
4. p2q(x2 . I.. y2) p2 --- q 
5. p2q2 x ÿ 2 

6. pqz - pL(xq 

: x2q2(x2 - yÿ) 

+ 1'2) + g2(Y1' + 

(12) 

12. Solutions Satisfying Given Conditions 

In this section we shall consider the determination of surfaces which 
satisfy the partial differential equation 

F(x,y, 7,rß, q) 0 (1) 

and which satisfy some other condition such as passing through a given 
curve or circumscribing a given surface. We shall also consider how to 
derive one complete integral from another. 

First of all, we shall discuss how to determine the solution of. (1) 
which passes through a given curve C which has parametric equations 

x = x(t), y y(t), z = z(t) (2) 

t being a parameter. If there is an integral surface of the equation (1) 
through the curve C, then it is: 

(a) A particular case of the complete integral 

f (x,y,z,a,b) _= 0 (3) 

obtained by giving a or b particular values ; or 
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(b) A particular case of the general integral corresponding to (3), 
i.e., the envelope of a one-parameter subsystem of (3); or 

(c) The envelope of the two -parameter system (3). 

It seems unlikely that the solution would fall into either (a) or (c) so 
we consider the case (b), which is the one which occurs most frequently. 
We suppose, therefore, that a surface, E say, of type (b) exists and 
passes through the curve C. At every one of its points this envelope E 
is touched by some member of the subsystem. In particular at each 
point P of the curve C we may suppose it to be touched by a member, 
SD say, of the subsystem, and since Sp touches E at P, it also touches C 
at the same point. In other words, E is the envelope of a one-parameter 
subsystem of (3) each of whose members touches the curve C, provided 
that such a subsystem exists. To determine E, then, we must consider 
the subsystem made up of those members of the family (3) which touch 
the curve C. The points of intersection of the surface (3) and the curve 
C are determined in terms of the parameter t by the equation 

f {x(t),y(t),z(t),a,b} = O (4) 

and the condition that the curve C should touch the surface (3) is that 
the equation (4) must have two equal roots or, what is the same thing, 
that equation (4) and the equation 

f {x(t),y(t),z(t),a,b) = O (5) 

should have a common root. The condition for this to be so is the 
eliminant of t from (4) and (5), 

yv(a,b) = o (6) 

which is a relation between a and b alone. The equation (6) may be 
factorized into a set of alternative equations 

b = qx(a), b = 02(a), . . . (7) 

each of which defines a subsystem of one parameter. The envelope of 
each of these one -parameter subsystems is a solution of the problem. 

Example 12. Find a complete integral of the partial differential equation 

(p2 -1- q2)x = pz 

and deduce the solution which passes through the curve x = 0, z2 = 4y. 
It may readily be shown that 

z2 = a2x2 + (ay + b)2 

is a complete integral, and it is left to the reader to do so. 
The parametric equations of the given curve are 

x = 0, y = t2, z = 2t (9) 

(8) 
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The intersections of (8) and (9) are therefore determined by 

4t2 = (at2 + b)2 

i.e., by a2í4 + (2ab - 4)12 + b2 = 0 

and this equation has equal roots if 
(ab -- 2)2 - a2b2 

i.e., if ab = 1 

The appropriate one -parameter subsystem is therefore 
2 

z2 =a2x2+ ay+ - 
a 

a4(x2 -I- y2) + a2(2y - z2) + 1 = 0 

and this has for its envelope the surface 

(2y - z2)2 = 4(x2 + y2) 

The function z defined by equation (10) is the solution of the problem. 

The problem of deriving one complete integral from another may be 
treated in a very similar way. Suppose we know that 

f(x,y,z,a,b) = 0 (11) 

is a complete integral and wish to show that another relation 

g(x,y,z,h,k) = 0 (12) 

(10) 

involving two arbitrary constants h, k is also a complete integral. We 
choose on the surface (12) a curve r in whose equations the constants 
h, k appear as independent parameters and then find the envelope of the 
one -parameter subsystem of (11) touching the curve F. Since this 
solution contains two arbitrary constants, it is a complete integral. 

Example 13. Show that the equation 

xpq+yg2 -1 
has complete integrals 

(a) (z +- b)2 = 4(ax + y) 

(b) kx(z + h) = k2y -I- x2 

and deduce (b) from (a). 
The two complete integrals may be derived from the characteristic equations. 

Consider the curve 
y =0, x= k(z +h) 

on the surface (b). At the intersections of (a) and (13) we have 

(z + b)2 - 4ak(z + b) + 4ak(b - h) = 0 

and this has equal roots if 
a2k2 = ak(b -W h) 

i.e., if ak = 0 or b = h + ak. 

(13) 
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The subsystem given by a = O cannot be the desired one since its envelope does 
not depend on h and k. The second subsystem has equation 

(z + h + ak)2 = 4(ax + y) 

i.e., k2a2 + 2a {k(z + h) - 2x} + (z + h)2 -4y = 0 

and this has envelope 
{k(z + h) -- 2x }2 = {(z + h)2 -4y }k2 

kx(z + h) = k2 + x2 

Next, we shall outline the procedure for determining an integral 
surface which circumscribes a given surface. Two surfaces are said to 

circumscribe each other if they touch along 
a curve, e.g., a conicoid and its enveloping 
cylinder. It should be noted that the curve 
of contact need not be a plane curve. We 
shall suppose that (3) is a complete integral 
of the partial differential equation (1) and 
that we wish to find, by using (3), an inte- 
gral surface of (1) which circumscribes the 
surface E whose equation is 

v(x,y,z) _ 0 (14) 

which reduces to 

Figure 18 

If we have a surface E 

u(x,y,z) 0 (15) 

of the required kind, then it will be one of 
three kinds (a), (b), (c) listed above. We 
shall consider the possibility (b), since it is 
the one which occurs most frequently. 

Suppose that the surface E touches the given surface E along a 
curve I' (cf. Fig. 18). Since E is the envelope of a one-parameter 
subsystem S of the two -parameter system (3), it is touched at each of its 
points, and, in particular, at each point P of I', by a member S9 of 
the subsystem S. Now, since S, touches E at P, it also touches E at P. 
Hence equation (15) is the equation of the envelope of a set of surfaces 
(3) which touch the surface (14). We now proceed to find the surfaces 
(3) which touch E and see if they provide a solution of the problem. 

The surface (3) touches the surface (15) if, and only if, the equations 
(3), (14), and 

f=Lf 
Vx Vv V 

are consistent. The condition for this is the eliminant of x, y, and z 
from these four equations, i.e., a relation of the form 

x(a,b) = O (17) 
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between a and b. This equation factorizes into a set of relations 

b = 1(a), b = 2(a), . . . (18) 

each of which defines a subsystem of (3) whose members touch (14). 
The points of contact lie on the surface whose equation is obtained by 
eliminating a and b from the equations (16) and (18). The curve r is 
the intersection of this surface with E. Each of the relations (18) 
defines a subsystem whose envelope E touches E along r. 

Example 14. Show that the only integral surface of the equation 
2q(z- px-- qy) =1 +q2 

which is circumscribed about the paraboloid 2x. - y2 -I- z2 is the enveloping cylinder 
which touches it along its section by the plane y -I- 1 - O. 

The equation is of Clairaut type with complete integral 
2 

z -ax I by I b 
+1 

(19) 
2b 

Equation (14) has the form 
2x -- y2 + z2 

so that equations (16) become, in this. case 

a b -1. 
2l-- 2y_ -2z 

which give the relations 

y 
1 z=- 
a 

(20) 

(21) 

Eliminating x between equations (19) and (21), we have 

aby2 -F- 2b21 -I- abz2 -- 2bz b2 I-- 1 = 0 

and eliminating y and z from this equation and the equations (21), we find that 

(1) - -- a)(b2 -I- 1) = 0 

so that the relation b -- a defines a subsystem whose envelope is a surface of the 
required kind. The envelope of the subsystem 

{2(x -I- y) -I - 1}a2 - gaz -I- 1 = O 

z2 - 2(x + y) + 1 (22) 

The surface (20) touches the surface (22) where 

(y -I- 1)2 = 0 

is obviously 

proving the stated result. 

PROBLEMS 

1. Find a complete integral of the equation p2x + qy = z, and hence derive the 
equation of an integral surface of which the line y = 1, x -I- z = 0 is a 
generator. 

2. Show that the integral surface of the equation 

z(1 - q2) = 2(px + qy) 
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. which passes through the line x = 1, y = hz + k has equation 

(y - kx)2 = z2 {(1 + h2)x -- 1} 

3. Show that the differential equation 

2xz + q2 = x(xp + yq) 
has a complete integral 

z + a2x = axy + bx2 

x(y + hx)2 = 4(z - kx2) 

is also a complete integral. 

4. Find the complete integral of the differential equation 

xp(1 +q) =(y +z)q 

corresponding to that integral of Charpit's equations which involves only 
q and x, and deduce that 

(z + hx + k)2 = 4hx(k -y) 
is also a complete integral. 

S. Find the integral surface of the differential equation 

(y + zq)2 = z2(1 + p2 + q2) 

circumscribed about the surface x2 - z2 = 2y. 

6. Show that the integral surface of the equation 2y(1 + p2) = pq which is 
circumscribed about the cone x2 + z2 = y2 has equation 

z2 = y2(4y2 + 4x + 1) 

and deduce that 

13. Jacobi's Method 

Another method, due to Jacobi, of solving the partial differential 
equation 

F(x,y,z,p,q) _ 0 (1) 
depends on the fact that if 

u(x, y, z) = O (2) 

is a relation between x, y, and z, then 

P _ -- u1 
, q = --- 

u2 
(3) 

u3 u3 

where ui denotes au/ axi (i = 1, 2, 3). If we substitute from equations 
(3) into equation (1), we obtain a partial differential equation of the type 

f (x,y,z,u1,u2,u3) = 0 (4) 

in which the new dependent variable u does not appear. 
The fundamental idea of Jacobi's method is the introduction of two 

further partial differential equations of the first order 

g(x,y,z,u1,u2,u3,a) = 0, h(x,y,z,u1,u2,u3,b) = 0 (s) 
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involving two arbitrary constants a and b and such that: 
(a) Equations (4) and (5) can be solved for u1, u2, u3; 
(b) The equation 

du= u1 dx + u2 dy + u3 du (6) 

obtained from these values of u1, u2, u3 is integrable. 
When these functions have been found, the solution of equation (6) 

containing three arbitrary constants will be a complete integral of (4). 
The three constants are necessary if the given equation is (4) ; when, 
however, the equation is given in the form (1), we need only two arbitrary 
constants in the final solution. By taking different choices of our third 
arbitrary constant we get different complete integrals of the given 
equation. 

As in Charpit's method, the main difficulty is in the determination of 
the auxiliary equations (5). We have, in effect, to find two equations 
which are compatible with (4). Now in Example 4 of Sec. 9 we showed 
that g and h would therefore have to be solutions of the linear partial 
differential equation 

ag ag ag ag ag 
J Ui ax +fU2 a +fU3 az fx 

TIT, / fv au ,y 2 

which has subsidiary equations 

dx dy dz dui due dui 

ag -- fZO (7) 
3 

_ - 
f, 

f43 i f ua --f (8) 

The procedure is then the same as in Charpit's method. 
To illustrate the method we shall solve Example 7 of Sec. 10 in this 

way. Writing p = --- ul /u3, q = -- u2 /u3, we see that the equation 

becomes 
p2x, + g2y = z 

Mil -1yu2 - Zug = O 

so that the auxiliary equations are 

dx dy dz dut due dui 
2u1x 2u2y -2u3z 2 --ux -u2 143 

with solutions 

whence 

u1 

so that 

xui 2 a, yu2 = b 

1 
u2 = (-- l }, ¡a 

l 

u= Zar >k +2(vy )k +a {fia +b >i }1 +c 
Writing b = 1, c = b, we see that the solution u = 0 is equivalent to the 
solution derived in Sec. 10. 
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The advantage of the Jacobi method is that it can readily be genera- 
lized. If we have to solve an equation of the type 

f(x1,x2,. ,xn,u1, 'un) o (9) 

where ui denotes u f axi (i - = 1, 2, . . . , n), then we find n - 1 

auxiliary functions f2, f3, . . . , fn from the subsidiary equations 

dx1 dx2 dx,z dui due dun = = . . . = - = - . 

fun f2G1 

- 
fu2 -L1 fre. 2 fxn 

involving n - 1 arbitrary constants. Solving these for u1, u2, . . , un, 
we determine u by integrating the Pfaffian equation 

n 

du= 2:uidxi 
i=1 

the solution so obtained containing n arbitrary constants. On the other 
hand, Charpit's method cannot be generalized directly. 

PROBLEMS 

1. Solve the problems of Sec. 10 by Jacobi's method. 

2. Show that a complete integral of the equation 

f(au 
au au 

------ 0 ax' ay' az 
is 

u = ax + by + 8(a,b)z + c 

where a, b, and c are arbitrary constants and f (a,b,8) = O. 

Find a complete integral of the equation 

au au au au au au 

ax + ay az 
_ 

ax ay az 

3. Show how to solve, by Jacobi's method, a partial differential equation of 
the type 

x, au 
, 

au __... 
ax az 

au au y ^ g áy ' áz, 

and illustrate the method by finding a complete integral of the equation 

2x2 
au 2 au 

= 
ay 

2 
au au 2 

y ax az y ax 

4. Prove that an equation of the "Clairaut" form 

au au au au au au 

xax +yay Zaz f ax' ay'az 
is always soluble by Jacobi's method. 

Hence solve the equation 

au au au au au au 
i 

áx +áy +áz xáx+yáy +z z: _. 
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I4. Applications of First -order Equations 

The most important first -order partial differential equation occurring 
in mathematical physics is the Hamilton- Jacobi equation 

as as as aS 
1 

at + g1, q2, 
q1 q 2 

qn 
a a a q o ( ) 

appropriate to the Hamiltonian H(g1ig2, . . . ,qn ; p1,p ,pn) of 
a dynamical system of n generalized coordinates q1, q2, . . . , qn and 
the conjugate momenta pi, p2, . . . , pn. This is an equation in which 
the dependent variable S is absent, so it is of the type (9) of Sec. 13. 
From the considerations of that section we see that the equations of the 
characteristics are 

dt dg1 dq,t 

1 - a,/ ap1- am ap 
dpi 

dt"7, (2) 
aH a -- a. aq . ) t l 1) l ) 

i.e., they are equivalent to the Hamiltonian equations of motion 

dqi aH dpi aH 
dt ` ap i ' dt aq 

A modified form of equation (1) is obtained by writing 

S : --: -WI -1. Si 

i---=1,2, . . . , n (3) 

We then find that 

as, aSi) 
H(qi, , qn ; a a 

(4) 
h. 

qn 

Suppose, for example, that a system with two degrees of freedom has 
Hamiltonian 

H Ppx2 I Qp" 2 { 

7 
5 2X - Y X- Y ( ) 

where P, X, are functions of x alone and Q, Y, 7? are functions of y 
alone. Then equation (4) becomes 

(Pp x 
+ Qpi,) + (4 -I 11) W(/ + Y) =----- 0 

Then one of the characteristic equations is 

dx dpx 

P + 1P' x --- + ' WX' px 2 p 
with solution 

p = {2(W X + a)}.1 

0 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


82 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

where a is an arbitrary constant. Similarly we could have shown that 

qv = {2( WY -ri + b)14-` 

where b is an arbitrary constant. Thus since p, is a function of x alone 
and qv is a function of y alone, we have 

S = -Wt + f{2(wx_ + a) }1 dx + f{2(WY- n + b) }1 dy 

showing that a solution of the Hamilton- Jacobi equation can always be 
found for a Hamiltonian of the form (5). 

First -order partial differential equations arise frequently in the theory 
of stochastic processes. One such equation is the Fokker -Planck 
equations 

2 

ô -ß ôx (Px) + D ôx (6) 

which reduces in the case D = O to the first -order linear equation 

aP- xaP P (7) a ( 

The physical interpretation of the variables in this equation is that P is 
the probability that a random variable has the value x at time t. For 
example, P might be the probability distribution of the position of a 
harmonically bound particle in Brownian movement or the probability 
distribution of the deflection x of an electrical noise trace at time t. 
It should be observed that this equation (6) is valid only if the random 
process has Gaussian distribution and is a Markoff process. 

Probably the most important occurrence of first -order equations is 
in the theory of birth and death processes' connected with bacteria. 
Suppose, for example, that at time t there are exactly n live bacteria 
and that: 

(a) The probability of a bacterium dying in time (t, t + 60 is ,un 8t; 
(b) The probability of a bacterium reproducing in time (t, t + ôt) is 

An ôt; 
(c) The probability of the number of bacteria remaining constant in 

time (t, t + àt) is (1 - An 6t - ,un (St); 

(d) The probability of more than one birth or death occurring in 
time (t, t + 61) is zero. 
If we assume Pn(t) is the probability of there being n bacteria at time t, 
then these assumptions lead to the equation 

Pn(t + ôt) = 2n- 11),,-1(t) 6t -i- ,un+1Pn+1(t) at + {l -- An bt - ,un bt}Pn(t) 

i For a derivation of this equation 
15, 33 (1943). 

2 W. Feller, "An Introduction to 
(Wiley, New York, 1950), p. 371. 

see S. Chandrasekhar, Rev. Modern Phys., 

Probability Theory and Its Applications" 
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which is equivalent to 

aPn -- A_ P_ t P, t -- (A. P t 
a t n 1 n 1( ) T Jun-}-1 +1( ) 1un) n( ) (8) 

In the general case 2n, Jun would depend on n and t; if we assume that 
the probability of the birth or death of a bacterium is proportional to the 
number present, we write 

An =nA., Jinn 
=ny (9) 

where A and are are constants, and equation (8) reduces to 

aPn = 2(n - 1)13,_1(t) - (A )nP(t) n 1 P t \ + ru + Ju( + ) n +x( ) 

and if we introduce a generating function 021)(z,t) defined by the relation 
CO 

o(Z,c) = 2 yn(t)zn 
n =0 

we see that this last equation is equivalent to the first -order linear 
equation 

ä= (z - 1)(1z - ) 
whose solution is readily shown (by the method of Sec. 4) to be 

cl) = f (1 -z 
where the function f is arbitrary. If there are m bacteria present at 
t= 0, then (I) -zmatt =0, so that 

(i2 
- .1Z 

Z -f -Z 
from which it follows that 

f (0 - (PÀ 

Hence at time t 
(u(l -- e(2 t`t) 

-- 
1,1 - A¡(--A-tot 

fltm 
0 

z(2. 
Jue(A -A't) 

m 

Az(1 -- e(A-,u't) 

Pn(t) is the coefficient of zn in the power 'series expansion of this function. 
If it < ,u, then 1 -± 1 as t -- co, so that the probability of ultimate 
extinction is unity. 

Similar equations arise in the discussion of trunking problems (see 
Prob. 4 below), in which An = A, ,un = n,u, and in birth and death 
problems governed by different assumptions from those we have made 
here (cf. Prob. 3 below). 
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PROBLEMS 

1. It may be assumed that the rate of deposit or removal of sand on the bed of a 
stream is a( ay/ ax), where a is a constant and y is the velocity of the water in the 
x direction. If 71, h denote the heights, above an arbitrary zero level, of the 
top of the sand in the bed and of the water surface, respectively, show that the 
variation of 77 is governed by the first -order equation 

L (h -ri)2 -an +m=O 
at ax 

where m is a constant. Assuming h to be constant, show that the general 
solution of this equation is 

, mt 
77 - x 

n)2 

where the function f is arbitrary. 
If i = no cos (271-x /A) at t = 0, find the relation between i and x at time t. 

2. Show that the general solution of the modified Fokker- Planck equation (7) is 

1 
P = - f (xeßt) 

x 
where the function f is arbitrary. 

Show further that a solution of the full equation (6) is given by 

(xeß1, e2ßb 1) P _Q 
2ß 

where Q(E,T) is a solution of the equation 

aQ a2Q 

eßt 

aT a2 

3. The individuals in a competitive community breed and die according to the 
laws : 

(a) Every individual has the same chance a. ¿St of giving birth to a new 
individual in any infinitesimal time interval (St; 

(b) Every individual has the chance {a + ß(n - 1) }8t of dying in the 
interval ât, where n is the total number of individuals in the community. 
(1,a, and ß are nonnegative constants, and the chances of birth and death 
are independent of each other). If P,Z(t) denotes the probability that at time 
t there are n individuals in the community, show that the probability- generating 
function satisfies the equation 

a' a: R a2 

at = (z 
1) 

(Az - a) - ßz 
az2 

Show that if a = 0 and a. and ß are positive, it is possible for the probability 
distribution of the number of individuals to have a stable form (independent 
of t) with zero chance of extinction. Find Pn(t) explicitly in this case, and show 
that the mean number of individuals is then 

A/ß 

1 - exp (- A /ß) 

4. The probability distribution of telephone conversations carried on over a 
certain number of lines may be thought of as governed by the laws : 
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(a) If a line is occupied, the probability of a conversation which started at 
time t = O ending in the interval (t, t + ôt) is ,u 6t, where ,u is a constant; 

(b) The probability of an incoming call in the interval (t, t + 60 is A (St, 

where íl is a constant; 
(c) If 3t is small, the probability of two conversations stopping in time ôt 

is negligible. 
If Pn(t) is the probability that n lines are being used at time t and 1(z,t) is the 
corresponding probability -generating function, show that 

a a 
at 

(z - 1) {),(1) - 
az 

If m lines are occupied at t = 0, show that at time t 

0(z,t) = 1 + (z exp (-212(z - 1)(1 -e Pt) 

MISCELLANEOUS PROBLEMS 

Show that any surface of revolution whose axis passes through the origin 
satisfies the equation 

u V w 
L{x Ux Wx == 0 
uy vv wv 

where u = x + zp, y = y -i- zq, w _ xq -- yp. 

Show that the integral surfaces of the differential equation 
az az 

(z -I- 3y) 
áx + 3(z - x) + (x -F 3y) = 

are of revolution about the line x = -3y z, and find the integral surface 
through the curve 

x2 -v2 +z2 =a2. x- v- I -z =2a 
If the expression 

(y2 + z) dx + (x2 + z) dy 

is an exact differential in x and y, show that z = 2xy + f (x + y), where f is 
arbitrary. Find f if z = 2y + 1 when x = O. 

The equation P dx2 + Q dx dy + R dye = û, in which P, Q, R are functions of 
x and y, represents the projection on z = 0 of a network of curves on a surface 
u(x,y,z) = O. Show that the curves are orthogonal if 

P(4 + uz) - Quxu2 + R(ux + uz) = O 

Find the partial differential equation of the first order of which a complete 
integral is 

(x - a)2 + (y - b)2 = z2 cote y 

where a, b are constants. 
Prove that another complete integral can be found which represents all 

planes making an angle y with the plane z = O. 

Find the family of surfaces which represents the solution of the partial differ- 
ential equation 

z) 
az ± az 

z = 0 
ax ay 

and obtain the integral surface which contains the circle x2 + y2 = a2, z = a. 
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7. Find the equation of the integral surface of the differential equation 

x3 
az 

y(3x2 + y) 
áz 

= z(2x2 + y) ax ay 

which passes through the parabola x = 1, y2 = z - y. 

8. Solve the equation 
(p - q)(x + y) = z 

and determine the equation of the surface which satisfies this equation and 
passes through the curve 

x + y + z =O, x =z2 

9. Show that the integral surfaces of 

(xp + yq)(x2 + y2 - a2) = z(x2 + y2) 

are generated by conics, and find the integral surface through the curve 
x = 2z, x2 + y2 = 4a2. 

10. Find the general solution of 
au +x y ax ay 

in the domain O < y < x. Find the solution which equals x when y = ix. 
11. Find the general integral of the equation 

az az 
{my(x + y) - nz2} äx - {lx(x + y) - nz2} = (lx - my)z 

y 
and deduce the equation of the integral surface which passes through the curve 

2x =z +z3, 2y =z -z3 
12. Prove that for the equation 

z -F px + qy -1 - pqx2y2 = O 

the characteristic strips are given by 

X = B +1 Ce-t' .Y A + - 1 De -t ' 
z = E - (AC + BD)e_t 

p = A(B + Ce-t)2, q = B(A + De-t)2 

where A, B, C, D, and E are arbitrary constants. Hence find the integral 
surface which passes through the line z = 0, x = y. 

13. Find a complete integral of the equation 
4(x + y)z = (p + q)(x + y)2 + 2(p - q)(x2 - y2) - 4(p2 -- q2) 

14. Show that the characteristic equations of the differential equation 

(q2 + 1)z2 = 2pxz + x2 

have an integral qz = ax, and find the corresponding complete integral of the 
differential equation, showing that it represents a set of conicoids of revolution. 

15. The normal to a given surface at a variable point P meets the coordinate planes 
XO Y and YOZ in A and B, respectively. If AB is bisected by the plane ZOX, 
show that the surface satisfies the differential equation 

z x 2y = - 
II q 

Find a complete integral of this equation. 
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16. The normal. to a given surface at a variable point P meets the sphere 
x2 + y2 + z2 = I in the points A and B. If AB is bisected by the plane 
z = 0, show that the surface satisfies the differential equation 

z(p2 + q2) + px + qy = O 

Find a complete integral of this equation. 
17. Show that the characteristic equations of the differential equation 

z + xp - x2yq2 - x3pq = 0 

have an integral qx = a, and find the corresponding complete integral of the 
differential equation. 

18. Find a complete integral of the equation p2x + qy = z, and hence derive the 
equation of an integral surface of which the line y = 1, x + z = 0 is a 
generator. 

19. Find the complete integral of the differential equation 

p2x -1- pqy = 2pz -I- x 
corresponding to the integral of the characteristic equations involving q and 
y alone, in the form 

2z=ay2+bx2- 
b 

Deduce the integral surface through the line y = 1, x = z. 

20. Show that a necessary and sufficient condition that a surface should be 
developable is that it satisfies a differential equation of the form f (p,q) = O. 

Deduce that a necessary and sufficient condition that a surface should be 
developable is that its second derivatives r(x,y), s(x,y), t(x,y) satisfy the 
equation rt = s2. 

21. Show that the only integral surfaces of the differential equation 

2q(z -xp - 2yq) + x = 0 

which are developable are the cones 

(z + ax)2 = 2y(x --I- b) 

Find the integral surfaces through the curve z = 0, x3 + 2y = O. 

22. At any point P on a surface the normal meets the plane z = O in the point N. 
Show that the differential equation of the system of surfaces with the property 
that OP2 = ON2, where O is the origin, is 

z(p2 + q2) -1- 2(px + qy) = z 

Obtain a complete integral of this equation, and hence find the two surfaces 
with the above property which pass through the circle x2 + z2 = 1, y = O. 

23. If any integral surface of a partial differential equation of the first order 
remains an integral surface when it is given an arbitrary screw motion about 
the z axis, prove that the equation must be of the form 

F(xp + yq, xq - yp, x2 -I- y2) = 0 

If a differential equation of this type admits the quadric 

axe + by2 +cz2-=-1 
as an integral surface, show that the characteristic curves which lie on this 
quadric are its intersections with the family of paraboloids z = kxy. 
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Chapter 3 

PARTIAL DIFFERENTIAL EQUATIONS OF 

THE SECOND ORDER 

In the last chapter we considered the solution of partial differential 
equations of the first order. We shall now proceed to the discussion 
of equations of the second order. In this chapter we shall confine 
ourselves to a preliminary discussion of these equations, and then in 
the following three chapters we shall consider in more detail the three 
main types of linear partial differential equation of the second order. 
Though we are concerned mainly with second -order equations, we shall 
also have something to say about partial differential equations of order 
higher than the second. 

I. The Origin of Second -order Equations 

Suppose that the function z is given by an expression of the type 

z -.Î(u) -I- g(v) -I- w (1) 

where f and g are arbitrary functions of u and y, respectively, and u, y, 
and w are prescribed functions of x and y. Then writing 

-az p ax q 
a2Z a2Z a2Z r- 
ax2 

, s = ax ay y ' 
t = a 2 (2) 

we find, on differentiating both sides of (1) with respect to x and y, 
respectively, that 

p -f /(0ux + g' (v)Ux + W x 

q = f ' (u)147, + g' (v)v, + w , 
and hence that 

r (u)ux + g" (v)0 + g'(v)vxx + wxx 

s = J "(u)uxuV + g"(v)vxuy + ,f ,' (u)uxi, + g'(v)vxv + wxv 

= (u)u +. f'(u)uu + g'(v)v + wy, 

We now have five equations involving the four arbitrary quantities f ', 
88 
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f ", g', g ". If we eliminate these four quantities from the five equations, 
we obtain the relation 

P - wx ux vx 0 0 
q - w , uy vi, 0 0 

2 (3) r - wxx uxx uxx ux 4 0 
s - wxv uxv vxv uxuv V xvv 
t - wyy UIY vyy U2 2 v2 

Y 

which involves only the derivatives p, q, r, s, t and known functions of 
x and y. It is therefore a partial differential equation of the second 
order. Furthermore if we expand the determinant on the left -hand side 
of equation (3) in terms of the elements of the first column, we obtain an 
equation of the form 

Rr+-Ss-f-Tt+Pp+ Qq= W (4) 

where R, S, T, P, Q, W are known functions of x and y. Therefore the 
relation (1) is a solution of the second -order linear partial differential 
equation (4). It should be noticed that the equation (4) is of a par- 
ticular type : the dependent variable z does not occur in it. 

As an example of the procedure of the last paragraph, suppose that 

z = f(x + ay) + g(x - ay) (5) 

where f and g are arbitrary functions and_ a is a constant. If we 
differentiate (5) twice with respect to x, we obtain the relation 

r= " 

while if we differentiate it twice with regard to y, we obtain the relation 

i = a2 

so that functions z which can be expressed in the form (5) satisfy the 
partial differential equation 

t = a2r (6) 

Similar methods apply in the case of higher -order equations. It is 
readily shown that any relation of the type 

n 

z = f r(vr) (7) 
r =1 

where the functions f,. are arbitrary and the functions vr are known, 
leads to a linear partial differential equation of the nth order. 

The partial differential equations we have so far considered in this 
section have been linear equations. Naturally it is not only linear 
equations in which we are interested. In fact, we have already en- 
countered a nonlinear equation of the second order ; we saw in Example 
20 of Chap. 2 that if the surface z = f(x,y) is a developable surface, 
the function f must be a solution of the second -order nonlinear equation 

rt - 52 -- 0 
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PROBLEMS 

i. Verify that the partial differential equation 

atz atz 2z 
ax2 ay2 x 

is satisfied by 

z=l 
x 
0(y-x)+gy-x) 

where gS is an arbitrary function. 

2. If u = = f (x + iy) + g(x - iy), where the functions f and g are arbitrary, 
show that 

a2 a2u 
-}- = 0 

aX2 ay2 

3. Show that if f and g are arbitrary functions of a single variable, then 

u = f(x- vt +i «y) + g(x - vt -i «y) 

is a solution of the equation 

a2u a2u 1 a2u 

ax2 
+ 

ay2 C2 at2 

provided that 0C2 

4. If 

= i - v21c2. 

z = f (x2 - y) + g(x2 + y) 

where the functions f, g are arbitrary, prove that 

aez i az 
= 4x2 

a2z - 
ax2 x ax ay2 

5. A variable z is defined in terms of variables x, y as the result of eliminating t 
from the equations 

z = tx + yf (t) + g(t) 

0 = x + yf'(t) + g/(t) 

Prove that, whatever the functions f and g may be, the equation 

rt -- s2 = 0 
is satisfied. 

2. Second -order Equations in Physics 

Partial differential equations of the second order arise frequently 
in mathematical physics. In fact, it is for this reason that the study of 
such equations is of great practical value. The next three chapters will 
be devoted to the study of the solution of types of second -order equation 
occurring most often in physics. For the moment we shall merely 
show how such equations arise. 

As a first example we consider the flow of electricity in a long insulated 
cable. We shall suppose that the flow is one -dimensional so that the 
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current i and the voltage E at any point in the cable can be completely 
specified by one spatial coordinate x and a time variable t. If we 
consider the fall of potential in a linear element of length 8x situated 
at the point x, we find that 

-- ÔE -= iR âx -{-- L ôx 
i 
at 

where R is the series resistance per unit length and L is the inductance 
per unit length. If there is a capacitance to earth of C per unit length 
and a conductance G per unit length, then 

(1, 

bi= GESx CóxaE + at 
(2) 

The relations (1) and (2) are equivalent to the pair of partial differential 
equations 

áE +xi +r. át =o (3) 

áx +GE +caE =o (4) 

Differentiating equation (3) with regard to x, we obtain 

a2E ai l a2i -o 
ax2 

R + ax 
+ 

ax at 
.11 

and similarly differentiating equation (4) with regard to 

a2i aE 
C 

a2E 
= o 

ax at + at + at2 

(s) 

t, we obtain 

(6) 

Eliminating ai /ax and a2i/ax at from equations (4), (5), and (6), we 
find that E satisfies the second -order partial differential equation 

LC - (RC + LG) + RGW (7) 

Similarly if we differentiate (3) with regard to t, (4) with regard to x, 
and eliminate ?2E /ax at and aE/ax from the resulting equations and 
equation (3), we find that i is also a solution of equation (7). 

Equation (7), which is called the telegraphy equation by Poincaré and 
others, reduces to a simple form in two special cases. If the leakage to 
ground is small, so that G and L may be taken to be zero, equation (7) 
reduces to the form 

a20 i ao 
axe - Tc ár (8) 

where k = (RC)--1 is a constant. This equation is also sometimes 
called the telegraphy equation; we shall refer to it as the one -dimensional 
diffusion equation. 
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On the other hand, if we are dealing with high- frequency phenomena 
on a cable, the terms involving the time derivatives predominate. If we 
look at equations (3) and (4), we see that this is equivalent to taking G 
and R to be zero in equation (7), in which case it reduces to 

a20 1 a20 
axe - c2 at2 

(9) 

where c = (LC) ̂  1. This equation is sometimes referred to, in this 
context, as the radio equation ; we shall refer to it as the one -dimensional 
wave equation. 

A simple partial differential equation of the second order, different 
in character from either equation (8) or (9), arises in electrostatics. By 
Gauss' law of electrostatics we know that the flux of the electric vector 
E out of a surface S bounding an arbitrary volume V is 47T times the 
charge contained in V. Thus if p is the density of electric charge, we 
have 

=4r pdr fE'ds 
v 

Using Green's theorem in the form 

Eds= div Edr L 
v 

and remembering that the volume V is arbitrary, we see that Gauss' law 
is equivalent to the equation 

div E = 477p (10) 

Now it is readily shown that the electrostatic field is characterized by 
the fact that the vector E is derivable from a potential function 0 by the 
equation 

E _ -grad 0 (11) 

Eliminating E between equations (10) and (11), we. find that 0 satisfies 
the equation 

v29 -I- 47rp -0 (12) 

where we have written V2 for the operator div (grad), which in rect- 
angular Cartesian coordinates takes thé form 

a2 a2 a2 
(13) 

y axe 
+ ay2 + az2 

Equation (12) is known as Poisson's equation. In the absence of charges, 
p is zero, and equation (12) reduces to the simple form 

v20 ____ o (14) 

This equation is known as Laplace's equation or the harmonic equation. 
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If we are dealing with a problem in which the potential function 7 does 
not vary with z, we then find that V is replaced by 

a2 a2 v2 (15) 
x 2 

-- 
ay2 

(15) 
y 

and that Laplace's equation becomes 

vi = o (16) 

a form which we shall refer to as the two- dimensional harmonic equation. 
The Laplacian operator V2 occurs frequently in mathematical physics, 

and in a great many problems it is advantageous to transform from 
Cartesian coordinates x, y, z to another orthogonal curvilinear system 
given by the equations 

u1 = u1(x, y,z), u2 = u2(x,y,z), u3 = u3(x,y,z) (17) 

The transformation of the Laplacian operator in these circumstances is 
best effected by the aid of vector calculus,' which shows that in the 
u1, u2, u3 system 

v2V_ i a (h2h3 aV a (h3h1 av a (h1h2 av)} 
h h 2h au h1 au + au h au au3 h3 au 1 3 1 1 1 2 2 2 3 3 

(18) 
where 

112 

ax 2 
ay 

2 
az 

2 
' au2 - (ri)l'a u2 + au2 

i = 1, 2, 3 (19) 

PROBLEMS 

1. Show that Maxwell's equations 

div E = 47Tp, div H == 0 

curl E _ 
. 

curl H = 4Y x a 

c c at 

governing the behavior of the electric and magnetic field strengths E and H 
possess solutions of the form 

H curl A, E --- 
aA - rad ß 

c at 

where the vector A and the scalar 0 satisfy the inhomogeneous equations 

1 a2A 47T 
V 2A - c`' ate c I = 0' 

respectively. 

.a20 
v20 - 

c2 at2 47rp = 0 

2. A heavy chain of uniform line density is suspended vertically from one end. 
Taking the origin of coordinates at the position of equilibrium of the lower 

1 H. Lass, "Vector and Tensor Analysis" (McGraw -Hill, New York, 1950), 
pp. 51 -54. 
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(free) end and the x axis along the equilibrium position of the chain, pointing 
vertically upward, show that in small oscillations about the equilibrium 
position the horizontal deflection y of the chain satisfies the equation 

a2y a ay 

a7 g ax ax 

where g is the acceleration due to gravity. 
By changing the independent variables to t and , where ÿ2 = 44g, show 

that this equation is equivalent to 

a2y ay a2y 
aÿ2 at2 

3. Plane sound waves are being propagated in a gas of normal average density 
po contained in a pipe whose cross -sectional area A varies along its length. If 
p, p denote the pressure and density at any point in the plane whose coordinate 
is x and if during the motion the plane normally at x is displaced to x -I- ÿ, show 
that if the disturbance is small, 

ax P Po 

Hence show that 4 satisfies the equation 

a2 
c- 

at- 

Ci 

~ 

a ) 
_ 

t~ 

-1 ± l - 
A x (AO) 

a 1 a 

ax A ax 
where e2 = dp/dp. 

If A = Aoe'', show that the equation possesses a solution of the form 
5 =e !Ax',where 

a2 

a 
) 

a , k2 _ 1 
z 

- 

e2 at2 

and that if A = Aox2'" z-Jl, it has a solution = xl - 9, where 

a2 I a2t 

x ax x2 at 2 

4. Show that in cylindrical coordinates p, z, c defined by the relations 

x - p cos 0, y == p sin 0, z -= z 

Laplace's equation V2 V -0 takes the form 

a2V i av i a2V a2V 
-{ . - --I- 2 1- 

Q --- 0 
a p pap p a az 

5. Show that in polar coordinates r, 0, 0 defined by the equations 

x= r sin 0 cos 0, y= r sin O sin 0, z r cos O 

Laplace's equation V2 V = 0 takes the form 

I a 
r2 

a V i a 
sin O a V -I- i 

a2 V 

r2 ar ar r2 sin 0 aU a0 r2 sin2 0 a92 

3. Higher -order Equations in Physics 

The differential equations in the physical problems we have so far 
considered, and indeed most of those considered in a first course, are all 
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second -order equations and are all linear. It is therefore significant 
to show that not all physical problems lead to partial differential 
equations which are either linear or of the second order. 

For example, if we consider the state of stress in a two- dimensional 
solid,' we find that it is specified by three stress components o'x, ay, Txv 

which satisfy the equilibrium conditions 
ao'x aTxy 

ax + ay +px =o 

aTx ao. 

ax + a 
--I- p Y = O 

y 
where X and Y are the components of the body force per unit mass. 
Suppose, for simplicity, that there are no body forces, so that we may 
take X and Y to be zero ; then it is obvious that the expressions 

(1) 

(z) 

4320 

Q' = 2 
x ay, T XV 

a20 a20 

ax ay ' û ax2 
(3) 

satisfy the equilibrium equations for any arbitrary function 0. 
So far we have not specified the nature of the material of which the 

body is composed. If the body is elastic, i.e., if the relation between 
the stresses and strains is a simple generalization of Hooke's law, then 
it is known that the components of stress satisfy compatibility relations 
of the form (v denoting Poisson's ratio) 

a2 a2 a2 
x9 

a 2 
{x - v(ax + - ei,) } + axe 

{o - - v(ax -f- oi,) } :_ - 2 
ax ay (4) y 

Substituting from the equations (3) into equation (4), we see that 0 
must satisfy the fourth -order linear partial differential equation 

am, a40 a40 

ax4 ax2 a y 2 + a y 4 

which may be written symbolically as 

Vtorfl = 0 (6) 

Because of its relation to Did = 0, this is called the two -dimensional 
biharmonic equation. The same equation arises in the discussion of the 
slow motion of a viscous fluid.2 

If, instead of assuming that the solid body was elastic, we had 
assumed that it was ideally plastic, so that the stresses satisfy a Hencky- 
Mises condition of the form 

(iax 

(5) 

1, 
v)2 Txy k2 (7) 

x A. E. H. Love, "A Treatise on the Mathematical Theory of Elasticity," 4th ed. 
(Cambridge, London, 1934), p. 138. 

2 H. Lamb, "Hydrodynamics," 6th ed. (Cambridge, London, 1932), p. 602. 
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instead of equation (4), we find that 1;6 satisfies the second order non- 
linear partial differential equation 

a20 a2(k 2 a2,/, 2 

axe ay2 + 4 kxay) 

PROBLEMS 
1. Show that 

4k2 (8) 

V t(xv) = xV t p + 4 ax 
a 

(V23.0 

and deduce that if ipx, ßp2, v3, p4, are arbitrary solutions of qv = 0, the function 

2/1 = xV 1 
+ 

ylP2 + V3 + 1P4 

is a general solution of V xcv = O. 

2. Tranform the equation VI V = O to plane polar coordinates r and 0, and shove 
that if V is a plane biharmonic function which depends on r alone, then 

V c1r2 log r -I- c2 log r + c3r2 + c4 

where c1, c2, C3, c4 are constants. 

3. Prove: 
alp 

(a) V I(r2v) = r2V i ip + 4îp + 4r ôr 

(b) vl r av) _ 1 
a 

r2V 2vp 
ar r at. 

Deduce that if V io = 0, then V t(r2 p) = O. 

4. Verify that = (1 I- ex)e -2 -2 Y is a solution of the biharmonic equation 
vii) = O if 4 is a constant. 

Hence derive expressions for components of stress ax, ay, Txy which satisfy 
the equilibrium and compatibility relations and are such that all the com- 
ponents tend to zero as x > co and a,, - -PO cos (0y), Tx?, = 0 when x - O. 

5. Show that the equations of plastic equilibrium in the plane are equivalent to 
the equation 

a2 2 2 a 2_ 2 _ aTxy aT,,, 
ax ay 

(k2 
T 
zy) axe ay2 

y 

and verify that c1 -I- c2y is the only solution of this equation of the form f (y). 
Taking Tx.y - -ky /a, calculate ax, ay. 

4. Linear Partial Differential Equations with Constant Co- 
efficients 

We shall now consider the solution of a very special type of linear 
partial differential equation, that with constant coefficients. Such ail 
equation can be written in the form 

F(D,D')z =-- f (x,y) (0 
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where F(D,D') denotes a differential operator of the type 

F(D,D') = > > crsDrD'S (2) 
r S 

in which the quantities crs are constants, and D = a/ ax, D' = al ay. 
The most general solution, i.e., one containing the correct number 

of arbitrary elements, of the corresponding homogeneous linear partial 
differential equation 

F(D, D')z = O (3) 

is called the complementary function of the equation (1), just as in the 
theory of ordinary differential equations. Similarly any solution of the 
equation (1) is called a particular integral of (1). 

As in the theory of linear ordinary differential equations, the basic 
theorem is : 

Theorem 1. If u is the complementary function and z1 a particular 
integral of a linear partial differential equation, then u is a general 
solution of the equation. 

The proof of this theorem is obvious. Since the equations (1) and (3) 
are of the same kind, the solution u -I- zl will contain the correct number 
of arbitrary elements to qualify as a general solution of (1). Also 

F(D, D')u = 0, F(D, /')z1. -- f (x,y) 

so that F(D, D')(u -+- z1) _ f (x,y) 

showing that u z1 is in fact a solution of equation (1). This com- 
pletes the proof. 

Another result which is used extensively in the solution of differential 
equations is: 

Theorem 2. If u1, 112, . . . , un, are solutions of the homogeneous 
linear partial differential equation F(D, D')z = = 0, then 

n. 

C,.0 ?. 

r -1 
where the c,.'s are arbitrary constants, is also a solution. 

The proof of this is immediate, since 

F(D,D')(c,.ur) = crF(D,D')ur 
n. 7a 

and F(D,D') z'r _ : > F(D,D')vr 
r-,1 r -1 

for any set of functions v,.. Therefore 
a n. 

F(D, D') cru?. F(D, D')(C,.ur) 
r -1 T=4 

7t 

= c?.F(D,D')ur rl 
=0 
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We classify linear differential operators F(D, D) into two main types, 
which we shall treat separately. We say that: 

(a) F(D,D) is reducible if it can be written as the product of linear 
factors of the form D + aD' + b, with a, b constants; 

(b) F(D,D') is irreducible if it cannot be so written. 
For example, the operator 

D2 D'2 

which can be written in the form 

(D + D')(D - D') 
is reducible, whereas the operator 

D2 D' 

which cannot be decomposed into linear factors, is irreducible. 
(a) Reducible Equations. The starting point of the theory of reducible 

equations is the result: 
Theorem 3. If the operator F(D,D') is reducible, the order in which 

the linear factors occur is unimportant. 
The theorem will be proved if we can show that 

(arD + ßrD' + yr)(a8D + ßSD' + y8) 

_ (8D + ß3D' + Ys)(arD + ßrD' + y) (4) 

for any reducible operator can be written in the form 
n 

F(D,D) = TI (a7D + ßrD' + yr) (5) 
r=1 

and the theorem follows at once. The proof of (4) is immediate, since 
both sides are equal to 

arasD2 + (astir + ari s)DD' + ßri sD'2 + (V8OCr + yrocs)D 

+ (Vsßr + yrf s)D' -1-. yrYs 

Theorem 4. If arD + 18,D' + yr is a factor of F(D,D) and fir(.) is an 
arbitrary function of the single variable , then if a,. 0, 

ur - exp (- yrx 
95.0r x arJJ ar 

is a solution of the equation F(D, D) z O. 

By direct differentiation we have 
, x ¡ ¡¡ Dur ^ - Yr 

ur ßr eXp __._ 
yr 

'(F`rx - ary) 
a ocr 

D'ur - -- ar exp --- yrx 
'(ßrX -a ry) 

Mr 

so that (r12) + N rD' `1 yr)ur - O (6) 
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Now by Theorem 3 

F(D,D)ur - ( 
8D + 

ßq D' ` Y) (arD + ßR rD' + Yr)ur (7) 
1' 

the prime after the product denoting that the factor corresponding to 
s = r is omitted. Combining equations (6) and (7), we see that 

F(D,D')ur = o 
which proves the theorem. 

By an exactly similar method. we can prove: 
Theorem 5. If ß,.D' + yr is a factor of F(D,D') and 0,4) is an 

arbitrary function of the single mariable , then if ß,. :A 0, 

h r 
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which is a first -order linear equation with solution 

1 
Z {10 {r(Ci)X + c2 e 

-Y 1xr 

a r 

Equation (9), and hence equation (8), therefore has solution 

z = {Xçr(ßrX -a ry) + V)r(!' rx -a ry) Ìe 
ßr''1 xr 

where the functions Or, V r are arbitrary. 
This result is readily generalized (by induction) to give: 
Theorem 6. If (arD + ßrD' -I-- yr)1z (mi. 0 0) is a factor of F(D,D) 

and if the functions rl, , Orn are arbitrary, then 

n 

exp - ?-Ors(rx - ary) 
s_1 

is a solution of RD, D) = O. 

Similarly the generalization of Theorem 5 is : 

Theorem 7. If ([3,D' + yr)" t is a factor of F(D,D) and ([the functions 
Çr1 , , 7'rm are arbitrary, then 

l, 9T2 

exp -1/-1, y rJ xs-lors`¡ rx) 
Nr -1 

is a solution of F(D, D') z = O. 

We are now in a position to state the complementary function of the 
equation (1) when the operator F(D,D) is reducible. As a result of 
Theorems 4 and 6, we see that if 

1? 

F(D,D') = IT (arD + [3,1Y -I- Yr)nzr (10) 
9' -1 

and if none of the ar's is zero, then the corresponding complementary 
function is 

n 

u = 2 exp -- 
r 

Y rx 
=1 ar ._ 

?)d 

xs-1 Ors(Nrx ary) (11) 

where the functions ors (s = 1, . . . , nr; r = 1, . . . , n) are arbi- 
trary. If some of the a's are zero, the necessary modifications to the 
expression (11) can be made by means of Theorems 5 and 7. From 
equation (10) we see that the order of equation (3) is m1 + m2 + 
+ mn ; since the solution (11) contains the same number of arbitrary 
functions, it has the correct number and is thus the complete comple- 
mentary function. 

To illustrate the procedure we consider a simple special case: 

Example 1. Solve the equation 

Ó4z Ó4z a4z 

óX4 ayl ax2 ay2 
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In the notation of this section this equation can be written in the form 

(D+D')2(D- D')2z =O 

so that by the rule (11) the solution of it is 

z = xc1(x - y) + 2(x - y) -E- xpqx + y) + p2(x + y) 

where the functions 0x, 02, /p1, ßp2 are arbitrary. 

Having found the complementary function of equation (1), we need 
only find a particular integral to complete the solution. This is found 
by a method similar to that employed in the proof of Theorem 6. If 
we write 

9t 

fl(cx?.D + l'71Y + YOZ (12) 
r-2 

then equation (1) is equivalent to the first -order linear equation 

az, az, 
a1 ax. 

A 
ßi a y 

--I- nzi. -- - f(x,y) 

a particular integral of which can easily be found by Lagrange's method. 
Substituting this particular value of zl in (12), we obtain an inhomo- 
geneous equation of order n -- 1. Repeating the process, we finally 
arrive at a first -order equation for z. To illustrate the process we 
consider: 

Example 2. Ì'iilCi the solution of the equation 

a2z a2T 
aXL - aY2 

_ x `- y 

This equation may be written in the form 

(D D')(D .I D')z _ : x -- y 

so that the complementary function is 

sb1(x -I y) -I- 02(x - - y) 

where (h1 and 02 are arbitrary. To determine a particular integral we write 

z1 - (D -f-- D')z 
Then the equation for z1 is 

(13) 

(D__D')z1 .-x -y 
which is a first -order linear equation with solution 

21 = : (x y)2 + f (x + y) 

where f is arbitrary. Since we are seeking only a particular integral, we may take 
f = O. Substituting this value of z1 into (13), we find that the equation for the 
particular integral is 

which has solution 

az 7z 

ax + a 
_ (x - y)2 

z = 4 x(x - y)2 + f (x - y) 
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in which f is arbitrary. Taking ,f = O we obtain the particular integral 

z - ix(x - y)2 

Hence the general solution of the equation may be written in the form 

Z = 4x(x - y)2 + 961(x + y) + 02(x - y) 

where the functions 01 and 02 are arbitrary. 

(b) Irreducible Equations. When the operator F(D,D) is irreducible, 
it is not always possible to find a solution with the full number of 
arbitrary functions, but it is possible to construct solutions which con- 
tain as many arbitrary constants as we wish. The method of deriving 
such solutions depends on a theorem which we shall now prove. This 
theorem is true for reducible as well as irreducible operators, but it is 
only in the irreducible case that we make use of it. 

Theorem 8. F(D, D')eax +by = F(a, b)eax+by 

The proof of this theorem follows from the fact that F(D, D') is made 
up of terms of the type 

and 

crSDrD's 

Dr(eax÷by) areax+by' Dis(eax-}-by) bseax-}-by 

so that (CrsDTDF8)(eac) crsarbseax+by 

The theorem follows by recombining the terms of the operator F(D, D'). 
A similar result which is used in determining particular integrals is : 

Theorem 9. F(D,D') (eax-Fini (x,y) } 
= eax 

+byF(D + a, D' + b)q(x,y) 
The proof is direct, making use of Leibnitz's theorem for the rth 

derivative of a product to show that 

Dr(eax0) _ 
P 

(D peax)(Dr 
-Pck) 

p 

9' 

eax rCpapDr-p 
p=0 

= eax(D + a)rck 

To determine the complementary function of an equation of the type (1) 
we split the operator F(D,D) into factors. The reducible factors are 
treated by method (a). The irreducible factors are treated as follows. 
From Theorem 8 we see that eax +b?I is a solution of the equation 

F(D, D')z = 0 (14) 

provided F(a,b) - 0, so that 
z = : cr exp (arx -{-- br y) (15) 

in which ar, br, cr are all constants, is also a solution provided that ar, 
br are connected by the relation 

F(ar,br) = 0 (16) 
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In this way we can construct a solution of the homogeneous equation 
(14) containing as many arbitrary constants as we need. The series (15) 
need not be finite, but if it is infinite, it is necessary that it should be 
uniformly convergent if it has to be, in fact, a solution of equation (14). 
The discussion of the convergence of such a series is difficult, involving 
as it does the coefficients Cr, the pairs (ar,br), and the values of the 
variables x and y. 

Example 3. Show that the equation 

alz 1 az 
axe at 

possesses solutions of the form 

2 en COS (nx - i- En)e--k,n' t 

n=U 

This follows immediately from the fact that eax. "vt is a solution only if 

k 

and this relation is satisfied if we take a = ± in, b -- -kn2. 

To find the particular integral of the equation (1) we write it sym- 
bolically as 

z .-- 1 F(D,D')f (x 'y) (17) 

We can often expand the operator by the binomial theorem and then 
interpret the operators D -1, D' -' as integrations. 

Example 4. Find a particular integral of the equation 
(D2 - D')z = 2y _, x2 

We put the equation in the forni 

Now we can write 

1 z- (2y -- x2) 

1 

D2 D, (1-7) 
D2 1 1 

D' 

1 D2 D4 - _ _ - 
D' D'2 D13 

D 
Z _. 1 

.D ' 
( 2 y --- x2) -- 

1,2 
D2(2y - x2) 

= _ y2 4. x2 y 

= x2y 

-1 1,ÿ (2) D'2 

f (x,y) is made of terms of the form exp (ax + by), we obtain 
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(as a result of Theorem 8) a particular integral made up of terms of the 
form 

1 

F(a,b) 
exp (ax + by) 

except if it happens that F(a,b) - O. 

Example 5. Find a particular integral of the equation 

(D2 D')z e2x+J 

In this case F(D,D') = D2 - D', a = 2, and b = 1, so that F(a,b) = 3, and 
the particular integral is 

e2x+y 

In cases in which F(a,b) = O it is often possible to make use of Theorem 
9. If we have to solve 

F(D,D')z = ceax +" 

where c is a constant, we let 
z = weal -F" 

then by Theorem 9 we have 

F(D + a, D' + b)w = c (18) 

and it is sometimes possible to obtain a particular integral of this 
equation. 

Example 6. Find a particular integral of the equation 

(D2 - D')z = ex +v 

In this case F(D, D') = D2 - D', a = 1, b = 1, and F(a,b) = O. However, 

F(D +a,D'+b) = (D +1)2 -(D'+ 1) - D2 +2D -D' 
and so equation (18) becomes in this case 

(D2 + 2D - D')w = 1 

which is readily seen to have particular integrals 2x and -y. Thus ixex +J' and 
-yex +' are particular integrals of the original equation. 

When the function f (x, y) is of the form of a trigonometric function, 
it is possible to make use of the last two methods by expressing it as a 
combination of exponential functions with imaginary exponents, but 
it is often simpler to use the method of undetermined coefficients. 

Example 7. Find a particular integral of the equation 

(D2 - D')z = A cos (lx + my) 

where A, 1, m are constants. 

To find a particular integral we let 

z = C1 cos (Ix + my) + c2 in (lx + my) 

and substitute in the left -hand side of the original equation. Equating the 
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coefficient of the sine to zero and that of the cosine to A, we obtain the equations 

mcx- 12c2 =0 
-12c1 + nic2 = A 

for the determination of ci and c2. Solving these equations for ci and c2, we obtain 
the particular integral 

z = 2 

A 
A 

{ni sin (lx + my) + 12 cos (Ix + my)} 
In 1 

PROBLEMS 
1. Show that the equation 

a2d ary i 2k 
ay c2 

are at axe 

possesse's solutions of the form 

where cr, CXr Er 

co 
kt cos (;.x -i- er) COS (o)rt 

r0 

(5r are constants and 04. «rc`2 - k2. 

+ 6r) 

2. Solve the equations 
(a) r ; s - 2t es -3'Y 

(b) r - s + 2q - z = x2y2 

(c) r- 1- s-- 2t- p -2q =0 
3. Solve the equation 

adz a3z a3z a2z _ ex+?I 
axa axe ay ax ay`' ay3 

4. Find the solution of the equation 

Vz =e -z cosy 

which tends to zero as x > co and has the value cos y when x = O. 

5. Show that a linear partial differential equation of the type 

r,s 

ar-Fyz 
s 

C xyy ) Crsx ' . axr ays 
f 

may be reduced to one with constant coefficients by the substitutions 

log x, = log y 

Hence solve the equation 

xZr - y2t + xp - yq = log x 

5. Equations with Variable Coefficients 

We shall now consider equations of the type 

Rr + Ss + Tt -1- f (xy,zp,q) = O (1) 
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which may be written in the form 

L(z) + f (x,y,z,p,q) = o (2) 

where L is the differential operator defined by the equation 

L= a2 S a2 
a2 

R 
axe + Y ax a + T 3 

a 2 ) 

in which R, S, T are continuous functions of x and y possessing con- 
tinuous partial derivatives of as high an order as necessary. By a 
suitable change of the independent variables we shall show that any 
equation of the type (2) can be reduced to one of three canonical forms. 
Suppose we change the independent variables from x, y to , 71, where 

(x,y), _ ri(x,y) 
and we wri Le z(x,y) as «j) ; then it is readily shown that equation (1) 
takes the form 

a2 
2.8 

a2S 

- -V X, 01, a$2 

A = 1 7 (4) + (,) a 2 

where A(u,v) = Ru2 + Suu + Tv2 (5) 

B(u1,v1 ;u2,v2) = Ru1u2 + 2S(u1v2 + u2v1) Tvtv2 (6) 

and the function F is readily derived from the given function f. 
The problem now is to determine $ and n so that equation (4) takes 

the simplest possible form. The procedure is simple when the dis- 
criminant S2 -- 4RT of the quadratic form (5) is everywhere either 
positive, negative, or zero, and we shall discuss these three cases 
separately. 

