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PREFACE

The aim of this book is to present the elements of the theory of
partial differential equations in a form suitable for the use of students
and research workers whose main interest in the subject lies in finding
solutions of particular equations rather than in the general theory.
In its present form it has developed from courses given by the author
over the last ten years to audiences of mathematicians, physicists,
and engineers in the University of Glasgow and the University College
of North Staffordshire, and to members of the Research Staff of the
English Electric Company at Stafford. It therefore caters for readers
primarily interested in applied rather than pure mathematics, but it is
hoped that it will be of interest to students of pure mathematics following
a first course in partial differential equations.

A number of worked examples have been included in the text to
aid readers working independently of a teacher. The problems
which are given to test the reader’s grasp of the text contain, in some
cases, additional theorems not considered in the body of the text.
Some of them are therefore merely statements of classical results;
the remainder have been taken from examination papers of the
University of Glasgow and are reproduced here by permission of the
Secretary of the University Court.

The author is indebted to a number of colleagues and students for
critical comments on the lectures upon which this book is based and
for reading portions of the manuscript. In particular, thanks are
due to Ben Noble and Keith Fitch, who worked through the entire
manuscript and checked the problems; to Janet Burchnall and
Valerie Cook, who prepared the manuscript for the press; to John
Lowndes, who devoted a great deal of time to reading the proof sheets;
and to Elizabeth Gildart, who prepared the index.

IaAN N. SNEDDON
Simson Professor of Mathematics
University of Glasgow


http://www.cvisiontech.com

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor


http://www.cvisiontech.com

CONTENTS

Preface

oooooooooooooooooooooooooooo

CHAPTER 1. ORDINARY DIFFERENTIAL EQUATIONS IN MORE THAN TwoO
VARIABLES

ooooooooooooooooooooo

. Surfaces and Curves in Three Dimensions . . . . . . . . . . .
Simultaneous Differential Equations of the First Order and the
First Degree in Three Variables. . . . . . . . . . . . . ..
Methods of Solution of dx/P =dy/Q =dz/R. . . . . . . . ..
Orthogonal Trajectories of a System of Curves on a Surface . .
Pfaffian Differential Forms and Equations . . . . . . . . . . .
Solution of Pfaffian Differential Equations in Three Variables. . .
Carathéodory’s Theorem. . . . . . . . . . . . . . . . . ..
Application to Thermodynamics . . . . . . . . . . . . . ..
Miscellaneous Problems . . . . . . . . . . .00 L

N e

XA R W

CHAPTER 2. PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST ORDER .

Partial Differential Equations. . . . . . . . . . . . . . . .,
Origins of First-order Partial Differential Equations . . . . . . .
Cauchy’s Problem for First-order Equations . . . . . . . . . .
Linear Equations of the First Order . . . . . . . . . . . . ..
Integral Surfaces Passing through a Given Curve . . . . . . . .
Surfaces Orthogonal to a Given System of Surfaces . . . . . . .
Nonlinear Partial Differential Equations of the First Order. . . .
Cauchy’s Method of Characteristics . . . . . . . . . . . . ..
. Compatible Systems of First-order Equations. . . . . . . . . .
10. Charpit’s Method . . . . . . . . . . . . ..o oL
11. Special Types of First-order Equations. . . . . . . . . . . ..
12. Solutions Satisfying Given Conditions . . . . . . . . . . . ..
13. Jacobi’'s Method . . . . . . . . . .00 o000 0L
14. Applications of First-order Equations . . . . . . . . . . . ..
Miscellaneous Problems . . . . . . . . . . . . . .. .. ..

WX NN R L=

CHAPTER 3. PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

1. The Origin of Second-order Equations. . . . . . . . . . . ..
2. Second-order Equations in Physics . . . . . . . . . .. . ..
3. Higher-order Equations in Physics . . . . . . . . . . .. .o

88


http://www.cvisiontech.com

vi CONTENTS

4. Linear Partial Differential Equations with Constant Coefficients . 96
5. Equations with Variable Coefficients. . . . . . . . . . . . .. 105
6. Characteristic Curves of Second-order Equations . . . . . . . . 110
7. Characteristics of Equations in Three Variables. . . . . . . . . 115
8. The Solution of Linear Hyperbolic Equations. . . . . . . . . . 119
9. Separation of Variables . . . . . . . . .. ... ..., 123
10. The Method of Integral Transforms . . . . . . . . . . . . .. 126
11. Nonlinear Equations of the Second Order . . . . . . . . . .. 131
Miscellaneous Problems . . . . . . . . . . . . ... ... 136
CHAPTER 4. LAPLACE'S EQUATION . . . . . . . . . . . « . . .. 141
1. The Occurrence of Laplace’s Equation in Physics . . . . . . . . 141
2. Elementary Solutions of Laplace’s Equation . . . . . . . . . . 145
3. Families of Equipotential Surfaces . . . . . . . . . .. . .. 148
4. Bourdary Value Problems . . . . . . . . . . .. ... ... 151
5. Separation of Variables . . . . . . . . .. ... ... ... 156
6. Problems with Axial Symmetry . . . . . . . . ... oL L. 161
7. Kelvin’s Inversion Theorem . . . . . . . . . . . . . . . .. 164
8. The Theory of Green’s Function for Laplace’s Equation . . . . . 167
9. The Relation of Dirichlet’s Problem to the Calculus of Variations . 174
10. “Mixed”” Boundary Value Problems . . . . . . . . . . . . .. 175
11. The Two-dimensional Laplace Equation . . . . . . . . . . .. 180
12. Relation of the Logarithmic Potential to the Theory of Functions . 184
13. Green’s Function for the Two-dimensional Equation . . . . . . 193
Miscellaneous Problems . . . . . . . . . . . . . ... .. 197
CHAPTER 5. THE WAVE EQUATION . . . . . . . . . . .. .. .. 209
1. The Occurrence of the Wave Equation in Physics . . . . . . . . 209
2. Elementary Solutions of the One-dimensional Wave Equation . . 215

3. The Riemann-Volterra Solution of the One-dimensional Wave
Equation . . . . . . . . . .. oo s 221
4. Vibrating Membranes: Application of the Calculus of Variations . 226
5. Three-dimensional Problems . . . . . . . . . . . . . . . .. 232
6. General Solutions of the Wave Equation. . . . . . . . . . .. 239
7. Green’s Function for the Wave Equation . . . . . . . . . .. 244
8. The Nonhomogeneous Wave Equation . . . . . . . . . . .. 249
9. Riesz’sIntegrals . . . . . . . . . . . ... 254
10. The Propagation of Sound Waves of Finite Amplitude. . . . . . 257
Miscellaneous Problems . . . . . . . . . . . . . .. ..., 262
CHAPTER 6. THE DIFFUSION EQUATION . . . . . . . . . . . . .. 274
1. The Occurrence of the Diffusion Equation in Physics . . . . . . 274

