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Preface

Ah, Love! could thou and I with Fate conspire
To grasp this sorry Scheme of Things entire,
Would not we shatter it to bits—and then
Re-mould it nearer to the Heart’s Desire!

Omar Khayyam, Rubaiyat

More than 10years have passed since the publication of the first edition of this
textbook. During these years, a large number of monographs dealing with the same
topics have appeared. Some of them have been included in the new bibliography.
In addition, a wealth of material is now freely available online, some of it posted
by the very best (cf., e.g., [Taol1]). So one may question the wisdom of offering a
new edition of the old Basic Real Analysis, henceforth abbreviated BRA. And yet,
as is always the case, different people look at the same material in different ways
depending on their tastes. What should or should not be included and to what extent
may vary considerably, and all choices have their legitimate and logical justification.

Despite the fact that I have looked at a large number of real analysis textbooks
and have benefited from all of them, I still prefer not to modify the organization of
the material in BRA. The initial idea of a new edition came from Tom Grasso of
Birkhiuser, and I want to use this opportunity to thank him for suggesting it. He
pointed out that for the project to be justified, a reasonable number of changes must
be made. The most substantial change in the new edition is that I rewrote Chaps. 10
and 11 on Lebesgue measure and integral entirely. In doing so, I decided to abandon
F. Riesz’s method used in the first edition in favor of the more traditional approach
of treating Lebesgue measure before introducing the integral. I have come to believe
that measure theory is a fundamental part of analysis and the sooner one learns it,
the better.

Lebesgue measure and integral on the real line are now covered in Chap. 10.
Chapter 11 contains additional topics, including a quick look at improper Riemann
integrals, integrals depending on a parameter, the classical L”-spaces, other modes
of convergence, and a final section on the differentiation problem. This last section
contains Lebesgue’s theorem on the differentiability of monotone functions (with F.
Riesz’s Rising Sun Lemma used in the proof) and his versions of the Fundamental
Theorem(s) of Calculus. Abstract measure and integration are treated in Chap. 12,
where I have included the Radon—Nikodym theorem which is used in the last section
on probability.
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viii Preface

Although the newly written chapters on Lebesgue’s theory constitute the major
change in this edition, all other chapters have been affected to various degrees.
For example, the treatment of convex functions has been modified and (hopefully)
improved. I have added a number of exercises in the text and many new problems
at the end of all chapters. A large number of typographical as well as more serious
errors have been corrected. I am particularly indebted to Professor Giorgio Giorgi of
Universita Degli Studi Di Pavia for pointing out a serious one. Of course, as always,
other undetected errors may still be there and I take full responsibility for them.
Needless to say, I would be grateful to careful readers for pointing them out to me
(hsohrab@towson.edu).

Ideally, a book at this level should include some spectral theory, say, at least
the spectral properties of compact, self-adjoint operators. Unfortunately, this would
increase the size of the book beyond what I consider to be reasonable. I have
decided to include some of this and similar interesting material in the end-of-chapter
problems, and the interested readers may try as many of them as they want. A
complete solution manual is available from the publisher for the benefit of the
potential instructors. I have decided to use sequential numbering of all the items
throughout. I believe that this simplifies the navigation considerably even though it
may have its problems.

It is a great pleasure to thank Mitch Moulton, Birkhéuser’s assistant editor, for
his help and patience during the preparation of the manuscript. I am also grateful for
the technical assistance I received from Birkhéduser. One of the people I completely
forgot to thank in the first edition of BRA (shame on me!) is Loren Spice. He was
16 when he started enrolling in mathematics courses at Towson University, right
when I was preparing the first draft of the textbook. He read the first five chapters
very thoroughly and made a large number of suggestions and corrections. I am truly
indebted to him for his valuable comments which resulted in many improvements.
Also, I owe so much to the brilliant, anonymous reviewer of the first edition of BRA
whose excellent critical comments had a great influence, even though I couldn’t
possibly live up to his high expectations. I hope he finds this new edition to be
closer to his taste. In addition, the anonymous reviewers of this new edition have
made a number of excellent comments for which I am truly grateful.

Finally, I would like to thank my wife, Shohreh, and my children, Mahsa and
Zubin, whose love and support are the greatest driving force in my life.

Towson, MD, USA Houshang Sohrab


http://www.hsohrab@towson.edu
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Chapter 1
Set Theory

Set theory is an important part of the foundation of mathematics and its rigorous
treatment is beyond the scope of this book. The material in this chapter is included
mainly to make the book self-contained as far as elementary set theory is concerned.
Consequently, the readers need not go through the entire chapter to proceed further.
In fact, they can skip most sections and return to the corresponding topics later if a
reference makes it necessary. The first section introduces rings and algebras of sets
and the standard set theory notation to be used throughout the book. Next, relations
and functions are briefly covered, including equivalence and order relations. The
third section is a quick review of algebraic structures (groups, rings, etc.) and some
elementary number theory and combinatorial questions. Finally, the last section
covers infinite direct products and cardinal numbers. Most readers of this book
may have already seen the material covered in this chapter before, possibly in
slightly different form. It should be pointed out that the topics in this chapter will be
referred to on several occasions in subsequent chapters and most of the results will
be needed later.

1.1 Rings and Algebras of Sets

A set, S, will be defined as a “collection” (or “family”) of “objects” called elements.
The statement “s is an element of S will be denoted s € S, and its negation will be
denoted s ¢ S. The set with no elements will be called the empty set and denoted 9.
Given a pair of sets, S and T, we say that S is a subset of T, and write S C T,
if each element of S is an element of 7. Again the negation of the statement will
be denoted S ¢ T'. One obviously has @ C S for any set S. We write S = T if
both S C T and T C S. S is called a proper subset of T if S C T,but S # T.
In this case we also say that the inclusion S C T is a proper inclusion and use the
notation S & T'. We shall constantly use the notation S = {t € T : P(t)} to denote
the set of all elements in 7' for which the property P holds. In most problems, all

© Springer Science+Business Media New York 2014 1
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2 1 Set Theory

the sets we consider are subsets of a fixed (large) set, called the universal set or
the universe of discourse, which we denote by U. We will usually assume that such
a universe has been chosen, especially when complements of sets (to be defined
below) are involved in the discussion. Before defining the basic operations on sets,
let us introduce a notation which will be used throughout the book.

Notation 1.1.1. Given a pair of mathematical expressions P and Q, involving one
or more variables, we write P := Q if the right side (i.e., the expression Q) is the
definition of the left side (i.e., the expression P).

Definition 1.1.2 (Union, Intersection, etc.). Given two sets S and 7', both subsets
of a universal set U, we define their union to be the set

SUT:={xeU:xeS or xeT}
Their intersection is defined by

SNT:={xelU:xeS and x € T}.
We define the complement of S (with respect to the fixed set U) to be the set

S={xeU:xg8S}.
We also define the difference set S \ T by
S\T:={xeS:xg€T}=8SNT°,
and the symmetric difference of S and T by
SAT: =S \THYUT\S)=SuUun)\SNT).
Finally, we define the power set of S, denoted P(S), to be the set of all subsets of S:
P(S)={AcCU:A4AcCS}

Two sets S and T are called disjoint if SNT = @. Given any set S, we obviously
have SNS =SUS =85,5NS“=06,5SNU = §,and SUU = U. The following
properties are also immediate consequences of the definitions. The reader is invited
to prove them as an exercise. Recall that S = T if and only if S C T C S. Thus,
one can prove S = T by the “elementwise method”, i.e., by showing that every

element of S belongs to T and vice versa:

AUB=BUA, and ANB=BNA,
ACAUB, and A=AUB & B CA,
ANBCA, and A=ANB & ACB,
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AU(BUC)=(AUB)UC =AUBUC,
AN(BNC)=(ANB)NC=ANBNC,
AUBNC)=(AUB)N(AUC),
AN(BUC)=(ANB)U(ANC),
¢ =U, and U =0,
(A = A, AUA =U, ANA =0,
ACB & B°CA.

We will frequently use the following laws, called De Morgan’s laws, that relate the
complements to unions and intersections:

(AU B)" = A° N BS,
(AN B)" = A° U B¢.
Unions and intersections may also be defined for families of sets: Suppose that

we are given an index set, A, and that, for each A € A, we are given a set Ay C U.
We then define the union and intersection of the A, by

JAri={xeU:@ren)(xean
AEA

() Ari={x €U : (YA e A)(x € A)}.
AEA

where the universal quantifier “V” means “for all”, and the existential quantifier “3”
means “there exists”, or “for some”.

If the index set is the set of natural numbers N := {1,2, 3, ...}, then we have a
sequence of sets A,, and their union and intersection are given by

J4n={xeU:@neN)xe 4},
neN

(1A4n={xeU:(YneN)(xe4,)h
neN

De Morgan’s laws are also valid for families of sets:
(L) =) 4.
(ﬂ AA)C — U AC,

where the unions and intersections are obviously over all A € A.
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To demonstrate the elementwise method, let us prove the first De Morgan law:
(Uzea A0 = Maea 4A5- Now, x € (Uzep 42)° if and only if x & J,ep 4r
which (by the definition of | J, ., A1) happens if and only if x & A forall A € A.
But this is equivalent to x € AS forall A € A, which (by the definition of (), ¢, A$)
means X € [ );¢p 44

Exercise 1.1.3. Prove the following properties of the symmetric difference for
arbitrary sets A, B, C,and D:

(a) BAA = A,
(b) AAA =0,

(c) AAB = BAA,

(d) AAB = A°ABC,

(e) AA(BAC) = (AAB)AC,

(f) AAB C (AAC)U (CAB),

(2) (AU B)A(C UD) C (AAC) U (BAD),
(h) (AN B)A(C N D) C (AAC) U (BAD),
(i) (A\ B)A(C \ D) C (AAC) U (BAD),
() AAB=C < B = AAC.

Hints: (a), (b), (c¢), and (d) follow at once from the definition. To prove the
associative property (e), first use the definition to show that the left side is equal to

[AN(BUCO)U[B\(CUA)JUIC\(AUB)UANBNC).
Now show that this is also the right side using the commutativity
(AAB)AC = CA(AAB)
and simple substitutions. For (f), use the inclusions
A\ B C(A\C)U(C\ B), B\NAC(C\AU(B\C).
To show (g), use the inclusion
(AUB)\(CUD)C(A\C)U(B\ D).

Next, note that (h) follows from (g), (d), and De Morgan’s laws and (i) follows
from (h) and the fact that A \ B = A N B¢. Finally, to prove (j), show that
AAN(AAB) = B.

Notation 1.1.4 (Standard Set Notation). Throughout the book we shall use the
following standard notation for some frequently used sets: The set of natural
numbers will be denoted by N:= {1, 2, 3,...} and the set of nonnegative integers
by No:= {0, 1, 2,...}; the set of all integers by Z:= {0, £1, £2, +3,...}, and
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the set of rational numbers by Q := {m/n : m,n € Z,n # 0}. We shall use R
for the set of all real numbers and C:= R + iR (with i = +/—1) for the set of all
complex numbers. The sets of all positive elements of Z, @Q, and R will be denoted
by Z*, Q%, and R, respectively. Note that Z* = N.

Definition 1.1.5 (Rings and Algebras of Sets). A nonempty set R C P(U) is
called a ring (of subsets of U) if AU B and A\ B are in R whenever A and B are.
A ring A is called an algebra if U € A. The ring R (resp., the algebra A) is called
a o-ring (resp., a 0-algebra) if it is closed under countable unions:

A, €R, n=12,3,.. — UAneR,

neN

and similarly for A.

Remark 1.1.6. The set U is called the unit. It is easily seen that {@} and the set of
all finite subsets of U are rings, and the latter is an algebra if and only if U itself is
finite. Also, the power set P(U) is an algebra of sets, and so is {@, U }. It should be
noted that, by Exercise 1.1.3, a subset R C P(U) is aring if and only if AA B and
A N B are in R whenever A and B are.

Exercise 1.1.7.
(a) Show that aring R is closed under symmetric differences as well as finite unions

and intersections. In other words,

AeR, BeR— AAB R,

Ay,..., A, e R = UAk €ER,
k=1

Ay,..., A, e R = ﬂAk €R.
k=1

(b) Show that a ring R is an algebra if and only if, for each A € R, we have
A e R.

Remark 1.1.8. One can show, as an exercise, that a ring R (resp., an algebra .A) in
the above sense is, indeed, a ring (resp., a ring with unit element) in the algebraic
sense (cf. Definition 1.3.7 and Remark 1.3.8(c) in this chapter) under the operations
of addition and multiplication defined by

A+ B:=AAB, and AB:= ANB.

The following proposition shows that any collection of subsets of a nonempty set
U can generate an algebra (or o-algebra):
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Proposition 1.1.9. Let U be a nonempty set and let C C P(U) be any collection
of subsets of U. Then there is a smallest algebra (resp., o-algebra) Ac such that
C C Ac. In other words, Ac is an algebra (resp., o-algebra) containing C, and if B
is any algebra (resp., o-algebra) with C C B, then A¢ C B.

Proof. We prove the existence of a smallest algebra. The case of a o-algebra is
obtained by minor modifications. Let F be the family of all algebras (of subsets of
U) which contain C, and note that P(U) € F. Define A¢c := (\gecz B. Then we
have C C B, for each B € F, so that C C A¢. Next, if A, B € Ac,then A, B € B
for each B € F. Since B is an algebra, AU B € Band A\ B C Bforeach B € F.
Therefore, AU B € Ac and A\ B € Ac. O

1.2 Relations and Functions

To define relations we need the concept of Cartesian product of sets, which we now
define.

Definition 1.2.1 (Cartesian Product). Given two elements a, b € U, the set
{a, b} will be called an unordered pair. We also define the ordered pair (a,b) :=
{{a},{a,b}}, in which a is the first element and b is the second element. Thus
(a,b) = (c,d) ifand only if a = ¢ and b = d. Now let A and B be two sets. We
define their Cartesian (or direct) product by

Ax B:={(a,b):ac A, be B}

In a similar way, we define (ordered) triples, quadruples,..., n-tuples, which we
denote by (a, b, ¢), (a,b,c,d),..., (a1,as,...,a,). The Cartesian product of the
sets Ay, A,,..., A, is defined to be

HAk =A x---xAy:={(a,...,a,) ;a1 € Ay,...,a, € A},
k=1

and (ai,as,...,a,) = (b1,by,...,by)ifandonlyifa; = b; for1 < j <n.
Exercise 1.2.2. For arbitrary sets A, B, C, and D, show that

(@ AxB=0 & A=0, or B=20,
®)ACB and CCD = AxCCBxD,
©) (AUB)xC =(AxC)U(BxC(C),
d ANB)yx(CND)=(AxC)N(Bx D).

Definition 1.2.3 (Relation, Inverse, Composition). Given any sets X and Y, a
relation from (a subset of) X to Y is a subset R C X x Y. We say that x is R-
related to y if (x, y) € R, which we also write xRy. If f C X x Y is a relation,
we define its domain and range by
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dom(f):={x € X :(3y € y)(x,y) € /H}
ran(f):={yeY :3x € X)((x,y) € f)}.

The inverse of arelation f C X x Y is the relation

Flh={(.x): (x,y) € f}CY xX.

Given two relations f C X x Y and g C Y x Z, their composition (or composite)
is the relation from (a subset of) X to Z defined by

gofi={(x,2)eXxZ:FyeY)(x,y)e f (y,20€g)}CXxZ.

Note that we have

go f # 0 < ran(f)Ndom(g) # 2.

Definition 1.2.4 (Restriction, Extension). Let f, ¢ C X x Y be two relations.
If f C g, we say that f is a restriction of g or that g is an extension of f. If
dom(f) = D, then f C g is also denoted by f = g|D.

Definition 1.2.5 (Equivalence Relation). A relation R C X x X is called an
equivalence relation on X if it is

reflexive: (x,x) e R VxeJX,
symmetric: (x,y) € R= (y,x) € R, and
transitive: (x,y)€eR and (y,2)€ R = (x,z2) € R.

Example 1.2.6.

(a) The simplest example of an equivalence relation on a set X is equality; i.e., “x
is related to y” simply means x = y. The corresponding subset of X x X is
then the diagonal Ay := {(x,x) : x € X}.

(b) A more interesting and widely used example is the relation of congruence
modulo n (where n € N is a fixed positive integer) on the set Z of all integers:
For two integers a, b € Z, it is defined by

a=b (modn) <= b—a =kn forsome k € Z.

Notation 1.2.7. Notice the use of xRy to indicate (x,y) € R in the above
examples. It is also a common practice to use notation such as ~ or ~ (rather than
R) to denote an equivalence relation. Hence we write, for instance, ~ C X x X and
x ~ y will then mean that x and y are equivalent.
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Definition 1.2.8 (Equivalence Class, Quotient Set). Let R C X x X be an
equivalence relation on X. For each element x € X, the set

[x]:={y € X : yRx}

is said to be the equivalence class of x and the element x is called a representative
of the class [x]. The set of all equivalence classes is denoted by X /R and is called
the quotient set of X by R:

X/R ={[x]:x € X}.

Definition 1.2.9 (Partition). A partition of a nonempty set X is a collection of
sets {X)}iea suchthat @ # X; C X foralll e A, X, NX, =@ forallA, u €A
with A # p, and X = |, Xa. In other words, a partition divides the set X into a
collection of pairwise disjoint and nonempty subsets whose union is X.

The following theorem which shows that, for a given (nonempty) set X,
the sets of “equivalence relations” on X and “partitions” of X are in one-to-
one correspondence has many applications including some interesting ones in
combinatorial questions.

Theorem 1.2.10 (Equivalence Relations and Partitions). Let X be a nonempty
set and let R C X x X be an equivalence relation on X. Then the equivalence
classes of the elements of X form a partition of X. Conversely, given any partition
{X3}ren of X, the relation

Ri={(x,y) e X xX :x, ye€ X, forsome A €A} Q)

is an equivalence relation on X whose equivalence classes are precisely the sets X.

Proof. Let R be an equivalence relation on X. Then for each x € X, we have xRx
and hence x € [x], so that [x] # @. Next, we show that for any x, y € X, either
[x] = [y] or [x] N [y] = @. Indeed, if xRy, then z € [y] implies zRy (or, by
symmetry, yRz) and hence (by transitivity) xRz so that z € [x]. Thus, we have the
inclusion [y] C [x]. A similar argument shows that [x] C [y] and hence [x] = [y].
On the other hand, if xRy (i.e., if (x,y) &€ R), then we must have [x] N [y] = @
since otherwise z € [x] N [y] implies [x] = [z] = [y], by what we just proved, and
we get xRy. Finally, since x € [x] Vx € X, we have X = J'[x], where | J' is
the union of pairwise disjoint classes. Conversely, let {X,},ea be a partition of X
and let R be the relation defined by (1). Then R is immediately seen to be reflexive,
symmetric, and transitive. (Why?) ad

Example 1.2.11.

(a) As we saw above, equality, which corresponds to the diagonal Ay := {(x,x) :
X € X}, is a trivial equivalence relation on an arbitrary set X # . For each
x € X, we have [x] = {x} and hence

X/Ax = {{x}:x € X},
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which is why it is customary to identify the two sets and write X/Ay = X even
though this is not really an equality.

(b) On the set Z of all integers, congruence modulo n, defined above, is an
equivalence relation. For each a € Z, its equivalence class is [a] = a + nZ,
where nZ:= {nk : k € Z}, and the set of all equivalence classes is denoted by
Zy. Since the possible remainders upon division by n are 0, 1, 2,..., n —1,
we have

Z,=10,1,2,....n—1},

where, for simplicity, we write [k] = k.

Definition 1.2.12 (Partial Ordering). Given a set X, a relation R C X X X is
called a partial ordering on X if it is

reflexive: (x,x) e R VxelX,
antisymmetric: (x,y)€R and (y,x)e R = x =y, and

transitive: (x,y)€R and (y,2) € R = (x,2) € R.

If R is a partial ordering on a set X, then we say that X is a partially ordered set.

Notation 1.2.13. If R C X x X is an arbitrary partial ordering on a set X, then
xRy will be denoted by x < y. We alsouse x < y tomean x < y and x # y.

Note that the usual ordering “<” on the sets N, Z, Q, and R is obviously a
partial ordering (in fact a fotal ordering, as defined below) on those sets. Also, the
inclusion “C” is a partial ordering on P(U) which is not total if U contains more
than one element.

Definition 1.2.14 (Linear (or Total) Ordering, Chain). Let X be a partially
ordered set with partial ordering “<.” Two elements x and y are called comparable
if x < yory < x. The set X is called linearly ordered, or totally ordered, if for
any x,y € X, x and y are comparable. A linearly ordered set is also called a chain.

Definition 1.2.15 (Maximal and Minimal Elements). Let X be a partially
ordered set. An element u € X is called maximal if, for any v € X, u <X v
implies u = v. Similarly, an element ¢t € X is called minimal if s € X and s <X ¢
imply s = ¢.

Definition 1.2.16 (Upper and Lower Bounds, Sup, Inf, etc.). Let S be a subset
of a partially ordered set X. Then an element u € X (resp.,t € X) is called an upper
bound (resp., a lower bound) of S if s < u (resp., t < s)forall s € S. u is called
the least upper bound or supremum of S and denoted by u = sup(S) (or sup S) if
u is an upper bound of S and if, for any upper bound v of S, we have u < v. The
greatest lower bound or infimum of S, denoted by ¢t = inf(S) (or inf S), is defined
similarly. If u = sup(S) € S, then we write u = sup(S) = max(S) (or max S). u
is then called the greatest element or maximum of S. Similarly, if 1 = inf(S) € S,
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then we write t = inf(S) = min(S) (or min S). The element ¢ is then the least
element or minimum of S.