Case (a) : S2 - 4RT > O. When this condition is satisfied, the 
roots A1, A2 of the equation 

Rae -I - Sac T = 0 (7) 

are real and distinct, and the coefficients of a20 a 2 and a2/ a772 in 
equation (4) will vanish if we choose and 71 such that 

a _ a: an _ an 
ax 1 ay ' ax 2 ay 

From Sec. 4 of Chap. 2 we see that a suitable choice would be 

= f1(x,y), -= f2(x,y) (8) 

where f1 = cl, f2 = c2 are the solutions of the first -order ordinary 
differential equations 

dy =0 dy x 0 
dx 1( x y) dx + A2(x,y) = (9) 

respectively. 
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Now it is easily shown that, in general, 

A( x, )A(rix,?1) - B2($x,e ;ìx,n11) _ (4RT -S2)(02, 

so that when the A's are zero 

B2 = (S2 -- 4RT)(eAv ßvÌ x)2 

and since S2 - 4RT > 0, it follows that B2 > 0 and therefore that we 
may divide both sides of the equation by it. Hence if we make the 
substitutions defined by the equations (8) and (9), we find that equation 
(1) is reduced to the form 

evnaY (10) 

a2 

a an J 

Example 8. Reduce the equation 

aLZ 
2 a2Z 

ax2 
x 

a v`z 

to canonical form. 
In this case R = 1, S = 0, T -- -x2, so that the roots of equation (7) are .l:x 

and the equations (9) are 
dy 
dx 

so that we may take -- y -I- zx2, =- y -- ßx2. It is then readily verified that 
the equation takes the canonical form 

a2 
1 a a 

a ail- 4(4 -i) a a71 

Case (h) : S2 - 4RT -_- O. In such circumstances the roots of 
equation (7) are equal. We define the function E precisely as in case (a) 
and take ? to be any function of x, y which is independent of . We 
then have, as before, A(' x,4) 0, and hence, from equation (10), 

;rìx,m,) -- 0. On the other hand, A(r7x, 17 ) 7: 0; otherwise n 
would be a function of . Putting A(&,,,4) and B equal to zero and 
dividing by A(,71), we see that the canonical form of equation (1) is, 
in this case, 

a2r_ 
ar 2 

(1?7, , n) (12) 

Example 9. Reduce the equation 

â2z 
-I 2 a2Z - 

a2z 
0 

ax2 ax ay ay2 

to canonical form and hence solve it. 
In this example R = 1, S = 2, T = 1, so that it is case (b), with 

1 + 2oc OC2 = 0 

in place of equation (7). We thus have Ai = -1, so that we may take = x - y, 
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n = x + y. We then find that the equation reduces to the canonical form 

a2c 

a2 =0 
n 

which is readily shown to have solution 

-ßf1() +f2( ) 

where the functions fx and f2 are arbitrary. Hence the original equation has 
solution 

z - (x + y)fAx - y) + f2(x - y) 

Case (c) : S2 - 4RT < O. This is formally the same as case (a) 
except that now the roots of equation (7) are complex. If we go through 
the procedure outlined in case (a), we find that the equation (1) reduces 
to the form (11) but that the variables , 9 are not real but are in fact 
complex conjugates. To get a real canonical form we make the further 
transformation 

a= Ye +IA 13 _lie? - ) 

and it is readily shown that 
a2 1 a2 

a an -4 aa2a2 
so that the desired canonical form is 

a2 a2 = aa2 I 
- a 2 tp(ay3, a ) 

To illustrate this procedure we consider : 

Example 10. Reduce the equation 

a2 a2Z 

axe 
x2 

a 2 ° y 

(13) 

to canonical form. 
In this instance Al - ix, 22 = -ix, so that we may take = iy + -x2, 

71 
- -iy + ìx2, and hence a - ix2, ß - y. It is left as an exercise to the reader to 

show that the equation then transforms to the canonical form 

a2c_ a2c -1a 
.3.2 aß2 loom 

We classify second -order equations of the type (1) by their canonical 
forms ; we say that an equation of this type is : 

(a) Hyperbolic if S2 -- 4RT > 0, 

(b) Parabolic if S2 - 4RT = 0, 

(c) Elliptic if S2 - 4RT < O. 

The one -dimensional wave equation 

a2Z a2Z 

axe a y2 
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is hyperbolic with canonical form 

a2 -o 
a an 

The one -dimensional diffusion equation 

a2z az 
ax2 ay 

is parabolic, being already in canonical form, and the two -dimensional 
harmonic equation 

a2Z a27 

ax2 a 2 -n y 
is elliptic and in canonical form. 

PROBLEMS 

:1. Show how to find a solution containing two arbitrary functions of the equation 
s - .f (x,y). 

Hence solve the equation 
s --- 4xy -1.1 

2. Show that, by a simple substitution, the equation 

RI. - 
I-. Pp : = W 

can be reduced to a linear partial differential equation of the first order, and 
outline a procedure for determining the solution of the original equation. 

Illustrate the method by finding the solutions of the equations: 

(a) xr _.+ . 2p : : 2y 
(b) s -q - - 0'41' 

3. 1f the functions R, P, Z contain y but not x, show that the solution of the 
equation 

Rr - I - Pp -I Z7 .., W 

can be obtained from that of a certain second -order ordinary differential 
equation with constant coefficients. 

Hence solve the equation 
y'...I ßy2 

4. Reduce the equation 
¡ 2Z 
(n - 1)2 

ax.<z 

+- l)p -Fyz ^ex 

a2z 
y2t a 

2 
- t2y 2n-1 aZ 

ay ay 

to canonical form, and find its general solution. 

5. Reduce the equation 

a2Z a2Z a2z y2 az x2 aZ 

y axe - 2xy ax ay + x aye _- x ax - y a 
to canonical form, and hence solve it. 
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6. Characteristic Curves of Second -order Equations 

We shall now consider briefly the Cauchy problem for the second - 
order partial differential equation 

Rr + Ss + Tt + f (x, y, z, p, q) -O (1) 

in which R, S, and T are functions of x and y only. In other words, we 
wish to consider the problem of determining the solution of equation (1) 
such that on a given space curve F it takes on prescribed values of z 
and az/an, where n is distance measured along the normal to the curve. 
This latter set of boundary conditions is equivalent to assuming that the 
values of x, y, z, p, q are determined on the curve, but it should be noted 
that the values of the partial derivatives p and q cannot be assigned 
arbitrarily along the curve. For if we take the freedom equations of 
the curve I' to be 

x = xo(T), y - ,Yo(T), z = zo(T) (2) 

then we must have at all points of P the relation 

Zo = poxo + Mo (3) 

(where zo denotes dzo /dt, etc.), showing that po and qo are not indepen- 
dent. The Cauchy problem is therefore that of finding the solution of 
equation (1) passing through the integral strip of the first order formed 
by the planar elements (xo,yo,zo,po,g0) of the curve P. 

At every point of the integral strip po = po(T), q0 = q0(T), so that if 
we differentiate these equations with respect to T, we obtain the relations 

Po = r±0 + si0, 40 = sa 0 + t;0 

If we solve the three equations (1) and (4) for r, s, t, we find that 

where 

A1 - 
S 

o 

±0 

r -S 
01 0 2 

T f 
o -po 
o -40 

, etc. 

t -1 
A,3 A 

and A = 
R S T 
4 7.10 O 

0 ' ?/o 

(4) 

If A -A 0, we can therefore easily calculate the expressions for the second - 
order derivatives ro, so, and to ,along the curve F. 

The third -order partial differential coefficients of z can similarly be 
calculated at every point of r by differentiating equation (1) with 
respect to x and y, respectively, making use of the relations 

9'0 - Zxxxi4 + ZxxvyO 

etc., and solving as in the previous case. 
Proceeding in this way, we can calculate the partial derivatives of 
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every order at the points of the curve P. The value of the function z 
at neighboring points can therefore be obtained by means of Taylor's 
theorem for functions of two independent variables. The Cauchy 
problem therefore possesses a solution as long as the determinant A 

does not vanish. In the elliptic case 4RT - S2 > 0, so that d 0 
always holds, and the derivatives, of all orders, of z are uniquely 
determined. It is reasonable to conjecture that the solution so obtained 
is analytic in the domain of analyticity of the coefficients of the differ- 
ential equation being discussed ; constructing a proof of this conjecture 
was one of the famous problems propounded by Hilbert. The proof 
for the linear case was given first by Bernstein; that for the general 
case (1) was given later by Hopf and Lewy. 

We must now consider the case in which the determinant d vanishes. 
Expanding A, we see that this condition is equivalent to the relation 

Rye - sx y -1- Tx8 _- O ( 5 ) 

If the projection of the curve r onto the plane z : -: O is a curve y with 
equation 

«x,y) -- co (6) 

then we find that, as a result of differentiating with regard to T, 

xxo f :1, ?)o ._. 0 (7) 

Eliminating the ratio x0b>0 between equations (5) and (7), we find that 
the condition d .= 0 is equivalent to the relation 

111(4-.x1 4711) V (8) 

where the function A is that defined by equation (5) of Sec. 5. A curve 
y in the xy plane satisfying the relation (8) is called a characteristic 
base curve of the partial differential equation (1), and the curve I" of 
which it is the projection is called a characteristic curve of the same 
equation. The term characteristic is applied indiscriminately to both 
kinds of curves, since there is usually little danger of confusion arising 
as a result. 

From the arguments of Sec. 5 it follows at once that there are two 
families of characteristics if the given partial differential equation is 
hyperbolic, one family if it is parabolic, and none if it is elliptic. 

As we have defined it, a characteristic is a curve such that, given values 
of the dependent variable and its first -order partial derivatives at all 
points on it, Cauchy's problem does not possess a unique solution. 
We shall now show that this property is equivalent to one which is of 
more interest in physical applications, namely, that if there is a second - 
order discontinuity at one point of the characteristic, it must persist at 
all points. 

To establish this property we consider a function 4 of the independent 
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variables x and y which is continuous everywhere except at the points 
of the curve C whose equation is 

e(x,y) _ e (9) 

where 4x,y) is any function (not necessarily the function defined 
above) with as many derivatives as necessary. If Po is any point on 
this curve and P1 and P2 are neighboring points on opposite sides of 
the curve (cf. Fig. 19), then we define the discontinuity of the function ¢ 
at the point Po by the equation 

[AI = lim {0(Pi) - OP2)} (10) 
o Pl, P2 ---*Po 

If the element of length along the directed tangent to the curve C at 
the point Po is do., then the tangen- 

y C tial derivative of the function 0 is 
defined to be 

do ao ao 

dog = ax 
cos (o,x) -I 

a 
cos (o,y) 

y 
and it is readily shown that this is 
equivalent to the expression 

dy - Ox4v(P0) - ç1/ x(Po) 
(1 1) 

do. {(P0) + (P()) 
I P: 

X 
The tangential derivative at Po is 
therefore continuous if the expres- a 
Sion on the right-hand side of this 
equation is continuous at P0, and 
we say that dd /dd is continuous on 

the curve C if this holds for all points Po on C. 

Now let us suppose that the function z(x,y) is a solution of the 
equation (1), where, for simplicity, we shall suppose that the function f 
is linear in p and q. We shall assume in addition that the function 
z(x,y) is continuous and has continuous derivatives of all orders re- 
quired except that its second derivatives are not all continuous at all 
points of the curve C defined by equation (9). In particular it is assumed 
that the first -order partial derivatives zx and zv have continuous tan- 
gential derivatives at all points of the curve C. It follows immediately 
from equation (11) that if the tangential derivative dzx/do is continuous 
at the point Po, so also is the expression 

zxx 2/(P0) -- zxyX;(P0) 

Now another way of saying that a function is continuous is to say that 
its discontinuity is zero at the point in question. We may therefore 
write 

Czxx} $?ß(P0) - Czxy} x(Po) = o 

Figure 19 
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By considering the other tangential derivative dzz /da, we may similarly 
prove the relation 

and hence that 
[zxvi v(Po) - [zvy] ex(Po) = 0 

[zxx] izx] [zvf] 

ß(P0) x(P0) U(P0) g(1)0) 

Letting each of the ratios in the equations (12) be equal to 2, we may 
write these equations in the form 

Izxx] = Ae (P0), [zxy] = . x(P0) Ey(Po), [zz,1,] _ A (P0) (13) 

If we now transform the independent variables in our problem from 
x and y to and 27, where is the function introduced through the curve 
C and i is such that, for any function ip(,i), dep/da = avian. The 
quantity A occurring in equations (13) will then be a function of n alone; 
we shall now proceed to determine that function. 

Since 

(12) 

z x x= Z& -1- 2z,, x?Î x--I- z u- I- z --I-- z , x xx y,rÌ xx 

and since zs and z,, are continuous (a result of the continuity of zx and 
zy) and z4,, and z, are tangential derivatives, we find that {zxx], which 
by definition is equal to 

reduces to 

so that 

lim {zxx(P2) - zxx(1)l)1 
l' P->P i a o 

lxm {zE(P2) (P2) - zEE(Pl)4(Pt)1 
P1xz }Po 

[z x x] [z J E x( P o) (14) 

A comparison of equation (14) with the equations (13) shows that the 
value of the quantity 2 occurring in these equations is [zee]. We 
began by assuming that there was a discontinuity in at least one of the 
second derivatives ; so A cannot be zero, and hence .neither can [zee] 

at the point Po. 
If we transform the equation to the new variables E and n, we get the 

equation (4) of Sec. 5, and applying the above argument to it, we see 
that 

[za]A(Ex,4) = 0 
showing that 

A ( x, 0 = 0 (15) 

and thereby proving that the curve C is a characteristic of the equation. 
If we differentiate tie transformed equation with regard to 4, take 
equation (15) into account, and note that only the terms in z and 
zE,, can be discontinuous, we can use a similar argument to show that 

2B ( x, 40%,-ri,)[z n] 
+ {AAx,4) -- F )[z 6.] = 0 
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Remembering that [zj is 2 and that A is a function of 77 alone, we see 
that this last equation is equivalent to the ordinary differential equation 

del 

dn g(n) 

which has a solution of the form 
q 

2(7) = 4(170 exp g() d 
'10 

So far we have considered only single characteristic curves ; now let 
us consider briefly all the characteristic curves on an integral surface E 
of the differential equation (1). If the equation is hyperbolic at all 
points of the surface, there are two one- parameter families of character- 
istic curves on E. It follows that two integral surfaces can touch only 
along a characteristic, for if the line of contact were not a characteristic, 
it would define unique values of all partial derivatives along its length 
and would therefore yield one surface, not the postulated two. Along 
a characteristic curve, on the other hand, this contradiction does not 
occur. In the case of elliptic equations, for which there are no real 
characteristics, the corresponding result would be that two integral 
surfaces cannot touch along any line. 

PROBLEMS 

1. Show that the characteristics of the equation 

Rr --I -- Ss + Tt = f (x, y, z, p, q) 

are invariant with respect to any transformations of the independent variables. 

2. Show that the characteristics of the second -order equation 

a2z a2z a2z 
A a-- + 2B 

ax ay 
Ca-- - F(x,y,z,p,q) 

are the same as the projections on the xy plane of the Cauchy characteristics 
of the first- order. equation 

Ape -I- 2Bpq + Cq2 = 0 

3. In the one -dimensional unsteady flow of a compressible fluid the velocity u and 
the density p satisfy the equations 

au au i ap ap ap au 

at +uax +Pax -02 â I- u- a;+pax =o 

If the law connecting the pressure p with the density p is p = kp2, show that 

au au ac ac ac au 

at- }- uax +2cax =0, 2t -2u 
ax 

+cax =0 

where c2 = dp /dp. Prove that the characteristics are given by the differential 
equations dx = (u + c) dt and that on the characteristics u + 2c are constant. 
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If there is a family of straight characteristics x = int satisfying the differ- 
ential equation dx jdt = u + c, prove that 

2x x 
u 3t ' c 3t 

It 

where it is a constant. Determine the equations of the other family of 
characteristics. 

4. In two -dimensional steady flow of compressible fluid the velocity (u,v) and the 
density p satisfy the equations 

pua 
+pvau +clap _0 

ax ay ax 

av av ap 
puax -}-pva +c2a =0 

y 

a (u p) + 
a 

(Up) -0 
ax ay 

where c2 -- dp f dp. Show that the condition that the curve (x,y) = constant 
should be a characteristic, i.e., such that u6-, v$, p are not uniquely determined 
along it, is that 

(u$x + v ) {(u x -I- v4)2 - c2(ÿß '1- v)} = O 

Show that the second factor has real linear factors if, and only if, 
u2 - }- v2 c2. Interpret these results physically. 

7. Characteristics of Equations in Three Variables 

The concept of the characteristic curves of a second -order linear 
differential equation which was developed in the last section for 
equations in two independent variables may readily be extended to the 
case where there are n independent variables. In this section we shall 
show how the analysis may be extended in the case n =- 3. The general 
result proceeds along similar lines, but the geometrical concepts are 
more easily visualized in the case we shall consider. 

We suppose that we have three independent variables x1, x2, x3 and 
one dependent variable u, and we write pi; for a2u ¡axz ax;, pi for 
au f axi. The problem we consider is that of finding a solution of the 
linear equation 

3 3 

L(u) = aopi; + Z bipi + cu = 0 (1) 

for which u and auf an take on prescribed values on the surface S whose 
equation is 

f(x1,x2,x3) = o (2) 

If we suppose that the freedom equations of S are 

xi = xi(T1, -2) i = 1, 2, 3 (3) 
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then we may write the boundary conditions in the form 

ú = F(T 1,T 2), au/ an - = G(T 1 ,T 2) (4) 

the bar denoting that these are the values assumed by the relevant 
quantity on the surface S. 

From equation (2) we have the identity 

of taxi 
dT 

axi 
dT 2 ax aT 

1 +UT 
z -1 Z 1 2 

so that equating to zero the coefficients of dr1 and dT2, we have 
3 

2 aiP2; =o j = 1,2 (5) 
i =1 

o 

where 6i ^ of taxi, 
that 

pii 

al 

d1 

axi /aT;. Solving these equations, we find 

_ 62 - 63 , = say 
a2 d3 

(6) 

where d1 denotes the Jacobian a(x2,x3) /a(T1,T2) and the others are 
defined similarly. 

Taking the total derivative of ú, we find in a similar way that 
3 2 

dü = 2 2 piPii di-5 
i =1 j =1 

from which it follows that the first of the conditions (4) is equivalent to 
3 aF 

piFii- a i = 1,2 (7) 
T? 

i =1 

The second condition gives 
3 

2 piai = GOT + a2 + a3)1 (8) 
i =1 

Equations (7) and (8) are sufficient for the determination of p1, P2, P3 
at all points of the surface S, it being easily verified that the determinant 
of their coefficients does not vanish. 

We can determine the second derivatives of u at points of S by 
applying the same procedure to pi (the value of pi on S) as we have just 
applied to ü. We obtain the pair of equations 

3 

P = api i = 1 2 rapir aT, , 
r=1 9 

(9) 

for each value of i. This pair of equations is not sufficient for the 
solution of pi1, pi 2, pia, so that we add the equation 

3 

2 arpir = Ai 
r =1 

where Ai is a parameter in terms of which all the pir are expressed 

(10) 
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I i nearly and the. «'s are numerical constants chosen in such a way as to 
ensure that the determinant 

0= P11 P21 P31 
P12 P22 P32 
OC1 C(2 OC3 

is nonzero. 
Suppose now that the quantities pi', constitute a set of solutions of 

(he equations (9) ; then 
3 

Pri(pir - pir) = O J = 1, 2 

so that Pii pit pit - Pi2 pi3 Pi3 

Al A 2 03 
which can be written in the form 

pi; _ .,pij + Pik; (12) 

where the pi are constants. Now pi; = pi, and pí; = psi, so that we 
must have 

PA = P5Ai (13) 
But = Add; _ 6 /t so that p = ,u6 where ,u is a constant, P z Z , i 2> > 

and from (6) d; = b; /p. Therefore piA; = /1,6i6;, where 2 = ,u /p is a 
constant. 

Hence we find 
Psi 

the value of A being given by 
3 3 3 

A ai;aia ai pi; -i- bipi = O (14) 
=1 i, j =1 i =1 

as found by substituting in the differential equation (1). This equation 
has a solution for A unless the characteristic function 

3 

(I)= 
i,; 

vanishes, i.e., unless f is such that 
3 

>aj = 0 ' axi óx; 

(is) 

(16) 

When c 0, we can solve equation (14) for 2, so that then all the 
second derivatives can be found and the procedure repeated for higher 
derivatives of u on S. The complete solution can then be found by a 
Taylor expansion. 

The equation (16), i.e., (to = 0, defines the characteristic surfaces. If 
f(x1,x2,x3) is a solution of (16), then the direction ratios (ô1,ô2,ò3) of 
the normal at any point of the surface satisfy 

ai1ôi6; -0 (17) 
i.j 
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which is the equation of a cone. Therefore at any point in space the 
normals to all possible characteristic surfaces through the point lie on a 
cone. The planes perpendicular to these normals therefore also 
envelop a cone ;1 this cone is called the characteristic cone through 
the point. The characteristic cone at a point therefore touches all 
the characteristic surfaces at the point. 

Now according to equations (8) of Sec. 13 of Chap. 2, the Cauchy 
characteristics of the first -order equation (16) are defined by the 
equations 

dxi dòi 
a(1)1a6, aol axi 

The integrals of these equations satisfying the correct initial conditions 
at a given point represent lines which are called the bicharacteristics of 
the equation (1). These lines in turn generate a surface, called a 
conoid, which reduces, in the case of constant ads, to the characteristic 
cone. 

We may use the quadratic form (15) to classify second -order equations 
in three independent variables : 

(a) If ito is positive definite in the (5's at the point .P(x °,x °,x3), the 
characteristic cones and conoids are imaginary, and we say that the 
equation is elliptic at P. 

(b) If (Ds is indefinite, the characteristic cones are real, and we say 
that the equation is hyperbolic at the point. 

(c) If the determinant 

i = 1, 2, 3 

all a21 

a12 a22 
an 
a32 

an a23 a33 

of the form t vanishes, we say that the equation is parabolic. 
This classification is in line with the one put forward in Sec. 5 for 

equations in two variables and has the advantage that it is readily 
generalized to equations in n variables. 

PROBLEMS 
1. Classify the equations: 

(a) uxx + uvv = uz 

(b) uxx + uyy = uzx 

(c) uxx + uvv + uzz = O 

(d) uxx + 2uvv + uzz = 2uxy + 2uvz 

(e) uxx + an + uzx + 2uyz = 0 

1 In solid geometry this second cone is called the reciprocal cone of the first. 
See, for example, R. J. T. Bell, "An Elementary Treatise on Coordinate Geometry 
of Three Dimensions," 2d ed. (Macmillan, London, 1931), p. 92. 
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2. Determine the characteristic surfaces of the wave equation 

uxx + uvy = uxz 

Show that the bicharacteristics are straight lines, and verify that they 
generate the characteristic cone. 

8. The Solution of Linear Hyperbolic Equations 

Before describing Riemann's method of solution of linear hyperbolic 
equations of the second order in two independent variables, we shall 
briefly sketch the existence theorems for two types of initial conditions 
on the equation 

a2z 

ax a = f(x,y,z,z,z), 
.Y 

which, as we have seen, includes the most general linear hyperbolic 
equation. In the first kind of initial condition the integral surface is 
defined by two characteristics, one of each of the two families of 
characteristics on the surface; in the second kind (which corresponds 
to Cauchy's problem) the integral surface is defined by one space 
curve which nowhere touches a characteristic curve, p and q being 
prescribed along this curve. 

For both kinds of initial condition it is assumed that the function f (x,y,z,p,q) is continuous at all points of a region R defined by a < x 
< ß, y < y < (5 for all values of x, y, z, p, q concerned and that it 
satisfies a Lipschitz condition 

I -,l (x,y,z1,p1,g1)1 < M{lz2 ~ z1I 

_I. IP2 ^Pll+ 1 q -q1I} 
in all bounded subrectangles r of R. 

Initial Conditions of the First Kind. If cr(x) and T(y) are defined in the 
open intervals (a,ß), (y,(5), respectively, and have continuous first 
derivatives, and if (,77) is a point inside R such that a(e) = T(r7), then the 
given differential equation has at least one integral z = îp(x,y) in R 
which takes the value a(x) on y == r7 and the value T(y) on x = 

Initial Conditions of the Second Kind. If we are given (x,y,z,p,q) 
along a strip C1, i.e., we have x = x(2), etc., in terms of a single para- 
meter 1, and if Co is the projection of this curve on the xy plane, then 
the given equation has an integral which takes on the given values of 
z, p, q along the curve Co. This integral exists at every point of the 
region R, which is defined as the smallest rectangle completely enclosing 
the curve Co. 

For proofs of these results the reader is referred to D. Bernstein, 
"Existence Theorems in Partial Differential Equations," Annals of 
Mathematics Studies, no. 23 (Princeton, Princeton, N.J., 1950). 

We shall now pass on to the problem of solving the general linear 
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hyperbolic equation of the second order. The method, due to Riemann, 
which we shall outline, represents the solution in a manner depending 
explicitly on the prescribed boundary conditions. Although this 
involves the solution of another boundary value problem for the 
Green's function (to be defined below), this often presents no great 
difficulty. 

We shall assume that the equation has already been reduced to 
canonical form 

L(z) = f (x,Y) 

where L denotes the linear operator 
a2 

áx + bay 
ax ay +a +' 

Now let w be another function with continuous derivatives of the first 

CO 

(2) 

order. 

so that 

where M 

and 

Then we may write 

atz 
waxay 

a2w a aZ 

Z áy w áx 
az a(aw) a 

wa 
x 

+ 
z ax ax (awz) 

wb 
az 

z 
a(btiv) = a 

bwz + a a ) y y 
au aV 
axa ay 

is the operator defined by the relation 

Mw = a2w a(aw) a(bw) 
cw axa ax a y x y 

U= awz -z aw 
V = bwz az 

a y + w 
ax 

The operator M defined by equation (4) is called the adjoint operator 
to the operator L. If M = L, we say that the operator L is self -adjoint. 

Now if r is a closed curve enclosing an area E, then it follows from 
equation (3) and .a straightforward use of Green's theorem' that 

f(wLz -zMw)dxdy= (Udy -Vdx) 
r 

{ U cos (n,x) + V cos (,y)} ds (6) 
r 

where n denotes the direction of the inward -drawn normal to the curve r. 
1 P. Franklin, "Methods of Advanced Calculus" (McGraw -Hill, New York, 1944), 

p. 201. 

wLz -zMw= 

a aw 
xZáy 

Z 
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Suppose now that the values of z and az/ ax or az/ay are prescribed 
along a curve C in the xy plane (cf. Fig. 20) and that we wish to find the 
solution of the equation (1) at the point P(,?7) agreeing with these 
boundary conditions. Through P we draw PA parallel to the x axis 
and cutting the curve C in the point A and PB parallel to the y axis and 
cutting C in B. We then take the curve F to be the closed circuit PABP, 
and since dx = 0 on PB and dy = 0 on PA, we have immediately from 
equation (6) 

J(wLz - z M w) dx dy = - Vdx) + U dy - J(Udy 
I3 BP PA 

E 

Now, integrating by parts, we find 
that 

V dx = iz w] P 
IPA 

+ JPA( 

-}dx 
1 

so that we obtain the formula 

aw 
[zw]P == [zw] A + I z(bw ax PA 

X ax - 
fßpZ 

(cm - 
.v 

aw 
dy 

y 

x 

Figure 20 

JAB(Udy 
- Vdx) + f f (w Lz 

So far the function w has been arbitrary. Suppose now that we choose 
a function w(x,y;,77) which has the properties 
(i) Mw = 0 

a 
(r1) b(x,y)w when y -n 

(iii) w = a(x,y)w when x = e 
y 

(iv) w = 1 when x = , y = /11 

Such a function is called a Green's function for the problem or sometimes 
a Riemann -Green function. Since also Lz = f, we find that 

az 
[Zi, = [zw] A -f 

azrxz(a 
dy -b dx) + f (Z dy +Wax dx} 

(Wf ) dx dy (7) f f 
s 
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which enables us to find the value of z at the point P when âz /ôx is 
prescribed along the curve C. When ôz /ôy is prescribed, we make use 
of the following calculation 

azW> 
a(zw) [ZW]B [zwlA - - f ( 

8a x dx + ay dY 

1 

1 

to show that we can write equation (7) in the form 

[Z]p = [zWki - SABWZ dy -b dx) -f 
B lZ 8x dx + w 

-a-jaz dy) 

-I- f f (wf) dx dy (8) 
E 

Finally, by adding equations (7) and (8), we obtain the symmetrical 
result 

[Z]p = 2 {[zw] + [zw]B } - LB wz(a dy -b dx) 

-- 
2 JAa w 

{y 
dy 

-6az 
dx) 2 JAB z 

{aw dx - áÿ dY1 

+ f f (wf) dx dy 
E 

(9) 

By means of whichever of the formulas (7), (8), and (9) is appropriate 
we can obtain the solution of the given equation at any point in terms 
of the prescribed values of z, p, and q along a given curve C. We 
shall find that this method of Riemann's is of particular value in the 
discussion of the one -dimensional wave equation. A reader seeking a 
worked example is referred forward to that section (Sec. 3 of Chap. 5). 

PROBLEMS 
1. If L denotes the operator 

Rae +S a2 +Pa2 +Pá +Qá --Z 
axe ax ay ay2 ax ay 

and M is the adjoint operator defined by 

Mw - a2(Rw) 
+ 

a2(sw) 
+ 

a2(Tw) a(Pw) a(Qw) + .Zw 
axe ax ay ay2 ax ay 

show that' 

ff (wLz - zMw) dx dy = Tr {Ucos (n,x) + V cos (n,y)} ds 

E 

1 This equation is known as the generalized form of Green's theorem. 
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where F is á closed curve enclosing an area E and 

U = Rw 
az a(Rw) a(Sw) 

+ Pzw, 
ax ax ay 

az az a(Tw) 
V= Swax+Twayy -z 

ay 
Qzw 

If Rx + iSi, = P, 2 Sx + Ty = Q, show that the operator L is self -adjoint. 

2. Determine the solution of the equation s = f (x,y) which satisfies the boundary 
conditions z and q prescribed on a curve C. 

3. Obtain the solution, valid when x, y > 0, xy > 1, of the differential equation 

a2z 1 

ax ay x +y 
such that z = 0, p = 2y 1(x + y) on the hyperbola xy = 1. 

4. Prove that, for the equation 

atz 
axa +iz= o 

y 
the Green's function is 

w(x,y; )) = J00/ (x - )(y - r)) 
where .10(z) denotes Bessel's function of the first kind of order zero. 

5. Prove that for the equation 

a2z 2 az az 

ax ay +x +y +ay 

the Green's function is 

=0 

w(x, ;1) - (x + y) {2xy + (4 - ì)(x - y) + 2i} 
y t +V 

Hence find the solution of the differential equation which satisfies the 
conditions z = 0, az/ ax = 3x2 on y = x. 

9. Separation of Variables 

A powerful method of finding solutions of second -order linear 
partial differential equations is applicable in certain circumstances. 
If, when we assume a solution of the form 

z = X(x) Y(y) (1) 

for the partial differential equation 

Rr + Ss + Tt -I- Pp + Qq + Zz = F (2) 

it is possible to write the equation (2) in the form 

1 f (D)X = - g(D') Y (3) 
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where f (D), g(D') are quadratic functions of D = a /ax and D' - a /ay, 
respectively, we say that the equation (2) is separable in the variables 
x, y. The derivation of a solution of the equation is then immediate. 
For the left -hand side of (3) is a function of x alone, and the right -hand 
side is a function of y alone, and the two can be equal only if each is 
equal to a constant, A. say. The problem of finding solutions of the 
form (1) of the partial differential equation (2) therefore reduces to 
solving the pair of second -order linear ordinary differential equations 

f (D)X = AX, g(D) Y = AY (4) 

The method is best illustrated by means of a particular example. 
Consider the one -dimensional diffusion equation 

a2z 1 az 
`axe == k at 

If we write 
z = X(x)T(t) 

we find that 

(5) 

1 d2X 1 di' 
X dx2 kT dt 

so that the pair of ordinary equations corresponding to (4) is 

d2X = u7 d T = k2.T 
dx2 dt 

so that if we are looking for a solution which tends to zero as t >- oo, 
we may take 

X = A cos (nx + e), T= Be -kn2t 

where we have written -n2 for A. Thus 
z(x,t) = en cos (nx + en)e -"2" 

where en is a constant, is a solution of the partial differential (5) for 
all values of n. Hence expressions formed by summing over all values 
of n 

CO 

z(x,t) _ en cos (nx + en)e - n2kt (6) 
n = 0 

are, formally at least, solutions of equation (5). It should be noted 
that the solutions (6) have the property that z -- O as t -* co and that 

CO 

z(x,0) _ en cos (nx + En) (7) 
n = 0 

The principle can readily be extended to a larger number of variables. 
For example, if we wish to find solutions of the form 

z = X(x) Y(y)T(t) (g) 
of the equation 

atz atz 1 az 
ax2 +a y 2 -kat (9) 
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we note that for such a solution equation (9) can be written as 

1 d2X 1 d2 Y 1 dT 
X dx2 + Y dy2 kT dt 

so that we may take 
dT 2 

= -n2kT 
x = --12, 

dt dx2 ' 

provided that 
12+m2 n2 

d2Y_ -m2Y 
dy2 

Hence we have solutions of equation (9) of the form 

z(x,y,t) _ >., ca, cos (Ix -I- i) cos (my -{- 8m)e_k(12+7,a2)i (10) 
l-0 9)t= 0 

PROBLEMS 

1. By separating the variables, show that the one -dimensional wave equation 

a2z l a2z 

ax 'L c 2 at 
has solutions of the form A exp ( * inx _!_ inct), where A and n are constants. 
Hence show that functions of the form 

z(x,t) = 
r7rct rrrct r7rx 

A,. COs -i- Br Sin S111 
a a a 

r 

where the Ar's and Br's are constants, satisfy the wave equation and the 
boundary conditions z(0,t) - 0, z(a,t) = 0 for all t. 

2. By separating the variables, show that the equation V i V = 0 has solutions of 
the form A exp ( +nx ± iny); where A and n are constants. Deduce that 
functions of the form 

V(x,y) - e--rnx/a sin ,y x 0, 0 " -, y < a 

where the A,.'s are constants, are plane harmonic functions satisfying the 
conditions V(x,0) = 0, V(x,a) -= 0, V(x,y) > 0 as x > co . 

3. Show that if the two -dimensional harmonic equation V I V -0 is transformed 
to plane polar coordinates r and O, defined by x - r cos 0, y = r sin O it takes 
the form 

a2y t ay i a2V 

ar2 ` r a r2 a02 
_ 0 

and deduce that it has solutions of the form (Ar" + Br-72)eÿu'i0, where A, B, 
and n are constants. 

Determine Vif it satisfies VI V = 0 in the region 0 < r < a, 0 c 0 < 2ir and 
satisfies the conditions: 

(i) V remains finite as r -4- 0; 

(ii) V = 2 c, cos (n0) on r = a. 
r 
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4. Show that in cylindrical coordinates p, z, 0 Laplace's equation has solutions of 
the form R(p)e ±mz lint where R(p) is a solution of Bessel's equation 

d2R 1dR 
dp2 

+ 
p dp + 

2 (m2-)R=O 
P 

If R 0 as z -- co and is finite when p = 0, show that, in the usual notation 
for Bessel functions' the appropriate solutions are made up of terms of the 
form J (nip)e- ,nz±ink 

5. Show that in spherical polar coordinates r, O, 0 Laplace's equation possesses 
solutions of the form 

Arn 
B 

i,)L¢i + 
rn+' 

0(cOS 0)e 

where A, B, in, and n are constants and ®(y) satisfies the ordinary differential 
equation 

2 ., ., 2 

2) 
d 0 2 d 

0 
+ {n(n -- 1) - m 

0 = 0 d2 1 2 

W. The Method of Integral Transforms 

The use of the theory of integral transforms in the solution of partial 
differential equations may be simply explained by an example which 
possesses a fair degree of generality. Suppose we have to determine a 
function u which depends on the independent variables x1, x2, . . . xn 
and whose behavior is determined by the linear partial differential 
equation 

a2u au 
a(x) ax. -+- c(x1) u + Lu = f(x1,x2, . . , xn) (1) 

1 1 

in which L is a linear differential operator in the variables x2, . . x, 
and the range of variation of x1 is a < x1 < 13. If we let 

u(4,x2, . . . , xn) - u(x1,x2, . . . ,xn) K($,x1) dx1 (2) a 

then an integration by parts shows that 

si) 
::; 

au 
a(x1) 

1 
' b(x1) ax + c(xi)u) K( ;,x1) dxx 

« 

a2 a 
= g(e,x2, . . . ,x,i) + 

« 1 

(aK) 
1 

u axe - ax (bK) + cK dx1 

u 

1 

where g($,x2, . . . ,xn) = [a 
aax 

K(,x1) + u (bK - ax 1 

(aK))] 
a 

a 

If therefore we choose the function K(e,x1) so that 
a2 

axe 
(aK) - 

1 ax 
(bK) + cK = AK 

1 M. Golomb and M. E. Shanks, "Elements of Ordinary Differential Equations" 
(McGraw -Hill, New York, 1950), p. 298. 

(3) 
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where 2 is a constant, thèn multiplying equation (1) by K($,x1) and 
integrating with respect to x1 from a to ß, we find that the function 
ú(E,x2, .. )xn), defined by equation (2), satisfies the equation 

(L + a) (0,x2, . . . ,xn) = F(,x2, . . . ,xn) (4) 

where F(,x2, . . . ,xn) =10,x2, . . . ,xn) -g(,x2, . ,xn), f being 
defined by an equation of type (2). 

We say that u is the integral transform of u corresponding to the kernel 
K(,x1). The effect of employing the integral transform defined by the 
equations (2) and (3) is therefore to reduce the partial differential 
equation (1) in n independent variables x1, x2, . . . , xn to one in 
n - i independent variables x2, . . . , xn and a parameter . By the 
successive use of integral transforms of this type the given partial 
differential equation may eventually be reduced to an ordinary differ- 
ential equation, or even to an algebraic equation, which can be solved 
easily. We are, of course, left with the problem of solving integral 
equations of the type 

u(0,x2, . . . ,xn) = u(x1,x2, . . . ,xn)K( ,x1) dx1 
)9 

a 

if we are to derive the expression for u(x1,x2, . . . ,xn) when that for 
ú(,x2, . . . ,x,) has been determined. For certain kernels of frequent 
use in mathematical physics it is possible to find a solution of this 
equation in the form 

¡ 
u(xl,x2, . . . ,xn) = 1.c(,x2, . . . ,xn)(,x1) d 5) 

A relation of this kind is known as an inversion theorem. The inversion 
theorems for the integral transforms most commonly used in mathe- 
matical physics are tabulated in Table 1. These theorems are not, of 
course, true for all functions u, for it is obvious that some u's would 
make the relevant integrals divergent. Proofs of these theorems for 
the classes of functions most frequently encountered in mathematical 
physics have been formulated by Sneddon ;1 those appropriate to 
wider classes of functions have been given by Titchmarsh.2 

The procedure to be followed in applying the theory of integral 
transforms to the solution of partial differential equations therefore 
consists of four stages : 

(a) The calculation of the function f(,x2, . . . ,xn) by simple 
integration; 

(b) The construction of the equation (4) for the transform ü; 
(c) The solution of this equation; 
(d) The calculation of u from the expression for ú by means of the 

appropriate inversion theorem. 

1 I. N. Sneddon, "Fourier Transforms" (McGraw -Hill, New York, 1951). 
2 E. C. Titchmarsh, "The Theory of Fourier Integrals" (Oxford, London, 1937). 
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Table 1. Inversion Theorems for Integral Transforms 

Name of 
transform («,ß) K(,x) 6/ ,6) 

Fourier ( ---- co, co) 
I. eax 

VI; 

Fourier cosine 

Fourier sine 

Laplace 

(0,00) 

(0, 00) 

( 
I. e-iex 

A7-2; 

(0,00) 

(0, co) 

(0,00) e---x, R(0 > c (Y - i °O) Y + i 0O) 

Mellin (0, 00) 

J. 

ex, Y > c 
2Tr1 

(y - ico, y -1- /00) 

Hankel (0, 00 ) xJ,gx), v > - -i (0, co) 

To illustrate this procedure we shall consider: 

Example 11. Derive the solution of the equation: 

a2V 1 av a2y_ 
art + r ar 

+ 
az2 

for the region r > 0, z > 0, satisfying the conditions: 

(i) V>0 as z } co and as r-} co 

(ii) V -- f(r) on z = 0, r >0 
If we introduce the Hankel transform 

0 

ÇV = r V(r,z)JoW) dr 

then, integrating by parts and making use of (i), we find that 
Jo a2v lay 

art + r Ti-,. r rJ0( r) dr = --e V 

because of the fact that JO(Wr) is a solution of Bessel's differential equation 

d? f i f+ = 0 2 
dr2 r dr f 

Hence the equation satisfied by the Hankel transform P is 

d2V ep = 0 
dz2 

where, as a result of the boundary conditions, we know that V ? 0 as z -} co and 
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that V = f (s) on z = 0, f () denoting the Hankel transform (of zero order) of 
(r). The appropriate solution of the equation for V is therefore 

V = .ÍS()e -z 

From the inversion theorem for the Hankel transform (last row of Table 1) we 
know that 

V(r,z) V (,z)J0(r) d 
0 

so that the required solution is 
co 

V(r,z) - f()e_z.Io(r) d i 
If the form off (r) is given explicitly, f() can be calculated so that V(r,z) can be 
obtained as the result of a single integration. 

The method of integral transforms can, of course, be applied to 
linear partial differential equations of order higher than the second, as 
is shown by the following example: 

Example 12. Determine the solution of the equation 

a1z 192z 
0 

ax4 a y2 

( -CO < X < co y ;; 0) satisfying ying the conditions: 

(i) z and its partial derivatives tend to zero as x - > I. co ; 

(ii) z - f (x), az j ay : - 0 on y : -= O. 

In this case we may take 
1 

:I(ç,y) 
v 27T 

00 

z(x, y)'iEx dx 
-- 

for which, as a result of an integration by parts taking account of (i), we have 

1 U' a42. 

4 
e1 dx __. 02 V 27 j -- co a. 

so that the equation determining the Fourier transform 2 is 

d2Z 
1 

Ell 
.1 - -: o 

with Z _ F(), dZ jdy -= 0 when y - O. Therefore 

Z = F(4) cos (42y) 

By the inversion theorem for Fourier transforms (first row of Table 1) we have 
1 00 

z(x,y) -- 
/ 

Z(4,y)e -i6.2: 4 
so that finally 

F(0 cos (4y)e -az d4 
Co 

where F(4) is the Fourier transform off (x). 
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PROBLEMS 

1. The temperature O in the semi -infinite rod 0 < x < co is determined by the 
differential equation 

ao a28 

at ~ x axe 
and the conditions 

( i ) 0 - - 0 when t= 0, x> 0 

(ii) 8 = e0 = const. when x = 0 and t > 0 

Making use of sine transform, show that 

0(x,t) _ 
2 

00 
0 

sin x 
(1 = e -K 2t) d 

2. If in the last question the condition (ii) is replaced by (ii') ae/ ax 
constant, when x = 0 and t > 0, prove that 

2/1 00 cos(x) 
e(x,t) = 

2 
(1 --- e -K2t) d 

o 

3. Show that the solution of the equation 

az a2z 
ax aye 

which tends to zero as y co and which satisfies the conditions 

(i) z = f(x) when y = 0, x > 0 

(ii) z = 0 when y > O, x = O 

may be written in the form 

1 y +io° 
)eex-V-i d 2ri 

y -i( co 

= -tt, a 

Evaluate this integral when f (x) is a constant k. 

4. The function V(r,O) satisfies the differential equation 

a2y 1 ay i a2y n 
r are ar r2 ae2 

in the wedge -shaped region r > 0, lei <a and the boundary conditions 
V = f (r) when O = d a. Show that it can be expressed in the form 

i 

fy +i °° cos (0) 
V(r,9) = 

27ri cos ( a) 
,(11.-.$ d 

Jy_i 
co 

where f () = f (014-1 dr 
0 

5. The variation of the function z over the xy plane and for t > 0 is determined 
by the equation 

la2z 
'72Z 1Z e2 at2 
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If, when t = 0, z = f (x,y) and az/ at = 0, show that, at any subsequent time, 

1 co 

z(x,y) = 2r F(,97) cos (ct , 2 + 772) e -i( x +?!) d dry 
co 

INC 
F( X91) = 2 where 

co 

Î (x,y)ei(+ny) dx dy 

I I. Nonlinear Equations of the Second Order 

It is only in special cases that a partial differential equation 

F(x,y,z,p,q,r,s,t) = 0 (t) 

of the second order can be integrated. The most important method of 
solution, due to Monge, is applicable to a wide class of such equations 
but by no means to them all. Monge's method consists in establishing 
one or two first integrals of the form 

= f (E) (2) 

where and r are known functions of x, y, z, p, and q and the function f 
is arbitrary, i.e., in finding relations of the type (2) such that equation (1) 
can be derived from equation (2) and the relations 

7zp -1- nvr -1- = f '(4) { x zp -I- Apr -I-- Qs} (3) 

'., H- n zq -F rips + Thi t = f'(0{4:, + zq + e ps at } (4) 

obtained from it by partial differentiation. 
It should be noted at the outset that not every equation (1) has a first 

integral of the type (2). In fact by eliminating f '(e) from equations (3) 
and (4), we see that any second -order partial differential equation which 
possesses a first integral of the type (2) must be expressible in the form 

Rif' -Ì- Sts f. Tit + U1(rt -- s2) = Vi (5) 

where R1, Si, T1, I1, and V1 are functions of x, y, z, p, and q defined by 
the relations 

Si 

la(,72) _,_ ,a(4:,n) T a(,97) , .a(e,n) R1 (6a) 
a(P,Y) ' ' a(p,z)' '1- atx,q) ' P a(z,q) 

a(e,J) ai,1) a(,) a(,n) (6b) 

a(e,n) (6e) 
Ul a(p, q) a(z,x) a(y,z) a( y,x) 

The equation (5) therefore reduces to the form 

Rlt' + Sls + - T1t 
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equation of the type (7) is nonlinear, since the coefficients R1, S1, T1, V1 

are functions ofp and q as well as of x, y, and z. It has a certain formal 
resemblance to a linear equation, and for that reason is often referred 
to as a quasi - linear equation; it is also called a uniform nonlinear 
equation. An equation of the type (5) is, by contrast, known as a 
nonuniform equation. 

We shall assume that a first integral of the equation 

Rr + Ss + Tt + U(rt - s2) = V (8) 

exists and that it is of the form (2). Our problem is, having postulated 
its existence, to establish a procedure for finding this first integral. 

For any function z of x and y we have the relations 

dp= rdx +sdy, dq= sdx+tdy (9) 

so that eliminating r and t from this pair of equations and equation (8), 
we see that any solution of (8) must satisfy the relation 

Rdpdy + Tdgdx + Udpdq - Vdxdy = s(Rdye - Sdxdy + Tdx2 
+ U dp dx =, U dq dy) (10) 

If we suppose that 

«x,y,z,p,q) cl, n(x,y>z,p,g) = c2 

are two integrals of the set of equations 

Rdpdy -}-Tdqdx -}- Udpdq - Ydxdy=0 (11) 

R dy2 -}- T dx2 + U dp dx -s- U dq dy = S dx dy (12) 

dz=pdx -} -gdy (13) 
then the equations 

d =0, tin =0 (14) 

are equivalent to the set (11) to (13). Eliminating dz from equations 
(13) and (14), we get the pair 

dp = - Úl dx - Úl { á.v -I 9} dy (15) 

dq 1 {a(,n) a(e,n) p} dx - R1 
dy (16) a(x,p) az,p) 

where R1, T1, U1 are defined by the equations (6). Substituting for dp, 
dq from these equations, we see that 

T1 2dp dx-dq d =- dx - Ri 
dy2 {a ((:,, yn)) ul y 

2 

Uz 

a(Em) a&,n) a&m) } 

+ a(q,z) q - a(p,x) a(P,z) p 
dx dy 
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a relation which is equivalent to the equation 

1 dy2 -}- T 1 dx2 -}- U1 dp dx + U1 dq dy = S1 dx dy (17) 

Similarly we can show that 

.R1 dp dy -I- T1 dq dx + U1 dp dq -V1 dx dy = 0 (18) 

Comparing equations (17) and (18) with (11) and (12), we see that 

R1 S1 T1 U1 V1 
(19) 

so that the equation (8), which we have to solve, is equivalent to the 
equation (5), which we know has a first integral of the form (2). The 
first integral (2) is therefore derived by making one of the functions ?I 

obtained from a solution 97 c2 of the equations (11) to (13) a function 
of a second solution . The procedure of determining a first integral 
of the equation (8) thus reduces to that of solving this set of equations. 

In many cases it is possible to derive solutions of these equations by 
inspection, but when this cannot be done, the following procedure may 
be adopted. From equations (11) and (12) we obtain the single 
equation 

R dy2 - (S + 2 V) dx dy + T dx2 -F U dp dx + U dq dy -}- 1R dp dy 

+ dq dx + AU dp dq 0 

where 2 is (for the moment) an undetermined multiplier, and it is readily 
shown that this equation can be written in the form 

(U dy + AT dx + 2 U dp)(QR dy H- U dx + AU dq) = O (20) 

provided that 2 is chosen to be a root of the quadratic equation 

ß,2(RT + UV) -f. AUS -I- U2 = 0 (21) 

Apart from the special case when S2 "=" 4(RT -I- UV), this equation 
will have two distinct roots Al, A25 and the problem of solving equations 
(11) and (12) will reduce to the solution of the pairs 

Udy + íí1T dx + AlUdp = 0, 22R dy + Udx + A2Udq = 0 (22) 

and 
U dy + í 2T dx + ía2Ú dp = 0, dy + U dx + 21U dq = 0 (23) 

From each of these pairs we shall derive two integrals of the form 
= cx, ì(x,y,z,p,q) = e2 and hence two first integrals 

77 2 =f2(2) 
which can often be solved to determine p and q as functions of x, y, 
and z. When we substitute these values into the equation 

dz p dx -I- q dy 
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it is found' that this equation is integrable. The integral of this 
equation, involving two arbitrary functions, will then be the solution 
of the original equation. 

When it is possible to find only one first integral n =fu:), we obtain 
the final integral by the use of Charpit's method (Sec. 10 of Chap. 2). 

Example 13. Solve the equation 

r+4s+t +rt -s2 =2 
For this equation we have, in the above notation, R = 1, S = 4, T - 1, U = 1, 

V = 2, so that equation (21) becomes 

32 +42. +1 =0 
with roots Al = -1, A2 = -1. Hence equations (22) become 

3dy -dx -dp =0, dy -dx +dq =0 
leading to the first integral 

3y - x -p = f (y -x + q) (24) 

where the function f is arbitrary. Similarly equations (23) reduce to 

dy- dx -dp =0, dy- 3dx +dq =0 
and yield the first integral 

y - 3x + q = g(y -x - p) (25) 

the function g being arbitrary. 
It is not possible to solve equations (24) and (25) for p and q; so we combine the 

general integral (24) with any particular integral of (25), e.g., 

y - 3x + q = c1 (26) 

where c1 is a constant. Solving equations (24) and (26), we find that 

q = ci + 3x - y, p = 3y -x- f(2x +c1) 

from which it follows that 

dz = {3y -x -f (2x + c1)} dx + {c1 + 3x - y} dy (27) 

and hence that 

z = 3xy - Yx2 + y2) + F(2x + c1) + c1 y + c2 (28) 

where c2 is an arbitrary constant. Equation (28) gives the complete integral. 
To obtain the general integral we replace c1 by c, c2 by G(c), where the function G 
is arbitrary, and the required integral is then obtained by eliminating c between the 
equations 

z = 3xy -- i(x2 + y2) + F(2x + c) + cy + G(c) 

0 = F'(2x + c) + y + G/(c) 

It was mentioned above that in a great many cases it is possible to 
derive solutions of equations (11) and (12) directly. This is particularly 

i For a proof that this equation is always integrable see A. R. Forsyth, "A 
Treatise on Differential Equations" (Macmillan, New York, 1885), pp. 365 -368. 
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so in the case of uniform equations in which U = O. For such equations 
the pair of equations (11) and (12) reduces to 

Rdpdy + Tdgdx = Vdxdy (11') 

and R dye -S dx dy + T dx2 = 0 (12') 

We shall illustrate the solution of these equations by the particular 
example : 

Example 14. Solve the equation qtr -- 2pqs -I- pet = O. 

In this case the equations (11') and (12') become 

q2 dp dy -I- p2 dq dx = 0 (i) 

(p dx + q dy)2 = 0 (ii) 

From equation (ii) and equation (13) we have dz = 0, which gives the integral 
z = cx. From equations (i) and (ii) we have q dp = p dq, which has solution 
p = c2q. We therefore have the first integral 

p=gf(z) 
where the function f is arbitrary. We can regard this as a linear equation of the 
first order and solve it by Lagrange's method. The auxiliary equations are 

dx dy _dz 
1 f (z) O 

with integrals z = cx, y + x f (cx) = c2 leading to the general solution 

y + xf (z) = g(z) 
where the functions f and g are arbitrary. 

PROBLEMS 

1. Solve the wave equation r = t by Monge's method. 

2. Show that if a function z satisfies the differential equation 

a2z az a2z az 

ax2 ay ax ay ax 

it is of the form f {x + g(y) }, where the functions f and g are arbitrary. 

3. Solve the equation 

4. Solve the equation 

5. Solve the equation 

z(qs - pt) = pq2 

pq = x(ps - qr) 

rq2 2pqs + tp2 = pt - qs 

6. Find an integral of the equation 

z2(rt -- s2) -I- z(1 + q2)r - 2pqzs -I- z(l + p2) t -I- i + p2 + q2 = O 

involving three arbitrary constants. 
Verify the result and indicate the method of proceeding to the general 

solution. 
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MISCELLANEOUS PROBLEMS 

1. The equation z3 ;- 3xyz + a3 = 0 defines z implicitly as a function of x and y. 
Prove that 

X` 
a2 

2 a2 = ax2 y aye 

2. The variables x, y, and z are related through the equations 

x = f '(u) + y; y = g'(v) + u; z = uy u f 1(u) + vg '(v) -f (u) - g(v) 

Show that, whatever the form of the functions f and g, 

a2Z a2Z a2 2 a2 
0 

ax2 aye ax ay ' ax ay 

3. In plane polar coordinates the equations of equilibrium of an elastic solid 
become 

ao-r 1 aT.,.9 .,. -- co 
o 

ar ' r a8 ' r ' 

aril) 1 acre 2T.p 

ar -, ae + r 

Show that these equations possess a solution 

1a9y)1aw 
6' 

= 
r2 ae2 r ar 

a2 a 1 a 
To ar r ae 

It can be shown that the compatibility conditions lead to Vlip = 0; verify 
that yl = (Ax + By)6 is a solution of this equation, and calculate the 
corresponding components of stress. 

4. In plane polar coordinates the Hencky -Mises condition is 

(ar - 0'e)2 -I- 4T2e = 4k2 

Show that the shearing stress T ?.e satisfies the equation 

a2Tre 3 aire l a2T,'0 2 a2 

art T r ar r2 a02 - r2 ar au 

Determine the solution of this equation of the form f(r) and satisfying the 
boundary conditions T70 - -k on r = a, T,.e = k on r = b. 

5. Find the general solution of the equation 

xys -xp - yq z=0 
and determine the solution of this equation which satisfies the conditions 
z = xn and p 0 when y = x. 

6. Solve the equation 

(x - y)(x2r - 2xys + y2t) = 2xy(p - q) 

7. Find the general solution of the equation 

r + 4t = 8xy 

Find also the particular solution for which z = = y2 and p = 0 when x = 0. 

8. Show that the linear equation 

s +ap +bq +cz + d =0 
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may be reduced to a first -order equation if 

aa- 
I- ab -c =0 

ax 

Use this method to find the solution of the equation 

s +pex -q =0 
9. Appell's first hypergeometric function of two variables is defined by the 

double power series 

F1(a;ß,ß';Y;x,y) _ 
CO 

(a)m+n(ß)m(ß')n 

m'n 
m n-=0 

where (a)r = a(a + 1) (a + r - 1). Show that this function is a solu- 
tion of the second -order linear partial differential equations 

x(1 - x)r + y(1 - x)s + {y - (a + ß + 1)x}p - ßyq --- aßz - O 

y(1 - y)t + x(1 - y)s Ï {y - (a + ß' + 1)y }q - (3'xp - aß'z = 0 

Show also that Appell's second hypergeometric function 

F2(a;)6,ß';Y,Y';x,y) = 
cc CO 

(a)rn.-;-n(ß)mtß')n x7ayn 
m !n !(Y)m(Y')n 

is a solution of the second -order equations 

x(l -- x)r - xys + {y - (a -i- ß -I -. 1)x }p - ßyq -- aßz - O 

y(1 - y) t - xys + {y' -_ (a -E- ß' -I- 1)y }q -- ß'xp --- aß'z = 0 

1431. Express the equation 
div (K grad V) 0 

where is and V are scalar point functions, in cylindrical coordinates p, , z. If 
K = fL/p, where ,u is a constant, use the method of separation of variables to 
obtain a solution of the above equation independent of z and periodic in 0. 

11. Show that the equation 
2 

Dey' =a2 at2 

solutions of the form i = S(0,)R(r,t), where r, 0, 96 are spherical polar 
coordinates and 

J. á 
sin 0 

as) 
-}- . 2 

a2 
I n(n + 1)5 = 0 

sin b ao ao sin2 ao 

1 a (r2 al - n(n + 1) a2R 

P ar ar r2 1312 

n being a constant integer. Verify that the last equation is satisfied by the 
function 

R(r,t) rn 1 -ay V (r - t) + g(r + t)} 

r ar r 

where the functions f and g are arbitrary. 
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


138 ELEMENTS OF PARTIAL DIFFERENTIAL. EQUATIONS 

12. Schrödinger's equation for the motion of an electron in a central field of 
potential V(r) is, in atomic units, 

pet + 2{ W - V(r) }'p = O 

where W is a constant. By transforming this equation to polar coordinates 
r, 6, 4, show that it possesses solutions of the form 

V) = : r R(r)S(9,0) 

where S(0,0) is defined in the same way as in the last problem and R is a 
solution of the ordinary differential equation 

2 dR +2 {W- V(r) --in(n+ 1) }R =0 
dr2 

13. Coordinates and ij are defined in terms of x and y by the equations 

x= a cosh cos i, y = a sinh sin s 

and z is unaltered. Show that, in these coordinates, Laplace's equation 
V2 V = 0 takes the form 

2 2 2 

a 2+ a 2+ a2(cosh2 - cost Ì) a 2 
-O 

a a7 az 

and deduce that it has solutions of the form f (i) f (n)e -vz, where y is a constant, 
f (x) is a solution of the ordinary differential equation 

d2 f +(G +16gcos2x)f =0 
dx2 

G is a constant of separation, and 32q - -a2y2. 