2. The Resolution of Boundary Value Problems for the Diffusion
Equation . . . . . . . ..o o000 278


http://www.cvisiontech.com

CONTENTS vii

3. Elementary. Solutions of the Diffusion Equation. . . . . . . .. 282
4. Separationof Variables . . . . . . . . . .. .. ... .. 286
5. The Use of Integral Transforms. . . . . . . . . . . . . . .. 290
6. The Use of Green’s Functions . . . . . . . . . . . .. ... 294
7. The Diffusion Equation with Sources . . . . . . . . . . . .. 299
Miscellaneous Problems . . . . . . . . . .. ..o ... 303
APPENDIX. SYSTEMS OF SURFACES . . . . . . « + « & + v v 4 « . 309
1. One-parameter Systems . . . . . . . . . . . . . ... ... 309
2. Two-parameter Systems . . . . . . . . . . . .. ... .. 311
3. The Edge of Regression . . . . . . . . . . .. ... .... 312
4. Ruled Surfaces . . . . . . . . . . . ... L0000 314
Solutions to the Odd-numbered Problems . . . . . . . . . . . . .. 315


http://www.cvisiontech.com

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor


http://www.cvisiontech.com

Chapter |

ORDINARY DIFFERENTIAL EQUATIONS IN
MORE THAN TWO VARIABLES

In this chapter we shall discuss the properties of ordinary differential
equations in more than two variables. Parts of the theory of these
equations play important roles in the theory of partial differential
equations, and it is essential that they should be understood thoroughly
before the study of partial differential equations is begun. Collected
in the first section are the basic concepts from solid geometry which
are met with most frequently in the study of differential equations.

|. Surfaces and Curves in Three Dimensions

By considering special examples it is readily seen that if the rectangular
Cartesian coordinates (x,y,z) of a point in three-dimensional space
are connected by a single relation of the type

foop) =0 (1)

the point lies on a surface. For that reason we call the relation (1) the
equation of a surface S.

To demonstrate this generally we suppose a point (x,y,z) satisfying
equation (1). Then any increments (dx,dy,0z) in (x,y,z) are related by
the equation

0 0 )
f6x—!— féy—|— féz—O
0% %
so that two of them can be chosen arbitrarily. In other words, in the

neighborhood of P(x,y,z) there are points P'(x + &, y + 9, z + [) satis-
fying (1) and for which any two of &, #, { are chosen arbitrarily and the

third is given by
0 0
Eaf—l—n f—l—éﬁ f =0

The projection of the initial direction PP' on the plane xOy may there-
fore be chosen arbitrarily. In other words, equation (1) is, in general,
a relation satisfied by points which lie on a surface.
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If we have a set of relations of the form

X = F l(usv), }’ = F Z(uav)s z = F 3(u,v) (2)

then to each pair of values of u, v there corresponds a set of numbers
(x,y,z) and hence a point in space. Not every point in space corre-
sponds to a pair of values of u and v, however. If we solve the first
pair of equations

x = Fy(u,), Yy = Fo(u,v)
we may express « and v as functions of x and y, say

u=Mxy), v=px,y)

so that u and v dre determined once x and y are known. The corre-.
sponding value of z 1s obtained by substituting these values for # and v
into the third of the equations (2). In other words, the value of z is
determined once those of x and y are known. Symbolically

2 = F3{l(x3y)’ﬂ(x’y )}

so that there is a functional relation of the type (1) between the three
coordinates x, y, and z. Now equation (1) expresses the fact that the
point (x,y,z) lies on a surface. The equations (2) therefore express
the fact that any point (x,y,z) determined from them always lies on a

fixed surface. For that reason equations of this type are called para-
metric equations of the surface.

It should be observed that parametric equations of a surface are not
unique; i.e., the same surface (1) can be reached from different forms
of the functions F;, F,, F; of the set (2). As an illustration of this fact
we see that the set of parametric equations

X = @ Sin ¢ Ccos v, y = a sin u sin v, Z=acosu
and the set '

1—vzcosu, y=a1—vzsinu, z = 2av
1 4 02 1 4 02 1 + 02
both yield the spherical surface
x2 4 yz + Zz = g2

A surface may be envisaged as being generated by a curve. A point
whose coordinates satisfy equation (1) and which lies in the plane
z = k has its coordinates satisfying the equations

z =k, f(xaysk) =0 (3)

which expresses the fact that the point (x,y,z) lies on a curve, I’ say,
in the plane z = k (cf. Fig. 1). For example, if S is the sphere with
equation x? + y? 4 z2 = g2, then points of S with z = &k have

z =k, x4y = a® — k?

X =4a
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showing that, in this instance, I'; is a circle of radius (a* — &2)* which
is real if £ < a. As k varies from —a to +a, each point of the sphere
is covered by one such circle. We may therefore think of the surface
of the sphere as being “generated’ by such circles. In the general case
we can similarly think of the surface (1) as being generated by the
curves (3).

We can look at this in another way. The curve symbolized by the
pair of equations (3) can be thought of as the intersection of the surface
(1) with the plane z = k. This idea can readily be generalized. If a
point whose coordinates are (x,y,z) lies on a surface S, then there must
be a relation of the form f(x,y,z) = O between these coordinates. If,
in addition, the point (x,y,z) lies on a surface S,, its coordinates will
satisfy a relation of the same type, say g(x,y,z) = 0. Points common

Sz

4

C

Figure | Figure 2

to .S; and S, will therefore satisfy a pair of equations

Sxy,2) =0,  glx,y,2) =0 (4)

Now the two surfaces S; and S, will, in general, intersect in a curve C,
so that, in general, the locus of a point whose coordinates satisfy a pair
of relations of the type (4) is a curve in space (cf. Fig. 2).

A curve may be specified by parametric equations just as a surface
may. Any three equations of the form

X = fl(t)a y = fz(t), Z = f3(t) (5)

in which ¢ is a continuous variable, may be regarded as the parametric
equations of a curve. For if P is any point whose coordinates are
determined by the equations (5), we see that P lies on a curve whose
equations are

(I)l(x,y) - O’ (I)2(xsz) =0

where @,(x,y) = 0 is the equation obtained by eliminating ¢ from the
equations x = f,(2), y = f5(¢) and where ®,(x,z) = 0is the one obtained
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by eliminating ¢ between the pair x = f(¢), z = fi(¢). A usual para-
meter ¢ to take is the length of the curve measured from some fixed
point. In this case we replace ¢ by the symbol s.