Definition 1.2.17 (Bounded Set). Let X be a partially ordered set, and let S C X.
We say that S is bounded if it is bounded both above and below; in other words, if
there are elements ¢, u € X suchthatt <s < uforalls € S.

The most important fact about partially ordered sets, chains, upper bounds, and
maximal elements is the following lemma which is equivalent to the Axiom of
Choice:

Lemma 1.2.18 (Zorn’s Lemma). If X is a partially ordered set in which every
chain has an upper bound, then X contains a maximal element.

Example 1.2.19.

(a) Consider the power set P(U) with the partial ordering C and suppose that, for
each element of an index set A, we are given a set Ay C U. Then we have

sup{d, : L€ A} = U Aj,
AEA

inf{d, : A e A} =) A
AEA

In particular, sup P(U) = max P(U) = U, and inf P(U) = min P(U) = 0.
(b) Consider the set Z of integers, ordered by the partial ordering: “m < n, if and
only if m|n, i.e., if and only if m divides n.” Then we have

sup{m,n} = lcm(m, n) = least common multiple of m and n,

inf{m,n} = gcd(m,n) = greatest common divisor of m and n.

Warning. There is an important distinction between minimal and least elements.
For example, for the collection P(U) \ {9} of all nonempty subsets of U (partially
ordered by “C”), each singleton {x}, x € U, is a minimal element, but, unless
U itself is a singleton, there is no least element. Similarly one should distinguish
between maximal and greatest elements.

Definition 1.2.20 (Well Ordering). A partial ordering “=<” on a set X is called a
well ordering, and the set X is called well ordered, if for any subset S C X, § # 0,
we have inf(S) € S; in other words, if every nonempty subset of X has a least
element.

Remark 1.2.21. Note that a well-ordered set X is automatically a chain (i.e.,
linearly ordered). Indeed, for any pair of elements a, b € X, the nonempty subset
{a, b} must have a least element, so thata < b orb < a.
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Example 1.2.22.

(a) (Well-Ordering Axiom). Under the usual ordering “<,” the set N of all natural
numbers is well ordered. More generally, for any n € Z, the set T, = {k € Z :
k > n} is well ordered.

(b) The sets Z and {1/n : n € N} are not well ordered.

The following consequence of the Well-Ordering Axiom of the set N of natural
numbers is a powerful tool for many proofs:

Proposition 1.2.23 (Principle of Mathematical Induction). If a subset S C N
satisfies the following two conditions:

G 1e8,
i) neS=>n+1e€es,

then we have S = N.

Proof. If S # N, let m = min(N \ §). Then m — 1 ¢ N\ S, which means that
m — 1 € S. But then, by (ii), (m — 1) + 1 = m € S, which is absurd. O

Another way of stating the principle is this: If, for each n € N, P(n) is a
statement about 7, and if we are given that P (1) is true and that, for each natural
number k, P(k + 1) is true whenever P (k) is, then P(n) is true for all n € N.
Indeed, we then simply define S:= {n € N: P(n)}.

Definition 1.2.24 (Initial Segment). Let X be a partially ordered set. For each x €
X, the initial segment determined by x, denoted by s(x), is the subset s(x):= {y €
Xy =<x}.

Proposition 1.2.25 (Principle of Transfinite Induction). Let X be a well-ordered
set and let S C X satisfy the following condition:

VxelX, sx)cS =xeSs.

Then S = X.

Proof. First, note that S # 0. Indeed, if xo:= min(X) € X, then s(xg) =4 C S,
which implies xo € S. Next, if X \ S # 0, let £ := min(X \ §) € X \ S. Then
s(§) C S. But this implies £ € S, which is absurd. O

Corollary 1.2.26 (Principle of Strong Induction). If S C N satisfies the condi-
tion (Vn e N)(k e N: k <n} C S = n € S8), then S = N. Equivalently, let
P (n) be a statement about n for eachn € N. If (i) P(1) is true and (ii) P(n) is true
whenever P (k) is true for all 1 < k < n, then P(n) is true for alln € N.

Remark 1.2.27. The Principle of Strong Induction is in fact equivalent to the
Principle of Mathematical Induction (Proposition 1.2.23). The reader is invited to
supply the proof (cf. Exercise 1.2.28 below). There are many situations where this
“strong” version is the appropriate one to use. An important example is the proof of
the Prime Factorization Theorem (cf. Corollary 1.3.45 of Proposition 1.3.39 below).
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Exercise 1.2.28. Show that the Principle of Strong Induction is in fact (logically)
equivalent to the Principle of Mathematical Induction (i.e., Proposition 1.2.23).

The most important fact about well ordering is the following theorem which is
equivalent to the Axiom of Choice. The proof, which we omit, may be found, e.g.,
in Suppes’s Axiomatic Set Theory [Sup60].

Theorem 1.2.29 (Well-Ordering Theorem of Zermelo). Every set X can be well
ordered. In other words, there exists an order relation “<” on X which is a well
ordering.

Definition 1.2.30 (Directed Set, Lattice). Let “<” be a partial ordering on a set X.
We say that X is directed if every pair of elements @, b € X has an upper bound
in X. We say that X is a lattice if, for every pair of elements a, b € X, we have
sup{a, b}, inf{la,b} € X; we then write a vV b:= sup{a, b} and a A b:= inf{a, b}.
It is obvious that if a and b are comparable, then a vV b = max{a, b} is the greater
of @ and b, and a A b = min{a, b} is the lesser of a and b.

Using the above definitions and notation, one can prove the following identities,
which are quite obvious for the usual ordering on the set of real numbers.

Proposition 1.2.31 (Lattice Identities). Let X be a partially ordered set and let
{x,¥,z} be a chain in X. Then the following identities are satisfied:

. xAx=Xx, xVXx=x (idempotent);

XAYy=YAX, XVy=yVx (commutative);
xAAD=xAY)AZ, xV(yVz) =((xVYy)Vz (associative);
XA(xVYy)=xV(XAy)=x (absorption);

XXy &< xAy=x < xVy=y (consistency);

XAV =xAY)V(XAZ), xV(yAz) = (xVYy)A(xVz) (Distributive).

ISR S

Proof. Exercise! O
Remark 1.2.32.

(a) A lattice X in which the identity (6) holds for all elements x, y, z € X is
called a distributive lattice. Note that, in the distributive property (6) above, the
two distributive relations are equivalent; i.e., each is a consequence of the other.

(b) Using the associative property, one can inductively define the A and Vv opera-
tions for any finite chain {x, x5, ..., x,} C X. In this case we write

n n
/\x,ﬁ: Xy A+ AX,, and \/x,-:: X1V VX,

i=1 i=1

Exercise 1.2.33 (Lexicographic Ordering on N x N). On the set N x N, where N
is the set of natural numbers, define the partial ordering

(a,b) = (c,d) < a<c, or a=c and b <d,
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where “<” and “<” have their usual meanings. Show that “<” is a well ordering
on N x N. This dictionary ordering is one of the many possible ways of ordering a
(Cartesian) product.

Definition 1.2.34 (Function). Given two sets X and Y, arelation f C X x Y is
called a function (also called a mapping, or simply a map) if it is single-valued; in
other words, if we have

(x,y1), (x,y2) € f = y1 = ».

If (x,y) € f, the (unique) element y € Y is denoted by y = f(x). The set
dom(f):={xe€ X : @y € Y)((x,y) € f)} C X is called the domain of f, and

thesetran(f):={y e Y : (Ax € X)((x,y) € /H)} ={f(x) : x edom(f)} C Y
is called the range of f. If dom(f) = X, then we say that f is a function from X

to Y and write f : X — Y. In this case we also define f, informally, as a rule
which assigns to each x € X aunique y = f(x) € Y. We may also use the notation

x>y = f(x).

Notation 1.2.35. The set of all functions from a set X to a set Y will be denoted by
Y*. Occasionally, we may also use F(X,Y).

Definition 1.2.36 (Sequence). Let X be a set. A sequence in X is a function x :
N — X. We write x(n) = x,, and x = (x;) = (Xu)neny = (X1, X2, ..., Xp,...).
The element x, := x(n) is called the nth term of the sequence x. Using the above
notation, the set of all sequences in X will be denoted by X,

Definition 1.2.37 (Direct and Inverse Images). Given a function f : X — Y and
subsets A C X, B C Y, we define the (direct) image of A under f by

f(A):={f(a) :a e A}
and the inverse image of B under f by
fY(B):={x e X: f(x) € B}.

Note, in particular, that ran( f) = f(X). Also, if B = {y} C Y, then we write

7 o0= 1A

Example 1.2.38. Let f : R — Rbe the function f(x) = x2. We then have f(R) =
[0,00) and £~1([0,1]) = [~1, 1], while f~'([~1,0)) = @.

Exercise 1.2.39. Let f : X — Y be a function. Suppose that for an index set / we
have for each i € I asubset A; C X and a subset B; C Y. Show that

(a) f(UiE[ 4;) = Uiel f(4)),
®) f(MNies Ai) CNier f(A),
(o) f_l(Uiel Bi) = Uiel f_](Bi)’
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(d) f_l(miel Bi) = ﬂie] f_l(Bi)’

e) f~"(Y\B) =X\ f~(B) foranysubset B CY,

& fF' (B \By) = f~'(B)\ f~'(B,) foranysubsets B;, B, CY,and
(2) [T'(BIABy) = f~'(B))Af~!(B,) forany By, B, CY.

Definition 1.2.40 (One-to-One, Onto, etc.). Let f : X — Y be a function. We
say that f is one-to-one, or injective, if for all x|, x, € X with x; # x;, we have
f(x1) # f(xz). We say that f is onto, or surjective, if ran(f) = f(X) = Y.
Finally we say that f is a one-to-one correspondence, or is bijective, if it is both
one-to-one and onto.

Example 1.2.41.

(a) (Canonical Projection) Let R C X x X be an equivalence relation on a set
X and let X/R be the corresponding quotient set as in Definition 1.2.8 (i.e.,
the set of all equivalence classes). The canonical projection is then the function
7 : X — X/R defined by

w(x):= [x] Vx e X.

It is obviously a surjective (i.e., onto) map.

(b) Let A = {ay,as,...,ay} and B = {b,b,,...,b,} be two finite sets. Define
fiAXB = {1,2,....mn}by f(a;,b;)=(—-1n+j 1<i<m 1=
Jj < n.Then f is bijective (Why?).

(c) Let Ay, Ay, ..., Ay besets and define g : A} X Ay X -+ X Ay — (A X A; X
oo X Ag—1) X Ag by glar, as. . .. ag—1,ar):= ((a1,a, ...,ak—1),ax). Then g
is clearly a bijective map.

Definition 1.2.42 (Permutation). Given a set X, a one-to-one correspondence f :
X — X is called a permutation of X.

Example 1.2.43. Let f, g, and h be functions from R to R defined by f(x) :=
x%, g(x):= x* + x2, and h(x) := x> Vx € R. Then f is neither one-to-one
nor onto, g is onto but not one-to-one, and / is a one-to-one correspondence, i.e., a
permutation of R.

Definition 1.2.44 (Composite Functions). Given the sets X, Y, Z and functions
f:X—>Y, g:Y — Z,the composite function go f : X — Z is defined by

(8o /Hx):=g(f(x)) VYxeX

Definition 1.2.45 (Inverse Function). Given a one-fo-one function f : X — Y,
the inverse relation f~' = {(y,x) : y = f(x)} C Y x X is a function called
the inverse of f. If the function f is a one-to-one correspondence, then the inverse
function f_1 has domain Y, i.e., f_1 : Y — X, and we have f o f_1 = idy,
while f~! o f = idy, where, for any set S, the identity function idg is defined by
idg(s):=s VseS.
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Remark 1.2.46.

(a) (Associativity of Composition). The composition of functions is associative in
the sense that, for any functions f : S - 7, g:T - U,andh:U — V,
we have

ho(go f)=(hog)of.

This follows at once from the definition of composition: Vs € §,

(ho(go f))(s) = h((go f)(s)) = h(g(f(5))) = (hog)(f(s)) = ((hog)o f)(s).

(b) If f : X — Y is not injective, the inverse relation f~':= {(y,x) : (x,y) € f}
is not a function since one can then find x;, x; € X and y € Y with x; # x;
but f(x;) = f(x2) = y, so that £~ contains the pairs (y,x;), (y,x;) and
hence is not single-valued.

Exercise 1.2.47. Let X and Y besets, A C X, BCY, f:X — Y, and
g:Y - X.

1. Show that, if X = Y and if f and g are permutations of X, then so are f !
and go f.

2. Show that, if g o f = idy, then f is one-to-one and g is onto.

3. Show that f(f~'(B)) C B and that equality holds if f is onto. Show by
example that the inclusion is proper in general.

4. Show that A C f~'(f(A)) and that equality holds if f is one-to-one. Show by
example that the inclusion is proper in general.

Exercise 1.2.48. Let f : X — Y be a one-to-one function. Show that for any
subsets A, B C X, we have

(@ f(ANB) = f(A)nN f(B),

(b) f(X\A) = f(X)\ f(A).

(c) Show by examples that the statements in (a) and (b) are false if f is not one-to-
one.

The following exercise provides a large class of equivalence relations that
includes most commonly encountered cases.

Exercise 1.2.49. Let X # @ and S be sets and let f : X — S be an arbitrary map.
Define the relation

Rp:={(x,y) e X x X : f(x) = f(y)}.

Show that Ry is an equivalence relation. Also, show that the equivalence classes
are the sets

i) ={xeX: f(x)=s) Vse f(X).
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Recall that the equivalence class of an element x € X is the set

[x]:={ye X :(x,y) € Rs}.

Definition 1.2.50 (Finite and Infinite Sets). A set S is called finite if either S = @
or there is a one-to-one correspondence between S and the set {1,2,3,...,n}, for
some n € N. We then say that S has n elements and write |S| = n. A set that is not
finite is called infinite.

Example 1.2.51. It follows from Example 1.2.41(b) that if A and B are finite sets
with m and n elements, respectively, then their Cartesian product A x B is a finite
set with mn elements. Inductively, using Example 1.2.41(c), if A; is a finite set with
n; elements, 1 < j < k, then the Cartesian product H’;ZIA j is a finite set with
nin;---ny elements. It is obvious that the standard sets N, Ny, Z, Q, R, and C are
all infinite.

Definition 1.2.52 (Characteristic Function). Let X be a set and A C X. The
characteristic function (or indicator function) of the set A, denoted by y 4 (or 1),
is defined by

1 ifx €A,

xa(x) =14(x):=
0 otherwise.

Example 1.2.53. Given a universal set U, we obviously have yy = 1 and yg = 0,

where by 1 and 0 we mean the constant functions identically equal to 1 and O,

respectively. Let S C U be any set, and let A = Ag = {(s,5) : s € S} be the

diagonal in S x S. Then Kronecker’s delta, § := ya, is the characteristic function

of A:

1 ifx=y,

8yy:=468(x,y):=

’ 0 ifx #y.
Exercise 1.2.54. Let X be a set and P(X) its power set. Consider the set {0, 1}* of
all functions from X to {0, 1}, which we also denote by 2% and define the function
¥ :P(X) — 2% by y(A) = yx4. Show that y is a one-to-one correspondence.

Exercise 1.2.55. Prove the following properties of the characteristic function. Here,
A, B, Ay,..., Ay are arbitrary subsets of a universal set U:

(@ ACB & ya=<ys

() xanB = xaxs = min{y4, x5},

©) xac =1—xa,

(@) yaup = 1= = )1 = xp) =max{ya, xp} = xa+ X — Xax5;
() xans = |xa— xsl,

® xanan-na = ]_[];ZIXAj, and Y 4,u,0-04, =1 — l_[l;zl(l = X4;)s
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(g) if A is finite, then |A| = X ey y4(x), and
(h) (Inclusion—-Exclusion Principle) if A and B are finite, then |[A U B| = |A| +
|B|—|AN B

Definition 1.2.56 (Bounded Function). Let X and Y be sets, and assume that Y is
partially ordered. A function f : X — Y is called bounded above (resp., below) if
itsrange f(X) C Y is bounded above (resp., below) in Y; i.e., if there exists z € ¥
(resp., y € Y) such that f(x) < z (resp., y < f(x)) for all x € X. The function
f is called bounded if it is bounded both above and below; otherwise, we call it
unbounded.

Example 1.2.57. Let f, g, h be the functions from R to R defined by f(x) :=
sinx, g(x):= x2, and h(x):= x> Vx € R. Then f is bounded (—1 < sinx <
1 Vx), g is bounded below (0 < x% Vx) but not above, and 4 is neither bounded
above nor bounded below.

1.3 Basic Algebra, Counting, and Arithmetic

Our goal in this section is to give a brief summary of the most basic definitions
and terminology in algebra, counting, and arithmetic. These will be needed on
various occasions in the upcoming chapters of the text. Most readers have already
encountered in other courses more detailed accounts of the topics we briefly
cover here. We start with the definitions of commonly used algebraic structures,
namely, groups, rings, fields, vector spaces, and algebras. We then introduce the
Basic Counting Principle as well as the Inclusion—Exclusion Principle and end
the section with some elementary facts from arithmetic. The reader is referred to
the excellent textbooks Topics in Algebra by Herstein [Her75] and A Survey of
Modern Algebra by Birkhoff and MacLane [BM77] for details. For vector spaces,
we also recommend Halmos’s beautifully written Finite-Dimensional Vector Spaces
[Hal58].

Definition 1.3.1 (Group). A group is a set G together with a binary operation
denoted by - (i.e.,amap - : G x G — G) satisfying the following axioms:

l.a-(b-c)=1(a-b)-¢ Va, b, c € G (associativity).

2. There exists an element e € G (called the identity element) such that a - e =
e-a=a VYa e G (existence of an identity element).

3. Forevery a € G there existsa~! € G (called the inverse of a) such that a-a~
a~'-a = e (existence of inverses).

Remark 1.3.2.

1 =

(a) The existence of (the) identity element [in axiom (2)] implies that a group is
never empty.
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(b) The binary operation - : G x G — G is usually called the product even though it
may have nothing in common with the ordinary product of two numbers. Also,
one usually omits the “-” and writes ab instead of a - b.

(c) A group is a structured set; i.e., it is a set fogether with a binary operation.
Thus, to be precise, one should write “a group (G, -)” rather than “a group G.”
Nevertheless, the latter is often used if there is no confusion over the binary
operation.

Definition 1.3.3 (Subgroup, Abelian Group). Let G be a group. A subset H C G
is said to be a subgroup of G if, with the product -|H (i.e., with the product of G
restricted to H), the set H itself is a group. A group G is said to be Abelian (or
commutative) if

ab=ba Va, beg.

Example 1.3.4.

(a) The set Z of all integers with the operation of addition (i.e., (a,b) — a + b)
is an Abelian group. The identity element is 0 and, for each integer a € Z, its
inverse is the opposite number —a. The subset

2Z:={2n :n € Z}

of all even integers is a subgroup, as the reader can check at once. The subset of
all odd integers, however, is not a subgroup, nor is the subset Ny:= N U {0} of
all nonnegative integers. (Why?)

(b) The set Q* := Q \ {0} of all nonzero rational numbers is a group with the
operation of multiplication, i.e., (r,s) + rs. The subset Q1 of all positive
rationals is a subgroup and so is the subset {—1, 1}.

(c) Let X be an arbitrary nonempty set and let & x denote the set of all permutations
of X, i.e., the set of all maps f : X — X that are bijective (i.e., one-to-
one and onto). Then (&y,o) is a group (called the symmetric group of X)
where o denotes the composition of maps: (f, g) — f o g. This follows from
Exercise 1.2.47(1). Here, the identity element is the identity map idy : X — X
defined by idy (x):=x Vx € X.

Proposition 1.3.5 (Uniqueness of Identity and Inverse). Let (G,-) be a group.

Then the identity element e € G is unique. Also, for each a € G, the inverse a™" is

unique.

Proof. If e and ¢’ are both identity elements, then we have ee’ = e since ¢’ is an
identity element, and ee’ = ¢’ since e is an identity element. Thus
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Next, if b, ¢ € G are both inverses of a € G, then, by associativity, we have
b =be = b(ac) = (ba)c = ec =c¢

and the proof is complete. O

Exercise 1.3.6. Let G be a group and let @ # H C G. Show that H is a subgroup
of G if and only if the following is true:

ab™' e H Va, beH.

Definition 1.3.7 (Ring). A ring is a set R together with two binary operations + :
RXxX R — Rand:: R x R — R, called addition and multiplication, such that, for
arbitrary elements x, y, z € R, the following axioms are satisfied:

X+y=y+x,

L x+y)Fz=x+ (O +2),

. 30 € R such that x + 0 = x,

. 3—x € Rsuchthat x + (—x) =0,

x-(y-a)=(x-y)z

x-0V+z0=x-y+x-z, and (y4+2)-x=y-x+2z-x.

Remark 1.3.8.

R e

(a) Axioms (1)—(4) simply indicate that (R, +) is a commutative group.

(b) (Commutative Ring). If x-y = y-x VXx, y € R, then the ring R is said to be
commutative.

(c) (Ring with Unit Element). If there exists an element 1 € R such that 1 - x =
x-1 =x Vx € R, then the element 1 € R is called a unit element and the
ring R is said to be a ring with unit element.

(d) (Division Ring). A ring R with unit element is said to be a division ring if R\ {0}
is a group under multiplication, i.e., if each x € R\ {0} has an inverse x~! € R
(so that xx~' = x~'x = 1, where 1 € R is the unit element).

Example 1.3.9.

(a) With the usual addition and multiplication, the set Z of all integers is a
commutative ring with unit element 1. The set 2Z := {2n : n € Z} of all
even integers is a commutative ring but has no unit element.