14. Show that if 

X = ,1 cos 0, y = ' sin 0, z = -z( - '1) 

Laplace's equation assumes the form 

a i ay -i- 
a al 

+ 
+n a2V -0 

a a a an 4 n ae 

Deduce that it has solutions of the form Fn()F_n(n)e ± zmi6, where Fn(x) is a 
solution of the ordinary differential equation 

d2F dF Í m2 

X 
-i- + n 

4x 
F -0 

15. If f ( ) and g() are the Fourier transforms of f(x) and g(x), respectively, prove 
that 

f0 J()g()eide = fg(u)f(x - ir) du 
co 

16. If the function z(x,y) is determined by the differential equation 
az a2z 

ax aye 

for x > 0, - co < y < co, and if z = f (y) when x = 0, show that 

z(x,y) -- 1 f( )e -¿ Z -i v d 
V2Tr - 

where f () is the Fourier transform off (y). 
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Making use of the result obtained in the last problem, show that 

u e 
(y- u)2I4x du 

4rrx _ 

17. The function ty(x, y) is defined by the equations 

(i) 0 i = f (x,y) - oo < x < co, y > 0 

(ii) 
a 

= 0 y = 
ay 

Show that it can be expressed in the form 

1 °d F(1,17) 
a --ix cos (71y) ,2)2 

where 

F(,n) -- -- 1 dx z x cos (ny) dy Jf(xy)e 

18. Show that the solution of the diffusion equation 

ate a9 

axe at 

which satisfies the conditions 

(i) 
ae 

= 0 when x = 0 
ax 

O< xca, t>0 

(ii) O = 80 = const. when x = a 

(iii) O =0 when t =0,0 <x. <a 
can be written in the form 

90 )1 c° eft cosh (x tip) d 
27rí cosh (a V ) y ---ico 

Hence show that 

9 = 49 ( -1) r +1 - (r + -)27,2tla2 cos (r 
Orx 

2r + 1 a 
r =0 

19. The free symmetrical vibrations of a very large membrane are governed by the 
equation 

co 

atz 1 az 1 atz 
art r a c2 at2 

r>O,t>0 

with z = f (r), az/ at = g(r) when t = O. Show that, for t > 0, 

z(r,t) _ cos (ct)J0(r) da + 1 (e) sin (4ct)J0(r) d 
co 

J;°°f() 
c 0 

where f ($), g() are the zero -order Hankel transforms off (r), g(r), respectively. 

20. The potential V(p,z) of a flat circular electrified disk of conducting material 
with center at the origin, unit radius, and axis along the z axis satisfies the 
differential equation 

a2 V+ 
1 

ay 
-I- 

a2 V= 
0 

a p2 P a p. az2 
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(p > 0, z > 0) and the boundary conditions 

(i) V -} 0 as z, p --} co 

(ii) V= Vo, z=0 0<p<1 
a 

(iii) = 0, z= 0 p> 1 
z 

Prove that 

V(p,z) = 
c° o 

.f Me-4z Jo(p) a 
where the function f satisfies the relations 

f ($)Jo(sP) d = Vo 
0 

0 < p < 1 

ff()J d = 0 p > l o(P) 

Verify that f () _ (2 Vo sin ) /(i) is a solution of these equations, and hence 
evaluate V(p,z). 
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Chapter 4 

LAPLACE'S EQUATION 

In the last chapter we saw how second -order linear partial differential 
equations could be grouped into three main types, elliptic, hyperbolic, 
and parabolic. The next three chapters will be devoted to the considera- 
tion in a little more detail of examples of equations of the three types 
drawn from mathematical physics. We shall begin by considering 
Laplace's equation, Vey, = 0, which is the elliptic equation occurring 
most frequently in physical problems. Because the function p, which 
occurs in Laplace's equation, is frequently a potential function, this 
equation is often referred to as the potential equation. 

1. The Occurrence of Laplace's Equation in Physics 

We saw in Sec. 3 of Chap. 3 that problems in electrostatics could be 
reduced to finding appropriate solutions of Laplace's equation V 2p = O. 

This is typical of a procedure which is adopted frequently in mathe- 
matical physics. We shall not give such a derivation for the most 
frequently occurring physical situations, but since in discussing Laplace's 
equation it is useful to be able to illustrate the theory with reference to 
physical problems, we shall summarize here the main relations in some 
of the branches of physics in which the field equations can be reduced 
to Laplace's equation. 

(a) Gravitation. (i) Both inside and outside the attracting matter 
the force of attraction F can be expressed in terms of a gravitational 
potential v by the equation 

F = grad p 

(ii) In empty space 'v satisfies Laplace's equation V2w = O. 

(iii) At any point at which the density of gravitating matter is p the 
potential 'y satisfies Poisson's equation V2y1 = -4rp. 

(iv) When there is matter distributed over a surface, the potential 
function ip assumes different forms wx, 'p2 on opposite sides of the 
surface, and on the surface these two functions satisfy the conditions 

= a2 aVx z = -4rrcr I ' 2' an an 
141 
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where a is the surface density of the matter and n is the normal to the 
surface pointing from the region 1 into the region 2. 

(v) There can be no singularities in y except at isolated masses. 

(b) Irrotational Motion of a Perfect Fluid. (i) The velocity q of a 
perfect fluid in irrotational motion can be expressed in terms of a 
velocity potential y by the equation 

q = -grad y, 

(ii) At all points of the fluid where there are no sources or sinks the 
function y satisfies Laplace's equation V2y = O. 

(iii) When the fluid is in contact with a rigid surface which is moving 
so that a typical point P of it has velocity U, then (q - U) n = 0, 
where n is the direction of the normal at P. The condition satisfied by 
y, is therefore that 

alp 

an 
at all points of the surface. 

(iv) If the fluid is at rest at infinity, yy -* 0, but if there is a uniform 
velocity V in the z direction, this condition is replaced by the condition 
y "f -V Z as z --> oo . 

(v) The function y has no singularities except at sources or sinks. 

-(U n) 

(c) Electrostatics. (i) The electric vector E can be expressed in 
terms of an electrostatic potential 'y by the equation E = -grad p. 

(ii) In empty space y satisfies Laplace's equation V2ip = O. 

(iii) In the presence of charges p satisfies Poisson's equation V2'p 
--47p, where p is the density of electric charge. 

(iv) The function ip is constant on any conductor. 
(v) If n is the outward-drawn normal to a conductor, then at each 

point of the conductor 
ay = -47ra 
an 

where as is the surface density of the electric charge on the conductor. 
The total charge on the conductor is therefore 

47r an 

where the integral is taken over the surface of the conductor. 
(vi) With a finite system of charges the function 'p -- - 0 at infinity, 

but if there is a uniform field E0 in the z direction at infinity, then 
IP 

ti -E 0Z as z -- co. 
(vii) There can be no singularities in 'y except at isolated charges, 

dipoles, etc. Near a charge q, iy - q/r is finite, r being measured from 
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the charge. Similarly in the neighborhood of a dipole of moment m 
in a vacuum v - (m r)/r3 is finite. 

(d) Dielectrics. In the presence- of dielectrics the electrostatic 
potential ip defined as in c(i) above satisfies the conditions : 

(i) In the presence of charges div (K grad ip) = -4i7-p, where K is 
the dielectric constant. 

(ii) If we have two media in contact, we have two forms /pi, V2 for 
the potential on opposite sides of the surface, but on the surface we have 

11)1 = 1P2, 
avY av2 

Kx 
an 

- K2 
an 

where n is the common normal. 
(iii) At the surface of a conductor c(v) is replaced by the equation 

aip 
K -477V 

(e) Magnetostatics. (i) The magnetic vector H can be expressed in 
terms of a magnetostatic potential v by the equation H = -grad v. 

(ii) If ,u is the magnetic permeability, ip satisfies the equation 

div (u grad y,) = O 

which reduces to Laplace's equation when ,u is a constant. 
(iii) At a sudden change of medium 

aVi 
VI. P1 -Jut a Z 

(iv) In the presence of a constant field Ho in the z direction at infinity 
we have y, t--i -Hoz as z Y co. 

(v) In the neighborhood of a magnet of moment m in a vacuum 
'zip - (m r) /r3 is finite, r being measured from the center of the magnet. 

(f) Steady Currents. (i) The conduction current vector j may be 
derived from a potential function v through the formula 

. J= -o. grad 'p 

where Q is the conductivity. 
(ii) The function v satisfies the equation 

div (a grad v) = 0 

which reduces in the case 6 = constant to Laplace's equation. 
(iii) At the surface of an electrode at which a battery is providing 

charge at a definite potential the function y, is constant. If the total 
current leaving the electrode is i, then 

J 
-i 
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(iv) At the boundary between a conductor and an insulator or vacuum 
there is no normal flow of current, so that 

ay) o 
an 

(g) Surface Waves on a Fluid. The velocity potential v of two - 
dimensional wave motions of small amplitude in a perfect fluid under 
gravity satisfies the conditions: 
(i) V2v =0; 
(ii) a2v /ate - g(a 'p/ ay) = o on the mean free surface, y being 

measured to increase with depth; 
(iii) avian = 0 on a fixed boundary. 

(h) Steady Flow of Heat. In the case of steady flow in the theory of 
the conduction of heat the temperature ip does not vary with the time. 
It satisfies the conditions : 

(i) div (K grad v) = 0, where K is the thermal conductivity, or 
V2p = O if K is a constant throughout the medium; 

(ii) ap /an = O if there is no flux of heat across the boundary; 
(iii) av' /an -H h(p - 1po) - 0, where h is a constant, when there is 

radiation from the surface into a medium at constant temperature 
Po- 

PROBLEMS 

1. Prove Gauss' theorem that the outward flux of the force of attraction over 
any closed surface in a gravitational field of force is equal to -47 times the 
mass enclosed by the surface. 

Deduce that (a) the potential cannot have a maximum or a minimum value 
at any point of space unoccupied by matter ; (b) if the potential is constant 
over a closed surface containing no matter, it must be constant throughout the 
interior. 

2. The function vi is defined inside a closed surface S; the function tp 0 is defined 
outside S, and a2 10 - O. What other conditions must be satisfied by vi and 
yo in order that they should be the internal and external gravitational 
potentials of a distribution of matter inside S of density - V2 p /4ir ? 

Verify that the conditions are satisfied by the potential of a uniform sphere 

Vo - 3np r' a3 = 37rp (3a2 - r2) 

3. Find the distribution which gives rise to the potential 

1p = 

where r2 -- = x2 

a2 - 3x2 r < a 
a5(y2 + z 2 - 2x2) 

. J r>a 
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4. Find a distribution which gives rise to the potential 

air log R R > 1 

7r log R + (5 - 9R2 + 4R3) 
9 

v 

where R2 = x2 + y2. 

R<l 

5. Find the distribution of electric charge which gives rise to the potential 

0 ic <0 
k {(x -F a)2 + y2 + z2 }_ } {(x _ a)2 + y2 - z2 }- x > o 

and calculate the total charge present on the plane x = O. 

6. Show that the velocity potential 

v = z Va3r -2 cos 6 

satisfies all the conditions associated with the rectilinear motion of a sphere of 
radius a moving through a perfect incompressible fluid which is moving 
irrotationally and is at rest at infinity. 

2. Elementary Solutions of Laplace's Equation 

If we take the function p to be given by the equation 

q q 
V -Irr 'l -\/(x -- x')2 -I- ( y - y')2 + (z - z')2 

(t) 

where q is a constant and (x',y',z') are the coordinates of a fixed point, 
then since 

ay q(x - x') 
ax 1r -- 03 , etc. 

a2v q 3q(x --- . x')2 

a x 2 
- + Ir r'ls Ir - r'l' 

it follows that 

etc. 

v2v =o 
showing that the function (1) is a solution of Laplace's equation 
except possibly at the point (x',y',z'), where it is not defined. 

From what we have said in (c) of Sec. 1 it follows that the function 
1p given by equation (1) is a possible form for the electrostatic potential 
corresponding to a space which, apart from the isolated point (x',y',z'), 
is empty of electric charge. To find the charge at this singular point 
we make use of Gauss' theorem (Problem 1 of Sec. 1). If S is any 
sphere with center (x',y',z'), then it is easily shown that 

aV 
4JdS= 

an 
-- q 

from which it follows, by Gauss' theorem, that equation (1) gives the 
solution of Laplace's equation corresponding to an electric charge -I-q. 
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By a simple superposition procedure it follows immediately that 

qi V_ 
Ir - rz) 

is the solution of Laplace's equation corresponding to n charges q2 

situated at points with position vectors- ri (i = 1, 2, . . . , n). 
In electrical problems we encounter the situation where two charges 

-+-q and -q are situated very close together, say at points r' and r' + òr', 
where br' = (l,m,n)a. The solution of Laplace's equation corre- 
sponding to this distribution of charge is 

(Z) 

Now 
1 

V= 

1 

I 
r - r'1 + jr - rg -- Sr '1 

Ir - r' - 611 Ir - r'l 
+ Ir - 113 

so that if a -- 0, q -} co in such a way that qa -} ,u, i.e 
dipole is formed, it follows that the corresponding 
Laplace's equation is 

l(x -- x') + m(y - y') + n(z - z') 

kx x') + m(y - y') + n(z - Z`) 

11) = Iz 
Ir r'13 

a result which may be written in other ways : If we introduce a vector 
m = ,u(l,m,n), then 

a + o(a2) 

., an electric 
solution of 

(3) 

Also since 

v 

a 1 x - x' 
óx' Ir - el fr - r'13 

, etc. 

m i (r r') 

I 

r - r'13 

it follows that (3) may be written in the form 

y, _ (m grad') 
r r, - ,u `I ax/ 

-I- m á , + n aa,l 

(4) 

Ir - r'l (5) 

In reality we usually have to deal with continuous distributions of 
charge rather than with point charges or dipoles. By analogy with 
equation (2) we should therefore expect that when a continuous distri- 
bution of charge fills a region V of space, the corresponding form of 
the function v of (c) of Sec. 1 is given by the Stieltjes integral' 

--=-- (6) 
I 

dq 

ivfr-r 
1. For a discussion of the analytical properties of such Stieltjes potentials the 

reader is referred to G. C. Evans, Fundamental Points of Potential Theory, Rice 
Inst.Pamph., 7 (4), 252 -293 (October, 1920). 
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where q is the Stieltjes measure of the charge at the point r', or if 
p denotes the charge density, by 

?1?':LDÇ 
'o(r) = (7) 

By a similar argument it can be shown that the solution corresponding 
to a surface S carrying an electric charge of density a is 

r = fo(r')dS' 
() (8) 

s - 
E xample 1. If p > 0 and ip(r) is given by equation (7), where the volume V is 

bounded, prove that 
lim rip(r) = M 
r_ co 

where M = f p(r') dT' 
v 

Let r1, r2 be thé maximum and minimum values of the distance Ir -- r'l from the 
point r to the integration points r' of the bounded volume V. Then by a theorem 
of elementary calculus 

10 p(r') dT' M 
r1 vIr - r' r2 

an equality which may be written in the form 

(-r) 
M < WO < (-r) M 

rl r2 

Now as r -4. co, r /r1 and r 1r2 both tend to unity, so that 
limy (r) =M 
ra co 

PROBLEMS 

1. Prove that r cos O and r -2 cos O satisfy Laplace's equation, when r, 6, 9S are 
spherical polar coordinates. 

An electric dipole of momént it is placed at the center of a uniform hollow 
conducting sphere of radius a which is insulated and has a total charge e. 
Verify that Vi, the potential inside the sphere, and Vo, the potential outside the 
sphere, are given by 

e ,u cos 8 
Vi = - ad- 

-- r cos ó, Vo = 
e 

r as r 
where r is measured from the center of the sphere and O is the angle between 
the radius vector and the positive direction of the dipole. 

2. A surface S carries an electrical charge of density a. In the negative direction 
of the normal from each point P of S there is located a point P1 at a constant 
distance h, thus forming a parallel surface S1. Assuming that corresponding 
points P and P1 have the same normal and that corresponding elements of 
area carry numerically equal charges of opposite sign, show that the potential 
function of the system is 

V_ fs(ir- 
i 1 1 

a(r) dS' 
el Ir 
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By letting h 0, p -> co in such a way that o-h ->- ,u everywhere uniformly on 
S, obtain the expression 

itl 
{n 

(r - r')} dS' v = Ir-rl3 
for the potential of an electrical double layer. 

3. A closed equipotential surface S contains matter which can be represented by 
a volume density a. By substituting ip' = it - r'1 -1 in Green's theorem' 

awl 
(;oi 

a - dS = 0,/v 2, - vV2p') dr 
s an an Jv/V2 

prove that 
a 

dS' -I- 47r 
p(r') dT' 

= o 
s an -1r -rl Jv Ir -rl 

Deduce that the matter contained within any closed equipotential surface.S 
can be thought of as spread over the surface S with surface density 

1 av 

47r an 
at any point.2 

4. By applying Green's theorem in the above form to the region between an 
equipotential surface S and the infinite sphere with p' = r -- r'l -1 and v 

the potential of the whole distribution of matter, prove that the potential 
inside S due to the joint effects of Green's equivalent layer and the original 
matter outside S is the constant potential of S. 

5. Show that 
LdT',2 3V 

yl r - r 
1 

\4ii- 

irrespective of whether the point with position vector r is inside or outside the 
volume V or on the surface bounding it. 

6. Prove that the potential 

(r) = 
p(e) dr' 

Sy Ir -r'l 
and its first derivatives are continuous when the point P with position vector r 
lies inside or on the boundary of V. 

Show further that V2o = -47rp if P e V and that o2v = 0 if P i V. 

3. Families of Equipotential Surfaces 

If the function ip(x,y,z) is a solution of Laplace's equation, the one - 
parameter system of surfaces 

ip(x, y,z) = c 

is called a family of equipotential surfaces. It is not true, however, 
that any one -parameter family of surfaces 

f (x,y,z) = c (1) 

1 H. Lass, "Vector and Tensor Analysis" (McGraw -Hill, New York, 1950), p. 118. 
2 This distribution is known as Green's equivalent layer. 
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is a family of equipotential surfaces. This will be so only if a certain 
condition is satisfied; we shall now derive the necessary condition. 

The surfaces (1) will be equipotential if the potential function v is 
constant whenever f (x,y,z) is constant. There must therefore be a 
functional relation of the type 

v = F{f (x,y,z)} (2) 

between the functions v and .f. Differentiating equation (2) partially 
with respect to x, we obtain the result 

8y, dF 8f 
ax df ax 

and hence the relation 

a2 d2.ß of 2 dF a2f 
ax2 - f 2 x d a df ax2 

from which it follows that 

021p = FV)(g:ad.Î)2 + F'(.Î)o2.Î 

Now, in free space, ply, = 0, so that the required necessary condition 
is that 

o2.Î _ F"(f) 
(6) 

(grad f )2 F'(.Î) 
Hence the condition that the surfaces (1) form a family of equipotential 
surfaces in free space is that the quantity 

02l 
I grad ,f 12 

is a function off alone. 
If we denote this function by x(f ), then equation (6) may be written 

as 
d2F 

2 + 
dF= 

o x(f)d f f 
from which it follows that 

dF 
Ae- J'x(f)df 

df 

where A is a constant, and hence that 

o = Afe- ix(f)df df 4_ B 

where A and B are constants. 

Example 2. Show that the surfaces 
x2 +y2 -ri Z2 = cxi 

can form a family of equipotential surfaces, and find the generalform of the correspond- 
ing potential function. 

(7) 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


I 50 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

In the notation of equation (1) 

f = xA + x 1 (y2 + z2) 

so that grad f = ix-5(2x2 - y2 - z2, 3xy, 3xz) 

Hence V 2f = 10 x_1(4x2 -+- y2 + z2) 
9 

and jgrad f I 2 = X--16° (4x2 + y2 + z2)(x2 + y2 + z2) 9 

so that V2f/ grad f I2 = x(f), where x(f) = 51(2f). The given set of surfaces 
therefore forms a family of equipotential surfaces. 

Substituting 5/(2f) for x(f) in equation (7), we find that 

v = Af -î + B 

from which it follows that the required potential function is 

v = Ax(.aC2 + y2 + z2)-a + B 

where A and B are constants. 

PROBLEMS 
1. Show that the surfaces 

(x2 + y2)2 
- 2a2(x2 - y2) + a4 = C 

can form a family of equipotential surfaces, and find the general form of the 
corresponding potential function. 

2. Show that the family of right circular cones 

x2 + y2 = cz2 

where c is a parameter, forms a set of equipotential surfaces, and show that the 
corresponding potential function is of the form A log tan ¡O + B, where A and 
B are constants and O is the usual polar angle. 

3. Show that if the curves f (x,y) = c form a system of equipotential lines in free 
space for a two -dimensional system, the surfaces formed by their revolution 
about the x axis do not constitute a system of equipotential surfaces in free 
space unless 

Y `aYl ^ { \ axl Z \ of 12} 

is a constant or a function of c only. 
Show that the cylinders x2 + y2 = 2cx for a possible set of equipotential 

surfaces in free space but that the spheres x2 + y + z2 = 2cx do not. 

4. Show that the surfaces 
x2 + y2 - 2cx + a2 = 0 

where a is fixed and e is a parameter specifying a particular surface of the 
family, form a set of equipotential surfaces. 

The cylinder of parameter c1 completely surrounds that of parameter 
c2, and c2 > a > O. The first is grounded, and the second carries a charge 
E per unit length. Prove that its potential is 

-E log (c1 + a)(c2 
-a) 

(c1 - a)(c2 + a) 
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4. Boundary Value Problems 

In Sec. 1 of this chapter we have seen that in the discussion of certain 
physical problems the function 'p whose analytical form we are seeking 
must, in addition to satisfying Laplace's equation within a certain 
region of space V, also satisfy certain conditions on the boundary S of 
this region. Any problem in which we are required to find such a 
function IP is called a boundary value problem for Laplace's equation. 

There are two main types of boundary value problem for Laplace's 
equation, associated with the names of Dirichlet and Neumann. By 
the interior Dirichlet problem we mean the following problem: 

If f is a continuous function prescribed on the boundary S of some 
finite region V, determine a function ip(x, y,z) such that V2v = 0 within 
Vand p =fonS. 

In a similar way the exterior Dirichlet problem is the name applied to 
the problem : 

If f is a continuous function prescribed on the boundary S of a 
finite simply connected region V, determine a function 'p(x,y,z) which 
satisfies D2' _ O outside V and is such that 'p = f on S. 

For instance, the problem of finding the distribution of temperature 
within a body in the steady state when each point of its surface is kept 
at a prescribed steady temperature is an interior Dirichlet problem, 
while that of determining the distribution of potential outside a body 
whose surface potential is prescribed is an exterior Dirichiet problem. 

The existence of the solution of a Dirichlet problem under very 
general conditions can be established. Assuming the existence of the 
solution of an interior Dirichiet problem, it is a simple matter to prove 
its uniqueness. Suppose that vi and V2 are both solutions of the interior 
Dirichlet problem in question. Then the function 

VV1 V2 

must be such that V 2, = 0 within V and' = 0 on S. Now by Prob. 1 

of Sec. 1 of this chapter we know that the values of v within V cannot 
exceed its maximum on S or be less than its minimum on S, so that we 
must have v = 0 within V; i.e., i1 ! v2 within V. It should also be 
observed that the solution of a Dirichlet problem depends continuously 
on the boundary function (cf. Example 1 below). 

On the other hand, the solution of the exterior Dirichiet problem is 
not unique unless some restriction is placed on the behavior of ip(x,y,z) 
as r -- co. In the three -dimensional case it can be proved'. that the 
solution of the exterior Dirichlet problem is unique provided that 

¡ < C 
r 

1 See Sec. 8. 
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where C is a constant. In the two -dimensional case we require the 
function v to be bounded at infinity. 

In cases where the region V is bounded the solution of the exterior 
Dirichiet problem can be deduced from that of a corresponding interior 
Dirichiet problem. Within the region V we choose a spherical surface 
C with center O and radius a. We next invert the space outside the 
region V with respect to the sphere C; i.e., we map a point P outside V 
into a point H inside the sphere C such that 

OP OH = a2 

In this way the region exterior to the surface S is mapped into a region 

Figure 21 

V* lying entirely within the sphere C (cf. Fig. 21). It can be easily 
shown that if 

f * (II) = oar, f (P ) 

and if z ¡, *(II) is the solution of the interior Dirichlet problem 

then 

V2 v* = o within V *, V* = f *(II) for H e S* 

V(P) = -op v*(n) 

is the solution of the exterior Dirichiet problem 

V2 ' = O outside V, v = f (P) for P e S 

Lebesgue has shown by a specific example that in three -dimensional 
regions whose boundaries contain certain types of singularities the 
Dirichiet problem may not possess a solution assuming prescribed 
values at all points of the boundary. Consider, for example, the 
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potential due to a charge kz on the segment 0 < z < 1, x = y = O. 

It is readily proved by the methods of Sec. 1 that the requisite potential is 

1 z' dz' 
(x,y,z) = 

o A/ x 2 + y2 +(Z 
which can be expressed in the form 

'pa(x,y,z) -Z log (x2 + y2) 

where ço(x,y,z) is continuous at the origin and takes the value 1 there. 
The second term takes the value c at each point of the surface whose 
equation is 

Z')2 

(x2 + y2) e-cj2z 

which passes through the origin whatever value c has. In other words, 
any equipotential surface on which ' = 1 + c passes through the 
origin, so that the potential at the origin is undefined. 

The second type of boundary value problem is associated with the 
name of Neumann. By the interior Neumann problem we mean the 
following problem: 

If f is a continuous function which is defined uniquely at each point 
of the boundary S of a finite region V, determine a function p(x,y,z) 
such that Q 2v = 0 within V and its normal derivative avian coincides 
with f at every point of S. 

In a similar way the exterior Neumann problem is the name given to the 
problem : 

If f is a continuous function prescribed at each point of the (smooth) 
boundary S of a bounded simply connected region V, find a function 
p(x,y,z) satisfying Q2p = 0 outside V and av /an = f on S. 

We can readily establish a necessary condition for the existence of the 
solution of the interior Neumann problem. Putting a = grad ip in 
Gauss' theorem 

we find that 

Now on the boundary 

so that 

Hence if V 2'p 

jadS=JdivadT 

SV 
= JdS v2 d-r 

a 

ay 
-.Î (P) P e S 

I o2ip dT = f f(P) dS 

0, we have 

Li:3f (P) dS 0 0-) 
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showing that a necessary condition for the existence of a solution of the 
problem is that the integral off over the boundary S should vanish. 

It is possible to reduce the exterior Neumann problem to the interior 
Neumann problem just as in the case of the Dirichlet problems (see 
Prob. 3 below). 

In the two -dimensional case it is possible to reduce the Neumann 
problem to the Dirichlet problem. Suppose that a solution v of the 
Neumann problem 

(i) V2V = O within S 

(ii) n = f(P) for P e C 

exists and is such that v and its partial derivatives with respect to x, y 
can be extended continuously to the boundary C of the plane region S. 
We can now construct a function 96 which, within S and on C, satisfies 
the Cauchy - Riemann equations' 

alp ao alp a 
áx - áy ' áy - - .a- 

so that v + iy6 is an analytic function of the complex variable x + iy. 
The function 0 is therefore defined uniquely apart from a constant term. 
Now it is well known that 

ark ay 
as - án 

so that if P, Q are two points on the boundary curve C, then 

4Q) - 41(P) - fQ -°1-;,, ds = IQ f(s) ds (2) 

Since, by an argument analogous to that leading to equation (1), 

J 
ICf(s)ds =0 

it follows that equation (2) defines 41, on C as a continuous and single- 
valued function, and it is readily shown that if ip is harmonic, then so 
also is 0. Hence knowing the value of sb on C, we can determine 0 
within S. Using the Cauchy - Riemann equations then, apart from a 
constant term, we can determine the function y, within S. 

Recently Churchill2 has analyzed a boundary value problem of a 
type different from those of Dirichlet and Neumann. By the interior 
Churchill problem we shall mean the problem: 

x See Sec. 10. 

2 R. V. Churchill, J. Math. and Phys., 33, 165 (1954). 
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If f is a continuous function prescribed on the boundary S of a finite 
region V, determine a function y(x,y,z) such that Ozy = O within V and 

ay 
-an + (k + 1)ßv =,Î 

at every point of S. 
An exterior Churchill problem can be defined in a similar manner. 

PROBLEMS 

1. If y'1, v2 are solutions of the Dirichlet problem for some region V corresponding 
to prescribed boundary values fi, f2, respectively, and if I fi -12 < E at all 
points of S, prove that I vi --- v2 I < E at all points of V. 

Deduce that if a given sequence of functions which is harmonic within V 
and is continuous in V and on S converges uniformly on S, then this sequence 
converges uniformly within V. 

2. Prove that the solutions of a certain Neumann problem can differ from one 
another by a constant only. 

3. Prove, with the notation of this section, that if 

f 
an 

an * 

and if v* (11) is the solution of the interior Neumann problem 

ay* 
an* =f *(II) for rI e S* V2v* = 0 within V *, 

then p(P) = y*(II) is the solution of the exterior Neumann problem 

alp 
V2 p= 0 outside V, -an = f (P) for P e S 

4. Prove that the solution v(r,6,0) of the exterior Dirichlet problem for the unit 
sphere 

V 2p = 0, r > 1, v = f (OA on r = 1 

is given in terms of the solution v(r,6,4) of the interior Dirichlet problem 

v2v 

by the formula 
= 0,r <1, v = f (e,0) on r = 1 

ip(r,e,0) _ 1 v AO) 
r r 

5. Prove that the solution p(r,9,96) of the interior Neumann problem for the unit 
sphere 

ay =f(8,0)onr=1 
a 

is given in terms of the solution v(r,0,9) of the last question by the formula 

*AO - 
f1 

t 
v(rt,8,) dt 

+ C 

where C is a constant. 
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6. Prove that the solution p(r,0,0) of the interior Churchill problem for the unit 
sphere 

C2tp = o 

+(k+1)'p=f(84) ar 

r<1 
onr-1,k>-1 

is given in terms of the function v(r,o,O) defined in Prob. 4 by the formu la 
1 

1P(r,6,0) = L(rt,0,0)tk dt 
.,o 

5. Separation of Variables 

We shall nów apply to Laplace's equation the method of separation of 
variables outlined in Sec. 9 of Chap. 3. 

In spherical polar coordinates r, o, Laplace's equation takes the 
form 

a2zp 2 aye 1 a2 cot O aye 1 a2p = 0 1 
are + r at- ao2 r2 ao r2 sin2 o a 2 ( ) 

and it was shown in Example 5 of Sec. 9, Chap. 3 that this equation is 
separable with solutions of the form 

A rn 
Bn 

COS e -- imp (2) + r1 ( ) 

where An, ,Bn, r are constants and 0(y) satisfies Legendre's associated 
equation 

1- 22 -- {n(n - 2 
0 0 (3) ( ) u+ 1 ) 1 2 

If we take m - 0, we see that equation (3) reduces to Legendre's 
equation 

(1 2 
d20 d0 

n n i s= O 4 ( ,u)d 2 d -I- ( + ) ( ) 

In the applications we wish to consider we assume that n is a positive 
integer. In that case it is readily shown' that this equation has two 
independent solutions given by the formulas 

n 
1 

2 - n 
n \(( lu) = 

2nn!d lu 
n (, ) P (5) 

¡Pn(y) 
+ 1 2n --4s -1 

) log - 1 (2s 1)(n -- s P'i- 2s -1(JU) (6) Qn(y) - 
where p = (n - 1) or n -- 1 according as n is odd or even. The 
general solution of equation (4) is thus 

0 = CnPn(iu) Dn Q,:(Y) (7) 

1 For the proof of this and other results about Legendre functions see I. N. 
Sneddon, "The Special Functions of Mathematical Physics (Oliver & Boyd, 
Edinburgh, 1956), chap. III. 
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where Cn and Az are constants. In a great many physical problems, 
especially those connected with concentric spherical boundaries, we 
know on physical grounds that the function 0 remains finite along the 
polar axis O = O. Now when O = 0, ,u = 1, and it follows from 
equation (6) that an(u) is infinite, so that if n is to remain finite on the 
polar axis, we must take the constant Dn to be identically zero.' In 
these rases we therefore obtain solutions of Laplace's equation (1) of 
the form 

V - (Anmn + Pn(cos 0) 
n 

In the general case in which m 0 0 we find that when O < m < n, 
equation (3) possesses solutions of the type 

B 
(8) 

Pnz CO - (12 

Qn (u) = (lu2 

}m d mPn(tu) 
) d m 

1)1. dm Qn(ru) 
dm 

When ,u = +1, Qm(u) is infinite, so that in any physical problem in 
which it is known that 0, i.e., p, does not become infinite on the polar 
axis we take P,7(p) to be the solution of equation (3). In this way we 
obtain solutions of Laplace's equation (1) of the form 

(9) 

(10) 

00 

y - 2 2 (Amnr + Bmnr-n-')Pm(cos 8)e t into (1 1) 
n=0 m<n 

which may be written as 

V 

CO 

(1-a .).n [AF (cos 0) 
M=1 

nm COS MO -lc Am, sin mO) PT (cos t9)] 

(12) 

We shall illustrate the above remarks by considering first a very 
elementary problem in the irrotational motion of a perfect fluid. 

Example 3. A rigid sphere of radius a is placed in a stream of fluid whose velocity 
in the undisturbed state is V. Determine the velocity of the fluid at any point of the 
disturbed stream. 

We may take the polar axis Oz to be in the direction of the given velocity and take 
polar coordinates (r,6,ß) with origin at the center of the fixed sphere. 

From Sec. 1(b) we see that the velocity of the fluid is given by the vector 
q¡ = -grad v, where 

(i) v2v = 0 

a 
(ii) =0 onr=a 

(iii) v ti -Vr cos O = - VrP,(cos 0) as r -- co 

i It should be noted that this is not always true. As an example of a proble m 
in which Dn 0 0 see Prob. 1 below. 
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The axially symmetrical function 

V - (Anmn + 
B.7, 

) Pn (cos 6) rn +1 
n =0 

satisfies (i). Condition (ii) is satisfied if we take 

nAnan -1 _.... (n + 1) 
a -2 --$n = 0 

i.e., dB?, - na2nf1An/(n + 1). As r -9- CO; this velocity potential has the asymptotic 
form 

00 

V ti : AnrnPn (cos 8) 
n =0 

so that to satisfy (iii) we take Al = -V and all the other A's zero. Hence the 
required velocity potential is 

3 

1 = -Y r+ --L-)cos o 
2r 

The components of the velocity are therefore 

3 

qr= -á Tr =V 1-á 
r3 

cos 

qo 
- I a 3 

si n 0 
r au t - 

2r3 
) 

A similar problem from electrostatics is: 

Example 4. A uniform insulated sphere of dielectric constant K and radius a 
carries on its surface a charge of density AP7,(cos 9). Prove that the interior of the 
sphere contributes an amount 

Bir 2a3Kn 

(2n + 1)(Kn + n + 1)2 
to the electrostatic energy. 

The electrostatic potential y takes the value v1 inside the sphere and v2 outside, 
where by virtue of Sec. 1(d) we have: 

(i) V2'1 - 0, V2v2 = 0 

(ii) y'1 is finite at r = 0; P2 -4- 0 as r co; 

(iii) v1 = P2 and K( atp1 f ar) -- av2/ ar = 4 r2Pn(cos 6) on r = a. 

Conditions (i), (ii), and the first of (iii) and the condition of axial symmetry are 
satisfied if we take 

r 
vi. = A P(cos 6), v2 = A (a)n+lP(COS 6) 

and the second of (iii) is satisfied if we choose A so that 

nK +(n+1) A =47,A 
a a 

Hence the required potential function is 

V1 - 4hraí1 r 
Pn(COS 9) 

Kn -+- n + 1 a 

n 
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The energy due to the interior of the sphere is known from electrostatic theory to be 

1) 

Tr 

d 
2ira2 sin OP (cos 8) P (cos 9) d8 fo 

and the result follows from the known integral'. 

K (4)1 K 161r2a222 n x dS=- 
8v (Kn + n 8 -}- 

- 
ôn 

L { u) }2 d, _ 
1 

Pn(l 2n-{ -1 
A similar procedure holds when Laplace's equation is expressed in 

cylindrical coordinates (p,ç6,z). In these coordinates Laplace's equation 
becomes 

2 

a2v 
1 

av 
1 

p2v 
a2 

P a 2 P a P 
= 0 (13) 

P 2 a 2+ az2 

and it was shown in Example 4 of Sec. 9 of Chap. 3 that this equation 
possesses solutions of the form 

R(P)e f mze i tiny (14) 

where R(p) is any solution of Bessel's equation 

d2R 1dR 
m2 -n2 (15) d2+ d + R=O 

P P P P 

In the usual notation for Bessel functions the general solution of this 
equation is 

R = AmnJn(mp) + Bmn Yn(mp) (16) 

where Amn and B,nn are constants. The function 1772(m p) becomes infinite 
as p -± 0, so that if we are interested in problems in which it is obvious 
on physical grounds that '' remains finite along the line p = 0, we must 
take Bmn =-- O. In this way we obtain a solution of the type 

v - 2 AmnJn(mP)e±n2zt2n.$ (17) 
m n 

For problems in which there is symmetry about the z axis we may 
take n = O to obtain solutions of the form 

AmJO(mP)efmz (1ó) 
m 

In particular if we wish a solution which is symmetrical about Oz 
and tends to zero as p 0 and as z oo, we must take it in the form 

= L. AmJo(mp)e -mz (19) 
m 

Example 5. Find the potential function ?p(p,z) in the region 0 < p <1, z > 0 
satisfying the conditions 

(i) zp -. 0 as z co 

(ii) v = a on p =1 
(iii) v = f (p) on z= 0 for 0< p <1 

i Sneddon, op. cit., equation (15.7). 
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The conditions (i) and (ii) are satisfied if we take a function of the form 

p(P,z) = ¿ AsJo(AsP)e 
-Asz (20) 

s 

where As is a root of the equation 
Jo(A) = O 

Now it is a well -known result of the theory of Bessel functions' that we can write 

f(p) = : AsJo(2sP) 
s 

1 

Lj1('s)J o 
where As = 

2 
2 Pf (P)Jo(A8P) dp (21) 

Hence the desired solution is (20), with As given by the formula (21). 

The method of separation of variables can also be applied to Laplace's 
equation in rectangular Cartesian coordinates (x,y,z). It is readily 
shown that the function 

exp (iax + ißy + yz) 

is a solution of D2y) provided that 

y2 -,-- a2 + ß2 

The use of solutions of this kind is illustrated by: 

Example 6. Find the potential function v(x,y,z) in the region 
O< y c b, O z z C c satisfying the conditions 

v =0 on =0,x =a,y =0,y =b,z =0 
tp = f(x,y) onz=e,Ocx<a,Ocy<b 

The conditions (i) are satisfied if we assume 

V_ 
mirx nhry 

At,n sin sin sinh (Ymnz) 

where, because of equation (23), 

tni2 n2 
Yrnn = 

77. \a2 + b2 

Now by the theory of Fourier series we can write 

f(x,y) = 
?ft =1 n= 
a 4 mrrx nlry 

where fmn 
ab 

f (x,y) sin 
a 

sin 
b 

dx dv 
JO .o 

Thus- to satisfy (ii) we take 

mTrx n iry 
fmn sin sin 

to obtain the solution 

Ip(x,y,z) = 
co CO 

A net lei -.Ain cosech (y.n.tnC) 

(22) 

(23) 

0 <x <a, 

m7rx n y 
fmn sin sin sinh (yrrinz) cosech (y,n,C) 

(24) 

(25) 

na =1 n =1 

where fmn and y ,,z are given by equations (25) and (24), respectively. 

i G. N. Watson, "A Treatise on the Theory of Bessel Functions 2d. ed. 
(Cambridge, London, 1944), p. 576. 
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PROBLEMS 

1. If o is a harmonic function which is zero on the cone O = a and takes the value 
a.nrn on the cone O = ß, show that when a < 0 < ß, 

co 

n=0 

Qn(cos a)Pn(cos e) - Pn(cos a)Qn(cos 0) n 
n Qn(COS a)Pn(COS ß) - Pn(cos a) Qn(COs ß) j. 

2. A small magnet of moment m lies at the center of a spherical hollow of 
radius a in medium of uniform permeability ,u. Show that the magnetic 
field in this medium is the same as that produced by a magnet of moment 
3m /(1 + Zu) lying at the center of the hollow. 

Determine the field in the hollow. 

3. A grounded nearly spherical conductor whose surface has the equation 

r = a 1 

n=z 
EnPn(cos 0) 

is placed in a uniform electric field E which is parallel to the axis of symmetry 
of the conductor. Show that if the squares and products of the E's can be 
neglected, the potential is given by 

2 

V=Ea {(1 +5E2) -r P1+3 r a 

co 
n n+1 ' 

2n - 1 
En-1 + 2n + 3 

En+1 

n=2 

X 

(n-}-1 

-a) Pn, El = O. 
r 

4. Heat flows in a semi -infinite rectangular plate, the end x = O. being kept 
at temperature 0o and the long edges y = 0 and y = a at zero temperature. 
Prove that the temperature at a point (x,y) is 

400 1 (2m + 1)y 
sin e-12nt-?-1)7rxJa r 2m -I- 1 a 

m=0 

5. V is a function of r and 0 satisfying the equation 

a2V 1 aV i a2V 

art + r ar + r2 ao2 

...._ 

within the region of the plane bounded by r = a, r = b, O = 0, 0 = 7r. Its 
value along the boundary r = a is 6(r - 0), and its value along the other 
boundaries is zero. Prove that 

V= 2 (r1 b)4n -2 (b ¡r)4n -2 sin (4n - 2)0 
(a /b)471--2 (b /a)4n -2 (2n - 1)3 

n= 

6. Problems with Axial Symmetry 

The determination of a potential function 'p for a system which has 
axial symmetry can often be considerably simplified by making use of 
the fact that it is sometimes a simple matter to write down the form of ip 
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for points on the axis of symmetry. It is best in such cases to use 
spherical polar coordinates r, 8, ck and to take the axis of symmetry to 
be the polar axis O = O. Suppose that we wish to determine the 
potential function (r,O,i) corresponding to a given distribution of 
sources (such as masses, charges, _etc.) and that we have been able to 
calculate its value p(z,0,0) at a point on the axis of symmetry. If we 
expand ß(z,0,0) in the Laurent series 

w B 
v(Z,0 ,O) " Anzn + 

Z n + 

then it is readily shown that the required potential function is 

v(r,e,0) 
°° B 

(Anmn + rn.473. Pn(cOs 9) 
n=0 

for 
(i) vZv = 0; 
(ii) 1p(r,6,¢) takes the value (1) on the axis of symmetry, since there 

P,(cos 0) = 1, r = z ; 
(iii) v(r,04) is symmetrical about Oz as required. 

The simplest example of the use of this method is the determination 
of the potential due to a uniform circular wire of radius a charged with 
electricity of line density e. At a point on the axis of the wire it is 
readily seen that 

so that ß(z,0,0) 

v(z,0,0) 
2?rea 

1/a2 + z2 

()n Z2 2re - 2 
n! a 

27re 

z<a 

(i)n n (.._ 
2n-{-I 

n! 
(-l) 

z n=0 ' 

z>a 

where we have used the notation (a) a(a + 1) (a + n - 1). 
Hence at a general point we have 

(2re 
y(r,B) = 

(2)n r2n 

n 
(-On a2n P 2n (COS 8) 

(i) a2n-1 
2?re ¿ n in 

(- I )n r2n-+ 2n (COS B) r a 
n =0 

The solution of a direct problem of this kind presents little difficulty. 
Where the method is most useful is in the combination with that of 
Sec. 5, as in the following example: 

Example 7. A uniform circular wire of radius a charged with electricity of line 
density e surrounds grounded concentric spherical conductor of radius c. Determine 
the electrical charge density at any point on the conductor. 

r < a 
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By the last result and the method of Sec. 5 we see that we take for the forms of the 
potential function 

co 2n 2n 2n +1 

t ,1 = 27re {(_1)n (-32")n 

An r + Bn Ç }P2(cos O) 
n! a a 

c < r < a 
r 

and 
n=0 

/702 - 27re (_1)n (2)n 
J n! 

n =0 

The boundary conditions 

2n-1-1 
ü 

-- C (-a P2n(cos O) 
-r) Y 

(i) V1 = 0 on = c 

ayll - a2 
(ii) '1 = 2, ar ar on r = a 

yield the equations 

-1)n (1)n C 2ñ An c 2n 1_ Bn = O 

n! a ci) 
2n +1 

An -I - Bn (c) =Cn 

2n-? -1 

2nAn (2n + 1)Bn 0 - -(2n + 1)C 
a 

from which it follows that 

Y > a 

(2)n (c )2n 
An =O, Bn= 1 

n! a 
Hence when c ¡ r < a, 

n 
l t)n 

{;-: r;:1} = 27re ( -1) \ a P2n(cos O) 

n-0 
The surface density on the spherical conductor is given by the formula 

so that 

1 

47r 

(a1piÏ 
ar r-c 

-1)n G) 
n 

n (4n -}- 1) 
C2n 

P2n(cos ) a2n 

PROBLEMS 

1. Prove that the potential of a circular disk of radius a carrying a charge of 
surface density ci at a point (z,0,0) on its axis O = 0 is 

27ra[(z2 + a2)E - z] 

Deduce its value at a general point in space. 

2. A grounded conducting sphere of radius a has its center on the axis of a 
charged circular ring, any radius vector e from this center to the ring making an 
angle a with the axis. Show that the force pulling the sphere into the ring is 

Q2 
CO 2n +1 - 

c2 
(n + 1) Pn +1(cos a)Pn(cos O) (-a) 

n =o 
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3. A grounded conducting sphere of radius a is placed with its center at a point 
on the axis of a circular coil of radius b at a distance c from the center of the 
coil; the coil carries a charge e uniformly distributed. Prove that if a is 
small, the force of attraction between the sphere and the coil is 

e2ac 
1 

á2 3 c2 
1 o (,P] {'4 {'2 f2 

where f 2 = b2 + c2. 

4. A dielectric sphere is surrounded by a thin circular wire of large radius b 
carrying a charge E. Prove that the potential within the sphere is 

co 

(_1)n 4n + 1 r(n + -i) Y 
e) 

1 + 2n(1 ; K) n1I'(2) b 

7. Kelvin's Inversion Theorem 

It is a well -known result in the elementary theory of electrostatics 
that the solution of certain problems may be derived from that of 
simpler problems by means of a transformation of three -dimensional 
space known as inversion in a sphere. The points P, H with position 
vectors r, p, respectively, are said to be inverse in a sphere S of center 

with position vector e and radius 
a if the points P, II, C are col- 
linear and if a is the mean propor- 
tional between the distances CP, 
CH. We must therefore have 

o 

Figure 22 and 

Ac -}- ,ur + v P = 0 

A -{- itc -}- v .= 1 

a2 = rp 

This transformation has the property that it carries planes or spheres 
into planes or spheres and carries a sphere S' into itself if and only if 
S' is orthogonal to S. 

We now consider the effect of such a transformation on a harmonic 
function. If we write p = (,rß,0, r = (x,y,z), so that 

a2x a2y a2Z 
r2 ' n t.2 ' - t.2 (1) 

then by the well -known rule' for the transformation of the Laplacian 
operator it follows that 

Q 2 _ rs a (át; ay1 a a2 a a a2 a (2) 
as ax áx + a r2Ó az r2 az y y 

i P. M. Morse and H. Feshbach, "Methods of Theoretical Physics" (McGraw - 
Hill, New York, 1953), pt. I, p. 115. 
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Now as a result of direct differentiations it is readily shown that 
a (a2 a a. az (fit aye 

áx r2 r áx2 V - r ----i .ax 

so that since 1/r is a harmonic function, the right-hand side of equation 
(2) reduces to 

r5 a2 a2 a2\ i a 
a5 ax2 + a y 2 

+ 
az2 ) k;: 

Hence we have Kelvin's inversion theorem that if ç(571,0 is a harmonic 
function of , 77, in a domain R, then 

a a2x a2y a2z a a2r 
3 

Y 
V r2 ' r2 ' r2 = 

Y 
V k?-) ( ) 

is a harmonic function of x, y, z in the domain R' into which R is 
carried by the transformation (1). 

By the principle of superposition of solutions of a linear partial 
differential equation it follows from equation (3) that the functions 

A2r 
(A)p0 

Aa2r 
díi (4) 

r Jo 0 r2 ' Y 
0f 

r2 

are also solutions of Laplace's equation for any function!' (A) such that 
the second of integrals (4) exists. 

Kelvin's inversion method has been adopted by Weiss' to yield 
solutions of potential problems which are neat and readily adaptable to 
numerical computation. For instance, suppose that ipo(r) denotes the 
potential of an electric field having no singularities within r = a and 
that a grounded conducting sphere S of radius a is then introduced into 
the field with its center at the origin. To describe the disturbed field 
we must find a function v satisfying 

(i) 'v(r) vo(r) for large values of r 
(ii) p=0 onr =a 
(iii) v2, = o for r > a 

By the above argument it is readily shown that the required function is 
given by the equation 

a 2 

V(r) = V o(r) -- V o 

á 
r) (5) 

r r2 

The charge induced on the conducting sphere is 

Q- 1 

(i-tP.a dS 4 s _ 
r =a 

i ay° - a 0 4 s ar o( ) ),,_dS 
1 P. Weiss, Proc. Cambridge Phil. Soc., 40, 259 (1944); Phil. Mag., (7) 38, 200 

(1947). 
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where vo(0) denotes the value of vo(r) at the origin. Since vo(r) is 
regular and harmonic within the sphere S, it follows from Gauss' 
theorem that the first term on the right -hand side of this equation 
vanishes, and we have 

Q = -av o(0) (6) 

If the conducting sphere is not grounded but insulated, the solution is 

2 

IP (r) - VO(r) -á Vo (6-4:.) + V0(0) (7) 

In the corresponding hydrodynamical problem we have to determine 
a function v satisfying the conditions 

(i) tp(r) vo(r) for large values of r 

(ii) = 0 on r = a 

(iii) V2 , = O for r > a 

These conditions are satisfied by the function 

r = r 
a /a21.\ -- 2 

a 

V() fia(, ) r v0 r2 ar iolv° 
(r)d2 (8) 

Condition (iii) follows from the fact that if vo satisfies Laplace's 
equation, then so do the functions (3) and (4). To verify that condition 
(i) is satisfied we expand vo(r) into a Taylor series near the origin. 
We then find that as r -> oo, 

v(r) ^-' Vo(r) + Vo(0) Iffr 

a 2 r 

ar o 
2 chl.) + 0(r-2) 

showing that y(r) vo(r) as r oo. To prove that condition (ii) 
is satisfied we note that 

(avo) 

ar r = a 

a a2r 

r2 
vo r2 

a3 + (r grad pod 

2 , ,2r 3 
+ a j'a 

r2 
V° r2 

+ (r grad o) di. 
r=a 

ôr =a a 
(r) - grad Vo) 

1 fa d 
-2 

.i.0(.1.,21.\1 d + a o dA La2 el] 
ao 1 

karJr=a 
o 

(rgradip0) 
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The results obtained by means of Kelvin's inversion theorem may be 
given a quasi -physical interpretation through the language of the 
method of images well known in the elementary theory of electrostatics. 
The "image system" of the problem whose solution is given by equation 
(5) is the distribution of electric charge which leads to a potential 

a a2 

--r V° ß.2r 

PROBLEMS 

1. A grounded conducting sphere of radius a is placed at the origin in an electric 
field whose electrostatic potential in the undisturbed state is V,z(x,y,z), a 
homogeneous function of degree n in x, y, z. Show that the electrostatic 
potential is now given by the equation 

a2n+1 
=--- 1 -- r2n -{-1 Vn(x,y,Z) 

Hence determine the electrostatic potential of the field surrounding a 
grounded conducting sphere placed in a uniform electric field of strength E. 

2. A point charge q is placed at a point with position vector f outside a grounded 
conducting sphere of radius a. Find the electrostatic potential of the field, 
and show that the image system consists of a charge --qa /f situated at the 
inverse point a2f / f 2. 

3. If the velocity potential of the undisturbed flow of a perfect fluid Vn(x,y,z) is a 
homogeneous function of x, y, z of degree n, show that the velocity potential of 
the disturbed flow due to the insertion of a sphere of radius a at the origin is 

n a2n+1 
v _ 

1 
+ 

n + 1 r2n +1 Vn(x,y,z) 

Deduce the velocity potential corresponding to the flow of a perfect fluid 
round a sphere placed in a uniform stream. 

4. A sphere of radius a is placed at the origin in the fluid flow produced by a 
point source of strength in situated at the point with position vector f (f > a). 
Determine the velocity potential and show that the image system consists of a 
source mal f at the point f' = a2fl f 2 and a uniform sink of line density mla 
extending from the origin to the point f'. 

8. The Theory of Green's Function for Laplace's Equation 

We return now to the consideration of the interior Dirichlet problem 
formulated in Sec. 4. Suppose, in the first instance, that the values of 
V) and avian are known at every point of the boundary S of a finite 
region V and that Q2y = O within V. We can then determine 'y by a 
simple application of Green's theorem in the form (Lass, loc. cit.) 

- 'Q2 dT = ' dS j(V2' ) 
E 

yp 
an an 

(1) 

where E denotes the boundary of the region Q. 
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If we are interested in determining the solution v(r) of our problem 
at a point P with position vector r, then we surround P by a sphere C 
which has its center at P and has radius E (cf. Fig. 23) and take E to be 
the region which is exterior to C and interior to S. Putting 

1 

Figure 23 

and r' = r s sin 8 cos 
a 

--L- sin 6 sin 0 .a-LP cos 0 
a 

y 

v ,rte- - i 
and noting that 

V2ip' -v2p =o 
within 0, we see that 

Jf{ 
a i 

c°n1r'- r 
1 al 

dS' ir'- ri a 

a i 

+ is 
r' 

an rl 

1 4} (2) 
' - r an 

dS ' 0 
r 

i 

where the normals n are in the 
directions shown in Fig. 23. Now, 
on the surface of the sphere C, 

1 1 a 1 1 

Ir' - rJ s an Ir' -- rJ s2' 

dS' = 82 sin O d6 do 

so that 

Ó11 

fav 
p+ °(E) 

Je v(r) le 
1 dS' = 47rw(r) + 0(E) 

1 alp 
and 

C - rl 
dS 0(s) 

Substituting these results into equation (2) and letting s tend to zero, 
we find that 

v(r) = 4; Is{r' t rI ôn v(r) an fir' - xi 
1 dS (3) 

so that the value of y, at an interior point of the region V can be deter- 
mined in terms of the values of y, and ôwôn on the boundary S. 
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A similar result holds in the case of the exterior Dirichlet problem. 
In this case we take the region Sz occurring in equation (1) to be the 
region bounded by S, a small sphere C surrounding P, and E' a sphere 
with center the origin and large radius R (cf. Fig. 24). Taking the 
directions of the normals to be as indicated in Fig. 24 and proceeding 
as above, we find, in this instance, that 

r' O -;- 1 
a(r') 4 ( ) + ( ) I - ri an 

a 1 
v(r) 

an 1r'- r1 
dS 

r 
1aß 

V ds' =o + r, Ran + R2 

Letting e -- 0 and R } co, we see that the solution (3) is valid in the 
case of the exterior Dirichlet prob- 
lem provided that R' and R2 
av f an remain finite as R -} co. 
This explains the remark made in 
Sec. 4. 

Equation (3) would seem at first 
sight to indicate that to obtain a 
solution of Dirichlet's problem we 
need to know not only the value 
of the function ip but also the 
value of avian. That this is not 
in fact so can be shown by the 
introduction of the concept of a 
Green's function. We define a 
Green's function G(r,r') by the 
equation 

G r' H(r,r') 
1 

r () = r, 
where the function H(r,r') satisfies the relations 

a2 a2 a2 

ax'2+ a '2 az'2 
H(r,r') --0 

Figure 24 

1 
and H(r,r') + , O on S (6) Ir-rl 
Then since, just as in the derivation of equation (3), we can show that 

= 1 (G(r,r') 
0 aG ,r 

dS' v'r ) ; s an p( ) an I 
( 7 ) 

it follows that if we have found a function G(r,r') satisfying equations 
(4), (5), and (6), then the solution of the Dirichlet problem is given by 
the relation r-- 1 a G(r,r' ) 

dS' 8 l( ) 4 y(r') 
an 

( ) 
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The . solution of the Dirichlet problem is thus reduced to the deter- 
mination of the Green's function G(r,r'). 

It is readily shown (Prob. 1 below) that the Green's function G(r,r') 
has the property of symmetry 

G(ri,r 2) = G(r 2,r1) (9) 

i.e., if P1 and P2 are two points within a finite region bounded by a 
surface S, then the value at P2 of the Green's function for the point P1 
and the surface S is equal to the value at P1 of the Green's function for 

the point P2 and the surface S. 
The physical interpretation of 

the Green's function is obvious. 
n 

P 
If S is a grounded electrical 
conductor and if a unit charge is 
situated at the point with radius 
vector r, then 

2 

O 
> x=0 Ir-r'I + Mr'r/) 

is the value at the point r' of the 
potential due to the charge at r and 

{ r, the induced charge on S. The 
first term on the right of this equa- 

P ( 
r) .tion is the potential of the unit 

charge, nd the second is the 
rx potential of the induced charge. 

Figure 25 By the definition of H(r,r') the total 
potential G(r,r') vanishes on S. 

We shall conclude this section by deriving the Green's function 
appropriate to two important cases of Dirichlet's problem. 