If we assume that P is any point on the curve

x=x(s5), y=y0), z=2z(s) (6)
which is characterized by the value s of the arc length, then s 1s the
distance P, P of P from some fixed
point P, measured along the curve
Az 8s (cf. Fig. 3). Similarly if Q is a
point at a distance ds along the
P curve from P, the distance P,Q will
8¢ be s + ds, and the coordinates of

Q will be, as a consequence,

/ (x(s =+ 85), (s + 8s), 2(s + 5)}
The distance ds is the distance from
B 0 P to Q measured along the curve
and is therefore greater than dc, the
length of the chord PQ. However,
in many cases, as Q approaches the
x Figure 3 point P, the difference ds — dc

becomes relatively less. We shall
therefore confine our attention to curves for which

dc
lim 5 = ! ™
On the other hand, the direction cosines of the chord PQ are
{x(s + 8s) — x(s), y(s + ds) — y(s), z(s + 8s) — z(s)}
dc dc doc
and by Maclaurin’s theorem

x(s + 0s) — x(s) = Os (

Y

dx

7 ) + O(ds%)

so that the direction cosines reduce to

2 6+ ou) {8 + 0w} 515+ o)

As ds tends to zero, the point Q tends towards the point P, and the
chord PQ takes up the direction to the tangent to the curve at P. If
we let ds — 0 in the above expressions and make use of the limit (7),
we see that the direction cosines of the tangent to the curve (6) at the

point P are
(dx dy a’z)

—_— —

ds ds ds (8)
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In the derivation of this result it has been assumed that the curve (6)
is completely arbitrary. Now we shall assume that the curve C given
by the equations (6) lies on the surface S whose equation is F(x,y,z) = 0
(cf. Fig. 4). The typical point {x(s),)(s),z(s)} of the curve lies on this

surface if
Flx(s),y(s),2(s)] = O | 9)

and if the curve lies entirely on the surface, equation (9) will be an
identity for all values of s. Differentiating equation (9) with respect
to s, we obtain the relation

oFdx 0oFdy ©0oFdz T
axds—l_ayds_l_?z%—o (10)

Now by the formulas (8) and (10) we see that S

the tangent T to the curve C at the point P is '

perpendicular to the line whose direction
ratios are

ox By, 0z
The curve C is arbitrary except that it passes through the point P and
lies on the surface S. It follows that the line with direction ratios (11)
is perpendicular to the tangent to every curve lying on S and passing
through P. Hence the direction (11) is the direction of the normal to
the surface .S at the point P.

If the equation of the surface S'is of the form

(BF oF BF) (11) Figure 4

z = f(x,y)
and if we write
0z 0z

then since F' = f(x,y) — z,itfollows that F, = p, F, = g, F, = —1 and
the direction cosines of the normal to the surface at the point (x,y,z) are

psq, —1 )
13
(\/p2+q2-|—1 (4

The expressions (8) give the direction cosines of the tangent to a
curve whose equations are of the form (6). Similar expressions may
be derived for the case of a curve whose equations are given in the
form (4).

The equation of the tangent plane m, at the point P(x,y,z) to the
surface S, (cf. Fig. 5) whose equation is F(x,y,z) = 0 is

oF oF oF
(X--x)a—l—(Y—y)?})—-l—(Z—Z)%;:O (14)

where (X,Y,Z) are the coordinates of any other point of the tangent
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plane. Similarly the equation of the tangent plane w, at P to the
surface S, whose equation is G(x,y,z) = O is

oG oG oG |
g-@a+u;ﬁ@+@>@5=o (15)

The intersection L of the planes 7, and =, is the tangent at P to the curve

Figure 5

C which is the intersection of the surfaces S; and S,. It follows from
equations (14) and (15) that the equations of the line L are
X —x . Y —y . Z —z
oF oG 0F oG ©0oF0G ©0F0G 0oF0dG 0oFoG (16)

gy er—— — e— C—

dy 9z 9z 0y 9z 0x Ox oz Ox oy 9y Ox

In other words, the direction ratios of the line L are

o(F,G) F,G) oF,G)
{a()”z)’ 3(z,%) a(x,y)} (16)

Example 1. The direction cosines of the tangent at the point (x,y,z) to the conic
ax* + by? + ¢z =1, x +y+z =1 are proportional to (by — cz, ¢z — ax,
ax — by).

In this instance

F =ax®+ by* 4+ c2®2 — 1

and G=x+y+z-1
oF,G) |2by 2cz| _ _
so that G0 , i 1| = 2(by — cz)

etc., and the result follows from the expressions (16).
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- PROBLEMS

1. Show that the condition that the surfaces F(x,y,z) = 0, G(x,y,z) = 0 should
touch is that the eliminant of x, y, and z from these equations and the equations
F,:G, =F,:G, = F,:G,should hold.

Hence find the condition that the plane Ix + my + nz + p = 0 should
touch the central conicoid ax® + by® + c¢z% = 1.
2. Show that the condition that the curve u(x,y,z) =0, v(x,y,z) = 0 should

touch the surface w(x,y,z) = 0 is that the eliminant of x, y, and z from these
equations and the further relation

Au,v,w) _
ax,y,2)

should be valid.
Using this criterion, determine the condition for the line

x—a y—b z-—c

{ m n

to touch the quadric ax? + By% + yz% = 1.

2. Simultaneous Differential Equations of the First Order and the
First Degree in Three Variables

Systems of simultaneous differential equations of the first order and
first degree of the type

—dditi-:ﬂ(xl’x% .« s e axmt) [ = 1’ 2’ SRR (1)

arise frequently in mathematical physics. The problem is to find »
functions x;, which depend on ¢ and the initial conditions (i.e., the
values of x;, x5, . . . , X, when ¢ = 0) and which satisfy the set of
equations (1) identically in ¢.

For example, a differential equation of the nth order

SN A
a —I\bogam dt1

may be written in the form

(2)

dx d d
Z=m P=y, Ty,

dy,,_
};t ! =f(tax,)’1,)’2, o e ayn-—l)

showing that it is a special case of the system (1).
Equations of the kind (1) arise, for instance, in the general theory
of radioactive transformations due to Rutherford and Soddy.!

1 E. Rutherford, J. Chadwick and C. D. Ellis, “Radiations from Radioactive
Substances’’ (Cambridge, London, 1930), chap. I.
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A third example of the occurrence of systems of differential equations
of the kind (1) arises in analytical mechanics. In Hamiltonian form the
equations of motion of a dynamical system of » degrees of freedom
assume the forms

dp, oH dg, ©0H

dt 9, ’ dt 9,
where H(q1,93, . - - squP1P2 - - - sPnot) 18 the Hamiltonian function
of the system. Itis obvious that these Hamiltonian equations of motion
form a set of the type (1) for the 2n unknown functions ¢, 4o, . - « 5 Gp,
P> Pas « -+ » Pny the solution of which provides a description of the
properties of the dynamical system at any time .

In particular, if the dynamical system possesses only one degree of
freedom, i.e., if its configuration at any time is uniquely specified by a
single coordinate g (such as a particle constrained to move on a wire),
then the equations of motion reduce to the simple form

i=1,2,...,n 3)

dt og ’ ar op “)
where H(p,q,t) is the Hamiltonian of the system. If we write
_oH _P(pgt)  H _ O(p.gi)
% R(pgn) 9 RpgDd)
then we may put the equations (4) in the form
dp  dg . dt 5)
P(pgt)  Q(p.g:t)  R(p,g;1)

For instance, for the simple harmonic oscillator of mass m and stiffness
constant k£ the Hamiltonian is

kq®

_r
H=>"+=

2m
so that the equations of motion are
dp  dq dt

———

—kmqg p m

Similarly if a heavy string is hanging from two points of support and
if we take the y axis vertically upward through the lowest point O of
the string, the equation of equilibrium may be written in the form

dx _dy ds

H W T ©

where H is the horizontal tension at the lowest point, T is the tension
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in the string at the point P(x,y), and W is the weight borne by the portion
OP of the string.