(b) With the usual addition and multiplication, the set Q of rational numbers is a
commutative (division) ring with unit element 1.

(c) Let X # @ be an arbitrary set and let 7(X, Q) := Q¥ be the set of all functions
from X to Q. Then, as the reader can easily check, F(X, Q) is a commutative
ring with addition and multiplication defined, for arbitrary f, g € F(X, Q) and
x € X, by

(f + @)= f(x) +g(x) and (f-g)(x):= f(x)g(x).
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Definition 1.3.10 (Subring, Ideal). Let R be a ring and let S C R. We say that
S is a subring of R, if with the addition and multiplication (of R) restricted to S,
the set S is itself a ring. In particular, (S, +) is a subgroup of (R, +). We say that
S is a (two-sided) ideal (or simply an ideal) if S is a subgroup of (R, +) and if, in
addition, we have

(VxeS)(VyeR)(x-y, y-xeSl).

Thus, every ideal is obviously a subring. The converse is, however, false in general.
Example 1.3.11.

(a) The set Z is a subring of QQ but not an ideal. The set 27Z of even integers is an
ideal of Z.

(b) Let F(X,Z) = ZX be the set of all integer-valued elements of F(X, Q). Then
F(X,Z) is a subring of F (X, Q) but not an ideal. On the other hand, if xy € X
is a fixed element, then the subset Fy, := {f € F(X,Q) : f(xp) = 0} is an
ideal of F(X,Q). (Why?)

Definition 1.3.12 (Field, Subfield). A field F is a commutative ring with unit
element 1 # O such that (F \ {0},) is a group; i.e., each x € F \ {0} has a
multiplicative inverse x~' (so that xx~' = x~!'x = 1). In other words, a field is
simply a commutative division ring. A subset K C F is said to be a subfield of F if
K is a subring of F' and K \ {0} is a subgroup of (F \ {0}, -).

Example 1.3.13. The set Q of rational numbers is a field and so is the set R (resp.,
C) of all real (resp., complex) numbers (to be defined later). In fact, Q is a subfield
of R which is itself a subfield of C.

Definition 1.3.14 (Vector Space, Subspace). Let F be a field. A nonempty set V,
whose elements will be called vectors, is said to be a vector space (over F) if V
is an Abelian group under an operation + : V x V' — V called (vector) addition
and if there isamap - : F x V — V, called scalar multiplication and written as
«(a,v) =avforalla € F, v € V, such that the axioms

1. a(u+v) =au+ av,
2. (a + b)u = au + bu,
3. a(bu) = (ab)u, and
4. lu=u

are satisfied for arbitrary elements a, b € F and vectorsu, v € V. Asubset U C V
is said to be a (vector) subspace of V if, with the addition and scalar multiplication
restricted to U, the set U is itself a vector space.

Example 1.3.15.

(a) Any field F is a vector space over itself and, of course, over each of its subfields.
Thus, the field R is a vector space over itself and over Q. Also, the field C of
complex numbers is a vector space over C, R, and Q.
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(b) Let X # 0 be an arbitrary set and let F' be any field. Then the set
F(X,F):=F¥%

of all functions from X to F is a vector space over F.
(c) [A special case of (b)] Consider the set

Q"= QU2 = {(x1, %2, ..., xp) i xk €Q, 1 <k <n}.

For any x = (x1,...,X,), ¥ = (V1,...,¥s) € Q" and any r € Q, define the
vector addition and scalar multiplication componentwise, i.e.,

x+y:=01+ Vi, Xn + 0)s rx = (rxy,...,rxy).

Then Q" is a vector space over Q. Similarly, R” is a vector space over R (and
Q) and C" is a vector space over C, R, and Q.

Remark 1.3.16 (Module). If in the above definition of vector space the field F is
replaced by a ring R, then the resulting (structured set) V' is said to be an R-module
(or a module over R). Since every field is a ring, it is obvious that every vector
space is a module. Note that, if the ring R has no unit element, then the axiom (4)
(i.e., lu = u Yu € V) must be omitted. On the other hand, if R has a unit 1 and
lu = u Yu € V is satisfied, then V is called a unital R-module. Given an arbitrary
set X # @ and an arbitrary ring R, the set R* of all R-valued functions on X is an
R-module.

Definition 1.3.17 (Direct Sum, Complement). Let 1/} and V, be two subspaces
of a vector space V. We say that V' is the direct sum of V; and V,, and we write
V =V, & V,, if every v € V can be written uniquely as v = v| 4+ v, withv; € V}
and v, € V;. The subspace V) (resp., V») is then said to be a complement of V,
(resp., V7).

Definition 1.3.18 (Span, Finite-Dimensional). Let V' be a vector space (over a
field F) and S C V. The span of S is the subspace of all finite linear combinations
of vectors in S; i.e.,

Span(S):={ayvi +---+ayv, s ay,...,a, € F,vy,...,v, € S}.

For § = @, we define Span(9) := {0}. The space V is said to be finite-dimensional
if V' = Span(S), for a finite set S C V. If V is not finite-dimensional, we call it
infinite-dimensional.

Definition 1.3.19 (Linear Independence, Basis). Given a vector space V over a
field F, aset S C V is said to be linearly independent if, for any finite subset
{Vi,...,vu} C S, we have
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n
chvk=02>cl =c=--=c¢, =0,
k=1

where ¢, € F,for1 < k < n. A set B C V is said to be a basis for V if B is
linearly independent and Span(B) = V.

We state the following well-known fact without proof:

Theorem 1.3.20 (Dimension). Any two bases of a finite-dimensional vector space
V' have the same number of elements; this number, denoted dim(V'), is called the
dimension of V.

Definition 1.3.21 (Algebra, Subalgebra). Let F be a field. A ring A is called an
algebra (over F) if A is a vector space over F such that for any x, y € A and
any a € F we have a(xy) = (ax)y = x(ay). A subset B C A is said to be a
subalgebra of A if, with the operations of A restricted to B, the set B is itself an
algebra over F.

Definition 1.3.22 (Commutative Algebra, Division Algebra). Let A be an alge-
bra over a field F. We say that A is commutative if xy = yx Vx, y € A. We say
that A is a division algebra if A has a unit element 1 and if each x € A\ {0} has an
inverse x ie, xx = x"1x = 1.

Example 1.3.23.

(a) Every field is a commutative division algebra over itself and, of course, over
any of its subfields. Thus, the field C is a commutative division algebra over R
and also over Q.

(b) Given any field F and any set X # @, the set F(X, F):= F¥ is a commutative
algebra over F and for each subfield K C F, the set K* is a subalgebra of F*.
Note, however, that these algebras are not division algebras. (Why?)

The following exercise will give a rather involved but important example of a
noncommutative division algebra.

Exercise 1.3.24 (Real Quaternions). Let Q be the set
0:= {a =ap+ai +ayj +ask :ag, a1, as, az € R},

where i, j, and k are symbols having the following multiplication table.
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The elements of Q will be called (real) quaternions. Given two quaternions a =
ap+ ayi +aj +azk andb = by + byi + byj + bsk, we write a = b if and
only ifa, = b, fort = 0, 1, 2, 3. On the set Q one defines three operations as
follows. For arbitrary quaternions a, b € Q and real number ¢ € R, the operations
of addition and scalar multiplication are defined componentwise:

a+b=(a+aii +azj +aszk) + (b + bii + baj + bs3k)
= (ap + bo) + (a1 + b))i + (az + by)j + (a3 + b3)k,
ca=c(ag+ aii +ayj + ask):= cag + (cay)i + (cay)j + (caz)k,

while multiplication is defined by

a-b = (ap+ aii +axj + ask)(bg+ bii + baj + b3k)
= C()+C1i +C2j +C3k,

where the real numbers ¢y, ¢y, ¢», and c3 are defined to be

Cco.= aobo — a]b] - aZbZ - a3b37
c1:= aopby + aiby + abz — azb;,
¢y:= apby + aby + azby —aib;, and

c3:= aobs + asby + a1b, — axb;.

The above definition of the product of two quaternions is indeed complicated, to
say the least, but it can be obtained by formally expanding (ag + aii + a>j +
ask)(by + bii + byj + bsk), collecting the terms, and simplifying them using the
above multiplication table for i, j, k.

(a) Show that the eight elements {£1, £i, +j, +k} form a non-Abelian group with
the product defined by the above multiplication table.

(b) Show that Q is a noncommutative division ring with zero element 0:= 0+ 0i +
0j + 0k = 0 € R and unit element 1:= 1 + 0i + 0j + 0k = 1 € R. Hint: For
eacha = ag + a1i + ayj + ask € Q, define its absolute value |a| to be

la|:= \/a§+af+a§+a§
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and note that a = 0 if and only if |a] = 0. Now show that, given any a # 0, its
inverse is the quaternion

-1 ao a . a _Cl_3
||

(c) Deduce that Q is a (noncommutative) division algebra (over R).
Definition 1.3.25 (Homomorphism, Isomorphism).

(a) Given two groups G and G’, a map ¢ : G — G’ is called a (group)
homomorphism if we have ¢ (ab) = ¢(a)p(b) Va, b € G.

(b) Given two rings R and R’, amap ¢ : R — R’ is a (ring) homomorphism if
¢(x +y) =¢(x) + ¢(y) and g (xy) = ¢p(x)p(y) Vx,y € R.

(c) Giventwo fields F and F’,amap ¢ : F — F’is called a (field) homomorphism
if it is a ring homomorphism, i.e., if p(x + y) = ¢(x) + ¢(y) and p(xy) =
¢(x)p(y) Vx, y € F.

(d) Given two vector spaces V and V' over the same field F,amap¢ : V — V' is
called a (vector space) homomorphism (or a linear map) if ¢ (u + v) = ¢(u) +
¢(v) and ¢p(au) = a¢(u) foralla € F andu, ve V.

(e) Given two algebras A and A’ over the same field F,amap ¢ : A — A’ is
called an (algebra) homomorphism if it is a vector space homomorphism (i.e.,
d(x +y) = ¢(x) + ¢(y) and ¢p(ax) = a¢(x) foralla € F and x, y € A)
and if, in addition, we have ¢ (xy) = ¢(x)p(y) Vx, y € A.

In each of the above cases, the map ¢ is said to be an isomorphism if (in addition
to the conditions above) it is bijective (i.e., one-to-one and onto). The corresponding
groups (rings, fields, etc.) are then said to be isomorphic.

We now look at some basic methods of counting the number of elements of
a finite set. Counting plays a fundamental role in many parts of mathematics and
numerous proofs are heavily dependent on the ability to count the number of
elements of various sets. Here are a few questions we can answer as soon as we are
familiar with the Basic Counting Principle and the (general) Inclusion—Exclusion
Principle (to be defined below): Given two finite sets X and Y, the set Y ¥ of all
functions from X to Y is obviously also finite. How many elements does this set
have? How many of these elements are one-to-one maps? How many are onto? For
more difficult questions and methods to answer them, the reader can consult, e.g.,
Polya—Szego [PSz72]. The following proposition is an immediate consequence of
Example 1.2.51.

Proposition 1.3.26 (Basic Counting Principle). If a task can be performed in k
steps, and if for each j =1, 2,..., k, the jth step can be performed in n; ways,
regardless of the choices made for the preceding steps, then the total number of
ways in which the entire task can be performed is nin, ---ng.

Definition 1.3.27 (Permutation, Combination). A permutation of n objects taken
k at a time is any ordered arrangement of k of the n objects. A combination of n
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objects taken k at a time is simply a selection of k objects from the n objects, with
order disregarded. The number of all permutations of # objects taken k at a time is
denoted by P (n, k), and the number of all combinations of the n objects taken k at
a time is denoted by C(n,k) = (}) [read n choose k] and is also called a binomial
coefficient.

Remark 1.3.28. The number of permutations or combinations of n objects taken
k at a time can be easily computed using the Basic Counting Principle: For the
number of permutations, note that to form a permutation, we have n choices for the
first object, n — 1 choices for the second object, ..., n — k + 1 choices for the kth
object. Thus P(n,k) = n(n —1)(n —2)---(n —k + 1) = n!/(n — k)!, where “n
factorial” is defined by n!:=1:2-3...n for each n € N, and 0!:= 1. In particular,
P(n):= P(n,n) = n!. Note that in this particular case, a permutation is indeed a
one-to-one correspondence of the set of n objects with itself. For the combinations,
note that each subset of k objects produces k! permutations, so that P(n,k) =
k!C(n, k), from which we get (Z) =C(n,k)= P, k)/k!=n!/k!(n —k)!.

Exercise 1.3.29. Forn e Nandk =0, 1, 2,..., n, prove the identities

()= = (2)=0)- ()

where (’S) =1= (Z) follows from 0!:= 1.

The numbers C(n,k) = (Z) are called binomial coefficients for the following
reason:

Proposition 1.3.30 (Binomial and Multinomial Formulas). For any integer n €
N and any real numbers x,y € R, we have

"\ (n n(n—1
(xy)' =) <k>xn_kyk — ey M D )

2
k=0
More generally, for any real numbers x1, Xxa,..., X € R, we have
n
(X1 + X2+ + x)" :Z Xyt xk, (¥%)
ny,Nno,---, N
where the sum on the right is over allny, n,, ..., ny € Nowithny+ny+---+n; =

n, and where the multinomial coefficients are defined by

n ) n!
iy fa, - ng ] nglngleeong!
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Proof. Note that the expansion of the product (x; + y1)(x2 4+ y2) - (xy + Vn)
consists of 2" terms, each containing n factors that are either x; or y;, for some
Jj = 1,2,...,n. Now the number of terms containing as factors k of the y;’s is
({)- (Why?) Setting x; = x, y; =y, j = 1,2,...,n, the binomial formula (x)
follows at once. As for the multinomial formula (x%), it can be deduced from the
binomial formula (x) using induction and the identity

n (n—ny)! n!
ny ) nalnsglecong! nglngleeong !

We leave the details as an exercise for the reader. O

Remark 1.3.31. The binomial and multinomial formulas are valid in any field. Thus
the numbers x and y in (x) and the x;, 1 <i < k in (%) may be complex.

The following proposition has numerous applications in counting problems and
will be needed in Exercises 1.3.35 and 1.3.36 below. For the following and other
proofs and applications we refer to [PSz72].

Proposition 1.3.32 (Inclusion—Exclusion Principle). Suppose we have a set of N
objects. Let N; be the number of those objects that have the property P;, 1 <
J =< n, Nj the number of those having simultaneously the properties P; and
P, 1 < j,k <n,...,and Niy3., the number of objects having simultaneously all
the properties Py, Py, ..., P,. Then the number Ny of those objects having none of
the properties Py, P,, ..., P, is given by

No=N — ZNi + ZNij - Z Nijk + -+ (=1)" N2z

i<j i<j<k

Proof. Let U be the set of N objects and let A; be the subset of those objects that
satisfy the property P;, j = 1,2,...,n. Similarly, let A;; := A; N A;, A=
A; N Aj N Ag, ..., be the subsets of all objects that simultaneously satisfy the two
properties P; and P;, the three properties P;, P;, and Py, etc. Now the set Ay
of the objects that satisfy none of the properties P, P»,..., P, can be written as
Ag = A{ N A5 N ---N Aj, and by Exercise 1.2.55, we have

XAy = (11— XAl)(l - XAz) (1= XAn)

=1=3 ) xada, =+ GO L fa e A,
i

i<j
= l_ZXAi +ZXAU - Z XAk ot D" XA
i i<j i<j<k

Summing the (values of the) two sides over all x € U and noting that |A| =
> e Xa(x) [cf. Exercise 1.2.55(g)], the proposition follows. O
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Exercise 1.3.33. Extend part (h) of Exercise 1.2.55 to the case of n finite sets, for
any n > 2. In other words, if Aj, A, ..., A, are finite sets, find |[A; U A, U---UA4,|
in terms of the number of elements in various intersections of the A;, 1 <i <n.

Notation 1.3.34 (P}, S,'). Let X and Y be two finite sets with m and n elements
(1 < n < m), respectively. The number of all partitions of X into n (pairwise
disjoint nonempty) subsets (with union X) will be denoted by P,”. The number of
all surjective (i.e., onto) functions from X onto Y will be denoted by S". Note that
we obviously have P/" =1 = P" and S|" = 1. Also, S = P(m) = m!. (Why?)

Exercise 1.3.35. Let X and Y be finite sets with m and n elements (1 < n < m),
respectively, and let P,* and S be defined as above. Show that

(@) Pytl=nPl+ P,

(b) S+ = nSy + Sy,
() Sy =n!P".

Hints: How are the numbers P and S, affected if we adjoin an element to X ?
Also, for (c), note that for any surjection f : X — Y, {f7!(y) : y € Y}isa
partition of X.

Exercise 1.3.36. Let X and Y be finite sets with | X| = m, |Y| = n.

(a) Using the Basic Counting Principle, find | Y *|. Use the special case |2 to find
P(X).

(b) Find the number of one-to-one maps from X to Y.

(c) Show that the number of surjective (i.e., onto) maps from X onto Y is given by

Sy =n"— (rll) (n—1)" + (Z) (n =2)" = (=1)"0".

(d) Find a formula for P)".

Hint for (¢): Let Y = {y1,¥2,...,yn}, and foreach j = 1,2,...,n, define, for a
function f* € Y, the property P; by “y; & f(X).” Now use Proposition 1.3.32.

For our next application of Proposition 1.3.32, we need a few elementary facts
about integers. The proofs can be found in any textbook on abstract algebra (e.g.,
Herstein’s Topics in Algebra [Her75]).

Proposition 1.3.37 (Division Algorithm). Let a and b be integers and a # O.
Then there are unique integers q and r, with 0 < r < |a|, such thatb = aq + r. We
call q the quotient and r the remainder of the division of b by a. If r = 0, then we
say that a is a divisor of b, or that a divides b, and write a|b.

Definition 1.3.38 (Greatest Common Divisor, Relatively Prime). The greatest
common divisor of two integers a and b, not both zero, is the largest positive integer
that divides both a and b. It is denoted by gcd(a, b). In details, d = ged(a, b) if the
following two conditions are satisfied:
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(i) d >0, dla,and d|b,
(i) ¢ > 0, c|a, and c¢|b, which imply c|d.

We say that two integers a and b are relatively prime if gcd(a, b) = 1.

Proposition 1.3.39. Let a and b be two integers, not both zero. One can then find
integers m and n such that gcd(a, b) = ma + nb.

Corollary 1.3.40. If a and b are relatively prime, one can find integers m and n
such that ma + nb = 1.

Corollary 1.3.41. Let a, b, and ¢ be nonzero integers such that gcd(a,b) = 1.
Then a|bc implies alc.

Corollary 1.3.42. Let a and b be nonzero integers with gcd(a,b) = 1. Then
alc and blc << ab|c.

Corollary 1.3.43. Letay,as,...,ay be pairwise relatively prime, nonzero integers.
Then we have

ailb, i=1,2,....,n <= ajay---ailb.

Corollary 1.3.44. Let p be a prime number (i.e., an integer p > 2 whose only
positive divisors are 1 and p). Then, for any nonzero integers a and b,

plab = pla or p|b.

Corollary 1.3.45 (Prime Factorization). Let n > 1 be an integer. Then there are
unique primes pi, pa,..., Pm and unique positive integers ry, ra, ..., I'm, Such
that p1 > p, > -+ > p, and

— 'l 2 T,
n=Ppy Py Py

Some Hints for the Proofs. For the proof of the division algorithm, let r :=
min{fm > 0 : (3k € Z) (b = ak + m)}, and define ¢ accordingly. For
Proposition 1.3.39, show that gcd(a,b) = min{d > 0 : (Am,n € Z)(d =
ma + nb)}. For Corollaries 1.3.40 and 1.3.41, pick m,n € Z, with ma + nb = 1,
and use mac + nbc = c. For Corollary 1.3.43, use induction. For Corollary 1.3.44,
note that, if p }a, then ged(a, p) = 1. Finally, for Corollary 1.3.45, use (strong)
induction.

Definition 1.3.46 (Euler’s Phi-Function). For each n € N, we define ¢(n) to be
the number of positive integers less than or equal to n that are relatively prime to n.

Exercise 1.3.47. Leta,, ay,..., a, be pairwise relatively prime positive integers
and let n > 1 be any integer.
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(a) Show that the number of integers in {1, 2,..., n} that are divisible by a;, 1 <
i <m,is [:_, , where [r] is the greatest integer less than or equal to r.

(b) More generally, show that the number of integers in {1, 2,..., n} that are
divisible by a1, as, ..., ax, 1 <k <m, is [M;"ak .

(c) Show that the number n of integers in {1, 2,..., n} that are not divisible by
any of the integers a;, as,..., ais

n n m n
mo=n Z[;]*;[ﬁ]*““ Ol Preermd

(d) Using (c), show that if n = pj' pi*--- pIm is the prime factorization of n, as in
Corollary 1.3.45, then we have

o (n) =n(l—%)(l—i)---(l—i).

1.4 Infinite Direct Products, Axiom of Choice,
and Cardinal Numbers

In this section we shall introduce infinite direct (Cartesian) products and cardinal
numbers. Unlike finite sets, infinite sets have properties that are quite surprising and
are fundamentally different. Our definition of cardinal number, which extends the
idea of number of elements to arbitrary sets, will be vague, although more precise
definitions can be given. For instance, one way to define cardinal numbers is to
use the concept of ordinal numbers. However, the introduction of ordinal numbers
requires additional sections and we prefer, instead, to send the reader to the books
mentioned in the introduction, particularly Halmos’s Naive Set Theory [Hal60],
where details on these and other topics can be found.