(a) Dirichlet's Problem for a Semi -infinite Space. If we take the 
semi -infinite space to be x > 0, then we have to determine a function y 
such that V2o = 0 in x > 0, ip = f(y,z) on x = 0, and p -+ 0 as r --->- oo. 
The corresponding conditions on the Green's function G(r,r') are that 
equations (4) and (5) should be satisfied and that G should vanish on 
the plane x = O. 

Suppose that H, with position vector p, is the image in the plane 
x = 0 of the point P with position vector r (cf. Fig. 25). If we take 

H(r,r') = - 1 

I P -rI 
then it is obvious that equation (5) is satisfied. Since PQ = H Q 
whenever Q lies on x = 0, it follows that equation (6) is also satisfied. 

(10) 
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The required Green's function is therefore- given by the equation 
1 1 - (11) G(r,r') - 

ir el 1T----- r'i 
where, if r = (x,y,z), p = (-x,y,z). 

The solution of the Dirichlet problem follows immediately from 
equation (8). Since 

aG(r,r) a 

an = ôx' 1:A4x 

1 

x1)2 4_ (y .02 + @ 

1 

AAX + xi)2 -I- (y - y')2 + (z z 21 

it follows that on the plane x' = O 

aG(r,r') 2x 
an (x2 + (y y')2 + (z - Z')9312 

Substituting this result and v(r') = f(y',z') into equation (8), we find 
that the solution of this Dirichlet problem is given by the formula 

x 
°° f (y',z') dy' dz' 

v(x,y,z ) - - . - ao [x2 2 - ' (z - z`)21312 
(12) 

(b) Dirichlet's Problem for a Sphere. We shall consider the interior 
Dirichlet problem for a sphere, i.e., the determination of a function 
p(r,8,q) satisfying the conditions 

V2v = 0 r < a (13) 

V,= f(e,0) on r- a (14) 

The corresponding conditions on the Green's function G(r,r') are that 
equations (4) and (5) should be satisfied and that G should vanish on 
the surface of the sphere r = a. 

Suppose that II, with position vector p, is the inverse point with 
respect to the sphere r = a of the point P with position vector r (cf. 
Fig. 26). Then if we take 

.H(r,e) = a a 
rlp -r'I a2 (15) 

r2 

it is obvious that equation (5) is satisfied, and it is a well -known 
proposition of elementary geometry that if Q lies on the surface of the 
sphere, PQ =(r /a) HQ, so that equation(6)is also satisfied. The Green's 
function appropriate to this problem is therefore given by the equation 

r r' 

G(r,r') 
1 

Ir-r' l 
álr 

a2 r r' 
(16) 
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aG 1 
R 

aR - r2 aR' ) 
Now ar' R2 ar' a2 ar' 

R2 r2 r'2 -2 ' cos 0 R'2 -- 
a4 

r'2 
2a2 

where R = r + r rr co , 
- 

r2 -I- r 
r' cos 0 

(17) 
and cos 0 = cos O cos O' + sin O sin O' cos OS - 0') (18) 

aG r' (a2 - r2) 
Thus 

ar' 
- - a2R3 

and when r' = a, 
aG aG 

(19) 
an er' a(r2 + a2 - 2ar cos 0)3/2 

Hence if v = f (8,99 on r = a, it follows from equations (8) and (19) 

a2 r2 

Figure 26 

thàt the solution of the interior Dirichlet problem for a sphere is given 
by the equation 

8 - r2) 
in?, 

' 
fir, f(O',«) sin O' dO' 

(20) i(r, , 'r} d 
2 - 2ar cos 0 3/ 2 

JO Jo (a2 + r2 } 

where cos O is defined by equation (18). 
Making use of the result of Prob. 4 of Sec. 4, we see that the solution 

of the corresponding exterior Dirichlet problem is 

- a(r2 a2) 
fo 

2i fr (0' ,0') sin O' dO' 
(r' ,) d 

2 2 -- 2ar cos 0 3lz (21) 4 ( a + } 

The integral on the right -hand side of the solution (20) of the interior 
Dirichlet problem is called Poisson's integral. It is interesting to note 
that Poisson's solution of this problem can also be obtained by means 
of the method of separation of variables outlined in Sec. 5. The 
function 

QYr, 8r 56 ) 

v(r,0,96) = 
n= 

(á} { 

co 

(Al" cos m¢ + B,n sin m¢)Pñ(cos 8)) (22) 
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is a solution of Laplace's equation which is finite at the origin. If 
this function is to provide a solution of our interior Dirichlet problem, 
then the constants Amn, B ?nn must be chosen so that 

f (e,¢) _ (Amn cos m¢ + Ann, sin mO)Pñ (cos e) 
n =0 m =0 

It is known from the theory of Legendre functions that we must then 
take 

A On 

2n+1 n r 
9' si ne'de'd' 

4?T -a 0 
f(O',çt')P(cos ) 

(2n + 1) (n - m) ! 

Amn ` f(o',')P(cos 6') sin O' cos (mç') de' d0' 
2r (n + m) . f - o 

(2n + 1) (n - m)! Fr , . , ' $mn - 
27r n n? o f(e',')Pm(cos 0') sin O' sin (mq') de d 

( + ) 

Substituting these expressions into equation (22) and interchanging the 
orders of summation and integration, we find that 

where 

g= 
n= 

z y 0 - 1 f(O',')g sin 0' de' d' (23) ( > >) in. 4 o 

(2n -I- 1) (1: {P22(cos B)P(cos B') 

+ 2 
It 

nt 
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PROBLEMS 

1. Suppose that P1 and P2 are two points with position vectors r1 and r2, 
respectively, which lie in the interior of a finite region V bounded by a surface 
S. By applying Green's theorem in the form (1) to the region bounded by S 
and two spheres of small radii surrounding P1 and P2 and taking tp(r) = 
G(r1,r'), Iv '(r') = G(r2,r'), prove that 

G(r1,r2) = G(r2,r1) 

2. If the function ip(x,y,z) is harmonic in the half space x > 0, and if on x = 0, 
p = 1 inside a closed curve C and tp = 0 outside C, prove that 2irtp(x,y,z) is 
equal to the solid angle subtended by C at the point with coordinates (x,y,z). 

3. If v(x,y,z) is such that v2 = 0 for x > 0,1p = f (y) on x = 0, and tp -->- 0 as 
r --> co, prove that 

tp(x,y,z) 
x °° 

7r -co 
x2 + (y_ 1)2 

4. The function v(r) is harmonic within a sphere S and is continuous on the 
boundary. Prove that the value of v at the center of the sphere is equal to the 
arithmetic mean of its values on the surface of the sphere. 

5. Use Green's theorem to show ¡hat, iii a usuafnotation, if at all points of space 

v295 _ -47r p 

where p is a function of position, and if l) and r grad 0 tend to zero at infinity, 
then 

o - p dV 
r 

9. The Relation of Dirichlet's Problem to the Calculus of 
Variations 

The interior Dirichlet problem is closely related to a problem in the 
calculus of variations. It is a well -known result in the calculus of 
variations' that the function 'p(x, y,z), which makes the volume integral 

F(x5y,Z)1P)Vx)'P11)1Pz) dr (1) fy 
an extremum with respect to twice -differentiable functions which 
assume prescribed values at all points of the boundary surface S of V, 
must satisfy the Euler- Lagrange differential equation 

aF a aF a i aF a aF 
a ^axa +a a +az V-Wzi x , v 

It follows from this result that the function, among all the functions 
which have continuous second derivatives in V and on S and take on 
the prescribed values f on S, which makes the integral 

¡(v) = v(grad 02 dr (3) 

1 R. Weinstock, "Calculus of Variations" (McGraw -Hill, New York, 1952), 
pp. 132 -135. 

(2) 
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an extremum is the solution of the Dirichlet problem 
V2ip = O within V, v = f on S (4) 

The Dirichlet variational problem, that of minimizing the integral (3) 
subject to the conditions stated, and the interior Dirichlet problem 
are therefore equivalent problems. If a solution exists, then they have 
the same solution. 

Since I is always positive, the integrals I(ip) formed for admissible 
functions ip are a set of positive numbers which has a lower bound, from 
which Riemann deduced the existence of a function making the integral 
a minimum.' It was pointed out by Weierstrass that Riemann's 
argument was unsound, and he gave an example for which no solution 
existed, but Hilbert showed later that provided certain limiting con- 
ditions on S and on f are satisfied, Dirichlet's variational problem 
always possesses a solution. The value of the method lies in the fact 
that in certain cases "direct methods," i.e., methods which do not 
reduce the variational problem to one in differential equations, may 
produce a solution of the variational problem more easily than the 
classical methods could produce a solution of the interior Dirichlet 
problem. The variational method is also of great value in providing 
approximate solutions, especially in certain physical problems in which 
the minimum value of I is the object of most interest; e.g., in electro- 
static problems, I is closely related to the capacity of the system. 

10. "Mixed" Boundary Value Problems 

In the problems of Dirichlet, Neumann, and Churchill the function 
p or its normal derivative avian or a linear combination of them is 
prescribed over the entire surface S bounding the region V in which 
V 2' = O. In "mixed" boundary value problems conditions of 
different types are satisfied at various regions of S. A typical problem 
of this kind is illustrated in Fig. 27. In this problem we have to deter- 
mine a function v which satisfies 

(i) 
V2,1p = o 

v = f 
av 
ôn = g 

within V 

on S1 

on S2 

where Si + S2 = S, the boundary of V, and the functions f and g are 
prescribed. 

As an example of a boundary value problem of this type consider the 
classical problem of an electrified disk.' If, in polar coordinates 

1 This is known as Dirichlet's principle. 
2 G. Green, "Mathematical Papers" (Cambridge, London, 1871), p. 172. 
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(p,ç,z), p(p,ç,z) is the potential due to a perfectly conducting uniform. 
thin circular disk of unit radius which is kept at a prescribed potential, 
then the boundary value problem to be solved is 

a2 
1 

av) a2 
i a2v 

0 
p a 2` p a p az2 p2 a 62 

v -=-- g(p,99 

ay =o 
ôz 

(1) 

on z = 0, 0 < p < 1 (2) 

onz=0,p> 1 (3) 

In equation (2) the function g(p) is prescribed. This equation expresses 
the fact that the potential is prescribed on the surface of the disk, while 
the equation (3) is equivalent to assuming that there is no 'surface 
density of charge outside the disk. The problem is to determine 1 or, 
more usually, to find the surface of the disk. It is also assumed 

that 
1 

-÷ O as 1/r2 + z2 -- CO . 

fr= f Suppose that 

g(p,9) = G(p) cos n(4 -- E) (4) 

Then we may write 'p = W(p,z) cos 

Figure 27 

and 

E), where 

1 aw - n2 
IF 

o 
P a p2 

+ 
az2 

(5) 

onz=0,0<p<1 
(6) 

aw 
áZ . 0 on z = 0, p > 1 (7) 

The form (4) is more general than it appears, since it is possible to 
derive a solution for functions of type g(p,O) by a Fourier superposition 
of functions of type (4). 

To derive a solution of equation (5) we note that 

e -izi Jn(Po 

is a solution of the equation. By the superposition principle it follows 
that 

111(P,z) -ff(t)e_hIJ(pt) dt (8) 

is also a solution for any arbitrary f(t) such that the integral on the 
right exists. Substituting from equation (8) into equations (6) and (7), 
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we see that the function f (t) is determined by the pair of dual integral 
equations 

çf(t)J(pt) dt = G(p) O < p < 1 (9) 

foc° 
' 
t (t)Jn(pt) dt = O p > 1 (10) 

Using the fact that 

a 4 = 
+0 0 ai aZ 

we see that the total surface density cr on the two faces of the disk is 
s(p) cos n(0 - e), where 

s(p) = tf t)Jn(pt) dt 

A general solution of the dual integral equations (9) and (10) has been 
given by Titchmarsh.1 It is found that 

(t) 
2 [tJ_(t) 1yG(y) dy 
TT' 

Y 
2 

° 
vi 

fa 

-i un +i du 

u2 

fi 
dyi (12) 

Substituting from equation (12) into equation (11), we then get the 
expression for s(p). 

Solutions of the dual integral equations (9) and (10) in various special 
cases had been given prior to Titchmarsh's analysis by Weber [n = 0, 
G(p) constant], Gallop [n = 0, G(p) = Ja(cP)], Basset [n = 1, G (;o) 

= Jl(cp)], MacDonald [n arbitrary, G(p) = Jn(cp)], and King [n integral, 
G(p) arbitrary]. In all the cases considered the analysis was difficúlt 
and long, but the surprising thing was that the final results were simple. 
This suggested to Copson2 that we might give a simpler derivation of 
the solution by starting with a more suitable form of potential function. 
Copson took, instead of the form (8), the form 

V 

i z d, 
0 0 

= ß(p)p 
0 o r 

(13) 

where r is the distance of a general point (p,96,z) from a point (p',',O) 
on the disk. To give the correct boundary conditions on z = o we 

E. C. Titchmarsh, "Introduction to the Theory of Fourier Integrals" (Oxford, 
New York, 1937), p. 334. The form of solution given heré is due to I. W;Busbridge, 
Proc. London Math. Soc., 44, 115 (1938). 

2 E. T. Copson, Proc. Edinburgh Math. Soc., (iii) 8, 14 (1947). 
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must have a(P',0') = s(p) cos n(96$' - E), where s(p) is chosen so that 

f s(p' JP' dp' L T 

cos n(0' - e) d¢, 

1P Pl2 - 2pp' cos (0' - 99 

= G(p) cos n(iit - e) (14) 
when 0 < p < 1. 

Now it is readily shown (cf. Prob. 1 below) that the inner integral has 
the value 

4 cos n(/ -- e) t2n dt 
(p12 - t2)(P2 

so that equation (14) becomes 

4 p 
p, t2n dt ñ s(P)(P')x -n du 

p 0 SO v (p12 t2)(p2 - t2) 

ri 
--- s(Pr)(P1)1-n dp' 

o P 

t2n dt 

t2) 

V(p'2 

Inverting the order of integration, we find that 

t2)(p2 j2J 
= G(p) 

nG p t2n dt ci 
S(P')p'1-n QÌ'p, 

0 P (P) 
2 /2 2 

< p < (15) 
1¡p~ - t2 1l t 

To solve equation (15) we let 

S(P) 1 
S(P )P1 -n dP 0 < p < 1 (16) f pf 2 ,- p2 

and obtain 

iPnG(P) -f P t (t dt 
o < p <1 (17) 

If G(p), G'(p) are continuous, it follows by a trivial transformation of 
the well -known solution of Abel's integral equation' (cf. Prob. 2 below) 
that 

1 d CP tn+1 G(t) dt 
S(p) - 

27r 2ñ á 2- t2 P p 1 p t 
(18) 

It only remains to derive the expression for s(p) from this expression 
for S(p). [f S(p) and its first derivative are continuous in any closed 
interval [97,1} for any positive value of 71 < 1, then, by an application 
of the solution of Abel's integral equation (cf. Prob. 3 below), we have 

s 
2 n d i tS(t) dt 

0 < p < 1 (19) 
P p V t2 p2 

which solves the problem. 

1 M. Bocher, "An Introduction to the Study of Integral Equations" (Cambridge, 
London, 1929), p. 8. 
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Hence we have: 
Copson's Theorem. If the potential on the surface of the circular disk 

z = 0, O < p < 1 is G(p) cos n( -- e), where e is a constant, n is zero 
or a positive integer, and G(p) is continuously differentiable in O < p < 1, 

then ff. S(p), defined by (18), is continuously differentiable in [i, 1 ] for 
any positive n < 1, the surface density of electric charge on the surface 
of the disk is s(p) cos n(cf) - e), where s(p) is defined by equation (19). 

Example 8. Find the surface density of charge on a disk raised to unit potential 
with no external field. 

Here n = 0, and G(p) = 1. 

(a) Dual Integral Equation Method. From equation (12) we find that 

f (t) - 2 sin t 
t 

so that, by equation (11), 
1 

co 

s(p) = 
2 

sin t J4(pt) dt 
0 

From the known value of this integral' we see that 

I. 

s(p) _ ,r2,1 
... 

(b) Copson's Method. From equation (18) we have 

I d rp t dt 1 

S(p) = 
- 

27r d p 
0 

Vp2 - t2 2ir 

so that, from equation (19), we obtain the solution 

1 d 

f 
1 tdt 1 

¿(P) = - ,T2 dp Vt2 p2 = Tr2 V 1 __.. pt 

Mixed boundary value problems occur in the theory of elasticity in 
connection with "punching" and "crack" problems. For a discussion 
of these problems the reader is referred to I. N. Sneddon, "Fourier 
Transforms" (McGraw -Hill, New York, 1951), Secs. 47, 48, 52, 54, 55, 
where the dual integral equation approach is used, and to N. I. 
Muskhelishvili, "Singular Integral Equations" (Noordhoff, Groningen, 
1953), Chap. 13, where an approach rather similar to Copson's method 
is used. 

PROBLEMS 

1. If n is zero or a positive integer and if both a and b are positive, prove that 
2/r ein4 dqS 4 min(a,b) ten dt 

jo v'a2 + b2 - 2ab cos 
(ab)n 

o ar - t2)(1)2 -- t2) 

where both square roots are taken to be positive. 

1 Watson, "A Treatise on the Theory of Bessel Functions," p. 405. 
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2. If f (x) and f/(x) are continuous in the closed interval [0,a], show that the 
solutions of the integral equation 

x g(t) dt 

Jo V x2 t2 .f (x) _ 
is 

4 <x <a 

2 d St tf (t) dt 
g(x) 

7r dx v x2 - t2 

3. If f (x) and f '(x) are continuous in c < x < a, prove that the solution' of the 
integral equation 

is 

{' 
4 g(t) dt 

J (x) - v t2 x2 

g(x) = 

c <x <a 

2 d 
x 

a tf (t) dt 
_ 

7r dx 'V t2 - x2 

4. A disk of unit radius is grounded in a uniform external field of strength E 
parallel to its surface. Prove that the surface density of electric charge is 
given by the equation 

2Ep cos 0 
(4) _ X22 

5. Show that in Gallop's case n = 0, G(p) = J0(cp) the problem of the electrified 
disk has a solution of the form 

ß(p) = eT o(cp) + 
1 t cos (CO 

27r Tl2 (t2 p2)3/2 

11. The Two -dimensional Laplace Equation 

In some problems of potential theory the physical conditions are 
identical in all planes parallel to a given plane, say the plane z = O. 

In that case the potential function ' does not depend on z, so that 
aip/ az and a2ip/ az2 vanish identically, and Laplace's equation reduces to 
the form 

ali a2_ a 
ax2 + a .v 2 

If we introduce the operator 

V? 
a2 a2 

ax2 + a 2 

i In the solution of Probs. 2 and 3 use is made of the fact that the solution of 
Abel's integral equation 

(1) 

(2) 

Ja 
f (x) = 

x /1(0 ) d 
' (x -W 

is 

Cf. Becher, op. cit., p. 8. 

0 <2 <1 

sin (772) d rx .f (t) dt 
u(x) 

rr dx ja (x - 01-A 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


LAPLACE'S EQUATION 

we may write this equation simply as 

V =0 

181 

(3) 

We shall refer to equation (3) as the two -dimensional Laplace equation. 
The theory of the two -dimensional Laplace equation is of particular 

interest because of its connection with the theory of functions of a 
complex variable. We shall give a brief account of this relationship 
in the next section. In the remainder of this section we shall indicate 
how methods similar to those employed in the case of the three- dimen- 
sional equation yield information about the solutions of equation (3). 

It is a well -known result of elementary calculus' that if P(x,y) and 
Q(x,y) are functions defined inside and on the boundary C of the closed 
area K, then 

If, in this result, we substitute 

j(Pdx + Q dy) 

P = - ay 

y 
, = ay 

ay ax 
and make use of the fact that 

(4) 

a d a' d 
ay 

ax y 
_ 

ay 
x 

an 

where avian denotes the derivative of 1p in the direction of the outward 
normal to C, we find that 

-Ya f c(V)dS= 
Je an 
1ds (s) 

Hence if the function v(x,y) is harmonic within a region K and is 
continuous with its first derivatives on the boundary C, then 

.fav 

c an 
ds = 0 (6) 

This result is sometimes known as the theorem of the vanishing flux. 
It is immediately obvious from equation (5) that the converse of this 

theorem is also true; i.e., if v(x,y) is a function which is continuous 
together with its partial derivatives of the first and second orders 
throughout the interior of K and if 

J - an 
ds = 0 

where C' is the boundary of any arbitrary region K' contained in K, then 
? is harmonic in K. 

x R. P. Gillespie, "Integration" (Oliver & Boyd, Edinburgh, 1939), p. 54. 
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,Similarly it follows from equation (5) that if VS) = --4Trp throughout 
K, then 

I 
añ 

ds = -47 f p(x,y) dS (7) 

Laplace's equation in two dimensions when written in plane polar 
coordinates r, O assumes the form 

°7-v 

la ay all') 

r 
r 

aY ar r2 a ©2 
- 

so that if 'p is a function of r alone, 

d ( cly) - p 
dr dr 

from which it readily follows that 

t =Alogr -} -B 
where A and B are constants. If we write 

= 2 8 q log C ) 

with q a constant, then V1ip = 0 except possibly at the origin, where v is 
not defined. This solution has the property that if C is any circle with 
center at the origin, the flux of ip through that circle is -4irq. It 
therefore corresponds to a uniform line density q along the z axis which 
appears as a point singularity in the two -dimensional theory. 

In a manner similar to that employed in the three -dimensional case 
(Sec. 2) we could construct potential functions of the type 

= r' l ds' (9) (r ) c q() to g r' 

where r = (x,y), etc. Because of this form of 'v a two -dimensional 
potential function is referred to as a logarithmic potential. It is 
readily shown that if C has a continuously turning tangent and if 
q(x',y') is bounded and integrable, p(x,y), defined by (9), is continuous 
for all finite points of the plane including passage through the curve C. 
If q(x',y') is continuous on C, which itself has continuous curvature, 
then, in the notation of Fig. 28, 

EalP2 41 
-= 

-277. 
A (b) 0 

an an q() 
[P2 av1 

an an A 
= 2 f qrf) Lôn 

log Ir-r'I] ds' (11) 
A 
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Similarly the potential of a doublet distribution on a line C is given 
by an expression of the form 

c an 
i ds' ' 

Ir r'' 

- cos (11,p) 
ds' 

Jo p 

If the tangent to the curve C turns continuously and if ,u is continuous 
on C, then 

P r - r' 

102 - Vi = 2771/(A), Vz + Vi = 2v(A) (12) 

We shall now make use of these results to show how the interior 
Dirichlet problem 

02yß = o within V, v = f on C (13) 

may be reduced to a problem in the theory 
of integral equations. If we assume that 

v(x,y) - fc ,u(s) 
cos (n, P) ds, 

P 

where the function ,u is unknown, then it 
follows from equations (12) that 

VI = V(A) -17720) 
so that from equation (13) 

f (s) 

If we write 
fa 

Figure 28 

,s) f 
cos (n, P)1 ds' - ir(s) 

J 

f(s) 1(cos (n,P)1 
K(s,s') 

then the problem reduces to that of solving the nonhomogeneous integral 
equation of the second kind 

,u(s) + g(s) = f ds' 

for the unknown function ,u. 

For a full discussion of the applications of the theory of integral 
equations to Dirichlet's problem the reader is referred to Chap. 7 of 
Muskhelishvili's "Singular Integral Equations" cited above. 

PROBLEMS 

1. Prove that if v is continuous within and on the circumference of a circle and is 
harmonic in the interior, then the value of v at the center is equal to the mean 
value on the boundary. 
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2. Prove that if ip is harmonic inside a region S and is continuous on the boundary 
'C, then v takes on its largest and its smallest value on C. Furthermore that 
if ip is not a constant, then it cannot have an absolute maximum or minimum 
inside S. 

3. Show that if an and bn are constants, 
CO 

tp(r,6) _ ao + `- 

n 
(an cos n O + bn sin n e) 

a n=1 

is a solution of V v = 0 in the interior of the sphere r = a. 
If ip -f (8) when r = a, determine the constants and show that 

a2 - r2 27r f (4') d' 
(r,8) - 

27r a2 - tar cos (9' - 6) + r2 

4. If V i = 0 for x > O and v -f (y) on x - 0, show by using the method of 
Fourier transforms that 

Ip(x,y) - 1 r 0° 

/27r -a° 

where F() is the Fourier transform of f (y). 
Deduce that 

F(Oe-11x-?y ca 

x .f (y) dy' 
(xy) _ - x.2+(y.-y,)2 

5. Reduce the solution of the exterior Dirichlet problem to that of an integral 
equation. 

6. By taking 

y(r) = 
ef, 

q(s') log 
1 

, ds' Ir-r'I 
show that the solution of the interior Neumann problem 

V2tp = O inside S, 
a 

ón 
= f on C 

reduces to that of the integral equation 

q(s) + K(s',$)q(s') ds' = g(s) 
c 

where g(s) = f (s) , K(s',$) = 
á 

log I , 
7r 7r an Ir 1-- r I A 

12. Relation of the Logarithmic Potential to the Theory of 
Functions 

There is a close connection between the theory of two -dimensional 
harmonic functions and the theory of analytic functions of a complex 
variable. The class of analytic functions of a complex variable 
z = x + iy consists of the complex functions of z which possess a 
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derivative at each point. It can be shown' that if 0 and y, are the 
real and imaginary parts of an analytic function of the complex variable 
x + iy, then 0 and 1p must satisfy the Cauchy- Riemann equations 

ao alp ao alp 

ax ay' ay - ax 
(1) 

Now it can be proved that the derivative of an analytic function is 
itself analytic, so that the functions 0 and v will have continuous 
partial derivatives of all orders and, in particular, Schwartz's theorem 

a20 a20 a2tp a2yp 

ax ay ay ax' ax ay - ay ax 

will hold. Combining the results (1) and (2), we then find that 

Vç6 =vii =0 (3) 

(z) 

i.e., the real and imaginary parts of an analytic function are harmonic 
functions. The functions 96., y, so defined are called conjugate functions. 

The converse result is also true: If the harmonic functions 0 and y, 

satisfy the Cauchy -Riemann equations, then 0 + ilp is an analytic function 
ofz= x -I -iy. 

If either ¢(x,y) or v(x,y) is given, it is possible to determine the 
analytic function w = 0 + iip, for, by equations (1), 

dw 41 .alp 
-cE. = Ta---d- i-Fx.= oi(x,y) - i02(x,y) 

where 561= a0/ax, (k2 = ao¡ay. Putting y = o, we have the identity 

dw 
01(z ,0) - i02(z,0) (4) 

dz 

from which w may be derived by a simple integration. If 'v is given, 
then, in a similar notation, 

dw z0 dz2(,0 )+ i x(z,) (5 ) 

Example 9. Prove that the function 

= x + x2 + y2 

is a harmonic function, and find the corresponding analytic function 96 + iv. 
For this function 

ac - 1 - x2 y2 
ao 2xy 

ax 
- 

(x2 + y2)2 ' ay (X2 + y2)2 

ana a further pair of differentiations shows that VY = O. Putting y = 0, x = z in 

1 See, for instance, L. V. A hifors, "Complex Analysis" (McGraw -Hill, New York, 
1953), pp. 38-40. 
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these equations, we find that 961(z,0) - 1 --- z-2, '62(z,0) = 0, so that 

dw 1 

dz z2 

from which it follows that 
1 

W = z -}- - 
z 

The conjugate function o is therefore given by the equation 

V= 
y2.v 

2 x +y 
In the notation of vector analysis the Cauchy- Riemann equations (1) 

can be written in the form 

grad 0 _ (grad v) x k (6) 

where k = (0,0,1) is the unit vector in the z direction, from which 
we conclude that the sets of curves 

`° 0 = constant and y, = constant inter- 
sect orthogonally. Also if s is a unit 
vector in any direction and n is a unit 
vector perpendicular to s measured anti- 
clockwise from s (cf. Fig. 29), we get 
the general results 

ao alp ao av 
ás án ' án = - ás (7) 

Figure 29 

We consider now the application of these results to the motion of an 
incompressible fluid in two dimensions. If (u,v) denote the components 
of velocity at a point (x,y) in the fluid, then if the fluid is incompressible, 

au av 

ax + ay = o (8) 

and 
av au 
áx áy 

where Z denotes the vorticity. If, therefore, a fluid is incompressible, 
it follows from equation (8) that there exists a function v such that 

av aip 
u = - v = -- (10) 

ay' 

(9) 

and, from equation (9), 

=VII) (11) 

If, in addition, the motion is irrotational, then 

VT.ip =0 (12) 
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On the other hand if the fluid is incompressible, 

av au 
0 

ax áy 

so that there exists a function ¢such that 

_a, _a 
ay 

and 
au av -02 
ax ay 0 

If, in addition, the fluid is incompressible, then 

vx0 =o 

(13) 

(14) 

Hence for the irrotational motion of an incompressible fluid both ' and 
0 exist and satisfy Laplace's equation. The function ip is called the 
stream function and 0 the velocity potential. From the equations (10) 
and (11) we have immediately that 

ao av a av 
-5.-i= x - ay' ay- - ax 

so that the Cauchy - Riemann conditions are satisfied and 

w =0 Div (15) 

is an analytic function of the complex variable z = x + iy. The 
function w is called the complex potential of the motion. Since 

dw ark . alp 

dz 
=.__ 

ax + i ax 
it follows that 

showing that 

dw = i -u -}- v 
dz 

dw 

dz 1/u2 + V2 = q 

(16) 

(17) 

is the magnitude of the resultant velocity at a point in the fluid. 
The stream function ip is constant along a streamline. 
If the motion is steady, the pressure p at a point in the fluid may 

be derived from Bernoulli's theorem which states that along a streamline 

P + iq2 + V 
p 

is a constant whose value depends on the particular streamline chosen ; 
V denotes the potential energy in the field. 
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It is sometimes convenient to use relations of the kind 

z =.Î (w) 
instead of w = f (z). It is readily shown that 

Example 10. 

1 

q 
Show that the relation 

dz 
dw 

a2 
w = -Ü z + -z 

(18) 

gives the motion of a fluid round a cylinder of radius a with its origin fixed at the 
origin in a stream whose velocity in the direction Ox is U. 

Separating the complex function 

0-I-ip= -U x + iy + 

into its real and imaginary parts we find that 

a2 
0 = --Ux 1 +x2+y2 , 

a2(x - Iy) 
x2+y2 

a2 - Uy 1 - x2 + y2 

The components of velocity are therefore given by the equations 
2 2 2 2 

u.= U l + a( -x) , v= -2U axy 
(x2 ' + 

y2)2 (x2 + y2)2 

It follows therefore that v = 0 on the circle with equation x2 + y2 = a2 and that at 
a great distance from the origin u = U, v = O. The given complex potential 
therefore satisfies the stated conditions. 

0=o =c 

Figure 30 

Two -dimensional problems in 
electrostatics can be tackled in a 
similar way. In this case 0 denotes 
the electrostatic potential, so that 
the lines in the xy plane with equa- 
tions 0 = constants are the equipo- 
tential surfaces. The lines ip = con- 
stant cut these lines orthogonally, 
and so they must correspond to the 
lines of force. A potential function 
ch derived in this way could solve the 
problem of the distribution of electric 
force in a condenser formed by two 
conductors, one of which has equa- 
tion 95 = 0, and the other of which 
has equation 56 = c. The charge 

distribution in such a problem can be calculated easily. If a is the 
charge density at a point, then 

1 a 1alp 
a = - - = 

47r an 47r as 
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by the second of equations (7). Hence the total charge between A and 
B per unit length perpendicular to the xy plane is 

B i q= 
A 

ads = -(soB -V A) (19) 

a result which is of great use in the calculation of capacities. 
For instance, if the normal sections of two infinite conducting 

cylinders are given by the closed curves 0 = c1 and ck = C2, where 
0 + iv = f (x + iy), then the capacity per unit length of the cylinders is 

1 

47101 c 1 c 2) - d (20) 
, 

where the integral is taken round the curve s6 - c1 in the positive sense. 

Figure 31 

Example 11. An infinite conducting cylinder C of small radius a is placed parallel 
to an infinite plane conducting sheet and at a distance c from it. Show that the 
equation 

z -- c 
0 + icy = log 

z -}-c 

(c real) gives approximately the equipotentials and lines °T force if the plate is grounded 
and the cylinder is at potential -log (2c 1a). 

Show that the capacity of this system per unit length is [2 log (2c1a)] -1 
If 

z - c +iy =logz-} -c 
then writing z - c = r1eoi, z + c = riet, we see that 

st= log -ri, ß,=i(61 --92) 
r2 

Now on the plane x = 0, r1 = r2, so that 0 _= 0 while on the cylinder if a C< c, 
r2 2c, and r1 = a, so that 

- - log 
2c 

9S 

a 
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As we go round C in the positive sense, Oi changes by an amount -2r, while the 
total change in 02 is zero. We therefore have 

d = -217. 

Substituting these results in equation (20), we get the answer stated for the capacity 
of the system. 

The main advantage of the method of conjugate functions is that 
the theory of conformal representation can sometimes be employed to 
reduce one problem to a simpler one whose solution is known. To show 
how this may be effected we consider the transformation 

= f (z) (21) 

in which the function f (z) is an analytic function of z, which maps 
the z plane on to the plane.' Since cg = f '(z) dz, it follows that 
any small element of area AA in the z plane in the neighborhood of 
the point z = a becomes an element of area f '(a)I2AA in the neighbor- 
hood of the point = f (a) turned through an angle argf '(a). It can 
also be shown that if two curves C1, C2 in the z plane intersect at an 
angle a, then the images F1, 112 of these curves in the plane intersect 
at the same angle, the sense of rotation as well as the magnitude of a 
being preserved. For this reason the transformation (21) is said to be a 
conformal transformation. 

The importance of conformal transformations in potential theory 
arises from the fact that if + irk = f (x -;- iy) is a conformal mapping 
which takes a function cgx,y) into a function (1)(,n), then 

a20 a20 
E2 an2 

dz i2 a20 a20 
á ax2 + a 2 y 

so that if Idzj4 ; is not infinite, and if 

a20 a20 
o 

ax2 4- a 2 y 
it follows that 

(22) 

a20 a20 
a2 +a2 

so that the function t ( ,ri) is harmonic in the tri plane. Furthermore 
any curve in the xy plane along which the function 9qx, y) is constant is 
mapped into a curve in the &) plane along which the function ,r1) is 
constant. 

If there is a charge q at the point c in the z plane, then the complex 
potential is 

w = -2q log (z - c) 

' Ibid., pp. 69-81. 
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In the transformed problem the complex potential 

W = -2q log d G - v) 

= -2q log G - y) + 0 
where 0 is analytic at the point C = y = f (c). In the transformed 
problem there is an equal charge q at the point = y into which the 
point z =cis transformed. 

In any two -dimensional electrostatic problem the potential function 
for prescribed boundaries and distribution of charges in the z plane is 
equivalent to the potential function for the transformed boundaries and 

z plane Figure 32 plane 

charges in the plane. If the solution of the problem in the plane 
is known, then by transforming back to the z plane we can derive the 
solution of the original problem. We shall illustrate the procedure by 
means of an example. 

Example 12. Midway between the grounded conducting planes O = ±7r/(2n) there 
is placed at a distance a from the origin a point charge q. Show that the lines of force 
have polar equations 

r2n a2n -= 2kanrn sin (n9) 
where k is a parameter. 

If we make the transformation 

C = zn = rnein6 

then the boundaries O = ±ir/(2n) go into the imaginary axis ¿ = 0 in the C plane, and 
the point .ß(a,0) goes into the point II(an,0). Now the solution corresponding to a 
point charge q opposite a grounded conducting plane = O is readily seen to be 

C +an 
W(C) = 2q log 

C - n a 
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Transforming to the original variables, we therefore have the complex potential 

zn + an 
w (z) = 2q log an 

If we write z = rei °, then 

where 

Zn -i -an r2n - a2n 2ianrn sin (n6) 
zn an r2n + a2n 2anrn COS (ne) 

2anrn sin (ne) 
tan 0 = r2n a2n 

= Ré iQ 

Thus y' = -2q0, so that the lines of force v = constant have equations of the 
form 

r2n - a2n = 2kanrn sin (ne) 
where k is a parameter. 

For a complete account of the theory of conformal mappings the 
reader is referred to "Conformal Representation," by Z. Nehari 
(McGraw -Hill, New York, 1952). In the application of the theory to 
the solution of particular problems it will be found useful to consult 
H. Kober's "Dictionary of Conformal Representations" (Dover, 
New York, 1952). 

PROBLEMS 

1. Prove that the function 

0 = sin x cosh y + 2 cos x sink y + x2 - y2 + 4xy 

is a harmonic function, and find the corresponding analytic function 0 + iv. 

2. If the two -dimensional motion of a fluid consists of outward radial flow from a 
point such that the rate of emission per volume per unit time is 2irm, we say 
that the point is a simple source of strength m. Show that the complex 
potential of such a source at a point (a,b) is given by 

w = -m log (z - y) 

where y = a + ib. 

3. Show that the relation 
Z2 a2 

w = -M log 
z a`' 

gives the motion in the quadrant of a circle due to equal sources and sinks at 
the ends of its bounding radii. 

4.1 Suppose that the irrotational two -dimensional flow of incompressible inviscid 
fluid in the z plane is described by a complex potential f (z). If there are no 
rigid boundaries and if the singularities off (z) are all at a distance greater than 
a from the origin, show that when a rigid circular cylinder z = a is introduced 
into the field of flow, the complex potential becomes 

a2 
w = f (z) + fT (-z 

1 This is Milne- Thomson's circle theorem. See L. M. Milne- Thomson, Proc. 
Cambridge Phil. Soc., 36 (1940). 
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5. Prove Blasius' theorem that if, in a steady two -dimensional irrotational 
motion given by the complex potential w = f (z), the hydrodynamical pressures 
on the contour of a fixed cylinder are represented by a force (X, Y) and a 
couple N about the origin, then 

dw 2 

X - iY =iip dz 
.c 

dw 2 

and N = -ZpR z 
dz 

dz 
el c 

where the integrations are round any contour which surrounds the cylinder. 

6. Show that the transformation 

z = ai(kw + 1 - ekw) 

determines the potential and stream functions for a conductor at potential 
96 = 0, of which the boundary is given by the freedom equations 

x = a(6 - sin 6), y = a(l - cos (9) 

Show that at points where y is large and negative the field is uniform and of 
strength (ak) -1. 

7. The motion of a sheet of liquid in the infinite strip of the z plane between the 
lines y = O and y = a is due to a unit source and a unit sink at the points 
(0,a/3) and (0,2a/3), respectively. Prove that the motion of the liquid can be 
determined by the transformation 

2(cosh irz /a) -- 1 
w = log 

Trz/a) I- I 

and find the pressure at any point on the x axis. 

13. Green's Function for the Two -dimensional Equation 

The theory of the Green's function for the two -dimensional Laplace 
equation may be developed along lines similar to those of Sec. 8. If 
we put 

ai P__, ; 
y 

" Q 

in equation (4) of Sec. 11, we find that 
, , 

v2 ' ds 
(a' a a 

ds -- dS (1) ..K 1 ..K axax a a - an uy 

If we interchange o and p' and subtract the two equations, we find that 

fx 

, 

v ' - 'I2 dS 
a - ' dS (2) ( ) 

Suppose that P with coordinates (x,y) is a point in the interior of the 
region S in which the function v is assumed to be harmonic. Draw a 
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circle. I' with center P and small radius e (cf. Fig. 33), and apply the 
result (2) to the region K bounded by the curves C and P with 

log 
ir -r'I 

Since both p and ip' are harmonic, it follows that if s is measured in the 
directions shown in Fig. 33, 

1 1 

r + fa) (x',y') ân log r - el - log - r'i an 
ds ----- 0 (3) 

Proceeding as in the three -dimensional case, we can show that 

f4iog1r 1 ds' = 2y(x, y) -1-- O(s) 

and that 

Figure 33 

log 1 ds' < -2irMe log g(r-r(an ' g 
s 

alp 

where M is an upper bound of aip/ ar. 
Inserting these results into equation 

(3), we find that 

(logv,y' 
c r - r' an 

- 
( 
x ' log ds' ,y) an g`r' -r (4) 

v(x,y) = 

analogous to equation (3) of Sec. 8. 
If we now introduce a Green's function G(x,y ;x',y'), defined by the 

equations 

G(x,y;x',y) = w(x,y;x',y') + log 
ir 

(s) 

where the function w(x,y;x',y) satisfies the relations 

a2 a2 

- a- x'2 
+ 

y 
'2 w(x,y ;x''y') = 

° (6) 

w(x,y;x',y) = log (r - r'J on C (7) 

then just as in the three -dimensional case the solution of the Dirichlet 
problem 

1 

\ii = o within S, 

is given by the expression 

x = -- 1 
fc 

x' x,y,x 'y) ds' V ( ,y) 2 v .Y) an 

where n is the outward -drawn normal to the boundary curve C. 

v = f (xy) on C 
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We consider two special cases : 

(a) Dirichlet's Problem for a Half Plane. Suppose that we wish to 
solve the boundary value problem Vii = O for x > 0, v = f (y) on 
x = 0, and v -- O as x ---> co. If P is the point (x,y) (x > 0), II is 
( -x, y), and Q is (x',y'), then 

G(x,y ;x''y) 
= 

log 
QH 
Q 

(cf. Fig. 25) satisfies both equation (6) and equation (7), since HQ = PQ 
on x = O. The required Green's function is therefore 

x x' 1-- 10 (x 
+ 

x')2 + (y 
- 

y')2 G (,y > ,y) g 2 y')2 x, 
) + (y y ) 2 (10) 

Now on C 
aG (G\ 2x 
an a')'0 x2 + (y - y' 

so that substituting in equation (9), we find that 

-v 
f(y')dy' 

(x,y) x f .._ co 
x2 ____ +(yv y'2 ) 

This is in agreement with what we found in Prob. 3 of Sec. 8 and Prob. 4 
of Sec. 11. 

(b) Dirichlet's Problem for a Circle. In this instance we wish to find 
a solution of the boundary value problem 

V = 0,r <a, p= f(8)onr =a 
We take P to be the point (r,6), Q to be (r',6'), and II to be the inverse 
point to P and therefore to have coordinates (a2 /r, 8) (cf. Fig. 26). 
We see that 

Gr'8' =10 rI1Q ( 8r ) gaP Q 

is harmonic within the circle except at the point Q, where it has the 
right kind of singularity. Further, G vanishes on the circle r' = a. 
We therefore have 

a2 + r2r'2/a2 
G(r,e;r',e') -- i log 

r ,2 2 r -- - 
Now on C 

so that 

- 2rr' cos (8' - 8) 

2rr' cos (B' - B) 

aG aG --(a2 - r2) 

an = karf),,.a a(a2 - 2ar cos (0' - 8) + r2) 

a2 r2 21r f(O') dO' 
v(r,8) = 

27 fo a2 - 2ar cos 8` -- r2 
(12) 

in agreement with what we found previously in Prob. 3 of Sec. 11. 
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Equation (12) is known as Poisson's integral solution of the two- dimen- 
sional problem. 

We shall conclude this section with a theorem about the two- dimen- 
sional Dirichlet problem which has no counterpart in three -dimensional 
space. It concerns the relation between conformal mapping and 
Green's function. Suppose that the function 

w = f (z) 

maps the region S in the xy plane on the unit circle in the uy plane in 
such a way that f (a) = O. Then the function f must be of the form 

f (z) = (z - a) eg (z) 

where g is regular and f (z) = 1 on C. Hence 

log f (z) = log (z - a) + g(z) 

vanishes on C, is harmonic in S, and has a singularity like log r, so that 

log i f (z)1 = -- G(x,y;u,v) 

On the other hand, log I f (z)I is determined by G(x,y;u,v), and 
therefore so is Rg(z), and hence g(z) is determined within a constant. 
The problem of the conformal mapping of a region S in the xy plane on 
the unit circle in the uy plane is equivalent to that of finding the Green's 
function of S, i.e., to solving an arbitrary Dirichlet problem for the 
region S. 

PROBLEMS 

1. Use Poisson's integral formula to show that if the function v is harmonic in a 
circle S and continuous on the closure of S, the value of v at the center of S 
is equal to the arithmetic mean of its value on the circumference of S. 

2. If the function p(x,y) is harmonic within a circle of radius a with center the 
origin, prove that 

do61- 

V(x)y) + V(a)o) = R i 
a 

Via i ox -- Z 

where C denotes the circle lal =a in the complex a plane. 
Deduce that every harmonic function p(x,y) is analytic in x and y. 

3. If the function p(x,y) is harmonic in the interior of a region S and if A is an 
interior point of S at which the value of ' is equal to the least upper bound of 
its values in S and on its boundary, prove that y' is a constant. 

4. Prove that if 1i(x,y) (i = 1, 2, . . .) is a sequence of functions each of which is 
harmonic in the interior of a finite region S and continuous in S and on its 
boundary and if this sequence converges uniformly on the boundary of S, then 
it also converges uniformly in the interior of S to a limit function which is 
harmonic in the interior of S.t 

5. Prove that if a series of nonnegative functions ipi(x,y), harmonic in the interior 
of S, converges at some interior point of S,. then this series converges to a 
harmonic function at every point of S. 

t This is known as Harnack's first theorem. 
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


LAPLACE'S EQUATION I 97 

Show also that the convergence is uniform in every closed bounded region 
of S.t 

6. Prove that if a nonconstant function p(x,y) is harmonic in the whole plane, it 
cannot be bounded from above or from below (Liouville's theorem). 

MISCELLANEOUS PROBLEMS 

1. Prove that if Vn is a homogeneous function of x, y, z of degree n and 
r2 =x2 +y2 +Z2, 

V 
2(rm 

Vn) = m(m + 2n + 1)rm -2 Vn + rmV2 Vn 

Deduce Kelvin's theorem that if Vn is a harmonic function, so also is 
-2n -1 Vn. 

21 Prove that if Vn is a homogeneous function of x, y, z of degree n which 
satisfies Laplace's equation, then 

app -q-f -s j!n 

axp ayq azs 

is a homogeneous function of degree n- p- q- s satisfying Laplace's equation. 
3. Prove that if Vn(x,y,z) is a homogeneous rational integral function of degree 

n, the function 
r2 r4 

1 

- 
2 {2n - l) 

Q2 + 2.4(2n - 1)(2n - 3) V4 - . . . Vn(x,y,Z) 

where Q - au a2s a2s 
2s 

ax2s ay2s aZ2s 

is a harmonic function. 
4. A number of point charges ek are placed in positions having rectangular 

coordinates (4,77k,.k) Show that inside any sphere, around O in which there 
are no charges the electrostatic potential is given by 

where 

r (x2 + y2 + z2)1, 

00 

0(x,y,Z) - >f, rnSn 
n=0 

ek¡¡II'' 
Sn = pk- PnV"k) 

Pk - (4 + ik + MI , Yk 
$kx + yJky + kZ 

Pkr 
Show that if y6 is a symmetrical function of x2, y2, and z2, then Sn = O for 
n =1, 2, and 3. 

Find expressions for the potential near O, correct to terms in r4, for: 
(a) six equal charges e at the six points ( ±a,0,0) ; (0,±a,0); (0,0, ±a); 
(b) eight equal charges -e at the eight points ( ±b, ±1', ±b). 

Show that to the order considered the electric intensities are the same if 
8a5 = r 81 V3b5. [P2 = -i(3,u2 -- 1) and P4 = ß(35,u4 - 30,u2 + 3) may be 
assumed.] 

5. A mass rn is at a point whose displacement from the origin is a. Show that 
its potential at a sufficiently great distance r from the origin is 

1 - (a V) + ;-1. 
(a. V)2 -i (a. V)3 + . . yin 

3! r 
where V is the vector operator with components al ax, a/ ay, a¡ az. 

1- This is known as Harnack's second theorem. 
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_Eight masses m are placed at the points ± 1, ±1, +1. Show that at large 
distances from the origin the potential is 

V 
= 8ym 14ym14 

{5(.x4 + 4 + z4) --- 3,4 + smaller terms 
r r9 

} 

Deduce, or otherwise prove, that near the origin 

8 ym 14ym 
Y = - 

3 15 
{5(x4 + y4 + z4) - 3r4} + smaller terms 

1 

6. Show that the gravitational potential produced by a given distribution of 
matter at a distant point P is given approximately by 

ym +y(A +B +C -3I) 
R 2R3 

where in is its mass, A, B, and C are its principal moments of inertia at its 
mass center G, 1 is the moment of inertia about GP, and R is the distance GP. 

Relative to polar coordinates with Gas pole, the surfaces of equal density 
are r = a + e(a)S2(64) where e(a) is a small quantity whose square is negligible 
and S2 is a surface harmonic of second order; the boundary of the matter is 
the surface of equal density given by a = b. Show that the second term in the 
expression for V reduces to 

b 

p(a)d (die) da S2P2(cos 8') sin O d9 di) 
R3 0 da 

where O' is the angle between r and R. 

7. If the electrostatic potential of a system is given by 

A(x2 _ y2 + z 2) - 3/2 Z tan-1 .y 

x 
show that the lines of force lie on the surfaces 

X2 + y2 + Z2 = B(x2 + y2)213 

8. The density at any point of a thin spherical shell of total mass M varies 
inversely as the distance of the point from a point C inside the shell at a 
distance c from its center O. Denoting OP by r and the angle POC by 9, 
prove that the potential at an external point P is 

M 
w 

(c )n P.n(cos 6) 

r r 2n + 1 
n=0 

Prove that this result can be written in the form 

M re dx 
2A/é jo xI(x2 - 2xr cos O + r2)i 

and express the potential at a point inside the shell in a similar form. 

9. A small magnet is placed at the center of 2 spherical shell of iron of radii a and 
b and permeability ,u. Show that the field of force outside the shell is reduced 
by the presence of the iron in the ratio 

(l+(l- bs 
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10. A nearly spherical grounded conductor has an equation 

r = a[l + EP,z(cos O)] 

where e is small. Show that if a point charge is placed at O = 0, r = c > a, 
the total induced charge is 

n -ea 
+E 

a 
C c 

11. A grounded nearly spherical conductor whose surface has the equation 

r= a{1 + EnPn (cos 9) 

n=2 

is placed in a uniform electric field E which is parallel to the axis of symmetry 
of the conductor. Show that if the squares and products of the s's can be 
neglected, the potential is given by 

2 
Ea (1 + % e2) - r 

P1(cos 8) 
r a 

+3 
n=2 

n 
n-r 

n+ 
n+ 

(an+i 
Pn(cos 8) 

2n - 1 2n + r 
S1 = 0 

12. A spherical conductor of internal radius b which is uncharged and insulated 
surrounds a spherical conductor of radius a, the distance between their 
centers being c, which is small. The charge on the inner conductor is E. 
Show that the surface density at a point P on the inner conductor is 

E 1 3c cos 8 

47 712 b3 a3 

where O is the angle that the radius through P makes with the Iine of centers 
and terms in c2 are neglected. 

13. A point charge e is placed at a point Q distant c from the center O of two 
hollow concentric uninsulated spheres of radii a, b (b > c > a). Show that 
the charge induced in the inner sphere is 

ea b - c 

cb --a 
If a thin plane conducting disk bounded by two concentric circles of radii 
a, b is placed between the spheres touching them along great circles in a plane 
perpendicular to 0Q, show that if a C c, the charge induced on the inner 
sphere is approximately 

_ 3ea2 ca 

C2 b3 

14. A grounded conducting sphere of radius a is placed with its center at the origin 
of coordinates in a field whose potential is 

ç - AnrnPP(cos 0) 

n -1 
Determine the charge distribution induced on the sphere, and show that the 
total induced charge is zero. 
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. Prove also that there is a force acting on the sphere in thé direction O = 0 
of amount 

co 

(n + 1)AnAn +1a2n +1 

n=1 

Deduce the force on the sphere if the initial field has intensity components 

Ex = -E 1 +- , Ev =_) Ez= Ez 
a a a 

at the point (x,y,z) referred to rectangular Cartesian axes, E being a constant. 

15. That portion of a sphere of radius a lying between O = a and e = it - a is 
uniformly electrified with a surface density a. Show that the potential at an 
external point is 

a 
47raa {-r cos a + 

n 

1 [P2n-}-1 (cos CO - P2n-1 (cos a)] 
á 

P2n (cos e) 
4n + 1 r 

16. V(r,6,0) is the potential of an electrostatic field in free space due to a given 
charge distribution. If there are no charges within r c a and if the volume 
r < a is then filled with a homogeneous dielectric of dielectric constant K 

prove that the potential functions inside and outside the sphere become 

f 1 

Yo = 
K 

2 +l (K + l) 
V(r,e,) + 

K - 1 2 
i 

o 
t_nV(rt,O,96) dt r < a 

K -1 u K-1 u x 

Y1 = V (r,O,) - 1 ' a V (u,O,O) + (K + 1)2 a 
fo t -n V (ut,O,O) dt r > a 

where n = K /(K + 1) and u = a2 /r. 

17. A sphere of dielectric consists of a spherical core and n - 1 concentric layers, 
the radii of the boundaries being a1, a2, . . . , an. The dielectric constants in 
the n regions are k1, k2, . . . , kn., where each is constant throughout the 
corresponding region. Write down the equations which determine the 
potential at any point when the sphere is placed in a uniform field of electric 
force. 

Deduce that when a sphere of radius a in which the dielectric constant k(r) 
is a differentiable function of the distance r from the center is placed in a 
uniform field, the potential at any point may be expressed in the form 

{rA(r) -F r- 2B(r)} cos O 

where O is the angle between the radius through the point and the direction of 
the field and A(r), B(r) satisfy the differential equations 

dA 1 dB _ d(kA) 2 d(kB) 
dr r3 dr dr r3 dr 

together with certain boundary conditions which should be stated. 

18. A solid sphere of radius a is composed of magnetizable material for which the 
permeability at the center is 4 and at the surface is unity. When the sphere is 
placed in a uniform field H in the direction O = 0, the scalar potential inside 
the sphere is of the form (Ar ,- Br2) cos 8, where A and B are constants. 
Find the permeability at distance r ( <a). 
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Show that at a point on the diameter of symmetry the magnetic induction is 
of magnitude 12aH /5(a + r). 

19. Show that the potential at external points due to a layer of attracting matter 
distributed over the surface of radius a with surface density S, is 

47ran +2 

(2n + 1)rn +1 Sn 

where Sn is a surface spherical harmonic of degree n. 
Show that a distribution of matter of surface density kz2 over the hollow 

sphere r -a produces a potential 
47r ka4 47r ka6(2z2 x2 y2) 

3 r 15 r5 

in the surrounding space. 

20. A uniform hollow conducting sphere of radius a and conductivity c and small 
thickness t has two spherical terminals of radius r and infinite conductivity 
with their centers at opposite ends of a diameter of the sphere. The terminals 
are maintained at a constant potential difference V. Show that the current 
which passes is 

27rest V 

log (4a2/r2 - 1) 

21. Current flows through a medium of uniform conductivity a between two 
nearly concentric spheres of radii b, a (b > a) whose centers are a small 
distance ea apart. The potential difference between the electrodes is V. 
Prove that the current density at the outer electrode is 

crVoa 3ab2e cos 6 

(b - a)b b3 - a3 

where O is the angle between the line of centers and the radius vector to the 
point where the current density is specified. 

22. A uniform infinite metal sheet of conductivity al contains a spherical inclusion 
of radius a and conductivity o'2. The current enters the medium by two small 
electrodes of radius 6, whose centers are on a diameter of the sphere at equal 
distances b > a from the center of the sphere and on opposite sides of it. 
Show that the equivalent resistance is 

1 1 1 2 a 4n-í-3 

2Trcr cS b 
+ (2n + 1) An + 0(a) 

n =0 

where An = 1 - 62 
2(n+1)o --ß(2n+1)0.2 

23. A nonconducting plane lamina bounded by two concentric circles of radii 
al and a2 (a1 < a2) is charged with electricity to a uniform surface density cr 

electrostatic units and made to rotate in its own plane with constant angular 
velocity w about its center. A soft iron sphere of radius b (b < a1) and 
permeability ,u is placed with its center at the center of the lamina. Find the 
magnetic intensity II at the center of the sphere, and show that at a great 
distance from the sphere the field of the sphere is the same as that of a dipole 
of moment 

27r6wb3(a 2 - a1)(414 - 1) 

c(,u + 2) 
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24. A sphere of radius a is fixed in a perfect incompressible fluid which is flowing 
past it in such a manner that at a great distance from the sphere the velocity is 
constant. A colored particle of fluid is started upstream at a point which lies 
on the axis of the system, and its motion is observed. If, while the particle is 
upstream, its distance changes from zi to z2 (measured from center) in time T, 
show that the maximum value of the velocity of slip on the sphere is 

3 a (z - a3)(z2 - a)3 

2 (Z' - Z2) -- log 
(Z2 - a3)(zi - a)3 

a v .-a(z1 - 22) - 
A/..- 
- tan-1 

2(ziz2 + (22) a(zi + 22) 

25. A uniform solid sphere of radius a and mass M is surrounded by perfect 
incompressible fluid of uniform density p; the fluid is enclosed by a spherical 
shell of radius b concentric with the solid sphere. The system is set into 
motion by an impulse applied to the shell, the initial velocity of which is V. 
Prove that the initial velocity U of the solid sphere is given by 

27r pa3(2a3 + b3) 
U 

2irpa3b3 
V 3(b3 a3) b3 a3 

26. A sphere of radius a moves with velocity U in a liquid of which the only 
boundary is an infinite rigid plane. If the liquid is at rest at a great distance 
from the sphere, show that its kinetic energy when the sphere is moving 
normal to the boundary is 

&3)rrQ3 Ü2 -}- 

where d is the distance of the center of the sphere from the plane and terms of 
order ail/c/4 are neglected. 

27. A plane annulus of matter is bounded by concentric circles of radii a and 
b (b > a) and is of constant surface density a. Show that its gravitational 
potential at a point on its axis at a distance z from its center is 

277.y,a[(b2 + z2)1 - (a2 + z2)i] 

Obtain an expression for the potential at a point distant r ( <a) from the 
center. Show that the direction of the attraction at a point in the plane of the 
disk distant r ( <a) from the center is in the plane of the disk, and obtain an 
expression for its magnitude in the form of an infinite series. 

28. The potential near the origin of a distribution of matter on a circular plate is 
given by the series 

Anrn.Pn(cos 0) 
n-0 

Show that the surface density at a point of the plate is 

I 1 3 1 - 3 .5 
27T ` 1 2 `43r2 

+ A5r4 --. . . 