By trivial changes of variable we can bring equations (5) and (6)
into the form

dx dy dz
P Q0 R @)

where P, Q, and R are given functions of x, y, and z. For that reason
we study equations of this type now. In addition to their importance
in theoretical investigations in physics they play an important role in
the theory of differential equations, as will emerge later.

From equations (8) of Sec. 1 it follows immediately that the solutions
of equations (7) in some way trace out curves such that at the point
(x,y,z) the direction cosines of the curves are proportional to (P,Q,R).

The existence and uniqueness of solutions of equations of the type (7)
1s proved in:

Theorem 1. If the functions fi(x,y,z) and fy(x,y,z) are continuous in
the region defined by |x —a| <k, |y —b| <, |z —c| <m, and if in
that region the functions satisfy a Lipschitz condition of the type

Iﬁ.(xay’Z) _.fl(x:naé) < Ally T "7[ + BlIZ — CI
lfz(xd),z) —fz(xﬂ%g)l < Az‘}’ — "7| + BzIZ - ll

then in a suitable interval |x — a| << h there exists a unique pair of
functions y(x) and z(x) continuous and having continuous derivatives in
that interval, which satisfy the differential equations

dy dz
C_?')_C —fl(xayaz)a 21: - f2(xayaz)

identically and which have the property that y(a) = b, z(a) = c, where
the numbers a, b, and c are arbitrary.

We shall not prove this theorem here but merely assume its validity.
A proof of it in the special case in which the functions f; and f, are
linear in y and z is given in M. Golomb and M. E. Shanks, “Elements
of Ordinary Differential Equations” (McGraw-Hill, New York, 1950),
Appendix B.  For a proof of the theorem in the general case the feader
1s referred to textbooks on analysis.!

The results of this theorem are shown graphically in Fig. 6.
According to the theorem, there exists a cylinder y = y(x), passing
through the point (a,b,0), and a cylinder z = z(x), passing through the
point (a,0,c), such that dy/dx = f; and dzfdx = f,. The complete
solution of the pair of equations therefore consists of the set of points

1 See, for instance, E. Goursat, “A Course in Mathematical Analysis” (Ginn,
Boston, 1917), vol. II, pt. IL, pp. 45ff.
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common to the cylinders y = y(x) and z = z(x); i.e., it consists of
their curve of intersection I.

This curve refers to a particular choice of initial conditions; i.e.,
it is the curve which not only satisfies the pair of differential equations
but also passes through the point (a,b,c). Now the numbers a, b, and ¢
are arbitrary, so that the general solution of the given pair of equations
will consist of the curves formed by the intersection of a one-parameter
system of cylinders of which y = y(x) is a particular member with
another one-parameter system of cylinders containing z = z(x) as a

4

/y=y(x)

(a,0,c)

Y

r
\f/ z=z(x)
\M

{a,b,0)

Figure 6

member. In other words, the general solution of a set of equations of
the type (7) will be a two-parameter family of curves.

3. Methods of Solution of dx/P = dy/Q = dz/R

We pointed out in the last section that the integral curves of the set
of differential equations

dx dy dz
form a two-parameter family of curves in three-dimensional space. If
we can derive from the equations (1) two relations of the form
u(X,,2) = €15 UX,y,2) = ¢y ()
involving two arbitrary constants ¢; and c,, then by varying these
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constants we obtain a two-parameter family of curves satisfying the
differential equations (1).

Method (a). In practice, to find the functions #; and u, we observe
that any tangential direction through a point (x,y,z) to the surface
uy(x,y,z) = ¢, satisfies the relation

auldx + a’;dy + %‘gdz= 0

If v, = ¢, is a suitable one-parameter system of surfaces, the tangential
direction to the integral curve through the point (x,y,z) is also a tan-
gential direction to this surface. Hence

~|— Qaul

8u1

aul
> =0

To find », (and, simllarly, Uy) We try to spot functions P’, Q’, and R’
such that

PP" 4+ Q0"+ RR' =0 (3)
and such that there exists a function », with the properties |
' aul ;_aul r__ au]_
P——ax, Q-—@-, R——a-g 4)
1.e., such that
Pdx+ Q' dy+ R dz (5)

is an exact differential du,.
We shall illustrate this method by an example:

Example 2. Find the integral curves of the equations

dx dy dz
y(x + y) + az x(x—l—y) — az z(x + )

In this case we have, in the above notation,
P=yx+y)+az, Q=x(x+y)) —az, R=z(x+y)
If we take

(6)

P'=13 Q,=19 R'=—x_:y
Z Z Z
then condition (3) is satisfied, and the function #, of equation (4) assumes the form
4y = x +y
z

Similarly if we take
Pz_____x’ Q'=““}’, R:=_a

condition (3) is again satisfied, and the corresponding function is
U, = 3(x? — y®) —az

Hence the integral curves of the given differential equations are the members of the
two-parameter family
X+y=c¢z x2—y—2az=c ¥))
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We have derived the solution in this manner to illustrate the general argument
given above. Written down in this way, the derivation of the solution of these
equations seems to require a good deal of intuition in determining the forms of the
functions £, Q’, and R’. In any actual example it is much simpler to try to cast the
given differential equations into a form which suggests their solution. For example,
if we add the numerators and denominators of the first two “fractions,’ their value
is unaltered. We therefore have

dc+dy  dz
x + 2  z2(x + y)
which may be written in the form

dx +y) _dz
x +y z

This is an ordinary differential equation in the variables x + y and z with general
solution
x+y=c¢z 8)
where ¢, is a constant.
Similarly
xdx —ydy = dz
a(x + y)z z(x + y)

which is equivalent to
xdx —ydy —adz =0
i.e., to d3x® —4y* —az) =0
and hence leads to the solution
x2 —y? —2az = ¢; 9)
Equations (8) and (9) together furnish the solution (7).

In some instances it is a comparatively simple matter to derive one of
the sets of surfaces of the solution (2) but not so easy to derive the
second set. When that occurs, it is possible to use the first solution in
the following way: Suppose, for example, that we are trying to deter-
mine the integral curves of the set of differential equations (6) and that

we have derived the set of surfaces (8) but cannot find the second set
necessary for the complete solution. If we write

_XtY

1

z

in the first of equations (6), we see that that equation is equivalent to
the ordinary differential equation

dx dy

y+aa  x—dea

a\? a\?
(r=5) = r+g) =

which has solution
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where c, is a constant. This solution may be written

2
xz_yz___é_i_z(x_*_y)_—_cz (10)

and we see immediately that, by virtue of equation (8), the curves of

intersection of the surfaces (8) and (10) are identical with those of the
surfaces (8) and (9).