Definition 1.4.1 (Direct Product, Choice Function). Let A be a (nonempty) index
set, and let X be a set for each A € A. The direct product (also called Cartesian
product) of the sets X, denoted by ] 2ea X2, is the set of all functions x : A —
(U, en X2 such that x(1) € X, for each A € A. Each such function x is called a
choice function for the family {X} },ea and the element x; := x(1) € X, is called
the Ath coordinate of x.

Remarks and Notation 1.4.2. It follows from the definition that we have
[Lea Xy = 0if X = @ forsome A € A.If X; = X forall A € A, then
we write ]_[)tE A X = X A In other words, we obtain the set of all functions
from the index set A to the set X. If A = N, then X* = XV is the set of all
sequences in X. Finally, if A = {1, 2,..., n} for some n € N, then we write
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[Lien X2 = [Tiz) Xk = X1 x X3 x -+ x X,,; i.e., we obtain the finite Cartesian
product defined earlier. In the latter case, if X; = X for 1 < k < n, then we use the
notation X" := X" = x il 2},

Example 1.4.3. The set R" = {(x1,x2,...,x,) : X € R} is called the Euclidean
n-space, and the set C" = {(z1,22,...,2x) : 2% € C} is called the unitary n-space.

Axiom of Choice. Let {X)}yen be a family of sets indexed by a nonempty set A.
If X) # @, for all A € A, then the direct product [],c, Xy is nonempty. In other
words, the family has at least one choice function.

Remark 1.4.4.

(a) As aspecial case, the Axiom of Choice may be used for the family P(U) \ {@} of
all nonempty subsets of a nonempty set U. In this case, a choice function chooses
an element from each nonempty subset of U, guaranteeing the possibility of
simultaneously choosing elements from a (possibly infinite) collection of sets.

(b) The Axiom of Choice is logically equivalent to the Well-Ordering Theorem
which, in turn, is logically equivalent to Zorn’s Lemma.

Definition 1.4.5 (Equivalent Sets). Two sets S and T are called equivalent (also
called equipotent or equipollent) if there is a one-to-one correspondence between
them. This equivalence will be denoted by S ~ T.

Exercise 1.4.6.

(a) Show that the set equivalence S ~ T defined above is indeed an equivalence
relation on P (U) for each fixed set U.

(b) Show that N ~ 2N and that N ~ 2N — 1, where 2N := {2k : k € N} and
2N — 1:= {2k — 1 : k € N} are the subsets of even and odd positive integers,
respectively.

(c) Let A and B be sets,a € A and b € B. Show that A ~ B if and only if

A\{a} ~ B\ {b}.

Definition 1.4.7 (Cardinal Number). To each set, X, we associate a symbol, | X |,
called the cardinal number (also called cardinality) of X in such a way that | X| =
|Y|if and only if X ~ Y.

Notation 1.4.8 (Xg, ¢). We define |¢| := 0 and [{1,2,...,n}| := n, for each
n € N. Thus, if X ~ {1, 2,..., n}, then |X| := n; ie., |X| is the number of
elements in X. The cardinality of the set N of all natural numbers is denoted by
IN| = Ry [read “aleph naught”]. Finally, we write |R| = ¢ [read “continuum”] for
the cardinality of the set of real numbers.

Definition 1.4.9 (Countable and Uncountable Sets). We say that a set X is
countable if either X is finite or X ~ N; i.e., either |X| = n for some n € Ny
or | X| = Ry. In the latter case X is also called countably infinite (or denumerable)
and any one-to-one correspondence x : N — X is called an enumeration of X.
A set that is not countable is called uncountable.
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Exercise 1.4.10.

(i) Show that N> = N x N is countably infinite by showing that the map f :
NxN — Ndefined by f(m,n):= 2""1(2n—1) is a one-to-one correspondence.
Deduce that if D is countable, then so is D x D (and, inductively, Dk, k e N).

(i) Show that Z ~ N by defining (explicitly) a bijection g : Z — N.

Our first application of the Axiom of Choice is in the proof of the following
proposition, even though our informal proof does not mention the axiom explicitly.
The proof can, of course, be made precise by defining the appropriate choice
function.

Proposition 1.4.11. Every infinite set contains a countably infinite subset.

Proof. Let X be an infinite set. Then, in particular, X # @, and we can pick an
element x; € X. Since X is infinite, X \ {x;} # @, and we can pick an element
x; € X \ {x1}. Using once again the fact that X is infinite, we have that X \
{x1, x2} # @ and hence contains an element x3. Continuing this process indefinitely
(this is where the Axiom of Choice is used), we obtain the countably infinite subset
{X],Xz,Xg,,...}CX. O

Proposition 1.4.12. Let D be an infinite subset of N. Then D is countably infinite.
In fact, there is a unique enumeration d : N — D of D such that

di<dy<--<d,<dp41 <,

where d,:= d(n) Vn € N.

Proof. Let di = min(D) and define, inductively, d,+ := min(D \ {d},...,d,}).
The map n + d, is the desired enumeration of D. O

Corollary 1.4.13. IfY is a countable set and if X C Y, then X is countable.
Exercise 1.4.14. Prove the corollary.
Here is a couple of other characterizations of countable sets:

Proposition 1.4.15. A set X is countable if and only if there is an injective map
g : X — Nifand only if there is a surjective map f : N — X.

Proof. If X is countable, the very definition of countability implies that there exists
a one-to-one map g : X — N. Conversely, if g exists, then g(X) C N is countable
(by Corollary 1.4.13) and hence so is X ~ g(X). Next, if g : X — N is injective,
then we pick a fixed xp € X and define a surjective map f : N — X by setting
f(n) = xifn = g(x) and f(n) = xoif n € g(X). Conversely, if f : N - X
is surjective, then for each x € X we can pick an integer n, € f~!(x), getting
f(ny) = x. We now define the map g : X — N by g(x) := n,. Since g is one-to-
one (why?), the proof is complete. O



32 1 Set Theory

Exercise 1.4.16. Let Ay = 271 . {1, 3 5 ..} = {2k71 .1, 2671 .3 2k=1.
5,...}, k € N. Show that {Ay} is a partition of N, i.e., that A; N Ay = @ if
J # k and that N = (J72| Ax. Also show that Ay ~ N for all k € N. Hint: See
Exercise 1.4.10.

Proposition 1.4.17. A countable union of countable sets is countable.

Proof. Let Xy be a countable set for each k € N, and let the A; be as in
Exercise 1.4.16. Now, by Proposition 1.4.15, we can find surjective (i.e., onto)
maps fy : Ax — Xy Vk € N. Define the map f : N — [J72, Xx by
f(n):= fir(n)if n € Ag. It follows easily that f is onto, and another application
of Proposition 1.4.15 completes the proof. O

Corollary 1.4.18. The set Z of all integers and the set Q of all rational numbers
are countably infinite.

Proof. For the set Z, note that Z = NU{0}U(—N), where —N:= {—1,—-2,-3,...}.
For Q = {m/n : m € Z,n € N}, define, for each k € Z, the set Q := {k/n :n €
N} C Q. Then each Q is countably infinite, and Q = (J, ¢z Q«. O

Definition 1.4.19 (Domination). Given two sets X and Y, we say that Y domi-
nates X, and write X < Y, if there is a one-to-one map from X into Y. If X <Y,
then we write |X| < |Y|. We also write | X| < |Y]|if X < Y,ie,if X <Y, but
X A Y. In the latter case we say that Y strictly dominates X.

Remark 1.4.20.

(@ If f : X — Y is one-to-one, then X ~ f(X). Therefore, an equivalent
definition of domination is the following:

X=<XY << X~Y; forsome Y, CY.
(b) We can define the countability of sets in terms of set domination as follows:
X iscountable <= X <N <<= |X|<N,.

The relation “<” between the cardinal numbers of two subsets of a universal
set U (or, equivalently, the domination relation between the subsets themselves) is
easily seen to be reflexive and transitive (check it!). Therefore, to prove that it is in
fact a partial ordering on the cardinalities of all subsets of a fixed given set, all we
need is to show that it is antisymmetric. That this is indeed the case is a consequence
of the following important theorem.

Theorem 1.4.21 (Schroder-Bernstein). Let X and Y be two sets, and suppose
that there are one-to-one functions [ : X — Y andg :Y — X.Then X ~ Y. In
other words, | X| < |Y|and |Y| < |X| imply | X| =Y.
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Proof. Define the function ¢ : P(X) — P(X) by
$(S):=X\g(Y \ /(5)) (VS € P(X)). (*)
and note that we have
SCTcCX= ¢(S) o). (%)

Indeed, S C T = f(S)C f(T)=Y\ f(T)CY\ f(S). Thus g(Y \ f(T)) C
g(Y '\ f(8)), from which (xx) follows at once. Now let S:= {S € P(X) : S C
¢(S)}andnote that @ € S. If Z := | Jg.g S, then foreach S € S we have S C Z
and (k) implies S C ¢(S) C ¢(Z). Thus Z C ¢(Z) and another application of
(xx) gives ¢(Z) C ¢p(¢(Z)), which implies ¢p(Z) € S. But then, ¢(Z) C Z and
we get ¢(Z) = Z. Therefore, by (x), wehave Z = X \ g(Y \ f(Z)) and hence

X\Z=¢g(Y\ f(2)). (1)

Using (), it is now obvious that the function

f(x) ifx e Z,

h(x):= . ]
g (x) ifxeX\Z

is a bijection of X onto Y. O
Exercise 1.4.22.

(a) Show that any two cardinal numbers are comparable; i.e., for any sets X and
Y, we have | X| < |Y| or |Y| < |X]|. Hint: Consider the set F of all injective
maps f with dom(f) C X and ran(f) C Y. Partially order F by “inclusion”
and find a maximal element h € F. Show that we must have dom(k) = X or
ran(h) =Y.

(b) Show that, if X is a proper subset of a finite set Y, then X £ Y (ie., X < Y).
Deduce that N is infinite. Hint: Put Y = {1,2,...,n} and proceed by induction
on n. Assuming the case n, let Y = {1,2,...,n 4 1} and suppose that there is
an injection f from Y onto a proper subset X C Y. Show thatbothn + 1 ¢ X
and n 4+ 1 € X result in contradictions.

(c) Show that, if X is infinite and if C is countable, then |[X U C| = | X|.

(d) Show that X is infinite if and only if Ry < | X|.

(e) Show that, if |[X| < |Y| and |Y| < |Z|, and if at least one of these is a strict
inequality, then | X| < |Z].

(f) Show that X is finite if and only if | X| < Ry.

The reader may have observed that we still have not proved the existence of

uncountable sets. That such sets indeed exist is a consequence of the following
theorem of Georg Cantor.
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Theorem 1.4.23 (Cantor). For any set X, we have X < P(X) ~ 2X. In other
words, | X| < |P(X)| = [2%].

Proof. First, note that P(X) ~ 2% follows from Exercise 1.2.54. Next, note that
the map f : X — P(X) defined by f(x):= {x} Vx € X is one-to-one, so that
we have X < P(X). To show that we have a strict domination, we must show that
there are no maps from X onto P(X). Suppose that g : X — P(X) is onto, and
let S be the set {x € X : x ¢ g(x)} C X. Since g is onto, there exists § € X
with g(§) = S. Now if £ € g(&), then the definition of S implies & ¢ g(§), and if
& & g(§) = S, then, once again, the definition of S implies that £ € g(¢§) = S. In
other words, in either case we reach a contradiction, and the theorem is proved. 0O

Corollary 1.4.24. The set P(N) ~ 2" is uncountable. In other words, the set of all
sequences (X1, X2, X3, ...), where x,, € {0, 1} for each n € N, is uncountable.

Remark 1.4.25.

1. In fact, one can prove that |P(N)| = [2%] = |R| = ¢. In particular, the set R of
real numbers is uncountable. We will return to this fact (and its proof) after the
axiomatic definition of real numbers.

2. One can define an arithmetic on cardinal numbers as follows: Given two disjoint
sets X and Y, the sum of the cardinal numbers | X | and |Y | is defined by | X | +
|[Y|:=|XUY]|.If X and Y are nor disjoint, one considers the disjoint sets X' =
X x{0}and Y’ = Y x {1} and defines | X|+|Y|:= |X'UY’|. For any sets X and
Y, not necessarily disjoint, the product of their cardinal numbers is defined by
|X||Y|:= | X x Y|. One can also define exponentiation by | X |"1:= | XY |. It can
be proved that these operations have the properties satisfied by the corresponding
numerical operations. Checking these properties is a rewarding exercise, and we
encourage the reader to try some of them or to consult the references for details.
The following result will be needed later.

Exercise 1.4.26. Show that, if A is an infinite set, then |A x N| = |A|. Hint: Let
F denote the set of all bijective maps f : S x N — S, where S C A. Since
IN x N| = |N|, we have F # @. (Why?) Show that Zorn’s Lemma can be applied in
F to produce a maximal bijection h : B x N — B, with B C A, and that we must
have B = A, by examining the cases where S \ B is finite or infinite.

1.5 Problems

1. Show that, for any subsets A, B of a universal set U, we have
ACB< ADB°<= ANB=A<= AU B = B.
2. Show that, for any sets A, B, and C, we have

(@ A\(A\B)=ANB, (b) AN(B\C)=(ANB)\C.
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3. Show that, for any sets A and B, there is a set C such that AAC = B.Is C unique?
4. For any sets A, B, and C, show that

AN(BAC)=(ANB)A(ANC).
5. Given two sets 4 and B, show that
AUB=AABA(ANB) and A\ B = AA(ANB).

Deduce that,if AN B =@, then AU B = AAB.

6. Show that, given two sets A and B, we have
A=0 < B=AAB.

7. Let U be an infinite set and let C C P(U) be the collection of all countable subsets of U and
their complements. Show that C is a o-algebra. Let F denote the set of all finite subsets of U and
their complements. Is F a o-algebra?

8. Let U be a nonempty set and A C P(U) a o-algebra. Show that, for any set S C U, the
collection {A N S : A € A} is a o-algebra of subsets of S.

9. Let (A4,)52, be a partition of a (nonempty) set U; i.e., the A, are nonempty, pairwise disjoint,

and | J A, = U. Show that the set of all unions of the 4, (including the “empty union” which we
define to be @) is a o-algebra.

10. Let U be a nonempty set. Show that, given any family (R;) e, of equivalence relations on
U, the intersection R := (") jes R; is also an equivalence relation on U. Give an example of two
equivalence relations on a set U whose union is not an equivalence relation.

11. Let R and S be two equivalence relations on a set U. Show that R o § is an equivalence
relation on U if and only if R o § = § o R and that, in this case, R o § is the intersection of all
the equivalence relations on U that contain both R and S.

12. Let U be a partially ordered set. Show that we can write U = S U T, with S N T = @, such
that S is well ordered (with respect to the ordering in U) and T has no least element. Hint: Look
at the union of all subsets of U that have no least element.

13. Using induction, prove the following statements for all n € N:

Zkzn(n—i-l)’ Zkzzn(n+1)(2n+1)7
k=1 2 k=1 6

n 2 2 n k n
3 n*m+1) ( l) _(n+1
;;k_ i [M{t+z) =—w

k=1

14. Let f : S — T be a function and B C T. Show that f(f~'(B)) = BN f(S).If A C S,
show that (f]4)~1(B) = AN f~1(B), where f|A denotes the restriction of f to A.

15. Let < be a well ordering on a set X and let f : X — X be a permutation (i.e., a bijection
of X onto itself). Show that, if f is order preserving (i.e., f(x) < f(y) whenever x < y), then
f =idy.
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16. Let U be a nonempty set. Show that a ring R C P(U) (resp., an algebra A C P(U))
is indeed a ring (resp., a ring with unit element) in the algebraic sense [cf. Definition 1.3.7 and
Remark 1.3.8(c)] under the operations of addition and multiplication defined by

A+ B:= AAB, and AB:= AN B.

17. Show that, if F is a field, then the only ideals in F are {0} and F.

18 (Maximal Ideal). Let R be a commutative ring with unit element 1 # 0. Show that R has
at least one maximal ideal, i.e., an ideal M C R such that there is no ideal N C R satisfying
the proper inclusions M C N C R. Hint: Consider the set Z of all ideals / g R and note that
{0} € T. Partially order Z by inclusion and show that, if (/y)ye is a chaininZ, then Uye 4 1o € Z.
Now use Zorn’s Lemma.

19. Let R be a commutative ring with unit element 1 7 0 and let M C R be a maximal ideal.
For any x, y € R, letus write x ~ y if x —y € M. Show that ~ is an equivalence relation
on R and that, for each x € R, its equivalence classis [x] = x + M :={x+m : m € M}.
Now define [x] + [y] := [x + y] and [x] - [y] := [xy] for any x, y € R. Show that these are
well-defined binary operations on the quotient set R/M := R/ ~ (i.e.,if x ~ x" and y ~ y’, then
[x] + [v] = [x'] + [¥'] and [x][y] = [x’][¥’]). Finally, show that (with these operations) R/M is
a field.

20. Foreach n € N, prove the identities
n n n n
= 2” d —1 k = 0.
X ()-> o ze()
k=0 k=0

Deduce from the latter that, for any (nonempty) finite set, the number of even size subsets equals
the number of odd size ones.

21. For any m, n € N, apply the binomial formula to (1 + x)™(1 4 x)" to prove the identity

k m n m—+n
BEL)-7) werenen

where we define (f) := 0, fori > £. Deduce that

n 2
3 (;’) = (2:) (Vn € N).
j=0

22. Givenanyn € N, show that the number of ordered pairs (i, j) of integers with 1 <i < j <n
(resp., 1 <i < j <n)isn(n 4+ 1)/2 (resp., n(n — 1)/2).

23. For any integers 0 < n < m, prove the identities

“(m\[m— k) (m) - m\[m—k
> =2 and Y (—DF = 0.
k=o<k)<n_k n k=0 kJ\n—k
Hint: Given a set of size m, look at the subsets of size n that contain a given subset of size k, 0 <

k <n.

24. Let A and B be fotally ordered sets with m and n elements, respectively. How many strictly
increasing functions are there from A to B?
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25. Show that, for any integers 1 < n < m, we have

m _ Qm n n n n n
n _Sn +(1)Sn—l+(2)sn—2+ +<n_1)

Hint: Let A and B have m and n elements, respectively. Look at the number of maps f € B4
whose ranges contain all but one element, two elements, etc. in B.

26. How many equivalence relations are there on a set U with n elements?

27. Givenany m, n € N with gcd(m,n) = 1, show that ¢ (mn) = ¢(m)¢(n), where ¢ is Euler’s
Phi-Function (cf. Definition 1.3.46 and Exercise 1.3.47).

28. Show that, if A is a o-algebra containing an infinite number of sets, then this (cardinal)
number is uncountable. Hint: Start by showing that .4 contains a sequence (4,)52, of (nonempty)
pairwise disjoint sets and use Problem 9.

29. For each set S, let Fs denote the set of all finite subsets of S. Show that, if S is countably
infinite, then | Fs| = |S|. Actually, this holds for all uncountable sets S as well, but the proof is
harder (cf. Problem 35 below).

30. Let A and B be nonempty sets. Show that if there is a surjective (i.e., onto)y map f : A — B,
then |B| < |A].

31.

(a) Show that a set S is finite if and only if each nonempty subset of P(S) (partially ordered by
inclusion) has a minimal element.

(b) Show that a set S is infinite if and only if S is equivalent to some proper subset of itself. Hint:
Recall that any infinite set contains a countably infinite subset.

32.

(a) Show that, if A is an infinite set, then |A| + |A| = |A|. Deduce that, if |B| < |A|, then
|A| + | B| = |A|. Hint: Show, as in Exercise 1.4.26, that |4 x {1,2}| = |4].

(b) Show that, if A is an infinite set and (A4,,) is a (finite or infinite) sequence of pairwise disjoint
sets with 4, ~ A for all n, then >, |A,| := | U, 44| = |A|. Hint: As in part (a), show that
|[Ax{l,...,k}| = |A|, forallk € N.

33.

(a) Let J be an infinite index set and let {4; : j € J} be a family of infinite sets such that
Aj ~ Aforall j € J and a set A. Show that we have

1Al < | 4;] <17 x Al
jers

Deduce, in particular, that if A ~ N, then |A] < |/ x N| = |J|, and if / ~ N, then
Ujes 451 =141

34. Extend Exercise 1.4.26 by showing that, for any infinite set A, we have |4 X A| = |A|. Hint:
Show that the set F of all bijective maps f : S X § — S (where S C A), partially ordered
by inclusion, has a maximal bijection & : B X B — B. Now consider the cases |4 \ B| < |B|
and |[A \ B| > |B|. In the latter case, pick C C A \ B with |C| = |B|, and produce a bijection
g:(DxD)\(BxB)— C,where D:=BUC.NowextendhtohUg:D x D — D.

35. Extend Problem 29 by showing that, given any infinite set S, we have | Fgs| = | S|, where Fg
denotes the set of all finite subsets of S.



Chapter 2
Sequences and Series of Real Numbers

The elementary theories of real-valued functions of a real variable and of numerical
sequences and series are treated in any standard calculus text. In most cases,
however, the proofs are given in appendices and omitted from the main body of the
course. To give rigorous proofs of the basic theorems on convergence, continuity,
and differentiability, one needs a precise definition of real numbers. One way to
achieve this is to start with the construction of real numbers from the rational ones
by means of Dedekind Cuts. We shall not follow this path. Instead, we will give a
set of axioms for the real numbers from which all their properties can be deduced.
These axioms will be divided into three categories: First, we introduce the algebraic
ones. Next, we discuss the order axioms, and finally, we discuss the very deep and
fundamental Completeness Axiom. After outlining the axiomatic definition of the
real numbers, we will look at the sequences in R and their limits. Here, the most
important concept is that of a Cauchy sequence. It will be used in Appendix A
for a brief discussion of Cantor’s construction of real numbers from the Cauchy
sequences in the set Q of rational numbers. The properties of sequences will be
used in a short section on infinite series of real numbers. We shall return to infinite
series in another chapter to discuss series of functions, such as power series and
Fourier series. Finally, the last section is a brief introduction to unordered series
and summability. Throughout this chapter, our universal set will be U = R, so that
a set will automatically mean a subset of R.