29. Show that if r = a2 + x2 - 2ax cos 04, 

a2 - x2 - 2x 
ô 1 

+ 1 
{a2 + x2 - 2ax cos 0 P ax r r 

and hence expand the expression in ascending powers of 1 /x. 
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A line charge of. density 1c/x2 is set along the x axis extending from x = f to 
x = co. A grounded conducting sphere of radius a (<f) is placed with its 
center at the origin. Show that the surface density at any point (r,8) on the 
sphere is 

co 
k 2r+1 ar - 

47ra 
z., r + 2 fr+2 Pr(cos e) 
r=0 

30. A sphere of soft iron of radius a and of uniform permeability it is placed with 
its center at a point on the axis distant b from the center of a circular coil of 
radius c carrying a current I. If a2 < b2 + c2, show that the field at the 
center of the coil is 

214 1 + (,u - 
c 

where 

(n + 1)An a2n+1 

(n + n + 1) (n - 1) ! ( 
-1)n+1 

bn+1 

an 
b 

An -.--- 

- abn b2 c2 

31. The functions vi(r) and ve(r) are determined by the conditions : 

(i) V'e(r) is harmonic and regular outside the sphere S, r < a, and 
11e(r) ' vo(r) as r co, where vo(r) is harmonic; 

(ii) 1i(r) is harmonic and regular inside S; 
(iii) Ve(r) = ii(r), and dui(ayi / ar) = P2(aiel ar) on S, 
where ,u1 and ,42 are positive constants. 

Prove that 

e(r) _ 
r r Vo(r) - (1 - 2k) 
á o 2 + r 

k(1 - 2k)a 

r 

a2r 
a. (1-Ic) ca a 2 

1 

Vi(r) = 240(r) + k(1 - 2k) yo(,r)a-(1-k) d, 
0 

where k = ,u2/021 + 1.12) so that 0 < k < 1. 

32. A magnetic sphere of radius a and permeability ,u is placed at the origin in a 
vacuum in which the undisturbed magnetic field has potential Vn(x,y,z), a 
homogeneous function of degree n in x, y, and z. Show that the potential 
of the disturbed field is given by 

2n + 1 

n + n,u + 1 
Vn(x,y,z) r < a 

tP 

[i 
. n(tt - 1)a2n+1 

(n + Au + 1)r271+1 Vn(x,y,z) r > a 

33. A magnetic dipole of moment m is situated in a vacuum at a point with 
position vector f outside a sphere of radius a and permeability ,u. Show 
that the magnetic potential in the interior of the sphere is 

2 m (r - f) ,u - 1 1 m .(Ar - f) A- 4(2 +1) dA 
lu + 1 Jr - f 1 . (iz+ 1)2 JO Ar --- fI3 

and determine the potential at an external point. 

34. The irrotational steady flow of a perféct fluid is symmetrical about the x axis. 
If & = (y2 + z2)1, show that the components of fluid velocity in the directions 
of x and w, respectively, can .be expressed in the form 

1 av _ 
w 
_ ; : 

a 

1 ay 

6 ax 
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where the function ip (called Stokes' stream function) satisfies the partial 
differential equation 

a o alp 

ax kTÒ ax 

a i alp 
0 

+ aw w aw - 
Show that the stream function 

i = U 

2r 
(r3 - a3) sin2 O 

where (r,9) are spherical polar coordinates, determines an irrotational flow 
outside a rigid spherical boundary r = a, the velocity at a large distance being 
uniform and of magnitude U, and that 

3 Ur2 

V) 

_ - 
4a2 

(a2 - r2) sine 9 

determines a flow inside the same boundary. Find the vorticity in the interior 
flow. 

Show by considering the continuity of velocity and pressure at r = a that 
the two flows can coexist in the same liquid without a rigid boundary at r - a. 

35. Prove that the equation satisfied by the stream function in cylindrical 
coordinates (x,w), with the x axis as axis of symmetry, is transformed by the 
conformal transformation 

z =x+iú& =fa), =e +in 
into 

Show that 

V_ 

a 1 ay, a i ay 
a 75 + -a-T7 -ai -57--r) ) = ° 

-i Ub2(cosh e + sinh2 e log tanh ie) sine ii 

a b2 a+b - c +c2 log 

where x + id') = c cosh (e + in) 

satisfies all the conditions required of a stream function which describes the 
flow when a prolate spheroid of semiaxes a = c cosh eo, b = sinh %o moves 
with constant velocity U in the direction of its axis of symmetry through 
unbounded liquid otherwise at rest. 

36. If a conducting medium has the form of a circular sheet of radius b and small 
thickness t, and if the electrodes are coplanar circles of small radii a with their 
centers at the ends of a diameter, prove that the resistance between the 
electrodes is approximately 

-2 log 
irrt log a 

37. Two sources each of strength m exist at the points z- +c (c real), together 
with a sink -2m at z = O. Determine the complex potential of the fluid 
motion on the assumption that it is two -dimensional, and prove that the 
streamlines are the curves 

(x2 + y2)2 = c2(x2 - y2 + 2xy) 
where A is a real parameter. 

Show also that the fluid speed at any point P is 2mc2lr. 1r2r3, where ri, r2, and 
r3 are the distances of P from the sources and the sink. 
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38. Four equal circular perfectly conducting electrodes of small radius are placed 
with their centers at the corners of a square of side a in an infinite sheet of metal 
of thickness t and uniform conductivity o-. One pair of opposite corners is at 
one potential, and the other pair at a different potential; show that the 
resistance between the pairs is 

l a 
27. t 

Show that the streamline that touches a side at the middle point leaves the 
electrode at an angle tan' ; with the side. 

39. A line source is in the presence of an infinite plane on which is fixed a semi- 
circular cylindrical boss of radius a, the line source being parallel to the axis of 
the boss. If the source is at a distance c ( > a) from the plane and the axis of 
the boss, find the velocity potential of the fluid motion. Show that the radius 
to the point on the boss at which the pressure is a minimum makes an angle O 

with the radius to the source, where 

tan 8 = 
C2 - a2 

c2 + a2 

40. A long circular cylinder of radius a is fixed w ith its axis parallel to, and at a 
distance c from, an infinite plane wall. The space outside the cylinder is 
filled with liquid, and there is a circulation K about the cylinder. Prove that 
the resultant of fluid pressure on the cylinder is a force toward the wall of 
magnitude 

K2p 

4/7- -Vc2 - a2 

41. A cylinder whose normal section is the ellipse x2/a2 + y21ó2 = 1 moves in an 
infinite fluid at infinity. Find the appropriate ç functions when : (a) the 
cylinder is rotating about its axis with a constant angular velocity ov; (b) it is 
moving with a constant velocity of translation perpendicular to its axis ; 
(c) the cylinder rotates with constant angular velocity about a line parallel to 
the axis and passing through the point (x0,y0). 

If at any moment the axis of rotation is transferred from the axis of the 
cylinder to the parallel line through (x0,y0) without altering the angular 
velocity, show that the increase of the kinetic energy of the fluid is 

2,Pw2(a24 b2.0) 
per unit length of axis. 

42. A uniform stream of incompressible perfect liquid is disturbed by an infinite 
strip placed broadside on to the stream; the stream is in the direction Oy, and 
the strip occupies the region y = 0, 

I 
x s a. By using the transformation 

2 = z2 -- a2, or otherwise, find the w function for the disturbed motion. 
Prove (a) that the velocity at a point on the axis 0 is 

V y2 
y2 + a2 

where Vis the velocity of the undisturbed stream, and (b) that the equation of a 
streamline is 

X2 y2 

2 = 1 - A2 

where A is a constant. 
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43. Show that the transformation z = 2 - 4 maps the part of the z plane to the 
right of the parabola x = -y2 on the part of the plane to the right of the 
line = -i. 

Hence, or otherwise, show that the complex potential 

w = a - 1)2 = { Vz + i - ,i12 

is compatible with the parabola as boundary and represents a flow which is 
uniformly in the -x direction, as x -4- + Go, in the presence of the parabolic 
obstacle. 

44. Show that the transformation w = sin (irz /2a), where z -x + iy, w = u -1- iv, 
transforms the region S in the z plane, defined by -a < x < a, y > 0, into 
the upper half of the w plane. State which portions of the u axis correspond to 
each of the three lines bounding S. 

Show also that the transformation w = log {(z - 1) /(z + 1)} transforms the 
upper half of the z plane into the infinite strip O < y < 77. of the w plane. 

Deduce, or show otherwise, that the imaginary part of 

Vo 
lo 

sin (77-42a) - 1 

7T 
g sin (7rz /2a) + 1 

satisfies Laplace's equation in the region S and is equal to zero on the infinite 
boundaries and to Vo on the finite boundary of S. 

45. Show that the conformal representations t = eirz1b and t = cosh irz /b can be 
used to map an infinite strip of width b in the z plane and a semi -infinite 
strip of the same width in the z plane, respectively, onto the upper half of a 
t plane. 

Find the velocity potential in a semi -infinite strip bounded by x = 0, y = 0, 
y = b due to the existence of a source at the origin from which a volume irm 
of liquid flows into the region per unit time. 

46. Two semi -infinite conducting plates y = 0, x < O and y = a, x < 0 are at 
potentials O and Vo respectively. Show that the electrostatic field in their 
neighborhood is given by the complex potential function w, whose real part is 
the electrostatic potential V, where 

2rrz = 1 
27riw 

ex 
27ri w 

z -- x -}- r 
a Vo p Vo .Y 

Prove that the line of force passing between the extreme edges of the plates has 
the form of a cycloid. 

47. Show that the domain outside the circle IZI = a in the Z plane is transformed 
into the domain outside a circular arc of equal radius in the z plane by the 
conformal relation 

z - ae2i« 

z - ae-2xa 

Z - iaei« 
2 

Z --I- iaL' aa 

where the circular arc subtends an angle 4a at its center. Show also that z/Z 
tends to sin a at infinity. 

A cylinder whose section is the above circular arc is placed in a stream of 
fluid in which the velocity at a great distance from the cylinder is Y. This 
velocity is perpendicular to the generators and makes a positive angle ß with 
the radius from the center to the middle point of the arc. If in addition there 
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is a circulation k round the cylinder in the positive sense, show that the 
complex potential w can be derived from 

2 

w= V sin a Ze -iß + a - I log Z Ze i 2rr 

by eliminating Z between this equation and the above relation. 
Prove that the velocity at the upper edge is finite when, and only when, 

k = 2rra V [sin ß -I- sin (2a - M. 

48. In the conformal transformation 

-a ) 3 

--I-- a 

a and c are real and positive, and , z are connected with r1, r2, O by the relations 

-a = rl 
# 

e1 0 
z - rl ei0 

-} -a r2 z +c r2 

where r1, r2 are the distances of the point z from the points ±c and 
-7T < 6 < 7r. Show that the transformation transforms the region outside 
the figure formed by two minor arcs (0 = ± rr) of orthogonal circles through 
the points z = Ec, which are symmetrical to the line joining these points, into 
the region outside the circle = a. 

Hence show that if a conducting cylinder whose normal section is formed 
by these arcs is freely charged with electricity, the density at any point of the 
arcs is proportional to 

r- i r-2 (ri + 
r2)-1 

49. Prove that the transformation 

cg n n 

A IT (z - Zr) -«riv, oc r = 27r 
dz r =1 r =1 

where zr are real numbers such that z,. < zr+1, maps conformally the interior 
of a polygon of n sides with exterior angles «r, in the plane a = e + in) 
onto the upper half of the z plane. What emendations are necessary if a 
vertex of the polygon corresponds to the point at infinity on the real axis in the 
z plane ? 

Find the transformation which maps conformally the interior of the semi - 
infinite strip bounded by e = 0, = a, = a onto the upper half of the 
z plane. 

50. In the plane of two -dimensional motion, liquid flows from a vessel whose sides 
are defined by 

y -c +mx =o, ydc -mx =0 x<0 
where m = tan (7r/2n). If the internal angle of the vessel is 7r/n, obtain an 
equation giving implicitly the complex potential of the liquid motion. 

51. Fluid is introduced to the half space z < O through a circular aperture r < a 
of the rigid plane z = O. State the conditions to be satisfied by the velocity 
potential in these circumstances, and show that it may be expressed in the form 

a° sin (ea) e ez,J((r) d 
ir o 

where y is a constant. Hence determine the components of the velocity at any 
point in the fluid. 
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52. Two axially symmetrical functions ip1(p,z), ip2(p,z) satisfy the conditions 

(i) v;,1 = 0, z < 0; y2ip2 =0,z >0 
(ii) tl = v2 and aw l - avz for z = 0, p < 1 

a az 

(iii) vi 0 as p2 + z2 -- 00 

(iv) apt = 0 for z = 0, p > 1 
az 

(y) a 2 
-4- V as z -3- o0 

az 

Show that 
co co 

vi = ca, v2 = K -E- Uz -I- ca fA()eJo(p) fB()eZJo(p) 

where K is a constant and 
co 

[A(y) - B()3.To(p) a = K p < 1 

0 

c° 2[A() + B()3Ja( p) a = U p < 1 

0 
co 

J'0 

2A()J0(p) d = 0 p > i 

Verify that these conditions are satisfied by choosing 

K sin e UJ1() K sin ¿ UJ1{ ) A() = -I- ! B() _ - 2 + 22 
and that 

4)1 412 - ¡ Uz K 

az p=o Lai=0 2ti'z2 + i 7r(Z2 + 1) 
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Chapter 5 

THE WAVE EQUATION 

In this chapter we shall consider the wave equation 

v2 1 a2V 
C2 at2 

which is a typical hyperbolic equation. This equation is sometimes 
written in the form 

2h = 0 

where 2 denotes the operator 

a2 a2 a2 1 a2 

axe ' ay2 az2 
_ 

c2 ate 

If we assume a solution of the wave equation of the form 

V 
W(x,y,z)efikct 

then the function 1F must satisfy the equation 

(V2 +k2) 'F =0 
which is called the space form of the wave equation or Helmholtz's 
equation. 

I. The Occurrence of the Wave Equation in Physics 

We shall begin this chapter by listing several kinds of situations in 
physics which can be discussed by means of the theory of the wave 
equation. 

(a) Transverse Vibrations of a String. If a string of uniform linear 
density p is stretched to a uniform tension T, and if, in the equilibrium 
position, the string coincides with the x axis, then when the string is 
disturbed slightly from its equilibrium position, the transverse dis- 
placement y(x,t) satisfies the one -dimensional wave equation 

a2), 1 a2y 
a,7G2 - C2 at2 

209 

0) 
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where c2 = T /p. At any point x= a of the string which is fixed 
y(a,t) = o for all values of t. 

(b) Longitudinal Vibrations in a Bar. If a uniform bar of elastic 
material of uniform cross section whose axis coincides with Ox is 
stressed in such a way that each point of a typical cross section of the 
bar takes the same displacement «x,t), then 

a2 1 a2$ 

ax2 c2 at2 
(2) 

where c2 = E/ p, E being the Young's modulus and p the density of the 
material of the bar. The stress at any point in the bar is 

0. 
E ax 

For instance, suppose that the velocity of the end x = 0 of the bar 
0 < x < a is prescribed to be v(t), say, and that the other end x =ais 
free from stress. Suppose further that at that time t = 0 the bar is at 
rest. Then the longitudinal displacement of sections of the bar are 
determined by the partial differential equation (2) and the boundary and 
initial conditions 

(i) t = v(t) for x = 0 

(ii) áx = 0 for x = a 

(iii) _ a = o 

(c) Longitudinal Sound Waves. If plane waves of sound are being 
propagated in a horn whose cross section for the section with abscissa 
x is A(x) in such a way that every point of that section has the same 
longitudinal displacement (x,t), then satisfies the partial differential 
equation 

a 
(3) 

att=0for0<x<a 

a a íi i a2áx 

A x (A°1 - ? ár2 
(4) 

which reduces to the one -dimensional wave equation (2) in the case in 
which the cross section is uniform. In equation (4) 

2_ dp 

c u dp o 

where the suffix 0 denotes that we take the value of dp /dp in the equili- 
brium state. The change in pressure in the gas from the equilibrium 
value po is given by the formula 

(s) 

a 
p -Po= !c 

2 
P° ax 

(6) 
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where po is the density of the gas in the equilibrium state. For instance, 
if we are considering the motion of the gas when a sound wave passes 
along a tube which is free at each of the ends x = 0, x = a, then we 
must determine solutions of equation (4) which are such that 

a 
----a--:c. 0 atx= 0 and atx =a 

(d) Electric Signals in Cables. We have already remarked (in Sec. 2 
of Chap. 3) that if the resistance per unit length R, and the leakage 
parameter G are both zero, the voltage V(x,t) and the current z(x,t) 
both satisfy the one- dimensional wave equation, with wave velocity c 
defined by the equation 

C2 
LC 

I 
I 

(7) 

where L is the inductance. and C the capacity per unit length. 
(e) Transverse Vibrations of a Membrane. If sa thin elastic membrane 

of uniform areal density a is stretched to a uniform tension T, and if, 
in the equilibrium position, the membrane coincides with the xy plane, 
then the small transverse vibrations of the membrane are governed by 
the wave equation 

viza2z ,2 - 
lZ C2 at2 (8) 

where z(x,y,t) is the transverse displacement (assumed small) at time t 
of the point (x,y) of the membrane. The wave velocity c is defined by 
the equation 

C2 
T 
a 

(9) 

If the membrane is held fixed at its boundary P, then we must have z = O 

on F for all values of t. 
(f) Sound Waves in Space. Suppose that because of the passage of a 

sound wave the gas at the point (x,y,z) at time t has velocity y = (u,v,w) 
and that the pressure and density there and then are p, p, respectively; 
then if po, po are the corresponding values in the equilibrium state, we 
may write 

P = Po(1 + s), p = po + c2Aos (10) 

where s is called the condensation of the gas and c2 is given by equation 
(5). If we substitute these expressions in the equations of motion 

Dv 

P Dt 
_ -grad p (11) 

Da a a a 

Dt ôt +u8x +v ÿ +'N áZ 
where 
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and restrict ourselves to small oscillations of the gas, we find that 

av 

poat -- 
Similarly, the continuity equation 

Dp 
div v =- o 

Dt P 

is equivalent, in this approximation, to the equation 

as 
Po at -I- p o div v = O 

cepo grad s (12) 

(13) 

If the motion of the gas is irrotational, then there exists a scalar function 
¢ with the property that 

v = -grad ck (14) 

Substituting from equation (14) into equation (12), we find that for 
small oscillations 

grad ( -ces) = 0 (15) 

Similarly, equation (13) is equivalent to 

as 
ár (16) 

Eliminating s between equations {15} and (16), we find that satisfies 
the wave equation 

02 1 a2 
c2 at2 

(g) Electromagnetic Waves. If we write 

H = curl A, E = - - 1 aA 
rad 

' c at 
grad 

(17) 

then Maxwell's equations 

divE =47p, divH =0 
I aH 47Ti 1 aE 

curl E = - 
c at , 

curl H = + c at 

are satisfied identically provided that A and satisfy the equations 

02 A= 1 a2A 47T. 2 - a20 .-- 4r 
c2 a2 71' C2 

ate 

Therefore in the absence of charges or currents and the components of 
A satisfy the wave equation. 
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(h) Elastic Waves in Solids. If (u,v,w) denote the components of the 
displacement vector y at the point (x,y,z), then the components of the 
stress tensor are given by the equations 

au av aw au av aw) 
äx + áv + áz) + 2` (áx' áv' áZ ((IX ,CI, z) 

y y 

( TVZ,TZX,TØ) = /4 
1 aw av au aw av au 

a +az'az +ax'ax +a y y 
where A and ,u are Lamé's constants. The equations of motion are 

ao. x aTzy aTxx = a2 Li 
etc. 

ax ay az ° 
_ p 

where F = (X, Y,Z) is the body force at (x,y,z). If we write 

i = grad + curl e.1) 

then it is easily shown that the displacement vector can be taken in the 
form 

v = grad 0 + curl 4 
provided that 96 and 4 satisfy the equations 

a2c 
C2 

2 a2`ß 4v2tp }' 
at2 1Q 

, at2 

where the wave velocities e1, c2 are given by 

0 14 
C2 = C 

+2,u 2-- 1 2 
P P 

Hence, in the absence of body forces, ck and the components of 4 each 
satisfies a wave equation. 

PROBLEMS 

1. Prove that the total energy of a string which is fixed at the points x = 0, x = I 
and is executing small transverse vibrations is 

1 2 '2 
W=iT {(z) -}- 

c2 

ay 
)dx 

o x c at 
Show that if 

y= f(x -ct) Ocx <l 
then the energy of the wave is equally divided between potential energy and 
kinetic energy. 

2. Show that 
y = A(p)eiP(t ±xre) 

is a solution of the wave equation for arbitrary forms of the function A which 
depends only on p. 

Interpret these solutions physically. 
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3. A string of length 11 + 12 is stretched to a tension pct between two points O 
and A. A point mass m is attached to the string at a point distant 11 from O. 
Write down the conditions to be satisfied by the function describing the 
transverse displacement of such a string, and, making use of the result of the 
last problem, show that the periods of possible oscillations of the system are 
given by rr(l1 + 12) /cC, where t is any positive root of the equation 

cot 
201 

, + cot 
2 12 2mß 

1 +2 11 +12 P(11 + 12) 

4. A uniform stretched string of great length lies along the axis Ox from x = -1 
to x = + 00; the end at x = -1 is attached to a fixed point, and a particle of 
mass m is attached to the string at x = O. A train of transverse waves in 
which the displacement is 

y = a cos c t + - x 

travels along the string from x = + oo and is reflected. Show that stationary 
waves are set up in each part of the string and that in particular the dis- 
placement for -1 < x < O is 

cos ß ax 
z = 2a sin a sin + a cos (at - ß) 

where a - al /c and 

tan ß = 
am 

-- cot a 
cp 

5. A uniform straight tube of length 21 and cross - sectional area A is closed at one 
end and open at the other end. A quantity of gas is imprisoned by a piston of 
mass M free to slide along the tube, and the piston is in equilibrium when at 
the middle of the tube. The density of the enclosed gas is then c, while the 
density of the atmosphere is p. Show that the frequencies p of the oscillations 
of the piston about its position of equilibrium are given by 

Mp 
= cc cot Fl - c' p tan 

' A c c 

where c, c' are the velocities of propagation of sound in the enclosed gas and 
the atmosphere, respectively. 

6. A particle P of mass m rests on a smooth horizontal table. It is attached to a 
point A by a uniform heavy string or mass Tll c2 and to a point B by a light 
inextensible string. The points A and B are on the table; in the equilibrium 
position AP = 1, BP = a, and the tension of the strings is T. Prove that the 
normal frequencies p of the transverse vibrations of the heavy string are 
solutions of the equation 

cm p cot 
pl- -ç +-p- 
c a T 

7. A uniform inelastic string of length 1 and line density p lies on a smooth 
horizontal plane. One end is attached to a fixed point A on the plane, and the 
other end is attached to a mass M which can slide freely along a horizontal 
line at a distance 1 from A and perpendicular to the mean position of the string. 
The string is subject to a tension pct. Show that if the system performs small 
vibrations with period 24p, the equation to determine p is 

pl pc 
tan - - 

c pM 
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Deduce that for large values of the integer n the values ofp are approximately 

c 1p 

flfl1T+M 

2. Elementary Solutions of the One -dimensional Wave Equation 

We saw in Sec. 1 of Chap. 3 that a general solution of the wave 
equation 

a2y 
__ 1 a2.y 

Óx2- C2 at2 
is 

(1) 

y f (x + ct) + g(x - ct) (2) 

where the functions f and g are arbitrary. In this section we shall 
show how this solution may be used to describe the motion of a string. 

In the first instance we shall assume that the string is of infinite 
extent and that at time t = O the displacement and the velocity of the 
string are both prescribed so that 

y 
. 

n(x), -ay = y(x) at t = 0 
at 

Our problem then is to solve equation (1) subject to the initial con- 
ditions (3). Substituting from (3) into (2), we obtain the relations 

n(x) =.Î (x) + g(x), v(x) = cf'(x) - cg'(x) (4) 

Integrating the second of these relations, we have 
x 

.Î(x) - g(x) = 
c b v(e) d 

where b is arbitrary. From this equation and the first of the equations 
(4) we obtain the formulas 

Ç .Î(x) _ n(x) + v(0 d$ 

(3) 

x 

g(x) _ -h(x) - 2c b 
v(0 de 

Substituting these expressions in equation (2), we obtain the solution 
1 ('x +ce 

y = i {n(x + ct) + ri(x - ct)} + fc: J.-e, v(° cl 
(5) 

The solution (5) is known as d'Alembert's solution of the one -dimensional 
wave equation. If the string is released from rest, y 0, so that 
equation (5) becomes 

y 1.{97(x + a) + 91(x ct)} (6) 

showing that the subsequent displacement of the string is produced by 
two pulses of "shape" y = zri(x), each moving with velocity c, one to 
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the right and the other to the left. Such a motion is illustrated by 
Fig. 34, in which the initial displacement is 

0 x < -a 
n(x) = f 1 IxI<a 

o x >a 
The motion may be represented by a series of graphs corresponding to 
various values of t as in this figure. Another method of representing 

Ay 

t=o 

t - 2c 

t= 4 

t- 
2c 

> x 
I 

I 

I 

I 

! 

I 

I 

I 

/ 

x 

-a p a 

Figure 34 

motion graphically is to construct a surface from these profiles, as 
wn in Fig. 35. 
Ve shall now consider the motion of a semi-infinite string x > 0 fixed 

at the point x = O. The conditions (3) are now replaced by 

y = n(x), t = v(x) x > 0 at t = 0 (7a) 

y =0, át =0 t0atx =0 (7b) 

The solution (5) is no longer applicable, since n(x - co would not have 
a meaning if t > x /c. Suppose, however, we consider an infinite 
string subject to the initial conditions 

y = Y(x), át = V(x) at t = 0 
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and 

Y(x) 

V(x) 
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n(x) if x > 0 

-n( -x) if x < 0 

v(x) ifx >0 
v( x) if x < 0 

Then its displacement is given by 
1 x +ct 

y = Z {Y(x + et) + Y(x - et)} + 
2c f -ee 

V) d (8) 

Figure 35 

so that when x = O 

1 ce 

y = {Y(ct) + Y( -ct)} + 
2c 

V() d 

and = 2c {Y'(ct) - Y'( -ct)} + i{V(ct) + V(-et)} 

(9) 

It is obvious from the definitions of Y and V that both these functions 
are identically zero for all values of t and that therefore the function (9) 
satisfies the condition (7b) as well as the differential equation (1). It is 
easily verified that it also satisfies the condition (7a). In particular, 
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if the string is released from rest so that y, and consequently V, is 
identically zero, we find that the appropriate solution is 

{(x -E- ct) n(x - et)] x > et 

j[«x + Ct) - 'iì(ct - x)} x <ct 
The graphical representation of such a solution is shown in Fig. 36. It 
may be obtained directly from the analytical form of the solution or, 
more easily, from the graphical solution for an infinite string subject to 
an initial displacement Y(x). 

A similar procedure is applicable in the case of a finite string of 

Y 

AMIMIONIM111111111M 

AK-c 

Figure 36 

C 
length l occupying the space O < x < 1. The initial conditions may 
then be written in the form 

y = 70), át = v(x) 0 < x < 1 at t = 0 

y =0, 
at 

=0 t >Oatx= O and x =l 
and by a method similar to the one above it is readily shown that the 
solution of the wave equation (1) satisfying these conditions is the 
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expression (8), where now the function Y(x) is defined by the relations 

17/(x) 
if 0 < x < 1 

1 if -1 < x < 0 

Y(x +2r1) = Y(x) if -1 < x < 1 and r = ±1, ±2, ... 
In other words, Y(x) is an odd periodic function of period 21. The 
relation between 77(x) and Y(x) is shown graphically in Fig. 37. V(x) is 
defined in terms of v(x) in a precisely similar fashion. 

It is well known from the theory of Fourier series' that such an odd 

Figure 37 

periodic function has a Fourier sine expansion of the form 

Y(x) 
m=0 

mirx 
nm sin 

l 

where the coefficients rim are given by the formula 

= 
fi (md) Ì 

Z 
nsin 

Similarly V(x) 
m =1 

where vm = j v() sin 
(mr) 4' 

Substituting the results 

EY(x + ct) + Y(x - et)} 

mrx v, sin 

m =0 
1 x + et l 00 vm (miTx) trct 

2c jx_ct 
V() 

arc m 
sin 

l 
sin 

l 
7z =0 

1 R. V. Churchill, "Fourier Series and Boundary Value Problems," (McGraw - 
Hill, New York, 1941), F. 75. 

sin 
(mïrx\ 

cos (mÌctl 
1 

(10) 
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which follow from these expressions, into the solution (8), we find that 
the solution of the present problem is 

°° . (mx) mrct l w vm . (mirx) . (mirct\ y= m sin cos 
l -}- c ro 

sin 
l 

sin 
l nt=1 71i, =-- 

(14) 

where '7m and vm are defined by equations (11) and (13), respectively. 

Example 1. The points of trisection of a string are pulled aside through a distance 8 

on opposite sides of the position of equilibrium, and the string is released from rest. 
Derive an expression for the displacement of the string at any subsequent time and 
show that the mid -point of the string always remains at rest. 

In this case we may take 1 = 3a and 

ex .- 0 < x < a 
a 

? x 
8(3a -2x) 

a cx c2u I( ) a 

(x - 3a) 
2a S x <3a 

a 

and v(x) = O. Thus the Fourier coefficients are 

28 m7rx a m7rx 
a mrx 

rim = 
3a2 

x sin 
3a 

dx -f- (3a - 2x) sin 
3a 

dx -I- (x - 3a) sin 
3a 

dx 
0 Ja J2a 

2882 
{1 + ( -1)'n} sin (3nlr) 

and U 7n =0 
so that the displacement is given by the expression 

co 
18E ` 1 -I- ( -1)m . n1r . mrx mTrct 

y- 77-2 
j}12 

sin 
3 

sin cos 
3a 

ni = 
which is equivalent to 

co 
9e ` l . 2n7r . 2nirx 2nîrct 

Y = 
gaz ;; sin sin cos 

3a 
n -i 

The displacement of the mid -point of the string is obtained by putting x = 3a/2 in 
this expression. Since sin (2nrrx/3a) would then equal sin mr, and this is zero 
for all integral values of n, we see that the displacement of the mid -point of the 
string is always zero. 

PROBLEMS 

1. A uniform string of line density p is stretched to tension pct and executes a 
small transverse vibration in a plane through the undisturbed line of the string. 
The ends x = 0, lof the string are fixed. The string is at rest, with the point 
x = b drawn aside through a small distance e and released at time t = O. 
Show that at any subsequent time t the transverse displacement y is given by 
the Fourier expansion 

y 

co 
2812 >:_l . fs-zrb\ fsTrct) 
(l - b) s2 1 

sin cos 
a 

_ 
r2b 

s=1 
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2. If the string is released from rest in the position 
48 

y =F. x(1 - x) F. 

show that its motion is described by the equation 

y 
32c 

3 
o 

3. If the string is released from rest in the position y = f (x), show that the total 
energy of the string is 

1 (2n + 1)irx (2n + 1)7rct 

(2n + 1)a sin cos 
l 

c° 7r2T 

41 
s 

S2k2 s 

2 I sirx 
where ks = f (x) sin dx 

The mid -point of a string is pulled aside through a small distance and then 
released. Show that in the subsequent motion the fundamental mode con- 
tributes 8 /ire of the total energy. 

3. The Riemann- Volterra Solution of the One -dimensional Wave 
Equation 

In Chap. 4 we saw that for Laplace's equation oil = 0 it is not 
possible to give independent prescribed values to both ' and avian along 
a boundary curve, since if either v or avian is prescribed, that alone 
is sufficient to determine the potential function 'p uniquely. In the 
last section we saw that the corresponding situation for the one- dimen- 
sional wave equation 

a2v., 
a2_ 

axe - ay2 

is quite different ; i.e., that v and aye / ay can be prescribed independently 
along the line y = O. We noted previously (Sec. 8 of Chap. 3) that if 
we are given the values of (x,y,z,p,q) along a strip C, then the equation 

a2z az az 
(2) 

axa = x ' j;) y 
has an integral which takes on the given values of z, p, q along the 
curve F which is the projection of C on the xy plane, and a simple 
change of variable reduces equation (1) to the type (2). In this section 
we shall use the method of Riemann- Volterra outlined in Sec. 8 of Chap. 
3 to determine the solution of the Cauchy problem 

all - a2t 
3 

axe ay2 () 

a = x 4 f(x,y), 
an g( ,y) on C ( ) 

where F is a curve with equation u(x,y) = O. 

Y = ca (1) 
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Suppose that we wish to find the value y(4:,n) of the wave function v 
at a point P with coordinates ($,n). Then it is readily shown that the 
characteristics of the equation (3) through the point P have equations 

and 
x+y=$+n 
x- y= -/I 

(5) 

(6) 

and we may assume that the second of these lines intersects the curve C 
in the point A and that the first intersects C in the point B (cf. Fig. 38). 
If we let 

a2 a2 
L = 

ax2 
-- 

ay2 
(7) 

y 
then, since this operator is self -adjoint, it follows from the generalized 

o 

Y 

s 

Figure 38 

form of Green's theorem (Prob. 1 of Sec. 8 of Chap. 3) that 

ff (why, - yLw) dx dy = Jr [Ucos (n,x) + V cos (n,y)] ds (8) 
E 

ay aw 
where U =wax -y 

V = -w y + y ÿ (10) 

C is the closed path ABPA, and E is the area enclosed by it. From the 
discussion of Sec. 8, Chap. 3 we see that the Green's function w must 
satisfy the conditions 
(i) Lw = 0 

(ii) 
aw = 0 on AP and BP 

(iii) w = I at the point P 

(9) 
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These conditions are satisfied if we take w = 1. Using this and the 
fact that Ly, = 0, we see that equation (8) reduces to (fPAav -- JgB-- 

flu) 
Lax 

cos (n,x) - cos (n'y)] ds = 0 (11) 

On the characteristic PA, which has equation (6), we have 
-1 1 

cos (n,x) _ 
V2' 

cos (n,y) _ 
V2 ' 

ds = -0 dx = -A/2 dy 

so that 
aw 

f fix cos (n,x) - á cos (n,y)} ds 
Y Jp \ 

13: dx -I- ÿ ay) _ tpli - V P 

o MC- 

Similarly we have 
1 

o) 

Figure 39 

1 

cos (n,x) _ cos (n,y) = 

B(C+17,0) 

ds = -V2 dx = V2 dy 

along the characteristic PB, so that the value of the integral along the 
line BP is PB - ipp. Substituting these values in the equation (11), 
we get 

YAP = i(V A + va) -fAB(X'n) -áy cos(ny)) ds (12) 

as the solution of our Cauchy problem. 
For instance, if we are given that 

, = f(x), y = g(x) on y = 0 (13) 

then if P is the point (), it follows that A is (e - 7], 0) and B is 
($ + 71, 0) (cf. Fig. 39). We have 

ipA =f ( - - n), vi3 --=-- f ($ + n) 

( 2 cos(x,n) - cos(y,n)1 ds = -f g(x) dx 
Y 
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If we substitute these expressions into equation (12), we obtain 
d'Alembert's solution (cf. equation (5) of Sec. 2). 

It follows from the Riemann- Volterra solution (12) that if an initial 
disturbance, either a displacement or a velocity, is concentrated near 
the point (x0,y0), it can influence only that infinite sector of the half 
plane y > yo formed by the two lines of gradient -±1 passing through 

Y \\\ 
Domain of 
influence 

(xe,y0) 

(x1 y1) 

x 

Figure 40 

the point. This sector is called the initial domain of influence of (x0,y0) 
(cf. Fig. 40). In a similar way we can construct the domain of influence 
of another point (x1,y1), and a simple diagram, e.g., Fig. 40, shows that 
all domains of influence intersect for y > O. In a similar way we define 

Domain of 
dependence 

Figure 41 

the domain of dependence of a point (x2,y2) as the set of all points with 
y > 0 whose domain of influence includes the point (x2,y2) (cf. Fig. 41). 
It is easily seen that the domain of dependence of a point is the triangle 
cut off from the upper half of the xy plane by the two downward -drawn 
lines through (x2,y2) of gradient ±1. These lines if produced upward 
would bound the domain of influence of the point (x2,y2). Since we 
do not, in general, consider points with y < 0, i.e., events in the past, 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


THE WAVE EQUATION 225 

it follows that it is possible to have nonintersecting domains of depen- 
dence. Consider two points (x,y) and (x',y) whose time coordinates 
are equal. If their domains of dependence do not intersect, then the 
displacements at the points will be incoherent : they will be caused by 
initial displacements and velocities which are completely independent 
of one another. 

1. If 
PROBLEMS 

IP = f (y), 
alp 

a 
7 = g (y) 

at a point which is moving with constant velocity ¡3c (ß < 1) starting at 
x = O at y = 0, show that this implies that 

a 
= f '(y) - ßg(y) ay 

and show that 

{ 

k' b 

vi(e)77) = i(1 + ß)f 
+ 1, 

1'0 - ß) .1 1 

li - ' + i (1 - ß2) y) dy 1-- 1 -ß 5go 

where b = ( + i) /(1 + ß), a = (17 - OM - ß) 

2. Using the results of the last problem show that the wave function corresponding 
to a traveling source of sound of frequency p is 

x t = c 1 -- 2 [sin p )1 sin 
p(t - xlc) 

( ,) ( ß} 
1 +ß 1 -ß 

Interpret the result physically. 

3. A function v satisfies the nonhomogeneous wave equation 

a2v1 a2v 

and the initial conditions 

Show that 

ax2 + f(X)y) = o 

a y= =0 when y=0 
ay - 

y -Ili = 
2 

du di) fJf(uv) 
lT 

where T is the triangle cut out from the upper half of the ui' plane by the two 
characteristics through the point (x,y). 

4. If y .is determined by the differential equation 

a2 
a2 + b2v _= ___ 

a2 

ax2 Ely 

where a and b are constants, and by the conditions 

alp 
y = o, v =.f (x), ay = g(x) 
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show by the Riemann- Volterra method' that 

p(x,y) = .{ f (x + ay) + ,f (x - ay)} 

1 x +ay b 
+ Za g()Jo a A/( -- x)2 - a2y2) d 

z -ay 
x+ ay Jó [(bl a) ( - x)2 -a2 21 ca + ¡by f() .Y 

z -ay ( x)2 - a2y2 

4. Vibrating Membranes: Application of the Calculus of 
Variations 

We saw in subdivision (e) of Sec. 1 that the transverse vibrations of a 
thin membrane S bounded by the curve r in the xy plane could be 
described by a function z(x,y,t) satisfying the wave equation 

1 
a 2 z 

°12 

._._ 

z - C2 at2 
the boundary condition 

z onr for all t 

and the initial conditions 
az 

z -f (x,y), = g(x,y) t = 0, (x,y) e S 

The two main techniques for the direct solution of this boundary 
value problem are the theory of integral transforms and the method of 
separation of variables. The first of these methods is particularly 
useful when the membrane is of infinite extent, and the second is 
useful when the boundary curve F has a simple form. 

We shall illustrate the use of the theory of integral transforms to 
problems of this kind by : 

Example 2. A thin membrane of great extent is released from rest in the position 
z = f(x,y). Determine the displacement at any subsequent time. 

Here we have to solve equation (1) subject to the conditions 

az 
z = f (x,y), = 0 

t 
(4) 

at t = 0 for all (x,y) of the plane. To solve this initial value problem we multiply 
both sides of equation (1) by exp {i(x + iy)} and integrate over the entire xy 
plane. Then using the results 

00 co 2 2 2 d2 Y 

a 2, a 2, 
a 

e? (x + nY) dx dy = (_e, - 7)2, 
d 

Z z - - ax ay at y dt2 

1 

°3 where Z(,ri;t) = 
2;r 

z(X,y;t)ei(x + ny) dx dy -- -co 
i Cf. Prob. 4, Sec. 8, Chap. 3. 
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is the two-dimensional Fourier transform of Z(x, y, t), we see that equation (1) is 
equivalent to 

d Z c2(2 + 712)Z = o (5) 
dt2 

and the conditions (4) are equivalent to the pair 

z = F(, i), dZ 
= o t 0 (6) 

dt 
Solving (5) subject to (6), we find that 

Z = F(ß,71) cos [c(2 '+ 2) i t] 

By a. double application of Fourier's inversion theorem (see p. 128) we have therefore 
co 00 

z = 1 F( ,) cos [c(2 -I- r2) t]e is x + nY) d dry (7) L. t 2 
so that the problem is reduced to two double integrations, the evaluation of F(,n) 
and the evaluation of (7) (cf. Prob. 1 and 2 below). 

The use of the method of separation of variables will be illustrated 
in two cases, when r is a rectangle and when it is a circle. 

When r is the rectangle formed by the lines x = 0, x = a, y = 0, 
y = b, it is natural to assume solutions of equation (1) of the form 

z X(x) Y(y)e f iket 

We then find, on substituting into equation (1), that 
X Y" 
X+Y+.k2 =0 

showing that the ordinary differential equations for X, Y are 
X "+k;X=0,Y "+kY =0 

where kz + 14 = k2 (8) 

We therefore get solutions of the form 
z = A kikze f i(kix + k2v + kct) 

(9) 
Since z must vanish when x = 0, x = a, y --= 0, y = b, we must take 
solutions of the form 

z 
m,n 

where m, n are integers and 

For instance, if 

sin 
mwx 

sin 
nay f ik,nnet 

a b 

2 (1712 
_ a2 

z= f(x,y), át =0 att =0 
then the appropriate solution is 

z(xy,t) 
m,n 

(10) 

Amn sin max) sin {nby) cos (k,nct) (11) 
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where km,z is given by equation (10) and the coefficients Amn are chosen 
so that 

f(X,y)'>AmnSfl1 (n17rx) )s1nb) 
iry 

0 x a, 0 y b 
m,n 

b 

i.e., 
A771.7t = 

b roJo f(x,y) sin (máx) sin {nby} dx dy (12) 

The complete solution is therefore given by equations (10), (11), and 
(12). The frequencies of possible oscillations are given by equation 
(10). These quantities are known as the eigenvalues of k. It is only 
when k takes one of that set of values that the problem has a solution 
of the form (9). 

When the boundary curve P is a circle of radius a, it is best to trans- 
form to plane polar coordinates r, 8, in which case equation (1) assumes 
the form 

atz 1 az 1 aez i atz 
art -F r ar + r2 ao2 e2 at2 

(13) 

and the curve F can be taken as r = a. If we assume a solution of this 
equation of the form 

z = R(Y)0(8)e±ikct 

we find that the functions R, 0 must be such that 

r2 rd2R 
1 dR 

ke.R 
1 d20 = 0 

R Ldr2 dr2 
-rdrF +ed02 

showing that the ordinary differential equations for R, 0 are 

d2® + m2® = O 

and 

d82 

d2R 1 d.R 

dr2 
,_ 

r dr ' 

The solutions of (14) are of the form 

0 = e±i»to 

r2 
me 

' j.2 

(14) 

R = 0 (15) 

If the displacement z(r,O,t) is to have the obvious physical property 
that z(r, O + 2r, t) = z(r,O,t), then we must choose m to be an integer. 
Furthermore, since for physical reasons we are interested only in 
solutions which remain finite at r = 0, we must take the solution of (15) 
to be of the form 

R = Jt(kr) 

where Jm(x) denotes the Bessel function of the first kind of order m and 
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argument x.t In this way we build up solutions of the equation (13) of 
the form 

Z - Á mk J kr ) e± ime t ikct 
m( 

m,k 
(16) 

If z vanishes on the circle r = a, then the numbers k must be chosen so 
that 

J,n(ka) = 0 (17) 

and we finally get solutions of the type 

z = AmnJm(kmnr) exp {±irnO ± lk,nnct} (18) 
m, n 

where A,nn are constants and km1, km2, . . . are the positive roots of the 
transcendental equation (17). In the symmetrical case in which z is a 
function of r and t alone the corresponding solution is 

z(r,t) = : 4J0(knr)e ÿ ickfzt (19) 
n 

where k1, k2, . . . are the positive zeros of the function J0(ka). 
For instance, if we are given that 

z f( 
} 

- 
' ót 

r 
áz =O att =0 

then the solution of the problem is 

z = AnJo(knr) cos (lc, ct) (20) 
n 

where the constants An are chosen so that 

j'(r) = : A nJ0(knr) 
n 

From the theory of Bessel functions' we see that this implies that 

2 Jrf(r)Jo(kr) 
a2JX(ka) 

A - dr (21) 

The complete solution of our problem is therefore given by the equations 
(20) and (21). 

Solutions of problems of these kinds relating to vibrating membranes 
with rectangular and circular boundaries can also be derived by means 
of the theory of "finite" transforms. For details of the derivation cf 
these solutions the reader is referred to Sec. 19.5 and 19.6 of Sneddon's 
"Fourier Transforms" (McGraw -Hill, New York, 1951). 

These methods are appropriate only when the boundary curve F has 

t Cf. I. N. Sneddon, "The Special Functions of Physics and Chemistry" (Oliver 
& Boyd, Edinburgh, 1956), p. 103. 

1 G. N. Watson, "A Treatise on the Theory of Bessel Functions," 2.d. ed. 
(Cambridge, London, 1944), chap. XVIII. 
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a simple form. When r is a more complicated boundary, approximate 
values of the possible frequencies of the system can be found by making 
use of certain results in the calculus of variations. According to the 
calculus of variations,' if the solution of equation (1) in the case in which 
r is fixed is of the form f (x,y) e"fr,then the nth eigenvalue is 
the minimum of the integral 

I - Tiff{ áy + My) dx dy (22) 

with respect to those sufficiently regular functions which vanish on I' 
and satisfy the normalization condition 

ff2 dx dy = 1 (23) 

and the n - 1 orthogonality relations 

¢ßß m dx dy = 0 (24) 
Jl 

where Om is the minimizing function which makes I equal to 1m. 

This provides us with a method of determining approximate solutions 
to our problem.' If 

Z _" vm`x5,y)eik,,,,ed (25) 

is an approximate solution of the problem stated in equations (1) and (2), 
then if 01, . . . , On are n functions which are continuously differ- 
entiable in S and which vanish on r, an approximate solution is 

n 

vm(x,y) cim'oi(x,,y) (2b) 
i=1 

where the coefficients Cr are the solutions of the linear algebraic 
equations 

with 

n 
(ak - ri;)C;m -o i -- 1, 2, . . . , n (27) 

5=1 

ff Cl2(1) ; dx dy (28) 

r _ r . - agi a4; agi a; 
dx d 23 i ax ax 
a dy (29) 

s y y 

and the first n approximate . eigenval ues k1, k2, . . . , kn are given by 

' R. Weinstock, "Calculus of Variations" (McGraw -Hill, New York, 1952), 
pp. 164-167. 

2 Ibid., pp. 188 -191. 
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the n positive roots of the determinantal equation 

Q1112 - Inn a12k2 __._ r12 6 211C - 4521 Cr 22k2 -11 
22 

a.ink2 ` rin 
62n 

2 - 112n 

o (30) 

an1k2 - rni an 2k2 - rn2 annk2 - inn 

In addition the coefficients must be chosen to satisfy the normalization 
condition 

n 
0. 2 CZm >C;m >a-i, = 1 (31) 
i,j.1 

If the boundary curve I' of the membrane S has equation u(x,y) = o, 
a simple choice of the approximate functions ci (i = 1, 2, . . . , n) is 
to take 

1 = u(x,y), 2 = xu(x,y), 403 = yu(x,y) 
F 4 = x2u(x,y), 5 = xyu(x,y), 6 = y2u(x,y), etc. 

The variational approach to eigenvalue problems is useful not only in 
the derivation of approximate solutions but also in the establishing of 
quite general theorems about the eigenvalues of a system. For details 
of such theorems the reader is referred to Chap. 9 of the book by 
Weinstock mentioned above and also to Chap. 6 of Vol. I of "Methoden 
der mathematischen Physik" (Springer, Berlin, 1924), by R. Courant 
and D. Hilbert. 

Example 3. Find approximate values for the first three eigenvalues of a square 
membrane of side 2. 

Suppose we take the membrane to be bounded by the lines x = ±1, y = ±1; 
then we may assume 

1 = (1 __.. x2)(1 - y2), t2 = X(1 - x2)(1 - y2), 03 = y(1 - x2)(1 - y2) 

and we find that 
256 256 

611 = 225 0 22 X33 
= 

1 S75 0'12 - 23 = cr31 = O 

256 3328 
r11 - 45 , 

r22 = 1 33 
1 SÌ S , r12 

= 
r23 = r31 = o 

In this case the determinantal equation (30) reduces to 

(k2 - 5)(k2 - 13)2 = 0 

so that the first three approximate eigenvalues of the square are 

k1 = V5 = 2.236, k2 -= k3 = V 13 == 3.606 

From equation (10) we see that the exact results are 

k1 = 
2 

= 2.221, k2 - k3 5 = 3.942 
2 2 
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PROBLEMS 

1. Show that the solution of Example 2 can be put in the form 

1 r a f( «,ß) d« dß 
z(x, y, t) - - / Q 27rc __ co o at v c2t2 - (x - a)2 - (y - ß)2 

2. A very large membrane which is in its equilibrium position lies in the shape 
z = f (r) (r2 = x2 + y2). Show that its subsequent displacement is given by 
the equation 

where 

z(r, t) _ cos (ct)Jo(r) cg fO7() 

( -) = 
fo 

op 

rf (r)JoW) dr 

3. A square membrane whose edges are fixed receives a blow in such a way that 
a concentric and similarly situated square area one -sixteenth of the area of the 
membrane acquires a transverse velocity y without sensible displacement, the 
remainder being undisturbed. Find a series for the displacement of the 
membrane at any subsequent time. 

4. A membrane of uniform density a per unit area is stretched on a circular frame 
of radius a to uniform stress ace. 

When t = 0, the membrane is released from rest in the position 
x = e(a2 - r2), where e is small, and r is the distance from the center. Show 
that the displacement of the center at time t is 

00 

cos (net /a) 
8sa2 

enJA2.) n =1 

where n is the nth positive zero of the Bessel function Jo. 

5. Using the approximations 

(DI = 1 - 1%x,2 0 = x -X Vx2 + (133 = -y Vx2 + 

show that the first three approximate values of the constant k in the solution 
f (r)eik °t, describing the transverse vibrations of a circular membrane of unit 
radius, are 

K2=Ar6, K2=K3=V15 

5. Three -dimensional Problems 

In this section we shall consider some of the simple solutions of 
the three -dimensional wave equation 

2 1 a2v vV =c2at2 (1) 

It is a simple matter to show that this equation has solutions of the form 

provided that 
exp {+i(lx + my + nz + kct)} 

k2 12 + m2 n2 

(2) 

(3) 
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Example 4. A gas is contained in a cubical box of side a. Show that if c is the 
velocity of sound in the gas, the periods of free oscillations are 

2a 

where n1, n2, n3 are integers. 
In this problem we are looking for solutions of the wave equation (1) valid in the 

space 0 < (x,y,z) c a and such that ay' /an = 0 on the boundaries of the cube. 
The form of ' will therefore be 

y(x,y,Z, t) = 1117rx n 27r y 
Ani,n2.,i3 COS COS cos 

a a a 

-I- tis) 
wet 

(n1 + n2 cos 
a 

where n1, n2, n3 are integers. It follows immediately that the periods of the free 
oscillations of the gas are 

2a 
c Vni + 4 + 

n3 

In spherical polar coordinates r, o, 0 the wave equation (1) assumes 
the form 

a2 2 ai 
1 a 

sin o 
al 1 alp = 1 a2 v (4) 

ÓY2 r aY r2 sin o ao ao 
+ 

r2 sine o a 2 c2 at2 

If we let 
y(r,e,0) = W(r) P;zz (cos o)e - imis --ikct 

(5) 

where W(r) is a function of r and P1zy (cos B) is the associated Legendre 
function, then on substituting from equation (5) into equation (4) we 
find that W(r) satisfies the ordinary differential equation 

d2T n(n 
Y2 r dr - 

YZ 1) 
`If IC2ii, = (6) 

C 
Now, putting 

= r }R(r) 

we see that equation (6) reduces to 

d2R 1 dR !k2 (n -#- 2)2 R = 0 
dre rdr + r2 

from which it follows that if n -}- z is neither zero nor an integer, 

R(r) AJ +1(kr) + Be _n_i(kr) 

where A and B are constants and Ji,(z) denotes the Bessel function of the 
first kind of order y and argument z. If on physical grounds we require 
the solution (5)' to have the symmetry properties 

p(r, O + , ) = V (r, 8, 99 , V(r, o, + 2ir) = V(09,0) 

then we must take m and n to be integers. 
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Hence the function 

v(r,e,ç) = r- J± (n +i)(kr) P;n (cos @)e ±'imcb 
±ixet (9) 

is a solution of the wave equation (4). The functions Jt(n +i)(kr), which 
occur in the solution (9), are called spherical Bessel functions.1 They 
are related in a simple fashion to the trigonometric functions, for 
it can be shown that if n is half of an odd integer 

.Jn(x) _ (x) [ fn(x) sin x '- gn(x) cos x] 

( x) (- 1)n- l[gn(x) sin x + fn(x) cos x] 

where fn(x) and gn(x) are polynomials in x-1, e.g., in the case n = 
A(x) = 1, gi(x) = 0 and for n j(x) = 1/x and gq(x) = 1. It 
follows from these facts that 

{ Y 
) 

= . ikr ±iket 

1 rsin (kr) 
1P(r,B) = 

L kr 

(10) 

cos (kr)] cos 8 e (11) 

are particular solutions of the wave equation (1).2 
The solution (10) is a particular .case of a more general solution which 

can be derived directly from equation (1). If the solution of the wave 
equation is assumed to have spherical symmetry, i.e., if v is a function 
only of r and t, then it must satisfy the equation 

a2v 2 alp 
= 1 

aztp 

are r ar c2 a t2 
(12) 

If we put /) _ sb/r, we find that 

a20 1 
a20 

are 
- 

C2 ate 

so that ç = f (r -- et) + g(r ct) 

where the functions f and g are arbitrary. In other words, the general 
solution of the equation (12) is 

1 (13) 

where the functions f and g are arbitrary. 

1 I. N. Sneddon, "The Special Functions of Physics and Chemistry" (Oliver & 
Boyd, Edinburgh, 1956), sec. 31. 

2 For applications of the wave functions (9) to electromagnetic theory the reader 
is referred to J. A. Stratton, "Electromagnetic Theory" (McGraw -Hill, New York, 
1941), chap. VII. 
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The function r -if (r - ct) represents a diverging wave. If we take 

to be the velocity potential of a gas, then the velocity of the gas is 

(14) 

ao - 47r2.1 

i 
1 rl 1 f ` l u = - a t - 

c + 4rrc 
t 

e 

so that the total flux through a sphere of center the origin and small 
radius e is 

47E2ll = f (t) + O(E) 

For this reason we say that there is a point source of strength f (t) 
situated at the origin; the expression (14) therefore represents the 
velocity potential of such a source. The difference between the pressure 
at an instant t and the equilibrium value is given by 

p -po p 
ack- 

4rf kt 
-r) (15) 

Example 5. A gas is contained in a rigid sphere of radius a. Show that if e is the 
velocity of sound in the gas, the frequencies of purely radial oscillations are cz /a, 
where1, 2, ... are the positive roots of the equation tan = 

The conditions to be satisfied by the wave function yp are that it satisfies equation 
(12), that yp remains finite at the origin, and that u = atp/ ar = 0 at r = a. From 
equation (10) we see that the first two of these conditions is satisfied if we take 

A 
sin (kr) iket V r 

where A is a constant. For this function 

u = - ay) ^ A 
[1c cos (kr) sin (kr) eikc t 

âr r r2 

so that u -0 on r = a if k is chosen so that 

tan (ka) = ka 

The possible frequencies are therefore given by the expression ceila (i = 1, 2, ...), 
where1, 2, . . . are the positive roots of the transcendental equation 

tan _ (16) 

Similar solutions of the wave equation (1) can be found when the 
coordinates are taken to be cylindrical coordinates (p,ç6,z). The wave 
equation then takes the form 

a2y 1 ay, 1 a2y a2ip 1 a2i 
2 a 2 a 2 Óz2 c2 a l2 P P P P 

If we write 
v(p,O,z,t) R(r)(1)(0)Z(z)T(t) 

(17) 
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we see immediately that the equation (17) separates into 

&R. 1 l dR 
n22 = 

dr2 + r dr + 
(02 .R 

P 
2 

d20 d2Z =0 Z+ 2Z =0 T +k2c2T =0 42 dz2 Y dt2 

where y2 = k2 - co2 (18) 

We therefore have solutions of the form 

v(P,(/),Z,t) _ Tm(wP)eiket. 
-17z±imqs (19) 

where y is related to k and co through the equation (18). If k > co, so 
that y is real, we can think of the solution (19) as representing a wave of 
amplitude Jm(cop)e ±i'n4 moving along the z axis. The phase velocity of 
such a wave is 

kc 
V. 

Y 

and the group velocityl is 

W= d kc =cY 
d ( ) k Y 

Example 6. Harmonic sound waves of period 2ir /kc and small amplitude are 
propagated along a circular wave guide bounded by the cylinder p = a. Prove that 
solutions independent of the angle variable ç are of the form 

ti) 
= ei(ct - yz) Jo LnP 

a 

where is a zero of J1() and y2 = k2 -(712 /1z2). 

Show that this mode is propagated only if k > fl/a. 
Since v is independent of 0, it follows that we must take in -0 in equation (19) 

to obtain 
v - Jo(wP)ez(kct 

-yz) 

where y2 k2 (02. The boundary condition is that the velocity of the gas 
vanishes on the cylinder; i.e., 

av 
a P 

=0 on =a (20) 

Since J6(x) = -J1(x), it follows that this condition is satisfied only if co is chosen to 
be such that J1(cwa) = 0; co = en/a, where fix, e2, . . . are the zeros of J1(). We 
therefore have 

v = ei(ket - yz) Jo nP 
a 

where y2 = k2 - (al a2). 
For the mode given by equation (21) to be propagated we must have y real; 

i.e., k > n/a. i. 

1 C. A. Coulson, "Waves" (Oliver & Boyd, Edinburgh, 1941), p. 130. 

t For the application of the theory of cylindrical waves in electromagnetic theory 
the reader is referred to Stratton, op. cit., chap. VI. 