Method (b). Suppose that we can find three functions P’, Q’, R’
such that

Pdx+ Q'dy + R dz (11)
PP + QQ' + RR’

is an exact differential, dW’ say, and that we can find three other
functions P, O", R" such that

P'dx + Q"dy + R' dz (12)
PP i QQ” 1 RR"

is also an exact differential, dW” say. Then, since each of the ratios (11)

and (12) is equal to dx/P, it follows that they are equal to each other.
This in turn implies that

dW' = dWw”’
so that we have derived the relation
W' = W"+4 ¢
between x, y, and z. As previously, ¢; denotes an arbitrary constant.

Example 3. Solve the equations

dx dy dz
y+ocz=z+ﬁx=x+:vy
Each of these ratios is equal to
Adx + udy +vdz
My + az) + u(z + fx) + v(x -+ vy)

If 4, 1, and v are constant multipliers, this expression will be an exact differential if
it is of the form

14dx + pdy +vdz
p Ax + uy + vz

and this is possible only if
—~p). + 5,“ +v» =0
A—pu+y=0 (13)
o +p —pv =0

Regarded as equations in 4, u, and », these equations possess a solution only if p
is a root of the equation

—-p B 1
I —p v|[=0 (14)
o 1 —p

which is equivalent to
Pt+@+B+Mp+1+ufy=0 (15)
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This equation has three roots, which we may denote by p;, ps, ps. If we substitute
the value p, for p in the equation (14) and solve to find A = 4;, ¢ = u4, v = »,, then
in the notation of (13)

_ 1 hdx +pdy +vdz

aw’
so that W’ =log (Ax + uyy + vz)les
Similarly W = log (Asx + pgy + vpz)Hee

and (13) is equivalent to the relation

(Mx + pyy + v2)Ver = ¢ 1(Aex 4 pgy + v52) M
where ¢; is a constant. In a similar way we can show that

(x + pyy + 2o = c(Agx + pgy + vgz)lies

with ¢, a constant.

A more familiar form of the solution of these equations is that obtained by
setting each of the ratios equal to dr. We then have relations of the type

1—a.’log Ax + p;y +v2) = dt
Pi
which give

Ax + iy +viz = ciett
where the ¢; are constants and i = 1, 2, 3.
Method (c). 'When one of the variables is absent from one equation

of the set (1), we can derive the integral curves in a simple way.
Suppose, for the sake of definiteness, that the equation

dy _ dz
0 R

may be written in the form
ay _
dz f(y.2)

Then by the theory of ordinary differential equations this equation has
a solution of the form
$(3,2,¢1) = 0

Solving this equation for z and substituting the value of z so obtained
in the equation

x_ b
P 0
we obtain an ordinary differential equation of type
dy

v g(x,y,c1)
whose solution

V’(X,y,cucz) = O
may readily be obtained.
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Example 4. Find the integral curves of the equations
dx dy dz

x+z=y=z+y2 (16)
The second of these equations may be written as
dz _z _
L &y
which is-equivalent to
d [z
A(2)-
dy\y
and hence has solution
zZ = ¢y + )* (17

From the first equation of the set (16) we have
dx x z

dy 'y 'y
and this, by equation (17), is equivalent to
dx x

- =— T ¢ +
d}’ y 1 Y

If we regard y as the independent variable and x as the dependent variable in this
equation and then write it in the form

d x ¢
—Z =141
dyy
we see that it has a solution of the form
x =cylogy + ¢y + ) (18)

The integral curves of the given differential equations (16) are therefore determined
by the equations (17) and (18).

PROBLEMS
Find the integral curves of the sets of equations:
1 dx _ dy  dz
T ox(y -2 yz—x)  z(x —y)
5 adx _ bdy  cdz
(b —cyz (c—azx (a—b)xy
dx dy dz
3. = =
xz—y yz—x 1—2*
" dx dy dz

x2(y3 — ) =}’2(23 — X0 = 2(x — )

4. Orthogonal Trajectories of a System of Curves on a Surface

The problem of finding the orthogonal trajectories of a system of
plane curves is well known.! In three dimensions the corresponding
problem is: Given a surface

F(x,y,z) = 0 (1)

1 M. Golomb and M. E. Shanks, “Elements of Ordinary Differential Equations”
(McGraw-Hill, New York, 1950), pp. 29-31, 64-65.
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and a system of curves on it, to find a system of curves each of which
lies on the surface (1) and cuts every curve of the given system at right
angles. The new system of curves is called the system of orthogonal
trajectories on the surface of the given system of curves. The original
system of curves may be thought of as the intersections of the surface

(1) with the one-parameter family of

e surfaces
G(X,)’az) = Cl (2)

For example, a system of circles
(shown by full lines in Fig. 7) is
formed on the cone

x? 4+ y? = z2 tan® « (3)

I/ Iy by the system of parallel planes

, / where ¢, is a parameter. It is

b

|

'n\ ,! I 7 zZ=10 4
|

L

obvious on geometrical grounds that,

in this case, the orthogonal trajec-
W tories arethe generators shown dotted

N\ in Fig. 7. We shall prove this

\Nurn analytically at the end of this section
W (Example 5 below).
W In the general case the tangential
o/ direction (dx,dy,dz) to the given
W y curve through the point (x,y,z) on
0 the surface (1) satisfies the equations
oF oF oF
A and
, oG oG oG
F 7 — — —dz =
igure =~ dx + % dy + P dz=0 (6)

Hence the triads (dx,dy,dz) must be such that

where

P =

TR (7
G _OFG ,_OFIG _OFIG
dy 9z oz 9y T 0z ox 0x 0z )
n_ OF3G OF3G
T ax %y 0y ox

The curve through (x,y,z) of the orthogonal system has tangential
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direction (dx’,dy’,dz") (cf. Flg 8), which lies on the surface (1), so that
oF
oy

and is perpendicular to the original system of curves. Therefore from
equation (7) we have |

oF ., , OF
-adx + =—dy —i—-a—-z—dz =0 (9)

Pdx' +Qdy' + Rdz =0 (10)
Equations (9) and (10) yield the equations
dx' dy d7 S
= = dx’,dy’,d
% 0" F (11) (dx’,dy’,dz")
where
, o OF oF ]
P = R?} —Q i
, o OF oF
. oF oF
R =Qa_x'"P—a} Figure 8

The solution of the equations (11) with the relation (1) gives the system
of orthogonal trajectories.

To illustrate the method we shall consider the example referred to
previously:

Example 5. Find the orthogonal trajectories on the cone x* + y* = z®tan® o of its
intersections with the family of planes parallel to z = 0.

The given system of circles on the cone is characterized by the pair of equations
x dx + ydy = tan® az dz, dz =0

which are equivalent to

'The system of orthogonal trajectories is therefore determined by the pair of equations

x dx + ydy = tan® az dz, ydx —xdy =0

: dx dy ztan’adz
i.e., by — == = — 5
X ¥y x“+y
which have solutions
x? +y% =z%tan?a, x =y (13)

where ¢, is a parameter. Hence the orthogonal trajectories are the generators of the
cone formed by the intersection of its surface with the sheaf of planes x = ¢y
passing through the z axis (cf. Fig. 7).
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PROBLEMS

1. Find the orthogonal trajectories on the surface x> + y2 + 2fyz + d = 0 of its
curves of intersection with planes parallel to the plane xOy.