2.1 Real Numbers

The set R of real numbers (whose detailed construction is given in Appendix A) is
an ordered field. That R is a field means that, on the set of real numbers, there are
two (binary) operations, i.e., two maps from R x R to R, denoted by “+” and “”
and called addition and multiplication, respectively, satisfying the following nine
axioms. Here a, b, and ¢ are arbitrary real numbers.
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Algebraic Axioms:

(4)) a+b=b+a (commutativity of addition);

(4)) (a@+b)+c=a+ b+c) (associativity of addition);

(43) J0€eRwithO+a =a (existence of zero);

(A44) I —a eRwitha+ (—a) =0 (existence of negative elements);

(M) a-b=b-a (commutativity of multiplication);

(M) (a-b)y-c=a-(b-c) (associativity of multiplication);

(M3) 31 eR\{0}witha-1=a (existence of a unit element);

(My) VaeR\{0}31/a e Rwitha-(1/a) =1 (existence of reciprocals);
(D) a-b+c)=a-b+a-c (distributivity of “-” over “+”).

Exercise 2.1.1. If a is any real number, show that

1.a-0=0;

2. (-1)-a=—a;
3. —(—a) = a; and
4. (-DH(-1) =1

Exercise 2.1.2. Leta, b, ¢ € R. Show that

(a)a#0=1/a#0and 1/(1/a) = a;
(b) a-b=a-canda # 0= b = c¢; and
©a-b=0=a=0o0rb=0.

Notation 2.1.3. Henceforth, the product a-b will be denoted by ab, as long as there
is no danger of confusion.

Definition 2.1.4 (Subtraction, Division, Integral Exponents). We define the
binary operation “—” of subtraction by a — b:= a + (—b) Ya, b € R. Division is
defined by a/b = 7 = a +~b:=a-(1/b) = a(l/b) Ya, b € R, b # 0.
Exponentiation is defined as follows: For each real number a, we define
a' = a, a* := aa, a° := aaa, and, more generally, for any positive integer
n, a"t':= (a")a. We next define, foreacha € R\ {0}, a’:= l anda™':= 1/a.
Finally, for eacha € R\ {0} and each n € N, we define a™ := 1/a" = (1/a)".

Remark 2.1.5. Using the above definition of a”", forn € Z (and a # 0, if n <
0), one can easily check the usual laws of exponents: a™a" = a™*", a™/a" =
am™m, (@™t = a", (ab)' = a"b", (a/b)" = a"/b", etc. ¥ a, b, m, n such
that the symbols are defined.

Next, we look at the three axioms that define the usual ordering on the set of real
numbers.

Order Axioms: There is a subset P C R satisfying the following three axioms:

(O)) a,beP=—a+beP,;
(O;) a,be P=— abe P;and
(03) foreacha € R, exactly one of the following holds:

aeP, a=0, —aeP (Trichotomy)
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Notation and Remarks 2.1.6. Given any subsets A, B C R, we define A 4+ B :=
{a+b:acA beB}, A-B:={ab:ac A, beB},and—A:={—a:a € A}.
With this notation, the order axioms can be written as follows:

(01) P+ PCP;
(O) P-PC P;and
(03) R = P U{0}U (—P) is a partition of R.

Definition 2.1.7 (Positive, Negative). Leta € R. We say that a is (strictly) positive
if @ € P and that a is (strictly) negative if —a € P (equivalently if a € —P).
A real number a will be called nonnegative if a € P U {0} and nonpositive if
a € (—P)uU{0}.

Definition 2.1.8 (Inequalities). Given two real numbers a and b,ifa—b € P, then
we write a > b or b < a and say that a is greater than b or that b is less than a.
Ifa—b € P U{0}, then we write a > b or b < a and say that a is greater than or
equal to b or that b is less than or equal to a.

Remarks and Notation 2.1.9. Note that, by trichotomy (Axiom Oj3), for each
a € R, exactly one of a > 0, a = 0, or a < 0 holds. For any real number a,
we have a < a because a —a = 0. Next, P + P C P implies that, if a < b
and b < ¢, then a < c. It also follows from trichotomy that, for any real numbers
a and b, exactly one of the following holds: @ < b, a = b, a > b. Thus, ifa < b
and b < a,thena = b.Ifa < b and b < ¢, then we write the combined inequality
in the form @ < b < c¢. Similar notation is used for other types of inequalities.

Exercise 2.1.10. Prove each of the following:

(@ a e R\ {0} = a%>>0;
(b) 1 > 0; and
c)neN = n>0.

Exercise 2.1.11. Deduce the following properties from the above definitions. Here
a, b, ¢, and d are real numbers:

a<b = a+c<b+cVceR;
.a<bandc<d = a+c<b+d;
.a<bandc >0 = ac < bc;
.a<bandc <0 = ac > bc;

.a>0 = 1/a>0,anda <0= 1/a <0; and
.0<a<b = 1/a>1/b.

S R Sl

Exercise 2.1.12. Prove each of the following statements. Here, a and b are real
numbers:

l.a>0 = 0<a/2<a.

2.a<b = a<(a+b)/2<b.

3. If ab > 0, then a and b are both positive or both negative.
4. If ab < 0, then a and b have opposite signs.
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Theorem 2.1.13. Let a, b € R be arbitrary, and assume that a < b + ¢ for every
e>0.Thena < b.

Proof. If a > b, then, setting ¢ = (a — b)/2 > 0 and using Exercise 2.1.12, we
have b +e=b+ (a —b)/2 = (a + b)/2 < a, contradicting the assumption. 0O

Corollary 2.1.14. Ifa € R, and if 0 < a < ¢ for every ¢ > 0, thena = 0.
Exercise 2.1.15. Prove the corollary.

Definition 2.1.16 (Absolute Value). For any real number a € R, we define its
absolute value, denoted by |a|, to be

a ifa >0,
lal:= ,
—a ifa <0.

Proposition 2.1.17. Leta, b € R, and let ¢ > 0. Then we have:

la] <c¢ <= —c<a<c;and
la| >c < a <—cora=>c.

1. la| =0 < a=0;

2. | —al =|al;

3. lab| = la||bl;

4. la/b| = |al/|bl|, if b # 0;
5. —lal <a <lal;

6.

7.

Exercise 2.1.18. Prove the proposition.

Proposition 2.1.19 (Triangle Inequality). Given any real numbers a, b € R, we
have |a + b| < |a| + |b|. More generally, if ay, ..., a, are real numbers, we have
lay +ax + -+ + an| < |lar]| + laz| + -+ + |an|.

Proof. By part (5) of Proposition 2.1.17, we have —|a| < a < |a| and —|b| < b <
|b|, from which we get —(|a| + |b]|) < a + b < |a| + |b|. Therefore, the first part
of the proposition follows from part (6) of Proposition 2.1.17. The second part is
proved by induction. O

Corollary 2.1.20. Given any a, b € R, we have the following:

L la—b| < la| + |bl:
2. llal = 6]l < la = bl.

Exercise 2.1.21. Prove the corollary.

Exercise 2.1.22. Following our notation for lattice operations, for any numbers
a,b € R, we define a vV b = max{a,b} and a A b = min{a, b}. Show that the
following are true for any numbers a, b, ¢ € R:

l.anb+avb=a-+b;
2. (—a) A (=b) = —(a V b);
3.avb+c=(a+c)Vv(b+c);
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4. c(a Vv b) = (ca) Vv (cb) if and only if ¢ > 0;
5. |lal =a Vv (—a);and
6.avb=@+b+|a—>b))/2, anb=(@+b—|a—>b|)/2.

Proposition 2.1.23 (Bernoulli, Cauchy, and Triangle Inequalities). Ler x > —1
and X1, X2,..., Xn, V1, Y2,..., ¥n be arbitrary real numbers. Then the following
inequalities hold:

Bernoulli’s Inequality:
A+x)">14+nx, V neNlN.

Cauchy’s Inequality:

(L) =(27)(2)

i=1

Triangle Inequality:

n 1/2 n 1/2 n 1/2
(Z(Xi + Yi)z) < (lez) + (Zy,z) .
— —

i=1 i i

Exercise 2.1.24. Prove the proposition and show that in Bernoulli’s inequality,
equality holds if and only if » = 1 or x = 0. Also prove the following consequence
of Bernoulli’s inequality: If x > —1, then we have

A+x)/"<1+x/n VneN

Hints: For Bernoulli’s inequality, use induction on xn. For Cauchy’s inequality, set
X=X x} Y:=Y!_ y’and Z:= Y !_| x;y;. Observe that for any 7 €
R, F(t):=Y"_,(x; —ty;)* > 0, and look at the discriminant Z> — XY of F(¢).
Finally, note that the Triangle Inequality is a consequence of Cauchy’s inequality.

The next inequality is important enough to be stated separately. It is the famous
Arithmetic—Geometric Means Inequality. We give a well-known inductive proof and
ask the reader to give another one in Exercise 2.1.26 below.

Proposition 2.1.25 (Arithmetic-Geometric Means Inequality). For each natu-

ral number n > 2, let ay, aj,..., a, be real numbers with a; > 0 fori =
1, 2,..., n.Iftheir “arithmetic mean” is defined to be A, := (a1 +a+---+a,)/n
and their “geometric mean” to be G, := (aa, - -- a,,)l/”, then we have

G, < Ay,

with equality holding if and only ifay = a, = --- = a, = A,.
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Proof. Assume first that n = 2™ for some m € N. Now form = 1,1i.e,n = 2,
the inequality \/aja; < (a; + a2)/2 is equivalent to (/a; — \/d2)* > 0, which
is obviously true and is an equality if and only if a; = a,. Next, assuming the
inequality is true for n = 2™, we must prove it for 2n = 2" %!, However, using the
case n = 2" and the (already proven) inequality G, < A,, we have

Gy, = 2(761102"'112,1 = \/(701 "'an«’Van-i-l cecdop

1
= E(Ual"‘an + Q/an-‘rl"'aZn)

< Sl@r 4o+ a/n @ o+ an)

=(a) +ay+ -+ azy)/(2n)
= A2n-

To prove the inequality for arbitrary n, we pick m € N such that n < 2" and set
k = 2™ —n. Setting a,+1 = a4+ = +++ = amm = A,, and applying the inequality
to the 2" numbers ay, as, ..., an, we get

(ar--a) (A <[(a) + - +a, + kA,) /2"
= [(nAy + kAy) /2" = (4,)*",

and our inequality follows if we divide the two sides by Afg. The last statement
(about the cases where equality holds) also follows inductively. O

Exercise 2.1.26. Prove Proposition 2.1.25 by induction along the following lines:
First, the inequality is trivial if the a; are all equal. If not, show that (after renaming
the a;, if necessary) we may assume that a; < A, < a,. Write a; = A, and
a, = ay + a, — A,, and show that a,a, < a;a,, deducing that it suffices to prove
the inequality aazas - --a, < A. Prove the latter inequality by induction, using the
casen = 1 (orn = 2) as your first step and the case of n — 1 numbers a5, as, ..., a,,
as the inductive step.

Definition 2.1.27 (Intervals).

(A) Given any a, b € R witha < b, we define the following sets to be the bounded
intervals with endpoints a and b:

1. (@a,b):={xeR:a <x <b};
2. [a,b):={xeR:a <x <b};
3. (a,b]:={xeR:a < x <b};and
4. [a,b]:={x e R:a < x < b}.

(a, b) is called open and [a, b] is called closed; [a, b) and (a, b] are called half-
open (or half-closed).
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(B) Given any a € R, we define the following sets to be the unbounded intervals
with (finite) endpoint a:

5. (a,0):={xeR:x>a};
6. [a,0):={xeR:x>a};
7. (—o0,a):={x € R:x <a};and
8. (—o0,al:={xeR:x <a}.

Here, oo (also denoted 4+00) and —oco are two symbols, called plus infinity
and minus infinity, respectively, that are not real numbers. The intervals (a, 00)
and (—o0,a) are called open, while [a,00) and (—o0,a] are called closed.
Furthermore, we consider R itself to be an unbounded interval (that is both
open and closed):

9. (—o0,):=R.

Remark 2.1.28 (Degenerate Interval). We may sometimes find it useful to include
the empty set @ C R and singletons (i.e., sets containing a single real number) in
the set of all intervals. Thus, for any a € R, we have (a,a) = (a,a] = [a,a) = 0,
while [a, a] = {a}.

Finally, the last axiom of real numbers, which is fundamental in all aspects of
analysis, is the following:

Completeness Axiom (or Supremum Property)

(C) Every nonempty subset of R that is bounded above has a least upper bound
(in R).

In other words, if @ # S C R, and if there exists an element u € R such that
s <uforall s € S, then sup(S) € R.

Exercise 2.1.29. Show that the Supremum Property is equivalent to the Infimum
Property: Every nonempty subset of real numbers that is bounded below has a
greatest lower bound in R. In other words, if @ # S C R, and if there exists a
number ¢ € R such that 1 < s for all s € S, then inf(S) € R. Hint: Show that
inf(S) = —sup(—S), where —S:={—s e R:s5 € S}.

In most applications, the following characterization of the least upper bound of a
nonempty set of real numbers is more convenient than the general definition, given
in Chap. 1, for nonempty subsets of any partially ordered set.

Proposition 2.1.30. Let @ # S C R, and assume that S is bounded above. Then
u = sup(S) ifand only if (i) s <uV s € S (i.e, uis an upper bound of S) and
(ii) Ve>03s, €S suchthatu—¢e < s,.

Proof. If u = sup(S), then (i) is obviously satisfied. Also, for each ¢ > 0, we have
u — & < u, so that u — ¢ is not an upper bound of S. Therefore, there exists s, € S
such that u — ¢ < s,. Conversely, if (i) and (ii) hold, then u is an upper bound of
S by (i). If v is any other upper bound and if v < u, then, settinge = u —v > 0
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and using (ii), we can find s, € S such thatv = u — ¢ < s, < u, contradicting the
assumption that v is an upper bound of S. O

One of the important consequences of the Completeness Axiom is the following.

Theorem 2.1.31 (Archimedean Property of R). Given any x € R, there exists
an integer ny € N such that x < ny.

Proof. Suppose not. Then there exists xo € R such that n < xo for all n € N;
i.e., N is bounded above. Since @ # N C R, the Supremum Property implies that
u = sup(N) € R. Now, using Proposition 2.1.30 (with ¢ = 1), we can find m € N
suchthatu — 1 < m < u. Butthenu < m 4+ 1 € N, contradicting the fact that u is
an upper bound of N. O

Corollary 2.1.32. Let x and y be positive numbers. Then we have:

(a) An € N such that x < ny;
(b) An € Nsuchthat 0 < 1/n < x; and
(c) 3n € Nsuchthatn —1 < x <n.

Exercise 2.1.33. Prove the corollary. Hint for (c): Look at min({k € N : x < k}).

The next proposition which guarantees the existence of square roots of positive
numbers is our first application of the Archimedean Property.

Proposition 2.1.34 (Existence of Square Roots). Given any a > 0, there is a
unique x > 0 such that x> = a. This unique x is denoted by \/a.

Proof. Since 12 = 1, we assume that @ > 1; otherwise, one can consider 1 /a. Now
introduce the set S = {s > 0 : s> < a}. Since 1> = 1 < a, we have S % @. Also,
1 < a implies that s < a for all s € S. In other words, S is bounded above. By the
Supremum Property, x := sup(S) € R. We prove x> = a by showing that both x> >
a and x? < a result in contradictions. Assume first that x> < a. Then the inequality
1/n% < 1/n, true for all n € N, implies that (x + 1/n)? < x*> + (2x + 1)/n. Now
using (a—x?)/(2x +1) > 0 and the Archimedean Property, we can pick n € N such
that 1/n < (a — x?)/(2x + 1), from which we get (x + 1/n)?> < a. However, this
gives x + 1/n € S, contradicting x = sup(S). Next, assume that x> > a. Then for
any m € N, we have (x—1/m)? > x?>—2x/m. Using the inequality (x>—a)/(2x) >
0 and the Archimedean Property, we find an m € N such that 1/m < (x> —a)/(2x).
But this implies that s> < @ < (x — 1/m)? for all s € S. In other words, x — 1/m
is an upper bound of §, again contradicting x = sup(S). The uniqueness follows
from the fact that 0 < x < y implies y? — x> = (y — x)(y + x) > 0;i.e., y*> > x2%.

O

Remarks and Notation 2.1.35. A similar argument, using the binomial formula,
can be used to show that any positive number a has a (unique) positive nth root,
denoted by {/a and such that ({/a)" = a, for any n € N. This will be obtained in
Chap. 4 by a more abstract argument involving the continuity of inverse functions.
For a = 0, we have Y0 =0Vn € N.Ifa < 0 and n is odd, then we define
Ya = —%/—a. For n even and a < 0, !/a cannot be defined as a real number.
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What is needed is the set of complex numbers, which will be defined later. Using nth
roots, one can introduce fractional powers by defining a'/" := {/a when the right
side is real and, more generally, a”/” := (a'/")" = Ya™ forany n € N, m € Z,
when the right side is real. It is then easy to check that all the laws of exponents hold
for these fractional powers as well. Finally, note that Va? = |a] Va € R and, more
generally, /a" = a"/|a|"™" Ya € R\ {0}.

The existence of square roots can be used to prove that irrational numbers exist;
in other words, that R \ Q # @. The following theorem and its proof can be found
in Euclid’s Elements:

Theorem 2.1.36 (Irrationality of +/2). /2 & Q.

Proof. Suppose that ~/2 = m/n, where m, n € N and ged(m,n) = 1. Then
m?/n? = 2, so that m?> = 2n?, and m is even, i.e., m = 2m, for some my € N.
But then 4m? = 2n? implies n*> = 2m} and hence n is also even, contradicting
ged(m,n) = 1. O

Remark 2.1.37. More generally, one can show that «/n ¢ Q if n > 2 has prime
factorization n = p|' py*--- pin, where at least one of the positive exponents r;
is odd.

Our next application of the Archimedean Property shows that the set of rational
numbers is dense in the set of all real numbers:

Theorem 2.1.38 (Density of Q in R). If x and y are real numbers with x < y,
then there exists a rational number r € Q, such that x <r < y.

Proof. We may assume that x > 0. (Why?) By the Archimedean Property, there is
n € Nsuchthat1/n < y—x;i.e., thatny —nx > 1. By part (c) of Corollary 2.1.32,
we can pick m € Nsuchthatm — 1 < nx < m. Sincem < nx + 1 < ny, we get
nx < m < ny; in other words, with r = m/n, we have x <r < y. a

Corollary 2.1.39. For any real numbers x and y with x < Yy, there is an irrational
number t such that x <t < y.

Exercise 2.1.40. Prove the corollary. Hint: Look at x/~/2 and y/+/2.
Our next application of completeness of R is the following.

Proposition 2.1.41 (Characterization of Intervals). A set I C R is a nondegen-
erate interval if and only if for any a, b € I, a < b, we have [a,b]:= {x € R :
a<x<b}yClI.

Proof. Clearly, any interval satisfies the condition in the proposition. To prove the
converse, let « = inf(/), B = sup(/), where we agree to write ¢ = —oo (resp.,
B = +o0) if I is not bounded below (resp., above). Let ¢ € . If ¢ = —o0, then
for any x < c thereis y € [ such that y < x < ¢; hence x € I, and we get
(—oo,c] C I.If ¢ € Rand o < ¢, then again for each x € R satisfyingo < x <c,
we can find y € I with y < x < ¢, which implies that x € I and hence that
(o, c] C I. Similarly, we can show that [c, 8) C I, and hence («, §) C I. In view
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of the definitions of @ and B, it follows that / must be one of the four possible
intervals with endpoints & and 8. It is obvious that o & I (resp., f &€ I)if ¢ = —o0
(resp., B = +00). |

The following corollary may be worth stating.

Corollary 2.1.42. Let {I)}ren be any collection of intervals. If (; e I # @, then
the union J = |, ¢, I is an interval.

Proof. Let ¢ € (),c5 Ix be a fixed point. Given any a, b € J witha < b, we
can pick A,, A, € A witha € I, and b € I), and note that if a < ¢ < b, say,
then (since ¢ € I, N I;,) we have [a,c] C I, C J and [c,b] € I, C J so that
[a,b] C J,as desired. The cases ¢ <a < b anda < b < ¢ are simpler. |

Here is another important application of the Completeness Axiom:

Theorem 2.1.43 (Nested Intervals Theorem). Ler{ I, = [a,,b,] n € N} be a
sequence of closed bounded intervals in R that is “nested,” i.e., 1,41 C I, YV n € N.
Then (oo, I, # 9. If, in addition, inf({b, —a, : n € N}) = 0, then (\oo; I, =
{&}, for a unique & € R.

Proof. The set A = {a, : n € N} is bounded above (by b;). Let £ = sup(A4).
Since the [, are nested, for any positive integers m and n, we have a,, < a4, <
bu+tn < by, so that § < b, for each n € N. Since we obviously have a, < & for
each n, we have a, < & < b, for all n, which implies £ € ﬂi‘;l I,,. Finally, if
& ne ﬂ:’;l I,, with § < n, then we get0 < n—§& < b, —a,, foralln € N, so that
0<n—§&<inf({h, —a, :n e N}) =0. O

Exercise 2.1.44. Let {[a,,b,]},en be a sequence of nested intervals. If « =
sup{a, : n € N} and B = inf{h, : n € N}, show that

(\lan.ba] = [, B].
n=1

As the above proof shows, the Nested Intervals Theorem is a consequence of the
Supremum Property of R. In fact, as the next theorem shows, the converse is also
true, if the Archimedean Property is assumed as well.