(21) 
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The solution (19) is useful in applications to problems in which the 
physical conditions impose the restriction that ' must remain finite when 
p = O. In problems in which there is no such requirement we must 
take as our solution 

p(P,c ,z, t) = [AmJm(wp) + Bm Ym(w P)]eiket 
- iyz i"9' (22) 

where Y,n(cop) denotes Bessel's function of the second kind1 and Am, Bin 
denote complex constants. The most convenient solutions of Bessel's 
equation to use in this connection are Hankel functions 

HT(wP) = J 1(w p) Ym(coP), H(m)(wp) = Jm(wP) `- i Ym(wP) 

so that we may write the solution (22) in the form 

îp(0,4,z, t) = [AmH.(2)(W P) + BmH(m)(w P)1e2ÏCet-iyzi-271tch (23) 

For instance, in the case of axial symmetry (m = 0) we obtain 
solutions of the form 

v(P,z, t) _ [AH(01) (a) p) -}- BH ó)CwP)ae2et-ayz (24) 

Now for large values of p 

2 
2 

Br(cop) w P 
¡IT) .11(02)(w P) 2 e-i(wP-ir) (25) 

w P 
soasp oo, 

2 2 

ip(P,z, t) `~ [Aeicket + wP -iyz - ) + Bei(kct - wP -iyz +ám)1 (17.0) 
p 

J 

Thus the solution 
V o(P,z,t) - H(01)(wp)eiket 

-iyz (26) 

represents waves diverging from the axis p = 0, while the solution 

ii(P,z,t) = H(02)(wp)eikct -iyz (27) 

represents waves converging to this axis. 
In the two -dimensional case (al oz = 0) it follows from equation (16) 

of Sec. 4 that the analogue of equation (23) is 

p(P,s6,t) = [AmH2)(kp) + B 
(7,1,) (k p)]eikctiim¢ (28) 

while those of equations (26) and (27) are 

and 

H(01)(kp)eiket 

H(02)(k p)eikat 

(29) 

(30) 

respectively. The functions (29) and (30) play the same role in the 
theory of cylindrical waves as do the solutions (10) in the theory of 
spherical waves. 

1 I. N. Sneddon, "The Special Functions of Physics and Chemistry" (Oliver & 
Boyd, Edinburgh, 1956), p. 105. 
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PROBLEMS 

1. A wave of frequency v is propagated inside an endless uniform tube whose 
cross section is rectangular. (a) Calculate the phase velocity and the wave- 
length along the direction of propagation. (b) Show that if a wave is to be 
propagated along the tube, its frequency cannot be lower than 

c 1 1 

vmin - 
2 a2 + b2 

where a and b are the lengths of the sides of the cross section. (c) Verify that 
the group velocity is always less than c. Show that the group velocity tends to 
zero as the frequency decreases to vmin. 

2. Show that the flux of energy through unit arda of a fixed surface produced by 
sound waves of velocity potential tp in a medium of average density p is 

ao ao 

-p at an 

A source of strength A cos (at) is situated at the origin. Show that the 
average rate at which the source loses energy to the air is 

pA2a.2 

8Trc 

where c is the velocity of sound in air. 

3. A symmetrical pressure disturbance p0A sin kct is maintained over the surface 
of a sphere of radius a which contains a gas of mean density po. Find the 
velocity potential of the forced oscillation of the gas, and show that the radial 
velocity at any point of the surface of the sphere varies harmonically with 
amplitude 

A 1 
--- cot ka 

c ka 

4. Air is contained between concentric spheres, the outer being of fixed radius b 
and the inner of oscillating radius a(1 + E sin kct), where e is small. Prove 
that the velocity potential of the forced oscillations of the air is 

ea3kc cos a sin (kb -ß - kr) 
sin (kb -ß - ka + a) r - cos kct 

where a and ß are the acute angles defined by tan a = ka and tan ß = kb. 

5. A rigid spherical envelope of radius a containing air executes small oscillations 
so that its center is at any instant at the point r = b sin nt, e = O. Prove that 
the velocity potential of the air inside the sphere is 

{cos kr sin kr 
cos O cos nt 

kr k2í2 

where C - 2ka cos ka -- (2 --- k2a2) sin ka 

6. Show that the wave equation has solutions of the form 

IP = S(O,ç) R(r, t) 

nk2a3b 
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where 8, , r are spherical polar coordinates, I is a constant integer, and 

a2 
J. 

sin o 
á 

+ 2 
a+ 

1(1 + 1) S = 0 
stn 

(.7u 
a8 , sin 6 a# 

l a 2 a I(1 + 1) 1 
a._21,, Tr r -- 

C2 
0 

Verify that the last equation is satisfied by 

R(r,t) = ra (_a_ 
' f(r - ct) + g(r + ct) 

r ar r 

where f and g are arbitrary functions. 

6. General Solutions of the Wave Equation 

In this section we shall derive general solutions of the wave equation 
associated with the names of Helmholtz, Kirchhoff, and Poisson. The 
solutions of Helmholtz and Kirchhoff deal with wave problems in 
which the values of the wave function p(r,t) and its normal derivative 
alp/ an are prescribed on a surface S. From Kirchhoff's form of 
solutions of this problem we deduce Poisson's solution to the initial 
value problem in which v and avl at are prescribed at time t = O. 

Suppose that IF is a solution of the space form of the wave equation 

V2 + k2W = o (1) 

and that the singularities of 'F all lie outside a closed surface S bounding 
the volume V. Then putting 

elk Ir 

' - (2) 
Ir r'I 

and this value of IF in Green's theorem in the form of equation (1) of 
Sec. 8 of Chap. 4, we find that if the point with position vector r lies 
Dutside S, then 

a eik 
ir elk r - r'l a(r') I'F(r') dS' = 0 

s an Ir -rI Ir -rI an 
(3) 

On the other hand, if P lies inside S, by applying Green's theorem to 
the region bounded externally by S and internally by C, a small sphere 
with center r and radius s (cf. Fig. 23), we find that 

a elk (r --- r' j elk Ir - r' ! aW(r') (r') dS' 
s anIr -r r-r an 

Y __ 

1 'F(2 {(ik )W(r') dS' 
£-3o C , Ir-rl a r Ir-rl 

and by a process similar to that employed in Sec. 8 of Chap. 4 vve can 
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a,. Jsl a 

show that the value of the limit on the right -hand side of this equation 
is -4 &Y(r). 

Hence we have: 
Helmholtz's First Theorem. If 1F(r) is a solution of the space form 

of the wave equation V2'F1' + k2'F = O whose partial derivatives of the 

first and second orders are continuous within the volume V on the closed 
surface S bounding V, then 

eik Ir - r'I aW(e) 
4 s r r ̀ an 

a eik Ir - r'I 
I°r V/ ) dS anfr-r 

(r) if r e V 

if r¢ V 
(4) 

where n is the outward normal to S. 
Helmholtz's first theorem is applicable in the case when all the 

singularities of the function W(r) lie outside a certain volume V. We 
now consider the case in which all the singularities of IF lie within a 
closed surface S. If we now apply Green's theorem to the region V 
bounded internally by S and externally by E, a sphere of center the 
origin and very large radius R, we find, on letting R -* co: 

Helmholtz's Second Theorem. If W(r) is a solution of the space form 
of the wave equation whose partial derivatives of the first and second 
orders are continuous outside the volume V and on the closed surface S 
bounding V, if rW(r) is bounded, and i f 

r - ikT --} o 
ar 

uniformly with respect to the angle variables as r -* co, then 
1 

r` 
a ezk Ir - r'I 

aW(r') 
eik Ir - r'l 

4/r s } an r - r' an 1r -r' dS 

JtY'(r) if r V 

l0 ifrE V (5) 

where n is the outward normal to S. 
It would appear from Helmholtz's formulas that the values taken by 

\V and aT an on the surface S can be assigned arbitrarily and indepen- 
dently of each other. By use of a Green's function G(r,r') with 
singularity at P (see Sec. 7 below) we can express 11P(r) in terms of Ilf(r') 
alone through the equation 

If(r) Li8 r) aG 
dS' 

so that knowing the value of W on the surface S, we can, in general, 
determine W(r) uniquely and, in particular, calculate the value of 
ate/ an on S. It can also be shown that if man is prescribed on S, 
'F(r) is in general determined uniquely so that its value on S can be 
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determined. The values of `Y' and a`Y'/ ôn on S are therefore related. 
If the functions f(r) and g(r) are defined in an arbitrary way, then the 
function 

= -1 
47r 

0 e'k ir-r-i a ezr-ril 

s 
If(r') 

' g(ri) 
dS 

I 

r -- rI Ir 
I 

satisfies the space form of the wave equation, but it does not necessarily 
follow that 'W(r') = g(r'), al an = f(r') on S. 

Similarly in the two -dimensional case by taking 

'F' = I- 1 (kip -- Pi) 

where p = (x,y), in the two -dimensional form of Green's theorem, we 
can readily establish the two -dimensional analogue of Helmholtz's 
first theorem: 

Weber's Theorem. If W(p) is a solution of the space form of the 
two -dimensional wave equation V W + k21J = 0 whose partial derivatives 
of the first and second orders are continuous within the area S and on the 
closed curve I' bounding S, then 

Jr{W(P') 

á 
HP (kjp P I) o (kIp P I) n 

(P) if P S 

0 if PAS 

where n is the outward normal to F. The proof is left as an exercise to 
the reader.' 

Helmholtz's first theorem can be expressed in another way by intro- 
ducing the idea of a retarded value. If 'p(r', t) is a function of the 
coordinates of a variable point with position vector r', then we define 
the retarded value [ 'p] of v by the equation 

A 

[p] =v r',t -- c , A= lr' - rI 

where r is the position vector of some fixed point. If 

p(r',t) = W(r')e -ikct 

then it is obvious that 

[v] = v(r' ,t)e ikA 
, R- ikc[y] - 

(6) 

(7) 

If, now, we multiply both sides of the equation which occurs in Helm - 
holtz's first theorem by eke', we find that if the point with position 

x See Weber, Math. Ann., 1, 1(1869), and B. B. Baker and E. T. Copson, "The 
Mathematical Theory of Huygens' Principle," 2d ed. (Oxford, London, 1950), 
pp. 50 -51. 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


242 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

vector r is inside the surface S, then that equation can be written in the 
form 

v(r,t) - 4 Js k-Lvi n iil +I \ , L8n1 l dS' 

which, because of the second of equations (6), can be written in the form 

v(r,t) = 4 is {-PP1-4-,-ia `.11 + c n [Z1 + R LônJ 1 dS' (8) 

Now an arbitrary wave function v(r,t) can be expressed, either by a 
Fourier series or by a Fourier integral, as a linear combination of wave 
functions of the type Wk(r)ezket, and since the equation (8) does not 
contain k explicitly, it follows that it is true for any wave function. It 
can also be shown that if the point with position vector r lies outside 
S, the right -hand side of equation (8) is equal to zero. We therefore 
have : 

Kirchhoff's First Theorem. If v(r,t) is a solution of the wave equation 
whose partial derivatives of the first and second orders are continuous 
within the volume V and on the surface S bounding V, then 

1 f f a 1 l a2 [p.1)-1 1 [1} 
dS' 

47T s í an + a an a t + í1 

if P(r) e V 

l 0 if V 
(9) 

0 if P(r) V 

where A = 1r - el and n is the outward normal to S. 
For a direct proof of Kirchhoff's first theorem the reader is referred 

to pages 38 to 40 of "The Mathematical Theory of Huygens' Principle," 
by Baker and Copson. In the case where the singularities of v(r,t) all lie 
outside a given closed surface we have: 

Kirchhoff's Second Theorem. If v(r,t) is a solution of the wave 
equation which has no singularities outside the region V bounded by the 
surface S for all values of the time from - oo to t, and if as r -- oo, 

f (ct - r) 
v(r,t) r... 

where f (u), f '(u) are bounded near u = - oo, then 

4 ç 
1[ipj n k-A-) c-7-11,w1 Lui , liTti dS 

1(r) if P(r) e V 

if P(r) i V 
(10) 

where n is the outward normal to S. 
We get a special form of these results if we take the surface S to be 

the sphere with equation 
A - Ir'- 11 = et (11) 
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Then at any point of S 
[v] v(r',0) =f (r) 

where f is the value of y, at t = O. Similarly 

[ay)] a,(rt,o) 
Lio at gr 

where g is the value of 2y,ß 8t at t = O. If we substitute this result in 
equation (9), we find that 

iip(r,t):=:i fs{_if.2 _i_f_2, + i_i-, (g) 0} ds, (12) 

where S has the equation (11). Now if we denote by the symbol Mr(f) 
the mean value of the function f over the sphere (11), then 

1 r S 
4 

t.11/4(g) 
7r is cR 

and 
ifif la a is u-i + - .1 ds' =-at[tmr(TA 

A aa,) 

Substituting these expressions in equation (12), we find that 

y(r, t) - -a 
t 
[tM(f)] + tMr(g) (13) 

is the solution of the wave equation which satisfies the initial conditions 
av 

v = f, = g, t = 0 (14) 

The solution (12) is Poincaré's solution of the initial value problem (14). 
Equation (13) expresses Poisson's solution. For a direct proof of 
Poisson's solution see Prob. 2 below. 

PROBLEMS 

1. If p(p,t) = V(p)e -ikct is a two- dimensional function in which W(p) does not 
depend on t, prove that 

iJ' [f n( P') 
°° eit) du 

VtCp,) dd' 
t 27r r an (P) 

p P1 Pz 

if p lies within the closed contour I', where pi = I p -- P' I. 

Show that if we write 
af_afax afay 6f_ afapx 
an ax an + ay an ' 6n apx an 

this result becomes 

w(p, t) = 
1 á - 
2r fr{( an 

6 °° y(p,t - ul c) du ds' 
cSn i j jp1 1 u 
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2. Using the principle of superposition, show that if g and F are arbitrary, 

v(r, t) = 
1 

2 

g(r 
), F t - r -r dr' 4c fy r -rl c 

is a solution of the wave equation provided r is not the position vector of a 
point of V. 

Taking F(u) to bee 1 when -E < u < O and zero otherwise, prove that 
v(r, t) = t. r(g) 

and deduce that when t = 0, 

v - 0, 

3. The function v(r,t) satisfies the wave equation. If at time t = 0, v = 0 for all 
r and 

av 

at - 
1k 0 < r < a 

o r>a 
where k is a constant, use Poisson's solution to determine the values of v and 
adj at at any subsequent time. 

Determine the solution also by making use of equation (13) of Sec. 5. 

7. Green's Function for the Wave Equation 

In this section we shall show how the solution of the space form of 
the wave equation under certain boundary conditions can be made to 
depend on the determination of the appropriate Green's function. 

Suppose that G(r,r') satisfies the equation 

a2 a2 a 
r G r' = (1) 

ax'2 Ó'2 Z'2 )`i_ k2G r ( r' ) 0 
.v 

and that it is finite and continuous with respect to either the variables 
x, y, z or to the variables x', y', z' for points r, r' belonging to a region 
V which is bounded by a closed surface S except in the neighborhood 
of the point r, where it has a singularity of the same type as 

eiklr -r'I 

Ir -r'l 
as r' -* r. Then proceeding as in the derivation of equation (4) of the 
last section, we can prove that, if r is the position vector of a point 
within V, then 

(2) 

T(r) = 4r J {G(r,r') 
a ônr - 1F(e) aGán'r Ias' (3) 

where n is the outward -drawn normal to the surface S. 
It follows immediately from equation (3) that if Gl(r,r') is such a 

function and if it satisfies the boundary condition 

Gi(r,r) = 0 (4) 
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if the point with position vector r' lies on S, then 

T(r) = - 1 r, aG1(r,r') 
dS' í ) 

47, 
( ) an 

(s) 

by means of which the value of W at any point r within S can be cal- 
culated in terms of the values of W on the boundary. 

Similarly if G2(r,r') is a function of this kind satisfying the boundary 
condition 

then we obtain 

aG2 
-- 

an 
0 for r' c S 

T(r) 47 s a an) r 
G2(r,r') dS' 

a formula which enables us to calculate 'Y' at any point within S when 
the value of air / an is known at every point of S. 

Similar results can be obtained in the case of a more general boundary 
condition (cf. Prob. 1 below) and in the two -dimensional case (cf. 
Prob. 2 below). 

We shall consider the special cases in which the surface S is a plane: 
Green's Functions for the Half Space z > O. It is obvious that in 

this instance 
eikjr --r'I eik1p -r'1 

i G1r,r)= (8) 
I I 

ip 
I 

where p = (x,y, -z) is the position vector of the image in the plane 
z = 0 of the point with position vector r = (x,y,z). For this function 
it is easily shown that if the point with position vector r' lies on H, 
the xy plane, then 

aG1 aG1 = 2 
a eik.R 

an az' --a;kR1 

where R2 = (x - x')2 + (y -- y')2 + z2. It follows from equation (5) 
that if i =.f f (x,y) on z = 0, then when z > 0, 

= 1 a eikR 
(x,y,z) - 

27T az fil 
f(x',y') dx' dy' (9) 

Similarly it can be shown that 
eikjr -el eikIP - el 

G2(r,r') = - r' + r, 
(10) 

Ir 
I 

1p 
I 

so that on the plane H 

2eikR 
G2(r,r') = 

R 
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It follows from equation (7) that if 21Y'f 8z = g(x,y) on the plane II, 
then when z > 0, 

1 elk 'V(x,y,z) = - 
277. n g(x',y) dx' dy' (11) 

We shall now indicate how the solution (11) may be applied in the 
theory of diffraction of "monochromatic" sound waves by an infinite 
plane screen which is assumed to be perfectly reflecting but which 
contains holes of arbitrary size and shape. We shall assume that the 
screen lies in the xy plane, and, for convenience, we shall denote the 
holes in the screen by S1 and the material screen itself by S2. If we 
assume that monochromatic waves which in the absence of the screen 
have velocity potential f i(r)eiket are incident on the positive side of the 

llll 1111 

ArAIPAPEZWARIKOMPFAr 
ArdragrAPWAVAPIEMP7 
P PA I wAii rP',. rA 

AMIIIAse L 

Figure 42 

screen (cf. Fig. 42), then the reflected and diffracted wave produced by 
the screen will have a velocity potential of the form 1lfs(r)eikct, and the 
total velocity potential of the sound waves will be F(r)eiket, where 

4f (r) = f i(r) tFs(r) (12) 
The boundary conditions of the problem are that, on the material 

of the screen, the normal component of the velocity of the gas must 
vanish, i.e., that 

as 7;i on S (13 2 ) 

and that, in each aperture, the total velocity potential must be equal 
to the incident velocity potential, i.e., that 

= O on S1 (14) 

To solve this problem we suppose that on. Si 
aT alIf s a i 

(15) 
aZ z -4 aZ 7;1 z.0- f(x9Y) 
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If we substitute the value for ('F/z)0 obtained from equation (15) 
into equation (11), we find that 

1 Fri a -ikR 
, 

S(r) 2;r n az' e-_-_.0 R 
dx dy 

1 r e -ikR 

- TI'r is f(x',y') 7 dx' dy' (16) 
1 

Now if we put f(x',y') = O in equation (16), we get the solution 
appropriate to the problem in which the screen has no holes, and this 
must yield the velocity potential of the waves reflected by an unper- 
forated screen occupying the entire xy plane. It is readily shown that 
if z > 0, this velocity potential has . the space form Ti(p), where 
p = (x,y, -z) is the position vector of the image in the plane z = 0 of 
the point with position vector r = (x,y,z). Hence if z > 0, we must 
have 

--- ikR 

(r) Ti(r) Ti(p) -1 f(x',y') e dx' dy' (17) 

We have still to ensure that the condition (14) is satisfied. To achieve 
this we must choose f (x,y) so that when (x,y,0) belongs to S1 

Is1-iLA 

f(x',y') e 
dx' d y' = 2ir'i(x, y,0) (18) 

where ,. = + V(x -- x')2 + (y -- y')2. 
Hence when z > 0, the solution of our diffraction problem is given 

by equation (17), where the function f (x,y) satisfies the integral equation 
(18). 

We can deduce the solution in the case z < 0 very easily. If we 
superimpose the solution of the problem in which waves with velocity 
potential Ti(p)eik0t are incident on the negative side of the screen, 
we find that the resulting solution [T(r) + Fi(p)]eikct automatically 
satisfies the boundary conditions (13) and (14). Hence we have the 
relation 

W(r) + W(p) r---- Ifri(r) + Ti(p) 

from which it follows that if z < 0, 

1 
ikR 

If(r) r ff(x',y') 
e 

dx' dy' 

where f (x,y) again satisfies the integral equation (18). 

(19) 

PROBLEMS 

1. The function G3(r,r') satisfies co + k2)G = O and is finite and continuous with 
respect to x, y, z or x', y', z' in the region V bounded by the closed surface S 
except in the neighborhood of the point r, where it has a singularity of the same 
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type as eikIr- 'r'I /Ir - r'I as r r. It also satisfies the condition that 
aG3/ an + hG3 vanishes on S, h being a constant. 

If F(r)eik0t is a wave function satisfying the condition 
a 

an 
for points on S, show that 

W(r) = 1 
dS' 

477. 
jf(r')G3(r,r') 

2. If G1(p,p') is such that 

a2 

ax12 
-}- 

¿22 

+k2)G1 = 0 

with p = (x,y), p' = (x',y') and is finite and continuous in the plane region S 
bounded by the curve F except that it has a singularity of type H1)(k Ip - p'j) 
as p' } p, and if G1 = 0 on F, prove tnat 

tI'(p) = 7. aGl dS J'Y(p') r an 

If G2(p,p') obeys the same conditions as G1(p,p') except that aG2/ an = 0 and 
G2 - 0 on r, prove that 

tf (p) _- 1. 
atk P 

G2(p,p') ds 
4i r an 

3. Monochromatic sound waves of velocity potential 'i(r)e t are incident on the 
positive side of a perfectly conducting screen in the xy plane which has a small 
aperture Si. at the point (0,0,0). The dimensions of the aperture are small in 
comparison with the wavelength 2ir /k of the incident wave. Show that at a 
great distance r from the aperture on the negative side of the screen the velocity 
potential is given approximately by 

P(r, t) 
Y 

where A = ff(x,y) dx dy 

Aé ik r-et) 

and f (x',y') dx' dy' - 27Tí(0,0,0) 
slV(x- x')2 +(y -y')2 

Deduce that A = CiFi(0,0,0) where C is the capacity of a conducting disk 
which has the size and shape of the aperture S1. 

4. Monochromatic waves of velocity potential Wi(r)ikct are incident on the 
positive side of an infinite perforated screen occupying the plane z = 0 of such 
material that the total velocity potential vanishes on the screen. Show that the 
velocity potential T(r)eik" is given everywhere by 

1 ikR 'F(r) Ti(r) - Jf(x',y') 
dx' f 

where R (x - x')2 ; (y - y')2 + z2 and f (x,y) satisfies the integral 
equation 

fs2e-i" f (x', y') 
A 

dx' dy' = 2Trtli(x,y,0) 

when (x,y,0) is a point of S2, the screen itself, and 2 = V(x - x')2 -I- (y - y')2. 
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8. The Nonhomogeneous Wave Equation 

The second -order hyperbolic equation 

bp = f (r, t) 
1 a 2 

where L= 
at2 

-To 
C2 

(t) 

(2) 

which arises in electromagnetic theory and other branches of mathe- 
matical physics is called the nonhomogeneous wave equation. It is 
readily seen that if p1 is any solution of the nonhomogeneous equation 
(1) and v2 is any solution of the wave equation, then 

'_ /1 +V2 (3) 

is also a solution of equation (1). 
Suppose that a function v satisfies equation (1) in the finite region 

bounded by a closed surface S and that we wish to find the value of the 
function at a point P, with position vector r, which lies within S. If 
we denote by SZ the region bounded by S and the sphere C of center P 
and small radius £, we may write Green's theorem in the form 

WO - 456G2V) dT' (f0+f2)(Y_Z)ds' (4) 

where the normals n are in the directions shown in Fig. 23. In equation 
(4) we take v(r) to be a solution of equation (1), so that 

a2 

V` V(14/) -` C ót2 r,'t/ 
and assume that 

V 2,Ari) ____ 

o =lr 1r,IFlt t' + ir-r'lj 
c 1 

(s) 

(6) 

where t' is a constant and the function F is arbitrary. It follows that 
LO = 0, so that 

1 a20 v20 
C2 at2 (7) 

Substituting from equation (5) and (7) into equation (4), we find that 

1 a r l a0 av 

c2 at in yi) w - 0 --a-t-) dT' + in O dT' 

(Jc + D ̀ V án - (/) añl ds/ 

If we now integrate with respect to t from - oo to + oo and assume that 
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ôyf at vanish for t = oo; we find, on interchanging the order of the 
integrations, that 

L dT (fT.ír'tc) dt) `Jc + J1) (I `v) Vin) 
dt} dS' (8) 

It is readily shown that 

JOU_D(wá and 
dt) dS' = 477- f ov(r,t)F(t - t') dt -I- O(E) 

(9) 
and that 

.s t 
fop n dt } dS' 

dS' 
isIr-r'I 

{ 

W 8n 
and 

5s(fTco;odt) dS' 

fs 

F (t t' Ir dt) (10) 
c 

,1 Jc a i i ar,r> 
dS 

an Ir - c at (r - r'l 
X ar -r 

en 
F ( t -- t' -4- 

C 
dt) (11 dt) (11) 

So far the function F has been arbitrary. Suppose we now assume that 

1 
--n < x < n 

F(x) -- ri 

0 otherwise 

Then, using the mean value theorem of the integral calculus, we find that 

(lc") 

dt 1 f (r ' t Ir r I ei1) 

so that 

1 <o1 <1 

Jsz dT J f(r',t) 0 dt) fn./ (r', Ir 
+eli} 

I 

(12) 

Similarly, from (9) we have 

L J 
coo aip\ 

- `i) ôn - dt} dS' = 477-Ar, (13) 
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where -1 < 92 < 1, and frpm equations (10) and (11) we have 

alp (r', t - r - el 1 

L 1 fi a ac } as' - f as 
an s I an (14) 

and 

18(11 4dt}dS' 

= f el 
dS { (r', t - r - 1 1 

+ 4n) 
an Ir - el 

1 8 
(r', r r' - 841 ir - 

á I ir - el an 
el 

} (15) 

where -1 < 03, 04 < 1. Substituting from equations (12), (13), (14), 
and (15) into equation (8) and letting 7/ --- 0, we find, on replacing t' 
by t, that 

y(r,t) = 1 r [ f ] dT' 

4r s r - r') 
4Js l Ln1 Ir 1 el +LAVI aIr 1 r'l 

1 ray] 1 a Ir - í l )ds 

d- 

4 

1r - r'i an 
(16) 

where [f] denotes the value of the function f at time t -1r - r' 1 /c. 
In particular the solution of equation (1) satisfying the conditions 

a 

V at 
0 on S 

is 
1 f [A d7.' 

v(r,t) = - (17) 
477. n ir - r'l 

Because of its physical interpretation [f] is known as the retarded 
value of f, and the expression on the right -hand side of equation (17) 
is called a retarded potential. It will be observed that by a simple 
change of variable in the integral on the right equation (17) can be 
written in the form 

(r,t) - 4 
fn f(r -F - l 

(18) 

The equation (17) may be established by means. of the theory of 
Fourier transforms; for a proof by this method the reader is referred 
to Sec. 39.2 of Sneddon's "Fourier Transförms." 
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It should be emphasized here that the derivation of equation (17) 
which we have given is not rigorous. Among other things, we have 
supposed the arbitrary function F to be differentiable and have then 
taken a form for F which does not satisfy this condition. In fact the 
final F we have chosen is not a function at all in the ordinary sense of the 
word but a Dirac delta function.' We shall give a rigorous derivation 
of this formula in the next section. In the remainder of this section we 
shall merely indicate how the solution may be applied to the solution of 
specific problems. 

We saw in Prob. 1 of Sec. 2 of Chap. 3 that Maxwell's equations of 
the electromagnetic field possess solutions of the form 

H = curl A, .=-- - 1 P 
A - grad 

' 
E 

e at g (19) 

where the vector potential A and the scalar potential 96 satisfy the 
nonhomogeneous wave equations 

L A - 4ir 
(20) 

c 

L =47T p (21) 

respectively. In these equations i denotes the current density, and p is 
the space -charge density. It follows immediately from equation (17) 
that if A, 0, aA /at, and aç /3t vanish on the infinite sphere, then 

A 1 [i] dr' 
r - r' 

f [idT' 
ir-r'I 

where the integrals are taken throughout the whole of space. 

Example 7. Determine the vector potential and scalar potential at a point r due 
to a point charge q at the point ro moving with velocity y (v C c). 

We may suppose that a point charge q is distributed uniformly throughout the 
volume of a small sphere of radius E. We may therefore write 

i(r,t) -q (r)v(t), p(r,t) = q (r) (24) 
dr0 Ir - roi v 
dt' 7 t/ 

t 

and f (r) _ { 47rE 3 
if Ir - rol < e 

0 iflr -rot >e 
Substituting in equation (22), we find that 

v t- lr-r'I 

and (23) 

where 

A = 3g 
4cE3 is, 

c 

Ir - r'l 
d z' 

(25) 

1 I. N. Sneddon, "Fourier Transforms" (McGraw -Hill, New York, 1951), p. 32. 
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where S is the sphere Ir' -- rol < e. If we make the transformation' 

(À,p,v) = A = r' - ro 
in this integral, then since 

al axa at' 
ax' =1- at' ax' 

we find that for small values of v/c 

aQ ,v) - y (r - r') 
a(x',y',z') efr - el 

dr' dA d,u dv 
so that 

ccit. 
- - r'l clr - ro - AI - v (r - ro - A) 

and 

-1 +(x' -x)v etc. 
clr - el 

v t - lr-ro-1\ 
dA d,u dv 

A = 3q c 
47re3 js c lr - ro - Al -- v (r -- ro - A) 

S having equation IX1 - e in these coordi- 
nates. Making use of the mean -value 
theorem and letting e ---> 0, we find that 

A(r,t) = qv(t') (26) 
cR - R v(t') 

where we have written R = ro - r, t' = t 
-- R /c. 

Similarly we have, for the scalar potential, 

3qc O. du dv 

47re3 is clr -- ro - Al -- v (r - ro - A) 

which becomes in the limit e } 0 

4) 
_ cg 

cR - Rv(t') 

Figure 43 

(27) 

In the nonrelativistic range of velocities y C< c we have the approximate expressions 

A -qv(t'), -q 
cR -R 

The potentials given by equations (26) and (27) are known as the Lienard- Wichert 
potentials. 

(28) 

PROBLEMS 

1. A current is suddenly started at time t = 0 in an infinitely long straight 
conducting wire, and its magnitude at a subsequent time t is i(t). Show that 
at a point P distant r from the wire the vector potential A at time t is zero if 
r > et but that if r < ct, A is directed along the wire and has magnitude 

2 (tr/c i(T) dT 

c Jo V (t - T)2 - r2 /c2 

2. If f (r) is the limit as c -4- O of the function 
33 

IrI<s Mr) - 47rß 

0 Iri > e 
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show that 

v (r, t) = 47rr 

eik(r-ct) 

is a solution of the equation bp = f (r)e -ik °t. 

3. The D function of quantum electrodynamics satisfies ( L + k2)D = O 

and the initial conditions D(r,t) = 0, aplat = f (r) at t = 0, where f (r) is 
the function defined in the last problem. Show that 

D(r,t) _ --- 1 
á ,(r,t) 

47rcr at 

where the function F(r,t) is defined by the equations 

J pCk(e2t2 - r2)1.1 

F(r, t) = 0 

-.foLk(C2t2 - r2)1! 

Gt > r 

-r<Ct<r 
ct < -r 

9. Riesz's Integrals 

It was observed in the last section that the derivation of equation (17) 
of that section was not rigorous. In this section we shall give a brief 
account of a method due to Marcel Riesz which provides a rigorous 
proof of this formula and also of the corresponding two- dimensional 
problem. We shall also indicate how the method can be applied to the 
solution of Poisson's equation. 

In two short papers' read at the Oslo congress in 1936, Riesz intro- 
duced two generalizations of the Riemann- Liouville integral of fractional 
order. The first generalization associated with the operator 

is 

a2 

ate 
D2 

21-n 
(r',t')R4 inv(r, t) - I, -- SD 

dr' dt' 
7T r (z ) ( n 1 ) 

(1) 

(z) 

where dr' = dx' dy' dz', R2 = (t -- t')2 - 1r - r' 12, and D is the 
hypervolume bounded by the hypersurface R = O and the hyperplane 
t' = O. The time variable t is always reckoned to be positive. 

The fundamental properties of the integral (2) were stated without 
proof by Riesz, but brief indications of proofs of these results under 
conditions sufficiently general for their use in theoretical physics have 
been given by Copson.2 If the function iv is continuous the integral Pip 
is an analytic function of the complex variable n for R(n) > 2. The 

1 M. Riesz, Compt. rend. congr. intern. math., Oslo, 1936, vol. ii, pp. 45 and 62. 
2 E. T. Copson, Proc. Roy. Soc. Edinburgh, 59A, 260 (1943). 
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characteristic properties of the Riesz integral (2) are expressed by the 
equations 

imintp = I m}nip (3) 
LP+2V _ /ny (4) 

If ip and av¡ at vanish when t = 0, then 

,lnf2 Lip = In/p (5) 
lim Pip - v (6) 
n-÷0 

Comparing equations (3) and (4), it appears that, in some sense, the 
operator L is 12. 

In the particular case n = 2 it can be shown by simple changes of 
variable that 

I. f v(r + r', t - lei) ch., Pip(r,t) = -4-; 
VI (7) 

where the integration is taken over 0 < Ir'I < t. 
As an example of the use of these results we consider the problem of 

solving the nonhomogeneous wave equation 

Lv f(r,t) t > 0 (8) 

subject to the initial conditions /p = av¡ac =0 at t = 0, it being 
assumed that f and ôf/ ôt are continuous. It follows from equation 
(5) that 

fnv = Jn +2f 

If, now, we let n -> 0 and make use of equations (6) and (7), we find 
that 

1 r f (r + r', t - 
47r r' 

dT (9) 
4 

in agreement with equation (18) of the last section. It will be observed 
that this is precisely the solution we should have obtained if we had 
interpreted. L as 12 and proceeded symbolically. 

For the corresponding two -dimensional problem associated with the 
operator 

L1 

Riesz introduced the integral 

a2 
v7 (10) 

1 fiip(p,t ) (p',t')R3 
dx'dy 

'dt' (11) 
2/7110 1) v 

where p denotes the plane vector (x,y), 

R i= (t -- t')2 -1p -- Ñ' 
j 2 
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and D1 is the volume in the A'y't' space bounded by the plane t' = 0 and 
the cone 

1e'I =+(tt') 
This integral has the properties 

PUN = I z +njp (12) 

L1I1 +2 = Iii (13) 

lin I1 N = v (14) 
9í--i0 

from which it follows that a solution of the nonhomogeneous two - 
dimensional wave equation 

Figure 44 

L1p(p,t) = f (p,t) t > O (15) 
is 

V(P,t) 
1 f v(p',t') dx' dy' dz' 

(16) 
27, SD1 

The second Riesz integral, associated with the operator V2, is defined 
by the equation 

Jny(r) 
2n7r'r(2n) 

ip(e) 
dT' 

1 r'13_n 
(17) 

the integration being taken over the whole of space. If p is a continuous 
function such that Jnp exists in a strip O < R(n) < k of the complex 
n plane, then 

./mjnv = Jn+nv 
v2Jn-E-2,,p = Jnv 

1im Jnv V 
7t-* + 0 

(18) 

(19) 

(20) 
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Thus if we have to solve Poisson's equation 

V2p(r) = - 4rp(r) 
then operating on both sides of the equation by Jn +2 and letting n - o, 
we find that 

p(r) = 477-J2p (r) 

which from equation (10) becomes 

y(r) = ÌrY rTI (21) 

PROBLEMS 
1. Show that the solution of the equation 

(L + k2)V)(r, t) = .f (r, t) 
with 10 = a// at = 0 when t = 0, can be written symbolically in the form 

co 

Z p(r, t) _ ( -X ) rk2 r12 r-F2 {' 

r.0 J 
Deduce that 

(r, t) = 1 
'f (r', t Ir - r' I) dr' 

- 
k .f (r', t ) J1(kR) dr' dt' 

47r y Ir --rl 47r 1) R 

where R2 = (t - 02 - Ir -- r'12, V is the volume for which 0 < +r - r'I < t, 
and D is the hypervolume bounded by R= O and t' = O. 

2. Show that the solution of the equation 

(L1 - k2)Ip(p,t) _ .f (p,t) 

with v = aip/ ôt = 0 when t = 0, can be written symbolically in the form 
CO 

v(p,t) = k2r11r+2f(p,t) 
r-0 

Deduce that 

p(p,t) = 1 ,f (p',t') 
cosh(kR1) 

dx' dt' 
27r i R1 

where Ri = (t - t')2 - ip - p'I2 and DI is the volume in the x'y't' space 
bounded by the plane t' -0 and the cone RY- O. 

W. The Propagation of Sound Waves of Finite Amplitude 

The problems of wave propagation which we have been considering in 
this chapter have been concerned with linear partial differential 
equations. We shall conclude this chapter by considering an important 
nonlinear problem, that of describing the motion of a gas when a 
sound wave of finite amplitude is being propagated through it. We 
shall consider only the one -dimensional problem, since it lends itself 
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to a simple linearization procedure and provides a useful illustration 
of the use of the Riemann -Voltera method and of a complex variable 
method due to Copson. Even. this simple problem has important 
applications in aerodynamics and astrophysics. 

The one - dimensional motion of a gas obeying the adiabatic law 
p = kpY (1) 

is governed by the momentum equation 

au au 1 ôp 

at + u p ôx 
(2) 

8x 

and the continuity equation 

au 

+ u áx + p áx 0 (3) 

If we introduce the local velocity of sound c through the relations 

2 = dp = kypv -1 (4) 

we find that equation (2) becomes 

au au ac 

2t +uaxy -lax 0 (5) 

and that equation (3) becomes 

2 ac ac au 

y iát +uáx +ßáx -0 (6) 

If we let 

s - j-u (7) y -1 y -1 
i.e., if we put 

c = Yy - 1)(r + s), u = r -s (8) 

then the equations (5) and (6) reduce to the pair 

ar 
at +dar + ßs) âx ' at - («s + ßr) áx = O (9) 

aS 

where a = -¡(y + 1), (3 = My - 3). 
The quantities r and s defined by the pair of equations (7) are called 

Riemann invariants. If one of the Riemann invariants is a constant, 
then one equation of the pair (9) is an identity, and the other is a first- 
order equation of Lagrange type, by means of which the other invariant 
may be determined. The gas flow corresponding to the solution so 
obtained is called a simple wave. For instance, if r is constant, then 

.x + (ocs + #r)t = f (s) 
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where the function f is arbitrary, and if s is constant, 

x - (ar + - ßs) t = g(r) 
where g is arbitrary. 

Riemann showed that if r and s are taken as independent variables, 
the problem can be linearized. If x and t are expressed in terms of r 
and s, then it is readily shown that 

aY at ar - ax as at as - 
J. 

ax 

ax J as at as ax aY at aY 

where J' = (r,$)/ ô(x,t). If we substitute these expressions in equations 
(9), we find that these equations may be written in the form 

a a 
[x - (ocr + ßS)t] + ßt = O, ar [x + (ocs + ßY)] ßt --o 

from which it follows that these equations are satisfied if we express the 
original independent variables x and t in terms of r and s by the 
equations 

ao x- a St= x (as rt= -- (10) 
C 

-- ) -- C -- ) 
where the function 0 satisfies the equation 

a20 N fao ack 

ar as Y + s MA + Ty) 
ß 3 -y 

a + ß 2(y - l) 
2N + 3 

y 2N + 1 

If N is a positive integer, a solution of equation (11) can be obtained 
in closed form. Consider the expression 

aN --1 [(r) 
°i- 

- 
aYN -1 (r sr. 

where the function f (Y) is arbitrary. By direct differentiation it is 
readily shown that 
a2o1 N taol ac1 
ar as + r + s ar + as 

aN aN f(j.) aN -1 f(r) - arN (r S 
N +1 +- r s ar T (r s)N aYN -] (r + s N-} 1 

Now if we write 

in which 

so that 

N= 

0 (Il) 

(12) 

(13) 

f(r) f(r) r + s) 
(r + s)N (r + s)N +i 
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and make use of Leibnitz's theorem for the nth derivative of a product, 
we find that 

aN f(r) aN f(r) aN -1 .[(r) 

arN (r s N .- (r + s) arN (r 5)N +1 
+ N arN -1 (r 4. s N+ i 

from which it follows that chi is a solution of equation (11). A similar 
solution can be obtained by interchanging r and s. We therefore have 

aN -1 fir) 1.-N - g(s) 
ogr,$) = 

arN -1 (r 
N+ 

asN -1 (r s l 
(14) 

where f(r) and g(s) are arbitrary, as the solution of the linear equation 
(13) in the case in which N is a 

AS positive integer. In the case N 1 

we have the simple solution 

f (r) + g(s) 
r + s 

For general values of the con- 
stant y, N is not an integer, and 
so recourse has to be made to 
some other method of solution, 
such as the Riemann -Volterra 
method. It follows from the 

o analysis of Sec. 8 of Chap. 3 

that, in the notation of Fig. 45, 
the solution of equation (11) is 

C 
r 

rk P ` 94BWB 

Figure 45 

r f - ao 
' N ds' {-5,--.7 

A B Lw as' ` r' s' + 
Nw 

dr, r, s, 

where ¢, ¢ J ôr, and 8oi as are prescribed along a curve C in the rs plane 
and the Green's function tiv(r,s;r',$) is determined by the equations 

2 aw a 

w 

a w 

) 
N =0 0) 

ar as ar r + s a s r + s 

aw N 
(n) w when s = s' 

(iii) N w when r r' 

(iv) w = 1 when r = r' and s - s' 

It can be shown that 

w(r,s;r',$) 
(r' + s' 1' 

2F1(1 -- N, N; 1; ) (15) 
, Y s 

where = (r - r')(s - s') 

(r + s)(r' + s') 
(16) 
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An alternative method of solution has been devised by Copson,' using 
the theory of functions of a complex variable. It is easily proved that 
the function 

(r,$) - (z r)N(z + s)N 

is a solution of Riemann's equation (11). Furthermore if r and s are 
real and N is not an integer, this solution is an analytic function of the 
complex variable z, which is regular if the z plane is cut along the 
segment of the real axis which joins the points 0, r, -s. We may then 
consider the branch of this function which is real and positive when z 
is real and greater than 0, r, and -s. Therefore, if f (z) is an analytic 
function which is regular in a region containing the real axis, and if C 
is a simple closed contour surrounding the cut, then 

1 r z2Nf (z) dz 
(kr,$) -2?ri i c z - r z N s 

(17) 

is also a solution of the partial differential equation (11). Substituting 
this expression in equations (10), we find that 

) z- _ N z2N f (z) dz 
X (r + ßs)t (18) 2i C ( rT 1( Z + s) N 

N z2Nf (z) dz x+ (as +(3r)t -2ri c z -rNZ sr' s (19) 

N z2N f (z) dz 

(a' + fi)t == - 2Trl C (z _ rr + l (z + s) Z4 +1 

Now in a state of rest the velocity u is zero so that r = s. Hence if 
the solution (17) is to represent a motion of the gas in which the initial 
state is a state of rest, the function f (z) must be chosen to satisfy the 
integral equation 

z2AT 

from which it follòws that 

z2'T f (z) dz 

r (z2 - r2)'+' 0 . 

where f' is a simple closed contour surrounding the cut (R(z)I c r. It 
is readily shown that this implies that f(z) is an even function, and 
conversely. 

Suppose that when t = 0, x = x °(r) ; then equations (18) and (19) 
show that 

N z2` f (z) dz N z2lr f (z) dz 
xo(r)=27ri fr(z_ rT+lz ON Jr z-r.Tz+rlT--1 ) + ) (z ) ( ) 

from which we obtain by addition the symmetrical expression. 

N z2 =T 
+ i f (z) dz 

x°(r) 2?ri r 2 2 z - r N+ 1 ( ) 

1 E. T. Copson, Proc. Roy. Soc. London, 216A, 539 (1953). 

(20) 
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Equation (20) can be regarded as an integral equation for the deter- 
mination of f (z) when xa(r) is known. Copson has shown that the 
solution of this equation is 

z 
¡ 

Z2N, f(Z) = 2 %'(Z2 r2)N -1 x0(r) dr 
0 

(2Z) 

provided that xo(r), regarded as a function of the complex variable r, is 
an even function regular in a region containing the real axis. Equation 
(17) then gives the required function (gr ,$). 

PROBLEMS 

1. In the problem of the expansion of a gas cloud into a vacuum the initial con- 
ditions are 

r = s = r0(x) x < 0, ro(0) = 0 
Show that 

(;)= - 1)r0(x) 
t =o 

Tx 

Hence show that if ró(x) < 0, the cloud expands into the vacuum. 

2. If the face of the expanding cloud has advanced into the vacuum and is at 
x = x1(t), show that the conditions r = -s = r1(t) hold there. Deduce that 

N C z2Nf (z) dz 
xi - 2r1t - 21v +1 2iri ai (z - r1) 

N z2N f (z) dz 
where (« + ß)t = 

2.7ri 
a1 

(z -- r1)2Y + 2 

and C1 is a simple closed contour surrounding O and r1. 
Prove that .z1 = 2r1; i.e., the velocity with which the face of the cloud 

advances is equal to the particle velocity at the face. 

3. If N = ., prove that 
2 

xi _ 2r1t + 
1 d 

[r1 f (r1)], t = 
4 

d 
2 [ri f (ri)l 

dr1 

4. If initially r = s = ( -,ux)i, x < 0, prove that 

x = 1 [Nr2 - 2(N + 1)rs + Ns2], t = 1(2N + 1)(r -- s) 
2,u 2,u 

Deduce that the position x1 of the face of the cloud at time t is given by 

,at2 
x1 

2N + 1 

MISCELLANEOUS PROBLEMS 

1. Two very long uniform strings are connected together and stretched in a 
straight line with tension T; they carry a particle of mass in at their junction. 
A train of simple harmonic transverse waves of frequency v travels along one 
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of the strings and is partially reflected and partially transmitted at the junction. 
Find the amplitude of the transmitted wave, and prove that its phase lags 
behind that of the incident wave by an amount 

tan-1 2rrvmcc' 

T(c + c') 

where c and c' are the velocities of propagation in the two strings. 
Verify that the mean energy of the incident wave is equal to the sum of the 

mean energies of the reflected and transmitted waves. 

2. A uniform straight rod of mass m and length 1 is free to rotate in a horizontal 
plane about one end A, which is fixed on a smooth horizontal table. The 
other end of the rod is tied to one end of a heavy string. The other end of 
the string is tied to a fixed point B on the table so that AB = 2l. Initially 
the rod and the string are in a straight line, in which position the tension in 
the string is F, and its density is p per unit length. The system is set in motion 
so that it performs small transverse vibrations in a horizontal plane. 

Show that the periodic times of normal modes of vibration are given by 
2dl jc, where satisfies the equation 

tan = 3p1 

m 

3. A uniform string of line density p and length I has one end fixed and the other 
attached to a bead of mass m free to move on a rough rigid wire perpendicular 
to the string. The rough wire exerts a frictional force on the bead equal to 
,u times its velocity. If x = O is the fixed end of the string, and if the effect 
of gravity can be neglected, show that the displacement of any point of the 
string in transverse vibration can be expressed as the real part of ei(Dt + e)y(x), 
where p satisfies the equation 

171p - i,u = cp cot pl 
C 

If ,u is small, show that the approximate value of p is 

u 
n + 

m + pl cosec2 nl f c 

where. mn = cp cot nl /c. 

4. A cylindrical tube of small radius, open at both ends, is divided into two parts 
of lengths lx, l2 by a piston of small thickness a and density a attached to a 
spring such that in vacuo the period of vibration is 24m. Show that when the 
tube is in air of density p, the period of vibration becomes 2i /n, where 

a(m2 - n2)6 = pen tan tan -c 
c 

and c denotes the speed of sound. 

5. Show that the only solution of the one -dimensional wave equation which is 
homogeneous of degree zero in x and t is of the form 

A log 
x - et 

B 
x + ct 

where A and B are arbitrary constants. 
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6. Find a solution of a2y/ ate c2( a2 y/ ax2) such that : 

(i) y involves x trigonometrically; 
(ii) y = 0 when x = 0 or 7r, for all values of t ; 

(iii) ayl at = 0 when t = 0, for all values of x; 

(iv) y = sin x from x = O to x = 77121 when t = O. y = 0 from x =7r/2tox = ir 

7. Two equal and opposite impulses of magnitude I are applied normally to the 
points of trisection of a string of density p per unit length stretched to a tension 
T between two points at a distance l apart. Derive an expression for the 
displacement of the string at any subsequent instant, and show that the mid- 
point of the string remains at rest. 

8. Find a solution of the equation 
I a2 y a2 y 

C2 at2 - ax2 

such that V = 0 when x = 0 or x = a for all values of t and that a vl at = 0 
when t = 0 and V = E when t = 0 for all values of x between 0 and a. The 
quantities a, c, and E are constants. 

9. Find a solution of 
a2u a2u 

= xt 
Óx2 at2 

satisfying the conditions u - au/ at = 0 when t = O. 

10. One end of a string (x = 0) is fixed, and the point x -a is made to oscillate 
so that at time t its displacement is Y(t). Prove that the displacement of the 
point x at time t is 

f (ct - x) -f (ct + x) 

where f is a function which satisfies the relation 

f (z 
+ 2a) = f (z) -Y z + a c 

for all values of z. 
A string is constrained to move in two different ways; in case 1 the point 

x = a is given a displacement Y(t), and in case 2 the point y = b is given 
an identical displacement. It is found that the shape of the string in case 1 

is identical with that in case 2 at all times; show that the displacement at 
x =bin case 1 is equal to that of x = a in case 2. 

11. Show that the equation governing small transverse motions of a nonuniform 
string is of the form 

C2 = a2y a2y 
ax2 ate 

where c is a function of x. 
Show that a solution of this is y = f (x, t) + F(x,t), where 

of 1 a i ac(f 
aF +iaF + - ax cat 2c ax ax cat 

and interpret this, in a region in which ac/ ax is small, as the sum of two 
progressive waves whose form is slowly altering. 

An infinite string is such that c is constant if x < 0 or x > a; between 
x = 0 and x = = a, (a/c) acl ax is everywhere small. A wave y = fo(t - x/c) 
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is propagated along the string from x = - oo . Show that a first approxima- 
tion to the form of the string is given by, f (x,t) = fo(t - 0), F(x,t) = 0, where 

J:c_1 o = dx, and that a second approximation is given by 

= fo(t ---- 0) {1 + 2 [log c(x) - log c(0)I }, F = 5b(t + 0, x) 

where 0(u,x) is given by 

1 
a c' 

0(u)x) = 
x 

fo(u - 20) dx 

12. A string of nonuniform density p(x) is fixed at two points x = 0 and x = a, 
the tension of the string being c2p0. If the density p(x) varies only slightly 
from the value po, show that, to the first order of small quantities, the normal 
periods of vibration are 

2 fa 
[Po 

j' c Po 
T P(x) ) sin2 

rx 
dx 

a 

and the normal functions (apart from a normalizing factor) are 

rirx 2 r2 sirx 
sin 

a 
-} 2aS 

s2 Y2 
sin 

1 sor 

where r, s are positive integers and 
a 

aS = p(x) 1 sin 
six 

sin 
six 

dx 
. o Po a a 

13. A uniform string of mass M is stretched between two fixed points at distance 
a apart, and carries a small mass sM at a distance b from one end. Show 
that, to the first order in s, the periods of the normal modes are 

2a Yob 
1 + E s1n2 

YC a 

and the normal functions are proportional to 

r 
sin 

x rib r2 sirb 
(s7Tx 2E sin 2 sin sin 

a a ,S r s - Y a a 

Deduce that if the particle is attached to the mid -point of the string, the 
period of the rth normal mode is unaltered if r is even. 

14. A uniform string of line density p is stretched at tension pct between two 
fixed points at distance a apart. If the mid -point is constrained to vibrate 
transversely so that its displacement is e cos nt, where e is small compared with 
a and na /c is not a multiple of 27r, find the displacement at any time of all 
points of the string in the resulting forced vibration. 

Also show that the mean kinetic energy of the string is 

na na (na\ 
-'sncE2 - sin C cosec2 

2C 

15. A string of length 1, with its extremities fixed, is initially at rest and in the form 
of the curve y = A sin mrx /l. At t = 0 it begins to vibrate in a resisting 
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medium. Given that the differential equation governing damped vibrations is 

C2 a2y = a2y + 2k a 
axe at at 

show that, after time t, 

y = Ae-kt { cos m't + mk 
mix 

sin m't sin 
l 

where 

m = 
m27r2c2 

k2 12 

16. A string of length 1 is vibrating in a resisting medium. The end x = 0 
is fixed, while the end x = l is made to move so that its displace- 
ment is A cos (irct /l). With the notation of the last problem prove that if 
kl /c is small, the forced oscillation of the string is described by the equation 

y = A cosech 
kl 

(-c 

nx kx irct irx kx irct 
X sin (-) cosh sin (T) -cos sink cos 

l 

17. Flexural vibrations of a uniform rod are governed by the equation 

any +1a2y =o ax4 k2 at2 

where k is a constant. Show that if y = XT, where X is a function of x alone 
and T a function of t alone, then T may take the form A sin (akt + a), where 
A, 2, a are constants. 

Show that if y = ay/ ax = 0 when x = 0, then 

X - B(cospx - cosh px) + C(sinpx - sinhpx) 

where p2 = A and B, C are constants, and that if also y = ay/ ax = 0 when 
x = a, then 

B(sinpa + sinh pa) = C(cos pa - cosh pa) 

and cos pa cosh pa = 1. 

By means of a rough sketch, show that this last equation gives an infinite 
number of values of A. 

18. If H(t) denotes Heaviside's unit function 

H(t) 0 t < 0 
1 t >0 

and if y(0) is the Laplace transform of a function y(t), show that e-a$9() is the 
Laplace transform of the function At - a)H(t - a). 

In the equation defining the current i and the voltage E in a cable [equations 
(3) and (4) of Sec. 2 of Chap. 3] R/L = GIG = k, where k is a constant. 
Both E and i are zero at time t = 0, and E = E0(t) for x = 0, t > O. If V 
remains finite as x tends to infinity, show that 

E(x,t) = 
E0 t- x C-kxl e t> x 

c C 

x 
t < - 

C 
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19. A membrane is in the form of a right -angle isosceles triangle of area A with 
fixed boundary. If T is the (uniform) tension and a is the density per unit 
area, show that the frequency of the fundamental mode of oscillation is 
ir(5T /2aA)i. What is the frequency of the first harmonic ? 

20. A rectangular membrane of sides 2a, 2b is subjected to a small fluctuating 
force P sin wt acting at its center. If P and w are constants and transients are 
ignored, show that if the axes are chosen symmetrically, the transverse dis- 
placement is given by 

co cos 
ZY + I nx cos 

25 + 1 

ITy P sin wt 2a 2b 

c2pab 
r= o s= 0 

f(2r + 1 2 (2s -+ 1 
2 w2 

2a + 2b c2 

21. A very large membrane, which in its equilibrium position lies in the plane 
z =. 0, is drawn into the shape 

E 

V1 + r2 /a2 

where e is small, and then released from rest at the instant t = O. Show that 
at any subsequent instant the transverse displacement is 

1 -}- r2 - c2t2 
e a2 1 +, 

v r2 - c2t2 2 ct 
2 2 

ct 
2 

41)1. 
1 

a2 
+ -}- 

a2 + a 

22. A uniform thin elastic membrane is subjected to a normal external force per 
unit area p(x,y,t). Prove that the equation governing transverse vibrations is 

1 a2z 

at2 =. v i c2 
z 

p(x,y, t) 
T 

A circular membrane of radius a is deformed by the application of a uniform 
pressure P0p(t) to a concentric circle of radius b ( < a). If the membrane is set 
in motion from rest in its equilibrium position at time t = 0, prove that at 
any subsequent time the transverse displacement of the membrane is 

2Pab Jl(az). Io(r Z) sin [ 
caa2 g [Jl(a)]2 

cZ(t - u)] du 
2 

23. If f(z) is a twice -differentiable function of the variable z, prove that the 
functions f (x ± ky - vt) are solutions of the two -dimensional wave equation 
provided that k2 = v2 /c2 - 1. 

Deduce that 
p(x,y,t) = s x(«) f (x d y sinh a - et cosh oc) da 

where x is arbitrary, is also a solution. 

24. Show that the equations of motion of a two -dimensional elastic medium in 
the absence of body forces may be reduced by the substitutions 

u = ao+a, 
ax ay 

to two wave equations. 

_a av. 
v ^ ay-ax 
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Making use of the result of the last problem, determine the components of 
stress in a semi -infinite solid y > O when a moving pulse of pressure of 
magnitude 

2 [F "(x -- vt) -1- F" *(x - vt)] 

is applied to the boundary y = O. (F* denotes the complex conjugate of the 
complex function F, and F" denotes the second derivative.) 

25. A solid sphere performs small radial pulsations in air of density p so that its 
radius at time t is R + a sin pt. Show that the velocity potential of the sound 
waves produced is 

apR2 cos { p {t - (r - R) I c] - y} 

Vi +( RIc) 2 r p 
where c is the velocity of sound in air and tan y = pR /c, and that the approxi- 
mate average rate at which the sphere loses energy to the air is 

27rac3a2(pR /c)4 

i + (pR /c)2 

26. The radius of a sphere at time t is a(1 + s cos crut), where s is small. Show that 
to the first order in e the pressure amplitude of the sound waves is 

p0 (O2Ca3E 

r Vc2 + w2a2 

at a distance r from the center of the sphere. 

27: Air is contained inside a spherical shell of radius a, and there is a point source 
of sound, of strength A cos at, at the center. The acute angle a is defined by 
the equation tan a = ka, where k = a /c. Show that the velocity potential 
inside the sphere is 

A sin (ka -a - kr) 
cos at 

477-r sin (ka - a) 

provided that ka -a is not an integral multiple of 7r. What is the significance 
of this condition ? 

28. Prove that a particular solution of the wave equation is 

C cos O á {-1 f (nt _ kr) 
ar r 

where n is a real constant and k = nlc. 
A sound wave is produced by the small vibrations of a rigid sphere of 

radius a which is moving so that its center moves along the line O = 0 with 
velocity U cos (nt). Determine the velocity potential, and show that at a great 
distance from the sphere the radial velocity of the fluid is approximately 

k2a3 U 
cos O cos (nt -- kr + ka -- y6) 

r Ar4 + k4a4 

where tan 0 = 2ka /(2 - k2a2). 