2. Find the orthogonal trajectories on the sphere x% + y% + 2% = a? of its
intersections with the paraboloids xy = cz, ¢ being a parameter.

3. Find the equations of the system of curves on the cylinder 2y = x? orthogonal
to its intersections with the hyperboloids of the one-parameter system
Xy =2z + c.

4. Show that the orthogonal trajectories on the hyperboloid

X+ y—z2=1

of the conics in which it is cut by the system of planes x + y = ¢ are its
curves of intersection with the surfaces (x — y)z = k, where k is a parameter.
5. Find the orthogonal trajectories on the conicoid

x+yz=1
of the conics in which it is cut by the system of planes

x—y+z=k
where k is a parameter.

5. Pfaffian Differential Forms and Equations

The expression

% Fi(x13x2a s o e axn) dxi (1)
1=1
inwhichthe F; i = 1, 2, . . . , n) are functions of some or all of the »n
independent variables x;, x5, . . . , X, is called a Pfaffian differential

form in n variables. Similarly the relation

‘gmm=o @)

is called a Pfaffian differential equation.
There is a fundamental difference between Pfaffian differential

equations in two variables and those in a higher number of variables,
and so we shall consider the two types separately.

In the case of two variables we may write equation (2) in the form

P(x,y) dx + O(x,p)dy = 0 3
which is equivalent to

% = f(x,y) 4)

if we write f(x,y) = —P/Q. Now the functions P(x,y) and Q(x,y) are
known functions of x and y, so that f(x,y) is defined uniquely at each
point of the xy plane at which the functions P(x,y) and QO(x,y) are
defined. In particular, if these functions are single-valued, then
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dy|dx is single-valued, so that the solution of equation (3) which satisfies
the boundary condition y = y, when x = x, consists of the curve which
passes through this point and whose tangent at each point is defined by
equation (4). This simple geometrical argument can be formalized* to
show that the differential equation (3) defines a one-parameter family of
curves in the xy plane. In other words, it can be shown that there

exists, at least in a certain region of the xy plane, exactly one function
¢(x,y) such that the relation

¢(xay )=c¢ (5)

in which c is a constant, defines a function y(x) which satisfies identically
the differential equation (3).

It may happen that the differential form P dx + Q dy may be written
in the form dé(x,y), in which case it is said to be exact or integrable.

Even when the form is not exact, it follows from writing equation (5)
in the differential form

0 op .
'a—x dx - a—y dy = ()

that there exists a function #(x,y) and a function u(x,y) such that
196 1 04

P Qo M
By multiplying equation (3) by this function u(x,y), we see that it can be
written in the form
0= wu(Pdx + Qdy)=d¢

Because of this property, the function wu(x,y) is called an integrating
factor of the Pfaffian differential equation (3).

With this nomenclature, we may write the fundamental existence
theorem in the theory of ordinary differential equations in the form:

Theorem 2. A Pfaffian differential equation in two variables always
possesses an integrating factor.

When there are three variables, the Pfaffian differential equation (2)
1s of the form

Pdx 4+ Qdy+ Rdz=0 (6)

where P, Q, and R are functions of x, y, and z. If we introduce the

vectors X = (P,Q,R) and dr = (dx,dy,dz), we may write this equation
in the vector notation as

X dr=0 0

Before proceeding to the discussion of this equation, we first consider
two lemmas:

1 Ibid., Appendix A, p. 315.
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Theorem 3. A necessary and sufficient condition that there exists

between two functions w(x,y) and v(x,y) a relation Flu,v) = 0, not
involving x or y explicitly is that

o(u,v)

=0
9(x,y)
~ First, the condition is necessary. For since the relation
Flu,p) = 0 ®)

is an identity in x and y, we have as a result of differentiating with
respect to x

0Fou  oFov 0
ou 0x ' 0v ox

and as a result of differentiating with respect to y
0Fou OF ov
wudy " way "

Eliminating dF/dv from these two equations, we find that
8F{8u ov  Ou av} —0
ou \ox 9y oy ox)

Since the relation (8) involves both u and v, it follows that dF/du is not
identically zero, so that

o(u,v)
Axy) 0 ®)

Second, the condition is sufficient. We may eliminate y from the
equations

| U = u(x,y), D = v(x,y)
to obtain the relation
Flu,v,x) = 0

From this relation it follows immediately, as a result of differentiating
with respect to x, that

oF o0Fou OF ov

— 2=

dx Oudx  Ovox
and as a result of differentiating with respect to y that
oFou OJF ov

—_—— - — =0

du dy = Ov 0y
Eliminating dF/0v from these equations, we find that

oF dv n o(u,v) OF
ox dy = o(x,y) 0u

0
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If the condition (9) is satisfied, we see that

aFav___O
8x8y_

The function v 1s a function of both x and y, so that dv/dy is not identi-
cally zero. Hence

oF

ox

which shows that the function F does not contain the variable x
explicitly.

Another result we shall require later is:

Theorem 4. If X is a vector such that X *curl X =0 and u is an

arbitrary function of x, y, z then (uX) * curl (uX) = 0.
For, by the definition! of curl we have

uX -« curl uX = Z (uP) {6(;4 f) a(gZQ)}

=0

Z,Y,2

where X has components (P,Q,R). The right-hand side of this equation
may be written in the form

d
S B LTS
z,Y,2
and the second of these sums is identically zero. Hence

pX - curl (uX) = {X - curl X} u?
and the theorem follows at once.

The converse of this theorem is also true, as is seen by applying the
factor 1/u to the vector uX.

Having proved these preliminary results, we shall now return to the
discussion of the Pfaffian differential equation (6). It is not true that
all equations of this form possess integrals. If, however, the equation
is such that there exists a function u(x,y,z) with the property that
(P dx + Q dy + R dz) is an exact differential d¢, the equation is
said to be integrable and to possess an integrating factor u(x,y,z). The
function ¢ is called the primitive of the differential equation. The
criterion for determining whether or not an equatlon of the type (6)
is integrable is contained in:

Theorem 5. A necessary and sufficient condition that the Pfaffian
differential equation X * dr = 0 should be integrable is that X - curl X = 0.
The condition is necessary, for if the equation

Pdx+ Qdy+ Rdz=20 (6)
1 H. Lass, “Vector and Tensor Analysis” (McGraw-Hill, New York, 1950), p. 435.
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is integrable, there exists between the variables x, y, z a relation of the
type
Flx,y,z2) = C

where C is a constant. Writing this in the differential form

oF oF oF

we see that there must exist a function u(x,y,z) such that
oF oF oF
i.e., such that

pX = grad F
so that since

curl grad F = 0
we have

curl (uX) =0
so that

uX -+ curl (uX) =0
From Theorem 4 it follows that
Xecurl X =0

Again, the condition is sufficient. For, if z is treated as a constant,
the differential equation (6) becomes