Theorem 2.1.45. The Supremum Property of R is a consequence of the Nested
Intervals Theorem and the Archimedean Property. More precisely, if the Complete-
ness Axiom is replaced by the Nested Intervals Theorem and the Archimedean
Property, but all other axioms remain, then the Supremum Property holds.

Proof. Let® # S C R be bounded above. Pick an arbitrary s € S. Foreachn € N,
the Archimedean Property of R implies that s + m/2" is an upper bound of S, for
some m € N. Let k, be the smallest such m, and set I, :== [s + (k, — 1)/2",s +
kn/2"]. We then have I, N S # @. (Why?) Thus while (by definition) s 4+ &, /2" =
s+ (2k,)/2" ! is an upper bound of S, s + (2k, —2)/2"T! = s+ (k,—1)/2" is not.
Therefore, either k1 = 2k, or k,+ = 2k, — 1 and I,,+; C I, follow. The Nested
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Intervals Theorem now implies that (o, I, = {u} for a unique u € R. Indeed, if
u<vandu,v € (oo, I,, then v—u > 1/2" for some n € N, which contradicts
u,v € I, since I, has length 27". We claim that u = sup(S). First, u is an upper
bound of S for, otherwise, there is t € S with u < ¢ and hence t — u > 1/2" for
some n € N. Since u € I,,, we get s + k,, /2" < t, which contradicts the definition
of k,. Next, if v is any upper bound of S and if v < u, then we can pick n € N
such that u — v > 1/2", and since u € I, it follows that v < s + (k, — 1)/2".
In particular, s + (k, — 1)/2" is an upper bound of S, which again contradicts the
definition of k,,. O

Nested intervals can be used to obtain decimal (or binary, ternary, etc.) repre-
sentations of real numbers. We will give a short account of this. The details may be
supplied by the reader or found in the references.

Binary, Ternary, Decimal, etc. Expansions.

Let x € [0,1) and let p > 1 be a fixed integer. Then x € [0, 1) = Uf;é [j/p, (J+
1)/ p), where the union is disjoint. Therefore, there is a unique integer x; €
{0,1,...,p — 1} such that x € [x;/p,x;/p + 1/p). Dividing the latter interval
into p equal parts, there is a unique integer x, such that 0 < x, < p and
x € [x1/p + x2/p%. x1/p + x5/ p*> + 1/ p?). Continuing this process, at the nth
stage we have uniquely determined integers x; with 0 < x; < pforl < j < n,
and

n

n
X X 1
xe[z_%,z_w_).
— p/ j=1pf "

Jj=1

Now let I := [0, 1] and

Then the intervals Iy, I}, I, . .. are nested and I; has length 1/ p* for all k € Nj.
Since x € I for all k, it follows from the Nested Intervals Theorem that ﬂ,fozo I, =
{x}. The base p expansion of x is now denoted by x = (0.x;x; - -+ ), and it is unique
by construction. If x € (0, 1) is an endpoint of some 7, say, x = > ;_, xi/ Pk,
with x, > 1, then the above construction gives the unique base p expansion x =
(0.x1++-x,000---), with x;, = 0 for all k > n. It turns out, however, that in this
case we have a second expansion x = (0.x;x}--),, where x; = x; for 1 < j <
n—1, x;, = x, —1,and x; = p —1forall kK > n. We shall come back to this in
Chap. 4 when we discuss the Cantor’s ternary set. We shall also see that x = 1 has
the unique expansion 1 = (0.x1x,---), with x, = p — 1 for all n.

If in the above procedure we take p = 2, p = 3, p = 10...., then we obtain
the binary, ternary, decimal, etc. expansions of the real number x. For example,
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the binary (i.e., base two) expansion of x has the form x = (0.x1x2x3--+); 1=
X1/2 + x2/2% + x3/23 + - -+, where each x,, is either O or 1. Similarly, the ternary
(i.e., base three) expansion of x has the form x = (0.x,xpx3-+-)3:= x;/3+x2/3>+
x3/ 3% + ..., where each x,, is 0, 1, or 2. As above, the expansion is unique unless
x € (0, 1) is a subdivision point at some stage, in which case two expansions exist.
In the binary case, one of the two binary expansions ends with an infinite string of
0’s and the other with an infinite string of 1’s. If we always choose the latter, for
example, then each x € [0, 1] has a unique binary expansion. In other words, we
get a one-to-one map from [0, 1] into the set 2 of all sequences x = (x1, X2,...),
where each x, is either O or 1. Conversely, to any such sequence we can assign the
unique real number (0.xXX3 -+ ), € [0, 1]. This defines a one-to-one map from 2~
into [0, 1]. Therefore, by the Schroder—Bernstein theorem, we have

Proposition 2.1.46. |[0,1]| = |2 = |R| = «.

Proof. We must only show that [0, 1] ~ R. But [0, 1] C R, and the map f : R —
[0, 1] defined by f(x) = x/(2+/1 + x2) + 1/2 is one-to-one, so the equivalence
follows again from the Schrdoder—Bernstein theorem. O

For certain applications it is convenient to extend the set of real numbers by
adjoining two elements called (plus) infinity and minus infinity, denoted by co =
400 and —oo, respectively; these symbols are distinct and are not real numbers.

Definition 2.1.47 (Extended Real Line). The extended real line is the disjoint
union R:= [—o0, 00]:= {—00} U R U {oc}, with the following properties:

l.L.xeR=— —-o0c0<x<o00;

2.xeR= x4+o00=00, x—00=-00, x/(foo)=0;
3.x>0=— x-c0=00, Xx-(—00)=—00;

4. x<0= Xx-00=-00, x-:(—0)=00;

5. 00+ 00 =00, —00—00=—00;and

6. 00 (£oo) = o0, —00-(Fo0) = Foo.

Remark 2.1.48. The operation co — oo is left undefined. Also, by arbitrary con-
vention, we define 0 - oo := 0. To distinguish the real numbers from the extended
real numbers, we call the former finite. Next, given any subset S C R, S # @,
we define sup(S) := oo if S is not bounded above, and inf(S) := —oo if S is not
bounded below. Tt then follows that every nonempty subset of R = [—00, o] has
both a least upper bound and a greatest lower bound. Finally, a function with values
in R = [—o0, 00] is called an extended real-valued function.

2.2 Sequences in R

In this section we summarize some of the basic facts about sequences of real
numbers. The first fundamental notion here is the convergence of a sequence and
is based on the usual concept of distance between two real numbers:
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Definition 2.2.1 (Distance, Epsilon-Neighborhood).

1. The distance between any two real numbers a and b is defined to be |b — a.

2. Given any x € R, the e-neighborhood of x is the open interval B.(x) = (x —
&.x + €), centered at x. The set By(x) := B(x) \ {x} is called the deleted
e-neighborhood of x.

Definition 2.2.2 (Open and Closed Sets). A set O C R is called open if for each
x € O, there is ¢ = e(x) > 0 such that B,(x) C O. A set C C Ris called closed if
its complement C¢ = R\ C is open.

Example 2.2.3. The sets § and R are both open and closed, and they are the only
subsets with this property. Open intervals are open and closed intervals are closed.
A half-open interval [a, b) (or (a, b]), a < b, is neither open nor closed.

Exercise 2.2.4.

1. Let {O)}ren be a family of open sets in R indexed by a set A. Show that
U en Oy is open. If A is finite, show that (),c, O is also open. Using the
infinite collection (—1/n,1 + 1/n), n € N, show that the latter statement is
false if A is infinite.

2. Let {Cy}1en be a family of closed subsets of R. Show that (), C is closed.
If A is finite, show that | J,c, Cy is also closed. Using the infinite collection
[1/n,1—=1/n], n € N, show that the latter statement is false if A is infinite.

3. Show that N and Z are closed, whereas the set {1/n : n € N} is neither closed
nor open.

Definition 2.2.5 (Convergence, Limit). Given a sequence (x,) € RY, we say that
(x,) converges to areal number &, and we write lim(x,,) := lim, o X, = £, if given
any ¢ > 0, there is an integer N = N(¢) such that n > N implies |x, — &| < e.
The number £ is called the limit of the sequence (x,), and, if it exists, we say that
the sequence is convergent. A sequence that has no limit is called divergent.

Example 2.2.6.

1. (Ultimately Constant Sequences). If for some N € N and ¢ € R we have x, = ¢
for all n > N, then lim(x,) = c. Indeed, given any ¢ > 0, we have |x, —c| =
0 <eforalln > N.

2. Show that lim(1/./n) = 0. Well, for any & > 0, the inequality [1//n — 0] < &
gives n > 1/&% and hence we can use any N > 1/¢2.

3. The sequence ((—1)") is divergent. Suppose, to get a contradiction, that
lim, o (—1)" = a € R and let ¢ = 1. Then for some N € N we have
[(=D)" —a| < 1foralln > N. Taking n > N to be even or odd, we see that
la — 1| < 1 and |a@ + 1| < 1 must hold simultaneously. But then both ¢ > 0 and
a < 0 must be satisfied, which is absurd.

4. We have lim, oo 2242 = 3. Here, the inequality |§Z ﬁ
1/(4¢) —1/2 and hence any N > 1/(4¢) — 1/2 will do.

5 .
T = 3 3| < & givesn >
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Exercise 2.2.7.

1. Show that, if a > 0, then lim(1/(1 + na)) = 0.

2. Show that, if 0 < b < 1, then lim(b") = 0. Deduce that lim(1/b") = 0if b > 1.
3. Show that, if ¢ > 0, then lim(c'/") = 1.

4. Show that lim(n'/") = 1.

Hints: For (1) and (2) use Bernoulli’s inequality. For (3), set d,, ;== 1 — ¢'/" and use
Bernoulli’s inequality again. Finally, for (4) set k, := n'/" — 1 forall n > 1 and,
expanding n = (1 + k)" (by the binomial formula), show that k,f <2/n.

Definition 2.2.8 (m-Tail, Ultimately True).

1. Given a real sequence (x,) and any m € N, the m-tail of (x,) is the sequence
(xm’ Xm+1> Xm+25 - - )

2. A property of sequences is said to be ultimately true for a sequence (x,) (resp.,
sequences (x,), (y,), etc.), if there is an integer m € N such that the property is
satisfied by the m-tail of (x,) (resp., m-tails of (x,), (y,), etc.).

Remark 2.2.9. Using m-tails and e-neighborhoods, the above definition of the limit
of a real sequence can be rephrased as follows: A sequence (x,) converges to a limit
& if, for any ¢ > 0, there is an integer N = N (&) € N such that the e-neighborhood
B, (&) contains the N -tail of (x,).

Exercise 2.2.10.

1. Show that, if lim(x,) = £, then all m-tails of (x,) also converge to £ and
conversely: If an m-tail of (x,) converges to £ € R, then so does (x,).

2. Show that, if two sequences (x,) and (y,) are ultimately equal (i.e., for some
meN, x, =y, Vn=>m),thenlim(x,) =§&—=— lim(y,) =& VEeR

3. Let @ # S C R be bounded. Show that there are sequences (s,) and (#,) in S
such that lim(s,,) = inf(S) and lim(z,) = sup(S). Hint: Use Proposition 2.1.30,
withe = 1/n, n e N.

For arbitrary subsets of real numbers, the following definition of limit point will
replace the definition given above for limits of sequences:

Definition 2.2.11 (Limit Point, Isolated Point). Let S C R. A number x € R
is said to be a limit point (or accumulation point) of S if for every ¢ > 0, B.(x)
contains an element s € S \ {x}. A number x € S is called an isolated point of S if
it is not a limit point of S; i.e., if for some ¢ = g(x), we have B.(x) N S = {x}.

Exercise 2.2.12.

1. Show that, if x is a limit point of a set S C R, then there is a sequence (s,,) in
S such that lim(s,) = x; conversely if (s,) € SN is not ultimately constant and
lim(s,) = x, then x is a limit point of S.

2. Show that, if x is a limit point of S C R, then for each ¢ > 0 the intersection
B.(x) N S is infinite. Deduce that a finite set has no limit points. (Hint: Suppose
that the intersection is finite and get a contradiction).

3. Show thataset F C Ris closed if and only if every limit point of F' belongs to F'.
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Definition 2.2.13 (Perfect Set). A set S C R is called perfect if it is closed and if
every point of S is a limit point of S.

Example 2.2.14. Any closed interval I C R is perfect. The closed set S =
[0, 1] U {2} is not perfect, because 2 is an isolated point of S. Proving that a set
is perfect is not simple in general. An important example is Cantor’s ternary set, to
be introduced in Chap. 4.

Remark 2.2.15.

1. The limit points of a set need not necessarily belong to the set, but an isolated
point of a set always belongs to the set.

2. The limit £ of a convergent sequence (x,) is not necessarily a limit point of the
set {x, : n € N}. Indeed, a constant sequence is obviously convergent, but the
set of its terms, being a singleton, has no limit points.

3. Note that a set may have many (possibly infinite) limit points, whereas the limit
of a convergent sequence is unique:

Proposition 2.2.16. The limit of a convergent sequence is unique.

Proof. Let (x,) be a sequence such that lim(x,) = & and lim(x,) = 7. Then,
given any ¢ > 0, we can find positive integers N; and N, such that n > N
implies |x, — &| < ¢/2, and n > N, implies |x, — n| < &/2. But then, with
N = max(N;, N;), n > N implies [n—§&| < |x, —&|+ |x, —n| <&/2+¢/2 = ¢,
and since ¢ was arbitrary, we get £ = 1. O

Definition 2.2.17 (Increasing, Decreasing, Monotone, Bounded). We say that a
real sequence (x,) is increasing (resp., strictly increasing) if x, < x,4+; (resp.,
Xn < Xp41), for all n € N. We say that it is decreasing (resp., strictly decreasing) if
Xy > Xp41 (resp., X, > X,4+1), for all n € N. The sequence is called monotone
if it is either increasing or decreasing (strictly or not). Finally, the sequence is
called bounded (resp., bounded above, bounded below) if the set {x, : n € N}
is bounded (resp., bounded above, bounded below). A sequence that is not bounded
is called unbounded.

Examples and Remarks 2.2.18.

(a) A sequence x = (x,) is decreasing (resp., strictly decreasing) if and only if the
sequence —x is increasing (resp., strictly increasing). (Why?)

(b) The sequences (n), (n?), and (2") are strictly increasing and unbounded. The
sequence (1/n) is strictly decreasing and bounded, and the sequence (1 —1/n)
is strictly increasing and bounded.

(¢) If (x,) is bounded, then there are a, b € R such thata < x, < b foralln € N;
or, equivalently, there is A > 0 such that |x,| < A forall n € N.

Proposition 2.2.19 (Convergence and Boundedness). Every convergent sequence
is bounded. In particular, an unbounded sequence is divergent.
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Proof. Suppose that lim(x,) = &. Then, we can find N € N such thatn > N
implies |x, — &| < 1, and hence |x,| < |&] + 1. Therefore, we have |x,| < A for all
n € N, where A:= max({|x|, [x2|, ..., |[xn=1], |E] + 1}). |

Definition 2.2.20 (Subsequence, Subsequential Limit). Let x = (x,) be a real
sequence, and let v = (vy, 5, v3,...) : N — N be any strictly increasing sequence
inN;ie., assume v; < vy < v3 < --- . Then the sequence xov = (x,,, Xy,, Xp3, .- .)
is called a subsequence of (x,). If (x,,) converges, its limit is called a subsequential
limit of (x,).

Example 2.2.21.

1. Given any real sequence (x,) and any m € N, the m-tail (X;;4x—1)ken 1S a
subsequence of (x;).

2. The even subsequence of (x,) is defined to be (x2x )xen, and the odd subsequence
is defined to be (xx—1)ken-

Exercise 2.2.22.

1. Letv = (vq, v2, v3, ...) be a strictly increasing sequence in N. Show that v; > k
forall k € N.

2. Let(x,) € RY. Show thatif lim(x,) = &, then lim(x,, ) = & for any subsequence
(X, )ken- Show by an example that the converse is false.

3. Show that a real sequence (x,) converges to £ € R if and only if its even and odd
subsequences (xz;) and (xp,—1) both converge to £. Deduce that the sequence
((—=1)") is divergent.

Proposition 2.2.23 (Existence of Monotone Subsequence). Let (x,) be a real
sequence. Then (x,) has a monotone subsequence.

Proof. Let us call the mth term x,, of x a peak if x,, > x,, for all n > m. If the
sequence has infinitely many peaks, then, ordering their subscripts increasingly, we

get the peaks X, , Xy, ..., With m; < my < --- . But then, by definition, x,,,, >
Xm, > --- . If (x,) has a finite number of peaks, then there is a subscript k > 1
such that x,, is not a peak for all n > k. Let m; := k + 1. Then, since x,,, is

not a peak, there is m, > m; such that x,,,, < x,,,. Since x,,, is not a peak, there
is m3 > my such that x,,, < X,,,. Continuing this process, we obtain a strictly
increasing subsequence: X, < Xp, < Xpy < . a

Our first convergence result is the following.

Theorem 2.2.24 (Monotone Convergence Theorem). Let (x,) be a real
sequence. If (x,) is increasing and bounded above (resp., decreasing and bounded
below), then (x,) is convergent and we have lim(x,) = sup{x, : n € N} (resp.,
inf{x, : n € N}).

Proof. We treat the increasing (bounded above) case and leave the decreasing one
as an exercise for the reader. Thus (x,) is increasing, and there is # € R such that
x, <uforalln € N. Let § = sup{x, : n € N} and let ¢ > 0 be arbitrary. Then



2.2 Sequences in R 55

there is N = N(¢) such that § — & < xy, and hence 0 < § — xy < &. But (x,,) is
increasing, so that xy < x, foralln > N,andweget0 <& —x, <& —xy <¢
foralln > N. O

As an application, the next exercise will show that for any a > 0, the positive
square root /a can be obtained as the limit of a decreasing sequence. This method
was known to the Babylonians before 1500 B.C.

Exercise 2.2.25.

1. Show that (¢ + a/t)? > 4a, foralla € Rand ¢ # 0.

2. Given a > 0, let x; > 0 be arbitrary and define x,+; = (x, + a/x,)/2
recursively for all € N. Using (1) show that x,+; < x, V n > 2, so that
(x,) is ultimately decreasing and bounded below.

3. Deduce that (x,) is convergent, and show that lim(x,) = /a.

Next, we give a list of properties of convergent sequences. These properties are
all familiar to the reader from calculus and will be used frequently in what follows.

Theorem 2.2.26 (Limit Theorems). Let (x,) and (y,) be convergent sequences
with lim(x,) = &, lim(y,) = n. Then the following statements are true:

lim(x, + y,) = lim(x,) &+ lim(y,) = § £ n;

lim(cx,) = clim(x,) = c& (Ve € R);

lim(x, y,) = lim(x,) - lim(y,) = &n;

lim(x, / yn) = lim(x,)/ lim(y,) = §/nif yn 7% 0 ¥V n and n # 0;

lim(1/y,) = 1/1lim(y,) = 1/nif y» # 0 V n and n # 0;

if x, > 0 is ultimately satisfied, then & > 0;

if x, < y, is ultimately satisfied, then £ < n; and

(Squeeze Theorem) If § = n and if x,, < z, < y, is ultimately satisfied, then (z,)
converges and we have lim(z,) = & = 1.

O N RN~

Proof. We leave (1) and (2) as exercises for the reader. Note that (5) follows from
(4) if (x,) is the constant sequence (1,1, 1,...), and (4) follows from (3) and (5).
Also, (7) follows from (6) applied to the sequence (y, — x,). To prove (3), note that
for each n € N, we have

[0y —Enl = [n(xn — &) + X0 (¥ — M| = Inllxn — & + [x0]|yn — 1l ()

Since the convergent sequence (x,) is bounded, there is A > 0 with |x,| < A for all
n € N. Now define B = max{A4, |n|}, and pick N € N so large that n > N implies
|x, —&| <¢&/(2B) and |y, — n| < &/(2B). It then follows from () that

|xnyn - 577| = B(lxn - §| + |yn - 1’)|) <é.

To prove (5), note first that we can find N, € N such thatn > N, implies |y, —n| <
[n|/2, which in turn implies |y,| > |n|/2. (Why?) It then follows that |1/y, —
nl = lyn = nl/(yallnl) < 2|ya = nl/Inl? for all n = Ny. Next, given & > 0,



56 2 Sequences and Series of Real Numbers

pick N> € N such that n > N, implies |y, — n| < ¢|n|?/2. But then, with N =
max{Ny, Mo}, we get [1/y, — 1/n| < e. Looking at (6), pick m € N such that
X, >0V n>mIf§E <0, then, with e = —£/2 > 0, we can find N; € N, with
N1 > m, such that n > N; implies |x, — §] < —&/2. But then, forn > N :=
max{Ny,m}, we get x, < £ — /2 = £/2 < 0, contradicting the fact that x,, > 0
for all n > m. Finally, to prove (8), letm € Nbe such thatx, <z, <y, Vn>m.
For each ¢ > 0, we can find N € N, with N > m, such that n > N implies the
inequalities |x, — &| < ¢/3 and |y, — n| = |y, — &| < &/3, from which we get
|yn — xn| <2€/3V n > N.Butthen, forn > N, we have

lzn — &l < |zn — xu| + 1x0 = &l < [yn — Xul + [x0 — | <2¢/3 + /3 =¢,

which completes the proof. O

Remark 2.2.27. Note that, although nonstrict inequalities are preserved when we
pass to the limit (as in parts (6) and (7) of Theorem 2.2.26), this is not necessarily
true for strict inequalities. For example, while 1/ n? <1 /n, Yn > 2, we have
lim(1/n?%) = lim(1/n) = 0.