29. A uniform elastic sphere of radius a and density p is vibrating radially under 
no external forces. The radial displacement u satisfies the equation 

(2 + Zru) 
ó2u 

+ 
2 au -2u = p a2a 

are r ór Y2 áÍ2 
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where A and ,u are elastic constants, and the radial component of stress is 

O2. = au 
2A 

u 

ar r 

Prove that the periods of the normal modes of vibration are 27ra /c1, where 
ci = (, + 2u) /p and the 's are the positive roots of the transcendental equation 

4 cot = 4 - ß2'2 
in which ß2 = (Ay + 2,u) /,u. 

30. Monochromatic sound waves of velocity potential 'i(r)eiket are incident on 
the positive side of a screen in the xy plane which has a small aperture Si. 
at the origin. The boundary condition is the vanishing of the total wave 
function on the screen. The dimensions of the aperture are small compared 
with the wavelength 27r/k of the incident wave. Show that at a great distance 
r from the aperture on the negative side of the screen the velocity potential is 
given approximately by 

v(r,t) = A 

where A = 
1 

277 

a e-ik(r-co) 

az r 

i:1 
f (x',y') dx' dy' 

and the function, f (x,y) is such that the function 

.f (x',y) dx' dy' 

'o 27r f V x - x')2 + y')2 

vanishes on the boundary of Si_ and satisfies on Si the equation 

V21 ?0 C = O 

where C is the value of aWi/ az at the origin. 
If Si is a circular disk of radius a and center 0, verify that 

,f (x.Y) - 2C 
y 
/ a2 - x2 

y2 

and that 
2ikCa3z ik(r -ct) 

3rrr2 

31. Monochromatic sound waves of velocity potential ri(x, y)eike t are incident o 
the positive side of an infinite perfectly reflecting screen lying in the plan 
y = 0 which contains apertures bounded by straight lines parallel to the 
axis so that the apertures cut the plane z = 0 in a set of straight lines .Lx lying 
on the x axis. Show that if y > 0, the total velocity potential is given by 

'F(x,y) = °i(x,y) + T (x, -y) + 2 i ff(x')H(k) dx' 
Li 

where p = V'(x _ x')2 + y2 and f (x) satisfies the integral equation 

ff(x1)H2)(kIx1 - dx = 2i'F. (x,0) 
L1 

where the point (x,0,0) belongs to L1. 
Deduce the solution for y < O. 
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32. If,, in the last problem, the material of the screen instead of being perfectly 
reflecting had been such that the total velocity potential vanished on it, show 
that the velocity potential is given everywhere by 

'T`(x,y) _'Z(x,y) + ii f 5f(x')H?)(k) dx' 
L2 

where L2 is the set of lines on the x axis in which the screen cuts the plane 
z = 0, p = `(x _ x')2 + y2, and f (x) satisfies the integral equation 

f (x')H(02) (kIx' - xi) dx' = 2iT2(x,0) 
r,2 

where the point (x,0) belongs to L2. 

33. Show that if E and H satisfy Maxwell's equations 

div E = 0, 

- ,u aH 
curlE - -- - - 

C at 

div H = 0 

curl H - aE 
cat 

for a medium of dielectric constant e and permeability 1u, then 

a2 2 2 a u at 2 (E,H) =0 
where y2 = Of -\/ -6/2. 

Deduce that 

E = e1ezRi + e2eaR2 H= E 
{(n x e1)eiRl - (n x e2)eiR2) 

itz 

is a solution with R1 = p[t - (n r)¡v], R2 = p[t + (n OM, and the vectors 
el, e2, n constant vectors. Prove that 

H = hieiRi + h,eiR2, E = - " {(n x h1)eiRi - (n x h2)eiR2} 
E 

is also a solution of Maxwell's equations. 

34. The electric force in a plane electromagnetic wave in vacuo has the components 

.E1 0 . _ x sin a -I- z cos 
x= , y= a cos p t E =O 

Find the magnetic force. 
The wave is incident on the plane face of a uniform dielectric, in which the 

dielectric constant is E and the magnetic permeability is unity, occupying the 
region z > O. Find the amplitude of the reflected wave.1 

35. The magnetic force in a plane electromagnetic wave in vacuo has the 
components 

y sin a + z cos a 
Ilx =a cos p t - 

C 

Find the electric force. 

) H _ z = 0 

1 The boundary conditions are that the normal components of EE and i H are 
continuous and that the tangential components of E and H are continuous. 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


THE WAVE EQUATION 271 

The wave is incident on the plane face of a uniform dielectric, in which the 
dielectric constant is e and the magnetic permeability is unity, occupying the 
region z > O. Find the amplitude of the reflected wave, and show in par- 
ticular that it vanishes if the angle of incidence a is tan-1 et. 

36. Prove that a possible electromagnetic field in vacuo is given by 

E = - 1 curl 6k H = grad (k grad 8 - Ok 
( ) g ( g } c2 

where k is a constant vector and O is a scalar function of position and time 
which satisfies the wave equation V26 O/c2. 

Taking k to be the unit vector in the direction of the z axis of a rectangular 
coordinate system and O to be of the form O = f(x, y, z - at), where 'a is a 
positive constant, prove that the rate of transmission of energy across an 
area S which lies in a plane z = constant can be expressed in the form 

a a2 f 2 a2 f 
2 4 s ax az + ay az 

dx dy 

Show also that E H = 0 and E k = 0 whatever the value of a but that 
H k = 0 only if a = c. 

37. Establish the existence of an electromagnetic field of the form 

au au 
Ex= 

a y. 
, EV = - 

ax 
, Ez =O 

Hx - O, Hi, =O, Hz =tau 
c at 

where u = exp (± iky - ikct) f (r ± y), (r2 = x2 + y2) 

and determine the functions f (r ± y). 

38. Show that if H is a vector function of space and time coordinates which at a 
fixed position in space is proportional to exp (rkct) (k constant) and which 
satisfies the equation 

0211 + k211 = 0 

then the electric and magnetic fields 

E = - ik curl H and H = curl curl H 

satisfy Maxwell's equations for free space. 
By considering the case in which the direction of H is uniform and its 

magnitude is spherically symmetrical, show that a nonzero simple harmonic 
electromagnetic field of period 2ir/(ck) can exist in a sphere of radius a with 
perfectly conducting walls if ka satisfies the equation 

tan ka = ka 

39. Show that in cylindrical coordinates p, 6, z Maxwell's equations for empty 
space have a solution 

Hp =0, 

ay 
E = - P ap az 

, 

i a2f 
He - ca at, Hz=o 

P 

1 a 
(paf) 

a 
EB =p P 

and find the differential equation satisfied by f. 
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40. Show that there is a solution of Maxwell's equations for electromagnetic 
waves in vacuo in which the components of the magnetic intensity are 

a2s 
.Hx at, 

als 
Hy _ - if, = 0 

where rS -- = f (ct - r), r is the distance from the origin, c the speed of light, 
and f an arbitrary function. 

Obtain the corresponding formulas for the components of the electric 
intensity, and prove that the lines of electric force are the meridian curves of 
the surfaces 

where 

as 
p Ti--). 

p 
= const. 

p = (x2 + y2) 4s 

41. Prove that Maxwell's equations 
l aH 

curl E + ë at = 0, div [,u2(r)E] = 0 

,u2(r) aE 
curl H -- at = 0, div H = 0 

for an inhomogeneous spherically symmetrical medium of index of refraction 
¡.c(r) have solutions 

1 

(a) E = -2 e ikct curl curl (ruf ), H = - iker-2k°t curl (ruf ) 

where f satisfies the scalar wave equation 

v2f + k2,u2 - 

(b) 

P drz 
()}f=o 

2 

E = 
1k 

curl (r,u2 ), H = curl 
curl (r,u g) 

c 
la tt 2 

where g satisfies the scalar wave equation 

V 2g + k2,u2g . = 0 

42. A scalar wave function ip satisfies the wave equation 

I-12 a2V 
°2lp -c2 at2 

where ,u, the refractive index, is a function of x, y, z. We define a wave front 
as any continuously moving surface that contains discontinuities of p and 
assume the existence of one wave front only. Taking "p1, v2 to be the wave 
function on either side of the wave front and writing 

v* = VI - V2, P = 7.H(96) + p 2H( -0) 
where H(ç) denotes Heaviside's unit function defined to be 1 for I > 0 and 
0 for < 0, prove Bremmer's relations 

(a) !grad SI = +,u 

(b) p *V2S + 2(rad S grad l *) + 3-'12 

* 

= 0 g at 
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Denoting .differentiating along the normals to the surfaces S = constant 
by a/ an, show that the variation of any function f in the ray directioñ is given by 

df = 1 (grad .f grad S) 
do ,u 

Hence prove that (b) can be written in the form 

2,,u -f-1 (Jog e *) = -V2S 
do 

and that the change of v* along a trajectory is related to that of ,u and that of 
the cross section o of a small beam according to the relation 

,uaw *2 = const. 

43. The electric and magnetic vectors E and H satisfy Maxwell's equations 

curl H -1 á 
(EE) - 4a _ 1 aF 

cat c c at 

curl E + -1 
á 

(AH) = 0 
c at 

div (EE) + 4 iT E = - á 
div F {T-t 

at 

div (,u11) = 0 

where (1/47)( aF/ at) represents the enforced current density and a, e, and ,u 

may be any functions of x, y, z, and t. If V* = V1 - V2 represents the jump 
of V on the wave fronts 0 = 0, show that 

H* x grad = - 
c 

{(sE) * -I- F *} at 
at 

E* x grad 95 = 1 
c 

C,uH) * 
a 

at 

I(E 
* 

4/T(6E) *- (-a77))*. grad 5b= 0 

GM)* x grad 0 = 0 
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Chapter 6 

THE DIFFUSION EQUATION 

In this last chapter we shall consider the typical parabolic equation 

k0 ao 

axe at 

and its generalizations to two and three dimensions. Because of its 
occurrence in the analysis of diffusion phenomena we shall refer to this 
equation as the one -dimensional diffusion equation and to its generaliza- 
tion 

kv2o = ao 

at 

(where k is a constant) as the diffusion equation. 
We shall illustrate the theory of these equations mainly by reference 

to the theory of the conduction of heat in solids, but we shall begin by 
outlining other circumstances in which the solution of such equations is 
of importance. 

I. The Occurrence of the Diffusion Equation in Physics 

We have already seen in Sec. 2 of Chap. 3 how the one -dimensional 
wave equation arises in the theory of the transmission of electric 
signals along a cable. We shall now indicate further instances of the 
occurrence of diffusion equations in theoretical physics. 

(a) The Conduction of Heat in Solids. If we denote by O the tern - 
perature at a point in a homogeneous isotropic solid, then it is readily 
shown that the rate of flow of heat per unit area across any plane is 

q = -k an 

where k is the thermal conductivity of the solid and the operator ô/ 8n 
denotes differentiation along the normal. Considering the flow of 
heat through a small element of volume, we can show that the variation 
of O is governed by the equation 

PC á8 = div (k grad B) + H(r,O,t) (2) 

ao 
CO 
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where p is the density and c the specific heat of the solid, and H(r,8,t) dT 
is the amount of heat generated per unit time in the element d-r situated 
at the point with position vector r. 

The heat function 1-10,0,t) may arise because the solid is undergoing 
radioactive decay or is absorbing radiation. A term of this kind 
exists also when there is generation or absorption of heat in the solid 
as a result of a chemical reaction, e.g., the hydration of cement. 

If the conductivity k is a constant throughout the body, and if we write 

x= k 
1 r6t 

pc Q(>>) 
H(r,O,t) 

pc 

equation (2) reduces to the form 

ao 

át = Kv2o + Q(r,O,t) (3) 

The fundamental problem of the mathematical theory of the con- 
duction of heat is the solution of equation (2) when it is known that the 
boundary surfaces of the solid are treated in a prescribed manner. 
The boundary conditions are usually of three main types :1 

(i) The temperature is prescribed all over the boundary; i.e., the 
temperature 6(r,t) is a prescribed function of t for every point r 
of the bounding surface; 

(ii) The flux of heat across the boundary is prescribed ; i.e., ae¡ an is 
prescribed; 

(iii) There is radiation from the surface into a medium of fixed 
temperature 80; i.e., 

ao 
, h(6 00 = a (4) 

an 

where h is a constant. 
If we introduce the differential operator 

co 
a a a 

°+ lax+ 2a + 3 .Y 

where Co, C1, C2, C3 are functions of x, y, z only, we see that the 
general boundary condition 

20(r, t) _ G(r,t) r c S (6) 

embraces all three cases. 
(b) Diffusion in Isotropic Substances. Another example of the occur- 

rence of the diffusion equation arises in the analysis of the process of 
diffusion in physical chemistry. This is a process leading to the 

I For the discussion of more complicated types of boundary conditions see H. S. 
Carslaw and J. C. Jaeger, "Conduction of Heat in Solids" (Oxford, New York, 
1947). 

À (s) 
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equalization of concentrations within a single phase, and it is governed 
by laws connecting the ' rate of flow of the diffusing substance with the 
concentration gradient causing the flow.' If c is the concentration of 
the diffusion substance, then the diffusion current vector J is given by 
Fink's first law of diffusion in the form 

J = -D grad c (7) 

where D is the coefficient of diffusion for the substance under con- 
sideration. The equation of continuity for the diffusing substance 
takes the form 

ac 

á + div J = o 
t (8) 

Substituting from equation (7) into equation (8), we find that the 
variation of the concentration is governed by the equation 

a 
-a- 

c = div (D grad c) (9) 
c 

In the most general case the coefficient of diffusion D will depend on 
the concentration and the coordinates of the point in question. If, 
however, D does happen to be a constant, then equation (9) reduces to 
the form 

ac 
D02c 

at 
(10) 

(c) The Slowing Down of Neutrons in Matter. Under certain 
circumstances2 the one -dimensional transport equations governing the 
slowing down of neutrons in matter can be reduced to the form 

ax 
a2x -Tz0 

ae 
= 

aZ2 
- ( ) 

where 8 is the "symbolic age" and x(z,o) is the number of neutrons per 
unit time which reach the age 8; i.e., x is the slowing -down density. 
The function T is related to S(z,u), the number of neutrons being 
produced per unit time and per unit volume, by the relation 

T(z,0) = 477S (z u 
du 

12 

where u- log (E0/E) is a dimensionless parameter expressing the energy 
E of the neutron in terms of a standard energy E0. 

(d) The Diffusion of Vorticity. In the case of a viscous fluid of 

1 For a thorough discussion of particular cases the reader is referred to W. Jost, 
"Diffusion in Solids, Liquids, Gases" (Academic Press, New York, 1952). 

2 See L N. Sneddon, "Fourier Transforms" (McGraw -Hill, New York, 1951), 
p. 212. 
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density p and coefficient of viscosity ,u which is started into motion from 
rest the vorticity , which is related to the velocity q in the fluid by the 
equation 

r = curl q (13) 

is governed by the diffusion equation 

g 2 =vV(14) 
t 

where v = ,u /p is the kinematic viscosity. 
(e) Conducting Media. Maxwell's equations for the electromagnetic 

field in a medium of conductivity a, permeability ,u, and dielectric 
constant K may be written in the form 

div (KE) =0 
div (,uH) = 0 

curl H - 47raE 1 á 
(KE) 

curl E _ --- 
1 a 

If we make use of the identity 

curl curl - grad div - V2 

then it follows from these equations that when i, ,u, K are constant 
throughout the medium 

D 2E 
Ky â2E 4rQ,u aE 
e2 cat + e2 at 

If we are dealing with problems concerning the . propagation of long 
waves in a good conductor, the first term on the right -hand side of this 
equation may be neglected in comparison with the second. We 
therefore find that the components of the vector E satisfy the equation 

1 c 

v at 
where v = c2 /(4i7ucï). 

PROBLEMS 

1. Suppose that the diffusion is linear with boundary conditions c = c1 at 
x = 0, c = c2 at x = ! and that the diffusion coefficient D is given by a 
formula of the type D = D0[1 + f (c)], where Da is a constant. Show that 
if the concentration distribution for the steady state has been measured, the 
function f (c) can be determined by means of the relation 

/[c + F(c) - ci. -- F(c1)] = x[c2 + F(c2) - c1 - F(c1)l 

where 
e 

F(c) = du f:f(u) 
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


278 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

Show further that if s is the quantity of solute passing per unit area during 
time t, then 

D t[cl + Rcx) - c2 - RC2)] 

sl 

2. Show that diffusion in a linear infinite system in which the diffusion coefficient 
D depends on the concentration c is governed by the equation 

ac a2c dD ac 2 

at 
- D +. 

dc ax 

If initially c = co for x < O and c = 0 for x > 0, and if c is measured as a 
function of x and t, show that the variation of D with c may be determined by 
means of the equation 

where = xt -`. 
3. Show that the equation 

ae 

at 
Kv2e v(00 + O(r,t) 

may be reduced to the form 

au 

at 
= Kv2u + x(r,t) 

= _ 1 ca 
dc 

2 dc 

fc 
a 

by the substitutions 

t t 

u = O exp -- v(t) dt' , x(r,t) = 0(r ,t) exp - v(t) dt' 
0 0 

2. The Resolution of Boundary Value Problems for the Diffusion 
Eq uation 

We shall now describe a method due to Bartels and Churchill' for 
the resolution of complicated boundary problems for the generalized 
diffusion equation. 

If we assume that the function H(r,O,t) occurring in equation (2) 
of the last section is a linear function of the temperature O of the form 

H(r,B,t) = pc[Co(r)B + F(r,t)] (I) 

where Co is a function of r only, introducing the linear differential 
operator 

A = 1 div (k grad) + - C (2) { g ) oCr ) 

and denoting by r the position vector of a point in the ' solid and by r' 
that of a point on its boundary, it follows from equations (2) and (6) 

i R. C. F. Bartels and R. V. Churchill, Bull. Am. Math. Soc., 48, 276 (1942). 
See also Sneddon, op. cit., pp. 162 -166. 
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of the last section that the boundary value problem for the temperature 
8(r,t) in the solid can be written in the form 

at 
8(r,t) = AO -}- F(r,t) t > 0 

MO' ,t) G(r' ,t) t > O (A) 

8(r,0) = J(r) 

The third equation of this set merely expresses the fact that at the instant 
t = 0 the distribution of temperature throughout the solid is prescribed. 

We shall now show that the complicated boundary value problem (A) 
may be resolved into simpler problems. 

Suppose that the function «r,t,t') depending on the fixed parameter 
t' is a solution of the boundary value problem (A) in the case in which 
the source function F and the surface temperature G are functions of 
the space variables and of the parameter t' but not of the time t, so that 
«r,t,t') satisfies the equations 

at 
sgr,t,t') =Aßß + F(r,t') 

46(r,t,e) G(r' ,t') (B) 

00,0,0 Ar) 

Then it is readily shown that once the solution of the boundary value 
problem (B) is known, the solution of the boundary value (A) can be 
derived by a simple calculation. The method is contained in: 

Theorem 1: Duhamel's Theorem. The solution B (r,t) of the boundary 
value problem (A) with time- dependent source and surface conditions is 
given in terms of the solution «r,t,t') of the boundary value problem (B) 
with constant source and surface conditions by the formula 

c 

6(r,t) = 0(r, t - t', t') dt' 

We shall give in outline a direct proof of Duhamel's theorem. For 
an ingenious proof making use of the theory of Laplace transforms the 
reader is referred to the paper by Bartels and Churchill mentioned 
above. 

If the boundary condition is 

o t>a 
2.0(r' ,t) 

G(r',e) t <0 
it follows that the corresponding solution of (A) is 

0 = 0(r,t,e) t > 0 
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Similarly if the boundary condition is 

0 t <t' 
2.0(r' ,t) 

' G(r',t') t > t' 
the corresponding temperature is 

e =0(r,t -t',t') t >t' 
Further if 

ae(r ,r) 
f0 t < t' -I- dt' 

[G(rt') t > t' + dt' 

then o = 0(r', t - t' - dt', t') t > t' + dt' 
and it follows that if the boundary condition is 

IO t <t' 
/18(r',t) = G(r;t') t' < t < t' + dt' 

Lo t >t' +dt' 
the solution of the boundary value problem is 

8= 0(r,t- t',t')-(r,t- t'- dt',t') 

-- dt, a(r, t - t', t') 
at 

By breaking up the interval t = O to t = t into small intervals in this 
way and integrating the results obtained we find that the solution of the 
boundary value problem (A) is 

c 

8 r t 
) 

ô 
r t t', t') dt' (' at off(, ) (3) 

This theorem is of great value in the solution of boundary value 
problems in the theory of the conduction of heat, since it is often easier 
to derive the solution in the case of constant source and boundary 
conditions. 

It can further be shown that the solution of the boundary value 
problem (B) can bé written in the form 

t 

«r,t,t') = 01(r, t') + 0 2(r, t, t') + 
o 

96 3(r,T, t') dT (4) 

where the functions O1, 02, and 963 are solutions of the boundary value 
problems 

Gt 

(aat 

AOz(r,t') = 0, 41(r',t') = G(r',t') (B1) 

A 0 2(r, t, t') = 0, 4 2(r' 1 t, t') = 0, 02(r,0,e) _ J(r) - 01(r, t') 

(B2) 

A 03(r,t,t') - 0, 43(r',t,t') - 0, 03(r,0,t') = F(r,t') 

(B3) 
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From Duhamel's theorem it follows that the solution of the boundary 
value problem is 

0(r,t) = 961(r ,t) t - t', t') dt' fa(r, t -- t' t' dt' (5) 

The solutions of the three simpler boundary value problems (B1), (B2), 
and (B3), of which the first is a steady -state problem, may therefore 
be used to derive the solution of the general boundary value problem 
(A). 

PROBLEMS' 

1. If O.r(xr,t) r = I, 2, 3 is the solution of the one -dimensional diffusion equation 

a2û t ae r r ar <x,.<br,t >0 
axr -Kat 

satisfying the initial condition Or(xr,0) = fr(Xr) and the boundary conditions 

ar 
a0r 

arOr -0 Xr - ar t > 0 
aXr 

ßr 

aor 
ßrer = 0, 

aX.r 

then the solution of 

Xr =br 

a26# a20 a20 i a0 

axi axe ax3 K at 

t>0 

in the rectangular parallelepiped a1 < x1 < b1, a2 < x2 < b2, a3 < x3.< b3 

satisfying the boundary conditions 

a 
a8 - a4e =0, xr =ar t >0,r= 1,2,3, 

aX.r 

a0 
ßr -1- ß;.0 = 0, Xr = br t > 0, r = 1, 2, 3 

aXr 

and the initial condition O = f1(x1) f 2(x2),f 3(x3) is 

e(x11x2,x3,t) = e1(X11t)e2(x21t)e3(X3,t) 

2. If R(r,t) is the solution of the boundary value problem 

I a aR 

rar rar 
l aR 

Kat t >O,a <r <b 

al 
aR 

= aiR, r a; ß1 
aR 

= b; R(r,O) = ,f (r) 
ar ar 

and if Z(z,t) is the solution of the boundary value problem 

a2,Z1aZ, t>o,c<z<d 
az2 K at 

a2 
aZ 

aZl 
= a2Z, z - c; ß2 az 

aZ 
= ß2Z, z = d; Z(z>O) = g(Z) 

then 0(r,z,t) = R(r,t)Z(z,t) 
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its the solution of the boundary value problem 

i a ae a2o 1 ao 

- r - rar +5.? =;at a < r < b,c <z <d,t >0 

satisfying the initial condition O = f (r)g(z) and the boundary conditions 

ae ao ßlar=ßl0,r =b a1 ár-041e,r-a, 

ao 

a2az-- a26,z =C; 
ao 

ß2ó = ß2,z =d 
Z 

3. Elementary Solutions of the Diffusion Equation 

In this section we shall consider elementary solutions of the one - 
dimensional diffusion equation 

a29 1 as 
axe -Kat 

We begin by considering the expression 

0 = - ex 
2 

1 
x 

Vt p -- (2) 

(1) 

For this function it is readily seen that 

and 

2 a 2 e _ x -- x214Kt 1 - x214,ct 

ax2 4K2t5, 2 243/2 

ao x 2 

e x214Kt 1 e-SJ4,ct 
at 4Kt5/2 2t312 

showing that the function (2) is a solution of the equation (1). 
It follows immediately that 

1 e-(x-)214Kt 
2 rKt 

(3) 

where is an arbitrary real constant, is also a solution. Furthermore, 
if the function «x) is bounded for all real values of x, then it is possible 
that the integral 

1 (x - 4:) 

2 7r,ct LI g° eXP { - 4Kt 2} 
d (4) 

is also, in some sense, a solution of the equation (1). 
It may readily be proved that the integral (4) is convergent if t > 0 

and that the integrals obtained from it by differentiating under the 
integral sign with respect to x and t are uniformly convergent in the 
neighborhood of the point (x,t). The function 8(x,t) and its derivatives 
of all orders therefore exist for t > 0, and since the integrand satisfies 
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the one -dimensional diffusion equation, it follows that 8(x,t) itself 
satisfies that equation for t > O. 

Now 

where 

(x 
I coo 

20rKt)t i 96(° eXp ( 44 } c4 - OW 

-14 -I- IE -!- la - 141 

EN gx)}e-u2 du 

I2 = gx + 2u,7)e -u2 du 

-N 
13 = gx + 2uVKt e -u2 du 

I = 20x 
e -u2 du 4 

V 7T 

If the function «x) is bounded, we can make each of the integrals 121 13, 

14 as small as we please by taking N to be sufficiently large, and by the 
continuity of the function 0 we can make the integral I1 as small as we 
please by taking t sufficiently small. Thus as t -->. 0, 8(x,t) - 96(x). 

Thus the Poisson integral 

e(x't) 2( Kt)1 £°o 
96(0 exp { 

(x 4Kt°2} d' 
is the solution of the initial value problem 

ate 1 ae 

az2 - K at - (6) 

0(x,0) = O(x) 

It will be observed that by a simple change of variable we can express 
the solution (5) in the form 

8(x,t) = ji 0(x + 2uVKt)e -u2 du (7) 

00 ao < x < o x < 0 

(s) 

We shall now show how this solution may be modified to obtain the 
solution of the boundary value problem 

a28 1 a8 

óx2 
_ 

K at 
0 <,x <oo 

0(x,0) -.=--- f (x) x > 0 

0(010 = 0 t > 0 

(8) 
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If we write 
Íf(x) for x > 0 

0(x) 
L-f(----x) for x < 0 

then the Poisson integral (4) assumes the form 

1 
co 

9(x,t) f( ) {e -(x- )ZKt e -(x+ )2t4Kt2 d (9) 
2 VT-rid o 

and it is readily verified that this is the solution of the boundary value 
problem (8). We may express the solution (9) in the form 

CO 

8(x,t) = 77.7.f f (x -- 2uKt)e-u2 du 
J_xI2\/; t 

1 
coo 

1/7; x/2' Kt 

f ( -x -I- 2u)e -uz du (10) 

Thus if the initial temperature is a constant, 60 say, then 

B(x,t) = 80 erf 
(2V'i} 

(11) 

where 

The function 

2 z 

erf z = _ e -u2 du (12) 
o 

8(x,t) = 00 1 -- erf 
x 

(13) 
2A/Kt 

will therefore have the property that 8(x,0) = 0. Furthermore 
8(0,t) = 80. Thus the function 

0(x, t, t') = g(t') [1 -- erf (2)] V Kt 

is the function which satisfies the one -dimensional diffusion equation 
and the conditions 0(x,0,t') = 0, 0(O,t,t') = g(t'). By applying 
Duhamel's theorem it follows that the solution of the boundary value 
problem 

9(x,0) = 0, 0(0,0 = g(t) (14) 
is 

t ^co 

O x = 2 â 
' dt' e -u2 du 

( t) "V Tr t 0 
g(t) 

) x 2 Kt --Kt1 ' 1 ( ) 

x t e- x214K(t -t) 

2\f \ O g t} 0312 
t 

Changing the variable of integration from t' to u where 
X2 

t' t 
4Ku2 
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we see that the solution may be written in the form 

o = 
2 °° 

X2 (x,t) g 
J71 4Ku2 

e 4 du, 
X 

77 2 V Kt 
(15) 

PROBLEMS 

1. The surface x = 0 of the semi -infinite solid x > O is kept at temperature e0 
during 0 < t c T and is maintained at zero temperature for t > T. Show 
that if t > T, 

X x 
8(x, t) = e0 erf 2vK(t - T,) 

erf 2 Via 

and determine the value of O if t < T. 

2. Prove that the expressions 

0(r ,t) - Q Ir - al2 

$(?TKt)3i,2 
ex p 4Kt 

represents the temperature in an infinite solid due to a quantity of heat Qpc 
instantaneously generated at t = 0 at a point with position vector a. 

If heat is liberated at the point a in an infinite solid at a rate pcf (t) per unit 
time in the interval (0,t), show that the temperature in the solid is given by 

1 t f - Ir - aI2 ,f(t')dt' 
8(77.0 

exp 
4K(t - t') (t - t'} 

If f (t) = q, a constant, show that 

6(r,t) = q 1 - erf 
Ir aI 

4KIr al 4Kt 

3. Show that the temperature due to an instantaneous line source of strength Q 
at t = 0 parallel to the z axis and passing through the point (a,b) is 

61(x, t) Q 
ex 

(x - a)2 ; (v - b)2 } 

Y p 4Kt 

If heat is liberated at the rate pcf (t) per unit time per unit length of a line 
through the point (a,b) parallel to the z axis, and if the supply of heat starts at 
t = o when the solid is at zero temperature, show that if t > 0, 

6(x,y,t) = 1 

4 
jf(t')exp 

im: 

where r2 = (x - a)2 + (y - b)2. 

Deduce that if f (t) = q, a constant,. 

c 

e(x,y,t) - - 
00 

where -Ei( -x) = e -u du/u. 
z 

q 

47TK 
Ei 

r2 

4K( t - t') 

( 4Kt) 

r2 r2 

dt' 
t -- t' 

s This is called the temperature due to an instantaneous point source of strength 
Q at a at time t = 0. 
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4. Separation of Variables 

The method of the separation of variables can be applied to the 
diffusion equation 

v20 = ae 

Kat 
(1) 

in a manner similar to those employed in the similar problems of 
potential theory and wave motion. If we assume that the time and 
space variables can be separated, so that equation (1) has solutions of 
the form 

B = 0(r)T(t) (2) 

then it follows from the fact that equation (1) can be written in the form 

V2(k = T dt 

that the equations determining the functions T and 0 must be of the 
forms 

dT 
xA2T = a 

dt + 
(V2 + A2)0 -- 0 

(3) 

(4) 

where ,1 is a constant which may be complex. Since the solution of (3) 
is immediate, we see that solutions of (1) of the type (2) assume the form 

e(r,t) = 0(r)e-KA2t (s) 

where the function 0 is a solution of the Helmholtz equation (4), which 
may itself be solved by the method of separation of variables. 

We have already used this method in Sec. 9 of Chap. 3 to obtain 
solutions of the one -dimensional diffusion equation 

a2O 1a8 
axe =K at 

of the form 
e(x,t) = [cA cos (Ax) + dd sin (2x)Je2Kt 

where cA and dd are constants. 
We shall now consider the use of this form in the solution of a 

typical boundary value problem. 

Example 1. The faces x = 0, x = a of an infinite slab are maintained at zero 
temperature. The initial distribution of temperature in the slab is described by the 
equation O = f(x) (0 < x < a). Determine the temperature at a subsequent time t. 

Our problem is to find a function 8(x,t) which satisfies the differential equation 
(6) and the conditions 

(6) 

(7) 

9(O,t) = 6(a,t) = 0, 9(x,0) - = f (x) (8) 
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In order that a solution of the type (7) should vanish identically at x = Q, we must 
choose cA = O for all values of A, and in order that 8(a,t) = o, we must choose A 

so that 
sin (Aa) = O 

i.e., A must be taken to be of the form nnla, where n is an integer. Hence the first 
two áf the three conditions (8) are satisfied if we take 

A sin 
(nirx' e -n2w2Ktia2 

n 

n=4 

To satisfy the third conditions we must choose the constants An in such a way that 

f (x) = An sin n?rx o< x S a 
a 

n =1 

The coefficients An must therefore be taken to be 

a 

An = ? f (u) sin 
nnu 

du 
a o a 

and the required solution is 

a 
6(x,t) = -2 e- 7221r2Kt/a2 sin 

n = 

(nirx) ) Sin niru 
du (9) ffu 

a 
1 

The solution 

e(x,y,t) = 2 cA, cos (),x + si,) cos Cuy + )e --(A2 + u2)Kt (10) 
4 

of the two -dimensional equation 

a .20 ago 1 ae 

axe + a 2 Kat 

which we derived in Sec. 9 of Chap. 3 may be treated in a precisely 
similar way (cf. Prob. 3 below). 

If we assume a solution of the form 

o = .R(P)(1)(0)Z(z)T(t) 

of the diffusion equation 

a20 1 ae 1 ate a2e 1 ae 

a P 2 a + 2 Kt (12) 

we find that T satisfies equation (3) and that R, 1, Z satisfy equations of 
the form 

d2R 1 dR j 2 2 ._._ Y_2 R -- O d2 , -p-d7; + + 2 
P P 

d2Z 
1,12Z, 

d2d2(1) 2 
O 

dz2 d z + Y 
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so that the equation (12) has solutions of the form 

2 Al J ±r(1/íî,2 + 

To illustrate the use of solutions of this kind we consider: 

Example 2. Determine the temperature O(p,t) in the infinite cylinder O < p < a 
when the initial temperature is 0(p,0) = f (p) and the surface p = a is maintained at 
zero temperature. 

In this instance the solution (13) reduces to the much simpler form 

O(p, t) = : AAJo(Ap)e - AKt (14) 
A 

In order that e(a,t) - 0, the constants must be chosen so that J0(2a) = 0; i.e., 
A takes the values È 1, -2, , n .. . , the roots of the equations 

Jo(a) = 0 (15) 

(13) 

We therefore have 

e(p, AnJo(pn)e -Ktyñ 
n 

(16) 

To satisfy the condition 6(p,0) = f (p) the constants An must be chosen so that 

f (p) - _ AnJU(pen) 

It follows from the theory of Bessel functions' that 

a 
A = 2 [f1(a)2 

Ja of (u)JO(nu) du 

Substituting this expression into equation (16), we find that the required solution is 

J': 
2 Jo( n) -Kt ñ u (u)J0( nu) du (17) 
a2 [J1Cna)]2 f 

where the sum is taken over the positive roots ... , ¿n, ... , of the equation 
(15). 

Finally if we write the diffusion equation 

x 2 
alp 

in polar coordinates (r,9,9) and assume a solution of the form 

'gyp = R(r)0(0)(1)(0e-'24 

d2R 2 d 2.n(n +1) 
dr2 r dr r2 

0 

we find that 

d20 d0 (l - H.2) d2 2, non + 1) 

d20 
m20, 

' G. N. Watson, "The Theory of Bessel Functions," 2d ed. (Cambridge, London, 
1944), chap. XVIII. 

1 

a =0 ,u-- cos 8 
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so that we have solutions of the form 

Cmnï(Ar)._..}Jn +i(Ar)P ( )e ±im¢e 
-d2Kt 

m,n,A. 

This solution is used in: 

(18) 

Example 3. Find the temperature in a sphere of radius a when its surface is 
maintained at zero temperature and its initial temperature is f (r,6). 

In order that a solution of the type (18), i.e., 

2 Cn ,t(tr) -i Jn + .(Ar)Pn(cos 6)e- 2 2fct (19) 
n,, 

should vanish when r = a, each A must be chosen to be one of the r6ots ).ni, An2, 
I . . , Anil . . . of the equations 

4+1(2a) = 0 (20) 

and in order that w(r, O + 27r, t) = ip(r,O, t), n must be an integer. We therefore 
have the solution 

o° 0° 2 

IP(r)0,t) = 7 Cni(Anir) zJn + i(a.nir)Pn(cos 6)e - gild 
n=1 1=1 

where the constants Cni must be chosen so that 

f (r,8) = ¿ Cni(Anij') -kJn+ i(Anir)Pn(cos 6) 
n=1 i=1 

From the theory of Bessel functions and Legendre polynomials we find that 

C - (2n+1)añ aJ 1 

r6 n2 
a2[4. +i(Anis)]2 o 

r n+ ( r nz) dr P ,,(y) f ( ) d y 

PROBLEMS 

1. Solve the one -dimensional diffusion equation in the region 0 < x < 7r, 

t >0,when 
(i) O remains finite as t -÷ 00; 

(ii) 6 = 0 if x = 0 or T, for all values of t; 

6 =x 0 <x <2rr 
(iii) At t = 0, 

6 =IT -x 71' <x <7r. 

2. Solve the one- dimensional diffusion equation in the range 0 < x < 27r, t > 0 
subject to the boundary conditions 

6(x,0) = sin3 x for 0 < x < 27r 

8(0,t) - 8(27r,t) = 0 for t > 0 

3. The edges x = 0, a and y = b of the rectangle 0 < x < a, 0 < y < b are 
maintained at zero temperature while the temperature along the edge y = 0 
is made to vary according to the rule 6(x,0, t) = f (x), 0 < x < a, t > O. 

If the initial temperature in the rectangle is zero, find the temperature at any 
subsequent time t, and deduce that the steady -state temperature is 

oc 

2 ` sinh (m7r(b - 
Y)1611 sin 

m=I 

m7rx 
sin du a sinh (mrb/a) a o f 
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4. A circular cylinder of radius a has its surface kept at a constant temperature 
00. If the initial temperature is zero throughout the cylinder, prove that for 
t >4 

6(r,t) = e0 1 

where +4, ±4, . . , ± n, i 

J0(na) - nKt 

nJ1(na) 

. . are the roots of J0(a) = O. 

5. The Use of Integral Transforms 

We shall now consider the application of the theory of the integral 
transforms to the solution of diffusion problems. First of all we shall 
indicate the use of the Laplace transform. Suppose that we have to 

find a function B(r,t) which satisfies the 
diffusion equation 

Figure 46 

v20 ==. 0) 
K at 

in the region bounded by the two surfaces 
Si and S2, the initial condition 

8 = f (r) when t- 0 (2) 

and the boundary conditions 

a8 a10 (3) -- b x = g(r t ) on S x 

a20 b e ---- r t on S2 2 ` 2 g 2( ) 2 

where the functions f, g1, and g2 are pre- 
scribed. The quantities ai, a2, b1, b2 may be functions of x, y, and z, 
but we shall assume that they do not depend on t. 

To solve this system of equations we introduce the Laplace transform 
6(r,$) of the function 8(r,t) defined by the equation 

6(r,$) = 
fo 

8(r,t )é at dt 
CO 

If we make use of the rule for integrating by parts, we find that 

Soco a8 
a -st dt = r e -F` 

at 
8 [(,t ) 30 + s6 (r ,s ) 

Substituting from (2) into this expression, we find on multiplying both 
sides of equation (1) by e-Sl and integrating with respect to t from O 

to co that 6(r,$) satisfies the nonhomogeneous Helmholtz equation 

(V2 - k2)6(r,$) = 1 f(r) (s) 
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with k2 = s /K. Similarly the boundary conditions (3) and (4) can be 
shown to be equivalent to 

aG 
a,.O. + b1 -an = g1(r,$) on S1 (6) 

a26 + b2 
a6 

a = g2(r,$) on 52 (7) n 

The method is particularly appropriate when equation (5) can readily 
be reduced to an ordinary differential equation, as in the case considered 
below. When the function ó(r,$), which forms the solution of the 
boundary value problem expressed by the equations (5), (6), and (7), has 
been determined, the temperature û(r, t) is given by Laplace's inversion 
formula 

1 

6(r, t) = ó(r, s)est ds (8) 
2'r1 c --i 

In the casé where the solid body is bounded by one surface only, S1 
say, we only have an equation of type (3), but we have in addition the 
condition that 8, and hence ó, does not become infinite within S1. 

Example 4. Determine the function û(r,t) satisfying 

a2û i a8 i ae 

are + 
t >0,0 <r <a (9) r ar -Kat 

and the conditions 0(r,0) = 0, e(a,t) = f(t). 
To solve equation (9) we multiply both sides by e st and integrate with respect to 

t from 0 to co. Making use of the conditions 0(r,0) = 0, we see that 

d20 id9_s_ 
dr2 r dr K 

O 
_ 

(10) 

where $(r,$) is the Laplace transform of û(r,t). Since û(a,t) = f (t), it follows that 

é = f(s) on = a (11) 

where f CO is the Laplace transform of the function f (t). If we make use of the 
physical condition that û(r, t), and, hence, 8(r,$), cannot be infinite along the axis 
r = 0 of the cylinder, we see that the solution of equation (10) appropriate to the 
boundary condition (11) is 

6(r,$) = f(s) I o(kr) 
Io(ka) 

where k2 = s /K, so that, by the result (8), 

i;;. 

c +im I 
û(r,t) f(s) oC kr est ds 

c _i. Io(ka) 
Now if Io(kr)/Io(ka) is the Laplace transform of the function g(t), i.e., if 

g(t) = 1 

Loe 
z o0 Io(kr) 

est ds g() 2, 0 Io(ka) 
it is readily shown that 

(12) 

t 

e(r,t) = f (t')g(t -- t') dt' (13) 
0 
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To evaluate the contour integral (12) we note that the integrand is a single -valued 
function of s, so that we may make use of the contour shown in Fig. 47. The poles 
of the integrand are at the points 

s =sn= -K52 n =1, 2, ... 
where the quantities 1, _2, . . . , L .. , are the roots of the transcendental 
equation 

J0(a) = 0 (14) 

From the theory of Bessel functions we know that the roots of equation (14) are 
all real and simple. If we take the radius of the circle MNL to be K(n + i.)2n,21a2, 

there will be no poles of the integrand on the circumference of the circle, and from the 
asymptotic expansions of the modified 
Bessel functions 10(kr), Io(ka) it is readily 
shown that the integral round the circular' 
arc MNL tends to the value O as n -± co. We 
may therefore replace the line integral for g(t) 
by the integral of thè same function taken 
round the complete contour of Fig. 47, and 
hence we may replace it by the sum of the 
residue's of the 'function Io(kr)est /Io(ka) in the 

CIO) plane R(s) < c. Now the residue of this 
function at the pole s = s,, is 

Io(irin)e -K ñt 2KenJ0(r n)e -K ñt 

a /(2iK n)I1(ia n) - aJ1(a n) 

Figure 47 

since I1(x) -- Io(x). Hence we have 
co 

Substituting from equation (15) into equation (13), 

OD 

9(r, 
ZK 

a n- 

2KnJo(rn) 
e -4!t 

aJ1Wn) 

we obtain finally 

rtJo(rn) ft , t- ii f(t)e 2 - _ ) dt 
, 

J1(a4n) 

(15) 

(16) 

where the sum is taken over the positive roots of the transcendental equation (14). 

We shall give a further example of the use of Laplace transforms 
at the end of the next section. 

Other integral transforms may be used in a similar way. To illustrate 
the use of Fourier transforms in the solution of three -dimensional 
diffusion problems we consider : 

Example 5. Find the solution of the equation 

K v26 = 
ô6 

(17) 
at 

for an infinite solid whose--initial distribution of temperature is given by 

6(r,0) = f (r) (18) 

where the function fis prescribed. 
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We reduce the equation (17) to an ordinary differential equation by the intro- 
duction of the Fourier transform of the function 9(r,t) defined by the equation 

a(p,t) _ (27r) - o(r,t)ei(P.r) dT (19) 

where p = ($,71,0, dT = dx dy dz, and the integration extends throughout the 
entire xyz space. Multiplying both sides of equation (17) by exp [i(p r)] and 
integrating throughout the entire xyz space, we find, after an integration by parts 
(in which it is assumed that O and its space derivatives vanish at great distances 
from the origin), that equations (17) and (18) are equivalent to the pair of equations 

M 

dt + Kp20 = 0 (20) 

®(p,o) = F(p) (21) 

where F(p) is the Fourier transform of the function f (r). The solution of equation 
(20) subject to the initial condition (21) is 

O(p, t) = F(p)e - KP2t (22) 

Now it is readily shown by direct integration that the function 

G(p) = e --xp2t (23) 

is the Fourier transform of the function 

g(r) = (20)-g e - r2 j4xt (24) 

and it is a well -known result of the theory of Fourier transforms' that if F(p), G(p) 
are the Fourier transforms off (r), g(r), respectively, then F(p)G(p) is the Fourier 
transform of the function 

(2v) -a f f (r')g(r -- r') dT' 

It follows from equations (22), (23), and (24) that the required solution is 

9(r, t) = (20)---a Jf(r/)e_Ir_fI2I4Kt dT' 

where the integration extends over the whole x'y'z' space. If we let 

u = (u,v,w) = (4Kt) -i(r' - r) 
we find that the solution (25) reduces to the form 

o(r,t) = IT-3 f 
CO CO 00 - - - 

which is known as Fourier's solution. 

(25) 

/4. + 2uN/k t)e-(u2+v2+u12) du dv dw (26) 

PROBLEMS 

1. Use the theory of the Laplace transform to derive the solution of the boundary 
value problem : 

a29 1 ao O<x <a,t >0 
axe Kat 

o(o,t) = f(t), o(a,t) = 0, 9(x,0) = O 

1 Sneddon, "Fourier Transforms," p. 45. 
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2. If 8(r, t) satisfies the equations 

a2s i ao i as 
are + r ar = Kat (i) Osr<a,t>0 

(ii) s(r,0) = f (r) 0< r < a 

as 
(iii) a h6 = o t > 0 

r = a 
show that 

2 2e -knit JAI) 
0(r, t) - 

22 2 
° r) 

a 
of (u)J((zu) du 

2 

where the sum is taken over the positive roots $1, 2, ... , i, ... of the 
equation 

hJ0(ai) _ eiJ1(a0 

3. Using the theory of the Fourier exponential transform to eliminate the x 
variable from the diffusion equation, derive the solution (5) of Sec. 3. 

4. Using the Fourier sine transform 

(, t) = pi oe 

8(x, t) sin (ex) dx 
o 

derive the solutions (9) and (13) of Sec. 3. 

5. A plane electromagnetic pulse is propagated in the positive z direction in an 
unbounded medium of constant permeability it and conductivity a. At the 
instant t = O the electric vector E is given by 

1 z2 
Ex =75exp --a2 , Ey =Ez =O 

Determine the value of Ex at a later instant t. 

6. The Use of Green's Functions 
We saw in Sec. 8 of Chap. 4 how Green's functions may be employed 

with advantage in the determination of solutions of Laplace's equation. 
We proceed now to show how a similar function may be used con- 
veniently in the mathematical theory of diffusion processes. 

Suppose we are considering the solution 00,t) of the diffusion 
equation 

ae_Ko2e 
at 

(1) 

in the volume V, which is bounded by the simple surface S, subject to 
the boundary condition 

6(r,t) _ ¢(r,t) if r e S (2) 

and the initial condition 

8(r,0) = f (r) if r e V (3) 
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We then define the Green's function G(r, r', t - t') (t > t') of our 
problem as the function which satisfies the equation 

aG = KV2G 
at 

(4) 

the boundary condition 

G(r, r', t - t') = 0 if r' e S (5) 

and the initial condition that l m G is zero at all points of V except at 

the point r where G takes the form 
1 ¡rrI21 

87,Kí -t' exp - 
4Kí --t' (d) 

Because G depends on t only in that it is a function of t - t', it follows 
that equation (4) is equivalent to 

aG 
+ KV2G at' 0 (7) 

The physical interpretation of the Green's function G is obvious from 
these equations : ' G(r, r', t -- t') is the temperature at r' at time t due 
to an instantaneous point source of unit strength generated at time t' 
at the point r, the solid being initially at zero temperature, and its 
surface being maintained at zero temperature. 

Since the time t' lies within the interval of t for which equations (1) 
and (2) are valid, we may rewrite these equations in the form 

ae 
KV28 t' < t (8) , 

0(r', t') = = «r',t') if r' e S (9) 

It follows immediately from equations (7) and (8) that 

a 
(6G) = O 

aG ae = GV28 ov2G] 
at/ 

so that if E is an arbitrarily small positive constant, 

fo { 

t_e a t_ 
fv. 

at' 
(0G) dr') --- dt' K f:-{f {fv,Gvo_ov2G, dT' dt' (10) 

If we interchange the order in which we take the integrations on the 
left -hand side, we find that it takes the form 

v(0G)t, . t_ e dr' -f (0G) t. =0 dr' 
p 

= 8(r,t) [G(r, r', t t')]t.Tt_8 dr' - G(r,r',t) f(r') di-' 
p p 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


296 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

Now from the expression (6) for G(r, r', t - t') we can readily show that 

[G(r, r', t - t')],,,_,_0 dr' = 1 

v 

so that if we let c 0, the left -hand side of equation (10) becomes 

9(r,t) -I J'f(r')G(r,r't) dT' 
v 

On the other hand, if we apply Green's theorem to the right -hand side 
of equation (10) and make use of equations (2) and (5), we find that it 
reduces to 

K f t dt' 0() r' t 
aG 

dS' 
o L an 

in the limit as e 0. It will be recalled that a/ an denotes differentiation 
along the outward -drawn normal to S. We therefore obtain finally 

t 

r t = f(r')G(r,r',t) dr' -K dt' «r',t) dS' (11) (,) 
o an 

as the solution of the boundary value problem formulated in equations 
(1), (2), and (3). 

To illustrate the use of a Green's function in a very simple case 
we consider : 

Example 6.. If the surface z = 0 of the semi -infinite solid z > O is maintained at 
temperature q(x,y,t) for t > 0, and if the initial temperature of the solid is f(x,y,z), 
determine the distribution of temperature in the solid. 

It is readily shown that the appropriate Green's function for this problem is 

G(r, r', t - t') _ 1 ex - Ir - 02 - ex - r - 02 

8 [?TK(t - OP p 4K(t - t') p 4K(t - t') 
where p' = (x',y', -z') is the position vector of the image of the point r' in the 
plane z = O. For this function 

aG aG z (x . ..__(___ 
an az' z' = o- 8,3Kg(t - t') exp - _ x')2 + (y _ y')2 + z2 

4K(t - t') 

so that, from equation (11), we obtain the solution 

6(r t) = 1 f (r')[e- Ir- r'I2/4Kt _ e-- Ir- P't2 /4Kti dT' 
' 8 (TKO:4 TV 

z 

ij:: 

4)(x' ' t.) (x - x')2 -^- ( ')2 -i- z2 
-}- 

3 

'y ; exp ' 
y, y dx' dy' dt' 

8(TK) r (t -- t) 4K(t t) 

where V denotes the half space z > 0 and II the entire xy plane. 

In this problem we have been able to guess readily the form of the 
Green's function. For more complicated types of boundary this may 
not be possible, and so it is desirable to have available a tool for the 
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determination of the Green's function. The most powerful analytical 
tool for this purpose is the theory of Laplace transforms. We shall 
illustrate its use by considering: 

Example 7. Determine the Green's function for the thick plate of infinite radius 
bounded by the parallel planes z = 0 and z = a. 

From equations (4), (5), and (6) we see that we have to determine a function G 
which vanishes on the planes z = 0, z = a and has a singularity of the type (6). 
We write 

,2 
G(r,r',t) = 1 ; exp Ir - r 1 + G1(r,r',t) 

8[Kt] p 4Kt 

where, by virtue of equation (4) 
aG1 

KQ2G1 = at 

(12) 

(13) 

If we multiply both sides of equations (12) and (13) bye St, integrate with respect to 
t from 0 to co, and make use of the fact that the Laplace transform of 

1 

87rKtil 

can be written in the form 

exp 
Ir_rhI2 1 

L 4Kt 

i 
1Iz -z'¡ fo(2.R) e a. dA 

47T K f o /4 

where R2 = (x - x')2 + (y - y')2 and ,u2 = A2 + s /s, we find that these equations 
are equivalent to 

G(r,r',$) = 1 Je_izi't J°(AR) 
A dA G1(r,r',$) 

47TK o iu 

a2G1 i aG1 a2Gi 1 $326-1 s 
(15) 

ape p ap az2 712 42 
K 

where G, 01 are the Laplace transforms of G, G1 and, as usual, p, z, denote 
cylindrical doordinates. Equation (15) has a solution of the form 

i 
ay J0(AR) {F sinh (,uz) + H sinh Lu(a - z)» dA 

47TK o It 

where the functions F(A) and H(A) must be chosen so that G vanishes on the planes 
z = 0, z = a. We must therefore have 

F = -e ,u(a -z') cosech (pa), H = -e Pz' cosech (,ua) 

Thus if O < z < z', we find that 

= 
co 

[, I)] sinh (,uz) 
dA 

1 AJo(AR) sinh u(a -z 
21rK f o ,u sinh (,ua) 

If we make the substitution A = 1 in this integral, we obtain the form 

G 
1 roe Uo(R) sinh [n(a - z')] sinh (rz) 

d 
47rK _ice ri sinh (ida) 

where 772 = s/K - e. Now it is readily shown by the calculus of residues that 

G = 1 sin 
nez )sin nez Ko(nR} 

2Kan=i a a 
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


298 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

where . n = Vn2$ /a2 + S/K. Using the fact that Ko(x ] is the Laplace trans- 
form of (2t)-ie -z2/4Kt and that the Laplace transform of e atf (t) is f ̀(s + a), we find 
that 

e- R214Kt (nrrz (nirz' - 
2TTKta sin sin e- n2v2Kt ¡a2 (16) 

n= 1 

This expression could have been obtained by the method of separation of variables 
if we had been prepared to assume the possibility of the expansion of an arbitrary 
function in the form (16). One of the advantages of using the theory of the Laplace 
transform is that it avoids making such an assumption; each Green's function so 
derived yields an expansion theorem (or an integral theorem). 

PROBLEMS 
1. Derive the linear analogue of equation (11) for the segment a < x < b. 

Hence solve the boundary value problem 
ao a2o 

ót =Kax2 x > 0 , t > 0 

0(0,t) = O(t), t > 0; 9(x,0) = f (x), x > 0 

2. By using the theory of Laplace transforms derive the Green's function for the 
segment 0 < x < a. 

3. Show that the Green's function for problems with radial symmetry, in which 
the temperature vanishes on r = a, can be expressed in the form 

1 n?fr nirr' n2rr2tla2 G(r,r , t) 
27rarr' 

sin 
a 

sin 
a 

e - x 

n =1 
4. Show that the two -dimensional analogue of equation (11) is 

e(x v, t) _ 
fs 

t 

f(x',y')G(x,y;x',y';t) dS' - K f dt' f ¢(x',y';t) aG 
ds' 

o c an 

where C is the boundary of the region S, and where G has a singularity of the 
type 

1 

ex 
(x - x')2 + (y - y')2 

4Kt p 4Kt 

at the point (x,y). 
Determine the Green's functions for the regions 

(i) - oo < x < co, y > 0 

(ii) x > 0, y > 0 

(iii) 0 <x <a, 0 < y < b 

5. Show that the Green's function for the cylinder 0 < z < h, p < a is 

G(P,¢,z;P',6',z' ;t) 
0o 

e .., n í miz1 _ Í m,rz' 
cos n(¢ -- ¢') sin 

2 
00 

where ni, $n2' 
equation Jn(a) = 0. 

, 4i, 

Jn 
e - ñ zKt 

( n P)Jn($71 iP') 

ñ(n2a)2 
... are the positive roots of the transcendental 
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7. The Diffusion Equation with Sources 

In the previous sections of this chapter we have considered the 
solution of problems relating to diffusion in a medium in which there 
are no sources. We shall now consider briefly the solution of the 
more general equation (3) of Sec. Z when the source function Q(r,O,t) 
assumes a simple form. In many cases of practical interest the function 
Q(r,O,t) may be taken to be a linear function of the temperature of the 
form 

Q(r,O,t) --= 96(r ,t) + Oy(t) (0 
and we have seen in Prob. 3 of Sec. 1 that the solution of problems of 
this type can be deduced readily from solutions of the equation 

ao 

r 
= Kv 2o -F x(r,t) (2) 

We shall consider therefore only this simple equation. 
The analysis of problems of this kind can be further simplified. 

Suppose that we have to solve equation (2) in a region V bounded by a 
simple surface S subject to the conditions 

6(r,0) = f (r) if r E V; 6(r,t) = 96(r ,t) if r e S (3) 

then if we find a function 01(r,t) which satisfies the homogeneous 
equation 

ae 

at 
- Kv2e (4) 

and the boundary and initial conditions (3) and a function 02(r,t) 
which satisfies the equation (2) and the boundary and initial conditions 

02(r,O) = 0 if r e V; 0 2(r,t) = 0 if r e S (5) 

then it is immediately obvious that the solution of the problem posed 
by equations (2) and (3) is given by the equation 

8(r, t) = 010,0 + 0 2(r, t) (6) 

The methods available for the solution of equation (4) are also 
available for the solution of the nonhomogeneous equation (2). For 
instance, if the method of separation of variables has been applied to 
determine the function 01(r,t), the same type of expansion may be 
employed in the determination of 02(r,t), or if a particular kind of 
integral . transform has been used to find 0104), it may also be used to 
determine 0 2(r, t). 

For instance, if we wish to solve the equation 

ae a2e 

at = K ax2 + X(X,t) (7) 
PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


300 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

in the region 0 < x < a, we know that the solution of 
ae aie 
at ^ K ax2 

which vanishes when x _ 0, x = a, is of the form 

A e -a22,d,a2 sin nix 
n 

nx a = 

Therefore we assume a solution of equation (7) of the form 
CO 

02(x,t) = 1 qn(t) sin 
nrx 

n =1 a 

We also employ the expansion 

where 

co 

xn(t) sin 
nVx 

a n=1 
a 

xn(t) = - a 
2 

o 
x(x,t) sin 

n 
a 

rx 
dx 

Substituting from equations (8) and (9) into equation (7), we see that the 
functions 0n(t) must satisfy the first -order ordinary differential equation 

dd + n a2 K °n = xn(t) (11) 

and, since 02(.x,0) = 0, must also satisfy the initial condition 

0n(0) = 0 (12) 

When we have found the functions ¢n(t) satisfying the equations (11) 
and (12), we have only to substitute them as coefficients in the expansion 
(8) to obtain the desired result. 