P(x,y,z) dx 4+ Q(x,y,z)dy = 0
which by Theorem 2 possesses a solution of the form

U(xay ,-Z) = €y

where the “‘constant’ ¢, may involve z.  Also there must exist a function
w such that

oU oUu

a5 = Hb e 19, (10)
Substituting from the equations (10) into equation (6), we see that the
latter equation may be written in the form

%}qu—l-aa—;]dy-l-%—gdz—l— (,uR——%g) dz=0
which is equivalent to the equation
dU 4 Kdz =0 (11)
if we write |
K= uR — ou (12)

0z
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Now we are given that X * curl X = 0, and it follows from Theorem 4
that
uX curl u X =0

Now
oU oU oU )
uX = (uP,uQ,uR) = (ax’ 5’ 5 + K
= grad U + (0,0,K)
Hence
__(9U 9U oU )( oK oK )
HX CUI'I(MX)—(ax,ay3aZ+K +-a—y-3-—a—xao
_ UK _ UK
~ 9x dy dy ox

Thus the condition X - curl X = 0 is equivalent to the relation
AUK)
o(xy)

From Theorem 3 it follows that there exists between U and X a
relation independent of x and y but not necessarily of z. In other

words, K can be expressed as a function K(U,z) of U and z alone, and
equation (11) is of the form

du
2; -} K(U,Z) =0

0

which, by Theorem 2, has a solution of the form
O(U,z) = ¢

where c is an arbitrary constant. On replacing U by its expression in
terms of x, y, and z, we obtain the solution in the form

F(x,y,z) = c

showing that the original equation (6) is integrable.

Once it has been established that the equation is integrable, it only
remains to determine an appropriate integrating factor u(x,y,z). We
shall discuss the solution of Pfaffian differential equations in three
variables more fully in the next section. Before going on to the
discussion of methods of solution, we shall first of all prove a theorem
on integrating factors of Pfaffian differential equations which is of
some importance in thermodynamics. Since the proof is elementary,
we shall state the result generally for an equation in n variables:

Theorem 6. Given one integrating factor of the Pfaffian differential
equation .
Xidx; + Xodxg + - -+ +X,dx, =0

we can find an infinity of them.


http://www.cvisiontech.com

24 ELEMENTS OF PARTIAL DIFFERENTIAL EQUATIONS

For, if u(xy,xs, . .. ,X,) 1s an integrating factor of the given
equation, there exists a function ¢(x;,x;, . . . ,x,) with the property
that

0%

ox;

If ®(¢) is an arbitrary function of ¢, we find that the given Pfaffian
differential equation may be written in the form

d(I)

d$

which, by v1rtue of the relations (13), is equivalent to

pX; =

i=1,2,...,n (13)

(dex1+X2dx2+ CUe 'I_Xndx'n)zo

dqs a X2 axn
d®

ie., to @@ —dp =dDd =0

with solution
O(4) = ¢
Thus if 4 is an integrating factor yielding a solution ¢ — ¢ and if @
is an arbitrary function of ¢, then u(d®/d¢) is also an integrating
factor of the given differential equation. Since @ is arbitrary, there
are infinitely many integrating factors of this type.
To show how the theoretical argument outlined in the proof of

Theorem 5 may be used to derive the solution of a Pfaffian differential
equation we shall consider:

Example 6. Verify that the differential equation
(y® + y2)dx -+ (xz + 2% dy + ()* — xy)dz =0
is integrable and find its primitive.
Flrst of all to verify the mtegrablhty we note that in this case

X = () + yz, xz + 2%, y* — xy)
so that curl X =2(—x +y —z,9, —y)

and it is readily verified that
Xecewrl X =0

If we treat z as a constant, the equation reduces to
dx d d
4+ &) y

A AN
x+z 'y y+z
which has solution U(x,y,z) = c,, where
U(x,y’z) =y(x ‘1“ Z)
ytz
12U 1 y 1

N - 2 — .
o “TPux Wy roytz (o

and, in the notation of equation (12),

B 1 LN Y yx +2)
R e o A R
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Since K = 0, equation (11) reduces to the simple form dU = 0 with solution
U = ¢, i.e., the solution of the original equation is

yx +z).=cly + 2)
where ¢ is a constant.

It 1s of interest to consider the geometrical meaning of integrability.
The functions y = y(x), z = z(x) constitute a solution of the equation

Pdx+ Qdy + Rdz =0 (14)

if they reduce the equation to an identity in x.  Geometrically such a
solution is a curve whose tangential direction ~ at the point X(x,y,z)
is perpendicular to the line 4 whose direction cosines are proportional
to (P,Q,R) (cf. Fig. 9), and hence the tangent to an integral curve lies
in the disk ¢ which is perpendicular
to A and whose center is (x,y,z). On A
the other hand, a curve through the
point X is an integral curve of the
equation if its tangent at X lies in o.

When the equation is integrable,
the integral curves lie on the one-
parameter family of surfaces

S[)(xay:z) =i C

Any curve on one of these surfaces
will automatically be an integral
curve of the equation (14). The Figure 9
condition of integrability may there-
fore be thought of as the condition that the disks ¢ should fit together
to form a one-parameter family of surfaces.

Another way of looking at it is to say that the equation (14) is
integrable if there exists a one-paramecter family of surfaces orthogonal
to the two-parameter system of curves determined by the equations

dx dy dz
P QO R

When the equation is not integrable, it still has solutions in the
following sense. It determines on a given surface S with equation

U(x,y,z) = 0 (15)

a one-parameter system of curves. For, eliminating z from equations
(14) and (15), we have a first-order ordinary differential equation whose
solution

V)(xayac) =0
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is a one-parametér system of cylinders Cy, C, . . . (cf. Fig. 10) with
generators parallel to Oz and cutting the surface S in the integral
curves I';, I',, .

Az

T I,

0 I; I3 ) y

S
____________________________ L y
0
C, C,
: Figure 10
PROBLEMS

Determine which of the following equations are integrable, and find the solution
of those which are:
1. ydx +xdy +2zdz=0
2. 2(z+ypdx +z2(z+ x)dy —2xydz =0
3. yzdx +2xzdy —3xydz =0
4. 2xzdx +zdy —dz =0
5. () + x2)dx + (x* + yz)dy + 322dz =0

6. Solution of Pfaffian Differential Equations in Three Variables

We shall now consider methods by which the solutions of Pfaffian
differential equations in three variables x, y, z may be derived.

(a) By Inspection. Once the condition of integrability has been
verified, it is often possible to derive the primitive of the equation by
inspection. In particular if the equation is such that curl X = 0, then?

1 Jbid., p. 46.
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X must be of the form grad v, and the equation X * dr = 0Q1is equivalent
to

dv ov dv
with primitive .
v(x,y,2) = ¢

Example 7. Solve the equation
(x*z — y¥) dx + 3xy®dy +x2dz =0

first showing that it is integrable.

To test for integrability we note that X = (x?z — )P 3x)?% x3), so that
curl X = (0,—2x% 6y?), and hence X * curl X = 0.