Example 2.2.28.

1. We have lim,_oosinn/n = 0. Indeed, |sinn/n| < 1/n gives —1/n <
sinn/n < 1/n for all n € N. Since lim(—1/n) = 0 = lim(1/n) (why?), the
assertion follows from the Squeeze Theorem.

2. The sequence (sinn) is divergent. Suppose, to get a contradiction, that
lim(sinn) = b € R. Letting n — oo in the identity sin(n + 1) =
sinncos1 + cosnsinl, we see that @ := lim(cosn) also exists and that
a’+b? = 1. (Why?) But then the identities sin(n 4= 1) = sinn cos 1 £cos n sin 1
give the equations b = bcos1 £ asinl, which in turn give a = b = 0, a
contradiction.

Exercise 2.2.29. Let (x,) be a real sequence with lim(x,) = £.

1. Show that lim(x¥) = £ for all positive integers k. Show that the same also holds
for all integers k < 0, if x,, # 0 for all n and § # 0.

2. Show that, if x, > 0 V n € N, then lim(,/X,) = /£. Hint: Consider the cases
£ =0and £ > 0. In the latter case, use x, — £ = (/%, — V&) (/% + /&) and

the fact that /X, + V€ > E>0Vn eN.
3. Show that lim |x,| = |&|.

Definition 2.2.30 (Null Sequence). A real sequence (x,) is called a null sequence
if lim(x,) = 0.

Exercise 2.2.31.

1. Show that lim(x,) = £ € R if and only if (x, — &) is a null sequence.
2. Show that (x,) is a null sequence if and only if (|x,]) is.
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3. Show that, if (x,) and (y,) are null sequences, then so are (x, £ y,) and (cx,)
for any constant ¢ € R.

4. Show that, if (x,) is a null sequence and (y,) is bounded, then (x,y,) is also a
null sequence.

Proposition 2.2.32. If (x,) is a null sequence, then so is the sequence

X1+X2+"‘+Xn>
" .

(Xn):= (

Proof. Given ¢ > 0, pick m € N such that n > m implies |x,| < &/2. Now for any
n > m, we have

lx1 + X2 4 -+ 4+ X | +(n—m+l)f - IZ'k";lle +f
n B n .

X, <
|Xn| < p, 5

If we now pick N > m such that n > N implies |x; + x; + -+ + x;—1]/n < €/2,
it follows that |x,| < e foralln > N. O

Corollary 2.2.33. If lim(x,) = & and if (X,) is as in Proposition 2.2.32, then
lim(x,) = &.

Proof. Simply apply Proposition 2.2.32 to the null sequence (x, — §). |

Exercise 2.2.34. Show that (x,) may converge for a divergent sequence (x,). Hint:
Let x,,:=1—(=1)".

Definition 2.2.35 (Infinite Limits). Given a real sequence (x,), we say that (x;)
converges to oo and write lim(x,) = oo, if for every B € R there exists N € N
such that n > N implies x,, > B. Similarly, we say that (x,) converges to —oo and
write lim(x,) = —oo, if for every A € R there exists N € N such thatn > N
implies x, < A.

Exercise 2.2.36. For real sequences (x,) and (y,) prove the following:

1. lim(x,) = o0 = lim(—x,) = Foo;
2. lim(x,) = +oo (resp., —oo) if and only if Im € N with x,, > 0 (resp., x, < 0)
Vn > m and limg 00 (1/X41) = 0;

3. lim(x,) = o0 and lim(y,) = oo = lim(x, + y,) = Fo0;

4. lim(x,) = £ > 0 and lim(y,) = oo = lim(x,y,) = Fo0;

5. lim(x,) = & <0 and lim(y,) = £o0 = lim(x,y,) = Foo;

6. if x, < y, ultimately holds, then lim(x,) = oo implies lim(y,) = oo and
lim(y,) = —oo implies lim(x,) = —o0;

7.ifx, >0, y,>0Vn e Nandlim(x,/y,) = p > 0, then lim(x,) = oo if and
only if lim(y,) = oc;

8. if (x,) is ultimately increasing and not bounded above (resp., ultimately decreas-
ing and not bounded below), then lim(x,) = oo (resp., lim(x,) = —o0); and

9. if (x,) is bounded, lim(y,) = o0, and y, # 0 Vn, then lim(x,/y,) = 0.
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Definition 2.2.37 (Upper Limit, Lower Limit). Let (x,) be a real sequence.

(a) If (xp) is bounded above, then we define its upper limit (denoted lim sup(x,) or
lim(x,)) to be

limsup(x,) = lim(x,) := lim (sup{x; : k > n}).

If (x,) is not bounded above, then we define lim sup(x,) = lim(x,) := oo.
(a) If (xy,) is bounded below, then we define its lower limit (denoted lim inf(x,) or
lim(x,)) to be

liminf(x,) = lim(x,) := lim (inf{x; : k > n}).
n—>oo

If (x,) is not bounded below, then we define liminf(x,) = lim(x,) := —oo.
Example 2.2.38. L
Let x, = (=1)", y, = n*, z, = (=1)"n. Then lim(x,) = —1 and lim(x,) = 1;
lim(y,) = lim(y,) = oo; lim(z,) = —oo and lim(z,) = oco.

Proposition 2.2.39. Let (x,) be a bounded sequence and for each n € N define
u, ;= inf{xy : k > n} and v, := sup{xy : k > n}.

(a) If the inequalities a < x, < b are ultimately satisfied (i.e., hold for alln > m
with some m € N), then lim(x,,) > a and lim(x,,) < b.

(b) (u,) is increasing, (v,) is decreasing, and we have lim(u,) = lim(x,) <
lim(x,) = lim(v,).

(c) We have lim(x,) < lim(x,,) < lim(x,,) < lim(x,) for every subsequence (x,,)
of (x2). -

(d) If« < lim(x,) [resp., B > lim(x,)], then there isan N € N with x,, > « [resp.,
Xn < Blforalln > N.

(e) The sets {n : x, > lim(x,) — &} and {n : x,, < lim(x,) + &} are both infinite
Ve>0.

(f) lim(x,) = & if and only if lim(x,) = § = ﬁ(xn)

Proof. We leave parts (a), (b), (c), and (d) as exercises for the reader. For (e), let
v = lim(x,) and suppose that {n : x, > v — &} is finite. Then for some m € N we
have x, < v—e forall n > m and part (a) gives v < v—e, which is absurd. A similar
argument shows that {n : x,, < lim(x,) 4+ ¢} is also infinite. To prove (f), note that if
lim(x,) = £, then for any ¢ > O we can find N € Nsothat{ —e < x, < & + ¢ for
all n > N. But then parts (a) and (b) show that § — ¢ < lim(x,) <lim(x,) <&+ ¢
holds for all ¢ > 0 and hence lim(x,) = & = lim(x,). Conversely, if lim(x,) =
£ = lim(x,) holds and if ¢ > 0 is arbitrary, then part (d) implies that there exists
N e Nwithé —e < x, <&+ eforalln > N and hence lim(x,) = £. ]

Proposition 2.2.40. Let S be the set of all subsequential limits of a bounded real
sequence (x,); i.e., the set of all £ € (—o0, 00) such that § = lim(x,, ) for some
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subsequence (x,,) of (x,). Then inf(S) and sup(S) are both in S and we have
liminf(x,) = inf(S) and lim sup(x,) = sup(S).

Proof. Since the proofs for inf(S) and sup(S) are similar, we show that sup(S) =
lim(x,) € S and leave the other case as an exercise. Now given any £ € S,
there is a subsequence (x,,) of (x,) with § = lim(x,,). By parts (c) and (f) of
Proposition 2.2.39, we get

§ =lim(x,,) = m(ka) = m(xn)'

Therefore, sup(S) < lim(x,). To finish the proof, let s := lim(x,) and note that (by
part (e) of Proposition 2.2.39) the set {n : s — 1/k < x, < s + 1/k} is infinite for
every k € N. So for each k € Nwe canpick vy e {n : s —1/k <x, <s+ 1/k}
in such a way that v, > v for all k. We then have a subsequence (x,, ) such that
s —1/k < x,, <s+ 1/k forall k and hence lim(x,,) =s € S. O

Exercise 2.2.41. Given any real sequences (x,) and (y,), prove the following:

1. liminf(x,) + liminf(y,) < liminf(x, + y,) < limsup(x,) + liminf(y,) <
lim sup(x, + y,) < limsup(x,) + lim sup(y,), if none of the sums is co — 0o (or
—00 + 00);

2. limsup(x,y,) < (limsup(x,))(limsup(y,)) if x, > 0 and y, > 0 for all n (and
the right side is not of the form 0 - c0); and

3. liminf(x,) = —limsup(—x,).

The next theorem is very important and will appear in two versions. We first give
the version for the sequences and then the version for bounded infinite subsets of R.

Theorem 2.2.42 (Bolzano—Weierstrass Theorem for Sequences). Every bounded
sequence of real numbers has a convergent subsequence.

Proof. Let (x,) be a bounded sequence in R. Then, by Proposition 2.2.23, it
has a monotone subsequence (x,,)ren, Which is bounded because (x,) is. The
convergence of the subsequence (x,, ) now follows from the Monotone Convergence
Theorem (Theorem 2.2.24). O

Theorem 2.2.43 (Bolzano—Weierstrass Theorem for Infinite Sets). Every
bounded infinite subset of real numbers has a limit point in R.

Proof. Let X be a bounded infinite set of real numbers. By Proposition 1.4.11,
there is a sequence (x,) in X with x; # x; if j # k. Now (x,) is bounded
because X is and hence, by Theorem 2.2.42, it has a convergent subsequence (x,, ).
Let lim(x,,) = &. Since {x,, : k € N} is countably infinite (why?), it cannot be
ultimately constant. Thus (cf. Exercise 2.2.12) £ is a limit point of X. O

The next definition is of fundamental importance and will allow us to construct
the set of real numbers from the set of rational ones.
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Definition 2.2.44 (Cauchy Sequence). A real sequence (x;) is said to be a Cauchy
sequence if for each ¢ > 0 there is an integer N € N such that, if m, n > N, then
[Xm — Xn| < €.

The first immediate consequence of the above definition is the following
Proposition 2.2.45. Every Cauchy sequence in R is bounded.

Proof. Let (x,) be a Cauchy sequence. Then, for ¢ = 1, we can find an integer
N > O such that |x,, — x,| < 1,forallm > N, n > N. In particular, |x, —xy| < 1
for all n > N, which implies |x,| < |xy| 4+ 1 for all n > N. But then, with
B:=max{|x|,....,|xn=1], |xn]| + 1}, we get |x,| < B foralln € N. |

It is intuitively obvious that a convergent sequence must be a Cauchy sequence.
In fact, not only is this the case but also the converse, which is not obvious at all, is
true:

Theorem 2.2.46 (Cauchy’s Criterion). A real sequence (x,) is convergent if and
only if it is a Cauchy sequence.

Proof. 1If lim(x,) = &, then for each ¢ > 0 we can find N € N such thatn > N
implies |x, — &| < &/2. But then, if m, n > N, we have |x,, — x,,| < |x,, — &| +
|x, —&|] < /2 + ¢/2 = . Conversely, if (x,) is Cauchy, then it is bounded (by
Proposition 2.2.45), and hence (by Theorem 2.2.42) has a convergent subsequence
(xn,). Now, given ¢ > 0, we can find N € N such that |x,, — x,| < &/2 for
all m, n > N. Next, if lim(x,,) = &, then |x,, — §| < &/2 for some K € N.
Assuming, as we may, that K > N, it follows that, foralln > N, we have |x,—§| <
[Xn — Xng | + |Xne — &l <€/24+¢/2 =¢. |

Remark 2.2.47.

1. The above proof of Cauchy’s Criterion contains the following important fact:
If a Cauchy sequence (x,) has a subsequence (x,,) that converges to §, then
lim(x,) = &.

2. (Supremum Property <= Cauchy’s Criterion) The above proof also shows that
Cauchy’s Criterion is a consequence of the Supremum Property (Completeness
Axiom). In fact, the converse is also true and can be proved by the following
nested intervals argument. Let S be a nonempty subset of R that is bounded
above; i.e., there is a number u € R such that s < u Vs € S. Construct a
sequence of nested intervals [a,,, b,] as follows: Pick I} = [a;, b1], a; < by, such
that /1 meets S and b, is an upper bound of S. Divide /; in two equal parts. Let I,
be the right half if it meets S; otherwise, let it be the left half. Define I3, I4,...,
similarly. Now, for each n € N choose a point s, € I, N S. The sequence (s,) is
Cauchy (why?). Let 0 = lim(s,). We invite the reader to show that o = sup(S).
Note that, by construction, each b, is an upper bound for S.

Exercise 2.2.48 (Contractive Sequence).

(a) A sequence (x,) is said to be contractive if there exists a constant r € (0, 1)
such that |x,4+2 — X,41| < r|xy4+1 — x| for all n € N. Show that a contractive
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sequence is a Cauchy sequence. If x; > 0 and x,4; := 1/(x, + 2) for all
n > 1, show that (x,) is contractive and find its limit. Hinz: Use the fact that
S k==t —r).

(b) Define the sequence (x,) as follows: x; := 1, x; := 2, and x,, ;= (x,— +
Xn—1)/2, for n > 2. Show that (x,) is a Cauchy sequence and find its limit.
Hint: For the limit, look at the odd subsequence (x3,,+1).

(¢) If0 <r < 1,andif |x,4+1 — x,| < r" for all n € N, show that (x,,) is a Cauchy
sequence.

2.3 Infinite Series

Recall that for a finite set {x1, x5, ...,x,} C R, we denote the sum of its elements
by > Xk. It is tempting to extend this summation to a countably infinite subset
of R, but, as we shall presently see, the corresponding infinite sums, which we shall
call (infinite) series, may not exist. The present section contains a brief discussion
of such series and the conditions under which they are summable. As the reader will
notice, we shall occasionally use exponentials with real exponents. These will be
defined rigorously later.

Definition 2.3.1 (Infinite Series, Partial Sums). Given a sequence (x,) of real
numbers, the formal sum

o0
an=X1+X2+X3+"'+Xn+"'

n=1

is called an infinite series, or simply series, and, for each n € N, x, is called the
nth term of the series. Also, for integers n € N, the finite sums

n
Sp = E Xk
k=1

are called the partial sums of the series. If the sequence (s,) converges to a number
s € R, we say that the series converges (or is convergent) and write

o0
E X, =S.

n=1

The number s is then called the sum of the series. If (s,) diverges, we say that the
series diverges or that it is divergent. Unless the index n takes other values than
1, 2, 3,..., we sometimes replace Z:o=1 X, by Y x,.
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Remark 2.3.2. It is obvious from the above definition that, for each n > 1, we have
X, = 8§, —Sy—1, so that, if we set x; = sy, any statement about series can be written
as a statement about sequences and vice versa. In particular, since the convergence
of the series is, by definition, the convergence of the sequence of its partial sums,
Cauchy’s Criterion may be applied to (s, ) and implies the following theorem for the
series:

Theorem 2.3.3 (Cauchy’s Criterion for Series). A series Z,fil X, is convergent
if and only if, for each € > 0, there is an integer N € N such that

m
D
k=n

m>n>N— <e&.

The next proposition gives a necessary (but not sufficient) condition for the
convergence of series.

Proposition 2.3.4. [f > °2 | x, is convergent, then lim(x,) = 0.

n=

Proof. Indeed, it follows from Cauchy’s Criterion (with m = n) that, for each ¢ > 0,
there exists N € N with |x,| < eforalln > N. |

Remark 2.3.5.

1. As pointed out above, the condition in Proposition 2.3.4 is not sufficient. Indeed,
as we shall see below, the harmonic series Y o, 1/n is divergent, even though
we obviously have lim(1/n) = 0.

2. If Y02, x, is a series of nonnegative terms, i.e., if x, > 0V n € N, then the
sequence (s, ) of its partial sums is obviously increasing. The following theorem
is then a consequence of the Monotone Convergence Theorem.

Theorem 2.3.6. A series of nonnegative terms is convergent if and only if the
sequence of its partial sums is bounded.

Definition 2.3.7 (Geometric Series, p-Series).

1. Given the real numbers a and r # 0, the series

o0
Zar" =a+ar+ar’+ar’+---

n=0

is called a geometric series with first term a and ratio r.
2. Given a real number p, the series

o0
D/n? =141/27 +1/37 + ...
n=1
is called a p-series. In particular, for p = 1, we get the harmonic series

Z:O=1 1/n.
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Proposition 2.3.8. Assuming (to avoid trivial cases) that a # 0 # r, the geometric
series Zn —oar" is convergent if and only if |r| < 1, in which case we have

Zar": 1ir' (%)

Proof. First, we have the identity

1= =0 =r)A4+r+r2 441",

which is proved by expanding and simplifying the right side. It follows that
(ifr #1)

Cl(l _ rn+1)
Z i p——

Now, if || < 1, then (by Exercise 2.2.7) lim(r"*!) = 0 and (x) follows at once. If,
however, |r| > 1, then, since (by assumption) a # 0, we cannot have lim(ar") = 0
(why?), and hence (by Proposition 2.3.4) the series diverges. O

Before we consider the convergence of p-series, we prove the following compar-
ison test:

Theorem 2.3.9 (First Comparison Test). Let Y x, and Y_ y, be two series of
nonnegative terms, and suppose that we have x, < y,, for all n € N. Then the
following are true:

(a) If Y yu is convergent, then so is Y _ x,.
(b) If 3" x, is divergent, then so is Y _ y,.

Proof. Define s, := Y j_, X, and t, :== Y ;_, y,. We then have s, < 1, Vn € N.
The theorem is therefore an immediate consequence of Theorem 2.3.6. O

Exercise 2.3.10.

1. Given a real sequence (x,) and a natural number m € N, show that the series
> > | xn is convergent if and only if the series Y .- x, is convergent.

2. Show that, in Theorem 2.3.9, the condition x, < y, Vn € N can be replaced by
dm € Nsuchthat V n > m, we have x,, < y,.

3. Show that, if ) x, is a convergent series of nonnegative terms, and if (§,) is a
bounded sequence of nonnegative real numbers, then the series Y &,x, is also
convergent.

4. Show that, if }_ y, is a divergent series of nonnegative terms, and if (7,) is a
sequence of positive reals that is bounded below by a positive number n > 0,
then the series ) 1, v, is also divergent.
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5. Let 0 < a < b, and let (c,) be a real sequence satisfyinga < ¢, < b Vn € N.
Show that the series of nonnegative terms Y x,, converges if and only if Y_ ¢, x,
converges.

Corollary 2.3.11 (Limit Comparison Test). Let >  x, and Y y, be two series
with positive terms such that £ .= lim(x, /y,) exists.

(a) If £ > O, then Y_ x,, converges if and only if Y y, converges.
(b) If £ = 0and )_ y, converges, then Y x,, converges.

Proof. Exercise! O

Proposition 2.3.12. The p-series Y, 1/n? is convergent for p > 1 and divergent
for p < 1. In particular, the harmonic series Y, 1/n is divergent.

Proof. Let us first show that the harmonic series Y 1/n is divergent by proving that
the partial sums s, = > ;_, 1/k are unbounded. Given B > 0, pick k € N with
k > 2B, and letn > 2* be arbitrary. Now we have

>(1+1)+(1+1)+ +( S +1)
sn_ _— _— _— .o — DY —_—
2)T\37; 2T 1 2K

>%+2(%)+---+2"“(2ik)=§>8.

Therefore, (s,) is unbounded. Now if p < 1,then 1/n? > 1/n Vn € N and, by the
First Comparison Test, » . 1/n? is divergent. Next, suppose that p > 1. To find an
upper bound for the partial sum Y ;_, 1/k?, choose k € N so large that n < 2%,
and note that we have

1 1 1 1
Szk—l=1+(2—p+37)+'“+(m+"'+m)
-1 2 4 2kl
sty tet Ty

Therefore, with r = 1/27~!, we have

ot 1
sn§s2k_1§E r/ = T <1—r'
Jj=1

Since this is true for each n € N, the proof is complete. O

Exercise 2.3.13. Give another proof of the convergence of ) 1/n? for p > 2,
using the First Comparison Test and the fact that, for k > 1, we have 1/k? <
1/k(k—1)=1/(k—-1)—1/k.
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The number e, called the natural base, is probably the most important number
in mathematics. We first define it as the sum of an infinite series and in the next
proposition show that it is also the limit of the sequence ((1 + 1/n)").

Definition 2.3.14 (The Number ¢). e:=) oo 1/n!.
Proposition 2.3.15. We have 2 < e < 3, and e = lim,o0o(1 + 1/n)".

Proof. It is obvious that e > 2. Since 1/n! < 1/(2-3"72) for all n > 3 and
> > ,1/3"72 = 1/2, we have that, for all n > 3,

n oo

so= ) L/kl<1+1+41/24> 1/(2-3%) =11/4,

k=0 k=3

which shows that the series converges and that e < 11/4 < 3. To prove the last
statement, define 7, := (1 + 1/n)" and note that by the binomial formula,

R R ) (G B (e

It follows that ¢, < s, so that

limsup(z,) <e.