To illustrate this method we consider: 

Example 8. The faces x = 0, x -a of a finite slab are maintained at zero 
temperature. A source of strength Q is situated at x = b. Determine the distribution 
of temperature within the slab. 

We have to solve the equation (7) in which the function x(x,t) is Q(x), where 

Q(x) = Ern Q6(x) 

Q 
I 

e 
where Q &(x) -(2,10c 

0 Ix-bl>e 
The Fourier coefficients of Q,(x) are 

+ Q n7rx 1 nre nib 
sin dx =2Q sin sin 

pcae b_ e a pc (Hire) a a 
If we let e > 0, we find that for this x(x,t) 

2Q nirb 
zn(t) = sin 

pca a 
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Substituting this constant value in equation (11), we see that the approximate form 
for ck,i(t) is 

95n(t) = Qa 
(1 - e -' n2rr2xt¡2) sin 

trab 
kn2 a 

(1 3) 

where, it will be remembered, k = pcK. Substituting from equation (13) into 
equation (8), we find that the desired solution is 

8(x 
' 

t) = 
2Qa 1 (1 _ e-- n27r2Ktfa2) sin nr-x sin nvb 
2k n2 a a 

=1 

When the range of the space variables is infinite, it is more appropriate 
to make use of the theory of integral transforms. Consider, for 
instance, the problem of solving the equation (7) for the infinite range - 00 < x < co subject to the initial condition 9(x,0) = O. If we 
multiply both sides of equation (7) by (2ir) --eiex and integrate with 
respect to x from co to oo, we find that the Fourier transform 

cc. 0(E,t) = 9(x,t)eiÿx dx (14) 

satisfies the ordinary differential equation 

d0+ K2Q-= X&,t) 
dt 

(15) 

where X(e,t) denotes the Fourier transform of x(x,t). The solution 
of equation (15) we are seeking must satisfy the initial condition 
0(,0) = 0, so that we have 

t 

0(,t) = e- K2(t- t')X(,t) dt' 
fo 

Making use of Fourier's integral theorem 

0(x, t) = 0( ,t)e -is d v127, 

and interchanging the order of the integrations, we find that 

Now 

c 

a(x,t> _ 
VJo 

ar e-ax-K2(t-c)x(e,t') 4 

F(.0 - e-K52(t-t-) 

is the Fourier transform of the function 

1 -x214K(t -G') 

[2K(t 
f(x) = . e 

--t )li 
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so that using the convolution theorem for Fourier transforms 

foeF()x()ei 
cM = . fix - n)x(r!) do 

we find that 
1 t dt' °° 

8(x,t) = 
(4K) Jo (t - tt'Y - e 

is the final solution of our problem. 

-(z -0214x(t-t')xoh t') diii 

PROBLEMS 

1. The function 6(x,t) satisfies the equation 

ao a2o 

= a 
K 

xe + x(x, t) 

for x > 0, t > O and 6(x,0) = 0, 6(O,t) = O. Show that 
c co 

6(x,t) = ? 
o 

dt' XS($,t')e- 
1T o 

where XS(,t) is the Fourier sine transform of the function x(x,t). 

2. The function u(p,t) satisfies the differential equation 

K2(t - t') sin (.)c) cl 

au 

á = K 
a2u i au 

ap pap 

for p > 0, and the initial condition u(p,0) = 0. Prove that, for t > 0, 

u t = 
t exp [ - P214K(t - t')] t, n2 /4K(t -t') r P? d 

co 

CP) 
o 2K(t - t') o 

1x(l) ° 
[2K(t 

? 

3. The function 0(p, t) satisfies the equation of Prob. 2 in the finite cylinder 
0 < p < a. If 6(a, t) = 0 for t.> 0, and if 6(p,0) = 0, show that 

-31.. 
- K(t - t' )? dt' 6(P t) = 

a2 [J1(a i)]2 X (,1't )e 
ft 

where the sum is taken over the positive roots of the equation Jo(ai) = 0 and 
where 

a 

X ($i, t) = 
0 

Px(P, t)J°(P i) dp 

Show that, in particular, if x(p,t) = f (t), then 

t 

6(P,t) = 2 J ° (Pi) _K(c -)t dt' a iJla(i) jf(t')et' 
4 . The slowing -down density O of neutrons in the infinite pile 0 < x < a, 

0 < y c b, - co < z < co satisfies an equation of the type 

ae 

ôt = p26 -I- S(r)U(t) 
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If O vanishes on the faces of the pile and is initially zero, show that 

8(r,t} = 
ab 
2 ? sin 

mrx 
sin 

rny 
a b 

n =1 m =1 
oo 

X U(t,) dt e-(2 +m2zr2/a2 +n27r2/b2)(t -t') S(,m,ï1)e -iz t j fot L. 
where 

1 a b 

cc' S = dx dy S(r) sin (1117rx) sin 
nay 

e.* dz 
471. Jo j'0 _CO a b 

Deduce the solution corresponding to a point source U(t) situated at the 
geometrical center (fia, -b,0) of the pile. 

MISCELLANEOUS PROBLEMS 

:. Heat is flowing along a thin straight bar whose cross section has area A and 
perimeter p. The conductivity of the material of the bar is K, and the rate 
at which heat is lost by radiation at the point x of the surface is H(0 -- 00) per 
unit area, where 0(x,t) is the temperature at a point in the bar and 00 is the 
temperature of its surroundings. If p, c are, respectively, the density and 
specific heat of the material of the bar, show that 0 satisfies the equation 

ao 

at 

where K = K /pc, h = Hp /cpA. 
Show that the substitution 

a20 

K 
ax2 - h(8 - 00) 

o -- 600 = cke -ht 

reduces this equation to the one -dimensional diffusion equation. 

2. Heat is flowing steadily along a thin straight semi- infinite bar one end of which 
is situated at the origin and maintained at a constant temperature. The bar 
radiates into a medium at zero temperature. Prove that if temperatures 01, 

02, 0a, ... are measured at a series of points on the bar at equal distances 
apart, then the ratios (0,._1 + 07+1)/0,. are constant. 

3. A spherical shell of internal and external radii r1, r2, respectively, has its inner 
and outer surfaces maintained at constant temperatures 01, 02; the conductivity 
of the material of the shell is a linear function of the temperature. Show that 
the heat flowing through the shell in unit time in the steady state is the same 
as if the conductivity were independent of temperature and had the value 
appropriate to the temperature (01 + Os). 

4. Prove that the diffusion equation 
a2 av 
axe at 

possesses solutions of the type 

x_2 
Y =Atn1F1 (_n;;_) 

4t 

where A and n are constants and 1F1(oc;ß;z) denotes the confluent hyper - 
geometric function of argument z and parameters a and P. 
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5. . Prove that every solution of the one -dimensional diffusion equation defined 
and continuous in the space -time region O < x < 1, O < t < T takes on its 
least and greatest values on t = O or on x = 0, x = 1. Deduce that : (a) the 
boundary value problem 

axa lao 
e(x,o) = 

O(x), 8(o,t) = (t), e(l,t) = g(t) axe Kat ' f g 

has a unique solution in the region 0 < x < 1, 0 < t < T; (b) the solution of 
the above boundary value problem depends continuously on the functions 
95(x), f (t), g(t). 

6. If the concentration c of one component diffusing in a two -phase medium is 
determined by the equations 

ac 
D1 axc , x < 0, ac = D2 a2c , x > 0 - 

at ax2 at axx 

the boundary conditions 

cl = kc2, D1 

and the initial condition 

ac ac 

ax -o 
DZ ax 

+0 

co x < 0 c= 
0 x>0 

at x = 0 

at t - 0, show that when x > 0, 

kDl x 
c = co 1 1 - erf 

kD -I- D1 2tDï 

and derive the corresponding expression for x < O. 

7. Assuming the temperature at a point on the earth's surface (assumed plane) 
to show a periodic variation from day to day given by 

0 = 00 + 01 cos cot 

investigate the penetration of these temperature variations into the earth's 
surface, and show that at a depth x the temperature fluctuates between the 
limits 

00 .± 01 exp ( -x Vc0 /2K) 

8. The conducting core of a Iong cable whose capacity and resistance per unit 
length are C and R, respectively, is grounded at one end, which may be taken 
to be infinitely distant. The other end x = 0 is raised to a potential Vo in 
the interval 0 < t < T and then lowered again to its initial zero value. If the 
interval T is short, prove that the current in the cable is 

T Vo 
C [CRX2 l - cxx2l4t 

Rnt 4t2 t 

Hence show that the maximum value of the current at a point with co- 
ordinate x is proportional to X-3. 

9. The sphere r = b is maintained at zero temperature, and the sphere r = a < b 
is heated in such a way that its temperature at time t is ges2t, s and q being 
constants. The space between the two spheres is filled with a conducting 
material. Find the temperature at time t at any point between the spheres. 
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2 

10. Show that the solution of the equation 
a 

ôx2 

8 a 

at 
satisfying the conditions : 

(i) O -+ Oast -* co, 

(ii) O = 0 when x = ±a for all values of t > 0, 

(iii) O = x when t = O and -a < x < a 
is 

0 = 
n= 

11. By use of Fourier series, or otherwise, find a solution of the one- dimensional 
diffusion equation satisfying the following conditions : 

(i) O is bounded as t - co ; 

(ii) aa/ ax = 0 for all values of t when x = O and when x = a; 
(iii) O = x(a - x) when t = 0 and 0 < x < a. 

12. Solve a0/ at = a2(a2O/ axe) given that : 

(i) O is finite when t = + co ; 

(ii) O = 0 when x = 0 and x = ir, for all values of t; 
(iii) 9 = x from x = 0 to x = n when t = O. 

13. A uniform rod of length a whose surface is thermally insulated is initially at 
temperature O = 00. At time t = O one end is suddenly cooled to temperature 
o = 0 and subsequently maintained at this temperature. The other end 
remains thermally insulated; show that the temperature at this end at time t 
is given by 

( 
1)n -1 (ni'rx\j12Tr2t 

sin )exp - 
n a a 2 

CO 

8 
40 ( -1)n 

ex 
(2n -F 1)2Kir2t 

TT 
n =02n + 1 

p 4a2 

where K is the thermometric conductivity (diffusivity). 

14. The boundaries of the rectangle O < x < a, 0 < y < b are maintained at 
zero temperature. If at t = 0 the temperature O has the prescribed value 
f'(x,y), show that for t > 0 the temperature at a point within the rectangle is 
given by 

CO co 

4 n2 (mn.x) (nirY 
s(x,y,t) = F(m,n) exp -Kt7r2 (a2 + 

b2 
sin 

a 
sin 

b m= n=1 

flfF(XY) where F(m,n) = sin mix sin dx dy 
a b 

15. The faces of the solid parallelepiped 0 < x < a, O < y < b, 0 < z < c 
are kept at zero temperature. If, initially, the temperature of the solid is given 
by 0(x,y,z,0) = f(x,y,z), show that at time t > 0 

where 

and 

co CO 

F, ,_ . . ..1.. - «t sin . mrx ny 
., : qrz 6(x,y,z;t) = . 

abc m=ln=1 q- 

a b c 

F(m,n,q) = f (x,y,z) sin )sin sin 
rrz 

dx dy dz 
,o 0 o a 

(m7'rx\ (nirY) 
b e 
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16. If the face x = a is kept at a constant temperature 60, the other faces being 
maintained at zero temperature, and if the initial temperature is zero, show that 
the steady -state temperature is 

o =166 
Tr 

2 
r=1 s=1 

where 

1 sinh (vx) 
sin (2r + i )iy 

sin (2s + 1)7rz 

(2r + 1)(2s + 1) sinh (va) b c 

y2 = 7r 2 1(2r + 1)2 (2s + 1)2 

b2 c2 

17. Show that the solution 6(p,z,t) of the diffusion equation for the semi -infinite 
cylinder 0 c p < a, z > 0 which satisfies the boundary conditions 

0 =0, z =0 0 <pZa,t >0 
6 =0, p =a z >0, t >0 

and the initial condition 

is 
6(p,z,0) = .f (z) 

Jo($Z)e -Ktg 

aiJ3.(ia) 
uz f (u) sinh 
2Kt 
e- u2¡4ict du foc° 

where the sum is taken over all the positive roots of the equation Jo(Ea) = O. 

18. The outer surfaces p = a, p = b (a > b) of an infinite cylinder are kept at zero 
temperature, and the initial temperature is 6(p,0) = f (p) (b < p < a). Show 
that at time t > 0 the temperature is given by 

$2 Jó($ib) f (i)e -,cty 

6(p,t) = 2 i 
Ja(a 2) 

- Jo(b Z) 
[J0(p$i)G0(a4i) Jo(a i)Go(p6. )] 

where f is defined to be 

b 

f = pf (p)[Jo(A)Go(c4i) -Jo(ai)Go(A)] dp 
a 

and l $2 ... are the positive roots of the transcendental equation 

Jo(b i)G0(a i) - Jo(a )Go(b$i) = 0 

19. Find the solution of 

for which 

ato ao 

axe 
, t > 0, 0 <x < aD 

6(x,0) = e --x 

0(0,t) = 0 

x>0 
t >0 

Note that e -x,"i is the Laplace transform of 

xe --x214t 

2-rrit 

20. The space x > 0 is filled with homogeneous material of thermometric con- 
ductivity K, the surface boundary x = 0 being impervious to heat. The 
temperature distribution at time t = 0 is given by 6 -= 60(1 - e - a2x). Find 
the temperature distribution at time t. 
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21. If 6(x,t) is the solution of the one - dimensional diffusion equation for the 
semi- infinite solid x > O which satisfies the conditions 0(0,0 = 60 cos (nt), 
8(x,0) = 0, show that 

6 = 60e-2z cos (nt - Ax) - 
where = rA/727. 

22. The function 8(x,t) satisfies the one -dimensional diffusion equation and is 
such that 6(x,0) = 60, a constant, and 

a co 

- e -ut sin 
77. o 

x 
u du 

u2 + n2 

Prove that 
(..) = he(o,a) 

ae 

8x =o ax x=0 

6 e0 erf 2 
V Kt + 

e--hu-(x+u)214Kt du 

23. Show by means of the Laplace transform 8(x,t) that the solution of the one - 
dimensional diffusion in the region O < x c a satisfying the conditions 

0(0,t) = f (t), 6(a, t) = 0, 6(x,0) _ O 

is given by the formula 

2rrrr nirx 
6(x,t) _ n sin f{T)e-n22K(t- r) dT 

n=1 a o 

24. The boundaries x = 0, y = 0 of the semi -infinite strip 0 c y c b, x > 0 are 
kept at zero temperature while the boundary y = b is kept at temperature O. 
If the initial temperature is zero, show that 

6(x,y,t) = 
260 

7T 

n7ry 28 

7r 

o w ( --1)n (niry\ 
sin + e -nx/ó si 

n b n 
n 

b 
n=" 

nry co e -Kt(p -}-n2n21b2) sin (,,x) 614 
1)n sin 

b (e n277.21b2) 

25. Show that the solution 6(r,t) of the boundary value problem 

a26 2 ae i ae 

are +rar u<r<a,t >0 

e(r,0) = 60 = const. O < r < a 

ae 
he = 0 

ar 

may be expressed in the form 

when r=a,t>0 

CO 

6(r, t) _ 2a20 0h ( 1) n-1 [ñ + (ah - 1)93: sin (rna) - Kntla2 

r q -4- ah(ah -Mn 
n=1 

where the sum is taken over the positive roots fix, 2, . , fin, . . . of the 
equation + (ah -1)tan 0 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


308 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS 

26. The distribution of temperature in an infinite solid is governed by the equation 

ae 

t v (t)e 96(r,t) 
a 

Transforming the equation (cf. Prob. 3 of Sec. I) and making use of the theory 
of Fourier transforms, show that if initially O = 00(r), then at time t > 0 

0 r t = 47rKt 
-4 exp 

a 

t' dt' f foo(r) ex ' 

ir - r'I2 
dT' 

0 4Kt 

t, 

t t exp [- f v(t") dt" 
+ (4wKt) -3 exp v(t') dt' °t, dt' 

0 o ( t ) 

Ir 
ß.'I2 

x f exp - 
t,) gr', t') dT' 

27. A point source of heat of strength Q is moving with velocity v(t) along the line 
x = a, z = 0 in an infinite solid. If initially the temperature of the solid is 
zero, show that at time t > 0 

- R2/4K(t --t') 
0(r,t) = Q 

g 

e 
dt' 

8pe(TTK)g (t - t )4 

with R2 = (x - a)2 + [y - t'v(t')]2 + z2. 
If the point source moves in the same way in the interior of the semi- infinite 

solid x > 0 whose boundary is kept at zero temperature, show that 
t 

e(rst) = 8pe( K ) [ 
R2/40 -t') 

i _ e--ax/K(t-t')] e de 
(t 
- t') 
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APPENDIX 

SYSTEMS OF SURFACES 

In Chap. 2 we made use of some of the properties of systems of surfaces. The 
object of this appendix is to provide a brief outline of such systems for the benefit 
of readers unacquainted with them. For a fuller account the reader is referred to 
R. J. T. Bell, "An Elementary Treatise on Coordinate Geometry of Three 
Dimensions," 2d ed. (Macmillan, London, 1931), pp. 307 -325. 

I. One- parameter Systems 

If the function f ( x,y,z,a) is a single -valued function possessing continuous partial 
derivatives of the first order with respect to each of its variables in a certain domain, 
then in xyz space the equation f ( x,y,z,a) = 0 (1) 

represents a one- parameter system of surfaces. 
We now fix attention on the member of this system which is given by a prescribed 

value of a and on the member corresponding to the slightly different value a + 3a, 

which will have equation f (x, y, z, a + 6a) = 0 (2) 

These two surfaces will intersect in a curve whose equations are (1) and (2), and it 
is easily seen that the curve may also be considered to be the intersection of the 
surface with equation (1) with the surface whose equation is 

6 
6a 

{ f (x, y, z, a + 8a) -f ( x,y,z,a)} = 0 (3) 

As the parameter difference da tends to zero, we see that this curve of intersection 
tends to a limiting position given by the equations 

a f (x,y,z,a) = o, áa f ( x,y,z,a) = 0 

This limiting curve is called the characteristic curve of the system on the surface (1) 
or, more loosely, the characteristic curve of (1). Geometrically it is the curve on 
the surface (1) approached by the intersection curve of (1) and (2) as 6a -4- O. 

As the parameter a varies, the characteristic curve (4) will trace out a surface 
whose equation 

(4) 

g(x,y,z) = 0 (5) 

is obtained by eliminating a between the equations (4). This surface is called the 
envelope of the one -parameter system (1). 

For example, the equation 
x2 -}- y2 -f - (z --- a)2 = 1 
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is the équation of the family of spheres of unit radius with centers on the z axis. 
Putting f = x2 + y2 4_ (z - a)2 - 1, we see that fa = z - a, so that the character- 
istic curve to the surface a is the circle 

z =a, x2 +y2 +(Z -Q)2 1 

and it follows immediately that the envelope of this family is the cylinder 
x2 + y2 = 1 

(cf. Fig. 48). In this particular case it is obvious that the envelope touches each 
member of the family along the appropriate characteristic curve. We shall now 
prove that this is true in general. 

, 
x(O,o,a), 

. 

Envelope 
x2 +y2 =1 

x r....oar..w1 
/ +1 

y2 +(z-a)2=1 

Figure 48 

Characteristic curve 
z=a, x2+y2 +(z-a)2=1 

y 

'Morena 1. Apart from singular points, the envelope touches each member of the 
parameter system of surfaces along the characteristic curve of the system on that 

rfm,nber. 
To prove this theorem consider the one -parameter system (1). Since it is a one - 

parameter system it follows that through any point P of the envelope there is one 
member of (1) whose characteristic curve passes through P(x,y,z). The direction 
cosines of the normal to this surface are proportional to (f , f,, fz). Now we may 
consider the envelope to be the surface 

f {x,y,z,a(x,y,z)} = 0 (6) 

where a(x,y,z) is determined from the equation 

L=o 
aa 

Now the direction cosines of the normal to the surface (6) are proportional to 

of of as of of as of of as 
ax aa ax ' ay ' aa ay' az + aa az 

(7) 
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which, on account of (7), reduce to (ff, fa,, fe). Hence the tangent planes to the 
surface and the envelope coincide. 

We have proved that along the appropriate characteristic curve the surface a 
and the envelope have the same values of (x,y,z,p,q). In Sec. 8 of Chap. 2 we saw 
that these numbers specify the characteristic strip of the surface a. We may there- 
fore think of the characteristic strip as being the set of small elements of tangent 
planes which the surface and the envelope have in common along the characteristic 
curve. 

The argument given above breaks down at singular points, i.e., at points at which 
fx = fil = fz = 0, but it is not difficult to show that such points lie on the locus (4). 
As a consequence singular loci appear in the result. 

2. Two -parameter Systems 

In a similar way we may discuss the two -parameter system of surfaces defined by 
the equation f ( x,y,z,a,b) = o (1) 

in which a and b are parameters. We consider first the one -parameter subsystem 

Characteristic 
curve Envelope 

Surface 

Figure 49 

obtained by taking b to be a prescribed function of a; e.g., 

b =0(a) (2) 

This in turn gives rise to an envelope obtained by eliminating a, b from equations 
(1) and (2) and the relation 

af af db 
aa + ab da 

(3) 

The characteristic curve of the subsystem on the surface (1) is given by equations 
(1) and (3), in which b has been substituted from (2). 

It should be observed that for every form of function 0(a) the characteristic curve 
of the subsystem on (1) passes through the point defined by the equations 

f= o, fa - o, fo = o (4) 

This point is called the characteristic point of the two- parameter system (1) on the 
particular surface (1). As the parameters a and b vary, this point generates a 
surface which is called the envelope of the surfaces (1). Its equation is obtained by 
eliminating a and b from the three equations comprising the set (4). 

As an example consider the equation 
(x- a)2+(y- ó)2+z2 =I (5) 
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where a and b are parameters. The two -parameter family corresponding to this 
equation is made up of all spheres of unit radius whose centers lie on the xy plane. 
In this instance the equations (4) assume the forms 

(x - a)2 + (y --- b)2 + z2 = 1, x - a = 0, y -- b = 0 

so that the characteristic points of the two -parameter system on the surface (1) are 
(a,b, ± 1). In other words, each sphere has two characteristic points. The envelope 
is readily seen to be the pair of parallel planes z = ±1. 

A subsystem of the two -parameter system (5) is obtained by taking b = 2a; 
the equation of this subsystem is 

(x - a)2 + (y - 2a)2 + z2 = 1 (6) 

The characteristic curve of this subsystem is the intersection of the sphere (6) with 
the plane 

x +2y =Sa (7) 

It is therefore a great circle through the center C(a,2a,0) of the sphere normal to 
the line OC. Its center lies on the line 

x y z 

T -z- ó (8) 

The equation of the envelope of this subsystem is obtained by eliminating a from 
equations (6) and (7). We find that the envelope is a right circular cylinder with 
axis (8) and unit radius. 

Corresponding to Theorem 1 for one -parameter families of surfaces we have: 
Theorem 2. The envelope of a two parameter system is touched at each of its 

points P by the surface of which P is the characteristic point. 
The proof is a simple extension of that for Theorem 1. We may consider the 

envelope to be the surface 
f {x,y,z,a(x,y,z),b(x,y,z)} -0 (9) 

where the functions a(x,y,z) and b(x,y,z) are defined by the relations 
fa = 0, fb = 0 (10) 

The direction cosines of the tangent plane tp the envelope at the point P(x,y,z) are 
therefore proportional to 

(af 
++fab, of +afaa afab of +afaa afab 

ax as ax ab ax ay as ay + ab ay az as az "F 6T) 
and, as a result of equations (10), these reduce to (fn, f,, f,), showing that the tangent 
plane to the envelope coincides with the tangent plane to the surface (1) at P, as we 
had to prove. 

3. The Edge of Regression 

We shall return now to a consideration of the one -parameter system of surfaces 
with equation 

f (x,y,z,a) = 0 (1) 

Then, as we showed in Sec. 1, the characteristic curve on (1) has equations 

f(x,y,z,a) = 0, ogx,y,z,a) = 0 (2) 
a 

where ç(x,y,z,a) = - f(x,y,z,a). The characteristic curve on a neighboring as . 

surface has equations 

f (x, y, z, a + 6a) - 0, 0(x, y, z, a + Sa) = 0 (3) 
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These two characteristic curves will intersect if the four equations (2) and (3) are 
consistent or if the equations (2) and 

1 

as {f (x, y, z, a + (5a) - f(x,y,z,a)} = O (4) 

1 { (x, y, z, a + 6a) - 0(x,y,z,a)} = O (5) 

are consistent. 
Both characteristic curves lie on the envelope of the system (1). If they intersect, 

the locus of their limiting point of intersection as 6a -j- O is called the edge of 
regression of the envelope of (1). It should be noted that this locus is a curve on 
the envelope. 

Letting 8a 0 in equations (4) and (5), we see that the characteristic curves will 
possess a limiting point of intersection if the equations 

f -0, 0 =0, fa -0, Oa =0 
are consistent; i.e., if 

.1 = 0, fa = 0, faa = 0 (6) 
are consistent. 

Since there are only three equations to be satisfied, it follows that in general 
there is always a solution. For this reason we say that "consecutive characteristic 
curves intersect" at a point given the equations (6). As the parameter a varies, 
this point generates the edge of regression; its equations are obtained by eliminating 
the parameter a in two different ways from the equations (6). The edge of regression 
has the property that it touches each of the characteristic curves of the system. 

To illustrate these remarks we consider the one -parameter system of planes 
whose equation is 

3a2x -- 3ay + z = a3 (7) 

in which a is a parameter. The characteristic curve of the system on the surface 
(7) has for its equations the equation (7) and 

a2 - tax + y = 0 (8) 

The envelope is found by eliminating a between equations (7) and (8). If we 
multiply equation (8) by a and subtract it from equation (7), we find that 

a2x = 2áy -z (9) 

and eliminating a from equations (8) and (9), we obtain the equation 

xy - z 
a 

Substituting this value for a in equation (7), we see that the envelope has equation 

(xy - z)2 = 4(x2 - y)(y2 - xz) 

For the edge of regression we have, in addition to equations (7) and (8), the 
equation a -- x = 0, so that the edge of regression has freedom equations 

x = a, y = a2, z = a3 

Alternatively it can be thought of as the intersection of the surfaces 

y2 = xz, xy = z 
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4. Ruled Surfaces 

We shall now consider briefly some of the properties of a ruled surface. A ruled 
surface is one which is generated by straight lines, which are themselves called 
generators. Typical examples are cones, cylinders, the hyperboloid of one sheet, 
the hyperbolic paraboloid. We distinguish between two kinds of ruled surface. 
A developable surface is a ruled surface of which "consecutive generators intersect;" 
a ruled surface which is not developable is called a skew surface. Cones are develop- 
able, though they are not typical examples, since any two generators intersect, not 
merely two consecutive generators. Hyperboloids of one sheet and hyperbolic 
paraboloids are skew surfaces. 

A developable surface is so called because it can be "developed" into a 
plane in the sense that it can be deformed into a part of a plane without 

stretching or tearing. To see this we 
consider a set of "consecutive genera- 
tors" A1, 2.2, 23, ... on a developable 
surface. They intersect as shown in 
Fig. 50, and the surface consists of 
small plane elements 71, 77.2, 7r3, 

. . . . 

The element i1 can be rotated about 
the line A2 until it is coplanar with 7r e. 

The area ir1 + 7r2 can now be rotated 
about A3 until it is brought into the plane 
T3. We can proceed thus until the whole 
surface is developed into part of a plane. 

There are two results about develop- 
able surfaces which are of value in the 
theory of partial differential equations : 

Theorem 3. The envelope of a one - 
parameterfamily of planes is a develop- 
able surface. 

To prove this theorem we note that 
the equation of a one- parameter family 
of planes may be written in the form 

x + ay + .f (a) z + g(a) = 0 (1) 

The characteristic curve is determined 
by 

X5 

Figure 50 
y + .1 '(a)z + g'(a) = 0 (2) 

together with equation (1). Since the characteristic curve is the intersection of the 
planes (1) and (2), it is a straight line. The envelope which is generated by it is 
therefore a ruled surface. This straight line intersects its consecutive in a point 
given by the equations (1), (2), and 

f "(a)z + g "(a) = 0 
(3) 

Since "consecutive generators intersect" at this point, the envelope is a developable 
surface. 

Theorem 4. The edge of regression of a developable surface touches the generators. 
This theorem follows from the fact that a developable surface consists of two 

sheets which meet one another at a cuspidal edge, one sheet being generated by the 
forward tangents to the edge of regression, the other sheet by backward tangents. 
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SOLUTIONS TO THE 
ODD-NUMBERED PROBLEMS 

Chapter 1 

12 m2 
1.p2 

a 
+ 

b 

n2 

c 

Section 1 

Section 3 

1. x + y + z =c1, xyz =c2 
3. (x + y)(z + 1) = (x - y)(z - 1) = c2 

Section 4 

1. The orthogonal trajectories are the intersections of the system fyz + d = kx 
(k a parameter) with the surface x2 + y2 + 2fyz + d = O. 

3. The orthogonal trajectories are the curves 

3z+2 x- 1 =c1, 2y =x2 
x 

5. The orthogonal trajectories are the curves 

x +c1 =z+ 1 - 1 

6z 2z 
(x+y 

)z 
=1 

Section 5 
1. Integrable; xy + z2 = c. 

3. Integrable; xy2 = cz3. 

5. The equation is not integrable. 

Section 6 
1. (a -- x)2 + z = y(c - y) 
3. yz+zx+xy=c(x+y+z) 
5. yz+1 =(xy+1)(cy+1) 

7. y2 + z2 2yz = C 
x 

Miscellaneous Problems 

1. (a) x2y2z3 - c1, 
(x3 + ,ÿ3)23 `r c2 

(b) y = c1x, x2 + / + z2 = c2x 

(c) x -y =c1, xy +yz +zx =c2 
3. The integral curves are given by the equations 

xz + ay = c1(az --- xy), (xz + ay)y = (C2 - z)(az -xy) 
from which it follows that they are the intersections of the quadrics xz + ay 
= c1(az -xy) by the planes c1y + z = c2 and are therefore conics. 

3!5 
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5. y2 . - 2z, y = clex-x 

7. x2 - y2 = 2az, (x -- y)2 + 2z2 .= c1 

.13. x( i.x2 -- y2) =ci xy = z 

Chapter 2 

1. (a) pq = z 

(b) px+qy=q2 
(c) z(px + qy) = z2 - 1 

1. x2 + y2 + z2 = f (xy) 
3. (x + y)(x + y + z) = f (xy) 
5. F(x2 + .y2 - Z2, xy + z) = o 

Section 2 

Section 4 

Section 5 
1. X2 + y2 - 2x - z2 -- 4z 

3. z3(x3 + y3)2 = a9 (x - y)3 

5. (x - y + z)2 + z4(x + y `- z)2 - 2z2(x -y + z) 

Section 6 

1. (x2 + y2 + 4z2)(x2 - y2)2 = a4(x2 + y2) 

3. The general equation is 

x2 + y2 + z2 = zf 

- 2z4(x '+ y + z) = 0 

2x2 ,+. y2 

Z2 

The case quoted is obtained by taking f () to be constant. 
(x2 + y2 + Z2)2 = c1(2X2 + y2) 

1. (x -f - y - z)2 = 4xy 
Section 7 

Section 8 

1. Characteristics: 
x = 2v(et -- 1), y = iv(et + 1), z = v2e2t; 

16z = (4y + x)2 

3. Characteristics: 
x= 242 - e-1), y= 2A/1)(e-4 - 1), z= -, Ute-2 t; 

4z + (x + Viy)2 = 0 

1. z =x +c1(1 +xy) 

1. (x + b)2 + yt = az2 

3. z = bxayt/a 

Section 9 

Section 10 

9 
-- 5. z = (y + Oa -}- 

1 12 
2- + besix2 

3x 

7. z -= 
ax +b 
y y 

a2 

4y3 
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Section 11 

1. z =ax + ay +b a-1 
3. z2 = 2(a + 1 ) x + Y + b 

a 

5. z = i(x2 + a2) ;- (y2 --- a2)1 + b 

Section 12 

1. (x + ay -- z + b)2 = 4bx, xy = z(y -- 2) 

5. (x - a)2 + ,y2. + z2 - 2by = 0, (y2 + 4y + 2z2)2 = 8x2y2 

Section 13 

3. u =(ax2 -b)i +ay2 + 56 + c 

Section 14 

2-fr mt 
1. .7, _ no cos T x - 7))2 

3. Pit(t) = 
(Al ß)n r o e.110 - 1) 

Miscellaneous Problems 
3. ,f() =2 +1 
5. p2 + q2 = tant y 
7. (x2 + y)(Xz - y) -zy 
9. The integral surfaces are generated by the curves 

x2 + y2 - a2 - C1Z2, 

which are obviously conics; 
3Z2(x2 + y2) = x2(x2 + y2 - a2) 

11. f [(x + y)z, lx2 + my2 + nz2] = O 

lx2 + my2 + nz2 = (x + y)z[(1l + 4m + n) + 2(l - m)(x + y)z 

+ 4(l + m)(x + y)222] 

y = c2x 

13. z - ax + ay = b[(x + y)2 - 8a] 

15. 2z Vx2 -a + b = x2 + 2y2 -f- z2 

17. xz = ay + b(1 - ax) 

19. z2 = x2(2y2 - 1) 

21. 4 x2 z2 = (x3 -I- 2y) 2 

Chapter 3 Section 3 

= 
kx 

2k Y2 - kx 
5. x c+ ± k l ' Qy c+ 

a a a 

Section 4 

3. z = fi(x + y) + f 2(x - y) + f3(2x -f- y) -2 xeci>" 

5. z = s (log x)3 + fi (-x) + f2(xy) 
Y 
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Section 5 
x y 

1. z = 
o 

ca 
o 
f(,r) chi + fi(x) + f2(y) 

z = xy(xy + 1) + f1(x) + f2(y) 
3. If the equation 

R(c) 
d 2 

2 + P(c) 
dz 

dx dx 
Z(c)z = W(x,c) 

has solution z = c3 f (x,c) + c2g(x,c), then the given equation has solution 

5.z= 

z = fi(y) f (x,y) + f2(y)g(x,y) ; 

ex 
Z = 

(1 + y )2+ .f1(y)eW 
xv + f2(Y)e- xl3l 

(x2 - y2) fi(x2 + y2) +f2(x2 + y2) 

Section 6 

3. (x - 31ut)3 = Ct, where C is a constant. 

Section 7 

1. (a) Parabolic; (b) hyperbolic; (c) elliptic; (d) elliptic; (e) parabolic. 

Section 8 

3. z = x log 
x(x + y) y(x + y) 

x2 +1 y2-} -1 

5. z = 2x3 - 3x2y + 3xy2 - 2y3 

n 

3. V = en r 
a 

cos (n6) 

3. z(x,y) = k 1 - erf 
y 

2V.Tc 

2 s 
where erf (0 ----- - e -u2 du. 

o 

3. y = ok(i) + z11(x) 

5. y = f (x + z) + g(z) 

Section 9 

Section 10 

Section 11 

Miscellaneous Problems 

3. 0 r - 2 (Bx -- Ay), Tre = CIO = O 
r2 

5. z = xf1(y) + yf 2(x) 
(n 1)xyn-1 xn-1 

z -- 
n -2 

7. z = ixy3 + f(y + 2ix) + g(y - 2ix) 

z = y2 - 4x2 + 3 x3y 
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Chapter 4 Section 2 

3. The potential is due to : (a) a uniform density p = 3 /(2ir) of matter within the 
sphere r = a; (b) a surface density a = -3(4x2 - y2 - z2) /(4ira) on the 
sphere r = a. 

5. I-(k + 1) 

1. A log {(x2 

Section 3 

+ 2)2 - 2a2(x2 _ y2) + a4} + B 

Section 6 
1.If0<8<i-rr,r<a, 

co 

-4)72* 

2n 

t1 = 2?raa 
a 

P 2n(COS 8) -- 2rvz 
ni 

n=0 
but if r > a, 

co 

V = 27raa 

n=0 
1) t r P2n(cos 9) 

where (a)n = a(a + 1) (a + n -- 1). 

Section 7 

1. If the polar axis is taken along the direction of the field, 
3 

tp = -E 1- 3 rcosO 
r 

3. If the polar axis is taken along the direction of the uniform stream, 
3 

- -U 1 + a2 r cos 9 
2r 

Section 12 

1. + iy1 = (1 - 2i)(sin z + z2), z = x + iy 

Miscellaneous Problems 

23. 
6irow(a2 - ai) 

c(u + 2) 

27. The potential at a point distant r ( <a) from the center is 
co 

2?ry11 ( -1)n ( -Dn _ 1 r2nP2n(cos 9) 
n! b2n- 2 +-1 Q2n--1 

n=0 

Q < r < a < b. The magnitude of the attraction at a point in the plane of 
the disk distant r ( <a) from the center is 

47' r cr 

( D -- 1( -D n-1 1 

r 
2n 

+ i ) } (a2n+3 b2n-3 
n=0 

33. The potential at an external point is 

m(r -f) ( , u - 1)am(p f) (u -- 1)a ri m'(gyp -f)A- 
141(1.4 +1)en, 

it `fia (ju +1)r I - I 
+02r Jo -fl 
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39. The complex potential is 
4 

w = -m log (z2 - c2) -m log z2 -- -§) + 2m log z 
c 

41. (a) tp = I coc2e2(« -4) cos 2rß, where x = e cosh 4 cos n 

y = c sinh sin 77, a = c cosh a, b = c sinh a 

(b) 1,0 = ce(« - )(V cosh a cos 17 -U sinh a sin 77) 

(c) ' = ¡wc2e2(oc - cos 2n + cae« - (x0 cosh a cos 77 + yo sinh a sin i ) 

45. The complex potential is w = 2m log (erzIb - 1). 

49. z = sinh 
7 

2a 

51. u 
2y z cos O + a sin 8 2y sin O 

r 
Tr rR , uz 

= 
7rR 

where 

Chapter 5 

R4 = (r2 + z2 - a2)2 + 4a2r2, 

Section 4 

tan 26 = 
r2 -+- z2 - 

2ar 

16ya (_ ir+ s (2r + 1)rr (2s + 1)r , (2r + 1)7rx 
3. z= 

r3 i2r + 1)(2S + 1) a 
sin 

8 
sin 

8 
sm 

a r=0 s=0 rs 

where 

3. ip 

3. 

1. 
[(cp + ctPl)2 -I- Q2m2p- 

X sin 
(2s + 1)7ry 

Sin arsCt - 
a a 

a2s = (2r + 1)2 + (2s + i)2 

aA sin (kr) cos (kct) 
kcr sin (ka) 

0 

K[a2 - (r - ct)2] 

4cr 

0 

2acp 

Section 5 

Section 6 

r --ct>a 

-a<r ---ct<a 

r -ct< -a 
r -ct > a 

- -a <r - ct <a 

r - ct < -a 

Miscellaneous problems 
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7. y = - 4 / 
irpC 
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i sir sir sirx . 

s 
sin 

6 
cos 2 sin sin 

1 
9. u = 

12xt(x2 t2) 

19. ir (57 1 

31. --ii f (x')H (á)(k p) dx' 
L1 

35. The amplitude of the reflected wave is 

sin 2« - sin 2ß 
sin 2« + sin 2ß 

where 'e- sin ß = sin a. 

37. .f {0 = 2C f sidi j2 v2e-ik dv 
a 

Chapter 6 Section 4 

4- (2r-F1)2kt 1. 0 = 
(Zr 1)2 sin (2r + 1)x.e` 

r =1 

Section 5 

1 
r+i00 sinh isi(a - x)} e 4t ds 1. = Zi J 

(s) 
[k- 

sinh sinh (K-isia) 

,-Z2 
5. (62 + 4vt) -i exp 2 - 4vt 

Section 6 

1. (a) If 9(a,t) = O1(t), 9(b,t) = O2(t), 9(x,0) = f (x), then 
b t 

L 9(x,t) = i G(x,t) f (x) dx + x (1(t') 
ax' a t0 x -a 

where the Green's function G(x,t) satisfies 

Gt = KGxx, 

G(x,O) = 0 

- 02(0 
aG 

âx x' =b 

G(a,t) = G(b,t) = 0 t > 0 

a<x<b 
i c° (b) ©(x, t) _ f (x') [e - (x -x')2¡4Kt _ 

2 rrx 0 

e-(x+x')214Kt] dx' 

e -x2/4K(t -t) 
+ 2 t 

0() 
(t - 03 dt' 

x 

dt' 

Miscellaneous Problems 

3. If k = ko + k19, then the flux of heat through the shell is 

Q = 4701 - 02)[k0 + 2k1(01 + 02)1r ir2 

r1 - r2 
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co if co i 
7. 0 = 80 + 81 exp [-(;;) x cos wt _ 

(;;) 
x 

gae8$t sinh [s(b - r)K-i] 
9. 8(r,t) - r sinh [s(b - a)K--i] 

r-1 

19. 8(x,t) - et-x - 

1 
cos 

(2irrx'e-4,r2r$Ktla$ 
r2 a 

t t xet e-T-$14T T dr 
2 r o 
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Courant; R., 231 
Crack problems, 179 
Curves, 3, 10 

systems of, 15 
Cylindrical waves, 236 

D function, 254 
Damped oscillations, 266 
Developable surface, 314 
Dielectric constant, 143 
Dielectrics, 143 
Diffraction, 246 
Diffusion of vorticity, 276 
Diffusion coefficient, 276 
Diffusion equation, 91, 139, 275 -308 

elementary solution of, 282 
Green's function for, 294 -298 
with sources, 299 -302 

Dipole, 143 
Dirac delta function, 252 
Direction cosines, 4 
Dirichlet's principle, 175 
Dirichlet's problem, 151, 169, 174 

for circle, 195 
for half plane, 195 
for semi -infinite space, 170 
for sphere, 171 
for two dimensions, 193 -196 

Discriminant, 106 
Diverging wave, 235 
Domain, of dependence, 224 

of influence, 224 
Dual integral equations, 179 
Duhamel's theorem, 279 
Dynamical systems, 8 

Earth's temperature, 304 
Edge of regression, 313 
Eigenvalue, 228 
Eigenvalue problems, 231 
Elastic solid, 95, 136, 213 
Electrical double layer, 148 
Electrified disk, 175 
Electrode, 143 
Electromagnetic pulse, 294 
Electromagnetic waves, 212, 234, 236, 

249, 252, 270 -273 
Electrostatic energy, 158 
Electrostatic field, 92 
Electrostatic potential, 142 
Electrostatics, 141, 158, 162, 167, 188 

Elementary solutions, of diffusion equa- 
tion, 282 

of Laplace's equation, 145 
of wave equation, 215 

Elliptic equation, 108, 118 
Ellis, C. D., 7n. 
Envelope, 309, 312 
Equations, with constant coefficients, 

96 -104 
with variable coefficients, 105 -109 
(See also specific equations) 

Equipotential surfaces, 148 
Error function, 284 
Euler- Lagrange equation, 174 
Evans, G. C., 146n. 
Exact equation, 19 
Existence of solutions, 9, 48 
Expanding gas cloud, 262 

Feller, W., 82n. 
Feshbach, H., 164n. 
Finite transforms, 229 
Fink's law, 276 
First law of thermodynamics, 39 
Flexural vibrations, 266 
Flux of heat, 275 
Fokker -Planck equation, 82 
Forsyth, A. R., 134n. 
Fourier cosine transform, 128 
Fourier series, 160, 219, 242 
Fourier sine transform, 128 
Fourier transform, 128 
Fourier's solution, 293 
Fourier -Bessel series, 160, 229 
Franklin, P., 120 

Gallop, J., 177 
Gas -thermometer scale, 41 
Gauss' law, 92 
Gauss' theorem, 144 
General integral, 49, 60 
General solution, 49 
Generalized form of Green's theorem, 

122 
Generation of heat, 275 
Generator, 314 
Gillespie, R. P., 181n. 
Golomb, M., 9, 15n., 126 
Goursat, E., 9n. 
Gravitation, 141 
Green, G., 175n. 
Green's equivalent layer, 148 
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Green's function, 120, 121 
for diffusion equation, 294 -298 
for Laplace's equation, 167 -174 
for two -dimensional equation, 

193 -196 
for wave equation, 222, 244 -248 

Green's theorem, 92, 148, 167 
generalized form, 122 

Group velocity, 236 

Hamilton- Jacobi equation, 81 
Hamiltonian function, 8, 81 
Hankel functions, 237 
Hankel transform, 128 
Harmonic equation, 92 

(See also Laplace's equation) 
Harmonic oscillator, 8 

Harnack's theorems, 196, 197 
Heat function, 275 
Heaviside's unit function, 266 
Heavy string, 8 

Helmholtz's equation, 219 
Helmholtz's solution, 239 
Helmholtz's theorems, 240 
Hencky -Mises condition, 95, 136 
Hilbert, D., 111, 231 
Homogeneous equations, 28 
Hydration of cement, 275 
Hyperbolic equation, 108, 118 

Image system, 167 
Incompressible fluid, 187 
Inductance, 91 
Integrable equations, 19, 21 
Integral equations, 178, 183 
Integral strip, 63, 110 
Integral surface, circumscribing given 

surface, 76 
passing through curve, 56, 73 

Integral transforms, 126 -131 
Integrating factor, 19, 21 
Internal energy, 40 
Inversion, 152, 164 
Inversion theorem, 127 

Kelvin's, 164 
Irreducible equations, 102 
Irreducible operator, 98 
Irrotational motion, 142, 157 

Jacobi's method, 78 
Jaeger, J. C., 275n. 

Jost, W., 276n. 
Joule's law, 39 

Kelvin's inversion theorem, 164 
Kelvin's theorem on harmonic functions, 

197 
King, L. V., 177 
Kirchhoff's solution, 239 
Kirchhoff's theorems, 242 
Kober, H., 192 
Kowalewski, S., 49 

Lagrange's equation, 50 
Lamb, H., 95n. 
Lamé's constants, 213 
Landé, A., 39n. 
Laplace transform, 128, 290, 297 
Laplace's equation, 92, 109, 141 -208 

elementary solution of, 145 
Green's function for, 167 -174 

Laplacian operator, 93, 164 
Lass, H., 21n., 93n., 148n., 
Laurent's series, 162 
Legendre functions, 156 
Legendre polynomials, 156 
Legendre series, 157, 162, 173 
Legendre's associated equation, 156 
Legendre's associated functions, 157 
Legendre's differential equation, 156 
Lienard -Wichert potentials, 253 
Linear equations, 47, 89 

of first order, 49 
Linear hyperbolic equations, 119 
Liouville's theorem, 197 
Lipschitz's condition, 9, 119 
Love, A. E. H., 95n. 
Logarithmic potential, 182 
Longitudinal sound waves, 210, 257 

MacDonald, H. M., 177 
Magnetostatics, 143 
Markhoff process, 82 
Maxwell's equations, 93, 212, 252, 270, 

271, 277 
Mean value, 243 
Mechanical work, 39 
Membrane, vibrations of, 139, 211, 

226 -232 
Milne -Thompson, L. M., 192n. 
Mixed boundary value problems, 

175 -179 
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Monge's method, 131 
Monochromatic sound waves, 246, 248, 

269 
Morse, P. M., 164n. 
Muskhelishvili, N. I., 179, 183 

Natani's method, 30, 32 
Nehari, Z., 192 
Neumann's problem, 153 
Neutrons, 276 
Nonhomogeneous wave equation, 249 
Nonlinear equations, of first 

order, 59 
of second order, 131 
uniform, 132 

Normal to surface, 5 

One variable separable, 28 
Order of equation, 44 
Orthogonal surfaces, 57 
Orthogonal trajectories, 15 

Parabolic equation, 108, 118 
Parametric equations, 2, 37 
Partial differential equation, 44 
Particular integral, 97 
Pfaffian differential equation, 18 -33 
Pfaffian differential form, 18 
Phase velocity, 236 
Pile, 302 
Plane element, 62 
Plastic body, 95 
Poincaré, H., 91 
Poincaré's solution, 243 
Poisson's equation, 92, 141, 257 
Poisson's integral, 172, 196, 283 
Poisson's ratio, 95 
Poisson's solution, 239, 243 
Potential of a disk, 139 
Potential equation (see Laplace's 

equation) 
Primitive, 21 
Punching problems, 179 

Quantity of heat, 40 
Quantum electrodynamics, 254 
Quasi -linear equation, 132 

Radiation from surface, 144, 275 
Radioactive decay, 7, 275 
Reciprocal cone, 118n. 

Reducible operator, 98 
Reduction to an ordinary equation, 31 
Riemann invariants, 258 
Riemann's method, 119 
Riemann -Green function, 121 
Riemann- Liouville integral, 254 
Riemann- Volterra solution, 221 -226, 258 
Retarded potential, 251 
Retarded value, 251 
Riesz, M., 254 
Riesz's integrals, 254 -257 
Ruled surface, 314 
Rutherford, E., .7 

Scalar potential, 212, 252 
Second law of thermodynamics, 41 
Second -order equations in physics, 90 
Self adjoint operator, 123, 222 
Separable equations, 72 
Separation of variables, 123, 156, 227 
Shanks, M. E., 9, 15n., 126 
Simple wave, 258 
Simultaneous differential equations, 7 
Singular integral, 60 
Singular integral equations, 179, 183 
Singular points, 310 
Skew surface, 314 
Slow motion of viscous fluid, 95 
Slowing down of neutrons, 276 
Slowing -down density, 276 
Sneddon, I. N., 127n., 156n., 159n., 179, 

229, 234n., 251, 276n., 278n., 293n. 
Soddy, F., 7 
Solutions, elementary (See Elementary 

solutions) 
existence of, 9, 48 
general, 49 
satisfying given conditions, 73 
(See also specific solutions) 

Sound waves, 94, 210, 211, 233, 235, 
236, 246, 257 

longitudinal, 210, 257 
monochromatic, 246, 248, 269 

Source function, 275, 299 
Space form of wave equation, 209 
Spherical Bessel functions, 234 
Steady currents, 143 
Steady flow of heat, 144 
Stieltjes measure, 147 
Stieltjes potentials, 146 
Stochastic processes, 82 
Stratton, J. A., 234 
Stream function, 187 
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Streamline, 187. 
Stress, 95 
String, vibrations of, 209, 215 -220, 265 
Subsidiary equations, 69 
Surface waves, 144 
Surfaces, 1, 15, 309 

characteristic, 117 
developable, 314 
integral 56, 75, 76 
orthogonal, 57 
radiation from, 144, 275 
skew, 314 
systems of, 309, 3 11 

Symbolic age, 276 
Systems, of curves, 15 

dynamical, 8 
of surfaces, one -parameter, 309 

two -parameter, 311 

Tangent to curve, 4 
Telegraphy equation, 91 
Theory of functions, 184 
Thermal conductivity, 274 
Thermodynamical variables, 40 
Thermodynamics, 39-42 
Titchmarsh, E. C., 127n., 177n. 
Transport equations, 276 
Thinking problems, 83 

Uniform nonlinear equation, 132 
Uniqueness theorem, 9, 48 

Vanishing flux, 181 
Variables, separation of, 123, 156, 227 

thermodynamical, 40 
Variables, separable, 27 
Variational methods (see Calculus of 

variations) 
Vector potential, 212, 252 
Velocity potential, 142, 187 
Vibrations, of bar, 210, 266 

flexural, 266 
of heavy chain, 93 
of membrane, 139, 211, 226 -232 
of string, 209, 215 --220, 265 

Viscous fluid, 95, 276 
slow motion of, 95 

Vorticity, 186, 276 

Watson, G. N., 160n., 179n., 229n., _,...... 
Wave equation, 92, 135, 209-273 

Cauchy's problem for, 221 
elementary solution of, 215 
Green's function for, 222, 244 -248 
nonhomogeneous, 249 
space form of, 209 

Waves of finite amplitude, 257 
(See also Electromagnetic waves) 

Weber, H., 177 
Weber's theorem, 241 
Weinstock, R., 174n., 230n. 
Weiss, P., 165 

Young's modulus, 210 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com


 

r: ; L/ t 

eared toward students of applied rather than 
pure mathematics, this volume introduces 

elements of partial differential equations. Its focus 
is primarily upon finding solutions to particular 
equations rather than general theory. 

Topics include ordinary differential equations in more 
than two variables, partial differential equations 
of the first and second orders, Laplace's equation, 
the wave equation, and the diffusion equation. 
A helpful Appendix offers information on systems 
of surfaces, and solutions to the odd -numbered 
problems appear at the end of the book. Readers 
pursuing independent study will particularly 
appreciate the worked examples that appear 
throughout the text. 

Dover (2006) unabridged republication of 
the edition published by McGraw -Hill Book 
Company, New York, 1957. Appendix. 
Solutions to the Odd- numbered Problems. 
Index. 336pp. 5% x 8%. Paperbound. 

See every Dover book in print at 
www.doverpublications.com 

$18.95 USA 
$28.50 CANAD _. 

r 

9 

ISBN 0 486 45297 2 

780486 452975 

51895 

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

http://www.cvisiontech.com

	Cover
	ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS
	Copyright
	ISBN 0 -486- 45297 -2
	QA374.S6 2006 515'.353-dc22
	LCCN 2006045445

	PREFACE
	CONTENTS
	Chapter 1  ORDINARY DIFFERENTIAL EQUATIONS IN MORE THAN TWO VARIABLES
	1. Surfaces and Curves in Three Dimensions
	PROBLEMS

	2. Simultaneous Differential Equations of the First Order and the First Degree in Three Variables
	3. Methods of Solution of dx/P = dy/Q = dz /R
	PROBLEMS

	4. Orthogonal Trajectories of a System of Curves on a Surface
	PROBLEMS

	5. Pfaffian Differential Forms and Equations
	PROBLEMS

	6. Solution of Pfaffian Differential Equations in Three Variables
	(a) By Inspection
	(b) Variables Separable.
	(c) One Variable Separable
	(d) Homogeneous Equations
	(e). Natani's Method
	(f) Reduction to an Ordinary Differential Equation.
	PROBLEMS

	7. Carathéodory's Theorem
	8. Application. to Thermodynamics
	MISCELLANEOUS PROBLEMS

	Chapter 2  PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER
	1. Partial Differential Equations
	2. Origins of First -order Partial Differential Equations
	PROBLEMS

	3. Cauchy's Problem for First -order Equations
	4. Linear Equations of the First Order
	PROBLEMS

	5. Integral Surfaces Passing through a Given Curve
	PROBLEMS

	6. Surfaces Orthogonal to a Given System of Surfaces
	PROBLEMS

	7. Nonlinear Partial Differential Equations of the First Order
	PROBLEMS

	8. Cauchy's Method of Characteristics
	PROBLEMS

	9. Compatible Systems of First -order Equations
	PROBLEMS

	10. Charpit's Method
	PROBLEMS

	11. Special Types of First -order Equations
	PROBLEMS

	12. Solutions Satisfying Given Conditions
	PROBLEMS

	13. Jacobi's Method
	PROBLEMS

	14. Applications of First -order Equations
	PROBLEMS

	MISCELLANEOUS PROBLEMS

	Chapter 3  PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER
	1. The Origin of Second -order Equations
	PROBLEMS

	2. Second -order Equations in Physics
	PROBLEMS

	3. Higher -order Equations in Physics
	PROBLEMS

	4. Linear Partial Differential Equations with Constant Coefficients
	PROBLEMS

	5. Equations with Variable Coefficients
	PROBLEMS

	6. Characteristic Curves of Second -order Equations
	PROBLEMS

	7. Characteristics of Equations in Three Variables
	PROBLEMS

	8. The Solution of Linear Hyperbolic Equations
	PROBLEMS

	9. Separation of Variables
	PROBLEMS

	10. The Method of Integral Transforms
	PROBLEMS

	11. Nonlinear Equations of the Second Order
	PROBLEMS

	MISCELLANEOUS PROBLEMS

	Chapter 4  LAPLACE'S EQUATION
	1. The Occurrence of Laplace's Equation in Physics
	PROBLEMS

	2. Elementary Solutions of Laplace's Equation
	PROBLEMS

	3. Families of Equipotential Surfaces
	PROBLEMS

	4. Boundary Value Problems
	PROBLEMS

	5. Separation of Variables
	PROBLEMS

	6. Problems with Axial Symmetry
	PROBLEMS

	7. Kelvin's Inversion Theorem
	PROBLEMS

	8. The Theory of Green's Function for Laplace's Equation
	PROBLEMS

	9. The Relation of Dirichlet's Problem to the Calculus of Variations
	10. "Mixed" Boundary Value Problems
	PROBLEMS

	11. The Two -dimensional Laplace Equation
	PROBLEMS

	12. Relation of the Logarithmic Potential to the Theory of Functions
	PROBLEMS

	13. Green's Function for the Two -dimensional Equation
	PROBLEMS

	MISCELLANEOUS PROBLEMS

	Chapter 5  THE WAVE EQUATION
	1. The Occurrence of the Wave Equation in Physics
	PROBLEMS

	2. Elementary Solutions of the One -dimensional Wave Equation
	PROBLEMS

	3. The Riemann- Volterra Solution of the One -dimensional Wave Equation
	PROBLEMS

	4. Vibrating Membranes: Application of the Calculus of Variations
	PROBLEMS

	5. Three -dimensional Problems
	PROBLEMS

	6. General Solutions of the Wave Equation
	PROBLEMS

	7. Green's Function for the Wave Equation
	PROBLEMS

	8. The Nonhomogeneous Wave Equation
	PROBLEMS

	9. Riesz's Integrals
	PROBLEMS

	10. The Propagation of Sound Waves of Finite Amplitude
	PROBLEMS

	MISCELLANEOUS PROBLEMS

	Chapter 6  THE DIFFUSION EQUATION
	1. The Occurrence of the Diffusion Equation in Physics
	PROBLEMS

	2. The Resolution of Boundary Value Problems for the Diffusion Equation
	PROBLEMS'

	3. Elementary Solutions of the Diffusion Equation
	PROBLEMS

	4. Separation of Variables
	PROBLEMS

	5. The Use of Integral Transforms
	PROBLEMS

	6. The Use of Green's Functions
	PROBLEMS

	7. The Diffusion Equation with Sources
	PROBLEMS

	MISCELLANEOUS PROBLEMS

	APPENDIX  SYSTEMS OF SURFACES
	1. One- parameter Systems
	2. Two -parameter Systems
	3. The Edge of Regression
	4. Ruled Surfaces

	SOLUTIONS TO THE ODD-NUMBERED PROBLEMS
	INDEX
	Back Cover