We may write the equation in the form

x¥zdx + xdz) — y?dx 4+ 3xy®dy =0

2
ie., zdx+xdz—}fdx+§)—)-dy=0
x? x
)3
ie., d(xz) + d(;—) =0

so that the primitive of the equation is

x*z +y* =cx
where ¢ is a constant.

(b) Variables Separable. In certain cases it is possible to write the
Pfaffian differential equation in the form

P(x) dx + Q(y) dy + R(z) dz = 0

in which case it 1s immediately obvious that the integral surfaces are
given by the equation

[Peax + [o)dy + [R@ydz = ¢

where ¢ 1s a constant.

Example 8. Solve the equation
a®y®z? dx + b®2°xtdy + *x%?dz = 0

If we divide both sides of this equation by x2y2z%, we have

where k is a constant.
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(c)- One Variable Separable. It may happen that one variable is
separable, z say, in which case the equation is of the form

P(x,y)dx + Q(x,y)dy + R(z)dz = 0 )
For this equation
| X = {P(x,),0(x,),R(z)}

and a simple calculation shows that
curl X = (0, 0,92 _ —a—}—))

so that the condition for integrability, X - curl X = 0, implies that

o°P 00
9y ox
In other words, P dx - Q dy is an exact differential, du say, and equation
(1) reduces to
du + R(z)dz =0
with primitive

u(x,y) + f R(z)dz = ¢
Example 9. Verify that the equation
x(y? —a¥dx + y(x* — 28 dy —z()® —a¥)dz =0

is integrable and solve it.
If we divide throughout by () — a?)(x? — z?), we see that the equation assumes
the form

xdx —zdz  ydy
2 — 72 +y2—a2=0

showing that it is separable in y. By the above argument it is therefore integrable if
oP R

0z ox

which is readily shown to be true. To determine the solution of the equation we
note that it is
ddlog (x® — z%) + 4dlog ()® —a®) =0

so that the solution is
(x* —z)(® —a%) =c¢
where ¢ is a constant,

(d) Homogeneous Equations. The equation

P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = 0 )

is said to be homogeneous if the functions P, O, R are homogeneous in
%, ¥, z of the same degree n. To derive the solution of such an equation
we make the substitutions

y = ux, zZ = vX 3)
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Substituting from (3) into (2), we see that equation (2) assumes the form
P(lup) dx + O(Lu,v)(udx + x du) + R(L,up)xdv +vdx) =0

a factor x" canceling out. If we now write

B o(1,u,v)
AW = BT ) T 20(Lws) T oR(Lwo)
Blus) — R(1,u,v)

P(1,u,v) + uQ(1,u,v) 4 vR(1,u,v)
we find that this equation is of the form

% + A(u,v) du + B(u,v) dv = 0

and can be solved by method (c).

It is obvious from the above analysis that another way of putting
the same result is to say that .f the condition of integrability is satisfied
and P, Q, R are homogeneous functions of x, y, z of the same degree
and xP -}- yO + zR does not vanish identically, its reciprocal is an
integrating factor of the given equation.

Example 10. Verify that the equation
yz(y + z)dx + xz(x + z)dy + xy(x + p)dz =0

is integrable and find its solution.

1t is easy to show that the condition of integrability is satisfied; this will be left
as an exercise to the reader. Making the substitutions y = ux, z = vx, we find
that the equation satisfied by x, u, v is

w -+ v)dx + v(v + D(udx + xdu) -+ w(u 4 1)(vdx -+ xdv) =0

which reduces to
dx ; v(v + 1) du + u(u + 1) dv

x 2uv(l + u + v) =0
Splitting the factors of du and dv into partial fractions, we see that this is equivalent to
dx 1 ] 1 1
2= 4 (- — u + (= — =
x+{u 1+u+v}du|_{v 1—|~u—|~v}dv 0

or, which is the same thing,

LA du do d(l+u+v)

X u 7, 1 +u-+vo

The solution of this equation is obviously
x2uv = c(1 + u + v)

where c is a constant. Reverting to the original variables, we see that the solution
of the given equation is

xyz =clx + y + z)
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(e). Natani’s Method. In the first instance we treat the variable z as
though it were constant, and solve the resulting differential equation

Pdx + Qdy=0
Suppose we find that the solution of this equation is
P(x,,2) = ¢; 4)
where ¢, is a constant. The solution of equation (2) is then of the form
O($,2) = ¢ )

where ¢, is a constant, and we can express this solution in the form

$(x,,2) = (2)

where v is a function of z alone. To determine the function y(z) we
observe that, if we give the variable x a fixed value, « say, then

$(a,,2) = 9(z) (6)
is a solution of the differential equation
O(e,y,2) dy + R(o,p,z) dz = 0 (7
Now we can find a solution of equation (7) in the form
‘ (p,2) < C ®)

by using the methods of the theory of first-order differential equations.

Since equations (6) and (8) represent general solutions of the same
differential equation (7), they must be equivalent. Therefore if we
eliminate the variable y between (6) and (8), we obtain an expression
for the function y(z). Substituting this expression in equation (6), we
obtain the solution of the Pfaffian differential equation (2).

The method is ofien simplified by choosing a value for «, such as
0 or 1, which makes the labor of solving the differential equation (7)
as light as possible. 1t is important to remember that it is necessary to
verify in advance that the equation is integrable before using Natani’s
method.

Example 11.  Verify that the equation
2(z 4- y®ydx -+ 2(z 4 x¥)dy — xy(x + y)dz =0
is integrable and find its primitive.
For this equation
X = {z(z + y), z(z + x), —xy(x + )}
curl X = 2(--x2 — xp — 2z, y* |- xy + z,zx — zy)
and it is soon verified that X * curl X == 0, showing that the equation is integrable.

An inspection of the equation suggests that it is probably simplest to take dy = 0
in Natani’s method. The equation then becomes

S e Lok,

X x+y z+ Rz
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showing that it has the solution
x(y® + 2)
z(x + y)

If we now let z = 1 in the original equation, we see that it reduces to the simple
form

=f) ©)

dx + dy
14+ x2 14 )2

=0 (10)

with solution
tan~' x + tan~! y = const.

Writing tan™ (1/c) for the constant and making use of the addition formula

tan~! x + tan™! y = tan™? XY
1 —xy
we see that the solution of equation (10) is
L —xy = (11)

X +y

This solution must be the form assumed by (9) in the case z = 1; in other words,
(11) must be equivalent to the relation

x(y? + 1)

5~/ (12)

Eliminating x between equations (11) and (12), we find that

S =1-c¢
Substituting this expression in equation (9), we find that the solution of the
equation is

x(y® + z) = z(x + (1 — cy)

(f) Reduction to an Ordinary Differential Equation. In this method
we reduce the problem of finding the solution of a Pfaffian differential
equation of the type (2) to that of integrating one ordinary differential
equation of the first order in two variables. It is necessary, of course,
that the condition for integrability should be satisfied. )

If the equation (2) is integrable, it has a solution of the form

feyz)=c (13)

representing a one-parameter family of