Next, for any fixed m € N and n > m, we have

1 1 1 1 m—1
ozl (1= ) — (1= =) (1= 22,
2! n m! n n

so that letting n — oo, we get

m

1 o
Sm = Z T < liminf(¢,),

k=0
and, since m was arbitrary, it follows that
e < liminf(z,).

The proposition now follows from limsup(z,) < e < liminf(#,) and Proposition
2.2.39(f). O

Exercise 2.3.16. Let x,, ;= (1 + 1/n)" and y, := (1 + 1/n)"*!, n € N. Show
that (x,) is increasing, while (y,) is decreasing. Deduce that {[x,, y,] : n € N}is
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a sequence of nested intervals. Next, show that lim(y,, — x,) = 0, and deduce that
lim(x,) = e = lim(y,). Hint: To prove that (x,) is increasing, note that

<n + 1>n (n + 2>n+1 n nn+2)7""!
< P4 <
n “\n+1 n+1 7| (n+1)?2

1 1 n+1
—l-—<|l-—
n+1‘[ (n+1)2}

and use Bernoulli’s inequality. The proof of y,, > y, 4 is similar.

Proposition 2.3.17 (The Irrationality of e). The number e :== Y .- 1/n! is
irrational.

Proof. If e = p/q with p, ¢ € N, then g > 1 and

q!e—(Xq:l)q!= ! + ! + - ()
= k! g+1 (¢+Dg+2)

Now the left side of () is an integer while the right side satisfies

1 1 1 1 1
0< 4+ 4.0 < + + == < 1.
g+1 (g+1(g+2) g+1  (g+1) q
This contradiction proves that e is indeed irrational. O

Theorem 2.3.18 (Second Comparison Test). Let Y ¢, and > d, be two series
of positive terms (i.e., ¢, > 0, d, > 0 Vn € N) such that y_ ¢, is convergent while
>"d, is divergent. Given a series y_ x, of positive terms, we have:

1. If the inequalities Xn4+1/Xy, < Cpt1/Cy are ultimately true, then ) x, is
convergent.

2. If the inequalities X,41/X, > dyt+1/d, are ultimately true, then Y x, is
divergent.

Proof. To prove (1), note that, if the inequalities hold as stated, then for some m €
N, we have x,+1/c,+1 < x,/c, for all n > m, so that the sequence (&,):= (x,/c,)
is ultimately decreasing and bounded below (by 0); it is therefore bounded and (1)
follows from Exercise 2.3.10, part (3). For (2), set 1, := x,/d,, and note that, if
again the inequalities hold, then for some m € N we have x,+1/d,+1 > x,/d,
for all n > m. In other words, (1,) is ultimately increasing and 1, > 0 Vn € N.
Therefore, there exists n > 0 with n, > n for all n € N, and (2) follows from
Exercise 2.3.10, part (4). ]

Many series have nonnegative terms that decrease monotonically. For such series
the following theorem of Cauchy is usually helpful:
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Theorem 2.3.19 (Cauchy’s Condensation Theorem). Suppose that x| > x; >
X3 > -+ > 0. Then the series Y x, is convergent if and only if the series

o
szxzk = X1 +2x +4x4 +8xg +---
k=0

is convergent.

Proof. Let s, = Z;’ —o Xy and ty := Z];:o 27/ x,;. Then, for n < 2*, we have

Sp < x1 4 (e x3) + o Qo 4o Xpepg)

<Xx —|—2x2+---+2kx2k = .
Next, for n > 2, we have

Sp = X1+ x4+ (X3 +x4) F o OCopp—tg g F o0 Xk)

v

1 1
Exl + x4+ 2x4+ - +2k_1x2k = Elk'

It follows that the sequences (s,) and (¢;) are either both bounded or both
unbounded, so that the two series in the theorem either both converge or both
diverge. O

Exercise 2.3.20. Using the above condensation theorem, show that the p-series
>"1/n? converges for p > 1 and diverges for p < 1. Show that the same is also
true for the series Y oo, 1/n(logn)?, where logn = Inn is the natural logarithm
of n (to the base e). The properties of logarithms are known to the reader from
calculus. However, we shall see them again later in more detail.

Using the comparison tests we can prove the following Root and Ratio Tests,
which can be used in most cases to decide whether a series is convergent or
divergent. In order to have a test for series whose terms may also be negative, we
first give the following definition.

Definition 2.3.21 (Absolute vs. Conditional Convergence). A series Y _ x, of real
numbers is called absolutely convergent if the series Y |x,| is convergent. If >_ x,
is convergent but Y_ |x,| is divergent, then we say that Y x, is conditionally
convergent.

The following comparison test is an immediate consequence of Cauchy’s
Criterion and the Triangle Inequality:

Proposition 2.3.22. If Y ¢, is a convergent series of nonnegative terms and if, for
some Ny € N, we have |x,| < ¢, ¥ n > Ny, then Y_ x, is convergent. In particular,
an absolutely convergent series is convergent.
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Remark 2.3.23. Note that there are conditionally convergent series. The standard
example is the alternating harmonic series Y (—1)"~'/n. The proof of this and
other similar facts will follow from the discussion of alternating series below.

Theorem 2.3.24 (Root Test). Given a series Y x,, define (the extended real
number) £ := 1im(3/|x,|). Then the following are true:

1. If& <1, Y x, is convergent.
2. If€ > 1, Y x, is divergent.
3. If& = 1, the test is inconclusive.

Proof. If & < 1, we can pick n with £ < n < 1 and N € N such that

V0xil<n Vn>=N.
(Why?) In other words,
[x,] <n" Vn=>N.

Since ) 1" converges, the convergence of Y |x,| (and hence Y x,, by Propo-
sition 2.3.22) follows from the First Comparison Test. Next, if & > 1, then
£ > lim(|x,, |"/") > 1, for some subsequence (x,,) of (x,). But then it follows
at once that lim(x,) # 0, and the series »_ x, is therefore divergent. Finally, to
prove (3), note that £ = 1 both for the harmonic series > 1/n which diverges and
for the convergent p-series Y 1/n>. O

Theorem 2.3.25 (Ratio Test). Given a real series Y x, such that x, # 0 is
ultimately true, we have

1. > x, converges if limsup(|x,+1/x,]) < 1.
2. ) x, diverges if 3m € N such that |x,+1/x,| > 1 ¥n > m.
3. Ifim(|x,41/x,]) < 1 < lim(|x,+41/X|), then the test is inconclusive.

Proof. 1f (1) holds, then we can find £ € (0,1) and N € N such that |x,,+/x,| < &
for all n > N. It then follows that, for n > N, we have |x,| < |xy|E~ - £", and the
convergence of Y_ x,, follows from the First Comparison Test. If (2) holds, then the
condition lim(x,) = 0 is not satisfied, and the series Y x, diverges. Finally, if we
consider once again the divergent series Y 1/n and the convergent series Y 1/n?,
then in both cases we have lim(|x,+1/x,|) = 1; i.e., the condition (3) holds. O

Remark 2.3.26.

(a) The Ratio Test can also be deduced from the Second Comparison Test.

(b) In the Root Test, if (/m > 1 for infinitely many distinct values of n, then the
series Y x, diverges (why?).

(c) The Ratio Test is, for most series, easier to apply than the Root Test. As the
following theorem shows, however, the Root Test has wider scope. In fact, if
the Ratio Test implies convergence, so does the Root Test; also, when the Root
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Test is inconclusive, so is the Ratio Test. But there are series for which the Ratio
Test is inconclusive and the Root Test implies convergence.

Theorem 2.3.27. Given a sequence (x,) of positive numbers, we have

liminf(x,+1/x,) < liminf({/x,) < limsup(¥/x,) < limsup(x,+1/x,).

Proof. Let & = liminf(x,+/x,) and n = limsup(x,+1/x,). We must show that
liminf(¢/x,) > £ and lim sup({/x,) < n. For the latter, if n = oo, we have nothing
to prove. Otherwise, pick n; > nand N € N such that n > N implies x,41/x, <
n1. Thus, with ¢ := xy an, we get x, < cn for all n > N. But then, taking nth
roots and using the fact that lim({/c) = 1, we get limsup(2/x,) < 1. Since this
holds for all n; > n, we get limsup(.{/x,) < n. Next, note that liminf({/x,) > 0.
So, assume that £ > 0 and pick any & € (0,&). Then there exists N € N such
that n > N implies x,4+1/x, > & . Letc:= xNél_N, and note that » > N implies
Yx, > £ /c. Since lim(Y/c) = 1, we get liminf(2/x,) > &. This is true for all
& € (0,§); it follows that liminf(¢/x,) > &. |

Example 2.3.28. Let x, := £&---§&, with (§,) = (3,1/9,3,1/9,...). Then
Xn+1/Xn = En41, s0 that liminf(x,4+1/x,) = 1/9 whereas limsup(x,+1/x,) = 3.
The Ratio Test is therefore inconclusive. Now x, = (1/3)"/2 for n even and
x, = 3(1/3)"=Y/2 for n odd. Thus lim(/x,) = 1/+/3, which implies that the
series Y _ x, is convergent.

Exercise 2.3.29. Investigate the convergence or divergence of the following

series:

LY (/n—1)"

2. Y22, 1/(logn)";

3. Y n!/n"

4.3, 1/(logn)'en,

5. 3+3+%+5m+5x+x+--:and
1 i1 1 1

6. 5+l+g+3+5+5+ -

Hint: For (5) and (6), note that the Ratio Test is inconclusive.

For many series for which the Ratio and Root Tests are both inconclusive, the
following test and its corollaries may be useful.

Theorem 2.3.30 (Kummer’s Test). Let (x,) and (d,) be two sequences of positive
numbers. Suppose that _ 1/d, = +oo and let t,,:= d,, — (Xp+1/Xn)dn+1. Then the
series y_ x, converges if t, > h is ultimately true for some h > 0 (equivalently, if
liminfz, > 0) and diverges if t, < 0 is ultimately true (which is the case if, e.g.,
limsup?, < 0).

Proof. Ift, > h for some h > 0 and all n > mq € N, then

hx, < Xpd, — Xy41dy+1 (n = my). (%)
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Adding the inequalities (x) forn = mgy, mo + 1,...,m, we get
m
h Z Xp = xmodmo - xm+1dm+1 < xmodmo (Vm > mO)-
n=my

This implies that Y x,, has bounded partial sums and hence is convergent. If, on the
other hand, f, < Oforalln > K € N, then x,,+1d,+1 > x,d, foralln > K, so
that x,, > (xgdg)/d, for all n > K and the divergence of »_ x, follows from that

of . 1/d,. |

Corollary 2.3.31 (Raabe’s Test). Let (x,) be a sequence of positive numbers.
Then Y x, converges if X,+1/X, < 1 — r/n is ultimately true for some r > 1
(equivalently, if liminf(n(1 — x,4+1/x,)) > 1) and diverges if x,+1/x, = 1—1/n
is ultimately true (which is the case if, e.g., limsup(n(1 — x,41/x,)) < 1).

Proof. This follows at once from Kummer’s Test if we take d,, := n. O

Before stating the next corollary, let us introduce a convenient notation. Let (c,)
be a sequence of positive numbers. Given a sequence (b,), we write b, = O(c,) if
there is a constant K > 0 such that |b,| < K¢, for all sufficiently large n. We shall
also assume the following facts:

. logn
lim
n—oo pn¢

-0 (Ya>0), lim nlog (L) -1 )
n—00 n+1

These facts are immediate consequences of [’Hopital’s Rule, as we shall see in
Chap. 6, and are true even when n is replaced by x € (0, 00).

Corollary 2.3.32 (Gauss’s Test). Let (x,) be a sequence of positive numbers such
that, for some constants r € R and p > 1, we have

1
M =1 i + 0(_>
Xn n np

Then >  x, converges if r > 1 and diverges ifr < 1.

Proof. The condition implies that lim, oo 7(1 — X,,+1/x,) = r, so that the result
follows from Raabe’s Test if r # 1. For r = 1, we use Kummer’s Test with d, =
nlogn (cf. Exercise 2.3.20). Now, with ¢, := d,, — (X, +1/Xn)dy+1 as before,

t, = nlogn — [1 — % + 0<nip)](n + 1)log(n + 1)
= nlog (#) + %log(n + 1)+ O(H%)(n + 1)log(n + 1).

Therefore, by (), we have lim(z,) = —1. O
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The next proposition will be needed in our treatment of alternating series.

Proposition 2.3.33 (Abel’s Partial Summation Formula). Given a pair of real
sequences (x,) and (yy), set s, := Y p_ Xk and so := 0. Then, if 1 < m < n,
we have

n—1

Z XYk = Z Sk(Vk = Yk+1) + SnYn — Sm—1Ym-
= k=m

Proof. Using the fact that x,, = s, — 5,—1, we have

n n
Dok =) (s —sk-D)yk = Z Sk Yk — Z SkVi+1s

k=m k=m k=m—1
from which the proposition follows at once. O
Here is a nice application:

Theorem 2.3.34 (Kronecker’s Lemma). Let (x,) be a real sequence with
Yoo xn = s < o00. If (by) is an increasing sequence of positive numbers with
lim(b,) = oo, then

lim — Zbkxk = 0.

n—)OO

Proof. Using the above proposition with s, 1= > j _| Xk, ¥u = by, and m = 1, we
have

n n—1
1 1
b ];bkxk =85 — b I;(ka — bi)sk. ()

Now note that for n > N the right side of (x) is

N— n—1
=Sy — bl g (bk+1 — bi)sk — b_ kZN(bk—H bi)sk
= [ beti — < (bis1— b < (bit1—
=Sy — ( ) Z ( ) Z ( ) (sk — 5,
k=1 k=N k=N

which simplifies to

[Sn - (%) ] - Z(bk+1 bi)sic — — Z (i1 =bi)(sk—5).  (x%)

l‘l k=1 nk =N
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If n — oo, then 5, — s and (as b, increases to co) (b, — by)/b, increases to 1.
Thus the difference inside the brackets in () goes to zero. The second term in
(xx) also approaches zero because the sum is independent of n. So, given ¢ > 0
the first and second terms will each be < ¢/3 if n > N and N is large enough.
Finally, since (b,) is increasing, the absolute value of the last term is bounded by
[(b, —by)/byle/3 < &/3if N is so large that |s; — s| < &/3 for k > N. Thus (xx)
is less than ¢ if n > N and the proof is complete. O

Here is another important application:

Theorem 2.3.35 (Dirichlet’s Test). Let > x, be a real series whose partial sums
Sn = Y _p—y Xk form a bounded sequence. If (y,) is a decreasing sequence (of
nonnegative terms) with lim(y,) = 0, then the series »_ X, y, converges.

Proof. Pick B > 0 such that |s,| < B V n € N. Now, given any ¢ > 0, there is an
integer N € N such that yy < ¢/(2B). Using Proposition 2.3.33 and the fact that
Vn — Yn+1 = 0 for all n, it follows that, if N < m < n, then

n
) > Xuyn
k=m

n—1
= ‘ Z Sk(yk - yk+l) + Sn¥n _Sm—lym‘
k=m

n—1
=B |:Z(J’k = Yi+1) + yn + ym]

k=m

=2By, <2Byy <e.

By Cauchy’s Criterion, the series > _ x, y, is therefore convergent. O

Corollary 2.3.36 (Abel’s Test). Suppose that »_ x,, is convergent. Then, for any
bounded monotone sequence (y,), the series Y, X, y, is also convergent.

Proof. We may assume that (y,) is decreasing. Let y := inf{y, : n € N}
Then lim(y,) = y. Put z, := y, — y. Then (z,) is monotone, nonnegative, and
lim(z,) = 0. Since the convergent series Y x,, has bounded partial sums, Y x,z,
converges by Dirichlet’s Test and the convergence of Y x,, y, follows at once. O

Dirichlet’s Test can be used to give a convergence criterion for alternating series
which we now define:

Definition 2.3.37 (Alternating Series). Let (a,) be a sequence of positive real
numbers. The series > (—1)"*'a, (or Y (—1)"a,) is then called an alternating
series.

Theorem 2.3.38 (Leibniz’s Test). Ler (a,) be a sequence of positive numbers. If
(a,) is a decreasing null sequence; i.e., ifay > a, > az > --- and lim(a,) = 0,
then the alternating series Z(—l)"“an = a, —ap + az — -+ (and hence also
> (=1)"ay,) is convergent.
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Proof. Simply apply Theorem 2.3.35, with x, = (=1)"*! and y, = a,. O

Next, we consider the arithmetic operations on convergent series. As usual, the
addition and multiplication by constants are quite elementary, and we leave the proof
of the next theorem for the reader.

Theorem 2.3.39. If Y x, = & and Y.y, = n, then Y (x, + y,) = &€ + 1, and
> ¢x, = c& for any constant ¢ € R.

Exercise 2.3.40. Prove Theorem 2.3.39.

The multiplication of two convergent series is more involved, especially since
there are many ways to define a product. We therefore begin by defining the Cauchy
product. To have a more convenient notation, we begin our summations at n = 0
rather than n = 1. Note that, in general, Y oo | X, = > oo ) Xpt1-

Definition 2.3.41 (Cauchy Product). For two series ) o x, and > oo v, we
define their Cauchy product (or simply product) to be Z:O:() Zy, Where

n
n = Zxkynfk (n € Np).
k=0

Exercise 2.3.42. Consider the alternating series Y o (—1)"/+/n + 1, which is
convergent (why?). Show that the (Cauchy) product of this series with itself is
> > » Zns Where

- 1
n — -1 ,
@ = Z\/(n—k+l)(k+1)

k=0

and that this series is divergent.
Hint: (n —k +1)(k +1) = (n/2 + 1)> — (n/2 — k).

The series in Exercise 2.3.42 was conditionally convergent. The following
theorem shows that if at least one of two convergent series is absolutely convergent,
then the (Cauchy) product of the series converges to the product of their sums.

Theorem 2.3.43 (Mertens). Suppose that Y o |x,| is convergent, > v x, =
g, Y2 vn = n, and that 7, = Y 4_oXkVu—k, (n = 0, 1, 2,...). Then
Yoo =En.

Proof. Foreachn > 0,1let X,,:= > ;o Xk, Yui= Y jpo ks Zn'= Y o and
pn:= Y, —n. Then we have
Zy=2+u+ +u
= xoYyo + (Xoy1 + X1Y0) + -+ (Xoyn + X1Yu—1 + -+ + XnY0)
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=xoY, +x1Y—1 + -+ x, 10
:Xnn+8n (n=0, 1,2,...),

where we have defined (for each n € N)
8= Xopn + X1pn—1 + -+ X400  (n=0,1,2,...).

Since lim(X,,n) = £n, it suffices to show that lim(3,) = 0. To show this, let ¢ > 0
be given. Then, since lim(p,) = 0 (why?), we can pick N € N such that |p,| <
e Vn > N. For each such n, we therefore have

|8n| = |p0xn + -+ Pan—N| + |pN+1xn—N—1 + -+ ano| (*)

< |poxn + <+ + pyXn—n| + €0,

where we have defined

o0
o= Z|xn|.
n=0

But lim(x,) = 0 (why?), so keeping N fixed and letting n — oo in (x), we get
limsup(|8,|) < eo.

Since ¢ was arbitrary, we get lim(8,) = 0 and hence lim(Z,)) = &n. |

Exercise 2.3.44. Show that the Cauchy product of two absolutely convergent series
is absolutely convergent and that its sum is the product of the sums of the two series.

The next theorem, due to Abel, shows that what one wishes to be true is indeed
true! The proof will be given later when we look at power series. Note that no
absolute convergence is required.

Theorem 2.3.45 (Abel). If Y 02 x, = & Y oooyn = nand Y poonzn = ¢,
where z, = Y _o Xk yn—k (n =0, 1, 2,...), then we have { = 1.

The next definition introduces the concept of rearrangement of an infinite series.
Here the important fact is that if a series is absolutely convergent, then all its
rearrangements converge to the same sum.

Definition 2.3.46 (Rearrangement). Let ) x, be a real series and let v =
(vi,v2,v3,...) be a permutation of N; ie., let v : N — N be a one-to-one
correspondence. If we set x; := x,, Vn € N, then the series Y x/ is called a
rearrangement of ) _ x,,.
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Remark 2.3.47. As the next theorem (due to Riemann) shows, a rearrangement of
a conditionally convergent series need not converge to the same limit and may even
diverge. The next exercise gives an example of this phenomenon.

Exercise 2.3.48. Lets:= > (—1)""!/n, and consider the rearrangement

i(l L] ly_, 1 1, 1,1 1.1, 1 1,
k-3 4k—-1 2" 3 2577 49 11 6

of the series, where we always have two positive terms followed by one negative
term. If (s,) denotes the sequence of partlal sums of this rearrangement, show that
s < sy =5/6andthat 5§ < 57 < 59 < . Deduce that limsup(s,) > 5/6, which
implies lim(s),) # s. Show, however, that (s,g) is convergent.

Theorem 2.3.49 (Riemann). Let Y x, be a conditionally convergent real series,
and let &, n € [—00, +00] be given extended real numbers with & < 1. Then there
exists a rearrangement y_ x,, of Y X, with partial sums s/, such that

liminf(s)) = &  limsup(s,) = 7.

In particular, if § = 1, then ) x], = &.
Proof. Define the sequences (p,) and (g,) by

_ |xn|+xn o |xn|_-xn
2 " 2

We then have p, — g, = x, and p, + ¢, = |x4], pn =20, g, = 0. Since ) x, is
not absolutely convergent, both series Y p, and Y _ g, are divergent (why?).

Now let (P,) be the sequence of nonnegative terms of Y _ x,, in their proper order,
and let (Q,) be the sequence of absolute values of the negative terms of Y x,,
also in their proper order. Then the series Y P, and > O, are both divergent,
since they differ from the series Y p, and ) _ g, by zero terms only. We want our